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Many thanks go to Michael Kösters and Julian Merschen, my two flatmates during my

stays in Bonn and London. I am also very grateful to Sandra Lehnen for her affection-

ateness and her exceptional support in many respects.

Finally and most importantly, I am indebted to my parents, whose immeasurable

support and love kept me on track even in disappointing times. I owe my parents, Margret

and Friedrich Koch, more than I could ever repay. They imparted values to me and created

the foundation for a carefree and joyful childhood. As a small token of my love to them,

I dedicate this dissertation to my parents. I also wish to thank my brother, Daniel, who

has always been more than a brother, an indispensable friend. Many thanks also go to

my lovely grandma.



Contents

Introduction 1

1 The Conditional Relation between Fama-French Betas and Return 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Fama-MacBeth Test . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.2 Conditional Relationship . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Testing for Priced Betas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1 Derivation of the FG Test . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.2 The Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Illiquidity and Stock Returns 37

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Illiquidity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Trading Quantity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

i



2.2.2 Trading Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.3 Trading Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.4 Price Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Data & Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.1 Portfolio Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.2 Regressions - Individual Stock Returns . . . . . . . . . . . . . . . . 55

2.4.3 Regressions - Portfolio Approach . . . . . . . . . . . . . . . . . . . 59

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 The Idiosyncratic Risk Puzzle 73

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Data & Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Is Idiosyncratic Risk Priced? . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.1 Portfolio Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3.2 Controlling for Various Cross-Sectional Effects . . . . . . . . . . . 87

3.3.3 Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Further Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4.1 Downside vs. Upside Idiosyncratic Volatility . . . . . . . . . . . . 104

3.4.2 (E)GARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.4.3 Dimson Betas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.4.4 Idiosyncratic Volatility relative to the Fama-French and Carhart

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

ii



3.4.5 Monthly Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

iii



iv



List of Figures

1.1 Fama-French Betas for Portfolio 1 . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Fama-French Betas for Portfolio 25 . . . . . . . . . . . . . . . . . . . . . 17

1.3 Fama-French Betas for Portfolio 10 . . . . . . . . . . . . . . . . . . . . . 17

1.4 Distribution of the HML Factor . . . . . . . . . . . . . . . . . . . . . . . 32

v



vi



List of Tables

1.1 Fama-MacBeth Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Fama-MacBeth Test - Subperiods . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Conditional Relation between Fama-French Betas and Returns . . . . . . 20

1.4 Conditional Relation between Fama-French Betas and Returns - Subperiods 21

1.5 FG Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 FG Test - Subperiods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7 Fama-MacBeth Test and FG Test for Diverse Test Portfolios . . . . . . . 28

1.8 Conditional Relation between Fama-French Betas and Returns for Diverse

Test Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.9 Power and Size of the Fama-MacBeth and the FG Test (5% two-sided) . 34

1.10 Power and Size of the Fama-MacBeth and the FG Test (10% two-sided) . 34

2.1 Overall German Trading Volume vs. Trading Volume from the Frankfurter

Stock Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Number of Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Test Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Cross-Sectional Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Portfolios Sorted by Illiquidity . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6 Portfolios Sorted by Illiquidity - Subperiods . . . . . . . . . . . . . . . . . 57

2.7 GLS Regressions on Firm Characteristics . . . . . . . . . . . . . . . . . . 59

2.8 GLS Regressions on Firm Characteristics - Subperiods . . . . . . . . . . . 60

vii



2.9 Descriptive Statistics of the Factors . . . . . . . . . . . . . . . . . . . . . . 61

2.10 GMM Regressions of 16 Price Impact & Momentum Portfolios . . . . . . 63

2.11 GMM Regressions of 16 Price Impact & Momentum Portfolios -

Orthogonalized Illiquidity Factors . . . . . . . . . . . . . . . . . . . . . . . 66

2.12 GMM Regressions of 16 Price Impact & Momentum Portfolios - Subperiod 1 67

2.13 GMM Regressions of 16 Price Impact & Momentum Portfolios - Subperiod 2 68

2.14 GMM Regressions of 16 Size & Book-to-Market Portfolios . . . . . . . . . 70

2.15 Fama-MacBeth Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1 Number of Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Portfolios Sorted by (Idiosyncratic) Volatility . . . . . . . . . . . . . . . . 86

3.3 Characteristics of the Idiosyncratic Volatility Portfolios . . . . . . . . . . 86

3.4 Portfolios Sorted by (Idiosyncratic) Volatility - Subperiods . . . . . . . . . 88

3.5 Controlling for Other Variables . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Descriptive Statistics of the Factors . . . . . . . . . . . . . . . . . . . . . . 93

3.7 Fama-MacBeth Regressions of 15 Idiosyncratic Risk & Momentum

Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.8 Fama-MacBeth Regressions of 15 Idiosyncratic Risk & Momentum

Portfolios - Subperiod 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.9 Fama-MacBeth Regressions of 15 Idiosyncratic Risk & Momentum

Portfolios - Subperiod 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.10 Fama-MacBeth Regressions of 16 Size & Book-to-Market Portfolios . . . 98

3.11 Fama-MacBeth Regressions for Individual Stocks . . . . . . . . . . . . . . 99

3.12 GMM Regressions of 15 Idiosyncratic Risk & Momentum Portfolios . . . 101

3.13 GMM Regressions of 15 Idiosyncratic Risk & Momentum Portfolios -

Subperiod 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.14 GMM Regressions of 15 Idiosyncratic Risk & Momentum Portfolios -

Subperiod 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

viii



3.15 GMM Regressions of 16 Size & Book-to-Market Portfolios . . . . . . . . . 105

3.16 Portfolios Sorted by Idiosyncratic Volatility Measured by (E)GARCH . . 109

3.17 Portfolios Sorted by Idiosyncratic Volatility Using Dimson Betas . . . . . 110

3.18 Portfolios Sorted by Idiosyncratic Volatility Relative to the Fama-French

and Carhart Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.19 Portfolios Sorted by Idiosyncratic Volatility Based on Monthly Data . . . 112

ix



x



Introduction

What kinds of risk do systematically drive stock returns? This question has prompted

vast amounts of research and is still one of the main challenges in finance. It has not

only been of interest in the finance literature, but it also concerns investors across the

globe. In general, investors aim at avoiding risky stocks but are keen on earning high

returns. But which stocks are considered to be risky? Does a premium exist for risky

stocks? High returns and low risk - do these two goals conflict with each other? The

following dissertation addresses these questions empirically. Studying the German and

the US stock market, we investigate the risk-return relationship and evaluate which kind

of stocks yield a significant risk premium.

The first model that gave an answer to these questions was the Capital Asset Pricing

Model (CAPM). The model was developed by Sharpe (1964), Lintner (1965), and Mossin

(1966) in the 1960s and set the foundation for modern asset pricing theory. Its central

implication is that every asset’s expected return is a linear increasing function of its

market risk or market beta. According to the CAPM, the market excess return is the

only systematic risk factor and the market beta, the slope of an asset return on the

market excess return, embodies the systematic risk of the asset. Early empirical evidence

such as that of Black et al. (1972) and Fama and MacBeth (1973) finds support for

the model. However, during the 1980s and 1990s it turned out that market risk is not

the only systematic risk. The so-called anomaly literature provides a large amount of

evidence that the CAPM does not hold empirically and that other variables also influence

stock prices. Banz (1981) documents that small firms have on average higher market

risk adjusted returns than large firms in the US. This anomaly is entitled as the size

effect. Further, Rosenberg et al. (1985) and Fama and French (1992) show that stocks

with a high book-to-market equity ratio outperform stocks with a low one, which is the

so-called book-to-market effect. The CAPM fails to explain the size and book-to-market

effect. Fama and French (1993) show that portfolios constructed to mimic risk factors

1



2 Introduction

related to size and book-to-market equity add substantially to the variation in stock

returns explained by the market factor. For this reason, they argue in favor of a three-

factor model. Besides the inclusion of the market excess return as in the CAPM, the

Fama-French three-factor model considers the size and book-to-market factor. The size

factor is the return of a portfolio of small firms minus the return of a portfolio of big

firms. The book-to-market factor is the difference between the return of a portfolio of

high book-to-market equity stocks minus the return of a portfolio of low book-to-market

equity stocks. Fama and French (1993, 1995) suggest that the size and book-to-market

factor mimic combinations of two underlying risk factors or state variables of special

hedging concern for investors. Furthermore, Fama and French (1995) argue that the

book-to-market beta is a proxy for relative distress. Firms with persistently low earnings

have low book-to-market equity and negative slopes on the book-to-market factor. Fama

and French (1996) find that the three-factor model absorbs most of the anomalies that

have plagued the CAPM. Since its inception, the Fama-French three-factor model has

been the standard empirical asset pricing model in the finance literature. For this reason,

it is used as a standard of comparison throughout this dissertation.

This dissertation pursues two main goals. The first goal is to examine the relation be-

tween risk and return and to develop an appropriate test procedure to evaluate whether

significant risk premia prevail. Early tests of the risk-return relation by Lintner1 and

Black et al. (1972) use a cross-sectional approach regressing mean returns for each asset

on beta estimates. Fama and MacBeth (1973) introduce an alternative for estimating

the risk-return relation. Instead of taking sample average returns, they regress asset

returns on beta estimates for each month of the sample period. The sample mean of the

slope coefficient represents the risk premium. Since its inception, the Fama-MacBeth test

has been one of the standard econometric methodologies in the empirical asset pricing

literature. In the first chapter of my dissertation, we question the Fama-MacBeth test and

evaluate the risk-return relation by applying a conditional approach to the Fama-French

model. Subsequently, we develop a procedure to test if the risk is also priced according

to the conditional approach. This procedure is compared to the Fama-MacBeth test.

Second, we investigate whether other risk factors, which cannot be captured by the

Fama-French factors, also influence stock returns. Although the Fama-French factors are

well-established in the literature, there is some evidence that the Fama-French factors

cannot explain all asset pricing effects. Jegadeesh and Titman (1993) discover that past

1Douglas (1969) summarizes some of Lintner’s unpublished results.
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winners earn higher returns than past losers, the so-called momentum effect. Fama and

French (1996) and Grundy and Martin (2001) find that the momentum effect cannot be

captured by the Fama-French factors. As a result of this anomaly, many papers also

consider the momentum factor and use a four-factor model. The momentum factor has

been first proposed by Carhart (1997) and is the return of a portfolio of past winners

minus the return of a portfolio of past losers. There are plenty of other asset pricing

variables and risk factors that have been endorsed to be helpful in explaining stock

returns in the literature. For example, Chen et al. (1986) propound macroeconomic

risk factors as, e.g., interest rates, inflation, and industrial production. Cochrane (1996)

suggests a production factor, Jagannathan and Wang (1996) a factor for human capital,

Harvey and Siddique (2000) a coskewness factor, Gervais et al. (2001) a trading volume

factor, Lamont et al. (2001) a financial constraint factor, Ang et al. (2001) a downside

correlation factor, Easley et al. (2002) a measure for information risk, Vassalou and Xing

(2004) a measure for default risk, and Ang et al. (2006a) downside beta. This dissertation

evaluates the impact of illiquidity (chapter II) and idiosyncratic risk (chapter III) on

stock returns. Liquidity measures the ability to trade large quantities quickly at low costs

with little price impact. Idiosyncratic or unsystematic risk is the company or industry

specific risk that is uncorrelated to the systematic risk. The final goal of chapters II and

III is to test whether illiquidity and idiosyncratic risk yield significant risk premia.

Chapter I.2 The first chapter challenges the widely used Fama-MacBeth test. Ac-

cording to asset pricing theory, in expectation there is a positive reward for taking risks.

Investors are assumed to be risk averse and demand a compensation for holding risky

assets. For this reason, riskier assets should yield higher expected returns. For instance,

the expected market excess return, the difference between the market return and the

risk-free rate, should be positive. To be in line with theory, empirical tests should find a

positive relation between risk and expected returns. However, empirical tests are based

on realized returns instead of expectations and realized returns are frequently negative.

During periods of negative returns, the risk-return relation should be reversed, which is

neglected by the standard Fama-MacBeth procedure. In order to take this into account,

we make use of a conditional approach differentiating between periods with positive risk

factor realizations and negative ones to test the risk-return relation. The conditional

approach follows Pettengill et al. (1995). In contrast to the existent literature, we apply

2This chapter is based on joint work with Christian Westheide (Koch and Westheide (2009)).
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the conditional approach to the Fama-French three-factor model. We condition not only

on the sign of the market return, but on that of each of the three factors, and test if

the book-to-market and size betas retain their explanatory power once the conditional

nature of the relation between betas and return is taken into account. As predicted by

theory, our results yield strong support for a positive risk-return relation when risk factor

realizations are positive and a negative one when risk factor realizations are negative.

However, at this stage results are not comparable to the Fama-MacBeth test as the

Fama-MacBeth approach tests if beta risk is priced. Thus, as a further contribution to

the literature, we derive a test based on the conditional approach to evaluate if beta risks

are priced making the two tests comparable. This test extends the approach by Freeman

and Guermat (2006) to multi-factor models. Our results provide evidence that the FG

test produces very similar results as the standard Fama-MacBeth test. This finding does

not only hold for empirical data from the US stock market, but it is confirmed through

simulations based on different return distributions. Therefore, the results of the first

chapter justify the application of the Fama-MacBeth test in the next chapters of this

dissertation.

In addition, our results stress the importance of the selection of test portfolios in empirical

asset pricing. We detect that estimates for risk premia strongly rely on the choice of test

portfolios. Results in chapters II and III confirm this finding, emphasizing the lack of

robustness of asset pricing models to alternative portfolio formation.

The following two chapters study the German stock market. Although empirical

asset pricing is an extensive research field, there are only a few studies dealing with

the German stock market. This is mainly due to the fact that a comprehensive set of

accounting data and numbers of shares outstanding is not electronically available back

to the 1970s, which makes the construction of a long time-series for the book-to-market

and size factors impossible. The empirical analyses of chapters II and III are based on a

unique data set covering about 1000 German firms. We make use of hand collected data

on the number of shares outstanding as well as accounting data from the Hoppenstedt

Aktienführer allowing us to construct the size and book-to-market factor for Germany.

Daily prices and trading volume are obtained from Deutsche Kapitalmarktdatenbank in

Karlsruhe. The sample period runs from January 1974 to December 2006.
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Chapter II.3 Numerous episodes of financial market distress have underscored the

importance of the smooth functioning of markets for the stability of the financial system.

These episodes have been characterized by sudden and drastic reductions in market

liquidity, which have led, amongst others, to disorderly adjustments in asset prices and

a sharp increase in the costs of executing transactions. For instance, in October 1987,

stock markets around the world crashed. Especially, on October 19, denoted as the Black

Monday, the S&P 500 plummeted by over 20% creating the greatest loss Wall Street had

ever suffered on a single day. Insufficient liquidity had a significant effect on the size of

the price drop. Even recent events underline the importance of liquidity in stock markets.

The subprime crisis was mainly triggered by the sharp fall in housing prices in the United

States. From 2007 to 2009 the crisis rapidly developed and spread into a global economic

shock, causing uncertainty across financial institutions. Liquidity dried up, resulting in

a number of bank failures, large reductions in the market value of equities and declines

in various stock market indices.

These extreme events illustrate that a lack of liquidity in financial markets can cause a

decline in asset prices. However, liquidity is not only a concept that is related to the

whole market, so-called aggregate market-wide liquidity risk. It can also aim at the risk

resulting from a single investment, individual stock liquidity risk. When investors face

tight liquidity positions, they may be forced to convert assets into cash. This is relatively

more costly and more difficult when liquidity is lower. In order to reduce costs and to

avoid the risk that arises from the difficulty of buying or selling an asset, investors should

prefer liquid assets. In turn, this implies that investors buying illiquid assets should be

compensated by higher expected returns. In the second chapter of this dissertation, we

address the question whether illiquidity is a priced risk.

Unfortunately, estimating illiquidity is not straightforward as there is hardly a single

measure that captures all of its aspects. Illiquidity is a multi-dimensional concept

consisting of four dimensions: trading quantity, trading speed, trading costs, and price

impact. In this study, we cover all of them. Our measure for trading quantity is turnover

following Datar et al. (1998). Trading speed is measured by the number of days with

zero trading volume as suggested by Liu (2006). Trading costs are approximated by the

limited dependent variable model as proposed by Lesmond et al. (1999) and price impact

by the Amihud (2002) measure.

3This chapter is based on the working paper ”Illiquidity and Stock Returns: Evidence from the German

Stock market” (Koch (2010)).
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Although there is evidence for the US market, e.g., Amihud and Mendelson (1986), Pastor

and Stambaugh (2003), Acharya and Pedersen (2005), and Liu (2006) that illiquidity is a

priced risk, other papers like Mazouz et al. (2009) show that the existence of a liquidity

premium outside the US seems to be unclear and requires further analysis. Instead of

concentrating on one liquidity measure and one econometric approach as often done so

in the literature, this chapter covers all dimensions of liquidity and applies a multitude

of different methodologies. Our results reveal that an illiquidity effect prevails. There

exists a positive relation between stock returns and illiquidity. Further, we discover

a significant risk premium on illiquidity independent of the measure chosen. Yet, the

illiquidity premium is not consistent as it strongly relies on the selection of test portfolios.

Furthermore, we analyze the link between the size of the firm and the illiquidity of the

corresponding stock. Although the two concepts are correlated, we draw the conclusion

that the two measures are no substitutes for each other.

Chapter III.4 The third chapter deals with a widely accepted measure of risk, volatility,

the standard deviation of returns per time unit. Volatility is often used to identify how

risky an investment is or as a measure of the security’s stability. In classical finance

theory it is assumed that investors are risk averse and, hence, dislike high volatility.

Therefore, they require a compensation for holding volatile stocks. Not only most of the

empirical and theoretical asset pricing literature predicts a positive relationship between

volatility and expected returns, but also many practitioners believe in the trade-off

between volatility and expected returns. They share the view that high volatility must

be connived in order to earn higher expected returns.

Volatility consists of two components: systematic and idiosyncratic risk. The largest com-

ponent is idiosyncratic risk, which represents over 80% of the total volatility on average

for single stocks. The last chapter of this dissertation investigates whether idiosyncratic

volatility is a priced risk. Our results provide evidence that low idiosyncratic volatility

stocks outperform high idiosyncratic volatility stocks. Further, our empirical findings do

not support the positive relation between total volatility and expected returns, but show

that the trade-off is negative.

Although this finding is in line with papers like Ang et al. (2006b, 2009), it stands in

sharp contrast to most of the empirical and theoretical finance literature. Theoretical

4This chapter is based on the working paper ”Low Risk and High Returns: Evidence from the German

Stock Market” (Koch (2009)).
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studies like Merton (1987), Jones and Rhodes-Kropf (2003), and Malkiel and Xu (2006)

predict that investors demand a premium for holding stocks with high idiosyncratic

risk. A large number of empirical papers confirm this prediction on the US market.

Malkiel and Xu (2006), Spiegel and Wang (2005), and Fu (2009) provide unambiguous

evidence that portfolios with higher idiosyncratic volatility earn higher average returns.

In contrast to estimating idiosyncratic volatility based on daily data over the last month

as done by Ang et al. (2006b, 2009), they obtain estimates for idiosyncratic risk based

on monthly data. Studying the US market, Huang et al. (2010) find that the negative

relation between idiosyncratic risk and returns is driven by monthly stock return reversals

and, thus, disappears after controlling for past returns. Bali and Cakici (2008) detect

that the negative relation vanishes for equally-weighted portfolios on the US market.

In contrast to the existent literature, we construct an idiosyncratic risk factor and

explicitly estimate the risk premium on the German stock market controlling for the

market, size, book-to-market, and momentum factors. The results reflect the existence

of a negative premium for idiosyncratic risk. The estimated factor risk premium is 10%

per year after controlling for the other factors. Idiosyncratic risk is negatively signifi-

cant in almost all specifications not only for the Fama-MacBeth test, but also for the

GMM procedure, different test portfolios, different subperiods, and individual returns.

Motivated by the US evidence, we use equally-weighted portfolios and also control for

short-term reversal. However, low idiosyncratic risk stocks still outperform high idiosyn-

cratic risk stocks. Given these counterintuitive results, we undertake a multiplicity of

new robustness checks. First of all, we evaluate the existence of a monotonic relation

between expected returns and idiosyncratic risk applying the Monotonic Relation test

proposed by Patton and Timmermann (2010). Further, we differentiate between upside

and downside idiosyncratic volatility, apply an (E)GARCH approach, use Dimson Betas

as well as different market models to estimate idiosyncratic volatility. We also change

the data frequency and use monthly data. However, the puzzle still prevails.



8 Introduction



Chapter 1

The Conditional Relation between

Fama-French Betas and Return

1.1 Introduction

How does beta risk cross-sectionally affect asset returns? This question has inspired vast

amounts of empirical research. However, this issue has not been sufficiently answered.

Several recent articles put the standard Fama and MacBeth (1973) test procedure into

question and argue that a conditional approach as developed in Pettengill et al. (1995)

is more appropriate. While many papers applying the conditional approach find a sys-

tematic conditional relationship between risk and return, most of this literature neglects

to investigate if beta risk is a priced factor. This study considers the conditional cross-

sectional risk-return relationship in a three-factor model and tests subsequently if beta

risks based on the three factors are priced. Finally, we compare the power of this test to

the widely used Fama-MacBeth test.

The Capital Asset Pricing Model (CAPM) developed by Sharpe (1964), Lintner (1965),

and Mossin (1966) is the first model which theoretically illustrates that market risk sys-

tematically affects returns. This model sets the foundation for modern asset pricing

theory. Its central implication is that every asset’s return is a linear function of its sys-

tematic risk or market beta. Early research such as that of Black et al. (1972) and Fama

and MacBeth (1973) empirically confirms the CAPM. In the following, several studies

yield contradicting results. For example, Reinganum (1981), Fama and French (1992),

and Lettau and Ludvigson (2001) find that a systematic relationship between market beta

and average returns across assets does not exist.

9
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On top of this, the so-called anomaly literature provides a vast amount of evidence

in the 80s and 90s that the CAPM does not hold empirically. Banz (1981) documents

that small firms have on average higher risk-adjusted returns than large firms in the US.

This anomaly is entitled as the size effect. Moreover, Fama and French (1992) show that

the estimated market beta and the average returns are not systematically related once

the size and book-to-market factor are included. Finally, Fama and French (1993, 1996)

argue that many of the CAPM anomalies are captured by the Fama-French three-factor

model. Besides the inclusion of the market excess return as in the CAPM, the three-factor

model considers the size and book-to-market factor. Since its inception the Fama-French

three-factor model has been the dominant model in empirical asset pricing.

However, Pettengill et al. (1995) propose a potential explanation of the observed weak

relationship between market beta and stock returns. They point out that using realized

returns implies that there exists a negative risk-return relationship in down-markets.

Therefore, Pettengill et al. (1995) modify the Fama and MacBeth (1973) test procedure

and develop a conditional approach incorporating the presumption that the risk-return

relationship should be negative in down-markets. This is done by differentiating between

periods with a positive realized risk premium (up-market) and a negative one (down-

market). The conditional approach only tests the risk-return relation and is not related

to conditional asset pricing models producing time-varying risk premia as proposed by

Jagannathan and Wang (1996). As predicted by the conditional approach, the authors

find a positive risk-return relationship in up-markets but an inverse relationship in down-

markets for US data. Many other authors have followed the conditional test procedure.

For instance, Fletcher (2000) also reports a positive significant relationship between

market beta and returns in up-markets as well as a negative significant relationship in

down-markets for international stocks. The conditional approach has been applied for

several other countries and regions.1

However, the standard Fama-MacBeth procedure and the conditional approach test dif-

ferent hypotheses. Although both verify if there exists a systematic relationship between

1Faff (2001) applies the conditional approach for Australia, Crombez and Vennet (2000) for Belgium,

Lilti and Montagner (1998) for France, Elsas et al. (2003) for Germany, Lam (2001), Ho et al. (2006), and

Tang and Shum (2006) for Hong Kong, Hodoshima et al. (2000) for Japan, Sandoval and Saens (2004)

for Latin America, Wihlborg and Zhang (2004) for Poland, Tang and Shum (2004) for Singapore, Isakov

(1999) for Switzerland, Sheu et al. (1998) for Taiwan, Karacabey and Karatepe (2004) for Turkey, Hung

et al. (2004) for the UK as well as Huang and Hueng (2007) for daily instead of monthly US data. Basher

and Sadorsky (1991) use the conditional approach to examine the impact of oil prices on emerging market

stock returns.
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risk and return, the Fama-MacBeth procedure additionally tests if investors receive a

positive reward for holding risk, i.e., it tests if the risk premium is positive. According to

Pettengill et al. (1995) this is the case if the following two conditions are satisfied: 1) the

average market excess return is positive, 2) there is a symmetric relationship between

the market risk premium in down- and in up-markets. However, Freeman and Guermat

(2006) derive the inaccurateness of the second condition and clarify that, instead, market

risk is not priced if a specific asymmetric relationship holds. Again, we want to emphasize

that the detection of a conditional relationship between beta and return does not mean

that the risk factor beta refers to is priced.

We make three contributions to the literature. Firstly, we apply the conditional approach

to the predominant model in empirical asset pricing, the Fama-French three-factor

model. We exceed the existent literature by not only conditioning on the sign of the

market return, but on that of each of the three factors, and test if the book-to-market

beta and size beta retain their explanatory power once the conditional nature of the

relation between betas and return is taken into account. Our empirical results yield

strong support for the conditional approach. All three factors exhibit a strong positive

risk-return relationship in up-markets as well as an inverse relationship in down-markets.

While other studies do not find a relationship between market beta and return in the

presence of the size and book-to-market factor, e.g. Fama and French (1992), this study

detects a strong one. Results are consistent for subperiods and a multiplicity of different

test portfolios.

Secondly, we do not only test if there is a systematic relationship between beta risk and

return, but we extend a test proposed by Freeman and Guermat (2006) (FG test in the

following) to multi-factor models and test if beta risk is priced within the conditional

approach. The FG test simultaneously tests both hypotheses. Thus, it enables us to

compare the standard Fama-MacBeth test with the conditional test procedure and to

shed some light on previous studies dealing with the conditional approach. Within the

framework of the CAPM Freeman and Guermat (2006) show that the FG test has a power

similar to that of the standard Fama-MacBeth test under the assumption of normally

distributed returns. However, they conjecture that the FG test is more powerful when

applied to empirical data because of the unconditional leptokurtosis in observed stock

returns. In order to evaluate their conjecture, we use empirical stock market data and

run simulations creating returns with fat tails. Using empirical data, our results show

that the FG test and the Fama-MacBeth test produce qualitatively identical results. Our
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simulations confirm these results. We consider three different distributions: the Normal

distribution as well as the Pearson type IV distribution with and without skewness.

Independent of the underlying distribution, we find that both tests exhibit a similar

power and size. Thus, we cannot confirm the conjecture that the FG test has higher

power even when modeling the unconditional leptokurtosis in stock returns. Our study

conflicts with other studies like, e.g., Pettengill et al. (1995), who base their test on the

above mentioned hypothesis that there is a symmetric relationship between the expected

market excess return in down- and in up-markets. For most of our test portfolios we find

an insignificant market risk premium within the conditional approach.

Thirdly, our results accentuate how crucial the choice of test portfolios in empirical asset

pricing is. In contrast to most of the literature we make use of a variety of test portfolios.

Applying both the Fama-MacBeth and the FG test, we find that the significance of

market, size and book-to-market risk strongly depends on the selection of test portfo-

lios. For the same risk factor we find positive, insignificant, and even negative risk premia.

The remainder of this chapter is organized as follows. In the next section we intro-

duce the conditional approach in the setting of the Fama-French three-factor model and

the econometric methodology. Section 1.3 discusses the data and the construction of the

size and book-to-market factor. Section 1.4 reports the empirical results of the standard

Fama-MacBeth and the conditional test. Subsequently, we present the derivation of the

FG test in a multi-factor setting as well as its empirical results. In section 1.6 we compare

the size and the power of the Fama-MacBeth to the power and the size of the FG test.

Section 1.7 concludes.

1.2 Methodology

We consider the Fama-French three-factor model and, in contrast to most of the existing

literature, allow for time-varying betas. The decision to allow the sensitivities to the

risk factors to change over time is made in view of the several decades long data set

used and the apparent change in asset and portfolio betas over time that is found in the

data. The relevance of time-varying betas is emphasized in several papers, e.g., Harvey

(1989), Ferson and Harvey (1991, 1993), and Jagannathan and Wang (1996). The three

risk factors of the Fama-French model are denoted by m for market risk, smb for the size

risk factor (’small minus big’) relating to the market value of equity, and hml for the
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book-to-market factor (’high minus low’). Thus, the sensitivities of a portfolio i to the

risk factors at time t are denoted βmi,t, β
smb
i,t , βhmli,t . Our estimation results are based on

the Fama-MacBeth (1973) approach. Besides the advantage of an easy implementation it

automatically corrects standard deviations for heteroscedasticity, which is a widespread

problem among asset returns. We estimate the Fama-French betas for every portfolio

from the following time-series regression,

rei,τ = αi,t + βmi,tr
e
m,τ + βsmbi,t rsmb,τ + βhmli,t rhml,τ + εi,τ τ = t− 60....t− 1, (1.1)

where rei,τ denotes the excess return of portfolio i during time period τ , rem,τ the market

excess return, rsmb,τ and rhml,τ the returns on the SMB and HML factors, respectively.

