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Abstract

We investigate from the point of view of quantum statistical mechanics certain

groupoids and C*-dynamical systems arising from Shimura varieties. Shimura

varieties are higher dimensional analogues of elliptic modular curves, and play

an important role in modern number theory.

The starting point of our investigation is the Bost-Connes C*-algebra

which is the convolution algebra of functions on the groupoid defined by the

(partial) action of GL+
1 (Q) on Ẑ (the profinite completion of the integers).

This C*-algebra is the complexification of a distinguished rational subalgebra,

and comes with a canonical time evolution, which moreover commutes with

an action by the Galois group Gal(Qab/Q). The resulting C*-dynamical

system has remarkable arithmetic properties: when regarded as the algebra

of observables of a quantum statistical mechanical system, its equilibrium

states at zero temperature (more specifically, its KMS∞ states) take values

in Qab when evaluated on the rational subalgebra, and the Galois action

on Qab/Q matches the Galois action on equilibrium states. An analogue of

the Bost-Connes system having a similarly rich arithmetical structure was

recently constructed by Connes-Marcolli for the group GL2.

The Bost-Connes and Connes-Marcolli systems are seen to be associated

to the Shimura varieties for GL1 and GL2, respectively, and in this thesis

we carry out the construction of Bost-Connes-Marcolli systems (consisting

of a groupoid and an associated C*-dynamical system) for general Shimura

varieties. We study the detailed structure of the underlying groupoid, attach

to it various zeta functions (that coincide with statistical-mechanical partition

functions and, in certain cases, classical zeta functions), and analyze its

low-temperature KMS states. We also study various special cases. Our

Shimura-variety approach provides a unified treatment of such C*-dynamical
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iv Abstract

systems, and for the first time allows for the construction of a Bost-Connes

system for a general number field F that admits symmetry by the group of

connected components of the idèle class group of F (which is isomorphic to

Gal(F ab/F ) by class field theory), and recovers the Dedekind zeta function

as a partition function. One noteworthy (and rather crucial) ingredient in

our constructions is a reductive monoid for the reductive group associated

to the Shimura variety. Such monoids, which have been studied by Lenner,

Putcha, Vinberg, and Drinfeld, are closely related to reductive groups, but

(to the best of our knowledge) have hitherto played little role in the theory of

Shimura varieties. Our work reveals their relation to noncommutative spaces.
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Some Notational Conventions

Units and Superunits One potential notational pitfall is the distinction that

we make between the superscripts × and ∗. Given an inclusion of rings A ⊂ B,

we write A× for the multiplicative group of units of A, while we write A∗ for

the multiplicative monoid of elements in A that are invertible in B (which

we call the superunits of A with respect to B), that is, A∗ = A ∩ B×. To

take an example of this notational distinction, for the inclusion Z ⊂ Q we

have Z× = {±1}, while Z∗ = Z− {0}. In examples such as this one where

the given ring A comes with a canonical inclusion, the notation A∗ will be

employed without explicit mention of the ambient ring B.

Algebraic Groups Regarding algebraic groups, we employ standard notation.

Thus, if G is an algebraic group over Q, then for any Q-algebra A, the group

of A-valued points of G is denoted by G(A); the connected component of the

identity of G(R) is G(R)+, and G(Q)+ = G(Q) ∩G(R)+.

Adèles Our notation concerning adèles and such is standard. We denote

the profinite completion of the integers Z by Ẑ: this is the (compact) ring

Ẑ = lim←− Z/nZ =
∏
p

Zp

where Zp are the p-adic integers. The locally compact ring of finite adèles

is Af = Q ⊗Z Ẑ, while the full ring of adèles is A = R × Af . Similar

conventions apply for any number field F . For example, the ring of F -

adèles is AF = A ⊗Q F , the profinite completion of the F -integers OF is

ÔF = OF ⊗Z Ẑ, and so on.

vii



viii Some Notational Conventions



Chapter 1

Introduction

Arithmetic geometry, as it is usually regarded, is the algebraic geometry

of varieties (or schemes) defined over arithmetic fields, often investigated

with a view towards Diophantine equations. However, it has recently been

discovered that a noncommutative geometry of arithmetic varieties sometimes

lurks beyond the reach of the usual tools of algebraic geometry. Such is the

case, for example, at the boundary of modular curves, where the addition

of noncommutative elliptic curves enriches the classical theory of modular

symbols (see [33, Chapter 2]).

One passage from the notion of space to the notion of noncommutative

space is opened by the (anti) equivalence between the category of locally

compact Hausdorff spaces and the category of commutative C*-algebras

(Theorem of Gelfand-Naimark, [9]); namely, a noncommutative space is the

“space” corresponding to a noncommutative algebra, which is then regarded as

a noncommuting algebra of “coordinates”. That this is a real mathematical

concept, and not merely a synonym for noncommutative algebra, owes in large

part to the extensively developed theory of the geometry and topology of such

spaces that has arisen around the work of Alain Connes. His approach, based

on abstract functional analysis, has thus far yielded the most spectacular

results, with applications to foliations, index theory (vastly generalized), the

Novikov conjecture, and the Standard Model of particle physics; see [9] for a

panorama of this marvelous mathematical world. In short, noncommutative

spaces have been found to be abundant in (mathematical) Nature, and their

1



2 Chapter 1. Introduction

geometry plays a role even in elucidating the finer structure of classical spaces.

This thesis lies in the intersection of number theory, noncommutative

geometry, and physics. Much of this work is an outgrowth of a fruitful collab-

oration with Frédéric Paugam (Institut de Mathématiques de Jussieu, Paris).

We show that for any Shimura variety there is a naturally associated quantum

statistical mechanical system (QSM). For particular Shimura varieties such

systems furnish physical settings for explicit class field theory, as shown in

the seminal work of J.-B. Bost and Connes [3], and Connes, M. Marcolli, and

N. Ramachandran [14]; it is hoped that this will lead to a new approach to

explicit class field theory (Hilbert’s 12th problem). Moreover, our general-

ization of certain aspects of these works uncovers fascinating new facets in

the study of Shimura varieties, which play a central role in the Langlands

program.

What Bost and Connes discovered is that the following C*-dynamical

system (A1, σt) recovers the class field theory of Q when interpreted as a

QSM. Here A1 is the C*-algebra of the groupoid

G1 =
{

(r, ρ) | rρ ∈ Ẑ
}
⊂ Q×

+ × Ẑ

of the partially defined action of Q×
+ on Ẑ, and σt is a certain 1-parameter

group of automorphisms of A1. To regard (A1, σt) as a QSM means that one

distinguishes, for each inverse temperature 0 < β ≤ ∞, the β-equilibrium

states of (A1, σt), which are characterized mathematically by the KMSβ con-

dition [21]. Important statistical mechanical functions take on an arithmetic

significance in this setting; for example, the partition function coincides with

the Riemann zeta function. To make the connection to the class field theory

of Q, Bost and Connes showed that:

1. A1 admits a symmetry by the action of the profinite group Ẑ× which

commutes with the time evolution σt, and which therefore acts on the

KMSβ states; and

2. A1 is generated (over C) by a natural rational subalgebra AQ
1 . Im-

portantly, AQ
1 has an explicit presentation and is preserved by the Ẑ×

action.
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In general, for any given β, the space of KMSβ states forms an infinite-

dimensional compact convex simplex. The evaluation of the extremal KMS∞

states on AQ
1 yields the generators of the maximal abelian extension Qab of Q,

and the Galois action on these numbers coincides with the Ẑ× action on the

KMS∞ states via the class field theory isomorphism Ẑ× ∼= Gal(Qab/Q). In

hindsight, one recognizes the space of extremal KMS∞ as the Shimura variety

Sh(GL1, {±1})(C).

The phenomena that appears in the work of Bost-Connes has been formu-

lated as the problem of “Fabulous States” (see [11] and [14]), which makes its

relation to Hilbert’s 12th problem clearer. Roughly speaking, given a number

field F , one seeks a QSM (A, σt) such that:

1. As an algebra, A = AF ⊗F C for some F -algebra AF ;

2. The KMS∞ states yield the maximal abelian extension F ab of F upon

evaluation on AF ; and

3. There is a symmetry of (A, σt) by the group GF = Gal(F ab/F ) such

that the evaluation of KMS∞ states intertwines the GF action on AF

with the usual Galois action of GF on F ab/F .

Additionally, one expects to recover the Dedekind zeta function as partition

function.

The noncommutative-geometric underpinning of the Bost-Connes system

was discovered by Connes and Marcolli. They showed that A1 is the noncom-

mutative space of Q-lattices in R (lattices in R together with a labeling of its

torsion points), up to commensurability and scaling by R×
+. This realization

of the Bost-Connes system as a noncommutative space leads naturally to

the higher dimensional analogue of spaces of Q-lattices in Rn. For n = 2,

this leads to a QSM (A2, σt) having many of the features of the Bost-Connes

system:

1. It is the C*-algebra of the quotient of the groupoid of commensurability

classes of Q-lattices in C modulo scaling by C×;

2. There is an explicit classification of the KMS∞ states of (A2, σt);
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3. There exists a natural action of the group Q×\GL2(Af) commuting

with the time evolution;

4. There is a rational subalgebra AQ
2 of the algebra of unbounded multipliers

of A2 to which the Q×\GL2(Af) action, and also the evaluation of KMS∞

states, extends; and most importantly for applications

5. The action of the symmetry Q×\GL2(Af) on the KMS∞ states recovers

the Shimura Reciprocity Law upon evaluation on the rational algebra AQ
2 .

Again, one finds that the set of extremal KMS∞ states is a manifestation of

a Shimura variety, in this case

Sh(GL2,H±)(C) ∼= GL2(Q)\GL2(Af)×H±.

One can regard the noncommutative space

GL2(Q)\M2(Af)×H±

of (not necessarily invertible) Q-lattices up-to-scaling as a deformation of this

Shimura variety.

Key to identifying the geometry of the Bost-Connes and Connes-Marcolli

systems is the interpretation of the underlying groupoid as a (badly-behaved)

generalized equivalence relation on the space of Q-lattices. In fact, given

the possible connection between Hilbert’s 12th problem and the systems of

Bost-Connes-Marcolli, it is almost expected that Shimura varieties should play

a more active role in any generalization aimed at reinforcing such a link. Thus,

the starting point of our work is to bring the Shimura variety to the fore and

incorporate it into the construction of the groupoid. In this way we manage to

construct a QSM for general Shimura varieties which, in addition to recovering

the constructions of Bost-Connes and Connes-Marcolli, preserves the main

features of these systems in general, and has, as we shall briefly discuss below,

the primary desirable features in the case of multiplicative Shimura varieties

(these features are needed to accommodate so-called “fabulous states”).

Let us give a quick overview of our construction, which starts with a

Shimura datum (G,X), as defined by Deligne [16]. A Shimura datum consists
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of a reductive algebraic group G over Q and a certain Hermitian symmetric

domain X associated to G, subject to axioms that ensure that

Sh(G,X)(C) = lim←−
K

G(Q)\G(Af)×X/K,

where K runs over the compact open subgroups of the adèlic group G(Af),

are the complex points of a scheme Sh(G,X) defined over a number field.

To promote (G,X) to a QSM, we consider two extra pieces of data (implicit

in the constructions of Connes-Marcolli). The first is an augmentation of

(G,X) by the addition of a so-called enveloping algebraic monoid M satisfying

M ⊂ End(V ) and M× = G, for some representation V of G. The second is

the specification of level structure data consisting of a compact open subgroup

K ⊂ G(Af), and a compact open semigroup KM ⊂ M(Af) with K ⊂ KM

(and, additionally, a lattice in V , for technical reasons).

With these two pieces in hand, we define the following generalization of

the Bost-Connes-Marcolli systems. One has the groupoid

G ⊂ G(Af)×
(
KM × Sh(G,X)(C)

)
of the partially defined action of G(Af) on KM × Sh(G,X)(C), generalizing

the commensurability relation for Q-lattices. The quotient of G by the

(K ×K)-action (k1, k2) · (g, (ρ, [x, h])) = (k1gk
−1
2 , (k2ρ, [x, hk

−1
2 ])) is a (stack)

groupoid

Z := (K ×K)\G ⇒ K\
(
KM × Sh(G,X)(C)

)
,

and an appropriate C*-completion of the convolution algebra of Z is the

Shimura variety generalization of the Bost-Connes-Marcolli (BCM) system

[19]. We call this the Shimura BCM system (A, σt).

The systems of Bost-Connes and Connes-Marcolli are obtained from the

Shimura BCM system by specializing to the cases (G,X) = (GL1, {±1}) and

(G,X) = (GL2,H±), respectively. And as in these cases, the general Shimura

BCM system enjoys many of the same statistical mechanical features: there

is a naturally defined time evolution, a symmetry by endomorphisms, and a

partition function. Likewise, the “invertible” points ofKM×Sh(G,X)(C) yield

extremal low temperature KMS states (under some convergence assumptions



6 Chapter 1. Introduction

on the partition function): such states take the form

φy(f) =
Tr(πy(f)e−βHy)

Z(β)
,

where y is an “invertible” point of KM × Sh(G,X)(C), πy is a certain Hilbert

space representation of A, Hy is the Hamiltonian in this representation, and

Z is the partition function.

We found this construction in the process of formulating the Bost-Connes-

Marcolli system in adèlic terms, the motivation for which was the problem of

constructing a Bost-Connes-like system for an arbitrary number field F . In

view of its possible relation to Hilbert’s 12th problem, such a system ought

to realize the Dedekind zeta function of F as partition function, and admit

symmetry by the group π0(F
×\A×

F ). Open for ten years since the paper of

Bost-Connes, this problem, which had only recently been solved in the case

of imaginary quadratic F [14], is now solved by our generalization, by special-

izing the Shimura BCM to the case (G,X) = (ResF/Q(Gm,F ), {±1}Hom(F,R))

(together with a certain choice of monoidal augmentation and level structure

data). Earlier partial solutions of this problem (by Paula Cohen [7], Harari

and Leichtnam [22], and Laca and van Frankenhuijsen [28]) were hindered

either by the absence of the full symmetry group or of the desired partition

function, or by the restriction to fields of class number 1. Our solution to this

problem is general, and free of such constraints, as far as having the correct

partition function and the correct symmetries. There remains, however, the

important but difficult problem of classifying KMS states and understanding

their arithmetic properties.

An Outline of this Thesis

This thesis consists of four parts, aside from this introduction. It is an

outgrowth of the joint article [19] with F. Paugam, and many of the points

discussed there are explained more fully here.

In the first part, we supply the background necessary for the rest of

the thesis. This background material includes various technical facts about

operator algebras, Shimura varieties, and stacks. We have also included an

miniature introduction to quantum statistical mechanics by way of (a very
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simple) example, and we’ve taken groupoids (which abound in this thesis) as

an excuse to make a fun little excursion into noncommutative space.

The second and third parts are the main parts and form the bulk of this

thesis. There we lay out our construction of the Shimura-variety generalization

of the Bost-Connes and Connes-Marcolli systems, and study some examples.

In particular, in the third part it is shown that our constructions unify all

the Bost-Connes-like systems studied by Connes and his collaborators. Of

particular note is the specialization to toroidal Shimura varieties which yields

a Bost-Connes analogue for number fields having the sought-after symmetry

and partition function. Part two begins with a rather long motivational

section, with the intention that once the basic cases are well-understood, the

passage to the general case will seem natural to the reader.

In the fourth and final part, we consider possible directions for future

work, though no precise conjectures are made. This part is a bit of a wild

romp. While it makes plain the gaps in this thesis, we hope that it also

indicates the breadth of interaction between noncommutative geometry and

arithmetic that is left to be explored.
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Chapter 2

Background

In this chapter we review the core background in operator algebras, groupoids,

and Shimura varieties that is necessary to understand the main constructions

given in Chapter 3. Aside from some material on stacks (and in particular, on

stack-groupoids), all of the material that we review here is well-known. But

because there has traditionally been very little intersection between operator

algebras and Shimura varieties, the number of people well-versed in both

fields is likely rather small. It is our contention that these two fields can

profitably interact. Therefore, we have chosen to cover some rather basic

material to facilitate reading of the later parts, even when such material is

already well-documented elsewhere.

We will also discuss the mathematical framework of quantum statistical

mechanics, and the notion of a noncommutative space, as these will play an

important role in motivating the construction and analysis of certain algebras

that are the main objects of this thesis (see Chapter 3).

2.1 Operator Algebras and Quantum Statistical Me-

chanics

In this section we give a rapid and concise review of some basic definitions

from the theory of C*-algebras, emphasizing those parts relevant to quantum

statistical mechanics. Obviously, we have left out a lot. The reader desiring

a thorough treatment will have to consult the literature; in particular, the

9



10 Chapter 2. Background

two-volume set [4] and [5] of Bratteli and Robinson is ideal for our purposes.

For an overview of the grand physical picture, see [20]. For a more elementary

introduction to both the mathematical and physical aspects of quantum

statistical mechanics, see [47].

C*-Algebras

Definition 2.1. A C*-algebra is a (not necessarily unital) complex algebra A

endowed with a conjugate-linear involutive anti-automorphism ∗ : A → A,

and a norm ‖·‖, satisfying the following conditions.

1. A is complete with respect to the norm, and ‖ab‖ ≤ ‖a‖ ‖b‖ for all

a, b ∈ A (i.e., A is a Banach algebra); and

2. Every a ∈ A satisfies the C*-condition: ‖aa∗‖ = ‖a‖2.

Actually a C*-algebra is not as abstract as it may seem from this definition,

because every C*-algebra can be realized as a norm-closed sub-*-algebra of the

algebra of bounded operators on a Hilbert space (Theorem of Gelfand-Naimark

[4, Theorem 2.1.10]), and every such subalgebra is a C*-algebra.

The Mathematical Framework of Quantum Statistical Mechanics

The operator algebraic formulation of quantum statistical mechanics (see the

introduction to [4]) consists of a C*-algebra A together with a 1-parameter

group of automorphism σt : A → A, which is continuous in the sense that

t 7→ σt(a) is continuous for every a ∈ A. The algebra A is then the algebra of

quantum observables, while σt is the time evolution. The pair (A, σt) is an

example of a C*-dynamical system. The states of the C*-algebra A are the

continuous complex-linear functionals Φ of norm 1 which are positive, i.e.,

Φ(a∗a) ≥ 0 for every a ∈ A. The number Φ(a) is then the expectation value

of the observable a in the physical state Φ.

To regard the pair (A, σt) as a statistical mechanical system we need an

appropriate notion of an “equilibrium state” at temperature T = 1/β. This

is provided by the KMS condition.
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Im z = 0

Im z = β

0

iβF (t+ iβ) = φ
(
σt(b)a

)

F (t) = φ
(
aσt(b)

)

Figure 2.1: The KMS condition

Definition 2.2. Let 0 < β <∞ be a real number. A state φ of a C*-dynamical

system (A, σt) is said to obey the KMSβ-condition if the following holds: For

every pair of elements a, b ∈ A, there is a holomorphic function F on the

open horizontal strip

Ω = { z ∈ C | 0 < Im z < β }

that extends to a bounded continuous function on the closure of Ω, where it

takes on the boundary values

F (t) = φ
(
aσt(b)

)
and F (t+ iβ) = φ

(
σt(b)a

)
(t ∈ R).

(See Figure 2.1.)

This definition of the KMSβ condition also makes sense for the value

β =∞, where it becomes the condition that the function

F (t) = φ
(
aσt(b)

)
(t ∈ R)

extends to a holomorphic function on the upper half plane. But as noted in

[11, §1.2], such a definition of a KMS∞ state has some undesirable properties.

In particular, for the trivial time evolution, any state would then be a KMS∞

state, whereas weak limits of KMSβ states are tracial. A better definition of

KMS at β =∞ is the following.

Definition 2.3. A KMS∞ state is a weak limit of KMSβ states as β →∞.

Definition 2.2 is the usual formulation of the KMS condition that one

often sees in the literature, although in practice it is easier to use the following

equivalent characterization.
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Proposition 2.1. Let (A, σt) be a C*-dynamical system, and let Φ be a state

of A.

1. ([4], Corollary 2.5.23) There is a norm-dense *-subalgebra Aan of A

such that for every a ∈ Aan, the function t 7→ σt(a) can be analytically

continued to an entire function.

2. ([5], Definition 5.3.1 and Corollary 5.3.7) The state Φ is a KMS-β state

if and only if

Φ
(
aσiβ(b)

)
= Φ(ba)

for all a, b in a norm-dense σt-invariant *-subalgebra of Aan.

Structure of the Set of KMS States

We now proceed to a description of the structure of the set of KMSβ states.

But before doing so, we need to explain the GNS construction, which is

a method of getting representations of a C*-algebra from its states; it is

fundamental in the theory of operator algebras. We also need to define the

notion of a factor state.

