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Zusammenfassung

In der rein funktionalen Programmiersprache Haskell müssen fast alle Seiteneffekte, die
eine Funktion erzeugen kann, in ihrem Typ vermerkt werden. Darunter fallen Interaktion
mit der Umwelt, Propagation eines Zustandes und auch Nichtdeterminismus. Sind keine
Seiteneffekte vermerkt, verhält sich so eine Funktion wie eine Funktion im Sinne der
Mathematik, also als eindeutige Zuordnung. In diesem Fall kann man über Ausdrücke
in einem Programm Beweise führen wie über mathematische Ausdrücke. Neben diesem
sogenannten gleichungsbasierten Schließen ermöglicht das Typsystem auch typbasiertes
Schließen. Ein Beispiel dafür sind freie Theoreme – Gleichungen zwischen Ausdrücken,
die allein aufgrund der Typen der beteiligten Funktionen gelten. Solche Aussagen lassen
sich zum Teil nutzen, um Optimierungsstrategien in Compilern formal zu rechtfertigen.
Die vorliegende Arbeit untersucht zwei Verallgemeinerungen solcher Methoden für Pro-
gramme, die nicht frei von Seiteneffekten, also effektbehaftet, sind. Erstens werden ef-
fektbehaftete Traversierungen von Datenstrukturen untersucht. Der wichtigste Beitrag
hier ist, dass eine Datenstruktur genau dann regelkonform traversiert werden kann, wenn
sie isomorph zu einem polynomiellen Funktor ist. Dieses Ergebnis verbindet das verbrei-
tete Interface des Traversierens mit einer klaren Vorstellung über den Aufbau und die
Verhaltensweise der Datenstruktur. Weiterhin werden Werkzeuge vorgestellt, um über
effektbehaftete Traversierungen bequem Beweise führen zu können.
Zweitens werden freie Theoreme für die funktional-logische Sprache Curry hergeleitet.
Aufgrund der nahen Verwandtschaft der beiden Sprachen, lässt sich Curry als Haskell mit
integriertem Nichtdeterminismus, also einem integrierten Seiteneffekt, verstehen. Sowohl
gleichungsbasiertes als auch typbasiertes Schließen lassen sich bis zu einem gewissen
Grad auf Curry übertragen. Insbesondere wird Short-Cut-Fusion – eine sehr ergiebige
Laufzeitoptimierung – für Curry ermöglicht.
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Abstract

In the pure functional language Haskell, nearly all side-effects that a function can produce
have to be noted in its type. This includes input/output, propagation of a state, and
nondeterminism. If no side-effects are noted, such a function acts like a mathematical
function, i.e., mapping arguments to unique results. In that case, expressions in a
program can be reasoned about like mathematical expressions. In addition to this so-
called equational reasoning, the type system also enables type based reasoning. One
example are free theorems – equations between expressions that are true only due to the
types of the expressions involved. Some such statements serve as formal justification for
optimization strategies in compilers.
The thesis at hand investigates two generalizations of such methods for programs not free
of side-effects, i.e., effectful programs. First, effectful traversals of data structures are
being studied. The most important contribution in this part is that a data structure can
be lawfully traversed if, and only if, it is isomorphic to a polynomial functor. This result
links the widespread interface of traversing to a clear intuition regarding the structure
and behavior of the data type. Furthermore, tools are presented facilitating convenient
proofs about effectful traversals.
Second, free theorems for the functional-logic language Curry are derived. Due to the
close relationship between both languages, Curry can be understood as Haskell with
built-in nondeterminism, i.e., a built-in side-effect. Equational and type based reasoning
can both be adapted to Curry to a certain degree. In particular, short cut fusion – a
very fertile runtime optimization – is enabled for Curry.
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Chapter 1

Introduction

Declarative programming is best defined by differentiating it from imperative program-
ming. When we use the term program in a non-technical way, it refers to a succession
of steps that are being taken one after the other. This description also applies well to
imperative programs, which are a succession of commands some machine is supposed
to execute. Taking this into account, a declarative program almost is a contradictory
notion because it is not a succession of steps. It can rather be seen as a mathematical
definition that can be operationalized, but has a meaning independent of any machine.
In particular, operationalizing the program is not the programmer’s duty, but done by
the compiler in a way it sees apt.
Two important sub-paradigms of the declarative are functional programming and logic
programming. Functional programming is based on the notion of function in its math-
ematical meaning, i.e., one value being uniquely determined by another via some rule.
Computation proceeds by repeatedly plugging in function definitions, until a result is
reached. The programmer only has to provide the definitions, while the mechanism for
evaluation is provided by the underlying machinery.
Logic programming is based on logic inference rules. The computer is to find an object
satisfying some given requirements, much like a solution to a logic puzzle. The program-
mer only defines what constitutes a solution, while the task of actually finding one or
all of them is left to the computer.

One argument often made in favor of declarative programming is that it lends itself
to formal reasoning. We do not have to content ourselves with describing what the
program makes the machine do. Instead, we have an understanding of what the machine
is supposed to return after executing a program. Thus, the algorithmic intention takes
the center stage.
Yet, it is not enough that a program has a meaning in an abstract sense. The machine
has to act in some way, otherwise we never get to see the result.
Take the logic programming language Prolog [Colmerauer and Roussel, 1996] as an
example, which probably even more than functional programming has the appeal of
performing magic. At least for beginners, the interpreter seems to generate solutions
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like a magician generates rabbits in his hat: We know they do not come out of nothing,
but the mechanism is hidden so well, we are willing to go along with the make-believe.
Yet, the illusion does not scale well. As soon as it comes to writing real programs
interacting with the user, the programmer has to know the order in which program parts
are evaluated. If a bad user input causes some program branch to fail, does backtracking
allow the user to change his input or does it try some other branch? Since one now has
to think about the mechanism, programming is again about telling the machine what to
do. In doing so, part of the illusion is destroyed.
The problem is that input and output are side-effects, which do not fit into the mathe-
matical theory the language is based upon. Suddenly, we can observe from the outside
how often certain parts of code are run. So when doing the transition from Prolog as a
language for describing constraints to Prolog as a general purpose language, we sacrifice
some of our ability of formal reasoning.

The pure functional language Haskell [Hudak et al., 2007] takes a different approach to
side-effects: Whenever some function potentially triggers a side-effect, this has to be
recorded in the function’s type. Such rigorous discipline is necessary because Haskell is
evaluated lazily. Expressions can be stored in unevaluated form and will remain like this
until the result is actually needed or the garbage collector disposes of the expression.
Lazy evaluation has initially been implemented to save runtime. Sticking to this design
choice has forced the language to rigorously distinguish between pure and effectful code.
Otherwise, an unevaluated getChar could be stored and then be evaluated at some later
point, leading to a confusing external behavior.
Haskell has found clever ways to deal with side-effects. In effectful parts of the program
– do-blocks – the programmer can pretend to be using an imperative language for a
‘virtual machine’. Here, statements have an order in which they need to be executed.
The range of functions of this ‘virtual machine’ can be adjusted as needed to make sure
only certain kinds of side-effects occur. If the ‘virtual machine’ has an underlying pure
implementation, it can be run inside pure parts of the program that ‘catch’ the effects.
Finally, communication with the outside world is governed by the same ‘virtual machine’
interface, only in this case it is wired to the actual machine.

The problem with effectful program parts is that they are less accessible to formal
reasoning. Many of the approved tools only work for the pure heart of the language and
are not directly applicable to effectful parts. Due to the type system we at least know
which parts are afflicted, but the situation is still unsatisfactory.
One solution would be to instead argue about the pure underlying implementation, if
there is one. This is not always the case and even if it is, we do not want to descend to
this level. After all, there is a reason why we wanted to hide the pure implementation
behind an interface while programming. So when we start to reason about the program,
why would we want to remove the inserted ceiling again?
Moreover, as soon as we do not know the details of the implementation anymore, this
approach is vain anyhow. Be it because we are arguing about a function that uses
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input/output-primitives or be it because we are arguing about a function that is ab-
stracted over the kind of effect it possesses – sometimes we just cannot take a look
inside the black box.

This leads to the first part (chapter 3) of this thesis: a study of effectful traver-
sals [McBride and Paterson, 2008]. Traversals are a special kind of effectful program, in
which an effectful function is applied to every entry of some data structure, collecting
the results in a structure of equal shape and combining the occurring effects. Despite
this programming pattern being widely-used and well established, the exact set of rules
that describe the expected behavior has been up for discussion until recently.
Our paper [Bird et al., 2013] shed light on the exact implications of the laws commonly
required for traversals: Every lawfully traversable structure is a finitary container [Ab-
bott et al., 2003], i.e., traversable objects can be split into shape and contents. The
result also provides tools to formally reason about effectful traversals in a convenient
and straightforward manner.
I have decided to rewrite the whole story here for various reasons. The underlying paper
is the work of five authors, so it also contains material that is not mine and a clarification
on who did what is due. This alone could have been accomplished by some paragraphs of
background about the development leading to the publication. Yet, rewriting the story
allows me to considerably shift the focus. There is also additional material that did not
make it into the paper because of the lack of space or because it has only been developed
later. The format of a thesis allows for matters to be discussed more thoroughly.

A language closely related to Haskell is the functional-logic language Curry [Hanus,
2013]. Like Haskell, it is evaluated lazily, but allowing nondeterminism as a built-in
feature. From the logic side Curry borrows logic variables and constraint solving.
Haskell also allows to write nondeterministic programs by using do-blocks and a ‘virtual
machine’ that does backtracking. Yet, the sequential order of statements forces the
machine to branch whenever a nondeterministic computation is encountered. Even if
the result of this computation is never used, the rest of the program still has to be run
again and again.
Having nondeterminism as a built-in feature, Curry evaluates nondeterministic expres-
sions lazily. Thus, the program only branches if the result of some computation actually
influences how the evaluation proceeds. A big part of the search space can often be
ruled out as a whole when some constraint is violated uniformly across it. In this re-
spect, Curry behaves differently than effectful Haskell with explicit nondeterminism.
Also, lazy nondeterministic evaluation can be used to implement logic variables and
constraint solving [Antoy and Hanus, 2006].

When it comes to reasoning formally about Curry, surprisingly little is known. The
close relationship to Haskell suggests that many of the known techniques might still
work, at least in modified form. Obviously, nondeterminism has to be taken into account
somehow and what we know about the pure part of Haskell does not simply carry over to
a nondeterministic setting. Also, Curry is not the same as Haskell with nondeterminism
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as an effect, as we have discussed above. So even if we knew how to argue about effectful
Haskell sufficiently well, these results would not simply carry over by viewing Curry as
nondeterministic Haskell. Instead, new techniques are necessary.
This motivates the second half (chapter 4) of this thesis: an investigation on the seman-
tics of Curry. The aiming point are free theorems [Wadler, 1989] for Curry because they
turned out to be so useful for Haskell. On the way a number of tools will be presented,
that hopefully prove useful in other contexts as well: A functional-style denotational
semantics for (a simplified version of) Curry is given and proved to be equivalent to
the standard operational semantics. Also, a translation procedure into SaLT (a lambda
calculus with sets), that makes Curry’s inherent nondeterminism visible, is defined.
Aspects of this have already been published before: A precursor of the denotational
semantics already appears in [Christiansen et al., 2011a]. A revised version of the deno-
tational semantics, the translation into SaLT, a parametricity theorem [Reynolds, 1983]
for SaLT, and how to formulate and prove some easy free theorems using these tools can
be found in [Mehner et al., 2014]. Establishing a connection between a functional-style
denotational and the operational semantics for Curry has already been attempted [Chris-
tiansen et al., 2011a], but never carried out. Here, the first proof is given of two such
semantics for a functional-logic language to be related.
This requires a lot of fine tuning in the denotational semantics, which led me to change
many of the details as compared to both [Christiansen et al., 2011a] and [Mehner et al.,
2014]. The parametricity theorem from [Mehner et al., 2014] is adapted to the latest
version of the denotational semantics, but also generalized to an inequational setting as
in [Johann and Voigtländer, 2006]. The language SaLT and the translation procedure
have been altered slightly to make working with translated code easier. Finally, short
cut fusion appears as a first application of a free theorem in Curry.

The remainder of this thesis is organized as follows: Some relevant foundations are
reviewed in chapter 2. Both of the two main chapters 3 and 4 start with a discussion
of the story behind their respective developments and a detailed description of their
respective internal structures. Afterwards, chapter 5 offers some closing remarks and
perspectives.
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Chapter 2

Foundations

Contents

2.1 Parametric Polymorphism and Free Theorems . . . . . . . . . 6

2.2 Effects and Monads . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Simulating State . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Introduction to Functional-Logic Programming . . . . . . . . 13

2.3.1 Logic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Failure and Non-Strictness . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.4 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

We assume the reader to be superficially familiar with the language Haskell [Hudak
et al., 2007] already. Yet, there are some concepts worth discussing before proceeding to
the main contents of this thesis. There is much more to be said concerning every one of
these foundational topics, but since there is a lot of other material available we confine
ourselves to the bare necessities.
Section 2.1 gives some superficial understanding of what free theorems [Wadler, 1989]
are, why they hold and what they can be used for. They will show up occasionally in
chapter 3, but are not in any way central there. They do play an important role in
chapter 4, for which they are the main motivation. Despite their importance for the
development, they only enter the picture towards the end.
Section 2.2 revolves around Haskell’s approach of monadic effect handling [Wadler, 1992].
Also, it introduces a running example for chapter 3 taken from [Hutton and Fulger, 2008].
The section is also relevant regarding Curry in different respects. For one thing, Curry
does input/output much the same way Haskell does. Also, the language SaLT we will
be using in some parts of chapter 4 handles nondeterminism in a monadic fashion.
The language Curry is introduced – again assuming some familiarity with Haskell – in
section 2.3.
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LATEX ◦ · ++ == ~ ∧ ∨ >>= λ ∀. ← → ⇒
ASCII . * ++ == <*> && || >>= \ forall . <- -> =>

Figure 2.1: ASCII representations of symbols used by lhs2TeX

Before we start, some conventions need to be pointed out that are used throughout
this thesis. This document is generated using lhs2TeX1 for setting code. Among other
features, it allows to replace the actual ASCII representation of operators in code by
more readable symbols. The correspondence is documented in figure 2.1 and allows to
translate the symbols back into proper code.
Haskell uses two different equality symbols, = and ==. The former is used in definitions
of functions and variables and the latter is the Boolean-valued equality test. In this
thesis, the single equality symbol is also used for semantic equivalence.
We distinguish between type variables appearing in type signatures of polymorphic func-
tions and arbitrary fixed types. The former have their usual meaning, abstract over types
in the language itself, and we denote them using lower case letters. The latter are vari-
ables on the meta-level, i.e., when applying the results presented here, all such variables
have to be replaced by proper types. Arbitrary fixed types are denoted using upper case
letters.
Occasionally, the ∀a.τ syntax is used to stress that a type is polymorphic. In Haskell this
is syntactically correct, though it requires the ExplicitForall or RankNTypes extension.
The same syntax will occasionally be used for Curry, even though it is not actually part
of the language.

2.1 Parametric Polymorphism and Free Theorems

In this section we provide a basic understanding of free theorems [Wadler, 1989] and
what they can be used for. We do not go into details on how to prove free theorems,
though. A more elaborate discussion and formal background can be found in [Wadler,
1989].
The short version is this: Free theorems are statements connecting different instantia-
tions of a parametrically polymorphic function and are derived from the function’s type
alone. The polymorphism being parametric is the essential requirement here because we
need the different instantiations to rely on the same code.

As an example, consider the function filter , which takes a predicate (i.e., a Boolean-
valued function) and a list and returns a list containing only those entries satisfying the
predicate:

filter :: ∀a.(a → Bool)→ [a ]→ [a ]
filter p [ ] = [ ]
filter p (x : xs) = if p x then x : filter p xs else filter p xs

1http://www.andres-loeh.de/lhs2tex
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The function filter is polymorphic, i.e., it can be used for different types (represented by
the type variable a) and always uses the above code.
For example, filter even [6, 3, 4, 5, 7, 8, 9] equals [6, 4, 8] and filter (6 ’k’) "haskell"

equals "hake".
The free theorem for filter (or rather for the type of filter) states that the equation

map g (filter (p ◦ g) xs) = filter p (map g xs) (2.1)

holds for all types A and B, functions g :: A → B and p :: B → Bool and lists xs :: [A].
Note that on the left hand side filter is instantiated at A, while on the right hand side
it is instantiated at B.
Equation (2.1) can be proved using equational reasoning and without relying on free
theorems. This is done by induction and distinguishing three cases regarding xs: The
list can be empty, it can be x : xs where p (g x ) holds or it can be x : xs where p (g x )
does not hold. All three cases are proved by using the definitions of filter and map.

The real power of free theorems is that equation (2.1) can be derived from the type
of filter alone. Thus the same equation is true for any function of that type, i.e.,
f :: ∀a.(a → Bool) → [a ] → [a ]. The function f could be a slight variation of filter
keeping all entries for which the predicate does not hold. It could also check whether all
list entries satisfy the predicate and if so, reverse the list’s order. Of course the function
could also do something silly like always return the second argument or always return
an empty list. We just do not know, but we still always know the equation to hold.
There are things the function f can certainly not do. For example f cannot generate
any new list entries that are not already present in the argument list. This is due to f
having a rather restricted interface to the entry type. The only way to get something of
the unknown entry type is by taking it from the list given as the second argument. The
predicate can be applied to some of the entries and further decisions may be based on
the outcome of such tests. Apart from that, entries can only be passed on in the result
list, possibly duplicating, reordering or dropping some of them.
Consider the two instantiations of f at A resp. B and the function arguments p ◦ g and
xs, resp. p and map g xs. The two lists xs and map g xs have the same length, so if
the behavior of f somehow depends on the length of the list, no difference is discernible.
Also, f can try to apply the predicate to list entries. So let x be some entry of the
list xs, which means the respective entry in map g xs is g x . Then p ◦ g applied to
x is p (g x ), which is the same as p applied to g x . Thus the resulting truth value
is the same in either instantiation and decisions based on this truth value are made in
analogous manner on either side.
Both instantiations of f behave “the same”, but f (p ◦ g) xs produces a list of type [A],
while f p (map g xs) produces a list of type [B]. Yet the entries of the latter list are
the results of applying g to the entries of the former list. So, g can as well be applied
afterwards by mapping it over the result of f (p ◦ g) xs, which is the left hand side of
equation (2.1) (for arbitrary f ).
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So what are free theorems good for? If two different expressions are provably semantically
equal, we can exchange one for the other in code without changing the meaning. Thus
we can always use the one which can be evaluated faster. For example the left hand
side of equation (2.1) will in general take more time than the right because g has to be
computed twice for some list entries.
There is a third expression that is also semantically equivalent to either side of equa-
tion (2.1):

foldr (λx ys → let y = g x in if p y then y : ys else ys) [ ] xs

This equivalence is an example of short cut fusion [Gill et al., 1993] and can also be de-
rived from free theorems though in a different way. The advantage of the third expression
is that the list only has to be traversed once. Building intermediate list structures and
then consuming them again right away takes up time and the last version saves this time
by doing the mapping and filtering in one go. We will take a closer look at short cut
fusion in section 4.9, when we prove similar results for Curry.
Free theorems can also help us to better understand a given polymorphic function.
By observing the behavior of the function at one type we also learn something about
how the function would behave at another type. In many cases there is some specific
type that already determines the function’s behavior completely, which for example is
very useful for testing [Bernardy et al., 2010]. Other applications include automatic
bidirectionalization [Voigtländer, 2009].

Finally, two warnings. Additional side conditions become necessary, as soon as we take
partiality and other side-effects into account [Wadler, 1989]. In actual Haskell, the
function f can create values of any type by using undefined . To account for this, g has
to be strict, i.e., send undefined to undefined . We will discuss this more thoroughly in
chapter 4.
The other warning is about different kinds of polymorphism. In the above example,
filter is polymorphic, i.e., can be used for different types, but independently of the type
the same code is used. We call this kind of polymorphism parametric [Strachey, 2000].
There is also ad-hoc polymorphism, which actually overloads a function name.
For example, the equality test (==) can also be used for many different types, but
depending on the type of the arguments, different pieces of code are executed. This
is reflected in the type, which is ∀a.Eq a ⇒ a → a → Bool and contains the type-
class [Wadler and Blott, 1989] constraint Eq a. The same type without the constraint,
i.e., ∀a.a → a → Bool, does not contain (==) and the free theorem for this type does
not hold for (==).

2.2 Effects and Monads

2.2.1 Simulating State

Haskell functions are functions in the mathematical sense, i.e., the result is uniquely
determined by the arguments. In particular, the result can only depend on the arguments
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and not on any global machine state like global variables or objects being allocated in a
heap.
The following example is from an unpublished paper [Hutton and Fulger, 2008] and will
play an important role throughout chapter 3. The task is simple: For the Tree type

data Tree a = Leaf a | Node (Tree a) (Tree a)

we want to write a function

relabel :: Tree a → Tree Integer

replacing the entries at the leaves with different integers.
While relabel (Leaf x ) = Leaf 0 is straightforward, the Node case is problematic: After
relabel has been applied to the left subtree, we do not know which labels have been used.
Since we cannot store the information in a counter variable, the recursive calls need to
return the next free label along with the labeled subtree. Also, in order for the extra
information to be of any use, the next recursive call has to take the next label as an
additional argument. Therefore we need a helper function doing the actual work, while
relabel will only call the helper. We define label :

label :: Tree a → Integer→ (Tree Integer, Integer)
label (Leaf ) n = (Leaf n,n + 1)
label (Node l r) n =

let
(l ′ ,n ′ ) = label l n
(r ′,n ′′) = label r n ′

in (Node l ′ r ′,n ′′)

The first rule uses the current label and returns the next label. The second rule passes
the initial label n to the first recursive call, passes the now smallest unused label n ′ on
to the second recursive call and then returns the final state n ′′. Using label we can define
relabel :

relabel :: Tree a → Tree Integer
relabel t = fst (label t 0)

This solution does the job, but passing on the state by hand all the time is tedious and
error-prone.
A better solution is to abstract stateful computations. We define a wrapper State,
where s represents the type of whatever information we want to propagate and a is the
computation’s result type2:

newtype State s a = State {runState :: s → (a, s)}
2 This usually is part of Control.Monad.State, though the library implementation is more complicated.

The library does not provide the value level constructor State, so state should be used instead.
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Computations of this kind can be combined:

(>>=) :: State s a → (a → State s b)→ State s b
u >>= v = State (λs →

let
(a, s ′ ) = runState u s
(b , s ′′) = runState (v a) s ′

in (b, s ′′))

The first argument of the bind operator is a stateful computation producing an a. The
second argument is a function that takes an a (and implicitly also a state) and returns
a b (and a state). Together they form a computation that produces a result of type b.
We also define the following functions:

(>>) :: State s a → State s b → State s b
u >> v = u >>= λ → v

return :: a → State s a
return a = State (λs → (a, s))

get :: State s s
get = State (λs → (s, s))

put :: s → State s ()
put s = State (λ → ((), s))

evalState :: State s a → s → a
evalState u s = fst (runState u s)

The (>>) operator allows to combine computations without using the result of the first
one in the second one. The return function produces a trivial computation that simply
returns a fixed value without touching the state. To access the state and manipulate it,
get and put can be used, where put has the dummy return type (). Finally evalState is
an alternative to runState that forgets the final state.
Using the State abstraction, we can give label and relabel in a cleaner form:

fresh :: State Int Int
fresh =

get >>= λn →
put (n + 1)>>
return n

label :: Tree a → State Int (Tree Int)
label (Leaf x ) = fresh >>= λn → return (Leaf n)
label (Node l r) =

label l >>= λl ′ →
label r >>= λr ′ →
return (Node l ′ r ′)
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relabel :: Tree a → Tree Int
relabel t = evalState (label t) 0

Note how we can read fresh as an imperative program: read the state, call it n, set the
state to be n + 1, return n.

The state abstraction is also how Haskell interacts with the outside world [Peyton Jones,
2002]. There is a special type constructor IO for input/output, which we can think of
as State World, where World is some opaque primitive type representing the state of the
outside world. A function like putStrLn :: String → IO () therefore can be thought of
as taking a string and a world and producing a new world (and an empty tuple). The
new world is much like the old one, only that the given string has been written to the
standard output. The abstraction makes sure that whatever step is performed next is
applied to the new world.
A World can never be accessed directly, i.e., one cannot look into it, manipulate it,
duplicate it, dispose of it or generate a new one from scratch. Parts of the world can be
accessed or changed, but only using a given set of predefined IO operations.

2.2.2 Monads

Propagation of a state is a kind of side-effect because in order to know what a function
does we also have to take into account how the state changes and influences the result. A
similar trick allows to perform nondeterministic computations [Wadler, 1985]: Instead of
functions from A to B we use functions from A to [B]. Here, [ ] is the list type constructor,
so we allow several results collected in a list but also none. Such list-valued functions
can be combined in a similar manner:

concatBy :: [a ]→ (a → [b ])→ [b ]
xs ‘concatBy ‘ f = concat (map f xs)

(!>>) :: [a ]→ [b ]→ [b ]
xs !>> ys = xs ‘concatBy ‘ λ → ys

The function concatBy is like building unions: The lists f x for all entries x of xs
are concatenated. The (!>>) combinator may seem surprising at first because it only
concatenates copies of ys, but is especially useful in combination with the guard function:

guard :: Bool→ [()]
guard True = [()]
guard False = [ ]

Since failing computations are represented by empty lists, guard enforces some condition
to be true. A successful computation needs to have some value, so we use a dummy entry
(). Then guard b !>> ys checks whether b holds and, if so, returns ys.
Using the above combinators, we can define the list of all Pythagorean triples (with
entries at most 100):
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[1 . . 100] ‘concatBy ‘ λx →
[1 . . 100] ‘concatBy ‘ λy →
[1 . . 100] ‘concatBy ‘ λz →
guard (x 2 + y2 == z 2) !>>
[(x , y , z )]

The same can of course be achieved using list comprehensions.

There are many more types of side-effect that can be simulated by similar tricks. A
common abstraction covering all of them in homogeneous manner are monads [Wadler,
1992]:

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

(>>) :: (Monad m)⇒ m a → m b → m b
u >> v = u >>= λ → v

The return function converts a value to a computation that does nothing but yield the
given result. The (>>=) operator, pronounced bind, takes an initial computation and a so
called continuation, i.e., a computation depending on the result of the first computation,
and combines both. The instance for State s uses the definitions of return and (>>=) we
have already seen. The instance for lists is given by return x = [x ] and (>>=) = concatBy .
Another example is computations that can fail, i.e., partial functions:

data Maybe a = Nothing | Just a

instance Monad Maybe where
return = Just
Nothing >>= v = Nothing
Just x >>= v = v x

Failure is represented by Nothing and success by Just, where the field of Just is the result.
When trying to pass the result of a failed computation to another computation, the
overall computation fails as well. Otherwise, if there is an actual result, the continuation
is applied to this result.

Monads have a special syntax in Haskell, the do-block. The definition

fresh :: State Int Int
fresh =

get >>= λn →
put (n + 1)>>
return n

can be given equivalently as
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fresh :: State Int Int
fresh = do

n ← get
put (n + 1)
return n

thus hiding the (>>=) and (>>) operators and binding variables with a left arrow. The
do-notation can be used for all monads, including user-defined type constructors with
custom instances of Monad.

Every monad instance is required to satisfy three monad laws, which we only give for
the sake of completeness:

return x >>= v = v x

u >>= return = u

u >>= (λx → v x >>= w) = (u >>= v)>>= w

The last law makes sure composition of computations is associative, which justifies the
linear structure of do-blocks. The instances we have seen so far are all correct, but
we will not carry out the proofs. We will encounter these laws and laws for other type
classes a lot throughout this thesis.

2.3 Introduction to Functional-Logic Programming

Curry [Hanus, 2013] is a functional-logic language, combining concepts from both func-
tional and logic programming. It is very similar to Haskell in many respects and as we
assume the reader to know at least some Haskell, we will introduce Curry by explaining
the differences.

2.3.1 Logic Features

Curry is nondeterministic, i.e., a program can have several results instead of just (or
rather at most) one. There are several ways to introduce nondeterminism and one of
them is the binary choice operator (?), which can return either of its arguments. This
allows to define a function coin:

coin :: Int
coin = 0 ? 1

Unlike Haskell’s mplus the binary choice operator does not need any effect wrapper (i.e.,
a monad) and simply has type (?) :: a → a → a.
Another way to introduce nondeterminism is by giving overlapping rules for a function.
Consider the following example function computing all suffixes of a list:
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suffixes :: [a ] → [a ]
suffixes l = l
suffixes (x : xs) = suffixes xs

The first rule always matches and states that any list is a suffix of itself. The second
rule only applies to non-empty lists. In this situation the suffixes of xs are also suffixes
of the longer list x : xs.
Thus suffixes [1, 2] can evaluate to [1, 2] using the first rule and also to suffixes [2] using
the second. In the latter case the next evaluation step can produce [2] or suffixes [ ].
Since the empty list [ ] does not match the pattern (x : xs), the call suffixes [ ] can only
be evaluated using the first rule, thus resulting in [ ]. The three possible results [1, 2],
[2] and [ ] are in fact all the suffixes of [1, 2].
The same function definition is also valid in Haskell. Since the first rule always applies,
the second rule is irrelevant and suffixes is just the identity function restricted to lists.
If we wanted to compute all suffixes of a given list in Haskell, we would have to make
the nondeterminism explicit by returning a list of suffixes.
Curry’s choice operator can be implemented using overlapping rules as well:

(?) :: a → a → a
x ? y = x
x ? y = y

Conversely, overlapping rules can be represented by case splitting and binary choice, but
this direction is more complicated (cf. the section on definitional trees in [Hanus, 2006]).

In Curry, variables can be logic, i.e., not bound to an expression a priori, but only
determined by constraints. Consider the following alternative definition of the suffixes
function:

suffixes ′ :: [a ]→ [a ]
suffixes ′ l = let p, s free in p ++ s =:= l &> s

On the right hand side p and s are logic variables, which in our example represent lists.
The (++) operator concatenates these lists and the result is compared to the given list l
using constraint equality, written (=:=). Finally the ( &>) operator checks whether the
constraint is satisfied and, if so, returns s as a result.
Writing the function like this reflects the definition of being a suffix: s is a suffix of l if
there is a list p, such that the concatenation of p and s equals l . This is very close to how
one would define suffixes in Prolog [Colmerauer and Roussel, 1996], i.e., suffix(L,S)
:- append(P,S,L). The two implementations suffixes and suffixes ′ are not really equal,
but we defer the discussion of the (somewhat subtle) difference to the section about
laziness.

In Curry, patterns do not have to be linear, i.e., the same variable may appear multiple
times in a pattern. Consider for example the following function performing a lookup in
an association list:
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lookup :: a → [(a, b)] → b
lookup k ((k , v) : ) = v
lookup k ( : ps) = lookup k ps

The variable k appears twice in the pattern of the first rule. This is a shorthand notation
for lookup k ((k ′, v) : ) = k =:= k ′ &> v , making the pattern linear by introducing a
constraint. Like in Haskell, the underscore is a wild-card pattern, i.e., represents parts
of patterns that do not appear on the right hand side of the rule and thus do not need
to have a name.

2.3.2 Failure and Non-Strictness

Like Haskell, Curry is non-strict, i.e., an expression can have one or more results even
if it contains a subexpression that does not. For example let x = failed in True results
in True even though the primitive failed by its definition admits no result at all. In
both languages this is implemented by lazy evaluation, i.e., if a variable is bound to an
expression, the expression is stored in a heap and remains unevaluated until evaluation
is forced or the garbage collector disposes of it. In Curry, failing computations do not
cause the program to abort but to backtrack, making failed a natural counterpart to
choice.
Constraint equality (=:=) however is strict, i.e., two expressions are only equal if they
can be reduced to equal constructor terms. An infinite list cannot be written out using
finitely many constructors and so does not equal any list (not even itself). Thus if we call
suffixes ′ (the latter version using concatenation and constraint equality) for an infinite
list l , there is no way to satisfy the constraint p ++ s =:= l and no result will be returned.
On the other hand, suffixes (the former, recursive version) works well for infinite lists
because it can return whatever is left of the given list after having cut off some entries.

2.3.3 Sharing

Sometimes intermediate results are supposed to be shared between different parts of a
program. In Haskell this is only a question of runtime: Evaluating the same expression
twice will result in the same value and is thus unnecessary but not harmful. In a
nondeterministic language, evaluating the same expression twice may yield two different
results and therefore sharing becomes a question of semantic relevance.
In Curry, variables and functions are two separate concepts and knowing the difference
is important because it influences sharing. In a nutshell, variables represent one value
throughout their scope and every lookup will produce the same result (this is referred
to as call-time choice nondeterminism). Functions on the other hand are evaluated
independently every time they are invoked.
Whether an identifier is a variable or a function is not determined by its type, but by
where and how the identifier is introduced. Functions are introduced by rules either on
the top-level or locally in a let or where clause. Functions can also be imported from
other modules or be predefined by the language. Variables are always local and can be
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introduced in various different places: as function arguments (both in rules and lambda
abstractions), in case statements or in let or where clauses.
Unfortunately, there is a small syntactic overlap, where, according to the above, an
identifier could be either: The local binding let f = . . . in . . . could be interpreted as
a nullary local function or as a trivial pattern only consisting of the variable f . This
actually makes a difference in some cases, so the ambiguity has to be resolved somehow
and is decided in favor of the identifier being a variable. The same problem does not occur
on the top-level, because variables are never in the global scope. Even the mathematical
constant π therefore counts as a function, if it is defined on the top-level.
There are different case modes, i.e., conventions for how functions, constructors and
variables should be named. Coming from a Haskell background, we use Haskell mode –
uppercase for constructors and lowercase for functions and variables. In order to still be
able to tell the difference between variables and functions, variable names will be letters
and function names will be words. Here, we take letters to also include xn, xs and x ′.
Functions have an arity, which is the number of arguments given in the function’s rules
(this number has to coincide for all rules). A partial application of a function can be
passed around and shared. As soon as the application is saturated, i.e., the number of
given arguments is (at least) the arity, not the expression will be shared but its result.

Let us discuss some examples. Since coin is defined on the top-level, it is a function.
Therefore coin + coin contains two independent calls, both of which can yield 0 or 1 and
the sum has three possible values: 0, 1 and 2.
If we want to use the same value twice, we have to bind it to a name. The expression
let c = coin in c + c only has two possible values (0 and 2), because c is a variable and
both occurrences of c refer to the same value (either 0 or 1). Results are also shared
whenever they are passed to a function as an argument. If we define a function double

double :: Int→ Int
double n = n + n

then the expression double coin also only has 0 and 2 as results. This behavior is called
call-time choice because one should think of the choice being made when the function is
called (actually, the choice is only made when the argument is needed).
If we want to inline the double function we have to make sure the argument is still shared.
Thus double coin may be replaced by let c = coin in c + c, but not by coin + coin.
Conversely, we sometimes want to disable sharing explicitly, but without moving the
nondeterministic computation to the top-level. This can be done using dummy argu-
ments as in let delayed () = coin in delayed () + delayed (). Here, we have a unary local
function delayed , which can only be evaluated after an argument has been given, even
though the argument does not appear in the body. Here, 1 is a possible result because
the function delayed is evaluated twice and every copy has its own result of coin.

To get a feeling for the interaction between higher-order features and nondeterminism,
let us take the example a bit further. The expression map ((+) coin) [0, 0] only produces
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[0, 0] and [1, 1], but not [0, 1] or [1, 0] because coin is only called once and produces
either 0 or 1. The same is true for let f = (+) coin in map f [0, 0], where f is a local
function-typed variable.
What if we made the partial application (+) coin a function? Consider two possible
ways to do so:

mayInc0 :: Int→ Int
mayInc0 = (+) coin

mayInc1 :: Int→ Int
mayInc1 x = coin + x

While map mayInc0 [0, 0] still only produces lists with equal entries, map mayInc1 [0, 0]
suddenly also yields [0, 1] and [1, 0] as possible results. The former function is nullary,
so every call is a saturated application, and in particular, map mayInc0 [0, 0] is the
same as map ((+) coin) [0, 0]. The function maynInc1 is unary, and since no argument
is given to it in map mayInc1 [0, 0], it is passed to the higher order function map
unevaluated. The function map then applies mayInc1 twice and both applications are
evaluated independently, which leads to additional results.
The two functions mayInc0 and mayInc1 seem to be the same because of eta equivalence.
Yet to the contrary, they form a counter-example to eta equivalence in Curry. The
example also shows the importance of the concept of arity and that arity is not encoded
in the type.

Both functions and variables can be defined recursively, but due to the different ways of
handling nondeterminism, the two kinds of recursion behave differently. If we define a
(nullary) top-level function zeros by

zeros :: [ Int]
zeros = [ ] ? 0 : zeros

it will produce all lists only having entries 0. Since every call is evaluated independently,
the stack of recursive calls may end at any level if the left alternative is chosen.
If on the other hand we define a variable let zs = [ ] ? 0 : zs in . . . it can evaluate to
two head normal forms zs = [ ] and zs = 0 : zs. Once either head normal form has been
chosen, all subsequent lookups result in the same head normal form. In particular, if the
latter has been chosen, the recursive lookup in the tail refers back to the list zs itself.
Viewed from the outside, two lists are produced: An empty list and an infinite list, but
no nonempty finite list.

2.3.4 Type System

There are some features of Haskell that are not inherited by Curry, especially when it
comes to the type system. Most prominently, Curry – at least the current mainstream
version – has no typeclasses [Wadler and Blott, 1989]. The absence of this feature leads
to various small changes. Numeric literals and operators cannot be overloaded and have
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to be disambiguated by hand. For example, addition for floats has to be written as (+.)
to distinguish it from integer addition and the monadic bind (>>=) can only be used for
the IO monad.
On the other hand, the equality test (==) is overloaded in an ad-hoc manner and can
be used for any data type. It checks whether the constructors match and descends
recursively to the fields like the generic instance in Haskell would. If one wants to use
some kind of equivalence relation, it has to have a different name. Unfortunately, the
type system does not prohibit testing functions for equality, but programs may fail at
runtime if the equality test is executed.
This brings us back to the two functions suffixes and suffixes ′. Another difference lies in
the fact that the more functional version suffixes never inspects list entries but just passes
them on, while suffixes ′ checks them for equality. Thus when trying to use suffixes ′ for
a list of functions, it might not give any result or cause the program to abort.
There are some more features around Haskell’s type system that could be inherited by
Curry but are not: Curry does not have higher rank types, i.e., functions can be poly-
morphic but all type variables are (implicitly) all-quantified outside the type expression.
Also, there are no type variables of kind other than ∗ and no generalized algebraic data
types.
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This chapter is a study of idiomatic traversals, which are the functional programming
counterpart of iterating over a data structure. In Haskell this is modeled by the typeclass
Traversable, which provides a function

traverse :: (Traversable t ,Applicative a)⇒ (x → a y)→ t x → a (t y),

that allows to apply an effectful function to every entry of some structure, collecting the
results in a structure of the same shape and combining the effects into a single operation.
Typical examples for traversable structures are lists, trees of all sorts, maps and arrays.
The Traversable interface abstracts both over the type of effect (represented by a for
Applicative in the above signature) and the data structure at the same time, making it
a valuable tool in producing well-structured and reusable code. Since version 4.8.0.0 of
GHC’s base package, Traversable is part of the Prelude.1

The Traversable typeclass has been introduced in [McBride and Paterson, 2008] along
with the typeclass Applicative (appearing as a constraint in the above signature). Ap-
plicatives are also called idioms and we will use both terms with the understanding
that Applicative is the implementation and idiom is the concept. Idioms are similar to
monads [Moggi, 1991] in that they allow to combine effectful computations. The ways
to do so are restricted in comparison to monads, but on the other hand idioms are a real
superclass of monads, i.e., there are additional instances.
Even though monads are ubiquitous in Haskell, the natural way to handle effects in
the context of traversals are idioms. Traversals generally do not need the full power of
monads, so it would be an arbitrary restriction to only allow those with monadic effects.
Even worse, this restriction would exclude traversals in the Const idiom, which allows to
understand monoids as idioms and makes folds a special case of traversals. Later we will
see more reasons why idioms and traversals make such a good match. The Applicative
class has also gained a lot of importance in version 4.8.0.0 of GHC’s base package, as it
is now defined in the Prelude, where it is a superclass of Monad. We will take a deeper
look at applicatives in section 3.1.

