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Abstract 

 

This thesis scrutinizes the relationship between the width of the crop yield gap and 

farm household food security. Many researchers have argued that an exploitable gap 

between average crop yields and the genetic yield potential contributes to food 

security and that this potential should therefore be improved. Yet, crop yield gaps in 

developing countries are mostly wide, which is prima facie evidence that factors 

other than the yield potential are most constraining. A significant negative 

correlation between the width of the rice yield gap and food security for 19 Indian 

states confirms this. 

The concept and pitfalls of the crop yield gaps are further analyzed at the farm 

household level for the case of improved maize in two village communities in 

southeast Uganda. Multi-agent systems are used to model the heterogeneity in 

socioeconomic and biophysical conditions. The model integrates three components: 

(1) whole farm mathematical programming models representing human decision-

making; (2) spatial layers of different soil properties representing the physical 

landscape; and (3) a biophysical model simulating crop yields and soil property 

dynamics. The thesis contributes to methodology in four ways: First, it is shown that 

MAS can be parameterized empirically from farm survey data. Second, it develops a 

non-separable three-stage decision model of investment, production, and 

consumption to capture economic trade-offs in the allocation of scarce resources 

over time. Third, a three-step budgeting system, including an Almost Ideal Demand 

System, is used to simulate poverty dynamics. Fourth, coping strategies to food 

insecurity are included. 

Simulation results show that neither the width of the yield gap nor the change in  its 

width over time relate to food security at the farm household level. The maize yield 

gap is decomposed in both proximate and underlying factors. It is shown that the 

existence of maize yield gaps does not signal inefficiencies but poverty can be 

reduced substantially by addressing the underlying constraints such as access to 

innovations and credit. Improvements in labor productivity are crucial and are a 

much better indicator of development than crop yields and yield gaps. The results 

suggest that a strong focus on crop yields and yield gaps might not only be 

inefficient but even counterproductive to development. 
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Kurzfassung 

 

Die vorliegende Dissertation untersucht die Beziehung zwischen der Grösse des Crop 

Yield Gap und der Ernährungssicherung von landwirtschaftlichen Betriebs-

Haushalten. Ein grosser Teil der damit befassten Wissenschaftler vertritt die These, 

dass eine Ertragslücke zwischen dem durchschnittlichen erzielten und dem genetisch 

bedingten Ertragspotential besteht. Durch eine Verbesserung des genetischen 

Ertragspotentials könne deshalb ein wichtiger Beitrag zur Ernährungssicherung 

geleistet werden. Tatsächlich ist der Crop Yield Gap in Entwicklungsländern meist 

gross, was zu der Annahme führt, dass andere Faktoren als das genetische 

Ertragspotential von wesentlicher Bedeutung sind. Dies bestätigt eine Studie für 19 

indische Provinzen, die eine signifikant negative Korrelation zwischen der Grosse des 

Crop Yield Gap und der Ernährungssicherung zeigt. 

Das Crop Yield Gap Konzept wird in der vorliegenden Arbeit auf der Ebene ländlicher 

Haushalte für verbesserte Maissorten in zwei Dörfern im Südosten Ugandas 

empirisch analysiert. Zur Modelierung der Heterogenität der sozioökonomischen und 

biophysikalischen Ausgangsbedingungen wurde ein Multiagentenmodell verwendet. 

Das Modell integriert drei Komponenten: (1) Mathematische 

Programmierungsmethoden zur Modeliierung des Entscheidungsverhaltens auf der 

Ebene der Betriebs-Haushalte; (2) Ein räumliches Modell zur Erfassung und Analyse 

der Agrarökosysteme; (3) Ein biophysikalisches Modell zur Erfassung und Simulation 

von Ernteerträgen und Agrarökosystem-Dynamiken. Die vorliegende Arbeit leistet die 

folgenden methodischen Beiträge: Sie zeigt erstens, dass Multiagentenmodelle 

empirisch auf Grundlage von landwirtschaftlichen Haushaltsdaten parametrisiert 

werden können. Zweitens entwickelt sie ein nicht separables, dreistufiges 

ökonomisches Entscheidungsmodell für Investition, Produktion und Konsum zur 

Erfassung von Verteilungsprozessen knapper Ressourcen. Drittens verwendet die 

vorliegende Arbeit ein dreistufiges Budgetsystem zur Analyse von Armutsdynamiken, 

welches ein Almost Ideal Demand System integriert. Viertens werden 

unterschiedliche Strategien zur Ernährungssicherung integriert. 

Die Ergebnisse der Simulationsexperimente zeigen, dass weder die Grösse des Crop 

Yield Gap noch die Änderung im Zeitablauf mit der Ernährungssicherung auf der 

Betriebs-Haushaltsebene verbunden sind. Die Mais-Ertragslücke lässt sich in 

mittelbare und grundlegende Faktoren aufteilen, wobei die Simulationsergebnisse 



 x 

verdeutlichen, dass die Existenz der Mais-Erträgslucke kein Zeichen für Ineffizienzen 

sind, und eine wirksame Armutsbekämpfung von grundlegenden Faktoren wie 

Zugang zu Innovationen oder Krediten entscheidend beeinflusst wird. Die 

Verbesserung der Arbeitsproduktivität ist von herausragender Bedeutung und ein 

wesentlich besserer Entwicklungsindikator als Ernteerträge oder Ernteertragslücken. 

Die Ergebnisse dieser Arbeit legen nahe, dass eine zu starke Fokussierung auf 

Ernteerträge oder Ertragslücken nicht nur ineffizient ist, sondern sogar 

kontraproduktiv für Entwicklung sein können. 



 xi 

Acknowledgements 

 

This study would have been a lot more difficult, if not impossible, without the 

tremendous support of many colleagues and friends. Some of whom I would like to 

mention here.  I acknowledge the support of my supervisor Prof. Joachim von Braun 

for awakening my interest in crop yield gaps and challenging me in my thinking. I 

also thank Prof. Ernst Berg for taking up the second supervision. I am most thankful 

to Thomas Berger for teaching me the ins and outs of the multi-agent system, and 

everything what happens with the data in between. I furthermore thank Jens Aune, 

Soojin Park, and Hosangh Rhew for their collaboration on the ecology and landscape 

side and acknowledge that this study would be a lot less interesting without their 

inputs. I thank Johannes Woelcke for his initial data collection in Uganda and 

modeling work, which gave me a fundament to build on.  

My stay in Uganda was highly pleasant, which must be attributed to Ephraim 

Nkonya, Aggrey Bagiire, Albert and Diana Mudhugumbya, Musinguzi, Richard Oyare, 

and Sarah Sanyu. I also thank Kaizzi Cramer Kayuki, Almut Brunner, Justus 

Imanywoha, and James Sessanga for their invaluable support. 

Good friends made my time at ZEF a pleasant one. Among these, I thank Denis 

Aviles, Quang Bao Le, Cristina Carambas, Arisbe Mendoza, Kavita Rai, Daniela 

Lohlein (also for the great editing), Puja Sawney, and Charlotte van der Schaaf. I 

also realize that without Günther Manske, Hanna Peters, and Rosemarie Zabel at ZEF 

and Gisela Holstein in Hohenheim, some things would never have been accomplished 

or at least not as smooth. Finally, I thank my dear family: mom and dad, Maurice 

and Dominique, and of course … Paan for their company and support in the past, 

present, and future.  

 

 

 

Pepijn Schreinemachers 



 xii 

List of abbreviations 

 

CIMMYT International Maize and Wheat Improvement Center 

FAO Food and Agriculture Organization of the United Nations 

IFPRI International Food Policy Research Institute 

IRRI International Rice Research Institute 

MAS Multi-agent systems 

MILP Mixed integer linear programming 

MP Mathematical programming 

MP-MAS Mathemetical programming based multi-agent systems 

SD Standard deviation of the mean 

TSPC Tropical Soil Productivity Calculator 

UNHS Uganda National Household survey (conducted in 1999-2000) 

USDA United States Department of Agriculture 

Ush Ugandan shilling (1,000 Ush ≈ 0.63 Euro on 01.01.2001) 

ZEF Center for Development Research in Bonn 

 



 1 

1 Introduction 
 

 

1.1 Introduction 

This thesis discusses the relevance of the concept of crop yield gaps with respect to 

food security in developing countries. It applies a novel methodology based on multi-

agent systems (MAS) to decompose and simulate crop yield gaps while 

simultaneously measuring the economic well-being and food security of farm 

households in a developing country context. This first chapter introduces the crop 

yield concept and methods used to analyze it. The chapter is organized in six 

sections.  Section 1.2 describes the problem background and introduces the concept 

of crop yield gaps; Section 1.3 defines the objectives of the study, while Section 1.4 

introduces the methodological approach and Section 1.5 outlines how the remainder 

of the thesis is organized. 

 

1.2 Problem background 

1.2.1 The crop yield gap and food security 

A recent decline in the global growth rate of cereal production, production per capita, 

and cereal yield (see Figure 1.1) has intensified concerns about food sufficiency and 

food security. Cereal yields, many scientists have argued, need to be boosted to 

supply the growing human population with sufficient amounts of food (e.g., Lampe 

1995; Khush and Peng 1996; Pingali and Heisey 1999; Timsina and Connor 2001). 

An increase in yields is necessary because the possibilities to further expand the 

agricultural land area are being exhausted at a global level, and current land is 

rapidly being degraded and lost to expanding urban areas.  

It is often written that growth in cereal yields is constrained by insufficient genetic 

gains in the yield potential and a subsequent narrowness of the yield gap (Peng et al. 

1999; Reynolds et al. 1999; Timsina and Connor 2001). Technologies with a higher 

yield potential would therefore be required, especially in irrigated areas, to meet the 

increasing demand for food (e.g., Reynolds et al. 1999). 
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The concern about yield gaps in relation to food security can be judged from the fact 

that much of the literature on the issue of crop yield potentials starts by summing up 

global population statistics (e.g., Lampe 1995; Kush et al. 1996: 38; Reynolds et al. 

1996: 1; Duvick 1999; Peng et al. 1999: 1552; Pingali and Rajaram 1999: 1; 

Rejesus et al. 1999: 1; Reynolds et al. 1999: 1611; Pingali and Pandey 2001: 1; 

Fischer et al. 2002: 1; Tiongco et al. 2002: 897). Several authors have called for 

more sustained efforts in ‘beaking the yield barrier’ (Cassman 1994; Reynolds et al. 

1996). Raising the yield potential, in this respect, is implicitly assumed to increase 

actual cereal supply (e.g., Peng et al. 1999; Reynolds et al. 1999). A reduction of the 

difference between yield potential and actual yield, often referred to as the 

narrowing of the yield gap, is interpreted as a worrying sign for long-term food 

security as farmers have less technological potential to exploit. 

 

Figure 1.1: Global cereal yield trends and per capita availability, 1961-2005 

Source: FAO 2006 

 

1.2.2 The crop yield potential 

The yield gap is commonly defined as yield potential minus average yields. This yield 

potential refers to the genetic maximum yield of a crop. Evans (1996: 292) defines 

this yield potential as "the yield of a cultivar when grown in environments to which it 

is adapted, with nutrients and water non-limiting and with pests, diseases, weeds, 

lodging and other stresses effectively controlled". 

Figure 1.2 shows yield gaps for maize grown in Illinois (left pane) and Mexico (right 

pane). The yield potential is quantified as the average of the three highest yielding 

experiments in a particular year. This figure shows that the average maize yield in 
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Illinois has closely followed the growth in yield potential at the state’s experiment 

stations. Not only are the trends the same but also the variations around the trends 

resemble one another. Average yields in the beginning of the 1960s reached 4 tons 

but doubled to 8 tons by 2000 with the yield gap being—a more or less permanent—

2 tons/ha. The picture for Mexico strongly contrasts that of Illinois. Mexican average 

yields also doubled in the same period but remain at a low average of about 2.5 

tons/ha. The yield gap has, however, widened considerably since the early 1990s 

from about 6 tons/ha to more than 12 tons/ha. 

 

Figure 1.2: Maize yield gaps for Illinois and Mexico 
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Sources/notes: The Illinois yield gap is based on the maximum over three trial locations: DeKalb, 

Urbana, and Brownstown, and the average state yield (which is slightly above the United States average 

maize yield) (Illinois Experiment Station 1960-2001, USDA 2002). Similarly, the Mexico yield gap is based 

on the three best yielding CIMMYT cultivars and the corresponding national average yield (CIMMYT 2002; 

FAO 2006). 

 

The stark contrast between the two pictures is the only reason for showing them 

here. A multitude of factors determines the width of a yield gap. Farmers in Illinois 

rapidly adopt higher yielding varieties, yet the situation in Mexico seems to be much 

more complex. A weak linkage between yields at experiment stations and yields in 

farmers’ fields can result from a lack of agricultural service provision, lack of 

knowledge among farmers, insufficient adaptation of crop varieties to farmers’ 

conditions, missing or incomplete input markets including credit, high levels of risk 

impeding adoption, or a misalignment of researchers’ and farmers’ objectives. It is, 
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however, not the intention to go into much detail at this stage. Yet, one hypothesis 

would be that crop yield gap dynamics for most developing countries come closer to 

the Mexican than to the Illinoisan picture. 

1.2.3 Need for integrated approaches 

The concept of crop yield is situated at 

the fault lines between three scientific 

disciplines: crop science, agronomy, and 

social science. Each of these disciplines 

has a strong interest in crop yields but 

from a different point of view. That is 

not to say that these scientific 

disciplines can be delineated neatly; 

they are more like a Venn diagram, as 

in Figure 1.3, with crop yield at its 

center. 

The debate on yield gaps can largely be 

brought back to a difference in scientific perspectives on the factors determining crop 

yield. Biophysical sciences tend to focus on proximate factors—such as genes, soil 

nutrients, and energy—while social sciences tend to focus on underlying 

determinants—such as markets and institutions. The figures below illustrate these 

three contrasting perspectives.  

First, Figure 1.4 illustrates the determinants of crop yield from a crop science 

perspective (i.e., crop physiology). Crop yield, in this view, is a function of total 

biomass and harvest index. Crop breeders generally concentrate on the absolute size 

of the yield difference between a new variety and farmers’ varieties (Sanders and 

Lynam, 1982: 99). This yield difference can be widened either by an increase in total 

biomass—i.e., increasing the size of all parts of the plant, or by an increase in 

harvest index—i.e., increasing the proportion of grain in the total biomass. This 

perspective focuses on the level of the individual crop and the increase in crop yield 

is very much an objective in itself.  

 

 

 

 

CROP 
YIELD 

SOCIAL SCIENCE 

AGRO-

NOMY 

CROP 

SCIENCE 

 

Figure 1.3: Positioning the yield gap 
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Figure 1.4: Crop yield as studied in crop physiology 

 

Figure 1.5 shows an agronomist’s perspective. Agronomists focus on the field rather 

than the plant level. The yield of a crop can be increased by using higher yielding 

cultivars, improving crop management, or improving the interaction between these 

two (Evans and Fischer 1999). Similar to crop physiology, increasing crop yield and 

maximizing agronomic response is an objective in itself.  

 

Figure 1.5: Crop yield as studied in agronomy 
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increasing their knowledge, and having leisure time. Figure 1.6 conceptualizes the 

socioeconomic perspective on the farm household. It shows that crop yield is one 

particular outcome of farm decision-making, rather than an objective in itself. In 

their decision-making, farm households are guided by their objectives and their 

perceptions of the environment, such as the availability and price of inputs, the sale 

of output, the security of their land tenure, the amount and distribution of rainfall, 

and the fertility of their soils. When evaluating their decisions, farm households will 

assess the extent to which their expectations with respect to objectives have been 

met and compare their performance with other farms.  

 

Figure 1.6: Socioeconomic view on crop yield 

 

Household objectives seldom overlap with attaining maximum crop yields, yet they 

may come close under certain conditions: (a) if land is the scarcest factor of 

production and land rents are therefore high; (b) if labor or mechanization is in 

ample supply; (c) if yield risks and price risks are low or covered by insurance; (d) if 

variable inputs such as fertilizers and agrochemicals are relatively cheap, supply is 

certain, and credit is available; and (e) if farmers are well-informed about the 

characteristics of improved varieties. These conditions apply more to agriculture in 

Illinois than to agriculture in most developing countries. 

The three disciplinary perspectives on crop yield complement rather than substitute 

each other. Each perspective focuses on a different scale, from the plant, to the plot, 

to the farm level. Though the above contrast between disciplines is rather simple and 

incomplete, it helps to highlight two issues. First, caution is needed when linking 

determinants of crop yield at the plant level to factors at higher levels, such as the 

link between increasing the harvest index of wheat on the one hand and the food 

security of farm households on the other hand. Second, the understanding of crop 
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yields and the relevance of crop yield gaps requires an integrated approach. Neither 

economic nor biophysical models alone can explain the level of and variation in 

average crop yields. 

 

1.3 Objectives 

The general objective of this thesis is to scrutinize the concept and pitfalls of crop 

yield gaps with respect to developing country agriculture. More specifically, the 

objectives are: 

1. To review the linkages between a higher crop yield potential on the one hand 

and an increase in average yields and food security on the other hand. 

2. To build a dynamic simulation model that integrates the biophysical and 

socioeconomic factors driving the width of the crop yield gap, and use this 

model for three purposes:  (a) to quantify yield gaps and yield gap dynamics at 

the farm household level and to decompose them in proximate and underlying 

factors; (b) to assess the relationship between the width of the crop yield gap 

on the one hand and farm household well-being and food security on the other 

hand; and (c) to analyze how improved varieties with a higher yield potential 

affect incomes and food security at the farm household level. 

 

1.4 Approach 

After an in-depth discussion on the (ir)relevance of crop yield gaps for developing 

country agriculture based on a review of literature in Chapter 2, the concept is 

analyzed at the farm household level in the remaining chapters. For this, a multi-

agent system (MAS) is calibrated to two villages in southeast Uganda. The MAS is 

used as a framework for integrating three main model components: an agent 

component representing farm household decision-making, a landscape component, 

and a biophysical component simulating crop yields and soil property dynamics. 

1.4.1 Main methodological contributions 

The thesis makes the following four contributions to the methods of farm household 

modeling and MAS: 
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First, this thesis shows that it is possible to empirically parameterize multi-agent 

systems from farm household survey data by using Monte-Carlo techniques to 

extrapolate from survey estimates. 

Second, the thesis describes a novel approach to simulate farm household decision-

making with mathematical programming by sequentially simulating investment, 

production, and consumption decisions while treating consumption and production as 

non-separable. This three-stage sequence of decisions is a realistic way of 

representing farm household decision-making and is well able to capture economic 

trade-offs in the allocation of scarce resources over time. 

Third, the consumption side is modeled using a three-step budgeting process 

involving savings, food expenditures, and expenditures on specific categories of food. 

A linear approximation of the Almost Ideal Demand System (LA/AIDS) is included in 

the third step. The inclusion of a complete and flexible expenditure system in MAS 

opens new opportunities for applying MAS to the analysis of poverty, food security, 

and inequality. 

Fourth, coping strategies to food insecurity are included. Agents can choose to spend 

their monetary savings or sell off livestock if food consumption falls short of their 

needs. The inclusion of coping strategies in MAS gives a realistic representation of 

the strategies of food insecure farm households in developing countries. 

1.4.2 Main collaborations 

Thomas Berger (University of Hohenheim) wrote the source code for the multi-agent 

model. Jens B. Aune (Norwegian University of Life Sciences) calibrated the Tropical 

Soil Productivity Calculator (TSPC) for soil conditions and 11 crops in Uganda. The 

TSPC was adjusted and integrated into the MAS by the author together with Thomas 

Berger. Hosahng Rhew and Soojin Park (both from the University of Seoul) estimated 

continuous soil maps from soil samples that were collected by the author and Gerd 

Ruecker (ZEF/ German Aerospace Center, DLR). Johannes Woelcke (The World Bank) 

developed the first version of the mathematical programming matrix that served as a 

basis for the matrix developed for this thesis. Thorsten Arnold (University of 

Hohenheim) wrote the MatLab routines that collected the MAS output and compiled it 

into single data files, which were used for statistical analysis. 
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1.5 Outline of the thesis 

The thesis consists of 10 chapters. Chapter 2 introduces the yield gap debate and 

highlights four important misconceptions commonly voiced in this debate. These 

misconceptions concern the assumed linkages between an improvement in yield 

potential and an increase in average yields, food availability, and food security. The 

chapter will point to the microeconomic factors affecting the yield gap. For analyze 

these, the focus turns to the farm household level in the following chapters. A novel 

methodology is developed based on multi-agent systems to integrate dynamic 

models of biophysical processes and farm household behavior at a very fine spatial 

resolution. Chapter 3 describes the conceptual frame of the study. The general 

methodology is outlined in Chapter 4. Four subsequent chapters describe the 

calibration of the main model components. These are respectively, the landscape 

component in Chapter 5 and the biophysical component in Chapter 6. The agent 

decision component is split into two with the production part outlined in Chapter 7 

and the consumption part outlined in Chapter 8. Results of the study are presented 

in Chapter 9. Finally, Chapter 10 highlights the strengths and limitations of the 

applied methodology. 
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2 The (ir)relevance of crop yield 

gaps in developing countries 
 

 

2.1 Introduction 

Much has been written about the need to increase the crop yield potential of cereals 

for developing countries (e.g., Cassman 1994; Khush 1995b; Reynolds et al. 1996). 

The commonly espoused argument is that the gap between average yields and the 

yield potential is too narrow to meet the increasing demand for food (e.g., Khush 

1995b; Peng et al. 1999; Reynolds et al. 1999) and that this has slowed down 

growth in average yields (e.g., Cassman 1999; Timsina and Connor 2001). It is the 

objective of this chapter to show major shortcomings in this line of argumentation. 

In doing so, the irrelevance of the crop yield gap concept for developing countries is 

shown. 

The chapter is structured as follows. Section 2.2 introduces the yield gap concept 

and gives an overview of the debate surrounding it. In Section 2.3, four major 

misconceptions about yield gaps commonly found in the literature are listed. Section 

2.4 highlights two aspects of the debate that have received too little attention. The 

chapter ends with a summary in Section 2.5. 

 

2.2 The crop yield gap 

2.2.1 The yield gap concept 

The yield gap is defined as the yield potential minus the average yield level, with the 

first being the genetic potential of a cultivar, achieved at experiment trials where 

temperature and radiation are the only factors uncontrolled (de Wit 1958, as in 

Rockström and Falkenland 2000: 321). 

Yield gaps are wide for most developing countries. Figure 2.1 quantifies the yield 

gap for a few developing countries for maize (left pane) and wheat (right pane). The 

wheat data come from CIMMYT’s International and Elite Spring Wheat Trials (ISWYN 
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and ESWYN), while the maize data come from CIMMYT’s International Maize Testing 

Unit (IMTU). As in Figure 1.2 in the previous chapter, the yield potential is 

quantified as the average of the three highest yielding experiments in a particular 

year, and because yield gaps tend to vary considerably between years, a 15-year 

average is used for Figure 2.1. The picture shows a wide yield gap for nearly all 

countries, with the exception of some wheat growing countries where the use of 

irrigation is widespread.  

 

Figure 2.1: Maize and wheat yield gaps for a selection of developing countries 

 

Sources: FAO 2006 (national averages); Payne 2002 (wheat); CIMMYT 2002 (maize); Lantican et al. 

2003 (wheat) 

Notes: Yield potential is the average over top three yields in a year. Average 1985-2000. Only countries 

with data for at least 10 years and where the contribution of the crop to total cereal production is more 

than 5 percent were included. 
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2.2.2 Background 

The interest in yield gaps can be traced back to research at the International Rice 

Research Institute (IRRI), or possibly the Indian rice research institute CUTTACT, 

which was a predecessor of IRRI (van Tran, personal communication 2001). The 

research at IRRI focused on Philippine rice farmers whose average yields of less than 

1 ton stood in stark contrast to the 5 to 10 tons researchers were achieving. Gomez 

(1977) and De Datta (1981) are the earliest references found in the literature who 

try to explain this difference by decomposing the yield gap. Gomez (1977) developed 

a series of on-farm experiments to decompose the yield gap into factors such as 

variety choice, fertilizer use, and pest control (see Sall et al. 1998 for a recent 

application). 

Herdt and Mandac (1981) extended this methodology to include farm survey data. 

They decomposed the yield gap into three parts: 1) profit-seeking behavior, as 

farmers do not maximize yields but profits; 2) allocative inefficiency, as farmers 

misallocate production factors; and 3) technical inefficiency, as farmers do not use 

the production factors correctly up to their optimum. Herdt and Mandac (1981: 379) 

wrote: “the yield gap due to profit-seeking behavior should never be eliminated 

because it indicates a socially efficient economy. But if artificially distorted prices can 

be shown to significantly increase the portion of the yield gap due to profit-seeking 

behavior, it may be possible to recommend that the government remove such 

distortions.” In their application to Philippine rice farmers, Herdt and Mandac found a 

yield gap of about 1 ton/ha, the majority of which they attributed to technical 

inefficiency.  

2.2.3 The yield gap debate 

The main topic in the yield gap debate is whether a higher yield potential—that is a 

widening of the yield gap—is needed to increase average cereal yields. Two camps 

can broadly be identified in the debate; hereafter called ‘yield gap pessimists’ and 

‘yield gap optimists’. 

The yield gap pessimists argue that yield gaps are narrow and the yield potential 

needs to increase for average yields to continue growing (e.g., Cassman 1994; 

Reynolds et al. 1996). These pessimists find support from an empirically observed 

slowdown in the growth rate of cereal yields at global and regional levels and a 

simultaneous reduction of investments in agricultural R&D (e.g., Lampe 1995; Khush 

and Peng 1996; Pingali et al. 1999: 1; Pingali and Heisey 1999; Reynolds et al. 
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1999: 1611; Heisey et al. 2002: 47). Increasing the yield potential, in this respect, is 

implicitly assumed to increase cereal supply (e.g., Peng et al. 1999; Reynolds et al. 

1999). The pessimists find further evidence in the fact that the yield potential of 

some rice cultivars (notably IR8, released in 1967 by IRRI in the Philippines) in some 

long-term experiments in India and the Philippines has declined (Flinn et al. 1982; 

Flinn and De Datta 1984; Cassman et al. 1995; Dawe et al. 2000).  

The yield gap optimists, on the other hand, argue that yield gaps are still sizable, 

and average yields can continue to grow if available technologies are more fully 

exploited. Most developing countries have very low average cereal yields, and the 

yield gaps in rice too, are sizeable, ranging from 10 percent to 60 percent, across 

ecologies and crop seasons in all rice-growing countries in the Asia-Pacific region 

(FAO 1999). These optimists argue that not a low yield potential but poor crop 

management and problems of institutional support account for the large variability in 

average rice yields of irrigated rice between countries (Duwayri et al. 2001).  

Furthermore, these optimists point out that the growth in yield potential has not 

slowed down but has risen linearly over time (Evans and Fischer 1999). Although the 

yield of IR8 might have stagnated, other higher yielding rice varieties are available 

or are in the pipeline. China, for instance, released hybrid rice varieties in 1976 and 

this has shown a yield premium of about 20 percent compared to other improved 

varieties (Lin 1994; Yuan 1998). Evidence also abounds that growth in the yield 

potential of wheat and maize has neither slowed down (Duvick 1992; Canevara et al. 

1994; Eyhérabide et al. 1994; Austin 1999; Evans and Fischer 1999). 

Further support for the optimists’ claim comes from the many success stories of 

countries rapidly increasing their average yields in spite of slow advances in yield 

potential. The experience of ‘Ricecheck’ in Australia is worth mentioning in this 

respect. Ricecheck is a collaborative learning system of farmers, researchers and 

extension services and was introduced in Australia in 1986 (Lacy  et al. 2000; 

Clampett 2001). The Ricecheck approach tries to find the answer for high yields in 

high yielding fields of farmers rather than from research plots. Seven key 

recommendations (e.g., field layout, plant density, and timing of input use – to name 

a few) linked to high yields are identified in farmers’ fields through a continuous 

cycle of monitoring, recording, data exchange, and feedback. The aim is to educate 

farmers to improve their learning and performance. Farmers are encouraged to 

monitor their crop, compare it with the key check recommendations, and to record 

their findings. Extension agents give farmers individual feedback, based on statistical 
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analysis of these records; this feedback shows how their performance compares with 

the key checks as well as with other farmers in the same district. The Ricecheck 

approach resulted in a significant increase in farmers’ yields over the last 15 years, 

although the yield potential did not increase during this period (ibid.). The Ricecheck 

approach is now promoted by FAO and IRRI for other countries as well. 

 

2.3 Misconceptions about crop yield gaps 

It is not the purpose of this thesis to take sides in the yield gap debate. Most 

commonly, pessimists and optimists find some agreement in that both a higher yield 

potential and improved management are needed, with a higher yield potential to be 

emphasized in the irrigated areas and improved management to be emphasized in 

the rainfed areas. 

Instead, the purpose of this paper is to show that some of the arguments, of both 

pessimists and optimists, are unjustified on socioeconomic grounds. To do this, the 

chapter focuses on four common and pervasive misconceptions surrounding the 

debate. The first misconception is that farmers want a higher yield potential. The 

second is that a higher yield potential is needed to meet the future demands for 

food. The third is that a higher yield potential will improve food security. The fourth 

is that a higher yield potential is needed to keep cereal prices low. 

2.3.1 ‘Farmers want a higher yield potential’ 

There is a persistent, but wrong, belief among researchers that farmers in 

developing countries, like farmers in many developed countries, adopt technologies 

only when these increase yields. Furthermore, Evans and Fischer (1999: 1547) noted 

that it is often erroneously assumed that progress in yield potential automatically 

translates into progress in farmers’ yields. The fixation on higher yields is likely to be 

a Western bias, as land is usually the scarcest factor of production in high-income 

countries, with all other factors such as labor, credit, fertilizers, pesticides and 

herbicides as well as crop insurance in ample supply. This is, however, not usually 

the case in most developing countries. Labor, capital, fertilizers, pesticides and 

herbicides, and increasingly water are often equally scarce factors as land, and not 

the size of the plots but the security of property rights over them constrain 

production. 
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Yield enhancing technologies compete for scarce resources at the farm level. This 

relative scarcity means that production resources have an implicit price attached, 

called opportunity cost. The opportunity cost is the value of the best alternative 

choice that is foregone as a result of a decision (Coleman and Young 1989: 17).  The 

level of opportunity costs plays a crucial role in the adoption of technologies. Farm 

households will prefer a technology that substitutes the production resource with the 

highest opportunity cost, as freeing one unit of this resource will give the highest 

additional return. 

Because resources are scarce, an improved variety can increase the yield of one crop 

but simultaneously lower the yield of other crops. The true return of an improved 

variety can therefore not be inferred from the yield premium it gives. For instance, 

von Braun (1988), in his study on rice technology adoption in The Gambia, calculated 

that for any additional ton of rice produced, 390 kilograms of other cereals and 400 

grams of groundnut are foregone. Expressed in monetary terms, this means that for 

each additional dollar earned in rice, 71 cents are foregone in the cultivation of 

alternative crops. This shows that the markup in farm earnings is much lower than 

the markup in yield of the crop that is improved. 

Higher yields can even lead to lower farm earnings. For example, Sanders and 

Lynam (1982) described the introduction of an improved cassava variety together 

with improved management, which gave a yield premium of 108 percent over 

farmers’ varieties and farmers’ management in Colombia. Yet, the lower starch 

contents of the new variety resulted in 40 to 60 percent lower prices, making the 

high yielding variety less profitable than the traditional one. 

Equally, lower crop yields are compatible with greater farm earnings. Byerlee and 

Siddiq (1994: 1354) for instance observed that farmers in Pakistan’s Punjab 

postpone the date of planting wheat in order to extend the cultivation of cash crops, 

although this leads to lower wheat yields. One increasingly frequent observation is 

that the rising opportunity cost of labor constrains technology adoption, and that the 

opportunity cost of labor exceeds that of land, which increases the importance of 

labor saving technologies relative to that of land saving (yield enhancing) 

technologies. Moser and Barrett (2003), for instance, showed that a rice yield 

increasing technology is not widely adopted by farmers in Madagascar because it has 

high seasonal labor demands. Another example is green manure; this technology has 

a long-term positive effect on cereal yields, especially on poor soils. Nevertheless, 

green manure has not been widely adopted and has even largely disappeared from 
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the rice systems of Asia (Ali 1999). The reason is that green manure is land and 

labor intensive and the relative prices of these factors have increased over the last 

decades, making mineral fertilizers more cost-effective (ibid.). 

Risk is another important consideration, especially for agriculture where the time 

between input decisions and outcomes is long and the outcome much depends on 

the vagaries in weather, pests, diseases, and market prices. If the variability in 

returns is high, because of a fluctuating climate or variable market prices, then farm 

households rationally lower their expectations below the average returns to shield 

themselves from disaster. For instance, de Rouw (2004) in her study on pearl millet 

in the African Sahel of Niger, showed that farmers did not adopt a high yielding 

technology package (consisting of short-cycle varieties, a high planting density, and 

mineral fertilizer) as this technology did not reduce yield variability caused by 

unreliable rainfall. She found that farmers’ priority is risk reduction, i.e. obtaining at 

least a minimum yield in the worst year, rather than obtaining a high yield in the 

average year (ibid.). 

In other cases, farmers do not adopt because they have strong cultural preferences 

concerning the quality of a crop, especially when it is indigenous to a country (e.g., 

Adesina and Baidu-Forson 1995; Bellon and Risopoulos 2001). Bellon and Risopoulos 

(2001) showed how Mexican farmers only partially adopt high yielding maize 

varieties and actively mix these with traditional varieties to combine desirable 

properties while compromising on average maize yields—a process they called 

‘creolization’ of maize. 

What these seven examples show is that a higher yield is neither a sufficient nor a 

necessary condition for farmers to increase their productivity and to improve their 

well-being. Farming systems in developing countries are diverse as well as complex. 

Higher yielding varieties need to be tailored to farmers’ objectives, preferences and 

constraints. 

2.3.2 ‘A higher yield potential is needed to meet future demands’ 

Much of the literature on crop breeding in developing countries compares human 

population growth with progress in crop breeding (e.g., Reynolds et al. 1999; Slafer 

et al. 1999; Peng et al. 2000). Many studies begin with a summary of human 

population growth in the first paragraph of the treatise (e.g., Poehlman and Quick 

1980: 1; Khush 1995b: 329; Kush et al. 1996: 38; Duvick 1999; Peng et al. 1999: 

1552; Reynolds et al. 1999: 1611; Slafer et al. 1999:379; Fischer et al. 2002: 1). 
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Some of the arguments most commonly advanced are put together in Box 2.1. Most 

of these assume a direct linkage between crop breeding and the feeding of a 

country’s population. 

 

Farm households and governments constitute the missing links in these arguments. 

Farm households are the first missing link. It is in the interest of society as a whole 

that cereals are available at reasonable prices; yet, the interest of the farmers is to 

feed their own household and to improve its well-being. Trade-offs exist between the 

‘private’ goal of farmers’ well-being and the ‘social’ goal of food availability. For 

instance, a high level of cereal production does not necessarily correlate with a high 

level of income at the farm level. De Datta (1981) noted that in villages in Asia, 

incomes are greater where much land is planted to crops other than rice, than in 

villages where only rice is grown (IRRI 1978, as in De Datta 1981: 553). That private 

and social objectives should not be confused, was eloquently stated by Adam Smith 

in 1776: “It is not from the benevolence of the butcher, the brewer, or the baker, 

that we expect our dinner, but from their regard to their own interest. We address 

ourselves, not to their humanity but to their self-love, and never talk to them of our 

own necessities but of their advantages” (Smith [1776] 1937: 14). 

Box 2.1: Selection of quotes relating yield potential with food demand and supply  

 

“Future genetic gains in grain yield must be attained at the same pace as before, or even accelerated, 
to meet the increased demand for food from an increasing population, estimated to be 6 billion 
by 2010” (Slafer et al. 1999: 379) 

 

“Global demand for wheat (Triticum aestivum L.) is growing faster than gains in genetic yield potential 
are being realized, currently under 1% per year in most regions.” … “This means that current 
trends in the improvement of genetic yield potential are too low to keep pace with future 
demand.” (Reynolds et al. 1999: 1611, 1617). 

 

 “Given these constraints on the availability of arable land, crop yield potential will be a primary factor 
governing the nature of agricultural systems in the next century” (Duvick and Cassman 1999: 
1622). 

 

“Rice-wheat is the most common cropping system in the region [Indo-Gangetic plains]. Understanding 
and increasing its yield potential is essential to meet the growing food demand” (Aggarwal et al. 
2000). 

 

“Scientists at IRRI […] feel a responsibility to be prepared to develop and provide the technologies and 
the knowledge that will allow the world’s rice farmers to produce enough rice to meet the 
population growth that is realistically expected in the next century” (Lampe 1995: 256) 

 

“Over the next 30 years, Asia must increase its rice production by at least 60% to meet the needs of 
population growth […]. To achieve this goal, our best option is to develop rice cultivars with 
higher yield potential through crop improvement.” (Peng et al. 2000: 307) 
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Governments are the second missing link. If private objectives of farm households 

do not coincide with the society’s objective of producing more cereals, then 

governments may want to intervene to give farm households more incentive to 

produce cereals. Keeping people on the farm at times of a relative decline of 

agricultural sector’s contribution to the economy might be another social objective. It 

is a general feature that in the process of economic development, the opportunity 

cost of farm labor rises as agricultural labor productivity declines in relative terms to 

the other sectors in the economy (Martin and Warr 1994; Pingali and Rosegrant 

1995). As a result, people move out of agriculture to seek better-paid jobs. 

Papademetriou, for example, noted that the number of rice farmers in Asia decreases 

proportionally to the rate of industrialization, while the age of the remaining farmers 

also increases proportionally to it (Papademetriou 2000, 2001). Many studies have 

shown a decline in the profitability of agriculture in general and rice production in 

particular. Tiongco and Dawe (2002) and Pingali and Heisey (1999) showed it for 

Philippine rice farmers by estimating the change in total factor productivity from 

panel data. Estudillo et al. (1999) showed it for the same country by calculating 

domestic resource costs for assessing the comparative advantage. In the light of this 

declining profitability, Pingali and Rosegrant (1998: 956) pointed out that “for wheat 

farming to remain profitable, technological change must ensure that production costs 

per ton of wheat fall at the same rate as the real price of a ton of wheat”. The 

experience of most high-income countries is that technological change alone is not 

enough, and governments step in to support farm production by upholding its 

relative profitability. Government support to agriculture can include price and income 

support, but can also be in the form of investments in R&D. To argue for a higher 

yield potential for the irrigated rice areas of Asia means subscribing to one aspect of 

the latter. However, it is important to recognize that alternative combinations of 

policy intervention are available. 

2.3.3 ‘A higher yield potential increases food security’ 

Related to the argument that a higher yield potential increases food availability, is 

the argument that it enhances food security (e.g., Lampe 1995; Cooper 1999). 

Lampe, for instance, claimed that “[crop] breeding remains one of the most powerful 

tools to eliminate hunger” (Lampe 1995: 258). This argument assumes that crop 

varieties with a higher yield potential ultimately end up in the mouths of the hungry. 

This is a misconception for mainly four reasons. 
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First, the linkages between technological change and food security are complex and 

cannot be assumed as linear. Among other things, these linkages depend on the 

diffusion process of a technology, price and income effects including multiplier 

effects, and the functioning of markets. The remaining chapters of this thesis will 

scrutinize these linkages using agent-based modeling on a case study of Ugandan 

farm households. This chapter merely stresses that non-market and non-technology 

sources of food insecurity, such as violent conflict, bad governance, discrimination, 

and natural disasters are important, if not the main, factors behind food insecurity 

(von Braun et al. 1998; Paarlberg 2000).  