Notation 2.1. Given a Hilbert space H, we denote the C*-algebra of all

bounded operators on H by B(H), and the inner product on H by 〈·, ·〉.

Proposition 2.2. Let Φ be a state of a C*-algebra A. Then there is a triple

(HΦ, πΦ, ξΦ)

consisting of a representation πΦ of A on a Hilbert space HΦ and a unit

vector ξΦ ∈ HΦ such that:

1. Φ(a) = 〈πΦ(a)ξΦ, ξΦ〉 for all a ∈ A; and

2. The orbit πΦ(A)ξΦ is norm-dense in B(HΦ).

The triple (HΦ, πΦ, ξΦ) is unique up to unitary equivalence.
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Briefly, the GNS representation is the representation of A on itself by right

multiplication; a pre-Hilbert space structure is given by the inner product

〈a, b〉 = φ(b∗a), and to get a Hilbert space representation one passes to the

completion of the corresponding norm (on the quotient by the 〈·, ·〉-kernel).

The states of particular relevance to the KMS theory are the factor states.

These are the states Φ for which the corresponding GNS representation πΦ

generates a factor, which is to say that the weak closure of πΦ(A) in B(HΦ)

has centre consisting of the scalar operators. This weak closure is an example

of a von Neumann algebra, i.e., a strongly closed unital *-subalgebra of

some B(H).

We can now state the main structure theorem for the set of KMSβ states.

Proposition 2.3 (Structure of KMS states; [5], Theorem 5.3.30). The set Eβ
of KMSβ states is a convex, weak*-compact simplex. The extreme points of Eβ
are precisely those KMSβ states that are factor states.

The KMS Condition and the Notion of Equilibrium

The following example of a (highly simplified) finite quantum system lends

credibility to the claim that the KMS condition characterizes the notion of

equilibrium.

We take as our algebra A of observables the algebra of n-by-n complex

matrices, i.e., the (bounded) operators on the Hilbert space H = Cn. Then

every state of A is of the form

φ(a) = Tr(ρa), a ∈ A,

for some positive operator ρ with trace Tr(ρ) = 1; the operator ρ is called the

density operator of φ. Physically, for a (self-adjoint) observable operator a ∈ A,

the real number φ(a) is interpreted as the expectation value of the observable

in the state φ. The time evolution of A is determined by a self-adjoint

matrix H (the Hamiltonian operator), in the following manner:

a 7→ σt(a) = eitHae−itH , a ∈ A, t ∈ R.

(In fact, every 1-parameter family of *-automorphisms of A is of this form.)

Notice that σt can be defined for complex values of t.
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Now let φ be a state with density operator ρ. On physical grounds, if φ

is an equilibrium state, then it is expected to be the most random state of

average energy φ(H). More precisely, the randomness of φ is measured by its

entropy

S(φ) = −Tr(ρ log ρ),

and an equilibrium state is expected to maximize the scalar S(φ)− βφ(H).

One has the inequality

logZ(β) ≥ S(φ)− βφ(H),

where

Z(β) = Tr(e−βH)

is the partition function, and the solution of the variational problem is the

familiar Gibbs state:

φGibbs(a) =
Tr(e−βHa)

Z(β)
.

Thus, having established the Gibbs state as the equilibrium state of our

system (A, σt), we now show that it is also the unique KMSβ state. Indeed,

from the invariance of the trace under cyclic permutation it follows easily

that the Gibbs state satisfies the KMSβ condition. Conversely, suppose φ is a

KMSβ state with density operator ρ. The KMSβ condition says that

Tr(ρba) = φ(ba) = φ
(
aσiβ(b)

)
= Tr(ρae−βHbeβH), for all a, b ∈ A.

So using the invariance of the trace, we get

Tr
(
(aρ− eβHρae−βH)b

)
= 0, for all a, b ∈ A,

which clearly implies that

aρeβH = eβHρa, for all a ∈ A. (2.1)

But by a similar argument, the KMS condition also implies that any operator

that commutes with H (and hence is σz-invariant) also commutes with the

density operator ρ. Hence from Eq. (2.1) we see that ρeβH commutes with

all of A, which of course means that ρeβH is a scalar operator. This scalar

must be 1/Tr(e−βH) in order to have Tr(ρ) = 1. This proves that a KMSβ

state of our finite system is necessarily the Gibbs state.

Summarizing what we have just shown, we have:
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Proposition 2.4. Let σt be any one-parameter group of automorphisms of the

finite-dimensional C*-algebra A = Mn(C), and let H be the infinitesimal

generator of σt. Then for every β > 0, the Gibbs state

φβ,H(a) =
Tr(e−βHa)

Tr(e−βH)
, a ∈ A (2.2)

is the unique KMSβ state of the C*-dynamical system (A, σt).

An analysis of more realistic, and accordingly, more complicated, statistical

mechanical models (such as quantum lattice gases) lends further weight to

the interpretation of the KMS condition as a characterization of equilibrium:

See [23] or [46].

2.2 Groupoids and Noncommutative Spaces

Our introduction to groupoids will be through noncommutative geometry;

or to noncommutative geometry through groupoids — the distinction is

purposely somewhat unclear, as the two are rather tightly tied to one another

(at least in Connes’ approach). The notion of a noncommutative space will

play an important role in motivating the constructions in Chapter 3.

Lots of technical details about groupoids and stack-groupoids will come

in the next section, but here we will be a bit fuzzy in order to grasp the basic

ideas more quickly.

2.2.1 The Very Simplest Example: The Fuzzy Point

Indeed, fuzzy is one of the key idea. Even without explaining what a noncom-

mutative space is exactly,1 we can still explain the basic idea by starting with

a typical feature (or perhaps more aptly, non-feature) that noncommutative

spaces share: They have no meaningful points, or at least they are not defined

in terms of their points; or talking about points doesn’t get one very far (e.g.,

1In fact, there’s no consensus on what it should be precisely — being extremely varied, it
has thus far defied axiomatization. In any case, the more important goal is rather to know
when to recognize a noncommutative space, and when faced with one, to have effective
tools at one’s disposal.
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orbit spaces with dense orbits), etc. Let’s see what this means in a setting

that might not even seem reasonable according to this creed.

Take the simplest possible space, “the” space with one point. Call it X1.

But now imagine, if a space has no well-defined notion of point, then we

ought to be able to “resolve” X1, to two points, say. Then we get a space

X2 consisting of two points, but the points are now identified. Of course we

can continue “resolving” our one point space to X3, X4, and so on. Xn will

consist of n points, but again, they all have to be identified with each other.

And all the Xn’s should be regarded as “equivalent”.

2.2.2 Groupoids

The gadget that handles this fuzzy space problem in a precise manner is what

is known as a groupoid. Basically, the idea behind groupoids is that they

encode relations in a space, and not just the points of a space.

A groupoid is just a small category in which every morphism is invertible.

Spelling out what this means puts the definition into the following form (as

given in [9]).

Definition 2.4. A groupoid is a set G, together with a distinguished sub-

set G(0) ⊂ G, and two maps s, t : G ⇒ G(0), and an associative composition

G(2) := { (g1, g2) ∈ G×G | s(g1) = t(g2) } −→ G, (g1, g2) 7−→ g1g2

subject to the conditions:

1. t(g1g2) = t(g1) and s(g1g2) = s(g2);

2. s(g) = t(g) = g for all g ∈ G(0);

3. gs(g) = g = t(g)g for all g ∈ G;

4. Every g has a two-sided inverse g−1 satisfying g−1g = s(g) and gg−1 =

t(g).

Example 2.1. Groups are groupoids in which the unit space consists of one

point (the identity element).
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Example 2.2. Any equivalence relation on a set X can be regarded as a

groupoid: regard the equivalence relation as a subset of X ×X, and take the

law of transitivity as the composition.

Thus groupoids can be thought of as generalized equivalence relations. It

is often useful to think of a groupoid as defining orbits on its space of units.

Example 2.3. If a group G acts on a set X, then one can define a groupoid

GnX,

the so-called cross-product groupoid, which as a set is just G×X. Its unit

space is X itself (as the subset {1} × X). The source and target maps

are s(g, x) = x, t(g, x) = g · x. Inversion is given by (g, x) = (g−1, gx).

Composition is given by (g, x)(h, y) = (gh, y), which is only defined when

x = hy.

If G on acts partially on X, i.e., if for any given g ∈ G, the action “g · x”
is only defined for certain x ∈ X, then one can still define the cross-product.

It has exactly the same structure as above, but of course, now only the pairs

(g, x) for which g · x is defined are allowed.

Partially defined cross-products arise when, for example, G acts on a

space X ′ containing X, but X itself is not stable under the G-action. Then

GnX = { (g, x) | g · x ∈ X } .

The main groupoids in this thesis are all cross-product groupoids. Also

important are quotients of cross-products, which may, however, fail to be

groupoids themselves.

The groupoid Gn of our fuzzy space Xn can be regarded as the complete

graph on n vertices in which every edge is replaced by arrows in both directions.

The description in set-theoretic terms is fairly obvious: Gn corresponds to

the set of pairs (i, j) with i, j ∈ { 1, 2, . . . , n }, with source and target maps

s(i, j) = j and t(i, j) = i. The units correspond to the “diagonal” pairs (i, i).

The inverse of (i, j) is (j, i). The composition (i, k)(k, j) is (i, j).

2.2.3 Groupoid C*-Algebras
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Now that we have the groupoid Gn encoding the equivalences between the

points of Xn, we can give Connes’ description of the noncommutative “point”

as a description of Xn (together with the relations between its points!) in

terms of its corresponding function algebra. The motivation for taking this

point-of-view comes from the following conceptually important theorem of

Gelfand-Naimark, which characterizes locally compact spaces in terms of their

function algebras.

Theorem 2.1 (Gelfand-Naimark, [9], §II.1). Let S be the category of locally

compact Hausdorff spaces, and let A be the category of (not necessarily unital)

commutative C*-algebras. Then the functor

S −→ A, X 7→ C0(X)

is an (anti-)equivalence of categories. Here C0(X) is algebra of complex-valued

continuous functions of X vanishing at infinity. The inverse functor sends

the commutative C*-algebra A to its spectrum (the space of characters).

According to Connes’ conception of noncommutative geometry, one can

get a finer description of the orbit space by an equivalence relation by con-

sidering instead the algebra of functions on the graph of the equivalence

relation. Likewise, the algebra of functions on a groupoid is, in the spirit of

Gelfand-Naimark, the algebraic description of a space in which the relations

are described by the groupoid. Of course, the resulting function algebra

should remain true to the structure of the groupoid. Thus, we are lead to

consider groupoid C*-algebras. We describe what this is for our fuzzy space

groupoid Gn.

For Gn, the groupoid C*-algebra, call it An, consists of the complex-valued

functions on Gn, and the multiplication of functions is determined by the

groupoid structure, i.e., the product of two functions is their convolution.

Precisely, if f1, f2 ∈ An, then

f1 ∗ f2(i, j) =
∑
k

f1(i, k)f2(k, j).

But this is simply matrix multiplication. Therefore, we find that

An = Mn(C),
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the algebra of n-by-n matrices with entries in C. The groupoid inversion

together with complex-conjugation gives the involution f ∗(i, j) = f(j, i) in

An, thereby giving An a C*-structure. It obviously coincides with the adjoint

operation for matrices.

Rather than going into the general theory of groupoid C*-algebras (for

which the canonical reference is [42]), we will define C*-algebras of groupoids

later, as the need arises, and only for the particular groupoids of interest (see

Section 3.3.2, for example). The point of the above discussion was to explain

the geometric ideas with as little clutter as possible.

2.2.4 Morita Equivalence

Finally, we see how to regard all our fuzzy spaces X1, X2, etc., as equivalent.

The matrix algebras C = M1(C), M2(C), etc., though clearly not isomorphic,

are Morita equivalent, i.e., they all have equivalent categories of (left) modules

(checking this is a pleasant exercise). In noncommutative geometry Morita

equivalence is taken as the right notion of equivalence of noncommutative

spaces described by noncommutative algebras; in the C*-context, the more

appropriate notion is that of Rieffel’s strong Morita equivalence; we refer the

reader to [9, Appendix A of Chapter 2].

Remark 2.1. We worked with the fuzzy one-pointed space as our basic example

for reasons of simplicity, but of course it is too simple to illustrate the truly

useful aspect of groupoids, namely: Groupoids keep track of points with

internal structure, i.e., points with automorphisms. This is a very familiar

situation in moduli problems in algebraic geometry where moduli spaces

often cannot be represented by schemes because of the presence of non-trivial

automorphisms which get wiped out in taking coarse quotients; the solution

is the notion of a stack, which in the first approximation comes about by

replacing the usual functor of points with a functor from (Schemes) (or better,

(S-Schemes)) taking values in the category of groupoids (thus, a certain

category of categories). To pass from this first approximation to the full

notion of a stack, one needs also to consider “descent conditions” (for example,

see [18]). In the next Section we will deal with some of these matters in more

detail.
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Now as for our fuzzy point, a more interesting version would be had

by replacing the trivial groupoid G1 with a non-trivial group H, which

corresponds to a point with automorphism group H. Then the Morita

equivalence class of our point-with-automorphisms would be the Morita

equivalence class of the group C*-algebra C∗(H), which in general is not

Morita equivalent to a commutative C*-algebra.

2.3 Some Technical Aspects of Stack-Groupoids

Having now gone through a leisurely introduction to groupoids and groupoid-

algebras, we come now to the discussion of the more technical aspects of

groupoids and topological stack-groupoids; in fact, our main goal in this

section is to set the framework for formulating the proper definitions. In

this thesis, stack-groupoids will arise as quotients of groupoids by non-free

non-transitive group actions (see Section 3.3.2). The purpose of this section

is not to take a long excursion into stack theory, but rather to give some

indication of the true nature of the spaces we will encounter in Chapter 3, and

to give the technical detail required to make their description rigorous. The

exposition that follows is streamlined for reasons of space-time constraints, so

the technical prerequisites are greater. If this background section seems more

pedantic than the others, that’s purposely so, because a rigorous definition of a

stack-groupoid (as opposed to just a stack) is difficult to find the literature. To

some extent, the main difficulty in understanding stack-groupoids is wrapping

one’s head around the notion of a higher category.

General references for this section are: [29] (the bible of algebraic stacks),

[18], and [40] (topological stacks). The forthcoming book by Behrend et al.

is recommendable (though, unfortunately, only small parts of it are currently

available). Relevant information on 2-categories can be found in [25], [51],

and [49].

2.3.1 Topological Stacks and Stack Groupoids

Roughly speaking, a topological stack is a stack on the site Top of topological

spaces with open coverings, i.e., a category fibered in groupoids fulfilling some
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descent condition (see [29, Définition 3.1]):

• Isomorphisms between two objects form a sheaf;

• Every descent condition with respect to an open covering is effective.

A stack-groupoid is a groupoid in the category of topological stacks, i.e.,

the datum of a tuple

(X1,X0, s, t, ε,m) (2.3)

composed of two stacks X1 and X0, equipped with source and target 1-

morphisms

s : X1 → X0, t : X1 → X0

a unit ε : X0 → X1, and a composition m : X1 ×
s,X0,t

X1 → X1:

X1

s //
t

// X0

εtt
, X1 ×

s,X0,t
X1

m−→ X1.

The 1-morphism

(IdX1 ×m) : X1 ×
X0

X1 → X1 ×
X0

X1,

that should be thought of as sending a pair (a, b) of composable morphisms to

the pair (a, ab), is supposed to be an equivalence (which implies the existence

of an inverse for the composition law). This tuple should be equipped with

the additional data of an associator

Φ: m ◦ (m× IdX1)
∼

=⇒ m ◦ (IdX1 ×m),

and two unity constraints

U : m ◦ (IdX1 × ε)
∼

=⇒ IdX1 and V : m ◦ (ε× IdX1)
∼

=⇒ IdX1 ,

fulfilling some higher coherence (or cocycle) conditions: pentagon, etc. We

do not write these down, due to the typographical challenges involved, but

also because we prefer to use Toen’s viewpoint of Segal groupoid stacks,

which allows one to forget these conditions by including them in the choice of

inverses for some equivalences in a simplicial diagram.

In view of the moduli-theoretic origins of the notion of a stack-groupoid,

there is, of course, a corresponding notion of a coarse quotient. For convenience

of future reference, we record the definition here.
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Definition 2.5. Let (X1,X0, s, t, ε,m) be a tuple as before. Its coarse quo-

tient is by definition the quotient of the coarse moduli space |X0| (space of

isomorphism classes of objects in X0) by the equivalence relation generated

by

x0 ∼ x′0 ⇔ ∃x1 ∈ |X1| such that s(x1) = x0 and t(x1) = x′0.

2.3.2 Toen’s Approach via Segal Stack-Groupoids

Toen has proposed a very concise and elegant definition of the 1-category of

stack-groupoids. It is based on the simplicial point of view of 2-categories as

explained in Tamsamani’s thesis [51] and Simpson [49]. Analogous construc-

tions can also be found in [53], 1.3.4, and [30].

Segal Stack-Groupoids

Notation 2.2. Let ∆ be the category whose objects are totally ordered sets

[n] = {0, . . . , n} and whose morphisms are increasing maps.

The category of topological stacks can be viewed as a 1-category (Stacks)

together with a notion of equivalences.

Definition 2.6. A Segal stack category is a simplicial stack X∗ : ∆op → (Stacks)

such that the Segal morphisms

Xn → X1 ×
X0

· · · ×
X0

X1

(given by the n morphisms in ∆, [1]→ [n] that send 0 to i, and 1 to i+ 1)

are stack equivalences. The right multiplication morphism

X2 → X1 ×
X0

X1 (2.4)

is given by the two morphisms in ∆

1. [1]→ [2] such that 0 7→ 0, 1 7→ 1, and;

2. [1]→ [2] such that 0 7→ 0, 1 7→ 2.
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A Segal stack category is a Segal stack groupoid if the right multiplication

morphism is a stack equivalence.

Remark 2.2. To help understand the content of this definition, notice that

if we were to replace the category (Stacks) by the category of sets, then we

would recover the usual notions of category and groupoid.

Recovering the Stack-Groupoid

Let us now show how to get the stack-groupoid 6-tuple (2.3) starting from a

Segal stack-groupoid.

First, notice that we can think of the stacks Xn as families of n composable

morphisms, so that the groupoid condition (the equivalence requirement for the

right multiplication map (2.4)) is the condition that the map (a, b) 7→ (a, a◦b)
is an equivalence, which implies that each a is an isomorphism.

The stack-groupoid data is extracted as follows.

1. The source and target maps s, t : X1 → X0 are induced by the morphisms

s = [0]→ [1] : 0 7→ 0 and t = [0]→ [1] : 0 7→ 1.

2. The choice of an inverse φ for the Segal morphism X2 → X1 ×
X0

X1

allows one to define a composition µ : X1 ×
s,X0,t

X1 → X2 → X1 given by

composing φ with the morphism induced by [1]→ [2] : 0 7→ 0, 1 7→ 2.

3. The increasing map [1]→ [0] : 0 7→ 0, 1 7→ 0 induces a map ε : X0 → X1

called the unit map.

4. Choose an inverse ψ to the right multiplication morphism

X2 → X1 ×
X0

X1,

and compose it with

IdX1 ×X0 ε : X1 → X1 ×X0 X1

and

d2 : X2 → X1,
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where d2 is induced by the map [1]→ [2] : 0 7→ 1, 1 7→ 2. Morally, these

successive maps send an arrow a ∈ X1 to the pair (a, 1), then to (a, a−1),

and finally to a−1. Let i : X1 → X1 be this composition.

Thus, up to the two additional choices of φ and ψ, we have obtained a

tuple (X1,X0, s, t, ε, i,m) giving a diagram

X1i 44
s //
t

// X0

εtt

and a multiplication

m : X1 ×
s,X0,t

X1 −→ X1,

which is the basic datum (2.3) necessary to define the notion of stack-groupoid.

The problem is now to define an associativity 2-isomorphism and some other

2-conditions, and to find the right notion of coherence conditions for them.

The beauty of Toen’s construction is that these coherence conditions are

already encoded in the simplicial structure. Let us be more explicit.

First, since we work in a 2-category, the inverse of a 1-isomorphism is

supposed to be defined up to a unique 2-isomorphism. This implies that the

multiplication

m : X1 ×
X0

X1 → X1

is well-defined up to a unique 2-isomorphism.

To define the associator, we use the following strictly commutative dia-

grams (products are taken over X0)

X3
//

��

X2
//

��

X1

X2 × X1
//

��

X1 × X1

(X1 × X1)× X1
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and

X3
//

��

X2
//

��

X1

X1 × X2
//

��

X1 × X1

X1 × (X1 × X1)

whose vertical arrows are equivalences.

