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Preface

The dissertation deals with pure financial derivatives and financial derivatives which are

components of life insurance contracts. Pure financial derivatives are financial instru-

ments whose payoff depend on the price development of one or more underlying assets. In

the simplest case, the underlying could be a single asset, such as stocks, commodities and

foreign currencies, or more complexly, baskets of different assets. Similar payoff struc-

tures can be embedded in life insurance contracts. Life insurance contracts provide either

survival benefits or death benefits or both. When these benefits are linked to the perfor-

mance of one or more underlying assets, the policyholders will also have the opportunity

to participate in the financial market. The benefits are usually equipped with certain

guarantees, so that the policyholders are insured to be protected from the downside de-

velopment of the financial market. Typical examples of such life insurance contracts are

unit-linked life insurance contracts.

Chapter 1 focuses on the complex situation of basket foreign exchange (FX) products.

These are financial products whose payoffs depend on the behavior of a basket of foreign

currencies at a predetermined time point or within a predetermined time period. The

building blocks of these basket FX products are basket options. A well-known feature

of basket options is that it is difficult to specify the distribution of the underlying bas-

ket starting from the standard assumption that the price processes of the single assets

in the basket follow geometric Brownian motions. In the literature, both numerical and

approximation methods to price basket options were discussed in great extent. Numerical

methods are, for example, the bivariate binomial lattice method by Rubinstein (1994)

and the Monte Carlo simulation method proposed by Joy, Boyle and Tang (1996), whose

results are considered to be very near to the true prices. However, due to the time con-

suming of these methods, people have been searching for approximation methods which

involve less calculation time without too much sacrifice of the accuracy. These methods are

especially important when immediate price calculation is necessary. With regard to the

approximation methods of basket option pricing, Beißer (2001) has provided a detailed

review which includes the geometric approximation approach1, the lognormal approxi-

mation approach2, the Edgeworth series expansion approach3, the Reciprocal Gamma

1Confer Gentle (1993).
2Confer Levy (1992).
3Confer Huynh (1994).
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2 Preface

approximation approach4 and the conditional expectation approach5. These methods

are transferred from the approximation methods first developed for Asian option pric-

ing. Due to the close structural similarity between basket and Asian options, they can

be applied to the pricing of basket options without difficulty. The idea of the first four

methods is to approximate the unknown distribution of the underlying basket with a

known distribution (the lognormal distribution in the first three cases and the reciprocal

gamma distribution in the fourth case), while the conditional expectation approach ap-

proximates the price processes of the underlying currencies driven by different Brownian

motions with the synthetic processes driven by a common stochastic process by applying

the tower property of the conditional expectation and Jensen’s inequality.6 In Chapter

1, within an international financial market model, another approximation method, called

the rank one approximation method, is proposed. This method mixes the two approxima-

tion categories at two steps. At the first step, it approximates the covariance structure of

the uncertain part of the price processes with a rank one matrix and delivers a vector of

stochastic processes driven by the same standard normally distributed variable. Then at

the second step several adjustment parameters are introduced into the price process of the

synthetic underlying basket approximated at the first step for the purpose of correcting

the distribution distorted through the first step approximation. The performance of this

method concerning the pricing and risk management of basket options will be studied in

comparison with one of the popular approximation methods–the lognormal approxima-

tion method. By introducing the rank one approximation method, we enlarge the family

of approximation methods for the pricing of basket derivatives.

Chapter 2 and 3 are concerned with unit-linked life insurance contracts. Unit-linked life

insurance was very popular in household financial planning in the 1990s. The share of

unit-linked premiums increased from 20% in 1997 to 36% in 2001 of the total life

insurance premiums which accounted for over 10% of the GDP of western Europe, see

Re (2003). Although the popularity of unit-linked insurance from the policyholder side

declined during financial market crashes, e.g., at the end of 2001 and between 2007 and

2010 , this business is expected to boom again when the capital market recovers from the

depression. According to Re (2003), a simple regression analysis shows that a 10% rise

in the stock market led to a 15% increase in single-premium unit-linked sales.

Since the payoffs of unit-linked life insurance contracts also depend on the occurrence

of the policyholders’ death event, the influence of the mortality risk on unit-linked life

insurance contracts deserves to be studied properly. In recent years, it has been widely

accepted that mortality changes over time in an unpredictable way and stochastic models

have been developed to adequately capture the systematic mortality risk. Each mortal-

ity model is a possible description of the mortality risk. In Chapter 2, a framework is

4Confer Milevsky and Posner (1998).
5Confer Curran (1994), Rogers and Shi (1995), Nielsen and Sandmann (2002a).
6For more detail, confer Beißer (2001).
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proposed for assessing the mortality model risk embedded in unit-linked life insurance

contracts arising from different specifications for the mortality intensity. The basic as-

sumption of this framework is that we do not know the exact process of the mortality

intensity but are able to figure out its upper and lower bound under the statistical mea-

sure. This setup allows us to study the impact of mortality model risk on various contract

types more efficiently.

Many unit-linked life insurance contracts also include the provision of surrender options,

which allow policyholders to terminate the contracts prematurely. Chapter 3 studies

the valuation of unit-linked life insurance contracts with surrender guarantees. The im-

portant part in valuing such contract types is to describe the surrender behavior of the

policyholders. Surrender decisions are not only triggered by exogenous reasons but also

by endogenous reasons. Exogenous reasons are, for instance, the financial stresses of the

policyholders, and endogenous reasons are the financial factors which make it monetarily

optimal to surrender the contracts at the appropriate moments. In this chapter, the ar-

rival of the surrender event is described by an intensity-based approach and the valuation

problem is solved for a representative policyholder. We assume the surrender intensity to

be bounded from below and from above. The lower bound represents the surrender base

level due to exogenous reasons. And the upper bound represents the maximal surrender

intensity that is attributed to exercise of the surrender option when it is financially opti-

mal to do so. The effect of policyholders’ monetary rationality on the fair contract design

is studied in detail.
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Chapter 1

Rank One Approximation Pricing of

Basket FX Derivatives

1.1 Introduction

Basket FX derivatives are financial derivatives based on a common base currency and

several other risky currencies. The risky currencies build the underlying basket. Depend-

ing on the exchange rates of these currencies with the base currency, the payoffs of the

derivatives vary.

1.1.1 Main Functions of Basket FX Derivatives

Basket FX derivatives, as other financial derivatives, mainly serve two purposes of the

financial participants. Firstly, corporations active on the global market transact between

domestic and foreign currencies frequently. Since the exchange rates between the curren-

cies change every moment, these corporations want to hedge against the exposure to the

exchange rate risk so as to make more reliable business plans. FX derivatives tailored

to their demands enable them to limit the risk exposure at reasonable costs. Secondly,

the volatile exchange rate market also provides the opportunities to make profits if the

development of the exchange rates is speculated correctly. Institutional as well as private

investors are hence attracted to access this market.

Compared to the FX derivatives written on a single exchange rate, basket FX derivatives

have two more advantages.

Firstly, corporations having frequent inflows of several foreign currencies are more inter-

ested in the overall performance of their currency baskets. Instead of obtaining several

plain vanilla options on the single currencies and thus limiting the appreciation of each

currency separately to a certain level, the corporations save their costs if a single option

on the basket of these currencies is available. The cost saving effect is mainly explained by

5



6 Rank One Approximation Pricing of Basket FX Derivatives

the convex payoff structure of the options. For example, we consider a basket call option

written on the exchange rates X1, X2, . . . , Xn weighted by w1, w2, . . . , wn respectively.

The option with the strike price K pays out [
∑n

i=1wiXi −K]
+

at the maturity date

T . Due to the convexity of the payoff structure [·]+ , we have[
n∑
i=1

wiXi −K

]+

=

[
n∑
i=1

wiXi −
n∑
i=1

wiKi

]+

≤
n∑
i=1

wi [Xi −Ki]
+ .

for all the sequences of K1, K2, . . . , Kn with
∑n

i=1wiKi = K . This indicates that a

portfolio of plain vanilla options on the single currencies overhedges the risk exposure in-

tended to hedge against, and hence, is also more expensive. This makes it less attractive

than the basket option in this situation. Furthermore, transaction costs are saved when

only one option is needed instead of several ones.

Secondly, due to the averaging effect, a FX basket is less volatile than a single exchange

rate. The averaging effect may be represented by two phenomena. On the one hand,

for negatively correlated currencies, the appreciation of one currency is offset by the de-

preciation of the other one, and vice versa. On the other hand, the effect of a currency

with high volatility can be mitigated by other currencies with lower volatilities within the

basket.1 Therefore, basket derivatives are favored by investors who are more confident

in predicting the trend of a currency basket than to predict the performance of single

currencies. For example, following the optimistic forecast of Goldman-Sachs in 2003 on

the development of the BRICs and later in 2005 on the potential of the N-112, a number

of certificates written on the BRIC or BRIC-plus currency basket3 have been issued on

the German market since 2006 . Among them are the BRIC-plus guarantee certificate,

the BRIC-plus outperformance certificate and the BRIC-plus certificate with stages is-

sued by Goldman-Sachs, and the BRIC basket partially capital protected notes issued by

ABN-AMRO, just to name a few. These certificates bet, on the one side, on the appre-

ciation of the BRIC currencies, and on the other side, are featured with strike levels and

participation rates in accordance with the risk appetite and risk tolerance of the investors.

1Confer Beißer (2001) p.123.
2BRIC refers to the Brazil, Russian, India and China. N-11, the abbreviation for the Next Eleven,

refers to the eleven countries as Bangladesh, Egypt, Indonesia, Iran, Korea, Mexico, Nigeria, Pakistan,
Philippines, Turkey and Vietnam, which could potentially have a BRIC-like impact in rivalling the G7.

3The BRIC-plus currency basket includes the following 10 currencies: Brasilian Real (BRL), Indian
Rupie (INR), Korean Won (KRW), Indonesian Rupiah (IDR), Mexican Peso (MXN), Philippine Peso
(PHP), Russian Rubel (RUB), Chinese Yuan (CNY), Turkey new Lira (TRY), and South African Rand
(ZAR).
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1.1.2 Examples of Basket FX Derivatives

In this part, we provide some examples of BRIC-plus certificates on the German market.

The underlying of these products is a basket of BRIC-plus currencies, whose exchange

rates with one Euro at time t are X1(t), X2(t), . . . , X10(t) . Denoting the number of the

currencies in the basket respectively as w1, w2, . . . , w10 , we write the domestic (Euro)

price of the currency basket at time t , namely A(t) , as A(t) =
∑10

i=1wiXi(t) . We fur-

ther assume that the issuing date and the maturity date of the products are respectively

t0 and T , and the face value is A(t0) =
∑10

i=1 wiXi(t0) .4 Through the examples, we

show that the payoffs of FX basket derivatives, which look complicated at the first sight,

can be duplicated by a portfolio of zero-coupon bonds and basket FX options.

Example 1.1.1 (Guarantee Certificate). The Guarantee Certificate WKN: GS5HFX

is issued by Goldman-Sachs on April 23, 2007 and matures on April 23, 2010. The

composition of the basket is presented in Table 1.1. The certificate matures in three

i currency wi Xi(t0)
1 BRL 27.50805 0.36353
2 INR 568.1818 0.01760
3 KRW 12658.23 0.00079
4 IDR 125000 0.00008
5 MXN 148.876 0.06717
6 PHP 647.6684 0.01544
7 RUB 349.406 0.02862
8 CNY 104.7669 0.09545
9 TRY 18.35806 0.54472
10 ZAR 96.11688 0.10404

Table 1.1: The underlying currency basket of the guarantee certificate WKN: GS5HFX

years. If the currency basket value at the maturity date April 23, 2010, i.e., T = 3 ,

is lower than the initial value, the certificate pays at least the initial value A(t0) back.

Otherwise, the investors, besides obtaining the guaranteed amount A(t0) , participate 6

times into the return of the currency basket. That is, the payoff in this case would be

A(t0) ·
(

1 + 6 ·
(
A(T )
A(t0)

− 1
))

. To sum up, the payoff of the certificate can be written as

A(t0) + 6 · [A(T )−A(t0)]+ . The graphic illustration of the payoff is shown in Figure 1.1.

This payoff can be duplicated by an investment in the domestic zero coupon bonds with

the face value A(t0) , and additionally, an investment in 6 plain vanilla at-the-money

basket call options on the underlying basket.

4In practice, w1, w2, . . . , wn are determined in such a way that the Euro value of each currency in
the basket accounts for 1

n of the face value. The face value ist usually equal to 100 . With regard to the
BRIC-plus certificates introduced in the examples it indicates that wi = 100

10Xi(t0)
for i = 1, 2, . . . , 10 .



8 Rank One Approximation Pricing of Basket FX Derivatives

0 50 100 150
0

100

200

300

400

500

600

700

Performance of the Underlying Basket (%)

P
er

fo
rm

an
ce

 o
f t

he
 C

er
tif

ic
at

e 
(%

)

 

 

Example 1.1.1
Example 1.1.2

Figure 1.1: The payoff structures of the guarantee certificate (WKN: GS5HFX) and the
outperformance certificate (WKN: GS5GFX) on BRIC-plus FX basket

Example 1.1.2 (Outperformance Certificate). An outperformance certificate is equipped

with an outperformance level which is usually equal to A(t0) . When the value of the

currency basket at time T is no less than the outperformance level, the investor receives,

in addition to the initial investment A(t0) , the surplus return of the currency basket over

the outperformance level, which is leveraged by a participation rate α . This indicates that

the payoff in this case would be A(t0)·
(

1 + α ·
(
A(T )
A(t0)

− 1
))

, or equivalently, A(T )+(α−
1) · (A(T )−A(t0)) . Otherwise, the investor obtains the spot value of the currency basket

at time T , namely A(T ) . Overall, the payoff of the certificate depending on A(T ) can

be formulated as A(T ) + (α− 1) · [A(T )−A(t0)]+ . It is equivalent to the payoff of zero-

coupon bonds in the foreign currencies with the same composition as the underlying basket

of the certificate in addition to the payoff of (α − 1) plain vanilla at-the-money basket

call options on the underlying basket. The Outperformance Certificate WKN: GS5GFX,

which is issued by Goldman-Sachs on April 23, 2007 and matures on April 28, 2010, is

written on the BRIC-plus currencies displayed in Table 1.1. It specifies a participation

rate of 1200% . The payoff structure is also illustrated graphically in Figure 1.1.

By giving up the guarantee as is provided in Example 1.1.1, the investors of the outper-

formance certificate in Example 1.1.2 are entitled to participate more overproportionally

in the performance of the underlying basket.
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Example 1.1.3 (Certificate with Stages). A certificate with stages displays a more com-

plicated payoff structure which involves more strike prices than the above two products. We

suppose that there are m stages proportional to A(t0) : β1A(t0), β2A(t0), . . . , βmA(t0)

where β1 < β2 < · · · < βm . The payoff structure of the certificate is defined as

Z(T ) =



α1A(t0) if A(T ) < β1A(t0),

α2A(t0) if β1A(t0) ≤ A(T ) < β2A(t0),

α3A(t0) if β2A(t0) ≤ A(T ) < β3A(t0),
...

αmA(t0) if βm−1A(t0) ≤ A(T ) < βmA(t0),

αm+1A(t0) if A(T ) ≥ βmA(t0),

(1.1)

where α1 < α2 < · · · < αm+1 . For the price development of A(T ) below βmA(t0) , the

certificate is specified to outperform the underlying currency basket, that is, αi ≥ βi for

i = 1, . . . ,m ; while when the underlying price soars above βmA(t0) , the payoff is limited

to a deterministic amount. The payoff structure can be summarized as

Z(T ) = α1A(t0) · 1{A(T )<β1A(t0)} + α2A(t0) · 1{β1A(t0)≤A(T )<β2A(t0)} + · · ·
· · ·+ αmA(t0) · 1{βm−1A(t0)≤A(T )<βmA(t0)} + αm+1A(t0) · 1{A(T )≥βmA(t0)}

= α1A(t0) · (1− 1{A(T )≥β1A(t0)}) + α2A(t0) · (1{A(T )≥β1A(t0)} − 1{A(T )≥β2A(t0)}) + · · ·
· · ·+ αmA(t0) · (1{A(T )≥βm−1A(t0)} − 1{A(T )≥βmA(t0)}) + αm+1A(t0) · 1{A(T )≥βmA(t0)}

= α1A(t0) + (α2 − α1)A(t0) · 1{A(T )≥β1} + (α3 − α2)A(t0) · 1{A(T )≥β2A(t0)}

+ · · ·+ (αm − αm−1)A(t0) · 1{A(T )≥βm−1A(t0)} + (αm+1 − αm)A(t0) · 1{A(T )≥βmA(t0)}

= α1A(t0) +
m∑
i=1

(αi+1 − αi)A(t0) · 1{A(T )≥βiA(t0)}. (1.2)

The certificate WKN: GS0QA5, which is issued by Goldman-Sachs on July 18, 2007 and

matures on July 16, 2010, is equipped with three stages, i.e., m = 3 . The relevant

parameters are respectively β1 = 100% , β2 = 105% , β3 = 110% , α1 = 100% , α2 =

119% , α3 = 138% and α4 = 157% . Thus, its payoff at the maturity date T = 3 can

be represented as

Z(3) = A(t0) + 19% · A(t0) · 1{A(T )≥A(t0)} + 19% · A(t0) · 1{A(T )≥105%·A(t0)}

+ 19% · A(t0) · 1{A(T )≥110·%A(t0)} (1.3)

The graphic illustration is shown in Figure 1.2. It can be replicated by an investment in the

domestic zero-coupon bonds with the face value A(t0) and a portfolio of cash-or-nothing

basket options, whose strikes are respectively A(t0) (at the money), 105% · A(t0) (out

of the money) and 110% ·A(t0) (out of the money). Each cash-or-nothing basket option

pays 19% · A(t0) back when the currency basket is worth more than the strike price.
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Figure 1.2: The payoff structure of the certificate with stages on BRIC-plus FX basket
(WKN: GS0QA5)

The certificate with stages introduced in Example 1.1.3 is suitable for investors who

believe in the mild outperformance of the underlying basket. Compared to Example

1.1.1, the payoff of the certificate with stages is higher when the increase in the underlying

basket’s value is approximately within the 0% − 3.17% and the 5% − 6.33% intervals.

However, the payoff is limited to 157% of the face value, while in Example 1.1.1 it could

theoretically rise to infinity.

1.2 The International Financial Market Model

Prices of basket FX derivatives are not only influenced by the contract parameters like

the strike levels and the participation rates. The dynamic changes within the interest rate

markets and the exhange rate markets also have a huge impact. Hence, before pricing

basket FX derivatives, we need to model the dynamics of the interest rate markets and

the exchange rate markets in both the domestic and the foreign countries appropriately.

In the option pricing field, the classical Black-Scholes model enjoys great popularity due

to its computational simplicity. Two standard assumptions of the Black-Scholes model

are the constant short-term interest rate and the geometric Brownian motion driving the

price process of the underlying asset. The assumption about the constant interest rate

simplifies the valuation problem, but is inadequate when we deal with FX derivatives with
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long maturity time. It is very common that a structured FX product has a life time rang-

ing from 1 year to 5 years. The certificates we have introduced in Examples 1.1.1-1.1.3

all have a life time of 3 years. Over such a long time interval, it is unrealistic to assume

the interest rates to be constant. More importantly, interest rates in different countries

have significant influence on the exchange rates among the currencies of these countries.

It is often observed that a raise in the interest rate of one country attracts investors to

invest more in that country, and hence, appreciates its currency. The correlation between

the interest rates and the exchange rates can hardly be ignored. Hence, we prefer to

apply a stochastic model to capture the term structures of the interest rates. On the

other hand, with regard to the exchange rates, it is favored in practice to assume that

each exchange rate is driven by the geometric Brownian motion. Under this assumption,

a closed-form solution can be found for the prices of options written on a single exchange

rate. In align with this common practice, we also describe the exchange rates between

the domestic currency and the foreign currencies with geometric Brownian motions.

In view of the above considerations, the international financial market model suggested by

Amin and Jarrow (1991) provides the appropriate framework, within which we study the

valuation problem of basket FX derivatives. In Amin and Jarrow (1991), only two curren-

cies are involved. With regard to basket FX derivatives, however, we need to observe the

markets of more than two countries. Hence, in this section, we extend the two-country

model of Amin and Jarrow (1991) and generalize it to an n+ 1 country model.

Following the approach of Amin and Jarrow (1991), we assume that trading takes place

continuously on the finite time interval [0, T ∗] . We further assume that the interest rate

markets in all the countries display stochastic behaviors and the exchange rates between

the domestic country and the foreign countries are stochastic. A formal description of

their behaviors is provided in Assumptions 1.2.1 and 1.2.2.

Let {Ω,F ,F,P} be a filtered probability space where the filtration F = {Ft}t∈[0,T ∗] is

generated by an m -dimensional Brownian motion {Wt}t∈[0,T ∗] . The m -dimentional

Brownian motions can be interpreted as m sources of uncertainty across the n + 1

economies with m > n .

The assumption in Amin and Jarrow (1991) about the interest rate markets can be traced

back to Heath, Jarrow and Morton (1992). The Heath-Jarrow-Morton (HJM) model starts

with describing the term structure of forward interest rates and provides a very general

framework for the interest rate structure. Many famous interest rate models like the

continuous time version of the Ho-Lee model (Ho and Lee (1986)) and the Vasicek model

(Vasicek (1977)) are special cases of the HJM model.
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Assumption 1.2.1 (The forward interest rate dynamics). The domestic forward interest

rate dynamics is5

df0(t, T ) = α0(t, T )dt+ σ0(t, T ) · dWt ∀t ∈ [0, T ] and T ∈ [0, T ∗], (1.4)

and the forward interest rate dynamics of the i -th foreign country is

dfi(t, T ) = αi(t, T )dt+ σi(t, T ) · dWt ∀t ∈ [0, T ] and T ∈ [0, T ∗], (1.5)

where α0(t, T ) , σ0(t, T ) , αi(t, T ) and σi(t, T ) are subject to some regularity condi-

tions6. Besides, σ0(t, T ) and σi(t, T ) are m -dimensional functions in (t, T ) .

Equations 1.4 and 1.5 indicate that the instantaneous covariance between the domestic

forward interest rate and the forward interest rate of the i -th country is

cov[df0(t, T ), dfi(t, T )] = [σ0(t, T ) · σi(t, T )]dt ∀t ∈ [0, T ] and T ∈ [0, T ∗], (1.6)

and the instantaneous covariance between the forward interest rates of the i -th and the

j -th countries is

cov[dfi(t, T ), dfj(t, T )] = [σi(t, T ) · σj(t, T )]dt ∀t ∈ [0, T ] and T ∈ [0, T ∗]. (1.7)

The interest rate market can also be characterized by the price process of the family of

zero-coupon bonds.

Lemma 1.2.1. Under Assumption 1.2.1, the dynamics of the domestic zero-coupon bond

price D0(t, T ) is determined by the expression

dD0(t, T ) = D0(t, T )(a0(t, T )dt+ b0(t, T ) · dWt) ∀t ∈ [0, T ] and T ∈ [0, T ∗], (1.8)

where a0 and b0 are given by the following formulas

a0(t, T ) = f0(t, t)− α∗0(t, T ) +
1

2
|σ∗0(t, T )|2, b0(t, T ) = −σ∗0(t, T ), (1.9)

and for any t ∈ [0, T ] we have

α∗0(t, T ) =

∫ T

t

α0(t, u)du, σ∗0(t, T ) =

∫ T

t

σ0(t, u)du. (1.10)

5The centered dot “ · ” in the following equations refers to the scalar product of two m -dimensional
vectors.

6Confer Amin and Jarrow (1991).
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Similarly, the dynamics of the i -th foreign zero-coupon bond price is determined by

dDi(t, T ) = Di(t, T )(ai(t, T )dt+ bi(t, T ) · dWt) ∀t ∈ [0, T ] and T ∈ [0, T ∗], (1.11)

where ai and bi are given by the following formulas

ai(t, T ) = fi(t, t)− α∗i (t, T ) +
1

2
|σ∗i (t, T )|2, bi(t, T ) = −σ∗i (t, T ), (1.12)

with

α∗i (t, T ) =

∫ T

t

αi(t, u)du, σ∗i (t, T ) =

∫ T

t

σi(t, u)du (1.13)

for any t ∈ [0, T ] .

Proof. Confer Heath et al. (1992).

Remark 1.2.1. In the following, we use ri(t) = fi(t, t) , i ∈ {0, 1, . . . , n} to denote the

instantaneous interest rate at every time t on the domestic and the foreign interest rate

markets. The time t value of the money account (with the starting value 1 ) in the i -th

market is denoted as Bi(t) = exp{
∫ t

0
ri(u) du} .

Assumption 1.2.2 (Spot exchange rate dynamics). The spot exchange rate process be-

tween the domestic currency and the i -th foreign currency, denoted as {Xi(t)}t∈[0,T ∗] for

i ∈ {1, . . . , n} , follows the geometric Brownian motion

dXi(t) = µi(t)Xi(t)dt+Xi(t)δi(t) · dWt, (1.14)

where µi(t) and δi(t) satisfy some regularity conditions.

The spot exchange rate processes are influenced by the same m -dimensional Brownian

motion {Wt}t∈[0,T ∗] as the forward interest rate processes presented in (1.4) and (1.5).

Hence, correlations between the exchange rate markets and the interest rate markets are

captured by this model.

Assumption 1.2.3. The international financial market is both arbitrage free and com-

plete.

Under Assumption 1.2.3, the following three conditions should be satisfied.

Condition 1.2.1. There exists a domestic martingale measure P∗ on the domestic fi-

nancial market, such that, for t ∈ [0, T ] and T ∈ [0, T ∗] , the relative bond price

Z∗(t, T ) = D0(t,T )
B0(t)

is a martingale under P∗ .

This condition is satisfied if there exists an adapted Rm -valued process λ such that

EP∗

{
εT ∗

(∫ ·
0

λu · dWu

)}
= 1, (1.15)
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and for any maturity T ≤ T ∗ there is

a0(t, T ) = r0(t)− b0(t, T ) · λt. (1.16)

The martingale measure P∗ satisfies

dP∗

dP
= εT ∗

(∫ ·
0

λu · dWu

)
, P− a.s. (1.17)

and the P∗ -Brownian motion W ∗ satisfies

W ∗
t = Wt −

∫ t

0

λudu, ∀t ∈ [0, T ]. (1.18)

Under P∗ we obtain that for any T ∈ [0, T ∗]

dD0(t, T ) = D0(t, T )(r0(t)dt+ b0(t, T ) · dW ∗
t ). (1.19)

Condition 1.2.1 guarantees that the domestic financial market is arbitrage free. The λ

that we have defined above indicates the market price of risk on the domestic market.

Condition 1.2.2. The domestic discounted value of each foreign zero-coupon bond should

also be a martingale under P∗ , so that there exists no arbitrage between the domestic

market and the foreign markets.

The mathematical meaning of Condition 1.2.2 can be derived through the following steps.

First, we convert the foreign bond price to the domestic currency by defining

D∗i (t, T ) = Di(t, T )Xi(t), (1.20)

and similarly, the money market account in the unit of the domestic currency is defined

by

B∗i (t) = Bi(t)Xi(t). (1.21)

Using Itô Lemma we obtain the dynamics of these artificial domestic assets

dD∗i (t, T ) = D∗i (t, T )[(µi(t) + ai(t, T ) + δi(t)bi(t, T ))dt

+ (δi(t) + bi(t, T )) · dWt], (1.22)

dB∗i (t) = B∗i (t)[(µi(t) + ri(t))dt+ δi(t) · dWt]. (1.23)

Applying the domestic money account as the numeraire, and denoting Zi(t, T ) =
D∗i (t,T )

B0(t)



1.2. THE INTERNATIONAL FINANCIAL MARKET MODEL 15

and Zri(t) =
B∗i (t)

B0(t)
, we have

dZi(t, T ) = Zi(t, T )[(µi(t) + ai(t, T ) + δi(t)bi(t, T )− r0(t))dt

+ (δi(t) + bi(t, T )) · dWt], (1.24)

dZri(t) = Zri(t)[(µi(t) + ri(t)− r0(t))dt+ δi(t) · dWt]. (1.25)

Under the assumption that there are no arbitrage opportunities across the countries, the

same adapted process λ should satisfy the following two conditions under P∗ :

µi(t) + ai(t, T ) + δi(t)bi(t, T )− r0(t) + (δi(t) + bi(t, T )) · λt = 0, (1.26)

µi(t) + ri(t)− r0(t) + δi(t) · λt = 0, (1.27)

from which we can obtain

ai(t, T ) = ri(t)− bi(t, T ) · (δi(t) + λt). (1.28)

We can also say that (1.16), (1.27) and (1.28) specify the no arbitrage conditions for the

international market. In addition, we can derive from (1.28) that the market price of risk

on the i -th foreign market is δi(t) + λt at t ∈ [0, T ] with T ∈ [0, T ∗] .

Condition 1.2.3. The λ satisfying (1.16), (1.27) and (1.28) is unique and independent

of the particular assets chosen to construct the risk-neutral economy.

Remark 1.2.2. We refer to Amin and Jarrow (1991) for the calibration of λ . If there

are more than n + 1 Brownian motions, then bonds with different maturities than T

should be chosen to complete the dimension and back out λ . The value of λ that has

been found out should be unique and should also fit all the other asset price processes.

This guarantees the no-arbitrage and completeness of the international market. However,

λ is not required explicitly for the pricing issues.

Conditions 1.2.1-1.2.3 together with Assumptions 1.2.1 and 1.2.2 guarantee that there

exists a unique domestic martingale measure P∗ with

dP∗

dP
= εT ∗

(∫ ·
0

λu · dWu

)
, P − a.s.

such that equations (1.16) (1.27) and (1.28) are valid for all t ∈ [0, T ] and T ∈ [0, T ∗] .

Under the domestic martingale measure P∗ there is

dDi(t, T ) = Di(t, T ) [(ri(t) + σ∗i (t, T ) · δi(t))dt− σ∗i (t, T ) · dW ∗
t ] , (1.29)
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and the dynamics of the exchange rates are described by

dXi(t) = Xi(t) [(r0(t)− ri(t))dt+ δi(t) · dW ∗
t ] . (1.30)

The instantaneous covariance of the i -th and the j -th exchange rate is cov
(

dXi(t)
Xi(t)

,
dXj(t)

Xj(t)

)
=

δi(t) · δj(t)dt , and the instantaneous covariance of the i th and the j th T-maturity zero-

coupon bonds is cov
(

dDi(t,T )
Di(t,T )

,
dDj(t,T )

Dj(t,T )

)
= σ∗i (t, T ) · σ∗j (t, T )dt .

1.3 The Pricing Problem

Within the international financial market model, we study the pricing of basket derivatives

written on the currency basket A(T ) =
∑n

i=1 wiX(T ) . Since the currency basket is

composed of the n foreign currencies, we denote the payoff of a basket derivative at

the maturity date T as g(X1(T ), . . . , Xn(T )) where g : Rn → R is a bounded Borel-

measurable function.7 Under the martingale measure P∗ , the time t price V (t) of this

basket derivative is

V (t) = B0(t)EP∗ [B0(T )−1g(X1(T ), . . . , Xn(T ))
∣∣Ft] . (1.31)

This pricing formula is inconvenient when the domestic interest rate is not a determinant,

because the joint probability law of the FT -measurable random variables B0(T ) and

X1(T ), . . . , Xn(T ) must be known. To circumvent this difficulty, we apply the change-of-

numeraire technique introduced in Geman and Rochet (1995). The numeraire is changed

from the money account (as is indicated by (1.31)) to the domestic T -maturity zero-

coupon-bond. Correspondingly, a T -forward measure can be found so that the forward

price of the basket derivative is a martingale under this measure. The definition of the

T -forward measure is provided below.