Second, the definition of yield potential, as the unconstrained yield, contrasts to the 

fact that food security is concentrated in those areas with a relative abundance of 

constraints – i.e., the less-favored areas. A wide array of biophysical as well as 

socioeconomic factors constrain agricultural growth in the less-favored rural areas of 

developing countries: rainfall is uncertain, soil fertility is poor, slopes are steep, 

irrigation is lacking, the physical infrastructure is poor, transaction costs are high, 

and markets are either imperfect or completely missing (Wade et al. 1999; 

Kuyvenhoven 2004; Ruben and Pender 2004). Yet, the yield potential is the 

unconstrained yield and hence assumes the absence of all of these constraints as 

well as yield maximizing labor use by farm households. Under such conditions, the 

yield potential becomes irrelevant, as it does not represent realistic opportunities for 

farm households to exploit. 

Yet, the number of poor people living in these less-favored areas is vastly larger than 

the number of poor people in the favored areas (von Braun 2003).  Kuyvenhoven et 

al. (2004) estimated that roughly 40 percent of people in developing countries live in 

the less-favored areas. According to Mackill et al. (1996), only 8 percent of the 

major rice areas in South and Southeast Asia are favorable (Mackill et al. 1996, as in 

Wade et al. 1999: 5). Hence, for an increase in yield potential to be beneficial for 

those who are food insecure, current constraints need to be addressed 

simultaneously, if not primarily. Signs of an increase in yield potential for the less-

favored areas (e.g., Lantican et al. 2003) need to be treated with cautious optimism, 

as an increase in yield gap is an irrelevant indicator for an increase in real 

opportunities for these areas. 

Third, technological change is often location-specific, which makes linkages between 

locations important in assessing the impact of technological change on food security. 

Consumers and early adopting farm households generally benefit from improved 
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technologies, but non-adopting farm households experience real losses from 

deteriorating terms of trade if farmgate prices fall (Cochrane 1958; Renkow 1994; 

Hazell and Haddad 2001; Evenson and Gollin 2003). The problem is that the non-

adopters tend to be concentrated in the less-favored areas and are more likely to be 

food insecure than the adopters. The introduction of a variety with a higher yield 

potential might therefore worsen the food security situation of poor farm households 

whose adoption lags behind. 

Fourth, a higher yield potential might be the least binding of all constraints for those 

areas where food insecurity is most severe. To support this claim, attention is turned 

to India as much of the debate on decreasing yield gaps has focused on this country. 

Data are available on the yield gap in rice for 19 Indian states, including both 

favored and less-favored areas. These data come from Siddiq et al. (2001). Yield 

potentials are seven-year averages of the highest yielding entries at test locations of 

the All-India Coordinated Rice Improvement Program (AICRIP) in each state. 

Average rice yields are state-level averages calculated over the same period as the 

yield potential. The state-level yield gap is quantified as the difference between yield 

potential and average yield, expressed as a percentage of the average. 

Three outcome indicators for nutrition and health are used as indicators of food 

security: the infant mortality rate, the percentage of stunted children under the age 

of three, and the percentage of women with a body mass index (BMI) below 18.5 

kg/m2. State-level data come from the National Family and Health Survey 1998-99 

(IndiaStat 2004). These indicators are plotted against the state-level yield gap in 

Figure 2.2. 

The figure shows a clear and positive correlation between the width of the yield gap 

and the three indicators of food insecurity. The correlation is strongest for infant 

mortality and stunted children. These figures show that the gap between the yield 

potential and average yields is especially large in those Indian states with a high 

level of food insecurity. This might not point to deficiencies in technology but, more 

likely, to a failure of agricultural services and health services in these states. These 

and other non-technology related factors constrain average yields and impede the 

food security and well-being of people.  
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Figure 2.2: Correlation between the rice yield gap and three food security 

(outcome) indicators for 19 Indian states, 1998-1999 

Sources: Siddiq et al. 2001 (yield gap); IndiaStat 2004 (food security indicators) 

 

These results suggest that food insecurity is highest in those Indian states where the 

rice yield potential is least constraining, and that a higher yield potential is no 

guarantee for food security. The results also suggest that there is a large 

technological potential for states to exploit. Fan and Hazell (1999), for instance, 

showed that returns to public investments in India, like infrastructure, are currently 

greater for the less-favored than for the favored areas.  

2.3.4 ‘A higher yield potential is needed to keep prices low’ 

Many authors have claimed that varieties with a high yield potential are needed to 

keep food prices down and that this enhances food security. For instance, the IRRI 

2000 Annual Report states that “The price of rice must be kept down so that the 

position of the worlds’ poor and hungry does not deteriorate” (IRRI 2000: 23). Yet, 

the idea that, as a rule, the food security situation improves with lower cereal prices 

is a misconception. The linkage is complex, location and time specific, and can go 

either way (Pinstrup-Andersen 1988; Renkow 1994). 

Lower real cereal prices increase the purchasing power of consumers who can 

consume more for the same amount of money. Lower cereal prices especially 

augment the income of the poor as they spend a large share of their budget on 

cereals. However, lower cereal prices at the farm gate decrease the revenues of the 

producers, weakening the incentive to produce cereals. Too low cereal prices can 

impede on the food availability and worsen the food insecurity if trade is restricted. 

Too high cereal prices, on the other hand, can also worsen food insecurity by limiting 

the access to food. A positive linkage between low cereal prices and food security 
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can therefore not be assumed but requires careful analysis taking into account both 

spatial and temporal dimensions. Six main factors are to be taken into account: 

(a) whether the food insecure are net buyers or net sellers of cereals; 

(b) price and cross-price elasticities of expenditures on cereals by the food 

insecure; 

(c) multiplier effects, such as a possible reduction in the wages for the rural 

landless resulting from lower cereal prices (e.g., Barnum and Squire 1979); 

(d) the opportunity cost of cereal production and its marginal rate of substitution; 

(e) the terms of trade in agriculture, such as the price of inputs relative to the 

price of output; and 

(f) the openness of the economy and functioning of markets. 

The effect of low cereal prices on food security is therefore ambiguous. The objective 

of the current chapter is merely to highlight the complexity, while the second part of 

the thesis will analyze this complexity using simulation modeling on a case study in 

Uganda. 

 

2.4 More than genes 

A higher yield potential alone will not provide the virtues augured by crop breeders. 

The creation of an enabling environment is a precondition for improved seeds to 

have their desired impact. Yet, this impact should not be judged in terms of crop 

yields only, and especially not in terms of average yields. The issues of enabling 

environments and average yields are discussed in the following. 

2.4.1 The importance of creating an enabling environment 

Improved varieties with a higher yield potential have undoubtedly contributed to 

growth in average yields. Duvick (1992) estimated that the genetic improvement in 

maize has accounted for 56 percent of annual average yield growth in Iowa maize 

yields between 1930 and 1989. Similarly, Byerlee et al. (2000, as in Wiebe 2003: 

10) estimated that about half of the increase in global crop yields in recent decades 

has come from genetic improvement, the remainder coming from improved 

management. Yet, does this mean that to raise crop yields, we merely need to 

improve the genetic potential? Not really. The example of hybrid maize below is used 

to underpin this claim. 



 23 

Hybrid maize was developed and first introduced in the United States in the late 

1930s. These hybrids spread at an enormous pace, which resulted in 95 percent of 

the United States Corn Belt covered by it within 15 years of its release (Griliches 

1957; Duvick 1996). The success of this hybrid is still one of the reasons for a very 

strong advocacy for hybrid maize in developing countries.  

Though hybridization lay at the core of this success story, explaining the success of 

hybrid maize only from the advance in hybridization does not do historical justice to 

the socioeconomic context in which it was achieved. One might apply similar 

arguments to the Green Revolution in Mexico and South and Southeast Asia (e.g., 

Herdt 1987; Hazell and Ramasamy 1991). Though nothing new, it is important to 

keep in mind the non-gene related factors that spurred the success of, in our 

example, hybrid maize in the United States. These factors can be divided into basic 

structures and incentives. Basic structures include the physical and institutional 

capital, which affect the functioning of the economic system, and which facilitate, but 

not immediately influence, farm household decision-making. Incentives, on the other 

hand, directly influence economic decision-making. Three such basic structures and 

five incentives that played a crucial role in the success of hybrid maize in the United 

States are listed below. 

(1) Supportive basic structures: 

 A wide network of experimental stations at so-called land-grant universities 

facilitated the local improvement and adaptation of hybrid maize (Goldman 

1998). 

 Early institutions of intellectual property rights protection safeguarded large 

private investments in R&D of hybrid maize. High profits from sterile seeds and 

relatively inexpensive seed production shifted maize breeding from the public 

to the private sector. 

 Substantial federal investments in institutional and physical infrastructure in 

the 1930s facilitated the development of an input service and food processing 

industry (Cochrane 1979). 

(2) The right incentives: 

 Hybrid maize had a very large yield premium of 15 percent over the best open-

pollinated varieties (Duvick 1997: 6). Drought-resistant and disease-resistant 

plant varieties were developed at the same time. 
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 The United States Department of Agriculture actively supported the adoption of 

hybrid maize (Goldman 1998). 

 Farm-gate prices from the late 1930s to the late 1940s were high because of 

wartime demands and government payments to farmers, which raised farm 

incomes substantially and allowed farmers to purchase technologies (Schultz 

1945; Cochrane 1979).  

 There was strong demand for land and labor saving technologies because of 

rising opportunity costs of labor, strong rural-to-urban migration, and an 

increase in farm sizes (Schultz 1945; Cochrane 1979). 

 The introduction of hybrid maize largely coincided with the introduction of three 

other technologies in United States agriculture to which the crop was highly 

responsive: (1) mineral fertilizer; (2) agrochemicals to control pest, insects, 

and weeds; and (3) farm mechanization (Cochrane 1979).  

2.4.2 The limited relevance of national average yields  

In the current debate on food production, the yields of cereal varieties get too much 

attention, while the conditions that enable farmers to produce such yields get too 

little attention. Even more so, the discussion about cereal yields focuses almost 

exclusively on average national yields. Yet, national average cereal yields are not 

good indicators of agricultural development for at least six reasons: 

a. One output focus 

Cereals are only one crop in a whole range of crop, livestock, and non-farm 

enterprises performed by farm households. High productivity of non-cereal 

enterprises might easily compensate low productivity in cereal production. 

b. Economically void 

Low cereal yields do not signal inefficiencies but can well be an economically optimal 

allocation of scarce inputs. A large amount of empirical literature shows that farm 

size negatively relates to land productivity but does not show that the lower land 

productivity of larger farms is associated with inefficiencies (Cornia 1985; Singh 

1988; Heltberg 1998; Dorward 1999; Lerman and Schreinemachers 2005). 

c. Partial indicator 

The importance of the yield indicator hinges on the assumption that land is the 

scarcest production factor for farm households so that land saving technological 

change is a good indicator of overall productivity growth. Often this is not the case. 
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In many parts of the world, the relative scarcity of fertilizers, pesticides and 

herbicides, and credit is more constraining than the availability of land. In addition, 

labor and water are increasingly constraining agricultural productivity in developing 

countries. If this is the case, labor productivity, fertilizer productivity or water 

productivity offer more guidance to farm households and policy makers in their 

allocation of scarce resources. 

d. The arithmetic mean 

Cereal yield is an average at all levels of aggregation (Just and Weninger 1999). At 

the plot level, yield is an average over a plot. At the farm level, yield is an average 

over a farm's area under one crop. At the national level, yield is an average over a 

country's cultivated area, and so forth. An average is meaningful if the underlying 

distribution is statistically normal and not too skewed in either direction. Yet, farm 

household surveys in developing countries often find farm-level crop with a strong 

negative skew; that is, many farm households attain very low yields while only few 

attain very high yields. If this is the case then the arithmetic mean is not a good 

indicator.  

Figure 2.3 illustrates this with a 

kernel density estimate for maize 

yields in Uganda, as estimated from 

household survey data. The 

arithmetic mean maize yield is 0.96 

tons/ha/season, which is the yield at 

the maximum density of the overlaid 

normal distribution. Yet, the actual 

distribution of maize yields is far from 

normal and the arithmetic mean 

hence badly represents what most 

farm households obtain from their 

plots. Under such circumstances, 

median values or trimmed arithmetic 

means usually give a more realistic 

idea of crop yields in a country. 

e. Bias toward monoculture 

Where intercropping is common, the concept of crop yield, defined as production of a 

single crop per hectare per season, is unsuitable. If two crops are grown in 

Figure 2.3: Kernel density distribution of 

maize yields in Uganda 

Source: Estimated from 2000-01 IFPRI survey  

Notes: Epanechnikov kernel used. Zero yields included. 
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combination on the same hectare, then the crop yield indicator grossly 

underestimates the true land productivity. Individual crop yields are usually lower 

because of increased competition between the crops, but total land productivity is 

often greater than in monoculture (see Chapter 7). The possible advantages of 

monoculture mainly stem from mechanization, which is still not common in many 

developing countries, especially in sub-Saharan Africa. One can therefore discern a 

Western bias in the importance attached to average yields, because intercropping is 

common in rainfed agriculture in the tropics, whereas monoculture dominates 

agriculture in the West (Hildebrand 1976).  

f. Conditionality 

Trends in average national yields might not reflect trends in farmers’ fields, if the 

underlying resource conditions change. This implies that for growth in the average 

national cereal yield to be a meaningful indicator of growth in average land 

productivity, it needs to be assumed that: (1) the area under cereals remains 

constant and there is neither substitution between crops nor a shift to alternative on-

farm or off-farm activities; and (2) the number and composition of farm households 

remains constant. The literature contains an abundance of examples, especially from 

Southeast Asia, that these conditions are not met. 

First, when cereal production expands into areas of lower land quality, where yields 

are below the average national yield, then this average yield will go down although 

no individual farmer needs to have observed any yield decline. David Ricardo already 

identified this process (Ricardo [1818] 1957: 35). The opposite can also be true. For 

example, Duwayri et al. (2000) observed that high growth rates of national average 

rice yields in Latin America during the 1980s can mainly be attributed to reductions 

in the area devoted to low yielding upland rice in Central America and central Brazil. 

Dawe (2002: 361) also pointed to a 25 percent absolute decline in the area of 

deepwater and upland rice in Asia, which increased the share of irrigated area in the 

total area and increased average rice yields. 

Second, the same is true for differences in labor quality. If young and highly 

productive farmers decide to leave agriculture, for instance to take up employment 

in the cities, then the national average yield will go down although none of the 

remaining farmers might observe any decline in their yields. Papademetriou (2000), 

for example, observed that the younger generation of farmers in Southeast Asia is 

moving away from agriculture and from rice farming in particular with only the old 

generation staying behind.  
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g. Bifurcation 

National statistics do not usually produce a measure of the regional variation around 

the average, despite the fact that averages without standard deviations are not 

particularly meaningful. The reason is that the national average yield is commonly 

estimated from total production divided by total area (i.e., from the sums of output 

and area, rather than the average of farm-level average yields).  

Sub-national yield estimates, where available, can be used to get an impression of 

how standard deviations have developed over time. Our interest is the direction of 

these trends, and not the comparison of average yields and standard deviations 

between countries (the data come from different sources, are compiled using 

different methods, and sub-national units are of different size, number, and quality).  

Data were available for 34 Indian states (rice and wheat, 1970-2000), 29 Chinese 

provinces (rice, wheat, and maize 1979-1995), 24 Bangladeshi districts (rice and 

wheat, 1979-2000), 48 American states (wheat and maize, 1970-2001), 32 Mexican 

states (wheat and maize, 1980-2002), and 27 Brazilian states (rice and maize, 1990-

2002). Ideally, one would like to use farm-level yield data, but these typically have 

no national coverage, and are certainly not available in comparable time series. 

 

Table 2.1:Growth rates in national average cereal yields and sub-national 

variations around the average for a selection of countries, in % per annum 

Country Period Rice Wheat Maize 

  average SD average SD average SD 

Bangladesh 1979-2000 1.75** 5.14** 0.57 -1.10  -  - 

Brazil 1990-2002 4.57** 2.31**  -  - 4.13** 3.02** 

China 1979-1995 2.13** 1.70** 3.37** 2.65** 3.41** 4.23** 

India 1970-2000 2.28** 2.37** 2.91** 2.32**  -  - 

Mexico 1980-2002  -  - 0.77** 1.80** 2.05** 2.90** 

United States 1970-2001  -  - 0.81** 1.91** 1.91** 0.34 

Sources: CIMMYT Bangladesh Regional Office (2004); Instituto Brasileiro De Geograpia e Estadística 
(IBGE) (2004); International Rice Research Institute (IRRI) (2004) (China and India); Servicio de 
Información y Estadística Agroalimentaria y Pesquera (SIAP) (2004); United States Department of 
Agriculture (2002)  

Notes: ** significant at 0.05. Figures not comparable across countries. SD is standard deviation of the 
mean. Linear growth model is ln(y)=a+bx. - means data not available.  

 

For each year, the national average yield was estimated as the average of sub-

national yields using acreage-weights; this is the same as the ratio of total 

production over total area, but has the advantage that it produces a standard 
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deviation. A linear growth model was fitted to the trends in both yield and standard 

deviation. The results are shown in Table 2.1. 

For all countries and all crops in our sample, the standard deviation of the average 

has increased over time. All growth rates in national average yield and standard 

deviation are significant except for Bangladeshi wheat. For a number of countries, 

notably India, Bangladesh, and Mexico, the growth in standard deviation even 

outpaces the growth in average yield. Sub-national yield averages are clearly 

bifurcating. 

The observed bifurcations of subnational average yields suggest that crop yields 

grow unequally within countries. It can be interpreted as realized opportunities to 

increase yields in some regions. Whether this means that some farmers are losing 

out from technological change depends, among other factors, on the opportunity 

costs of cereal production. Sub-national bifurcation is not necessarily bad as it can 

also mean efficiency improvements resulting from regional specialization.  

 

Figure 2.4: Global development of average cereal yields and standard deviations 

Source: FAO 2006. Note: In tons/ha/season 

 

Out of curiosity, the exercise was repeated at the global level using countries instead 

of districts and states (see Figure 2.4). Though national figures are not necessarily 

comparable between countries, the pattern that emerges is sufficiently robust to 

accommodate severe statistical errors. A much more dramatic pattern emerges at a 

global level, with the standard deviations closely following the trend in average 

yields, especially for maize and wheat. Again, the growth in average yield of farmers 

in some countries is obviously lagging behind yield growth achieved in other 

countries. 
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2.5 Summary 

A direct relationship between an increase in the yield potential and an increase in 

food security is often claimed; yet, this chapter pointed to four major misconceptions 

that underlay this claim. It is not true that farmers generally want a higher yield 

potential, that meeting the future demand is a question of production only, that 

extra production ends up in the mouths of the hungry, or that low cereal prices help 

the poor. Yield gaps for most developing countries are wide, which is prima facie 

evidence that there is no straightforward relationship between the level of yield 

potential and food security. This was further confirmed by a positive correlation 

between the width of the rice yield gap and food insecurity for 19 Indian states. 

Although seeds with a higher yield potential can contribute to increased productivity 

under certain conditions, the situation in many developing countries points to the 

fact that average yields are mostly constrained by non-technology factors; although 

the concept of average yield itself needs to be treated with caution.  
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3 Conceptual frame and 

analytical approach 
 

 

3.1 Introduction 

Despite the simplicity of its definition, the concept of crop yield gaps is complex as a 

multitude of factors determines its width. The previous chapter showed that 

economic factors are often missing in arguments that connect the progress in crop 

breeding for a higher yield potential with meeting the food requirements of the poor. 

One important reason was a lack of understanding about the impact of improved 

varieties on a heterogeneous population of farm households. The remaining chapters 

of this thesis scrutinize the concept and pitfalls of crop yield gaps at the farm 

household level. An integrated model that captures soils, crops, and households is 

developed and calibrated to two village communities in southeast Uganda. Chapter 

4 describes the model components in general terms; four subsequent chapters give 

details on each component, followed by the simulation results in Chapter 9.  

The type of model is a multi-agent system, which is a suitable methodology for 

capturing biophysical and socioeconomic complexity and for spatially integrating 

different models of farm household decision-making and biophysical dynamics. Such 

spatial integration is useful for analyzing empirical problems of an integrated nature 

of which crop yield gaps are a good example. The developed model has wider 

application than for analyzing yield gaps; other potential applications include soil 

fertility decline, technological change in agriculture, and the impact of HIV/Aids on 

agriculture. Without moving focus away from the yield gap, the following chapters 

will touch on all these topics, as these are relevant for Ugandan agriculture today 

and impact on the crop yield gap as well. 

The present chapter is structured as follows. Section 3.2 describes how maize yield 

gaps are quantified and decomposed in both proximate and underlying factors. 

Section 3.3 adds socioeconomic dimensions to the yield gap and Section 3.4 



 31 

introduces the research area where the method is applied. The chapter ends with a 

summary. 

 

3.2 Decomposing crop yield gaps 

Causes of crop yield gaps can be divided into proximate and underlying causes. 

Proximate causes for instance include variety choice, and levels of fertilizer and labor 

use. Underlying causes, on the other hand, explain the reasons why farm households 

do not grow improved varieties and do not apply maximum levels of input.  

3.2.1 Proximate factors 

In a first stage, the yield gap is decomposed based on the standard methodology 

developed by Gomez (1977). In its original form, this method involves a series of on-

farm experiments to decompose the yield gap into factors such as variety choice, 

fertilizer use, and pest control. Each input is applied at two levels, of which one is the 

input use by the farm household and the other is the recommended, or optimal, 

level. The experiments exhaustively combine each combination of input levels to 

separate the contribution of each factor statistically. 

The method applied here is similar, yet with the crucial difference that computer 

experiments replace the on-farm experiments. These computer experiments use 

empirically based crop yield functions that represent the relationship between 

kilograms of harvested crops and input decisions (crop choice, land allocation, 

fertilizers, management). This might not be as precise as on-farm experiments for a 

particular level of input use. Yet, it has the great advantage, apart from low research 

costs, that the yield gap can be decomposed not only for one input level for one crop 

and for an average farm household, but for every input level, for all crops and for  

every ‘agent’. The term agent is used instead of farm household to indicate that the 

method uses a model representation of a real-world farm household. 

The present decomposition analysis uses four factors: variety choice, fertilizer use, 

labor use, and intercropping. Labor use and intercropping are not commonly used in 

this type of analysis but are included here because these are important for 

agriculture in southeast Uganda as few farmers have access to animal or mechanical 

traction and most crops are grown in combination.  

Table 3.1 shows the factorial design of the experiments, with an empty square 

indicating the simulated actual input use of the farm agent, and the full square the 
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maximum level of input use. For the fourth factor called ‘pure stand’, the empty 

squares stand for intercropping and the full squares for cropping in pure stand. 

Each component of the yield gap can be identified using the following formulas: 
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Table 3.1: Experiments for decomposing the yield gap in proximate factors 

Experiment Variety Fertilizer Labor Pure stand Other 

1 (baseline)      

2      

3      

4      

5      

6      

7      

8      

9      

10      

11      

12      

13      

14      

15      

16 (max. yield)      

Note:  = agent level of input use  = maximum level of input use 

 

3.2.2 Underlying factors 

The existence of yield gaps does not immediately imply economic inefficiencies. Low 

levels of yield can still be optimal if resources are limited and farm households 

therefore face tradeoffs in their input allocation. Performance gaps instead of crop 

yield gaps are then more meaningful. Herdt and Mandac (1981), for instance, 

measure performance in terms of efficiency. 
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The present study decomposes performance gaps in three underlying factors 

following the same factorial design as for the proximate factors. Three underlying 

factors are of interest: knowledge about innovations, short-term credit, and hiring in 

temporary labor and/or leasing a tractor. These underlying factors do not relate to 

crop yield in the same straightforward way as inputs enter a crop yield function. 

Moreover, the interest now goes to the overall performance of the farm rather than 

the yield of a single crop, and trade offs in land allocation and input use then become 

important. The above computational experiments based on the crop yield function 

cannot be used because of dynamic feed back effects: the performance in one year 

influences the performance in subsequent years. Dynamic simulation experiments 

are used instead. This involves a series of simulation experiments in which 

constraints on each factor and combination of factors are relieved in turns. Table 

3.2 shows the factorial design of these simulation experiments. The crop yield gap 

can be decomposed using eight computational experiments and the following 

formulas: 
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Table 3.2: Experiments for decomposing the yield gap in underlying factors 

Experiment Knowledge about 

innovations 

Short-term credit Hiring in labor / 

leasing tractor 

Other 

1 (baseline)     

2     

3     

4     

5     

6     

7     

8 (max. yield)     

Note:  = constrained level  = unconstrained level 
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3.3 Socioeconomic dimensions of the yield gap 

What are good performance indicators of the farming system? A good indicator 

would be the extent to which the system satisfies farm households’ objectives. These 

objectives may include income, health, education, social status, security, leisure 

time, and savings to smooth consumption in the face of shortfalls. These are private 

objectives because they do not necessarily coincide with the objectives of society as 

a whole. A principal social objective, which many governments subscribe to, is 

national self-sufficiency in cereals. Other social objectives, flowing from the current 

development paradigm, are poverty reduction, food security, sustainability, and 

equality. Social and private objectives are compatible in principle, as the well-being 

of society is the sum of the well-being of its members. Yet, social objectives not only 

relate to the level of well-being but also to its distribution; it is here that social and 

private objectives diverge. Table 3.3 summarizes the private and social objectives 

and the way they are quantified in this thesis, each is detailed in the following 

subsections. 

 

Table 3.3: Measurement of private and social objectives 

Private objectives  Social objectives 

Economic well-

being 

Food security  Food sufficiency Equality Ecological 

sustainability 

Food energy 

consumption 

Savings, assets 

and crop diversity 

 Surplus food 

production 

Gini inequality 

index 

Nutrient stocks 

      

3.3.1 Private objectives 

Private objectives of farm households have multiple dimensions that can be captured 

by a utility function, which will be specified in Chapter 4. The utility function is 

specified at the farm household level assuming that utility is equally spread over all 

household members, although this might not be the case in reality. The fulfillment of 

these private objectives is measured in the light of the current development 

paradigm, including poverty reduction and food security. Equality and sustainability 

are additional aspects of this paradigm, but these are treated as social objectives. It 

is useful to note here that private and social objectives are normative and that it is 

for policy makers to decide on ‘acceptable’ levels of each of these indicators. 
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3.3.1.1 Economic well being 

Economic well being, or its reverse poverty, concerns the command over 

commodities deemed essential to constitute a reasonable standard of living in 

society. The analysis is restricted to indicators of economic welfare rather than the 

broader concept of well-being, which would include aspects such as health and 

education.  

In a developing country context, the concepts of food security and poverty are very 

much alike. Although poverty is most often quantified as a dichotomous variable, the 

best poverty measures are scalars and the best scalar is food energy consumption 

(Lipton 1983; Coudouel et al. 2002). Food consumption can be quantified in terms of 

food energy in joule. 

The food energy intake is quantified on a per capita basis in male adult equivalents 

to control for differences in size and composition of households. The adult equivalent 

is set to an average annual energy requirement of an adult male (18-62 years old) in 

Uganda of 3.259 billion joule. Because food energy needs depend on the size and 

composition of the household, the poverty line is household specific. Food energy 

consumption is estimated from a complete demand system estimated in Chapter 8. 

Such a system allows for substitution between food products, which makes the 

poverty line more flexible as the relation between food expenditures and energy 

consumption is non-linear. Rich households, for instance, consume more protein-rich 

than calorie-rich foods (e.g., more meat, fewer cereals) and hence get less food 

energy for the same amount of money.  

3.3.1.2 Food security 

In addition to food energy consumption, food security also refers to a stable 

command over food over time. Two indicators measure this type of security: first, 

the value of farm assets plus savings; and second, crop diversification. Farm 

households with a diversified income and a high value of farm assets spread risk in 

two dimensions: diversification spreads risk within a year, while farm assets spread 

risk over several years. 

Ownership of farm assets spreads the risk of income variation as it allows smoothing 

of consumption in the face of shortage. Investments in livestock are a good example 

commonly found in developing countries (Kristjanson et al. 2004). Farm households 

invest in livestock in years when income is ample and sell when income falls short; 

Chapter 8 presents a quantitative model for this. Farm assets are quantified in 



 36 

value terms at the end of the cropping season. The value farm assets plus savings is 

expressed in per capita terms. 

The crop diversification index (CDI) was used to quantify the spread of risk over 

different crops. The CDI is calculated as one minus the Herfindahl concentration 

index, which is calculated as the sum of squares of all proportions under each crop. 

The CDI ranges from 0 to 1, with larger values indicating more diversification. 

3.3.2 Social objectives 

Social objectives encompass the private objectives but add three more dimensions: 

(1) a high level of national self-sufficiency in cereal production; (2) an acceptable 

level of inequality; and (3) ecological sustainability.  

3.3.2.1 Self-sufficiency in cereal production 

Many national governments adhere to a high level of self-sufficiency in cereal 

production. Assessing the level of national autarky would need a different modeling 

approach, such as a computable general equilibrium model, to capture the economic 

linkages between farm and non-farm sectors. Yet, at the village level, where non-

farm activity is limited, surplus production is a good indicator of self-sufficiency. 

Surplus production is quantified as the value of cereals produced minus what is 

consumed within the community. 

3.3.2.2 Inequality 

Inequality concerns the dispersion in the distribution of income or assets. It is 

important as it is closely associated with both poverty and food insecurity. The Gini 

coefficient, or Gini concentration ratio, is a popular measure of inequality (Gini 

1912). It is scaled from zero (perfect equality) to one (perfect inequality). Let yi be 

the per capita income of household i and yj the per capita income of household j in a 

population of N households. Then the Gini coefficient is defined as the mean of the 

difference between every possible pair of individuals i and j, divided by the 

arithmetic mean income y  of the total population (Litchfield 1999): 

(3-1)  ∑∑
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3.3.2.3 Ecological sustainability 

Ecological sustainability here refers to the long-term biophysical capacity of the soil 

to sustain the same level of crop yields over time. Ecological sustainability is both a 
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private and a social objective. It is a private objective because soil fertility decline 

reduces crop yields of farm households, who hence have an incentive to produce in a 

sustainable way. It is a social objective as farm households might not immediately 

notice the impact of soil fertility decline on crop yields, or might overexploit their 

soils to increase crop yields at the cost of future generations. Chapter 6 describes 

how crop yield and the level of soil nutrients are endogenous in the model. Ecological 

sustainability is quantified using soil nutrient balances for nitrogen, phosphorus, and 

potassium.  

 

3.4 Application to Uganda 

Uganda was chosen for two reasons. First, crop yield gaps in this country are 

notoriously large, while average yields are reported to be stagnating. Second, for the 

practical reason that at the time this research began farm household and soil data 

had been collected in the framework of the research project Policies for Improved 

Land Management in Uganda (Pender et al. 2001; Kaizzi 2002; Nkonya 2002; 

Brunner 2003; Pender et al. 2004; Woelcke 2004, 2006; and Ruecker 2005). The 

International Food Policy Institute (IFPRI) led this project in collaboration with 

several national agricultural research organizations in Uganda and the Center for 

Development Research in Bonn.  

Main findings of the project concern the determinants of land degradation in Uganda. 

Increased sales of agricultural production, better infrastructure, and better access to 

output markets have stimulated the outflow of nutrients from agriculture. At the 

same time, these nutrients have not been sufficiently replenished by increased input 

use, as input markets have remained poorly developed (Pender et al. 2001, 2004). 

The research stressed the importance of assessing the profitability of technologies to 

reduce soil degradation, as well as the importance of better extension services and 

market information for farmers to enhance yields and reduce land degradation 

(ibid.). The present study builds on these findings by explicitly including the 

identified constraints and opportunities into the simulation model.  

3.4.1 Southeast Uganda 

The present study focuses on two village communities in southeast Uganda. Data 

were collected in 1999–2000 and were used to build a bio-economic model (see 

Woelcke 2004, 2006). This model included mixed integer linear programming models 



 38 

at the farm household level and artificial neural networks used as yield estimators 

(ibid.). The model was used to assess the financial and technical feasibility of 

sustainable farming practices. The research found that under current conditions, 

most of these farming practices are not profitable, even if credit were provided 

(ibid.). Woelcke's model was adapted and extended for the present purpose using 

various sources of data listed in Appendix A. 

It was not the primary objective of this study to give tailored policy advice to the 

government of Uganda concerning technological change in agriculture. Yet, the 

model was carefully calibrated to local conditions and relevant policy issues are taken 

into account, such as: (1) the impact of HIV/Aids on agriculture; (2) population 

growth; (3) soil fertility decline; and (4) declining crop yields. 

3.4.2 Maize in Uganda 

This thesis focuses on the adoption of maize varieties with a higher yield potential, 

and particularly on hybrid maize. The focus is on maize for three reasons: (1) 

together with roots and tubers, maize is the most important food staple in Uganda;  

(2) maize has received most attention in research, government agencies and NGOs 

heavily promote its cultivation, and the crop has a main role in food security 

strategies; and (3) some organizations in Uganda have made the increase in yield 

potential a research priority for maize (e.g., ASARECA 2001).  

There is wide consensus that maize yields, and crop yields in general, in Uganda 

have declined or, at best, are stagnant (Deininger and Okidi 2001 as in Nkonya et al. 

2003; Sserunkuuma et al. 2001; Pender et al. 2001). The statistical evidence is, 

however, weak. Reporting results from the 2000-2001 IFPRI Farm Household 

Survey, Pender et al. (2001) wrote that farmers reported declining yields of all crops 

in all zones of the country. They furthermore reported that maize yields have 

declined more in those areas most suitable for cereal expansion, which they 

attributed to the expansion of production into less suitable areas and a decline in soil 

fertility (ibid.) 

In contrast, FAO data show a significant increase in maize yields since the mid-

1980s. These data are, however, not very reliable as Uganda has no sound system of 

annual crop yield data collection. Yield estimates are conducted by the Ministry of 

Agriculture and rely on expert opinion rather than crop cutting and sample surveys. 

There are no reliable estimates of current crop yields at a national level and neither 

of time series. The 1999-2000 Uganda National Household Survey (UNHS), which 
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would normally be a good data source for estimating farm level yields, is not suitable 

for it recorded plot sizes but not the area under each crop.  

 

3.5 Summary 

This chapter outlined the conceptual and analytical frame for the remainder of the 

thesis. The yield gap can be decomposed in proximate factors based on the crop 

yield equation or in underlying factors using scenario experiments. Agent-based 

modeling is a suitable tool for doing the analyses for it can capture much of the real-

world complexity that derives from heterogeneity, interaction, and system dynamics. 

In addition, agent-based modeling allows the decomposition of crop yield gaps not 

just for a few plots on a few selected farms as in traditional experiments but 

virtually, for all agents and for all plots. The following chapters calibrate the model to 

two village communities in southeast Uganda and use it to analyze the yield gap and 

simulate the diffusion of a high yielding maize variety. 
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4 General methodology 
 

 

4.1 Introduction* 

Crop yield gap dynamics are simulated at the farm household level using multi-agent 

systems (MAS). MAS serve as a framework for integrating ‘conventional’ models of 

biophysical processes and human behavior. The word conventional is used to 

underline that these separate models do not break with well-established biophysical 

or economic theories. The novelty of the methodology is the way these conventional 

models are integrated. To emphasize the aspect of integration in MAS, the separate 

models are referred to as ‘system components’. The technical details of these system 

components are given in Chapters 5, 6, 7 and 8, while this chapter describes the 

MAS approach in general terms.  

The chapter is structured as follows. Section 4.2 justifies the use of MAS. Section 4.3 

introduces the three main system components. Section 4.4 discusses how the taken 

approach meets the challenges of capturing heterogeneity, interaction, and 

dynamics. Section 4.5 describes the use of mathematical programming (MP) to 

simulate farm decision-making, and Section 4.6 expands the use of MP with a three 

stage non-separable decision process to capture economic trade-offs over time. The 

chapter ends with a summary. 

 

4.2 Methodological approach 

4.2.1 Heterogeneity 

Development research has come to focus on poverty reduction, inequality, and 

ecosystem sustainability, all of which require an enhanced understanding of 

heterogeneity at levels of farm households. The importance of heterogeneity is also 

                                          

* Parts of this chapter were used for SCHREINEMACHERS, P. and T. BERGER 2006. Land-use decisions in 

developing countries and their representation in multi-agent systems, Journal of Land Use Science, 1(1): 

1-16.  
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realized in agricultural research and extension services as technological change is 

observed to occur unevenly across and within different production environments 

(e.g., Renkow 1994). Blanket input recommendations have proven unsatisfactory 

because these do often not correspond to farmers’ financial optima and strategies 

that strengthen the learning abilities of farmers to optimize their individual input use 

have proven more fruitful instead (e.g., Lacy et al. 2000; Snapp et al. 2003). 

Analytical approaches addressing this heterogeneity in agricultural economics have 

remained weak. Statistical models thrive on heterogeneity for estimating parameters 

but are commonly used for deriving averages only (e.g., average income elasticity, 

average producer response). Farming systems research has long realized that 

agriculture in developing countries typically consists of large numbers of farm 

households that are heterogeneous in terms of opportunities and constraints (Dillon 

and Hardaker 1993). Yet, most model approaches have simplified this heterogeneity 

by ex ante categorizing farm households into more homogenous groups (typically 

four) and then specifying a mathematical programming model for each (e.g., 

Kuyvenhoven et al. 1998; Kebbeh and Miezam 2003; Holden et al. 2004; Woelcke 

2006). This categorization can be rather arbitrary as based a priori knowledge or 

statistical analysis, while whole farm mathematical programming models tend to be 

sensitive to small changes in resource endowments or constraints. 

4.2.2 Mathematical programming-based multi-agent systems (MP-MAS) 

It is with respect to heterogeneity that MAS based on mathematical programming 

(MP-MAS) distinguish themselves most clearly from approaches based on 

representative farm household models. Using MP-MAS the ex ante categorization into 

representative farm households can be avoided and the grouping can be done ex 

post for the purpose of analysis or for summarizing results. 

MAS are a methodology originating from computer science, which is now widely 

applied to the analysis of complex systems (Berger 2001). MAS are also applied to 

land-use/cover change, but still little to farming systems research. Most MAS of land-

use/cover change are based on relatively simple behavioral rules that have only little 

in common with microeconomic theory. However, Balmann (1997) showed that MAS 

can be successfully built on farming systems research by simulating agent decision-

making using whole farm mathematical programming. The pioneering work of 

Balmann (1997) was followed by empirical applications of Berger (2001) and Happe 

(2004). 
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MAS contribute to farming systems research by more fully capturing the 

heterogeneity in farming systems and allowing farm household models to interact 

directly in the exchange of resources or the communication of knowledge (Balmann 

1997; Berger 2001; Happe 2004). The use of mathematical programming has 

furthermore the advantage that in their process (or activity) approach to agricultural 

production they provide an appropriate format for integrating information from 

different disciplines (Hazell and Norton 1986). Chapter 10 will return to a 

comparison of alternative approaches. 

 

4.3 Introduction of system components 

The present MAS approach integrates three main system components: farm agents, 

a landscape, and biophysics. The following four chapters describe each in detail but 

here they are briefly introduced and their interaction is made explicit. 