The uniqueness of inverses of equivalences up to unique 2-isomorphisms

gives natural 2-isomorphisms between the multiplication maps

(X1 × X1)× X1 → X1

and

X1 × (X1 × X1)→ X1

and the morphism obtained by choosing an inverse of the equivalence

X3 → X1 × X1 × X1.

This gives the associator 2-isomorphism. To check that the associator

fulfills the desired 2-cocycle condition (the so-called pentagon), it is necessary

to use the simplicial diagram up to X4. An explanation of the argument is

given in [30].

2.4 Shimura Varieties

Every mathematician already has an idea of what a Shimura variety is: as

complex homogeneous varieties, they are just higher dimensional versions

of the quotient of the upper half plane by the usual action of SL2(Z). Such

varieties were studied extensively by Shimura in the 60’s and 70’s, but it was

Deligne who finally codified the definition in terms of Hodge structures and

algebraic groups [15]. Briefly, Deligne’s strategy was to interpret the varieties

of Shimura as parameter spaces for Hodge structures, and then to characterize

various features of geometric variation of Hodge structures (e.g., Griffiths

transversality) in algebraic-group terms. The resulting set of properties is
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then taken as the axioms defining Shimura’s varieties and generalizations

thereof.

In this section we give the relevant definitions — note that our definition

of a Shimura variety is slightly different from the standard one — and make a

few remarks on the stack quotients that arise for finite level Shimura varieties.

But otherwise, our purpose in this section is quite modest. In particular, we

don’t discuss here any of the deeper aspects, such as the theory of canonical

models, the menagerie of compactifications, cohomology, and zeta functions!

The reader is referred to the literature (or local expert) to get the real story.

Algebraic Group Preliminaries

For background on algebraic groups we refer the reader to [2] or [50]. We will

mostly be concerned here with establishing notation.

Notation 2.3. Let G be a reductive group over Q. If A is a Q-algebra, then the

group of A-points of G is denoted G(A). We let G(R)+ denote the connected

component of the identity in the real Lie group G(R), and we write G(Q)+

for G(Q) ∩G(R)+.

If F is an extension of Q, then we write GF for the base change G×Q F .

The multiplicative group is denoted Gm.

If we view an algebraic group G over a field k as a functor

(k−Algebras) −→ (Groups), A 7−→ G(A),

then we have an easy description of the Weil restriction, which yields an

algebraic group over k from an algebraic group over an extension K/k via

restriction of scalars. If G is an algebraic group over K, we write ResK/k(G)

for the Weil restriction. Thus, if we write G′ = ResK/k(G), then for an

k-algebra A we have G′(A) = G(A⊗k K).

An important example of this sort of construction is the Deligne torus,

the R-algebraic group

S := ResC/R Gm,C.

We note that S(R) = C× and S(C) ∼= C× × C×.
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Shimura Data and Shimura Varieties

Now we recall the definition of Shimura data. The definition that we use in

this thesis sits between Deligne’s definition [16, 2.1] and Pink’s generalization

of it [41, 2.1]. In particular, like Deligne, we only consider reductive groups,

but following Pink we do allow for finite covers of the Hermitian symmetric

domains that form a basic ingredient of the Shimura datum. This extra

flexibility will be particularly important when we study the Bost-Connes

system and its analogues, in Section 4.2.

Definition 2.7. A Shimura datum is a triple (G,X, h), where G is a connected

reductive group over Q, X is a left homogeneous space under G(R), and

h : X → Hom(S, GR) is a G(R)-equivariant map2 with finite fibres, and these

are required to satisfy:

1. For hx ∈ h(X), (the Hodge structure) Lie(GR) is of type {(−1, 1), (0, 0), (1,−1)};

2. The involution inthx(i) is a Cartan involution of the adjoint group Gad
R ;

3. The adjoint group has no factor G′ defined over Q on which the projec-

tion of hx is trivial.

A Shimura datum is said to be classical if it moreover fulfills the following

additional axiom:

4. Let Z0(G) be the maximal split subtorus of the center of G; then inthx(i)

is a Cartan involution of G/Z0(G).

Note that in Deligne’s definition [16, 2.1], X is a conjugacy class of a

homomorphism S→ GR. The above definition allows for equivariant finite

covers of such X.

Remark 2.3. We will often denote a Shimura data just by a couple (G,X)

when the morphism h is clear from the situation.

Definition 2.8. Let (G,X) be a Shimura datum, and let K ⊂ G(Af) be a

compact open subgroup. The level K Shimura variety is

ShK(G,X) := G(Q)\
(
X ×G(Af)/K

)
.

2for the natural conjugation action of G(R) on Hom(S, GR)
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A few remarks regarding the nature of these varieties are in order (cf. [41,

§3.2]). First of all, there are only finitely many connected components

(this is a nontrivial fact). If K is sufficiently small (for example, if K is a

neat subgroup), then ShK(G,X) is a bona fide complex-analytic variety [41,

§3.3(b)]. More precisely, there is decomposition

ShK(G,X) =
∐
g

Γg\X+,

where g runs over a finite set in G(Af), X
+ is a connected component of X

(a Hermitian symmetric space), and Γg is the congruence subgroup G(Q) ∩
gKg−1.

The family of varieties
{
ShK(G,X)

}
K

forms a projective system, for given

K1 ⊂ K2, compact open subgroups of G(A), there is a natural morphism

ShK1(G,X)→ ShK2(G,X).

Definition 2.9. The Shimura variety for a Shimura datum (G,X) is the

projective limit

Sh(G,X) := lim←−
K

ShK(G,X).

The level K Shimura variety can be recovered from the projective limit

by quotienting: we have

ShK(G,X) = Sh(G,X)/K (2.5)

(see [16, 2.7.1]).

The projective limit is a well-defined scheme over C, and though it is

noetherian and regular (cf. [35]), it is not of finite type. We shall however

be primarily concerned with the Shimura variety as a topological space;

this aspect (in relation to the cohomology of arithmetic groups) has been

investigated by J. Rohlfs [44].

Remark 2.4. The Shimura varieties as we’ve just defined them are varieties

over C, but in fact they have models over number fields, which accounts for

their arithmetical significance. This is the deep theory of canonical models,

which we do not touch upon, however see [15], [16], [34], [38].
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Hecke Correspondences on the Projective Limit

One important feature of the limit Shimura variety is that it admits an action

of G(Af) (a very big group!): if g ∈ G(Af), and K is a compact open subgroup

of G(Af), then we have a map

ρK(g) : ShK(G,X) −→ Shg−1Kg(G,X), [x, h] 7→ [x, hg]

(where we have written [x, h] for the class of (x, h) ∈ X×G(Af) in ShK(G,X)).

Since the maps ρK are compatible with the projective system {ShK(G,X)}K ,

they induce an action on the limit ShK(G,X). These are the so-called Hecke

correspondences (indeed, they are Hecke correspondences in the modular

curve case, i.e., the Shimura variety for (GL2,Q,H)).

One implication of the fact that G(Af) acts on the projective limit, but

not on individual finite level pieces, is that the limit Shimura variety is

better suited for the Shimura-variety generalizations of the Bost-Connes and

Connes-Marcolli systems, cf. Section 3.3.2.

Some Examples

For the reader’s convenience, we list a few of the Shimura varieties that appear

later. (Ours is a very incomplete list!)

Example 2.4. Let T be a torus over Q. Because T is abelian, any T (R)-

conjugacy class X of homomorphisms S→ TR is just a point. Then (T,X)

is a Shimura datum in Deligne’s sense (X being a point means there are no

conditions on T ), and therefore in our sense, too. The associated Shimura

variety

ShK(T,X) = T (Q)\T (Af)/K

is a finite set of points (the proof of this is essentially equivalent to the proof

of the finiteness of the class group of number fields).

For example, take T = ResF/Q Gm,F , where F is a number field. Then T

has dimension [F : Q], and if we take K to be the maximal compact group Ô
×
F

(where ÔF is the profinite completion of the ring of integers of F ), we have

ShK(T,X) = A×
F/F

×F×∞Ô
×
F ,

which is the ideal class group of F .
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Example 2.5. A better version of a toroidal Shimura variety is afforded by

the extra flexibility of being allowed to take covers of conjugacy classes in

Hom(S, GR), cf. Definition 2.7. In the above example, this means replacing

the the one-point space by a finite set. Here’s an indication of the usefulness

of this.

Again, Let F be a number field, and let T = ResF/Q Gm,F . But now let

XF := T (R)/T (R)+ = π0

(
T (R)

)
,

i.e., the group of connected components of the multiplicative group of F∞ =

F ⊗Q R (product over all archimedean places of F ). We then have

Sh(T,XF ) = lim←−
K

F×\ π0(F
×
∞)× A×

F,f/K
∼= π0(CF ),

where CF is the idèle class group F×\A×
F . By Artin reciprocity,

π0(CF ) ∼= Gal(F ab/F ),

and so by allowing for finite covers of the “X”, we get Shimura varieties that

are better suited for applications to (abelian) class field theory.

We can also, of course, give a Hodge theory interpretation for the above

datum. We have F∞ ∼= Cs × Rr. We put on F∞ the Hodge structure that is

trivial on Rr and equal to some choice of a complex structure on the remaining

factor Cs (there being 2s possibilities). This gives a morphism h1 : S→ TR.

We call the triple (ResF/Q Gm,F , XF , h1) the multiplicative Shimura datum of

the field F . This Shimura datum is classical (in the sense of Definition 2.7) if

and only if F = Q or F is imaginary quadratic, cf. Section 4.2.1.

Example 2.6. Let h : S→ GL2,R be the morphism given by h(a+ ib) =
(
a b
−b a

)
.

Let H± be the GL2(R)-conjugacy class of h. It identifies with the Poincaré

double half plane with action of GL2(R) by homographies. Then (GL2,H±) is

called the modular Shimura datum. The limit Shimura variety is the familiar

tower of modular curves.

Remarks on Shimura Stacks
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From the moduli-space point-of-view, it is more natural to study the level K

Shimura stack, given by the topological stacky quotient

ShK(G,X) := [G(Q)\X ×G(Af)/K],

and the Shimura stack, given by the 2-projective limit

Sh(G,X) := lim←−
K

ShK(G,X).

In the case of the multiplicative Shimura datum of a number field, i.e.,

G = ResF/Q Gm,F , the level K Shimura stack can have infinite isotropy given

by the group G(Q)+ ∩K. These isotropy groups are given by generalized

congruence relations on the group of units O×F . We will have to keep track of

(some of) these isotropy groups in the case of non-classical Shimura data.

Later in Section 3.3.5 we will be concerned with defining natural algebras

of continuous “functions” on the finite level Shimura varieties. But in order

to do that, we have to resolve their stack singularities. The question is now:

What sort of obstructions are there to resolving the stack singularities?

Definition 2.10. Let (G,X) be a Shimura datum. A compact open subgroup

K ⊂ G(Af) is called neat if it acts freely on G(Q)\X ×G(Af).

If K is neat, then observe that the quotient analytic stack

ShK(G,X) = [G(Q)\X ×G(Af)/K]

is an ordinary analytic space, but otherwise it is worthwhile from the moduli

viewpoint to keep track of the nontrivial stack structure. For classical Shimura

data (Definition 2.7), one can resolve the stack singularities by choosing a

smaller compact open subgroup K ′ ⊂ G(Af) that acts freely on G(Q)\X ×
G(Af). This is what we will usually do in order to be able to define continuous

“functions” on the stack ShK(G,X).

If (G,X) is classical, there is, moreover, a relatively simple expression for

the limit Shimura variety (see [16, Corollaire 2.1.11]):

Sh(G,X) ∼= G(Q)\X ×G(Af)

and the Shimura stacks ShK(G,X) are in fact algebraic stacks over C.
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Unfortunately, things are not generally so simple: non-classical Shimura

varieties exist. In fact, for general Shimura data, the quotient G(Q)\X×G(Af)

is not Hausdorff. This is the case for the zero-dimensional Shimura datum

(ResF/Q Gm,F , π0(F
×
∞)) whenever F is a number field other than Q or an

imaginary quadratic field. Although we will show this in Section 4.2, let’s

take a look for the moment at F = Q(
√

2) for concreteness.

In this case

Sh
(
ResF/Q Gm,F , π0(F

×
∞)

) ∼= F×\ π0(F
×
∞)× A×

F,f ,

the RHS not even being separated (essentially because O×F is infinite, by

Dirichlet’s Unit Theorem). Moreover, the finite resolution of the stack singu-

larities for classical Shimura datum that one gets by passing to sufficiently

small neat subgroups is not possible here.

LetK = Ô
×
F and consider the stack ShK(ResF/Q Gm,F , π0(F

×
∞)). Its coarse

quotient is the ideal class group of F , i.e., the trivial group {1}. Since F has

class number one, this coarse quotient can also be described as O×F \ π0(F
×
∞).

In this case, O×F is infinite, so that we can not choose a smaller K ′ ⊂ K that

acts freely on F×\ π0(F
×
∞)×A×

F,f . If we want to resolve the stack singularities,

we can use the quotient map

F×\A×
F/K −→ ShK

(
ResF/Q Gm,F , π0(F

×
∞)

)
for the scaling action of the connected component of identity DF in the idèle

class group CF := F×\A×
F .

Remark 2.5. From the viewpoint of moduli spaces, it is important that the

coarse space ShK(ResF/Q Gm,F , π0(F
×
∞)), i.e., the big ideal class group, be

replaced by the corresponding group stack with infinite stabilizers (given by

groups of units with congruence conditions):

ShK(ResF/Q Gm,F , π0(F
×
∞)).

This “equivariant viewpoint” of the finite level Shimura variety could also be

important to understand geometrically the definition of Stark’s zeta functions,

and also for the understanding of Manin’s real multiplication program [32].



Chapter 3

Shimura Varieties and

Bost-Connes-Marcolli Dynamical

Systems

In this chapter we construct Shimura-variety generalizations of the Bost-

Connes [3] and Connes-Marcolli systems [11]. Aspects of these motivating

special cases are reviewed in the first two sections. The remaining sections

then carry out a generalization that incorporates a Shimura variety as starting

datum. The end result is a family of stack-groupoids and associated C*-

algebras, whose general properties are studied (zeta functions, symmetries,

KMS states). In the next chapter, various examples are considered. In this

chapter we concentrate mostly on formal aspects.

3.1 Arithmetical Quantum Statistical Mechanics in

Dimensions 1 and 2

To prepare for the general constructions to be given in Section 3.3, we

start with an overview of two examples of arithmetical quantum statistical

mechanical systems (arithmetical QSM’s, for short). We do not define the

terminology “arithmetical QSM” precisely, so one aim in presenting these

examples is to explain what we mean by this by showing the type and form of

arithmetical phenomena that can occur within the mathematical framework of

33
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quantum statistical mechanical systems (in the sense discussed in Section 2.1).

Both examples, the first due to Bost-Connes [3] and second to Connes-

Marcolli [11], concern noncommutative moduli of degenerate rational lattices.

Both examples are natural, yet highly non-obvious! Once they are understood

in the appropriate language — namely, that of adèles — the reader should

find the transition to Shimura varieties natural.

3.1.1 Dimension One: The Bost-Connes System

The Bost-Connes system was the first, and still most important, example

of a C*-dynamical system (A, σt) admitting the action of a Galois group

of a number field on which the usual Galois action on fields is recovered

upon evaluation of certain canonical states, namely, the KMS states at zero

temperature. Actually, to achieve this one must also restrict to an “arithmetic”

subalgebra, on which the KMS states evaluate to algebraic numbers.

Let us now describe the system of Bost-Connes. As a C*-algebra, it may

be expressed as the C*-algebra of the locally compact groupoid

GBC = Q×
+ n Ẑ (3.1)

where the cross-product symbol signifies that this is the groupoid of the

partial action of Q×
+ on Ẑ (cf. Section 2.2.2).

The groupoid GBC is “amenable” (cf. [42]), which for us means that its

C*-algebra has a particularly simple description, which goes as follows. Let

ABC be the convolution algebra Cc(GBC) of compactly-supported complex-

valued continuous functions on GBC. Thus for f1, f2 ∈ ABC, their product is

the convolution

f1 ∗ f2(q, α) =
∑

q′ : q′α∈Ẑ

f1(qq
′−1, q′α)f2(q

′, α).

For every point χ ∈ Ẑ, there is a representation πχ of ABC on the Hilbert

space

Hχ := `2(GχBC)

where GχBC is the (discrete) “s-fibre”

GχBC =
{

(q, χ) ∈ GBC | qχ ∈ Ẑ
}
,
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and the action of ABC on the Hilbert space is by convolution:

πχ : ABC −→ B(Hχ)(
πχ(f)ξ

)
(γ) =

∑
s(γ)=χ

f(γγ′−1)ξ(γ′).

Now the norm on ABC

‖f‖ := sup
χ∈Ẑ
‖πχ(f)‖Hχ . (3.2)

satisfies the C*-condition under the involution

f ∗(q, α) = f(q−1, qα).

Definition 3.1. The Bost-Connes C*-algebra is the C*-completion of the

convolution algebra ABC under the norm (3.2).

One of the most interesting aspects of the Bost-Connes algebra is that it

admits a natural actions of the Galois group Gal(Qab/Q) and of R (i.e., a time

evolution σt), and these actions commute! Thus Gal(Qab/Q) is a dynamical

symmetry of the C*-dynamical system (ABC, σt).

We now describe these actions.

The Galois Action on ABC We chose the letter χ for elements of Ẑ to remind

us that Ẑ is in fact the Pontrjagin dual of Q/Z, i.e., the group of continuous

(unitary) characters of Q/Z. Thus there is natural action of Gal(Qab/Q) on Ẑ,

which under the action of σ ∈ Gal(Qab/Q) sends χ to

σ · χ : a 7→ σ
(
χ(a)

)
. (3.3)

The Galois action therefore induces a Galois action on ABC. It satisfies

σ · f(q, χ) = f(q, σ−1 · χ).
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The Time Evolution of ABC The time evolution of ABC simply raises the

Q-variable to an imaginary power:

σt(f)(q, χ) = qitf(q, χ).

It clearly commutes with the Galois action (3.3).

If χ ∈ Ẑ is invertible, then Hχ ∼= `2 (canonically), and time evolution is

generated by the Hamiltonian

Hξ(n) = log(n)ξ(n), ξ ∈ `2 (3.4)

which is an unbounded operator on `2. That is to say,

πχ(σtf) = eiHtπχ(f)e−iHt.

The Main Theorem of Bost-Connes

The main results of Bost-Connes [3] are as follows. First they give a complete

classification of the KMSβ states of (ABC, σt).

Theorem 3.1 (Bost-Connes). The following is a complete list of the KMSβ

states of (ABC, σt).

1. For each 0 < β ≤ 1, there is unique KMSβ state. It is therefore a factor

state, and the corresponding factor is the Araki-Woods hyperfinite factor

of Type III1.

2. For each 1 < β ≤ ∞, there is a Gal(Qab/Q)-equivariant homeomorphism

between Ẑ× and the space Eβ of extremal KMSβ states:

Ẑ× ∼−−→ Eβ, χ 7−→ φβ,χ(f) =
Tr

(
πχ(f)e−βH

)
Z(β)

,

where H is the Hamiltonian as in (3.4), and the partition function

Z(β) = Tr(e−βH) is the Riemann zeta function.

Each φβ,χ is a (factor) state of Type I∞.
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Remark 3.1. Notice that the extremal KMS states for β > 1 take the form

of a Gibbs state (cf. (2.2)). As we shall see through other examples, this is

typical for KMS states at low temperature.

The second main result, the most interesting aspect of the Bost-Connes

system, describes the arithmetical implication of the second part of the above

theorem.

Theorem 3.2 (Bost-Connes). The Bost-Connes algebra ABC is generated by a

Q-subalgebra AQ
BC which has the following amazing property:

If φ is a KMS∞ state, and if a ∈ AQ
BC, then

φ(a) ∈ Qab and σ(φa) = φ(σa), ∀σ ∈ Gal(Qab/Q).

In other words, the extremal KMS states at zero temperature intertwine

the Galois action on AQ
BC and the usual Galois action on the field Qab. This

is very surprising since the Galois action (aside from complex conjugation) is

very badly discontinuous with respect to the complex topology (thinking of

Q̄ as lying in C), while C*-algebra states are defined to be continuous with

respect to the complex topology!

Remark 3.2. The path to this improbable result is as remarkable as the result

itself. To reiterate: Starting from the groupoid

Q×
+ n Ẑ

we get a C*-algebra ABC, a canonical C*-completion of its convolution algebra.

This C*-algebra carries a natural Gal(Qab/Q)-action. Then, considerations

from statistical mechanics distinguish a certain set of states, the KMS states.

And finally these states realize the equivalence of the Galois action on a

generating rational subalgebra AQ
BC with the Galois action on Qab.