This procedure is repeated by rolling the window of 60 months of observations one month

ahead. Rolling windows of five years make an appropriate compromise between adjusting

to the latest changes and avoiding of noise in the monthly estimations. The rolling five

year windows have also been suggested in earlier literature such as Groenewold and Fraser

(1997), Brennan et al. (1998), and Fraser et al. (2004). The next step consists of estimating

the risk premia λ0,t, λm,t, λsmb,t and λhml,t using the estimated betas β̂mi,t, β̂
smb
i,t and β̂hmli,t

from equation 1.1 , i.e. computing cross-sectional regressions for every month,

rei,t = λ0,t + λm,tβ̂
m
i,t + λsmb,tβ̂

smb
i,t + λhml,tβ̂

hml
i,t + ηi,t. (1.2)

The factor risk premium, λj with j = 0,m, smb, hml, is estimated as the average of the

cross-sectional regression estimate, λ̂j = 1
T

∑T
t=1 λ̂j,t. λj is the factor risk premium which

compensates the investors for the risk taken. λm is interpreted as the market price of risk,

λsmb and λhml as the price of size and book-to-market risk.2 Since the betas are estimated

from a first-step regression, standard errors for the second regression can be misleading. In

order to circumvent the presence of this errors-in-variables problem we apply a correction

to the standard errors as proposed by Shanken (1992). Yet, the Shanken correction has

to be treated critically as shown by Shanken and Weinstein (2006) because in practical

applications it often yields a modified cross-product matrix of the estimated beta vectors

that is not positive definite as it should be.

Estimating equation 1.2 by the Fama-MacBeth procedure leads to conclusions on whether

the risk factors are priced. For instance, if λm,t is nonzero, market risk is a priced factor.

2The interpretation of the size and book-to-market risk is discussed in the literature. For instance,

according to Amihud and Mendelson (1986, 1991) size may proxy for liquidity risk and Vassalou and Xing

(2004) argue that the book-to-market ratio captures default risk.
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If, on the other hand, λm,t is not distinguishable from zero, then market risk is not priced.

This can be the case either if there does not exist any relationship between beta and return

or if it does exist but the market risk premium is not distinguishable from zero. Therefore,

it is possible that beta is not priced despite the existence of a risk-return relationship. On

this account we apply a procedure that has been suggested by Pettengill et al. (1995) in

the context of the CAPM, which exclusively tests the relationship between market beta

and realized returns conditional on whether the market excess return, i.e. the realized

market risk premium, is positive or negative. This test takes into account that empirical

tests are based on realized returns although the CAPM is stated in expectational terms.

According to the CAPM the expected market excess return is positive3 and, thus, there

should exist a positive risk-return relation. However, the realized market excess return

can also be negative implying a negative relation between beta and return. In order to test

the systematic relationship between risk and return, the following equation is estimated:

rei,t = λ0,t + λ+
m,tδm,tβ̂

m
i,t + λ−m,t(1− δm,t)β̂mi,t + ηi,t. (1.3)

While Pettengill et al. (1995) conduct this procedure for the CAPM and for beta constant

over time, we apply the Fama-French three-factor model and allow for time-varying betas.

That is, we estimate the following equation:

rei,t = λ0,t + λ+
m,tδm,tβ̂

m
i,t + λ−m,t(1− δm,t)β̂mi,t

+ λ+
smb,tδsmb,tβ̂

smb
i,t + λ−smb,t(1− δsmb,t)β̂

smb
i,t

+ λ+
hml,tδhml,tβ̂

hml
i,t + λ−hml,t(1− δhml,t)β̂

hml
i,t + ηi,t.

(1.4)

The δs are dummy variables with the value 1 if the market, the SMB and the HML

factors, respectively, yield a positive excess return and 0 otherwise. We conduct cross-

sectional regressions for each month as in the unconditional case. Our conditional esti-

mates are λ̂+
j = 1∑T

t=1 δj,t

∑T
t=1 λ̂j,tδj,t and λ̂−j = 1∑T

t=1(1−δj,t)

∑T
t=1 λ̂j,t(1−δj,t), respectively.

That means, the parameters are averaged conditional upon the sign of the risk factors.

We would like to stress that the conditional approach sharply differs from the way of

estimating conditional asset pricing models since we do not estimate conditional betas

in the first-step regression. Furthermore, the conditional approach differs from studies

differentiating between upside and downside betas such as Ang et al. (2006a). Instead, we

3This follows from the assumption that agents are risk averse and that there is a positive net supply

of market risk.
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split our sample into different subsamples depending on positive or negative risk factors

when conducting cross-sectional regressions in the second step.

While the Fama-MacBeth procedure tests whether betas are priced risk factors, the con-

ditional approach as applied here only enables us to test whether there is a systematic

relation between a risk factor and the realized returns. In other words, finding a signifi-

cant relation between beta risk and return does not automatically imply that beta risk is

priced and the model holds.

1.3 Data

This study uses monthly data from July 1926 through June 2008. The entire dataset is

taken from Kenneth French’s homepage. We deploy the 25 portfolios formed according to

the same criteria as those used in Fama and French (1992, 1993), i.e., the portfolios are

value-weighted for the intersections of five size and five book-to-market equity portfolios.

The portfolios are constructed at the end of June, and size is measured by market capi-

talization of equity at the end of June. The book-to-market ratio is book equity at the

last fiscal year end of the prior calendar year divided by the market capitalization at the

end of December of the prior year. Additionally, we include 25 portfolios sorted by size

and momentum, 10 portfolios sorted by momentum, 10 portfolios sorted by short-term

reversal, 10 portfolios sorted by the earnings-price ratio, 10 by the cash flow-price ratio,

and 10 by the dividend yield. 25 size and momentum portfolios are the intersections

of five portfolios sorted by size and five portfolios formed on the previous eleven months

return lagged by one month (past 2-12 return). In the same way, 10 momentum portfolios

are constructed. 10 short-term reversal portfolios are constructed monthly formed on the

return of the previous month. 10 portfolios sorted by the earnings-price and cash flow

to price ratio are formed in June of year t based on the fiscal year t − 1. Earnings are

measured as earnings before extraordinary items. Cash flow are earnings before extraor-

dinary items plus equity’s share of depreciation plus deferred taxes. Finally, 10 portfolios

are formed on dividend-price ratio at the end of each June using NYSE breakpoints. The

dividend yield used to form portfolios in June of year t is the sum of dividends paid from

July of t− 1 to June of t per dollar of equity in June of t.

Furthermore, this study employs the three Fama-French factors. Although the composi-

tion of the market portfolio is not observable, we approximate the market excess return

by the return on the value-weighted CRSP index compromising all NYSE, AMEX and
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NASDAQ stocks minus the one-month Treasury bill-rate (from Ibbotson Associates).

The size and book-to-market factor base on six portfolios, which are the intersections

of two portfolios formed on size and three portfolios formed on the book-to-market ra-

tios. Portfolios consisting of small (big) firms are denominated as small (big) portfolios,

whereas portfolios consisting of firms with a low (high) book-to-market value are denoted

as growth (value) portfolios. The size factor (SMB) is constructed as the difference be-

tween the average return on three small firm portfolios and the average return on three

big firm portfolios. The book-to-market factor (HML) is the average return on the two

value portfolios minus the average return on the two growth portfolios. The returns are

based on all NYSE, AMEX and NASDAQ stocks, for which book and market equity data

are available.

1.4 Empirical Results

1.4.1 Fama-MacBeth Test

Before presenting the results of the unconditional test resulting from conducting the Fama-

MacBeth procedure, we want to stress the importance of using time-variant betas. Figures

1.1, 1.2, and 1.3 illustrate the variation in time of market, size and book-to-market betas

from 1931:07 to 2008:06. As dependent variables we use the 25 size and book-to-market

portfolios. Betas are calculated using equation 1.1. For the sake of clearness, we only

illustrate portfolios 1, 25, and 10. Portfolio 1 contains the smallest growth stocks and

is used as an example for large changes in betas over time. Portfolio 25 consists of the

biggest value stocks and is an example for medium changes in betas over time. Portfolio

10 comprises stocks with the second smallest market capitalization and the highest book-

to-market ratios. Its betas display small changes over time.

The dashed lines represent the 95% confidence interval. In particular, portfolio 1

indicates a strong variation in the betas across time. Although the betas of portfolio 25,

figure 1.2, and particularly portfolio 10, figure 1.3, appear to be much less variable, even

in the latter case market beta varies between 0.62 and 1.25, size beta between 0.69 and

1.23, and book-to-market beta between 0.50 and 1.24.

Table 1.1 shows the results of the Fama-MacBeth estimation for the whole period using

equation 1.2. The monthly estimates of the coefficients are averaged and a t-test is applied

to determine the statistical significance of the mean of the estimated coefficients. The



Empirical Results 17

Figure 1.1: Fama-French Betas for Portfolio 1

Figure 1.2: Fama-French Betas for Portfolio 25

Figure 1.3: Fama-French Betas for Portfolio 10
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market risk premium is negative but insignificant and, thus, market risk is not found

to be priced. Size risk is not found to be significant, either, while the coefficient of the

book-to-market risk premium is highly significant. The constant is implausibly high.

However, this is a feature occurring in most empirical studies that report the constant,

for example Jagannathan and Wang (1996) and Lettau and Ludvigson (2001). In the

Table 1.1: Fama-MacBeth Test

Variable λ t-stat R̄2

Cons 1.04 4.63*** 0.47

Market -0.31 -1.35

SMB 0.18 1.64

HML 0.41 3.49***

*** significant (1-percent level)

This table depicts the results for the Fama-French three-factor model given by equation 1.2. Cons denotes

the constant term, Market the risk premium of the market risk, SMB that of the size, and HML that

of the book-to-market risk. Our dependent variables are 25 portfolios sorted by size and book-to-market

equity. The coefficients are given as percentage points per month. R̄2 is the average cross-sectional R2.

The sample period runs from 1931:07 to 2008:06.

following we conduct the same analysis for four subperiods, the results being detailed in

table 1.2. The subperiods are chosen such that they are of equal length. We observe

that the size risk premium is not significant in any of the subperiods. Market risk is

negatively priced in the fourth subperiod but insignificant in all other subperiods. The

significance of the book-to-market premium varies, though, it is priced at the 1% level

in the third period, while its coefficient, as that of the size premium, has the expected

sign in all subperiods. Generally, though rarely done so in the literature, applying the

Shanken (1992) correction to the standard errors would be advisable in order to overcome

the errors-in-variables problem. We follow the heuristic in Shanken (1992) for the case of

time-varying betas. The Shanken correction factors are negligible, increasing the standard

errors by only 0.5% for the whole sample and by 1.7% on average for the subsamples,

such that the significance of the coefficients is not changed. In the following, we disregard

the correction factor.
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Table 1.2: Fama-MacBeth Test - Subperiods

1931:07-1950:09 1950:10:1969:12

Variable λ t-stat R̄2 λ t-stat R̄2

Cons 0.80 1.17 0.42 1.14 3.98** 0.40

Market 0.30 0.43 -0.32 -1.09

SMB 0.37 1.29 0.14 0.93

HML 0.49 1.41 0.21 1.63

1970:01-1989:03 1989:04-2008:06

Variable λ t-stat R̄2 λ t-stat R̄2

Cons 0.89 2.46** 0.55 1.31 3.74*** 0.51

Market -0.49 -1.03 -0.75 -1.91*

SMB 0.16 0.86 0.05 0.22

HML 0.64 3.49*** 0.28 1.33

* significant (10-percent level)

** significant (5-percent level)

*** significant (1-percent level)

This table depicts the results for the Fama-French three-factor model for four subperiods. Cons denotes

the constant term, Market the risk premium of the market risk, SMB that of the size, and HML that

of the book-to-market risk. The coefficients are given as percentage points per month. Our dependent

variables are 25 portfolios sorted by size and book-to-market equity. R̄2 is the average cross-sectional R2.
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Table 1.3: Conditional Relation between Fama-French Betas and Returns

Variable λ t-stat

Cons 1.04 4.63***

Market-up 1.62 5.11***

Market-down -3.20 -8.54***

SMB-up 2.17 14.82***

SMB-down -1.95 -9.13***

HML-up 2.26 16.19***

HML-down -1.96 -8.17***

*** significant (1-percent level)

This table depicts the results of the conditional relation between Fama-French betas and return given by

equation 1.4 for the entire sample. Cons denotes the constant term, Market-up (-down) the risk premium

of the market given that the excess market return is positive (negative), SMB-up (-down) that of the size

given that the SMB factor is positive (negative), and HML-up (-down) that of the book-to-market risk

given that the HML factor is positive (negative). Our dependent variables are 25 portfolios sorted by size

and book-to-market equity. The coefficients are given as percentage points per month. The sample period

runs from 1931:07 to 2008:06.

1.4.2 Conditional Relationship

First of all we check how frequently the realized excess return is negative. If it were hardly

ever negative, the conditional relationship would have an negligible impact on tests of the

relationship between beta and return. The risk-free rate exceeds the market return in

40.2% of the observations for the entire period. Moreover, in 48.4% of the observations

the size factor and in 44.0% the book-to-market factor is negative, which accentuates the

relevance of the distinction between up-markets and down-markets. Table 1.3 depicts the

results of the conditional test for the entire sample. All coefficients are highly significant.

The fact that we observe a strong relationship between market risk and returns is, among

others, consistent with Pettengill et al. (1995) and Fletcher (2000). Moreover, our results

clarify that there also exists a strong conditional relationship between returns and size as

well as book-to-market beta.

Market beta is associated with increasing absolute returns, i.e. positively increasing re-

turns in up- and negatively increasing returns in down-markets. The same applies to the

size and book-to-market risk factors while the constant, as expected, does not change com-

pared to the results of the Fama-MacBeth method. In contrast to Pettengill et al. (1995)
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Table 1.4: Conditional Relation between Fama-French Betas and Returns - Subperiods

1931:07-1950:09 1950:10:1969:12 1970:01-1989:03 1989:04-2008:06

Variable λ t-stat λ t-stat λ t-stat λ t-stat

Cons 0.80 2.38** 1.14 3.98*** 0.89 2.46** 1.31 3.74***

Market-up 2.38 2.37** 0.85 2.40** 2.06 4.13*** 1.29 2.75***

Market-down -2.89 -2.98** -2.37 -4.24*** -3.39 -5.01*** -4.07 -5.21***

SMB-up 2.37 5.91*** 1.64 9.37*** 2.20 11.02*** 2.46 8.46***

SMB-down -2.21 -4.37*** -1.36 -4.39*** -2.00 -4.61*** -2.25 -4.71***

HML-up 3.24 6.52*** 1.32 10.01*** 2.24 14.97*** 2.35 10.24***

HML-down -2.44 -3.95*** -1.29 -4.38*** -2.02 -3.97*** -2.04 -4.24***

** significant (5-percent level)

*** significant (1-percent level)

This table depicts the results of the conditional relation between Fama-French betas and return given

by equation 1.4 for the four subperiods. Cons denotes the constant term, Market-up (-down) the risk

premium of the market given that the excess market return is positive (negative), SMB-up (-down) that

of the size given that the SMB factor is positive (negative), and HML-up (-down) that of the book-to-

market risk given that the HML factor is positive (negative). The coefficients are given as percentage

points per month. Our dependent variables are 25 portfolios sorted by size and book-to-market equity.

the coefficients show asymmetry concerning the market risk. Returns increase less with

beta when the market excess return is positive than they decrease when it is negative.

This might intuitively explain why, while the market on average increases and beta re-

lates asset returns to market returns, there is no significant risk premium for the market

risk. In contrast, the coefficients for the size and book-to-market risk are not significantly

asymmetric.4 The results for the subperiods show similar results. In contrast to the find-

ings of the standard Fama-MacBeth procedure the conditional approach leads to results

that are consistent over time. All variables retain their significance in each of the four

subperiods as illustrated in table 1.4.

We do not report the R̄2 since they comply with the values of the Fama-MacBeth proce-

dure.5

4 Testing for asymmetric coefficients results in the following test values: -3.2*** (Market), 0.87 (SMB)

and 1.09 (HML). The null hypothesis is λ+
j + λ−j = 0.

5 The conditional approach is based on the same regressions as the Fama-MacBeth test but it splits up

the variables in positive and negative factor realizations. Therefore, the constant and the cross-sectional

R̄2 are identical.
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1.5 Testing for Priced Betas

1.5.1 Derivation of the FG Test

Our findings in the last section exclusively provide strong evidence for a systematic rela-

tionship between Fama-French betas and return. In this section we go one step further

and test not only if there exists a systematic relationship between beta and return but

also if beta risk is priced within the conditional approach. Besides the existence of a sys-

tematic relationship a priced beta would require a reward to compensate investors for the

risk taken. In the following we generalize the FG test to a multi-factor framework and test

if Fama-French betas are priced. Since the FG test and the standard Fama-MacBeth pro-

cedure are now based on the same hypothesis, it is possible to compare both procedures

and to judge the relevance of the conditional approach. Freeman and Guermat (2006)

base their test on the CAPM. We extend the test to multi-factor models. Moreover, we

allow for time-variant betas. Consider the following return generating process:

rei,t = E(rei,t) + βmi,t[r
e
m,t − E(rem,t)] + βsmbi,t [rsmb,t − E(rsmb,t)] + βhmli,t [rhml,t − E(rhml,t)] + εi,t.

(1.5)

The error term εi,t, E[εi,t] = 0, is assumed to be uncorrelated with both the betas and

the excess returns. Yet, the error terms can be cross-sectionally correlated. Additionally,

consider the expected return process:

E(rei,t) = αi,t + βmi,tπ
m + βsmbi,t πsmb + βhmli,t πhml (1.6)

αi,t represents a compensation for other risk factors that are orthogonal to the three

included factors. Hence, it is assumed that αi,t and βi,t are uncorrelated. Choosing

αi,t = 0, πm = E[rem,t], π
smb = E[rsmb,t] and πhml = E[rhml,t] would imply that the return

process equals the Fama-French three-factor model. To put it differently, if πj = 0, the

risk factor j is not priced. This approach enables us to verify if beta risk is priced. For

instance, testing the sole hypothesis that market risk is not priced under the assumption

of a three-factor model, corresponds to the null hypothesis πm = 0. We begin with the

linear regression equation of our model:

rei,t = λ0,t + λm,tβ
m
i,t + λsmb,tβ

smb
i,t + λhml,tβ

hml
i,t + ηi,t. (1.7)

According to the Fama-MacBeth procedure ordinary least squares regressions are con-

ducted for all t.
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Denote β′
i,t = [βmi,tβ

smb
i,t βhmli,t ],f ′

t = [rem,trsmb,trhml,t],π
′ = [πmπsmbπhml] and λ′

t =

[λm,tλsmb,tλhml,t]. According to the properties of ordinary least squares we obtain

λt = var(βi,t)−1cov(βi,t, r
e
i,t)

= var(βi,t)−1cov(βi,t, E[ret ] + β′
i,t(ft − E[ft]))

= var(βi,t)−1cov(βi,t, αi,t + β′
i,tπ) + ft − E[ft]

= π + ft − E[ft],

where var(βi,t) is the 3× 3 matrix of the variances and covariances of beta. Testing,

e.g., the null hypothesis that market risk is not priced we obtain the following equations:

λ+
m = E[rem,t|rem,t > 0]− E[rem,t]

λ−m = E[rem,t|rem,t < 0]− E[rem,t]

λ+
m + λ−m = E[rem,t|rem,t > 0] + E[rem,t|rem,t < 0]− 2E[rem,t].

This formula shows that our generalization of the Freeman and Guermat (2006) test

procedure to multi-factor models leads to the same test equation. As the formula illus-

trates, the relation between λ+
m and λ−m is generally asymmetric under the null hypothesis.

By contrast, Pettengill et al. (1995) assume that priced beta risk corresponds to a sym-

metric relationship between λ+
m and λ−m. Our test equation shows that this does not

hold true as there is no reasonable argument why the expected value of the risk premium

conditional on it being positive or negative should have the same absolute expected size.

The Fama-MacBeth test is a special case of the FG test, disregarding the differentiation

between λ+
m and λ−m. In this case, we only consider unconditional expected values and,

hence, under the null hypothesis, πm = 0, we obtain λm = 0. This is the usual equation

testing for the significance of market risk within the Fama-MacBeth framework.

In order to avoid messy notation, the right hand side of the last equation is denoted as

θm = E[rem,t|rem,t > 0] + E[rem,t|rem,t < 0]− 2E[rem,t].

1.5.2 The Bootstrap

Since λ+
j + λ−j − θj = 0 holds under the null hypothesis that risk factor j,

j ∈ {m, smb, hml}, is not priced, this condition can be tested by a simple t-test:

t =
λ̂+
j + λ̂−j − θ̂j

ˆstdj
. (1.8)
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θj can be consistently estimated by taking sample averages. Provided that the standard

deviation of the numerator stdj can also be consistently estimated, the Central Limit

Theorem can be applied and hence, the asymptotic normality of the statistic follows from

White (1999). However, since the components of θj are based on different sample sizes,

the covariances cannot be estimated directly. One way to overcome this obstacle is to

apply a bootstrap. It helps us learn about the sample characteristics by taking resamples

and using this information to infer about the population. As shown by Babu and Singh

(1984) the bootstrap can be used to consistently estimate a wide range of statistics, in-

cluding not only the sample mean, but also the sample variance and smooth transforms

of these statistics. In our setting the bootstrap is applied as follows. T observations are

independently drawn with replacement. This gives us a new sample (re
∗
j,t, λ

∗
j ). By calcu-

lating λ̂+∗
j , λ̂−∗j and θ̂∗j from the new sample, we obtain an estimate for the numerator.

This result is saved and the whole procedure is repeated S times. Finally, the bootstrap

variance is the sample variance of the S estimates of the numerator. In order to choose

S sufficiently large, we take S equal to 10,000.

However, this procedure relies on the assumption that returns are identically and inde-

pendently distributed. In order to account for possible autocorrelation and clusterings

we additionally conduct a block bootstrap. The Moving Block Bootstrap developed by

Künsch (1989) draws blocks of length l instead of drawing T observations independently.

Lahiri (1999) shows that the Moving Block Bootstrap performs better than other block

bootstraps in terms of the mean squared error. With respect to this criterion, Künsch

(1989) shows that l = T
1
3 is the optimal block length.

1.5.3 Empirical Results

This subsection presents the test results of the FG test developed in subsection 1.5.1 based

on the simple bootstrap and the Moving Block Bootstrap. Although θj is unknown and

has to be estimated as well, we also consider the case of a known θj as a benchmark. By

assuming a known θj the bootstrap becomes dispensable since the standard deviation can

be solely calculated from the variances of λ̂+
j and λ̂−j . Under this simplifying assumption

Freeman and Guermat (2006) reinterpreted the results in Pettengill et al. (1995), Fletcher

(2000) and Hung et al. (2004) by testing if the market beta is a priced risk factor within

the conditional approach. In the case of Pettengill et al. (1995), which is the only study

dealing with monthly US data, they draw the conclusion that market risk is a priced risk
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factor. Therefore, comparing the benchmark with the case of an unknown θj enables us

to shed some light on the results in Freeman and Guermat (2006).

Table 1.5 illustrates the results of the FG test for the entire period. Neither the market

nor the size risk can be shown to be priced, independent of the method used for the

computation of standard errors. The t-values generally decrease in absolute values when

choosing the Moving Block Bootstrap rather than the simple bootstrap. Under the as-

sumption of known θj the t-values rather decrease in absolute values since the positive

covariance between λ+
j + λ−j and θj is neglected. The finding that the pricing of market

beta cannot be confirmed stands in contrast to that of Freeman and Guermat (2006).

Apart from the different sample periods, the most plausible reason for this finding is that

the inclusion of size and book-to-market distinctly decreases the explanatory power of

the market factor and causes insignificance of the coefficient. Thus, with respect to the

market risk the results of the FG test are in line with previous tests, e.g., Fama and

French (1992).

Although the results from the block bootstrap are qualitatively identical in comparison

to the simple bootstrap, the t-values change, i.e. the book-to-market and size coefficient

exhibit slightly lower t-values. In the following, results are exclusively based on the block

bootstrap. Table 1.6 illustrates the results from the FG test for the four subperiods. The

coefficient for the market risk turns from positive to negative over time. Though, each

of the coefficients is insignificant. In contrast to the standard Fama-MacBeth test the

FG test provides lower t-values for market risk except for the third period, in which they

almost coincide. Concerning the size risk all coefficients are positive but insignificant in

each subperiod. The book-to-market risk factor is significant at the 1% level in the third

period and insignificant in the others, which confirms the results from the Fama-MacBeth

test. Moreover, both tests indicate large standard deviations and hence, smaller t-values

for the subperiods, which leads to less significant and partly to inconsistent results.6

All in all, our results show that the book-to-market beta is a priced risk factor, size

beta cannot be shown to be significant and market beta is not priced. Further-

more, we can subsume that the results from the FG test and the Fama-MacBeth test

are qualitatively similar. Therefore, our findings place emphasis on the results of

6Additionally, we consider the same period as in Fama and French (1992) running from 1963 to 1990.

Both, the Fama-MacBeth and the FG test, find insignificant premia for market and size risks but a

priced book-to-market risk. These results differ from those in Fama and French (1992) who use firm

characteristics instead of factor mimicking portfolios.
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Table 1.5: FG Test

Variable λ+
j + λ−j − θj t-stat (known θj) t-stat (simple B.) t-stat (Block B.)

Market -0.07 -0.14 -0.14 -0.14

SMB 0.37 1.43 1.64 1.62

HML 0.86 3.09*** 3.58*** 3.27***

*** significant (1-percent level)

This table depicts the results of the FG test for the entire period assuming a constant θj as well as applying

the simple bootstrap and the block bootstrap, respectively. Market is the risk premium of the market,

SMB that of the size, and HML that of the book-to-market risk. λ+
j + λ−j − θj are defined as presented

in subsection 1.5.1. Our dependent variables are 25 portfolios sorted by size and book-to-market equity.

The sample period runs from 1931:07 to 2008:06.

Freeman and Guermat (2006), but stand in sharp contrast to the results of Pettengill

et al. (1995). Basing their test on the inaccurate hypothesis that beta risk is priced if

there is a symmetric relationship between the expected market excess return in down-

and in up-markets and if a positive market excess return exists, Pettengill et al. (1995)

draw the conclusion that the market risk premium is positively priced.

1.5.4 Robustness

In addition to the analysis based on portfolios sorted by size and book-to-market, we

conduct the same procedure for other portfolios not or only partly sorted by the risk

factors contained in the Fama-French three-factor model in order to verify the results

we obtained previously. First, we choose 10 portfolios sorted by momentum since most

asset pricing models come off badly in explaining momentum portfolios. For example,

Fama and French (1996) and Grundy and Martin (2001) find that controlling for the

market, the size effect and the book-to-market effect even increases the profitability of

momentum strategies. Thus, this sorting appears to be an intuitive contrast to that

with respect to size and book-to-market ratio, and it is a useful robustness check of our

existing test results. As it is desirable to have a larger number of data points in the

cross-sectional regressions in order to reduce the standard errors of the estimates, we

also choose to try and explain the returns of 25 portfolios sorted by momentum and

size. Additionally, we consider portfolios based on other characteristics and include 10
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Table 1.6: FG Test - Subperiods

λ+
j + λ−j − θj t-stat λ+

j + λ−j − θj t-stat

Variable 1931:07-1950:09 1950:10:1969:12

Market 1.79 1.29 0.05 0.09

SMB 0.82 1.64 0.26 0.69

HML 1.01 1.48 0.46 1.43

1970:01-1989:03 1989:04-2008:06

Market -0.85 -1.04 -1.19 -1.62

SMB 0.33 0.74 0.10 0.22

HML 1.28 3.07*** 0.58 1.03

*** significant (1-percent level)

This table depicts the results of the FG test for the four subperiods based on the block bootstrap. Market

is the risk premium of the market, SMB that of the size, and HML that of the book-to-market risk.

λ+
j +λ−j −θj are defined as presented in subsection 1.5.1. Our dependent variables are 25 portfolios sorted

by size and book-to-market equity.

cash-flow price portfolios, 10 earnings-price portfolios, 10 dividend-price portfolios and 10

short-term reversal portfolios.

Table 1.7 depicts the results of the Fama-MacBeth test and the FG test. In the case

of the 25 momentum-size portfolios size risk is positively priced whereas market risk is

negatively priced and book-to-market risk is insignificant. The results for the FG test

are similar except that market risk is not significant at the 10% level. In contrast to

the 25 size and book-to-market portfolios used in the the previous sections, the book-to-

market factor is not priced when considering the 25 size and momentum portfolios. This is

confirmed for the 10 portfolios exclusively sorted with respect to momentum. Size risk as

well as market risk are negatively priced, whereas book-to-market risk is unpriced. Again,

the FG test finds a priced size factor, though, an insignificant coefficient for market and

book-to-market risk. The relevance of size risk suggests that the risk of buying stocks of

small firms has a negative influence on the momentum returns. An intuitive explanation

is the following. This observation may be caused by the fact that winner stocks, in

particular portfolios seven to nine, are negatively correlated with the size factor. After a

period of exceptional performance small firms possibly have significant opportunities to

continue their fast growth while bigger ones may be limited in their capacity to create

further growth. Therefore, bigger companies may be considered riskier and, thus, require
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Table 1.7: Fama-MacBeth Test and FG Test for Diverse Test Portfolios

λ t-stat λ+
j + λ−j − θj t-stat

Variable 25 momentum-size (1932:01-2008:06)

Market -0.63 -2.18** -0.90 -1.57

SMB 0.35 2.82*** 0.72 2.84***

HML -0.13 -0.67 0.09 0.24

10 momentum (1932:01-2008:06)

Market -0.71 -1.68* -0.88 -1.07

SMB -0.37 -1.90* -0.69 -1.76*

HML -0.37 -1.51 -0.36 -0.75

10 cash flow-price (1956:07-2008:06)

Market 0.79 1.89* 2.20 2.60***

SMB 0.07 0.36 0.20 0.46

HML 0.36 2.66*** 0.75 2.80***

10 earnings-price (1956:07-2008:06)

Market 0.66 1.91* 1.79 2.61***

SMB 0.42 1.98** 0.88 2.09**

HML 0.41 2.93*** 0.90 3.19***

10 dividend-price (1932:06-2008:06)

Market -0.26 -0.90 -0.04 -0.06

SMB 0.02 0.10 0.11 0.23

HML 0.09 0.61 0.38 1.19

10 short-term reversal (1931:02-2008:06)

Market 1.25 2.55** 3.18 3.43***

SMB -0.36 -1.21 -0.64 -1.13

HML 0.28 0.99 0.91 1.61

* significant (10-percent level)

** significant (5-percent level)

*** significant (1-percent level)

This table depicts the results for the Fama-French three-factor model given by equation 1.2 using the

returns of 25 portfolios sorted by momentum and size, 10 portfolios sorted by momentum, 10 portfolios

sorted by the cash flow-price ratio, 10 portfolios sorted by the earnings-price ratio, 10 portfolios sorted

by the dividend-price ratio, and 10 portfolios sorted by short-term reversal as dependent variables. λ

represents the estimate based on the Fama-MacBeth approach and λ+
j + λ−j − θj the estimate based on

the FG test. Market denotes the risk premium of the market risk, SMB that of the size and HML that of

the book-to-market risk. The coefficients are given as percentage points per month.
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a higher return due to their size. The negative pricing of market risk may be explained

by a negative correlation between momentum and market betas. For the other four test

portfolios we find very similiar results in terms of the significance of beta risk. As in the

last subsections the results of the FG test affirm the results of the Fama-MacBeth test.

