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ABSTRACT (IN ENGLISH)   

 

I 

Improving crop varieties of spring barley for drought and heat tolerance with AB-QTL-

analysis 

In the years 2002-2003, 323 BC2DH individuals of double haploid (DH) spring barley population 

were genotyped with SSRs markers. The BC2DH lines were evaluated in greenhouse trials for 

drought and heat tolerance. Altogether 13 parameters for the determination of drought tolerance and 

12 parameters for the investigation of heat tolerance were examined. There were two treatments for 

the drought experiment, 50% field capacity (FC) level for drought stress and at 100% FC level for 

the control. We used two treatments for the heat experiment (normal climate and in greenhouse). 

The traits measured were: relative leaf water content, osmotic adjustment, heading date, number of 

spikes per plant, number of kernels per spike, number of leaves per main tiller, flag leaf area, first 

leaf area, second leaf area, carbon isotope discrimination (for the drought experiment), yield, 

biomass and harvest index. The traits were compared to determine the presence of alleles from the 

wild barley parent by means of the AB-QTL-analysis. The 97 mapped SSRs covered 1013 cM of 

the barley genome; the mean SSR density is equal to 11.1 cM. Polymorphic SSRs revealed 54 

putative QTLs in two groups. The first had 20 putative QTLs for the drought experiment and the 

second 34 putative QTLs for the heat experiment. Altogether, 30 (55.5%) favorable allele effects of 

the Hsp alleles were detected for both drought and heat experiment. 14 (70.0%) favorable effects 

were detected for drought tolerance. These traits, osmotic adjustment, yield, biomass, relative leaf 

water content, carbon isotope discrimination, number of leaves per main tiller and flag leaf area 

were controlled by 7, 3, 3, 3, 2, 1 and 1 QTL respectively, in the drought experiment. Most of the 

favorable Hsp alleles were located on chromosomes 1H, 5H and 7H (2, 8 and 3 respectively). Under 

drought stress first leaf area was positively and strongly correlated with flag leaf area. Positive 

correlations were expressed by second leaf area with flag leaf area and first leaf area. Yield was 

positively correlated with harvest index, number of spikes per plant and number of kernels per 

spike. Biomass showed correlations with number of spikes per plant, number of leaves per main 

tiller, flag leaf area, first leaf area, second leaf area and yield. 16 (47.0%) favorable effects of the 

Hsp alleles were detected for heat tolerance. Flag leaf area, osmotic adjustment, yield, harvest 

index, biomass, first leaf area, relative leaf water content, number of spikes per plant and heading 

date were controlled by 8, 7, 4, 4, 3, 3, 2, 2 and 1 QTL respectively, in heat experiment. Most of the 

QTLs were located on chromosomes 3H and 4H (3, and 5 respectively). Correlations of heading 

date with osmotic adjustment, and number of leaves per main tiller were strongly positive. Strong 

positive correlations were expressed by second leaf area with flag leaf area and first leaf area. Yield 

was positively and strongly correlated with harvest index. 

 



ABSTRACT (IN DEUTSCH)  II 

Verbesserung der Trockenheits- und Hitzetoleranz von Sommergersten-Linien mit Hilfe  

der AB-QTL-Analyse 
Während eines Versuches in den Jahren 2002 und 2003 wurde eine Sommergersten- BC2DH- Population, die 323 

BC2DH- Einzellinien umfasste, mit 97 polymorphen SSR-Markern genotypisiert. Parallel wurden die BC2DH-

Linien in Gewächshausversuchen auf ihre Trockenheits- und Hitzetoleranz hin phänotypisch untersucht. Hierzu 

wurden im Trockenstressversuch 13 Merkmale und im Hitzestressversuch 12 Merkmale erhoben. Im 

Trockenstressversuch wurden zwei Behandlungen unterschieden: (1) Boden mit 50% Feldkapazität (FC) (zur 

Erzeugung von Trockenstress), (2) Boden mit 100% Feldkapazität (FC). Auch im Hitzestressversuch gab es zwei 

unterschiedliche Behandlungen: (1) Normales Klima, (2) Gewächshausklima. Die Linien wurden auf folgende 

Merkmale phänotypisch untersucht: relativer Wassergehalt des Blattes, osmotischer Druck, Zeitpunkt des 

Ährenschiebens, Anzahl der Ähren pro Pflanze, Anzahl der Körner pro Ähre, Anzahl der Blätter pro Trieb, 

Blattflächenindex des Fahnenblattes, Blattflächenindex des ersten Blattes, Blattflächenindex des zweiten Blattes, 

Ertrag, Biomasse und Harvest Index. Im Trockenstressversuch wurde zusätzlich das Merkmal 

Karbonisotopunterscheidung erhoben. Die Merkmalsdaten wurden mit dem Vorhandensein der Allele des 

Wildgerstenelternteils mittels der AB-QTL-Analyse verglichen. Die 97 genotypisierten SSRs decken 1013 cM des 

Gerstengenoms ab, wobei die mittlere SSR-Dichte 11,1 cM betrug. Die Karte Scarlett*ISR42-8 enthält vier 

