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Abstract

The formal Hermitean 1-matrix model is shown to be equivalent to an
effective field theory. The correlation functions and the free energy of the
matrix model correspond directly to the correlation functions and the free
energy of the effective field theory. The loop equation of the field theory

coupling constants is stated. Despite its length, this loop equation is
simpler than the loop equations in the matrix model formalism itself since
it does not contain operator inversions in any sense, but consists instead

only of derivative operators and simple projection operators. Therefore the
solution of the loop equation could be given for an arbitrary number of cuts
up to the fifth order in the topological expansion explicitly. Two different
methods of obtaining the contributions to the free energy of the higher

orders are given, one depending on an operator H and one not depending
on it.
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Chapter 1

Introduction

1.1 Hermitean matrix model

Matrix models were introduced in physics in 1951 by Wigner [1]. Many nar-
row resonances were observed in the scattering of slow neutrons by heavy
nuclei. It was a hopeless task to explain each excited state of the nucleus
individually. Wigner proposed a theory which described the statistical be-
haviour of these levels by a random matrix model. For an arbitrary specific
energy level the probability of finding the neighbouring level at a given en-
ergy distance is described by the spacing distribution. For a random matrix
model, the spacing distribution is the probability of finding an arbitrary
eigenvalue at a given distance from the neighbouring eigenvalue. Wigner
proposed the equality of the slow neutron energy spacing distribution and
the eigenvalue spacing distribution of the matrix model. Since the quality
of the experimental distribution could only be improved by gathering more
data, i.e. measuring more resonances, it took until 1982 to gather enough
data to conclusively show that both distributions agree. This approach was
then successfully applied to the spacings of atomic and molecular energy lev-
els.
Other applications were found in chaotic systems—One example of this kind
is the hydrogen atom in a strong magnetic field, a second is the modelling of
the game ‘billiards’. The distribution of the zeros of the Riemann zeta func-
tion can be approximated to great accuracy with a random matrix model.
Matrix models are applied to topological string theory, to the chiral phase
transition in QCD, to disordered mesoscopic systems and to counting knots
and links.
This list is far from being complete.
The loop equations for matrix models were given in 1983 [36]. The Her-
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mitean multi-point functions for genus zero and a method to derive higher
order contributions were given in [37], [38], [39]. For several cuts the solu-
tion was given in 1996 by Akemann [5]. For matrix models with fixed filling
fractions, substantial progress was made in 2004 by Eynard [6]. By utilising
loop equations of higher degree, it was possible to write a recursion formula
for the correlation functions. Since this formula contains one residue, a sin-
gle term of one specific correlation function is given by a system of nested
residues. A diagrammatic representation for these terms was developed in
[6] and subsequent work [7], [13]. These diagrams were initially claimed to
be Feynman diagrams [7]. Later this assertion was revoked [13], [14]. To get
a good overview see [34], [24] or [35].

1.2 Motivation for the reformulation of the Her-

mitean matrix model as an effective field

theory

The contributions to the correlation functions and free energies of a well-
known matrix model, the Hermitean 1-matrix model, appear to be well or-
dered in the field theory approach. It is valid for all numbers of cuts. The
field theory scheme mainly applies to the formal model with fixed filling frac-
tions, but for the one cut case no filling fraction has to be specified and hence
the model is identical with the ‘energy-minimized’ model. This model has
been known for a long time.
The correlation functions and the free energy appear in the field theory
together with all their higher genus corrections in a consistent, new and
beautiful way. There have been several incentives to construct a field the-
ory underlying Eynard’s formalism. The first of these comes from Kostov’s
(unfinished) program [40] to fit matrix models into 2-dimensional confor-
mal field theories. An effective Lagrangian sets a benchmark of what has
to be achieved in such an undertaking. Another motivation is provided by
the manifold connections of matrix models with string theories, in particular
topological string theories. A specially neat link between the two fields has
been discovered by Dijkgraaf and Vafa [9], who observed that recursion rela-
tions derived in matrix models via loop equations are identical with certain
Ward identities of a two dimensional field theory related to Kodaira-Spencer
theory of Calabi-Yau threefolds. Our construction will make clear that an
effective Lagrangian is hiding behind the structure of the recursion relations.

In addition to the calculation of the correlators themselves, one can use the
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approach to deal with topological string theory [27], [28], [29] and [9].
Since the matrix model is applied to the enumeration of discrete surfaces
([21], [2], [14]) it becomes possible to apply the field theory version to the
same problem. The calculation of Weil-Petersson volumes [22] and [30] could
be repeated in terms of the field theory. Critical phenomena related to matrix
models ([15], [16], [17], [18]) can be explored by the renormalization group
of the field theory.

1.3 Outline

Starting from Eynards work [6] the three point function for genus zero is
derived.
Higher loop multipoint functions are not, in contrast to [6], calculated by
more complex loop equations which contain smaller multipoint functions of
the same or smaller genus. Instead the new function is calculated from the
action of the loop operator to the multipoint function of the same genus with
one point less. Surprisingly, it turns out that the structure of the new terms
in the four point function is very similar to the structure of the contributions
to the three point function. By defining propagators Bf

i (p) and Bf,g
i,j , as well

as vertex factors yf,i with f, g = 0, 1, 2, all terms of the three point function
and the four point function are covered. For the higher multipoint functions
the generalization to f, g = 0, 1, 2, . . . , is sufficient, i.e. the loop operator,
acting on these quantities, produces again only such quantities. In chapter 4
the recursion step to the first correction in 1/N2 is done with the recursion
equation of [6] which is determined by the loop equations. Fortunately, the
correlators emerging from the application of the loop equation can still be
expressed in the quanatities Bf

i (p), Bf,g
i,j and yf,i.

For the three point function a Lagrangian is found which leads to the same
three point function as the matrix model. The loop operator is then applied
to the three point function to obtain the four point function. The field theory
tailored to describe the three point function is compared with the four point
function of the matrix model. All contributions respective Feynman diagrams
of the field theory appear with the correct weight but, in addition to these
contributions, the matrix model four point function contains more diagrams.
These additional diagrams correspond in a field theory to four point interac-
tions. In an effective ansatz these additional interactions are inscribed into
the Lagrangian. By this, the Lagrangian already describes two correlation
functions correctly. Using the recursion formula from the loop equation, the
one point function is determined in first order approximation in 1/N2. Again,
the matrix model correlator contains more diagrams than predicted by the
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Lagrangian L(0)
3 +L(0)

4 . The Lagrangian is enhanced by a contribution L(1)
1 in

such a way that the correlators coincide. The enlargement of the Lagrangian
can be generalized. The hypothesis that the Lagrangian constructed in this
way describes all matrix model correlators in any order in 1/N2 correctly,
suggests itself. This assertion is proven by induction on the number of points
of the multipoint functions in chapter 8 and by induction on the genus in
chapter 9.

1.4 List of preprints and publications

1. R. Flume, J. Grossehelweg, A. Klitz, A Lagrangean formalism for Her-
mitean matrix models, Nucl. Phys. B812 (2009) 322
(doi:10.1016/j.nuclphysb.2008.10.008), arXiv:0805.3078 [hep-th]

2. R. Flume, A. Klitz, A new type of critical behaviour in random matrix
models, J. Stat. Mech. 2008: N10001 (2008)
(doi:10.1088/1742-5468/2008/10/N10001), arXiv:0901.2424 [math-ph]

3. A. Klitz, Proof of the Lagrangean formalism of Hermitean 1-matrix models
to all orders, Preprint Bonn-TH-09-02, arXiv:0904.0753 [math-ph]



Chapter 2

The Hermitean 1-matrix model

2.1 Definitions

The partition function ZN(t) and the free energy F of the matrix model are
given by an integral over all Hermitean matrices:

ZN(t) =

∫
e−N tr V (M) dM = eF . (2.1)

The Lebesgue measure dM consists of all real diagonal entries and of the real
and the imaginary parts of the entries in the upper triangle:

dM =
∏

i

dMii

∏

i<j

Re dMij

∏

i<j

Im dMij.

The entries in the lower triangle are also determined by these variables since
the N × N matrix M is Hermitean. The potential is defined as

V (M) =
∑

n≥1

tnM
n, (2.2)

where tn ∈ C for n ∈ N. The usual method to associate a field theory with
a matrix model is to consider M in this equation as a field ϕ. That route is
not followed in this work. Later, a Lagrangian will be defined which is only
indirectly connected to the potential V . The expansion of the free energy is
given by

F =
∞∑

h=0

N2−2h F (h). (2.3)

The resolvent is defined as

W (z) =
1

N
tr

1

z − M
, (2.4)

14
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and the averaging operation for a function f is

〈
f(M)

〉
=

1

ZN(t)

∫
f(M) e−N tr V (M) dM. (2.5)

Now the correlation functions for n ≥ 1 can be defined:

Wn(z1, . . . , zn) = N2n−2
〈
W (z1) . . . W (zn)

〉
conn

(2.6)

The 1/N2 expansion of the free energy results in an expansion for the corre-
lators

Wn(z1, . . . , zn) =
∞∑

h=0

N−2hW (h)
n (z1, . . . , zn). (2.7)

The zeroth correlator is introduced for reasons of effective notation:

W
(h)
0 = F (h) and W0 = F/N2. (2.8)

As will be shown in the solution of the correlator W
(0)
1 in section 2.4, there ap-

pear so-called branch points ai, i = 1, . . . , 2s, which are grouped to contours
Al surrounding the interval [a2l−1, a2l], l = 1, . . . , s in the complex plane.
The eigenvalues concentrate between these branch points. The fraction of
eigenvalues which concentrates around the l-th interval, is denoted the filling
fraction εl. These filling fractions are given parameters of the matrix model:

εl =
1

2

∮

Al

dx

2πi
y(x) for l = 1, . . . , s − 1. (2.9)

The sum of the relative weights gives one:

s∑

l=1

εl = 1. (2.10)

These additional s−1 parameters fix, as is shown in section 2.4, the solution
completely.

2.2 Algebraic geometry

A hyperelliptic Riemann surface of genus s − 1 is defined by the equation

y2 = M2(x)σ(x), (2.11)
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where M is a polynomial in x and

σ(x) =
2s∏

i=1

(x − ai). (2.12)

Al denotes a contour, which encircles counterclockwise only the l-th cut
[a2l−1, a2l]. The Abelian differential of the third kind dS belonging to a
Riemann surface is determined uniquely by the following properties:

∮

Aj

dS(x, x′) = 0 ∀ j = 1, . . . , s − 1. (2.13)

and

dS(x, x′) =
x→x′

dx

x − x′
+ finite, (2.14)

dS(x, x′) =
x→x′

− dx

x − x′
+ finite (2.15)

(x denotes the hyperelliptic involution of x). The singularities appearing in
eqs. (2.14) and (2.15) are the only ones. An explicit representation for dS
in the case of a hyperelliptic Riemann surface can be given by

dS(x, x′) =

√
σ(x′)√
σ(x)

(
1

x − x′
−

s−1∑

j=1

Cj(x
′)Lj(x)

)
dx, (2.16)

where

Cj(x
′) =

1

2πi

∮

Aj

dx√
σ(x)

1

x − x′
. (2.17)

The s− 1 polynomials Lj(x) of degree s− 2 are uniquely determined by the
conditions ∮

Al

Lj(x)√
σ(x)

dx = 2πiδjl for l, j = 1, . . . , s − 1. (2.18)

Reciprocally, every polynomial P of degee s−2 can be projected on the basis
of the Lj and written as

P (x) =
s−1∑

j=1

Lj(x)
1

2πi

∮

Aj

P (x′) dx′

√
σ(x′)

. (2.19)
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Closely connected to the Abelian differential of the third kind is the Bergmann
kernel B(p, q) of a Riemann surface, which is uniquely determined by the fol-
lowing statement: B is a bidifferential at the Riemann surface with only one
single pole of order two at p = q, B(p, q) = ( dp dq

(p−q)2
+ finite) for p → q, which

fulfills the normalization equations

∮

q∈Aj

B(p, q) = 0, j = 1, . . . , s − 1. (2.20)

The Bergmann kernel is symmetric. It is related to the Abelian differential
of the third kind:

B(p, q) =
1

2

∂

∂q

(
dp

p − q
+ dS(p, q)

)
dq. (2.21)

2.3 Loop equations

The reparametrisation invariance of the integral in eq. (2.1) for the substi-
tution M → M + δM with

δM = ε
1

z − M
(2.22)

leads to the loop equation

(W1(z))2 +
1

N2
W2(z, z) =

1

N

〈
tr

V ′(M)

z − M

〉
. (2.23)

The l.h.s. of this equation originates from the variation of the integral mea-
sure dM and the r.h.s. of the variation of the integrand exp(−N tr V (M)).

The more complex variation

δM = ε
1

z1 − M
tr

1

z2 − M
(2.24)

yields the loop equation for the two point function:

2W1(x1)W2(x1, x2) +
1

N2
W3(x1, x2, x3) +

∂

∂x2

W1(x2) − W1(x1)

x2 − x1

(2.25)

= V ′(x1)W2(x1, x2) −
〈
tr

V ′(x1) − V ′(M)

x1 − M
tr

1

x2 − M

〉
conn

. (2.26)
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2.4 The correlator W
(0)
1

For the planar approximation, i.e. in the lowest order in 1/N2, the loop
equation (2.23) simplifies to

(W
(0)
1 (z))2 − V ′(z)W

(0)
1 (z) +

1

N

〈
tr

V ′(z) − V ′(M)

z − M

〉
= 0. (2.27)

As can be seen easily, the last term is a polynomial in z, which is renamed
f(z) for this reason. For the quadratic equation two solutions are possible:

W
(0)
1 (p) =

1

2
V ′(p) ± 1

2

√
(V ′(p))2 + 4f(p). (2.28)

One has to choose the solution with the minus sign, since this reproduces the
asymptotic behaviour W

(0)
1 (p) ∼ 1

p
for p → ∞ predicted by the definition

of the correlation functions (2.6). The square root in the correlator gives a
direct connection to the hyperelliptic Riemann surface. The general alge-
braic equation (2.11) which describes the Riemann surface becomes in the
Hermitean matrix model

y2 = (V ′(λ))2 + 4f(λ). (2.29)

Thus

W
(0)
1 (x1) =

1

2
V ′(x1) −

1

2
M(x1)

√
σ(x1). (2.30)

The assumption that the support of the eigenvalue density is compact, as it
is for example used in [41] to write the correlator as an integral, is already
contained in the definition (2.9) of the matrix model with fixed filling frac-
tions. One can show [5] that the polynomial M(λ) can be expressed in the
following way:

M(λ) =

∮

C∞

dω

2πi

1

ω − λ

V ′(ω)√∏2s
i=1(ω − ai)

. (2.31)

C∞ denotes a contour which encircles counterclockwise all branch points
ai , i = 1, . . . , 2s and λ. Then W

(0)
1 (λ) can be rewritten as

W
(0)
1 (λ) =

1

2

∮

C

dω

2πi

V ′(ω)

λ − ω

√√√√
∏2s

i=1(λ − ai)∏2s
j=1(ω − aj)

. (2.32)

The contour C encircles counterclockwise all branch points, but not λ.
To determine the 2s branch points ai from the coefficients tn of the potential
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V the equation (2.32) is compared to the definition (2.6) for x1 → ∞. Exactly
s + 1 equations are obtained. The asymptotic behaviour found in (2.6) is

W
(0)
1 (x1) → 1/x1. The equation (2.32) is expanded in powers of x1 which

gives W
(0)
1 (x1) → cs−1x

s−1
1 +cs−2x

s−2
1 +. . .. The s+1 equations cj = δ−1,j with

j ∈ {s−1, . . . ,−1} leave s−1 degrees of freedom undetermined. These s−1
degrees of freedom can be fixed by assuming some conditions of stability
against tunneling of eigenvalues between different cuts as in [42], [5]. In
this work (as for example in [6], [7]) instead of imposing these conditions of
stability, the remaining s−1 equations are given by the fixed filling fractions
(2.9).