The point of typeclasses is having a joint interface to analogous functionalities of different
types. The implementation of the methods should be irrelevant to whoever writes code
calling the methods. When we reason about code using typeclasses, we also want to
have a ‘joint interface’. Equational reasoning about functions abstracted over typeclasses
should not rely on the implementations of the methods for any particular instance. Thus,
the methods need a counterpart for arguing, which are laws.
A proof relying only on the laws of some typeclass interface is guaranteed to work
equally well for all (lawful) instances. Even if there only is one instance we are interested
in, there still is good reason to conduct the proof in an abstract manner: Should the
implementation ever be changed, an abstract proof remains valid.
Still another reason applies to the IO monad handling the connection between programs
and the outside world. This monad cannot be implemented in the language itself, so we

1http://hackage.haskell.org/package/base-4.8.0.0
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are left with the choice between a black box and Pandora’s box: Either we treat IO as an
opaque primitive and learn to reason about it in an appropriate manner or we unfold the
definition and give up our privilege of arguing about functional programs rather than
imperative programs.
Gibbons and Hinze [2011] give a number of example proofs for simple monadic programs.
These proofs are conducted on the interface level and do not rely on implementations.
Can something similar be achieved for the Traversable class? What are suitable laws and
how can we reason about traversals without relying on their implementations?

McBride and Paterson [2008] give laws for the Applicative class ((3.3) – (3.6)) and though
these laws take getting used to, there is no serious discussion about whether this set of
laws is appropriate. When it comes to the Traversable class, the same paper gives a
good intuition what a traversal should do, but no clear characterization. The paper
does give lists and trees as examples and offers a recipe for defining a suitable traversal
for all tree-like data types. The paper does however not specify whether there might
be other equally good traversals or more generally what constitutes a good traversal.
For example the recipe always gives depth-first traversals (just like GHC’s automatic
deriving mechanism does), but in some situations a breadth-first traversal might be
better suited. On the negative side, McBride and Paterson [2008] discuss the partially
applied function arrow (→) X (where X is some fixed concrete type) and reason that it
is not traversable. This somehow points to only finite structures being traversable, i.e.,
the number of entries has to be a finite number.
A more detailed discussion can be found in [Gibbons and Oliveira, 2009]. There some
properties are listed which seem reasonable as laws and which apply to traversals deemed
correct in an intuitive sense. Using a dummy applicative that does not allow any real
effects, mapping a pure function over the structure can be formulated as a traversal.
One of the laws (which later was dubbed identity- or unitarity law) basically forces this
‘mapping by traversing’ to coincide with the predefined functor instance. This law rules
out all traversals that change the shape of the structure in any way, i.e., traversals that
drop, reorder or duplicate parts of the structure. Also, if a traversal does not visit all
entries, the unvisited entries inevitably are lost, which violates the identity law.
The only type of unwanted behavior that seems hard to rule out is duplication of effects.
A traversal might apply the effectful function to some entry more than once and thus
trigger unnecessary effects, but then only use one of the results. Such traversals are
called duplicating or duplicitous and Gibbons and Oliveira [2009] wanted to rule them
out, but it remained a challenge to find a good formulation to do so.
The answer turned out to be a law later called composition- or linearity law . This law
is due to Ross Paterson and was published in [Gibbons and Oliveira, 2009] already,
but neither of them realized the full potential. Jaskelioff and Rypacek [2012] show
that a particular minimal example of a duplicating traversal violates the composition
law. They suggest this law might be enough to detect duplicating behavior in general.
Thus Gibbons and Oliveira [2009] seem to have given all the laws for traversals already
and Jaskelioff and Rypacek [2012] propose to change the class definition to actually
include these laws. They give a number of justifications for their proposal, one of which
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is the aforementioned insight about the surprising connection between the composition
law and duplicating traversals. Another point the paper makes is that a reasonably big
class of types called finitary containers [Abbott et al., 2003] are lawfully traversable
w.r.t. these laws. Finally the laws have a good motivation in category theory. We will
discuss the Traversable class and its laws (plus some easy consequences) in section 3.2.

The laws having surprising and far reaching consequences seems to be a good thing,
but there is a downside. Given a question about some concrete traversal, it is rather
unclear how to use them to answer the question. Gibbons and Oliveira [2009] themselves
did not immediately realize the full implications of their laws, so how can the average
Haskell programmer be expected to do so? One concrete question concerning a traversal
appears in [Hutton and Fulger, 2008]. For a given tree type, they define a traversal that
replaces all entries with consecutive numbers. They then prove that collecting all used
labels produces a list with no duplicates.
The obvious generalization is to ask the same question for arbitrary traversable types:
Does a lawful traversal behave the same way, i.e., will labeling and then collecting the
labels lead to a list without duplicates? This question has been answered positive in
our paper [Bird et al., 2013] for a slightly different labeling and collecting strategy and
using a lot of machinery. In this thesis I first take a different path and prove the claim
using the laws only (section 3.3). Also I prove the claim in (a direct generalization of)
the original formulation and do not alter the labeling process in any way as we did in
the paper.
As often, being restricted to primitive means makes things harder and the proof is neither
straightforward nor pretty. Yet it serves to show something can be done using the laws
only. It however also serves to show that this is not a good way to approach the matter,
as auxiliary concepts have to be introduced which are hard to guess.

The problem regarding the laws seems to be that they do not provide a good intuition for
what traversing actually does. We would like to reason about traversals like we reason
about iterators, using notions of ‘shape’, ‘contents’, ‘entry’ and entries having some
order. Such notions exist in the context of finitary containers, which are traversable as
Jaskelioff and Rypacek [2012] have shown.
A finitary container is given by a set of shapes, each of which has an arity . An n-ary
shape can be filled with n objects of some common, arbitrary type, which thus become
the contents. Conversely, given a container we can dissect it into its shape and its
contents. The obvious way to traverse such a structure is to first dissect it, traverse the
list of contents and use the list of results to then fill the shape again. Finitary containers
will be discussed in section 3.4.

The proof for the generalized tree labeling claim we gave in [Bird et al., 2013] consists
of two steps. The first step is proving a general statement about lawful traversals called
representation theorem. The theorem states that every lawfully traversable type is indeed
a finitary container, so the converse of the theorem by Jaskelioff and Rypacek [2012] is
also true and both concepts are actually the same. Moreover, every lawful traversal
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corresponds to the standard traversal for finitary containers. This allows us to switch
back and forth between the two different viewpoints.
The theorem uses a somewhat nonstandard notion of shape, which is make functions.
A make function is a polymorphic function of any arity returning a traversable (subject
to some laws). The make function therefore intuitively is a shape with a number of
holes. In section 3.4 we will give a more formal correspondence between make functions
and usual notions of shape. This section is more theoretic than the rest of this chapter
and uses some concepts from category theory. We will not need any results from this
section later – it merely serves to shed some light on the notion of make function and
its connection to finitary containers.
The proof of the representation theorem is constructive, i.e., the proof reveals how to
actually find the shape/contents decomposition of a traversable. This is done by a special
traversal using the so called batch idiom, which is an example of a free idiom [Capriotti
and Kaposi, 2014]. The result of the special batch traversal determines the result of all
other traversals, in particular shape and contents can be extracted. Section 3.5 contains
the representation theorem together with its proof.

In [Bird et al., 2013] the second step in proving the tree labeling claim is deriving a new
law about monadic traversals called inversion law : If one effectful function cancels the
effects of another, i.e., they satisfy

u x >>= v = return x (3.1)

then also
traverse u t >>= treverse v = return t (3.2)

holds where treverse is a backwards traversal of the data structure. Applying this inver-
sion law to a particular pair of functions directly leads to the desired statement about
labeling. The statement is not completely the same though, as the inversion law can
only prove results about invertible functions. Thus, a slight reformulation of the labeling
procedure is necessary to satisfy the invertibility requirement. Both the reformulation
of the claim and the inversion law are by Richard Bird and Jeremy Gibbons.
Even though the representation theorem has initially been developed to prove the inver-
sion law, once the theorem is at hand there is an easier proof of the labeling claim in
its original formulation. So in this thesis the inversion law only appears as an example
application of the representation theorem (the direct proof being another one).

The equivalence between traversable types and finitary containers has been proved in-
dependently by Jaskelioff and O’Connor [2015]. The statement given therein is more
general – for example it also covers containers with several entry types or traversals
where the effect wrapper is something weaker than an idiom. The proof relies on similar
ideas, but is presented in a very different manner – most notably, a lot of category theory
is used. They also provide a machine-checkable version of the proof written in Coq.
The category theory approach by Jaskelioff and O’Connor [2015] and my approach by
equational reasoning are two complementary views of the same phenomenon. The batch
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idiom has a very clear, category theoretical motivation, which is connected to being a
(particular) free idiom. On the other hand, the batch idiom can be given in a very con-
crete form in Haskell. Taking the latter viewpoint, all the properties of the batch idiom
can be checked by hand without knowing anything about the theoretical background.
Another advantage of the concrete approach is, that it is by its very nature easier to
apply. The representation theorem is formulated in Haskell and ready to be used for
equational reasoning. We will see some examples in section 3.6 and further examples
can be found in [Matsuda and Wang, 2015].

In this chapter we take the somewhat artificial viewpoint of our language being total. We
do not allow general recursion, but only structural recursion like in figure 3.1. Therefore
we do not have undefined or partially defined values. Most of all, the list type does not
contain infinite lists. If we insisted on having them, we could always add a constructor
with type (Nat→ a)→ [a ] to include infinite lists.
There are three main reasons for this alteration. First of all, some effects do not interact
well with infinite structures. If a traversal runs a potentially failing computation for every
entry of some structure, the overall computation succeeds if and only if every single
computation does. If the number of entries is infinite and all computations succeed,
the program does not terminate (while failure can be detected after a finite number of
iterations). Instead of having to repeat the restriction of equations only holding for total
values, we incorporate the restriction into the global setting. Second, not having infinite
data structures enables proofs by induction, which we will do a lot. And finally, one of
the steps in the proof of the representation theorem crucially relies on every value being
given by a finite number of constructors.

Finally, some conventions regarding the names of types. Even though it is common
practice to use a, b, c and so on for type variables, we use x , y and z for arbitrary types.
The letters a, b and c are reserved for applicatives.

3.1 Idioms

In the introduction of this chapter we have argued that the natural effect system to
consider in the context of traversals is idioms, which we shall thus take a closer look
at. Idioms have only recently claimed their place as a superclass of monad and remain
the less known effect system. Therefore we start with monads and define Applicative as
a restricted interface. Later we will encounter additional instances for this restricted
interface.

3.1.1 Monadic Idioms

Consider do-blocks of the special form

do
x0 ← u0
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. . .
xn−1 ← un−1

return (f x0 . . . xn−1)

where no xi appears in any of the ui. Any do-block can be adjusted to end in a return
statement using the monad laws. Also if a line does not contain a binding xi ← we
can always add a dummy variable and then ignore the corresponding argument in the
function f . The only crucial restriction is none of the ui depending on any of the xi. Take
stateful computations as an example. The state will be passed on from one computation
to the next, but no computation can depend on the result of an earlier one. In the final
expression, all results can be used, but no further changes can be made to the state.
If the effect is nondeterminism, no computation ui can depend on any previous choice,
making the search space an n-fold Cartesian product.
This gives us a good initial understanding of what idioms can do. When it comes to the
syntax McBride and Paterson [2008] propose

Jf u0 . . . un−1K,

which is shorter than the do-block as it omits naming all variables. The standard way
to write the above do-block in idiomatic syntax however is:

pure f ~ u0 ~ . . .~ un−1

The (~) operator is called idiomatic application and should be thought of as a variant
of function application that is able to deal with effects. It is thus application in a
figurative or idiomatic sense. In particular, idiomatic application – like actual application
– associates to the left. If the ui are atomic (i.e., not the result of subcomputations
combined with (~)) the above is sometimes referred to as canonical form of an idiomatic
computation. For monadic idioms we will switch back and forth freely between the do-
block notation and idiomatic syntax.
The class declaration is given by:

infixl 4 ~

class Applicative a where
pure :: x → a x
(~) :: a (x → y)→ a x → a y

liftA :: Applicative a ⇒ (x → y)→ a x → a y
liftA f u = pure f ~ u

In the GHC library2 the Applicative class has Functor as a superclass constraint. Here,
we will however ignore this constraint and use liftA (from Control.Applicative) instead of
fmap (which is a method of the Functor class).

2http://hackage.haskell.org/package/base/docs/Prelude.html#t:Applicative
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data Tree x = Leaf x | Node (Tree x ) (Tree x )

fresh :: State Int Int
fresh = do

n ← get
put (n + 1)
return n

label :: Tree x → State Int (Tree Int)
label (Leaf x ) = do

n ← fresh
return (Leaf n)

label (Node l r) = do
l ′ ← label l
r ′ ← label r
return (Node l ′ r ′)

relabel :: Tree x → Tree Int
relabel t = evalState (label t) 0

Figure 3.1: Tree labeling using monadic syntax

Figure 3.1 shows the labeling procedure defined by Hutton and Fulger [2008]. They also
give an equivalent way to define label using the applicative interface:

label :: Tree x → State Int (Tree Int)
label (Leaf x ) = pure Leaf ~ fresh
label (Node l r) = pure Node~ label l ~ label r

We cannot translate the do-block in the definition of fresh into applicative syntax though,
as the put (n +1) statement uses the variable n bound by the previous statement. Here,
the Applicative instance for State s is:3

instance Applicative (State s) where
pure x = State (λs → (x , s))
State u ~ State v = State (λs →

let (f , s ′) = u s
(x , s ′′) = v s ′

in (f x , s ′′))

Actually there is no need to give this instance in detail, as for all monads pure x =
return x and u ~ v = ap u v gives the corresponding applicative instance. Here, ap is
defined like this:

3We assume the definition newtype State s x = State {runState ::λs → (x , s)} from the introduction
(section 2.2).
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ap :: Monad m ⇒ m (x → y)→ m x → m y
ap u v = do

f ← u
x ← v
return (f x )

Every monad is an idiom and every function written in applicative syntax with effects
in that monad can be translated back to monadic syntax. We will take the viewpoint
of the applicative instance being uniquely determined by the monad instance as above
and thus we do not give any further applicative instances for monads explicitly.

3.1.2 Other Idioms

Even though there are other reasons for restricting the interface, it would still seem
kind of pointless to introduce a superclass of Monad that does not have any additional
instances. The number of (atomic) non-monadic idioms is small, but there are some. In
addition there are some constructions that produce new idioms out of given ones. This
section only describes the constructions we will use at some point, but many more can
be found in [Paterson, 2012] and [Capriotti and Kaposi, 2014]. These constructions can
of course be applied to monads, but then the result only is an idiom in general.

Atomic Non-monadic Idioms

Lists are an instance of Monad and represent nondeterministic computations. Therefore
they also have an Applicative instance. There is another possible idiom structure for lists
with no corresponding monad structure, which McBride and Paterson [2008] give as one
of their motivating examples for the Applicative class. To not get confused with the
standard instance, the wrapper ZipList is used (cf. Control.Applicative4). Ziplists should
be thought of as (finite or infinite) streams of values that can be combined at every point
in time.

newtype ZipList x = ZipList [x ]

instance Applicative ZipList where
pure x = ZipList (repeat x )
ZipList fs ~ ZipList xs = ZipList (zipWith (λf x → f x ) fs xs)

The pure method produces an infinite list of copies of the same element. The i-th entry
of zipWith (λf x → f x ) fs xs is the i-th entry of fs applied to the i-th entry of xs. That
is, unless one of the argument lists is too short to have an i-th entry, in which case the
result also ends.
The functional reactive language Elm5 uses a similar concept. There the Signal type
constructor represents values depending on the actual time and has an interface similar
to Haskell’s Applicative interface.

4http://hackage.haskell.org/package/base/docs/Control-Applicative.html#t:ZipList
5http://elm-lang.org/
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The second important idiom that is not a monad is the Const type constructor, which is
introduced as Accy (for accumulating) in [McBride and Paterson, 2008]. The following
definition can be found in Control.Applicative6:

newtype Const x y = Const {getConst :: x }
instance Monoid n ⇒ Applicative (Const n) where

pure = Const mempty
Const n1 ~ Const n2 = Const (mappend n1 n2)

The constraint Monoid N makes sure values of type N can be combined using some
associative function mappend :: N→ N→ N, where mempty :: N is the neutral element.
This idiom can be used to reformulate the collecting procedure of the labeling example.
First, we give the original formulation used by Hutton and Fulger [2008] (We call the
function contents instead of labels to avoid confusion with label):

data Tree x = Leaf x | Node (Tree x ) (Tree x )

contents :: Tree x → [x ]
contents (Leaf x ) = [x ]
contents (Node l r) = contents l ++ contents r

The monoid instance for lists is given by list concatenation (i.e., mempty = [ ] and
mappend = (++)). Thus we can rewrite contents to also use applicative syntax:

note :: x → Const [x ] y
note x = Const [x ]

collect :: Tree x → Const [x ] (Tree y)
collect (Leaf x ) = pure Leaf ~ note x
collect (Node l r) = pure Node~ collect l ~ collect r

contents :: Tree [x ]→ [x ]
contents t = getConst (collect t)

To not change the type of contents we introduce a function collect doing the actual work
(like label does for the labeling part). The new implementation of contents then simply
removes the wrapper (like relabel does). The function note is only for convenience, as
(λx → Const [x ]) is long and Const ◦ (:[ ]) is cryptic.

Constructions on Idioms

Type constructors can be composed (cf. Data.Functor.Compose7)

newtype Compose f g x = Compose {runCompose :: f (g x )}

and if both f and g are idioms, then so is their composite [McBride and Paterson, 2008]:

6http://hackage.haskell.org/package/base/docs/Control-Applicative.html#t:Const
7http://hackage.haskell.org/package/transformers/docs/Data-Functor-Compose.html
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instance (Applicative a,Applicative b)⇒ Applicative (Compose a b) where
pure x = Compose (pure (pure x ))
Compose f ~ Compose x = Compose (pure (~) ~ f ~ x )

The idiomatic application written as a section belongs to the inner idiom (i.e., b), while
all other applicative methods on the right hand side of the second rule belong to the
outer idiom (i.e., a).
Note that the same is not true for monads – even if M and M′ are monads, Compose M M′

does not have to be a monad. One way to still be able to combine monads is using monad
transformers, but this construction uses additional input (the “transformer version” of
one of the monads) and is more complicated [Liang et al., 1995].
Composition of idioms is associative in some sense we will make precise in section 3.1.5.
There is also a neutral element, which is an idiom that does not allow for any actual
effects but is just a wrapper allowing to treat pure functions as effectful.

newtype Identity x = Identity {runIdentity :: x }
instance Applicative Identity where

pure x = Identity x
Identity f ~ Identity x = Identity (f x )

In fact Identity is even a monad, though we will never use this.

In section 3.6 we will need another construction on idioms, which is reversing the order of
effects. Gibbons and Oliveira [2009] define a wrapper Backwards and give an applicative
instance for Backwards A where A is any idiom:

newtype Backwards a x = Backwards {forwards :: a x }
instance Applicative a ⇒ Applicative (Backwards a) where

pure x = Backwards (pure x )
Backwards u ~ Backwards v = Backwards (pure (λx f → f x ) ~ v ~ u)

In [Gibbons and Oliveira, 2009] the inverse of the value constructor Backwards is called
runBackwards, but here, we stick to Control.Applicative.Backwards8 and call it forwards.
Note that idiomatic application in the backwards idiom relies on idiomatic application
in the original (forwards) idiom with the order of the arguments switched.
Backwards idioms are a curious phenomenon and their existence teaches us something
about idioms in general. IO is a monad, therefore it is also an idiom and thus there
has to be a Backwards IO idiom. Using this idiom one can write programs that perform
IO actions in reversed order. So can you write a reversed echo program, that writes a
character to the output before reading the character from the input? Obviously you
cannot, but neither can you combine both IO actions in the other direction using only
applicative syntax. Passing the result of the reading action to the writing action requires
the monadic bind operator (>>=), which idioms do not provide.

8http://hackage.haskell.org/package/transformers/docs/Control-Applicative-Backwards.
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3.1.3 Idiom Laws

The Applicative class is governed by the following laws, also given by McBride and
Paterson [2008]:

pure id ~ v = v (3.3)

pure (◦) ~ u ~ v ~ w = u ~ (v ~ w) (3.4)

pure f ~ pure x = pure (f x ) (3.5)

u ~ pure x = pure (λf → f x ) ~ u (3.6)

Law (3.3) is called identity law and makes sure liftA id = id . The second law is
called composition law and makes sure combining effects is associative. On the left an
additional pure (◦) is needed to make the types match. The homomorphism law (3.5)
makes sure idiomatic application extends usual application. Finally the interchange
law (3.6) allows to switch the order of pure and effectful computations (while two effectful
computations may not switch their order).
One way to understand the laws is that they allow to bring any computation into its
canonical form [McBride and Paterson, 2008]

pure f ~ u0 ~ . . .~ un−1

where the ui are not nested idiomatic applications. The composition law (3.4) can be
used from right to left to avoid computations that nest to the right. All pure computa-
tions can be swapped to the left by the interchange law (3.6) and then combined into one
by the homomorphism law (3.5). The identity law (3.3) is only needed for the special
case of no computation being pure. In this case a ‘dummy’ pure id can be added without
changing the meaning.
The laws imply that liftA satisfies the functor laws. While liftA id = id is immediate
from the identity law (3.3), showing

liftA (g ◦ f ) = liftA g ◦ liftA f

needs some more work:

liftA (g ◦ f ) u
= 〈 definition of liftA 〉

pure (g ◦ f ) ~ u
= 〈 homomorphism law (3.5) 〉

pure ((◦) g) ~ pure f ~ u
= 〈 homomorphism law (3.5) 〉

pure (◦) ~ pure g ~ pure f ~ u
= 〈 composition law (3.4) 〉

pure g ~ (pure f ~ u)
= 〈 definition of liftA 〉

liftA g (liftA f u)

For all monadic idioms the idiom laws are consequences of the monad laws. For the Const
idiom, the laws rely on the monoid laws (i.e., associativity and left and right neutrality).
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3.1.4 Flattening Formula

Besides the laws themselves, another useful equation for dealing with applicative syntax
is the so called flattening formula. Given two computations in canonical form, it gives
– also in canonical form – the result of (idiomatically) applying one computation to the
other. The formula uses some shorthand notations. The first simply gives a shorter way
to write canonical forms:

pure f ~n−1
i=0 ui = pure f ~ u0 ~ . . .~ un−1

This operator also associates to the left and has the same precedence as a single (~).
The second shorthand notation is a generalized application operation:

(g ◦m,n f ) x0 . . . xn−1 = g x0 . . . xm−1 (f xm . . . xn−1)

Some noteworthy special cases are:

◦0,0 = ($) :: (y → z )→ y → z
◦0,1 = (◦) :: (y → z )→ (x → y)→ x → z
◦1,1 = flip :: (x → y → z )→ y → x → z

Both shorthand notations are not function definitions in Haskell in a strict sense. They
can possibly be made actual code using Template Haskell or some of GHC’s more ad-
vanced type level features. Here, we will treat them as metasyntactic abbreviations: For
every concrete choice of m and n the meaning is clear from the above equations.

Lemma 3.1.1. The flattening formula

(pure g ~m−1
i=0 ui) ~ (pure f ~n−1

i=m ui) = pure (g ◦m,n f ) ~n−1
i=0 ui (3.7)

holds for all 0 ≤ m ≤ n, ui :: A X, f :: X→ . . .→ X︸ ︷︷ ︸
n−m

→ Y and g :: X→ . . .→ X︸ ︷︷ ︸
m

→ Y → Z.

Proof. First we prove the special case m = 0 by induction on n. The base case is n = 0:

pure g ~ pure f
= 〈 homomorphism rule (3.5) 〉

pure (g f )
= 〈 definition of ◦·,· 〉

pure (g ◦0,0 f )

The induction step is justified like this:

pure g ~ (pure f ~n
i=0 ui)

= 〈 splitting off last application 〉
pure g ~ (pure f ~n−1

i=0 ui ~ un)
= 〈 composition rule (3.4) 〉

pure (◦) ~ pure g ~ (pure f ~n−1
i=0 ui) ~ un
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= 〈 homomorphism rule (3.5) 〉
pure ((◦) g) ~ (pure f ~n−1

i=0 ui) ~ un
= 〈 flattening formula for 0, n 〉

pure (((◦) g) ◦0,n f ) ~n−1
i=0 ui ~ un

= 〈 see below 〉
pure (g ◦0,n+1 f ) ~n−1

i=0 ui ~ un
= 〈 absorbing last application 〉

pure (g ◦0,n+1 f ) ~n
i=0 ui

The missing transformation can easily be checked by applying the expression n+1 times:

(((◦) g) ◦0,n f ) x0 . . . xn
= 〈 definition of ◦·,· 〉

(◦) g (f x0 . . . xn−1) xn
= 〈 definition of (◦) 〉

g (f x0 . . . xn−1 xn)
= 〈 definition of ◦·,· 〉

g ◦0,n+1 f x0 . . . xn

This concludes the proof of the special case m = 0. The general case, too, is proved by
induction, this time starting with the base case 0 ≤ m = n:

(pure g ~m−1
i=0 ui) ~ pure f

= 〈 interchange rule (3.6) 〉
pure (λx → x f ) ~ (pure g ~m−1

i=0 ui)
= 〈 flattening formula for 0,m 〉

pure ((λx → x f ) ◦0,m g) ~m−1
i=0 ui

= 〈 see below 〉
pure (g ◦m,m f ) ~m−1

i=0 ui

The missing transformation can easily be checked by applying the expression m times:

((λx → x f ) ◦0,m g) x0 . . . xm−1

= 〈 definition of ◦·,· 〉
(λx → x f ) (g x0 . . . xm−1)

= 〈 beta equivalence 〉
g x0 . . . xm−1 f

= 〈 definition of ◦·,· 〉
(g ◦m,m f ) x0 . . . xm−1

The induction step is justified like this:

(pure g ~m−1
i=0 ui) ~ (pure f ~n

i=m ui)
= 〈 splitting off last application 〉

(pure g ~m−1
i=0 ui) ~ (pure f ~n−1

i=m ui ~ un)
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= 〈 composition rule (3.4) 〉
pure (◦) ~ (pure g ~m−1

i=0 ui) ~ (pure f ~n−1
i=m ui) ~ un

= 〈 flattening formula for 0,m 〉
pure ((◦) ◦0,m g) ~m−1

i=0 ui ~ (pure f ~n−1
i=m ui) ~ un

= 〈 flattening formula for m,n 〉
pure (((◦) ◦0,m g) ◦m,n f ) ~n−1

i=0 ui ~ un
= 〈 see below 〉

pure (g ◦m,n+1 f ) ~n−1
i=0 ui ~ un

= 〈 absorbing last application 〉
pure (g ◦m,n+1 f ) ~n

i=0 ui

The missing transformation can easily be checked by applying the expression n+1 times:

(((◦) ◦0,m g) ◦m,n f ) x0 . . . xn
= 〈 definition of ◦·,· 〉

((◦) ◦0,m g) x0 . . . xm−1 (f xm . . . xn−1) xn
= 〈 definition of ◦·,· 〉

(◦) (g x0 . . . xm−1) (f xm . . . xn−1) xn
= 〈 section 〉

(g x0 . . . xm−1 ◦ f xm . . . xn−1) xn
= 〈 definition of (◦) 〉

g x0 . . . xm−1 (f xm . . . xn−1 xn)
= 〈 definition of ◦·,· 〉

(g ◦m,n+1 f ) x0 . . . xn

Using the flattening formula we can show the following equation about composite idioms:

pure f ~ Compose u0 ~ . . .~ Compose un−1

= (3.8)

Compose (pure (λv0 . . . vn−1 → pure f ~ v0 ~ . . .~ vn−1) ~ u0 ~ . . .~ un−1)

The proof is by induction, where the base case is the definition of pure in the Compose
idiom and the induction step is shown as follows:

pure f ~n
i=0 Compose ui

= 〈 splitting off last (~) 〉
pure f ~n−1

i=0 Compose ui ~ Compose un
= 〈 induction hypothesis 〉
Compose (pure (λv0 . . . vn−1 → pure f ~n−1

i=0 vi) ~
n−1
i=0 ui) ~ Compose un

= 〈 (~) in Compose idiom 〉
Compose (pure (~) ~ (pure (λv0 . . . vn−1 → pure f ~n−1

i=0 vi) ~
n−1
i=0 ui) ~ un)

= 〈 flattening formula (3.7) 〉
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Compose ((pure ((~) ◦0,n (λv0 . . . vn−1 → pure f ~n−1
i=0 vi)) ~

n−1
i=0 ui) ~ un)

= 〈 definition of ◦·,· 〉
Compose ((pure (λv0 . . . vn−1 → (~) (pure f ~n−1

i=0 vi)) ~
n−1
i=0 ui) ~ un)

= 〈 eta equivalence 〉
Compose ((pure (λv0 . . . vn−1 vn → (pure f ~n−1

i=0 vi) ~ vn) ~n−1
i=0 ui) ~ un)

= 〈 absorbing last (~) 〉
Compose (pure (λv0 . . . vn−1 vn → pure f ~n

i=0 vi) ~n
i=0 ui)

We also find a useful equation for dealing with backwards idioms:

pure f ~ Backwards u0 ~ . . .~ Backwards un−1

= (3.9)

Backwards (pure (λxn−1 . . . x0 → f x0 . . . xn−1) ~ un−1 ~ . . .~ u0)

In the proof we use an additional shorthand notation for series of idiomatic applications
with falling indexes. We again proceed by induction, the induction step being:

pure f ~n
i=0 Backwards ui

= 〈 splitting off last (~) 〉
pure f ~n−1

i=0 Backwards ui ~ Backwards un
= 〈 induction hypothesis 〉
Backwards (pure (λxn−1 . . . x0 → f x0 . . . xn−1) ~0

i=n−1 ui) ~ Backwards un
= 〈 (~) in Backwards idiom 〉
Backwards (pure (λx g → g x ) ~ un ~ (pure (λxn−1 . . . x0 → f x0 . . . xn−1)
~0

i=n−1 ui))
= 〈 flattening formula (3.7) 〉
Backwards (pure ((λx g → g x ) ◦1,n+1 (λxn−1 . . . x0 → f x0 . . . xn−1)) ~ un

~0
i=n−1 ui)

= 〈 definition of ◦·,· 〉
Backwards (pure (λxn xn−1 . . . x0 → (λg → g xn) (f x0 . . . xn−1)) ~ un

~0
i=n−1 ui)

= 〈 beta equivalence 〉
Backwards (pure (λxn xn−1 . . . x0 → f x0 . . . xn−1 xn) ~ un ~0

i=n−1 ui)
= 〈 absorbing first (~) 〉
Backwards (pure (λxn xn−1 . . . x0 → f x0 . . . xn−1 xn) ~0

i=n ui)

3.1.5 Idiom Morphisms

In order to compare computations in different idioms, we need some way of relating them.
This is done by so called idiom morphisms, i.e., functions ϕ :: A x → B x satisfying the
laws

ϕ (pure x ) = pure x (3.10)

ϕ (u ~ v) = ϕ u ~ ϕ v (3.11)
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where A and B are idioms and the pure and (~) methods on the left (resp. right) hand
side rely on the instance for A (resp. B).
An intuitive description is this: Applying an idiom morphism to an effectful computation
is the same as applying the idiom morphism to every subcomputation. To get a feeling
for what that actually means, let us discuss some examples, starting with the function
listToMaybe:

listToMaybe :: [x ] → Maybe x
listToMaybe [ ] = Nothing
listToMaybe (x : ) = Just x

This function connects nondeterminism to partiality by preserving failure and sending
computations with multiple results to computations with only one result (i.e., the first
one in the list). In both idioms a composite computation succeeds if every subcompu-
tation succeeds. In the list idiom the first result of a successful composite computation
stems from combining the first results of the (necessarily also successful) subcomputa-
tions. The equations (3.10) and (3.11) can be checked easily and give a formal meaning
to computations in both idioms being related.
Another example is pure ◦runIdentity which takes a computation with trivial effect (i.e.,
in the Identity idiom) into any idiom. The resulting computation still does not have any
real effects, as it is the result of applying pure. This idiom morphism can be used to
prove that some computation u does not have any real effects by finding a pre-image x
with u = pure (runIdentity x ).

Lemma 3.1.2. The function

pure ◦ runIdentity :: Applicative a ⇒ Identity x → a x

is an idiom morphism from the Identity idiom to any idiom.

Proof. First we check (3.10):

pure (runIdentity (pure x ))
= 〈 pure in Identity idiom 〉

pure (runIdentity (Identity x ))
= 〈 inverse isomorphisms 〉

pure x

Since every u :: Identity X is Identity x for x = runIdentity u it suffices to check the
following case in order to check (3.11):

pure (runIdentity (Identity f ~ Identity x ))
= 〈 (~) in Identity idiom 〉

pure (runIdentity (Identity (f x )))
= 〈 inverse isomorphisms 〉

pure (f x )
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= 〈 homomorphism law (3.5) 〉
pure f ~ pure x

In section 3.1.2 we have claimed composition of idioms to be associative in some sense.
Of course none of the equations

Compose A Identity ∼= A

Compose Identity A ∼= A

Compose A (Compose B C) ∼= Compose (Compose A B) C

holds as equations of types. They are true as isomorphisms of idioms though: There is a
pair of mutually inverse idiom morphisms connecting both sides. We exemplarily show
the first one:

Lemma 3.1.3. The function

liftA runIdentity ◦ runCompose :: Applicative a ⇒ Compose a Identity x → a x

is an invertible idiom morphism from Compose A Identity to A for any idiom A.

Proof. Invertibility is easily checked, where the inverse is Compose ◦ liftA Identity. On
to checking (3.10):

liftA runIdentity (runCompose (pure x ))
= 〈 pure in Compose idiom 〉

liftA runIdentity (runCompose (Compose (pure (pure x ))))
= 〈 inverse isomorphisms 〉

liftA runIdentity (pure (pure x ))
= 〈 pure in Identity idiom 〉

liftA runIdentity (pure (Identity x ))
= 〈 definition of liftA 〉

pure runIdentity ~ pure (Identity x )
= 〈 homomorphism law (3.5) 〉

pure (runIdentity (Identity x ))
= 〈 inverse isomorphisms 〉

pure x

The proof for (3.11) relies on the flattening formula:

liftA runIdentity (runCompose (Compose u ~ Compose v))
= 〈 (~) in Compose idiom 〉

liftA runIdentity (runCompose (Compose (pure (~) ~ u ~ v)))
= 〈 inverse isomorphisms 〉
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liftA runIdentity (pure (~) ~ u ~ v)
= 〈 definition of liftA 〉

pure runIdentity ~ (pure (~) ~ u ~ v)
= 〈 eta equivalence 〉

pure runIdentity ~ (pure (λx y → x ~ y) ~ u ~ v)
= 〈 flattening formula (3.7) 〉

pure (λx y → runIdentity (x ~ y)) ~ u ~ v
= 〈 (~) in Identity idiom 〉

pure (λx y → runIdentity x (runIdentity y)) ~ u ~ v
= 〈 flattening formula (3.7) 〉

pure (λx → runIdentity x ) ~ u ~ (pure (λy → runIdentity y) ~ v)
= 〈 eta equivalence 〉

pure runIdentity ~ u ~ (pure runIdentity ~ v)
= 〈 definition of liftA 〉

liftA runIdentity u ~ liftA runIdentity v
= 〈 inverse isomorphisms 〉

liftA runIdentity (runCompose (Compose u))
~ liftA runIdentity (runCompose (Compose v))

We also have to check that the inverse is an idiom morphism. Here, we can use the
corresponding properties for the direction we have already established.

Compose (liftA Identity (pure x ))
= 〈 see above 〉
Compose (liftA Identity (liftA runIdentity (runCompose (pure x ))))

= 〈 inverse isomorphisms 〉
pure x

The other derivation is analogous.

Finally, it is worth pointing out that an idiom morphism between two monads does not
necessarily have to be a monad morphism. Here, a monad morphism is defined in much
the same way as an idiom morphism as some function ϕ :: M x → M′ x satisfying two
rules:

ϕ (return x ) = return x

ϕ (u >>= v) = ϕ u >>= ϕ ◦ v

The list type constructor and the Maybe type constructor are monads and thus also
idioms. The function listToMaybe is an idiom morphism but it is not a monad morphism,
as the following counter-example shows.

[0, 1]>>= λn → [1 . .n ]
= 〈 (>>=) in list monad 〉

[1 . . 0] ++ [1 . . 1]
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= 〈 calculating the arithmetic sequences 〉
[ ] ++ [1]

= 〈 list concatenation 〉
[1]

So we have listToMaybe ([0, 1] >>= λn → [1 . .n ]) = listToMaybe [1] = Just 1. On the
other hand:

listToMaybe [0, 1]>>= λn → listToMaybe [1 . .n ]
= 〈 definition of listToMaybe 〉
Just 0>>= λn → listToMaybe [1 . .n ]

= 〈 (>>=) in Maybe monad 〉
listToMaybe [1 . . 0]

= 〈 calculating the arithmetic sequence 〉
listToMaybe [ ]

= 〈 definition of listToMaybe 〉
Nothing

3.2 Traversable Functors

3.2.1 The Interface

Now we turn to the actual protagonists of this chapter – traversable functors. In the
last section we have written label and collect in applicative syntax as:

label :: Tree x → State Int (Tree Int)
label (Leaf x ) = pure Leaf ~ fresh
label (Node l r) = pure Node~ label l ~ label r

collect :: Tree x → Const [x ] (Tree y)
collect (Leaf x ) = pure Leaf ~ note x
collect (Node l r) = pure Node~ collect l ~ collect r

Both functions are quite similar, in particular the recursion scheme coincides. The only
part that actually differs is fresh vs. note x . To compensate for the missing dependence
of fresh on x , we can replace fresh by the equivalent const fresh x . We can then introduce
a common abstraction of label and collect :

traverseTree :: Applicative a ⇒ (x → a y)→ Tree x → a (Tree y)
traverseTree u (Leaf x ) = pure Leaf ~ u x
traverseTree u (Node l r) = pure Node~ traverseTree u l ~ traverseTree u r

label :: Tree x → State Int (Tree Int)
label = traverseTree (const fresh)

collect :: Tree x → Const [x ] (Tree y)
collect = traverseTree note
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class Functor t where
fmap :: (x → y)→ t x → t y

class Foldable t where
foldMap :: Monoid n ⇒ (x → n)→ t x → n

class (Functor t ,Foldable t)⇒ Traversable t where
traverse :: Applicative a ⇒ (x → a y)→ t x → a (t y)

-- with fmap = fmapDefault a suitable Functor instance can be defined
fmapDefault :: Traversable t ⇒ (x → y)→ t x → t y
fmapDefault f = runIdentity ◦ traverse (Identity ◦ f )

-- with foldMap = foldMapDefault a suitable Foldable instance can be defined
foldMapDefault :: (Traversable t ,Monoid n)⇒ (x → n)→ t x → n
foldMapDefault f = getConst ◦ traverse (Const ◦ f )

Figure 3.2: The Traversable class and its superclasses Functor and Foldable

Specializing the argument u of traverseTree to const fresh gives the former implementa-
tion of label and specializing u to note gives the former implementation of collect . Using
the common abstraction traverseTree saves us from spelling out the pattern matching
twice and makes both label and collect very short.

