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Introduction 
 

Color patterns have long been considered an important component of the evolutionary process 

in the natural world.  This trait can be greatly influenced by predator-prey relationships and 

sexual selection.  Specifically the latter has been frequently studied and assumed to be directly 

related to speciation (Darwin 1871, Andersson 1994, Townsend Peterson 1996, Moller & 

Cuervo 1998).  Coloration can be highly variable among individuals or groups of individuals 

and may reflect phylogenetic relationships, mainly at lower-taxa levels, such as species and 

subspecies.  This characteristic has been used to evaluate geographical differences in bird 

populations, consequently, also being important for identification, taxonomy, systematics, and 

historical biogeography (e.g., Vuilleumier 1968; Graves 1985, 1997; Marin 2000; Molina et 

al. 2000). 

 

Most taxonomic and evolutionary studies based on coloration have assumed that the human 

subjective experience of color approximates to that of birds (Bennett et al. 1994).  However 

that may not be the case, since birds have probably the most sophisticated color vision system 

of all vertebrates (Goldsmith 1990).  This means that the inability of humans to perceive the 

color world of animals applies most dramatically to birds, and consequently to the results of 

many of the current taxonomic, phylogenetic, and evolutionary studies conducted on this 

group. 

 

Color depends not only on the physical characteristics of the observed object and the sensory 

system of the receiver, but also on the ambient effect.  Endler (1992) has extensively discussed 

the evolution of coloration, and according to him the evolution of visual signals among 

animals is a complex process that depends on behavior and microhabitat selection.  A specific 

behavior is required in order to choose the times, seasons, and microhabitats that transmit the 

signal most efficiently with the minimum degradation and attenuation, the least ambient noise, 

and the minimum risk of predation.  Hence, both breeding behavior and microhabitat selection 

are likely to coevolve with sensory systems and signals (Endler 1992, Endler & Thery 1996). 
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These factors and interrelationships may have strong implications for geographical 

differentiation and speciation, since the evolutionary bias of the sensory drive is unlikely to be 

geographically uniform (Endler 1992).  Because signal transmission conditions and 

background noise also vary with microhabitats, times, and seasons, divergences among 

populations and species are very likely.  Variation in intraspecific signals may not only 

maintain but also cause differences among populations.  Speciation and further divergence can 

result if populations and species evolve in different directions (Endler 1992). 

 

Ideally, color researchers would have knowledge of the visual system of their study organism, 

including detailed information on cone pigments, spectral sensitivities, etc., as well as data 

describing attenuation patterns, timing and location of peak animal activity, ambient light 

levels, etc. (Grill & Rush 2000).  However, this information for birds (and other animals) is 

rarely available.  If we assume that differences in reflectance spectra translate to differences in 

the perceived colors, then approximations still provide useful information about the role of 

color in biology (Grill & Rush 2000).  Moreover, since color patterns are the ultimate 

consequences of this complex evolutionary process discussed by Endler (1992), the direct, 

objective measurement of plumage color must be useful for phylogenetic, systematic, and 

taxonomical studies.  

 

A color classification based directly upon the reflectance spectra rather than human perception 

is a better starting point in studies of animal color patterns (Endler 1990).  However, despite 

its advantages, there are also problems involved with the collection and use of spectral data.  

Spectrometers generally represent the color of a structure of an organism as the reflectance at 

a given nanometer value of a large number of arbitrary wavelength points along the 

electromagnetic spectrum (Thorpe 2002).  As color changes, spectra can change in a number 

of ways, including shifts in curve slopes, amplitude, and number and position of peaks, and 

these changes are often difficult to quantify.  Therefore, a challenge in color research is that of 

how to condense the enormous quantity of data contained in a color spectrum into one or a 

few useful units of measure (Grill & Rush 2000). 
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Phylogenetic, systematic, and taxonomic bird studies 

 

The origin and evolution of biotic diversity remains a central problem within evolutionary 

biology (Cracraft & Prum 1988).  Establishing family trees or phylogenetic relationships 

among vertebrates, both living and fossil, has been one of the most challenging aspects of the 

study of organisms since the time of the ancient Greeks, who designed a classificatory system 

based on their view of overall similarity (Feduccia 1996).  To understand processes of faunal 

assembly within biotas, it is necessary to document the historical patterns of speciation within 

their components (Cracraft & Prum 1988), and although there have been many attempts to 

study the patterns of speciation and evolution of diverse groups of animals and plants, the lack 

of historical information makes this topic very controversial.  For the construction of the 

current models of biotic diversification (Vuilleumier 1971; Haffer 1974a, 1978, 1982; 

Simpson & Haffer 1978; Haffer & Fitzpatrick 1985), systematic and biogeographic analyses 

of the Neotropical biota in general and of birds in particular have played a main role.  Patterns 

of endemism and geographical variation have been established for many groups of Neotropical 

birds.  However, considering that only traditional collecting sites have been well surveyed for 

the overview of geographical distributions (Fjeldså & Krabbe 1986), the phylogenetic patterns 

of avian differentiation within the Neotropics are still not well understood (Cracraft & Prum 

1988). 

 

There are several studies on the geographic population structure of birds (among them: 

Vuilleumier 1968, Simpson-Vuilleumier 1971, Vuilleumier & Simberloff 1980, Graves 1982).  

These have added to the understanding of speciation patterns of groups of vertebrates and have 

generated several hypotheses that try to explain the origin and patterns of avian tropical 

diversity (Haffer 1969, Vuilleumier 1971, Simpson & Haffer 1978, Endler 1982, Rahbek & 

Graves 2001). The best-known and most widely accepted mode of evolution in the 

Neotropical biotas is the Refuge hypothesis (Haffer 1969, Simpson & Haffer 1978, Prance 

1982).  According to this model, speciation patterns of Neotropical faunal taxa arose as a 

result of cyclical expansions and contractions of forest and non-forest habitats during 

Quaternary climatic fluctuations (Haffer 1969, 1974a,b, 1977, 1979, 1982; Vuilleumier 1971; 
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Simpson & Haffer 1978; Haffer & Fitzpatrick 1985; Mayr & Ohara 1986).  However, other 

possible explanations have also been proposed, and the most important alternative hypothesis 

regarding a mechanism of vicariance has concerned the origin and development of broad river 

valleys or epicontinental marine transgressions.  Distributions of species of plants and animals 

within Amazonia are frequently bounded by river systems; however, a number of arguments 

have been presented against the role of major river systems as agents of vicariance (Haffer 

1978, Simpson & Haffer 1978, Cracraft & Prum 1988).   

 

Besides the river hypothesis, there is also the Paleogeography hypothesis, the River-Refuge 

hypothesis, the Disturbance-Vicariance hypothesis, and the Gradient hypothesis (for more 

details see Haffer 1997, Nores 1999).  In general, several of these hypotheses are probably 

relevant to different degrees for the speciation process in different faunal groups or during 

different geological periods (Haffer 1997).  Specifically within Amazonia, the large majority 

of biologists who have attempted to explain diversity have done so using a model of allopatric 

speciation via vicariance.  A few researchers have proposed an alternative hypothesis to 

explain contiguous areas of endemism.  They suggest that such patterns are the result of 

present-day ecological barriers to gene flow and that diversification within Amazonia is 

primarily a manifestation of parapatric, not allopatric, processes (Cracraft & Prum 1988). 

 

It has been suggested that the Eocene was an epoch of the greatest importance in the evolution 

of birds and that by the end of the Miocene all of the non-passerine families were probably 

established (Brodkorb 1981 in Vuilleumier 1984).  It has also been postulated (Simpson-

Vuilleumier 1971; Haffer 1974a, 1979; Vuilleumier 1980, 1993) that the majority of extant 

avian species and subspecies of the Neotropical region evolved during the Pliocene and 

Pleistocene epochs, and that Pleistocene biogeographic events have had a major role in 

promoting speciation.  However, this paradigm has recently come under challenge from a 

review of interspecific mtDNA genetic distances in birds, in which most sister-species 

separations date to the Pliocene (Avise & Walker 1998). 

 

 



 5 

Hummingbirds:  phylogeny and origin 

 

Among birds, hummingbirds (Trochilidae) are specially known for their magnificent colors.  

Hence this feature has been used as a taxonomic character in many studies (Bleiweiss 1985; 

Schuchmann & Duffner 1993; Schuchmann & Heindl 1997; Graves 1998, 1999b, 2000; 

Heindl & Schuchmann 1998; Weller & Schuchmann 1999; Hu et al. 2000; Schuchmann et al. 

2000; Schuchmann et al. 2001; Weller 2000a,b). 

 

Current efforts to understand the diversification of hummingbirds are limited by the lack of a 

historical framework for the study of evolutionary patterns and processes.  In fact, generic 

limits and species relationships within the trochilines are still poorly understood (Schuchmann 

1999) and present a considerable challenge for future systematic and biogeographic research.  

The study of specific groups within the trochilids (Heindl & Schuchmann 1998, Schuchmann 

et al. 2000, Weller 2000a, Sanchez-Oses 2003, Valdés-Velásquez 2003, Renner & 

Schuchmann 2004, Weller & Schuchmann 2004), together with the present study, are 

important for the understanding of general patterns within the group.   

 

The trochilids are, possibly, of mid-Tertiary origin (Feduccia 1996) with a distribution 

centered in South America. They most likely derive from primitive swifts (Feduccia 1996).  In 

fact traditionally, trochilids are placed in the order Apodiformes together with treeswifts 

(Hemiprocnidae) and true swifts (Apodidae), and currently it is widely accepted that swifts 

and hummingbirds constitute a monophyletic group (Bleiweiss et al. 1994, Schuchmann 

1999).  The divergence is probably ancient and may date back to the beginning of the Tertiary 

or even to the late Cretaceous, when a large tectonic plate broke from Gondwanaland, giving 

rise to South America (Feduccia 1996, Schuchmann 1999).  According to Sibley & Alquist 

(1990), it seems probable that the swifts and hummingbirds diverged more recently from one 

another than either diverged from any other lineage, and are the nearest relatives of the 

Strigiformes (owls, nightjars).  However, the construction of a hummingbird phylogeny is 

handicapped by the scarce amount of fossil records, which date only from the Recent and 

Pleistocene ages (Cohn 1968 in Vuilleumier 1984, Bleiweiss et al. 1994) with a recent 
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addition of two fossil remains from the early Oligocene of Europe (Mayr 2004), which, 

although they might change all previous conceptions about the origin of hummingbirds, are 

still too recent and need further verification.  For many hummingbird taxa, allopatric 

speciation in refuges due to Pleistocene events has been proposed to explain extant 

biogeographic patterns (Schuchmann & Duffner 1993, Schuchmann & Heindl 1997).  

 

Two Subfamilies compose the Family Trochilidae:  Phaethornithinae or hermits, and 

Trochilinae, also called typical hummingbirds.  According to molecular studies (Bleiweiss et 

al. 1994, 1997), the rate of molecular evolution in hummingbirds seems to be more rapid than 

in many other birds, and calibration of divergence times with the earliest known fossil swift 

suggests possible changes to that classification or divergence times.  However, the 

hummingbird classifications and systematic affinities made by Simon (1921), and adopted by 

Peters (1945), are still in use today, except for some modifications (Schuchmann 1999).  Most 

of them, including the present work, rely on external morphological and plumage characters 

such as coloration.  Although these characters are misleading indicators of higher-level 

relationships, as they vary within hummingbird genera, they are good indicators at subspecies 

and species levels, since they may be greatly influenced by foraging and social behaviors 

(Feinsinger & Colwell 1978).  Additionally, if classificatory studies take into account 

biogeographic and evolutionary patterns, the sometimes negatively viewed traditional 

morphological character analysis may still yield valuable information on intraspecific and 

interspecific phylogenetic relationships, serving as a useful hypothesis to be tested with other 

methods (Schuchmann 1999).  In general, knowledge of biogeographical and morphological 

affinities among closely related species has proved to be a useful tool for the evaluation of 

taxonomy and for the reconstruction of the phylogeny of widespread lowland or montane 

hummingbird clades (Schuchmann & Duffner 1993, Schuchmann & Heindl 1997, Heindl & 

Schuchmann 1998, Schuchmann et al. 2000, Weller 2000a), and I will use this approach in the 

present proposed research. 

 

Although hummingbirds probably constitute a monophyletic group, they have radiated widely 

when compared with other bird families, constituting a very heterogeneous group (Bleiweiss 
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et al. 1994); in fact, in this regard, Greenewalt (1960) said: “it is improbable that any family of 

related creatures varies so widely in physical equipment as do the hummingbirds.”  This high 

variability makes them an interesting group in which to study general patterns of speciation in 

different types of habitats and topographies, mainly in the Neotropical Region where the 

highest biodiversity in the world is found.   

 

 Characteristics and distribution of the study taxa 

 

Within the trochilines, the patterns of tail feather coloration, display, song structure, and 

features of the hindneck muscle (Zusi & Bentz 1982) place the “tooth bills” Androdon and 

Doryfera at the base of the phylogeny, followed by a more derived grouping containing the 

“sabrewing and mango” genera Campylopterus (including Phaeochroa, Eupetomena, 

Aphantochroa), Florisuga (including Melanotrochilus), Colibri, Anthracothorax (including 

Avocettula), Topaza, Eulampis, Chrysolampis, Orthorhyncus, Klais, Stephanoxis, and Abeillia 

(Schuchmann 1999).  DNA analysis (Bleiweiss et al. 1997) of the phylogeny of the 

hummingbirds includes the mangoes at the base of the tree, the emeralds being more derived. 

Unfortunately the authors only analyzed two of the genera included in the present study 

(Eulampis and Campylopterus), and did not investigate any species of Anthracothorax or 

Topaza, which would have been precious information for the phylogenetic analyses made in 

this work. 

 

Hummingbirds (Trochilidae) are one of the largest avian families (in number of species) in the 

New World (Fjeldså & Krabbe 1990).  They include the smallest of all birds, while most 

species are 6-12 cm in size and have a body mass of around 2.5- 6.5 g (Schuchmann 1999).  

Trochilids show a characteristic hovering flight and are highly evolved nectarivores, reaching 

their liquid food with thin elongated bills of various shapes that protect their specialized long, 

sensitive tongues (Schuchmann 1999).  Many species show a marked sexual dimorphism, in 

which males show iridescent bright colors mainly on the head and throat, and in general in the 

upper- and underparts, while females are duller in appearance.  The appearance of dimorphism 

may be understood as a specialization to specific ecological conditions (Schuchmann, pers. 
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comm.).  However, the widespread occurrence of dull monomorphic plumage among the 

trochilinae may suggest, according to Bleiweiss et al. (1994), a complicated pattern of 

convergences. 

 

Trochilids constitute a very important group for the dynamics of tropical forest, pollinating in 

total more than 30% of the angiosperm plant species in the Neotropics (Schuchmann pers. 

comm.).  Unfortunately, many species in the group show specific habitat requirements or a 

restricted geographical distribution, making them theoretically vulnerable to extinction.  For 

example, Collar et al. (1992) consider Campylopterus ensipennis as vulnerable to extinction, 

and additionally, some members of the Trochilidae family are sensitive to man-made habitat 

modifications (Collar et al. 1992, Sánchez-Osés & Pérez 1999), adding importance to the 

group from the conservation point of view. 

 

Hummingbirds constitute a widespread group of birds occurring nearly throughout the 

Americas, but the majority of species inhabit humid forests near the Equator (Fjeldså & 

Krabbe 1990, Schuchmann 1999).  The focus of this research is on the mango clade, a group 

of hummingbird genera (Topaza, Anthracothorax, and Eulampis) occurring in lowlands 

ranging from Mexico to Argentina, and including the Caribbean islands.   

 

A few hummingbird species are long-distance migrants (mainly North American), others are 

altitudinal migrants or need to move at high altitudes through a range of latitudes to forage.  

The genera selected for this study are not only widely distributed and highly variable but are 

also considered basically sedentary, although there is scarce information on this biological 

aspect (Schuchmann 1999).  They show only altitudinal or local migration to reach food 

resources, which make them interesting subjects to speculate on general evolutionary patterns 

in the lowlands of the Neotropical region.  The degree of sedentarism is an important 

characteristic to help draw conclusions on patterns of speciation because it determines the 

dispersal capabilities of different groups.   
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Within the group under study, Schuchmann (1999) places the topaz hummingbirds (Topaza) 

close to the mango hummingbirds (Anthracothorax) and the caribs (Eulampis) on the basis of 

form of nest and display.  He states that Eulampis must be phylogenetically very close to 

Anthracothorax due to some specific similarities in coloration (the white stripes in the 

abdomen of Anthracothorax females that are visible in juveniles of Eulampis), and 

characteristics of the construction of the nest (Schuchmann 1980b).  This information from the 

literature, together with preliminary observations of the geographic variation in the 

morphological characters shown by the study genera, leads to the following hypothesis:  The 

genera Topaza and Eulampis are sister taxa and they are closely related to Anthracothorax.   

 

Research goals and structure of the study 

 

In this study I propose a methodology that will increase objectivity in the determination and 

analysis of bird plumage coloration for systematic, taxonomic, phylogenetic, and 

biogeographic studies.  I apply the methodology to obtain information on the geographical 

variation of the plumage coloration of the study taxa, and combine these data with other 

standard morphological external measurements of the birds.  Then, as examples of the 

possibilities of the methodology, I review the taxonomy of the mango clade covering the 

genera Topaza, Anthracothorax and Eulampis.  I also present phylogenetic hypotheses for the 

three genera, using two species of the genus Campylopterus (C. cuvierii, and C. largipennis) 

as an outgroup.  I then use the final phylogenetic result to speculate on the biogeography of the 

group.  

 

The first step is to justify, describe, and discuss the developed methodology, then to apply it to 

clarify the controversial Topaza taxonomy to the subspecific level.  Second, I review the 

taxonomy of the genus Anthracothorax, which shows some controversies that have not been 

previously analyzed.  The genus Anthracothorax appears to be homogeneous in mensural 

characters but shows a wide variability in color patterns, mainly in regard to the gorget 

iridescence.  The genus Eulampis is geographically more restricted and apparently less 

morphologically variable than Anthracothorax.  Finally, the genus Campylopterus, used as 
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outgroup, appears to be more variable, not only in external morphological characters such as 

shape and size of the tail, but also in coloration patterns throughout the ranges of its species.  

However, the two species chosen for the phylogenetic analysis are the dullest in appearance of 

all the species in the genus.  

 

This research will be based on the following assumptions:   

 

• Plumage coloration plays an important role in avian evolution, and needs to be 

evaluated independently of human perception. 

• Phenotypic variance, such as plumage coloration and morphometrics, is directly related 

to population genotypic variance.  Reproductive isolation will cause emergence of 

discrete entities that will show less variability within their limits than in comparison 

with any other such entity. 

• Taxonomic structure at the species and subspecies levels identifies relatively isolated 

populations that can be regarded as discrete entities.  Therefore these entities should be 

separable from others by phenotypic differences.   

• Since variations in external morphology reflect genetic variation, the lower the 

morphological variation the higher the degree of relatedness. 

• The speciation process results in patterns of successive branching. The terminal 

branches are taxa joined by nodes of common ancestors, and for a given group of 

related taxa there only can exist one history of speciation events and consequently one 

phylogeny.  

• Based on phenotype (in this case plumage coloration and morphometrics), it is possible 

to reconstruct the phylogeny of a group of taxa.  Therefore morphological variables 

will reflect past speciation history and common ancestry. 

 

The specific goals of this study are: 

 

• To develop an objective methodology to study color variation, using color spectral data, in 

order to review the taxonomy of bird populations. 
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• To review the taxonomy of three mango hummingbird genera occurring in southern 

Central America and the Caribbean islands (Topaza, Anthracothorax, and Eulampis) as an 

applied example of the methodology. 

• To use generalized frequency coding (GFC) as a tool to codify continuous spectral and 

morphometric data to enable phylogenetic analysis on bird populations to be conducted.  

• To perform a phylogenetic analysis of the genera Topaza, Anthracothorax, and Eulampis, 

using Campylopterus as outgroup, by using morphological continuous variables, such as 

color spectral data from different body parts and some standard morphometric 

measurements.   

• To analyze the geographical distribution of the three taxa and infer its possible causes, 

based on the phylogenetic reconstruction of these groups.  This information would allow 

conclusions on the biogeography of the area to be made. 

 

The work is structured in nine sections, each containing a different aspect of the study:  The 

first two are very general:  “Introduction” and “General methodology”, the first including the 

general theoretical framework and assumptions of the study, as well as the main goals and 

objectives; the second includes the description of the data collection and a general view of the 

analyses performed.  The next six sections constitute the main body of the study, and each 

includes its own specific theoretical framework:  “Methodology to measure and analyze color 

spectral data,” “Geographical variation and review of the taxonomy and phylogeny of the 

genus Topaza,” “Geographical variation and review of the taxonomy and phylogeny of the 

genus Anthracothorax,” “Geographical variation and review of taxonomy of the genus 

Eulampis,” “Phylogenetic relationships of the three genera, Topaza, Anthracothorax, and 

Eulampis,” and the “Historical biogeographical events in the speciation process of the study 

group”.  The first section explains in detail the development of the methodology used to 

analyze spectral color data, which will be the basis for the rest of the work.  The next three 

sections are dedicated to each of the genera studied.  They include a description of current 

taxonomic status, review of their accepted taxonomies, definition of the taxonomic units (TUs) 

to be used in the phylogenetic analyses, and resulting phylogenetic relationships.  The next 

section includes the phylogenetic relationships based on external morphology of the three 



 12 

genera, using two species of the genus Campylopterus as outgroup (a short description of this 

genus is also included).  The next section contains the conclusions as to the probable causes of 

the current geographical distribution of the taxa under study.  Concluding remarks are 

included in the last main section. 
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General methodology 
 
Specimens included in the study 
 
 
Mensural and color data from voucher specimens from the four genera were collected from 

several ornithological collections in Europe and the Americas (Table 1).  The following 

Institutions were visited:  Zoologisches Forschungsinstitut und Museum Alexander Koenig, 

Bonn, Germany (ZFMK, Bonn); Forschungsinstitut und Naturmuseum Senckenberg, 

Frankfurt, Germany (Senckenberg); Musèum National d´Histoire Naturelle, Paris (MNHN 

Paris), France; The Natural History Museum, Tring, U.K. (NHMUK); National Museum of 

Natural History, Washington D.C., USA (USNM); American Museum of Natural History, 

New York, USA (AMNH); Academy of Natural Sciences, Philadelphia (ANSP); Colección 

Ornitológica Phelps, Caracas, Venezuela (COP).  Additionally, specimens from other 

ornithological collections were sent to USNM to be available for this study:  Field Museum of 

Natural History, Chicago, USA (FMNH); Cornell University Museum of Vertebrates 

(CUMV); Denver Museum of Natural History (DMNH); Carnegie Museum of Natural History 

(CMNH); Museum of Natural Science - Louisiana State University, Baton Rouge, USA 

(MNS-LSU); Western Foundation of Vertebrate Zoology, Camarillo, USA (WFVZ); Peabody 

Museum of Natural History, Yale University (PMNH). 

 
In general, only adult birds were considered, and sex was determined by obvious color 

differences of the specimens when information on the label was not available.  Specimens 

with unknown sex or with juvenile characteristics were excluded from further analysis.  

Additionally, of the total amount of Campylopterus specimens measured, only those of C. 

cuvierii and C. largipennis were included in the final analyses.  A total of  2147 specimens 

were selected for analysis (Table 2). 
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Table 1.  Number of specimens from Topaza, Anthracothorax, Eulampis, and Campylopterus measured in 
ornithological collections (for abbreviations see text). 
 

 

 
Ornithological 

Collection 

Total 
number of 

Topaza 
specimens 
measured 

Total number of 
Anthracothorax 

specimens 
measured 

Total number 
of Eulampis 
specimens 
measured 

Total number of 
Campylopterus 

specimens 
measured 

 
TOTAL 

(ZFMK,Bonn) 27 94 29 153 303 

(Senckenberg) 12 112 50 92 266 

(MNHN Paris) 26 83 27 124 260 

(NHMUK) 36 201 108 241 585 

(USNM) 18 254 117 274 663 

(AMNH) 29 133 11 234 407 

(ANSP) 19 36  55 110 

(COP) 21 155  390 566 

(FMNH) 14 43  106 163 

(CUMV) 2 17  22 41 

(DMNH) 1 8  18 27 

(CMNH) 10 74  101 185 

(MNS-LSU) 2 21 7 72 102 

(WFVZ) 1 8  32 41 

(PMNH)  11  6 17 

TOTALS 218 1250 349 1920 3737 
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Table 2.  Number of specimens of each species of  Topaza, Anthracothorax, Eulampis, and Campylopterus 
included in the analysis. 
 

 
SPECIES 

(according to 
Schuchmann 1999) 

Total number of 
specimens Males Females 

Topaza pella 204 128 76 

Sub-total 
Topaza 

204 128 76 

Anthracothorax 
viridigula 

107 77 30 

Anthracothorax 
prevostii 

257 175 82 

Anthracothorax 
nigricollis 

537 349 188 

Anthracothorax 
veraguensis 

27 20 7 

Anthracothorax 
dominicus 

131 80 51 

Anthracothorax 
viridis 

33 22 11 

Anthracothorax 
mango 

33 21 12 

Anthracothorax 
recurvirostris 

20 13 7 

Sub-total 
Anthracothorax 

1145 757 388 

Eulampis 
Jugularis 

95 58 37 

Eulampis 
holosericeus 

149 87 62 

Sub-total 
Eulampis 

244 145 99 

 
 Campylopterus 

cuvierii 
142 95 47 

Campylopterus 
largipennis 

412 251 161 

Sub-total 
Campylopterus 

554 346 208 

TOTAL 2147 1376 771 
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Mappings 

 

Collecting localities (see Appendices 1a-1d) were mapped as dots into a global Digital 

Elevation Model (DFEM) base map of the Americas (United States Geological Survey- USGS 

http://edcdaac.usgs.gov/gtopo30/gtopo30.html), using the geographical information system 

program ArcView GIS 3.2 (ESRI 1999).  Coordinates and altitudes of collecting sites were 

taken from specimen labels, ornithological gazetteers (Paynter & Traylor 1983; Stephens & 

Traylor 1983; Paynter 1992, 1993, 1997; Sánchez-Osés 19957), electronic gazetteer 

(Alexandria Digital Library Gazetteer, from the Alexandria Digital Library Project, University 

of California at Santa Barbara (UCSB):  http://fat-albert.alexandria.ucsb.edu:8827/gazetteer), 

and directly from Atlas and Maps of Central and North America and the Caribbean islands.  

Specimens with unknown localities were excluded from the analysis. 

 

Morphometric data 

 

Standard morphometric measurements on the specimens were taken using a digital caliper to 

the nearest 0.1 mm.  These measurements included: 

 

• Bill length:  distance from tip to proximal end of operculum. 

• Wing length: distance from wrist to wing tip (unflattened) 

• Length of the innermost tail feathers (Rectrix 1) 

• Length of the second innermost tail feathers (Rectrix 2) 

• Length of the outermost tail feathers (Rectrix 5) 

• Body length and body mass:  are taken only when available from specimen’s labels, or 

from bibliographic references. 

 

Color measurements (spectral data) 

 

Color measurements were conducted using USB2000 fiber optic spectrometer connected to a 

PX-2 pulsed xenon light source (both from Ocean Optics Inc), and combined to the 
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OOIBase32 spectrometer operating software.  Reflectance was calculated relative to a WS-1 

white standard.  The measurements were made on the various body areas.  Modifying 

Johnsgard (1997) plumage topography, the body of the specimens was divided in 30 areas 

with some of the corresponding lateral measurements (Fig. 1).  In order to conduct the 

different analyses, these body parts were codified, and each was assigned a number (Table 3). 

 

 

 

 

 

 
Fig. 1.  Body areas where color determination was conducted (for abbreviations see text below). 

 

 

Drawings modified from David Alker ´s original artwork 
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The body parts considered for this research can be divided into four groups: 

 

• Dorsal area: crown, neck, shoulder, back, rump, and uppertail coverts (upptcover); 

• Ventral: This area includes not only the central measurement of each body section but 

also the lateral measurements of each.  Gorget (gorgetmed, gorgetaureo, gorgetlat), 

lower throat (lowthrcen and lowthrlat), chest (chestcen and chestlat), breast (breastcen 

and breastlat), abdomen (abdomcen and abdomlat), undertail coverts (untcovcen); 

• Wing:  coverts (wingcovnor), secondary feathers (secundala), primary feathers 

(primarala);  

• Rectrices:  r1 (r1cen, r1tip), r2 (r2cen, r2tip), r3 (r3cen, r3tip), and r5 (r5debcen, 

r5debtip). 

 

 

 

Body parts Code Body parts Code Body parts Code 

crown 1 chestcen 17 r1 32 

neck 2 chestlat 18 r2cen 33 

shoulder 3 breastcen 20 r2tip 34 

back 4 breastlat 21 r3cen 35 

rump 5 abdomcen 23 r3tip 36 

upptcovcen 6 abdomlat 24 r5tip 38 

gorgetmed 12 untcovcen 26 r5debcen 39 

gorgetlat 13 wingcovnor 29 r5debtip 40 

lowthrcen 14 secundala 30 gorgetaureo 41 

lowthrlat 15 primarala 31 r1tip 43 

 
Table 3.  Codes used to identify the body parts of specimens. 
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Data analyses 

 

The morphometric and spectral data were handled and analyzed using four software packages:  

(1) The spreadsheet Excel (Microsoft Excel 2000) to enter and handle both morphometric and 

plumage spectral color data, and to make graphs of the spectral data; (2) the computer 

statistical package SPSS version 10.0 (SPSS 2000) to conduct all statistical analyses and to 

construct part of the graphs for the presentation of statistical results; (3) the phylogenetic 

analyses were performed using the computer software PAUP* 4.0b.10 (Phylogenetic Analysis 

using Parsimony) (Swafford 2001); (4) the geographical information system program 

ArcView GIS 3.2 (ESRI 1999) was used to make all the working maps and also to help in the 

definition of preliminary groups within each species in order to conduct further analyses. 

 

A t-test (significance level of p<0.05) was conducted on the morphometric data of each 

species to determine significant sexual dimorphism (Appendices 2a, b, c and Appendix 3).  

Since all the species under study showed a certain degree of sexual dimorphism, all the 

subsequent analyses were performed separately for males and females.  Only for the 

phylogenetic analysis were color and morphometric variables from both males and females 

pooled together for each analysis.  Analysis of variance (ANOVA), and the post hoc Tukey 

test for unequal samples, with a significance level of p<0.05, were used to complement the 

information that allowed the separation of preliminary groups.  ANOVA was also used to 

describe the morphometric differences in the final taxa.  A Pearson correlation analysis was 

performed to find the relationship between morphometric data and geographical variables, 

such as latitude and longitude. 

 

The analyses of the color spectra data were conducted by principal component analysis (PCA) 

and discriminant function analysis (DFA) (Sokal & Rohlf 1981, Otto 1999, Malinowski 2002).  

A PCA was conducted on each body region of males and females of each taxon or group of 

taxa to reduce the spectral color data.  The scores of the first three principal components (PCs) 

were then used as data sets to perform DFAs to evaluate the separation of natural taxa.   These 

first analyses provided the taxonomic units (TUs) to be used in the phylogenetic analyses.  
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In order to conduct phylogenetic analyses by PAUP* 4.0b.10 (Swafford 2001) the variables 

needed to be discrete.  Therefore, the generalized frequency coding (GFC) (Smith & Gutberlet 

2001) was used to code the morphological continuous data.  The color data (three first PCs of 

each body part) and morphometric data (body mass, total length, bill length, wing length and 

the length of rectrices 1, 2, and 5) were then coded and further analyzed. 

 

Some practical considerations:  

 

• Due to the great amount of data handled during this study, all subjects (species, sex, 

ornithological collection, body part) are coded, and the terminology used for the 

variables in the GFC is also explained (see Appendix 4). 

• Due to the amount of PCAs, I include appendices with tables showing only the PC 

scores used to conduct each analysis. 

• After each DFA I include only the final plots using factors 1 and 2 as coordinates, and 

some of the final statistics (as will be explained in each section). 

• In the case of the phylogenetic conclusions, I show the resulting phylogenetic trees 

with basic statistics and add appendices with the PC scores and morphometric data 

used, the final matrices introduced in each PAUP analysis, and a list with the variables 

and their weights. 

• To show plumage coloration differences among groups, I include appendices with all 

the spectral graphs, leaving only those more relevant as figures within the text. 

 

Definition of preliminary pools for analysis 

 

The definition of populations or pools of individuals is essential in order to investigate the 

geographic variation of a character within a given species.  The present study includes taxa 

occurring on islands or groups of islands, like Eulampis and some Anthracothorax species that 

inhabit Caribbean islands.  For these cases, each island constitutes a separated natural 

preliminary pool.  However, in the case of the genera Topaza, Campylopterus, and those 

Anthracothorax species distributed on the mainland, the definition of pools needs another set 
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of criteria.  Usually this separation has been done by using criteria such as distance between 

pools or the existence of potential geographical barriers (Vuilleumier 1968; Graves 1980, 

1985; Bleiweiss 1985; Schuchmann & Heindl 1997; Weller & Schuchmann 1999; 

Schuchmann et al. 2000; Schuchmann et al. 2001).  However, without adequate knowledge of 

the natural history of the species, this might be a very arbitrary method.  I tried to find more 

objective criteria that would include the use of the surface tools of ArcView on part of the 

morphological data to make a preliminary delimitation of groups that would then be 

corroborated by other statistical analysis (ANOVA).   The definition of preliminary pools is 

made following this sequence (see Fig. 2 as an example of the procedure): 

 

1. I assume every species is a uniform group (in the case of Topaza, all specimens within 

the genus). 