2.5 The loop operator

The loop operator is defined as

∂

∂V (z)
= −

∞∑

j=1

1

zj+1

∂

∂tj
. (2.33)

The n-point function then can be rewritten as

Wn(z1, . . . , zn) =
1

N2

∂

∂V (z1)
· · · ∂

∂V (zn)
F (2.34)

for n ∈ N0. The filling fractions εl are fixed constants of the model. They do
not change by application of the loop operator. The replacement of y with
W

(0)
1 in (2.9) and subsequent application of the loop operators ∂

∂V (xk)
· · · ∂

∂V (x2)

results therefore in
∮

Al

W
(0)
k (x1, x2, . . . , xk) dx1 = 0 for k ≥ 2. (2.35)

From a similar argument, since eigenvalues only accumulate within the cuts,
for any point m in the complex plane away from the cuts follows

∮

m

W
(0)
1 (x1) dx1 = 0. (2.36)

Application of the loop operator gives
∮

m

W
(0)
2 (x1, x2) dx1 = 0. (2.37)
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2.6 The correlator W
(0)
2

The discussion in this section closely follows the aguments in [6]. The leading
order in 1/N2 of the loop equation (2.25) is given by

2W
(0)
1 (x1)W

(0)
2 (x1, x2) +

∂

∂x2

W
(0)
1 (x2) − W

(0)
1 (x1)

x2 − x1

= V ′(x1)W
(0)
2 (x1, x2) − U

(0)
2 (x1, x2) (2.38)

with

U
(0)
2 (x1, x2) = lim

N→∞

〈
tr

V ′(x1) − V ′(M)

x1 − M
tr

1

x2 − M

〉
conn

. (2.39)

Inserting the solution for W
(0)
1 one finds

M(x1)
√

σ(x1)W
(0)
2 (x1, x2) − U

(0)
2 (x1, x2) =

∂

∂x2

W
(0)
1 (x2) − W

(0)
1 (x1)

x2 − x1

(2.40)

=
1

2

∂

∂x2

V ′(x2) − V ′(x1)

x2 − x1

− 1

2

∂

∂x2

M(x2)
√

σ(x2) − M(x1)
√

σ(x1)

x2 − x1

(2.41)

=
1

2

∂

∂x2

V ′(x2) − V ′(x1)

x2 − x1

− 1

2

∂

∂x2

(√
σ(x2)

M(x2) − M(x1)

x2 − x1

)

−1

2

∂

∂x2

(
M(x1)

√
σ(x2) −

√
σ(x1)

x2 − x1

)
.(2.42)

Some terms are combined to R2(x1, x2), which is a polynomial in x1, giving

√
σ(x1)W

(0)
2 (x1, x2) = −1

2

∂

∂x2

(√
σ(x2) −

√
σ(x1)

x2 − x1

)
+

R2(x1, x2)

M(x1)
. (2.43)

The l.h.s. of eq. (2.43) has no poles at the zeros of M because of (2.37).
That implies that

P2(x1, x2) =
R2(x1, x2)

M(x1)
(2.44)

is a polynomial in x1. Then we have

W
(0)
2 (x′

1, x2) =
1

2
√

σ(x′
1)

∂

∂x2

√
σ(x2)

x′
1 − x2

− 1

2

1

(x′
1 − x2)2

+
P2(x

′
1, x2)√

σ(x′
1)

. (2.45)

In order to apply eq. (2.19) (which we will need for the next step in the
calculation) one has to show that the degree of P2(x1, x2) in x1 is at most
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s − 2.
Let V be a polynomial of degree d + 1.

V ′(x1) − V ′(x2)

x1 − x2

=
d−1∑

k=0

ckx
k
1 (2.46)

is a polynomial in x1 of degree d − 1. Since, for the highest coefficient cd−1,
the condition ∂

∂x2
cd−1 = 0 holds, one can conclude that

∂

∂x2

V ′(x1) − V ′(x2)

x1 − x2

(2.47)

is a polynomial in x1 of degree at most d − 2.
U

(0)
2 is a polynomial in x1. An expression (in x1) can in general be divided

into a polynomial part and a principal part (consisting of inverse powers of
x1). The quantity 〈

tr
−V ′(M)

x1 − M
tr

1

x2 − M

〉
conn

(2.48)

has no polynomial part in x1. Therefore U
(0)
2 is equal to the polynomial part

of V ′(x1)W
(0)
2 (x1, x2). The asymptotic behaviour W

(0)
2 ∼

x1→∞

1
xn
1

with n ≥ 2

follows from eq. (2.37). Therefore the degree of U
(0)
2 in x1 is at most d − 2.

From eq. (2.30) and W
(0)
1 (x1) ∼

x1→∞

1
x1

(which follows from the definition

(2.6)) follows d = m + s where m is the degree of M .
To determine the degree of R2(x1, x2) in x1, one takes the maximal degree of

the three terms in eq. (2.42), which are d−2, m−1 and d−2 for U
(0)
2 . m−1

is equal to d − s − 1 which is less or equal to d − 2. Therefore the degree
of R2(x1, x2) in x1 is, at most, d − 2. From that follows that the degree of
P2(x1, x2) in x1 is, at most, d − 2 − m = s − 2.

Utilizing this maximal degree, the operator

s−1∑

j=1

Lj(x1)

∮

Aj

dx′
1

2πi
· (2.49)

is applied to both sides of equation (2.45) and the relations (2.35) and (2.19)
are used resulting in

0 =
1

2

s−1∑

j=1

Lj(x1)
∂

∂x2

√
σ(x2)Cj(x2) + P2(x1, x2). (2.50)
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Inserting the result for the polynomial P2(x1, x2) from eq. (2.50) in eq. (2.45)
and using the explicit representation of dS from eq. (2.16) and the relation
to B(p, q) from eq. (2.21) one finds

W
(0)
2 (x1, x2) =

1

2

∂

∂x2

√
σ(x2)

σ(x1)

1

x1 − x2

− 1

2

1

(x1 − x2)2

−1

2

∂

∂x2

√
σ(x2)

σ(x1)

s−1∑

j=1

Lj(x1)Cj(x2)

=
B(x1, x2)

dx1 dx2

− 1

(x1 − x2)2
. (2.51)

2.7 Recursion equation

The equation (2.23) is expanded in powers of 1/N2. One obtains an equation

involving W
(m)
1 with m = 1, . . . , h and W

(h−1)
2 . As in the previous section

2.6, a part of the equation is identified as polynomial part and this polyno-
mial is computed by the same methods used in section 2.6. This leads to a
formula containing in addition to the aforementioned correlators the Abelian
differential of the third kind dS(p, x) and eventually leads to the recursion
[6]

W
(h)
1 (p) =

2s∑

i=1

Res
x→ai

dS(p, x)

dp

1

y(x)

(
h−1∑

m=1

W
(h−m)
1 (x)W

(m)
1 (x) + W

(h−1)
2 (x, x)

)
.

(2.52)
for h ≥ 1.



Chapter 3

Planar diagrams

3.1 The correlator W
(0)
3

The three point function in [6] is derived from a loop equation. As described
in [6], such a loop equation emerges from a reparametrisation invariance with
a variation similar to (2.22) and (2.24). In this work, as in [3] and [4], no
further loop equation is used. Instead, the three point function is determined
by eq. (2.34), i.e. by the action of the loop operator on W

(0)
2 .

For the consideration of the asymptotic behaviour of B(p, q) for q → aj the
quantity B(p, [aj]) is introduced:

B(p, [aj]) = 2

√
q − ajB(p, q)

dq

∣∣∣∣
q→aj

. (3.1)

One of the variational formulas of Rauch [11] describes the behaviour of the
Bergmann kernel (2.21) as the branch points aj are varied:

δB(p, q) =
1

2

∑

j

B(p, [aj])B(q, [aj])δaj. (3.2)

To apply the loop operator to W
(0)
2 , one also has to determine

δaj

δV (p)
. For this

purpose, δy(q)
δV (p)

is first calculated. From eq. (2.30) it follows that

y(q) = −2W
(0)
1 (q) + V ′(q). (3.3)

The statement of eq. (2.34)

δ

δV (p)
W

(0)
1 (q) = W

(0)
2 (q, p) (3.4)

23



24

is combined with the result from eq. (2.51). Eq. (2.33) is then utilized to
calculate

δ

δV (p)
V ′(q) = − 1

(q − p)2
. (3.5)

With the definition

B̃(p, q) =
B(p, q)

dp dq
− 1

2

1

(p − q)2
(3.6)

one obtains [7]
δy(q)

δV (p)
= −2B̃(p, q). (3.7)

The behaviour of the algebraic curve y(q) close to ai is described by

y(q) = y([ai])
√

q − ai + O((q − ai)
3/2). (3.8)

An integral representation of y([ai]) is given by

y1,i = y([ai]) =

∮

ai

dz

2πi

y(z)

(z − ai)3/2
. (3.9)

For q → ai we have

δy(q)

δV (p)

∣∣∣∣
q→ai

= −1

2
y([ai])

1√
q − ai

δai

δV (p)
+ O(

√
q − ai). (3.10)

In analogy to the relation of y(x) to y([ai]) we define a quantity related to

B̃(p, z) which does not vary in z for z → ai:

B0
j (p) = 2

∮

aj

dz

2πi

B̃(p, z)

(z − aj)1/2
. (3.11)

Comparing the eqs. (3.7) and (3.10) results in

δai

δV (p)
=

2B0
i (p)

y([ai])
. (3.12)

Combining this with eq. (3.2) one obtains

W
(0)
3 (p1, p2, p3) =

δ

δV (p3)
W

(0)
2 (p1, p2) =

2s∑

i=1

B0
i (p1)B

0
i (p2)B

0
i (p3)

y([ai])
. (3.13)
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3.2 A field theory which describes the matrix

model correlator W
(0)
3

The three point function of a field theory is given by (e.g.[19])

〈
0
∣∣∣ϕ(p1)ϕ(p2)ϕ(p3) e

R

dxLint(x)
∣∣∣0

〉
. (3.14)

We assume a cubic interaction Lagrangian

Lint(x) = λ(x)
ϕ(x)ϕ(x)ϕ(x)

3!
= λ

ϕ3

3!
(3.15)

with a coupling λ(x). For the moment we are only interested in the lowest
order in perturbation theory given by tree graphs. The projection of the
expression < 0| . . . |0 > to graphs with l loops is denoted by the subscript
‘l loops’. It turns out that the Wick contractions (their number compensates
the 1/3! from the coupling) lead to only one diagram:

〈
0
∣∣∣ϕ(p1)ϕ(p2)ϕ(p3) e

R

dxLint(x)
∣∣∣0

〉
0 loops

=

∫
dx λ(x) ϕ(x) ϕ(p1) ϕ(x) ϕ(p2) ϕ(x) ϕ(p3). (3.16)

This function bears a great resemblance to (3.13). The propagator is specified
as

ϕ(ai) ϕ(p) = B0
i (p). (3.17)

and as a coupling we choose

λ(x) =
2s∑

i=1

δ(x − ai)
1

y([x]i)
(3.18)

where

y([x]i) =
y(x)√
x − ai

. (3.19)

Then the three point function of the matrix model from eq. (3.13) is equal
to the three point function of the field theory from eq. (3.16).

Instead of dealing with the delta functions in a complex one-dimensional
integral over the Riemann surface with the variable x one can integrate this
out and obtain a replacement of the integration with a sum over the branch
points:
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∫
dx →

2s∑

i=1

∣∣∣
x=ai

. (3.20)

The Lagrangian is defined as

L(0)
3 (ai) = λ

(0)
(3),i

ϕ3
i

3!
(3.21)

where ϕi denotes ϕ(ai). The coupling λ
(0)
(3) = λ(0) is given by

λ(0) =
1

y1

. (3.22)

The upper index of λ(h) refers to the order of this interaction in the topological
expansion and is hence denoted as topological index h. To determine λ

(0)
(3),i

one only has to add the lower index i to all quantities on the r.h.s. of eq.
(3.22). Then the matrix model correlator is given by

W
(0)
3 (p1, p2, p3) =

〈
0
∣∣∣ϕ(p1)ϕ(p2)ϕ(p3) e

P2s
i=1 L

(0)
3 (ai)

∣∣∣0
〉

0 loops
. (3.23)

The only Feynman diagram appearing in the tree graph order in the three
point function is depicted in figure 3.1.

p1

p2 p3

(0)W    =3
0

Figure 3.1: Three point function W
(0)
3 (p1, p2, p3). The zero situated close to

the vertex refers to the upper index of λ(0). The vertex factor is λ(0) = 1/y1.

3.3 The loop operator in propagator notation

As a prerequisite to determining the four point function, the loop operator
is applied to the quantities B0

i (p) and y1,i. This results in

δ

δV (q)
B0

i (p) = 3
B0

i (q)

y1,i

2

∮

ai

dz

2πi

B̃(p, z)

(z − ai)3/2

+
2s∑

j=1

B0
j (p)B0

j (q)

y1,j

4

∮

ai

dz

2πi

∮

aj

dz′

2πi

B̃(z, z′)

(z − ai)1/2(z − aj)1/2
. (3.24)
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The first new integral is a generalization of B0
i (p), where the power of the

denominator in eq. (3.11) is 3/2 instead of 1/2. The second new integral
requires a new definition which is given as

B0,0
i,j = 4

∮

ai

dz

2πi

∮

aj

dz′

2πi

B̃(z, z′)

(z − ai)1/2(z − aj)1/2
. (3.25)

In general, we define

Bf
i (p) = 2

∮

ai

dz

2πi

B̃(p, z)

(z − ai)f+1/2
(3.26)

Bf,g
i,j = 4

∮

ai

dz

2πi

∮

aj

dz′

2πi

B̃(z, z′)

(z − ai)f+1/2(z − aj)g+1/2
(3.27)

yf,i =

∮

ai

dz

2πi

y(z)

(z − ai)f+1/2
. (3.28)

with f, g ∈ N0 in eqs. (3.26), (3.27) and f ∈ N in eq. (3.28). When the loop
operator is applied to such expressions it can be reformulated as

∂

∂V (q)
=

∑

k,i,f

δBf
i (pk)

δV (q)

∂

∂Bf
i (pk)

+
∑

f,g,i,j

δBf,g
i,j

δV (q)

∂

∂Bf,g
i,j

+
∑

f,i

δyf,i

δV (q)

∂

∂yf,i

. (3.29)

In this way the loop operator can be subdivided into the following seven
parts [4]:

δyf,i

δV (q)
=

(
∆1(q) + ∆2(q)

)
(yf,i) (3.30)

(
∆1(q)

)
(yf,i) = (2f + 1)

yf+1,i

y1,i

B0
i (q)

(
∆2(q)

)
(yf,i) = −Bf

i (q)
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δBf
i (p)

δV (q)
=

(
∆3(q) + ∆4(q)

)
(Bf

i (p)) (3.31)

(
∆3(q)

)
(Bf

i (p)) = (2f + 1)
Bf+1

i (p)B0
i (q)

y1,i

(
∆4(q)

(
Bf

i (p)) =
2s∑

j=1

Bf,0
i,j B0

j (p)B0
j (q)

y1,j

δBf,g
i,j

δV (q)
=

(
∆5(q) + ∆6(q) + ∆7(q)

)
(Bf,g

i,j ) (3.32)

(
∆5(q)

)
(Bf,g

i,j ) = (2f + 1)
Bf+1,g

i,j B0
i (q)

y1,i

(
∆6(q)

)
(Bf,g

i,j ) = (2g + 1)
Bf,g+1

i,j B0
j (q)

y1,j

(
∆7(q)

)
(Bf,g

i,j ) =
2s∑

k=1

Bf,0
i,k Bg,0

j,k B0
k(q)

y1,k

.

Applying ∆1(q) to B0
i (p) instead of yf,i gives zero. More generally, applying

∆j(q), j = 1, . . . , 7 to an expression not noted above gives zero.

Assume that a correlator W
(0)
n with n ≥ 3 can be expressed in the quantities

(3.26), (3.27) and (3.28). For the correlator W
(0)
3 this is certainly true. Then

the above calculation in eqs. (3.30), (3.31) and (3.32) leads to the conclusion

that also W
(0)
n+1 can be expressed in these quantities.
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3.4 The correlator W
(0)
4

The application of the loop operator to the three point function results in

W
(0)
4 (p1, . . . , p4) =

δ

δV (p4)
W

(0)
3 (p1, p2, p3)

=
2s∑

i,j=1

(
B0

i (p1)B
0
i (p2)

(
1

y1,i

)
B0,0

i,j

(
1

y1,j

)
B0

j (p3)B
0
j (p4)

+ B0
i (p1)B

0
i (p3)

(
1

y1,i

)
B0,0

i,j

(
1

y1,j

)
B0

j (p2)B
0
j (p4)

+ B0
i (p1)B

0
i (p4)

(
1

y1,i

)
B0,0

i,j

(
1

y1,j

)
B0

j (p3)B
0
j (p2)

)

+
2s∑

i=1

(
−3

y2,i

y3
1,i

) 4∏

r=1

B0
i (pr) +

4∑

r=1

2s∑

i=1

(
1

y2
1,i

)
B1

i (pr)
4∏

t=1
t6=r

B0
i (pt). (3.33)

3.5 A field theory which describes the matrix

model correlators W
(0)
3 and W

(0)
4

The terms calculated in eq. (3.33) are depicted in figure 3.2.

p1

p2

p3

p4

p4 p2

p3

p4p3

p1 p2

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

0

0 0

0 0

0000

+

+

+++

+

+

(0)
4W    =

1

0

p

0

Figure 3.2: All contributions to the 4-point function W
(0)
4 (p1, p2, p3, p4). A

derivative field ∂1ϕ is indicated by one bar on the propagator.