4.3.1 Farm agents  

The term agent refers to a computer model representing a real-world farm 

household. Each agent represents a single real-world farm household, i.e., there is a 

one-to-one correspondence between farm households and model agents. In the 

empirical application of this study, there are 520 agents representing all farm 

households in two villages in southeast Uganda. The decisions of model agents are 

simulated using whole farm mathematical programming. 

Figure 4.1 explains some basic terminology used with respect to the agents; with 

the agents represented by farmstead icons. The left diagram shows that all agents 

together form the agent population. Agents belong to clusters, which are subgroups 

of the population characterized by similar resource endowments. These clusters are 

used to generate the agent population from survey data, which will be explained in 

the next chapter. The right diagram shows that every agent also belong to a 

network; networks define the possibilities for communication of innovations and are 

discussed in Chapter 7. Just as the population is composed of clusters, the network 

is composed of threshold groups. Membership of a threshold group determines the 

availability of, and access to, innovations. The figure furthermore shows that clusters 

and threshold groups do not necessarily overlap. 
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Figure 4.1: The concepts of agent populations and networks 

 

4.3.2 Landscape 

The landscape consists of two villages in the Lake Victoria Crescent of southeast 

Uganda. Geographical information about these villages is organized in layers. This 

information includes soil properties as well as locations of agents and farm plots; 

Chapter 5 describes each layer in detail. Layers are composed of grid cells with each 

cell representing a small unit of land about the size of the smallest plot. 

4.3.3 Biophysics 

Whereas the landscape component contains the spatial data on soil properties, the 

biophysical component simulates changes in these properties resulting from land-use 

decisions and natural processes such as decomposition of organic matter and 

atmospheric deposition. How soil properties and land-use decisions influence crop 

yield is modeled using crop yield response functions. The yield response is crop, plot, 

and agent-specific. The Tropical Soil Productivity Calculator (TSPC) was used for this 

purpose (Aune and Lal 1995, 1997). The TSPC has non-linear multiplicative yield 

functions that resemble the theory of Mitscherlich because factors are assumed 

complementary while interaction between factors is allowed. 

 

4.4 Heterogeneity, interaction, and dynamics 

Complexity in agro-ecosystems can be conceptualized as deriving from three 

aspects: heterogeneity, interaction, and complex system dynamics. The following 

three sub-sections describe how this complexity is represented in the model. 
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4.4.1 Heterogeneity 

A distinctive feature of MAS is the existence of many individual agents. In the 

present MAS model, heterogeneity among agents is introduced by varying the 

following five groups of variables: 

1. land quantity (hectares) and quality (soil physical and chemical properties, and 

land-use history); 

2. labor quantity (household size) and quality (sex and age composition); 

3. livestock quantity (number of animals) and quality (species and age); 

4. quantity of permanent crops (ha of coffee) and quality (age of plantation); and 

5. membership to threshold groups determining the access to innovations. 

There are other sources of variation among agents one can think of, such as 

variation in price expectations, the incidence of crop pests, human sickness, skills, 

and educational level, which are not considered in the model. These could however, 

be captured within the same framework, if data were available. Heterogeneity in the 

landscape is captured by modeling each separate plot. All soil properties are scalars 

and changes in properties are determined endogenously in the model.  

4.4.2 Interaction 

The word ‘system’ suggests that there are linkages between things or people. Three 

types of interaction are distinguished:  

1. Agent-agent interaction. Interaction among agents takes place in the 

communication of innovations. Quantitative as well as qualitative information can 

be used to specify how innovations are communicated among agents. Depending 

on this, an innovation becomes accessible to some but not all agents.  

2. Agent-environment interaction. Agricultural production is the main such type of 

interaction. Figure 4.2 shows how management decisions influence soil 

properties and crop yield. The three vertically ordered ovals represent the 

biophysical process. Agents affect the environment at three levels. First, residue 

management, livestock (manure) and mineral fertilizer affect crop yield indirectly 

by altering the properties of the soil. Second, crop choice and crop management 

(e.g., weeding, harvesting) affect crop yield directly. Third, conservation 

measures, such as erosion control, have an impact on soil property dynamics and 

can have a long-term impact on the soil properties. Yet, erosion control is neither 
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a common practice in the study area nor is erosion very severe (Brunner et al. 

2004); erosion control is therefore not included as a management option in the 

model.  

3. Environment-environment interaction. Soil erosion, deposition, leaching, and 

volatilization are spatially explicit soil processes, meaning that the process in one 

location is a function of processes in surrounding locations. The grid-cell-based 

landscape component can capture such interaction, but in the current model 

version only erosion is spatially explicit by the inclusion of a slope length factor 

(see Chapter 5).  

 

Figure 4.2: Three levels of agent-environment interaction 
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4.4.3 Dynamics 

The basic time step of the current MAS is one year with a complete simulation run 

spanning 16 years. The outcome of one year is the basis for the following year. This 

is true for both agents and the soils they cultivate. Figure 4.3 shows the two 

interacting processes; the three vertically ordered ovals are the same as in Figure 

4.3 and the three horizontally ordered rectangles represent the farm decision-

making process. More details about this three-stage decision-making procedure 

follow.  
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Figure 4.3: Dynamics and interaction of soil processes and farm decision-making 
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4.5 Mixed integer linear programming (MILP) 

Agent decision-making is modeled using mathematical programming (MP). The 

essence of this methodology is optimization of decisions under constraints. As some 

of the decision variables, such as livestock production, can only take integer values, 

the type of mathematical program used is a mixed integer linear program (MILP).  

4.5.1 Non-separable farm decision-making 

Maximization of expected utility is the objective that guides agents in their farm 

decision-making. The utility function has three dimensions: (1) cash income from 

sales and off-farm labor; (2) in-kind income from auto consumption of crop and 

livestock products; and (3) the annuity of future expected income from investments.  

Cash income and in-kind consumption objectives are included separately as these 

objectives are not identical in the case of market imperfections and risk. When 
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markets are imperfect, the resource allocation that optimizes the level of income 

does not necessarily optimize consumption (Sadoulet and de Janvry 1995). In 

microeconomic literature, this is known as the non-separability of consumption and 

production decisions. This non-separability means that consumption decisions need 

to be taken into account when optimizing production decisions. Production and 

consumption decisions can, in recursive fashion, be integrated in a mathematical 

programming model (Dillon and Hardaker 1993; Ruben et al. 1994).  

4.5.2 Concise theoretical model 

The theoretical model is here presented in concise mathematical form. Chapters 6 

and 7 will give more details about the separate production and consumption parts.  

Let OUT be the total output sold and a the farm gate price, and let INP be the matrix 

of variable input requirements purchased at price b. The difference between these 

two factors (a*OUT – b*INP) is then the current cash gross margin. Furthermore, let 

AUT be the quantity of production that is auto-consumed and c its internal price, FUT 

the future output from investments expressed as an annuity at price e, and FIX be 

the fixed costs. The objective function is then specified as: 

(4-1)  Maximize FIXFUTeAUTcINPbOUTa −∗+∗+∗−∗  

Let PUR be the quantity of purchased food products and d its market price. PUR does 

not appear in the objective function because its internal valuation by the agent 

equals its market price and hence the terms cancel out as agents consume all what 

is purchased. Nevertheless, the term appears as a constraint as cash expenses 

cannot exceed cash revenues: 

(4-2)  0FIXPURdINPbOUTa ≥−∗−∗−∗  

Furthermore, let ACT be a set of alternative production activities, and YLD a matrix 

of per unit output levels. The total quantity sold (OUT) and auto-consumed (AUT) 

cannot exceed the production possibilities range as defined by the product of the 

matrices YLD and ACT: 

(4-3)  0ACTYLD*AUTOUT ≤−+  

Moreover, input levels cannot exceed the matrix of available inputs (AVI): 

(4-4)  AVIINPACT ≤∗  
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On the consumption side of the model, let INC be the disposable income, which 

equals the value of the objective function but omits the annuity of investments 

(e*FUT): 

(4-5)  FIXAUTcINPbOUTaINC −∗+∗−∗=  

The expenditure model includes a novel three-step budgeting process that includes 

the decisions to save, to allocate income to food, and to spend the food budget on 

specific food categories. A flexible budget system is used to simulate poverty 

dynamics in terms of food energy levels. Chapter 8 specifies and estimates this 

model; here it suffices to state that the value of food consumption (CON) is a 

function of disposable income (INC) and household size (HHS): 

(4-6)  HHS)f(INC,CON =  

and that the value of food expenditures is the sum of the value of own produce and 

food purchased from the market: 

(4-7)  PURdAUTcCON ∗+∗=  

Finally, all decision variables are constrained to positive values: 

(4-8)  0CONAVI,ACT,FIX,FUT,PUR,INP,AUT,OUT, ≥  

 

4.6 A three-stage non-separable decision process 

Mathematical programming models are suitable to capture trade-offs in the allocation 

of scarce resources at one point in time, for instance, the trade-off between using 

the land to grow maize or to grow vegetables. Another type of trade-off is the 

allocation of scarce resources in time, for instance, between consuming income now 

and investing it to increase consumption in the future, or between growing a 

seasonal crop or a perennial crop. These temporal trade-offs can be handled in a 

multi-period MP that optimizes production and investment decisions over the entire 

lifespan of an investment. Berger (2001) suggested a two-stage MP as a cost-

effective alternative to multi-period programming in MAS and this thesis expands it 

to a three-stage non-separable MP by including consumption decisions, which makes 

it more suitable for developing country application. 

In each period, agents go through a three-stage process of investing, producing, and 

consuming as was shown by the three horizontally ordered squares in Figure 4.3 
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and is also shown in Figure 4.4. Each stage involves the optimization of a unique 

programming matrix and parts of the solution vectors are transferred between 

sequential stages. Appendix B lists the differences in the programming matrices 

used at each stage. The matrices differ in internal matrix coefficients (e.g., yields 

and consumption function coefficients), objective function coefficients (e.g., prices), 

right-hand-side values (e.g., assets, resource endowments, and liquid means), and 

in the number of included constraints. Figure 4.4 summarizes the differences 

between the stages in a more concise form. The following subsections outline each of 

these three stages.  

 

Figure 4.4: Conceptual model for a three-stage decision-making process 
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4.6.1 Investments  

Investments are those productive activities with a gestation period between first 

input use and total output of more than one year. This includes most forms of animal 

husbandry, perennial crops including forestry, and infrastructure. The difference 

between investment decisions and current production decisions is the time horizon of 

the decision-maker.  
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Agents optimize investment decisions by comparing future and annual costs with 

future and annual revenues, which are based the agent’s yield and price expectations 

and the long-run expected household labor supply (see Chapter 7). Production and 

consumption decisions are considered in the investment stage by a simultaneous 

optimization of all three decisions. This means that the agent considers the trade-off 

between future income and current needs when deciding how much to invest.  

The results of the optimal investment plan are then added to the resource 

endowments of the agent. For instance, if the agent had three cows at the start of 

the period and invests in two more cows, then the resource endowment is updated 

to five cows of different vintages while the agent’s savings are reduced with the 

purchasing price of two cows. 

4.6.2 Production 

After deciding on investments, the agent decides on the current land-use in the 

production stage. This includes the decisions what crops to grow, on which plots, 

using which variable inputs, and in what quantities. Like in the investment stage, 

these decisions are based on the agents’ expected yields and prices for the present 

period. Consumption needs are considered by simultaneously optimizing the 

production and consumption decisions. 

All new investment decisions, such as purchasing new livestock, acquiring more land, 

or planting additional trees were already taken in the previous stage and cannot be 

revisited at the production stage. Livestock can, however, be sold and trees be cut 

down if needed at this stage. For this, previous investments are split into two 

alternatives: one is the decision to sell or cut at the end of the period based on the 

present expected costs and benefits, while the other decision values the future 

expected costs and benefits. If present net benefits exceed the expected future 

annual net benefits, then the investment will be sold or cut at the end of the present 

period. 

4.6.3 Consumption 

In the third and last stage of the decision-making process, the model agents sell and 

consume products based on actual simulated yields and prices. Investment and 

production decisions cannot be reversed in the consumption stage. Actual prices 

replace the expected prices and actual crop yields, as simulated by the biophysical 

component from actual input levels in the production stage, enter the MP to replace 
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expected yields. The results of the consumption stage can be used to quantify the 

economic well-being and food security of the agents and the agents’ resources are 

updated to serve as a starting point for the next period. 

 

4.7 Software implementation 

There is still no commercially available software for using MAS based on 

mathematical programming and hence a few paragraphs on the software 

implementation. The software for the present study was developed in collaboration 

with Thomas Berger (University of Hohenheim) based on Berger’s MP-MAS applied to 

Chile (Berger 2001) and written in the C++ programming language. This software 

does not have its own graphical user interface but is controlled through command 

line functions. Different scenarios are managed through a Microsoft Excel workbook 

that controls selected parameter values in files that are linked to it (Figure 4.5). 

This is an easy way of setting up many different scenarios and avoids mistakes when 

having to change parameters in many separate files. The scenario manger uses 

Visual Basic macros to change parameters and to convert all input files from 

Microsoft Excel into ASCII format, which is read by the MAS software source code. 

Mathematical programs are solved using the IBM Optimization Subroutine Library 

(OSL), for which free academic licenses were until recently available from IBM. The 

OSL is strong in solving large mixed integer problems. After installing the OSL, the 

model runs on standard personal computers, though the model runs more stable 

under a UNIX than a Windows operating system.  

In its essence, the source code processes input files and returns output files. These 

output files contain all solution vectors, and changes in soil properties. Output data 

are analyzed using statistical software packages. For the present study, the output 

files were pre-processed using routines programmed by Thorsten Arnold (University 

of Hohenheim) in MatLab and then analyzed using STATA, which is suitable for 

analyzing large data sets. 

 

4.8 Summary 

The multi-agent systems approach is a suitable approach for capturing 

heterogeneity, interaction, and dynamics of landscape and agents. The combination 

of this system with mathematical programming offers a powerful tool for simulating 
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farm household decision-making in a changing environment. An innovative three-

stage decision process, in which investment, production, and consumption decisions 

are inseparable but sequentially solved captures temporal and non-temporal 

economic trade-offs in decision-making. 

 

Figure 4.5: Flow chart of the multi-agent simulation model with software use 

Modeling stage Flow chart Software use

1 Original data Microsoft Excel
Statistical analyses Stata

Stata
ArcView GIS

2 Creation of input files Microsoft Excel

Visual Basic 

3 Model integration MAS
MAS software design IBM OSL

4 Output analyses MatLab
Stata

NetworksSoils

Crops Markets

Livestock

Agents

Agent/plot 
locations

Random Agent 
Generation

Simulation experiments
Vali-

dation 

DATA ANALYSES, MODEL PARAMETERIZATION

SCENARIO MANAGER, FILE CONVERSION TO ASCII

Soil, crop, and 
livestock data

Farm household 
surveys I & II

Farm household 
survey III

 ANALYSES OF SIMULATION RESULTS

Validation

 

 



 53 

5 Generation of landscapes and 

agent populations 
 

 

5.1 Introduction† 

Although multi-agent models have been widely applied in experimental and 

hypothetical settings, only few studies have tried to build empirically based multi-

agent models and the literature on methods of empirical parameterization is 

therefore limited. This chapter develops and tests a novel methodology based on a 

Digital Elevation Model (DEM) to generate a landscape from soil samples, and Monte 

Carlo techniques to generate agent populations from a random sample of farm 

households. By estimating probability functions from a random sample of farm 

households and applying random seed values, the method is able to generate large 

numbers of agents and agent populations that are statistically consistent with the 

survey population. The alternative populations will later be used to estimate the 

variation in simulation results from differences in initial conditions. 

The chapter is organized as follows. Section 5.2 describes how the landscape of soils 

and plots was created from a DEM and hand drawn maps of farmsteads, while 

Section 5.3 describes the creation of agent populations from survey data. The 

resulting agent populations are validated in Section 5.4. The chapter ends with a 

summary. 

 

5.2 The landscape 

The landscape comprises two village communities in the Lake Victoria Crescent of 

southeast Uganda (Figure 5.1 and Figure 5.2). The two villages are Magada and 

                                          

† Parts of this chapter were used for BERGER, T. and SCHREINEMACHERS, P. 2005. Creating 

agents and landscapes for multi-agent systems from random samples.  Ecology and Society, 

forthcoming. 
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Buyemba. Both are located in the southern part of the Iganga District, which through 

redistricting has recently become the Mayuge District.  

    

5.2.1 Data Sources 

Data for generating the landscape come from two soil sample surveys. The first 

sample survey was conducted by Gerd Ruecker (ZEF) in Magada in 2000 (Ruecker 

2005), while the second survey of 120 samples was carried out by the author in June 

2003 in both Magada (80 samples) and Buyemba (40 samples).  

5.2.2 The villages of Magada and Buyemba 

The distance from Magada to Buyemba is about 12 km by road. Both villages are 

connected to the towns of Mayuga and Iganga. Iganga town is about 11 km from 

Magada and about 23 km from Buyemba. The smaller town of Mayuge is located in 

between the two villages: 5 km from Buyemba and 7 km from Magada (Figure 5.2).  

The first farm families moved into Magada in the early 1920s. Settlers mostly 

followed the paths created by seasonally migrating buffalo. The first families settled 

at some distance from these paths for enhanced safety, with later arrivals settling 

more land inward or directly along the path. Buyemba was populated about one 

generation after Magada, in the 1950s.  

Magada counts around 374 households, Buyemba 247. Magada is also more densely 

populated with 436 people/km2 compared to Buyemba’s 383 people/km2. High 

population density has resulted in small average farm sizes, with average farm size 

Figure 5.1: Africa with Uganda marked 

Source: ESRI 2003 
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being smaller in the more densely populated village of Magada. Table 5.1 shows 

some basic statistics for both villages.  

 

Figure 5.2: The Lake Victoria Crescent of southeast Uganda (1:1,000,000)  

 

Note: The villages of Magada (‘Magunga’) and Buyemba (‘Biemba’) are encircled. 

 

The Mayuge District is one of the more densely populated districts of Uganda, with a 

district average of 210 people/km2 compared to an average population density of 85 

people/km2 for Uganda as a whole (UBOS 2002). It is noted that the population 

density of the two study villages is substantially above the district average. The 

already high population density of the district is set to further increase by 3.4 

percent annually, according to the latest available population growth rate, estimated 

over the period 1980-91 (ibid.). This rate is above the national average of 2.6 

percent per annum (ibid.). 

 

Table 5.1: Basic statistics of Magada and Buyemba villages 

 Magada village Buyemba village Both villages 

Area [km2] 6.75 km2 5.15 km2 11.90 km2 

Households in population (number) 373 235 608 

Total population estimate (SE) 2888 (339) 1932 (320) 4820 (281) 

Population density [persons/km2] 428 375 405 

Arable land [ha] / person (SE) 0.39 (0.06) 0.27 (0.04) 0.34 (0.04) 

Sampling fraction (households) 0.18 0.17 0.17 

Source: Estimated from the 1999-2000 ZEF Survey 

Note: Estimates are uncorrected for village boundaries (see text). 
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5.2.3 Landscape representation 

The two villages can be seen as physical landscapes in which farm households reside 

and earn a living by cultivating crops, raising livestock, and performing off-farm 

employment. Figure 5.3 gives a spatial representation of part of the Magada village. 

The figure shows a landscape, a hillslope in the case of Magada, overlaid by a grid of 

uniformly sized cells. A grid cell represents a piece of landscape of 71 x 71 meters 

(0.5 ha) that can be used for agricultural production. Agents’ land endowments 

consist of a variable but discrete number of grid cells. For example, if an agent owns 

2.73 ha of agricultural land then this is represented by five grid cells of 0.5 ha, 2.73 

is hence rounded down to 2.5 ha. Farmsteads are distributed in the landscape and 

represent the agents’ location. Agents own plots and choose which crops to grow and 

how much input to apply. 

Information about each grid cell is organized in spatial layers; Table 5.2 summarizes 

each layer. Layers 1-2 define every agent’s location in terms of farmstead and plots, 

layers 3-5 define the socioeconomic characteristics, layers 6-10 the soil chemical 

properties, and layers 11-12 define the soil physical properties.  

 

Figure 5.3: Spatial representation of the landscape component 
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Table 5.2: Twelve spatial layers representing the landscape 

Nr. Layer Unit Note 

1 Farmsteads # The location of farmsteads (agent identification) 

2 Plots # Ownership over agricultural plots 

3 Villages # Demarcation of village boundaries 

4 Network thresholds # Determines the access to innovations 

5 Cluster # For random generation of socioeconomic characteristics 

6 Nitrogen % Total nitrogen  

7 Phosphorus ppm Total phosphorus  

8 Potassium Mg/100 gr. - 

9 Soil organic matter % - 

10 Acidity pH - 

11 Slope length m - 

12 Soil erodibility factors - - 

 

5.2.4 Location of agents and farm plots (layers 1-3) 

Previous surveys had not recorded the location (latitude/longitude) of farmsteads or 

plots. Only hand drawn maps were available on which most farmsteads in the 

random sample had been marked. Based on these maps, about 17 percent of the 

farmsteads in Magada and Buyemba could be located. Furthermore, using the 

sampling weights of the survey, the total number of farmsteads and plots in each 

village could be estimated. The farmsteads and plots with unknown locations were 

randomly generated using the following procedure. 

Figure 5.4 shows the different stages in generating the spatially located farmsteads 

and farm plots for the example of Magada, with the same procedure applied to 

Buyemba. The left upper panel (Figure 5.4 A) shows the sample points within the 

village boundary of Magada. Socioeconomic data are available for each of these farm 

households. The figure shows that the sample farm households are not evenly 

distributed in the landscape but are clustered around the road network. The figure 

only shows main roads, but it should be noted that  the cluster of dots in the north 

and center of the village are also close to smaller roads. A random allocation of all 

remaining agents was used to complete this layer (using ArcView GIS). Yet, a fully 

random spatial allocation of all remaining agents would be incorrect, as the 

distribution of sample points does not appear to be random. Two different areas 

according to population density were therefore first demarcated: the area alongside 

the road network was designated as of high population density while the remaining 

areas were of low population density. Since survey households were randomly 
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selected, the geographical distribution of the sample households represents the 

distribution of the total population. In Magada, for instance, 84 percent of the sample 

households live in the high-density area, which accounts for 40 percent of the total 

village area. Of the remaining (non-sample) households, 84 percent were thus 

allocated in the high-density area and 16 percent in the low-density area (Figure 

5.4 B).  

This methodology created a problem in the village of Magada in that the estimated 

area from the survey (see Section 5.3) much exceeded the available area within the 

village boundary, though no such problem arose for Buyemba. The likely explanation 

is that many farmsteads in Magada, unlike in Buyemba, are located close to the 

village boundary in the north of the village: these farm households might have plots 

outsides of the village boundary, which are included in the survey. The data were 

therefore adjusted by randomly deleting 95 (non-sample) agents from the population 

so that the estimated and available areas matched. Figure 5.4 C shows the agent 

population after this adjustment. All allocated farmsteads were then converted into 

grid cells.  

Finally, using the estimated sample distribution from the survey, agricultural plots 

were allocated to agents. The spatial randomizer was not used at this stage, as this 

would have produced an unrealistically scattered pattern of farm plots. The allocation 

was therefore done manually (Figure 5.4 D). Table 5.3 summarizes some 

characteristics of the generated agent population. 

 

Table 5.3: Characteristics of the agent population 

 Magada Buyemba Both villages 

Agricultural plots (number) 1,337 921 2258 

Households 278 242 520 

Plots / household 4.8 (2.4 ha) 3.8 (1.9 ha) 4.3 (2.2 ha) 

Source: see text.  
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Figure 5.4: Spatial generation of agent population and agricultural plots from a 

random sample of farm households 

 

Notes:  A. survey sampling points; B. division in areas with high and low population density; C. location 

of all agents and conversion into grid cells; and D. the distribution of agricultural plots. 

 

5.2.5 The socioeconomic landscape (layers 4-5) 

Socioeconomic layers contain information about the agents’ resource distributions 

and their membership to network threshold groups; both were estimated from farm 

household survey data. The land area cultivated by households appeared to be 

correlated with household size. Because of this and other correlations, a complete 

random generation would be unsuitable. Additional constraints were added to the 

random generation by separating agents into clusters as will be explained in Section 

5.3.  
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5.2.6 Soil chemical properties (layers 6-10) 

Soil chemical properties were derived from predictive soil maps for the area. These 

maps were estimated by a team of researchers, including Hosangh Rhew (University 

of Seoul), Soojin Park (University of Seoul/ZEF), and Gerd Ruecker (ZEF/German 

Aerospace Center, DLR).  

Soil properties (nitrogen (N), phosphorus (P), potassium (K), organic matter, acidity 

(pH), and texture) were predicted from terrain parameters using a Digital Elevation 

Model and multiple regression analyses in which each soil nutrient was regressed on 

terrain parameters and other soil properties. Terrain parameters included elevation, 

slope, upslope area, curvature, plan curvature, profile curvature, wetness index, 

streampower index, and aspect (Rhew et al. 2004).  

 

Table 5.4: Predictive soil models 

Soil property Estimated model1,2   

N – 1.22 + 0.039(ELEV)0.5 – 0.087(SLOP)0.5   

K (–21.17 + 0.748(ELEV)0.5 – 0.360Log(STRI))2  

pH 6.47 – 1.32(SLOP)0.5  

Organic Matter (– 8.39+0.30(ELEV)0.5 – 0.79(SLOP)0.5)2  

Clay –394.19 + 12.2(ELEV)0.5 –3.12log(STRI)   

Sand 536.32 – 13.7(ELEV)0.5 + 23.1(SLOP)0.5   

Silt 100 – (Sand + Clay )  

Na EXP( 1.90 + 5.73*(WETI)-0.5  

Ca – 951.69 + 30.69(ELEV)0.5 – 104.69(SLOP)0.5   

P (– 1.15 + 0.003(Ca) + 0.21Log(Na) + 0.13(K)0.5 – 0.02(Clay))-2  

Total P (0.03(Silt)0.5 + 0.11(OM)0.5 – 0.677(N) + 0.04)2  

Source: Rhew et al. 2004 

Notes: 1) All estimates based on a 30m grid size. 2) ELEV=elevation; SLOP=slope; WETI=wetness index; 
STRI=streampower index; OM=organic matter; Na=natrium; and Ca=Calcium. 

 

In a first stage, the prediction was based on 285 soil samples and 910 GPS 

measurements from a single hillslope in the village of Magada collected in 2000 

(Ruecker 2005). Predictive models were initially estimated from these data and 

scaling effects were explored to find robust estimators at different scales. 

In a second stage, a new round of 120 soil samples and GPS measurements were 

collected in two villages in 2003. These data were used to validate the predictive 

models of the first stage, and to subsequently modify these (Rhew et al. 2004). In 

addition, these data were used to establish pedotransfer functions for phosphorus 

and total phosphorus in the soil. 
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The explanatory power of the estimated models varied (Rhew et al. 2004). Although 

the model fit for soil texture (clay and sand) and K was relatively good, it did not fit 

well for organic matter, acidity, and N. What this exercise showed was that terrain 

parameters alone are not enough to explain the variation in soil properties across the 

landscape. Land management and land-use history, for example, are likely to be 

more important in determining soil properties. Spatial data about these factors were 

not collected in the survey and would be a useful addition to a future exercise. 

5.2.7 Soil physical properties (layers 11-12) 

Soil physical properties were included to capture soil erosion. A relatively simple 

approach for modeling soil erosion was used based on the Universal Soil Loss 

Equation (USLE) (Wischmeier and Smith 1978). Two factors were included in the 

model: slope length factor and soil erodibility (Chapter 6). 

Soil physical properties were derived from the DEM developed by Rhew et al. (2004) 

using the hydrologic and spatial analyst extension in AcrView GIS. Slope length was 

calculated following Moore and Burch (1986) as: 

(9)  0.43)size]/22.1 [Cell*on]Accumulati Flow([Length Slope =  

Flow accumulation was expressed as a number of grid cells derived from the 

watershed delineation using the hydrologic and spatial analyst extension to ArcView 

GIS. The cell size was set to 71 meters. A layer of slope length was created using the 

map calculator tool in ArcView GIS. 

The slope length factor was estimated from both slope and slope length following 

Wischmeier and Smith (1978). Table 5.5 shows these factors for different 

combinations of these two variables. A constant factor of 0.40 was assumed for soil 

erodibility by lack of more precise data. 

 

Table 5.5: Slope length factors 

 Slope length (meters) 

Slope (%) 0 – 7.5  7.5 – 12.5  12.5 – 15 > 15  

0 – 1.5 0.00 0.00 0.00 0.10 

1.5 – 3.5 0.13 0.15 0.17 0.17 

> 3.5 0.22 0.30 0.38 0.38 

Source: Based on Wischmeier and Smith (1978) 
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5.3 The agents 

A methodology to randomly generate agent populations from a random sample of 

farm households was developed based on Monte Carlo techniques. The objective was 

to generate a multitude of potential agent populations, with all agents being different 

both within a single population and between different populations.  

5.3.1 Data Sources 

Data came from a farm household survey conducted in the villages of Magada and 

Buyemba by Johannes Woelcke in 1999-2000 (Woelcke 2004, 2006). He used a 

stratified random sample to select 44 farm households participating in agricultural 

trials of the International Center for Tropical Agriculture (CIAT) and the Africa 2000 

Network (A2N), and 62 randomly selected non-trial farm households. Probability 

weights were used in the analysis to correct for the over-representation of trial farm 

households in the sample. These probability weights were calculated as the inverse 

of the probability of a farm household being selected in the random sample. 

5.3.2 Generating an agent population 

One of the challenges in generating an empirically based agent population was to 

represent each real-world farm household with a unique agent. Yet, data were 

available only for a sample of 17 percent of the farm households. The challenge 

hence became how to extrapolate from the sample population to generate the 

remaining 83 percent.  

The most obvious route would be to multiply the sample farm households with their 

probability weights. Average values in this agent population would exactly match 

those of the sample survey. Yet, this copy-and-paste procedure is unsatisfactory for 

several reasons. First, it reduces the variability in the population, as a sampling 

fraction of 17 percent would imply about five identical agents, or clones. This might 

affect the simulated system dynamics, as these agents are likely to behave 

analogously. It then becomes difficult to interpret, for instance, a structural break in 

simulation outcomes; e.g., is the structural break endogenous, caused by agents 

breaking with their path dependency, or is the break simply a computational artifact 

resulting from the fact that many agents are the same? This setback becomes more 

serious for smaller sampling fractions, because a larger share of the agents is then 

identical. Second, the random sample might not well represent the population. The 

sample size is small and the sampling error is unknown but can be large. When using 

the copy-and-paste procedure, only a single agent population can be created, while 
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for sensitivity analyses a multitude of potential agent populations would be desired. 

For these reasons, the procedure for generating agent populations is automated 

using random seed numbers to generate a whole collection of possible agent 

populations.  

5.3.3 Random data generation  

Monte Carlo studies are generally used 

to test the properties of estimates 

based on small samples. It is suitable 

for this study where data about a 

relatively small sample of farm 

households is available but the interest 

goes to the properties of an entire 

population. The first stage in a Monte 

Carlo study is modeling the data 

generating process, and the second 

stage is the creation of artificial sets of 

data.  

The methodology is based on the use 

of empirical cumulative distribution 

functions. Figure 5.5 illustrates such a 

function for the distribution of goats. The figure shows that 35 percent of the farm 

households in the sample have no goats, the following 8 percent have one goat, etc. 

This function can be used to randomly generate the endowment of goats, and all 

other resources, in an agent population. For this, a random integer between 0 and 

100 is drawn for each agent and the number of goats is then read from the y-axis. 

Repeating this procedure many times recreates the depicted empirical distribution 

function.  

Each resource can be allocated using this procedure. Yet, each resource would then 

be allocated independently, excluding the event of possible correlations between 

resources. Actual resource endowments typically correlate, for example, larger 

households have more livestock as well as more land. To include these correlations 

in the agent populations, first the resources that most strongly correlate with all 

other resources are identified and used to organize the survey population into a 

number of clusters. Cumulative distribution functions are then calculated for each 

cluster of sample observations.  

Figure 5.5: Empirical cumulative 

distribution of goats over all households 

in the sample 
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The sample was divided into clusters defined by household size because this was the 

variable most strongly correlated with all other variables. Cluster analysis can also be 

used for this purpose, but clusters produced under this procedure are more difficult 

to interpret, especially when using many variables. Nine clusters were chosen, as 

this number captured most of the different household sizes and allocated at least five 

observations to each cluster.  

Each agent was allocated quantities of up to 80 different resources in the random 

procedure. These resources included 68 different categories of household members 

(34 age and two sex groups), 4 types of livestock (goats, young rams, cows, young 

bulls), an area under coffee plantation, female head, liquidity, leverage, and 

innovativeness. Agents were generated sequentially, that is, 80 random numbers in 

80 different cumulative distribution functions were first drawn for agent No.1 before 

the same was done for agent No.2.  

 

Figure 5.6: Cumulative distribution functions of goats over households per cluster 
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As most resources only came in discrete units, a piecewise linear segmentation was 

used to implement the distribution functions. Five segments were chosen, as this 

captured most resource levels; more segments would have been needed if the 
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number of resource levels per cluster had been larger than five or if many resources 

had continuous distribution functions. 

The above is illustrated in Figure 5.6 and Table 5.6 for the random allocation of 

goats to the agents.  Figure 5.6 plots the cumulative distribution functions for each 

of the nine clusters defined by household size. Table 5.6 shows the piecewise linear 

segmentation of these functions in five segments for each of the nine clusters, the 

structure of this table also reflects how the data entered into the software. 

 
Table 5.6: Piecewise segmented cumulative distribution function 

Example of cumulative distribution of goats over nine clusters 

 Segment 

 1 2 3 4 5 

cluster cum.% goats cum.% goats cum.% goats cum.% goats cum.% goats 

1. 36.4 0 55.5 1 77.8 2 97.9 3 100.0 6 

2. 70.5 0 95.1 2 97.6 3 100.0 6 0.0 0 

3. 28.9 0 65.4 1 82.7 3 100.0 5 0.0 0 

4. 3.1 0 29.1 1 98.6 3 100.0 15 0.0 0 

5. 45.6 0 69.3 1 71.7 2 95.3 4 100.0 7 

6. 34.4 0 75.4 1 93.9 2 95.9 4 100.0 6 

7. 33.8 0 63.8 1 68.5 2 100.0 3 0.0 0 

8. 0.6 0 24.1 1 94.8 2 97.4 3 100.0 11 

9. 26.2 0 50.8 1 95.1 3 97.6 5 100.0 6 

Source: Estimated from the 1999-2000 ZEF Survey 

 

5.3.4 Consistency checks 

In order to get realistic agents, four procedures were applied in addition to the 

cluster-specific cumulative distribution functions for each resource: 

First, checks for inconsistencies at the agent-level. An agent with 20 household 

members is very unlikely to have only one plot of land. Yet, because of the 

purposeful randomness of the resource allocation, unrealistic settings can occur in 

the agent population. By defining a lower and/or upper bound for some 

combinations, this problem was overcome. If a resource combination lay outside 

such bound the generated agent was rejected, and the procedure was repeated. Two 

sets of bounds were included. The first set defined minimum land requirements for 

livestock and the second set defined demographic rules to ensure realistic family 

compositions (Table 5.7). 
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Table 5.7: Imposed rules on the agent populations 

Nr. Rule Min. Max. Unit 

1.  Cow 0.50 - ha 

2.  Young bull 0.33 - ha 

3.  Goat 0.10 - ha 

4.  Young ram 0.10 - ha 

     

5.  Household size 1 24 number 

6.  Adults 1 13 number 

7.  Children 0 16 number  

8.  Male adults 0 6 number 

9.  Female adults 0 7 number 

10.  Male children 0 9 number 

11.  Female children 0 10 number 

12.  Children / adults 0 5 ratio 

13.  Adults / children 0.2 4 ratio 

14.  Females / males 0 8 ratio 

15.  Males / females 0.125 5 ratio 

16.  Female adults / male adults 0 4 ratio 

17.  Male adults / female adults 0 3 ratio 

Source: Estimated from the 1999-2000 ZEF Survey 

 

Second, checks for inconsistencies at the cluster level. The generated mean resource 

endowments had to lie within the confidence interval of the estimated sample mean; 

and the correlation matrix of the agent population had to reflect the correlation 

matrix of the sample population. If not, the generated agent population was rejected 

and the procedure repeated. 

Third, checks for inconsistencies at the population level. The mean resource 

endowments of the agent population had to lie within the confidence intervals of 

each estimated sample mean, and again, the procedure was automatically repeated 

if this was not the case. 

Fourth, if individual agents, clusters of agents, or entire agent populations were 

continuously being rejected on one of the above criteria, then the cluster-specific 

distribution functions were fine-tuned. 

 

5.4 Validation of results 

To test the methodology, a large number of agent populations were generated by 

applying different random seed values. Their properties are analyzed at three levels: 

(1) the population level; (2) the cluster level; and (3) the level of the individual 
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agents. Each of these is discussed in the following. It was not attempted to show the 

entire variation between and within agent populations. An attempt to do so would 

have the following pages covered with tables. Instead, the results are illustrated with 

a few examples and snap shots of alternative agent populations.  

5.4.1 Population level 

At the population level, it was checked whether the averages in the agent population 

resembled those of the survey population. For this, average resource allocations for 

hundred agent populations were calculated (Table 5.8). For all resources, average 

endowments in the agent population fell within the confidence interval of the survey 

average and the difference between the two averages was generally small. The 

random agent generator was hence well able to reproduce population averages. 

 
Table 5.8: Resource endowments of the survey population compared to  

meta-averages of the agent population 

Resource Population Average 
SE/ 
SD1 Confidence interval 

Household members Survey 7.87 0.45 6.99 8.75 

 Agent 7.89 0.11   

% children Survey 55.06 2.47 50.22 59.91 

 Agent 54.87 0.75   

Cows Survey 0.81 0.18 0.45 1.17 

 Agent 0.81 0.02   

Young bulls Survey 0.08 0.04 0.01 0.16 

 Agent 0.09 0.01   

Goats Survey 1.29 0.16 0.98 1.61 

 Agent 1.23 0.04   

Young rams Survey 0.14 0.04 0.06 0.23 

 Agent 0.14 0.02   

Coffee, ha Survey 0.31 0.10 0.11 0.51 

 Agent 0.31 0.02   

Plots, 0.5 ha Survey 4.58 0.51 3.58 5.58 

 Agent 4.34 0.00   

Innovativeness Survey 3.88 0.17 2.35 3.03 

 Agent 3.85 0.04   

Sources: Estimated from the 1999-2000 ZEF Survey and simulated with MAS 
Notes: The shown agent population is an average over 100 alternative populations. 1SE is the standard 
error of the average survey population; SD is the standard deviation of the average across 100 agent 
populations.  
 

To get more details about the demographic structure of the population, a population 

pyramid for the survey population was calculated and compared with pyramids for 

two agent populations in Figure 5.7. This form of presentation may not be very 

suitable for comparing age groups exactly but does illustrate the similarity between 
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survey and agent populations. The random agent generator hence creates 

demographic structures that are realistic. 

 

Figure 5.7: Population pyramids comparing survey estimate with agent populations 
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5.4.2 Cluster level 

The above has shown that the survey population was well replicated at the 

aggregate level, which may not necessarily be so at lower levels of aggregation.  The 

following graphs and figures thus look at the cluster level.  