Definition 1.3.1. The domestic T-forward risk adjusted measure PT is an equivalent

measure with respect to P∗ on (Ω,F) with the Radon-Nikodym derivative

dPT

dP∗
=

1

B0(T )D0(0, T )
. (1.32)

dW T
t = dW ∗

t − b0(t, T ) dt defines a vector of Brownian motion under PT 8.

The T -forward measure defined above helps to reformulate the pricing formula (1.31) in

a more tractable way.

7Confer Musiela and Rutkowski (2005).
8This results from the dynamics of the domestic zero-coupon bond and the Girsanov’s theorem.
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Lemma 1.3.1. The time t no arbitrage price of a basket FX derivative with the payoff

g(X1(T ), . . . , Xn(T )) at the maturity date T is

V (t) = D0(t, T )EPT [g(FX1(T, T ), . . . , FXn(T, T ))
∣∣Ft] (1.33)

for any t ∈ [0, T ] , where FXi(T, T ) refers to the T -forward exchange rate of the i -th

currency with the domestic currency at time T .

Proof. According to Bayes’s rule, there is

V (t) =
B0(t)EPT

[
dP∗
dPTB0(T )−1g(X1(T ), . . . , Xn(T ))

∣∣Ft]
EPT

[
dP∗
dPT
∣∣Ft]

=
B0(t)EPT

[
B0(T )D0(0, T )B0(T )−1g(X1(T ), . . . , Xn(T ))

∣∣Ft]
EPT

[
B0(T )D0(0, T )

∣∣Ft]
=

B0(t)D0(0, T )EPT
[
g(X1(T ), . . . , Xn(T ))

∣∣Ft]
D0(0, T )B0(t)/D(t, T )

= D0(t, T )EPT [g(X1(T ), . . . , Xn(T ))
∣∣Ft] (1.34)

for any t ∈ [0, T ] .

Under the T -forward measure PT , the dynamics of the exchange rate follows

dXi(t) = Xi(t)
[
(r0(t)− ri(t))dt+ ξ(t) · (dW T

t + b0(t, T )dt)
]

= Xi(t)
[
(r0(t)− ri(t) + ξi(t) · b0(t, T ))dt+ ξi(t) · dW T

t

]
. (1.35)

As is indicated by the drift term in equation (1.35), Xi(t) is not a martingale under the

T -forward measure PT . The dynamics of the interest rate market needs to be dealt with

explicitly, which complicates the pricing problem due to its stochastic feature. To avoid

this complexity, we make use of the fact that the T -forward exchange rates of the foreign

currencies with the domestic currency are martingale under the T -forward measure PT .

The no-arbitrage argument implies that the T -forward exchange rate at time t ∈ [0, T ]

with T ∈ [0, T ∗] , satisfies

FXi(t, T ) =
Xi(t)Di(t, T )

D0(t, T )
, i = 1, . . . , n. (1.36)

Its process is obtained by applying the Itô lemma which leads to9

dFXi(t, T ) = FXi(t, T )ηi(t, T ) · dW T
0 (t),

where ηi(t, T ) := δi(t) + bi(t, T ) − b0(t, T ) . Expressed as a stochastic integral equation,

9Confer Nielsen and Sandmann (2002b).
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the value of FXi(T, T ) satisfies

FXi(T, T ) = FXi(t, T ) exp

{
−1

2

∫ T

t

||ηi(u, T )||2du+

∫ T

t

ηi(u, T ) · dW T (u)

}
(1.37)

for i = 1, · · · , n .

Since FXi(T, T ) = Xi(T )Di(T,T )
D0(T,T )

= Xi(T ) , we can rewrite equation (1.34) into

V (t) = D0(t, T )EPT [g(FX1(T, T ), . . . , FXn(T, T ))
∣∣Ft] .

Remark 1.3.1. The pricing formula (1.33) does not require the knowledge about the

interest rate structure explicitly but only the distribution of the forward exchange rate

vector (FX1(T, T ), . . . , FXn(T, T )) under the forward measure PT , which is related to

the interest rate dynamics through the volatility parameters b0, b1, . . . , bn as well as the

common m -dimensional Brownian motion {W T
t }t∈[0,T ] .

1.3.1 The Rank One Approximation Method

The pricing formula (1.33) shows that the value of the basket derivative depends on the

vector of n forward exchange rates (FX1(T, T ), FX2(T, T ), . . . , FXn(T, T )) . Observing

the dynamics of each forward exchange rate as is presented in (1.35) more closely, we

notice that the only term that causes the stochastic behavior of the i -th forward exchange

rate is
∫ T
t
ηi(u, T ) · dW T (u) , which can also be written as√∫ T

t

||ηi(u, T )||2du

∫ T

t

ηi(u, T ) · dW T (u)√∫ T
t
||ηi(u, T )||2du

 . (1.38)

By extracting the term
√∫ T

t
||ηi(u, T )||2du out of

∫ T
t
ηi(u, T ) ·dW T

0 (u) , we standardize

the stochastic effect and make the performance of the rank one approximation to be

implemented later less relevant to the “terminal volatility”

√∫ T
t ||ηi(u,T )||2du

T−t ,10 which is

itself a deterministic term. The stochastic features of the contingent claim can be captured

by the vector of standard normally distributed and correlated random variables

(ς1(t, T ), . . . , ςn(t, T )) =

∫ T

t

η1(u, T ) · dW T
0 (u)√∫ T

t
||η1(u, T )||2du

, . . . ,

∫ T

t

ηn(u, T ) · dW T
0 (u)√∫ T

t
||ηn(u, T )||2du

 .

10Rebonato has defined the term “terminal correlation” in Rebonato (2004). We denote “terminal
volatility” in a similar sense.
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This vector has the standard Gaussian distribution N ∼ (0,Γ) where Γ refers to the

covariance matrix of the vector with the form

Γ =



1 · · · · · ·
∫ T
t η1(u,T )·ηn(u,T )du√∫ T

t ||η1(u,T )||2du
√∫ T

t ||ηn(u,T )||2du∫ T
t η1(u,T )·η2(u,T )du√∫ T

t ||η1(u,T )||2du
√∫ T

t ||η2(u,T )||2du
1 · · ·

∫ T
t η2(u,T )·ηn(u,T )du√∫ T

t ||η2(u,T )||2du
√∫ T

t ||ηn(u,T )||2du

...
...

. . .
...∫ T

t η1(u,T )·ηn(u,T )du√∫ T
t ||η1(u,T )||2du

√∫ T
t ||ηn(u,T )||2du

· · · · · · 1


.

For the ease of illustration in the following, we define

σ̄2
i :=

∫ T

t

||ηi(u, T )||2du, σ̄ij :=

∫ T

t

ηi(u, T ) · ηj(u, T )du. (1.39)

Thus,

Γ =


1 · · · · · · σ̄1n

σ̄1σ̄n
σ̄12

σ̄1σ̄2
1 · · · σ̄2n

σ̄2σ̄n
...

...
. . .

...
σ̄1n

σ̄1σ̄n
· · · · · · 1

 . (1.40)

The covariance matrix Γ is a square-symmetric matrix. Suppose the rank of Γ is k ,

then there exists a k × n matrix Θ = [θ1, . . . , θn] such that Γ = ΘT · Θ . Since the

elements along the main diagonal of Γ are 1 , we should keep in mind that the norm of

the vector θi satisfies ||θi|| = 1 for i = 1, . . . , n . We can then set

ςi(t, T )
d
= θ1iz1 + · · · θkizk = θi · z := ς̃i(t, T ), z ∈ Rk and z ∼ N(0, I), i = 1, . . . , n.

(1.41)

The vector (ς̃1(t, T ), . . . , ς̃n(t, T )) displays the same distribution as (ς1(t, T ), . . . , ςn(t, T )) .

If k < n , then we obtain the nice feature that the number of random variables is reduced.

Much attention has been paid to the rank of the correlation matrix. Most discussions on

this topic took place in the context of swaption pricing in fixed income markets where the

underlying is a basket of forward LIBOR or swap rates. The most exact and straightfor-

ward pricing method for this kind of derivatives is the Monte Carlo simulation method,

which means k independent standard normally distributed random variables should be

simulated in each simulation round. To increase the simulation speed, efforts have been

made to reduce the rank of the correlation matrix, but to keep the approximated rank-

reduced matrix as close to the original matrix as possible under certain criteria. Different

approaches have been proposed which can be summarized as the solution to the following
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problem11

Find Θ̄ ∈ Rk×n (1.42)

to minimize f(Θ̄) :=
1

c

∑
i<j

wij(Γij − 〈θ̄i, θ̄j〉)2,

subject to ||θ̄i||2 = 1, i = 1, . . . , n,

where wij are nonnegative weights and c := 4
∑

i<j wij . Pietersz and Groenen (2004)

reviewed five popular algorithms to solve the above problem and have proposed a new

algorithm based on majorization. After this step, the number of random variables is re-

duced and the Monte Carlo simulation can be carried out more efficiently. In the ideal

case, i.e., if we can reduce the correlation matrix to a rank one matrix, we can even obtain

closed-form solutions. For example, Brace and Musiela (1994) worked with the covariance

matrix of a random vector similar to (1.41). In the setting that they studied, the first

eigenvalue of the covariance matrix is approximately 50 times larger than the second,

and hence, they assumed that the matrix is of rank one and obtained an analytical solu-

tion.

The rank one property is usually not observed in the underlying of basket derivatives.

However, we are still attracted by the nice feature of the rank one matrix and try to use

such kind of matrix to approximate the original matrix. The idea is that if the price

obtained in this way deviates too much from the true value, we proceed additionally with

some remedy techniques. In this thesis, we apply the three moment matching technique.

At the first step, we try to find the best approximation of Γ in terms of a rank one

matrix. The first candidate may be to follow the scheme of (1.42) while keeping k = 1 .

Because this constraint is very strict, being ||θ̄i|| = 1 for i = 1, . . . , n , the solution is a

trivial one with

Γ̄ =


1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 · · · · · · 1

 .

It can be considered as the correlation matrix of a vector of perfectly correlated random

variables. Another way is to consider Γ simply as a covariance matrix.12 The job to do

is to find a matrix that best approximates the overall structure of the covariance matrix.

Thinking in this way, we need to solve Problem (1.42) but with no constraint. It is clear

that the solution of an unconstrained minimization problem should generate a smaller

f(Θ̄) indicating that the approximated matrix is closer to the original one.

11Confer Pietersz and Groenen (2004).
12However, the covariance matrix is scale-dependent, whereas the correlation matrix is not.
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In this thesis, we consider the simple case with equal weights. Then Problem (1.42) is

equivalent to the minimization of the Frobenius norm given k = 1 . This problem can be

solved by applying the singular value decomposition to the square-symmetric matrix Γ .

Theorem 1.3.1 (Singular Value Decomposition Theorem13). For any m×n matrix Γ ,

there exist the m × m orthogonal matrices U and V as well as an n × n diagonal

matrix Λ , such that Γ = UΛV T . U is composed of the eigenvectors of ΓΓT and is

called the left singular value of Γ . While V is the right singular value of Γ which is

composed of the eigenvectors of ΓTΓ . Furthermore, the diagonal matrix Λ has the form

Λ =



λ1 0 · · · · · · 0 · · · 0

0 λ2 · · · · · · 0 · · · 0
...

...
. . .

...
...

... 0

0 · · · · · · λk 0 · · · 0

0 · · · · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · · · · · · · · · · 0


(1.43)

and λ1 ≥ λ2 ≥ · · · ≥ λk > 0 . The numbers λ1, λ2, . . . , λk are the distinct singular values

of Γ which are obtained by calculating the nonzero square roots of eigenvalues of ΓΓT

or ΓTΓ .

Since in our setting the matrix to be discussed is square-symmetric, there is ΓΓT = ΓTΓ .

This implies that for a square-symmetric matrix, there is U = V , and therefore, Γ =

V ΛV T . In addition, from the orthogonality of V we infer that ΓV = V Λ , and hence,

V is the matrix of the eigenvectors of Γ , namely, (e1, . . . , en) , and the values along

the main diagonal of Λ are the eigenvalues of Γ , namely, (λ1, . . . , λk, 0, . . . , 0) . This

special case of the singular value decomposition of square-symmetric matrix is called the

spectral decomposition in matrix analysis.

Based on the singular value decomposition theorem, we define the rank one approximation

of Γ in Definition 1.3.2.

Definition 1.3.2 (Rank One Approximation). For an n×n matrix Γ with Γ = V ΛV T ,

its rank one approximation is Γ̄ = V Λ̄V T , where

Λ̄ =


λ1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 · · · · · · 0

 . (1.44)

13Confer Stewart (1973).
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Γ̄ is the best rank-one approximation of Γ in the sense of the minimization of the

Frobenius norm of the difference between Γ and Γ̄ under the constraint that the rank of

Γ̄ is equal to 1 .14 From Γ̄ = V Λ̄V T = V Λ̄
1
2 (V Λ̄

1
2 )T and the structure of Λ̄ we obtain

Γ̄ = (
√
λ1e1) · (

√
λ1e1)T . (1.45)

Here,
√
λ1e1 is an n× 1 vector which we denote as Θ̄ . The vector of random variables

Θ̄z̄ , where z̄ ∼ N(0, 1) , is N(0, Γ̄) distributed . It is the best rank one approximation

of the original random vector ς = (ς1, . . . , ςn) .

Now we come back to the payoff function of the basket derivative g(FX1(T, T ), . . . , FXn(T, T )) .

From (1.37), (1.38) and (1.41) we infer that it can be expressed as

g(FX1(t, T )eσ̄1θ1·z− 1
2
σ̄2

1 , . . . , FXn(t, T )eσ̄nθn·z−
1
2
σ̄2
n) := h(z). (1.46)

By changing the random variables into the k -dimensional z , we obtain that the time t

no-arbitrage price of the basket derivative is

V (t) = D0(t, T )

∫
Rk
h(z)nk(z)dz, (1.47)

where nk(z) refers to the density function of the k -dimensional z with nk(z) =

(2π)−k/2e−|z|
2/2 .

Through the rank one approximation, we approximate g(·) in (1.46) with

g(FX1(t, T )eσ̄1θ̄1·z̄− 1
2
σ̄2

1 , . . . , FXn(t, T )eσ̄nθ̄n·z̄−
1
2
σ̄2
n) := h̄(z̄). (1.48)

Thus, the rank one approximation of V (t) is

V̄ (t) = D0(t, T )

∫
R1

h̄(z̄)n1(z̄)dz̄, (1.49)

which usually has a close-formed solution.

Besides, the currency basket A(T ) is approximated by

ĀT (z̄) =
n∑
i=1

wiFXi(t, T )e−
1
2
σ̄2
i+z̄θ̄iσ̄i . (1.50)

We call the rank one approximation pricing which finds Θ̄ through the singular value

decomposition as the crude rank one approximation method.

14Confer Stewart (1973).
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1.3.2 Three Moment Matching Technique Based on the Rank

One Approximation

Through the rank one approximation presented in Section 1.3.1, the distribution of the

currency basket is distorted to some extent. We present the first three moments of the

true basket A(T ) and of the approximated basket AT (z̄) in Lemma 1.3.2.

Lemma 1.3.2. For l = 1, 2, . . . , we denote

ml(t) := EPT [A(T )l|Ft
]
, m̄l(t) := EPT [ĀT (z̄)l|Ft

]
.

Under the forward measure PT , the first three moments of the true basket A(T ) at time

t are

m1(t) =
n∑
i=1

wiFXi(t, T ); (1.51)

m2(t) =
n∑

i,j=1

wiwjFXi(t, T )FXj(t, T )eσ̄ij ; (1.52)

m3(t) =
n∑

i,j,k=1

wiwjwkFXi(t, T )FXj(t, T )FXk(t, T )eσ̄ij σ̄ikσ̄jk , (1.53)

and the first three moments of the approximated basket AT (z̄) at time t are

m̄1(t) =
n∑
i=1

wiFXi(t, T )e−
1
2

(1−θ2
i )σ̄2

i ; (1.54)

m̄2(t) =
n∑

i,j=1

wiwjFXi(t, T )FXj(t, T )e−
1
2

(σ̄2
i+σ̄2

j )+ 1
2

(θiσ̄i+θj σ̄j)
2

; (1.55)

m̄3(t) =
n∑

i,j,k=1

wiwjwkFXi(t, T )FXj(t, T )FXk(t, T )e−
1
2

(σ̄2
i+σ̄2

j+σ̄2
k)+ 1

2
(θiσ̄i+θj σ̄j+θkσ̄k)2

.

(1.56)

Proof. We only proof (1.51) here. The other equations can be verified in the similar way.

m1(t) = EPT [A(T )|Ft]

= EPT
[

n∑
i=1

wiFXi(T, T )
∣∣∣Ft] =

n∑
i=1

wiEPT [FXi(T, T )
∣∣Ft]
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=
n∑
i=1

wiEPT
[
FXi(t, T ) exp

{
−1

2

∫ T

t

||ηi(u, T )||2du+

∫ T

t

ηi(u, T ) · dW T (u)

} ∣∣∣Ft]
=

n∑
i=1

wiFXi(t, T ).

The last equation follows from the N ∼
(

0,
∫ T
t
||ηi(u, T )||2du

)
distribution of the stochas-

tic term
∫ T
t
ηi(u, T ) · dW T (u) and the fact that E

[
eX
]

= eµ+ 1
2
σ2

for any N ∼ (µ, σ2)

distributed random variable X .

As the second step of our approximation approach, we try to adjust the approximated

basket so that the first three moments of the two baskets are matched. If the new bas-

ket approximates the original basket very well, the approximated prices of the basket

derivatives will display satisfactory accuracy compared to the true prices. In this part we

present the approximation procedure. We will justify in Section 1.5 that the rank one

approximation pricing adjusted by the three moment matching procedure can be called

the improved rank one approximation method.

To adjust the approximated currency basket, we introduce three parameters α , β and

γ into the expression ĀT (z̄) to define a new approximation of A(T ) , namely ÂT (z̄)

with

ÂT (z̄) =
n∑
i=1

αwiFXi(t, T )e−
1
2
σ̄2
i+βz̄θiσ̄i + γ, where α > 0. (1.57)

The one moment matching is achieved by setting β = 1 and γ = 0 while choosing α to

match the first moment of ÂT (z̄) with m1 . The two moment matching can be achieved

by setting γ = 0 and finding out the α and β to match the first two moments m1 and

m2 . The three moment matching requires the appropriate choice of the three parameters.

We can interpret ÂT (z̄) as a portfolio of perfectly correlated synthetic currencies and

the domestic currency with the weight of the i th synthetic currency at time t being αwi .

Lemma 1.3.3. Under the forward measure PT , the first three moments of ÂT (z̄) at

time t , where ÂT (z̄) satisfies (1.57), are respectively

m̂1 =
n∑
i=1

αwiFXi(t, T )e−
1
2
σ̄2
i+ 1

2
β2θ2

i σ̄
2
i + γ; (1.58)

m̂2 =
n∑

i,j=1

α2wiwjFXi(t, T )FXj(t, T )e−
1
2

(σ̄2
i+σ̄2

j )+ 1
2
β2(θiσ̄i+θj σ̄j)

2

+ 2
n∑
i=1

αγwiFXi(t, T )e−
1
2
σ̄2
i+ 1

2
β2θ2

i σ̄
2
i + γ2; (1.59)
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and

m̂3 =
n∑

i,j,k=1

α3wiwjwkFXi(t, T )FXj(t, T )Fk(t, T ) · e−
1
2

(σ̄2
i+σ̄2

j+σ̄2
k)+ 1

2
β2(θiσ̄i+θj σ̄j+θkσ̄k)2

+ 3γ
n∑

i,j=1

α2wiwjFXi(t, T )FXj(t, T )e−
1
2

(σ̄2
i+σ̄2

j )+ 1
2
β2(θiσ̄i+θj σ̄j)

2

+ 3γ2

n∑
i=1

αwiFXie
− 1

2
σ̄2
i+ 1

2
β2θ2

i σ̄
2
i + γ3. (1.60)

Proof. Similar to the proof of Lemma 1.3.2.

Now we require the first three moments of ÂT (z̄) to meet the first three moments of

A(T ) and look for the values of α , β and γ . The results are presented in Proposition

1.3.1.

Proposition 1.3.1. In order that the first three moments of ÂT (z̄) are equal to the first

three moments of A(T ) , the parameters α and γ should satisfy

α =

√
m2 −m2

1

S2 − S2
1

, (1.61)

γ = m1 − αS1 (1.62)

with

S1 :=
n∑
i=1

wiFXi(t, T )e−
1
2
σ̄2
i+ 1

2
β2θ2

i σ̄
2
i , (1.63)

S2 :=
n∑

i,j=1

wiwjFXi(t, T )FXj(t, T )e−
1
2

(σ̄2
i+σ̄2

j )+ 1
2
β2(θiσ̄i+θj σ̄j)

2

. (1.64)

The parameter β solves the equation m̂3 = m3 , where α and γ are functions of β

following from (1.61) and (1.62).

Proof. To be verified are (1.61) and (1.62). (1.61) can be obtained by solving the equation

m̂2−m̂2
1 = m2−m2

1 . Since m2−m2
1 and S2−S2

1 , as the variances of the variables A(T )

and ĀT (z̄) respectively, are both positive, we make sure that α presented in (1.61) does

exist. (1.62) follows from m̂1 = m1 .

By applying the three moment matching technique, we approximate the time t price of

the basket derivative with

V̂ (t) = D0(t, T )

∫
R1

ĥ(z̄)n1(z̄)dz̄, (1.65)
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where

ĥ(z̄) := ĝ
(
FX1(t, T )eβσ̄1θ1z̄− 1

2
σ̄2

1 , . . . , FXn(t, T )eβσ̄nθnz̄−
1
2
σ̄2
n

)
. (1.66)

ĝ : Rn → R is a bounded Borel-measurable function.

Remark 1.3.2. The three moment matching procedure changes the composition of the

artificial currency basket, and hence, the payoff function from g(·) to ĝ(·) .

1.3.3 Applications to Two Basket Option Types

The examples in Section 1.1.2 show that many basket derivatives can be replicated by a

portfolio of plain vanilla basket options or cash-or-nothing basket options. Hence, in the

following, we focus on the application of the rank one approximation to the pricing of

cash-or-nothing basket options and plain vanilla basket options.

Cash-or-Nothing Basket Options

The payoff of a cash-or-nothing basket option at the maturity date T is characterized

by 1{A(T )≥K} where K refers to the strike price of the option. This indicates that the

payoff function g(·) in (1.33) satisfies

g(FX1(T, T ), . . . , FXn(T, T )) = 1{∑n
i=1 wiFXi (T,T )≥K}. (1.67)

According to the approximation procedure introduced in Sections 1.3.1 and 1.3.2, we

approximate this payoff function with

ĝ
(
FX1(t, T )eβσ̄1θ1z̄− 1

2
σ̄2

1 , . . . , FXn(t, T )eβσ̄nθnz̄−
1
2
σ̄2
n

)
= 1

{α
∑n
i=1 wiFXi (t,T )eβσ̄iθiz̄−

1
2 σ̄

2
i +γ≥K}

.

(1.68)

Hence, the time t price of the cash-or-nothing basket option is

V (t) = D0(t, T ) · PT
(

n∑
i=1

wiFXi(T, T ) ≥ K|Ft

)
, (1.69)

and its approximated price by following the rank one approximation with the three mo-

ment matching is

V̂ (t) = D0(t, T ) · PT
(
ÂT (z̄) ≥ K|Ft

)
, (1.70)

where PT (·) refers to the probability distribution under the forward measure PT , and

ÂT (z̄) satisfies (1.57).

Since there is no closed form solution to (1.69), we look for its approximation with (1.70),

where a closed form solution is available. To solve (1.70), we apply the method proposed

by Nielsen and Sandmann (2002b). In their work, Nielsen and Sandmann (2002b) have

used the conditional expectation approach for the pricing of Asian options. Through this
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approximation method, they have derived synthetic assets, the exponential parts of whose

price processes are similar to what has been approximated above. Similar to Nielsen and

Sandmann’s approach, We define

fi(z̄) := exp

{
−1

2
βσ̄2

i + z̄θ̄iσ̄i

}
.

fi(z̄) is increasingly convex for θ̄i > 0 and decreasingly convex for θ̄i < 0 . From (1.61)

we also know that α > 0 . Hence, the weighted average ÂT (z̄) is a convex function in

z̄ . Denote by P , N and M the sets:

P = {i|θ̄i > 0, i = 1, . . . , n},
N = {i|θ̄i < 0, i = 1, . . . , n},
M = {i|θ̄i = 0, i = 1, . . . , n}.

Then

ÂT (z̄)−K = α
n∑
i=1

wiFXi(t, T )fi(z̄) + γ −K = α
∑

i∈P∪N

wiFXi(t, T )fi(z̄)− K̂,

with K̂ = K−γ−α
∑

i∈MwiFXi(t, T )e−
1
2
βσ̄2

i . Since the sum of convex functions is again

convex, the equation

0 = α
∑

i∈P∪N

wiFXi(t, T )fi(z̄)− K̂ (1.71)

has either zero, one or two solutions. As Nielsen and Sandmann did, we consider four

situations:

• P 6= ∅ , N 6= ∅ and α
∑

i∈P∪N wiFXi(t, T )fi(z̄) − K̂ < 0 for some value of z̄ .

Denote the two unique solutions of (1.71) by z∗ and z∗∗ respectively.

• P 6= ∅ , N 6= ∅ and α
∑

i∈P∪N wiFXi(t, T )fi(z̄) − K̂ ≥ 0 ∀ z̄ . Define z∗ =

z∗∗ :=∞ .

• P 6= ∅ but N = ∅ . Denote the unique solution of (1.71) by z∗∗ and define

z∗ := −∞ .

• P = ∅ but N 6= ∅ . Denote the unique solution of (1.71) by z∗ and define

z∗∗ :=∞ .

It follows that

PT (ÂT (z̄) ≥ K|Ft) = N(z∗) +N(−z∗∗). (1.72)

We summarize the approximated price of the cash-or-nothing basket option in Proposition

1.3.2.



28 Rank One Approximation Pricing of Basket FX Derivatives

Proposition 1.3.2. Following the approximation procedure introduced in Sections 1.3.1

and 1.3.2, the approximated price of the cash-or-nothing basket option, whose payoff at

the maturity date T is 1{A(T )≥K} with A(T ) being the time T value of the underlying

basket and K being the strike price, is

V̂ (t) = D0(t, T )[N(z∗) +N(−z∗∗)], (1.73)

where z∗ and z∗∗ are the solutions to the equation (1.71).

Plain Vanilla Basket Options

We apply the same procedure to plain vanilla basket options. The payoff function g(·)
in (1.33) satisfies

g(FX1(T, T ), . . . , FXn(T, T )) =

[
n∑
i=1

wiFXi(T, T )−K

]+

. (1.74)

We approximate it with the payoff function

ĝ
(
FX1(t, T )eβσ̄1θ1z̄− 1

2
σ̄2

1 , . . . , FXn(t, T )eβσ̄nθnz̄−
1
2
σ̄2
n

)
=

[
α

n∑
i=1

wiFXi(t, T )eβσ̄iθiz̄−
1
2
σ̄2
i + γ −K

]+

.

(1.75)

Proposition 1.3.3 provides the closed form pricing formula to approximate the true price

of the plain vanilla basket options.

Proposition 1.3.3. Following the approximation procedure introduced in Sections 1.3.1

and 1.3.2, the approximated price of the plain vanilla basket call option, whose payoff at

the maturity date T is [A(T )−K]+ with A(T ) being the time T value of the underlying

basket and K being the strike price, is

V̂ (t) = D0(t, T )

[
n∑
i=1

ŵi(t)FXi(t, T )(N(z∗−di)+N(di−z∗∗))−(K−γ)(N(z∗)+N(−z∗∗))

]
.

(1.76)

We define ŵi(t) = αwie
1
2

(β2θ2
i−1)σ̄2

i and di = βθiσ̄i . Besides, z∗ and z∗∗ are the two

solutions to the equation (1.71).
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Proof. According to our approximation procedure, there is

V̂ (t) = D0(t, T )

∫
R1

(
α

n∑
i=1

wiFXi(t, T )fi(z̄) + γ −K

)+

n1(z̄)dz̄

= D0(t, T )

[∫ z∗

−∞

(
α

n∑
i=1

wiFXi(t, T )fi(z̄) + γ −K

)
n1(z̄)dz̄

+

∫ +∞

z∗∗

(
α

n∑
i=1

wiFXi(t, T )fi(z̄) + γ −K

)
n1(z̄)dz̄

]

= D0(t, T )α
n∑
i=1

wiFXi(t, T )

[∫ z∗

−∞

1√
2π
e−

(z̄−βσ̄iθi)
2

2
+ σ̄2

2
(β2σ̄2

i−1)dz̄

+

∫ +∞

z∗∗

1√
2π
e−

(z̄−βσ̄iθi)
2

2
+ σ̄2

2
(β2σ̄2

i−1)dz̄

]

−D0(t, T )(K − γ)

[∫ z∗

−∞

1√
2π
e−

z2

2 dz̄ +

∫ +∞

z∗∗

1√
2π
e−

z2

2 dz̄

]

= D0(t, T )α
n∑
i=1

wie
σ̄2
i
2

(β2
i θ

2
i−1)

[∫ z∗

−∞

1√
2π
e−

(z−βσ̄iθi)
2

2
dz̄

+

∫ +∞

z∗∗

1√
2π
e−

(z̄−βσ̄iθi)
2

2
dz̄

]
−D0(t, T )(K − γ) [N(z∗) +N(−z∗∗)]

= D0(t, T )

[
n∑
i=1

ŵi(t)FXi(t, T )(N(z∗ − di) +N(di − z∗∗))

− (K − γ)(N(z∗) +N(−z∗∗))

]
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1.4 The Hedging Problem

In this section, we study the hedging problem associated with basket FX derivatives.

Similar to Section 1.3.3, we focus on the two basic types of basket options, namely, the

cash-or-nothing basket option and the plain vanilla basket option.

The hedging problem is even more important than the pricing problem itself. Without a

proper hedging strategy, the risk exposure facing the issuers of the financial derivatives

cannot be offset adequately even though the prices are evaluated accurately at the begin-

ning; while an appropriate hedging strategy can help to justify the price settled at the

issuing day and quoted during the life time of the product.

In Section 1.4.1 we introduce the delta-hedging and the safe crossing hedging strategies,

both of which belong to the category of dynamic hedging strategies. Then, in Section

1.4.2, we are going to study the static hedging strategies. The static hedging does not re-

quire the knowledge of the derivative price at the beginning. By building a static hedging

position whose price can be observed on the market, it is possible to obtain the price of the

original financial derivative by applying the no arbitrage argument. The static hedging

saves the costs incurred during the adjustment of the hedging positions and is invari-

ant to volatility and interest rate risks. However, a perfect static hedging is not always

available. In most cases, we are only able to build static superhedging positions with

non-trivial costs. To decide between dynamic and static hedging strategies, we should

weight between the dynamic hedging and the static superhedging costs.

1.4.1 The Dynamic Hedging

According to our assumption about the perfect arbitrage free and complete international

financial market, we can replicate the value of a basket FX derivative by a self-financing

strategy which takes place either on the forward asset/bond market, the forward/spot

asset/bond market, the spot asset/bond market or on the spot asset/cash market.15 The

choice of a certain strategy depends on the availability of the hedging tools as well as the

convenience in its implementation. In this chapter, we only discuss the replication strat-

egy on the forward/spot asset/bond market. The similar procedure can be generalized to

the other strategies without any difficulty.

Given that the approximated closed form pricing formula obtained through our approxi-

mation procedure is very close to the true value (which is to be demonstrated in Section

1.5), we derive the dynamic hedging positions from the approximated prices. However,

even if the prices are well approximated, the hedging strategies based on these approx-

imated prices do not necessarily perform so well. This is because the deviations of the

15Confer Musiela and Rutkowski (2005) for the brief introduction of these strategies.
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approximated prices from the true prices are not fixed under different market conditions.

