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Introduction

This thesis consists of four chapters. The first three chapters form an entity and the core

of this dissertation. The last chapter is a note, which is not related to the others.

More specifically, chapters one to three analyze models of contests. Contests and tourna-

ments are widespread mechanisms in many different areas of the real world. For example,

they occur in sports, politics, patent races, relative reward schemes in firms, or (public)

procurement. In contests, participants are incentivized by the possibility to win prizes.

The winning probability of a contestant depends on her performance relative to other

contestants. This structure enables the principal to commit on paying out rewards based

on (relative) performance at the end of the competition, even if performances are not

verifiable in court.

In this thesis, we analyze contests in which n players compete for one prize. The success

of a player—in absolute terms—depends on the realization of a stochastic process in con-

tinuous time. Each player has the same stochastic process (but different realizations with

probability one) and there is no correlation between the processes. A strategy of a player

specifies a stopping time for his process. Hence, it measures how long he is active in the

contest, e.g., exerts effort. The player who stops his process at the highest value wins the

prize.

The key difference of the models in this thesis compared to most of the previous literature

is a different observability assumption. Most of the literature analyzes one of two polar

cases. Either players can perfectly observe of each others contest success throughout the

competition (see, e.g., Harris and Vickers, 1987, Moscarini and Smith, 2007) or they do not
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learn anything about the contest success over time (see, e.g., Lazear and Rosen, 1981, Park

and Smith, 2008, Siegel, 2009). In contrast to this, we assume that each player observes

his own stochastic research success over time and can adjust his strategy accordingly, but

does not receive any information about the progress of his competitors. Typical examples

illustrating this setting are R&D contests for an innovation or procurement contests.

The difference in modeling compared to the full information case has implications on the

choice of equilibrium concept. In particular, we do not need to consider any refinement

of Nash equilibrium, since no new information about the success of the rivals arrives over

time. However, the existence of Nash equilibria is not obvious in our framework, since the

games have infinite strategy spaces and discontinuous payoffs. In fact, showing existence

and uniqueness for these games is one of the main technical contributions of this thesis.

In the first chapter, which is based on joint work with Philipp Strack, we study risk-taking

behavior in contests. To focus on the risk-taking behavior, we deviate from previous

literature by abstracting from effort cost. More precisely, we analyze a contest model in

which each player can decide when to stop a Brownian motion with (usually negative)

drift. A player has to stop in case of bankruptcy, i.e., at the first time his process hits

zero.

The equilibrium construction first characterizes the unique candidate for an equilibrium

distribution over final values of the stopped process. To verify equilibrium existence, we

then apply a result from probability theory by Pedersen and Peskir (2001) to show that

there exist a stopping time which induces the equilibrium distribution. Moreover, we

explicitly derive a corresponding strategy for the two-player case.

In equilibrium, agents do not stop immediately even if the drift is negative, since they

maximize their expected winning probability rather than their expected value. As it turns

out, the expected value of the equilibrium distribution of an agent is non-monotone in

drift and variance. Hence, the principal incurs highest expected losses in the natural case

in which the drift is only slightly negative. Potential applications of the model include

competition between managers of private equity funds, competition in declining industries,

and optimal strategies for roulette tournaments.
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The second chapter, which is based on joint work with Philipp Strack, introduces flow

costs of continuation to the setting of the first chapter. Moreover, differing from the

first chapter, we now assume that the drift is positive and abstract from the bankruptcy

constraint. Hence, the analysis in this chapter is a lot more in the spirit of the contest

literature; natural applications of the model include R&D and procurement contests.

Imposing mild assumptions on the cost function, we prove existence and uniqueness of

the Nash equilibrium outcome with similar techniques as in the first chapter. In addition,

we apply a recent mathematical result from Ankirchner and Strack (2011) to construct

a bounded time stopping strategy—a strategy which stops almost surely before a fixed

time T—which induces the equilibrium distribution. From a technical point of view, this

introduces a method to construct equilibria in continuous time games that are independent

of the time horizon given the horizon is long enough. This result also reinforces the

economic relevance of the model, since most real-world contests end within bounded time.

We then discuss the relation of our model to static all-pay contests. As the variance

converges to zero, the equilibrium distribution of the game converges to that of the sym-

metric equilibrium of an all-pay auction. The implication of this result is twofold. First,

it provides an equilibrium selection argument in favor of the symmetric equilibrium in the

symmetric all-pay auction discussed in Baye et al. (1996). Second, the result supports the

validity of all-pay models to analyze contests in which the variance is negligible.

For positive variance, each participant makes positive profits. Intuitively, he generates

rents through the private information about his research progress. In the case of two

players and constant costs, the profits of each player increase as each player’s costs increase,

variance increases, or productivity decreases. Thus, according to the model, participants

prefer to have mutually worse technologies or to take part in contests whose outcome is

more random. This finding, which cannot be obtained in an all-pay contest, goes along

with the common intuition that competitors prefer competition to be less fierce.

In the third chapter, which is based on joint work with Matthias Lang and Philipp Strack,

we scrutinize a contest model with a simpler, weakly increasing technology. More precisely,
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as long as a player exerts costly effort, i.e., does not stop the process, he receives draws

according to a Poisson process. At a fixed deadline T , the player who has accumulated

most draws wins the prize.

In this setting, we find that if the deadline is sufficiently high, the set of equilibrium

distributions of the contest is equivalent to that of a single-prize common-value all-pay

auction with discrete bids. We derive an explicit lower bound on the required contest

length until the long-run equilibrium distribution is feasible. Hence, the all-pay auction

is also a suitable model to analyze stochastic contests in a setting with a purely additive

research structure and a sufficiently long time horizon. In the end, we briefly discuss how

the equilibrium set of the game changes if the duration of the contest is low.

The last chapter of this dissertation, which is based on joint work with Philipp Wichardt,

refines the valuation equilibrium concept originally introduced by Jehiel and Samet (2007).

In this concept, (boundedly rational) players group different moves in a game tree into

similarity classes. They attach a valuation, i.e., a real number, to each similarity class.

Whenever a player has to make decision, she chooses only moves from similarity classes

with the (locally) highest valuation. In equilibrium, valuations are confirmed by equilib-

rium outcomes.

Instead of keeping the grouping of moves into similarity classes entirely exogenous as Jehiel

and Samet (2007) do, we start with an intuitive basic grouping, which players can refine

at a lexicographic cost. The modified equilibrium concept takes the trade-off between a

more costly grouping and its potential benefits into account. Hence, it makes the valuation

concept applicable to games at hand without having to specify the grouping ad hoc.

We apply the modified concept to a burning money game. It predicts that adding a

possibility of burning money, i.e., publicly harm oneself, has no influence on the equilibrium

set of a coordination game. This result, which differs from standard solution concepts

like subgame perfect equilibrium or forward induction, is roughly in line with empirical

evidence for the game gathered by Huck and Müller (2005). Moreover, it highlights the

high degree of rationality entailed in standard solution concepts for this game.
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Chapter 1

Gambling in Contests

This chapter presents a strategic model of risk-taking behavior in contests. Formally, we

analyze an n-player winner-take-all contest in which each player decides when to stop a

privately observed Brownian motion with drift. A player whose process reaches zero has

to stop. The player with the highest stopping point wins.

We derive a closed-form solution of the unique Nash equilibrium outcome of the game.

Contrary to the explicit cost for a higher stopping time in a war of attrition, here, higher

stopping times are riskier, because players can go bankrupt. In equilibrium, the trade-off

between risk and reward causes a non-monotonicity: highest expected losses occur if the

process decreases only slightly in expectation.

1.1 Introduction

To provide more excitement for the players, the (online) gambling industry introduced

casino tournaments. The rules are simple: all participants pay a fixed amount of money

prior to the tournament—the “buy-in”—that enters into the prize pool. In return, they

receive chips, which they can invest in the casino gamble throughout the tournament. At

the end of the tournament, the player who has most chips wins a prize, which is the sum

of the buy-ins minus some fee charged by the organizers. Benefits are two-sided: players
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restrict their maximal loss to the buy-in and enjoy a new, strategic component of the

game; the casino makes a sure profit through the fee it charges.

The observability of each other’s chip stacks throughout the tournament depends on the

provider. The no-observability case provides a good illustration of our model—in equilib-

rium, players use the gamble even though it has a negative expected value.1

In the model, each player decides when to stop a privately observed Brownian motion (Xt)

with (usually negative) constant drift coefficient µ, constant diffusion coefficient σ, and

initial endowment x0. If a player becomes bankrupt, i.e., Xt = 0, she has to stop. The

player who stops at the highest value wins a prize.

Instead of an explicit cost for a higher contest success (e.g., Lazear and Rosen, 1981,

Hillman and Samet, 1987), here, higher prizes are riskier. In equilibrium, players maximize

their winning probability rather than the expected value of the process. Hence, they do not

stop immediately even if the underlying process is decreasing in expectation. Intuitively,

if all other players stop immediately, it is better for the remaining player to play until she

wins a small amount or goes bankrupt, since she can ensure to win an arbitrarily small

amount with a probability arbitrarily close to one.

In the unique equilibrium outcome, expected losses are non-monotonic in the expected

value of the gamble—a more favorable gamble can lead to higher expected losses. Intu-

itively, this results from the trade-off between risk and reward: if the gamble has only a

slightly negative expected value, the relatively high probability of winning makes people

stop later, which increases expected losses. If the principal—who might have imperfect in-

formation about the drift—obtains wins or losses of the players, contests are not a reliable

compensation scheme, because even with a slightly negative drift, the principal incurs a

large loss.

1Several online casinos use a leaderboard for the chip stacks. In most cases, however, it updates with a
delay to create more tension. In this variant, players should only play close to the end of the contest
to veil their realizations.
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The formal analysis proceeds as follows. Proposition 1 derives a necessary formula for

an implied stopping chance F (x) in the symmetric equilibrium of an n-player game that

pinpoints the unique candidate equilibrium distribution. To do so, we exploit that each

player has to be indifferent whether to stop or to continue at any point of her support at

any point in time.

For the two-player case, Proposition 2 derives the equilibrium stopping time that induces

F (x) explicitly. It involves mixing whether to stop with a chance that depends on the

current state Xt. Proposition 4 extends Proposition 1 and 2 to a two-player game with

asymmetric starting values.

For more than two players, Proposition 3 ensures the existence of a stopping time that

induces F (x). Its proof relies on a result in probability theory on the Skorokhod embedding

problem. This literature—initiated by Skorokhod (1961, 1965)—analyzes under which

conditions a stopping time of a stochastic process exists that embeds, i.e., induces, a given

probability distribution; for an excellent survey article, see Oblój (2004). In the proof

of Proposition 3, we verify a sufficient condition from Pedersen and Peskir (2001). This

whole approach is new to game theory and the main technical contribution of this chapter.

Proposition 5 provides the main characterization result: the general shape of the expected

value of the stopped processes is quasi-convex, falling, then rising in drift µ and variance

σ. In particular, highest expected losses occur if the process decreases only slightly in

expectation.

Apart from casino tournaments, this chapter provides a stylized model for the following

applications. First, consider a private equity fund that invests in start-up companies. The

value of the fund is mostly private information until maturity, because start-ups do not

trade on the stock market and the composition of the fund is often unknown. The model

analyzes a competition between fund managers in which, at maturity, the best performing

manager gets a prize—a bonus or a job promotion.

In this application, there are several possible reasons for a downward drift. For instance,
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there may be no good investment opportunities in the market. Moreover, the downward

drift may capture the cost of paying an expert to search for possible investments. The

model predicts that return on investment is very sensitive to the profitability of investment

opportunities. In particular, a slightly negative drift is most harmful for the investors. In

this case, contestants behave as if they were risk-loving, which a payment based on absolute

performance could avoid.

As a second example, consider a competition in a declining industry. In a duopoly, for

instance, firms compete to survive and get the monopoly profit. Fudenberg and Tirole

(1986) model the situation as a war of attrition—only the firm who stays alone in the

market wins a prize, but both incur costs until one firm drops out.

In an interpretation of our model, managers of both firms decide if they want to make

risky investments, e.g., in R&D or stocks of other firms. Investments are costly, but could

improve the firm’s value. When the duopoly becomes unprofitable, the firm with the

higher value wins—either by a take-over battle or because the other firm cannot compete

in a prize war—and its manager keeps his job.

Our model predicts that managers choose very risky strategies. In particular, investors lose

most money in expectation if investment opportunities have a slightly negative expected

value, which is consistent with being in a declining industry. This effect increases in the

asymmetry of the firms’ values. Intuitively, to satisfy the indifference condition for the

stronger firm, the weaker firm has to make up for its initial disadvantage by taking higher

risks.

1.1.1 Related Literature

Hvide (2002) investigates whether tournaments lead to excessive risk-taking behavior.

He modifies Lazear and Rosen (1981) by assuming that players bear costs to raise their

expected value, but can raise their variance without costs. In equilibrium, they choose

maximum variance and low effort. Similarly, Anderson and Cabral (2007) scrutinize an
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infinite competition in which two players, who observe each other, can update their binary

choice of variance continuously. In their model, flow payoffs depend on the difference in

contest success. In equilibrium, both players choose the risky strategy until the lead of

one player is above a threshold; in this case, the leader switches to the save option.

In the literature on races, players balance a higher effort cost against a higher winning

probability. Moscarini and Smith (2007)—building on a discrete time model of Harris and

Vickers (1987)—analyze a two-person continuous-time race with costly effort choice. In

equilibrium, effort is increasing in the lead of a player up to some threshold above which

the laggard resigns; for an application to political economy, see also Gul and Pesendorfer

(2011). These papers assume full observability of each other’s contest success over time.

In our model, however, stopping decisions and realizations of the rivals are unobservable.

Regarding the assumptions on information and payoffs, the model most resembles a silent

timing game—as first explored in Karlin (1953), and most recently, in Park and Smith

(2008). The latter paper also generalizes the all-pay war of attrition, and so assumes that

later stopping times cost linearly more. Contrary to a silent timing game, in this chapter,

players do not only possess private information about their stopping decision, but also

about the realization of their stochastic process.

Finally, this chapter relates to the finance literature on gambling for resurrection, e.g.,

Downs and Rocke (1994). In this literature, managers take unfavorable gambles for a

chance to save their firms from bankruptcy. Here, however, players take high risks to veil

their contest outcomes.

We proceed as follows. Section 1.2 introduces the model. Section 1.3 derives the unique

equilibrium distribution. In Section 1.4, we state the main characterization result, Propo-

sition 5, and discuss its implications. Section 1.5 concludes.
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1.2 The Model

There are n agents i ∈ {1, 2, . . . , n} = N who face a stopping problem in continuous time.

At each point in time t ∈ R+, agent i privately observes the realization of a stochastic

process Xi = (Xi
t)t∈R+ with

Xi
t = x0 + µt+ σBi

t .

The constant x0 > 0 denotes the starting value of all processes; see Section 1.3.3 for

heterogeneous starting values. The drift µ ∈ R is the common expected change of each

process Xi
t per time, i.e., E(Xi

t+∆ − Xi
t) = µ∆. The noise term is an n-dimensional

Brownian motion (Bt) scaled by σ ∈ R+.