The calculation of the four point function of the field theory with the La-
grangian Lint = L(0)

3 , which was tailored to describe the matrix model three
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point function, gives three diagrams. These three diagrams (the first three
diagrams in figure 3.2) correspond to three contributions in eq. (3.33). The
previously stated definition of the propagator for external legs (3.17) has to
be generalized to derivatives and combined with a definition of the propaga-
tor for internal legs:

(∂fϕ)i ϕ(p) = Bf
i (p) (∂fϕ)i (∂gϕ)j = Bf,g

i,j . (3.34)

Then the terms corresponding to the first three diagrams in 3.2 are described
by Lint = L(0)

3 .
For the other parts of the correlator one has to add new terms to the La-
grangian. The contributions of the matrix model four point function can
be inserted into the field theory as two different kinds of 4-point interaction
terms:

L(0)
4 (ai) = λ

(0)
(4,0),i

ϕ4
i

4!
+ λ

(0)
(3,1),i

ϕ3
i (∂ϕ)i

3!1!
. (3.35)

The first subscript α = (α0, α1) = (4, 0) or α = (3, 1) of λ(0) denotes the
structure of the legs of the interaction term. The interaction vertex consists
of α0 emanating legs with zero and α1 emanating legs with one derivative.
The coupling constants are

λ
(0)
(3,1) =

1

y2
1

and λ
(0)
(4,0) = −3

y2

y3
1

. (3.36)

Thus a generalization of statement (3.23) holds for k = 3 and k = 4:

W
(0)
k (p1, . . . , pk) =

〈
0
∣∣∣ϕ(p1) . . . ϕ(pk) e

P2s
i=1 (L

(0)
3 (ai)+L

(0)
4 (ai))

∣∣∣0
〉

0 loops
. (3.37)

3.6 A field theory which describes matrix model

correlators in planar aproximation

We will first give a generalization of the method to calculate the contribu-
tions to the Lagrangian L(0)

k . The parts of the loop operator which produce

new vertices of the kind L(0)
3 , are ∆4(q) and ∆7(q). These parts do not have

to be considered. ∆5 and ∆6 act like ∆3, but to inner instead of outer legs.
If a diagram has an internal line to which ∆5 or ∆6 could act, the diagram
cannot have the maximal number of legs—k for a k-point function—at one
single vertex. The new interactions, i.e. the terms for L(0)

k , develop only at
such diagrams, i.e. at diagrams, which only consist of one vertex. The 1-
vertex diagrams of W

(0)
k emerge only from the action of ∆1, ∆2 and ∆3. The
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vertex has α0 legs with 0 derivatives, α1 legs with 1 derivative, etc., such that∑k−3
j=0 αj = k. These derivatives are distributed arbitrarily to the external

legs. From the symmetry of the correlators it follows that the vertex factor of
such a diagram is independent of the exchange of the legs. One can explicitly
check the commutativity of the loop operators δ/δV (q) and δ/δV (p). The
legs are interchanged in such a way that eventually p1, . . . , pα0 have no deriva-
tive, pα0+1, . . . , pα0+α1 have one derivative, pα0+α1+1, . . . , pα0+α1+α2 have two
derivatives etc.. By this method ∆3 is excluded. The vertex only emerges
from the (α0−3)-fold action of ∆1 to W

(0)
3 , followed by the α1 + . . . αk−3-fold

application of ∆2 to the result:

2s∑

i=1

λ
(0)
α,iB

0
i (p1) . . . B0

i (pα0)B
1
i (pα0+1) . . . B1

i (pα0+α1)B
2
i (pα0+α1+1) . . . B2

i (pα0+α1+α2) . . .

= ∆2(pk)∆2(pk−1) . . . ∆2(pα0+1)∆1(pα0) . . . ∆1(p4)
2s∑

i=1

λ
(0)
(3),iB

0
i (p1)B

0
i (p2)B

0
i (p3). (3.38)

From this, an equation for the vertex factors can be derived [3]:

λ(0)
α =

(
k−3∏

f=1

(
− ∂

∂yf

)αf

) (
∞∑

f=1

(2f + 1)
yf+1

y1

∂

∂yf

)α0−3

λ(0) ≡ D(0)
α λ(0).

(3.39)

The above formalism is a generalization of the calculation of L(0)
4 . The next

terms are, for example,

L(0)
5 =

(
27

y2
2

y5
1

− 15
y3

y4
1

)
ϕ5

5!
+

(
−9

y2

y4
1

)
ϕ4 ∂ϕ

4!1!
+

(
2

y3
1

)
ϕ3 (∂ϕ)2

3!2!
+

(
3

1

y3
1

)
ϕ4(∂2ϕ)

4!1!
(3.40)

and

L(0)
6 =

(
−405

y3
2

y7
1

+ 450
y2y3

y6
1

− 105
y4

y5
1

)
ϕ6

6!
+

(
135

y2
2

y6
1

− 60
y3

y5
1

)
ϕ5 ∂ϕ

5!1!

+

(
−36

y2

y5
1

)
ϕ4(∂ϕ)2

4!2!
+

(
−54

y2

y5
1

)
ϕ5(∂2ϕ)

5!1!
+

(
6

1

y4
1

)
ϕ3(∂ϕ)3

3!3!

+

(
9

1

y4
1

)
ϕ4(∂ϕ)(∂2ϕ)

4!1!1!
+

(
15

1

y4
1

)
ϕ5(∂3ϕ)

5!1!
. (3.41)

The general formula for the Lagrangian L(0)
k for k ≥ 3 is

L(0)
k (ai) =

∑

α∈M
(0)
k

λ
(0)
α,i

ϕα0
i (∂1ϕ)α1

i · · · (∂k+3h−3ϕ)
αk+3h−3

i

α0! α1! · · · αk+3h−3!
(3.42)
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or, in short,

L(0)
k =

∑

α∈M
(0)
k

λ(0)
α

ϕα

α!
. (3.43)

The set M
(0)
k consists of all multi-indices α = (α0, . . . , αk−3) ∈ (N0)

k−2 which

fulfill the conditions
∑k−3

j=0 jαj ≤ k − 3 and
∑k−3

j=0 αj = k. The complete
Lagrangian at tree order is given by

L(0) = L(0)
3 + L(0)

4 + L(0)
5 + . . . . (3.44)

The conjecture that the higher correlation functions of the matrix model are
also described by a field theory, suggests itself. This is in analogy to (3.37).
The proposed formula for all k ≥ 3 is

W
(0)
k (p1, . . . , pk) =

〈
0
∣∣∣ϕ(p1) . . . ϕ(pk) e

P2s
i=1 L(0)(ai)

∣∣∣0
〉

0 loops
. (3.45)

Instead of the infinite sum L(0)(ai) in eq. (3.45), one could also insert

L(0)
3 (ai) + . . . +L(0)

k (ai). The r.h.s. of eq. (3.45) can be formulated as sum of
diagrams as in figures 3.1 and 3.2. In the latter form, without definition of a
Lagrangian, conjecture (3.45) was proved already in [3]. The proof used ar-
guments which apply only to the tree diagrams of the 1

N0 approximation. We
will prove conjecture (3.45) in chapter 9, together with similar conjectures
for higher order corrections in 1

N2 .



Chapter 4

First order radiative correction

4.1 The correlator W
(1)
1

The calculation in this subsection closely follows the arguments in [3], pub-
lished in [4]. In the recursion formula (2.52) for the case h = 1, the function

W
(0)
2 (x, x) is needed at coinciding arguments:

W
(1)
1 (p) =

2s∑

i=1

Res
x→ai

dS(p, x)

dp

1

y(x)
W

(0)
2 (x, x). (4.1)

To determine W
(0)
2 (x, x), the polynomials Pm are defined as

Pm(x) = −
s−1∑

j=1

Lj(x)

∮

Aj

dz

(z − am)
√

σ(z)
m = 1, . . . , 2s.

The explicit form of W
(0)
2 (x, x) can be derived from the formulas (2.16) and

(2.21):

W
(0)
2 (x, x) =

1

16

2s∑

i=1

1

(x − ai)2
− 1

16

2s∑

i,j=1
i6=j

1

x − ai

1

x − aj

+
1

4

2s∑

i=1

Pi(x)

x − ai

=
1

16

2s∑

i=1

1

(x − ai)2
− 1

8

2s∑

i,j=1
i6=j

1

ai − aj

1

x − ai

+
1

4

2s∑

i=1

Pi(ai)

x − ai

=
1

16

2s∑

i=1

1

(x − ai)2
+

1

4

2s∑

i=1

B0,0
i,i

x − ai

. (4.2)
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For the second equality the asymptotic relation W
(0)
2 (p, p)|p→∞ ∼ 1/p2 is

utilised. The last equality is found by a direct evaluation of the two integrals
in B0,0

i,i .

To calculate the remaining constituents of the recursion (4.1), the definitions

dS(p, [x]i) = 2 dS(p, x)
1√

x − ai

, (4.3)

B̃(p, [x]i) = 2 B̃(p, x)
√

x − ai, (4.4)

the definition (3.19) and eq. (2.21) are used to obtain

B̃(p, [x]i) =
1

4

dS(p, [x]i)

dp
+

1

2
(x − ai)∂x

dS(p, [x]i)

dp
. (4.5)

Eq. (4.5) is differentiated with respect to x. Then x is specified as x = ai,
leading to

∂ k
x

∣∣
x=ai

dS(p, [x]i)

dp
=

4k!

2k + 1
Bk

i (p). (4.6)

By using eqs. (4.6) and (4.2) in eq. (4.1), the formula

W
(1)
1 (p) =

2s∑

i=1

(
1

24

1

y1,i

B1
i (p) − 1

8

y2,i

(y1,i)2
B0

i (p) +
1

2

1

y1,i

B0,0
i,i B0

i (p)

)
(4.7)

is derived. The double pole in (4.2) leads to the first and second term in the
r.h.s of (4.7) and the single pole leads to the third term.
Fortunately, the loop equation for h = 1 produces in conjunction with eq.
(4.7) correlators of the 1/N2-correction, which, as the correlators in the pla-
nar approximation, can be expressed by the quantities (3.26), (3.27) and
(3.28). This observation is a keystone in the construction of an effective field
theory for the matrix model.

4.2 A field theory which describes the matrix

model correlators W
(1)
1 and W

(0)
k for k ≥ 3

The three terms of eq. (4.7) can be translated into the three diagrams shown
in figure 4.1. The field theory given by the Lagrangian L(0) is compared to
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p1p1p1

W    =(1)
1 2

1
0

1+ +1

Figure 4.1: All contributions to W
(1)
1 (p1). The number close to the vertex

refers to the topological index of that vertex, i.e. the upper index h of
the vertex factor λ(h). The fraction in front of the third diagram is the
inverse symmetry factor, which weights the contributions according to their
symmetry properties.

eq. (4.7).
〈
0
∣∣∣ϕ(p1) e

P2s
i=1 L(0)(ai)

∣∣∣0
〉

1 loop

=
〈
0
∣∣∣ϕ(p1)

2s∑

i=1

λ
(0)
(3),i

ϕiϕiϕi

3!

∣∣∣0
〉

1 loop
(4.8)

= 3 ϕ(p1)
2s∑

i=1

λ
(0)
(3),i

ϕi ϕi ϕi

3!
(4.9)

=
1

2

2s∑

i=1

1

y1,i

B0
i (p)B0,0

i,i . (4.10)

This calculation reveals that the tadpole diagram (third diagram in figure
4.1) is already correctly described by the field theory tailored to describe
the tree graphs. The symmetry factor of the tadpole diagram is 2 (as was
calculated in eq. (4.10)) which reflects the prefactor 1/2 for the term in eq.
(4.7). The only difference (which has to be inserted by hand) for this term

is the 1/N2 by which the matrix model correlator W
(1)
1 is related to W

(0)
3 .

At this point, the definition of the Lagrangian in sections 3.2, 3.5 and 3.6 in
conjunction with the field theory expressions (3.14), (3.37) and (3.45) pays
off. In [3], without a definition of a Lagrangian, a closed formula for the
k point correlator in the 1/N2 approximation could not be found, because
the symmetry factor of a diagram was not recognized as an overall factor
of the diagram. Instead, this factor was attached to one certain interaction
vertex of the diagram. Note that the symmetry factor of a tree diagram,
encountered in the planar approximation, is always 1.
The first two terms in eq. (4.7) are treated as new interactions in the effective
Lagrangian:
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L(1)
1 =

2s∑

i=1

λ
(1)
(1,0),i

ϕi

1!
+ λ

(1)
(0,1),i

(∂ϕ)i

1!
(4.11)

with λ
(1)
(1,0) = −1

8

y2

(y1)2
and λ

(1)
(0,1) =

1

24

1

y1

. (4.12)

The first subscripts (1, 0) and (0, 1) for λ(1) again point to the number of legs
with 0 and 1 derivatives in the interaction vertex. Under the assumption
that eq. (3.45) holds, we conclude that the correlators W

(1)
1 and W

(0)
k for

k ≥ 3 are described by the following expression:

1∑

l=0

1

N2l

〈
0
∣∣∣ϕ(p1) . . . ϕ(pk) e

P2s
i=1 (L(0)(ai)+

1
N2 L

(1)
1 (ai))

∣∣∣0
〉

l loops
. (4.13)

The evaluation of all terms in (4.13) for k = 1 which are proportional to 1/N2

gives all contributions of W
(1)
1 (p1). If the conjecture (3.45) is true, then the

evaluation of all terms in (4.13) for k ≥ 3 which are proportional to 1/N0

gives all contributions of W
(0)
k (p1, . . . , pk).

4.3 The coupling constant λ(1)

The action of the loop operator to the two vertices of L(1)
1 is reminiscent of

the action of the loop operator to the two vertices of L(0)
4 . One can guess the

form of λ(1) = λ
(1)
(0) which leads, by one application of D

(0)
α with α = (4, 0) or

α = (3, 1), to one of the two mentioned vertices of L(1)
1 . Since the number of

outgoing legs with zero derivatives in this example is neither 4 nor 3, but 1
and 0, a new, shifted operator definition is useful:

Dα =

(
k−3∏

f=1

(
− ∂

∂yf

)αf

) (
∞∑

f=1

(2f + 1)
yf+1

y1

∂

∂yf

)α0

. (4.14)

We require an expression λ(1) which fulfills the two conditions

D(1,0)λ
(1) = λ

(1)
(1,0) (4.15)

D(0,1)λ
(1) = λ

(1)
(0,1). (4.16)

The correct guess is

λ(1) = − 1

24
log y1, (4.17)

which fulfills the requirements (4.15) and (4.16).



37

4.4 The correlator W
(1)
2

Action of the loop operator to W
(1)
1 gives, after a long calculation:

W
(1)
2 (p1, p2) =
2s∑

i=1

(
3

4

y2
2,i

y4
1,i

− 5

8

y3,i

y3
1,i

)
B0

i (p1)B
0
i (p2) +

2s∑

i=1

(
−1

4

y2,i

y3
1,i

)
B1

i (p1)B
0
i (p2)

+
2s∑

i=1

(
−1

4

y2,i

y3
1,i

)
B0

i (p1)B
1
i (p2) +

2s∑

i=1

(
1

8

1

y2
1,i

)
B2

i (p1)B
0
i (p2)

+
2s∑

i=1

(
1

8

1

y2
1,i

)
B0

i (p1)B
2
i (p2) +

2s∑

i=1

(
1

24

1

y2
1,i

)
B1

i (p1)B
1
i (p2)

+
2s∑

i=1

2s∑

j=1

(
−1

8

y2,i

y2
1,i

)(
1

y1,j

)
B0,0

i,j B0
j (p1)B

0
j (p2)

+
2s∑

i=1

2s∑

j=1

(
1

24

1

y1,i

)(
1

y1,j

)
B1,0

i,j B0
j (p1)B

0
j (p2)

+
1

2

2s∑

i=1

(
−3

y2,i

y3
1,i

)
B0,0

i,i B0
i (p1)B

0
i (p2) +

1

2

2s∑

i=1

(
1

y2
1,i

)
B0,0

i,i B0
i (p1)B

1
i (p2)

+
1

2

2s∑

i=1

(
1

y2
1,i

)
B0,0

i,i B1
i (p1)B

0
i (p2) +

2s∑

i=1

(
1

y2
1,i

)
B1,0

i,i B0
i (p1)B

0
i (p2)

+
1

2

2s∑

i=1

2s∑

j=1

(
1

y1,i

) (
1

y1,j

)
B0,0

i,i B0,0
i,j B0

j (p1)B
0
j (p2)

+
1

2

2s∑

i=1

2s∑

j=1

(
1

y1,i

) (
1

y1,j

)
B0

i (p1)B
0,0
i,j B0,0

i,j B0
j (p2) (4.18)

The reason to pull out the factor 1/2 in the terms number 9, 10, 11, 13 and
14 is to reproduce the known interaction terms for tree graphs (3.36) and
(3.22).
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4.5 A field theory which describes the matrix

model correlator W
(1)
k for k = 1, 2 and W

(0)
k

for k ≥ 3

The search for further known terms in W
(1)
2 results in the identification of

some factors in the terms 7 and 8 on the r.h.s. of eq. (4.18) as λ
(1)
(1,0),i

and λ
(1)
(0,1),i. The diagrams correponding to terms 1 to 6 in eq. (4.18) are

not predicted by the two point function with the Lagrangian L(0) + 1
N2L(1)

1 .
These interactions, emerging from the action of the loop operator, have to
be added to the Lagrangian:

L(1)
2 =

(
3

4

y2
2

y4
1

− 5

8

y3

y3
1

)
ϕ2

2!
+

(
−1

4

y2

y3
1

)
ϕ (∂ϕ)

1!1!
+

(
1

24

1

y2
1

)
(∂ϕ)2

2!
+

(
1

8

1

y2
1

)
ϕ (∂2ϕ)

1!1!
.

(4.19)

The evaluation of

1∑

l=0

1

N2l

〈
0
∣∣∣ϕ(p1) . . . ϕ(pk) e

P2s
i=1 (L(0)(ai)+

1
N2 L

(1)
1 (ai))+

1
N2 L

(1)
2 (ai))

∣∣∣0
〉

l loops
.

(4.20)
for k = 2 and the term proportional to 1/N2 exactly gives the terms noted
in figure 4.2. The term for k = 1 in this expression which is proportional
to 1/N2 is exactly W

(1)
1 (p1), the terms which are proportional to 1/N0 for

k ≥ 3 are under the assumption of (3.45) W
(0)
k (p1, . . . , pk).

The term represented by the third diagram in the third line of figure 4.2, for
example, is given by:

1

2

2s∑

i=1

λ
(0)
(3,1),iB

1
i (p1)B

0
i (p2)B

0,0
i,i .