Lücken mit einem Markerabstand von mehr als 30 cM, wobei die Lücken auf den Chromosomen 3H, 5H und 6H 

lokalisiert sind. Ingesamt wurden 54 putative QTLs detektiert, wobei 20 putative QTLs im Trockenstressversuch 

und 34 putative QTLs im Hitzestressversuch gefunden wurden. Insgesamt wurden 30 (55,5%) vorteilhafte QTL-

Effekte des Wildformallels (Hsp- Allel) in beiden Versuch ermittelt. Für Trockentoleranz wurden 14 (70,0%) 

vorteilhaften QTL-Effekte des Hsp- Allels festgestellt. Hierbei wurden für die Merkmale Ertrag, Biomasse und 

relativer Wassergehalt jeweils drei QTLs, für die Merkmale Anzahl der Blätter pro Trieb und Blattflächenindex 

des Fahnenblattes je ein QTL und für das Merkmal osmotischer Druck sieben QTLs gefunden. Für das Merkmal 

Karbonisotopunterscheidung wurden zwei QTLs lokalisiert. Die meisten der vorteilhaften QTLs waren auf den 

Chromosomen 1H, 5H und 7H lokalisiert (2, 8 bzw. 3 QTLs). Unter Trockenstress war der Blattflächenindex des 

ersten Blattes positiv mit dem Blattflächenindex des Fahnenblattes und dem Blattflächenindex des zweiten Blattes 

korreliert. Das Merkmal Ertrag zeigte positive Korrelationen mit dem Harvest Index, der Anzahl der Ähren pro 

Pflanze und der Anzahl der Körner pro Ähre. Die Biomasse korrelierte mit der Anzahl der Ähren pro Pflanze, der 

Anzahl der Blätter pro Trieb, dem Blattflächenindex des Fahnenblattes, dem Blattflächenindex des ersten Blattes, 

dem Blattflächenindex des zweiten Blattes und dem Ertrag. Für Hitzetoleranz wurden 16 (47,0%) vorteilhafte 

QTL-Effekte des Hsp- Allels ermittelt. Dabei wurden für die Merkmale Blattflächenindex des ersten Blattes, 

relativer Wassergehalt des Blattes und Anzahl der Ähren pro Pflanze jeweils zwei QTLs lokalisiert. Für den 

Harvest Index und die Biomasse wurden je drei QTLs gefunden, wohingegen für das Merkmal Zeitpunkt des 

Ährenschiebens nur ein QTL ermittelt wurde. Für die drei Merkmale Blattflächenindex des Fahnenblattes, 

osmotischer Druck und Ertrag wurden acht, sieben bzw. vier QTLs gefunden. Die meisten der vorteilhaften QTLs 

waren auf den Chromosomen 3H und 4H lokalisiert (je 3 QTLs). Eine Korrelation konnte zwischen dem 

Zeitpunkt des Ährenschiebens und den Merkmalen osmotischer Druck und Anzahl der Blätter pro Trieb gemessen 

werden. Positiv korreliert waren außerdem der Blattflächenindex des zweiten Blattes mit Blattflächenindex des 

Fahnenblattes und des ersten Blattes. Der Ertrag zeigte einen positiven Zusammenhang mit dem Harvest Index. 



CONTENTS   

 

III 

 

TABLE LISTING ........................................................................................................................... VI 

1. INTRODUCTION.......................................................................................................................1 

2. REVIEW OF LITERATURE....................................................................................................3 

2.1 MORPHOLOGICAL DIFFERENCES BETWEEN CULTIVARS AND WILD BARLEY ......................................4 
2.2 ECONOMIC OF BARLEY CULTIVARS ....................................................................................................6 
2.3 BARLEY BREEDING..............................................................................................................................7 
2.4 WHAT IS THE IMPORTANCE OF DROUGHT STRESS? .............................................................................7 
2.5 WHY IS HEAT STRESS IMPORTANT?.....................................................................................................9 
2.6 OSMOTIC ADJUSTMENT .....................................................................................................................12 
2.7 CARBON ISOTOPE DISCRIMINATION ..................................................................................................13 
2.8 SYSTEMATIC DECENCY OF THE BARLEY BC2DH LINES ....................................................................15 
2.9 DOUBLED HAPLOIDS POPULATION (BC2DH) ....................................................................................15 
2.10 THE ROLE OF PLANT PHYSIOLOGY IN PLANT BREEDING FOR DROUGHT TOLERANCE .......................15 
2.11 USE OF BACKCROSS POPULATIONS FOR QTL ANALYSIS ...................................................................16 
2.12 APPLICATION OF SIMPLE SEQUENCE REPEATS (SSRS) MARKER .......................................................16 
2.13 MAPPING QUANTITATIVE TRAIT LOCI ...............................................................................................17 

2.13.1 QUANTITATIVE TRAITS ..............................................................................................................17 
2.13.2 METHOD OF QTL MAPPING......................................................................................................18 

2.14 METHOD OF QTL CALCULATION ......................................................................................................19 
2.15 MARKER ASSISTED SELECTION .........................................................................................................19 
2.16 ADVANCED BACKCROSS QUANTITATIVE TRAIT (AB-QTL) STRATEGY ............................................21 