Figure 5.8 depicts four box plots comparing the distribution of household size, area 

under coffee, goats, and cows in the sample with an agent population with random 

seed value 577. Each box ranges from the 25th to the 75th percentile (the 

interquartile range) with the median also marked in it. Clusters are based on 

household size, which is why there is a strong correlation between the cluster 

number and the median household size in the left upper diagram. The figure shows 

that median values do not differ much between the survey population and the agent 

population. Most interquartile ranges are of comparable width. 
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Figure 5.8: Boxplots for the distribution of the four major resources over clusters  
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5.4.3 Agent level 

One objective of generating agents randomly was to endow each agent differently in 

alternative agent populations. The success of the approach is illustrated with Figure 

5.9. This boxplot shows the variation in resource endowments for agent No.100 in 

hundred generations of alternative populations. Agent No.100 has a fixed location for 

farmstead and plots in the landscape as can be seen from the zero variance in the 

agent’s land area of 1.5 ha. The variation in resource endowments is high with, for 

instance, the household size varying between 1 and 9 members and the number of 

goats varying between 0 and 3. 
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Figure 5.9: Boxplot illustrating the variation in agent endowments in alternative 

agent populations 
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The reproduction of correlations is the third objective in the random agent 

generation. The left diagram in Figure 5.10 plots the number of adults against the 

number of children in the survey population, while the two right diagrams do the 

same for two generated agent populations. The figures show that correlation 

between adults and children within the household is well replicated in the agent 

populations, ensuring that the agents are demographically consistent in this respect.  

 

Figure 5.10: Scatter plots correlating the number of children and adults 
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Note: Scatter plots including a linear regression fit. 
 

In addition, Figure 5.11 plots household size against the number of plots per agent 

and shows that the observed positive correlation between household size and land 

size reappears in the agent populations. 
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Figure 5.11: Correlation between household size and amount of arable land 
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5.5 Summary 

A Monte Carlo technique based on cumulative distribution functions and random seed 

values can successfully generate sets of artificial agent populations from farm 

household survey data. The combination of Monte Carlo studies and predictive soil 

maps estimated from a Digital Elevation Model can be applied for generating agent 

populations as was shown for two village communities in southeast Uganda. The 

generated agents are statistically consistent with the survey population at aggregate, 

cluster, and agent levels. 
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6 Crop yield and soil property 

dynamics 
 

 

6.1 Introduction‡ 

This chapter specifies and calibrates the model component simulating crop yields and 

soil property dynamics. For this, the Tropical Soil Productivity Calculator (TSPC) was 

calibrated to agriculture in the Lake Victoria region in southeast Uganda. The chapter 

begins in Section 6.2 with some relevant background information on the issue of soil 

fertility decline. It then continues in Section 6.3 with a specification of the model. 

Parameter values are given in Section 6.4 and the component is validated in Section 

6.5. The chapter ends with a summary in Section 6.6. 

6.2 Background 

6.2.1 Problem background 

Most of the soils in Uganda are old, highly weathered, and of relatively low fertility 

(Mubiru and Ssali 2002). In spite of this, farmers use only small quantities of 

manure, and mineral fertilizer use is less then 1 kg/ha on average (ibid.). In the 

absence of time series data on soil fertility, the nutrient dynamics of an agricultural 

system can be evaluated by studying current soil nutrient flows. In one of the first of 

such approaches in Uganda, Wortmann and Kaizzi (1998) found negative nutrient 

balances for nitrogen (N), phosphorus (P), and potassium (K) for all crops except 

banana in central and eastern Uganda. Ssali and Vlek (2002) confirmed this finding 

from a comparison of soil samples at selected sites in the Banana-Coffee Lakeshore 

farming system at two points in time. They found a general decline in crop nutrients 

(P, K, and calcium) and a substantial decline in soil pH and bases (Ca and K), despite 

little change in soil organic matter. Many studies in other parts of Uganda as well as 

                                          

‡ This chapter is based on: SCHREINEMACHERS, P; J.B. AUNE and T. BERGER. 2004. An Application of the 

Tropical Soils Productivity Calculator to the Study of Soil Fertility Decline in Uganda. ZEF Documentation of 

Research 3/2004. 
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comparable studies in neighboring Kenya also show net nutrient outflows (Table 

6.1). 

Despite a fair amount of research on soil fertility decline, relatively little is known 

how this affects crop yields and even less is known how it affects farm household 

incomes and food security. Many studies have assumed, that soil fertility decline is 

behind the decline in crop yields and a worsening of farm household incomes and 

food security, yet few studies were able to show this empirically.  

 

Table 6.1: Nutrient balances in Sub-Saharan Africa 

Balance (kg/ha/year)  
Location 

N P K  
Source 

Uganda, Mukono district -49.0 -13.3 -17.3  Aniku et al. 2001 

Uganda, Arua district -33.4 -6.0 -7.3  Aniku et al. 2001 

Uganda, Palissa district -21.2 -8.2 -43.0  Wortmann & Kaizzi 1998 

Uganda, Kamuli, Iganga & Mpigi districts -30.6 -4.0 -38.9  Wortmann & Kaizzi 1998 

Magada village, Mayuge District -108 -14 -94  Kaizzi et al. 2003 

Eastern Uganda (average 8 villages) -83 -10 -60  Kaizzi et al. 2003 

Western Kenya -76.0 -3.8 -  Shepherd et al. 1995, 1996 

Kenya, Machakos District -53.0 1.0 -9.0  De Jager et al. 2001 

Sub-Saharan Africa (total) -22.0 -2.5 -15.0  Stoorvogel et al. 1993 

      

6.2.2 Theoretical background 

There are two basic approaches to estimating crop yield. One is crop growth 

modeling, which involves simulating different phases of plant growth from 

germination to reproduction. This approach is data intensive as it considers many 

factors influencing plant growth, often at a daily time scale, and which are 

furthermore crop variety and location specific. The other approach is empirical yield 

modeling, which has lower data requirements as it uses only data on growth 

determining factors and the resulting level of crop yield to statistically estimate 

empirical yield response functions. This study uses this second approach for the 

practical reasons that crop yield functions are needed for all crops in the system and 

data to calibrate crop growth models are unavailable.  

There are competing theories of how crop yields respond to nutrients and other soil 

properties. Two of the most accepted theories are associated with the names of Von 

Liebig and Mitscherlich. Both assume a diminishing growth of yield to increasing 
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quantities of soil nutrients, which is constrained by a yield potential. The theories, 

however, differ in the functional form of the yield response. The theory initially 

proposed by Von Liebig holds that factors are generally complementary; each factor 

has a unique role in crop growth, which cannot be substituted. Increasing levels of 

one factor increases crop yield linearly until another factor becomes limited, at which 

point the yield level plateaus. The plateau can be raised only from an increase in the 

most limiting factor. Mitscherlich also accepted that factors act in a complementary 

way but allowed for a possible interaction between factors. This interaction implies 

that an increase in one factor positively affects the response to all other factors. In 

other words, additions of each factor have a positive impact on yield but this impact 

is moderated by the availability of all other factors.  

6.2.3 The Tropical Soil Productivity Calculator (TSPC) 

This study uses the Tropical Soil Productivity Calculator (TSPC) to estimate yields. 

The TSPC was developed by J.B Aune and R. Lal (Aune and Lal 1995, 1997). 

According to its developers, the reasoning behind the design of the TSPC was to 

create a model that is relatively "simple to use but comprehensive enough to account 

for main factors that influence crop growth and yield in the tropics" (Aune and Lal 

1995: 502). The TSPC was specifically designed for tropical soils and includes a 

factor for the effect of acidity on yield. Acidity is often a limiting factor in highly 

weathered tropical soils, but is commonly omitted in crop models designed for 

temperate regions where acidity levels do not commonly constrain crop yield (ibid.). 

For the purpose of this study, Jens Aune (Norwegian University of Life Sciences) 

specified and calibrated the TSPC to Ugandan agro-ecological conditions. 

Theoretically, the TSPC is based on the theory of Mitscherlich as it assumes factors 

to be complementary and that yields plateau if one or more of these factors is in 

limited supply. In this study, the (non-linear) crop yield equation is specified as: 

(6-1)  LAB NAV PAV KAV SOC pHY  P* (F ) * (F ) * (F ) * (F ) * (F ) * (F )=      

with Y denoting crop yield and P the crop yield potential, the six variables within 

brackets are reduction factors: management (FLAB), available N in the soil (FNAV), 

available P (FPAV), available K (FKAV), soil organic carbon (FSOC), and acidity (FpH). All 

factors but one were specified as logarithmic functions while a quadratic function was 

used soil organic carbon (C). Factors range from zero (crop yield completely 

constrained) to unity (not constrained).  
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6.3 Four phases in soil property dynamics 

Soil properties change as a result of harvesting, as well as various other endogenous 

and exogenous processes at the plot, farm, and catchment level. These soil property 

dynamics influence future yields. The processes underlying these dynamics are 

modeled with an extended and dynamic version of the TSPC (Aune and Massawe 

1998). 

In this section, the crop-soil processes are formulated in mathematical terms. These 

processes are divided into four phases: 

 phase 1: calculation of yield determining factors; 

 phase 2: calculation of crop and residue yields; 

 phase 3: calculation of soil property dynamics; and 

 phase 4: evaluation of these dynamics in balance equations. 

In the following equations, the subscripts p, t, c, and f denote plot, time, crop type, 

and fertilizer type respectively.  

Multiple crops can be grown simultaneously on a single plot. Soil properties affecting 

present crop yields not only depend on current input use but also on past crop choice 

and past levels of input use. Keeping track of the land use history at the subplot 

level would be overly complicated. The updating of soil property dynamics was 

therefore simplified by averaging all crop-specific calculations to the plot level at the 

end of each period. Acreage weights were used for this purpose, which were 

calculated as the proportion of the plot a crop occupied. For example, if the plot was 

cultivated with maize in the first season and beans in the second, then the acreage 

weight of both crops would be 0.5. This means that at the beginning of each period, 

each plot had homogeneous soil properties, which is only justifiable for small plot 

sizes; the plot size was therefore set to 0.5 ha in with farm households having four 

such plots on average. 

6.3.1 Phase 1: yield determinants 

Phase 1 computes the available amount of N (NAVpct), carbon (SOCpct), P (PAVpct), 

and K (KAVpct), and the level of acidity (APHpct). Yield determinants were calculated 

at the crop level because input decisions are crop specific. The following subsections 

describe how each determinant was calculated. 
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6.3.1.1 Available nitrogen 

The amount of available N in mineral form in year t and plot p (NAVpct) is a function 

of four variables: 

• atmospheric deposition of N in the current period (ATNpt); 

• N mineralized from the total stock of soil organic N (MINpt); 

• mineralized N from manure, residues, and roots from previous periods (RNMpt);  

• N from mineral fertilizer applied in the current period (FERpfct), or: 

(6-2)  ∑+++=
f

f
pfctptptptpct )

100
mf_n

(FER )RNM MIN0.5(ATN NAV   

in which mf_nf is the share of N in mineral fertilizer. The contribution of natural 

sources of N was divided in half to capture their reduced efficacy as compared to 

mineral fertilizer, which can be applied when plants need nutrients the most. The 

variable ATNpt was calculated from the annual amount of rainfall in mm (rtt): 

(6-3)  tpt rt0.14ATN =  

MINpt was calculated from the soil’s total stock of organic N in year t (SONpt, in 

kg/ha) and a mineralization constant (dcp): 

(6-4)  )e - (1SONMIN pdc-
ptpt =  

with SONpt itself a balance of the soil organic N stock in the previous period plus 

changes in the stock resulting from remaining residues in the previous period, plus N 

stored in the crops’ roots in the previous period (RTNpt-1) minus what is lost from N 

erosion (NERpt-1): 

(6-5)  
1pt1t

pt1pt-
1pt-dc-

1pt-pt

NER)0.35(RTN

)MNR*
100
of_n

STN*
100

RES
(0.15e)(SON  SON p

−− −+

++=
 

In which RESpt is the percentage of residues remaining after harvest, STNpct is the 

total quantity of N (in kg) stored on one hectare of residues and the factor 0.15 is 

the proportion of residue N and manure entering into soil organic N. MNR stands for 

the quantity of manure and of_n for the percentage of N in manure. MNR was 

calculated as the weighted sum over three previous periods to adjust for 

mineralization over several years (Jenkinson and Ayanaba 1977): 

(6-6)  3pt-2pt-1pt-pt MAN0.2MAN0.3 MAN0.5MNR ++=  
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Unlike mineral fertilizer, the application of manure is not crop-specific (and therefore 

has no subscript c). This is because manure management is uncommon in the 

research area, though extension services promote the practice. A uniform 

distribution of manure over all plots and all crops was therefore assumed.  

Total dry matter manure production (MANt) is endogenous in the model since the 

size of the animal herd is a management decision (Chapter 7). Manure production 

was specified as a function of feed intake by assuming that an average kilogram of 

dry matter feed contains 9 million joule of energy and has a digestibility of 50 

percent (LEAD 1999): 

(6-7)  ∑∑=
n m

nmtt )9/(IME0.5MAN  

In which subscripts n and m denote animal specie and age respectively and the 

variable IMEnmt is the total metabolizable energy need of the entire livestock at time t 

and will be specified in equation (6-22) below. 

Residues and manure not only contribute to the stock of organic N but also 

mineralize directly and add to the available N in mineral from. This was captured by 

the factor RNMpt in equation (6-2). RNMpt was calculated from the remaining 

quantities of residues on the plot in three previous years: 

(6-8)  ∑ ∑
−=

−=

+=
3t

1t c
ptpct

pt
pt 100

of_n
*MNR)STN*

100

RES
* 0.33 * (0.75RNM  

Livestock in the research area mostly graze on the farm with little off-farm grazing 

(Wortmann and Kaizzi 1998). The potential of livestock to transport nutrients from 

grazing areas into the farming area is therefore small. Yet, the metabolizable energy 

need of cattle was reduced by 25 percent to capture off-farm grazing. 

6.3.1.2 Soil organic matter 

Soil organic C was included in the model, even though it is not a plant nutrient. 

Yields in the tropics have been found to be correlated to soil organic C (Aune and Lal 

1997) due to its effects on the physical properties of the soil, including its water 

holding capacity.  The amount of soil organic C in the upper 20 cm of the soil was 

calculated as a function of bulk density (bdp) and the total amount of C in the soil 

(KGCpt): 

(6-9)  0.2*bd*10*)100(KGCSOC p
6

ptpt
−=  
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6.3.1.3 Available phosphorus 

In forest soils of Uganda organic P is a major source of available P through 

mineralization (Udo and Ogunwale 1977) and significant correlations have been 

found between soil organic matter and response to P and between soil organic 

matter and extractable P (Foster 1978). Release of P was therefore calculated from 

the release from the organic P pool. The organic P pool has been found to represent 

60 to 80 percent of the active P fraction. The C:P ratio was set to 100 (Shepherd and 

Soule 1998). The amount of available P (PAVpct) was therefore calculated as a 

function of decomposition of soil organic matter plus any P added through mineral 

fertilizers (FERpcft) and animal manure (MANpt) plus a carry-over effect of P from the 

previous period (PCOpt-1): 

(6-10)  
ptpt

f

f
pcft

2
pct

PCO
100
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mf_p
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dcSOC**0.2*10bd* PAV
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in which mf_p and of_p are the percentage P in mineral and organic fertilizers. Soils 

bind P in a form that is unavailable for plant growth in subsequent periods. Only part 

of the P not taken up by the plants in one period is therefore available in the next 

period, and this part depends on the sorption capacity of the soil. A sorption capacity 

of 80 percent, for instance, means that only 20 percent of the P not taken up by the 

plants will be available for plants in the following period. Let sp be the sorption 

capacity of the soil, then the carry over of P (PCOpt) is: 

(6-11)  ) sp - 1 (PRMPCO 1pt-pt =  

in which PRMpt-1 is the P remaining on the plot in the previous period, which is a 

function of balance between available P minus P removal from grain and residues 

(GRPpct-1, STPpct-1) plus P additions form manure and fertilizer (MANpt-1 and FERpcft-1): 

(6-12)  
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6.3.1.4 Available potassium 

The available amount of K (KAVpct, in kg/ha) is a function of the total K in the soil 

(KISpt in percent) plus what is added from mineral fertilizers in the current year and 

the decomposition of manure from previous years: 

(6-13)  

100
of_k
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100

mf_k
(FER

 0.5*.20*bd*10*
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in which mf_k and of_k are the percentage K in mineral and organic fertilizers. Total 

K in the soil (KISpt) is assumed constant as no good model for the dynamics of the K 

stock was available, hence: 

(6-14)  
0ptpt KISKIS =  

6.3.1.5 Acidity 

The final equation in this phase calculates the level of acidity in the soil (APHpt), 

which is a function of the acidity in the previous year minus an acidifying constant (-

0.018) and the type and quantity of mineral fertilizer used. The level of acidity can 

be reduced by applying lime (in kg). Lime was therefore considered as a special type 

of mineral fertilizer with a neutralizing effect (li_f).  

(6-15)  
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6.3.2 Phase 2: crop yield 

Phase 2 calculates crop yields from available amounts of soil nutrients (NAVpct, 

PAVpct, KAVpct, SOCpct), the level of acidity (APHpct), and crop management (LABpct). 

The yield of crop c at time t on plot p was specified as: 

(6-16)  
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with the last factor (fgc) being a crop-specific adjustment factor used to calibrate the 

model. Crops also produce residues, which can be used for animal feeding. This 

residue production of crop c at time t on plot p was calculated as: 

(6-17)  c
c

pctc
pct fs

h

YLD)h - (100
YST +=  

with hc denoting the harvest index of crop c, which is the percentage of grain to the 

grain plus residue biomass. The last factor (fsc) is a crop-specific adjustment factor 

to cater for the production of residues by those plants that do not produce grain, 

such as grasses and other fallow crops. 

6.3.3 Phase 3: soil property updating 

Phase 3 updates the soil properties to form the starting conditions for next period’s 

yield estimation. All the equations in this phase are crop, plot, and time specific and 

calculated on a per hectare basis. Soil properties were updated for the loss of 

nutrients (N, P, and K) with the removal of harvested products: 

(6-18)  
1000

 )(YLDgn
GRN pctc

pct =       

(6-19)  
1000

 )(YLDgp
GRP pctc

pct =      

(6-20)  
1000

 )(YLDgk
GRK pctc

pct =  

in which gnc, gpc, and gkc stand for the proportion of N, P, and K in the harvested 

product, expressed in mg/kg of grain yield. It was assumed that all edible crop 

products were completely removed from the plot. The equations imply that the loss 

of nutrients is more severe the greater the crop yields. 

Feeding crop residues to livestock furthermore removes nutrients from the plot. To 

quantify this loss, every crop’s residue yield (YSTpct) was converted to energy units 

(joule) by multiplying it with a crop specific metabolizable energy contents (in million 

joule/kg) (mec):  

(6-21)  ∑=
c

cpctpt )me * (YSTYSM  

The total livestock feed requirement at times t was expressed in metabolizable 

energy units following Close and Menke (1986). The metabolizable energy 
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requirement (IMEt) is the sum over all animal species n and ages m and is calculated 

as the sum of energy required for maintenance (MAWnmt, which is the sum of daily 

metabolic body sizes), milk production (MLKnmt), gain in animal weight (GRWnmt), and 

weight gain during pregnancy (PREnmt): 

(6-22) 

))(PREd)(GRWc
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with subscripts a, b, c and d denoting the animal-specific parameters and all right-

hand side variables being expressed in kilograms. This equation excludes the 

catabolism of body tissue, which is a factor capturing the reduction in energy needs 

if feeding is not optimal. Animal growth was assumed exogenous to food intake, as 

no data were available on catabolism. 

Metabolizable energy requirements (IMEt) can be satisfied by feeding crop residues 

or grain to livestock. The economic component included separate decision variable 

for feeding different types of grain to the livestock (Chapter 7). Residues for feeding 

were, however, not included as separate decision variables but it was assumed that 

the most nutritious residues were fed to the livestock first. Let YRMpct be the residues 

fed to livestock of crop c from plot p; then the percentage remaining residues on the 

plot is:  

(6-23)  100*
YSM

) YRM-(YSM
 RES

pct

pctpct
pct =  

The total amount of nutrients in residues was calculated by multiplying the crop 

residue yield by its nutrient contents; as the nutrient contents was expressed in 

mg/kg, all values were divided by 1000 to get kilograms of nutrients:  

(6-24)  
0100

 )(YSTsn
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pct =  

(6-25)  
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 )(YSTsp
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pct =  

(6-26)  
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 )(YSTsk
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Multiplying these values by (1-RESpct/100) gave the nutrient loss through residue 

removal.  
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Processes other than harvest and residue removal affect soil properties as well. 

These processes include erosion, leaching, and the loss of N through the plant's 

roots. A simplified version of the Universal Soil Loss Equation was used to model 

erosion. Total soil loss is a function of a rainfall factor (rtt), soil erodibility (sep), a 

slope length factor (slp), and a yield-specific erosion factor (ERFpct):  

(6-27)  pctpptpct ERF * sl * se * rt * 1000ERO =  

The slope length factor was spatially explicit and derived from a Digital Elevation 

Model. The erosion factor (ERFpct) was specified as a function of crop yield for some 

but not all crops, as yield specific erosion data were not available for all crops: 

(6-28)  ))(YLD2e - 1  1(eERF
c

pctccpct ∑ +=  

in which e2c is a crop and yield-specific erosion parameter, and e1c a crop-specific 

constant level of erosion.  

Some soil nutrients are more affected by soil erosion than others are. Nutrient-

specific erosion equations were specified to cater for this variation. The amount of 

eroded nutrients (N, P, K, and C) was specified as: 

(6-29)  0.2) *10 * (bd / SON*ef *ERONER 6
ppctppctpct =  

(6-30)   10*SOC* ef *EROPER -4
ppctpct =  

(6-31)  100/ KIS * ef * ERO KER ptppctpct =  

(6-32)  100/SOC * ef * EROCER ptppctpct =  

in which efp is a plot-specific erosion factor. 

Apart from erosion, soil N is lost through the roots (RONpct) of a crop, which is a 

function of residue and crop yield, the shoot-to-root ratio (s1c) and the N contents in 

the roots, which is assumed to equal the N contents of stover (snc): 

(6-33)  
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Finally, the total amount of C in the soil (KGCpct, in kg/ha) was updated as: 

(6-34)  
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in which the amount of C stored in the roots (RTSpct) was calculated as: 

(6-35)  
c

pctpct
pct 1s

 YST+  YLD
RTS =  

The updated soil properties served as the initial conditions for the subsequent period. 

For this, the crop-specific values were aggregated to the plot level using an acreage-

weighting factor (wpct), which is the proportion of plot p under crop c at period t.  

6.3.4 Phase 4: soil property balances 

In phase 4, all crop-soil processes were evaluated by means of balances for N 

(BALNpt), P (BALPpt), K (BALKpt), organic C (BALCpt), and acidity (BAPHpt). These 

balances were calculated at a plot level by using the weighting factor (wpct): 
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6.4 Model calibration 

6.4.1 Crops included  

Eleven crop species plus one fallow activity were included in the model and listed in 

Table 6.2. Most crops can be grown twice a year. Cassava and plantain were treated 

as annual crops although farm households sometimes postpone harvesting cassava 

as its tubers preserve well in the soil. Coffee was the only perennial crop included.  

 

Table 6.2: Cropping activities 

Seasonal crops Annual and permanent crops 

1. Sweet potato 
2. Maize, traditional 
3. Maize, improved 
4. Maize, hybrid 

5. Millet 
6. Sorghum 
7. Groundnut 
8. Bean 

9. Cassava (annual) 
10. Plantain (annual) 
11. Coffee (permanent) 
 

 

The time interval of the biophysical model is one year. This is a simplification of 

reality as most crops are seasonal; yet, the seasons are of unequal length, which 

would require two different decision models. The chosen time scale implies that at 

the start of the period the agent simultaneously decides for both seasons what crops 

to grow and how many inputs to use. Initial values for soil properties at the plot level 

were derived from the predictive soil maps as described in Chapter 5. 

6.4.2 Crop physical characteristics 

Crop physical characteristics are often variety specific and average values were used 

instead. Some values shown in Table 6.3 were derived from literature; these include 

the ratio of above ground biomass to the roots, the ratio of roots to above ground 

biomass, the planting density, and the seed rate. 

The yield potential was estimated from survey data rather than from on-station 

experiments. Farmers grow many different varieties, many of which have a lower 

yield potential than those grown at experiment stations. Using the experiment 

station potential as a reference would therefore overestimate the on-farm yield 

potential and the 90-percentile yield was used instead (Table 6.4). The table 

compares it to the mean and the median yield as well as the yield potential from 
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literature on Ugandan agriculture. Values were comparable except for sweet potato 

and groundnut, which survey values were much lower than reported in literature. 

 

Table 6.3: Crop physical characteristics and recommended planting densities 

Crop 

 

Shoot/root ratio Harvest index1 

[%]  

Density  

[plants/ha] 

Seed rate2  

[kg/ha] 

 s1 h1   

Sweet potato 3.00 50 15,000 - 

Traditional maize 2.33 40 44,500 20 

Improved maize 2.33 40 44,500 20 

Hybrid maize 2.33 40 44,500 25 

Millet 2.33 40 140,000 8 

Sorghum 2.33 40 170,000 10 

Bean 2.33 40 200,000 60 

Groundnut 2.33 40 150,000 80 

Cassava 4.00 50 10,000 - 

Plantain 2.33 60 1,100 - 

Coffee 5.00 10 1,100 - 

Fallow 2.33 0 - - 

Sources: Abalo et al. 2003; NARO Maize growers guide; Sasakawa Farmer guide & fact sheet; Nyende et 
al. 2001; Tenywa et al. 1999: 582; Oryokot 2001: 36; Otim-Nape et al. 2001: 203; Musoli et al. 2001: 
394; Ebiyau and Oryokot 2001: 47 

Notes: 1) The percentage of grain to grain plus stover. 2) Sweet potato, coffee, and cassava are mostly 
propagated vegetatively from stem or vine cuttings, plantain is propagated from its suckers. 

 

Table 6.4: Average yield estimates and yield potential 

Crop Average P-50 P-90 P-95 Literature Source 

Sweet potato 2748 1975 5836 7407 20,000 1) 

Traditional maize 973 556 2305 2305 3,000 6) 

Improved maize 1133 617 1244 4741 5,000 2) 

Hybrid maize 784 ** ** ** 8,000 2) 

Millet 764 790 2116 2305 2,500 4,5) 

Sorghum 711 593 1556 1975 3,000  

Bean 325 79 658 1235 2,000 3) 

Groundnut 260 123 470 702 3,000 3) 

Cassava 2883 1235 11852 18107 15,000 6) 

Plantain 3107 1738 7111 11852 40,000 6) 

Coffee 367 281 856 1111 2,000  6) 

Sources: Columns 2-5 estimated from 2000-2001 IFPRI Survey, column 6: 1) Abalo et al. 2003; 2) 
NARO. Maize growers’ guide; 3) Sasakawa Farmer guide & fact sheet; 4) Nyende et al. 2001; 5) 
Tenywa et al. 1999: 582; 6) Oryokot 2001: 36; Otim-Nape et al. 2001: 203; Musoli et al. 2001: 394 

Notes: Survey estimates based on the agroclimatic zone with a bimodal high rainfall. ** Number of 
observations for hybrid maize was too small (12); the yield potential was taken as 6000 kg/ha/season. 
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6.4.3 Crop chemical characteristics 

Table 6.5 shows the crop chemical characteristics including the N, P, K, and C 

content of the consumable product and residues.  

 

Table 6.5: Chemical composition of crop and non-crop products, in grams/kg 

Products 

 

nutrients / commodity 

 
 

nutrients / stover 

 

Carbon /  

grain+residues 

 N P K  N P K C 

Crop products gnc gp gk  sn sp sk sc 

Sweet potato 6.0 1.0 7.0  10.0 2.0 5.0 50 

Hybrid maize 11.2 1.0 6.2  6.0 1.0 15.0 50 

Improved maize 11.2 1.0 6.2  6.0 1.0 15.0 50 

Traditional maize 11.2 1.0 6.2  6.0 1.0 15.0 50 

Millet 23.1 2.5 16.3  12.6 1.5 17.8 50 

Sorghum 15.0 2.5 2.4  8.0 1.5 17.0 50 

Bean 33.0 2.8 11.0  8.0 1.2 8.0 50 

Groundnut 37.2 5.9 8.1  12.2 1.2 9.4 50 

Cassava 4.2 0.5 4.3  4.6 0.9 1.4 50 

Plantain 1.2 0.3 4.5  1.6 0.3 11.9 50 

Coffee 15.0 2.0 24.0  0.0 0.0 0.0 50 

Fallow 0.0 0.0 0.0  15.0 1.5 15.0 50 

Manure of_n of_p of_k     of_c 

 5.0 2.0 7.0     500 

Min. fertilizer  mf_n mf_p mf_k      

DAP 180 460 0      

Urea 460 0 0      

Sources: Aune; Wortmann & Kaizzi 1998: 117; Harmand et al. 2004 

Notes: Parameter symbols refer to the specified model for soil nutrient dynamics in Section 6.3.3; 
DAP=diammonium phosphate. 

 

 

6.4.4 Crop yield response functions 

Crop yield response to soil nutrients was estimated from fertilizer experiments and 

based on literature values. Table 6.6 shows the parameter values for the crop yield 

functions. Crop yield response to labor was derived from a frontier production 

analysis using survey data (see Chapter 7). 
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Table 6.6: Crop yield parameters 

A. Nitrogen, phosphorus, and potassium 

Crop Nitrogen Phosphorus Potassium 

 n1 n2 p1 p2 k1 k2 

Sweet potato 0.810 0.007 - - - - 

Hybrid maize 1.075 0.024 0.950 0.204 - - 

Improved maize 0.734 0.016 0.950 0.204 0.395 0.830 

Traditional maize 0.392 0.007 0.950 0.204 0.790 1.660 

Millet 0.370 0.011 0.950 0.204 - - 

Sorghum 0.392 0.007 - - - - 

Bean 0.700 0.023 - - - - 

Groundnut - - 0.233 0.170 - - 

Cassava 0.500 0.018 0.653 0.138 - - 

Plantain 0.700 0.072 - - - - 

Coffee 0.370 0.006 - - - - 

Fallow - - - - - - 

 

 

B. Labor, organic matter, and acidity 

Crop Labor Organic matter Acidity 

 m1 m2 c1 c2 c3 a1 a2 

Sweet potato 0.062 0.340 - - - - - 

Hybrid maize 0.021 0.493 0.27 0.67 0.16 82.5 1.2 

Improved maize 0.021 0.493 0.27 0.67 0.16 82.5 1.2 

Traditional maize 0.030 0.493 0.27 0.67 0.16 82.5 1.2 

Millet 0.011 0.588 0.27 0.67 0.16 - - 

Sorghum 0.082 0.341 0.27 0.67 0.16 - - 

Bean 0.008 0.610 - - - - - 

Groundnut 0.006 0.567 0.27 0.67 0.16 - - 

Cassava 0.168 0.240 0.27 0.67 0.16 - - 

Plantain 0.026 0.532 - - - - - 

Coffee 0.130 0.284 0.27 0.67 0.16 - - 

Fallow - - - - - - - 

Sources: 2000-2001 IFPRI Survey (labor response, see Chapter 7), J. Aune (organic matter and 

acidity); Bourke (1985); Kaizzi and Wortmann (2001); Smithson et al. (2001); Harmand et al. (2004) 

Note: Parameter symbols refer to the specified yield response function in Section 6.3.3. 
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6.5 Validation of results 

Model results were validated by comparing simulated crop yields and nutrient 

balances in the baseline year with crop yields estimated from the household survey 

and the nutrient balances from literature (Table 6.1). Because crop yield is a direct 

function of labor use, which will be discussed in the following chapter, the validation 

of the simulated crop yields is postponed until then. 

Soil nutrient studies are usually based on in-depth information about a single or 

limited number of farm plots. Nutrient balances are widely different between plots 

and between farm households, mainly depending on the crops grown and the 

amount of inputs applied. The distribution of nutrient balances over farm households 

is, however, unknown for in nutrient balance studies (Table 6.1). 

Figure 6.1 shows the distribution of average changes in soil nutrients (N, P, and K) 

over all 520 agents in the baseline scenario. These three diagrams clearly show a 

wide variation between agents in simulated nutrient balances. Figure 6.2 shows the 

development of the nutrient balance over the 15 years of the simulation as median 

values while the variation around the median is shown as an interquartile range. It 

shows that the loss of soil nutrients is about constant over time, with the result that 

the stock of soil N decreases linearly over time (upper right diagram). 

    

Figure 6.1: Simulated nutrient balances 
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Notes: Simulated changes in available nutrients in the second and third year of the simulated baseline 

scenario. 
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Figure 6.2: Simulated annual change in soil properties 

 

Notes: Simulation results from baseline scenario. Interquartile range is the range between the 25th and 

75th percentile. 

 

6.6 Summary 

Though it is generally accepted that levels of soil nutrients are declining in many 

parts of Sub-Saharan Africa, little is known about how this process affects crop yields 

in the short and long-term, and even less is known about the impact on poverty and 

household food security. The Tropical Soil Productivity Calculator (TSPC) is a suitable 

tool for closing this knowledge gap as it can be used to simulate both crop yields and 

soil property dynamics. When integrated into MAS, input decisions can be made 

endogenous and links between crop yield and soil dynamics on the one hand, and 

poverty and food security on the other hand can be analyzed.  
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7 Production behavior 
 

 

7.1 Introduction 

Agriculture is a managed ecosystem. Whereas the previous chapter focused on 

ecology, this chapter focuses on its management. The chapter is structured as 

follows. In Section 7.2 the crop yield response to labor use is modeled by adding a 

labor response factor to the crop yield model. Section 7.3 describes how the diffusion 

of innovations is simulated and Section 7.4 describes how agents form expectations 

on crop yields and prices. Production activities not captured in the biophysical model, 

such as livestock production are detailed in Section 7.5. The remaining constraints 

and opportunities to agent decision-making are specified in Section 7.6, while 

Section 7.7 validates the production component, and the final section summarizes. 

  

7.2 Crop yield response to labor use 

In this study, experimental data are mainly used for calibrating yield response 

functions. Experiment data were, however, not available for the effect of labor use 

on crop yield and survey data were used instead. The effect of labor use on crop 

yield was introduced in equation (6-1), where crop yield was specified as a function 

of yield potential and six reduction factors. This section describes how the reduction 

factor for labor was calibrated. 

7.2.1 Frontier production function 

Agents take a large number of decisions, including which crops to grow, on which 

plots to grow these, and how much input to apply. Assuming that the quantity of 

output varies with the quantity of input in a systematic way, this relation can be 

expressed as a production function, which is defined as the maximum quantity of 

output for each combination of a specified quantity of inputs (Colman and Young 

1989). 

There are two analytical approaches for estimating such input-output relationships. 

The first is the optimization of a production function subject to a profit, revenue, or 

cost function using duality theory. This approach is particularly useful to derive 
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information on input elasticities, rates of substitution between inputs, and optimal 

resource allocations. The second approach is production frontier analysis, which 

compared to the first approach, is more pragmatic as it only returns parameter 

estimates of the production function together with measures of inefficiency. 

However, because the response of crop yield to labor use is the only interest for 

estimating a production function, the second approach is taken.  

An empirical production frontier represents the best production bundles (input-output 

combinations) achievable in a sample (Coelli et al. 1998). Two methodologies are 

available for estimating the parameters for this function within the frontier approach. 

One is Data Envelopment Analysis (DEA), which is a non-parametric method based 

on mathematical programming. The other is Stochastic Frontier Analysis (SFA), 

which is a parametric method using econometrics. SFA is more suitable for empirical 

applications using survey data because this method is better able to separate 

technical inefficiency from statistical noise, and hence yields a better-shaped 

empirical production function. 

The production function is specified as a Cobb-Douglas function with output of crop c 

(Yc) and labor use per crop (LABc) on a per hectare basis. Non-labor inputs are rarely 

applied with less than 5 percent of the farm households using fertilizers or animal 

traction. These factors are therefore included as two dummy variables (DFc for 

fertilizer use and DAc for use of animal traction). To control for differences in agro-

ecological conditions, six dummies for the seven agro-ecological zones (AEZc) are 

included.  The production function in logarithmic form is specified as: 

(7-1)  )Ln(fAEZd)(DAc)(DFb)Ln(LABa)Ln(Y c

6

i
iiccccccc ++++= ∑  

In which a, b, c, d, and f stand for the parameters to be estimated. Stochastic 

frontier analysis estimates the parameters of a linear regression model for crop c:  

(7-2)  cfBXFY ccc
ε),(=  

in which Yc is a vector of crop production, Xc is a vector of variable inputs, Bc is a 

vector of coefficients capturing the production technology, and cε  is a vector of error 

components. These error components are assumed to comprise two separable parts: 

(7-3)  ccc uv −=ε  

The first part (vc) is random disturbance capturing factors outside the agents’ control 

as well as all sources of statistical noise. The second part (uc) is technical 
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inefficiency. These parts can be separated based on assumptions about their 

respective distributions. The random part (vc) is assumed to come from a symmetric 

random probability distribution. The inefficiency part (uc) is assumed to come from a 

normal distribution truncated above zero (to give only positive inefficiencies, i.e. a 

half-normal distribution. Both distributions are furthermore assumed independent 

from each other and to be independently and identically distributed. 

7.2.2 Production data used  

Production data come from a farm household survey conducted by IFPRI (2000-

2001) within the research project Policies for Improved Land Management in 

Uganda. The survey included 451 farm households located in 32 of Uganda’s 45 

districts, excluding those districts, mostly in the north of the country, that are unsafe 

due to war. The IFPRI survey has detailed information at the village, household, and 

plot level.  

The IFPRI survey is also the only large data set from which crop yields can be 

estimated. The 1999-2000 Uganda National Household Survey would be preferable 

for its larger sample size and sheer coverage of the country, but although it recorded 

production of each crop, it did not record the area under each crop (only the total 

area under crops) and can therefore not be used. 

A similar problem was encountered in the IFPRI survey, but then for labor. Labor use 

was recorded on a plot level but not on a crop level. This is problematic since 

farmers in Uganda typically grow more than one crop on a plot. This issue was 

resolved by disaggregating labor use to the crop level assuming that a crop’s share 

in the plot area equals its share in the plot’s total labor use.  

7.2.3 Model estimates 

Model estimates are shown in Table C1 in the appendix. The coefficient on labor is 

significant for all crops, though least significant for sweet potato and cassava. This 

might have to do with inaccurate production estimates for these crops, which is a 

typical problem for continuously harvested crops. The coefficients on mixed cropping 

are generally negative, which implies that intercropping reduces partial yields - 

though not necessarily the total land productivity (see Section 7.6.5). The five 

agroclimatic dummies compare different areas of Uganda against the bimodal high-

rainfall area. The uni-modal area (with a single cropping season) has generally 

higher yields per season, though this effect is not pronounced for all crops. The 

parameters for animal traction and fertilizer use have significant negative signs. The 
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use of these inputs is, however, extremely low, with less than 5 percent of the 

farmers using any of them at all. This means that the magnitude and sign of these 

coefficients are based on only a few observations and it is therefore better not to 

interpret them. The dummies for the two varieties of maize: the improved Longe 1 

and hybrid maize are positive as expected, with hybrids giving a higher yield than 

Longe 1. The model for each crop is significant at a 95 percent confidence interval. 

7.2.4 Labor response factor 

The estimated labor response was added to the crop yield equation defined in the 

previous chapter. The addition of this factor to the Mitscherlich function assumes a 

complementary relationship between labor and all other factors, as well as 

interactions between all factors. The effect of increased labor use is more 

pronounced when soil nutrients are less limited then when they are more limited. In 

other words, the efficiency of labor is greater on fertile soils than on marginal soils.  