The weights in front of the diagrams in the third and fourth line are de-
termined as in eq. (4.10). These factors are the inverse symmetry factors of
the diagrams.

A comparison of eq. (4.18) and terms of figure 4.2 leads to the result that

the matrix model correlator W
(1)
2 is described by the field theory eq. (4.20).
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1
2

1
2

1
2

1
2

1
2

p1 p2 p1 p2 p1 p2 p1 p2

p1 p2

p1 p2

p1 p2

p1 p2

p1 p2

p1 p2

p1 p2

p1 p2

p1 p2

p1 p2
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+
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+

+

W    =2
(1)
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 0  0

Figure 4.2: All contributions to W
(1)
2 (p1, p2).

4.6 A field theory which describes the matrix

model correlators W
(1)
k for k ∈ N and W

(0)
k

for k ≥ 3

The new terms emerging in the Lagrangian can be traced back by the oper-
ator Dα from eq. (4.14) to only one constant which was already given in eq.
(4.17). The general form of the Lagrangian is

L(1)
k =

∑

α∈M
(1)
k

λ(1)
α

ϕα

α!
, (4.21)

where the set M
(1)
k consists of all multi-indices α = (α0, . . . , αk) ∈ (N0)

k+1

which fulfill the conditions
∑k

j=0 jαj ≤ k and
∑k

j=0 αj = k. The coupling
constants are given by

λ(1)
α = Dαλ(1). (4.22)

The complete Lagrangian at order 1 is

L(1) = L(1)
1 + L(1)

2 + L(1)
3 + . . . . (4.23)
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A natural conjecture is, that the expression

1∑

l=0

1

N2l

〈
0
∣∣∣ϕ(p1) . . . ϕ(pk) e

P2s
i=1 (L(0)(ai)+

1
N2 L

(1)(ai))
∣∣∣0

〉
l loops

(4.24)

describes with its terms proportional to 1/N2 for k ≥ 1 the matrix model

correlator W
(1)
k and with its terms proportional to 1/N0 the matrix model

correlator W
(0)
k for k ≥ 3. This conjecture will be proved in chapter 9.



Chapter 5

Higher order radiative corrections

5.1 Residue calculation

The residue calculation in eq. (4.7) for the correlator W
(1)
1 is generalized for

higher orders in 1/N2. The calculation in this subsection closely follows [3].
It is assumed that for a certain order h ≥ 1 the correlators can be written as

W
(h)
1 (x) =

∑

i,f

Bf
i (x)ω

(h)
1 (i, f) (5.1)

and

W
(h)
k (x, x, . . . , x) =

∑

i1,...,ik
f1,...,fk

Bf1

i1
(x) · · ·Bfk

ik
(x)ω

(h)
k (i1, f1; . . . ; ik, fk) for k ≥ 2.

(5.2)

Note that ω
(h)
k does not depend on x. For the order h = 1 the assumption

in eqs. (5.1) and (5.2) is true as shown by eq. (4.7), eq. (4.18) and the
(k − 2)-fold application of the loop operator to the r.h.s. of eq. (4.18). As
the result at the end of this section will show, this assumption also holds
for the higher order h + 1. The integration in eq. (2.52) only concerns the
x-dependent parts:

Res
x→ai

dS(p, x)

dp

1

y(x)
Bf

j (x)Bg
k(x).

This integral is calculated for arbitrary integer values f and g and the special
case i = j = k, which is the most complex case. The result for the less
complex cases is given at the end of this subsection. From equations (3.26)

41
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and Cauchy’s integral representation, it follows that

Res
x→ai

dS(p, x)

dp

1

y(x)
Bf

i (x)Bg
i (x)

=

∮

ai

dx

2πi

dS(p, x)

dp y(x)
2

∮

ai

dw

2πi

B̃(w, x)

(w − ai)f+1/2
2

∮

ai

dv

2πi

B̃(v, x)

(v − ai)g+1/2
. (5.3)

By definition, the contour for x is positioned outside the contours for w and
v. When the outer contour x is pushed through the contours for v and w,
the double poles in B̃(w, x) and B̃(v, x) result in two additional terms:

(5.3) = 4

∮

ai

dw

2πi

1

(w − ai)f+1/2

∮

ai

dv

2πi

1

(v − ai)g+1/2

∮

ai

dx

2πi

dS(p, x)

dp y(x)
B̃(w, x)B̃(v, x)

+ 4

∮

ai

dw

2πi

1

(w − ai)f+1/2

∮

ai

dv

2πi

1

(v − ai)g+1/2

(
1

2
∂w

(
dS(p, w)

dp y(w)
B̃(w, v)

)

+
1

2
∂v

(
dS(p, v)

dp y(v)
B̃(v, w)

))
.(5.4)

The first term on the r.h.s, denoted as (5.4a), contains an integration in x
which can be solved easily because the integrand has a simple pole at x = ai.
By using (4.6) we obtain

(5.4a) =
1

2

B0
i (p)Bf,0

i,i Bg,0
i,i

y1,i

.

The two further terms terms on the r.h.s. of (5.4), denoted (5.4b) and (5.4c),
become after partial integration

(5.4b) = (2f + 1)

∮

ai

dw

2πi

1

(w − ai)f+3/2

∮

ai

dv

2πi

1

(v − ai)g+1/2

dS(p, w)

dp

B̃(w, v)

y(w)

(5.5)
and

(5.4c) = (2g + 1)

∮

ai

dw

2πi

1

(w − ai)f+1/2

∮

ai

dv

2πi

1

(v − ai)g+3/2

dS(p, v)

dp

B̃(v, w)

y(v)
.

(5.6)
The integral in v in eq. (5.6) can be calculated with eq. (4.6) and gives

(5.6) = (g +
1

2
)

∑

k+r+t=g+1

1

2k + 1
Bk

i (p)Bf,r
i,i Zt,i (5.7)
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where

Zt,i =
∂ t

x

t!

1

y([x]i)

∣∣∣∣
x=ai

. (5.8)

By interchanging the w and the v contours in (5.5) one obtains one term
from the pole at w = v and a term similar to (5.7):

(5.5) = (f +
1

2
)

∑

k+r+t=f+1

1

2k + 1
Bk

i (p)Bg,r
i,i Zt,i

+
1

2
(2f + 1)(2g + 1)

∑

k+l=f+g+2

1

2k + 1
Bk

i (p)Zl,i. (5.9)

The result of the preceding calculations, i.e. eqs. (5.4a), (5.7) and (5.9)
and the analogous calculations for the case of non-coinciding indices can be
summarized as

Res
x→ai

dS(p, x)

dp y(x)
Bf

j (x)Bg
k(x)

=
1

2
Bf,0

j,i

B0
i (p)

y1,i

B0,g
i,k

+ δk,i(g +
1

2
)

∑

r+m+t=g+1

1

2r + 1
Br

i (p)Bf,m
j,i Zt,i

+ δj,i(f +
1

2
)

∑

r+m+t=f+1

1

2r + 1
Br

i (p)Bg,m
k,i Zt,i

+ δk,iδj,i
1

2
(2g + 1)(2f + 1)

∑

r+l=f+g+2

1

2r + 1
Br

i (p)Zl,i (5.10)

with

Zn =
∑

k1+...+kn=k
P

j jkj=n

(−)kk!

k1! · · · kn!

1

(y1)k+1

n∏

l=1

(y1+l)
kl =

n∑

k=0

Z
[k]
n

(y1)k+1
. (5.11)

The expression Zn,i can be obtained from the expression Zn by substituting
each yf for yf,i. This corresponds to specifying the general coordinate x as
x = ai.
Provided that eq. (5.1) and eq. (5.2) are valid for order h, eq. (5.10) shows
that eq. (5.1) also holds for the higher order h + 1. Then the (k − 1)-fold
action of the loop operator confirms that eq. (5.2) also holds for the higher
order h + 1. This method can be applied with these arguments to all orders.
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5.2 Some diagrams of W
(2)
1

The field theory with the Lagrangian Lint = L(0) + 1
N2L(1) predicts many

diagrams at the order 1/N4 from equation

2∑

l=0

1

N2l

〈
0
∣∣∣ϕ(p1) e

P2s
i=1 Lint(ai)

∣∣∣0
〉

l loops
. (5.12)

All of them—judging by their form—appear in the matrix model correlator
W

(2)
1 determined by the loop equation. The loop equation in addition gives

more diagrams which are not predicted by the Lagrangian until now. How
the Lagrangian will be enhanced by these contributions will be described in
section 5.3. Now we concentrate on several examples of diagrams appearing
in eq. (5.12) and in the correlator W

(2)
1 .

The relevant loop equation (2.52) for the correlator W
(2)
1 is

W
(2)
1 (p) =

2s∑

i=1

Res
x→ai

dS(p, x)

dp

1

y(x)

(
W

(1)
1 (x)W

(1)
1 (x) + W

(1)
2 (x, x)

)
. (5.13)

In figures 5.1, 5.2 and 5.3 three diagrams are depicted which emerge from eq.

(5.13) by the first term on the r.h.s., 1
2
Bf,0

j,i
B0

i (p)

y1,i
B0,g

i,k , of equation (5.10). W
(1)
1

has three terms, so one can expect to obtain about nine diagrams from the
first part of eq. (5.13) when restricting only to the first term on the r.h.s. of
eq. (5.10). Three of these nine expected diagrams turn out to coincide with
three other diagrams so that the number of different diagrams is only six.
Three of them are depicted in figures 5.1, 5.2 and 5.3.

5.2.1 Matrix model calculation for diagram D1

In figure 5.1, one diagram emerging from eq. (5.13) via the first term on the
r.h.s. of eq. (5.10) is depicted. The diagram, D1, arises from the multipli-
cation of the first diagram in figure 4.1 with itself. As indicated in front of
the diagram, the prefactor of this contribution is 1/2. The diagram, together
with its prefactor, represents the contribution

q =
1

2

2s∑

i,j,k=1

λ
(0)
(3,0),iλ

(1)
(1,0),jλ

(1)
(1,0),kB

0
i (p1)B

0,0
i,j B0,0

i,k . (5.14)

The combination of the first diagram in figure 4.1 with itself appears once
in the summation

∑h−1
j=1 W

(j)
1 W

(h−j)
1 for h = 2. To obtain the prefactor of
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2
1

D1

1

p1

1

0

Figure 5.1: diagram D1 from W
(2)
1 .

D1, one has to multiply the factor 1/2 from the first term on the r.h.s. of

eq. (5.10) with the prefactors of the preimage diagrams from W
(1)
1 , which

are both 1, and with the number of occurences in the summation, which is
1, giving in total 1/2.

The vertex factor at the vertices with a topological index of one do not change
in the procedure. The vertex factor of the newly created vertex is 1/y1, which

is exactly the vertex factor of L(0)
3 .

5.2.2 Field theory calculation for diagram D1

Via the number of Wick contractions, the field theory with the Lagrangian
Lint = L(0) + 1

N2L(1) predicts a certain inverse symmetry factor for diagram
D1. This inverse symmetry factor is calculated in the following. It can
be compared to the prefactor of D1 calculated in the previous subsection.
The evaluation of expression (5.12) with respect to diagram D1, i.e. the
projection of (5.12) on the term belonging to diagram D1, is denoted by the
subscript D1 in (5.15). In the Gell-Mann-Low series the exponential in (5.12)

is expanded to receive a contribution from L(0)
3 · L(1)

1 · L(1)
1 . This leads, since

L(0)
3 appears once and L(1)

1 appears twice, to the factor 1
1!2!

. These factorials
in eq. (5.16) are denoted Gell-Mann-Low factorials. The number of possible
Wick contractions in this diagram is calculated in eq. (5.17). There are 3

possible ways to contract ϕ(p1) with one field from L(0)
3 and then, one can

assign to ϕk one of the two remaining fields ϕi leading to a factor 2.
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〈
0
∣∣∣ϕ(p1)e

P2s
i=1(L(0)(ai)+

1
N2 L

(1)(ai))
∣∣∣0

〉
D1

(5.15)

=
1

N4

1

1!2!

〈
0
∣∣∣ϕ(p1)

2s∑

i,j,k=1

L(0)
3 (ai)L(1)

1 (aj)L(1)
1 (ak)

∣∣∣0
〉

D1

(5.16)

=
1

N4

1

1!2!

2s∑

i,j,k=1

λ
(0)
(3,0),iλ

(1)
(1,0),jλ

(1)
(1,0),k ϕ(p1)

ϕi ϕiϕi

3!

ϕj

1!

ϕk

1!
· 3 · 2 (5.17)

=
1

N4

1

2

2s∑

i,j,k=1

λ
(0)
(3,0),iλ

(1)
(1,0),jλ

(1)
(1,0),k ϕ(p1) ϕi ϕj ϕi ϕk ϕi (5.18)

This results in an inverse symmetry factor 1/2 in eq. (5.18).

5.2.3 Matrix model calculation for diagram D2

In figure 5.2, another diagram emerging from eq. (5.13) by the application of
the first term on the r.h.s. of eq. (5.10) is depicted. The diagram, D2, arises

2
1

D2

p1

01

0

Figure 5.2: diagram D2 from W
(2)
1 .

from the multiplication of the first with the third diagram in figure 4.1. As
indicated in front of the diagram, the prefactor of this contribution is 1/2.
The combination of the first with the third diagram in figure 4.1 appears
twice in the summation

∑h−1
j=1 W

(j)
1 W

(h−j)
1 for h = 2. To obtain the prefactor

of D2, one has to multiply the factor 1/2 from the first term on the r.h.s. of

eq. (5.10) with the prefactors of the preimage diagrams from W
(1)
1 , which

are 1 and 1/2, and with the number of occurences in the summation, which
is 2, giving in total 1/2.
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The vertex factors at the vertex with the loop and at the vertex with topo-
logical index one do not change in the procedure. The vertex factor of the
newly created vertex is 1/y1, which is exactly the vertex factor of L(0)

3 .

5.2.4 Field theory calculation for diagram D2

This subsection is concerned with the following question: What is the inverse
symmetry factor of diagram D2? The expression (5.12) is evaluated with
respect to diagram D2 in (5.19). The exponential in the Gell-Mann-Low

series is expanded to receive a contribution from L(0)
3 · L(0)

3 · L(1)
1 . This leads,

since L(0)
3 appears twice and L(1)

1 appears once, to the factor 1
2!1!

in eq. (5.20).
The number of possible Wick contractions in this diagram is calculated in eq.
(5.21). There are 2 ·3 possible ways to contract ϕ(p1) with one field from one

of the two L(0)
3 . One can then contract one of the two remaining fields at this

vertex with L(1)
1 , which gives a factor 2. The other L(0)

3 can be connected in
3 different ways to this construction. The contraction belonging to the two
fields of the loop is then fixed.

〈
0
∣∣∣ϕ(p1)e

P2s
i=1(L(0)(ai)+

1
N2 L

(1)(ai))
∣∣∣0

〉
D2

(5.19)

=
1

N4

1

2!1!

〈
0
∣∣∣ϕ(p1)

2s∑

i,j,k=1

L(0)
3 (ai)L(1)

1 (aj)L(0)
3 (ak)

∣∣∣0
〉

D2

(5.20)

=
1

N4

1

2!1!

2s∑

i,j,k=1

λ
(0)
(3,0),iλ

(1)
(0,1),jλ

(0)
(3,0),k ϕ(p1)

ϕi ϕiϕi

3!

(∂ϕ)j

1!

ϕkϕkϕk

3!
· (2 · 3) · 2 · 3 (5.21)

=
1

N4

1

2

2s∑

i,j,k=1

λ
(0)
(3,0),iλ

(1)
(0,1),jλ

(0)
(3,0),k ϕ(p1) ϕi (∂ϕ)j ϕi ϕk ϕi ϕk ϕk (5.22)

This results in an inverse symmetry factor 1/2 in eq. (5.22).

5.2.5 Matrix model calculation for diagram D3

In figure 5.3, another diagram emerging from eq. (5.13) via the first term
on the r.h.s. of eq. (5.10) is depicted. The diagram, D3, arises from the
multiplication of the third diagram in figure 4.1 with itself. As indicated in
front of the diagram, the prefactor of this contribution is 1/8.
The combination of the third diagram in figure 4.1 with itself appears once
in the summation

∑h−1
j=1 W

(j)
1 W

(h−j)
1 for h = 2. To obtain the prefactor of
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8
1

D3

p1

0

0 0

Figure 5.3: diagram D3 from W
(2)
1 .

D3, one has to multiply the factor 1/2 from the first term on the r.h.s. of eq.

(5.10) with the prefactors of the preimage diagrams from W
(1)
1 , which are

1/2 and 1/2, and with the number of occurences in the summation, which is
1, giving in total 1/8.

The vertex factors at the vertices with the loops do not change in the proce-
dure. The vertex factor of the newly created vertex is 1/y1, which is exactly

the vertex factor of L(0)
3 .