3. MATERIALS AND METHODS .............................................................................................23 

3.1.1 PLANT MATERIAL .......................................................................................................................24 
3.1 MEASUREMENT OF PHENOTYPIC DATA .............................................................................................25 

3.1.1 EXPERIMENTAL EVALUATION OF THURINGIA, SCARLETT, HARRY AND APEX BARLEY GENOTYPES 

FOR DROUGHT TOLERANCE ......................................................................................................25 
3.1.2 EXPERIMENTAL EVALUATION OF 323 BC2DH LINES FOR DROUGHT TOLERANCE.......................25 
3.1.3 EXPERIMENTAL EVALUATION OF FOUR BARLEY GENOTYPES FOR HEAT TOLERANCE...................26 
3.1.4 HEAT EXPERIMENT FOR 323 BC2DH LINES...............................................................................27 
3.1.5 FERTILIZATION.........................................................................................................................27 
3.1.6 DATA COLLECTION AND SAMPLE HARVESTING...........................................................................28 

3.2 EXECUTION OF GENOTYPIC DATA .....................................................................................................30 



CONTENTS   

 

V 

3.2.1 EXTRACTION OF BARLEY DNA ..................................................................................................30 
3.2.2 AGAROSE GEL ELECTROPHORESIS PROCEDURE.........................................................................30 
3.2.3 SSR-MARKER ANALYSIS ............................................................................................................32 
3.2.4 GEL ELECTROPHORESIS............................................................................................................34 
3.2.5 SILVER STAINING FOR DNA VISUALIZATION..............................................................................34 

3.3 STATISTICAL ANALYSIS OF DATA......................................................................................................35 
3.4 DETECTION OF PUTATIVE QTLS........................................................................................................35 

4. RESULT.....................................................................................................................................37 

4.1 DROUGHT TOLERANCE......................................................................................................................37 
MORPHOLOGICAL CHARACTERS..........................................................................................................37 
4.1.1 EVALUATION OF FOUR BARLEY GENOTYPES ..............................................................................37 
4.1.2 DROUGHT RESULT FOR PARENTS SCARLETT AND ISR42-8.........................................................46 
4.1.3 DROUGHT RESULTS FOR BC2DH LINES (AB-DH LINES SCARLETT*ISR42-8 POPULATION) .......50 
4.1.4 IDENTIFICATION OF MICROSATELLITE MARKERS IN THE SCARLETT BACKCROSS POPULATION....59 
4.1.5 DETECTION OF QTLS FOR DROUGHT TOLERANCE. ...................................................................61 

4.2 HEAT RESULTS ..................................................................................................................................68 
4.2.1 EVALUATION OF FOUR BARLEY GENOTYPES ..............................................................................68 
4.2.2 HEAT RESULTS FOR POPULATION PARENTS SCARLETT AND ISR42-8..........................................75 
4.2.3 HEAT RESULT FOR BC2DH LINES (SCARLETT*ISR42-8 POPULATION).......................................80 
4.2.4 QTL DETECTION FOR HEAT EXPERIMENT..................................................................................87 

5. DISCUSSION ............................................................................................................................94 

5.1 MORPHOLOGICAL TRAITS .................................................................................................................95 
5.1.1 EVALUATION OF FOUR BARLEY GENOTYPES FOR DROUGHT TOLERANCE....................................98 
5.1.2 DROUGHT RESULTS FOR BC2DH LINES.....................................................................................99 
5.1.3 EVALUATION OF FOUR BARLEY GENOTYPES FOR HEAT TOLERANCE ...........................................99 
5.1.4 HEAT RESULTS FOR BC2DH LINES ..........................................................................................102 

5.2 DISCUSSION OF QTL ANALYSIS ......................................................................................................103 
5.2.1 DISCUSSION THE AB-QTL-ANALYSIS IN THE BC2DH POPULATION..........................................103 
5.2.2 AB-QTL ANALYSIS IN BARLEY.................................................................................................103 

6. SUMMARY .............................................................................................................................121 

7. REFERENCES........................................................................................................................127 

ACKNOWLEDGMENTS .............................................................................................................140 



CONTENTS   

 

VI 

Table Listing 

Table 1: Pedigree description of European spring barley cultivars and Wild barley ........................ 24 

Table 2: Drought treatment for parents and BC2DH lines ................................................................. 26 

Table 3: Temperature treatment in and outside the green house ....................................................... 26 

Table 4: Treatment of BC2DH lines for heat stress........................................................................... 27 

Table 5: Traits abbreviation for studied drought and heat stress parameters..................................... 28 

Table 6: Reactants for Polymerize chain reaction (PCR) for SSR markers....................................... 33 

Table 7: Procedure for Polymerize chain reaction............................................................................. 33 

Table 8: Analysis of variance for drought treatment in Thuringia, Scarlett, Harry, and Apex 
genotypes ............................................................................................................................. 38 

Table 9: Means of traits for Thuringia, Scarlett, Harry, and Apex genotypes with Ryan-Gabriel-
Welsch Multiple Range Test in drought experiment ........................................................... 45 