The approximated hedge ratios derived during the life time of the product can hence

overestimate or underestimate the true hedge ratios, so that the aggregate effect of the

hedging strategies is unclear. We will investigate the performance of the dynamic hedging

strategies which are induced from the approximation prices in Section 1.5.2.

From now on, we assume that V̂ (t) is the true price of the option. Disregarding the

exact structures of the two kinds of options discussed above, we denote their time t price

in a general form as

V̂ (t) = D0(t, T )Ṽ (t, FX(t, T ))

with FX(t, T ) = (FX1(t, T ), . . . , FXn(t, T )) . Comparing to the pricing formulas (1.73)

and (1.76),

Ṽ (t, FX(t, T )) := N(z∗) +N(−z∗∗)

for the cash-or-nothing basket options and

Ṽ (t, FX(t, T )) :=
n∑
i=1

ŵi(t)FXi(t, T )(N(ẑ∗− d̂i)+N(d̂i− ẑ∗∗))−(K−γ)(N(ẑ∗)+N(−ẑ∗∗))

for the plain vanilla basket options. Both the values of z∗ and z∗∗ depend on FX(t, T ) .

Moreover, Ṽ (t, FX(t, T )) can be interpreted as the forward price of the option. According

to the Itô Lemma, there is

dṼ (t, FX(t, T )) =
∂Ṽ

∂t
dt+

n∑
i=1

∂Ṽ

∂FXi
dFXi +

1

2

n∑
i=1

n∑
j=1

∂2Ṽ

∂FXi∂FXj
dFXidFXj

=

(
∂Ṽ

∂t
+

1

2

n∑
i=1

n∑
j=1

∂2Ṽ

∂FXi∂FXj
FXiFXjηi · ηj

)
dt+

n∑
i=1

∂Ṽ

∂FXi
dFXi .

(1.77)

Since the drift of Ṽ (t, FX(t, T )) is 0 under the forward measure, we infer that Ṽ (t, FX(t, T ))

is the solution to the differential equation

∂Ṽ

∂t
+

1

2

n∑
i=1

n∑
j=1

∂2Ṽ

∂FXi∂FXj
FXiFXjηi · ηj = 0 (1.78)

with the boundary condition that its terminal value equals the payoff of the option at the

maturity date T .

Proposition 1.4.1. The basket option, which is issued at time 0 and the T -forward

price of which at time t ∈ [0, T ] is Ṽ (t, FX(t, T )) , can be replicated by purchasing

Ṽ (0, FX(0, T )) number of domestic zero coupon bonds at time 0 , holding them until

the maturity date T , and at the same time, taking continuously ∆i(t) = ∂Ṽ (t,FX(t,T ))
∂FXi (t,T )
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positions, where t ∈ [0, T ) and i ∈ {1, . . . , n} , in the T -maturity forward contracts of

the i -th currency.

Proof. We infer from (1.77) that the forward value of the replication portfolio suggested

above is

Ṽ (0, FX(0, T )) +

∫ t

0

n∑
i=1

∂Ṽ

∂FXi
dFXi = Ṽ (0, FX(0, T )) +

∫ t

0

dṼ (s, FX(s, T ))

= Ṽ (t, FX(t, T ))

for all t ∈ [0, T ] .

Proposition 1.4.1 indicates that ∂Ṽ (t,FX(t,T ))
∂FXi (t,T )

with i = 1, . . . , n for t ∈ [0, T ) should

be the hedging positions we are searching for in the continuous time model. For the

cash-or-nothing basket option, the i -th delta ∆i
c satisfies

∆i
c(t) =

∂Ṽ (t, FX(t, T ))

∂FXi(t, T )
= n(z∗)

∂z∗

∂FXi(t, T )
− n(z∗∗)

∂z∗∗

∂FXi(t, T )
,

and for the basket option, the i th delta ∆i
b is

∆i
b(t) =

∂Ṽ (t, FX(t, T ))

∂FXi(t, T )
= ŵi[N(z∗ − di) +N(di − z∗∗)]

+
n∑
j=1

∂ŵj
∂FXi

FXj [N(z∗ − dj) +N(dj − z∗∗)]

+
n∑
j=1

ŵjFXi

[
n(z∗ − dj)(

∂z∗

∂FXi
− θjσ̄j

∂β

∂FXi
) + n(dj − z∗∗)(θjσ̄j

∂β

∂FXi
− ∂z∗∗

∂FXi
)

]
− (K − γ)

[
n(z∗)

∂z∗

∂FXi
− n(z∗∗)

∂z∗∗

∂FXi

]
+

∂γ

∂FXi
[N(z∗) +N(−z∗∗)].

Although it is possible to find analytical solutions to the above equations, it is a very

tedious job. Hence we prefer to compute the hedge ratios numerically by full revaluation,

i.e., with the following equation:

∆i
c,b(t) =

Ṽ
(εi)
c,b (t, FX(t, T ))− Ṽc,b(t, FX(t, T ))

εi
(1.79)

with εi > 0 being a small number. Here Ṽ (εi) refers to the forward option price when

the forward exchange rate of the i th currency is perturbed by a small εi while the for-

ward exchange rates of the other currencies are kept unchanged. The fast speed of the

approximation pricing makes the calculation of the hedge ratios very efficient.
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In reality, however, the hedging can only take place at discrete time points with time

interval in between. Denoting the discrete time approximation of dṼ (t, FX(t, T )) as

δṼ (t, FX(t, T )) , the discrete time approximation of (1.77) is correspondingly

δṼ =
∂Ṽ

∂t
+

n∑
i=1

∂Ṽ

∂FXi
δFXi +

n∑
i=1

n∑
j=1

1

2

∂2Ṽ

∂FXi∂FXj
FXiFXj(ηi · δW T )(ηj · δW T )

=

(
∂Ṽ

∂t
+

n∑
i=1

n∑
j=1

1

2

∂2Ṽ

∂FXi∂FXj
FXiFXjηi · ηj

)
δt+

n∑
i=1

∂Ṽ

∂FXi
δFXi

+
n∑
i=1

n∑
j=1

1

2

∂2Ṽ

∂FXi∂FXj
FXiFXj

(
m∑
k=1

m∑
l=1

ηikηjl(δW
T
k δW

T
l − δt)

)
. (1.80)

According to (1.78) the first term equals zero. However, the third term is redundant which

influences the accuracy of the replication strategy. The key factors in this term are the

gamma and cross gamma values which are important indicators of the sensitivity of the

hedging positions to the change of the forward exchange rates. To alleviate their effects,

it would be ideal to implement the delta-gamma hedging so that the gamma and the cross

gamma values reduce to zero and at the same time the delta of the whole portfolio re-

mains zero. However, as was pointed out by Ashraff, Tarczon and Wu (1995), it is hardly

possible to completely hedge against the correlation since we need hedging instruments

which are also functions of the same correlations but the high transaction costs of buying

or selling such options usually prohibit this. As a compromise, Ashraff et al. (1995) have

introduced the safe crossing strategy, which aims at building delta neutral and minimum

variational portfolio over a short period of time by including the underlying assets and the

vanilla options on each of these assets. We apply this strategy to our case. The hedging

positions are composed of the domestic zero coupon bonds, the forward contracts on the

foreign currencies and the European options written on the respective foreign currencies.

We denote φ0 as the number of domestic zero coupon bonds, φi as the number of T-

forward contracts on the i th currency, ξi as the number of forward contracts on the call

option with the i th currency as the underlying, and Ci as the forward price of the i -th

call option.

The discrete time differential of the net portfolio’s forward value, denoted by Π is

δΠ = δṼ +
n∑
i=1

φiδFXi +
n∑
i=1

ξiδCi

=
∂Ṽ

∂t
δt+

n∑
i=1

∂Ṽ

∂FXi
FXiηi · δW T +

n∑
i=1

n∑
j=1

1

2

∂2Ṽ

∂FXi∂FXj
FXiFXjηi · ηjδt
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+
n∑
i=1

∑
j=1

1

2

∂2Ṽ

∂FXi∂FXj
FXiFXj

m∑
k=1

m∑
l=1

ηikηjl(δW
T
k δW

T
l − δt)

+
n∑
i=1

φiFXiηi · δW T +
n∑
i=1

ξi

(
∂Ci
∂t

δt+
∂Ci
∂FXi

FXiηi · δW T +
1

2

∂2Ci
∂FXi

F 2
Xi
η2
i δt

)
+

n∑
i=1

ξi
1

2

∂2Ci
∂F 2

Xi

F 2
Xi

m∑
j=1

m∑
k=1

ηijηik(δW
T
j δW

T
k − δt)

=

[
∂Ṽ

∂t
+

n∑
i=1

n∑
j=1

1

2

∂2Ṽ

∂FXi∂FXj
FXiFXjηi · ηj +

n∑
i=1

ξi

(
∂Ci
∂t

+
1

2

∂2Ci
∂F 2

Xi

F 2
Xi
η2
i

)]
δt

+
n∑
i=1

(
∂Ṽ

∂FXi
+ φi + ξi

∂Ci
∂FXi

)
FXiηi · δW T

+
n∑
i=1

n∑
j=1

1

2

∂2Ṽ

∂FXi∂FXj
FXiFXj

m∑
k=1

m∑
l=1

ηikηjl(δW
T
k δW

T
l − δt)

+
n∑
i=1

ξi
1

2

∂2Ci
∂F 2

Xi

F 2
Xi

m∑
j=1

m∑
k=1

ηijηik(δW
T
j δW

T
k − δt).

The portfolio is delta neutral indicating that

∂Ṽ

∂FXi
+ φi + ξi

∂Ci
∂FXi

= 0 for i = 1, . . . , n, (1.81)

which eliminates the terms proportional to δW T . In addition, because the drift of

Ṽ (t, FX(t, T )) and Ci , i = 1, . . . , n are 0 under the forward measure, the first term in

(1.81) is equal to zero.

Since it is hardly possible to eliminate the variance of the portfolio over the short period

δt , we try to minimize it as the second best solution.

Proposition 1.4.2. The replication portfolio (φ0, φ, ξ) which minimizes the variance of

δΠ satisfies

ξ = −Λ−1Ψ, (1.82)

φi = − ∂Ṽ

∂FXi
− ξi

∂Ci
∂FXi

for i = 1, . . . , n, (1.83)

φ0 = Ṽ (0, FX(0, T ))−
n∑
i=1

ξiCi(0). (1.84)
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Here, Λ is an n× n -matrix whose (i, r) -th entry is

Λir =
1

2

∂2Ci
∂F 2

Xi

F 2
Xi

2
m∑
k=1

η2
ikη

2
rk +

m∑
k,l=1
k 6=l

ηikηilηrkηrl

 (1.85)

for i = 1, . . . , n and r = 1, . . . , n . Moreover, Ψ is an n×1 vector whose r -th element

is

Ψr =
n∑

i,j=1

1

2

∂2V

∂FXi∂FXj
FXiFXj

2
m∑
k=1

ηikηjkη
2
rk +

m∑
k,l=1
k 6=l

ηikηjlηrkηrl

 . (1.86)

for r = 1, . . . , n .

Proof. The variance of δΠ satisfies

V ar[δΠ] = 2
n∑

i,j,v,w=1

1

2

∂2V

∂FXi∂FXj

1

2

∂2V

∂FXv∂FXw
FXiFXjFXvFXw

m∑
k=1

ηikηjkηvkηwkδt
2

+
n∑

i,j,v,w=1

1

2

∂2V

∂FXi∂FXj

1

2

∂2V

∂FXv∂FXw
FXiFXjFXvFXw

m∑
k,l=1
k 6=l

ηikηjlηvkηwlδt
2

+ 2
n∑

i,j=1

ξiξj
1

2

∂2Ci
∂F 2

Xi

1

2

∂2Cj
∂F 2

Xj

F 2
Xi
F 2
Xj

m∑
k=1

η2
ikη

2
jkδt

2

+
n∑
i=1

n∑
j=1

ξiξj
1

2

∂2Ci
∂F 2

Xi

1

2

∂2Cj
∂F 2

Xj

F 2
Xi
F 2
Xj

m∑
k,l=1
k 6=l

ηikηilηjkηjlδt
2

+ 4
n∑

i,j,v=1

1

2

∂2V

∂FXi∂FXj
FXiFXjξv

1

2

∂2Cv
∂F 2

Xv

F 2
Xv

m∑
l=1

ηilηjlη
2
vlδt

2

+ 2
n∑

i,j,v=1

1

2

∂2V

∂FXi∂FXj
ξv

1

2

∂2Cv
∂F 2

Xv

F 2
Xv

m∑
k,l=1
k 6=l

ηikηjlηvkηvlδt
2. (1.87)

To minimize V ar[δΠ] , we simultaneously calculate

∂V ar[δΠ]

∂ξr
= 0, for r = 1, . . . , n

to find out the appropriate ξ .
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We obtain that

∂V ar[δΠ]

∂ξr
= 4

n∑
i=1

ξi
1

2

∂2Ci
∂F 2

Xi

1

2

∂2Cr
∂F 2

Xr

F 2
Xi
F 2
Xr

m∑
k=1

η2
ikη

2
rkδt

2

+ 2
n∑
i=1

ξi
1

2

∂2Ci
∂F 2

Xi

1

2

∂2Cr
∂F 2

Xr

F 2
Xi
F 2
Xr

m∑
k,l=1
k 6=l

ηikηilηrkηrlδt
2

+ 4
n∑

i,j=1

1

2

∂2V

∂FXi∂FXj
FXiFXj

1

2

∂2Cr
∂F 2

Xr

F 2
Xr

m∑
l=1

ηilηjlη
2
rlδt

2

+ 2
n∑

i,j=1

1

2

∂2V

∂FXi∂FXj
FXiFXj

1

2

∂2Cr
∂F 2

Xr

F 2
Xr

m∑
k,l=1
k 6=l

ηikηjlηrkηrlδt
2

= 0, (1.88)

or equivalently,

n∑
i=1

ξi
1

2

∂2Ci
∂F 2

Xi

F 2
Xi

(2
m∑
k=1

η2
ikη

2
rk +

m∑
k,l=1
k 6=l

ηikηilηrkηrl)

= −
n∑

i,j=1

1

2

∂2V

∂FXi∂FXj
FXiFXj(2

m∑
k=1

ηikηjkη
2
rk +

m∑
k,l=1
k 6=l

ηikηjlηrkηrl) (1.89)

for r = 1, . . . , n .

Denoting Λir and Ψr as is presented in (1.85) and (1.86), we can write the equation

system as

Λξ = −Ψ. (1.90)

Assuming the non-singularity of Λ which is usually the case, we obtain that

ξ = −Λ−1Ψ.

Combining this result with (1.81) we further obtain the value of φi , i.e.,

φi = − ∂Ṽ

∂FXi
− ξi

∂Ci
∂FXi

for i = 1, . . . , n.

At last, φ0 is obtained by investing the rest of the initial money into the domestic zero

coupon bonds.

We compare the performance of the delta hedging and the safe crossing hedging strategies
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in Section 1.5.

1.4.2 The Static Hedging

The Static Hedging of Cash-or-Nothing Basket Options

We first discuss the static hedging strategy for cash-or-nothing basket options. It is well

known that a cash-or-nothing call option can be synthesized using an infinite number of

vertical spreads of call options. Denoting C(t, A(t), K) as the time t value of a basket

option with strike price K and the same underlying as the cash-or-nothing basket option.

The payoff of the cash-or-nothing basket option at T can be replicated by a call spread

as follows

1{A(T )≥K} = lim
h→0

1

h
(Ṽb(T, FX(T, T ), K − h)− Ṽb(T, FX(T, T ), K)). (1.91)

We denote Ṽb(t, FX(t, T ), K) as the T -forward value of a basket option at time t , whose

strike price is K and its underlying is the same as the cash-or-nothing basket option.

The call spread displayed in equation (1.91) generally establishes a superhedging position

for the cash-or-nothing option. It perfectly hedges the cash-or-nothing option only when

an infinite number 1
h

can be set, which is but impossible. Alternatively, we apply the

Richardson extrapolation technique to approximate the right side of equation (1.91) as

exactly as possible. The Richardson extrapolation technique was introduced by Geske

and Johnson (1984) for the pricing of American put options and applied later by Carr,

Ellis and Gupta (1998) for replicating simple cash-or-nothing call options. When the

step size h is used, we denote the time t approximation of the T-forward value of the

cash-or-nothing option as

Ṽ (t, h) =
1

h
(Ṽb(t, FX(t, T ), K − h)− Ṽb(t, FX(t, T ), K)).

We wish to find Ṽ (t, 0) . Following Geske and Johnson’s approach, we assume that

Ṽ (t, h) takes the form

Ṽ (t, h) = Ṽ (t, 0) + a1h
p + a2h

q + o(hs), (1.92)

where s > q > p . Similarly, we can also write

Ṽ (t, jh) = Ṽ (t, 0) + a1(jh)p + a2(jh)q + o(hs), (1.93)

Ṽ (t, kh) = Ṽ (t, 0) + a1(kh)p + a2(kh)q + o(hs), (1.94)
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where k > j > 1 . By substituting a1 and a2 we obtain

Ṽ (t, 0) = Ṽ (t, h) +
A

C
[Ṽ (t, h)− Ṽ (t, jh)]− B

C
[Ṽ (t, jh)− Ṽ (t, kh)], (1.95)

with

A = kq − kp + jp − jq, (1.96)

B = jq − jp, (1.97)

C = kq(jp − 1)− kp(jq − 1) + jq − jp. (1.98)

We use k = 3 , j = 3
2

and h = 1
100

. If we expand Ṽ (t, h) in a Taylor series around

Ṽ (t, 0) and drop the terms of third or higher order, we have p = 1 and q = 2 . It follows

that

Ṽ (t) = Ṽ (t, 0) ≈ 450 Ṽb(t, FX(t, T ), K − 1

100
)− 200 Ṽb(t, FX(t, T ), K)

− 800

3
Ṽ (t, FX(t, T ), K − 3

200
) +

50

3
Ṽb(t, FX(t, T ), K − 3

100
). (1.99)

The accuracy of this approximation will be studied in Section 1.5.

In the next subsection we introduce the static hedging of basket options with simple Eu-

ropean options. To put it more exactly, we will find a static superhedging position by

applying the payoff approximation strategy first introduced by Nielsen and Sandmann

(2002a) in the pricing of Asian options. Making use of the convex feature of the payoff

structure [·]+ and the Jensen’s inequality, they find the upper bound of the Asian option

price which can be interpreted as a portfolio of plain vanilla options. Su (2006) applies this

property to the static superhedging of basket options and introduced different criteria for

the choice of the proper strike prices of the vanilla options depending on the risk attitude

of the issuer of the financial product. We apply this method to the hedging of basket

FX derivatives on the international financial market with more financial risks. We only

introduce the basic steps of the upper bound building. To build the hedging positions

with the other criteria, readers are referred to Su (2006). The methods introduced there

can be implemented in our model without difficulty.

The Static Hedging of Plain Vanilla Basket Options

Now we study the static hedging problem for the plain vanilla basket option at time

t = 0 , with the final payoff being[
n∑
i=1

wiFXi(T, T )−K

]+
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under the T -forward measure. Due the convexity of the payoff structure and Jensen’s

inequality for convex functions, there is[
n∑
i=1

wiFXi(T, T )−K

]+

=

[
n∑
i=1

wi(FXi(T, T )−Ki)

]+

≤
n∑
i=1

wi[FXi(T, T )−Ki]
+

for all the sequences of K1, K2, · · · , Kn with
∑n

i=1wiKi = K . It tells us that the

payoff of a plain vanilla basket call option is dominated by the payoff of a portfolio of n

European call options written on the respective underlying assets with the weight of the

i -th option being wi . In addition, the strike price of the i -th option is Ki and the

maturity date is T . To build the hedging position with costs as few as possible, we look

for the optimal strike price vector K̃ = [K1, . . . , Kn] which minimizes the value of the

option portfolio. Thus the problem is

min
K̃

n∑
i=1

wi

∫ ∞
max(Ki,0)

(FXi(T, T )−Ki)fi(FXi(T, T ))dFXi(T, T ) s.t.
n∑
i=1

wiKi = K.

It can be solved by minimizing the Lagrange function

h(K̃, λ) =
n∑
i=1

wi

∫ ∞
max(Ki,0)

(FXi(T, T )−Ki)fi(FXi(T, T ))dFXi(T, T ) + λ(
n∑
i=1

wiKi −K).

The first order derivative with regard to Ki is16

∂h(K̃, λ)

∂Ki

= −wi
∂max(Ki, 0)

∂Ki

[max(Ki, 0)−Ki] fi(FXi(T, T ) = max(Ki, 0))

− wi

∫ ∞
max(Ki,0)

fi(FXi(T, T ))dFXi(T, T ) + λwi = 0 ∀ i = 1, . . . , n,

(1.100)

and the first order derivative with regard to λ is

∂h(K̃, λ)

∂λ
=

n∑
i=1

wiKi −K = 0. (1.101)

(1.100) can be simplified into

−wi
∫ ∞

max(Ki,0)

fi(FXi(T, T ))dFXi(T, T ) + λwi = 0, i = 1, . . . , n.

16The general formula for the differentiation of integrals is df(x)
dx = d

dx

∫ b(x)

a(x)
f(y, x)dy =

f(b(x), x)b′(x)− f(a(x), x)a′(x) +
∫ b(x)

a(x)
∂f
∂x (y, x)dx . Here, x = Ki and y = FXi

(T, T ) .
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This confirms that K̃ > 0 , because otherwise there would be at least one K∗i with

K∗i ≤ 0 so that∫ ∞
max(Kj ,0)

fj(FXj(T, T ))dFXj(T, T ) =

∫ ∞
max(K∗i ,0)

fi(FXi(T, T ))dFXi(T, T )

=

∫ ∞
0

fi(FXi(T, T ))dFXi(T, T ) = 1 ∀ j 6= i∗,

and therefore, Kj ≤ 0 ∀j 6= i∗ , which but violates the condition that
∑n

i=1wiKi = K .

Since K̃ > 0 , we have∫ +∞

Ki

fi(FXi(T, T ))dFXi(T, T ) =

∫ +∞

Kj

fj(FXj(T, T ))dFXj(T, T ). (1.102)

Let

yi =
lnFXi(T, T )− EPT [lnFXi(T, T )]√

V arPT [lnFXi(T, T )]
=
lnFXi(T, T )− lnFXi(0, T )− 1

2
σ̄2
i

σ̄i
,

which is standard normally distributed.17 Then there is

Φ

(
lnFXi(0, T ) + 1

2
σ̄2
i − lnKi

σ̄i

)
= Φ

(
lnFXj(0, T ) + 1

2
σ̄2
j − lnKj

σ̄j

)

∀i, j ∈ {1, 2, . . . , n},
n∑
i=1

wiKi = K.

Since Φ(·) is a bijective function, we infer that

lnFXi(0, T ) + 1
2
σ̄2
i − lnKi

σ̄i
=

lnFXj(0, T ) + 1
2
σ̄2
j − lnKj

σ̄j

∀i, j ∈ {1, 2, . . . , n},
n∑
i=1

wiKi = K.

We can express Ki as a strictly increasing function of K1 :

Ki =
FXi(0, T )

FX1(0, T )σ̄i/σ̄1
e

1
2
σ̄i(σ̄i−σ̄1)K

σ̄i/σ̄1

1

17Since we are dealing with the static hedging problem at time t = 0 , σ̄i is equal to
∫ T

0
||ηi(0, T )||2du

here.
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and hence
∑n

i=1wiKi as a function of K1 :

k(K1) =
n∑
i=1

wi
FXi(0, T )

FX1(0, T )σ̄i/σ̄1
e

1
2
σ̄i(σ̄i−σ̄1)K

σ̄i/σ̄1

1 , (1.103)

which is continuously increasing in K1 .

It is obvious that k(0) = 0 . Furthermore, we set the index 1 to be the foreign currency

with the lowest terminal volatility. Let

K∗1 =
FX1(0, T )D0(0, T )K

min(D1(0, T ), . . . , Dn(0, T ))
.

It is easy to prove that

k(K∗1) =
n∑
i=1

wi
FXi(0, T )

FX1(0, T )σ̄i/σ̄1
e

1
2
σ̄i(σ̄i−σ̄1)

(
FX1(0, T )D0(0, T )K

min(D1(0, T ), . . . , Dn(0, T ))

)σ̄i/σ̄1

≥
n∑
i=1

wi
Xi(0)Di(0, T )

D0(0, T )FX1(0, T )σ̄i/σ̄1
e

1
2
σ̄i(σ̄i−σ̄1)

(
FX1(0, T )D0(0, T )σ̄1/σ̄iK σ̄1/σ̄i

min(D1(0, T ), . . . , Dn(0, T ))σ̄i/σ̄1

)σ̄i/σ̄1

≥
n∑
i=1

wi
Xi(0)Di(0, T )

D0(0, T )FX1(0, T )σ̄i/σ̄1
e

1
2
σ̄i(σ̄i−σ̄1)

(
FX1(0, T )σ̄i/σ̄1D0(0, T )K

Di(0, T )

)
=

n∑
i=1

wiXi(0)e
1
2
σ̄i(σ̄i−σ̄1)K

≥
n∑
i=1

wiXi(0)K = K.

The last equality is valid due to the common practice we have mentioned in Section 1.1.2.

Hence, by applying the Intermediate Value Theorem, there must exist a K1 ∈ (0, K∗1 ]

such that the equation (1.103) is satisfied. Consequently, we can obtain a portfolio of

weighted European call options written on the respective foreign currencies with the

strike price of the i -th option being Ki as was specified above and its weight in the

portfolio being wi . In Section 1.5 we will explore how well the hedging portfolio works.
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1.5 Numerical Results

In Section 1.3 we have presented the rank one approximation method in combination with

the three moment matching technique. We have applied this approximation method to

the pricing of cash-or-nothing basket options as well as plain vanilla basket options. In

this part, we study their performances by comparing the numerical results with the Monte

Carlo simulation results. Each simulation is carried out for 200, 000 times, and the an-

tithetic technique is applied to improve its reliability. At the same time, we compare the

rank one approximation with one of the popular approximation methods, the lognormal

approximation method with three moment matching,18 whose approximation quality is

well approved.

The parameters used in this part are as follows:

• We assume that 5 currencies are included in the basket.

• The volatilities of the forward interest rates are assumed to be constant (σ0, . . . , σ5)′ :


σ0

σ1
...

σ5

 =



0.01 0 0 0 0 0

0.02 0.05 0.01 0.03 0.04 0.02

0.05 0.02 0.03 0.04 0.06 0.07

0.01 0.04 0.02 0.06 0.02 0.06

0.1 0.02 0.01 0.03 0.05 0.08

0.01 0.03 0.04 0.05 0.02 0.05

 .

• The initial values of the zero coupon bonds are:

(D0(0, T ), D1(0, T ), . . . , D5(0, T )) = (e−y0·T , e−y1·T , . . . , e−y5·T ),

where (y0, y1, . . . , y5) = (0.06, 0.09, 0.10, 0.12, 0.08, 0.07) , indicating a flat initial

yield curve.

• Concerning the volatilities of the exchange rates (δ1, . . . , δ5) , three groups are dis-

18Confer Brigo, Mercurio, Rapisarda and Scotti (2004) for the lognormal approximation method with
three moment matching.
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cussed. They are respectively

∆1 =


0.05 0.08 0.02 0.01 0.03 0.02

0.04 0.09 0.03 0.01 0.02 0.03

0.15 0.02 0.1 0.04 0.05 0.04

0.02 0.01 0.02 0.03 0.05 0.03

0.03 0.01 0.05 0.06 0.07 0.15

 ;

∆2 =


0.05 0.08 0.02 −0.01 −0.03 0.02

0.04 −0.09 −0.03 −0.01 0.02 −0.03

−0.15 0.02 −0.1 −0.1 0.08 −0.04

−0.02 −0.01 0.02 −0.01 −0.05 −0.03

−0.03 −0.04 −0.05 0.03 −0.01 0.15

 ;

∆3 =


0.05 0.08 0.02 −0.01 −0.03 0.02

0.04 0.09 0.03 0.01 0.02 −0.03

−0.15 0.02 −0.1 0.04 0.05 0.04

0.02 0.01 0.02 −0.03 0.05 0.03

0.03 −0.01 0.05 0.06 −0.07 0.15

 .

In the first group, the exchange rates are positively related with each other; the

exchange rates of the second group are negatively related; while in the third group,

the signs of the correlation coefficients are mixed. The correlation matrices are

respectively

ρ1 =


1 0.9796 0.6790 0.6167 0.4684

0.9796 1 0.6226 0.5697 0.4964

0.6790 0.6226 1 0.7129 0.5919

0.6167 0.5697 0.7129 1 0.8586

0.4684 0.4964 0.5919 0.8586 1

 ;

ρ2 =


1 −0.6089 −0.4328 −0.0583 −0.1546

−0.6089 1 −0.0405 −0.0688 −0.0595

−0.4328 −0.0405 1 −0.0688 −0.0289

−0.0583 −0.0688 −0.0688 1 −0.3840

−0.1546 −0.0595 −0.0289 −0.3840 1

 ;

ρ3 =


1 0.7501 −0.4429 0.2145 0.3227

0.7501 1 −0.3252 0.2658 −0.1720

−0.4429 −0.3252 1 −0.1623 −0.1315

0.2145 0.2658 −0.1623 1 0.0523

0.3227 −0.1720 −0.1315 0.0523 1

 .

• The option maturities to be observed are T = 1, 3, 5 years respectively.
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1.5.1 The Performance of the Approximation Pricing

In Table 1.2 we present the approximation prices of cash-or-nothing basket options through

the crude rank one approximation, the improved rank one approximation, and the log-

normal approximation. We present the relative deviation of these approximation prices

from the true prices to demonstrate the quality of the approximation methods.

We see that the crude rank one approximation delivers mostly the low biased prices and

the biasness increases with the strike price. The movements of the biasness with the life

time of the option are different for different correlation structures and different strike

prices. For the correlation structure ρ1 , the biasness increases for in-the-money options

when the option has a longer life time. For at-the-money and nearly out-of-the-money

options, the biasness first increases and then decreases with the option’s life time. When

the option is far out of the money, the biasness decreases with the option’s life time. For

the correlation structure ρ2 , the behavior of the biasness is similar for the in-the-money

case. However, for at-the-money and out-of-the-money options, we do not observe mono-

tonic performance. The biasness decreases first and then increases with the increase of

the option’s life time. With regard to the correlation structure ρ3 , the biasness (with the

increase of the option’s life time) increases for in-the-money options, decreases and then

increases for at-the-money options, decreases for out-of-the-money options. The relative

deviation of the crude rank one approximated prices from the true prices (obtained from

the Monte Carlo simulation) ranges from 0 to 100% . In this respect, the performance

of the crude rank one approximation is not stable.

