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ABSTRACT 
 
 
Payments for ecosystem services (PES) have been widely recognized as an innovative 
management approach to address both environment conservation and human welfare 
while serving as a policy instrument to deal with the ecosystem service (ES) trade-offs 
resulting from land-use/ cover change (LUCC). However, there is no solid 
understanding of how PES could affect the synergies and trade-offs among ES.  

This research focuses on the LUCC and its inherent ES trade-offs in the 
context of social-ecological systems (SES) that incorporates key feedbacks and 
processes, and explores the possible impacts of management regimes, i.e., PES schemes 
(e.g., eco-certification and reduced emissions from deforestation and degradation 
(REDD)). To address the complexity of this research, a multi-agent simulation (MAS) 
model (LB-LUDAS - Lubuk Beringin - Land Use DynAmics Simulator) was applied in 
which process-based decision-making sub-models were incorporated in the decision-
making mechanism of agents. The model was developed to explore policy scenarios by 
quantifying the potential ES trade-offs resulting from the agents’ land-use choices and 
preferences. It was first implemented for the rubber agroforest landscape in Jambi 
Province (Sumatra), Indonesia. Species richness, carbon sequestration, opportunity 
costs, and decision processes such as PES adoption and future land-use preferences sub-
models were incorporated to capture as much as possible the real SES of a rubber 
agroforest landscape. Three scenarios were simulated over a 20-year period, namely the 
PES scenario, the scenario land-use preference if supported by financial 
assistance/subsidies (SUB), and the current trend as the baseline scenario. 

From the simulations, the key findings show that there was a minimal land-
cover change under the PES scenario, where an estimated 22% of the species richness in 
rubber agroforests could be conserved and 97% of the carbon emissions reduced 
compared to the baseline scenario. For the SUB scenario, an estimated 6% of the 
species richness could be conserved and 47% of the carbon emissions reduced. With 
regard to livelihoods, only under the PES scenario was wealth inequality reduced up to 
50%. Regarding the return for land investment, the profitability of a land-use type 
depends considerably on each scenario; however, rubber agroforests would be highly 
profitable (20%) if a price premium were to be implemented under an eco-certification 
scheme. The main conclusions of this study are firstly, that PES schemes for rubber 
agroforests could offer synergies among carbon emission reduction, biodiversity and 
livelihoods, thus reducing the trade-offs resulting from possible land-use/cover change, 
and secondly that the LB-LUDAS model as an integrated and MAS model is a useful 
tool to capture the ES trade-offs as an emergent property of the dynamic social-
ecological systems at the same time serving as a negotiation-support system tool to 
support the design of land-use policies.   

The use of process-based decision making in the LB-LUDAS model is 
recommended in order to incorporate intended decisions of agents in various situations. 
In this way, the triggers, options and temporal and spatial aspects of agents’ reactions 
are captured in a relatively realistic way. 
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KURZFASSUNG  

 
 

Finanzielle Anreize für Ökosystemdienstleistungen (PES) sind ein weit verbreiteter und 
anerkannter Managementansatz sowohl im Hinblick auf den Umweltschutz als auch auf 
das Wohlergehen der Menschen. Gleichzeitig dienen sie als politisches Instrument für 
den Umgang mit den durch die Veränderungen in der Landnutzung/-bedeckung 
(LUCC) bedingten Trade-offs der Ökosystemdienstleistungen (ES). Es gibt jedoch kein 
solides Wissen darüber, wie sich PES auf die Synergien und Trade-offs zwischen den 
ES auswirken könnten.  

Der Schwerpunkt dieser Studie liegt auf den LUCC und ihren inhärenten ES 
Trade-offs im Kontext von sozial-ökologischen Systemen (SES), die wichtige 
Feedbacks und Prozesse berücksichtigen. Die Studie untersucht die möglichen 
Auswirkungen von Managementregimen, d.h. PES-Systemen (z.B. Ökozertifizierung 
und reduzierte Emissionen von Entwaldung und Degradation (REDD)). Um die 
Komplexität des Themas zu erfassen, wurde ein Multi-Agentensimulationsmodel 
(MAS; LB-LUDAS - Lubuk Beringin - Land Use DynAmics Simulator) eingesetzt, bei 
dem prozessbasierte Entscheidungs-Submodelle im Entscheidungsmechanismus der 
Agenten berücksichtigt werden. Das Modell wurde entwickelt, um verschiedene 
Szenarien durch die Quantifizierung der potentiellen ES Trade-offs, die durch die Wahl 
bzw. Vorlieben der Agenten hinsichtlich der Landnutzung entstehen, zu untersuchen. Es 
wurde zuerst für die Kautschuk-Agroforstsysteme in der Provinz Jambi (Sumatra), 
Indonesien, eingesetzt. Sub-Modelle wie Artenvielfalt, Kohlenstoffspeicherung, 
Opportunitätskosten und Entscheidungsprozesse wie die Anwendung von PES und 
zukünftige Präferenzen wurden berücksichtigt, um so weit wie möglich die 
tatsächlichen SES von Kautschuk-Agorforstsystemen zu erfassen. Drei Szenarien 
wurden über eine Periode von 20 Jahren simuliert, nämlich das PES-Szenario, das 
Szenario der Landnutzungspräferenzen, im Fall der finanziellen Unterstützung bzw. 
Subventionen (SUB), sowie der aktuelle Trend als Grundszenario. 

Die wichtigsten Ergebnisse der Simulationen zeigen eine minimale 
Veränderung der Landnutzung im PES-Szenario, wobei im Vergleich zu dem 
Grundszenario ca. 22% der Artenvielfalt in den Kautschuk-Agroforstsystemen erhalten 
und die Kohlenstoffemissionen um 97% reduziert werden konnten. Bei dem SUB-
Szenario konnten ca. 6% der Artenvielfalt erhalten und die Kohlenstoffemissionen um 
47% reduziert werden. Hinsichtlich der Lebensgrundlagen wurde nur beim PES-
Szenario die Wohlstandsungleichheit um bis zu 50% reduziert. Was die Renditen für 
Investitionen ins Land betrifft, hängt die Wirtschaftlichkeit der einzelnen 
Landnutzungstypen sehr stark vom Szenario ab; Kautschuk-Agroforstsysteme wären 
jedoch sehr profitabel (20%), wenn eine Preisprämie in einem 
Ökozertifizierungsprogramm eingeführt würde. Die wichtigsten Schlussfolgerungen 
dieser Untersuchung sind erstens, dass PES-Programme für Kautschuk-
Agroforstsysteme zu Synergien zwischen Reduzierung von Kohlenstoffemissionen und 



Erhaltung der Biodiversität sowie zur Verbesserung der Lebensgrundlagen führen und 
damit die Trade-offs reduzieren, die durch mögliche Veränderungen in der 
Landnutzung/-bedeckung entstehen können, und zweitens, dass das LB-LUDAS-Modell 
- als integriertes sowie als MAS-Modell - ein nützliches Instrument darstellt, um die ES 
Trade-offs als eine wichtige Eigenschaft der dynamischen sozial-ökologischen Systeme 
zu erfassen. Gleichzeitig dient das Modell als Instrument zur Unterstützung von 
Verhandlungen bei der Planung von Landnutzungsmaßnahmen. 

Der Einsatz prozessbasierter Entscheidungen im LB-LUDAS-Modell wird 
empfohlen, um geplante Entscheidungen von Agenten in verschiedenen Situationen zu 
berücksichtigen, Auf diese Art können die Auslöser, die Optionen sowie die zeitlichen 
und räumlichen Aspekte der Reaktionen der Agenten auf relativ realistische Weise 
erfasst werden. 
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1 MODELING LAND-USE CHANGE AND ECOSYSTEM SERVICE 
TRADE-OFFS: A SOCIAL-ECOLOGICAL SYSTEMS APPROACH 

 
 

1.1 Background  

Earth’s life support systems and society have entered an era of massive change. In the 

past 50 years, the global population has doubled, and by 2050 the global population is 

projected to grow by 50%. The Millennium Ecosystem Assessment (2005) reported that 

there is an increasing trend in both harvested area (area expansion) and cereal yields (a 

proxy of increased intensification). Over the past 40 years, cropland area has expanded 

globally by 15% (from 1.3 to 1.5 billion ha), while the area for pasture has increased by 

11% (from 3.14 to 3.48 billion ha) (FAOSTAT 2004). And yet, the number one target 

of the Millennium Development Goals (MDG) is to halve hunger by 2015. Doubling 

and at the same time sustaining food production demands environmental integrity.  

Conservationists are alarmed that the impact of agricultural change, e.g., 

intensification, on nature is now greatest in developing countries (Green et al. 2005). 

For instance, an analysis of the world bird database of the Birds International conducted 

by Green et al. (2005) shows that farming is the single biggest threat to endangered bird 

species (accounting for 37% of threats) and is substantially important in developing 

countries. It is also frequently observed that the biodiversity value of farmland declines 

with increasing yield (Pain and Pienkowski 1997; Krebs et al. 1999; Donald et al. 

2001). Green et al. (2005) suggested that maintaining high biodiversity on farmland 

often requires foregoing opportunities for high yields. Balancing these conflicting 

demands is a major challenge to all ecologists as well as policy makers.  

The Millennium Ecosystem Assessment mainstreams the concept of 

ecosystem services (ES). It describes how humanity benefits from ES and how human 

actions alter ecosystems and the services provided. The ES concept has been widely 

adopted among the scientific and policy communities and created new approaches for 

research, conservation and development (Daily and Matson 2008; Carpenter et al. 

2009). However, there is a growing body of literature about the challenges of 

integrating and understanding the relationships of ES and human well-being (Bennett et 

al. 2009; Mooney 2009). Among these challenges are how to analyze trade-offs 

involved in land-cover and land-use change, particularly with respect to the spatial 
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analysis and dynamic modeling tools, scale, development and challenges regarding the 

inclusion of ecosystem services in integrative landscape planning and decision-making 

tools (De Groot et al. 2010). Basic science (i.e., including the basic information on the 

dynamics of social-ecological systems) is needed to assess, project, and manage the 

flows of ecosystem services and human wellbeing. Carpenter et al. (2009) listed some 

major research challenges: 

1. Management of ecosystems services is based on assumptions that have not yet been 

vetted by evidence, and thus evaluation of assumptions, policy instruments and 

practices is sorely needed. 

2. Explicit models of coupled social-ecological systems (SES) are essential for 

research, synthesis, and projection of the consequences of management actions.  

3. Research is needed to build the empirical base for understanding thresholds of 

massive persistent changes in social-ecological systems, the factors that control 

probabilities of such changes, and leading indicators of incipient thresholds. 

 

1.1.1 Land-use /cover change (LUCC) and ecosystem services (ES) trade-offs 

Humans have transformed significant areas of the Earth’s land surface (land cover) 

(Vitousek et al. 1997; Agarwal et al. 2002; Foley et al. 2005). These land-use/ cover 

changes (LUCC) are intertwined in many ways with global environmental issues such 

as climate change and carbon cycle, loss of biodiversity, sustainability of agriculture, 

and provision of safe drinking water (Foley et al. 2005; Lepers et al. 2005). Though 

some of these changes are absolutely essential for human survival, other forms of land 

use are degrading the ES (Figure 1.1). 

According to Foley et al. (2005), confronting the global challenges of land use 

will require assessing and managing inherent trade-offs between meeting immediate 

human needs and maintaining the capacity of ecosystem to provide goods and services 

(DeFries et al. 2004; MA 2005b).  Management systems differ in the way people extract 

goods, in the level of production, in the intended and unintended provision of services, 

and in the level and quality of biodiversity. Hence, there is a need to identify novel 

management systems and practices that facilitate desirable transformations (Folke 2005; 

Mooney 2009). 
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Figure 1.1  Comparison of land uses and trade-offs of ecosystem services  
  (Source: Foley et al. 2005). 
 

To make better decisions regarding the trade-offs among ES involved in 

LUCC, a systematic account of the relationships between ecosystem management and 

ecosystem services and the values that these generate is needed (De Groot et al. 2010). 

Although ES trade-offs are becoming a popular research topic in ecology, very few 

studies are available (Rodriguez et al. 2006), and an increased research effort is needed 

to quantify the capacity of various land-cover types and associated management 

strategies to provide a range (bundle) of ES. 

 

1.1.2 Payments for ecosystem services (PES)  

Payments for ecosystem services (PES) or payments/ rewards for environmental 

services (P/RES) have been widely recognized as an innovative approach to ensure 

sustainable ecosystem management. Bennett et al. (2007) defined management regime 

as the way the ecosystem is manipulated in order to obtain the desired ecosystem 

services. Nowadays, PES is one of the economic and market-based instruments seeking 

to support positive environmental externalities through the transfer of financial 

resources from beneficiaries of certain environmental services to those who provide 

these environmental resources. Over the last decade, the use of PES schemes for 

watersheds (e.g., downstream water users paying upstream farmers for adopting land 

uses that limit soil erosion), biodiversity (e.g., conservation donors paying landholders 

for creating set-aside areas for biological corridors), carbon sequestration and storage 

(e.g., car companies paying tropical farmers to plant or maintain trees) has gained 

popularity as it addresses the goal of both conservation and poverty alleviation (Wunder 

2008). In the agricultural landscape, the main argument for creating PES schemes is that 
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ecosystems such as natural or secondary forests, as well as human-interfered landscapes 

exploited for agriculture, provide mankind not only with marketed commodities, but 

also with additional services that create ecological benefits at complementary local, 

regional, and global scales (MA 2005b; Van Hecken and Bastiaensen 2010; Villamor 

and van Noordwijk 2011). Based on that premise, the land users are seen as ES 

providers who are assumed to take the opportunity to add ES to the portfolio of their 

production choices, and positive externalities of environmentally-sound land uses are 

assumed to be known, at best reflecting the full range of the provided ES. Therefore, 

there are at least two bottlenecks in the research efforts to determine successful PES: 1) 

understanding of land users’ adoption of the introduced PES concept and schemes, and 

2) evaluation of positive externalities, with respect to the ES bundle, that alternative 

land uses can offer. So far, too few studies examine how farmers adopt introduced PES 

schemes under a wide range of political, social, economic and ecological conditions 

(Pagiola et al. 2005; Zbinden and Lee 2005) 

The growing demand to meet human needs causes a decline in other ES that 

are also crucial to human wellbeing. However, experience shows that the 

implementation of this instrument faces numerous challenges. There is a huge 

knowledge gap in the understanding of how management regimes affect bundles of ES, 

which are often interacting (Bennett and Balvanera 2007). Integration of the 

perceptions, knowledge and values of different stakeholders (e.g., conservation agents, 

local people, public/policy agents, existing tenure system) is seen as a crucial factor in 

the negotiation for any environmental compensation/reward scheme (van Noordwijk et 

al. 2007). Moreover, there is no solid understanding on how PES could affect the 

synergies and trade-offs among ES. 

 
1.1.3 Social-ecological systems (SES) 

The challenge of the assessment of ES trade-offs lies in the complexity of ecosystem 

dynamics in which human and natural processes are coupled. The general problem of all 

ecological analyses and all environmental decision processes is the enormous 

complexity of the investigated ecosystems and landscape patterns (Müller et al. 2000; 

Rodriguez et al. 2006). Coupled social-ecological systems are characterized as non-

linear (chaotic dynamics) with unpredictable behavior and interactions that span 

multiple levels of biological organizations or spatiotemporal scales (Folke 2006; 
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Norberg and Cumming 2008). Since complex systems violate the assumptions of 

reductionist techniques (Costanza et al. 1993), the need to work across all types of 

human boundaries at different geographic scales (including downstream and upstream 

relations) is required. Cumming (2011, p.59) describes that in “the research on social-

ecological systems the focal questions are likely to revolve around the maintenance of 

natural resources, the role of management in the system, and the requirements of 

different groupings within the human population.”  

Several general integrated modeling frameworks for the study of SES have 

already been proposed (Cumming 2011), e.g., multi-agent system/ or agent-based 

system models (MAS/ABM) (Holland 1992; 1995). These models lay out key elements 

or properties of complexity theory, e.g., aggregation, non-linearity, flows and diversity 

with mechanisms such as tags, internal models, and building blocks.  

In recent years, multi-agent system simulation (MAS) has been receiving 

much attention in the research community mainly because it offers a way of 

incorporating the influence of human decision making on land use in a mechanistic, 

formal, and spatially explicit way (Matthews et al. 2007). It has been widely used to 

explore the decision-making processes of land managers in the context of spatial and 

social interactions (Parker et al. 2002; Parker et al. 2003; Evans and Kelley 2004; 

Veldkamp and Verburg 2004; Le et al. 2008; 2010; 2011). Matthews et al. (2007) 

reviewed the applicability and usage of MAS/ABM regarding the following aspects: (a) 

policy analysis and planning, (b) participatory modeling, (c) explaining spatial patterns 

of land use or settlement, (d) testing social science concepts, and (e) explaining land-use 

functions. Accordingly, MAS/ABM is promising as it can provide new insights into 

complex natural resource systems and their management that traditional approaches are 

not able to. Many MAS/ABMs have been widely explored to simulate LUCC (Bousquet 

and Le Page 2004; Le 2005; Parker et al. 2002). Developments in the use of this model 

led to incorporation of the human behavioral component that underlies the land-use 

change. Economic structural models of land-use decisions were developed within a 

spatially explicit framework of MAS/ABM (Irwin and Geoghegan 2001). Although it 

could be argued that land use in itself is not as important as its effects on the biophysical 

functioning of the landscape (e.g., provisioning of agro-biodiversity and maintenance of 

other ES), so far no studies using this model have been conducted to assess the ES 
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trade-offs, mainly between food production and biodiversity, while simulating scenarios 

of management regimes like PES. To develop a comprehensive understanding necessary 

to assess and quantify the ecosystem responses to different types of land-use change in 

different ecological situations, DeFries et al. (2005) identify the key elements to be 

addressed: 

1. driving forces behind land-use change including economics and markets,  

2. human behavior,  

3. international and national policies,  

4. biophysical conditions and availability of technology to project future change,  

5. observations and monitoring to identify patterns and locations of land-use change, 

and 

6. analysis of the ecosystem consequenses of land-use change and the feedbacks to 

future land-use options. 

 

1.2 Research questions and objectives 

Taking into account the research challenges listed above, the aim of this study is to 

provide insights and clarity on the following research questions: 

1. Can agricultural production and agro-biodiversity protection as two different 

perspectives be bridged? 

2. How do specific management regime/policy intervention such as PES schemes 

affect the trade-offs and synergies among different ecosystem services? 

3. How could the complexity of social-ecological systems be represented using multi-

agent system (MAS) models? 

4. How can the MAS model support the design of PES schemes? 

The specific objectives are the following: 

1. To parameterize and validate a multi-agent land-use dynamic simulator model (i.e., 

LB-LUDAS) to explore temporal and spatial impacts of PES interventions on the 

trade-offs between agro-biodiversity and food production as the main categories of 

ES; 

2. To identify synergies and trade-offs between the main categories of ES using a 

MAS model;  
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3. To develop a tool-based approach using a MAS model to assess ES trade-offs and 

support the design of PES schemes. 

 

1.3 Thesis outline 

This thesis is structured as follows:  

Chapter 2 introduces the state-of the-art approach to understand the 

complexities of LUCC and ES trade-offs; defines and describes the coupled human-

environment systems, and describes the modeling tool applied to understand the 

complexities.  

Chapter 3 deals with the human behavior of the rubber farmers in Indonesia 

when making land-use choices. Factors affecting their decisions are analyzed and the 

method to capture the human agents’ heterogeneity is applied. Chapter 4 analyzes the 

factors that affect the adoption of human agents (farm households) in international 

policy (e.g., REDD schemes) and local policy (e.g. eco-certification of rubber latex) as 

PES schemes. The importance of rubber agroforest for ES is also described.  

Chapter 5 describes and analyses the biophysical conditions of the rubber 

agroforests and the key biophysical sub-models (species richness, forest-yield 

dynamics, agronomic yield dynamics, natural succession, and carbon stocks) to 

demonstrate the ecological processes and complexity of the ecological system. Also, 

data parameterization and calibration are presented.  

Chapter 6 describes the unanticipated core problem in the application of the 

empirical MAS/AB model that was encountered during the initial simulation runs, and 

presents ways to resolve the problem. Chapter 7 presents the land-use change analysis 

and potential ES trade-offs using the new approach in modeling the decision-making 

process of agents in achieving the core research problem.  

Finally, Chapter 8 provides the main conclusions and recommendations based 

on the study objectives and addresses the insights on the key research questions.  

Appendix 1 presents the review of literature on what drives the land-use 

change in the study site in Jambi Province (Sumatra), Indonesia, and analyses the speed, 

transition and intensity of land-use change. 
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2 CHES: MODELING APPROACH TO UNDERSTAND ECOSYSTEM 

SERVICE TRADE-OFFS  

 

Land-use change is a dynamic and complex process of interactions between human and 

environmental systems. The complexity of the coupled systems is not well understood 

due to the traditional separation of ecological and social sciences (Kinzig 2001; Liu et 

al. 2007; Scholz 2011). The intricate ways in which humans might interact with 

ecological systems (i.e., responding to ecological change) are rarely considered. The 

feedback between social processes and ecological dynamics is currently one of the most 

demanding fields of interdisciplinary research and development. Although several 

studies have attempted to understand the process, these are based on theoretical work, 

and very few used empirical data (Nolan et al. 2009; Le et al. 2010); however, the 

number of social ecological system models applied for real-world cases is increasing 

(Matthews et al. 2007). 

Most ecological theories have been developed in systems where humans are 

absent or exogenous, or a simple and detrimental perturbing force. Similarly, much of 

the neoclassical economic theory is asserting on a reliable and uniform biosphere, one 

with flows of ecosystems services and natural resources that are expected to expand so 

as to conform to stated political or economic goals (Kinzig 2001).   

This chapter presents the state-of-the-art modeling approach for understanding 

the coupled human-environment system (CHES) and its ecosystem service trade-offs.  

The LB-LUDAS model as a multi-agent system model for land-use change and analysis 

of ecosystem service trade-offs is described based on the ODD (Overview, Design 

concept, and Details) standard protocol. 

 

2.1 Coupled human-environment systems (CHES) models 

The interactions between natural and human systems produce complex emergent LUCC 

dynamics and are best analyzed through CHES models. 

CHES (also referred to as social-ecological systems) is a new science that is 

widely recognized (Cumming 2011; Scholz 2011). Liu et al. (2007) describe the science 

that CHES builds on. First, it focuses on patterns and processes that link human and 

natural systems. Second, it emphasizes the reciprocal interactions and feedbacks – the 
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effects of both humans on the environment and of the environment on humans.  Third, 

understanding within-scale and cross-scale interactions between human and natural 

components is the major challenge (see Figure 2.1). The unique features of coupled 

human-environment systems are briefly described below. 

 

Multiple, temporal and spatial scales 

Couplings within and among CHES take place across nested multiple spatial scales, 

ranging from local to global. Villamor et al. (2011) conceptualized the interactions of 

human agents in a nested hierarchy using sub-system linkages (Figure 2.1).   

 
Figure 2.1  Conceptualization of how agents interact at different levels or scales 

(Villamor et al. 2011).  
 

According to Cumming et al. (2006), scale mismatch happens through changes 

in the relationships between the spatial, temporal or functional scales at which the 

environment varies, the scales at which human social organization occurs, and the 

demands of people and other organisms for resources. For example, scale mismatch is 
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caused by changes within the availability of capital or assets, e.g., population change, 

physical infrastructure change, food production, land tenure, etc. 

 

Multiple levels of biological and social organizations 

Human and environmental systems interact with each other creating feedback between 

different organizational levels (e.g., gene, cell, individual, community, ecosystem, and 

biosphere) that also influence the human-environment interactions (Pickett et al. 2005). 

 

Interacting feedbacks and adaptation 

Feedback loops in which human influence is affected by natural patterns and processes 

are a typical characteristic of CHES (Berkes and Folke 1998; Cumming et al. 2006). 

The loops are either positive or negative, which could lead to either acceleration or 

deceleration in rates of change of both human and natural components as well as 

interactions (Liu et al. 2007). In social systems, a form of active adaptation, through 

decision making and proactive responses to environmental change, may be possible 

(Cumming 2011). Adaptation claims to be the result of primary and secondary loops in 

the socio-ecological conditions of the households in the long run (Le et al. 2011). 

 

Non-linear behavior and thresholds 

Interactions between humans and the environment reflect non-linear, chaotic or even 

unpredictable behavior (Cottingham 2002) because the non-linearities in the responses 

of key system variables to changes in other variables can result in the crossing of a 

threshold, which is a point at which a system shifts or flips from one state to another 

(Walker and Meyers 2004; Scheffer 2009). 

 

Legacy effects and time lags 

There are varying intervals of time between human-nature interactions and the 

ecological and socio-economic effects. Thus, the linkages between human and natural 

systems unfold slowly, and the changes are not detectable (Liu et al. 2007). Also, time 

lags complicate the process of understanding the interactions between human decisions 

and their environmental effect and vice versa.  
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Asymmetries and heterogeneity 

Asymmetries could refer to systematic heterogeneity within a complex system. For 

example, asymmetries in elevation can create a spatial gradient, while asymmetries in 

biological diversity can structure local food webs in a way that is largely independent of 

spatial variation (Cumming 2011). In social systems, heterogeneity refers to the agents’ 

preferences or variability in agent characteristics across entire populations and 

categorization of groups of individuals with similar preferences (Brown and Robinson 

2006).  

 

Resilience 

Resilience refers to the ability of the system to maintain its identity in the face of 

internal change and external perturbations (Cumming and Collier 2005; Cumming 

2011). 

  

2.2 Multi-agent system (MAS) models 

Multi-agent system or agent-based system (MAS/ABM)1 tools for modeling land-

use/cover change (LUCC) have been recognized as being highly appropriate for 

representing the complex nature of both spatial interactions and decentralized human 

decision making on land use including ecosystem policy analysis (Ligtenberg et al. 

2001; Parker et al. 2003; Bousquet and Le Page 2004; Deadman et al. 2004; Evans and 

Kelley 2004; Acevedo et al. 2008). Some of the applications examine the shifting 

cultivation patterns and deforestation in the context of resource use and land markets 

(Parker et al. 2003), demographic dynamics and tropical deforestation (Huigen 2004; 

Huigen et al. 2006), and scenario building based on agricultural subsidies and their 

impact on land-use change (Le 2005; Le et al. 2008; 2010; 2011).   

Other agent-based models link geospatial technologies, explicitly considering 

human-induced drivers and integration of multiple spatial scales (Evans and Kelley 

                                                 
1  The term ABM originally emerged in a computational context with applications in physics, social 

sciences and economics. It often describes robotic aggregates responding to a variable environment 
or simulates complex behavior of humans in social networks. In the ecological perspective, the 
individual-based model (IBM) uses the same basic concept and is used synonymously with ABM. 
MAS is also used in a similar concept, however, emphasis is on the interaction of a larger number of 
autonomously acting software agents and is even more common in technical applications (Reuter et 
al. 2011).  
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2004). Only few attempts have been made to investigate the linkages between human 

behavior and biophysical processes occurring in the landscape such as soil fertility 

dynamics (Matthews 2006), vegetation succession (An et al. 2005; Manson 2005a; 

2005b; Matthews 2006) and crop-yield and forest-yield dynamics (Le 2005; Le et al. 

2008). However, these studies are still either at an early stage or on an abstract level (Le 

pers. com.). Villamor et al. (2011) reviewed existing land-use change models (i.e., 

ABM) on the basis of agents’ decision making, behavior, characteristics, and 

interactions, and representation of biophysical processes. It was seen that most of the 

decision making of human agents was based on utility optimization, and integration of 

non-economic motivation in the decision-making process is a fundamental challenge for 

the MAS/ABM modelers.  

Despite the many strengths and flexibilities of MAS/ABM application, there 

are also a lot of criticisms of the approach especially with respect to the application for 

SES. One of the main criticisms is the calibration and validation of the MAS/ABM 

models. Heckbert et al. (2010) describe this as the “birthing pains of a new 

methodology”. The author of this study is very much aware of this challenge. In Chapter 

6, a specific example that emerged unexpectedly during the initial simulations of the 

LB-LUDAS and ways to resolve the issue are presented.  

 

2.3 LB-LUDAS Model 

LUDAS (land-use dynamic simulator), a model platform developed by Le (2005), was 

used and modified in this study. This section follows the ODD (Overview, Design 

concepts, and Details) protocol as a standard procedure for describing the simulation of 

LB-LUDAS (Grimm et al. 2006; Grimm et al. 2010). 

 

2.3.1 Purpose 

The LUDAS model was primarily designed to support land-use decisions in the forest 

margins with the following three aims: 1) to explore the magnitude of possible socio-

ecological changes over space and time as driven by different land-use policy 

interventions, 2) to identify the most affected components of the system (what), 

locations (where) and periods (when) with respect to specific policy intervention, and 
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3) to highlight sound policy interventions that likely enhance environmental and socio-

economic benefits efficiently.  

For this study, a fourth objective is added: to explore the potential trade-offs 

and synergies of the policy intervention on the goods and services temporally and 

spatially. A conceptual framework of the LB-LUDAS model is illustrated in Figure 2.2. 

In LUDAS, the organizations represented through experimental factors that 

will influence the ecosystem management in the study area are treated externally. The 

policy factors and management regimes are considered externally with regard to the 

boundary of modeled system, i.e., limited boundary (Figure 2.2), in order to simplify the 

modeling task. In this way, different scenarios of policy and management setting will be 

pre-defined, and the course of future system development will be compared to assess 

ex-ante impacts of policy interventions or management regimes.  

 

Extended system boundary

Limited boundary

Bio-physical landscape  system
Human community system

Landscape Unit

Biophysical state
Responsive biophysical 
functions (sub-models)

Household agent

Household profile
Decision-making 
models/ routines

Emergent properties

Experimental factors:
Rewards (or PES) from carbon 

sequestration and agrobiodiversity 
conservation as land-use policies 

Land uses 
(actions)

(conversion, 
modification, 
investment)

Perceptions

Benefits

(food, materials, 
fuels, aesthetic 

values)

 

Figure 2.2 Conceptual framework of LB-LUDAS model 

 

 



CHES: Modeling approach for understanding ES trade-offs 

14 

 

2.3.2 Agents and their state variables and scales 

Agents 

The LB-LUDAS model consists of two types of agents: 1) human agents, and 2) 

landscape agents, each with several state variables as given below.  

1. Human agents are representations of individual farming households. The state 

variables of these agents capture the sustainable livelihood capital of each 

household. This includes social identity (or simply the identification number), age, 

group membership, and human resources (e.g., household size, dependency ratio 

and education), land and natural resources (e.g., land holdings and land structures), 

financial capital (e.g., gross income and gross income per capita), physical capital 

(e.g., access to market and distance to town), and policy access (e.g., participation in 

conservation agreement (CA) and involvement in CA activities).  

2. Landscape agents are congruent land pixels or patches with state variables 

corresponding to GIS-raster layers of biophysical spatial variables (e.g., land cover 

and wetness index), neighborhood spatial characteristics (e.g., enrichment factors of 

land-use pattern), economical spatial variables (e.g., proximate distance to road and 

town center or market), institutional spatial variables (e.g., owner and protection 

zoning), and households’ landscape vision (Le et al. 2008). 

 

Spatial and temporal units 

One time step represents one year. One grid cell or pixel represents 30 m x 30 m (900 

m2) and the model landscape covers 156 km2. 

 

Environment 

The environment in this context refers to the overall environment or forces that drive the 

behavior and dynamics of all agents or grid cells (Grimm et al. 2010). In LB-LUDAS, 

the environmental variables that drive the behavior of the agents in this model are forest 

protection zoning, market price, policy intervention (e.g., PES schemes) and 

neighborhood conditions in land use and livelihood. Similar to the general LUDAS 

framework, the behavior strategy of a household agent changes over time based on its 

annual evaluation of change in land-use and livelihood structures of the surrounding 

environment. The parameters specifying the household behavior are treated as state 
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variables, which are stored in the memory of household agents (Le et al. 2010). These 

variables include the set of preference coefficients reflecting the relative importance of 

various environmental, socio-economic and policy factors in household decisions about 

land uses, and the set of ratios determining the amount of labor allocated for each 

branch of livelihood activities. 

  

2.3.3 Process overview and scheduling 

The basic LB-LUDAS model scenario process consists of twelve main steps (Figure 

2.3). The main time loop of the simulation program, called annual production cycle, 

includes sequential steps, which are agent-based and integrated with patch-based 

processes. In most cases, all household agents and landscape agents are called and 

perform tasks in parallel (i.e., synchronizing actions). The LB-LUDAS model was 

coded using the Netlogo version 4.1 (Wilensky 1999). 

 

2.3.4 Design concepts 

The LB-LUDAS model is designed to address the concepts of heterogeneity, diversity 

deficits (Villamor et al. 2011), and the complexity of coupled human-environment 

systems in land-use decisions resulting in trade-offs. These concepts were taken into 

account through various variables affecting the agents’ decisions and the complex sub-

models and processes within agents. So far, there are only few MAS models that build 

on empirical data (Berger and Schreinemachers 2006) and integrate biophysical and 

socio-economic model components (Parker et al. 2002).  

 

Emergence 

In the original version of the LUDAS model, Le et al. (2010) explains that the 

livelihood performance of the entire household population or social group emerges from 

individual land-use decisions that integrate household characteristics, surrounding 

dynamic environment and policy information. Also, the LUCC at landscape level 

emerge from two micro-processes, namely 1) land-use conversion or modification 

caused by household agents, and 2) natural succession of the vegetation cover. With the 

LB-LUDAS model, the PES-adoption choice is linked with the biodiversity 

performance (measurement) of a certain land use (see section Sub-model). This linkage 
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would give new insights on the possible impact on the land both spatially and 

temporally. To the author's knowledge, to date there is no literature available that 

documents this linkage. 

 

Figure 2.3  Flow chart showing main steps of multi-agent simulation process        
  (modified from Le et al. 2008)  
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Adaptation/ learning 

In reality, when making decisions regarding land use humans employ a variety of 

strategies beyond maximization of profits or satisfaction or minimization of risks. 

Current analytical models are also limited in their ability to represent human learning 

and adaptation (Nolan et al. 2009).  