Table 10: Mean value of traits of heat treatments with Ryan-Gabriel-Welsch Multiple Range Test 
for drought experiment ........................................................................................................ 45 

Table 11: Analysis of variance of Scarlett and ISR42-8 for drought tolerance................................. 48 

Table 12: T test (LSD) for average mean values of parents Scarlett and ISR42-8 for 13 quantitative 
traits. .................................................................................................................................... 49 

Table 13: Mean value of traits for drought treatments with Student-Newman-Keuls Test (SNK) Test 
in drought experiment. ......................................................................................................... 50 

Table 14: Analysis of variance of traits of BC2DH lines, years and drought treatments in drought 
experiment ........................................................................................................................... 51 

Table 15: Correlation coefficient among 13 quantitative traits for BC2DH lines-Scarlett*42-8 
population ............................................................................................................................ 53 

Table 16: Correlation coefficient among 13 traits for BC2DH lines Scarlett*42-8 population under 
drought stress ....................................................................................................................... 57 

Table 17: Number of markers and genome coverage putative QTLs for drought and heat tolerance61 

Table 18 : List of 20 putative QTLs detected from the BC2DH cross Scarlett x ISR42-8A for ......... 64 

Table 19: Analysis of variance traits for Thuringia, Scarlett, Harry, and Apex genotypes for heat 
experiment. .......................................................................................................................... 69 

Table 20: Mean value of traits for Thuringia, Scarlett, Harry, and Apex genotypes with Ryan-
Gabriel-Welsch Multiple Range Test for heat experiment. ................................................. 74 

Table 21: Mean value of traits of heat treatments with Ryan-Gabriel-Welsch Multiple Range Test 
for heat experiment. ............................................................................................................. 75 

Table 22: Analysis of variance of traits for population parents (Scarlett and ISR42-8) for heat 
tolerance............................................................................................................................... 77 

Table 23: T Tests (LSD) for parents (Scarlett and ISR42-8) for heat experiment............................. 78 

Table 24: T Tests (LSD) between mean values of heat treatments for 12 quantitative traits ............ 79 

Table 25: Analysis of variance in traits for BC2DH for heat tolerance. ............................................ 80 

Table 26: Pearson correlation coefficients for 12 traits for heat treatments and BC2DH lines1 ....... 84 



CONTENTS   

 

VII 

Table 27: Pearson correlation coefficients for 12 traits for heat treatments and BC2DH lines1 ........ 85 

Table 28: List of 34 putative QTLs detected from the BC2DH cross Scarlett x ISR42-8A for heat 
experiment. .......................................................................................................................... 89 

Table 29: List of 14 favorable QTL alleles detected from the BC2DH cross Scarlett x ISR42-8A for 
drought tolerance ............................................................................................................... 105 

Table 30: List of 16 favorable QTL alleles detected from the BC2DH cross Scarlett x ISR42-8A for 
heat experiment.................................................................................................................. 106 

 
 

Figure Listing 

Figure 1: Effect of drought on the number of spikes per plant of Thuringia, Scarlett, Harry, and 
Apex genotypes.................................................................................................................... 39 

Figure 2: Osmotic adjustment of Thuringia, Scarlett, Harry, and Apex genotypes for drought 
experiment. .......................................................................................................................... 40 

Figure 3: Chlorophyll content of Thuringia, Scarlett, Harry, and Apex genotypes for drought 
experiment. .......................................................................................................................... 41 

Figure 4: Yield of Thuringia, Scarlett, Harry, and Apex genotypes for drought experiment............ 42 

Figure 5: Biomass of Thuringia, Scarlett, Harry, and Apex genotypes for drought experiment. ...... 43 

Figure 6: Harvest index of Thuringia, Scarlett, Harry, and Apex genotypes for drought experiment.44 

Figure 7: Linkage map of spring barley (Scarlett*ISR42-8...................................................................  

Figure 8: Linkage map of QTL in spring barley (Scarlett*ISR42-8) for drought tolerance..................  

Figure 9: Relative leaf water content of Thuringia, Scarlett, Harry, and Apex genotypes for heat 
experiment. .......................................................................................................................... 70 

Figure 10: Osmotic adjustment of Thuringia, Scarlett, Harry, and Apex genotypes for heat 
experiment. .......................................................................................................................... 71 

Figure 11: Days until heading of Thuringia, Scarlett, Harry, and Apex genotypes for heat 
experiment. ..............................................................................................................................  

Figure 12: Plant height of Thuringia, Scarlett, Harry, and Apex genotypes for the heat experiment.73 

Figure 13: Linkage map of spring barley for heat tolerance (Scarlett*ISR42-8) ..................................  

 

 

 

 

 

 

 



REVIEW OF LITERATURE  1 

 

 

1. Introduction  

 

Drought and heat represent a major problem for agriculture in arid and semiarid areas. By 

classical plant breeding supported by new biotechnological methods, new varieties, which are 

sufficient for the special growth requirements in hot and dry regions, can be bred. These drought 

and heat-tolerant varieties can produce increased yields, not only in semiarid zones, but also in 

temperate areas with temporary drought and heat occurrence. In semiarid areas, water unavailability 

is frequently happened. Molecular breeding methods can enable the cultivation of drought-tolerant 

varieties, with water saving capacity. The presence of drought and heat resistant varieties in Third 

World countries reduces frequent harvest failures and eliminates the need of grain import. These 

varieties represent an important thus economic advantage for countries of semiarid zones. 