Table 1.2 shows that the crude rank one approximation method can be improved by the

three moment matching technique. The improvement of the approximation performance

is dramatic. In most of the cases, the relative deviations of approximated prices from

the true prices have not exceeded 1% . High biasness only happens for far-out-of-the-

money options close to maturity, when the correlation matrix of the underlying assets

displays the correlation structure ρ3 . The relative deviation amounts to 30% maxi-

mally. Moreover, we find that the improved approximation method performs better than

the lognormal approximation method in almost all the cases. The absolute relative de-

viations of the lognormal approximated prices from the true prices range approximated

from 0 to 43% . This indicates that to approximate the underlying portfolio with a

synthesized lognormal distributed portfolio is not necessarily better than to approximate

it with a portfolio of perfectly correlated synthesized assets.
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T=1

Monte Carlo SE (10−3) CrudeRankOne Rel.Dev.(%) ImprovedRankOne Rel.Dev.(%) Lognormal Rel.Dev.(%)

∆1

0.70 0.941762 0.002354 0.941764 0.000172 0.941762 -0.000010 0.941753 -0.001026
0.80 0.936997 0.105680 0.938508 0.161240 0.937062 0.006901 0.935410 -0.169354
0.90 0.776395 0.566551 0.780246 0.495988 0.776192 -0.026199 0.775494 -0.116144
1.00 0.300074 0.693821 0.274275 -8.597527 0.300328 0.084407 0.305361 1.761682
1.05 0.127651 0.509712 0.104137 -18.420601 0.127683 0.024500 0.128072 0.329500
1.10 0.043020 0.310901 0.029954 -30.370963 0.042863 -0.363644 0.040910 -4.904552
1.15 0.011685 0.164833 0.006750 -42.232286 0.011690 0.042211 0.010122 -13.371753

∆2

0.70 0.941762 0.002354 0.941765 0.000250 0.941764 0.000184 0.941739 -0.002471
0.80 0.936455 0.111488 0.941477 0.536253 0.937018 0.0601253 0.933317 -0.335135
0.90 0.767032 0.578847 0.792537 3.325126 0.765866 -0.152032 0.765334 -0.221295
1.00 0.301303 0.694574 0.233849 -22.387541 0.301284 -0.006485 0.310624 3.093293
1.05 0.134317 0.520706 0.080736 -39.891520 0.135699 1.028831 0.136824 1.866668
1.10 0.049914 0.333599 0.022258 -55.407145 0.050370 0.915270 0.047026 -5.785475
1.15 0.015923 0.191977 0.005179 -67.476700 0.015858 -0.405121 0.012807 -19.567647

∆3

0.70 0.941765 0.000000 0.941765 0.000000 0.941765 0.000000 0.941765 0.000000
0.80 0.941753 0.005265 0.941765 0.001250 0.941759 0.000641 0.941753 0.000013
0.90 0.891778 0.333830 0.941765 5.605263 0.892337 0.062658 0.891237 -0.060682
1.00 0.219064 0.629122 0.005563 -97.460505 0.218395 -0.305144 0.219076 0.005333
1.05 0.033602 0.276207 0.000015 -99.956637 0.033415 -0.556305 0.032612 -2.947147
1.10 0.002300 0.073502 0.000000 -99.998748 0.002232 -2.980107 0.002032 -11.656270
1.15 0.000099 0.015258 0.000000 -99.999951 0.000069 -29.935138 0.000056 -42.975492

T=3

∆1

0.70 0.782268 0.321954 0.775455 -0.870973 0.783308 0.132916 0.778541 -0.476498
0.80 0.632456 0.566284 0.601751 -4.854933 0.632517 0.009603 0.632715 0.040949
0.90 0.408345 0.660176 0.360359 -11.751322 0.408139 -0.050513 0.414163 1.424894
1.00 0.210922 0.573779 0.168391 -20.164260 0.210658 -0.125538 0.215131 1.995451
1.05 0.141161 0.494927 0.106392 -24.630711 0.140689 -0.333908 0.143003 1.304900
1.10 0.090662 0.410816 0.064326 -29.049104 0.090129 -0.587845 0.090537 -0.138757
1.15 0.056631 0.332022 0.037440 -33.887979 0.055670 -1.696792 0.054826 -3.187329

∆2

0.70 0.632659 0.566092 0.604729 -4.414719 0.631522 -0.179739 0.625803 -1.083707
0.80 0.498556 0.647825 0.464790 -6.772750 0.496891 -0.334073 0.502977 0.886755
0.90 0.368530 0.655759 0.335624 -8.928833 0.368068 -0.125283 0.380997 3.383028
1.00 0.260473 0.611799 0.231399 -11.161913 0.260671 0.076203 0.274449 5.365909
1.05 0.216492 0.578706 0.189652 -12.397563 0.216609 0.054015 0.229244 5.890272
1.10 0.178211 0.541053 0.154386 -13.369176 0.178811 0.336488 0.189728 6.462650
1.15 0.145859 0.501390 0.124977 -14.316449 0.146809 0.651167 0.155738 6.773168

∆3

0.70 0.720078 0.455377 0.700597 -2.705441 0.719456 -0.086419 0.714184 -0.818554
0.80 0.568232 0.615913 0.533456 -6.120131 0.566851 -0.243138 0.568998 0.134811
0.90 0.392514 0.659143 0.353709 -9.886437 0.392361 -0.039084 0.399806 1.857639
1.00 0.241961 0.599078 0.208816 -13.698455 0.242668 0.292182 0.249633 3.170698
1.05 0.183427 0.546731 0.154892 -15.556997 0.184278 0.463443 0.189630 3.381698
1.10 0.136116 0.487765 0.112694 -17.206971 0.137227 0.816571 0.140727 3.387960
1.15 0.099445 0.427710 0.080647 -18.903053 0.100471 1.031182 0.102249 2.819682

T=5

∆1

0.70 0.444743 0.573754 0.401195 -9.791637 0.440453 -0.964633 0.444609 -0.029996
0.80 0.348722 0.584664 0.303732 -12.901338 0.344653 -1.166744 0.358644 2.845291
0.90 0.267367 0.562550 0.223932 -16.245512 0.263902 -1.295935 0.281918 5.442400
1.00 0.201527 0.521252 0.162222 -19.503659 0.199384 -1.063366 0.217163 7.758912
1.05 0.174335 0.496885 0.137454 -21.155209 0.172763 -0.901863 0.189436 8.662385
1.10 0.150423 0.471193 0.116222 -22.736872 0.149496 -0.616469 0.164690 9.484331
1.15 0.129712 0.445162 0.098113 -24.360519 0.129247 -0.358083 0.142754 10.054497

∆2

0.70 0.363881 0.585577 0.328959 -9.597032 0.361137 -0.753975 0.366423 0.698563
0.80 0.299487 0.574832 0.266186 -11.119341 0.297025 -0.822127 0.312258 4.264275
0.90 0.246033 0.551665 0.215318 -12.484005 0.244228 -0.733766 0.264986 7.703521
1.00 0.202482 0.522024 0.174513 -13.813119 0.201211 -0.627625 0.224303 10.776838
1.05 0.183641 0.505769 0.157295 -14.346676 0.182847 -0.432696 0.206254 12.313522
1.10 0.167016 0.489474 0.141909 -15.032272 0.166312 -0.421504 0.189619 13.533850
1.15 0.151851 0.472851 0.128160 -15.601700 0.151422 -0.282248 0.174309 14.789553

∆3

0.70 0.405070 0.583098 0.371063 -8.395453 0.402742 -0.574714 0.407445 0.586266
0.80 0.327516 0.581728 0.293429 -10.407563 0.324560 -0.902336 0.337466 3.037998
0.90 0.261820 0.559936 0.229671 -12.278977 0.259023 -1.068255 0.275899 5.377405
1.00 0.208157 0.526491 0.178792 -14.107042 0.205681 -1.189294 0.223420 7.332510
1.05 0.185066 0.507077 0.157597 -14.842820 0.183126 -1.048258 0.200506 8.343051
1.10 0.164817 0.487173 0.138882 -15.735493 0.163016 -1.093130 0.179684 9.019993
1.15 0.146830 0.466946 0.122393 -16.643185 0.145123 -1.162775 0.160832 9.536228

Table 1.2: The true prices and approximated prices of cash-or-nothing basket options, the relative deviation of the approxi-
mated prices from the true prices.
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We present the pricing results for plain vanilla basket options in Table 1.3. Similar to our

observations from Table 1.2, the crude rank one approximation delivers mostly low biased

prices. The relative deviations from the true prices range from 0 to 100% . Ceteris

paribus, the accuracy of the crude rank one approximation decreases with the increase

of the strike price. Now we investigate the effects of the options’ life time on the perfor-

mance of the crude rank one approximation. The effects are different when the correlation

structures of the underlying currencies are different and when the strike prices are differ-

ent. With regard to the correlation structure ρ1 , the approximation accuracy decreases

with the options’ life times for in-the-money options and increases with the options’ life

times in the other cases. For the correlation structure ρ2 , the accuracy decreases with T

for the far-in-the-money options ( K = 0.7, 0.8 ) and increases with T for in-the-money

( K = 0.9 ), at-the-money ( K = 1.0 ) and out-of-the-money ( K = 1.05, 1.10, 1.15 ) op-

tions. With regard to the correlation structure ρ3 , the accuracy decreases with T for

K = 0.7, 0.8 , decreases and then increases with T for K = 0.9 , increases with T for

K = 1.0, 1.05, 1.10, 1, 15 .

The improved rank one approximation works better than the crude rank one approxima-

tion. Its relative deviations from the true prices are mostly below 2% . Very high biasness

(close to 40% ) is only observed for out-of-the money options close to maturity ( T = 1 ),

with the correlation structure of the underlying exchange rates being ρ3 . However, we

do not observe monotonic behavior of the performance of the improved rank one approx-

imation with respect to the change of the strike prices and the change of maturity dates.

The performance of the improved rank one approximation also dominates the lognormal

approximation. The lognormal approximation yields prices whose relatives deviations

from the true prices range from 0 to 53% .
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T=1

Monte Carlo SE (10−3) CrudeRankOne Rel.Dev.(%) ImprovedRankOne Rel.Dev.(%) Lognormal Rel.Dev.(%)

∆1

0.70 0.253006 0.109699 0.253005 -0.000618 0.253005 -0.000611 0.253005 -0.000565
0.80 0.158911 0.109379 0.158870 -0.025714 0.158909 -0.001178 0.158952 0.026140
0.90 0.070294 0.096843 0.069261 -1.469553 0.070284 -0.014089 0.070605 0.442378
1.00 0.015857 0.052432 0.014160 -10.704397 0.015868 0.069603 0.015773 -0.529316
1.05 0.005567 0.030778 0.004482 -19.502522 0.005566 -0.015462 0.005335 -4.173911
1.10 0.001610 0.015994 0.001127 -30.019350 0.001609 -0.0234580 0.001432 -11.029780
1.15 0.000389 0.007529 0.000230 -40.920530 0.000391 0.458983 0.000308 -20.843160

∆2

0.70 0.252997 0.114248 0.253005 0.002993 0.253005 0.002995 0.253005 0.003119
0.80 0.158914 0.113893 0.158829 -0.053502 0.158904 -0.006520 0.159005 0.057137
0.90 0.070706 0.100908 0.067387 -4.693968 0.070689 -0.023683 0.071329 0.880308
1.00 0.016967 0.056592 0.012319 -27.395195 0.017042 0.444806 0.016868 -0.582717
1.05 0.006453 0.035002 0.003754 -41.826792 0.006483 0.468777 0.006045 -6.313227
1.10 0.002126 0.019759 0.000956 -55.013936 0.002114 -0.564901 0.001757 -17.352634
1.15 0.000624 0.010483 0.000212 -66.040726 0.000602 -3.465430 0.000418 -33.075741

∆3

0.70 0.253007 0.065062 0.253005 -0.000749 0.253005 -0.000749 0.253005 -0.000749
0.80 0.158830 0.065061 0.158828 -0.001270 0.158828 -0.001245 0.158828 -0.001213
0.90 0.065477 0.062521 0.064652 -1.259903 0.065458 -0.028226 0.065504 0.042232
1.00 0.005944 0.023765 0.000076 -98.729123 0.005917 -0.459113 0.005869 -1.269912
1.05 0.000658 0.007400 0.000000 -99.970379 0.000646 -1.826516 0.000617 -6.226847
1.10 0.00004 0.001649 0.000000 -99.998966 0.000034 -9.742040 0.000030 -20.15601142
1.15 0.000001 0.000329 0.000000 -99.999954 0.000000 -39.710980 0.000000 -52.529674

T = 3

∆1

0.70 0.177615 0.193444 0.176816 -0.449582 0.177447 -0.094658 0.177926 0.175115
0.80 0.105939 0.171885 0.103877 -1.947183 0.105715 -0.211849 0.106487 0.516561
0.90 0.053692 0.133594 0.050944 -5.117696 0.053491 -0.374099 0.053902 0.390707
1.00 0.023304 0.091151 0.020961 -10.055579 0.023111 -0.828515 0.022944 -1.546235
1.05 0.014577 0.072393 0.012686 -12.975444 0.014413 -1.128197 0.014076 -3.442252
1.10 0.008864 0.056320 0.007424 -16.237512 0.008717 -1.649073 0.008314 -6.196835
1.15 0.005240 0.043089 0.004218 -19.496742 0.005131 -2.076657 0.004742 -9.503641

∆2

0.70 0.195825 0.347094 0.195428 -0.202458 0.195907 0.042204 0.200004 2.133938
0.80 0.139201 0.313702 0.138565 -0.456928 0.139435 0.167775 0.143491 3.081734
0.90 0.095971 0.274172 0.095140 -0.865475 0.096321 0.364905 0.099373 3.544875
1.00 0.064734 0.233536 0.063761 -1.502829 0.065094 0.555600 0.066767 3.141296
1.05 0.052830 0.214012 0.051841 -1.872110 0.053188 0.677924 0.054199 2.590440
1.10 0.042990 0.195416 0.042001 -2.301552 0.043328 0.786423 0.043748 1.763076
1.15 0.034907 0.177923 0.033930 -2.798010 0.035211 0.869680 0.035134 0.649393

∆3

0.70 0.183293 0.252785 0.182212 -0.590000 0.183043 -0.136812 0.184273 0.534391
0.80 0.118582 0.224122 0.116894 -1.422922 0.118318 -0.222735 0.119723 0.962412
0.90 0.070605 0.184469 0.068758 -2.617145 0.070401 -0.289262 0.071280 0.956175
1.00 0.039133 0.142373 0.037526 -4.106265 0.038983 -0.381764 0.039100 -0.082518
1.05 0.028467 0.122740 0.027081 -4.870470 0.028358 -0.384666 0.028165 -1.062013
1.10 0.020445 0.104788 0.019289 -5.657390 0.020366 -0.387613 0.019952 -2.413764
1.15 0.014523 0.088766 0.013583 -6.472923 0.014463 -0.409063 0.013918 -4.162549

T = 5

∆1

0.70 0.163282 0.388559 0.159837 -2.109652 0.162252 -0.630947 0.170571 4.464381
0.80 0.123705 0.355694 0.119421 -3.462936 0.123104 -0.485132 0.130466 5.465758
0.90 0.093031 0.321324 0.088186 -5.208522 0.092813 -0.234713 0.098531 5.911152
1.00 0.069703 0.287757 0.064627 -7.281531 0.069780 0.110692 0.073681 5.706768
1.05 0.060317 0.271727 0.055225 -8.442681 0.060491 0.288462 0.063528 5.324086
1.10 0.052216 0.256344 0.047153 -9.695756 0.052448 0.443436 0.054687 4.732254
1.15 0.045224 0.241677 0.040242 -11.016812 0.045491 0.589600 0.047012 3.953673

∆2

0.70 0.202659 0.626442 0.202671 0.005948 0.203780 0.553477 0.226339 11.684601
0.80 0.169596 0.595361 0.169218 -0.222925 0.170972 0.811264 0.192462 13.482812
0.90 0.142420 0.563943 0.141691 -0.511993 0.143997 1.107424 0.163657 14.911058
1.00 0.120078 0.533115 0.119058 -0.849743 0.121800 1.433770 0.139245 15.961699
1.05 0.110432 0.518111 0.109291 -1.033071 0.112207 1.606706 0.128487 16.349200
1.10 0.101675 0.503442 0.100425 -1.229540 0.103485 1.780008 0.118596 16.642137
1.15 0.093710 0.489145 0.092370 -1.430510 0.095548 1.960883 0.109503 16.852556

∆3

0.70 0.182913 0.486367 0.180424 -1.361177 0.181438 -0.806372 0.192717 5.359402
0.80 0.146364 0.453758 0.143597 -1.890939 0.145175 -0.812256 0.155534 6.265310
0.90 0.116983 0.420322 0.114062 -2.496620 0.116102 -0.752844 0.124941 6.802870
1.00 0.093569 0.387510 0.090598 -3.175989 0.092963 -0.647826 0.100051 6.926681
1.05 0.083737 0.371646 0.080776 -3.535928 0.083254 -0.577529 0.089461 6.835809
1.10 0.074983 0.356248 0.072052 -3.908320 0.074610 -0.497707 0.079965 6.644287
1.15 0.067188 0.341367 0.064306 -4.288957 0.066915 -0.406373 0.071460 6.358230

Table 1.3: The true prices and approximated prices of plain vanilla basket options, the relative deviation of the approximated
prices from the true prices.
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1.5.2 The Hedging Performance

The Dynamic Hedging Performance

In this section we present the performance of the delta hedging and safe crossing hedging

strategies which are induced from our approximation prices. We first study the perfor-

mance of the dynamic hedging strategies for the plain vanilla basket options. In Figures

1.3-1.5 we have presented the delta as well as safe crossing hedging scenarios of the basket

options with the underlying exchange rates being positively correlated, negatively corre-

lated and mixed correlated respectively. The life time of the option is one year and the

strike price is set to be 0.8 . Moreover, the hedging portfolio is balanced daily.

We see from the figures that both the delta and the safe crossing hedging strategies imple-

mented within our framework work very well for T = 1 and K = 0.8 . The risk exposure

is almost eliminated from the market. The advantage of the safe crossing hedging over the

delta hedging strategy is not very obvious in this case. This is because, for in-the-money

options, the gammas and the cross gammas are small, so that a daily adjustment of the

delta hedging portfolio is good enough to replicate the basket option price. However,

when the life time of the option is extended or the option is almost at-the-money, we will

see the difference in the performances of the two hedging strategies.

The hedging scenarios for T = 3 and K = 0.8 are shown in Figures 1.6-1.8. Since a

longer time to maturity indicates higher gammas and cross gammas when the option is

in the money, the delta hedging strategy works badly for not being able to react to the

rapid change of the hedge ratios quickly enough. The safe crossing hedging strategy takes

the gammas and the cross gammas into account. Although this hedging strategy also

incurs high hedging errors for not being able to perfectly neutralize the gammas and cross

gammas, the hedging errors are much smaller than those of the delta hedging strategy.

The hedging scenarios for T = 1 and K = 1 are presented in Figures 1.9-1.11. The

hedging errors are high, because the gammas and cross gammas have very high gamma

and cross gamma values. For T = 1 and K = 1.1 , the gammas and cross gammas are

low again. Hence, the hedging errors are relatively low, which are displayed in Figures

1.12-1.14.19 In all the cases, the safe crossing hedging dominates the delta hedging with

regard to its hedging performance.

19The hedging errors look graphically great since the scales used in Figures 1.12-1.14 are different with
the other figures.
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Figure 1.3: Delta and safe crossing hedging scenarios for in-the-money plain vanilla basket
option of group 1 with T = 1 and K = 0.8 .

0 0.2 0.4 0.6 0.8 1
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

t

va
lu

e

 

 
Plain Vanilla Basket Option
Delta Hedging Portfolio
Safe Crossing Hedging Portfolio

Figure 1.4: Delta and safe crossing hedging scenarios for in-the-money plain vanilla basket
option of group 2 with T = 1 and K = 0.8 .
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Figure 1.5: Delta and safe crossing hedging scenarios for in-the-money plain vanilla basket
option of group 3 with T = 1 and K = 0.8 .

0 0.5 1 1.5 2 2.5 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

t

va
lu

e

 

 

Plain Vanilla Basket Option
Delta Hedging Portfolio
Safe Crossing Hedging Portfolio

Figure 1.6: Delta and safe crossing hedging scenarios for in-the-money plain vanilla basket
option of group 1 with T = 3 and K = 0.8 .
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Figure 1.7: Delta and safe crossing hedging scenarios for in-the-money plain vanilla basket
option of group 2 with T = 3 and K = 0.8 .
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Figure 1.8: Delta and safe crossing hedging scenarios for in-the-money plain vanilla basket
option of group 3 with T = 3 and K = 0.8 .
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Figure 1.9: Delta and safe crossing hedging scenarios for at-the-money plain vanilla basket
option of group 1 with T = 1 and K = 1 .
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Figure 1.10: Delta and safe crossing hedging scenarios for at-the-money plain vanilla
basket option of group 2 with T = 1 and K = 1 .
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Figure 1.11: Delta and safe crossing hedging scenarios for at-the-money plain vanilla
basket option of group 3 with T = 1 and K = 1 .
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Figure 1.12: Delta and safe crossing hedging scenarios for out-of-the-money plain vanilla
basket option of group 1 with T = 1 and K = 1.1 .
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Figure 1.13: Delta and safe crossing hedging scenarios for out-of-the-money plain vanilla
basket option of group 2 with T = 1 and K = 1.1 .
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Figure 1.14: Delta and safe crossing hedging scenarios for out-of-the-money plain vanilla
basket option of group 3 with T = 1 and K = 1.1 .
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For cash-or-nothing basket options, we present the hedging scenarios for T = 1 and

K = 0.8 in Figures 1.15-1.17. From Figures 1.15 and 1.16 we see that the relative

deviations of the hedging portfolio’s value from the options’s payoff (at the maturity

date) are about 13% and 11.8% for the delta hedging of the options in group 1 and

group 2, 11.5% and 6% for the safe crossing hedging. For group 3, the hedging errors

are relatively small, being 0.09% and 0.01% respectively. It is interesting to see that

both portfolio types build superhedging positions for T = 1 and K = 0.8 . The reason

may lie on the overvaluation of the rank one approximated prices for T = 1 and K = 0.8

(see Table 1.2). On the one hand, the option prices are undervalued at the beginning,

which means that no enough money is injected to build hedging positions. There are two

possible reasons for this phenomenon. On the other hand, the option prices are more

sensitive to the gammas and cross gammas in these cases. Superhedging positions are

however not observed for T = 1 and K = 1 or for T = 3 and K = 0.8 . The relative

performances of the two hedging strategies are similar to those for plain vanilla basket

options and hence are omitted here.

The Static Hedging Performance

Since dynamic hedging does not work well in many cases even when transaction costs

are neglected, we should consider static hedging as an alternative. In this section we

investigate the performance of various static hedging strategies. Since the performance

does not vary essentially, we only present the hedging scenarios for T = 1 and K = 0.8 .

In Figures 1.18-1.20 we present the performance of the superhedging portfolios for plain

vanilla basket options, which are obtained through the payoff approximation method

presented in Section 1.4.2. We simulate the scenarios with the three types of basket

underlying. It can be seen that in all the cases the superhedging portfolios build the

upper bounds for the basket options. Following our arguments in Section 1.4.2, they are

the cheapest among those portfolios of plain vanilla options whose strike prices can be

chosen freely to reduce the hedging costs. However, the weight allocation of these plain

vanilla options are kept identical with the composition of the original foreign currency

basket. Cheaper superhedging portfolio may be obtained with weight adjustment. This

is an interesting yet non-trivial question which is beyond the scope of the present work.

Hence, we keep it unsolved at the moment. We notice that the superhedging portfolios

are very expensive in all these cases, indicating that the hedging costs are very high. To

decide whether to hedge statically or dynamically, we should compare the superhedging

costs in the static hedging case with the transaction costs to occur during the frequent

portfolio adjustment in the dynamic hedging.

With regard to the static hedging of cash-or-nothing basket options, we observe the hedg-

ing scenarios with a portfolio of basket options in figures 1.21-1.23. We find that for

each group with different underlying baskets the portfolio of basket options obtained in
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Figure 1.15: Delta and safe crossing hedging scenarios for in-the-money cash-or-nothing
basket option of group 1 with T = 1 and K = 0.8 .
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Figure 1.16: Delta and safe crossing hedging scenarios for in-the-money cash-or-nothing
basket option of group 2 with T = 1 and K = 0.8 .
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Figure 1.17: Delta and safe crossing hedging scenarios for in-the-money cash-or-nothing
basket option of group 3 with T = 1 and K = 0.8 .
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Figure 1.18: Superhedging portfolio v.s. plain vanilla basket option of group 1, T = 1 ,
K = 0.8 .
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Figure 1.19: Superhedging portfolio v.s. plain vanilla basket option of group 2, T = 1 ,
K = 0.8 .
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Figure 1.20: Superhedging portfolio v.s. plain vanilla basket option of group 3, T = 1 ,
K = 0.8 .
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Figure 1.21: Hedging portfolio of basket options v.s. cash-or-nothing basket option of
group 1, T = 1 , K = 0.8 .
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Figure 1.22: Hedging portfolio of basket options v.s. cash-or-nothing basket option of
group 2, T = 1 , K = 0.8 .
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Figure 1.23: Hedging portfolio of basket options v.s. cash-or-nothing basket option of
group 3, T = 1 , K = 0.8 .

(1.99) is a good replication of the cash-or-nothing basket option. During the life time of

the options the values of the hedging portfolio and of the cash-or-nothing basket option

almost coincide with each other.

1.6 The Final Terms of Basket FX products

We have introduced three popular types of basket FX certificates in Section 1.1.2. In this

part we conduct a short discussion about how the relevant parameters should be chosen

so that the issuing value of the certificate is fair at the beginning in the sense that it

is identical to the face value. Because the improved rank one approximation pricing de-

livers the prices efficiently, we can back out the final terms to be settled without difficulty.

The basket FX certificates are usually written at-the-money, which means the strike price

is set equal to the initial value of the underlying basket. In this case, the shorter the

certificate’s life time is, the lower is the probability that the basket value rises above

the strike price. On the other hand, under our assumption that the initial yields of the

zero-coupon bonds are independent of the maturity time, the discounting effect is lower

for shorter life time of the certificates. In Tables 1.4 and 1.5 we present the participation

rates α that should be chosen so that the guarantee certificate and the outperformance

certificate are issued at par. When the exchange rates are negatively or mixed correlated,

the first effect dominates the second. Consequently, the lost in the unfavorable situation
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should be compensated more when the life time of the certificate is shorter, and hence,

a higher participation rate should be chosen. However, the first effect does not dominate

the discounting effect when the exchange rates are positively correlated. We see that

the participation rate increases when T increases from 1 to 3 , indicating a stronger

discounting effect. When T further increases, the first effect dominates, and hence, the

participation rate should be decreased. With regard to the certificate with stages, the

payoff structure is equivalent to a portfolio of at-the-money and out-of-the-money cash-

or-nothing call options. When the maturity time T increases, the discounting effect

dominates the increase in the probability of the basket to be above the strike prices. The

equi-distance20 between the stages is hence higher when the life time of the certificate

increases. The results are displayed in Table 1.6.

T = 1 T = 3 T = 5
∆1 3.67 7.13 3.71
∆2 3.42 2.53 2.13
∆3 9.84 4.23 2.79

Table 1.4: The participation rate α for guarantee certificate to be issued at fair price at
time 0 .

T = 1 T = 3 T = 5
∆1 6.53 11.39 6.25
∆2 6.13 4.69 4.01
∆3 15.83 7.16 4.94

Table 1.5: The participation rate α for outperformance certificate to be issued at fair
price at time 0 .

T = 1 T = 3 T = 5
∆1 0.12 0.37 0.50
∆2 0.11 0.25 0.47
∆3 0.23 0.27 0.46

Table 1.6: The equi-distance ∆β between the stages for certificate with stages to be
issued at fair price at time 0 .

We can also make a comparison between the three types of basket underlying. It is easily

seen that a certificate written on a basket of negatively correlated exchange rates ( ∆2 )

can be equipped with a lower participation rate than a certificate written on a basket of

20Compare Example 1.1.3. Usually the distance between two stages, i.e., ∆β = βi+1 − βi for i =
0, . . . ,m− 1 is constant.
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positively correlated exchange rates ( ∆1 ). This is because a basket of negatively cor-

related foreign currencies is better diversified. The less embedded risk explains that the

leverage level can be set lower to meet the requirement for fair price at the beginning.

With regard to a certificate written on a basket of mixed correlated foreign currencies,

we cannot draw a uniform conclusion. When the certificate’s life time is long, in our

example, T = 3 or T = 5 , the participation rates needed lie between those of the

certificates written on positively correlated foreign currencies and the ones written on

negatively correlated currencies. This sounds reasonable, since a basket of mixed corre-

lated currencies is better diversified than a basket of positively correlated currencies but

less diversified than the negatively correlated ones. However, things are different when

the certificate’s life time is short, in our example, T = 1 . The participation rates need

to be extraordinarily high to keep the certificate issued at fair price. This indicates that

a mixed correlated basket can be more risky in the short run.

1.7 Conclusion

Our main contribution is the introduction of a new approximation pricing method, namely,

the rank one approximation method, for basket options. We apply this method to basket

FX derivatives. The rank one approximation method starts with the idea of approxi-

mating the covariance matrix of the uncertain factors in the underlying basket. We have

denoted it as the crude rank one approximation. By applying the singular value decom-

position, we can find the best rank one approximation of the observed covariance matrix.

However, in comparison with other popular approximation pricing methods, e.g., the log-

normal approximation method, the crude rank one approximation is still not satisfactory.

Noticing that the true nature of the lognormal approximation is to match the moments

of the underlying assets, we have tried to plant the moment-matching technique into our

rank one approximation. This improved version is denoted as the improved rank one ap-

proximation method. The numerical results have shown that the rank one approximation

method with the three moment matching technique has outperformed the lognormal ap-

proximation for both the pricing of cash-or-nothing basket options and the basket options.

Based on prices obtained from the rank one approximation method with the three mo-

ment matching technique, we have studied both the delta hedging and the safe crossing

hedging performances for cash-or-nothing basket options and plain vanilla basket options.

We have found that both the hedging strategies work very well for short-termed in-the-

money and out-of-the-money plain vanilla basket options, but badly in the other cases.

The potential reasons for the high hedging errors have been analyzed in detail. The safe

crossing hedging strategy outperforms the delta hedging strategy in general due to the

consideration of the gamma and cross gamma values when constructing hedging positions.
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The efficiency of the rank one approximation pricing also enables us to study the static

hedging strategies with less computation time. Inspired by the three-point Richardson ex-

trapolation method applied by Carr et al. (1998) for the static hedging of cash-or-nothing

vanilla options, we have applied this method to the cash-or-nothing basket options and

have found accurate static hedging portfolios. We have further considered the static hedg-

ing of plain vanilla basket options with plain vanilla European options. We have presented

the payoff approximation method which helps to generate the superhedging portfolio for

basket options.

With the help of the efficient rank one approximation pricing we can also easily find the

parameters to be settled in a structured financial product with basket underlying so that

the product is issued at par at the beginning.

The rank one approximation pricing method we have introduced is also suitable for basket

derivatives with underlying assets other than foreign currencies. Due to the structural

similarity between basket derivatives and Asian options, this method can also be applied

to the approximation pricing of Asian options.
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Chapter 2

The Uncertain Mortality Intensity

Framework: Pricing and Hedging

Unit-Linked Life Insurance

Contracts1

2.1 Introduction

Mortality is a major risk factor for life insurance companies and pension funds that needs

to be modeled properly. In recent years, it has been widely accepted that mortality

changes over time in an unpredictable way and stochastic models have been developed

to adequately capture the systematic mortality risk. For stochastic models valuing of

mortality-linked liabilities and determining the required market reserves, see for instance

Milevsky and Promislow (2001), Dahl (2004), Biffis (2005), Dahl and Møller (2006), and

Young (2008). Stochastic models with an emphasis on securitizing mortality risk by in-

troducing survivor bonds as hedging instruments are discussed by, e.g., Blake, Cairns and

Dowd (2006) and Cairns, Blake and Dowd (2006). Each mortality model is a possible

description of the mortality risk. Melnikov and Romaniuk (2006) show that different mor-

tality models perform differently in the risk management of a unit-linked pure endowment

contract and warns us to be careful when choosing one mortality model against another.

In this chapter we provide a framework for assessing the mortality model risk embedded

in unit-linked life insurance contracts arising from different specifications for the mortality

intensity.

Unit-linked life insurance contracts are popular and widely used on the insurance market.

They provide either death benefit or maturity benefit or both. The benefits are linked

to an underlying asset with or without certain guarantees so that the policyholders have

the opportunity to participate in the financial market and (eventually) be protected from

1This chapter is based on Li and Szimayer (2011b)
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the downside development of the financial market. Many unit-linked life insurance con-

tracts also embed options in them, e.g., the surrender option allowing the policyholders

to terminate the contracts prematurely and the guaranteed annuity option giving the pol-

icyholders the right to convert a lump sum payment at the maturity into annuities at a

predetermined rate. Depending on the payoff structures of the contracts, the effect of the

mortality model risk may also be different. By investigating the effect of the mortality

model risk we are able to know whether its importance is under or over-emphasized for

different contract types.