5.2.6 Field theory calculation for diagram D3

The inverse symmetry factor of diagram D3 is calculated in the following.
The expression (5.12) is evaluated with respect to diagram D3 in (5.23). The
exponential in the Gell-Mann-Low series is expanded to receive a contribution
from L(0)

3 · L(0)
3 · L(0)

3 . This leads, since L(0)
3 appears three times, to the factor

1
3!

in eq. (5.24). The number of possible Wick contractions is calculated in
eq. (5.25). There are 3 · 3 possible ways to contract ϕ(p1) with one field

from one of the three L(0)
3 . Then, in each of the remaining two L(0)

3 one
can choose one of 3 possiblilities to connect these vertices to the rest of the
diagram. A factor 2 arises from choosing one of two remaining fields in the
vertex connected to p1. The two contractions belonging to the four fields of
the loops are then fixed.
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〈
0
∣∣∣ϕ(p1)e

P2s
i=1(L(0)(ai)+

1
N2 L

(1)(ai))
∣∣∣0

〉
D3

(5.23)

=
1

N4

1

3!

〈
0
∣∣∣ϕ(p1)

2s∑

i,j,k=1

L(0)
3 (ai)L(0)

3 (aj)L(0)
3 (ak)

∣∣∣0
〉

D3

(5.24)

=
1

N4

1

3!

2s∑

i,j,k=1

λ
(0)
(3,0),iλ

(0)
(3,0),jλ

(0)
(3,0),k ϕ(p1)

ϕi ϕiϕi

3!

ϕjϕjϕj

3!

ϕkϕkϕk

3!
· (3 · 3) · 3 · 3 · 2 (5.25)

=
1

N4

1

8

2s∑

i,j,k=1

λ
(0)
(3,0),iλ

(0)
(3,0),jλ

(0)
(3,0),k ϕj ϕj ϕj ϕi ϕ(p1) ϕi ϕi ϕk ϕk ϕk (5.26)

This results in an inverse symmetry factor 1/8 in eq. (5.26).

5.2.7 Matrix model calculation for diagram D4

The three examples considered up to now, D1, D2 and D3, have in common
that they emerged from the first part of eq. (5.13) via the first term on the
r.h.s. of eq. (5.10). In figure 5.4, another diagram, D4, which is similar to D3,
is considered. Such a diagram, i.e. a contribution with these propagators,
emerges from both parts of eq. (5.13) by the second and third term on the
r.h.s. of eq. (5.10). The calculation of the vertex factor, which arises at

1
4

p1

0
0

D4

Figure 5.4: diagram D4 from W
(2)
1 .

the new vertex, is more complicated than in the previous examples. From
the part W

(1)
1 W

(1)
1 in eq. (5.13) (more precisely, from the combination of the

third diagram in figure 4.1 with itself) a contribution q1 to diagram D4 arises
due to the second and third term of eq. (5.10). The inverse symmetry factors

of these preimage diagrams from W
(1)
1 are 1/2 and 1/2. Since the second and

the third term on the r.h.s. of eq. (5.10) each give 1
2
Z1, and the vertex factor
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of the third diagram in figure 4.1 is equal to 1/y1, the contribution q1 from
this part is

q1 =
1

2

1

2

(
1

2
+

1

2

)
Z1

1

y1

. (5.27)

From the part W
(1)
2 in eq. (5.13) (more precisely, from the first diagram in

the fourth line of figure 4.2) a contribution q2 to diagram D4 arises due to the
second and third term of eq. (5.10). The symmetry factor of this diagram is
1/2. Since the second and the third term of eq. (5.10) each give 1

2
Z1, and

the vertex factor of the first diagram in the fourth line of figure 4.2 is equal
to 1/y1, the contribution q2 from this part is

q2 =
1

2

(
1

2
+

1

2

)
Z1

1

y1

. (5.28)

The sum q of these contributions is the product of the prefactor of the di-
agram D4 and the vertex factor of the vertex connected to p1. One could
define the prefactor of D4 as 1, then the vertex factor at the new vertex
would be

q = q1 + q2 = −3

4

y2

(y1)3
. (5.29)

However, since this vertex factor is related to a previously defined vertex
factor from eq. (3.36) by

−3

4

y2

(y1)3
=

1

4
λ

(0)
(4,0), (5.30)

we define the prefactor of D4 as 1/4 and the vertex factor of the new vertex

as λ
(0)
(4,0). The fact that the known vertex factor λ

(0)
(4,0) appears in this higher

order correction is the crucial point in the construction of an effective field
theory. The next subsection deals only with the prefactor of the diagram,
because it has been shown by the above calculation that the vertex factor
at the newly created vertex is given by L(0)

4 . Note that the new vertex fac-
tor is not only identical to one of the previously calculated vertex factors,
but, as demanded by the field theory, it exactly describes by its lower index
(α0, α1) = (4, 0) the diagram D4 close to the vertex connected to p1. 4 legs
with zero derivatives and 0 legs with one derivative emanate from this vertex.

5.2.8 Field theory calculation for diagram D4

Via the number of Wick contractions, the field theory predicts an inverse
symmetry factor for diagram D4. The expression (5.12) is evaluated with
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respect to diagram D4 in (5.31). The exponential in the Gell-Mann-Low

series is expanded to receive a contribution from L(0)
3 · L(0)

4 . This leads, since

L(0)
4 and L(0)

3 appear only once, to the factor 1
1!1!

in eq. (5.32). The number
of possible Wick contractions is calculated in eq. (5.33). There are 4 possible

ways to contract ϕ(p1) with one field from L(0)
4 . From the remaining 3 fields

in L(0)
4 , one is chosen for the connection to L(0)

3 . For the same contraction,

there are 3 possibilities to chose a field from L(0)
3 . The two contractions

representing the loops are then fixed.

〈
0
∣∣∣ϕ(p1)e

P2s
i=1(L(0)(ai)+

1
N2 L

(1)(ai))
∣∣∣0

〉
D4

(5.31)

=
1

N4

1

1!1!

〈
0
∣∣∣ϕ(p1)

2s∑

i,k=1

L(0)
3 (ai)L(0)

4 (ak)
∣∣∣0

〉
D4

(5.32)

=
1

N4

1

1!1!

2s∑

i,k=1

λ
(0)
(3,0),iλ

(0)
(4,0),k ϕ(p1)

ϕi ϕi ϕi ϕi

4!

ϕk ϕk ϕk

3!
· 4 · 3 · 3 (5.33)

=
1

N4

1

4

2s∑

i,k=1

λ
(0)
(3,0),iλ

(0)
(4,0),k ϕ(p1) ϕi ϕi ϕi ϕi ϕk ϕk ϕk. (5.34)

This results in an inverse symmetry factor 1/4 in eq. (5.34).

5.2.9 Matrix model calculation for diagram D5

In figure 5.5 another diagram emerging from eq. (5.13) by the first term on
the r.h.s. of eq. (5.10) is depicted. This diagram, D5, receives, contrary to

the previous examples, no contribution from the part W
(1)
1 W

(1)
1 in eq. (5.13).

The sole contribution to D5 arises from the part W
(1)
2 in eq. (5.13) (more

1
2

D5
0

p1

0

1

Figure 5.5: diagram D5 from W
(2)
1 .
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precisely, from the third diagram in the second line of figure 4.2).
As indicated in front of diagram D5 in figure 5.5, the prefactor of this con-
tribution is 1/2. This prefactor results from the multiplication of the factor
1/2 in front of the first term on the r.h.s. of eq. (5.10) with the prefactor

of the third diagram in the second line of figure 4.2 from W
(1)
2 , which is 1,

giving in total 1/2.
The vertex factor at the vertex with topological index one does not change in
the procedure. The vertex factor of the newly created vertex is 1/y1, which

is exactly the vertex factor of L(0)
3 .

5.2.10 Field theory calculation for diagram D5

This subsection deals with the following question: What is the inverse sym-
metry factor of diagram D5? The expression (5.12) is evaluated with respect
to diagram D5 in (5.35). The exponential in the Gell-Mann-Low series is

expanded to receive a contribution from L(0)
3 · L(0)

3 · L(1)
1 . This leads, since

L(0)
3 appears twice and L(1)

1 appears once, to the factor 1
2!1!

in eq. (5.36). The
number of possible Wick contractions is calculated in eq. (5.37). There are

2 · 3 possible ways to contract ϕ(p1) with one field from one of the two L(0)
3 .

Then, there are 3 possible ways to contract the other L(0)
3 with L(1)

1 . The
remaining two contractions can now be chosen in 2 different ways.

〈
0
∣∣∣ϕ(p1)e

P2s
i=1(L(0)(ai)+

1
N2 L

(1)(ai))
∣∣∣0

〉
D5

(5.35)

=
1

N4

1

2!1!

〈
0
∣∣∣ϕ(p1)

2s∑

i,j,k=1

L(0)
3 (ai)L(0)

3 (aj)L(1)
1 (ak)

∣∣∣0
〉

D5

(5.36)

=
1

N4

1

2!1!

2s∑

i,j,k=1

λ
(0)
(3,0),iλ

(0)
(3,0),jλ

(1)
(1,0),k ϕ(p1)

ϕi ϕiϕi

3!

ϕjϕjϕj

3!

ϕk

1!
· (2 · 3) · 3 · 2 (5.37)

=
1

N4

1

2

2s∑

i,j,k=1

λ
(0)
(3,0),iλ

(0)
(3,0),jλ

(1)
(1,0),k ϕ(p1) ϕi ϕi ϕj ϕi ϕj ϕj ϕk (5.38)

This results in an inverse symmetry factor 1/2 in eq. (5.38).

5.2.11 Matrix model calculation for diagram D6

The examples considered up to now have in common that they only used
the first, second and third term on the r.h.s. of eq. (5.10). In figure 5.6
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the diagram D6 is depicted. As indicated by the absence of a fraction in
front of D6 in figure 5.6, the prefactor of this diagram is 1. Such a diagram
(i.e. a contribution with these propagators) emerges from eq. (5.13) by the
application of the second, third and fourth term on the r.h.s. of eq. (5.10).
The calculation of the vertex factor, which arises at the new vertex, is more

p1

1
1

D6

Figure 5.6: diagram D6 from W
(2)
1 .

complicated than in the examples D1, D2, D3 and D5.
Three contributions to diagram D6 arise from the part W

(1)
1 W

(1)
1 in eq. (5.13).

The first, denoted q1, emerges from the combination of the first diagram of
figure 4.1 with itself. The contribution q2 emerges from the combination of
the first diagram with the second diagram of figure 4.1, whereas q3 arises
from the combination of the second diagram with the first diagram of figure
4.1. A fourth contribution, denoted q4, emerges from the third diagram in
the second line of figure 4.2.
In the following calculation we will concentrate on the contribution q1:

W
(2)
1 (p1) =

(
2s∑

i=1

Res
x→ai

dS(p, x)

dp

1

y(x)
W

(1)
1 (x)W

(1)
1 (x)

)
+ . . .

=

([
2s∑

i=1

Res
x→ai

dS(p, x)

dp

1

y(x)

2s∑

j=1

λ
(1)
(1,0),jB

0
j (x)

2s∑

k=1

λ
(1)
(1,0),kB

0
k(x)

]
+ . . .

)
+ . . .

=

([
∑

i,j

1

2
B0

i (p1)B
0,0
j,i Z1,iλ

(1)
(1,0),jλ

(1)
(1,0),i

+
∑

i,k

1

2
B0

i (p1)B
0,0
k,i Z1,iλ

(1)
(1,0),iλ

(1)
(1,0),k + . . .

]
+ . . .

)
+ . . . . (5.39)

The third line of eq. (5.39) only evaluates the second and third term on the
r.h.s. of eq. (5.10), because only these terms lead to diagram D6. Then the
contribution q1 to the product of the prefactor and the vertex factor is

q1 =
1

2
Z1λ

(1)
(1,0) · 2. (5.40)
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In a similar way, we determine

q2 =
3

2
Z2λ

(1)
(0,1) = q3. (5.41)

For q2 and q3, either the second or the third term on the r.h.s. of eq. (5.10)
is used. In the following calculation we will concentrate on the contribution
q4:

W
(2)
1 (p1) =

(
2s∑

i=1

Res
x→ai

dS(p, x)

dp

1

y(x)
W

(1)
2 (x, x)

)
+ . . .

=

([
2s∑

i=1

Res
x→ai

dS(p, x)

dp

1

y(x)

2s∑

j=1

2s∑

m=1

λ
(0)
(3,0),jλ

(1)
(1,0),mB0,0

j,mB0
j (x)B0

j (x)

]
+ . . .

)
+ . . .

=

([
∑

i,m

1

2
B0

i (p1)Z2,iλ
(0)
(3,0),iλ

(1)
(1,0),mB0,0

i,m + . . .

]
+ . . .

)
+ . . . . (5.42)

The last identity in eq. (5.42) only evaluates the fourth term on the r.h.s. of
eq. (5.10), because only this term leads to diagram D6. Then the contribu-
tion q4 to the product of the prefactor and the vertex factor is

q4 =
1

2
Z2λ

(0)
(3,0). (5.43)

The total contribution q is given by

q = q1 + q2 + q3 + q4 =
3

4

(y2)
2

(y1)4
− 5

8

y3

(y1)3
. (5.44)

This expression is related to a previously defined coupling constant from eq.
(4.19):

3

4

(y2)
2

(y1)4
− 5

8

y3

(y1)3
= 1 · λ(1)

(2,0). (5.45)

The fact that the known vertex factor λ
(1)
(2,0) appears in this higher order cor-

rection is the crucial point in the construction of an effective field theory.
The next subsection deals only with the prefactor of the diagram, because it
has been shown by the above calculation that the vertex factor at the newly
created vertex is given by L(1)

2 . Note that the new vertex factor is not only
identical to one of the previously calculated vertex factors, but, as demanded
by the field theory, it exactly describes by its lower index (α0, α1) = (2, 0)
the diagram D6 close to the vertex connected to p1. 2 legs with zero deriva-
tives and 0 legs with one derivative emanate from this vertex. The calculated
multiplicity of this vertex factor, which is 1 in this case, is the prefactor of
the diagram.
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5.2.12 Field theory calculation for diagram D6

We shall now calculate the inverse symmetry factor of diagram D6. The
expression (5.12) is evaluated with respect to diagram D6 in (5.46). The
exponential in the Gell-Mann-Low series is expanded to receive a contribution
from L(1)

2 · L(1)
1 . This leads, since L(1)

2 and L(1)
1 appear once, to the factor 1

1!1!

in eq. (5.47). The number of possible Wick contractions is calculated in eq.

(5.48). There are 2 possible ways to contract ϕ(p1) with one field from L(1)
2 .

The contraction L(1)
2 with L(1)

1 is then fixed.

〈
0
∣∣∣ϕ(p1)e

P2s
i=1(L(0)(ai)+

1
N2 L

(1)(ai))
∣∣∣0

〉
D6

(5.46)

=
1

N4

1

1!1!

〈
0
∣∣∣ϕ(p1)

2s∑

i,k=1

L(0)
2 (ai)L(1)

1 (ak)
∣∣∣0

〉
D6

(5.47)

=
1

N4

1

1!1!

2s∑

i,k=1

λ
(1)
(2,0),iλ

(1)
(1,0),k ϕ(p1)

ϕiϕi

2!

ϕk

1!
· 2 (5.48)

=
1

N4

2s∑

i,k=1

λ
(1)
(2,0),iλ

(1)
(1,0),k ϕ(p1) ϕi ϕi ϕk (5.49)

This results in an inverse symmetry factor 1 in eq. (5.49).

5.2.13 Summary

In the examples D1, D2, . . ., D6 we have seen that the vertex factors which
emerge by the matrix model calculation are those predicted by the field
theory with the Lagrangian Lint = L(0) + 1

N2L(1). In addition, the prefactor
of each of these example diagrams, determined by matrix model calculations,
is equal to the inverse symmetry factor calculated by field theory methods.
From this, we can conjecture that this equality of inverse symmetry factors
and prefactors holds for all diagrams of W

(2)
1 . This conjecture will be proved

in chapters 8 and 9.
In addition to this important observation, we can learn more from these
examples. The first term on the r.h.s. of eq. (5.10) leads to simple prefactor
calculations as was the case for diagrams D1, D2, D3 and D5. These diagrams
can be directly associated either to a combination of two diagrams from W

(1)
1

or to one diagram from W
(1)
2 . The first term on the r.h.s. of eq. (5.10) merges

two diagrams from W
(1)
1 or the two free ends of a diagram from W

(1)
2 into a

new diagram by an additional vertex of topological index 0 with 3 emanating
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lines.
On the other hand, the second and third term on the r.h.s. of eq. (5.10) lead
to a complex prefactor calculation as was the case for diagrams D4 and D6.
These diagrams are associated with several contributions. In the creation of
a diagram via the second and third term on the r.h.s. of eq. (5.10) one edge
shrinks to zero compared to the creation of a diagram via the first term. The
two vertices of that edge are fused into one new vertex. This can be observed
in the comparison of diagram D3 in figure 5.3 with diagram D4 in figure 5.4.
It can also be observed in the comparison of diagram D1 in figure 5.1 with
diagram D6 in figure 5.6.
The fourth term on the r.h.s. of eq. (5.10), as in diagram D6, also leads to
a complex prefactor calculation. D6 is associated with several contributions.
In the creation of a diagram via the fourth term on the r.h.s. of eq. (5.10)
two edges shrink to zero compared to the creation of a diagram via the first
term. This can be observed in the comparison of diagram D5 in figure 5.5
with diagram D6 in figure 5.6.