Still, the similarity of the two tests can be accidental. In order to gain deeper insights

we conduct a simulation to evaluate the power and the size of the two tests in the next

section.

An interesting by-product is the finding that the significance of the risk factor highly

depends on the way test portfolios are sorted. For instance, book-to-market risk is highly

significant for the 10 cash flow-price portfolios and 10 earnings-price portfolios, though,

it is not for the 10 dividend-price portfolios and 10 short-term reversal portfolios.

For the sake of completeness we also present the results of the conditional approach

using different test portfolios as dependent variables. As depicted in table 1.8, most coef-

ficients are significant. Exceptions are the HML-up λ for the pure momentum portfolios,

the Market-down λ for the cash flow portfolios and the SMB-up λ for the 10 short-term

reversal portfolios. All other coefficients are in line with our presumption finding positive

coefficients for positive factor realizations and negative coefficients for negative factor re-

alizations such that we can draw the conclusion that there exists a strong relationship

between Fama-French betas and return independent of the construction of test portfolios.7

1.6 Simulation

So far, our results suggest that the Fama-MacBeth and the FG test lead to qualitatively

similar results. However, this might occur merely by coincidence. The number of ways test

portfolios are sorted is limited and does not allow us to draw any firm conclusions. In order

to compare the performance of the two tests in a more general way, a simulation approach

seems appropriate. We calibrate a Monte Carlo simulation in order to determine the power

and the size of the Fama-MacBeth and the FG test. Our simulation works as follows.

Initially, we estimate betas from 25 portfolios sorted by size and book-to-market. We

7The results for the subperiods are consistent.
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Table 1.8: Conditional Relation between Fama-French Betas and Returns for Diverse Test

Portfolios

25 momentum-size 10 momentum 10 cash flow-price

(1932:01-2008:06) (1932:01-2008:06) (1956:07-2008:06)

Variable λ t-stat λ t-stat λ t-stat

Cons 1.47 4.92*** 1.51 3.61*** -0.31 -0.74

Market-up 1.64 4.18*** 1.25 2.26** 2.14 4.17***

Market-down -4.04 -8.65*** -3.64 -5.40*** -1.15 -1.60

SMB-up 2.28 12.95*** 1.14 4.31*** 1.18 4.37***

SMB-down -1.71 -7.70*** -1.98 -6.63*** -1.08 -3.29***

HML-up 0.69 2.68** 0.32 0.94 1.99 13.62***

HML-down -1.18 -4.16*** -1.26 -3.53*** -1.87 -6.31***

10 earnings-price 10 dividend-price 10 short-term reversal

(1956:07-2008:06) (1932:06-2008:06) (1931:02-2008:06)

Cons -0.12 -0.34 1.04 3.56*** -0.63 -1.32

Market-up 2.34 5.31*** 1.78 4.85*** 2.97 4.35***

Market-down -1.75 3.01*** -3.34 -6.63*** -1.29 -1.85*

SMB-up 1.69 5.53*** 1.26 4.19*** 0.65 1.45

SMB-down -0.91 -2.95*** -1.29 -3.41*** -1.43 -3.63***

HML-up 1.90 12.28*** 1.41 7.31*** 1.06 2.70***

HML-down -1.63 -5.59*** -1.62 -6.35*** -0.71 -1.68*

* significant (10-percent level)

** significant (5-percent level)

*** significant (1-percent level)

This table depicts the results for the Fama-French three-factor model given by equation 1.4 when using the

returns of 25 portfolios sorted by momentum and size, 10 portfolios sorted by momentum, 10 portfolios

sorted by the cash flow-price ratio, 10 portfolios sorted by the earnings-price ratio, 10 portfolios sorted

by the dividend-price ratio, and 10 portfolios sorted by short-term reversal as dependent variables. Cons

denotes the constant term, Market-up (-down) the risk premium of the market given that the excess

market return is positive (negative), SMB-up (-down) that of the size given that the SMB factor is

positive (negative), and HML-up (-down) that of the book-to-market risk given that the HML factor is

positive (negative). The coefficients are given as percentage points per month.
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assume that our time-varying betas are predetermined for the entire simulation.8 As cross-

sectional correlation among portfolio returns is to be suspected, we use the residuals of the

25 portfolios to estimate a cross-sectional correlation matrix. By multiplying the Cholesky

decomposition of the correlation matrix with the generated residuals we incorporate cross-

sectional correlation into our framework.

In the second step, we generate error terms. We consider three different ways to specify

residuals. As a benchmark case we assume that residuals are normally distributed with

mean zero. We obtain the variance by calculating the empirical variance of the residuals

for each portfolio. Since normally distributed stock returns cannot model the observed

unconditional leptokurtosis in stock returns, we examine two further approaches. In

order to model residuals in a more realistic fashion, we generate residuals by the Pearson

distribution. The Pearson system, developed by Pearson (1895), is a family of continuous

probability distributions that is fully specified by its first four standardized moments.

It enables us to construct probability distributions, which exhibit considerable skewness

and kurtosis. The Pearson system can be subdivided into seven types. Our focus is on

Pearson type IV, which is not related to any standard distribution.9 In order to model the

observed fat tails, we compute the empirical kurtosis in addition to the standard deviation

and generate error terms.10 Finally, we go one step further and model the skewness. The

distributions so far are based on the assumption of symmetry, which is not fulfilled, e.g.,

for the size and book-to-market factors. The same holds true for some of the 25 portfolio

residuals. Applying the test by Ekström and Jammalamadaka (2007) we find that the

size and book-to-market risk factors and some portfolio residuals exhibit an asymmetric

distribution. Therefore, we calculate the empirical skewness. In each iteration, we draw

random variables from the Pearson distribution based on the estimated standardized

moments of our residuals.

In the third step, we generate the market, size and book-to-market factors drawing

random numbers in the same way as for the residuals. Again, we consider three distri-

butions: Normal distribution, Pearson type IV distribution with and without skewness.

8Keeping the betas constant and modeling all factors alike enables us to evaluate if the power of

the test depends on the way portfolios are sorted. For instance, using the 25 portfolios sorted by size

and book-to-market we expect that both tests have lower power to detect a priced market factor than a

book-to-market factor just because the variation in market betas is lower.

9The density function is proportional to (1 + ((x− a)/b)2)−c ∗ exp(−d ∗ arctan((x− a)/b)).

10Numbers are generated by MATLAB using the ”pearsrnd” command. Given the first four moments,

the parameters a,b,c and d can be identified.
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Figure 1.4: Distribution of the HML Factor
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Pearson (2)

The first figure depicts the histogram of the HML factor (HML). The other figures illustrate the his-

tograms of the generated HML factors based on random numbers drawn from three different distributions.

Version 1 is based on the normal distribution (Normal), version 2 on the Pearson type IV distribution with-

out skewness (Pearson (1)), and version 3 on the Pearson type IV distribution with skewness (Pearson (2)).

The generated factors are taken arbitrarily.
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The only difference is that we have to add the empirical mean of the factors to the gener-

ated values. Figure 1.4 depicts the histogram of the HML factor and compares it to the

histogram of the simulated factor. The simulated factor realizations are chosen randomly.

Subsequently, we have all ingredients to specify the portfolio excess returns. In the case

that market beta risk is priced, stock returns are generated from:

rei,t = βmi,tr
e
m,t + βsmbi,t rsmb,t + βhmli,t rhml,t + εi,t. (1.9)

Alternatively, when market beta risk is not priced, we obtain the following equation:

rei,t = µm + βmi,t(r
e
m,t − µm) + βsmbi,t rsmb,t + βhmli,t rhml,t + εi,t, (1.10)

where µm = E[rem,t]. Analogously, returns for priced and not priced size and book-to-

market risk are generated. The number of generated returns coincides with the number

of observations (924) in section 1.4 and 1.5. The simulation exercise is based on 1000

replications. In each replication, factors and residuals are produced and equation 1.9 and

1.10 are used to generate portfolio excess returns.

The results of the simulation are depicted in tables 1.9 and 1.10 and convey some

very interesting insights. Results vary across factors. Testing for a priced market factor

the Fama-MacBeth test offers a slightly higher power than the FG test at the 5% level

but a smaller power at the 10% level independent of the choice of the distribution. In

the case of the size and book-to-market factors, the FG test surpasses the power of the

Fama-MacBeth test. However the differences are small. The size of the two tests is almost

identical. All in all, our findings indicate that the differences between the two tests are

marginal, supporting the results in the last section. Moreover, we cannot support the

conjecture of Freeman and Guermat (2006). They reckon that the power of the FG test

exceeds the power of the Fama-MacBeth test in the presence of stock returns with fat

tails.

Another insightful feature is that the power of the tests behaves very differently when

we pass on to fat-tailed distributions. Both tests exhibit considerably lower power for

fat-tailed distributions when using the market factor whereas the power tends to rise for

the size and book-to-market factor. Including skewness slightly increases the power of

the two tests no matter which factor we consider.

There is another noteworthy feature. Test results suggest that both tests have more

difficulties to detect a priced market factor than a priced book-to-market factor. This

finding could be due to the fact that the first four moments are different. Though,
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Table 1.9: Power and Size of the Fama-MacBeth and the FG Test (5% two-sided)

Market SMB HML

Distribution FM FG test FM FG test FM FG test

Normal Size 0.042 0.041 0.057 0.056 0.051 0.052

Power 0.672 0.670 0.678 0.678 0.941 0.945

Pearson (1) Size 0.066 0.067 0.051 0.053 0.063 0.058

Power 0.607 0.591 0.690 0.694 0.941 0.941

Pearson (2) Size 0.031 0.033 0.053 0.053 0.050 0.047

Power 0.612 0.610 0.708 0.710 0.956 0.957

Table 1.10: Power and Size of the Fama-MacBeth and the FG Test (10% two-sided)

Market SMB HML

Distribution FM FG test FM FG test FM FG test

Normal Size 0.097 0.090 0.110 0.107 0.095 0.101

Power 0.779 0.780 0.794 0.797 0.974 0.974

Pearson (1) Size 0.117 0.121 0.098 0.099 0.102 0.102

Power 0.716 0.720 0.797 0.797 0.965 0.967

Pearson (2) Size 0.077 0.075 0.010 0.094 0.099 0.097

Power 0.726 0.726 0.811 0.814 0.979 0.980

These tables depict the power and the size of the Fama-MacBeth test (FM) and the FG test for each

risk factor. Market denotes the market excess return, SMB the size factor and HML the book-to-market

factor. Factors and residuals are generated drawing random numbers from three different distributions:

Normal distribution (normal), Pearson type IV distribution without skewness (Pearson (1)), and Pearson

type IV distribution with skewness (Pearson (2)). The value of the t-statistic in each case is then tested

for significance at the 5 % (table 1.9) and at the 10% (table 1.10) two-sided level.
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even if all factors are identically constructed with the same first four moments, this

phenomenon prevails because of the differences in betas. Variation in book-to-market

beta across portfolios is much higher than the variation in market beta across portfolios,

which suggests that a wide spread in betas substantially raises the power of the test

independent of the distribution. This finding underlines how crucial the sorting criteria

are.

1.7 Conclusion

Our results provide evidence that there exists a systematic relationship between the three

Fama-French betas and returns. Despite the inclusion of the size and book-to-market

factors, we detect a systematic conditional relationship between market beta and re-

turn. Furthermore, the two additional factors of the three-factor model amplify their

explanatory power once the conditional nature of the relation between beta and return is

considered. This finding is consistent for different subperiods and test portfolios. Thus,

the use of the conditional three-factor model betas estimated from historical price data

by portfolio managers seems to be appropriate.

The main drawback of this procedure is that it does not test if risk factors entail a priced

risk. On this account, we go one step further in this chapter and generalize the FG test

to multi-factor models in order to test for priced betas within the conditional approach.

We compare the results of the FG test to the results of the classical Fama-MacBeth test.

Based on different test portfolios we find qualitatively similar results for both tests. The

same holds true when we run simulations specifiying distributions with excess kurtosis

and skewness. Hence, this study shows that the results of the FG test based on the con-

ditional approach coincide with those from the standard Fama-MacBeth test procedure.

Our findings suggest that the power of a test is not improved by the application of the con-

ditional approach. To put it differently, our results confirm the standard Fama-MacBeth

procedure. Because of the additional complexity of using the FG test the standard Fama-

MacBeth test is favored.

Our findings stress the importance of the use of different test portfolios. Applying diverse

test portfolios, we find starkly differing results. For some test portfolios risk factors seem

positively priced, for some negatively priced, and for others they appear not to be priced

at all. Thus, focusing on one selection of test portfolios, as often done so in the literature,

can cause misleading results.
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Many previous studies have applied the conditional approach as proposed by Pet-

tengill et al. (1995). The conditional approach takes into account that the use of realized

returns leads to a negative risk-return relationship in down-markets. Thus, the condi-

tional approach appears to be more appropriate. However, either previous studies test if

beta risk is priced within the framework of the conditional approach but based on a flawed

hypothesis (symmetry of the λ coefficients) or they only test if there exists a conditional

relationship between beta and return. In either case, the results of the test cannot be

related to the results from the standard Fama-MacBeth procedure. In this study, we

make these tests comparable by using the conditional approach to derive the FG test for

priced beta and discover that the FG test leads to qualitatively similar findings as the

classical Fama-MacBeth test. We do not want to claim that the conditional approach is

irrelevant, but we want to point out that the choice of the test procedure depends on the

research question. Testing for priced beta risk does not make the conditional approach

necessary. Nevertheless, if we only focus on testing for a systematic relationship between

beta risk and return, then the conditional approach is suitable.



Chapter 2

Illiquidity and Stock Returns

2.1 Introduction

One of the most active areas of research in empirical asset pricing over the recent years

has been the examination of the influence of liquidity on asset prices. The concept of

liquidity does not only provide an attraction for academic research, it is also of great

interest among practitioners. Investment consultants and managers tailor portfolios to

fit their clients’ investment horizons and liquidity objectives. In the following chapter,

we investigate the impact of liquidity on returns on the German stock market. The

German stock market is one of the largest stock markets in the world by both market

value and trading volume and has been insufficiently considered in the literature.1 Our

data set comprises 33 years making it comparable to corresponding US studies and is

more comprehensive than most studies dealing with stock markets outside the US. This

study does not concentrate on one liquidity measure and one econometric approach, but

in contrast to the existent literature it covers all dimensions of liquidity and applies a

multitude of different methodologies to evaluate the robustness of its results.

Liquidity is an elusive concept and has many facets. The major problem in estimating

the effect of liquidity on returns is how to measure liquidity since there is hardly a single

measure that captures all of its aspects. Illiquidity consists of four dimensions: trading

quantity, trading speed, trading costs, and price impact. This study incorporates all four

dimensions and separately tests if they entail a priced risk in the cross-section of the

1One exception is Hagemeister and Kempf (2010). Although the main goal of their study is to model

expected returns using earnings’ expectations, they make use of a CAPM augmented with the bid-ask

spread.

37
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German stock market. Our analysis makes use of different empirical procedures and test

portfolios to cover a large set of empirical approaches used in the literature. First, we

sort stocks into portfolios based on illiquidity as, for instance, done so in Liu (2006), and

test if the most illiquid stocks outperform the most liquid stocks. Further, we investigate

the existence of a monotonic relation between illiquidity and returns conducting a test

recently proposed by Patton and Timmermann (2010). Subsequently, we conduct regres-

sions to test if illiquidity drives stock returns while controlling for other asset pricing

effects like market capitalization, book-to-market equity ratio, and past returns. We

apply a refinement of the Fama and MacBeth (1973) approach proposed by Litzenberger

and Ramaswamy (1979) using individual returns. In the context of liquidity and asset

pricing, this procedure has been applied by Datar et al. (1998). Finally, we estimate

the illiquidity premium, which is in line with studies such as Pastor and Stambaugh

(2003) and Acharya and Pedersen (2005). In contrast to these studies, we construct

factor mimicking portfolios that capture the risk of illiquidity. We also take into account

different test portfolios. Following Acharya and Pedersen (2005), we make use of size and

book-to-market portfolios as well as portfolios sorted, amongst others, by illiquidity.

Our regression results provide evidence that a positive relation between stock returns and

illiquidity exists after controlling for a multitude of different asset pricing effects. Further,

we discover a significant risk premium on illiquidity independent of the measure chosen.

However, this effect relies on the choice of test portfolios. The risk premium disappears

when using the 16 size and book-to-market portfolios as test portfolios. This finding re-

flects the lack of robustness of asset pricing model tests to alternative portfolio formation.

There is a large number of empirical studies dealing with the relation between ex-

pected stock returns and illiquidity for the US market. One of the first studies was

by Amihud and Mendelson (1986) focusing on trading costs measured by the bid-ask

spread. They find a positive and concave relationship between expected returns and

illiquidity. There are plenty of other measures capturing trading costs in the literature.

For example, Roll (1984) develops an estimator of the effective spread based on the

serial covariance of the change in price. Lesmond et al. (1999) create an estimator of the

effective spread based on the idea of informed trading on non-zero return days and the

absence of informed trading on zero return days. Holden (2009) develops a proxy of the

effective spread based on observable price clusterings. It assumes that trade prices are

clustered in order to minimize negotiation costs between potential traders. Apart from
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the proxies regarding trading costs, researchers have employed several proxies measuring

other dimensions. Amihud (2002) constructs a price impact measure representing the

daily price response associated with one dollar of trading volume. He provides evidence

that the price impact measure has a positive effect on stock returns. Another price

impact measure is the Amivest measure, which is the ratio of the average trading volume

and the average absolute return. For instance, this measure has been applied by Amihud

et al. (1997) and Berkman and Eleswarapu (1998). Pastor and Stambaugh (2003) develop

the Gamma measure which captures the return reversal in response to volume shocks.

They find that market-wide illiquidity is a priced risk and is compensated by a risk

premium. An additional price impact measure is used by Brennan and Subrahmanyam

(1996). They make use of intraday trade and quote data and estimate Kyle’s (1985)

λ by regressing the trade-by-trade price change on the signed transaction size applying

the model by Glosten and Harris (1988). The slope coefficient from this regression are

taken to calculate the marginal cost of trading. Brennan and Subrahmanyam (1996)

detect that the marginal cost of trading has a positive effect on returns adjusted by the

Fama-French factors. Further, Chordia et al. (2009) propose a theoretically motivated

illiquidity measure using the structure of Kyle’s (1985) λ and find that it is priced in the

cross-section.

Another dimension of illiquidity is trading quantity, which is widely used as it is relatively

easy to construct. Brennan et al. (1998) use the stock’s dollar trading volume as a mea-

sure of liquidity and show that trading volume has a negative effect on risk-adjusted stock

returns. Alternatively, Datar et al. (1998) propose the use of stock turnover measured by

the stock trading volume divided by the market capitalization and find that the cross-

section of stock returns is negatively related to turnover. There is little research devoted

to capturing the trading speed dimension of illiquidity. One exception is Liu (2006).

Liu (2006) measures trading speed by the number of days of zero trading volume and

argues that it captures the continuity of trading and the potential difficulty in executing

an order. Constructing a factor mimicking portfolio reflecting the illiquidity premium,

Liu (2006) reinforces earlier results. The number of days with zero returns proposed

by Lesmond et al. (1999) is a similar measure. However, in the case of informationless

trades results can diverge. Informationless trades should not create price changes in

liquid markets.

Despite the large number of papers studying the US market, there is only a small number

of papers studying the effect of liquidity on returns on other stock markets. Hwang and
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Lu (2009) study the UK market from 1984 to 2004 and provide evidence that liquid

stocks outperform illiquid stocks, a reversed illiquidity effect. Mazouz et al. (2009) show

that systematic liquidity risk is not priced on the LSE studying the period from 1992

to 2007. Martinez et al. (2005) analyze the Spanish stock market from 1991 to 2000.

Although a positive illiquidity premium surfaces in some of their regressions, results

all in all indicate that a relation between illiquidity and returns does not exist on the

Spanish stock market. The existence of a liquidity premium outside the US seems to be

unclear and requires further analysis. In this study, we investigate whether an illiquidity

premium prevails on the German stock market. The German stock market is one of the

largest stock markets in the world. Our dataset covers 33 years and, thus, the number of

time-series observations is similar to comparable US studies. The focus on the German

stock market is of considerable interest. Results for the German stock market suggest

that big firms tend to earn higher returns than small firms. Schrimpf et al. (2007)

construct a size factor and find out that it is on average negative for the period from

1969 to 2002. Breig and Elsas (2009) confirm this finding for the period from 1990 to

2006. Studies like Amihud and Mendelson (1986) argue that size serves as a reasonable

proxy for illiquidity. Liu (2006) finds a strong negative correlation between the market

capitalization and illiquidity. Small firms tend to be firms with illiquid stocks and vice

versa. Given the relation between illiquidity and size, we suspect a reversed or absent

illiquidity effect in Germany.

Despite the absence of a size effect on the German stock market, our results provide

evidence for a positive relation between stock returns and illiquidity, but a negative one to

the size of the firm. Although the size of the firm and the illiquidity of the corresponding

stock are correlated, our findings indicate that the two concepts grasp different risks.

The remainder of this chapter is organized as follows. In the next section we introduce

four illiquidity measures. Section 3 describes the data and the econometric methodology

in detail. Subsequently, we provide the empirical results. Section 5 concludes.

2.2 Illiquidity Measures

In general, liquidity mirrors the ability to trade large quantities quickly at low cost with

little price impact. Implicitly, this description entails four dimensions of liquidity: trading

quantity, trading speed, trading cost, and price impact. In order to consider the full

spectrum of liquidity we include one measure for each of the four dimensions.



Illiquidity Measures 41

2.2.1 Trading Quantity

Trading volume is an obvious measure to cover the first dimension of liquidity: trading

quantity. However, most of the literature favors a different measure since trading volume

is closely related to the size of the firm. One way to separate between these two variables

is by taking the ratio of trading volume to the market capitalization. This measure of

illiquidity is well known as turnover and has been proposed by Datar et al. (1998) in

the context of empirical asset pricing. It can be interpreted as the reciprocal of the

average holding period. Several theoretical studies find that less frequently traded stocks

are less liquid. For instance, Amihud and Mendelson (1986) show that less liquid stocks

are allocated to investors with longer holding periods. Constantinides (1986) provides

evidence that investors reduce their trading frequency of illiquid stocks. We define our

trading quantity measure (TQ) of stock i in month t as

TQi,t =
21∑12

k=1 dt−k

∑12
k=1

∑dt−k

j=1 V OLi,j,t−k

1
12

∑12
k=1 SIZEi,t−k

. (2.1)

V OLi,j,t−k is the trading volume in EUR of stock i in month t− k at day j, SIZEi,t−k is

the market capitalization at the end of month t−k and dt−k is the number of trading days

in month t− k. As for all other illiquidity measures we calculate TQi,t over the previous

twelve months. The numerator represents the average daily trading volume over the last

twelve months. By multiplying this term by 21 we calculate the average monthly trading

volume for a standardized month of 21 trading days. The denominator is the monthly

average of the market capitalization.

2.2.2 Trading Speed

The second dimension is trading speed. We measure trading speed by the number of zero

trading volume days over the last twelve months. This measure grasps the continuity and

the potential delay in executing an order. The absence of a trade indicates the degree

of illiquidity: the more frequently trade volume is zero, the more illiquid is the stock.

In extreme cases, zero trading volume reflects a lock-in risk, which embodies the danger

that stocks cannot be sold. On this account, in equilibrium investors should receive a

premium for holding these stocks. The idea of this measure follows Liu (2006). Trading

speed (TS) of stock i in month t is measured via:

TSi,t =

∑12
k=1

∑dt−k

j=1 I {V OLi,j,t−k = 0}∑12
k=1 dt−k

. (2.2)
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I {V OLi,j,t−k = 0} is an indicator variable, which is one if trading volume is equal to

zero and zero otherwise. TSi,t is the ratio of zero trading days divided by the number of

trading days. However, when it comes to the creation of portfolios sorted by the illiquidity

of stocks, it is important to uniquely determine the order of stocks based on the degree

of their illiquidity. Since many stocks exhibit the same number of zero trading days, in

particular the most liquid stocks have zero non-trading days, we incorporate a second

measure to explicitly characterize the degree of illiquidity for these stocks. Following Liu

(2006) we use turnover. Our sorting criterion is constructed in a way that the number of

zero trading volume days is the prime criterion. In case they coincide, we use the stock’s

turnover as a tie-breaking rule.

A similar measure as the number of zero trading days is the number of zero return days

as applied by Lesmond et al. (1999) and Bekaert et al. (2007). If volume data are not

available, as it is the case in many emerging markets, it can be an useful proxy. However,

it produces different findings, e.g., in the case of informationless trades. Informationless

trades should not create price changes in liquid markets.

2.2.3 Trading Costs

Although the most natural and intuitive way to model trading costs is the use of bid-

ask spreads, a data series back to the 70’s is unavailable for the German stock market.

For such cases, Lesmond et al. (1999) propose to model transaction costs using a Tobit

model. They develop an estimator of the effective spread based on the idea that in the

presence of transaction costs, the marginal informed investor will trade only if the value

of information exceeds transaction costs. They assume that a standard market model

(CAPM) holds on non-zero return days, but a flat horizontal segment applies on zero

return days. In the following description we fix a twelve months window. The true but

unobserved return r∗i,d,t for stock i at day d in month t is given as:

r∗i,d,t = βirm,d,t + εi,d,t, (2.3)

where βi is the sensitivity of stock i to the market return rm,d,t and εi,d,t is a public

information shock at day d in month t. εi,d,t is normally distributed with mean zero and

variance σ2
i . The observed return is given by:

ri,d,t = r∗i,d,t − α1,i when r∗i,d,t < α1,i,

ri,d,t = 0 when α1,i < r∗i,d,t < α2,i,

ri,d,t = r∗i,d,t − α2,i when r∗i,d,t > α2,i.

(2.4)
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α1,i is the percentage transaction cost of selling stock i and α2,i of buying stock i. Thus,

α1,i is the threshold for trades on negative information and α2,i on positive information.

If α1,i < βirm,d,t + εi,d,t < α2,i, the measured return will be zero. Given this, transaction

costs (TC) of stock i can be calculated by the difference between α2,i and α1,i:

TCi = α2,i − α1,i. (2.5)

We estimate TCi based on the previous twelve months. Subsequently, we shift the twelve

months window one month ahead and estimate TCi for the next window. Although, α1,i,

α2,i, and βi are fixed within a certain window, they vary from one window to the other.

Usually, the intercept in the market model captures any misspecifications of the market

model. Thus, differences in the alphas are not necessarily due to differences in transaction

costs. However, since we are interested in the difference α2,i − α1,i to determine the

round trip transaction costs, the effect of any misspecification should cancel out. As

a robustness check, we assume that the Fama-French three-factor model is the market

model and calculate the correlation between the two measures. The average cross-sectional

correlation between the trading costs using the CAPM as the market model and trading

costs using the Fama-French three-factor model as the market model is 0.997. As we

explain in more detail in section 2.3.2, we construct risk factors based on our different

illiquidity measures. Using trading costs based on the two market models, we find a time-

series correlation between the illiquidity factors of 0.998. In the following, we assume that

the parsimonious CAPM is the appropriate market model.

The parameters are obtained by maximizing the following likelihood function:

L(α1,i, α2,i, βi, σi|ri,d,t, rm,d,t) =
∏
d∈R1

1
σi
φ(
ri,d,t + α1,i − βirm,d,t

σi
)

∗
∏
d∈R2

1
σi
φ(
ri,d,t + α2,i − βirm,d,t

σi
) (2.6)

∗
∏
d∈R0

[Φ(
α2,i − βirm,d,t

σi
)− Φ(

α1,i − βirm,d,t
σi

)],

where φ represents the standard normal density and Φ the cumulative distribution func-

tion (cdf) of the standard normal distribution. Moreover, R1 and R2 denote the regions

where the measured return ri,d,t is negative and positive, respectively. R0 is the zero

return region. This construction slightly diverges from Lesmond et al. (1999)’s approach
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in so far as they define region 1 as ri,d,t 6= 0 and rm,d,t > 0 and region 2 as ri,d,t 6= 0 and

rm,d,t < 0. The approach used in this paper follows Goyenko et al. (2009).2

2.2.4 Price Impact

The last dimension we deal with is price impact. As defined by Amihud (2002), we

calculate the price impact measure (PI) of stock i in month t as follows:

PIi,t =
1∑12

k=1 d̃t−k

12∑
k=1

d̃t−k∑
j=1

|ri,j,t−k|
V OLi,j,t−k

∗ 105. (2.7)

Since PIi,t is not defined for zero trading volume days, it only considers days with positive

trading volume, d̃t−k. This ratio gives the absolute percentage price change per EUR of

daily trading volume, or the daily price impact of order flow. It follows Kyle’s (1985)

concept of illiquidity - the response of price to order flow. Because market makers cannot

distinguish between order flow that is generated by informed traders and noise traders,

they set prices as an increasing function of the order flow imbalance, which may indicate

informed trading. This creates a positive relationship between the transaction volume

and price change.

