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1 Introduction

In this thesis, the development of a Time-to-Digital Converter (TDC) Application Spe-

cific Integrated Circuit (ASIC) is described. The work has been carried out at CERN†

in Geneva, Switzerland. The device is targeted at applications in the domain of High

Energy Physics (HEP) .

1.1 Structure of the thesis

The thesis is divided into 3 main parts:

• Introduction to TDCs in general and a brief description of a selected HEP appli-

cation example (chapters 2 and 3),

• design of a new TDC and implementation of a prototype (chapters 4 to 7) and

• experimental results (chapter 8).

First, an example of an HEP experiment using TDCs is presented (chapter 2). It

gives an overview of the requirements of a large scale high precision experiment. A

very high resolution must be achieved on a large number of channels while the power

consumption has to be minimised to keep the material budget low.

To compare different possible TDC architectures, a set of figures of merit is needed.

As they have to be tailored to TDCs, they are developed in the course of an introduc-

tion to TDCs (chapter 3), including a comparison to Analogue-to-Digital Converters,

which are more commonly known. A TDC performs a discretisation of signals, which

by principle implies a loss of information. The most basic performance metrics are

†European Organization for Nuclear Research/Organisation européenne pour la recherche nucléaire
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Chapter 1. Introduction

therefore the smallest and the biggest time difference that can be resolved unambigu-

ously. For any implementation of this concept, imperfections degrade the performance

of the TDC, causing non-linearity, jitter and data rate limitations. When TDCs are used

in a system, further properties are important, such as the number of chips required to

interface a given number of channels, the power dissipation introduced by the TDC.

On the system-level, the time-to-digital conversion is only a part of the required func-

tionality. A TDC ASIC can include additional functionality required on a system-level.

Given this set of metrics and the knowledge about present applications of TDCs in

the HEP domain, it is possible to specify the requirements for the TDC to be devel-

oped. The performance of a TDC is also determined by the data flow architecture. The

two main TDC architectures, clock driven and data driven, are introduced. Both archi-

tectures have advantages and drawbacks. The data driven architecture is chosen for the

new TDC, as it is found to be most appropriate for HEP applications (chapter 4).

The precision of a TDC timing measurement is set by the time base (chapter 5). For

low power operation of a multi-channel TDC, it is convenient to have one global time

base per chip that provides the time information to all channels. In this way, the time

base resources are shared minimising the global power consumption and consequently

the power consumption per channel. Different time base architectures fulfil this re-

quirement. In a comparison, a DLL based time base with a counter for dynamic range

extension has been found most appropriate.

The choice of the time base (chapter 5) fixes the characteristics of the TDC that are

directly related to the time-to-digital conversion within the limits given by the data

flow architecture (chapter 4). Not of smaller importance, other parts of the chip decide

which data rates can be handled and how other parts of a complete detector system can

interface with the TDC chip.

A very powerful concept for measuring very high rate events when only little read-

out bandwidth is available is triggering. In HEP experiments, the total rate of events

is generally orders of magnitude higher than the rate of events that are worth being

analysed in detail. Discarding uninteresting events inside the TDC ASIC reduces the

required readout bandwidth substantially (chapter 6). All these considerations are on a

high level of abstraction. Most of them are conceptual, while some require simulations.

2



1.1. Structure of the thesis

Other characteristics, especially the timing precision, are strongly affected by para-

sitics, which depend not only on the gate-level implementation of the circuit, but even

on the actual layout, the process technology, temperature variations and supply voltage.

As the delay of wires can be in the order of the TDC resolution, timing critical parts

have to be designed in a full-custom way. Post-layout simulations can give an idea

of the circuit properties. A prototype is required to fully characterise the timing per-

formance. Disregarding side effects such as cross-talk, power supply and ground varia-

tions and increase of the ASIC temperature, synthesisable features such as large buffers

don’t influence the timing precision. They can be simulated with sufficient precision

and can be generated using well established synthesis tools. The prototype contains the

strict minimum of circuitry necessary for the evaluation of the timing part. It contains

a Phase-Locked Loop (PLL) for multiplying the 40 MHz input reference clock up to

1.28 GHz as required by the following stage. A Delay-Locked Loop (DLL) provides

32 phase-shifted versions of the 1.28 GHz clock to the hit registers of the channels.

The TDC bin size is defined by the delay corresponding to the phase shift between

two successive DLL outputs. Using a newly developed delay element, a bin size of

24.4 ps has been achieved. Each channel consists of a bank of registers that store the

state of all DLL outputs, called ‘timestamp’, at the arrival of a signal on the hit inputs.

The timestamp stored in the hit registers is read out using a shift register. Another shift

register is used for configuration purposes. Test outputs are used to analyse important

signals. Possible sources of errors such as non-linearities, noise and jitter are identified

(chapter 7).

Different tests for prototype evaluation are presented. Experiments carried out with

the prototype confirm the simulations. A bin size of 19 ps has been reached, with an

RMS integral non-linearity of 4 ps and an RMS integral non-linearity of 5 ps. A power

dissipation of 8 mW per channel has been observed (chapter 8).
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2 A Short Introduction to Time
Measurements in HEP
Experiments

2.1 Introduction

The HPTDC, the previous version of a CERN-developed TDC, has been used in many

different applications, including the LHC experiments ALICE [ALI02, BGG+05],

ATLAS [AEF+04], CMS [Par08] and LHCb [LHC01]. The ALICE Time of Flight de-

tector is described as case example, focussing on the timing measurement. NA62, also

known as P326 and NA48/3, is a fixed target experiment at CERN’s SPS accelerator.

It contains the GigaTracker, for which a new front-end chip containing on-chip TDCs

based on the TDC130 design is under development [Cec07].

The LHC is the last accelerator of a chain (fig. 2.1) at CERN. Its centre of mass

energy is 14 TeV for proton-proton collisions ( [BCL+04], p. 21) and 1.15 PeV for
208Pb82+-208Pb82+ collisions ([BCL+04], p. 531).

2.2 Case Study: ALICE Time of Flight Detector

ALICE† (fig. 2.2) is an experiment at LHC. It is designed to observe heavy-ion

collisions such as Pb-Pb, and study the plasma of deconfined quarks and gluons which

†A Large Ion Collider Experiment
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Chapter 2. Time Measurements in HEP Experiments

Figure 2.1: The CERN accelerator complex [Lef06]

is predicted by quantum chromodynamics [ALI95].

ALICE consists of different sub-detectors which are optimised for observing

different particles emerging from the interaction point. The detectors are placed

in a magnetic field that bends the trajectory of charged particles to simplify their

identification. A Time Of Flight (TOF) detector for Particle Identification (PID) is

installed in one of the outer layers. This detector uses a large number of HPTDCs in

the 24.4 ps mode.

The TOF is used to distinguish pions, kaons and protons by measuring the time it

takes them to reach the detector after emerging from the interaction point. For efficient

6



2.2. Case Study: ALICE Time of Flight Detector

Figure 2.2: Longitudinal view of the ALICE detector [ALI95]
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Figure 2.3: Signal paths of clock, TOF and t0 detector signal
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Chapter 2. Time Measurements in HEP Experiments

separation of the signals of those particles, the time of flight needs to be measured with

high precision to reveal the difference between the time a pion, kaon or proton takes.

Studies have shown a relation between the efficiency of the identification and the res-

olution of the TOF time measurement [BKP+98]. In the higher momentum range of

the expected particles, an overall resolution of 100 ps yields a considerably better re-

sult than e.g. 200 ps. An overall time resolution of 100 ps guarantees a 3σ separation

of kaons and pions for momenta up to 2.1 GeV
c . With a resolution of 150 ps, momenta

higher than 1.7 GeV
c are not covered, for a resolution of 200 ps, the momentum limit

is 1.4 GeV
c [ALI95]. Several sub-systems of the detector contribute uncertainties to the

overall resolution σtot. The particle’s time of flight is calculated as the difference of the

time the particle strikes the TOF detector and the time t0 of the interaction, as captured

by the t0 detector. The TOF detector consists of several modules, placed at the sur-

face of a cylinder with a radius of 3.5 m and a length of 7 m. These dimensions render

the traditional solution of routing the t0 signal to all channels impractical. Therefore,

the 40 MHz reference clock, which has to be distributed to all the system anyway, is

used as a reference for the measurements. The time a particle arrives to a TOF detector

channel is measured individually. Later on, after time to digital conversion, t0 is sub-

tracted. Fig. 2.3 shows the described signal paths. Each step introduces an additional

uncertainty. Due to the large volume the system is spread across, they are considered

uncorrelated and can be added:

σ2
tot = σ2

t0 +σ2
MRPC +2·σ2

TDC +2·σ2
clkTRM +σ2

Clock

assuming for simplicity that the uncertainties of the TDCs and the clock distribution

network in the TDC readout module (TRM) are the same in both of the independent

signal paths. σMRPC represents the uncertainty of the Multi Resistive Plate Chamber

that has been chosen as detector for the TOF.

Table 2.1 shows the estimated time resolution of the whole ALICE TOF system

[ALI02]. An RMS resolution of 25 ps translates into a bin size of 87 ps, 50 ps into

173 ps (see appendix A.1 for the calculation).

8



2.2. Case Study: ALICE Time of Flight Detector

Average time resolution Maximum

in ps in ps

σt0 50 50

σMRPC 50 80

σTDC 25 50

σclkTRM 15 15

σClock 10 10

σtot 82 120

Table 2.1: Time resolution estimations for the ALICE TOF system [ALI02]. Note that

the values given here are RMS values. The TDC130’s nominal RMS reso-

lution is 7 ps on 32 channels. The smallest RMS resolution the HPTDC can

reach in 32 channel mode is 28 ps.
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3 Basic Principles of a TDC

With increasing capabilities of digital data processing hardware such as FPGAs† and

microprocessors, it has become common to analyse experimental data in the digital

and discrete time domain. However, measurements of physical quantities usually take

place in the analogue and continuous time domain. Conversion circuits are required to

transform analogue signals such as a voltage into digital information and to perform

a discretisation both of time and amplitude. Analogue-to-Digital Converters (ADCs)

are used to sample analogue signals and convert the amplitude of the signal, most fre-

quently an analogue voltage, into its discrete digital representation. Time-to-Digital

Converters digitise the time their input signal crosses a given threshold (fig. 3.1). Since

ADCs are more commonly known than TDCs, I will frequently use ADC related ex-

amples.

Unfortunately, conversion from continuous to discrete introduces a loss of informa-

tion, even if an ideal converter is assumed. Imperfections of real converters introduce

further errors. Therefore, only an approximation of the original signal can be recon-

structed, based on some assumptions. An example is the Nyquist criterion: in order to

perfectly reconstruct an analogue signal, the sampling frequency of an ADC has to be

at least twice the bandwidth of the input signal. For a TDC, the spacing of two succes-

sive hits must not be smaller than a certain minimum, the double pulse resolution. If

hits are closer, data loss occurs‡.

†Field Programmable Gate Arrays
‡There is however a fundamental difference between the Nyquist criterion and the double pulse

resolution. The Nyquist criterion is a fundamental limit, independent of the ADC circuit, while the

double pulse resolution is limited by the circuit.
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Chapter 3. Basic Principles of a TDC
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Figure 3.1: Comparison of ADC and TDC output data
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3.1. Ideal TDC
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Figure 3.2: Transfer characteristic of an ideal TDC

3.1 Ideal TDC

A TDC converts a time interval into a digital number. The measured quantity can be a

time relative to a reference, a delay with respect to another signal or between to edges

of the same signal.

Fig. 3.2 shows the transfer function of an ideal TDC. The conversion consists of

the discretisation of the continuous signal. It can be described by a piecewise linear

equation:

i = (t mod tLSB) div
tmax

N
mod being the modulo and div the integer division operator. The real number i is the

digital output of the infinite resolution TDC, when N → ∞. As real TDCs cannot have

infinite resolution, i belongs to a discrete set of numbers generating the bold solid

staircase function that is only an approximation to the ideal straight line. Signals within

an interval [ti; ti+1) are rounded to the interval’s mean value
ti+ti+1

2 and represented by

the number i. One key figure describing a TDC is therefore the bin size, the width of the

discretisation interval, which is called Least Significant Bit (LSB). The LSB represents

the smallest time difference that can be resolved with the TDC. In physics applications,

the required RMS† resolution or the required standard deviation of the measurement is

†Root Mean Square
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Chapter 3. Basic Principles of a TDC

often specified, while in the domain of engineering, the bin size is frequently stated.

These numbers can easily be converted:

σLSB = tLSB,RMS =
tLSB√

12
≈ tLSB

3.5

as shown in appendix A.1.

Another key parameter is the dynamic range tmax, which gives the largest time

difference that can be measured unambiguously. If the dynamic range is exceeded,

an overflow occurs. The TDC output can represent either the measured time modulo

the dynamic range, as assumed in this work if not otherwise stated and as shown in

fig. 3.2, or, as it is the case for most ADCs, saturate to the maximum value.

Note that the number of digital output words, corresponding to the number of time

bins, does not need to be a power of 2. Even though the output values are usually

represented by a binary word, some words might not be used to represent a time. For

example, the output words in fig. 3.2 can be encoded with 3 b. However, out of the

23 = 8 available symbols, only N = 7 are used.

3.2 Performance Metrics for TDCs

Some performance metrics for TDCs have been established under the same name as

for ADCs [IEE01]. However, the definition may differ. Therefore, the definitions used

in this thesis will be explained. Other ADCs metrics are not applicable to TDCs (e.g.

sampling frequency) and vice-versa (e.g. double pulse resolution).

The most basic performance metrics that describe the properties of an ideal TDC as

explained in section 3.1 are:

• The Bin Size tLSB and RMS Resolution σLSB

• The Dynamic Range tmax

Static deviations from the ideal behaviour (fig. 3.3) are characterised by:

14



3.2. Performance Metrics for TDCs

tDNL1+tLSB
t

Analogue input

D
ig

ita
l o

ut
pu

ti

tOffset 3tLSB t4t3
(3-½)tLSB

tINL3
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(3+½)tLSB

Figure 3.3: Transfer characteristic of a TDC. The thick solid line shows the character-

istic of a real TDC, the dash-dotted line its approximation by an ideal TDC

transfer function with an offset and the dashed line the piecewise-linear

approximation.

• The Differential Non-Linearity (DNL)

The differential non-linearity tDNL,i is the deviation of a particular bin size Δti =
ti+1 − ti of bin i from its ideal value tLSB:

tDNL,i = Δti − tLSB = ti+1 − ti − tLSB with i = 0 . . .N −1 integer

Usually, the standard deviation σDNL is stated, sometimes with a graph showing

the tDNL,i for all individual bins i = 0 . . .N−1. The DNL is commonly measured

in units of LSB.

• The Integral Non-Linearity (INL)

The integral non-linearity tINL,i is the deviation of the total delay ti, measured

from the beginning of bin 0 to beginning of bin i, assuming the real offset tOffset

and ideal bin sizes tLSB.

15



Chapter 3. Basic Principles of a TDC

tINL,i = ti − i tLSB +
1

2
tLSB − tOffset with i = 0 . . .N −1 integer

Usually, the standard deviation σINL is stated, sometimes with a graph showing

the tINL,i for all individual bins i = 0 . . .N − 1. The INL is commonly measured

in units of LSB, as it is the case for the DNL.

• The Gain Error

The gain error is the deviation of the slope of a linear approximation to the TDC

transfer function from its ideal value. As the TDC time base consists of two parts,

the fine time base and the dynamic range extension, a gain error translates into a

large nonlinearity between the last and the first bin of the fine time base. Thus, it

is more meaningful to include gain error effects in the INL, as it is the case for

the definition of the INL used in this work.

• The Offset

For an event at time t = 0, a real TDC measures tOffset. In every application, the

offset of the TDC will add to differences in reference and signal paths. Practical

applications have to be able to either cope with any offset, or include offset com-

pensation. The offset does not depend on the time to be digitised. Any constant

offset can be compensated for by adding a constant value to the measurement,

regardless of the measurement itself. The transfer function of a real TDC can be

approximated adding a constant to the approximation formula for ideal TDCs:

i = ((t + tOffset) mod tLSB) div tLSB

The method of least squares is used to determine the offset, minimising the sum

of the squared INLs for all bins:

N−1

∑
i=0

t2
INL,i =

N−1

∑
i=0

(
ti − i tLSB +

1

2
tLSB − tOffset

)2

−→ min
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In practice, the offset of both the TDC and the input signal chain is expected

to vary slowly during operation due to temperature changes. The offset can be

minimised by careful layout, making sure the paths of both signal and reference

are as similar as possible, the connected circuitry outside the chip will be very

different in many applications. The off-chip contributions will be dominant and

require periodic recalibrations at the system level.

• The Double Hit Resolution

The double hit resolution is the minimum delay between two subsequent time

measurements in the same channel. It is limited by the time it takes to process the

data in the first stage and could be called maximum hit frequency, as it is similar

to the maximum sampling frequency of an ADC. However, the term ‘frequency’

is rather used for periodic signals, while the hit signal is random by definition.

In addition, the conversion can be affected by random effects and by other signals:

• Jitter or Phase Noise

• Noise

• Crosstalk

Those effects depend strongly on the implementation of the chip and the system.

At the system level, further properties are important. They do not characterise the

quality of the time to digital conversion, but reflect the requirements of the system.

• Number of channels per chip

In HEP applications, a complete sub-detector can easily consist of many tens

of thousands closely spaced channels. TDCs should have as many channels as

possible, in order to minimise the number of chips required. In most other ap-

plications such as RADAR†, e.g. in cars, LIDAR‡ and mass-spectroscopy, only

a few channels are needed [RRRK00, PMK02] and the sensors are often meters

†RAdio Detection And Ranging
‡LIght Detection And Ranging
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apart from each other. Sharing a common TDC requires all timing sensitive sig-

nals to be brought to the chip, while in a one-chip-per-channel approach, only

digital signals need to be distributed.