We also want to emphasize that although the (abelian) class field the-

ory of Q is certainly well-understood territory, there is no precedence or

anticipation of the Bost-Connes perspective in algebraic number theory.
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The Bost-Connes Groupoid in Adèlic Terms

We want to reformulate the description of the Bost-Connes groupoid in adèlic

terms, partly in view of the connections to class field theory that we saw in the

previous paragraph, but also in order to get a description of the groupoid that

will easily generalize to other number fields. In fact, as an extra payoff, the

description that we will arrive at will even point the way to higher dimensions.

Let us start by writing down explicitly what the expression

GBC = Q×
+ n Ẑ

means. As a locally compact space, the groupoid GBC is the space of pairs

(q, α) ∈ Q×
+× Ẑ such that qα ∈ Ẑ. The unit space of GBC is Ẑ, and the source

and target maps are

s, t : GBC ⇒ Ẑ, s(q, α) = α, t(q, α) = qα.

The composition (q, α)(q′, α′) is defined whenever α = q′α′, in which case the

composition is (qq′, α′), while the inverse of (q, α) is (q−1, qα).

Now let’s rewrite everything adèlically. The first ground rule when work-

ing with adèles, indeed their very raison d’être, is to work with all places

simultaneously, whenever possible. This means in particular, making the

substitution

Ẑ×\A×
f for Q×

+ (isomorphic).

Note that the analogue of this for general number fields does not yield an

isomorphism in general (non-trivial class groups exist!). We can get a more

symmetric groupoid by adding a piece to the unit space to get the groupoid

GA = A×
f n

(
Ẑ× Ẑ×

)
.

The Bost-Connes groupoid will be a double quotient of this.

In fact, with the groupoid GA at hand, we can even consider higher-level

analogues of the Bost-Connes groupoid. Let K be any compact open subgroup

of Ẑ. There are left and right actions of K on GA given by

k.
(
g, (α, h)

)
=

(
kg, (α, h)

)
,

(
g, (α, h)

)
.k =

(
gk, (k−1α, hk)

)
.
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Taking the double quotient we get a locally compact groupoid

K\A×
f n

(
Ẑ× Ẑ×

)
/K,

and when K = Ẑ× we get back the Bost-Connes groupoid.

Proposition 3.1. Let K be the maximal compact subring Ẑ× ⊂ A×
f . The

double quotient K\GA/K is then a locally compact groupoid, and the natural

inclusion

GBC ↪→ GA, (q, α) 7→
(
q, (α, 1)

)
.

induces a groupoid isomorphism

GBC
∼−−→ K\GA/K. (3.5)

Proof. Just as the quotient of a group by a subgroup need not be a group, so

may the quotient of a groupoid by a group action fail to be a groupoid. It

therefore behooves us to check that the groupoid structure on GA descends to

a groupoid structure on the double quotient K\GA/K. There is no difficulty

in doing this, but let us nonetheless check this explicitly.

First, it is easy to check that the source and target maps of GA descend

to the double quotient: for example, for the target map it suffices to observe

that if k1, k2 ∈ K and
(
g, (α, k)

)
∈ GA, then

t
(
k1

(
g, (α, k)

)
k2

)
= t

(
k1gk2, (k

−1
2 α, kk2)

)
= (k1gα, kg

−1k−1
1 )

= t
(
g, (α, k)

)
k−1

1 .

(3.6)

Evidently the source map satisfies

s
(
k1

(
g, (α, k)

)
k2

)
= s

(
g, (α, k)

)
k2, (3.7)

and so it too is equivariant (for the K × K-action on GA, and the right

K-action on the unit space). We will continue to write s, resp. t, for the

source, resp. target, map on K\GA/K.

To show that the groupoid multiplication is well-defined on K\GA/K,

we introduce the notation π : GA → K\GA/K for the natural projection. If
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u, v ∈ GA are such that s ◦ π(u) = t ◦ π(v), then by acting by K × K (if

necessary), we may assume that s(u) = t(v), i.e., that u and v are composable.

The multiplication is then defined to be π(u)π(v) = π(uv). It is well-defined,

i.e., it does not depend on the particular choice of composable representatives.

Checking this is again an easy, though somewhat messy-looking “one-liner”,

as in (3.6). Explicitly, suppose u =
(
g, (α, k)

)
and v =

(
g′, (α′, k′)

)
are

composable, as are k1uk2 and k′1vk
′
2. From (3.7) and (3.6) we get

s(u)k2 = s(k1uk2) = t(k′1vk
′
2) = t(v)k′−1

1 = s(u)k′−1
1 ,

and hence k2k
′
1 = 1. Writing out the product (k1uk2)(k

′
1vk

′
2) we get

(k1uk2)(k
′
1vk

′
2) =

(
k1gk2k

′
1g
′k′2, (k

′−1
2 α′, k′, k′2)

)
= k1

(
gk2k

′
1g
′, (α′, k′)

)
k′2

= k1

(
gg′, (α′, k′)

)
k′2,

and hence π(uv) = π
(
(k1uk2)(k

′
1vk

′
2)

)
. We are now done with showing that

K\GA/K is a groupoid in the groupoid structure induced by GA.

It remains to show that the composition

φ : GBC ↪−→ GA
π−−→ K\GA/K,

(q, α) 7→
(
q, (α, 1)

)
7→ π

(
q, (α, 1)

)
is an isomorphism of groupoids. The key fact required is the decomposition

A×
f = Q×

+.Ẑ×, with Q×
+ ∩ Ẑ× = {1},

which we already used in defining the action of A×
f on Ẑ× Ẑ× (the unit space

of GA).

Proof of injectivity of φ: Suppose
(
q, (α, 1)

)
=

(
k1q

′k2, (k
−1
2 α′, k2)

)
, with

k1, k2 ∈ K and (q, α), (q′, α′) ∈ GBC. Then clearly k2 = 1 and so q = k1q
′. But

because Q×
+ ∩ Ẑ× = {1}, the only possibility for k1 is 1, and we get injectivity

of φ.

Proof of surjectivity of φ: Let
(
g, (α, k)

)
be any element in GA. Since

A×
f = Q×

+.Ẑ×, there is a factorization g = qk′ with (q, k′) ∈ Q×
+ × Ẑ×. We get

surjectivity, because modulo K ×K we have(
g, (α, k)

)
=

(
qk′, (α, k)

)
≡

(
q, (α, k)

)
≡

(
q, (kα, 1)

)
.
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Finally, it is clear that the bijection φ is continuous. Since both factors of

φ are open, so is φ. Hence φ is a topological isomorphism.

Remark 3.3. Another generalization of the Bost-Connes groupoid to arbitrary

number fields suggested by the expression GBC = Q×
+ n Ẑ, is the following: If

F is a number field, let GFBC be the groupoid

GFBC = F×+ n ÔF (3.8)

where F×+ is the intersection of F× with the connected component of (F ⊗ R)×

(the units of the product of all archimedean completions of F ), and ÔF is

the profinite completion of the ring of integers of F .

Now a natural questions arises: Why not regard this groupoid as the

correct generalization of the Bost-Connes groupoid? After all, it is certainly

simpler than the adèlic one that we’ve constructed, and it’s resemblance to

Bost-Connes is certainly plain to see.

The problem is that GFBC is in fact too simple, if one seeks to preserve

the main features of Theorems 3.1 and 3.2. In particular, previous work of

Harari-Leicthnam [22] and Paula Cohen [7] based on this groupoid yield Bost-

Connes analogues that only admit symmetry by Ô
×
F . Problems or limitations

imposed by the existence of non-trivial class group inevitably arise in these

approaches.

The adèles lead to a cleaner approach that is relatively robust against

simplifying “coincidences” that occur over Q.

Shimura Varieties and the Bost-Connes Groupoid

We return to our latest incarnation of the Bost-Connes groupoid in order to

recast it once more, this time bringing the idèle class group to light.

Proposition 3.2. The natural injection

GBC = Q×
+ n Ẑ ↪−→ A×

f n
(
Ẑ×Q×\ π0(R×)× A×

f

)
induces an isomorphism of groupoids

GBC
∼= Ẑ×\

(
A×

f n
(
Ẑ×Q×\ π0(R×)× A×

f

))
/Ẑ×
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This is just Proposition 3.1 once again, since

Ẑ× ∼= Q×\ π0(R×)× A×
f .

1

But what we have gained is a description in terms of the Shimura variety

Sh
(
GL1,Q, π0(R×)

)
= lim←−

K

Q×\ π0(R×)× A×
f /K

∼= Q×\ π0(R×)× A×
f .

In this commutative case, the Shimura variety is just another expression for

the group of connected components of the idèle class group

π0(Q×\A×)

as a profinite group, which under Artin reciprocity is isomorphic to Gal(Qab/Q).

We see again the advantage of the adèlic approach, for the same holds true

for arbitrary number fields F , namely, we have

Sh
(
T, π0(T (R))

) ∼= π0(F
×\A×

F,f)
∼= Gal(F̄ /F )

ab
,

where T is the torus ResF/Q Gm,F , and the last isomorphism is given by the

Artin reciprocity.

Further Directions

So to conclude our review of the Bost-Connes system we see that the Bost-

Connes groupoid written in terms of a Shimura variety

GBC
∼= Ẑ×\

(
A×

f n
(
Ẑ× Sh(GL1, {±1})

))
/Ẑ×. (3.9)

suggests a generalization in two directions: firstly, to analogues for other

number fields, and secondly, to Shimura varieties of higher dimension.

In the next section, we will see that this Shimura-variety description of

the Bost-Connes groupoid is compatible with the GL2 analogue of (3.9).

1We will consider this isomorphism again in Section 4.1.2 where we will recognize it as
a reflection of certain properties of the algebraic group GL1,Q.
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3.1.2 Dimension Two: The Connes-Marcolli System

The Geometric Meaning of the Bost-Connes Groupoid

One obvious question was left hanging in our consideration of the Bost-Connes

groupoid, in view of Section 2.2: What is the geometric meaning of the Bost-

Connes groupoid? Does it describe a reasonable noncommutative space? This

last question reveals our bias: we seek a groupoid that is not far from an

(honest) equivalence relation on an (ordinary) space.

The answer of Connes-Marcolli [11] is the space of Q-lattices in dimension 1.

A Q-lattice in Rn is a pair (Λ, φ) consisting of a lattice Λ ⊂ Rn and a Q-

structure φ for Λ, which is a homomorphism φ : Qn/Zn → QΛ/Λ — not

necessarily invertible. Two Q-lattices (Λ1, φ1) and (Λ2, φ2) are commensurable

if they are commensurable in the usual sense (the indices [Λi : Λ1 ∩ Λ2] are

finite) and φ1 ≡ φ2 (mod Λ1 + Λ2).

Note that a 1-dimensional Q-lattice is simply a pair (λZ, λρ) with λ > 0

and ρ ∈ End(Q/Z) ∼= Ẑ. The geometric interpretation of the Bost-Connes

groupoid can now be stated.

Proposition 3.3 (Connes-Marcolli). Let R be the equivalence relation of com-

mensurability for Q-lattices in R, and let R/R×
+ be its quotient modulo the

scaling action. Then the map

GBC = Q×
+ n Ẑ −→ R/R×

+, (q, α) 7→
(
(q−1Z, ρ), (Z, ρ)

)
is an isomorphism of groupoids.

The Connes-Marcolli Groupoid

The geometric interpretation of the Bost-Connes groupoid directly suggests

a generalization to higher dimensions, namely commensurability classes of

higher dimensional Q-lattices (possibly up-to scaling, or some other notion of

equivalence). The groupoid of the two-dimensional case studied by Connes-

Marcolli in [11] is actually a stack-groupoid. We study it as an example of

the general construction to come in Section 3.3. We will see in Section 4.1.3

that it coincides with the obvious GL(2) analogue of (3.9).
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The GL(2)-system corresponds to the noncommutative space of commen-

surability classes of 2-dimensional Q-lattice in C, up to scaling by C×. As

such, it is described by the quotient of a groupoid G2 by an action of C×. In

the notation of [11], this groupoid is defined as follows.

Let Γ = SL2(Z), and let G = GL(2), so that the identity component G+(R)

is the group of invertible matrices of positive determinant, and G+(Q) =

G(Q) ∩G+(R) = GL+
2 (Q). The space

G+(Q) n
(
M2(Ẑ)×G+(R)

)
:=

{
(g, ρ, α) ∈ G+(Q)×

(
M2(Ẑ)×G+(R)

)
| gρ ∈M2(Ẑ)

}
is the locally compact groupoid of the partial action of G+(Q) on M2(Ẑ)×
G+(R). The group Γ acts on the left and right of G+(Q) n

(
M2(Ẑ)×G+(R)

)
via the formulas

(g, ρ, α) · γ = (gγ, γ−1ρ, γ−1α), γ · (g, ρ, α) = (γg, ρ, α).

Proposition 3.4 (Connes-Marcolli). The quotient

G ′2 := Γ\G+(Q) n
(
M2(Ẑ)×G+(R)

)
/Γ

is the groupoid of commensurability classes of (Γ-isomorphism classes of)

2-dimensional Q-lattices in C.

However, as in the one dimension case, one should consider Q-lattices up

to scaling by C×. Unfortunately, the resulting quotient G ′2/C× is no longer a

groupoid due to the existence of lattices with nontrivial isotropy under the

action of Γ. In fact, this is the first example of a stack-groupoid, which we

discussed in Section 2.3.

Remark 3.4. The quotient G ′2/C×, albeit not a groupoid, is a well-defined

stack-groupoid. However, since we are ultimately interested in carrying out

an analysis of KMS states, we need to pass to an analytic setting, namely to a

function algebra. It is not clear how to extract, in general, a “function algebra”

starting from a stack-groupoid. Hence we rely on the trick of Connes-Marcolli,

even if it is not so conceptually satisfying.
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However, since we still seek to define a convolution C*-algebra, as we did

for the Bost-Connes system of the previous section, we examine G ′2/C× and

take one step back in the construction. That is, instead of considering the

Γ× Γ-quotient of

V := G+(Q) n
(
M2(Ẑ)×G+(R)

)
,

we consider the C×-quotient of V ,

G2 := V/C× = G+(Q) n
(
M2(Ẑ)×H

)
,

where H = G+(R)/C× is the usual upper half plane. Now, the quotient V/C×

is a groupoid, so we can consider its C*-algebra C∗(G2), and to handle the

Γ× Γ-quotient, we consider only those functions in C∗(G2) that are Γ× Γ-

invariant. The resulting C*-algebra is the Connes-Marcolli GL2 analogue of

the Bost-Connes algebra.

The Connes-Marcolli System

More concretely, the Connes-Marcolli algebra A2 is defined to consist of the

functions f ∈ Cc(G2) such that

f(γg, y) = f(g, y), f(gγ, y) = f(g, γy), for all γ ∈ Γ.

The passage to a C*-dynamical system in the spirit of the Bost-Connes system

is now straightforward, though as we shall see, there are some surprises.

The *-algebra structure on A2 is as expected: the involution of f, f ′ ∈ A2

is

f ∗(g, y) = f(g−1, gy),

and the convolution product is

(f ∗ f ′)(g, y) =
∑

h∈Γ\Gy

f(gh−1, hy)f ′(h, y)

where Gy := { g ∈ G | gy ∈M2(Ẑ)×H }. To simplify notation, set

Y := M2(Ẑ)×H.
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For each y ∈ Y , there is the Hilbert space Hy := `2(Γ\Gy) and a representation

πy of A2 on it, namely

πy(f)ξ(g) =
∑

h∈Γ\Gy

f(gh−1, hy)ξ(h).

Finally, as for the Bost-Connes system, to get a C*-norm on A2 we consider

all the πy’s at once, i.e.,

‖f‖ := sup
y∈Y
‖πy(f)‖Hy

, (3.10)

which is easily shown to be a C*-norm.

Definition 3.2. The Connes-Marcolli system is the C*-dynamical system

(A2, σt)

where A2 is the C*-completion of A2 with respect to the norm (3.10), and

the time evolution σt is defined on A2 by

(σtf)(g, y) = (det g)itf(g, y).

(It clearly extends to A2.)

Having described the GL(2)-system, we now list some of its remarkable

properties. As for the Bost-Connes system, there is a nearly complete classifi-

cation of its KMSβ states (due in part to some very recent results of Laca,

Larsen, and Neshveyev; only the cases β = 0 and β = 1 remain).2

Theorem 3.3. The complete list of KMSβ states of (A2, σt) is as follows:

1. For β < 1 there are no KMSβ states.

2. (Laca-Larsen-Neshveyev) For 1 < β ≤ 2 there is a unique KMSβ state.

3. For β > 2, the KMSβ states are all of the form

φβ,y(f) = Z(β)−1
∑

m∈Γ\M+
2 (Z)

(detm)−βf(1,mρ,mz)

2I thank Prof. Marcolli for bringing this to my attention.
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with y = (ρ, τ) ∈ Γ\Y an invertible Q-lattice, i.e., ρ ∈ G(Ẑ). Indeed,

there is a homeomorphism

Eβ ∼= G(Q)\G(A)/C×

between the space Eβ of extremal KMSβ states, and the space of invertible

Q-lattices in C (up to scaling by C× and up to Γ-isomorphism).

The partition function Z(β) is ζ(β)ζ(β − 1).

Notice that

G(Q)\G(A)/C×

is the Shimura variety

Sh(GL2,Q,H±) = lim←−
K

GL2(Q)\H± ×GL2(Af)/K

∼= GL2(Q)\H± ×GL2(Af).

Explaining why Shimura varieties arise in both the Bost-Connes and

Connes-Marcolli systems is part of the goal of the general constructions to

come later in this chapter. In [13], the role a Shimura varieties in both of

these systems was also discussed.

The Classification of Low-Temperature KMS States

In order to give an idea of the type of technical difficulties that one encounters

in classifying KMS states, we want to discuss now in some detail part of the

proof of [11, Theorem 1.26]. By examining the steps of the proof in some

detail, we hope to extend it to certain analogues of the Connes-Marcolli system

associated to other groups, for example to the analogue for ResF/Q(GL2,F ),

F a totally real field. This project has not yet been completely realized.

The starting point of the proof of Theorem 3.3(3) is the following observa-

tion. It is a consequence of the Riesz Representation Theorem, after a clever

reduction to a simpler C*-dynamical system.

Proposition 3.5 (Connes-Marcolli, [11], Prop. 1.30). Let φ be a KMSβ state

(for any β > 0), and let f ∈ Cc(Z). Then there is a probability measure dλφ
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on Γ\Y representing φ, which is to say that

φ(f) =

∫
Γ\Y

f(1, y) dλφ(y). (3.11)

The proposition is true for any β, but since we are interested in the KMS

states for large β (indeed, the limit as β → ∞), we fix β > 2. Then a

somewhat technical computation — indeed, the trickiest part of the Connes

and Marcolli’s classification — shows that the subspace

Γ\M∗
2 (Ẑ)×H, M∗

2 (Ẑ) := M2(Ẑ) ∩G(Af)

of invertible Q-lattices has dλφ-measure 1. Therefore, Eq. (3.11) reduces to

the integral

φ(f) =

∫
Γ\M∗

2 (Ẑ)×H
f(1, y) dλφ(y).

The key now is to observe that every Q-lattice in Γ\M∗
2 (Ẑ)×H is com-

mensurable to a unique invertible Q-lattice, and to show that this implies that

dλφ is determined by its restriction to the subspace of invertible Q-lattices

Γ\Y ×, where Y × = G(Ẑ)×H

(without, however, being zero on the complement of invertible Q-lattices). To

show this explicitly, we express Γ\M∗
2 (Ẑ)×H as a discrete fibration over Y ×,

by showing that the action

Γ\M+
2 (Z)× Y × →M∗

2 (Ẑ)×H, (g, y) 7→ gy

descends to an isomorphism of Γ-quotients:

Γ\
(
M+

2 (Z)× Y ×
)
/Γ ∼= Γ\M∗

2 (Ẑ)×H. (3.12)

Surjectivity is clear; to get injectivity one exploits the decomposition

G(Af) = G+(Q)G(Ẑ).

Regarding the measure dλφ as a measure dλφ(g, y) on the LHS of Eq. (3.12),

a judicious application of the KMS condition then shows that

φ(f) =
∑

m∈Γ\M+
2 (Z)

(detm)−β
∫

Γ\Y ×
f(1,my) dλφ(1, y).
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To see how the KMS condition applies in this situation, we define a

function f2 ∈ Cc(Z) by

f2(g, y) =

f(1, gy), if y ∈ Y ×;

0, otherwise,

and we choose a function f1 ∈ Cc(Z) such that

f1(g
−1, gy)f(1, gy) = f(1, gy), whenever (g, y) ∈ Γ\M+

2 (Z)× Y ×,

which is essentially a suitable “bump function”. We easily check that for

(g, y) ∈ Γ\M+
2 (Z)× Y × we have f2 ∗ f1(1, gy) = f(1, gy), and so Eq. (3.11),

Eq. (3.12), and the KMS condition combine to yield the equalities

φ(f) = φ(f2 ∗ f1)

= φ(f1 ∗ σiβ(f2))

=

∫
Γ\(M+

2 (Z)×Y ×)/Γ

dλφ(g, y)
∑

h∈Γ\G+(Q)
hgy∈Y

(deth)−βf1(h
−1, hgy)f2(h, gy)

=

∫
Γ\Y ×

∑
m∈Γ\M+

2 (Z)

(detm)−βf(1,my) dλφ(1, y).