5.3 The Lagrangian L(2)
1

The Lagrangian L(2)
1 is constructed in analogy to the construction of the

Lagrangian L(1)
1 in eq. (4.11). Many diagrams, in particular all diagrams from

the previous section, are correctly described by the field theory with Lint =
L(0)+ 1

N2L(1). These diagrams are reminiscent of the tadpole diagram in W
(1)
1

(third diagram in figure 4.1) which is correctly described by the field theory

with Lint = L(0). However, in the case of the two other diagrams in W
(1)
1 (first

and second diagram in figure 4.1), the new part of the Lagrangian L(1)
1 had to

be introduced, whereas now a Lagrangian L(2)
1 has to be introduced. There

are two diagrams on the level of the 1/N2 correction which only consist of one
external edge and the vertex (the first two diagrams in figure 4.1). A careful
look on the recursion equation (5.13) reveals that there are five such diagrams
on the level of the 1/N4 correction. These five diagrams are summarized as

Ŵ
(2)
1 in figure 5.7.

One of these diagrams is calculated in the following. The fifth diagram in
figure 5.7 arises via the fourth term on the r.h.s. of eq. (5.10) from four
different origins: (1) from the combination of the second diagram in figure
4.1 with itself, (2) from the fourth diagram in the first line of figure 4.2, (3)
from the first diagram in the second line of figure 4.2 and (4) from the second
diagram in the second line of figure 4.2. The first contribution, denoted q1,
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p1p1p1 p1 p1

1W    =(2)
22 + + + +2 2 2

Figure 5.7: Five diagrams of the one point function W
(2)
1 (p1). These five

diagrams correspond to the first two diagrams of figure 4.1. The interactions
with the maximal topological index 2 are added to the Lagrangian as L(2)

1 .

is given by

q1 =
1

2
· 3 · 3 · 1

9
· Z0λ

(1)
(0,1)λ

(1)
(0,1) =

1

1152

1

(y1)3
. (5.50)

The second, third and fourth contributions, denoted q2, q3 and q4 respectively,
are

q2 =
1

2
· 5 · 1

9
· Z0λ

(1)
(1,0,1) =

5

144

1

(y1)3
= q3 (5.51)

q4 =
1

2
· 3 · 3 · 1

9
· Z0λ

(1)
(0,2,0) =

1

48

1

(y1)3
. (5.52)

This results in the definition of the vertex factor

λ
(2)
(0,0,0,0,1) =

(
1

1152
+

5

144
+

5

144
+

1

48

)
1

(y1)3
=

35

384

1

(y1)3
. (5.53)

The result of the calculation of the other diagrams is given below:

Ŵ
(2)
1 (p1) =

2s∑

i=1

(
63

32

y4
2

y7
1

− 75

16

y2
2y3

y6
1

+
77

32

y2y4

y5
1

+
145

128

y2
3

y5
1

− 105

128

y5

y4
1

)

i

B0
i (p1)

+
2s∑

i=1

(
−21

32

y3
2

y6
1

+
29

32

y2y3

y5
1

− 35

128

y4

y4
1

)

i

B1
i (p1)

+
2s∑

i=1

(
63

160

y2
2

y5
1

− 29

128

y3

y4
1

)

i

B2
i (p1)

+
2s∑

i=1

(
− 29

128

y2

y4
1

)

i

B3
i (p1)

+
2s∑

i=1

(
35

384

1

y3
1

)

i

B4
i (p1). (5.54)



58

This leads to five new terms for the Lagrangian:

L(2)
1 =

(
63

32

y4
2

y7
1

− 75

16

y2
2y3

y6
1

+
77

32

y2y4

y5
1

+
145

128

y2
3

y5
1

− 105

128

y5

y4
1

)
ϕ

1!

+

(
−21

32

y3
2

y6
1

+
29

32

y2y3

y5
1

− 35

128

y4

y4
1

)
(∂ϕ)

1!

+

(
63

160

y2
2

y5
1

− 29

128

y3

y4
1

)
(∂2ϕ)

1!

+

(
− 29

128

y2

y4
1

)
(∂3ϕ)

1!

+

(
35

384

1

y3
1

)
(∂4ϕ)

1!
. (5.55)

These five new coupling constants are now abbreviated as λ
(2)
α in the following

way:

L(2)
1 = λ

(2)
(1,0,0,0,0)

ϕ

1!
+ λ

(2)
(0,1,0,0,0)

(∂ϕ)

1!
+ λ

(2)
(0,0,1,0,0)

(∂2ϕ)

1!
(5.56)

+λ
(2)
(0,0,0,1,0)

(∂3ϕ)

1!
+ λ

(2)
(0,0,0,0,1)

(∂4ϕ)

1!
=

∑

α∈M
(2)
1

λ(2)
α

ϕα

α!
. (5.57)

The set M
(2)
1 consists of all multi-indices α = (α0, . . . , α4) ∈ N

5 which fulfill
the conditions

∑4
j=0 jαj ≤ 4 and

∑4
j=0 αj = 1.

5.4 First method to determine diagrams from

the free energy F (2) and the coupling con-

stant λ(2)

5.4.1 The operator H

In [7], Chekhov and Eynard found an operator which gives F (h) for h ≥ 2 as

‘integral’ of W
(h)
1 . The details of this integration operator, which is called H,

are irrelevant for the application to the effective field theory. The important
part is that H, applied to the Bergmann kernel, gives the algebraic curve:

H · B(·, p)

dp
= −1

2
y(p). (5.58)
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Using the formula [7]

F (h) = − 1

2h − 2
Hq · W (h)

1 (q) (5.59)

for h ≥ 2 and the eq. (5.1) we arrive at

F (h) =
1

2h − 2

∑

i
l≥1

ω
(h)
1 (i, l)yl,i, (5.60)

where the l = 0 part of eq. (5.1) drops out since it leads to a vanishing
residuum.
This equation, translated into diagrams, states that the external legs of a
diagram are cut: Bf

i is replaced by −yf,i for f ≥ 1 and by 0 for f = 0. That

leads to the fact that diagrams from W
(1)
1 which only differ by the number of

derivatives at the external leg are related to one sole diagram in F (2). The
free energies in the zeroth and the first order approximation, F (0) and F (1),
are special cases. Regarding the calculation of these free energies we refer to
[13] and [33].
The fact that a direct calculation of F (1) in the formalism of Chekhov and
Eynard [7] is impossible can immediately be seen in eq. (5.59). This equation
contains a factor 1

h−1
, which prevents an application to the case h = 1.

The fact that a direct calculation of F (1) in the field theory formalism is
impossible can be seen in the following case: To obtain the tadpole diagram
(third diagram from figure 4.1) from the free energy at order one by ∆1, a
vertex with a topological index 0 and only two emanating legs is necessary.
Such a vertex factor did not appear up to now in the formalism. The ex-
istence of such a vertex would lead to field theory correlators in the planar
approximation which are different from the matrix model correlators. As-
suming this vertex factor has been calculated somehow, and neglecting the
problem with the planar approximation, one problem still remains. The ac-
tion of ∆7 on the constructed diagram from F (1), which gives the tadpole
diagram by ∆1, leads to a diagram with two vertices, whereas all diagrams
in W

(1)
1 have only one vertex.

Contrary to the free energy at planar order and in the 1/N2-correction, these
obstacles are not present at the second or higher order corrections.

5.4.2 Matrix model calculation for diagram A1

The application of eq. (5.60) to the diagrams of the correlator W
(2)
1 signif-

icantly reduces the number of diagrams. All diagrams in W
(2)
1 which differ
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only by the number of derivatives at the external leg, correspond to one sole
diagram in F (2). In figure 5.8, the diagram D6 from W

(2)
1 and two diagrams

from W
(2)
1 , D7 and D8, which differ from D6 only in the number of deriva-

tives at the external leg, are depicted. They lead by eq. (5.60) to diagram A1

from F (2). The equation replaces the external legs with l derivatives Bl
i(p1)

p1

1
2

p1 p1

1
1

1
1

1
1

1
1D6 D7 8D A1

Figure 5.8: diagram D6 and two further diagrams of W
(2)
1 , lead by eq. (5.60)

to a diagram A1 of F (2). The prefactor and the new vertex factor of the
diagram from F (2), which are indicated as 1

2
and by a small 1 close to the

lower vertex, are not known a priori, but are calculated by eq. (5.61).

by (−yl,i) for l ≥ 1 and by 0 for l = 0. Diagrammatically, this corresponds
to cutting the external legs.
The product of the vertex factor and the prefactor of A1 is calculated by eq.
(5.60) to be

− 1

2 · 2 − 2

(
λ

(1)
(2,0) · 0 + λ

(1)
(1,1)(−y1) + λ

(1)
(1,0,1)(−y2)

)
= − 1

16

y2

(y1)2
. (5.61)

The r.h.s. of eq. (5.61) is related to a previously defined coupling constant
from eq. (4.12) by

− 1

16

y2

(y1)2
=

1

2
λ

(1)
(1,0). (5.62)

The fact that the known coupling constant λ
(1)
(1,0) appears in this calculation

of F (2), which is based on the operator H, is a cornerstone in the construction
of the effective field theory. Eq. (5.62) leads to a prefactor 1/2 for diagram
A1.

5.4.3 Field theory calculation for diagram A1

The field theory with the Lagrangian Lint = L(0) + 1
N2L(1) predicts an in-

verse symmetry factor of diagram A1. Adapting (5.12) to the free energy by
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omitting the field ϕ(p1) we evaluate the expression

2∑

l=0

1

N2l

〈
0
∣∣∣e

P2s
i=1 (L(0)(ai)+

1
N2 L

(1)(ai))
∣∣∣0

〉
l loops

(5.63)

with respect to diagram A1 in (5.64). The exponential in the Gell-Mann-Low

series is expanded to receive a contribution from L(1)
1 · L(1)

1 . This leads, since

L(1)
1 appears twice, to the factor 1

2!
in eq. (5.65). The number of possible

Wick contractions in this diagram is calculated in eq. (5.66). There is only

1 possible way to contract L(1)
1 with the other L(1)

1 :

〈
0
∣∣∣e

P2s
i=1(L(0)(ai)+

1
N2 L

(1)(ai))
∣∣∣0

〉
A1

(5.64)

=
1

N4

1

2!

〈
0
∣∣∣

2s∑

i,k=1

L(1)
1 (ai)L(1)

1 (ak)
∣∣∣0

〉
A1

(5.65)

=
1

N4

1

2

2s∑

i,k=1

λ
(1)
(1,0),iλ

(1)
(1,0),k ϕi ϕk. (5.66)

This results in an inverse symmetry factor 1/2 in eq. (5.66).

5.4.4 Calculation of λ(2)

Applying the above method to the five diagrams from Ŵ
(1)
2 results in one

diagram with a topological index 2. It is a one-vertex diagram without
internal and external legs, i.e. it only consists of the vertex factor λ(2) =
λ

(2)
(0,0,...):

λ(2) = − 1

2 · 2 − 2

(
λ

(2)
(1,0,0,0,0) · 0 + λ

(2)
(0,1,0,0,0)(−y1) + λ

(2)
(0,0,1,0,0)(−y2)

+ λ
(2)
(0,0,0,1,0)(−y3) + λ

(2)
(0,0,0,0,1)(−y4)

)
(5.67)

= − 21

160

y3
2

y5
1

+
29

128

y2y3

y4
1

− 35

384

y4

y3
1

. (5.68)
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5.5 Second method to determine diagrams from

the free energy F (2) and the coupling con-

stant λ(2)

5.5.1 Matrix model calculation for diagram A1

The action of ∆7 (eq. (3.32)) on diagram A1 leads to the diagram D1,
depicted in figure 5.9. The aim is to determine the prefactor of the diagram
A1 from F (2). The prefactor 1/2 of diagram D1 from W

(2)
1 was calculated in

eq. (5.14). Since ∆7 can only be applied to D1 on one edge to obtain A1,

p1

1
2

1
2

D1

A1

0

1

1

1

1

Figure 5.9: To calculate the prefactor of the diagram A1 from the free energy
we apply ∆7 to it.

the prefactor of diagram A1 must be 1/2 as the prefactor of diagram D1.
It was already shown in eq. (5.66), that the field theory reproduces this
prefactor as an inverse symmetry factor.

5.5.2 Calculation of λ(2)

The loop operator is inverted by this method directly in the form of the seven
terms ∆1, . . . , ∆7. Starting from the diagram of the free energy without any
edges, we apply the loop operator term ∆2. Acting on the loop operator,
this gives, as already was noted in eqs. (3.39) and (4.14), the negative of the
derivative with respect to yf , f = 1, 2, 3, . . .. For the order two, we have four
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equations:

− ∂

∂y1

λ(2) = λ
(2)
(0,1,0,0,0) (5.69)

− ∂

∂y2

λ(2) = λ
(2)
(0,0,1,0,0) (5.70)

− ∂

∂y3

λ(2) = λ
(2)
(0,0,0,1,0) (5.71)

− ∂

∂y4

λ(2) = λ
(2)
(0,0,0,0,1). (5.72)

λ(2) is a function of four variables y1, y2, y3 and y4. Since there are four
conditions to determine a function of four variables, a solution, which is
unique up to a constant, exists. However, it is not possible to solve this
coupled system of equations in general. Fortunately, we can use the fact that
in λ

(2)
α′ with α′

j = δj,k′ and k′ = 0, . . . , 4 there are no y1 independent terms.
Therefore the system of equations can be solved easily by:

λ(2) = antiderivative of (−λ
(2)
(0,1,0,0,0)) with respect to y1 (5.73)

= antiderivative of

(
21

32

y3
2

y6
1

− 29

32

y2y3

y5
1

+
35

128

y4

y4
1

)
with respect to y1

= − 21

160

y3
2

y5
1

+
29

128

y2y3

y4
1

− 35

384

y4

y3
1

. (5.74)

5.5.3 Advantages of the second method

As regards the coupling constant λ(2), the second method requires less compu-
tations, because it only needs as an input λ

(2)
(0,1,0,0,0), whereas the complicated

computation of of all five λ
(2)
α′ with α′

j = δj,k′ and k′ = 0, . . . , 4, is a necessary
precondition for the first method.
As regards the other diagrams of the free energy, the second method is better
for the following two reasons. To calculate one diagram from F (2) by the sec-
ond method, it suffices, as exemplified in figure 5.9, to calculate one diagram
from W

(2)
1 . Using the first method, exemplified in figure 5.8, requires the

calculation of several diagrams from W
(2)
1 .

The most important advantage of the second method is that the vertex fac-
tor, because it is always 1/y1, drops from the discussion and the prefactors
can be calculated without interference by the different vertex factors. For
the first method, on the other hand, one or more vertex factors of diagrams
from W

(2)
1 and one vertex factor of the diagram from F (2) must be calculated.

In the example of diagram A1, these calculations include the determination
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of a vertex factor of D6 in eq. (5.44), D7, D8 (not displayed) and A1 in eq.
(5.61).

5.6 The free energy F (2)

By the above described methods now all terms of F (2) can be calculated.
First of all, all diagrams of the correlator W

(2)
1 , created by eq. (5.13), are

drawn. There are 70 diagrams. In practise, it is not necessary to actually
calculate the vertex factors and the prefactor by eq. (5.13). It is sufficient
to know all propagator combinations.

Then, by the first method, we restrict ourselves to 25 of these 70 diagrams
which have at least one derivative at the external leg. Among them are D7

and D8 from figure 5.8 and the last four diagrams from figure 5.7. These
25 diagrams are calculated by eq. (5.13) including their vertex factor and
prefactor. From these 25 diagrams now emerge by the cutting procedure,
which was visualized in figure 5.8, all diagrams of the free energy.
Included in this list is the diagram with no internal and no external lines.
This diagram just consists of one vertex without any emerging lines. The
vertex has the vertex factor λ(2) = λ

(2)
(0,0,...) which was already calculated by

the first method in eq. (5.68). This gives the result depicted in figure 5.10.
Despite the use of the field theory notation, note that figure 5.10 represents
the matrix model calculation.

The calculation of the complete free energy F (2) by the second method works
as follows. Every diagram of the free energy F (2) with the exception of the
already calculated one vertex diagram with topological index 2 and vertex
factor λ(2) (eq. (5.74)) has at least one internal edge. To each of these in-
ternal edges of each diagram of the free energy the loop operator term ∆7 is
applied. This results in a certain number of diagrams of W

(2)
1 . These are 17

of the 70 diagrams of W
(2)
1 , which have to be calculated including the vertex

factor and the prefactor. Fortunately, these 17 diagrams are very easy to cal-
culate since the new vertex factor is always 1/y1 and emerges entirely from
the first term on the r.h.s. of eq. (5.10). However, there is an even simpler
way to perform the calculation. For this way, it is not necessary to draw all
70 diagrams of W

(2)
1 . Taking as an input all maximally possible 3 · 3 combi-

nations of diagrams from W
(1)
1 · W (1)

1 and all 14 diagrams of W
(1)
2 suffices to

determine all diagams of the free energy. Only 6 of the 3 · 3 combinations of
diagrams from W

(1)
1 · W (1)

1 lead to different diagrams in W
(2)
1 . Only 11 of 14
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diagrams from W
(1)
2 lead to different diagrams in W

(2)
1 . We will not reduce

the number of diagrams further, although it would be possible, because one
diagram from the free energy which has two or more edges (which are not all
pairwise equivalent to each other) leads by the application of ∆7 to different

diagrams of W
(2)
1 . To calculate the prefactor of the diagram from the free

energy, one of these diagrams from W
(2)
1 suffices. As in example A1 in figure

5.9 the prefactors for all 6+11 diagrams are calculated. This gives the result
depicted in figure 5.10 Despite the use of the field theory notation, note that
figure 5.10 represents the matrix model calculation.