Adaptation of human decision making to environmental change is defined by 

Le et al. (2011) as the agents’ learning with respect to the adjustment of their decision 

rules, depending on their static internal model of the human-environmental interactions 

(i.e., fixed behavioral program). In the LB-LUDAS model, adaptive traits of each 

individual agent are explicitly processed mainly by land-use decisions and the change in 

behavior strategies (i.e., preference coefficient of land-use choice function and 

willingness to adopt policies, and structure of labor allocation). At first, agents adapt to 

current socio-ecological conditions by choosing the best land use in the best location in 

terms of utility (using heuristic rule-based behavior). Then, a household’s behavior 

model may change by imitating the strategy of that household group most similar to it 

(Le et al. 2010; 2011). In this way, individual agents’ decision model may change over 

time and context. Also, a household agent generates its landscape knowledge by 

updating past landscape visions (see section Prediction) to provide the basic landscape 

space. 

 

Objectives 

The LB-LUDAS model applies the bounded-rational approach for the household 

agents’ decision making in which households’ access to information is limited. This 

approach follows an ordered-choice algorithm (Benenson and Torrens 2004; Le et al. 

2008). In that algorithm, a household calculates the utilities (expressed in probability 

terms) for all the land use and locations within his domain and for the scenario of policy 

adoption. The household can choose the option with the highest utility or take risks by 

selecting other alternatives (Figure 2.4). This algorithm has two versions, i.e., one- and 

two-staged. According to Benenson and Torrens (2004), in the one-staged version, an 

agent does not retract, and in the two-staged, an agent first selects an opportunity for 

testing and then tries to accept it.  
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Figure 2.4 Diagram of ordered-choice algorithm where A refers to agent and CA 

denote the set of opportunities where Ci, i = 1, …, K (Source: Benenson 
and Torrens 2004). 

 

Prediction 

According to Grimm et al. (2010), prediction is fundamental to successful decision 

making if the agent’s adaptive traits or learning procedures are based on estimating 

future consequences of decisions. The LB-LUDAS model has a landscape vision 

module, which stores the spatial information that the household agent perceives from 

the landscape, and a program of instructions for generating the agent’s behavior under 

different circumstances. In this module, household agents recognize spatial information, 

analyze trade-offs and optimize spatial land-use choices only within their own plots (Le 

et al. 2008).  
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Sensing 

Related to the abovementioned element, sensing is the way environmental state 

variables are assumed to be sensed and considered in the decision making of the 

individual agents. In the LB-LUDAS model, household agents assume to know 

perfectly the landscape characteristics (i.e., through landscape vision) and neighborhood 

land-use pattern variables (see Chapter 5), which they use for evaluating land-use 

alternatives.  

 

Interaction 

Interactions between agents are assumed in the model both directly and indirectly. 

Direct interaction occurs when the household agent transfers information (i.e., state 

variables) to young household agents for their own decision-making process. Another 

way is when two or more household agents find their best land-use alternative in the 

same location. In this situation, a random procedure will let the agent(s) leave the 

location and start another search (Le et al. 2010). Indirect interaction takes place among 

household agents when land-use conversion caused by households leads to changes in 

the decision space of other agents in the next time step.  

 

Stochasticity 

Stochasticity is applied in the LB-LUDAS model in five different processes, namely 1) 

initialization of household population, 2) choosing plot locations for the newly created 

household agents and remaining population generated in the system initialization, 3) 

preference coefficients in the land-use choice function, 4) ecological sub-models that 

produce variability in the processes, and 5) some status variables not affected by agent-

based processes (all defined by even distribution and pre-defined bounds).   

 

Observation 

Data for LB-LUDAS testing, understanding, and analyzing include annual successive 

land-use/cover map, forest yield, land-holdings and graphs that describe the temporal 

pattern of crop yield production, economic return, farm income (mean, structure and 

equality), species richness, carbon stocks and household types (see figure 6.1). 
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2.3.5 Initialization 

Regarding the initial state of the LB-LUDAS at t = 0 of a simulation run, the LB-

LUDAS model follows the same initialization steps of the LUDAS model (Le et al. 

2010): 

Step 1: The data of a household sample (Ns) are imported, and the user can select the 

size of the total population (Nt).  The source of variation depends on the size of Nt 

that is set by the user. The initial landscape of the model is imported as GIS-raster 

files of landscape variables that are either from secondary data or produced 

separately by spatial analyses. Here, the variables of both households and landscape 

are deterministically set.  

Step 2: The land parcels of newly generated households are created using the bounded-

random rules.  

 

2.3.6 Input data 

Data and parameters were parameterized and calibrated using various external sub-

models (Table 2.1).  Also, the model used the annual population growth rate of 1.14% 

from the 2003 Statistics of Rantau Pandan, a sub-district of Bungo. 

 

Table 2.1  External input data and sub-models in LB-LUDAS model 
 

Sub-model 
 

 
Parameter 

 

 
Data source 

 
Biodiversity Plot area (m2) Rahayu 2009  

Carbon stocks Time-averaged carbon (Mg 
ha-1) 

Tomich et al. 1998; 2004 
and ICRAF Kalimantan 
Project 2005 

Forest/ rubber agroforest 
yield (Le 2005) Equilibrium basal area Rahayu 2009; Rasnovi 

2006 
Oil palm yield  Yield (2009-2010) ICRAF data 
Rubber monoculture yield  Yield (2009-2010) ICRAF data 
 

 

2.3.7 Sub-models 

In the original LUDAS model, there are 13 key sub-models and calculation routines 

integrated. For the LB-LUDAS model, 5 additional sub-models and calculation routines 

were incorporated (Table 2.2), namely 1) PES-adoption, 2) Calculate-species-richness, 
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3) Calculate-carbon-stocks, 4) Preferred-land-use, and 5) Financial-return, which are 

briefly described below. For detailed descriptions (e.g., model parameters, dimension 

and reference values) and justification of specific sub-models see Chapter 5.  

 

Table 2.2  Main sub-models/ procedures of LB-LUDAS coded in Netlogo (4.1) 
(modified from Le et al. 2010). 

Sub-models/ Calculation 
routines Functions Entities 

involved 
Initializationa Import GIS data and sampled household 

data, generate remaining population, create 
household pixels, generate household 
coefficients, and calculate initial species 
richness  

Household 
Pixel 

PES-adoptionb Calculate the willingness to adopt the PES 
policy of the household 

Household 

Preferred land useb Calculate the agent’s land-use choice for the 
new land if financial investments or 
subsidies are provided 

Household 

Labor-allocation Set the labor list of the household annually Household 
FarmlandChoicea Perform the land-use choices (using 

bounded-rational choice, and nested with 
rule-based algorithm)  

Household  
Pixel 

ForestChoicea Perform forest-use choices, mainly rule-
based algorithms 

Household  
Pixel 

Financial-return b Calculate the annual economic return of 
each crop and tree-based production  

Household  
Pixel 

Update-household-state Update the changes in household profiles 
annually  

Household 

Agent-Categorizer Categorize households into similar groups Household 
Generate-household-
coefficients 

Generate behavior coefficients of 
household, allow variants within the group 
but stabilize behavior structure of the group 

Household 

AgronomicYieldDynamicsc Calculate yield production of farmlands in 
response to production inputs and site 
conditions 

Household 
Pixel 

Forest-Growth-Response Calculate forest stand basal area in response 
to human intervention (logging) 

Household 
Pixel 

Natural-Transitionc Perform natural succession among 
vegetation types based on accumulated 
vegetation growth and ecological edge 
effects 

Pixel 

Calculate-species 

richness b 
Calculate species number per patch (using 
rule-based species area relationship 
function) 

Pixel 

Calculate-carbon-stocks b Calculate carbon stocks for each land use 
using the time-average carbon stocks  

Pixel 
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Sub-models/ Calculation 
routines Functions Entities 

involved 
Create-new-household Create a young new household controlled 

by an empirical function of population 
growth 

Household 

Plot-Graphs Draw different graphs of system 
performance indicators 

Household  
Pixel 

a Procedures that contain two or more other procedures; b newly added procedure for LB-LUDAS; 
 c modified procedures/ routines 

 

PES-adoption  

This sub-model calculates stochastically the probability of the household agents 

whether to adopt or not to adopt the PES schemes based on their preference coefficients. 

These preference coefficients were derived from binary logistic regression. Detailed 

descriptions of the sub-model, its parameters and data calibration are presented in 

Chapter 4. This sub-model is linked to the Calculate-species-richness sub-model, 

creating the interaction between socio-economic state variables and the bio-physical 

processes in the systems.  

 

Calculate-species-richness  

This sub-model deterministically calculates the estimated species richness in each land-

use type. The estimated species richness serves as key indicator for scenario analysis. 

The equation is based on the power function of species-area relationship. For detailed 

description, parameterization and calibration of the sub-model see Chapter 5; the policy 

application of the sub-model is discussed in Chapter 7. 

 

Calculate-carbon-stocks  

Similar to the species richness sub-model, this sub-model deterministically calculates 

the carbon stocks of each land-use type by assigning the time-averaged carbon density. 

The output is used to estimate the possible carbon emissions from land-use changes 

under different scenarios (see Chapter 5 for detailed description of the sub-model).  

 

Preferred-land-use 

Similar to the PES-adoption, this sub-model is integrated in the decision-making routine 

FarmlandChoice. The sub-model calculates the probability of the household agents to 

Table 2.2 continued
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choose their preferred land use under the condition of ‘if supported by financial 

investment’ with the time element of 5 to 10 years. Detailed descriptions of this sub-

model and its underlying assumption are presented in Chapter 3 and 5. This sub-model 

and the PES adoption model are considered confounders for establishing the causal 

mechanism in the decision-making routines.   

 

Financial-return  

The purpose of this sub-model is to estimate the annual financial return from different 

land uses of household agents. The yields generated from AgronomicYieldDynamic sub-

model (see Chapter 5) are captured by this sub-model, where all the costs of the crop 

production (e.g., labor costs and agro-chemical input costs) are deducted from the 

annual revenues. At the end of the time steps, the results are used to estimate the net 

present value (or opportunity costs) of the different land uses (see Chapter 7), which 

serves as a key indicator for the livelihood options of the household agents in each 

scenario. 

 

2.4 Conclusions 

CHES is a new and widely recognized science to understand the complexity and trade-

offs of the social-ecological systems. In this chapter, the different characteristics of 

CHES are discussed, and a multi-agent system model (i.e., LB-LUDAS) is described 

using the standard ODD protocol for MAS/ABM models. In this way, the LB-LUDAS 

model could capture the properties inherent in the complex interactions of human-

environment systems (i.e., non-linearity, heterogeneity, spatial and temporal scales). 

Since most of the existing MAS/ABM models are weak on ecology, heterogeneity and 

scales (Cumming 2011), new features were added and described in the LUDAS model 

to better represent the ecological processes and feedbacks based on the decision making 

of the human agent.  
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3 CAPTURING HETEROGENEITY IN LAND-USE DECISIONS: CASE 
STUDY OF BUNGO DISTRICT, JAMBI PROVINCE, SUMATRA, 
INDONESIA 

 
 
Land-use change is a complex, dynamic process that links together natural and human 

systems. In MAS modeling, human decision making and interaction are the central 

elements (Koomen and Stillwell 2007). Human-agent decisions (e.g., farming 

households) vary and are influenced by a variety of factors and variables such as 

cultural preferences, resource endowment, and knowledge (Parker et al. 2008; Villamor 

et al. 2011) that tie behavior to the environment (Parker et al. 2003). Though it is worth 

including the heterogeneity of human agents in models (Brown and Robinson 2006), 

most land-use change models tend to aggregate data about them (e.g., Forest, 

Agroforest, Low-value Lands or Waste? or FALLOW in Suyamto et al. 2003; 

Integrated Land Use, Transportation, Environment or ILUTE in Miller et al. 2004) or 

use acceptable values as defined by literature (e.g., Land-Use Change in the Amazon or 

LUCITA in Deadman et al. 2004). 

The challenge of multi-agent system modeling is how to appropriately 

represent the heterogeneity of agents and their environment as software objects in ways 

that accurately reflect the actual heterogeneity of the ‘real world’ objects (Brown and 

Robinson 2006). Villamor et al. (2011) reviewed some of the multi-agent decision-

making models and found that most of these models assume that: (1) human agents 

behave in a uniform mode, formulated in a behavior model, and (2) agents' decision-

making models are fixed during the course of a simulation. Only few models have 

attempted to diversify the agents' decision-making mechanism such as the LUDAS 

model (Le et al. 2008; 2010; 2011), which specifies different land-use adoption models 

for different household livelihood typologies. However, most of the agents’ decision-

making rules in the MAS/AB models were based on utility optimization, i.e., rational 

economic assumptions (Villamor et al. 2011).  

In this part of this study, evidence is provided that illustrates the ways to: 

1. Identify the livelihood typologies of households and endogenous factors based on 

the socio-economic data of the study site;  

2. Identify the factors affecting the land-use choice that have a potential impact on 

household decision making; and 
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3. Determine the combinational effects of socio-economic characteristics of farming 

households and environmental attributes of land for land-use decision making of 

each typical household group. 

The results of the analysis are incorporated in the LB-LUDAS model (see 

Chapter 6) and provide important insight in the effects that heterogeneity has on the 

outcomes of the model. 

 

3.1 Socio-economic setting 

The study site includes of three villages, namely Lubuk Beringin, Laman Panjang, and 

Buat, all located in Jambi Province. Together, they have a total population of 2,207 

inhabitants belonging to 551 households (Table 3.1) (Rantau Pandan Statistics 2003).  

Buat is the largest village with 1,080 inhabitants, followed by Laman Panjang and 

Lubuk Beringin with 731 and 396 inhabitants, respectively. The average family has 4 

members. Most of the people belong to the ethnic group Melayu Jambi. Lubuk Beringin 

and Laman Panjang are considered poor. Access to market roads is insufficient and 

electric infrastructure is not available since the villages are located far from the nearest 

town centre (Muara Bungo). The main source of food is the rice paddies, the main 

source of income is rubber (Hevea brasiliensis) and occasionally durian and other local 

fruits, and medicinal plants are obtained from the rubber agroforests. 

 

Table 3.1  Population and number of households in the study site  
Village Population No. of 

persons 
per km2

No. of 
house-
holds 

Average 
number of 
persons per 
household 

Male Female Total 

a. Lubuk Beringin 184 212 396 27.22 102 4.02
b. Laman Panjang 366 365 731 41.17 182 4.04
c. Buat 566 514 1,080 93.28 267 4.25
Total 1,116 1,091 2,207 551 

(Source: Statistic of Rantau Pandan 2003) 

 

Jambi Province is the third largest rubber-producing province in Indonesia 

(after north and south Sumatra). Around 97% of the natural rubber comes from the 

smallholder farmers in Jambi, who tap rubber gardens (called kebun karet) smaller than 

5 ha. The majority of the farmers in the province are engaged in rubber-latex 
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production. The high price of rubber latex has led to intensive rubber production 

through rubber monoculture, which is replacing the traditional rubber agroforests (see 

Appendix 1 for the historical background). An extensive study on labor requirements 

for rubber and upland-rice production was conducted by Suyanto et al. (2001) in the 

nearest town center Muara Buat (Table 3.2). This study revealed that rubber production 

activities are mostly done by men while women are responsible for the rice production 

(which is related to land inheritance, see section 3.1.1). 

 

Table 3.2  Labor use in rubber production and activity, gender and dominant age of 
trees compared to labor use in upland rice production in Sumatra, 
Indonesia (Source: Suyanto et al. 2001) 

Age range Land 
preparation and 

planting 
(person-

days/yr/ha) 

Crop care 
(person-

days/yr/ha) 

Harvesting and 
hauling (person-

days/yr/ha) 

Total 
(person

-
days/yr

/ha) 
Men Women Men Women Men Women  

Rubber:       
1 (forest 
clearance) 

53.3 28.6 6.9 4.1 9.4 25.0 127.4

1 (bush 
clearance)  

19.6 12.2 17.8 7.7 1.0 1.0 59.3

2-3 2.9 0.0 24.2 6.3 0.0 0.0 33.4
4-7 0.0 0.0 9.8 4.2 0.0 0.0 14.0

8-10 0.0 0.0 4.8 4.6 62.2 6.2 77.8
11-15 0.0 0.0 4.8 1.4 90.5 4.5 101.2
16-20 0.0 0.0 3.2 2.6 78.9 3.1 87.8
21-25 0.0 0.0 4.0 11.5 94.3 0.0 109.8
26-30 0.0 0.0 4.2 0.0 109.3 0.0 113.5

30 - 0.0 0.0 4.8 4.2 81.7 0.0 90.7
Upland rice 29.2 53.6 10.1 38.5 11.5 29.8 172.7

 

Conversion of natural vegetative land cover, e.g., scrubland and natural forest, 

to highly profitable and intensified farm types such as smallholder oil palm plantations 

is seen by local farmers as a viable livelihood option. However, as a consequence of 

conversion and intensification activities, environmental services are at stake, e.g., 

biodiversity, agronomic sustainability such as soil fertility, and watershed protection. A 

detailed bio-physical description of the study site and its land uses is presented in 

Chapter 5.   
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3.1.1 Land tenure and inheritance 

In Jambi province and some parts of Sumatra, people follow the traditional practice of a 

joint-family or lineage ownership of land wherein a matrilineal inheritance system is 

applied to rice fields and a patrilineal inheritance system to rubber fields. For example, 

when a woman dies, land is bequeathed to her sisters, nieces and daughters in 

accordance with the decision of the lineage head. The basic principle of land allocation 

in the area is to maintain equity among lineage members.  

Suyanto et al. (2001) extensively documented the land tenure system and 

smallholder rubber production in customary land areas in Sumatra. The study reveals 

that rice fields are dominated by a communal or lineage type of ownership while rubber 

fields are under individualized or single-family ownership. Accordingly, the tree 

planting has promoted the conversion from lineage ownership to joint family ownership 

(in which usufruct rights are weak) to single-family ownership (in which farmers 

usually possess rights to rent out and sometimes to pawn without obtaining permission 

from the head of extended family). In other words, tree planting (i.e., rubber) helps to 

acquire rights. 

 

3.2 Methodology 

3.2.1 Categorization of household agent 

Household classification 

The household classes in the study site were categorized using the livelihood 

framework. This is a theoretical framework that includes five core capitals or assets, 

namely financial, human, natural, physical, and social capitals (Ellis 2000). Siegel 

(2005) considered household capitals as ‘drivers’ of sustainable growth and poverty 

reduction. Accordingly, these capitals include the productive, social and locational 

assets that determine the set of options for livelihood strategies (i.e., the household’s 

revealed behavior). The advantage of this theoretical framework for generating 

indicators for livelihood strategies is that it avoids bias when selecting indicators 

(Campbell et al. 2001; Le 2005). 

A total of 30 variables representing the different capitals of the livelihood 

framework were captured the field study. Among the variables selected for each capital, 

the following are supported by literature: 
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1. Human capital: age, education level, labor availability, and dependency ratio 

(Tomich et al. 1998a; Suyanto et al. 2001; Joshi et al. 2003). 

2. Social capital: ethnicity, and group membership (Vosti et al. 1998). 

3. Natural capital: managed land area, rubber agroforests, rice fields, total land 

holdings per capita (Miyamoto 2006). 

4. Financial capital: annual gross income, annual gross income per capita, % income 

from rice, % income from rubber (Tomich et al. 1998). 

5. Physical capital: house distance to main road (Miyamoto 2006).  

  

Statistical analyses for household agent groups 

Principal Component Analysis (PCA) for statistical description of households 

PCA is used to extract the underlying factors from a large set of variables.  From the 

data gathered, a total of 30 variables were identified to describe the household 

characteristics in the study site. To reduce them to key variables representing the 

household livelihood pattern in the study area, a PCA was run to condense information 

from a large number of original variables into new composite components with minimal 

loss of information. The principal components or factors reflect the common variance of 

variables, plus unique variance. Each derived principal component interprets the 

original variables with higher weights or loadings. The first principal component (PC1) 

gets the greatest variation and has the highest loadings, followed by the next 

components (i.e., PC2, PC3...etc.) with a decreasing degree of variations or loadings.  

The PCA was done following the Varimax rotation and Kaiser Normalization methods 

(i.e., Kaiser Criterion), which drop all components with eigenvalues under 1.0.  

 

K-Mean clustering analysis (KCA) using PCA scores  

The standardized component scores derived from the PCA were used to run K-Mean 

cluster analyses (KCA) to obtain the typical household agent groups. KCA is a 

clustering method that aims to partition n observations into k clusters in which each 

observation belongs to the cluster with the nearest mean. It works in an iterative process 

that continues until the sum of squares from points to the assigned cluster centers is 

minimized. The number of k is based on repeated exploratory use of K-means clustering 

(i.e., k = from 2 to 10).  
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3.2.2 Household agents’ behavior estimation regarding land-use choices  

Multi-nomial logistic regression for land-use choices 

The multi-nomial logistic model (or M-logit regression) is employed to identify 

determinants of land-use choices by household agent groups (Le 2005). The model is 

based on the random utility model, and its algebraic manipulation of the equation 

renders the following functional form: 

 

J

j ji

ki
i

X
XkyP

1
)exp(1

)exp()(      (3.1) 

where  dependent variable categories k= 1, 2,.. J, to predict the probability (P) of a land 
use to be chosen (yi), as the observed outcome for the i-th observation on the 
dependent variable, Xi is a vector of the i-th observations of all explanatory 
variables, and ( j) is a vector of all the regression coefficients in the j-th 
regression.  

 

The coefficient vectors or parameters were estimated by the maximum 

likelihood method based on the plot-based dataset of each household agent group using 

the SPSS package version 16. 

 

Specification of variables 

Dependent variable 

Land-use choice (Puse) by a farming household is the dependent variable of the M-logit 

model. The categories of choice are: upland rice, rubber agroforest, and other land uses 

(i.e., monoculture rubber and oil palm plantation). The descriptions of each land 

use/cover, spatial distribution and intensities of change are presented in Appendix 1. 

 

Explanatory variables 

For the land-use choice, farmers have independent variables (Table 3.3) that may 

influence their choice. These potential independent variables are grouped into three 

variables: 1) natural attributes, 2) neighborhood characteristics of land-use pattern 

.(Verburg et al. 2004), and 3) household/plot owner characteristics. 
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1. Variables of natural attributes  

Water availability critically affects agricultural production (Le 2005). The wetness 

index (Pwet) is a terrain variable indicating the approximate spatial pattern of soil 

moisture content, which is crucial for crop production (ref. cited in Le 2005). Due to the 

distance of the villages to the town centre and the unpaved access road, the distance of 

farm plots is hypothesized to reduce their attractiveness for annual crops such as rice.  

Rubber agroforests are usually located farther from roads as observed in other countries 

(Fox et al. 1994). 

2. Variables of neighborhood characteristics of land-use patterns 

Neighborhood interactions between land-use types are one of the main driving factors in 

a large group of spatially explicit land-use change models (Verburg et al. 2004). These 

interactions are usually used in land-use change models for urban development through 

cellular automata (Junfeng 2003), and are now also being used in models for rural land 

development (White and Engelen 2000; Messina and Walsh 2001). However, this 

driving factor has never been explored in other land-use change models other than 

models using cellular automata (Ward et al. 2000; Soares-Filho et al. 2002; Yeh and Li 

2002; Dendoncker et al. 2007; Hagoort et al. 2008; Hasbani 2008; van Vliet et al. 2009). 

In addition, spatial models applied today in agricultural and resource economics often 

assume that neighborhood conditions are fixed and thus impacts of a particular 

neighborhood would not alter the spatial environment for a given individual, an 

assumption that rarely holds in reality  (Nolan et al. 2009).  

Verburg et al. (2004) describe a method for analyzing neighborhood relations 

empirically based on land-use change pattern in which results can be incorporated as 

explanatory variables. Accordingly, neighborhood operations are used to compute a new 

value for every location as a function of its neighborhood in a raster-based geographic 

analysis. The enrichment factor (F) is the measure of the neighborhood of a location, 

which is defined by the occurrence of a land-use type in the neighborhood of a location 

relative to the occurrence of this land-use type in the study area (see Chapter 5, p.65). 

3. Variables of household/plot owner characteristics  

Labor shortage and financial capital investments are among the determinants for 

complex rubber agroforest in the province of Jambi (Suyanto et al. 2005; Wibawa et al. 

2005). When labor and capital investments to hire labor are insufficient, household 
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farmers only tap the rubber latex when labor is available e.g., household members have 

time. The system is thus less disturbed and through time, will become similar to a 

secondary forest.   

The dependency ratio (i.e., number of dependents over number of workers per 

household) is considered significant in influencing the land-use choice. Households 

with a high dependency ratio normally have a more urgent need for food, thus 

preferring short-term crop production such as growing rice. A high dependency ratio 

favors upland rice rather than tree-based farming practices (Le 2005).   

Age, farm income, farm size, and education are all factors that have been 

found to significantly influence farmers’ choices (Fox et al. 1994; Traore et al. 1998; 

Neupane et al. 2002; Le 2005). Miyamoto (2006) analyzed the effect of the rubber farm 

size in Sumatra and found that a decrease in the area of rubber fields acquired through 

inter-generational transfer significantly accelerated the clearing of forest areas. This 

indicates that households receiving only a few rubber fields had to clear forest soon 

after marriage in order to acquire their own rubber fields, and this trend significantly 

correlated to age of household heads. 

 

Table 3.3  Explanatory variables used for M-logit regression model for land use  
 

Variable 
 

Definition 
 

Data source 
 

Direct linked 
module 

Dependent variable: Land-use choice by households 
P_use 1for upland rice, 2 for 

rubber agroforest, and 3 
for other land-use type 

Field survey and 
observation 

PATCH 
LANDSCAPE 

 
Natural attributes of land plots 
P_wetness Wetness index of plot GIS-based calculation PATCH-

LANDSCAPE 
P_distanceH Distance from plot to 

owner’s house (m) 
GIS-based calculation PATCH-

LANDSCAPE 
P_distanceC Distance from plot to 

main village centre (m) 
GIS-based calculation PATCH-

LANDSCAPE 
    
Neighborhood characteristics of land use  
P_F2 Enrichment factor of 

rubber agroforest 
Calculated using raster-
based geographic analysis 

PATCH-
LANDSCAPE 

P_F45 Enrichment factor of 
other land use 

Calculated using raster-
based geographic analysis 

PATCH-
LANDSCAPE 
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Variable 

 
Definition 

 
Data source 

 
Direct linked 

module 
P_F6 Enrichment factor of rice 

field 
Calculated using raster-
based geographic analysis 

PATCH-
LANDSCAPE 

P_F8 Enrichment factor of 
settlement 

Calculated using raster-
based geographic analysis 

PATCH-
LANDSCAPE 

    
Characteristics of plot owner 
HH_age Age of household head Field survey HOUSEHOLD- 

POPULATION 
H_depratio Dependency ratio  

(No. of dependents/ No. 
of workers) 

Calculated based on field 
survey 

HOUSEHOLD- 
POPULATION 

H_edu Household education 
status (No. of school year)

Field survey HOUSEHOLD- 
POPULATION 

H_labor Availability of household 
labor (number of workers)

Field survey HOUSEHOLD- 
POPULATION 

H_landp Landholding per capita 
(ha /person) 

Calculated based on field 
survey 

HOUSEHOLD- 
POPULATION 

H_gincpers Annual gross income per 
capita of household 
(US$/person/year) 

Calculated based on field 
survey 

HOUSEHOLD- 
POPULATION 

H_size Size of household  
(person / household) 

Field survey HOUSEHOLD- 
POPULATION 

 

3.2.3 Data sources 

The socio-economic data for this analysis were derived from an extensive household 

survey conducted in the target villages between December 2009 and March 2010. A 

survey questionnaire was developed to describe the household characteristics and 

possessions, farm characteristics (i.e., biophysical, tenure, and temporal dynamics), 

farm operation and productivity, and access to conservation agreement policy (see 

Chapter 4). Also, additional questions were asked for each of the two following 

conditions: 1) for biodiversity conservation, and 2) for the next 5 to 10 years if 

supported by financial investments. A total of 95 household respondents (90 males and 

5 females) were randomly selected and interviewed. 

Plot-explicit data were collected through participatory mapping in March 

2010. A farm-plot map was developed through images from Google Earth (2003) with a 

700-m eye-view processed by PCI Geomatica (9.1) for image geo-referencing. The map 

gave a good visual representation of actual land cover in the area with roads and houses, 

Table 3.3 continued 
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which was useful to identify the farm plots of the villagers. A total of 291 farm plots 

managed by 95 surveyed households were identified and geo-referenced. Plot distances 

to farmers’ houses, major roads and town centre were also derived from this map. The 

digital elevation map (DEM) with 30-m resolution generated from the World 

Agroforestry Centre (ICRAF) was processed through GIS software to derive wetness 

index, aspect and slope. Validated land-cover maps of 1993 and 2005 (30-m resolution) 

were prepared from Landsat TM, and Landsat ETM images (Ekadinata et al. 2010) in 

the Landscape Mosaic Project of ICRAF. The land-cover map of 2005 was processed 

using Netlogo to generate the enrichment factors of different land-use types (Verburg et 

al. 2004). 

 

3.3 Results and discussion 

3.3.1 Typological household agent groups 

A total of 6 principal components were extracted by PCA. These components generated 

84.8% of the total variance of original independent variables (Table 3.4). Specific 

components for categorizing the household agents were determined using the rotated 

component matrix (Table 3.5). Though it makes sense to focus only on the 3 top factors, 

since loadings and variances of the last 3 factors are not far from each other, all 6 

principal components were used for the Agent-Categorizer sub-model (see Table 2.2) to 

better categorize and characterize the household agents.   

The principal component 1 (PC1) is strongly related to land variables, thus it is 

named ‘land factor’ due to the variables it is composed of. These variables include total 

managed land H_manland (loading b = 0.953), total land holdings H_holding (loading b = 

0.966), total land holdings per person H_holding/per (loading b = 0.870), and total complex 

rubber agroforest area H_complex (loading b = 0.765). This factor accounts for 23.2% of 

the total variance of the original dataset. Because H_holding/per has a higher economic 

meaning than the other variables (Le 2005), this variable is the best representative of the 

land factor. 
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Table 3.4 Total variance explained by extracted components using Principal 
Component Analysis  

 

Table 3.5  Rotated component matrix (i.e., loadings) using Varimax with Kaiser 
Normalization method 

 
 

Variable 

Principal component 
1 

Land 
factor 
23.2% 

2 
Income 
factor 
15.3% 

3 
Labor 
factor 
14.2% 

4 
Dependency 

ratio 
12.4% 

5 
Upland 

rice factor 
10.2% 

 

6 
Education 

factor 
9.2% 

Age of household head .188 -.140 .239 .723 -.101 -.333 
Education of 
household head -.152 .148 -.073 -.026 -.018 .811 

Labor availability -.004 -.033 .833 .513 .031 -.028 
Dependency ratio  -.020 -.037 -.036 -.942 -.052 -.120 
Managed land  .953 -.022 .039 .043 .038 -.169 
Total landholdings .966 -.025 .038 .052 .018 -.177 
Landholding per 
person  .870 -.018 -.304 .135 .075 -.130 

Complex rubber area 
(ha) .765 .018 .210 -.025 -.186 .350 

Gross income  -.002 .942 .069 -.076 -.107 .054 
Gross income per 
capita  -.043 .931 -.197 .003 -.076 .123 

% income from rice -.045 -.283 -.170 -.126 .651 .400 
% income from rubber .010 .497 .160 .034 -.635 -.081 
Size of household -.016 -.044 .972 -.014 -.031 -.099 
Rice area  .037 .108 .225 .105 .758 -.335 
Notes:  Numbers in parenthesis are % of total variance of original variable set explained by the 

principal components. Bold numbers are high loadings indicating most important or original 
variables representing the principal components. Bold and underlined numbers indicate the 
variables selected for household categorization. 

Com-
ponent 

Initial Eigenvalues Extraction sums of 
squared loadings 

Rotation sums of squared 
loadings 

Total % of 
variance 

Cumu-
lative 

% 

Total % of 
variance 

Cumu-
lative 

% 

Total % of 
variance 

Cumu-
lative 

% 
1 3.500 25.003 25.003 3.500 25.003 25.003 3.248 23.202 23.202 
2 2.533 18.091 43.094 2.533 18.091 43.094 2.141 15.290 38.492 
3 2.443 17.449 60.543 2.443 17.449 60.543 1.990 14.217 52.709 
4 1.224 8.739 69.283 1.224 8.739 69.283 1.732 12.369 65.079 
5 1.095 7.819 77.101 1.095 7.819 77.101 1.477 10.548 75.626 
6 1.082 7.731 84.832 1.082 7.731 84.832 1.289 9.206 84.832 
7 0.729 5.209 90.041       
8 0.457 3.264 93.305       
9 0.369 2.636 95.941       

10 0.339 2.424 98.364       
11 0.115 0.825 99.189       
12 0.073 0.523 99.712       
13 0.023 0.163 99.875       
14 0.017 0.125 100.00       
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The PC2 is highly correlated to income variables. It is named ‘income factor’ 

due to the variables which it is composed of gross annual income of households 

H_grossinc (loading b = 0.942) and gross annual income per capita H_gincpers (loading b = 

0.931). This factor accounts for 15.3% of the total variance of the original dataset. 

However, because the variable H_gincpers has more economic meaning than the other 

income variable, this variable is the best representative for the income factor, and is 

used in the further analysis to characterize the economic status of the agents.  

The labor factor represents the PC3. Variables composing of this factor 

include the size of the household members H_size (loading b = 0.972) and labor 

availability H_labor (loading b = 0.833). This factor accounts for 14.2% of the total 

variance of the original dataset. Because labor availability H_labor   has more economic 

meaning than household size, thus it is the best representative for this factor. 

The PC4 is labeled as the ‘dependency ratio factor’ due to dependency ratio 

H_depratio (loading b = -0.942) variable. This factor accounts for 12.4% of the total 

variance of the original dataset. The PC5 is labeled as the “upland rice factor” due to the 

weighted variables that correspond to rice. These variables include total rice area H_rice 

(loading b = 0.758) and percent income from rice production H_RICEinc (loading b = 

0.651). This factor accounts for 10.2% of the total variance of the original dataset. The 

PC6 is strongly explained by the variable education of household H_edu (loading b = 

0.811), thus it is termed as the ‘education factor’ with 9.2% of the total variance of the 

original dataset.  The K-cluster analysis was run using the standardized scores of the six 

principle components with k = 2 resulting in two household agent groups or types. 

Household type 1 has 33, and household type 2 has 62 household agents (Table 3.6).  

The choice of k > 2 was not suitable due to the small number of surveyed 

samples. The descriptive statistics and ANOVA confirm the statistical difference in the 

key livelihood variables between these two household groups (Table 3.6). 