2. I conduct a PCA on the morphometric data (bill length, wing length, r1, r2, and r5) of 

each species and extract the first PC.   

3. I use the surface tools of the Geographical Information System, ArcView, to determine 

a preliminary differentiation of groups within each species according to the first PC.  

Using the surface menu of the program, I interpolate a grid on the geographical 

distribution of the species using the IDW method and the value of the first PC from the 

morphometric analysis as Z-value field, assuming no barriers.  The standard deviation 

is set to classify the output grid. 

4. The groups determined by the ArcView are then statistically compared (ANOVA and 

Tukey test p<0.05) and regrouped according to the geographic proximity, and the 

statistical morphometric differences among them.  This process is done independently 

for both sexes and a consensus conclusion is found for each species. 

5. After the first separation of individuals through this graphical procedure, the 

preliminary pools also need to follow these further criteria: 

 

o A preliminary pool cannot be part of two or more recognized subspecies (according 

to Schuchmann (1999) and/or Peters (1945), and/or Hu et al. (2000) for Topaza).  

o A group cannot be divided by potential geographical barriers. 
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Fig. 2.  Graphs of surface created by ArcView, using the first PC extracted from the morphometric data of 
Anthracothorax nigricollis as an example of the first step in the methodology used to define pools to conduct the 
statistical analyses of each species. 
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Practical consideration 
 

Due to the number of graphs and statistical analyses conducted for each species, I only show 

the surface figures resulting for Anthracothorax nigricollis as an example of the method (Fig. 

2).   The final grouping will be shown for each species in the corresponding section.  The idea 

behind the procedure is to combine the information coming from the data itself with the data 

on distance between populations and potential geographical barriers, in order to avoid a 

potential circular argument.  This procedure allows a finer subdivision of preliminary pools 

that would then be used as the basis for the analysis of geographical plumage color variation. 
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Methodology to measure and analyze color spectral data 
 
Theoretical framework on studies of color variation in animals 

 

Different methodologies have been used to conduct studies related to animal coloration.  For a 

long time human subjective color perception was the rule, but it has been extensively 

discussed that filtering color data through the human sensory system introduces many 

problems into the analysis of color (Endler 1990, Cuthill & Bennett 1993, Bennett et al. 1994, 

Hunt et al. 1998, Grill & Rush 2000).  One problem is that human color judgments are 

difficult to repeat and almost invariably subjective (Grill & Rush 2000).  In order to minimize 

the subjectivity, several color references, such as the Munsell Color Standards, have been used 

(Smithe 1975; Schuchmann & Duffner 1993; Schuchmann & Heindl 1997; Heindl & 

Schuchmann 1998; Weller & Schuchmann 1999; Schuchmann et al. 2000; Weller 2000a, b; 

Schuchmann et al. 2001).  

 

Another negative aspect of the human visual system as a reference to study color variation in 

organims is that in a very real sense all humans are “color blind” when compared with many 

other vertebrates (Thorpe 2002).  Considerable evidence now exists that birds and some fish 

species probably have at least four dimensions to their color vision, owing to the possession of 

more than three cone types.  Since at least one of these four receptors lies in the UV spectrum, 

this does not just mean that humans are missing out on a few colors within the UV, but implies 

that only a few hues seen by birds and fish can be perceived by humans (Burckhardt & Maier 

1989, Goldsmith 1990, Burckhardt & Finger 1991, Jacobs 1992, Bennett et al. 1994, Finger & 

Burckhardt 1994, Burkhardt 1996).  The “dimensionality” of color vision is determined by the 

number of interacting receptor types, and if color is produced by the interaction of n cone 

types there are n orthogonal dimensions of color vision (Bennett et al. 1994).  Additionally, 

different wavelength spectra can produce the same hue if the output from the cones remains 

identical, and the same wavelength spectra will produce different hues for animals that differ 

in the absorption spectra of their cone types.  Specifically in hummingbirds, this UV visual 

capacity has been linked to their behavior and social evolution (Bleiweiss 1994).   
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Contrary to what has been previously thought, humans seem to be the exception rather than 

the rule in not seeing within the UV spectrum (Bennett et al. 1994).  An amino acid mutation 

in the SWS1 visual pigment of primates shifts the cone sensitivity to longer wavelengths and 

renders cones insensitive to UV light; hence, human color vision is restricted to wavelengths 

between 400 and 700nm (Yokoyama & Shi 2000).  Much has been said of the consequences 

of this restriction on human vision for behavioral studies of other vertebrates with UV vision, 

but it is still not known to what extent this is pertinent to comparative evolutionary studies 

using color (Thorpe 2002), and consequently to systematic, taxonomic or phylogenetic studies 

based on color characters.    

 

Romney & Indow (2002) stated that there is no difference between human perception and 

spectrometric measurements of the Munsell color standards; however, they measured human 

perception directly from the cone receptors, without taking into account all the external factors 

that play an important role in visual perception.  At the same time, other researchers have 

pointed out that different results are obtained when direct human examination or a 

spectrometer are used to determine color.  They also state that spectroradiometry provides a 

higher resolution and is more sensitive in detecting variation of color than Munsell color 

matching techniques (Endler 1990, Zuk & Decruyenaere 1994).  Throughout the years several 

photometric techniques have also been tried, such as the “LAB” system to describe color 

characters in terms of opponent-color coordinates (e.g., Graves 1997, 1999a, 2000).  However, 

when this and other methods were first introduced, they had the same limitation as the Munsell 

colors, since most standard cameras and other photometric equipment were optimized to the 

human visual system (Endler 1990, Zuk & Decruyenaere 1994, Grill & Rush 2000).   

 

Currently there is sophisticated equipment available to increase objectivity when measuring 

color in specimens.  One of these possibilities is the collection of spectral data coming directly 

from the object under study; such data are superior to observational data in several ways (Grill 

& Rush 2000).  Resolution and range of spectrophotometers can far exceed the capabilities of 

human vision.  This is especially important when infrared or ultraviolet wavelengths play 

important biological roles (Grill & Rush 2000).  Increasingly, studies use reflectance spectra 



 26 

over the bird-visible range to quantify the colors of avian plumage (Burckhardt & Maier 1989, 

Burckhardt & Finger 1991, Cuthill et al. 1999), and there has been an improvement in the 

measuring techniques and statistical methods for comparing color spectra. Cuthill et al (1999) 

present an extensive discussion on the history of these different methods.  

   

To find the best technique to analyze color spectral data is still a challenge.  Several studies 

have been conducted by cutting the spectrum in different, mutually exclusive adjacent units of 

equal nanometer range.  They justify their approach on a visual biological context such as 

segment classification or color space (Endler 1990, 1993; Zuk & Decruyenaere 1994; Endler 

& Thery 1996).  Thorpe (2002) has argued that dividing the spectrum into a few arbitrary units 

of equal nanometer range may not be optimal for many comparative evolutionary studies.  He 

has proposed a methodology to derive a few relatively independent and informative spectral 

segments.  They are non-overlapping but may be of unequal size with gaps between them.  

According to the author, his segments are free of biological context and can be used as 

characters in comparative evolutionary and systematic studies.   

 

Some authors divide the spectrum into equal units, along the wavelength range of the group 

under study, and treat them as different variables to be subjected to principal component 

analysis (PCA) (Endler 1990, Endler & Thery 1996, Bennett et al. 1997, Hunt et al. 1998, 

Cuthill et al. 1999, Grill & Rush 2000).  PCA simply describes the variation in the reflection 

spectra and makes no assumption about the color vision of the animal, in contrast to color-

space modeling  (Cuthill et al. 1999).  Additionally, PCA decreases the number of variables to 

be considered without sacrificing the information provided by the whole spectra.  These new 

variables are the first principal components (PCs), which are independent of each other.  

Usually the first three are enough to explain almost 100% of the variation of reflectance 

spectra (Cuthill et al. 1999).  These PCs obtained from the PCA have also been subsequently 

used to conduct other analyses, such as discriminant function analysis (DFA) (Cuthill et al. 

1999).  This perspective is superior to selecting only parts of each spectrum, such as “highest 

peaks” or “mean reflectance,” and that is the reason why I take it in order to use all the 

information of the spectra for statistical analysis.   
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It may be argued that the level of detail provided by spectrometric measurements of color is 

not needed for taxonomic studies and that human vision is enough to evaluate “biologically 

meaningful” differences that may be important to identify species, moreover, when the very 

species concept is a controversial unit created by man.  However, if color is an important 

consequence of the evolutionary process, and groups of organisms are subjected to different 

adaptive pressures, we have a direct connection to the need to find a more objective way to 

determine color differences.  Additionally, the detection of subtle differences in plumage 

coloration may reveal more taxonomic diversity, adding a conservation component to the 

method (Cuthill et al. 1999). 

 

Color determination on the bird specimens   

 

Animal color patterns can consist of structural colors and pigments.  Most pigment-based 

colors and some structural colors reflect roughly evenly in all directions, and their reflectance 

color does not change with the angle of the reflected light (Endler 1990).  Hummingbirds have 

long been known for having an important structural color component, and these structural 

colors characteristically change depending on viewing and lightning angles (Endler 1990).  

However, the means by which many avian structural colors are produced is still contentious 

(Finger 1995).   

 

Reflectance will be maximized when the angle of incidence and reflection are equal because 

the layers producing the iridescence act in a mirror-like fashion (Finger 1995).  An empirical 

preliminary analysis was conducted to find the angle that would produce the largest amount of 

total reflectance.  An angle of 45 degrees resulted from this preliminary analysis.  It is 

important to note that the spectral shape did not change with the angle of light incidence, 

which means that hue remains basically the same and the repeatability of the measurement 

was high.  Previous works have also determined 45 degrees as the most useful angle for 

characterizing iridescent avian plumage (Church et al. 1998, Hunt et al. 1998, Cuthill et al. 

1999).   
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For the present study (and the preliminary determination of angle) an optic fiber was used to 

take each measurement.  At the tip of this fiber I added a plastic piece cut at a 45-degrees 

angle to maximize the mean reflectance from the feathers.  To prevent ambient light entering 

the system I wrapped the plastic with black tape and placed a black sheet of paper underneath 

the bird.  The probe was located directly on the skin (Fig. 3 and Fig. 4), so that the light 

measured is only that comming from the original light source reflected by the feathers.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Fig. 3. (left). Angle of color measurement.  Fig. 4. (right). Color measurement on rectrices. 

 

 

In birds in general, and especially in hummingbirds that show iridescence, not only the angle 

of measurement can make a difference, but also the direction of the light in relation to the 

feather when taking the measurement.  For this reason, and in order to be consistent and 

minimize the variation, determination of plumage color was also made in the same direction 

relative to the feathers (Fig. 3).  Only for rectrices was the highest total reflectance detected 

Drawings modified from David Alker ´s original artwork 
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when taking the measurement perpendicular to the main shaft of the feather (Fig. 4).  It is 

important to consider that depending on the level of detail needed for each study and 

depending on the objective of the research, individual feathers should be measured (see Cuthill 

et al. 1999).  The objective of this study, besides testing the methodology, was to use the data 

to study the geographical variation of color in different hummingbird taxa, in order to conduct 

taxonomic, phylogenetic and biogeographic studies, so a general measure of each part of the 

body appeared to be sufficient.   

 

Handling of spectral data  

 

The USB2000 spectrometer, with associated PX-2 pulsed xenon light source and OOIBase32 

spectrometer operating software, allowed me to obtain, in each measurement, the complete 

spectrum from 220 to 750nm, in terms of percentage of reflectance at intervals of approximate 

0.28 nanometers.  This spectrum is graphically represented by a curve indicating reflectance 

(%) (Y-axis) versus wavelength (X-axis).  This curve is then limited to the range between 300 

nm and 730 nm for each measurement.  Less than 300 nm is not relevant here, since 300 to 

400nm constitute the UV part of the spectrum that can be detected by birds with UV receptors.  

The other extreme (730-750 nm) is excluded to avoid errors made by the instruments (pers. 

observation).  Each color determination used for analysis was already the mean of 30 

measurements (made automatically by the instrument when set on the software) from the same 

body spot with an approximate diameter of 3 mm. 

 

Each color measurement taken on a body area of a specimen produced an output file of 

approximately 2000 lines.  This file gives the percentage of reflectance along the range from 

220 to 750 nm. (which is then limited to 300-730 nm as already explained).  In order to be 

able to make further analyses with the spectra, and avoid unnecessary detail, the information 

on reflectance along the wavelength range is reduced to the medians of 10-nm bandwidths 

following Cuthill et al. (1999).  Each 10-nm segment is considered a different variable to be 

used in further analyses.  This rearranged information is then added to unique Excel files, one 

for each genus under study, using a macro that allows the more rapid import of data.  This was 
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necessary, taking into account that every specimen generates 30 different original color files 

(30 different body parts).  For the 3,737 specimens measured from the four genera studied, I 

handled a total of 112,110 original files and converted them into only four files (one per 

genus) with the color information on each body part from each individual to conduct statistical 

analyses. 

 

Cuthill et al (1999) consider that medians have the advantage of being insensitive to the 

occasional artifactual “spike” in recordings.  I agree with this statement, and this method also 

improves the measurements made by the PX-2 pulsed xenon light source.  According to the 

manufacturers (Ocean Optics, pers. comm.), the PX-2 lamp is not supposed to be an ideal 

choice for making color measurements due to the “spikiness” of the lamp spectra and its 

inherent flash-to-flash variation.  However, by using the multiple flash mode and averaging 

multiple scans very repeatable data can be obtained.  This light source is more accessible than 

the deuterium light source that has been used to take the UV range of the spectra in other 

studies (Andersson & Amundsen 1997, Thorpe 2002).  Moreover, after testing the PX-2 light 

source during my study, and using the mean of 30 scans for each color determination, I do not 

only find very consistent spectra, but I also corroborate Cuthill´s statement that taking the 

medians prevents potential problems. 

 

As expected, the color variables (each 10-nm segment), being consecutive “pieces” of the 

spectra, show a high correlation between them.  For this reason PCA is a useful tool, since the 

variation in spectra is normally described by a small number of principal components that are 

by definition independent (orthogonal) (Cuthill et al. 1999).  In PCA, the first PC is the linear 

combination of the original variables that show the highest variance.  PC2 is defined as the 

axis with the next highest variance, subject to the constraint that it is orthogonal to PC1, and 

so on (Sokal & Rohlf 1981, Otto 1999, Malinowski 2002). 
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Interpretation of the first PCs in coloration data 

 

Color has been explained as having three psychophysical dimensions, or three main features: 

brightness, chroma, and hue.  Brightness refers to overall light intensity at all wavelengths, 

chroma is a measure of saturation of the focal color, and hue is what people usually refer as 

color (e.g., yellow, red, blue, etc.).  Colors with high chroma are very pure, vibrant colors with 

little or no gray mixed in while low chroma colors appear faded and washed out (Grill & Rush 

2000). 

 

PC1, PC2, and PC3 have been interpreted as brightness, chroma, and hue, respectively (Grill 

& Rush 2000).  The researchers have based their interpretation on the loading patterns; when 

they are strong across the entire range of the wavelengths, PC1 can be interpreted as 

brightness, or overall light intensity.  According to Cuthill et al. (1999), in a PCA on raw 

spectra, PC1 would typically describe variation in mean reflectance, since it often forms the 

majority of between-spectra variation (typically > 90%).  There is now fairly universal 

agreement that PC1 is best described as brightness but there is considerably less certainty 

about the nature of PC2 and PC3 (Endler 1990, Hunt et al. 1998, Cuthill et al. 1999, Grill & 

Rush 2000).   

 

Subsequent principal components would capture variation in spectral shape.  Component 

loadings for PC2 suggest that this component describes the relationship between levels of 

short and long wavelengths; largely the slope of the spectral curve determines this 

relationship.  According to several authors (Endler 1990, Grill & Rush 2000), curve shape is 

indicative of the level of chroma in a color sample.  After PC1, much of the subsequent 

variation between spectra is in the relative amount of long-to-short-wavelength light (objects 

are either reddish or bluish), then PC2 would have positive coefficients associated with long-

wavelength reflections, negative coefficients with short wavelengths, and zero coefficients 

with medium wavelengths (there is no variation at these wavelengths) (Cuthill et al. 1999).  
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Based on the importance of the middle wavelengths in the loading for the third component, 

these same authors (Endler 1990, Grill & Rush 2000) have interpret PC3 as hue.  Hue is 

directly related to the regions of a spectrum with the highest slopes.  However, slopes of most 

spectra are not maximized at the extreme ends of the spectrum, rather, maximum slope usually 

occurs in the “middle” of the spectrum, so accurate interpretation for PC3 for all cases is still 

the subject of study and controversy.  

 

Some authors (Cuthill et al. 1999, Thorpe 2002) have removed the brightness element from 

the spectra by standardizing the data in different ways.  They argue that the variation in 

brightness is too high among the spectra compared with the shape of the spectrum.  Although 

that may be true, total reflectance is an important component of color in animals and may play 

a biological role.  For this reason I believe that brightness has to be included in these types of 

analysis. 

 

The derived principal components have a direct relationship to coloration being independent 

as variables.   For this reason, I use them as a way of describing spectral shape in a concise 

way to be able of applying statistics to compare groups, as was used by Cuthill et al (1999).  

 

Using color data to determine differences among populations 

 

In order to compare preliminary pools and make taxonomic conclusions, the spectral data 

needed to be reduced without sacrificing the information provided by the whole spectra.  The 

data of each spectrum were then entered into a principal component analysis (PCA) (Otto 

1999) in which each 10-nm segment of spectrum is a variable and each spectrum an 

observation.  The eigenvectors were then used to give scores to each spectrum that maximized 

the variance among spectra (Endler 1990, Otto 1999, Malinowski 2002).  Each principal 

component (PC) is a weighted linear sum of the original data.  Usually the first three PCs of 

spectra represent more than 95% of the variation.  These findings are consistent with previous 

results where PCA was used to assess color (Endler & Thery 1996, Bennett et al. 1997, Cuthill 
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et al. 1999, Grill & Rush 2000).  In this study, the first three PCs are taken in order to conduct 

two sets of discriminant function analysis (DFA). 

 

PCA essentially generates a new color space for the variables, and differences between data 

sets must be accounted for if comparisons are made.  As a consequence, several authors have 

discussed whether PCA may not be suitable when direct quantitative comparisons are needed 

between experiments or between groups (Endler 1990, Bennett et al. 1997, Cuthill et al. 1999, 

Grill & Rush 2000).  In the analysis of color spectra using PCA, this has to be conducted to all 

and only the data to be compared (no data can be added afterwars).  In order to add more data, 

the analysis has to be remade from the beginning.  This statistical method is simply a way of 

redescribing variation in an efficient manner, and one must start by deciding what variation 

one is most interested in describing (Cuthill et al. 1999).  Here I separated the data of each sex 

in order to avoid differences between sexes masking the differences between the compared 

populations.  As implied by Cuthill et al. (1999), if a PCA is performed on all the plumage 

regions together, the majority of between-spectra variation in shape comes between the 

iridescent and non-iridescent regions.  PC scores from one body region cannot be compared 

with PC scores of another, unless only the data from these two regions is included in the 

analysis from the beginning.  

 

For the DFA I used the PCs from each body region, since I wanted to use as many variables as 

possible that would allow me to discriminate different groups of individuals and assign 

membership to the controversial populations.  Applying a PCA to the spectral data from each 

body region only gives a new color space to each set of data.  Performing a DFA to the first 

three PCs resulting from the color data of each body part (30), I obtained a discrimination of 

almost 100% in both sexes of Topaza and a high discrimination for all the other genera. 

 

It may seem abstract to conduct a DFA using the PCs coming from a PCA.  The DFA takes 

these PCs to build other factors (discriminant factors) that will again explain most of the 

variance in the data.  The three first PCs provide “summary information” on the important 
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components of the color on each specific part of the body.  Then the DFA takes this overall 

information on body color and analyzes distances between bird populations. 

 

There is controversy about the use of PCs as variables to conduct other multivariate analysis.  

Thorpe (2002) does not recommend using the output from one multivariate analysis 

(orthogonal PCA scores) where between-group and within-group covariances are compounded 

to conduct another multivariate analysis, which is specifically designed to separate between-

group and within-group covariance.  However, according to Cuthill et al. (1999), PC scores 

can be entered into multivariate analyses to determine group differences in plumage.  The 

authors state that a single multivariate test on several PCs together provides a useful summary 

statistic for whether any aspect of spectral shape differs between groups.  Additionally, they 

used DFA to separate and accurately sex particular individuals of European starling (Sturnus 

vulgaris) on plumage spectra alone.  They used the mean reflectance and the first two 

principal components for the iridescent throat and coverts (the same as using the first three 

PCs without excluding the overall brightness), and obtained a discriminability between sexes 

of a 100% on the sexually dichromatic regions most likely to be involved in mate choice.   

 

Phylogenetic analysis based on spectral color data 

 

Conclusions about similarity among pools (groups of individuals) can be made by using DFA.  

However, this analysis alone does not allow the making of any conclusion on the degree of 

relationship among these pools.  The DFA results give us a phylogenetic working hypothesis 

that can be tested by conducting a phylogenetic analysis.  

 

The software program PAUP* 4.0b.10 (Swafford 2001) is one of the software packages most 

often used to conduct parsimony phylogenetic analysis.  However, this program can only be 

applied if the characters under study are discrete.  This status applies neither to color spectral 

data nor to morphometric data. 
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Generalized Frequency Coding applied to continuous morphological data 

 

The generalized frequency coding (GFC) is a method developed by Smith & Gutberlet (2001) 

that can be used to code any type of polymorphic multistate character (qualitative or 

quantitative).  This method makes a direct translation of frequency distributions into a suite of 

discrete states that can be handled by PAUP* 4.0b.10 (Swafford 2001).  By using GFC, 

continuous characters, such as the morphological data used here, are divided into 

subcharacters so that each observable state is treated as its own character.  Variation within 

each subcharacter is then coded by using frequency bins (Smith & Gutberlet 2001).    

 

In order to apply GFC to my morphological data to be used by PAUP,  I prepared the data sets 

for each analysis.  In this section I describe the general methodology applied to each data set, 

and in each result section the details of each analysis will be specified.  For each analysis to be 

performed I prepared one unique Excel file (spreadsheet software) for males and one for 

females, each with all the spectral information of all body parts of all the specimens from the 

groups in analysis.  Then a PCA was conducted on the data of each body part.  Only the first 

three PCs were extracted per body part, and the scores saved as new variables for each 

individual to conduct further analyses.  As explained, these three first PCs explain more than 

95% of the variation in the data.  The PC scores coming from the PCAs were included in a 

new Excel file and the morphometric data for each individual were also added at this point.  

Groups are made and tested according to the working hypothesis in each case.  The taxonomic 

units (TUs) (species or subspecies depending on the hypothesis) are identified in this unique 

Excel file and the GFC is then applied.  

 

To perform GFC, three main matrices have to be created from the morphologic variables (see 

Smith & Gutberlet 2001).  The morphologic (continuous) variables in this case are the three 

first PCs from each body part plus seven morphometric measurements (body mass, total 

length, bill length, wing length, and length of rectrices 1, 2, and 5).  In the cases where all the 

30 body parts were taken, I considered a total of 194 variables (30 body parts for males and 30 

for females multiplied by three PCs plus the seven morphometric variables of each sex).  The 
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total number of body parts included in each phylogenetic analysis is variable, and usually less 

than 30.  The data from body parts including many gaps (missing data) are not considered.  

 

To create matrix A (see Smith & Gutberlet 2001) each color character is 

subdivided into sections of 0.2 units.  For morphometric data, body mass 

is divided into sections of 1 unit (unit = g), total length into sections of 1 

unit (unit = mm), and the others into sections of 0.5 units (mm) each.   

Depending on the total variation within each variable in each analysis, 

totals of between 85 and 141 subvariables were obtained.  For example, if 

I considered 24 body parts and seven morphometric characters and 

divided the variables in 100 subvariables (or new variables), then I had a 

total of 18,000 (180*100) working variables that were then used to 

conduct further analysis.  With these subvariables I created another data 

set that was then used to obtain the frequencies of specimens that 

presented a given variation within each new variable from each of the 

TUs of the working hypothesis.   

 

The information from matrix A was then used to create matrix B (see 

Smith & Gutberlet 2001) by calculating cumulative frequencies.  A 

cumulative frequency is the sum of all sample frequencies (from matrix 

A) within a TU to the right of the subcharacter column being filled.  A 

new matrix C of subcharacters by taxa is constructed (see Smith & 

Gutberlet 2001) to replace the cumulative frequencies in matrix B with 

letters, according to a coding table (Table 4).  This table is modified from 

the frequency bins of Wiens (1995), to finally obtain the new coded 

variables to conduct the phylogenetic analysis.    

 
 
 
 
 
Table 4.   Codifying table for the generalized frequency coding technique (GFC). 

Range Code 

{0-0.04) a 

{0.04-0.08) b 

{0.08-0.12) c 

{0.12-0.16) d 

{0.16-0.2) e 

{0.2-0.24) f 

{0.24-0.28) g 

{0.28-0.32) h 

{0.32-0.36) i 

{0.36-0.4) j 

{0.4-0.44) k 

{0.44-0.48) l 

{0.48-0.52) m 

{0.52-0.56) n 

{0.56-0.6) o 

{0.6-0.64) p 

{0.64-0.68) q 

{0.68-0.72) r 

{0.72-0.76) s 

{0.76-0.8) t 

{0.8-0.84) u 

{0.84-0.88) v 

{0.88-0.92) w 

{0.92-0.96) x 

{0.96-1} y 
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To apply PAUP I had to create the final matrix for the phylogenetic analysis.  So I merged 

states for all characters from each matrix C (each polymorphic multistate character had been 

transformed into a separate matrix C) into a single final matrix.  This matrix included 

information for both sexes together. 

 

Some characters are non-informative because they present no variation among TUs or are 

autapomorphic.  The non-informative characters are then eliminated from the data set, and in 

order to avoid extra-weighting due to the number of subcharacters of each original variable, 

each new variable is weighted following the approach of “unequal subcharacter weighting” 

(USW) (Smith & Gutberlet 2001).  The multiple subcharacters used to represent a single 

character are not independent, so subcharacter weights needed to be adjusted such that GFC 

did not artificially inflate the influence of polymorphic multistate characters (Smith & 

Gutberlet 2001).  Weighting is used to make the contribution of the set of subcharacters for a 

given character equal to that of one non-polymorphic character (Smith & Gutberlet 2001).   

 

The weight of each character must be divided by the total number of informative subcharacters 

(IS) used to represent the single character of which it is part.  Then the weight of every 

subcharacter should be divided by the number of steps (NS) between the lowest and the 

highest frequency bins included in it.  The maximum number of steps is 24, which, because of 

the ordered treatment of each subcharacter, occurs if at least one taxon is assigned an “a” and 

at least one other is assigned a “y” (Wiens 1995, Smith & Gutberlet 2001).  Then I used the 

formula (32.676/NS)/IS to give each subcharacter an adequate weight.  The number 32.676 

come from the program PAUP, and it represents the maximum weight allowed in PAUP 3.1 

and PAUP* as explained by Smith & Gutberlet (2001). 

 

The final matrix containing all the informative weighted variables was entered in the 

phylogenetic computer program PAUP* 4.0b.10 (Swafford 2001).  To reconstruct the 

phylogenetic relationships among the studied taxa, a maximum parsimony analysis was 

performed to obtain the final phylogenetic results in each case.  The analysis, using PAUP* 

4.0b.10, starts with a heuristic search for all possible trees, with the branch-swapping 
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algorithm set to “tree-bisection-reconnection” (TBR) and a simple addition sequence.  The 

generated trees are rooted with the outgroups and, fortunately, for all cases in this study only 

one tree was generated.  To verify how the frequency of characters in the nodes supported 

each branch, a Bootstrap analysis was carried out based on a heuristic search with the 

parameters mentioned above. 
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Geographical variation and review of the taxonomy and phylogeny of the genus 
Topaza GRAY, 1840 
 

Theoretical background 

 

Within the hummingbirds, members of the genus Topaza are among the most distinctive and 

commonly illustrated trochilids (Plate 1).  They have been considered one of the most brilliant 

hummingbirds due to their conspicuous coloration (Greenewalt 1960).  Topaza is a large 

hummingbird of about 10 g that occurs in South America up to the northern hemisphere, and 

inhabits lowland forests, up to 500 m.a.s.l., mainly inland, and it is frequently found in the 

forest canopy and along gallery forests near river banks and creeks (Schuchmann 1999).  

Topaza does not show flocking behavior, and individual social contacts are rare, occurring 

occasionally around superabundant nectar sources (Schuchmann 1999).  The Crimson Topaz 

(Topaza pella) is one of the few species that have nest aggregations, within a radius of 20-30 

meters (Schuchmann 1999).  The genus Topaza shows a marked sexual dimorphism in 

morphometric characters (Appendix 2a) and in plumage coloration, in which males show 

iridescent bright colors mainly on the head and throat, but also on the upper- and underparts, 

while females are duller in appearance (see Appendix 5).      

 

The original description of Topaza was made by Linnaeus (1758) based on an individual that 

was captured in Surinam, and was designated as Trochilus pella.  Only in 1840 was the name 

Topaza recognized by G. R. Gray (1840) and then adopted by Simon (1921).  The genus 

Topaza presents a currently controversial taxonomy that needs to be elucidated and clarified 

(see Peters 1945, Schuchmann 1999, Hu et al. 2000, Dickinson 2003). 

 

Some authors recognize two species within this genus (Peters 1945, Hu et al. 2000, Dickinson 

2003):  Topaza pella and Topaza pyra.  Topaza pella is divided into three subspecies:  T. pella 

pella Linnaeus, 1758, found in eastern Venezuela and the Guianas;  Topaza pella smaragdula 

Bosc, 1872 in Surinam and northeastern Brazil (north of the Amazon); Topaza pella 

microrhyncha Butler, 1926 from the south bank of the Amazon river (north-central Brazil).  
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Topaza pyra is divided into three subspecies:  Topaza pyra pyra Gould, 1846 found in eastern 

Colombia, southern Venezuela, northwestern Brazil;  Topaza pyra amaruni Hu et al., 2000 in 

eastern Ecuador, and northwestern Peru; Topaza pyra subs.? from west-central Brazil.  

Contrary to this description, Schuchmann (1999) considers the genus monotypic, including 

only the species Topaza pella. 

 

Here I separate recognized subspecies according to geographic location following three of the 

published taxonomies:  Peters (1945) (Fig. 5a), Schuchmann (1999) (Fig. 5b), and Hu et al. 

(2000) (Fig. 5c).   

 

1. Peters (1945) includes two species in the genus Topaza: T. pyra in eastern Ecuador and 

the Rio Negro region of Brazil; and T. pella with four subspecies, T. p. pella in Guiana 

and Surinam; T. p. smaragdula, in French Guiana; T. p. microrhyncha from in the 

south bank of the lower Amazon near Belem; and T. p. pamprepta found only in the 

region of Suno, Rio Napo in Ecuador.  Regarding T. p. smaragdula, he includes a 

question mark in its description showing doubts on the validity of this subspecies. 

 

2. Schuchmann (1999), conservatively considers Topaza as a monotypic genus.  He finds 

that although the two previously accepted species show some differences in habits, the 

color difference is only a clinal variation that would not warrant a taxonomic 

differentiation.  Schuchmann includes Peters’s T. pyra as a subspecies of Topaza pella 

(T. pella pyra), and recognizes the other three subspecies: T. pella pella, T. pella 

microrhyncha, and T. pella pamprepta.  However, his T. pella pella includes 

populations in the range of former T. pella smaragdula, not recognized by him as a 

different group.  The other two are in agreement with Peters’s conclusions. 

 

3. Hu et al. (2000), on the basis of a new morphology and coloration study, go back to 

Peters taxonomy, recognizing two species of Topaza (T. pyra and T. pella).  They 

separate T. pyra into the subspecies: T. pyra pyra in southern Venezuela (Amazonas) 

and T. pyra amaruni  in Amazonian  Ecuador, along Rio Napo and Rio Corrientes, and  
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Fig.  5.  The genus Topaza and the geographical distributions of species and subspecies according to three 
authors: 
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western Amazonian Peru.  They include the taxon pamprepta in T. pyra pyra and 

accept the three other subspecies previously recognized by Peters: T. pella pella, T. 

pella smaragdula and T. pella microrhyncha.  The only difference is the population in 

the vicinity of Rio Jiparana in Brazil, which is included in T. pella pella (or another 

potential subspecies according to a published map), and not T. p. microrhyncha as in  

Peters (1945). 

 

Preliminary considerations on the validity of Topaza pella pamprepta 

 

Topaza pella pamprepta was first described by Oberholser (1902) from an adult male (174294 

USNM) collected on the Rio Napo at the mouth of the Rio Suno by Goodfellow and Hamilton 

in May 1899.  Hu et al. (2000) consider that the subspecies Topaza pella pamprepta should 

not be recognized at all, and I would like to discuss and clear this point before the analyses.  

Hu et al. (2000) have several arguments to support their statement.  Among them they argue 

that this subspecies is only known from three specimens taken by the same collectors 

(Hamilton & Goodfellows) that may have been incorrectly labeled.  Additionally, it has also 

been discussed by Zimmer (1951) that a specimen collected by Hamilton and Goodfellows, 

marked as “Coca, Rio Napo, E. Ecuador, June 1899” is of uncertain origin since it was also 

labeled by dealers in London.  Moreover, there exists evidence of other specimens of Topaza 

obtained by the same collectors that had incorrect data when compared to field notes (Zimmer 

1951).  In this study more specimens from the Napo area in Ecuador are included and the 

validity of this argument is discussed in detail. 