1.2.1 Strategies

A strategy of player i is a stopping time τ i. This stopping time depends only on the

realization of his process Xi
t , as the player only observes his own process.2 Mathematically,

the agents’ stopping decision until time t has to be F it -measurable, where F it = σ({Xi
s :

s < t}) is the sigma algebra induced by the possible observations of the process Xi
s before

time t. We restrict agents’ strategy spaces in two ways. First, we require finite expected

stopping times, i.e., E(τ i) <∞. Second, a player has to stop in case of bankruptcy. More

formally, we require τ i ≤ inf{t ∈ R+ : Xi
t = 0} a.s.. To incorporate mixed strategies,

we allow for randomized stopping times—progressively measurable functions τ i(·) such

that, for every ri ∈ [0, 1], τ i(ri) is a stopping time. Intuitively, agents can draw a random

number ri from the uniform distribution on [0, 1] before the game and play a stopping

strategy τ i(ri).

2The equilibrium of the model would be the same if the stopping decision was reversible and stopped
processes were constant.
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1.2.2 Payoffs

The player who stops his process at the highest value wins a prize, which we normalize to

one without loss of generality. Ties are broken randomly. Formally,

πi = 1
k

1{Xi
τi

=maxj∈N Xj

τj
} ,

where k = |{i ∈ N : Xi
τ i = maxj∈N Xj

τ j
}|. As payoffs add up to one, the game is a

constant sum game. All agents maximize their expected payoff, i.e., the probability to win

the contest. This optimization is independent of their attitude towards risk.

1.2.3 Condition on the Parameters

To ensure equilibrium existence in finite time stopping strategies, we henceforth impose a

technical condition that places a positive upper bound on µ; for a discussion, see Section

1.3.2.

Assumption 1. µ < log(1 + 1
n−1) σ2

2x0
.

1.3 Equilibrium Analysis

In this section, we first derive the unique candidate for an equilibrium distribution. Sec-

ond, we prove equilibrium existence—this is not trivial as the game has discontinuous

payoffs and infinite strategy spaces. Our proof verifies the existence of a stopping time,

which induces the candidate for an equilibrium distribution. We close the section with an

extension to asymmetric starting values.
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1.3.1 The Equilibrium Distribution

Every strategy of agent i induces a (potentially non-smooth) cumulative distribution func-

tion (cdf) F i : R+ → [0, 1] of his stopped process, where F i(x) = P(Xi
τ i ≤ x).

The probability of a tie is non-zero only if the distributions of at least two agents have

a mass point above zero or the distributions of all agents have a mass point at zero or

both.3 The next lemma proves otherwise.

Lemma 1. In equilibrium, for every x > 0, no agent i ∈ N has a mass point at x, i.e.,

P(Xi
τ i = x) = 0. At least one agent has no mass point at zero.

We omit the proof and present a verbal argument instead, because the proof is simply

a specialization of the now standard logic in static game theory with a continuous state

space; e.g., Burdett and Judd (1983). As usual, mixed strategies in a competitive game

can have no interior mass point at the same point in the state space (here, the same x),

since this would create a profitable deviation in one direction: With a slightly higher x,

one raises one’s win chance a boundedly positive probability with an arbitrarily small loss,

since one beats everyone with lower x and the one player with mass at x; however, an

agent can have a mass point at zero, since any other player who can pass him would have

already been bankrupt.

Lemma 1 renders the tie-breaking rule obsolete, because it implies that the probability of

a tie is zero. Denote the winning probability of player i if he stops at Xi
τ i = x by ui(x),

where ui(x) : R+ → [0, 1]. As there are no mass points away from zero, we can express

ui(x) in terms of the other agents’ cdf’s.

ui(x) = P(x > max
j 6=i

Xj
τ j

) + 1
k

P(x = max
j 6=i

Xj
τ j
})︸ ︷︷ ︸

=0

=
∏
j 6=i

P(Xj
τ j
≤ x) =

∏
j 6=i

F j(x) (1.3.1)

3As common in economic literature, we do not consider the mathematical problem of an accumulation of
mass points (Cantor Construction); we thus assume that either there is only a finite number of mass
points or they have no accumulation point.
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We call ui(·) the utility function of agent i given the distributions of the other agents.

These utility functions are helpful to derive the equilibrium—a point where each player

maximizes E(ui(Xi
τ i)) .

Denote the right endpoint of the support of the distribution of player i by xi = sup{x :

F i(x) < 1} and the left endpoint by xi = inf{x : F i(x) > 0}. The right endpoint has

to be finite, because agents can only use strategies that stop almost surely in finite time.

The following results establish necessary conditions on ui and the distribution functions

in equilibrium; the proofs are in the appendix.

Lemma 2. The utility ui of every agent i ∈ N is strictly increasing on the interval [xi, xi].

Lemma 3. For each player i, the utility ui(Xi
t) is a local martingale on the interior of

the support of his distribution, i.e., Xi
t ∈ (xi, xi)⇒ E(dui(Xi

t)|F it ) = 0.

Lemma 4. The support of the cdf of each player is identical and starts at zero.

All players share the same utility function. Hence, Lemma 3 and 4 directly imply the

following corollary:

Corollary 1. The unique equilibrium distributions are atomless and symmetric.

As the utility ui does not depend on time (∂ui∂t = 0), by Itô’s lemma (Revuz and Yor, 2005,

p.147) the expected change in utility per marginal unit of time is

E(dui(Xi
t)|F it ) = E

(
(µui′(Xi

t) + σ2

2 u
i′′(Xi

t))dt+ ui
′(Xi

t)σdBt|F it

)

= µui
′(Xi

t) + σ2

2 u
i′′(Xi

t)dt .

By Lemma 3, this equation is equal to zero for all x on the support of F i, which yields

the following ordinary differential equation:

0 = µui
′(x) + σ2

2 u
i′′(x) .

For µ 6= 0, all solutions to this equation are of the form ui(x) = α + β exp(−2µx
σ2 ) for all

constants α, β ∈ R. To fix α and β, we use two constraints on ui. First, all players win
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with probability 1
n in equilibrium (Corollary 1). In particular, they do so when they stop

immediately (Lemma 3). Second, the value of the cdf at zero is zero, because the support

is atomless (Corollary 1). Thus, we get:

1
n

= ui(x0) = α+ β exp(−2µx0
σ2 )

0 = ui(0) = α+ β .

This system of equations uniquely determines α and β, and thereby also ui as

ui(x) = min
{

1, 1
n

exp(−2µx
σ2 )− 1

exp(−2µx0
σ2 )− 1

}
.

It remains to construct the corresponding equilibrium distributions. For this purpose, we

insert the symmetry property of the equilibrium (Corollary 1) into equation (1.3.1) to get

ui(x) =
n∏
j 6=i

F j(x) = F (x)n−1 ⇒ F (x) = n−1
√
ui(x) .

Hence, we characterize the unique candidate for an equilibrium distribution as follows (for

an illustration, see Figure 1):

Proposition 1. Assume µ 6= 0. A strategy profile is a Nash equilibrium, if and only if

each player’s strategy induces the cumulative distribution function

F (x) = min

1, n−1

√√√√ 1
n

exp(−2µx
σ2 )− 1

exp(−2µx0
σ2 )− 1

 .

Proof. We have already proven that any equilibrium strategy is symmetric and induces

the distribution F . Assumption 1 ensures that there exists a finite x such that F (x) = 1;

see Section 4.2 for details. To complete the proof, we need to show that no deviation

gives a player a winning probability greater than 1
n . Recall that, by construction of the

function F (·), the process (ui(Xi
t))t∈R+ is a supermartingale. For every stopping time

τ <∞, consider the sequence of bounded stopping times min{τ, n} for n ∈ N. By Doob’s

optional stopping theorem (Revuz and Yor, 2005, p.70), E(ui(Xi
min{τ,n})) ≤ ui(Xi

0). As
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Figure 1.1: An example (µ = −0.1, x0 = 100, σ = 1) of the equilibrium cdf’s for different
sizes of players n.

u(Xi
t) ∈ [0, 1] is bounded, we can apply the dominated convergence theorem to get

E(ui(Xi
τ )) = E( lim

n→∞
ui(Xi

min{τ,n})) = lim
n→∞

E(ui(Xi
min{τ,n})) ≤ u

i(Xi
0) = 1

n
.

To complete the analysis, we scrutinize the special case in which Xi
t is a martingale,

i.e., µ = 0. In this case, the first term in the differential equation vanishes. The same

calculation as in the case µ 6= 0 yields the unique equilibrium distribution, where

F (x) = min
{

1, n−1

√
x

nx0

}
.

F (x) is continuous in µ at µ = 0, because the same formula follows by taking limits in

Proposition 1, using the approximation eA = 1 +A+O(A2) for small A.
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1.3.2 Equilibrium Strategies

So far, we have been silent about the existence of a finite time stopping strategy τ inducing

the equilibrium distribution F . For a given distribution to be implementable in finite time

stopping strategies, its right endpoint has to be finite. Recall that

1 = F (x) = n−1

√√√√ 1
n

exp(−2µx
σ2 )− 1

exp(−2µx0
σ2 )− 1

.

Hence, the right endpoint x satisfies

x = −σ
2

2µ log(n(exp(−2µx0
σ2 )− 1) + 1) .

Consequently, the right endpoint is finite if and only if µ < − log(1− 1
n) σ2

2x0
, i.e., Assump-

tion 1 holds; otherwise, no equilibrium in finite time stopping strategies exists. Intuitively,

if the drift becomes too large, for every point x, the strategy, which stops only at 0 and

x, reaches x with a probability higher than 1
n ; this strategy with x ≥ xi would thus be a

profitable deviation for any equilibrium candidate with a finite right endpoint.

In the next step, we derive strategies inducing the distribution F in the two-player case

to convey the main intuition. The construction uses a mixture of deterministic threshold

strategies. To formalize this intuition, we introduce the martingale transformation

φ : R+ → R+, where

φ(x) =
exp(−2µx

σ2 )− 1
exp(−2µx0

σ2 )− 1
.

By Itô’s lemma (since φ′′/φ′ = −2µ/σ2), the process (φ(Xi
t))t∈R+ is a martingale. In this

case, F (x) = φ(x)/2.

Proposition 2. If agent i randomly selects a number α ∈ (0, 1] from a uniform distribution

and stops if

τ i = inf{t : |φ(Xi
t)− 1| ≥ α} ,

then the cumulative distribution function induced by this strategy equals F , i.e.,

P(Xi
τ i ≤ x) = F (x).
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Proof. By the martingale property of (φ(Xi
t))t∈R+ , we get

P(φ(Xi
τ i) = 1− α) = P(φ(Xi

τ i) = 1 + α) = 1
2 .

As α is uniformly distributed on (0, 1] and agent i stops iff φ(Xi
t) = 1 ± α, the random

variable φ(Xi
τ i) is uniformly distributed on [0, 2]. It follows that

P(Xi
τ i ≤ x) = P(φ(Xi

τ i) ≤ φ(x)) = φ(x)
2 = F (x) .

For more than two players, the feasibility proof requires an auxiliary result from prob-

ability theory on the Skorokhod embedding problem. This literature studies whether a

distribution is feasible by stopping a stochastic process; in their terminology, there ex-

ists an embedding of a probability distribution in the process. Skorokhod (1961, 1965)

analyzes the problem of embedding in Brownian motion without drift. In a recent contri-

bution, Pedersen and Peskir (2001) derive a necessary and sufficient condition for general

non-singular diffusions. They define the scale function S(·) by

S(x) =
∫ x

0
exp(−2

∫ u

0

µ(r)
σ(r)dr)du = −σ

2

2µ(exp(−2µx
σ2 )− 1) .

Lemma 5 (Pedersen and Peskir, 2001, Theorem 2.1.). Let (Xt) be a non-singular diffusion

on R starting at zero, let S(·) denote its scale function satisfying S(0) = 0, and let ν be a

probability measure on R satisfying |S(x)|ν(dx) <∞ . Set m =
∫
R S(x)ν(dx). Then there

exists a stopping time τ∗ for (Xt) such that Xτ∗ ∼ ν if and only if one of the following

four cases holds:

(i) S(−∞) = −∞ and S(∞) =∞ ;

(ii) S(−∞) = −∞, S(∞) <∞ and m ≥ 0 ;

(iii) S(−∞) > −∞, S(∞) =∞ and m ≤ 0 ;

(iv) S(−∞) > −∞, S(∞) <∞ and m = 0 .

Hence, to prove feasibility for our distribution F , it suffices to show m = 0.
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Proposition 3. There exists a stopping strategy inducing the distribution F (·) from Propo-

sition 1.

Proof. To verify the condition in Pedersen and Peskir (2001), we need a process which

starts in zero. Thus, we consider the process X̃t = Xt −X0. After some transformations,

we get S(x− x0) = −σ2

2µ(1− exp(2µx0
σ2 ))(φ(x)− 1). This gives us

m =
∫

R
S(x− x0)f(x)dx

= −σ
2

2µ

(
1− exp(2µx0

σ2 )
)(∫

R
f(x)φ(x)dx− 1

)
.

Consequently, it remains to show
∫
R f(x)φ(x)dx = 1.

∫
R
f(x)φ(x)dx =

∫ x

0

(n−
1

n−1 )
n− 1 φ(x)−

n−2
n−1φ′(x)︸ ︷︷ ︸

f(x)

φ(x)dx

=
∫ φ(x)

φ(0)

(n−
1

n−1 )
n− 1 y

1
n−1 dy

=

(n−
1

n−1 )
n

y
n
n−1

y=φ(x)=n

y=φ(0)=0
= 1 .

As m = 0, there exists an embedding for the distribution F by Theorem 2.1. in Pedersen

and Peskir (2001).4

Proposition 1 and 3 combined yield F as the unique equilibrium distribution of the game.

4An alternative proof of Proposition 3 would verify a result on embedding in Brownian with drift from
Grandits and Falkner (2000) for the process X̃t = Xt−X0

σ
.
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1.3.3 An Extension: Asymmetric Starting Values

In this extension, we allow for heterogeneous starting values. To get an analytical solution,

we restrict attention to the two-player case—without loss of generality x1
0 > x2

0. The proof

of the following proposition is similar to the proof of Proposition 1.

Proposition 4. In equilibrium, the cdf of the first player is

F 1(x) = min

1, 1
2

exp(−2µx
σ2 )− 1

exp(−2µx1
0

σ2 )− 1

 .

The cdf of the second player is

F 2(x) = min

1, ρ+ (1− ρ)1
2

exp(−2µx
σ2 )− 1

exp(−2µx1
0

σ2 )− 1

 .

Proof. The cdf of player 1 is the same as in the symmetric case. Thus, it is feasible by

Proposition 2. For player 2, consider the following strategy: First, play until X2
t ∈ {0, x1

0};

if x1
0 is reached, use the same stopping strategy as player 1. This induces the above cdf,

where the constant ρ—probability of absorption in 0—fulfills

ρ =
exp(−2µ(x1

0−x
2
0)

σ2 )− 1

exp(−2µ(x1
0−x

2
0)

σ2 )− exp(2µx2
0

σ2 )
.

As in the proof of Proposition 1, the expected winning probability for each player in

the above equilibrium candidate is the same as if he stops immediately. Furthermore, as

ui(Xi
t) is a supermartingale and a local martingale on the support by construction, the

same reasoning as in the proof of Proposition 1 applies. Hence, no player can do better

than to stop immediately, which yields the equilibrium payoff. We show uniqueness of the

equilibrium in the appendix.

Compared to the symmetric case, the player with the lower starting value takes more risks

here. In particular, he loses everything with probability ρ and takes the same gamble as

player 1 with probability 1−ρ. Asymmetry in the contest leads to higher percentage losses
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for a negative drift, because the handicapped player takes higher risks to offset his initial

disadvantage.

1.4 Comparative Statics

This section analyzes how changes in the parameters affect the expected value of the

stopped processes. To determine the expected value, we first calculate the density from

the cdf in Proposition 1:

f(x) = 2µ
n(n− 1)σ2

2−n
n−1

√√√√ exp(−2µx
σ2 )− 1

n(exp(−2µx0
σ2 )− 1)

exp(−2µx
σ2 )

1− exp(−2µx0
σ2 )

.