The labor factor was derived from the estimated Cobb-Douglas yield function by 

multiplying it by the inverse of the yield potential to get values between 0 and 1. A 

value of 0 means that labor fully constrains crop yield, while a value of 1 means that 

labor does not limit yields. The labor reduction factor for crop c (Flabor,c) was 

calculated by dividing equation (7-1) by the yield potential while omitting the effect 

of fertilizer and animal traction: 

(7-4)  )Ln(LAB*(a
cclabor,

cce*gF =   with cf

c
c e*

P
1

g =  

Where LABc is labor supply to crop c, Pc is the yield potential of crop c, ac is the labor 

coefficients of the estimated Cobb-Douglas function and fc is the constant term of the 

same function. 

The empirical Cobb-Douglas frontier does not necessarily plateau at the yield 

potential, so the reduction factor could exceed unity at high levels of labor use. To 

prevent this, labor use was constrained to a maximum, (LABmax,c), which was 

obtained by setting equation (7-4) equal to 1: 

(7-5)  )Ln(g*a
cmax,

1
c

1
ceLAB

−−

=     

The labor response function was included using a piecewise linear segmentation with 

three levels of labor use (that is, two linear segments) (see Table C2 of the 

appendix). The smallest level of labor use was set at one-tenth of the maximum, the 

second level was set at half the maximum, and the highest level of labor use was set 

equal to the maximum labor use at which yield is labor-unconstrained. 
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7.3 The diffusion of innovations 

7.3.1 Theoretical background 

Not all farm households adopt innovations at the same time. Literature suggests two 

alternative explanations for this (Stoneman 2002; Diederen et al. 2003): (1) the 

disequilibrium explanation states that market imperfections and lack of transparency 

make that the potential of an innovation is not immediately realized even though the 

innovation is profitable for all (e.g., Griliches 1957); and (2) the equilibrium 

explanation states that because farm households are heterogeneous in terms of 

structural characteristics (e.g., land, labor, and education), the innovation is not 

equally profitable to all farm households who as a result not all adopt, or not all 

adopt at the same time. The first explanation refers to a knowledge transfer between 

farm households, which can be analyzed using behavior models (e.g., network 

models), while the second explanation refers to individually observable 

characteristics and is usually analyzed by econometric estimation of dichotomous 

choice models.  

These two explanations do not compete but complement one another, as knowledge 

and profitability explain different aspects of the diffusion process. MAS are able to 

capture both explanations by simulating adoption as a two-stage process (Berger 

2001; cf. Deffuant et al. 2001, 2005). In a first stage, an agent gains access to an 

innovation through an interpersonal network, while in a second stage, the agent 

adopts an innovation if expecting a positive contribution to the objective function. 

Details on each stage follow. 

The diffusion of information that characterizes the first stage can be based on 

interpersonal networks of communication with pre-defined individual network-

threshold values (Valente 1994; Berger 2001). These individual network-threshold 

values express the proportion of peers in a network who must already have adopted 

before the individual will consider adopting as well. Risk-taking agents adopt after 

minimal information has reached them and have low threshold values, while risk-

averse agents need much information before considering to adopt and have high 

threshold values. The lower the threshold value, the earlier an agent adopts relative 

to its peers in the interpersonal network. For instance, in an interpersonal network of 

10 agents, an agent with a threshold of 0.3 will only consider adoption after three of 

its peers have adopted.  

Notice the word ‘consider’ because the actual decision to adopt depends on the 

expected contribution of the innovation to the agent’s objectives, which is a function 
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of the agent’s structural characteristics. These characteristics are agent-specific as 

each agent is endowed individually with resources using empirically observed 

resource distributions (Chapter 5). Hence, land-saving technologies become most 

profitable for agents with the highest opportunity cost of land.  Reaching individual 

network thresholds are therefore a necessary, but not a sufficient condition for 

adoption. The following sections describe how this was implemented.  

7.3.2 Empirical application 

Individual network-threshold values are ideally constructed from social network 

analyses in which farm households were asked about the year of adoption and the 

peers with whom they had communicated on a particular innovation. Such network 

studies were unavailable for the study villages, yet one adoption study on improved 

maize (a variety called Longe 1) by Ntege-Nanyeenya et al. (1997) was available for 

the Iganga district. A methodology was therefore developed to approximate network-

thresholds from this study. 

Adoption studies commonly group farm households into five adopter categories, from 

innovators to laggards, as shown in Table 7.1. These categories can be seen as 

individual network-threshold values by interpreting them as the minimum proportion 

of peers in the interpersonal network that needs to have adopted before the agent 

considers adopting as well. Instead of social network data, these thresholds can also 

be approximated from econometrically estimated adoption models.  

Dichotomous choice models, such as logit or probit models are a standard approach 

to analyze the structural determinants of adoption, though sometimes criticized for 

not being dynamic, as they do not consider information on the time of adoption. 

These models explain the adoption decision from a range of variables such as farm 

size, family size, age, and education—some of which could also be proxies for 

behavioral characteristics. The parameter estimates of these models can be used to 

calculate a predicted probability of adoption for each farm household given its 

resources endowments. When ranking all households in ascending order by their 

predicted probability of adoption, they can be divided into threshold groups: the top 

2.5 percent of farm households are the innovator segment, while the bottom 16 

percent are the laggard segment. The right column in Table 7.1 shows the 

estimated probabilities averaged by adoption category. As no similar adoption 

studies were available for other innovations, it had to be assumed that these 

threshold categories reflect a farm households’ overall willingness to adopt 

innovations, not only its willingness to adopt improved maize. The evaluation of 
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individual network thresholds is implemented in the MAS source code while the 

adoption decision is simulated in the mathematical programming model by 

constraining the access to innovations as explained in Table C3 of the appendix. 

 

Table 7.1: Threshold groups and their average probability of adopting Longe 1 

Threshold Characterization Average probability of adoption1 

< 2.5% Innovators 0.99 

2.5 – 16% Early adopters 0.91 

16 – 50 % Early majority 0.67 

50 – 84 % Late majority 0.33 

84 – 100 % Laggards 0.08 

Source: Ntege-Nanyeenya et al. 1997 (average prob. of adoption as calculated from logit estimate) 

Note: 1Based on significant variables in logit model. Let Y be the estimated dependent variable based 
on the estimated Logit equation. Y is the natural logarithm of the probability of adoption divided by the 

probability of non-adoption, i.e., 
P)(1

P
−

. The probability of adoption (P) is then
Y)(1

Y
+

.   

 

7.4 Agent yield expectations 

7.4.1 Theoretical background 

Decisions in agriculture and forestry are rather unique because of a relatively long 

time-span between implementation and outcomes and a high level of uncertainty in 

these outcomes due to the vagaries in weather, pests, and diseases. Nobody can 

predict the future perfectly, and farm household even less so (Brandes 1989).  In the 

case of land-use decisions of farm households, the three main areas of uncertainty 

are price uncertainty, yield uncertainty, and uncertainties in the resource supply.  

There are two main microeconomic theories about the formation of expectations: the 

theory of rational expectations and the theory of adaptive expectations (see Arrow 

1987). First, rational expectations imply that decision-makers use all relevant pieces 

of information and make optimal land-use decisions based on stochastic foresights. 

Positive and negative unexpected events cancel out over time, so that expectations 

on average are accurate. Second, adaptive expectations imply that decision-makers 

base their views about the future only on past trends and experiences, ignoring 

newly available and potentially relevant information. The theoretical justification for 

this rather myopic form of behavior is that access to and processing of new 

information might be too costly, so that under these conditions adaptive expectations 

are rational too.  
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7.4.2 Empirical application 

Like real-world farm households, agents do not have complete knowledge about the 

quality of their soils and the yield they will get from it. However, agents do have an 

idea about yield response to labor and fertilizer use for each soil quality based on the 

observed yield response in previous years. Figure 7.1 illustrates the limited 

knowledge agents have about yield response, the left pane shows the response to 

labor hours as three linear pieces, and the right pane shows the response to fertilizer 

as one linear piece. This is a realistic way of modeling decision-making by real-world 

farm households.  

 

Figure 7.1: Agents' limited knowledge of crop yield response 

 

The linear segment that the agent has knowledge of does not represent the whole 

fertilizer response curve. Neither does the maximum level of fertilizer coincide with a 

yield level at the plateau. The agent's limited knowledge means that the agent can 

only see a snapshot of the entire yield response curve.  

In comparison, Figure 7.2 shows a complete yield response function to mineral 

fertilizer with the snapshot of Figure 7.1 marked by a dotted rectangle with t=0. 

The difference is that the x-axis represents all available N for plant growth in the soil 

(mineral fertilizer plus all other sources of N) instead of only fertilizer N. At period 

t=0, the agent expects a yield of Y0,min if applying no fertilizer, and a yield of Y0,max if 

applying the maximum amount of fertilizer (N0,max-N0,min). The exact quantity the 

agent applies is determined by optimizing the farm plan, which uses the agent's 

expected yield response shown by the linear segment inside the dotted rectangle.  

Yield Yield 

Labor  N Fertilizer 
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Imagine the agent applies no fertilizer. Imagine also that because of this, the plot 

has a net nutrient deficit at the end of period t=0, which gives a reduced soil fertility 

at the start of the following period (N1,min). The agent's perspective on yield response 

has now changed, which is shown by a shift of the dotted rectangle towards the left 

lower corner and a new linear segment that is now steeper—indicating increased 

marginal returns to fertilizer use. At this point, the agent expects a maximum 

quantity of fertilizer (N1,max) to yield a quantity Y1,max. This linear expectation is again 

entered into the programming matrix to simulate the agent’s decision-making. 

 

Figure 7.2: Agent's shifting expectations of crop yield 

 

This approach has certain advantages that are worth noting. First, it represents an 

agent's knowledge more realistically than giving the agent full knowledge of the 

entire response curve. Second, it allows the agent to learn over time by shifting its 

yield expectations. Third, soil fertility decline increases the marginal return to 

fertilizers, which could make this technology profitable in the future, even if it is not 

so now. Fourth, the approach more fully captures heterogeneity, as an agent’s 

response curve is crop, plot, and time specific. 
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7.5 Production of livestock, coffee, vegetables and fruits 

7.5.1 Livestock production 

Labor, feed, pastureland, and cash are the inputs to livestock production. Goats and 

cows are the main types of animals kept (see Figure 5.5 and Table 5.8). Few data 

are available on livestock production in Uganda and none of the available farm 

surveys was suitable for estimating a livestock production function, as these 

recorded neither labor use nor the age of animals. Literature values were therefore 

used to model growth in animal live weight, reproduction, milk production, and feed 

requirements.  

Table 7.2 shows the basic production data used and the sources these were 

obtained from. The production cycle was divided into four periods of birth, puberty, 

maturity, and slaughter. Input requirements and production values were interpolated 

between these periods and averaged per year. Table 7.3 furthermore gives 

metabolizable energy values of crop products and stover when used for animal 

feeding. These enter the model through the constraints in the mathematical 

programming component: when selecting livestock in production, then energy 

requirements have to be met by selecting combinations of stover and grain 

(Chapter 6).  
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Table 7.2: Livestock production data 

  Cow Young bull Goat  Young ram 

 
1 

 
Growth3,5)     

 Live weight at birth (kg) 20 20 3 3 
 Live weight at puberty (kg) 180 200 30 30 
 Live weight at maturity (kg) 220 250 40 40 
 Live weight at slaughter (kg) 250 300 40 40 
  

Age at puberty (months) 30 30 8.5 8.5 
 Age at maturity (months) 60 60 12 12 
 Max. age at slaughter (months) 132 96 96 24 
 
2 

 
Milk production4)     

 milk yield (kg/year) 700 - 200 - 
 Milk to calves (proportion) 0.25 - 1.00 - 
 
3 

 
Reproduction3) 

    

 Gestation period (months) 10 - 5 - 
 Average progeny/ annum 0.64 - 1.2 - 
 First pregnancy (months) 34 - 15 - 
 Last calving (months) 144 - 96 - 
 
4 

 
Input requirements1,2)     

 Bull service (.00 Ush) 25 - - - 
 Maintenance cost (.00 Ush/TLU) 150 150 150 150 
 Buying cost (.00 Ush) 1500 - 150 - 
 Probability of loss 0.05 0.05 0.08 0.08 
 Pasture requirement (ha/TLU) 0.28 0.28 0.28 0.28 
 Labor (hours/TLU) 1180 1180 1180 1180 

Sources: 1) Ngugi et al. 1990; 2) Estimated from the 1999-2000 ZEF Survey; 3) Farnworth 1997; 4) 

2000-2001 IFPRI Survey; 5) personal communication with K.Zander (ZEF), October 2004 

Notes: 1 TLU = to 250 kg live weight. Maintenance cost refers to median maintenance costs per TLU 
multiplied by the TLU of the particular livestock type and includes veterinary services (e.g. deworming, 
salt, and spraying). 
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Table 7.3: Nutritional contents of livestock feeds 

Crop Crop part Dry matter (%) 
Metabolizable energy 
(joule 106) 

Source 

Sweet potato tuber 29.0 14.1 1) 

 vines 25.5 10.0 2) 

Plantain whole plant 16.0 9.9 1) 

 peels 15.0 10.0 1) 

 peeled fruit 31.0 12.4 1) 

 pseudo stem 5.1 9.0 3) 

 leaves 25.3 9.0 2) 

Cassava tops 36.1 9.2 2) 

 root 30.0 13.2 1) 

 peel 22.7 9.8 2) 

Maize grain 88.0 14.6 1) 

 stover 88.0 8.1 1) 

Millet grain 88.0 11.9 1) 

 stover 88.0 8.1 1) 

Sorghum grain 88.0 12.7 1) 

 stover 88.0 9.8 1) 

Bean grain 88.0 14.6 1) 

 stover 88.0 6.4 1) 

Groundnut grain 88.0 20.9 1) 

 stover 19.9 10.2 2) 

Milk - 12.0 22.1 3) 

Grazing - 28.0 7.7 3) 

Sources: 1) Close and Menke 1986; 2) Bakrie et al.1996; 3) personal communication with Romney, ILRI, 
June 2004 

 

7.5.2 Coffee production 

C. Canephora, or robusta coffee, is the main coffee variety grown in Uganda. The 

crop is indigenous to Uganda, though commercial production only began in the first 

half of the 20th century (Musoli et al. 2001). The Lake Victoria region is the main 

coffee producing area in Uganda with mostly smallholder farmers producing it (ibid.). 

Most coffee plantations in Uganda are relatively old, as farmers do not usually 

replace trees (ibid.). The average plantation is about 20 years old, as estimated from 

the 2000-2001 IFPRI Survey.  

Coffee gives a first small yield after three years and a high yield after 5 to 6 years 

(Cambrony 1992). It was assumed that coffee production follows a five year pruning 

cycle, with three years of high yield and two years of low yield. The maximum age of 

a coffee plantation was set to 32 years (6 cycles). It was furthermore assumed that 

the crop bears a maximum amount of beans in the second cycle, and that the yield 

in each subsequent cycle declines by 10 percent. This cyclical trend is shown in 

Figure 7.3 with the yield expressed as a percentage of the maximum yield.  
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Coffee, as livestock, is an investment. The decision to expand the plantation or herd 

is simulated in model’s investment stage, while the decision whether or not to 

maintain it can be revisted in the production and consumption stages (see Section 

4.6). Table C4 and Table C5 in the appendix explain its implementation in the 

mathematical programming model. 
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7.5.3 Fruit and vegetable production 

Fruit and vegetables form an important part of the local diet. Main vegetables grown 

include dodo (a spinach-like vegetable), onion, and cabbage; main fruits include 

mango, jackfruit, and tomato (UNHS 1999). Survey-based estimates of quantities of 

vegetables and fruits are notoriously unreliable as farm households grow and harvest 

these crops in a continuous fashion. Experiment data on these crops in Uganda were 

absent, as these are not considered major crops. It was therefore not possible to 

establish crop yield response functions for each of these crops. Yet, excluding them 

would create a bias, especially in the consumption model as fruits and vegetables are 

an important component of the local diet. Vegetables and fruits were therefore 

included at their median labor use and median yield and agents were allowed to 

consume but not to trade these crops. Since vegetables and fruits are commonly 

grown on only small areas around the compound and are fertilized with kitchen 

waste, they neither require land in the model nor affect the soil property dynamics. 

 

 

Figure 7.3: Relative coffee yield in an assumed five-year pruning cycle 
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Table 7.4: Median vegetable and fruit production and labor use 

Crop Median yield 

[kg/ha] 

Median labor use 

[hours/ha] 

Vegetables 740.7 564.2 

Fruits 1514.0 224.5 

Source: Estimated from the 2000-2001 IFPRI Survey 

Note: Median values for the agroclimatic zone with a bimodal high rainfall. 

 

7.6 Further constraints and incentives to production 

7.6.1 Labor availability 

Available labor hours were postulated as a function of age of the household head and 

the households’ size, age, and sex composition. The coefficients of this function were 

estimated from the 2000-2001 IFPRI Survey, which was previously used to estimate 

labor response functions. Labor allocation data collected from household surveys are 

typically inaccurate. As the recall period is long, households tend to underestimate 

their labor use. It is therefore important that both the available labor hours and the 

yield response functions are estimated from the same data source so that possible 

data errors in the labor supply and demand cancel out. 

The used data set did not specify labor supply for each household member but only 

total labor supply for male and female adults, and children. A functional relation 

between age and labor supply was established by regressing the average daily adult 

labor supply on the age of the household head while controlling for household size, 

the share of children, and district dummies (Table 7.5). Calibrating the resource 

endowments in the mathematical programming component, however, requires not 

the average labor supply but to the maximum labor supply. Labor demand in 

agriculture is unevenly distributed over the year and the average labor use therefore 

underestimates the available labor at peak seasons. To correct the function, the 

average labor use (3.15 hours/day) was compared with the labor use in the 

September peak season (3.92 hours/day), the difference between both (0.77 hours) 

was used to shift the average labor supply function upward to approximate the 

maximum labor supply.  
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Table 7.5: Regression estimates for adult labor supply 

Explanatory variable  Coefficient  (SE) R2=0.36 

Age head  8.44E-02  (3.72E-02) ** 

Age head-squared  -9.10E-04  (3.36E-04) ** 

Household size  -9.06E-02  (1.78E-02) ** 

Share of children [%]  3.01E-02  (8.04E-03) ** 

Iganga District [0/1]  1.03E+00  (5.13E-01) ** 

Constant  -5.01E-01  (9.86E-01)  

Source: Estimated from the 2000-2001 IFPRI Survey 

Notes: * significant at 10%; ** significant at 5%; *** significant at 1%. 

 

These figures may seem low for semi-subsistence agriculture but are not. For 

example, Nyende et al. (2001: 509) estimated a person-day of 4 hours in Eastern 

Uganda, while Kidoido et al (2002: 113) equated it to 6 working hours. Yet again, 

available labor hours need to be consistent with the labor response function rather 

than with literature. 

Children contribute about 12 percent to the total labor use in Ugandan agriculture 

(2000-2001 IFPRI Survey). Kidoido et al. (2002) noted that family labor use has 

recently been constrained by the introduction of a universal primal education 

program, as children are send to school by their parents instead of working in the 

field. The 2000-2001 IFPRI Survey was conducted after this program had been 

introduced and hence reflects the possibly reduced child labor supply.  

It was not possible to estimate child labor supply in the same way as for adults. Yet, 

the survey showed that children generally start working at the age of six years old 

and that children work 0.61 

hours/day on average in the peak 

season. Using this information, a 

linear function was drawn, so that 

the average working hours equalled 

the observed average in the peak 

season. To complete the age-specific 

labor function, it was assumed that 

labor supply drops to zero at the age 

of 85 years. Figure 7.4 depicts the 

age-specific labor supply path by age 

of household members.  

Figure 7.4: Age-specific male labor supply 

in average available working hours/day 
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According to FAO (2003), Uganda is loosing about 14 percent of its agricultural labor 

force due to HIV/Aids between 1985 and 2020. This implies an average annual labor 

loss of 0.43 percent over 35 years. As the survey was conducted in 2000, much of 

this predicted loss must already have occurred. Based on this FAO estimate, the 

agricultural labor force in the year 2000 was 6.3 percent lower than what it would 

have been without HIV/Aids. 

A HIV/Aids related decrease in labor force can have three causes. One is the increase 

in mortality, the other is a reduction in labor hours of affected families, and the last 

is migration. Most of the reduction in labor force must come from reduced activity 

levels and migration: net population growth is still positive at 2.4 percent and based 

on the demographic composition in the study villages and the above age-specific 

labor supply the annual growth in agricultural labor supply is also about 2.4 percent. 

Literature also suggests that the relatively long period between infection and death 

(5-7 years on average) much reduces physical activity levels of the sick and puts a 

heavy burden on the other family members (FAO 2006).  

The effects of reduced activity levels on total labor supply cannot be fully separated 

from the effect of migration, and this is also out of the scope of this thesis. Yet, to 

judge the impact of HIV/Aids on agricultural production, scenarios analysis was used 

for different levels of reduced activity levels. The baseline scenario was based on 

current physical activity levels estimated from the survey while two scenarios 

increased labor availability with 20 and 40 percent to represent the situation without 

HIV/Aids.  

7.6.2 Labor time allocation 

Seasonal variation in labor demand was captured by labor allocation requirements. 

Woelcke (2004) divided the year into five periods of unequal length. July, August, 

and September are peak periods including the harvesting of the first crop as well as 

the planting and weeding of the second crop.  

Labor allocation per cropping period was estimated from the 2000-2001 IFPRI 

Survey as a proportion of total labor use per crop, as shown in Table 7.6. The 

coefficients in this table are equal for each level of input use. Although the total labor 

input per crop is a decision variable, the periodic distribution of this labor 

requirement is fixed. Agents can therefore not decide to use less labor for land 

preparation and compensate this with more labor for weeding. Multiplying the 

proportion in Table 7.6 with the total labor requirement gives the labor requirement 

per period per crop. 
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Table 7.6: Relative time allocation to crop production by period 

As a proportion of the total labor use per crop per season  

Crop January - 
February 

March -  

June 

July  -  

August 

September October - 
December 

First season 
Land 
preparation 

Weeding 
Harvesting, 
processing 

  

Sweet potato 0.62 0.23 0.14 - - 

Traditional maize 0.58 0.27 0.15 - - 

Improved maize 0.49 0.34 0.17 - - 

Hybrid maize 0.38 0.48 0.14 - - 

Millet 0.38 0.42 0.20 - - 

Sorghum 0.49 0.33 0.18 - - 

Bean 0.52 0.31 0.17 - - 

Groundnut 0.49 0.27 0.24 - - 

Second season 
  Land 

preparation 
Weeding 

Harvesting, 
processing 

Sweet potato - - 0.52 0.33 0.15 

Traditional maize - - 0.46 0.35 0.18 

Improved maize - - 0.42 0.42 0.16 

Hybrid maize - - 0.52 0.33 0.15 

Millet - - 0.43 0.31 0.26 

Sorghum - - 0.39 0.39 0.22 

Bean - - 0.45 0.39 0.16 

Groundnut - - 0.56 0.24 0.20 

Annual, and perennial crops, and livestock1 

Cassava 0.45 0.23 0.12 0.06 0.15 

Plantain 0.09 0.43 0.09 0.04 0.35 

Coffee 0.01 0.50 0.00 0.00 0.50 

Cows 0.17 0.33 0.17 0.08 0.25 

Goats 0.17 0.33 0.17 0.08 0.25 

Chicken 0.17 0.33 0.17 0.08 0.25 

Source: Estimated from the 2000-2001 IFPRI Survey 

Note: 1) Time allocation for livestock is assumed equal for each month by lack of more detailed data. 

 

7.6.3 Labor allocation by gender 

Gender relations affect agricultural production as male and female labor are no 

perfect substitutes. Men are usually more involved in land preparation while women 

are proportionally more involved in weeding and harvesting. The consequence is that 

while the total labor endowment might be abundant in some periods, male or female 

labor might still be a constraint. 
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To take gender into account, the average share of male and female labor was 

estimated for each crop and for each period (land preparation, weeding, and 

harvesting). For each average, the difference in means between male and female 

labor was statistically tested using a t-statistic; if not significant then they were 

taken as perfect substitutes, but if significant then they were taken as incomplete 

substitutes and a constraint was imposed that one of the sexes has to perform a 

minimum share of an activity. Summarizing, the following procedure was used:  

 Estimate the average share of male and female labor per crop, per season, and 

for each of the three periods (land preparation, weeding, and harvesting)  

 Test whether these averages are significantly different at a 95% confidence 

level 

 If significant, then take the highest average labor share and constrain the 

activity as greater than or equal to this average labor share minus 1 standard 

deviation 

For example, women did 61 percent (sd=27) of the weeding in local maize in the 

first season, which was significantly different (p=0.026) from men's share of 39 

percent. A constraint was hence added requiring at least 34% (=61-27) of the 

weeding to be performed by women. This constraint was made only binding if the 

agent had both male and female adult labor; if an agent had only either of the two 

then it was allowed to substitute one for the other. Table C6 in the appendix gives 

all averages, standard deviations, significance tests, and resulting constraints. Table 

C7 furthermore explains the implementation in the mathematical programming 

model. 

7.6.4 Rotational constraints 

Rotational constraints refer to the sequence of crops grown over subsequent 

cropping cycles. Data about this come from the 2000-2001 IFPRI Survey, which for 

each plot recorded the three main crops grown in the past 20 cropping seasons. 

From these data, it appeared that farm households do not commonly practice crop 

rotations; especially maize was almost continuously grown on many plots. The main 

type of variation stems from crop combinations within the plot, especially the 

combination of maize with beans. Rather than alternating one season of maize with 

one season of beans, farm households intercrop maize with beans for many 

consecutive years (see next section). 
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This practice ensues that a plot is never fully covered by a single crop. From the last 

10 cropping seasons (1996-2000), the frequency of cultivation was estimated for 

each crop. As rotation practices are location specific, only observations for the 

Iganga, Mayuge, and the neighboring Jinja Districts were included. Table 7.7 shows 

the results. If for example, maize was grown 5 times in 10 seasons, then the 

rotational constraint was estimated to be 50 percent, implying that not more than 50 

percent of a plot can be covered by maize in any season. A comparison of these 

estimates with those used by Woelcke (2004), who based his estimates on expert 

opinion, showed that estimated constraints were similar for maize, millet, bean, and 

sweet potato, but lower for sorghum and groundnut (Table 7.7). These rotations 

were included in the mathematical programming component by constraining the land 

allocation to either a maximum or a minimum proportion that could be grown under 

a specific crop; Table C8 in the appendix illustrates this. 

 

Table 7.7: Rotational constraints 

Expressed as the maximum proportion of land under a crop 

Crop Proportion Crop Proportion Crop Proportion 

Maize 0.531 (0.500) Bean 0.393 (0.330) Cassava 0.256 (0.500) 

Millet 0.196 (0.250) Groundnut 0.181 (0.333) Plantain 1 

Sorghum 0.125 (0.250) Sweet potato 0.236 (0.330) Coffee 1 

Sources: Estimated from the 2000-2001 IFPRI Survey (Iganga and Jinja Districts); Woelcke (2004) 

Note: Woelcke’s estimates in brackets. 

 

7.6.5 Intercropping 

Intercropping can bring significant benefits to farm households, including increased 

protection from soil erosion, better pest and weed control, greater nutrient 

efficiency, and the spread of risk. Intercropping is common in southeast Uganda with 

mixed intercropping being the most common form. Crops are planted between each 

other, usually by broadcasting seed in a standing crop. The most common 

combinations of crops in the research communities are maize with bean, cassava 

with maize, maize with groundnut, and millet with sorghum (Woelcke 2004).  

The average yield of an intercrop is commonly estimated based on the total area 

under all crops grown in a particular combination. For example, if maize and bean 

are intercropped on one hectare, then the yield is estimated by dividing both the 

maize and the bean output by one hectare rather than dividing each crop’s output by 

half a hectare. Individual crop yields from intercropped fields are usually below yields 
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from single cropped fields. Yet, the total land productivity of intercropped fields is 

usually greater than that in pure stand since not one but two crops are harvested.  

None of the available surveys was suitable for estimating partial land equivalent 

ratios (PLER) for intercrop combinations. The surveys recorded whether or not a crop 

was grown in combination but not which crops were exactly combined. Only the yield 

difference between a crop grown in single stand and a crop grown in all types of 

mixed stands could therefore be estimated and this is shown in Table 7.8. However, 

these data might be unreliable as it is unclear whether the enumerators recorded the 

intercropped area in a consistent manner. 

Literature values from Uganda and other countries in Africa were therefore used to 

verify the survey estimates. For this purpose, all publications were summarized in 

the African Crop Science Journal on the issue of intercropping that estimated LERs, 

as this journal has published relatively much on the issue. A number of other 

publications specifically on Uganda were added to these data. Table 7.9 summarizes 

the results of this review. 

With few exceptions, all of the published PLERs were above 0.5 and LERs above 

unity. This suggests definitive advantages in land productivity of intercrop 

combinations over crops in sole stand. Table 7.10 shows the PLER values finally 

used in this study and specifies on what sources these values were based. Table C9 

in the appendix explains the implementation of intercropping in the mathematical 

programming model. 

Although PLERs are a standard way of expressing yield premiums of intercropping 

compared to single cropping, it is noted that the measure is incomplete as it only 

considers the land saving aspect and not the labor saving aspect of intercropping.  

 

Table 7.8: Estimated yield differences for intercropping 
Estimated  average yield [kg/ha/season] and PLER 

Crop Single stand Mixed stand PLER 

Maize 1,308 (255) 1,083 (207) 0.83 

Groundnut 954 (627) 187 (57) 0.20 

Bean 315 (212) 419 (73) 1.33 

Millet 1,688 (1,199) 997 (180) 0.59 

Sorghum 798 (145) 644 (135) 0.81 

Source: Estimated from the 2000-2001 IFPRI Survey 

Note: Standard error in parentheses. PLER=partial land equivalent ratio. 
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Yet, crop science literature has not yet produced ‘labor equivalent ratios’ and neither 

did the available data allow estimation of such ratios. Intercropping was hence only 

included as a land-saving management decision while the labor requirement was 

averaged over both crops.  

 

Table 7.9: Land Equivalent Ratios from literature 

Intercrop combination 

 

Crop 1 

PLER 

Crop 2 

PLER 

Total  

LER 

Location 

 

Source 

 

Maize / bean, mixed intercropping 0.23 0.77 1.00 Ethiopia 1) 

Maize / bean, row intercropping 0.38 0.92 1.30 Ethiopia 1) 

Millet / bambara nut 0.62 0.46 1.08 Botswana 2) 

Sorghum / bambara nut 0.90 0.77 1.68 Botswana 2) 

Maize / bambara nut 0.79 0.48 1.27 Botswana 2) 

Maize / groundnut 0.95 - >1 Zimbabwe 3) 

Maize / bean 0.99 - >1 Zimbabwe 3) 

Maize (low density) / bean  0.53 0.58 1.11 Zimbabwe 4) 

Maize (high density) / bean  0.71 0.56 1.28 Zimbabwe 4) 

Sorghum / cowpea 0.19 0.99 1.18 Uganda 5) 

Maize / potato 0.44 0.58 1.02 Uganda 6) 

Maize / potato (both high density) 0.60 0.98 1.58 Uganda 6) 

Maize / soybean (sufficient rain) 0.63 0.33 0.95 Nebraska (USA) 7) 

Maize / soybean (insufficient rain) 0.43 0.61 1.04 Nebraska (USA) 7) 

Bean / potato - - 1.45 Uganda 8) 

Maize / cassava - - 1.60 Uganda 9) 

Cassava / cowpea - - 1.80 Uganda 9) 

Sources:  

1) Fininsa 1997 

2) Karikari et al. 1999 

3) Musambasi et al. 2002 

4) Mutungamiri et al. 2001 

5) Nampala et al. 2002 

6) Ebwongu et al. 2001 

7) Ennin et al. 2002 

8) Opio et al. 2001 

9) Otim-Nape et al. 2001 

 

Notes: Some ratios are averaged over different experiments and locations. - means that the PLER 
was not specified. 
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Table 7.10: Used intercrop premiums 

 
Crop 1 

PLER 

Crop 2 

PLER 

Total  

LER 
Note 

Traditional maize / bean 0.62 0.57 1.19 Average Zimbabwe values in Table 7.9 

Improved maize / bean 0.62 0.57 1.19 Ibid. 

Traditional maize / groundnut 0.79 0.48 1.27 Botswana values Table 7.9 

Improved maize / groundnut 0.79 0.48 1.27 Ibid. 

Traditional maize / cassava 0.80 0.40 1.20 
Uganda value Table 7.9, equally 
distributed over both crops 

Improved maize / cassava 0.80 0.40 1.20 Ibid. 

Millet / sorghum 0.59 0.81 1.40 Table 7.8 

 

7.6.6 Crop pests and diseases 

Crop pests and diseases constrain crop growth, though the severity of it varies 

strongly between crops, locations, seasons, and years. The magnitude of this effect 

was not explicitly included in the present model, and neither was the ameliorating 

use of pesticides, insecticides, and fungicides. Rather, the information about the 

effect of pests and diseases was used to fine-tune the model to observed data as 

explained in the next section. Table 7.11 summarizes main pests and diseases, 

ordered by importance and compiled from various contributions to Mukiibi (2001) 

Agriculture in Uganda. The four crops most affected are cassava, plantain, maize, 

and sorghum. Least affected are millet, groundnut, coffee and bean.  

7.6.7 Risk 

Farm households not only value the level of yield but also the annual variation 

around the average and the variation in revenues obtained from it. Some crops, like 

cassava, have high average yields but are strongly affected by pests and diseases. 

Other crops, like plantain, are risky because they are perishable, which creates 

dependence on market prices. Raising chicken is profitable but the probability of a 

chicken surviving is low. Coffee is also profitable, but its price fluctuates much. 

Hence, risk strongly affects the production behavior of farm households. The model 

representation of farm household behavior considered risk in four ways: 

 Empirically based network threshold levels partly captured the perceived risk 

associated with technology adoption. 

 A difference between expected farm gate and expected market prices captured 

price risk. 
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 A premium to the future returns from investments, such as livestock and coffee, 

gave preference to future consumption over present consumption, which 

smoothed consumption and reduced income risk. 

 Certainty equivalents captured the risk from yield variability by altering the yield 

expectations in production and investment mode. A crop, like cassava, which has 

a high yield risk, has a lower certainty equivalent, reducing the yield expectation 

below the average and hence making the crop less attractive. Table C10 in the 

appendix illustrates how this was implemented in the programming matrix. 

 

Table 7.11: Main crop pests and diseases and their average yield loss 

Crops ordered by magnitude of yield loss 

Crop Main pests Main diseases Relative 
yield loss 

Source 

     

Cassava Cassava mealybug, 
cassava green spider 
mite 

Cassava brown streak virus, 
Cassava Mosaic Disease, 
bacterial blight and leaf spot 

+++ Otim-Nape et al. 
2001  

Plantain Banana weevil, 
nematodes 

Banana leaf spot, black and 
yellow sigatoka, banana 
streak virus 

+++ Tushemereirwe  
et al. 2001 

Sweet potato Rodents, sweet 
potato weevils 

Alternaria blight, leaf spot, 
Fusarium wilt, viral diseases 

 

+++ Muwanga et al. 
2001 

Maize Stem borers, 
termites, weevils, 
grain borers 

Maize streak virus, leaf blight, 
rust 

++ Kikafunda-Twine 
et al. 2001 

Sorghum Stalk borers, sorhum 
midge, sorghum 
shoot fly, birds 

Grain mold, leaf blight, 
Anthracnose, smuts, striga 

++ Ebiyau and 
Oryokot 2001 

Bean Bean fly, black bean 
Aphid 

Common bacterial blight, 
Angular leaf spot, rust 

 

++ Opio et al. 2001 

Coffee Antestia bug, 
lacebug, berry borer 

Coffee leaf rust, Coffee Berry 
Disease, coffee wilt disease 

 

+ Musoli et al. 2001 

Groundnut - 

 

Groundnut rosette disease. 
fungal leaf spots, groundnut 
blight 

+ Busolo-Bulafu 
and Obong 2001 

Millet Birds Millet blast + Oryokot 2001 

Source: Compiled from Mukiibi (2001) 

Note: Relative yield losses were roughly estimated from the literature source. 

 

7.6.8 Input prices 

Table 7.12 shows input prices used in the analyses. These were estimated from the 

2000-2001 IFPRI Survey. The reference period of this survey was the first and 

second season of 2000. This only partly overlapped with the UNHS, which referred to 
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the second season in 1999 and the first season in 2000. The consumer price inflation 

and the price inflation for goods and services both were about 2 percent in 2000 

(UBOS 2002), which was used to adjust input prices downward to 1999 price level of 

the 1999 UNHS. 

 

Table 7.12: Prices of variable inputs 

 
Input Price  [.00 Ush]  Input Price  [.00 Ush] 

1 Seed (kg)  3 Land (ha)  

    Traditional maize 2.00     Renting in 1000.00 

    Improved maize 12.00     Renting out 1000.00 

    Hybrid maize  25.00 4 Labor (hour)  

    Bean  5.00     Hiring in, male 2.50 

    Groundnut  13.00     Hiring in, female  1.88 

    Millet  4.00     Hiring out, male  2.50 

    Sorghum  3.00     Hiring out, female  1.88 

2 Mineral fertilizer (kg) 6.00 5 Leasing in tractor (hour) 4.70 

Source: Estimated from the 2000-2001 IFPRI Survey 

 

7.7 Validation of results 

Model results were validated in three steps. First, it was tested if all programming 

matrices for all agents gave feasible solutions. If this was not the case then the 

matrices were analyzed and changes made where necessary. Second, price 

experiments were conducted to test if an increase in farm gate price of a particular 

enterprise lead to this enterprise being increasingly selected in the solution. Third, 

model outcomes in the first five years of the baseline scenario (representing the 

observed situation and current trends, see Chapter 9) were compared with 

observed values from the survey. A few built in tools were available to bring the 

baseline closer to the observed values if needed. These included: 

 Yield reduction factors (fgc, in Chapter 6) to adjust the average estimated yield 

levels to the average observed yield levels. 

 Certainty equivalents to adjust the area under crops in accordance to their level 

of perceived risk. 

 Future price premiums for livestock and coffee to alter the preference of future 

income relative to current income. 
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Observed and predicted values were compared for four main production aspects of 

the farming system: (1) land-use patterns; (2) average and median crop yields; (3) 

the share of intercropping; and (4) the adoption of innovations. 

Figure 7.5 compares the simulated land-use pattern as a percentage of the total 

cropped area with the observed land use pattern. Validation was complicated by a 

high variation in the observed land-use between separate surveys and areas within 

the surveys. The left diagram validates the predicted land-use against the 1999-

2000 ZEF Survey. The regression fit falls exactly together with a 45o-line from the 

origin, which indicates a good fit (coeff.=1.00, SE=0.15. R2=0.82). The second and 

third diagrams validate model results against the 2000-2001 IFPRI Survey, which 

was used to estimate crop yields, and shows a somewhat lower fit. Not so 

surprisingly, the fit was worst when taking the central and eastern region in the 

survey together as in the right-most diagram. 