Using the AB-QTL analysis strategy as devised by Tanksley and Nelson (1996), favorable 

alleles from wild barley can be transferred for the improvement of heat and drought tolerance in 

barley cultivars. Among four German barley cultivars, 12 traits for heat and drought tolerance are 

examined in order to determine traits, which show significant deviations for drought and heat 

stressed plants.  

Recurrent backcrossing was made between a wild barley parent (ISR 42-8) from Middle East 

and the German cultivar Scarlett as the recurrent parent. The idea seems reliable to identify the 

QTLs from highly tolerant wild relatives and simultaneous by to intrigues those alleles into elite 

cultivars.  

The population of 323 BC2DH lines was genotyped with 97 SSR-markers. Altogether 13 traits 

for the determination of drought tolerance and 12 traits for heat tolerance were examined over two 

years. In a statistical analysis, the genotypic and the phenotypic data were correlated to detect and 

localize alleles from the wild barley, which have an influence on the expression of the examined 

quantitative traits. Subsequently, lines were compared with QTL alleles of the wild barley and with 

QTL alleles from the barley cultivar, in order to discover favorable alleles from the wild barley. 

Drought is the major cause of crop yield reduction in the world today. Breeding crops with 

improved drought tolerance is one approach to alleviate this problem. However, progress towards 

this goal has been slow because of the complexity of the trait and its quantitative inheritance. Barley 

is an excellent crop for studies on both the inheritance and physiology of this trait.  

In an experiment during (2002 - 2003), spring barley double haploid (BC2DH) populations 

were developed. The population including 323 individuals was genotyped with 97 polymorphic 

markers. The BC2DH lines were evaluated in greenhouse trials for drought and heat traits. At the 
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end of the two-year experiment, the phenotypic and genotypic data were statistically analyzed. At 

the experiment, favorable alleles of wild species from the AB-QTL analysis were detected, for the 

important trait related to tolerance for drought and heat.  

 

Aims of the study 

The major objective of this research work was to improve the level of drought and heat 

tolerance in barley BC2DH lines to be stable for production in drought prone environments of the 

Mediterranean region. Application of the AB-QTL strategy in barley is important for improvement 

of drought and heat tolerance in barley. This could be achieved through identification and 

simultaneous transfer of the exotic QTL alleles, which have the potential to improve yield-related 

traits. 

The specific aims were: 

•  To study the QTL effects of Hsp alleles for marker*drought treatments interaction in 

BC2DH lines. 

•  To study the QTL effects of Hsp alleles for marker*heat treatments interaction in BC2DH 

lines. 

•  To find favorable Hsp alleles associated with the improvement of drought and heat related 

traits for use in marker-assisted-selection in barley breeding. 
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2. Review of Literature  

Most of drought and heat traits in crops are quantitative in nature. They are controlled by 

polygenes, displaying interactions among genes and with drought treatments as well as, heat 

treatments. These make their genetic inheritance complicated and difficult to be understood. The 

procedures for finding and locating the quantitative trait loci (QTL) and analyzing their magnitude 

of genetic effects and interactions with drought treatments as well as, heat treatments, are called 

QTL. This bridges the gap between continuous phenotypic variation and the inherited mechanisms 

by dissecting genetic variation into individual loci (Phillipa 1998). QTL finding might open up new 

possibilities for marker based selection in plant breeding. Basically, the procedures of QTL finding 

involve construction of linkage map and searching for a relationship between drought treatments, 

heat treatments and markers (Zhao 2002).  

 

Background: Access to and control of water resources are becoming the most important. Today 

450 million people are subjected to severe water shortage and in 2025; this number may be about 

2.7 billion (or 1/3 of the world population). Some are advocating an increase of farm water use by 

15 to 20% for sustaining food security and alleviating rural poverty. Environmentalists claim, 

however, that water resources should drop by 10% in the coming 25 years to be able to protect 

natural water resources (in rivers, lakes and wetlands). There are distinct options for managing 

water resources. Irrigation was the traditional approach for dealing with water shortages but now as 

water resources are scarce other solutions are sought. For example, plant breeders are working in 

the development of crops better adapted to drought-prone environments or in plants with increase 

water-use efficiency. Research suggests that relatively high productivity may be accomplished even 

in unfavorable environments if selection for adaptation to these environments occurs in targeted 

crops. Nevertheless, selection for tolerance in stress environments often leads to low yielding 

genotypes when grown in non-stress environments (Ortiz et al 2001).  