There are quite a few other proxies for price impact in the literature. The Amivest

liquidity ratio calculates the ratio of the average volume to the average absolute value of

daily returns. It has been used by Amihud et al. (1997) and Berkman and Eleswarapu

(1998). As the absolute return is in the denominator, it can only be calculated for all

non-zero return days. Another widely used measure is the Gamma measure developed by

Pastor and Stambaugh (2003). It is based on the idea that in a regression of a stock’s

daily return on its signed volume, the coefficient which captures the bounce in the stock

price following a given trading volume is more negative for less liquid stocks. Intuitively,

it measures the reversal of the previous day’s order flow shock. Goyenko et al. (2009)

show that the Amihud measure outperforms the Amivest and the Gamma measure when

compared to high frequency price impact benchmarks.

2Goyenko et al. (2009) run a horse race of a multitude of liquidity measures based on daily data gauging

their abilities to match the salient features of high frequency based benchmarks. They identify the best

proxies and find that the measure applied in this study dominates the measure constructed by Lesmond

et al. (1999).
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2.3 Data & Methodology

2.3.1 Data

Our sample extends from January 1974 to December 2006 and incorporates firms that are

listed at some point during the sample period at the Frankfurt Stock Exchange including

the segments ”Amtlicher Handel” and ”Neuer Markt”. Daily price and volume data are

obtained from Deutsche Kapitalmarktdatenbank in Karlsruhe. Trading volume is the

aggregated EUR (DM) volume at all German exchanges including XETRA. With respect

to the construction of trading quantity, trading speed, and price impact, the question

arises whether it is more reasonable to use the trading volume from the Frankfurter Stock

Exchange or the total German trading volume. In order to compare the differences in our

trading quantity, trading speed, and price impact measure when using the trading volume

from the Frankfurter Stock Exchange and the total German trading volume, we calculate

both. Table 2.1 provides the correlation. The cross-sectional correlation is 96.5% for

trading quantity, 97.5% for trading speed and 91.7% for price impact from 1975:01 to

2006:12. The time-series correlation between illiquidity factors based on trading volume

from the Frankfurter Stock Exchange and total German trading volume is even higher.

It is above 99.4% for all three measures.3 However, we suspect correlation to be lower

since the inception of XETRA. For this reason, the second part of table 2.1 concentrates

on the period from 1997:12 to 2006:12. Regarding trading speed and trading quantity

the correlation only decreases marginally. The cross-sectional correlation between the

two price impact measures shrinks to 84.1%. Though, using the two price impact factors

we still find a time-series correlation of 99.3%. All in all, these findings indicate that

illiquidity measures based on different trading volumes are very similar. In the following

analysis, trading quantity, trading speed, and price impact are calculated based on the

total German trading volume.

Prices are adjusted for dividends and equity offerings. Yearly book equity and the

number of shares outstanding come from Hoppenstedt Aktienführer. We only examine

common stocks. All illiquidity measures are calculated over a twelve months horizon.

Daily stock returns and trading volume must be available for at least 200 days over the

previous twelve months. We only include stocks if we can calculate each of the four

3The construction of these return factor mimicking portfolios will be explained in detail in section 2.3.2.
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Table 2.1: Overall German Trading Volume vs. Trading Volume from the Frankfurter

Stock Exchange

1975:01-2006:12 Cross-Sec. Correlation Time-series Correlation

Illiquidity TQ TS PI FIlliq FTQ FTS FPI

TQff 0.965 FTQff
0.994

TSff 0.975 FTSff
0.994

PIff 0.917 FPIff
0.995

1997:12-2006:12 Cross-Sec. Correlation Time-series Correlation

Illiquidity TQ TS PI FIlliq FTQ FTS FTO

TQff 0.955 FTQff
0.993

TSff 0.958 FTSff
0.993

PIff 0.841 FPIff
0.993

This table shows the correlation between illiquidity measures (factors) based on the trading volume from all

German Stock Exchanges and the trading volume from the Frankfurter Stock Exchange. First, we calculate

trading quantity (TQ), trading speed (TS), and price impact (PI) based on the trading volume from all

German Stock Exchanges including XETRA. Next, we determine trading quantity (TQff ), trading speed

(TSff ), and price impact (PIff ) based on trading volume from the Frankfurter Stock Exchange. The

first part of the table shows the average cross-sectional correlation. We also construct illiquidity factors

as explained in subsection 2.3.2. FTQ is the trading quantity, FTS the trading speed, and FPI the price

impact factor. All three factors are based on the overall German trading volume. By contrast, FTOff ,

FTSff , and FPIff are factors based on liquidity measures using the trading volume from the Frankfurter

Stock Exchange. We calculate the time-series correlation. The lower part of the table considers the

liquidity measures since the inception of the XETRA.

illiquidity measures.4 Our data set comprises 235 firms in the 1970s and remains almost

constant in the early 1980s. From the mid 1990s onwards the number of observations

soars due to the hot IPO wave. The average number of firms is 572 from 2000 to 2006.

Table 2.2 shows the evolution of cross-sectional observations over time.

As the proxy for the market portfolio the CDAX from the Deutsche Börse AG is used.5

The risk-free rate is measured by the one-month money market rate reported by Frankfurt

4Unfortunately, trading volume is not available for the following three months: 1983:02, 1983:03, and

1983:10. We assume that the illiquidity measures behave in the same way as for the other months in these

twelve months windows. Stocks with less than 140 daily returns and trading volumes during this time

window are excluded.

5The CDAX is a value-weighted performance index and includes all German stocks listed in the General

Standard and Prime Standard at the Frankfurter Stock Exchange. The correlation between the CDAX

and a value-weighted index of all stocks in this sample is over 98%.



Data & Methodology 47

banks.6 Since the influential works of Fama and French (1992, 1993) it has been common

practice in the empirical asset pricing literature to control for the size and book-to-market

effect. Size is measured by the market capitalization of a firm and book-to-market is the

ratio of the book value and market capitalization. The size and book-to-market portfolios

are constructed in the same way as in Fama and French (1993). The two factors are

based on six portfolios, which are the intersections of two portfolios formed on size and

three portfolios formed on book-to-market. Portfolios consisting of small (big) firms are

denominated as small (big) portfolios, whereas portfolios consisting of firms with a low

(high) book-to-market value are denoted as growth (value) portfolios. The size factor is

constructed as the difference between the average return on three small portfolios and

the average return on three big portfolios. The book-to-market factor is the average

return on the two value portfolios minus the average return on the two growth portfolios.

Supplementary, the momentum factor (WML) proposed by Carhart (1997) is included

into our analysis. The momentum effect has been detected by Jegadeesh and Titman

(1993) and illustrates that past winners earn higher returns than past losers. We follow

Carhart (1997)’s way of constructing the momentum factor and sort stocks into three

equally-weighted portfolios based on eleven month returns lagged by one month. Portfolio

1 contains past winners and portfolio 3 past losers. The breakpoints are the 30th and

70th percentiles. Portfolio 1 minus portfolio 3 is the WML factor.

Table 2.2: Number of Observations

Year (y) Average No. of Firms

1974 ≤ y < 1980 235

1980 ≤ y < 1985 237

1985 ≤ y < 1990 262

1990 ≤ y < 1995 326

1995 ≤ y < 2000 362

2000 ≤ y ≤ 2006 572

6Money market rate is downloaded from the homepage of the German Bundesbank.
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2.3.2 Methodology

Monotonic Relation Test

The goal of this section is to reveal the potential existence of a cross-sectional relation

between illiquidity and expected returns. Sorting stocks into portfolios is the simplest

way to verify this relation and is extensively used in the empirical asset pricing literature.

Standard practice is to sort stocks into multiple portfolios and consider the mean return

differential between the top and bottom portfolios and to evaluate by a simple t-test if

the mean return differential is equal to zero. However, this proceeding does not provide

a sufficient way to test for a monotonic relation between expected returns and illiquidity.

On this account, we additionally conduct the Monotonic Relation (MR) test proposed by

Patton and Timmermann (2010) testing for a monotonic relationship between expected

returns and our sorting variables. Let µi be the population value of the expected return

on the ith portfolio (i = 1, ..., N) obtained from a ranking of stocks. Suppose we intend to

test the null hypothesis that there is no difference in the expected returns of the portfolios

against the alternative hypothesis that the expected return is decreasing when we move

from the top portfolio to the bottom portfolio. The null hypothesis (H0) is written as

H0 : µ1 = µ2 = ... = µN (2.8)

and the alternative hypothesis H1 as

H1 : µ1 < µ2 < ... < µN . (2.9)

Although the null hypothesis is written as an equality, finding µj > µj+1 makes rejections

of the null against the alternative hypothesis less likely. To test the null hypothesis, we

construct the average return differential of adjacent portfolios ∆̂i = µ̂i − µ̂i−1. The test

statistic for the MR test is given as follows:

JT = min
i=2,...,N

∆̂i (2.10)

In order to obtain critical values for the MR test, Patton and Timmermann (2010) suggest

a bootstrap approach, which circumvents the problem of estimating the covariance matrix

of the sample average returns for the N portfolio returns. Let
{
rei,τ(t), 1, ..., T ; i = 1, ..., N

}
be the original set of portfolio returns over T time periods. Now, we randomly draw with

replacement a new sample of returns
{
rebi,τ(t), τ(1), ..., τ(T ); i = 1, ..., N

}
, where τ(t) is the

new time index which is a random draw from the original set 1, ..., T and rebi,τ(t) is the
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return of test portfolio i at time τ(t). b runs from b = 1 to B and represents the number

of Bootstrap iterations. In our application, we set B = 10, 000. The randomized time

index, τ(t), is common across portfolios in order to preserve any cross-sectional depen-

dences in returns. In order to account for time-series dependences as well, we apply a

block bootstrap drawing blocks of returns instead of drawing returns independently. Poli-

tis and Romano (1994) model the block length based on a Geometric distribution with

a parameter that controls the average block length. Following Patton and Timmermann

(2010), we set the block length equal to ten, which seems suitable for return data display-

ing limited time-series dependences at the monthly horizon.

Subsequently, the randomly drawn return series is demeaned by subtracting the original

sample mean. The new time series ensures that the bootstrapped data satisfy the null

hypothesis by construction. Finally, we calculate JbT and count the number of times where

JT < JbT . The p-value is this number divided by the number of bootstraps, B.

Individual Stock Returns (GLS)

To control for different characteristics at the same time, we run multivariate regressions.

Two approaches to test asset pricing models are widely applied in the literature. The

first one is based on individual asset returns and makes use of firm characteristics. The

second one builds upon the construction of portfolios and the creation of risk factors. In

order to derive robust results, both approaches are considered.

Firstly, we test if individual returns are driven by illiquidity while controlling for firm

characteristics like the well known determinants of stock returns: Firm size, book-to-

market, and lagged returns. Additionally, we include the market beta. The use of firm

characteristics has been supported by Daniel and Titman (1997). They provide evidence

that firm characteristics rather than factor loadings determine expected returns. Regress-

ing individual stock returns on characteristics has been applied in numerous studies like

Datar et al. (1998), Ang et al. (2009), Fu (2009), and Huang et al. (2010).

The econometric methodology in this study is based on a refinement of the Fama and

MacBeth (1973) approach proposed by Litzenberger and Ramaswamy (1979). While

the classical Fama-MacBeth procedure places equal weight on all slope coefficients, the

Litzenberger and Ramaswamy (1979) methodology places more (less) weight on slope co-

efficients that are estimated more (less) precisely. Amongst others, Shanken (1992) and

Kandel and Stambaugh (1995) argue in favor of GLS over OLS.
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While both approaches lead to the same results under classic Gauss-Markov assumptions,

the GLS test is more powerful to the extent these assumptions are violated in practice.

The following methodology is applied by, e.g., Datar et al. (1998) when testing if turnover

drives stock returns. In a first step, we estimate market betas based on daily returns over

the previous twelve months. In the second step, we estimate the following cross-sectional

equation for every month:

rei,t = ri,t − rf,t = λ0,t +
K∑
k=1

λk,txk,t + υi,t i = 1, ..., Nt, t = 1, ..., T, (2.11)

where ri,t is the return of stock i, rf,t is the risk-free rate, rei,t is the excess return of stock

i, xk,t is characteristic or factor loading k, and υi,t is the error term at time t. λk,t denotes

the monthly coefficients, which are estimated from the cross-sectional regressions in every

time period t. Nt is the number of cross-sectional observations at time t. Final estimates

of λ are given by:

λ̂k =
T∑
t=1

Zk,tλ̂k,t ,where Zk,t =
[V ar(λ̂k,t)]−1

[
∑K

k=1 V ar(λ̂k,t)]−1
. (2.12)

The variance of λ̂k, is estimated by:

V ar(λ̂k) =
T∑
t=1

Z2
k,tV ar(λ̂k,t). (2.13)

Portfolio Approach (GMM)

In addition, we investigate the role of illiquidity based on a portfolio approach while con-

trolling for risk factors like size (smb), book-to-market (hml), and momentum (wml). The

methodology described in the following enables us to estimate the illiquidity risk premium

and to draw conclusions whether illiquidity risk is priced. We create factor mimicking

portfolios based on each of the four illiquidity measures. The construction follows Carhart

(1997). We rank stocks by their illiquidity and form three portfolios: 30 percent with the

lowest illiquidity, the middle 40 percent, and 30 percent with the highest illiquidity. Port-

folios are updated every month. The high minus low portfolio is our illiquidity factor.

As our dependent variables we construct 16 equally-weighted portfolios. We indepen-

dently sort stocks into four portfolios by momentum, i.e. past 2-12 months returns, and

by price impact. The intersections of the four momentum and the four price impact port-

folios are 16 portfolios. Sorting by price impact and momentum creates a wide spread in

returns and betas across portfolios raising the power of the test. The conventional sorting
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in the US with respect to size and market beta or size and book-to market only creates a

small variation in returns and betas for Germany as the spread across size and beta port-

folios is very low.7 Nonetheless, as a robustness check, we also present results based on 16

independently and value-weighted test portfolios sorted by size and book-to-market. The

average portfolio returns are presented in table 2.3. It reveals that sorting by momentum

and illiquidity creates a larger spread in average returns across portfolios and is thus a

more reasonable choice.

Table 2.3: Test Portfolios

Momentum Book-to-market

Losers 2 3 Winners Low 2 3 High

Low 0.19 0.42 0.76 1.43 Small 0.73 0.49 0.82 1.05

[8.24] [6.03] [5.12] [5.37] [5.20] [4.56] [4.99] [4.89]

2 -0.27 0.48 0.51 1.46 2 0.13 0.74 0.56 0.97

Illiquidity [7.34] [5.18] [4.25] [4.87] Size [5.16] [4.37] [4.30] [4.83]

3 0.31 0.54 0.97 1.58 3 0.39 0.57 0.80 1.33

[6.39] [4.16] [3.46] [4.75] [4.83] [4.16] [4.28] [5.06]

High 0.99 0.94 0.97 1.65 Big 0.66 0.82 1.04 1.32

[5.98] [3.77] [3.24] [5.68] [5.71] [5.64] [5.25] [5.79]

This table illustrates the average returns of the test portfolios. The left panel presents the average

returns of 16 equally-weighted momentum and price impact portfolios. The right panel depicts 16 value-

weighted size and book-to-market portfolios. Values are measured in monthly percentage terms. Standard

deviations are given in square brackets. The sample period runs from 1975:01-2006:12.

In order to test if the illiquidity risk factors are priced we apply GMM as proposed by

Hansen (1982) based on a stochastic discount factor framework. GMM has the advantage

that it is a one-step procedure and, thus, avoids the error-in-variables problem. As a

robustness check, we also consider the cross-sectional approaches applied by Fama and

MacBeth (1973) and Black et al. (1972).

Any asset pricing model can be written in a stochastic discount factor form:

Et[mt+1r
e
i,t+1] = 0. (2.14)

The focus in this study is on linear factor models, which express the pricing kernel as a

linear function of factors: mt+1 = a− F ′tb, where Ft denotes a vector of risk factors. The

moment restriction displayed in equation 2.14 does not separately identify the parameters

a and b. We follow the normalization by Kan and Robotti (2008) and choose demeaned

7Lewellen et al. (2010) criticize the common practice to evaluate models exclusively based on the size

and book-to-market portfolios.
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factors. The stochastic discount factor is rewritten as mt+1 = ξ[1 − (Ft − µ)′ḃ], where

µ is the unconditional mean of Ft, ξ is a scalar ξ = a − µ′b and ḃ = b
a−µ′b . Finally, we

divide mt+1 by ξ. As shown by Kan and Robotti (2008) this specification is advantageous

because the outcome cannot be affected by affine transformations of the factors. Further,

competing models can be compared as they exhibit the same mean. This normalization

is also favored by Burnside (2008) finding that demeaned risk factors improve the perfor-

mance of GMM.

Finally, we are interested if risk factors are priced, though, our GMM coefficients ḃ only

tell us if factors are marginally useful in asset pricing tests, given the presence of the

other included factors. As proven by Cochrane (2005), p. 106, there exists an equivalent

representation between the stochastic discount factor approach and beta pricing models.

Risk premias λ are related to ḃ by the following formula8:

λ̂ =
∑̂

f

ˆ̇
b, (2.15)

where
∑̂

f = 1
T

∑T
t=1(Ft−µ)(Ft−µ)′. In order to obtain estimates for ḃ, we consider the

following moment condition gT (ḃ):

gT (ḃ) =
1
T

T∑
t=1

[(1− (Ft − µ)′ḃ)rei,t+1]. (2.16)

gT (ḃ) is a N × 1 vector including one moment condition for each portfolio. The GMM

optimization problem is as follows:

ˆ̇
b = arg min

ḃ
gT (ḃ)′W−1

T gT (ḃ), (2.17)

where WT is a weighting matrix. Hansen and Jagannathan (1997) argue in favor of the

second moment matrix WT = 1
T

∑T
t=1 r

e
t r
e
t
′. ret represents a N × 1 vector of test portfolio

excess returns. Relative to the efficient two-stage procedure proposed by Hansen (1982)

using the variance-covariance matrix of moment conditions as the weighting matrix, the

second moment matrix approach entails a number of advantages. Since we intend to

compare different asset pricing models, it is important that the weighting matrix remains

constant. The better model should be better because it improves on the pricing errors

rather than just blowing up the weighting matrix. Further, the GMM objective function

evaluated at the estimated parameters has an intuitively appealing interpretation as the

squared distance between a candidate discount factor and the space of true discount fac-

tors.

8Burnside (2008) provides a detailed derivation of λ̂ and its asymptotic distribution.



Empirical Results 53

However, Kan and Robotti (2008) point out that the traditional HJ distance is inappro-

priate while imposing a constraint on the mean of the stochastic discount factor. On this

account, they suggest a modified version of the HJ distance measure using the inverse of

the covariance matrix rather than the inverse of the second moment matrix of the excess

returns. The modified HJ distance measure is given by:

H̃J =

√√√√gT (ˆ̇b)′
(

1
T

T∑
t=1

r̃et r̃
e′
t

)−1

gT (ˆ̇b), (2.18)

where r̃et are the demeaned excess returns of the test portfolios. This measure can be

interpreted as the squared distance between a candidate discount factor and an admissible

stochastic discount factor that has unit mean. If the asset pricing model is correctly

specified, both measures have the same asymptotic distribution. The statistic T∗H̃J2

is asymptotically distributed as a weighted sum of χ2
(1)-distributed random variables.

We run the simulation suggested by Jagannathan and Wang (1996) 100,000 times in

order to determine the p-value for testing the null hypothesis H̃J = 0. We report the

modified version of the HJ distance measure and use the inverse of the covariance matrix

as our weighting matrix. For the sake of completeness, we also calculate the classical

J-test, which uses the estimated variance-covariance matrix of moment conditions as the

weighting matrix.

2.4 Empirical Results

2.4.1 Portfolio Returns

As a first step, we analyze if the four illiquidity measures described in section 2.2 are

qualitatively similar. For this reason, we calculate the cross-sectional correlation, which

is provided in table 2.4. Trading quantity exhibits a relatively strong correlation to the

other illiquidity measures. The correlation is negative because a higher trading quantity

reflects a higher degree of liquidity, whereas a high value for the other measures indicates

a low degree of liquidity. The correlation is highest to trading speed (-0.77). Between the

other three measures there also exists high average cross-sectional correlation. Correlation

between trading speed and trading costs is 0.69, between trading speed and price impact

0.52, and between trading costs and price impact 0.62.

Further, we have a look at the cross-sectional correlations between the four illiquidity

measures and the size of the firm. We find a negative correlation between size and trading
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Table 2.4: Cross-Sectional Correlation

Variable Correlations

TQ TS TC PI Size

TQ 1.00 -0.77 -0.56 -0.40 0.13

TS 1.00 0.69 0.52 -0.43

TC 1.00 0.62 -0.40

PI 1.00 -0.39

Size 1.00

This table shows the average cross-sectional correlations between the four illiquidity measures and size.

Size is the logarithm of the market capitalization. TQ represents the logarithm of the trading quantity,

TS trading speed, TC trading costs, and PI price impact. The sample period runs from 1975:01-2006:12.

speed (-0.43), between size and trading costs (-0.40), and between size and price impact

(-0.39). By contrast, trading quantity is hardly correlated with firm size (0.13), which

is not very surprising given that trading quantity has been constructed to be relatively

uncorrelated to firm size. The results so far suggest that our illiquidity measures partly

capture a size effect.

In the following, we evaluate if more illiquid or less illiquid stocks earn higher returns.

We categorize stocks into five portfolios based on the degree of illiquidity and calculate

the average return of each portfolio. Following Liu (2006), we use equally-weighted port-

folios.9 We rebalance portfolios every month. Table 2.5 documents the results for the

four illiquidity measures described in section 2.2. Portfolio ”Low” includes the least illiq-

uid stocks or the most liquid stocks whereas portfolio ”High” contains the most illiquid

stocks. All measures detect that more illiquid stocks tend to earn higher returns than less

illiquid stocks, even though, the difference between ”High” and ”Low” is insignificant.

The difference is highest for the trading speed and price impact dimension, 0.35% per

month, followed by trading quantity and costs, 0.27% per month. We also report the

results of the MR test. The hypothesis of a flat pattern in expected returns when moving

from portfolio 1 to portfolio 5 is not rejected at a 10% level for all measures except in the

case of trading speed. Table 2.5 also provides information about the standard deviation

of the portfolio returns and the average market capitalization of the stocks included in

the portfolios. The liquid portfolios have a higher standard deviation than the illiquid

portfolios. This effect is very pronounced for trading quantity and trading speed. More-

over, the results suggest that illiquid stocks tend to be stocks from small firms across all

9Results for value-weighted portfolios are qualitatively similar.
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measures and vice versa. To control for size, we also conduct a double sort. Each month,

we sort stocks based on size into five portfolios. Within each of the five size portfolios,

stocks are again sorted into five portfolios based on one of the four illiquidity measures.

The returns of the five illiquidity portfolios are then averaged over the five size portfolios

such that we receive five illiquidity portfolios controlling for size. However, we still find

that the most illiquid portfolio includes the smallest firms. Thus, the use of a double

sort cannot completely seperate between the size and illiquidity effect. Results are not

reported.

Additionally, we differentiate between two subperiods. The first one runs from 1975:01

to 1991:12 and the second one from 1992:01 to 2006:12. Subperiods are characterized

by two main differences. First of all, the number of observations in the cross-section is

about twice as high in the second subperiod. This is primarily due to the dotcom bubble

and the resultant rise of newly listed firms. The increase in the number of cross-sectional

observations creates a greater diversity in the level of illiquidity in the second period

and enables us to differentiate between liquid and illiquid stocks in a more precise way.

Furthermore, relative to the first subperiod, the second subperiod is characterized by a

distinctly higher volatility of stock returns.

Results are summarized in table 2.6. In the first subperiod liquid and illiquid stocks

earn similar returns independent of the illiquidity measure. The only exception is

price impact, for which we detect a monotonically increasing relation. In the second

subperiod, portfolio 5 has higher average returns than portfolio 1 independent of the

measure chosen, though, the difference does not significantly deviate from zero. We

only find a monotonically increasing relation between expected returns and illiquidity

in the case of trading speed. In comparison to the other measures, the difference be-

tween the average returns of portfolio 5 and 1 is highest, 0.81%. Using trading costs and

price impact, we find that the most illiquid stocks perform best but followed by portfolio 1.

2.4.2 Regressions - Individual Stock Returns

The construction of portfolios possesses the drawback that it only creates dispersion in

one or two dimensions or, using more than two dimensions, it results in some portfolios

with only a few stocks and, thus, a lot of noise. On this account, we run regressions taking
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Table 2.5: Portfolios Sorted by Illiquidity

Portfolio TQ TS

Mean Std Dev Size Mean Std Dev Size

Low 0.68 7.89 21.44 0.65 8.02 21.95

2 0.71 6.77 21.17 0.70 6.45 20.79

3 0.91 5.96 20.31 0.95 5.76 19.64

4 1.01 4.69 20.06 0.96 4.84 19.30

High 0.95 3.26 19.89 1.00 3.66 18.81

High-Low 0.27 0.35

t-value 0.87 1.07

MR 0.28 0.10*

Portfolio TC PI

Mean Std Dev Size Mean Std Dev Size

Low 0.85 6.16 22.12 0.87 6.26 22.17

2 0.65 6.56 20.17 0.55 6.82 19.88

3 0.76 6.18 19.46 0.70 5.36 19.39

4 0.87 4.95 19.10 0.91 4.87 19.04

High 1.12 4.50 18.51 1.23 5.40 18.23

High-Low 0.27 0.35

t-value 1.20 1.53

MR 0.80 0.95

** significant (5-percent level)

* significant (10-percent level)

We form quintile portfolios every month by sorting stocks based on one of the four illiquidity measures.

TQ represents trading quantity, TS trading speed, TC trading costs, and PI price impact. All measures

are calculated over the previous twelve months. Portfolio 1 is the portfolio with the most liquid stocks,

whereas portfolio 5 contains the most illiquid stocks. The statistics in the columns Mean and standard

deviation (Std Dev) are measured in monthly percentage terms. Size reports the average log market

capitalization. Critical values are based on robust Newey and West (1987) t-statistics. In the last row,

we display the p-value of the Monotonic Relation test proposed by Patton and Timmermann (2010).
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Table 2.6: Portfolios Sorted by Illiquidity - Subperiods

1975:01-1991:12 TQ TS TC PI

Portfolio Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

Low 1.06 5.49 1.08 5.47 0.99 5.20 1.01 6.26

2 1.00 4.95 0.96 4.96 1.00 5.03 1.00 6.82

3 1.12 4.55 1.16 4.72 1.09 4.83 0.99 5.36

4 1.11 3.90 1.05 3.81 1.13 3.88 1.08 4.87

High 1.00 3.37 1.02 3.51 1.06 3.64 1.21 5.40

High-Low -0.06 -0.06 0.07 0.20

t-value -0.22 -0.23 0.26 0.74

MR 0.52 0.50 0.24 0.05*

1992:01-2006:12 TQ TS TC PI

Low 0.25 9.82 0.17 7.64 0.69 7.10 0.72 7.16

2 0.39 8.22 0.39 8.08 0.26 7.76 0.04 8.18

3 0.67 6.98 0.71 7.84 0.40 7.13 0.37 6.21

4 0.90 5.21 0.86 5.59 0.58 5.67 0.73 5.40

High 0.90 2.97 0.97 3.61 1.19 5.01 1.25 6.20

High-Low 0.65 0.81 0.50 0.53

t-value 1.07 1.32 1.33 1.37

MR 0.14 0.05** 0.94 0.99

** significant (5-percent level)

* significant (10-percent level)

We form quintile portfolios every month by sorting stocks based on one of the four illiquidity measures.

All measures are calculated over the previous twelve months. Portfolio 1 is the portfolio with the most

liquid stocks, whereas portfolio 5 contains the most illiquid stocks. The statistics in the columns Mean

and standard deviation (Std Dev) are measured in monthly percentage terms. Critical values are based

on robust Newey and West (1987) t-statistics. In the last row, we display the p-value of the Monotonic

Relation test proposed by Patton and Timmermann (2010).
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multiple characteristics into account at the same time.10 In this section, we examine the

influence of illiquidity measured by trading quantity, trading speed, trading costs, and

price impact on individual stock returns. We control for characteristics such as size,

book-to-market, past returns as well as the market beta. For each month we run a

cross-sectional regression following the approach discussed in subsection 2.3.2. Table 2.7

displays the results. We find significant coefficients for trading quantity and price impact

suggesting that more illiquid stocks offer higher returns. Trading speed and trading costs

are not quite significant. Our findings underpin the results in Datar et al. (1998) showing

that trading quantity negatively drives stock returns in the US market. However, we

cannot conclude that each dimension of illiquidity significantly drives stock returns.

The negative sign on market beta is in line with the findings for the US, see Datar et

al. (1998).11 Potentially, the negative sign of the market beta could be caused by the

fact that beta is measured with error which depends on the efficiency of the market proxy

used, see Kandel and Stambaugh (1995), as well as the length of the measurement interval

and procedure, see Handa et al. (1989) for a detailed discussion. However, results also

remain stable when we use portfolio betas or change the measurement interval.

Furthermore, firm characteristics such as size, book-to-market, and past returns positively

influence returns. For the latter two this confirms the findings for the US. However, the

fact that bigger firms earn higher returns than smaller firms is a specific characteristic of

the German stock market and stresses the absence of the size effect on the German stock

market.12 The average cross-sectional R2 is about 8%.

Table 2.8 presents the results for the two subperiods. Results substantially deviate

10A detailled discussion of the advantages and disadvantages of portfolio sortings and regressions can

be found in Fama and French (2008).

11Additionally, we also estimate Dimson betas. When we compute betas based on daily data, we have

to be wary of biases induced by infrequent trading. Infrequently traded securities have a beta estimate

which is biased downwards while beta estimates for frequently traded securities are upward biased. In

order to avoid biases in betas, we incorporate lags and leads of the market return following the approach

by Dimson (1979). A consistent estimate of beta is obtained by aggregating the slope coefficients. We

also follow the approach by Fama and French (1992) and only include lags of the market return. In both

cases, the negative coefficient for market beta still shows up. The other coefficients remain qualitatively

unchanged.