In what follows, we restrict attention to the two-player case for tractability; in the ap-

pendix, we state the formula for the expected value for n players. We use the density f

to derive the expected value of the stopped processes for two players:

E(Xτ ) = Ef (x) =
∫ x

0
xf(x)dx

= σ2

2µ + (1 + 1
2(exp(−2µx0

σ2 )− 1)
)(x0 −

σ2 log(2− exp(2µx0
σ2 ))

2µ ) .

The explicit formula of the expected value allows us to characterize its shape in the

following proposition—the proof is in the appendix.

Proposition 5. E(Xτ ) is quasi-convex, falling, then rising in µ. If µ < 0, E(Xτ ) is

quasi-convex, falling, then rising in σ.

Hence, an increase in the drift does not imply an increase in the expected value of the

stopped processes. Intuitively, for µ < 0, there are two opposing effects: an increase in

the drift lowers the expected losses per time but increases the expected stopping time.

Similarly, as the variance increases, the gamble gets more attractive, but it also takes less

time to implement the equilibrium distribution.
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Figure 1.2: An example (n = 2, x0 = 100) of the expected value of the stopped processes
E(Xτ ) depending on the drift µ for different values of variance σ.
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Figure 1.3: An example (n = 2, x0 = 100) of the expected value of the stopped processes
E(Xτ ) depending on the variance σ for different values of drift µ.
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From an economic point of view, Proposition 5 illustrates a drawback of relative perfor-

mance payments in risky environments: even if risky investment opportunities have only

a slightly negative expected value, the principal loses a lot in expectation. Intuitively,

contestants only care about outperforming each other and thus behave as if they were

risk-loving. A simple linear compensation scheme based on absolute performance would

not suffer from this drawback.

1.5 Conclusion

We have studied a new continuous’ time model of contests. Contrary to the previous

literature, players face a trade-off between a higher winning probability and a higher risk.

If there are no good investment opportunities available, e.g., in a declining industry, con-

testants behave as if they were risk-loving—they invest in projects with negative expected

returns. According to our main characterization result, Proposition 5, this problem is

most severe for the natural case in which the drift is close to zero.

From a technical point of view, this chapter has developed a new method to verify equi-

librium existence. The approach via Skorokhod embeddings seems promising to analyze

other models without observability, because there are many sufficient conditions available

in the probability theory literature.

1.6 Appendix

Proof of Lemma 2: Assume, by contradiction, there exists an interval I = (a, b) ⊂ [xi, xi]

such that ui(x) =
∏
j 6=i F

j(x) is constant for all x ∈ I. We distinguish three cases:

(i) For all player’s j 6= i, F j(a) = 1 . Hence, by optimality, player i stops with probability

1 whenever at maxj 6=i xj . This implies maxj 6=i xj ≤ a ≤ xi and player i wins for sure.

Player j can deviate profitably and stop only if she hits 0 or xi, which contradicts the

equilibrium assumption.
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(ii) There exists a player j 6= i with F j(b) = 0. Hence, in equilibrium, no player ever stops

in the interval (0, xj), but at least two players stop with positive probability in every ε-ball

around xj . To stop at xj (with ui(xj) = 0 by Lemma 1) is strictly worse than to continue

at xj until Xi
t ∈ {0,maxj xj}. By continuity (Lemma 1), the argument extends to an

ε-neighborhood of xj . This contradicts the equilibrium assumption of weak optimality of

stopping in (xj , xj + ε).

(iii) No player j 6= i stops in I, but (i) and (ii) do not hold. Hence, player i does not

stop in I. Denote by x̃ the infimum of points above b at which a player stops. At

x̃ (and, by continuity at an ε-neighborhood of x̃), it is strictly better to continue until

Xj
t ∈ { b+a2 ,maxj xj} than to stop, which contradicts the equilibrium assumption.

Proof of Lemma 3: We define Φ(x) =
∏n
i=1 F

i(x) = F i(x)ui(x). Denote the set of players

who stop at x by M(x) ⊆ N , i.e.,

M(x) = {i ∈ {1, . . . , n} : (F i)′(x) 6= 0} .

By Lemma 2, |M(x)| ≥ 2 for all mini∈N xi < x < maxi∈N xi. For notational convenience,

we omit the point x, at which all functions are evaluated, i.e., we write F i and M instead

of F i(x) and M(x). Furthermore, we write E(dui(x)) shorthand for E(dui(Xi
s)|F is) given

Xi
s = x. For every agent k /∈M , we have:

|M |Φ′ =
∑
i∈M

(F iui)′ =
∑
i∈M

(
F iui

′ + F i
′
ui
)

=
∑
i∈M

F iui
′ +

∑
i∈N

F i
′
ui︸ ︷︷ ︸

Φ′

⇔ (|M | − 1)Φ′ =
∑
i∈M

F iui
′

⇒ (|M | − 1)F kuk ′ =
∑
i∈M

F iui
′

⇒ (|M | − 1)F kuk ′′ =
∑
i∈M

(
F iui

′′ + F i
′
ui
′)
.

We calculate the expected change in winning probability of player k if he continues to play
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for an infinitesimally small amount of time E(duk):

(|M | − 1)F kE(duk) = (|M | − 1)F k(µuk ′ + σ2

2 u
k ′′)

= µ(|M | − 1)F kuk ′ + σ2

2 (|M | − 1)F kuk ′′

= µ
∑
i∈M

F iui
′ + σ2

2
∑
i∈M

(
F iui

′′ + F i
′
ui
′)

=
∑
i∈M

(µui′ + σ2

2 u
i′′︸ ︷︷ ︸

=E(dui)=0

)F i +
∑
i∈M

F i
′
ui
′︸ ︷︷ ︸

>0

> 0 .

As agent i ∈ M stops with strictly positive probability in any neighborhood of x, he is

indifferent between the strategy that stops at x and any other strategy that stops in a

small neighborhood of x. Thus, E(dui(x)) = 0.

So far, we have shown that E(dui(x)) = 0 if i ∈ M(x) and E(dui(x)) > 0 if i /∈ M(x).

For every agent i, there exists an interval I ⊂ [xi, xi] such that i ∈M(x) for every x ∈ I.

Whenever Xi
t = x ∈ I, agent i is indifferent between the strategy that stops immediately

and the strategy τ = inf{t : t ∈ {xi, xi}}. Formally,

0 = ui(x)− E(ui(Xτ ))

= ui(x)− E(ui(x) +
∫ τ

t
µui
′(Xi

s) + σ2

2 u
i′′(Xi

s)ds+
∫ τ

t
ui
′(Xi

s)σdBs)

= E(
∫ τ

t
µui
′(Xi

s) + σ2

2 u
i′′(Xi

s)ds) = E(
∫ τ

t
E(dui(Xi

s))) .

The process enters every interval and E(dui(x)) is non-negative for all x ∈ [xi, xi]. Hence,

the expectation E(
∫ τ
t E(dui(Xi

s))) can only be zero if E(dui(x)) = 0 almost surely.

Proof of Lemma 4: By contradiction, assume maxi xi 6= 0. Thus, to stop at Xj
t = xi

(and, by continuity in a neighborhood of this point) is strictly worse than to continue

until Xj
t ∈ {0,maxi xi}; this contradicts optimality.
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Assume there exist players i and j such that xi > xj . Assume player j reaches his right

endpoint at time t, Xj
t = xj . By the same argument as in Lemma 3, the continuation

strategy τ = inf{s ≥ t : Xj
s ∈ {xj − ε, xi}} is strictly better than to stop at xj , which

contradicts optimality.

Proof of Proposition 4: To prove uniqueness, note that Lemma 1-4 do not rely on any

symmetry arguments and are also valid for asymmetric starting values. Hence, the equa-

tion ui(x) = F j(x) fixes the above construction uniquely given the right endpoint. The

minmax property (constant sum game) implies that each player must receive the same

payoff in any equilibrium. Thus, the local martingale condition uniquely determines x.

By Lemma 1, only one agent might set a mass point at 0. Feasibility implies that the

agent with the lower starting value sets the mass point at zero and uniquely determines

the size of the mass point.

Formula for the Expected Value in the n-Player Case:

Let Hyp denote the Gauss hypergeometric function.

E(x) =
∫ x

0
xf(x)dx = (xF (x)− 0F (0))−

∫ x

0
F (x)dx

= x−
∫ x

0
n−1

√
1
n

exp(−2µx)− 1
exp(−2µx)− 1dx

= x+
n−1
√

1− exp(−2µx)
2µ (n− 1)Hyp( 1

n− 1 ,
1

n− 1 ,
n− 2
n− 1 , exp(2µx)) .

Proof of Proposition 5. We apply the monotone transformation y = exp(2µx0
σ2 ) to E(Xτ )

to get

E(Xτ ) = x0
log(y) + (1 + y

2(1− y))(x0 −
x0 log(2− y)

log(y) ) ,

= x0

( 1
log(y) + (1 + y

2(1− y))(1− log(2− y)
log(y) )

)
.

for y 6= 1. This expression is convex if and only if it is convex for x0 = 1. Assumption 1
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implies y ∈ (0, 2).

∂2E(Xτ )/x0
∂y2 = 4(−2 + y)(−1 + y)3 + 2(−1 + y)2 (2− 5y + 2y2) log(y)

2(−2 + y)(−1 + y)3y2 log(y)3

+ y2 (3− 4y + y2) log(y)2 − 2(−2 + y)y2 log(y)3

2(−2 + y)(−1 + y)3y2 log(y)3

− (−2 + y) log(2− y)(2(−2 + y)(−1 + y)2 − 2y2 log(y)2)
2(−2 + y)(−1 + y)3y2 log(y)3

− (−2 + y) log(2− y) log(y)
(
−2 + 7y − 6y2 + y3)

2(−2 + y)(−1 + y)3y2 log(y)3

with the continuous extension ∂2E(Xτ )/x0
∂y2 = 1

6 at y = 1. Simple algebra shows that

nominator and denominator are negative on y ∈ (0, 2), y 6= 1. Hence, the function is

convex on (0, 2). As y is monotone increasing in µ, E(Xi
τ i) is quasi-convex in µ. As y

is also monotone increasing (decreasing) in σ for µ < 0 (µ > 0), E(Xi
τ i) is quasi-convex

(quasi-concave) in σ if µ < 0 (µ > 0).

It remains to show that E(Xτ ) is first decreasing, then increasing. For µ→ −∞ and µ→ 0,

E(Xτ ) → x0. For any negative value of µ, the expected value of the stopped processes

is smaller than x0, because the process is a supermartingale. Hence, by quasi-convexity,

E(Xτ ) has to be first decreasing, then increasing.
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Chapter 2

Continuous Time Contests

This chapter introduces a contest model in continuous time in which each player decides

when to stop a privately observed Brownian motion with drift and incurs costs depending

on his stopping time. The player who stops his process at the highest value wins a prize.

Under mild assumptions on the cost function, we prove existence and uniqueness of the

Nash equilibrium outcome, even if players have to choose bounded stopping times. We

derive a closed form of the equilibrium distribution. If the noise vanishes, the equilibrium

outcome converges to—and thus selects—the symmetric equilibrium outcome of an all-

pay auction. For positive noise levels, results differ from those of all-pay contests with

complete information—for instance, participants make positive profits. We show that for

two players and constant costs, the profits of each participant increase for higher costs of

research, higher volatility, or lower productivity of each player. Hence, participants prefer

a contest design which impedes research progress.

2.1 Introduction

Two types of models are predominant in the literature on contests, races, and tourna-

ments. In one of these, there is no learning about the performance measure or standings

throughout the competition at all, while the other one considers full feedback about the
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performance of each player at all points in time. The former category includes all-pay

contests with complete information (Hillman and Samet, 1987, Siegel, 2009, 2010), Tul-

lock contests (Tullock, 1980), silent timing games (Karlin, 1953, Park and Smith, 2008),

and models with additive noise in the spirit of Lazear and Rosen (1981). The latter

category contains wars of attrition (Maynard Smith, 1974, Bulow and Klemperer, 1999),

races (Aoki, 1991, Hörner, 2004, Anderson and Cabral, 2007), and contest models with

full observability such as Harris and Vickers (1987) and Moscarini and Smith (2007).

In this chapter, we want to analyze an intermediate case in which there is partial feedback

about the performance measure. More precisely, a player observes his own stochastic

research progress over time, but he does not observe the progress of the other players or

their effort decisions. A good example for this setting is an R&D contest. Each participant

is well-informed about his own progress, but often uninformed about the progress of his

competitors. For concrete examples of such competitions, see, e.g., Taylor (1995).

Formally, our model is an n-player contest in which each player decides when to stop a

privately observed Brownian motion (Xt) with drift µ and volatility σ. As long as a player

exerts effort, i.e., does not stop the process, he incurs flow costs c(Xt). The player who

stops his process at the highest value wins a prize.

Under mild assumptions on the cost function—it has to be continuous and bounded away

from zero—the game has a unique Nash equilibrium outcome. This outcome is imple-

mentable in stopping strategies which stop almost surely before a fixed time T < ∞.

Hence, provided the contest length is above a threshold, the equilibrium outcome is inde-

pendent of the contest length. In equilibrium, each player makes positive expected profits.

For two players and constant costs, these profits increase if the productivity (drift) of both

players decreases, the volatility increases, or the costs increase. Hence, participants prefer

a contest design which impedes research progress.

The formal analysis proceeds as follows. Proposition 6 and Theorem 1 establish existence

and uniqueness of the equilibrium distribution. The existence proof first characterizes the

equilibrium distribution F (x) of values at the stopping time Xτ = x uniquely up to its
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endpoints. We then use a Skorokhod embedding approach to show that there exists a

stopping strategy, which induces this distribution. This technique from probability theory

(e.g., Skorokhod, 1961, 1965; for a survey, see Oblój, 2004) has already been introduced

in the first chapter.

Moreover, we verify a condition from a recent paper in mathematics (Ankirchner and

Strack, 2011) to show that there exists a bounded time stopping strategy—a strategy

that stops almost surely before a fixed time T < ∞—which induces the equilibrium

distribution. As most real-world contests have a fixed deadline, this result fortifies the

predictions of the model. It is also one of main technical contributions of this chapter,

since the technique is also applicable to other models without observability. However,

for tug-of-war models with full observability (Harris and Vickers, 1987, Moscarini and

Smith, 2007, Gul and Pesendorfer, 2011), one cannot construct bounded time equilibria

in a similar way, because, for any fixed deadline, there is a positive probability that no

player has a sufficiently lead until the deadline.

We then analyze the shape of the equilibrium distribution. As uncertainty vanishes, the

distribution converges to the symmetric equilibrium distribution of an all-pay auction by

Theorem 2. On the one hand, the model offers a microfoundation for the use of all-pay

auctions to scrutinize environments in which uncertainty is not a crucial ingredient; on the

other hand, it gives an equilibrium selection result between the equilibria of the symmetric

all-pay auction analyzed in Baye et al. (1996). Moreover, this result serves as a benchmark

to discuss how our predictions differ from all-pay models if volatility is strictly positive.