 

Livelihood typologies of household agents 

The PCA and K-CA results and the descriptive statistics led to identification of two 

household agent types or groups. 
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Household type 1: Rubber-rice farmers 

The spider web diagrams (Figure 3.1 and 3.2) show that, based on the livelihood 

indicators, this household group consists of relatively well-off farmers owning larger 

areas of upland rice and houses that are near to roads (see also Table 3.6). This group 

constituted 35% of the sampled population. 

 

Table 3.6 Descriptive statistics for key categorizing variables for each classified 
agent group 

 
Variable 

 
Agent 
group 

 
N 

 
Mean 

 
Std. 

deviation

 
Std. 

error 

95% confidence 
interval for 

mean 

 
Xmin 

 
Xmax 

Lower 
bound

Upper 
bound 

Education of 
household 

1 33 1.1 0.7 0.1 0.8 1.3 0 2 
2 62 1.2 0.6 0.0 1.0 1.2 0 2 
Total 95 1.1 0.6 0.1 0.9 1.2 0 2 

Labor 
availability 

1 33 3.4 1.4 0.2 2.9 3.9 1 7 

2 62 3.3 1.6 0.2 2.8 3.7 1 8 

Total 95 3.4 1.6 0.2 3.0 3.6 1 8 

Dependency 
ratio 

1 33 0.24 0.31 0.05 0.12 0.35 0 1.0 
2 62 0.65 0.44 0.06 0.54 0.76 0 1.5 

Total 95 0.51 0.44 0.04 0.42 0.60 0 1.5 

Landholding 
per person 
(ha/person) 

1 33 1.74 2.00 0.340 1.02 2.44 0 11.12 

2 62 1.18 1.16 0.148 0.88 1.48 0 5.06 

Total 95 1.38 1.52 0.156 1.06 1.68 0 11.12 

Rice area (ha/ 
household) 

1 33 1.12 0.696 0.121 0.87 1.37 0 2 
2 62 0.50 0.449 0.057 0.38 0.61 0 2 

Total 95 0.71 0.621 0.064 0.59 0.84 0 2 

Gross income 
per capita 

1 33 1984 3 528.22 908 3060 32 11918 

2 62 628 671 85.21 458 798 0.51 3148 

Total 95 1098 2 201.26 699 1498 0.51 11918 

% income 
from rice 

1 33 56 41 7 41 70 0 99 

2 62 65 41 5 54 76 0 100 

Total 95 62 41 4 54 70 0 100 
Note:   N = group size (i.e., number of households in each group); Xmin = minimal value of the variable 

X; Xmax= maximal value of variable X. 
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Household type 2: Rubber-based farmers 

This household type is composed of low income households (see Table 3.6) who are 

mainly engaged in tapping rubber farms and have only small areas of upland rice; and 

their houses are far from road (Figure 3.1 and 3.2). They have limited area for rice 

production with a high number of dependants. This group constituted 65% of the 

sampled population. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1  Variation between household type 1 and 2 in terms of land holdings per 
capita, dependency ratio, and gross income per capita. N= natural capital; 
H= human capital; P = physical capital; F = financial capital; S= social 
capital. 

  Note: all variables are normalized within the 0-1 range. 

 

The spider web diagrams distinctly differentiate the groups in terms of income, 

dependency ratio and land factors. Furthermore, Figure 3.2 clearly presents the 

difference in terms of rice field area between household type 1 (blue line) and 

household type 2 (red line).  Another difference was identified when the complex rubber 

agroforest area was plotted (Figure 3.3). The plot shows that household type 2 has less 

rubber agroforest compared to household type 1. Thus, the results suggest that 

household type 2 has more diversified livelihood sources.   
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Figure 3.2    Variation between household type 1 and 2 in terms of total rice area, % 
rice income and road access from house. N= natural capital; H= human 
capital; P = physical capital; F = financial capital; S= social capital.  

  Note: all variables are normalized within the 0-1 range. 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Variation between household type 1 and 2 in terms of total complex 
rubber area, gross income per capital and road access from house. N= 
natural capital; H= human capital; P = physical capital; F = financial 
capital; S= social capital.  

  Note: all variables are normalized within the 0-1 range. 

 

Income composition 

A difference in the household agent types was also revealed in income composition 

(Figure 3.4). Income from upland rice farming of household type 1 is double that of 

household type 2. On the other hand, income from rubber is 9% higher in household 

Type 1:

Type 2: 

Type 1:

Type 2:
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type 2 compared to household type 1; this is attributed to the size of the complex rubber 

agroforest areas (Figure 3.3). 

 

 

 

 

 

 
 

 

 

 

 

Figure 3.4 Income composition of household types. NTFP = non-timber forest 
products. 

 

3.3.2 Modeling land-use choices for household agents 

Factors affecting land-use choices of “rubber-rice farmers” (household type 1) 

Chi-square tests show that the empirical M-logit model is highly significant (p<0.003) 

in explaining the land-use choice of rubber-rice farmers (Table 3.7). The Nagelkerke’s 

pseudo-R2 is 0.809, which indicate that 81% of the total variation in the probability of 

land-use choice is explained by the selected explanatory variables. A total of 9 

explanatory variables were found to be significant, of which 4 variables correspond to 

human capital, 2 variables to enrichment factor of land use, and one variable each to 

policy and environmental attributes. The model has a good overall predictive power of 

84.4% and correct predictions for rubber agroforest, upland rice and other land use of 

84.6%, 85.6% and 80.0%, respectively. 

Regarding the choice of rubber agroforests, only one variable, i.e., P_F8 (-), 

was found to be significant due to the small sample size of the plots (i.e., 32 plots) of 

household type 1. This indicates that the probability to choose rubber agroforest 

decreases as the household head becomes older. The possible effect of the variable 

H_ACT is also worth considering as the more a household engages in rubber agroforestry, 

the less likely it is to support the conservation agreement policy.  

Rice farming 
(25%) 

Rubber production 
(56%) 

NTFPs 
(9%) 

Livestock 
production (7%) 

Rice 
production 

(12%) 

Rubber  production  
(65%) 

NTFPs (7%)

Livestock 
production 

(7%) 

Household type 1 Household type 2 



Heterogeneity in land-use decisions 

40 

 

With regard to the choice of upland rice, variables significantly influencing the 

decisions of household agents include H_age (-), H_edu (-), H_depratio (-), H_gincpers (-), P_wet 

(+), P_F8 (-), and P_F45 (-). These indicate that the probability that upland rice is chosen 

decreases as the farmer gets older. 

 

Table 3.7  M-logit model estimation of land-use choices by rubber-rice farmers who 
have changed their land use between 1993 and 2005 (n = 32 plots).  

Variable Definition Rubber 
agroforest 

Upland  
rice 

(constant)  20.576 
(14.711) 

85.809 
(41.529)** 

Human capital 
H_age Household head age -0.368 

(0.213)* 
-0.928 

(0.455)** 
H_edu Household head education  -1.660 

(2.786) 
-11.436 
(6.675)* 

H_depend Household dependency ratio -11.169 
(8.035) 

-16.241 
(9.142)* 

H_size Household size 7.054 
(5.383) 

9.178 
(5.943) 

Financial Capital   
H_incomep Gross income per capita of household  0.000 

(0.001) 
-0.002 

(0.001)* 
Conservation agreement policy   
H_ACT Household activities supporting 

conservation agreement  
-0.836 
(0.716) 

0.781 
(0.714) 

Environmental plot attribute 
P_wetness Plot wetness index 0.813 

(0.563) 
2.347 

(1.031)** 
Neighborhood land use   
P_F8 Enrichment factor of settlement (land use 

of 2005), neighborhood radius = 270 m 
-0.003 
(0.003) 

-0.006 
(0.004)* 

P_F45 Enrichment factor of other land use (land 
use of 2005), neighborhood radius = 270 
m 

-0.018 
(0.13) 

-0.039 
(0.019)** 

Fitness and accuracy of the model: 
Likelihood ratio test (chi-square statistics): 38.894** df = 18  p = 0.003 
Pseudo-R2 = 0.809 (Nagelkerke); 0.703 (Cox and Snell); 0.597 (McFadden) 
Percentage correct predictions:  Rubber agroforest: 84.6% 
     Upland rice:  85.6% 
     Others:   80.0% 
     Overall percentage: 84.4% 
Notes: Numbers in parenthesis are standard errors of estimated preference parameters. ***, **, and * 

indicate statistical significance at the 0.01, 0.05 and 0.1 level, respectively. Other land uses 
(e.g., oil palm and rubber monoculture plantation) was selected as the base case for 
comparison. 
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The same trend applies to the number of years of education, which indicates 

that the higher the number of years of education of the household head, the less likely it 

is that upland rice will be chosen. The probability of selecting rubber agroforest 

increases as the dependency ratio of the household decreases. Plots of upland rice are 

likely located in areas where the wetness index is high and that are relatively far from 

settlement areas and other land-use type such as oil palm plantations. Also, the 

probability of selecting upland rice increases when the household gross income per 

capita decreases. This suggests that rice production is an alternative if the price of 

rubber latex is not doing well.  

Based on these explanatory variables (if all are at their mean value), the 

probability of the households to choose upland rice is 66% against rubber agroforest, 

which is 33% (Table 3.8). 

 

Table 3.8  Probabilities of land-use choices of rubber-rice farmers  
Land-use type Probability 95% Confidence interval* 

Rubber agroforest 0.3349 -0.1213 0.7911 
Monoculture 
(rubber or oil palm) 

0.0051  -0.0214 0.0316 

Upland rice 0.6600  0.1973 1.1226 
Note:  * Confidence interval is automatically calculated by STATA software using delta method.  

 

Factors affecting land-use choices of “rubber-basedfarmers” (household type 2) 

Chi-square tests show that the empirical M-logit model is highly significant (p<0.000) 

in explaining the land-use choice by the farmers of this group (Table 3.9). The 

Nagelkerke’s pseudo-R2 is 0.779, which indicates that 78% of the total variation in the 

probability of land-use choice is explained by the selected explanatory variables. 

Sixteen (16) explanatory variables were found to be significant, of which 4 correspond 

to human capital and to the enrichment factor of land use, 3 variables to both policy and 

environmental plot attributes, and one variable each to social and financial capital. The 

model has a good overall predictive power of 85.1% and correct predictions for rubber 

agroforest, upland rice and other land use of 93.8%, 84.6% and 53.8%, respectively. 

Variables that significantly influence the decision to select rubber agroforest 

include H_age (-), H_depratio (-), H_edu (-), P_wet (+), P_F25 (+), P_F45 (+), P_F6 (+), and P_F8 

(+). Age of household head of this household type is an important factor influencing this 
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choice. This indicates that younger household heads tend to choose rubber agroforest 

since it requires more strenuous activities. With regard to dependency ratio and 

education, the higher the dependency ratio of the household and the higher the number 

of years the household head was at school, the less likely it is that rubber agroforest is 

selected. Rubber agroforest is selected in areas where the wetness index is high. 

The use of neighborhood interactions in this kind of study is relatively new. 

Though all the enrichment factors of four land-use types (i.e., rubber agroforest, rice 

field, settlement and other) as explanatory variables are positively significant, their 

effect and possible changes are affected by factors such as policy, land-use pressure and 

temporal stability (Verburg et al. 2004). In this study, the probability of choosing rubber 

agroforest increases as the enrichment factor of land-use type increases. 

 

Table 3.9  M-logit model estimation of land-use choices by rubber-based farmers 
who have changed their land use between 1993 and 2005 (n= 74 plots) 

 
Variable 

 
Definition 

Rubber 
agroforest 

Upland 
rice 

(constant)  36.568 
(19.945)* 

-271.544 
(168.928) 

 
Human Capital 
H_age Age of household head  -0.546 

(0.271)** 
-0.370 
(0.343) 

H_size Household size 1.960 
(1.350) 

4.527 
(2.305)** 

H_depend Household dependency ratio -7.609 
(3.660)** 

8.968 
(8.992) 

H_edu Education of household head  -4.134 
(2.354)* 

8.498 
(6.448) 

Social Capital   
H_mem Household number of memberships 2.262 

(1.666) 
10.771 

(5.098)** 
Financial Capital   
H_incomep Gross income per capita of household  -0.001 

(0.001) 
-0.003 
(0.002) 

   
Conservation agreement policy   
H_ACT Household activities in regards to 

conservation agreement  
-0.469 
(0.331) 

2.029 
(1.182)* 

H_CA Household participation in conservation 
agreement 

-2.592 
(2.399) 

-12.295 
(7.226)* 

H_ACT_size Household activities in support to 
conservation agreement per household size 

3.535 
(4.356) 

-9.539 
(7.150) 
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Variable 

 
Definition 

Rubber 
agroforest 

Upland 
rice 

 
Environmental plot attributes 
P_wetness Plot wetness index 1.009 

(0.487)** 
4.281 

(1.960)** 
P_dtown Plot distance to town centre (m) -2.884 

(1.822) 
-1.325 

(3.230)* 
P_droad Plot distance to road (m) 2.621 

(1.765) 
-29.052 

(17.427)* 
   
Neighborhood land use   
P_F2 Enrichment factor of rubber agroforest (land 

use of 2005), neighborhood radius = 270 m 
0.017 

(0.008)** 
0.198 

(0.101)** 
P_F45 Enrichment factor of others (land use of 

2005), neighborhood radius = 270 m 
0.025 

(0.013)* 
0.365 

(0.189)* 
P_F6 Enrichment factor of rice field (land use of 

2005), neighborhood radius = 270 m 
0.001 

(0.001)* 
0.019 

(0.010)* 
P_F8 Enrichment factor of settlement (land use of 

2005), neighborhood radius = 270 m 
0.009 

(0.004)** 
0.096 

(0.049)** 
Fitness and accuracy of the model: 
Likelihood ratio test (chi-square statistics): 77.337*** df = 32 p = 0.000 
Pseudo-R2 = 0.779 (Nagelkerke); 0.648 (Cox and Snell); 0.586 (McFadden) 
Percentage correct predictions:               Rubber agroforest: 93.8% 
                  Upland rice:  84.6% 
                  Others:  53.8% 
                  Overall percentage: 85.1% 

Notes:  Numbers in parenthesis are standard errors of estimated preference parameters. ***, **, and * 
indicate statistical significance at the 0.01, 0.05 and 0.1 level, respectively. Other land uses 
(e.g., oil palm and rubber monoculture plantation) was selected as the base case for 
comparison. 

 
For upland rice, variables that significant affect the decisions of household 

agents are H_size (+), H_mem (+), H_ACT (+), H_CA (-), P_wetness (+), P_droad (-), P_dtown (-), 

P_F2 (+), P_F45 (+), P_F6 (+), and P_F8 (+). Household size is an important factor, since 

upland rice requires a larger labor (Suyanto et al., 2001), particularly women. The 

number of group memberships also positively significantly affects the household 

decision; households that have more group memberships e.g., farmers’ cooperatives, 

show a higher probability to select upland rice. The same trend was observed in terms 

of household involvement or participation in the conservation agreement policy, where 

it was observed that the more conservation activities the household is involved in, the 

more likely it is that upland rice will be selected.   

Table 3.9 continued
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Regarding farm plot distance, the probability to choose upland rice decreases 

as the distance of the farm plots from the house and town centre increases.  Plots of 

upland rice are also located in areas where the wetness index is high. 

In terms of enrichment factor of land-use types, Verburg et al. (2004) pointed 

out that neighborhood relation is most pronounced for the immediate neighbors. With 

this, the decision of household agents for a certain land use may be affected by the most 

pronounced land-use type in the nearest neighborhood. However, the decision of the 

household will also be affected by the interactions of other variables, e.g., conservation 

agreement policy.  

Based on these explanatory variables (if all are at their mean value), the 

probability of the households to choose rubber agroforest is 99% (Table 3.10). 

 

Table 3.10  Probabilities of land-use choices of rubber-based farmer 
Land-use type Probability 95% Confidence interval 

Rubber agroforest 0.9938 -0.0000 0.0000 
Monoculture 
(rubber or oil palm) 

0.0062  0.9724 1.0153 

Upland rice 0.0000 -0.0153 0.0276 

 

3.3.3 Modeling preferred future land use under certain condition (for process-

based decison making)2 

In this section, decisions of household farmers were explored under the condition of “if 

supported by financial investment in the next 5 to 10 years.” Only two land-use choices, 

i.e., rubber agroforest and monoculture rubber or oil palm plantations were frequently 

mentioned during the survey (see section 3.2.3) since the majority of the interviewed 

household heads were males. Because of cultural traditions in the study area, mainly 

one decision maker had to be interviewed. The problem thus arises whether there is a 

gap between the expressed decision and the implementation of the expressed decision. 

The expressed intention could be just wishful thinking, anticipated agreement with the 

other partner or a decision that will be implemented without further consulting. In the 

given cultural environment, we could assume the latter two cases. The following sub-

                                                 
2  This sub-section was added as a result of the initial simulation and to strengthen the prospective 

element of the process-based decision making sub-model (see Chapter 6). 
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sections identify the factors affecting the decisions of household agents according to 

household types. 

 

Factors affecting preferred land uses of household type 1 (rubber-rice farmers) 

Chi-square tests show that the empirical Bi-logit model is highly significant (p < 0.003) 

in fitting the preferred land-use of rubber-rice farmers type (Table 3.11). A total of 

seven explanatory variables were identified.  Based on these explanatory variables (if all 

are at their mean value), the probability of the households to choose rubber agroforest or 

monoculture plantations is summarized in Table 3.12. 

 

Table 3.11 Explanatory variables used for Bi-logit regression model for land use of 
(household type 1 -  rubber-rice farmers) 

Variable Definition Rubber 
agroforest 

(constant)  -41.58 
(38.63) 

Household characteristics 
H_age Household head age -0.71 

(0.47) 
H_edu Household head education  -24.96 

(15.97) 
H_incomep Household gross income per person  -0.001 

(0.0008) 
Conservation agreement policy 
H_ACT Household activities supporting conservation 

agreement  
-1.199 
(0.74) 

Environmental plot attributes  
P_dtown Plot distance to town center (m) 15.25 

(10.84) 
P_dhouse Plot distance to house (m) -15.29 

(11.07) 
Neighborhood land use  
P_F45 Enrichment factor of others (land use of 2005), 

neighborhood radius = 270 m 
-0.014 
(0.0089) 

Fitness and accuracy of the model: 
Likelihood ratio test (chi-square statistics): -8.13*** df = 7  p = 0.0003 
Pseudo-R2 = 0.78 (Nagelkerke); 0.58 (Cox and Snell); 0.62 (McFadden) 
Percentage correct predictions:  Rubber agroforest: 88.9% 
(Cut point 50%)   Others:   85.7% 
     Overall percentage: 87.5% 

Notes: Numbers in parenthesis are standard errors of estimated preference parameters. ***, **, and * 
indicate statistical significance at the 0.01, 0.05 and 0.1 level, respectively. Other land uses 
(e.g., oil palm and rubber monoculture plantation) was selected as the base case for 
comparison. 
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Table 3.12  Probabilities of preferred land use of household type 1 (rubber-rice 
farmers) 

Land-use type Probability 95% Confidence interval* 
Rubber agroforest 0.8665 0.5329 1.2002 
Monoculture 
(rubber or oil palm) 

0.1335 -0.2002 0.4671 

Note:  *Confidence interval is automatically calculated by STATA software using delta method.  

 

Table 3.13  Explanatory variables used for Bi-logit regression model for land use  of 
rubber –based farmers 

Variable Definition Rubber 
agroforest 

(constant)  4.14 
(1.72)** 

Household characteristics 
H_age Household head age -0.73 

(0.03)* 
H_edu Household head education -1.12 

(0.60)* 
H_landholdings Household landholdings per person  -0.67 

(0.28)** 
Conservation agreement policy 
H_ACT Household activities supporting conservation agreement  0.17 

(0.066)** 
Neighborhood land use  
P_F45 Enrichment factor of others (land use of 2005), 

neighborhood radius = 270 m 
-0.002 

(0.001)** 
Fitness and accuracy of the model: 
Likelihood ratio test (chi-square statistics): -38.0447** df = 5  p = 0.003 
Pseudo-R2 = 0.29 (Nagelkerke); 0.26 (Cox and Snell); 0.18(McFadden) 
Percentage correct predictions:  Rubber agroforest: 60.0% 
(Cut point 50%)   Others:   82.1% 
     Overall percentage: 71.6% 

Notes: Numbers in parenthesis are standard errors of estimated preference parameters. ***, **, and * 
indicate statistical significance at the 0.01, 0.05 and 0.1 level, respectively. Other land uses 
(e.g., oil palm and rubber monoculture plantation) was selected as the base case for 
comparison. 

 

Table 3.14  Probabilities of preferred land use of rubber –based farmers 
Land-use type Probability 95% Confidence interval* 

Rubber agroforest 0.4748 0.3382 0.6114 
Monoculture 
(rubber or oil palm) 

0.5252 0.3886 0.6618 

Note: *Confidence interval is automatically calculated by STATA software using delta method.  
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Factors affecting preferred land uses of household type 2 (rubber-based farmers) 

Chi-square tests show that the empirical Bi-logit model is highly significant (p < 0.003) 

in fitting the preferred land-use of rubber-based farmers (Table 3.13). A total of five 

significant explanatory variables was identified.  

The probability of the type 2 households to choose rubber agroforest or 

monoculture plantations is summarized in Table 3.14. The results of the probabilities of 

the two household types under the condition of financial investments suggests that type 

1 agents, which are described as better-off households compared to type 2 households 

(see Section 3.3.1) are 87% (Table 3.12) likely to stay with rubber agroforest. On the 

other hand, type 2 households take slightly more risks regarding more profitable land-

use practices (e.g., monoculture plantations with 52% probability) (Table 3.14). In both 

cases, rice paddies were not preferred. The probable reason is that the survey was 

mainly done with male household heads. These are largely responsible for rubber and 

oil palm productions, whereas females are solely responsible for rice production. This 

mainly gender-specific aspect is a known confounder in this modeling that one could 

adjust.  

 

3.4 Conclusions 

The heterogeneity through categorization (Brown and Robinson 2006) is presented in 

this part of the study. The results of the PCA and KCA reveal the household typologies 

in the study area, namely (1) rubber-rice farmers (household type 1) and (2) rubber-

based farmers (household type 2). In other research in land-use decision making, the 

conventional way has been to aggregate the household agents. However, in this study, 

the disaggregation (or heterogeneity) of the household agents is justified due to the 

differences in the factors such as land (i.e., rubber agroforest area vs. rice field area), 

income composition, labor pool, etc., which were generated by PCA.  

Most of the factors affecting land-use choice are combinations of human, 

financial, social and natural capital and the impact of policy that affects the households’ 

activities, i.e., conservation agreement. Highly significant new variables were found to 

influence the household agents’ decision making that had not yet been considered in 

other MAS models, i.e., enrichment factor of land-use types. The coefficients generated 

for each household agent are incorporated in the LB-LUDAS model for the land-use 
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decision making under the baseline scenario. However, the preferred land use of 

household agents if supported by financial investment was modeled for the agents’ 

process-based decision making. The application of this as a new layer of the agents’ 

decision making is an adjustment to address the cause-effect relationship mechanism 

and unknown confounder (in this case is the decision-making process, see Chapter 6). 

Also, it is noteworthy to consider this aspect, since the probability of choosing certain 

land uses changes significantly according to a given situation or condition. 



National and local payment/rewards for environmental services (P/RES) schemes 

49 

 

4 NATIONAL AND LOCAL PAYMENTS/ REWARDS FOR 
ENVIRONMENTAL SERVICES (P/RES) SCHEMES IN RUBBER 
AGROFORESTS CONSERVATION 

 
 

Land-use and land-cover change is one of the most important anthropogenic causes of 

agro-biodiversity loss (MA 2005b). Agro-biodiversity by definition is essentially the 

biodiversity present in and supported by agricultural landscapes (Kuncoro et al. 2006), 

and has been selected and modified by thousands of years of human utilization to better 

serve human needs (Wood 1993). Agro-biodiversity is crucial, since it is the source of 

many agro-ecosystem benefits and services that are of local and global value (e.g., food 

production and security, non-timber forest products and medicinal plant sources). 

However, it is threatened because most commercial production focuses on a few major 

crops (e.g., oil palm and other monoculture plantations) to meet the demand of the 

increasing market (Thies 2000). The use of economic incentives such as 

Payments/rewards for Environmental Services (P/RES)3 is becoming increasingly 

accepted for conserving agro-biodiversity (Bennett and Balvanera 2007). In Indonesia, 

where rubber agroforest areas are considered to support agro-biodiversity (Kuncoro et 

al. 2006), it is threatened by expansion of monoculture tree plantations, e.g., oil palm, 

and incentives to prevent the conversion are seen as an urgent need (Ekadinata et al. 

2010). Pascual and Perrings (2007) perceive the agro-biodiversity change in the 

landscape as an investment/disinvestment decision made in the context of a certain set 

of preferences, value systems, moral structures, endowments, information technological 

possibilities, and social, cultural and institutional conditions.   

In this part of the study, the aim is to 1) identify different factors influencing 

the adoption of the households to two P/RES schemes for conserving rubber agroforests 

in Jambi province, and 2) determine the possible effect of the identified factors which 

will be incorporated in the decision-making sub-model of LB-LUDAS model for the 

possible land-use change and ecosystem trade-offs. For qualitative analysis of the 

households’ behavior and perceptions under these schemes (using a role playing game), 

see Villamor and van Noorwijk (2011).   

                                                 
3  In this chapter, P/RES refers to the ICRAF project on rewarding environmental services. Here, 

environmental services and ecosystem services are synonyms, though some literature differentiates 
the two based on the inclusion or exclusion of provisioning services (Swallow et al. 2009; Leimona 
2011).   
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4.1 Ecosystem services provided by rubber agroforests 

Rubber agroforest, also known as ‘jungle rubber’ (Gouyon et al. 1993, Williams et al. 

2001), is the dominant land use in Bungo District, Jambi Province, Indonesia (see 

Chapter 3). It is a traditional multi-strata agroforestry system in Indonesia that extends 

over an area of more than 2.6 million ha mostly in the forest margins of Sumatra and 

Kalimantan (Williams et al. 2001). This land use is the major rural livelihood of the 

people living there. The farming system practiced since 1904 allows natural vegetation 

to grow amongst the rubber trees. Farmers selectively nurture some economically 

valuable plants to create a mix of food, medicine, timber and fiber producing trees 

(Leimona and Joshi 2010).  

Laumonier (1997) recognized rubber agroforest as an important agro-

ecosystem type in the island of Sumatra. With about 60-80% of the total plant species 

found in neighboring primary forests (Beukema et al. 2007), this rubber agroforest is the 

most forest-like form of agroforestry (Long and Nair 1999). Thus, rubber agroforest is 

an important refuge for forest biodiversity in the lowland (Tata et al. 2008) and has a 

high biodiversity value including Red List and threatened species (Griffith 2000; 

Schroth et al. 2004; Rasnovi 2006; Beukema et al. 2007). Moreover, rubber agroforest 

provides ecosystem services such as soil conservation, protection of water quality, 

carbon sequestration and landscape beauty (Joshi et al. 2003; Suyanto et al. 2005). For 

example, the woody biomass in a typical old rubber agroforests could hold carbon 

stocks of more than 20 Mg C ha-1 above the time averaged value of rotational 

agroforests (Tomich et al. 2004).   

In contrast to the positive ecological benefits, the latex productivity of rubber 

agroforest is very low. Joshi et al. (2006) compared the yield productivity of complex 

rubber agroforest to rubber monoculture, which is 400 to 600kg of dry rubber ha-1 year-1  

and 1000 to 1800kg ha-1year-1, respectively. However, farmers benefit annually from 

other resources in the rubber agroforest such as food, fruits (e.g., durian, mangosteen, 

coffee, etc.), fodder, fuel wood and timber (Gouyon et al. 1993; Michon 2005). 

 

4.1.1 Conservation agreements (CAs): initial effort to establish reward schemes 

The development of a reward scheme for biodiversity conservation was conducted 

through an action research under Phase 1 project of the Rewarding Upland Poor for 
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Environmental Services (RUPES) operating since 2002. The target of the action 

research was to identify the environmental services, to determine how they can be 

measured, who the rewards should go to, who is to pay the rewards, how and in what 

form could they be collected, and what amount or form would be appropriate.  

The conservation agreements were the result of a long process of discussion 

and exploration with the villagers in four villages in Jambi province, namely: Lubuk 

Beringin, Sungai Mengkuang sub-village, Sangi sub-village, and Letung sub-village. 

The aim was to develop and test schemes for agro-biodiversity conservation appropriate 

for rubber agroforests. As a village-level policy, the conservation agreements were 

created and signed in 2007 by the villagers, with the following foreseen activities: 

1. Provision of high yielding (cloned) rubber seedlings to be integrated in the farms; 

2. Establishment of communal jungle rubber; 

3. Support of Hutan desa (or village forest): 

4. Installation of improvised mini-hydro power generators that provide electricity to 

the villagers; and  

5. Establishment of mini-reservoirs in the river that produce fish stocks for food 

consumption. 

Support funding was provided by the RUPES Program to the communities as 

fulfillment of the RUPES goals to preserve the biodiversity-rich jungle rubber 

ecosystem taking into consideration the economic needs of the community. The 

agreements include the farmers’ biodiversity-conserving rubber agroforest practices, the 

way in which the communities will manage their rewards and how they will monitor the 

agreements. 

Through the technical assistance of RUPES and based on the performance of 

the households in meeting the above-mentioned agreements, the villages will negotiate 

and build their case for rubber latex eco-certification and reduce emissions from 

deforestation and degradation (REDD) schemes as presented in the following sub-

section. These market-based incentive schemes seem to be the only way to save the 

remnants of jungle forest and prevent it from being converted to rubber monoculture 

and oil palm plantations (Feintrenie and Levang 2009).  
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4.1.2 REDD as a national P/RES scheme 

Indonesia is not only the leader in terrestrial carbon emissions (Ekadinata et al. 2010), it 

is also a leader in its commitment to Nationally Appropriate Mitigation Action 

(NAMA) as a basis for building global trust and achieving global cooperation to 

manage climate change. The Hutan desa (village forest) agreement in Indonesia was 

facilitated by expectations of REDD benefits flowing to government agencies 

(Akiefnawati et al. 2010). The first village forest in Indonesia was Lubuk Beringin 

village with an area of 2,300 ha, which consists of watershed protection forest and 

production forest where no concession rights exist. Under the Ministry of Forestry 

regulation #P.49/Menhut-II/2008, management of the village forest will be given to the 

local village organization. It entails the development of village forest plans, and 

management and allocation of benefits derived from the forests. A village rule guides 

the villagers on how to manage the water and utilize both timber and non-timber 

products. Under the rule, villagers are not allowed to clear cut the forests. The 

designated village forest has to be administratively part of the village; the right to 

manage is valid for 35 years and is renewable for another 35 years subject to approval 

of the work plans. 

Hutan desa is one of the areas identified by the Indonesian government that 

qualifies for REDD+ schemes (for further relevance of Hutan desa to the international 

REDD debate see Akiefnawati et al. 2010). Indonesian REDD policy intervention 

strategies that could be applied to Hutan desa are (1) development of more effective 

protected conservation and management areas, and (2) development of more effective 

management of production forests. The Ministry of Forest regulation on REDD 

(PERMENHUT No. P30/2009) provides the guidelines for qualified areas that include 

establishment of reference emission levels (REL), monitoring and reporting to national 

and sub-national designating authorities, verification and certification, among others. It 

is expected that the REDD schemes will be implemented in 2012. External agents such 

as ICRAF and NGOs (e.g., WARSI) are helping the Lubuk Beringin village forest 

organization to meet the requirements. Once compliance with all requirements has been 

achieved, the proposed revenue-sharing appropriate for Hutan desa is 20% for the 

government, 50% for the community and 30% for the developer (www.dephut.go.id). A 
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discussion about the forest definition in Indonesia is now on-going to allow the rubber 

agroforest to be included as a land use in the REDD+ scheme.  

 

4.1.3 Rubber eco-certification/labeling as local P/RES scheme 

Studies on rubber agroforests in Jambi Province have claimed that the physiognomy and 

functioning of the rubber agroforests are close to those of the natural forest ecosystems 

(Michon and de Foresta 1994; van Noordwijk 2002a). Although most of the complex 

rubber agroforests have disappeared in Malaysia and Thailand, around 2 million ha of 

rubber agroforests are still thriving in Indonesia (Gouyon 2003; Akiefnawati et al. 

2011). If left neglected, they will soon be converted to agriculture and industrial 

plantations. And since very little primary forest is left in the country, maintaining these 

forests is the only option to support the high forest diversity in the area. In the absence 

of specific incentives, there is no reason why smallholders should agree to forego the 

benefits of more profitable land uses for the sake of biodiversity conservation.   

Eco-certification or eco-labeling of rubber agroforest has been explored by 

ICRAF for the past decade as a mechanism for conserving biodiversity habitats and 

furthering economic development in rubber-growing areas. This kind of scheme 

guarantees that the production practices used to generate a product meet a set of eco-

standards or that the raw materials of the product are produced in bio-diverse systems, 

and verifies that producers have used management practices that conserve 

environmental services (Bennett 2008). Thus, selling eco-labeled rubber latex at a price 

higher (price premium) than the average (farm gate) price would increase the farmers’ 

economic returns from rubber agroforests. 

Though there is no market yet for certified rubber products, interest has been 

shown by a tire manufacturing company to develop a “green rubber tire”, and 

negotiations are currently underway. Research has been conducted to establish 

indicators (Tata et al. 2006) that would be required by certification agencies such as the 

Forestry Stewardship Council (FSC) (see Chapter 7, p.117). About 30% of the natural 

rubber latex is used for tire making, and the production of natural rubber is mainly in 

Asia.  Hence, there is a great potential to develop the market, as a great number of 

natural rubber consumers are still untapped (Gouyon, 2003). Based on the current 
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negotiations with the tire manufacturer, clean and dry green rubber costs US$4 3kg-1 

(Akiefnawati, pers.com.), which is twice the farm-gate price. A lot of research is 

currently being done, since the eco-certification of natural rubber latex is very 

promising (Akiefnawati et al. 2011). However, there are still constraints and bottlenecks 

that would affect the decisions of farmers to adopt the scheme. These are: 

1. Compliance with the set certification standards could be difficult for the farmers; 

2. To date, no factories are willing to receive eco-certified rubber; 

3. Conflict with government policy that promotes oil palm companies (no government 

policy supports rubber agroforests conservation); and 

4. The market for certified-rubber is still underdeveloped. 

 

4.2 Methodology  

4.2.1 Binary logistic regression model for P/RES adoption 

Though there is limited literature on the adoption of P/RES schemes, the methodology 

for this research can be drawn from and supported by the previous literature on the 

economics of technology adoption and farm and forestry program participation 

(Neupane et al. 2002; Zbinden and Lee 2005; Knowler and Bradshaw 2007). The binary 

logistic (Bi-logit) regression analysis was used to model the decision of household 

agents to adopt or not to adopt P/RES schemes. The model is based on maximization of 

an underlying utility function, which is assumed to be consistent with individual 

household behavior (Zbinden and Lee 2005). The model characterizing P/RES adoption 

is specified as: 

kiki
i

i XXx
P

P
...)