12As a further robustness check, we follow Ang et al. (2009) and include the size and book-to-market

betas in the regressions. The coefficients for illiquidity do not qualitatively change. Size and book-to-

market betas are insignificant, only the size beta is significant in the trading speed equation. Regressing

returns on a constant and illiquidity, i.e., we ignore all other characteristics, we find slightly higher t-values

for the illiquidity coefficients.
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Table 2.7: GLS Regressions on Firm Characteristics

Cons βM Size BM Ret Illiq R̄2

TQ λ -0.43 -0.34 0.02 0.30 0.66 -0.05 0.082

t-stat -1.43 -6.64** 1.42 7.36** 11.05** -3.15**

TS λ -0.34 -0.42 0.03 0.30 0.63 0.12 0.081

t-stat -1.01 -8.27** 1.79* 7.19** 10.63** 1.06

TC λ -0.50 -0.41 0.04 0.30 0.63 0.66 0.081

t-stat -1.58 -8.31** 2.28** 7.30** 10.66** 1.43

PI λ -0.47 -0.43 0.04 0.28 0.65 0.05 0.080

t-stat -1.51 -9.00** 2.45** 6.90** 10.97** 6.32**

* significant (10-percent level)

** significant (5-percent level)

This table depicts the results of GLS regressions of returns on firm characteristics. Cons is the average

cross-sectional constant. βM is the market beta, which is estimated over the previous twelve months

using daily data. Size is the logarithm of the market capitalization of the previous month, BM is the

log ratio of the book-value divided by the market capitalization measured at the end of the year, Ret is

the past return over the previous two to twelve months, and Illiq represents one of the four illiquidity

measures estimated over the previous twelve months. TQ denotes trading quantity, TS is our trading

speed measure, TC our trading costs measure, and PI our price impact measure. All coefficients (λ) are

multiplied by 100. The column R̄2 reports the average of the cross-sectional adjusted R2. The sample

period runs from 1975:01-2006:12.

from one subperiod to the other. None of the four illiquidity measures is significant in

the first subperiod, whereas we find a significant and positive relation between illiquidity

and returns across all measures in the second subperiod. The size effect is absent in both

subperiods. In the second subperiod, the size of the firm is even positively related to stock

returns. Excluding size slightly reduces the t-value of the illiquidity measures except for

trading quantity. However, all coefficients remain significant.

2.4.3 Regressions - Portfolio Approach

It is very common in empirical asset pricing to use risk factors in order to evaluate if

certain variables are priced in the market. Table 2.9 summarizes the descriptive statistics

of the four illiquidity factors (FTQ, FTS , FTC , FPI) and the size factor (SMB). The trading

quantity factor (FTQ) has a mean of 0.29%, the trading speed factor (FTS) of 0.37%, the
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Table 2.8: GLS Regressions on Firm Characteristics - Subperiods

1975:01-1991:12

Cons βM Size BM Ret Illiq R̄2

TQ λ 0.26 -0.18 -0.01 0.33 0.62 -0.01 0.090

t-stat 0.65 -3.17** -0.78 5.76** 5.89** -0.56

TS λ 0.79 -0.22 -0.03 0.32 0.61 -0.17 0.090

t-stat 1.68* -3.71** -1.21 5.51** 5.82** -1.24

TC λ 0.47 -0.21 -0.02 0.33 0.61 0.01 0.091

t-stat 1.15 -3.72** -0.78 5.82** 5.78** 0.02

PI λ 0.24 -0.21 -0.005 0.32 0.60 0.001 0.088

t-stat 0.58 -3.69** -0.21 5.66** 5.65** -0.03

1992:01-2006:12

TQ λ -1.47 -0.83 0.08 0.28 0.68 -0.13 0.073

t-stat -3.14** -7.89** 3.18** 4.67** 9.45** -4.82**

TS λ -1.61 -1.00 0.10 0.27 0.65 0.74 0.071

t-stat -3.27** -9.94** 3.99** 4.62** 8.97** 3.72**

TC λ -2.04 -0.98 0.12 0.26 0.65 3.83 0.071

t-stat -4.03** -10.07** 4.56** 4.47** 9.04** 3.42**

PI λ -1.45 -1.06 0.10 0.24 0.69 0.058 0.072

t-stat -3.06** -11.37** 4.03** 4.06** 9.51** 6.78**

* significant (10-percent level)

** significant (5-percent level)

This table depicts the results of the GLS regressions of returns on firm characteristics. Cons is the average

cross-sectional constant. βM is the market beta, which is estimated over the previous twelve months using

daily data. Size is the logarithm of the market capitalization of the previous month, BM is the log ratio

of the book-value divided by the market capitalization measured at the end of the year, Ret is the past

return over the previous two to twelve months, and Illiq represents one of the four liquidity measures

estimated over the previous twelve months. TQ denotes the logarithm of trading quantity, TS trading

speed, TC trading costs, and PI price impact. All coefficients (λ) are multiplied by 100. The column R̄2

reports the average of the cross-sectional adjusted R2. The upper part of the table presents the results

for the first subperiod running from 1975:01-1991:12, the lower part the second subperiod running from

1992:01-2006:12.
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trading cost factor (FTC) of 0.26%, and the price impact factor (FPI) of 0.34%. Moreover,

the trading quantity and speed factors share the properties of a higher standard deviation,

a lower minimum, and a higher maximum than the other two illiquidity factors. By

contrast, the size factor is on average negative, has a smaller standard deviation, a higher

minimum, and a lower maximum than the four illiquidity factors. Next, we consider the

time-series correlations between our illiquidity factors. All factors are highly correlated.

The correlation ranges from 81% between the trading quantity and the price impact factor

and 97% between the trading quantity and trading speed factor. The correlation to the

size factor is highest for the price impact factor (58%) and the trading costs (55%). The

correlation to the trading speed (35%) and trading quantity factor (27%) is distinctly

lower.

Table 2.9: Descriptive Statistics of the Factors

Variable Mean Std Dev Min Max Correlations Correlations

FTQ FTS FTC FPI SMB MKT HML WML

FTQ 0.29 5.18 -30.19 22.32 1.00 0.97 0.85 0.81 0.27 -0.72 0.19 0.50

FTS 0.37 5.28 -29.87 21.06 1.00 0.91 0.88 0.35 -0.76 0.18 0.47

FTC 0.26 3.98 -14.58 15.56 1.00 0.95 0.55 -0.79 0.12 0.28

FPI 0.34 4.07 -16.64 16.75 1.00 0.58 -0.75 0.19 0.26

SMB -0.35 3.19 -12.96 10.61 1.00 -0.54 -0.02 -0.14

This table shows the summary statistics of the factors. MKT is the market excess return, HML and

SMB are the size and the book-to-market factor constructed in the same way as in Fama and French

(1993). WML is the momentum factor constructed analogously to Carhart (1997). Our illiquidity factors

are constructed as explained in subsection 2.3.2. FTQ is the trading factor, FTS the trading speed factor,

FTC the trading costs factor, and FPI the price impact factor. The first four columns show the mean,

the standard deviation, the minimum as well as the maximum expressed as monthly percentages. The

next five columns report the correlation among the illiquidity factors and the SMB factor. The last three

columns give the correlation to the market, book-to-market, and momentum factor. The sample period

runs from 1975:01-2006:12.

Additionally, we provide the correlation to other asset pricing factors as the market

(MKT), book-to-market (HML) and momentum factor (WML). Studies analyzing the

US market like, e.g., Liu (2006) and Pastor and Stambaugh (2003) find a strong negative

correlation between market-wide illiquidity and the market return. For example, Liu

(2006) finds a correlation of -79.9% for the sample period from 1984 to 2003. This is in

line with our findings for Germany. The correlation of the illiquidity and the market factor

varies between -72% and -79%. This finding suggests that during bear markets a ”flight
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to quality” takes place creating a higher premium for less liquid stocks, whereas during

bull markets the liquidity premium shrinks. During the stock market crash in October

1987, the market index (CDAX) plunged by about 26% from October to November. At

the same time, we recognize an average illiquidity premium of almost 19%.13 Similarly,

we find an illiquidity premium of over 12% from August to September 1998. At this time

liquidity dried up because of the collapse of Long-Term Capital Management and the

Russian debt crisis. On the other hand, just before the peak of the dotcom bubble, the

market surged by 46% from September 1999 to February 2000. The illiquidity premium

was about -23%. All factors collectively detect a negative correlation with the market

factor and capture a risk premium when markets dry up during extreme events.

Furthermore, all illiquidity factors are hardly correlated to the book-to-market factor.

Correlation to the momentum factor is higher, in particular for the trading speed and

trading quantity factor.

Entire Sample

Table 2.10 presents the results of the GMM regressions for the four illiquidity measures.

We differentiate between three models for each measure: the CAPM augmented with one

of the illiquidity factors, the Fama-French three-factor model augmented with one of the

illiquidity factors and the Carhart four-factor model augmented with one of the illiquidity

factors. Independent of the model and the choice of the illiquidity measure, we find that

the illquidity premium is significantly priced.14 The only exception is the risk premium of

the trading quantity factor in the five-factor model. Furthermore, we detect a positively

priced market and momentum risk premium. The book-to-market factor is insignificant

for all, the size factor for most specifications. Finally, we consider the H̃J and the J-Test

to test if the models are rejected. Under the null hypothesis that the model is correct, H̃J

and the value for the J-Test should be equal to zero. As shown in the last two columns

of table 2.10 all models are rejected.

13In this context, the illiquidity premium is calculated as follows. For each time period, we calculate

the average return of the four illiquidity factors. We obtain a new time-series representing the average of

the four illiquidity factors. Based on the returns of this new factor, we create an index, which is 100 in

January 1975. The illiquidity premium is the percentaged change of this index.

14We also discover a significant illiquidity premium when we consider the first principal component of

the four factors.
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Table 2.10: GMM Regressions of 16 Price Impact & Momentum Portfolios

1975:01-2006:12 MKT SMB HML WML FILLIQ H̃J J-Test

TQ b 8.89 8.57 0.45 55.38

t-stat 3.55** 2.56** [0.000] [0.000]

CAPM+ILLIQ λ 0.60 0.64

t-stat 2.15** 2.22**

b 15.30 5.44 -13.01 14.10 0.43 45.00

t-stat 3.52** 1.75* -1.74* 3.20** [0.000] [0.000]

3F+LILLIQ λ 0.74 -0.10 -0.84 0.79

t-stat 2.35** -0.44 -1.32 2.52**

b 10.79 9.28 -5.20 6.82 5.38 0.38 42.32

t-stat 2.68** 3.32** -0.72 3.40** 1.14 [0.000] [0.000]

4F+ILLIQ λ 0.50 0.11 -0.23 1.16 0.51

t-stat 1.65 0.49 -0.36 4.48** 1.57

TS b 11.66 11.09 0.341 44.24

t-stat 4.39** 4.20** [0.000] [0.000]

CAPM+ILLIQ λ 0.68 0.78

t-stat 2.42** 2.71**

b 19.54 2.58 -20.21 18.83 0.37 24.54

t-stat 4.09** 0.79 -2.31** 3.86** [0.009] [0.017]

FF+LILLIQ λ 0.94 -0.27 -1.40 0.95

t-stat 2.83** -1.07 -1.93* 2.93**

b 16.37 6.35 -14.70 4.50 12.81 0.35 28.09

t-stat 3.65** 1.85* -1.75* 1.88* 2.38** [0.004] [0.003]

4F+ILLIQ λ 0.76 -0.08 -0.96 1.06 0.80

t-stat 2.25** -0.32 -1.26 3.89** 2.44**
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1975:01-2006:12 MKT SMB HML WML FILLIQ H̃J J-Test

TC b 12.60 15.58 0.41 42.00

t-stat 6.25** 6.45** [0.000] [0.000]

CAPM+ILLIQ λ 0.68 0.49

t-stat 2.49** 2.33**

b 17.68 -9.51 -13.50 26.71 0.37 25.18

t-stat 4.96** -2.44** -1.81* 4.92** [0.004] [0.014]

FF+LILLIQ λ 1.06 -0.61 -0.90 0.61

t-stat 3.24** -2.33** -1.38 2.74**

b 17.81 -1.65 -14.20 6.23 21.21 0.29 23.92

t-stat 5.34** -0.38 -1.92* 3.01** 3.96** [0.008] [0.006]

4F+ILLIQ λ 0.92 -0.35 -0.93 1.09 0.55

t-stat 2.89** -1.28 -1.41 4.02** 2.43**

PI b 9.28 11.28 0.43 50.41

t-stat 5.61** 5.88** [0.000] [0.000]

CAPM+ILLIQ λ 0.58 0.45

t-stat 2.16** 2.10**

b 13.98 -11.34 -15.77 23.03 0.39 28.44

t-stat 5.09** -2.85** -2.14** 5.12** [0.000] [0.005]

FF+LILLIQ λ 0.99 -0.59 -0.95 0.46

t-stat 3.20** -2.31** -1.55 2.10**

b 15.27 -2.71 -16.67 6.80 18.46 0.31 19.70

t-stat 2.90** -0.62 -2.13** 3.47** 3.86** [0.013] [0.050]

4F+ILLIQ λ 0.88 -0.32 -1.02 1.12 0.45

t-stat 2.81** -1.19 -1.54 4.24** 2.02**

* significant (10-percent level)

** significant (5-percent level)

This table reports GMM estimates based on the stochastic discount factor form using the inverse of the

covariance matrix of the test portfolios as the weighting matrix. Portfolios are sorted by price impact and

the momentum strategy. Average returns of the test portfolios are presented in table 2.3. MKT is the

market excess return, SMB and HML are the size and book-to-market factors, WML is the momentum

factor and FILLIQ is the illiquidity factor based on trading quantity (TQ), trading speed (TS), trading

costs (TC), and price impact (PI), respectively. CAPM denotes the Capital Asset Pricing Model, 3F

represents the Fama-French three-factor model and 4F the Carhart four-factor model. b represents the

coefficients from the stochastic discount factor model and λ the corresponding risk premia. Risk premia are

expressed as monthly percentages. The J-Test is Hansen’s (1982) χ2 test statistics on the overidentifying

restrictions of the model. H̃J denotes a modification of the Hansen and Jagannathan (1997) distance

measure as proposed by Kan and Robotti (2008), which is defined in equation 2.18. p-values of the J-Test

and the H̃J distance measure are provided in square brackets.
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Orthogonalized Factors

Our illiquidity factors indicate a strong negative correlation to the market factor and

partly a high correlation to the size and momentum factors. Thus, it is possible that the

significance of the illiquidity factors is due to information that is already captured by other

factors. Liu (2006) also finds a high correlation between the illiquidity and the market

factor. In contrast to Liu (2006) we take this problem into account and orthogonalize

the illiquidity factors with respect to the Carhart four-factor model.15 Table 2.11 depicts

the estimation results of the four-factor model augmented with one of the orthogonalized

illiquidity measures. Apart from the trading quantity factor, the illiquidity premium

is significant and the t-value is even higher than before. This provides evidence that

illiquidity entails a risk premium that cannot be captured by other prominent risk factors.

Subperiods

Next, we consider two subperiods. Table 2.12 shows the results of the first subperiod

for the Carhart four-factor model augmented with one of the illiquidity factors. The

illiquidity factors are not orthogonalized. None of the illiquidity premia is significant.

The only priced factor is momentum. Neither model is rejected with respect to the

H̃J measure nor with respect to the J-Test at the 5% level. Although the t-values

for the risk premia are slightly higher in the second subperiod presented in table 2.13,

the illiquidity premia are insignificant except for the price impact factor. In the second

period, all models are rejected. Results for orthogonalized factors are not reported for

the subperiods. Illiquidity risk premia are all insignificant for the first subperiod. In

the second subperiod, illiquidity premia measured by price impact (t-value=3.25) and

by trading costs (t-value=2.85) are priced. Trading speed (t-value=0.92) and trading

quantity (t-value=0.56) premia are insignificant, though.

Different Test Portfolios

It is widely known that cross-sectional asset pricing heavily relies on the choice of test

portfolios. As another robustness check, we use 16 independently sorted size and book-

to-market portfolios as our test portfolios. Table 2.14 reports the results. The illiquidity

15Results are similar when we orthogonalize the illiquidity factors with respect to the CAPM or the

Fama-French three-factor model.
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Table 2.11: GMM Regressions of 16 Price Impact & Momentum Portfolios -

Orthogonalized Illiquidity Factors

1975:01-2006:12 MKT SMB HML WML FO
ILLIQ H̃J J-Test

TQ b 7.07 8.97 -4.08 8.67 5.41 0.38 42.32

t-stat 4.05** 3.22** -0.63 4.88** 1.15 [0.000] [0.000]

λ 0.50 0.11 -0.24 1.16 0.51

t-stat 1.65 0.49 -0.36 4.47** 1.20

TS b 7.49 7.32 -12.09 8.93 12.82 0.35 28.06

t-stat 3.74** 2.19** -1.59 4.56** 2.38** [0.003] [0.003]

λ 0.76 -0.08 -0.97 1.06 1.16

t-stat 2.25** -0.32 -1.26 3.89** 2.41**

TC b 7.03 4.26 -11.67 8.56 21.23 0.29 23.89

t-stat 3.59** 1.21 -1.66* 4.21** 3.97** [0.024] [0.006]

λ 0.93 -0.35 -0.93 1.09 1.11

t-stat 2.89** -1.28 -1.41 4.02** 3.87**

PI b 6.98 4.53 -12.71 8.84 18.48 0.31 19.68

t-stat 3.57** 1.34 -1.77* 4.47** 3.86** [0.013] [0.050]

λ 0.88 -0.32 -1.02 1.12 1.06

t-stat 2.82** -1.19 -1.54 4.24** 3.62**

* significant (10-percent level)

** significant (5-percent level)

This table reports GMM estimates based on the stochastic discount factor form using the inverse of the

covariance matrix of the test portfolios as the weighting matrix. Portfolios are sorted by price impact and

the momentum strategy. Average returns of the test portfolios are presented in table 2.3. MKT is the

market excess return, SMB and HML are the size and book-to-market factors, WML is the momentum

factor, and FO
ILLIQ is the illiquidity factor based on either trading quantity (TQ), trading speed (TS),

trading costs (TC), or price impact (PI), respectively. All illiquidity factors are orthogonal to the MKT,

SMB, HML, and WML factors. b represents the coefficients from the stochastic discount factor model and λ

the corresponding risk premia. Risk premia are expressed as monthly percentages. The J-Test is Hansen’s

(1982) χ2 test statistics on the overidentifying restrictions of the model. H̃J denotes a modification of

the Hansen and Jagannathan (1997) distance measure as proposed by Kan and Robotti (2008), which

is defined in equation 2.18. p-values of the J-Test and the H̃J distance measure are provided in square

brackets.
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Table 2.12: GMM Regressions of 16 Price Impact & Momentum Portfolios - Subperiod 1

1975:01-1991:12 MKT SMB HML WML FILLIQ H̃J J-Test

TQ b 11.78 9.07 12.89 9.00 12.41 0.23 10.55

t-stat 2.71** 2.03** 1.66* 2.77** 1.73* [0.273] [0.481]

λ 0.34 0.31 0.71 0.77 0.16

t-stat 1.08 1.24 1.65 3.87** 0.55

TS b 10.73 6.61 12.05 9.33 10.32 0.24 11.02

t-stat 2.68** 1.26 1.58 2.85** 1.73* [0.235] [0.441]

λ 0.33 0.30 0.70 0.78 0.17

t-stat 1.05 1.22 1.67* 3.93** 0.62

TC b 10.29 4.45 10.45 10.22 11.40 0.22 11.23

t-stat 3.18** 0.88 1.43 3.03** 4.24** [0.296] [0.424]

λ 0.33 0.29 0.63 0.77 0.25

t-stat 1.05 1.20 1.53 3.88** 0.99

PI b 8.34 6.74 7.83 11.00 7.29 0.25 10.48

t-stat 2.46** 1.21 0.88 3.45** 1.47 [0.234] [0.488]

λ 0.29 0.34 0.59 0.81 0.28

t-stat 0.92 1.36 1.27 4.19** 1.14

* significant (10-percent level)

** significant (5-percent level)

This table reports the GMM estimates for the first subperiod based on the stochastic discount factor

form using the covariance matrix of the test portfolios as the weighting matrix. Portfolios are sorted by

price impact and momentum. Average returns of the test portfolios are presented in table 2.3. MKT

is the market excess return, SMB and HML are the size and book-to-market factors as constructed by

Fama-French (1993), WML is the momentum factor, and FILLIQ is the illiquidity factor based on trading

quantity (TQ), trading speed (TS), trading costs (TC), and price impact (PI), respectively. b represents

the coefficients from the stochastic discount factor model and λ the corresponding risk premia. Risk

premia are expressed as monthly percentages. The J-Test is Hansen’s (1982) χ2 test statistics on the

overidentifying restrictions of the model. H̃J denotes a modification of the Hansen and Jagannathan

(1997) distance measure as proposed by Kan and Robotti (2008), which is defined in equation 2.18.

p-values of the J-Test and the H̃J distance measure are provided in square brackets.
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Table 2.13: GMM Regressions of 16 Price Impact & Momentum Portfolios - Subperiod 2

1992:01-2006:12 MKT SMB HML WML FILLIQ H̃J J-Test

TQ b 2.80 5.14 8.21 8.47 -3.82 0.61 38.64

t-stat 0.72 1.49 1.48 4.09** -1.04 [0.000] [0.000]

λ 0.27 -0.14 1.02 1.88 0.45

t-stat 0.59 -0.41 1.60 4.08** 0.83

TS b 6.87 5.39 2.01 6.52 1.58 0.62 42.45

t-stat 1.77* 1.62 0.36 2.84** 0.38 [0.000] [0.000]

λ 0.42 -0.16 0.45 1.79 0.80

t-stat 0.91 -0.46 0.67 3.91** 1.49

TC b 12.90 -0.95 -5.42 4.96 14.72 0.58 33.29

t-stat 3.77** -0.22 -0.97 2.15** 2.53** [0.000] [0.000]

λ 0.84 -0.54 -0.20 1.74 0.58

t-stat 1.75* -1.37 -0.29 3.67** 1.60

PI b 11.94 -3.23 -7.89 4.77 14.71 0.57 31.19

t-stat 4.23** -0.71 -1.39 2.12** 3.02** [0.000] [0.001]

λ 0.89 -0.60 -0.41 1.69 0.68

t-stat 1.84* -1.48 -0.61 3.58** 1.80*

* significant (10-percent level)

** significant (5-percent level)

This table reports the GMM estimates for the second subperiod based on the stochastic discount factor

form using the covariance matrix of the test portfolios as the weighting matrix. Portfolios are sorted by

price impact and momentum. Average returns of the test portfolios are presented in table 2.3. MKT

is the market excess return, SMB and HML are the size and book-to-market factors as constructed by

Fama-French (1993), WML is the momentum factor, and FILLIQ is the illiquidity factor based on trading

quantity (TQ), trading speed (TS), trading costs (TC), and price impact (PI), respectively. b represents

the coefficients from the stochastic discount factor model and λ the corresponding risk premia. Risk

premia are expressed as monthly percentages. The J-Test is Hansen’s (1982) χ2 test statistics on the

overidentifying restrictions of the model. H̃J denotes a modification of the Hansen and Jagannathan

(1997) distance measure as proposed by Kan and Robotti (2008), which is defined in equation 2.18.

p-values of the J-Test and the H̃J distance measure are provided in square brackets.
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premium is found to be priced for none of the four measures, which stresses the limitations

of the illiquidity risk factor in explaining stock returns. All models are rejected with

respect to the J-Test but none with respect to the H̃J measure at the 5% level. In

contrast to the 16 price impact and momentum portfolios, we find significant premia for

size and book-to-market risk. The size factor is negatively priced reflecting the absence

of the size effect in the German stock market. Momentum risk becomes insignificant.

Results also hold for subperiods and orthogonalized illiquidity factors.

Different Methodology

In order to evaluate the robustness of our methodology, we additionally run cross-sectional

regressions as proposed by Fama and MacBeth (1973) and estimate the risk premia.

Results are presented for both the 16 price impact and momentum portfolios and the

16 size and book-to-market portfolios. Table 2.15 presents the results. Our findings

support the results found so far. Using 16 price impact and momentum portfolios as

test portfolios we detect significant risk premia for all illiquidity factors except for the

trading quantity factor. Replacing these test portfolios by the 16 size and book-to-market

portfolios dramatically changes the results. None of the illiquidity factors appears to be

priced. Furthermore, the results hold in the same way when we apply the Fama-MacBeth

approach with time-varying betas or the cross-sectional approach applied by Black et al.

(1972), respectively.

2.5 Conclusion

In this chapter, we investigate the role of illiquidity risk in the cross-section of the Ger-

man stock market. To tackle this research target we apply a great variety of different

approaches and consider four well-established proxies for illiquidity. Each of these proxies

covers a different dimension of illiquidity. We make use of various test procedures, which

are widely used in the literature. As a starting point, we sort stocks into portfolios. In

contrast to the existing literature, we do not only test if the most illiquid stocks outper-

form the most liquid ones but we also test for a monotonic relation. Furthermore, we

regress individual stock returns on firm characteristics applying the procedure proposed

by Litzenberger and Ramaswamy (1979). Supplementary, we conduct the GMM approach

to verify if our four illiquidity factors entail significant risk premia while controlling for
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Table 2.14: GMM Regressions of 16 Size & Book-to-Market Portfolios

1975:01-2006:12 MKT SMB HML WML FILLIQ H̃J J-Test

TQ b 0.69 -0.81 8.50 4.50 -3.48 0.26 21.80

t-stat 0.16 -0.24 3.94** 1.02 -0.71 [0.058] [0.026]

λ 0.61 -0.42 0.77 0.70 -0.32

t-stat 1.97* -2.32** 3.94** 0.72 -0.58

TS b -1.53 -2.80 8.81 -0.39 -2.86 0.26 21.75

t-stat -0.36 -0.84 2.18** -0.09 -0.58 [0.059] [0.026]

λ 0.42 -0.33 0.73 -0.08 -0.46

t-stat 1.57 -1.99** 4.60** -0.12 -0.92

TC b 2.29 -0.26 7.68 2.91 -1.34 0.26 23.59

t-stat 0.53 -0.07 3.44** 0.74 -0.22 [0.061] [0.015]

λ 0.61 -0.40 0.74 0.59 -0.34

t-stat 1.99* -2.26** 3.88** 0.63 -0.84

PI b 4.20 -1.46 6.95 1.75 2.85 0.26 23.48

t-stat 1.26 -0.40 2.99** 0.45 0.61 [0.064] [0.015]

λ 0.61 -0.35 0.73 0.44 -0.04

t-stat 2.06** -1.94* 3.85** 0.46 -0.11

* significant (10-percent level)

** significant (5-percent level)

This table reports GMM estimates based on the stochastic discount factor form using the inverse of the

covariance matrix of the test portfolios as the weighting matrix. Portfolios are sorted by size and book-to-

market. Average returns of the test portfolios are presented in table 2.3. MKT is the market excess return,

SMB and HML are the size and book-to-market factors, WML is the momentum factor, and FILLIQ is

the illiquidity factor based on trading quantity (TQ), trading speed (TS), trading costs (TC), and price

impact (PI), respectively. b represents the coefficients from the stochastic discount factor model and λ the

corresponding risk premia. Risk premia are expressed as monthly percentages. The J-Test is Hansen’s

(1982) χ2 test statistics on the overidentifying restrictions of the model. H̃J denotes a modification of

the Hansen and Jagannathan (1997) distance measure as proposed by Kan and Robotti (2008), which

is defined in equation 2.18. p-values of the J-Test and the H̃J distance measure are provided in square

brackets.
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Table 2.15: Fama-MacBeth Regressions

16 price impact and momentum portfolios

1975:01-2006:12 Cons MKT SMB HML WML FILLIQ R2

TQ λ -0.36 0.81 0.55 -0.43 1.13 0.51 0.35

t-stat -0.81 1.73* 1.80* -0.57 4.20** 1.56

TS λ -0.36 1.09 0.28 -1.18 1.03 0.69 0.35

t-stat -0.80 2.30** 0.88 -1.58 3.85** 2.17**

TC λ -0.36 1.09 -0.24 -1.35 0.98 0.53 0.34

t-stat -0.19 2.18** -0.76 -2.11** 3.77** 2.38**

PI λ 0.15 0.80 -0.25 -1.72 1.03 0.40 0.35

t-stat 0.34 1.69 -0.79 -2.60** 3.95** 1.85*

16 size and book-to-market portfolios

TQ λ 0.01 0.46 -0.26 0.77 0.45 -0.26 0.21

t-stat 0.01 0.89 -1.53 4.50** 0.62 -0.39

TS λ -0.02 0.53 -0.26 0.74 0.46 -0.02 0.21

t-stat -0.04 1.01 -1.52 4.31** 0.64 -0.03

TC λ -0.04 0.58 -0.27 0.73 0.60 0.03 0.22

t-stat -0.09 1.11 -1.59 4.18** 0.82 0.07

PI λ -0.06 0.61 -0.28 0.71 0.52 0.18 0.23

t-stat -0.14 1.15 -1.65 4.07** 0.73 0.44

* significant (10-percent level)

** significant (5-percent level)

This table reports the results of the cross-sectional regressions following Fama and MacBeth (1973).

Portfolios are sorted by size and book-to-market. Average returns are presented in table 2.3. MKT is the

market excess return, SMB and HML are the size and book-to-market factors, WML is the momentum

factor, and FILLIQ is the illiquidity factor based on trading quantity (TQ), trading speed (TS), trading

costs (TC), and price impact (PI), respectively. λ denotes the risk premia. Risk premia are expressed as

monthly percentages. R2 is the cross-sectional adjusted coefficient of determination.
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other potential asset pricing factors. Thereby, we take into account several robustness

checks such as different test portfolios, subperiods, orthogonalized factors, and different

methodologies.

Our results show that all illiquidity measures and factors are highly correlated. Sorting

stocks into portfolios, our empirical results do not reflect a significant premium for illiq-

uidity. However, after controlling for other characteristics a significantly positive relation

between illiquidity and individual stock returns surfaces. This finding is robust for the

second but disappears for the first subperiod. Additionally, we construct test portfolios

and use risk factors to test if illiquidity entails a positive risk premium. Our results mirror

a significant illiquidity premium across all measures using 16 price impact and momentum

portfolios as test portfolios. Yet, the premium disappears when considering 16 size and

book-to-market portfolios. This result indicates that the choice of test portfolios matters

and is a crucial aspect in asset pricing.