(3.13)

The definition of f2 kills the sum in the second last equality, except for the

term corresponding to h = Γ.

At this point the classification is essentially at hand: from Eq. (3.13) we

see that KMSβ states (β > 2) correspond 1-to-1 to probability measures on

Γ\Y ×, and therefore the space of extreme points of the Choquet simplex of

KMSβ states is precisely the space Γ\Y × of invertible Q-lattices. But one

small step further allows us to express φ as an integral over the extremal

KMSβ states corresponding to the invertible Q-lattices y ∈ Γ\Y ×, in terms

of the measure dλφ that we started with in Eq. (3.11). Indeed, we simply

rewrite the conclusion of Eq. (3.13) as

φ(f) =
∑

m∈Γ\M+
2 (Z)

(detm)−β
∫

Γ\Y ×
f(1,my)

dΩφ(y)

ζ(β)ζ(β − 1)

=

∫
Γ\Y ×

φβ,y(f) dΩφ(y),
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where dΩφ = ζ(β)ζ(β − 1) dλφ(1, y) is a probability measure on Γ\Y ×. Note

that the factor

ζ(β)ζ(β − 1)

is the partition function.

Finally, identifying the space Γ\Y × of (isomorphism classes of) invertible

Q-lattices with the Shimura variety

Sh(GL(2)/Q,H±)(C) = G(Q)\G(A)/C× = G(Q)\G(Af)×H±

is a straightforward matter of showing that the mapping

Y × = G(Ẑ)×H→ G(Q)\G(Af)×H±, (ρ, τ) 7→ [ρ, τ ]

induces an isomorphism Γ\Y × ∼= Sh(G,H±)(C). Again, one uses the decom-

position G(Af) = G+(Q)G(Ẑ) to get surjectivity, while injectivity follows

from the equality Γ = G(Ẑ) ∩G+(Q).

Adèlic Formulation of the GL(2) System

Remarkably, an almost direct copy of the adèlic formulation of the Bost-

Connes groupoid will yield the correct adèlic formulation of the Connes-

Marcolli (stack-)groupoid. We will merely state the result here, for the proof

will be given later in Section 4.1.

Proposition 3.6. Let G = GL2,Q, and let Γ = SL2(Z). The natural inclusion

of groupoids

G2 = G+(Q) n
(
M2(Ẑ)×H

)
↪−→ G(Af) n

(
M2(Ẑ)× Sh(G,H±)

)
induces an equivalence of stack-groupoids

Γ\G2/Γ
∼−−→ G(Ẑ)\G(Af) n

(
M2(Ẑ)× Sh(G,H±)

)
/G(Ẑ),

where the LHS is the Connes-Marcolli stack-groupoid.

Note the similarity to Proposition 3.2.
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3.2 Reductive Monoids

Before moving on to the actual construction of the Shimura-variety analogue

of the Bost-Connes-Marcolli systems, we make a small detour into the field

of reductive monoids, which are, roughly speaking, the monoidal version of

reductive groups. We do not go very far into the thick of this fascinating

(somewhat obscure) theory, since a cursory review will suffice for our purposes

in the next section. Reductive monoids will be used to build groupoids and

noncommutative algebras for Shimura varieties of general reductive groups,

following the pattern seen in the last section for the Shimura varieties for

GL1 and GL2. In the GL2 case, for example, we saw that the monoid M2

of 2-by-2 matrices keeps track of degenerate rational lattice structures for

elliptic curves, and that the space of such degenerations is best described as

a noncommutative space (i.e., using a noncommutative algebra of functions).

For a general reductive group, we therefore seek an object that plays the role

that M2 does in the GL2 case.

3.2.1 From Algebraic Groups to Algebraic Monoids

First, an obvious definition: An algebraic monoid is an affine algebraic variety

which is at the same time a monoid, i.e., a semigroup with unit.

Definition 3.3. Let G be connected reductive group over Q. A monoid

augmentation of G is an irreducible normal algebraic monoid M over Q such

that M× = G. We also say that M is a reductive monoid (this being the

standard terminology).

Remark 3.5. For linear algebraic groups, connectedness coincides with irre-

ducibility, and normality (as an affine variety) automatically holds. However,

for linear algebraic monoids, this is no longer so, and therefore we need to

incorporate irreducibility and normality hypotheses into our definition if we

want a monoid that to some extent resembles the group that it “envelopes”.

3.2.2 Drinfeld’s Classification
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In this section we will assume that the field over which our groups are defined

is of characteristic 0 and also algebraically closed.

Reductive monoids have been classified by V. Drinfeld. Choose a maximal

torus T ⊂ G and a Borel subgroup B ⊃ T . Let W denote the Weyl group for

(G,B, T ), and let X = Hom(T,Gm).

Theorem 3.4 (Drinfeld). There exists a bijection between

1. the set of normal (affine) irreducible monoids M containing G as their

group of units, and

2. the set of W -invariant rational polyhedral convex cones K ⊂ X ⊗Z R
which contain zero and are non-degenerate, i.e., are not contained in a

hyperplane.

This classification implies that a semisimple group G has only one monoid

augmentation, namely G itself. This case is for us not very interesting

(because, as we will see in Section 3.3.7, a Bost-Connes like system with such

a monoid augmentation has a trivial zeta function) and we would like to

construct more interesting monoids, in particular, we would like to construct

cartesian diagrams

G
φ //

��

GL(V )

��
M // End(V )

for some fixed representation φ : G→ GL(V ).

For example, for an adjoint Shimura datum (G,X) (i.e., ZG = {1}), the

triviality of the monoid augmentation implies that the BCM systems that

we will construct have a trivial partition function. It is then interesting to

construct another Shimura datum with adjoint datum (G,X) and such that

the monoid augmentation is no longer trivial.

There is a natural method due to Vinberg to “enlarge the center” of

a given semisimple simply connected group G in order to have a monoid

augmentation that is universal in a certain sense. See [55], and also the recent

survey book by Lex Renner [43], which is an excellent all-round reference for

algebraic monoids.
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3.2.3 Ramachandran’s Construction of Chevalley Monoids

There is another way to construct monoid augmentations quite explicitly,

which was communicated to us by N. Ramachandran. The construction of N.

Ramachandran uses the following theorem of Chevalley (see [50], 5.1).

Theorem 3.5 (Chevalley). Let G be an algebraic group over Q, and let φ :

G→ GL(V ) be a faithful representation of G. There is a tensor construction

T i,j := V ⊗i ⊗ V ∨,⊗j and a line D ⊂ T i,j such that φ(G) ⊂ GL(V ) is the

stabilizer of this line.

Definition 3.4. Let G be an algebraic group over Q, φ : G → GL(V ) be

a faithful representation of G. Let T and D be as in Chevalley’s theorem.

Suppose that T = V ⊗i (resp. T = V ∨,⊗i) contains no (resp. only) dual tensor

factors. The multiplicative monoid

M(G, V, T,D) := {m ∈ End(V ) | m.D ⊂ D}
(resp. M(G, V, T,D) := {m ∈ End(V ) |t m.D ⊂ D})

is called a Chevalley monoid augmentation for G in End(V ).

Example 3.1. If G = GL2 and V is the standard representation, then D =∧2 V ⊂ V ⊗2 is a line as in Chevalley’s theorem, and M2 is the corresponding

Chevalley monoid augmentation.

Example 3.2. Let (V, ψ) be a 2g-dimensional Q-vector space equipped with an

alternating form ψ ∈
∧2(V ∨). Then the line D = Q〈ψ〉 ⊂ V ∨,⊗2 is a line as

in Chevalley’s theorem for the group GSp2g with its standard representation,

and the points of the corresponding monoid in a commutative Q-algebra A

are given by

MSp2g(A)

:= {m ∈ End(V )(A) | ∃µ(m) ∈ A, ψ(m.x,m.y) = µ(m)ψ(x, y), ∀x, y ∈ VA}.
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3.3 Bost-Connes-Marcolli Systems for Shimura Va-

rieties

3.3.1 The Basic Algebraic Setup

In order to define a generalization of the Connes-Marcolli algebra to general

Shimura data, we want to make clear the separation between algebraic and

level structure data, which is already implicit in the construction of Connes

and Marcolli.

Monoidal Augmentation of Shimura Data

Definition 3.5. A BCM datum is a tuple M = (G,X, V,M) with (G,X) a

Shimura datum, V a faithful representation of G, and M a monoid augmen-

tation for G contained in End(V ).

Notation 3.1. The faithful representation will often be denoted φ : G →
GL(V ).

Level structure data Every Shimura datum (G,X) comes implicitly with a

family of level structures given by the family of compact open subgroups K ⊂
G(Af). Connes and Marcolli fixed the full level structure GL2(Ẑ) ⊂ GL2(Af)

as starting datum for their construction. To avoid the problem they had with

stack singularities of their groupoid, we will fix a neat level structure as part

of the datum.

The level structure also plays a role in defining the partition function of

our system. Consideration of maximal level structures then yields standard

zeta functions as partition functions, for example, the Dedekind zeta function

of a number field. A technical requirement in the definition of the partition

function is the choice of a lattice in the representation of G, which enables us

to define a rational determinant for the adèlic matrices in play.

Definition 3.6. LetM = (G,X, V,M) be a BCM datum. A level structure on

M is a triple L = (L,K,KM), with L ⊂ V a lattice, K ⊂ G(Af) a compact

open subgroup, and KM ⊂M(Af) a compact open submonoid, such that
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• KM stabilizes L⊗Z Ẑ,

• φ(K) is contained in KM .

The datum

D = (G,X, V,M ;L,K,KM)

will be called a BCM datum with level structure.

We can summarize the relation between L, K and KM by the following

diagram:

K
φ //

� _

��

KM
� � //

� _

��

End(L)(Ẑ)
� _

��
G(Af)

φ // M(Af)
� � // End(V )(Af)

Definition 3.7. The maximal level structure L0 = (L,K0, KM,0) associated

with a datumM = (G,X, V,M) and a lattice L ⊂ V is defined by setting

KM,0 := M(Af) ∩ End(L⊗Z Ẑ),

K0 := φ−1(K×
M,0).

Definition 3.8. The level structure L onM is called fine if K acts freely on

G(Q)\X ×G(Af).

The maximal level structure is usually not neat enough to avoid stack

singularity problems in the generalization of the Connes-Marcolli algebra.

This is why we introduce the additional data of a compact open subgroup

K ⊂ KM . For example, for the Connes-Marcolli case, one takes K = GL2(Ẑ),

KM = M2(Ẑ), but the fact that this choice of K is not neat implies that the

groupoid we introduce in the next section has stack singularities. Thus we

instead choose a smaller K = K(N) ⊂ GL2(Ẑ) given by the kernel of the

mod N reduction of matrices.

3.3.2 The BCM Groupoid

Let D = (G,X, V,M ;L,K,KM ) be a BCM datum with level structure. There

are left and right actions of G(Af) on M(Af).
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Definition

Connes and Marcolli remarked in [11] that, if we want to take a quotient of a

groupoid by a group action, it is essential that the action is free on the unit

space of the groupoid. If we take the usual quotient set of a groupoid by an

action that is not free on the unit space, this will not give a groupoid. We are

thus obliged to use unit spaces that are in fact stacks. Some of them have

nice singularities (i.e., those with finite stabilizers), though others don’t. The

language of stacks allows one to work in full generality without bothering

about the freeness of actions involved.

Notation 3.2. As in Section 2.5, we denote stacks by German letters, and we

denote the corresponding coarse spaces by roman letters.

Let

YD = KM × Sh(G,X).

We denote points of YD by triples y = (ρ, [z, l]) with ρ ∈ KM , [z, l] ∈ Sh(G,X).

We want to study the equivalence relation on YD given by the following

partially defined action of G(Af):

g.y = (gρ, [z, lg−1]), where y = (ρ, [z, l]).

This equivalence relation will be called the commensurability relation. This

terminology is derived from the notion of commensurability for Q-lattices,

cf. [11].

Consider the subspace

UD ⊂ G(Af)× YD

of pairs (g, y) such that gy ∈ YD, i.e., gρ ∈ KM .

The space UD is a groupoid with unit space YD. The source and target

maps s : UD → YD and t : UD → YD are given by s(g, y) = y and t(g, y) = gy.

The composition is given, for y1 = g2y2, by (g1, y1)◦(g2, y2) = (g1g2, y2). Notice

that the groupoid obtained by restricting this groupoid to the (g, (ρ, [z, l]))

such that ρ is invertible is free, i.e., the equality t(g, y) = s(g, y) implies g = 1.

There is a natural action of K2 on the groupoid UD, given by

(g, y) 7→ (γ1gγ
−1
2 , γ2y), (3.14)
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and the induced action on YD is given by

y 7→ γ2y.

Remark 3.6. There are two motivations for quotienting UD by this action.

The first one is physical: it is necessary to obtain a reasonable partition

function for our system. The second is moduli theoretic: UD is only a pro-

analytic groupoid and the quotient by K2 is fibered over the Shimura variety

ShK(G,X) which is an algebraic moduli stack of finite type whose definition

could be made over Q̄, at least when (G,X) is classical and the Shimura

variety has a canonical model.

Let ZD be the quotient stack [K2\UD] and SD be the quotient stack

[K\YD]. The natural maps

s, t : ZD → SD

define a stack-groupoid structure (see Section 2.3) on ZD with unit stack SD.

Definition 3.9. The stack-groupoid ZD is called the Bost-Connes-Marcolli3

groupoid.

Let ZD := K2\UD be the (classical, i.e., coarse) quotient of UD by the

action of K2. If K is small enough, i.e., if K acts freely on G(Q)\X ×G(Af),

then ZD is equal to the classical quotient ZD, which is a groupoid in the usual

sense, with units S = K\YD. Otherwise, suppose that there exists a compact

open subgroup K ′ ⊂ K that acts freely on G(Q)\X ×G(Af) and choose on

(G, V,X,M) the level structure L′ = (L,K ′, KM). The stack ZD′ is a usual

topological space that is a finite covering of the coarse space ZD and such

that the stack ZD is the stacky quotient of ZD′ by the projection equivalence

relation to ZD.

The reader who prefers to work with usual analytic spaces may thus

suppose that K is small enough, but as we remarked before, our basic

examples (number fields) do not fulfill this hypothesis! We have also to recall

that for nonclassical Shimura data (G,X) in the sense of Section 2.4, there

exists no such small enough K ⊂ G(Af). This is essentially due to the fact

that the “unit group” Z(Q) ∩K (where Z denotes the center of G) can be

infinite.
3We will often call it the BCM groupoid, for short.
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3.3.3 Stack-Groupoids and the Equivariant Category

We have already explained the general notion of a stack-groupoid in Section 2.5,

but here we want to give a more “efficient” alternative description that’s

possible in the case of stack-groupoids that arise as group-action-quotients of

(ordinary) groupoids.

We start with a definition of the relevant category. Let (OSpace) be the

category of “spaces with group operation”, i.e., pairs (G,X) composed of

a topological space X and a group G that acts on X. We also call this

the equivariant category, which is perhaps more suggestive. A morphism

φ = (φ1, φ2) : (G1, X1)→ (G2, X2) between two such pairs is a pair composed

of a group morphism φ1 : G1 → G2 and a space morphism φ2 : X1 → X2 such

that

φ2(g1.x1) = φ1(g1).φ2(x1), ∀(g1, x1) ∈ G1 ×X1.

One can define the notion of groupoid in the category (OSpace). This

is the datum of a tuple ((G1, X1), (G0, X0), s, t, ε,m) fulfilling some natural

conditions that we will not write explicitly here, because we prefer the geo-

metrical language of stacks. There is a relation between these two languages,

which is given by a natural functor called “stacky quotient”. Thus one can

naturally associate to a groupoid in (OSpace) a stack groupoid.

Now let D be a BCM datum with level structure, and let

(UD, YD, s, t, ε,m)

be the groupoid defined in Section 3.3.2. Recall that there is a natural action

of K2 on the groupoid UD, given by

(g, y) 7→ (γ1gγ
−1
2 , γ2y).

There is also a natural action of K on YD given by

y 7→ γy.

Let sK : K2 → K, (γ1, γ2) 7→ γ2 and tK : K2 → K, (γ1, γ2) 7→ γ1 be the two

projections. Then the morphisms in (OSpace) given by

(s, sK), (t, tK) : (K2, UD)→ (K,YD)
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are called the equivariant source and target, respectively. The fiber product

(K2, UD) ×
(s,sK),(K,YD),(t,tK)

(K2, UD)

is naturally isomorphic to the (OSpace) object

(K2 ×
sK ,K,tK

K2, UD ×
s,YD,t

UD).

This means that m (groupoid multiplication) induces a natural multiplication

map

me = (mK ,m) : (K2, UD) ×
(s,sK),(K,YD),(t,tK)

(K2, UD)→ (K2, UD)

in this equivariant setting, where the map

mK : K2 ×
sK ,K,tK

K2 → K2

is given by m(γ1, γ2, γ2, γ3) = (γ1, γ3).

Passing to the stacky quotient, we obtain the multiplication map

m : ZD ×
SD

ZD → ZD

on the stack groupoid of Section 3.3.2. Observe that if the action of K on YD

is free, then we obtain an ordinary groupoid.

3.3.4 The Commensurability Class Map

Notation 3.3. Recall that φ is the representation of G, which we view as the

natural inclusion G ↪→M (for a given monoidal augmentation of G).

For classical Shimura data

We want to give an explicit description of the quotient of YD by the com-

mensurability equivalence relation, in the case where (G,X) is classical, i.e.,

when

Sh(G,X) = G(Q)\X ×G(Af).
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Let KMA = φ(G)(Af).KM ⊂M(Af). There is a natural surjective map of

sets

π : YD → G(Q)\X ×KMA

given by π(ρ, [z, l]) = [z, lρ].

Let Y ×D = K×
M × (G(Q)\X ×G(Af)) be the invertible part of YD and let

Z×D ⊂ ZD be the corresponding subspace (which is a groupoid in the usual

sense because K acts freely on K×
M ); that is, Z×D is defined just as ZD is, but

with Y ×D in place of YD. Let S×D := K\Y ×D be the unit space of Z×D . Since

K×
M ⊂M×(Af) = φ(G(Af)), the map π induces a natural map

π× : Y ×D → G(Q)\X ×G(Af)

(ρ, [z, l]) 7→ [z, lφ−1(ρ)],

which is complex analytic (for the natural analytic structures induced by the

complex structure on X) and surjective. Both π and π× factor through the

quotient of their sources by the left action of K. We will continue to denote

this factorization by π and π×.

Definition 3.10. The maps π and π× are called the commensurability class

maps.

The last definition is justified by the following lemma. The notion of

coarse quotient can be found in Definition 2.5.

Lemma 3.1. The maps π and π× are in fact the coarse quotient maps for the

groupoids ZD and Z×D acting on their unit spaces SD and S×D .

Proof. If (g, ρ, [z, l]) ∈ UD, then π(gρ, [z, lg−1]) = [z, lρ] = π(ρ, [z, l]) which

proves that π factors through

|SD/ZD| → G(Q)\X ×KMA.

This surjective map is an isomorphism. Indeed, if (ρ, [z, l]), (ρ′, [z′, l′]) ∈ YD
have same image under π, then there exists g ∈ G(Q) such that glρ = l′ρ′
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and gz = z′. We then know that in the quotient space |SD/ZD|,

(ρ, [z, l]) = (l−1g−1glρ, [z, l])

= (l−1g−1l′ρ′, [z, l])

∼ (l′−1gll−1g−1l′ρ′, [z, ll−1g−1l′])

= (ρ′, [z, g−1l′])

= (ρ′, [gz, l′])

= (ρ′, [z′, l′]).

This proves injectivity of π and surjectivity was already known. The argument

for π× is completely analogous.

For commutative Shimura data

Commutative Shimura data form another family of examples for which we can

construct the commensurability class map in simple terms. The multiplicative

datum of a number field belongs to this family. Thus we now suppose that

M = (G,X, V,M) is a monoidally augmented Shimura datum such that G

and M are commutative, and let L be a level structure on M. For each

K ′, K ⊂ G(Af) compact open, there is a natural map

YK′ := KM ×ShK′(G,X) −→ [G(Q)\X ×M(Af)/K
′]

given by (ρ, [z, l]) 7→ [z, lρ]. This map is K-equivariant for the trivial action

of K on the range because the image of k.(ρ, [z, l]) = (kρ, [z, lk−1]) is equal

to the image of (ρ, [z, l]). Recall that SD := [K\YD] and S×D = K\Y ×D . If we

pass to the limit on K ′ ⊂ G(Af), and then to the quotient by K, we obtain

natural maps

π : SD −→ lim←−
K′

[G(Q)\X ×M(Af)/K
′]

and

π× : S×D −→ Sh(G,X).