 

For their study, Hu et al. (2000) only had access to two specimens of T. p. pamprepta in 

USNM Washington (including the holotype).  One of them has been labeled as “locality 

wrong, Cayenne skin.”  The third one was sent to Germany and it is currently at Museum 

Alexander Koenig in Bonn.  I had the opportunity to examine this third specimen (Figs. 6 and 

7) and it does not differ from the two in Washington (also examined).  The results place these 

specimens in T. pella pella.  These three specimens show plumage color of the populations of 

T. pella pella from the extreme tip of the Topaza distribution through the Guianas, that include  
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Fig. 6.  Dorsal (left) and ventral (right) view of the specimen with wrong locality found in Museum Alexander 
Koenig under the code 8305 and collecting number 174295. 
 

 

 

 

 

 
Fig. 7.  Secondaries (left) and rectrix 5 (right) view of the specimen with wrong locality found in Museum 
Alexander Koenig under the code 8305 and collecting number 174295. 
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secondary feathers (Fig. 7 left) and rectrices number 5 (Fig. 7 right) with rufous-brown color 

(to the naked eye), contrary to the dark brown secondaries and violet rectrices number 5 of the 

“pyra” group from the western extremity of the distribution (Fig. 8).  The results of this 

research (see section “Taxonomic analysis of the genus Topaza”) and these observations make 

it highly probable that these three individuals are really Cayenne specimens incorrectly 

labeled. 

 
Fig. 8.  Secondaries (left) and rectrix 5 (right) view of the specimen of “pyra” from Ecuador found in Museum 
Alexander Koenig under the code 8306. 
 

 
 
 
The conclusion that these three specimens were in fact misidentified does not automatically 

invalidate the subspecies.  Hu et al. (2000) also checked other specimens from the Napo river 

area (USNM 174293, AMNH 46072), and around this locality (ANSP 186789).  I checked 

these specimens and three more specimens found in the Senckenberg Museum in Frankfurt 

that were collected in the Coca, Napo area (Figs. 9a and 9b).  These specimens from Frankfurt 

were misidentified as T. pella microrhyncha, perhaps due to the ambiguity of the locality 

written on the label:  “Rio Coca, Amazonas.”   However, they showed the characteristics of 

the “pyra” group from close to the Andes, that to the naked eye include dark brown 

secondaries (Fig. 8 left) and dark violet rectrix 5 (Fig. 9b right), contrary to the rufous-brown 

secondaries and rectrix 5 of the “pella” group from the eastern end of the distribution. 
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Fig. 9a.  Dorsal (left) and ventral (right) view of two specimens found in Senckenberg Museum.  They were 
incorrectly labeled as T. pella microrhyncha, but belong to the T. pella pamprepta population. 
 

 

 

 

 

 

 
Fig. 9b.  Secondaries (left) and rectrices number 5 (right) view of two specimen found in Senckenberg Museum.  
They were incorrectly labeled as T. pella microrhyncha, but belong to the T. pella pamprepta population. 
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Taxonomic analysis of the genus Topaza 

 

I focus the analysis on the comparison of the three published taxonomies already presented, on 

the assumption that these previous taxonomies are good hypotheses to begin with.  Those 

populations on which the authors show disagreement I call “unclear” (Fig. 10).  They are 

specifically:  1) “pamprepta”, which includes the Suno, Rio Napo population; 2) “uncertain 

locality”, according to Hu et al. (2000) the subspecies “pamprepta” should not be recognized 

at all.  The status of these three specimens has already been discussed in the previous section 

but I include them here to corroborate the conclusion;  3) “pyra-east,” which includes the 

populations of the southernmost tip of Venezuela and adjacent areas of Colombia and Brazil 

(T. pyra pyra according to Hu et al. 2000);  4) “T. pella smaragdula,” which includes the 

populations of the Guianas and Amapa in Brazil, that according to Peters (1945) and Hu et al. 

(2000) should be part of a separate subspecies, but this is not accepted by Schuchmann (1999); 

and 5) “jiparana,” which includes populations around the Jiparana River in Brazil that 

according to Peters (1945) and Schuchmann (1999) are part of T. pella microrhyncha and 

according to Hu et al. (2000) are part of T. pella pella, or possibly a new subspecies.  These 

names are given for the purpose of the following discussion.   
 

Fig. 10.  Controversial populations of Topaza, also called “unclear” populations. 
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In order to solve these taxonomic conflicts, and using the data on coloration obtained here for 

the genus Topaza, I focus my discussion on these “unclear” populations. 

 

In order to use plumage coloration data to discriminate among subspecies from the published 

taxonomies, and determine the membership of  “unclear” populations, a principal component 

analysis (PCA) was conducted on each data set (body region) to reduce the spectral data (see 

Appendices 6a and 6b).  I conducted two sets of discriminant function analyses (DFA) based 

on the first three PCs of each body part.  The first DFA was performed to determine the 

membership of “unclear” populations of Topaza, and the second to define which variables 

contribute the most to the separation or discrimination of Topaza groups, or in practical terms, 

what differences in body color are more important to separate groups within this genus. 

 

The general significance of the first scores in terms of color interpretation was extensively 

explained in previous sections.  However, I also include a group of graphs showing the 

relationship between the three PC scores found for the different body parts of individuals of 

the genus Topaza and each point of the spectral range (Appendix 7a for males and 7b for 

females).  In these graphs it is clear that a very similar relationship between these variables 

exists for all the body parts measured.  The first PC is represented in each case by a very stable 

line in the positive range that would represent the mean reflectance found in the data that will 

be very similar across the whole spectral range.  The second and third PCs can be interpreted 

as showing complementary information on the variation between different ranges of the 

spectrum, which means the differences between short and long frequencies or extreme versus 

medium frequencies.  By looking at these graphs it is clear that these three first PCs give us 

enough information on the plumage color of each body part to be used for the DFAs that 

follow. 

 

Discrimination of groups: 

 

For discrimination of groups I conducted two DFAs, for male (Fig. 11) and female data (Fig. 

12) respectively.  In each case I took the first three PCs corresponding to the color information  
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Fig. 11.  Results of the first DFA conducted on the color data of males of Topaza in order to discriminate groups. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12.  Results of the first DFA conducted on the color data of females of Topaza in order to discriminate 
groups. 
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of each part of the body and considered bird coloration as a whole (integral approach).  For 

males, all the groups showed 100% discrimination except for “pella” and “smaragdula,” 

which showed incomplete discrimination, which would be expected if the two groups cannot 

be really separated.  The rest of the groups showed full discrimination and, furthermore, when 

looking at the graphs, the same conclusion is reached in both males and females even when 

independently analyzed.  For males the first two discriminant functions explained 74.4% of 

the variation, and for females 84.7% of the variation.  

 

In general, a discriminant function analysis is used to assign membership to unknown objects 

(Sokal & Rohlf 1981, Otto 1999).  DFA is used in data sets where some of the groups are 

known and individual “objects” need to be assigned membership in one of these previously 

known groups.  In this case, I gave a name to each group of  “unknown objects” or “unclear” 

populations and they were computed together with the rest.  The reason is that I do not have 

unknown objects, but unknown groups of objects (individuals) that are assumed to belong to 

the same group and might be assigned to one of the known groups.  Since I treat them as 

groups, they may be differentiated into their own groups, as happens here.  However, the 

important conclusion to draw from this first DFA comes from the relative distances of the 

centroids of each group to each other.  From the separation of centroids in each graph the 

following conclusions can be extracted:  For both males and females the centroids of “pyra-

west” (from Ecuador and Peru), and T. pella microrhyncha are well separated, and in these 

groups the authors show no controversy.  They are very well differentiated from the rest, as 

would be expected when no doubts exist as to their validity as subspecies.  With regard to the 

“unclear” populations: 

 

1) “pamprepta” shows a separation from other T. pella populations, and appears closer to 

the “pyra” populations, as could be expected taking the geographical distances into 

account.  Also, if Topaza had in fact two species, this group should be a subspecies of 

T. pyra and not of T. pella as considered by Peters (1945). 

2) When I separated the three specimens from “pamprepta” called “uncertain locality” 

(unfortunately males only) the DFA results put them closer to the populations of 
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“pella”-“smaragdula,” which implies that they could really come from populations of 

the Guianas (possibly Cayenne as written on one of their labels) and not from Ecuador. 

3) With regard to “pyra-east,” it seems that a different subspecies of “pyra” appears in 

southern Venezuela and adjacent areas, since the group does not overlap with the 

“pyra-west” populations. 

4) The centroids from “pella” and smaragdula” are very close together and overlap, 

making me believe that these two groups should not be separated into subspecies.  

Furthermore, T. pella smaragdula should not be recognized.  

5) The two males from “jiparana” both appear closer to “pella-smaragdula” than to T. 

pella microrhyncha. 

 

Discriminating variables 

 

DFA is a very useful tool for classifying cases into groups with a better than chance accuracy, 

but also provides the means for detecting the variables that allow the researcher to 

discriminate between different (naturally occurring) groups.  For the first part of the analysis I 

used the first potentiality of DFA, but here I am interested in determining which body parts 

(plumage coloration) make possible the discrimination of final groups.  In other words, it is 

necessary to interpret the spectral data results in terms of real plumage coloration differences.  

 

I conducted another DFA, again by sex, using the same PCs from the spectral data (Appendix 

6a and 6b), but this time I used the final groups resulting from the first analysis to regroup the 

data.  In this case I am not interested in the level of discrimination (that was already defined), 

but I used the descriptive power of DFA to determine the source of the color differences 

between groups.  The DFA made for males (Fig. 13) uses only four discriminant functions to 

differentiate the groups, and the first two functions explain 81% of the variation.  From the 

standardized canonical discriminant function coefficients table (SCDFCT) (Table 5), I can 

extract those variables (body regions) that contributed the most in the first two functions.  

These coefficients point to the gorget (Fac2_12), the lower throat (Fac2_14), and rectrix 5 

(Fac3_39 and Fac1_39) as the body parts that make the most contribution to the overall 
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discrimination of  two groups (see Function 1 in Fig. 13 and Table 5):  “pella” (“pella” and 

“microrhyncha”) and “pyra” (“pyra,” “amaruni,” and “pamprepta”), which does not 

necessarily mean that they should be considered different species.  Neck (Fac3_2), back 

(Fac2_4), secondaries (Fac2_30 and Fac3_30), primaries (Fac2_31), and r1 (Fac3_32) explain 

the separation of “pella” and “microrhyncha” on the one hand, and “pyra,” “amaruni,” and 

“pamprepta” on the other (see Function 2 in Fig. 13 and Table 5).   

 

Although the discrimination of groups for females gave the same results as for males, the 

variables that made the difference are not the same.  The first two discriminant functions 

explained 85.7 % of the variation among groups.  Basically, the dorsal region of the body 

explains a high portion of the variation (Fac2fe3, Fac3fe3, Fac1fe4, Fac2fe4, Fac3fe4, 

Fac1fe5, Fac2fe5, and Fac2fe6), while breast (Fac1fe20, Fac2fe20), and wing coverts 

(Fac3fe29) explain the remainder to separate mainly “pamprepta” from the rest (see Function 

1 in Fig. 14 and  Table 6).  For the separation of the other Topaza groups (see Function 2 in 

Fig. 14 and Table 6), not only the dorsal region of the body is important (Fac1fe2, Fac2fe2, 

Fac2fe3, Fac3fe3, Fac3fe5, and Fac2fe6), but also wing coverts, primaries, and secondaries 

(Fac1fe29, Fac2fe29, Fac3fe29, Fac2fe30, Fac3fe30, and Fac2fe31).   

 

The DFA indicates where the main differences are found as previously described, but for the 

interpretation of real color differences among groups we can also rely on more graphical 

representations of the data.  In order to reduce the potential confusion that the presentation of 

this amount of figures, text, and graphs would bring, the information on color differences by 

body part for the five groups under analysis in this section will be included in Appendices 

(Appendix 8a and 8b). 

 

In conclusion, my spectral color data results suggest that the main source of variation comes 

from the separation between T. “pella” and T. “pyra.”  The first group would include 

populations of Topaza occurring in the eastern part of the distribution, and include two groups, 

possibly T. pella pella and T. pella microrhyncha, that seem more similar to each other than to
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Fig. 13.  Results of the second DFA conducted on the color data of Topaza males. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 14.  Results of the second DFA conducted on the color data of Topaza females. 
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Table 5.  Standardized canonical discriminant function coefficients resulting from the second DFA conducted on 
the color data of Topaza males.  Note:  Appendix 4 shows the codes of factors and body parts used here. 

 

Standardized Canonical Discriminant Function Coefficients
for MALES

-,250 -,798 ,336 -,485
,362 -,063 ,935 -1,248
,312 ,298 ,657 -,543

-,199 ,686 -,312 ,216
,412 -,971 -1,159 1,623
,586 -1,147 -1,519 3,329
,310 -,001 1,191 ,281
,762 ,000 -,372 ,401
,606 ,833 ,230 ,316

-,082 -,438 ,383 ,315
-,279 1,083 ,829 ,451
-,044 -,176 ,697 -1,030
-,319 ,957 -,237 ,100
-,193 ,309 ,132 ,008
,226 ,155 -,169 -,617
,537 ,151 -,426 ,043
,476 ,600 ,038 ,409
,898 ,039 1,196 -,278

-,731 ,519 ,600 ,068
-1,226 ,117 ,826 ,127

,373 ,466 -,079 -,723
-,342 -,239 -,894 -,289

-1,228 -,065 -,647 -,293
-,316 -,043 -,079 -,218
,361 -,744 -,717 -,300

-,265 ,853 1,343 ,571
-,004 ,391 -,038 ,163
,011 -,104 -,498 ,088
,736 -,027 -,800 ,081

-,448 -,915 ,229 -,523
-,058 ,120 ,093 -,241
,061 -,107 ,227 ,043
,129 ,201 -,238 ,299
,658 ,573 ,237 ,434

-,594 ,868 ,917 -,191
,250 ,329 -,180 -,014

1,028 -,093 -,620 ,360
,587 -,679 -,039 ,728

-,043 -,380 -,610 -,288
,004 -,092 ,290 -,531
,159 -1,459 ,995 -,622
,358 -1,644 ,296 -,655

-1,027 ,267 ,155 -,486
-,813 1,861 ,733 -,900
,079 -,664 -,590 ,252
,339 ,754 -,161 -,051
,024 -,512 ,884 ,112
,128 1,510 -1,057 -,274

-,032 ,531 -,035 ,270
-,591 ,948 -,153 ,649
,349 ,813 ,041 ,572

-1,197 -,122 -,012 -,034
,962 ,286 ,290 -,349

-1,390 ,152 1,136 ,278
-,295 -,964 -,315 ,542
,316 -,617 -,620 -,208

-,231 -,579 -,071 ,247

FAC1_1
FAC2_1
FAC3_1
FAC1_2
FAC2_2
FAC3_2
FAC1_3
FAC2_3
FAC3_3
FAC1_4
FAC2_4
FAC3_4
FAC1_5
FAC2_5
FAC3_5
FAC1_6
FAC2_6
FAC3_6
FAC1_12
FAC2_12
FAC3_12
FAC1_14
FAC2_14
FAC3_14
FAC1_17
FAC2_17
FAC3_17
FAC1_20
FAC2_20
FAC3_20
FAC1_23
FAC2_23
FAC3_23
FAC1_26
FAC2_26
FAC3_26
FAC1_29
FAC2_29
FAC3_29
FAC1_30
FAC2_30
FAC3_30
FAC1_31
FAC2_31
FAC3_31
FAC1_32
FAC2_32
FAC3_32
FAC1_33
FAC2_33
FAC3_33
FAC1_39
FAC2_39
FAC3_39
FAC1_41
FAC2_41
FAC3_41

1 2 3 4
Function
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Table 6.  Standardized canonical discriminant function coefficients resulting from the second DFA conducted on 
the color data of Topaza females.  Note:  Appendix 4 shows the codes of factors and body parts used here. 

 Standardized Canonical Discrim inant Function 
Coefficients FEM ALES 

-2,821 -,482 ,306 1,823 
1,837 1,482 1,931 ,357 
2,124 -2,310 1,638 1,210 
3,487 8,242 -,317 ,117 

-4,182 -5,283 1,505 -2,589 
4,545 ,967 -5,917 3,083 

-1,561 3,106 ,831 -1,166 
-9,605 -6,597 -2,860 ,166 
23,988 15,247 3,461 ,950 
-8,042 -4,505 -3,678 1,528 
6,600 1,532 -,799 3,151 

-5,226 -2,265 6,730 -6,773 
15,468 ,931 2,462 1,250 

7,955 ,077 -2,024 1,358 
-1,339 -5,791 -5,017 1,127 
2,802 2,189 -2,105 -,935 

-10,987 6,199 5,991 ,741 
-,970 -3,793 -,036 ,631 
-,843 -1,012 ,443 -1,365 
-,047 4,601 2,124 -2,319 

-4,948 -2,393 -2,283 -,628 
-2,583 -3,370 ,257 ,460 
2,078 ,660 1,119 ,438 

-1,664 -1,366 -3,615 ,216 
1,893 ,606 2,111 ,659 

-1,211 5,463 1,146 -,200 
1,981 2,269 -2,980 -2,159 

-8,536 -2,949 ,852 ,035 
6,803 -1,902 -3,178 ,107 

-3,417 1,264 6,684 4,728 
1,649 -1,116 -1,447 ,576 

-1,865 1,760 1,643 ,190 
-1,425 -2,215 -1,602 -,117 
1,956 -,166 -1,214 ,250 
3,494 1,724 1,482 -1,331 
1,063 3,097 -1,332 -,246 
1,331 6,699 -1,505 -2,096 
3,497 12,719 3,781 -1,728 
5,787 6,630 ,435 ,323 

-2,801 1,448 8,403 2,446 
3,365 7,543 10,752 ,768 

-1,559 -7,554 -4,840 -2,670 
2,034 -2,087 -11,087 -1,855 

-2,316 -8,332 -15,517 ,900 
,043 3,598 5,473 1,480 

-2,229 -1,079 ,247 ,948 
-,823 -,391 -1,329 1,891 

-3,990 -1,909 1,759 -,499 
-,916 2,152 1,807 -,921 
-,805 -,044 ,119 1,412 

3,320 5,094 -2,060 ,068 
2,982 1,746 -,667 -,185 

,640 2,517 3,353 ,424 
2,609 -1,681 4,117 -,769 

-4,817 -,543 -1,900 -2,041 
3,639 -1,009 -,484 1,476 

FAC1FE1 
FAC2FE1 
FAC3FE1 
FAC1FE2 
FAC2FE2 
FAC3FE2 
FAC1FE3 
FAC2FE3 
FAC3FE3 
FAC1FE4 
FAC2FE4 
FAC3FE4 
FAC1FE5 
FAC2FE5 
FAC3FE5 
FAC1FE6 
FAC2FE6 
FAC3FE6 
FAC1FE12 
FAC2FE12 
FAC3FE12 
FAC1FE14 
FAC2FE14 
FAC3FE14 
FA1CFE17 
FAC2FE17 
FAC3FE17 
FAC1FE20 
FAC2FE20 
FAC3FE20 
FAC1FE23 
FAC2FE23 
FAC3FE23 
FAC1FE26 
FAC2FE26 
FAC3FE26 
FAC1FE29 
FAC2FE29 
FAC3FE29 
FAC1FE30 
FAC2FE30 
FAC3FE30 
FAC1FE31 
FAC2FE31 
FAC3FE31 
FAC1FE32 
FAC2FE32 
FAC3FE32 
FAC1FE33 
FAC2FE33 
FAC3FE33 
FAC1FE39 
FAC2FE39 
FAC3FE39 
FAC2FE41 
FAC3FE41 

1 2 3 4 
Function 
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the other three groups, possibly T. pyra pyra, T. pyra amaruni, and T. pyra pamprepta, which 

seem to be included in Topaza “pyra.”   

 

The characters on which Hu et al. (2000) base their differentiation of the two species of 

Topaza are the color of the puffy tibial feathering and the prominence of the nasal fossa at the 

base of the bill.  Although I did not make any of these measurements, at this point my analysis 

is concordant with these results in the sense that it also indicates a separation of Topaza 

between western and eastern populations.  However, to what degree these two groups are 

separate will be discussed after the phylogenetic analysis. 

 

Phylogenetic analysis of the genus Topaza 

 

The results from the preceding section point to some potential changes to the taxonomy of the 

group.  According to the findings, the new working hypotheses for the phylogeny of the genus 

Topaza should be as follows:  T. pella and T. pyra should be considered different species; T. 

pella would only include 2 subspecies: T. pella pella and T. pella microrhyncha; and T. pyra 

three subspecies: T. pyra pyra, T. pyra amaruni, and T. pyra pamprepta.  However, conclusive 

results can only be given through a phylogenetic analysis. 

 

Of the hummingbird taxa considered in this study there are arguments to choose either 

Campylopterus or Eulampis as the outgroup for the Topaza analysis.  I conducted two PAUP 

analyses and a discussion of the probable best outgroup to make appropriate phylogenetic 

conclusions about the genus Topaza follows below. 

 

Campylopterus as outgroup 

 

The ingroup (taxonomic units) for the analysis, as defined according to the new working 

hypothesis is: 

• Topaza “pyra amaruni” (group 1) 

• Topaza “pyra pamprepta” (group 12) 
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• Topaza “pyra pyra” (group 13) 

• Topaza “pella pella” (group 2) 

• Topaza “pella microrhyncha” (group 3) 

 

Following the methodology already set out, I selected the whole group (ingroup and outgroup 

taxa) and proceeded with the following method: 

 

1. I separated the raw spectral color data by sex, and included the data in two Excel files 

(one for males and another for females). 

2. For each data set, I conducted a PCA with the measurements from each body part. 

3. I selected the first three PC scores resulting for each body part of the individuals 

included in each analysis and created new data sets by sex with three variables for each 

part. 

4. Morphometric data were added to the files (see Appendix 9a and 9b).  

5. The individuals were identified as belonging to a specific taxonomic unit (TU) to 

calculate frequencies for the analysis.   

6. The generalized frequency coding (GFC) was applied to the cumulative frequency data 

in order to code them for the phylogenetic (PAUP) analysis. 

7. The data for males and females are combined into the final matrix. 

 

At the end of step 4, there was a total of 134 variables (color of 20 body parts for males and 20 

for females multiplied by three PC scores, plus seven morphometric variables for each sex) 

(Appendices 9a and 9b).  In order to apply the GFC (step 6) each variable was subdivided into 

0.2 % of the variation, giving a total of 141 subvariables for males and 141 for females that 

were sections of each original variable.  At the end there were 9447 ((60*141)+(7*141)) 

working variables for males and the same for females, which were then used to create matrix 

A (Appendix 10a and 10b).  This matrix contained the frequencies of specimens that presented 

a variation within each new variable for each of the TUs of the working hypothesis.  Then a 

cumulative frequency matrix (matrix B) was created (Appendix 11a and 11b).  The coding 

was then completed and after eliminating the uninformative characters the final matrix 
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(Appendix 12) contained seven taxa and 3580 parsimony informative characters that were 

weighted (Appendix 13) and entered in the phylogenetic computer program PAUP* 4.0b.10. 

 

Results of the PAUP analysis 

 

The maximum parsimony analysis resulted in a single most parsimonious tree (Fig. 15 and 

Table 7).  According to the Bootstrap analysis each node showed a 100% probability, except 

for nodes 11 with 99% and 10 with 80%, which are still high percentages.  This reconstruction 

shows Topaza as a monotypic genus since there is no real differentiation between the two 

groups in the working hypothesis (“pella” and “pyra”).  Although there is a scaled sequence 

from T. pella microrhyncha (eastern end of the geographical distribution) to “T. pyra pyra” 

(western end of the distribution), there is no clear separation between the five taxonomic units. 
 
 
 
 

 
 
 
 
Fig. 15.  Phylogenetic tree resulting from the PAUP analysis of Topaza using Campylopterus as outgroup. 
 

Campylopterus cuvierii

Campylopterus largipennis

Topaza pella microrhyncha
1353

Topaza pella pella
8 728

9 Topaza pyra amaruni
64 10 950

803 11 Topaza pyra pamprepta
364 12 1119

448 Topaza pyra pyra
1219
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Table 7.  Main descriptive parameters of the phylogenetic tree resulting from the PAUP analysis of Topaza 
groups using Campylopterus as outgroup. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Eulampis as outgroup 

 

For this analysis the ingroup is the same as before, and only the outgroup changes:  Eulampis 

jugularis and Eulampis holosericeus.  The steps are also the same as for the previous analysis. 

 

Results of the PAUP analysis 

 

At the end of step 4, there were two files of data containing the three PC scores from each 

body part and the morphometric data of the specimens considered (Appendices 14a and 14b).  

Body mass and total length had to be excluded due to the scarcity of data for Eulampis. There 

were a total of 127 variables (color of 19 body parts for males and 20 for females multiplied 

by three PC scores, plus five morphometric variables by sex).  In order to apply the GFC (step 

6) each variable was subdivided into 0.2 % of the variation, giving a total of 141 subvariables 

for males and 141 for females that were sections of each original variable.  Each individual 

was assigned to one of these sections within each variable.  Another data set was created with 

this new information to get obtain the frequencies.  The working variables were 8742 

((57*141)+(5*141)) for males and 9165 ((60*141)+(5*141)) for females and were used to 

create matrix A (Appendix 15a and 15b).  This matrix contained the frequencies of specimens 

Tree characteristics 
Values 

Tree length 5859.64 

Consistency Index (CI) 0.6955 

Homoplasy Index (HI) 0.3045 

Retention Index (RI) 0.4277 

Rescaled Consistency Index (RC) 0.2974 
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that presented a variation within each new variable for each of the TUs.  A cumulative 

frequency matrix (matrix B) was created (Appendices 16a and 16b).  The coding was 

completed and after deleting the uninformative characters the final matrix with information 

from both sexes (Appendix 17) contained seven taxa and 2955 parsimony informative 

weighted characters (Appendix 18).  These data were entered in PAUP. 

 

The maximum parsimony analysis resulted in a single most parsimonious tree (Fig. 16 and 

Table 8).  According to the Bootstrap analysis each node has a 100% probability, except for 

node 8 with 98%.  The reconstruction shows the Topaza group as two main subgroups: “pella” 

and “pyra” and each with its subspecies as predicted by the working hypothesis. 

 
 
 
 
 
 

 
 
 
 
 
Fig. 16.  Phylogenetic tree resulting from the PAUP analysis of Topaza using Eulampis as outgroup.  
 
 

Eulampis jugularis

Eulampis holosericeus

9 Topaza pella pella
8 496

689 Topaza pella microrhyncha
708

10 Topaza pyra amaruni
49 806

11 Topaza pyra pamprepta
563 12 939

365 Topaza pyra pyra
1133
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Table 8.  Main descriptive parameters of the phylogenetic tree resulting from the PAUP analysis of Topaza 
groups using Eulampis as outgroup. 
 
 
 

Tree characteristics 
Values 

Tree length 6061.68 

Consistency Index (CI) 0.7013 

Homoplasy Index (HI) 0.2987 

Retention Index (RI) 0.6906 

Rescaled Consistency Index (RC) 0.3376 

 
 
 

Phylogenetic conclusions for the genus Topaza 

 

An appropriate outgroup has to be determined to conduct a phylogenetic analysis.  These 

conflicting results do not help to clear the controversy about the existence of only one species 

(Schuchmann 1999) or two species (Peters 1945, Hu et al. 2000) of Topaza.  The final 

decision will be possible after deciding the best outgroup (Eulampis or Campylopterus).  

Unfortunately, there is not enough information on the phylogeny of hummingbirds, and 

especially no published information on the specific phylogenetic relationships within the 

mango group.  

 

As already mentioned in the Introduction, the genera Topaza, Anthracothorax, and Eulampis 

are all members of the mango group, and are presumably phylogenetically closer to each other 

than to any other taxa.  The conclusions of Zusi & Bentz (1982) do not provide additional 

useful information in this case since they consider Topaza, Anthracothorax, Eulampis, and 

Campylopterus only as basal groups, making no conclusions on the relationships between 

them.  The DNA molecular conclusions of Bleiweiss et al. (1997) place the mango group at 

the base of the non-hermits, and within them, Eulampis is at the base of the phylogeny, but we 
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do not have any information about the position of Topaza or Anthracothorax.  The genus 

Campylopterus is included within the emeralds, which are considered more derived than the 

mangoes.  The authors considered only Campylopterus villaviscensio for their analyses, and 

this species might be a derived taxon within the emeralds.  However, their results indicate that 

Campylopterus would be phylogenetically farther away from Topaza than Anthracothorax and 

Eulampis from Topaza.  This limited information makes Campylopterus the best outgroup to 

determine the phylogeny of Topaza, or any other of the mango species, until further 

information is presented. 

 

This phylogenetic reconstruction (using Campylopterus as outgroup) showed Topaza as a 

monotypic genus since there is no real differentiation between the two groups in the working 

hypothesis (“pella” and “pyra”).  As already mentioned, there is no clear separation among the 

five taxonomic units.  According to these results, the subspecies “T. pyra pamprepta” seems 

to be closer to “T. pyra amaruni” and “T. pyra pyra”, these three being the subspecies 

distributed at the western extremity of the geographical distribution of Topaza.  The other two 

subspecies, T. pella pella and T. pella microrhyncha, occur at the eastern end of the range.   

 

At this point we can combine this bibliographic information with the results of the 

phylogenetic tree obtained using Eulampis as outgroup.  By similarities of color characters of 

females and of ecological characteristics, such as nest construction in both genera, 

Schuchmann (1980c) considers Eulampis as the sister group of Topaza.  If that is the case, 

Topaza and Eulampis might be phylogenetically too close to each other and any real 

difference within Topaza might be augmented. 

 

When both resulting phylogenetic trees (Fig. 15 and Fig. 16) are observed and compared it 

seems clear that a real difference between the groups of “pella” (east) and “pyra” (west) 

exists.  This difference might be greater at the extremes of the distribution.  The major 

separation seems to be between the subspecies closer to the Andes and T. pella microrhyncha, 

which is not only farther away to the east but is also separated from T. pella pella by the 

Amazon River.  T. pella pella seems to be at the center of the distribution, which is in 
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agreement with the ideas of Schuchmann (1999) and supports the existence of an east-west 

clinal trend of characters within the Topaza populations.  I also believe that setting a 

taxonomic limit at the species level would be a very subjective conclusion at this point.  

Unfortunately, the scarcity or lack of specimens from northern and central Brazil, (in the 

middle of the Topaza geographical distribution) makes it more difficult to reach a decision.  

Researchers could be confused by differences between the groups found at the extrems of the 

distribution, leading them to consider two separate species.  In any case, it is clear that the 

subspecies T. pella pamprepta should not have been included in Topaza pella (sensu Peters 

1945, Hu et al. 2000).  If two different species are proposed, then this subspecies should have 

been part of the “pyra” populations close to the Andes.  

 

Further arguments supporting the clinal trend of Topaza 

 

The taxonomic analysis of this taxon is mainly based on plumage coloration differences; 

however, I have added the morphometric information to the phylogenetic analysis.  At this 

point I want to complement the morphological comparison of the five subspecies of Topaza by 

adding some statistical analysis and comparative figures from the morphometric data (body 

mass, total length, bill length, wing length, and rectrices 1, 2, and 5).  These additional 

observations will help in the discussion of a possible east-west clinal trend of the 

morphological characters of Topaza.  First I present the descriptive statistics and comparisons 

made on the five final subspecies (Tables 9 and 10).  The data on body mass and total length 

are included as a reference but they are too scarce for definite comparisons.  For the other 

body measurements, in both sexes, significant differences among groups exist, with the only 

exception of rectrix 5. 

 

After the first comparison, I conducted a correlation analysis between the seven body 

characters and geographical variables, such as latitude and longitude, to complement the 

information on potential cline of characters.  These results are shown in Tables 11 and 12 for 

males and females respectively.  The results by latitude might reflect regional tendencies in 

the data, mainly within the populations of T. pella pella and Topaza pella microrhyncha that 
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Table 9.  Morphometric measurements of  males of the five subspecies of Topaza, indicating statistically significant differences between them. 
 
 
 
 
 

Taxon 
 Body 

mass 
(g) 

Total length 
(mm) 

Bill length 
(mm)  

** 

Wing length 
(mm) 

* 

Rectrix 1 
(mm) 

 ** 

Rectrix 2 
(mm) 

 ** 

Rectrix 5 
(mm) 

Topaza pella amaruni 
x= 
σ= 
n= 

 
- 
 

 
- 

28.57 
1.27 
15 

80.76 
2.35 
16 

48.38 
1.93 
14 

101.47 
24.54 

14 

46.49 
4.50 
13 

Topaza pella pyra 
x= 
σ= 
n= 

12.00 
- 
1 

 
- 

29.67 
0.23 

2 

78.15 
2.55 

3 

47.05 
5.48 

2 

116.80 
12.13 

3 

42.77 
4.78 

3 

Topaza pella pamprepta 
x= 
σ= 
n= 

14.50 
- 
1 

 
- 

29.91 
1.18 

5 

82.11 
2.74 

5 

50.03 
2.55 

5 

112.49 
7.52 

5 

46.13 
4.93 

5 

Topaza pella pella 
x= 
σ= 
n= 

13.03 
1.50 

6 

175 
18.71 

9 

30.75 
1.21 
89 

78.88 
3.36 
90 

44.73 
2.37 
89 

87.00 
21.72 

84 

44.15 
3.48 
87 

Topaza pella microrhyncha 
x= 
σ= 
n= 

 
- 

 
- 

27.92 
0.97 

3 

76.92 
2.22 

3 

42.33 
2.09 

3 

78.45 
28.11 

3 

42.58 
3.32 

3 
 

 
*Significant difference (t-test; p<0.05) among subspecies for this variable. 

**Significant difference (t-test; p<0.01) among subspecies for this variable. 
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Table 10.  Morphometric measurements of  females of the five subspecies of Topaza, indicating statistically significant differences between them. 