For any σ > 0, Proposition 7 states that all players make positive expected profits in

equilibrium. Intuitively, agents use the private information about their progress to gener-

ate rents. The intuition is similar to an all-pay contest, in which players have incomplete

information about the valuation or effort cost of their rivals, see, e.g., Hillman and Riley

(1989), Amann and Leininger (1996), Krishna and Morgan (1997), or Moldovanu and Sela

(2001).
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Finally, we analyze the special case of two players and constant costs. We derive a closed-

form solution for the profits of each player, which depends only on the ratio 2µ2

cσ2 (Propo-

sition 10). In particular, profits increase as costs c increase, volatility σ2 increases, or

productivity µ decreases (Theorem 3). Hence, contestants prefer to have mutually worse

technologies. This result, which does not hold in a static all-pay contest, goes along with

the common intuition that players prefer competition to be less fierce.

2.1.1 Related Literature

In the first chapter, we have analyzed a model in which players do not have any costs of

research, but have a (usually negative) drift and face a bankruptcy constraint. The driving

forces of both models differ substantially. In particular, in this chapter, contestants trade

off higher costs against a higher winning probability, whereas in the first, the trade-off

is between winning probability and risk. Also, the applications of the first chapter are

related to finance and managerial compensation, while this chapter is in spirit of the

contest literature.

This chapter entails a direct extension of the literature on silent timing games—see, e.g.,

Karlin (1953). Among others, the literature on silent timing games scrutinizes our setting

for the case without uncertainty. Intuitively, adding uncertainty allows us to have a model

with partial learning throughout the contest.

With a similar motivation, Taylor (1995) also analyzes a model in which players only learn

about their own stochastic research success. In his T-period model, however, the highest

draw in a single period determines this success. The resulting equilibrium stopping rule

is a threshold strategy, which stops whenever a player has a draw above a deterministic,

time-independent value.

We proceed as follows. Section 2.2 sets up the model. In Section 2.3, we prove that an

equilibrium exists and is unique. Section 2.4 discusses the relation to all-pay contests

and derives the main comparative statics results. Section 2.5 concludes. Most proofs are

relegated to the appendix.
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2.2 The Model

There are n <∞ agents indexed by i ∈ {1, 2, . . . , n} = N who face a stopping problem in

continuous time. At each point in time t ∈ R+, agent i privately observes the realization

of a stochastic process (Xi
t)t∈R+ with

Xi
t = x0 + µt+ σBi

t .

The constant x0 denotes the starting value of all processes; without loss of generality, we

assume x0 = 0. The drift µ ∈ R+ is the common expected change of each process Xi
t per

time, i.e., E(Xi
t+∆ − Xi

t) = µ∆. The noise term is an n-dimensional Brownian motion

(Bt) scaled by σ ∈ R+.

2.2.1 Strategies

A pure strategy of player i is a stopping time τ i. This stopping time depends only on the

realization of his process Xi
t , as the player only observes his own process.Mathematically,

the agents’ stopping decision until time t has to be F it -measurable, where F it = σ({Xi
s :

s < t}) is the sigma algebra induced by the possible observations of the process Xi
s before

time t. In contrast to the first chapter, we now require stopping times to be bounded by

a real number T <∞ such that τ i < T almost surely.

To incorporate mixed strategies, we allow for randomized stopping times—progressively

F it -measurable functions τ i(·) such that, for every ri ∈ [0, 1], the value τ i(ri) is a stopping

time. Intuitively, agents draw a random number ri from the uniform distribution on [0, 1]

before the game and play a stopping strategy τ i(ri).1

1Although the unique equilibrium outcome of this chapter can be obtained in pure strategies, we allow
for mixing to obtain the results in a more general framework.
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2.2.2 Payoffs

The player who stops his process at the highest value wins a prize p > 0. Ties are broken

randomly. Until he stops, each player incurs flow costs c : R → R++, which depend on

the current value of the process Xt, but not on the time t. The payoff πi is thus

πi = p

k
1{Xi

τi
=maxj∈N Xj

τj
} −

∫ τ i

0
ci(Xi

t)dt ,

where k = |{i ∈ N : Xi
τ i = maxj∈N Xj

τ j
}| is the number of agents who stop at the highest

value. All agents maximize their expected profit E(πi). We henceforth normalize p to

1, since agents only care about the trade-off between winning probability and cost-prize

ratio. The cost function satisfies the following mild assumption:

Assumption 2. For every x ∈ R, the cost function c : R → R++ is continuous and

bounded away from zero on [x,∞).

There are several possible interpretations for the production technology. For instance,

one can interpret the drift as progress in research and the martingale part as learning.

Alternatively, the process could measure the progress in the production of a prototype. In

this interpretation, the variance might be due to different market prizes of each component,

which influence the value of the prototype. Apart from that, the prototype might turn

out to require more or less components compared to the construction plan.

2.3 Equilibrium Construction

In this section, we first establish some necessary conditions on the distribution functions in

equilibrium. In a second step, we prove existence and uniqueness of the Nash equilibrium

outcome and determine the equilibrium distributions depending on the cost function.

Every strategy of agent i induces a (potentially non-smooth) cumulative distribution func-

tion (cdf) F i : R→ [0, 1] of his stopped process F i(x) = P(Xi
τ i ≤ x). Denote the endpoints
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of the support of the equilibrium distribution of player i by

xi = inf{x : F i(x) > 0}

xi = sup{x : F i(x) < 1} .

Let x = maxi∈N xi and x = maxi∈N xi. In the next step, we establish a series of auxiliary

results that are crucial to prove uniqueness of the equilibrium distribution.

Lemma 6. At least two players stop with positive probability on every interval I = (a, b) ⊂

[x, x].

Lemma 7. No player places a mass point in the interior of the state space, i.e., for all i,

for all x > x: P(Xi
τ i = x) = 0. At least one player has no mass at the left endpoint, i.e.,

F i(x) = 0, for at least player i.

We omit the proof of Lemma 7, since it is just a specialization of the standard logic in static

game theory with a continuous state space; see, e.g., Burdett and Judd (1983). Intuitively,

in equilibrium, no player can place a mass point in the interior of the state space, since no

other player would then stop slightly below the mass point. This contradicts Lemma 6.

Lemma 7 implies that the probability of a tie is zero. Thus, we can express the winning

probability of player i if he stops at Xi
τ i = x, given the distributions of the other players,

as

ui(x) = P(max
j 6=i

Xj
τ j
≤ x) =

∏
j 6=i

F j(x) .

Lemma 8. All players have the same right endpoint, xi = x, for all i.

Lemma 9. All players have the same expected profit in equilibrium. Moreover, each player

loses for sure at x, i.e., ui(x) = 0, for all i.

Lemma 10. All players have the same equilibrium distribution function, F i = F , for all

i.

As players have symmetric distributions, we henceforth drop the superscript i. The pre-

vious lemmata imply that each player is indifferent between any stopping strategy which
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remains on his support. By Itô’s lemma, it follows from the indifference inside the support

that, for every point x ∈ (x, x), the function u(·) must satisfy the second order ordinary

differential equation (ODE)

c(x) = µu′(x) + σ2

2 u
′′(x) . (2.3.1)

As (2.3.1) is a second order ODE, we need two boundary conditions to determine u(·)

uniquely. One boundary condition is u(x) = 0 from Lemma 9. We determine the other

one in the following lemma:

Lemma 11. In equilibrium, u′(x) = 0.

The idea of the proof in the appendix is simple. If the derivative was negative, u′(x) < 0,

there would a profitable deviation at x, which stops in the neighborhood of x rather than

at the point itself.

Imposing the two boundary conditions, the solution to equation (2.3.1) is unique. To

calculate it, we define φ(x) = exp(−2µx
σ2 ) as a solution of the homogeneous equation

0 = µu′(x)+ σ2

2 u
′′(x). To solve the inhomogeneous equation (2.3.1), we apply the variation

of the constants formula. We then use the two boundary conditions to calculate the unique

solution candidate. Finally, we rearrange with Fubini’s Theorem to get

u(x) =


0 for x < x

1
µ

∫ x
x c(z)(1− φ(x− z))dz for x ∈ [x, x]

1 for x > x .

By symmetry of the equilibrium strategy, the function F : R → [0, 1] satisfies F (x) =
n−1
√
u(x). Consequently, the unique candidate for an equilibrium distribution is

F (x) =


0 for all x < x

n−1
√

1
µ

∫ x
x c(z)(1− φ(x− z))dz for all x ∈ [x, x]

1 for all x > x .
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In the next step, we verify that F is a cumulative distribution function, i.e., that F is

nondecreasing and that limx→∞ F (x) = 1.

Lemma 12. F is a cumulative distribution function.

Proof. By construction of F , F (x) = 0. Clearly, F is increasing on (x, x), as the derivative

with respect to x,

F ′(x) = F (x)2−n

(n− 1) ( 2
σ2

∫ x

x
c(z)φ(x− z)dz) ,

is greater than zero for all x > x. It remains to show that there exists an x > x such that

F (x) = 1.

F (x)n−1 = 1
µ

∫ x

x
c(z)(1− φ(x− z))dz

≥ 1
µ

inf
y∈[x,∞)

c(y)
(
x− x− σ2

2µ(1− φ(x− x))
)

≥ 1
µ

inf
y∈[x,∞)

c(y)(x− x− σ2

2µ)

Assumption 1 implies that the cost function c(·) is bounded away from zero. Consequently,

infy∈[x,∞) c(y) is strictly greater than zero. Continuity of F implies that there exists a point

x > x such that F (x) = 1.

The next lemma derives a necessary condition for a distribution F to be the outcome of

a strategy τ .

Lemma 13. If τ ≤ T < ∞ is a bounded stopping time that induces the continuous

distribution F (·), i.e., F (z) = P(Xτ ≤ z), then 1 =
∫ x
x φ(x)F ′(x)dx.

Proof. Observe that (φ(Xt))t∈R+
is a martingale. Hence, by Doob’s optional stopping

theorem, for any bounded stopping time τ ,

1 = φ(X0) = E[φ(Xτ )] =
∫ x

x
φ(x)F ′(x)dx .
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We now use the necessary condition from Lemma 13 to prove that the equilibrium distri-

bution is unique.

Proposition 6. There exists a unique pair (x, x) ∈ R2 such that the distribution

F (x) =


0 for all x ≤ x

n−1
√

1
µ

∫ x
x c(z)(1− φ(x− z))dz for all x ∈ (x, x)

1 for all x ≥ x

is the unique candidate for an equilibrium distribution.

Proof. As F is continuous, the right endpoint x satisfies 1 =
∫ x
x F

′(x;x, x)dx. Since

F ′(x;x, x) is independent of x, we henceforth drop the dependency in our notation. By

the implicit function theorem,

∂x

∂x
= −
−

=0︷ ︸︸ ︷
F ′(x;x) +

∫ x
x

∂
∂xF

′(x;x)dx
F ′(x;x) = −

∫ x
x

∂
∂xF

′(x;x)dx
F ′(x;x) . (2.3.2)

Lemma 13 states that any feasible distribution satisfies 1 =
∫ x
x F

′(x;x)φ(x)dx. Applying

the implicit function theorem to this equation gives us

∂x

∂x
= −

−
=0︷ ︸︸ ︷

F ′(x;x) +
∫ x
x

∂
∂xF

′(x;x)φ(x)dx
F ′(x;x)φ(x) (2.3.3)

= −
∫ x
x

∂
∂xF

′(x;x)
<1︷ ︸︸ ︷

φ(x− x) dx
F ′(x;x)

< −
∫ x
x

∂
∂xF

′(x;x)dx
F ′(x;x) .

The last inequality follows from ∂
∂xF

′(x;x) ≥ 0. Hence, conditions (2.3.2) and (2.3.3)

intersect exactly once. Thus, in equilibrium, the left and right endpoint are unique.
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Hence, each equilibrium strategy induces the distribution F . The next lemma shows that

this condition is also sufficient.

Lemma 14. Every strategy that induces the unique distribution F from Proposition 6 is

an equilibrium strategy.

Proof. Define Ψ(·) as the unique solution to (2.3.1) with the boundary conditions Ψ(x) = 0

and Ψ′(x) = 0. By construction, the process Ψ(Xi
t) −

∫ t
0 c(Xi

s)ds is a martingale and

Ψ(x) = u(x) for all x ∈ [x, x]. As Ψ′(x) < 0 for x < x and Ψ′(x) > 0 for x > x,

Ψ(x) > u(x) for all x /∈ [x, x]. For every stopping time S, we use Itô’s Lemma to calculate

the expected value

E[u(XS)−
∫ S

0
c(Xt)dt] ≤ E[Ψ(XS)−

∫ S

0
c(Xt)dt]

= Ψ(X0) = u(X0) = E(u(Xτ )) .

The last equality results from the indifference of every agent to stop immediately with

the expected payoff u(X0) or to play the equilibrium strategy with the expected payoff

E(u(Xτ )).

The intuition is simple. By construction of F , all agents are indifferent between all stopping

strategies which stop inside the support [x, x]. As every agent wins with probability one

at the right endpoint, it is strictly optimal to stop there. The condition F ′(x) = 0 ensures

that it is also optimal to stop at the left endpoint.

So far, we have verified that a bounded stopping time τ ≤ T <∞ is an equilibrium strategy

if and only if it induces the distribution F (·), i.e., F (z) = P(Xτ ≤ z). To show that the

game has a Nash equilibrium, it remains to establish the existence a bounded stopping

time inducing F (·). The problem of finding a stopping time τ such that a Brownian motion

stopped at τ has a given centered probability distribution F , i.e., F ∼ Bτ , is known in

the probability literature as the Skorokhod embedding problem (SEP). Since its initial

formulation in Skorokhod (1961, 1965), many solutions have been derived; for a survey

article, see Oblój (2004). In a recent mathematical paper, Ankirchner and Strack (2011)
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find conditions guaranteeing the existence of stopping times τ that are bounded by some

real number T < ∞, and embed a given distribution in Brownian motion, possibly with

drift.2 In addition to the assumption stated in the next lemma, Ankirchner and Strack

(2011) assume that the condition in Lemma 13 holds, which we have already imposed.

They define g(x) = F−1(Φ(x)), where Φ(x) = 1√
2π
∫ x
−∞ exp( z2

2 )dz is the density function

of the normal distribution.

Lemma 15 (Ankirchner and Strack, 2011, Theorem 2). Suppose that g(·) is Lipschitz-

continuous with Lipschitz constant
√
T . Then the distribution F can be embedded in

Xt = µt+Bt, with a stopping time that stops almost surely before T .

The main conceptual innovation is the bounded time requirement τ < T . This is not

trivial, as for any fixed time horizon T , there exists a positive probability that Xt does not

leave any interval [a, b] with a < X0 < b. Hence, a similar construction as in Proposition

2 in the first chapter, which uses a mixture over cutoff strategies of the form

τa,b = inf{t : R+ : Xt /∈ [a, b]} ,

cannot be used to implement F . The proof in Ankirchner and Strack (2011) constructs a

pure strategy for any distribution, which meets the Lipschitz condition.

This type of equilibrium, which is independent of the deadline provided it is sufficiently

high, cannot be obtained in tug-of-war models with full observability (Harris and Vickers,

1987, Moscarini and Smith, 2007, Gul and Pesendorfer, 2011). Intuitively, for any fixed

deadline, in these models there is a positive probability that no player has a sufficient lead

until the deadline, which detains a similar result.

The previous lemma enables us to prove the main result of this section:

Theorem 1. The game has a Nash equilibrium.

2Ankirchner and Strack (2011) use a construction of the stopping time introduced for Brownian motion
without drift in Bass (1983) and for the case with drift in Ankirchner et al. (2008).
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Figure 2.1: The density function F ′(·) for the parameters n = 2, µ = 3, σ = 1 and the
cost-functions c(x) = exp(x) solid line and c(x) = 1

2 exp(x) dashed line.