1
log( 2210    (4.1) 

where i denotes the i-th observation in the sample, Pi  is the predicted probability of 
adoption, which is coded with 1 (willingness to adopt) or with 0 (not to adopt), 
ßï is the intercept term, and ß1, ß2, ..., ßk  are the coefficients associated with each 
explanatory variable X1, X2, ...Xk.  

 

The coefficients in the logistic regression were estimated using the maximum 

likelihood estimation method using SPSS package version 16. 

                                                 
4  1 USD = 9,000.00 Rupiah (at the time of writing) 
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Specification of variables 

Dependent variable 

Willingness to adopt or not to adopt the P/RES scheme (H_policy) is the dependent 

variable for this Bi-logit model. The P/RES schemes in this study are the conservation 

agreements as pilot schemes for eco-certification and REDD. Based on the above 

theoretical framework, the farmer may choose options (i.e., to participate or not to 

participate) in the P/RES scheme if the highest utility is generated according to the 

available resources and the natural and institutional constraints.  

 

Explanatory variables 

The independent variables hypothesized to influence households’ decisions are 

presented in Table 4.1 These variables can be grouped into farmers’ and farm 

characteristics, farm operational income and information on or participation in 

conservation schemes. Farmers’ characteristics such as age and educational status are 

often used, although the influence on the decision making of these variables differs 

from farmer to farmer. Younger farmers tend to be more explorative, while older ones 

tend to keep to their old ways (Wossink and van Wenum 2003). Other studies showed 

different effects (Vanslembrouck et al. 2002). Age and education were found to be 

positively significant in the willingness to engage in P/RES both in the upstream and 

downstream areas in Thailand (Neef 2010). Labor demand, availability and allocation 

are often found to be central in determining adoption and program participation 

decisions (Neupane et al. 2002). For example, agroforestry may be an attractive option 

in the long run when family labor is scarce (Zbinden and Lee 2005). 

In other studies, farm-biophysical characteristics such as distance to road, area 

planted for rice or rubber or left fallow (often related to farm size) have been found to 

be important factors explaining farmers’ environmental behavior (Kristensen et al. 

2001; Knowler and Bradshaw 2007; Neef 2010). Farmers with large farms are more 

likely to be able to sacrifice a portion of land for conservation without jeopardizing their 

household food security or short-term income-generating potential (Zbinden and Lee 

2005). Neef (2010) found that upland rice as the main crop of a household is a highly 

significant factor in its decision to engage in the P/RES scheme. 
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The financial characteristics such as percentage of income from different 

sources may influence the decision of a farmer to adopt a new scheme. Studies have 

shown that the impact of income, gross income and farm profitability on adoption was 

positively correlated (Gould et al. 1989; Saltiel et al. 1994; Somda et al. 2002). 

However, adoption of conservation practices with high up-front costs would reduce 

attractiveness to the farmers (Pannell et al. 2006). For this research, farmers with lower 

income are hypothesized to adopt the P/RES schemes. 

Information on or participation in conservation schemes such as conservation 

farming (Knowler and Bradshaw 2007; Neef 2010) is frequently found to positively 

correlate with the adoption of the schemes. It is also positively correlated with the 

education of a farmer’s household, which is often assumed to influence the adoption 

decision because of the link between education and knowledge or awareness. A lack of 

knowledge about the conservation agreements and incentive programs would hamper 

the farmers’ participation or adoption (Wossink and van Wenum 2003).   

 

Table 4.1  Potential and explanatory variables influencing household decisions 
Variable 

 
Definition Possible 

effect 
HH_age Age of household head - 
H_education Household head education status + 
H_rdistance Household house distance to road (m) - 
H_motor Number of household motorcycle vehicle + 
H_labor Availability of household labor (number of workers) - 
H_landhold per Landholding per capita (ha/person) + 
H_rice Total land area of rice (hectare) - 
H_ladang Total land area of fallowed farm (hectare) + 
H_complex Total land area of complex rubber agroforest farm 

(hectare) 
+ 

H_gincpers Gross income per capita of household (US $/person/year) - 
H RICEinc Percentage income from upland rice (%) - 
H RUBinc Percentage income from rubber agroforest (%) - 
H_LIVinc Percentage income from livestock (%) - 
H ACT Household activities based on conservation agreement + 

 

4.2.2 Data sources 

The socio-economic data for this analysis were derived from an extensive household 

survey conducted in the target villages (see section 3.2.3). The survey covered the 

access to conservation agreements (see section 4.1.2), motivation to participate and 
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continue, and perspective on the agreements regarding their potential to conserve 

biodiversity in the area. A total of 95 household respondents (90 males and 5 females) 

were randomly selected and interviewed. Of these 95 households, 73% had already 

joined the conservation schemes.  

 

4.3 Results and discussion 

The two household types, namely (1) rubber-rice farmers, and (2) rubber-based farmers 

that were generated by PCA and K-CA (see section 3.2.1) were analyzed using the Bi-

logit model.  

 

4.3.1 Factors affecting P/RES adoption of “rubber-rice farmers”  

The results of the Bi-logit model are summarized in Table 4.2 for household type 1 

together with the maximum likelihood estimation that was used to estimate the 

coefficients. Chi-square tests show that the empirical Bi-logit model is significant 

(p<0.093) in explaining P/RES scheme adoption by farmers of the group. The 

Nagelkerke’s pseudo-R2 is 0.589, which indicates 59% of the total variation in the 

probability of P/RES adoption is explained by the selected explanatory variables. Out of 

14 explanatory variables (see Table 4.1),  a total of 8 variables were used for the model, 

of which 6 variables correspond to household and farm characteristics, and 2 variables 

are related to farm operation income. The combination of all variables was not possible 

due to the very small samples of household type 1 (n=32), thus the Bi-logit regression 

was conducted several times until the best pseudo-R2 result was reached. The model has 

a good overall predictive power of 87.9%, and predicted the willingness to adopt P/RES 

with 92.9% and not to adopt it with 60.0%. 

Among the variables that are affecting the decisions of the household agents 

are H_edu (+), H_mem (+), H_size (+), H_depratio (+), H_rice (-), H_rdistance (+), H_RUBinc (-), and 

H_RICEinc (-). However, only percentage income from rubber agroforest was found to be 

significant (p <0.10). The probability of a household to adopt P/RES increases with 

increasing education, group memberships and household members with a high 

dependency ratio, and a greater distance to a road. On the other hand, the probability to 

adopt P/RES increases when the household has small rice fields and low income from 
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rice and rubber production. This corresponds to findings on farm size and number of 

years of education in a study by Zbinden and Lee (2005).  

 
Table 4.2  Bi-logit model estimation of P/RES adoption by rubber-rice farmers (n= 

32 households) 
Variable Definition Coefficient 

( ) 
Sig. 

(constant)  3.516 0.489
Household characteristics  
H_edu  Education of household head (level) 2.683 0.105
H_mem  Household number of group 

memberships 
2.759 0.119

H_size Household size 0.890 0.200
H_depratio Dependency ratio of household 3.104 0.211
Farm characteristics   
H_rice Size of rice field (ha) -2.353 0.186

 
H_rdistance House distance to road (m) 0.000 0.485
Farm operation income  
H_RUBinc % income from rubber agroforest -0.089 0.086
H_RICEinc % income from rice  -0.048 0.359
Fitness and accuracy of the model: 
Likelihood ratio test (chi-square statistics):  13.589  df = 8  p = 0.093 
Pseudo R2= 0.589 (Nagelkerke); 0.338 (Cox & Snell) 
Percentage correct predictions: 
                                              Household willingness not to adopt:               60.0% 
                                              Household willingness to adopt:                     92.9% 
                                              Overall percentage:                                         87.9% 

 

4.3.2 Factors affecting P/RES adoption of “rubber-based farmers”  

In Table 4.3, the results of Bi-logit are summarized together with the maximum 

likelihood estimation that was used to estimate the coefficients for household type 2 

(rubber-based farmers). Chi-square tests show that the empirical Bi-logit model is 

highly significant (p<0.000) in explaining P/RES adoption by farmers of the group. The 

Nagelkerke’s pseudo-R2 is 0.709, which indicates that 71% of the total variation in the 

probability of P/RES adoption is explained by the selected explanatory variables. A 

total of 12 explanatory variables included in the model were found to be important, of 

which 8 variables are related to farmers’ and farm characteristics, 3 variables are related 

to farm operation income, and one variable corresponds to conservation agreement 
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policy participation.  The model has a very good overall predictive power of 91.9%, and 

predicted the willingness to adopt P/RES with 95.9% and not to adopt it with 76.9%. 

For household type 2, variables that significantly influence the decisions are 

H_age (-), H_size (+), H_rice (-), H_complex (-), H_RICEinc (-),H_gincpers (-), and H_ACT (+). The 

probability to adopt P/RES scheme is higher with younger household heads, which 

agrees with the findings of Wossink and van Wenum (2003), who observed that 

younger farmers are more explorative. With respect to farm size, it has been regularly 

hypothesized that owners of large farms are more willing to adopt a new technology or 

scheme (Knowler and Bradshaw 2007), and this was also observed for this household 

type. Households with larger areas with rice fields and (complex) rubber agroforests 

have a low probability of adopting P/RES schemes. The same trend can be observed for 

rice income and annual gross income per capita of the household. Participation in 

conservation activities such as planting clonal rubber seedlings significantly influences 

the probability of adopting the P/RES scheme. 
 

Table 4.3  Bi-logit model estimation of P/RES adoption by rubber-based farmers 
(n= 63 households) 

Variable Definition Coefficient ( ) Sig. 
(constant)  3.599 0.551 
Household characteristics   
H_age  Age of household head -0.192 0.096 
H_edu  Education of household head (level) 1.471 0.474 
H_mem  Household number of memberships -0.437 0.742 
H_size Household size 1.247 0.085 
H_depratio Dependency ratio of household 1.920 0.513 
Farm characteristics   
H_rice Size of rice field (ha) -2.285 0.097 
H_complex Size of complex rubber agroforest (ha) -0.392 0.067 
H_rdistance House distance to road (m) 0.003 0.216 
Farm operation income   
H_RUBinc % income from rubber agroforest -0.046 0.231 
H_RICEinc % income from rice -0.167 0.081 
H_gincpers Gross income per capita of household 

(US $/person/year) 
-0.001 0.405 

Conservation agreement policy participation   
H_ACT Household activities based on 

conservation agreement (weighted 
value) 

0.847 0.026 
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Variable Definition Coefficient ( ) Sig. 
Fitness and accuracy of the model: 
Likelihood ratio test (chi-square statistics):  37.676  df = 12  p = 0.000 
Pseudo R2= 0.709 (Nagelkerke); 0.455 (Cox & Snell) 
Percentage correct predictions: 
                                              Household willingness not to adopt:            76.9% 
                                              Household willingness to adopt:                  95.9% 
                                              Overall percentage:                                       91.9% 

 

4.4 Conclusions and policy implications 

The results of the Bi-logit regression models show the different variables that influence 

the decision making process of the households in the rubber agroforests landscape while 

household agents heterogeneity was considered. For instance, number of education is 

significantly affecting the decision of relatively well-off households in participating 

PES schemes. These range from factors associated with households’ and farm 

characteristics, farm income operation, and participation in the conservation agreement 

policy. Agro-biodiversity conservation through P/RES schemes in the rubber agroforest 

landscape of the Bungo District is greatly affected by these factors, and they influence 

the decision-making process.  

From the results, we could identify useful variables, which could help 

programs like RUPES and government agencies to create or establish criteria and 

indicators for households’ eligibility to accept rewards or payments from programs such 

as REDD and eco-certification schemes. Thus, they would help to reduce free-riders and 

to target households who are very much involved in the process. Also, policy makers 

could better target households that need follow-up activities or support to ensure the 

success of P/RES schemes. Ekadinata et al. (2010) recommend a priority setting for 

eco-certification of rubber agroforest by identifying the areas where there is a high 

percentage of rubber agroforests. Thus, the results of this research provide significant 

insights on the type of household that would possibly adopt the P/RES scheme.  

The parameterized coefficients of the above analysis will be used in the 

simulation of the LB-LUDAS model (Chapter 6). 

Table 4.3 continued
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5 ECOLOGICAL DYNAMICS IN RUBBER AGROFOREST LANDSCAPE: 
CASE STUDY OF BUNGO DISTRICT, JAMBI PROVINCE (SUMATRA) 

 
 
Ecological systems are complexes of biotic and abiotic elements that are interrelated by 

flows of energy, matter and information (Breckling and Mueller 1997). These 

interactions build up comprehensive and complicated networks of heterogeneous direct 

and indirect effects (Fath and Patten 2000). Unintended domestication of ecosystems, 

e.g., for food and timber, can result in the decline of other services such carbon 

emission reduction, pollination, flood control, etc. Bennett et al. (2009) point at the need 

to understand the relationships among multiple ES and the mechanisms behind the 

relationships to improve man’s ability to sustainably manage landscapes. However, the 

multi-agent simulation/ agent-based (MAS/AB) models for understanding social-

ecological systems (SES) are criticized as weak in ecology (Cumming 2011).   

In this chapter, the rubber agroforest landscape in Jambi province is 

investigated. Studies show that this agroforest type is an important agro-ecosystem 

worth conserving (see Chapter 4). Yet the rubber agroforest is currently endangered by 

various social-economic and political factors leading to possible conversion into more 

profitable land uses (see Appendix 1).  

The starting point for quantifying trade-offs involved in land-use change is the 

measurement of field-level differences in economic, agronomic and other ecological 

consequences of the various land uses. Thus, the following objectives are addressed:  

 

1. Characterize the heterogeneity and biophysical characteristics of landscape agents, 

2. Identify the variables that are ecologically and economically relevant to the 

productivity and land-use decision-making process, and 

3. Formulate and calibrate ecological sub-models (i.e., biodiversity, forest yield, 

agronomic, and natural transition5) of landscape agents. 

 

                                                 
5  Only modifications and calibration of the sub-models (i.e., forest yield, agronomic and natural 

transitions) are presented in this chapter. For detailed explanation of the sub-model development, see 
Le 2005. 
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5.1 Bio-physical characteristics 

5.1.1 Climate 

The climate in Bungo district belongs to the Type-A (Schmidt and Ferguson 1951), 

which is based on the seasonal rainfall variation (Hamada et al. 2002). During the last 

10 years (1998-2002), the mean annual rainfall was 2,330 mm year-1, and the mean 

number of rainy days year-1 was 124 (recorded at the climate station of Muara Bungo; 

Tata et al. 2008). In 2007, according to the rainfall data recorded by the Bungo district’s 

Agricultural Extension Service, the mean rainfall was 225 mm and the mean number of 

rainy days was 10 (Figure 5.1).  
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Figure 5.1  Average rainfall data, 1997-2006. Source: Agricultural Extension Service 
of Bungo Regency, 2007 

 

5.1.2 Soils 

Jambi province crosses the five ecological zones of Sumatra, namely coast, mountain, 

piedmont, peneplain, and swamp. The study site is comprised of three villages (Lubuk 

Beringin, Laman Panjang, and Buat; see Chapter 4) and is located in the piedmont zone, 

which is formed mainly of granite and andesitic lava (Murdiyarso et al. 2002) with 

elevations ranging from 100 to 500 masl. According to the US Soil Taxonomy, the soils 

in this region of Sumatra are classified as Hapludox and Kandiudox (Soil Survey Staff, 
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1999) and as Orthic Ferrasols according to the FAO classification (Ketterings et al., 

2002). In Rantau Pandan area (where the villages belong), the soils are more varied and 

complex—ranging from shallow to very deep, moderate to fine texture, and well to 

moderately excessive drained, but they are also very acid and have low soil fertility (van 

Noordwijk et al. 1995).   

 

5.1.3 Vegetation cover  

Sumatra lies in the lowland humid tropical forest zone in insular Asia. This forest type 

is characterized by high diversity and species richness. However, over the last decades, 

large tracts of forest have been converted to various land uses, e.g., rubber, and oil palm 

plantations and other agricultural land uses. Ekadinata and Vincent (2011) recently 

describe the three major land-cover changes in Bungo district, in an area of 4550 km2, 

in Jambi province, for the period between 1973 and 2005, namely (1) natural forest loss 

was lost with cover going from 70% to 30%, (2) an increase in the area of intensive tree 

crops from 3% to over 40% monoculture plantations, and (3) decrease in the area of 

rubber agroforests from 15% to 11%. 

Tata et al. (2008) described the top five dominant tree species in the forest of 

Jambi. These are Alanguim javanicum, Alseodaphne sp., Alstonia angustifolia, 

Antidesma montanum and Aporosa nervosa, the majority of which belong to the family 

Euphorbiaceae. Though dipterocarp species usually dominate in this forest, this was not 

the case in the above study. In rubber agroforest, the five dominant trees species are 

Hevea brasilienis (rubber tree), Artocarpus integer (jackfruit), Macaranga trichocarpa, 

Parkia sumatrana and Parkia speciosa (stinky bean). Most of the dominant tree species 

belong to the Euphorbiaceae and Burseraceae families. In terms of shadow species (tree 

species observed at least once), the same study estimated the number of shadow species 

at 34.4% only for forest and 33.5% only for rubber agroforests, and 2.7% for species 

observed in both land-cover types. 

 

5.1.4 Carbon stocks 

Lowland tropical rain forests have the highest standing biomass and aboveground 

carbon stocks (C-stocks) in the world (Murdiyarso et al. 2002). Hairiah et al. (2000) 

indicated that the total carbon stocks of natural forest in Jambi on the peneplains can 
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reach up to 500Mg ha-1. The time-average aboveground carbon stocks of the main land-

use systems in Sumatra (particularly in Bungo district) were estimated in the 

Alternative-Slash and Burn (ASB) project (Tomich et al. 1998). Of all the land uses 

quantified, the natural forest remains the highest source of carbon (Table 5.1).   

 

Table 5.1  Time-averaged mean annual aboveground carbon stocks of land-use 
systems in Sumatra 

 
Land-use type 

 
Maximum years (life-

span) 

Time-averaged annual 
carbon stocks 

(Mg ha-1) 
Natural forest 120 254 
Secondary forest 60 176 
Rubber agroforest 40 116 
Rubber monoculture 25 97 
Oil palm plantation 20 91 
Rotation crop (upland rice) 7 74 
Rotation crop (yam) 3 36 
Source: Tomich et al. 1998 

 

5.2 Methodology 

5.2.1 Calculation of bio-physical landscape variables 

Wetness index, soil properties and other terrain parameters are among the widely used 

bio-physical variables for explaining the causal relationships between topography and 

landscape patterns of soil and water. The following are the bio-physical variables 

available for the study site: 

 

Wetness index and proximities to roads and town 

The topographic wetness index (p_wetness) used in the selected land-use choice model (see 

Chapter 3) is a compound terrain index applied for delineating the spatial pattern of soil 

moisture content. It has been used extensively to approximately delineate the spatial 

pattern of soil moisture content, which is important for agricultural production (Le 

2005). The index was calculated from a digital elevation model (DEM) using the grid-

based algorithm developed by Zevenbergen and Thorne (1987). 

For spatial accessibility analyses two variables, namely distance to road 

(p_droad) and distance to town center (p_dtown) are used for accessibility purposes in the 

land-use choice model (see Chapter 3). A study conducted by Miyamoto (2006) shows 
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that roads in the study area are an important factor for forest clearing or land-use 

change. These variables were calculated based on the road and town networks digitized 

from a base map of 1:50000 developed by ICRAF. The computational method for 

LUDAS models is described by Le (2005). 

 

Neighborhood interactions (enrichment factor) 

Neighborhood characterization of land-use patterns (p_f2, p_f45, p_f6, and p_f8) is a new 

way to unravel the processes of land-use change allocation (Verburg et al. 2004).  In the 

context of cellular automata, the neighborhood terminology is called Neumann 

neighborhood, in which neighborhood cells are those that can influence the state of a 

particular focal cell.  The neighborhood of a location in a land-use map is measured by 

the enrichment factor. This measure is defined by the occurrence of a land-use type in 

the neighborhood of a location relative to the occurrence of this land-use type, and is 

expressed as: 
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where Fi,k,d characterizes the enrichment of neighborhood d of location i with land-use 
type k. The shape of the neighborhood and the distance of the neighborhood 
from the central grid-cell i is identified by d (see Verburg et al. 2004, p.671).  

 

Verburg et al. (2004) suggest that the enrichment factor can assist the modeler 

in formulating the transition rules for cellular automata. Though it is commonly applied 

in modeling urban development, the neighborhood characteristics of land-use patterns 

was applied in this study by integrating in the land-use choice model as an independent 

variable (see Chapter 3). To the author’s knowledge, this has not been applied before. 

The enrichment factor of the neighboring patch is calculated using ArcVIEW software 

(Figure 5.6). 

 

Land-cover data and change detection 

The land-cover map of 2005 for the study site was prepared using the Jambi province 

land-cover map of 2005 generated from Landsat ETM images and processed by ICRAF 

under the Landscape Mosaic Project. The boundary of the study site (i.e., basin 
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boundaries were used since administrative boundaries of the villages were not available) 

was determined using DEM images as a basis. The map was processed using the spatial 

analyst extension of ArcGIS. Land-cover change assessment was also done using the 

land-cover map of 1993. The 2005 map was overlaid on the 1993 map resulting in a 

land-cover transition matrix (see Appendix 1 for detailed methodology). This was used 

to generate the net-carbon release, and sequestration (see Section 5.3.6).   

 

5.2.2 Modeling species richness 

Species-area relationship (SAR) 

Species richness is a natural measure of biodiversity, and the species-area relationship 

(SAR) is one of the most important and oldest tools available in the study of species 

diversity, conservation biology, and landscape ecology (Tjorve 2003). The SAR is a 

well-proven pattern in ecology (Schoener 1976; Lawton 1999; Lomolino 2000) and 

provides a classic example of scale dependence, i.e., species richness depends on the 

size of the area sampled (Cumming 2011). It has been also used to estimate how fast the 

biodiversity is lost in a region as caused by habitat changes (Perreira and Daily 2006). 

Arrhenius (1921) set the basic equation of SAR and made popular by Preston 

(1960) as power function, which is formally expressed as: 

 
zkAS              (5.2) 

where  S is number of species, A is the area of the sample, k and z are fitted 
coefficients.  
The log form (to the base 10) is expressed as:  
 

AzkS logloglog       (5.3) 
 

Desmet and Cowling (2004) applied the power function to set baseline targets 

for conservation. Their study demonstrated how the z-value (as the exponent) of the 

power function model estimates the proportion of an area necessary to represent the 

given proportion of species present in any land class. The SAR has been applied to 

estimate how many species might be threatened with extinction following habitat 

destruction (Wilson 1983; Simberloff 1984; Wilson 1992). Tilman and Lehman (1997) 
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further developed the equation using the power function to determine the proportion of 

original species that survived after destruction, which is formally expressed as: 

 

Z

v

D D
S
S 1       (5.4) 

Z
vD ADkS 1          (5.5) 

where  SD is number of species remaining after habitat destruction, Sv is number of 
species in the area of virgin habitat, D is the proportion of area destroyed, and 
Av is the area of virgin habitat. These equations were later applied in Chapter 7.   
 

Modeling approach 

Empirical model selection 

There are various SAR models available and their advantages are reviewed by Tjorve 

(2003). Among these models, the two oldest are most frequently applied namely, the 

power function (see Eq. 5.2, Arrhenius 1921; Preston 1962) and the logarithmic 

function (see Eq. 5.3, Gleason 1922; Tjorve 2003). However, the best fit is most often 

reported for the power function (Williamson 1988; Drakare et al. 2006; Dengler and 

Boch 2008). 

Dengler (2009) conducted a more comprehensive review of 21 SAR models to 

assess the goodness-of-fit metrics theoretically and empirically. Results suggest that the 

choice of model depends on the number of parameters and their goodness-of-fit, its 

stability, source of data sets (i.e., from islands, nested plots or homogenous areas) and 

its extrapolation capability. Accordingly, the normal power function (S as compared to 

log S) “performed very well for extrapolating richness data far beyond the largest plot 

throughout the wide range of vegetation types” (Dengler 2009, p.737). The same study 

rated the normal power function as best for the Akaike information criterion (AIC) and 

its correction for small sample bias. 
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Scaling from plot to landscape level  

The biodiversity sub-model of the FALLOW6 Model (van Noordwijk 2002b) scales the 

total species richness (Stotal) from plot level to landscape level. The sub-model follows 

the SAR model based on the power function (see Eq. 5.2 of Arrhenius, 1921). For this 

study, the sub-model was modified for the LB-LUDAS model for extrapolation. The 

following are the main steps of the sub-model (also part of calibration): 

 

1. Plot-level species richness (Sobs) 

First, the sub-model assumes that species richness of a plot is a function of the time 

since the last field-clearing event or major disturbance (i.e., slash and burn) (Figure 5.2).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2  Plot-level richness after major disturbance (i.e., clearing). 

 

Gillison’s (1999) data on higher plant richness for a range of land-cover types 

were indeed found to relate to time since disturbance in a similar way (van Noordwijk, 

2002b). There is a growing literature on space (area) and time relationship to support 

this assumption (Rosenzweig 1995; Hadley and Maurer 2001; Adler and Lauenroth 

2003; White 2004; Adler et al. 2005). For this study, time refers to the event after 

logging or major land clearing.   

 

                                                 
6  Forest, Agroforest, Low-value Lands Or Waste  
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2. Vegetation (age) classes 

The vegetation was classified into age classes, e.g., pioneer (0-5 years), young 

secondary (5-20 years), late secondary (20-50 years), and forest (>50 years). For each 

class, an allometric relation between class-level richness and the number of fields was 

derived as driven by the parameters z. Simple species estimators (Sobs) at each plot-level 

are calculated using EstimateS software version 7.5 (Colwell 2009). This software 

computes expected species accumulation curves based on sample-based rarefaction 

curves (Gottelli and Colwell 2001) with 95% confidence intervals. The observed 

species number estimators of Mao Tau, Chao 1 (based on the number of rare species in 

the sample) and Jack 1 (based on the number of species that occur in only one sample) 

are used to derive species accumulation curves for each vegetation-age class (see 

Appendix 2 for equations of each estimator).  

Results from the plot data were fitted to species-area curve using the log form 

equation (Eq. 5.3). The k and z constants were estimated using regression analysis 

where the species richness (Sobs) at the plot level was the dependent variable, while the 

area (A) was the independent variable (Table 5.2). 

 

Table 5.2 Variables used for estimating species richness (biodiversity sub-model) 

Variable Definition Data source Direct linked 
module 

 
Species richness (dependent variable) 
Sobs Observed species number 

(using EstimateS) per each 
vegetation class 

Field survey from 
Rahayu (2009) 
(n=15 plots) 

PATCH 
LANDSCAPE 

 
Area (independent variable) 
A Area (m2) of the sampled 

plots 
Field survey from 
Rahayu (2009) 
(n=15 plots) 

PATCH 
LANDSCAPE 

 

3. Species richness at landscape level 

The species richness in each land-cover type (Si) can be expressed as: 

 

 AzkS i logloglog                                                   (5.6) 
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while the total landscape level richness (ST) is finally derived by summation over the 

various vegetation classes while deducting the species number due to overlap of two 

vegetation classes. This is expressed as (van Noordwijk 2002b): 

 

t j jijtT SpSS           (5.7) 

where  ST is total species richness at landscape level, pij Sj is probability of species 
overlap in species composition between two vegetation types, and Si is species 
richness of land-cover type.  

 

However, only one land-cover type (rubber agroforest) was considered for the 

study due to the limited number of samples of other land-cover types. 

In the biodiversity sub-module of the FALLOW model, the probability of 

occurrence of various vegetation classes in an open plot is a function of the ecological 

distance or forest neighborhood effect. In LB-LUDAS, the concept is addressed in the 

NaturalTransition sub-model (see section 5.3.5). 

 

Decision rules 

For LUDAS model, only the species richness in the rubber agroforests was estimated. 

The plot age (or time of major disturbance) was the determining factor for selecting the 

calibrated power model equation (see above for scaling process), which is translated as 

the decision rule of the LUDAS biodiversity sub-model (i.e., Calculate-species-

richness). For example, if a rice field or a rubber monoculture plot is abandoned, the 

vegetation class (e.g., pioneer, young or late secondary) is determined by the plot age 

and the ecological distance from the forest that is covered in the NaturalTransition sub-

model (see section 5.3.5). 

 

Data source 

The data of vegetation (i.e., higher vascular plants) survey conducted by Rahayu (2009) 

in Lubuk Beringin were used in this study. The data represented samples of land-cover 

types e.g., rubber agroforests, monoculture rubber, shrub and forest. Because the data 

were sampled according to the estimated age of the plots, grouping according to each 

vegetation-age class was made possible. Five sample plots with plot dimensions of 40m 
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x 5m were used for the vegetation-age class of 5 – 20 years. For the vegetation-age class 

of 20-50 years and >50 years, each class has 5 sample plots measured 200 m x 50 m.   

 

5.2.3 Modeling crop yields 

This study follows the simple production function of Cobb-Douglas approach (Cobb 

and Douglas 1928) in which the yields are explained by predictors of labor and capital 

employed by the farmer agents. This function is widely used to represent the 

relationship of an output to inputs and is formally expressed as follows: 

 

                           KbLKLP ),(                                       (5.8) 

where  P is total production (monetary value of all goods produced in a year) 
 L is labor input (total number of man-days employed in a year) 
 K is capital input (e.g., agrochemical, seedlings, etc.) 
 b is total factor productivity 

a and   are output elasticities of labor and capital, respectively; they are 
constant values as determined by the available technology.  

 

The output elasticity measures the responsiveness of output to a change in 

levels of either labor or capital used in production, all other things being equal (Tan 

2008). For instance, if a = 0.15, a 1% increase in labor would lead to an increase in 

output of approximately 0.15%.  

Table 5.3 and 5.4 list the variables (i.e., natural and management predictors) of 

the production functions for rice and rubber agroforest. From these variables, 

production yield equations are expressed as: 

 
P_yieldrice  =ƒ(I_rain, P_wetness, I_RICEsize, I_ricelab , I_fert )           (5.9) 

 

P_yieldRAF =ƒ(P_areaRUB, P_wetness, I_rublab, I_tree, I_seedling , T_age)          (5.10) 
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Table 5.3  Variables used for the agronomic-yield dynamics sub-model (rice) 

Variable Definition Data source 
Direct linked 

module 
Yield response (dependent variable) 

P_yieldrice Yield of upland rice plot 
(kg ha-1 year-1) 

Field survey 
(n=34 plots) 

PATCH 
LANDSCAPE 

Natural predictor (independent variable) 
I_rain Amount of rainfall during 

the whole planting season 
(mm) 

2006 Rainfall data 
(2007 Bungo 
Statistics)  

PATCH 
LANDSCAPE 

P_wetness Plot wetness index GIS-based 
calculation 

PATCH 
LANDSCAPE 

I_RICEsize Rice plot area (m2) Field survey 
 

PATCH 
LANDSCAPE 

Management predictor 
I_ricelab Man-days employed for the 

rice production activities 
(day ha-1 year-1) 

Field survey 
 

PATCH 
LANDSCAPE 

I_fert Fertilizer input (i.e., NPK, 
urea, etc.) (g ha-1 year-1) 

Field survey 
 

PATCH 
LANDSCAPE 

 

Table 5.4  Variables used for the agronomic-yield dynamics sub-model (rubber 
agroforest) 

Variable Definition Data source 
Direct linked 

module 
Yield response (dependent variable) 

P_yieldRAF Latex yield from rubber 
agroforest plot (kg ha-1 
year-1) 

Field survey 
(n=51 plots) 

PATCH 
LANDSCAPE 

Natural predictor (independent variable) 
P_wetness Plot wetness index GIS-based 

calculation 
PATCH 
LANDSCAPE 

P_areaRUB Rubber farm plot area (m2) Field survey 
 

PATCH 
LANDSCAPE 

Management predictor 
I_rublab Man-days employed for the 

rubber latex production 
(day ha-1 year-1) 

Field survey 
 

PATCH 
LANDSCAPE 

I_tree Number of rubber trees per 
plot (ha-1) 

Field survey 
 

PATCH 
LANDSCAPE 

I_seedling Number of rubber seedling 
per plot (ha-1) 

Field survey 
 

PATCH 
LANDSCAPE 

Temporal factor 
T_age Rubber tree age Field survey 

 
PATCH 
LANDSCAPE 
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Data sources 

The crop production yield data were collected together with the socio-economic survey 

between December 2009 and March 2010 (see Chapter 3). A total of 35 respondents 

provided data on agricultural inputs (e.g., NPK and urea fertilizer, labor needed, etc.) 

for rice production while 51 respondents shared data (e.g., number of trees planted, age 

of trees, labor needed, etc.) on rubber latex production. Secondary yield data (i.e., oil 

palm and rubber monoculture) were also provided by ICRAF. Topographical data, e.g., 

wetness index, were calculated from the DEM (see section 5.3.1).  

 

5.2.4 Modeling forest-yield dynamics 

Forest growth model 

Le (2005) developed a forest-yield dynamics model using the basal area of forest stands 

specific for LUDAS that is described in this section. The forest yield response function 

is formulated based on the basic concepts of forest growth and succession and on the 

principles of biological system and theory, which is formally expressed as: 

 

                   removalsG
t

Gr
t

Gr
t GZPP 11    (5.11) 

where  Gr
t P  is the sum of basal area (Gi) at time t, t-1PGr   is the previous residual 
stock,  
t-1ZG is the instant growth rate; and Gremovals is the harvested basal area that 
includes the logging damage and logging-driven mortality. 
 