 
 
 
 

Taxon 
 Body mass 

(g) 
Total length 

(mm) 
Bill length 

(mm) 
** 

Wing length  
(mm) 

** 

Rectrix 1 
(mm) 

* 

Rectrix 2 
(mm) 

** 

Rectrix 5 
(mm) 

Topaza pella amaruni 
x= 
σ= 
n= 

 
- 

 
- 

26.94 
2.02 

2 

72.82 
2.97 

2 

42.29 
1.16 

2 

50.03 
0.40 

2 

36.79 
5.40 

2 

Topaza pella pyra 
x= 
σ= 
n= 

11.00 
- 
1 

148 
- 
1 

28.96 
0.98 

4 

74.05 
2.71 

4 

44.82 
2.23 

4 

46.50 
2.89 

4 

36.13 
1.21 

3 

Topaza pella pamprepta 
x= 
σ= 
n= 

 
- 

 
- 

27.77 
- 
1 

68.89 
- 
1 

42.66 
- 
1 

45.79 
- 
1 

37.31 
- 
1 

Topaza pella pella 
x= 
σ= 
n= 

11.61 
0.92 

7 

139.67 
5.17 

9 

30.05 
1.19 
64 

73.01 
2.46 
64 

41.58 
1.76 
59 

42.87 
2.72 
58 

35.93 
2.79 
58 

Topaza pella microrhyncha 
x= 
σ= 
n= 

 
- 

 
- 

27.86 
0.28 

3 

68.36 
1.20 

3 

38.49 
.78 
3 

39.82 
1.93 

3 

32.38 
0.67 

2 
 
 

*Significant difference (t-test; p<0.05) among subspecies for this variable. 

**Significant difference (t-test; p<0.01) among subspecies for this variable. 
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Table 11.  Pearson correlation of the morphometric measurements of  Topaza males in relation to latitude and longitude. 
  ** Sig. (2-tailed) < 0.01,  * Sig. (2-tailed) < 0.05 
 
 

Topaza (males) 

 
Bill 

length 
(mm) 

Wing 
length 
(mm) 

Rectrix 1 
(mm) 

Rectrix 2 
(mm) 

Rectrix 5 
(mm) 

Latitude 
Pearson Correlation= 

n= 
.565** 

119 
-.009 
122 

-.254** 
118 

-.144 
114 

.023 
115 

Longitude 
Pearson Correlation= 

n= 
.336** 

119 
-.304** 

122 
-.546** 

118 
-.218* 

114 
-.267** 

115 
 
 
 
 
Table 12.  Pearson correlation of the morphometric measurements of Topaza females in relation to latitude and longitude. 
  ** Sig. (2-tailed) < 0.01,  * Sig. (2-tailed) < 0.05 
 
 

Topaza (females) 

 
Bill 

length 
(mm) 

Wing 
length 
(mm) 

Rectrix 1 
(mm) 

Rectrix 2 
(mm) 

Rectrix 5 
(mm) 

Latitude 
Pearson Correlation= 

n= 
.610** 

76 
.272* 

76 
.094 
71 

-.221 
70 

.170 
68 

Longitude 
Pearson Correlation= 

n= 
.217 
76 

-.271* 
76 

-.386** 
71 

-.530** 
70 

-.265* 
68 
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are more dispersed along a latitudinal range.  In fact, as additional observation, taking only the 

specimens in the range of these two subspecies there is a slight positive significant correlation 

of PC1 for morphological measurements (representing the size) of males (r2= 0.36, p<0.01) 

and of females (r2= 0.57, p<0.001) with latitude.  This correlation may explain the difficulty 

in finding a clear separation of groups in this area, as well as previous consideration of the 

subspecies T. pella smaragdula by some authors (Peters 1945, Hu et al. 2000).   

 

I am particularly interested in the correlation with longitude.  In males there is a significant 

correlation in all measurements, positive with regard to bill length and negative for the other 

four.  In females, the significant negative correlation is found in all measurements, except for 

bill length which shows no correlation.  In all cases the correlation is slight but significant 

which means a potential longitude clinal trend of these characters within the species.  These 

tendencies are shown in Figures 17 and 18.   

 

The results of the present study indicate that the variation between the two groups of 

subspecies within the genus Topaza seems to be insufficient to separate it in two species. The 

genus Topaza seems then monotypic, and includes five subspecies:  T. pella amaruni, T. pella 

pyra, T. pella pamprepta, T. pella pella, and T. pella microrhyncha. 
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Figures 17a, b, c, d, e.  Tendencies of morphometric measurements of Topaza males among subspecies ordered 
by longitude. 
 
a.       b. 
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Figures 18a, b, c, d, e.  Tendencies of morphometric measurements of Topaza females among subspecies 
ordered by longitude. 
 
a.       b. 
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Geographic variation and review of the taxonomy and phylogeny of the genus 
Anthracothorax BOIE, 1831 
 

Theoretical background 

 

The genus Anthracothorax is composed of mainly lowland, relatively large hummingbirds of 

about 7.5 g body mass (Plate 2).  They are mostly found in open habitats near water, from 

mangroves to cultivated areas depending on the species, from Mexico to Argentina.  A few 

species of Anthracothorax also occur on the Greater Antilles, where they are mainly found in 

habitats of primary vegetation from near the coast to the interior mountains (Schuchmann 

1980b).   

 

There are only a few distributional notes and descriptive papers on the habits of the group 

(Chapman 1928; Danforth 1928, 1929; Hellmayr 1929; Wetmore 1930, 1968; Bond 1936, 

1939; Street 1946; Wagner 1946; Zimmer 1950; Robertson 1962; Land 1963; Monroe 1968; 

Ruschi 1973; Munves 1975; Schuchmann 1980a; Wendelken & Martin 1989; Contreras 1992; 

Quesnel 1995; Pérez et al. 1998).  A few anatomical and physiological studies have been 

conducted on members of Anthracothorax (Craigie 1932, Hartman 1954, Hartman & Lessler 

1963, Prinzinger et al. 1981, Krüger et al. 1982, Schuchmann et al. 1983, Udvardy 1983, 

Prinzinger & Schuchmann 1985, Prinzinger et al. 1986, Schuchmann & Prinzinger 1987, 

Fritsch & Schuchmann 1988, Schuchmann 1996).   

 

Foraging behavior and sexual selection in a few species have also been investigated in relation 

to morphology (Kodric et al. 1984, Brown & Bowers 1985, Temeles & Roberts 1993, Colwell 

2000, Temeles et al. 2000).  Additionally, a few ecological and evolutionary studies have been 

made (Snow & Snow 1972; Schuchmann 1980d, c, 1987, 1991; Cotton 1998a, b, c).  

However, there is not much specific information on the systematics or phylogeny of the genus, 

making the results of this study the first quantitative analysis conducted on the taxon. 



 70 

The genus Anthracothorax replaces Lampornis Swainson, 1827 and is considered polytypic.  

It includes eight currently recognized species with their respective subspecies (Schuchmann 

1999): 

 

• Anthracothorax viridigula Boddaert, 1783 (Green-throated Mango) is found in 

northeastern Venezuela, Trinidad, the Guianas, and northern Brazil. 

• Anthracothorax prevostii, (Green-breasted Mango) includes five subspecies: 

o A. p. prevostii Lesson, 1832 is distributed in southern Mexico, Guatemala, 

Belize, and El Salvador. 

o A. p. gracilirostris Ridgway, 1910 occurs from El Salvador to Costa Rica. 

o A. p. hendersoni Cory, 1887 (includes pinchoti according to Peters 1945).  This 

taxon is found on the Caribbean islands of San Andres and Old Providence. 

o A. p. viridicordatus Cory, 1913 occurs in northeastern Colombia and northern 

Venezuela. 

o A. p. iridescens Gould, 1861 was previously treated as a subspecies of A. 

nigricollis (Peters 1945), and is found in western Colombia, southwestern 

Ecuador, and northwestern Peru. 

• Anthracothorax nigricollis Vieillot, 1817 (Black-throated Mango) occurs from western 

Panama to northeastern Argentina. 

• Anthracothorax veraguensis Reichenbach, 1855 (Veraguas Mango) is only found in 

Panama. 

• Anthracothorax dominicus (Antillean Mango) includes two subspecies: 

o A. d. dominicus Linnaeus, 1766 with its range in Hispaniola and nearby islands 

of Tortue, Gonave, Vache, and Beata. 

o A. d. aurulentus Audebert & Viellot, 1801 occurs in Puerto Rico and nearby 

islands of Culebra and Vieques, and the Virgin Islands (Saint Thomas, Saint 

John Anegada). 

• Anthracothorax viridis Audebert & Viellot, 1801 (Green Mango) is endemic to Puerto 

Rico. 

• Anthracothorax mango Linnaeus, 1758 (Jamaican Mango) is endemic to Jamaica. 
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• Anthracothorax recurvirostris Swainson, 1822 (Fiery-tailed Awlbill) was previously 

included in the monotypic genus Avocettula (but see Schuchmann 1999), found in 

southeastern Venezuela, the Guianas, northeastern Brazil, and eastern Ecuador. 

 

Sexual dimorphism in Anthracothorax and implications for the results  

 

Coloration in trochilids is mainly related to behavior and social system.  In general, two 

groups of color traits can be distinguished:  those that promote concealment and those 

enhancing conspicuousness (Schuchmann 1999).  The possession of one or the other will be 

greatly dependent on the social system of the species.  Hummingbirds are usually territorial (to 

protect foraging resources) and polygamous, in which some of them exhibit leks.  In these 

cases, the conspicuous colors of hummingbirds relate to sexual advertisement (Schuchmann 

1999) and consequently are subject to sexual selection.  Bright and iridescent colors on body 

areas such as throat, crest, or back play important intraspecific and interspecific roles as visual 

threat signals for territorial defense, self-advertisement during display, or species-specific 

recognition cues (Schuchmann 1999).  The majority of females, by contrast, exhibit a cryptic 

coloration that might be related to concealment from predators during nesting or other 

breeding-related activities that are usually carried out by females alone (Schuchmann 1999).  

Only females of a few hummingbird species hold temporally and spatially limited territories 

around localized food resources during the reproductive period. 

 

Most of the Anthracothorax species show sexual dimorphism.  The dimorphic species show a 

marked plumage coloration difference in which males show some ventral iridescence and have 

more colorful bodies than females.  Females show non-iridescent clear underparts (white, 

beige, or gray) with a central black stripe.  The exceptions to this rule are A. mango and A. 

viridis, which seem color monomorphic.  The mean color spectra of all body parts of the eight 

species are shown in the appendices (Appendices 19a, b, c, d and Appendices 20a, b, c, d).   

 

The color sexual dimorphism and similarity among females of this genus may explain why, in 

the following results, the main color differences and group discriminations are usually found 
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within males.  Differences in coloration within males can be considered important characters 

with evolutionary consequences, making the results obtained on the taxonomic analysis of the 

male color data sets relevant, even if the group differences are not very marked in the analyses 

of female data sets.   

 

Analysis of Anthracothorax at the species level 

 

General differences among Anthracothorax populations were determined by conducting a 

discriminant function analysis (DFA) for all species together.  This analysis also helps to find 

controversial groups within the taxon.  First, principal component analyses (PCA) were 

conducted on the data of all specimens of Anthracothorax by sex (Appendices 21 and 22).  

The first three PCs were taken to conduct the DFA.  The results show that the first two 

discriminant functions explain 83.8% of the variation in males (Table 13a), and 73.6% of the 

variation in females (Table 14a).  The graphs (Fig. 19 for males, Fig. 20 for females) indicate 

that Anthracothorax species are very overlapping in coloration, except for A. viridigula, A. 

dominicus, and A. veraguensis in males, and A. viridis and A. dominicus in females.  These 

species are separated along both first and second factors in each case. 

 

The effect of the third factor can only be observed in the discrimination tables since the graphs 

show only the interaction of the first two factors.  It is important to examine the discrimination 

results (Table 15 for males, Table 16 for females) as well as the graphs to extract the following 

preliminary conclusions:  There are only three species showing complete discrimination 

(100%):  A. viridis, A. mango, and A. recurvirostris.  Overlap is found mainly between A. 

prevostii and A. nigricollis.  There is also overlap between these two versus A. veraguensis 

and A. viridigula.  Contrary to the findings in the graphs, A. dominicus shows little overlap 

with A. nigricollis (males) and A. mango (females).  In general, the discrimination is less for 

females (89.2% of original grouped cases correctly classified) than for males (94.4% of 

original grouped cases correctly classified).  Thus, accepting potential identification errors, 

these results might be interpreted as “females showing greater color homogeneity than males.”  
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Table 13a. (above).  Eigenvalues table showing cumulative percentages of the variance explained by each 
function;  b. (below). SCDFC table for the DFA conducted on males of all the species of the genus 
Anthracothorax. 

Standardized Canonical Discriminant Function Coefficients

-,022 -,056 ,198 ,049 -,017 ,259 -,132
,195 ,032 ,113 ,376 ,017 -,107 -,308

-,013 ,036 ,164 ,198 ,006 ,161 ,232
-,093 -,011 -,107 -,084 ,099 ,153 ,256
-,232 -,223 -,235 -,165 -,122 -,154 ,265
-,023 -,142 -,222 ,101 ,068 -,156 ,159
,039 ,005 ,007 ,096 ,013 -,033 -,037

-,096 -,170 -,598 ,250 ,606 ,342 ,464
,144 ,251 ,539 -,185 -,615 -,247 -,247
,182 ,089 ,042 ,117 -,075 ,314 -,100
,612 ,233 ,125 ,088 -,570 ,086 -,873
,276 ,063 ,269 ,051 -,083 -,035 -,154

-,026 -,017 ,152 ,201 ,001 ,078 -,042
-,273 -,080 -,275 -,163 ,854 ,318 ,552
-,152 ,019 ,087 ,015 ,336 -,246 -,078
-,100 -,048 -,060 ,029 ,112 ,101 ,040
,039 -,085 -,200 -,402 -,147 1,079 -,664
,133 ,022 ,056 ,173 -,115 ,193 ,016
,819 -,926 ,134 -,327 ,335 ,036 ,022
,360 ,714 ,007 -,390 ,612 ,152 ,043
,732 -,081 ,181 ,069 ,766 ,148 -,402
,477 ,530 -,265 ,582 -,303 -,495 ,183

-,672 -,034 ,000 -,119 ,930 -,500 ,190
-1,213 -,397 -,697 -,039 ,651 -1,241 1,153
-,127 ,179 ,654 -,102 ,052 ,155 -,505
,029 ,578 ,338 ,333 ,109 -,209 -,486

-,042 ,160 ,622 -,276 ,117 ,020 -,516
-,066 ,045 ,315 -,101 ,005 -,090 ,012
-,252 ,217 -,858 -1,325 -,187 1,843 -,226
-,030 ,028 ,177 -,375 ,167 ,124 -,126
,139 ,032 ,064 -,091 -,132 -,641 ,305
,282 ,018 ,327 -,179 -,621 -1,321 1,040
,163 -,031 ,044 ,034 -,193 -,640 ,495
,055 -,097 ,145 -,085 ,022 ,021 ,057
,032 -,114 ,267 -,321 -,124 -,288 ,833
,046 -,117 ,202 ,170 ,000 -,093 ,455
,534 -,122 ,022 ,465 ,426 ,658 -,371
,517 -,281 -,147 ,668 ,702 ,242 ,033
,391 -,051 ,144 ,417 ,423 ,301 -,128
,028 ,090 ,106 ,006 ,056 -,087 ,178
,044 ,041 -,102 -,170 -,165 ,006 -,130
,186 -,046 ,215 -,252 ,000 -,200 ,137
,064 -,017 -,021 ,056 ,076 ,021 ,056
,112 ,061 ,200 ,053 -,176 ,065 -,220
,079 ,020 ,094 ,109 -,149 -,354 -,158

-,083 ,098 ,023 -,134 -,138 -,084 -,161
,004 ,067 ,044 ,256 ,104 ,176 ,003

-,260 -,245 ,207 ,561 -,124 ,166 -,038
,013 ,024 ,107 -,225 -,323 ,388 ,414

-,112 -,091 -,174 -,033 ,192 ,082 ,170
-,150 -,165 -,466 ,404 ,926 -,591 -1,406
-,046 ,134 ,170 ,088 -,177 ,142 ,076
,617 ,020 ,013 -,076 -,935 ,452 ,339

-,040 -,069 -,354 -,095 ,221 -,172 -,148

FAC1_1
FAC2_1
FAC3_1
FAC1_2
FAC2_2
FAC3_2
FAC1_3
FAC2_3
FAC3_3
FAC1_4
FAC2_4
FAC3_4
FAC1_5
FAC2_5
FAC3_5
FAC1_6
FAC2_6
FAC3_6
FAC1_12
FAC2_12
FAC3_12
FAC1_14
FAC2_14
FAC3_14
FAC1_17
FAC2_17
FAC3_17
FAC1_20
FAC2_20
FAC3_20
FAC1_26
FAC2_26
FAC3_26
FAC1_29
FAC2_29
FAC3_29
FAC1_30
FAC2_30
FAC3_30
FAC1_32
FAC2_32
FAC3_32
FAC1_33
FAC2_33
FAC3_33
FAC1_34
FAC2_34
FAC3_34
FAC1_39
FAC2_39
FAC3_39
FAC1_40
FAC2_40
FAC3_40

1 2 3 4 5 6 7
Function

Eigenvalues

12,046a 51,9 51,9 ,961
7,431a 32,0 83,8 ,939
2,112a 9,1 92,9 ,824
,804a 3,5 96,4 ,668
,570a 2,5 98,8 ,603
,154a ,7 99,5 ,365
,116a ,5 100,0 ,322

Function
1
2
3
4
5
6
7

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 7 canonical discriminant functions were used in the
analysis.

a. 
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Table 14. a (above).  Eigenvalues table showing cumulative percentages of the variance explained by each 
function.  b (below). SCDFC table for the DFA conducted on females of all the species of the genus 
Anthracothorax. 

 
 

Standardized Canonical Discriminant Function Coefficients

,156 -,007 ,222 -,115 -,160 ,041 -,122
-,162 ,047 ,494 ,362 -,146 -,359 ,484
,031 ,125 ,373 -,286 ,118 -,279 -,330

-,223 -,018 -,279 -,018 ,112 ,063 -,104
,395 -,210 -,779 ,258 ,145 -,303 -,175

-,006 ,131 ,185 ,134 ,135 ,344 ,071
,178 ,080 ,029 ,171 ,213 ,185 ,000

-,093 ,227 -,017 -,552 -,264 ,483 ,736
-,022 ,300 ,077 -,470 -,041 ,302 ,487
,007 -,070 ,080 -,053 -,062 -,188 ,395

-,312 -,233 ,771 ,197 -,114 -,515 1,193
,060 ,030 ,246 ,112 -,029 -,318 ,558

-,109 -,027 -,058 ,094 ,070 ,486 ,033
,136 -,003 -,674 ,248 ,605 ,186 -,125
,139 ,058 -,059 -,008 -,010 ,084 -,107

-,072 -,126 ,229 -,075 -,187 ,059 -,509
-,130 ,321 -,457 -,344 -,762 -,580 -,952
-,156 ,020 ,125 -,143 -,269 -,085 -,345
,787 ,010 -,071 ,272 -,091 ,175 ,016

-,411 ,132 -,247 -,565 ,338 -,166 ,491
,076 ,863 ,217 ,205 ,215 ,115 ,077

-,475 -,099 ,201 ,110 ,044 ,154 ,072
,516 ,143 -,535 -,087 -,207 -,070 -,054

-,020 ,040 -,701 -,400 ,229 -,311 -,651
,642 ,442 -,022 -,093 ,059 -,488 -,337

-,241 1,128 ,199 ,954 -1,440 ,068 -,419
,468 ,712 ,131 ,274 -,582 -,585 -,007

-,146 -,217 ,098 ,130 -,148 -,267 ,153
,255 -,551 ,108 -,357 ,158 ,363 -,170
,062 -,547 ,119 -,100 -,066 ,618 ,360
,096 -,067 -,008 -,146 -,032 ,209 -,076

-,050 ,199 ,018 -,056 ,975 ,169 ,184
,119 ,049 ,077 ,000 ,502 ,804 ,160

-,002 -,015 ,088 ,104 ,091 -,157 -,021
,142 -,085 -,124 ,131 ,042 ,189 -,061

-,122 -,200 ,046 ,345 ,268 -,118 -,191
,074 -,063 ,157 -,149 -,199 -,021 ,422
,179 ,187 -,270 ,170 ,143 -,423 ,368
,037 -,209 ,005 -,234 ,086 -,494 ,159
,002 -,196 ,091 ,303 ,045 ,094 -,002

-,085 ,005 ,077 ,082 -,134 ,277 ,038
,277 ,032 ,149 ,155 -,214 ,292 -,144
,182 ,069 ,007 ,062 -,012 -,156 ,027

-,733 ,162 ,459 -,084 -,121 -,361 -,694
-,168 ,174 ,088 ,341 -,285 -,096 -,207
-,091 -,033 ,220 -,468 ,086 ,021 ,148
-,300 ,032 ,837 -,527 ,178 -,301 ,752
,118 -,033 ,119 ,032 ,131 ,035 ,158
,041 -,503 -,253 -,159 ,398 ,516 -,541
,221 -,828 -,473 ,176 ,244 1,028 -1,081
,011 -,370 -,048 -,280 ,208 ,353 -,048
,153 -,184 ,111 ,121 -,006 -,097 ,011
,215 -,347 ,013 -,149 -,491 ,331 ,083

-,150 ,398 -,258 -,003 -,250 -,226 -,001
,055 -,050 -,234 -,135 ,176 -,136 ,022
,048 ,134 ,300 -,240 ,110 -,207 ,222
,050 ,058 -,064 ,262 ,170 ,037 ,073

-,066 -,239 ,138 -,367 ,120 ,076 ,344
-,117 ,094 ,190 ,387 -,229 -,195 -,247
,108 -,090 ,294 ,584 ,263 -,421 -,169

FAC1_1
FAC2_1
FAC3_1
FAC1_2
FAC2_2
FAC3_2
FAC1_3
FAC2_3
FAC3_3
FAC1_4
FAC2_4
FAC3_4
FAC1_5
FAC2_5
FAC3_5
FAC1_6
FAC2_6
FAC3_6
FAC1_12
FAC2_12
FAC3_12
FAC1_13
FAC2_13
FAC3_13
FAC1_14
FAC2_14
FAC3_14
FAC1_15
FAC2_15
FAC3_15
FAC1_17
FAC2_17
FAC3_17
FAC1_18
FAC2_18
FAC3_18
FAC1_20
FAC2_20
FAC3_20
FAC1_21
FAC2_21
FAC3_21
FAC1_26
FAC2_26
FAC3_26
FAC1_29
FAC2_29
FAC3_29
FAC1_30
FAC2_30
FAC3_30
FAC1_32
FAC2_32
FAC3_32
FAC1_33
FAC2_33
FAC3_33
FAC1_39
FAC2_39
FAC3_39

1 2 3 4 5 6 7
Function

Eigenvalues

8,999a 55,1 55,1 ,949
3,019a 18,5 73,6 ,867
1,681a 10,3 83,9 ,792
1,080a 6,6 90,5 ,721

,651a 4,0 94,5 ,628
,542a 3,3 97,8 ,593
,362a 2,2 100,0 ,516

Function
1
2
3
4
5
6
7

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 7 canonical discriminant functions were used in the
analysis.

a. 
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Fig. 19.  Results of the DFA conducted on the color data of males of all Anthracothorax species. 

 
 
 
 
 
Fig. 20.  Results of the DFA conducted on the color data of females of all Anthracothorax species. 
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Table 15.  Classification results of the DFA conducted on the color data of males of the genus 
Anthracothorax. 
 
 

Predicted Group Membership (%) SPECIES 
A. 

viridigula 
A. 

prevostii 
A. 

nigricollis 
A. 

veraguensis 
A. 

dominicus 
A. 

viridis 
A. 

mango 
A. 

recurvirostris 

A. viridigula 95.7  0 0 4.3 0 0 0 0 

A. prevostii 0 86.2 12.3 0  0 0 1.4 0 

A. nigricollis 0 1.2 98.0 0 0 0 0 0 

A. veraguensis 0 14.3 0 85.7 0 0 0 0 

A. dominicus 0 0 2.9 0 97.1 0 0 0 

A. viridis 0 0 0 0 0 100.0 0 0 

A. mango 0  0 0 0 0 0 100.0 0 

A.recurvirostris 0  0  0 0 0 0 0 100.0 

94.4% of original grouped cases correctly classified 
 
 
 
 
 
Table 16.  Classification results of the DFA conducted on the color data of females of the genus 
Anthracothorax. 
 
 

Predicted Group Membership (%) SPECIES 
A. 

viridigula 
A. 

prevostii 
A. 

nigricollis 
A. 

veraguensis 
A. 

dominicus 
A. 

viridis 
A. 

mango 
A. 

recurvirostris 

A. viridigula 76.9 7.7 7.7 0 0 7.7 0 0 

A. prevostii 8.8 82.5 8.8 0  0 0 0 0 

A. nigricollis 5.1 6.0 88.9 0 0 0 0 0 

A. veraguensis 0 33.3 0 66.7 0 0 0 0 

A. dominicus 0 0 0 0 97.9 0 2.1 0 

A. viridis 0 0 0 0 0 100.0 0 0 

A. mango 0  0 0 0 0 0 100.0 0 

A.recurvirostris 0  0  0 0 0 0 0 100.0 

89.2% of original grouped cases correctly classified 
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According to the standardized canonical discriminant function coefficients (SCDFC) obtained 

after the DFA, for males (Table 13b) the body parts making the most contribution to the 

overall discrimination (first three functions explain 92.9% of the variance) are the ventral 

areas of the gorget (Fac1_12, Fac2_12, Fac3_12), low throat (Fac1_14, Fac2_14, Fac3_14), 

and breast (Fac1_17, Fac2_17, Fac3_1).  Additionally, the color of the secondary feathers and 

the tip of the fifth rectrices contribute to this difference (Appendix 23).  For females the 

differences are more dispersed along the body (Table 14b), in which the first three functions 

explain 83.9 % of the overall coloration variance.  Both the ventral (Fac1, Fac2 and Fac3 for 

codes 12, 13, 14, and 15) and dorsal sections of the body (Fac2 for codes 1, 2, 4, 5) contribute 

to the variance (Appendix 24).   

   

The analysis of the genus at the species level shows considerable overlap among some of the 

species.  This result, in addition to a revision in the literature (Peters 1945, Schuchmann 1999, 

Dickinson 2003) indicate potential inadequacies in the current taxonomy of the group, and the 

need for a more detailed revision of the species.  This will be done and discussed in the 

following sections. 

  

Anthracothorax recurvirostris 

 

The Fiery-tailed Awlbill or Swainson’s Hummingbird occurs in southeastern Venezuela 

(Bolivar State) and the Guianas to north-central Brazil (lower Amazon east to Marañao and 

Piaui).  It is said to also inhabit eastern Ecuador on the Napo River, but no specimen from this 

area was found in any of the collections visited.  It ranges in lowlands from sea level to 500 

m.a.s.l. in open savanna-like vegetation near granite outcrops within primary forests, or 

sometimes at edges of low secondary vegetation near rivers (Schuchmann 1999).   

 

This Anthracothorax species has usually been placed within the monospecific genus 

Avocettula (Peters 1945) mainly due to the remarkable bill shape.  Schuchmann (1999) has 

pointed out that other morphological characters, as well as behavior and nest structure, support 

the positioning of this group within the genus Anthracothorax.  Furthermore, the results from 
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the previous section show on the basis of plumage coloration it is not possible to separate the 

“recurvirostris” group from the other Anthracothorax species.  Figures 19 (males) and 20 

(females) show complete overlap of this group with the other species of Anthracothorax, 

which indicates that they belong to the same genus. 

 

Controversies in populations of Anthracothorax nigricollis and Anthracothorax 

prevostii   

 

The Black-throated Mango, Anthracothorax nigricollis is the most widely distributed species 

of this genus, being the only one occurring in both Central and South America.  It inhabits the 

lowlands up to 1000 m from eastern Panama and Colombia to Venezuela, Trinidad, and 

Tobago, to the south reaching Paraguay and Argentina (Schuchmann 1999).  Although widely 

distributed, they are not common in their range.  They occur in tropical rainforests, but can 

also be observed in plantations, gardens, and parks where they prefer flowers found at about 

15 m height (Schuchmann 1980a).  The Green-breasted Mango Anthracothorax prevostii 

occurs in Central America and also a few Caribbean islands such as Old Providence and San 

Andres.  It inhabits mostly lowlands (900-1200 m) in tall second growth, or borders of gallery 

forests and mangroves and it can be found in savannas, pastures, parks, and some plantations, 

such as coffee (shaded) (Schuchmann 1999).   

 

These two species are the most widely distributed of all Anthracothorax.  They are 

occasionally regarded as conspecifics and seem to form a superspecies with A. veraguensis, 

and probably also with A. viridigula (Schuchmann 1999).  A. nigricollis and A. prevostii 

replace each other geographically and show some overlap in northern Venezuela.  A. 

nigricollis is considered a monotypic species (Schuchmann 1999, Dickinson 2003);  however, 

according to Peters (1945), A. nigricollis includes two subspecies:  A. n. nigricollis, and A. n. 

iridescens (Fig. 21).  Schuchmann (1999), includes the subspecies “iridescens” in A. prevostii 

(Fig. 22) but states that the systematic position of these populations is still a matter of opinion. 
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The identification of data collected from museum specimens reflected this controversy, and 

two groups of “iridescens” appear, one as part of A. nigricollis and the other as part of A. 

prevostii.  In order to elucidate these differences I conducted a plumage color analysis for the 

specimens of the two species together and made a separate more detailed analysis. 

 

 

 

 

 

 

 

 
Fig. 21. Subspecies of Anthracothorax nigricollis according to Peters (1945) (Schuchmann 1999 considers this 
species as monotypic). 
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Fig. 22.  Subspecies of Anthracothorax prevostii according to Schuchmann (1999) (above), and to Peters (1945) 
(below) giving special attention to the subspecies “iridescens.”  
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Elucidating the difference:   

 

I conducted a plumage color analysis by sex.  I performed a PCA for each body part of all 

specimens of both species together.  Then the PC scores were taken to conduct a DFA 

(Appendix 25 for males and 26 for females).  The groups analyzed by the DFA are the species 

and subspecies considered by both Schuchmann (1999) and Peters (1945), identifying and 

separating those controversial taxa between the two authors (Fig. 21 and Fig. 22).  

Additionally, I considered two separate groups of “iridescens”, one belonging to A. nigricollis 

and the other to A. prevostii, as they were labeled in the ornithological collections, to better 

determine the correct taxonomic position of these populations.   

 

I show the results in Fig. 23 (males) and Fig. 24 (females), where the filled symbols indicate 

the subspecies of A. prevostii and the open symbols A. nigricollis, including the two groups of 

“iridescens” whose centroids are closer to the other subspecies of A. nigricollis.   The first two 

functions explain 75.5% of the variation in males (Table 17) and 59.1% in females (Table 18). 

 

The distribution of individuals from the two “iridescens” populations (open squares and 

triangles) falls within the distribution of  A. nigricollis (open symbols) and not of A. prevostii 

(filled symbols), indicating that the populations of Anthracothorax occurring west of the 

Andes in Ecuador and southern Colombia, “iridescens”, are part of A. nigricollis, as stated by 

Peters (1945).  Consequently, all specimens from these populations will be considered A. 

nigricollis iridescens for further analysis.   

 

I conducted a second DFA to determine which variables (parts of the body) are most relevant 

to differentiate between these two species:  A. nigricollis and A. prevostii.  Only one factor for 

each sex was sufficient to explain the differences and extract the important variables (Tables 

19 and 20).  According to the SCDFC (Table 19), the variables that explain most of the 

variation between both species in males are low throat (Fac1_14, Fac2_14) and color of the 

lateral iridescence of the breast (Fac2_21), undertail coverts (Fac2_26), and r5 (Fac3_39). In 

females (Table 20), the ventral areas of neck (Fac2_2), shoulder (Fac2_3 and Fac3_3), gorget 
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(Fac2_12), and low throat (Fac_14) are significant, in addition to the color of the wing coverts 

(Fac2_29).  

 

 
Fig. 23.  Results of the DFA conducted on the color data of males of A. nigricollis and A. prevostii separated by 
subspecies. (*) sensu Peters 1945. (**) sensu Schuchmann 1999. 
 
 

 
 
 
 
Table 17.  Eigenvalues and percentages of variance found after the DFA conducted on the color data of males 
from A. nigricollis and A. prevostii separated by subspecies. 

Males 

Function 1 

8 6 4 2 0 -2 -4 -6 

Fu
nc

tio
n 

2 
6 

4 

2 

0 

-2 

-4 

-6 

Group Centroids 

A. n. iridescens (*) 

A. nigricollis (**) 

A. p. iridescens(**) 

A. p. pinchoti (*) 

A. p. viridicordatus 

A. p. hendersoni 

A. p. gracilirostris 

A. p. prevostii 

 Eigenvalues 

5,673 a 66,8 66,8 ,922 
,732 a 8,6 75,5 ,650 
,642 a 7,6 83,0 ,625 
,569 a 6,7 89,7 ,602 
,368 a 4,3 94,1 ,519 
,307 a 3,6 97,7 ,485 
,194 a 2,3 100,0 ,403 

Function 
1 
2 
3 
4 
5 
6 
7 

Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

First seven canonical discriminant functions were 
d i thanalysis

a.  
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Fig. 24.  Results of the DFA conducted on the color data of females of A. nigricollis and A. prevostii separated by 
subspecies.  (*) sensu Peters 1945.  (**) sensu Schuchmann 1999. 
 