In this chapter instead of inputting different mortality models into the same pricing and

hedging problem and comparing their performances as Melnikov and Romaniuk (2006),

we set up a more flexible framework saying that we do not know the exact process of the

mortality intensity but are able to figure out its upper and lower bound under the statisti-

cal measure. Further, we restrict the set of equivalent martingale measures such that the

same bounds apply to the mortality intensity under these measures. This setup allows

us to study various contract types more efficiently and we call it the uncertain mortality

intensity framework, see Avellaneda, Levy and Paras (1995) for a related framework for

pricing stock options when the volatility process is unknown but bounded.

Within our framework we do not intend to find the fair value of a contract but its price

bounds. The price bounds are solutions to the partial differential equations associated to

a stochastic control problem. The upper price bound is found by choosing the worst-case

mortality intensity at any time during the life time of the contract so that the contract

value is maximized. Whereas the lower price bound is found by setting the mortality

intensity to the best-case value in the sense that the contract value would be minimized.

The effect of our approach is quite similar to that of the practice in traditional life insur-

ance like pure endowment insurance and term insurance. An insurance company usually

puts itself on the safe side by adjusting the premium by a loading factor defined as a

percentage markup from the actuarially fair value of insurance. This is equivalent to

assuming lower mortality intensity for pure endowment insurance and higher mortality

intensity for term insurance. However, since our approach chooses the worst (or best)

possible mortality intensity dynamically, we are able to deal with more complex contract

structures where the safest mortality intensity at any time also depends on the price of

the underlying asset. As a result, the higher the difference between the upper and the

lower price bounds, the greater impact would the mortality model risk have on the con-

tracts considered. In this way we are able to identify whether model risk is potentially

deteriorating the fair evaluation of the contracts.

Further we examine hedging strategies induced by the price bounds. The unsystematic

mortality risk is diversified by pooling a large enough number of policyholders together

as usually is the case. However, the systematic mortality risk, that is here the random

fluctuations of the mortality intensity, can in general not be diversified away by using the
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pooling rationale. Instead of applying risk-minimizing or mean-variance hedging strategies

to minimize either hedging costs or hedging error, see Dahl and Møller (2006) and Young

(2008), we suggest using hedging strategies induced by the upper and lower price bounds.

By construction, these strategies produce a superhedge and subhedge, respectively, on

average for an increasing number of policyholders. We provide numerical examples in-

vestigating fixed-term, endowment insurance contracts and their combinations including

various guarantee features. The pricing partial differential equation for the upper and

lower price bounds is solved by finite difference methods. For our contracts and choice

of parameters pricing and hedging is fairly robust with respect to misspecification of the

mortality intensity, with at most a mispricing of 4% for single premium contracts and at

most 2% for periodic premium payment. We conclude that model risk resulting from the

uncertain mortality intensity is of minor importance for these contracts.

The structure of this chapter is as follows. In Section 2.2 we describe both the financial

market and the insurance market. In Section 2.3 we formalize the uncertain mortality

intensity framework. Based on the model setup, we introduce in Section 2.4 the opti-

mal control rule of the mortality intensity within its upper and lower bounds so that the

price bounds are found. This enables us to build in mean superhedging strategies which

are discussed in Section 2.5. Section 2.6 illustrates the theoretical results by providing a

numerical analysis for different types of unit-linked life insurance contracts. Section 2.7

concludes.

2.2 Setup

The model for the financial market and the insurance market is developed subsequently.

Both markets are jointly specified on a probability space (Ω,G,P) . The probability P is

called the real world measure and is sometimes also referred to as statistical measure. We

assume that the probability space is large enough to support an n -dimensional Wiener

process W = [W 1,W 2, . . . ,W n] and a random time τ . The time horizon is denoted

by T .

The financial market consists of a risky asset with price process S and a riskless money

market account with price process B . The latter is given by Bt = exp{
∫ t

0
r(u) du} ,

0 ≤ t ≤ T , where the risk-free interest rate r is a deterministic and continuous function.

The risky asset price process S is governed by the stochastic differential equation:

dSt = a(t, St)St dt+ σ(t, St)St dW 1
t , 0 ≤ t ≤ T. (2.1)

where a is the local mean rate of return and σ is the volatility. The dividend structure

D is given by

dDt = q(t, St)Stdt, 0 ≤ t ≤ T. (2.2)
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where q is a continuous deterministic function.2 The financial market modeled in this

way is complete and arbitrage free and is called FS market. Here, FS =
(
FSt
)

0≤t≤T is

the augmented natural filtration generated by the stock price process S . Since σ > 0

it follows that the augmented natural filtration generated by the first component W 1 of

the Wiener process F1 = (FW 1

t )0≤t≤T coincides with the market filtration FS .

The insurance market is modeled by the random time τ denoting the death time of an

individual aged x at the starting time 0 .3 For simplicity of notation we will omit the

age variable x in the subsequent discussion of mortality related variables. The filtration

generated by the right-continuous indicator process Ht = 1{τ≤t} , for t ∈ [0, T ] , is

denoted H = (Ht)0≤t≤T . The mortality is potentially influenced by an m -dimensional

environment process X = [X1, . . . , Xm] with dynamics

dXt = aX(t,Xt) dt+ ΣX(t,Xt) dWt, 0 ≤ t ≤ T, (2.3)

where aX is a Rm -valued function and ΣX is a Rn×m -valued function, both regular

enough to ensure the existence of a solution to the SDE. By definition it is clear that X

is adapted to the filtration generated by the Wiener process W , say, F = (Ft)0≤t≤T .

Note that FS ⊆ F , and further denote the joint filtration by G = F ∨H . The financial

market model for unit-linked life insurance contracts is then called the G market.

2.2.1 Dependence of Financial Market and Insurance Market

The probabilistic connection between W and τ is now formalized. In broad terms we

assume that we are in a setting frequently used in the credit risk literature, see Bielecki

and Rutkowski (2001), part II, for a detailed treatment. In particular, we assume that

on (Ω,G,P) there exists a unit exponentially distributed random variable E1 that is

independent of W and further that there exists a nonnegative F -adapted process ν

such that τ can be represented by

τ := inf

{
t ≥ 0 :

∫ t

0

νs ds ≥ E1

}
, a.s.,

with the usual convention that the infimum over the empty set is ∞ , and the integrabil-

ity condition
∫ t

0
νs ds < 0 holds almost surely, for all t ≥ 0 .

2We assume that the coefficients a and σ are regular enough to ensure the existence of a solution to
the SDE (2.1), see for instance Protter (2004), Ch. V, Sec. 3. Additionally, we assume that a , σ and
q are uniformly bounded and σ is bounded away from zero to ensure the integrability of S , related
portfolio value processes, and to ensure the existence of the measure change from P to an equivalent
martingale measure Q .

3In Section 2.5 we consider the case of a family of random times (τi)i≥1 and the corresponding
contracts.
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We then have the following representation

Mt = Ht −
∫ t∧τ

0

νsds , 0 ≤ t ≤ T,

where M is a (P,G) -martingale, see Bielecki and Rutkowski (2001), p.153, Prop. 5.1.3.

In our context the intensity ν is known as mortality intensity.

By specification of τ through E1 and ν and the assumed independence, the σ -fields

FT and Ht are independent given Ft under the real world probability measure P .

Although we may perceive the death probability of the individual, we do not know when

the death event really happens. Hence, τ is an inaccessible G stopping time but not

an F stopping time. On the other hand, the financial market is not influenced by the

introduction of τ . Accordingly, the G market for unit-linked life insurance contracts is

free of arbitrage.4 However, given that there are no products to hedge against the mor-

tality risk (that is the fluctuation of ν and the mortality event indicated by H ), the G
market is incomplete, and hence, there should be infinitely many equivalent martingale

measures.

2.2.2 Equivalent Martingale Measures

The set of equivalent martingale measures is studied. Given a probability measure Q
equivalent to P on (Ω,G,G) , the Radon-Nikodym density process η of Q with respect

to P is

ηt =
dQ
dP

∣∣∣∣
Gt

= EP(Y |Gt), P− a.s., (2.4)

for some GT -measurable random variable Y with P(Y > 0) = 1 and EP(Y ) = 1 .

Now, we characterize the set of equivalent measure for our setting and also the set of

equivalent martingale measures. The set of equivalent measures is given by Prop. 5.3.1 in

Bielecki and Rutkowski (2001), p.162. Let Q be a probability measure equivalent to the

real world probability measure P with the Radon-Nikodym density of Q with respect

to P defined by (2.4). Then we can write

ηt = 1 +

∫ t

0

ηu−(ϕudWu + φu dMu), 0 ≤ t ≤ T , (2.5)

where ϕ and φ are G -predictable stochastic processes. The change of measure affects

4In particular any square integrable (F,P) -martingale is also a square integrable (G,P) -martingale.
This is also known as hypotheses (H), see Jeulin and Yor (1979).
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the martingales W and M as follows. Define the processes WQ and MQ by

WQ
t = Wt −

∫ t

0

ϕs ds , and MQ
t = Ht −

∫ t∧τ

0

(1 + φu) νu du , 0 ≤ t ≤ T . (2.6)

Then WQ is a (G,Q) -Wiener process and MQ is an (G,Q) -martingale, and µ =

(1 + φ) ν is the Q -intensity of τ . Moreover, µ can be chosen to be F -adapted, see

Remark following Corollary 5.3.1 in Bielecki and Rutkowski (2001), p.164.

Proposition 2.2.1. If Q is an equivalent martingale measure, i.e. Q ∼ P and S/B

is a (G,Q) -martingale, then {W 1Q}t∈[0,T ] is uniquely determined by the market price of

risk

ϕ1
t = −a(t, St)− r(t) + q(t, St)

σ(t, St)
, 0 ≤ t ≤ T . (2.7)

Proof. This follows from the Second Fundamental Theorem, confer Björk (2009), p.151,

Theorem 10.17 and p.204, Sec.14.6.

Proposition 2.2.1 indicates that when we restrict to the FS market, there is a unique

martingale measure, which we denote as QFS . Under any equivalent martingale measure

Q , the dynamics of the stock price is

dSt = (r(t)− q(t, St))St dt+ σ(t, St)St dW 1Q
t , 0 ≤ t ≤ T . (2.8)

However, when we observe the extended market with both the financial and the mortality

risks, we cannot find a riskless benchmark security. Hence, φ , or equivalently, the risk-

neutral mortality intensity is not uniquely defined. Theoretically, among a whole class of

equivalent martingale measures, the insurance companies can choose any one depending

on their risk attitude. We denote the set of equivalent martingale measures by Q , i.e.

Q =

{
Q ∼ P : ϕ1

t = −a(t, St)− r(t) + q(t, St)

σ(t, St)

}
. (2.9)

Remark 2.2.1. The fair valuation of an insurance liability is carried out under a spe-

cific risk-neutral measure. Choosing the valuation measure in an incomplete market is a

difficult task. Alternatively, the model can be completed by adding asset that cover the

entire risk factors. Biffis and Millossovich (2006) assume that there is a liquid secondary

market where the insurers can continuously trade their books of policies making it possible

to access both short and long positions. This results into a complete market situation

where the valuation measure is unique. Another possibility to uniquely determine the risk-

neutral measure is to introduce standardized mortality linked products such as longevity

bonds which are liquidly traded on the market, see Blake et al. (2006). However, a fully

developed secondary insurance market does not exist yet and the securitization of mortality

risk is still at its infancy stage with most of the mortality linked securities only being tai-
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lored to the customers. Hence, in this chapter, we still assume that there is not a unique

market price of mortality risk and that there are infinitely many martingale measures Q
equivalent to P , under which the prices of the insurance contracts do not allow arbitrage.

2.2.3 Examples

The setup described so far accommodates a large class of models discussed in the litera-

ture. We illustrate the use of the environment process X by some prominent examples.

Example 2.2.1. The mean reverting Brownian Gompertz approach of Milevsky and

Promislow (2001) is given by

νt = ν0 e
gt+σXt , 0 ≤ t ≤ T,

dXt = −bXtdt+ dW 2
t , 0 ≤ t ≤ T, X0 = 0,

(2.10)

where g, σ, ν0 > 0 and b ≥ 0 .

Example 2.2.2. Dahl (2004) and Dahl and Møller (2006) use the extended CIR model,

i.e. ν = X with

dXt = (βt − γtXt) dt+ σt
√
XtdW

2
t , 0 ≤ t ≤ T, (2.11)

where βt , γt and σt are positive bounded functions satisfying 2 βt ≥ σ2
t , 0 ≤ t ≤ T .

Example 2.2.3. Biffis (2005) studies affine processes of the form

dX1
t = γ1(X2

t −X1
t )dt+ σ1

√
X1
t dW 2

t , 0 ≤ t ≤ T,

dX2
t = γ2(m(t)−X2

t ) dt+ σ2

√
X2
t −m∗(t) dW 3

t , 0 ≤ t ≤ T,
(2.12)

where γi, σi > 0 , i = 1, 2 , and the mortality intensity is ν = X1 , the stochastic mean

reversion level is ν̄ = X2 , m(t) is a suitable demographic basis, and m∗(t) is a time

varying lower boundary for the stochastic drift X2 .

Example 2.2.4. In Young (2008) we have ν = X with

dXt = a(Xt, t)(Xt −X)dt+ σ(t)(Xt −X)dW 2
t , 0 ≤ t ≤ T, (2.13)

where X = ν represents the lowest attainable mortality intensity remaining after the

elimination of all causes of death such as accidents and homicide. Moreover, σ is a

strictly positive and continuous function on [0, T ] , and the drift a(Xt, t) is a suitable

Hölder continuous function of X and t .

The mortality intensity is typically modeled under the statistical measure P . The life

tables are calculated on the basis of real world data. When going to a pricing mea-

sure Q , often structure preserving transformations are allowed for, e.g., Dahl and Møller
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(2006) relate the P -mortality intensity ν to the Q -mortality intensity µ by assuming

µt = (1 + g(t)) νt , where g is a deterministic continuously differentiable function. Alter-

natively, Young (2008) motivates the choice of a specific instantaneous Sharpe ratio α for

the mortality risk by constructing a hedging portfolio whose local variance is minimized.

The mortality risk charge is defined as α of the local standard deviation of the hedging

portfolio. As a result, the drift term in Young’s model is modified by ασ under the

pricing measure Q .

2.3 Uncertain Mortality Intensity

Our setup is a generically incomplete market model and we cannot obtain a unique price

for a unit-linked life insurance contract. However, we are able to find its price bounds

under certain assumptions. In this chapter, we admit that we cannot perceive the dy-

namics of the mortality intensity exactly. Instead of applying a specific mortality model,

as is done for example in Biffis (2005), Dahl (2004), Dahl and Møller (2006), Milevsky

and Promislow (2001), and Young (2008) we assume less stringently that we know the

upper and lower bounds of the mortality intensity. As is shown in our numerical section

below, this assumption can be motivated by a statistical analysis of survival data and the

confidence bounds for the estimated mortality intensity arising there, see, e.g., Lee and

Carter (1992). The concept of an uncertain input parameter to a pricing model is related

to Avellaneda et al. (1995). They discuss the pricing and hedging of derivative securities

in an incomplete market where the incompleteness is attributed to the uncertainty of the

future volatility of the underlying asset. As suggested by them, we will use stochastic

optimal control techniques to identify the best-case scenario and the worst-case scenario

of the mortality intensity dynamics, to derive the upper and lower price bounds of the

unit-linked life insurance contracts.

The above assumption on the boundedness of the mortality intensity is now made precise.

Assumption 2.3.1 ( P -Bounds for Mortality Intensity). The mortality intensity ν is

an F -adapted stochastic process satisfying

µ(t) ≤ νt ≤ µ̄(t) , almost surely , 0 ≤ t ≤ T , (2.14)

where 0 < µ ≤ µ̄ <∞ are continuous functions on [0, T ] .

Remark 2.3.1. The bounds µ and µ̄ for ν are assumed to hold almost surely whereas

the examples in 2.2.3 allow ν to take values in R+ . Accordingly, these examples are

not included in our setup once Assumption 2.3.1 is invoked. However, these models sat-

isfy the boundedness condition typically with a high probability when assuming that both,

parameters for a model in 2.2.3 and the bounds µ and µ̄ , here in terms of confidence

bounds, are calculated from the same data set. In fact, by increasing the confidence level
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for the calculation of µ and µ̄ the probability is increased of a stochastic model for ν

also fulfilling the boundedness condition. In Section 2.6 numerical results are obtained

when working with a 99.9% confidence bound.

For pricing derivatives the dynamics of the risk factors under an equivalent martingale

measure is relevant. Our market model is incomplete and we can choose between an

infinite range of equivalent martingale measures, see Proposition 2.2.1 and the discussion

thereafter. An incomplete financial market is typically completed by adding assets to the

market model such that all risk factors are traded. However, for insurance risk we can use

the diversification rationale as an alternative. The diversification applies in our setting

to the life insurance risk given by the time of death τ parameterized by the mortality

intensity ν . Diversification is driven by the strong law of large numbers and thus tied

to the statistical measure P . Based on this rationale, pricing must take all the possible

scenarios of death events into account. Consequently, the most suitable equivalent mar-

tingale measure should be chosen among all the possible ones so that the diversification

works to eliminate the mortality risk. Since the possible scenarios of death events do not

change under any pricing measure although their probability distributions are different5,

we impose the boundedness assumption under P also to any pricing measure Q ∈ Q ,

defined in Equation (2.9).

Definition 2.3.1. Given that Assumption 2.3.1 holds, denote by Qb the set of equivalent

martingale measures Q ∈ Q under which the F -adapted mortality intensity µ satisfies

µ(t) ≤ µt ≤ µ̄(t) , with µ and µ̄ being the same functions as in Assumption 2.3.1, i.e.,

Qb =
{
Q ∈ Q : µ ≤ µ ≤ µ̄, where µ is the Q-intensity of τ

}
. (2.15)

In Section 2.4 we establish upper and lower price bounds for specific unit-linked life insur-

ance contracts. Subsequently, in Section 2.5 we show that the upper price bound indeed

leads to the cheapest superhedge once diversification is applied such that the biometric

risk is eliminated. The respective results for the lower price bound and the most expensive

subhedge follows analogously.

2.4 Pricing Unit-Linked Life Insurance Contracts

2.4.1 Payoff Structures

Now we introduce a unit-linked life insurance contract with Markovian payoff structures

to the G market. The contract has the life time of T years. It may be obtained by the

5This indicates that given the same the confidence bound, the confidence level under the equivalent
martingale measure Q is not identical with the confidence level under the real world measure P . We
assume that the difference in the confidence level is not significantly big.
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policyholders upon upfront single payment or a continuous flow of premiums6. When the

policyholder dies at τ < T , the contract pays Ψ(τ, Sτ ) immediately. When he survives

time T , the payment is Φ(ST ) . The policyholder is entitled to this payoff structure if he

pays the premium required. We assume that the cumulated premium payment at time t

is At = A0 +
∫ t

0
Γ(u, Su) du where Γ refers to the instantaneous premium payment rate

on the annual basis. Through a concrete definition of Ψ , Φ and A , we obtain different

types of contracts. Some examples are:

• Term insurance: Ψ(τ, Sτ ) > 0 , for τ ≤ T , and Φ(ST ) = 0 , for τ > T .

• Pure endowment insurance: Ψ(τ, Sτ ) = 0 , for τ ≤ T , and Φ(ST ) > 0 , for τ > T .

• Endowment insurance: Ψ(τ, Sτ ) > 0 , for τ ≤ T , and Φ(ST ) > 0 for τ > T .

• Single premium: At = A0 = constant .

• Periodic premium: At is increasing in t .

The contract cash flows specified by the functions Φ , Ψ , and Γ have to satisfy certain

integrability conditions. These are summarized below.

Assumption 2.4.1. The functions Φ , Ψ , and Γ satisfy the following integrability

conditions

EQ
[
|Φ(ST )|+

∫ T

0

(|Ψ(t, St)|+ |Γ(t, St)|) dt

]
<∞ ,

where Q is an equivalent martingale measure.

Note that if the condition holds for a specific Q ∈ Q then it holds for any other equiva-

lent martingale measure. The reason is that all equivalent martingale measures coincide

on FST and the random variable where the expectation is taken is FST -measurable.

Unit-linked life insurance contracts can also have exotic features not covered by our setup,

e.g., a surrender guarantee or a guaranteed annuity option. In case of a surrender guar-

antee the policyholder can surrender the contract and receives the surrender payment

replacing all payments afterward originally specified by Φ , Ψ and Γ . The surrender

payment may or may not be linked to the underlying asset. If the contract specifies a

guaranteed annuity rate a at which the policyholder has the right to convert the terminal

payment into annuities at time T , then the terminal value of the contract becomes the

original terminal value times a call option on the annuity rate.7 Unit-linked life insurance

contracts with exotic features are important contract types. They can be discussed when

extending our framework. However, in this chapter we work with unit-linked life insurance

contracts with rather simple payoff structures as was specified at the beginning of this

6In reality, periodic premiums are paid monthly or yearly. We assume the continuous flow of premiums
just for illustration simplicity.

7The payoff is Φ(ST ) ·max(1, aEQ[
∫∞
T

exp{−
∫ u

T
(r + µs)du}]) .
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section. By this we can explain the method we adopt to analyze the risk management of

unit-linked life insurance contracts under mortality model risk.

2.4.2 Arbitrage Free Prices and Price Bounds

Fix an equivalent martingale measure Q ∈ Q with mortality intensity µ . An arbi-

trage free price of the contract (Φ,Ψ,Γ) is given by the conditional expectation of the

discounted cashflow under Q , see, e.g., Björk (2009). Decomposing the contract into

its components the arbitrage free prices of the death benefit V µ,Ψ , the survival benefit

V µ,Φ , and the premium V µ,Γ are:

V µ,Ψ
t = BtEQ [B−1

τ 1{t<τ≤T}Ψ(τ, Sτ )|Gt
]
, V µ,Φ

t = BtEQ [B−1
T 1{τ>T}Φ(ST )|Gt

]
,

V µ,Γ
t = BtEQ

[∫ T

t

B−1
u 1{u<τ≤T}Γ(u, Su) du

∣∣∣∣Gt] ,
and the arbitrage free price of the aggregate contract V µ is then

V µ
t = V µ,Ψ

t + V µ,Φ
t − V µ,Γ

t , 0 ≤ t ≤ T .

The arbitrage free prices for a life insurance contract and its components under a specific

equivalent martingale measure Q can be given in a more explicit form. Duffie, Schroder

and Skiadas (1996) have shown that

V µ,Ψ
t = 1{τ>t}B̂tEQ

[∫ T

t

B̂−1
u Ψ(u, Su)µu du

∣∣∣∣Ft] , V µ,Φ
t = 1{τ>t}B̂tEQ

[
B̂−1
T Φ(ST )

∣∣∣Ft] ,
V µ,Γ
t = 1{τ>t}B̂tEQ

[∫ T

t

B̂−1
u Γ(u, Su) du

∣∣∣∣Ft] , 0 ≤ t ≤ T , (2.16)

where B̂. = exp{
∫ .

0
(r(s) + µs) ds} represents a mortality risk adjusted money market

account that also depends on the choice of Q via µ .

According to the so-called reduced forms above we can consider the contract price as the

discounted value of a fictitious security whose dividend payment at t is Ψ(t, St)µt −
Γ(t, St) and final payment is Φ(ST ) . The fictitious discount factor is B̂ . In this ficti-

tious world, we can ignore the mortality risk in the form of τ and consider the insurance

contract merely as a contingent claim on the fictitious financial market.

From now on, we discuss the pricing problem within the class of equivalent martingale

measures Qb where the mortality intensity is bounded from below and from above. The

worst case that may happen to the insurance company with regard to the death benefit,
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the survival benefit, the premium and the contract price, respectively, is

V̄ Ψ
t = ess sup

Q∈Qb
V µ,Ψ
t , V̄ Φ

t = ess sup
Q∈Qb

V µ,Φ
t , V Γ

t = ess inf
Q∈Qb

V µ,Γ
t ,

and

V̄t = ess sup
Q∈Qb

V µ
t , 0 ≤ t ≤ T .

In view of the results of Duffie et al. (1996) presented above, we can transfer the problem

of choosing the best or worst equivalent martingale measure Q ∈ Qb to the problem

of choosing the best or worst mortality intensity µ ∈ Ut , where Ut is the set of F -

predictable processes µ on [t, T ] such that µ(s) ≤ µs ≤ µ̄(s) , for t ≤ s ≤ T . In

particular, we may write

V̄ Ψ
t = 1{τ>t} ess sup

µ∈Ut
B̂tEQ

[∫ T

t

B̂−1
u Ψ(u, Su)µu du

∣∣∣∣Ft] , (2.17)

V̄ Φ
t = 1{τ>t} ess sup

µ∈Ut
B̂tEQ

[
B̂−1
T Φ(ST )

∣∣∣Ft] , (2.18)

V Γ
t = 1{τ>t} ess inf

µ∈Ut
B̂tEQ

[∫ T

t

B̂−1
u Γ(u, Su) du

∣∣∣∣Ft] , (2.19)

and

V̄t = 1{τ>t} ess sup
µ∈Ut

B̂tEQ
[∫ T

t

B̂−1
u Ψ(u, Su)µu du+ B̂−1

T Φ(ST )−
∫ T

t

B̂−1
u Γ(u, Su) du

∣∣∣Ft] .
(2.20)

By specifying the stock price dynamics with (2.8), we have actually fixed the equivalent

martingale measure on FS . Instead of looking for the optimal martingale measure on

the G market, we convert the problem into looking for the F -adapted process µ . The

expressions in (2.17-2.20) are stochastic control problems with control process µ . The

prices V µ,Φ and V µ,Γ depend on µ monotonously. When considering Q ∈ Qb , the

highest arbitrage free price for the death benefit V̄ Φ
t is obtained for µ = µ , and the

lowest value for the premium income V Γ is obtained for µ = µ̄ . With regard to V̄ Ψ

and V̄ , we apply stochastic control techniques to obtain the respective solutions.

The stock price process S is Markovian and the payoff functions are simple in the sense

that they depend on time and the current value of the stock price. This suggest the

standard setup of a stochastic control problem with state variable (t, s) , feedback control

µ ∈ U(t, s) , and maximization problem

v̄(t, s) = sup
µ∈U(t,s)

Et,s
[∫ T

t

B̂t

B̂u

Ψ(u, Su)µu du+
B̂t

B̂T

Φ(ST )−
∫ T

t

B̂t

B̂u

Γ(u, Su) du

]
, (2.21)
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where U(t, s) = {µ : [t, T ] × R+ 7→ R+ : µ(u) ≤ µ(u, x) ≤ µ̄(u) , all t ≤ u ≤ T, x ∈ R+}
and Et,s denotes the expectation conditional on S(t) = s under the measure QFS . Re-

call, that B̂ also depends on µ and in particular B̂t
B̂u

= exp{−
∫ u
t

(r(s) + µ(s, Ss)) ds} .

Observe that the term inside the conditional expectation is FST -measurable.

According to the theorem of the Hamilton-Jacobi-Bellman equation (confer Yong (1997)

as well as Yong and Zhou (1999)), v̄ is the solution to:

0 = sup
µ∈U(t,s)

{Lv̄(u, s) + Ψ(u, s)µ(u, s)− Γ(u, s)− v̄(u, s)[µ(u, s) + r(u)]} ,

(2.22)

Φ(s) = v̄(T, s), (2.23)

where

Lf(u, s) =
∂f

∂u
(u, s) + (r(u)− q(u, s)) s ∂f

∂s
(u, s) +

1

2
σ2(u, s) s2 ∂

2f

∂s2
(u, s). (2.24)

The part of (2.22) that is depending on the control µ is given by [Ψ(u, s)− v̄(u, s)]µ(u, s)

and is linear in µ . Hence, we obtain pointwise

sup
µ∈U(t,s)

[Ψ(u, s)− v̄(u, s)]µ(u, s) =

{
[Ψ(u, s)− v̄(u, s)]µ̄(u), if Ψ(u, s) ≥ v̄(u, s),

[Ψ(u, s)− v̄(u, s)]µ(u), if Ψ(u, s) < v̄(u, s).

The maximizer µ? is thus

µ?(t, s) =

{
µ̄(t), if Ψ(t, s) ≥ v̄(t, s),

µ(t), if Ψ(t, s) < v̄(t, s).
(2.25)

Plugging the pointwise maximizer in (2.22) gives

0 = Lv̄(u, s) + Ψ(u, s)µ?(u, s)− Γ(u, s)− v̄(u, s)[µ?(u, s) + r(u)] , (2.26)

Φ(s) = v̄(T, s) . (2.27)

In fact, the calculation above produces a candidate v̄ for solution of the maximization

problem (2.21). Moreover, we want this candidate v̄ to solve the more general problem

(2.20) in the sense that 1{τ>t} v̄(t, St) = V̄t = ess supQ∈Qb V
µ
t . We will show this in

Theorem 2.4.1 below. To do so we require the following integrability condition.
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Assumption 2.4.2. Denote v ∈ C1,2 the solution to the partial differential equation

in (2.26-2.27). Assume the following integrability condition holds

EQ

[∫ T

0

(
∂v

∂s
(t, St)σ(t, St)St

)2

dt

]
<∞ .

Theorem 2.4.1. Given the setup in Section 1.2, suppose Assumptions 2.3.1-2.4.1 hold.

Denote v̄ ∈ C1,2 the solution to the boundary value problem in (2.26) with terminal

condition (2.27) and suppose that Assumption 2.4.2 holds. Then

1{τ>t} v̄(t, St) = ess sup
Q∈Qb

V µ
t , 0 ≤ t ≤ T .

In particular, the mortality intensity µ? that maximizes the contract value is given by

(2.25).

Proof. First, we have to establish that indeed 1{τ>t} v(t, St) = V µ?

t where µ? is the

optimal control given in (2.25). Ito’s lemma gives

dv(t, St) =

(
∂v

∂t
(t, St) + (r(t)− q(t, St))St

∂v

∂s
(t, St) +

1

2
σ(t, St)

2 S2
t

∂2v

∂s2
(t, St)

)
dt

+σ(t, St)St
∂v

∂s
(t, St) dW 1Q

t .

Now, v satisfies (2.26) by assumption and thus can be written as

dv(t, St) = (r(t) v(t, St)− (Ψ(t, St)− v(t, St))µ
?(t, St) + Γ(t, St)) dt

+σ(t, St)St
∂v

∂s
(t, St) dW 1Q

t .

The differential is a linear stochastic differential equation with formal solution

v(u, Su) = e
∫ u
t (r(s)+µ?(s,Ss)) ds

(
v(t, St)

−
∫ u

t

e−
∫ w
t (r(s)+µ?(s,Ss)) dsσ(w, Sw)Sw

∂v

∂s
(w, Sw) dW 1Q

w

−
∫ u

t

e−
∫ w
t (r(s)+µ?(s,Ss)) ds (Ψ(w, Sw)µ?(w, Sw)− Γ(w, Sw)) dw

)
.

Set u = T and recall that v(T, ST ) = Φ(ST ) . Then

e−
∫ T
t (r(s)+µ?(s,Ss)) dsΦ(ST ) = v(t, St)

−
∫ T

t

e−
∫ u
t (r(s)+µ?(s,Ss)) dsσ(u, Su)Su

∂v

∂s
(u, Su) dW 1Q

u

−
∫ T

t

e−
∫ u
t (r(s)+µ?(s,Ss)) ds (Ψ(u, Su)µ

?(u, Su)− Γ(u, Su)) du .
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Solving for v(t, St) and taking the expectation with respect to Ft we obtain

v(t, St) = EQ
[
e−

∫ T
t (r(s)+µ?(s,Ss)) dsΦ(ST )

∣∣∣Ft]
+EQ

[∫ T

t

e−
∫ u
t (r(s)+µ?(s,Ss)) ds (Ψ(u, Su)µ

?(u, Su)− Γ(u, Su)) du

∣∣∣∣Ft] ,
where the martingale part vanishes because of Assumption 2.4.2. Recalling the reduced

form representation of V µ = V µ,Ψ + V µ,Φ − V µ,Γ in (2.16) we see that the candidate v

is indeed a value function, i.e. 1{τ>t} v(t, St) = V µ?

t , for 0 ≤ t ≤ T .