Many observers have pointed out the dangers of future food shortages and famine due to 

impending global water shortages. Already, one-third of the world�s population faces water 

shortages, and this proportion is expected to rise to two-thirds by the year 2025 report by (Annan, 

2000). Competition between urban and rural areas, for water increased the demand for water due to 

rising living standards. In addition, changes in annual precipitation and rainfall patterns as a result 

of environmental change indicate that water demand and supply are in the process of a major 

change. 
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In the past, when water was insufficient for agricultural production, irrigation systems based 

on the construction of dams and canals had been put in place. However, the number of areas where 

new irrigation infrastructure is economically viable is becoming limited. Concerns have also 

increased about the negative impacts on the environment. New approaches are especially needed for 

water-limited semi-arid and arid environments, as well as in other environments with unreliable 

rainfall and uncertain water availability for agriculture.  

For these reasons, the development of drought-resistant and stress-tolerant crops coupled with 

small-scale but effective technologies to make efficient use of limited water resources on a regional 

basis are needed. Ecological approaches, breeding, and transgenic improvements can provide crop 

resources to boast the resource-efficient technologies. These technologies include farm and 

watershed-based water collection and storage, improved agronomic practices that use soil water 

more efficiently, and water-saving crop production techniques. Such technologies are adapted to 

both the environmental conditions and the production practices of farmers in the area for which they 

are developed. The development of such technologies and establishment of stable and sustainable 

agricultural production systems, and ultimately living environments, are essential to maintain a 

world environment in balance. 

 

2.1 Morphological differences between cultivars and wild barley 

 

Taxonomy and origin: Cultivated barley, Hordeum vulgare L., belongs to the tribe Triticeae in the 

grass family, Poaceae. The Poaceae is the largest family of monocotyledonous plants. The 

Hordeum L. comprises 32 species (Bothmer et al. 1991). It has been suggested that H. vulgare, 

together with H. bulbosum L., should be separated into a genus of its own, but this view has not 

been widely accepted (Bothmer 1992). The progenitor of barley is considered to be a subspecies of 

cultivated barley: H. vulgare ssp. spontaneum (C. Koch) Tell. Both cultivated and wild barley have 

winter and summer annual forms. Barley can be divided into two-rowed and six-rowed types 

according to spike morphology; intermediate types also exist. In two-rowed barley the lateral 

spikelets are female sterile, while in six-rowed barley all spikelets are fertile (Briggs 1978). 

The most widely accepted hypothesis on the origin of cultivated barley defines the Fertile Crescent 

as its center of origin (Harlan 1976), but a hypothesis of multicentric origin has also been proposed 

(Molina-Cano et al. 1999). Data from cpDNA analysis suggests that barley has been taken into 

cultivation more than once, but that only very few domestication events have occurred (Zohary 

1969, Neale et al. 1988)  
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 Barley is a diploid (2n = 14) and predominantly self-pollinated crop. Consequently, its 

variation is structured in true breeding lines. Hundreds of modern varieties and thousands of land 

races are known. All cultivars have non-brittle ears, the spike stay intact after ripening and are 

harvested and threshed by humans. This is in sharp contrast with wild barleys, in which ears always 

brittle. Non-brittleness in cultivated barley is governed by a mutation in either one of two tightly 

linked `brittle´ genes (Bt1, Bt2). The brittle wild-type allele in each locus is dominant, whereas, the 

non-brittle alleles are recessive. Many cultivars are homozygous for both recessive mutations. 

Others carry only one mutation (Takahashi 1964, 1972). The Non-brittle mutation survived only 

under domestication. 

Wild ancestry: The wild ancestor of the cultivated barley is well known. The crop shows close 

affinities to a group of wild and weedy barley forms which are traditionally grouped in Hordeum 

spontaneous C. Koch, but which are, in fact, the wild race or subspecies of the cultivated crop. The 

correct name for this wild is therefore H. vulgare L. ssp. spontaneum (C. Koch), Tell. These are 

annual, brittle, two- rowed, diploid (2n = 14), predominantly self-pollinated barley forms and the 

only wild Hordeum stock that is cross compatible and fully interceptive with the cultivated barley, 

vulgare x spontaneum hybrids show normal chromosome pairing in meiosis. Also morphologically, 

the similarity between wild spontaneous and cultivated two-rowed distichal varieties is rather 

striking. They differ mainly in their modes of seed dispersal. Spontaneous ears are brittle and 

maturity disarticulates into individual arrow-like triplets. These are highly specialized devices, 

which ensure the survival of the plant under wild conditions. Under cultivation this specialization 

broke down and non-brittle mutants were automatically selected for in the man-made system of 

sowing, reaping and threshing (Harlan and Zohary 1966; Zohary 1969).  

The close genetic affinities between the cultivated crop and wild spontaneum barleys are 

indicated also by spontaneous hybridizations that occur sporadically when wild and cultivated 

forms grow side by side. Some of such hybridization products, combining brittle ears and fertile 

lateral spikelets, were in the past erroneously regarded as genuinely wild types and even given a 

specific rank (H. agriocrithon Åberg). Extensive isozyme, seed storage proteins, and DNA tests 

have already been carried out in barley (Nevo 1992). The results confirm the close relationships 

between the wild and cultivated entities grouped in the H. vulgare complex. They also clearly show 

that genetic diversity in spontaneum wild population is much wider than that present in the 

cultivated gene pool. 