 

Figure 7.5: Validation of land-use with linear regression fit 

Comparison between model results and three different survey estimates 
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Notes: Simulated means over year 2-3 in the simulation. Line segments indicate the linear regression fit 

of survey vs. model estimates without a constant term. Model fit: Coeff=1.00; SE=0.15, R2=0.82 (left); 

Coeff=0.94; SE=0.18, R2=0.74 (middle); Coeff=0.94; SE=0.16, R2=0.79 (right). Crop codes: cof=coffee; 

gro=groundnut; bea=bean; sor=sorghum; mil=millet; mai=maize; cas=cassava; pla=plantain; and 

swe=sweet potato.  

 

Figure 7.6 compares simulated crop yields with observed crop yields as estimated 

from the 2000-2001 IFPRI Survey. As discussed in Chapter 2, mean and median 

estimates of crop yields differ widely for the distribution of yields is negatively 

skewed. The observed negative skew is strongest for sweet potato, plantain, and 

cassava. Yield estimates for these, continuously harvested crops, are notoriously 
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difficult and statistical errors might therefore explain part of the problem. The 

negative skew is not well replicated in the model as means and medians are much 

closer.  

 

Figure 7.6: Validation of crop yields 

Comparison of medians (left) and means (right) 
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Notes:  Simulated means and medians over year 2-3 in the simulation. See Figure 7.5 for an explanation 

of crop codes. 

  

Figure 7.7: Validation of intercropping 

Comparison of median (left) and mean (right) percentage intercropping of crop area 
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Notes: Simulated means and medians over year 2-3 in the simulation.  See Figure 7.5 for an explanation 

of crop codes. 

  

Figure 7.7 compares the simulated and observed patterns of intercropping. The 

percentage intercropping of a crop was calculated as the area intercropped divided 

by the total area under a crop. Again, the diagrams show a wide difference between 
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mean and median estimates from the survey. The model overestimates the 

intercropping of sorghum, which is a minor crop, but attains a good fit for all other 

crops. 

The final issue is the diffusion of innovations. This diffusion is difficult to validate by 

lack of empirical time series data on the speed of diffusion. The challenge is 

therefore to select the most plausible diffusion pattern. To change the speed of 

diffusion, the model includes a parameter through which threshold values can be 

adjusted (see Section 7.3). Figure 7.8 shows the simulated diffusion patterns for 

three innovations—improved maize, mineral fertilizer, and hybrid maize—and for six 

different values of this parameter ranging almost from ideal technical change (0.1) 

to no technical change (1). In the almost ideal scenario, all innovations become 

available to all agents in year 1 of the simulation, while in the ‘no diffusion’ scenario, 

the diffusion is frozen at current levels as observed from survey data.  

The figure shows that the diffusion pattern is highly sensitive to the chosen 

parameter value. The diffusion of improved maize and hybrid maize levels off at 

about 80 percent diffusion, even in the ideal scenario; while the diffusion of mineral 

fertilizers levels off at an even lower level of about 60 percent. Two scenarios, with 

parameter values 0.5 and 0.7, give an S-shaped diffusion path and look plausible. 

The scenario with value 0.7 is more realistic, as the diffusion of improved maize is 

more gradual while the diffusion of hybrid maize and mineral fertilizer reach a 

plateau at about 25 percent diffusion. This scenario was chosen as the most plausible 

since hybrid maize and mineral fertilizers are no new technologies in Uganda, but 

their adoption has remained low, while the adoption of improved maize is still 

increasing. 

Figure 7.8: Alternative diffusion patterns by adjustment of threshold values 

 

Notes: All scenarios are based on the baseline (Chapter 9). The numbers in the legend refer to values of 

the threshold adjustment parameter. 
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7.8 Summary 

The calibration of the present model involved the estimation of a large number of 

parameters. This chapter specified how the production parameters were estimated 

and explained how these parameters were incorporated in the mathematical 

programming component. The production side of the mathematical programming-

based MAS was validated against observed data by comparing mean and median 

values for land-use, crop yields, and the percentage intercropping.  
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8 Consumption behavior 
 

 

8.1 Introduction§ 

In the three-stage sequence of farm agent decision-making, the consumption of 

generated income constitutes the third and final stage. This chapter outlines a novel 

methodology for representing consumption decisions and simulating consumption 

poverty of farm households. The methodology is based on mathematical 

programming but adds three innovations: First, poverty levels are quantified by 

including a three-step budgeting system, including a savings model, a Working-Leser 

model, and an Almost Ideal Demand System. Second, the model is extended with a 

disinvestment model to simulate farm household coping strategies to food insecurity. 

Third, multi-agent systems are used to tailor each mathematical program to a real-

world household and so to capture the heterogeneity of opportunities and constraints 

at the farm level as well as to quantify the distributional effects of change. 

The chapter continuous in Section 8.2 with an outline of the three-step budgeting 

process. Section 8.3 shows the model estimation results and gives other relevant 

data used to model the consumption behavior of agents. The consumption 

component is validated in Section 8.4 and the chapter ends with a summary in 

Section 8.5. 

 

8.2 A three-step budgeting process 

8.2.1 Theoretical background 

If consumption decisions systematically vary with the level of income, prices, and 

household characteristics then these decisions can be presented as a set of demand 

equations. The theory of consumer behavior offers the best guidelines as to how 

these consumption decisions are made (Sadoulet and de Janvry 1995). The theory 

                                          

§ Parts of this chapter were used for SCHREINEMACHERS, P. & T. BERGER 2006. Simulating farm 

household poverty: from passive victims to adaptive agents, Selected paper for the Tri-annual meetings of 

the International Association of Agricultural Economics, Gold Coast, Australia, 12-18 August 2006.  
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postulates that consumers maximize their utility subject to a budget constraint. The 

solution to this maximization problem yields a set of demand equations from which 

income and price elasticities can be derived.  

Using duality theory, demand equations can also be derived from a cost function; 

costs are then minimized subject to a utility function (Deaton and Muellbauer 1980). 

In a cost function, unit values (expenditures divided by quantities) replace prices 

(Huang and Lin 2000). Cost functions are commonly applied in empirical studies 

since expenditures and quantities are usually recorded in surveys but prices are not 

(e.g., Elsner 1999; Brosig 2000). 

Weak separability of consumer decision-making implies that "commodities which act 

closely in yielding utility can be grouped together, while goods which interact only in 

a general way through the budget constraint are kept in separate groups" (Sadoulet 

and de Janvry 1995: 36). If assuming weak separability then the expenditure 

decisions of agents can be conceptualized as a stepwise budgeting-process. 

8.2.2 Theoretical model  

For the present study, the budgeting-process was divided into three steps as is 

shown in Figure 8.1. In the first step, agents choose what part of the disposable 

income to spend and what part to save. This is a decision between current and future 

expenditures as income set aside for savings is available for investment and hence 

contributes to future income and expenditures. Let SAV be the part of disposable 

income saved and EXP the part spent, which gives the following income identity: 

(8-1)  EXPSAVINC +=  

The level of savings itself is a function of disposable income (INC), household size 

(HHS), and a constant term (Ca): 

(8-2)  )CHHS,f(INC,SAV a=  

Let LIQ be the available stock of liquid means and INV the amount of investment, for 

example in livestock, then investments cannot exceed savings plus liquid means: 

(8-3)  LIQSAVINV +≤  

In the second step, consumers allocate income to food or non-food items. Let FEX be 

the part of income spent on food and NEX be the part of the income spent on non-

food items, which gives the following equality condition: 
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(8-4)  0NEXFEXEXP =−−  

In which FEX is a function of total expenditures (EXP), household size (HHS) and a 

constant term (Cb): 

(8-5)  )CHHS,g(EXP,FEX b=  

In the third and last step, consumers spend the allocated food budget on eight 

categories of food products, such as cereals, roots and tubers, and animal products. 

Let CATi be the expenditures on category i, then: 

(8-6)  ∑=
i

iCATFEX  

with expenditures to food categories being a function of the total food budget (FEX), 

household size (HHS), prices (ci) and a constant (Ci): 

(8-7)  )C,cHHS,h(FEX,CAT iii =  

This equation is parameterized using a linear version of the Almost Ideal Demand 

System (LA/AIDS). The three-step budgeting system was included in a mathematical 

programming model that optimized the expected cash and in-kind income and future 

income from investments. The is-equal-signs in equations 8-1, 8-4, and 8-7 ensure 

that the agents can only increase the in-kind income (i.e., the consumption of own 

produced food) through increases in the disposable income from farm and off-farm 

activities.  

Figure 8.1: Three-step budgeting process 
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The assumption of separability furthermore facilitates empirical estimation, as 

different models can be fitted at each step in the budgeting process. The following 

sections specify estimable models for each of the three steps in the budgeting 

process. 

8.2.3 Savings and expenditures (Step 1) 

In line with micro-economic theory, it was assumed that the proportion of income 

saved increases with the level of income. Let the variable SAV be the savings and 

INC the total income, HHS the household size, D the matrix of district dummies, and 

Ca a constant term. The amount of savings was specified as a quadratic function of 

income: 

(8-8)  a

1n

1i

2
21 CDβHHSINCαINCαSAV ++++= ∑

−

=

    0 with 2 >α  

As long as α2 is positive, savings increase more than proportionally with income. 

Alternatively, a share-log functional form could have been chosen as this also allows 

for increasing savings with income. However, a share-log does not allow for negative 

net savings, hence the preference for a quadratic specification. 

8.2.4 Food and non-food expenditures (Step 2) 

It is assumed that the budget allocation to food and non-food items systematically 

varies with the level of income, prices, and household characteristics, and that this 

relation can be described by a modified version of the Working-Leser model (Working 

1943; Leser 1963). The Working-Leser model has a share-log functional form in 

which the share of food and non-food items in the total budget is a linear function of 

the logarithm of total expenditures. Theoretically, this function is consistent with 

utility maximization and the adding up property can also be met. The modified 

version also includes a number of variables found to influence the budget share, such 

as the size and composition of the household, and regional dummies to capture 

spatial variation in consumption patterns.  

The Working-Leser model has a flexible functional form that allows income 

elasticities to vary with income levels. This flexibility is desirable as high income 

households are expected to spend a lower share of their income on food 

expenditures. The Working-Leser demand function is expressed as: 
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(8-9)  DβHHSβTEXlnββv
40

1n
3210i ∑

=

+++=  

where vi is the expenditure share on food or non-food items, TEX is total 

expenditures (calculated as INC–SAV), HHS is household size, D is a matrix of 

district dummies, and the betas are the parameters to be estimated. The estimated 

parameters should satisfy the properties of adding up and symmetry. The first is 

satisfied if constant terms across equations add up to unity (∑ =
i

i1, 1β ), the second 

is satisfied if the sum of parameters across the equations is zero 

(∑ ∑ ∑ ===
i i i

i3,i2,i1, 0βββ ). In this two-equation case, only one equation needs 

to be estimated, as the parameters of the other equation can be derived from the 

first using the above properties. 

8.2.5 Almost Ideal Demand System (Step 3) 

In the final step of the budgeting process, the consumer chooses which food 

products to consume. A linear approximation of the Almost Ideal Demand System 

(AIDS) was used for modeling the decision-making at this third step (Deaton and 

Muellbauer 1980). The AIDS is specified as: 

(8-10)  DδHHSδ)ln(M/Pδplnδδw
40

1n
k4,k3,

k

*
k2,llk,1,k0,k ∑∑

=

++++=  

where the subscripts k and l denote individual food categories of a total of n 

categories (k,l=1,2,..,n) and the gammas denote the parameters to be estimated. 

The variable wk is the share of category k in the total food budget, M is per capita 

food expenditures, and P* is an index of prices, which in the original (non-linear) 

version of the model has a translog functional form. For practical estimation, the 

system can be made linear by replacing the non-linear price index with the logarithm 

of the Stone geometric price index (Deaton and Muellbauer 1980): 

(8-11)  ∑=
k

kk
* plnwPln   

The use of the Stone price index introduces a simultaneity problem as the budget 

share (wk) now appears both as a dependent and independent variable (Eales and 

Unnevehr 1994). In panel data analysis, the lagged budget share is commonly used, 

but in cross sectional data this is not possible. The impact of the simultaneity 
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problem is, however, likely to be small as it enters the equation as a logarithm of its 

inverse form and is multiplied by income. 

A further complication occurs if some of the dependent variables have a large 

frequency of zero values, that is, many households do not consume a particular food 

category. If this is the case, estimation can give biased parameter estimates. A two-

stage Heckman procedure can abate this problem (Heckman 1976, as in Kennedy 

1998). First, probit models are estimated that include the variables of the demand 

equation (8-10) minus one variable and including the zero observations. From this 

estimate, inverse Mill’s ratios are computed for each category, which is included as 

an additional explanatory variable in the demand equation. Only the non-zero values 

of the dependent variable are then used in the demand estimation. 

To ensure that the estimated model is in harmony with the theory of consumer 

behavior, the estimated parameters must meet the property of adding up 

( 0 δδδ
k

k2,
l

kl1,
k

kl1, === ∑∑∑ ) to satisfy the budget constraint, as well as the 

properties of homogeneity ( 1 δ
k

k0, =∑ ) and symmetry ( lk1,kl1, δδ = ) to allow utility 

maximization. 

Error terms across demand equations correlate because the sum of budget shares is 

constrained to unity (Sadoulet and de Janvry 1995: 45). Zellner's seemingly 

unrelated regression model is used to overcome this. To ensure theoretical 

consistency, parameters need either to be tested or constrained across equations. To 

avoid singularity in the variance-covariance matrix, one system equation has to be 

omitted in the estimation but it can be recovered from the remaining equations. 

Own and cross-price elasticities, compensated for the income effect, are derived 

from the estimated parameters of the demand functions as follows (Sadoulet and de 

Janvry 1995): 

(8-12)  Own price elasticity:  k
k

kk1,
kk w

w

δ
1e ++−=    

(8-13)  Cross price elasticity: k
k

kl1,
kl w

w

δ
e +=  

(8-14)  Income elasticity:   
k

k2,
k w

δ
1η +=  

These elasticities are estimated at the average budget share and are only used to 

visually check the plausibility of the estimates. Because the budget share is 
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endogenous in the complete model, not the average elasticities but the original 

equations (8-1, 8-2, and 8-3) are included in the mathematical programming 

component, as is explained in the appendix in Table D1. 

8.2.6 Quantifying poverty from food energy needs and intake levels 

In a developing country context, poverty is best quantified in terms of food energy 

consumption (Coudouel et al. 2003). To quantify consumption poverty for each agent 

in the present study, the estimated energy intake from the three-step budgetting 

system was compared to the agent’s food energy needs. 

Food energy intake was estimated from the value of expenditures on the k-th food 

category, i.e., as wk*FEX. To express food consumption in joule, each value was 

divided by its unit value to get a physical quantity and then multiplied by an energy 

weight as shown in Figure 8.1. 

Food energy needs were estimated from the age and sex composition of each agent 

household. James and Schofield (1990) suggested estimating age and sex-specific 

energy needs from basal metabolic requirements and physical activity related 

requirements. They divided human energy needs into two parts: basal metabolic 

requirements and physical activity related requirements. The basal metabolic rate 

(BMR) of a population was calculated from data on body weight, age, and sex. 

Multiplying this BMR by a value capturing the physical activity level (PAL) gave total 

energy needs. The food energy requirement of an agent p (Ep) was calculated as the 

sum of individual requirements of its members q (q=1,2,..,n): 

(8-15)  ∑ +∗=
q

qqqp )f*0.418PAL(BMRE  

in which the variable BMR is a function of an age and sex-specific constant (αq) and 

the member’s body weight multiplied by an age and sex-specific coefficient (βq): 

(8-16)  qqqq WeightβαBMR ∗+=  

Equation (8-16) has a correction of 0.418 million joule/day for the increased food 

energy intake during pregnancy; this correction factor was multiplied with an age 

specific fertility rate (f) that takes a value of zero if the member is a male. 

The estimated household size in joule was used throughout the study as a measure 

of household size. Dividing it by the average male energy requirement, 3.229 billion 

joule/year, expresses household size in male adult equivalents. 
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8.2.7 Coping strategies to food insecurity 

Farm households are food secure when they have strategies to smooth consumption 

in the event of disaster. One such commonly observed strategy in African farming 

systems is keeping livestock (Kristjanson et al. 2004). Farm households buy and 

maintain animals in good 

years—when yields or prices are 

high, and sell them in bad 

years—when yields or prices are 

low. By investing and 

disinvesting in livestock, 

households smooth their income 
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years.  
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the theoretical model for this 

disinvestment process. The 

upper diagram shows that 

savings increase (the solid line) 

and expenditures decrease (the 

dashed line) as a share of 

income. The lower diagram 

shows food energy as a function 

of income with the horizontal 

line depicting the food energy 

level at 90 percent (E90) 

fulfillment of the (physical) 



 126 

needs; the income level where both functions intersect is denoted as Y0. 

Agents try to avoid poverty by keeping their income above level Y0. Yet, if income 

would fall below Y0, then an agent has two options: (1) add savings to the disposable 

income; or (2) sell livestock and add the returns to the disposable income. Both 

options entail the substitution of current consumption for future income. Agents 

continue their disinvestment until their food energy needs are satisfied for at least 90 

percent, which is when the level of income equals Y0.  

If the agent is unable to sell assets or consume savings then it runs into an energy 

deficit and falls into poverty. Figure 8.2 shows that the consumption and 

savings/dissavings functions are non-smooth below level Y0, this is because selling 

livestock is a discrete rather than a continuous event; a smooth function would, 

however, represent the consumption of savings, which is not shown here.  

At income levels between Y0 and Y1, no income is saved – the savings function is flat 

at the zero level, as all income is consumed. Point Y1 represents the highest level of 

income at which agents do not save income and can be derived by equating the 

savings equation to zero (see Table D1 of the appendix). Disinvestment decisions 

were included in the mathematical programming component, which is explained in 

Table D2. 

8.2.8 Fertility and mortality 

Uganda has one of the highest fertility rates in sub-Saharan Africa with a woman 

bearing about six children on average in a lifetime (The World Bank 2004). However, 

mortality rates are high too, with male infants having only a 25 percent chance of 

surviving to the age of 65 (ibid.). 

There is a long lasting debate about whether the decision to have children is subject 

to economic rationale (e.g., Nugent 1985). If economic rationale motivates the 

decision then family planning is an investment decision. Having more children 

increases the amount of available labor and offers economic security for aging 

parents. On the other hand, some scholars have argued, that households can choose 

to take more children than would be economically optimal if this has a social value 

(e.g., rising social status). While others have argued, that the decision to have 

children is only partly controllable when contraceptives are either unavailable or 

inaccessible. For the sake of simplicity, family planning was not taken as 

endogenous. Instead, current fertility and mortality rates were uniformly imposed on 

all households. 
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8.3 Data and estimation 

8.3.1 Budget data used 

The consumption model was estimated from the 1999-2000 Uganda National 

Household Survey, as this was the only available data set suitable for this purpose. 

This nationwide survey recorded food expenditure by recall methods over the 

previous seven days, while non-food expenditures were recorded from a recall of one 

month for non-durables and one year for (semi-)durables.  

The expenditure module was of low quality as some quantities and values had been 

filled out erroneously for at least some of the study areas. Quantities were recorded 

in 87 different units, ranging from pieces to heaps and sacks, the exact weight of 

which are often location specific, but were not recorded in the survey. Further, some 

enumerators are likely to have converted all quantities into kilograms but without 

adjusting the original units given by the respondents (e.g., households consuming 10 

bunches of plantain in a week). Values of food items were also messily recorded as 

some, but not all enumerators, denominated the currency by dividing values by a 

thousand. 

All study areas with some suspiciously high level of quantities or unit values were 

deleted from the survey. Fortunately, data errors were found to be concentrated in 

some particular areas only, but unfortunately, many of these were in the eastern 

region where the research area was located. Severe outliers in quantities or unit 

values were identified as those values above the 75th percentile plus three times the 

interquartile range (p75+3(p75-p25)). Households with severe outliers in quantities 

were omitted from the analysis; severe outliers in unit values were replaced by 

regional level median values. 

8.3.2 Savings and expenditures (Step 1) 

The savings function was estimated in unrestricted form using ordinary least squares 

(OLS). A share-equation gave mostly insignificant results and the total savings and 

total income were regressed instead. Table D3 in the appendix shows the estimates. 

The parameter signs were as expected with savings increasing more than 

proportionally with income. The squared-income term was, however, very small and 

insignificant, which indicated that a linear function would actually be a good 

representation of the relation between income and savings. The table also shows a 

regression for total expenditures (food and non-food) on income terms. The two 
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equations do not add up because the budget constraint is not binding if 

disinvestment takes place. 

8.3.3 Food and non-food expenditures (Step 2) 

The food consumption model was estimated in the unrestricted form using OLS. 

Table D4 in the appendix shows the results. The signs were as expected with a 

negative coefficient for income in the food equation and rural and farm households 

spending a larger share of their budget on food than urban and non-farm 

households. The coefficient on household size was negative in the food equation, 

indicating economies of scale in food consumption for larger households. The overall 

fit of the model was poor with an explained variance of only 13 percent. 

8.3.4 Almost Ideal Demand System (Step 3) 

Food items were aggregated into eight categories (Table 8.1) in accordance with the 

type of item, source (home produced vs. purchased), and nutritional content. Unit 

values for food categories were estimated as weighted averages using household 

specific expenditure shares as weights (Brosig 2000). 

 

Table 8.1: Aggregate food items 

Composition, average budget share and unit values 

No. 

 

Food category 

 

Food items included 

 

Budget 
share % 

Unit values 

.00 Ush 
     

1 Plantain  Plantain 11.5 1.181 

2 Roots and tubers Cassava, sweet potato, irish potato 22.0 1.175 

3 Cereals  Maize (cobs, grains and flour), sorghum, 
millet, rice (mainly home-produced) 

12.6 4.701 

4 Legumes Bean, groundnut, pea, sesame, bread 
(mainly purchased) 

11.7 5.246 

5 Animal products Beef, pork, goat, other meat, fresh milk, 
fish, margarine / butter, egg, chicken  

8.9 8.667 

6 Purchased necessities Sugar, salt, cooking oil/ghee 15.5 12.438 

7 Fruits and vegetables Spinach (‘dodo’), cabbage, onion, tomato, 
jackfruit, mango, passion fruit, etc. 

7.0 3.189 

8 Luxuries Soda drinks, beer, tea and coffee, tobacco, 
restaurant food 

10.6 10.433 

Source: Estimated from the 1999-2000 UNHS 

Note: All values are 10% trimmed means. 

 

Demand equations were estimated using Zellner’s seemingly unrelated regression 

model. Parameter estimates were restricted for symmetry and homogeneity. The 

adding up restriction was satisfied by omitting one demand equation and calculating 
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the coefficients of this equation from the imposed restrictions (i.e., the sum of 

constant terms across equations is 1, the sum of price coefficients in each equation 

is zero, and the sum of income coefficients across equations is zero). Table D5 in 

the appendix shows the results. Parameter values on income were positive and 

highly significant in all equations. The explained variance was relatively low and 

varied between 11 and 34 percent across the equations. 

Average price and income elasticities were estimated as shown in Table 8.2. Price 

elasticities were as expected with all own price elasticities having a negative sign, 

and most cross price elasticities having a positive sign, except for category 8, which 

included mostly luxury goods. Income elasticities indicate whether goods are 

necessities (0<η<1) or luxuries (η>1). As expected, the income elasticities were 

above unity for animal products and luxury foods; plantain and cassava had 

relatively high income elasticities, slightly above that of cereals, which is somewhat 

surprising as cereals are commonly expected to substitute roots and tubers at higher 

income levels. 

 

Table 8.2: Estimated elasticities 

Income, own, and cross price elasticities 

 Own and cross price elasticities1 

 

Income 
elasticity2 

1 2 3 4 5 6 7 8 

1. Plantain 0.89 -0.46 0.18 0.12 0.03 -0.03 0.09 0.05 0.01 
2. Roots & tubers 0.94 0.05 -0.64 0.15 0.07 0.04 0.12 0.08 0.01 
3. Cereals 0.92 0.11 0.24 -0.71 0.05 0.02 0.10 0.05 0.11 
4. Legumes 0.80 0.03 0.20 0.07 -0.59 0.08 0.11 0.11 0.04 
5. Purchased Necces. 0.64 0.03 0.20 0.08 0.11 -0.41 0.08 0.08 -0.01 
6. Animal products 1.26 0.03 0.20 0.06 0.06 -0.04 -0.51 -0.01 0.07 
7. Fruits & vegetables 0.90 0.10 0.22 0.12 0.14 0.10 0.12 -0.83 0.08 
8. Other 1.55 0.03 0.17 0.13 0.06 -0.05 0.13 0.04 -0.47 

Source: Estimated from the 1999-2000 UNHS  

Notes: 1 Compensated (Hicksian) price elasticities; 2Income elasticity at average level of income. 

 

8.3.5 Market prices 

The 1999-2000 UNHS did not distinguish between farm gate (selling) prices and 

market (buying) prices of food products. To estimate these two different prices, 

sample household were divided for each food product into ‘net buyers’, when 

purchasing more than 50 percent of the consumed product, and ‘home-consumers’, 

when producing more than 50 percent of the consumed product. The unit values of 

net buyers were then assumed to reflect market prices, while the average unit 
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values of both all households were assumed to reflect farm gate prices (as home 

consumers are not necessarily ‘net sellers’). Prices were estimated for 46 food 

products and are shown in Table 8.3.  

 

Table 8.3: Estimated market prices and farm gate prices [.00 Ush/kg] 

 Product Cat. Market 
Farm 
gate 

 Product Cat. Market 
Farm 
gate 

Plantain 1 1.677 1.181  Beef 6 18.525 18.462 

Sweet potato 2 1.663 1.290  Pork 6 14.241 14.222 

Cassava, fresh 2 0.884 0.888  Goat meat 6 19.074 18.979 

Irish potato 2 2.865 2.050  Other meat 6 14.147 14.121 

Millet 3 4.627 3.807  Chicken 6 16.101 14.301 

Sorghum 3 2.785 2.513  Fresh fish 6 12.665 12.616 

Rice 3 8.969 8.838  Dry/smoked fish 6 10.802 10.786 

Maize, grains 3 3.350 3.015  Eggs 6 18.360 17.927 

Maize, cobs 3 3.059 2.387  Fresh milk 6 4.128 3.889 

Maize, flour 3 4.941 4.635  Margarine, butter 6 32.605 - 

Bean 4 4.418 3.600  Passion fruits 7 17.233 15.554 

Sesame 4 5.188 4.888  Sweet bananas 7 2.365 1.829 

Bread 4 12.276 12.229  Mangoes 7 1.651 1.630 

Gnut, in shell 4 3.393 3.125  Oranges 7 3.500 3.083 

Gnut, shelled 4 10.254 9.874  Onions 7 5.732 5.723 

Gnuts, pounded 4 10.932 10.626  Tomatoes 7 2.435 2.426 

Peas 4 5.466 4.363  Cabbages 7 1.400 1.358 

Coffee 5 4.316 -  Dodo 7 1.624 1.675 

Cooking oil/ghee 5 14.662 -  Other  vegetables 7 2.291 2.206 

Sugar 5 11.223 -  Infant foods 7 43.503 - 

Tea 5 3.612 -  Soda/juice 8 15.207 - 

Salt 5 4.416 -  Beer 8 19.586 - 

     Restaurant food 8 17.879 - 

     Other food 8 17.879 - 

Source: Estimated from the 1999-2000 UNHS 
Notes: Cat.=food category (1-8). Unit values for restaurant and other food expenditures are based on the 
weighted average of unit values in food category 8. All values are 10%-trimmed averages. 
 

8.3.6 Food energy needs and intake levels 

Data on age and sex-specific human weight levels and physical activity levels (PAL) 

for a developing country like Uganda were taken from James and Schofield (1990: 

120) and are shown in Table 8.4 and Table D6. Each food product was converted to 

energy equivalents. For this, consumption data from the 1999-2000 UNHS were 

combined with standard waste fractions and conversion factors as taken from 

Latham (1979, 1997).  
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Table 8.4: Human basal metabolic energy requirements by age and sex 

In million joule/day 

Age group Male Female 

0 – 16 Standard value Standard values 

10 – 17  0.0732 * Weight + 2.72 0.0510 * Weight + 3.12 

18 – 29 0.0640 * Weight + 2.84 0.0615 * Weight + 2.08 

30 – 59 0.0485 * Weight + 3.67 0.0364 * Weight + 3.47 

> 60  0.0565 * Weight + 2.04 0.0439 * Weight + 2.49 

Source: James and Schofield 1990: 25 

Note: The complete age and sex specific data are included in appendix Table D6 

 

Food products were consumed in many different forms (e.g., fresh, dried, or 

processed beans). Each food product was therefore first converted into energy units 

(joule) and the median energy content was calculated for each food product (e.g., 

joule/kg maize). Nutrient equivalents for aggregate food categories were calculated 

using the relative contribution of each food product to the total value of the category 

as weights. Table 8.5 shows the resulting median nutrient values for all food 

products. 

 

Table 8.5: Median energy and protein values of food items 

Separated by home produced and purchased (aggregated) items 

 Purchased Energy  Home-produced  Energy 

  MJ/kg   MJ/kg 

1. Plantain 3.95 1. Plantain 3.95 

2. Roots & tubers 5.13 2. Sweet potato 4.56 

    Cassava 5.61 

3. Cereals 14.74 3. Maize 14.98 

    Millet 14.02 

    Sorghum 14.52 

4. Legumes 15.28 4. Bean 14.06 

    Groundnut 18.45 

5. Necessities 23.53 5. -  

6. Animal products 7.71 6. Chicken meat 5.82 

    Eggs 5.27 

    Fresh milk 3.31 

7. Fruits & vegetables 1.43 7. Fruits 2.58 

    Vegetables 1.22 

8. Other 4.61 8. -  

Source: Estimated from the 1999-2000 UNHS and conversion factors from Latham (1979, 1997) 

Note: 1 MJ=1*106 joule=23.9 kcal. 
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The household model optimizes consumption in value terms. The optimization 

procedure is, however, indifferent about the quality or physical quantity of 

consumption. For example, the optimization procedure sees no difference between 

1000 shillings of chicken and 1000 shillings of beef if both are in the same category, 

even though the first would buy 1 kg while the second would buy only 500 grams. To 

circumvent this indifference, only one buying activity per food category (e.g., ‘animal 

products’) was included, which was given an average nutrient content (Table 8.5). 

8.3.7 Opportunity cost of farm labor and migration 

If income from farming is low and the expected income outside agriculture is greater, 

then agents might decide to leave farming, perhaps to move to a town. The present 

model optionally allows for out-migration by specifying a threshold, called a pull 

factor (Berger 2001). If the income from farming divided by the agent’s opportunity 

cost is below this pull factor then the agent will migrate; but if above, then the agent 

will stay. For example, a pull factor of 0.5 means that the agent will migrate if 

income from farming is only half the opportunity cost.  

The opportunity cost of farm labor is difficult to estimate for it is a function of an 

unobserved perceived probability of finding a job and an expected wage rate. The 

opportunity cost for the potentially migrating farmers can be estimated as the 

product of the marginal unemployment rate and the wage rate for new arrivers.  

The 1999 UNHS did not ask if (and when) a person had migrated from a rural area, 

so early arrivers could not be discerned from the sample. Instead, Table 8.6 shows 

the median wage rates of four alternative employments as estimated from the 1999-

2000 UNHS. The weighted average of these four wage rates is about 800 thousand 

shillings per year. This median wage rate probably overestimates the wage rate of 

new arrivers, so perhaps half the median would be more realistic. The (1997) urban 

unemployment rate was about 22 percent (UBOS 2000: 41), which can be 

interpreted as a probability of 78 percent of finding employment. Multiplying this 

probability by half the median wage rate gives an opportunity wage of 312 thousand 

shillings per year. 

Problems arise validating the migration pattern against observed data. Farm 

household surveys typically ask questions only about the current household 

members and not about members who migrated. In absence of such data, it is 

impossible to validate out-migration in the model. In addition, opportunity costs are 

not equal for all farmers in reality. It is often observed that the best educated rather 

than the least educated farmers leave agriculture first. The use of a uniform 
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opportunity costs would create the opposite effect by pulling out those farmers with 

the lowest opportunity cost. It was therefore decided to set the migration pull factor 

to zero and hence not to allow migration in the baseline scenario. 

 

Table 8.6: Wage income of alternative employments 

Employment Median  

  [.000 Ush/year] 

Number of 
observations  

Fishing 500  5 

Mining and quarrying 720  2 

Construction 800  30 

Manufacturing 840  41 

Total (average) 800  78 

Source: Estimated from the 1999-2000 UNHS 

 

8.3.8 Population growth and HIV/Aids 

The effect of HIV/Aids on agricultural production was assessed with a random 

demographic simulation component. Demographic data were derived from Feeney 

and Zaba (2001) and Nunn et al. (1997) and included in Table D6 of the appendix. 

Based on a survey of 15 villages in Southwestern Uganda, Nunn et al. (1997) 

estimated a life expectancy for people uninfected with HIV/Aids of 56.5 years for 

men and 60.5 years for women. Age-specific mortality rates for the uninfected were 

estimated using a Brass general standard lifetable with level parameters set to -0.55 

for females and -0.40 for males using an Excel workbook from Feeney and Zaba 

(2001). Age specific fertility rates were also taken from Feeney and Zaba (2001).  

The age-specific mortality rates for people infected with HIV/Aids was calculated 

from the incidence ratio and force of mortality as provided by Feeney and Zaba 

(2001). Figure 8.3 shows the two demographic trends included in the model. The 

left diagram shows the force of mortality for males, which is the probability of dying 

at a certain age. The solid line represents mortality rates without HIV/Aids, which is 

about equal for males and females, and the dotted lines represent mortality rates 

with HIV/Aids, which are sex-specific. The right-hand diagram shows the fertility 

rate, which is the probability that a woman of a certain age gives birth. In the model 

used here, no adjustment is made for the change of infection rates over time; the 

HIV/Aids scenario hence represents the situation at the end of the 1990s. 
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Figure 8.3: Demographic model for Uganda 

 
Source: Based on Feeney and Zaba (2001) 

 

8.4 Validation of results 

The consumption component was validated using three methods: (1) the three 

separate regression models were scrutinized for the signs and significance of 

parameter estimates and their explained variance as measured by R-squared; (2)  

the overall fit of the combined models in a three-step budgeting system was 

examined at given levels of disposable income; and (3) the overall fit of the three-

step budgeting system when integrated into the MP-MAS (and hence endogenous 

levels of disposable income) was examined. Since the first method was already 

discussed (Section 8.3) this section focuses on the two other methods. 

To compare the sample observations from the 1999-2000 UNHS with predicted 

observations based on the estimated models, the sample households were divided 

into categories of household size. Households with a size of 2.5–3.5 billion joule were 

taken into category 2, households with a size of 3.5-4.5 into category 3, etc. 

Average household size, income levels, food expenditures, and food energy 

consumption were calculated for each category from the survey.  

The validation method tested how good the three combined regression models can 

predict the observed level of food energy consumption. For this, food energy 

consumption was predicted from the average household size and income levels per 
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category of household size. It appeared that the predicted level of food energy 

consumption was lower than the observed level, which was mainly because the 

Working-Leser model underestimated total food expenditures. Adjusting the 

composite constant in the Working-Leser model from 0.70 to 0.95 and multiplying 

the food energy contents of all food products by 1.6 brought the predicted and 

observed level of food consumption closer together. The left diagram in Figure 8.4 

plots both the observed and the predicted values after adjustment against categories 

of household size; the figure shows that the model is well able to predict food energy 

intake for smaller households as the unexplained variance is small, while for very 

large households (larger than 35 billion joule) the unexplained variance is greater. It 

is, however, noted that 96 percent of the sample households were smaller than 35 

billion joule and hence the model fit for almost all households is very good. 

 

Figure 8.4: Validation of the three-step budgeting system at fixed income levels 
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Notes:  Household sample observations are divided into 53 groups by size. Model fit for the right 

diagram: coeff=1.15; SE=0.06; R2=0.86. 

 

The last validation method scrutinized the consumption side of the complete MP-

MAS. This differed from the previous method in that income was now endogenous 

and food energy consumption was simulated for all agents. Agents were categorized 

by household size in the same way as above. The left diagram of Figure 8.5 plots 

these categories against food energy consumption for both the survey observations 
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and simulation outcomes. The figure shows a relatively close match between model 

results and survey estimates, especially for smaller households, while the fit is worse 

for larger households as the model tends to underestimate disposable income levels 

for large households. Yet, the share of large households in the village survey (that 

was used to calibrate the agent populations) was larger with only 78 percent of the 

households smaller than 35 billion joule. As a result, the linear fit between predicted 

and observed values gave a coefficient less than unity (0.69). It is, however, noted 

that this linear fit was based on an unweighted regression of household categories 

which under-represents smaller household sizes for which the fit was much better.  

 

Figure 8.5: Validation of the three-step budgeting system in the MAS 
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Notes:  Model values are simulated means for 520 agents over the first 5 years of the simulation 

assuming constant soil fertility levels. Note that unlike Figure 8.4, income levels are endogenously 

determined in the model. Model fit for right diagram: coeff=0.69; SE=0.04; R2=0.87. 

 

The above validation relied on average values per category of household size. A 

complementary method is to scrutinize the distribution of food energy consumption 

at the agent level. A kernel density function was used for this purpose.  Figure 8.6 

plots the kernel distribution for both the survey (left diagram) and the MAS 

simulation (right diagram). Again, the kernel estimates were not fully comparable 

because the survey estimation was based on a much larger area and population and 

the average household sizes were different from the study villages. The figure shows 

that both distribution functions are similar in shape; yet, the simulated energy 



 137 

consumption is a little above the observed food energy consumption with the result 

that the share of poor agents (those left of the indicated vertical poverty line) is 

somewhat larger than the share of poor farm households in the survey. 

 

Figure 8.6: Validation per capita food energy consumption  
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Notes: In male adult equivalents. Epanechnikov kernel used. The vertical line indicate the poverty line of 

3.259 billion joule, at which agents’ food energy demand equals supply. Survey estimate based on the 

farm households in southeast Uganda as recorded by the 1999-2000 UNHS. MAS based on the baseline 

scenario averaged over 15 years. 

 

8.5 Summary 

A three-step budgeting model was estimated for household expenditure decisions, 

including the decisions to save, to allocate income to food, and to spend the food 

budget on specific food categories. A disinvestment model was furthermore included 

to allow agents to substitute current income for future income in the face of a 

consumption shortfall. These three models were implemented in a mathematical 

programming framework and used to simulate poverty in terms of food energy 

consumption. The consumption model was validated in three ways from regression 

estimates to MAS simulation. The model fit was good on average but food energy 

consumption for large households might have been underestimated. Better quality 

expenditure data at the level of the study villages could improve the model. 
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9 Simulation results 
 

 

9.1 Introduction 

This chapter uses the empirically calibrated MAS to analyze crop yield gaps at the 

farm household level. The chapter has six sections. Section 9.2 defines the baseline 

scenario and analyzes it with respect to soil fertility decline and population growth. 

Section 9.3 decomposes the yield gap in proximate and underlying factors and 

assesses its relevance to food security. Section 9.4 analyzes the impact of crop 

breeding and Section 9.5 the effect of the HIV/Aids epidemic. The chapter ends with 

a summary of the major findings. 

 

9.2 The baseline scenario 

9.2.1 Defining the baseline scenario 

The baseline scenario is the simulation run that reflects the present situation and the 

present sources of change. The baseline assumes that current trends in demography, 

soil processes, and the diffusion of innovations will continue and that there are no 

new external interventions. The model was calibrated in the previous chapters in 

such way that the baseline scenario reflects the observed conditions from the various 

surveys.  