The proof in the appendix verifies Lipschitz continuity of the function g, which makes

Lemma 15 applicable. Thus, a Nash equilibrium in bounded time stopping strategies

exists, and, by Proposition 6, the equilibrium distribution F is unique.3

2.4 Equilibrium Analysis

2.4.1 Convergence to the All-Pay Auction

This subsection considers the relationship between the literature on all-pay contests and

our model for vanishing noise. We first establish an auxiliary result about the left endpoint:

Lemma 16. If the noise vanishes, the left endpoint of the equilibrium distribution con-

verges to zero, i.e., lim
σ→0

x = 0.

Proof. For any bounded stopping time, for any σ > 0, feasibility implies that x ≤ 0. By

contradiction, assume there exists a constant ε such that x ≤ ε < 0 for some sequence

3It is straightforward to show that the distribution F is also the unique equilibrium distribution in the
space of finite time stopping strategies.
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(σk)k∈N with limk→∞ σk = 0. Then F ′ is bounded away from zero by

F ′(x) = F (x)2−n

n− 1
2
σ2

∫ x

x
c(z)φ(x− z)dz

≥ 1
n− 1

2
σ2

∫ x

ε
c(z)φ(x− z)dz

= 1
µ(n− 1)

(
inf

y∈[ε,∞)
c(y)

)
(1− φ(x− ε)) .

For every point x < 0, limσk→0 φ(x) = ∞. Thus, limσk→0
∫ 0
x F

′(x)φ(x)dx > 1, which

contradicts feasibility, because
∫ 0
x F

′(x)φ(x)dx ≤
∫ x
x F

′(x)φ(x)dx = 1.

Taking the limit σ → 0, the symmetric equilibrium distribution converges to

lim
σ→0

F (x) = n−1

√
1
µ

∫ x

0
c(z)dz.

In a static n-player all-pay auction, the equilibrium distribution is

F (x) = n−1

√
x

v
,

where x is the total outlay of a participant and v is her valuation; see, e.g., Hillman and

Samet (1987). In our case, the total outlay depends on the flow costs at each point, the

speed of research µ, and the stopping time τ . More precisely, it is
∫ x

0
c(z)
µ dz. The valuation

v in the analysis of Hillman and Samet (1987) coincides with the prize p—which we have

normalized to one—in our contest. This yields us the following proposition:

Theorem 2. For vanishing noise, the equilibrium distribution converges to the symmetric

equilibrium distribution of an all-pay auction.

Thus, our model supports the use of all-pay auctions to analyze contests in which the

variance is negligible. Figure 2.2 illustrates the similarity to the all-pay auction equilibrium

if variance σ and costs c(·) are small in comparison to the drift µ.

Moreover, the symmetric all-pay auction has multiple equilibria—for a full characterization

see Baye et al. (1996). This chapter offers a selection criterion in favor of the symmetric
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Figure 2.2: This picture shows the density function F ′(·) with support [−0.71, 5.45] for the
parameters n = 2, µ = 3, σ = 1 and the cost-functions c(x) = 1

2 (solid line)
and for the same parameters the equilibrium density of the all-pay auction
with support [0, 6] (dashed line).

equilibrium, in which no participant places a mass point at zero. Intuitively, all other

equilibria of the symmetric all-pay auction include mass points at zero for some players,

which is not possible in our model for any positive σ by Lemma 7.

2.4.2 Comparative Statics and Rent Dispersion

Proposition 2 has linked all-pay contests with complete information to our model for the

case of vanishing noise. In the following, we scrutinize how the predictions differ for

positive noise. In a symmetric all-pay contests with complete information, agents make

zero profits in equilibrium. This does not hold true in our model for any positive level of

variance σ:

Proposition 7. In equilibrium, all agents make strictly positive expected profits.

Proof. In equilibrium, agents are indifferent between stopping immediately and the equi-

librium strategy. Their expected profit is thus u(0), which is strictly positive as x < 0.
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Intuitively, agents generate informational rents through their private information about

the research progress. A similar result is known in the literature on all-pay contests with

incomplete information, see, e.g., Hillman and Riley (1989), Amann and Leininger (1996),

Krishna and Morgan (1997), and Moldovanu and Sela (2001). In these models, participants

take a draw from a distribution prior to the contest, which determines their effort cost or

valuation. The outcome of the draw is private information. In contrast to this, private

information about one’s progress arrives continuously over time in our model.

In the following, we derive comparative statics in the number of players for constant costs.

We define the support length as ∆ = x− x.

Lemma 17. If the number of players n increases and c(x) = c, the support length ∆

remains constant and both endpoints increase.

Proof. If c(x) = c, F (x)− F (x) clearly depends only on ∆. Hence, for F (x)− F (x) = 1,

∆ has to be constant. As F gets more concave if n increases, by feasibility, x ↗ and

x↗.

Proposition 8. If the number of agents n increases and c(x) = c, the expected profit of

each agent decreases.

Proof. The function u(x) depends only on x − x. As n increases, x increases by Lemma

17. Thus, the expected value of stopping immediately, u(0), which is an optimal strategy

in both cases, decreases as n increases.

Hence, in accordance with most other models, each player is worse off if the number of

contestants increases.

2.4.3 The Special Case of Two Players and Constant Costs

We now restrict attention to the case n = 2 and c(x) = c to get more explicit results. For

this purpose, we require additional notation. In particular, we denote by W0 : [−1
e ,∞)→
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Figure 2.3: This picture shows the left endpoint x and the right endpoint x for n = 2, σ =
1, µ = 1 and constant cost c = 1 varying the productivity µ in the first picture,
the costs c in the second picture and the variance σ in the third.

R+ the principal branch of the Lambert W -function. This branch is implicitly defined on

[−1
e ,∞) as the unique solution of x = W (x) exp(W (x)), W ≥ −1. Define h : R+ → [0, 1]

by

h(y) = exp(−y − 1−W0(− exp(−1− y))) .

The next proposition pins down the left and right endpoint of the support of the players.

Proposition 9. The left and right endpoint are

x = σ2

2µ

(
2 log(1− h(2µ2

cσ2 ))− log(4µ2

cσ2 )
)

x = σ2

2µ

(
2 log(1− h(2µ2

cσ2 ))− log(4µ2

cσ2 )− log(h(2µ2

cσ2 ))
)
.

For an illustration how the endpoints change depending on the parameters, see Figure 2.3.

The next proposition derives a closed-form solution of the profits π of each player.
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Proposition 10. The equilibrium profit of each player depends only on the ratio y = 2µ2

cσ2 .

It is given by

π = (1− h(y))2

2y2 − 2 log(1− h(y))− log(2y)− 1
y

.

Given the previous proposition, it is simple to establish the main comparative statics result

of this chapter.

Theorem 3. The equilibrium profit of each player increases if costs increase, variance

increases, or drift decreases.

To get an intuition for the result, we decompose the term 2µ2

cσ2 , which determines the

equilibrium profit of the players, into two parts:

2µ2

cσ2 = µ

c︸︷︷︸
Productivity

× 2µ
σ2︸︷︷︸

Signal to noise ratio

.

The first term is the productivity µ
c of the agents. As firms get more productive, competi-

tion gets more fierce and each firm makes less profits. The second term 2µ
σ2 is the signal to

noise ratio, which measures the informativeness of Xi
τ i . Intuitively, if the signal to noise

ratio decreases, the outcome Xi
τ i becomes less correlated with agent i’s effort choice τ i.

In turn, this reduces his incentives to exert effort and thereby the cost of his expected

stopping time. As his winning probability in equilibrium remains constant, his profits are

decreasing in the signal to noise ratio. Summarizing, participants prefer to have mutually

worse—more costly, more random, or less productive—technologies.

Even for a perfectly uninformative signal, however, agents cannot extract the full surplus:

Proposition 11. The equilibrium profit of each agent is bounded from above by 4/9.

Proof. The agents profit is decreasing in y = 2µ2

cσ2 ≥ 0 by Theorem 3. Hence, profits are

bounded from above by limy→0 u(0). By l’Hôpital’s rule,

lim
y→0

(1− h(y))2

2y2 − 2 log(1− h(y))− log(2y)− 1
y

= 4
9 .
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Figure 2.4: This picture shows the equilibrium profit F (0) of the agents on the y-Axes for
n = 2 constant cost-functions c(x) = c ∈ R+ with y = 2µ2

cσ2 on the x-Axes.

The expected equilibrium effort E(τ i) is bounded from below by

4
9 ≥ E(F (Xi

τ i)− cτ
i) = 1

2 − cE(τ i)

⇔ E(τ i) ≥ 1
18c .

2.5 Conclusion and Discussion

In this chapter, we have introduced a model of contests in continuous time in which

each player learns only about his own research progress. Under mild assumptions on the

cost function, a Nash equilibrium outcome exists and is unique. If the research progress

contains little uncertainty, the equilibrium is close to the symmetric equilibrium of a static

all-pay auction. If the research outcome is uncertain, players prefer mutually higher costs

of research, worse technologies, and higher uncertainty. These comparative statics, which

go along with the intuition that players prefer competition to be less fierce, cannot be

obtained in a static all-pay contest.
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From a technical perspective, we have introduced a method to construct equilibria in

continuous time games that are independent of the time horizon. Furthermore, we have

introduced a constructive method to calculate a minimal time horizon that ensures the

existence of such equilibria. These methodological contributions may prove fruitful in

future research, and add to the general understanding of continuous time models.

2.6 Appendix

Proof of Lemma 6. As players have to use bounded time stopping strategies, each player

i stops with positive probability on every subinterval of [xi, xi]. Hence, it suffices to show

that at least two players have x as their right endpoint. Assume, by contradiction, only

player i has x as his right endpoint. Denote x−i = maxj 6=i xj . Then, for any ε > 0, at

x−i + ε, player i strictly prefers to stop, which yields him the maximal possible winning

probability of 1 without any additional costs. This contradicts the optimality of a strategy,

which stops at xi > x−i + ε.

Remark 1. We write τ i(a,b)(x) shorthand for inf{t : Xi
t /∈ (a, b)|Xi

s = x} in the next

three proofs. Clearly, τ i(a,b)(x) is not a bounded time strategy, but we use it to bound

the payoffs. Note that, for sufficiently large time horizon T , the payoff from stopping at

min{τ i(a,b)(x), T} is arbitrarily close to that of τ i(a,b)(x).

Proof of Lemma 8. Assume xj > xi. For at least two players j, j′, the payoff from

τ j(xj ,xj)(x
i) is weakly higher than from stopping at Xj

t = xi by Lemma 6. By Lemma

7, at least one of these players—denote it j—wins with probability zero at xj . Note that

ui(xi) =
∏
h6=i F

h(xi) <
∏
h6=j F

h(xi) = uj(xi), because F i(xi) = 1 > F j(xi).

Optimality of τ j(xj ,xj)(x
i) implies

uj(xi) ≤ P(Xj
τ j

= xj |τ j(xj ,xj)(x
i))uj(xj)− E(c(τ j(xj ,xj)(x

i))) .
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On the other hand,

ui(xi) < uj(xi) ≤ P(Xi
τ i = xj |τ i(xj ,xj)(x

i))ui(xj)− E(c(τ i(xj ,xj)(x
i))) .

Hence, at Xi
t = xi, for a sufficiently long time horizon T , player i can profitably deviate

by stopping at min{τ i(a,b)(x), T}. This contradicts the equilibrium assumption.

Proof of Lemma 9. To prove the first statement, we distinguish two cases.

(i) If at least two players have F i(x) = 0, then ui(x) = 0 ∀i. Assume there exists a player

j who makes less profit than a player i, where πi ≤ P(Xi
τ i = x|τ i(xi,x)(0))−E(c(τ i(xi,x)(0))).

If player j deviates to the strategy min{τ j(xj ,x)(0), T}, player j gets a profit arbitrarily

close to πi; this contradicts optimality of player j’s strategy.

(ii) If only one player has F i(x) = 0, then ui(x) > 0. We now consider the case in which

this player i makes a weakly higher payoff than the remaining players, who make the same

payoff each—otherwise the argument in the first part of the proof leads to a contradiction.

For any interval I ∈ [x, x] in which player i stops with positive probability, by Lemma 6,

there exists another player j who also stops in the interval. In particular, for x ∈ I, for

any ε > 0, we get

P(Xi
τ i = x|τ i(x,x)(x)) + P(Xi

τ i = x|τ i(x,x)(x))ui(x)− E(c(τ i(x,x)(x))) < ui(x) + ε

and

P(Xj
τ j

= x|τ j(x,x)(x))− E(c(τ j(x,x)(x))) ≥ uj(x) ∀j 6= i.

For ε → 0, the two equations imply that ui(x) > uj(x), for all j 6= i, for all x in the

support of player i. Hence, F i(x) ≤ F j(x) ∀j, for all x on the support of player i, and, by

monotonicity of F j , on [x, x]. Thus, the distribution of player i stochastically dominates

that of all other players. This contradicts feasibility, since all players start at the same

value and stopping times have to be bounded.

The second statement of the lemma follows immediately from the proof of (ii).
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Proof of Lemma 10. Recall that all players have the same profit and ui(x) = 0 ∀i. Each

player stops on any interval I ⊂ [x, x] with positive probability, since stopping times are

bounded. By contradiction, assume ui(x) > uj(x) for some players i, j and some value x.

As it is weakly optimal for player i to continue at x with τ i(x,x)(x), this strategy is strictly

optimal for player j. At x, player j thus has a bounded time stopping strategy whose

expected payoff is arbitrarily close to ui(x), which contradicts ui(x) > uj(x). Hence,

ui(x) = uj(x) holds globally, which implies F i(x) = F , for all i.

Proof of Lemma 11. By definition, u(x) = 0 for all x ≤ x. Hence, the left derivative

∂−u(x) is zero. It remains to prove that the right derivative ∂+u(x) is also zero. For a

given u : R → R+, let Ψ : R → R be the unique function that satisfies the second order

ordinary differential equation c(x) = µΨ′(x) + σ2

2 Ψ′′(x) with the boundary conditions

Ψ(x) = u(x) and Ψ′(x) = ∂+u(x). Clearly, Ψ′(x) ≥ 0 because u is weakly increasing.

The remaining proof goes by contradiction. Assume Ψ′(x) > 0. Then there exists a point

x̂ < x such that Ψ(x) < 0 = u(x) for all x ∈ (x̂, x). Consider the strategy S that stops

when either the point x̂ or x is reached or at 1,

S = min{1, inf{t ∈ R+ : Xi
t /∈ [x̂, x]}}.

As u(x) ≥ Ψ(x) with strictly inequality for x ∈ (x̂, x), it follows that E(u(XS)) >

E(Ψ(XS)). Thus,

E(u(XS)−
∫ S

0
c(Xi

t)dt) > E(Ψ(XS)−
∫ S

0
c(Xi

t)dt) .

Note that, by Itô’s lemma, the process Ψ(Xi
t) −

∫ t
0 c(Xi

s)ds is a martingale. By Doob’s

optional sampling theorem, agent i is indifferent between the equilibrium strategy τ and

the bounded time strategy S, i.e.,

E(Ψ(XS)−
∫ S

0
c(Xi

t)dt) = E(Ψ(Xτ )−
∫ τ

0
c(Xi

t)dt)

= E(u(Xτ )−
∫ τ

0
c(Xi

t)dt) .

The last step follows because u(x) and Ψ(x) coincide for all x ∈ (x, x). Consequently, the
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strategy S is a profitable deviation, which contradicts the equilibrium assumption.