 

 
 
 
 
 
Table 18.  Eigenvalues and percentages of variance found after the DFA conducted on the color data of females 
from A. nigricollis and A. prevostii separated by subspecies. 
 
 
 
 

 Eigenvalues 

2,009 a 43,3 43,3 ,817 
,730 a 15,7 59,1 ,649 
,587 a 12,7 71,7 ,608 
,422 a 9,1 80,8 ,545 
,414 a 8,9 89,8 ,541 
,257 a 5,5 95,3 ,452 
,217 a 4,7 100,0 ,423 

Function 
1 
2 
3 
4 
5 
6 
7 

Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

First seven canonical discriminant functions were 
d i thanalysis

a.  

Females 

Function 1

4 2 0 -2 -4 -6 

Fu
nc

tio
n 

2 

4 

2 

0 

-2 

-4 

-6 

-8 

Group Centroids 

Ungrouped Cases 

A. n. iridescens (*) 

A. nigricollis (**) 

A. p. iridescens(**) 

A. p. pinchoti (*) 

A. p. viridicordatus 

A. p. hendersoni 

A. p. gracilirostris 

A. p. prevostii 
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Table 19.  Eigenvalues, percentages of variance and SCDFC table for the DFA conducted on males of A. 
nigricollis and A. prevostii to extract the relevant variables that explain differences between groups. 
 

 Eigenvalues 

3,66 a 100, 100, ,88
Function 
1 

Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

First canonical discriminant function was used in the analysis a.  
 

,208 
,082 
,058 

-,114 
,140 

-,150 
,056 

-,257 
,304 
,149 
,183 
,411 
,050 

-,283 
,013 
,019 

-,259 
-,017 
,012 
,198 
,064 
,120 

-,439 
,273 

-,551 
-,971 
-,341 
-,404 
-,003 
,207 
,361 

-,052 
,106 

-,058 
,294 
,114 
,340 

-,237 
,212 
,072 

-,835 
-,148 
,256 
,541 

-,194 
,329 
,474 
,392 
,315 
,152 
,168 
,123 

-,117 
-,135 
,080 

-,006 
,126 
,005 

-,008 
-,134 
,186 

-,325 
-,536 
,069 
,130 

-,349 

FAC1_1 
FAC2_1 
FAC3_1 
FAC1_2 
FAC2_2 
FAC3_2 
FAC1_3 
FAC2_3 
FAC3_3 
FAC1_4 
FAC2_4 
FAC3_4 
FAC1_5 
FAC2_5 
FAC3_5 
FAC1_6 
FAC2_6 
FAC3_6 
FAC1_12 
FAC2_12 
FAC3_12 
FAC1_13 
FAC2_13 
FAC3_13 
FAC1_14 
FAC2_14 
FAC3_14 
FAC1_15 
FAC2_15 
FAC3_15 
FAC1_17 
FAC2_17 
FAC3_17 
FAC1_18 
FAC2_18 
FAC3_18 
FAC1_20 
FAC2_20 
FAC3_20 
FAC1_21 
FAC2_21 
FAC3_21 
FAC1_26 
FAC2_26 
FAC3_26 
FAC1_29 
FAC2_29 
FAC3_29 
FAC1_30 
FAC2_30 
FAC3_30 
FAC1_32 
FAC2_32 
FAC3_32 
FAC1_33 
FAC2_33 
FAC3_33 
FAC1_34 
FAC2_34 
FAC3_34 
FAC1_39 
FAC2_39 
FAC3_39 
FAC1_40 
FAC2_40 
FAC3_40 

1 Function 
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Table 20.  Eigenvalues, percentages of variance and SCDFC table for the DFA conducted on females of A. 
nigricollis and A. prevostii to extract the relevant variables that explain differences between groups. 
 

 Eigenvalues 

3,66 a 100, 100, ,88
Function 
1 

Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

First canonical discriminant function was used in the analysis a.  
 

,208 
,082 
,058 

-,114 
,140 

-,150 
,056 

-,257 
,304 
,149 
,183 
,411 
,050 

-,283 
,013 
,019 

-,259 
-,017 
,012 
,198 
,064 
,120 

-,439 
,273 

-,551 
-,971 
-,341 
-,404 
-,003 
,207 
,361 

-,052 
,106 

-,058 
,294 
,114 
,340 

-,237 
,212 
,072 

-,835 
-,148 
,256 
,541 

-,194 
,329 
,474 
,392 
,315 
,152 
,168 
,123 

-,117 
-,135 
,080 

-,006 
,126 
,005 

-,008 
-,134 
,186 

-,325 
-,536 
,069 
,130 

-,349 

FAC1_1 
FAC2_1 
FAC3_1 
FAC1_2 
FAC2_2 
FAC3_2 
FAC1_3 
FAC2_3 
FAC3_3 
FAC1_4 
FAC2_4 
FAC3_4 
FAC1_5 
FAC2_5 
FAC3_5 
FAC1_6 
FAC2_6 
FAC3_6 
FAC1_12 
FAC2_12 
FAC3_12 
FAC1_13 
FAC2_13 
FAC3_13 
FAC1_14 
FAC2_14 
FAC3_14 
FAC1_15 
FAC2_15 
FAC3_15 
FAC1_17 
FAC2_17 
FAC3_17 
FAC1_18 
FAC2_18 
FAC3_18 
FAC1_20 
FAC2_20 
FAC3_20 
FAC1_21 
FAC2_21 
FAC3_21 
FAC1_26 
FAC2_26 
FAC3_26 
FAC1_29 
FAC2_29 
FAC3_29 
FAC1_30 
FAC2_30 
FAC3_30 
FAC1_32 
FAC2_32 
FAC3_32 
FAC1_33 
FAC2_33 
FAC3_33 
FAC1_34 
FAC2_34 
FAC3_34 
FAC1_39 
FAC2_39 
FAC3_39 
FAC1_40 
FAC2_40 
FAC3_40 

1 Function 
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Anthracothorax nigricollis 

 

In order to perform a more specific taxonomic analysis, I divided the entire A. nigricollis 

group into pools following the criteria explained in the Methodology section (see Fig. 2).  A 

total of 21 pools resulted from this division and they are shown in Figure 25.  Plumage color 

data from specimens previously considered as A. prevostii “iridescens” were added to the A. 

nigricollis data set.  A PCA was conducted and the first three factors (PCs) were extracted (see 

Appendix 27 for males and Appendix 28 for females).  A DFA was performed taking the 21 

defined pools.   

 
 

 
 
Fig. 25.  Pools of Anthracothorax nigricollis used to conduct taxonomic analysis on the species.  The figure 
shows 21 numbered pools.  
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Table 21.  Eigenvalues and percentages of variance found after the DFA conducted on the color data of males 
from the 21 pools of A. nigricollis. 

 
Table 22.  Eigenvalues and percentages of variance found after the DFA conducted on the color data of females 
from the 21 pools of A. nigricollis. 
 

Eigenvalues

3,669a 22,4 22,4 ,886
2,987a 18,3 40,7 ,866
1,799a 11,0 51,7 ,802
1,324a 8,1 59,8 ,755
,950a 5,8 65,6 ,698
,757a 4,6 70,2 ,657
,705a 4,3 74,5 ,643
,621a 3,8 78,3 ,619
,567a 3,5 81,8 ,602
,492a 3,0 84,8 ,574
,450a 2,7 87,6 ,557
,413a 2,5 90,1 ,540
,300a 1,8 91,9 ,480
,286a 1,7 93,7 ,472
,259a 1,6 95,2 ,453
,225a 1,4 96,6 ,428
,201a 1,2 97,8 ,409
,157a 1,0 98,8 ,368
,126a ,8 99,6 ,335
,070a ,4 100,0 ,255

Function
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 20 canonical discriminant functions were used in the
analysis.

a. 

Eigenvalues

5,169a 20,6 20,6 ,915
3,156a 12,6 33,2 ,871
2,625a 10,5 43,7 ,851
2,209a 8,8 52,5 ,830
2,072a 8,3 60,8 ,821
1,624a 6,5 67,3 ,787
1,301a 5,2 72,4 ,752
1,175a 4,7 77,1 ,735
1,040a 4,1 81,3 ,714

,900a 3,6 84,9 ,688
,724a 2,9 87,8 ,648
,689a 2,8 90,5 ,639
,456a 1,8 92,3 ,560
,414a 1,7 94,0 ,541
,372a 1,5 95,5 ,521
,323a 1,3 96,8 ,494
,272a 1,1 97,8 ,462
,204a ,8 98,7 ,411
,189a ,8 99,4 ,399
,147a ,6 100,0 ,358

Function
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 20 canonical discriminant functions were used in the
analysis.

a. 
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The first two discriminant functions explained only 40.7% of the variance in males (Table 21) 

and 33.2% in females (Table 22).  This low percentage could be due to the number of pools 

represented in the analysis and to the fact that the color differences in this case are not that 

specifically strong or marked; however, these results show the pools ordering themselves in 

three geographically separated groups.  The graph obtained by using only these first two 

factors as coordinates makes a good separation of the pool centroids, showing three clear 

clouds in the case of males (Fig. 26) that represent three main groups:  A. nigricollis 

iridescens, A. nigricollis nigricollis, and a potential new subspecies that will be preliminarily 

called A. nigricollis “new subspecies.”  Although each pool is represented by a different 

symbol, a gradation of grays is used to facilitate the interpretation and differentiation of the 

three groups.  The centroids with numbers are also shown to identify each pool.  The filled 

symbols correspond to A. nigricollis iridescens, the open symbols indicate groups of A. 

nigricollis nigricollis, and the gray symbols constitute the potential new subspecies within A. 

nigricollis (all from Venezuela and adjacent areas).    

 

In the analysis of the females (Fig. 27), the pools of A. n. iridescens overlap with those of the 

“new subspecies”; however, they are both apart from A. n. nigricollis.  This may be due to the 

similarity among females of this genus already discussed.  Nevertheless, the separation of 

pools of the Venezuelan area from the rest is also clear in females.  The results of this analysis 

support the existence of a differentiated group within A. nigricollis, geographically distributed 

in the area of Venezuela, northernmost tip of Brazil, and eastern Colombia.  The potential new 

subspecies of A. nigricollis  is represented in Figure 28. 

 

A second DFA was conducted for males and females, taking into account only the three 

described groups in order to determine the parts of the body that account for most of the color 

difference among them.  The first two functions are enough to explain 100% of the variation 

in both sexes (Tables 23 and 24).  The SCDFC table obtained for males (Table 23) indicates 

that the colors of the gorget (Fac1_12 and Fac2_12), and of the breast are the most significant.  

In females the differences are found in dispersed areas of the body, such as undertail coverts 
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(Fac2_26), shoulders (Fac2_3 and Fac3_3), gorgets (Fac2_12), secondary feathers (Fac1_30 

and Fac2_30), and wings coverts (Fac2_29 and Fac_3_29) (Table 24). 

 

Graphs showing plumage color differences on each body part of members of the three final 

groups are presented in Appendix 29 (males) and Appendix 30 (females).  In addition to the 

color variation there are also differences in some of the morphometric measurements of the 

body (Table 25 for males, 26 for females).  According to ANOVAS and LSD post hoc tests 

(Appendix 31 for males, 32 for females) both sexes of the subspecies A. n. iridescens are 

significantly larger than those of the other two subspecies.  This relationship is found in all 

measurements except wing length, which shows no significant difference among the three 

groups.  With regard to the “new subspecies” the main difference is found in the bill length of 

both sexes, which is medium compared with the other two subspecies.  Rectrix 2 in this group 

is also significantly smaller than in the others. 
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Fig. 26.  Results of the DFA conducted on the color data of males of Anthracothorax nigricollis showing three 
separate groups:  A. nigricollis nigricollis (open symbols), A. n. iridescens (black symbols), and A. n. “new 
subspecies” (gray symbols). 

 
Fig. 27.  Results of the DFA conducted on the color data of females of Anthracothorax nigricollis showing A. n. 
“new subspecies” (gray symbols) separated from  A. nigricollis nigricollis (open symbols). 
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Fig. 28.  Proposed subspecies of Anthracothorax nigricollis as a result of the analysis:  A. nigricollis nigricollis, 
A. nigricollis iridescens, and A. nigricollis “new subspecies”. 
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Table 23.  Eigenvalues, percentages of variance and SCDFC table for the DFA conducted on males of A. 
nigricollis to extract the relevant variables that explain differences between subspecies. 

Eigenvalues

2,727a 55,7 55,7 ,855
2,171a 44,3 100,0 ,827

Function
1
2

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 2 canonical discriminant functions were used in the
analysis.

a. 

 

-,060 ,046 
-,003 -,072 
-,288 -,122 
-,059 ,021 
,202 ,172 

-,152 -,066 
-,021 ,355 
,161 -,203 

-,297 ,585 
-,202 -,166 
-,089 -,486 
-,096 -,220 
,395 -,188 
,745 -,341 
,573 -,113 

-,227 -,002 
-,373 ,420 
,144 ,022 

1,544 -,508 
1,269 -,495 

,168 ,295 
-,107 ,464 
-,050 -,096 
,147 ,772 
,210 ,261 

-,564 ,575 
,077 ,119 
,491 ,409 

-,402 -,618 
-,157 -,228 
-,177 ,232 
-,230 1,549 
-,034 -,253 
-,423 -,059 
-,218 -,646 
,053 -,470 

-,081 -1,067 
-,040 -1,644 
-,040 ,206 
-,090 -,420 
,659 ,579 
,174 ,210 

-,181 ,126 
-,362 ,676 
-,105 ,132 
-,240 ,214 
,621 ,148 

-,101 -,206 
,213 ,572 

-,107 ,251 
,041 ,316 
,113 -,013 
,125 -,283 

-,092 ,197 
-,046 ,156 
,376 ,068 
,070 -,050 
,180 -,020 
,239 -,016 
,166 -,348 

-,150 -,204 
-,010 ,367 
,010 ,180 

-,104 ,183 
,115 -,037 

-,038 -,126 

FAC1_1 
FAC2_1 
FAC3_1 
FAC1_2 
FAC2_2 
FAC3_2 
FAC1_3 
FAC2_3 
FAC3_3 
FAC1_4 
FAC2_4 
FAC3_4 
FAC1_5 
FAC2_5 
FAC3_5 
FAC1_6 
FAC2_6 
FAC3_6 
FAC1_12 
FAC2_12 
FAC3_12 
FAC1_13 
FAC2_13 
FAC3_13 
FAC1_14 
FAC2_14 
FAC3_14 
FAC1_15 
FAC2_15 
FAC3_15 
FAC1_17 
FAC2_17 
FAC3_17 
FAC1_18 
FAC2_18 
FAC3_18 
FAC1_20 
FAC2_20 
FAC3_20 
FAC1_21 
FAC2_21 
FAC3_21 
FAC1_26 
FAC2_26 
FAC3_26 
FAC1_29 
FAC2_29 
FAC3_29 
FAC1_30 
FAC2_30 
FAC3_30 
FAC1_32 
FAC2_32 
FAC3_32 
FAC1_33 
FAC2_33 
FAC3_33 
FAC1_34 
FAC2_34 
FAC3_34 
FAC1_39 
FAC2_39 
FAC3_39 
FAC1_40 
FAC2_40 
FAC3_40 

1 2 Function 
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Table 24.  Eigenvalues, percentages of variance and SCDFC table for the DFA conducted on females of A. 
nigricollis to extract the relevant variables that explain differences between subspecies. 
 

 
 

Eigenvalues

3,672a 77,9 77,9 ,887
1,039a 22,1 100,0 ,714

Function
1
2

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 2 canonical discriminant functions were used in the
analysis.

a. 

Standardized Canonical Discriminant Funct

,553 -,059
-,649 ,626
,177 -,072

-,390 ,148
-,498 ,414
,461 ,176

-,159 -,278
,442 1,449

-,512 -1,493
-,100 -,284
-,077 -,236
,007 -,379

-,053 ,319
,663 ,424
,215 ,491

-,087 -,265
-,009 ,270
-,214 ,359
,417 ,763
,710 1,763

-,213 -,260
-,016 ,163
-,115 -,243
-,046 -,425
,115 ,078
,431 -,259
,497 -,413
,507 -,435

-,588 ,209
,378 ,340
,059 ,272
,258 ,313
,030 ,045
,325 -,001

-,390 ,551
-,726 ,432
-,301 ,001

-1,798 -,094
-,002 ,102
,265 -,714
,343 -1,207
,048 -1,096

1,922 -,036
1,846 -,187
,457 -,202

-,012 ,314
-,075 ,099
-,029 ,057
,242 -,046
,053 -,349

-,088 ,180
-,055 ,298
-,031 -,147
-,094 -,117
,424 -,328
,220 ,353

-,409 ,379

FAC1_1
FAC2_1
FAC3_1
FAC1_2
FAC2_2
FAC3_2
FAC1_3
FAC2_3
FAC3_3
FAC1_4
FAC2_4
FAC3_4
FAC1_5
FAC2_5
FAC3_5
FAC1_6
FAC2_6
FAC3_6
FAC1_12
FAC2_12
FAC3_12
FAC1_13
FAC2_13
FAC3_13
FAC1_14
FAC2_14
FAC3_14
FAC1_15
FAC2_15
FAC3_15
FAC1_17
FAC2_17
FAC3_17
FAC1_18
FAC2_18
FAC3_18
FAC1_26
FAC2_26
FAC3_26
FAC1_29
FAC2_29
FAC3_29
FAC1_30
FAC2_30
FAC3_30
FAC1_32
FAC2_32
FAC3_32
FAC1_33
FAC2_33
FAC3_33
FAC1_39
FAC2_39
FAC3_39
FAC1_40
FAC2_40
FAC3_40

1 2
Function
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Table 25.  Morphometric measurements of males from the three groups of the species Anthracothorax 
nigricollis, indicating statistically significant differences between them. 
 
 

*Significant difference (t-test; p<0.05) among subspecies for this variable. 
**Significant difference (t-test; p<0.01) among subspecies for this variable. 

 

 

 
Table 26.  Morphometric measurements of females from the three groups of the species Anthracothorax 
nigricollis, indicating statistically significant differences between them. 
 

*Significant difference (t-test; p<0.05) among subspecies for this variable. 
**Significant difference (t-test; p<0.01) among subspecies for this variable. 

 

 
 

Taxon 
(males)  

Bill length 
(mm) 

** 

Wing length 
(mm) 

 

Rectrix 1 
(mm) 

** 

Rectrix 2 
(mm) 

** 

Rectrix 5 
(mm) 

** 

Anthracothorax 
nigricollis 
iridescens 

 
x= 
σ= 
n= 

29,31 
1.01 
22 

66,42 
1.95 
21 

35,70 
1.11 
22 

35,96 
1.05 
19 

38,41 
1.13 
22 

Anthracothorax 
nigricollis 
nigricollis 

 
x= 
σ= 
n= 

27,28 
1.21 
201 

65,82 
1.84 
206 

33,16 
1.11 
202 

34,14 
1.17 
192 

37,51 
1.56 
200 

Anthracothorax 
nigricollis 

“new subspecies” 
 

x= 
σ= 
n= 

27,69 
1.06 
88 

66,14 
1.70 
91 

33,13 
1.15 
88 

33,88 
1.17 
88 

36,69 
1.77 
85 

Taxon 
(females)  

Bill length 
(mm) 

** 

Wing length 
(mm) 

** 

Rectrix 1 
(mm) 

** 

Rectrix 2 
(mm) 

** 

Rectrix 5 
(mm) 

** 
Anthracothorax 

nigricollis 
iridescens 

 
x= 
σ= 
n= 

31.22 
1.15 
12 

67.11 
1.78 
12 

36.32 
1.66 
12 

36.64 
1.15 
12 

36.86 
1.23 
10 

Anthracothorax 
nigricollis 
nigricollis 

 
x= 
σ= 
n= 

27.97 
1.26 
107 

64.20 
1.77 
108 

32.97 
1.16 
106 

33.99 
1.18 
95 

34.93 
1.36 
101 

Anthracothorax 
nigricollis 

“new subspecies” 
 

x= 
σ= 
n= 

28.93 
1.19 
41 

64.60 
1.80 
47 

33.12 
1.05 
45 

33.54 
1.15 
42 

34.65 
1.63 
43 
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Anthracothorax prevostii 

 

This species seems to show greater color variation compared with A. nigricollis.  If the 

subspecies “iridescens” is considered as belonging to A. nigricollis, the only controversy in A. 

prevostii is the validity of subspecies A. prevostii pinchoti occurring on San Andrés Island 

(Fig. 22).  After excluding the information on “iridescens” from the A. prevostii data set, I 

regrouped the species (defined pools) according to my criteria (see General Methodology).  A 

total of 12 pools were found to conduct further analysis (Fig. 29), the population of A. 

prevostii hendersoni from San Andrés Island being pool number 8 and A. prevostii pinchoti 

(according to Peters 1945) pool number 12. 

 

 
 
Fig. 29.  Pools of Anthracothorax prevostii used to conduct taxonomic analysis on the species.  The figure shows 
12 numbered pools.  
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I performed a DFA using the first three PCs resulting from the PCA on males (Appendix 33) 

and females (Appendix 34) as separate data sets.  The first two functions explained 43.7 % of 

the variance in males (Table 27) and 69.2 % in females (Table 28).  These percentages were 

higher than in A. nigricollis perhaps due to the lower number of groups analyzed here (only 

12).  The results given by the DFA (Fig. 30 for males, 31 for females) indicate a substantial 

difference between A. prevostii hendersoni and A. p. pinchoti, so that they should not be 

considered as part of the same group.  The DFAs also indicate the potential existence of other 

groups not previously considered and that appear to be different from the remainder of A. 

prevostii.  The population of the Costa Rican Atlantic area (number 9) can be separated from 

the rest of A. p. gracilirostris, and the population from the Yucatán peninsula (number 2) 

appears to be different from A. p. prevostii occurring in the rest of the distribution area.  In the 

first case, only six males and two females were included in the final analysis. In the case of the 

Yucatán specimens, there were 23 males and 10 females in the final analysis, which allows 

more confidence in the results.  However, there is a group number 7 (from western Central 

America) that overlaps with the Yucatán group in the case of males.  This group includes only 

two males and three females which makes it difficult to reach any conclusion.  For the 

populations of Atlantic Costa Rica and Yucatán, I consider that the existence of a color 

difference between these groups has been shown; however, I would rather be conservative 

until further analyses can be conducted. 

Table 27.  Eigenvalues and percentages of variance found after the DFA conducted on color data of males from 
the 12 pools of A. prevostii. 

Eigenvalues

7,523a 27,7 27,7 ,940
4,322a 15,9 43,7 ,901
3,979a 14,7 58,4 ,894
2,549a 9,4 67,8 ,847
2,245a 8,3 76,0 ,832
2,045a 7,5 83,6 ,820
1,615a 6,0 89,5 ,786
1,008a 3,7 93,3 ,708

,697a 2,6 95,8 ,641
,665a 2,5 98,3 ,632
,465a 1,7 100,0 ,563

Function
1
2
3
4
5
6
7
8
9
10
11

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 11 canonical discriminant functions were used in the
analysis.

a. 
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Table 28.  Eigenvalues and percentages of variance found after the DFA conducted on color data of females from 
the 12 pools of A. prevostii. 
 

 
 
 
 
For the phylogenetic analysis I considered the following seven taxonomic units (TUs) of A. 

prevostii:  A. p. prevostii (5), A. p. “Yucatan” (6), A. p. gracilirostris (7), A. p. “Atlantic Costa 

Rica” (8), A. p. hendersoni (9), A. p. pinchoti (10), A. p. viridicordatus (11).  I included 

numbers 6 and 8 to evaluate the results from the phylogenetic analysis and possibly help in 

arriving at a conclusion about their validity.  

 

Differences in plumage coloration of all body parts on the seven TUs are presented in 

Appendix 35 (males) and Appendix 36 (females).  The main differences in coloration 

according to the SCDFC (Table 29a and Table 29b) extracted from a second DFA by 

analyzing the seven TUs are (taking only the first two functions into account) in males the 

ventral parts of gorget (Fac2_12), central low throat (Fac1_14, Fac2_14, and Fac3_14), lateral 

low throat (Fac1_15 and Fac2_15), and chest (Fac2_17).  In females the differences are 

mainly found in the dorsal region at the shoulder level (Fac1_3, Fac2_3, and Fac3_3), and also 

in the gorget (Fac2_12). 

 

Eigenvalues

195,928a 54,5 54,5 ,997
52,792a 14,7 69,2 ,991
42,608a 11,9 81,0 ,988
39,092a 10,9 91,9 ,987
9,881a 2,7 94,7 ,953
7,194a 2,0 96,7 ,937
4,953a 1,4 98,0 ,912
3,839a 1,1 99,1 ,891
1,921a ,5 99,6 ,811
1,307a ,4 100,0 ,753

Function
1
2
3
4
5
6
7
8
9
10

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 10 canonical discriminant functions were used in the
analysis.

a. 
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Fig. 30.  Results of the DFA conducted on color data of males of Anthracothorax prevostii showing the 
separation of A. prevostii hendersoni (number 8) but not of A. p. pinchoti (number 12). 

 
 
 
Fig. 31.  Results of the DFA conducted on color data of females of Anthracothorax prevostii. 
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Table 29a.  SCDFC table for the second DFA conducted on males of A. prevostii to extract the relevant variables 
that explain differences between groups.  
 
 

Standardized Canonical Discriminant Function Coefficients

,022 ,067 ,023 ,085 ,652 -,177
-,339 -,860 -,357 1,275 -,585 -,088
-,447 -,095 -,504 -,637 -,129 ,298
,084 -,255 -,107 -,524 -,430 ,123
,694 -,159 ,508 ,637 1,554 ,020

-,866 ,183 -,358 -,823 -,680 -,054
-,420 -,214 -,458 ,518 ,222 ,012
1,354 -,007 ,601 -1,299 ,372 ,379

-1,532 ,036 ,223 ,525 -,332 ,122
-,576 ,231 -,175 ,067 ,178 ,339

-2,707 -,209 ,131 1,355 ,692 -,648
-1,605 -,703 -,117 ,593 ,738 -,053

,471 -,144 -,073 -,202 ,112 ,104
1,617 ,255 -,145 -,858 ,623 ,525
1,152 ,100 ,044 -,229 ,220 ,045
-,782 ,101 ,108 ,018 ,575 ,023

-1,057 -,328 -,267 ,440 ,417 -,089
,096 ,162 -,214 ,057 -,292 -,258

-,289 ,670 -,045 ,786 -,726 -,215
-2,818 ,461 -3,028 -,534 -1,367 -1,843

-,712 ,654 -,379 ,699 -,333 -,300
-,222 ,081 ,959 ,686 ,450 -,023
,497 ,534 -,569 -,275 ,083 ,072

-,457 -,015 -,360 -,254 ,230 -,154
2,420 ,535 1,200 -,353 -,079 1,037
6,439 ,276 ,821 -1,009 ,168 2,100
4,275 ,062 1,044 -,468 ,035 ,899
1,402 -2,265 ,092 -,957 -1,139 -,400
-,641 1,309 -,396 ,540 ,475 ,620
1,502 -,643 -,981 -1,078 -,043 -,445
-,508 -,119 -,198 -,273 ,211 ,577

-3,334 -,787 ,319 ,952 ,518 ,214
,053 ,622 -,096 ,346 ,318 -,436

-,274 ,488 -,286 ,720 ,386 -,043
1,636 -1,048 -,384 -,869 -1,729 -1,394

,277 -,429 ,117 -,849 -,613 -,739
1,191 -,477 ,110 -,371 -,153 -,348
1,360 ,654 ,355 -,143 4,347 ,301
-,716 ,260 ,171 ,440 ,161 -,010
-,064 1,496 -,929 ,095 ,454 -,068
,258 -1,273 ,881 ,031 -,559 ,318
,837 -,544 ,234 ,001 -,379 ,245

-,160 ,668 -,459 ,309 ,337 ,008
,573 -,433 1,141 -,286 -,920 ,005

-,392 -,283 -,318 -,041 ,246 ,002
,129 -,300 ,314 ,264 ,395 ,041

-1,752 -,209 ,758 -,051 ,096 ,402
-,020 1,023 ,120 ,192 ,146 ,175
,810 -,411 -,305 ,765 -,538 -,725

2,211 ,044 -,718 1,608 ,195 -,872
-,157 ,477 -,218 -,293 ,166 ,073
,241 ,417 ,340 -,069 -,186 ,156
,513 -,091 -,359 ,120 -,277 ,382

-,556 ,016 -,378 ,062 -,458 -,041
,496 -,010 -,066 ,023 ,203 -,074
,072 -,528 ,670 -,013 -,464 -,028

-,214 ,247 ,118 -,005 -,432 -,078
,190 -,210 ,493 ,749 -,463 ,059
,076 -,187 ,048 -,137 ,768 -,002

-1,752 1,119 1,158 1,123 -,873 ,151
-,970 ,266 -,256 -,191 ,234 -,526
1,781 -,727 -,121 -,289 -,103 ,279
-,506 -,173 ,335 ,260 ,152 ,159
-,323 ,018 ,270 -,417 -,189 ,134

-2,727 ,933 ,441 ,078 ,806 ,999
,537 ,177 -,368 -,196 -,475 ,056

FAC1_1
FAC2_1
FAC3_1
FAC1_2
FAC2_2
FAC3_2
FAC1_3
FAC2_3
FAC3_3
FAC1_4
FAC2_4
FAC3_4
FAC1_5
FAC2_5
FAC3_5
FAC1_6
FAC2_6
FAC3_6
FAC1_12
FAC2_12
FAC3_12
FAC1_13
FAC2_13
FAC3_13
FAC1_14
FAC2_14
FAC3_14
FAC1_15
FAC2_15
FAC3_15
FAC1_17
FAC2_17
FAC3_17
FAC1_18
FAC2_18
FAC3_18
FAC1_20
FAC2_20
FAC3_20
FAC1_21
FAC2_21
FAC3_21
FAC1_26
FAC2_26
FAC3_26
FAC1_29
FAC2_29
FAC3_29
FAC1_30
FAC2_30
FAC3_30
FAC1_32
FAC2_32
FAC3_32
FAC1_33
FAC2_33
FAC3_33
FAC1_34
FAC2_34
FAC3_34
FAC1_39
FAC2_39
FAC3_39
FAC1_40
FAC2_40
FAC3_40

1 2 3 4 5 6
Function
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Table 29b.  SCDFC table for the second DFA conducted on females of A. prevostii to extract the relevant 
variables that explain differences between groups. 
 
 

 

Standardized Canonical Discriminant Function Coefficients

2,713 4,345 ,892 -,291 ,209 ,095
2,956 -,011 ,532 1,489 2,402 2,178

-6,712 ,665 -2,117 -1,388 -1,684 -2,540
-10,339 -6,150 -1,163 2,211 -1,253 ,650
13,669 -4,573 3,491 4,190 ,756 3,368
5,219 1,127 2,054 ,708 ,333 1,013
9,354 6,656 ,583 ,895 ,597 -,388

-24,143 -13,046 4,738 8,129 1,213 2,881
-18,390 -8,917 1,378 6,556 -,362 1,036

2,699 -,675 -,863 1,540 ,827 1,144
15,968 2,734 1,412 -3,215 2,843 -,899
11,340 ,118 6,469 -2,539 1,953 -1,876
1,319 -,898 2,707 -,633 1,840 1,115

11,900 4,355 1,203 -1,823 -,146 ,997
,681 -1,350 1,613 -1,455 ,242 -,994
,753 3,408 -,090 ,091 ,019 -,431

5,525 6,916 -2,720 1,284 ,578 ,294
3,686 -4,465 2,758 ,190 ,929 ,717
7,651 8,031 -,618 -2,231 -,824 -1,238

10,094 20,088 -,852 -2,408 1,134 ,271
1,330 3,059 -1,147 ,581 -,535 -,278
6,994 ,419 2,391 ,111 2,218 ,796
2,727 2,043 1,344 -,175 1,429 -,028
,317 -2,783 -,331 -3,843 ,150 1,413

2,613 -1,360 ,333 -1,595 1,622 1,078
-4,365 -6,230 -8,870 3,700 2,766 4,792

,690 -1,818 -3,061 1,928 1,083 1,274
-6,007 -5,531 ,394 1,708 -1,405 -,061
1,633 3,143 -1,542 ,166 -4,306 -3,832

-5,112 2,758 ,047 -,393 -3,817 -3,973
-4,910 -2,065 ,346 -2,568 ,539 ,093

-17,407 -4,506 -,700 -1,875 ,764 -,869
-1,411 5,844 -1,172 2,681 1,407 ,256

,087 3,870 ,897 1,045 ,551 -,502
-2,557 -5,053 -2,236 -,508 -2,441 -1,743
-,702 ,102 ,146 -1,053 ,841 ,130
7,186 ,371 -1,132 -1,273 ,046 ,181
1,588 -1,414 3,002 -4,449 -,404 -,737
1,924 -5,026 1,676 -2,498 -1,396 -,952
1,737 1,455 -1,037 -,676 -,634 -,675

-1,789 ,840 -1,924 -,504 -1,315 -,662
-3,739 3,249 2,812 1,859 ,853 ,297
-3,997 4,068 -,411 ,312 -,545 -,748

FAC1_1
FAC2_1
FAC3_1
FAC1_2
FAC2_2
FAC3_2
FAC1_3
FAC2_3
FAC3_3
FAC1_4
FAC2_4
FAC3_4
FAC1_5
FAC2_5
FAC3_5
FAC1_6
FAC2_6
FAC3_6
FAC1_12
FAC2_12
FAC3_12
FAC1_13
FAC2_13
FAC3_13
FAC1_14
FAC2_14
FAC3_14
FAC1_15
FAC2_15
FAC3_15
FAC1_17
FAC2_17
FAC3_17
FAC1_18
FAC2_18
FAC3_18
FAC1_20
FAC2_20
FAC3_20
FAC1_21
FAC3_21
FAC1_26
FAC1_32

1 2 3 4 5 6
Function
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The morphometric measurements taken on the seven groups of A. prevostii indicate more 

variation in males than in females also at this level.  According to Table 30, the main 

differences in males are found in all the measurements except for rectrix 5.  In females the 

morphometric differences are found in bill length and rectrix 1 (Table 31). 