Next, the optimality of µ? and the corresponding value function v is established. We fix

a measure Q ∈ Qb and as usual denote by µ the mortality intensity under Q . Define

the F -adapted process Uµ by

Uµ
t = B̂tEQ

[
B̂−1
T Φ(ST ) +

∫ T

t

B̂−1
u Ψ(u, Su)µu du−

∫ T

t

B̂−1
u Γ(u, Su) du

∣∣∣Ft] , 0 ≤ t ≤ T ,

such that V µ
t = 1{τ>t} U

µ
t , 0 ≤ t ≤ T . Define the accompanying martingale Mµ by

Mµ
t = EQ

[
B̂−1
T Φ(ST ) +

∫ T

0

B̂−1
u Ψ(u, Su)µu du−

∫ T

0

B̂−1
u Γ(u, Su) du

∣∣∣Ft] , 0 ≤ t ≤ T .

Verify that EQ|MT | <∞ by Assumptions 2.3.1 and 2.4.1 and Mµ is indeed an (Q,F) -

martingale. Now, Q coincides with QFS on FST and for the process Uµ? and Mµ?

defined by

Uµ?

t = B̂?
t EQ

[
B̂?−1
T Φ(ST ) +

∫ T

t

B̂?−1
u Ψ(u, Su)µ

?(u, Su) du−
∫ T

t

B̂?−1Γ(u, Su) du
∣∣∣Ft] ,

Mµ?

t = EQ
[
B̂?−1
T Φ(ST ) +

∫ T

0

B̂?−1
u Ψ(u, Su)µ

?(u, Su) du−
∫ T

0

B̂?−1
u Γ(u, Su) du

∣∣∣Ft] ,
where B̂?

· = exp{
∫ .

0
(r(s) + µ?(s, Ss)) ds} , for 0 ≤ t ≤ T , it holds that Uµ?

t = v̄(t, St)

and Mµ? is an FS -adapted (Q,F) -martingale. For η ∈ {µ, µ?} we can connect Uη

and Mη via

Mη
t = e−

∫ t
0 (r(s)+ηs) ds Uη

t +

∫ t

0

e−
∫ u
0 (r(s)+ηs) ds Ψ(u, Su) ηu du−

∫ t

0

e−
∫ u
0 (r(s)+ηs) ds Γ(u, Su) du ,

or, alternatively, in the form of the stochastic differential

dMη
t = e−

∫ t
0 (r(s)+ηs) ds dUη

t − (r(t) + ηt) e
−

∫ t
0 (r(s)+ηs) ds Uη

t dt

+e−
∫ t
0 (r(s)+ηs) ds Ψ(t, St) ηt dt− e−

∫ t
0 (r(s)+ηs) ds Γ(t, St) dt , 0 ≤ t ≤ T .
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Solving for dUη
t yields

dUη
t = (r(t) + ηt)U

η
t dt−Ψ(t, St) ηt dt+ Γ(t, St) dt+ dM̂η

t , 0 ≤ t ≤ T ,

where dM̂η
t = e

∫ t
0 (r(s)+ηs) ds dMη

t is a (Q,F) -martingale since r and η are uniformly

bounded by a deterministic constant. The next step is to define the difference process

Xµ
t = Uµ?

t − U
µ
t , 0 ≤ t ≤ T .

The terminal value of Xµ is Xµ
T = Uµ?

T − U
µ
T = Φ(ST ) − Φ(ST ) = 0 . The stochastic

differential of Xµ is given by

dXµ
t = dUµ?

t − dUµ
t

=
[
(r(t) + µt)X

µ
t +

(
Uµ?

t −Ψ(t, St)
)

(µ?(t, St)− µt)
]

dt+ dM̂µ?

t − dM̂µ
t .

The above differential can be interpreted as a linear stochastic differential with formal

solution

Xµ
u = e

∫ u
t (r(s)+µs) ds

(
Xµ
t +

∫ u

t

e−
∫ w
t (r(s)+µs) ds(dM̂µ?

w − dM̂µ
w)

−
∫ u

t

e−
∫ w
t (r(s)+µs) ds

[
Uµ?

w −Ψ(w, Sw)
]

[µ?(w, Sw)− µw] dw
)
, 0 ≤ t ≤ u ≤ T .

Set u = T , solve for Xµ
t and recall Xµ

T = 0 . Taking the expectation conditioned on

Ft eliminates the (Q,F) -martingale and

Xµ
t = EQ

[∫ T

t

e−
∫ w
t (r(s)+µs) ds

[
Uµ?

w −Ψ(w, Sw)
]

[µ?(w, Sw)− µw] dw

∣∣∣∣Ft]
Recall that Uµ?

t = v̄(t, St) and µ ∈ Qb , i.e., µ(t) ≤ µt ≤ µ̄(t) , for 0 ≤ t ≤ T .

Then by the definition of µ? in (2.25) we have that the integrand inside the conditional

expectation is nonnegative. This implies that Xµ
t ≥ 0 or, equivalently, v̄(t, St) ≥ Uµ

t ,

for 0 ≤ t ≤ T . Multiplying on the indicator process 1{t<τ} we obtain

1{t<τ} v̄(t, St) ≥ V µ
t , 0 ≤ t ≤ T ,

for all Q ∈ Qb and corresponding Q -mortality rate µ , establishing the optimality.

Remark 2.4.1. The lower bound of the arbitrage free prices V t = ess infQ∈Qb V
µ
t can be

obtained analogously. The minimizer µ? is obtained by swapping µ and µ̄ in (2.25).

The solution to the partial differential equation (2.26) where µ? is replaced by µ? with

terminal condition (2.27) is denoted v . Then 1{t<τ} v(t, St) = ess infQ∈Qb V
µ
t .

Remark 2.4.2. The value maximizing mortality µ? in(2.25) is FS -adapted. However,

the set of admissible controls is much larger allowing for F -adapted control processes.
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Obviously, the information generated by the environment process X is not needed for

finding the maximal arbitrage free price. This result can be explained by properties of our

model. The risk introduced by X cannot be hedged since no liquidly traded assets are

available for trading and potentially eliminating the associated risk. Further, the bounds

µ and µ̄ in Assumption 2.3.1 and Definition 2.3.1 are almost sure bounds and do not

depend on the environment process X . Both properties together explain that the optimal

control process µ? can be determined based on FS , the information generated by the

traded asset with price process S .

Remark 2.4.3. We can summarize the optimal control rule concerning the death benefit,

the survival benefit, the premium and the whole contract as follows so as to obtain their

worst-case and best-case values.

worst case best case

death benefit µ̄ if Ψ ≥ v̄Ψ µ if Ψ ≥ vΨ

µ if Ψ < v̄Ψ µ̄ if Ψ < vΨ

survival benefit µ µ̄

premium µ̄ µ

whole contract µ̄ if Ψ ≥ v̄ µ if Ψ ≥ v

µ if Ψ < v̄ µ̄ if Ψ < v

The worst-case value of the contract is its upper price bound and the best-case value is the

lower price bound of the contract.

Theorem 2.4.1 indicates that the price bound of an insurance contract usually cannot

be obtained by keeping µ to its lower or upper bound. The simple rule of keeping µ

to its lower or upper bound is only possible for some special cases. Here are two examples:

Pure endowment insurance with single premium In this case, we have Ψ = 0

and Γ = 0 , and hence the value of µ is irrelevant for the death benefit part and the

premium part. The maximal value for the survival benefit is obtained by setting µ = µ

and then v̄ = v̄Φ , on (0, T ] . Similarly, the minimal value for the survival benefit is

obtained by setting µ = µ̄ and then v = vΦ , on [0, T ) .

Term insurance with single premium or periodic premiums The death benefit

takes the form Ψ(t, s) = Kegt with g ≤ r or Ψ(t, s) = St . In the former case, we have

vµ,Ψ(t, s) = K Et,s
[∫ T

t

exp

(
−
∫ u

t

(r(s)− g)s ds

)
exp

(
−
∫ u

t

µs ds

)
µu du

]
≤ K Et,s

[∫ T

t

exp

(
−
∫ u

t

µs ds

)
µu du

]
≤ K

(
1− Et,s

[
exp

(
−
∫ T

t

µu du

)])
≤ K ≤ Kegt = Ψ(t, s),
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and in the latter case, there is

vµ,Ψ(t, s) = Et,s
[

exp

(
−
∫ τ

t

r(s)ds

)
Sτ 1{τ≤T}

∣∣∣∣ τ > t

]
≤ Et,s

[
exp

(
−
∫ τ

t

r(s)ds

)
Sτ

∣∣∣∣ τ > t

]
= s = Ψ(t, s).

In both cases we know that vµ = vµ,Ψ − vµ,Γ ≤ vµ,Ψ ≤ Ψ and therefore the maximum

(minimum) value is obtained when µ is set to µ̄ ( µ ). In the single premium case we

have v̄ = v̄Ψ and v = vΨ , on [0, T ) . In the periodic premium case we have v̄ = v̄Ψ−vΓ

and v = vΨ − v̄Γ , on [0, T ) .

2.4.3 Connection to American-style Financial Contracts

We return to the partial differential equation for a given µ :

0 = Lv(u, s) + Ψ(u, s)µ(u, s)− Γ(u, s)− v(u, s) [µ(u, s) + r(u)], t ≤ u ≤ T,(2.28)

with terminal condition v(T, s) = Φ(s) . If we allow µ to move between [0,∞) which

is beyond its original bounds, by setting

µ(u, s) =

{
0, if v(u, s) > Ψ(u, s)

∞, if v(u, s) ≤ Ψ(u, s)
(2.29)

for t ≤ u < T , we force the contract to stop immediately when the contract value

reaches the death benefit from above so that v(u, s) ≥ Ψ(u, s) is always satisfied. This

is equivalent to an optimal stopping problem, whose linear complementarity formulation

is

[Lv(u, s)− Γ(u, s)− r(u) v(u, s)] [v(u, s)−Ψ(u, s)] = 0,

Lv(u, s)− Γ(u, s)− r(u) v(u, s) ≤ 0, and v(u, s)−Ψ(u, s) ≥ 0,

for t ≤ u < T , with adjusted terminal condition v(T, s) = max(Φ(s),Ψ(T, s)) . Similar

to Dai, Kwok and You (2007) where the prepayment of mortgage loans is discussed, (2.28)

together with (2.29) can be visualized as the penalty approximation to the linear com-

plementarity formulation following the theory of variational inequalities of free boundary

problems.
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Remark 2.4.4. Equation (2.29) specifies the optimal control of µ within a broader bound

which corresponds to the larger set of martingale measure Q defined by (2.9). Setting

µ = µ? in (2.28), where µ? is given in (2.25), can be viewed as using a suboptimal

stopping strategy which does not necessarily yield v(u, s) ≥ Ψ(u, s) . The value function

of the optimal stopping problem will produce a superhedge. In contrast the upper price

bound v̄ based on Qb cannot produce a superhedge in general. However, a superhedge

will arise when diversification of the unsystematic mortality risk is taken into account.

2.5 Hedging Unit-Linked Life Insurance Contracts

The upper and lower price bounds for unit-linked life insurance contracts in Theorem 2.4.1

and Remark 2.4.1 suggest the implementation of hedging strategies related to these

bounds. The financial risk driven by S can be eliminated by these strategies since the

risk is represented by a traded asset. In contrast, the mortality risk cannot be eliminated

in general. The trading strategies corresponding to the upper (lower) price bound cannot

produce a superhedge (subhedge) for a specific single contract. However, mortality risk

can be diversified by considering a sufficiently large number of independent policyholders,

and then a superhedge (subhedge) can be produced in the limit.

We consider a community of policyholders of size N where the contracts for each indi-

vidual are identical and given by (Φ,Ψ,Γ) . Further, we assume that the death times

of the policyholders (τi)i=1,...,N are independent given FT .8 The number of individuals

that have died until t is denoted by XN
t and the number of policyholders that are still

alive at time t is denoted by X̄N
t , respectively, i.e.

XN
t =

N∑
i=1

1{τi≤t} , and X̄N
t = N −XN

t =
N∑
i=1

1{t<τi} , 0 ≤ t ≤ T . (2.30)

Fix as input parameter the potentially misspecified mortality intensity µ̃ = (µ̃(t, St))0≤t≤T
that is Markovian with state vector (t, St) . Compute the price of the contract of a

policyholder who is alive at time t as solution ṽ to

Lṽ(t, s)− Γ(t, s) + µ̃(t, s) [Ψ(t, s)− ṽ(t, s)]− r(t)ṽ(t, s) = 0, and ṽ(T, s) = Φ(s),

(2.31)

where L is given in (2.24).

The potentially misspecified value Ṽ N of the outstanding contracts is thus given by the

8The underlying model in Section 2.2.1 is extended canonically, i.e., take an i.i.d. family of r.v.s
(En)n=1,...,N that are unit exponentially distributed, pairwise independent, and independent of W .

Then define the death times (τn)n=1,...,N by τn = ess inf{t ≥ 0 :
∫ t

0
νs ds ≥ En} , n = 1, . . . , N .
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number of living policyholders X̄N times the corresponding value ṽ , i.e.

Ṽ N
t = X̄N

t ṽ(t, St) , 0 ≤ t ≤ T . (2.32)

In the formulation of Ṽ N in (2.32) we have two potential sources of error. Firstly, the

individual contract may be incorrectly priced by ṽ and secondly, the mortality risk can-

not be hedged in our setup and thus the jumps of X̄N will introduce a further error. In

the following we analyze the error when setting up a hedging portfolio based on (2.32).

The hedging strategy and resulting portfolio processes are now specified. Let the left-

continuous and adapted process hN denote the holdings in the risky asset S . (We do

not have to specify the holding in the money market account since we are considering

self-financing strategies and can use the budget constraint.) The portfolio process V N

with initial value V N
0 is defined by the stochastic differential equation

dV N
t = (V N

t − hNt St) r(t) dt+ hNt (dSt + dDt) + X̄N
t Γ(t, St) dt−Ψ(t, St) dXN

t . (2.33)

The portfolio process is self-financing given the inflow of premium payment rate Γ of the

active contracts X̄N and the discrete time outflows of the death benefits Ψ at times the

individuals pass away given by XN . The hedge implied by (2.32) is given by

hNt = X̄N
t

∂ṽ

∂s
(t, St) , 0 ≤ t ≤ T . (2.34)

It is clear that the price ṽ and the corresponding hedge ratio h are both determined by

the assumed mortality intensity µ̃ . For a specific choice of µ̃ the resulting hedging error

is analyzed under the real world measure P . The error has two additive components:

a jump-martingale component capturing unsystematic mortality risk, and a predictable

finite variation component which is determined by the systematic mortality risk.

Theorem 2.5.1. Fix µ̃ = µ̃(t, s) and determine ṽ as the solution to (2.31). Fix the

size of the community of policyholders N and then define hN by (2.34). For the cor-

responding portfolio process V N in (2.33) the hedging error EN relative to Ṽ N given

in (2.32) is defined by EN = V N − Ṽ N . Then the hedging error and has the following

P -dynamics:

dEN
t = EN

t r(t) dt+ X̄N
t [Ψ(t, St)− ṽ(t, St)] [µ̃(t, St)− νt] dt+ [ṽ(t, St)−Ψ(t, St)] dMN

t ,

with initial value EN
0 = V N

0 − N ṽ(0, S0) . Moreover, MN = XN −
∫ ·

0
X̄N
t νt dt is a

P -martingale.

Proof. Write the stochastic differential of the portfolio value process using the definitions
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of the strategy hN in (2.34) and the risky assets dynamics in (2.1) and (2.2):

dV N
t =

[
V N
t − X̄N

t

∂ṽ

∂s
(t, St)St

]
r(t) dt+ X̄N

t

∂ṽ

∂s
(t, St) [a(t, St) + q(t, St)]St dt

+X̄N
t

∂ṽ

∂s
(t, St)σ(t, St)St dWt + X̄N

t Γ(t, St) dt−Ψ(t, St) dXN
t

= V N
t r(t) dt+ X̄N

t

∂ṽ

∂s
(t, St) (a(t, St)St dt+ σ(t, St)St dWt)−Ψ(t, St) dMN

t

−X̄N
t

[
∂ṽ

∂s
(t, St) [r(t)− q(t, St)]St − Γ(t, St) + Ψ(t, St) νt

]
dt .

To the last line we apply the partial differential equation (2.31) and then

dV N
t = V N

t r(t) dt+ X̄N
t

∂ṽ

∂s
(t, St) [a(t, St)St dt+ σ(t, St)St dWt]−Ψ(t, St) dMN

t

+X̄N
t

[∂ṽ
∂t

(t, St) +
1

2
σ2(t, St)

∂2ṽ

∂s2
(t, St)− r(t) ṽ(t, St)

+[µ̃(t, St)− νt] [Ψ(t, St)− ṽ(t, St)]− ṽ(t, St) νt

]
dt .

Using the product rule we obtain the stochastic differential of Ṽ N = X̄N ṽ(·, S) :

dṼ N
t = X̄N

t

[
∂ṽ

∂t
(t, s) + a(t, St)St

∂ṽ

∂s
(t, s) +

1

2
σ(t, St)

2 S2
t

∂2ṽ

∂s2
(t, St)− ṽ(t, St) νt

]
dt

+X̄N
t σ(t, St)St

∂ṽ

∂s
(t, s) dWt − ṽ(t, St) dMN

t .

Now collect the terms from the two equations above to compute stochastic differential of

the hedging error EN = V N − Ṽ N :

dEN
t = EN r(t) dt+ X̄N

t [µ̃(t, St)− νt] [Ψ(t, St)− ṽ(t, St)] dt

+[ṽ(t, St)−Ψ(t, St)] dMN
t .

Finally, to verify that MN is a P -martingale see Bielecki and Rutkowski (2001), Propo-

sition 5.1.3., p. 153.
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Remark 2.5.1. The stochastic differential equation for hedge error EN in Theorem 2.5.1

has the straight-forward solution

EN
t = e

∫ t
0 r(s) ds

(
V N

0 −N ṽ(0, S0)
)

+

∫ t

0

e
∫ t
u r(s) ds X̄N

u [Ψ(u, Su)− ṽ(t, Su)] [µ̃(t, Su)− νu] du

+

∫ t

0

e
∫ t
u r(s) ds [ṽ(u, Su)−Ψ(u, Su)] dMN

u .

Suppose that the community of policyholders is very large, then the following corollary

gives a limit result.

Corollary 2.5.1. In the setting of Theorem 2.5.1 define the scaled hedging error ĒN
t by

ĒN
t =

1

N
EN
t , 0 ≤ t ≤ T .

Assume that the following limit exists limN→∞ V
N

0 /N =: v , then

sup
0≤t≤T

∣∣ĒN
t − Ē∞t

∣∣ P→ 0 ,

where

Ē∞t = e
∫ t
0 r(s) ds (v − ṽ(0, S0))

+

∫ t

0

e
∫ t
u r(s) ds e−

∫ u
0 νs ds [Ψ(u, Su)− ṽ(u, Su)] [µ̃(u, Su)− νu] du .

Proof. Take the integral representation of the hedge error EN in Remark 2.5.1 and

divide this by N to obtain ĒN . Using the triangular inequality we can study each of

the three expressions separately and establish uniform convergence in probability to the

corresponding counterpart in Ē∞ . The first expression yields

1

N
e
∫ t
0 r(s) ds

(
V N

0 −N ṽ(0, S0)
)
→ e

∫ t
0 r(s) ds (v − ṽ(0, S0)) for N →∞ ,

by the assumption v = limN→∞ V
N

0 /N . The convergence is uniform in t since r is

deterministic and the integral
∫ t

0
r(s) ds is a deterministic and continuous function. Ac-

cordingly, the expression e
∫ t
0 r(s) ds is uniformly bounded by a constant on the compact

[0, T ] .

The error in the second expression is then

RN
t =

∫ t

0

e
∫ t
u r(s) ds

(
X̄N
u

N
− e−

∫ t
0 νs ds

)
[Ψ(u, Su)− ṽ(u, Su)] [µ̃(u, Su)− νu] du ,

where we have deducted the integral part of Ē∞ . Then we can establish the following
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uniform bound

sup
0≤t≤T

|RN
t | ≤ sup

0≤t≤T

∣∣∣∣X̄N
t

N
− e−

∫ t
0 νs ds

∣∣∣∣ ∫ T

0

e
∫ T
t r(s) ds |Ψ(t, St)− ṽ(t, St)| |µ̃(t, St)− νt| dt .

The bound depends on N only in the first component. The second component is almost

surely finite, and we are left to show that the first component vanishes in probability. To

do so, consider

e−
∫ t
0 νs ds Y N

t =
X̄N
t

N
− e−

∫ t
0 νs ds , or, equivalently, Y N

t =
1

N

N∑
i=1

1{t<τi} e
∫ t
0 νs ds − 1 .

Then Y N is a local P -martingale, see Bielecki and Rutkowski (2001), Lemma 5.1.7., p.

152. Moreover, Y N is square integrable since we assume that ν is uniformly bounded

in t , and therefore

[Y N , Y N ]t =
1

N2

∑
{τi≤t}

e2
∫ τi
0 νs ds ,

is uniformly bounded in t by a deterministic constant on the compact [0, T ] . Doob’s

maximal quadratic inequality then gives

E
(

sup
0≤t≤T

|Y N
t |2
)
≤ 4E

(
[Y N , Y N ]T

)
≤ 4

N
e2

∫ T
0 µ̄(s) ds = O(1/N) ,

Accordingly, sup0≤t≤T |Y N
t | tends to zero in L2(P) and hence in probability. This es-

tablishes the uniform convergence of RN to zero in probability.

Finally, consider the third expression

ZN
t =

1

N

∫ t

0

e
∫ t
u r(s) ds [ṽ(u, Su)−Ψ(u, Su)] dMN

u .

The process ZN is a P -martingale with quadratic variation

[ZN , ZN ]t =
1

N2

∫ t

0

e2
∫ t
u r(s) ds [ṽ(u, Su)−Ψ(u, Su)]

2 dXN
u .

Note that we can find a localizing sequence of stopping times (σn)n≥1 such that the

stopped process (ṽ(·, S) − Ψ(·, S))σn is uniformly bounded by a deterministic constant,

say Cn . Thus, without loss of generality we may assume that (ṽ(·, S)−Ψ(·, S)) is indeed

bounded by real number, say by C > 0 . Then ZN is square integrable and by Doob’s

maximal quadratic inequality we obtain
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E
(

sup
0≤t≤T

|ZN
t |2
)
≤ 4E

(
[ZN , ZN ]T

)
=

4

N
E
[∫ T

0

e2
∫ T
t r(s) ds [ṽ(t, St)−Ψ(t, St)]

2 e−
∫ t
0 νs ds νt dt

]
≤ 4

N
e2

∫ T
0 |r(s)| dsC2

∫ T

0

µ̄(t) dt = O(1/N) .

This implies the uniform convergence of ZN to zero in L2(P) and hence in probability.

The localizing sequence (σn)n≥1 will give in general the result of the uniform convergence

of ZN to zero in probability.

We can fix µ̃ in such a way that the scaled hedge error Ē∞t is nonnegative over the life

time of the contract.

Remark 2.5.2. Corollary 2.5.1 can be applied to the upper price bound v̄ with mortality

intensity µ? defined in (2.25), see Theorem 2.4.1. The normalized hedge error ĒN

converges uniformly in probability to Ē∞ by Corollary 2.5.1. And the P -dynamics of

Ē∞ are given by

dĒ∞t = Ē∞t r(t) dt+ e−
∫ t
0 νu du [Ψ(t, St)− v̄(t, St)] [µ?(t, St)− νt] dt , 0 ≤ t ≤ T .

Observe that Ē∞ is of finite variation and, assuming a nonnegative initial value, Ē∞0 ≥ 0 ,

is nondecreasing. To see this, recall that by Assumption 2.3.1 the realized mortality rate

ν is bounded, i.e. µ(t) ≤ νt ≤ µ̄(t) , 0 ≤ t ≤ T . The value function v̄ and mortality

intensity µ? are specified such that [Ψ(t, St) − v̄(t, St)] [µ?(t, St) − νt] is nonnegative.

Accordingly, the upper price bound v̄ indeed produces a superhedge when we are allowed

to diversify the unsystematic mortality risk by the law of large numbers.

2.6 Numerical Results

In this section we analyze several unit-linked life insurance contracts in the uncertain

mortality intensity framework. In addition to providing price bounds we also produce the

optimally controlled regions of the mortality intensity.

As the underlying asset we take the S&P 500 index in the USA with the starting price

S0 = 1073 . The dividend rate is assumed to be 0 . We adopt the assumption that the

volatility is constant over the time with σ = 0.1833 . With regard to the interest rate, we

assume that it is constant over the time with r = 0.03 . The life insurance contracts that

we study are described in Table 2.1 where g1 = 0.02 refers to the minimum guarantee

rate and g2 = 0.06 refers to capped rate.
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payoff Ψ(τ, Sτ ) at τ payoff Φ(St) at T
(death) (survival)

I Sτ max(S0e
g1T , ST )

II S0e
g1τ max(S0e

g1T , ST )
III max(S0e

g1τ , Sτ ) ST
IV max(S0e

g1τ , Sτ ) max(S0e
g1T , ST )

V min(S0e
g2τ , Sτ ) min(S0e

g2T , ST )
VI min(max(S0e

g1τ , Sτ ), S0e
g2τ ) min(max(S0e

g1T , ST ), S0e
g2T )

Table 2.1: Payoff structures for different life insurance contracts.

The policyholders are supposed to be 40 years old at the beginning and the contract lasts

30 years. In Figure 2.1, we display the forecast of the mortality intensity ν̂ over the next

30 years based on the model and results of Lee and Carter (1992). Additionally, upper

and lower bounds are included corresponding to a pointwise 99.9% confidence interval,

see Appendix for details. In the following, these bounds are assumed to be the mortality

bounds µ and µ̄ for Assumption 2.3.1 and Definition 2.3.1.

Figure 2.1: The forecast of the mortality intensity including bounds based on pointwise
99.9% confidence level.

We consider both the single premium and the periodic premium cases. In the single pre-

mium case, we calculate the lump sum amount a policyholder needs to pay if the mortality

intensity moves in the most adverse way from the viewpoint of the insurance company

such that the discounted benefit payment is maximized in expectation. In the periodic

premium case, we assume that the policyholder pays continuously a prespecified cash flow
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until he dies. The prespecified cash flow is defined to be a fixed amount which is obtained

by meeting the following fair premium principle.

Definition 2.6.1. A unit-linked life insurance contract is fair if and only if the expected

payment to the policyholder equals the expected premium paid by the policyholder at the

initial date under the measure Q ∈ Qb with the forecasted mortality intensity ν̂ .

2.6.1 Single Premium Case

We first analyze the single premium case. In Figure 2.2 we present the optimally con-

trolled regions where µ should be set to its lower bound µ or to its upper bound µ̄ so

that the upper price bounds of the contracts are obtained.

For contract type I, µ needs merely to be set to its lower bound µ during the whole

life time of the contract. By looking more closely at its payoff structure, we see that

the reason is self-evident. The present value of the survival payoff exceeds the present

value of the death benefit. Therefore, the contract value v(t, St) is always greater than

the death benefit Ψ(t, St) . According to Theorem 2.4.1, we will obtain the upper price

bound by always setting µ to µ . However, in most cases, we cannot follow the simple

rule of restricting to one bound of µ . The dynamic control scheme recommended in

Theorem 2.4.1 should be implemented to get the price bounds.

For contract types II-IV, the upper bound and the lower bound regions of the mortality in-

tensity are divided slightly below or at the minimum guarantee curve S0e
g1t , 0 ≤ t ≤ T .

When the asset price remains at a much lower level than the minimum guarantee curve,

the chance for the policyholder to participate in the earnings of the risky asset is very

low. The policyholder has higher possibility to obtain the minimum guaranteed amount

which, however, increases at a lower rate than the investment in the riskless money market

amount. Hence, it is optimal if the policyholder is able to quit the contract for the better

investment alternative. The mortality intensity µ should be set to µ̄ . On the other

hand, if the asset price is high enough, the policyholder can benefit more from the risky

asset which is even protected by the minimum guarantee, and hence, a lower mortality

intensity becomes optimal.

For contract type V, we also see that the upper-left part of the figure is the µ -region

and the lower-right part is the µ̄ -region. The two regions are divided near the curve of

the capped amount S0 e
g2t , 0 ≤ t ≤ T . When the asset price is well above this curve

it is optimal to keep the mortality intensity to its minimum µ . The policyholder has

a high possibility of obtaining the capped amount growing at rate g2 which is higher

than risk-free rate of r . On the contrary, when the asset price is lower than the capped

amount, the immediate death benefit is higher than any later proceeds from the contract.

The mortality intensity should be set to its upper bound µ̄ . The payoff structure of the
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contract type VI is the mixture the contract types IV and V, and hence, the optimally

controlled regions of µ shown in Figure 2.2 (f) is also the mixture of Figure 2.2 (d)

and 2.2 (e).

(a) I (b) II

(c) III (d) IV

(e) V (f) VI

Figure 2.2: Optimally controlled regions for µ (single premium)
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In Table 2.2 we present the pricing results of the single premium case by inserting differ-

ent scenarios of the mortality intensity to the examples we have presented in Table 2.1.

In the fourth to the sixth columns the mortality intensity is not dynamically controlled

Ψ Φ µ = µf µ = µ µ = µ̄ µ ∈ [µ, µ̄] µ ∈ [0,∞)

lower upper lower upper

I Sτ max(S0eg1T , ST ) 1267.4 1275.2 1257.8 1257.8 1275.2 1073.0 1307.5

II S0eg1τ max(S0eg1T , ST ) 1228.4 1242.7 1211.0 1203.8 1248.0 795.1 1357.3
III max(S0eg1τ , Sτ ) ST 1109.6 1102.4 1118.4 1102.2 1118.7 1073.0 1357.2

IV max(S0eg1τ , Sτ ) max(S0eg1T , ST ) 1303.9 1304.6 1303.2 1301.2 1306.4 1075.3 1357.3

V min(S0eg2τ , Sτ ) min(S0eg2T , ST ) 916.4 916.2 916.8 914.3 918.7 855.6 1071.0

VI min(max(S0eg1τ , Sτ ) min(max(S0eg1T , ST ) 1147.3 1147.6 1146.9 1143.8 1150.7 1010.4 1252.9
, S0eg2τ ) , S0eg2T )

Table 2.2: Contract prices with different scenarios of the mortality intensity (single pre-
mium)

but only set to the forecasted value, its lower bound and its upper bound respectively.

The seventh and eighth columns show the results when the mortality intensity µ lies

in [µ, µ̄] . When µ is controlled least optimally, we obtain the lower price bound in the

seventh column; while the upper price bound in the eighth column is obtained when µ is

controlled most optimally. Furthermore, we present the case when µ lies in [0,∞) . This

is an unrealistic representation of the mortality risk, which corresponds to the choice of

the optimal equivalent martingale measure within the whole class of Q so that the price

is minimized (column 9) or maximized (column 10). As we have discussed in Section 2.4.3,

the maximized price is equal to the price of a pure American-style financial contract. The

upper price is the initial wealth required for setting up a superhedge when diversification

of the unsystematic mortality risk is ignored, see Remark 2.4.4.