We can give a similar function for lists instead of trees

traverseList :: Applicative a ⇒ (x → a y)→ [x ]→ a [y ]
traverseList u [ ] = pure [ ]
traverseList u (x : xs) = pure (:) ~ u x ~ traverseList u xs

and similar functions exist for many other types. This motivates the definition of the
typeclass Traversable [McBride and Paterson, 2008]. The class declaration together with
declarations for the superclasses Functor and Foldable can be found in figure 3.2. All
three classes are defined in the Prelude9.
The traverseTree function given for the Tree type above now becomes part of a class
instance:

instance Traversable Tree where
traverse u (Leaf x ) = pure Leaf ~ u x
traverse u (Node l r) = pure Node~ traverse u l ~ traverse u r

And similarly for lists:

9 Functor: http://hackage.haskell.org/package/base/docs/Prelude.html#t:Functor

Foldable: http://hackage.haskell.org/package/base/docs/Prelude.html#t:Foldable

Traversable: http://hackage.haskell.org/package/base/docs/Prelude.html#t:Traversable
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instance Traversable [ ] where
traverse u [ ] = pure [ ]
traverse u (x : xs) = pure (:) ~ u x ~ traverse u xs

In general every tree-like data type can be made an instance by visiting the fields of
a constructor from left to right, either using traverse recursively or applying u, and
combining the results using the same constructor again. This is in fact what the auto-
matically derived instances look like. There are however other reasonable instances as
we will see.
The superclass Functor provides a method fmap, which is similar to traverse but can
only deal with pure functions. As we can interpret pure functions as effectful functions
with a trivial effect, fmap should be uniquely determined by traverse. This in fact holds
and the superclass constraint Functor t can always be satisfied by using

instance Functor T where
fmap = fmapDefault

as a Functor instance. So the Functor instance relies on the Traversable instance, while at
the same time T being a functor is necessary for having a Traversable instance in the first
place. This seemingly circular dependence is fine however, as fmap relies on traverse on
the value level and Traversable relies on Functor on the type level. Later we will show
that fmapDefault always coincides with fmap for any lawful Traversable instance.
The Foldable class allows to combine all entries of a container if they can be mapped
into a monoid somehow. This can be used to define the contents function, but also to
get the number of entries of a container or the minimal entry (if an ordering is defined).
Note that foldMapDefault relies on the Const applicative, which is one of the reasons for
having applicative effects instead of monadic ones.
The interdependence between Foldable and Traversable is much the same as between
Functor and Traversable: The foldMap method is uniquely determined by traverse and
can be defined using foldMapDefault .
There is also a connection between Functor and Foldable. Whenever a type constructor
is an instance of both classes, the equation

foldMap g ◦ fmap f = foldMap (g ◦ f )

is required to hold. This is true for foldMapDefault and fmapDefault as we will see.

3.2.2 Expected Behavior

Figure 3.3 shows the definitions by Hutton and Fulger [2008], but generalized in a
straightforward manner to work with arbitrary traversals. For the Tree type and the
traverseTree function, Hutton and Fulger [2008] show in their Theorem 1 that

contents (relabel t)
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fresh :: State Int Int
fresh = do

n ← get
put (n + 1)
return n

label :: Traversable t ⇒ t x → State Int (t Int)
label = traverse (const fresh)

relabel :: Traversable t ⇒ t x → t Int
relabel t = evalState (label t) 0

note :: x → Const [x ] y
note x = Const [x ]

collect :: Traversable t ⇒ t x → Const [x ] (t y)
collect = traverse note

contents :: Traversable t ⇒ t x → [x ]
contents t = getConst (collect t)

Figure 3.3: Code base for the generalized labeling example

does not contain any duplicates. In fact they show that

runState (label t) n = (t ′,n ′)

implies
contents t ′ = [n . . (n ′ − 1)]

(which is their lemma 2). The latter claim is stronger, in that it also requires all labels
to be used, i.e., no label is wasted. The proof is done by checking the property by using
the definitions and doing induction over recursive calls.
Now we ask exactly the same question in the more general context of an arbitrary
traversal: Is it true that contents (relabel t) does not contain any duplicates?

The answer is no, as there is the following counter-example. We define a wrapper Twice
with a ‘bad’ Traversable instance.10

newtype Twice x = Twice x
instance Traversable Twice where

traverse u (Twice x ) = pure (λ y → Twice y) ~ u x ~ u x

Now all we have to do is calculate.

10This is a reformulation of the flawed traversal Jaskelioff and Rypacek [2012] used to exemplify how
the composition law (3.13) rules out duplicating traversals.
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label (Twice x )
= 〈 definition of label 〉

traverse (const fresh) (Twice x )
= 〈 definition of traverse 〉

pure (λ y → Twice y) ~ const fresh x ~ const fresh x
= 〈 definition of const 〉

pure (λ y → Twice y) ~ fresh ~ fresh
= 〈 translating into a do-block 〉

do { ← fresh; y ← fresh; return (Twice y)}

Running this stateful computation with the initial value 0 will result in Twice 1, as the
first call of fresh gives 0 and the second call gives 1. So we have

relabel (Twice x ) = Twice 1.

On to collecting labels:

collect (Twice 1)
= 〈 definition of collect 〉

traverse note (Twice 1)
= 〈 definition of traverse 〉

pure (λ y → Twice y) ~ note 1 ~ note 1
= 〈 definition of note 〉

pure (λ y → Twice y) ~ Const [1] ~ Const [1]
= 〈 calculation in the Const idiom 〉
Const [1, 1]

So contents (Twice 1) = getConst (Const [1, 1]) = [1, 1] which clearly does contain a
duplicate entry.
What happened? The given traverse function visits the single entry inside the Twice
wrapper twice, even though only one number can be stored. Then the single entry is
written into the contents list twice.
This is not the behaviour we expect when using traverse. On an intuitive level it is
quite clear that we want to rule out such duplicitous traversals. In order to do so, we
need to formulate laws for the Traversable class. All lawful instances will make (the
generalization of) Hutton and Fulger’s claim true.

Figure 3.4 shows some flawed traversal functions for the Tree type constructor. The
notMuchLeft function ignores the left subtree altogether, so most of the contents will be
lost after traversing. In mixedUp both subtrees are used, but they switch places, which
will change the shape of the tree. Finally, duplicitous visits the left subtree twice but
only uses the result of the first visit. This preserves the shape, but triggers unnecessary
(and unwanted) effects.
In contrast, the following is a valid traversal and actually useful, as it allows to traverse
a tree in breadth first order11:

11This function is not structurally recursive, but can still be shown to be total.
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notMuchLeft :: Applicative a ⇒ (x → a y)→ Tree x → a (Tree y)
notMuchLeft u (Leaf x ) = pure Leaf ~ u x
notMuchLeft u (Node l r) = notMuchLeft u r

mixedUp :: Applicative a ⇒ (x → a y)→ Tree x → a (Tree y)
mixedUp u (Leaf x ) = pure Leaf ~ u x
mixedUp u (Node l r) = pure Node~ mixedUp u r ~ mixedUp u l

duplicitous :: Applicative a ⇒ (x → a y)→ Tree x → a (Tree y)
duplicitous u (Leaf x ) = pure Leaf ~ u x
duplicitous u (Node l r) = pure (λl ′ r ′ → Node l ′ r ′)

~ duplicitous u l ~ duplicitous u l ~ duplicitous u r

Figure 3.4: Unlawful traversal functions

bftraverse :: Applicative a ⇒ (x → a y)→ Tree x → a (Tree y)
bftraverse u t = pure head ~ go [t ] where

go [ ] = pure [ ]
go (Leaf x : ts) = pure (λy ts ′ → ts ′ ++ [Leaf y ] ) ~ u x ~ go ts
go (Node l r : ts) = pure (λ(r ′ : l ′ : ts ′)→ ts ′ ++ [Node l ′ r ′ ]) ~ go (ts ++ [ l , r ])

The function go takes a list of trees, traverses all of them in parallel and collects the
resulting trees in reversed order. Nodes are handled by enqueuing both subtrees, calling
go recursively and extracting the subtrees from the front of the (now reversed) list. Using
head is safe in the above, as the result of go always has the same length as the argument
go is called with.
This example shows that correct instances are not unique in general; often there are
different reasonable choices.

3.2.3 Laws for the Traversable Class

Before we give the laws for the Traversable class, we quickly review the laws concerning
the superclasses Functor and Foldable. We expect fmap to satisfy the two laws

fmap id = id

fmap (g ◦ f ) = fmap g ◦ fmap f

where f :: X → Y and g :: Y → Z. If a type constructor is an instance of both Functor
and Foldable, we additionally require

foldMap (g ◦ f ) = foldMap g ◦ fmap f

where f :: X→ Y and g :: Y → N and N is an instance of Monoid.
Jaskelioff and Rypacek [2012] proposed the following set of laws for the Traversable
class. All the individual laws were published in [Gibbons and Oliveira, 2009] already.
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The identity law states that

traverse Identity = Identity (3.12)

where Identity is the wrapper of the dummy idiom Identity we have seen in section 3.1.2.
In [Jaskelioff and Rypacek, 2012] this law is called unitarity law .
Idioms can be composed as we have also seen in section 3.1.2 and there is a law to
make sure idiom composition interacts well with composing (effectful) functions. Given
computations u :: X→ A Y and v :: Y → B Z we require the composition law

traverse (Compose ◦ liftA v ◦ u) = Compose ◦ liftA (traverse v) ◦ traverse u (3.13)

to hold. In [Jaskelioff and Rypacek, 2012] this law is called linearity law .
Also we require some naturality properties, the first of which is compatibility with idiom
morphisms. If ϕ :: A x → B x is an idiom morphism and u :: X → A Y an effectful
function,

traverse (ϕ ◦ u) = ϕ ◦ traverse u (3.14)

has to hold.
Regarding a Functor instance as given we have to make sure the Traversable instance
is correct with respect to this Functor instance. In this case we expect the following
naturality properties for all applicatives A and B and all functions f ::X→ Y, g ::Y → Z,
u :: X→ A Y and v :: Y → B Z:

traverse (v ◦ f ) = traverse v ◦ fmap f (3.15)

traverse (liftA g ◦ u) = liftA (fmap g) ◦ traverse u (3.16)

These laws imply that fmap coincides with fmapDefault , as we will see, so we do not
need to require any further laws connecting Traversable and Functor. Since none of the
laws mention foldMap, we ensure compatibility with Foldable by requiring foldMap to
coincide with foldMapDefault .

The rules do indeed detect flawed instances. The identity law (3.12) does not hold for
notMuchLeft and mixedUp from figure 3.4. To show this, we define

t0 = Node (Leaf 0) (Leaf 1)

and compute

notMuchLeft Identity t0 = Identity (Leaf 1)

mixedUp Identity t0 = Identity (Node (Leaf 1) (Leaf 0))

so neither gives the correct (according to (3.12)) result Identity t0.
The flaw in the duplicitous function is harder to detect because the identity law (3.12) is
ignorant of the additional effects. The composition law (3.13) however does detect the
flawed instance:

44



duplicitous (λ → Compose [[ ], [0]]) t0
=
Compose [[ ], [ ], [ ], [ ], [ ], [ ], [ ], [Node (Leaf 0) (Leaf 0)]]

This is not the same as:

(Compose ◦ liftA (duplicitous id) ◦ duplicitous (λ → [[ ], [0]])) t0
=
Compose [[ ], [ ], [ ], [ ], [ ], [Node (Leaf 0) (Leaf 0)], [ ], [Node (Leaf 0) (Leaf 0)]]

On the other hand, the composition law does not rule out notMuchLeft . Because the
alteration of the shape is idempotent, applying it twice gives the same result as applying
it once.

Note that the composition law (3.13) can only be formulated because of applicative
effects instead of monadic effects. If we defined the Traversable class to only work with
monadic effects, the composition of two monads would not be an allowed type of effect
for traversing anymore.
We might try to use a monadic composition law instead. For example using Kleisli
composition

(>=>) :: Monad m ⇒ (x → m y)→ (y → m z )→ x → m z
(u >=> v) x = u x >>= v

we could require

traverse u >=> traverse v = traverse (u >=> v) (3.17)

to hold. This equation is however wrong for most instances we consider appropriate:
The left side applies u to all entries first and only then starts applying v , while the right
side alternates between u and v in one traversal. Gibbons and Oliveira [2009] show that
for commutative monads equation (3.17) is a consequence of the laws. We will return to
this issue when we discuss applications of the representation theorem in 3.6.
The above considerations are further examples for Applicative and Traversable being a
good match. Monadic effects may constitute the majority of traversals that actually
appear in real code, but they should still be considered a special case of idiomatic
traversals. As soon as we start using truly monadic features (like Kleisli composition),
things behave strangely.

The set of laws proposed by Jaskelioff and Rypacek [2012] seems natural from a category
theory point of view, but it is not at all clear how to put these laws to use. The properties
we expect on an intuitive level, like ‘no duplicitous traversals’, are not immediate from
the laws. Thus when it comes to arguing about given code, the artificial nature of the
laws makes it hard to gain any insights. The next subsection contains some easy and
still very general consequences and the next section shows how the (generalized) claim
about labeling and collecting labels can be shown. The representation theorem 3.5.2 will
give an equivalent characterization of what constitutes a lawful instance, that is ready
to be used for arguing about given code.
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3.2.4 Some Consequences of the Laws

To get a first feeling for how to work with the laws just presented, we show some easy
consequences of the laws. From now on we require all traversals to be lawful and take
“traversable” to actually mean “lawfully traversable”. The first consequence is that
fmapDefault defined via traverse coincides with fmap.

fmapDefault f
= 〈 definition of fmapDefault 〉

runIdentity ◦ traverse (Identity ◦ f )
= 〈 naturality law (3.15) 〉

runIdentity ◦ traverse Identity ◦ fmap f
= 〈 identity law (3.12) 〉

runIdentity ◦ Identity ◦ fmap f
= 〈 inverse isomorphisms 〉

fmap f

Note that we did not use the naturality law (3.16) here. In fact, it is unnecessary to
require this law at all as it is a consequence of the other laws:

liftA (fmap g) ◦ traverse u
= 〈 fmap = fmapDefault 〉

liftA (fmapDefault g) ◦ traverse u
= 〈 definition of fmapDefault 〉

liftA (runIdentity ◦ traverse (Identity ◦ g)) ◦ traverse u
= 〈 liftA and function composition 〉

liftA runIdentity ◦ liftA (traverse (Identity ◦ g)) ◦ traverse u
= 〈 inverse isomorphisms 〉

liftA runIdentity ◦ runCompose ◦ Compose ◦ liftA (traverse (Identity ◦ g))
◦ traverse u

= 〈 composition law (3.13) 〉
liftA runIdentity ◦ runCompose ◦ traverse (Compose ◦ liftA (Identity ◦ g) ◦ u)

= 〈 idiom morphism law (3.14) and lemma 3.1.3 〉
traverse (liftA runIdentity ◦ runCompose ◦ Compose ◦ liftA (Identity ◦ g) ◦ u)

= 〈 inverse isomorphisms 〉
traverse (liftA runIdentity ◦ liftA (Identity ◦ g) ◦ u)

= 〈 liftA and function composition 〉
traverse (liftA (runIdentity ◦ Identity ◦ g) ◦ u)

= 〈 inverse isomorphisms 〉
traverse (liftA g ◦ u)

A similar proof shows that the other naturality property

traverse (v ◦ f ) = traverse v ◦ fmap f (3.15)

also follows from fmap = fmapDefault , the composition law (3.13) and naturality in
the idiom (3.14). Thus we could have required fmap = fmapDefault , identity (3.12),
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composition (3.13) and the idiom morphism law (3.14) as an alternative set of laws
(this is what the GHC Prelude does). Going one step further we could even decide
to forget about Functor altogether and use fmapDefault right away. In this case the
first functor law follows from identity (3.12) and the second functor law follows from
composition (3.13) and naturality in the idiom (3.14).
The compatibility requirement between Functor and Foldable is satisfied if both are com-
patible with the Traversable instance:

foldMap g ◦ fmap f
= 〈 foldMap in terms of traverse 〉

getConst ◦ traverse (Const ◦ g) ◦ fmap f
= 〈 naturality law (3.15) 〉

getConst ◦ traverse (Const ◦ g ◦ f )
= 〈 foldMap in terms of traverse 〉

foldMap (g ◦ f )

Another easy consequence is sometimes referred to as the purity law and states that

traverse pure = pure.

Indeed:

traverse pure
= 〈 inverse isomorphisms 〉

traverse (pure ◦ runIdentity ◦ Identity)
= 〈 idiom morphism law (3.14) and lemma 3.1.2 〉

pure ◦ runIdentity ◦ traverse Identity
= 〈 identity law (3.12) 〉

pure ◦ runIdentity ◦ Identity
= 〈 inverse isomorphisms 〉

pure

3.3 Proving the Labeling Claim only using the Laws

In this section we show how Hutton and Fulger’s relabeling statement can be proved
for all Traversable types. The final forms of the relevant functions have been given in
figure 3.3 already.
The claim can now be formulated in various ways. One would be contents (relabel t) not
having any duplicate entries. Like Hutton and Fulger we not only claim all list entries to
be different, but that the list in fact contains subsequent numbers (up to, but excluding
the next label):

runState (label t) n = (t ′,n ′) =⇒ contents t ′ = [n . .n ′ − 1] (3.18)

The key to the direct proof is the following lemma:
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Lemma 3.3.1. Let A, B and C be idioms and u ::X→ A Y, v ::Y → B Z and w ::X→ C Z
be functions with effects in these idioms. Furthermore, let ψ :: C x → A (B x ) be a
polymorphic function connecting the three idioms that satisfies:

ψ (pure x ) = pure (pure x ) (3.19)

ψ (f ~ x ) = pure (~) ~ ψ f ~ ψ x (3.20)

If

ψ ◦ w = liftA v ◦ u (3.21)

then also:

ψ ◦ traverse w = liftA (traverse v) ◦ traverse u (3.22)

Proof. The function ψ :: C x → A (B x ) satisfies equations (3.19) and (3.20) if and only
if Compose ◦ ψ is an idiom morphism:

Compose (ψ (pure x ))
= 〈 property (3.19) of ψ 〉
Compose (pure (pure x ))

= 〈 definition of pure in Compose 〉
pure x

Compose (ψ (u ~ v))
= 〈 property (3.20) of ψ 〉
Compose (pure (~) ~ ψ u ~ ψ v)

= 〈 definition of (~) in Compose 〉
Compose (ψ u) ~ Compose (ψ v)

Now we combine the composition and idiom morphism law:

ψ ◦ traverse w
= 〈 inverse isomorphisms 〉

runCompose ◦ Compose ◦ ψ ◦ traverse w
= 〈 idiom morphism law (3.14) 〉

runCompose ◦ traverse (Compose ◦ ψ ◦ w)
= 〈 condition (3.21) 〉

runCompose ◦ traverse (Compose ◦ liftA v ◦ u)
= 〈 composition law (3.13) 〉

runCompose ◦ Compose ◦ liftA (traverse v) ◦ traverse u
= 〈 inverse isomorphisms 〉

liftA (traverse v) ◦ traverse u
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Using the lemma we can now show Hutton and Fulger’s claim in general.

Proof of (3.18). The claim can be reformulated in the following equivalent way: For
every t there is some number s (the size of t), such that

do {t ′ ← label t ; return (collect t ′)}
=

do {n ← get ; put (n + s); return (Const [n . .n + s − 1])}

holds. This means labeling and collecting the labels is the same as increasing the counter
by s and returning the corresponding s labels as a list.
We use

newtype Sum x = Sum x

instance Num x ⇒ Monoid (Sum x ) where
mempty = Sum 0
Sum s ‘mappend ‘ Sum s ′ = Sum (s + s ′)

tick :: Const (Sum Nat) x
tick = Const (Sum 1)

where we assume Nat to be the type of nonnegative integers. We define s by

Const (Sum s) = traverse (const tick) t .

Thus s is found by traversing t and counting the ticks.
The key step of course is applying lemma 3.3.1. To this end choose A = State Int, B =
Const [ Int] and C = Const (Sum Nat). The function u is const fresh :: x → State Int Int,
for v we use note :: y → Const [y ] z and w is const tick . Finally, the role of ψ will be
played by ι:

ι :: Const (Sum Nat) x → State Int (Const [ Int] x )
ι (Const (Sum s)) = do

n ← get
put (n + s)
return (Const [n . .n + s − 1])

Here, we use (+) to add integers and naturals without any prior conversion.
The conclusion (3.22) of the lemma is:

ι ◦ traverse (const tick) = liftA (traverse note) ◦ traverse (const fresh)

We apply both sides to some t , starting with the right hand side. Since traverse note is
collect and traverse (const fresh) is label , we get liftA collect (label t) or equivalently

do {t ′ ← label t ; return (collect t ′)}.
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Applying the left hand side gives ι (traverse (const tick) t), which is ι (Const (Sum s)).
Using the definition of ι we get

do {n ← get ; put (n + s); return (Const [n . .n + s − 1])}.

Thus the claim is shown once we know the lemma to be applicable. So we check the
conditions, starting with the conditions (3.19) and (3.20) for ι:

ι (pure x )
= 〈 pure in the Const idiom 〉
ι (Const mempty)

= 〈 mempty in the Sum monoid 〉
ι (Const (Sum 0))

= 〈 definition of ι 〉
do {n ← get ; put (n + 0); return (Const [n . .n + 0− 1])}

= 〈 simplifications 〉
do {n ← get ; put n; return (Const [ ])}

= 〈 effects are trivial 〉
return (Const [ ])

= 〈 pure = return for monads and pure in Const idiom 〉
pure (pure x )

ι (Const (Sum s) ~ Const (Sum s ′))
= 〈 (~) in Const idiom 〉
ι (Const (Sum s ‘mappend ‘ Sum s ′)))

= 〈 mappend in Sum monoid 〉
ι (Const (Sum (s + s ′)))

= 〈 definition of ι 〉
do {n ← get ; put (n + s + s ′); return (Const [n . .n + s + s ′ − 1])}

= 〈 list concatenation 〉
do {n ← get ; put (n + s + s ′);

return (Const ([n . .n + s − 1] ++ [n + s . .n + s + s ′ − 1]))}
= 〈 (~) in Const idiom 〉

do {n ← get ; put (n + s + s ′);
return (Const [n . .n + s − 1] ~ Const [n + s . .n + s + s ′ − 1])}

= 〈 additional put 〉
do {n ← get ; put (n + s); put (n + s + s ′);

return (Const [n . .n + s − 1] ~ Const [n + s . .n + s + s ′ − 1])}
= 〈 additional get 〉

do {n ← get ; put (n + s); n ′ ← get ; put (n ′ + s ′);
return (Const [n . .n + s − 1] ~ Const [n ′ . .n ′ + s ′ − 1])}

= 〈 (~) in monadic idioms 〉
do {n ← get ; put (n + s); return ((~) (Const [n . .n + s − 1]))}~

do {n ′ ← get ; put (n ′ + s ′); return (Const [n ′ . .n ′ + s ′ − 1])}
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= 〈 liftA in monadic idioms 〉
pure (~) ~ do {n ← get ; put (n + s); return (Const [n . .n + s − 1])}~

do {n ′ ← get ; put (n ′ + s ′); return (Const [n ′ . .n ′ + s ′ − 1])}
= 〈 definition of ι 〉

pure (~) ~ ι (Const (Sum s)) ~ ι (Const (Sum s ′))

Also we have to make sure (3.21), i.e., ι ◦ const tick = liftA note ◦ const fresh holds:

ι tick
= 〈 definition of tick 〉
ι (Const (Sum 1))

= 〈 definition of ι 〉
do {n ← get ; put (n + 1); return (Const [n . .n + 1− 1])}

= 〈 simplifications 〉
do {n ← get ; put (n + 1); return (Const [n ])}

= 〈 definition of fresh and note 〉
do {n ← fresh; return (note n)}

= 〈 liftA in monadic idioms 〉
liftA note fresh

What have we learned? First of all Hutton and Fulger’s claim is true for all lawful
instances of Traversable. This exemplifies how the laws of the Traversable class indeed
allow to prove nontrivial things. Yet, while the above proof is comprehensible, it is
not straightforward. Even knowing the lemma, several choices have to be made in a
consistent way in order to use it. This requires a good intuition for how the various
effects interact.

3.4 Finitary Containers

Jaskelioff and Rypacek [2012] show that a certain class of functors called finitary contain-
ers [Abbott et al., 2003], dependent polynomial functors [Gambino and Hyland, 2003]
or functors shapely over lists [Moggi et al., 1999] are traversable in a natural way. The
representation theorem 3.5.2 proves the converse: Every lawful instance of Traversable is
(isomorphic to) a finitary container type.
Before discussing the theorem and its proof, it is useful to introduce the notion of finitary
containers and give some motivation for the (unusual) concept of shape we will use in
the theorem, i.e., make functions. At the beginning of the next section, we will define
make functions again in a way that is suitable for the rest of the discussion. No results
from this section will be used in the subsequent development.
Due to the nature of the concepts we are going to discuss, the formulas in this section
cannot be read as Haskell code. They have to be understood as mathematical formalism
or formalization in a dependently typed language. For consistency, we still try to stick
to the Haskell notation as much as possible.
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3.4.1 Definition

A finitary container [Abbott et al., 2003] is given by a set of shapes S and a function
arity :: S → Nat assigning an arity to each shape. A good example to keep in mind is
taking S to be the set of binary trees (as a graph, i.e., without labels) and arity to be
the function that assigns the number of leaves to a tree.
Such a pair defines an extension functor Ext arity

12 given by

X 7−→ Ext arity X =
∑
s∈S

Xarity s

i.e., an element of the extension functor applied to X is given by a dependent pair
consisting of a shape s and a sequence of arity s elements of type X. We will denote
the elements as tuples (s, [x0, . . . , xn−1 ]), where the list part is also called the contents
of the extension. We will only use such tuples when the length of the list coincides with
the shape’s arity and keep track of this condition by hand.
In the example where S is the set of binary trees and arity s the number of leaves of
s, we get a functor isomorphic to our Tree type. An element of the extension functor
at some type X is given by a tree and a sequence of elements of X, while an element of
Tree X is a tree-shaped data structure with elements of X at the leaves.
As a second example, taking S = Nat and arity n = n leads to vectors of arbitrary
length: The shape of a vector is given by its length n and the vector contains n elements
of some entry type. In this case the shape is determined by the contents because the
shape is the length of the contents list.
In general, the functor structure of Ext arity is given by

fmap f (s, [x0, . . . , xn−1 ]) = (s, [f x0, . . . , f xn−1 ])

where the list on the right has length arity s if and only if the list on the left does.
Jaskelioff and Rypacek [2012] observe, that a Traversable instance can be given in much
the same way:

traverse u (s, [x0, . . . , xn−1 ]) = pure (λxs → (s, xs)) ~ traverse u [x0, . . . , xn−1 ].

The traverse function on the right is the standard instance for lists given in section 3.2.
Thus proving correctness of the above instance amounts to proving correctness of the
standard instance for lists. The claim of theorem 3.5.1 is that all traversals basically
have the above form.

We have seen what one might call the “synthetic approach” to finitary containers: Given
a set of shapes and an arity function we have constructed a functor that is traversable in
a reasonable way. Now we take a slightly different viewpoint, start with a given functor
F and ask whether it is isomorphic to the extension functor of a finitary container.
So let an isomorphism between F X and Ext arity X be given that is natural in X. In our
context, ‘being natural in X’ means the isomorphism is given by polymorphic functions

12We take S to be implicitly determined as the domain of arity .
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F x → Ext arity x and Ext arity x → F x . Starting with t :: F X and applying the isomor-
phism, we find a shape and a list of contents, such that the shape’s arity is the list’s
length. Thus we can dissect t into its shape and contents, which is expressed by the
functions

shape :: F x → S

contents :: F x → [x ]

and the equation

arity ◦ shape = length ◦ contents.

Using the isomorphism in the other direction, we can start with a shape s :: S and a list
of contents xs :: [X] and combine them into some t :: F X. This is only possible if (s, xs)
is a valid pair, i.e., arity s = length xs. The process of combining is expressed by the
partial function

fill :: S→ [x ]→ F x

which as stated only works for compatible arguments in the above sense. We refrain
from making the partiality explicit in the type by adding Maybe, and confine ourselves
to only apply the partial function to suitable arguments.
Finally, we cannot only apply the isomorphism in either direction, but we know these
processes to be inverses of each other. That is, starting with some t ::F X we can dissect it
into shape t and contents t and since we know that arity (shape t) = length (contents t)
we can apply fill and

fill (shape t) (contents t) = t

has to hold. Going the other way around, starting with (compatible) s :: S and xs :: [X]
the two equations

shape (fill s xs) = s

contents (fill s xs) = xs

have to hold.
Using the isomorphisms, we can also give a traversal for F using contents, shape and fill :

traverse u t = pure (fill (shape t)) ~ traverse u (contents t)

The application of fill is allowed because traversing the list contents t with the standard
instance does not change the length.

Once the representation theorem is proved, we will know that all traversals are essentially
the one given above for some suitable shape, contents and fill . This allows to answer
questions about traversables by translating them into questions about finitary containers.
For example, given two different traversal functions, how do they relate to each other?
Translating this into a question about finitary containers, can a functor be isomorphic
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to two different finitary containers? Yet easier, can two different finitary containers
be isomorphic to each other? Apart from the trivial variations like replacing S by a
set of equal size, the only degree of freedom is reordering the factors in Xarity s . This
corresponds to visiting the entries in a traversable in a different order, so that is the only
possible difference between two traversing functions for the same type constructor.

3.4.2 Finding a Set of Shapes

The above conditions describe what it means for a given functor to be isomorphic to the
extension functor of a given finitary container. Now we go one step further and ask how
the finitary container structure can be found for a given functor.
Yet, if we only fixed the functor, the result would not be unique in general. Given one
finitary container structure, we can find another one by post-composing the contents
function with some permutation and pre-composing the fill function with the inverse
permutation. So, in addition to the functor, we assume the function contents ::F x → [x ]
to be given. This fixes the order of the entries.

Both the set of shapes and the arity function are uniquely determined by the functor F
together with a given contents function. To this end, assume we already knew a solution
S, arity .
Consider a special entry type – the unit type (), which is only inhabited by the empty
tuple (). This choice is reasonable, as a tree with trivial labels at the leafs is just as
good as an unlabel tree. For every given length there is only one list of type [()] (lists
containing empty tuples). So for this special type the length function is invertible and
the inverse is

λn → replicate n () :: Int→ [()].

Thus given a shape s :: S there is only one compatible list of contents xs :: [()], which is

replicate (arity s) ().

Applying fill to s and this list, we find some t = fill s (replicate (arity s) ()) and
shape t = s holds. If on the other hand some t :: F () is given, we can dissect it into its
shape and contents. But since the contents are determined by its shape via the arity,
we can reconstruct t from shape t alone as

t = fill (shape t) (replicate (arity (shape t)) ()).

From the above we conclude that S and F () are isomorphic via the function shape. We
also claimed that arity is determined by the functor F. Indeed, since arity ◦ shape =
length ◦ contents holds and shape is an isomorphism for X = (), the function arity is also
determined by F. So, if there is a suitable choice for S and arity at all, then S = F ()
and arity s = length (contents s) is one.

Since we now know how to find the set of shapes and the arity function for a given
functor, we can give an alternative description of finitary containers. There is no more

54



need for a shape function to be given, as we can simply define it:

shape = fmap (const ()) :: F x → F ()

We do still need the function contents ::F x → [x ] to be given though. Also, fill ::F ()→
[x ]→ F x has to be given (which still is a partial function). In the new setting, fill s xs
exists if length (contents s) = length xs or equivalently contents s = map (const ()) xs.
The properties we require are the same as before:

shape (fill s xs) = s

contents (fill s xs) = xs

fill (shape t) (contents t) = t

We can define S and arity without using fill . Yet to prove that F is isomorphic to
Ext arity , the function fill and the above laws are required.
This description is usually referred to as functors shapely over lists [Moggi et al., 1999].
The contents function is a natural transformation between the functor F and the list
functor (hence ‘over lists’). The equations amount to the naturality squares

F X
shape=−−−−−−−−−→

fmap (const ())
F ()

contents

y ycontents

[X]
map (const ())−−−−−−−−−→ [()]

being pullback squares.

3.4.3 Finding Another Set of Shapes

The problem with what has been discussed so far is that it cannot be used in Haskell
directly. Dealing with the partial function fill properly would require spelling out the
partiality using Maybe. There however is a different choice for the set of shapes that also
arises from the functor F together with a contents function and leads to a description
better suited for Haskell.
If fill is partially applied to a shape s (for any notion of shape), the result is a polymorphic
(partial) function of type [x ] → F x , expecting a list of length arity s. So instead of
using lists, we can make the length requirement explicit by changing the type to

x → . . .→ x →︸ ︷︷ ︸
arity s

F x ,

where the arity of the function is the arity of the shape. We call functions arising in this
manner make functions.
Can all polymorphic functions with a type x → . . .→ x → F x arise like this? No they
cannot because make functions are (essentially) partial applications of fill and fill has
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certain properties. Since shape (fill s xs) = s, we have shape (make x0 . . . xn−1) = s for
the function make that arises from fill s, independently of the choice of the xi. That
is good news as it tells us how to get back the shape s we started with from its make
function: Any saturated application of the make function will result in something having
the shape s.
Another thing we know about (partial) applications of fill is that contents (fill s xs) =
xs. Therefore all make functions have to satisfy

contents (make x0 . . . xn−1) = [x0, . . . , xn−1 ]. (3.23)

Because of naturality

fmap f (make x0 . . . xn−1) = make (f x0) . . . (f xn−1) (3.24)

has to hold. This latter property is automatic in Haskell due to free theorems [Wadler,
1989].
What can we conclude from fill (shape t) (contents t) = t? If we start with t :: F X and
take the make function arising from shape t , then

t = make x0 . . . xn−1

where [x0, . . . , xn−1 ] = contents t . So t can be reconstructed from its shape and contents
by applying the make function to the contents.

We defined make functions as functions arising as partial applications of fill and derived
properties (3.23) and (3.24). We can also go the other way around and start with a
polymorphic function make satisfying (3.23) and (3.24). Does it define a shape in the
original sense? Every F X that results from an application of a given make does indeed
have the same shape because of (3.24):

shape (make x0 . . . xn−1)
= 〈 property of (!!) 〉

shape (make ([x0, . . . , xn−1 ] !! 0) . . . ([x0, . . . , xn−1 ] !! (n − 1)))
= 〈 (3.24) 〉

shape (fmap ([x0, . . . , xn−1 ]!!) (make 0 . . . (n − 1)))
= 〈 functoriality of shape 〉

shape (make 0 . . . (n − 1))

If we partially apply fill to this shape, can we recover the function make?

fill (shape (make 0 . . . (n − 1))) [x0, . . . , xn−1 ]
= 〈 (3.23) 〉

fill (shape (make 0 . . . (n − 1))) (contents (make x0 . . . xn−1))
= 〈 see above 〉

fill (shape (make x0 . . . xn−1)) (contents (make x0 . . . xn−1))

56



= 〈 pullback property 〉
make x0 . . . xn−1

Thus make functions and shapes are in one-to-one correspondence.
The drawback of this representation is that make functions are rather implicit as a
description of shape because they are functions. Also, extracting the make function
from a given container is somewhat difficult. On the other hand when dealing with
code, we rarely strip a tree of all its contents explicitly and refill the naked shape later.
Instead we use fmap and traverse in the code and only reason about the shape to prove
properties of a given function. So there actually is no need to have a type that represents
all shapes and therefore we are content with the implicit description of ‘a polymorphic
function of some arity’. For any given shape we can write down the function and that
is good enough to reason about shapes in a piece of code that probably never mentions
shapes explicitly.

3.5 The Representation Theorem

Before we come to the main result of this chapter, let us recapitulate. We have introduced
the Traversable class and seen examples of how one might want to use its method traverse.
We have also discussed the laws which the class is usually required to satisfy (section 3.2).
We have seen how using these laws, proofs about programs using traverse can be carried
out. Such proofs are comprehensible, but not easily found (section 3.3). On the other
hand we have seen finitary containers – a class of functors which are traversable in a
straightforward manner (section 3.4). Moreover proofs about finitary containers are
equally straightforward as shape and contents can be dealt with independently.
In this section, we prove a result called representation theorem which basically shows that
all (lawfully) traversable functors are in fact finitary containers. This allows to reason
about any (lawful) traversal the same way we think about finitary containers, i.e., shape
and contents can be separated and traverse is only concerned with the contents. Thus,
short and elegant proofs become possible.

The starting point are traversable functors and therefore contents is again defined using
traverse (as opposed to being some primitive as in the previous section):

note :: x → Const [x ] y
note x = Const [x ]

contents :: Traversable t ⇒ t x → [x ]
contents = getConst ◦ traverse note

We use the notion of make function from the previous section with the following def-
inition. A make function (for some traversable type T) is a polymorphic function
make :: x → . . .→ x → T x of any arity satisfying:

contents (make x0 . . . xn−1) = [x0, . . . , xn−1 ] (3.23)

fmap f (make x0 . . . xn−1) = make (f x0) . . . (f xn−1) (3.24)
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Thus, being a make function determines the result of some applications of traverse.
Condition (3.23) implies

traverse note (make x0 . . . xn−1) = Const [x0, . . . , xn−1 ]

and condition (3.24) implies

traverse (Identity ◦ f ) (make x0 . . . xn−1) = Identity (make (f x0) . . . (f xn−1)).

The first theorem claims that indeed all applications of traverse to make x0 . . . xn−1

follow a general pattern that contains the above two as special cases.

Theorem 3.5.1. Let X and Y be arbitrary types, A an idiom and T a (lawfully)
traversable type constructor. Let xi :: X be a series of values, u :: X → A Y some
computation with effects in A and make a make function for T. Then the following
equation holds in A (T Y):

traverse u (make x0 . . . xn−1) = pure make ~ u x0 ~ . . .~ u xn−1 (3.25)

If A is a monad, equivalently:

traverse u (make x0 . . . xn−1)

= (3.26)

do {y0 ← u x0; . . . ; yn−1 ← u xn−1; return (make y0 . . . yn−1)}

The second theorem states that every traversable object can be split into its shape and
contents in a unique way:

Theorem 3.5.2. Let some t ::T X be given where X is an arbitrary type and T a (law-
fully) traversable type constructor. There is a unique n, a unique n-ary make function
make and unique values x0, . . . , xn−1 :: X, such that

t = make x0 . . . xn−1. (3.27)

So, every traversable can be split into shape and contents in a unique way. Once we know
the decomposition, we can compute the result of any traversal easily using theorem 3.5.1.
In [Bird et al., 2013] both theorems are presented together as ‘every t can be represented
as in (3.27) and the function make “so obtained” satisfies (3.25).’ There is no actual
restriction in make being obtained via 3.5.2: Any application make x0 . . . xn−1 gives a
t whose representation is make x0 . . . xn−1 because of the representation being unique.
While there is no new insight in the formulation given here, we find the claim to be
clearer. The remainder of this section is dedicated to proving both theorems and closely
follows the proof given in the paper.
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3.5.1 The Batch Idiom

The function traverse :: (Applicative a,Traversable t) ⇒ (x → a y) → t x → a (t y) is
polymorphic in x , y , a and t . Since it is a method of the Traversable class, it is ad-hoc
polymorphic in t . That is to say traverse for any concrete type constructor T is aware
of the term constructors of T X. For example the traverse function for our Tree type
can do pattern matching on the Leaf and Node constructors. On the other hand the
polymorphism in the idiom is parametric, i.e., the behavior is the same for all idioms.
This is formally expressed by the idiom morphism law (3.14) we will use in the proof.
Here, we stick to an informal description and ask: What can a general traversal function
look like? Consider an application of traverse, say traverse u t for t :: T X and u :: X→
A Y. The type of traverse u t is A (T Y) so the outermost layer is the idiom, which
is opaque for the traversal. The traverse function can generate values of the unknown
idiomatic type only by applying u to some argument of type X or by using the methods
provided by the Applicative class.
Every idiomatic computation can be given in its canonical form, so in particular the
result of traverse u t has a canonical form. This canonical form has to be essentially
the same for all applicatives because traverse is parametrically polymorphic in a. Thus,
we want to build a special idiom that allows us to capture and inspect this canonical
form. There will be one special effectful function, which when traversed with produces
the canonical form. Once we have obtained this blueprint, we can specialize it to any
effectful traversal of the same object.
So how will the canonical form look like in general? The only atomic effectful function
traverse can use is the one it receives as its higher order argument. We thus expect a
canonical form like

pure f ~ u x0 ~ . . .~ u xn−1

where f is some pure function and the xi are entries of the traversed object. We will
represent this canonical form as

P f � x0 � . . .� xn−1

where P and � are constructors and � associates to the left. We do not need to mark
where the u is supposed to be inserted, as this is clear from the structure of the compu-
tation. We will also use the shorthand notation

P f �n−1
i=0 xi

analogously to the shorthand notation for canonical forms.