• Calibration requirements

The implementation of the TDC time base also determines the calibration re-

quired to achieve precise measurements. While automatic calibration e.g. to the

reference clock period is intrinsic to some time base architectures, others require

special calibration procedures to be followed in regular intervals. If the signals to

be measured are random, they can be used for a calibration using a code density

test (section 8.2.2, p. 103). Otherwise, dedicated calibration signal generation

can be required.

• Integrated System-level functionality

A TDC digitises a time, and all measurement data is expected to be read out.

In HEP applications, the amount of data generated is far too high to be stored

for off-line processing. Data reduction is required. The TDC ASIC can include a

first level of data reduction. Avoiding the readout of data to be discarded as early

as possible reduces also the power required to transfer those data.

The readout bandwidth is often limited by the availability of the data link or the

receiver. In HEP applications, many events arrive within a small time window

on different channels, followed by phases of no or low activity. In those cases,

it is essential to derandomise the data. Storing data in a buffer memory until

the next processing stage is ready converts data available at highly random times

into a data flow with rather constant data rate [CAA57,Jai91]. If the link is shared

among multiple TDCs, a readout buffer can be included on-chip to store any data

that is ready for readout until the readout link is attributed to the specific chip.

• Maximum hit rate

The maximum hit rate is the maximum rate at which the TDC can accept hits,

averaged over a given time. Once this rate is exceeded, data losses can occur due

to buffer overflows. It must not be confused with the double pulse resolution,

which specifies the minimum time between any two successive hits.
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• Power dissipation

Power dissipation translates into supply current and heat dissipation. In HEP ap-

plications, active cooling is often required [CMS00]. The larger the heat dissipa-

tion, the more material is needed for efficient cooling. In the ALICE inner track-

ing system, cooling and mechanics figure accounts for a large fraktion of the ma-

terial budget [ALI95]. As little extra material as possible should be added inside

a detector, as it can interact with the particles that are to be measured [Hal09].

Larger supply currents lead to thicker supply cables or larger resistive losses in

the supply cables, causing heat dissipation. Thicker cables increase the material

budget both by themselves and by their support structures.

Therefore, it is essential to minimise the power dissipation of all chips inside a

detector. A chip with multiple channels can be designed such that some parts of

the chip are used for all channels while only a few parts are duplicated for each

channel. From a global detector point of view, it is advantageous to share one

chip by all channels that are nearby and require only little signal routing.
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4 TDC Data Flow Architecture

4.1 Specifications

The new TDC needs to have 32 channels with a resolution of 25 ps or better. The time of

arrival of a leading or a trailing edge will be measured depending on the configuration.

To save readout bandwidth, in case both leading and trailing edge have to be digitised,

the data can be converted into time of arrival of the leading edge and pulse width, as the

latter requires a smaller dynamic range. In Time Over Threshold (TOT) measurements,

the relevant information is the pulse width, not the time of arrival of the trailing edge.

Often, the pulse width has to be known with a higher resolution than the time of arrival

and the precision of the leading edge timestamp can be reduced prior to readout. The

minimum dynamic range to be covered is in the order of 150 ns. One option for the

CLIC RF bunch train length is 58.4 ns [BCdR+06]. A trigger feature allows to select

hits for readout. Typically, the majority of data is discarded before leaving the TDC

chip. This requires a buffer large enough to store all data during the trigger latency,

i.e. until the trigger signal is available to the TDC chip. Overlapping triggers should

be accepted. In triggered applications, it is often convenient to have the time scale

relative to the trigger timestamp. The double pulse resolution, the time between to

successive signals that can still be distinguished, has to be about 2 ns or smaller. For

CLIC, bunch trains of 58 ns duration with a repetition rate of 150 Hz = (7 ms)−1 are

being discussed [BCdR+06]. To save readout resources, multiple TDCs will share the

readout link. Due to the trigger latency, readout will only take place after the high

activity bursts. The last TDC to be read out will need to buffer the data during about

7 ms. Events may be lost, e.g. due to buffer overflows or single-event upsets, but the

loss has to be signalled to the following data processing stage.
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Figure 4.1: A clock driven TDC

The TDC130 has to be a highly configurable and multi-purpose, so that it can be

used for most HEP applications without additional research, development and design

effort, in order to reach production quantities that justify the development.

4.2 Clock driven architecture

In clock driven TDCs, the state of the hit inputs is written into a FIFO† once every

clock cycle (fig. 4.1). Therefore, the bin size and the double pulse resolution are equal

to the clock period. The width of the FIFO is equal to the number of channels, 32. A

bin size of 25 ps requires a clock frequency of 40 GHz. The FIFO has a fixed latency,

which is equal to the trigger latency. As one data word is generated per clock cycle, the

FIFO occupancy is independent of the activity of the channels. In ALICE TOF, this la-

tency is about 1.2 μs [AAea09], requiring a FIFO of 1.2 μs×40 GHz×32 b ≈ 1.5 Mb

operating at 40 GHz. This cannot be implemented in the chosen 130 nm-technology

and, moreover, consumes a considerable amount of power. At the arrival of the trigger

signal, the corresponding hit input state word is leaving the FIFO and transferred to

†First In-First Out memory
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4.3. Data driven architecture

the data input of the readout buffer. The readout buffer is write enabled if the TDC is

triggered and disabled otherwise. Note that the trigger is not sensitive to the data in the

FIFO, but to its position. Therefore, corrupted data in the FIFO doesn’t influence the

operation of the chip. The operating frequency of the data processing puts further limits

on the double pulse resolution. In addition to the state of the hit inputs, a timestamp

has to be stored in the readout buffer. The dynamic range of the time reference must

be at least equal to the trigger latency if no timestamp is added in the FIFO. In HEP

applications, very often a short period of activity is followed by a long break, as e.g.

in the proposed CLIC system [BCdR+06]. In those cases, it is very inefficient that the

input state has to be written into the FIFO even if there is no signal expected, in order

to keep synchronisation.

4.3 Data driven architecture

In data driven architectures (fig. 4.2), the first memory, called hit register, is clocked by

the hit inputs – whenever a hit signal arrives, and only then, the timestamp provided by

a reference is stored. The operating frequency of the hit register is equal to the hit rate,

the amount of data to be processed in a channel depends on the channel’s activity. The

maximum operation frequency fixes the double pulse resolution and does not influence

the resolution. Each channel has its own hit register. The hit timestamps are transferred

from the hit registers to a level-1 buffer. This buffer stores the timestamps during the

trigger latency. The required buffer size depends on the number of hits during this

period. Typically, in HEP experiments, the hit rate is in the order of 10 kHz to 1 MHz,

which is considerably less than the inverse bin size of, in the hypothetical case being

discussed, 40 GHz. Therefore, the level-1 buffer can be much smaller and consumes

less power than the FIFO in clock driven architectures. However, if the actual hit rate

exceeds the design value, buffer overflows can occur. Storing the data during the long

breaks between the high activity periods, like in CLIC applications, has no implication

on the buffer sizes.

Once the trigger signal arrives, a trigger timestamp is generated which takes the

trigger latency into consideration. The data in the level-1 buffer is compared with the

trigger timestamp. If the hit timestamp is within a configurable neighbourhood, called
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Figure 4.2: A data driven TDC

trigger window, of the trigger timestamp, it is transferred into the readout FIFO. While

the trigger mechanism in clock driven architectures does not depend on the value stored

in the buffer, in data driven architectures it does. Data corruption can consequently in-

fluence the operation of the trigger mechanism and thus, seen from the user’s perspec-

tive, the complete TDC. In HEP applications, the loss of a single timestamp is often

not a problem. It is sufficient to implement an error detection scheme and discard all

corrupted data. The readout path is common for all channels. Therefore, the data com-

ing from different channels need to be merged at some point between the hit registers

and the readout buffer. This point can be chosen by the designer.
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Clock Driven Architecture Data Driven Architecture

– bin size equals clock period + bin size and clock period indepen-

dent

bin size can be much smaller than

clock period

double pulse resolution equals bin

size

bin size and double pulse resolution

independent

bin size can be much smaller than

double pulse resolution

– cannot easily adapt to varying hit

rates

+ no buffer overflows – buffer overflow possible

occupancy depends on hit rate

+ very simple trigger mechanism

+ trigger does not depend on data in

buffers

– corrupted data in buffers can require

reset of TDC

Table 4.1: Comparison of Data Flow Architectures

4.4 Choice of Data Flow Architecture

Tab. 4.1 summarises the comparison. Overall, the data driven TDCs can fulfil the re-

quirements for HEP experiments much better than clock driven TDCs at the price of

a more complicated trigger mechanism. The main disadvantage, the sensitivity of the

control to corrupted data, can be compensated for using error detection or even error

correction schemes. Therefore, the TDC presented in this thesis is data driven. The

following sections describe the chosen architecture in more detail.
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5 Time Base Architectures
Overview

The time base provides a timing reference to the channels. Two different groups of

TDC time bases are established. In time-tagging TDCs, the time is measured relative

to a global reference, for example the 40 MHz LHC clock. This is similar to normal

watches. In start-stop TDCs, there is typically one start channel and one or multiple stop

channels. A signal on the start channel starts a circuit generating a time information,

and a signal on a stop channel stops this circuit for the respective channel. This is

comparable to stop watches in sport competitions.

Due to the high number of channels needed in an experiment and the availability of

a very well defined reference clock that serves as a global reference for most systems

in HEP experiments such as LHC, the TDC130 is a time-tagging TDC. Whenever a

start-stop measurement in required, the time difference of two channels, which do not

necessarily need to be connected to the same chip, can be calculated off-chip, e.g. in

an FPGA.

There are many different options for the implementation of a time base, as shown

in this chapter. To understand the global architecture, it is sufficient to know they all

provide a digital timestamp that is distributed to the channels.

5.1 Time Base Architectures

Different methods have been proposed in the past for accurately measuring

time [Por73, MRT+07, Kal]. To reduce power consumption, the TDC130 will have

a single time base that provides the time information simultaneously to all channels. In

this way, the power consumption of the time base is not duplicated for each channel.
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The current integration method, for example, requires one time base per channel. In

the simplest case, a constant current source is feeding a capacitor between the arrival

of the start and the stop signal. The voltage across the capacitor is a measure for the

time difference and can be converted using a standard ADC. This time base cannot

be shared by all channels, which makes it unsuitable for the TDC130. Therefore, such

techniques are not described in detail in the following sections.

5.1.1 Counter based Architecture

A common technique for timestamp measurements is based on a counter that is driven

by a clock source. Whenever a hit arrives, the counter value is stored in the hit reg-

ister of the corresponding channel while the counter continues running (fig. 5.1). The

resolution is equal to the period of the reference clock, Tclk. The accuracy is given by

the stability of the reference clock and the hit registers. The dynamic range is limited

by the counting range and can easily be extended according to the application’s needs.

Counters are easy to implement in a digital design and could even be synthesised auto-

matically, if no particular constraints, especially on speed, are to be respected.

A potential problem of the counter technique is the sensitivity to metastability

[HEC89, Has97, Cyp97] in the hit registers. If a hit arrives while the counter is tog-

gling, the timestamp stored in the hit registers is unpredictable. In a Gray code counter,

only one bit toggles at a time. If this bit gets corrupted, the value of the timestamp can

only shift by one bin size. Another method is to have two counters running on opposite

phases of the same reference clock and sample both together at the arrival of a hit.

While one counter might have toggled, the other counter is guaranteed to be stable.

In a next step, one of the two timestamps will be discarded. The problem consists in

determining which timestamp might have been affected by metastability.

A counter with a resolution of 25 ps requires a clock of (25 ps)−1 = 40 GHz. In the

chosen 130 nm-technology, such a clock cannot be provided, and neither can a counter

running at that speed be built. In the following sections, other techniques are described.

They all can give a higher resolution than a counter. Combining them with a counter

extends their dynamic range to that of the counter while keeping the high resolution.

28



5.1. Time Base Architectures

Counter Hit registers

Hit registers

Hit registers

Hit registers

...

Tclk
Hit
0

Hit
1

Hit
2

Hit
N

Figure 5.1: Counter based TDC

The hit registers are clocked by the respective channel’s hit input signal.

They can also provide the information on which of the two counters has toggled more

recently.

5.1.2 Delay line based Architecture

A conceptually simple way to obtain high resolution is phase interpolation using delay

lines with multiple, equally spaced tap-outs (fig. 5.2). In this case, a low frequency

clock signal is delayed in small steps. Let Tclk be the period of the reference clock and

N the number of tap-outs. Assume the delays of all elements are equal and sum up

to Tclk. The bin size is then tN = 1
N Tclk. The phase shifted versions ϕ0 . . .ϕN−1 of the

clock signal are distributed to the hit registers. The position of the clock edge within

the delay line at the time of the hit’s arrival and thus within the hit registers gives the

hit timestamp. It is irrelevant which clock edge is taken for this measurement. A hit

may arrive at any time during a clock period. Therefore, the delay line must cover the

full clock period. As the clock signal is periodic, even if the line delay was longer than
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Figure 5.2: Delay line

a clock period, the dynamic range is limited to the clock period. However, it can be

extended using a counter clocked by the same clock as the delay line.

Passive delay elements

Delay elements, RCs, LCs or transmission lines, can be implemented in sub-micron

CMOS technologies. Resistors are easy to implement in a digital CMOS process, but

the signal is attenuated along the line. Inductors can be built using standard metal wires

and generate less attenuation, but take considerable space [SRGR03, DDTGG05]. In

addition, coupling between multiple, closely spaced inductors is expected. Transmis-

sion lines are basically straight, shielded wires, as opposed to circular, not necessarily

shielded inductors. Compensation of the process variations is necessary at least once

per chip, if not once per start-up [Mot00] to obtain optimum linearity. Resistors that

are not implemented using metal interconnects are subject to temperature variations

and may require temperature compensation. Additional capacitors can be connected to

increase the delay in all implementations. For LCs and transmission lines, the signal

can be tapped out from different places within the inductors or the transmission lines

to reduce the delay. Synthesisable digital logic can perform the calibration based on a

code density test (ch. 8.2.2).

Gate delays

In 130 nm-technologies, the gate delay is in the order of tens of picoseconds. As the

desired resolution is in the same order of magnitude, using gate delays as delay ele-
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Figure 5.3: Adjustable delay gates

ments instead of the above-mentioned passive delay elements is an option. The gate

delay can be adjusted limiting the current passing through its transistors (fig. 5.3).

While this is trivial in differential buffers, single-ended inverters need two additional

transistors for current limitation. The delay can be adjusted using a control voltage or a

control current. The delay line is called Voltage Controlled Delay Line (VCDL) or Cur-

rent Controlled Delay Line (CCDL). Alternatively, multiple current limiting transistors,

typically with binary weighted sizes, can be used. The delay is adjusted by enabling

or disabling current limiting transistors [DGLN95, WWCL05]. The adjustment can be

performed by digital logic and the delay line is called a digitally controlled delay line.

The delay of a gate depends not only on the process, but also on temperature and

even supply voltage variations. Therefore, the calibration needs to be performed more

frequently.

Adjustable delay gates are slower than non-adjustable gates as the current control

introduces additional parasitics and results in reduced current driving.
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Figure 5.4: DLL (k=1 in nominal operation)

5.1.3 Delay Locked Loop based Architecture

A VCDL or CCDL can be part of a control loop that automatically adjusts the delay

of the full line to be equal to one clock cycle. Such a device (fig. 5.4) is called Delay

Locked Loop (DLL).

An N-element DLL provides N phase shifted tap outputs to the hit registers, just as a

delay line (5.1.2). It is always tuned so that the sum of all delays equals one reference

clock cycle, Tclk. This cancels process, temperature and supply voltage variations, as

long as they affect all elements equally.

The control loop of a DLL consists of a phase detector, a charge pump, a loop filter

and the delay line. The phase detector compares the phase at the delay line input to that

at the output. The target phase difference between input and output is 2π†. Depending

on whether the phase difference is smaller or larger than the target value, it makes

the charge pump sink or source a current for one clock cycle. The current is low-pass

filtered by the loop filter, which consists of a capacitor. Every phase detector decision

thus adds or removes a constant amount of charge to or from the loop filter capacitor,

increasing or decreasing the voltage across it by a constant amount. This voltage is

called control voltage, as it is used to control the current sources in fig. 5.3 and thus the

delay of the delay line.

†This is the nominal case. In principle, the phase detector can make the loop lock to a phase dif-

ference of 2πk with k ≥ 0 integer. Additional circuitry assures that it always locks to 2π (section 7.2.7,

p. 71)
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Figure 5.5: PLL (k=1 in nominal operation, N is the clock multiplication factor)

5.1.4 Phase Locked Loop based Architecture

Alternatively, a Phase Locked Loop (PLL) can be used as time base. A PLL (fig. 5.5)

consists of a Voltage Controlled Oscillator (VCO) that generates an output signal with

a frequency fout which depends on a control voltage. The loop assures that the output

frequency is N-times higher than the frequency of a reference clock signal. Let’s first

consider the case with N = 1, when both reference input and VCO output have the

same frequency.

Both the reference clock signal and the VCO output signal are fed to the phase de-

tector. The phase detector compares these two signals. Depending on whether the VCO

output phase is leading or lagging the reference clock phase†, it makes the charge pump

sink or source a current for a duration of one reference clock cycle. If the frequencies

are equal, the charge pump neither sinks nor sources any current. This current is con-

verted into the VCO control voltage by a low-pass filter.

A major difference between PLL and DLL is that the PLL loop changes the fre-

quency, not the phase, of the output signal in order to reach zero phase difference

between reference input and VCO output. As the phase is the integral of the frequency,

the phase detector introduces a new pole into the transfer function. The PLL is a second

order system, which is not intrinsically stable.

If a frequency divided version of the VCO clock is fed to the phase detector, the

phase detector compares the reference frequency to the divided VCO output frequency.