W    =(2)
0

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
8

1
8

+ + +

+ + + +

+ + + +

+ +

2 1 1 1 1 1 1

1 1 1 1

1 1

0 0 0 0

0

0

0 01
12

Figure 5.10: Free energy W
(2)
0 = F (2).

The contribution to F (2) from diagram A1, which is the second diagram in
the first line of figure 5.10, is given by:

1

2

2s∑

i,j=1

λ
(1)
(1,0),iλ

(0)
(1,0),jB

0,0
i,j .



66

5.7 A field theory which describes the free en-

ergy F (2)

The result of the matrix model calculation is already displayed in figure 5.10
in diagrams. The vertex factors emerging from the matrix model calculation
have already been calculated to coincide with the vertex factors produced
by different terms of the Lagrangian. This leaves only two tasks: Firstly, it
must be shown that these diagrams and no more are generated by the field
theory description, and, secondly, the prefactors noted in figure 5.10 must
match the inverse symmetry factors for all these diagrams.
The first diagram in the first line of figure 5.10 is not predicted by the La-
grangian L(0) + 1

N2L(1). For this diagram, a new term, emerging from the
action of the loop equation, has to be added to the Lagrangian:

L(2)
0 =

(
− 21

160

y3
2

y5
1

+
29

128

y2y3

y4
1

− 35

384

y4

y3
1

)
= λ(2). (5.75)

The evaluation of

2∑

l=0

1

N2l

〈
0
∣∣∣e

P2s
i=1 (L(0)(ai)+

1
N2 L

(1)(ai)+
1

N4 L
(2)
0 (ai))

∣∣∣0
〉

l loops
(5.76)

with respect to the term proportional to 1/N4 exactly gives the same 14 dia-
grams, which are noted in figure 5.10. It remains to show that the symmetry
factors of these diagrams correspond to the prefactors noted in 5.10. This
was already done for the second diagram in the first line of figure 5.10, A1,
in eq. (5.66). The calculation for the other 13 diagrams is similar. It reveals
that all of the inverse symmetry factors are equal to the prefactors.
We conclude this section by the statement that the free energy F (2) is de-
scribed by the field theory eq. (5.76).



Chapter 6

The loop equation of the effective

field theory

6.1 Derivation

The first two coupling constants, λ(0) and λ(1), are functions of y1. The
coupling constant λ(2) is a function of y1, y2, y3 and y4. An inspection of eq.
(2.52) and eq. (5.10) reveals that λ(h) for h ≥ 2 is a function of y1, . . . , y3h−2.
The coupling constants λ(h) of higher order h ≥ 2 are determined in the
following by the second method in analogy to the case h = 2 from eq. (5.73).
The loop equation for the correlators (eq. (2.52)) can be transformed in an
equation for the coupling constants:

λ
(h)
α′ =

h−1∑

m=1

∑

α∈M
(h−m)
1

∑

β∈M
(m)
1

2AαAβ

2k′ + 1
Zn(α,β,m)−k′+1λ

(h−m)
α λ

(m)
β

+
∑

α∈M
(h−1)
2

(
2 −

3h−4∑

f=0

δαf ,2

)
2Aα

2k′ + 1
Zn(α)−k′+1λ

(h−1)
α (6.1)

where Aα =
∏∞

f=0(f + 1/2)αf , the first index n(α) = 1 +
∑3h−4

j=0 jαj,

the second index n(α, β,m) = 1 +
∑3(h−m)−2

j=0 jαj +
∑3m−2

j=0 jβj

and α′
j = δj,k′ with k′ = 0, . . . , 3h − 2.

The set M
(h)
k consists of all multi-indices α = (α0, . . . , αk+3h−3) ∈ (N0)

k+3h−2

which fulfill the conditions
∑k+3h−3

j=0 jαj ≤ k + 3h − 3 and
∑k+3h−3

j=0 αj = k.

Note that only the fourth term on the r.h.s. of eq. (5.10) contributes to λ
(h)
α′ .

The integration in eq. (5.73) for h = 2 can be generalized for h ≥ 2. Since
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there are no y1 independent parts of λ
(h)
α′ , one can deduce by induction over

h ≥ 2:

λ(h) = antiderivative of (−λ
(h)
(0,1,0,0,··· ,0)) with respect to y1. (6.2)

One can also eliminate the elementary integration in the equation.
We obtain, after integration for h ≥ 2,

λ(h) =
h−1∑

m=1

∑

α∈M
(h−m)
1

∑

β∈M
(m)
1

∞∑

k,r,r′=0

2AαAβ

3(k + r + r′)

Z
[k]
n(α,β,m)

(y1)k
(PrDαλ(h−m))(Pr′Dβλ(m))

+
∑

α∈M
(h−1)
2

∞∑

k,r=0

(
2 −

3h−4∑

f=0

δαf ,2

)
2Aα

3(k + r)

Z
[k]
n(α)

(y1)k
(PrDαλ(h−1)) (6.3)

where Pr is a projection operator: Pr

∑∞
f=0 cf/y

f
1 = cr/y

r
1.

There are only notational reasons to introduce infinite sums. For all sums
in this equation an upper bound can easily be given. The vertex factor of
the free energy of order h can be determined with this equation recursively.
Note that only differential operators and simple projection operators are
used in this procedure, but no integration has to be performed. Therefore no
operator inversion in any sense is necessary to solve the equation recursively.
In that sense the equation is remarkably simple.

6.2 Solution

Usually the explicit solutions of loop equations are given up to the second
order correction (∼ 1/N4) (eq. (4.8) (alias eq. (54)) in [7] or eq. (4-49)
in [13]). The solution of eq. (6.3) is written down up to the fifth order
correction (∼ 1/N10). Even higher order corrections up to the tenth order
(∼ 1/N20) were calculated (table 6.1) but could not be displayed due to the
large number of terms.

h 0 1 2 3 4 5 6 7 8 9 10

# of terms in λ(h) 1 - 3 11 30 77 176 385 792 1575 3010

Table 6.1: number of terms in λ(h)

The explicit solution of the loop equation (6.3) for the coupling constant of
the orders three to five is given. For completeness, also the lower orders, zero
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to two, which were calculated in eqs. (3.22), (4.17), (5.68) and (5.74), are
stated in the following list.
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Chapter 7

Main Results

The different terms of the Lagrangian with the topological index h read

L(h)
k (ai) =

∑

α∈M
(h)
k

λ
(h)
α,i

ϕα0
i (∂1ϕ)α1

i · · · (∂k+3h−3ϕ)
αk+3h−3

i

α0! α1! · · · αk+3h−3!
=

∑

α∈M
(h)
k

λ
(h)
α,i

ϕα
i

α!
.

The set M
(h)
k consists of all multi-indices α = (α0, . . . , αk+3h−3) ∈ (N0)

k+3h−2

which fulfill the conditions
∑k+3h−3

j=0 jαj ≤ k + 3h − 3 and
∑k+3h−3

j=0 αj = k.

A formula for the number of terms in L(h)
k , i.e. the number of elements of

the set M
(h)
k , is given in appendix A. In analogy to eqs. (3.39), (4.14) and

(4.22) we define the operator

D(h)
α =

(
k+3h−3∏

f=1

(
− ∂

∂yf

)αf

) (
∞∑

f=1

(2f + 1)
yf+1

y1

∂

∂yf

)α0−3 δh,0

. (7.1)

The two parts of this operator can be associated with ∆1 and ∆2 (eq. (3.30)).
The coupling constant of a vertex of topological index h which contains αi

emanating legs with i derivatives, is given by

λ(h)
α = D(h)

α λ(h). (7.2)

By definition, D
(h)
α = Dα for all h ∈ N (cf. eq. (4.14)). This operator,

as was discussed in section 3.6, is sufficient to describe the action of the
loop operator on the level of the Lagrangian for the 1-vertex diagrams with
exclusively external legs. The discussion in section 3.6 extends to all orders.
The calculation of the coupling constants λ(h) is described in chapter 6. The
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lowest orders are

λ(0) =
1

y1

λ(1) = − 1

24
log y1

λ(2) = − 21

160

y3
2

y5
1

+
29

128

y2y3

y4
1

− 35

384

y4

y3
1

.

The expression λ
(h)
α,i can be obtained from the expression λ

(h)
α by substituting

each yf for yf,i.

L(0) = L(0)
3 + L(0)

4 + . . .

L(1) = L(1)
1 + L(1)

2 + L(1)
3 + L(1)

4 + . . .

L(h) = L(h)
0 + L(h)

1 + L(h)
2 + L(h)

3 + L(h)
4 + . . . for h ≥ 2

We would like to exclude four special cases from the correlators and define

W k = Wk − δk,0(F (0) +
1

N2
F (1)) − δk,1W

(0)
1 − δk,2W

(0)
2 .

For the two special free energies, we refer to [13] and [33]. The two special
correlators are described directly by the spectral curve and the Bergmann
kernel [6]. The expression 〈0| . . . |0〉l loops denotes the sum of all l loop dia-
grams of 〈0| . . . |0〉conn.

Theorem 1

With the Lagrangian L = L(0)+ 1
N2L(1)+ 1

N4L(2)+. . . the Hermitean 1-matrix

model correlation functions and the free energy (F (h) ≡ W
(h)
0 ) are given by

W k(p1, . . . , pk) =
∞∑

l=0

1

N2l

〈
0
∣∣∣ ϕ(p1) · · ·ϕ(pk)e

P2s
i=1 L(ai)

∣∣∣ 0
〉

l loops
.

This theorem implies that the correlation function W
(h)
k consists of all con-

nected diagrams with k external legs where the sum of topological indices
hj of the vertices plus the number of loops l in the diagram is equal to h:
l +

∑
j hj = h.
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To proof theorem 1, the following equivalent formulation as theorem 1a is
more appropriate. The structure µ of a vertex is defined by µ = (h, α), where
h is the topological index of the vertex and α = (α0, α1, α2, . . .) determines
with αj the number of emanating lines with a j-th derivative. In a given dia-
gram D, with n vertices, the vertex j has a vertex structure µj = (hj, α(µj)).
The internal line x connects vertex i(x) with k(x) derivatives to vertex j(x)
with l(x) derivatives. The external line v connects pv to vertex d(v) with
m(v) derivatives. Then we define

SD :=
2s∑

i1,...,in=1

( k∏

external
line v=1

B
m(v)
id(v)

(pv)
)( ∏

internal
line x

B
k(x),l(x)
ii(x),ij(x)

)( n∏

vertex
j=1

λ
(hj)

α(µj),ij

)
.

ΠD is the inverse symmetry factor of diagram D ([19], [20]).
The summation

∑
diagrams D

consists of all diagrams with k external lines
fulfilling l +

∑n
j=1 hj = h, where l is the number of loops.

Theorem 1a

For (k, h) ∈ N0 × N0 \ {(0, 0), (1, 0), (2, 0), (0, 1)}, the Hermitean 1-matrix
model correlation functions of order h and the free energy of order h are
given by

W
(h)
k (p1, . . . , pk) =

∑

diagrams D

ΠDSD.



Chapter 8

Deriving the correlator W
(h)
0 from

lower order correlators

It is assumed that the statement of theorem 1a is true for W
(h−1)
2 and for

all W
(j)
1 with j = 1, . . . , h − 1. The assertion is that the prefactors of the

diagrams resulting from the loop equation are equal to the symmetry factors
of the diagrams. The main idea of the proof is to avoid all complicated di-
agrams of W

(h)
1 generated in the loop equation (2.52) by the second, third

or fourth term on the r.h.s. of eq. (5.10) and, instead, to prove theorem 1a

directly for the free energy F (h) = W
(h)
0 . Since F (h) contains less diagrams

than W
(h)
1 , only some diagrams of W

(h)
1 generated by the first term on the

r.h.s. of eq. (5.10) have to be inspected to obtain all diagrams of F (h) (with
the exception of the diagram with one vertex of topological index h).

In the following, the field theory method for calculating symmetry factors,
used in eqs. (4.10), (5.18), (5.22), (5.26), (5.34) (5.38), (5.49) and (5.66), is
generalized. Let mµ(D) be the multiplicity of vertices with structure µ in
diagram D. Let R(D) be the set of all vertex structures in a diagram D.
αi(µ) is the number of emanating lines with a i-th derivative in a vertex with
the structure µ. The inverse symmetry factor ΠD can be calculated by

ΠD =
1

cDdD

πD

with cD =
∏

µ∈R(D)

mµ(D)!, dD =
∏n

j=1
α(µj)!

and πD =

〈
0

∣∣∣∣∣ϕ(p1) . . . ϕ(pk)
2s∑

i1,...,in=1

n∏

j=1

(
λ

(hj)

α(µj),ij
ϕ

α(µj)
ij

)∣∣∣∣∣ 0

〉

D

1

SD

.(8.1)
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〈0| . . . |0〉D only contains the part of 〈0| . . . |0〉 belonging to diagram D. πD

as defined above denotes the number of possible pairings of the fields in eq.
(8.1) which lead to diagram D. The product of the Gell-Mann-Low factorials
cD applies in this general form also to the case where two different couplings
of the same L(h)

k appear in the diagram. Within the diagram D, one edge
could be equivalent to another edge and therefore the number of equivalence
classes of edges in D could be smaller than the number of edges.

An example of the method used to assure that the field theory produces the
same weights of the diagrams as those produced by the matrix model is given
in figure 8.1.
Consider the diagram A from F (h) = F (5), which is depicted on the l.h.s.
of figure 8.1. Its prefactor, 1

144
, is determined via the matrix model method

and via the field theory method. One of the several diagrams or diagram
pairs from W

(4)
1 corresponding to diagram A is chosen by cutting one edge

of A. This diagram, where p1 is attached to the left free end and p2 to the
right free end, is denoted B. The diagram resulting from the interchange of
p1 and p2 in B is denoted B′. A calculation of the symmetry factor of the
diagram by the field theory method, i.e. counting the number of possible
Wick contractions of the expression

〈
0
∣∣∣ϕ(p1)ϕ(p2)e

P2s
i=1 L(ai)

∣∣∣0
〉

(8.2)

leading to diagram B, results in 1
36

. By the induction assumption, the matrix
model correlator at order h− 1 = 4 has the same prefactor. The application
of the loop equation from the matrix model in form of eqs. (2.52) and (5.10)
to the contributions of B and B′ leads to a prefactor of 1

36
of the diagram C

from W
(4)
1 . By taking into account the fact that the loop operator can act on

4 equivalent edges in A to obtain C, the prefactor of A is determined to be
1

144
by the matrix model method. For the field theory method, the counting

of possible Wick contractions in the expression
〈
0
∣∣∣e

P2s
i=1 L(ai)

∣∣∣0
〉

(8.3)

leading to diagram A gives 1
144

. Another example, where a different edge of
diagram A is cut, is represented in figure 8.3. The procedure demonstrated
in these examples is generalized for the proof.
In F (h) there is only one diagram with a vertex of topological index h (e.g.,
the first diagram in the first line of figure 5.10). This diagram of the field
theory gives a priori by eq. (6.3) the correct matrix model contribution.
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Consider a diagram A from F (h) which does not contain a vertex of topolog-
ical index h. Choose one edge of A which is cut.

8.1 Case 1

The cutting procedure produces one diagram B from W
(h−1)
2 which is trans-

formed into A by connecting the two external legs.

A

C

field theory

matrix model matrix model

Bp1 p2
1

144

1
36

< 0|e
P

L|0 >

W
(h)
1 = Res · · ·( δ

δV (p1)
)−1

1
36

Figure 8.1: Example 1 for determining the prefactor of diagram A. All
vertices are of topological index 0.

The prefactor ΠB of diagram B is known according to the induction as-
sumption. It is possible that the exchange of external legs creates a second
diagram B′ which is different to B. In this case, u = 2. However, if B′ is
identical to B, then u = 1. The loop equation (eq. (2.52)) is applied to
diagram B (and diagram B′). Then the first term on the r.h.s. of eq. (5.10),

1/2 · Bf,0
j,i · (B0

i (p)/y1,i) · B0,g
i,k , gives rise to a diagram C from W

(h)
1 . Since

C cannot be created from other diagrams and, in the recursion formula, a
multiplication with 1/2 occurs, the prefactor of C is given by ΠC = 1

2
uΠB.

The external leg of C is rooted in a vertex of index zero with 3 emanating
lines. C can only have been created by ∆7 from a diagram of F (h). This
diagram must have been A. Let v be the number of edges in the equivalence
class of the edge which is cut. Then C can be created by ∆7 from A in v
different ways. The matrix model calculation yields ΠC = vΠA and hence
ΠA = u

2v
ΠB.

In the following, the quotient ΠA/ΠB is investigated in the field theory lan-
guage. The specific example of figure 8.1 is generalized for the proof. In
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figure 8.2 one special contraction of diagram A is given and compared to
four corresponding special contractions from diagram B.

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

Figure 8.2: One contraction of A corresponds to four contractions of B, i.
e. πB = 4πA. Each of the four equivalent edges can be cut and replaced by
contracting the left open end to ϕ(p1) and the right open end to ϕ(p2).

In this way, each of the πA contractions of A corresponds to 4 contractions
of B: πB = 4πA. The generalization of this formula for v equivalent edges in
A is πB = vπA.
If the interchange ϕ(p1) ↔ ϕ(p2) in B does not give a new diagram B′ differ-
ent from B, then for every contraction in A there are two in B: πB = 2πA.
Combining both equations leads to πB = 2

u
vπA. cB = cA and dB = dA imply

that ΠB = 1
cBdB

πB = 1
cAdA

2
u
vπA = 2

u
vΠA.