Proof of Theorem 1. The function Φ is Lipschitz continuous with constant 1√
2π . Conse-

quently, it suffices to prove Lipschitz continuity of F−1 to get the Lipschitz continuity of

F−1 ◦ Φ. The density f(·) is

f(x) = F (x)−n+2

n− 1
2
σ2

∫ x

x
c(z)φ(x− z)dz

= F (x)−n+2

n− 1
2
σ2

(∫ x

x
c(z)dz − µF (x)n−1

)

As f(x) > 0 for all x > x, it suffices to show Lipschitz continuity of F−1 at 0. We

substitute x = F−1(y) to get

(f ◦ F−1)(y) ≥ 1
n− 1

2
σ2

y2−n ( min
z∈[x,x]

c(z))︸ ︷︷ ︸
=c

(F−1(y)− F−1(0))− µy

 .

Rearranging with respect to F−1(y)− F−1(0) gives

F−1(y)− F−1(0) ≤
(

(n− 1)σ2

2 (f ◦ F−1)(y) + µy

)
yn−2

c

≤
(

(n− 1)σ2

2 f(x) + µ

)
yn−2

c
.

This proves the Lipschitz continuity of F−1(·) for n > 2. Note that, for two agents, the

function F−1(·) is not Lipschitz continuous as f(x) = 0. However, we show in the following

paragraph that F−1 ◦ Φ is Lipschitz continuous for n = 2.

F (x) =
∫ x

x

c(z)
µ

(1− φ(x− z)dz

≤
(

sup
z∈[x,x]

c(z)
µ

)
︸ ︷︷ ︸

=c

(
x− x− σ2

2µ(1− φ(x− x))
)
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A second order Taylor expansion around x yields that, for an open ball around x and

x < x, we have the following upper bound

x− x− σ2

2µ(1− φ(x− x)) ≤ 2µ
σ2 (1− φ(x− x))2 .

For an open ball around x, we get an upper bound on F (x) ≤ 2c
σ2 (1−φ(x−x))2 and hence

the following estimate

1− φ(x− x) ≥

√
σ2

2c F (x) .

We use this estimate to obtain a lower bound on f(·) depending only on F (·)

f(x) = 2
σ2

(∫ x

x
c(z)φ(x− z)dz

)
≥ 2c
σ2

(
σ2

2µ(1− φ(x− x))
)

≥ c

µ

√
σ2

2c F (x) .

Consequently, there exists an ε > x such that, for all x ∈ [x, ε), we have an upper bound

on (φ◦Φ−1◦F )(x)
f(x) . Taking the limit x→ x yields

lim
x→x

(φ ◦ Φ−1 ◦ F )(x)
f(x) ≤ lim

x→x
(φ ◦ Φ−1 ◦ F )(x)

c
µ

√
σ2

2cF (x)
≤

√
2cµ2

c2σ2 lim
y→0

(φ ◦ Φ−1)(y)
√
y

= 0 .

Proof of Proposition 9 and 10. Rearranging the density condition 1 = F (x) = c
µ [∆ −

σ2

2µ(1− φ(∆))] yields

exp(−2µ∆
σ2 ) = −2µ

σ2 [∆− (µ
c

+ σ2

2µ)].

The solution to the transcendental algebraic equation e−a∆ = b(∆ − d) is ∆ =

d + 1
aW0(ae−adb ), where W0 : [−1

e ,∞) → R+ is the principal branch of the Lambert

W -function. This branch is implicitly defined on [−1
e ,∞) as the unique solution of
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x = W (x) exp(W (x)), W ≥ −1. Hence,

∆ = µ

c
+ σ2

2µ [1 +W0(− exp(−1− 2µ2

cσ2 ))]

and

φ(∆) = exp(−2µ2

cσ2 − 1−W0(− exp(−1− 2µ2

cσ2 )))

= exp(−1− y −W0(− exp(−1− y)))

= h(y) .

Note that φ(∆) only depends on y = 2µ2

cσ2 . Moreover, h(y) is strictly decreasing in y,

as W0(·) and exp(·) are strictly increasing functions. For constant costs, the feasibility

condition from Lemma 13 reduces to

1 =
∫ x

x
F ′(x)φ(x)dx

= cσ2

2µ2 [12φ(x) + 1
2φ(2x− x)− φ(x)] .

Dividing by φ(x) gives

φ(−x) = cσ2

2µ2 [12 + 1
2φ(∆)2 − φ(∆)]

= 1
y

[12 + 1
2h(y)2 − h(y)]

= 1
2y (1− h(y))2

= g(y)

Note that g : R+ → [0, 1] is strictly decreasing in y. We calculate x as

x = −φ−1(φ(−x)) = −σ
2

2µ log( 2µ2

cσ2[1
2 + 1

2φ(∆)2 − φ(∆)]
) .

Simple algebraic transformations yield the expression for x and x (inserting ∆) in Propo-
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sition 9.

We plug in x to get:

F (0) = c

µ
[−x− σ2

2µ(1− φ(−x))]

= cσ2

2µ2 [log(
2µ2

cσ2
1
2 + 1

2φ(∆)2 − φ(∆)
) +

1
2 + 1

2φ(∆)2 − φ(∆)
2µ2

cσ2

− 1]

= 1
y

[log( y
1
2 + 1

2h(y)2 − h(y)
) +

1
2 + 1

2h(y)2 − h(y)
y

− 1]

= 1
y

[g(y)− log(g(y))− 1]

Hence, the value of F (0) depends on the value of the fraction y = 2µ2

cσ2 in the above way,

which completes the proof of Proposition 10.

Proof of Theorem 3. By Proposition 10, it suffices to show that the profit F (0) is increas-

ing in y. Consider the expression from the previous proof:

F (0) = 1
y

[g(y)− log(g(y))− 1]

The function x − log(x) is increasing in x. Hence, g(y) − log(g(y)) − 1 is decreasing in

y, because g(y) is decreasing in y. As 1
y is also decreasing in y, the product 1

y [g(y) −

log(g(y))− 1] is decreasing in y.
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Chapter 3

Equilibrium Equivalence of
Stochastic Contests with Poisson
Arrivals and All-Pay Auctions

We compare the n-player single-prize common-value all-pay auction with discrete bids to

a stochastic contest model in continuous time. In the continuous time model, ideas arrive

according to a Poisson process as long as a player exerts effort. At the termination date

T , the player who has most arrivals wins a prize.

If T is above a threshold value, the symmetric equilibrium distributions of both games

coincide. We derive an upper bound for the threshold value. Finally, we briefly discuss

the equilibrium structure if the termination date falls short of the threshold.

3.1 Introduction

There is a large amount of literature on all-pay auctions that are often motivated as

reduced-form models of a contest.1 The bid in the auction serves as a proxy for the effort

1For example, Hillman and Samet (1987), Hillman and Riley (1989), Baye et al. (1993, 1996), and Che
and Gale (1998) study all-pay auctions with a continuous bid space, while Dechenaux et al. (2003,
2006), and Cohen and Sela (2007) scrutinize all-pay auctions in which the set of bids is countable.
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or production cost each participant incurs in the contest; think, for example, of an R&D,

job promotion, or lobbying contest. This chapter contributes to the question if the all-pay

auction is a valid model to analyze stochastic contests without observability.

To do so, we contrast two models. One is the single-prize common-value all-pay auction

with discrete bids. In the other model, players can wait to build up a “stack”, whose

size determines their contest success. The current size of the stack and the stopping

decision are private information. Contrary to a silent timing game, however, the arrival

of successes, which add up to the stack, is not deterministic. Instead, as long as a player

exerts costly effort, i.e., does not stop his process, successes arrive according to a Poisson

process. At time T , the player who accumulated most successes wins a prize. Ties are

broken randomly.

A stopping strategy in the contest induces a probability distribution over the number of

successes at the stopping time. In an infinitely long contest, any such distribution can

be induced by a stopping time. Hence, the choice of a stopping time is equivalent to the

choice of a distribution in this case. If the designer adjusts the cost-prize ratio to the

Poisson arrival rate, both games can be represented by the same normal form. Thus, they

share the same set of Nash equilibrium distributions.2

For a finite contest, however, the normal form differs from that of the all-pay auction, since

some distributions cannot be induced by a stopping strategy. For instance, a distribution

that puts all probability mass on one success cannot be replicated in bounded time, since,

for any finite value T , there is a positive probability that no success occurs until time T .

Nevertheless, under a genericity assumption on the parameters, Proposition 13 shows that

if T is large enough, any symmetric Nash equilibrium distribution of the discrete all-pay

auction can be implemented in the contest. Moreover, by Proposition 14, for sufficiently

large T , the game has no other symmetric equilibria. Hence, the set of symmetric equilib-

rium distributions coincides for both games. In Proposition 15, we provide a time bound

2Thompson (1952) describes the general principles of coalescing of moves; for a discussion, see also
Kohlberg and Mertens (1986).
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suggesting that the critical level T such that the equilibrium distribution can be induced

is moderate. Hence, an all-pay auction is a valid model to analyze stochastic contests, if

(i) the contest lasts sufficiently long and (ii) it has a cumulative structure, i.e., ideas that

arrive add up to the final success.

For small values of T , the long-run equilibrium distribution cannot be induced. This

constraint is similar to the introduction of a binding bidding cap in an all-pay auction in

that it also restricts the set of feasible distributions. However, the effect of both restrictions

is diametrically opposed. We use an example to illustrate that a restriction on the time T

leads to more probability mass at lower points, since players do not have enough time to

transfer their mass. With a binding bidding cap, however, there is more mass at the highest

point, because players can choose any distribution on the given interval, but compensate

for the restriction on the maximal bid by placing more mass on the highest feasible bid.

3.1.1 Related Literature

Compared to the analysis in Chapter 2, this chapter considers a simpler, weakly increasing

research process. This structure allows us to get a direct equivalence to an all-pay auction

and an explicit time bound such that it holds. Moreover, we provide some intuition how

equilibria look like in short contests, which remains an open question for the setting in

Chapter 2.

The main difference to the seminal paper by Taylor (1995) is that in his model the best

draw in a single period determines the contest success. The equilibrium distributions of

his game differ substantially from those of an all-pay auction.

Clearly, the question which model is more appropriate for an application is context-specific.

For example, consider a university department that wants to hire a new researcher. If the

department hires the applicant who has more (major) publications, a cumulative structure

is appropriate. If it hires the applicant with the single best publication, Taylor’s model

is a good description. Similarly, the measure of success in a job promotion contest for
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managers may be either the number of successful projects or the best project. Another

example fitting our criterion are typical R&D competitions, e.g., for a fighter jet or tank

in which the government usually awards the prize depending on a number of attributes.

We proceed as follows. Section 3.2 discusses the discrete all-pay auction. In Section 3.3, we

formally introduce the stochastic contest and derive the main equivalence results. Section

3.4 concludes. We relegate most proofs to the appendix.

3.2 The All-Pay Auction

Consider a model with n risk-neutral players indexed by i ∈ {1, . . . , n} = N . A pure

strategy of each player i is a bid xi ∈ N0 entailing costs cxi. We henceforth normalize c

to 1. A mixed strategy of player i is a probability measure f i : N0 7→ [0, 1]. Denote the

associated cumulative distribution function by F i(z) = P(xi ≤ z) =
z∑
y=0

f i(y). The agent

with the highest bid wins a prize p. Ties are broken randomly. Hence, the utility of player

i is

ui(x1, . . . , xn) =


p− xi if xi > xj ∀j 6= i

p
m − x

i if i ties for the highest bid with m− 1 others

−xi otherwise.

We henceforth impose the following assumption:

Assumption 3. If n = 2, then p
2 /∈ N.

This assumption rules out non-generic parameter settings, in which the prize is an even

integer. In those cases, infinitely many equilibria exist; see Baye et al. (1994) and Cohen

and Sela (2007). In the next lemma, we derive a global indifference property for the set

of equilibrium strategies.

Lemma 18. In every symmetric Nash equilibrium, all players are indifferent between the

pure strategies 0, 1, . . . , x with x = min{x ∈ N0 : F (x) = 1}. Moreover, f(x) > 0 if and

only if x ≤ x.
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The next proposition characterizes the equilibrium for the two-player case.3

Proposition 12. Assume n = 2. The unique Nash equilibrium of the all-pay auction is

f i(x) =


1− x

p if x ≤ x and x is even
1
p(2 + x)− 1 if x < x and x is odd

0 otherwise,

for both players, where x = max{x ∈ N0 : x even and x
p < 1}.

In contrast to a previous analysis of the two-player case in Baye et al. (1994), we get a

unique equilibrium. The different result stems from Assumption 3, which rules out the

parameter setting of Baye et al. (1994) in which the prize has to be an even integer.

The probability measure f(x) alternates due to the tie-breaking rule. For the appropriate

choices of the prize—p = y for any odd integer y—the above expression becomes a uniform

distribution.

3.3 The Stochastic Contest

In the contest, at every point t ≤ T ∈ R+, each player i ∈ {1, 2, . . . , n} = N privately

observes a time-homogeneous Poisson process Xi
t with intensity λ ∈ R+ and jump size 1.

A strategy of player i is a stopping time τ i ≤ T with respect to the natural filtration F it
generated by the process Xi

t . This stopping time induces a probability distribution over

values of the process at the stopping point. We denote this distribution by F i : N0 → [0, 1],

where F i(x) := P(Xi
τ i ≤ x), and the associate probability measure by f i(x). Stopping at

time t entails costs of c̃t. The player who has more Poisson arrivals at her stopping time

τ i wins a prize p̃. Thus, each player’s profit is

3Dechenaux et al. (2003, 2006) analyze the game with bidding caps, in which the prize is foregone in case
of a tie. Cohen and Sela (2007) consider the case of asymmetric valuations.
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πi =



p̃− c̃τ i if Xi
τ i > max

j 6=i
Xj
τ j

p̃
m − c̃τ

i if i ties for the highest value with m− 1 others

−c̃τ i otherwise.

Formally, the number of bidders in a tie is m = |{j ∈ N : Xj
τ j

= maxi∈N Xi
τ i}|. Define

the payoff process (Πi
t)t∈R+ of player i as his expected payoff πi of stopping immediately

Πi
t = E(πi|Xi

τ i = Xi
t) = p̃ P(Xi

t = max
j∈N

Xj
τ j

) E( 1
m
|Xi

t = max
j∈N

Xj
τ j

)− c̃t .

Hence, it is the prize times a weighted probability of winning it alone or sharing it minus

the cost. In the next step, we characterize distributions F for which the process can be

stopped such that the probability distribution at the stopping value equals F .

Definition 1. A distribution F : N0 → [0, 1] is feasible in a contest of length T ∈ R+ if

there exists a stopping time τ , with τ ≤ T almost surely, that induces F .

The following lemma gives a characterization of feasible distributions; the proof in the

appendix constructs a corresponding strategy.

Lemma 19. Consider the process Xi
t as defined above. Take any distribution F with

f(x) > 0 if and only if x ≤ x ∈ N0. There exists a time bound T ′ ∈ R+ such that, for all

T ≥ T ′, F is feasible.

In particular, all symmetric equilibrium distributions of the all-pay auction are feasible if

the contest lasts long enough. The following proposition establishes the main result.

Proposition 13. Let F be a symmetric equilibrium distribution of the all-pay auction, T ′

as defined in Lemma 19 and c̃
p̃ = λ

p . Then, for all T ≥ T ′, F is also a Nash equilibrium

distribution of the stochastic contest.

Proof. By Lemma 19, there exists a strategy in the stochastic contest that induces the

Nash equilibrium distribution of the all-pay auction for T sufficiently high. To show that
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this is indeed an equilibrium distribution for the stochastic contest, we verify that no

player has a profitable deviation. Define f−i(x) = P(max
j 6=i

Xj
τ j

= x) and

mi(x) = |{j ∈ N : j 6= i,Xj
τ j

= x = max
l 6=i

X l
τ l}|+ 1.