†This is the nominal case. In general, a phase detector cannot distinguish phase differences that

are integer multiples of 2π. Depending on the phase detector implementation, additional circuitry may

required to assure that the PLL always locks to the reference clock frequency.
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The loop makes sure that the reference input and divided VCO output have the same

frequency. The VCO frequency is N-times higher than the reference clock frequency.

Ring oscillators are commonly used as VCO. They consist of a chain of delay el-

ements†, where the output of the last element is connected to the input of the first.

The element delay is adjusted using a control voltage. The output of a delay element

is phase-shifted, i.e. delayed, with respect to the preceding element. As for the delay

line and the DLL, the delay elements of the PLL oscillator can provide phase-shifted

signals that are sampled by the hit registers.

A fundamental difference between DLL and PLL is that the PLL generates its own

signal, while the DLL delays the input signal without changing its frequency. A PLL

can reduce the jitter of the reference clock signal if the VCO jitter is lower than the

reference jitter. In this case, the jitter of the TDC timing measurement is lower than it

would be if a DLL was to be used.

5.1.5 Array of DLLs based Architecture

As shown in chapter 5.1.3, DLLs can be used to generate multiple phase-shifted ver-

sions of the same, rather low frequency signal. The bin size is equal to the phase shift.

The minimum delay of a single element is limited by the technology, but it is possible

to have multiple DLLs with slightly shifted input phases. The shifted input phases can

be generated using another DLL. Long delay lines lead to mismatch and consequently

linearity problems, but in an array of DLLs, the individual lines are short and indepen-

dently controlled. For the encoding and following data processing, it is convenient, but

not necessary, to have a total bin number which is a power of 2. Fig. 5.6 shows the

arrangement of DLLs, fig. 5.7 the bins.

Note that in fig. 5.6, the M-element DLL’s phase detector takes the signals from the

end of the delay line, as usual, and from the output of the mth delay element of the first

†To oscillate, the signal at the end of the chain needs to be inverted with respect to the input. If an

odd number of inverters is used, this condition is fulfilled, but the number of bins is odd, in particular

not a power of 2, and the delay of the chain covers only half a clock cycle. However, techniques to build

ring oscillators with an even number of bins have been developed [AI96].
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Figure 5.6: Array of DLLs

N-element DLL. Thus, in lock, the delay of the full M-element chain is equal to the

delay of m elements in the N-element DLLs.

tM =
m
M

tN

The number of bins of the array into which a bin of an N-element DLL is divided

into is called ‘interpolation factor’. An interpolation factor F = 4 can be achieved with

m = 5 and M = 4. The phase shift between two subsequent N-element DLLs is then

tM = 5
4 tN =

(
1+ 1

4

)
tN instead of 1

4 tN. This is equivalent, as the subtraction of integer

numbers of tN corresponds to fixed rotations of the corresponding part of the timestamp.
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As example, let’s look at the outputs of the 4th element of each N-element DLL. For

simplicity, let t = 0 be the time that the input clock signal toggles. In the DLL whose

input is fed by the same signal as the M-element DLL, this signal toggles at t = 4 tN. In

the second DLL, the same element toggles with an additional delay of tM = 5
4 tN, thus

at t = 51
4 tN, not at 41

4 tN as required. The difference is exactly 1 tN, so a signal with the

required timing can be found at the output of the 3rd element’s output. The 2nd element

of the third DLL toggles at t = 42
4 tN, the 1st element of the fourth DLL at t = 43

4 tN.

1st DLL

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 1

2nd DLL

1 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109 113 117 121 125 1

3rd DLL

1 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102 106 110 114 118 122 126 1

4th DLL

1 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99 103 107 111 115 119 123 127 1

Figure 5.7: Bins in a 4×32 array of DLLs

The bins without number are bins 129 . . .131 of the preceding clock cycle

or bin 0 . . .3 of the following cycle respectively.

This technique requires M DLLs with a constantly propagating clock signal, and one

DLL with a clock signal that propagates only at the beginning of each clock cycle. The

power dissipation is larger than that of a single DLL by a factor between 4 and 5. As

the DLL array is shared among all channels, all M N tap-out signals need to be routed

to all channels – the routing effort is non-negligible.

5.2 Fine Time Interpolation Techniques

The resolution of both DLL and PLL based techniques are limited by the delay of the

gates used as delay elements, which is given be the technology. To further increase the

resolution, different techniques can be used to provide sub-gate delay interpolation.
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5.2. Fine Time Interpolation Techniques

5.2.1 Dual-Slope Analogue Time Expansion

In the domain of voltage ADCs, the dual-slope conversion has been used for a long

time. The input signal, a voltage, is converted into a time using an integrator, a refer-

ence, a comparator and some control logic (fig. 5.8a) [TS02].

Fig. 5.8b shows a voltage measurement cycle. The input voltage VA > 0 is converted

into a current, which is integrated over a fixed time t2 − t1. Afterwards, the switch

control replaces the input voltage by a reference voltage VB < 0. When the integrator’s

output voltage VInt reaches 0 at t3, the switches are put into reset configuration, ready

to take a new sample. The charge of the capacitor is zero at t1, then decreased until t2
and increased to zero at t3:

1

R
VA (t2 − t1)+

1

R
VB (t3 − t2) = 0

⇐⇒ VA = −VB
t3 − t2
t2 − t1

The durations of the charge and discharge cycle are measured and represent the input

voltage as a function of the reference voltage.

This principle can be easily adapted to time measurements. The conversion circuitry

may mainly remain unchanged; the only difference is the control of the current sources.

Both VA and VB serve as reference voltages. Their sign is opposite, in fig. 5.8c VA > 0

and VB < 0. The dual-slope TDC is used to provide only the fine part t1 − t0 of a

time stamp with high resolution and low dynamic range, while other circuitry gives

the coarse part t0 with low resolution and high dynamic range. Therefore, the presence

of a reference clock with a period Tclk provided for the coarse measurement must be

assumed. Without loss of generality, assume the TDC is set to be sensitive to leading

edges on the hit input. At the arrival of a hit, the current VA
R is integrated until the e.g.

next leading edge of the reference clock. Subsequently, the switches are changed and
VB
R is integrated until the integrator output voltage VInt equals 0. A coarse timestamp at

the moments t1, t2 and t3 is available. t0 = t2 −Tclk due to the implementation of the

switch control. As before,

1

R
VA (t2 − t1)+

1

R
VB (t3 − t2) = 0
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Figure 5.8: Dual-slope converter
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Now, the quantity to be measured is the fine timestamp, t1 − t0:

⇐⇒ t2 − t1 =
−VB

VA
(t3 − t2)

⇐⇒ t1 − t0 = t1 − (t2 −Tclk) =
VB

VA
(t3 − t2)+Tclk

Instead of t1−t0, t2−t1 can be used as fine part of the timestamp – in this case it is not

referenced to the preceding rising edge of the reference clock, but to the following. As

this difference is too small to be measured directly, it is stretched by a constant factor

k and the larger value t3 − t2 is measured instead. k is called stretch factor [Mot00]:

k =
t3 − t2
t2 − t1

= −VA

VB

To increase the resolution, k needs to be greater than 1, thus |VA| > |VB|.
This technique introduces a dead time that is increasing with the stretch factor, thus

the desired resolution. k needs to be stable and known with precision. Therefore, good

matching of the reference voltage sources and the switches S1 and S2 is required. Noise

coupling into the integrator, capacitor non-linearities and the comparator stability fur-

ther limit the accuracy.

5.2.2 Vernier Techniques

Vernier techniques are very much similar to a vernier calliper. They are based on D

flip flops and delay elements with two different delays and perform start-stop mea-

surement [Mot00]. In the simplest case (fig. 5.9a), the D flip flops are clocked with

the stop signal and sample the start signal. Assume the hit is the rising edge of both

signals. Between one flip flop and the next, the start signal is delayed by a time t1 and

the stop signal by t2 < t1. Hence, the further the signals propagate through the lines,

the smaller the difference between the arrival of the start and the stop signal. Eventu-

ally, if the line is long enough, the stop signal will overtake the start. The output of

the following flip flops will be 0 instead of 1. Let 1-to-0 transition occur after the nth

flip flop. Assuming ideal D flip flops, the difference between start and stop signal to

be measured is tstart − tstop = nt1 − nt2 = n (t1 − t2). A large dynamic range requires
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(b) Vernier interpolation with loop

Figure 5.9: Vernier interpolation schemes

long chains of delay elements and flip flops. It is possible to let the signal propagate

though the same delay elements multiple times arranging the delay elements in a ring

structure (fig. 5.9b). The dynamic range of such a circuit is infinite. However, already

the straight line implementation is very sensitive to delay cell mismatch. In a ring, the

signal propagates through the same elements multiple times, accumulating the error.

Calibration has to be performed in absence of hits. The delay elements can be operated

as a ring oscillator in order to measure their total delay. Modifications of this technique

enable the use for timestamp measurements, but still suffer from very high sensitivity

to delay cell mismatch.
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5.2.3 Passive LC lines or RC lines

DLL

Hit register bank
Hit inputs

Clock input

Hit register bank

Hit register bank

Hit register bank

Channel

tM

tM

tM

Figure 5.10: Passive delay line interpolation

Main register (y = 0)

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031 1

First interpolation register (y = 1): Delayed by 1× tN
4

1 0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031 1

Second interpolation register (y = 2): Delayed by 2× tN
4

1 0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930311

Third interpolation register (y = 3): Delayed by 3× tN
4

1 0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930311

Figure 5.11: Local interpolation: Shifted bins.

The bins without number are bin 31 of the preceding clock cycle or bin 0

of the following cycle respectively.

Another possibility for fine interpolation, i.e. interpolation which is performed using

the hit signal and thus cannot be shared among channels, is based on passive delay

lines. The timestamp coming from the main time base, e.g. a DLL, is distributed to

all channels. To divide the DLL time bins of size tN into M sub-bins, the hit registers

are replicated M times. The hit signal propagates through an M−1-element delay line

(fig. 5.10) with a unit delay tM = 1
M tN. The tap-outs of this delay line are connected
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to the clock signal input of the hit register. Fig. 5.11 shows the shifted bins in such an

arrangement. As delay elements, RC or LC elements can be used as well as transmis-

sion lines. The advantages and drawbacks of different delay elements are discussed in

section 5.1.2. In the HPTDC, local fine interpolation has been implemented with RC

delay lines.

Fig. 5.11 shows the shifted time bins for M = 4 and N = 32. For a given hit, the

timestamps in the hit register blocks are either all the same or differ by 1. After binary

encoding of the timestamps, thus with only log2(32) = 5 b of data per hit register, the

interpolation result can be computed. Let the transition from one timestamp value x

to the next, x + 1 occur between block y and y + 1. The hit has then arrived in the

(M− y)th quarter of the xth main DLL time bin. If all timestamps in the hit register

banks are equal, the transition has occurred after the block with y = 3, i.e. the hit has

occurred in the 1st quarter of the xth main DLL time bin.

5.2.4 DLL adjusted delay lines

Resolutionwise, the array of DLLs is equivalent to one global N-element main DLL

per chip and one local M-element secondary interpolation delay line per channel, re-

ducing the amount of signals to be routed from the common time base to the individual

channels. The secondary delay lines are fed by the hit input signal, not by the clock

signal. This reduces the power consumption in idle mode considerably, as no signal

is propagating along the line. The hit registers of each channel can be organised in M

blocks of N elements. The first hit register block is triggered at the arrival of the hit,

the second after a delay of tM, the third after 2 tM and so on. The secondary delay lines

are not part of a control loop, but they need to be calibrated frequently. They cannot be

implemented as DLLs, as DLLs require a periodic signal to propagate constantly, and

the hit signal is random by definition.

The calibration problem can be avoided with a global, secondary DLL with M el-

ements, fed by the clock signal as it is the case in the DLL array. The delay line is

replicated once per channel, and the control voltage of the secondary DLL distributed

to all delay lines (fig. 5.12). As delay lines in the channels are not part of a closed

loop, only M−1 elements are required. In this case, the local delay elements are auto-
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Figure 5.12: DLL adjusted delay lines for fine interpolation

Main register (y = 0)

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031 1

First interpolation register (y = 1): Delayed by 1× 5 tN
4

131 0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930 1

Second interpolation register (y = 2): Delayed by 2× 5 tN
4

13031 0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728291

Third interpolation register (y = 3): Delayed by 3× 5 tN
4

1 293031 0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627281

Figure 5.13: Fine interpolation: Shifted bins.

The bins with numbers in italic belong to the preceding clock cycle.

calibrated, but do not consume power in absence of hits. The quality of the calibration

depends on the mismatch between the delay line of the DLL and the delay lines in
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the channels. Local fine adjustment needs to be implemented to limit the effects of

mismatch. The control voltage distribution network is potentially prone to crosstalk.

Fig. 5.13 shows the shifted bins in the different hit register blocks for M = 4 and

N = 32. The binary encoding of the individual blocks can be done independently, lead-

ing to the bin numbers given in the figure. It is advantageous for the decoding of the

interpolation value if a rotation is performed before the encoding, resulting in bin num-

bers as given by fig. 5.11, because otherwise a subtraction has to be carried out. The

interpolation decoding can be implemented as described in section 5.2.3.

5.3 Choice of Time Base Architecture

The most relevant characteristics of the different architectures are shown in table 5.1.

In the new TDC130, the main time base will consist of a DLL with a counter for

dynamic range extension. Delay lines without feedback are discarded because they are

not self-calibrating. Contrary to PLLs, DLLs are intrinsically first-order systems and

thus stable. The advantage of the PLL, its capability of filtering jitter, would not be

used, as a PLL is already needed to multiply the 40 MHz input clock up to 1.28 GHz,

a value that leads to a useful bin size in a phase interpolating DLL or PLL. This clock-

multiplying PLL can be used for jitter filtering.

The routing effort for an Array-DLL based TDC is judged to be excessive. Simula-

tions show that the power required to distribute the DLL outputs to the hit registers is

about the same as the power consumed by the DLL itself. In the prototype presented in

chapter 7 the DLL output signals are routed at the pitch of the delay elements. Assum-

ing the N-element DLLs of an array were placed in an N ×M array, M −1 additional

wires were to be routed in the space between two neighbouring wires. This space how-

ever does not allow for routing of more signals. Using different layers of metal is not

possible either, as their number is limited. Spreading the DLLs in a 1×(N M) row is not

desirable. This would imply to spread the M-element secondary DLL across N (M−1)
delay elements of the main DLL, making it very vulnerable to process variations and

crosstalk.

To further increase the resolution, either passive or DLL-adjusted delay lines will

be used. Those techniques offer a low channel dead time. Their power dissipation de-
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creases with decreasing activity on the channels, which is not the case for an Array-

DLL.

45



Chapter 5. Time Base Architectures Overview

Architecture Resolution Dynamic

range

Dead time Calibration Power dis-

sipation

Main time base architectures:

Counter Tclk ∞ 0 none high

Passive delay

line

∞ Tclk 0 offline low

Active delay

line

gate delay Tclk 0 offline low

DLL gate delay Tclk 0 auto medium

PLL gate delay Tclk 0 auto medium

Array DLL ∞ Tclk 0 auto very high

Fine interpolation techniques:

Dual-slope ∞ OK yes offline high

Vernier ∞ OK yes offline low

Passive delay

line

∞ OK 0 offline low

DLL-adjusted

delay line

∞ OK 0 auto low

Table 5.1: Comparison of time base architectures

Tclk is a clock cycle of the reference clock.

‘∞’ and ‘0’ mean the technique has no intrinsic limit. ‘OK’ means the dy-

namic range of the fine interpolation technique can reach the resolution of

the main time base.

The power dissipation of an array of DLLs is high compared to other main

time base architectures, but there is no need for a separate fine interpola-

tion. However, the power consumption is higher than that of a DLL or PLL

together with delay line base fine interpolation.
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6 TDC130 Target Chip Architecture

6.1 Data Flow and Time Base Architecture

Based on the considerations stated above, it has been decided that the TDC130 (fig. 6.1)

has a data driven architecture. The time base consists of a 32-element DLL with an el-

ement delay of 25 ps. The dynamic range is extended by a counter to comply with the

ILC/CLIC requirements. Counter and DLL are clocked with a 1.28 GHz clock gen-

erated by an on-chip PLL. The external clock frequency is the LHC bunch crossing

frequency, 40 MHz.

6.2 Channel Macro

For every channel, there is a bank of hit registers, which, at the occurrence of a hit,

store the timestamp provided by the time base. A hit controller converts the incoming

hit signal into a control signal for the hit register bank. For every edge whose timing is

to be measured, the hit controller generates a pulse in the control signal. The controller

is highly configurable and can make the hit registers capture leading edge, trailing

edge or either edge of the input signal. If required, the channel hit controller can be

disabled for each channel individually, so that regardless of the input signal, the hit

registers will not store a timestamp. This is useful if a channel is not connected or

the corresponding channel in the detector itself is known to be damaged. A disabled

channel dissipates minimum power and does not require bandwidth at the readout. The

hit register banks constitute a pipeline and buffer the data for a short period until the

following stage is ready. Furthermore, the hit controller can operate the channel in a

high precision mode or in a low precision, low power consumption mode. In the high

precision mode, the data in the first hit register stage is always updated. This guarantees
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Figure 6.1: Target chip architecture

that the most recent timestamp is always available in the hit registers, at the price of

additional power dissipation used to store data which might not be used. Once a hit

arrives, the hit registers are switched from capture mode to store mode, the data is not

updated anymore. If the hit arrives close to a change of timestamp, only those bits that

have changed risk setup and hold problems. Only one bit of the data taken from the

DLL changes at a time, as only one edge of the clock is used for the measurement. The

resulting error is therefore limited to 25 ps. Once the stored hit timestamp is transferred

to the next stage, the first hit register passes to capture mode again (fig. 6.2). This delay,

hit input

hit controller output
(high precision mode)

hit controller output 
(low power mode)

capture 

capture 

capture capture 

store store

store store store

capture 

�t2 �t2
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Figure 6.2: Hit controller output
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Δt1, does not influence the time measurement. Therefore, there is no need to keep it

constant. In the low precision/low power mode, the hit registers are not updated when

in idle mode, minimising the power dissipation of the first hit register stage. Once a hit

arrives, they are switched into the capture mode for a fixed time Δt2 before the data is

stored. As it is the last timestamp captured which is stored, the hit seems delayed by

Δt2. Any variation of Δt2 directly affects the time measurement.