The idiom we will be using is given in figure 3.5. Batch needs three type arguments: The
first represents the entry type of the traversable object we want to study. The second
type argument represents the entry type of the resulting traversable, which might be
different. Finally, the third type argument is the result type of the Batch x y idiom
itself.
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data Batch x y z = P z | (�) (Batch x y (y → z )) x

instance Applicative (Batch x y) where
pure z = P z
P f ~ P z = P (f z )
(v � x ) ~ P z = (P ((◦) (λf → f z )) ~ v)� x
v ~ (w � x ) = (P (◦) ~ v ~ w) � x

batch :: x → Batch x y y
batch x = P id � x

runWith :: Applicative a ⇒ (x → a y)→ Batch x y z → a z
runWith u (P z ) = pure z
runWith u (v � x ) = runWith u v ~ u x

Figure 3.5: Definition of the Batch idiom and its interface

The type of the P constructor is z → Batch x y z and it is indeed used as the pure
method in the Applicative instance. The type of (�) is

(�) :: Batch x y (y → z )→ x → Batch x y z ,

so the right field is an entry of the traversed object and the left field is another com-
putation. The result type of the nested computation expects an additional argument of
type y , which will be the result of applying an actually effectful function to the right
field later.
The runWith function is straightforward from the above discussion. When actually
running the blueprint computation the constructors are turned into idiomatic primitives
and some given effectful function u is inserted at the appropriate places. The batch
function is made such that batch x turns into u x once the computation is run. The
normal form of u x is pure id ~ u x , and so batch x has to be P id � x .
The only tricky part of the definition are the rules for (~) in the Batch idiom itself.
The first rule has to hold because of the homomorphism law (3.5) and the fact that
pure is P. The guiding principle behind the other two rules is that in order for Batch
to faithfully represent the general effectful computation traverse u t for arbitrary t , we
want runWith u to be an idiom morphism. Thus,

runWith u ((v � x ) ~ P z ) = runWith u (v � x ) ~ runWith u (P z )

has to hold. The right hand side can be transformed as follows:

runWith u (v � x ) ~ runWith u (P z )
= 〈 definition of runWith 〉

(runWith u v ~ u x ) ~ pure z
= 〈 interchange law (3.6) 〉
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pure (λf → f z ) ~ (runWith u v ~ u x )
= 〈 composition law (3.4) 〉

pure (◦) ~ pure (λf → f z ) ~ runWith u v ~ u x
= 〈 homomorphism law (3.5) 〉

pure ((◦) (λf → f z )) ~ runWith u v ~ u x
= 〈 assuming runWith is an idiom morphism 〉

runWith u (P ((◦) (λf → f z )) ~ v) ~ u x
= 〈 definition of runWith 〉

runWith u ((P ((◦) (λf → f z )) ~ v) � x )

So by defining (v � x ) ~ P z = (P ((◦) (λf → f z )) ~ v) � x , we make sure the above
equation holds. This justifies the second rule for (~) and by a similar calculation we can
justify the third rule:

runWith u v ~ runWith u (w � x )
= 〈 definition of runWith 〉

runWith u v ~ (runWith u w ~ u x )
= 〈 composition law (3.4) 〉

pure (◦) ~ runWith u v ~ runWith u w ~ u x
= 〈 assuming runWith is an idiom morphism 〉

runWith u (P (◦) ~ v ~ w) ~ u x
= 〈 definition of runWith 〉

runWith u ((P (◦) ~ v ~ w) � x )

Now that we have seen all definitions and the ideas behind those definitions, we can
start to prove some helpful statements about Batch.

Lemma 3.5.3. The equation

runWith u (P f �n−1
i=0 xi) = pure f ~n−1

i=0 u xi

holds for all idioms A, series of xi ::X and functions u ::X→ A Y and f ::Y → . . .→ Y → Z.

Proof. The proof is by induction, where the base case is obvious from the first rule of
runWith. For the induction step:

runWith u (P f �n
i=0 xi)

= 〈 splitting of last (�) 〉
runWith u ((P f �n−1

i=0 xi) � xn)
= 〈 definition of runWith 〉

runWith u (P f �n−1
i=0 xi) ~ u xn

= 〈 induction hypothesis 〉
(pure f ~n−1

i=0 u xi) ~ u xn
= 〈 absorbing last (~) 〉

pure f ~n
i=0 u xi
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Lemma 3.5.4. For all idioms A and functions u :: X→ A Y:

runWith u ◦ batch = u

Proof. By applying both to some x :

runWith u (batch x )
= 〈 definition of batch 〉

runWith u (P id � x )
= 〈 definition of runWith 〉

pure id ~ u x
= 〈 identity law (3.3) 〉

u x

Lemma 3.5.5. The Applicative instance for Batch x y is correct, i.e., satisfies the idiom
laws (3.3) – (3.6).

Proof. Define a function weight :: Batch x y z → Int counting the (�) constructors.
An easy joint induction proof shows that u ~ v is well-defined13 and weight (u ~ v) =
weight u + weight v .
The identity law (3.3) is proved by induction, where the base case is:

P id ~ P z
= 〈 first rule for (~) 〉
P (id z )

= 〈 definition of id 〉
P z

The induction step is as follows:

P id ~ (v � x )
= 〈 third rule for (~) 〉

(P (◦) ~ P id ~ v) � x
= 〈 first rule for (~) 〉

(P ((◦) id) ~ v) � x
= 〈 id ◦ f = f , so (◦) id = id 〉

(P id ~ v) � x
= 〈 induction hypothesis 〉

v � x

The homomorphism law (3.5) is obvious from the first rule of (~). The interchange
law (3.6) requires to distinguish two cases, but no induction. Pure case:

13That means using the same definition in a language that is not total, evaluation of (~) terminates
for total arguments.
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P f ~ P z
= 〈 first rule for (~) 〉
P (f z )

= 〈 beta equivalence 〉
P ((λg → g z ) f )

= 〈 first rule for (~) 〉
P (λg → g z ) ~ P f

Application case:

(v � x ) ~ P z
= 〈 second rule for (~) 〉

(P ((◦) (λg → g z )) ~ v) � x
= 〈 first rule for (~) 〉

(P (◦) ~ P (λg → g z ) ~ v) � x
= 〈 third rule for (~) 〉
P (λg → g z ) ~ (v � x )

The composition law (3.4) can be checked in a similar manner, but we leave out the
details here.

The next lemma provides means to work with the canonical forms without having to
descend to the recursive definition of (~) in the Batch idiom.

Lemma 3.5.6. For natural 0 ≤ m ≤ n, a sequence xi :: X and functions f :: Y → . . .→
Y → Z and g :: Y → . . .→ Y → Z→ Z′ the following holds:

(P g �m−1
i=0 xi) ~ (P f �n−1

i=m xi) = P (g ◦m,n f ) �n−1
i=0 xi (3.28)

In particular for m = 0:

liftA g (P f �n−1
i=0 xi) = P (g ◦0,n f ) �n−1

i=0 xi (3.29)

Proof. We first show that runWith batch = id by induction. The base case follows
from the first rule of runWith and the fact that pure = P in the Batch idiom. For the
induction step:

runWith batch (v � x )
= 〈 definition of runWith 〉

runWith batch v ~ batch x
= 〈 induction hypothesis 〉

v ~ batch x
= 〈 definition of batch 〉

v ~ (P id � x )
= 〈 third rule for (~) 〉

(P (◦) ~ v ~ P id) � x
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= 〈 interchange law (3.6) 〉
(P (λf → f id) ~ (P (◦) ~ v))� x

= 〈 composition law (3.4) 〉
(P (◦) ~ P (λf → f id) ~ P (◦) ~ v) � x

= 〈 homomorphism law (3.5) (twice) 〉
(P ((λf → f id) ◦ (◦)) ~ v) � x

= 〈 see below 〉
(P id ~ v) � x

= 〈 identity law (3.3) 〉
v � x

Here, we have used that (λf → f id) ◦ (◦) = id . Indeed:

((λf → f id) ◦ (◦)) z
= 〈 definition of (◦) 〉

(λf → f id) ((◦) z )
= 〈 beta equivalence 〉

(◦) z id
= 〈 property of (◦) 〉

z

Now, we have

(P g �m−1
i=0 xi) ~ (P f �n−1

i=m xi)
= 〈 runWith batch = id 〉

runWith batch (P g �m−1
i=0 xi) ~ runWith batch (P f �n−1

i=m xi)
= 〈 lemma 3.5.3 〉

(pure g ~m−1
i=0 batch xi) ~ (pure f ~n−1

i=m batch xi)
= 〈 flattening formula (3.7) 〉

pure (g ◦m,n f ) ~n−1
i=0 batch xi

= 〈 lemma 3.5.3 〉
runWith batch (P (g ◦m,n f ) �n−1

i=0 xi)
= 〈 runWith batch = id 〉
P (g ◦m,n f ) �n−1

i=0 xi

Lemma 3.5.7. For all u :: X→ A Y the function

runWith u :: Batch X Y z → A z

is an idiom morphism from Batch X Y to A.

Proof. Equation (3.10) is obvious from the first rule of runWith. The proof of (3.11)
relies on the two flattening formulas:
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runWith u ((P g �m−1
i=0 xi) ~ (P f �n−1

i=m xi))
= 〈 flattening formula (3.28) 〉

runWith u (P (g ◦m,n f ) �n−1
i=0 xi)

= 〈 lemma 3.5.3 〉
pure (g ◦m,n f ) ~n−1

i=0 u xi
= 〈 flattening formula (3.7) 〉

(pure g ~m−1
i=0 u xi) ~ (pure f ~n−1

i=m u xi)
= 〈 lemma 3.5.3 〉

runWith u (P g �m−1
i=0 xi) ~ runWith u (P f �n−1

i=m xi)

3.5.2 Proof of the Representation Theorem

Now that we have readied our main tool, the Batch idiom, we can start proving the
theorems. The first lemma already tells us how to find all the pieces of the representation,
but no claim is made that they actually possess the described properties. In particular,
mk is not yet claimed to be a make function.

Lemma 3.5.8. For every t ::T X there is a polymorphic function mk ::y → . . .→ y → T y
and values x0, . . . , xn−1 :: X with

traverse u t = pure mk ~n−1
i=0 u xi (3.30)

fmap f t = mk (f x0) . . . (f xn−1) (3.31)

for all types Y, idioms A, functions u :: X→ A Y and f :: X→ Y.

Proof. The polymorphic value traverse batch t :: Batch X y (T y) has to have some
concrete representation

traverse batch t = P mk �n−1
i=0 xi. (3.32)

This step fixes the number n, the n-ary polymorphic function mk :: y → . . .→ y → T y
and the n values x0, . . . , xn−1 :: X. Here, we made essential use of our language being
total. Now for the claimed equation (3.30):

traverse u t
= 〈 lemma 3.5.4 〉

traverse (runWith u ◦ batch) t
= 〈 idiom morphism law (3.14) and lemma 3.5.7 〉

runWith u (traverse batch t)
= 〈 concrete representation (3.32) 〉

runWith u (P mk �n−1
i=0 xi)

= 〈 lemma 3.5.3 〉
pure mk ~n−1

i=0 u xi
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(3.31) follows easily:

fmap f t
= 〈 fmap in terms of traverse 〉

runIdentity (traverse (Identity ◦ f ) t)
= 〈 property (3.30) of mk 〉

runIdentity (pure mk ~ Identity (f x0) ~ . . .~ Identity (f xn−1))
= 〈 calculation in Identity idiom 〉

runIdentity (Identity (mk (f x0) . . . (f xn−1)))
= 〈 inverse isomorphisms 〉

mk (f x0) . . . (f xn−1)

Lemma 3.5.9. For the function mk given by lemma 3.5.8

traverse u (mk y0 . . . yn−1) = pure mk ~n−1
i=0 u yi (3.33)

holds for all types Y, Z, idioms A, elements y0, . . . , yn−1 :: Y and functions u :: Y → A Z.

Proof. The claim is proved by comparing the fields of the P constructor in the first and
last line of the following calculation:

Compose (P (λy0 . . . yn−1 → traverse u (mk y0 . . . yn−1)) �n−1
i=0 xi)

= 〈 definition of ◦·,· 〉
Compose (P (traverse u ◦0,n mk) �n−1

i=0 xi)
= 〈 flattening formula (3.29) 〉
Compose (liftA (traverse u) (P mk �n−1

i=0 xi))
= 〈 concrete representation (3.32) 〉
Compose (liftA (traverse u) (traverse batch t))

= 〈 composition law (3.13) 〉
traverse (Compose ◦ liftA u ◦ batch) t

= 〈 lemma 3.5.8 〉
pure mk ~n−1

i=0 Compose (liftA u (batch xi))
= 〈 definition of batch 〉

pure mk ~n−1
i=0 Compose (liftA u (P id � xi))

= 〈 flattening formula (3.29) 〉
pure mk ~n−1

i=0 Compose (P u � xi)
= 〈 equation (3.8) 〉
Compose (P (λv0 . . . vn−1 → pure mk ~ v0 ~ . . .~ vn−1) ~n−1

i=0 (P u � xi))
= 〈 see below 〉
Compose (P (λy0 . . . yn−1 → pure mk ~n−1

i=0 u yi) �n−1
i=0 xi)

The last step is an n-fold application of the flattening formula (3.28) for the Batch idiom.
More precisely the below is used n times for m = 0, . . . ,n − 1.
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P (λy0 . . . ym−1 vm . . . vn−1 → pure mk ~m−1
i=0 u yi ~

n−1
i=m vi) �m−1

i=0 xi
~ (P u � xm)

= 〈 flattening formula (3.28) 〉
P ((λy0 . . . ym−1 vm . . . vn−1 → pure mk ~m−1

i=0 u yi ~
n−1
i=m vi) ◦m,m+1 u)

�m
i=0 xi

= 〈 definition of ◦·,· 〉
P (λy0 . . . ym−1 ym → (λvm . . . vn−1 → pure mk ~m−1

i=0 u yi ~
n−1
i=m vi) (u ym))

�m
i=0 xi

= 〈 beta equivalence 〉
P (λy0 . . . ym−1 ym vm+1 . . . vn−1 → pure mk ~m−1

i=0 u yi ~ u ym ~n−1
i=m+1 vi)

�m
i=0 xi

= 〈 absorbing (~) 〉
P (λy0 . . . ym−1 ym vm+1 . . . vn−1 → pure mk ~m

i=0 u yi ~
n−1
i=m+1 vi)

�m
i=0 xi

Proof of theorem 3.5.1. Let make be a given make function of arity n. Lemma 3.5.8
applied to t = make 0 . . . (n−1) yields m, an m-ary function mk and i0, . . . , im−1::Integer,
such that

traverse u (make 0 . . . (n − 1)) = pure mk ~ u i0 ~ . . .~ u im−1

for all types Y, idioms A and u :: Integer→ A Y. In particular for u = note we have:

[0 . . (n − 1)]
= 〈 make satisfies (3.23) 〉

contents (make 0 . . . (n − 1))
= 〈 definition of contents 〉

getConst (traverse note (make 0 . . . (n − 1)))
= 〈 lemma 3.5.8 〉

getConst (pure mk ~ note i0 ~ . . .~ note im−1)
= 〈 definition of note 〉

getConst (pure mk ~ Const [i0 ] ~ . . .~ Const [im−1 ])
= 〈 (~) in Const idiom 〉

getConst (Const [i0, . . . , im−1 ])
= 〈 inverse isomorphisms 〉

[i0, . . . , im−1 ]

The two lists being equal implies m = n and ij = j . We also want to prove mk = make:

make y0 . . . yn−1

= 〈 property of (!!) 〉
make ([y0, . . . , yn−1 ] !! 0) . . . ([y0, . . . , yn−1 ] !! (n − 1))

= 〈 make satisfies (3.24) 〉
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fmap ([y0, . . . , yn−1 ]!!) (make 0 . . . (n − 1))
= 〈 lemma 3.5.8 〉

mk ([y0, . . . , yn−1 ] !! 0) . . . ([y0, . . . , yn−1 ] !! (n − 1))
= 〈 property of (!!) 〉

mk y0 . . . yn−1

Since equality holds for arbitrary y0, . . . , yn−1 of arbitrary type Y the two functions are
equal. Thus, lemma 3.5.9 applies to make, which is the claim of the theorem.

Lemma 3.5.10. The function mk given by lemma 3.5.8 is a make function.

Proof. We have to check equations (3.23) and (3.24). Using lemma 3.5.9 for note ::X→
Const [X] y gives

traverse note (mk x0 . . . xn−1) = pure mk ~n−1
i=0 note xi

which is equivalent to

Const (contents (mk x0 . . . xn−1)) = Const [x0, . . . , xn−1 ],

i.e., (3.23) up to a Const wrapper. The steps are similar to the first derivation in the
proof of theorem 3.5.1.
Using lemma 3.5.9 again but for Identity ◦ f :: X→ Identity Y gives

traverse (Identity ◦ f ) (mk x0 . . . xn−1) = pure mk ~n−1
i=0 Identity (f xi)

which is equivalent to

Identity (fmap f (mk x0 . . . xn−1)) = Identity (mk (f x0) . . . (f xn−1)),

i.e., (3.24) up to an Identity wrapper. The steps are similar to the second derivation in
the proof of lemma 3.5.8.

Proof of theorem 3.5.2. Let t :: T X be given. Fix n, mk :: y → . . . → y → T y and
x0, . . . , xn−1 :: X as in lemma 3.5.8. Because of lemma 3.5.10, mk is indeed a make
function. We have to show that t = mk x0 . . . xn−1:

t
= 〈 property of fmap 〉

fmap id t
= 〈 lemma 3.5.8 〉

mk (id x0) . . . (id xn−1)
= 〈 definition of id 〉

mk x0 . . . xn−1

This concludes the existence part.
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Now for uniqueness. If one traversable t has two representations make x0 . . . xn−1 =
make ′ y0 . . . ym−1, then theorem 3.5.1 applies to both make and make ′. For the first
representation we have:

traverse batch (make x0 . . . xn−1)
= 〈 theorem 3.5.1 〉

pure make ~ batch x0 ~ . . .~ batch xn−1

= 〈 definition of batch 〉
pure make ~ (P id � x0) ~ . . .~ (P id � xn−1)

= 〈 flattening formula (3.28) 〉
P make � x0 � . . .� xn−1

And since the analogous statement applies to the second representation,

P make � x0 � . . .� xn−1 = P make ′ � y0 � . . .� ym−1.

By inspecting the fields we find that both representations coincide.

3.6 Examples

3.6.1 Proving the Labeling Claim using the Representation Theorem

Now that we have the representation theorem at hand, we find an easier proof for the
tree labeling claim, i.e.,

runState (label t) 0 = (t ′,n) =⇒ contents t ′ = [0 . .n − 1].

Given some t :: Tree X, we can represent it as make x0 . . . xn−1 using theorem 3.5.2. The
result of applying label is calculated easily using theorem 3.5.1:

label (make x0 . . . xn−1)
= 〈 definition of label 〉

traverse (const fresh) (make x0 . . . xn−1)
= 〈 theorem 3.5.1 〉

pure make ~n−1
i=0 const fresh xi

= 〈 definition of const 〉
pure make ~n−1

i=0 fresh
= 〈 definition of fresh 〉

pure make ~n−1
i=0 do { l ← get ; put (l + 1); return l }

= 〈 rewriting into a do-block 〉
do { l0 ← get ; put (l0 + 1); . . . ; ln−1 ← get ; put (ln−1 + 1)

; return (make l0 . . . ln−1)}
= 〈 simplifying 〉

do { l0 ← get ; put (l0 + n); return (make l0 (l0 + 1) . . . (l0 + n − 1))}
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treverse :: (Traversable t ,Applicative a)⇒ (x → a y)→ t x → a (t y)
treverse u = forwards ◦ traverse (Backwards ◦ u)

adorn :: x → State [ l ] (x , l)
adorn x = do

l : ls ← get
put ls
return (x , l)

label :: Traversable t ⇒ t x → State [ l ] (t (x , l))
label = traverse adorn

strip :: (x , l)→ State [ l ] x
strip (x , l) = do

ls ← get
put (l : ls)
return x

unlabel :: Traversable t ⇒ t (x , l)→ State [ l ] (t x )
unlabel = treverse strip

Figure 3.6: Code base for labeling à la Gibbons and Bird

So applying runState with the initial state 0 gives make 0 . . . (n − 1) as result and n
as the final state. And indeed, contents (make 0 . . . (n − 1)) = [0 . .n − 1] because
make is a make function. (Alternatively we give contents in terms of traverse and use
theorem 3.5.1 a second time.)
This proof is rather short. In fact it is hard to imagine a shorter proof, as all problem
specific definitions have to be taken into account somewhere. More importantly, the
proof does not introduce any auxiliary definitions. It works with what is given and does
so in a very straightforward way.

3.6.2 Inversion Law

In [Bird et al., 2013] we gave a different proof, which first changes the claim in that both
labeling and collecting the labels is done in the same monad. The relevant definitions
can be seen in figure 3.6. This reformulation by Gibbons and Bird uses a list of labels,
which is managed by a State monad. The adorn function takes one argument, extracts
the first label from the list and returns a tuple consisting of the argument and the label.
The original content is not simply overwritten, as this approach crucially depends on
effects being reversible. The inverse action is strip, which puts the label back to the
front of the list. Given the list of labels is long enough,

adorn x >>= strip = return x

holds.
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Now, we might be tempted to assume

traverse adorn t >>= traverse strip = return t

also held, but it does not. The first entry in the initial list of labels is extracted first
and becomes the label of the first leaf (in whatever order the tree is traversed). When
the labels are collected again, this label is put back first and all subsequently collected
labels are put in front of it. Thus, the order of the used labels is reversed.
The solution is to perform either the labeling or the collecting process backwards, i.e.,
to visit all the leafs in reversed order. This is accomplished by the function treverse also
defined in figure 3.6, which relies on Backwards idioms (see section 3.1.2). The claim
thus becomes

traverse adorn t >>= treverse strip = return t

and this equation does indeed hold as we will see.
In fact, a more general statement holds: If u ::X→ M Y and v ::Y → M X are functions
such that

u x >>= v = return x (3.1)

then also
traverse u t >>= treverse v = return t (3.2)

for any traversable type constructor T and t :: T X. The adorn and strip functions are
an example for two mutually inverse effectful functions u and v . In this case the claim
is label t >>= unlabel = return t since unlabel is defined using treverse.

To deal with treverse, we prove a formula similar to the representation theorem:

treverse u (make x0 . . . xn−1) = pure (λyn−1 . . . y0 → make y0 . . . yn−1)~u xn−1~. . .~u x0

The proof relies on equation (3.9):

treverse u (make x0 . . . xn−1)
= 〈 definition of treverse 〉

forwards (traverse (Backwards ◦ u) (make x0 . . . xn−1))
= 〈 theorem 3.5.1 〉

forwards (pure make ~ Backwards (u x0) ~ . . .~ Backwards (u xn−1))
= 〈 equation (3.9) 〉

forwards (Backwards (pure (λyn−1 . . . y0 → make y0 . . . yn−1)
~ u xn−1 ~ . . .~ u x0))

= 〈 inverse isomorphisms 〉
pure (λyn−1 . . . y0 → make y0 . . . yn−1) ~ u xn−1 ~ . . .~ u x0

If the idiom is monadic, the last line can be written as a do-block:

do
yn−1 ← u xn−1
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. . .
y0 ← u x0

return (make y0 . . . yn−1)

Now for the proof of the inversion formula itself. We again start by assuming t to be
given in its decomposed representation make x0 . . . xn−1. Then we have:

do
t ′ ← traverse u (make x0 . . . xn−1)
treverse v t ′

= 〈 theorem 3.5.1 〉
do

y0 ← u x0

. . .
yn−1 ← u xn−1

t ′ ← return (make y0 . . . yn−1)
treverse v t ′

= 〈 first monad law 〉
do

y0 ← u x0

. . .
yn−1 ← u xn−1

treverse v (make y0 . . . yn−1)
= 〈 see above 〉

do
y0 ← u x0

. . .
yn−1 ← u xn−1

zn−1 ← v yn−1

. . .
z0 ← v y0

return (make z0 . . . zn−1)
= 〈 see below 〉

do
y0 ← u x0

. . .
yn−2 ← u xn−2

zn−2 ← v yn−2

. . .
z0 ← v y0

return (make z0 . . . zn−2 xn−1)
= 〈 and so on 〉

return (make x0 . . . xn−1)
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The crucial step is to realize that zn−1 is xn−1 and the effect of the two middle lines
cancel because of the precondition (3.1). This step can be applied n times to cancel all
the lines in the do-block until only the return statement is left.

3.6.3 Composition of Monadic Traversals

Let us quickly return to the proposed monadic composition law

traverse u >=> traverse v = traverse (u >=> v) (3.17)

which we claimed to be wrong in general. Now that we know the representation theorem,
we can understand more easily why it does not hold.
Given some t = make x0 . . . xn−1 the left side applied to t is

do
y0 ← u x0

. . .
yn−1 ← u xn−1

z0 ← v y0

. . .
zn−1 ← v yn−1

return (make z0 . . . zn−1)

while the right side applied to t is:

do
y0 ← u x0

z0 ← v y0

. . .
yn−1 ← u xn−1

zn−1 ← v yn−1

return (make z0 . . . zn−1)

The two blocks are clearly syntactically different if n > 1 and choices for u and v that
actually lead to different behavior can easily be found. For example if u pushes its
argument to a stack and v pops the stack’s top element, the former do-block reverses
the contents while the latter does nothing.
Seeing the traversals as do-blocks also helps us to identify conditions that make equa-
tion (3.17) true. If the monad is commutative, i.e., the order of effects does not matter,
the equation holds. This has been shown by Gibbons and Oliveira [2009] already and
their proof relies on

join ◦ runCompose :: Monad m ⇒ Compose m m x → m x

being an idiom morphism. Using the above do-blocks we can give an easier proof: In
commutative monads we may change the order of statements (unless that conflicts with
the variable scopes), so both do-blocks are semantically equal.
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But even if the monad is not commutative, it might still be fine to swap certain compu-
tations. Consider for example a monad QueueState x that manages a queue with entries
of type x and provides functions:

enqueue :: x → QueueState x ()
dequeue :: QueueState x x

The latter function may fail, as the queue might be empty (so in particular some effects
are not reversible). The monad is not commutative, because the order in which entries
are enqueued matters. Neither do enqueuing and dequeuing commute in general because,
when starting with an empty queue, dequeuing first leads to failure while the other order
is fine. But does

traverse enqueue >=> traverse (const dequeue) = traverse (enqueue >=> const dequeue)

hold, i.e., are the two do-blocks

do
enqueue x0

. . .
enqueue xn−1

z0 ← dequeue
. . .
zn−1 ← dequeue
return (make z0 . . . zn−1)

and

do
enqueue x0

z0 ← dequeue
. . .
enqueue xn−1

zn−1 ← dequeue
return (make z0 . . . zn−1)

semantically equal?
Yes they are: None of the dequeue operations leads to failure, because we never extract
more entries from the queue than we added before. Both the enqueuing and the dequeu-
ing operations remain in their respective orders and exchanging operations of different
types is fine as long as the queue cannot run dry.
In this case we used particular knowledge about queues to convince ourselves that the
above equation holds. We could generalize the statement by claiming equation (3.17)
whenever a number of preconditions concerning u and v holds. We could try to find
the weakest possible conditions or give a list of alternatives to pick from. However,
there is little insight to be gained – the equation holds whenever the two written-out
do-blocks are equal. That is easy enough a condition and can hopefully be decided for
every particular case for which it matters.
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This chapter can be understood as two different things. On the one hand, it is a collec-
tion of complementary approaches to understand the semantics of the functional-logic
language Curry [Hanus, 2013]. These approaches have their respective advantages and
disadvantages, but ultimately they describe the same language and are interrelated. See-
ing the chapter this first way, it is a thorough investigation of different topics, each of
which is interesting in its own right.
On the other hand, there is a goal, that has driven the research, motivates the whole
development, and explains the necessity of all the various considerations. This goal is
proving free theorems [Wadler, 1989] for Curry. Seeing the chapter this second way, it
is a serpentine route to a definitive end, in which every detour has a forcing reason. So
before we dive into the technicalities, we want to outline this serpentine route.

Haskell and Curry both feature parametrically polymorphic functions, i.e., functions that
work for different types but relying on the same code. In Haskell, parametric polymor-
phism implies nontrivial relations, called free theorems, between different instantiations
of the same function. Among other things, free theorems are the foundation of short cut
fusion [Gill et al., 1993] – a surprising and very useful compiler optimization strategy.
It is reasonable to believe that there is something to be found when it comes to Curry
as well.
Christiansen et al. [2010] have studied free theorems for Curry in a phenomenological
manner and have given a number of example statements they believe to hold. While the
paper does not give any proof of the positive results, it does give some counter-examples.
These counter-examples guide our intuition as to what can and cannot be expected to
hold. The paper states side conditions restricting nondeterminism, that at least exclude
the counter-examples, but hopefully turn out to be sufficient already. Also, vocabulary
for these side conditions is established.
The need for additional side conditions is not surprising. Staying in the realm of Haskell,
one can distinguish between a simplified, total version of Haskell and a succession of
better and better approximations to real code. The first step away from the naive
version is to include possible failure. Free theorems have to take this into account and
the presence of possible failure requires an additional side condition [Wadler, 1989]. The
more features we add to our language, the more side conditions we need, to still make
free theorems hold [Voigtländer and Johann, 2007]. Considering Curry to be an extended
Haskell with built-in nondeterminism, we expect even more such restrictions to appear
in free theorems.
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The question remains how to prove the positive results around free theorems in Curry.
Christiansen et al. [2011a] devised the following plan:

1. Define a denotational semantics for Curry, that is similar to denotational semantics
for functional languages.

2. Establish a formal connection between this functional-style denotational semantics
and other semantics for Curry.

3. Adapt free theorems and the machinery behind them from the functional setting
to the functional-logic setting.

The remainder of this introduction explains each of these steps in more detail.
None of these steps is actually done for full Curry. Instead, the object of study will be
a simplified version called CuMin (Curry Minor), which is presented in section 4.1. It
still represents the way nondeterminism, failure and sharing interact in Curry, but some
other features are exempt from the discussion. Section 4.1 contains details regarding
these simplifications. The difference will be brushed over for the remainder of this
introduction.

Defining a Functional-Style Denotational Semantics

There are different types of semantics for Curry. The Curry Report [Hanus, 2006] uses
a lazy operational semantics by Albert et al. [2005]. The other established seman-
tics [González-Moreno et al., 1999] is based on re-writing and is more closely associated
with the functional-logic language TOY [López-Fraguas and Sánchez-Hernández, 1999].
Curry and TOY are closely related, which is witnessed by the fact that both semantics
are equivalent [López-Fraguas et al., 2007].
The motivation for introducing yet another type of semantics is to come as close as
possible to the functional paradigm. Therefore, Christiansen et al. [2011a] propose
a denotational semantics inspired by [Søndergaard and Sestoft, 1992], that assigns a
mathematical meaning to every expression in a compositional manner. The interpreta-
tions of types are directed-complete partial orders (dcpos), which is the usual choice for
functional languages with general recursion [Abramsky and Jung, 1994]. Since Curry is
nondeterministic, expressions have a set-valued semantics, so a power domain construc-
tion is used, i.e., a construction for domains analogous to power sets.
Being compositional means that the semantics of an expression is determined by the
semantics of its subexpressions. In a language with general recursion, a function can
appear as a subexpression in the function’s defining rule. So, the semantics of the
function cannot be defined in a way that assumes all subexpressions to already have a
semantics, because this would lead to a cyclic dependency. Instead, the defining rules
of the semantics have to be interpreted as a system of equations. To still have a well-
defined semantics, this system of equations has to be interpreted in a framework that
guarantees the existence of solutions and distinguishes one of these solutions. This
extra requirement stops us from using plain sets as semantic domains for a deterministic
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language with general recursion (like Haskell) and is the motivation for using dcpos in
the first place [Abramsky and Jung, 1994].
The first major contribution in this chapter is a simplified denotational semantics for
Curry, which also appeared in [Mehner et al., 2014]. It uses partially ordered sets (posets)
instead of dcpos and thus avoids domain theory and in particular the somewhat contrived
construction of power domains. The required extra structure – taking limits of elements
– usually is provided by dcpos (see [Søndergaard and Sestoft, 1992] and [Abramsky and
Jung, 1994]). In our setting, it is already provided on the level of sets by taking unions.
Therefore, there is no need for limits on the element level and we can simply avoid
the complication. This makes the element level conceptually easier because we can use
partially ordered sets instead of dcpos. It also makes the set level easier because we do
not have to make sure the extra structure is preserved. The construction is discussed in
detail in section 4.3.

Relating the Different Semantics

The next step is to establish a connection between the functional-style denotational
semantics and one of the existing semantics. The rewriting semantics [González-Moreno
et al., 1999] and the lazy operational semantics [Albert et al., 2005] are equivalent [López-
Fraguas et al., 2007], so taking one of them into account is enough. Christiansen et al.
[2011a] decided that connecting their denotational semantics to the lazy operational
semantics would be easier, because a similar statement is already shown in [Launchbury,
1993].
Launchbury [1993] compares two such semantics for a very simple, lazy, deterministic
functional language. The result therein consists of two parts: correctness and adequacy.
Correctness of the operational semantics with respect to the denotational semantics1

means that evaluation preserves the denotation. More precisely, if the evaluation of an
expression produces a value after some finite time, this result has the same denotation
as the unevaluated expression. Adequacy means that evaluation succeeds exactly if the
denotation of the expression is not failure. In that case, the result of the computa-
tion is automatically correct because we already know the evaluation to not change the
denotation.
In our nondeterministic setting, these concepts have to be amended. The denotation of
an expression will be a set to represent the possible multitude of different results. In the
operational semantics, nondeterminism manifests in a different form: Sometimes there
are different possible computations steps that can be done next. By choosing one or the
other, the set of values can become smaller. So in our context, correctness will include
the possibility of the set of results becoming smaller during the course of evaluation.
Adequacy still means that for any non-failure result there is a terminating computation.
Yet we now additionally require this computation to result in an expression that still
has the given value in its denotation.

1 The terminology suggests that the denotational semantics is given and the operational semantics is
being studied. This is the case for Launchbury’s paper, while here, the roles are reversed. We still stick
to the terminology.
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Christiansen et al. [2011a] claimed to have shown correctness, but later revoked that
claim when one of the technical lemmas turned out to be incorrect. In this thesis, a
slightly different approach to the correctness proof is used in section 4.4.
Christiansen et al. [2011a] also gave a blueprint for proving adequacy, but this blueprint
turns out to be even more questionable. As in [Launchbury, 1993], the idea is to intro-
duce a step-indexed version of the denotational semantics, i.e., a denotational seman-
tics depending on a time parameter. If the number of steps remains unrestricted, this
corresponds to the original denotational semantics. Yet in the proof of the adequacy
statement, the step-indexing allows to use induction because it provides upper bounds
for the number of operational steps needed for evaluation.
The details of how to propagate indexes in [Christiansen et al., 2011a] are different from
the version given in [Launchbury, 1993]. However, no justification for this amendment is
given and the alteration might even have been unintentional. In any case, the proof for
the adequacy statement does not seem to work out – at least not in any straightforward
way – when using the step-indexing described in [Christiansen et al., 2011a]. While the
denotational semantics has been simplified considerably in other respects in [Mehner
et al., 2014], step-indexing is still done as in [Christiansen et al., 2011a].
Yet returning to the version of step-indexing from [Launchbury, 1993] does not solve the
problem either. Therefore, a third way of distributing indexes is introduced, while stick-
ing to the poset-based denotational semantics given in [Mehner et al., 2014] otherwise.
Using this version of the denotational semantics, the adequacy part of the statement is
finally proved in section 4.5.
The details in distributing step-indexes are ultimately irrelevant, because the denota-
tional semantics can be defined without using step-indexes. Taking this viewpoint, the
denotational semantics given here coincides with the denotational semantics in [Mehner
et al., 2014].

Parametricity and Deriving Free Theorems

Having convinced ourselves that the denotational semantics is a faithful representation
of the way the language is supposed to work, we can proceed and put it to use. This
development follows [Mehner et al., 2014], though the initial situation is slightly altered
because of the changes in (the details of) the denotational semantics.
What we have to do is prove parametricity, the technical foundation for free theorems.
Parametricity goes back to Reynolds [1983] and relates interpretations of one expression
in different environments. The connection is established by a so called logical relation
between the two interpretations. Free theorems [Wadler, 1989] are then derived by
instantiating this relation to the denotation of a function in the language itself. Thus,
instead of two denotations being related, we get a simpler statement about two different
expressions having the same semantics (given some preconditions hold).
Parametricity does hold for Curry, as we will show, but deriving free theorems from
parametricity is problematic. The catch is in instantiating the logical relation to the
semantics of a syntactic function. Like in Haskell, not every syntactic function produces
a suitable logical relation, but unlike in Haskell, the condition is hard to formalize.
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Christiansen et al. [2010] already pointed out that nondeterminism has to be restricted
in this function (only so called multi-deterministic functions are apt).
Curry’s type system (by design) does not discern this property, so reasoning on the basis
of types alone is impossible. On the semantic level we have a clear understanding of what
‘deterministic’ means, but we would rather omit having to descend this far down. The
semantics not only makes nondeterminism explicit, but also the handling of variable
environments and possibly even step-indexing.
The solution is to introduce an intermediate language called Sets and Lambda Terms
(SaLT) in which nondeterminism is made explicit by using sets as a syntactic construct.
These set types have a monadic interface, thus nondeterminism as an effect is marked
in the type. SaLT is given a denotational semantics and Curry can be translated into
SaLT by a purely syntax-directed translation procedure, that preserves this denotational
semantics. In SaLT, there is a notion of being deterministic, which is being semantically
equivalent to a singleton set. This does of course still rely on the semantics, but when
arguing about programs we can use equational reasoning and do not have to actually
compute the semantics.
The language SaLT, its denotational semantics, how to equationally argue about SaLT,
and the translation procedure are discussed in section 4.6. The language itself and the
translation have been slightly altered as compared to [Mehner et al., 2014] to make
dealing with functions easier.
Braßel et al. [2011] also present a translation from Curry to a deterministic language,
which is Haskell in their case. In both approaches, nondeterminism is made explicit
using a monadic interface. However, the motivation behind the respective approaches is
very different. Braßel et al. [2011] choose Haskell as the target language because they
want the translated programs to be executable using the existing tools around Haskell.
So, the language is fixed and the translation is designed to fit the language. The reason
for introducing SaLT is that the translation can be simplified by amending the target
language. Indeed, SaLT is not a fragment of Haskell, because Haskell distinguishes
between failing monadic computations (mzero) and actual errors (undefined), while both
are the same in SaLT. The price for changing the target language is that the existing
infrastructure cannot be used any more. This is acceptable, as SaLT is intended to be a
tool for reasoning about programs, rather than for running them. For the same reason,
SaLT is not given an operational semantics.

Instead of proving parametricity for Curry, we prove it for SaLT (section 4.7). Thereby,
the statement still is shown for all Curry expressions because of the semantics preserving
translation. Also having it available for the SaLT expressions that do not arise as
translations of CuMin expressions gives us additional degrees of freedom.
Relational parametricity for a language with monadic effects is unsurprising, as there
is a general framework by Møgelberg and Simpson [2009]. Nondeterminism is indeed
discussed as a special case of this framework, but in a simpler setting with no logic vari-
ables and no general recursion. It is reasonable to assume, that relational parametricity
for SaLT arises as a special case of the general framework (or a further generalization
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of it). However, since we are only interested in one special case, SaLT, we simply give a
tailored version of the parametricity theorem with a tailored proof.
Here, one contribution is finding a suitable extension of the logical relation to our partic-
ular power set construction. Also, we generalize the statement (as compared to [Mehner
et al., 2014]) to an inequational style as in [Johann and Voigtländer, 2006]. We deem
this extension especially useful in the context of a nondeterministic language, where the
inequalities are statements about set inclusion rather than about partial values.

Finally, all the tools are combined to prove free theorems. In particular, the side condi-
tions from [Christiansen et al., 2010] are formalized. The overall strategy is to translate
the claim and all the side conditions into SaLT. There, equational reasoning and SaLT’s
own free theorems can be used. The method is presented in section 4.8 by deriving some
example free theorems that also appeared in [Mehner et al., 2014].
A further application is short cut fusion [Gill et al., 1993] for Curry, which is proved
in section 4.9. Using the translation to SaLT, the claim is reduced to monadic short
cut fusion [Ghani and Johann, 2007]. The side conditions are surprisingly weak, in that
nondeterminism remains possible almost everywhere. The remaining restriction only
excludes uncommon uses of nondeterminism and is easily checkable.

4.1 The Language CuMin

Curry [Hanus, 2013] is a general-purpose programming language and incorporates a
variety of features. This expressiveness is convenient for the programmer, but less so
when reasoning formally about the language. We will therefore be making use of a
language fragment called CuMin (short for Curry Minor or Curry Minus) introduced
in [Mehner et al., 2014]. It is a simplified version of Curry that faithfully represents the
way lazyness and nondeterminism interact. Before we give a formal specification of the
language, we review some features of Curry and explain why CuMin does or does not
share them.
Another language to take into account here is FlatCurry, an internal representation for
Curry used by various tools. A lot of syntactic features of Curry are redundant and
are removed when translating to FlatCurry. The required transformations are described
in detail in the Curry Report [Hanus, 2006] and can also be used for the transition
from Curry to CuMin. FlatCurry however is an untyped language and type checking is
assumed to happen on the level of full Curry.
Not all differences between Curry and CuMin fall into this category. There are some
aspects in which both languages actually differ and those deserve special attention.
Finally, there are some tools around the language CuMin. Zaiser [2015] has implemented2

the operational semantics and the translation into SaLT3. The denotational semantics
has been implemented4 by Thorand [2015].