Our findings document that the size of the firm and the illiquidity of the corresponding

stock are correlated. Despite this correlation and the fact that the size effect is absent or

even tends to be reversed, we find that illiquidity positively drives stock returns. Including

market capitalization and illiquidity into one regression, we discover positive coefficients

for both measures. In contrast to the illiquidity factor, the size factor is insignificant or

even negatively priced. This also holds when the illiquidity factor is excluded. Although

the two concepts are similar, our results clearly demonstrate that the two measures are

no substitutes for each other.



Chapter 3

The Idiosyncratic Risk Puzzle

3.1 Introduction

According to classical finance theory there is a positive trade-off between risk and ex-

pected returns in equilibrium. Volatility of returns has been widely used as a proxy

for risk.1 These two statements imply that there should be a positive relation between

volatility and expected returns. This view is also shared by most investment managers.

Volatility and returns are conjoined by the hip - you simply do not get one without the

other. Volatility consists of two components: systematic and idiosyncratic risk. The

largest component is idiosyncratic risk, which represents over 80% of total volatility on

average for a single stock. In this study, we analyze the relation between idiosyncratic

risk and expected returns and find that idiosyncratic risk yields a negative risk premium

on the German stock market. This effect even persists after controlling for several new

robustness checks. Further, our results indicate that the total volatility-expected return

relationship is reversed. Low volatility stocks outperform high volatility stocks.

Ang et al. (2006b) detect that high (idiosyncratic) volatility stocks earn low returns and

vice versa. Whereas Ang et al. (2006b) is restricted to the US market, Ang et al. (2009)

deliver further evidence that it is a global phenomenon. Despite the global evidence there

are several papers, both theoretically and empirically, indicating that the relationship

between idiosyncratic risk and returns should be the opposite way. From the theoretical

perspective Malkiel and Xu (2006) as well as Jones and Rhodes-Kropf (2003) show that if

investors are not able to diversify risk, then they will demand a premium for holding stocks

1Volatility is a latent variable. In this context, volatility refers to the standard deviation of returns

over a specified time period with the last observation on a date in the past.
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with high idiosyncratic risk. Merton (1987) suggests that in an information-segmented

market, firms with larger firm-specific variances require higher returns to compensate

investors for holding imperfectly diversified portfolios. Some behavioral models, like Bar-

beris and Huang (2001), show that higher idiosyncratic volatility stocks should earn higher

expected returns. One exception is a recent paper by Barberis and Xiong (2010). They

find the opposite constructing a model that is based on the concept of realization utility.

Suppose, for instance, an investor buys a stock and then a few month later sells the stock.

At the moment of selling the stock the investor receives a jolt of utility, the so-called

realization utility.

One of the first empirical papers testing the relevance of idiosyncratic risk is by Fama and

MacBeth (1973), which rejects its role in the CAPM. Lehmann (1990) studies the sig-

nificance of residual risk in the context of statistical testing methodology. A statistically

significant positive coefficient on idiosyncratic risk surfaces over the full sample period.

More recent papers also find a positive relationship. Goyal and Santa-Clara (2003) docu-

ment a significant positive relationship between average idiosyncratic risk and the return

on the market. However, Bali et al. (2005) show that this phenomenon disappears for

an extended sample period. Malkiel and Xu (2006), Spiegel and Wang (2005), and Fu

(2009) provide unambiguous evidence that portfolios with higher idiosyncratic volatility

earn higher average returns. In contrast to estimating idiosyncratic volatility based on

daily data over the last month as done by Ang et al. (2006b), they obtain estimates for

idiosyncratic risk based on monthly data. Furthermore, a recent paper by Huang et al.

(2010) finds that the negative relation between idiosyncratic risk and returns is driven

by monthly stock return reversals and, thus, disappears after controlling for past returns.

Bali et al. (2009) show that the negative relation disappears when controlling for the

maximum daily return over the previous month. Sorting stocks into portfolios based on

idiosyncratic volatility, Bali and Cakici (2008) detect that the negative relation vanishes

for equally-weighted portfolios. Jiang et al. (2009) show that idiosyncratic volatility is

inversely related to future earnings. Bover et al. (2010) find that expected idiosyncratic

skewness helps to explain the fact that high idiosyncratic risk stocks earn low returns and

vice versa. Kapadia (2006) argues in favor of cross-sectional skewness as an explanation

for this puzzle.

This paper includes two main novelties relative to the current literature. The first con-
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tribution is the construction of an idiosyncratic risk factor, which enables us to explicitly

estimate the risk premium in the cross-section and to compare it to established risk fac-

tors like size, book-to-market, and momentum.

Secondly, we conduct a multitude of new robustness checks. To test if low idiosyncratic

risk stocks possess higher expected returns, it is a very common approach in the empir-

ical asset pricing literature to sort stocks into multiple portfolios and consider the mean

return differential between the top and bottom portfolios. In contrast to the existing lit-

erature, we also evaluate the existence of a monotonic relation between expected returns

and idiosyncratic risk. We apply the Monotonic Relation test, which has been recently

proposed by Patton and Timmermann (2010). Moreover, we differentiate between upside

and downside idiosyncratic risk. Downside risk measures are well established in the recent

asset pricing literature. Ang et al. (2006a) argue that the downside beta reflects the loss

aversion of investors and show that it is a priced risk. Ang et al. (2001) provide evidence

that downside correlation between individual stocks and the market portfolio is priced.

Both studies find that stocks with more downside risk are compensated by higher returns.

Investors care about downside rather than upside risk.

Our idiosyncratic risk estimates are based on static OLS regressions using the CAPM

as the market model. In order to control if results are driven by the methodology, we

apply dynamic approaches like GARCH and EGARCH, use Dimson betas and consider

the Fama-French three-factor and the Carhart four-factor model to estimate idiosyncratic

risk. Finally, we investigate if the finding that high (idiosyncratic) stocks earn low re-

turns disappears if we use monthly data and calculate idiosyncratic risk over a 3 to 5

years horizon. For instance, Malkiel and Xu (2006) and Spiegel and Wang (2005) detect

a positive relationship between returns and idiosyncratic risk in the US using monthly

data. In this study, we analyze if such an effect also exists in Germany and, thus, we

contrast the results from the daily analysis with the results from the monthly analysis

within one study.

This study exclusively analyzes the German stock market. Considerable recent attention

has been paid to data snooping problems in empirical studies. Since tests of asset pricing

models have mostly been based on the same data source, i.e., the CRSP tape for US stock

data, such a problem is inevitable at least conceptually. In order to obtain a different

perspective, we study the German stock market. Limited attention has been paid to the

German stock market in the asset pricing literature, which is partly because a comprehen-

sive set of accounting data is not electronically available back to the 70s. Exceptions are
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for instance by Wallmeier (2000) finding an impact of book-to-market equity and cash

flow to price on stock returns and Ziegler et al. (2007) testing the performance of the

Fama-French model in comparison to the CAPM. Furthermore, looking at the German

stock market is of interest because it exhibits features that stand in contradiction to the

results of other markets, in particular the US market. For instance, Breig and Elsas

(2009) show that size and default risk are negatively priced.

Our empirical results provide strong evidence that low idiosyncratic risk stocks yield sig-

nificantly higher returns than high idiosyncratic risk stocks creating an excess return of

over 9% per annum. Idiosyncratic risk is a priced risk factor in the cross-section of the

German stock market. The risk premium totals over 10% after controlling for market,

size, book-to-market, and momentum risk. Potential asset pricing effects like coskewness,

short-run momentum, and illiquidity cannot capture the idiosyncratic risk effect, either.

Furthermore, other robustness checks fail as well. We find that a differentiation between

upside and downside idiosyncratic risk is not reasonable since daily return distributions

do not exhibit considerable skewness. The average cross-sectional correlation between

idiosyncratic volatility and the upside and downside measure totals 94.8% and 90.5%,

respectively. Thus, both measures capture essentially the same risk. Estimating idiosyn-

cratic risk by a GARCH or an EGARCH model cannot resolve the problem, either. Both

approaches produce the same qualitative results as the OLS approach. Measuring idiosyn-

cratic risk relative to the CAPM with Dimson Betas, the Fama-French or the Carhart

model still generates a premium for low idiosyncratic risk stocks.

Additionally, we find conflicting results to those from the US. Our results yield evidence

that the phenomenon that low idiosyncratic risk stocks outperform high idiosyncratic

stocks holds for equally-weighted portfolios and after controlling for the short-term rever-

sal effect. When using monthly instead of daily data, we do not find that idiosyncratic

risk is positively priced. Sorting portfolios with respect to the idiosyncratic risk over the

last three to five years, we find negative but mostly insignificant differences between the

lowest and highest idiosyncratic risk portfolios.

The remainder of this chapter is organized as follows. In the next section we describe the

data and the econometric methodology in detail. Section 3 provides the empirical results.

Section 4 contains further analysis. This section provides robustness checks regarding the

differentiation between downside and upside idiosyncratic risk, an (E)GARCH estimation,

the use of different market models, and the use of monthly data. Section 5 concludes.
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3.2 Data & Methodology

3.2.1 Data

The sample period of German listed firms extends from January 1974 to December 2006

and incorporates firms listed at the Frankfurter Stock Exchange including the segments

”Amtlicher Handel” and ”Neuer Markt”. Daily prices and trading volume are obtained

from Deutsche Kapitalmarktdatenbank in Karlsruhe. Prices are adjusted for dividends

and equity offerings. Yearly book equity and the number of shares outstanding are hand

collected and come from Hoppenstedt Aktienführer. We only examine common stocks

except the firm has exclusively listed preference stocks. Companies are only included in

the monthly portfolio construction if at least 14 daily returns exist and at least seven of

them are unequal to zero. Including firms with zero returns for almost all days of the

month would implicitly incorporate an illiquidity effect into our measure. The reason is as

follows. Let us consider an extreme case, in which a stock has only zero daily returns over

the entire month. A stock that has exclusively zero returns exhibits zero idiosyncratic

risk and zero total volatility. Further, Bekaert et al. (2007) argue that the number of zero

returns reflect the illiquidity of a stock. In order to avoid that results are driven by an

illiquidity effect, we disregard stocks with a multitude of zero returns.2

Table 3.1: Number of Observations

Year (y) Average no. of Firms

1974 ≤ y < 1980 171

1980 ≤ y < 1985 178

1985 ≤ y < 1990 235

1990 ≤ y < 1995 293

1995 ≤ y < 2000 354

2000 ≤ y ≤ 2006 576

The number of firms satisfying these requirements increases from 171 in the late 70s

to 576 at the beginning of the new century. The surge of observations in the late 90s is

particularly due to the dotcom bubble and the resultant rise of listed companies. Table 3.1

documents how the number of companies evolves over time.

2Results are qualitatively the same without this restriction.
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As the proxy for the market portfolio the CDAX from Deutsche Börse AG is used.3 The

risk-free rate is measured by the one-month money market rate reported by Frankfurt

banks.4 Since the influential work of Fama and French (1993) it has been common practice

in the empirical asset pricing literature to incorporate the size (SMB) and book-to-market

(HML) factor. The portfolios are constructed in the same way as in Fama and French

(1993). Financial firms are excluded. The size and book-to-market factors are based

on six value-weighted portfolios, which are the intersections of two portfolios formed on

size and three portfolios formed on book-to-market equity. Portfolios consisting of small

(big) firms are called small (big) portfolios, whereas portfolios consisting of firms with a

low (high) book-to-market equity value are denoted as growth (value) portfolios. The size

factor is constructed as the difference between the average return on three small portfolios

and the average return on three big portfolios. The book-to-market factor is the average

return on the two value portfolios minus the average return on the two growth portfolios.

We also add the momentum factor (WML) as proposed by Carhart (1997). WML is based

on the finding by Jegadeesh and Titman (1993) that past winners earn higher returns than

past losers. We follow Carhart’s (1997) way of constructing the momentum factor and

sort stocks into three equally-weighted portfolios based on eleven months returns lagged

one month (previous 2-12 months). Portfolio 1 contains past winners and portfolio 3 past

losers. The breakpoints are the 30th and 70th percentiles. Portfolio 1 minus portfolio 3

is the WML factor. Similarly, we construct a short-term reversal (STR) factor based on

the previous month return. The STR factor is included due to the evidence by Huang et

al. (2010) that the negative relation between idiosyncratic risk and returns is explained

by the short-term reversal effect. The significance of the short-term reversal effect has

been detected by Jegadeesh (1990).

3.2.2 Methodology

Although models, such as Merton (1987), have a precise definition of idiosyncratic risk,

they do not offer a way to estimate it. From the theoretical point of view it equals the

return innovation’s standard deviation beyond what investors expected given that period’s

factor realizations. These models do not even provide an empirical solution of how the

3The CDAX is a value-weighted performance index and includes all German stocks listed in the General

Standard and Prime Standard at the Frankfurter Stock Exchange. The correlation between the CDAX

and a value-weighted index of all stocks in this sample is over 98%.

4Money market rate is downloaded from the homepage of the German Bundesbank.
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market generates its expectations. In order to overcome this problem, this study follows

Malkiel and Xu (2006) and assumes that the CAPM is the model used by the market.

Other empirical studies for the US like Spiegel and Wang (2005), Ang et al. (2006b),

and Ang et al. (2009) compute the idiosyncratic risk relative to the Fama-French three-

factor model since it seems to be likely that market makers employ vehicles to hedge

out established risk factors like the size and book-to-market risk. Because of the limited

empirical evidence of relevant risk factors in Germany and the limits in data availability,

this argument does not fully hold for Germany.5 Therefore, selecting the CAPM as the

market model seems to be a reasonable choice.6 Given this, idiosyncratic risk equals the

standard deviation of the residuals of the following regression:

ri,t,d − rf,t,d = αi,t + βmi,t(rm,t,d − rf,t,d) + εi,t,d. (3.1)

Following standard notation, ri,t,d is the return on stock i, rf,t,d is the risk-free rate,

rm,t,d is the market return, βmi,t is the market factor loading of stock i, and εi,t,d is the

error term of stock i in month t at day d. For each month we estimate this equation using

daily returns. Our approach follows Ang et al. (2006b). Idiosyncratic risk is defined by

σi,t =
√
var(εi,t,d). To include idiosyncratic risk as a risk factor we create a hedge portfolio

that captures the risk of idiosyncratic volatility. Based on monthly updated estimates we

rank stocks by their idiosyncratic risk and form three equally-weighted portfolios: 30

percent with the lowest idiosyncratic volatility, which is denoted as S−, the middle 40

percent, and 30 percent with the highest idiosyncratic volatility, which is called S+. The

difference between S+ and S− is a proxy for idiosyncratic risk, which is denoted IR. This

factor is conceptually similar to the momentum factor used in Carhart (1997).

Monotonic Relation Test

In the following three subsections, we introduce procedures to evaluate the relation be-

tween idiosyncratic risk and expected returns and whether idiosyncratic volatility is a

5The Fama-French factors are neither freely downloadable as in the US nor exists a comprehensive

database, which contains German accounting data back to the 60s or 70s.

6As a robustness check, we also apply the Fama-French and the Carhart model. Results are presented

in section 3.4.4. Additionally, we consider potential estimation errors as beta estimates can be biased.

Dimson (1979) discusses the problem of biased beta estimates due to infrequent trading. Results based

on Dimson betas are shown in section 3.4.3.
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priced risk. A simple and widely used approach in the empirical asset pricing literature is

to sort stocks into idiosyncratic risk portfolios and consider the mean return differential

between the top and bottom portfolios. Subsequently, one conducts a t-test to evaluate

if the mean return differential is equal to zero. If a significant mean return differential

emerges, it will indicate the existence of a risk premium. However, this procedure does

not provide a sufficient way to test for a monotonic relation between expected returns

and idiosyncratic risk as the top and bottom portfolios are exclusively taken into account.

For this reason, we additionally conduct the Monotonic Relation (MR) test proposed by

Patton and Timmermann (2010). This test works as follows. Let µi be the population

value of the expected return on the ith portfolio (i = 1, ..., N) obtained from a ranking of

stocks. Assume we would like to test the null hypothesis that there is no difference in the

expected returns of the portfolios against the alternative hypothesis that the expected

return is decreasing when we move from the top portfolio to the bottom portfolio. The

null hypothesis (H0) is written as

H0 : µ1 = µ2 = ... = µN (3.2)

and the alternative hypothesis H1 as

H1 : µ1 > µ2 > ... > µN . (3.3)

Although the null hypothesis is written as an equality, finding µj < µj+1 makes rejections

of the null against the alternative hypothesis less likely. To test the null hypothesis, we

construct the average return differential of adjacent portfolios ∆̂i = µ̂i − µ̂i−1. The test

statistic for the MR test is given by:

JT = max
i=2,...,N

∆̂i (3.4)

In order to obtain critical values for the MR test, we apply the block bootstrap as

proposed by Patton and Timmermann (2010).

Fama-MacBeth

The Fama-MacBeth procedure offers an approach to estimate the idiosyncratic risk pre-

mium while controlling for several other variables. It is a two step approach. In the first

step, βi,t, a M × 1 vector of factor loadings, is estimated from the following time-series

regression:

rei,τ = ri,τ − rf,τ = δi,t + F ′τβi,t + ηi,τ τ = t− 60....t− 1, (3.5)
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where rei,τ represents a vector of monthly excess returns of test portfolio i during time

period τ . δi,t is a scalar, Fτ is a M × 1 vector of factors, and ηi,τ is the error term of

test portfolio i during time period τ . Our test portfolios are constructed as follows. We

split stocks into 15 portfolios sorted by the momentum strategy and idiosyncratic risk

in order to receive a wide spread in returns and betas in the portfolios.7 A wide spread

in betas and returns raises the power of the test essentially. Sorting with respect to size

and market beta or size and book-to market, as usually done so in the US literature,

only creates a small variation in returns and betas on the German stock market. This

holds in particular for the size and market beta portfolios as both variables only cause

little variation in the average returns of test portfolios. Instead, we first sort stocks

into three momentum portfolios based on the past 2-12 months return. Within each

momentum portfolio, we sort stocks into five portfolios with respect to their idiosyncratic

risk. We sort by momentum and idiosyncratic risk because these variables create the

largest spread in average return and betas across portfolios.8 As a robustness check

we also use 16 independently sorted value-weighted size and book-to-market portfolios.

Our 15 momentum and idiosyncratic risk portfolios are not independently sorted as the

number of stocks with low idiosyncratic risk and low past returns is relatively small.

In some months the number of stocks is even zero and, hence, we cannot determine a

complete time-series for the low idiosyncratic risk & past losers portfolio.

In contrast to most of the existing literature, we allow for time-varying betas. The decision

to allow the sensitivities to the risk factors to change over time is made in view of the long

data set used and the apparent change in portfolio betas over time that is found in the

data. The relevance of time-varying betas is emphasized in several papers, e.g. Harvey

(1989), Ferson and Harvey (1991, 1993) as well as Jagannathan and Wang (1996). These

time-series regressions are repeated by rolling the window of 60 months of observations

one month ahead. Rolling windows of five years make an appropriate compromise between

adjusting to the latest changes and avoiding of noise in the monthly estimations. In the

second step, we run a cross-sectional regression over N portfolios at each time t:

rei,t = λ0,t + λ′tβ̂i,t + υi,t, (3.6)

7Lewellen et al. (2010) criticize the common practice to evaluate models exclusively based on the size

and book-to-market portfolios.

8Cochrane (2005), p. 444, mentions the following argument. ”If your portfolios have no spread in

average returns - if you choose 25 random portfolios, then there will be nothing for the asset pricing

model to test.”
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where λ0,t is a scalar, which should be zero if the model is correctly specified. λt is a

M × 1 vector of factor risk premia.9 The factor premia λ are estimated as the averages

of the cross-sectional regression estimates:

¯̂
λ =

1
T

T∑
t=1

λ̂t. (3.7)

The covariance matrix of λ,
∑

λ, is estimated by:

∑̂
λ

=
1
T 2

T∑
t=1

(λ̂t − ¯̂
λ)(λ̂t − ¯̂

λ)′. (3.8)

Since the factor loadings are estimated from a first-step regression, standard errors for the

second regression can be misleading. In order to remedy the presence of this errors-in-

variables problem, we could multiply the covariance matrix by an adjustment factor, the

so-called Shanken correction, as proposed by Shanken (1992). Yet, the Shanken correction

has to be treated critically as mentioned by Shanken and Weinstein (2006) because in

practical applications it often yields a modified cross-product matrix of the estimated

beta vectors that is not positive definite as it should be. For the sake of completeness we

also present the adjusted t-values using the Shanken correction.10

GMM

In addition to the classical Fama-MacBeth approach, we conduct asset pricing tests in

the GMM framework as proposed by Hansen (1982) in order to demonstrate that results

do not heavily rely on the econometric methodology. The GMM framework also allows

us to estimate the idiosyncratic risk premium in a multi-factor setting. In contrast to

Fama-MacBeth, GMM is a one-step procedure and, thus, the error-in-variables problem

does not occur. Another advantage of this method is that we do not lose observations (in

our case five years) because we avoid estimating betas in the first step.

Any asset pricing model can be written in a stochastic discount factor form:

Et[mt+1r
e
i,t+1] = 0. (3.9)

9As a further robustness check, we regress individual returns on factor loadings and characteristics.

In this case, we run the following cross-sectional regressions over all individual stocks for each month:

re
j,t = λ0,t + λ1

t
′
β̂j,t + λ2

t
′
Zj,t + υj,t, where Zj,t are the characteristics of firm j at month t and λ2

t are the

respective coefficients.

10Although the original Shanken correction is based on time constant betas, Shanken (1992) additionally

proposes a correction in the case of time-varying betas. We follow this approach.
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The focus in this study is on linear factor models that express the pricing kernel as a linear

function of factors: mt+1 = a−F ′tb. The moment restriction displayed in equation 3.9 does

not separately identify the parameters a and b. Thus, we have to consider a normalization.

The most popular choice of normalization is to set a = 1. As shown by Kan and Robotti

(2008) this specification is problematic because the outcome can be affected by an affine

transformation of the factors. Moreover, they argue that model comparison is improper

if the stochastic discount factors of competing models have different means. In contrast,

a version that writes the stochastic discount factor as a linear function of the demeaned

factors is free from this problem. We follow this normalization. To achieve identification,

we rewrite the stochastic discount factor as mt+1 = ξ[1 − (Ft − µF )′ḃ], where µF is the

unconditional mean of Ft, ξ is a scalar ξ = a−µ′F b and ḃ = b
a−µ′F b

. Then, we divide by ξ.

This normalization is also favored by Burnside (2008) finding that demeaned risk factors

improve the performance of GMM in the context of consumption based asset pricing.

Finally, we are interested if risk factors are priced, though, our GMM coefficients (ḃ) only

tell us if factors are marginally useful in asset pricing tests, given the presence of the

other included factors. As proven by Cochrane (2005), p. 106, there exists an equivalent

representation between the stochastic discount factor approach and beta pricing models.

Risk premia λ are related to ḃ by the following formula11:

λ̂ =
∑̂

f

ˆ̇
b, (3.10)

where
∑̂

f = 1
T

∑T
t=1(Ft − µF )(Ft − µF )′. In order to obtain estimates for ḃ, we consider

the following moment condition gT (ḃ):

gT (ḃ) =
1
T

T∑
t=1

[(1− (Ft − µF )′ḃ)rei,t+1]. (3.11)

gT (ḃ) is a N × 1 vector including one moment condition for each portfolio. The GMM

optimization problem is as follows:

ˆ̇
b = arg min

ḃ
gT (ḃ)′W−1

T gT (ḃ), (3.12)

where WT is a weighting matrix. Hansen and Jagannathan (1997) argue in favor of the

second moment weighting matrix WT = 1
T

∑T
t=1 r

e
t r
e
t
′. ret represents a N × 1 vector of

test portfolio excess returns. This estimation procedure is different from the conventional

two-stage GMM approach by Hansen (1982) who suggests to use the estimated variance-

covariance matrix of moment conditions as the weighting matrix. Using Hansen’s weight-

ing matrix results in efficient estimates. Despite the theoretical advantage of this matrix,

11Burnside (2008) provides a detailed derivation of λ̂ and its asymptotic distribution.
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the second moment matrix approach entails a number of other advantages. Since we in-

tend to compare different asset pricing models, it is important that the weighting matrix

remains constant. The better model should be better because it improves on the pricing

error rather than just blowing up the weighting matrix. Secondly, the GMM objective

function evaluated at the estimated parameters has an intuitively appealing interpreta-

tion as the squared distance between a candidate discount factor and the space of true

discount factors.

However, Kan and Robotti (2008) point out that the traditional HJ distance is inappro-

priate while imposing a constraint on the mean of the stochastic discount factor. On this

account, they suggest a modified version of the HJ distance measure using the inverse of

the covariance matrix rather than the inverse of the second moment matrix of the excess

returns. The modified HJ distance measure is given by:

H̃J =

√√√√gT (ˆ̇b)′
(

1
T

T∑
t=1

r̃et r̃
e′
t

)−1

gT (ˆ̇b), (3.13)

where r̃et are the demeaned excess returns of the test portfolios. This measure can be

interpreted as the squared distance between a candidate discount factor and an admissible

stochastic discount factor that has unit mean. If the asset pricing model is correctly

specified, both measures have the same asymptotic distribution. The statistic T∗H̃J2
is

asymptotically distributed as a weighted sum of χ2
(1)-distributed random variables. We

run the simulation suggested by Jagannathan and Wang (1996) 100,000 times in order to

determine the p-value for testing the null hypothesis H̃J = 0. We report the modified

version of the HJ distance measure and use the inverse of the covariance matrix as

our weighting matrix. For the sake of completeness, we also calculate the classical J-

test, which uses the estimated variance-covariance matrix of moment conditions as the

weighting matrix.

3.3 Is Idiosyncratic Risk Priced?

3.3.1 Portfolio Returns

Table 3.2 reports the returns and standard deviations for quintile portfolios sorted by

idiosyncratic volatility. As we intend to contrast the results of Bali and Cakici (2008),

we concentrate on equally-weighted portfolios. Studying the US market Bali and Cakici

(2008) find that the negative relation between returns and idiosyncratic risk disappears
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for equally-weighted portfolios.12 Table 3.2 clearly illustrates that portfolio 1 including

low idiosyncratic risk stocks has higher average returns than portfolio 5 consisting of

high idiosyncratic risk stocks. The average difference between the highest and lowest

idiosyncratic risk portfolio is 0.79% per month, which is significant at the 5% level. That

means the trading strategy of buying stocks with the lowest idiosyncratic risk and selling

stocks with the highest idiosyncratic risk creates a yearly return of over 9% disregarding

transaction costs. Although this result provides strong evidence that low idiosyncratic

stocks outperform high idiosyncratic risk stocks, we do not find a monotonically decreasing

relation between expected returns and idiosyncratic risk at a 10% level. The p-value of

the MR test is 0.13. Table 3.2 also shows that the standard deviation increases from

portfolio 1 to portfolio 5 which seems plausible as idiosyncratic volatility is a substantial

part of the total standard deviation. Table 3.3 provides further insights about the five

idiosyncratic risk portfolios. Stocks with lower idiosyncratic risk are bigger firms and

firms with a lower book-to-market ratio. Moreover, they tend to have smaller return

skewness. Thus, it seems to be important to control for other characteristics, which will

be done in the next subsection.

Additionally, we sort portfolios based on their total volatility over the previous month

in order to demonstrate the similarity to the results of the idiosyncratic volatility measure.

Results are depicted in table 3.2. Low volatility stocks have high returns and high volatil-

ity stocks low returns. This finding is not very surprising given the findings in Goyal and

Santa-Clara (2003). They document that idiosyncratic risk represents more than 80%

of the average individual stock variance and, hence, stocks with high idiosyncratic risk

usually have high volatility.

We also document the results of two subperiods depicted in table 3.4. We differentiate

between two subperiods. The first one runs from 1974:02-1991:12 and the second one

from 1992:01-2006:12. The reason for considering these subperiods is twofold. Firstly,

the period from 1992 to 2006 is characterized by a distinctly higher volatility in the

market driven by the dotcom bubble and the subsequent slump in stock prices. Amongst

others this fact is mirrored by higher standard deviations for the (idiosyncratic) volatility

portfolios in the second subperiod. Secondly, the average number of stocks in the first

subperiod is 207, whereas in the subperiod after 1992 it is 446. The rise in the number

of firms is mainly due to the euphoria about the New Economy and the resultant hot

12Using value-weighted portfolios, our estimation results are very similar throughout.
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Table 3.2: Portfolios Sorted by (Idiosyncratic) Volatility

Idiosyncratic Volatility Total Volatility

Portfolio Mean Std Dev Mean Std Dev

Low 1.06 4.41 1.02 4.15

2 0.94 5.18 1.01 5.23

3 0.94 6.67 0.89 6.56

4 0.55 7.64 0.60 7.84

High 0.27 8.57 0.26 8.71

High-Low -0.79 -0.76

t-stat -2.60** -2.39**

MR test 0.133 0.107

** significant (5-percent level)

* significant (10-percent level)

We form quintile portfolios every month by sorting stocks based on idiosyncratic and total volatility.

Idiosyncratic volatility is computed over the previous month using daily residuals relative to the CAPM.

Total volatility is the standard deviation of daily returns over the previous month. Portfolio 1 (5) is

the portfolio with the lowest (highest) volatility, respectively. The statistics in the columns Mean and

standard deviation (Std Dev) are measured in monthly percentage terms. Critical values for the t-statistic

are based on robust Newey and West (1987) standard deviations. In the last row, we display the p-value

of the Monotonicity test proposed by Patton and Timmermann (2010). The sample period runs from

1974:02-2006:12.