Because it was impossible to calibrate the monetary liquidity reserves of the agents 

to observed data (Chapter 7), all agents were given a fixed amount of liquidity in 

the first year. The model was run for a 16-year period, in which the first year was 

used to let agents adjust their liquidity reserves and omitted from the presentation.  

9.2.2 Sensitivity of the baseline to initial conditions 

The Monte Carlo approach generated many possible and statistically consistent agent 

populations. These alternative agent populations can be used to check the 

robustness of simulation experiments to variations in initial conditions. The model 

was run for fifty different agent populations and average values for a selection of 

important variables were calculated for each. The variation in these averages 

indicates the ‘noise’ in simulation results. If this noise is substantial then simulation 
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results are sensitive to initial conditions. Variables with little noise are therefore 

preferred over variables with much noise.  

The noise was quantified as the standard deviation of the average over all fifty agent 

populations. The noise estimate was normalized by dividing it by the meta average 

and expressed as a percentage deviation to make it comparable between variables. 

Hence, a 5 percent noise for a variable implies that the average varies +/- 5 percent 

depending on the initial conditions of the agent population. Note that this noise 

estimate is constructed from averages and its accuracy hence depends on how close 

the distribution of variables comes to a standard normal distribution. 

 

Figure 9.1: Variation of simulation results to differences in initial conditions 
Standard deviations expressed as a percentage of the normalized mean 

 

Notes: Graphs show variation in simulation outcomes due to variations in initial populations, and not the 

variation between agents within these populations. Number of agent populations is 50. Total number of 

mathematical programs solved for this is 1.17 million. 

 

Figure 9.1 show the estimated variation to initial conditions. The diagrams have in 

common that the variation gradually increases over time. Model outcomes are hence 

more robust in the initial years of the simulation than in later years. Yet, the patterns 

of variation are different for each variable. The variation in per capita incomes and 
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per capita energy consumption is relatively low at 1-3 percent; also, the variation in 

land productivity and especially maize yields is low. These variables are therefore 

robust to initial conditions. The picture is different for labor productivity and 

especially farm assets. The variation in farm assets is wide because assets are 

directly allocated through the Monte Carlo procedure, while the other variables 

measure outcomes, which are a function of all assets and agent characteristics 

together. Labor productivity varies more than land productivity because the 

composition of land sizes is constant between populations as only agent 

characteristics (including the age and sex composition) vary. 

9.2.3 Baseline dynamics: soil fertility decline and population growth 

This section analyzes how the baseline scenario is driven by the joint dynamics of 

soil fertility changes and population growth. To do this, each of these two dynamics 

was switched off in turns and compared to the baseline in which both dynamics were 

switched on. Figure 9.2 illustrates this exercise. The left diagram shows changes in 

soil organic nitrogen while the right diagram shows changes in population. 

 

Figure 9.2: Soil fertility decline and population growth. 
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Figure 9.3 shows how these scenarios impact on a range of indicators that were 

introduced in Chapter 3. Indicators include maize yields, partial productivity 

indicators, and the fulfillment of private and social objectives. 
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Figure 9.3: The effect of population growth and soil fertility change on the baseline 

A. Maize yields and the width of the yield gap 
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B. Land and labor productivity 
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C. Food energy consumption and crop diversification (private objectives)  
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D. Inequality and surplus food production (social objectives) 
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Notes: Surplus food production is calculated as the difference between food production and food 

consumption in energy units and expressed as a percentage of total production. Food energy intake is per 

male adult equivalent per year. 

 

The most important thing these diagrams show is that population growth drives the 

baseline scenario while soil fertility decline has only a minor impact on the trend and 

variation in the baseline. Trends in about all variables closely follow the trend in the 

scenario without soil fertility decline, while the trend in the scenario without 

population growth is more distant.  

Although soil fertility decline depresses land and labor productivity, population 

growth compensates for this decline and leads to an overall positive growth in the 

simulated land and labor productivity. The level of food energy consumption does not 

clearly decrease in spite of soil fertility decline and population growth. Most 

remarkable, per capita levels of food energy consumption are above the scenario 

with population growth than in the scenario without population growth. Without 

population growth, poverty would worsen as soils degrade, yet population growth 

seems to compensate for the loss in soil productivity.  

The last diagrams in the above figure show the strong effect of population growth on 

the social objectives of equality and surplus food production. Population growth 

increases the inequality between agents and reduces the amount of food sold on the 

market. 
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9.3 The maize yield gap 

9.3.1 Decomposition in proximate factors 

Figure 9.4 shows the decomposition of the maize yield gap in five proximate factors 

as was explained in Chapter 3. The dark bars on the bottom show average maize 

yields as simulated in the baseline scenario. Values for each agent were averaged 

over 15 years. Agents were subsequently ranked by their average maize yields and 

divided into 20 equal groups. The left most bar shows the group of agents with the 

lowest average yields, while the right most bar shows the group of agents with the 

highest average yields. The bars stacked on top of the average show the potential 

increase from four factors: using improved maize, using maximum amounts of labor, 

growing the crop in pure stand instead of intercropping, and using 100 kg of mineral 

fertilizer per hectare. The figure shows that each of these factors account for about a 

quarter of the yield gap. The total height of each bar shows the maize yield potential 

faced by the agents. Agents with higher average yields tend to have a higher yield 

potential. 

 

Figure 9.4: Decomposition of the maize yield gap in proximate factors 
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The result is remarkable as intercropping and low labor use account for about half of 

the exploitable yield gap. Both these factors are not normally included in yield gap 

decompositions based on crop yield experiments; yet, Figure 9.4 shows that these 

two factors are very important. 

Figure 9.4 furthermore shows a wide variation in average simulated maize yields. 

Extension services could use this figure to estimate potential increases in maize 

yields from further adoption of improved varieties, or use it to promote mineral 

fertilizers. They would probably want to target those farm households with the lowest 

average yields, meaning those with the widest yield gap, as these have most to gain 

and are probably food insecure. Section 9.3.3 will address whether this hypothesis is 

correct. 

9.3.2 The maize yield gap and farm performance 

The existence of maize yield gaps does not necessarily signal inefficiencies. 

Inefficiency refers to the performance of a farm holding, not to the yield of a single 

crop. Three scenarios were used to gauge the effect of maize yields on farm 

performance. The first scenario is the baseline as described above. In the second 

scenario, the opportunity cost of all farm activities other than maize growing was set 

to zero; hence, maize growing was the only means for an agent to satisfy its food 

energy needs. For this, the rotation constraints on maize were relieved so that 

agents could plant all their land to maize. In the third scenario, which is the opposite 

of the second scenario, the agents could grow any crop but maize. Figure 9.5 

compares the three scenarios with respect to average maize yield, the yield gap, the 

per capita food energy intake, and the adoption of improved maize.  

If agents would only grow maize then maize yields would be about 10 percent above 

those in the baseline scenario during the first years of the simulation. Yet, in the 

‘only maize scenario’, the average agent would fall below the poverty line of 3.3 

billion joule/capita as shown in the lower left diagram. As agents are hence food 

insecure, livestock is sold and savings are consumed, which impedes on investments, 

including the purchase of improved seeds. The diagram on the lower right hence 

shows a stagnant diffusion of improved maize varieties in the scenario with only 

maize growing. 

In comparison, if agents would not grow maize at all, the impact on poverty would 

be much less severe (-4 percent). The reason is that agents substitute other crop 

and livestock activities for maize growing, i.e., the opportunity costs of maize 
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growing is relatively high as the cash and in-kind income generated from these 

activities is only slightly less than what was generated by growing maize.  

 

Figure 9.5: The baseline with, without, and with only maize cultivation 

 

Notes: The maize yield gap is the average yield as a percentage of the maximum yield of the improved 

maize variety. Per capita food energy consumption is expressed in male adult equivalents.  

 

These scenarios are rather synthetic experiments, yet they point to three important 

observations with empirical relevance. First, a diversified farm operation is important 

and contributes to food security; hence, the promotion of the maize area expansion 

beyond a certain point might induce inefficiencies. Second, a narrow yield gap does 
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not mean a better performance. Third, the importance of maize for food energy 

consumption cannot be judged from the area it occupies or the yield it generates. 

9.3.3 The maize yield gap vs. economic well-being and food security 

The (ir)relevance of the maize yield gap to food security was further scrutinized in 

Figure 9.6. This figure shows three scatter diagrams correlating the size of the 

maize yield gap (on the x-axis) with three indicators of economic well-being and food 

security (on the y-axis). Values were averaged over 15 years and each dot in the 

diagrams represents a single agent. The diagrams show no clear relation between 

the variables, but it appears that agents with a low yield gap are more likely to be 

poor than rich and have lower values of farm assets. This result shows that the yield 

gap is not a good indicator of economic well-being or food security: agents with wide 

yield gaps are not necessarily poor and food insecure. 

 

Figure 9.6: Scatter plot of yield gap vs. economic well-being and food security 

 

Notes: Simulated average values over the 15 years using the baseline scenario. Food energy intake and 

per capita income in male adult equivalents. Assets include livestock (valued in terms of live weight at 

farm gate prices) plus monetary savings. 

 

Maize yields affect the economic well-being of agents through the returns to land and 

labor use. Figure 9.7 focuses on this relationship by plotting land and labor 

productivity on two different y-axes against the maize yield gap on the x-axis. The 

circles stand for labor productivity and the squares stand for land productivity. The 

figure shows that agents with wider yield gaps have lower average land productivity 

but also tend to have greater average labor productivity.  
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Figure 9.7: Land and labor productivity correlated with the maize yield gap 
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Figure 9.8 shows how this relates to poverty levels. It clearly shows that economic 

well-being is positively correlated with labor productivity, yet negatively correlated 

with land productivity. Hence, agents with high land productivity—i.e., a low yield 

gap—are more likely to be poor, while agents with high labor productivity are more 

likely to be rich. 

It appears that the high reliance on manual labor—agents use no mechanization or 

animal traction—makes labor a relatively scarce factor in production. The returns to 

labor are greater when distributing the available labor more equally over the land 

than when concentrating it on a few plots to get a high crop yield. In other words, 

there is a trade-off between high crop yields and high labor productivity, and agents 

choose for the second, and thereby lower their crop yields deliberately. The 

simulated crop yield gap due to low labor use in Figure 9.4 does hence not signal 

inefficiencies. 
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Figure 9.8: Land and labor productivity correlated with poverty 
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9.3.4 Maize yield gap dynamics 

Though the width of the maize yield gap might be not be an indicator of economic 

well-being and food security, this does not answer the question whether a change in 

yield gap is a good indicator for change in economic well-being and food security. It 

could be hypothesized that as population grows, soil fertility will further decline, land 

will become scarcer in production, and the yield gap would hence gain in relevance.  

To test this hypothesis, the annual growth rate in the maize yield gap was estimated 

for each agent from a linear regression of the time variable on the logarithm of the 

yield gap. Figure 9.9 plots the percentage annual growth in maize yield gap and 

maize yield against the percentage annual growth in per capita food energy 

consumption. The figure shows that there is no correlation between the growth in 

yield gap or maize yields on the one hand and the growth in food energy 

consumption on the other hand. A change in yield gaps is hence no good indicator for 

a change in food consumption levels. 
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Figure 9.9: Correlation between growth in maize yield (gap) and poverty 

Notes: The average annual growth rate (g) calculated from the linear regression estimates ln(% yield 

gap) = a + b * time, with g = (exp(b) – 1) * 100. Confidence interval is 95%. Significance level is only 

shown for the variable on the y-axis. 

 

Figure 9.10: Correlating between growth in labor productivity / household size and 

growth in poverty 

Note: see notes under Figure 9.9 
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The question emerges, what does correlate with changes in food energy 

consumption? Two possible candidates emerged from the above: labor productivity 

and population growth. The growth rates of these two variables are plotted against 

food energy consumption in Figure 9.10. The left diagram shows that food energy 

consumption positively and significantly correlates with the growth in labor 

productivity, while the right diagram shows a significant and negative correlation 

with growth in household size. Hence, growth in labor productivity and growth in 

household size are better proxies for growth in economic well-being than growth in 

maize yield and growth in maize yield gaps. 

That is not to say that maize yields are unrelated to the food security of agents. 

Based on the above estimates of average growth in maize yields, all agents were 

divided into three groups: agents with a significant decline in maize yields (14 

percent of the total); agents without a significant change in maize yields (59 

percent), and agents with a significant increase in maize yields (26 percent). Figure 

9.11 plots the growth in maize yields for each group in the left diagram and 

combines it with the average level of food energy consumption for the same groups. 

The figure shows two things. First, those agents with an increase in maize yields do 

not experience an increase their food energy consumption (the line is flat). Second, 

agents with an increase in maize yields had a significantly greater level of food 

energy consumption already in the initial years of the simulation. This implies that 

wealthier agents are more likely than poorer agents to increase their maize yields.  

 

Figure 9.11: Change in maize yields and change in per capita energy consumption 

 

0.0

0.5

1.0

1.5

2.0

to
n
s/

h
a
/s

ea
so

n

2 4 6 8 10 12 14 16
Year

Increasing

Constant

Decreasing

Group of agents
for which
maize yield is:

Maize yield

0

2

4

6

8

10

B
J 

/ 
ca

p
it
a

2 4 6 8 10 12 14 16
Year

Increasing

Constant

Decreasing

Group of agents
for which
maize yield is:

Food energy consumption



 151 

Because of soil fertility decline and strong population growth, one could hypothesize 

that land will increasingly become a scarce production factor. The importance of land 

productivity could therefore increase relative to that of labor productivity. This would 

imply that as land becomes scarcer, the negative correlation between land 

productivity and economic well-being would eventually turn into a positive 

correlation. Figure 9.12 contains three rows of diagrams plotting land productivity, 

maize yield and labor productivity against per capita food energy intake. The 15-year 

simulation period was subdivided into four periods to reduce annual variation. The 

independent variables were furthermore put on a logarithmic scale so that their 

distributions come closer to a standard normal distribution, which allows a linear 

regression fit.  

Moving from the left to the right, the diagrams show that the strong negative 

correlation between land productivity and economic well-being becomes cloudier 

over time and the linear fit flattens out. The negative correlation hence gradually 

disappears, though this effect is clearer total land productivity than for maize, for 

which no linear fit is drawn, as the correlation is insignificant. Yet, what does not 

disappear is the strong positive correlation between labor productivity and economic 

well-being, which is equally strong for each period. It is therefore concluded that in 

order to increase the economic well-being of agents, improvements in labor 

productivity are crucial. 

 

Figure 9.12: Correlations between partial productivities and poverty for four periods 
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B. Land productivity 
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C. Maize yields 
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9.3.5 Decomposition in underlying factors 

This section shifts focus from the maize yield gap to the broader issue of 

performance gaps. Performance gaps were decomposed in underlying factors using a 

factorial design of eight simulation experiments as described in Chapter 3. The 

three underlying factors included: (1) access to mineral fertilizers and improved 

maize varieties; (2) missing markets for credit; and (2) labor market imperfections. 

Per capita food energy consumption is the performance indicator used.  

Figure 9.13 shows the results. The calculated performance gaps were averaged 

over 15 years for each agent. Agents were ranked by per capita food energy 

consumption and divided into 20 equal groups. Dark vertical bars on the bottom of 

the figure show the average level of food energy consumption for each group as 

simulated in the baseline. The left most bar shows the group of agents with lowest 

food energy consumption, while the right most right bar shows the group of agents 

with highest food energy consumption. The diagram shows that about 30 percent of 

the agents in the baseline fall below the poverty line of 3.3 BJ/capita. The stacked 

bars on top show the additional food energy consumption that can be attained when 
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constraints on each underlying factor are relieved through a policy intervention. For 

example, the median group of agents has an energy intake of about 4.5 BJ/capita in 

the baseline. Giving this group full access to innovations would increase this groups’ 

food energy intake by about 0.5 BJ to 5 BJ/capita and with additional access to 

short-term credit, its energy intake would even rise to 5.6 BJ/capita.  

 

Figure 9.13: Decomposing the gap in per capita food energy consumption 
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Notes: Simulated average values over 15 years. Per capita income in male adult equivalents. Knowledge 

refers to the full access to innovations, including mineral fertilizers and improved seeds. Interest rate on 

short-term credit is 34 percent. Hiring includes both leasing a tractor for land preparation and hiring of 

labor up to 200 hours per farm per year. 

 

The performance gaps in Figure 9.13 are narrow relative to the maize yield gaps in 

Figure 9.4, but different from the maize yield gaps, the performance gaps directly 

relate to the well-being of the agents. In fact, the simulated change in poverty levels 

is enormous, as is shown in Figure 9.14. This figure overlays two kernel density 

distribution of poverty; one is the average baseline over the 15-year simulation 

period and the other is the scenario with full access to credit and innovations over 

the same period. The figure shows that the policy intervention would reduce poverty 

substantially, as the bulge of the poor have crossed the poverty line. The graph also 

shows the distributional effect of the policy intervention. It shows that neither the 

poorest nor the richest agents would benefit from the policy intervention, as the tails 
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of the distribution have not moved. This policy intervention would hence not be 

suitable if the aim were to reach the poorest of the poor. 

 

Figure 9.14: Kernel density graph showing the change in poverty distribution 
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9.4 The impact of crop breeding 

The baseline scenario included the diffusion of two maize varieties: first, an improved 

open pollinated variety, called Longe 1, which is an open pollinated variety for which 

agents need to purchase new seeds only once every five years. The variety is also 

suitable for intercropping with bean, groundnut, and cassava (Chapter 7). Second, a 

hybrid maize variety, which has a higher yield potential than Longe 1 but also has 

needs a more intense labor use and is not suitable for intercropping. To assess the 

impact of each variety, two scenarios were analyzed and compared to the baseline 

scenario. The first scenario simulated the effect in the case that there would be no 

Longe 1 variety but only traditional varieties and hybrid maize; the second scenario 

simulated the opposite case in which there would be no hybrid maize but only Longe 

1 and traditional varieties. 

Figure 9.15 shows the trends in average yields and intercropping for the three 

scenarios. Maize yields in the scenario with only hybrid maize increased rapidly with 

as the crop diffused, while maize yields in the scenario with only Longe 1 remained 
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much lower. As agents cannot intercrop hybrid maize, the practice of intercropping 

maize rapidly diminished as is shown in the right diagram. 

 

Figure 9.15: The impact of two improved maize varieties on maize yields and the 

share of land intercropped 
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the average simulated food energy consumption does not significantly different 

between the three scenarios. It is therefore concluded that hybrid maize and Longe 1 
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the other in terms of farm household performance. The results of this simulation 

experiment can explain the observed lack of adoption of hybrid maize varieties in 

Uganda. 
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Table 9.1: The impact of two improved maize varieties 

Scenario 

Maize 
yield 

Maize 
production 

Adoption 
Longe 1 

Adoption 
hybrid 
maize 

Inter-
cropping 

Food 
energy 

cons. 

 (kg/ha) (kg) (%) (%) (%) (BJ/capita) 
       

Baseline 

 

   1,204  736.7 0.36 0.22 66.79 5.47 

Hybrid maize only  

 

   1,638  751.8 0.00 0.55 41.25 5.45 

Longe 1 only  

 

   1,082  680.6 0.53 0.00 75.51 5.50 

Note: Average values over the 15-year simulation period. 

 

9.5 The effect of HIV/Aids 

The HIV/Aids epidemic has had a large impact on the labor supply through an 

increased mortality and a reduction in the available working hours of the surviving. 

To assess the impact of HIV/Aids on the farming system, three scenarios were 

designed that reflect the possible situation without the disease, which are then 

compared to the baseline that reflects the present situation with the disease. The 

three scenarios assumed age and sex-specific mortality rates as before the onset of 

the HIV/Aids epidemic and increased the total available labor supply by respectively 

0, 20, and 40 percent in the first year of the simulation as compared to the baseline 

scenario. Table 9.2 shows the results. 

 

Table 9.2: Simulated effect of the HIV/Aids epidemic 

 
Scenario 

Maize  
yield 

  

Maize  
yield gap 

  

Adoption of 
improved 

maize  

Value of 
livestock 

assets  

Food energy 
consumption 

  

  (kg/ha) (%) (%) (.00 Ush) (BJ/capita) 
       

1 Baseline  
(with HIV/Aids) 
 

          981  67.96 0.32 90.4 5.56 

2 Pre-HIV/Aids 
mortality levels 
 

       1,026  66.65 0.43 108.0 5.34 

3 Scenario 2  
+ 20% labor supply 
 

       1,089  64.76 0.52 132.1 5.45 

4 Scenario 2  
+ 40% labor supply 
 

       1,140  63.28 0.57 151.5 5.59 

Note: Average values over the 15-year simulation period. 
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The table shows that the impact of the HIV/Aids epidemic much depends on the how 

much the available labor supply was reduced, which is largely unknown. The 

epidemic has depressed maize yields, increased the maize yield gap, and impeded on 

the diffusion of improved maize varieties. The most dramatic effect is on the value of 

livestock assets: when assuming that the epidemic reduced labor supply by 20 

percent, than the current livestock value is about 50 percent lower than in the 

scenario without the disease. 

 

9.6 Summary 

Trends in maize yields, land productivity, and labor productivity are most strongly 

determined by population dynamics rather than soil fertility decline. The maize yield 

gap is no good indicator of economic well-being or food security. Economic well-

being strongly relates to high labor productivity while agents with high land 

productivity are more likely to be poor. Different from yield gaps, performance gaps 

directly relate underlying factors to the well-being of agents. The analysis shows that 

improved access to innovations in combination with credit can significantly contribute 

to food security. Although hybrid maize increases average maize yields significantly, 

the analysis suggested that its sluggish adoption in Uganda is because the variety 

does not have an advantage over Longe 1 with respect to the level of food energy 

consumption. 
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10  Discussion 

 

 

10.1 Introduction 

The final chapter puts the study in a wider perspective again. The limitations of the 

used model are made explicit and the possible impact on the findings is discussed in 

Section 10.1. Section 10.2 compares the used methodology to other approaches of 

modeling farm households. Section 10.3 gives recommendations for research. 

 

10.2 Limitations of the study 

Though the model is probably the most encompassing every built for a Ugandan 

farming system, like any model, it is incomplete and has limitations. These 

limitations are highlighted in the following and their impact on the results is 

discussed. 

10.2.1 Low data quality 

The data quality was low. The expenditure data from the 1999-2000 UNHS had 

recording errors in units of quantity and prices and income levels are likely 

underestimated. Crop production data from the 2000-2001 IFPRI survey did not 

allow reliable estimates of crop yields because of unclear recording of intercropped 

areas. Data on labor use per crop could only be approximated from data on labor use 

per plot times the area proportion of each crop. The effect of the low data quality on 

the simulation results is difficult to assess. Yet, the estimated income and price 

elasticities were plausible. Only when better data become available, can the model 

estimates be compared. 

10.2.2 Migration 

Rural to urban migration was not captured in the present model. Although growth in 

the non-farm sector is one of the most important determinants of agricultural 

change, it was outside the scope of the present model. Rural to urban migration is 

complex; especially in developing countries were the young and educated tend to 

migrate but also the poor with insufficient land. Migration data are, however, 
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notoriously hard to obtain as household surveys generally only collect information on 

the present number of household members, and of households that have not 

migrated. Because the present model did not capture migration, it is very likely to 

have overestimated the growth in population density. This could mean that the 

observed negative correlation between land productivity and food energy 

consumption would disappear more gradually than in the predicted 15-year period. 

10.2.3 Sources of heterogeneity 

Heterogeneity in the agent population only refered to resource endowments and 

innovativeness. Sources of heterogeneity not included in the model are differences in 

price expectations, seasonal price variations, educational levels, skills, and health. It 

would be possible to also include these types of heterogeneity in the present 

framework, given data availability and quantitative models that relate them to either 

production or consumption decisions of the farm household.  

10.2.4 Unknown crop yield response functions 

Crop yield response functions were almost completely based on studies done in 

countries other than Uganda, as local fertilizer response data were not available. The 

yield response to some important factors was not explicitly considered due to 

limitations in both data availability and time. These factors are rainfall, crop pests 

and diseases, planting density, and the timing of management decisions. 

10.2.5 Absence of local factor and output markets 

Local factor markets were not included in the model. The quantity of land was 

constant over the life of the agents. This is problematic in combination with 

population dynamics as the land of agents that pass away was not redistributed but 

became idle. The model is therefore not suited for simulation long-term dynamics. In 

the 16-year period, the number of agents passing away was about 8 percent, which 

was still considered acceptable. Reallocation of land and labor across farms is, 

however, important and would be a welcome addition to the present model. Yet, 

additional data collection on how the process of this reallocation would be required. 

 

10.3 An ex-post comparison of approaches 

The present study combined farm household modeling with a MAS approach.  When 

comparing the present study with the literature on farm household modeling and 

MAS, it fits better to the first than to the second. There are two reasons for this. 

First, most MAS have been developed for hypothetical and experimental settings with 
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only few empirical applications to agricultural land-use in developing countries (e.g., 

Becu et al. 2003; Huigen 2004; Manson 2005). Second, most of these MAS applied 

to agriculture in developing countries, have had little in common with agricultural 

economics as MAS modelers have frequently resorted to qualitative approaches to 

model farm decision-making based on behavioral heuristics (Schreinemachers and 

Berger 2006). These approaches have sought to understand farm household 

behavior using participatory methods or group interviews, observation, and role-

playing games (e.g., Castella 2004). These MAS are used for different purposes, 

such as to support stakeholder interaction rather than to simulate agricultural 

dynamics. 

The remainder of this section will therefore describe how the present study relates to 

other farm household models rather than how it compares to other MAS applications. 

One way of describing the existing variety of modeling approaches is taking a 

historical perspective and putting them on a time line as shown in Table 10.1. 

Approaches to modeling farm household behavior have changed over time, but 

mostly by adding additional components rather than discarding old ones. Farm 

households were mostly seen as production units in the 1960s and hence farm 

behavior was represented by agricultural production functions and mathematical 

programming models of farm production (Heady and Dillon 1960). This approach 

proofed unsatisfactory for developing country agriculture in which semi-subsistence 

households had a dual role of producers and consumers. Researchers tried to explain 

why an increase in the price of a staple did not significantly increase its marketed 

surplus in rural Japan and this lead to the development of the integrated farm 

household models in late 1970s (Taylor and Adelman 2003). Barnum and Squire 

(1979) developed an integrated farm household model that combined 

econometrically estimated agricultural production and expenditure functions to 

capture the farm household’s dual role of producer and consumer. Integrated farm 

household models have, however, a drawback that the number of endogenous 

variables is small and that they can be used for static projection only. 

To do dynamic simulation, these econometric models were increasingly turned into 

whole farm programming models (Hazell and Norton 1986). Mathematical 

programming was a powerful tool to represent trade-offs in farm decision-making 

and its flexibility to include econometrically estimated production and consumption 

functions as well as other information and expert opinion was useful for the ex ante 

evaluation of policy interventions and improved technologies.  
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In the 1990s, when concerns for ecological sustainability came to the front, these 

whole farm programming models were integrated with biophysical process models. 

These so-called bio-economic models combined the advantages of dynamic whole 

farm programming models with biophysical processes such as soil fertility dynamics 

(Barbier 1998; Shiferaw & Holden 2000; Holden and Shiferaw 2004; Kruseman 

2004).  

From this point onwards, there are two observable trends. Some researchers have 

chosen to scale up farm household models by integrating them in vertical way with 

market and village models (Kuiper 2005). These models are able to capture market 

interaction and have endogenous prices. The MP-MAS approach goes, however, into 

the other direction by scaling out farm household models by horizontally integrating 

a very large number of farm households with a landscape.  The MP-MAS approach 

does not rely on a few ‘representative’ farm households but every farm household in 

an area. These models are thereby able to capture the heterogeneity in 

socioeconomic and biophysical conditions and household interaction (Balmann 1997; 

Berger 2001; Happe 2004). It is worth noting that all subsequent approaches have 

had the same building blocks of production functions with each approach merely 

adding components to them. The present study is no exception.  

 

Table 10.1: Comparison of farm household modeling approaches on a time line 

 Modeling approach Advancement Reference 

1 Agricultural production  

functions 

 

Supply response to 
production factors 

Heady and Dillon 1960 

2 Integrated farm  

household models 

 

Integrating production and 
consumption decisions  

Barnum and Squire 1979; 
Strauss et al. 1986 

3 

 

Whole farm programming 

 

Dynamic simulation of farm 
decision-making 

Hazell and Norton 1986; 
Dillon and Hardaker 1993 

4 Bioeconomic modeling  

of farm households 

 

Integrating biophysical and 
economic processes in a 
dynamic simulation 

Barbier 1998; Shiferaw and 
Holden 2000;  Kruseman 
2004 

5   Scaling up: Integrated 
household-village 
models 

Markets endogenous; 
market interaction 

Kuiper 2005 

   Scaling out: Mathematical 
programming-based 
multi-agent systems 

Heterogeneity and 
interaction 

Balmann 1997; Berger 
2001; Happe 2004; this 
thesis 



 162 

The present study falls clearly falls into the latter category but has more in common 

with earlier approaches than the other models in its category by Balmann (1997), 

Berger (2001), and Happe (2004). First, it has in common with the integrated farm 

household models that it has a strong representation of the consumption side of farm 

households by including a full and flexible expenditure system (Working-Leser model 

and Almost Ideal Demand System). It is also the first application of MP-MAS to semi-

subsistence farm households as Balmann and Happe developed their model for a 

region in Germany and Berger for a region in Chile with commercial agriculture. 

Second, it has in common with the bioeconomic models that it has detailed 

biophysical dynamics, especially soil property dynamics. It is also the first application 

of MP-MAS to the study of soil fertility decline. 

The present MP-MAS approach hence builds on the long tradition from production 

functions to bioeconomic modeling but adds two new components of heterogeneity of 

landscapes and farm households and interaction between households. The addition of 

these components seems especially relevant with respect to the current development 

agenda on poverty, inequality, and sustainability, which all relate to heterogeneity. 

Though Berger (2001) and Happe (2004) showed that inequality can be captured in 

MAS, the present study showed that also sustainability and poverty can very well be 

addressed using MP-MAS. 

 

10.4 Recommendations for research 

First, given the importance of labor productivity, research efforts need urgently to be 

diverted from an exclusive focus on crop yields and soil fertility. Labor remains the 

primary force of Ugandan agriculture and its availability is crucial, perhaps more 

crucial than the fertility of soils. On-farm trials should not only be selected based on 

variation in soil fertility but also on variation available labor. Crop varieties will be 

successful if they increase labor productivity, that is, if they give more output per 

hour of management. Labor use in on farm trials should be recorded along with crop 

yield to better estimate the potential of a crop under farm conditions. 

Second, intercropping receives far less attention from researchers than it should. The 

majority of the arable land in Uganda is intercropped. Yet, none of the available data 

sets (UNHS, IFPRI, or ZEF), was suitable to analyze intercropping. Intercropping 

reduces maize yields, as well as yields of most other crops, but this is no reason to 

discourage the practice.  
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Research on intercropping should furthermore divert attention from crop yields and 

analyze the effect on labor productivity in addition. Agronomic literature has 

convincingly shown major benefits of intercropping on crop yields in Africa as 

indicated by land equivalent ratios exceeding unity. To assess the contribution of 

intercropping to the well-being of farm households, the estimation of labor 

equivalent ratios would be most useful. Yet, the first estimate has yet to appear in 

the African Crop Science Journal.  

The effect of intercropping is better assessed through farm household surveys than 

experiments, for two reasons. First, the advantages of intercropping are likely to be 

most apparent under suboptimal biophysical and socioeconomic conditions, which 

are usually not well represented in experiments. Second, farm household surveys are 

more regular than experiments and questions on intercropping can be incorporated.  

Third, basic empirical data on crop nutrient response is essential in the study of soil 

fertility decline. This study shows that negative nutrient balances do not immediately 

reduce crop yields and that dynamics in the farming system are more strongly 

influenced by population growth than soil fertility decline. Yet, there is a large 

uncertainty in the used response functions. This is, however, not a call is not for 

multi-million dollar experiments, like the fertilizer use response projects (FURP) as 

for example conducted in Kenya. The call is rather for a limited number of fertilizer 

experiments on average soil conditions but for all crops. This could serve as a 

baseline for further studies on soil fertility decline in Uganda and make the crucial 

linkage between soil fertility decline, changing crop yields, and adjustments at the 

farm level. 

Fourth, the actual importance of maize is likely to be overstated. Though farm 

households grow maize on about 25 percent of their area, this does not reflect its 

economic importance as farm households grow a large number of crops, most of 

which are substitutes. A more diversified approach to agricultural development is 

hence required, in which the focus should be on raising the labor productivity of poor 

farm households. 
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Appendix 
 

A. Survey data used 

 
Table A: Socio-economic data used 

 ZEF1,2  IFPRI2 UNHS3 

Parts of survey used: Household survey Household survey 

All plot s survey 

Single plot survey 

Household survey 

Crop survey 

Data collection: October 1999 - 

September 2000 

January 2000 - 

December 2001 

August 1999 - 

July 2000 

Reference period:5 2nd season 1999 

1st season 2000 

1st season 2000 

2nd season 2000 

1st season 1999 

2nd season 1999 

Locations included: 2 villages (Magada and 
Buyembe) in the Iganga 
and Mayuge Districts 

32 districts comprising 
107 communities4 

All districts except 
Kitgum, Gulu, Kasese, 
and Bundibugyo 

Type of sample: Stratified random 
sample 

Stratified random 
sample 

Stratified random 
sample 

Sample weights used: Yes Yes Yes 

Sample size: 106 farm households 451 farm households; 
1,681 plots 

10,696 rural and urban 
households of which 
8,452 farm households 

Used to estimate: Household resource 
endowments 

Location of farms and 
plots 

Production functions 

Crop yields 

Input prices 

Crop rotations 

Labor availability 

Gender-specific labor 
use 

Expenditure models 

Market prices 

Opportunity wage rate 

 

 

Notes:  
1 Conducted by Johannes Woelcke  (see Woelcke 2004, 2006) 
2 The Project on Policies for Improved Land Management in Uganda was a joint project by the 
International Food Policy Institute, Makerere University Faculty of Agriculture, National Agricultural 
Research Organization, Agricultural Policy Secretariat, and the Center for Development Research (ZEF-
Bonn). 
3 Uganda National Household Survey 1999/2000. Uganda Bureau of Statistics, Ministry of Finance, 
Planning and Economic Development. 
4 Districts included are Kabale, Kisoro, Rukungiri, Bushenyi, Ntungamo, Mbarara, Rakai, Masaka, 
Sembabule, Kasese, Kabarole, Kibale, Mubende, Kiboga, Luwero, Mpigi, Nakasongola, Mukono, Kamuli, 
Jinja, Iganga, Bugiri, Busia, Tororo, Pallisa, Kumi, Soroti, Katakwi, Lira, Apac, Mbale, and Kapchorwa. 
5 The 1st cropping season is from March to August and the 2nd season is from September to February in 
the following year. 
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B. MAS implementation 

 

 

 

 

Table B: Differences between the three mathematical programming models simulating 
investment, production, and consumption decisions 

Variable 
Investment 
decisions 

Production 
decisions 

Consumption 
decisions 

 

1 

 

Resources 

   

 Expected future availability of labor  X   

 Current availability of labor  X X 

 Current availability of land X X X 

 Current availability of liquid means before investment X   

 Current availability of liquid means after investment  X X 

 Current availability of assets before investment X   

 Current availability of assets after investment  X X 

 Capital requirement in the current year X X X 

 Average capital requirement in future years X X X 

 

2 

 

Crop and livestock yields 

   

 Expected crop and livestock yield in current year X X  

 Expected yield in future years for investment goods  X X 

 Simulated actual crop and livestock yield in current year   X 

 Expected average future returns to new investments X   

 Expected average future returns to existing investments X X X 

 

3 

 

Prices 

   

 Expected farm gate (selling) and market (buying) prices X X  

 Simulate actual prices farm gate and market prices   X 

 

4 

 

Income and expenditure coefficients 

   

 Savings function based on future exp. household size X   

 Savings function based on current household size  X X 

 Food/non-food function based on future exp. hh. size X   

 Food/non-food function based on current hh. size  X X 

 Consumption function based on future exp. hh. size X   

 Consumption function based on current hh. size  X X 

 Energy needs based on current household size   X 

 

5 

 

Constraints 

   

 New investment activities can not be selected  X X 

 Production activities are fixed (to production mode)   X 

 Inclusion of food energy constraint   X 
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Table C2: Crop production (example) 

 Grow maize, season 1   

 Nutrient response unit 1   

 Lab 1 Lab 2 Lab 3 Lab 1 Lab 2 Lab 3 Lab 1 Lab 2 Lab 3   

 Fer0 Fer0 Fer0 FerA  FerA FerA FerB FerB FerB S
el

l 
m

ai
ze

 

B
u
y 

fe
rt

ili
ze

r 

B
u
y 

fe
rt

ili
ze

r 

  

Objective (MAX)          C -C -C   

1. Land, NRU 1 1 1 1 1 1 1 1 1 1    ≤ LND 

2. Labor  A1 A2 A3 A1 A2 A3 A1 A2 A3    ≤ LAB 

3. Fertilizer A    F1 F1 F1     -1  ≤ 0 

4. Fertilizer B       F2 F2 F2   -1 ≤ 0 

7. Balance maize -Y1 -Y2 -Y3 -Y4 -Y5 -Y6 -Y7 -Y8 -Y9 1   ≤ 0 

Notes: Ai=labor requirements; Fi=fertilizer requirements; Yi=yield expectations; C=objective function 
coefficients. The table shows the segmentation into levels of input use for the example of maize growing 
in the first cropping season. The complete matrix had 2320 activities and 556 constraints. The 
programming matrix was relatively large as it had to be generic for all agents; meaning that all possible 
choices of all agents are included in a single matrix. Crop production, with 1990 activities, accounted for 
most of the matrix size. Crop production was divided into 5 nutrient response units (NRUs). A NRU is an 
amount of land of homogenous quality that is agent specific. Each NRU was subdivided into 2 seasons, 12 
crops, and 7 intercrop combinations. For each crop, there were 3 alternative levels of labor use, and two 
types of mineral fertilizer. Labor levels were set to 100, 50, and 10 percent of the yield maximizing level; 
fertilizer levels were set to either zero or to a maximum level of fertilizer use (100 kg for all crops). 