According to Vanclay (1994), ZG expresses the theoretical basal area growth 

of a forest stand as a whole and can be calculated as: 

 

)()( GGG PbPaZ      (5.12) 

where  PG is stand basal area,  and b are the constants, and  is a coefficient of very   
small value (   0). 

 

To determine the parameters  and b of Eq. 5.12, the following is assumed: 

1. The stand growth rate ZG is asymptotically zero in the equilibrium state (eqPG). 

2. The derivative of the growth function ZG is zero when it reaches the maximum 

(maxZG). 
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3. eqPG is constant over space since there is no evidence to correlate this parameter 

with location variables. 

Accordingly, the eqPG and maxZG are settable either by forestry experts or 

review of literature on tropical forests (Havel 1980; Leigh 1999; Vanclay 1994). 

Assuming that the parameters , eqPG and maxZG are known, the following equations will 

determine the parameters  and b: 
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where maxZG is the value that can be approximated from the projected outputs of 
empirical growth models, eqPG is the upper confidence limit of the mean basal 
area of the surveyed dense/rich natural forest plots, and  is fixed by setting a 
very small value (i.e.,  = 10-6). 

 

The removed basal area (Gremovals) as mentioned above includes harvested 

amount (Glogged), logging area (Gdamage) and logging-driven mortality (Gmortality) which 

can be calculated as (Alder 2000): 

 

Gremovals = Glogged + Gdamage + Gmortality /T     (5.15) 

where Glogged is the basal area logged by human agents, Gdamage  is the standing 
basal area damaged immediately by logging operation, and Gmortality  is the 
basal area lost through tree mortality occurring over some years (T) after the 
logging event. 

 

Alder and Silva (2000) empirically approximated Gdamage and Gmortality based on 

the logging impact model developed for the Amazons and converted by Le (2005) using 

the mean basal area of logged trees (glogged) which are expressed as follows: 

 

Gdamage   = t-1PGr (0.0052Glogged / glogged + 0.0536)  (R2 = 0.8987)  (5.16) 

Gmortality = t-1PGr (0.0058 Glogged / glogged + 0.0412) (R2 = 0.9044)  (5.17) 

 

The parameters and variables of the ForestYieldDynamics sub-model are 

presented in Table 5.5. 
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Table 5.5  Summary of parameters and variables of ForestYieldDynamics sub-
model 

Parameter 
and variable 

 
Definition 

 
Source 

Direct link 
module 

Parameter    
EqPGr Stand basal area at the 

equilibrium state  (m2 ha-1) 
(a) Natural forest: 44.8  
(b) Rubber agroforest: 27.0 

Le (2005); Alder 
(1998, 1996a, 
1996b); + the 
descriptive statistics 
of the plot 
 

Patch-landscape 

MaxZg
 Potential maximum growth 

rate of stand basal area  
(m2ha-1) 

(a) Natural forest: 0.61 
(b) Rubber agroforest: 0.92 

 
 
Yarwudhi  et al 
(1997) 
Approximated from 
Schroth et al. (2004) 
 

Patch-landscape 

Glogged
 No logging is done in natural 

forest under village forest 
policy 
Average basal area of logged 
trees in rubber agroforest and 
rubber monoculture plantation  
(m2 ha), range: 0.511 – 0.621 
(m2 ha) 
 

Akiefnawati (2010) 
 
 
Approximated based 
on the interviews 
with key informants 

Experimental 
factor module 

T Post logging period with 
severe mortality due to logging 
operation (yr). 
 

 Patch-landscape 

Variable    
2009PG Forest basal area calculated 

based on 2009 biodiversity 
survey as initial forest yield 

Spatially random-
bounded 
extrapolation (Le 
2005) of plot data 
2009 
 

Patch-landscape 
(as initial forest 
condition) 

Glogged
 Basal area logged by 

households (m2) 
Defined by human 
agents in simulation 
runs 
 

Decision 
module  
(logging action) 

Pt Years after logged (temporary 
variable) 

Elapsed year since 
logging (initiated by 
human agent 
simulation runs) 

Decision 
module  (fallow 
action) 
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Data sources  

The plot-based vegetation inventories by Rahayu (2009) and Rasnovi (2006) were used 

in this study. The data include species name, species individual number, and DBH 

(diameter breast height measured at 1.3 m height). A total of 32 plots ranging from 20m 

x 100m to 40m x 5m were available for the main land-use covers of Jambi province. 

The basal area was calculated using the formula:  

 

 Basal area (m2 ha-1) = 0.00007854 x DBH2    (5.18) 

Only trees with DBH  10cm were considered.     

 

5.2.5 Modeling natural transition (succession) 

Transition or conversion from one land use or cover to another can be in two forms: 1) 

through a natural process (transition Nx) with no human intervention, or 2) through 

human activities (transition H) resulting from farming practice or land-use decisions. 

The conversion of one land-cover type to another in the study site is depicted in Figure 

5.3.  

The NaturalTransition sub-model is a set of transition rules that governs the 

natural transitions among vegetative covers (Le 2005; Le et al. 2008). It follows the 

ecological principles of natural succession process, which is more or less predictable 

and is characterized by orderly changes in composition or structure of an ecological 

community, e.g., pioneer  intermediate  climax. Its rules are based on the 

evaluation of four patch variables, namely 1) previous cover type (t-1Pcover), 2) life span 

of existing cover type (P_t ), 3) existing basal area (PGr), and 4) distance to nearest forest 

(Pd-forest). 

Two natural transitions are depicted in Figure 5.3 and the following are the 

transition rules for the modeling: 
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Forest 
(Pcover =10)

Rubber 
Agroforest

(Pcover =20)

Logged-over
(Pcover =70)

Oil palm
(Pcover =50)

Paddy rice
(Pcover =60)

Mono
culture rubber
(Pcover =40)

Roads
(Pcover =30)

River
(Pcover =90)

Fixed
cover

H

N 1

H

Natural conversion (run by Natural 
transition routine)

H

H

H

H H

H

H

Human-induced conversion (run 
by Decision module)

Nx H

H

N2

N 2

 

Figure 5.3  Schematic diagram of land-cover transitions in LB-LUDAS model 
showing a combination of human-induced and natural transition 

 

1) N1 transition rule: from one non-forest to another non-forest cover type 

The specific example depicted in Figure 5.3 is the transition from rubber monoculture to 

rubber agroforest. In reality, this kind of transition only happens when a farmer 

abandons his rubber plot due to factors such as lack of labor force, weed competition, 

and/or lack of financial capital (Gouyon 1993; Joshi et al. 2003). The same applies to 

the transition from rubber agroforest to secondary forest. The transition rule for this 

type is based on the following conditions: 

1. Patch belongs to the non-forested category,  

2. Life-span of the existing cover type, 

3. Present stand basal area (PGr) against the thresholds for each land-cover type, and 

4. No human disturbance (e.g., burning, harvesting, etc.) for a long period of time. 

Thus, the logical expression for the rule N1 is expressed as: 

RubMNtbGr
t
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t

AFtbGr
t

er
t

er
t

PandPif

PandPif
P

40,2040

40,2020

cov
1

cov
1

cov

   (5.19) 

where  20 and 40 are the cover codes for rubber agroforest and rubber monoculture, 
respectively; tb-AF is the threshold of stand basal area for rubber agroforest (AF),  
and tb-RubMN  is the threshold of stand basal area for rubber monoculture 
(RubMN). 
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2) N2 transition rules: from non-forest to forest cover type 

The transition from a logged-over area to forest is a common natural transition (Figure 

5.3). However, patches at forest edges or in forest gaps have a better chance to convert 

to secondary forest. Patches far from natural forests have less or no capacity to 

regenerate because they lack a source of seeds or are prone to soil degradation (Le 2005, 

Le et al. 2008). Transition rules are defined based on the same conditions as in N1 (see 

above) plus the effect of the distance from the natural forest. 

Thus, if a patch has a logged-over cover status (relatively similar to the shrub 

class in the study site), the life-span of the existing land cover would be too long to 

reach the threshold, but if the patch is located next to a natural forest, the cover state of 

the patch will change to secondary forest7 otherwise it remains a logged-over area. The 

expression of the N2 rule is as follows: 
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        (5.20) 

where  10 and 70 are land-cover codes of forest and logged-over patch, respectively, t-

forest  is the threshold of the life-span of the forest, and d-forest  is the threshold 
distance from the patch to the nearest natural forest, which is used for 
determining if the logged-area patch can change to (secondary) forest. 

 

Whereas, 
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10

        (5.21) 

where 10 and 20 are land-cover codes of forest and rubber-agroforest, respectively, 
 t-forest  is the threshold of the life-span of the forest, and tb-forest  is the threshold 
of stand basal area for forest. 

 

All threshold values in the transition rules in equations 5.19, 5.20, and 5.21 

were calibrated based on the field inventory data from Rahayu (2009) and Saida (2006) 

(see Table 5.14).  

 

                                                 
7  The forest in this context mostly refers to a secondary forest type. Gouyon (1993) studied the 

structure of rubber agroforest (i.e., the jungle rubber in Jambi province) and found that its structure is 
similar to that of old secondary forest. 
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5.2.6 Carbon stocks and emissions 

Landscape carbon-stock estimation 

There are several models for estimating carbon stocks from the land-use changes. These 

include normalized difference vegetation index or NDVI-derived carbon stocks and 

land-cover-derived carbon stocks. The first model uses the relationship between the 

pixel level carbon stock and pixel-level NDVI as a basis for extrapolation. The latter 

uses the land-cover information (e.g., from land-cover change matrix) and multiplies the 

area by class with the typical aboveground C-stock density. Widayati et al. (2005) 

applied and compared the two methods in East Kalimantan, Indonesia. They found 

NDVI-derived estimations frequently underrated due to the low correlation between 

NDVI and measured carbon density in tropical forests. Accordingly, the non-linear 

aspect of the NDVI C-stock regression line leads to a bias in the C-stock results. For 

land-cover-derived carbon stocks, ground-truth checks of the land-cover maps are 

needed for accuracy. The study suggested that verification of carbon density results 

could be done using independent C-stock measurements.   

In this study, the land-cover-derived C-stocks method is applied by assigning 

the time-averaged C-stocks (Table 5.1) and is estimated in the LB-LUDAS model. 

 

Landscape carbon emissions 

To calculate annual Carbon emissions from changes in land use, the book-keeping 

model approach of Houghton et al. (1983) is widely applied (Houghton and Hackler 

1999; Achard et al. 2004; Gitz 2004; Ramankutty 2007; Gasparri et al. 2008). In the 

model, the annual per hectare changes in vegetation and soil following a land-use 

change are defined for different ecosystems and land uses. The model accounts for 

forest clearing and regrowth by tracking plant materials burnt at the time of clearing, 

carbon from slash decay, carbon accumulation from regrowth, and changes in soil 

carbon (Achard et al. 2004; Houghton and Hackler 1999). It has been used to estimate 

the net carbon fluxes in the study of land cover in the tropics, where soil carbon, decay 

from slash, and regrowths were accounted for (Achard et al. 2004). Houghton et al. 

(2000) also applied the model without accounting for the soil carbon in the region of 

Brazilian Amazon and Guyanas.   
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For this study and due to lack of information about the decay and soil carbon 

changes available at the study site, a very simple modeling approach was applied. 

Accounted for in the model are the changes in land cover derived from the overlay of 

1993 and 2005 land-cover maps and the time-average carbon stocks (Table 5.1) 

assigned for each land class. 

 

5.3 Results 

5.3.1 Landscape characterization 

Land-cover classification 

From the 2005 land-cover map, eight major land-cover types were classified (Figure 

5.4): forest, rubber agroforest, rubber monoculture, rice field, oil palm plantation, 

shrubland, settlement areas, and water body (Table 5.6 and 5.7). Forest remained the 

largest land-cover type with a 48% total cover. 

It should be noted that the rubber monoculture in this classification is 

considered to have a 70% rubber tree cover. The rubber monoculture farms in the study 

site are less intensively managed compared to large scale rubber plantations and 

therefore includes a significant portion of non-rubber species (30%).  

 

Table 5.6  Land-cover area in 2005 
 

 

 

 

 

Land cover 
2005 

1%

3%
2%2%

7%

14%

23%
48%

Forest

Rubber agroforest

Monoculture rubber

Oil Palm

Rice field

Shrubland

Settlement

Water bodies
 

ha % 

Forest 7,653 48
Rubber agroforest 2,265 14
Rubber monoculture 3,619 23
Oil palm 437 3
Rice field 237 2
Shrubland 260 2
Settlement 1,104 7
Water body 161 1
Total 15736 100
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 Table 5.7  Land-cover types 

 

Table 5.8  Land-use change matrix for the period 1993-2005 (ha) 

 
Forest Rubber 

agroforest 
Rubber 
monoculture 

Oil 
palm 

Rice 
field 

Shrubland Settlement Total 
1993 

Forest 7653 102 324 69 28 193 80 8450
Rubber 
agroforest 

0 1527 1205 177 120 41 344 3414

Rubber 
monoculture 

0 627 2070 79 79 23 329 3318

Oil palm 0 0 0 0 0 0 0 0
Rice field 0 3 1 0 5 0 0 0
Shrubland 0 0 0 0 0 0 17 26
Settlement 0 0 0 0 0 0 309 309
Total 2005 7653 2265 3618 437 237 260 1104 15736

Note:  Column on far right is total area for each land-cover type in1993 and the bottom row of the table 
in 2005.  

                 number of persistent land-use type in hectares between 2005 and 1993 

Land-cover type Description 

Forest Characterized by more or less dense and extensive tree cover 
usually consisting of stands varying in characteristics such as 
species, structure, composition and age class, which may be 
exploited (partly logged). Excludes industrial tree plantations. 
Most areas are located in the highlands (>500 m.a.s.l), and only 
small patches in the lowland peneplains (as of 2002). 

Rubber 
agroforest 

Marked by the presence of rubber trees in fairly large numbers 
mixed with other tree species, forming a stand structure similar to 
forest. Also called ‘jungle rubber’ because of the presence of wild 
woody species that help to protect the rubber trees from weeds 
(Gouyon et al. 1993). 

Rubber 
monoculture 

Also called rubber plantation; characterized by single species of 
rubber trees covering most of the area, usually managed 
intensively. In some areas, plantations may also represent 
smallholdings, less intensively managed, rubber plantations mixed 
with non-tree species such as shrubs. 

Oil palm Characterized by oil palm as a single dominant species usually 
managed intensively. 

Rice field Covered with irrigated or non-irrigated (upland) rice field. 

Shrubland Woody herbs, grasses and non-woody herbs. Usually newly 
opened area, and is the first phase of land conversion into rubber or 
oil palm plantations. 

Settlement Residential areas including main roads and villages. 

Water body Area covered by water. 
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 Figure 5.4  Land-cover map of 2005. Map coordinate system: Geographic projection 

(Long/Lat), Datum: WGS 1984 (Source: ICRAF) 
  

The land-cover changes between 1993 and 2005 are summarized in Table 5.8. 

The loss8 in forest cover dropped to 5% of the landscape, while rubber agroforest 

experienced the highest loss of 12.5% (see Appendix 1 for detailed analysis) 

 

 
                                                 

8  Loss of specific land-cover type is calculated by the total land-cover type of 1993 minus the total 
land-cover type of 2005 over the total area of the whole landscape. Gain of specific land-cover type 
is calculated based on the total land-cover type of 2005 minus the total land cover type of 1993 over 
the total area of the whole landscape. 

 

Legend
Forest

Rubber agroforest

Rubber monoculture

Oil palm

Rice field

Shrubland

Settlement

Water body
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Topographical characterization 

Topographic wetness index 

The wetness index (P_wetness) was calculated using the DEM of the study area (Figure 

5.5). It describes the water accumulation in the soil through the combination effect of 

topographic slope and aspect. The higher P_wetness value reflects the higher degree of 

water saturation. The highest P_wetness recorded was 9.0 and the lowest was -15.0. It was 

observed that most of the rice paddies are located within areas with higher P_wetness 

values whereas rubber farms are mostly located in the areas with lower values.   

 

 

Figure 5.5  Raster image of wetness index at the study site. Map coordinate system: 
Geographic projection (Long/Lat), Datum: WGS 1984. 

 

Spatial accessibility 

The patterns of accessibility to roads and town center were relatively similar (Figure 

5.6). Access to the nearest town and good roads to get there are important for the 

households’ crop production. Distance to roads (P_droad) and town center (P_dtown) are 

significant variables affecting the land-use choice model, particularly for rice farmers 

(see Chapter 3). 
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      (a)           (b)  

Figure 5.6  Raster images of a) proximate distance to roads (m), and b) proximate 
distance to the nearest town (m). Map coordinate system: Geographic 
projection (Long/Lat), Datum: WGS 1984. 

 

Neighborhood interaction 

The enrichment factors of land-use pattern (P_F2, P_F45, P_F6 & P_F8) are significant 

variables that influence the decision making of household agents. These variables are 

plugged in the land-use choice model (see section 3.3.2). Transition rules are developed 

based on the calculated states of the cell or patch (Figure 5.7). These variables could 

affect the transition rules, which consider whether to continue or discontinue the 

farming practices and/or open new land. In this way, the process of land-use change 

allocation through household-agent decision making can be explained. The enrichment 

factors of four land-use types, namely rubber agroforest (P_F2), upland/rice paddy 

(P_F6), settlement (P_F8) and other land uses (P_F8) may affect the decision making of 

household agents (Figure 5.7). Upland rice has the highest enrichment factor but is 

concentrated in small patches (Figure 5.7b) while the lowest is for other land uses and is 

widespread around the study area (Figure 5.7d).  
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Figure 5.7  Raster images of enrichment factor of rubber agroforest (P_F2) (a), rice 
paddy/upland rice (P_F6) (b), settlement (P_F8) (c) and other land uses 
(P_F45) (d). Map coordinate system: Geographic projection (Long/Lat), 
Datum: WGS 1984. 

 

5.3.2 Sub-model: species richness 

Plot-level species richness 

The results of the plot-level species richness analysis according to vegetation-age class 

were calculated using EstimateS  (Colwell 2009) (Table 5.9). Data for higher plant 

a) 
b) 

c) d) 

0 – 546 
546 – 1966 
1966 – 4097 
4097 – 7374 
7374 – 13875

0 - 158 
158 -  474 
474 – 818 
818 – 1210 
1210 – 1754

0 – 239 
239 – 815 
815 – 1532 
1532 – 2376 
2376 – 3571 

0 – 112 
112 – 320 
320 – 528 
528 – 748 
748 – 980
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species (DBH  10 cm) representing the pioneer species aged 0-5 years were not 

available. Thus, species richness for these species is assumed to be zero. For young 

secondary vegetation, the number of species recorded was 16 in the minimum plot area 

(200 m2) and 79 in the maximum plot area (1000 m2). For late secondary and forest 

species, the number of species recorded ranges between 23 and 33 in the smallest plot 

(2000 m2) and, and between 115 and 166 in the largest plot (10,000 m2). The number of 

species increases steadily with increasing area, and only curves using the Chao 1 

richness estimator reached the asymptote level within the plot size ranges suggesting 

that the sampling effort is low (Table 5.9). 

 

Table 5.9  Descriptive statistics of species richness at plot level based on EstimateS, 
2009 in Lubuk Beringin, Jambi Province 

Vegetation 
class by 

age 

Sample 
plot 

Plot 
size 
(m2) 

Computed  
N (No. of 

individuals) 

Sobs  
(Mao 
Tao) 
Mean 

Sobs  
(Mao 
Tao) 
SD  
( ) 

Chao 1 
Mean 

Chao 1 
SD  
( ) 

Jack 1 
Mean 

Jack 1  
SD  
( ) 

Pioneer  
(0-5 years) 

- - - - - - - - - 

Young 
secondary 
(5-20 years) 

1 200 15.80 8.44 1.31 15.55 6.85 8.04 0 
2 400 31.60 13.40 1.60 22.77 8.73 17.73 0.57 
3 600 47.40 16.54 1.74 32.42 13.36 23.80 1.63 
4 800 63.20 19.38 1.83 33.13 11.47 27.05 2.11 
5 1000 79.00 21.00 1.94 28.20 6.44 28.02 2.93 

Late 
secondary 
(20-50 
years) 

1 2000 23.04 8.66 1.43 25.28 12.10 8.44 0 
2 4000 46.09 15.72 2.08 32.93 13.17 20.28 2.44 
3 6000 69.14 20.16 2.58 37.95 13.83 26.09 5.57 
4 8000 92.19 23.86 2.96 36.44 10.98 29.91 5.92 
5 10000 115.24 26.26 3.28 33.40 6.91 33.29 6.70 

Forest 
(>50years) 

1 2000 33.20 16.54 1.74 41.31 17.44 18.10 0 
2 4000 66.40 30.92 2.72 58.75 16.71 45.71 4.17 
3 6000 99.60 40.32 3.39 70.91 16.44 63.20 7.08 
4 8000 132.80 49.90 3.90 77.75 14.79 75.45 7.77 
5 10000 166.00 57.00 4.37 80.4 11.90 85.00 6.57 

Note:  Sobs is the observed number of species expected in the pooled samples given by the empirical 
data (Colwell 2004).  

 

The species accumulation curves for each vegetation-age class were plotted 

based on three richness estimator models namely, Chao 1, Jack 1and Mao Tao (Figure 

5.8 and 5.9). From these estimator models, only the accumulation curve based on Chao 

1 shows the asymptotic curves in young and late secondary stages. Thus, the Chao 1 



Ecological dynamics in rubber agroforest landscape 
 

87 

 

richness estimator results were used for extrapolation. It should also be noted, especially 

in the taxon-rich species groups in the tropics, that observed richness rarely reaches an 

asymptote despite intensive sampling (Gotelli and Colwell 2001).  

 

Extrapolation of Sobs for land-use type  

The results of the correlation analysis (Table 5.9) were fitted to the power function 

formula S = kAz. The target is to calibrate the data to have a power function based on 

the patch area (900 m2) for the LB-LUDAS model. The result of correlation analysis is 

presented in Table 5.10 and the species area curve in Figure 5.10. 

 

Table 5.10  Correlation analysis of Sobs to determine the z and k coefficients in a log-
log form using Chao 1 estimator results. 

Vegetation class Slope (z-value)   
(log k) R2 

Young secondary 
(5-20 years) 

0.44 0.203 0.890 

Late secondary 
(20-50 years) 

0.20 0.767* 0.808 

Forest 
(>50years) 

0.42 0.222*** 0.980 

  Note:   ***, **, and * indicate significance at the 0.01, 0.05 and 0.1 level, respectively. 
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Figure 5.8  Species area curve (±SD) for late secondary stage of higher vascular 
plants (20-50 years) in the rubber agroforests 
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Figure 5.9  Species area curve (±SD) for forest (>50 years) 
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Figure 5.10  Species-area curves for three vegetation classes (by age) in Lubuk 

Beringin, Jambi, Sumatra, Indonesia. Data source: Rahayu (2009). 
 

The power model (where log k is converted to k = 10 ) for species richness for 

each vegetative age class is derived as follows: 

 

SE = 1.60A0.44                         (5.22) 

where  SE is the estimated species richness, and A is the area (m2), if the vegetation class 
age (or Pt) is 5 - 20 years. 
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SL = 5.84A0.202                 (5.23) 

where  SE is the estimated species richness, and A is the area (m2), if the vegetation class 
age (or Pt) is 20 - 50 years. 

 

SC = 1.66A0.426                (5.24) 

where  SE is the estimated species richness, and A is the area (m2), if the vegetation class 
age (or Pt) is >50 years. 

 

Diversity index 

The diversity indices9 of the plots were also calculated using EstimateS. The results 

show that the highest diversity index at plot level is found in the forest and ranges from 

2.23 to 3.47 (Table 5.11). The indices at late secondary stage (where rubber-agroforest 

plant species predominate) are relatively similar to that of rubber agroforest in Jambi 

province observed by Tata et al. (2008) which is 2.6 (± 1.5).  

 

Table 5.11   Index of species diversity using EstimateS (Colwell 2009) of Lubuk 
Beringin, Sumatra, Indonesia. Data source: Rahayu 2009. 

 
Vegetation-age 

class 

Plot 
no. 

Shannon 
diversity 

index 
(mean) 

Standard 
deviation 

Simpson 
diversity 

index 
(mean) 

Standard 
deviation 

(SD) 

Young secondary 
(5-20 yrs) 

1 1.86 0.15 - - 
2 2.24 0.12 9.93 3.35 
3 2.46 0.10 11.31 2.21 
4 2.53 0.06 11.39 1.23 
5 2.61 0 11.98 - 

Late secondary 
(20-50 yrs) 

1 1.76 0.63 6.14 3.49 
2 2.18 0.54 7.83 4.18 
3 2.37 0.43 8.35 3.70 
4 2.57 0.35 9.36 3.39 
5 2.57 0.28 8.97 3.59 

Forest 
(>50 years) 

1 2.23 0.21 17.74 4.17 
2 2.48 0.43 14.87 10.66 
3 3.00 0.37 18.68 10.82 
4 3.37 0.09 18.71 2.14 
5 3.47 0 20.13 0 

                                                 
9  Diversity indices of Shannon (using natural logarithms) and Simpson (using the reciprocal form) are 

the two widely used diversity indices that combine information on richness and relative abundance 
in different ways.  
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5.3.3 Sub-model: agronomic-yield dynamics 

Descriptive statistics of variables  

The descriptive statistics of variables used for the agronomic yield sub-model in rice 

and rubber agroforest in 2010 are summarized in Table 5.12. Yield from upland rice 

production is around 605 ± 574 kg ha-1yr-1. Rice is harvested only once a year during 

rainy season. Labor (124 man-days ha-1yr-1) and fertilizers (6500 g ha-1yr-1) are the main 

inputs. The upland rice system is more labor demanding compared to rubber latex 

production.  

 
Table 5.12  Descriptive statistics of variables for sub-model agronomic-yield 

dynamics of rice and rubber agroforest for 2010. 

Model 
Number 
of plots 

(n) 
Mean 

Standard 
deviation 

Confidence 
interval at 
95% level 

a) Paddy/upland  rice yield P_yieldrice  
    (kg ha-1year-1) 

33 605 574 199

     Labor I ricelab (man-day ha-1year-1) 33 124        72 25
     Agrochemical input I_fert  
     (g ha-1year-1) 

33 6501 14665 5106

     Rainfall P rain (mm) 33 1554 407 142
     Wetness index P wetness 33 -10.7 5.3 1.8
     Rice plot area P areaRICE (m2) 33 8560 4678 1628
b) Rubber agroforest (latex) yield 

P yieldrubber    (kg ha-1year-1) 
51 1090 1273 356

     Rubber plot area P areaRUB (m2) 51 41666 40726 11404
     Wetness index P wetness 51 -14.6 2.8 0.802
     Labor I rublab (man-day ha-1year-1) 51 106 23 6.534
     Tree age T age 51 15 8 2.490
     Number of rubber trees I tree (ha-1) 51 157 106 29.95
     Seedling planted per plot I_seedling  
     (ha-1year-1) 

51 3 4 1.621

 

For rubber latex production, the average latex yield is around 1090 ± 356 kg 

ha-1yr-1. The interviewed farmers reported that no agrochemical inputs were applied in 

the production system. However, the average yield was about 200 to 400 kg ha-1yr-1 

higher compared to yields in a study conducted by Joshi et al. (2006), but still lower 

than in the labor-intensive rubber monoculture (1200-1800 kg ha-1yr-1). The average 

size of rubber agroforest farm plots is 4 ha (40,000 m2) per household.   
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The yields from oil palm and rubber monoculture plantations were derived 

from the study conducted by ICRAF in 2009 (Figure 5.11). For oil palm, the (fruit) 

yield cycle is 25 years with peak yields in the years 11 to 18 of about 21 tons ha-1yr-1. 

For rubber monoculture plantations, the latex yield cycle is 29 yrs with peak yields in 

the years 8 to 17 of about 1800 kg ha-1yr-1. These yields were used to estimate the 

production per ha-1year-1 in the agronomic yield sub-model using the bounded-random 

rule. 
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Figure 5.11  Yields of oil palm and rubber from monoculture plantations (Source: 
ICRAF 2010). 

 

Modeling agronomic yield  

The results of the log-linear regression analyses for the agronomic yield model of 

upland rice and rubber agroforest are summarized in Table 5.13. 
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Table 5.13  Results of log-linear regressions for yields of rice and rubber agroforest 
for 2010.  

Agronomic yield model 

Unstandardized 
coefficient (yield 

elasticity) 
( ) 

Standard 
error of  

( ) 

Confidence 
interval of 

 at 95% 
level 

Ln of upland rice yield ln(P_y-rice )  
      n= 33; mean ln(P_y-rice ) = 6.0139 

         R2 = 0.34; mse = 1.008; p = 0.039 
     (constant) 

-5.464 6.889 13.778

     Ln of labor input ln(I ricelab) 1.063** 0.473 0.946
     Ln of agrochemical input ln(I fert) 0.093* 0.046 0.092
     Ln of rainfall ln(P rain) 0.551 0.601 1.202
     Wetness index (P wet) -0.031 0.035 0.070
     Ln of rice plot area ln(P areaRICE) 0.201 0.467 0.934
Ln of rubber agroforest yield  
     ln(P_y-rubber) n= 51; mean ln(P_y-

rubber)  = 6.3764; R2 = 0.471; mse 
= 0.921; p = 0.000 (constant)   

3.154 3.449 6.898

 Ln of rubber plot area 
ln(P areaRUB) -0.601** 0.193 0.386

Wetness index (P wetness) -0.074 0.052 0.104
 Ln of labor ln(I rublab) 1.426** 0.673 1.346
 Ln of tree age (T age) -0.196 0.313 0.626
 Ln of number of rubber trees 
ln(I tree) 

0.535** 0.190 0.380

 Ln of seedling planted per plot 
ln(I seedling) 

-0.465** 0.158 0.316
Note:   The symbols *, **, and *** indicate statistical significance at the confidence level of 90%, 95%, 

and 99%, respectively. The symbol s refers to standard error of the regression model estimate. 
The bootstrap resampling method of 10,000 was conducted for both models and gave same R2 

results. 

 

Upland rice yield estimation 

Labor (I_ricelab) and agronomic inputs (I_fert) are the significant explanatory variables in 

the rice yields. The yield elasticity or responsiveness to these variables indicates that an 

increase of 1% in labor and fertilizer input would increase the rice yield by 1% and 

0.1%, respectively. 

 

Rubber agroforest yield estimation 

The explanatory variables significantly affecting the rubber agroforest yield are rubber 

plot area (P_areaRUB), labor (I_rublab), number of mature rubber trees (I_rublab), and number 

seedlings planted per farm plot (I_seedling). In relation to responsiveness of labor and 
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capital inputs to the yield output, latex production from rubber agroforest is sensitive to 

labor input. A 1% increase in labor would lead to a 1.42% increase in output.    

 

5.3.4 Sub-model: forest-yield dynamics 

Basal area  

The descriptive statistics of the stand basal area for four studied land-cover types based 

on 2009 and 2006 data are presented in Table 5.14. The average mean stand basal area 

is 41 ± 3.8 m2 ha-1 for forest, 24 ± 8.9 m2 ha-1 for rubber agroforest, 21 ± 5.2 m2 ha-1 for  

logged-over forest, and 12 ± 3.3 m2 ha-1 for rubber monoculture. 

 

Table 5.14  Descriptive statistics of stand basal area for the four forest-like cover 
types in Jambi Province (Data source: Rahayu 2009; Rasnovi 2006)  

Land cover 
Number 
of plots 

surveyed 

Mean 
stand 
basal 
area 

(m2 ha-1) 

Standard 
deviation 

Confidence 
interval at 
95% level 
(m2 ha-1) 

Confidence interval at 
95% level 

 
Lower 
bound 

(m2 ha-1) 

Upper 
bound 

(m2 ha-1) 
Forest 5 41 ±7.76 3.88 37.1 44.8
Rubber 
agroforest a 

17 24 ±8.91 2.16 22.6 27.0

Logged-over 
forest b 

5 21 ±5.28 2.36 18.9 23.6

Rubber 
monoculture c 

5 12 ±3.73 2.15 10.6 14.9

Note: Only trees with  10cm DBH were considered and measured at 1.3m height. 
a  Age of the rubber agroforest ranges from 30-60 years. 
b   Age of the logged-over forest is 25 years. 
c  Age of monoculture is 13 years. 

 

Based on this descriptive analysis (Table 5.14), the stand basal area of the 

study site was applied in LB-LUDAS model as a stand-alone sub-model using the 

bounded-random equation. 

 The average stand basal area was compared to that generated by Le (2005). 

The basal area in lowland forest of Jambi is higher. However, the result of the land-

cover change analysis (see Appendix 1) shows that logging is mainly done in rubber 

agroforest monoculture rubber, especially if the trees are already matured. Based on 

local interviews, households meet their wood demand by cutting the old or matured 
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rubber trees and at the same time planting new trees. Old matured rubber trees are cut 

when they are between 30 and 40 years old.  

 

5.3.5 Natural transition sub-model: calibration for transition rules 

The threshold values of stand basal area of rubber agroforest ( tb-AF) and rubber 

monoculture ( tb-RubMN ) for the transition rule N1 are generated from the stand basal 

area (Table 5.14), and are as follows: 

 

tb-AF =  (24 + CI95%) = 27 m2 ha-1           (5.25) 

tb-RubMN =  (12 + CI95%) =  15 m2 ha-1   (5.26) 

 

For the N2 transition rule, the rules were consistent with a study conducted by 

Gouyon (1993) in Jambi province, which documented the farming practice, e.g., ladang 

(fallow). Accordingly, due to labor needs and decreasing yields as a result of weed 

competition, farmers abandon the area after one to two years of cultivation, and after a 

fallow period of at least 15 to 20 years the area is similar to an agroforest. This analysis 

is similar to the vegetation-age class suggested in the FALLOW model (van Noordwijk 

2002b). Here, it is assumed that the patch is not far from the forest, e.g., 20-30 m from 

the edge, and that there is no disturbance. Hence, the threshold parameters of the 

transition rules N2 are expressed as follows: 

 

d-forest = 1 = 30 m x 30 m                   (pixel length)  (5.27) 

t-forest  = 41 m2 ha-1                    (threshold basal area)  (5.28) 

t-logged-over =  50 + randomint(2)           (years for N2logged-over)  (5.29) 

t-AF =  20 + randomint(2)   (years for N2rubber-agroforest)   (5.30) 

 
where  randomint(2) returns randomly an integer number within [0,2], i.e., 0, or 1, or 2. 