Table 3.3: Characteristics of the Idiosyncratic Volatility Portfolios

Portfolio Size BM Skewness Kurtosis

Low 20.00 0.64 -0.46 5.18

2 19.34 0.64 -0.54 5.47

3 18.80 0.67 -0.30 5.11

4 18.35 0.71 0.10 6.53

High 17.84 0.76 -0.06 6.42

We form quintile portfolios every month by sorting stocks based on idiosyncratic volatility which is com-

puted over the previous month using daily residuals relative to the CAPM. Portfolio 1 (5) is the portfolio

with the lowest (highest) idiosyncratic volatility, respectively. Size reports the average log market capi-

talization for firms within the portfolio and BM reports the average book-to-market ratio. Skewness and

Kurtosis represent the third and fourth central moments of the portfolio. The sample period runs from

1974:02-2006:12.
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IPO wave. A distinctly larger cross-section makes the results more robust to outliers.

The difference in returns between the lowest and highest idiosyncratic risk portfolio is

more pronounced for the second subperiod. The monthly difference is -1.28%, which is

an excess return of more than 15% per year. The difference is significant. We also find

evidence for a monotonic relation. Contrarily, we do not reject the hypothesis of a flat

pattern in expected returns when moving from portfolio 1 to 5 for the first subperiod.

The first subperiod running from 1974:02 - 1991:12 produces a lower difference between

the high and low idiosyncratic risk portfolio, -0.39% per month, even though it is still

significant due to the lower standard deviations of the portfolio returns. The results are

very similar for total volatility.

3.3.2 Controlling for Various Cross-Sectional Effects

In order to evaluate if other variables that have proved to be useful in asset pricing

drive the results shown so far, we conduct robustness checks by controlling for other

potential cross-sectional asset pricing effects like (short-run) momentum, size, book-to-

market, coskewness, and illiquidity. Each month, we first sort stocks into five portfolios

based on a characteristic (momentum, coskewness, illiquidity, size, and book-to-market)

and then, within each quintile we sort stocks into five portfolios based on idiosyncratic

risk. We receive 25 portfolios. For each classification of idiosyncratic risk portfolios (low,

2, 3, 4, and high), we average over the five corresponding characteristic portfolios. Hence,

we obtain idiosyncratic risk quintile portfolios controlling for one of the characteristics.

Table 3.5 reports the results.

Controlling for Momentum

Jegadeesh and Titman (1993) provide evidence that low momentum stocks have lower

returns than high momentum stocks. Furthermore, Hong et al. (2000) argue that the

momentum effect is asymmetric and has a stronger negative effect on declining stocks

than a positive effect on rising stocks. A potential explanation behind the idiosyncratic

risk puzzle is that loser stocks are overrepresented in the high idiosyncratic risk portfolio.

Momentum is measured as the past 2-12 months return. Additionally, we incorporate

short-term reversal, which is based on the previous month return and, thus, it consid-

ers the same horizon as our idiosyncratic risk measure. Huang et al. (2010) find that

the negative relation between idiosyncratic risk and return is driven by monthly stock
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Table 3.4: Portfolios Sorted by (Idiosyncratic) Volatility - Subperiods

Idiosyncratic Volatility

1974:02-1991:12 1992:01-2006:12

Portfolio Mean Std Dev Mean Std Dev

Low 1.08 4.61 1.05 4.05

2 1.07 4.67 0.80 5.68

3 1.21 5.05 0.62 7.98

4 0.84 5.06 0.22 9.62

High 0.69 5.25 -0.23 11.18

High-Low -0.39 -1.28

t-stat -2.05** -2.04**

MR test 0.609 0.033**

Total Volatility

Low 1.04 4.27 1.00 3.90

2 1.11 4.79 0.89 5.65

3 1.17 4.98 0.55 7.82

4 0.91 5.17 0.23 9.89

High 0.66 5.35 -0.21 11.38

High-Low -0.38 -1.21

t-stat -1.92* -1.86*

MR test 0.207 0.074*

** significant (5-percent level)

* significant (10-percent level)

We form quintile portfolios every month by sorting stocks based on idiosyncratic volatility, the upper part

of the table, and total volatility, the lower part of the table. Idiosyncratic volatility is computed over the

previous month using daily residuals relative to the CAPM. Total volatility is the standard deviation of

daily returns over the previous month. Portfolio 1 (5) is the portfolio with the lowest (highest) volatility,

respectively. The statistics in the columns Mean and standard deviation (Std Dev) are measured in

monthly percentage terms. Critical values for the t-statistic are based on robust Newey and West (1987)

standard deviations. In the last row, we display the p-value of the Monotonicity test proposed by Patton

and Timmermann (2010).
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return reversals. The results for the two variables are summarized in the first two rows

of table 3.5. In comparison to table 3.2 the difference between the high and low portfolio

shrinks to -0.67% and -0.76% per month after controlling for momentum and short-term

reversal, respectively. For both variables, the difference is significant. The findings clearly

demonstrate that neither momentum nor short-term reversal drive the results substan-

tially. Independent of the momentum measure, we do not reject the hypothesis of a flat

relation between expected returns and idiosyncratic risk.

Controlling for Coskewness

Harvey and Siddique (2000) find that stocks with more negative coskewness have higher

returns. Maybe stocks with high idiosyncratic volatility have positive coskewness, giving

them low returns. If this were the case, the difference between the high and low id-

iosyncratic portfolio would be less significant after controlling for coskewness. Following

Harvey and Siddique (2000) we define coskewness as:

coskew =
E[εi,tε2m,t]√
E[ε2i,t]E[ε2m,t]

,

where εi,t,d = ri,t,d− rf,t,d−αi,t− βmi,t(rm,t,d− rf,t,d). Coskewness is estimated using daily

data over the last month.

However, as table 3.5 shows, this conjecture is not confirmed. The difference between the

high and low idiosyncratic portfolio is still significant and the hypothesis of a flat relation

between expected returns and idiosyncratic risk is rejected in favor of a monotonically

decreasing relation.

Controlling for Illiquidity

It is generally thought that more illiquid stocks have higher returns. Although we disre-

gard the most illiquid stocks, results can still be driven by an illiquidity effect. In order

to examine this conjecture, we construct an illiquidity measure, as in Amihud (2002).13

It follows Kyle (1985)’s concept of illiquidity - the response of price to order flow. It is

defined as the average ratio of the daily absolute return to the daily trading volume over

the previous twelve months and, hence, it is only defined if the trading volume is nonzero

13Goyenko et al. (2009) compare different price impact measures and show that the Amihud measure

outperforms other price impact measures like the Gamma measure developed by Pastor and Stambaugh

(2003) and the Amivest measure.
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Table 3.5: Controlling for Other Variables

Controlling for Low 2 3 4 High High-Low t-stat MR test

Momentum 0.94 0.92 0.97 0.66 0.28 -0.67 -3.57** 0.194

[4.69] [5.08] [5.29] [5.80] [6.55]

Short-term Reversal 0.96 1.08 1.00 0.75 0.20 -0.76 -3.26** 0.504

[4.22] [4.86] [5.64] [6.47] [7.39]

Coskewness 1.10 1.07 0.92 0.63 0.31 -0.76 -2.66** 0.046**

[3.81] [4.93] [5.69] [6.42] [7.74]

Illiquidity 1.10 1.07 0.92 0.63 0.29 -0.81 -2.93** 0.061*

[3.81] [4.93] [5.69] [6.42] [7.87]

Book-to-market 1.11 0.99 0.80 0.56 0.20 -0.91 -4.10** 0.012**

[4.12] [4.89] [5.69] [6.27] [6.75]

Size 1.11 1.03 0.94 0.72 0.59 -0.53 -2.10** 0.010**

[4.06] [5.01] [5.63] [6.36] [6.90]

** significant (5-percent level)

* significant (10-percent level)

In the panels controlling for momentum, coskewness, illiquidity, size, and book-to-market, we perform a

double sort. Each month, we first sort into five portfolios based on the first characteristic (momentum

coskewness, illiquidity, size, and book-to-market) and then, within each quintile we sort stocks into five

portfolios based on idiosyncratic risk. The five idiosyncratic risk portfolios are then averaged over each

of the five characteristic portfolios. Hence, they represent idiosyncratic risk portfolios controlling for the

characteristic. Coskewness is computed over the previous month. It is calculated in the same way as

in Harvey and Siddique (2000). Momentum is measured by the past returns over the previous two to

twelve months. Short-term reversal represents the return of the previous month. Illiquidity is the yearly

average of the absolute return divided by the trading volume as applied by, e.g., Amihud (2002). Size

represents the market capitalization and is measured at the end of the previous month. Book-to-market

is the ratio between the book-value and the market capitalization at the end of December. Idiosyncratic

risk is the volatility of the residuals relative to the CAPM. Values are measured in monthly percentage

terms. Standard deviations are given in square brackets. Critical values for the t-statistic are based on

robust Newey and West (1987) standard deviations. In the last column, we display the p-value of the

Monotonic Relation test proposed by Patton and Timmermann (2010). The sample period runs from

1975:01-2006:12.
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for some days. This is the case for all stocks in the sample. This ratio represents the

daily price impact of order flow. However, one problem arises. Measuring trading volume

in an appropriate way is not straightforward. Trading volume at the Frankfurter Stock

Exchange only reflects the overall trading volume to a small extent after the inception of

XETRA in November 1997. Especially, more liquid stocks are predominantly traded on

XETRA. On this account, we consider not only the trading volume of the Frankfurter

Stock Exchange but also the trading volume of all German Stock Exchanges (Frankfurter

Stock Exchange, XETRA, and regional Stock Exchanges).14 Findings are qualitatively

the same. The presented results are based on the total trading volume. If illiquidity is

able to explain the idiosyncratic volatility effect, the difference in returns between the

high and low idiosyncratic volatility portfolio should be insignificant. However, the row

labeled Illiquidity shows that the difference is -0.81% and significant after controlling for

illiquidity. Moreover, we reject the hypothesis of a flat relation between expected returns

and idiosyncratic risk in favor of a monotonically decreasing relation at the 10% level.

Controlling for Book-to-market

There is compelling evidence in the empirical asset pricing literature that value stocks earn

higher returns than growth stocks. Therefore, we control for the book-to-market equity

ratio next. Table 3.5 illustrates that the difference between low and high idiosyncratic

stocks totals -0.91% per month after controlling for the book-to-market effect. We even

find a monotonically decreasing relation between idiosyncratic risk and return.

Controlling for Size

One exceptional characteristic of the German stock market is the absence of a size effect.

Results rather show that bigger firms tend to have larger returns than smaller firms. To

some extent, this could be an explanation for the finding that low idiosyncratic risk stocks

earn higher returns since low idiosyncratic stocks tend to be big firms. Indeed, table 3.5

shows that the size effect partly explains the risk premium. The difference shrinks to

-0.53%. However, we still find a significant premium for idiosyncratic risk. Further, we

find a monotonically decreasing relation between returns and idiosyncratic risk.

14Unfortunately, trading volume is not available for the following three months: 1983:02, 1983:03, and

1983:10. We assume that the illiquidity measures behave in the same way as for the other months in these

twelve months windows.
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3.3.3 Regressions

Potentially, results are not driven by one specific variable but by an interplay of different

asset pricing effects. In this subsection, we estimate the risk premium for idiosyncratic

risk while controlling for a multiplicity of different asset pricing variables at the same

time. We regress returns on our idiosyncratic factor and, additionally, on other fac-

tors such as size, book-to-market, momentum, and short-term reversal. This is done by

conducting Fama-MacBeth and GMM regressions as described in subsection 3.2.2. We

examine whether the idiosyncratic risk factor is priced when it is added to the CAPM,

the Fama-French three-factor or the Carhart four-factor model.

Before presenting the results of the Fama-MacBeth regressions, we summarize the de-

scriptive statistics of the risk factors applied in the analysis. Besides the idiosyncratic

risk factor (IR), we include the market factor (MKT), the size factor (SMB), the book-to-

market factor (HML), the momentum factor (WML), and the short-term reversal factor

(STR). Table 3.6 reports the mean, the standard deviation, the minimum, the maximum,

and the correlation between the six factors. The IR factor has a higher mean in absolute

terms, a similar standard deviation and a higher maximum and minimum in absolute

terms compared to the market excess return. The correlation between both variables is

positive indicating that stocks with a high idiosyncratic risk perform better in up than in

down markets relative to stocks with a low idiosyncratic risk. Moreover, we find a strong

book-to-market effect since the mean of the book-to-market factor is 0.59% per month

representing an annual return of 7%. The momentum effect is even stronger creating an

excess return of 1.12% per month. Short-term reversal is negative showing that stocks

with a bad performance in the previous month tend to outperform stocks with a good

performance in the following month. The size effect is absent. Bigger firms tend to earn

higher returns than smaller firms. This stands in contrast to the US evidence. Yet, it is

in line with other papers analyzing the German stock market like Breig and Elsas (2009)

and Schrimpf et al. (2007). The idiosyncratic risk factor is hardly correlated to the size

factor, but positively correlated to the book-to-market factor. The largest correlation in

absolute terms is the one to the momentum factor.

Fama-MacBeth

In a first step, we estimate risk premia applying the classical Fama-MacBeth test. The

estimation period runs from 1980:01-2006:12 since the first five years are needed to es-
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Table 3.6: Descriptive Statistics of the Factors

Variable Mean Std Dev Min Max Correlations

MKT SMB HML WML STR IR

MKT 0.42 4.98 -24.12 19.80 1.00 -0.54 -0.02 -0.25 -0.23 0.34

SMB -0.35 3.19 -12.96 10.61 1.00 -0.02 -0.14 -0.10 0.09

HML 0.59 3.03 -12.24 19.23 1.00 0.19 0.11 -0.39

WML 1.12 3.83 -17.78 17.55 1.00 0.45 -0.50

STR -0.33 4.07 -30.71 21.43 1.00 -0.29

IR -0.72 4.97 -28.84 33.64 1.00

This table shows the summary statistics of the factors. MKT is the market excess return, SMB and

HML are the size and the book-to-market factor constructed in the same way as in Fama and French

(1993). WML is the momentum factor as constructed by Carhart (1997). The short-term reversal factor

STR is constructed in the same way but based on the previous month return. IR is the return on the

strategy of going long on stocks with the highest idiosyncratic risk and shorting stocks with the lowest

idiosyncratic risk. The first four columns show the mean, the standard deviation, the minimum as well as

the maximum expressed as monthly percentages. The sample period runs from 1975:01-2006:12.

timate betas. The CAPM is the first model coming under scrutiny. Table 3.7 presents

the estimation results. The CAPM produces an average adjusted R2 of 6%. The market

risk premium is insignificant and the constant is significant. Next, we test a two-factor

model adding the IR factor to the CAPM. The average adjusted R2 soars to 16%, the

constant is insignifiant, the IR risk premium is significant and the market risk premium is

now positive albeit insignificant. The risk premium of the IR factor is -1.01% per month.

The inclusion of the IR factor switches the sign and raises the t-statistic of the market

factor (MKT). Next, we examine the Fama-French three-factor model. It produces only

a slightly higher R̄2 than the two-factor model. As it has been found in other studies cov-

ering the German stock market, the size premium is negative. The book-to-market and

market premia are insignificant as in all other specifications. Including the IR factor into

the three-factor model, we still find a significant IR risk premium, which is -0.92% per

month. The average adjusted R2 increases to 22%. This clearly shows that the IR factor

contains an addtional risk relative to the Fama-French three-factor model. Furthermore,

the IR factor is also priced in the presence of other factors like the momentum (WML)

and short-term reversal (STR) factor. The risk premia are -0.86% and -0.98% per month,

respectively. Apart from the significant risk premium for the momentum factor, none of

the other risk factors appears to be priced.
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Table 3.7: Fama-MacBeth Regressions of 15 Idiosyncratic Risk & Momentum Portfolios

1980:01-2006:12 λ0 MKT SMB HML WML STR IR R̄2

λ 0.99 -0.74 0.06

t-stat 1.80* -1.06

t-stat (adj.) 1.78* -1.05

λ 0.18 1.21 -1.01 0.16

t-stat 0.28 1.55 -3.33**

t-stat (adj.) 0.27 1.45 -3.13**

λ 1.15 0.07 -1.17 0.32 0.18

t-stat 2.05** 0.10 -3.25** 1.03

t-stat (adj.) 1.89* 0.09 -3.00** 0.95

λ 0.41 0.87 -0.79 -0.10 -0.92 0.22

t-stat 0.72 1.34 -2.10** -0.29 -3.01**

t-stat (adj.) 0.68 1.27 -1.99** -0.28 -2.85**

λ 0.20 0.96 -0.62 -0.08 1.12 -0.86 0.27

t-stat 0.37 1.58 -1.64 -0.19 4.21** -2.76**

t-stat (adj.) 0.35 1.47 -1.54 -0.18 3.94** -2.59**

λ 0.35 0.85 -0.43 -0.18 0.78 -0.98 0.26

t-stat 0.63 1.36 -1.17 -0.53 1.68* -3.15**

t-stat (adj.) 1.27 -1.08 -0.49 -0.18 1.56 -2.93**

* significant (10-percent level)

** significant (5-percent level)

This table depicts the Fama-MacBeth (1973) factor premia on 15 portfolios sorted by idiosyncratic risk

relative to the CAPM and the momentum strategy. MKT is the market excess return, SMB and HML

are the size and book-to-market factors as constructed by Fama-French (1993), WML is the momentum

factor analogous to Carhart (1997), STR a short-term reversal factor, and IR is the idiosyncratic risk

factor. We compute two t-statistics for each estimate. The first one is calculated using the uncorrected

Fama-MacBeth standard errors. The second one is calculated using the Shanken (1992) correction. The

column R̄2 reports the average of the cross-sectional adjusted R2. Risk premia are expressed as monthly

percentages.
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As a robustness check we examine two subperiods running from 1980:01 to 1991:01

and from 1992:01 to 2006:12, respectively. Results are depicted in table 3.8. For the

first subperiod we find that idiosyncratic risk is priced for all specifications except in

the Carhart four-factor model. The MKT, SMB, and HML factors are not priced in

any specification, whereas WML and STR are priced in the four-factor model augmented

with the idiosyncratic risk factor. In the second subperiod, as shown in table 3.9, the

market risk premium is again not priced except in the two-factor model. The IR risk

premium is significant exhibiting a risk premium of -1.35% per month after controlling for

market risk. The R̄2 rises from 15% for the CAPM to 21% for the two-factor model. The

three-factor model exhibits a negatively priced size premium whereas the book-to-market

premium is not priced. The inclusion of the IR factor increases the average adjusted R2

from 23% to 28%. Again, the IR factor is priced even in the presence of the size and

book-to-market factors. Finally, we examine the four-factor model proposed by Carhart

(1997) augmented with the IR. Still, the IR remains significant. This is also true when we

consider the short-term reversal factor instead of the momentum factor. All in all, we find

a negative and significant risk premium for idiosyncratic risk in almost all specifcations,

which demonstrates that idiosyncratic risk is negatively priced.

The results of cross-sectional asset pricing depend on the choice of test portfolios.

Therefore, as a another robustness check, we employ 16 independently and value-weighted

sorted size and book-to-market portfolios as test portfolios. Although the use of size and

book-to-market portfolios as test portfolios is prevalent in asset pricing, it decreases the

power of asset pricing tests since the variation in returns across size portfolios is rather

low on the German stock market. Nonetheless, we conduct it as another robustness check.

Results are presented in table 3.10. The IR factor is significant in all models providing

additional support for the relevance of the IR factor. The findings for the other factors

essentially diverge from the results before. Book-to-market risk is priced in all and size

risk only in the three-factor model. Momentum, short-term reversal, and market risk are

priced in none of the specifications.

Supplementary, we also consider individual stock returns instead of portfolio returns.

Ang et al. (2008) argues in favor of using individual stocks as they discover that the use

of test portfolios leads to higher standard errors of risk premia estimates. Besides, we

avoid the problem of choosing inadequate test portfolios. Applying an analysis based on

individual stock returns, it is common to incorporate firm characteristics instead of risk
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Table 3.8: Fama-MacBeth Regressions of 15 Idiosyncratic Risk & Momentum Portfolios

- Subperiod 1

1980:01-1991:12 λ0 MKT SMB HML WML STR IR R̄2

λ 1.26 -0.71 0.02

t-stat 1.63 -1.07

t-stat (adj.) 1.61 -1.06

λ 1.67 -0.92 -0.60 0.11

t-stat 2.09** -1.31 -2.66**

t-stat (adj.) 1.99** -1.25 -2.54**

λ 1.06 -0.23 -0.24 -0.19 0.11

t-stat 1.30 -0.33 -0.66 -0.48

t-stat (adj.) 1.28 -0.32 -0.65 -0.46

λ 0.98 -0.26 0.23 0.13 -0.49 0.12

t-stat 1.22 -0.37 0.58 0.31 -2.17**

t-stat (adj.) 1.17 -0.36 0.56 0.30 -2.09**

λ 0.54 0.15 0.15 0.22 0.85 -0.35 0.20

t-stat 0.75 0.24 0.36 0.47 3.37** -1.55

t-stat (adj.) 0.70 0.23 0.34 0.44 3.17** -1.45

λ 0.76 0.05 0.51 0.15 1.30 -0.55 0.16

t-stat 1.04 0.08 1.31 0.34 2.48** -2.48**

t-stat (adj.) 0.87 0.07 1.10 0.28 2.08** -1.99**

* significant (10-percent level)

** significant (5-percent level)

This table depicts the Fama-MacBeth (1973) factor premia on 15 portfolios sorted by idiosyncratic risk

relative to the CAPM and the momentum strategy for subperiod 1. MKT is the market excess return,

SMB and HML are the size and book-to-market factors as constructed by Fama-French (1993), WML is

the momentum factor constructed by Carhart (1997), STR is the short-term reversal factor, and IR is

the idiosyncratic risk factor. We compute two t-statistics for each estimate. The first one is calculated

using the uncorrected Fama-MacBeth standard errors. The second one is calculated using Shanken’s

(1992) correction. The column R̄2 reports the average of the cross-sectional adjusted R2. Risk premia are

expressed as monthly percentages.
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Table 3.9: Fama-MacBeth Regressions of 15 Idiosyncratic Risk & Momentum Portfolios

- Subperiod 2

1992:01-2006:12 λ0 MKT SMB HML WML STR IR R̄2

λ 0.77 -0.76 0.15

t-stat 1.00 -0.66

t-stat (adj.) 0.99 -0.66

λ -1.01 2.92 -1.35 0.21

t-stat -1.07 2.28** -2.60**

t-stat (adj.) -0.88 1.87* -2.14**

λ 1.22 0.30 -1.93 0.72 0.23

t-stat 1.59 0.30 -3.32** 1.58

t-stat (adj.) 1.36 0.25 -2.85** 1.36

λ -0.04 1.78 -1.62 -0.28 -1.27 0.28

t-stat -0.05 1.73* -2.73** -0.55 -2.44**

t-stat (adj.) -0.04 1.49 -2.35** -0.47 -2.10**

λ -0.06 1.60 -1.24 -0.31 1.34 -1.27 0.32

t-stat -0.08 1.66 -2.07** -0.49 3.07** -2.40**

t-stat (adj.) 0.07 1.46 -1.81* -0.43 2.70** -2.10**

λ 0.02 1.49 -1.17 -0.44 0.36 -1.33 0.33

t-stat 0.03 1.48 -2.03** -0.86 0.50 -2.52**

t-stat (adj.) 0.03 1.30 -1.78* -0.76 0.44 -2.21**

* significant (10-percent level)

** significant (5-percent level)

This table depicts the Fama-MacBeth (1973) factor premia on 15 portfolios sorted by idiosyncratic risk

relative to the CAPM and the momentum strategy for subperiod 2. MKT is the market excess return,

SMB and HML are the size and book-to-market factors as constructed by Fama-French (1993), WML is

the momentum factor constructed by Carhart (1997), STR is the short-term reversal factor, and IR is

the idiosyncratic risk factor. We compute two t-statistics for each estimate. The first one is calculated

using the uncorrected Fama-MacBeth standard errors. The second one is calculated using Shanken’s

(1992) correction. The column R̄2 reports the average of the cross-sectional adjusted R2. Risk premia are

expressed as monthly percentages.
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Table 3.10: Fama-MacBeth Regressions of 16 Size & Book-to-Market Portfolios

1980:01-2006:12 λ0 MKT SMB HML WML STR IR R̄2

λ 0.03 0.38 0.16

t-stat 0.12 1.13

t-stat (adj.) 0.12 1.13

λ 0.28 0.36 -0.83 0.18

t-stat 0.96 1.01 -2.44**

t-stat (adj.) 0.94 0.99 -2.39**

λ 0.81 -0.25 -0.33 0.73 0.21

t-stat 2.51** -0.62 -1.80* 4.09**

t-stat (adj.) 2.42** -0.60 -1.74* 3.95**

λ 0.74 -0.19 -0.30 0.63 -0.79 0.23

t-stat 2.23** -0.47 -1.60 3.51** -1.91*

t-stat (adj.) 2.17** -0.46 -1.56 3.41** -1.86*

λ 0.99 -0.42 -0.31 0.66 0.34 -1.15 0.23

t-stat 2.70** -0.94 -1.64 3.54** 0.79 -2.59**

t-stat (adj.) 2.60** -0.91 -1.57 3.40** 0.76 -2.49**

λ 0.86 -0.22 -0.27 0.59 0.81 -0.95 0.24

t-stat 2.37** -0.51 -1.46 3.23** 1.59 -2.06**

t-stat (adj.) 2.29** -0.50 -1.41 3.12** 1.54 -2.00**

* significant (10-percent level)

** significant (5-percent level)

This table depicts the Fama-MacBeth (1973) factor premia on 16 portfolios sorted by size and book-to-

market ratio. MKT is the market excess return, SMB and HML are the size and book-to-market factors

as constructed by Fama-French (1993), WML is the momentum factor proposed by Carhart (1997), STR

is the short-term reversal factor, and IR is the idiosyncratic risk factor. We compute two t-statistics for

each estimate. The first one is calculated using the uncorrected Fama-MacBeth standard errors. The

second one is calculated using Shanken’s (1992) correction. The column R̄2 reports the average of the

cross-sectional adjusted R2. Risk premia are expressed as monthly percentages.
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Table 3.11: Fama-MacBeth Regressions for Individual Stocks

Cons βM βSMB βHML Size BM Ret(2-12) Ret(1) σ R̄2

λ 2.45 -0.32 -0.07 0.30 0.011 -0.25 0.09

t-stat 3.18** -1.90* -1.91* 3.47** 5.00** -4.25**

λ 1.62 -0.38 -0.03 0.32 0.011 -0.05 -0.19 0.11

t-stat 2.20** -2.36** -0.92 3.69** 4.98** -7.24** -3.15**

λ 1.36 -0.43 0.12 0.11 -0.02 0.32 0.012 -0.05 -0.18 0.13

t-stat 1.74* -1.88* 0.80 0.77 -0.53 3.87** 5.79** -7.57** -3.02**

* significant (10-percent level)

** significant (5-percent level)

This table depicts the Fama-MacBeth regressions of returns on factor loadings and firm characteristcs for

individual stocks. Cons is the average cross-sectional constant, βM is the market beta, βSMB is the beta

of the size factor, and βHML is the beta of the book-to-market factor. All betas are estimated over the

previous twelve months using daily returns. Size is the log market capitalization of the previous month,

BM is the log ratio of the book-value divided by the market capitalization measured at the end of the

year, Ret(2-12) is the past return over the previous two to twelve months, Ret(1) is the previous month

return. σ is the idiosyncratic volatility relative to the CAPM measured over the previous month. Returns

and idiosyncratic volatility are measured in percentage terms. The column R̄2 reports the average of the

cross-sectional adjusted R2. The sample period runs from 1975:01-2006:12.

factors. This approach has been applied in numerous recent studies like Ang et al. (2009),

Fu (2009), Jiang et al. (2009), and Huang et al. (2010). For every month, we regress

individual stock returns on firm characteristics based on the Fama-MacBeth procedure.

Apart from the market beta, we include firm characteristics like market capitalization,

book-to-market equity, previous month return, past 2-12 months return and idiosyncratic

volatility. Table 3.11 shows our findings. We find that there is a significant and negative

relationship between idiosyncratic risk and returns, which is in line with our findings so

far. Even when we include the previous month return, the coefficient remains negative

and significant, which stands in contrast to Huang et al. (2010). Huang et al. (2010)

find that the coefficient becomes insignificant after controlling for short-term reversal.

Moreover, we discover a negative relation between returns and previous month return as

well as a positive one to the book-to-market ratio and past returns (2-12). Finally, we

also incorporate the size and book-to-market betas as for instance done so in Ang et al.

(2009). The results qualitatively remain the same. The size and book-to-market betas

are insignificant.15

15Additionally, we apply the approach by Litzenberger and Ramaswamy (1979). Results are consistent.
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GMM

In the second step, we estimate risk premia using GMM. In contrast to Fama-MacBeth,

we do not have to estimate betas in the first step and, hence, the estimation period starts

in 1975:01. This has to be kept in mind when comparing the results with those of the

Fama-MacBeth test. Results are documented in table 3.12.

We first turn to the CAPM. The market risk premium is significantly positive exhibiting

a risk premium of 0.83% per month. Creating a two-factor model by adding the IR factor

to the CAPM, we find significant market and IR risk premia. As for the Fama-MacBeth

regressions we find IR risk to be negatively priced. In the Fama-French three-factor

model we find SMB negatively and MKT positively priced. The HML risk premium is

insignficant. For the Fama-French model augmented with the IR risk factor, we find

significant values for all factors. The IR risk premium is -0.91% (t-value=-2.83) per

month resulting in a risk premium of over 10% per year after controlling for the Fama-

French three-factor model. Finally, we consider the Carhart four-factor model augmented

with the IR risk factor. Again, we find a significant IR risk premium even in the presence

of the other four factors. Even when we replace the momentum by the short-term reversal

factor, the premium remains significant. Apart from the short-term reversal factor (STR),

all other factors are priced. In order to test if the models are rejected, we compute the H̃J

measure and the J-Test. Under the null hypothesis that the model is correctly specified

H̃J and the value for the J-Test should be equal to zero. According to both measures all

models are rejected at the 5% level.