As before, we will call them commensurability class maps.

The image of the map π is, as before, the coarse quotient for the action of

the groupoid Z on its unit space S.
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Let

SK′ := K\(KM ×ShK′(G,X)).

We should remark here that in the commutative case that we have been

considering, the space SK′ is the unit space of a well defined groupoid ZK′

because the G(Af) action on ShK′(G,X) is well defined. This shows that

Z = lim←−
K′

ZK′ , (3.15)

which will be useful for the description of the symmetries of Bost-Connes

systems for number fields.

3.3.5 The Bost-Connes-Marcolli Algebra

Functions on BCM Stacks?

Let M = (G,X, V,M) be a BCM datum, and let L0 be the associated

maximal level structure (Definition. 4.1.4). We would like to define the

BCM algebra of D0 = (M;L0) as a groupoid algebra. Unfortunately, the

corresponding groupoid is usually only a stack and there is no canonical notion

of continuous functions on such a space. More precisely, if a stack has some

nontrivial isotropy group, Connes’ philosophy of noncommutative geometry

tells us that the “algebra of functions” on it should include this isotropy

information in a nontrivial way, and this algebra depends on a presentation

of the stack.

If (G,X) is classical, there is a very natural way to resolve the stack

singularities of ZD0 by choosing a neat level structure L, for which the

projection map

ZD −→ ZD0

is such a resolution, where D = (M;L). The corresponding convolution

algebra of the groupoid ZD is a completely natural replacement for the

groupoid algebra of the stack-groupoid ZD0 .

If (G,X) is nonclassical, there is no nice resolution of the stack singularities

of ZD0 . We will thus work with the algebra of functions on the coarse

quotient ZD0 . However ZD0 is not a groupoid, and so to define a convolution

algebra from the function algebra Cc(ZD0), we use the trick used by Connes
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and Marcolli in [11, 1.83] which consists in introducing G(R). Namely, we

introduce the groupoid

RD0 ⊂ K\G(Af)×K
(
KM × lim←−

K′

G(Q)\G(A)/K ′
)

of the partial action of G(Af) on KM × lim←−K′ G(Q)\G(A)/K ′ modulo the

K ×K-action (as in (3.14)); here K ′ runs over compact open subgroups of

G(Af). Now we identify Cc(ZD0) with the subalgebra of Cc(RD) obtained

by composing by the projection map RD0 → ZD0 . Since RD0 is a groupoid,

convolution can be defined on Cc(ZD).

Note that this solution, even if not completely satisfactory from the

geometrical viewpoint (because we work on coarse quotients), suffices (and

seems to be necessary) for the physical interpretation, i.e., analysis of KMS

states.

Now we give the precise definition of the algebra alluded to in the previous

paragraph. Let D = (G,X, V,M ;L,K,KM) be a BCM datum with level

structure. Let

HD := Cc(ZD)

be the algebra of compactly supported continuous functions on ZD. As in

[11, p. 44] in order to define the convolution of two functions, we consider

functions on ZD as functions on UD satisfying the following properties:

f(γg, y) = f(g, y), f(gγ, y) = f(g, γy), ∀γ ∈ K, g ∈ G(Af), y ∈ YD.

The convolution product on HD is then defined by the expression

(f1 ∗ f2)(g, y) :=
∑

h∈K\G(Af), hy∈YD

f1(gh
−1, hy)f2(h, y),

and the adjoint by

f ∗(g, y) := f(g−1, gy).

The fact that we consider functions with compact support implies that

the sum defining the convolution product is finite.

Definition 3.11. The algebra HD (under the convolution product) is called

the Bost-Connes-Marcolli algebra of the level-structure BCM datum D.
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Remark 3.7. We proved in Lemma 3.1 that, if (G,X) is classical, the quotient

of YD by the commensurability equivalence relation (encoded by the action

of the groupoid ZD) does not depend on the choice of K. This implies that

in the classical case, the Morita equivalence class of HD is independent of

the choice of neat level structure K. More precisely, all these algebras are in

fact Morita equivalent to the algebra corresponding to the “noncommutative

quotient”

G(Q)\X ×KM
A , where KM

A = G(Af)KM .

The BCM C*-Algebra

We now introduce the associated C*-algebra.

Let D = (G,X, V,M ;L,K,KM) be a BCM datum with neat level struc-

ture. On the algebra HD, we put the following norm: for every f ∈ HD, we

let

‖f‖ := sup
y∈YD
‖πy(f)‖ . (3.16)

Lemma 3.2. The norm (3.16) defines a C*-norm on HD, i.e., ‖f ∗f‖ = ‖f‖2.

Proof. Indeed, it is easy to check that this is a seminorm satisfying the C*-

condition (Definition 2.1): observe that for arbitrarily small ε > 0 there is a

y such that ‖f‖2 − ε = ‖πy(f)‖2. We then have

‖f ∗f‖ ≥ ‖πy(f ∗f)‖ = ‖πy(f)‖2 = ‖f‖2 − ε,

which of course means that ‖f ∗f‖ ≥ ‖f‖2. This inequality is easily shown to

imply the C*-condition.

That we get a norm (i.e., ‖f‖ = 0 only when f = 0), and not just a

seminorm, follows from the fact that f(g, y) 6= 0 implies that πy(f) 6= 0:

〈πy(f)εg, εg〉 = f(1, gy) = f(g, y) 6= 0.

Here εg ∈ Hy is the unit vector which takes the value 1 at g, and 0 elsewhere.

Definition 3.12. The completion of HD under the norm ‖ · ‖ is denoted AD

and called the BCM C*-algebra.
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3.3.6 The Time Evolution and Partition Function of the BCM

System

Let D = (G,X, V,M ;L,K,KM) be a BCM datum with neat level.

Definition 3.13. The time evolution on HD is defined by

σt(f)(g, y) = det(φ(g))itf(g, y). (3.17)

Let y = (ρ, [z, l]) be in YD and let

Gy = { g ∈ G(Af) | gρ ∈ KM } .

Let Hy be the Hilbert space `2(K\Gy).

Definition 3.14. The representation πy : HD → B(Hy) of the Hecke algebra

on Hy is defined by

(πy(f)ξ)(g) :=
∑

h∈K\Gy

f(gh−1, hy)ξ(h), for all g ∈ Gy,

for f ∈ HD and ξ ∈ Hy.

Lemma 3.3. The representation πy is well defined, i.e., πy(f) is bounded for

each f ∈ HD.

Proof. For f ∈ HD, We want to prove that the norm

‖πy(f)‖ := sup
‖ξ‖=1

‖πy(f)ξ‖2

is bounded. This follows from the fact that the functions we consider have

compact support. More precisely, denote Z := ZD. Given f ∈ HD = Cc(Z),

we need to show that there is a bound C > 0 such that for every pair of

vectors ξ, η ∈ Hy we have

|〈πy(f)ξ, η〉| ≤ C ‖ξ‖ ‖η‖ .

To this end, we introduce the following notation. We set

Sy = { [gh−1, hy] ∈ Z | g, h ∈ K\Gy },
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and for each γ ∈ Sy we set

Ry(γ) = { γ′ ∈ Zy | s(γ′) = t(γ) }.

These are discrete sets. Here we use the usual notation for groupoids, namely

Zy = t−1{y}, which we shall identify with K\Gy.

Using the Cauchy-Schwarz inequality, we now get a bound on |〈πy(f)ξ, η〉|
as follows:

|〈πy(f)ξ, η〉| ≤
∑
γ1∈Zy

∣∣(πy(f)ξ
)
(γ1)η(γ1)

∣∣
≤

∑
γ1,γ2∈Zy

∣∣f(γ1γ
−1
2 )ξ(γ2)η(γ1)

∣∣
=

∑
γ∈Sy

|f(γ)|
∑

γ′∈Ry(γ)

|ξ(γ′)η(γγ′)|

≤
∑
γ∈Sy

|f(γ)|
( ∑
γ′∈Ry(γ)

|ξ(γ′)|2
) 1

2
( ∑
γ′∈Ry(γ)

|η(γγ′)|2
) 1

2

≤ ‖ξ‖ ‖η‖
∑
γ∈Sy

|f(γ)|.

Because f has compact support, the sum
∑

γ∈Sy
|f(γ)| is finite, and we thereby

get the desired bound.

Now let’s consider the setting of maximal level structure, i.e., let K0 =

φ−1(K×
M), cf. Definition 3.7.

We view the Hamiltonian as a virtual operator on `2(K0\Gy). By this we

mean that the Hamiltonian does not depend on the choice of K and there is

a minimal space on which it is defined: the space

`2(K0\Gy).

Consequently, its trace must be computed as a virtual (i.e., equivariant) trace,

which is to say that it must be divided by #(K\K0).

These considerations are related to the fact that, if (G,X) is classical, we

prefer to define BCM algebras using neat level structures in order to resolve

the stack singularities of ZD.
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Proposition 3.7. The operator on Hy given by

(Hyξ)(g) = log det(φ(g)) · ξ(g) (3.18)

is the Hamiltonian, i.e., the infinitesimal generator of the time evolution,

meaning that we have the equality

πy(σt(f)) = eitHyπy(f)e−itHy (3.19)

for all f ∈ HD.

Proof. This is just a matter of unwinding the definitions. Let ξ ∈ Hy, and let

g ∈ Gy. On the one hand we have(
πy(σtf)ξ

)
(g) =

∑
h∈K\Gy

(σtf)(gh−1, hy)ξ(h)

=
∑

h∈K\Gy

det(φ(g))it det(φ(h))−itf(gh−1, hy)ξ(h),

while on the other hand we have(
eitHy(πyf)e−itHyξ

)
(g) = det(φ(g))it

(
(πyf)e−itHyξ

)
(g)

= det(φ(g))it
∑

h∈K\Gy

f(gh−1, hy)(e−itHyξ)(h)

= det(φ(g))it
∑

h∈K\Gy

f(gh−1, hy) det(φ(h))−itξ(h).

We thereby obtain the desired equality.

Definition 3.15. Let y ∈ YD and β > 0. The partition function of the system

(HD, σt,Hy, Hy), is

ζy(β) :=
1

#(K\K0)
Tr(e−βHy).
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3.3.7 Symmetries and Zeta Function of the BCM System

The symmetries of the Connes-Marcolli system play an important role in its

relations with arithmetic. The analogous symmetry in our generalization is

the following (which will be justified in Subsection 3.3.7).

Definition 3.16. Let D be a BCM datum with level structure. The semigroup

Sf(D) := φ−1(KM)

is called the finite symmetry semigroup of D. We will denote by Sf
×(D) the

group of invertible elements in Sf(D).

We included in L the datum of a lattice in the representation φ in order

to define a determinant map.

Lemma 3.4. The determinant det : GL(L)→ Gm,Q induces a natural map,

(det ◦φ) : K\G(Af)/K −→ Q×
+.

The image of Sf(D) under this map is contained in N×.

Proof. Since φ(K) ⊂ K×
M ⊂ GL(L)(Ẑ), the representation φ : G→ GL(L⊗Z

Q) induces a map

φ : K\G(Af)/K → GL(L)(Ẑ)\GL(L)(Af)/GL(L)(Ẑ).

The determinant map GL(L)→ Gm,Q induces a natural map

det : GL(L)(Ẑ)\GL(L)(Af)/GL(L)(Ẑ) −→ Ẑ×\A×
f /Ẑ

× ∼= Ẑ×\A×
f
∼= Q×

+.

The composition det ◦φ gives us the desired map. The image of Sf under

this map is contained in the image of GL(L)(Af) ∩ End(L)(Ẑ) under the

determinant map, which is exactly Ẑ∗ := A×
f ∩ Ẑ. The quotient Ẑ×\Ẑ∗ is

identified with Z×\Z ∼= N× ⊂ Q×.

Definition 3.17. Let D be a BCM datum with level structure. The zeta

function of D is the complex valued series

ζD(β) :=
∑

g∈Sf
× \ Sf

det(φ(g))−β.
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The level-structure BCM datum D is called summable if there exists β0 ∈ R
such that ζD(β) converges in the right plane {β ∈ C | Re(β) > β0} and

extends to a meromorphic function on C.

Let Y ×D ⊂ YD be the set of invertible y = (ρ, [z, l]), i.e., ρ ∈ K×
M . From

the definition of the Hamiltonian (3.18), the following fact is immediate.

Proposition 3.8. Suppose that y ∈ Y ×D . Then Gy = Sf := φ−1(KM). The

partition function of the system (HD, σt,Hy, Hy), coincides with the zeta

function ζD(β) of D (see Definition 3.17).

Moreover, it follows from 3.4 that the Hamiltonian has positive energy in

the representation πy.

Symmetries

Let D = (G,X, V,M ;L,K,KM) be a BCM datum with neat level. We will

denote the center of G by C.

Recall that Sf is the semigroup φ−1(KM). For m ∈ Sf and c ∈ C(R), we

define

θ(m,c)(f)(g, ρ, [z, l]) := f(g, ρφ(m), [cz, l]). (3.20)

Lemma 3.5. The expression (3.20) gives a well-defined right action of

S(D) := Sf(D)× C(R)

on HD which moreover commutes with the time evolution.

Proof. The action is well defined because K acts on YD on the left, while S
acts on the right. Recalling that the time evolution is given by the formula

(σtf)(g, y) =
(
detφ(g)

)it
f(g, y), it is clear that the action of S commutes

with σt.

Notation 3.4. Let CKM be the center of KM .

Definition 3.18. Let Inn(D) be the subsemigroup of S defined by

Inn(D) := C(Q) ∩ φ−1(CKM).
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Remark 3.8. There is a (diagonal) inclusions of semigroups

Inn(D) ⊂ S(D).

This gives a natural action of Inn(D) on HD.

Definition 3.19. The semigroup

Out(D) := Inn(D)\ S(D)

is called the outer symmetry semigroup of the BCM system (HD, σt).

In practical situations, the following hypotheses will often be fulfilled (see

Propositions 4.2 and 4.6).

Definition 3.20. The level structure L = (L,K,KM) is called faithful if the

image φ(C(Q)) of the center of G commutes with KM , i.e., φ(C(Q)) ⊂ CKM .

The level structure L is called full if the natural morphism Out→ C(Q)\G(Af)

is surjective; if this morphism is an isomorphism, the level structure L is

called fully faithful.

These symmetries are symmetries up to inner automorphisms, as we now

show.

Proposition 3.9 (cf. [11], Prop. 1.34). There is a morphism

Out(D)→ Out(HD, σt)

to the quotient of the automorphism group of the BCM system by inner

automorphisms of the algebra.

Proof. We have to prove that Inn acts by inner automorphisms. For n ∈ Inn,

we let µn be

µn(g, y) = 1 if g ∈ K.n−1, µn(g, y) = 0 if g /∈ K.n−1.

We will show that

θ(n,n)(f) = µnfµ
∗
n,
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i.e., the action of θ(n,n) is given by the inner automorphism corresponding to

µn.

We have, for all y ∈ YD,

(µnfµ
∗
n)(g, y) =

∑
h∈K\G(Af),hy∈Y

µn(gh
−1, hy)(fµ∗n)(h, y),

=
∑

h∈K\G(Af),hy∈Y

µn(gh
−1, hy)

∑
k∈K\G(Af),ky∈Y

f(hk−1, ky)µ∗n(k, y),

=
∑

h,k∈K\G(Af),hy,ky∈Y

µn(gh
−1, hy)f(hk−1, ky)µn(k

−1, ky).

Now, by definition of µn, the only nontrivial term of this sum is obtained

when k−1 = n−1 and gh−1 = n−1, i.e., k = n and h = ng. Since n is central,

we get

(µnfµ
∗
n)(g, y) = f(ngn−1, ny),

= f(g, nρ, [z, ln−1]),

= f(g, ρn, [nz, l]),

= θ(n,n)(f)(g, y).

3.3.8 KMS States at Low Temperature

Let D = (G,X, V,M ;L,K,KM) be a summable BCM datum with level

structure. Recall that we have defined

Y ×D = { (g, ρ, [z, l]) ∈ YD | ρ is invertible } .

Lemma 3.6. Let y ∈ Y ×D . Let β be such that the zeta function ζD(β) converges.

The state

Φβ,y(f) :=
Tr

(
πy(f)e−βHy

)
ζD(β)

, f ∈ AD

is a KMSβ state for the system (AD, σt).

Remark 3.9. By Lemma 3.4, we know that ζD(β) 6= 0.
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Proof. By construction, the algebra HD is a norm-dense subalgebra of AD,

which is also σz-invariant. Thus, to verify the KMSβ condition, it is enough

to show that

Φβ,y

(
f1σiβ(f2)

)
= Φβ,y(f2f1)

for every pair of functions f1, f2 ∈ HD; see Proposition 2.1. The convergence

of the zeta function implies that the operator e−βHy is trace-class. The

invariance of the trace under cyclic permutations implies that

ζD(β).Φβ,y

(
f1σiβ(f2)

)
= Tr

(
f1e

−βHyf2e
βHye−βHy

)
= Tr(f1e

−βHyf2)

= Tr(f2f1e
−βHy)

= ζD(β).Φβ,y(f2f1).

This finishes the proof of the KMS condition.

Recall that the commutant of a subset S ⊂ B(Hy) is by definition the set

S ′ = { a ∈ B(Hy) | as = sa for all s ∈ S } .

(cf. Section 2.1)

Lemma 3.7. If y ∈ Y ×D , then the commutant πy(AD)′ consists only of scalar

operators.

Proof. In general, if y ∈ YD, then the von Neumann algebra πy(AD)′ is

generated by the right regular representation of the isotropy group

Zy,y := { [g, y] ∈ Z | s[g, y] = [y] = [gy] = t[g, y] }

— see [8, Proposition VII.5]. If y is now in Y ×D , then the isotropy group

Zy,y is trivial. Therefore, the commutant πy(AD)′ consists only of scalar

operators.

Recall that the set of KMSβ states is a convex simplex (see Proposition 2.3).

Definition 3.21. The extreme points of the simplex of KMSβ states are called

the extremal KMSβ states.
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Proposition 3.10. Let y ∈ Y ×D be an invertible element of YD. Let β > 0 be

such that the zeta function ζD(β) converges. Then the KMSβ state

Φβ,y(f) :=
Tr

(
πy(f)e−βHy

)
ζD(β)

is an extremal KMSβ state of Type I∞.

Proof. By Proposition 2.3, the property, for Φβ,y, of being extremal is equiva-

lent to the property of being a factor state, i.e., the algebra AD generates a

factor in the GNS representation of Φβ,y. Following Harari-Leichtnam, [22,

Theorem 5.3.1], the GNS representation is (up to unitary equivalence)

π̃y = πy ⊗ IdHy : AD → B(Hy ⊗ Hy),

and the associated cyclic vector is

Ωβ,y = ζD(β)−1/2
∑

h∈K\Gy

det(φ(h))−1/2εh ⊗ εh,

where εh is the basis vector of Hy that takes the value 1 at h, and 0 elsewhere.

The properties that characterize the triple (Hy ⊗Hy, π̃y,Ωβ,y) as the GNS

representation of Φβ,y are precisely:

1. Φβ,y(f) = 〈π̃y(f)Ωβ,y,Ωβ,y〉, for every f ∈ AD; and

2. The orbit π̃y(AD)Ωβ,y is dense in the Hilbert space Hy ⊗ Hy.

These two properties are verified by direct calculation. For example, to verify

the second condition first observe that

πy(f)εh =
∑

g∈K\Gy

f(gh−1, hy) εg,

and so

π̃y(f)Ωβ,y = ζD(β)−1/2
∑

g, h∈K\Gy

det(φ(h))−β/2f(gh−1, hy) εg ⊗ εh.

But since Gy = Sf , every det(φ(h)) is positive, and we can choose f to have

sufficiently small support about (gh−1, hy) to see that the basis vector εg ⊗ εh
lies in the closure of π̃y(AD)ξβ,y.
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By Lemma 3.7, we know that the commutant πy(AD)′ consists of scalar

operators. It is then clear that

π̃y(AD)′ = πy(AD)′ ⊗B(Hy) = C⊗B(Hy),

and so

π̃y(AD)′′ = B(Hy)⊗ CIdHy
∼= B(Hy).

This proves that Φβ,y is a Type I∞ factor state.

Question 3.1. Let D = (G,X, V,M ;L,K,KM) be a BCM datum with level

structure. Is is true that for β >> 0, the map y 7→ Φβ,y induces a bijection

from the Shimura variety Sh(G,X) to the space Eβ of extremal KMSβ states

on (HD, σt)?