 

A stand-alone NaturalTransition sub-model is built in LB-LUDAS. The result 

of this sub-model per time-step is fed back to the biodiversity sub-model.    
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5.3.6 Carbon emissions 

The land-cover transition matrix of 1993-2005 provides the information on the land-

cover changes occurred within that period (Table 5.8). Based on this matrix, intensity of 

land-cover change including the rate of deforestation was determined (see Appendix 1). 

Between 1993 and 2005, around 66 ha year-1 of forest cover and 96 ha year-1 of rubber 

agroforests were converted to other land uses (see Appendix 1 for specific details of 

gains and losses of land covers). It is general knowledge that the conversion from forest 

and other high-carbon ecosystem to low-carbon ecosystems would lead to net carbon 

emission to the atmosphere, and vice versa would lead to carbon sequestration.  

From the matrix, the net carbon emissions and sequestration were calculated 

(Table 5.15). It was estimated that the total carbon emission from land-cover changes in 

the period 1993-2005 was 10.5 Mg ha-1, while annual emissions were 0.8 Mg ha-1. The 

majority of the emissions were emitted through the conversion of forests (and later of 

rubber agroforests, see Appendix 1) to rubber monoculture with total emissions of 3.2 

Mg ha-1 and to settlement areas with total emissions of 2.9 Mg ha-1. These results (Table 

5.15) will serve as the baseline for comparing results simulated in the LB-LUDAS 

model under different scenarios (see Chapter 7). Carbon emissions are linked to the 

impact module and monitored for every time-step (e.g., for every 5 years). The resulting 

land-cover change will be assessed to estimate carbon emissions and carbon 

sequestration. 

 

Table 5.15  Estimates of total net carbon  release and carbon sequestration based on 
land-cover change between 1993 and 2005 (Mg ha-1) 

Land-cover type 

Carbon parameter Results 

Time average C-
density 

(Mg ha-1)* 

C-emitted 
from 

conversion  
(Mg ha-1) 

C-sequestered 
(Mg ha-1) 

Emissions over 12 years 

Forest 150 0 0 
Rubber agroforest 62 0.6 -0.6 
Rubber monoculture 46 3.2 0 
Oil palm 31 1.1 0 
Rice field 1 0.9 0 
Shrubland 26 1.8 0 
Settlement 4 2.9 0 
Total  10.5 -0.6 
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Land-cover type 

Carbon parameter Results 

Time average C-
density 

(Mg ha-1)* 

C-emitted 
from 

conversion  
(Mg ha-1) 

C-sequestered 
(Mg ha-1) 

Emissions over 12 years 

Emissions year -1 
Forest 150 0 0 
Rubber agroforest 62 0 -0.1 
Rubber monoculture 46 0.3 0 
Oil palm 31 0.1 0 
Rice field 1 0.1 0 
Shrubland 26 0.1 0 
Settlement 4 0.2 0 
Total  0.8 -0.1 

* Source: Tomich et al. 1998 

 

5.4 Conclusions 

The integration of various ecological processes described above is a way to respond to 

one of the weaknesses of MAS/AB modeling, i.e., weak ecological integration 

(Cumming 2011). Here, the landscape agents were characterized to address the 

diversity, variability and heterogeneity of the ecological entities. In the context of 

rubber agroforests, among the important ecological functions and processes included are 

species richness per vegetation class (young and late secondary, and forest), and natural 

succession, which is based on the stand basal area against the threshold, plot age and 

distance to forest.   

First, the past land-use changes and their trend (see Appendix 1) in the study 

site were considered. Next, the variables relevant to the productivity and land-use 

decision making were identified. Among them is the neighborhood characteristic of 

land-use patterns measured in this study. Rice field has the highest enrichment factor 

among the other land uses. The significance of the enrichment factor of neighboring 

land uses in the decision making of household agents is applied in Chapter 3, and later 

integrated in the simulation (see Chapter 7).  

The fundamental methods of building sub-models used to describe the ES 

found in a rubber agroforest landscape were elaborated, i.e., biodiversity, natural 

succession, carbon sequestration and the agronomic yields from rubber agroforests, 
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monoculture rubber and rice. Some of these sub-models explicitly reflect scale- and 

distance dependence and various temporal and spatial influences (e.g., species-area 

relationship, natural succession) coming into play that later would enforce various trade-

offs. 

Calibration of these sub-models and data was carried out. The final results 

were then translated for the LB-LUDAS model. In the following Chapter 6, the 

operationalization of the social-ecological systems using the LB-LUDAS model is 

addressed. 
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6 OPERATIONALIZING LB-LUDAS MODEL AND CHALLENGES OF 
EMPIRICAL MODELING 
 
 

Science progresses from recognition of contextual patterns towards agency-based causal 

explanations, and the construction of an agent-based model that predicts emergent 

system behavior from realistic agent properties is a sign of significant scientific 

progress and internal consistency of model assumptions (Grimm et al. 2005). This part 

of the study tackles the construction and operationalization of the LB-LUDAS model 

using empirical data (Chapter 4 and 5). Empirical data for multi-agent simulation 

(MAS) modeling could provide relevant information to policy makers, scientists and 

stakeholders about the boundary conditions of rural development and uncertainties 

involved in land-use change (Parker et al. 2003; Berger and Schreinemachers 2006; Le 

et al. 2008; 2010). However, the caveat is that the researcher also moves into the 

problem of empirical modeling.  

Thus, the aim is to address the following objectives:  

1. To operationalize LB-LUDAS model as an integrated model and MAS model that 

simulates the socio-ecological components of a rubber agroforest landscape in Jambi 

province using empirical data, 

2. To describe the unanticipated difficulty of applying MAS/AB model using empirical 

study that emerged during the initial simulation stage, and identify assumptions 

behind, and  

3. To present alternative approaches to address the challenge of empirical MAS 

modeling for the case study, with potential wider applicability. 

 

6.1.1 Operational LB-LUDAS: an integrated model using empirical data 

The LB-LUDAS model was developed specifically for the context of the study site (see 

Chapter 3 and 5). This model has the basic functionalities of a negotiation-support 

system (NSS) to support the design of the land-use policies, as it can predict landscape 

level through the likely response of agents to changes in externally set rules and 

incentives. Parameters, inputs, calibrated data and transitional rules are discussed in 

Chapters 2, 3, 4, and 5. The model parameterization used a common sampling frame to 

randomly select observation units for both biophysical measurements and socio-
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economic surveys. These were extrapolated over the landscape based on the Monte 

Carlo simulation technique, assuming independence of parameters in a random process 

unless statistical relationships were explicitly specified (Atanassov and Dimov 2008). 

Thus, the resulting landscape and agent population are statistically consistent with 

empirical data, given the recognized patterns of correlations and stratification.  

 

6.1.2 Graphic user interface  

The following are the key components of the graphic user interface of the LB-LUDAS 

model (Figure 6.1): 

1. User’s input and global (experimental) parameters (part 1, Figure 6.1). Through the 

slider the user can adjust the parameter values to be tested.  

2. Digital land-use/-cover map navigation window (part 4, Figure 6.1). This enables 

the user to visualize the land-use/-cover changes through time steps.  

3. Time-series graphs of performance indicators of both biophysical and human 

systems (parts 2, 3, 5, 6, 7, 8, 9, 10, 11, and 12, Figure 6.1). These include the 

species number as specific land-use changes (part 2), the total carbon stocks of the 

target landscape (part 3), Gini index to monitor the wealth inequality (part 7), etc.  

4. Monitors along with specific time-series graphs are included for further related 

calculations of indicators (parts 2, 3, 11 and 12, Figure 6.1). 

The LB-LUDAS model is implemented in the Netlogo version 4.1 modeling 

environment (Wilensky 1999). 

 

6.1.3 Baseline setting and stylized facts 

In the baseline setting, the decision-making sub-model follows the empirical land-use 

choice model as the benchmark (section 3.3.2). For the socio-ecological parameters and 

variables under this scenario see Chapter 3.  
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The land-use policy context of this baseline scenario and other key socio-

economic conditions are the following: 

1. The implementation of Hutan desa through Government Rule No. 6 (2007) and 

Government Rule No. 3 (2008), which stipulate  the use of environmental services 

and use of timber (subject for approval) as part of the management rights granted to 

the villagers. However, the rule applies only to the 2,300 ha of the 7,600 ha forest 

land (30%). Hence, the zoning restriction for this scenario is 70%.  

2. The land-cover map of 2005 (see Chapter 5 and Figure 5.4) is the initial state of the 

study site. 

3. Initial simulated population of 1520 individuals (380 households), i.e., four times 

higher than those interviewed in the household survey (Chapter 3).   

4. A price of rubber latex of USD 2.50 kg-1; rice USD 1.0 kg-1, and hired labor USD 2 

day-1. 

5. A human population growth of 1.4% based on the 2003 Statistics of Rantau Pandan 

as a sub-district of the Bungo Regency where the study villages belong. 

Using the context of the baseline setting and the outputs of the empirical 

analyses (Chapters 3, 4, and 5), ‘stylized facts’10 drawn from empirical observations 

were compared to the results of the simulations. Since empirical observations “are 

always subject to numerous snags and qualifications” (Kaldor 1961, p.178), the use of 

stylized facts provides guidance for model construction, in particular for formulating 

productive abstractions based on the observed characteristics or phenomena under 

investigation. Stylized facts differ from the simplistic assumption of as if or what if 

approach in that stylized facts refer to an earlier step of a scientific process and their 

purpose is to facilitate the choice of an appropriate level of abstraction (Heine et al. 

2005). The aim of using stylized facts is to construct an adequate model that is 

parsimonious (efficient in use of sparse parameters) to avoid distraction by minor 

details and at the same time rich enough to capture relevant aspect of the phenomena. At 

the same time, stylized facts are used in empirical validation approaches, e.g., indirect 

calibration (Olsen 2004; Heine et al. 2005; Windrum et al. 2007).  

                                                 
10  In this research, stylized facts were applied due to their significance for simulation models and for 

validation purposes (see Heine et al. 2005). 



Operationalizing LB-LUDAS model and the challenges of empirical modeling 
 

104 

 

In this context, stylized facts are the simplified expression of statistical 

observations: 

1. The land-use choice of the individual households is correlated with the following 

household characteristics and biophysical properties (see section 3.3.2), as follows: 

Type 1 households’ decision to choose rice field is correlated with age of the 

household head number of dependents, household income and education, 

wetness index and neighborhood land-use pattern, and 

Type 2 households’ decision to choose rubber agroforest is correlated with age of 

the household head, number of dependents, education, wetness index, 

distance to road and town center, and neighborhood land-use pattern. 

2. For rice yield, an increase of 1% in labor and fertilizer input would increase the rice 

yield by 1% and 0.1 %, respectively (see section 5.3.3). 

3. For rubber agroforest yield, an increase of 1% in labor would lead to a 1.42% 

increase in output (see section 5.3.3).  

 

6.1.4 Initial simulation runs 

During the initial simulations of the LB-LUDAS model, a problem with model behavior 

and output was frequently encountered, although most of the time-series graphs 

performed well, especially the graphics of the biophysical performance indicators. The 

problem was manifested by the dramatic oscillations (phenomena) reflected particularly 

in the crop yield graphs, and also in the economic return graphs (Figure 6.2).  

At first, it was suspected that the source of the problem originated from 

programming errors and/or wrong land-use choice and crop yield equations. Great 

efforts and time were invested in comparing the model outputs (Figure 6.2) to the set of 

stylized facts, which were very unmatched and unexplained. A series of tests over the 

space of initial conditions and parameters (which is already part of the sensitivity test), 

further analyses (e.g., model fitting and finding sources of variability, see Appendix 2 

for results) and a literature review were conducted to address and explain the unwanted 

model output. 
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(a) 

 
(b) 

 
(c)      

Figure 6.2   Examples of oscillation behavior in the crop yields generated from the 
preliminary simulation results using the baseline setting and the regression 
as the decision-making mechanism of agents. The oscillations were 
observed even in averaging the crop yields (b) and if the annual update of 
dynamic variables was only done every 3 to 5 years ( c). 

 

The expert suggestion to delay the annual updates of state variables of human 

and landscape agents (i.e., every 3 or 5 years) was also employed and helped to reduce 

the extreme oscillations and fluctuations, but once the update was executed the 

phenomenon occurred again (Figure 6.2c). The initial model output was presented to 



Operationalizing LB-LUDAS model and the challenges of empirical modeling 
 

106 

 

some experts/specialists11, and it was agreed that the model output was atypical when 

compared to other model outputs.  

Two specific cases are described and illustrated by Polhill et al. (2005; 2006) 

where dramatic changes in the model outcome were observed due to floating point 

arithmetic errors. The errors led to emergent effects with an entirely unwelcome 

element of surprise because of the high degree of non-linearity the errors introduces. 

Programming errors are not really uncommon, especially when the software platform is 

not user-friendly (see Gilbert 2008 for comparison of programs). Nonetheless, the 

oscillations12 or resonance phenomenon observed may have a deeper source of 

explanations. 

Oscillation phenomena are well known in the real world. Examples are periodic 

pulsating monotone growth (or resonance) until collapse processes, or chaotic 

processes.  

Concerning our database, I do not feel entitled to make such assumptions simply 

because I only have cross-sectional data and therefore are unable to test such a 

hypothesis. On the other hand, oscillation phenomena could appear as arithmetic 

artifacts, i.e., a mere algebraic consequence or even technical restriction of the formulas 

or data used in our model. 

And lastly, the observed oscillation might be the result of a model artifact, i.e., a 

consequence of a mis-specified model when relevant confounders are not included in 

the model. 

In summary, the observed oscillation phenomena can be specified as follows: 

1. Arithmetic artifact: Using recursively non-contracting functions in certain models. 

In such a case, the oscillation would appear as a monotone growth until a reset point 

when resources are exhausted thus a mimicry is created of a periodic pulsating 

growth until collapse. Also, it could be related to a ‘butterfly effect’ i.e., behavior of 

dynamic systems that are highly sensitive to initial conditions (Lorenz 1963). 

                                                 
11  Presentations conducted in an Agent-based Modeling Workshop in Texel, Netherlands, held on 15-

18 April 2011; and ZEFc seminar on 13 April 2011. 
12  In other MAS/ABM, this behavior is sometimes identified as non-ergodic during the process of 

validation (Windrum et al. 2007). 
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2. Model artifact: The oscillation as a result of a misspecification in modeling the 

agents’ behavior when relevant confounders are not incorporated in the agent's 

modeling. 

The first assumption requires a deeper level of understanding about the 

behavior and would involve not only a series of experimentation but also moving 

beyond into another scientific realm. Thus, the author proposes to address this in the 

future and treat them as a limitation of the present study.  

For the time being, the second assumption is more realistic to tackle and is 

linked to the most pressing frontier of applying MAS/AB models with empirical data, 

i.e., the problematic relationship between MAS/AB models and empirical data. In this 

second assumption, the immediate question of “is the oscillation or resonance 

phenomenon a manifestation that the regression analysis (i.e., frequently used tool for 

decision making) is inadequate of underlying variables?” is raised. The following sub-

sections introduce the background of the main frontier of empirical MAS modeling and 

recommendations for addressing the challenge. 

 

6.2 Challenges  

Researcher moves into the problem domain of empirical modeling whenever 

MAS/ABM is parameterized with empirical data. Heckbert et al. (2010, p. 46) pointed 

out that  “the field arguably suffers from a lack of success and effort in validating 

models … because of the difficult task of validating complex systems models and the 

response of many modelers to not sufficiently address validation. Thus, the field 

struggles with reputability, which is sometimes deserved.”   

 

6.2.1 Weak theoretical representations of human decision making 

The lack of success and the effort in validating the models can be traced to the weak 

theoretical representation of human decision making (Heckbert et al. 2010). This 

challenge lies in collecting empirical data on a system level and identifying its 

underlying causes.  

Decision making of agents determines the overall functioning of multi-agent 

systems (Manson 2005a; Evans et al. 2006; Brown et al. 2007). Although there are 

different ways to explicitly formalize simple to complex human decision making (An 
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2011), the utility-seeking agents using preference functions calibrated with econometric 

techniques are the most common (Brown and Robinson 2006; Evans et al. 2006; Le et 

al. 2008; Feitosa 2010; Kaplan 2011; Villamor et al. 2011). However, one of the 

fundamental issues is to represent in a statistically consistent way a real-world situation 

of typically heterogeneous biophysical and socio-economic conditions (Berger and 

Schreinemachers 2006). 

According to Evans et al. (2006), in empirical data analyses, statistical tools 

like logistic regression are commonly used to correlate particular actor attributes with 

specific land-use decisions either reported in a survey or observed from remotely sensed 

imagery. This approach identifies a statistically significant relationship between actor or 

landscape attributes and land-cover change but does not necessarily focus on the explicit 

land-use decision-making process. Moreover, these probability-based results do not 

necessarily provide clear insight into the actual decision-making process such as how an 

agent evaluates the benefits of a land-use change, the risks involved, and time frames 

considered for decision-making. Even if we capture as many variables as possible to 

describe the characteristics of human agents, the underlying causes are still unknown 

(Janssen and Ostrom 2006; Windrum et al. 2007; Heckbert et al. 2010).   

In a statistical context, caution should be taken when using observational 

studies alone to model the agents’ decision making, i.e., especially in predicting land-

use decisions, since these kinds of models (i.e., the mere regress of observed decisions 

on observed data) “do not carry the burden in the causal argument nor give much help 

in controlling for confounding variables” (Freedman 2010, p.46). According to 

Rothman et al. (2008), given the observable nature of association measures, it is 

tempting to substitute them for effect measure and even more natural to give causal 

explanations for observed associations in terms of obvious differences. It is a well 

known textbook fact that - outside the realm of experiments - observed associations of 

variables do not automatically imply causality (Moore and McCabe 2004, p.160) and 

therefore cannot establish a law that could predict outcomes. 

Another caveat that was posed by Gilbert and Troizsch (1999) is related to the 

concept of retrodiction, that even if the results obtained from simulation match those 

from the target (i.e., presumed social processes), there may be some aspects of the target 

which the model cannot reproduce (Gilbert and Troitzsch 2005). The authors give an 
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example using the growth of the world’s population “where predictions for the next 50 

years looked plausible, but retrodiction of the population to the situation 20 years in the 

past using the same model and the same parameters was completely wrong when 

compared with the actual world population then (Gilbert and Troizsch 1999, p.22).” 

Thus, the use of longitudinal data (against cross-sectional data) or asking questions that 

are time-related is a rule of thumb to establish causal mechanisms (van Belle 2008). 

Back to the finding presented above (section 6.2.2), the question of “is the 

oscillation or resonance phenomenon a manifestation that the regression analysis (i.e. 

frequently used tool for decision-making) is inadequate regarding underlying 

variables?” could be translated that the inadequate underlying variables are the 

confounders. Furthermore, in the context of modeling decision making, the factors of 

the decision process itself can be seen as confounding factors between the observed 

socio-economic data and the production decision. Because such factors are associated 

with both the socio-economic status and the selected production, such factors could be 

the risk-aversion of the decision maker, long term decision and alike. In order to 

estimate the central decision process more prospectively and so reduce confounding, 

one could estimate some parameters of the decision process directly. The next sub-

section introduces the options to address this challenge. 

 

6.3 Process-based decision making: an alternative 

One method of addressing structural validation13 is to develop a better understanding of 

the component relationships in the model, including the decision-making dynamics and 

processes (Evans et al. 2006).   

In dealing with uncertainty of assumptions in models and data, an accepted 

way of reducing uncertainty or showing the influence of uncertainty processes on model 

results is by modeling the actual processes (Barthel et al. 2008). Process-based decision 

models, accordingly, are those capturing the triggers, options, and temporal and spatial 

aspects of an actor’s reaction in a (relatively) direct, transparent and realistic way. An 

(2011) advocates that substantial efforts should be invested in process-based decision-

making mechanisms or models to better understand socio-ecological systems. 

                                                 
13  Decision making is considered the primary structural component in agent-based models (Evans et al. 

2006) 
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While several options to address the issue discussed in this chapter are 

proposed (see Appendix 4), in this research a process-based decision sub-model is 

applied where the decision process as a confounding factor is integrated in the decision-

making mechanism of LB-LUDAS. The empirical data generated from the future land-

use preference (section 3.3.3), and the P/RES adoption (Chapter 4) are good estimators 

for the decision processes of the human agents. These two decision-making sub-models 

are treated as key important element in the scenarios instead of changing or setting up 

the environmental parameters or agents’ state and global variables at the onset of 

initialization, which is the common way of testing scenarios. Instead, each scenario has 

its specific own decision-making sub-model where the decision process is built in.     

 

6.3.1 Two-stage decision making 

Using the land-use choice model alone could not give the underlying causes in the 

decision making of the agents. To better incorporate the human behavior component 

(i.e., decision making process), two-stage (or layered) decision-making routines were 

developed for the LB-LUDAS model. In the decision module of LUDAS, the 

Preferred-land-use and PES-adoption sub-models are integrated within the 

FarmlandChoice (see Chapter 2) as a household decision-making mechanism (Le 

2008). The new routines are illustrated in Figure 6.3 and Figure 6.4. 

In Figure 6.3, the decision process ‘to adopt or not adopt P/RES schemes’ is 

highlighted in gray, and is based on the results of the logistic regression developed in 

Chapter 4. On the other hand, in Figure 6.4, the first stage of decision is derived from 

the land-use choice model (see section 3.3.2) which performs the decision-making of 

the household agents in a retrospective manner. The Preferred-land-use under certain 

conditions (i.e., if supported by financial investment or subsidies, and in the coming 5 to 

10 years) sub-model is integrated in the moving phase (highlighted in gray). In this way, 

the agents have already available labor to open new land. 

With these decision making sub-models, time-related question (i.e., land-use 

preference in the next 5 to 10 years) and possible behavior of the agents (i.e., if PES 

schemes will be adopted based on the real pilot PES projects) form a new basis of more 

realistic decisions of the agents. Comparing the results of these two alternative decisions 
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would provide a more rigorous strategy for modeling agent decisions (Grimm et al. 

2005). 

 
Figure 6.3  Schematic representation of the two-stage decision making for PES 

scenario wherein the PES-adoption sub-model is integrated in the first 
stage of the FarmlandChoice routine. P (A, Ci) refers to the probabilities 
(P) for agent (A) to choose the choices (Ci).  

 

Figure 6.5 shows the example outputs of the new decision-making routine where 

the two-stage decision making for PES adoption is incorporated. The graphs 

demonstrate a considerable reduction in dramatic oscillations compared to those in 

Figure 6.2. The mathematical evidence of the concept is beyond the scope of this study 

and is considered as a limitation. However, one key issue that is addressed in this 

chapter is the introduction of a more adequate description of the underlying causal 

mechanism described in section 6.3.  
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Figure 6.4  Schematic representation of the two-stage decision making for SUB 

scenario (or with financial investments or subsidies) wherein Preferred-
land-use sub-model is integrated in the second stage of the 
FarmlandChoice routine.  

 

Another important aspect is to strengthen the scenario analysis of future options 

of combined social and ecological systems (Chapter 7). According to Swart et al. 

(2004), the development of scenarios in the context of sustainability of social-ecological 

systems includes characterization of current conditions and processes driving change, 

and of human and environmental response under contrasting future conditions. In 

quantitative modeling of scenarios, the results of analyses of possible future events 

become illegitimate when the state description of the system is uncertain, causal 

interactions are poorly understood, and non-quantifiable factors are significant (Swart et 

al. 2004). 
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Figure 6.5 Initial test results after incorporating the PES-adoption sub-model in the 

FarmlandChoice routine, exported from the Netlogo. 
 

In the next chapter, these sub-models are applied to answer the overall research 

questions and achieve the objectives of this study. 
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7 SCENARIO ANALYSIS OF LAND-USE/COVER CHANGE AND 
ECOSYSTEM SERVICE TRADE-OFFS 
 
 

The need to incorporate ecosystem services (ES) into resource management decisions is 

fully recognized, but quantifying the levels and values of these services has been proven 

difficult (Nelson et al. 2009; De Groot et al. 2010). Accordingly, without quantification 

of these benefits and lacking incentives for landowners to provide them, these ES tend 

to be ignored by those making land-use and land-management decisions.  

Global loss of ES has many causes, including dysfunction of institutions and 

policy, gaps in scientific knowledge, unpredictable events, and other factors (Carpenter 

et al. 2009). On the other hand, policies and practices intended to improve ES and 

human well-being e.g., Payments for Ecosystem Services (PES) schemes are based on 

untested assumptions and limited information because the basic information of the 

dynamics of social-ecological systems (SESs) and the relationships of ES to human 

wellbeing are also missing (see Chapter 1 and 2). Carpenter et al. (2009) call for 

research that considers the full ensemble of processes and feedbacks for a range of 

biophysical and social systems to be able to understand and manage the dynamics of the 

relationship between humans and ecosystems. In fact, there is urgency for an 

accelerated effort to understand the dynamics of coupled human-natural systems. 

Accordingly, explicit models of SESs are essential for research, synthesis, and 

projection of the consequences of management actions. 

Thus, this chapter addresses the following:  

1. Apply the LB-LUDAS model (with process-based decision-making sub-models) to 

understand the SESs of a rubber agroforest landscape,  

2. Understand the temporal and spatial impacts of PES schemes as policy interventions 

and possible resulting emergent properties, and 

3. Compare the PES and future land-use preferences if supported by financial 

investments or subsidies and their impacts on the ES trade-offs.  

In the process, new insights are provided on how ES can in turn benefit 

humanity, and how human actions alter ecosystems and the services these provide.  
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7.1 Scenarios 

Scenarios in this study are tools to reveal and explore the consequences, trade-offs and 

synergies of different policies with respect to conservation of ES. In contrast to 

prognoses, scenario analysis does not extrapolate information from the past, but rather 

considers possible developments and turning points, which may be merely connected to 

the past. It is also a process of analyzing possible future events by considering 

alternative outcomes. The Millennium Ecosystem Assessment (MA) presents scenarios 

on the future prospects for ES to create an understanding of ecosystem management by 

considering a set of possible future paths. In this study, the tested scenarios are in line 

with the ‘real’ local and national policies currently in pilot tests and under negotiation 

(Table 7.1). The aim is to compare the two opposing scenarios, i.e., payments for 

ecosystem services schemes (PES) as an environmental conservation pathway, and the 

condition ‘if financial investment or subsidies are provided’ (SUB) as an economic 

development pathway, and to explore the possible temporal and spatial impacts on ES 

trade-offs.   

The key difference in these scenarios is the use of different decision-making 

sub-models integrated in the decision-making mechanism (see Chapter 6). It is assumed 

that using this approach, agents’ behavior could be better explained.   

 

Table 7.1  Policy scenarios  
Scenario Scenario description  

I. Baseline 
(BAS)  

 Current trend (see section 6.1.2) 

II. PES  Under the proposed REDD strategy of Indonesia (see section 
4.1.3), Hutan desa is considered a policy instrument for 
communities with revenue sharing of 20% for the government, 
30% for the developer, and 50% for the community. But the 
specific guidelines are still under negotiation, thus this sharing 
rule is not incorporated. Instead, a 70% protection zoning is 
applied in the forest.  

 Under an eco-certification scheme, the price of rubber latex is 
50% (upper case limit) higher than the baseline price, i.e., about 
USD 3-4 kg -1 (Akiefnawati pers.com.), but it is only granted if 
the biodiversity criteria are met (see section 7.2.2), and the price 
of rice is approximately USD 1 kg -1 (see section 6.1.2).  
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Scenario Scenario description  

 A population growth of 1.4% per year, based on low out-
migration rates.  

 The decision-making sub-model for the simulation follows the 
routine illustrated in Figure 6.3.  

 The actual land-use map of 2005 is used as a base for simulating 
the next 20 years. 

III. SUB (with 
financial 
investments
/ subsidies) 

 The prices of rubber agroforest latex and rice are the same as in 
the baseline scenario, i.e., USD 2.5 kg -1 and USD 1 kg -1, 
respectively (see section 6.1.2). 

 The assumption is that credit facilities or subsidies would be 
provided (either by government or private entities) to cover the 
initial financial investment of the farmers. 

 Hutan desa policy of 70% zoning restriction is also 
implemented. 

 A population growth of 1.4% per year. 
 The decision-making sub-model for the simulation follows the 

routine illustrated in Figure 6.4. 
 The actual land-use map of 2005 is used as a base for simulating 

the next 20 years. 

    

7.2 Methodology 

7.2.1 Stylized facts 

PES scenario 

The stylized facts extracted from the empirical findings of PES adoption (Chapter 4) are 

as follows: 

1. The decision of a household to adopt a PES scheme is correlated with the household 

characteristics, which are: 

Type 1 household: decision is correlated with the education of the household head, 

size of the household and number of dependents, and 

Type 2 household: decision is correlated with the age of the household head, number 

of household group memberships, size of the household, and number of 

dependents. 

Although only a few empirical studies exist that document factors driving people’s 

participation in PES, findings from related empirical research on technology 

Table 7.1 continued 
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adoption, e.g., agroforestry systems, are well documented and useful for supporting 

the above stylized facts (see section 4.2.1). Also, factors such as prior information on 

and involvement in the PES activities are found important in the participation or 

adoption (Zbinden and Lee 2005). 

2. Both household types would participate in PES schemes if income from rice and 

rubber is low. Findings from empirical studies show the same trend (see Table 4.2 

and 4.3). For example, farmers’ participation in PES schemes was influenced by PES 

contribution to household income and land opportunity costs (Wunder 2005); in 

Latin America, PES incentives have contributed up to 30% of the household income 

(Miranda et al. 2003; Alban and Arguello 2004; Echavarria et al. 2004).   

3. Only households who could meet the PES criteria and eligibility would be rewarded 

or paid. Pagiola et al. (2005) explained the sequential reasoning process before 

getting involved in a PES scheme. These include eligibility requirements such as if 

the farmer is located in the target area and follows the required resource management 

practices, if PES practices are profitable (related to the second stylized fact) and fit in 

the current farming system, and if the household is able to meet investment needs. 

Under the PES scenario, one of the main criteria set for PES adopters is to meet the 

biodiversity requirement as proposed by Tata et al. (2007) and is translated into rules 

for the LB-LUDAS model (see section 7.2.2).  

 

SUB scenario: with financial investments or subsidies  

The following are the stylized facts generated from the statistical observations (see 

Section 3.3.3) for this scenario: 

1. The preferred land use of individual households under the condition of financial 

investment or subsidies is correlated with the following household characteristics and 

biophysical properties: 

Type 1 households’ decision to choose rubber agroforest is correlated with the age 

of the household head, household income and education, and distance to 

household’s house and town center, while 

Type 2 households’ decision to choose rubber agroforest is correlated with the age 

and education of household head, landholdings and neighborhood land-use 

pattern. 
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2. The probability of type 1 households to keep to rubber agroforests is 87%, 

suggesting that they are risk-averse households.   

3. Lightly more than half of the (53%) Type 2 households are willing to convert their 

rubber agroforestry farms into a more profitable land-use monoculture, i.e., oil palm 

and rubber (see section 3.3.3) only under the provision of subsidies that would cover 

initial investments, suggesting income diversification. 

In reality, initial investments from the private sector and state-owned 

companies were provided to the villages such as agricultural support and extension 

services to speed up the pace of development in the area (Martini et al. 2010). 

 

7.2.2 Biodiversity performance measurement 

Supporting the third stylized facts under the PES scenario, PES adopters would be 

offered a higher latex price if the criteria for eco-certification are met. So far, no rules or 

specific guidelines exist that are approved for certifying rubber latex from sustainably 

managed sources. Yet, empirical studies have proposed ways to meet rubber latex 

production while conserving biodiversity specifically in Jambi province (Tata et al. 

2007; Bennett 2008). These criteria based on empirical studies were translated into 

biodiversity rules for LB-LUDAS simulation (Table 7.2).   

 

Table 7.2 Proposed criteria for eco-certification of rubber agroforest based on Tata 
et al. (2007) and criteria fitting for LB-LUDAS model. 

Proposed criteria for eco-
certification of rubber agroforest  

Fitting for LB-LUDAS 
model 

Data source 

o Criteria 1: At least 4 tree species 
(> 10 cm DBH) in a circle with 8 
m radius around a random starting 
point within the plot – average of 5 
observations 

At least 27 species of 
trees in a 900 m2 patch 
using  Eq. 5.23 and 5.24 
(Chapter  5)  
 

Calibrated using plant 
species inventory (Rahayu 
2009)  

o Criteria 2: If the number of 
species is <6, determine the 
relative basal area of rubber trees, 
with 2/3 as threshold; in case the 
number of species > 6, (this step 
can be skipped) 

Basal area requirement 
per patch as generated 
by the forest dynamic 
model (see section 
5.3.4) 

Calibrated using plant 
species inventory (Rahayu 
2009)  

o Criteria 3: Assure that there is at 
least 1 tree with DBH > 40 cm per 
circle of 25 m radius – average of 
5 observations 

1 tree with DBH of 
>40cm for every 2 
patches (1800 m2)     

Calibrated using plant 
species inventory (Rahayu 
2009) and generated in 
forest dynamic sub-model 
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7.2.3 Simulations 

For each scenario, a total of five simulation runs were conducted. Each run has 20 time 

steps (or simulated years). All scenarios started with initial population of 380 

households (1520 individuals). The averages (with 95% confidence interval) of each 

performance indicator (both social and ecological) were plotted as time-series graphs 

(while some required additional calculations) to compare scenarios. 

  

7.2.4 Financial opportunity costs 

The opportunity costs of major land uses in each scenario were calculated using the net 

present value (NPV).  NPV is a measure of estimated returns to land and is expressed 

as: 
T

t
t

t

i
RNPV

1 )1(
      (7.1) 

Where t is the number of years, i is the interest (discount) rate (20%)14, andRt is the net 
cash flow or net revenue 

 

The NPV of the three land uses (upland rice, rubber agroforest and rubber 

monoculture) was calculated. Data on the establishment costs of each crop were taken 

from Wulan et al. (2008) and others were from the field survey (see Chapter 3). It is 

assumed that a positive cash flow will start at year 9 for rubber agroforests and at year 6 

for monoculture rubber, while establishment costs are based on the number of labor 

days. 

 

7.3 Results 

7.3.1 Impact of PES on land use/cover 

The following are the apparent trends observed when comparing the PES scenario with 

the baseline scenario (Figure 7.1 and 7.2). These were: 

1. Forest cover slightly increased after year 13; 

2. Rubber monoculture slightly decreased after year 15; and 

3. Both rubber agroforest and rice field were the most actively changing land 

uses/covers under the baseline scenario. 