The expectation of the infinitesimal generator of the process Πi is

E(dΠi
t)

dt (Xt = x)

= p̃λ

(
f−i(x)(1− E( 1

mi(x))) + f−i(x+ 1)E( 1
mi(x+ 1))

)
− c̃

= p̃λ

(
f−i(x)(1− E( 1

mi(x))) + f−i(x+ 1)E( 1
mi(x+ 1))− 1

p

)
.

The formula for the infinitesimal generator omits multiple jumps, because they occur with

probability zero. With a slight abuse of notation, we also denote the number of players

in a tie for the all-pay auction by mi(x) = |{j ∈ N : j 6= i, xj = x = max
l 6=i

xl}| + 1. The

indifference property for the all-pay auction (Lemma 18) is mathematically equivalent to

0 = (f−i(x)(1− E( 1
mi(x))) + f−i(x+ 1)E( 1

mi(x+ 1)))p− 1.

It follows that E(dΠit)
dt = 0 for all Xt < x. By optimality of a bid x compared to x + 1

in the all-pay auction, we have E(dΠit)
dt ≤ 0 at x. For all points x > x the winning

probability does not increase after a success, which implies E(dΠit)
dt = −c̃ < 0. Hence, the

process Πi
t is a supermartingale and a local martingale on the support. Denote by τ i the

stopping time inducing the equilibrium distribution F and by τ i0 the strategy which stops

immediately. By Doob’s optional stopping theorem (Rogers and Williams, 2000, p.189),

for any bounded time stopping time τ̂ i, E(Πi
τ̂ i) ≤ E(Πi

τ i0
) = E(Πi

τ i). Thus, there is no

profitable deviation.

Hence, if the duration of the contest is long enough and the designer adjusts the prize

to the Poisson arrival rate, any equilibrium distribution of the all-pay auction is also an

equilibrium distribution in the stochastic contest. Intuitively, players use the stochasticity

to replicate the equilibrium distribution of the all-pay auction. As a minor difference,

59



players in the contest model face uncertainty about the realization of the process, whereas

in the all-pay auction, each player can determine her bid deterministically.

In the next proposition, we establish the reverse direction of the previous result. Hence,

for long enough contests both games have the same equilibria.

Proposition 14. Assume c̃
p̃ = λ

p . There exists a time bound T ′′ ∈ R+ such that, for all

T ≥ T ′′, the set of symmetric equilibrium distributions in the contest and in the all-pay

auction coincide.

Therefore, the all-pay auction is suitable for the analysis of stochastic contests if the

contest lasts long enough and the research process has a cumulative structure.

The next paragraph scrutinizes the amount of time needed for the equilibrium distributions

to be feasible. More precisely, we derive an upper bound on the minimal time to reach the

uniform distribution; recall that in a two-player contest this is the unique Nash equilibrium

for the appropriate choice of prize.

Proposition 15. The uniform distribution on {0, 1, . . . , x} is feasible if the contest lasts

at least T = x log(x+1)
λ periods.

The construction of the upper bound in the proof can be applied to derive an upper bound

for any other (equilibrium) distribution.

While it is beyond the scope of this chapter to give a full characterization of the equilibria

for small values of T , we illustrate the main intuition with a simple example. In the

example, we let n = 2, p̃ = 3, λ = 1, c̃ = 1. If T < log(3) ≈ 1.0986, it is straightforward to

verify with the infinitesimal generator condition that, in the unique equilibrium, players

continue until they have one success or the game ends. For larger values of T , players also

continue if they have one success, since the probability mass of the other player at one or

two successes is sufficiently high. For T ≥ log(3) − log( 1
log(3)) ≈ 1.1927, the equilibrium

distribution of the all-pay auction with p = 3, which places probability one-third on zero,

one, and two successes, respectively, is feasible.
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Hence, in short contests, players do not have enough time to transfer as much probability

mass to higher values compared to the all-pay auction equilibrium. This restriction on

the strategies leads to a different result than restricting the strategy space with a binding

bidding cap in the all-pay auction. More specifically, a binding bidding cap leads to a

higher probability mass at the bidding cap, while a low value of contest length leads to a

concentration of the probability mass at lower values.

3.4 Conclusion

In this chapter, we have compared the static all-pay auction with discrete bids to a stochas-

tic contest model in which the research success is weakly increasing as long as a player

exerts effort. If the contest lasts long enough—a moderate contest length is sufficient—

and has a cumulative structure, the symmetric equilibrium distributions of the contest

coincide with those of the discrete all-pay auction.

Hence, the applicability of all-pay auction models to analyze stochastic contests depends

on the structure of the research process. For a cumulative process, the all-pay auction

is appropriate, while it is not suited to model a contest in which only the best research

outcome in a single period counts as in Taylor (1995).

3.5 Appendix

Proof of Lemma 18. By contradiction, assume ∃x ∈ N0 : x < x such that the pure strategy

x is strictly worse than all x̃ ∈ supp{f}. Hence, in any symmetric equilibrium f i(x) = 0

for all i. Define x′ := min{x̂ > x : player i is indifferent between x̂ and any x̃ ∈ supp{f}}

as the lowest optimal bid above x. Hence, f i(x′ − 1) = 0 for all players, which implies

that P(maxj 6=i xj = x′ − 1) = 0. Yet, as player i strictly prefers x′ to x′ − 1, we get

P(max
j 6=i

xj = x′)E( 1
mi(x′)) > 1

p
(3.5.1)
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with mi(x′) = |{j ∈ N : j 6= i, xj = x′ = max
l 6=i

xl}|+ 1. On the other hand, player i prefers,

at least weakly, x′ to x′ + 1, i.e.,

(
1− E( 1

mi(x′))
)

P(max
j 6=i

xj = x′) + P(max
j 6=i

xj = x′ + 1)E( 1
mi(x′ + 1)) ≤ 1

p
. (3.5.2)

Due to E( 1
mi(x′)) ≤ 1

2 , the left hand side of this equation is at least as large as

P(maxj 6=i xj = x′)E( 1
mi(x′)). Thus, (3.5.1) and (3.5.2) yield a contradiction, which com-

pletes the proof of the first part of Lemma 18.

If n > 2, then E( 1
mi(x′)) < 1

2 for all points in {0, 1, . . . , x} for which f(x) > 0. It follows

that f(x) > 0 if and only x ≤ x, as the contradiction is valid even if (3.5.1) holds with

equality. For two players, we establish this result in the proof of Proposition 12.

Proof of Proposition 12. In any equilibrium in which both players are indifferent between

all strategies {0, 1, . . . , x}, we have

f i(x)
2 + f i(x+ 1)

2 = 1
p
∀x < x− 1, ∀i, and

x∑
0
f i(x) = 1. (3.5.3)

The unique solution to this system of equations for p
2 /∈ N is given in Proposition 12.

Hence, by the indifference argument in Lemma 18, the equilibrium is the unique symmetric

equilibrium. This also implies that f(x) > 0 if and only if x ≤ x in the symmetric

equilibrium for two players, which completes the missing step in the proof of Lemma 18.

In the following, we show that the two-player game does not have an asymmetric equilib-

rium. First, we prove that f i(x+ 2) > 0 =⇒ f i(x+ 1) > 0 or f i(x) > 0, for all x ∈ N0,

for all i. Assume to the contrary

∃x ∈ N, i ∈ N : f i(x) = 0, f i(x+ 1) = 0 and f i(x+ 2) > 0.
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Optimality for player j implies

f j(x) ≥ 0, f j(x+ 1) = 0,

because her winning probability does not change on {x, x + 1}, but she has higher costs

for any point above x. Moreover, if f i(x+ 2) > 0 is optimal, f j(x+ 2) > 0, because player

i would prefer x+ 1 to x+ 2 otherwise. Yet, in this case, player j prefers, at least weakly,

to bid x+ 2 compared to x, which means

2
p
≤ f i(x+ 2)

2 . (3.5.4)

However, comparing the profits of (the supposedly optimal) x + 2 and x + 3 for player j

gives

p
f i(x+ 2) + f i(x+ 3)

2 − 1 ,

which is strictly positive by equation (3.5.4). Thus, player j strictly prefers to bid x + 3

compared to x+ 2. This yields the required contradiction to optimality of bidding x+ 2.

Hence, for any two subsequent points smaller than x, there is at most one point without

mass.

In the next step, we show that players are indifferent on {0, . . . , x}. Assume to the contrary

that player j finds it strictly worse to bid x < x. Thus, by the first step, f j(x − 1) >

0, f j(x) = 0 and f j(x+ 1) > 0. Furthermore, as it is strictly worse for player j to play x

compared to x+ 1 and x− 1, we have

f i(x+ 1)
2 + f i(x)

2 >
1
p

and f i(x− 1)
2 + f i(x)

2 <
1
p
,

which in turn implies f i(x+ 1) > f i(x− 1). Since player i (weakly) prefers x+ 1 to x− 1,

we have
f j(x− 1) + f j(x+ 1)

2 ≥ 2
p
. (3.5.5)

As player i also (weakly) prefers x+ 1 to x and x+ 2 respectively, it holds

f j(x) + f j(x+ 1)
2 ≥ 1

p
and f j(x+ 1) + f j(x+ 2)

2 ≤ 1
p
. (3.5.6)
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This yields f j(x− 1) = f j(x+ 1) = 2
p and f j(x+ 2) = 0. If f i(x− 1) > 0, equation (3.5.5)

holds with equality and, by optimality for player i, we also have f j(x−2) = 0 (if existent).

If, on the other hand, f i(x − 1) = 0, the same result, f j(x − 2) = 0, holds by the first

part of the proof. This argument extends to the whole support and any resulting function

f which alternates between 0 and 2
p violates the probability measure condition (3.5.3) as

p
2 /∈ N by Assumption 3.

It remains to show indifference on 0. Assume that to bid 0 is strictly worse than to bid 1 for

player i. If both players have f i(0) = f j(0) = 0, weak optimality of a bid of 1 compared to

2 implies that f(1) ≤ 2
p . This has to hold with equality to guarantee non-negative profits.

Thus, players are indifferent between bids of 0 and 1.

Therefore, it remains to consider the case in which exactly one player, say player j, has

f j(0) > 0. In this case, however, her expected profit is zero at zero and it has to be

zero for any strategy in the support because she is indifferent between all strategies in the

support. Given f i(0) = 0, this implies f i(1) = 2
p . As before, the argument extends to the

whole support and any resulting function f which alternates between 0 and 2
p violates the

probability measure condition (3.5.3).

Thus, in any equilibrium, players have to be indifferent on {0, . . . x}. In addition, the

probability measure condition (3.5.3) must hold. By the first part of the proof, this

determines the equilibrium distributions uniquely.

Proof of Lemma 19. Rost (1976) constructs a stopping time τ for general right continu-

ous Markov processes (Xt)t∈R+ that minimizes the residual expectation E(
∫ τ

min{t,τ} ds) =∫∞
t P(τ > s)ds for all t ∈ R+ and embeds F , i.e., Xτ ∼ F . To apply Rost, we need to

verify the condition on page 198 (Rost, 1976):

For every positive function g : N0 → R,

E(
∫ ∞

0
g(Xt)dt) ≥ EF (

∫ ∞
0

g(Xt)dt).
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In the following, we show that this condition is fulfilled

EF (
∫ ∞

0
g(Xt)dt) =

x∑
x=0

f(x)
∞∑
i=x

1
λ
g(i) =

x∑
x=0

f(x)
( ∞∑
i=0

1
λ
g(i)−

x−1∑
i=0

1
λ
g(i)

)

≤
∞∑
i=0

1
λ
g(i) = E(

∫ ∞
0

g(Xt)dt) .

By the Lemma on page 201 in Rost (1976), the associated stopping time is the first hitting

time of a set A

τ = inf{t ∈ R+|(t,Xt) ∈ A} . (3.5.7)

We can equivalently formulate (3.5.7) as

τ = inf{t ∈ R+|t ≥ H(Xt)} ,

with some function H : N0 → R+. As the density f is positive for all points in the support,

H(x) is finite. Since the support of the distribution F is a finite number of points, the

minimum of H on the support exists and is finite H? = min0≤x≤xH(x). This stopping

time embeds F in a minimal time H? with τ ≤ H? almost surely.

Proof of Proposition 14. By Proposition 13, any symmetric equilibrium distribution in the

all-pay auction is also an equilibrium distribution in the stochastic contest. Therefore, it

remains to scrutinize whether there are additional symmetric equilibria in the stochastic

contest. To be feasible, an equilibrium distribution in the stochastic contest has f(x) > 0

if and only if x ≤ x.

Assume to the contrary that there exists an equilibrium distribution in the stochastic

contest that is not an equilibrium distribution in the all-pay auction. In this case, a player

strictly prefers to continue until the next success for at least one point. We denote the

largest of these points by x̃. In the following, we show that the player strictly wants to

continue at x̃, but is at most indifferent whether to continue at x̃ + 1, contradict each
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other for n > 2,

f−i(x̃)(1− E( 1
mi(x̃))) + f−i(x̃+ 1)E( 1

mi(x̃+ 1)) > c̃

p̃λ

f−i(x̃+ 1)(1− E( 1
mi(x̃+ 1))) + f−i(x̃+ 2)E( 1

mi(x̃+ 2)) ≤ c̃

p̃λ
.

As f i(x̃) approaches zero as T →∞ and E( 1
mi(x)) < 1−E( 1

mi(x)) for all x ≤ x̄ and n > 2,

these equations contradict each other for T large enough.

We now consider the remaining case n = 2. As before, denote the highest point at which

a player strictly prefers to continue by x̃ and f i(x̃) by ε̃. As a player prefers to continue

at x̃, but weakly prefers to stop at x̃+ 1, f(x̃+ 1) ∈ (2
p − ε̃,

2
p ]. Consequently, the expected

gain of continuing at x̃ is at most ε̃p – the expected gain of continuation until the next

success, if the player could continue to play forever. To make continuation at least weakly

optimal at x̃− 1 for some t < T , f(x̃− 1) ∈ [2
p − 2ε̃, 2

p − ε̃]. Hence, either f(x̃− 2) ≤ 2ε̃ or

the player always continues to play there. This argument extends to the whole support.

Hence,
∑x
k=0 f(k) = 2

p l+ ε̂, with a natural number l ∈ N and ε̂ the sum over the differences

from 0 or 2
p at all points of the support,

ε̂ =
x∑
k=0

(−1)k+1{p<f(0)} min{f(k), 2
p
− f(k)}.

As T → ∞, x is bounded, since
∑x
i=0 f(k) > 1 otherwise. Thus, ε̂ converges to zero as

T →∞. By Assumption 3, p2 6= N. Consequently, there exists a time T ′, such that, for all

T ≥ T ′,
∑x
i=0 f(k) 6= 1, which contradicts the probability measure condition (3.5.3).

Proof of Proposition 15. We construct a strategy which waits at some points in time,

calculate its implementation time, and argue that it is larger than that of the optimal

strategy.
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The strategy proceeds as follows: continue at 0 until P(Xt = 0) = 1
x+1 and stop at 1.

Then continue at 1 until P(Xt = 1) = 1
x+1 and stop at 2. Continue in the same way for

the whole support.