6.3 Level-1 Buffer Organisation

After the data have been stored in the hit register banks, they are transferred into the

level-1 buffer. While the hit registers are fully asynchronous, the level-1 buffer is syn-

chronous to the logic clock. Therefore, synchronisation is required in the hit register

pipeline. Some time bases provide data that is not binary encoded, as e.g. in a ther-

mometer code. It is convenient to insert encoding logic before the level-1 buffer, as this

minimises the width of words to be stored in this large buffer. If the data encoding is

performed immediately before the level-1 buffer, the pipeline provides derandomisa-

tion that can also be used to cover the latency of the encoding logic. Another option

is to insert the encoding logic, split into slices, between different pipeline stages. The

encoding logic may also contain error detection or correction encoding such as a sim-

ple parity generation or hamming encoding to detect or prevent data losses within the

level-1 buffer.

The level-1 buffer is a synthesisable standard memory with standard control logic.

Tools generate a memory with the desired size using standard memory cells and control

logic. It is therefore not necessary to deal with the detailed implementation of a basic

memory cell. Two extreme cases of level-1 buffer organisation are possible, as well as

a mixed architecture. One single buffer can be shared among all channels of a chip or

each channel can have a dedicated level-1 buffer. Another option is to share i.e. 4 level-1

buffers among 8 channels each as in the HPTDC. The main criterion for this choice is

the power consumption. If for the same power consumption, one of the options allows

for a larger hit rate, this option will be preferred. The memory generator tools specify

the power dissipation of a memory. For the target application, the geometrical size
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is not of major importance. However, it should be remembered that the amount of

connections to the 32 channels is considerable.

The data provided by the memory generator show that the synthesised buffers in

130 nm do not dissipate static power. One buffer of a given size S and activity f dis-

sipates as much power as 32 buffers of the same size S, but with activity f /32. As

the total amount of data to be stored is not influenced by the buffer organisation, the

required size of 32 dedicated buffers for each channel will be S/32. However, in case

of dedicated buffers per channel, no channel identifier is required in the level-1 buffer.

Accessing a large memory takes more power than accessing a smaller memory, as the

signal lines are longer and the parasitics increase. This leads to lower power dissipation

in case of many small memories.

If one buffer is shared among multiple sources of data, it is a potential bottleneck. Es-

pecially in small detectors close to the interaction point, all data is likely to arrive virtu-

ally at the same time, while all channels will be idle between the bunches. This requires

large derandomisation pipelines before the level-1 buffer if the operating frequency of

the buffer and buffer control logic is to be kept low. In case of dedicated level-1 buffers

per channel, the write access to the buffer is fully independent of the other channel’s

activity. The bottleneck is situated after the level-1 buffer that already provides large

derandomisation and, in triggered mode, data reduction. Thus, one level-1 buffer per

channel is advantageous from the hit rate point of view, too.

The memory control logic is geometrically small compared to the memory itself.

Therefore, the geometrical size of one buffer is about the same as that of 32 buffers

of 1/32 size. For the total geometrical memory size, the penalty for having 32 small

buffers is less than a factor of 4.

Table 6.1 shows key figures of the two implementations. One word corresponds to

one timestamp of 27 b plus, in case of one buffer per chip, channel identifier of 5 b. One

buffer per channel is preferred to one global level-1 buffer for all channels given the

above-mentioned considerations. This is opposed to the implementation of the HPTDC

in the ancient 250 nm-technology.

An additional benefit of a dedicated buffer per channel is that all hits are guaranteed

to be in perfect time order in each level-1 buffer, easing the implementation of the

trigger mechanism as shown in chapter 6.4.
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1 buffer per Normalised value

chip channel

Number of buffers 1 32 32

Total size 1024words 1

Supply voltage 1.2 V 1

Hit rate 3 MHz/channel 1

Total power 5.6 mW 3.9 mW 0.70

Total geometrical size 0.110 mm2 0.406 mm2 3.69

Table 6.1: Comparison of different level-1 buffer organisation schemes.

The normalised value gives the ratio between the values for the 1 buffer per

chip and the 1 buffer per channel scheme.

6.4 Trigger Mechanism

In many HEP applications, the amount of data read from the detectors is very high, but

only a small fraction of the collisions lead to events that will be further analysed. In the

LHC general-purpose detectors not more than 100 events per second can be stored for

subsequent analysis. The event rate that is going to be observed at design luminosity is

in the order 1 GHz, requiring a data reduction by seven orders of magnitude [Par08].

The principle of triggering has been largely adopted. A dedicated trigger system pro-

vides a trigger signal to the electronics. Hits for which no trigger has been received are

discarded already inside the TDC.

The trigger detector, the generation and distribution of the trigger signal to the dif-

ferent sub-detectors introduce a delay, called trigger latency. Due to the finite speed of

particles generated in a collision and then propagating through the detector, different

detector delays and jitter, a trigger signal does not refer to a precise moment in time,

but to a time interval called ‘trigger window’. Hits that arrived to the TDC within a

configurable window a configurable time before the trigger signal has arrived to the

same TDC are to be read out (fig. 6.3). This implies that the hit timestamps need to be

stored in the level-1 buffers during the trigger latency. All hit timestamps are written

into the level-1 buffer, but only those for which a trigger signal has been received are

read out and passed to the following stages.
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Figure 6.3: Triggering hits:

Hits arriving at t2 and t3 are selected by the first trigger signal and hits

arriving at t3 and t4 by the second. The hit arriving at t1 is not triggered and

will be discarded.

The choice of the level-1 buffer organisation has implications on the trigger mech-

anism. As the level-1 buffers are dedicated to only one channel each, it is guaranteed

that all timestamps are stored in perfect time order. The trigger logic needs to be in-

stantiated once per level-1 buffer, thus once per channel. In triggered mode, a state

machine receives the trigger timestamp, which does not need to have the same reso-

lution as the hit timestamps. It controls the read pointer of the level-1 buffer. If the

timestamp read out from the level-1 buffer is older than the trigger latency, a trigger

for the corresponding hit would have been received already if the timestamp was to

be read out. The timestamp is not passed to the following stage and the read pointer

is incremented. If the timestamp is within the trigger window, it has to be transferred

to the following stage and the state machine waits for the next stage to be ready to

receive the timestamp before continuing. In pairing mode, the timestamp for leading

and trailing edge of the hit input are read out as a pair before the timestamp of the trail-

ing edge is eventually converted into a width information, i.e. the difference between

leading and trailing edge is calculated. If the leading edge timestamp is triggered, the

trailing edge timestamp is read out even if outside the trigger window. If the timestamp

is that new that the trigger signal cannot have arrived at the TDC yet, the state machine

waits until the trigger latency has elapsed before taking a decision. It is possible to

have overlapping trigger windows. A timestamp can be triggered by multiple triggers
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and consequently be read out multiple times. In all cases, if the buffer is empty, the

advancement of the read pointer is suspended until a new timestamp has been written

to the buffer. An ensemble of data belonging to the same trigger is called ‘event’.

It is worth noting that the trigger mechanism in a data driven architecture depends

on the timestamps of hits read out from the level-1 buffer. Corrupted data can block

the trigger mechanism. Error detection or correction in the level-1 buffer has to be

implemented depending on the expected error rates. It is advisable to implement the

trigger mechanism in a way that a single corrupted timestamp cannot block the state

machine. Given that the time order is guaranteed, if a timestamp in the buffer is giving

a time that is later than that of the following timestamp, which has been written more

recently, the trigger state machine shall skip the concerned words rather than getting

blocked. Note that without error detection or correction, it cannot be distinguished

whether the first data word has been corrupted so that the timestamp is giving a bigger

value or the second word is corrupted and giving a smaller value.

If the buffers were to be shared among multiple channels, the trigger mechanism

would need to be more complicated as the timestamps in the buffers are not necessarily

in time order: one channel could receive a hit before another, but be read out to the

buffer later. Once the trigger mechanism would find a timestamp for which the trigger

latency has not yet expired, it would need to check if this is true also for the next

timestamps.

6.5 Channel Merging

Eventually, data from multiple channels have to be merged, as at least the readout is

common for all channels. Merging data always presents a potential bottleneck. Only

one source at a time can send data to the shared resource. This requires an arbitration

system that passes an enable signal around all data sources that have data to send.

A convenient place for channel merging is right after the level-1 buffers. They pro-

vide sufficient storage capacity for derandomisation and the data read out has already

been selected by the trigger mechanism, minimising the amount of data to be merged.

Furthermore, a wait signal can easily be introduced to the trigger state machines.
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If the bandwidth of the readout is smaller than the average bandwidth of all sources

together, data loss is unavoidable. In this case, as much data belonging to the same event

as necessary will be discarded and this data loss will be flagged by a special control

word. This makes sure that a maximum number of events have all corresponding data

while a minimum number of events have lost data and it is known which events are not

complete. From a global detector point of view, it is unlikely that the same event is lost

all over the detector, as the TDCs’ buffer overflows are not synchronised.

6.6 Readout

Currently, the GBT†, a set of new ASICs for high speed bidirectional optical links,

is being designed at CERN. A macro that interfaces with the GBT will be available

for integration in front-end ASIC such as the TDC130. The readout interface between

TDC130 and this macro will be fixed once the macro is available.

The readout will contain a readout buffer that stores the data waiting to be read out.

Prior to the buffer, data processing such as an INL correction look-up table or calcula-

tion of the pulse width base on leading and trailing edge timestamp can be included.

†GigaBit Transceiver
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7 TDC130-0820 Prototype Chip
Implementation

In this chapter, the detailed implementation of the TDC prototype is presented in a

top-down hierarchical structure. Jitter and noise considerations for the whole chip are

explained. Trade-offs across different blocks are frequently required.

7.1 Architecture

A prototype, called TDC130-0820, has been designed in order to evaluate new concepts

and possible TDC improvements with respect to the predecessor. The main blocks of

the TDC (fig. 7.1) are a phase interpolation DLL, a clock-multiplying PLL and hit

registers for 44 channels with hit inputs, grouped into 8 different channel groups in

order to reduce the number of pins and the silicon area, since the ASIC is pad limited.

Readout and configuration is performed using shift registers. This chapter contains

information on the detailed implementation of the prototype blocks.

7.2 DLL Implementation

The basic concept of a DLL as time base has been described in chapter 5.1.3. This

chapter is focuses on the detailed implementation of the prototype in the IBM CMOS

CMRF8SF 130 nm technology.
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DLL

Hit reg.
bankHit inputs

Clock input PLL

Noise
generator

Noise clock
input

×32

8

32

Figure 7.1: TDC130-0820 prototype architecture

7.2.1 Delay Element

For the implementation of the delay line, two different kinds of delay elements are con-

venient to use, single-ended and differential buffers (fig. 5.3 in chapter 5.1.3) [Mor07].

As the gate delay of a technology depends strongly on parasitic effects, the precision

of the TDC can be significantly degraded if related signals are subject to different

mismatch effects. One example for such an effect is the polarity of the phase shifted

VCDL output signals. If single inverters instead of buffers are used as delay element

in a single-ended delay line, the bin size can be half as big. However, the sizes of two

neighbouring bins are affected by independent mismatch mechanisms that cannot be

compensated for easily. The rise time of the output of one element has to be equal to the

fall time of the subsequent element. The same is true for the buffers that propagate the

signal from the DLL to the hit registers, and while the threshold voltage of the NFETs

is relevant for one signal, the other signal is sensitive to the threshold voltage of the

PFETs.

These problems can be avoided using buffers as delay elements. In a single-ended

implementation, buffers consist of two inverters in series. Their delay is to be compared

to the delay of a single differential buffer. In differential implementations, a buffer is

an elementary cell. When used in a voltage controlled delay line, the elements’ delay

must be adjustable. Differential buffers always contain a tail current source, and the
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Figure 7.2: Delay element
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delay can be controlled adjusting the tail current. Standard single-ended inverters have

a delay that is fixed by the dimensions of their transistors and their load. Additional

series transistors have to be introduced to control the output current and thus their

delay. This technique is called “current starving”. It further increases the delay.

Simulations of a single-ended buffer without current starving transistors show a de-

lay of 45 ps when low Vt transistors are used. To accommodate process spread and

supply variations, the nominal operating point must leave a margin both to higher and

to lower delays, the nominal bin size exceeds 48.8 ps. To ease subsequent data pro-

cessing, a constraint put on the TDC is that the bin size must be a binary fraction of

the 40 MHz reference clock period, 25 ns. Therefore, if the nominal bin size exceeds

48.8 ps, the next bigger acceptable bin size is 97.8 ps, which has already been achieved

in the HPTDC in a 250 nm technology [Chr04].

Differential buffers consisting of a differential pair, a tail current source and diode

connected transistors as load elements show a delay of 32 ps under nominal conditions

and less than 45 ps for worst case process, temperature and supply voltage. In order

to reach a delay of 24.4 ps, a novel delay element (figs. 7.2, 7.3) is developed. The

core of the delay element is a differential pair, with the gates connected to the input.

The main tail current source is controlled by the DLL control voltage. To compensate

for mismatch, three additional tail current sources are implemented and can be enabled

after calibration. Their sizes are 25%, 12.5% and 6.25% of the main tail current source’s

size. A constant tail current source reduces the slope of the delay vs. control voltage

curve for low control voltages to reduce jitter. It assures that a minimum current is

flowing through the differential pair even when to control voltage is lower than in

nominal operation, so that a signal can propagate through the delay line even if the

control voltage is unexpectedly low. It is controlled by an on-chip band gap voltage

reference. The diode connected transistor load element is replaced by a source-follower

transistor with series gate resistor. This circuit acts as an active inductor around the

operating frequency and decreases the rise and fall time of the signal.

Fig. 7.3a shows the dependency of the delay on the control voltage for different

simulation corners. In all cases except the pessimistic slow corner with 90% of the

nominal supply voltage and maximum temperature, the delay element can reach a bin

size of 24.4 ps. A typical chip with nominal supply voltage and operating temperature

58



7.2. DLL Implementation

can reach a delay of 19 ps. Fig. 7.3b shows the gain of a delay element for different

clock frequencies. A clock frequency of 1.28 GHz corresponds to a bin size of 24.4 ps,

2.56 GHz to 12.2 ps. Simulations show that in this range, the frequency has virtually

no effect on the gain of the delay element. For the control voltage corresponding to an

element delay of 24.4 ps, the gain is 2.1. The larger the gain, the more the slew rate of

the signal at the output is dominated by the delay element and not by the slew rate of

the input signal. If the gain is smaller than 1, the signal is degrading whilst propagating

along the delay line.

Active inductors

The circuit shown in fig. 7.4a can easily be implemented in a standard CMOS tech-

nology. The current source represents the remaining parts of a branch of a differential

delay element. As the delay elements in a VCDL are closely spaced, area constraints

and magnetic coupling between neighbouring elements prohibit the use of metal

inductors. In fig. 7.4b, the transistor is replaced by its equivalent circuit.

The impedance Z seen by the current source I is

Z =
(

R+
1

jωCGS

)
‖ 1+ jωCGSR

gm
‖ RDS

=
(

R+
1

jωCGS

)
‖

(
1

gm
+ jωLeq

)
‖ RDS with Leq =

CGSR
gm

Therefore, the source-follower transistor with series gate resistor can be represented

by the circuit in fig. 7.4c. This compares to the impedance Z = jωL of an ideal inductor,

and the impedance Z = R+ jωL of an inductor with resistive wires as it is available in

CMOS technologies.
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Figure 7.3: Delay element simulation
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Figure 7.4: Schematic of an active inductor (with Leq =
CGSR

gm
)

The impedance has one pole and one zero:

ωZero =
1

CGSR

ωPole =
1+gmRDS

CGS(R+RDS)
R	RDS≈ 1+gmRDS

CGSR
= ωZero (1+gmRDS) =

1

CGSR
+

RDS

Leq

7.2.2 Phase Detector

The phase detector compares the phase difference between the beginning and the end

of the delay line. It generates a control signal indicating whether the loop delay is too

big or too small. Two different phase detector implementations are to be considered, the

XOR phase detector, based on an XOR gate (appendix B.1, p. 115), and the bang-bang

phase detector, based on a D flip-flop (fig. 7.5) [RCN03, Mor07].

Bang-Bang Phase Detector

A D flip flop (DFF) (fig. 7.5) can serve as a DLL phase detector. Using the VCDL

output signal to sample the VCDL input signal, the output of the phase detector gives

the sign of the phase difference. The edge on the VCDL output is either early or late

with respect to the corresponding edge of the VCDL input signal (fig. 7.6(a) and (b)).
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VCDL output

VCDL input
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Figure 7.5: D Flip-Flop as Phase Detector

If the leading edge of the VCDL input is earlier than that of the preceding cycle of the

VCDL input, the flip flop samples a ‘low’ level on the input. The pulse width of the

VCDL input signal defines how much earlier the input leading edge may arrive before

the phase detector wrongly signals that the input signal is late. For a duty cycle of 50%,

the operating range of the bang-bang phase detector extends from −π to +π (fig. 7.7).

For a duty cycle of D = 25%, input signal is ‘high’ D = 25% of the period and ‘low’ the

remaining 1−D = 75%. The operating range is consequently shifted and spans from

−2πD = −1
2π to +2π(1−D) = +3

2π. The duty cycle of the VCDL output does not

influence the phase detector behaviour, as the only the leading edge is used.

If the output edge is late, the loop will reduce the delay of the VCDL, and eventually

the output edge will be early. In lock, the output of the phase detector changes virtually

every clock cycle, so that the phase error becomes 0 in average (fig. 7.6c).