This is true for the systems of Bost-Connes [3], Connes-Marcolli [11], and

Connes-Marcolli-Ramachandran [14].



Chapter 4

Examples of the General Theory

In this chapter we specialize the general theory of the previous chapter to

various cases. We show, in particular, that the Shimura BCM recovers all

previous constructions of Connes and his collaborators. We also consider the

framework for Hilbert modular surfaces, and a variation of the Bost-Connes

system that accommodates Dirichlet characters.

Moreover, in the case of toroidal Shimura varieties, we show that the

Shimura BCM yields an analogue of the Bost-Connes system for an arbi-

trary number field F , which unlike earlier constructions by P. Cohen, Harai-

Leichtnam, Laca et al., gives the Dedekind zeta function as partition function

and admits an action of π0

(
F×\A×

F,f

)
, which by class field theory is isomor-

phic to Gal(F ab/F ). Such a system therefore admits the key features one

expects in order to generalize the arithmetical intertwining properties of the

extremal KMS∞ states of the Bost-Connes system over Q (see Theorem 3.1,

Theorem 3.2, and (1) from the Introduction).

4.1 Bost-Connes and Connes-Marcolli Revisited

The Shimura BCM of the previous chapter does indeed generalize the systems

of Bost-Connes and Connes-Marcolli. This is actually rather clear from the

discussion in Chapter 3 leading up to the abstract constructions of Section 3.3,

but here we want to explain this coincidence as a consequence of a more

general condition on the Shimura datum, namely, that essentially only the

75
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following hypotheses are needed:

1. The natural map

G(Q) ∩K −→ G(Q)/
(
G(Q) ∩G(R)+

)
is surjective; and

2. The class number #
(
G(Q)\G(Af)/K

)
is 1.

4.1.1 Principal BCM Systems

We want to understand how our systems are related to the usual Bost-Connes-

Marcolli systems in the class number one case. We call these class number one

systems principal BCM systems. They are directly related to Connes-Marcolli

systems defined in [11], as we will shortly see.

Let us setup the relevant apparatus for D = (G,X, V,M ;L,K,KM) a

BCM pair with (G,X) classical. Let Γ := G(Q) ∩K, and let

Uprinc := { (g, ρ, z) ∈ G(Q)×KM ×X | gρ ∈ KM } .

Let X+ be a connected component of X, G(Q)+ be G(Q) ∩ G(R)+ (where

G(R)+ is the identity component of G(R)) and Γ+ = G(Q)+ ∩K. Finally, let

U+ :=
{

(g, ρ, z) ∈ G(Q)+ ×KM ×X+ | gρ ∈ KM

}
.

We have a natural action of Γ2 (resp. Γ2
+) on Uprinc (resp. U+) given (as

usual) by

(g, ρ, z) 7−→ (γ1gγ
−1
2 , γ2ρ, γ2z).

Let Zprinc
D (resp. Z+

D) be the stacky quotient of Uprinc (resp. U+) by Γ2

(resp. Γ2
+).

Definition 4.1. The stack groupoid Zprinc
D is called the principal BCM groupoid

for the level-structure BCM datum D.

Proposition 4.1. Suppose that the natural map Γ→ G(Q)/G(Q)+ is surjective.

Then the natural map

Z+
D

∼−−→ Zprinc
D

is an isomorphism.
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Proof. Surjectivity : Let u = (g, ρ, z) ∈ Uprinc. We want to show that there

exists γ1, γ2 ∈ Γ such that (γ1, γ2).u = (γ1gγ
−1
2 , ρ, γ2z) ∈ U+. There exists

γ2 ∈ Γ with γ2z ∈ X+ because: 1) the definition of a Shimura datum implies

that π0(X) is a π0(G(R))-homogeneous space; and 2) from our hypothesis and

the theorem of real approximation, we get a surjection Γ→ G(Q)/G(Q)+ ∼=
G(R)/G(R)+. Our hypothesis now implies that there exists γ1 ∈ Γ such that

γ1gγ
−1
2 ∈ G(Q)+. This proves surjectivity.

Injectivity : Now suppose that two points (g1, ρ1, z1) and (g2, ρ2, z2) have

the same image in the quotient. Then there exists γ1, γ2 ∈ Γ such that

(g1, ρ1, z1) = (γ1g2γ
−1
2 , γ2ρ2, γ2z2). Since γ2 stabilizes X+, it is in G(R)+, and

therefore also in Γ+. This implies that γ1 is in Γ+. This proves injectivity.

Notation 4.1. The cardinality of the finite set G(Q)\G(Af)/K is denoted by

h(G,K).

Proposition 4.2. Suppose h(G,K) = 1. Then the principal and the full BCM

groupoids are the same, i.e., the natural map

Zprinc
D

∼−−→ ZD

is an isomorphism.

Proof. There is a natural map

ψ : (Γ\G(Q))×KM ×X → (K\G(Af))×KM ×G(Q)\(X ×G(Af))

(g, ρ, z) 7→ (g, ρ, [z, 1])
.

The action of γ2 ∈ Γ on the source is given by (g, ρ, z) 7→ (gγ−1
2 , γ2ρ, γ2z) and

on the range by (g, ρ, [z, l]) 7→ (gγ−1
2 , γ2ρ, [z, lγ

−1
2 ]). Since Γ = K ∩G(Q), we

have
ψ(γ2 · (g, ρ, z)) = (gγ−1

2 , γ2ρ, [γ2z, 1]),

= (gγ−1
2 , γ2ρ, [z, γ

−1
2 ]),

= γ2 · ψ(g, ρ, z).

This proves that ψ, being Γ-equivariant, induces a well defined map

ψ : (Γ\G(Q))×
Γ

[KM ×X]→ (K\G(Af))×
K

[KM ×G(Q)\(X ×G(Af))].
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Let us prove that ψ is surjective. This will essentially follow from the

equalities G(Af) = K.G(Q) = G(Q).K (the class number one hypothesis

h(G,K) = 1).

For (g, ρ, [z, l]) ∈ (K\G(Af)) ×
K

[KM × G(Q)\(X × G(Af))], there exists

γ2 ∈ K and l2 ∈ G(Q) such that l = l2γ2. Then, we have the equalities in our

quotient space

(g, ρ, [z, l]) = (g, ρ, [z, l2γ2])

= (gγ−1
2 , γ2ρ, [z, l2])

= (gγ−1
2 , γ2ρ, [l

−1
2 z, 1]).

There exists γ1 ∈ K and g1 ∈ G(Q) such that γ1g1 = gγ−1
2 and we have the

following equalities in our quotient space

(g, ρ, [z, l]) = (gγ−1
2 , γ2ρ, [l

−1
2 z, 1])

= (γ1g1, γ2ρ, [l
−1
2 z, 1])

= ψ(g1, γ2ρ, l
−1
2 z).

Thus ψ is surjective.

Now we prove that ψ is injective. Suppose that

ψ(g1, ρ1, z1) = ψ(g2, ρ2, z2).

Then there exists γ1 ∈ K, γ2 ∈ K, γ3 ∈ G(Q) such that

(γ1g1γ
−1
2 , γ2ρ1, [γ3z1, γ3γ

−1
2 ]) = (g2, ρ2, [z2, 1]).

This implies that γ3 = γ2, and so γ2 ∈ K ∩ G(Q) = Γ. But we also have

γ1 = g2γ2g
−1
1 ∈ G(Q) ∩K = Γ. This shows that

(g2, ρ2, z2) = (γ1g1γ
−1
2 , γ2ρ1, γ2z1)

with γ1, γ2 ∈ Γ, i.e., (g2, ρ2, z2) and (g1, ρ1, z1) are the same in (Γ\G(Q)) ×
Γ

[KM ×X]. This proves injectivity.

To finish, we prove that the bijection ψ : Zprinc
D → ZD is compatible

with the groupoid structures. Let Y princ = KM × X, and Y = KM ×
Sh(G,X). If (g, ρ, z) ∈ Zprinc, the image of (ρ, z) ∈ Y princ under g ∈ G(Q) is

given by (gρ, gz) ∈ Y princ. The image of (ρ, [z, 1]) ∈ Y under g is given by

(gρ, [z, g−1]) ∈ Y , which is equal to (gρ, [gz, 1]). This finishes the proof.
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4.1.2 The Bost-Connes System Revisited

Let F be a number field. Consider the following datum.

G = ResF/Q Gm,F

XF = G(R)/G(R)+ ∼= {±1}Hom(F,R)

V = F

M = ResF/QM1,F

L = OF
K = Ô

×
F

KM = ÔF = M1(ÔF )

Definition 4.2. The level-structure BCM datum

P(ResF/Q Gm,F , XF ) = (Gm,F , XF , F,ResF/QM1,F ;OF , Ô
×
F , ÔF )

is called the Bost-Connes pair for F . The corresponding algebra

H(ResF/Q Gm,F , XF )

is called the Bost-Connes algebra for F .

Proposition 4.3. In the case F = Q, H(Gm,Q, {±1}) is the original Bost-

Connes algebra.

Proof. Recall from Section 3.1.1 that the Bost-Connes algebra is the convolu-

tion algebra of the groupoid ZBC ⊂ Q×
+ × Ẑ of pairs (g, ρ) with gρ ∈ Ẑ; thus

we need only to show that ZBC coincides with the BCM groupoid Z of the

Bost-Connes pair. Indeed, in the notation of Section 4.1.1, we have

U+ = { (g, ρ, 1) ∈ Q×
+ × Ẑ× {1} | gρ ∈ Ẑ }, Γ = {±1}, and Γ+ = 1.

Therefore Z+ := Γ+\U+ = ZBC ; the map Γ → G(Q)/G(Q)+ is an isomor-

phism of {±1}; and h(Gm,Q, Ẑ×) = 1, since it is the usual class number of Q.

The proposition follows from Propositions 4.1 and 4.2.
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4.1.3 The Connes-Marcolli System Revisited

We now show that in the GL2,Q case, we obtain exactly the same groupoid as

Connes and Marcolli [11]. This groupoid is only a stack-groupoid, not a usual

groupoid. This restriction was circumvented by Connes and Marcolli using

functions of weight 0 for the scaling action (see [11], remark shortly preceding

1.83). Such a scaling action is not canonically defined in the general case we

consider. As explained before, we deliberately chose to view this groupoid

as a stack-groupoid in order to define a natural groupoid algebra for it that

depends on the resolution of stack singularities given by the choice of K.

Consider the following datum.

G = GL2,Q

X = H±

V = Q2

M = M2,Q

L = Z2

K = GL2(Ẑ)

KM = M2(Ẑ)

Definition 4.3. The level-structure BCM datum

P(GL2,H±) :=
(
GL2,H±,Q2,M2,Q; Z2,GL2(Ẑ),M2(Ẑ)

)
is called the modular BCM pair. The corresponding BCM stack-groupoid is

denoted by ZGL2,H± .

The stack-groupoid Z+
GL2,H± is defined as in Section 4.1.1. This is exactly

the groupoid studied by Connes and Marcolli in [11].

Lemma 4.1. The stack-groupoid for the modular BCM pair is the same as

Connes and Marcolli’s. In other words, the natural map

Z+
GL2,H → ZGL2,H±

is an isomorphism.

Proof. We have in this case h(G,K) = 1 so by Proposition 4.2, we have

[Zprinc
GL2,H± ] ∼= [ZGL2,H± ]. The map GL2(Z) → GL2(R)/GL2(R)+ is surjective,

so that we can apply proposition 4.1, which tells us that

Z+
GL2,Hpm

∼= Zprinc
GL2,H± .
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4.2 Toroidal Shimura Varieties

In this section we investigate the BCM systems for toroidal Shimura varieties.

This is the case relevant for generalizations of the Bost-Connes system to

arbitrary number fields F . The main results are in Sections 4.2.2 and 4.2.2,

where we show that the generalized Bost-Connes systems that we get when

specializing to the BCM system for the Shimura datum (ResF/Q Gm,F , π0(F
×
∞))

have particularly nice features: symmetry by the full group π0(A×
F/F

×), and

Dedekind zeta function as partition function. Moreover, unlike previous

approaches, our Bost-Connes generalization enjoys these properties without

conceding to class number restraints on the field F .

4.2.1 Some Facts about the Idèle Class Group

As observed by Richard Pink in his Bonn thesis [41, Page xiii and §11.4],

Deligne’s definition of a (pure) Shimura variety is better suited to abelian

class field if one makes the following adaptation: when defining a Shimura

datum for a reductive group G over Q, allow not only for arithmetic quotients

of a G(R)-conjugacy class X of homomorphism h : S → GR, but also finite

G(R)-equivariant covers Y → X on which G(R) acts transitively.

That this adaptation is better suited for applications to class field theory

can be clearly seen in the case of toroidal Shimura varieties.

Proposition 4.4 (Deligne [16]). Let T be a torus (over Q). The group

π0

(
T (Q)\T (A)

)
of connected components of T (Q)\T (A) is a profinite group, namely the

projective limit

lim←−
K

T (Q)\T (A)/T (R)+K

over the compact open subgroups K of T (Af).

In particular, we have the following description of the group of components

of the idèle class group.



82 Chapter 4. Examples of the General Theory

Corollary 4.1. Let F be a number field, and let T be the torus ResF/Q Gm,F

of dimension [F : Q]. Then T (Q)\T (A) is the idèle class group CF of F , and

its group of connected components is a profinite group. More precisely,

π0(CF ) ∼= lim←−
K

CF/(F
×
∞)+K =: Sh

(
T, π0 T (R)

)
.

where K runs over the compact open subgroups of A×
F,f .

Of course, this Corollary is an immediate consequence of the Proposition.

However, since no proof of the corollary is actually written down in [16], we’ve

included a sketch for the reader’s convenience.

Sketch of Proof. To show that π0(CF ) is profinite, we need to show that it is

compact and totally disconnected. This later property is alone a consequence

of the fact that CF is a topological group. To show compactness, we look at

the exact sequence of groups

1 −→ F×\A1,×
F −→ CF −→ R×

+ −→ 1,

where A1,×
F is the group of norm-1 idèles. Now since F×\A1,×

F is compact and

R×
+ is connected, the compactness of π0(CF ) immediate. Hence π0(CF ) is a

profinite group.

For the identification of the projective limit see [24, §III.7]. Essentially,

what is required is a somewhat explicit description of the connected compo-

nents of the identity of CF (Artin) together with general facts about projective

limits of groups.

Expression of the Projective Limit

Although we now have an expression for the limit Shimura variety

Sh(ResF/Q Gm,F , π0(F
×
∞)) = lim←−

K

F×\ π0(F
×
∞)× A×

F,f/K

as the connected-components groups of A×
F/F

×, this is not necessarily a big

simplification, because of the somewhat mysterious nature of the identity

component of the idèle class group. The issue we want to investigate is when
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is it that one can give an alternative description of the limit, as in the case

for Q where the limit is

Q×\{±1} × A×
f = Q×

+\A×
f = Ẑ×.

Consider the Shimura datum (T, π0(T (R))) for a torus T defined over Q.

Let T (Q) is the closure of T (Q) in T (Af). It is claimed in [16, §2.2.3],

T (Q)\ π0

(
T (R)

)
× T (Af), (4.1)

is isomorphic to

Sh
(
T, π0 T (R)

)
= lim←−

K

T (Q)\ π0

(
T (R)

)
× T (Af)/K. (4.2)

But this is false in general, because there are tori for which (4.1) is not even

Hausdorff, while (4.2) is a profinite group, and therefore necessarily Hausdorff.

Indeed, this discrepancy is precisely what complicates the analysis of the

Bost-Connes system for general number fields. In fact, it is rather rare for a

(limit) toroidal Shimura variety to have an expression as a simple quotient.

A precise statement in this direction is the following.

Proposition 4.5. For a number field F , the following are equivalent:

1. F is either Q or an imaginary quadratic field;

2. The quotient space F×\A×
F,f is Hausdorff;

3. The (limit) Shimura variety takes the form

Sh(ResF/Q Gm,F , π0 F
×
∞) ∼= F×\ π0(F

×
∞)× A×

F,f .

Proof. The Proposition is essentially a consequence of Dirichlet’s Unit The-

orem, which, as we recall, states that the group of units O×F of the ring of

integers of F is a finitely generated (abelian) group of rank r + s− 1, where

r, resp. 2s, is the number of real, resp. complex, embeddings of F . Thus, O×F
is an infinite group if and only if F is neither Q nor an imaginary quadratic

field.
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(3) =⇒ (2): This is clear, because Sh(ResF/Q Gm,F , π0 F
×
∞) is, by definition,

a profinite group, and therefore also Hausdorff.

(2) =⇒ (1): Suppose that O×F is infinite. Since O×F is an infinite set which

is discretely embedded in the compact space Ô
×
F , it has an accumulation

point a ∈ Ô
×
F lying outside of O×F . The F×-orbit of a cannot coincide with

F× ⊂ A×
F,f , for if it did, then a would lie in F× ∩ Ô

×
F = O×F . Hence 1 and a

represent distinct non-separable classes in the quotient F×\A×
F,f .

(1) =⇒ (2): From the fundamental exact sequence of class field theory,

1 −→ F×.(F×∞)+ −→ A×
F −→ Gal(F ab/F ) −→ 1,

it follows that the quotient A×
F/F

×.(F×∞)+ is isomorphic to the Hausdorff

(indeed, profinite) group Gal(F ab/F ). Now if F is either Q or an imaginary

quadratic field, then the finiteness of O×F implies the closedness of F×.(F×∞)+

(cf. [45, §5.2]) and therefore the Hausdorff property for

F×\A×
F/F

×
∞ = F×\A×

F,f × π0(F
×
∞)

=

Q×\A×
f × {±1}, if F = Q;

F×\A×
F,f , if F is imaginary quadratic.

(1) =⇒ (3): When F is either Q or an imaginary quadratic field, then one

checks that the natural projection

F×\ π0(F
×
∞)× A×

F,f −→ lim←−
K

F×\ π0(F
×
∞)× A×

F,f/K

is an isomorphism; again, the finiteness of O×F is crucial.

The upshot is that because in general

Sh(ResF/Q Gm,F , π0 F
×
∞) � F×\ π0(F

×
∞)× A×

F,f ,

the analysis of the symmetries of the Bost-Connes algebra AF for F (see

Definition 4.4) is complicated. In particular, it will be necessary to use the

finer structure of the Bost-Connes groupoid ZF as a stack-groupoid in order

to recover π0(A×
F/F

×) as the outer symmetry semigroup of AF . The coarse

quotient of ZF simply won’t do.
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4.2.2 The Bost-Connes System for Number Fields

Having already discussed the Bost-Connes system for Q in numerous sections,

we now move on to its analogue for arbitrary number fields. First, let us

recall the setup. (For the reader’s convenience some of the definitions for the

general BCM system are repeated in this special case.)

Let F be a number field, and let F∞ := F ⊗Q R. The BCM datum that

we attach to F is:

(G,X, V,M ;L,K,KM)

= (ResF/Q Gm,F , π0(F
×
∞), F,ResF/QM1,F ;OF , Ô

×
F , ÔF ) =: PF .

To avoid typographical monstrosities, let us first set

YF := ÔF × Sh(ResF/Q Gm,F , π0(F
×
∞)).

To define the BCM groupoid, we first consider the cross product groupoid

GF := A×
F,f n YF ⇒ YF

of the natural partial action of A×
F on YF . The group Ô

×
F acts on the left and

right of GF like so:

k.
(
g, (ρ, [x, l])

)
=

(
kg, (ρ, [x, l])

)
,

(
g, (ρ, [x, l])

)
.k =

(
gk, (k−1ρ, [k−1x, lk])

)
.

Definition 4.4. The BCM groupoid for F is the quotient

ZF := Ô
×
F\YF/Ô

×
F ,

and the BCM algebra for F is the convolution algebra AF = Cc(ZF ).

Recall also that we have a time evolution for AF given by

σt(f)(g, y) = NA×F
(g)−itf(g, y), f ∈ AF , (g, y) ∈ A×

F,f n YF ,

where NA×F
is the usual norm on idèles. Let y ∈ YF . Recall that the Hilbert

space over this point is

Hy := `2(Ô
×
F\Gy),
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where Gy =
{
g ∈ A×

F,f | gy ∈ YF
}
, and that AF has a representation on it

via convolution:

πy(f)ξ(g) =
∑

[h]∈Ô×F \Gy

f(gh−1, hy) ξ(h).

In this representation, it is straightforward to show that the time evolution is

generated by the unbounded Hamiltonian operator on Hy defined by

(Hyξ)(g) = log
(
−NA×F

(g)
)
ξ(g).

That is,

πy
(
σt(f)

)
= eiHytπy(f)e−iHyt.

For F = Q, we recover all the ingredients of the original Bost-Connes

system (Section 4.1.2). For F an imaginary quadratic field, we recover the

system of Connes-Marcolli-Ramachandran [14].