2github.com/fanzier/cumin-operational
3github.com/fanzier/cumin2salt
4github.com/fatho/bachelor-thesis
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4.1.1 Actual Simplifications

Recursive let-Bindings

Local variable definitions can be recursive in Curry, but CuMin will not allow this. For
example, the binding let xs = [ ] ? [ length xs ] in . . . is fine in Curry. According to the
operational semantics, [ ] and [1] are possible values while [0] is not. This is due to the
evaluation strategy: Once the right alternative is chosen, i.e., xs is bound to [ length xs ],
the length of xs can only be one.
This is impossible to model in a completely compositional denotational semantics, as
showed in [Christiansen et al., 2011b]. There, the issue is discussed at length and the
claims from [Christiansen et al., 2011a] are weakened to exclude recursive let bindings.
In this thesis, recursive let bindings are excluded from the language already.

Encapsulated Search

Another feature we disregard completely in this thesis is encapsulated search. A non-
deterministic computation performed within a capsule does not make the overall com-
putation branch. Instead, the possible results are collected in a data structure, which
can be processed as a whole. In particular, encapsulated search can be used to imple-
ment negation by failure: The absence of solutions to a search problem can be observed
within the language itself by performing the search in a capsule. Without the capsule,
the failing computation would cause the overall program to fail.
If no encapsulated search is possible, the language is monotone in the following sense:
If a subexpression in a program is replaced by failure, the set of possible solutions can
only become smaller. Encapsulated search breaks this monotonicity, since failure in a
negated capsule leads to success on the outside.
There is a denotational semantics for encapsulated search in [Christiansen et al., 2013],
which extends the denotational semantics given in [Christiansen et al., 2011a]. The
missing monotonicity is mirrored on the semantic level, which makes the semantics less
well-behaved. It remains unclear whether the developments presented in this thesis
can be generalized to such a non-monotonous setting. Doing so might be possible but
presumably not without a considerable amount of additional effort.

4.1.2 The Data Typeclass

In Curry, logic variables can be of any type, including function types, while in CuMin,
logic variables can only have certain types collected in a typeclass [Wadler and Blott,
1989] Data. This typeclass contains base types such as Bool and Nat, as well as lists
and tuples if their entry types are themselves data types. In earlier accounts, includ-
ing [Mehner et al., 2014], two different versions of the ∀ quantifier were used to distinguish
constrained type variables from arbitrary type variables.
The reason for this deviation from Curry lies in the free theorems [Wadler, 1989] we
want to establish. For example we would like all functions f of type ∀a.[a ] → [a ] to
satisfy map g ◦ f = f ◦map g for all g ::A→ B. Even in Haskell g undefined = undefined
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guard :: ∀a.Bool→ a → a
guard b x = case b of {True→ x ;False→ failed a }
minus :: Nat→ Nat→ Nat
minus n m = let k :: Nat free in guard Nat (m + k == n) k

choice :: ∀a.a → a → a
choice x y = let b :: Bool free in case b of {True→ x ;False→ y }
coin :: Nat
coin = choice Nat 0 1

double :: Nat→ Nat
double n = n + n

suffix :: ∀a.[a ]→ [a ]
suffix l = choice [a ] l (case l of {Nil→ failed [a ] ;Cons a as → suffix a as })
reverse :: ∀a.[a ]→ [a ]
reverse xs = reverseAppend a xs Nil a

reverseAppend :: ∀a.[a ]→ [a ]→ [a ]
reverseAppend x y = case x of

Nil → y
Cons a as → reverseAppend a as (Cons a a y)

Figure 4.1: Some example functions in CuMin

has to be required because of functions like f = undefined : [ ]. In Curry, yet another
possible function is f = let x free in x : [ ], so in order for the free theorem to still
hold, g has to be surjective in some sense. A function being surjective is virtually never
the case and very hard to check automatically. Thus, having such a restrictive condition
would render the whole theory almost useless.
Restricting the use of logic variables to a typeclass offers a rather elegant means of
further distinction. The function f = let x free in x : [ ] uses a logic variable whose
type is the type argument, thus the typeclass constraint Data a is necessary. Thus, the
free theorem only holds for surjective g or has to be weakened in some other manner,
for example by only giving an inequational statement. On the other hand, the more
restrictive type [a ] → [a ] without the class constraint excludes functions f using logic
variables of type a. For all remaining functions f , the statement is true without requiring
g to be surjective. This does not confine f to deterministic functions – it can still use
logic variables of types not containing the type variable a (like suffix does in figure 4.1).

So we find ourselves in a situation where our results crucially depend on a feature that
standard Curry does not offer. At the same time – at least from a Haskell point of
view – the absence of typeclasses is strange: In Curry, the equality test can be applied
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to any two expressions having the same type, including function types. Yet running
the test for function-typed expressions immediately produces an error because there is
no implementation. Other identifiers, like (+), rely on a typeclass in Haskell but are
monomorphic in Curry. Addition of floating point numbers is denoted (+.) to avoid the
name clash with integer addition.
So the idea of having typeclasses in Curry is quite natural. For example, the Zinc
compiler is an extension of the Münster Curry Compiler that features them.5 Böhm
[2013] describes how to include a typeclass mechanism into KiCS2 and an implementation
is being worked on at the moment.
Both of the mentioned projects have predefined typeclasses known from Haskell like Eq,
Num or Show, which allow to overload common symbols like (==) or (+) or the show
function. This avoids the mentioned quirks of comparing functions and adding floats.
Also the user is allowed to define new typeclasses and create instances.
Yet neither project introduces a Data typeclass restricting the use of logic features.
Since such a typeclass can only be predefined, logic features remain unrestricted. So the
gap between theory and practice is partially closed by switching to one of the existing
extensions of Curry that do feature typeclasses. At the same time the absence of the
one typeclass we actually care about does leave an (albeit smaller) remaining gap.

One argument for introducing a Data typeclass is that it makes the results of this thesis
applicable. This argument is not entirely convincing, as – following the same logic –
banning nondeterminism altogether makes even more results applicable, i.e., everything
we know about free theorems in Haskell. Yet there are other reasons beyond the scope
of this thesis for restricting the types of logic variables.
Constraint equality (=:=) means strict equality, i.e., the constraint of two terms being
equal only is satisfied if they can be reduced to equal ground terms. For example, an
infinite list is not ‘strictly equal’ to itself, because it cannot be reduced to a ground
term. Therefore a constraint cannot be satisfied by simply unifying a logic variable with
a given list, but totality has to be checked.
For function types on the other hand, the meaning of strict equality is not clear. One
possibility would be to compare thunks, i.e., unevaluated expressions. If they do coincide,
both functions indeed are exchangeable. However the functions could still behave the
same even though their thunks are different. Extensional equality on the other hand,
i.e., producing the same (set of) results for all inputs, cannot be checked in general.
Also, data types have generator functions [Antoy and Hanus, 2006] producing all possible
values of that type. Thus, even if there are no clues allowing to find possible values for a
logic variable in a targeted manner, trial-and-error remains as a less targeted but possible
strategy. This does not work for functions either: Even if unification is permitted to bind
logic variables in principle, nothing can be done in the absence of suitable constraints.
For data types, the meaning of strict equality is clear and all possible values can be
generated. Thus, restricting these functionalities to certain types is the cleaner solution.

5http://zinc-project.sourceforge.net
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Restricting logic features this way is a major change at the heart of the language. Im-
plementing this quite possibly is a lot of work and breaks existing code. Yet, in order
to still use the results presented here, workarounds are conceivable like using a special
kind of annotation instead of typeclasses.

4.1.3 Features Orthogonal to Nondeterminism

User-Defined Data Types

The most important difference between Curry and CuMin in this category is the absence
of user-defined data types. If we were to use such, we would need to keep track of the
type constructor names as well as the corresponding value constructor names. Thus, all
statements on the meta-level would have to be abstracted over type constructors, value
constructors and arity, leading to a vast number of indexes. This effort would not lead
to any additional insight, so the discussion is restricted to a preselected set of data type
constructors. All of the following would still work if user defined data types were used.

Type Signatures and Instantiation

Curry, like Haskell, not only checks but also infers types. If a polymorphic function is
invoked, its type has to be inferred from the given arguments or from the type of the
expected result. Also type signatures can often be omitted, if the type is clear from the
definition or the way the function is used.
In CuMin, we want to be able to determine the type of every expression bottom-up.
Thus, whenever a logic variable is introduced, its type has to be given. All function
definitions must have a type signature, so that a type can be assigned to invocations of
the function. Also all type variables have to be instantiated explicitly when calling a
function or using a constructor symbol.
There is no deep reason behind the different approach to typing – it simply avoids type
inference, which would complicate the representation otherwise. It is of course possible to
use type inference algorithms to generate type signatures or fill in missing ones. Indeed,
we will sometimes be sloppy in our examples and rely on the reader to infer types.
Example code is shown in figure 4.1: In the minus function the type of k is explicitly
given and instantiations of polymorphic functions are denoted as indexes. Note that
polymorphic constructors like Cons are instantiated when appearing in an expression,
but not when appearing in a pattern (like in suffix ).

Input/Output

CuMin does not provide an IO wrapper for computations interacting with the environ-
ment. Such computations cannot be nondeterministic anyhow, because the world state
cannot be duplicated. So in Curry there is no interesting interaction between the IO
monad and nondeterminism either. Since there is nothing to be studied, there is no
reason to include IO into CuMin.
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On the other hand, there is a reason not to: If we did include input/output capabilities,
we would have to make sure they indeed do not clash with nondeterminism. In Curry
the easiest way to do so is to only use nondeterminism in a capsule and to only use
input/output outside any capsule. This however is a design choice to avoid run-time
errors and not enforced by the type system.

4.1.4 Redundant Features of Curry

Multiple Rules and Pattern Matching

A Curry function is defined by one or more rules, each of which contains (possibly nested)
patterns. The order in which arguments to a function are evaluated can depend on all
the patterns of all the rules of the function. In the operational semantics given in the
Curry report [Hanus, 2006], this is captured in so called definitional trees. Rather than
specifying directly what the semantics of a function is, the report gives an algorithm for
transforming a function’s rules into a definitional tree and defines the semantics of such
trees.
To avoid this indirection the syntax of function definitions is restricted (like it is in
FlatCurry): In CuMin every function has to be given by a single rule f x1 . . . xn = . . .
where the xi are distinct variables. Thus, neither pattern matching nor guards are
possible on the rule level.
Pattern matching can only be done in the function’s body using case . . .of { . . .}. Ad-
ditionally, only flat patterns may be used, i.e., of the form C y1 . . . yn. Thus, the order in
which arguments are evaluated is captured on the syntactic level already and does not
have to be generated in a preprocessing step.

Binary Choice

In Curry there are three sources of nondeterminism: overlapping rules, binary choice and
logic variables. We have already discussed why CuMin does not have overlapping rules.
There is no binary choice primitive either, because binary choice can be implemented
by pattern matching on a Boolean logic variable (see the choice function in figure 4.1).

Local Definitions

In Curry, local definitions can be made using let . . . in . . . and . . .where . . .. Definitions
made in a where clause are also visible in guards. Since rules cannot have guards in
CuMin, there is no need for where clauses and CuMin only features let.
In CuMin and FlatCurry, functions can only be defined on the top-level. All sections,
anonymous functions and local functions have to be moved to the top-level and receive
unique names. For example the function reverseAppend in figure 4.1 might have well
been local to reverse in Curry, as this is the only function calling reverseAppend (other
than reverseAppend itself). If a local function depends on local variables, they have to
be passed as arguments when moving the function to the top-level and the call has to
be amended accordingly.
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P ::= D;P | D
D ::= f :: ∀αm.(Data αij )⇒ τ ; f xn = e

τ ::= α | τ → τ ′ | Bool | Nat | [τ ] | (τ, τ ′)
e ::= x | let xn = en in e | let xn :: τn free in e

| failed τ | f τm | e1 e2

| n | e1 + e2 | e1 == e2

| True | False | case e of {True→ e1;False→ e2}
| Nil τ | Cons τ | case e of {Nil→ e1;Cons h t → e2}
| Pair τ,τ ′ | case e of {Pair l r → e1}

Figure 4.2: Syntax of CuMin

CuMin also does not feature modules (unlike FlatCurry), so all modules have to be
compiled into one monolithic program (again possibly renaming functions).
In Curry, several local variables can be introduced at the same time by binding an
expression to a pattern using let. Both in FlatCurry and CuMin, only the trivial pattern,
i.e., a single variable, is allowed as the left hand side of a local binding. Thus, to achieve
the same behavior, the whole expression has to be bound to a name first and then parts
can be accessed using case . . .of .

4.1.5 Formal Specification of CuMin

Syntax

The syntax of CuMin is formally defined in figure 4.2, where xn and αm represent zero
or more variable names and Data αij and τm a comma-separated list of zero or more
class constraints resp. types.
A program is a sequence of (function) definitions. Every function definition consists of
a type signature and a rule. In figure 4.2 these are separated by semicolons, but we
take the liberty to use newlines when giving code examples instead. A type signature
gives the function’s name and a type scheme. The type scheme consists of a sequence of
distinct type variable names, a sequence of typeclass constraints and a type. A typeclass
constraint can mark one of the type variables as representing a data type. If the type
signature does not mention any typeclass constraints, the () ⇒ may be dropped and if
there are no type variables, the ∀. may be dropped as well. The function type constructor
→ associates to the right, but parenthesis can be used to construct higher order types.
A rule has a left hand side consisting of the function name and distinct variables and a
body, which is some expression. The number of variables on the left hand side of a rule
is called the arity of the function.
Pattern matching can only be done using case . . .of , which is also used for Booleans
(instead of if . . . then . . . else . . .) to make the syntax more homogeneous. Instead of
braces and semicolons, the alternatives may be given in (properly indented) separate
lines.
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Juxtaposition represents application, associates to the left and binds most tightly. Addi-
tion also associates to the left (though this will hardly ever matter) and has intermediate
binding precedence. The equality test == does not associate and binds least tightly.
Parenthesis may be used to structure expressions.
When calling polymorphic functions or the failed primitive, they have to be instantiated
by giving a comma-separated sequence of types. Polymorphic constructors also need to
be instantiated when called, but not when they appear in patterns. The type variables
given in the signature are also in scope throughout the rule, such that the calling function
can pass on its type variables to the called function. Functions can call themselves and
each other arbitrarily and may only be defined on the top-level.
Using let . . . in . . . expressions can be bound to variable names locally or be marked as
logic variables. These variable bindings may not be cyclic, e.g., a variable x cannot
appear in the expression the variable itself is bound to.
There is also an ASCII-representation of code, which is mostly straightforward from the
definition given here. The ∀ symbol is written as forall (and forall can not be used
as a type variable name). Type instantiations for functions, constructors and primitives
are enclosed in <: and :> instead of appearing as subscripts.

Typing

The typing rules for CuMin use four kinds of judgments:

Γ context “Γ is a context”
Γ ` τ ∈ Type “τ is a type within Γ”
Γ ` τ ∈ Data “τ is a data type within Γ”
Γ ` e :: τ “e has type τ within Γ”

Figure 4.3 shows how the first two auxiliary kinds of judgments are derived. Contexts
are unordered and can contain (distinct) type variables, type variable constraints and
(distinct) term variables with their respective types. Being a type within a context
means that only type variables mentioned in the context can appear in the type. The
third kind of judgment describes the class of data types and is derived by the rules in
Figure 4.4. Both Bool and Nat are data types, list types are data types if the entry type
is a data type and likewise for tuples.
The actual typing of expressions is done by the last kind of judgment. Formally this
would have to also mention a program, as the type of a function invocation can only be
seen from the function’s signature. We suppress this additional dependency and rather
assume a program to be fixed all the time, with respect to which all expressions are
typed. Figure 4.5 shows the rules for doing so, where [τ/α ] denotes substitution of the
variable α by τ .

We distinguish between being a function and having a function type. Something is
a function if it is defined by a rule on the top level, regardless of whether it has a
function type and regardless of its arity. For example coin as given in figure 4.1 is a
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∅ context

Γ context
Γ, α context

Γ, α context

Γ, α, α ∈ Data context

Γ context Γ ` τ ∈ Type

Γ, x :: τ context

Γ, α ` α ∈ Type Γ ` Bool ∈ Type Γ ` Nat ∈ Type

Γ ` τ ∈ Type Γ ` τ ′ ∈ Type

Γ ` τ → τ ′ ∈ Type

Γ ` τ ∈ Type

Γ ` [τ ] ∈ Type

Γ ` τ ∈ Type Γ ` τ ′ ∈ Type

Γ ` (τ, τ ′) ∈ Type

Figure 4.3: Rules for auxiliary typing judgments in CuMin

Γ, α, α ∈ Data ` α ∈ Data Γ ` Bool ∈ Data Γ ` Nat ∈ Data

Γ ` τ ∈ Data
Γ ` [τ ] ∈ Data

Γ ` τ ∈ Data Γ ` τ ′ ∈ Data
Γ ` (τ, τ ′) ∈ Data

Figure 4.4: Rules for being a data type in CuMin

function. Expressions and variables can have a function type but do not have an arity.
Constructors on the other hand do have an arity, which is the number of fields.
A program is well-typed if all function rules match the claimed type signatures. Formally,
this means for all n-ary function definitions

f :: ∀αm.(Data αi1 , . . ,Data αij )⇒ τ ; f xn = e

the type τ equals τ1 → . . → τn → τ ′, i.e., is comprised of (at least) n function arrows,
and the typing judgment

α1, . . , αm, αi1 ∈ Data, . . , αij ∈ Data, x1 :: τ1, . . , xn :: τn ` e :: τ ′

can be derived.

4.2 Operational Semantics

4.2.1 Operational Semantics with Logic Variables

The operational semantics for CuMin presented here is an adaptation of the opera-
tional semantics given for Curry in [Albert et al., 2005] and later revised in [Braßel
and Huch, 2007]. These in turn are adaptations of Launchbury’s lazy operational se-
mantics [Launchbury, 1993] to the nondeterministic setting. The only auxiliary data
structure is a heap, in which unevaluated expressions can be stored.
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Γ, x :: τ ` x :: τ Γ ` failed τ :: τ

Γ ` e1 :: τ1 . . . Γ, x1 :: τ1, . . . , xn−1 :: τn−1 ` en :: τn Γ, x1 :: τ1, . . . , xn :: τn ` e :: τ

Γ ` let x1 = e1, . . . , xn = en in e :: τ

Γ ` τ1 ∈ Data . . . Γ ` τn ∈ Data Γ, x1 :: τ1, . . . , xn :: τn ` e :: τ

Γ ` let x1 :: τ1, . . . , xn :: τn free in e :: τ

Γ ` τi1 ∈ Data . . Γ ` τij ∈ Data

Γ ` f τm :: τ [τm/αm ]
for every function (f :: ∀αm.(Data αi1 , . . ,Data αij )⇒ τ ; f xn = e)

Γ ` e1 :: τ1 → τ2 Γ ` e2 :: τ1

Γ ` e1 e2 :: τ2

Γ ` True :: Bool Γ ` False :: Bool Γ ` n :: Nat

Γ ` Nil τ :: [τ ] Γ ` Cons τ :: τ → [τ ]→ [τ ] Γ ` Pair τ,τ ′ :: τ → τ ′ → (τ, τ ′)

Γ ` e1 :: Nat Γ ` e2 :: Nat
Γ ` e1 + e2 :: Nat

Γ ` e1 :: Nat Γ ` e2 :: Nat
Γ ` e1 == e2 :: Bool

Γ ` e :: Bool Γ ` e1 :: τ Γ ` e2 :: τ

Γ ` case e of {True→ e1;False→ e2} :: τ

Γ ` e :: [τ ′ ] Γ ` e1 :: τ Γ, h :: τ ′, t :: [τ ′ ] ` e2 :: τ

Γ ` case e of {Nil→ e1;Cons h t → e2} :: τ

Γ ` e :: (τ1, τ2) Γ, l :: τ1, r :: τ2 ` e1 :: τ

Γ ` case e of {Pair l r → e1} :: τ

Figure 4.5: Typing rules for CuMin
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Deviating from the above sources, heaps are ordered in the operational semantics defined
here. This is only possible because there are no recursive let bindings in CuMin. The
operational semantics would work equally well with unordered heaps, but the proofs
in sections 4.4 and 4.5 become easier when using ordered heaps. The restriction of
not allowing recursive lets is inherent to the overall approach of using a compositional,
functional-style denotational semantics [Christiansen et al., 2011b]. Since the results we
are going to prove do not generalize to a setting in which recursive lets are allowed, the
proofs do not have to generalize either.
Another deviation from [Braßel and Huch, 2007] is the missing preprocessing step of
normalization. Instead, we will apply the necessary changes on the go as in [Hanus and
Peemöller, 2014], where a (Flatten) rule is added to the semantics.
In [Braßel and Huch, 2007], logic variables in the heap are denoted by circular bindings
y 7→ y . Since in the vast majority of cases these special bindings have to be treated
separately anyhow, we use a special notation for logic variables right away. Heap entries
thus take one of the forms y ::τ 7→ e or y ::τ free. The former binds a variable y of some
closed type τ to an expression e and the latter only gives a closed type τ and marks y as
a logic variable. Heaps can be given explicitly as a (possibly empty) sequence of comma
separated bindings enclosed in brackets. Heaps can also be combined into bigger heaps
by juxtaposition. We assume all our heaps to be well-formed, i.e., :

• All variables are distinct.

• If y is bound to an expression, this expression only contains the variables appearing
to the left of y in the heap and is typeable to the given type (in the context given
by the types of the heap variables).

• If y is introduced as a logic variable, its type is in the Data class.

Within the operational semantics we encounter a second kind of function application
ϕ(y1, . . . , yk) where ϕ is a function or a constructor symbol (with type instantiation) of
arity at least k and y1, . . . , yk are variables. For the type system this is equivalent to ϕ
y1 . . . yk but the operational semantics handels them differently, as we will soon see. We
identify f τm with f τm () and C τm with C τm ().
A flat normal form is a partial or full application C τm (y1, . . . , yk) of a constructor symbol
to variables or a partial application f τm (y1, . . . , yk) of a function symbol to variables.
Here partial application requires the number of variables to be smaller than the arity of
the function. For example, if id : ∀a.a → a is given as a unary function, the application
id Nat→Nat (g) is not partial, even though it has a function type. On the other hand,
partially applied functions and constructors necessarily have a function type and indeed
are the flat normal forms for function types. This leaves fully applied constructors, which
are the flat normal forms of all other (i.e., non-function) types. Here we consider literals
as nullary (and therefore necessarily fully applied) constructors.
A heap expressions pair ∆ : e is a heap ∆ together with an expression e that is typeable
in the context given by all heap variables (and their respective types). A value (w.r.t. a
heap) is a flat normal form or a logic variable. Thus a function-typed value has to be a

91



partial application of a function or a constructor to variables while for all other types a
value is a fully applied constructor or a logic variable.
The operational semantics derives judgments of the form ∆:e ⇓f ∆′ :v and ∆:e ⇓l ∆′ :v ,
meaning e under the heap ∆ can evaluate to v under the heap ∆′. Because the language
is nondeterministic, given ∆ : e there can be many different pairs ∆′ : v for which such
judgments are derivable or none at all. The first judgment guarantees that v is a flat
normal form and we say ∆ : e evaluates to ∆′ : v functionally. The second judgment
guarantees that v is a value (w.r.t. ∆′) and we say ∆ : e evaluates to ∆′ : v logically.
A representative subset of the rules is given in figure 4.6. The (Val) rule can be used
whenever the expression to be evaluated is a value already. As this includes logic vari-
ables, (Lookup) is only needed for variables bound to an expression within the heap.
This expression is then evaluated and the result is both written into the heap and re-
turned as the result of the lookup. Thus all subsequent lookups allow to immediately
use rule (Val) for already evaluated expressions. We do not need black hole detection
when looking up variables as in [Braßel and Huch, 2007] as no circular let-bindings are
allowed.
The rules (Let) and (Free) allow to evaluate let . . . in bindings. They add variables to
the heap, either binding them to expressions or marking them as logic variables. In any
case, evaluation is deferred until the variable is needed.
There are two rules governing application. (Fun) can only be used if a function is fully
applied and all arguments are heap variables. This rule invokes the function’s body,
in which the formal parameters (on type as well as term level) are replaced by the
actual parameters. Note that this is the only possible occurance of the new application
syntax that is not handled by (Val) already. General binary application is handled by
(Apply), which incorporates the rule (Flatten) from [Hanus and Peemöller, 2014]. The
left premise brings the function into a value form, which for type reasons is a partially
applied constructor or function symbol ϕ(y1, . . . , yk). A further variable x can be added
without exceeding the arity, where x is bound to the (possibly complex) argument e2.
If e2 is a variable already, it could be added to the arguments of ϕ without first binding
it to a new name. Also instead of using let . . . in the rule could add the new variable
to the heap right away, as this has to be the next step anyhow. Stating the rule in the
given form helps our discussion later, so we leave the obvious simplifications to those
concerned about runtime.
The (Plus) rule is exemplary for calls to primitive (or external) functions, that do not
accept logic variables as input. Therefore both arguments have to be evaluated to a flat
normal form, which in the case of (Plus) has to be a literal.
The (Case) rules also require functional evaluation for the scrutinee, while the body is
allowed to evaluate to a logic variable. There are of course similar rules for all construc-
tors, which work analogously to the rules shown. Since all of them require evaluating
the scrutinee first, an interpreter may do so and then decide afterwards which (Case)

rule to apply.
The remaining rules derive judgments for functional evaluation. This can be done by
the (FNF) rule if the value is in flat normal form already and by guessing. If the
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(Val) ∆ : v ⇓l ∆ : v if v is a value w.r.t. ∆

(Lookup)
∆ : e ⇓l ∆′ : v

∆ [y :: τ 7→ e ] Ω : y ⇓l ∆′ [y :: τ 7→ v ] Ω : v

(Let)
∆ [yn :: τn 7→ en [yn/xn ]] : e [yn/xn ] ⇓l ∆′ : v

∆ : let xn = en in e ⇓l ∆′ : v
y1, . . . , yn fresh

(Free)
∆ [yn :: τn free] : e [yn/xn ] ⇓l ∆′ : v

∆ : let xn :: τn free in e ⇓l ∆′ : v
y1, . . . , yn fresh

(Fun)
∆ : e [τm/αm, yn/xn ] ⇓l ∆′ : v

∆ : f τm (y1, . . . , yn) ⇓l ∆′ : v
for f :: ∀α1 . . αm.τ ; f xn = e in P

(Apply)
∆ : e1 ⇓l ∆′ : ϕ(y1, . . . , yk) ∆′ : let x = e2 in ϕ(y1, . . . , yk, x ) ⇓l ∆′′ : v

∆ : e1 e2 ⇓l ∆′′ : v

(Plus)
∆ : e1 ⇓f ∆′ : n1 ∆′ : e2 ⇓f ∆′′ : n2

∆ : e1 + e2 ⇓l ∆′′ : n
for literals n1, n2 and n = n1 + n2

(CaseNil)
∆ : e ⇓f ∆′ : Nil τ ∆′ : e1 ⇓l ∆′′ : v

∆ : case e of {Nil→ e1;Cons h t → e2} ⇓l ∆′′ : v

(CaseCons)
∆ : e ⇓f ∆′ : Cons τ (y1, y2) ∆′ : e2 [y1/h, y2/t ] ⇓l ∆′′ : v

∆ : case e of {Nil→ e1;Cons h t → e2} ⇓l ∆′′ : v

(FNF)
∆ : e ⇓l ∆′ : v

∆ : e ⇓f ∆′ : v
where v is in flat normal form

(Guessn)
∆ : e ⇓l ∆′ [y :: Nat free] Ω : y

∆ : e ⇓f ∆′ [y :: Nat 7→ n ] Ω : n
for any literal n

(GuessNil)
∆ : e ⇓l ∆′ [y :: [τ ] free] Ω : y

∆ : e ⇓f ∆′ [y :: [τ ] 7→ Nil τ ] Ω : Nil τ

(GuessCons)
∆ : e ⇓l ∆′ [y :: [τ ] free] Ω : y

∆ : e ⇓f ∆′ [y1 :: τ free, y2 :: [τ ] free, y :: [τ ] 7→ Cons τ (y1, y2)] Ω : Cons τ (y1, y2)
y1, y2 fresh

Figure 4.6: Operational semantics for CuMin
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result of some computation is a logic variable one may simply pick any constructor of
the respective type and introduce new logic variables for the fields. The resulting flat
normal form is a possible value since logic variables represent all values of their type.
There is a (Guess)-rule for every constructor and they work analogously to the ones
shown in the figure. Which rule to use can be decided according to the result in the
premise: If it is a flat normal form, (FNF) can be applied, otherwise, it is a logic variable
and its type can be looked up in the heap.
There is no rule for failed τ , as it does not have any flat normal form.

In [Braßel and Huch, 2007], the distinction between functional and logic evaluation is
not made. Instead, there are different rules (Select) and (Guess), both dealing with
case statements: (Select) can be applied if evaluating the scrutinee yields a flat normal
form, while (Guess) binds a logic variable if one results from evaluating the scrutinee.
The (Select) rule corresponds to only (Case). The rule (Guess) in [Braßel and Huch,
2007] is split up into (Guess) and another application of (Case) here.
This is connected to another slight deviation from Curry and the semantics given
in [Braßel and Huch, 2007]: Curry distinguishes between flexible and rigid case state-
ments. The plain case syntax means rigid pattern matching – the scrutinee is evaluated
and the corresponding case is picked. Flexible pattern matching, like pattern matching
in function definitions, also works for logic variables. If the scrutinee of a flexible pattern
match is a logic variable, it can be bound to the constructor given in the pattern. In the
operational semantics, this is modeled by rule (Guess) only being applicable for flexible
pattern matches.
This leaves the question of what to do when the scrutinee of a rigid pattern match yields
a logic variable. In this case, evaluation according to the operational semantics in [Braßel
and Huch, 2007] simply fails for the lack of any applicable rule. However, constraints
in Curry are supposed to be evaluated in a concurrent manner as desribed in the Curry
report [Hanus, 2006]. Thus the whole computation is not necessarily stuck, as there
could be another constraint that is being solved in parallel. At some point, the variable
might get bound to some constructor and the rigid pattern match can be performed.
We generally ignore the issue of parallel constraint solving here because the interaction
between different constraints is difficult to model in a denotational semantics. Thus
we do not need to distinguish between flexible and rigid case statements anymore and
instead treat every case statement as flexible.

Figure 4.7 shows a derivation for double coin as defined in figure 4.1. This example
is important because it shows how call-time-choice is modelled in the semantics. The
term suggests that choice occurs at call-time to fix the values of all arguments before
evaluating the function body. This is not actually the case, as the semantics is still
lazy. In the example derivation in figure 4.7, coin is bound to the name y1 and double is
applied to y1. Then the body of double is inlined before the body of coin. Choice occurs
only when evaluation of the scrutinee b is forced. Later, when y1 is looked up a second
time, it is bound to the value 1 in the heap already, thus coin is not called again.
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[ ] : double coin[
[ ] : double
[ ] : double

[ ] : let x = coin in double (x )
[y1 :: Nat 7→ coin ] : double (y1)
[y1 :: Nat 7→ coin ] : y1 + y1

[y1 :: Nat 7→ coin ] : y1

[ ] : coin
[ ] : choice Nat 0 1

[ ] : choice Nat 0[
[ ] : choice Nat

[ ] : choice Nat

[ ] : let x = 0 in choice Nat (x )
[y2 :: Nat 7→ 0] : choice Nat (y2)

[y2 :: Nat 7→ 0] : let x = 1 in choice Nat (y2, x )
[y2 :: Nat 7→ 0, y3 :: Nat 7→ 1] : choice Nat (y2, y3)
[y2 :: Nat 7→ 0, y3 :: Nat 7→ 1] : let b :: Bool free in case b of {True→ y2;False→ y3}
[y2 :: Nat 7→ 0, y3 :: Nat 7→ 1, y4 :: Bool free] : case b of {True→ y2;False→ y3}[

[y2 :: Nat 7→ 0, y3 :: Nat 7→ 1, y4 :: Bool free] : b
[y2 :: Nat 7→ 0, y3 :: Nat 7→ 1, y4 :: Bool 7→ False ] : False

[y2 :: Nat 7→ 0, y3 :: Nat 7→ 1, y4 :: Bool 7→ False ] : y3[
[ ] : 1
[ ] : 1

[y2 :: Nat 7→ 0, y3 :: Nat 7→ 1, y4 :: Bool 7→ False ] : 1
[y2 :: Nat 7→ 0, y3 :: Nat 7→ 1, y4 :: Bool 7→ False, y1 :: Nat 7→ 1] : 1
[y2 :: Nat 7→ 0, y3 :: Nat 7→ 1, y4 :: Bool 7→ False, y1 :: Nat 7→ 1] : y1[

[y2 :: Nat 7→ 0, y3 :: Nat 7→ 1, y4 :: Bool 7→ False ] : 1
[y2 :: Nat 7→ 0, y3 :: Nat 7→ 1, y4 :: Bool 7→ False ] : 1

[y2 :: Nat 7→ 0, y3 :: Nat 7→ 1, y4 :: Bool 7→ False, y1 :: Nat 7→ 1] : 1
[y2 :: Nat 7→ 0, y3 :: Nat 7→ 1, y4 :: Bool 7→ False, y1 :: Nat 7→ 1] : 2

Figure 4.7: Possible derivation for the double coin example
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The following lemma makes sure the order of the heap (which we keep track of) is
preserved during evaluation.

Lemma 4.2.1. If a judgment ∆ : e ⇓l ∆′ : v or ∆ : e ⇓f ∆′ : v can be derived by the
operational semantics, then ∆′ binds all variables bound in ∆ and the orders coincide.

Proof. Induction over all derivations.

4.2.2 Removing Logic Variables

We now present a version of the operational semantics that does not use logic vari-
ables. The same transition is made in [Braßel and Huch, 2007], but the idea goes back
to Antoy and Hanus [2006]: Logic variables as a language feature are redundant in lazy
functional-logic languages because they can be implemented using lazy evaluation. This
is achieved by so called generator functions, which produce every value of some type
using overlapping rules and recursive calls to themselves and other generator functions.
Instead of marking a variable as free, it is bound to the generator function corresponding
to the variable’s type. Because of lazy evaluation, the variable is only instantiated as
much as needed.
We introduce a special expression unknown τ , which serves as generator function and
represents every possible value of some type τ whenever τ ∈ Data. Since this is the only
remaining source of nondeterminism, it cannot be implemented using other language
features, but needs special rules.
The rules are given in 4.8 and are mostly the same as in 4.6 (replacing both ⇓l and ⇓f
by ⇓). The (Val) rule now requires v to be a flat normal form. As there are no logic
variables, (Lookup) can be used whenever the expression to be evaluated is a variable.
The rule (Free) introduces the special expression unknown by writing it into the heap.
To be able to evaluate the expression unknown (when it has been looked up) different
(Guess) rules are provided. As for the (Apply) rule, it would be possible to add the
new variables to the heap directly, but we choose to use let . . . in to limit the number of
rules that manipulate the heap. All other rules remain unchanged (as compared to 4.6)
except for the missing annotations on the derivation arrows.

The following lemma relates both versions of the operational semantics. In a nutshell,
⇓ corresponds to ⇓f and thus the latter version of the operational semantics allows to
work with functional evaluation without having to refer to logic evaluation all the time.

Lemma 4.2.2. ∆ : e ⇓f ∆′ : v is derivable if and only if ∆u : e ⇓ ∆′u : v is derivable,
where e 6= unknown τ is some expression, v a flat normal form and ∆u is ∆ with all
entries [y :: τ ′ free] replaced by [y :: τ ′ 7→ unknown τ ′ ] (and ∆′u accordingly).

Proof. The proof is by manipulating derivation trees. We start with the “only if” part
and fix some derivation tree for a ⇓f judgment.
Consider some heap variable y introduced by (Free). The initial heap entry [y :: τ free]
has to be replaced by [y :: τ 7→ unknown τ ] because of the different (Free) rule. If y
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(Val) ∆ : v ⇓ ∆ : v if v is a flat normal form

(Lookup)
∆ : e ⇓ ∆′ : v

∆ [y :: τ 7→ e ] Ω : y ⇓ ∆′ [y :: τ 7→ v ] Ω : v

(Let) ∆ [yn :: τn 7→ en [yn/xn ]] : e [yn/xn ] ⇓ ∆′ : v

∆ : let xn = en in e ⇓ ∆′ : v
y1, . . . , yn fresh

(Free)
∆ [yn :: τn 7→ unknown τn ] : e [yn/xn ] ⇓ ∆′ : v

∆ : let xn :: τn free in e ⇓ ∆′ : v
y1, . . . , yn fresh

(Fun)
∆ : e [τm/αm, yn/xn ] ⇓ ∆′ : v

∆ : f τm (y1, . . . , yn) ⇓ ∆′ : v
for f :: ∀α1 . . αm.τ ; f xn = e in P

(Apply)
∆ : e1 ⇓ ∆′ : ϕ(y1, . . . , yk) ∆′ : let x = e2 in ϕ(y1, . . . , yk, x ) ⇓ ∆′′ : v

∆ : e1 e2 ⇓ ∆′′ : v

(Plus)
∆ : e1 ⇓ ∆′ : n1 ∆′ : e2 ⇓ ∆′′ : n2

∆ : e1 + e2 ⇓ ∆′′ : n
for literals n1, n2 and n = n1 + n2

(CaseNil)
∆ : e ⇓ ∆′ : Nil τ ∆′ : e1 ⇓ ∆′′ : v

∆ : case e of {Nil→ e1;Cons h t → e2} ⇓ ∆′′ : v

(CaseCons)
∆ : e ⇓ ∆′ : Cons τ (y1, y2) ∆′ : e2 [y1/h, y2/t ] ⇓ ∆′′ : v

∆ : case e of {Nil→ e1;Cons h t → e2} ⇓ ∆′′ : v

(Guessn) ∆ : unknown Nat ⇓ ∆ : n

(GuessNil) ∆ : unknown [τ ] ⇓ ∆ : Nil τ

(GuessCons)
∆ : let h :: τ, t :: [τ ] free in Cons τ (h, t) ⇓ ∆′ : v

∆ : unknown [τ ] ⇓ ∆′ : v

Figure 4.8: Operational semantics without logic variables for CuMin
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is never looked up, the heap entry remains untouched throughout the whole derivation
and it is simply replaced using unknown everywhere. Otherwise, we have the following
situation:

...

∆′ [y :: τ free] Ω′ : y ⇓l ∆′ [y :: τ free] Ω′ : y

...
...

∆ : e ⇓l ∆′ [y :: τ free] Ω′′ : y
(Guess)

∆ : e ⇓f ∆′ Φ [y :: τ 7→ v ] Ω′′ : v

The first use of (Val) for the logic variable y results in y appearing on the value side,
where it is handed down through the derivation. As the root of the tree is a functional
derivation judgment, it does not allow y as its result. Therefore at some point the value y
has to be replaced by some flat normal form. This can only happen via some application
of (Guess). The logic variable y is replaced by a fully applied constructor, whose fields
(if any) are some new logic variables bound within the (possibly empty) heap Φ.
In the operational semantics without logic variables, y is bound to unknown τ in the
heap. Since y cannot serve as a value, instead of (Val) the rule (Lookup) has to be
used, leading to the following situation:

...

∆′u : unknown τ ⇓ ∆′u Φu : v
(Lookup)

∆′u [y :: τ 7→ unknown τ ] Ω : y ⇓ ∆′u Φu [y :: τ 7→ v ] Ω′u : v

...
...

∆u : e ⇓ ∆′u Φu [y :: τ 7→ v ] Ω′′u : v

The missing premise of the (Guess) rule can always be chosen in such a way, that
∆′u Φu : v is the result. Instead of y the result is v , which is handed down to the point
where guessing took place in the original derivation. Since y has already been evaluated,
no further guessing occurs. For the remaining derivation y is no longer logic and no
further adjustments are necessary when transforming the derivation tree.
A logic variable y can also be introduced by a (Guess) rule which determines the value
of some other logic variable z in the operational semantics with logic variables. Yet if
the transformation described above is applied for the variable z first, the introduction
of y is done via (Free) and thus the transformation is applicable for y as well.