8.2 Case 2

The cutting procedure produces two diagrams B1 and B2.

A BB

C

field theory

matrix model matrix model

21

1
144 < 0|e

P

L|0 >

W
(h)
1 = Res · · ·( δ

δV (p1)
)−1

1
6

1
24

1
144

Figure 8.3: Example 2 for determining the prefactor of diagram A for the
case where the diagram splits in two parts.

There is a j ∈ {1, . . . , h − 1}, such that B1 is a diagram from W
(j)
1 and
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B2 is a diagram from W
(h−j)
1 . The loop equation (eq. (2.52)) is applied

to the diagrams B1 and B2. Then the first term on the r.h.s. of eq. (5.10),

1/2·Bf,0
j,i ·(B0

i (p)/y1,i)·B0,g
i,k , gives rise to a diagram C from W

(h)
1 . The diagram

C does not receive additional contributions from W
(h−1)
2 in eq. (2.52) for the

following reasons. The diagrams generated by the first term on the r.h.s. of
eq. (5.10) do not break in two parts in the cutting procedure, whereas the
other terms on the r.h.s. of eq. (5.10) produce a non-zero topological index
at the external leg.
For j 6= h/2, the diagram C appears twice in the loop equation summation∑h−1

m=1 W
(m)
1 W

(h−m)
1 . For j = h/2 and B1 6= B2, the situation does not

change. However, for B1 = B2, the diagram C only appears once. Let u = 2
for B1 6= B2 and u = 1 for B1 = B2. Since in the first term of the recursion
formula (eq. (5.10)) one multiplies with 1/2, this gives ΠC = u

2
ΠB1ΠB2 . The

external leg of C is connected to a vertex of topological index zero with 3
emanating lines. C can only have been created by the action of ∆7 on a
diagram of F (h). This diagram must be diagram A. Let v be the number
of elements in the equivalence class of the edge which is cut. Then C can
be deduced from A in v different ways. This matrix model calculation yields
ΠC = vΠA and hence ΠA = u

2v
ΠB1ΠB2 .

In the following, the quotient between ΠA and ΠB1ΠB2 is investigated in the
field theory language.
The specific example of figure 8.3 is generalized for the proof.
Since in A two vertices of the same vertex structure (topological index zero
and four emanating edges without derivatives) appear and only one is part
of B1, there are

(
2
1

)
more possible ways to contract in B than in B1 and

B2. In general, this factor is Πµ∈R(A)

(
mµ(A)
mµ(B1)

)
. If B1 = B2 then this num-

ber is reduced by 1
2

because the assignment of vertices to B1 gives the same
contractions in A as the assignment of the complementary vertices to B1.
If the edge which is cut in A is one of v equivalent edges in A then the
number of contractions πB1 · πB2 is enhanced by a factor v. This gives in

total vπA = u
2
Πµ∈R(A)

(
mµ(A)
mµ(B1)

)
πB1πB2 . The relation of the Gell-Mann-Low

factorials is cA

cB1
cB2

= Πµ∈R(A)

(
mµ(A)
mµ(B1)

)
and hence ΠA = u

2v
ΠB1ΠB2 .

This closes the proof by induction on h.



Chapter 9

Deriving the (k + 1)-point

correlator W
(h)
k+1 from the k-point

correlator W
(h)
k

It is assumed that the statement of theorem 1a is correct for a certain h and
k. In this chapter, we show that theorem 1a is also true for h and k + 1.

To prove the induction step from k to k + 1, two assertions have to hold:
the prefactor of any diagram A from W

(h)
k+1 arising from the action of the

loop operator must be equal to the inverse symmetry factor of diagram A
which is determined by counting Wick contractions. Secondly, the vertex
factor emerging at the new vertex from the action of the loop operator must
be equal to the coupling constant of the field theory defined in eq. (7.1).

Provided the induction assumption holds for any diagram B from W
(h)
k , the

former assertion is true if the ratio ΠA/ΠB calculated with the field the-
ory method is equal to the ratio ΠA/ΠB calculated with the loop operator
method.

Let A be a diagram of W
(h)
k+1.

9.1 Case 1

The leg pk+1 emanates in diagram A from a vertex with a vertex structure
µ = (0, (3, 0)).
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Only the action of ∆7 or ∆4 on diagrams of W
(h)
k with the same number

of loops as in A and one vertex less than A can have generated this diagram.
The multiplicity of the edge in the preimage diagram B, which is cut, is de-
noted v, i.e. the equivalence class of such an edge in B contains v elements.
Let mA be the number of vertices with α = (3, 0) and topological index 0
in A.
The number of contractions πA in diagram A is larger than the number of
contractions πB in diagram B. One of the mA vertices can be chosen for
the new vertex, then 3 possibilities exist to choose one leg of that vertex for
the connection to ϕ(pk+1) and 2 more possibilities to assign the remaining
two free legs of the new vertex to the contraction which is cut in diagram B.
Eventually, since the new vertex can be inserted in each of the v equivalent
individual contractions of the considered complete contraction of B we have

πA

πB

= mA · 3 · 2 · v. (9.1)

The quotient of the Gell-Mann-Low factorials cB/cA = 1/mA and the quo-
tient of the factorials from the definition of the Lagrangian dB/dA = 1/3!
result in

ΠA = vΠB, (9.2)

which is also predicted by the action of ∆7 or ∆4 in the matrix model calcu-
lation.
The emerging vertex factor at the new vertex is 1/y1, which is exactly the

definition of λ
(0)
(3,0) in eq. (7.1).

9.2 Case 2

The leg pk+1 has at least one derivative.

Only the action of ∆2 on diagrams of W
(h)
k with the same number of loops

as in A and the same number of vertices can have generated the diagram A.
The structure of the vertex connected to pk+1 is denoted µA = (h0, α) and
the number of derivatives at the leg pk+1 is r > 0. Let mA be the number of
vertices with structure µA in A. Let mB be the number of preimage vertices
in B with the same structure, of which v are equivalent.

The number of contractions πA in diagram A is compared to the number of
contractions πB in diagram B. The interchange of one of the mB vertices in
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B with the structure of the preimage vertex leads to mB different complete
contractions which give rise (for mA = αr = v = 1) to only one contraction
for diagram A. Similarly, if mA > 1 then the number of contractions in A
is reduced by the factor mA in comparison to the contractions of B. Addi-
tionally, the number of contractions in A is enhanced by choosing one of v
equivalent vertices and one of αr legs for pk+1:

πA

πB

=
mA

mB

· αr · v. (9.3)

The quotient of the Gell-Mann-Low factorials cB/cA = mB/mA and the
quotient of the factorials from the definition of the Lagrangian dB/dA = 1/αr

result in
ΠA = vΠB, (9.4)

which is also predicted by the action of ∆2 in the matrix model calculation.

The vertex factor of the new vertex emerges from the action of ∆2 on the
diagram with the old vertex. Since in the definition of λ

(h0)
α the remnants of

∆1 and ∆2 are used, this gives the correct vertex factor of eq. (7.1).

9.3 Case 3

The leg pk+1 in diagram A has no derivative and is rooted at a vertex with
vertex structure µ 6= (0, (3, 0)).

In contrast to the other cases, in this case, the new diagram emerges from
different parts (∆1, ∆3 and ∆5/6 = ∆5 +∆6) of the loop operator. Therefore
the assertion that the new vertex factor is described by eq. (7.1) is closely
related to the different symmetry factors of the preimage diagrams.
There is at most one preimage diagram which becomes diagram A after action
of ∆1. This is denoted as B0. Each external or internal line (apart from the
leg pk+1 itself) emanating from the vertex connected with pk+1 gives possibly
one further preimage diagram, which transforms under the action of ∆3 or
∆5/6 to diagram A. In A, the outgoing external and internal legs emanating
from the vertex connected to pk+1 are named arbitrarily, with f = 1, . . . , n,
and their derivatives are denoted as r1, . . . , rn respectively.
If rf = 0 then no preimage diagram Bf associated to leg f exists. This kind
of ‘missing diagram’ does not present large difficulties in the computation of
the new vertex factor of A, because in the consideration of a vertex consisting
exclusively of external legs, ∆3 can not act on such a leg without derivative
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as ∆5/6 can not act on f . To describe the second kind of ‘misssing diagrams’
we define δ to be the number of diagrams from B1, . . . , Bn which are equal
to Bf . If δ > 1, there is only one preimage diagram for δ legs, rather than
one for each leg.

The following notation will be used. The number of vertices in A with the
same structure as the vertex connected to pk+1 is denoted mA. The structure
of the vertex connected to pk+1 is defined as µA = (h0, α) and γ is defined as
the number of possible ways to apply ∆5 or ∆3 to Bf to obtain A.

9.3.1 Symmetry factors of the diagrams B0 and A

Let the number of possible ways to apply ∆1(pk+1) to B0 to obtain A be v.
This is the number of equivalent preimage vertices. Let mB be the number
of vertices with the structure (h0, (α0 − 1, α1, α2, . . .)) in B0.
The number of contractions πA in diagram A is compared to the number of
contractions πB0 in diagram B0. The interchange of one of the mB vertices in
B with the structure of the preimage vertex leads to mB different complete
contractions which give rise (for mA = α0 = v = 1) to only one contraction
for diagram A. Similarly, if mA > 1 then the number of contractions in A
is reduced by the factor mA relative to the number of contractions of B0.
Additionally, the number of contractions in A in enhanced by choosing one
of v equivalent vertices and one of α0 legs for pk+1:

πA

πB0

=
mA

mB

· α0 · v. (9.5)

The quotient of the Gell-Mann-Low factorials cB/cA = mB/mA and the
quotient of the factorials from the definition of the Lagrangian dB/dA = 1/α0

result in
ΠA = vΠB0 (9.6)

which is also predicted by the action of ∆1 in the matrix model calculation.

9.3.2 Symmetry factors of the diagrams Bf with f > 0
and A

Let vA be the number of elements in the equivalence class of edge f in A.
The number of derivatives at edge f in diagram A is r (also denoted rf ) at
the end of edge oriented towards pk+1. The vertex structure of the vertex
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connected to pk+1 is denoted µA and the structure of the preimage vertex
in Bf is µB = (h0, β) with βi = αi − δi,0 + δi,r−1 − δi,r. Then we define

mA = mµA
(A) and mB = mµB

(Bf ). Let f̂ be one edge in Bf with rf − 1
derivatives which transforms under the action of ∆3 or ∆5/6 to the edge f in

diagram A. The number of elements in the equivalence class of edge f̂ in Bf

is denoted vB.

The number of contractions πA in diagram A is compared to the number of
contractions πB in diagram Bf . The vertex connected to pk+1 in diagram A
is one out of a total of mA vertices. In diagram Bf , this vertex is replaced
by a vertex with the structure µB, which is one out of a total of mB vertices.
From the choice of the vertex in A or Bf the factor mA/mB appears in the
relation of πA to πB. At this vertex, the leg pk+1 can be connected to one of
α0 legs without derivatives, which gives rise to the factor α0 in the compar-
ison of the contractions. For the same reason, the connection of the edge f
to the vertex leads to a factor αr. On the other hand, the connection of the
edge f̂ to the preimage vertex with the structure µB leads to a factor 1/βr−1.

If the edge f in A is equivalent to another edge in A or the edge f̂ is equivalent
to another edge in Bf or the edge f connects a vertex with itself then the
relation γ/δ is also part of the comparison of contractions. γ, as can be read
from the definition, is equal to vB or 2vB, where the latter occurs if and only
if the edge f connects a vertex with itself and the number of derivatives at
the other end of this edge is equal to r − 1. δ, as can be read from the
definition, is equal to vA or 2vA, where the latter occurs if and only if edge
f connects a vertex with itself and the number of derivatives at the other
end of this edge is equal to r. The enlargement of the number of equivalent
edges by a factor 2 in these special examples reflects the fact that, in the
contractions for each equivalent edge, 2 legs instead of 1 leg of that vertex
are affected. This gives, in total,

πA

πBf

=
mA

mB

α0αr

βr−1

γ

δ
. (9.7)

The quotient of the Gell-Mann-Low factorials cB/cA = mB/mA and the
quotient of the factorials from the definition of the Lagrangian dB/dA =
βr−1/(α0αr) result in

ΠA =
γ

δ
ΠBf

. (9.8)

In the loop operator determination of the relation of
ΠBf

ΠA
, one has to con-

sider, on the one hand, that there are γ possible ways to apply ∆3 or ∆5 to



84

the diagram Bf and on the other hand that the number of diagrams in com-
parison to a one-vertex calculation with exclusively external legs is lowered
by a factor 1/δ. The matrix model calculation therefore yields

ΠA =
γ

δ
ΠBf

, (9.9)

which coincides with the field theory calculation from eq. (9.8).

9.3.3 New vertex factor

The definition of the vertex factor is based on ∆1 and ∆2, but it was shown in
section 3.6 that the vertex factors of the diagrams with only 1 vertex without
internal lines are correctly described by eq. (7.1)—this includes the action of
∆3. We compare the action of the loop operator on the preimage diagrams
leading to the vertex connected to pk+1 in A to the case in which the loop
operator acts on a vertex of the same structure with solely external legs. No
difference occurs for the action of ∆3 to the external lines. The action of
∆5/6 on the internal lines can be regarded as an action of ∆3 on additional
external lines. The contribution of B0 to the new vertex factor is—relative
to the corresponding 1-vertex diagram—enhanced by a factor vΠB0 . The
contribution of Bf to the new vertex factor is—relative to the corresponding
contribution to the 1-vertex diagram—enhanced by a factor γΠBf

, where γ
is equal to the number of possible ways to apply ∆3 or ∆5 to Bf to obtain
A. Instead of δ preimage diagrams for the 1-vertex diagram there is only
one. Consequently, the new vertex factor arises in this complicated vertex in
exactly the same way as in 1-vertex diagrams if the equation vΠB0 = γΠBf

/δ
is valid. The combination of eqs. (9.6) and (9.9) from the previous paragraph
establishes this condition and hence the new vertex is described by eq. (7.1).

This closes the proof by induction on k.

9.4 Combining the induction on h with the in-

duction on k to obtain correlators of all or-

ders

Starting from W
(0)
3 and W

(1)
1 (shown in (3.23) and (4.13) to be described by

the field theory) one applies the induction on k from this chapter to prove
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that theorem 1a holds for W
(0)
k with k ≥ 3 and W

(1)
k with k ∈ N. From the

application of the induction on h from chapter 8, it follows that theorem 1a
also holds for W

(2)
0 = F (2). The application of the induction on k reveals

that theorem 1a holds for all W
(2)
k with k ∈ N0. The (h− 2)-fold alternating

use of the inductions on h and k proofs that W
(h)
k with h ≥ 3 and k ∈ N0

is described by a field theory. This concludes the proof of theorem 1a, and,
thereby, the proof of theorem 1.



Chapter 10

Conclusion

We have found a reformulation of the Hermitean 1-matrix model as an effec-
tive field theory. The reformulation was proved to be valid to all orders in
the genus expansion. This was achieved by comparing the prefactors of all
terms arising from the loop operator with the symmetry factors of the cor-
responding diagrams and finding full agreement. The spectral curve of the
matrix model is associated with a Riemann surface. The scalar field propa-
gates on this hyperelliptic Riemann surface with multiple self-interactions of
the scalar field taking place at the branch points.

In addition to the correlation functions, the free energy was calculated and
incorporated into the statement of the theorem. Furthermore, the procedure
to obtain coupling constants of a given topological index from the coupling
constants of lower indices, was condensed into one equation. This is the loop
equation of the effective field theory.
It was solved to the tenth order and explicit expressions were given to the
fifth order. Two methods of determining the free energy from the one point
function were found. The second method inverts a part of the loop operator
and gives rise to a simple integration. This second method does not, con-
trary to the first method, rely on results for the properties of the operator
H obtained in [7].

There remain open questions. The effective field theory for the Hermitean
1-matrix model is found. Is there a similar effective field theory for other,
more general matrix models? We believe the answer is yes.

If one could apply this field theory scheme to Complex Matrix Models one
would perhaps gain the benefit of calculating the number of links of higher
genus surfaces easily because the loop equation in the approach is relatively
easy and one can explicitly calculate higher free energies [23].
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The propagators and the vertex factors for a special number of cuts, e.g. two,
can be determined.
The Weil-Petersson volumes ([22], [30]) can be calculated in terms of the field
theory.
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Appendix A

This paragraph contains a formula for the number of terms in the Lagrangian
L(h)

k :

N(k, h) := |M (h)
k | = number of terms in L(h)

k .

The number P (m, r) of multi-indices α = (α1, . . . , αm) ∈ (N0)
m fulfilling∑m

j=1 jαj = m and
∑m

j=1 αj = r can be computed [23] with

∞∑

m=0

∞∑

r=0

P (m, r)qmxr =
∞∏

n=1

(
1

1 − xqn

)
. (1)

Comparing to the conditions for M
(h)
k (chapter 7) one finds a summation over

m and a summation over r = k − α0:

N(k, h) =
k+3h−3∑

m=0

k∑

r=0

P (m, r) =
k+3h−3∑

m=0

k∑

r=0

(
1

m!

∂m

∂qm

∣∣∣∣
q=0

)(
1

r!

∂r

∂xr

∣∣∣∣
x=0

) ∞∏

n=1

(
1

1 − xqn

)
.
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Figure 1: Number of terms in the Lagrangian L(h)
k
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