 

 

*Significant difference (t-test; p<0.05) among subspecies for this variable. 
**Significant difference (t-test; p<0.01) among subspecies for this variable. 
 
 
Table 30.  Morphometric measurements of males of the seven groups of  Anthracothorax prevostii, indicating 
statistically significant differences between them.  

Taxon 
(males)  

Bill length 
(mm) 

** 

Wing length 
(mm) 

* 

Rectrix 1 
(mm) 

** 

Rectrix 2 
(mm) 

** 

Rectrix 5 
(mm) 

 

Anthracothorax 
prevostii 
prevostii 

 
x= 
σ= 
n= 

30,14 
1.23 
58 

65,35 
1.91 
60 

34,37 
.95 
59 

34,59 
1.15 
52 

35,98 
1.73 
57 

Anthracothorax 
prevostii 

“Yucatán” 
 

x= 
σ= 
n= 

29,84 
1.11 
21 

64,21 
1.39 
22 

34,13 
1.19 
22 

34,76 
1.10 
22 

35,29 
1.40 
22 

Anthracothorax 
prevostii 

gracilirostris 
 

x= 
σ= 
n= 

28,30 
1.04 
39 

65,39 
1.85 
40 

34,06 
1.13 
39 

34,47 
1.04 
37 

35,16 
1.45 
39 

Anthracothorax 
prevostii 

“AtlanticCoast” 
 

x= 
σ= 
n= 

28,74 
1.21 

5 

66,99 
1.36 

6 

34,44 
1.19 

6 

35,41 
1.37 

6 

35,81 
1.31 

6 

Anthracothorax 
prevostii 

hendersoni 
 

x= 
σ= 
n= 

25,54 
.95 
6 

65,90 
.55 
6 

35,24 
1.56 

6 

35,53 
1.40 

6 

35,44 
1.67 

6 

Anthracothorax 
prevostii 
 pinchoti 

 
x= 
σ= 
n= 

26,02 
.50 
4 

65,96 
1.01 

5 

35,66 
.78 
5 

35,92 
1.28 

5 

35,69 
1.76 

5 

Anthracothorax 
prevostii 

viridicordatus 
 

x= 
σ= 
n= 

28,53 
.88 
7 

65,50 
1.50 

9 

33,28 
.92 
9 

33,84 
1.22 

9 

34,40 
1.83 

9 
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Table 31.  Morphometric measurements of females of the seven groups of Anthracothorax prevostii, indicating 
statistically significant differences between them.  
 
 
 

 
 
*Significant difference (t-test; p<0.05) among subspecies for this variable. 
**Significant difference (t-test; p<0.01) among subspecies for this variable. 
 
 

Taxon 
(females) 

 

 
 
 

Bill length 
(mm) 

** 

Wing length 
(mm) 

 

Rectrix 1 
(mm) 

** 

Rectrix 2 
(mm) 

 

Rectrix 5 
(mm) 

 

Anthracothorax 
prevostii 
prevostii 

 
x= 
σ= 
n= 

31,55 
1.42 
34 

64,56 
2.08 
34 

35,20 
1.11 
32 

35,07 
1.17 
32 

33,96 
1.30 
34 

Anthracothorax 
prevostii 

“Yucatán” 
 

x= 
σ= 
n= 

31,14 
1.16 
10 

63,44 
1.20 
10 

34,43 
.97 
10 

34,56 
.88 
10 

33,83 
1.37 
10 

Anthracothorax 
prevostii 

gracilirostris 
 

x= 
σ= 
n= 

29,36 
1.13 
14 

64,58 
1.68 
15 

34,40 
.92 
14 

34,56 
1.25 
14 

33,56 
1.34 
13 

Anthracothorax 
prevostii 

“AtlanticCoast” 
 

x= 
σ= 
n= 

29,30 
.12 
2 

66,39 
.77 
2 

35,99 
.23 
2 

35,74 
.65 
2 

34,11 
.16 
2 

Anthracothorax 
prevostii 

hendersoni 
 

x= 
σ= 
n= 

25,38 
- 
1 

66,57 
- 
1 

35,64 
- 
1 

35,57 
- 
1 

33,17 
- 
1 

Anthracothorax 
prevostii 
 Pinchoti 

 
x= 
σ= 
n= 

26,72 
- 
1 
 

65,04 
.03 
2 

33,99 
.01 
2 

34,02 
.91 
2 

34,80 
.02 
2 

Anthracothorax 
prevostii 

viridicordatus 
 

x= 
σ= 
n= 

30,00 
1.28 

4 

64,75 
1.98 

4 

33,09 
.76 
4 

33,77 
1.48 

4 

32,71 
1.24 

3 
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Anthracothorax viridigula 

 

The Green-throated Mango is distributed in northeastern Venezuela, reaching the island of 

Trinidad.  It also ranges from the Guianas to northern Brazil in the states of Amapá, northern 

Parà, and northern Maranhao.  It forages mainly in treetops between sea level and 500 m along 

coastal zones, including mangrove, marshy savannas and open swamp-like areas with 

scattered large trees (Schuchmann 1999).   

 

I separated this species into five pools (Fig. 32) according to the decribed criteria and applied 

a PCA followed by a DFA using the first three PCs calculated on the data set of the species by 

sex (Appendices 37 and 38).  Although I found good discrimination in males (except for pools 

2 and 3), in females the situation is unclear and the discrimination is only partial (see Figs. 

33a, b and Tables 32a, b).  As explained, the DFA is a good tool to allocate objects to natural 

groups.  Here I created somewhat artificial groups that had a good chance of being 

discriminated.  However, to determine how much difference is important is somewhat 

subjective, and in this case the scale of the difference might be a problem in reaching any 

conclusions.  Consequently, I regarded A. viridigula as a monospecific group for further 

analyses. 

 
Fig. 32.  Pools of Anthracothorax viridigula used to conduct the taxonomic analysis of the species.  The figure 
shows 5 numbered pools (preliminary groups).  
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Fig. 33a.  Results of the DFA conducted on color data of males of Anthracothorax viridigula showing the five 
pools. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 33b.  Results of the DFA conducted on color data of females of Anthracothorax viridigula showing the five 
pools 
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Table 32a.  Classification results of the DFA conducted on color data of males of the genus Anthracothorax 
viridigula. 
 
 
 

Predicted Group Membership (%) Preliminary 

Group 1 2 3 4 5    

1 100.0  0 0 0 0 0 0 0 

2 0 80.0 20.0 0  0 0 0 0 

3 0 0 100.0 0 0 0 0 0 

4 0 0 0 100.0 0 0 0 0 

5 0 0 0 0 100.0 0 0 0 
97.7% of original grouped cases correctly classified  
 
 
 
 
 
 
 
 
Table 32b.  Classification results of the DFA conducted on color data of females of the genus Anthracothorax 
viridigula. 
  
 
 
 

Predicted Group Membership (%) Preliminary 

Group 1 2 3 4 5    

1 100.0  0 0 0 0 0 0 0 

2 0 66.7 33.3 0  0 0 0 0 

3 0 0 100.0 0 0 0 0 0 

4 0 0 0 80.0 20.0 0 0 0 

5 0 0 0 0 100.0 0 0 0 
88.2% of original grouped cases correctly classified  
 
 



 106 

Anthracothorax veraguensis 

 

This species shows a more restricted distribution in the Pacific lowlands from Chiriquí to the 

Canal Zone in Panama (Fig. 34), and is found in open vegetation of pastures and stream edges 

with shrubs and scattered trees (Schuchmann 1999). 

 
Fig.  34.  Geographical distribution of Anthracothorax veraguensis showing the collecting localities.  

 

Anthracothorax veraguensis has often been included within A. prevostii and they both occur in 

Panama.  For this reason I conducted a PCA on the coloration data of the 12 pools of A. 

prevostii and the unique pool of A. veraguensis together and took the first three PCs 

(Appendices 39 and 40) to continue with the DFA.  In the case of females, as always within 

this genus, the groups are more dispersed (Fig. 35) and 10 functions were needed to explain 

the whole variation (Table 33).  Although the A. veraguensis pool appeared independent, the 

discrimination of the others is also high, making the findings difficult to interpret.  However, 

in the DFA conducted on the male spectral color data the first two functions explain 55.9% of 

the variance (Table 34) and the graph obtained from these functions (Fig. 36) indicates that A. 

veraguensis is clearly different from A. prevostii.  A second DFA was conducted to extract the 

most important parts of the body regarding this separation.  From the SCDFC (Table 35), in 

males the difference in coloration is mainly found in the ventral area: gorget (Fac1_12 and 

Fac3_12), low throat (Fac2_14 and Fac3_14), central chest (Fac2_17), lateral chest (Fac2_18), 

and breast (Fac2_21). 
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Fig. 35.  Results of the DFA conducted on color data of females of A. veraguensis and A. prevostii. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Table 33.  Eigenvalues table showing cumulative percentages of the variance explained by each function for the 
DFA conducted on females of A. veraguensis and A. prevostii. 
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First 10 canonical discriminant functions were used in the
analysis.

a. 
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Table 34.  Eigenvalues table showing cumulative percentages of the variance explained by each function for 
the DFA conducted on males of A. veraguensis and A. prevostii. 
 

 
 
 
 
Fig. 36.  Results of the DFA conducted on color data of males of A. veraguensis and A. prevostii showing the 
clear separation of both species.  The graph indicates the separation of pool 13 (A. veraguensis) from the other 
numbered pools (all of A. prevostii). 
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Table 35.  Eigenvalues, percentages of variance, and SCDFC table for the second DFA conducted on males 
of A. veraguensis and A. prevostii. 

 
 
 

 
 
 
 
 
 
 

 Eigenvalues 

11,34 a 100, 100, ,95
Function 
1 

Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

First canonical discriminant function was used in the analysis a.  
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-,308 
,027 
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,684 
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-1,074 
-,003 
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FAC3_30 
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FAC3_32 
FAC1_33 
FAC2_33 
FAC3_33 
FAC1_34 
FAC2_34 
FAC3_34 
FAC1_39 
FAC2_39 
FAC3_39 
FAC1_40 
FAC2_40 
FAC3_40 

1 Function 
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Anthracothorax dominicus and Anthracothorax mango 

 

The ranges of the Antillean Mango (Anthracothorax dominicus) and the Jamaican Mango 

(Anthracothorax mango) are geographically close, the latter being of very limited distribution.  

For these reasons an analysis of the two species together was conducted.  It is important to 

remember the focus of this study on the use and implications of the methodology.   

 

The Antillean Mango has two recognized subspecies:  1) A. dominicus dominicus is regular in 

open woodlands, especially in the lowlands but also in the mountains of Hispaniola and the 

offshore islands of Tortue, Gonave, Vache, and Beata.  2) A. dominicus  aurulentus occurs in 

lowlands and occasionally high up in man-made clearings of Puerto Rico and its offshore 

islands of Culebra, Vieques, and in the Virgin Islands (St. Thomas, St. John, and Anegada) 

(Lack 1973, Schuchmann 1999).  The Jamaican Mango, with a distribution limited to the 

island of Jamaica, is common in forests near see level, especially where it is fairly open and is 

sparse in open woodland in the hills (Lack 1973, Schuchmann 1999). 

   

I separated the data set into 13 pools on the basis of potential barriers in Hispaniola and those 

populations inhabiting adjacent islands (Fig.37).  This artificial separation of A. dominicus into 

12 pools was only done to allow the comparison with the A. mango pool by the DFA.  The 

species A. mango is considered as a unit since it has a limited geographical distribution only 

on Jamaica. 

 

The results of the DFA using the first three PCs resulting from the PCA made by sex 

(Appendices 41 and 42) gave, as expected, clear results on the greater difference of A. mango 

from the rest of the analyzed group (Table 36 and Fig. 38 for males, Table 37 and Fig. 39 for 

females).  The two clouds corresponding to the two recognized subspecies of A. dominicus are 

closer to each other than to the A. mango cloud (Fig. 38).  In the results for females, the clouds 

formed are, as always for females, smaller and more dispersed than those for males (Fig. 39).  

However, the A. mango group shows a clear differentiation from the A. dominicus group.  
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The SCDFC (Table 38) extracted from the second DFA indicates that in males the differences 

in coloration are both in dorsal and ventral areas of the birds, mainly in shoulder (Fac1_3 and 

Fac2_3), back (Fac2_4), rump (Fac2_5), and low throat (Fac1_14 and Fac2_14).  

Additionally, the coefficients indicate certain color differences in wing coverts (Fac2_29) and 

secondary feathers (Fac2_30). 

 

 

 

 

 

 

 
 
Fig. 37.  Pools of A. dominicus and A. mango.  The  symbols represent collecting localities of A. d. dominicus 
(filled symbols (1-7)), of A. d. aurulentus (gray symbols (8-12)), and of A. mango (Jamaican symbols).   
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Table 36.   Eigenvalues table showing cumulative percentages of the variance explained by each function 
extracted from the DFA conducted on males of A. dominicus and A. mango. 
 

 
 
 
 
Fig. 38.  Results of the DFA conducted on color data of males of Anthracothorax dominicus and Anthracothorax 
mango showing the separation of both species. 
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Table 37.  Eigenvalues table showing cumulative percentages of the variance explained by each function 
extracted from the DFA conducted on females of A. dominicus and A. mango. 
 

 
 
 
 
Fig. 39.  Results of the DFA conducted on color data of females of Anthracothorax dominicus and 
Anthracothorax mango. 
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Table 38.  Eigenvalues, percentages of variance, and SCDFC table for the second DFA conducted on males of A. 
dominicus and A. mango to extract the relevant variables that explain differences between the two species. 
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Anthracothorax viridis 

 

This Green Mango (Anthracothorax viridis) occurs on Puerto Rico island together with the 

subspecies A. dominicus aurulentus and three other hummingbird species (Chlorostilbon 

maugaeus, Eulampis holosericeus, and Orthorhyncus cristatus).  The two species of 

Anthracothorax tend to be segregated by habitat and elevation but overlap in their utilization 

of eight species of flowers (Kodric et al. 1984).  A. dominicus occurs in drier, more open 

lowland forests and is replaced, with little overlap, by A. viridis in montane forests above 500 

m (Kodric et al. 1984).  The elevational ranges of the two Anthracothorax species seem to 

overlap where they use the same flower species, however, they rarely forage at the same 

patches.  The geographical distribution of the two species reflects the aggressive dominance of 

the slightly larger A. viridis at higher elevations where flower availability is higher, and the 

advantage of A. dominicus, with lower wing disc loading, in foraging for less available 

resources at lower elevations (Kodric et al. 1984). 

 

I conducted, as in the former section, the analysis of the 12 pools of A. dominicus together 

with a unique A. viridis pool (Fig. 40).  A new PCA was conducted on males and females of A. 

dominicus, but this time together with A. viridis. (Appendices 43 and 44). 

 

The results of the DFA for males showed A. viridis as a clear cloud in the graph, set apart from 

the two clouds formed by the two A. dominicus subspecies that are here very close together 

due to the relatively greater separation from the first species (Fig. 41 and Table 39).  In 

addition, these results indicate the separation of population number 13, corresponding to that 

of Petit Cayemites, small island to the west of Hispaniola.  In this case there was only one 

male and one female in the analysis, so I would not risk any conclusion at this point.  For 

females (Fig. 42 and Table 40), although the situation, as always, is not as clear as for males, 

pool number 14, A. viridis, separates clearly from the rest, A. dominicus. 

 

The SCDFC (Table 41) resulting from the second DFA conducted on this data set indicates 

that the ventral sections of gorget (Fac3_12) and low throat (Fac3_14), in addition to the 
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uppertail coverts (Fac2_6), wing coverts (Fac2_29 and Fac3_29), secondary feathers 

(Fac2_30), and the fifth rectrix (Fac2_39), best explains the separation of the two species. 

 

 

 

 

 

 

 

 
Fig. 40.  Pools of A. dominicus and A. viridis.  The  symbols represent collecting localities of A. d. dominicus 
(filled symbols (1-7)), of A. d. aurulentus (gray symbols (8-12)), and of A. viridis (flag symbols).   
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Fig. 41.  Results of the DFA conducted on color data of males of A. dominicus and A. viridis showing the clear 
separation of both species. 

 
 
 
Table 39.  Eigenvalues table showing cumulative percentages of the variance explained by each function 
extracted from the DFA conducted on males of A. dominicus and A. viridis. 
 
 

 
 

Males 

Function 1 

120 100 80 60 40 20 0 -20 

Fu
nc

tio
n 

2 
20 

10 

0 

-10 

-20 

A. dominicus 
dominicus 

A. dominicus 
aurulentus 

A. viridis 

Eigenvalues

206,571a 66,3 66,3 ,998
76,994a 24,7 91,0 ,994
8,763a 2,8 93,9 ,947
7,175a 2,3 96,2 ,937
4,448a 1,4 97,6 ,904
2,259a ,7 98,3 ,833
1,940a ,6 98,9 ,812
1,415a ,5 99,4 ,765
,965a ,3 99,7 ,701
,606a ,2 99,9 ,614
,337a ,1 100,0 ,502

Function
1
2
3
4
5
6
7
8
9
10
11

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 11 canonical discriminant functions were used in the
analysis.

a. 
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Fig. 42.  Results of the DFA conducted on color data of females of A. dominicus and A. viridis. 
 
 

 
 
 
Table 40.  Eigenvalues table showing cumulative percentages of the variance explained by each function 
extracted from the DFA conducted on females of A. dominicus and A. viridis. 
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482,798a 68,4 68,4 ,999
107,453a 15,2 83,7 ,995

42,885a 6,1 89,7 ,989
31,555a 4,5 94,2 ,985
14,172a 2,0 96,2 ,966
10,788a 1,5 97,8 ,957
7,357a 1,0 98,8 ,938
4,485a ,6 99,4 ,904
1,681a ,2 99,7 ,792
1,275a ,2 99,9 ,749
1,030a ,1 100,0 ,712
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1
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8
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Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 11 canonical discriminant functions were used in the
analysis.

a. 
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,182
-,171
-,231
-,282
-,978
-,189
,160
,695
,007
,006
,727
,486
,114
,853

-,476
,102

-1,060
-,238
-,639
,584
,987
,182
,231

-1,138
,437
,708
,229
,656

-,007
,735

-,010
,422
,539

-,102
,956
,895

-,047
-,965
,118

-,391
,119

-,148
-,273
,426

-,152
-,083

-1,034
-,047

FAC1_1
FAC2_1
FAC3_1
FAC1_2
FAC2_2
FAC3_2
FAC1_3
FAC2_3
FAC3_3
FAC1_4
FAC2_4
FAC3_4
FAC1_5
FAC2_5
FAC3_5
FAC1_6
FAC2_6
FAC3_6
FAC1_12
FAC2_12
FAC3_12
FAC1_14
FAC2_14
FAC3_14
FAC1_17
FAC2_17
FAC3_17
FAC1_20
FAC2_20
FAC3_20
FAC1_26
FAC2_26
FAC3_26
FAC1_29
FAC2_29
FAC3_29
FAC1_30
FAC2_30
FAC3_30
FAC1_32
FAC2_32
FAC3_32
FAC1_33
FAC2_33
FAC3_33
FAC1_39
FAC2_39
FAC3_39

1
Function

Table 41.  Eigenvalues, percentages of variance, and SCDFC table for the second DFA conducted on males of A. 
dominicus and A. viridis to extract the relevant variables that explain differences between the two species. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Eigenvalues 

36,19 a 100, 100, ,98
Function 
1 

Eigenvalue % of Variance Cumulative % 
Canonical 
Correlation 

First canonical discriminant function was used in the analysis a.  
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Phylogenetic relationships within Anthracothorax  

 

The phylogenetic analysis of Anthracothorax was performed (defining the genus 

Campylopterus as outgroup) by using the same arguments advanced in the Topaza 

phylogenetic study.  The analysis will be done at two levels:   

 

1) Species level:  the taxonomic units (TU) to be considered for the analysis resulting 

from the taxonomic study: 

  

o Anthracothorax viridigula  

o Anthracothorax prevostii 

o Anthracothorax nigricollis 

o Anthracothorax veraguensis 

o Anthracothorax dominicus  

o Anthracothorax viridis 

o Anthracothorax mango 

o Anthracothorax recurvirostris 

 

o Campylopterus largipennis (outgroup) 

 

2) Subspecies level:  the TUs are all groups resulting from the taxonomic analysis, 

including the potential new subspecies: 

 

o Anthracothorax viridigula (Aviridigula)  

o Anthracothorax nigricollis iridescens (Aniridescens) 

o Anthracothorax nigricollis nigricollis (Annigricollis) 

o Anthracothorax nigricollis “Venezuela” (AnVenezuela) 

o Anthracothorax prevostii prevostii (Apprevostii) 

o Anthracothorax prevostii “Yucatán” (ApYucatan) 

o Anthracothorax prevostii gracilirostris (Apgracilirostris) 
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o Anthracothorax prevostii “AtlanticCoast” (ApAtlanticCoast) 

o Anthracothorax prevostii hendersoni (Aphendersonii) 

o Anthracothorax prevostii pinchoti (Appinchotii) 

o Anthracothorax prevostii viridicordatus (Apviridicordatus) 

o Anthracothorax veraguensis (Averaguensis) 

o Anthracothorax dominicus dominicus (Addominicus) 

o Anthracothorax dominicus aurulentus (Adaurulentus) 

o Anthracothorax mango (Amango) 

o Anthracothorax viridis (Aviridis) 

o Anthracothorax recurvirostris (Arecurvirostris) 

  

o Campylopterus largipennis (outgroup) 

o Campylopterus cuvierii (outgroup) 

 

Species level 

 

I conducted the generalized frequency coding (GFC) and then applied PAUP following the 

same seven steps defined in the Topaza section.  In summary, I conducted a PCA to the raw 

spectral color data from each body part by sex, and created new data sets containing the first 

three PC scores representing the color of each body part (66 variables for males and 66 for 

females), and the morphometric data (seven variables) of the individuals included in the 

analysis (Appendices 45 and 46).  After the subdivision of the original variables, a total of 

10,293 (66*141)+(7*141)) working variables for males and the same for females were used to 

create matrix A (Appendices 47 and 48) and matrix B (Appendices 49 and 50).  The codifying 

was completed, the data from both sexes combined, and the uninformative characters 

eliminated to construct the final matrix (Appendix 51) containing nine taxa (one outgroup) and 

3984 parsimony informative characters.  They are weighted (Appendix 52) and entered in the 

phylogenetic computer program PAUP. 
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Fig. 43.  Phylogenetic tree resulting from the PAUP analysis of Anthracothorax species using Campylopterus 
largipennis as outgroup according to both plumage coloration and morphometric data.  Nodes are represented by 
bold numbers above the lines, and branch lengths are represented by numbers under the lines. The Bootstrap 
percentages are shown in parentheses at the side of each branch length. 
 

 
 

 
Table 42.  Main descriptive parameters of the phylogenetic tree resulting from the PAUP analysis of 
Anthracothorax species using C. largipennis as outgroup. 
 

Tree characteristics 
Values 

Tree length 8444.89 

Consistency Index (CI) 0.57 

Homoplasy Index (HI) 0.43 

Retention Index (RI) 0.31 

Rescaled Consistency Index (RC) 0.18 

 

 

Campylopterus largipennis 

Anthracothorax recurvirostris 
951 

Anthracothorax viridis 
11 789 

Anthracothorax nigricollis 
10 323 

12 644 (64%) Anthracothorax prevostii 
183 (94%) 529 

13 Anthracothorax dominicus 
210 (97%) 14 750 

424 (96%) Anthracothorax veraguensis 
15 801 

428 (64%) Anthracothorax mango 
16 1259 

278 (97%) Anthracothorax viridigula 
1112 
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The results of the analysis at this level are shown in the phylogenetic tree of Figure 43 and 

Table 42, showing significant support according to the Bootstrap percentages.  At this point 

we have to recall the idea of  Schuchmann (1999) that A. nigricollis, A. prevostii, A. 

veraguensis and A. viridigula seem to form a superspecies.  According to the results of this 

study the situation appears to be different.  The resulting phylogenetic tree indicates that  A. 

nigricollis and A. prevostii are sister taxa.  They seem to be very close to each other, which 

explains the confusion on the taxonomy of some of their populations.  A. veraguensis and A. 

dominicus on one side, and A. viridigula and A. mango on the other are also sister taxa 

combined in one clade.  Thus, A. veraguensis appears closer to A. dominicus than to A. 

prevostii, which would add interesting facts to our understanding of the history of the genus 

and consequently ideas about the biogeography of the area.   

 

A. viridis is presented as a very distinct taxon, as is A. recurvirostris.  It is interesting to point 

out that the taxonomic analysis was conducted using only the plumage color data.  According 

to the taxonomic results the species A. recurvirostris is quite close, forming one group with 

the other species of the genus Anthracothorax.  The phylogenetic tree is a result of the 

combination of plumage color and morphometric information, and after adding the 

information on morphometrics the difference in morphology between this species and the 

others of the genus is striking.  The results indicate that A. recurvirostris might be placed in 

the genus Avocettula, as was previously thought, and separated from Anthracothorax (but see 

next section). 

  

Subspecies level: 

 

I conducted a PAUP analysis following the same sequence as previously.  This time I 

calculated new PCs from the color data of Anthracothorax specimens and two species of 

Campylopterus (C. largipennis and C. cuvierii) for the phylogenetic analysis at the subspecies 

level (Appendices 53 and 54).  I used the same number of working variables for males and 

females (10,293) as in the analysis at the species level.  I create matrix A (Appendices 55 and 

56) and matrix B (Appendices 57 and 58) including frequencies at the subspecies level.  The 
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final matrix (Appendix 59) contained 19 TUs (two from outgroups) and 4391 parsimony-

informative weighted characters (Appendix 60).  They were entered in the PAUP. 

 

 

 
 
 
 
 
Fig. 44.  Phylogenetic tree resulting from the PAUP analysis of Anthracothorax subspecies using C. largipennis 
and C. cuvierii as outgroups.  Nodes are represented by bold numbers above the lines, and branch lengths are 
represented by numbers under the lines. 

Campylopterus cuvierii

Campylopterus largipennis

Anthracothorax mango
894

Anthracothorax prevostii gracilirostris
330

22 Anthracothorax prevostii prevostii
116 125

21 Anthracothorax prevostii "Yucatán"
186 20 336

127 Anthracothorax nigricollis  "Venezuela"
28 569

73 Anthracothorax prevostii "Atlantic"
23 484

139 Anthracothorax prevostii hendersoni
35 524

27 Anthracothorax prevostii pinchoti
81 24 535

91 Anthracothorax prevostii viridicordatus
30 18 547

152 86 Anthracothorax nigricollis iridescens
25 330

74 Anthracothorax nigricollis nigricollis
33 211

436 Anthracothorax viridis
29 495

239 Anthracothorax recurvirostris
650

36 Anthracothorax veraguensis
272 32 457

237 Anthracothorax dominicus dominicus
31 337

304 Anthracothorax dominicus aurulentus
518

Anthracothorax viridigula
880
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The analysis at this level resulted in a more complicated view of the phylogenetic relationships 

within Anthracothorax.  The results are shown in the phylogenetic tree, supported by more 

than 50% on each node according to the Bootstrap analysis (Figure 44 and Table 43).  These 

relationships indicate that A. mango and A. viridigula represent separate branching in the 

group.  The phylogenetic relationships found here also explain the reason for the controversy 

between A. nigricollis and A. prevostii.  The group formed by these two species needs a 

taxonomic rearrangement.  All groups of A. nigricollis and A. prevostii form a unique 

monophyletic clade with many subbranches. 

 
 
Table 43.  Main descriptive parameters of the phylogenetic tree resulting from the PAUP analysis of 
Anthracothorax subspecies using C. largipennis and C. cuvierii as outgroups. 
 

 

 

 

 

 

 

 

 

 

 

 

A. n. nigricollis seems to be, as expected, closer to A. n. iridescens, but they form a clade with 

some members of A. prevostii:  A. p. viridicordatus, A. p. pinchoti, A. p. hendersoni, and  A. p. 

“Atlantic.”  A. p. viridicordatus is distributed in northern South America (Venezuela area),  

while A. p. pinchoti and A. p. hendersoni from the San Andrés and Old Providence islands are 

very close to the mainland of Panama-Costa Rica in the Atlantic zone (the area of the potential 

new group A. p. “Atlantic”).  The other groups of A. prevostii (A. p. gracilirostris, A. p. 

prevostii, and A. p. “Yucatán”) from Central America, together with A. nigricollis “new 

subspecies”, distributed in the Venezuelan area of South America, form a separate clade.  

Tree characteristics 
Values 

Tree length 11322.33 

Consistency Index (CI) 0.41 

Homoplasy Index (HI) 0.60 

Retention Index (RI) 0.32 

Rescaled Consistency Index 

(RC) 
0.13 
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This analysis presented conflicting views on the case of A. recurvirostris, which appears as 

sister group of A. viridis in an inner branch of the group as sister clade of the “A. nigricollis-A. 

prevostii complex”.  However, the phylogenetic relationships that will be discussed in the next 

chapter, bringing Topaza and Eulampis to the analysis, will indicate other interesting results 

that will help to clarify the phylogenetic scenario.   

 

The relationship between the A. dominicus subspecies and A. veraguensis seems to be clear.  

They  constitute a separate clade that indicates that A. veraguensis is farther away from A. 

prevostii than previously thought, the group having a closer relationship with groups from the 

island.  This fact was already noted in the last section, and it will be more extensively 

discussed in the biogeographical analysis. 

 

These results reinforce the need for a new taxonomy for the group, since the accepted 

taxonomy may not be appropriate.  They also indicate that vicariance is not enough to explain 

the situation of these taxa, as will also be discussed later.  These findings should be 

complemented in the future by the inclusion of information on coloration of additional body 

parts that could be important to clear this phylogenetic scenario.  A few body parts were 

already measured but not incorporated in the analysis due to the standardized nature of the 

methodology to be tested by this research.  There are areas in the rectrices and some small 

iridescent regions of the body in some members that show great variability and may be 

interesting to further consider. 
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Geographical variation and review of taxonomy of the genus Eulampis BOIE, 
1831 
 

Theoretical background 

 

The caribs, genus Eulampis, belong to the so-called mango hummingbirds that occur on the 

Caribbean islands Puerto Rico and Lesser Antilles (Plate 3).  Currently, this genus includes 

two species (Schuchmann 1999):  Eulampis jugularis Linnaeus, 1766, and Eulampis 

holosericeus, both previously considered as the monotypic genera Eulampis and Sericotes 

respectively (Peters 1945).  E. jugularis constitutes a monotypic species while E. holosericeus 

includes two subspecies: E. h. holosericeus Linnaeus, 1758 and E. h. chlorolaemus Gould, 

1857.  

 

A few studies on the ecology of the carib species have been published (Wolf 1975a, Norton & 

Hobbs 1988).  Additionally, some information is available as part of avifauna studies of the 

Caribbean islands (Bond 1939, Lack 1973, Feinsinger et al. 1982).  The breeding habits of E. 

jugularis have also been described (Wolf & Wolf 1971, Wolf 1975b) together with a few 

studies on its anatomy (Zusi & Bentz 1984), physiology (Hainsworth & Wolf 1970, Wolf & 

Hainsworth 1971), behavior (Schuchmann 1977) and foraging habits, including territoriality 

(Wolf 1975a, b; Ingels 1976). 

 

The Purple-throated Carib (Eulampis jugularis) is a brightly colored and relatively large 

hummingbird endemic to the Lesser Antilles (except Grenada).  It is found at forest edges and 

in treetops of secondary and primary forests between 800 and 1200 m altitude (Schuchmann 

1980b, 1999).  It is found in all the mountainous islands, where it feeds both in and below the 

canopy, from near the ground to the top of the trees (Lack 1973).  The Green-throated Carib 

(Eulampis holosericeus) has its geographical range in both the Greater and Lesser Antilles and 

inhabits from forest clearings, cultivated areas and open vegetation to mangroves, semi-

deciduous and rain forests (Schuchmann 1980b, 1999).  The species feeds from near the 

ground to the tops of the trees (Lack 1973).  
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The two species of Eulampis, sexually monomorphic in color, are among the 20 species of 

hummingbirds in which both sexes are brightly colored and have identical, or very similar 

plumage patterns (Wolf 1975a).  Although the sexes in both species have the same coloration, 

they have distinctly different bill shapes (male’s straight, female’s decurved and longer than 

male’s) (Wolf 1975a, b).  E. holosericeus is slightly smaller than E. jugularis and the 

difference in bill length and shape between the sexes is less pronounced and less obvious in E. 

holosericeus than in E. jugularis (Wolf 1975a).  

 

Bright colors in hummingbirds are probably important as aggressive signals closely associated 

with territoriality, especially defensive behavior (Wolf 1975a).  Both E. jugularis and E. 

holosericeus are territorial around certain flower species and also females hold territories 

during the non-breeding season (although female territoriality may be less common in E. 

holosericeus than in E. jugularis) (Wolf 1975a, Ingels 1976, Schuchmann 1977).  The 

evolution of the bright monomorphism in these species was probably a result of selection for 

female territoriality associated with availability of resources and their occurrence on 

ecological islands (Wolf 1975a). 

 

Taxonomic study of the genus Eulampis 

 

The current taxonomic situation of the genus Eulampis was corroborated by conducting a 

plumage color analysis of the group.  I combined male and female data of the two recognized 

species because of the color monomorphism of the genus.  This can be well seen in the color 

spectra graphs obtained per species and body part (Appendix 61).  Only a few sexual 

differences in the mean reflectance of some body areas of E. holosericeus (both males and 

females) were observed. 