In the following two subsections we completely analyze the symmetries

and partition function of PF , and find that our Bost-Connes system for F

has two very desirable features:

1. It recaptures the Dedekind zeta function as its partition function; and

2. Its outer symmetry semigroup is the full group π0(A×
F/F

×), which is

isomorphic to Gal(F ab/F ) by Artin reciprocity.

We emphasize, however, that there remains the difficult problem of classi-

fying its KMS states and determining its F -rational subalgebra. This is what

will be needed to extend the full arithmetic of the Bost-Connes system (The-

orems 3.1 and 3.2) — intertwining of Galois actions through the evaluation

of KMS∞ states — to the case of general number fields. Aside from F = Q,

this has thus far only been completely carried out for imaginary quadratic F

(see [14], where the analysis is drastically simpler than in the general case

because the associated Shimura datum is classical, in the sense discussed in

Section 2.4 and elsewhere).
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Finite Symmetries and the Partition Function

Recall that for (G,X, V,M ;L,K,KM), a BCM datum with level structure,

the finite symmetry semigroup is Sf = KM ∩G(Af).

Theorem 4.1. Let T = ResF/Q Gm,F . Then the finite symmetry semigroup

Sf

(
T, π0 T (R)

)
of the Bost-Connes system PF is

Ô
∗
F := ÔF ∩ A×

F,f ,

and for β > 1, its partition function is the Dedekind zeta function

ζF (β) =
∑

a⊂OF

N(a)−β

(sum over integral ideals of F ).

We begin by giving a more convenient description of the integral ideals of

a number field.

Lemma 4.2. Let F be a number field, and let IF denote the semigroup of

integral ideals of F . The semigroup homomorphism

ψ : ÔF ∩ A×
F,f −→ IF

a = (aν)ν 7−→
∏
ν finite

pν(aν)
ν (ν: place of F )

is compatible with the (absolute) norm on ideals and the inverse (absolute)

norm on idèles. It fits into the semigroup exact sequence

1 −→ Ô
×
F −→ ÔF ∩ A×

F,f

ψ−−→ IF −→ 1.

In particular,

IF ∼= Ô
×
F\ÔF ∩ A×

F,f .
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Proof. Clearly the map ψ is surjective. The kernel of ψ is Ô
×
F since

ψ(a) = OF ⇐⇒ |aν |ν = 1 for all ν ⇐⇒ a ∈ Ô
×
F .

The compatibility of the absolute norms is the assertion

[OF : ψ(a)] =: NF/Q(ψa) = NA×F
(a)−1 :=

∏
ν

|aν |−1
ν ,

whose validity follows from the multiplicativity of the norms and the equality

|aν |ν = [OF : pν ]
−ν(aν).

Proof of 4.1. The statement about the finite symmetry semigroup is imme-

diate from its definition. As for the statement about the partition function,

what we need to show is that

Tr(e−βHy) = ζF (β)

whenever y = (ρ, z) ∈ YF = ÔF × Sh(ResF/Q Gm,F , π0(F
×
∞)) is invertible, i.e.,

ρ ∈ Ô
×
F . When this holds, then g ∈ Gy if and only if gρ ∈ ÔF if and only if

g ∈ Ô
∗
F , and so

Tr(e−βHy) =
∑

g∈Ô×F \Gy

NA×F
(g)β =

∑
g∈Ô×F \Ô

∗
F

NA×F
(g)β.

By the Lemma, this last sum is just another expression for ζF (β).

The Full Symmetry Semigroup

We now identify the action of the full symmetry semigroup

S(ResF/Q Gm,F , XF ) = Ô
∗
F × ResF/Q Gm,F (R),

which contains archimedean information. That our Shimura-variety formalism

for Bost-Connes-Marcolli systems is able to yield the following theorem is a

strong indication of its basic correctness.

Theorem 4.2. We have Inn(ResF/Q Gm,F , XF ) = O∗F := OF − {0} and the

outer symmetry semigroup Out(ResF/Q Gm,F , XF ) acts on the BCM algebra

HF through

π0(F
×\A×

F ).
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Proof. Recall from Eq. (3.15) that ZF can be written as a projective limit of

groupoids ZK′ for K ′ ⊂ G(Af) compact open. The S-action therefore induces

an action of the projective limit semigroup lim←−K′ S /K ′ over all compact open

K ′ ⊂ G(Af). That is to say, S /K ′ acts on the corresponding piece ZK′ , and

that this action is compatible with the projective systems. Recall that

lim←−
K′

F×\
(
A×
F,f/K

′ × π0(F
×
∞)

)
=: Sh(ResF/Q Gm,F , π0(F

×
∞))

∼= π0(F
×\A×

F ).

(See Corollary 4.1.)

It thus remains to prove that the natural map

O∗F\(Ô
∗
F × π0(F

×
∞)) −→ F×\(A×

F,f × π0(F
×
∞))

is an isomorphism. The injectivity of this map is clear because O∗F :=

OF − {0} = Ô
∗
F ∩ F×. Since F× acts transitively on π0(F

×
∞), to prove

surjectivity it suffices to prove surjectivity of the upper map of the following

diagram:

Ô
∗
F

//

��

F×\A×
F,f

��

O∗F\Ô
∗
F/Ô

×
F

∼ // F×\A×
F,f/Ô

×
F

The lower arrow is an isomorphism because these two groups are equal to the

ideal class group of F . Let g ∈ A×
F,f be a finite idèle. Then its image by the

vertical projection gives an ideal class, which is the image of some m ∈ Ô
∗
F .

We have [m] = [g] in the right quotient so that there exists k ∈ Ô
×
F such that

g = mk mod F×. Then mk ∈ Ô
∗
F is in the preimage of the upper arrow of

the diagram, which proves surjectivity.

Remark 4.1. As mentioned before, analogous results were already obtained

for F imaginary quadratic by Connes-Marcolli-Ramachandran (see [14]). In

that case, the Shimura datum

(ResF/Q Gm,F , XF )

is classical, so its analysis is simpler.
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4.2.3 Dirichlet Characters for Bost-Connes Systems

Review of Zeta Functions of Dirichlet Characters

We here recall from Neukirch’s book [39], p. 501, some facts about characters.

Definition 4.5. A Hecke character is a character of the idèle class group

CF := A×
F/F

×, i.e., a continuous homomorphism χ : CF → S1 to the group

S1 of complex numbers of norm 1. A Dirichlet character is a Hecke character

that factors through the quotient group (F×∞)+\A×
F/F

× where recall that “+”

denotes the connected identity component for the real topology.

Let m =
∏

p pn be a full ideal of OF and let K(m) be the kernel of the

natural map

Ô
×
F → (ÔF/m)×.

We say that m is a module of definition for the Dirichlet character χ if

χ
(
K(m)

)
= 1. We then call K(m) a subgroup of definition for χ.

Each Dirichlet character has a module of definition and for such an m, we

have a factorization χ : C(m)→ S1, where C(m) =
(
(F×∞)+×K(m)

)
\A×

F/F
×

is the big ray class group modulo m. Such an m that is moreover minimal

(among the modules of definition) is called the conductor of the Dirichlet

character.

Recall that Ô
∗
F = A×

F,f ∩ ÔF . If χ : A×
F → S1 is a Dirichlet character,

we factor it through (F×∞)+\A×
F , and thus restrict it to π0(F

×
∞) × Ô

∗
F . Let

K(m) ⊂ Ô
×
F be a primitive subgroup of definition for χ and let K∗(m) :=

{n ∈ Ô
∗
F | n̄ = 1 ∈ ÔF/m}.

There is an injective map K(m)\K∗(m) ↪→ Ô
×
F\Ô

∗
F whose image is the

semigroup of all ideals of F prime to m.

At least if χ is trivial at infinity, it induces χ : K(m)\K∗(m)→ S1. Now,

we can define the L-function of our Dirichlet character χ as

LF (s, χ) =
∑

n∈K(m)\K∗(m)

χ(n)

N(n)s
,

where N is the norm map. In the particular case of a class character, we have

LF (s, χ) =
∑

n∈Ô×F \Ô
∗
F

χ(n)

N(n)s
.
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A Bost-Connes Algebra for Dirichlet Characters

Let χ : AF → S1 be a Dirichlet character that we assume is trivial at infinity.

Let G = ResF/Q Gm,F , and let X := G(R)/G(R)+ ∼= {±1}Hom(F,R). Let m be

the conductor of χ, and let KM(m) ⊂ ÔF be the multiplicative semigroup

defined by

KM(m) = kermult(ÔF → ÔF/m) := {n ∈ ÔF | n̄ = 1 ∈ ÔF/m}.

Recall that we denoted by K(m) ⊂ Ô
×
F the subgroup K(m) = ker

(
Ô
×
F →

(ÔF/m)×
)
. Let L = OF and φ : G→ GLQ(F ) be the regular representation.

Definition 4.6. The level-structure BCM datum

MF,m :=
(
ResF/Q Gm,F , X, F, ÔF ;L,K(m), KM(m)

)
is called the Bost-Connes datum of conductor m.

The time evolution and Hamiltonian are the same as in the Bost-Connes

case studied in Section 4.2.2.

Let aχ be the operator on Hy defined by

(aχξ)(g) = χ(g).ξ(g).

Definition 4.7. The χ-twisted trace Trχ on B(Hy) is defined by

Trχ(D) = Tr(aχ.D).

Definition 4.8. The χ-twisted partition function ofMF,m is defined as

ζMF,m,χ(s) = Trχ(e
−βHy).

Lemma 4.3. The χ-twisted partition function ofMF,m is equal to the Dirichlet

L-function LF (s, χ).

Proof. This follows from the definition and Subsection 4.2.3.

Notice that in this case, the symmetry semigroup is not full in the sense

of Definition 3.20.
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4.3 Hilbert Modular Surfaces

We now specialize the general formalism of Section 3.3 to the case of Hilbert

modular Shimura data. This is a good training ground in preparation for

dealing with general Shimura data. It is clear that there is still much to be

done.

4.3.1 Construction

Let F be a totally real number field, and let r be the number of real embeddings

of F . Formally, the BCM system for a Hilbert modular surface — the Shimura

variety for the datum (ResF/Q GL2,F , (H±)r) — is the same as the BCM system

for elliptic modular curves (i.e., the Connes-Marcolli GL2-system). Thus,

consider the following datum.

G = ResF/Q GL2,F

X = (H±)r

V = F 2

M = ResF/QM2,F

L = O2
F ⊂ V

K0 = GL2(ÔF ) ⊂ G(Af)

KM = M2(ÔF ) ⊂M2(AF,f)

Definition 4.9. Let K be a neat subgroup of K0. The level-structure BCM

datum

P(G,X,K) = (G,X, V,M ;L,K,KM)

is called the Hilbert modular BCM pair for F . The BCM algebra H(P) is

called a Hilbert modular BCM algebra.

Lemma 4.4. If we suppose that F has class number one, then the natural

morphism

H(P) −→ Hprinc(P)

from the principal to the full Bost-Connes-Marcolli algebra is an isomorphism.

Proof. The hypothesis implies (in fact is equivalent to) h(G,K) = 1. The

result then follows from proposition 4.2.
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We now describe more explicitly the time evolution whose construction

was made in Section 3.3.6.

Let C := ResF/Q Gm,Q, which is the center of G = ResF/Q GL2. The

natural determinant map det : G→ C induces det : K\G(Af)→ C(Ẑ)\C(Af).

The norm map N : C → Gm,Q induces

N : C(Ẑ)\C(Af) −→ Ẑ×\A×
f
∼= Z×\Q× ∼= Q×

+ ⊂ R×
+.

Lemma 4.5. For the Hilbert modular BCM algebra H(G,X,K), the time

evolution equals

σt(f)(g, y) = N(det(g))itf(g, y).

4.3.2 Symmetries

We apply the general definitions of Section 3.3.7 to this case. We see that

Sf(P) = M2(ÔF )∗ := GL2(AF,f) ∩M2(ÔF ).

The center of G = ResF/Q GL2,F is C = ResF/Q Gm,Q and the center of

M2(ÔF ) is ÔF as a diagonal subsemigroup. We also have

Inn(P) = O∗F := OF ∩ F×

and an inclusion of semigroups O∗F ⊂M2(ÔF )∗.

The following lemma explains what the symmetries are in the case of

Hilbert modular BCM systems.

Proposition 4.6. The outer symmetry semigroup Out(P) of the Hilbert mod-

ular BCM system is isomorphic to

F×\GL2(AF,f)× ResF/Q Gm,F (R).

More precisely, the natural map

O∗F\ Sf(P) = O∗F\M2(ÔF )∗ −→ F×\GL2(AF,f)

is an isomorphism.
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Proof. The injectivity of this map is clear because,

O∗F = F× ∩M2(ÔF )∗.

Let (M2(ÔF )∗)−1 = {m ∈ G(Af) | m−1 ∈ M2(ÔF )} be the semigroup of

inverses of elements in M2(ÔF )∗. We then have

M2(ÔF )∗.(M2(ÔF )∗)−1 = GL2(AF,f).

Let m ∈ O∗F\M2(ÔF )∗. We only need to prove that m−1 ∈ O∗F\M2(ÔF )∗.

Moreover, to invert a matrix it is enough to prove that its determinant

is invertible. We have det(m) ∈ O∗F\Ô
∗
F . The nonarchimedean part of

Proposition 4.2 gives O∗F\Ô
∗
F
∼= F×\A×

F,f , which implies that det(m)−1 ∈
O∗F\Ô

∗
F ⊂ O∗F\M2(ÔF )∗. This finishes the proof.
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Prospects

We close this thesis by considering some possible avenues for future research.

The presentation is very informal, and no precise conjectures are made.

Nevertheless, we thought it worthwhile to compile these ideas. At the very

least, putting them down on paper makes is more likely that others will

suggest more promising directions while discarding whatever rotten ideas lurk

within.

To start, we seem to be happy about having found a good generalization

of the Bost-Connes system for arbitrary number fields, but in truth, the really

hard part is still left to be done! In particular, it still remains to classify

the KMS states and understand their arithmetic properties. Moreover, the

most interesting aspect of the Bost-Connes system (and also of the complex

multiplication system of Connes-Marcolli-Ramachandran) is the way in which

its low-temperature KMS states intertwine the Galois action on fields with

the action of the idèle class group on the C*-dynamical system. In order to

realize that for the general Bost-Connes system constructed in this thesis, it

will be necessary to construct an appropriate rational subalgebra on which

extremal zero-temperature KMS states evaluate to algebraic numbers. This

seems to be a very difficult problem, but it seems not entirely unlikely that

a moduli interpretation of the underlying Shimura variety — either as a

parameter space for Hodge structures, or (conjecturally) for motifs (cf. [16]),

if such sophistication is warranted — will be of use in finding this rational

structure. For higher dimensional Shimura varieties it may be worthwhile to

95
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consider the same problem with the Milne-Shih reciprocity [37] in mind.

In the last chapter we setup the bare framework for the Shimura BCM in

the case of Hilbert modular surfaces, and as further testing ground for the

general constructions we are working out in more explicit detail the general

features of the Shimura BCM in this “classical” setting. Since Hilbert modular

surfaces are defined starting from a real quadratic number field, it would

also be of interest to investigate the relation between the Hilbert modular

BCM system, and Manin’s Real Multiplication Program [32], which seeks to

develop a geometric analogue for real quadratic fields of the theory of complex

multiplication, by replacing elliptic curves by noncommutative 2-tori.

The Shimura BCM system is more than just a repackaging of the under-

lying Shimura variety, for the mere metamorphosis into a physical system

reveals new lines of inquiry coming from statistical mechanics.

For example, the KMS theory enlarges the scope of the Equidistribution

Conjecture regarding CM (aka special) points on Shimura varieties (see, for

example [56] and [54]). This is already to be seen in the GL2 system of Connes-

Marcolli. W. Duke [17] showed that for the curve M = SL2(Z)\H, suitably

generic sequences {xn} of complex multiplication points of M have equidis-

tributed Galois orbits O(xn), i.e., for any bounded continuous function f

on M , one has the asymptotic distribution

lim
N→∞

1

|O(xN)|
∑

x∈O(xN )

f(x) =

∫
M

f(x) dx,

for the usual (appropriately normalized) measure dx on M . Interpreted

ergodically, the LHS is a “time average” while the RHS is, in fact, the KMS2

state of the Connes-Marcolli system evaluated on an easy extension of f to

an element of the Connes-Marcolli C*-algebra A2 (see [11, Prop. 1.25]). The

Equidistribution Conjecture implies one of the central conjectures concerning

the geometry of Shimura varieties, namely that of André-Oort which asserts

that every closed subvariety that is the Zariski closure of its CM points is a

“special” subvariety. Thus, we are lead immediately to the following question:

Can arbitrary KMS states (in particular, the extremal and near-critical ones)

also be understood ergodically as “time averages” in a manner that extends
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the equidistribution phenomena to aspects of the geometry of the Shimura

variety more general than those of special subvarieties? (Part of the problem

itself is to make sense of this vague formulation.)

It also remains to understand systematically the arithmetic significance of

the zeta functions that arise in our construction, namely

Z(s) =
∑

g∈S×\S

(det g)−s,
(
S = KM ∩G(Af)

)
.

Recall that the Shimura BCM system is known to realize as partition function

the Riemann zeta function (Bost-Connes), and more generally, Dedekind zeta

functions, and also ζ(β)ζ(β− 1) (Connes-Marcolli), which is the zeta function

of P1
Q. A natural question is now: How are the Shimura BCM zeta (partition)

functions related to the very complicated zeta functions of Shimura varieties?

This is at present not even very well-posed since we have made no use of

canonical models in our Shimura BCM systems.

We do not yet know how to reap an arithmetical payoff from renormaliza-

tion group methods in condensed matter physics. However, such a possibility

is plausible after the work of Connes-Kreimer and Connes-Marcolli, [10], [12],

on the geometry of renormalization in Quantum Field Theory, and its relation

to certain categories of mixed Tate motives.

Finally, though we are far from exhausting the supply of problems, we

mention just one more research prospect for the Shimura BCM, suggested to

us by Yu. I. Manin. Recall that an essential ingredient of our Shimura BCM

system was the augmentation of the starting Shimura datum (G,X) by an

enveloping monoid (which stands in relation to G as Mn stands in relation

to GLn). Drinfeld, Renner, and Putcha have classified such monoids in terms

of certain polyhedral cones in Hom(T,Gm) ⊗Z R invariant under the Weyl

group action (where T ⊂ G is a maximal torus). When the Shimura variety

Sh(G,X) itself has a moduli interpretation (e.g., abelian varieties with level

structure), then variation through Drinfeld’s rigidity condition leads, loosely

speaking, to a sort of moduli of moduli that is reminiscent of the moduli of

“stability conditions” recently developed by T. Bridgeland [6] in the setting of
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an arbitrary triangulated category, motivated by the work of string theorist

Michael Douglas. It would be interesting to explore such an analogy in view

of the many interesting features of the Shimura BCM system, such as zeta

functions, that depend on the choice of enveloping monoid.

In Summary

It is not so far-fetched that noncommutative geometry should be relevant to the

study of Shimura varieties, for as soon as one tries to define a näıve analogue

of a Shimura variety by replacing the reductive group by a reductive monoid,

one no longer encounters a variety in the classical sense — a noncommutative-

geometric viewpoint, of one kind or another, is necessary to understand the

resulting construction. We are reminded that, more than any other field of

mathematics, number theory shows the worth, indeed necessity, of a diversity

of viewpoints.

We have chosen to follow the philosophy of Alain Connes, but that is not

the only perspective available,1 nor even the most appropriate one necessarily,

as we at present only have tools to treat our noncommutative varieties

topologically/analytically, whereas Shimura varieties are arithmetic (having

models over number fields).

The analytic approach, though, does have some powerful advantages that

are absent in the purely algebraic realm. For example, by the Tomita-Connes-

Takesaki theory [9, §5.3], every noncommutative von Neumann algebra has

a canonical time evolution — up to inner automorphism — so measure-

theoretically, every noncommutative space is a nontrivial dynamical space!

Implicitly, this is what made the link to quantum statistical mechanics in our

work.

1For an excellent survey of perspectives in noncommutative algebraic geometry, the
reader should consult the recent Diplomarbeit of Snigdhayan Mahanta [31].
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matics. Birkhäuser Boston Inc., Boston, MA, 1981.

[51] Z. Tamsamani. On non-strict notions of n-category and n-groupoid via

multisimplicial sets. arXiv, (math.AG/9512006), 1995.



104 Bibliography

[52] J. T. Tate. Fourier analysis in number fields, and Hecke’s zeta-functions.

In Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965),

pages 305–347. Thompson, Washington, D.C., 1967.

[53] B. Toen and G. Vezzosi. Homotopical Algebraic Geometry II: geometric

stacks and applications. arXiv, (math.AG/0404373), 2004.
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