The other direction of the claim is proved using the inverse transformation: Instead
of evaluating unknown, return the logic variable and hand it down until functional
evaluation is forced.

4.3 Denotational Semantics

In this section a functional-style denotational semantics for CuMin is given, which is
based on pointed partially ordered sets. As this is a somewhat nonstandard choice, we
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start with a motivating remark about recursion and nondeterminism.
We imagine a language that is non-strict, has logic variables, and only allows structural
recursion. Structural recursion means that the language has primitives for folding over
lists and natural numbers. So, recursion is always guided by some structure, as opposed
to general recursion, which allows functions to call each other and themselves arbitrarily.
Using the given features, general recursion can be implemented.
Take, for example, the recursive function repeat :: a → [a ] producing an infinite list of
copies of its input. Instead of using general recursion, the function can be given as

repeat ′ :: (a → [a ])→ a → [a ]
repeat ′ f x = x : f x

repeat :: a → [a ]
repeat x = let n free in foldn repeat ′ failed n x

where we assume foldn ::(a → a)→ a → Nat→ a to be structural recursion over natural
numbers, i.e., n-fold application of the same function. Replacing a recursive function
by an n-fold iteration of a non-recursive function works just as well in a deterministic
language. However, in the nondeterministic setting, the number of allowed steps does
not have to be specified. Instead, the nondeterministic search mechanism can be used
to find the number of steps necessary to achieve a result.

Taking these considerations into account, it seems reasonable to treat recursion and in-
finite structures alongside nondeterminism. This leads to a significant simplification of
the denotational semantics as compared to earlier versions based on dcpos like [Chris-
tiansen et al., 2011a]. We do not even have to formally introduce dcpos, because the
notion will not show up anywhere. For the element level, we use partially ordered sets,
which are more general than dcpos and conceptually easier because of the missing limit
structure. For the set level we use semi-lattices, which are more specific than dcpos but
also conceptually easier because taking limits is not restricted to special families.

4.3.1 Preliminaries on Posets

A partially ordered set , or poset for short, is a set (sometimes called the underlying
set) together with a reflexive, antisymmetric and transitive relation on it. We think of
these relations as definedness relations and denote them by v. All posets will have a
least element ⊥. While technically it would therefore be more appropriate to call them
“pointed posets”, we stick to “posets” and take this to include being pointed as well.
A function between posets that is order-preserving is called monotone. We do not require
monotone functions to preserve the least element. If they still do, they are called strict .
A lower set of a poset P is a nonempty subset A of P with the property that x ∈ A and
y v x imply y ∈ A. Note that all lower sets contain ⊥. The set of all lower sets of a
poset P is denoted by L (P ) and is itself partially ordered by set inclusion ⊆. The least
element of L (P ) is {⊥}, which is therefore also denoted ⊥. The poset L (P ) admits
taking unions of arbitrary collections of sets, as the union of lower sets is always a lower

99



JαKθ = Jθ(α)K

Jτ → τ ′Kθ = {f : JτKθ × N→ L (Jτ ′Kθ) | f monotone}
JBoolKθ = {True,False}⊥
JNatKθ = N⊥
J[τ ]Kθ = {x1 : . . . : xn : e | n ≥ 0,xi ∈ JτKθ, e ∈ {⊥, []}}

J(τ, τ ′)Kθ = {(l, r) | l ∈ JτKθ, r ∈ Jτ ′Kθ}⊥

Figure 4.9: Denotational type semantics for CuMin

set itself. By convention, building the union of an empty collection of sets results in {⊥}
rather than the empty set because the latter is not a lower set.
The closure ↓x of an element x of some poset P is the (lower) set {y | y ∈ P,y v x} ∈
L (P ). The function taking x ∈ P to ↓x ∈ L (P ) is a strict monotone function.

4.3.2 Semantics of Types

The semantics of types is defined in two steps. First we define the semantics JτK for
closed types τ and then we generalize the definition to all types. For the second step,
we need a type environment and define the semantics JτKθ of an arbitrary type τ with
respect to this environment. Given some context Γ, an environment corresponding to
Γ maps every type variable α to a closed type θ(α), where θ(α) ∈ Data has to hold
whenever the constraint α ∈ Data is part of the context Γ. The rules for both steps are
given in figure 4.9 and coincide for closed types, as there is no actual dependency on θ
in this case.
N̂ is the poset given by the underlying set N ∪ {∞} and the (total) order n v n′ ⇐⇒
n ≤ n′ (so in N̂ we have ⊥ = 0). Being monotone means f(a, n) ⊆ f(a′, n′) whenever
a v a′ and n ≤ n′. Functions are compared point-wise where the order on the target is
set-inclusion as discussed above.
N and {True,False} otherwise carry the flat order, i.e., different elements are incompa-
rable. The subscript ⊥ adds a least element and preserves the order between the other
elements.
The set of lists carries the smallest partial order satisfying ⊥ v v for all v and x : xs v
y :ys whenever x v y and xs v ys. In particular, x1 : . . . :xn :ex v y1 : . . . :ym :ey holds
if n = m, ey = [] and xi v yi for 1 ≤ i ≤ n or n ≤ m, ex = ⊥ and xi v yi for 1 ≤ i ≤ n.
Pairs are compared entry-wise but again an element ⊥ is added as least element.

4.3.3 Semantics of Terms

Next we define the semantics of terms. Let Γ ` e :: τ be a typing judgment where X is
the set of term variables in Γ. Let θ be a type environment as before. Additionally, let σ
a term environment, i.e., a mapping with σ(x) ∈ JΓ (x )Kθ for all x ∈ X. We will define

100



JeKtθ,σ ∈ L (JτKθ) for all t ∈ N̂. For all expressions e we define JeK0θ,σ = {⊥}. For finite t
the denotational semantics is defined recursively in figures 4.10 and 4.11. For t =∞ we
define JeK∞θ,σ =

⋃
t∈NJeK

t
θ,σ. This is the smallest fixpoint of figures 4.10 and 4.11 read as

a system of equations for t =∞ (where ∞+ n =∞).
Note that figure 4.10 also gives a denotational semantics for ϕ(y1, . . . , yk), which we will
need when comparing the denotational and the operational semantics. Also, the deno-
tational semantics for unknown τ is used, which is defined in figure 4.11. The λ symbol
represents lambda abstractions on the semantic level and introduces two variables: one
for a semantic value and one for a step-index. The operators +⊥ and =⊥ are strict
extensions of addition and the Boolean-valued semantic equality test.

In [Launchbury, 1993] the denotational semantics of function types is defined as

Jτ → τ ′Kθ =
{

f :
(
N̂→ JτKθ

)
× N̂→ Jτ ′Kθ | f monotone

}
,

while in [Mehner et al., 2014] it is defined as:

Jτ → τ ′Kθ =
{
f : JτKθ → L

(
Jτ ′Kθ

)
| f monotone

}
This shows the different approaches to step-indexing. In [Launchbury, 1993] the semantic
function f receives the whole sequence of denotations (i.e., for every step-index) of the
argument. Environments also contain sequences of denotations. When variables are
looked up in the environment, the current step-index is used to pick one element of the
sequence. Intuitively, the function ‘decides’ how much time is available for evaluating
the argument. In the version presented here, there is no such dependency, semantic
functions expect a single value, and single values are stored in the environment. The
same is true for the version given in [Mehner et al., 2014], going back to [Christiansen
et al., 2011a].
The semantic function f expects a second argument in both Launchbury’s version and the
version given here. This argument determines, how much time is available for evaluating
the function body.

The unrestricted version of the denotational semantics is uniquely determined by being
the smallest fixed point of the defining equations. We can use this as an alternative
definition, thus skipping the detour via a step-indexed version. In this case (semantic)
functions are only ever applied to t =∞. We can thus simplify the semantics by using

Jτ → τ ′Kθ =
{
f : JτKθ → L

(
Jτ ′Kθ

)
| f monotone

}
on the type level,

Je1 e2Kθ,σ =
⋃

a∈Je2Kθ,σ

⋃
f∈Je1Kθ,σ

f(a)

on the term level and not abstracting over t in all the lambda abstractions.
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JxKt+1
θ,σ = ↓σ(x )

Jfailed τ Kt+1
θ,σ = {⊥}

JnKt+1
θ,σ = ↓n

JTrueKt+1
θ,σ = ↓True

JFalseKt+1
θ,σ = ↓False

JNil τ Kt+1
θ,σ = ↓[]

JCons τ Kt+1
θ,σ = ↓(λh t1.↓(λ t t2.↓(h : t)))

JCons τ (y1)Kt+1
θ,σ = ↓(λ t t2.↓(σ(y1) : t))

JCons τ (y1, y2)Kt+1
θ,σ = ↓(σ(y1) : σ(y2))

JPair τ,τ ′Kt+1
θ,σ = ↓(λ l t1.↓(λ r t2.↓(l, r)))

JPair τ,τ ′ (y1)Kt+1
θ,σ = ↓(λ r t2.↓(σ(y1), r))

JPair τ,τ ′ (y1, y2)Kt+1
θ,σ = ↓(σ(y1), σ(y2))

Jlet xn = en in eKt+1
θ,σ =

⋃
x1∈Je1Ktθ,σ

· · ·
⋃

xn∈JenKtθ,σ[x1 7→x1,...,xn−1 7→xn−1]

JeKtθ,σ[x1 7→x1,...,xn 7→xn]

Jlet xn :: τn free in eKt+1
θ,σ =

⋃
x1∈Junknownτ1Ktθ,σ

· · ·
⋃

xn∈JunknownτnKtθ,σ

JeKtθ,σ[x1 7→x1,...,xn 7→xn]

Jf τm (y1, . . . , yk)K
tk+1
θ,σ = ↓

(
λak+1 tk+1. · · · ↓

(
λan tn.JeKtn[αm 7→τmθ],σ′

)
· · ·
)

with k ≤ n, f :: ∀α1 . . αm.τ ; f x1 . . xn = e in P and
σ′ = [x1 7→ σ(y1), . . . , xk 7→ σ(yk), xk+1 7→ ak+1, . . . , xn 7→ an]

Je1 e2Kt+2
θ,σ =

⋃
a∈Je2Kt+1

θ,σ

⋃
f∈Je1Kt+1

θ,σ

f(a, t)

Je1 + e2Kt+1
θ,σ =

⋃
n1∈Je1Ktθ,σ

⋃
n2∈Je2Ktθ,σ

↓(n1 +⊥ n2)

Je1 == e2Kt+1
θ,σ =

⋃
n1∈Je1Ktθ,σ

⋃
n2∈Je2Ktθ,σ

↓(n1 =⊥ n2)

Jcase e of {True→ e1;False→ e2}Kt+1
θ,σ =

⋃
b∈JeKtθ,σ


Je1Ktθ,σ b = True

Je2Ktθ,σ b = False

{⊥} b = ⊥

Jcase e of {Nil→ e1;Cons h t → e2}Kt+1
θ,σ =

⋃
l∈JeKtθ,σ


Je1Ktθ,σ l = []

Je2Ktθ,σ[h 7→h,t 7→t] l = h : t

{⊥} l = ⊥

Jcase e of {Pair l r → e1}Kt+1
θ,σ =

⋃
p∈JeKtθ,σ

{
Je1Ktθ,σ[l 7→l,r 7→r] p = (l, r)

{⊥} p = ⊥

Figure 4.10: Denotational term semantics for CuMin
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Junknown αKt+1
θ,σ = Junknown θ(α)K

t+1
θ,σ

Junknown BoolKt+1
θ,σ = JBoolK

Junknown NatKt+1
θ,σ = JNatK

q
unknown [τ ]

yt+1

θ,σ
= ↓[] ∪

⋃
h∈Junknownτ Ktθ,σ

⋃
t∈Junknown[τ ]Ktθ,σ

↓(h : t)

q
unknown (τ,τ ′)

yt+1

θ,σ
=

⋃
l∈Junknownτ Ktθ,σ

⋃
r∈Junknownτ ′K

t
θ,σ

↓(l, r)

Figure 4.11: Denotational term semantics for unknown primitive in CuMin

Lemma 4.3.1.

Jϕ(y1, . . . , yk)Kt+1
θ,σ = ↓

(
λa t′.Jϕ(y1, . . . , yk, x )Kt

′+1
θ,σ[x 7→a]

)
Proof. We apply the definition of the semantics of a (partial) application twice

Jf τm (y1, . . . , yk)Kt+1
θ,σ

= ↓
(
λak+1 tk+1. · · · ↓

(
λan tn.JeKtn[αm 7→τmθ],σ′

)
· · ·
)

= ↓
(
λak+1 tk+1.Jf τm (y1, . . . , yk, x )Ktk+1+1

θ,σ[x 7→ak+1]

)
where σ′ = [x1 7→ σ(y1), . . . , xk 7→ σ(yk), xk+1 7→ ak+1, . . . , xn 7→ an]. Indeed σ[x 7→
ak+1](yi) = σ(yi) and σ[x 7→ ak+1](x) = ak+1.

Lemma 4.3.2. The denotational semantics of a term is monotone w.r.t. the variable
bindings and the step index t ∈ N̂.

Proof. Induction on the syntax.

Lemma 4.3.3. Junknown τ K∞θ,σ = JτKθ for all τ ∈ Data.

Proof. The proof is by induction on the rules for τ ∈ Data. If τ is some type variable α
which is marked as representing a data type by the context, then θ(τ) also has to be in
the Data class. For closed types, the claim follows from the definition of Junknown τ K
and JτK.

4.4 Correctness

The first important result (Theorem 2) in [Launchbury, 1993] is correctness of the oper-
ational semantics w.r.t. the denotational semantics, i.e., evaluation does not change the
denotational meaning. The formalization uses denotational semantics of heaps: Given a
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heap ∆ and an environment σ, an extended environment {{∆}}σ is defined, which con-
tains semantic values for all variables bound in ∆ or σ. The correctness statement claims
that

JeK{{∆}}σ = JvK{{∆′}}σ
holds for all derivable judgements ∆ : e ⇓ ∆′ : v and all environments σ.6 The theorem
also provides a result about the heaps: If x is a variable with {{∆}}σ(x) 6= ⊥, then
{{∆}}σ(x) = {{∆′}}σ(x). Both claims are proven together by induction on all derivations
of the operational semantics. The proof is rather straightforward and requires little
additional knowledge besides the definitions of the semantics.
In [Launchbury, 1993], the denotational semantics for expressions and heaps rely on
each other and therefore are defined jointly. We have already defined the denotational
semantics of CuMin expressions without referring to heaps. This simplification is possible
because of the absence of recursively defined local variables in CuMin. Comparing the
denotational semantics to the operational semantics does however require the following
definition.
The denotational semantics of a heap ∆ = [y1 :: τ1 7→ e1, . . , yl :: τl 7→ el ] with respect to
an environment σ is defined as:

{{∆}}σ :=
⋃

v1∈Je1K∞σ

⋃
v2∈Je2K∞σ[y1 7→v1]

· · ·
⋃

vl∈JelK∞σ[y1 7→v1,...,yl−1 7→vl−1]

↓[y1 7→ v1, . . . , yl 7→ vl]

In CuMin, the denotational semantics of a heap is a set of environments, just like
the denotational semantics of an expression is a set of values. Here the definedness
order on environments is point-wise, i.e., an environment σ is at most as defined as
another environment σ′ (for the same sequence of variables having corresponding types)
if σ(x) v σ′(x) for all variables x in the environments. We will often write {{∆}} instead
of {{∆}}[].
Now we can state this section’s main result:

Theorem 4.4.1. For all judgments ∆ : e ⇓ ∆′ : v the following holds:⋃
δ∈{{∆}}

JeKδ ⊇
⋃

δ′∈{{∆′}}

JvKδ′ (4.1)

Taking unions is necessary because of the denotational semantics of both expressions
and environments being sets. The claim is a subset relation rather than an equality of
sets, because any one particular course of evaluation only needs to produce some of the
possible results.
Christiansen et al. [2011a] try to prove the above theorem directly by induction. No
definition for the denotational semantics of heaps is given, but only for heap expression

6 When trying to formalize Launchbury’s work in Isabelle, Breitner [2014] found out that this claim is
not true in full generality, though it does hold in all relevant cases. Breitner makes different suggestions
for fixing this issue, one of which is changing the definition of the denotational semantics and thus making
Launchbury’s original proof correct.
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pairs. Yet Launchbury’s approach suggests that we also need control over the involved
heaps independent of the expressions. To this end, he introduces a relation σ ≤ σ′

between environments stating that all variables bound to a non-bottom value in σ are
bound to the same value in σ′.
We use the same idea though in a different guise. If ∆:e ⇓ ∆′ :v is a derivable judgement
and X and X ′ are the sets of variables appearing in ∆ and ∆′ we define the map πX

′
X as

the projection keeping the entries for all variables in ∆ and dropping the rest. In most
cases we will omit the sets X and X ′ if they are clear from the context. Using the new
notation, the relation σ ≤ σ′ can be written as σ = πX

′
X (σ′).

Theorem 4.4.1 does not state equality though. Therefore we cannot expect equality to
hold when it comes to the heaps, either. Rather, we expect the following:

{{∆}} ⊇
{
πX
′

X

(
δ′
)
| δ′ ∈ {{∆′}}

}
(4.2)

Both this and theorem 4.4.1 will be consequences of the next lemma. Yet the lemma
does claim more than simply the conjunction of (4.1) and (4.2). To do the inductive
proof, it is necessary to know which combinations of environments δ and semantic values
v occur. We will prove the following:

Lemma 4.4.2. If a judgment ∆:e ⇓ ∆′ :v can be derived by the operational semantics,
then ⋃

δ∈{{∆}}

⋃
v∈JeKδ

↓(δ,v) ⊇
⋃

δ′∈{{∆′}}

⋃
v∈JvKδ′

↓
(
πX
′

X (δ′),v
)

(4.3)

where X and X ′ are the sets of variables defined in ∆ and ∆′.

This somewhat bulky inequation implies both (4.1) and (4.2). The former inequation
(the theorem) emerges by taking the right projection of all tuples in both sides of (4.3)
and the latter emerges by taking left projections.
Before we do the proof, we single out another key idea as an additional lemma:

Lemma 4.4.3. If v is a value under some heap ∆ then JvKδ is the closure of a single
element for every δ ∈ {{∆}}.

Proof. This is immediate from the definition of the denotational semantics, where all
values are explicitly given as closures.

Having these ideas in mind the actual proof is mainly bookkeeping.

Proof of lemma 4.4.2. The proof is by induction over all derivations and splitting cases
according to the rules of the operational semantics. For every rule, we may assume the
claim to already be shown for all premises.
For the (Val) rule the claim is trivially satisfied.
Now for lookup:

∆ : e ⇓ ∆′ : v
(Lookup)

∆ [x :: τ 7→ e ] Ω : x ⇓ ∆′ [x :: τ 7→ v ] Ω : v
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⋃
δ∈{{∆}}

⋃
ξ∈{{[x 7→e ]}}δ

⋃
ω∈{{Ω}}δξ

⋃
v∈JxKδξω

↓(δξω,v)

Use x = ξ(x ).

=
⋃

δ∈{{∆}}

⋃
x∈JeKδ

⋃
ω∈{{Ω}}δ[x 7→x]

⋃
v∈JxKδ[x 7→x]ω

↓(δ[x 7→ x]ω,v)

=
⋃

δ∈{{∆}}

⋃
x∈JeKδ

⋃
ω∈{{Ω}}δ[x 7→x]

⋃
v∈↓x

↓(δ[x 7→ x]ω,v)

=
⋃

δ∈{{∆}}

⋃
x∈JeKδ

⋃
ω∈{{Ω}}δ[x 7→x]

↓(δ[x 7→ x]ω,x)

Induction hypothesis

⊇
⋃

δ′∈{{∆′}}

⋃
x∈JvKδ′

⋃
ω∈{{Ω}}π(δ′)[x 7→x]

↓(π(δ′)[x 7→ x]ω,x)

Because of lemma 4.4.3, JvKδ′ is the closure of a single element and we may introduce
another union:

=
⋃

δ′∈{{∆′}}

⋃
x∈JvKδ′

⋃
ω∈{{Ω}}π(δ′)[x 7→x]

⋃
v∈JvKδ′[x 7→x]ω

↓(π(δ′)[x 7→ x]ω,v)

=
⋃

δ′∈{{∆′}}

⋃
ξ∈{{[x 7→v ]}}δ′

⋃
ω∈{{Ω}}π(δ′)ξ

⋃
v∈JvKδ′ξω

↓(π(δ′)ξω,v)

∆ [y :: τ1 7→ e1 ] : e [y/x ] ⇓ ∆′ : v
(Let)

∆ : let x = e1 in e ⇓ ∆′ : v
y fresh and τ1 is the type of ∆ : e1

∆ [y :: τ1 7→ unknown τ1 ] : e [y/x ] ⇓ ∆′ : v
(Free)

∆ : let x :: τ1 free in e ⇓ ∆′ : v
y fresh

(Let) and (Free): ⋃
δ∈{{∆}}

⋃
v∈Jlet x=e1 in eKδ

↓(δ,v)

=
⋃

δ∈{{∆}}

⋃
x∈Je1Kδ

⋃
v∈JeKδ[x 7→x]

↓(δ,v)

=
⋃

δ∈{{∆}}

⋃
ξ∈{{[y 7→e1 ]}}δ

⋃
v∈Je [y/x ]Kδξ

↓(π(δξ),v)

⊇
⋃

δ′∈{{∆′}}

⋃
v∈JvKδ′

↓(π(δ′),v)
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(Fun): ⋃
δ∈{{∆}}

⋃
v∈Jf τm (y1,..,yn)Kδ

↓(δ,v)

=
⋃

δ∈{{∆}}

⋃
v∈JeK

[αm 7→JτmK][xn 7→δ(yn)]

↓(δ,v)

=
⋃

δ∈{{∆}}

⋃
v∈Je [τm/αm,yn/xn ]Kδ

↓(δ,v)

⊇
⋃

δ′∈{{∆′}}

⋃
v∈JvKδ′

↓(π(δ′),v)

(Apply): ⋃
δ∈{{∆}}

⋃
v∈Je1 e2Kδ

↓(δ,v)

=
⋃

δ∈{{∆}}

⋃
a∈Je2Kδ

⋃
f∈Je1Kδ

⋃
v∈f(a)

↓(δ,v)

⊇
⋃

δ′∈{{∆′}}

⋃
a∈Je2Kδ′

⋃
f∈Jϕ(y1,..,yk)Kδ′

⋃
v∈f(a)

↓(π(δ′),v)

Using lemma 4.3.1:

=
⋃

δ′∈{{∆′}}

⋃
a∈Je2Kδ′

⋃
f∈↓

(
λa′.Jϕ(y1,..,yk,x)Kδ′[x 7→a′]

)
⋃

v∈f(a)

↓(π(δ′),v)

=
⋃

δ′∈{{∆′}}

⋃
a∈Je2Kδ′

⋃
v∈Jϕ(y1,..,yk,x)Kδ′[x 7→a]

↓(π(δ′),v)

=
⋃

δ′∈{{∆′}}

⋃
v∈Jlet x=e2 in ϕ(y1,..,yk,x)Kδ′

↓(π(δ′),v)

⊇
⋃

δ′′∈{{∆′′}}

⋃
v∈JvKδ′′

↓(π(δ′′),v)

(Plus) ⋃
δ∈{{∆}}

⋃
v∈Je1+e2Kδ

↓(δ,v)

=
⋃

δ∈{{∆}}

⋃
n1∈Je1Kδ

⋃
n2∈Je2Kδ

⋃
v∈↓(n1+⊥n2)

↓(δ,v)

⊇
⋃

δ′∈{{∆′}}

⋃
n1∈Jn1Kδ′

⋃
n2∈Je2Kδ′

⋃
v∈↓(n1+⊥n2)

↓(π(δ′),v)

⊇
⋃

δ′′∈{{∆′′}}

⋃
n1∈Jn1Kδ′′

⋃
n2∈Jn2Kδ′′

⋃
v∈↓(n1+⊥n2)

↓(π(δ′′),v)
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=
⋃

δ′′∈{{∆′′}}

⋃
v∈JnKδ′′

↓(π(δ′′),v)

Where n is the sum of n1 and n2.
(CaseNil) ⋃

δ∈{{∆}}

⋃
v∈Jcase e of {Nil→e1;Cons h t→e2}Kδ

↓(δ,v)

=
⋃

δ∈{{∆}}

⋃
l∈JeKδ


⋃

v∈Je1Kδ
↓(δ,v) l = []⋃

v∈Je2Kδ[h 7→h,t 7→t]
↓(δ,v) l = h : t

{⊥} l = ⊥

⊇
⋃

δ′∈{{∆′}}

⋃
l∈JNilτ Kδ′


⋃

v∈Je1Kδ′
↓(π(δ′),v) l = []⋃

v∈Je2Kδ′[h 7→h,t 7→t]
↓(π(δ′),v) l = h : t

{⊥} l = ⊥

=
⋃

δ′∈{{∆′}}

⋃
v∈Je1Kδ′

↓(π(δ′),v)

⊇
⋃

δ′′∈{{∆′′}}

⋃
v∈JvKδ′′

↓(π(δ′′),v)

(CaseCons) ⋃
δ∈{{∆}}

⋃
v∈Jcase e of {Nil→e1;Cons h t→e2}Kδ

↓(δ,v)

=
⋃

δ∈{{∆}}

⋃
l∈JeKδ


⋃

v∈Je1Kδ
↓(δ,v) l = []⋃

v∈Je2Kδ[h 7→h,t 7→t]
↓(δ,v) l = h : t

{⊥} l = ⊥

⊇
⋃

δ′∈{{∆′}}

⋃
l∈JConsτy1 y2Kδ′


⋃

v∈Je1Kδ′
↓(π(δ′),v) l = []⋃

v∈Je2Kδ′[h 7→h,t 7→t]
↓(π(δ′),v) l = h : t

{⊥} l = ⊥

=
⋃

δ′∈{{∆′}}

⋃
v∈Je2Kδ′[h 7→δ′(y1),t 7→δ′(y2)]

↓(π(δ′),v)

=
⋃

δ′∈{{∆′}}

⋃
v∈Je2 [y1/h,y2/t ]Kδ′

↓(π(δ′),v)

⊇
⋃

δ′′∈{{∆′′}}

⋃
v∈JvKδ′′

↓(π(δ′′),v)

For the various (Guess)-rules, we use lemma 4.3.3. For literals and constructors without
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fields, the lemma is sufficient already:⋃
δ∈{{∆}}

⋃
v∈JunknownNatKδ

↓(δ,v)

⊇
⋃

δ∈{{∆}}

⋃
v∈JnKδ

↓(δ,v)

For constructors with fields, the induction hypothesis has to be used:⋃
δ∈{{∆}}

⋃
v∈Junknown[τ ]Kδ

↓(δ,v)

⊇
⋃

δ∈{{∆}}

⋃
v∈Jlet h::τ,t ::[τ ] free in Consτ (h,t)Kδ

↓(δ,v)

⊇
⋃

δ′∈{{∆′}}

⋃
v∈JvKδ′

↓(π(δ′),v)

(Guess) is the only case containing actual estimates (as opposed to set equalities), while
all other cases only need estimates where the induction hypothesis is applied.

4.5 Adequacy

In this section we prove the following theorem:

Theorem 4.5.1. For every heap expression pair ∆ : e the following holds⋃
δ∈{{∆}}

JeKδ =
⋃

∆:e⇓∆′:v

⋃
δ′∈{{∆′}}

JvKδ′ (4.4)

where the first union on the right hand side is over all operational derivations.

The right hand side is a subset of the left hand side because of the correctness theo-
rem 4.4.1. What remains to be done is constructing suitable derivation trees, which is
this section’s actual aim.

The corresponding claim in [Launchbury, 1993] is that whenever the denotation is some-
thing other than ⊥, there is a derivation tree in the operational semantics. The proof
introduces two auxiliary concepts: A resourced denotational semantics and an alterna-
tive operational semantics. At first glance, our approach is the same, but the details
differ due to the different nature of the language in question.
Our denotational semantics already is resourced, though not in the same way Launch-
bury’s semantics is. The reason for this deviation will become apparent later, after we
have introduced the other auxiliary semantics.
For the duration of the proof, Launchbury replaces the lookup rule with a slightly dif-
ferent version. The original version of the rule looks up a variable in the heap, evaluates
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the expression the variable is bound to, and updates the heap afterwards. If the same
variable is looked up again, the heap already contains the result and evaluation can
proceed immediately. Within the adequacy proof, this rule is replaced by a version that
does not update the heap. So, the expression is evaluated again and again every time
the variable is looked up. If this rule was used in an implementation, it would make the
program much slower.
However, the statement is only concerned with whether evaluation succeeds. For this
question it is irrelevant whether the heap is updated: If the expression has been evaluated
successfully before, it can be done again taking the same (finite) time and leading to the
same result. Yet, if the evaluation diverges, there is no result independently of updates.
Therefore, it is fine to alter the operational semantics in this respect to enable a simpler
proof.
In our case, the same adjustment would however change the set of possible results. There
can be more than one normal form the expression can be evaluated to. Evaluating the
expression again for subsequent lookups would break sharing. So, in order to get the
correct behavior, the heap has to store the result.
On the other hand, we do not want to deal with updates in the proof either. So, we
introduce a version of the operational semantics called medial semantics that avoids
updates another way. When a new variable is introduced, the expression it is bound to
can be evaluated before the variable is added to the heap. However, the expression does
not have to be evaluated. Looking up a variable only succeeds if the variable is bound to
a value. So, if the variable will be looked up, the expression has to be evaluated before
being stored in the heap. This enforces sharing. If the variable will not be looked up, the
expression can be stored in unevaluated form. Since possible failure remains unnoticed,
this semantics is not strict.
The name medial is apt for two reasons. For one thing the medial semantics is an
intermediate step between the operational and the denotational semantics. The given
rules resemble the rules of the operational semantics and in both cases the existence of
a derivation tree proves a value to be a possible result of a program. There is also an
important similarity between the medial and the denotational semantics in that (syn-
tactic resp. semantic) values have to be fixed for all heap variables before evaluating the
expression itself. This leads to the second reason for the name medial : When deciding on
the value of some variable, there is no indication of whether this variable will be looked
up or not. Thus execution of the medial semantics would require predictions about the
future use (or non-use) of variables.

4.5.1 Medial Semantics

The medial semantics is a variant of the operational semantics shown in figure 4.8 subject
to some changes. The (Lookup) rule is replaced by the one shown in figure 4.12 and
can only be used to look up variables bound to values. Thus when using (Lookup) no
update of the heap is necessary.
Two new rules, (Let!) and (Free!), are added and allow to evaluate expressions before
writing the result into the heap. The rules (Let) and (Free) are however still part of the
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(Lookup) ∆ [x :: τ 7→ v ] Ω : x ⇓ ∆ [x :: τ 7→ v ] Ω : v if v is a flat normal form

(Let!)
∆ : e1 ⇓ ∆′ : v1 ∆′ [y :: τ1 7→ v1 ] : e [y/x ] ⇓ ∆′′ : v

∆ : let x = e1 in e ⇓ ∆′′ : v
y fresh and τ1 is the type

of ∆ : e1

(Free!)
∆ : unknown τ1 ⇓ ∆′ : v1 ∆′ [y :: τ1 7→ v1 ] : e [y/x ] ⇓ ∆′′ : v

∆ : let x :: τ1 free in e ⇓ ∆′′ : v
y fresh

Figure 4.12: Replacement and additional rules for the medial semantics for CuMin

semantics as well, so they can be used to add the unevaluated expression to the heap.
Unless the expression happens to be a value, the affected variable can never be looked
up.

Lemma 4.5.2. If there is a medial derivation for ∆ : e ⇓ ∆′′ : v , then there is an
operational derivation for ∆ : e ⇓ ∆′ : v and ∆′′ emerges from ∆′ by forcing evaluation
of heap entries.

Proof. Let some medial derivation tree be given. Since the (Lookup) rule has been
altered to not update the heap, heap entries can only be added but never changed. Also,
new entries are always added to the end of the heap. Therefore, the order in which the
variables appear in the heap is the order in which they are added during the derivation.
We change the derivation tree variable by variable in the reversed heap order. In the
course of this process, the derivation is neither operational nor medial, but can use both
versions of (Lookup), (Let) and (Free).
Let y be such a heap variable. If y appears in the current derivation, it has to be added
to the heap by some use of (Let), (Let!), (Free) or (Free!). If y is introduced using
(Free), it is bound to unknown in the heap and can never be looked up in a medial
derivation. In this case, no change is necessary.
If y is introduced using (Let), we have to distinguish further. If y is not bound to a
value, it can never be looked up and no change is necessary (as in the previous case). If
y happens to be bound to a value, lookups can occur. Since the medial (Lookup) rule
does not have a premise, but the operational (Lookup) rule does, (Val) has to be added
everywhere. Thus the medial (Lookup)

∆ [y :: τ1 7→ v1 ] Ω : y ⇓ ∆ [y :: τ1 7→ v1 ] Ω : v1

is replaced by an operational (Lookup) and an application of (Val):

∆ : v1 ⇓ ∆ : v1

∆ [y :: τ1 7→ v1 ] Ω : y ⇓ ∆ [y :: τ1 7→ v1 ] Ω : v1

Otherwise, y is introduced using (Let!) or (Free!) and there is a subtree Ty proving
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the first premise of the rule introducing y .

Ty

...
∆′ [y :: τ1 7→ v1 ] : e [y/x ] ⇓ ∆′ [y : τ1 7→ v1 ] Ω′ : v

∆ : let x = e1 in e ⇓ ∆′ [y :: τ1 7→ v1 ] Ω′ : v

...

We remove this subtree and remember it for later use. The derivation is temporarily
incorrect:

...
∆′ [y :: τ1 7→ v1 ] : e [y/x ] ⇓ ∆′ [y : τ1 7→ v1 ] Ω′ : v

∆ : let x = e1 in e ⇓ ∆′ [y :: τ1 7→ v1 ] Ω′ : v

...

In this situation it is possible for the variable y to be looked up in the medial derivation.
If y still never is looked up, we replace the prefix ∆′ [y :: τ1 7→ v1 ] of the heap by
∆ [y :: τ1 7→ e1 ] everywhere in the derivation. This makes the rule introducing y a
correct use of (Let) or (Free):

...
∆ [y :: τ1 7→ e1 ] : e [y/x ] ⇓ ∆ [y : τ1 7→ e1 ] Ω′ : v

∆ : let x = e1 in e ⇓ ∆ [y :: τ1 7→ e1 ] Ω′ : v

...

In this case the subtree Ty is not part of the resulting operational derivation and neither
are the heap entries introduced in Ty .
Otherwise, there is at least one lookup of y . The first lookup receives Ty as its premise
and evaluates e1 to v1 in the operational derivation. Between the rule introducing y and
the first lookup, we replace the prefix ∆′ [y :: τ1 7→ v1 ] of the heap by ∆ [y :: τ1 7→ e1 ].
Thus the introducing rule does not change the heap, but the first lookup does:

...
∆ : e1 ⇓ ∆′ : v1

∆ [y :: τ 7→ e1 ] Ω : y ⇓ ∆′ [y :: τ 7→ v1 ] Ω : v1

...

All subsequent lookups get (Val) as their premise:

∆′ : v1 ⇓ ∆′ : v1

∆′ [y :: τ 7→ v1 ] Ω′ : y ⇓ ∆′ [y :: τ 7→ v1 ] Ω′ : v1

...
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4.5.2 Existence of Medial Derivations

The next lemma allows to prove the existence of medial derivations for given semantic
values.

Lemma 4.5.3. Let ∆ : e be a heap expression pair. Let δ ∈ {{∆}}, such that δ(y) = ⊥
unless ∆(y) is a value. Let v be such that ⊥ 6= v ∈ JeKtδ. There exists a derivable
∆ : e ⇓ ∆ Ω : v and ω ∈ {{Ω}}δ such that ω(y) = ⊥ unless Ω(y) is a value and v ∈ JvK1δω.

Proof. The proof is by induction on t, where in the base case t = 0 there is nothing to
show because JeK0 = {⊥} does not contain any v 6= ⊥. So for positive t we may assume
the claim to be valid for all smaller t and proceed by splitting cases according to the
expression e.
If the expression is a flat normal form, use (Val) to derive ∆ : v ⇓ ∆ : v . The denotation
of a value is independent of the step index, which follows directly from the definition of
the denotational semantics (figure 4.10). So v ∈ J∆ : vKt+1 = J∆ : vK1 indeed holds.
If the expression is a variable x and ∆(x ) is not a value, then δ(x) = ⊥ and therefore
JxKt+1

δ = {⊥}. Since there is no ⊥ 6= v ∈ JeKt+1
δ the claim is true. If the expression is a

variable x and ∆(x ) is a value v we can use (Lookup). Since v is a value, v ∈ JvK1δ =
JvKt+1

δ = J∆(x )Kt+1
δ .

Let ∆ : let x = e1 in e, δ and v ∈ Jlet x = e1 in eKt+1
δ be given.

v ∈ Jlet x = e1 in eKt+1
δ

=
⋃

x∈Je1Ktδ

JeKtδ[x 7→x]

Choose a suitable x. If x = ⊥, apply the induction hypothesis to ∆ [y 7→ e1 ] : e [y/x ],
δ[y 7→ ⊥] and v and use (Let). If x 6= ⊥, apply the induction hypothesis to ∆ : e1, δ and
x to get ∆′ :v1 and δ′. Then apply the induction hypothesis again to ∆′ [y 7→ v1 ]:e [y/x ],
δ[y 7→ x] and v and use (Let!).
Let ∆ : failed τ , δ and v ∈ Jfailed τ Kt+1

δ be given. Since v ∈ Jfailed τ Kt+1
δ = {⊥} we

have v = ⊥ and there is nothing to show.
Let ∆ : e1 e2, δ and v ∈ Je1 e2Kt+2

δ be given.

v ∈ Je1 e2Kt+2
δ

=
⋃

f∈Je1Kt+1
δ

⋃
a∈Je2Kt+1

δ

f(a, t)

Choose a suitable f and apply the induction hypothesis to ∆:e1, δ and f ∈ Je1Kt+1
δ to get

∆ : e1 ⇓ ∆′ : ϕ(y1, . . . , yk), δ
′ and f ∈ Jϕ(y1, . . . , yk)K1δ′ = ↓λa′ t′.Jϕ(y1, . . . , yk, x )Kt

′+1
δ′[x 7→a′]

(using lemma 4.3.1).

v ∈
⋃

a∈Je2Kt+1
δ′

f(a, t)
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⊆
⋃

a∈Je2Kt+1
δ′

(
λa′ t′.Jϕ(y1, . . . , yk, x )Kt

′+1
δ′[x 7→a′]

)
(a, t)

=
⋃

a∈Je2Kt+1
δ′

Jϕ(y1, . . . , yk, x )Kt+1
δ′[x 7→a]

= Jlet x = e2 in ϕ(y1, . . . , yk, x )Kt+2
δ′

Apply the induction hypothesis to ∆′ : let x = e2 in ϕ(y1, . . . , yk, x ), δ′ and v ∈ Jlet x =
e2 in ϕ(y1, . . . , yk, x )Kt+2

δ′ . Even though the index t did not decrease, this application of
the induction hypothesis is fine, as we have already proved the let . . in case.
Let ∆ : f τm (y1, . . , yn) with f n-ary, δ and v ∈ Jf τm (y1, . . , yn)Kt+1

δ be given.

v ∈ Jf τm (y1, . . , yn)Kt+1
δ

= JeKt
[αm 7→JτmK][xn 7→δ(yn)]

= Je [τm/αm, yn/xn ]Ktδ

So we can apply the induction hypothesis and use (Fun).
Let ∆ : e1 + e2, δ and v ∈ Je1 + e2Kt+1

δ be given.

v ∈ Je1 + e2Kt+1
δ

=
⋃

n1∈Je1Ktδ

⋃
n2∈Je2Ktδ

↓(n1 +⊥ n2)

Choose a suitable n1. Apply the induction hypothesis to ∆ : e1, δ and n1 ∈ Je1Ktδ to get
∆ : e1 ⇓ ∆′ : n1, δ′ and n1 ∈ Jn1K1δ′ .

v ∈
⋃

n2∈Je2Ktδ

↓(n1 +⊥ n2)

=
⋃

n2∈Je2Ktδ′

↓(n1 +⊥ n2)

Choose a suitable n2. Apply the induction hypothesis to ∆′ : e2, δ′ and n2 ∈ Je2Ktδ′ to
get ∆′ : e2 ⇓ ∆′′ : n2, δ′′ and n2 ∈ Jn2K1δ′′ .

v ∈ ↓(n1 +⊥ n2)

= JnK1δ′′

So we can derive ∆ : e1 + e2 ⇓ ∆′′ : n where n is the sum of n1 and n2 and v ∈ JnK1δ′′ .
Let ∆:case e of {Nil→ e1;Cons h t → e2}, δ and v ∈ Jcase e of {Nil→ e1;Cons h t →
e2}Kt+1

δ be given.

v ∈ Jcase e of {Nil→ e1;Cons h t → e2}Kt+1
δ
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=
⋃

l∈JeKtδ


Je1Ktδ l = []

Je2Ktδ[h 7→h,t 7→t] l = h : t

{⊥} l = ⊥

Choose a suitable l. Apply the induction hypothesis to ∆ : e, δ and l ∈ JeKtδ to get
∆ : e ⇓ ∆′ : v ′, δ′ and l ∈ Jv ′K1δ′ . If v ′ is Nil τ , we have l ∈ JNil τ K1δ′ = ↓[].

v ∈ Je1Ktδ
= Je1Ktδ′

Apply the induction hypothesis to ∆′ : e1, δ′ and v ∈ Je1Ktδ′ to get ∆′ : e1 ⇓ ∆′′ : v , δ′′

and v ∈ JvK1δ′′ .
If v ′ is Cons τ (y1, y2), we have l = h : t with h = δ′ y1 and t = δ′ y2 and

v ∈ Je2Ktδ[h 7→h,t 7→t]

= Je2Ktδ′[h 7→h,t 7→t]

= Je2 [y1/h, y2/t ]Ktδ′

Apply the induction hypothesis to ∆′ : e2 [y1/h, y2/t ], δ′ and v ∈ Je2 [y1/h, y2/t ]Ktδ′ to
get ∆′ : e2 [y1/h, y2/t ] ⇓ ∆′′ : v , δ′′ and v ∈ JvK1δ′′ .
In either case we can derive ∆ : case e of {Nil → e1;Cons h t → e2} ⇓ ∆′′ : v and
v ∈ JvK1δ′′ .
Let ∆ : unknown τ , δ and v ∈ Junknown τ Kt+1

δ be given. We split cases again, this
time for the type τ , which is a data type. We will not go through all of the cases, but
just do lists as an example.

v ∈ Junknown [τ ]K
t+1
δ

= ↓[] ∪
⋃

h∈Junknownτ Ktδ

⋃
t∈Junknown[τ ]K

t
δ

↓(h : t)

= JNil τ Kt+1
δ ∪ Jlet h :: τ, t :: [τ ] free in Cons τ (h, t)Kt+1

δ

So v has to be contained in one of the sets and depending on which one that is, we can
pick the appropriate guessing rule.