To implement the first step, we get the condition e−λt = 1
x+1 , i.e., t = log(x+1)

λ . Any

later step takes less time, as less mass needs to be transferred. Hence, we can bound the

required time by T ≤ x log(x+1)
λ . Clearly, this strategy is slower than the optimal strategy,

which never stops in order to continue later.
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Chapter 4

How Burning Money Requires a
Lot of Rationality To Be Effective

In this chapter, we propose an extension of the valuation equilibrium concept (Jehiel and

Samet, 2007). Contrary to the original concept, we do not treat the grouping of moves as

entirely exogenous, but start with an intuitive basic grouping which players can refine at a

lexicographical cost. We then adapt the valuation equilibrium concept to this setting.

This approach yields predictions for extensive-form games without specifying an underlying

grouping ad hoc. In an application to a burning money game, we find that adding a

possibility to burn money prior to a coordination game does not affect the set of equilibrium

outcomes. This prediction, which differs from that of standard solution concepts, is roughly

in line with laboratory evidence gathered by Huck and Müller (2005).

4.1 Introduction

An interesting recent approach to model bounded rationality is the valuation equilibrium

concept (Jehiel and Samet, 2007). The idea of the concept is that (boundedly rational)

players, instead of considering all moves in a game separately, bunch “similar” moves into

groups (“similarity classes”) and attach a valuation to each similarity class. In equilib-
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rium, each player chooses actions from a similarity class with locally maximal valuation,

where “locally maximal” refers to the highest valuation of all similarity classes available

at that point. The underlying grouping in terms of similarity, however, remains entirely

exogenous.

We propose a refinement of the valuation equilibrium concept that partially endogenizes

the grouping of actions. More specifically, we start with an intuitive basic grouping, which

players can refine. A more complex grouping, however, enters the payoff function of a

player at a lexicographical cost. The measure for complexity of a grouping is the number

of similarity classes it contains. Intuitively, this criterion is similar to the complexity

criterion in Rubinstein’s games played by finite automata (Rubinstein, 1986, Abreu and

Rubinstein, 1988), where the number of states of an automaton enters the payoff in a

lexicographical way. The refined equilibrium concept requires that no player has a benefit

of using a different partition and strategy.

To illustrate the virtues of the modified definition, we compare its predictions with tra-

ditional predictions for the burning money game introduced by Ben-Porath and Dekel

(1992).1 The comparison emphasizes how standard equilibrium concepts rely on player

2 fully exploiting all available information. In particular, if differentiating moves comes

at a lexicographical cost for player 2, money is never burned in equilibrium and all three

equilibria of the one-shot coordination game are possible in the second stage. Hence, the

modified valuation concept selects those subgame perfect equilibria in which the mere pos-

sibility to burn money does not affect the outcome of the coordination game. In fact, this

is roughly in line with empirical evidence from a repeated version of the game gathered

by Huck and Müller (2005): money is almost never burned (about 6 percent); on the

second stage, all strategy profiles are observed in significant fractions, but the equilibrium

strategy profile player 1 prefers occurs with highest probability; this profile is also selected

by the forward induction solution in Ben-Porath and Dekel (1992).

Finally, we discuss a sequential version of matching pennies to provide more intuition on

how the modified valuation concept works. Again, the concept selects a subset of subgame

1The burning money game combines a common coordination game with a first stage in which player 1
has the opportunity to “burn money”, i.e., choose a strategy which reduces his payoff.
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perfect equilibria.2 In contrast to the first example, there is no modified valuation equilib-

rium in pure strategies and the second player uses a refined grouping in any equilibrium.

4.2 The Model

The first part of this section briefly introduces the sequential valuation equilibrium concept

by Jehiel and Samet (2007) with a slightly simplified notation. The second part introduces

the notion of a robust valuation equilibrium.

4.2.1 The Basic Setup of Jehiel and Samet (2007)

Following Jehiel and Samet (2007), we consider finite extensive-form games, where I is the

finite set of players i = 1, . . . , I and Z is the finite set of terminal histories induced by the

players’ actions. The payoff of each player at each terminal history is specified by a function

fi : Z → R. Each player i uses a behavioral strategy σi. The probability distribution over

terminal histories induced by the player’s strategies is denoted Pσ. Moreover, the set of

moves Mi is partitioned into similarity classes λi ∈ Λi. Each player attaches a valuation

νi : Λi → R to each similarity class. Denote the probability that at least one move from

similarity class λi is played, i.e., the probability that a terminal history containing a move

in λi is reached, by Pσ(Z(λi)).

In a sequential valuation equilibrium, strategies have to be optimal given valuations and

valuations have to be sequentially consistent with the strategies. Roughly speaking, consis-

tency requires that the valuation of a similarity class equals the expected payoff (given all

players’ strategies) a player obtains conditional on having used a move from the respective

class.

2In general, the set of modified valuation equilibria is not a subset of the set of subgame perfect equilibria.
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More formally, a valuation νi is consistent with a strategy profile σ if, for all λi ∈ Λi with

Pσ(Z(λi)) > 0,

νi(λi) = Eσ(fi|Z(λi)) =
∑

z∈Z(λi)

Pσ(z)fi(z)
Pσ(Z(λi))

.

νi is sequentially consistent, if there is a fully mixed sequence (σk)∞k=1 such that σk → σ

and νki → νi, where νki is the unique consistent valuation for σk.

Moreover, a strategy σi is optimal given νi, if player i only chooses actions from similarity

classes with the (locally) highest valuation.

As in Wichardt (2009), we additionally restrict the set of admissible strategies to those

which use the same probability distribution whenever the set of optimal actions is identical.

We refer to this as uniform tie-breaking.

For a more extensive introduction and additional intuition about the basic setup, see Jehiel

and Samet (2007) or Wichardt (2009).

4.2.2 Restricting the Partitions

To make the concept applicable to a game without having to specify a partition entirely

ad hoc, we restrict the set of partitions in two ways. First, we define a primary partition of

moves, which captures a priori similarity of actions. For the present purposes, we assume

that a priori similarity is reflected in the labeling of actions.

Definition 2. In the primary partition Λ0
i of player i, two moves are in the same similarity

class if and only if they have the same label. In any (admissible) partition, two moves are

in different similarity classes if they have different labels.

Moreover, we define a measure of complexity on the set of (admissible) partitions:

Definition 3. A partition Λi is (weakly) finer than Λ′i if Λi contains at least as many

similarity classes as Λ′i. Otherwise, Λi is coarser than Λ′i.
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Intuitively, a more complex partition requires closer attention to the game, which is more

“costly” in terms of memory. We include the measure of complexity in the equilibrium

concept:3

Definition 4. A profile (σ, ν,Λ) is a robust valuation equilibria (RVE) if, for all i,

1. νi is sequentially consistent with σ,

2. σi is optimal given νi,

3. for any coarser partition Λ′i and all pairs (σ′i, ν ′i) allowed by Λ′i such that σ′i is optimal

given ν ′i and ν ′i is sequentially consistent with σ′i, we have E[fi|(σ′i, σ−i)] < E[fi|σ],

4. for any (weakly) finer partition Λ′′i and all pairs (σ′′i , ν ′′i ) allowed by Λ′′i such that σ′′i
is optimal given ν ′′i and ν ′′i is sequentially consistent with σ′′i , we have

E[fi|(σ′′i , σ−i)] ≤ E[fi|σ].

The first two conditions ensure that the profile is a sequential valuation equilibrium given

the partition. Conditions 3 and 4 impose additional robustness criteria. In particular,

condition 3 states that no player can obtain the same payoff with a “cheaper” partition;

condition 4 states that no player can get a strictly higher payoff with a finer partition.

Intuitively, the robust valuation concept resembles Rubinstein’s concept for repeated

games played by finite automata (Rubinstein, 1986, Abreu and Rubinstein, 1988) in which

the complexity (number of states) of an automaton enters the payoff at a lexicographical

cost. Note that in Rubinstein’s concept, transitions between the states of an automaton

occur depending on the sequence of moves, whereas here the grouping is not necessarily

tied to the preceding history.

3The modified concept is equivalent to introducing a lexicographic cost for choosing a finer partition.
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4.3 Applications

4.3.1 The Burning Money Game

In this section, we discuss an application of the robust valuation equilibrium concept to

the burning money game introduced by Ben-Porath and Dekel (1992). In this 2-stage,

2-player game, player 1 first decides whether to play b (“burn money”) or nb (“not burn

money”), where b reduces the payoff of player 1 in stage 2, but has no effect otherwise.

The second stage is a coordination game, where player 1 can choose between U and D

and player 2 can choose L or R. The payoffs are specified in Figure 4.1, where subindices

are added for notational convenience.

J
J
J
J
J
J
J
J
J




















r

U1

D1

U2

D2

L1 R1 L2 R2

5,1 0,0

0,0 1,5

3,1 -2,0

-2,0 -1,5

nb b

1

Figure 4.1: The burning money game; in stage 2 player 1 chooses rows and player 2 chooses
columns.

Intuitively, it is not clear why an option to “burn money”, i.e., publicly harm oneself,

should have an influence on the equilibrium set—at least if players are not assumed to be

fully rational. Yet, for standard equilibrium concepts such as Nash equilibrium, subgame

perfect equilibrium, or forward induction, the additional option of “burning money” does

matter.
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The game has a myriad of subgame perfect equilibria. In particular, “burning money” can

be sustained in equilibrium, e.g., in the profile σ = ((b,D1U2), R1L2). The RVE concept,

however, predicts that money is never burned and equilibrium play at the second stage is

independent of the first stage:

Proposition 16. In any RVE, each player uses his primary partition Λ0
i , where Λ0

1 =

{{nb}, {b}, {U1, U2}, {D1, D2}} and Λ0
2 = {{L1, L2}, {R1, R2}} and equilibrium strategies

are given by

(i) player 1 choosing nb and U1U2, player 2 choosing L1L2,

(ii) player 1 choosing nb and D1D2, player 2 choosing R1R2,

(iii) player 1 choosing nb and 5
6U1 + 1

6D1; 5
6U2 + 1

6D2, player 2 choosing 1
6L1 + 5

6R1; 1
6L2 +

5
6R2.

Proof. If player 2 uses the primary partition Λ0
2, consistent valuations for every fully

mixed sequence of strategies have to satisfy νk1 ({b}) + 2 = νk1 ({nb}), since player 2 uses

the same probability distribution over actions after b and nb by uniform tie-breaking.

Hence, nb is played in any RVE for Λ0
2. Furthermore, by sequential consistency, mutual

best responses are played on the equilibrium path at the second stage. Hence, (i)-(iii) are

the only candidates for an RVE for Λ0
2, since off-equilibrium path (after b is played), both

players play the same actions as on the equilibrium path by uniform tie-breaking. As each

player obtains the highest possible payoff against the strategy of the other player with

his primary partition, the strategy-partition combinations in the proposition are robust

to finer partitioning and robust to coarser partitioning, and, hence an RVE.

It remains to establish that the game possesses no RVE for a partition that is finer than

Λ0
2. To see this, note that unless player 1 randomizes at the first stage, player 2 has no

incentive to use a refined partition: one branch of the tree is never followed and he can

ensure himself whatever payoff he gets using the (cheaper) primary partition. Hence, in

any RVE, for player 2 to use a partition finer than Λ0
2, player 1 has to randomize at the

first stage. This implies ν1({b}) = ν1({nb}) by optimality. Moreover, both players have

to play mutual best responses after b and nb in the second stage. Taken together, this

leads to a contradiction, as for any two equilibria in the one-shot game after b and nb,
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the payoff of player 1 is different (so that the valuation for {b} and {nb} have to differ).

Accordingly, the above characterization captures all RVE of the game.

Intuitively, “burning money” does not have an effect because player 2 would have to invest

in a finer partitioning in order to take it into account. In that sense, the robust valua-

tion equilibrium concept highlights the comparably high degree of rationality implicitly

ascribed to player 2 in standard game-theoretic concepts.

Huck and Müller (2005) tested the predictions of the burning money game in an exper-

iment. Their findings are roughly in line with the predictions of the robust valuation

equilibrium concept: In a repeated version of the game, money is almost never burned

(about 6 percent of the games) and all possible action profiles at the second stage oc-

cur in significant fraction, while the equilibrium player 1 prefers occurs with the highest

probability.4 This equilibrium is also the outcome of the forward induction solution by

Ben-Porath and Dekel (1992).

4.3.2 Sequential Matching Pennies

Finally, we discuss a sequential version of matching pennies to further clarify how the RVE

concept works.

In this sequential matching pennies game, player 1 can first choose whether to play heads

(H) or tails (T). At stage 2, player 2 decides whether to play H or T . Final payoffs

correspond to the classical matching pennies game and are given in Figure 4.2, where

subindices are again added for notational convenience.

The standard equilibrium prediction for this game (subgame perfect equilibrium) is that

player 2 plays his best response H1T2 and player 1 can use any strategy profile in equilib-

rium. The RVE predictions are slightly different:

4Exact frequencies in Huck and Müller (2005) vary depending on the exact assignment of the game.
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Figure 4.2: Sequential matching pennies game

Proposition 17. In any RVE, player 2 uses a partition, which contains three similarity

classes (either Λ2 = {{H1}, {H2}, {T1, T2}} or Λ2 = {{H1, H2}, {T1}, {T2}}). Player 1

randomizes between H and T with probability P(H) ∈ (0, 1). Player 2 plays H1T2.

Proof. If player 2 uses a partition with three similarity classes and the strategy H1T2

(with consistent valuations ν2 = (1,−1, 1)), she can guarantee herself the maximal payoff

of one. If she does so, any strategy of player 1 leads to payoff of −1 and is thus sequentially

consistent with a valuation of −1 for both similarity classes. It remains to verify whether

the strategy of player 2 is robust to coarser partitioning. If player 1 does not play a

pure strategy, any deviation to the coarser partition Λ0
2 decreases the payoff of player 2,

because she has to use a uniform tie-breaking over actions at both nodes. Hence, the

strategy profiles in the proposition are RVE.

On the other hand, if player 1 plays a pure strategy, player 2 is better off deviating to the

coarser partition with the best response to the pure strategy. Hence, there are no other

RVE in which player 2 uses a partition with three similarity classes.

Clearly, no strategy profile for the finest partition Λ2 = {{H1}, {H2}, {T1}, {T2}} can be

robust to coarser partitioning, since, for any strategy of player 1, there is a partition
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containing three similarity classes for which player 2 can obtain the maximal payoff.

In any RVE candidate for Λ0
2, the expected payoff of player 2 has to be 1, since she would

deviate to a finer partition and H1T2 otherwise. This implies that player 2 plays either

H1H2 or T1T2. In this case, however, player 1 has a strategy, which guarantees her a

payoff of 1 and player 2 a payoff of −1. Hence, there are no RVE in which player 2 uses

the coarsest partition.

In this example, the RVE criterion rules out those subgame perfect equilibria in which

player 1 uses a pure strategy. Intuitively, the mixed-strategy equilibria survive because

player 1 forces player 2 to use his finest partition.

4.4 Discussion

This chapter has proposed a refinement of the valuation equilibrium concept, which yields

predictions for extensive-form games without requiring an ad hoc specification of each

player’s groupings. In the main application, the predictions about the equilibrium set

differ from those of standard concepts, but are intuitive and roughly in line with empirical

evidence.

In future research, one might investigate the relation of RVE to other equilibrium concepts

in more detail. In this respect, it would be useful to extend the definition of the concept

to infinitely repeated games and compare its predictions to the predictions of subgame

perfect equilibria and equilibria in games played by finite automata (Rubinstein, 1986,

Abreu and Rubinstein, 1988).

Another open question is to provide general conditions for existence of an RVE. For similar

reasons as in other evolutionary or bounded rationality concepts, it is possible to construct

a game in which no RVE exists. Relatedly, it would be interesting to have an explicit

evolutionary foundation for the RVE concept based on a model in which players experiment

with and learn about strategies and partitions over time.
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