Hordeum vulgare ssp. spontaneum is spread over the East-Mediterranean basin and West 

Asia, penetrating as far as Turkmenia, Afghanistan, Ladakh, and Tibet. Wild barley occupies 

primary habitats and man-made habitats. Its center lies of origin in the ´fertile crescent´, starting 



REVIEW OF LITERATURE  6 

 

from Israel and Jordan in the Southwest, stretching North towards South Turkey and bending 

southeast Iraqi of Kurdistan and Southwest Iran. In this area, wild spontaneum barley is 

continuously and massively distributed. It constitutes an important annual component of open 

herbaceous formations, and it is particularly common in the summer-dry deciduous oak park-forest, 

East, North, and West of the Syrian Desert and the Euphrates basin, and on the slopes facing the 

Jordan Rift Valley. From here, H. vulgare ssp. spontaneum spills over the drier steppes and semi-

desert.  

In the Near Eastern countries, wild barley also occupies a whole array of secondary habitats, i.e. 

opened-up Mediterranean marquis, abandoned fields, and roadsides. It also infests cereal cultivation 

and fruit tree plantations (Harlan and Zohary 1966). Further was west, in the Aegean region, the 

Mediterranean shore of Egypt and Cyrenaica and further East in Northeast Iran, Central Asia and 

Afghanistan. Wild spontaneum barley rarely builds large stands and seems to be completely 

restricted to segetal habitats, ruins, or to sites which have been drastically churned by human 

activity. In general, wild barley does not tolerate extreme cold and it is only occasionally found 

above 1500 m. It is almost completely absent from the elevated continental plateaux of Turkey and 

Iran. On the other hand, it is somewhat more drought resistant than the wild wheat and penetrates 

relatively deep into the warm steppes and deserts, Zohary and Hopf, (1993)  

 

2.2 Economic of Barley cultivars 

Cultivated barley, Hordeum vulgare L., is one of the main cereals of the belt of Mediterranean 

agriculture and a founder crop of old world Neolithic food production. All over the area barley is a 

universal companion of wheat, but in comparison with the latter it is regarded as an inferior staple 

and the poor people�s bread. But barley is used to drier conditions, poorer soils and some salinity. 

Because of these qualities, it has been the principal grain produced in numerous areas and an 

important element of the human diet. Barley is also the main cereal used for beer fermentation in 

the old world. The preparation of this beverage seems to be a very old tradition (Darby et al. 1977; 

Hopf 1976; Samuel 1996.) The crop was, and still is an important feed supplement for domestic 

animals. 

 The annual world production of barley amounts to 10,927,970 tones (FAO, 2002). After maize, 

rice and wheat, barley ranks as the fourth most important crop in the world. 

 The average barley yield in Germany progressed in the last 20 years from 43 dt/ha to approx. 59 

dt/ha. In 2000, approx 12 million tons of barley was harvested, with 9 million tons used as a feed. A 

tenth of the barley world production, mainly summer barley, is used for production of malt for beer 
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and whisky. The smallest a proportion serves directly for human nutrition in the form of barley 

(Zacharias 2001). 

 

2.3  Barley breeding 

Breeding new barley varieties is based on creating new allele combinations and subsequent 

testing and selection of the desirable phenotypes during the selfing generations. Heritable variation 

is created mainly by controlled crosses between adapted high yielding cultivars and breeding lines. 

Although variety breeding is based on elite germplasm, specific traits may be introgressed from 

wild barley and landraces in backcrossing programs (Nevo 1992). Spontaneum mutations, as well as 

mutations induced by radiation or chemical treatments, have also been used (Briggs 1978). 

Recently, genetic diversity has been added to the tools for creating new variation in barley (Ritala et 

al. 1994, Wan and Lemaux 1994). The early generations following crossing are highly 

heterozygous, making reliable selection difficult until an acceptable level of homozygosity is 

reached. A short cut to homozygosity can be achieved in barley by producing doubled haploid lines 

either from immature pollen grains by anther or microspore culture, or through interspecific crosses 

between barley and H. bulbosum with subsequent chromosome elimination (Pickering and Devaux 

1992). Both methods are used in commercial barley breeding programs and several doubled haploid 

varieties have been released. 

2.4 What is the importance of drought stress? 

 Barley crop is considered important cereal crop not only in Germany and Egypt but also all over 

world. As barley is feeding mankind, there is an increasing interest in barley world-wide. Barley is 

the important crop in Germany and Egypt covering nearly 1,970,335 and 33,007 ha, produced 

10927970 and 100797 tones, respectively (F.A.O statistic production year book 2002). Barley 

production in Egypt can be increased by extending the presently cultivated land to places with 

areatic water availability in winter or season fluctuation in rainfall such as North and west Egypt. 