Proof of theorem 4.5.1. Theorem 4.4.1 implies the “⊇” direction. For the other direc-
tion, let some v ∈

⋃
δ∈{{∆}}JeKδ be given. Lemma 4.5.3 implies that there is a medial

derivation for some ∆ : e ⇓ ∆′′ : v , such that v ∈
⋃
δ′′∈{{∆′′}}JvKδ′′ . Using lemma 4.5.2

we can conclude that there is an operational derivation for some ∆ : e ⇓ ∆′ : v . Again
using 4.4.1,

v ∈
⋃

δ′′∈{{∆′′}}

JvKδ′′ ⊆
⋃

δ′∈{{∆′}}

JvKδ′

holds, since in ∆′′ more entries are evaluated than in ∆′.
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4.6 Translating CuMin into SaLT

We have given a denotational semantics for CuMin and could thus start to derive results
about CuMin programs by arguing about their denotational semantics. However, it is
much simpler to argue on a syntactic level, i.e., by equational reasoning. For example
in chapter 3, we have never left the syntactic level.
Equational reasoning in CuMin and Curry is difficult because many of the steps we
are used to performing in other language are not valid here, i.e., do not preserve the
semantics. Many of the steps in chapter 3 simply were evaluation steps (forwards or
backwards), like applying defining rules for functions. In Curry and CuMin this is
problematic because evaluation can branch. Other commonly used steps like beta or eta
equivalence do not hold in Curry and CuMin, either.
Like in [Mehner et al., 2014], we introduce an intermediate step halfway between CuMin
and its denotational semantics: the language SaLT. The acronym is short for sets and
lambda terms and that is exactly what SaLT is – a lambda calculus with set types. SaLT
itself is deterministic, but CuMin can be translated into SaLT, making the nondetermin-
ism explicit by using sets on the syntactic level. These sets have a monadic interface,
in which bind corresponds to taking unions and return corresponds to building single-
ton sets. In [Mehner et al., 2014], the bind operator is even denoted as a union, but
we decided to stick to the Haskell notation (>>=) here. The translation from CuMin
to SaLT will introduce monadic binds wherever the denotational semantics uses unions,
thus making the interesting part of the semantics visible. Yet we stay on a syntactic level
and do not have to deal with technicalities like switching back and forth between syntac-
tic and semantic variables or even with keeping track of the step indexes. These matters
are taken care of by the denotational semantics of SaLT, which is very straightforward
since SaLT is a deterministic typed lambda calculus, like e.g., Haskell.

There is a second reason why we need SaLT, which will become important later. The
free theorems [Wadler, 1989] we will prove for CuMin have side conditions restricting
nondeterminism. Such conditions are hard to express in CuMin because it is intrinsically
nondeterministic. Christiansen et al. [2010] show ways to still formulate these conditions
using CuMin (or its predecessor) only. Yet we find it easier to have a language that gives
an easy notion of determinism. SaLT does just that because it has singleton sets which
are clearly deterministic and can be compared with other expressions.

4.6.1 The Language SaLT

We start by describing the syntax, type system and denotational semantics, all of which
are very similar to CuMin. Therefore we only point out the differences and refer back
to CuMin a lot.
The full syntax of SaLT is given in figure 4.13. The most important change compared to
CuMin is the new type constructor Set and its monadic interface { } and (>>=). Unlike
in [Mehner et al., 2014], the bind operator does not automatically introduce a variable
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P ::= D;P | D
D ::= f :: ∀αm.(Data αij )⇒ τ ; f xn = e

τ ::= α | τ → τ ′ | Bool | Nat | [τ ] | (τ, τ ′) | Set τ
e ::= x

| failed τ | f τm | λ(x :: τ)→ e | e1 e2

| n | e1 + e2 | e1 == e2

| True | False | case e of {True→ e1;False→ e2}
| Nil τ | Cons τ | case e of {Nil→ e1;Cons h t → e2}
| Pair τ,τ ′ | case e of {Pair l r → e1}
| {e } | e1 >>= e2 | unknown τ

Figure 4.13: Syntax of SaLT

Γ, x :: τ ` e :: τ ′

Γ ` λ(x :: τ)→ e :: τ → τ ′
Γ ` e :: τ

Γ ` {e } :: Set τ

Γ ` e1 :: Set τ Γ ` e2 :: τ → Set τ ′

Γ ` e1 >>= e2 :: Set τ ′
Γ ` τ ∈ Data

Γ ` unknown τ :: Set τ

Figure 4.14: Typing rules for SaLT

name. Instead, lambda abstractions can be used (which were also part of the version of
SaLT given in [Mehner et al., 2014] though for a different reason).
Finally, there is an unknown primitive, which represents the set of all values of some
type and is thus closely related to the unknown we introduced when discussing the
semantics of CuMin. This primitive will allow to create non-trivial sets in the first
place.
Unlike in [Mehner et al., 2014], functions can be defined by rules, i.e., giving arguments
on the left hand side. This corresponds to a change in the translation process, so we
defer the discussion concerning this change.

The type system of SaLT uses the same kinds of judgments we have already seen for
CuMin. The rules for building contexts given in figure 4.3 remain untouched. The
τ ∈ Type judgments are derived by the rules in the same figure or using the new rule

Γ ` τ ∈ Type

Γ ` Set τ ∈ Type

for set types. These types are not members of the Data class, so figure 4.4 remains
valid. Finally and most importantly, expressions are typed by the rules in figure 4.5 and
the additional rules in figure 4.14. In particular, we want to point out that the type of
unknown τ is Set τ in SaLT, while it is τ in CuMin.
Because of these rules, unknown cannot be used to create nested sets. Sets are used as
a data structure in many languages, so not including them in the Data class might seem
surprising.
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JαKθ = Jθ(α)K

Jτ → τ ′Kθ = {f : JτKθ × N→ Jτ ′Kθ | f monotone}
JBoolKθ = {True,False}⊥
JNatKθ = N⊥
J[τ ]Kθ = {x1 : . . . : xn : e | n ≥ 0,xi ∈ JτKθ, e ∈ {⊥, []}}

J(τ, τ ′)Kθ = {(l, r) | l ∈ JτKθ, r ∈ Jτ ′Kθ}⊥
JSet τKθ = L (JτKθ)

Figure 4.15: Denotational type semantics for SaLT

There however is a difference between the Set type constructor in Haskell and the Set
type constructor in SaLT. In most languages, sets are finite collections of elements, while
sets in SaLT can be infinite (like unknown Nat, the set of all natural numbers). Thus
when the result of a computation is an infinite set, tools cannot list all the elements.
However, tools can start to list elements and every element will be found after a finite
amount of time because there is a way to generate all of them. The same is not true
for nested sets: There is an uncountable number of subsets of N, so there is no program
that generates all subsets one after the other.

The denotational type semantics of SaLT is given in figure 4.15 and is very similar to
the type semantics of CuMin (figure 4.9). The semantics of a type with respect to an
environment is a poset (pointed partially ordered set) and the constructions coincide
for all Data types. The domain for function types does not rely on the lower subsets
construction L () anymore. Instead, it appears in the definition of the semantics of set
types.
Given some typing judgment Γ ` e :: τ , a type environment θ, a term environment
σ and a stepindex t ∈ N, the term level semantics JeKtθ,σ is an element of JτKθ. For

all expressions JeK0θ,σ is defined to be ⊥. For positive t, the semantics is given by the
equations in figure 4.16. The semantics is by construction monotone in both t and σ.
Unlike in CuMin, the limit JeK∞θ,σ does not exist in general, but we will use this notation

if it does. A limit exists if the sequence JeKtθ,σ becomes stable, i.e., there is some t0, such
that for all t ≥ t0 the value is independent of t. Another sufficient condition for the
existence of a limit is e having a set type Set τ . In this case

JeK∞θ,σ =
⋃
t∈N

JeKtθ,σ

holds, where the union combines (lower) subsets of JτKθ. If the semantics of some type
τ permits taking limits, then so does the semantics of τ ′ → τ by taking the point-wise
limit. Combining this insight with the previous one, all types τ1 → . . . → τn → Set τ
permit taking limits.
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JxKt+1
θ,σ = σ(x )

Jfailed τ Kt+1
θ,σ = ⊥

JnKt+1
θ,σ = n

JTrueKt+1
θ,σ = True

JFalseKt+1
θ,σ = False

JNil τ Kt+1
θ,σ = []

JCons τ Kt+1
θ,σ = (λh t1.(λ t t2.(h : t)))

JPair τ,τ ′Kt+1
θ,σ = (λ l t1.(λ r t2.(l, r)))

Jf τmK
t0+1
θ,σ =

(
λa1 t1. · · ·

(
λan tn.JeKtn[αm 7→τmθ],σ′

)
· · ·
)

with f :: ∀α1 . . αm.τ ; f x1 . . xn = e in P and σ′ = [x1 7→ a1, . . . , xn 7→ an]

Jλ(x :: τ)→ eKt+1
θ,σ = λx t′.JeKt

′+1
θ,σ[x 7→x]

Je1 e2Kt+2
θ,σ = Je1Kt+1

θ,σ

(
Je2Kt+1

θ,σ , t
)

Je1 + e2Kt+1
θ,σ = Je1Ktθ,σ +⊥ Je2Ktθ,σ

Je1 == e2Kt+1
θ,σ = Je1Ktθ,σ =⊥ Je2Ktθ,σ

Jcase e of {True→ e1;False→ e2}Kt+1
θ,σ =


Je1Ktθ,σ JeKtθ,σ = True

Je2Ktθ,σ JeKtθ,σ = False

⊥ JeKtθ,σ = ⊥

Jcase e of {Nil→ e1;Cons h t → e2}Kt+1
θ,σ =


Je1Ktθ,σ JeKtθ,σ = []

Je2Ktθ,σ[h 7→h,t 7→t] JeKtθ,σ = h : t

⊥ JeKtθ,σ = ⊥

Jcase e of {Pair l r → e1}Kt+1
θ,σ =

{
Je1Ktθ,σ[l 7→l,r 7→r] JeKtθ,σ = (l, r)

⊥ JeKtθ,σ = ⊥

J{e }Kt+1
θ,σ = ↓JeKtθ,σ

Je1 >>= e2Kt+1
θ,σ =

⋃
x∈Je1Ktθ,σ

Je2Ktθ,σ(x, t)

Junknown αKt+1
θ,σ =

q
unknown θ(α)

yt+1

θ,σ

Junknown BoolKt+1
θ,σ = JBoolK

Junknown NatKt+1
θ,σ = JNatK

q
unknown [τ ]

yt+1

θ,σ
= ↓[] ∪

⋃
h∈Junknownτ Ktθ,σ

⋃
t∈Junknown[τ ]Ktθ,σ

↓(h : t)

q
unknown (τ,τ ′)

yt+1

θ,σ
=

⋃
l∈Junknownτ Ktθ,σ

⋃
r∈Junknownτ ′K

t
θ,σ

↓(l, r)

Figure 4.16: Denotational term semantics for SaLT with step indexes
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4.6.2 Semantic Equivalence and Equational Reasoning

To do equational reasoning, we need a notion of semantic equivalence, i.e., a formalization
of two expressions e and e ′ being exchangeable. Requiring JeKtθ,σ = Je ′Ktθ,σ to hold for
all t would be far too restrictive because indexes are often shifted. For example 2 + 2
and 4 would not be semantically equivalent, because evaluating the sum takes up one
time step. On the other hand, we cannot use

JeK∞θ,σ = Je ′K∞θ,σ

as a condition, because the limit does not exist in general. Yet if the limit does exist,
the above is exactly what we want. The following turns out to be apt:

Definition 4.6.1. Let e and e ′ be two SaLT expressions that are typeable to some
common type in some context. The two expressions are semantically equivalent, if for
all t there exists a t′ such that

JeKtθ,σ v Je ′Kt
′

θ,σ

holds, and for every t′ there exists a t such that the converse relation holds.

The relation is obviously reflexive and symmetric, and transitivity can be shown easily.
If e and e ′ are semantically equivalent and either of the sequences JeKtθ,σ and Je ′Kt

′

θ,σ has

a limit, then both have the same limit: Je ′K∞θ,σ is an upper bound for JeKtθ,σ because for

every t there is a t′ with JeKtθ,σ v Je ′Kt
′

θ,σ v Je ′K∞θ,σ. There can be no lesser upper bound,
because using the same argument in the other direction this would also be an upper
bound for Je ′Ktθ,σ.

As an example, consider beta equivalence. We want to show (λ(x :: τ) → e1) e2 and
e1 [e2/x ] to be semantically equivalent for any e1 and e2. We can compute the semantics
of the former w.r.t. environments θ, σ:

J(λ(x :: τ)→ e1) e2Kt+2
θ,σ

= J(λ(x :: τ)→ e1)Kt+1
θ,σ

(
Je2Kt+1

θ,σ , t
)

= λx s.Je1Ks+1
θ,σ[x 7→x]

(
Je2Kt+1

θ,σ , t
)

= Je1Kt+1

θ,σ[x 7→Je2Kt+1
θ,σ ]

How does this compare to Je1 [e2/x ]Kt+1
θ,σ ? The only difference is, that the variable x in

e1 is bound to the denotation of e2 via the environment, while in e1 [e2/x ] the variable
x is replaced by the expression e2 syntactically. Semantic equivalence follows directly
from the next lemma:

Lemma 4.6.2. Let Γ ` e2 :: τ ′ be an expression having some type in a context Γ not
containing the variable x . Let Γ, x ::τ ′ ` e1 ::τ be another expression that can additionally
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contain x . Let θ, σ be environments corresponding to Γ and t0 > 0 some fixed natural
number. Then for every t < t0 there exists a t′ such that

Je1Ktθ,σ[x 7→Je2Kt0θ,σ ]
v Je1 [e2/x ]Kt

′

θ,σ

and for every t′ < t0 there exists a t such that the converse relation holds.

Proof. The proof is by induction on e1.
If e1 is simply x , the left hand side is Je2Kt0θ,σ and the right hand side is Je2Kt

′

θ,σ. For any
given t, set t′ = t0 to make the claim true. For any given t′ set t = t0 and the claim is
true due to t′ < t0 and monotonicity of the semantics.
If e1 is any other expression, find sufficiently big indexes to make the claim true for all
subexpressions by using the induction hypothesis. The maximum of these indexes plus
one will be sufficiently big to satisfy the claim because the semantics of an expression is
monotone in the semantics of its subexpressions.

Other semantic equivalences can be shown in similar manner. Since their proofs come
down to using essentially the same ideas we have just seen, we only give the statements.
In SaLT, eta equivalence holds, i.e., λ(x :: τ)→ e x is equivalent to e if x does not occur
in e. Also, sets satisfy the monad laws:

{x }>>= v = v x (4.5)

u >>= λx → {x } = u (4.6)

u >>= (λx → v x >>= w) = (u >>= v)>>= w (4.7)

They are a commutative monad:

u >>= λx → v >>= λy → w x y = v >>= λy → u >>= λx → w x y (4.8)

Sets (with a fixed element type) form a monoid using

‘union‘ ::∀a.Set a → Set a → Set a
u ‘union‘ v = unknown Bool >>= λb → case b of {True→ u;False→ v }

as the monoid operation and failed Set τ as the neutral element. Bind does distribute
over this binary union

(u ‘union‘ v)>>= w = (u >>= w) ‘union‘ (v >>= w) (4.9)

but failed>>= w is not necessarily failed, so sets do not form an additive monad.
In mathematics, the neutral element of set union is the empty set, but there is no such
thing in SaLT. Instead, the semantic equivalence

failed Set τ = {failed τ } (4.10)
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ψ(α) = α

ψ(τ → τ ′) = ψ(τ)→ Set (ψ(τ ′))

ψ(Bool) = Bool

ψ(Nat) = Nat

ψ([τ ]) = [ψ(τ)]

ψ(τ, τ ′) = (ψ(τ), ψ(τ ′))

Figure 4.17: Translation from CuMin to SaLT for types

holds and every set ‘contains’ at least the element level failure. This explains why
failed>>= w is not always equivalent to failed:

failed>>= w
= 〈 equation (4.10) 〉
{failed}>>= w

= 〈 first monad law (4.5) 〉
w failed

So, unless w is strict, failed>>= w can have a non-bottom value.
Sets interacting with failure in this way corresponds to the way nondeterminism interacts
with failure in Curry. In a certain sense, this is the only reason we did not choose a
fragment of Haskell as the target of the translation procedure.

4.6.3 The Translation Procedure

Now that we know about SaLT, we can discuss how to translate CuMin programs into
SaLT. The translation procedure is purely syntax-driven, i.e., we translate an expression
e by translating its subexpressions and combining the results. The type of the resulting
SaLT expression ψ(e) only depends on the type of the CuMin expression we translated.
In particular, the resulting type does not tell us whether nondeterminism actually occurs,
but marks all positions where it could occur.
The rules for translating types are given in figure 4.17 and boil down to wrapping the
target of every function into a Set. In CuMin, every function is potentially nondetermin-
istic and we represent the different possible results as a set in SaLT. This corresponds
to the denotation of CuMin functions being set-valued semantics functions. Note that
the translations of data types are again data types.
Expressions are translated by the rules given in figure 4.18. Since every CuMin expression
is potentially nondeterministic, the result always is a set. To be more precise, if a CuMin
expression has type τ , then the translated expression ψ(e) has type Set (ψ(τ)).
In the translation rule for let . . . in bindings, τi is the result of translating the type of
ei. This is the only choice that makes the application of (>>=) well-typed. Whenever

122



ψ(x ) = {x }
ψ(failed τ ) = {failed ψ(τ)}

ψ(n) = {n }
ψ(True) = {True}

ψ(False) = {False}
ψ(Nil τ ) = {Nil ψ(τ)}

ψ(Cons τ ) = wrap2 (λh t → {Cons ψ(τ) h t })
ψ(Pair τ,τ ′) = wrap2 (λl r → {Pair ψ(τ),ψ(τ ′) h t })

ψ( let x1 = e1; . . . ; xn = en in e) = ψ(e1)>>= λ(x1 :: τ1)→ . . . ψ(en)>>= λ(xn :: τn)→ ψ(e)

ψ( let x1 :: τ1 free in e) = unknown ψ(τ1) >>= λx1 → ψ(e)

ψ(fun τm) = wrapn funT
ψ(τm)

(where n is the arity of fun)

ψ(e1 e2) = ψ(e1)>>= λf → ψ(e2)>>= λa → f a

ψ(e1 + e2) = ψ(e1)>>= λn1 → ψ(e2)>>= λn2 → {n1 + n2}
ψ(e1 == e2) = ψ(e1)>>= λn1 → ψ(e2)>>= λn2 → {n1 == n2}

ψ( case e of {True→ e1;False→ e2}) =

ψ(e)>>= λb → case b of {True→ ψ(e1);False→ ψ(e2)}
ψ( case e of {Nil→ e1;Cons h t → e2}) =

ψ(e)>>= λl → case l of {Nil→ ψ(e1);Cons h t → ψ(e2)}
ψ( case e of {Pair l r → e1}) =

ψ(e)>>= λp → case p of {Pair l r → ψ(e1)}

Figure 4.18: Translation from CuMin to SaLT for expressions
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new variables are introduced by the translation, they have to have sufficiently fresh
names. In the discussed examples, we will ensure this manually, while also trying to pick
suggestive names. In the translation of a function symbol, n is the function’s arity and
the functions wrapn are defined by

wrap0 f = f

wrapn+1 f = {λx → wrapn (f x )}

so their types are:

wrapn :: ∀a1, . . . , an, a.
(a1 → a2 → . . .→ an → a)→

Set (a1 → Set (a2 → . . .→ Set (an → a) . . .))

For any concrete n ∈ N the function wrapn can be defined within SaLT. For example
wrap1 f = {λx → wrap0 (f x )} = {λx → f x } = {f }.
Finally, funT is the translation of the CuMin function symbol fun. A function definition

fun :: ∀αm.(Data αij )⇒ τ1 → . . .→ τn → τ ; fun xn = e

is translated to:

funT :: ∀αm.(Data αij )⇒ ψ(τ1)→ . . .→ ψ(τn)→ Set (ψ(τ)); funT xn = ψ(e)

When translating, we change the names of all function symbols (fun becomes funT ) to
avoid name clashes. For example double is a reasonable function in both CuMin and
SaLT, but the translation of CuMin’s double function is not SaLT’s double function.
Instead double is renamed to doubleT when translating, so we can distinguish it from
the native double.
The translation of a program consists of the translations of all the function definitions
and the definitions of all wrapn functions that are used.

The following lemma formalizes the claim that the translation preserves the denotational
semantics.

Lemma 4.6.3. Let Γ = αm,Data αij , xn :: τn be some CuMin context. Define a context

Γ′ = αm,Data αij , xn :: ψ(τn).

1. If τ is a CuMin type within Γ, then ψ(τ) is a SaLT type within Γ′.

2. If Γ ` τ ∈ Data holds, then so does Γ′ ` ψ(τ) ∈ Data.

3. If Γ ` e :: τ holds for some CuMin expression e and type τ , then so does Γ′ `
ψ(e) :: Set (ψ(τ)).

4. If θ, σ are a type and term environment for Γ, then they are also a type and term
environment for Γ′.
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5. JτKθ = Jψ(τ)Kθ

6. JeK∞θ,σ = Jψ(e)K∞θ,σ

In the last two equations the left hand side uses the CuMin denotational semantics,
while the right hand side uses the SaLT denotational semantics. The proof is done by
straightforward induction and we do not carry it out in detail.

The translation of functions given here differs from the one given in [Mehner et al.,
2014]. There, the translation of an n-ary function with type τ1 → . . . → τn → τ
is Set (ψ(τ1) → Set (. . . → Set (ψ(τn) → Set (ψ(τ))) . . .)), which introduces many
additional set wrappers. The term is then given as a singleton set containing a lambda
abstraction, which again produces a singleton set containing a lambda abstraction and
so on. The sets are singleton sets by construction, so we know the set types to be an
unnecessary complication. No nondeterminism can occur before applying the function
n times, so taking the function’s arity into account, we can also give the translation
a simpler type, which motivates the change. Because of the lacking set wrappers, the
translation of a function now has a function type and can thus be given by a rule with
variables on the left hand side. This is the reason SaLT now allows defining functions like
this, while in [Mehner et al., 2014] there was no reason to have this syntactic possibility.
The simplified translation for function definitions however comes with a price: The
translation has to add the wrap function whenever a function is used. A handy equation
for dealing with them is

wrapn+1 f >>= λf ′ → f ′ x = wrapn (f x ) (4.11)

where f is any function-typed SaLT expression. The proof is some easy equational
reasoning:

wrapn+1 f >>= λf ′ → f ′ x
= 〈 definition of wrap· 〉
{λy → wrapn (f y)}>>= λf ′ → f ′ x

= 〈 first monad law (4.5) 〉
(λy → wrapn (f y)) x

= 〈 beta equivalence 〉
wrapn (f x )

The formula is used to prove the following lemma, which gives an alternative translation
for partially and fully applied function symbols.

Lemma 4.6.4. Let fun be an n-ary CuMin function and k ≤ n. Then the following
holds for CuMin expressions e1 . . . ek:

ψ(fun τm e1 . . . ek) = ψ(e1)>>=λx1 → . . . ψ(ek)>>=λxk → wrapn−k ((funT
ψ(τm)

) x1 . . . xk)

In particular, if k = n the wrap0 can be dropped.
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Proof. The proof is by induction on k, where in the base case (k = 0) the claim

ψ(fun) = wrapn funT

is simply the definition of the translation of function symbols. For the induction step let
k < n be given.

ψ(fun e1 . . . ek+1)
= 〈 translation of function application and monad commutativity (4.8) 〉
ψ(ek+1)>>= λxk+1 → ψ(fun e1 . . . ek)>>= λf → f xk+1

= 〈 induction hypothesis 〉
ψ(ek+1)>>= λxk+1 → ψ(e1)>>= λx1 → . . . ψ(ek)>>= λxk →

wrapn−k (funT x1 . . . xk)>>= λf → f xk+1

= 〈 set monad is commutative (4.8) 〉
ψ(e1)>>= λx1 → . . . ψ(ek+1)>>= λxk+1 →

wrapn−k (funT x1 . . . xk)>>= λf → f xk+1

= 〈 equation (4.11) 〉
ψ(e1)>>= λx1 → . . . ψ(ek+1)>>= λxk+1 → wrapn−(k+1) (funT x1 . . . xk xk+1)

When applying the lemma, we will often have the special case of one of the ei being a
variable yi already. Then, a further simplification is possible: Since ψ(yi) = {yi}, the
ψ(yi)>>= λxi → can be omitted using the first monad law (4.5).

4.6.4 Example

As an example, consider the following CuMin function definition:

map :: ∀a b.(a → b)→ [a ]→ [b ]
map f l = case l of {Nil→ Nil b ;Cons x xs → Cons b (f x ) (map a,b f xs)}

The type signature of the translated function will be

mapT :: ∀a b.(a → Set b)→ [a ]→ Set [b ]

so the first argument of mapT can be a nondeterministic function and the result can also
be nondeterministic.
The expression map a,b f xs can be translated using lemma 4.6.4, which yields:

ψ(f )>>= λf ′ → ψ(xs)>>= λxs ′ → mapT a,b f ′ xs ′

We can simplify further:

ψ(f )>>= λf ′ → ψ(xs)>>= λxs ′ → mapT a,b f ′ xs ′

= 〈 translation of variables 〉
{f }>>= λf ′ → {xs }>>= λxs ′ → mapT a,b f ′ xs ′
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= 〈 first monad law (4.5) 〉
mapT a,b f xs

The lemma does not cover the application f x , because f is a function-typed variable.
However, we can still use the first monad law:

ψ(f x )
= 〈 translation of application 〉
ψ(f )>>= λf ′ → ψ(x )>>= λx ′ → f ′ x ′

= 〈 translation of variables 〉
{f }>>= λf ′ → {x }>>= λx ′ → f ′ x ′

= 〈 first monad law (4.5) 〉
f x

The translation of Cons b (f x ) (map a,b f xs) can be simplified analogously to the lemma:

ψ(Cons b (f x ) (map a,b f xs))
= 〈 analogous to lemma 4.6.4 〉
ψ(f x )>>= λh → ψ(map a,b f xs)>>= λt → {Cons b h t }

= 〈 see above 〉
f x >>= λh → mapT a,b f xs >>= λt → {Cons b h t }

In this case, we cannot use the first monad law anymore, because we do not find further
singleton sets.
Now we can give the overall translation of the rule’s body:

ψ( case l of {Nil→ Nil b ;Cons x xs → Cons b (f x ) (map a,b f xs)})
= 〈 translation of case 〉
{ l }>>= λl ′ → case l ′ of
Nil→ ψ(Nil b)
Cons x xs → ψ(Cons b (f x ) (map a,b f xs))

= 〈 first monad law (4.5) 〉
case l of

Nil→ ψ(Nil b)
Cons x xs → ψ(Cons b (f x ) (map a,b f xs))

= 〈 see above 〉
case l of

Nil→ {Nil b }
Cons x xs → f x >>= λh → mapT a,b, f xs >>= λt → {Cons b h t }

Thus the full definition of the translated function is:

mapT :: ∀a b.(a → Set b)→ [a ]→ Set [b ]
mapT f l = case l of
Nil → {Nil b }
Cons x xs → f x >>= λh → mapT a,b f xs >>= λt → {Cons b h t }
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To take the example a bit further, note that the definition of the CuMin function map
given above is also valid SaLT code and defines a SaLT function map. The two SaLT
functions map and mapT satisfy the following equation:

mapT A,B (λx → {f x }) xs = {map A,B f xs } (4.12)

This can be checked by equational reasoning in SaLT, where we split cases on l . We
start with the base case:

mapT A,B (λx → {f x }) Nil A
= 〈 definition of mapT 〉
{Nil B}

= 〈 definition of map 〉
{map A,B f Nil A}

In the induction step we will assume the claim to be true for xs already:

mapT A,B (λy → {f y }) (Cons A x xs)
= 〈 definition of mapT 〉

(λy → {f y }) x >>= λh → mapT A,B (λy → {f y }) xs >>= λt → {Cons B h t }
= 〈 beta equivalence 〉
{f x }>>= λh → mapT A,B (λy → {f y }) xs >>= λt → {Cons B h t }

= 〈 first monad law (4.5) 〉
mapT A,B (λy → {f y }) xs >>= λt → {Cons B (f x ) t }

= 〈 induction hypothesis 〉
{map A,B f xs }>>= λt → {Cons B (f x ) t }

= 〈 first monad law (4.5) 〉
{Cons B (f x ) (map A,B f xs)}

= 〈 definition of map 〉
{map A,B f (Cons A x xs)}

4.7 Parametricity for SaLT

The idea of parametricity goes back to Reynolds [1983] and later became the technical
machinery behind free theorems [Wadler, 1989]. In the original setup a language with
two different denotational semantics is considered, which are to be compared somehow.
Given some expression, it has an interpretation in either semantics. Now we would like to
know whether both interpretations coincide, but this question is generally meaningless:
The semantic domains of the two semantics do not have to coincide, so we would be
comparing apples and oranges.
So instead of asking whether both interpretations are equal, we ask whether they are
related via some suitable relation called logical relation. To do so, for every type of the
language such a relation between its two interpretations has to be defined. The claim

128



JαKρ = ρ(α)

q
τ → τ ′

y
ρ

=
{

(f−, f+) | ∀(x−,x+) ∈ JτKρ.∀t ∈ N.(f−(x−, t), f+(x+, t)) ∈
q
τ ′
y
ρ

}
JBoolKρ = {(b−,b+) | b−,b+ ∈ JBoolK,b− v b+}
JNatKρ = {(n−,n+) | n−,n+ ∈ JNatK,n− v n+}

J[τ ]Kρ =
{

(x−1 : . . . : x−n : [],x+

1 : . . . : x+
n : []) | 0 ≤ n, (x−i ,x

+

i ) ∈ JτKρ
}

∪
{

(x−1 : . . . : x−
n− :⊥,x+

1 : . . . : x+

n+ : e)

| 0 ≤ n− ≤ n+, ∀i ≤ n−.(x−i ,x
+

i ) ∈ JτKρ, e ∈ {⊥, []}
}

q
(τ, τ ′)

y
ρ

=
{

(⊥,p+) | p+ ∈ J(τ, τ ′)Kθ+,σ+

}
∪
{

((l−, r−), (l+, r+)) | (l−, l+) ∈ JτKρ, (r
−, r+) ∈

q
τ ′
y
ρ

}
JSet τKρ =

{
(A−, A+) | ∀a− ∈ A−.∃x− ∈ A−,x+ ∈ A+.a− v x− ∧ (x−,x+) ∈ JτKρ

}
Figure 4.19: Definition of the logical relation

then is, that for every expression of any type, the two interpretations of the expression
are related via the relation associated to the type.
Wadler [1989] used an important special case: Instead of having two different denota-
tional semantics, the same denotational semantics can be used twice. The case is not
trivial, because picking the relations remains a degree of freedom. In particular, func-
tions of the language itself (or rather their semantics) can be used as relations. This
way ‘being related’ becomes a concept expressible in the language’s own syntax.

In this section, we prove a parametricity theorem for SaLT (theorem 4.7.6). We will
use the denotational semantics given in section 4.6 twice. For all closed types, both
interpretations will be the same, so we could use equality as the relation associated
to closed types. Yet following Johann and Voigtländer [2006] and others, we will use
the definedness relation v instead. This will allow us to also deduce inequational free
theorems. The definition of the (family of) relations is given in figure 4.19.
An equational version of the parametricity theorem appeared in [Mehner et al., 2014]
already, which we shall repeat here. While in the paper a direct proof has been given,
here the equational version is a consequence of the inequational version.

Let us take a closer look at the definition of the relations, in particular for set types. In
essence, the definition tells us that two sets A− and A+ are related, if for every element
a− ∈ A− there is a related element in A+. However, the sets we are dealing with are
closed, i.e., for every element of the set all less defined values also have to be elements. To
accommodate for elements that have only been added because of this closure property,
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we only require the existence of a possibly more defined value x− that is related to an
element of the other set. If a− is a maximal element of A−, it has to be related to some
element of A+ itself, for there is no other choice but a− = x−.
If the relation JτKρ is a function r : JτKθ− → JτKθ+ , the situation becomes easier. In this
case, x+ is determined by x− already, so the condition of the two being in relation may
be stated as r(x−) ∈ A+ instead. If r is monotonous, which is the case for the semantics
of syntactic functions, we can also omit x−. If r(a−) ∈ A+ holds, x− = a− is a suitable
choice. Conversely if r(a−) is not an element of A+, then neither is any x− w a−. Thus
two sets A− and A+ are related if for all a− ∈ A− it holds that r(a−) ∈ A+ or equivalently⋃

a−∈A−
↓r(a−) ⊆ A+. (4.13)

If the relation JτKρ is given by a function r : JτKθ+ → JτKθ− in the opposite direction, a
similar situation arises. Now x− is determined by x+, so the existence of x+ ∈ A+ with
a− v r(x+) is required. Two sets A− and A+ are thus related if

A− ⊆
⋃

a+∈A+

↓r(a+). (4.14)

Definition 4.7.1. A relation R between two posets is called strict if (⊥,⊥) ∈ R.

Lemma 4.7.2. If all relations ρ(α) are strict, then all relations JτKρ are strict.

Proof. The proof is by induction on types and splitting cases. For type variables, strict-
ness of the relation is just the condition of the claim. For function types, τ → τ ′ strictness
of the relation Jτ → τ ′Kρ follows from strictness of the relation Jτ ′Kρ. For base types,
lists and pairs strictness is immediate from the definition of the relation. Finally, for set
types, we have to show {⊥} is related to {⊥}, which also follows immediately from the
definition of the relations.

Lemma 4.7.3. For all closed types τ the relation JτK is the definedness relation.

Proof. The proof is by induction on types and splitting cases. Type variables do not
have to be taken into account. For functions and data types, the claim directly follows
from the definition in figure 4.19.
For set types we argue as follows. Let A− and A+ be related. Thus for every a ∈ A−
there are x− ∈ A− and x+ ∈ A+ with a v x− v x+, since by assumption, the relation
on elements is the definedness relation. Since A+ is down-closed, a ∈ A+ holds. Since a
has been arbitrary, A− ⊆ A+.
Now conversely, let A− ⊆ A+ be given. The two sets are related, since for every a ∈ A−,
we can set x− = x+ = a and both a v x− and x− v x+ hold.

Definition 4.7.4. A relation R between two posets P− and P+ is called left-whole, if
for every a− ∈ P− there is some a− v x− ∈ P− and some x+ ∈ P+, such that x− and
x+ are related via R. A relation R is called right-whole if its inverse is left-whole and
called whole if it is both left- and right-whole.
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Lemma 4.7.5. If all relations ρ(α) are left-whole, then for all data types τ the relation
JτKρ is left-whole.

Proof. The proof is by induction on the rules for deriving Γ ` τ ∈ Data. For type
variables JαKρ = ρ(α), so the claim is true. Bool and Nat are closed types, so because
of lemma 4.7.3 the relations JBoolKρ and JNatKρ are the respective definedness relations.
For those relations we can prove being left-whole by setting a− = x− = x+.
Let some a−1 : . . . : a−n : e ∈ J[τ ]Kθ− with e ∈ {⊥, []} be given. Since we assume JτKρ to be
left-whole, there is a series of a−i v x−i ∈ JτKθ− and a series of x+

i ∈ JτKθ+ such that x−i
and x+

i are related. Then a−1 : . . . : a−n : e v x−1 : . . . : x−n : e and x−1 : . . . : x−n : e is related
to x+

1 : . . . : x+
n : e.

The case for tuple types is shown analogously to lists.

Theorem 4.7.6. Let Γ be a SaLT context. Let θ−, σ− and θ+, σ+ be two type and term
environments for Γ. Let ρ(α) be a strict relation between θ−(α) and θ+(α) for all type
variables in Γ that is also left-whole for all type variables α with α ∈ Data in Γ. If
(σ−(x ), σ+(x )) ∈ JτKρ for all x :: τ in Γ, then(

JeKtθ−,σ− , JeK
t
θ+,σ+

)
∈ JτKρ

for all valid judgments Γ ` e :: τ and t ∈ N.

Proof. The proof is by induction on t and over the expression e. Since the proof is
well-known for all kinds of typed lambda calculi, we only do some of the relevant cases.
Because of Jfailed τ Ktθ±,σ± = ⊥ and lemma 4.7.2, the interpretations of failed τ are
always related.

For singleton sets, we have
J{e }Kt+1

θ±,σ± = ↓JeKtθ±,σ± .

For every v ∈ ↓JeKtθ−,σ− , by definition, v v JeKtθ−,σ− holds and JeKtθ−,σ− is related

to JeKtθ+,σ+ ∈ ↓JeKtθ+,σ+ by the induction hypothesis. Thus J{e }Kt+1
θ−,σ− is related to

J{e }Kt+1
θ+,σ+ .

For e1 >>= e2 by the defintion of the semantics:

Je1 >>= e2Kt+1
θ±,σ± =

⋃
x±∈Je1Kt

θ±,σ±

Je2Ktθ±,σ±(x±, t)

So let any v ∈ Je1 >>= e2Kt+1
θ±,σ± be given. Pick a suitable x ∈ Je1Ktθ−,σ− such that v ∈

Je2Ktθ−,σ−(x, t). By the first induction hypothesis, Je1Ktθ−,σ− is related to Je1Ktθ+,σ+ , so there

is some x v y− ∈ Je1Ktθ−,σ− and some y+ ∈ Je1Ktθ+,σ+ such that y− and y+ are related.

Because of monotonicity Je2Ktθ−,σ−(x, t) ⊆ Je2Ktθ−,σ−(y−, t), so v ∈ Je2Ktθ−,σ−(y−, t).