 

Table C3: Adoption of innovations (example) 
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Objective (MAX)   d -C -C*i   C   

1. Land       1 ≤ LND 

1. Liquid means 1       ≤ LIQ 

2. Access to credit    1 -1   ≤ 0 

3. Access to fertilizer   1 1  -1  ≤ 0 

4. Capital use  -1 1 C C*i    ≤ 0 

5. Balance fertilizer   -1 -1   A ≤ 0 

5. Balance maize       -Y ≤ 0 

Notes: C=objective function coefficients; Y=expected maize yield; A=fertilizer requirement/ha; i=the 
interest rate+1 (e.g., if the interest rate is 34 percent then i is 1.34); d=the interest rate on short-term 
deposits; LND=available land (ha); LIQ=the amount of available liquid means (ush), which is carried over 
from the previous period. Innovations such as improved seeds and mineral fertilizers can either be 
purchased from own liquid means or on credit if the agent has access to it. If purchasing on credit then 
the annuity of investment cost is augmented by an interest rate i as shown in this example (in constraint 
4, activity 4 and in the objective function). Access to innovations is controlled through access activities 
(activities 5 and 6 in the table); a value of -1 is entered if an agent has access while it was set to zero 
otherwise. In this example, the agent has both access to fertilizer and credit. Besides using liquid means 
to purchase fertilizer, it can be deposited at a bank, d is the interest rate on short-term deposits, which 
can be set very low in the absence of financial intermediation. 
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Table C4: Investment in new coffee plantation (example of investment decision) 
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Objective (MAX)  -C -C C C C -C   

1. Land  1 1     ≤ LND 

2. Labor  Li Lc     ≤ LABi 

3. Capital -1 Ai Ac   1 -1 ≤ 0 

4. Liquid means 1       ≤ LIQi 

5. Current coffee plantation   1     ≤ COFi 

6. Max. coffee investment  1      ≤ MXC 

7. Short-term credit limit       1 ≤ 0 

8. Coffee balance    -Y2 1    = 0 

9. Coffee balance 
(premium) 

 -Y1   1   = 0 

Notes: C=objective function coefficients; L=labor requirement (hrs) for maintenance (c) and 
investment (i); A=capital requirement (ush) for maintenance (c) and investment (i); LND=land 
endowment (ha); LABi=long-term labor availability (hrs) based on given fertility and mortality levels; 
LIQi=available liquid means (ush); COFi=current area under coffee plantation (ha); MXC=upper bound 
(in ha) on investments in perennial crops per annum (optional);-Y1=average expected yield over the 
lifespan of the coffee plantation as an annuity; –Y2=the average expected yield over the remaining 
years of the coffee plantation expressed as an annuity. It was assumed that the liquid means available 
to the agent in the first year of the investment (LIQ) equals the agent’s expected future availability of 
liquid means. Credit and deposits are explained in Table C3.  
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Table C5: Current production of coffee (example of production decision) 
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Objective (MAX)  -C -C C C C -C   

1. Land  1 1     ≤ LND 

2. Labor  Li Lc     ≤ LABc 

3. Capital -1 Ai Ac   1 -1 ≤ 0 

4. Liquid means 1       ≤ LIQc 

5. Current coffee plantation   1     ≤ COFc 

6. Max. coffee investment  1      ≤ 0 

7. Short-term credit limit       1 ≤ 0 

8. Coffee balance    -Y3 1    = 0 

9. Coffee balance (premium)   -Y2  1   = 0 

Notes: Same as Table C4 with four differences: (1) the current amount of available labor replaces the 
long-term labor expectation; (2) the liquid means are reduced by the investment cost of additional 
plantation; (3) the current coffee plantation (COFc) is incremented by the additional invested area; a 
current yield expectation (-Y3) enters the matrix; (4) investments in additional coffee plantation are 
impossible (MXC=0) and the the yield level (Y1) is set to zero. Current (Y3) and average future expected 
yields (Y2) are distinguished as the first add to the disposable income (and hence current food 
expenditures) but the latter do not. See also Table B for differences between investment, production, 
and consumption decisions. 
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Table C6: Relative time allocation to crop production by sex 

A. Seasonal crops, first season 

Crop Period1 Female labor (%)  Male labor (%) t-test Constraint2 

  
Mean SD  Mean SD p-value 

Minimum 
% female 

Minimum % 
male 

Sweet potato 1 51.33 30.84  48.67 30.84 0.584 - - 
 2 70.59 28.26  29.41 28.26 0.000 42.3 - 
 3 74.05 28.75  25.95 28.75 0.000 45.3 - 
Traditional maize 1 49.27 28.26  50.73 28.26 0.881 - - 
 2 57.04 23.82  42.96 23.82 0.099 - - 
 3 67.27 24.18  32.73 24.18 0.000 43.1 - 
Improved maize 1 43.12 28.40  56.88 28.40 0.028 - 28.5 
 2 51.83 27.80  48.17 27.80 0.554 - - 
 3 59.86 28.72  40.14 28.72 0.003 31.1 - 
Hybrid maize 1 26.30 26.59  73.70 26.59 0.000 - 47.1 
 2 50.19 27.18  49.81 27.18 0.972 - - 
 3 65.55 23.35  34.45 23.35 0.001 42.2 - 
Millet 1 37.22 27.85  62.78 27.85 0.000 - 34.9 
 2 60.21 27.17  39.79 27.17 0.000 33.0 - 
 3 65.99 27.68  34.01 27.68 0.000 38.3 - 
Sorghum 1 45.75 27.86  54.25 27.86 0.182 - - 
 2 63.35 33.18  36.65 33.18 0.001 30.2 - 
 3 71.28 26.18  28.72 26.18 0.000 45.1 - 
Bean 1 49.30 29.57  50.70 29.57 0.706 - - 
 2 58.85 29.80  41.15 29.80 0.000 29.1 - 
 3 67.29 27.11  32.71 27.11 0.000 40.2 - 
Groundnut 1 50.69 27.73  49.31 27.73 0.789 - - 
 2 61.43 31.60  38.57 31.60 0.000 29.8 - 
 3 67.12 29.06  32.88 29.06 0.000 38.1 - 
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[continued from Table C6 on the previous page] 

 

B. Seasonal crops, second season 

Crop Period1 Female labor (%)  Male labor (%) t-test Constraint2 

  
Mean SD  Mean SD p-value 

Minimum 
% female 

Minimum % 
male 

Sweet potato 1 58.00 29.69  42.00 29.69 0.000 28.3 - 
 2 68.17 30.51  31.83 30.51 0.000 37.7 - 
 3 70.90 30.14  29.10 30.14 0.000 40.8 - 
Trad. maize 1 49.03 27.92  50.97 27.92 0.845 - - 
 2 61.33 27.03  38.67 27.03 0.026 34.3 - 
 3 62.29 26.82  37.71 26.82 0.022 35.5 - 
Improved maize 1 44.25 30.14  55.75 30.14 0.088 - - 
 2 55.91 30.31  44.09 30.31 0.081 - - 
 3 58.42 28.15  41.58 28.15 0.011 30.3 - 
Hybrid maize 1 59.92 23.87  40.08 23.87 0.221 - - 
 2 77.06 31.18  22.94 31.18 0.023 45.9 - 
 3 63.72 31.54  36.28 31.54 0.160 - - 
Millet 1 63.93 28.69  36.07 28.69 0.000 35.2 - 
 2 80.81 25.89  19.19 25.89 0.000 54.9 - 
 3 80.69 24.55  19.31 24.55 0.000 56.1 - 
Sorghum 1 42.99 34.56  57.01 34.56 0.046 - 22.5 
 2 67.82 29.91  32.18 29.91 0.000 37.9 - 
 3 69.90 27.64  30.10 27.64 0.000 42.3 - 
Bean 1 56.16 28.84  43.84 28.84 0.002 27.3 - 
 2 63.48 29.87  36.52 29.87 0.000 33.6 - 
 3 68.05 28.62  31.95 28.62 0.000 39.4 - 
Groundnut 1 56.57 27.47  43.43 27.47 0.094 - - 
 2 68.27 28.52  31.73 28.52 0.000 39.8 - 
 3 69.35 27.86  30.65 27.86 0.000 41.5 - 

 

C. Annual and permanent crops 

Crop Period1 Female labor (%)  Male labor (%) t-test Constraint2 

  
Mean SD  Mean SD p-value 

Minimum 
% female 

Minimum % 
male 

Cassava 1 48.12 28.87  51.88 28.87 0.182 - - 
 2 57.24 28.95  42.76 28.95 0.000 28.3 - 
 3 62.20 30.06  37.80 30.06 0.000 32.1 - 
Plantain 1 48.44 34.87  51.56 34.87 0.443 - - 
 2 50.22 31.52  49.78 31.52 0.878 - - 
 3 60.56 36.53  39.44 36.53 0.000 24.0 - 
Coffee 1 47.75 36.24  52.25 36.24 0.410 - - 
 2 46.78 32.08  53.22 32.08 0.078 - - 
 3 54.22 33.16  45.78 33.16 0.031 21.1 - 

Source: Estimated from IFPRI 2000-2001 survey 
Notes: Period codes: 1=land preparation and planting; 2=weeding; 3=harvesting and processing. 
SD=standard deviation of the average. The constraints are calculated as the mean minus 1 SD and only if 
the t-test is significant and for the sex contributing most to the labor supply per crop. See text for details. 
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Table C7: Labor use (example) 
Including 1 crop, male, female and child labor, 1 period 
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Objective (MAX)        C -C      C   

Female 18+            1      ≤ LABfa 

Female 7-17            1     ≤ LABfc 

Male 18+              1    ≤ LABma 

Male 7-17              1   ≤ LABmc 

Female total   -1 1           At  = 0 

Female 18+  1          -1      ≤ 0 

Female 7-17  1          -1     ≤ 0 

Female 
transfer 

-1 -1 1            
  

= 0 

Male total       -1 1       Am  = 0 

Male 18+      1    1 -1   -1    ≤ 0 

Male 7-17      1        -1   ≤ 0 

Male transfer     -1 -1 1          = 0 

Mixed labor    -1    -1       Ai  ≤ 0 

Balance crop 1               -Y 1 ≤ 0 

Notes: C=objective function coefficients; Y=yield expectation; At, Am and Af=total, male, and female 
labor requirement in maize cultivation; LAB=age and sex specific labor availability. The model used age 
and sex specific labor supply and requirements. The table shows the implementation of labor use for 
male and female adults and male and female children. The coefficient At is positive if female labor is 
required, alternatively Am is positive if male labor is required. If the activity is independent of sex then 
only a positive value for Ai appears in the matrix. 
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Table C8: Crop rotation and fallow requirements (example) 
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Objective (MAX)     C C   

1. Labor   A A    ≤ LAB 

2. Land 1      = LND 

3. Land transfer -1 1 1 1   ≤ 0 

4. Balance maize  -Y1   1  ≤ 0 

5. Balance bean   -Y2   1 ≤ 0 

6. Rotation maize -0.7 1     ≤ 0 

7. Rotation bean -0.5  1    ≤ 0 

8. Fallow 0.05   -1   ≤ 0 

Notes: C=objective function coefficients; Y=yield expectation; LAB=available labor; LND= available 
land. The table shows how crop rotation constraints were implemented. In this example, the 
cultivated area under plot 1 can be used to a maximum of 70% for maize and a maximum of 50% for 
bean, while at least 5% of the plot should be set to fallow. 

 

Table C9: Intercropping (example) 
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Objective (MAX)     C C   

1. Labor  A A A A   ≤ LAB 

2. Land 1 1 1 1   ≤ LND 

3. Maize yield -Y  -Y  1  ≤ 0 

4. Bean yield  -Y  -Y  1 ≤ 0 

5. Maize / bean   1 -1   = 0 

Notes: A=labor requirement; Y=expected yield; LAB=available labor; LND= available land. Intercrop 
combinations were included as separate activities as shown in the table. A combination of maize and 
bean was was treated as two separate activities with one additional constraint requiring that both 
activities must be selected in equal amounts. Input requirements were equalized by taking the 
average over both crops. Maize grown under intensive management can therefore not be 
intercropped with bean under extensive managment. Though intercropping could be treated as one 
activity that gives both bean and maize yield, it was separated in two activities as this was more 
straightforward in terms of computer coding. 
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Table C10: Certainty equivalents to adjust expectations (example) 
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Objective (MAX) -C  C C   

1. Labor  A    ≤ LAB 

2. Land 1    ≤ LND 

3. Maize yield balance -Y 1   ≤ 0 

4. Maize yield balance, adjusted  -Q 1 1 ≤ 0 

Notes: C=objective function coefficients; Y=maize yield expectation; LAB=available labor; LND= 
available land. Certainty equivalents were used to adjust yield expectations in the face of yield risks. 
The table shows how this works. In column 1, a crop is produced, which enters an amount of yield 
into row 3. This yield is then transferred to row 4 through column 2 where an adjustment is made by 
factor Q. Setting Q below 1 would lower the yield expectations, setting it above 1 would increase the 
yield expectations. This adjustment is only made in production mode to consider the risk in the crop 
mix; in consumption mode, where actual yields are inserted in the matrix, Q is set back to 1, so that 
all produced crop can be sold or consumed. 
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3. Savings 
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Explanation of coefficients in Table D1 

 

Step 1: savings model 
S1 The size of the first piecewise linear income segment at which savings are zero and  calculated as: 

(-α1 + ((α1
2) -4 * (α3 *  H + α5) * α2)^0.5) / (2 * α2) in which α5 is a composite constant of all 

relevant dummy variables in the model. 

S2 The size of the following segment and should be a sufficiently large number 

Φ The average savings coefficient for a piecewise linear segment; calculated as:  

α1 + α2 * (S1 + S2 / 2) 

 
Step 2: Working-Leser model 
Ei The width of the i-th piecewise linear segment of TEX 

β5 A composite constant of the relevant dummy variables in the model 

χ The effect of household size (in joule) on food consumption, which is agent-specific and calculated 

as: H * β2 

λi The average food expenditure coefficient for the i-th piecewise linear segment, calculated as: β1 * 

ln((Ei+1-Ei) / 2 * 100% / H) 

 

Step 3: LA/AIDS 
Fj The width of the j-th piecewise linear segment of FEX 

ψk A composite constant of the relevant dummy variables in the model for the k-th food category  

ηk The effect of household size (in joule) on the consumption of the k-th food category, which is 

agent-specific and calculated as: H * δ3 

ϕk The price effect on the consumption of the k-the food category, calculated as: 

∑
=

=
7

1l l

l
lk,1,k )

p
p*ln(δϕ in which pl stands for the price of food category l, which is a weighted 

function of individual commodity prices. 

ζk,j 
The average food item expenditure coefficient for the k-th food category and the j-th piecewise 

linear segment, calculated as: δ2,k *(ln (Fj+(Fj+1-Fj)/2)–ln(H)–ln(P*)) 
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Table D2: Disinvestment decisions 
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1. Objective (MAX) d  c1 c2  -c3      

2. Savings 1 1        ≤ LIQ 

3. Livestock   1 1      ≤ LVS 

4. Household size        1  = H 

5. Income transfer d 1 c1 c2 -1 -c3    = 0 

6. Food 
consumption 

    α -c3    = 0 

7. Energy supply      σ -1   = 0 

8. Energy 
supply=dem. 

      -1 0.90 -103 ≤ 0 

9. Sell livestock    -1     LVS ≤ 0 

10. Consume 
savings 

 -1       LIQ ≤ 0 

Notes: C=objective function values (prices); d=the interest rate on short-term deposits; LIQ=liquid 
means (savings); LVS=livestock herd size; H=size of the household in billion joule; α=coefficient on 
income in a demand equation; σ=the energy equivalent of one unit of consumption. 
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Table D3: Regression estimates for the saving and expenditure models 

 Savings Total expenditures 

Income (.00 Ush) 0.445 0.555 
 (0.047)*** (0.047)*** 
Income-squared (.00 Ush) 0.000 -0.000 
 (0.000) (0.000) 
Household size (109 Joule) -325.875 325.875 
 (12.435)*** (12.435)*** 
Rural 4,799.418 -4,799.418 
 (511.663)*** (511.663)*** 
  Eastern Highlands -278.156 278.156 
 (340.958) (340.958) 
  Karamoja Drylands 3,589.500 -3,589.500 
 (336.063)*** (336.063)*** 
  Lake Albert Crescent 157.577 -157.577 
 (350.795) (350.795) 
  Lake Victoria Crescent -2,457.691 2,457.691 
 (313.641)*** (313.641)*** 
  Mid Northern 822.138 -822.138 
 (313.125)*** (313.125)*** 
  South East -216.991 216.991 
 (284.341) (284.341) 
  Southern Drylands -1,947.670 1,947.670 
 (370.201)*** (370.201)*** 
  Southern Highlands -302.261 302.261 
 (380.082) (380.082) 
  West Nile 2,358.659 -2,358.659 
 (295.387)*** (295.387)*** 
  Western Highlands -1,709.942 1,709.942 
 (387.551)*** (387.551)*** 
Constant -5,575.383 5,575.383 
 (684.920)*** (684.920)*** 
Observations 9016 9016 
R-squared 0.34 0.62 

Source: Estimated from UNHS 1999/2000 
Notes: Standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1% 
Estimation method: unrestricted estimation using ordinary least squares (OLS) with survey estimation 
commands. The dependent variables are total savings and total expenditures. 
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Table D4: Regression estimates for the food and non-food expenditure models 

Modified Working-Leser model 

Variable Food Non-food 

Ln(expenditures / household size) -2.210e-02 2.210e-02 
 (4.340e-03)*** (4.340e-03)*** 
Household size (bjoule) -4.638e-04 4.638e-04 
 (2.413e-04)* (2.413e-04)* 
Rural (0/1) 6.357e-02 -6.357e-02 
 (9.368e-03)*** (9.368e-03)*** 
Farming household member (0/1) 3.072e-02 -3.072e-02 
 (8.022e-03)*** (8.022e-03)*** 
  Eastern -1.614e-02 1.614e-02 
 (8.747e-03)* (8.747e-03)* 
  Eastern Highlands 2.632e-02 -2.632e-02 
 (1.512e-02)* (1.512e-02)* 
  Karamoja Drylands -1.968e-02 1.968e-02 
 (1.052e-02)* (1.052e-02)* 
  Lake Albert Crescent -5.105e-02 5.105e-02 
 (7.368e-03)*** (7.368e-03)*** 
  Lake Victoria Crescent -4.638e-02 4.638e-02 
 (9.020e-03)*** (9.020e-03)*** 
  Mid Northern -9.024e-03 9.024e-03 
 (8.887e-03) (8.887e-03) 
  South East -2.783e-03 2.783e-03 
 (9.025e-03) (9.025e-03) 
  Southern Drylands 1.113e-02 -1.113e-02 
 (9.308e-03) (9.308e-03) 
  Southern Highlands -3.580e-03 3.580e-03 
 (9.809e-03) (9.809e-03) 
  West Nile -2.963e-02 2.963e-02 
 (8.460e-03)*** (8.460e-03)*** 
Constant 6.376e-01 3.624e-01 
 (3.414e-02)*** (3.414e-02)*** 
Observations 9078 9078 
R-squared 0.13 0.13 

Source: Estimated from UNHS 1999/2000 

Notes: Standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 
1%. All period dummies are omitted from the table. Agro-ecological dummy for the Western Highlands 
was omitted. Estimation method: unrestricted estimation using ordinary least squares (OLS) with survey 
estimation commands. Dependent variables are the proportions of total expenditures spent on food and 
non-food.  
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Table D5: Regression estimates for the LA/AIDS model 

A. Food categories 1- 4 

 Plantain Cassava and 
potato 

Maize, sorghum, 
and millet 

Bean, pea, and 
groundnut 

 (1) (2) (3) (4) 
Unit value, ln (1) 4.952e-02 -7.949e-03 -4.379e-04 -9.706e-03 
 (5.126e-03)*** (3.335e-03)** (2.882e-03) (2.151e-03)*** 
Unit value, ln (2) -7.949e-03 2.972e-02 3.502e-03 -5.407e-03 
 (3.335e-03)** (4.110e-03)*** (2.833e-03) (2.075e-03)*** 
Unit value, ln (3) -4.379e-04 3.502e-03 2.078e-02 -7.503e-03 
 (2.882e-03) (2.833e-03) (4.333e-03)*** (1.984e-03)*** 
Unit value, ln (4) -9.706e-03 -5.407e-03 -7.503e-03 3.397e-02 
 (2.151e-03)*** (2.075e-03)*** (1.984e-03)*** (2.180e-03)*** 
Unit value, ln (5) -1.027e-02 -4.214e-03 -6.144e-03 -8.985e-04 
 (2.075e-03)*** (1.973e-03)** (2.086e-03)*** (1.577e-03) 
Unit value, ln (6) -9.608e-03 -5.438e-03 -8.876e-03 -6.741e-03 
 (2.965e-03)*** (2.965e-03)* (2.258e-03)*** (1.914e-03)*** 
Unit value, ln (7) -1.705e-03 4.508e-04 -1.302e-03 2.955e-03 
 (1.683e-03) (1.582e-03) (1.601e-03) (1.326e-03)** 
Unit value, ln (8) -9.844e-03 -1.066e-02 -1.834e-05 -6.674e-03 
 (2.161e-03)*** (2.002e-03)*** (1.583e-03) (1.275e-03)*** 
Expenditure/stone1 -1.239e-02 -1.243e-02 -1.039e-02 -2.353e-02 
 (6.092e-03)** (5.142e-03)** (3.893e-03)*** (3.184e-03)*** 
  Eastern 9.956e-02 -7.918e-02 5.341e-03 1.195e-03 
 (1.594e-02)*** (1.478e-02)*** (1.063e-02) (8.849e-03) 
  Eastern Highlands 2.882e-02 -2.093e-02 -9.668e-03 -9.732e-03 
 (6.307e-02) (5.780e-02) (4.179e-02) (3.499e-02) 
  Karamoja Drylands 9.402e-02 -2.878e-04 -2.990e-02 2.332e-02 
 (1.911e-02)*** (1.612e-02) (1.162e-02)** (1.189e-02)** 
  Lake Albert Cresc. 1.321e-01 -1.944e-02 -6.577e-02 1.141e-02 
 (1.605e-02)*** (1.375e-02) (1.012e-02)*** (8.587e-03) 
  Lake Victoria Cresc. -3.407e-02 -5.877e-02 -6.181e-02 1.564e-02 
 (2.825e-02) (2.407e-02)** (1.776e-02)*** (1.552e-02) 
  Mid Northern 3.171e-02 5.480e-03 -8.325e-03 -1.366e-02 
 (1.651e-02)* (1.529e-02) (1.101e-02) (9.158e-03) 
  South East 1.982e-01 -4.329e-02 -2.357e-02 2.355e-02 
 (1.678e-02)*** (1.415e-02)*** (1.033e-02)** (1.029e-02)** 
  Southern Drylands 1.731e-01 1.081e-02 -8.265e-03 3.540e-02 
 (1.783e-02)*** (1.511e-02) (1.093e-02) (1.121e-02)*** 
  Southern Highlands -5.460e-02 7.916e-02 -5.339e-02 1.538e-02 
 (2.566e-02)** (2.107e-02)*** (1.584e-02)*** (1.369e-02) 
  West Nile 1.988e-01 -3.763e-02 -2.003e-02 2.644e-02 
 (1.686e-02)*** (1.426e-02)*** (1.035e-02)* (1.091e-02)** 
Household size (mj) -5.219e-04 4.224e-04 1.140e-03 -7.437e-05 
 (2.852e-04)* (3.734e-04) (2.405e-04)*** (2.093e-04) 
Farming (0/1) 4.092e-02 3.429e-02 -4.940e-03 9.617e-03 
 (6.984e-03)*** (1.249e-02)*** (5.051e-03) (3.880e-03)** 
Rural (0/1) 2.436e-02 4.466e-02 -2.388e-03 4.495e-04 
 (7.348e-03)*** (6.735e-03)*** (4.933e-03) (4.067e-03) 
Nonselection hazard 6.417e-02 -5.161e-02 6.984e-02 -1.559e-03 
 (1.411e-02)*** (5.047e-02) (1.743e-02)*** (2.512e-02) 
Constant 7.028e-02 1.643e-01 1.878e-01 2.312e-01 
 (5.319e-02) (5.236e-02)*** (3.134e-02)*** (2.882e-02)*** 
Observations 1965 1965 1965 1965 
‘R-squared’ 0.2801 0.2375 0.1452 0.1736 

 
[continued on the next page] 
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B. Food categories 5 - 8 

 Purchased 
necessities 

Animal products Fruits and 
vegetables 

Food luxuries2 

 (5) (6) (7) (8) 

Unit value, ln (1) -1.027e-02 -9.608e-03 -1.705e-03 -0.00984 
 (2.075e-03)*** (2.965e-03)*** (1.683e-03)  
Unit value, ln (2) -4.214e-03 -5.438e-03 4.508e-04 -0.01066 
 (1.973e-03)** (2.965e-03)* (1.582e-03)  
Unit value, ln (3) -6.144e-03 -8.876e-03 -1.302e-03 -1.8E-05 
 (2.086e-03)*** (2.258e-03)*** (1.601e-03)  
Unit value, ln (4) -8.985e-04 -6.741e-03 2.955e-03 -0.00667 
 (1.577e-03) (1.914e-03)*** (1.326e-03)**  
Unit value, ln (5) 4.513e-02 -1.180e-02 5.722e-04 -0.01237 
 (2.942e-03)*** (1.678e-03)*** (1.487e-03)  
Unit value, ln (6) -1.180e-02 5.135e-02 -5.517e-03 -0.00336 
 (1.678e-03)*** (4.223e-03)*** (1.403e-03)***  
Unit value, ln (7) 5.722e-04 -5.517e-03 6.994e-03 -0.00245 
 (1.487e-03) (1.403e-03)*** (1.512e-03)***  
Unit value, ln (8) -1.237e-02 -3.363e-03 -2.448e-03 4.54E-02 
 (1.135e-03)*** (2.182e-03) (9.581e-04)**  
Expenditure/stone1) -3.199e-02 3.993e-02 -7.179e-03 0.057979 
 (2.544e-03)*** (5.968e-03)*** (2.304e-03)***  
  Eastern 3.372e-02 -8.135e-02 2.087e-02 -0.00016 
 (7.349e-03)*** (1.571e-02)*** (6.337e-03)***  
  Eastern Highlands -2.565e-02 -7.308e-02 4.435e-02 0.06589 
 (2.874e-02) (6.165e-02) (2.481e-02)*  
  Karamoja Drylands 1.770e-02 -2.699e-02 -1.688e-02 -0.06098 
 (8.006e-03)** (1.734e-02) (7.134e-03)**  
  Lake Albert Cresc. 1.933e-02 -5.363e-02 -1.060e-02 -0.0134 
 (6.534e-03)*** (1.387e-02)*** (5.797e-03)*  
 Lake Victoria Cresc. 1.567e-02 3.840e-02 -1.670e-02 0.10164 
 (1.201e-02) (2.560e-02) (1.034e-02)  
  Mid Northern 3.678e-02 -4.098e-02 5.738e-03 -0.01674 
 (7.601e-03)*** (1.630e-02)** (6.558e-03)  
  South East 1.641e-03 -5.159e-02 -1.161e-02 -0.09333 
 (6.997e-03) (1.510e-02)*** (6.348e-03)*  
  Southern Drylands -1.392e-02 -8.046e-02 -7.663e-03 -0.109 
 (7.507e-03)* (1.632e-02)*** (6.813e-03)  
  Southern Highlands 8.541e-03 -8.015e-02 -6.499e-03 0.091558 
 (1.047e-02) (2.243e-02)*** (9.079e-03)  
  West Nile -2.605e-03 -4.511e-02 -1.316e-02 -0.10671 
 (7.098e-03) (1.550e-02)*** (6.535e-03)**  
Household size (mj) -5.991e-04 2.696e-04 -4.181e-04 -0.00022 
 (1.483e-04)*** (2.969e-04) (1.473e-04)***  
Farming (0/1) -2.188e-02 -2.448e-02 -7.699e-03 -0.02583 
 (3.408e-03)*** (6.946e-03)*** (2.800e-03)***  
Rural (0/1) -1.764e-02 -1.458e-02 -9.622e-03 -0.02524 
 (3.371e-03)*** (7.214e-03)** (2.955e-03)***  
Nonselection hazard 4.130e-02 -6.351e-02 2.828e-02 -0.08691 
 (2.688e-02) (1.128e-02)*** (1.424e-02)**  
Constant 3.130e-01 3.998e-02 1.316e-01 -0.13816 
 (2.014e-02)*** (4.639e-02) (1.848e-02)*** -0.00984 
Observations 1965 1965 1965 - 
‘R-squared’ 0.3439 0.1676 0.1075 - 

Source: UNHS 1999/2000 

Notes: Standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 
1%. 1) Logarithm of (food expenditures / household size) / Stone price index. 2) Eq.8 constructed from 
eq.1-7. All monthly dummies are omitted from the table. Agroclimatic dummy for the Western 
Highlands was omitted. Estimation method: Seemingly Unrelated Regression with 28 parameter 
restrictions. 
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Table D6: Demographic data 

Female  Male 

Age 

Agricul
tural 
labor 

Energy Protein 

HIV 
incid-
ence 

Mor-
tality Fertility  Energy Protein 

HIV 
incid-
ence 

Mor-
tality 

years 
hours 
/day 

BJ 
/year 

kg 
/year 

per 
1000 

per 
1000 

per 
1000  

BJ 
/year 

kg 
/year 

per 
1000 

per 
1000 

1 0.00 0.99 5.11 0.0 57.1 0.0  1.07 5.11 0.0 76.4 
2 0.00 1.45 8.03 0.0 19.5 0.0  1.51 8.03 0.0 25.7 
3 0.00 1.64 8.03 0.0 9.4 0.0  1.73 8.03 0.0 12.3 
4 0.00 1.76 9.49 0.0 5.7 0.0  1.87 9.49 0.0 7.4 
5 0.00 1.94 9.49 0.0 3.6 0.0  2.02 9.49 0.0 4.8 
6 0.00 2.14 10.95 0.0 2.5 0.0  2.25 10.95 0.0 3.3 
7 0.11 2.34 10.95 0.0 1.9 0.0  2.38 10.95 0.0 2.5 
8 0.22 2.40 12.41 0.0 1.6 0.0  2.74 12.41 0.0 2.1 
9 0.33 2.46 12.41 0.0 1.5 0.0  2.62 12.41 0.0 2.0 
10 0.44 2.30 12.41 0.1 1.5 0.0  2.67 12.41 0.0 1.9 
11 0.55 2.84 17.89 0.7 1.3 0.0  2.90 17.52 0.2 1.7 
12 0.66 2.84 17.89 1.9 1.3 0.0  2.97 17.52 0.5 1.7 
13 0.77 3.06 21.59 3.5 1.4 11.6  3.19 21.54 1.0 1.8 
14 0.88 3.19 21.68 5.4 1.6 28.5  3.23 21.54 1.7 2.1 
15 0.99 3.32 23.63 7.4 2.0 54.1  3.42 25.55 2.6 2.5 
16 1.10 3.52 23.80 9.3 2.4 88.8  3.58 25.55 3.5 2.9 
17 1.21 3.55 23.63 11.1 2.8 128.1  3.86 29.57 4.5 3.3 
18 3.41 3.68 23.82 12.6 3.3 166.8  4.00 29.57 5.6 3.7 
19 3.45 3.28 18.89 13.8 3.9 202.9  4.40 20.08 6.7 4.2 
20 3.49 3.28 19.04 14.7 4.6 234.3  4.40 20.08 7.8 4.6 
21 3.53 3.28 19.16 15.3 5.4 258.5  4.40 20.08 8.8 5.1 
22 3.57 3.29 19.25 15.6 6.3 278.0  4.40 20.08 9.7 5.6 
23 3.61 3.29 19.32 15.7 7.4 291.2  4.40 20.08 10.6 6.2 
24 3.64 3.29 19.36 15.5 8.6 299.5  4.40 20.08 11.4 6.8 
25 3.67 3.29 19.38 15.1 10.0 303.8  4.40 20.08 12.2 7.5 
26 3.70 3.29 19.39 14.6 11.8 305.0  4.40 20.08 12.8 8.4 
27 3.73 3.29 19.37 13.9 13.9 301.4  4.40 20.08 13.3 9.6 
28 3.76 3.29 19.35 13.2 16.6 296.3  4.40 20.08 13.7 11.0 
29 3.78 3.29 19.31 12.4 20.1 289.4  4.40 20.08 14.1 12.8 
30 3.80 3.29 19.27 11.5 24.8 281.7  4.40 20.08 14.3 15.2 
31 3.83 3.33 19.22 10.7 31.7 271.4  4.35 20.08 14.4 18.6 
32 3.85 3.33 19.17 9.9 40.8 260.0  4.35 20.08 14.5 23.0 
33 3.86 3.32 19.11 9.0 52.2 249.0  4.35 20.08 14.5 28.7 
34 3.88 3.32 19.05 8.2 65.3 237.1  4.35 20.08 14.4 35.8 
35 3.89 3.32 18.98 7.5 77.9 223.0  4.35 20.08 14.2 43.7 
36 3.91 3.32 18.92 6.7 90.9 210.2  4.35 20.08 14.0 52.9 
37 3.92 3.32 18.86 6.1 103.3 197.3  4.35 20.08 13.8 63.1 
38 3.93 3.31 18.78 5.4 112.4 182.2  4.35 20.08 13.5 72.9 
39 3.94 3.31 18.70 4.9 120.8 166.3  4.35 20.08 13.1 83.8 
40 3.94 3.31 18.63 4.3 127.6 150.6  4.35 20.08 12.8 95.0 
41 3.95 3.31 18.54 3.8 130.6 133.2  4.35 20.08 12.4 104.8 
42 3.95 3.30 18.47 3.4 132.6 117.8  4.35 20.08 12.0 115.1 
43 3.95 3.30 18.39 3.0 133.4 102.8  4.35 20.08 11.5 125.4 
44 3.95 3.30 18.31 2.6 131.0 87.2  4.35 20.08 11.1 133.6 
45 3.95 3.30 18.24 2.3 128.1 72.2  4.35 20.08 10.6 142.0 
46 3.94 3.29 18.17 2.0 124.4 58.5  4.35 20.08 10.2 150.1 
47 3.94 3.29 18.10 1.8 118.9 44.1  4.35 20.08 9.7 155.7 
48 3.93 3.29 18.04 1.6 113.3 32.0  4.35 20.08 9.3 161.4 
49 3.92 3.29 18.00 1.4 107.6 22.7  4.35 20.08 8.8 166.7 
50 3.91 3.29 17.96 1.2 100.9 15.0  4.35 20.08 8.4 169.6 

 
[continued on the next page] 
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[continuation of Table D6] 
 

Female  Male 

Age 

Agricul
tural 
labor 

Energy Protein 

HIV 
incid-
ence 

Mor-
tality Fertility  Energy Protein 

HIV 
incid-
ence 

Mor-
tality 

years 
hours 
/day 

BJ 
/year 

kg 
/year 

per 
1000 

per 
1000 

per 
1000  

BJ 
/year 

kg 
/year 

per 
1000 

per 
1000 

51 3.90 3.29 17.93 1.0 94.6 9.8  4.35 20.08 7.9 172.6 
52 3.88 3.29 17.92 0.9 88.6 6.2  4.35 20.08 7.5 175.2 
53 3.87 3.29 17.90 0.8 82.4 3.7  4.35 20.08 7.1 175.6 
54 3.85 3.29 17.89 0.7 76.7 0.0  4.35 20.08 6.7 176.3 
55 3.83 3.29 17.89 0.6 71.5 0.0  4.35 20.08 6.3 176.7 
56 3.81 3.29 17.89 0.5 66.4 0.0  4.35 20.08 6.0 175.3 
57 3.79 3.29 17.89 0.4 62.1 0.0  4.35 20.08 5.6 174.3 
58 3.76 3.29 17.89 0.4 58.2 0.0  4.35 20.08 5.3 173.2 
59 3.74 3.29 17.89 0.3 54.7 0.0  4.35 20.08 4.9 170.7 
60 3.71 3.29 17.89 0.3 51.9 0.0  4.35 20.08 4.6 168.6 
61 3.68 2.74 17.89 0.2 49.6 0.0  2.96 20.08 4.3 166.7 
62 3.65 2.74 17.89 0.2 47.8 0.0  2.96 20.08 4.0 163.7 
63 3.61 2.74 17.89 0.2 46.6 0.0  2.96 20.08 3.8 161.4 
64 3.58 2.74 17.89 0.1 46.0 0.0  2.96 20.08 3.5 159.3 
65 3.54 2.74 17.89 0.1 45.9 0.0  2.96 20.08 3.3 156.8 
66 3.50 2.74 17.89 0.1 46.3 0.0  2.96 20.08 3.1 154.8 
67 3.46 2.74 17.89 0.1 47.4 0.0  2.96 20.08 2.9 153.4 
68 3.42 2.74 17.89 0.1 49.1 0.0  2.96 20.08 2.7 151.8 
69 3.38 2.74 17.89 0.1 51.4 0.0  2.96 20.08 2.5 150.9 
70 3.33 2.74 17.89 0.1 54.4 0.0  2.96 20.08 2.3 150.8 
71 3.29 2.74 17.89 0.0 58.1 0.0  2.96 20.08 2.1 150.9 
72 3.24 2.74 17.89 0.0 62.6 0.0  2.96 20.08 2.0 151.9 
73 3.19 2.74 17.89 0.0 67.9 0.0  2.96 20.08 1.8 153.9 
74 3.14 2.74 17.89 0.0 74.1 0.0  2.96 20.08 1.7 156.3 
75 3.08 2.74 17.89 0.0 81.3 0.0  2.96 20.08 1.6 159.9 
76 3.03 2.74 17.89 0.0 89.6 0.0  2.96 20.08 1.4 164.7 
77 2.97 2.74 17.89 0.0 98.9 0.0  2.96 20.08 1.3 170.4 
78 2.91 2.74 17.89 0.0 109.5 0.0  2.96 20.08 1.2 177.3 
79 2.85 2.74 17.89 0.0 121.4 0.0  2.96 20.08 1.1 185.8 
80 2.79 2.74 17.89 0.0 134.6 0.0  2.96 20.08 1.0 195.4 
81 2.73 2.74 17.89 0.0 149.4 0.0  2.96 20.08 1.0 206.6 
82 2.66 2.74 17.89 0.0 165.7 0.0  2.96 20.08 0.9 219.5 
83 2.59 2.74 17.89 0.0 183.7 0.0  2.96 20.08 0.8 233.8 
84 2.53 2.74 17.89 0.0 203.4 0.0  2.96 20.08 0.8 250.0 
85 2.45 2.74 17.89 0.0 224.9 0.0  2.96 20.08 0.7 268.2 
86 0.00 2.74 17.89 0.0 248.3 0.0  2.96 20.08 0.6 288.4 
87 0.00 2.74 17.89 0.0 273.8 0.0  2.96 20.08 0.6 310.7 
88 0.00 2.74 17.89 0.0 301.5 0.0  2.96 20.08 0.5 335.2 
89 0.00 2.74 17.89 0.0 331.5 0.0  2.96 20.08 0.5 362.4 
90 0.00 2.74 17.89 0.0 364.2 0.0  2.96 20.08 0.5 392.4 
91 0.00 2.74 17.89 0.0 399.8 0.0  2.96 20.08 0.4 425.5 
92 0.00 2.74 17.89 0.0 438.8 0.0  2.96 20.08 0.4 462.2 
93 0.00 2.74 17.89 0.0 481.5 0.0  2.96 20.08 0.3 502.9 
94 0.00 2.74 17.89 0.0 528.7 0.0  2.96 20.08 0.3 548.3 
95 0.00 2.74 17.89 0.0 581.1 0.0  2.96 20.08 0.3 599.0 
96 0.00 2.74 17.89 0.0 639.6 0.0  2.96 20.08 0.3 656.0 
97 0.00 2.74 17.89 0.0 705.4 0.0  2.96 20.08 0.2 720.4 
98 0.00 2.74 17.89 0.0 780.0 0.0  2.96 20.08 0.2 793.8 
99 0.00 2.74 17.89 0.0 865.4 0.0  2.96 20.08 0.2 878.0 
100 0.00 2.74 17.89 0.0 1000.0 0.0  2.96 20.08 0.2 1000.0 

Sources: Estimated from IFPRI 2000-2001 survey (labor supply); Feeney and Zaba 2001 (mortality, fertility 
and incidence rates); James and Schofield 1990 (energy needs); Latham 1997 (protein needs) 
Notes: BJ=billion joule. Agricultural labor is equal for males and females in the baseline. HIV incidence is 
the probability of becoming infected with the HIV virus multiplied by 1000. 
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