                                                 
14 Wibawa et al. 2005 



Scenario analysis of LUCC and ES trade-offs  
 

120 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

1 4 7 10 13 16 19
Year

Forest

Rubber
agroforest

Rubber
monoculture

Rice

Oilpalm

Shrub

PES scenario

0

1000

2000

3000

4000

5000

6000

7000

8000

1 4 7 10 13 16 19

La
nd

co
ve

r(
ha

)

Year

Baseline scenario

 
Figure 7.1  Simulation of land-use/ cover change in PES scenario compared to 

baseline scenario. 
 

 

In Figure 7.2, the shrubland (dark pink areas) in the 2005 map (year 0) was 

mostly converted to either rubber agroforest or rice fields after year 5 under the baseline 

scenario, but under the PES scenario, it had either transformed naturally to forest or was 

converted to rice paddies. The same trend was observed under the SUB scenario (Figure 

7.4). For specific land-cover changes in three scenarios with confidence intervals (95%) 

of the means, see Appendix 6. 
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Figure 7.2  Comparison of simulated spatio-temporal land-use/cover change between 

PES scenario and baseline scenario (current trend) (Note: red patches are 
settlement areas) 
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7.3.2 Impact of financial investment/subsidies (SUB) on land use/cover 

For the SUB scenario, the following major trends were observed when compared to the 

baseline scenario (Figure 7.3 and 7.4): 

1. Forest cover increased slightly after year 13, 

2. Rubber agroforest and rice field are the two most actively changing land uses/ 

covers under both scenarios, but the gap between the two land uses is wider under 

the SUB scenario.  Both of the changes between these two land covers reflect a 

mirror-like image of change, and  

3. Both rubber monoculture and shrub slightly decreased after year 15.  
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Figure 7.3 Simulation of land-use/ cover change with initial financial investments 

compared to baseline scenario. 
 

In the cultivated areas (Figure 7.5), two major findings were: 1) both SUB and 

baseline scenarios have gradually increasing cultivated areas, and 2) under the PES 

scenario, there was hardly a decrease or increase in cultivated areas except during the 

initial year of rubber monoculture (Figure 7.5c). 
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Figure 7.4  Comparison of simulated spatio-temporal land-use/cover between SUB 

scenario and baseline (current trend) (Note: red patches are settlement 
areas) 

 



Scenario analysis of LUCC and ES trade-offs  
 

124 

 

Cultivated area 

300
200
100

0
100
200
300
400
500
600
700
800

1 4 7 10 13 16 19

Ar
ea

(h
a)

Year

PES SUB BAS

 
(a) 

300

200

100

0

100

200

300

400

500

600

700

1 4 7 10 13 16 19

Ar
ea

(h
a)

Year

PES SUB BAS

 
(b) 

60
40
20
0

20
40
60
80

100
120
140

1 4 7 10 13 16 19

Ar
ea

(h
a)

Year

PES SUB BAS

 
(c) 

Figure 7.5    Area (ha) cultivated for rice (a), rubber agroforest (b), and rubber 
monoculture (c) in three scenarios (PES, SUB, BAS (baseline)).Vertical 
segments are the confidence interval (95%) of the means. For uncertainty 
of yield prediction, see Appendix 5. 
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7.3.3 Impact on species richness 

Under the three scenarios, the average species richness (ha-1) in the rubber agroforest is 

slightly higher under the SUB and baseline scenarios (Figure 7.6). Rubber agroforest is 

one of the dominant land covers in the area and is also the preferred land use under the 

two scenarios (see Figure 7.1 and 7.3). While there were no changes in the rubber 

agroforest area under the PES scenario over the 20-year period, an increase in the 

average species number occurred particularly after year 19. This may be due to the 

effect of the natural transition process in the abandoned rubber monoculture plots (see 

section 5.3.5). The same trend was also observed under the SUB and baseline scenarios.  
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Figure 7.6  Average tree species number (ha-1) in rubber agroforests in three 

scenarios (PES, SUB, BAS (baseline)). Note: vertical segments are the 
confidence interval (95%) of the means. 

 

Species loss 

Using the equations 5.4 and 5.5 (section 5.2.2), the proportion of the species that had 

survived after the conversion of rubber agroforest, i.e., to rice or rubber monoculture, 

was calculated for the three scenarios. Assuming that the average total area of rubber 

agroforest (at year 0) is the original area or habitat, and the average total area of rubber 

agroforest converted to rice and rubber monoculture (Figure 7.5) over 20 years is the 

area of habitat destroyed, the proportion of remaining original species and species loss 

in the rubber agroforest could be estimated. Findings (Figure 7.7) show that under the 

PES and SUB scenarios, habitat destruction could be avoided and thus an average of 



Scenario analysis of LUCC and ES trade-offs  
 

126 

 

22% and 6% of the species, respectively, would remain in the rubber agroforests under 

these scenarios. 
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Figure 7.7  Average percent of remaining tree species after habitat 

destruction/conversion. Note: vertical segments are the SEM. 

 

7.3.4 Impact on carbon emissions 

The estimated carbon emissions under the PES and SUB scenarios were compared to 

the 1993-2005 emissions (Figure 7.8; see also Table 5.15).  
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Figure 7.8  Annual carbon emissions (Mg ha-1.yr) in simulated scenarios against 

calculated 1993-2005 carbon emissions (see section 5.3.6). Note: vertical 
segments are the confidence interval (95%) of the means. 
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The results show that the PES scenario has the lowest annual emissions of about 

0.01 Mg ha-1yr-1.  

Under the SUB scenario, the carbon emissions are 97% higher compared to the 

emissions under the PES scenario. This is mainly due to the conversion of rubber 

agroforest (high carbon) to rice paddies (low carbon). Compared to the 1993-2005 

emissions, they are 47% lower due to the increase in forest cover and decrease in 

shrubland and rubber monoculture areas (Figure 7.3).  

 The findings suggest that under the PES scenario (through REDD using zoning 

restriction of 70%) carbon emissions could be greatly reduced. 

 

7.3.5 Impact on socio-economic household dynamics 

Simulated crop yields 

The simulated average crop yields from upland rice (a), rubber agroforest (b) and rubber 

monoculture (c) are summarized in Table 7.3. Comparing these results to those of other 

studies, the rice yield is comparatively low (800 kg ha-1yr-1 in ICRAF data 2009; 1200 

kg ha-1yr-1 in Wulan et al. 2008 under extensive practices); agroforest rubber latex 

yields are relatively higher (~600 kg ha-1yr-1in Joshi et al. 2006), while yields from 

rubber monoculture are consistent with the yields cited from literature. 

 
Table 7.3 Average annual crop yield in three scenarios  

Crop Baseline PES SUB 

Upland rice (kg ha-1 yr-1) 667  ± 122 511  ±104 456 ± 92
Latex from rubber agroforest 
(kg ha-1 yr-1) 

1026 ± 222 1080 ± 241 1192 ± 185

Latex from rubber monoculture 
(kg ha-1 yr-1) 

1026 ± 173 1037 ± 61 988 ± 99

Note: Values are mean ± SD of outcome variable for 5 simulation runs.  

 

Using the (i.e., over lapping or non-over lapping) confidence intervals of each crop 

(Table 7.4), the average rice yield under the baseline scenario is significantly higher 

than under the PES and SUB scenarios. For latex production from rubber agroforests, 

the average latex yield under the baseline scenario is significantly lower than that under 

the SUB scenario. On the other hand, the average latex yield from monoculture 

plantations under the SUB scenario is significantly higher under the PES and BAS 
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scenarios. It should be noted that the uncertainty in the crop yield prediction is 

accounted for in the LB-LUDAS model (see Appendix 5). 

 

Average annual yield (kg/yr)
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Figure 7.9 Average yields of rice (a), latex from rubber agroforest (b) and latex from 

rubber monoculture (c) in three scenarios (PES, SUB, BAS (baseline)). 
Horizontal segments are the confidence interval (95%) of the means. 

   (Note: CIs are used to show the degree of over-lap). 

 

Table 7.4 Comparative analysis of the average yields per major crop under the 
three scenarios using the Bonferroni method. 

Comparative scenario Contrast 

(kg/ha/yr) 

Bonferroni 

t 

Sig. 

(a) Rice (Std. error = 32.9) 

SUB vs. PES -54.6 -1.65 0.310 

BAS vs. PES 155.6 4.72 0.000 

BAS vs. SUB 210.2 6.37 0.000 

(b) Rubber agroforest (Std. error = 67.1) 

SUB vs. PES 110.8 1.65 0.312 

BAS vs. PES -54.4 -0.81 1.000 

BAS vs. SUB -165.2 -2.46 0.050 

(c ) Rubber monoculture (Std. error = 20.7) 

SUB vs. PES 46.2 2.23 0.089 

BAS vs. PES -0.6 -0.03 1.000 

BAS vs. SUB -46.8 -2.25 0.084 
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Household income 

Of all three scenarios, the highest average revenue per household over the 20-year 

period is under the SUB scenario, while the lowest is under the baseline scenario (Table 

7.5 and Figure 7.10). The average revenue under the SUB scenario is slightly higher 

than that under the PES scenario. It should be noted that the establishment cost for 

opening new plots (as a negative income for households) is taken into account in 

estimating the household income per year in the LB-LUDAS model.  

 

Table 7.5   Simulated gross income per household (USD) in three scenarios over 20 
years 

Income typology  Scenarios 
Baseline PES SUB 

Revenue  (USD household-1) 130,954 
± 6082 

184,874 
± 2484 

197,326 
± 8534 

Present revenue  
at 20% discount rate15 (USD 
household-1) 

30,109 
± 1398 

38,719 
± 1449 

45,818 
± 2008 

Note:  Values are mean ± SD of outcome variable for 5 simulation runs.  
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Figure 7.10 Annual revenue in three scenarios. Note: vertical segments are the 

confidence interval (95%) of the means. 
 

The PES adopters averaged between 30-40% of the mean total simulated 

population (Figure 7.11). These PES adopters preferred rubber-agroforest system. 
                                                 

15 The discount rate for Indonesia used by Wibawa et al. 2005. 
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However, they have to meet the biodiversity criteria to get the price premium for latex. 

Hence, not all of the 30-40% PES adopters received the 50% higher price.   
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Figure 7.11 Number of PES adopters against average total population. Note: vertical 

segments are the confidence interval (95%) of the means. 
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Figure 7.12  Income contribution from share cropping and NTFPs (non-timber forest 

products) collection  
 

The percent contribution from hired or paid labor to household income is 

depicted in Figure 7.12. It shows that under the PES scenario, the bulk of the income 
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comes from share cropping and the man-days used for collecting non-timber forest 

products (e.g., forest fruits such as durian), while 60% of the labor assigned to crop 

production was also diverted to share cropping and NTFPs (see section 7.4.1), whereas 

in the other scenarios it remained zero. This could be the reason for the change in 

wealth inequality of the agents as shown in the Gini index (Figure 7.13). 
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Figure 7.13  Gini index generated for three scenarios. Note: vertical segments are the 

confidence interval (95%) of the means. 
 

The Gini index under the PES scenario gradually moved towards 0.5 over the 

20-year period. On the other hand, under the SUB and baseline scenarios, the Gini 

indices stayed between 0.95 and 0.98 over this period. 

 

Household livelihood typology 

The characterization of household types simulated under the three scenarios is depicted 

in Figure 7.14. Apparent changes were observed under the PES scenario, where a 

significant increase in household type 1 (‘better-off’ farmers; Figure 7.14a) and a 

decrease in household type 2 (‘relatively poor’ farmers; Figure 7.14b) occurred.  

Based on the simulation results of the wealth inequality (Figure 7.13), it 

appears that under the SUB and baseline scenarios very few households (i.e., type 1) 

received almost all the income, whereas large part of the households (i.e., type 2) 

received a very low income. In contrast, under the PES schemes, the status of both 
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household types changed significantly after year 7, when the household types received 

quite similar incomes. This suggests that the livelihoods of the type 2 farmers would be 

better under the PES schemes (see discussion section for further analysis).  
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Figure 7.14 Time-series change of rice-rubber farmers (type 1), and rubber-based 
farmers (type 2). Note: vertical segments are the confidence interval 
(95%) of the means. 
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Financial opportunity costs 

Based on the labor requirement (ha-1) (Table 7.6), average yield (kg ha-1) simulated in 

the LB-LUDAS model (Table 7.3), and costs per cropping system (USD ha-1) (Table 

7.7), the return for land investment (i.e., using NPV) for each scenario was estimated. 

The results show that return for land investment differs in each scenario. Of all the land 

uses, under the baseline scenario, rice is the most profitable (Table 7.8).  

 

Table 7.6  Labor requirement for rice, rubber agroforest and rubber monoculture  
 Main farming system  Establishment 

(man-days ha-1) 
Mean total 

(man-days ha-1) 
Source 

Rice  - 130 Wulan et al. 2008 
Rubber agroforesta 
 

828 107 Wulan et al. 2008 
and field survey 

Rubber monocultureb 1239 130 Wulan et al. 2008 
and field survey 

Note:  a  using the medium weeding rubber agroforest system  
b  using the private monoculture system  

 

Table 7.7  Estimated total costs for rice, rubber agroforest and rubber monoculture  
 Main farming system  Total establishment and 

operational costs 
(USD ha-1) 

Source 

Rice  260 Field survey 
Rubber agroforest 640 Wulan et al. 2008  
Rubber monoculture 770 Wulan et al. 2008 
 

Because the conditionality set under the PES scenario does not apply to almost 

60 to 70% of the simulated population and also to agents who did not adopt PES, sub-

scenario under PES without the price premium was estimated. The rubber agroforest 

under this scenario with eco-certification becomes the most profitable land use, and also 

under the other two scenarios. On the other hand, rubber agroforest becomes the least 

profitable under the PES sub-scenario without eco-certification as well as under the 

other two scenarios.  

Under the SUB scenario, rubber agroforest is slightly more profitable than rice 

production and rubber latex from rubber monoculture.  
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Table 7.8  Net present value of rubber latex production and rice production for three 
scenarios at annual discount rate of 20% 

Scenario and typology Main farming system 
Rice  Rubber 

agroforest 
Rubber 

monoculture 
1) Baseline (current trend) 

Average yield  
(kg ha-1) 

667 ± 104 1026 ± 222 1036 ± 82

NPV (USD ha-1) 2527 1778 1342 
2)  PES scenario (without eco-certification)

Average yield  
(kg ha-1) 

511 ± 105 1080 ± 241 1037 ± 61

NPV (USD ha-1) 1630 1193 1452
PES scenario (with eco-certification)
Average yield  
(kg ha-1) 

511 ± 105 1080 ± 241 1037 ± 61

NPV (USD ha-1) 1630 2626 1452
3) SUB scenario 

Average yield  
(kg ha-1) 

456 ± 92 1192 ± 185 988 ±  99

NPV (USD ha-1) 1256 1729 1360
Note:Values are mean ± SD of outcome variable for 5 simulation runs. The estimated NPVs are at upper 

case limit. 

 

Assessment of overall trade-offs  

Based on the results presented above, under the PES scenario (Figure 7.15, green line), 

the key objectives of ecosystem services such as agro-biodiversity conservation and 

carbon emission mitigation are better achieved than in the other two scenarios. In terms 

of household livelihoods, the generated revenues under this scenario are competitive 

compared to the SUB scenario. Since rubber agroforest under the PES sub-scenario 

(with eco-certification) is much more profitable (Table 7.6) than the other scenarios, the 

non-PES adopters’ household (specially the type 2 household) should be encouraged to 

adopt PES schemes with-eco-certification. It also suggests that the PES schemes, 

including the proposed design, i.e., biodiversity targets, protection zoning, are 

appropriate in the rubber agroforest landscape context. 
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Figure 7.15 Overall trade-offs for the three study scenarios over 20 years. 
 

7.4 Discussion 

7.4.1 Emergent properties: spatial feedback or adaptation 

Cumming (2011) defines emergent properties as properties or behaviors of complex 

systems arising from the combination of system components and relationships and 

feedbacks, or feedback loops, as a situation in which an effect influences its cause. 

Spatial feedbacks in particular are feedbacks that occur between spatial variation and 

systemic processes (e.g., migration, settlement, competition).  

Under the PES scenario, one intriguing outcome is the interactions between 

the agent behavior and land-use change. It was observed that there was almost no 

opening of new land and that the number of cultivated plots actually being used by the 

agents is less than the number of the household’s total landholdings, and yet the income 

is relatively high when compared to baseline scenario where opening of new land was 

observed. 

Numerous empirical studies attest the labor shortage situation in Jambi 

province as one of the constraints in rubber production, which actually triggers the 

development of rubber monoculture to rubber agroforests. In the simulations, this 

observation was captured as a result of the interaction between the agents’ decision and 

land-use change. Basically, not all of the household agents in the model have their own 

farm plots. Households without rubber or rice farms work as share tappers or in share 

cropping. This is an important labor strategy in the rubber agroforests in Sumatra. 
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Under the share-tapping scheme, the owner of the rubber farm lets the share-tapper 

harvest latex from his rubber plots in a profit-sharing scheme of 60% for the share 

tapper and 40% for the plot owner. This concept was not incorporated in the initial 

version of the LB-LUDAS model. However, the results of the initial runs generated a 

very low average income, which differed greatly from the initial average household 

income at the initialization stage (year 0). Therefore, the concept was integrated but not 

on the basis of the profit-sharing scheme mentioned, i.e., very simple decision rules 

were used. Below is one example: 

 
if h_landholdings = < 0, set h_incl [labor-spent·%L-NTFP or %L-crop]   (7.1) 

where h_landholdings is the total land holdings of the household agent 
h_incl is the household income from hired labor 
%L-ntfp is the percent labor allotted to harvesting NTFPs 
%L-crop is the percentage labor allotted to crop production 

 
All scenarios have these decision rules pertaining to labor (and according to 

various land uses demanding a different number of man-days), but under the PES 

scenario, a different observation emerged (see Figure 7.12) as described below.   

Land expansion or opening of new land mainly depends on two conditions: 1) 

household decisions (and based on labor and land availability, see section 6.3.1), and 2) 

population growth. With these conditions in mind, it would be interesting to know what 

may have triggered the change in the socio-economic conditions (e.g., income, 

household livelihood typology, and wealth inequality) of the household agents (after 

year 7). Also, with this change alone, biodiversity and ecosystem services were 

enhanced (as a negative feedback). Currently, there are two assumptions to explain the 

observed simulated behavior: 1) there is a spatial feedback as a result of the interactions 

between the decisions made by agents, i.e., not to open new land and labor and land 

availability, and 2) there is adaptation through the agents as a result of the two-stage 

decision making. A better decision rule (i.e., labor sharing or share-tapping schemes) is 

obviously needed to refine the model. For now, it is yet to be explained whether there 

was such adaptation and whether spatial feedbacks were operating. Since this behavior 

is unintentionally modeled, more tests (including different scenarios) are needed to 

establish said interactions. 
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7.4.2 Model validation 

Pattern-oriented: structural model validation 

According to Grimm et al. (2005), the use of pattern-oriented modeling attempts to 

make MAS/AB models more rigorous and comprehensive. Pattern in this context is 

defined as characteristics of a system and often, therefore, an indicator of essential 

underlying processes or structures. Although formulated in ecology, the use of patterns 

in this study is highly applicable, thus gauging the rigor and comprehensiveness of the 

LB-LUDAS model. The above authors provide two questions as guides to check 

whether the observed patterns of the real system are tied in the model structure: 

1. Which observed patterns seem to characterize the system and its dynamics? and 

2. Which variables and processes must be in the model so that these patterns could, in 

principle, emerge? 

The answers to the first question are given in Chapter 3, 4 and 5 where social 

and ecological system dynamics are extensively characterized. The second question can 

be answered by the fact that: 1) the stylized facts (see section 7.2.1) identify the 

variables correlated with the decisions of the household agents, and 2) the decision 

processes integrated in the decision-making mechanism represent the important 

processes that reflect the characteristics of the real system. In addition, one pattern (i.e., 

labor pattern in rubber agroforest system) that was unintentionally modeled emerged.  

 

Role playing games (RPGs): input validation 

One way to approach the validation of a MAS model of a real-world system is input 

validation, i.e., ensuring that the structural conditions, institutional arrangements, and 

behavioral dispositions incorporated into the model capture the salient aspects of the 

actual system. In the MAS modeling approach, role-playing games (RPGs) are widely 

used as a tool to validate both the model construction and the simulation outputs 

(Barreteau et al. 2001; Barreteau et al. 2003; Etienne 2003; Castella et al. 2005; Guyot 

and Honiden 2006; Pak and Brieva 2010).  RPGs validate the MAS models by finding a 

match between observed and simulated results as well as between modeled and real 

processes (Guyot and Honiden 2006).   

Here, the simulated results generated from the LB-LUDAS model were 

validated with the results of the RPG conducted in the rubber agroforest of Jambi 



Scenario analysis of LUCC and ES trade-offs  
 

138 

 

province by Villamor and van Noordwijk (2011). The RPG was conducted to deepen 

the understanding of the system properties and dynamics, which are hardly 

communicated through interviews and surveys. Also, the RPG was designed to 

understand the behavior or reactions of the households if buyers (e.g., PES negotiators, 

oil palm companies, logging companies, etc.) were interested in converting their rubber 

agroforests or maintaining them through PES schemes. The land-use game boards were 

used to represent the rubber agroforest landscape of Jambi province, and the players 

were the same farmers as those in the survey (Chapter 3).  

Using the RPG coupled with the survey, Villamor and van Noordwijk (2011) 

explored the following questions, which were of paramount importance for the 

development of the LB-LUDAS model: 

1. How are current conservation agreements perceived at household level? Are the 

household plans and ambitions aligned with village level planning and 

commitments? Are differences between household strategies apparent? 

2. What are the responses to land-use options in a social setting with competing agents 

that promote conversion and conservation? Do these social responses match 

individual preferences? 

One of the main findings of the RPG that validates the LB-LUDAS output 

(i.e., under the PES scenario) is that no land-use change was observed throughout the 

whole game including the spatial land-use arrangement that was set by the players.  

Interestingly, “during the game, all the financial bids by external agents to secure an oil 

palm foothold in the village were rejected despite indications of declining income in the 

village”. This statement supports the LB-LUDAS simulation results regarding the fact 

that some land uses did not change (Figure 7.1 and 7.3).  

 

Indirect calibration 

The LB-LUDAS model was also validated using the indirect calibration. With this 

approach, empirical evidence is indirectly employed to identify sub-regions in the 

potential parameter space. Within sub-regions, a model is expected to replicate some 

relevant statistical regularities or stylized facts (Windrum et al. 2007). The empirical 

validation using this approach was carried out following the four main steps enumerated 

by Windrum et al. (2007): 
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1. Identify set of stylized facts interested in reproducing and/or explaining the model 

(see section 6.1.2 and 7.21) 

2. Gather all possible evidence about the underlying principles that inform on real-

world behavior (see also Chapter 3, 4, 5, and Appendix 1) 

3. Use of empirical evidence on stylized facts to restrict the space of parameters and 

determine whether the statistical regularities derived from simulation are consistent 

with the empirically-based stylized facts of interest. Chapter 6 provides insights for 

this step in which patterns derived from stylized facts were unable to replicate or 

explain the initial model results (i.e., Figure 6.2).  

4. To deepen the understanding of the causal mechanisms that underlies the stylized 

facts being studied and/or explores the emergence of fresh stylized facts. Due to the 

weak causal mechanism established using the land-use choice model alone, two sets 

of stylized facts were generated (section 7.2.1), which were considered as good 

estimators for the agents’ behavior.   

 

7.4.3 Model comparison 

To the author’s knowledge, the application of MAS/AB modeling to explore the 

possible impact of land-use policies, i.e., PES and ES trade-offs, is novel. However, it is 

also interesting to compare this model with models other than MAS/AB models that 

also quantify ES trade-offs. For example, the Integrated Valuation of Ecosystem 

Services and Trade-offs (InVEST) as a spatially explicit modeling tool (Tallis et al. 

2011) predicts changes in ecosystem services, biodiversity conservation, and 

commodity production levels (Nelson et al. 2009). From the model application in the 

Willamette Basin, Oregon, little evidence was found of trade-offs under scenarios where 

scores for ES (i.e., carbon sequestration, storm peak mitigation, water quality, and soil 

conservation) and biodiversity were high. In contrast, in scenarios that involved more 

development and had higher commodity production values but lower levels of ES and 

biodiversity, the high trade-offs could be alleviated through payments for carbon 

sequestration.   

Though a similar trend/pattern was also observed in the LB-LUDAS application, 

I wasn’t able to run the INVEST model. Thus, it is not possible to comprehensively 

compare the two models.  
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7.5 Conclusions 

The improved version of LB-LUDAS model was applied for understanding the SESs of 

a rubber agroforest landscape in Jambi province. Three scenarios namely, PES (for 

conservation pathway), SUB (development pathway) and baseline (current trend) 

scenarios were simulated. Findings show that under the PES scenario, LUCC was very 

minimal (mostly due to natural transition processes). On the other hand, LUCC under 

the SUB scenario was very evident, particularly in the rice paddies and rubber 

agroforests. 

 Regarding socio-economic and environmental impacts, under the PES scenario 

household livelihoods would be better off, and ecosystem services (i.e., carbon emission 

reduction) and biodiversity would be enhanced, suggesting synergies among them.  

While under the SUB scenario, synergies are also evident between income and ES when 

compared to baseline scenario, improvements in terms of wealth inequality and 

livelihood welfare could not be achieved.    

Furthermore, the third hypothesis is found to be acceptable, i.e., dramatic and 

unexplained oscillations (specifically in crop yields) were results of a misspecification 

in modeling the agent's behavior when relevant confounders were not incorporated in 

the agent’s model (section 6.1.3). Incorporating the decision processes as the 

confounders (i.e., PES adoption and with financial investment provision) not only 

reduced the oscillations but also provided relevant factors that could explain the 

outcome. Moreover, new emergent behavior was also observed (section 7.4.1).  
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8 CONCLUSIONS AND RECOMMENDATIONS 
 
 

The aim of this study is to contribute to the research on the understanding and 

management of the dynamics of the relationships between humans and ecosystems that 

consider various processes and feedbacks of socio-ecological systems. It also assessed 

the potential spatial and temporal impacts of payments for ecosystem services schemes 

(PES) as a widely recognized management or policy instrument for land use. Four key 

aspects of these relationships are provided.  

First, the gap between agricultural production and agro-biodiversity protection 

can be bridged. The rubber agroforest is an example of a man-made ecosystem, which is 

considered a multi-functional landscape system that could serve agricultural production 

and agro-biodiversity conservation. However, it requires a management regime or 

policy interventions to survive in a continually changing social environment. 

Second, PES schemes (i.e., eco-certification and 70% protection zoning for 

reduced emission from deforestation and degradation (REDD) strategy) as land-use 

policy interventions offer synergies among ES (i.e., carbon emission reduction), 

biodiversity and household livelihoods. Management schemes such as these reduced the 

trade-offs by enhancing ES as a result of the interactions between household agents’ 

livelihood dynamics and their land-use decisions. 

Third, the use of MAS/AB models is a highly valuable framework to tackle the 

complexity of social-ecological systems (SESs). However, essential patterns and 

processes of the systems should be incorporated to provide sound outputs while 

reflecting the real-world systems. 

Fourth, the LB-LUDAS model (with process-based decision-making sub-

models) as an integrated and multi-agent system (MAS) model was able to represent the 

dynamics and interactions as well as the processes between the human and landscape 

systems of a rubber agroforest landscape. It is a tool that quantifies and estimates 

possible impacts of land-use change policies, e.g., species loss, carbon emissions, 

opportunity costs, etc. Also, it has the basic functionalities of a negotiation-support 

system (NSS) tool to support the design of the land-use policies, as it can predict 

landscape level through the likely response of agents in externally set rules and 

incentives. 
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8.1 Where from here? 

In the following, the background of the above conclusions is summarized. Chapter 1 

describes the fundamental concepts of SESs and inherent challenges of understanding 

the coupled systems. In Chapter 2, the details of one of the frameworks for studying the 

SESs of a rubber-agroforest-dominated landscape are presented. The multi-agent system 

model, i.e., LB-LUDAS (Lubuk Beringin – Land Use DynAmic Simulator) model as 

the framework of this study, is described using the standard ODD (Overview, Design 

and Details) protocol.  

Chapter 3 characterizes the human system of the rubber agroforest landscape 

in Jambi province and addresses its heterogeneity. It also identifies the factors affecting 

the decision making of the human agents, including the decision process under specific 

conditions. Having set up the human system, Chapter 4 explores and describes the land-

use policy interventions, i.e., PES schemes such as REDD and eco-certification or eco-

labeling. The factors affecting the participation or adoption in PES schemes of the 

human agents are identified and a sub-model for decision making developed. 

Chapter 5 has a strong focus on building ecological sub-models for the bio-

physical system of the model. In this way, the criticism about the weak incorporation of 

ecological processes in most MAS/AB models is addressed. Data generated from 

empirical studies were calibrated and parameterized, and incorporated the important 

patterns and processes of the biophysical system reflecting the real rubber-agroforestry 

landscape as far as possible, i.e., species richness, forest and agronomic yields, natural 

succession and carbon sequestration.  

Chapter 6 presents the operationalization of the LB-LUDAS model. During 

this process, challenges were encountered regarding the calibration and validation of the 

empirically based MAS/AB model as manifested in the model outputs. Two 

assumptions were identified as explanations of the observed phenomenon: 1) the 

recursive use of a non-contracting function that mimics the natural oscillation, and 2) 

mis-specification of agents’ behavior when relevant confounders are not incorporated in 

the agent’s modeling. To resolve the latter hypothesis, process-based decision making 

sub-models were proposed and integrated in the LB-LUDAS’ decision-making 

mechanism. 
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Chapter 7 is the final empirically based chapter where the LB-LUDAS model 

with improved decision-making mechanisms was applied. Three scenarios were 

simulated: 1) PES (conservation pathway), 2) SUB (economic development pathway), 

and 3) baseline or current trend. As an overall result of the three scenarios, PES was 

found to be a highly desirable scenario, as it could not only reduce the trade-offs 

between ES and biodiversity but also bridge the gap between conservation of rubber-

agroforest and the livelihoods of human agents. 

 

8.1.1 Policy implications 

Three important aspects on the effectiveness and design of PES were revealed by the 

simulation results: 

1. Conditionality that links environmental context to environmental effectiveness: 

Setting up the biodiversity criteria ensures that the desired ES and biodiversity in 

rubber agroforest landscape are achieved. According to Jack et al. (2008), the long-

run viability of PES schemes may depend on techniques that estimate ES from 

easily observable ecosystem properties. Here, the criteria are based on the species 

richness and basal area of the rubber agroforest plots (as simple ES proxies) which 

were captured by the LB-LUDAS model (as pattern and process) and used to 

estimate biodiversity and carbon stocks for payments in the form of price premium. 

However, as mentioned in Chapter 4, the market for eco-certified rubber latex is still 

premature and eco-certification for rubber latex needs to be recognized by the 

certifying authorities, e.g., Forest Stewardship Council. 

2. Social inefficiency: Engel et al. (2008) point out that social welfare in PES schemes 

is reduced if households fail to adopt practices where benefits exceed the costs, or if 

households adopt practices where benefits are smaller than the costs. In practice, this 

could be judged from the type and payments provided by the PES schemes. The 

simulation results show that a price premium was assigned to those PES adopters 

who met the biodiversity criteria; the probability that the biodiversity criteria are 

met is high for rubber-based farmers (household type 2), who are the relatively poor 

households. This also suggests that the simulated PES scheme design is favorable 

for supporting the socially desirable land-use practices (see Chapter 3) and at the 

same time poor households. However, this research did not consider the transaction 
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costs for setting up rubber agroforests, which would affect the desirability of land-

use practices.    

3.  Distributional implications: According to Jack et al. (2008), the overall viability of 

PES schemes is determined by the preferences of all relevant stakeholders, in this 

case the household farmers. In Chapter 4, preference coefficients were identified 

that would determine if the household agent would or would not adopt and were 

used in the simulation. About 30-40% adoption success was simulated, and only this 

percentage of households would realize the rewards or payments. Thus, if one would 

propose to up-scale such PES schemes, factors affecting the decision to adopt or 

participate in PES schemes should be seriously considered. However, the factors 

used in the simulation only provide the observable patterns of adoption, but what 

caused the decision is not known.  

 

8.1.2 Limitations 

The overall aim of applying LB-LUDAS is to understand the possible ES trade-offs of 

land-use change policies spatially and temporally. However, the model does not provide 

accurate values for identifying the best policies. Rather, it is a tool to support the design 

of land-use policies. Aside from specific limitations mentioned in the respective 

chapters, additional shortcomings are as follows: 

1. Biodiversity equation application: The estimation of species richness was limited to 

the rubber agroforest. This was done to reduce the running time of the simulation. 

The uncertainty measurement of species richness estimates is only limited to the 

standard error of the mean. The use of biodiversity intactness variances could 

improve the biodiversity uncertainty estimates (Hui et al. 2008). 

2. Running speed (or speed of execution): Although Netlogo is one of the most user-

friendly modeling platforms, its drawback is the long running time of the simulation. 

It is not recommended for models that consider the landscape type of simulations 

with various patterns and processes that operate simultaneously. Mason and Repast 

are alternatives; however, the disadvantages are in the documentation and ease of 

learning and programming (Gilbert 2008).  

3. Data demanding model: The LB-LUDAS model demands a large amount of data 

that reflect different aspects, patterns, and processes to capture as much as possible 
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the real world system. Therefore, it is suggested to apply various data collection 

techniques such as role-playing games and semi-structured interviews. 

4. ES target: The impacts on ES trade-offs were limited to carbon sequestration, 

though important ecosystem processes (i.e., natural succession, forest, rubber 

agroforest, and shrub growth) and higher plant diversity were included.  

 

8.2 Where to from here? 

8.2.1 Theoretical development 

The LB-LUDAS model set an entry point to contribute to the science of coupled 

human-environment systems (CHES or SESs) and land-use change. However, there are 

specific areas of this complexity that are greatly in need of further development. 

Identifying thresholds is the most intriguing part for CHES scientists. So far, 

the indications of the potential system shifts in the simulated rubber agroforest 

landscape have not yet been observed. Thus, it is suggested that the rubber agroforestry 

system under the simulated conditions and assumptions is stable or at a certain 

metastable equilibrium. However, to explore this concept, further scenarios, including 

other behavioral preferences of household agents, and testing of different parameters are 

planned for the future. 