As the phase detector is clocked by the VCDL signal, its output can change only

once per VCDL clock cycle. Thus, its maximum frequency is half the frequency of

the VCDL signal and the minimum pulse length is the VCDL clock period. This is

convenient if a charge pump based loop filter is used.

A D flip flop is a complex circuit – it contains multiple elementary circuits and has

memory. The phase detector is supposed to generate a signal that depends on the sign of

the phase difference of the input signals, but in fact, special care is required to avoid that

it also depends on e.g. on the previous state and the magnitude of the phase difference.

Moreover, the output signal has to be valid as quickly as possible after the rising edge

of the VCDL output has arrived. If the delay to the output equals one clock cycle or

more, the loop reaction is always at least one cycle late with respect to the input signals,

leading to additional jitter. A D flip flop implementation with special consideration on

load balancing is used (fig. 7.8). It contains 3 RS latches, an AND gate, implemented as

a series of a NAND gate and an inverter, input inverters, and dummy circuitry to ensure

that all delays of corresponding signals are as equal as possible. All corresponding
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Figure 7.6: Bang-Bang Phase Detector: Pulse Diagrams
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Figure 7.7: Bang-Bang Phase Detector: Transfer function for D = 50% duty cycle
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Figure 7.8: Balanced implementation of a D flip-flop

nodes have the same fan-out and fan-in. All gates are designed such that they have equal

driving capability. All corresponding wires have the same physical surface, and thus the

same parasitic capacitance. In addition, their wire lengths, thus the wire resistances, are

as equal as possible, so that the RC delay of corresponding wires is virtually identical.

The bang-bang phase detector has a number of advantages compared to the XOR

phase detector. However, the choice of phase detector should be made also considering

the properties of the loop filter that is most appropriate for the corresponding phase

detector.

7.2.3 Loop Filter

While both phase detector implementations have a digital output, the delay line is con-

trolled by an analogue voltage. The conversion is performed by a low pass filter, called
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loop filter. The two most promising options are a RC filter followed by and amplifier

(appendix B.2, p. 117), and a charge pump with a filter capacitor [Mor07].

Charge Pump and Filter Capacitor

Iout

Late

Early

(a) Standard implementation

Iout

Late

Early

BA

(b) Optimised implementation:

Points A and B always at

equal potentials

Figure 7.9: Charge Pump

A charge pump connected to a capacitor can be used as loop filter. Depending on the

input signal, the charge pump sinks or sources a current ICP (fig. 7.9a). The bang-bang

phase detector provides the required control signals ‘Late’ and ‘Early’. The voltage at

a capacitor can be described by

VC(t) =
1

C

t∫
0

I(t)dt +VC(t = 0) =
Q(t)

C

Together with the clocked nature of the phase detector outputs, this explains the name

‘charge pump’ instead of current source. The current sources provide a constant cur-

rent, but as this current is provided during a constant time, the result of a phase detector

decision is the injection or extraction of a constant charge to or from the capacitor.
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Figure 7.10: DLL charge pump: Schematic

Fig. 7.9a illustrates the intended behaviour of the charge pump. The disadvantage

of this circuit is that when the charge pump switches the direction of the current, the

output node gets disconnected from one current source and connected to the other one.

As the current source outputs are fully independent, the potential of the outputs will be

different, and the potential of the Iout output node will jump when the phase detector

outputs change. This can be avoided using a voltage follower that keeps the output

(point A in fig. 7.9b) of the unused current source always at the potential of the Iout

output (point B), without loading the output itself. Fig. 7.10 shows a more detailed

schematic of the charge pump.

The effect that causes voltage jumps at the output of the charge pump even when

it is connected to the filter capacitor is called charge sharing. Fig. 7.11a shows the

schematic of the simple charge pump (fig. 7.9a) with parasitic capacitors Cp1 and Cp2

at the outputs of the current sources and the filter capacitor Cfilter. Assume that Sup

is closed and Sdown open. The parasitic capacitor Cp2 is now being discharged by the

current sink, while the current source charges Cfilter. Cp1 
 Cfilter is negligible. Let
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Figure 7.11: Charge pump with parasitic capacitors Cp1 and Cp2 (in blue) and filter

capacitor

Qp2 = Cp2V2 be the charge at the parasitic capacitor Cp2 and Qfilter,0 = CfilterVctrl,0.

Assume now that Sup opens and Sdown closes (fig. 7.11b). The previously discharged

Cp2 is now parallel to Cfilter, forcing the voltages of the parasitic capacitor Cp2 and of

the filter capacitor Cfilter to equalise to a new control voltage Vctrl,1. The charges on the

capacitors move into equilibrium:

(
Qp2 +Qfilter

)
=

(
Cp2 +Cfilter

)
Vctrl,1

=
(
Cp2V2 +CfilterVctrl,0

)
with charge conservation

=⇒Vctrl,1 =
Cp2

Cp2 +Cfilter
V2 +

Cfilter

Cp2 +Cfilter
Vctrl,0

=⇒Vctrl,1 = Vctrl,0 if V2 = Vctrl,0

Thus, charge sharing can be avoided keeping the outputs of both current sources at

the same potential, e.g. using a voltage follower.
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XOR Phase Detector Bang-Bang Phase Detector

Passive RC filter Charge Pump

Filter Capacitor

+ simple – more complicated

– sensitive to duty cycle distortion,

gain saturation

+ no gain saturation,

duty cycle distortion at VCDL input

creates an asymmetry in the transfer

function

duty cycle distortion at VCDL out-

put has no effect

– cannot be designed to work at

0 phase offset

+ operates at 0 phase offset by default

+ information about phase error mag-

nitude

– no information about phase error

magnitude

– no information about sign of phase

error

+ information about sign of phase er-

ror

– finite gain VDD
π + infinite gain

– small operating range 0 . . .π + large operating range −π . . .+π

+ keeps control voltage constant at

0 phase error

– always increases or decreases the

control voltage, cannot keep it con-

stant

Table 7.1: Comparison of DLL Phase Detector and Loop Filter combinations

7.2.4 Choice of Phase Detector and Loop Filter

The comparison of the two possible combinations of phase detector and a loop filter

is summarised in tab. 7.1. As the bang-bang phase detector with a charge pump and a

filter capacitor is basically insensitive to duty cycle distortion, one of the most frequent

signal distortions, and has a much larger range of operation and infinite gain, it is

implemented in the prototype.
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7.2.5 Transfer function

The transfer function describes the DLL behaviour in the frequency domain and allows

considering a DLL as a fundamental block, a black box. Let us recall the behaviour of

the different functional blocks of a DLL:

• The VCDL translates the control voltage Vctrl into a proportional delay†. The

proportionality constant is the VCDL gain KVCDL.

• The phase detector converts the phase error ϕout −ϕin into an output setting the

charge pump duty cycle to
ϕout−ϕin

Tclk
.

• The charge pump converts the phase detector output into a current with instanta-

neous value ±ICP and average
ϕout−ϕin

Tclk
ICP.

• The loop filter, a capacitor, integrates this current, thus accumulates a charge
ϕout−ϕin

Tclk
ICP

1
s . The control voltage Vctrl =

ϕout−ϕin
Tclk

ICP
1
s

1
C is the voltage across this

capacitor.

The output signal is the phase ϕout(s), which equals the control voltage multiplied

by the VCDL gain:

ϕout(s) =
ϕout(s)−ϕin(s)

Tclk

ICP

sC
KVCDL

The transfer function H(s) is defined as the ratio between output and input signal. Here,

the signal is the phase:

H(s) =
ϕout(s)
ϕin(s)

=
1

1+
s

ωn

where ωn = ICP KVCDL
T C is the natural frequency of the only pole. A DLL is, as a first

order system, intrinsically stable. However, parasitics introduce undesired higher order

poles, which are irrelevant if their frequencies are much higher than ωn.

Designing a DLL thus means choosing the parameters that fix ωn:

†This simplification is only valid around the operating point, which is where the transfer function

needs to be known.
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• KVCDL is fixed as soon as the technology is chosen and the delay elements are

designed. This is usually the first step of a TDC design, as the element delay is

the critical parameter.

• T is the period of the signal propagating in the delay line, and fixes the bin size

tLSB of the TDC. Therefore, it cannot be used to optimise the DLL behaviour.

• ICP and C can be chosen to optimise ωn. The charge pump can be designed to

have ICP adjustable. C is usually not adjustable.

7.2.6 Limitations and Sources of Errors, Jitter

In this paragraph, only the jitter mechanisms that are particular and intrinsic to

the DLL operation with a bang-bang phase detector are treated. Other sources of

jitter, noise and crosstalk are considered at system level in a dedicated chapter (ch. 7.6).

A bang-bang phase detector cannot keep the control voltage constant [Mor07]. If the

output is exactly one cycle delayed with respect to the input, the phase detector will

make the circuit leave this optimum into one direction, generating a phase error that

will be corrected in the next cycle and so on. The control voltage is oscillating around

the optimum value, and ideally, the phase detector outputs change every clock cycle.

Due to imperfections, such as unbalance in the charge pump, jitter or imperfections in

the phase detector, it is likely that the phase detector outputs are frequently constant

for two consecutive clock cycles. Therefore, the maximum amplitude of the control

voltage oscillations is 2 ICP
C Tclk, giving a peak to peak value of 4 ICP

C Tclk. For a TDC, the

relevant information is not the magnitude of oscillation of an internal control voltage,

but the tracking jitter JTrack,pp, the peak to peak value of the variation of the bin size

tLSB:

JTrack,pp = 4KVCDL
ICP

C
Tclk

With an adjustable charge pump, the charge pump current ICP can be made high for

fast lock acquisition, and reduced for low tracking jitter once the DLL is in lock. In

tracking mode, JTrack,pp should not exceed 1
4 tLSB.
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7.2.7 Start-up Procedure

The DLL has two potential problems at start-up, which need special consideration. A

DLL can lock to multiples of the clock period. At start-up, the delay of the VCDL can

be initialised such that the phase detector indicates that the delay must be reduced, even

though it has to be increased by more than half of the clock period. Let’s analyse these

two problems in detail:

Lock to Multiples of the Clock Period

As only the beginning and the end of the VCDL are connected to the phase detector, the

DLL might lock to a total delay that is a multiple of the clock period. In this case, mul-

tiple clock cycles propagate inside the delay line at the same time, and the resolution is

not 1
32 of the clock period, but a multiple of it (fig. 7.12).

This problem is avoided if the DLL is sure to start always too fast, i.e. the total delay

of the VCDL is smaller than a clock cycle. In this case, the first possible state to lock to

is the desired one. To implement this, it is sufficient to charge the loop filter capacitor

at reset to the control voltage that corresponds to the smallest possible delay. In the

case of the TDC130-0820, the delay decreases with increasing control voltage, and the

filter capacitor is charged to the supply voltage at reset.

Wrong Phase Detector Indication

Another potential problem is that when starting the DLL, its delay might be so small

that when the rising edge of a pulse arrives to the end of the line, the falling edge has

not yet arrived to the beginning of the line. In this case, the phase detector, knowing

the state of the beginning and the end of the line, but not the state of the intermediate

elements, will give a ‘late’ indication, and make the charge pump try to further decrease

the delay, which is already minimum. The ‘late’ indication will not disappear, as the

clock pulse cannot reach the end of the line before it reaches the beginning.

As the DLL is known to start with minimum delay, it is also known that the phase

detector should give an ‘early’ indication just after the reset. If this is not the case, then

the DLL is a lot too fast, and the delay should be increased until the phase detector gives
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(a) DLL locking to nominal delay (principle)

VCDL middle is in phase opposition to VCDL input and output.
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(b) DLL locking to twice the nominal delay (principle)

VCDL middle is in phase with VCDL input and output. All other signals are

exactly like in (a) when locking to nominal delay.

Figure 7.12: A DLL can lock to multiples of the nominal delay. The timescale is the

same for both diagrams. VCDL middle is the signal at the VCDL tap half

way between input and output. It is not visible to the phase detector, thus

not used for controlling the loop
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a consistent ‘early’ indication. A state-machine has been synthesised to implement this

functionality (fig. 7.13).

7.3 PLL Implementation

The DLL requires an input clock frequency of 1
N · tLSB

= 1.28 GHz, with N = 32 DLL

elements and an element delay tLSB = 24.4 ps. However, the only external clock fre-

quency that is available to all LHC detectors has a frequency of 40 MHz. A Phase

Locked Loop can be used not only to provide a time base (ch. 5.1.4), but also to gener-

ate an internal clock based on an external reference with a different frequency. Recall-

ing fig. 5.5 (p. 33), a VCO generates a clock and the loop, consisting of a frequency

divider, a phase detector, a charge pump and a low pass filter assures that the divider

output frequency is always equal to the reference clock frequency, and a fixed phase

relation between those two clocks is maintained. This leads to a stable VCO output

frequency, which is larger than the external reference clock frequency by a factor equal

to the division ratio.

7.3.1 Voltage Controlled Oscillator

The VCO generates an output frequency that is a function of a control voltage, pretty

much the same as the VCDL of a DLL generates a delay as a function of a control

voltage. However, the VCO generates its own signal with its own frequency and jitter

characteristics, while the VCDL delays an external signal, but does not change its

characteristics other than the phase. As in the DLL, a phase detector followed by a

filter will generate the control voltage as a function of the phase difference of the

external reference signal and the output of, in the PLL case, the VCO. This voltage

controls the frequency, not the phase of the VCO.

The VCO (fig. 7.14a) is implemented as a ring oscillator with differential buffers

(fig. 7.14b). The delay of each buffer, and thus the frequency of the ring oscillator,

depends on the tail current in the buffers, which is controlled by the control volt-

age. Bias circuitry generates the bias voltage for the NMOS load transistors. As the
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Phase detector 
output correct 

= “Early”? 

Set internal counter := 0

Force charge pump to increase 
VCDL delay

Increment internal counter 

Keep forcing charge pump to 
increase VCDL delay

Internal counter = 32?

Let phase detector control charge 
pump

At rising edge of
______
Reset

No

No

Yes

Yes

Figure 7.13: DLL Start-up State Machine
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phase frequency detector inputs are single-ended, differential to single-ended conver-

sion (fig. 7.14c) is necessary.

7.3.2 Phase Detector

The role of the phase detector in a PLL is basically the same as in a DLL. It

provides an output signal as a function of the phase difference on its input. A

fundamental difference between PLL and DLL is however that the phase detector

output signal is used to generate a voltage that controls the frequency of the VCO,

and not the phase to which the phase detector is sensitive. In other words, the loop

adjusts the VCO frequency such that the phases of the VCO output and the external

reference match. As the phase is the integral of the frequency, this is equivalent to

considering the VCO as an integrator, introducing a new pole into the transfer function.

In this chapter, for simplicity of the phrasing, VCO output frequency actually refers

to the frequency of the VCO output signal after frequency division, as it is this signal

that is an input to the phase detector.

Two options are considered, the Analogue Multiplier (appendix B.3, p. 118) and the

Phase-Frequency Detector [RCN03, Mor07].

Phase-Frequency Detector

The Phase-Frequency Detector (PFD) consists of 2 D flip flops (fig. 7.15). One D flip

flop gets set by the rising edge of the external reference clock, the other one by the ris-

ing edge of the VCO output clock. They are reset once both of them are set at the same

time. On the contrary to the analogue multiplier phase detector, the phase-frequency

detector is sensitive both to frequency and to phase, even when not part of a feedback

loop.

When the frequencies of the VCO and the external reference match, the phase fre-

quency detector acts as a phase detector (fig. 7.16). The pulse diagrams show the error

signal, which is the difference late−early. The time it takes to reset the phase frequency
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(a) Block schematic
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(c) Differential to single-ended converter

Figure 7.14: VCO
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Figure 7.15: PLL Phase-Frequency Detector (simplified)

detector is exaggerated in the diagrams, as it usually too short to be visible. Neglecting

this time, the average of the error signal is proportional to the phase difference:

average(late− early) =
ϕRef −ϕVCO

2π

When the frequency of the VCO does not match the external reference frequency,

the phase frequency detector acts as a frequency detector (fig. 7.17). If the frequency

of the VCO is different from the reference clock frequency, also the leading edges of

the VCO signal are not as frequent as those of the reference signal. Consequently, one

of the PFD flip flops is often clocked more than once before a reset is generated. This

leads to a consistent ‘late’ signal if the VCO is slow or ‘early’ signal if the VCO is

fast with respect to the reference clock. Only at the beginning of operation and during

the resets, the opposite signal can be activated for a short time. Even if at the start of

operation, the VCO signal is DC, the PFD gives the correct ‘late’ indication, regardless

of whether the VCO output is low or high. As the PFD always gives the correct indi-

cations, disregarding possible errors in the very first cycle after start-up, a PLL using

a PFD does not need any dedicated start-up logic to force the VCO to get close to the

reference frequency.

It is worth noting that in frequency acquisition mode, the PFD output gives informa-

tion on the frequency, and not the phase. Thus, the VCO does not perform an integration
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Figure 7.16: Phase Frequency Detector: Pulse Diagrams with phase error

Error = Late−Early

of the signals’ frequencies, and does not introduce a pole to the transfer function. The

PLL is a first order system during frequency acquisition.

Again, both types of phase detector require different loop filters and the choice

should be based on the combined properties.

7.3.3 Loop Filter

As a DLL, a PLL needs a loop filter to convert the digital phase detector output into

an analogue control voltage. This filter needs to have low pass characteristics. In a

PLL, the filter output voltage controls the VCO. Contrary to a DLL, the loop of a

PLL contains two poles. One is introduced by the VCO and one by the low pass loop

filter. The case of a PFD in frequency acquisition mode is disregarded, as this mode

is only used for a short time after start-up. As second order systems can be unstable,

it is desirable to introduce a zero intro the loop transfer function to compensate one

pole. Therefore, loop filters for PLLs are different from DLL loop filters. Two possible
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(b) VCO fast

Figure 7.17: Phase Frequency Detector: Pulse Diagrams with frequency error

Error = Late−Early
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Figure 7.18: Charge pump with RC filter

implementations are a passive RRC filter (appendix B.4, p. 121) and a charge pump

with an RC filter [RCN03, Mor07].