 

I subdivided and analyzed the Eulampis group considering each island as a separate pool (Fig. 

45).  A total of 30 pools (9 of E. jugularis and 21 of E. holosericeus) resulted from this 

separation.  It is important to note that the maps indicating geographical distribution of these 

species were made showing only data from the collecting localities, and only from islands 
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with a sample of more than one specimen.  Moreover, I did not consider for analysis those 

individuals that were the only sample for a given island.  The geographical distribution of the 

two subspecies of E. holosericeus according to the current taxonomy is shown in Fig. 46. 

 

 
Fig. 45.  Geographical distributions of the two species of Eulampis:  E. jugularis (above) and E. holosericeus 
(below). 
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Fig. 46.  Geographical distributions of the two subspecies of Eulampis holosericeus: E. h. holosericeus, and E. h. 
chlorolaemus. 
 
 
 

 
 
 

 

 

I conducted a PCA on the color spectral data for each body part of all specimens of both 

species together.  As already carried out for Topaza and Anthracothorax, the first three PC 

scores were taken to conduct a DFA (Appendix 62).  The results indicated that the first two 

discriminant functions explained 78.8% of the variation (Table 44).  The graph resulting from 

the first two functions of the DFA (Fig. 47) shows a clear separation of the two Eulampis 

species (E. jugularis and E. holosericeus) along the coordinate corresponding to the first 

function that alone represents 75.1% of the overall variation.   
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Table 44.  Eigenvalues and percentages of variance found after the DFA conducted on color data from the 30 
pools of Eulampis. 
 
 
 

Eigenvalues

30,656a 75,1 75,1 ,984
1,521a 3,7 78,8 ,777
1,077a 2,6 81,5 ,720
1,004a 2,5 83,9 ,708

,791a 1,9 85,9 ,664
,750a 1,8 87,7 ,655
,673a 1,6 89,3 ,634
,589a 1,4 90,8 ,609
,501a 1,2 92,0 ,578
,403a 1,0 93,0 ,536
,393a 1,0 94,0 ,531
,359a ,9 94,8 ,514
,282a ,7 95,5 ,469
,254a ,6 96,2 ,450
,222a ,5 96,7 ,426
,209a ,5 97,2 ,416
,195a ,5 97,7 ,404
,175a ,4 98,1 ,386
,139a ,3 98,5 ,350
,107a ,3 98,7 ,311
,102a ,3 99,0 ,305
,089a ,2 99,2 ,286
,086a ,2 99,4 ,281
,061a ,1 99,6 ,240
,053a ,1 99,7 ,224
,049a ,1 99,8 ,215
,036a ,1 99,9 ,186
,033a ,1 100,0 ,178
,013a ,0 100,0 ,115

Function
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 29 canonical discriminant functions were used in the
analysis.

a. 
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Fig. 47.  Results of the first DFA conducted on color data of the 30 pools of Eulampis.  The open squares 
represent populations of E. jugularis (cloud on the left).  The open circles represent E. holosericeus holosericeus, 
the black circles E. holosericeus from Grenada (E. h. chlorolaemus), and the black triangles E. holosericeus from 
Saint Vincent and the Grenadines (presumably also of E. h. chlorolaemus). 

 
 
 

The first two functions indicated segregation, at a smaller level, of the two subspecies of E. 

holosericeus:  E. h. holosericeus and E. h. chlorolaemus.  This last subspecies is only found on 

the island of Grenada and in the graph is represented by black circles (pool number 13).  

However, there is a pool represented by black triangles (number 15) that corresponds to those 

individuals collected on the islands of Saint Vincent and the Grenadines.  These islands form 

an almost linear sequence that includes a large island (Saint Vincent) followed by a group of 

small ones that reach to Grenada.  These small islands constitute a demographic unit with 

Saint Vincent (Saint Vincent and the Grenadines), and the labels of most of the specimens 

collected there are only labeled as Saint Vincent, making it difficult to determine exactly from 

which exact geographic unit they come.  Consequently, the specimens occurring in this region 

are assigned to the same pool for analysis (number 15).   
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It is interesting that in the graph resulting from the DFA (Fig. 47) this pool (number 15) is 

placed in the center between the Grenada group (E. h. chlorolaemus), and the group formed by 

the rest of the pools (E. h. holosericeus), showing a small overlap.  In order to define the 

situation of the specimens coming from pool 15, I made a second DFA by regrouping 

individuals as:  1) E. jugularis, 2) E. h. chlorolaemus, 3) E. h. holosericeus, leaving out the 

data from specimens from Saint Vincent and the Grenadines to be classified by the DFA itself.  

The first two functions explained 100% of the variation, allowing precise conclusions (Table 

45).  The results show that, according to overall plumage coloration, 77.8% of these 

individuals are placed within E. h. holosericeus, and 22.2% within E. h. chlorolaemus from 

Grenada (Fig. 48 and Table 46).  These results imply a possible clinal zone between the two 

subspecies.  This situation makes it difficult to set the limits of both distributions, if they exist, 

until more specific location information is gathered on Eulampis individuals from this 

“problematic” area. 

 
.   
 
 
 
 

 
 
 
 
 
 
Table. 45.  Eigenvalues and percentages of variance found after the second DFA conducted on the regrouped 
data of Eulampis in order to determine the membership of E. holosericeus pools from Saint Vincent and the 
Grenadines 
 
 
 
 

Eigenvalues

24,710a 96,6 96,6 ,980
,869a 3,4 100,0 ,682

Function
1
2

Eigenvalue % of Variance Cumulative %
Canonical
Correlation

First 2 canonical discriminant functions were used in the
analysis.

a. 
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 Classification Results a 

108 0 0 108 
0 13 2 15 
0 3 135 138 
0 2 7 9 

100,0 ,0 ,0 100,0 
,0 86,7 13,3 100,0 
,0 2,2 97,8 100,0 
,0 22,2 77,8 100,0 

Final Groups 
1,00 
2,00 
4,00 
Ungrouped 
1,00 
2,00 
4,00 
Ungrouped 

Count 

% 

Original 
1,00 2,00 4,00 

Predicted Group 
M b hi Total 

98,1% of original grouped cases correctly 
l ifi d

a.  

Fig. 48.  Results of the second DFA conducted on the regrouped data of Eulampis in order to determine the 
membership of the pools of E. holosericeus from Saint Vincent and the Grenadines.   
 

 
 
 
 
Table. 46.  Classification results of the second DFA conducted on the regrouped data of Eulampis in order to 
determine the membership of E. holosericeus pools from Saint Vincent and the Grenadines.   
 
 
 
 
 
 
 
 

 

Function 1 

10 8 6 4 2 0 -2 -4 -6 -8 

Fu
nc

tio
n 

2 
6 

4 

2 

0 

-2 

-4 

Group Centroids 

Ungrouped Cases 

E. h. holosericeus 

E. h. chlorolaemus

E. jugularis 
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The standardized canonical discriminant function coefficients (SCDFC, Table 47) for the 

second DFA also indicated the body parts that made the most contribution to the overall 

differentiation of the groups.  According to the coefficients of function 1, the separation 

between the two Eulampis species is determined mainly by the color of the dorsal areas of 

shoulder (Fac2_3) and back (Fac2_4), and the ventral areas of gorget (Fac1_12), low throat 

(Fac1_14), and breast (Fac2_20).  These differences can be very easily appreciated by the 

naked eye:  E. holosericeus shows a green iridescent gorget with a bluish spot on the low 

throat, and greenish soft iridescence.  E. jugularis shows instead an homogeneous reddish 

iridescent gorget, and basically dark breast.  The mean color spectra showing the body part 

differences between the two species are shown in Appendix 63.  

 

Schuchmann (1999) states that E. h. chlorolaemus differs from E. h. holosericeus in having a 

darker green throat and broad deep violet-blue patch on the center of the breast.  I also find 

this distinction in this study.  The coefficients of function 2 indicated that differences between 

the two subspecies of E. holosericeus with regard to plumage coloration can be found mainly 

on ventral areas of the low throat (Fac2_14) and breast (Fac2_20), in addition to the color of 

rectrix 5 (Fac2_39). 

 

Morphological differences 

 

The two species of Eulampis differ in overall size, with E. jugularis being larger than E. 

holosericeus, showing significant differences in the five body measurements taken 

(unfortunately there is not enough information on body mass and total length on the labels) 

(Table 48).  Although monomorphic in color, E. jugularis shows a pronounced sexual 

morphological dimorphism in every character measured (Table 49).  These clear differences 

make it possible to use a DFA to sex specimens marked as “unknown sex” in order to use the 

data for phylogenetic analysis.  By contrast, E. holosericeus shows sexual dimorphism only in 

bill length (Table 49), which is not sufficient difference to sex specimens by means of DFA. 
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Table. 47.  SCDFC of the second DFA conducted on the regrouped data of Eulampis in order to determine the 
body parts that explain most of the variance among subspecies.   
 

-,308 -,002
,185 ,008

-,206 ,048
-,325 -,225
-,116 -,208
-,168 -,259
-,017 -,031
,705 -,186
,413 -,092

-,309 -,313
,864 ,104
,156 ,362

-,255 ,352
,546 ,056
,300 -,355
,109 -,040
,001 ,423

-,197 ,086
,568 -,030

-,273 -,188
-,164 ,377
,704 ,071

-,367 -,546
-,107 ,128
-,248 -,101
,054 ,074
,120 ,429

-,034 ,292
-,840 -,552
,181 ,052

-,005 -,048
-,198 -,060
-,054 -,173
,061 -,128
,001 -,151

-,010 ,072
,094 ,023

-,073 ,087
-,308 ,325
-,098 ,392
-,260 -,026
,124 ,002
,149 -,189

-,320 ,629
,035 ,232

FAC1_1
FAC2_1
FAC3_1
FAC1_2
FAC2_2
FAC3_2
FAC1_3
FAC2_3
FAC3_3
FAC1_4
FAC2_4
FAC3_4
FAC1_5
FAC2_5
FAC3_5
FAC1_6
FAC2_6
FAC3_6
FAC1_12
FAC2_12
FAC3_12
FAC1_14
FAC2_14
FAC3_14
FAC1_17
FAC2_17
FAC3_17
FAC1_20
FAC2_20
FAC3_20
FAC1_23
FAC2_23
FAC3_23
FAC1_26
FAC2_26
FAC3_26
FAC1_29
FAC2_29
FAC3_29
FAC1_32
FAC2_32
FAC3_32
FAC1_39
FAC2_39
FAC3_39

1 2
Function
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Table 48.  Morphometric measurements comparing both species of  Eulampis, indicating statistically significant morphometric differences. a (above) 
males, and b (below) females.    

 
** Significant differences (t-test; p<0.001) for this variable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sex Taxon Bill length 
(mm)** 

Wing length 
(mm)** 

Rectrix 1 
(mm)** 

Rectrix 2 
(mm)** 

Rectrix 5 
(mm)** 

E. jugularis  
x= 
σ= 
n= 

27.93 
1.56 
56 

73.86 
2.67 
56 

34.62 
1.26 
55 

35.47 
1.53 
53 

41.39 
2.44 
54 males  

E. holosericeus 
x= 
σ= 
n= 

26.53 
1.39 
84 

59.54 
1.97 
86 

33.70 
1.04 
85 

33.41 
1.00 
84 

31.08 
1.40 
79 

Sex Taxon Bill length 
(mm)** 

Wing length 
(mm)** 

Rectrix 1 
(mm) 

Rectrix 2 
(mm)** 

Rectrix 5 
(mm)** 

E. jugularis  
x= 
σ= 
n= 

31.15 
1.78 
37 

69.85 
2.42 
37 

33.39 
1.03 
33 

34.35 
1.41 
34 

37.78 
2.46 
32 females  

E. holosericeus 
x= 
σ= 
n= 

28.67 
1.72 
61 

59.01 
1.90 
62 

33.65 
0.98 
59 

33.62 
0.88 
61 

30.72 
1.36 
61 
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Table 49.  Morphometric measurements of  the genus Eulampis, indicating statistically significant sexual differences for each species. 
   ** Significant differences (t-test; p<0.001) between sexes for this variable. 

 
 
 
 

Taxon Sex Bill length 
(mm) 

Wing length 
(mm) 

Rectrix 1 
(mm) 

Rectrix 2 
(mm) 

Rectrix 5 
(mm) 

males 
x= 
σ= 
n= 

27.93** 
1.55 
58 

73.82** 
2.78 
58 

34.62** 
1.26 
57 

35.46** 
1.51 
55 

41.39** 
2.40 
56 Eulampis 

jugularis 
females 

x= 
σ= 
n= 

31.15** 
1.78 
37 

69.85** 
2.42 
37 

33.39** 
1.03 
33 

34.35** 
1.41 
34 

37.78** 
2.46 
32 

males 
x= 
σ= 
n= 

26.51** 
1.38 
86 

59.54 
1.95 
88 

33.69 
1.03 
87 

33.42 
1.00 
86 

31.08 
1.44 
81 Eulampis 

holosericeus 
females 

x= 
σ= 
n= 

28.61** 
1.77 
62 

59.05 
1.91 
63 

33.68 
1.00 
60 

33.63 
.88 
62 

30.75 
1.36 
62 
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The Lesser Antilles provide a good latitudinal sequence of islands, which facilitates the search 

for potential correlations between a geographical reference point and the morphology of the 

two Eulampis species.  For males of E. jugularis, a significant positive correlation was found 

between each body measurements taken and latitude (Table 50a).  This correlation is in 

concordance with the ANOVA performed on the same data (Table 51).  Bill and wing lengths 

showed a slight but significant correlation with latitude that did not translate into significant 

differences between islands.  However, the stronger correlation shown by the rectrices 

translated into significant statistical differences between islands.  The LSD post hoc test 

performed after the ANOVA (Table 52), together with the graphs extracted from the 

morphological measurements by island (Fig. 49a, b, c) showed that the main statistical 

difference was found for individuals from Saint Vincent Island, which have smaller rectrices 

relative to the others.   

 

For females of E. jugularis, a significant positive correlation was found only for rectrices 2 

and 5 (Table 50b), and significant differences between islands were found for bill length and 

the two rectrices showing a positive correlation (Table 51).  Although the situation for bill 

length is not that clear, the situation for rectrices 2 and 5 in males repeated itself in the case of 

Saint Vincent females, according to the LSD post hoc test conducted (Table 52).  The graphs 

(Fig. 50a, b, c) also showed the same tendency as for males.  These results indicate that the 

population of E. jugularis from Saint Vincent might constitute a separate group.  However, I 

would rather be conservative until further studies are conducted for two main reasons:  The 

data set does not include enough samples of males and females from all islands, and there is 

only one male from Barbados, while the females of this population show no significant 

differences from those of Saint Vincent.  

 

Peters (1945) and Schuchmann (1999) recognize two subspecies of Eulampis holosericeus 

(Sericotes holosericeus in the case of Peters):  E. h. holosericeus and E. h. chlorolaemus.   For 

this species I performed the same analysis as for E. jugularis.  For both males and females of 

E. holosericeus I found only a slight significant negative correlation of bill and wing length 

with latitude (Table 53a) that did not translate into statistical differences between islands 
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(Table 54).  Contrary to E. jugularis, the distribution of E. holosericeus in the Greater Antilles 

might provide a longitudinal component to the characteristics of the group; however, the 

results show no certainty in this regard.  The results indicate that the two subspecies of E. 

holosericeus vary only in plumage coloration, as already discussed. 

 

The morphological differences between populations of different islands, together with the 

existence of species like E. holosericeus with two distinct subspecies within its range in the 

Antilles, are difficult to interpret, since hummingbirds frequently travel between the islands 

(Lack 1973, Norton & Hobbs 1988).  Specifically, E. jugularis has been recorded on many 

other islands outside its breeding range, including Barbados, which is 160 km away from its 

nearest breeding site on Saint Vincent (Lack 1973).  This species has also been seen on 

Antigua, Barbuda, Desiderade, and other islands (Lack 1973, Schuchmann 1999).  E. 

holosericeus has been seen flying from one island to the other in the Caribbean, making it 

difficult to determine the limits of its range.  Other trochilids, such as Florisuga mellivora, 

Amazilia tobaci, and Chrysolampis mosquitus, which breed on Tobago, have also been 

recorded in the Lesser Antilles, 120 km away from their breeding ranges.  Archilochus 

colubris migrates in winter through the Gulf of Mexico (about 850 km).  Hurricanes have also 

created conditions in which some bird species reach islands from the mainland in this area.  

Additional taxa have been reported as occasional breeders or as vagrant species in the southern 

United States (Bleiweiss 1998).  In addition, although Anthracothorax viridigula inhabits the 

mainland of northeastern South America and Trinidad, it has also been recorded in the 

Grenadines (Lack 1973).  

 

This indicates that the hummingbird communities established on each island seem not to be 

determined by movement difficulties or limited dispersal capacities.  On the contrary, the 

organization of hummingbird communities and its morphological consequences have been 

well studied (Feinsinger et al. 1979; Feinsinger & Swarm 1981; Feinsinger et al. 1982; Brown 

& Bowers 1985; Wolf & Gill 1986; Bleiweiss 1990; Hinkelmann 1990; Temeles & Roberts 

1993; Cotton 1998a, b, c; Schuchmann 1999; Temeles et al. 2000) and seem to be closely 
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related to ecological limitations, such as partition of resources, which is more accentuated on 

islands. 

 

An example of specific interest is the situation of the two Eulampis species.  Both species are 

resident throughout their respective ranges, although they overlap to a small degree.  When 

they overlap, E. holosericeus tends to occur in drier and lower areas of each island than E. 

jugularis creating a clear segregation of habitat ranges (Lack 1973, Wolf 1975a, Schuchmann 

1981).  In Puerto Rico, where four other species of hummingbirds occur (A. dominicus, A. 

viridis, Chlorostilbon maugaeus, and Orthorhyncus cristatus), and there are no Purple-

throated Caribs, the Green-throated Carib is confined to the less dry regions of the extreme 

northeast (Lack 1973, Kodric et al. 1984) without any obvious geographical barrier. 

 

E. holosericeus occurs on every island of the Lesser Antilles, primarily in the lowlands.  On 

Grenada, it occurs up to an altitude of 600 m above sea level, and its presence can be linked 

with the absence from Grenada of E. jugularis, the large hummingbird of the rain forest on the 

other islands (Lack 1973).  On Grenada there is another large hummingbird species, Glaucis 

hirsuta, living in the rain forest, which explains not only why E. jugularis is absent from this 

island (Schuchmann 1980c) but also why E. holosericeus is found in the canopy but not inside 

the forest;  however, there have been sightings of E. jugularis vagrants in Grenada (Lack 

1973).  This dispersal has been related to long-term changes in environmental conditions in 

the Antilles (Norton & Hobbs 1988), the destruction of native forests by man, and natural 

forces such as hurricanes (Alaska 1976, Thompson 1983, Boucher 1990, Reading 1990, 

Bellingham et al. 1995, Turner et al. 2003).  The potential for dispersal and habitat 

segregation in this group will be further discussed below. 
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Table 50a.  Pearson correlation of the morphometric measurements from males of E. jugularis in relation to 
latitude and longitude.   
** Sig. (2-tailed) < 0.01,  * Sig. (2-tailed) < 0.05 
 

 
 
 
 
 

Eulampis jugularis (males) 

 Bill length 
(mm) 

Wing length 
(mm) 

Rectrix 1 
(mm) 

Rectrix 2 
(mm) 

Rectrix 5 
(mm) 

Latitude 
Pearson 

Correlation= 
n= 

.259* 
74 

.281* 
74 

.497** 
72 

.469** 
70 

.441** 
72 

Longitude 
Pearson 

Correlation= 
n= 

-.124 
74 

-.084 
74 

-.213 
72 

-.210 
70 

-.137 
72 

 
 
 
 
 
 
Table 50b.  Pearson correlation of the morphometric measurements from  females of E. jugularis in relation to 
latitude and longitude. 
  ** Sig. (2-tailed) < 0.01,  * Sig. (2-tailed) < 0.05 
 
 
 
 
 
 

Eulampis jugularis (females) 

 Bill length 
(mm) 

Wing length 
(mm) 

Rectrix 1 
(mm) 

Rectrix 2 
(mm) 

Rectrix 5 
(mm) 

Latitude 
Pearson 

Correlation= 
n= 

.187 
51 

.076 
51 

.222 
47 

.418** 
48 

.473** 
46 

Longitude 
Pearson 

Correlation= 
n= 

-.090 
51 

.020 
51 

-.116 
47 

-.253 
46 

-.244 
46 
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Table 51.  ANOVAs on the morphometric measurements of Eulampis jugularis from different islands: 
 males (above) and females (below). 

 
 
 

 
 
 
 
 
 

ANOVA

18,187 7 2,598 1,176 ,329
141,434 64 2,210
159,621 71
72,356 7 10,337 1,800 ,103

367,461 64 5,742
439,817 71
45,554 7 6,508 5,464 ,000
73,849 62 1,191

119,402 69
184,016 7 26,288 5,936 ,000
274,591 62 4,429
458,607 69
57,066 7 8,152 4,942 ,000
98,976 60 1,650

156,042 67

Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total

BILL_LEN

WING_LEN

R1

R5

R2

Sum of
Squares df Mean Square F Sig.

ANOVA

60,094 6 10,016 6,125 ,000
67,044 41 1,635

127,137 47
33,280 6 5,547 ,933 ,482

243,643 41 5,943
276,923 47

8,802 6 1,467 1,481 ,212
36,657 37 ,991
45,459 43
86,405 6 14,401 3,891 ,004

133,228 36 3,701
219,633 42
34,908 6 5,818 4,809 ,001
47,186 39 1,210
82,095 45

Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total

BILL_LEN

WING_LEN

R1

R5

R2

Sum of
Squares df Mean Square F Sig.
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Table 52.  Post hoc test on the morphometric measurements of Eulampis jugularis from different islands  
(left) males and (right) females.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Island (i) Island (j) R1 
(Sign.) 

R2 
(Sign.) 

R5 
(Sign.) 

Saint Vincent 
 
 
 
 
 
 

Saint. Lucia 
Martinique 
Dominique 
Guadaloupe 
Montserrat 
Nevis 
Saint Kitts 

,002 
,000 
,000 
,000 
,000 
,001 
,107 

,002 
,000 
,001 
,000 
,000 
,000 
,242 

,001 
,000 
,000 
,000 
,000 
,013 
,392 

Saint Lucia 
 
 
 
 
 
 

Saint Vincent 
Martinique 
Dominique 
Guadaloupe 
Montserrat 
Nevis 
Saint Kitts 

,002 
,438 
,218 
,060 
,032 
,049 
,935 

,002 
,494 
,468 
,153 
,071 
,034 
,677 

,001 
,101 
,176 
,141 
,020 
,345 
,457 

Martinique 
 

Saint Vincent 
Saint. Lucia 
Dominique 
Guadaloupe 
Montserrat 
Nevis 
Saint Kitts 

,000 
,438 
,625 
,191 
,087 
,108 
,767 

,000 
,494 
,908 
,360 
,157 
,072 
,459 

,000 
,101 
,876 
,812 
,156 
,879 
,128 

Dominique Saint Vincent 
Saint. Lucia 
Martinique 
Guadaloupe 
Montserrat 
Nevis 
Saint Kitts 

,000 
,218 
,625 
,362 
,159 
,175 
,591 

,001 
,468 
,908 
,444 
,196 
,090 
,435 

,000 
,176 
,876 
,728 
,141 
,818 
,158 

Guadaloupe Saint Vincent 
Saint. Lucia 
Martinique 
Dominique 
Montserrat 
Nevis 
Saint Kitts 

,000 
,060 
,191 
,362 
,517 
,473 
,295 

,000 
,153 
,360 
,444 
,516 
,256 
,222 

,000 
,141 
,812 
,728 
,266 
1,000 
,123 

Montserrat 
 

Saint Vincent 
Saint. Lucia 
Martinique 
Dominique 
Guadaloupe 
Nevis 
Saint Kitts 

,000 
,032 
,087 
,159 
,517 
,889 
,152 

,000 
,071 
,157 
,196 
,516 
,606 
,113 

,000 
,020 
,156 
,141 
,266 
,388 
,027 

Nevis 
 

Saint Vincent 
Saint. Lucia 
Martinique 
Dominique 
Guadaloupe 
Montserrat 
Saint Kitts 

,001 
,049 
,108 
,175 
,473 
,889 
,151 

,000 
,034 
,072 
,090 
,256 
,606 
,057 

,013 
,345 
,879 
,818 
1,000 
,388 
,207 

Saint Kitts Saint Vincent 
Saint. Lucia 
Martinique 
Dominique 
Guadaloupe 
Montserrat 
Nevis 

,107 
,935 
,767 
,591 
,295 
,152 
,151 

,242 
,677 
,459 
,435 
,222 
,113 
,057 

,392 
,457 
,128 
,158 
,123 
,027 
,207 

Island (i) Island (j) Bill 
length 
(Sign.) 

R2 
(Sign.) 

R5 
(Sign.) 

Saint Vincent 
 
 
 
 
 

Barbados 
Saint. Lucia 
Martinique 
Dominique 
Guadaloupe 
Nevis 

,261 
,016 
,000 
,784 
,138 
,030 

,271 
,000 
,009 
,000 
,003 
,001 

,077 
,004 
,017 
,000 
,001 
,000 

Barbados 
 
 
 
 
 

Saint Vincent 
Saint. Lucia 
Martinique 
Dominique 
Guadaloupe 
Nevis 

,261 
,446 
,009 
,354 
,982 
,532 

,271 
,058 
,339 
,028 
,200 
,097 

,077 
,541 
,857 
,250 
,269 
,201 

Saint. Lucia 
 
 

Saint Vincent 
Barbados 
Martinique 
Dominique 
Guadaloupe 
Nevis 

,016 
,446 
,014 
,030 
,297 
,878 

,000 
,058 
,211 
,699 
,407 
,795 

,004 
,541 
,596 
,516 
,547 
,406 

Martinique 
 

Saint Vincent 
Barbados 
Saint. Lucia 
Dominique 
Guadaloupe 
Nevis 

,000 
,009 
,014 
,000 
,001 
,012 

,009 
,339 
,211 
,097 
,668 
,343 

,017 
,857 
,596 
,228 
,253 
,178 

Dominique Saint Vincent 
Barbados 
Saint. Lucia 
Martinique 
Guadaloupe 
Nevis 

,784 
,354 
,030 
,000 
,223 
,052 

,000 
,028 
,699 
,097 
,217 
,524 

,000 
,250 
,516 
,228 
,975 
,810 

Guadaloupe 
 

Saint Vincent 
Barbados 
Saint. Lucia 
Martinique 
Dominique 
Nevis 

,138 
,982 
,297 
,001 
,223 
,398 

,003 
,200 
,407 
,668 
,217 
,590 

,001 
,269 
,547 
,253 
,975 
,793 

Nevis 
 

Saint Vincent 
Barbados 
Saint. Lucia 
Martinique 
Dominique 
Guadaloupe 

,030 
,532 
,878 
,012 
,052 
,398 

,001 
,097 
,795 
,343 
,524 
,590 

,000 
,201 
,406 
,178 
,810 
,793 
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Fig 49.   Graphs showing the tendency of the significant body measurements according to the ANOVA and 
LSD post hoc tests for males of E. jugularis.  The arrangement of the islands from left to right in the X 
coordinate is:  Saint Vincent, Barbados, Saint Lucia, Martinique, Dominique, Guadaloupe, Montserrat, 
Antigua, Nevis, and Saint Kitts. 
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Fig 50.  Graphs showing the tendency of the significant body measurements according to the ANOVA and 
LSD post hoc tests for females of E. jugularis.  The arrangement of the islands from left to right in the X 
coordinate is:  Saint Vincent, Barbados, Saint Lucia, Martinique, Dominique, Guadaloupe, Montserrat, Nevis, 
Saint Kitts, and Saba. 
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Table 53a.  Pearson correlation of the morphometric measurements from males of E. holosericeus in relation 
to latitude and longitude. 
  ** Sig. (2-tailed) < 0.01,  * Sig. (2-tailed) < 0.05 
 

 
 
 
 
 

Eulampis holosericeus (males) 

 Bill length 
(mm) 

Wing length 
(mm) 

Rectrix 1 
(mm) 

Rectrix 2 
(mm) 

Rectrix 5 
(mm) 

Latitude 
Pearson Correlation= 

n= 
-.316** 

84 
-.254* 

86 
-.144 

85 
-.086 

84 
-.092 

79 

Longitude 
Pearson Correlation= 

n= 
.264* 

84 
.144 
86 

-.144 
85 

-.086 
84 

-.092 
79 

 
 
 
 
 
 
Table 53b.  Pearson correlation of the morphometric measurements of females of E. holosericeus in relation 
to latitude and longitude 
  ** Sig. (2-tailed) < 0.01,  * Sig. (2-tailed) < 0.05 
 
 
 
 
 
 

Eulampis holosericeus (females) 

 Bill length 
(mm) 

Wing length 
(mm) 

Rectrix 1 
(mm) 

Rectrix 2 
(mm) 

Rectrix 5 
(mm) 

Latitude 
Pearson Correlation= 

n= 
-.325* 

61 
-.304* 

62 
-.157 

59 
-.128 

61 
.037 
61 

Longitude 
Pearson Correlation= 

n= 
.109 
61 

.204 
62 

.000 
59 

-.067 
61 

-.138 
61 
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Table 54.  ANOVAs on the morphometric measurements of Eulampis holosericeus (including individuals of 
the two species) from different islands:  males (above) and females (below). 
 
 

ANOVA

41,867 22 1,903 ,979 ,501
118,541 61 1,943
160,408 83
83,407 22 3,791 ,973 ,509

245,509 63 3,897
328,916 85
22,698 22 1,032 ,945 ,542
67,707 62 1,092
90,405 84
25,084 22 1,140 1,186 ,293
58,642 61 ,961
83,726 83
40,724 22 1,851 ,920 ,571

112,676 56 2,012
153,400 78

Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total

BILL_LEN

WING_LEN

R1

R2

R5

Sum of
Squares df Mean Square F Sig.

 
 

ANOVA

50,094 16 3,131 1,075 ,406
128,164 44 2,913
178,258 60
70,625 16 4,414 1,319 ,228

150,607 45 3,347
221,231 61
14,007 16 ,875 ,891 ,583
41,267 42 ,983
55,274 58
20,107 16 1,257 2,087 ,028
26,494 44 ,602
46,601 60
33,783 16 2,111 1,215 ,295
76,433 44 1,737

110,216 60

Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total

BILL_LEN

WING_LEN

R1

R2

R5

Sum of
Squares df Mean Square F Sig.
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Phylogenetic relationships of the three genera Topaza, Anthracothorax, and 
Eulampis 
 
The genera Eulampis, Anthracothorax, and Topaza are included within the mango group, 

considered basal within hummingbird phylogeny (Zusi & Bentz 1982, Sibley & Ahlquist 

1990, Bleiweiss et al. 1997).  According to Schuchmann (1980b, c; 1981) the genus Eulampis 

seems to be phylogenetically close to the genus Anthracothorax due to similarities in nest 

form and construction, which he considers an important criterion in hummingbird systematics.  

This author considers that the origin of Eulampis is in northeastern South America and that it 

is also phylogenetically close to the genus Topaza from this region.  Although these two 

genera are different in overall coloration they do show similarities in the iridescence of some 

plumage areas and in their habits (Schuchmann 1980c).  Also, the nest of Topaza shows great 

similarity to those constructed by Anthracothorax and Eulampis.  The following analysis was 

performed to test if the relationships between these taxa are indeed so close.  This analysis 

should also serve as a conclusive description of the phylogenetic relationships among the three 

genera studied in this research, using the genus Campylopterus as outgroup (C. cuvierii and C. 

largipennis) for the reasons outlined earlier. 

 

Descriptive information on Campylopterus (outgroup) 

 

At this point, I would like to complement the descriptive information on the groups under 

study by adding something about the outgroup genus Campylopterus.  The sabrewings, 

Campylopterus Swainson, 1827, are of wide distribution in Central and South America, 

ranging from Mexico to Paraguay and southeastern Brazil (Plate 4).  According to 

Schuchmann (1999), they constitute an unusual group of trochilines, with up to three modified 

outermost primaries.  Their feather shafts are thickened to various degrees, mainly in males, 

possibly contributing to a strengthening of the wing during their fast, swift-like gliding 

through semi-open vegetation (Schuchmann 1999).  According to Peters (1945) and 

Schuchmann (1999), the genus includes 13 species:  C. cuvierii, C. curvipennis, C. 

largipennis, C. rufus, C. hyperythrus, C. hemileucurus, C. ensipennis, C. falcatus, C. 
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phainopeplus, C. villaviscensio, C. duidae, C. cirrochloris, and C. macrourus.  Here I consider 

only two of these species, C. cuvierii and C. largipennis, since they have wide geographical 

distributions and the most “generalized” plumage coloration within the group. 

 

Phylogenetic analysis 

 

The phylogenetic analysis was performed on the following taxonomic units (TUs): 

 

o Topaza pella 

o Anthracothorax viridigula 

o Anthracothorax prevostii 

o Anthracothorax nigricollis 

o Anthracothorax veraguensis 

o Anthracothorax dominicus  

o Anthracothorax viridis 

o Anthracothorax mango 

o Anthracothorax recurvirostris 

o Eulampis jugularis 

o Eulampis holosericeus 

 

o Campylopterus cuvierii (outgroup) 

o Campylopterus largipennis (outgroup) 

 

The phylogenetic analysis was conducted following the same steps as in all previous sections.  