Assuming that the behaviors identified, i.e., adaptation, learning and spatial 

feedbacks, are clearly operating in the model (which are rare if not absent in most of 

MAS/AB models), answering the following research questions should be the next step 

to better understand the key components of SESs: 

1. Are there positive or negative feedbacks between spatial processes? To what extent 

does a system change its external environment? 

2. If learning is occurring, is it active or positive? What mechanisms reinforce it? Does 

adaptation occur proactively through deliberate management towards a goal or 

passively as a result of action of selective processes? 

Answers to these questions would further contribute to the understanding that 

a SES is a co-evolving system through two-way feedbacks. With this, a window of 

theoretical development is opened by linking the macro-outcomes of the LB-LUDAS 

model to emergent macro-patterns, e.g., labor shortage situation.  
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8.2.2 Methodological development 

One of the main improvements in the LB-LUDAS model is the incorporation of the 

process-based decision making. Though the PES-adoption and Preferred-land-use sub-

models produce useable estimators for the agents’ behavior, the decision-making 

routine would likely be more realistic if more direct decision estimations derived from, 

for example, multi-choice experiments would be incorporated into the modeling of 

agent's decisions (see Appendix 4). Such extended models would incorporate intended 

decisions of agents in various situations. A comparison between a simple and such an 

extended model as a standard feature in studies could help modelers to decide whether 

extended models should be preferred.  

Generally, in studying SESs, a combination of different approaches, e.g., role-

playing games, surveys, semi-structured interviews, use of historical accounts, census 

data, direct participant observation, and laboratory experiments, seems a promising way 

to model and estimate agent behavior. From this study, it was also learned that 

longitudinal data should be included to establish causal relationships and to build strong 

inference. If this is not feasible, the above proposed direct agent's decision estimation 

might be a substitution as it covers projective information.   

Stylized facts are widely applied in economic MAS/AB models to provide a 

point of reference for a comparative analysis of models intended to explain an 

observable phenomenon. Its application in this study was experimental and novel, but 

was found very useful in dealing with the questions simulation researchers are 

confronted with. The author believes that the use of stylized facts will be part of most 

MAS/AB modelers for land-use change in the years to come. 

 

8.2.3 Research outlook 

The following topics emerging from this study will be further studied by the author: 

1. Test the first hypothesis regarding the oscillation phenomenon (see Chapter 6); 

2. Analyze and ascertain the emergent properties, i.e., spatial feedback, learning and 

adaptation, that were observed under the PES scheme, and 

3. Test and compare the different proposed methods (see Appendix 4) to improve the 

decision making of agents and other validation techniques.     
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10 APPENDICES 

 
 

10.1 Appendix 1: Land-cover change in Jambi Province: intensities of change 

speed, and transition 

This supplementary chapter of the thesis presents how to detect the dominant landscape 

changes and patterns (i.e., the spatial configuration of land-use), and to understand the 

process of change (and its dynamics) through its land cover change intensity, speed and 

transition. A statistical method developed by Aldwaik and Pontius (2012) was 

implemented to answer the following questions:  

1. In which time intervals is the overall annual rate of change relatively slow versus 

fast as revealed by time interval analysis (speed of change)? 

2. Which land-cover types are relatively dormant versus active in a given time 

interval as revealed by an intensity analysis of land-cover types, and is the pattern 

stable across time intervals? and 

3. Which transitions are intensively targeted by a given land-cover type in a given 

time interval as revealed by the transition intensity analysis, and is the pattern 

stable across time intervals? 

 

10.1.1 Historical background  

At the beginning of the 20th century, rubber trees (Hevea brasiliensis) were introduced 

in Indonesia from Brazil by the Dutch. Because of the similar climate of Sumatra, 

rubber trees thrived well and rapidly replaced the farming systems (shifting cultivation) 

in the island (Gouyon et al. 1993). Forests in the area were transformed into agroforests 

through local rules by assigning property rights where rubber trees had been planted 

(van Noordwijk et al. 1995; Murdiyarso et al. 2002). Sumatra benefitted from the rubber 

boom in the 1920s and people planted more trees. The Batanghari River was used for 

transportation. Labor availability has been the primary constraint in rubber production 

(Suyanto et al. 2001), and in the periods of high rubber prices, the labor force was 

increased by migrant labor from the Kerinci Mountains and Java.  

In the 1970s, there was a big change in the island, when the government took 

up logging as a commercial activity, completed the Trans-Sumatran highway, and 

brought in a transmigrant population coming mostly from Java, which was followed by 
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the establishment of large-scale oil palm plantations in the 1990s (Martini et al. 2010). 

Van Noordwijk et al. (1995) and Tomich et al. (1998a) described the land-use change in 

the early 1990s, which saw the end phase of commercial logging and the transition of 

the transmigration villages from a production of food crops to livelihoods based on 

rubber and oil palm (Martini et al. 2010). 

In 2006, 4.7 million ha of oil palm were newly planted in Sumatra (van 

Noordwijk et al. 2008).  At the same time, rice-paddy cultivation increased in response 

to a near-doubling of the rice price from 4,500 rupiah kg-1 (USD 0.50) in 2004 to 8,000 

rupiah kg-1 (USD 0.90) in early 2007.   

 

10.1.2 Methodology 

Site description 

The study site in Sumatra includes three villages (or dusun) namely Laman Panjan, 

Lubuk Beringin and Buat covering an area of around 16,000 ha of land belonging to 

Bathin III Ulu sub-district in Jambi province. It is located between 101° 50’ to 101° 53’ 

east longitude and 01° 40’ to 01° 43’ south latitude. The terrain is flat to undulating with 

elevations ranging from 110 to 1316 m.a.s.l.  The area is dominated by lowland forests 

and mixed rubber agroforests. There are three main rivers in the area, namely the Sungai 

Buat, Sungai Letung, and Sungai Mengkuang Rivers. Surrounding these rivers are rice 

fields and settlement areas. The distance from Muara Bungo, the capital of the Bungo 

District, is about 12 km2.   

 The Bungo district has a total rubber plantation area of 91,470 ha and oil palm 

plantations with a total area of 47,606 ha. Rubber latex is the main crop produced in the 

area. Fruits such as durian, duku and rambutan and cinnamon are also produced for 

additional income. The majority of the people are rubber tappers and rice farmers. 

 

10.1.3 Data sources 

Land-cover maps of the study area for 1973, 1993 and 2005 were prepared from 

Landsat MSS, Landsat TM, and Landsat ETM images, respectively (Ekadinata et al. 

2010) under the Landscape Mosaic Project of ICRAF. Accuracy of the land-cover 

classes varies between 77.8% for settlement and 90.8% for the forest class. For rubber 

agroforest, the classification accuracy is 80.7%, while most of the misclassification 
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occurred between rubber agroforest, forest and monoculture rubber (Ekadinata and 

Vincent 2010). Map boundaries and validation were done with the participation of local 

farmers between January and March 2010.  

 

10.1.4 Land-cover transition matrix 

Land-cover transition matrices are useful conventional tools to identify key patterns of 

land-cover change. The analysis used land-cover maps for three points in time, i.e., 

1973, 1993 and 2005. All maps have a 30 m x 30 m resolution. For the first interval, the 

1973 map was overlaid with the 1993 map, and for the second interval the 1993 map 

with the 2005 map to produce two matrices (Table 10.1 and 10.2). The results of the 

overlays are presented in terms of percentage of the study area. In each matrix, the gross 

loss and gain of land-cover type between the beginning and end of the period is shown. 

Braimoh (2006) used the transition matrix with gross gain and loss for an in-depth 

analysis to reveal swap or location, i.e., simultaneous gain and loss, of a given land-

cover type, and to distinguish between random and systematic transitions (Pontius et al. 

2004). 

 

Table 10.1:  Land-cover change 1973-1993 (%) 
1973 1993 

Forest RAF Mono 
R 

Rice 
field 

Shrub 
land 

Settle-
ment 

Water 
bodies 

Total 
1973 

Loss 

Forest 55.6 12.8 12.6 0.0 0.4 0.3 0.2 82.0 26.4
Rubber 
agroforest 

0.1 6.4 3.9 0.0 0.1 0.6 0.1 11.2 4.8

Monoculture 
rubber 

0.0 0.9 1.0 0.0 0.1 0.3 0.0 2.3 1.3

Rice field 0.0 0.5 0.3 0.0 0.0 0.3 0.1 1.2 1.2
Shrubland 0.0 1.0 1.8 0.0 0.0 0.0 0.0 2.9 2.9
Settlement 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.0
Water body 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1
Total 1993 55.8 21.7 19.7 0.0 0.7 1.7 0.5 100.0 36.6
Gain 0.2 15.2 18.7 0.0 0.6 1.5 0.4 36.6 
RAF = rubber agroforest; Mono R= monoculture rubber; Sett= settlement, Water= water bodies.  
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Table 10.2:  Land-cover change 1993-2005 (%) 
  2005 
 Forest RAF Mono 

R 
Oil 

palm 
Rice 
field 

Shrub 
land 

Settle-
ment 

Water 
bodies 

Total 
1993 

Loss 

19
93

 

Forest 48.6 1.0 2.8 0.7 0.2 1.3 0.9 0.2 55.8 7.2
RAF 0.0 9.2 7.1 0.8 1.0 0.3 2.8 0.4 21.7 12.4
Mono R 0.0 4.0 12.6 1.2 0.2 0.1 1.4 0.2 19.7 7.1
Oil palm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rice field 0.0 0.1 0.3 0.1 0.0 0.0 0.1 0.0 0.7 0.6
Shrubland 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Settlement 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 1.7 0.0
Water 
bodies 

0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.2 0.5 0.3

Total 2005 48.6 14.4 23.0 2.8 1.5 1.7 7.0 1.0 100.0 27.6
Gain 0.0 5.2 10.4 2.8 1.5 1.7 5.3 0.8 27.6
RAF = rubber agroforest; Mono R= monoculture rubber; Sett= settlement, Water= water bodies.  

 

10.1.5 Land-cover change analysis 

To analyze the size and intensity of change in order to address the research questions, 

three levels of analyses were applied (Note: the term category refers to land-cover type).  

 

1. Interval level examines how the size and annual rate of change varies across the 

time interval and is given by the following equations (Aldwaik and Pontius 2012):  
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where    U = value of uniform line for time intensity analysis 
St = length of bar for time interval [Yt, Yt+1 ] 
J = number of categories  2; i  index for a category = 1, 2… J  
j = index for a category = 1, 2, … , J  
m = index for the losing category in transition of interest  
n = index for the gaining category in transition of interest  



Appendices 

164 

 

T = number of time points  2  
t  = index for a time point = 1, 2, … T  
Yt = year at time point t  
Ctij = number of cells that changed from category i at time Yt to category j 

at time Yt+1 

 

If (St)> (U), then the change is relatively fast for the given time interval; if (St) < (U), 

then the change is relatively slow for the give time interval; and if (St) = (U) for all time 

intervals, then the annual rate of change is stationary. 

 

2. Category level examines each land-cover type to measure how the size and intensity 

of both gain and loss varies across space and is given by the following equations 

(Aldwaik and Pontius 2012):   
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where Pt = value of uniform line for time interval [Yt,Yt+1] for category intensity 

analysis, Lti = length of bar for time interval [Yt,Yt+1] for gross loss of 

category i for category intensity analysis, and Gti= length of bar for time 

interval [Yt,Yt+1] for gross gain of category j for category intensity analysis 

 

The observed intensities of categories are compared to the uniform intensity of 

annual change that would occur if the change within each interval were distributed 
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uniformly over the entire study area. If the intensity bar of a category does not reach the 

uniform line, then the change is relatively dormant for that category during that interval. 

If the intensity bar extends farther than the uniform line, then the change is relatively 

active for that category during that interval. If the change were distributed uniformly 

across the landscape, then all the bars would end at the uniform line. 

 

(3) Transition level examines how the size and intensity of the transition varies among 

categories available for that transition and is given by the following equations (Aldwaik 

and Pontius in review): 

Given the empirical gross gain of category n, the following equations identify 

which categories are intensively avoided versus targeted for takeover by category n in a 

given time interval. 
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where Wtn= value of uniform intensity of transition to category n from all non-n 

categories at time Yt during time interval [Yt,Yt+1] for transition intensity 

analysis; and Rtin= length of bar of transition from category i to n during time 

interval [Yt,Yt+1] for transition intensity analysis where i  n 

 

Given the empirical gross loss of category m: 
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where Vtm = value of uniform intensity of transition from category m to all non-m 

categories at time  Yt+1 during time interval [Yt,Yt+1] for transition intensity 

analysis where j  m; and Qtmj= length of bar of transition from category m to 

category j during time interval [Yt,Yt+1] for transition intensity analysis. 

 

If the intensity bar of a category does not reach the uniform line, then the transition 

systematically avoids that category. If an intensity bar extends farther than the uniform 

line, then the transition systematically targets that category. 

 

10.1.6 Results 

Past land-cover changes and pattern 

Three main land-cover changes can be observed at the three points in time 1973, 1993 

and 2005, namely decrease in forest area, increase in monoculture rubber areas, and an 

initial increase and then subsequent decrease in rubber agroforest (Figure 10.1).  

Between 1973 and 1993 (Table 10.3b), forest experienced the highest loss in 

over 26% of the total landscape area. This is likely due to the conversion to 

monoculture rubber and rubber agroforest, which had the highest gain with 18% and 

15% of the landscape, respectively. The gain-to-loss ratio of 14.3 was highest in 

monoculture rubber, indicating that monoculture rubber experienced a 14 times higher 

gain than loss. This gain can be associated with the boom of rubber prices (up to more 

than 100% of the normal price), which made it profitable for the farmers to convert their 

complex rubber agroforest into a monoculture system (Martini et al., 2010). The change 

attributable to quantity (net change) is highest for forest (99% of total change), while 

change attributable to location (swap) is highest for monoculture rubber (47% of total 

change). 

Between 1993 and 2005, the loss in forest dropped to 7% of the landscape, 

while rubber agroforest experienced the highest loss in over 12%. Monoculture rubber 

experienced the highest gain of over 10%. Oil palm, as a new land-cover type, emerged 
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in very small areas during this period, while settlement increased in over 5%. The 

changes in rubber agroforest and monoculture are both swap (change attributable to 

location) and net change (in quantity). The swap change is highest in monoculture 

rubber (81% of the total change), while net change is highest in rubber agroforest (41% 

of the total change). It is most likely that the loss of monoculture rubber was swapped to 

the gain of 5% of rubber agroforests. Swap change dynamics accounted for 50% of the 

total land change. 
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Figure 10.1: Land-cover changes in the study site between 1973 and 2005 

 

 
Table 10.3:  Summary of land-cover changes (a) 1993-2005 and (b) 1973-1993 (%) 
(a) Total 

1993 
Total 
2005 

Gain Loss Total 
change

Swap Absolute 
net 

change 
Forest 55.8 48.6 0.0 7.2 7.2 0.0 7.2
Rubber 
agroforest 

21.7 14.4 5.2 12.4 17.6 10.3 7.3

Monoculture 
rubber 

19.7 23.0 10.4 7.1 17.5 14.2 3.3

Oil palm 0.0 2.8 2.8 0.0 2.8 0.0 2.8
Rice field 0.7 1.5 1.5 0.0 1.5 0.0 1.5
Shrubland 0.0 1.7 1.7 0.6 2.3 1.3 1.0
Settlement 1.7 7.0 5.3 0.0 5.3 0.0 5.3
Water body 0.5 1.0 0.8 0.3 1.1 0.5 0.6
Total  100.0 100.0 27.6 27.6 27.6 13.2 14.4
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(b) Total 
1973 

Total 
1993 

Gain Loss Total 
change

Swap Absolute 
net 

change 
Forest 82.0 55.8 0.2 26.4 26.6 0.3 26.3
Rubber 
agroforest 

11.2 21.7 15.2 4.8 20.0 9.5 10.5

Monoculture 
rubber 

2.3 19.7 18.7 1.3 19.9 2.5 17.4

Rice field 1.2 0.0 0.0 1.2 1.2 0.0 1.2
Shrub land 2.9 0.7 0.6 2.9 3.5 1.2 2.3
Settlement 0.2 1.7 1.5 0.0 1.5 0.0 1.5
Water body 0.1 0.5 0.4 0.1 0.5 0.1 0.4
Total 100.0 100.0 36.6 36.6 36.6 6.9 29.8
 

10.1.7 Land-cover change process  

Time interval intensity  

A comparison of the land area changed per year (St) with the uniform speed of the 

change (U) shows that in the time interval between 1993 and 2005, the speed of land-

cover change is faster (2.18%) than between 1973 and 1993 (1.83%) (Table 10.4). 

 

Table 10.4  Time intensity analysis of land-cover change for the study site (%) 
Time interval 

[Yt, Yt+1] 
Area changed per 

interval 
Area changed per 

year (St) 
Uniform speed of 
land-cover change 

(U) 
1993, 2005 27.60 2.30 2.01 
1973, 1993 36.63 1.83 2.01 

 

Land-cover type (category) intensity 

This intensity analysis examined each land-cover type to measure how the size and 

intensity of both gross losses and gross gains varies across space. The results indicate 

whether the land-cover types are active or dormant when compared to the uniform 

distribution of change (St) (table 10.5 and figure 10.2). Monoculture has highest annual 

gain, but this slightly slowed down from the first interval to the second interval. Forest 

has the largest loss during the first interval, but this slowed down during the second 

interval. Rubber agroforest during the second interval has the highest annual loss (4.8%) 

with an intensity of transition (4.78%) above the uniform intensity of distribution 

(2.30%), thus making it the most active land-cover type in terms of transition to other 

land uses.    

Table 10.3 continued 



Appendices 

169 

 

Rice field (8.33%), settlement (8.33%), and shrubland (8.24%) are also active 

categories in transition (gain); however, the values (in size) cannot be compared to 

monoculture rubber with its 3.77 % annual gain.  Thus, monoculture rubber is the most 

active in terms of annual gain in the period 1993-2005. 

 
Table 10.5  Land cover change intensity analysis for the study site in size (pixel) 
Time 

interval 
[Yt, Yt+1] 

Category/ land-
cover type 

Gross 
loss 

(numerat
or of Lii) 

Intensity 
of losses 

(Lii) 
(%)  

Gross 
gain 

(numera
tor of 
Gtj)  

Intensity 
of gains  

(Gtj) 
(%) 

Uniform 
distribution 
of change 

(St) 

19
93

-2
00

5 Forest 1042 0.00 0 0.00  
 
 

2.30 

Rubber agroforestry 1811 4.78 751 2.99 
Monoculture rubber 1037 3.01 1516 3.77 
Rice field 0 0.00 405 8.33 
Others* 93 8.13 337 7.40 

19
73

-1
99

3 

Forest 2309 1.61 14 0.01  
 
 
 

1.83 

Rubber agroforest 415 2.13 1333 3.52 
Monoculture rubber 111 2.74 1631 4.73 
Rice field 106 5.00 0 0.00 
Others* 87 4.03 75 4.54 

(Note: *Others are average due to the small changes) 

 

Transition intensity 

This analysis examines how the size and intensity of the transition varies among land-

cover types available for that transition. The results show the transition of the key land-

cover types, i.e., rubber agroforest, monoculture rubber, and rice field in 1993-2005, 

and also which land-cover types were targets (Table 10.6 and 10.7; Figure 10.3 to 10.5).  
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Figure 10.2 Land-cover type intensity analysis for 1973-1993 and 1993-2005. Red 

lines show uniform distribution of change (if bar extends above this line, 
land use is active, if is below, then it is dormant).  
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Table 10.6:  Annual (gain) transition in size (pixel) and intensity (%) between 1993 
and 2005  

Gaining 
land-
cover 
type  

Land-cover 
transition from 

Observed 
transition 

(numerator 
of Qtmj)  

Intensity of 
transition  

 (Qtmj) 

Uniform 
distribution of 

transitions 
(Vtm) 

 
R

ub
be r 

ag
ro

fo Forest 94 0.10  
 

0.50 
Monoculture rubber 581 1.56 
Rice field 0 0.00 

M
on

o
-

cu
ltu

r
e 

Forest 300 0.32  
 

1.04 
Rubber agroforest 1115 2.89 
Rice field 0 0.00 

 
R

ic
e 

fie
ld

  
 

Forest 64 0.07  
 

0.23 
Rubber agroforest 164 0.43 
Monoculture rubber 175 0.47 

 
O

il 
pa

lm
 

 

Forest 14 0.01  
 

0.06 
Rubber agroforest 50 0.13 
Monoculture rubber 37 0.10 
Rice field 0 0.00 

 
 
Table 10.7:  Annual (loss) transition in size (pixel) and intensity (%) between 1993 

and 2005  
Losing 

land-cover 
type 

Land-cover 
transition to 

Observed 
transition 

(numerator 
of Qtmj)  

Intensity of 
transition 

(Qtmj) 

Uniform 
distribution 

of transitions 
(Vtm) 

Fo
re

st
 

  

Rubber agroforest 94 0.37  
 
 

0.84 

Monoculture rubber 300 0.75 
Rice 0 1.32 

Others (settlement) 178 6.17 

R
ub

be
r 

ag
ro

fo
re

st
 

 

Forest 0 0.00  
 

1.20 Monoculture rubber 1115 2.77 

Rice 164 3.38 

M
on

o-
cu

ltu
re

 
ru

bb
er

 
 

Forest 2 0.00  
 

0.08 
Rubber agroforest 78 0.21 
Rice field 0 0.00 

R
ic

e 
fie

ld
 

  

Forest 0 0.00  
 
 

0.00 

Rubber agroforest 0 0.00 
Monoculture rubber 0 0.00 
Shrubland 0 0.00 
Settlement 0 0.00 
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Rubber agroforest was annually converted to monoculture rubber at 2.77% 

intensity, and rice field at 3.38% intensity (Table 10.6). Some of the monoculture rubber 

areas also were converted to rubber agroforest, but the rate (size of change) is less than 

50% of the rate of rubber agroforest transition to monoculture. For monoculture rubber, 

aside from rubber agroforest, shrubland areas were target areas, and forest was the 

avoided land-cover type (Figure 10.3). The conversion of monoculture rubber to 

agroforest is usually attributed to labor availability (Suyanto et al. 2001).  For rice 

fields, farmers mostly targeted the rubber agroforest and shrubland, and some of the 

monoculture rubber areas, while forest was avoided (Figure 10.4). There is a high 

transition intensity in rubber agroforest to rice fields (3.38% annually) (Table 10.7), 

whereas oil palm targeted areas where rubber agroforest, monoculture rubber and shrub 

were located (Figure 10.5). 
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Figure 10.3   Intensity of monoculture rubber’s gain (+) and loss (-) in 1993-2005. 
(Dark and light blue lines are uniform intensities of gain and loss, 
respectively. Bars that extend above line indicate the land cover targeted 
for transition, and bars below line indicate avoided land cover). 
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Figure 10.4   Intensity of rice field’s gain (+) and loss (-) in 1993-2005. (Dark and 

light blue lines are uniform intensities of gain and loss, respectively. Bars 
that extend above line indicate the land cover targeted for transition, and 
bars below line indicate avoided land cover).  
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Figure 10.5   Intensity of oil palm’s gain (1993-2005). (Dark and light blue lines are 

uniform intensities of gain and loss, respectively. Bars that extend above 
line indicate the land cover targeted for transition, and bars below line 
indicate avoided land cover). 
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10.1.8 Conclusion 

Going back to the three questions addressing the process of change: 1) Speed of change: 

The interval 1993-2005 has the fastest overall annual rate of land-cover change. 

Historical accounts support this, since during this period there was an interplay of many 

factors of land-use change (i.e., increase in the pressure of production on resources, 

changing market opportunities, and outside policy) (Lambin 2003). 2) Active land-cover 

types for change: The three main land-cover types that changed during 1993-2005 are 

rubber agroforest, monoculture rubber and shrubland. Forest cover was found to be 

dormant in this period. New land-cover types such as oil palm and rice fields emerged 

rapidly, though the areas were comparatively small compared to rubber agroforests or 

monoculture rubber. 3) Targeted land-cover types: Rubber agroforest was the most 

highly targeted land-cover type for monoculture rubber, rice and settlement areas during 

the interval 1993-2005. 

Since Jambi province is aiming to pioneer the reduction of emissions from 

deforestation and degradation (REDD scheme, information on the dynamics and process 

of land-cover change particularly between 1993 and 2005 is crucial. Without 

consideration of this information, the implementation of the scheme will fail (van 

Noordwijk and Minang 2009).  

Varying trends of transition show that the land-cover change in the study area 

from 1973 to 2005 was highly dynamic. Monoculture rubber initially replaced forest but 

now replaces agroforests.  Rubber agroforest has a high conservation value for 

conservation organizations due to its functions that resemble those of primary forest 

especially for climate mitigation and biodiversity conservation, and at the same time 

contribute to the socio-economic welfare of the villagers.  Conversion from rubber 

agroforests to monoculture crops leads to environmental trade-offs.  

The change or transition in the Jambi rubber-agroforest landscape is a highly 

complex phenomenon, and we need to know and understand if the decision making of 

the land managers is influenced by the changing socio-economic and socio-political 

factors.  Thus, the question is: "How do farmers decide which land-cover type to choose 

and what factors affect their choice?" (see Chapter 3).  
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10.2 Appendix 2: Species richness estimators16  

The following are the species richness estimator equations used for expected species 

accumulation curve. 

1. Mao Tau (Sobs) - number of species expected in the pooled Qd (Quadrats) samples, 

given the empirical data (Colwell et al. 2004).  It is expressed as: 

   H

j jobs SS
1

    (10.10) 

where Sj stands for the number of species found in exactly j samples of the 
empirical set, which has a total of H samples.   

 

2. Chao 1 (Chao 1984) – is a simple estimator of the true number of species in an 

assemblage based on the number of rare species in the sample, and is expressed as 

(Colwell and Coddington 1995): 

   
b

aSS obs 2

2
*
1

    (10.11) 

where a is the number of observed species that represented by only single 
individual in sample (i.e., the number of singletons), and b is the number of 
observed species represented by exactly two individuals in the sample (i.e., 
the number of doubletons). 

 

3. Jackknife 1 – first-order jackknife estimator of species richness (incidence-based) 

(Burnham and Overton 1978; 1979) which might be used to reduce the bias of 

estimates (Miller 1964). It is based on the number of species that occur in only one 

sample (L) and expressed as: 

   
n

nLSS obsjack
1

1    (10.12) 

where n is the number of samples.  

                                                 
16 www.viceroy.eeb.uconn.edu 
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10.3 Appendix 3: Model fitting, sources of variability and sensitivity analysis 

Model validity could be measured in terms of goodness of fit to the characters of the 

model’s referent  (Moss et al. 1997). The following are the example tests results to 

address the sources of variability in the  LB-LUDAS model generated from STATA 

(version 11): 

 

10.3.1 Correlation matrix of the whole area 

Table 10.8:  Type 1 households’ correlation matrix 
H_AGE H_SIZE H_EDU H_ACT H_DEP H_GINCPE P_USE

H_AGE 1.0000
H_SIZE 0.1495 1.0000
H_EDU 0.0000 0.1976 1.0000
H_ACT 0.0633 0.2844 0.1999 1.0000
H_DEP 0.4855 0.4044 0.0781 0.1999 1.0000
H_GINCPE 0.5401 0.1775 0.1399 0.2842 0.3598 1.0000
P_USE 0.0352 0.1001 0.2614 0.1852 0.1345 0.1737 1.0000
P_WETNES 0.0668 0.2208 0.2302 0.0563 0.1811 0.1639 0.4364
P_F45_05 0.2492 0.1297 0.3017 0.0454 0.0694 0.1851 0.2507
P_F8_0 0.020 0.0413 0.1714 0.0253 0.0319 0.1032 0.061
 

P_WETNES P_F45_05 P_F8_05
P_WETNES 1.0000
P_F45_05 0.1975 1.0000
P_F8_05 0.0047 0.6948 1.0000

 

Table 10.9:  Type 1 households’ covariance matrix 
H_AGE H_EDU H_SIZE H_DEP H_GINCPE H_ACT P_WETNES

H_AGE 110.12
H_EDU 0 .258065
H_SIZE 2.01714 .129032 1.65222
H_DEP 4.14012 .032258 .422379 .660282
H_GINCPE 13758.7 172.542 553.917 709.693 5.9e+06
H_ACT 3.79637 .580645 2.09073 .449597 3945.04 32.7056
P_WETNES 2.19587 .366145 .888704 .460751 1245.63 1.00869 9.80306
P_F45_05 193.432 79.9954 48.7258 23.7843 230160 132.992 13.6127
P_F8_0 583.752 34.2178 37.2142 12.5928 100308 57.8993 138.049

 
P_F45_05 P_F8_05

P_F45_05 844160
P_F8_05 142511 49838.3
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10.3.2 Collinearity using variance inflation factor (VIF) 

In this analysis, the question of interest is “how much is being inflated by standard error 

(SE)?” 

 

Table 10.10:  Example of the household type 1 VIF  
Variable VIF 1/VIF

P_F45_05 2.57 0.388756
P_F8_05 2.27 0.439699
H_DEP 2.22 0.449934
H_AGE 2.12 0.472784
H_SIZE 2.03 0.492330
H_GINCPE 1.77 0.564299
H_ACT 1.35 0.741258
H_EDU 1.32 0.757269
P_WETNES 1.23 0.814142

 

Table 10.11:  Example of the household type 1 collinearity 
Variable VIF Square VIF Tolerance R squared

P_USE 2.61 1.61 0.3838 0.6162
H_AGE 2.72 1.65 0.3683 0.6317
H_SIZE 2.09 1.45 0.4782 0.5218
H_EDU 1.89 1.37 0.5294 0.4706
H_ACT 1.35 1.16 0.7412 0.2588
H_DEP 2.54 1.59 0.3943 0.6057
H_GINCPE 1.91 1.38 0.5224 0.4776
P_WETNES 1.94 1.39 0.5157 0.4843
P_F45_05 3.58 1.89 0.2794 0.7206
P_F8_05 2.76 1.66 0.3622 0.6378
Mean VIF 2.34

 
 

Variable Eigenval Cond
Index

1 8.3133 1.0000
2 0.8380 3.1497
3 0.6315 3.6283
4 0.4668 4.2203
5 0.3101 5.1776
6 0.1861 6.6835
7 0.1271 8.0884
8 0.0661 11.2140
9 0.0354 15.3309
10 0.0219 19.4874
11 0.0037 47.2250
Mean VIF

Condition Number:  47.2250; & Eigenvalues & Cond Index computed from scaled raw sscp (w/ intercept) 
Det(correlation matrix):  0.0272 
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10.4 Appendix 4: Recommended cause-effect decision-making sub-model 

Rothman et al. (2008) define confounder as the factors (e.g., exposures, interventions, 

treatment, etc.) that explain or produce all or parts of the difference between the 

measure of association and the measure of effect that would be obtained with 

counterfactual ideals. In other words, confounders are known or unknown variables that 

correlate with both the dependent and the independent variables. The methodologies of 

scientific studies therefore need to control these factors to avoid a false positive (Type 

1) error or an erroneous conclusion that the dependent variables are in a causal 

relationship with the independent variable. Thus, confounding is a major threat to the 

validity of inferences made about cause and effect, as the observed effects should be 

attributed to the independent variable rather than to the confounder. One of the 

fundamental adjustment methods relies on the notion of stratification on known 

confounders. Greenland and Robins (1987) clarified the role of confounding and 

confounders by examining risks measures under a simple potential-outcome model for 

cohort individuals.  

Other ways to explore confounders as suggested by Greenland et al. (2008) are 

causal diagrams (graphical models), which provide visual models for distinguishing 

causation from association and thus for defining and detecting confounding. Potential-

outcome models which use structural equations to detect and control confounders are 

also suggested (Greenland et al. 1999a; Pearl 2000; Greenland and Brumback 2002).   

For MAS/LUCC modeling, the following methods are recommended to 

control confounders: 

1. Multiple-choice modeling as the best approach for the agent’s decision-making 

(Kloos 2011), 

2. The process-based decision making sub-model (see section 6.3) applied in this study 

with similarities to the simple potential-outcome model (Greenland and Robins 

1987), and 

3. Evolutionary programming by Manson (2006). 
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10.5 Appendix 5: Uncertainty of yield prediction: random-bounded yield 

function 

There are various sources of uncertainty in predicting crop yields. In the LUDAS 

model, Le (2005) addressed two main sources accounted for in the model: 

1. Uncertainty due to either limitation of conceptual model, limited size of dataset, or 

errors in data collection and conversion; and  

2. Unpredictable factors that occur stochastically by nature, e.g., drought, incidence of 

plant pest and disease, etc.  

These uncertainties were expressed in the model in the form of random-

bounded functions computed as follows (Le 2005): 

 

05.005.0 ln,lnln CIPCIPPpredicted yieldayieldayielda    (10.13) 

or 

)2(lnln 05.005.0 CIrandomCIPPpredicted yieldayielda   (10.14) 

where lnPa-yield is the deterministic log-yield estimated by equation 5.9 and 5.10 (see 
Chapter 5), CI0.05 is the confidence interval at 95% of the estimated log-yield, 
and random (2CI0.05) generate a random number within the bounds [0, 2CI0.05] 
following a uniform distribution. The CI0.05 is calculated as:  CI0.05 = t0.25 x s = 
1.96 x s, where s is the standard error of the estimate. 

 
According to Le (2005), in cases where there is a good estimation of yield, 

e.g., high R2 and low s, the uncertainty range becomes narrow, and the predicted yield is 

more deterministic, otherwise there would be high stochastic predictions of crop yield. 
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10.6 Appendix 6: Simulated major land-cover changes  

The following are simulation results of major land-cover changes for three scenarios: 
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Figure 10.6 Comparison of simulated changes in forest (ha) under three scenarios. 

Note: vertical segments are the confidence interval (95%) of the means 
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Figure 10.7 Comparison of simulated changes in rubber agroforest (ha) under three 

scenarios. Note: vertical segments are the confidence interval (95%) of 
the means 
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Figure 10.8 Comparison of simulated changes in rubber monoculture (ha) under three 

scenarios. Note: vertical segments are the confidence interval (95%) of 
the means 
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Figure 10.9 Comparison of simulated changes in rice (ha) under three scenarios. 

Note: vertical segments are the confidence interval (95%) of the means 
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Figure 10.10 Comparison of simulated changes shrubland (ha) under three scenarios. 

Note: vertical segments are the confidence interval (95%) of the means 
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