Charge Pump and RC Filter

Again, a solution with infinite gain is a charge pump followed by a filter (fig. 7.18). As

the charge pump operation frequency is limited, this solution is suitable for use with a

PFD, where the output signal frequency is equal to or, in frequency acquisition, lower

than the input signal frequency, but not with an analogue multiplier where the output

contains components at the sum of the input frequencies.

As for the DLL, the so-called charge pump is actually a current source. This time,

it provides a current ICP with constant magnitude and a sign depending on the phase

detector outputs, or no current at all:

ICP(t) = ICP,mag a(t) = ICP,mag ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 Late = High,Early = Low

0 Late = Early

−1 Late = Low,Early = High

This requires some minor modification if the DLL charge pump described above

(ch. 7.2.3) is to be reused: while before, the late signal was identical to the early signal,

and early identical to late, now those signals are different and have to be separated

(fig. 7.19).
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Figure 7.19: PLL charge pump implementation

The control voltage Vctrl can be decomposed into a part across the capacitor, VC, and

a part across the resistor, VR:

Vctrl(t) = VR(t)+VC(t)

= RICP(t)+
1

C

t∫
0

ICP(t)dt +VC(t = 0)

= ICP,mag

⎛
⎝Ra(t)+

1

C

t∫
0

a(t)dt

⎞
⎠+VC(t = 0)

VR is called the proportional term, as it is proportional to the charge pump output

current ICP. VC is the integral of that current, multiplied by a constant factor, and thus

called integral term. The magnitude ICP,mag is a factor both of the proportional and

the integral term, while R and 1
C can be used to adjust the ratio between integral and
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ctrl

t

Figure 7.20: PLL charge pump operation. The ratio between integral and proportional

term and the frequency changes of the VCO are exaggerated for better vis-

ibility. When early and late are reset to low, the respective other signal has

been high for a very short time. These pulses are not shown for simplicity.

proportional term. Fig. 7.20 shows control voltage during operation of a charge pump

in a PLL.

The transfer function

H(s) = ICP,mag
1+ sRC

sC
has a pole at the origin

fP = 0

which means that it has infinite DC gain, and a zero at

fZ =
1

2πRC
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Note that fP and fZ are independent from each other, and the zero can be placed ac-

cording to the requirements.

7.3.4 Choice of Phase Detector and Loop Filter

The characteristics of the analogue phase detector with passive RRC filter and the bang-

bang phase frequency detector with charge pump and filter capacitor are summarised in

tab. 7.2. The XOR phase detector is not explicitly shown, as it behaves like an analogue

phase detector with square-wave input signals.

Analogue multiplier Phase frequency detector

Passive RRC filter Charge pump

RC filter

Corresponds to XOR phase detector

and passive RC filter for DLLs

Corresponds to bang-bang phase de-

tector, Charge pump and filter ca-

pacitor for DLLs

+ simple – more complicated

– sensitive to signal shape, including

duty cycle

+ insensitive to signal shape, only

leading edges of signal used

– cannot be designed to work at

0 phase offset

+ operates at 0 phase offset by default

+ information about phase error mag-

nitude

– no information about phase error

magnitude

– no information about sign of phase

error

+ information about sign of phase er-

ror

– finite gain + infinite gain

– gain is function of signal amplitude

– gain is function of phase offset

– small operating range 0 . . .π + infinite operating range: once oper-

ating range for phase detection ex-

ceeded, switches to frequency ac-

quisition mode
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Analogue multiplier Phase frequency detector

Passive RRC filter Charge pump

RC filter

+ keeps control voltage constant at

0 phase error

+ keeps control voltage constant at 0

phase error

– stand-alone not sensitive to fre-

quency differences

+ sensitive to both frequency and

phase differences, even when with-

out the feedback loop

Table 7.2: Comparison of PLL Phase Detector and Loop Filter combinations

7.3.5 Transfer function

The transfer function describes the behaviour of a PLL [Gar80, Mor07]. As mentioned

before, in lock, the VCO and the loop filter introduce one pole each, and the loop filter

one zero. The PLL in lock is therefore a second order system, which is not intrinsically

stable. With knowledge of the transfer function in lock mode, the PLL can be designed

to be stable at the operating point. In frequency acquisition mode, phase frequency

detector is sensitive to frequency and the control voltage changes not depending on

the phase, but on the frequency. The VCO does not perform an integration, and does

not introduce a pole in this mode. This makes the PLL a first order system, which is

intrinsically stable. A PLL is only temporarily in frequency acquisition mode if the

frequency of the output signal is different from the target value. In this case, phase

variations of the output signal are not relevant. Therefore, the transfer function is only

used for a PLL in lock.

Let us recall the behaviour of the PLL’s functional blocks:

• The VCO generates a signal with a frequency proportional† to the control voltage

Vctrl. The proportionality constant is called VCO gain KVCO. The VCO signal is

the output of the PLL.

†This simplification is only valid around the operating point, which is where the transfer function

needs to be known.
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• The VCO signal passes through a frequency divider, dividing the frequency by

N.

• The phase frequency detector compares the phases ϕDiv of this divided signal

and ϕRef of the reference input signal.

The phase ϕDiv is the integral of the divided VCO frequency ωVCO
N s .

The difference a(t) of the phase frequency detector output signals is either +1

or −1 for a duration equal to
ϕRef−ϕDiv

2π Tclk,ref during a reference clock cycle and

0 otherwise.

• The charge pump converts the phase frequency detector output a(t) into a current

with instantaneous value a(t) ICP,mag.

• This adds a charge of
ϕRef−ϕDiv

2π Tclk,ref ICP,mag to the loop filter capacitor. The

accumulated charge on the capacitor is
ϕRef−ϕDiv

2π ICP,mag
1
s , leading to a voltage

VC = ϕRef−ϕDiv
2π ICP,mag

1
s

1
C across it.

• Assuming no voltage drop over the resistor, this voltage VC is the VCO control

voltage Vctrl. The assumption is true if there is no current flowing to or from the

capacitor and through the resistor, which is the case after the phase frequency

detector reset. In addition, in lock, the average current through the resistor is

zero. In the general case, Vctrl =
ϕRef−ϕDiv

2π ICP,mag Zfilter with Zfilter = R+ 1
sC for an

RC filter.

The VCO phase, output of the PLL, is thus

ϕVCO =
1

s
KVCOVctrl(s) =

1

s
KVCO

ϕRef(s)−ϕDiv(s)
2π

ICP,mag Zfilter(s)

The transfer function H(s) is defined as the ratio of output and input signal. Signal

in this context is the phase:

H(s) =
ϕVCO(s)
ϕRef(s)
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Figure 7.21: PLL block diagram for calculation of transfer function

Let’s split the PLL transfer function into two parts H1(s) and H2(s) (fig. 7.21), as the

signal fed back to the phase frequency detector is not the same as the output signal. Let

H1(s) =
ϕVCO(s)

ϕRef(s)−ϕDiv(s)

H2(s) =
ϕDiv(s)
ϕVCO(s)

so that H1(s) describes the transfer from the phase detector to the VCO output and

H2(s) the feedback from the VCO output to the phase detector.

ϕVCO(s) =
1

s
KVCOVctrl(s)

=⇒ H1(s) =
ϕVCO(s)

ϕRef(s)−ϕDiv(s)
=

1

2πs
KVCO ICP,mag Zfilter(s)

ϕDiv(s) =
1

N
ϕVCO(s)

=⇒ H2(s) =
ϕDiv(s)
ϕVCO(s)

=
1

N
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Thus, the transfer function is

H(s) =
ϕVCO(s)
ϕRef(s)

=
H1(s)

1+H1(s)H2(s)

=
N KVCO ICP,mag Zfilter(s)

2πN s+KVCO ICP,mag Zfilter(s)

⇐⇒ H(s) =
1+ τZ s

1

ω2
n

s2 +
2ξ
ωn

s+1

where τZ = RC is the time constant of the RC filter zero, ωn =
√

ICP,mag KVCO

2πC the natural

frequency and ξ = RC
2 ωn the damping factor. The loop gain K is defined as K = 2ξ ωn.

7.3.6 Start-up Procedure

A PLL with phase frequency detector can acquire lock without any special start-up

procedure, as it is also sensitive to frequency. However, the filter capacitor is discharged

when a reset is applied to the chip to have defined start conditions.

7.4 Hit Registers

Hit registers are the first memories that store the time measurement until the next stage

can process the data. They consist of 32 D flip flops per channel, one for each element

in the VCDL. The phase shifted outputs of the VCDL are connected to the data inputs

of the D flip flops. The TDC hit input serves as clock signal to the hit registers. Two

modes of operation are possible, one with high accuracy, but high power consumption,

and one with lower power consumption at the price of lower accuracy. These modes

correspond to the two hit controller modes described earlier (section 6.2, p. 47).

As the timing information is digitised in the output signal, the distribution of the

output signals is not timing critical. Jitter on the output signal has no influence on the

measurement.
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7.4.1 Differential vs. Single-Ended Hit Registers

Having a differential VCDL as a time base and, on the full chip, synthesised single-

ended processing logic, requires a differential to single-ended conversion somewhere

between the VCDL and the processing logic. In the prototype, the readout logic is full

custom design, so it could be designed differentially. However, the power consumption

would be prohibitive. This leaves two options, either a conversion immediately after the

VCDL and before the single-ended hit registers, or immediately after the hit registers,

which then have to be differential. As a first step, single-ended and differential D flip

flops have been simulated and compared.

Single-ended flip flops run at a maximum speed that is intrinsic to the technology

and the dimensions of the transistors. This defines both average value and shape of

the current consumption. The speed and power consumption of the differential circuit

can be adjusted by the tail current source in a wide range. One of the main reasons

for using differential circuitry is that the noise generated by the circuit is expected to

be smaller that that generated by single-ended logic with the same functionality. To be

able to compare the characteristics of both implementations, the differential circuit’s

tail current is adjusted such that both circuits recover from the metastable state at the

same speed. Simulations have been carried out assuming three different configurations

at the hit input of the TDC. The average supply currents of a single register with 1.2 V

supply are shown in tab. 7.3. Note that the differential hit registers take about 20 times

as much current. The currents depend on the signals at the hit input. Three cases are

analysed:

1. High accuracy mode with 5 MHz clock at the hit input of the TDC, corresponding

to an average hit rate of 5 MHz. This is clearly a very pessimistic case, realisti-

cally the hit rates are much lower.

2. Hit input is always low. This corresponds to the high accuracy mode of operation

without hits arriving.

3. Hit input is always high. This corresponds to the low power mode without hits

arriving.

88



7.4. Hit Registers

5 MHz hit rate Hit input low Hit input high

Case 1 Case 2 Case 3

Differential 952 μA 1030 μA 1000 μA

Single-ended 54 μA 54 μA 166 nA

Table 7.3: Average supply current of one differential and one single-ended hit register

(VDD = 1.2 V)

From DLL
To Readout 

Shift Register

From Hit 
Input Buffer

_
c c

_
c

_
cc

c

Figure 7.22: Implementation of a hit register

These are extreme cases. In high accuracy mode (case 2), the current consumption will

be lower in presence of hits, in low power consumption mode (case 3), it will increase

with the hit rate.

The standard deviation of the supply current in case 1, with 5 MHz hit rate, is 81 μA

for the differential and 71 μA for the single-ended implementation.

These simulations include the differential to single-ended conversion, which needs

to be faster for the case with single-ended hit registers, but they are not taking

into consideration that the differential implementation requires the signals from the

VCDL to be distributed differentially to the hit registers, which is power and space

consuming. Thus, the values given for the differential implementation are underesti-

mated. Moreover, besides the current consumption of the differential registers being

already prohibitive, in addition, they generate more noise, in absolute terms, than their

single-ended counterparts.
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Figure 7.23: Delay at hit register

Fig. 7.22 shows the chosen implementation of the hit register D flip flop. Using

tristate inverters leads to a higher gain compared to an implementation with pass gates.

Therefore, the register can resolve metastable states faster.

7.5 Hit Register Driving Circuitry

An ideal TDC digitises the time of a hit, i.e. its hit registers store the state of the

VCDL at the time the hit arrives at the input of the chip. Delays make this situation

a bit more complicated in the real world: The hit registers (fig. 7.23a) store the state

of the VCDL output signal distribution lines, which is the state of the VCDL delayed

by the differential-to-single-ended converters, the buffers and the distribution lines,

at the time the hit registers are clocked, which is the time the hit arrives, plus the

time of propagation through the input pads, the buffers and the distribution lines. In

addition, the hit registers themselves sample the data with a relative delay, which can

be positive or negative, depending on the detailed implementation, including routing,

of the D flip flop. In a simplified model, the hit registers and the driving circuitry can

be assumed ideal, and all delays are represented by one additional, non-ideal delay
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stage (fig. 7.23b). This model shows that the delays of the different parts of the circuit

cannot be distinguished, and neither can variations of them. The mean value of the

delay causes a static offset between the real time of the hit and the measured time of

the hit. This difference can be easily corrected for by an arithmetic subtraction, and its

magnitude is, at first glance, irrelevant. The fluctuations of the delay however are seen

as jitter in the measurement.

As shown later (ch. 7.6, p. 91), the most important effect causing timing jitter is the

slew rate of signals when switching the hit registers from capture to store mode. The

slower the transition between the two logic levels, the larger the effect of undesired

signals on the timing measurement.

7.6 Sources of Errors

In this section, the most relevant sources of errors are discussed. In the first subsections,

sensitive parts of the circuit are identified. Afterwards, the main noise mechanisms and

the effects on the TDC performance are presented.

7.6.1 Slew Rate

Noise can change the signal voltage, adding a voltage Vn(t), but not its timing. For

digital signals, noise is only relevant if it makes the signal voltage pass the threshold

between the two logic states high and low. This is unlikely to happen for signal voltages

that are close to 0 or the supply voltage VDD. Once a signal switches from high to low

or vice versa, it passes the threshold at some point in time. As the signal voltage gets

infinitely close to the threshold voltage, any noise can make it pass the threshold earlier

or later, adding tn to the time of the transition (fig. 7.24). Noise on power and ground

shifts the threshold voltage. In both cases, the result is jitter. The importance of this

effect is inversely proportional to the slope of the time critical signal, called slew rate.

tn =
1

dV
dt

Vn(t) (for Vn smaller than the threshold voltage)
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Jitter

Noise voltage

dV/dt

Figure 7.24: Relation between noise on a digital signal and timing jitter. For simplicity,

the noise is represented by a single constant amplitude and frequency sine

wave.

Therefore, it is important to keep those transition phases as short as possible, i.e. to

minimise rise and fall times of the signals.

Tab. 7.4 shows the slew rates for selected signals of major importance to the TDC

properties. This table is used to calculate the jitter caused by different effects such

as power supply and ground variations, thermal, flicker and shot noise when digital

signals are effected.

7.6.2 Noise on Control Voltages

The analogue PLL and DLL control voltages are, on the contrary to digital signals, im-

mediately sensitive to changes of the voltage, which will lead to variations of the VCO

frequency and the VCDL element delay, respectively. The VCO gain KVCO and the

VCDL gain KVCDL, respectively, describe the effect of the control voltage on the VCO
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Signal Slew rate Inverse slew rate

in V
ns in

ps
V

Hit register input

from output of VCDL tap output buffer 40 25

Hit register input

from output of hit input buffer 24 41

First inverter stage of buffer 21 48

Second inverter stage of buffer 41 24

Third inverter stage of buffer 17 56

Differential signal in VCDL 18 54

Table 7.4: Slew rate of signals of major importance to the TDC properties. As both

buffers are the same and only the load to the last inverter is different, all

slew rates except the last are equal. The relevant edges are shown.

Process Supply voltage Temperature VCO gain VCDL gain

in V in °C in GHz
V in

ps
V

Slow 1.35 125 2.06 −31.8
Typical 1.5 25 5.71 −87.9
Fast 1.65 −20 7.80 −142

Table 7.5: VCO and VCDL gain for different simulation corners

frequency and the DLL delay. For small noise voltages Vn(t), a linear approximation at

the operating point is used to estimate the jitter to be expected:

J(t) = KVn(t)

Tab. 7.5 shows KVCO and KVCDL for the 24.4 ps bin size operating point for different

simulation corners.

7.6.3 Power Supply and Ground Variations

The voltage on the power supply and ground wires can vary due to noise, which is fully

random, coupling of signals into the ground and supply wires, or resistive voltage drops
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on the lines, caused by a variation of the current drawn by other parts of the circuitry.

The latter effects are not random, as they can be predicted if the whole system is known

in detail. At the time of design of a certain block, the implementation of the rest of the

circuit is often not yet fully known, the distances between blocks may change and fill-

ing capacitors may change the characteristics of the variations. In addition, even if the

complete system, including input signal patterns, is known, the analysis is very com-

plex. As long as the mentioned effects do not cause system instability, it is convenient

to treat them as if they were random noise.

The VCDL is rather insensitive to power and ground variations, as a differential im-

plementation is chosen. For the same reason, it also generates little noise. The standard

deviation is in the order of 4 mA, the average 190 mA. The power supply rejection ratio

is 28 dB, The common mode rejection ratio 33 dB. A switching delay elements creates

an RMS voltage variation of 0.35 mV on a 0.5 Ω resistance in the supply wires. This

makes the output of the delay elements vary by 28 μV and creates 0.7 fs of jitter, which

is negligible.