In Eulampis I separated the specimens by sex to join the data to the other species for the 

analysis.  I conducted a PCA on the raw spectral color data from each body part by sex, and I 

created a new data set for each sex containing the first three PC scores that represented 

plumage coloration (51 variables for males and 60 for females), plus the morphometric data 

(five variables per sex) (Appendices 64 and 65).  A total of 7,896 ((51*141)+(5*141)) working 

variables for males and 9,165 ((60*141)+(5*141)) for females resulted from the subdivision of 
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the original variables, which were then used to create matrix A (Appendices 66 and 67) and 

matrix B (Appendices 68 and 69) of the GFC.  The codification of the matrices was 

completed, the data from both sexes combined, and the uninformative characters eliminated to 

construct the final matrix (Appendix 70).  This matrix contained 13 taxa (two outgroups) and 

3039 parsimony-informative characters that were weighted (Appendix 71) and entered in 

PAUP. 

 

The analysis resulted in a fully resolved phylogenetic tree (Fig. 51, Table 55), with strong 

support according to the Bootstrap percentages.  The three genera under study form a 

monophyletic clade, of which the species Topaza pella and Anthracothorax mango are at the 

base forming a separate clade.  Another monophyletic clade contains the remainder of 

Anthracothorax and Eulampis.  This clade branches again in two monophyletic clades, one 

containing both species of Eulampis together with A. viridis, and the other containing the rest 

of the current Anthracothorax group. 

 

These results not only indicate that, in agreement with Schuchmann (1980b, c; 1981) 

Eulampis and Anthracothorax are sister taxa, close to Topaza, but that a reconsideration of the 

taxonomy of the mango group would be in order.  Within the current genus Anthracothorax, 

the species A. mango and A. viridis are the most distinct, not only in general plumage 

coloration patterns but also in showing sexual color monomorphism.  This pattern is also 

present within the genus Eulampis, as already discussed, and the character might be important 

in placing it together with A. viridis. 

 

Topaza, on the contrary, shows color sexual dimorphism.  The degree of dimorphism in this 

species, however, cannot be compared to the very distinct patterns that define the sexes of 

Anthracothorax (except for the two species mentioned).  The general plumage color patterns 

in Topaza are the same in both males and females, being only brighter and more defined in 

males.
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Fig. 51.  Concluding phylogenetic tree of Topaza, Anthracothorax, and Eulampis using Campylopterus as outgroup according to both plumage coloration 
and morphometric data.  Nodes are represented by bold numbers above the lines, and branch lengths are represented by numbers under the lines. The 
Bootstrap percentages are shown in parentheses at the side of each branch length. 
 

 

Campylopterus cuvierii
362.72

Campylopterus largipennis
416.23

Anthracothorax viridis
15 244.81

214.93 (93%) Eulampis jugularis
22 14 898.23

300.12 (100%) Eulampis holosericeus
21 320.47

300.19 (94%) Anthracothorax viridigula
16 406.80

23 101.31 (70%) Anthracothorax recurvirostris
17.56 (100%) 646.10

20 Anthracothorax nigricollis
186.44 (91%) 143.83

19 Anthracothorax prevostii
87.18 (98%) 131.45

18 Anthracothorax veraguensis
249.21 (100%) 17 499.93

138.47 (97%) Anthracothorax dominicus
477.48

Anthracothorax mango
24 624.31

217.01 (95%) Topaza pella
1157.34
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Table 55.  Main descriptive parameters of the phylogenetic tree resulting from the PAUP analysis of Topaza, 
Anthracothorax, and Eulampis using Campylopterus as outgroup. 
 

Tree characteristics 
Values 

Tree length 7695.35 

Consistency Index (CI) 0.50 

Homoplasy Index (HI) 0.50 

Retention Index (RI) 0.34 

Rescaled Consistency Index (RC) 0.17 

 

 

 

Within the “real” Anthracothorax clade (excluding A. mango and A. viridis) there are other 

interesting relationships to discuss.  As previously noted, there is a close relationship between 

A. veraguensis (from the Central American mainland) and A. dominicus (from the Caribbean 

islands of Hispaniola and Puerto Rico).  These species are also closely related to A. prevostii 

and A. nigricollis (from the Central and South American mainland respectively).  The species 

A. viridigula and A. recurvirostris (both distributed in northeastern South America) appear 

more isolated at the base of this Anthracothorax clade, but according to the results of this 

section, there is no controversy concerning the status of A. recurvirostris as a member of 

Anthracothorax. 

 

The tree shown here presents some inconsistencies regarding the grouping of Anthracothorax 

at the species level carried out in an earlier section.  For that section the analysis was 

conducted only on Anthracothorax;  however, I think that adding the other groups has resulted 

in a stronger support for the phylogenetic relationships found between and within clades.  For 

this reason the results of this section will be the basis for discussing the historical 

biogeographical events in the speciation process of our studied group. 
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Historical biogeographical events in the speciation process of the study group 
 

Based on the phylogeny and geographical distribution of a group of taxa, it is possible to 

reconstruct the speciation events and biogeographical history of the area they occupy.  A few 

methods have been proposed as suitable for this purpose (Page 1988, Morrone & Carpenter 

1994, Brooks et al. 2001).  However, many of these are based mainly on the concept of 

vicariance as the main source of speciation, and are of limited use in the case of my study 

material, which is known to have great dispersal potential.  Additionally, I present results for 

only three genera of the mango group, two of them with restricted distributions.  For these 

reasons, I limit my discussion to producing a theoretical picture of the historical 

biogeographical events on speciation.  This discussion is based on the history of the region 

where these taxa are found, published ideas about the origin of hummingbirds, and the 

phylogenetic results of this research. 

 
The history of hummingbird taxa presents a complex situation of ancestry, colonization, 

extinction, and recolonization to explain the great diversity of the group and the coexistence of 

numerous unrelated lineages.  According to Bleiweiss et al. (1997) and Bleiweiss (1998)  

hummingbirds have a Paleocene origin, and the most basal extant hummingbird groups, the 

hermits and mangoes (among non-hermits), come from lowland tropical Miocene ancestors.  

Although it has been suggested that lowland and highland non-hermits were initially separated 

by a vicariance event, the phylogeny of the group does not support this idea (Bleiweiss et al. 

1994, 1997; Bleiweiss 1998).  According to Bleiweiss (1998), the hermit/non-hermit split 

appears to have occurred in the lowlands, followed by separate and independent colonization 

events by these lowland ancestors not only to the highlands of the Andes, but also to the 

Caribbean islands and temperate Central and North America.  Several to many lineages 

contributed over time to the development of all hummingbird faunas, except those north of 

Mexico, where a single clade predominates. 

 

The phylogenetic results of this study corroborate the idea that Anthracothorax and Eulampis 

are sister taxa, close to Topaza.  Moreover, the mango hummingbirds must have also 

originated in the lowlands of South America and subsequently occupied other regions (see 
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Schuchmann 1980b, Bleiweiss 1998).  Specifically, Schuchmann indicates that the origin of 

the genus Eulampis (currently endemic to the Caribbean Antilles) is in northern South 

America, where Topaza and some species of Anthracothorax also occur.  Other species of 

Anthracothorax occur also in the Greater Antilles and Central America.  To explain the 

speciation history of the study group, and its present geographical distribution, it is necessary 

to understand the dynamic history of the South American continent and its connection with 

Central America and the Caribbean islands.   

 

Miocene climate changes were more gradual than those of the Quaternary, during which 

glacial-interglacial climate cycles are thought to have driven younger Plio-Pleistocene avian 

radiations, by repeated range fragmentation and population isolation in regions of stable 

habitat refugia (Haffer 1969, 1974b, 1977).  These changes might have been important in the 

later stages of the evolution of hummingbirds, mainly in the subspecific variations in South 

and Central America.  However, hummingbird data suggest that Pleistocene-style changes are 

not necessary to drive rapid cladogenesis (Bleiweiss et al. 1997).  The Miocene radiation of 

certain groups appears to have coincided with the creation of new habitats that provided 

ecological opportunities for evolutionary radiation (Bleiweiss et al. 1997).  The ability to 

exploit those habitats was probably an important factor in the radiation of the groups under 

study, which are known to be generalists compared with other hummingbird groups. 

 

The early Miocene date for the radiation of extant hummingbird taxa effectively rules out a 

vicariant origin for West Indian hummingbirds because the Antillean island arc and North and 

South America were separated from each other by large water expanses from late in the 

Eocene to late in the Pliocene (Bleiweiss 1998).  Additionally, it has been said that even if 

vicariance occurred at that time, its relevance for understanding the origin of the modern 

Antillean biota is minimal.  Over-water dispersal has been strongly advocated as the major and 

perhaps only method of vertebrate faunal formation in the Caribbean region (Iturralde-Vinent 

& MacPhee 1999).   

 

It seems that the main sources of speciation in the hummingbird taxa examined here were 

dispersal (to the Caribbean islands and Central America), and in situ speciation via habitat 
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segregation and utilization of the new habitats available in the region (those found in mainland 

South America and parts of Central America).  These aspects were already discussed, with 

examples, in the previous section.  It is known that although some lineages of hummingbirds 

are poor over-water colonizers, the mango hummingbirds show a great capacity for over-water 

dispersal.  On numerous occasions, hummingbirds have crossed potential dispersal barriers, 

from water gaps to strong elevational gradients and latitude (Bleiweiss 1998).  However, 

ecological aspects interacted with geography to filter out some hummingbird lineages from 

certain geographic regions (Bleiweiss 1998).   

 

The development of the varied hummingbird communities is the result of local conditions, 

contemporary interactions, the existence of strong territoriality, and the tendency to character 

displacement.  Potential for coevolution also allows a potential for habitat segregation that 

seems to have been specially important in the early stages of radiation (Bleiweiss 1998).  This 

scenario seems to be important on islands, but also on the mainland where we find that birds 

such as hermits occupy the forest interior and the non-hermits mainly the canopy and forest 

edges (chiefly mangoes) (Bleiweiss 1998).  In tropical lowlands, in contrast to islands or the 

Andes, the basic separation between the forest-dwelling hermits and canopy and edge-

dwelling non-hermits appears to have evolved in situ (Bleiweiss 1998).   

 

Given the relationship of some hummingbird species to “their” flowers, and the resulting high 

level of territoriality, there is great potential for in situ vicariance, which explains why closely 

related genera, such as Anthracothorax and Topaza, can cohabit in the same general 

geographic range in South America.  In situ vicariance in the lowlands was probably a 

predominant but not exclusive mechanism for the development of those faunas (Bleiweiss 

1998). 

 

In general, the earliest times of trochilid evolution coincided with the substantial tectonic 

complexity that characterized the northern Andes throughout the Cenozoic (Cracraft & Prum 

1988), creating numerous potential physiographical barriers that could produce vicariance of 

the forest biota (Irving 1975).  The topography of the Andes of South America is the result of 

strong orogenic activities since the Oligocene (Heindl & Schuchmann 1998) and the 
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mountain-building in the west caused important changes in the positions of main rivers, such 

as the Amazon and Orinoco.  Due to the continued uplift of the Andes, there was a reversal of 

the drainage pattern from previous western and northwestern directions to an eastern direction 

(Haffer 1969, 1974b, 1977; Haffer & Prance 2001).  Occasional marine incursions from the 

Pacific Ocean and the Caribbean Sea could also have reached western Amazonia.  This area 

was at various times probably covered with huge lakes, swamps, and rivers (Haffer 1977), and 

in the middle Miocene the Amazon area was closed off from the Pacific Ocean.  During the 

early Pliocene (5 mya) the emergence of the Panamanian Isthmus completed the Central 

American land bridge and later led to the great American biotic interchange.   

 

The history of the Caribbean region begins in the Middle Jurassic (Iturralde-Vinent & 

MacPhee 1999), and in subsequent geological periods until the end of the Miocene the area 

was characterized by submergence and emergence of islands.   The evolution of birds in the 

area has been related to the idea that, at that time, tectonic upheavals gave birth to many 

islands in the region where today Central America bridges both American continents.  

Additionally, some Caribbean islands were never connected to either of the two land masses 

(Schuchmann 1980b, 2002).  According to this author, many birds reached the Antilles 

(mainly Greater Antilles and the Bahamas) from North America during the Oligocene and 

Miocene (37-5 mya), when the climate in the south of North America was tropical.  Only a 

few Neotropical bird taxa colonized the northern Caribbean island arc at that time, using the 

Central American islands as stepping stones during their northward expansion.  In contrast, 

most of the species of the Lesser Antilles have their closest relatives in the South American 

continent and in Central America through the Greater Antilles (Schuchmann 1981).  Some 

ornithologists place the hummingbirds and tanagers among the first successful South 

American colonizers of the Antillean islands (Bleiweiss 1998). 

 

According to Schuchmann (2002), hummingbirds reached the Greater Antilles and the 

Bahamas most likely during two historical colonization events:  one early radiation, via 

stepping stone islands now constituting the Central America land bridge, gave rise to endemic 

genera (Trochilus, Mellisuga), whereas a more recent colonization via the Central American 

land bridge gave rise to endemic species like Anthracothorax mango.  He believes that this 
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latter species, like the other Anthracothorax species from the Greater Antilles, stems from 

Central American Anthracothorax populations, and that Jamaica and the other Greater 

Antillean islands were probably colonized via Honduras during the Pleistocene.  Based on the 

results of this study I will argue a different scenario for these taxa.  Specifically, 

Anthracothorax mango from Jamaica, being phylogenetically closer to Topaza, must have 

been an early arrival to the island.   

 

Iturralde–Vinent & MacPhee (1999) made a thorough analysis of the development of the 

Caribbean region from its beginning, when an embryonic Caribbean sea was originated as a 

consequence of the breakup of Pangaea and separation of Laurasia and Gondwana.  According 

to the authors, the existing land bridge (Panamanian Isthmus) was in fact complete in the 

Pliocene; however, extensive geological evidence exist to show that, during the Eocene-

Oligocene transition, the developing northern Greater Antilles and northwestern South 

America were connected by a “land span” centered on the emergent Aves Ridge (about 32 

mya).  The Eocene–Oligocene period was a time of general uplift and the amount and extent 

of subaerial land in the Caribbean should have been at a maximum (probably more extensive 

then than at any other time in the Cenozoic, including the late Quaternary).  Thereafter, 

Caribbean neotectonics resulted in the subdivision of existing land areas.   

 

The Aves Ridge was originally contiguous with the Greater Antilles Ridge and could have 

constituted a single entity (called Gaarlandia) during the Oligocene.  Therefore it has been 

proposed as a potential site for the dispersal of mammals and reptiles within the region 

(Iturralde-Vinent & MacPhee 1999).  However, the possibilities of this area being reached by 

birds could have lasted many years longer due to their dispersal potential.  It could have 

constituted an important site for the history of hummingbirds in the area, especially for the 

genera included here, as will be discussed below.  Additionally, the islands that today 

constitute the Lesser Antilles were to the east and not directly connected to this Aves Ridge, 

and at the time there was no connection through Central America.  Jamaica, on the other hand, 

although geographically a member of the Greater Antilles, has a tectonic history quite 

different from that of other islands in the group.  The Blue Mountain Block, currently part of 

Jamaica, might have had a connection to the evolving land span (Gaarlandia).  Jamaica might 
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in this way have received immigrants from South America directly via the stepping stones 

formed from the former Aves Ridge (Iturralde-Vinent & MacPhee 1999). 

 

Hummingbirds diversified from South to North America well before the closure of the 

Panamanian Isthmus late in the Pliocene.  This longer history of interchange is reflected in the 

complex historical structure of regional faunas (Bleiweiss 1998).  The history of the trochilids 

reaching the Caribbean islands has been dynamic, being subjected to repeated colonization 

events by different phyletic lines.  This dynamism is supported by fossil evidence indicating 

that extinction has also been frequent in the hummingbird groups of the Caribbean islands.  

Pleistocene fossils of species belonging to extant genera, namely of mangoes and emeralds, 

are known from the Grand Bahamas Bank (Olson & Hilgartner 1982).  

 

Unlike the Antillean communities, the number of species in Amazonian hummingbird 

communities is apparently relatively unpredictable (Cotton 1998b), making the mainland 

hummingbird communities more complex than those on islands because once on the islands 

the birds are subjected to different evolutionary pressures.  In addition, almost all species of 

hummingbirds of the Caribbean archipelago show distinctly greater food and habitat 

versatility than most continental hummingbird species. 

 
Therefore, I speculate the following scenario for the group:  I believe, with Schuchmann 

(2002), that the origin of the mango hummingbirds was in northern South America with an 

ancestral form of Topaza.  However, my contention is that A. mango must have been an early 

arrival to the island of Jamaica (contrary to Schuchmann 2002).  From the original 

northwestern South American ancestor, a group may have colonized Jamaica and become 

established there, with the potential to evolve as a completely different group (A. mango) than 

Topaza on the mainland.   After this first dispersal burst the sea level changed and many of 

these stepping stones were probably under water, leaving this group isolated for a long time.   

 

The same ancestor from South America may have given rise to another closely related group, 

Eulampis, but including A. viridis as has been argued here.  This group dispersed at a later 

time from the northeast, via the bridge formed by the Lesser Antilles until reaching Puerto 
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Rico (A. viridis).  Then another group (Anthracothorax) moved down to the remainder of 

South America and up to Central America, following the Pliocene connection of North and 

South America, reaching Mexico.  This group also effected a recent colonization of the 

Greater Antilles (A. dominicus) from Central America.  In Puerto Rico they came into contact 

with Anthracothorax species coming from both the Lesser and the Greater Antilles.   

 

I would also speculate that A. veraguensis constitutes a case of reverse dispersal from the 

islands, again to the Central American mainland.  However, at the time of its arrival, A. 

prevostii was already well established, which limited the distribution of A. veraguensis to a 

small area in Central America.  The relationship between A. dominicus and A. veraguensis 

seems to be clear.  A. veraguensis is phylogenetically farther away from A. prevostii than was 

previously thought, having a closer relationship with those taxa from island groups, which 

would explain why this species did not intermix with A. prevostii when arriving on the 

mainland from the islands.  In general the current systematic and geographical status of this 

group results from a complex situation of in situ speciation and a history of colonization-

recolonization. 
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Concluding remarks 
 

On the methodology of plumage color comparison 

 

I present here a method of taking integral information on bird plumage coloration to study the 

geographic variation, taxonomy and phylogeny of different bird groups.  This method is based 

on the comparison of color as an integral variable.  Mainly, I want to improve previous efforts 

in two directions:  First, to make the process of color measurement itself more objective and 

the methods of handling the data statistically comparable; and second, to avoid the subjective 

method of choosing a priori the “important” color characters to be analyzed.  In the 

methodology section, the fact that humans do not perceive their surroundings in the same way 

that birds do was discussed, making it important to have a suitable way of measuring 

coloration, independent of the human color perception system.   

 

There have been studies investigating the relationship between two distinct levels of color 

representation, namely the reflectance spectra of Munsell color samples as measured by a 

spectrophotometer, and human perceptions of color obtained in psychophysical experiments 

(see Romney & Indow 2002).  They concluded that both color-matching functions provide 

virtually identical estimations.  Consequently, they may be considered as substitutes for each 

other, which would diminish the relevance of the present study.  However, the Munsell 

reflectance spectra were estimated directly from cone sensitivity curves measured in humans.  

In terms of our research interests, the effect of light conditions when taking the measurements 

was not taken into account.  The same background was used and the effect of different 

observers or how tired they might be after several hours of observing colors on museum 

specimens was not allowed for.  Zuk & Decruyenaere (1994) added that scanning all the 

samples in a single session with a standard light source would minimize day-to-day variation 

in both observer judgment and environmental conditions.  However, this cannot be applied to 

studies of geographical variation, taxonomy, and related topics, which are based on a large 

series of skins found in different collections around the world. 
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The present research assumes that the focus on specific body parts of the specimens under 

study needs not to be set a priori.  When researchers concentrate on a specific part of the body 

of the animal that “they” (the researchers) perceive as the most important, they are including 

another source of subjectivity in the process.  We humans have a different perception than our 

study subjects, so we cannot say a priori which areas of the body should be more important 

from the evolutionary point of view.  A definition, a posteriori, of those “interesting” body 

parts presenting the most variation allows the researcher to guide efforts toward those specific 

color differences that might need more attention. 

 

The use of principal component analysis (PCA) to compare color spectral data has been 

proved to be adequate.  Other authors, such as Thorpe (2002), have introduced other ways of 

segmenting the spectra without the use of PCA.  However, I think that those segments, as parts 

of the spectrum, are not necessarily independent of each other.  This independence is obtained 

with the orthogonal PCs from the PCA, which are additionally available on standard statistical 

software packages.  Furthermore, all results from PCA analyses are completely independent of 

the visual system of the animal perceiving the wavelengths.  The PCA approach to analyzing 

reflectance spectra will remain highly effective even if information on species color 

perception, or light environments, subsequently becomes available (Cuthill et al. 1999).  

 

Interpretation of spectral color data  in terms of real morphological differences 

 

In this research, I included the entire range to which birds are sensitive, performing statistical 

analyses to determine if differences among spectra were significant.  It is not necessary to 

have complete series of specimens in front of our eyes for them to be compared, which allows 

work in different museums and light conditions.  However, the technique presented here 

makes the research somewhat abstract, since the researcher must wait until the end of the 

analyses to determine which parts of the body of the taxa under study are more important to 

separate the groups (or not). 

 

The results obtained here might appear somewhat abstract to taxonomists and other biologists, 

and might not be quickly translated into easy-to-measure color differences between taxa but 



 163 

they make more biological and evolutionary sense.  In order to make these results useful for 

taxonomic purposes they need to be translated into observable characters to the human eye.  

To make this translation, the discriminant function analysis gives us an idea of which PCs, 

coming from which parts of the body, show the most variation.  This information can be used 

to further analyze specific differences among groups, providing taxonomically diagnosable 

characters for each taxon under study. 

 

Because of their visual orientation, humans often find it convenient to use color and color 

pattern in systematic definitions and descriptions, particularly at lower taxonomic levels 

(Thorpe 2002).  However, my approach is that evolutionary trends have to be found within the 

subjects under study.  The color differences that have biological meaning to the study animals 

need to be found, taking into account the visual systems of the potential receptors of a given 

color signal.  After we are able to do this, then it may be possible to correlate this “real” 

differences with other characters, or with the perceptions of characters that we as humans are 

able to “see” (or at least measure) and thus make our research a little easier. 

 

Adapting the methodology for phylogenetic analysis 

 

The discriminant function analysis provides a tool to find similarities and differences in 

groups of birds according to plumage coloration.  Although this method does not allow finding  

phylogenetic implications, it provides a way to determine the relevant taxonomic units to be 

included in phylogenetic analyses.  Additionally, the generalized frequency coding method 

provides an adequate method of codifying spectral color and other morphometric continuous 

data for use in phylogenetic analysis by PAUP. 
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Taxonomic conclusions and phylogenetic relationships of the three genera Topaza, 

Anthracothorax, and Eulampis 

 

Hummingbirds present particularly difficult phylogenetic relationships because their 

locomotor and feeding systems are highly modified for hovering flight, perching, and drinking 

nectar, affecting virtually all aspects of the birds (Zusi & Bentz 1984).  Different evolutive 

pressures affect plumage coloration and morphometric measurements (characters taken during 

this study).  A few structures, such as bill and wing, can be very flexible and homoplastic 

characters that greatly depend on foraging pressures, while coloration is more related to sexual 

selection.  Homoplastic characters are supposedly misleading for phylogeny reconstruction.  

However, I believe that in order to better approach the reality, a phylogenetic analysis should 

be conducted with as many characters as possible, provided that they follow the logical 

principles on which this analysis is based.  Phylogenetic analysis is based on one of the basic 

principles of evolution, i.e., descent with modification.  If the characters chosen match the 

logical principles of phylogenetic analysis, there is no acceptable reason to exclude them (see 

Grandcolas et al. 2001).  Under this argument, I included morphometric data together with the 

plumage color data to conduct the phylogenetic analyses. 

 

The results of the present study, based on the methodology developed by using discriminant 

function analysis and generalized frequency coding to conduct phylogenetic analysis with 

morphological continuous variables, such as plumage color spectra and morphometric data, 

led to the following conclusions:   

 

1. The species of the mango clade:  Topaza, Anthracothorax, and Eulampis seem more 

closely related to each other than previously considered.  In fact, according to these 

results, the taxonomy of the group should be revised.  The most relevant changes 

suggested by this study would be to consider the species Anthracothorax mango as part 

of the Topaza group, and the species Anthracothorax viridis as part of the genus 

Eulampis.  
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2. The potential for hummingbird dispersal (especially of this group) makes the situation 

more complicated than solely the identification of geographic barriers.  I postulate that 

the mango clade originated in South America where the taxa adapted to the changing 

conditions and habitats of the region, and from where they dispersed in three basic 

directions:  towards Jamaica using the last vestiges of the Aves Ridge (A. mango), 

towards the lesser Antilles (Eulampis), and towards Central America (some of the 

Anthracothorax species).  

 

3. The species Topaza pella includes 5 subspecies:  T. pella amaruni, T. pella pyra, T. 

pella pamprepta, T. pella pella, and T. pella microrhyncha. 

 

4. The species Anthracothorax recurvirostris definitively belongs in the genus 

Anthracothorax and not Avocettula.  The population of Anthracothorax occurring in 

western Ecuador is part of A. nigricollis (A. n. iridescens) and not of A. prevostii.  

There is a new potential subspecies of A. nigricollis found in Venezuela and adjacent 

areas, and a new potential subspecies of A. prevostii found in the Yucatán area of 

Mexico. 

 

5. The species “Sericotes” holosericeus is definitively congeneric with Eulampis. 

 

It is important to note that in future studies using this methodology in certain taxa it would be 

necessary to include other specific body parts.  For example there are differences in the malar, 

post-ocular region, and tarsus of Topaza that have been previously used to delimit und define 

species and subspecies.  In the present study, measurements of the color of these areas of the 

body were not considered. 

 

I consider that the methodology introduced here is only the beginning of a potentially new 

method of using traditional morphological measurements in a more objective way that allows 

us to conduct better supported taxonomic, systematic, and phylogenetic studies.  
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Summary 
 
I have developed a methodology to obtain and compare integral information on bird plumage 

coloration, using color spectral data to conduct studies on geographic variation, taxonomy and 

phylogeny of different bird groups.  I use principal component analysis and discriminant 

function analysis to analyze and compare the color spectra of different body parts of the 

individuals included in the groups.  I take this spectral data to perform phylogenetic analyses 

using PAUP by adapting the generalized frequency coding method as a tool to code the 

continuous spectral and morphometric data into discrete variables.  Using these methods and 

statistical tools, I have reviewed the taxonomy of three mango hummingbird genera occurring 

in South and Central America and the Caribbean islands (Topaza, Anthracothorax, and 

Eulampis).  This constitutes an applied example of the methodology that allowed me to make 

some conclusions and suggestions about the taxonomy and phylogeny of the group.     

 

These species of the mango clade appear to be more closely related to each other than 

previously considered and the taxonomy of the group should be revised.  I suggest several 

changes, the most relevant being to consider the species Anthracothorax mango as part of the 

genus Topaza, and the species Anthracothorax viridis as part of the genus Eulampis.  Some 

clarifications are also made on controversial populations within the mango hummingbirds.  I 

also suggest the possibility of a new subspecies of A. nigricollis found in Venezuela and 

adjacent areas, and a new subspecies of A. prevostii found in the Yucatán area of Mexico.  

Additionally,  I postulate that the mango clade originated in South America, where the taxa 

adapted to the changing conditions and habitats of the region, and dispersed in three basic 

directions:  towards Jamaica using the last vestiges of the Aves Ridge (A. mango), towards the 

lesser Antilles (Eulampis), and towards Central America (some of the Anthracothorax 

species).  I consider that the methodology introduced here is only the beginning of a 

potentially new method of using traditional morphological measurements in a more objective 

way to conduct better supported taxonomic, systematic, and phylogenetic studies.  
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Plate 1.  Species of the genus Topaza Gray 1840 (above: “pella group”; below: “pyra group”). 
(Courtesy of D. Alker).   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(left females, right males) 
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Plate 2.  part I.  Species of the genus Anthracothorax Boie 1831.  (Courtesy of D. Alker). 
 

 
 

 
 
 

 
A. viridigula (above male, below female)   A. prevostii  (left female, right male) 

 
  

 
 

A. nigricollis (above male, below females)   A. dominicus  (above male, below female) 
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Plate 2.  part II.  Species of the genus Anthracothorax Boie 1831.  (Courtesy of D. Alker). 
 
 
 

 
 

 
 
 
 

A. mango (above male, below female)     A. viridis 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. recurvirostris (left female, right male) 
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Plate 3.  Species of the genus Eulampis Boie 1831.  (Courtesy of D. Alker). 
 
 

 
E. jugularis (above male, below female)  E. holosericeus (above male, below female) 

 
 
 
Plate 4.  Genus Campylopterus Swainson, 1827,  represented by one species.  (Courtesy of D. Alker). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. largipennis (above female, below male) 
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Appendix 71.  List of variables and their weights to be entered in the final phylogenetic 

analysis of Topaza, Anthracothorax, and Eulampis using C. cuvierii and C. largipennis as 

outgroups. 
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Appendix 45.   List of individual scores of the two first Principal Components resulting from 

the PCA conducted on the color spectral data and morphometric measurements taken on all 

males of Anthracothorax species and C. largipennis (outgroup) to perform phylogenetic 

analysis at the species level. 

 

Appendix 46.   List of individual scores of the two first Principal Components resulting from 

the PCA conducted on the color spectral data and morphometric measurements taken on all 

females of Anthracothorax species and C. largipennis (outgroup) to perform phylogenetic 

analysis at the species level. 

 

Appendix 47.  Matrix A of the GFC created with the dataset of males of Anthracothorax and 

C. largipennis to code the variables to be analyzed by PAUP. 

 

Appendix 48.  Matrix A of the GFC with the dataset of females of Anthracothorax and C. 

largipennis to code the variables to be analyzed by PAUP. 

 

Appendix 49.  Matrix B of the GFC created with the dataset of males of Anthracothorax and 

C. largipennis to code the variables to be analyzed by PAUP. 

 

Appendix 50.  Matrix B of the GFC created with the dataset of females of Anthracothorax 

and C. largipennis to code the variables to be analyzed by PAUP. 

 

Appendix 51.  Final matrix of variables for the phylogenetic analysis at the species level of 

Anthracothorax using C. largipennis as outgroup. 

 

Appendix 52.  List of variables and their weights to be entered in the phylogenetic analysis at 

the species level of Anthracothorax using C. largipennis as outgroup. 

 

Appendix 53.  List of individual scores of the two first Principal Components resulting from 

the PCA conducted on the color spectral data and morphometric measurements taken on all 
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males of Anthracothorax species, C. cuvierii, and C. largipennis to perform phylogenetic 

analysis at the subspecies level. 

 

Appendix 54.  List of individual scores of the two first Principal Components resulting from 

the PCA conducted on the color spectral data and morphometric measurements taken on all 

females of Anthracothorax species, C. cuvierii, and C. largipennis to perform phylogenetic 

analysis at the subspecies level. 

 

Appendix 55.  Matrix A of the GFC created with the dataset of males of Anthracothorax, C. 

cuvierii, and C. largipennis to code the variables to be analyzed by PAUP. 

 

Appendix 56.  Matrix A of the GFC created with the dataset of females of Anthracothorax, C. 

cuvierii, and C. largipennis to code the variables to be analyzed by PAUP. 

 

Appendix 57.  Matrix B of the GFC created with the dataset of males of Anthracothorax, C. 

cuvierii, and C. largipennis to code the variables to be analyzed by PAUP. 

 

Appendix 58.  Matrix B of the GFC created with the dataset of females of Anthracothorax, C. 

cuvierii, and C. largipennis to code the variables to be analyzed by PAUP. 

 

Appendix 59.  Final matrix of variables for the phylogenetic analysis at the subspecies level 

of Anthracothorax using C. cuvierii and C. largipennis as outgroups. 

 

Appendix 60.  List of variables and their weights to be entered in the phylogenetic analysis at 

the subspecies level of Anthracothorax using C. cuvierii and C. largipennis as outgroups. 

 

Appendix 61a.   Mean spectral representation of color of different body parts of Eulampis 

jugularis individuals, showing sexual dimorphism. 

 

Appendix 61b.   Mean spectral representation of color of different body parts of Eulampis 

holosericeus individuals, showing sexual dimorphism. 
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Appendix 62.  List of individual scores of the two first Principal Components resulting from 

the PCA conducted on all individuals of Eulampis. 

 

Appendix 63.   Color differences in each body part of individuals from Eulampis jugularis 

and the two subspecies of E. holosericeus.  The X-axis shows the mean spectral range in 

nanometers.  The Y-axis shows the reflectance in percentage.   

 

Appendix 64.  List of individual scores of the two first Principal Components resulting from 

the PCA conducted on the color spectral data and morphometric measurements taken on all 

males of Topaza, Anthracothorax, Eulampis, C. cuvierii, and C. largipennis to perform the 

final phylogenetic analysis. 

 

Appendix 65.  List of individual scores of the two first Principal Components resulting from 

the PCA conducted on the color spectral data and morphometric measurements taken on all 

females of Topaza, Anthracothorax, Eulampis, C. cuvierii, and C. largipennis to perform the 

final phylogenetic analysis. 

 

Appendix 66.  Matrix A of the GFC created with the dataset of males of Topaza, 

Anthracothorax, Eulampis, C. cuvierii, and C. largipennis to code the variables to be analyzed 

by PAUP. 

 

Appendix 67.  Matrix A of the GFC created with the dataset of females of Topaza, 

Anthracothorax, Eulampis, C. cuvierii, and C. largipennis to code the variables to be analyzed 

by PAUP. 

 

Appendix 68.  Matrix B of the GFC created with the dataset of males of Topaza, 

Anthracothorax, Eulampis, C. cuvierii, and C. largipennis to code the variables to be analyzed 

by PAUP. 

 