As we have analyzed previously, for contract type I we follow the simple rule of keeping

to µ ( µ̄ ) in order to obtain the upper (lower) price bound. This is can be seen once

again in Table 2.2. While for the other contract types, the prices obtained by simply

inserting µ and µ̄ as well as µf over the time interval [0, T ] all lie within the lower

and the upper price bounds. However, when we observe the differences between the two

price bounds, we find they are not significantly big. To present this issue into more detail

we show the differences between the upper and lower price bounds (relative to the upper

price bounds) over the life time of the contracts depending on the price of the underlying

in Figure 2.3.

The price difference is relatively significant for contract type III, which is close to 20% of

the upper price bound when the underlying asset price is close to zero. This is not crucial

when we take it into consideration that the possibility for the underlying asset price to

decrease to such a low level from the starting value of 1073 is quite small. For contract

types I and II, the price differences have not exceeded 6% of the upper price bounds.

Once again, the probability for the maximal possible difference is very low. For contract

types IV-VI, the price differences are even below 1.2% . Hence, for the pricing purpose,
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(a) I (b) II

(c) III (d) IV

(e) V (f) VI

Figure 2.3: Differences between the upper and lower price bounds in relation to the upper
price bounds(single premium).
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it does not matter too much which scenario of the mortality intensity we implement into

the pricing problem as long as it is a reasonable scenario within its confidence interval.

This result indicates that mortality model risk does not have a huge effect on the risk

management of unit-linked life insurance contracts we focus on, see Table 2.1. This ar-

gument is also valid when we increase the confidence level of the mortality intensity. In

Table 2.3 we present the lower and upper price bounds at the different confidence levels of

99.9% , 99.99% and 99.999% . We notice that the differences between the lower and the

upper price bounds are although wider but have not varied too much over the different

confidence levels.

Ψ Φ 99.9% 99.99% 99.999%
lower upper lower upper lower upper

I Sτ max(S0eg1T , ST ) 1257.8 1275.2 1254.8 1277.2 1252.2 1278.7

II S0eg1τ max(S0eg1T , ST ) 1203.8 1248.0 1198.7 1251.1 1194.0 1253.7
III max(S0eg1τ , Sτ ) ST 1102.2 1118.7 1100.4 1121.5 1099.0 1124.0

IV max(S0eg1τ , Sτ ) max(S0eg1T , ST ) 1301.2 1306.4 1300.7 1306.9 1300.2 1307.3

V min(S0eg2τ , Sτ ) min(S0eg2T , ST ) 914.3 918.7 913.9 919.1 913.5 919.5

VI min(max(S0eg1τ , Sτ ) min(max(S0eg1T , ST ) 1143.8 1150.7 1143.1 1151.3 1142.5 1151.9
, S0eg2τ ) , S0eg2T )

Table 2.3: Price bounds for different confidence levels (single premium)

Melnikov and Romaniuk (2006) show that different mortality models display different

risk management performances for unit-linked pure endowment contracts. These are not

contradictory results but give us the hint that mortality model risk can be alleviated by

contract design. For contract type I and contract types III-VI, both the death benefit

and the terminal payment are strongly associated with the performance of the underlying

asset. Hence the contracts are more a financial product than an insurance product. For

contract type II as well as the unit-linked pure endowment insurance in Melnikov and

Romaniuk (2006), the death benefit is either a deterministic amount independent of the

index performance or is zero. The risk profiles of the death benefit before time T and

the survival benefit at time T are quite different which makes it crucial to know whether

the death event may take place earlier or later.

2.6.2 Periodic Premium Case

Now we come to the periodic premium case. We consider the same payoff structures as

before, see Table 2.1. However, the policyholder does not need to pay the premium at the

beginning but pays it in arrears during the life time of the contract but maximally till his

death time. For simplicity, we assume that the premium is paid continuously at a con-

stant instantaneous rate Γ which is determined according to the fair contract principle

given in Definition 2.6.1. If the mortality intensity develops as forecasted, the contract

price should be 0 at the beginning. Since it is usually not the case, a different scenario

of the mortality intensity will ex post lead to the situation that the premiums are either
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overpaid or underpaid by the policyholders on average. In the former case, the insurance

company earns on average a surplus due to the misspecification of the mortality risk.

However, in the latter case, it will find itself losing money. Because ex ante the insurance

company has no complete information about the future, it is safe for it to be pessimistic

and to assume the worst-case scenario for the pricing purpose.

In Figure 2.4 we see how µ should be optimally controlled so that the contract prices

obtained enable the insurance company to stay on the safe side. Due to the introduction

of the periodic premium payment, the insurance company bears higher risk that earlier

death of the policyholder stops it from collecting the initial investment but does not

reduces its obligation of benefit payment. Hence, we see that the optimally controlled

regions look totally different in comparison with Figure 2.2.

For contract type I, it is not optimal to keep to the lower bound of µ any more. During

the early life time of the contract, the policyholder has not paid too much premium. This

indicates that once he dies prematurely, he has the right to get the value of the underlying

asset only at trivial costs. Hence, it is optimal if µ takes the upper bounded value. As

the policyholder survives most part of the contract’s life, he should have already paid a

great part of the premium. At this time, the optimal µ depends on the spot price of the

underlying asset again. When S is very high, it is still profitable to stop the contract as

immediate as possible, that is, to set µ to µ̄ , because to go on paying the premium will

not bring more benefit in expectation. On the contrary, if S is very low, the policyholder

would prefer to pay the premium so that he gets the chance to receive a higher survival

benefit. In this case, µ should optimally be set to µ .

For contract type II, the higher the underlying asset price is, the higher is the possibility

that the policyholder will obtain a higher survival benefit, whose advantage outweighs the

premium to be paid, and hence, µ is optimal. In contrast, the lower the underlying asset

price is, the higher is the possibility that the policyholder can only receive the guaranteed

amount at the increasing rate of g1 . Since g1 < r , further premium payment is not

worthwhile for the policyholder and a higher mortality intensity, namely, µ̄ would be

better. We also see that the critical asset price that divides the two regions decreases

with time. This is due to the fact that the premium that has already been paid are sunk

costs and the choice of the optimal scenario only depends on the balance between the

future benefit and premium payment. Hence, as time moves on, the advantage of the

higher survival benefit over premium payment already reveals at a lower level of S in

comparison with the previous stage.

For contract type III, the mortality intensity should always be set to µ̄ , meaning that it

is always optimal to stop the contract as soon as possible. The present value of the death

benefit is always greater than or equal to the present value of the survival benefit. Hence,

an optimal mortality intensity should also be µ̄ .
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Contract type IV has similar payoff structure as contract type III except that the survival

benefit also provides a minimum guarantee. The minimum guarantee for the terminal

date T has trivial effect during most life time of the contract where the optimally con-

trolled region is identical to the region in contract type III. Only when the contract is

close to the maturity date does the minimum guarantee for the survival benefit matter for

the optimal choice of µ . When the asset price is very close to the minimum guarantee,

the death benefit is close to the spot asset price and is lower than the continuation value

even when the periodic premium payment is taken into account. In this case, µ should

be set to its lower bound µ .

(a) I (b) II

(c) III (d) IV

(e) V (f) VI

Figure 2.4: Optimally controlled regions of µ (periodic premium)
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Contract type V sets a limit to both the death benefit and the survival benefit. When

the asset price during the early life time of the contract is high enough, the return rate

of the insurance contract is g2 > r , and the policyholder would be willing to keep pay-

ing the premium so that the contract keeps alive and that he earns more than a pure

investment in the financial market. In this case, µ is optimally set to µ to count for

this worst-case scenario from the perspective of the insurance company. Moreover, we see

the non-monotonicity in the critical asset price. This is due to two effects. On the one

hand, as the cap increases with the time, the critical value of S should also increase with

the time. On the other hand, when the contract is farther away from the maturity date,

the policyholder has more premium to pay. His incentive of continuing the contract is

big only when he knows the possibility that the return of the contract keeps at a higher

level. When the asset price is not high enough, due to the premium payment, it is usually

optimal if the contract stops as soon as possible and µ should be set to µ̄ .

Contract type VI is a mixture of contract type IV and contract type V. Therefore, the

optimally controlled regions are a combination of Figure 2.4 (d) and (e).

Profit and Loss of Insurance Company
Realized Mortality Intensity

Ψ Φ Γ µf µ = µ µ = µ̄ µ ∈ [µ, µ̄]

lower upper

I Sτ max(S0eg1T , ST ) 67.02 0.00 3.36 -3.40 10.84 -10.67

II S0eg1τ max(S0eg1T , ST ) 65.04 0.00 -1.67 -0.33 22.95 -17.85
III max(S0eg1τ , Sτ ) ST 58.32 0.00 10.36 -26.80 10.36 -26.80

IV max(S0eg1τ , Sτ ) max(S0eg1T , ST ) 68.94 0.00 10.63 -12.91 10.63 -12.91

V min(S0eg2τ , Sτ ) min(S0eg2T , ST ) 48.46 0.00 8.32 -9.83 8.81 -10.32

VI min(max(S0eg1τ , Sτ ) min(max(S0eg1T , ST ) 60.66 0.00 9.56 -11.62 9.95 -12.00
, S0eg2τ ) , S0eg2T )

Table 2.4: Average profit and loss for different scenarios of the mortality intensity (periodic
premium).

Profit and Loss of Insurance Company
Realized Mortality Intensity

Ψ Φ Γ µf µ = µ µ = µ̄ µ ∈ [µ, µ̄]

lower upper

I Sτ max(S0eg1T , ST ) 67.02 0.00% 0.27% -0.27% 0.85% -0.85%

II S0eg1τ max(S0eg1T , ST ) 65.04 0.00% -0.14% -0.03% 1.86% 1.46%
III max(S0eg1τ , Sτ ) ST 58.32 0.00% 0.93% 2.46% 0.93% 2.46%

IV max(S0eg1τ , Sτ ) max(S0eg1T , ST ) 68.94 0.00% 0.81% -1.00% 0.81% -1.00%

V min(S0eg2τ , Sτ ) min(S0eg2T , ST ) 48.46 0.00% 0.90% -1.08% 0.95% 1.14%

VI min(max(S0eg1τ , Sτ ) min(max(S0eg1T , ST ) 60.66 0.00% 0.83% 1.02% 0.86% -1.06%
, S0eg2τ ) , S0eg2T )

Table 2.5: Average profit and loss in % of the premium collected during the life time of
the contracts for different scenarios of the mortality intensity (periodic premium).

As we have shown in Section 2.5, the hedging strategies based on the upper price bound

will ensure the insurance company to build a superhedging position if enough policyholders
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are pooled together. In Table 2.4 we present the average profit and loss for the insurance

company on a single contract for different scenarios of the realized mortality intensity.

In Table 2.5 the average profit and loss are presented as the percentage of the premium

accumulated during the life time of the contract. We first look at Table 2.4. In column 4

the constant instantaneous premium rate Γ is given which enables the contract price to

be zero under the assumption that the mortality intensity moves as is forecasted in the

future, see also column 5 for zero profit and loss. However, in reality, mortality risk cannot

be forecasted with certainty. In column 6 and 7 we show what the contract price would

be if the mortality intensity keeps to its lower bound (the extreme case of the longevity

risk) and to its upper bound respectively. Column 8 and 9 display the lower price

bound when the mortality intensity develops in the most favorable way for the insurance

company and the upper price bound when it develops the most unfavorably. The results

are qualitatively similar for all contracts. Exemplarily we discuss contract type I. We see

that a lower mortality intensity than the forecast is of no risk to the insurance company.

The benefit to be paid is less than the premium to be collected on average. The insurance

company also does not suffer from the model risk if the mortality intensity develops in the

most favorable way as is indicated in column 8 . If the mortality intensity is higher than

forecasted (column 7 ) or changes its value in the most unfavorable way (column 9 ) to

the insurance company, the insurance company will find itself not being able to fulfill its

obligation totally with the premium collected. All the prices under different scenarios of

the mortality intensity lie within the lower price bound and the upper price bound that

have been found dynamically according to Theorem 2.4.1. The upper price bound theo-

retically enables the insurance company to manage the financial risk dynamically under

the model risk concerning the mortality intensity. When we look at Table 2.5, we see it

counts only for about 0.85% of the whole amount of premium expected to be collected,

or equivalently, about 2 month’s premium, which for the insurance company may not be

a large amount. Similar results can be found in the other contract types which indicates

once again that mortality model risk has little price impact for contracts considered here.

2.7 Conclusion

We have investigated the influence of mortality model risk on unit-linked life insurance

contracts. This investigation is undertaken within an uncertain mortality intensity frame-

work where we assume reasonable bounds for the unknown mortality intensity. The mag-

nitude of the mortality model risk can be easily identified by carrying out a stochastic

control analysis and establishing upper and lower price bounds of unit-linked life insurance

contracts, see Theorem 2.4.1. The hedging strategy induced by the upper (lower) price

bound produces a superhedge (subhedge) under the statistical measure when pooling to-

gether an increasing number of similar contracts, see Corollary 2.5.1 of Theorem 2.5.1 and

Remark 2.5.1. The unsystematic mortality risk is diversified away by the pooling ratio-
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nale. The systematic mortality risk is addressed by dynamically assuming the worst (best)

case for the stochastic mortality intensity within the given bounds. If the worst (best)

case scenario does not occur then the hedging strategy generates a positive (negative) cash

flow. In addition, superhedging strategies are suggested under mortality model risk when

assuming that the number of policyholders is large, see Theorem 2.5.1 and Corollary 2.5.1.

We show that when the risk profiles of the death benefit and the survival benefit are not

significantly different, the effect of the mortality model risk may not be very large indeed.

The contract prices in our examples have little sensitivity with respect to changes in the

mortality intensity. For the single premium version the overall contract price differences

were well below 4%. In the periodic premium case the deviation from the fair price was

in the same range, and was not exceeding a six month premium income. In this case,

other risk sources such as interest rate risk and equity risk deserve more attention than

mortality model risk.

Our framework can be extended in many useful directions. The setup can be directly

extended to include an American feature where the policyholder has the right to quit the

contract for a pre-specified payoff, the surrender guarantee. This is studied in Chapter

3. We particularly investigate the effect of policyholders’ monetary rationality concerning

the exercise of the surrender option on the contract value. Further, other risk factors such

as interest rate risk and other facets of equity risk such as volatility risk can be included in

the setup. The so extended framework can then be used to analyze the impact of various

financial risk factors on mortality model risk. This research question is however beyond

the scope of the dissertation and would be studied in the near future.
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Chapter 3

The Effect of Policyholders’

Rationality on Unit-linked Life

Insurance Contracts with Surrender

Guarantees1

3.1 Introduction

Most unit-linked life insurance contracts entitle the policyholders to terminate the con-

tract before the maturity date and receive a certain cash refund called the surrender

value. In the literature, at least four approaches are found to evaluate such contracts.

The first approach is to consider the surrender decision as caused by exogenous reasons

and a surrender table can be constructed to capture the statistics on surrenders, see

Bacinello (2005). The second approach is to work within the contingent-claim framework

and consider the surrender option as an American-style contingent claim to be exercised

rationally. This approach is favored by most literature in recent years. Examples are

Grosen and Jørgensen (1997) Grosen and Jørgensen (2000), Bacinello (2003) Bacinello

(2005), and Bacinello, Biffis and Millossovich (2010), to just name a few. The argument

is that the policyholder should not complain about the contract depreciation caused by

his own non-optimal surrender, even due to exogenous reasons like financial difficulties,

when he does have the right to do it optimally. The third approach takes suboptimal

surrender into consideration. This is suggested by Bernard and Lemieux (2008). They

consider a single policyholder’s decision behavior, which is characterized by a decision

parameter. The policyholder is assumed to exercise the surrender option only when the

ratio between the surrender value and the continuation value exceeds the decision pa-

rameter. The fourth approach is carried out on the portfolio level. It is first proposed

by Albizzati and Geman (1994) who incorporate both the exogenous and the endogenous

surrender reasons into the valuation problem. They assume that the proportion of sur-

1This chapter is based on Li and Szimayer (2011a)

101
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render among the active contracts is an increasing function of the ratio of the surrender

value and the value when holding the contract until maturity. In case the ratio is below

one, the surrender rate is set to its minimum reflecting base level surrender due to exoge-

nous reasons. The surrender rate is then linear increasing with increasing ratio until a

fixed upper bound is reached. The upper bound represents the maximal surrender rate.

Recently, similar idea is implemented by DeGiovanni (2010) to model the policyholders’

rationality in contract surrender.

We consider the approaches of Albizzati and Geman (1994) as well as DeGiovanni (2010)

as more realistic than the other three approaches. The first two approaches only address

part of the story. Surrender decisions are not only triggered by exogenous reasons but

also by endogenous reasons. The empirical study conducted by Kuo, Tsai and Chen

(2003) shows that not only the unemployment rate (which corresponds to the exoge-

nous surrender reason) but also the interest rate (which corresponds to the endogenous

surrender reason) has impact on surrender behavior. Without treating the endogenous

surrender risk properly, the policy issuer will suffer an underestimated loss when disad-

vantageous financial market movement brings about more surrender cases than that have

been summarized by the surrender table. However, it has never been observed that all

the policyholders simultaneously take the same surrender action when it is optimal to

do so. Treating the surrender action merely as an optimal stopping problem will over-

estimate the funds needed to manage the contracts. Overall, it is difficult to identify

each policyholder’s decision rule and to figure out the proportion of policyholders who

are characterized by the same decision parameter. Since the policy issuers cannot iden-

tify the monetary rationality of the policyholders separately, all the policyholders should

be charged the same at the beginning. The premiums charged by considering both the

exogenous and the endogenous surrender reasons can be argued to be reasonable on the

portfolio level.2

Although we tend to follow Albizzati and Geman (1994), we also bear in mind that there

are some limitations in their approaches that we try to avoid. In Albizzati and Geman

(1994), mortality is considered as one of the surrender events. However, in most cases

death benefit and surrender benefit are not equal to each other. Surrender is usually

accompanied by a penalty in payment which does not apply to death benefit. Hence, the

distinction between the death event and the surrender event should be considered. In ad-

dition, Albizzati and Geman (1994) assume that a policyholder surrenders the contract by

comparing the surrender value and the value of initiating a new contract which he holds

till the maturity. A closed-form solution is obtained by assuming independence between

the surrender probabilities at different time points. However, usually a new contract also

allows for surrender. In this case, a surrender probability in the future also has influence

2For those competent policyholders who are able to exercise their surrender option optimally, less
premiums are charged than those are needed to support the contracts. Those policyholders who surrender
the contracts monetarily suboptimally have born the extra costs.
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on the surrender probability at present. This effect should be taken into consideration

when evaluating a contract with surrender guarantees. If the assumption about the inde-

pendence between the surrender probabilities is suspended, the Monte Carlo simulation

method is suggested by them to solve the valuation problem which is very time consuming.

In this chapter we propose the intensity-based valuation of unit-linked life insurance con-

tracts with surrender guarantees. Surrender is not modeled as a binary event but random-

ized where the surrender intensity reflects the local likelihood of surrender. The intensity

based approach was first used in credit risk modeling to describe the arrival of the credit

event. Recently, a similar approach has been adopted in other areas. For example, the

mortality risk embedded in insurance contracts is characterized by the mortality inten-

sity, (e.g. Milevsky and Promislow (2001), Dahl (2004), Dahl and Møller (2006)) and the

prepayment risk embedded in mortgage loans is captured by the prepayment intensity

(e.g. Stanton (1995), Dai et al. (2007)). In this chapter, we describe the arrival of the

surrender event also by an intensity-based approach and solve the valuation problem for a

representative policyholder. We assume that the surrender intensity of the policyholder is

bounded from below and from above. As in Albizzati and Geman (1994) and DeGiovanni

(2010) the lower bound represents the surrender base level due to exogenous reasons. And

the upper bound represents the maximal surrender rate that is attributed to exercise of

the surrender option when it is financially optimal to do so. Since the optimal decision

will not be made by all the policyholders simultaneously and equivalently not by the rep-

resentative policyholder, both the lower and the upper bound of the surrender intensity

are finite numbers between zero and infinity.3 They can be easily backed out from the rel-

evant statistics in the past. By capturing the surrender risk with the surrender intensity,

and similarly, the mortality risk with the mortality intensity, we are able to establish a

partial differential equation whose solution is the contract value we are looking for. The

finite difference method is then applied to solve the problem. In this sense, our approach

is quite similar to DeGiovanni (2010) but is also different from him in two aspects. We

have incorporated the mortality risk in our model which is but ignored by DeGiovanni

(2010). In addition, we emphasize the fair contract design.

To formalize the problem, we introduce the model setup in Section 3.2. The valuation

of the contracts is carried out in Section 3.3. In Section 3.4 we study the impact of the

policyholders’ rationality on the contract value through numerical examples. Moreover,

the relationship of the parameters in the contract will be analyzed. Section 3.5 concludes.

3If the surrender option is exercised optimally, the surrender intensity switches between zero and
infinity.
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3.2 Setup

The model setup is similar to the description in Section 2.2 with minor difference. Again,

unit-linked life insurance contracts link the financial market and the insurance market

together.

On the financial market, there is a non-dividend paying risky asset with the price process

S and a riskless money market account with the price process B . Under the real world

measure P , the two asset price processes are governed respectively by the stochastic

differential equations

dSt = a(t, St)St dt+ σ(t, St)St dWt , (3.1)

and

dBt = r(t)Bt dt , (3.2)

for 0 ≤ t ≤ T , where a is the local mean rate of return of the risky asset and σ is

the volatility of the risky asset. Both of them are Markovian. The risk-free interest rate

r is assumed to be deterministic. Moreover, W refers to the 1 -dimensional Brownian

motion under P and generates the financial market filtration F = (Ft)0≤t≤T . The

financial market is complete and arbitrage free, which is equivalent to the existence of a

risk-neutral martingale measure Q so that the price process S is described as

dSt = r(t)St dt+ σ(t, St)St dŴt, 0 ≤ t ≤ T, (3.3)

where Ŵ is a Brownian motion under Q which satisfies dŴt = dWt + a−r
σ

dt .

The insurance market is modeled by two random times τ and λ potentially ending the

financial contract. The time τ refers to the death time of an individual aged x at time

t = 0 when the contract is signed. The time λ refers to the time when the policyholder

decides to terminate the contract.

The jump process associated with τ is H with Ht = 1{τ≤t} , for 0 ≤ t ≤ T , and

generates the filtration H = (Ht)0≤t≤T . The hazard rate of the random time τ (or the

mortality intensity) is denoted by µ . In recent literature, the mortality intensity is often

assumed to be stochastic based on the observation of the systematic longevity risk in re-

cent decades. However, in Chapter 2 we find that the stochastic feature of the mortality

intensity is of minor impact on unit-linked life insurance contracts when the risk profiles

at death and at maturity are not dramatically different. We assume here, therefore, that

the mortality intensity is described by a deterministic function µ(t) , for t ∈ [0, T ] . In

fact, the mortality risk is then unsystematic and can be diversified away over a large pool

of policyholders.

The jump process associated with λ is J with Jt = 1{λ≤t} , for 0 ≤ t ≤ T . It gen-
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erates the filtration J = (Jt)0≤t≤T . The hazard rate of the random time λ is denoted

by γ , and is also called the surrender intensity. By introducing the random time λ , and

correspondingly, the surrender intensity γ , we can actually represent a large family of

insurance contracts. For the degenerate case where γ = 0 , the insurance contracts are

European style. When γ is allowed to take positive values, the policyholder can walk

away from the contract. In contrast to the mortality intensity µ , the surrender inten-

sity γ is not deterministic but depends on the monetary rationality of the policyholder in

making surrender decisions by comparing the the contract value and the surrender value.

Since the contract value and eventually also the surrender value are linked to the risky

asset S , γ is assumed to be F -measurable. The exact form of γ will be specified in

Section 3.3.

To model the information on the linked market, the filtrations F , H and J need to be

combined. Bielecki and Rutkowski (2001) give an account on the technicalities to combine

these filtrations.4 We give a brief summary of their key results relevant to our situation.

Starting under the original probability space (Ω,G,P) we first specify the enlarged fil-

tration G = (Gt)0≤t≤T carrying all the relevant information by Gt = Ft ∨ Ht ∨ Jt , for

0 ≤ t ≤ T . Recalling that F is the filtration generated by the Wiener process W we

assume that W remains a Wiener process for the enlarged filtration G . The processes

H and J both admit intensities µ and λ that are F -adapted. Now, we addition-

ally assume that µ and λ are the respective G -intensities, i.e. the processes M̂H =

(M̂H
t )0≤t≤T = (Ht −

∫ t∧τ
0

µ(u) du)0≤t≤T and M̂J = (M̂J
t )0≤t≤T = (Jt −

∫ t∧λ
0

γu du)0≤t≤T

are both G -martingales, and that joint jumps of H and J occur with zero probability,

i.e. P(τ = λ) = 0 .

The Radon-Nikodym density process for the measure change from P to Q is defined as

ηt =
dQ
dP

∣∣∣∣
Gt

= E[Y |Gt] P− a.s., (3.4)

where Y is a GT -measurable random variable with P(Y > 0) = 1 and EP[Y ] = 1 .

According to Bielecki and Rutkowski (2001), Proposition 7.1.3, p. 201, it has the following

integral representation

ηt = 1 +

∫
]0,t]

ηu−(ϕudŴu + ξHu dM̂H
u + ξJudM̂J

u ), (3.5)

where ϕ , ξH and ξJ are G -predictable processes.

Set ϕ = −a−r
σ

and ξH = ξJ = 1 , then by Proposition 7.2.1. in Bielecki and Rutkowski

4See Bielecki and Rutkowski (2001), Section 7, pp.197.
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(2001), Ŵ in the risk-neutral dynamics of the risky asset in (3.3) is also Q -Brownian

motion on the enlarged filtration G . Further, µ and γ are the intensities of τ and

λ under the equivalent martingale measure Q and filtration G . Thus, valuation under

the risk-neutral measure Q and on the extended filtration G is possible and carried out

in Section 3.3.

3.3 Contract Valuation

In this section we introduce the contract and derive the valuation equation. The contract

is comprised of a survival benefit, a death benefit and a surrender benefit. Survival benefit

and death benefit both offer a guaranteed rate and the possibility to participate in a po-

tentially profitable development of the risky asset. The surrender benefit depends on time

only, effectively representing a put option, see Bernard and Lemieux (2008) for a similar

approach. The contract value is derived using the balance law of financial economics, see

Dai et al. (2007).

We assume that the policyholder pays at the beginning time 0 the single premium P

for the contract with the maturity date T . The payoff of the contract is linked to the

underlying asset S . When the policyholder survives time T , the payment to him is

Φ(ST ) = P max

(
α (1 + g)T ,

(
ST
S0

)k)
, (3.6)

where α refers to the percentage of the initial premium which is provided with the

minimum guaranteed rate g and k refers to the policyholder’s participation rate in the

performance of the underlying asset. When the policyholder dies at time τ < T , the

death benefit is

Ψ(τ, Sτ ) = P max

(
α (1 + gd)

τ ,

(
Sτ
S0

)kd)
, (3.7)

where the parameters gd and kd refer respectively to the minimum guaranteed rate and

the participation rate in the asset performance upon the occurrence of the death event.

They need not be identical with g and k . However, in practice, death as a natural

event is neither penalized nor rewarded, so that g = gd as well as k = kd is very

common. Furthermore, the surrender benefit is introduced into the contract. Similar to

Bernard and Lemieux (2008) we set the surrender benefit L to be independent of the

asset performance.5 If the policyholder surrenders the contract at time λ , he obtains

L(λ) = (1− βλ)P (1 + h)λ , (3.8)

5In practice, the surrender benefit is independent of the asset performance. Theoretically, it could also
depend on the asset performance. In this case, the numerical results may differ from the results which
we present later on. However, the valuation method that we introduce in this section is still applicable.
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where βλ is a penalty charge for the surrender action at time λ and h refers to the

minimum guaranteed rate for the surrender benefit. The penalty βλ is typically constant

over one calender year and a decreasing function of time such that early surrender is

more penalized.6 In practice the minimum guaranteed rate h is not allowed to fall below

the minimum guaranteed rate g for the survival benefit, see Bernard and Lemieux (2008).

Following our rationale in Section 3.1 we describe the arrival of the surrender action

at a random time λ by a generalized Poisson process with stochastic intensity γ . The

intensity γ depends on the relationship between the surrender benefit L and the present

value of the contract V . When the surrender benefit is smaller than the contract value,

the surrender intensity takes a lower value ρ . On the contrary, a higher value ρ̄ is taken.

Formally, γ can be expressed as

γt =

{
ρ , for L(t) < Vt ,

ρ̄ , for L(t) ≥ Vt .
(3.9)

This formulation is inspired by Dai et al. (2007) and can be traced back to Stanton (1995)

who deals with the prepayment terms in mortgage loans. In this way, we are not explic-

itly solving an optimal stopping problem but a randomized version of it. However, in the

limiting case, when ρ ↘ 0 and ρ̄ ↗ ∞ , we obtain the solution to the accompanying

optimal stopping problem. Accordingly, our approach includes in the limit the aforemen-

tioned American-style contingent claim analysis of Grosen and Jørgensen (1997) Grosen

and Jørgensen (2000), Bacinello (2003) Bacinello (2005) and Bacinello et al. (2010).

The next step is to establish the contract value V . We derive the contract value by the

PDE characterization using the balance law, see Dai et al. (2007).

The balance law is based on the no-arbitrage condition

r(t)Vtdt = EQ [dVt|Gt] , (3.10)

on {t < λ ∧ τ ∧ T )} with x ∧ y := min(x, y) , that is, the balance law applies to the

case when the contract still exists. Provided that the policyholder is still alive at time

t and has not surrendered the contract yet, we consider the following cases under the

assumption that the two stopping times τ and λ are conditionally independent of each

other:

1) The conditional probability that death occurs over (t, t+dt) while the surrender does

not is µtdt(1− γtdt) = µtdt .

6In practice, the penalty charges are imposed to offset the costs associated with the issuance of the
contracts. Theses costs may otherwise be compensated during the life time of the contracts if they are
held till the maturity date. For examples of penalty functions please refer to Palmer (2006).
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2) The conditional probability that surrender occurs over (t, t+dt) while the death event

has not happened is γtdt(1− µtdt) = γtdt .

3) The conditional probability that both the surrender and the death events occur over

(t, t+ dt) is 0 .

Suppose that the contract value at time t is of the form

Vt = 1{t<λ∧τ} v(t, St) + 1{t=λ;λ<τ} L(λ) + 1{t=τ ;τ≤λ}Ψ(τ, Sτ ) , (3.11)

for a suitably differentiable function v : [0, T ] × R+ → R+
0 , (t, s) 7→ v(t, s) . Thus we

can also express γt as a function of the state variables, i.e. γt = γ(t, St) where γ :

[0, T ]×R+ → R+
0 , (t, s) 7→ γ(t, s) . Upon the occurrence of death there is a change in the

payment liability of the amount Ψ(t, s) − v(t, s) and upon the occurrence of surrender

the change in the payment liability is L(t) − v(t, s) . Hence, we can rewrite (3.10) on

{t < λ ∧ τ ∧ T} as

r(t)v(t, St)dt = EQ[dv(t, St)|Ft] + (Ψ(t, St)− v(t, St))µtdt+ (L(t)− v(t, St))γ(t, St)dt.

Applying Ito’s Lemma to dv(t, St) and assuming sufficient integrability we obtain

EQ[dv(t, St)|Ft] = EQ
[
Lv(t, St) dt+ σ(t, St)St

∂v

∂s
v(t, St) dŴt

∣∣∣∣Ft] = Lv(t, St) dt ,

where L is the differential operator comprised of the partial derivative with respect to

time and the generator of the process S defined in (3.3), i.e.

Lf(t, s) =
∂f

∂t
(t, s) + r(t)s

∂f

∂s
(t, s) +

1

2
σ2(t, s)s2∂

2f

∂s2
(t, s) .

Then we obtain

Lv(t, s) + µ(t)Ψ(t, s) + γ(t, s)L(t)− (r(t) + µ(t) + γ(t, s)) v(t, s) = 0 .