Because of the second induction hypothesis, Je2Ktθ−,σ− is related to Je2Ktθ+,σ+ and by defi-

nition this means sending related arguments to related results. Thus also Je2Ktθ−,σ−(y−, t)
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and Je2Ktθ+,σ+(y+, t) are related. So for v ∈ Je2Ktθ−,σ−(y−, t) there has to be some

v v w− ∈ Je2Ktθ−,σ−(y−, t) which is related to some w+ ∈ Je2Ktθ+,σ+(y+, t). These are in
fact the elements we are looking for, since

w± ∈ Je2Ktθ±,σ±(y±, t) ⊆
⋃

x±∈Je1Kt
θ±,σ±

Je2Ktθ±,σ±(x±, t) = Je1 >>= e2Kt+1
θ±,σ± .

Using the parametricity theorem 4.7.6 we can derive free theorems for SaLT. This is fully
analogous to free theorems in Haskell, as both languages are deterministic. The logical
relation can be instantiated with the denotation of a syntactic function. This function
has to be strict, since SaLT has a failed primitive. More precisely, a function-typed
term g can be used as the logical relation if g failed = failed holds.
A function is automatically left-whole when viewed as a relation. Therefore, the logical
relation in the theorem can always be instantiated to the denotation of a syntactic
function, even if a Data constraint occurs. This corresponds to the fact that g unknown
is always a subset of unknown.
If we want to instantiate the logical relation to the inverse of a function, we have to prove
right-wholeness instead. A function g from a poset P− to a poset P+ is right-whole, if for
every a+ ∈ P+ there is some a+ v x+ ∈ P+ and some x− ∈ P−, such that g(x−) = x+.
Since x+ is determined by g and x−, this is equivalent to the following:

Definition 4.7.7. A function g from a poset P− to a poset P+ is called whole, if for
every x ∈ P+ there is some x− ∈ P− with g(x−) w x+.

Since all functions are automatically left-whole as relations, being right-whole and being
whole is the same for functions. This terminology agrees with [Mehner et al., 2014],
where we did not take inequations into account.
When working with sets, the following insight is very useful. Suppose the relation
between two types A and B is given by a function g :: A→ B, i.e., x and y are related if
g x = y . Then the lifted relation between Set A and Set B is also given by a function,
which is smap g :: Set A→ Set B. Where smap

smap :: ∀a, b :: (a → b)→ Set a → Set b
smap g s = s >>= λx → {g x }

applies a function to every element of a set. This follows directly from equations (4.13)
and (4.14).

4.8 Proving Free Theorems for CuMin

4.8.1 Side Conditions

Before we can prove any free theorems for CuMin, we need ways to deal with the side
conditions. These conditions will always restrict the function that takes the place of the
logic relation.
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In a language with failure, this function has to be strict, i.e., send failure to fail-
ure [Wadler, 1989]. We use the same definition for CuMin:

Definition 4.8.1. A CuMin expression g :: A→ B is called strict, if

g failed A = failed B

holds.

An alternative to requiring strictness is to use inequational-style free theorems [Johann
and Voigtländer, 2006]. Obviously, g failed A w failed B holds for any g , where we write
e1 w e2 if Je1Kθ,σ w Je2Kθ,σ for all environments θ, σ.

We also have to restrict nondeterminism, which will be done using the translation to
SaLT. Take some function-typed CuMin term g ::A→ B. The translation ψ(g) has type
Set (ψ(A) → Set (ψ(B))). We want to compare g to a function-typed term ĝ :: ψ(A) →
ψ(B), which is deterministic in the sense that its type does not permit nondeterminism.
The SaLT terms ψ(g) and ĝ cannot be semantically equivalent, because they do not even
have the same type. However, we can add singleton set wrappers to ‘convert’ ĝ to the
type of ψ(g):

{λx :: ψ(A)→ { ĝ x }} :: Set (ψ(A)→ Set (ψ(B)))

The type of the expression contains the set type constructor twice, so type-wise it has
to be considered effectful. Yet, since we know that all sets are singleton sets, the above
expression is deterministic in the sense that no real choice occurs. If a ĝ exists, such
that ψ(g) = {λx :: ψ(A)→ { ĝ x }}, we call g deterministic and ĝ a witness.
Christiansen et al. [2010] observed, that in many situations it is enough to only restrict
the inner layer. The following definition captures this restriction in a style similar to the
above considerations.

Definition 4.8.2. A CuMin expression g ::A→ B is called multi-deterministic, if there
is a SaLT term ĝ :: Set (ψ(A)→ ψ(B)), such that

ψ(g) = ĝ >>= λĝ′ → {λx → { ĝ′ x }}

holds semantically.

In this situation, we also call ĝ a witness (of g being multi-deterministic).
Let us take a look at an example, relying on the following CuMin function definitions:

id :: ∀a.a → a
id x = x

inc :: Nat→ Nat
inc n = n + 1

mayInc0 :: Nat→ Nat
mayInc0 = id ? inc
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mayInc1 :: Nat→ Nat
mayInc1 x = x ? x + 1

The expression inc is deterministic, which is witnessed by the SaLT expression λn →
n + 1. Indeed:

ψ(inc)
= 〈 definition of the translation 〉

wrap1 incT

= 〈 definition of wrap 〉
{λx → wrap0 incT x }

= 〈 definition of wrap 〉
{λx → incT x }

= 〈 definition of incT 〉
{λx → {x + 1}}

Both mayInc0 and mayInc1 use nondeterminism and in fact neither of them is deter-
ministic in the above sense. Yet, mayInc0 is at least multi-deterministic:

ψ(mayInc0 )
= 〈 definition of the translation 〉

mayInc0T

= 〈 definition of mayInc0T 〉
ψ(id ? inc)

= 〈 translation of (?) 〉
ψ(id) ‘union‘ ψ(inc)

= 〈 as above 〉
{λx → {x }} ‘union‘ {λx → {x + 1}}

= 〈 beta equivalence 〉
{λx → {(λn → n) x }} ‘union‘ ({λx → {(λn → n + 1) x }})

= 〈 first monad law (4.5) 〉
({λn → n }>>= λĝ′ → {λx → { ĝ′ x }})

‘union‘ ({λn → n + 1}>>= λĝ′ → {λx → { ĝ′ x }})
= 〈 distributivity law (4.9) 〉

({λn → n } ‘union‘ {λn → n + 1})>>= λĝ′ → {λx → { ĝ′ x }}

The function mayInc1 is not multi-deterministic, as we will prove later. Yet, it can be
shown that ψ(mayInc1 ) = {λn → {n } ‘union‘ {n + 1}} using equational reasoning as
above. From this representation we already see that nondeterminism occurs inside the
function.

4.8.2 The Standard Example

We start with the same example that Wadler [1989] uses. Consider a polymorphic unary
CuMin function

fun :: ∀a.[a ]→ [a ]

134



and some strict and multi-deterministic function-typed expression

g :: A→ B

from one concrete type to some other concrete type. The equation we want to prove is

map A,B g (fun A l) = fun B (map A,B g l) (4.15)

where l :: [A] is some variable. We have already seen the function map in section 4.6.4.

Before we prove the claim, we first show that the restriction of g being multi-deterministic
cannot be dropped. A counter example is given by

fun l = case l of {[ ]→ [ ]; x : xs → [x , x ]},

g = mayInc1 from the previous section and l = [0] (we use list syntax instead of
proper CuMin syntax, but the example should be clear nevertheless). The expression
map mayInc1 (fun [0]) results in the four lists [0, 0], [0, 1], [1, 0], [1, 1]. Here, the number
0 is first duplicated and then every copy is either increased or not increased. On the
other hand, the expression fun (map mayInc1 [0]) only produces [0, 0] and [1, 1]. Here,
the number 0 is either increased or not and the result is duplicated.
If mayInc0 is used instead of mayInc1 , both sides produce [0, 0] and [1, 1] only. This
also shows that mayInc0 and mayInc1 do not coincide, even though mayInc0 n and
mayInc1 n do for every n. The difference between both functions only becomes visible
when both are used as an argument to a higher-order function like map.

The first step of the proof is to translate both sides of the claim (4.15) into SaLT. Both
fun and map are functions, so we can use lemma 4.6.4 for the saturated applications.
The left hand side translates to:

ψ(map A,B g (fun A l))
= 〈 lemma 4.6.4 for map 〉
ψ(g)>>= λg ′ → ψ(fun A l)>>= λxs → mapT ψ(A),ψ(B) g ′ xs

= 〈 lemma 4.6.4 for fun 〉
ψ(g)>>= λg ′ → funT ψ(A) l >>= λxs → mapT ψ(A),ψ(B) g ′ xs

The right hand side translates to:

ψ(fun B (map A,B g l))
= 〈 lemma 4.6.4 for fun 〉
ψ(map A,B g l)>>= λys → funT ψ(B) ys

= 〈 lemma 4.6.4 for map 〉
ψ(g)>>= λg ′ → mapT ψ(A),ψ(B) g ′ l >>= λys → funT ψ(B) ys

So we are left with two SaLT expression we want to prove equivalent.
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Now, we make use of the side condition by assuming some ĝ to be given, such that

ψ(g) = ĝ >>= λĝ′ → {λx → { ĝ′ x }}

holds. Replacing ψ(g) on both sides, the claim reduces to:

ĝ >>= λĝ′ → {λx → { ĝ′ x }}>>= λg ′ → funT ψ(A) l >>= λxs → mapT ψ(A),ψ(B) g ′ xs

= 〈 claim 〉
ĝ >>= λĝ′ → {λx → { ĝ′ x }}>>= λg ′ → mapT ψ(A),ψ(B) g ′ l >>= λys → funT ψ(B) ys

Using the first monad law (4.5):

ĝ >>= λĝ′ → funT ψ(A) l >>= λxs → mapT ψ(A),ψ(B) (λx → { ĝ′ x }) xs

= 〈 claim 〉
ĝ >>= λĝ′ → mapT ψ(A),ψ(B) (λx → { ĝ′ x }) l >>= λys → funT ψ(B) ys

Now we use
mapT ψ(A),ψ(B) (λx → {f x }) xs = {map ψ(A),ψ(B) f xs } (4.12)

from section 4.6.4 to get:

ĝ >>= λĝ′ → funT ψ(A) l >>= λxs → {map ψ(A),ψ(B) ĝ
′ xs }

= 〈 claim 〉
ĝ >>= λĝ′ → {map ψ(A),ψ(B) ĝ

′ l }>>= λys → funT ψ(B) ys

On the right hand side, we can use the first monad law again. The left hand side can be
written more concisely using smap, which reduces the claim to:

ĝ >>= λĝ′ → smap [ψ(A)],[ψ(B)] (map ψ(A),ψ(B) ĝ
′) (funT ψ(A) l)

= 〈 claim 〉
ĝ >>= λĝ′ → funT ψ(B) (map ψ(A),ψ(B) ĝ

′ l)

At this point we want to use the free theorem for funT :: ∀a.[a ]→ Set [a ]:

smap [ψ(A)],[ψ(B)] (map ψ(A),ψ(B) ĝ
′) (funT ψ(A) l) = funT ψ(B) (map ψ(A),ψ(B) ĝ

′ l)

We have to check the side condition, which is ĝ′ being strict. However, ĝ′ is only a
variable and has no meaning outside the lambda abstractions λĝ′ → . . .. This requires
a little detour.
We know that g is strict, i.e., g failed A = failed B. This translates to:

ψ(g)>>= λg ′ → g ′ failed ψ(A) = {failed ψ(B)}

On the left we can use again that g is multi-deterministic:

ψ(g)>>= λg ′ → g ′ failed ψ(A)

= 〈 g is multi-deterministic 〉
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ĝ >>= λĝ′ → {λx → { ĝ′ x }}>>= λg ′ → g ′ failed ψ(A)

= 〈 first monad law (4.5) 〉
ĝ >>= λĝ′ → (λx → { ĝ′ x }) failed ψ(A)

= 〈 beta equivalence 〉
ĝ >>= λĝ′ → { ĝ′ failed ψ(A)}

So, g being strict implies:

ĝ >>= λĝ′ → { ĝ′ failed ψ(A)} = {failed ψ(B)}

On the semantic level this means ⋃
ĝ′∈JĝK

{ĝ′(⊥)} = {⊥}

and therefore every element ĝ′ of JĝK is a strict function, i.e., satisfies ĝ′(⊥) = ⊥.
Now, we can finish the proof. Because of the free theorem for funT :: ∀a.[a ] → Set [a ],
we have

q
smap (map ĝ′) (funT ψ(A) l)

y
σ[ĝ′ 7→ĝ′]

=
q

funT ψ(B) (map ĝ′ l)
y
σ[ĝ′ 7→ĝ′]

for every ĝ′ ∈ JĝK. So, we can take the union on both sides:⋃
ĝ′∈JĝK

q
smap (map ĝ′) (funT ψ(A) l)

y
σ[ĝ′ 7→ĝ′]

=
⋃

ĝ′∈JĝK

q
funT ψ(B) (map ĝ′ l)

y
σ[ĝ′ 7→ĝ′]

q
ĝ >>= λĝ′ → smap (map ĝ′) (funT ψ(A) l)

y
σ

=
q
ĝ >>= λĝ′ → funT ψ(B) (map ĝ′ l)

y
σ

This is the last form the claim was given in.

This derivation is quite long, but most of it is generic: Multi-determinism is always
exploited in the same way, i.e., replacing ψ(g) by ĝ >>= λĝ′ → {λx → { ĝ′ x }} and using
the first monad law (4.5). Also, the part about strictness of ĝ′ resp. ĝ′ is true in general.
In future proofs we will simply call the syntactic variable ĝ′ strict without descending
to the semantic level again.

4.8.3 Second Example

Let fun :: ∀a.a → a → (a, a) be a binary, polymorphic function, g :: A→ B a strict and
multi-deterministic function-typed term and x , y :: A two variables. Then

pmap A,B g (fun A x y) = let g ′ = g in fun B (g ′ x ) (g ′ y) (4.16)

holds, where pmap is the following function:

pmap :: ∀a b.(a → b)→ (a, a)→ (b, b)
pmap f p = case p of {(x , y)→ (f x , f y)}
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The proof is very similar to the previous one. After translating the claim to SaLT, it
reads:

ψ(g)>>= λg ′ → funT ψ(A) x y >>= λp → pmapT ψ(A),ψ(B) g ′ p

= 〈 claim 〉
ψ(g)>>= λg ′ → g ′ x >>= λu → g ′ y >>= λv → funT ψ(B) u v

We use ψ(g) = ĝ >>= λĝ′ → {λz → { ĝ′ z }} again and replace g ′:

ĝ >>= λĝ′ → funT ψ(A) x y >>= λp → pmapT ψ(A),ψ(B) (λz → { ĝ′ z }) p

= 〈 claim 〉
ĝ >>= λĝ′ → { ĝ′ x }>>= λu → { ĝ′ y }>>= λv → funT ψ(B) u v

Using the same definition as above, pmap also is a SaLT function and

pmapT ψ(A),ψ(B) (λz → {f z }) p = {pmap ψ(A),ψ(B) f p} (4.17)

holds (the proof is analogous to the proof of equation (4.12)). This and the first monad
law can be used to simplify further:

ĝ >>= λĝ′ → funT ψ(A) x y >>= λp → {pmap ψ(A),ψ(B) ĝ
′ p}

= 〈 claim 〉
ĝ >>= λĝ′ → funT ψ(B) (ĝ′ x ) (ĝ′ y)

Ignoring the ĝ >>=λĝ′ → on both sides, this simply is the free theorem for funT ::∀a.a →
a → Set (a, a). We can apply the free theorem ‘inline’ since ĝ′ is strict in the sense of
only having strict denotations. So, the proof is finished.

In this example, the right hand side of equation (4.16) features a let binding introducing
the variable g ′. In SaLT (or Haskell), the free theorem for the type ∀a.a → a → (a, a)
simply is

pmap A,B g (fun A x y) = fun B (g x ) (g y)

and introducing an additional variable g ′ is not necessary. This simpler equation does
not hold in CuMin and fun = Pair and g = mayInc0 form a counter example. On
the left hand side, g is shared automatically because it is an argument of pmap. On
the right hand side, sharing is not automatic and has to be ensured artificially (like in
equation (4.16)).
The free theorem remains true if x and y are arbitrary expressions instead of variables.
The question of sharing is irrelevant here because they appear only once on either side
of equation (4.16). The same is true for the function fun.

4.8.4 Handling the Data Class

When deriving free theorems for functions with Data class constraints, an additional
complication arises. As an example, take functions

fun :: ∀a.Data a ⇒ (a, a)
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which can use logic variables of type a. Without the constraint, there is no function of
that type other than fun = failed (a,a) or fun = (failed a , failed a). With the constraint,
functions like fun = let x , y free in (x , y) and fun = let x free in (x , x ) become
possible.
One way to deal with the constraint is to switch to inequational free theorems [Jo-
hann and Voigtländer, 2006]. For functions of the above type and strict and multi-
deterministic terms g :: A→ B the inequation

pmap g fun A v fun B

holds.
In order to get equality, we have to add yet another side condition and require g to be
multi-onto.

Definition 4.8.3. A CuMin term g ::A→ B is called multi-onto if it is multi-deterministic
and there is a witness ĝ satisfying:

ĝ >>= λĝ′ → {(ĝ′, smap ĝ′ unknown ψ(A))} = ĝ >>= λĝ′ → {(ĝ′,unknown ψ(B))} (4.18)

In particular, being multi-onto implies

ψ(g)>>= λg ′ → unknown ψ(A) >>= g ′ = unknown ψ(B) (4.19)

which is the translation of the CuMin equivalence g unknown A = unknown B. This
can be interpreted as being surjective.
Yet, being multi-onto is a strictly stronger property. Intuitively, it means that every
element of ĝ is surjective. For example, {λx → True} ‘union‘ {λx → False} is not the
witness of a multi-onto function and equation (4.18) is not satisfied. The set consists of
two functions, neither of which is surjective by itself. Both constituents together cover
the type Bool, so equation (4.19) is satisfied.
Here, we face the same problem again we have already seen when considering strict
constituents of ĝ: We cannot really talk about ‘being an element of ĝ’ because ĝ is a
syntactic set. In the case of strictness, we switched to the semantic level and used the
notion of strictness of a semantic function. Here, we do something similar, but have
to deal with an additional complication: The denotation of ĝ always contains functions
that are not whole in any sense, like λx.⊥, the function sending everything to ⊥. At
least the following is true:

Lemma 4.8.4. Let g :: A → B be a multi-onto CuMin term, whose multi-determinism
is witnessed by ĝ. Then for every element ĝ′ ∈ JĝK there is an element ĝ′ v ĝ′′ ∈ JĝK
which is whole.

Proof. We take the denotation of either side of equation (4.18):⋃
ĝ′∈JĝK

↓(ĝ′, Jsmap ĝ′ unknown ψ(A)K[ĝ′ 7→ĝ′]) =
⋃

ĝ′∈JĝK

↓(ĝ′, Junknown ψ(B)K)
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For every ĝ′ ∈ JĝK the tuple (ĝ′, Junknown ψ(B)K) is an element of the right hand side of
the above equation. So, it also has to be an element of the left hand side. This means
there is some ĝ′′ ∈ JĝK with:(

ĝ′′, Jsmap ĝ′ unknown ψ(A)K[ĝ′ 7→ĝ′′]

)
w
(
ĝ′, Junknown ψ(B)K

)
Comparing the left entries gives ĝ′ v ĝ′′ and comparing the right entries gives

Jsmap ĝ′ unknown ψ(A)K[ĝ′ 7→ĝ′′] ⊇ Junknown ψ(B)K

since v is ⊆ for sets. The above is equivalent to ĝ′′ being whole.

Using the lemma, the proof is again analogous to the ones we have seen already. We
translate the claim pmap A,B g fun A = fun B into SaLT:

ψ(g)>>= λg ′ → funT ψ(A) >>= λp → pmapT ψ(A),ψ(B) g ′ p = funT ψ(B)

Use multi-determinism:

ĝ >>= λĝ′ → funT ψ(A) >>= λp → pmapT ψ(A),ψ(B) (λx → { ĝ′ x }) p = funT ψ(B)

Use equation (4.17):

ĝ >>= λĝ′ → funT ψ(A) >>= λp → {pmap ψ(A),ψ(B) ĝ
′ p} = funT ψ(B)

ĝ >>= λĝ′ → smap (pmap ψ(A),ψ(B) ĝ
′) (funT ψ(A)) = funT ψ(B)

The free theorem for funT :: ∀a.Data a ⇒ Set (a, a) is in fact

smap (pmap ĝ′) funT = funT

for strict and whole ĝ′. The last step is to apply the semantics function and build the
union over all ĝ′ ∈ JĝK:⋃

ĝ′∈JĝK

Jsmap (pmap ĝ′) funT K[ĝ′ 7→ĝ′] = JfunT K

In order to prove the claim, the union has to be taken over all ĝ′ ∈ JĝK. Yet, the free
theorem only applies for the ones which are whole. This is the point where lemma 4.8.4
is needed. Since for every ĝ′ ∈ JĝK there is a more defined, whole ĝ′′ ∈ JĝK, it is enough
to build the union over whole constituents.

4.9 Fold/Build Fusion for CuMin

4.9.1 Deterministic Case

We start with a very easy example of what fold/build fusion does in a deterministic
setting. Suppose we want to compute the sum n + (n − 1) + · · · + 0 for any given n in
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SaLT (we could use Haskell equally well). The direct approach is the following function,
where we assume a minus primitive to be given:

sumFrom :: Nat→ Nat
sumFrom n = case n == 0 of

True → 0
False→ n + sumFrom (n − 1)

An alternative approach would be to split the generation and processing of numbers:

downFrom :: Nat→ [Nat]
downFrom n = case n == 0 of
True → Nil Nat
False→ Cons Nat n (downFrom (n − 1))

sum :: [Nat ]→ Nat
sum l = case l of

Nil → 0
Cons x xs → x + sum xs

The expressions sumFrom n and sum (downFrom n) are semantically equivalent, so
either gives the right result. The appeal of the latter approach is the reusability of the
individual functions sum and downFrom. On the other hand, it requires more runtime
than the direct approach because building and inspecting the list takes additional time.
Fold/build fusion will allow us to write programs in a highly compositional way with-
out making the programs slower. Instead the compiler will recognize the list to be a
temporary data structure and omit it, creating essentially the directly recursive function
sumFrom. Thus the advantages of both of the above are combined.

For the compiler to be able to detect the optimization potential, the functions have to
be given in appropriate forms. We start with the consumer, which has to be given as a
fold. Using the function

foldr :: ∀a b.(a → b → b)→ b → [a ]→ b
foldr f z l = case l of {Nil→ z ;Cons x xs → f x (foldr a,b f z xs)}

we can redefine sum equivalently as:

sum :: [Nat ]→ Nat
sum l = foldr Nat,Nat (+) 0 l

The function downFrom also has to be given in a special form. The idea is to replace
the result type (i.e., [Nat]) by a type variable everywhere. Since the list constructors
cannot be used anymore, surrogates have to be given:

downFrom ′ :: ∀b.Nat→ (Nat→ b → b)→ b → b
downFrom ′ n cons nil = case n == 0 of
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True → nil
False→ cons n (downFrom ′ b (n − 1) cons nil)

From the definition we see that:

downFrom ′ [Nat ] n Cons NatNil Nat = downFrom n

We can thus redefine downFrom to rely on downFrom ′ without changing the meaning.
In GHC, a function build is used:

build :: ∀a.(∀b.(a → b → b)→ b → b)→ [a ]
build g = g (:) [ ]

The type variable b is only in scope within the type of the argument and forces g to
have a type polymorphic in b. In contrast, a is a type variable of build and can be a
concrete type in the function passed as g .
In Curry, CuMin and SaLT, there is no function build , because there are no higher
rank types (i.e., types with ∀ quantifiers in argument types). The application of a
function to Cons and Nil can of course be spelled out in full. Thus the condition of g
being polymorphic is not enforced by the type of build anymore, but has to be required
explicitly.
This condition is crucial because it enables us to instantiate g in two different ways. In
our example, another way to call downFrom ′ is downFrom ′ Nat n (+) 0, which essentially
is the directly recursive function sumFrom. This can be seen by comparing the two
definitions.
In order to compute a sum, we can use sum (downFrom n), which is equivalent to

foldr Nat,Nat (+) 0 (downFrom ′ [Nat ] n Cons NatNil Nat) (4.20)

by inlining the functions sum and downFrom. In Haskell, the inlining is done automat-
ically. Afterwards, an optimization rule fires and replaces the above by the equivalent
but faster

downFrom ′ Nat n (+) 0. (4.21)

For this optimization to be used, some preparation is necessary because only functions
given via fold or build are suited. The GHC Prelude is tailored to provide many op-
portunities for fusing and by using these functions a lot, potential speedup is generated.
Thus the only thing the ordinary programmer has to do to profit from fold/build fusion,
is to avoid writing recursive functions on lists by hand and instead rely on provided
functionality. On the other hand, the compiler needs an intricate mechanism to know
when to inline, replace and fuse.

The theoretical foundation behind the optimization strategy is the following. Let A and
B be concrete types and c ::A→ B→ B and n ::B terms. Let g ::∀b.(A→ b → b)→ b → b
be a polymorphic function. Then the following equation holds:

foldr A,B c n (g [A ] Cons ANil A) = g B c n (4.22)
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Expressions (4.20) and (4.21) are equivalent as together they are an example of (4.22).
This justifies the optimization in the case we discussed. The general idea is to use the
right hand side instead of the left because the right hand side is thought to be faster.
The proof of (4.22) is by using the free theorem for the type of g [Johann, 2003]. The
function we want to use as a relation is foldr A,B c n :: [A]→ B, which is a strict function
(resp. relation) because of the pattern matching in the function’s definition.
First, we show that Nil A :: [A] is related to n :: B. Indeed, by the definition of foldr we
have foldr A,B c n Nil A = n. Second, we claim Cons A ::A→ [A]→ [A] and c ::A→ B→ B
to be related via JA→ b → bK[b 7→JfoldrA,Bc nK]. We show this by applying both functions

to related arguments. Any a :: A is clearly related only to itself and any as :: [A] is only
related to foldr A,B c n as. Thus for Cons A and c to be related, only, Cons A a as :: [A]
and c a (foldr A,B c n as) :: B have to be related. This is true since

foldr A,B c n (Cons A a as) = c a (foldr A,B c n as)

holds by the definition of foldr .
By parametricity, g [A ] and g B are related via

J(A→ b → b)→ b → bK[b 7→JfoldrA,Bc nK].

This means g [A ] and g B produce related results for related arguments. We already
know two pairs of related arguments, i.e., Nil A resp. Cons A and n resp. c. Thus
g [A ] Cons ANil A :: [A] and g B c n :: B are related, which is what (4.22) states.

4.9.2 Counter-Example to Naive Approach

A naive approach to fold/build fusion in CuMin is to ask whether equation (4.22) is
also true in CuMin, given that foldr is defined the same way it is defined in SaLT. The
following counter-example shows that this is not the case. We define three functions:

inc :: Nat→ Nat
inc n = n + 1

idOrInc :: Bool→ Nat→ Nat
idOrInc b = id Nat ? inc

weird :: ∀b.(Bool→ b → b)→ b → b
weird c n = let h = c False in h (h n)

We will show that

foldr Bool,Nat idOrInc 0 (weird [Bool ] Cons Bool Nil Bool) 6= weird Nat idOrInc 0.

We rely on equational reasoning here despite having warned against doing so in CuMin
earlier. The reason we deem this method apt here is that we do not actually need a
proof. Since we compare two closed expressions, one can simply evaluate both in an
interpreter. However, to give some impression of what happens without unfolding either
of the formal semantics, equational reasoning seems fine.
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We first calculate the left side, starting with the term in parentheses:

weird [Bool ] Cons Bool Nil Bool
= 〈 definition of weird 〉

let h = Cons Bool False in h (h Nil Bool)
= 〈 inlining h 〉
Cons Bool False (Cons Bool False Nil Bool)

Here inlining h is fine, since it is given as a partial application. Then we can calculate
the left hand side:

foldr Bool,Nat idOrInc 0 (Cons Bool False (Cons Bool False Nil Bool))
= 〈 definition of foldr and pattern matching 〉

idOrInc False (foldr Bool,Nat idOrInc 0 (Cons Bool False Nil Bool))
= 〈 definition of idOrInc 〉

(id Nat ? inc) (foldr Bool,Nat idOrInc 0 (Cons Bool False Nil Bool))
= 〈 sharing of argument 〉

let n = foldr Bool,Nat idOrInc 0 (Cons Bool False Nil Bool) in (id Nat ? inc) n
= 〈 application distributes over nondeterminism 〉

let n = foldr Bool,Nat idOrInc 0 (Cons Bool False Nil Bool) in id Nat n ? inc n
= 〈 definition of id and inc 〉

let n = foldr Bool,Nat idOrInc 0 (Cons Bool False Nil Bool) in n ? n + 1
= 〈 definition of foldr and pattern matching 〉

let n = idOrInc False (foldr Bool,Nat idOrInc 0 Nil Bool) in n ? n + 1
= 〈 definition of idOrInc 〉

let n = (id Nat ? inc) (foldr Bool,Nat idOrInc 0 Nil Bool) in n ? n + 1
= 〈 sharing of argument 〉

let m = foldr Bool,Nat idOrInc 0 Nil Bool ; n = (id Nat ? inc) m in n ? n + 1
= 〈 application distributes over nondeterminism 〉

let m = foldr Bool,Nat idOrInc 0 Nil Bool ; n = m ? m + 1 in n ? n + 1
= 〈 definition of foldr and pattern matching 〉

let m = 0; n = m ? m + 1 in n ? n + 1
= 〈 inlining m and addition 〉

let n = 0 ? 1 in n ? n + 1
= 〈 distributing local binding 〉

(let n = 0 in n ? n + 1) ? (let n = 1 in n ? n + 1)
= 〈 inlining n and addition 〉

(0 ? 1) ? (1 ? 2)
= 〈 associativity and idempotence of (?) 〉

0 ? 1 ? 2

Now for the right hand side:

weird Nat idOrInc 0
= 〈 definition of weird 〉
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let h = idOrInc False in h (h 0)
= 〈 definition of idOrInc 〉

let h = id Nat ? inc in h (h 0)
= 〈 distributing local binding 〉

(let h = id Nat in h (h 0)) ? (let h = inc in h (h 0))
= 〈 inlining h 〉

id Nat (id Nat) 0 ? inc (inc 0)
= 〈 and so on 〉

0 ? 2

So on the left hand side 1 is a possible result, while on the right hand side it is not. This
disproves validity of equation (4.22) in CuMin.

This counter-example is admittedly rather far-fetched. If we wanted to abstract

Cons Bool False (Cons Bool False Nil Bool)

to enable fold/build fusion, we would probably go with

natural :: ∀b.(Bool→ b → b)→ b → b
natural c n = c False (c False n)

rather than weird . In fact natural does not admit a counter-example – this will be a
consequence of the positive claim in the next section. At this point, we can at least note
that natural and idOrInc do not constitute a counter-example: On the right hand side,
idOrInc would also be evaluated twice, thus 1 would become a result of this side as well.
The second thing being rather odd in the above construction is the function idOrInc,
which is a unary function. If idOrInc was defined as a binary function (i.e., idOrInc b n =
n ? n + 1), the counter-example would not work either. In this case the right hand side
would also admit 1 as a result.
Only the combination of idOrInc, which produces nondeterminism already after being
applied once, and weird , which explicitly shares such an application, leads to the dis-
crepancy between both sides. The refined approach will inhibit exactly this interaction.

4.9.3 Statement and Proof

In Haskell and SaLT, the types X → Y → Z and (X,Y) → Z are nearly isomorphic via
the functions:7

curry :: ∀a b c.((a, b)→ c)→ a → b → c
curry f x y = f (x , y)

7 Here we encounter an unfortunate name clash. The language Curry (as well as the language Haskell)
is named after Haskell Brooks Curry. Also named after him is the process of currying, which means
turning a function in several variables into a unary function-valued function. This is what the function
curry does, which can be found in the preludes of (among others) the languages Curry and Haskell.
So the function curry is not specific to the language Curry and both having the same name can be
understood as coincidental.

145



uncurry :: ∀a b c.(a → b → c)→ (a, b)→ c
uncurry f p = case p of {(x , y)→ f x y }

Here and in the following, we will write (x , y) instead of Pair A,B x y to denote the
elements of pair types.
The two types (X,Y)→ Z and X→ Y → Z are only nearly isomorphic, because a function
of the former type can distinguish between (failed, failed) and failed. In Curry however,
X→ Y → Z contains many functions without a counterpart in (X,Y)→ Z, for example
idOrInc.
The idea now is to replace some types by their uncurried versions to exclude functions
like idOrInc. To this end we redefine foldr with a different type and an uncurried version
of Cons:

foldr :: ∀a b.((a, b)→ b)→ b → [a ]→ b
foldr f z l = case l of {Nil→ z ;Cons x xs → f (x , foldr a,b f z xs)}
uncCons :: ∀a.(a, [a ])→ [a ]
uncCons p = case p of {(a, as)→ Cons a a as }

Now we can state the claim: For concrete types A and B, terms c :: (A,B) → B, n :: B
and a polymorphic function

g :: ∀b.((A, b)→ b)→ b → b

the equation
foldr A,B c n (g [A ] uncCons ANil A) = g B c n (4.23)

holds.
Note that c can still be an nondeterministic function. Being given in uncurried form only
forces both arguments to be given at once. Thus, no nondeterminism can occur after
applying c to only one argument. Yet, when both arguments are given, c can branch.
Instead of changing the types, c can be restricted via its arity. The original, curried
version of the statement also holds for CuMin, if c is required to be an actual function
(and not just function-typed) and have arity at least two.

The proof works slightly differently than the proofs in section 4.8. After the usual
translation into SaLT and some simplifications, a result by Ghani and Johann [2007] is
invoked: monadic fold/build fusion.
We translate foldr and uncCons:

foldrT :: ∀a b.((a, b)→ Set b)→ b → [a ]→ Set b

foldrT f z l = case l of {Nil→ {z };Cons x xs → foldrT a,b f z xs >>= λy → f (x , y)}
uncConsT :: ∀a.(a, [a ])→ Set [a ]

uncConsT p = case p of {(a, as)→ {Cons a a as }}

We do not know whether g is a function symbol or a polymorphic expression, so we do
not use gT . Instead we define a function gee, that serves the same purpose but only
relies on the translation of the expression g b :
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gee :: ∀b.((ψ(A), b)→ Set b)→ b → Set b
gee c n = ψ(g b)>>= λg ′ → g ′ c >>= λh → h n

The translation of the claim’s right hand side is:

ψ(g B c n)
=
ψ(g B c)>>= λh → h n

=
ψ(g B)>>= λg ′ → g ′ c >>= λh → h n

=
gee ψ(B) c n

For the left hand side we find:

ψ(foldr A,B c n (g [A ] uncCons ANil A))

=

ψ(g [A ] uncCons ANil A)>>= λxs → foldrT ψ(A),ψ(B) c n xs

=

ψ(g [A ] uncCons ANil A)>>= foldrT ψ(A),ψ(B) c n

=

ψ(g [A ])>>= λg ′ → wrap1 (uncConsT ψ(A))>>= λu → g ′ u >>= λh →
h Nil ψ(A) >>= foldrT ψ(A),ψ(B) c n

=

ψ(g [A ])>>= λg ′ → {uncConsT ψ(A)}>>= λu → g ′ u >>= λh →
h Nil ψ(A) >>= foldrT ψ(A),ψ(B) c n

=

ψ(g [A ])>>= λg ′ → g ′ (uncConsT ψ(A))>>= λh →
h Nil ψ(A) >>= foldrT ψ(A),ψ(B) c n

=

gee [ψ(A)] uncConsT ψ(A) Nil ψ(A) >>= foldrT ψ(A),ψ(B) c n

So it is sufficient to prove

gee [ψ(A)] uncConsT ψ(A) Nil ψ(A) >>= foldrT ψ(A),ψ(B) c n = gee ψ(B) c n

for the function gee. This equation is known to hold and can be found in [Ghani and
Johann, 2007].
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Chapter 5

Conclusion and Outlook

Idiomatic Traversals

The case of idiomatic traversals, studied in chapter 3, seems to be closed for the most
part. The correspondence between traversable data structures and finitary containers
connects interface and intuition. We now have a clear picture of which structures are
traversable and which methods are suitable for doing so. When using effectful traversals
in programs, we can reason about them by using concepts usually associated to finitary
containers, like shape, contents, and the order of the entries. When implementing ef-
fectful traversals we have an equally clear picture of what we are trying to achieve and
whether functions will satisfy the traversal laws.
This situation is reflected in the fact that idioms and traversals are now part of the
Haskell prelude, where the Traversable class is also given a set of laws. Not only have
the classes been moved there, they also have become an integral part of the prelude:
Many functions that only used to work for lists are now abstracted over the container
and work for all foldable or all traversable type constructors. Applicative appears both as
a superclass of Monad and as a typeclass constraint in the class definition of Traversable.
Yet, a gap remains between theory and practice: We have assumed the language to be
total, which does not apply to Haskell. The difference does not matter as long as only
total values are involved. On the other hand, reasoning about infinite lists and trees
would be very useful. Then again, this point is not specific to the discussion of idiomatic
traversals, but applies to equational reasoning in general.
While the specific object of study, idiomatic traversals, are well-understood, questions
remain about related concepts. The Foldable class still does not have any laws, though
there have been discussions whether it should. Conversely, we can think of structures
with a richer interface than Traversable, like containers that also allow to add and delete
entries. Are there useful abstractions for these data structures and if so, how can we
reason about them? Yet broader, what other patterns for effectful programming in
Haskell would we like to understand better?
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Functional-Logic Programming

Chapter 4 features a number of different contributions. The functional-style denota-
tional semantics for Curry has been simplified substantially. More importantly, a formal
connection to other semantics, like the operational semantics [Albert et al., 2005] or the
rewriting semantics [González-Moreno et al., 1999] has been established. The language
SaLT has been introduced as a tool for reasoning about Curry. Using the translation to
SaLT, equational reasoning about Curry is facilitated. Parametricity [Reynolds, 1983]
and free theorems [Wadler, 1989] can be derived for Curry. In particular, the necessary
side conditions given in [Christiansen et al., 2010] have been formalized. Finally, short
cut fusion [Gill et al., 1993] has been proved to hold for Curry under very weak side
conditions.
This last point is of particular interest, as it leads towards an application of type based
reasoning about Curry for the first time. There seems to be no working implementation
yet, but I would be delighted to see short cut fusion in action in future versions of Curry.

Yet, a lot remains to be done. Most notably, there is a remaining gap between actual
Curry and the simplified version CuMin. Three features stand out: Unrestricted use of
logic variables, recursive let bindings and encapsulated search.
Type based reasoning for Curry and free theorems in particular rely on restricting the
use of logic variables and constraints. Free theorems can still be proved if logic variables
for arbitrary types are allowed. Yet, the side conditions that become necessary (multi-
ontoness in particular) are rarely satisfied and hard to check in any automated way.
The alternative is to introduce a Data typeclass into actual Curry and thereby restrict
the use of logic variables to types which have a suitable generator function. This requires
extending the type checker as well as changing the libraries, which will break existing
code. However, both is already necessary to introduce typeclasses other than Data (e.g.,
Eq or Num). So, the best opportunity for introducing Data is to add it simultaneously.
Recursive let bindings entered the discussion for a very different reason – a compromise
due to the method. Fully compositional, functional-style denotational semantics are
incapable of handling recursive let bindings correctly [Christiansen et al., 2011b]. So,
they were excluded from the whole development. Many of the results that rely on this
denotational semantics may still hold for a language with recursive let bindings, but
the presented methods are not able to prove that. There seems to be no easy way to
handle this discrepancy. Of course, one could switch to a different overall approach and
reconstruct the whole development in an operational or rewriting context, but this would
require a lot of additional effort.
The third main difference between Curry and CuMin is encapsulated search. This fea-
ture has been left out of the discussion for now, but it is at least conceivable that it could
be added. The functional-style denotational semantics by Christiansen et al. [2013] can
be considered a first step. Yet, in order to reproduce the rest of the development (prov-
ing the semantics to be equivalent to some other semantics and deriving and applying
parametricity) additional effort is again required.
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The translation from CuMin to SaLT has proved to be a valuable tool for studying
nondeterminism in Curry. Yet, translating back and forth is tedious. A more convenient
solution could be an annotated version of Curry, that unites the additional information
SaLT provides with the original Curry syntax. In particular, this could lead to a simpler
formalization of multi-determinism.
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