The buffers both between the hit registers and the VCDL tap outputs, as well as the

hit inputs, are implemented single-ended, and so are the hit registers themselves. The

voltage drop VR in a wire with resistance R is proportional to the current I. Assuming

for simplicity that R is constant, the block with the largest current variation will cause

the largest supply and ground voltage variations. Let’s assume all blocks, buffers as

well as hit registers, are individually connected to a global supply grid, which provides

a stable supply voltage. Variations are compensated by large capacitor arrays and the

resistance of the wires is reduced by design. In this case, all blocks can be considered

independent, and the resistance of the supply lines is easy to estimate. According to

simulations, the peak supply current of the VCDL tap output buffer is 17 mA, that of a

hit input buffer 14 mA. With a resistance of 1 Ω in the supply lines, this generates peak

voltage drops of 17 mV and 14 mV, respectively. Considering the slew rates inside

and after these buffers, which consist of four stages of inverters, this leads to jitters

of 2.6 ps and 2.4 ps, respectively, totalling 3.5 ps. The power and ground variations are

not statistically independent. The four inverters that constitute the buffer always change

state one after the other, with a very small delay. The delay between the change of the

input signal and the output signal of the 4-stage buffer is simulated to be 150 ps, which
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corresponds to 6.7 GHz. Power and ground variations with a smaller frequency affect

all inverters of the buffer the same way.

7.6.4 Thermal Noise

Thermal noise generates a voltage due to random movement of electrons in a con-

ductor or semiconductor [Raz01]. Let’s first consider thermal noise in a resistor, and

afterwards in a transistor.

A resistor with thermal noise can be decomposed for analysis into a series of an

ideal, i.e. noiseless resistor, and a random voltage source. The spectrum of thermal

noise is flat†, with a power spectral density of 4kBT R, where kB = 1.38×10−23 J
K is

the Boltzmann constant and T the temperature. The average voltage generated by white

noise is thus Vn,RMS =
√

4kBT R fBW, where fBW is the bandwidth under consideration.

In a circuit, resistors are always connected to a capacitor C, which can be parasitic

and/or intentional. The combination of resistor and capacitor creates a low-pass filter

with a cut-off frequency of 1
RC . This formula is only valid for resistors whose noise

bandwidth is limited by a capacitance. This leads to a total RMS noise voltage of√
kBT
C . Tab. 7.6 shows the thermal noise to be expected at selected critical points of

the TDC. Even though the values for PLL and DLL are overestimated – the loops filter

the noise inside the loop bandwidth – the values are too small to be significant. Inside

the VCDL, the connection wires are short and their parasitic capacitance is small. The

noise bandwidth is not limited by those capacitances, but by the bandwidth of the delay

elements. As the delay of an delay element is a function of the current, it is more

convenient to look at the RMS noise current: In,RMS =
√

4kBT
R fBW. The connections

can be regarded as noise current sources, in series with the noise current sources that

are intrinsic to the transistors, with In,RMS =
√

4kBT γgm fBW. γ , a coefficient in the

order of 1, equals 2
3 for long-channel transistors. The current passing through the delay

elements is in the order of 4 mA for a delay of 24.4 ps. Frequencies higher than about

2.56 GHz are suppressed due to the limited bandwidth of a delay element. For a delay

element, the total noise current, obtained by adding the power of all thermal noise

†The spectral density drops above 100 THz, which is many orders of magnitude higher than the

signals we are interested in.
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Signal C Vn,RMS JRMS

in pF in μV in ps

Hit register input from VCDL 0.8 72 1.8
Hit register input from hit input 0.2 140 5.7
DLL control voltage 50 0.014 0.001

PLL control voltage 50 0.03 0.1

Table 7.6: Thermal noise at selected critical points. T is approximated to 300 K for

simplicity. The values for DLL and PLL do not take into consideration that

the loop filters noise that is inside the loop bandwidth.

sources, is in the order of 160 μA, which corresponds to 4% of the nominal current.

This corresponds to 1.8 ps of jitter, according to simulations.

7.6.5 Flicker Noise

Flicker noise, also called 1
f -noise, is present in MOSFETs [Raz01]. Its spectral den-

sity is proportional to 1
f , making it negligible for higher frequencies. The effect is

mainly due to charge carriers that a randomly trapped and randomly released at the in-

terface between the Si crystal and the SiO2 gate oxide. The RMS voltage of the flicker

noise can be approximated as Vn,RMS =

√
f0+ fBW∫

f0

K
CoxWL · 1

f d f , with K being a process-

dependent constant, Cox the capacitance per unit area, and W and L the dimensions

of the MOSFET. For the delay elements, frequencies between 1.28 GHz and about

2.56 GHz are of concern, leading to a RMS voltage Vn,RMS =
√

K
CoxWL ln

(
2.56 GHz
1.28 GHz

)
. It

is largest for the transistor with the smallest dimensions. It amounts to about 8.7 μV,

and can therefore be completely neglected in the delay line.

For the hit registers, the lowest relevant frequency needs to be determined. Noise

components with f = 0 cannot be present, as this equals perfect DC which is never

changing. f = 10 μHz is the frequency of a signal that has one one period per day,

1 mHz corresponds to a period of about a quarter of an hour. Noise with such frequen-

cies is not relevant, even temperature varies faster. Considering the frequency compo-

nents between 10 kHz and 2.56 GHz, the flicker noise for the smallest transistor in the
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hit registers is 30 μV, which is orders of magnitude lower than the expected supply and

ground variations.

7.6.6 Shot noise

Shot noise is caused by electric current consisting of discrete moving charge carri-

ers, rather than being a continuous flow [Raz01]. The RMS noise current is In,RMS =√
2eI fBW, where e is the charge of an electron and I the total current. In digital parts of

the circuit outside the feedback loops, assuming exaggerated 20 mA and a bandwidth

of 2.56 GHz leads to In,RMS = 4.0 μA. For a bandwidth of 1.28 GHz and a current of

4 mA, which is the current in a VCDL delay element, In,RMS = 1.3 μA is negligible.

Simulations show that this corresponds to a jitter of 15 fs.

7.7 Readout and Configuration

The prototype has been designed to evaluate the timing resolution that can be achieved

in the given 130 nm process. This is neither influenced by the way data is read out nor

by the way the chip is configured. The design requirement for prototype readout and

configuration is therefore simplicity and minimum number of required I/O pins. Sim-

plicity is important to make sure that the prototype tests reveal information about the

timing part and are unlikely to be impeded by problems in the readout and configura-

tion part. The number of pins has to be minimised to keep the required chip area small

while all important signals can be brought into or out of the chip.

Given these criteria, two shift registers, one for readout and one for configuration,

have been identified as optimal.

7.7.1 Readout Shift Register

The readout shift register is used for transferring the data stored in the hit registers

to off-chip test circuitry (fig. 7.25). It has a 44×32 b = 1408 b wide parallel input

connected to the 44 channels with 32 b each, and a serial output. A control signal is

used to specify whether data is to be read in through the parallel input, or to be read out
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Hit Register

D Q

Q

D Q

Q

Read/Write Select

Readout Clock

From Hit Input

_
Q

From DLL

_
Q(from preceding slice)

(to next slice)

Figure 7.25: Readout shift register slice. The Q input of the very first slice in connected

to the configuration data input, the Q output of the very last slice is con-

nected to the readout data output pad.

serially. For verification, the shift register can also be serially loaded with external data

from the configuration data input. In case of problems, this feature allows to distinguish

between problems in the readout register and problems in the hit registers, the hit inputs

or the DLL. Reading out the data of the shift register is done by shifting each bit in that

register by one step per readout clock cycle, and shifting in data from the configuration

data input. This means that all the data of the readout register is overwritten when read

out. However, if no hits have arrived to the chip during readout, the data in the hit

registers remains unchanged and can be transferred again to the readout registers and

read out a second time. This can be useful to verify the proper operation of the hit input

and the hit registers.

7.7.2 Configuration Shift Register

The configuration shift register (fig. 7.26) is meant for transferring data from the off-

chip test circuitry into the chip. Data readout is only necessary for verification of the

configuration shift register. If the data readout is destructive, the rest of the chip might

not operate properly until the next reset. As this verification needs to be done only once

per prototype, this is not a problem. At reset, a default configuration that is appropriate
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D Q

Q
CfgClk1

Data In Data Out

_
Q

Select

D Q

Q

Q
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Q

CfgClk2

(from preceding slice)

(to next slice)(from preceding
 slice)

Figure 7.26: Configuration shift register slice. The Data In input of the very first slice

is connected to the configuration data in pad. The output Q is connected

to the Q input of the next slice. The outputs Q and Q are used to configure

the circuitry, depending on whether the default configuration value is 0 or

1.

for a typical chip is loaded into the configuration register, allowing the chip to work

properly without modification of the configuration, thus even if the configuration shift

mechanism should be faulty.

A need for quick change of configuration might arise in case other parts of the proto-

type, such as the DLL start-up state machine, would not work as intended. In this case,

a configuration forcing the charge pump to lower the voltage will be loaded and acti-

vated, slowing down the lock aquisition process which starts when the clock is enabled.

Once the phase detector consistently gives the correct output signal, the control has to

be passed quickly to the phase detector, thus the configuration needs to be changed

quickly. The configuration shift register is composed of two simple stages, the first one

with serial input and parallel output, and the second one with parallel input, parallel

output, independent clock and, for verification, an additional serial output. In this way,

the configuration data can be shifted in while being invisible to the rest of the chip and

activated by transfer to the second stage. Then, another configuration can be loaded

into the first stage and held ready for transfer.
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8 Experimental Results

8.1 PLL Characterisation

8.1.1 Locking Range

A PLL has a locking range that is limited by the maximum speed at which a signal

can be generated and propagated. The TDC130 PLL is designed to multiply a 40 MHz

input signal up to a 1.28 GHz output. Measurements with an Agilent 81133A pattern

generator have shown that the PLL can lock to frequencies of up to 72 MHz at the input

when the PLL supply voltage is 1.2 V, and up to 103 MHz at the input using a 1.5 V

supply. This leads to output frequencies of up to 2.3 GHz and 3.3 GHz, respectively.

If the input frequency exceeds these limits, the PLL locks to twice the period of the

input signal. Simulations with extracted parasitics have shown maximum frequencies

of 4.7 GHz and 4.0 GHz. These simulations include layout parasitics without filling of

empty areas in the metals. To comply with the metal density layout rules, dummy metal

squares are automatically introduced to the layout before manufacturing, increasing

the parasitic capacitances and explaining the differences between measurement and

simulation.

8.1.2 Jitter

When signals inside the chip need to be measured, they have to pass through output

buffers, and signals entering the chip have to pass through input buffers. Therefore,

any jitter measurement of signals generated inside the chip using external instruments

unavoidably includes the jitter of the buffers, in addition to the jitter of the measurement

instrument. In order to be able to estimate which part of the measured jitter is due to
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Source
σ
ps

Jpeak−peak

ps

Pattern generator and oscilloscope 5.64 58

I/O buffers 7.62 79

Total 11.68 134

PLL 6.82

Table 8.1: PLL jitter measurements: Contributions of pattern generator, oscilloscope,

I/O buffers and PLL.

the buffers and the test setup and which part is the jitter of the PLL, the TDC130-0820

can be configured such that the signal at the PLL input is directly transferred to a test

output, without passing through the PLL. The same test output can also be connected

to the clock divider output. Note that PLL measurements show the jitter at the clock

divider output, whose frequency is 40 MHz, while the VCO output is used to drive the

DLL. Its frequency, 1.28 GHz, is too high to passed through the output buffers and thus

this signal cannot be measured off-chip.

In a reference measurement, a Agilent 81133A pattern generator and a LeCroy

Wavepro 7100 are connected together and the generator’s and oscilloscope’s jitters

are measured.

Tab. 8.1 shows the contributions of the different parts of the measurement setup. As-

suming these sources to be statistically independent, the value for the PLL is calculated

to be 6.82 ps. This compares to a simulated value of 6.66 ps.

8.2 DLL Characterisation

8.2.1 DLL locking range

The DLL cannot be characterised independently from the hit registers. The DLL tap

output signal frequencies are too high to be sent off-chip. The only way to characterise

the DLL is to generate hits and to measure the properties of hit registers and DLL

together, without being able to distinguish their contributions.
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0 1 2 3 4 5 6 7

Bin A
4 hits

Bin D
2 hits

Bin C
6 hits

Bin B
2 hits

Bin E
3 hits

Bin F
4 hits

(a) Assuming a large number of random hits approximates equally spaced hits, the size a the bin is equal

to the number of hits in that bin divided by the total number of hits times the dynamic range.

0 1 2 3 4 5 6 7

Bin A
2 hits

Bin D
2 hits

Bin C
2 hits

Bin B
9 hits

Bin E
1 hit

Bin F
5 hits

(b) If the hits are not equally spaced, for example due to beating, the number of hits in a bin does not

represent its relative size.

Figure 8.1: Principle of code density test (simplified)

The DLL locking range has been measured sweeping the PLL clock input frequency

and observing the DLL outputs using the hit registers. The pattern stored in the hit reg-

isters on the arrival of a hit clearly shows whether or not the DLL is in lock. The mea-

surement has not been limited by the maximum frequency of the hit registers. The DLL

has been found to lock to signals with frequencies between 950 MHz and 2.76 GHz,

corresponding to bin sizes of 31.9 ps and 17.8 ps. When the DLL frequency is larger

than 2.76 GHz, the DLL locks to two signals periods, as it was expected by simulations.

8.2.2 Linearity

Nonlinearity is the deviation of the TDC bin sizes from their average value (sec-

tion 3.2). Sweeping the hit time in small steps through the dynamic range of the TDC

gives all the required information to determine the transfer characteristics (fig. 3.3,

p. 15). However, the time of a hit can only known if a TDC with a resolution much

better than the TDC-under-test was available, or if the hit could be generated with such

a resolution. In addition, jitter occurs at every stage of the chain from signal generation

to time-to-digital conversion. Even if the exact time was known at one stage, jitter will

change it before it is measured by the TDC. Disregarding these problems, after a com-
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uncalibrated calibrated

in ps in LSB in ps in LSB

σDNL 5.72 23.4% 4.02 16.5%

min
1≤i≤32

(Δti)− tLSB −9.03 −37.0% −6.69 −27.4%

max
1≤i≤32

(Δti)− tLSB 16.7 68.3% 12.0 49.1%

σINL 5.96 24.4% 4.99 20.5%

Table 8.2: Results of code density tests with 80 000 hits. The average bin size is 24.4 ps.

plete, jitter-free sweep with constant step size through the dynamic range, the number

of hits measured to be in one time bin of the TDC is proportional to the size of that

bin. This corresponds to the height of the bars of a histogram showing the numbers of

hits per bin. These bars do not contain any information on when a particular hit arrived

within a bin. Therefore, it is not necessary to know the exact time of any hit, the hit may

even be randomly generated – it is sufficient to know that the hits are evenly distributed

across the dynamic range of the converter (fig. 8.1). A test using random hits is called

Code Density Test (CDT). It is an established method for measuring the linearity of a

converter [JCG07, MC99].

A hit source which is not synchronised with the TDC and its input clock generates

random† hits distributed across the whole dynamic range, provided no beating occurs

due to a fixed relation between the two generators’ frequencies. It is convenient to use

generators which are not very well frequency-stabilised – their frequencies drift rather

quickly and beating will disappear eventually.

Fig. 8.2 and tab. 8.2 show the deviation of the individual bin sizes from the average

value of 24.4 ps as measured by a code density test both with and without calibration

of the VCDL. It can be seen clearly that the calibration reduces the deviation of every

bin. While Monte-Carlo simulations of the VCDL have shown a variations of 30%

of the nominal bin size, the measurements reveal much a higher non-linearity. The

simulations do not include the buffers that are needed to drive the distribution lines

†For the purpose of the measurement, these hits are a sufficiently good approximation of random

hits. Strictly speaking, they are not random distributed. With sufficient knowledge of the sources and the

preceding hit, the next hit can be predicted.
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Figure 8.2: Results of a CDT with a bin size of 24.4 ps
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Figure 8.3: Offset due to the hit input buffers, averaged over 80 000 hits, with correc-

tion for PCB routing and LVDS input pads. The average bin size is 24.4 ps.

between the VCDL tap outputs and the hit registers. Those buffers have a simulated

propagation delay of 150 ps in nominal conditions. The largest observed deviation from

the average bin size is 16.7 ps without calibration, which corresponds to 11% of the

buffer delay.

Fig. 8.3 shows spread of the delay of the hit input buffers, which are identical to

the VCDL tap output buffers in order to distinguish VCDL imperfections from buffer

imperfections. Recall that the channels of the hit registers are grouped into 8 channel

groups that share the LVDS input pad, the routing on the PCB and the signal generator

channel, but every individual channel has a dedicated hit buffer and hit registers. The

average offset of the channel group specific and of the channel specific components
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can thus be easily identified. The standard deviation of the channel specific offset is

37% of an LSB, or 9.11 ps.

It can be assumed that the buffers between the VCDL and the hit registers show

the same or similar variations. They can be compensated partially, but not completely

by the VCDL calibration, which has been designed to compensate VCDL mismatch

variations as seen in the Monte Carlo simulations. The decision of implementing the

calibration scheme in the VCDL elements has been justified by the experience of the

previous chip, the HPTDC. There, the VCDL delay variations where compensated for

by varying the delay after the tap output, not within the VCDL. It has been observed

that once a VCDL element delay is too big or too small, following tap outputs also had

to be set to a delay in the same order of magnitude. As example, let’s assume one delay

element at the beginning of the VCDL has a delay of 130% LSB, one at the end 70%

LSB and all others exactly 100%. In this case, almost all elements have ideal delays.

However, as the first bin is 30% too large, the calibration needs to reduce the delay

after the tap output by 30% of an LSB to reach the ideal bin size. Reducing this delay,

the following bin starts 30% of an LSB earlier. Therefore, the second the tap output

calibration delay also needs to be reduced by 30% of an LSB, despite the fact that the

second VCDL element’s delay is exactly 100% of an LSB. This effect propagates until

a VCDL element delay is compensating, which is, in this example, the very last one.

Thus, many calibration delays may need to be configured to a rather large value, even

if only a few delay elements are strongly mismatching. If in addition, two delays are

too large without a delay between them being too small, the calibration delay might

saturate to the maximum value. The scheme used in the TDC130 prototype overcomes

this limitation, but the experiments show that calibration of the tap output buffers is

also required.