By no-arbitrage, we must also have v(T, s) = Φ(s) , for all s > 0 . We have just derived

the pricing PDE summarized in the following proposition.

Proposition 3.3.1. For the contract value V given by (3.11) the price function v is

the solution of the partial differential equation

Lv(t, s) + µ(t)Ψ(t, s) + γ(t, s)L(t)− (r(t) + µ(t) + γ(t, s)) v(t, s) = 0 , (3.12)

for (t, s) ∈ [0, T ) × R+ with terminal condition v(T, s) = Φ(s) , for s ∈ R+ . The

solution of (3.12) together with equation (3.9) characterizes the surrender intensity γ .
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Remark 3.3.1. The results derived in Proposition 3.3.1 can be generalized. We have

assumed that the bounds of the surrender intensity, ρ and ρ̄ , respectively, are constant.

In fact, we can allow the bounds being driven by the financial market and other non-

financial state variables X , i.e. ρ
t

= ρ(t, St, Xt) and ρ̄t = ρ̄(t, St, Xt) . Further, we

can include stochastic interest rates and stochastic volatility in our model. Under this

extended setup the valuation PDE in (3.12) carry over.

The contract value V is influenced by the bounds ρ and ρ̄ . Intuitively it is clear

that a lower value for ρ leads to less frequent surrender due to exogenous reasons and

accordingly increases the contract value. Likewise, a higher value for ρ̄ allows a higher

surrender activity when it is financially profitable to do so and therefore increases the

contract value. The following proposition states this fact precisely.

Proposition 3.3.2. Suppose that v is the value function of the contract with bounds ρ

and ρ̄ , and that w is the value function of the contract with bounds ζ and ζ̄ . Assume

that ζ ≤ ρ and ρ̄ ≤ ζ̄ . Then we have w(t, s) ≥ v(t, s) , for (t, s) ∈ [0, T ]× R+ .

Proof. The function v is the solution of the PDE (3.12) with terminal condition v(T, s) =

Φ(s) and bounds ρ and ρ̄ . The function w is the solution of the same PDE (3.12) with

identical terminal condition w(T, s) = Φ(s) but different bounds ζ and ζ̄ . Assume

that ζ ≤ ρ and ρ̄ ≤ ζ̄ . Now define z = w − v . It follows directly that z(T, s) =

w(T, s)− v(t, s) = Φ(s)− Φ(s) = 0 . To obtain the dynamics of z take the difference of

the PDEs describing w and v , i.e.:

0 = Lw(t, s) + µ(t)Ψ(t, s) + γζ(t, s)L(t)− (r(t) + µ(t) + γζ(t, s))w(t, s)

− (Lv(t, s) + µ(t)Ψ(t, s) + γρ(t, s)L(t)− (r(t) + µ(t) + γρ(t, s)) v(t, s))

= Lz(t, s) + (γw(t, s)− γv(t, s)) (L(t)− w(t, s))− (r(t) + µ(t) + γv(t, s)) z(t, s) ,

were γv and γw , respectively, are given by (3.9) using the appropriate bounds. By

Feynman-Kac we obtain the stochastic representation of z as follows

z(t, s) = Et,sQ

[∫ T

t

e−
∫ u
t (r(x)+µ(x)+γv(x,Sx)) dx(γw(u, Su)− γv(u, Su)) (L(u)− w(u, Su))du

]
,

where Et,sQ denotes the expectation conditioned on St = s . From the definition of γw

in (3.9) and the assumption ζ̄ ≥ ρ̄ we see that if (L−w) ≥ 0 we have γw = ζ̄ ≥ ρ̄ ≥ γv

and thus (γw − γv) ≥ 0 . On the other hand, if (L − w) < 0 then γw = ζ . By

assumption we have ζ ≤ ρ and thus γw ≤ ρ ≤ γv , or, (γw−γv) ≤ 0 . Thus, we see that

the integrand in the above equation is nonnegative and therefore z ≥ 0 . Since z = w−v
we obtain w ≥ v .

Corollary 3.3.1. In the setting of Proposition 3.3.2 define the sets where exclusively

exogenous surrender occurs by Cv = {(t, s) ∈ [0, T ] × R+ : L(t) < v(t, s)} and Cw =

{(t, s) ∈ [0, T ]× R+ : L(t) < w(t, s)} , respectively. Then Cv ⊆ Cw .

Proof. This is an immediate consequence of Proposition 3.3.2.
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3.4 Numerical Analysis

In this section we study the life insurance contract we have specified above closely through

numerical analysis. We assume that the underlying of the contract is the S&P 500 with

volatility σ(t, s) = 0.2 . The market interest rate is constant at r = 0.04 . At the

beginning P = $100 is paid. The contract life time is 10 years. For the moment we

assume that the participation rate into the minimum guaranteed amount is α = 0.85 .

The minimum guaranteed rates at survival, at death and at surrender satisfy g = gd =

h = 0.02 . The participation coefficient at survival and at death satisfy k = kd = 0.9 .

The penalty rates are β1 = 0.05 , β2 = 0.04 , β3 = 0.02 , β4 = 0.01 and βt = 0 for

t > 4 . We further assume that the mortality intensity follows the deterministic process

µ(t) = A + Bcx+t for the policyholder aged x at time t = 0 with A = 5.0758× 10−4 ,

B = 3.9342 × 10−5 , c = 1.1029 . The pool of policyholders are assumed to be 40 -aged

at the moment they enter into the contract.

3.4.1 Monetary Rationality and Contract Price

We first study the effect of the policyholders’ monetary rationality on the contract price.

Table 3.1 displays contract values V0 for various rationalities of the policyholders that

are parameterized by the lower and upper bound of the surrender intensity γ . The lower

bound ρ is the base level surrender intensity representing surrender due to exogenous

reasons, and takes the values 0 , 0.03 , 0.3 . The upper bound ρ̄ limits the local ex-

ercise probability in case exercising the surrender option is financially advantageous, see

(3.9). It takes the values 0 , 0.03 , 0.3 , and ∞ . We may say that a policyholders acts

financially more rational the lower the lower bound ρ and the higher the upper bound

ρ̄ . It is clear that a higher degree of rationality leads to a higher contract price, see

Proposition 3.3.2.

ρ̄
ρ 0.00 0.03 0.30 3.00 ∞
0 102.7630 103.9335 108.2971 110.6107 110.9602

0.03 - 99.4447 103.5910 105.5440 105.8250
0.3 - - 92.7071 94.4926 94.9999

Table 3.1: Contract value V0 for various bounds ρ and ρ̄

For ρ = ρ̄ = 0.00 the surrender option is never exercised. Therefore we obtain a

European-style contract with value 102.7630 . Keeping ρ = 0.00 and increasing the

upper bound ρ̄ to the limit ∞ results in a contract where the surrender option is ex-

ercised optimally. The value of the American-style contract is 110.9602 , and is about

8% higher than the value of the corresponding European-style contract. In general we
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can observe that the contract values are increasing with increasing ρ̄ as stated in Propo-

sition 3.3.2. Purely exogenous surrender can be presented by assuming that the upper

and lower bound are identical, i.e. ρ = ρ̄ . The values on the diagonal of Table 3.1 are

decreasing with increasing surrender rate. This is not a general effect but due to the

fact that for this contract the surrender value L is on average lower than the value V

of a contract that is still alive. Fixing the upper bound and varying the lower bound

representing the exogenous surrender the contract values are increasing with decreasing

lower bound ρ what is in line with Proposition 3.3.2.

Let us now focus on the benchmark parameters for the subsequent fair contract analysis in

Section 3.4.3, i.e. set ρ = 0.03 and ρ̄ = 0.30 . The resulting contract value is 103.5910 .

To obtain the corresponding purely exogenous surrender situation the upper bound is set

to ρ̄ = 0.03 and the value decreases to 99.4447 . In contrast, for optimal exercise of

the surrender option the upper bound is set to ∞ . The corresponding contract value

increases to 105.8250 . We can interpret the benchmark value of 103.5910 as a weighted

average of the purely exogenous surrender value and the value obtained when the surren-

der option is optimally exercised, with weights 35% and 65% , respectively.

3.4.2 The Separating Boundary

For the insurance company writing the contract it is instructive to identify the ac-

tual surrender intensity γ for any given time t and asset value St = s . According

to (3.9) γ is determined by the current contract value and surrender benefit. Once

the value function v is obtained by solving the pricing PDE in Propostion 3.3.1 we

can identify the region C where purely exogenous surrender occurs, γ(t, s) = ρ , i.e.

C = {(t, s) ∈ [0, T ] × R+ : v(t, s) > L(t)} , and its complement Cc where surrender oc-

curs at the maximal intensity, γ(t, s) = ρ̄ , i.e. Cc = {(t, s) ∈ [0, T ]×R+ : v(t, s) ≤ L(t)} .

The separating boundary is then the set ∂C = {(t, s) ∈ [0, T ] × R+ : v(t, s) = L(t)} .

Moreover, Corollary 3.3.1 characterizes the relationship of C when the bounds of the

surrender intensity ρ and ρ̄ are varied. Decreasing ρ or, alternatively, increasing ρ̄

expands the set C where purely exogenous surrender occurs.

Figure 3.1 displays the separating boundary for the benchmark parameters on the left

and for the case when the upper bound of the surrender intensity is set to ∞ on the

right. For both figures we observe that a higher underlying price makes the participation

in it more attractive, and hence indicates a lower surrender rate in this region. While a

lower underlying price suggests that it is not promising to benefit from the growth of the

underlying price. In addition, three factors affect the separating boundary. One is the

interest rate effect. In our example, the minimum guaranteed rates at death, at survival

and at surrender are all smaller than the interest rate on the market. An early surrender

enables the policyholders to invest their money into a riskless asset with a higher rate
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Figure 3.1: The separating boundary ∂C for ρ = 0.03 , ρ̄ ∈ {0.3,∞} , α = 0.85 ,
g = gd = h = 0.02 , k = kd = 0.9 , β1 = 0.05 , β2 = 0.04 , β3 = 0.02 , β4 = 0.01 and
βt = 0 for t ≥ 5 .
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of return than the minimum guaranteed rate and is hence preferred. The incentive to

surrender the contract earlier can be reduced if the asset price is high enough so that

the probability of receiving a higher payoff increases which offsets the interest rate effect.

The second one is the time effect. For the same asset price level, the earlier it is, the

more higher is the possibility that the asset price at a certain time point in the future

will rise to a higher level, and hence, the higher is the continuation value of the contract.

Thus, a lower asset price at the early stage can be more tolerated and the separating

boundary can be lower at this stage due to the time effect. The third one is the penalty

effect. In our example, there is αP (1 + g)t < (1− βt)P (1 + h)t , for all t ≥ 0 . Besides,

(1−βt)P (1+h)t ≤ (1−βt′)P (1+h)t
′

for t ≤ t′ . This indicates that for S small enough,

the surrender value is always higher than the minimum guarantee. As time increases, the

dominance of the surrender value is more obvious, and hence, the asset price must be

higher to compensate the disadvantage of the relatively lower guaranteed amount. Fig-

ure 3.1 results from the three effects mentioned. Within one year, the interest rate effect

dominates, while between the different years, the other two effects dominate. Conse-

quently, the separating boundary is not smooth in the first 4 years and it is smooth and

monotonically increasing afterwards. Comparing the benchmark case (top in Figure 3.1)

with the case where the upper bound ρ̄ is set to ∞ (bottom in Figure 3.1) we observe

that the set indicating purely exogenous surrender C expands. This is expected due to

Corollary 3.3.1.

Now, the penalty term is eliminated by setting βt = 0 for all t . Then we obtain a

separating boundary as displayed in Figure 3.2. The penalty and the time effect dominate

the interest rate effect. Hence, we observe the monotonic increase of the separating

boundary over the life time of the contract. Moreover, the boundary is now smooth, since

the penalty parameters for different years are identical. Again, the set C where purely

exogenous surrender occurs expands when the upper bound ρ̄ is increased from 0.30

(top) to ∞ (bottom).

3.4.3 Fair Contract Analysis

In this section we study how the parameters should be specified to ensure a fair contract,

i.e. V0 = P = 100 . Since the contract price depends on the assumption about the mone-

tary rationality of the policyholders in our model, our fair contract analysis is conducted

in a narrow sense by fixing the monetary rationality of the policyholders. The price ob-

tained is the amount that should be charged on average based on this assumption. We

assume in this part that ρ = 0.03 and ρ̄ = 0.30 . Furthermore, we compare the result

with ρ̄ = 0.03 and with ρ̄ =∞ . Here, ρ̄ =∞ represents the worst case from the view-

point of the insurance company writing the contract. In presence of exogenous surrender

the surrender option is exercised optimally. In contrast, ρ̄ = 0.03 characterizes the case

of purely exogenous surrender. For our original parameters chosen in Section 3.4.1 the

contract value is 103.5910 and is therefore over par. To reduce to the contract value,
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Figure 3.2: The separating boundary of ∂C for ρ = 0.03 , ρ̄ ∈ {0.3,∞} , α = 0.85 ,
g = gd = h = 0.02 , k = kd = 0.9 , βt = 0 for t ≥ 0 .
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there are potentially three ways. The first way is to reduce the minimum guarantee at

survival or at death or in both cases. The second way is to enhance the penalty in the

early surrender case. The third way is to reduce the participation in the performance of

the underlying asset.

Figure 3.3: The contract value V0 depending on the participation rate in the minimum
guarantee α for ρ = 0.03 , ρ̄ ∈ {0.03, 0.3,∞} , g = gd = h = 0.02 , k = kd = 0.9 ,
β1 = 0.05 , β2 = 0.04 , β3 = 0.02 , β4 = 0.01 , and βt = 0 , for t ≥ 5 .

We investigate the effect of a reduction of the minimum guarantee on the contract value.

The reduction of minimum guarantee can be achieved either by reducing the participa-

tion rate α , the minimum guarantee rate g1 , or g2 . Since their effects are similar,

we only focus on the participation rate α . In Figure 3.3 we present the contract val-

ues with different choices of α while other parameters are kept the same as we chose

at the beginning. We notice from Figure 3.3 that the effect of the minimum guarantee

on the contract value depends on the monetary rationality of the policyholders. For the

completely rational policyholders (i.e., ρ̄ =∞ ), the minimum guarantee hardly has any

effect on the contract value. When the policyholders are on average more rational than

those who only surrender for exogneous reasons, the effect of the minimum guarantee is

also minor. This is because a reasonable surrender guarantee is supplied in the contract.

If it is unprofitable to go on holding the contract, the policyholders can simply terminate

the contract and obtain the guaranteed surrender value which may be higher than the

minimum guarantee. On the contrary, for irrational policyholders (i.e., when ρ̄ = 0.03 ),
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their surrender decisions do not depend on the surrender guarantee. The effect of the

minimum guarantee on the contract value is hence much higher. We can verify this ra-

tionale by setting the surrender value to zero.

Figure 3.4: The contract value V0 depending on the participation rate in the minimum
guarantee α for ρ = 0.03 , ρ̄ ∈ {0.03, 0.3,∞} , g = gd = h = 0.02 , k = kd = 0.9 ,
βt = 1 , for t ≥ 0 .

The contract values for β = 1 , and hence L = 0 , and various values for α are displayed

in Figure 3.4. We see that the contract value in this case is actually independent of the

monetary rationality. This is because the surrender value is zero so that always the lowest

surrender intensity ρ applies which is identical for the different choices for ρ̄ . We also

see that when the surrender guarantee is small the participation rate α plays a more im-

portant role in determining the contract value. The contract values for α = 0 and α = 1

differ by 10.3529 whereas in the previous setting the difference was just 2.3552 , both for

ρ̄ = 0.30 . The pattern is similar for ρ̄ = 0.03 and ρ̄ = ∞ . On the other hand we can

interpret from Figure 3.4 that to ensure the contract to be issued at par the policyholders

should not be overpenalized. In Bernard and Lemieux (2008), the participation rate α

is included both in the minimum guarantee and in the asset performance. Hence, the

variation of the parameter works simultaneously on both parts which may display a more

significant effect. However, when we observe these two parts separately we are more clear

about the specific effect of each parameter and gain insight into the design of effective

contracts. According to the contract that we have designed we can simply keep α = 1
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so that the contract looks more attractive to the policyholders. While other parameters

should be adjusted more carefully.

Figure 3.5: The contract value V0 depending on the penalty parameter β for ρ = 0.03 ,
ρ̄ ∈ {0.03, 0.3,∞} , α = 0.85 , g = gd = h = 0.02 , k = kd = 0.9 .

Next, we investigate the relationship between the penalty parameter and the contract

value. In Figure 3.5 we display the contract value V0 as a function of penalty parameter

β graphically for different degrees of monetary rationality, ρ̄ = 0.03, 0.30,∞ . The con-

tract value is monotonically decreasing in the penalty parameter. For the contract to be

fairly issued the penalty parameter should be 0.0821 for ρ̄ = 0.30 . In case of rational

surrender, i.e. ρ̄ = ∞ , in presence of exogenous surrender with ρ = 0.03 the penalty

parameter has to be increased to 0.1073 for the contract to be fair. While for purely

exogenous surrender, i.e. ρ̄ = 0.03 , the contract value is always under par in our exam-

ple. This means that other parameters must be adjusted so as to take the policyholders’

monetary irrationality into account properly.

Finally, we analyze the effect of the participation rate in the asset performance on the

contract value. For simplicity we assume the participation rates for both, the survival

and the death events, to be the same namely, k = kd . Other parameters are consistent

with the values detailed at the beginning of Section 3.4. In Figure 3.6 we display the

relationship of the participation rates in the asset performance with the contract value

graphically for ρ̄ = 0.03, 0.30,∞ . We see that the contract value increases monotoni-
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Figure 3.6: The contract value V0 depending on the participation rates k = kd for
ρ = 0.03 , ρ̄ ∈ {0.03, 0.3,∞} , α = 0.85 , g = gd = h = 0.02 , k = kd = 0.9 , β1 = 0.05 ,
β2 = 0.04 , β3 = 0.02 , β4 = 0.01 , and βt = 0 , for t ≥ 5 .
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cally with the participation rates. For ρ̄ = 0.30 and ∞ the increase is not that large

for small values of the participation rates k = kd . This is because in these cases hold-

ing the contract generally brings lower benefit to the policyholders than surrendering the

contract prematurely. The surrender benefit thus plays a dominant role in determining

the contract value. Since the surrender guarantee is independent of k and kd in our

numerical example, the contract value does not vary too for small values of k = kd . Also

notice that that in this case the contract value is under par. On the contrary, when k

and kd are large the survival benefit and the death benefit dominate the contract value,

the contract value increases is more sensitive to changes of k = kd . However, when the

policyholders surrender due to exogenous reasons (indicated by ρ̄ = 0.03 ) the survival

and death benefit are driving the contract value. Hence the effect of an increase in k = kd
on the contract value is nearly linear. To obtain a fair contract the participation rates

k = kd should be set to 0.8006 for ρ̄ = 0.30 . Increasing ρ̄ to its limit ∞ requires

a lower participation of k = kd = 0.7278 for ρ̄ = 0.03 for the contract to be fair. In

contrast, for the cases of purely exogenous surrender, i.e. ρ̄ = 0.03 , the participation

rate has to increase to 0.9125 to constitute a fair contract.

In the remainder of this section we focus on the design of a fair contract and investigate

the interaction of various parameters. First, we study the relationship between partici-

pation rate in the minimum guarantee α and the minimum guaranteed rate at survival

and at death g = gd . To produce realistic results we alter the benchmark parameters by

setting k = kd = 0.7 to ensure the existence of a fair contract. We present the relation-

ship between α and g = gd in Figure 3.7. We see that α is decreasing in g = gd . For

α below 0.9 the minimum guaranteed rate of return at survival and at death must be

higher than the market interest rate for the contract value to be higher. Further note that

the higher the monetary rationality of policyholders is, the lower is the α−g level in Fig-

ure 3.7. Since the more rational policyholders can judge the situation more correctly and

make the better out of it, they need less compensation offered by the minimum guarantee.

Next we study pairs of the participation rate in the minimum guarantee α and the par-

ticipation parameters in the asset performance k and kd such that a fair contract is

obtained. The other parameters are kept as in the benchmark case. A graphical illustra-

tion for this setting is given in Figure 3.8. We observe that for the same level of α , a

lower (higher) k = kd is required to account for the higher (lower) monetary rationality

of the pool of policyholders. Moreover, when the policyholders act more rational, the

sensitivity of α with respect to k = kd is higher, or in other words, the sensitivity of

k = kd with respect to α is lower.

We have mentioned in Section 3.3 that the growth rate h for the surrender case is, in

practice, not allowed to fall below the minimum guaranteed rate g for the survival benefit.

For our numerical analysis, however, we loose this restriction and study the relationship

of h with other parameters. As an example, we present in Figure 3.9 the relationship
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Figure 3.7: Parameter combinations of the participation rate in the minimum guarantee
α and the minimum guaranteed rates at survival and at death g = gd ensuring a fair
contract, for ρ = 0.03 , ρ̄ ∈ {0.03, 0.3,∞} , g = gd = h = 0.02 , k = kd = 0.7 ,
β1 = 0.05 , β2 = 0.04 , β3 = 0.02 , β4 = 0.01 , and βt = 0 , for t ≥ 5 .
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Figure 3.8: Parameter combinations of the participation rate in the minimum guarantee α
and participation rates in the asset performance at survival and at death k = kd ensuring
a fair contract, for ρ = 0.03 , ρ̄ ∈ {0.03, 0.3,∞} , g = gd = h = 0.02 , k = kd = 0.9 ,
β1 = 0.05 , β2 = 0.04 , β3 = 0.02 , β4 = 0.01 , and βt = 0 , for t ≥ 5 .
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between h and k = kd . It is obvious that for given k = kd , h must be set lower

(higher) to account for the higher (lower) monetary rationality of the policyholders. For

the policyholders with low monetary rationality, a fair contract may not even exist if we

keep h at the same level as g , and at the same time, only allow the policyholders to

participate in the asset performance less than proportionally.

Figure 3.9: Parameter combinations of the minimum guaranteed rate h for the surrender
benefit and the participation rates in the asset performance at survival and at death k =
kd ensuring a fair contract, for ρ = 0.03 , ρ̄ ∈ {0.03, 0.3,∞} , α = 0.85 , g = gd = 0.02 ,
β1 = 0.05 , β2 = 0.04 , β3 = 0.02 , β4 = 0.01 , and βt = 0 , for t ≥ 5 .

For the insurance company the level of the policyholders’ monetary rationality indicated

by ρ̄ is an important parameter affecting valuation and hedging of the respective contract.

Assuming the highest possible rationality ( ρ̄ = ∞ ) is specifying a worst case scenario

and is therefore of particular interest. Compared to the benchmark case ( ρ̄ = 0.30 )

the contract design has to be modified accordingly to produce a fair contract. Focusing

on the surrender component, the increase of the rationality to the highest possible level

can be compensated by either increasing the penalty β by 0.025 (see Figure 3.5) or

by decreasing the minimum guaranteed rate h by 0.01 (see Figure 3.9). Alternatively,

death and survival benefit can be adjusted either by decreasing the participation α by

0.02 (see Figure 3.7), by decreasing the minimum guaranteed rates g = gd by 0.002 (see

Figure 3.7), or by decreasing the participation rate in the asset performance k = kd by

0.07 (see Figure 3.6 and Figure 3.9). Overall, the design of our contract is fairly robust
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with respect to variations in the rationality. The parameter that has perhaps the highest

sensitivity with respect to variations in the level of rationality is the participation rate in

the asset performance k = kd (see Figure 3.8).

3.5 Conclusion

In this chapter we have studied the valuation of unit-linked life insurance contracts with

surrender guarantees. Instead of solving an optimal stopping problem, we have proposed

a more realistic approach accounting for policyholders’ monetary rationality in exercising

their surrender option. The valuation is conducted at the portfolio level by assuming

the surrender intensity to be bounded from below and from above. The lower bound

corresponds to purely exogenous surrender and the upper bound represents the limited

monetary rationality of the policyholders. In practice, the lower and the upper bounds

can be obtained from historical data. We have shown that for different degrees of mone-

tary rationality the average contract value can vary significantly. Hence, it is important

to judge the monetary rationality of the potential policyholders realistically. Based on

the realistic estimation of their monetary rationality, the contract can be designed more

reasonably and an average overvaluation can be avoided. We provide the separating

boundary between purely exogenous surrender and surrender due to financial reasons.

This may help insurance companies to better understand the surrender activity of their

policyholders affecting also the companies’ hedge programs. In addition, our fair contract

analysis has revealed specific contract designs that are fairly robust with respect to the

degree of monetary rationality of the policyholders.

This chapter can be extended in several ways. The bounds ρ and ρ̄ need not be con-

stant but can be driven by market variables and non-financial factors. An extension in

this direction has been carried out in Uzelac and Szimayer (2012) where the bounds of

the surrender intensity further depend on the occurrence of two possible economic states.

Further, as indicated in Remark 3.3.1 we can extend the model to allow for stochastic in-

terest rates and stochastic volatility. The general results in Proposition 3.3.1 and Proposi-

tion 3.3.2 and the respective corollaries are likely to carry over. However, in a multi-factor

model solving the valuation PDE can easily become a high dimensional problem. In this

case, least-squared Monte Carlo simulation following Longstaff and Schwartz (2001) can

be adapted. This issue will be addressed in our future research. A further interesting

perspective is to incorporate a secondary market where the policyholders are given the

additional option to sell their contracts to a third party. The impact of a secondary mar-

ket on contract valuation and fair contract design could be significant. This problem is

addressed in Hilpert, Li and Szimayer (2011).
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Chapter 4

Concluding Remarks

In this dissertation we have studied two types of financial derivatives, namely, basket FX

derivatives and unit-linked life insurance contracts.

For the pricing and risk management of basket FX derivatives, two types of financial risk

are influential, the interest rate risk and the exchange rate risk. We have first presented

the international financial market model based on Amin and Jarrow (1991) to describe

these two risk factors. The underlying of basket FX derivatives is a basket of foreign

currencies, whose exchange rates to the domestic currency follow geometric Brownian

motions within our international financial market model. To cope with the difficulty that

the distribution of such basket is unknown to us and thus the closed-form solution to the

pricing problem is not available, we have suggested the rank one approximation method in

combination with three moment matching. We have shown that this method outperforms

one of the popular approximation methods–the lognormal approximation method which

is often used for the approximation pricing of basket derivatives. Based on the prices

obtained through the rank one approximation method, both the dynamic and the static

hedging strategies were examined with regard to their hedging performances.

When studying unit-linked life insurance contracts, we have neglected the interest rate

risk to simplify the problem and only assumed the financial risk related to the underlying

asset. The focus has been set on the two other risk sources which are determinant for the

contract valuation. One is the mortality risk, and the other one is the surrender risk.

The mortality risk is represented by the mortality intensity, which is deterministic when

there is only unsystematic mortality risk and stochastic when systematic mortality risk

also exists. In recent years, there has been the consensus that the mortality intensity is

governed by certain stochastic processes. In this dissertation, we have focused on model

risk arising from different specifications for the mortality intensity. To do so we have

assumed that the mortality intensity is almost surely bounded under the statistical mea-

sure. Further, we have restricted the equivalent martingale measures and applied the same
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bounds to the mortality intensity under these measures. For this setting we have derived

upper and lower price bounds for unit-linked life insurance contracts using stochastic con-

trol techniques. We have also shown that the induced hedging strategies indeed produce

a dynamic superhedge and subhedge under the statistical measure in the limit when the

number of contracts increases. This has justified the bounds for the mortality intensity

under the pricing measures. We have provided numerical examples investigating fixed-

term, endowment insurance contracts and their combinations including various guarantee

features. The pricing partial differential equation for the upper and lower price bounds

has been solved by finite difference methods. For our contracts and choice of parameters

the pricing and hedging has been fairly robust with respect to misspecification of the

mortality intensity. The model risk resulting from the uncertain mortality intensity has

been of minor importance.

The surrender risk is relevant when unit-linked life insurance contracts allow for prema-

ture termination. Instead of solving an optimal stopping problem, we have proposed a

more realistic approach accounting for policyholders’ monetary rationality in exercising

their surrender option. The valuation has been conducted at the portfolio level by assum-

ing the surrender intensity to be bounded from below and from above. The lower bound

corresponds to purely exogenous surrender and the upper bound represents the limited

monetary rationality of the policyholders. The valuation problem has been formulated by

a valuation PDE and solved with the finite difference method. We have shown that the

monetary rationality of the policyholders has a significant effect on average contract value

and hence on the fair contract design. We have also presented the separating boundary

between purely exogenous surrender and endogenous surrender. This has provided impli-

cations on the predicted surrender activity of the policyholders.

The real world could be more complicated either by nature or by man in various aspects.

In the long run, interest rate is more likely to be stochastic, and so is the volatility of the

underlying asset. These financial risk factors may have impact on the mortality model

risk and the surrender risk we have investigated above. Moreover, the bounds of the

surrender intensity could be driven by market variables and non-financial factors. These

issues will be studied in our future research. In a multi-factor model, it is not suitable

to apply the PDE approach any more due to the high dimensionality of the problem.

We will adapt the least-squared Monte Carlo simulation method following Longstaff and

Schwartz (2001) to study the open questions we have proposed above.



Appendix: The Bounds of the

Mortality Intensity

The bounds of the mortality intensity are obtained through the Lee-Carter model. The

Lee-Carter model in Lee and Carter (1992) and its various extensions, see, e.g., Lee

(2000), have been used successfully to forecast the death rates of the population in many

developed countries, such as USA, Canada, Japan, Chile, Belgium, Austria and Australia.

Lee and Carter (1992) describe the logs of the age-specific death rates m(t, x) by a linear

function of an unobserved period-specific intensity index kt with age-specific parameters

ax and bx .1 After the estimation of ax and bx as well as kt in the past, a time series

model is applied to describe the dynamics of k so as to forecast its future development,

based on which the central death rate is forecasted and its confidence interval was found.

The link between the central death rate and the mortality intensity is mt =
∫ t+1

t
νu du .2

Assuming that there would be no extreme change with the mortality intensity within one

year, the same confidence interval that bounds the death rate should also be a suitable

bound for the mortality intensity. The age-specific parameters we use in this paper are

presented in Table A.

Concerning the mortality index k , we take the ARIMA time series model estimated by

Lee and Carter but without the dummy term, namely, kt = kt−1−0.365+et . The standard

error of the estimation (see) is assumed to be 0.651 and k0 is equal to −18 . Also for

the sake of simplicity, we make the assumption that there are no estimation errors with

the age-specific parameters. The uncertainty of the mortality forecast is supposed to be

only attributed to the random behavior of the mortality index k . Under this assumption,

1The constraint serves to normalize the solutions, see Lee and Carter (1992). It should be pointed out
that here x denotes the age of an individual at time t instead at time 0 as we have referred to in the
previous part. We allow this abuse of notation to keep consistent with the literature on the Lee-Carter
model. In the later part, we always refer x to the age of an individual at time 0 .

2Focusing only on the policyholders who are aged x at time 0 , we omit x in the index and denote
the central death rate at time t as mt .
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Table A: The age-specific parameters ax and bx
x ax bx

40-44 -5.51323 0.05279
45-49 -5.09024 0.04458
50-54 -4.65680 0.03830
55-59 -4.25497 0.03382
60-64 -3.85608 0.02949
65-69 -3.47313 0.02880
70-74 -3.06117 0.02908
75-79 -2.63023 0.03240

80 -2.20498 0.03091

we obtain that the confidence interval of the mortality intensity at confidence level p by

µ40+t ∈
[
exp

(
a40+btc + b40+btc (k0 − btc 0.365)− q b40+btc see

√
btc
)
,

exp
(
a40+btc + b40+btc (k0 − btc 0.365) + q b40+btuc see

√
btc
)]

,

for 0 ≤ t ≤ 30 , and q = Φ−1((1 + p)/2) .
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