Furthermore, we examine two subperiods illustrated in table 3.13 and 3.14. For the

first subperiod, we find a priced IR factor for all specifications. SMB is only significant

in the three-factor model and HML is not found to be priced in any specification. WML

and STR are priced. Again, all models are rejected at the 5% level except the five-factor

models. When focusing on the second subperiod, we also obtain significant estimates of

the IR risk premium. SMB, MKT, and WML are throughout priced whereas HML and

STR are not. We do not reject the three-factor model augmented with the IR factor

according to both J-Test and modified HJ distance measure at the 5% level. The same is

valid when we also include STR. The Carhart model plus IR is not rejected with respect

to the J-Test.

Again, we also estimate risk premia based on the 16 size and book-to-market portfolios.

Table 3.15 shows the results. In contrast to the Fama-MacBeth approach, we find that
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Table 3.12: GMM Regressions of 15 Idiosyncratic Risk & Momentum Portfolios

1975:01-2006:12 MKT SMB HML WML STR IR H̃J J-Test

b 3.34 0.47 65.11

t-stat 2.66** [0.000] [0.000]

λ 0.83

t-stat 2.87**

b 5.33 -5.62 0.40 47.69

t-stat 3.69** -4.58** [0.000] [0.000]

λ 0.89 -0.99

t-stat 2.97** -3.74**

b -0.20 -16.19 0.63 0.41 42.48

t-stat -0.11 -3.46** 0.13 [0.000] [0.000]

λ 1.34 -1.63 0.09

t-stat 3.91** -4.17** 0.21

b 7.84 -4.83 -28.27 -12.74 0.34 20.38

t-stat 2.09** -0.69 -2.68** -3.19** [0.019] [0.041]

λ 1.47 -1.32 -1.83 -0.91

t-stat 3.87** -2.62** -2.25** -2.83**

b 9.02 -0.47 -21.31 4.74 -9.49 0.30 19.32

t-stat 2.62** -0.07 -2.03** 1.94* -2.27** [0.015] [0.036]

λ 1.28 -1.03 -1.33 1.21 -0.91

t-stat 3.32** -2.03** -1.57 4.41** -2.94**

b 7.12 -6.68 -27.40 2.34 -12.84 0.34 20.68

t-stat 1.53 -0.73 -2.66** 0.48 -3.19** [0.014] [0.024]

λ 1.47 -1.39 -1.81 0.25 -0.91

t-stat 3.84** -2.38** -2.25** 0.38 -2.83**

* significant (10-percent level)

** significant (5-percent level)

This table reports GMM estimates based on the stochastic discount factor form using the inverse of the

covariance matrix of the test portfolios as the weighting matrix. Portfolios are sorted by idiosyncratic

risk relative to the CAPM and the momentum strategy. MKT is the market excess return, SMB and

HML are the size and book-to-market factors, WML is the momentum factor, STR a short-term reversal

factor and IR is the idiosyncratic risk factor. b represents the coefficients from the stochastic discount

factor model and λ the corresponding risk premia. Risk premia are expressed as monthly percentages.

The J-Test is Hansen’s (1982) χ2 test statistics on the overidentifying restrictions of the model. H̃J

denotes a modification of the Hansen and Jagannathan (1997) distance measure as proposed by Kan and

Robotti (2008), which is defined in equation 3.13. p-values of the J-Test and the H̃J distance measure

are provided in square brackets.
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Table 3.13: GMM Regressions of 15 Idiosyncratic Risk & Momentum Portfolios -

Subperiod 1

1975:01-1991:12 MKT SMB HML WML STR IR H̃J J-Test

b 3.83 0.42 32.48

t-stat 2.00** [0.000] [0.003]

λ 0.68

t-stat 2.15**

b 3.92 -6.87 0.40 25.88

t-stat 1.97* -2.08** [0.001] [0.018]

λ 0.70 -0.38

t-stat 2.18** -2.06**

b 1.43 -5.46 4.38 0.42 28.25

t-stat 0.49 -1.02 0.54 [0.000] [0.005]

λ 0.71 -0.50 0.26

t-stat 2.19** -1.68* 0.61

b 7.21 12.63 10.86 -13.66 0.38 24.21

t-stat 2.00** 1.38 1.15 -2.30** [0.002] [0.012]

λ 0.54 0.04 0.63 -0.41

t-stat 1.61 0.10 1.28 -2.09**

b 8.19 -11.12 -0.27 10.83 -8.88 0.29 16.09

t-stat 2.16** 1.27 -0.03 3.10** -1.53 [0.058] [0.097]

λ 0.58 -0.04 0.15 0.91 -0.35

t-stat 1.72* -0.12 0.28 3.98** -1.88*

b 16.63 15.63 -13.29 -40.83 -11.28 0.30 11.12

t-stat 2.75** 1.36 -0.94 -2.61** -1.51 [0.163] [0.348]

λ 0.67 0.16 -0.06 -1.98 -0.42

t-stat 1.83* 0.32 -0.08 -2.63** -1.92*

* significant (10-percent level)

** significant (5-percent level)

This table reports GMM estimates based on the stochastic discount factor form using the second moment

matrix as the weighting matrix for subperiod 1. Portfolios are sorted by idiosyncratic risk relative to the

CAPM and the momentum strategy. MKT is the market excess return, SMB and HML are the size and

book-to-market factors, WML is the momentum factor by Carhart (1997), STR is the short-term reversal

factor, and IR is the idiosyncratic risk factor. b represents the coefficients from the stochastic discount

factor model and λ the corresponding risk premia. Risk premia are expressed as monthly percentages.

The J-Test is Hansen’s (1982) χ2 test statistics on the overidentifying restrictions of the model. H̃J

denotes a modification of the Hansen and Jagannathan (1997) distance measure as developed by Kan and

Robotti (2008) distance measure which is defined in equation 3.13. p-values of the J-Test and the H̃J

distance measure are provided in square brackets.
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Table 3.14: GMM Regressions of 15 Idiosyncratic Risk & Momentum Portfolios -

Subperiod 2

1992:01-2006:12 MKT SMB HML WML STR IR H̃J J-Test

b 3.72 0.61 46.73

t-stat 2.24** [0.000] [0.000]

λ 1.22

t-stat 2.42**

b 7.12 -5.73 0.52 36.71

t-stat 3.40** -4.28** [0.000] [0.000]

λ 1.39 -1.51

t-stat 2.61** -2.83**

b 0.96 -21.94 3.05 0.52 23.23

t-stat 0.40 -3.22** 0.65 [0.005] [0.026]

λ 2.48 -3.01 0.46

t-stat 3.57** -3.84** 0.79

b 8.74 -9.83 -21.92 -12.24 0.42 11.90

t-stat 2.25** -1.26 -2.28** -3.01** [0.053] [0.372]

λ 2.37 -2.16 -1.53 -1.35

t-stat 3.39** -2.44** -1.63 -2.23**

b 8.94 -8.29 -18.85 1.81 -10.55 0.42 12.23

t-stat 2.29** -0.93 -1.89* 0.55 -2.24** [0.031] [0.304]

λ 2.24 -2.04 -1.20 1.68 -1.34

t-stat 3.15** -2.22** -1.23 3.34** -2.26**

b 4.94 -21.22 -24.17 8.72 -13.58 0.37 9.52

t-stat 0.94 -1.69* -2.24** 1.70* -2.90** [0.162] [0.484]

λ 2.67 -2.95 -1.72 0.87 -1.35

t-stat 3.34** -2.43** -1.68* 0.90 -2.10**

* significant (10-percent level)

** significant (5-percent level)

This table reports GMM estimates based on the stochastic discount factor form using the second moment

matrix as the weighting matrix for subperiod 2. Portfolios are sorted by idiosyncratic risk relative to the

CAPM and the momentum strategy. MKT is the market excess return, SMB and HML are the size and

book-to-market factors, WML is the momentum factor by Carhart (1997), STR is the short-term reversal

factor, and IR is the idiosyncratic risk factor. b represents the coefficients from the stochastic discount

factor model and λ the corresponding risk premia. Risk premia are expressed as monthly percentages.

The J-Test is Hansen’s (1982) χ2 test statistics on the overidentifying restrictions of the model. H̃J

denotes a modification of the Hansen and Jagannathan (1997) distance measure as developed by Kan and

Robotti (2008) distance measure which is defined in equation 3.13. p-values of the J-Test and the H̃J

distance measure are provided in square brackets.
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the IR factor is insignificant except in the two-factor model. We do not reject the four

and five-factor models at a 5% level according to the J-test. Based on the modified HJ

distance measure all models are rejected except the five-factor model incorporating the

STR factor.

All in all, our results suggest that the IR factor captures an additional risk, which cannot

be captured by other prominent risk factors or characteristics.

3.4 Further Insights

3.4.1 Downside vs. Upside Idiosyncratic Volatility

The use of volatility as a risk measure has an obvious drawback. It weights both upside

and downside deviations equally. Virtually all investors are tolerant to sudden upside

movements, but tend to avoid corresponding downside movements. In other words, it

is not investments that go up that create unease but that go down significantly. A high

downside idiosyncratic risk reflects a high probability of a large loss in comparison to what

the market model predicts. On this account, loss averse investors should avoid these stocks

or demand a greater compensation. By contrast, stocks with a high upside idiosyncratic

volatility possess a chance of a large gain relative to what the market model predicts. Bali

et al. (2009) show that stocks with the highest maximum daily returns earn the lowest

expected returns.16Possibly, our results are driven by upside idiosyncratic volatility as

investors like stocks with high upside idiosyncratic volatility and, thus, require a compen-

sation for holding low upside idiosyncratic risk stocks. In this subsection we investigate

whether a differentiation between upside and downside idiosyncratic volatility resolves

the puzzle.

In the following, we choose two months windows in order to have sufficient observations

for the upcoming empirical analysis. In particular, this is of relevance since the differenti-

ation between upside and downside idiosyncratic risk halves the number of observations.

Statistically, a differentiation between upside and downside risk is only reasonable if the

16Other fields of the Economics’ literature support this finding. For example, Golec and Tamarkin

(1998) provide evidence that people tend to overbet on the long-shot horse with the chance of winning

large returns rather than the favorite with the greatest expected returns. Furthermore, Garrett and Sobel

(1999) find that people buying lottery tickets are more concerned with the size of the top prize than the

expected value of the lottery. Kumar (2009) shows that individual investors prefer stocks with lottery

features.
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Table 3.15: GMM Regressions of 16 Size & Book-to-Market Portfolios

1975:01-2006:12 MKT SMB HML WML STR IR H̃J J-Test

b 1.75 0.34 40.35

t-stat 1.56 [0.000] [0.000]

λ 0.43

t-stat 1.63

b 2.87 -3.36 0.33 37.84

t-stat 2.26** -2.12** [0.001] [0.001]

λ 0.45 -0.62

t-stat 1.69* -1.74*

b 1.21 -2.07 7.85 0.26 23.06

t-stat 0.87 -1.04 4.55** [0.041] [0.017]

λ 0.45 -0.33 0.72

t-stat 1.69* -1.97* 4.34**

b -1.48 -5.29 11.41 4.81 0.24 18.56

t-stat -0.67 -1.10 3.93** 1.61 [0.028] [0.10]

λ 0.42 -0.35 0.77 0.30

t-stat 1.58 -2.10** 4.52** 0.68

b -1.36 -4.85 11.42 1.52 5.64 0.24 18.15

t-stat -0.54 -1.46 4.52** 0.36 1.82* [0.018] [0.078]

λ 0.43 -0.35 0.76 0.07 0.35

t-stat 1.60 -2.10** 4.49** 0.11 0.77

b -4.73 -8.89 12.82 6.67 6.05 0.23 14.84

t-stat -1.50 -2.32** 2.75** 1.18 1.86* [0.066] [0.190]

λ 0.37 -0.35 0.77 0.95 0.61

t-stat 1.38 -2.08** 4.50** 1.14 1.18

* significant (10-percent level)

** significant (5-percent level)

This table reports GMM estimates based on the stochastic discount factor form using the second moment

matrix as the weighting matrix. Portfolios are sorted by size and the book-to-market. MKT is the

market excess return, SMB and HML are the size and book-to-market factors, WML is the momentum

factor by Carhart (1997), STR the short-term reversal factor, and IR is the idiosyncratic risk factor. b

represents the coefficients from the stochastic discount factor model and λ the corresponding risk premia.

Risk premia are expressed as monthly percentages. The J-Test is Hansen’s (1982) χ2 test statistics on

the overidentifying restrictions of the model. H̃J denotes the modified Hansen and Jagannathan (1997)

distance measure as proposed by Kan and Robotti (2008), which is defined in equation 3.13. p-values of

the J-Test and the H̃J distance measure are provided in square brackets.
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distribution of the residuals is asymmetric and the correlation between upside and down-

side idiosyncratic risk is not substantial. In the case of a symmetric distribution upside

and downside idiosyncratic risk would coincide. One way of testing for symmetry is to

check if the sample skewness is significantly different from zero. A classical test for skew-

ness follows Gupta (1967). We calculate the daily residuals relative to the CAPM based

on the previous two months. Afterwards, we calculate the sample skewness. The sample

skewness is defined as

skew =
1
m

∑m
j=1(xi−x̄)3

( 1
m

∑m
j=1(xi−x̄)2)

3
2

.

x1, ..., xm are the observations. Multiplying skew by
√

mµ3
2

µ6−6µ2µ4+9µ3
2
, where µk denotes

the kth central moment of the distribution, we obtain a statistic that is asymptotically

standard normally distributed. However, this test exhibits two drawbacks. Firstly, the

test is not valid for heavy-tailed distributions. Secondly, it does not take into account

that there exist asymmetrical distributions for which the third sample moment is zero.

On this account, we also apply a test statistic proposed by Ekström and Jammalamadaka

(2007). Denoting the order statistic x(1), ..., x(m) and Di = x(i+1)−x(i) for i = 1, ...,m−1.

The sign statistic T is given by T = S
ξ , where17

S = 1√
m

∑[(m−1)/2]
i=1 (1{Di −Dm−i ≤ 0} − 1

2)

and

ξ = 1
16 + 1

16(m−2k+1)

∑m−k
i=k (1− log Di,l

Dl,k
).

T is asymptotically standard normally distributed.

Using the classical test, we accept the hypothesis that skewness is equal to zero at the

10% level for 88% of the stocks on average over time. The findings for the second test are

almost identical. We accept the hypothesis that the distribution is symmetric for 87% of

the stocks on average over time.

Supplementary, we calculate the correlation between downside and upside idiosyncratic

volatility. Downside idiosyncratic risk is defined as σ− =
√
E[ε2i,t,d|εi,t,d < 0] and differs

from the ordinary standard deviation insofar as the expected value is restricted to those

17[(m − 1)/2] denotes the greatest integer smaller than or equal to (m − 1)/2. Moreover, Di,l =

x(i+l) − x(i−l+1) and l = [m/2]. Due to the sample size we choose k = 3 as proposed by Ekström and

Jammalamadaka (2007).
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residuals that are less than zero. Therefore, this measure captures the variation in neg-

ative deviations relative to the market model. Analogously, upside idiosyncratic risk is

defined as σ+ =
√
E[ε2i,t,d|εi,t,d > 0].18

The cross-sectional correlation between downside and upside idiosyncratic risk is 72.7%

on average over time. The correlation between idiosyncratic risk and its downside and

upside measure is 90.5% and 94.8%, respectively. In order to guarantee the comparability

between the measures, idiosyncratic risk is calculated over the previous two months as

well.19 From this analysis we can draw the conclusion that upside and downside idiosyn-

cratic risk do not diverge from each other substantially and, hence, a seperation of upside

and downside idiosyncratic risk cannot provide an explanation of why the idiosyncratic

risk puzzle exists.

3.4.2 (E)GARCH

Eventually, the puzzle shows up because of the estimation procedure. While most of the

literature applies a static OLS model to estimate idiosyncratic risk, we check the robust-

ness of our results by using a dynamic approach. In order to capture the daily variation

in volatility, we implement a GARCH(1,1). Additionally, we estimate the EGARCH.

The EGARCH model offers the advantage that it imposes no parameter constraints to

ensure positive conditional variances. Yet, stationarity constraints are necessary. Since

an EGARCH(P,Q) model is treated as an ARMA(P,Q) model for the logarithm of the

conditional variance, it requires nonlinear constraints on the coefficients to ensure that

the eigenvalues of the characteristic polynomial are inside the unit circle. Furthermore,

EGARCH has the advantage that it does not make any assumptions about the condi-

tional distribution, i.e., whether the distribution of εi,t,d
σi,t,d

is Gaussian or Student’s t. In

contrast to the GARCH model, the EGARCH approach is designed to capture asymme-

tries between return and volatility by including a leverage term. The functional form of

18An alternative way of measuring downside idiosyncratic risk is σ̃− =
√
var(εi,t,d|εi,t,d < 0). However,

this measure is misleading. Let us consider an extreme case. All negative residuals are -5%. Then, this

measure would produce a downside deviation of zero although this stock has a high downside risk. By

taking the average of the squared residuals, we take this problem into account.

19Results from the previous section also hold when idiosyncratic risk is estimated over a two months

horizon.
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the EGARCH model follows Bollerslev et al. (1992):

ri,t,d − rf,t,d = αi,t + βmi,t(rm,t,d − rf,t,d) + εi,t,d

εi,t,d = σi,t,dνi,t,d (3.14)

log σ2
i,t,d = θ0,i + θ1,i log σ2

i,t,d−1 + θ2,i(|νi,t,d−1| − E[|νi,t,d−1|]) + θ3,iνi,t,d−1,

where νi,t,d is an i.i.d. error term with zero mean and unit variance. θ0,i,t, θ1,i,t, θ2,i,t, and

θ3,i,t are coefficients. σi,t,d is the idiosyncratic volatility in month t at day d for stock i. If

θ2,i,t is positive, the deviation of |νi,t,d−1| from its expected value increases the variance of

εi,t,d. The θ3,i,t parameter allows this effect to be asymmetric. If θ3,i,t = 0, then a positive

surprise will have the same impact on conditional volatility as a negative surprise. If

θ3,i,t is smaller than zero, then a positive surprise has a smaller impact on the conditional

volatility than a negative surprise and vice versa.

Since it is not reasonable to estimate an (E)GARCH with daily observations for one

month, we select a twelve months window to estimate idiosyncratic volatility. Estimating

an (E)GARCH restricts beta to be constant during the estimation period. While the OLS

approach conducted in the previous section updates beta every month, we only choose

a twelve months horizon in order to make the procedure not to different from the OLS

approach with respect to the time variability of beta.20For the sake of comparability to

the idiosyncratic risk measure introduced in section 3.2.2, we average the daily volatility

σ̄i,t = 1
D

∑D
d=1 σi,t,d over the last month of the twelve months window. For instance, if

our estimation window runs from January to December, we calculate the average daily id-

iosyncratic volatility in December to create portfolios in January next year. Subsequently,

we shift the window one-month ahead. Results are depicted in table 3.16.21 They clearly

document that low volatility stocks earn higher returns and vice versa independent of the

estimation procedure we apply. The difference between the high and low volatility port-

folios remains significant. The MR test rejects the hypothesis of a flat relation between

idiosyncratic risk and return in favor of a monotonically decreasing relation.

20Alternatively, we estimate betas for every month in a first step by OLS and use EGARCH to estimate

the idiosyncratic volatility in a second step. Results are qualitatively the same.

21Stocks with less than 200 observations over the last twelve months are excluded. We ignore days with

missing values and continue with the next observation. As a robustness check, we also remove all stocks

for a certain period if there is at least one missing value. Although the sample becomes slightly smaller,

we still find similar results.
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Table 3.16: Portfolios Sorted by Idiosyncratic Volatility Measured by (E)GARCH

GARCH EGARCH

Portfolio Mean Std Dev Mean Std Dev

Low 1.06 4.31 1.07 4.34

2 1.04 4.78 1.04 4.75

3 0.83 6.35 0.83 6.43

4 0.63 7.98 0.62 7.95

High 0.19 8.57 0.19 8.53

High-Low -0.87 -0.88

t-stat -2.75** -2.80**

MR test 0.079* 0.062*

** significant (5-percent level)

* significant (10-percent level)

We form quintile portfolios every month by sorting stocks based on idiosyncratic volatility. We model

returns by the CAPM and set up GARCH(1,1) and EGARCH(1,1) models for the volatility using daily

returns over the previous twelve months. Idiosyncratic volatility is the average estimated volatility over

the last month. Portfolio 1 (5) is the portfolio with the lowest (highest) idiosyncratic volatility, respec-

tively. The statistics in the columns Mean and standard deviation (Std Dev) are measured in monthly

percentage terms. Critical values for the t-statistic are based on robust Newey and West (1987) standard

deviations. In the last row, we display the p-value of the Monotonic Relation test proposed by Patton

and Timmermann (2010). The sample period runs from 1975:01-2006:12.

3.4.3 Dimson Betas

When we compute betas based on daily data, we have to be wary of biases induced by

infrequent trading. Infrequently traded securities have a beta estimate which is biased

downwards while beta estimates for frequently traded securities are upward biased. In

order to avoid biases in betas and, hence, in our measure for idiosyncratic risk, we incor-

porate lags and leads of the market return following the approach by Dimson (1979). We

estimate the following equation:

ri,t,d − rf,t,d = αi,t +
k∑

j=−k
βmi,t,j(rm,t,d+j − rf,t,d+j) + εi,t,d. (3.15)

k denotes the number of lags included in the regression and εi,t,d represents the error

terms of the Dimson type market model. Equation 3.1 is a special case of this equation.

Both equations coincide when we set k = 0. Table 3.17 presents the average returns and

standard deviations of five portfolios sorted by idiosyncratic risk relative to the CAPM

using Dimson betas. We select k equal to one. Low idiosyncratic risk stocks significantly
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outperform high idiosyncratic risk stocks. Yet, we cannot reject the hypothesis of a flat

relation between idiosyncratic risk and expected returns. Due to the small number of

observations and the necessity to estimate four coefficients, we also use a two months

window. Results are qualitatively the same. Findings also remain unchanged when we

choose a two months window and set k equal to two.

Table 3.17: Portfolios Sorted by Idiosyncratic Volatility Using Dimson Betas

Portfolio Mean Std Dev

Low 1.06 4.42

2 0.88 5.32

3 0.95 6.57

4 0.59 7.54

High 0.29 8.60

High-Low -0.77

t-stat -2.54**

MR test 0.342

** significant (5-percent level)

* significant (10-percent level)

We form quintile portfolios every month by sorting stocks based on idiosyncratic volatility. Idiosyncratic

volatility is computed over the previous month using daily residuals relative to the CAPM using Dimson

betas. Portfolio 1 (5) is the portfolio with the lowest (highest) idiosyncratic volatility, respectively. The

statistics in the columns Mean and standard deviation (Std Dev) are measured in monthly percentage

terms. Critical values for the t-statistic are based on robust Newey and West (1987) standard devia-

tions. In the last row, we display the p-value of the Monotonic Relation test proposed by Patton and

Timmermann (2010). The sample period runs from 1974:02-2006:12.

3.4.4 Idiosyncratic Volatility relative to the Fama-French and Carhart

Model

The way of estimating idiosyncratic risk does not only rely on the methodology applied

but also on the choice of the model. The analysis conducted so far is based on the

assumption that the CAPM is the appropriate model. As further robustness checks, we

assume that the Fama-French three-factor and the Carhart four-factor model are the

correct models, respectively. We repeat the same exercise as undertaken in section 3.3.1

estimating idiosyncratic risk relative to these two models. Table 3.18 presents the results.

Again, we find wide spreads in returns between the high idiosyncratic risk and the low

idiosyncratic risk portfolios. The difference rises to -0.85% for the Fama-French model
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and to -0.83% for the Carhart model. In both cases, the difference between the high

and the low portfolio is significant. Now, we even find a monotonic relation between

idiosyncratic risk and return.

Table 3.18: Portfolios Sorted by Idiosyncratic Volatility Relative to the Fama-French and

Carhart Model

Fama-French Model Carhart Model

Portfolio Mean Std Dev Mean Std Dev

Low 1.09 4.42 1.07 4.48

2 0.95 5.25 0.99 5.25

3 0.82 6.69 0.79 6.61

4 0.68 7.50 0.69 7.48

High 0.24 8.58 0.24 8.55

High-Low -0.85 -0.83

t-stat -2.83** -2.77**

MR test 0.008** 0.028**

** significant (5-percent level)

* significant (10-percent level)

We form quintile portfolios every month by sorting stocks based on idiosyncratic volatility. Idiosyncratic

volatility is computed over the previous month using daily residuals relative to the Fama-French three-

factor and the Carhart four-factor model, respectively. Portfolio 1 (5) is the portfolio with the lowest

(highest) idiosyncratic volatility, respectively. The statistics in the columns Mean and standard deviation

(Std Dev) are measured in monthly percentage terms. Critical values for the t-statistic are based on robust

Newey and West (1987) standard deviations. In the last row, we display the p-value of the Monotonic

Relation test proposed by Patton and Timmermann (2010). The sample period runs from 1974:02-2006:12.

3.4.5 Monthly Data

So far, we find evidence that a negative relation between idiosyncratic risk and returns

exists estimating idiosyncratic risk from daily data over the last month, which is in line

with the results of Ang et al. (2006b) and Ang et al. (2009). However, it stands in sharp

contrast to other findings in the US by Malkiel and Xu (2006), Spiegel and Wang (2005),

and Fu (2009). They find a positive relation while dealing with monthly data and a wider

estimation window. It appears that the use of daily and monthly data produces opposite

results. In order to check if this phenomenon also holds on the German stock market,

we use monthly data. We sort stocks into five portfolios based on their idiosyncratic

risk relative to the CAPM measured over the previous 3, 4, and 5 years. Table 3.19

displays the results. Using a 3 year horizon to estimate idiosyncratic risk we still find
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a negative difference between the high idiosyncratic risk portfolio (portfolio 5) and the

low idiosyncratic risk portfolio (portfolio 1). By increasing the estimation window the

risk premium between portfolio 5 and 1 shrinks and becomes insignificant. Still, high

idiosyncratic risk stocks have by far the lowest returns. A monotonically decreasing

relation between idiosyncratic risk and return can only be found at a 10% level for the

5 years horizon. Our results indicate that the negative relation between idiosyncratic

risk and return is not only a phenomenon that holds for daily data and a one month

estimation window, it even exists in the long run using monthly data. However, it is less

pronounced. Our findings suggest that the data frequency is not decisive and, thus, stand

in sharp contrast to those for the US.

Table 3.19: Portfolios Sorted by Idiosyncratic Volatility Based on Monthly Data

3 years 4 years 5 years

1977:01-2006:12 1978:01-2006:12 1979:01-2006:12

Portfolio Mean Std Dev Mean Std Dev Mean Std Dev

Low 0.99 4.03 1.02 4.05 1.07 4.08

2 1.06 4.86 1.00 4.85 0.97 4.89

3 1.01 5.48 0.98 5.10 0.99 5.16

4 0.88 6.83 1.01 6.50 0.92 5.91

High 0.55 7.53 0.66 6.95 0.76 6.83

High-Low -0.44 -0.36 -0.31

t-stat -1.68* -1.45 -1.30

MR test 0.276 0.101 0.098*

* significant (10-percent level)

We form quintile portfolios every month by sorting stocks based on idiosyncratic volatility. Idiosyncratic

volatility is computed over the previous 3, 4, and 5 years using monthly residuals relative to the CAPM.

Portfolio 1 (5) is the portfolio with the lowest (highest) idiosyncratic volatility, respectively. Critical values

for the t-statistic are based on robust Newey and West (1987) standard deviations. In the last row, we

display the p-value of the Monotonic Relation test proposed by Patton and Timmermann (2010).

3.5 Conclusion

The results of this study endorse the findings by Ang et al. (2006b, 2009) for the German

stock market insofar as we document that low idiosyncratic risk stocks earn significantly

higher returns than high idiosyncratic risk stocks. In contrast to recent US evidence,

these findings even hold when considering equally-weighted portfolios and controlling for

a short-term reversal effect.
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The portfolio of stocks with the lowest idiosyncratic risk outperforms the portfolio of

stocks with the highest idiosyncratic risk by more than 9% per annum over the sample pe-

riod running from 1974 to 2006. Our findings cannot be explained by other cross-sectional

asset pricing effects like momentum, coskewness, liquidity, size, and book-to-market. Ap-

plying the MR test recently proposed by Patton and Timmermann (2010), we find mixed

evidence for the existence of a monotonically decreasing relation between idiosyncratic

risk and return. Results depend on the period, the estimation procedure, (E)GARCH

versus OLS, and the choice of the market model.

In contrast to the existing literature, we construct an idiosyncratic risk factor and explic-

itly estimate the risk premium in the cross-section. We find a significant risk premium

of 10% per year even in the presence of the size, book-to-market, and momentum fac-

tors. Idiosyncratic risk is negatively significant in almost all specifications, not only for

the Fama-MacBeth test, but also for the GMM procedure, for different test portfolios,

individual returns, and subperiods. Huang et al. (2010) suggest that the negative relation

between returns and idiosyncratic risk is driven by a short-term reversal effect. However,

our results clearly show that short-term reversal does not resolve the puzzle in the cross-

section of the German stock market.

Furthermore, we address three questions. Firstly, does the differentiation between upside

and downside (idiosyncratic) volatility help to explain the puzzle? The answer is no. Up-

side and downside idiosyncratic volatility are highly correlated such that there exists no

systematic difference between these two measures. Secondly, does a dynamic estimation

procedure, the use of Dimson betas or the application of the Fama-French and Carhart

model resolve the puzzle? Again, the answer is no. The finding that low idiosyncratic

risk stocks earn higher returns still prevails. Thirdly, does the use of monthly data lead

to different results? This question is motivated by the fact that several US studies find

a positive relation between idiosyncratic risk and returns. However, we do not find any

evidence that this phenomenon holds on the German stock market as well. We still find

a negative relation, even though the relationship is less strong.

Therefore, we draw the conclusion that the idiosyncratic risk puzzle prevails in the Ger-

man stock market. Finding a reasonable explanation is apparently an interesting avenue

for future research.
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