8.2.3 Jitter

Jitter is measured using a hit that is generated with a fixed relation to the PLL reference

input clock. Ideally, thus in absence of jitter, this hit always gives the same measure-

ment result. Any deviation from that value is due to jitter, in the pulse generator, in

the connection between pulse generator and the TDC hit input pad, input buffers, hit
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Figure 8.4: Signal paths from clock input and from hit input to hit register, showing as

well the test signal outputs used to measure the jitter of the input buffers

and of the PLL.

registers, the DLL, in the clock generator, the connection between clock generator and

TDC input pad, in the clock input pad or in the PLL (fig. 8.4).

Measurements show a peak-to-peak jitter of 6 tLSB = 146 ps with a standard devi-

ation of 0.517 tLSB = 12.6 ps. Subtracting the jitter that can be attributed to the PLL

(6.82 ps) leaves 10.6 ps for the DLL, the VCDL tap output buffers, the hit registers, the

hit input buffers and both LVDS input pads. The DLL has been designed such that the

RMS tracking jitter is in the order of 1 ps. Assuming that 50% of the jitter measured

for one LVDS input pad and one single-ended output buffer is to be attributed to the

LVDS pad leaves a total of 6.74 ps for the VCDL tap output buffers and the hit input

buffers which have a total delay of 150 ps each.

Note that in the PLL measurement, the jitter of the LVDS input pad cannot be distin-

guished from the jitter of the single-ended standard cell output buffer. Here, the jitter

of the output buffer is not relevant, as the data at the output is already digitised.
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Supply Logic DLL PLL I/O Total

domain (1.2 V) (1.2 V) (2.5 V)

DLL at 48.9 mA 123.8 mA 10.3 mA 36.9 mA

1.2 V 58.7 mW 148.6 mW 12.4 mW 92.3 mW 312 mW

DLL at 48.9 mA 137.1 mA 10.3 mA 36.9 mA

1.5 V 58.7 mW 205.7 mW 12.4 mW 92.3 mW 370.8 mW

Simulation Hit VCDL + LVDS pads

(extracted) registers buffers

DLL at 40 mA 186 mA 46.8 mA

1.5 V 48 mW 279 mW 117 mW 444 mW

Table 8.3: Measured power consumption, compared with simulation with extracted

parasitics of dominant parts

8.3 Power dissipation

The power dissipation of the complete prototype is measured without hit activity and

in high precision mode. During the measurement, the chip is clocked with a 40 MHz

reference clock. PLL and DLL are in lock. The bin size is 24.4 ps. The DLL supply

voltage can be either 1.2 V or 1.5 V. The 1.5 V option is only required for chips pro-

duced in the slow-slow process corner and operated with high temperature (125 ◦C) and

the DLL supplied with 90% of the 1.5 V. This is the worst case, in all other corners, a

DLL supply voltage of 1.2 V is sufficient to reach the bin size of 24.4 ps.

Tab. 8.3 shows the measured power of the chip as well as some power estimates

based on simulation. The simulation includes extracted parasitics. For simplification,

only the parts of the circuit that are considered dominant are simulated. A simulation

of the full chip is not possible with the available equipment. The logic power domain

contains the hit input buffers, the hit registers, the readout shift register, the configura-

tion shift register and the DLL start-up state machine. The hit registers consume more

than 80% of the power in that domain. However, it is possible that the simulated power

is higher than in reality, and other parts in the same domain which are not simulated

consume more than the remaining 20%.

The DLL domain consumption is estimated to be dominated by the VCDL and the

buffers that drive the hit registers. Simulation of the buffers requires them to be loaded
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by the distribution wires and the first inverter of the hit registers. To simplify the simu-

lation, those wires and inverters are replaced by an RC arrangement. However, values

for parasitic wire capacitances the technology design manual data gives vary by a factor

of two, depending on whether the line is approximated as an isolated line with neigh-

bouring metals or as a line with minimum spaced neighbours all around on the full

length. Therefore, measuring a current that is 36% smaller than the simulated value is

not surprising.

The I/O domain contains standard cell pads and 9 full custom LVDS pads, both

including buffers. The consumption of the standard cell pads and buffers has been

found negligible compared to the LVDS pads and buffers, which are simulated to take

5.2 mA each in the 2.5 V I/O supply domain. Again, measurements show that this

simulated value is pessimistic.
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9 Summary and Outlook

The goal of this work was the development of a multi-channel time-to-digital con-

verter ASIC for high energy physics applications with a very high resolution in a stan-

dard digital CMOS 130 nm technology. After studying different TDC architectures and

analysing existing TDCs, a new TDC has been designed. A novel delay element, mak-

ing use of active inductors, transistors that show inductive behaviour around the operat-

ing point, has been conceived. Simulations have shown that the use of such an element

can double the resolution from 48.8 ps to 24.4 ps. Aiming at LHC applications, the

required clock frequencies are generated based on an external 40 MHz clock, as this

is the LHC bunch crossing frequency. Special consideration has been paid to power

consumption, a major issue in modern HEP detectors.

Figure 9.1: Photograph of the TDC130-0820 Prototype

A prototype (fig. 9.1) has been fabricated in order to confirm the functionality and

performance of the design, especially the delay element. Based on previous experience
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Chapter 9. Summary and Outlook

with the predecessor chip, the calibration scheme for the delay line which serves as a

time base to all channels of the chip has been changed.

Experiments confirm the simulations. A resolution of 19 ps has been observed, the

target resolution being 24.4 ps.

A future chip will contain a delay adjustment scheme to compensate for delay line

tap output buffer variations in addition to the fine adjustment of the DLL delay elements

included in the prototype. This will further increase the linearity. A new interpolation

scheme based on DLL controlled delay lines has been devised to further improve the

resolution.
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A Calculations

A.1 RMS and Standard Deviation of LSB

Definition of variance σ2:

σ2 = E
[
(x−μ)2

]
= E

[
x2

]−E2 [x] =
∞∫

−∞

(x−μ)2 p(x)dx

For a uniform distribution:

p(x) =

⎧⎪⎨
⎪⎩

1

xmax − xmin
within bin

0 else

Assuming mean value μ = 0:

p(x) =

⎧⎪⎨
⎪⎩

1

tLSB
within bin

0 else

=⇒ σ2 =
1

tLSB

+ 1
2 tLSB∫

− 1
2 tLSB

x2 dx =
1

12
t2
LSB

=⇒ σ =

√
1

12
tLSB ≈ tLSB

3.5
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Appendix A. Calculations

Definition of RMS value xRMS (of f (x) = x+ μ):

xRMS =

√√√√√√ 1

tLSB

+ 1
2 tLSB∫

− 1
2 tLSB

f (x)2 dx =

√√√√√√ 1

tLSB

+ 1
2 tLSB∫

− 1
2 tLSB

(x+ μ)2 dx =

√
μ2 +

1

12
t2
LSB

With mean value μ = 0:

=⇒ xRMS =

√
1

12
tLSB = σ
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B Alternative Implementations

B.1 DLL Phase Detector: XOR

An XOR gate (fig. B.1) can be used as phase detector. Fig. B.2 shows its behaviour

for different input phase relations. Note that in this application, the phase difference

between input and output of the VCDL has to be 2π, while in most other DLL ap-

plications, the phase error, defined as the deviation from a phase difference of π
2 , is

considered. The instantaneous output voltage is either 0 or VDD. The average voltage

depends on the magnitude of the phase difference between VCDL input and VCDL

output, but not on its sign. The XOR phase detector cannot distinguish a leading output

phase from a lagging output phase [RCN03]. Therefore, within its operation range, the

sign of the phase difference must not change. The phase detector cannot be designed

to work with 0 phase difference. The frequency of its output signal is twice as high as

the frequency of the input signal. This is convenient when a simple RC filter is used in

the next stage, but can pose problems for charge pump filters.

The transfer function, the relation between the average voltage of the phase detector

output and the phase difference between VCDL input and VCDL output, is shown in

fig. B.3. The slope KPD = dVError
dϕ is called phase detector gain. KPD must be positive

in order to achieve negative feedback in the DLL, thus the DLL has to operate with a

static phase difference of π
2 . The absolute value of the gain is VDD

π .

0

0

0

VCDL input
VCDL output Error

Figure B.1: XOR Phase Detector
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Figure B.2: XOR Phase Detector: Pulse Diagrams
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B.2. DLL Loop Filter: RC Filter and Amplifier

DDV

�2
1

2
DDV

��- 2��2
3�- 2

1

)(average ErrorV

rad
inout �� �

Figure B.3: XOR Phase Detector: Transfer function (for 50% duty cycle input signals)

The XOR phase detector is sensitive to duty cycle distortions both on the VCDL

input and the VCDL output (fig. B.4 and B.5). If the duty cycle is not 50%, the average

output can be the same for two different phase differences. This means the phase detec-

tor cannot distinguish two different phase relations, and cannot take corrective action.

Therefore, the gain KPD is 0 in the concerned range of phase difference. This effect is

called gain saturation.

B.2 DLL Loop Filter: RC Filter and Amplifier

The simplest possible low pass filter is the RC filter (fig. B.6). It requires one input

signal, and its output corresponds to the moving average of the input voltage. It is

appropriate for use with an XOR phase detector. The time constant τ is fixed by the

product R ·C. Assuming 1
τ to be chosen much smaller than the frequency of the signal

propagating in the VCDL, the output voltage of the RC filter is proportional to the

phase error at the phase detector input: Vctrl = (KLF KPD) ·ϕerror, the proportionality

constant being the loop filter gain KLF times the phase detector gain KPD. In order to

compensate quickly for any detected phase error, it is desirable to have KPD as large a

possible. Recalling the definition of KPD for XOR phase detectors, KPD = VDD
π , the only

parameter that can be modified is VDD, which has undesirable side-effects and limits

imposed by the used chip technology. Alternatively, the loop filter gain KLF, which is
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VCDL in

VCDL out

Error

����������������������������

����������������������������

��������������������������������

(a) 50% duty cycle :

average(VError) = VDD

VCDL in

VCDL out

Error

����������������������������

����������������������������

������������������������

(b) 25% duty cycle :

average(VError) =
1

2
VDD

Figure B.4: XOR Phase Detector: For different duty cycles and identical phase rela-

tions, the XOR phase detector average voltage is different

1 for a passive RC filter, can be increased adding an amplifier with gain G after the

RC filter or using an active low pass filter. This however introduces problems related to

amplifiers into the circuit, namely secondary poles that can cause instability. Another

possibility is increasing the gain of the VCDL, KVCDL = dtLSB
dVctrl

. In both cases, small

variations of the RC filter output voltage lead to large delay variations in the VCDL,

thus jitter. This is fundamental to the XOR phase detector and RC filter principle, as

the signal-to-noise ratio (SNR) of a chain is dominated by the stage with the smallest

SNR. As the noise is similar in all stages, and the smallest signal is always the RC filter

output voltage, adding amplifiers after the RC filter doesn’t improve the overall jitter.

B.3 PLL Phase Detector: Analogue Multiplier

The Analogue Multiplier is a circuit frequently used in RF transmission applications,

where it is also referred to as Mixer. It performs a multiplication of 2 input signals s1
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VCDL in

VCDL out
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)(average ErrorV
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(c) Transfer function for 25% duty cycle

Figure B.5: XOR Phase Detector: Gain Saturation: For different phase relations, the

XOR phase detector average voltage can be the same if the duty cycle is

not 50%

R C Amplifier
(optional)

From PD To VCDL

Figure B.6: RC Loop Filter with optional amplifier

Reference

VCO

Vout

Figure B.7: PLL Phase Detector: Analogue Multiplier
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−π −0.5π 0.5π π 1.5π

2π

V
out

−0.5ab

0.5ab

Figure B.8: Analogue multiplier transfer function

and s2 in the time domain. Let s1(t) = acos(ωt) and s2(t) = bcos(ωt +ϕ) be of equal

frequencies ω = 2π f , but with a phase difference ϕ . The product is

s1(t) ·s2(t) = (acos(ωt)) · (bcos(ωt +ϕ))

=
ab
2

(cos(ϕ)− cos(2ωt +ϕ))

and can be written as the sum of a phase difference dependent DC signal and a signal

at twice the input frequency, which will be removed by a low pass filter. When using a

passive low pass filter, it is convenient to have the signal to be filtered away at a very

high frequency. For an active filter, very high frequency components require careful

design. The output voltage of the low pass filter

Vout =
ab
2

cos(ϕ)

is a function of the signals’ amplitudes, making the gain change when the signal am-
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B.4. PLL Loop Filter: Passive RRC filter

R1

C

From PD To VCO
R2

Figure B.9: Passive RRC Loop Filter

plitudes change, and a function of the cosine of the phase difference (fig. B.8). The

phase detector gain

KPD =
dVout

dt
= −ab

2
sin(ϕ)

is zero for ϕ = 0 and ϕ = π, and its absolute value is maximum for ϕ = π
2 . The analogue

multiplier cannot be designed to operate at zero phase difference. The design phase

difference should be π
2 , and exceeding the range of 0 ≤ ϕ ≤ π leads to inversion of

the sign of the gain and thus of the loop feedback. To acquire lock, difference of the

input reference frequency and the divided VCO output frequency must be within the

loop bandwidth. The phase detector itself is only sensitive to the phase of the signals,

but not to their frequencies. It is the control loop as a whole that makes it sensitive

to frequency differences, and this only within the loop bandwidth. The XOR phase

detector can be considered as an analogue multiplier with square-wave input signals.

Therefore, it is not analysed separately.

B.4 PLL Loop Filter: Passive RRC filter

The passive RRC filter corresponds to the passive RC filter for DLLs. The resistor R2

is added to introduce a zero to the transfer function. It is suitable for use together with

an analogue multiplier phase detector. Its transfer function is

H(s) =

1

sC
+R2

R1 +
1

sC
+R2

=
1+ sR2C

1+ s(R1 +R2)C
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with a zero at

fZ =
1

2πR2C

and a pole, coupled to the zero, at

fP =
1

2π(R1 +R2)C
= fZ

R2

R1 +R2

The filter contains only passive devices, its gain is 1. As in DLLs, this leads to an

undesirable phase offset. The gain can be increased adding an amplifier, with the same

side-effects as for the DLL.
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List of Symbols

D Duty cycle

f Frequency

fBW Bandwidth

i Integer number

I Current

j Imaginary unit

J Jitter

K Gain in DLL and PLL

M,N Number of delay elements in a DLL

N PLL divider ratio

t Time

tDNL,i Differential Non-Linearity of a converter

tINL,i Integral Non-Linearity of a converter

tLSB Lowest Significant Byte of a converter

tM Bin size of the secondary interpolation circuit

tmax Dynamic range of a converter

tN Bin size of the main time base

Tclk Clock period

Δt Time difference, delay

Δti Size of bin i

ξ Damping factor

σDNL Standard deviation of DNL

σINL Standard deviation of INL

σLSB Standard deviation of tLSB

τ Time constant
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List of Symbols

ϕ Phase

ω Angular frequency (ω = 2π f )
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List of Abbreviations

ADC . . . . . . . . . . . . . . . Analogue-to-Digital Converter

ALICE . . . . . . . . . . . . . A Large Ion Collider Experiment – an LHC experiment

ASIC . . . . . . . . . . . . . . . Application Specific Integrated Circuit

CCDL . . . . . . . . . . . . . . Current Controlled Delay Line

CDT . . . . . . . . . . . . . . . . Code Density Test

CERN . . . . . . . . . . . . . . European Organization for Nuclear Research/Organisation

européenne pour la recherche nucléaire

CLIC . . . . . . . . . . . . . . . Compact LInear Collider, a possible future e+e- collider

CMS . . . . . . . . . . . . . . . Compact Muon Solenoid – an LHC experiment

DFF . . . . . . . . . . . . . . . . D flip flop

DLL . . . . . . . . . . . . . . . . Delay Locked Loop

DNL . . . . . . . . . . . . . . . Differential Non-Linearity

FIFO . . . . . . . . . . . . . . . First In-First Out memory

FPGA . . . . . . . . . . . . . . Field Programmable Gate Array

GBT . . . . . . . . . . . . . . . . GigaBit Transceiver

HEP . . . . . . . . . . . . . . . . High Energy Physics

HPTDC . . . . . . . . . . . . . High Precision TDC, predecessor of the TDC130

INL . . . . . . . . . . . . . . . . Integral Non-Linearity

LHC . . . . . . . . . . . . . . . . Large Hadron Collider, a 2×7 TeV particle accelerator at

CERN

LIDAR . . . . . . . . . . . . . LIght Detection And Ranging

LSB . . . . . . . . . . . . . . . . Least Significant Bit

MRPC . . . . . . . . . . . . . . Multi Resistive Plate Chamber

NA62 . . . . . . . . . . . . . . . A fixed target experiment, also known as P326 and NA48/3,

at CERN’s SPS accelerator
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List of Abbreviations

PFD . . . . . . . . . . . . . . . . Phase-Frequency Detector

PID . . . . . . . . . . . . . . . . Particle IDentification

PLL . . . . . . . . . . . . . . . . Phase Locked Loop

RADAR . . . . . . . . . . . . RAdio Detection And Ranging

RF . . . . . . . . . . . . . . . . . Radio Frequency

RMS . . . . . . . . . . . . . . . Root Mean Square

SNR . . . . . . . . . . . . . . . . Signal-to-Noise Ratio

SPS . . . . . . . . . . . . . . . . Super Proton Synchrotron, a 400 GeV proton accelerator at

CERN

TDC . . . . . . . . . . . . . . . . Time-to-Digital Converter

TDC130 . . . . . . . . . . . . New TDC in 130 nm-technology currently being designed

TDC130-0820 . . . . . . . First TDC130 prototype

TOF . . . . . . . . . . . . . . . . Time of Flight

TOT . . . . . . . . . . . . . . . . Time Over Threshold

VCDL . . . . . . . . . . . . . . Voltage Controlled Delay Line

VCO . . . . . . . . . . . . . . . Voltage Controlled Oscillator
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