All over the world, heat and water are clearly among the most important factors affecting plant 

survival and function. Plant growth and yield are directly controlled by water supply. So, water 

deficit and changes in the environmental conditions may reduce growth and impair metabolic 

processes (Hsiao, 1973). Root growth is an important component of the adaptation of rice to 

drought-prone environments (Price et al. 1997). The response of plant to stresses depends on it is 

genetic potential to adaptation to duration and intensity of drought and heat. Heat or drought 

resistance in crops could be attributed to either avoiding or tolerating drought. Avoiding drought 

could be achieved by reducing water loss and /or maintaining water uptake. Tolerance to drought 
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could be attained through a mechanism that enhances plant ability to withstand low water potential, 

(Clarke, et al. 1984). Crop plant adapt to drought by either avoiding or tolerating cell dehydration 

(Turner, 1986). Drought avoidance involved rapid morphological development, leaf rolling, leaf 

shading, reduced leaf area, and increased stomata and cuticular resistance (Morgan, 1984; Turner, 

1986). Plants tolerate drought by maintaining sufficient cell turgor. Lowering of the osmotic 

potential of cells by accumulating solutes was considered due to osmotic adjustment if the build-up 

compounds were not merely the result of tissue dehydration (Bray 1993). Osmotic adjustment 

enable water uptake to continue under increasing drought in many crop species and, in some cases, 

it was associated with maintenance of growth and stable yield under drought conditions 

(Gunasekera and Berkowitz, 1992). Drought and high temperature usually occur simultaneously, 

but their effects on plant development are often studied separately. The level of the other stress 

might alter crop responses to one stress. For instance, high temperature might interact with osmotic 

adjustment in plants in several ways; it might interact with osmotic adjustment directly by 

increasing the rate of evaporation (Gates, 1968) or by interfering with the production and utilization 

of solutes involved in osmotic adjustment (Li et al. 1993). Effects that are would alter production of 

solutes for osmotic adjustment to drought.  

 

Previous studies on heat and drought stresses in crops demonstrated that crop genotypes reacted 

differently either to high temperature or to drought. In several crops, such as spring wheat (Mustafa 

et al. 1996) and faba bean (link et al. 1999); significant relationships between some morphological 

and physiological characteristics and drought stress have been reported. Thus, morphological and 

physiological studies of barley genotypes may be used in the breeding program. Reports indicate 

that drought could significantly increase sugar beet leaf diffusive resistance and thus decrease leaf 

photosynthesis (Clover et al. 1999). It was reported that differences in stomatal diffusive resistance 

might be seen between genotypes of some crops such as maize and durum wheat (Ray and Sinclair, 

1997; Clarke and Clarke, 1996). Drought and heat tolerance tests that were developed for sorghum 

were adapted to and evaluated in field grown wheat (Blum and Ebercon 1981). In rice, the 

occurrence of drought at the booting stage is the most damaging event to grain yield because it 

drastically increases sterility (Kobata et al. 1994). 

Genotypic differences in proline accumulation have been reported for various different plants such 

as barley, sorghum and rice (Blum and Ebercon 1976). Although Hanson et al. (1977) reported that 

plant proline accumulating potential should not be utilized as a positive index in screening drought 

resistance cereals. Physiological response was for barley genotypes to drought stress in order to 

determine if certain physiological characteristics can be used as a screening tool to select drought 
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resistance genotypes. The final yield was more reduced when drought was imposed at pollination 

and flowering stages than vegetative or pod filling stages (Pimentel et al. 1999). An only limited 

view of the genotypic variability of the underground organs; in addition, knowledge was deficits in 

the relations with the yield formation (Schwarz et al. 1989). Genotypic differences in root traits 

may be responsible for differences in yield especially under unfavorable growing conditions 

(Schwarz et al. 1991).  

2.5 Why is heat stress important?  

High temperature is a major stress factor limiting crop productivity (Fokar et al 1998). Breeding 

efforts by a number of national wheat breeding programs has resulted in the release of germplasm 

adapted to warm growing environments, such as in Egypt and Sudan (AbdElShafi and Ageeb, 

1994), India (Tandon, 1994), and Uruguay (Pedretti and Kohli, 1991). Photo-assimilation is more 

likely to be yield limiting under heat stress than in temperate environments, especially as stress 

typically intensifies during grain filling, when demand for assimilates is greatest. This is borne out 

by the observation that under stress, total aboveground biomass typically shows a stronger 

association with yield than with partitioning, harvest index. The situation is usually reversed under 

temperate conditions. Hence traits affecting radiation use efficiency (such as ground cover, stay 

green, and photosynthetic rate) could be expected to be important under heat stress. Although early 

ground cover seems to be important in an agronomic context (Badaruddin et al. 1999), variation in 

this trait among genotypes does not seem to be associated with heat tolerance. Physiological 

evidence indicates that loss of chlorophyll during grain filling is associated with reduced yield in 

the field (Reynolds et al. 1994). High temperature stress (>35°C) during the grain filling period has 

the potential to modify grain quality (Blumenthal et al. 1995). 

Respiration costs are higher as temperature increases, leading eventually to carbon starvation 

because assimilation cannot keep pace with respiratory losses (Levitt, 1980). However this 

apparently wasteful process would seem unavoidable, at least in current germplasm, as evidenced 

by positive associations observed between dark respiration at high temperatures and heat tolerance 

of sorghum lines (Gerik and Eastin, 1985). On the other hand, high rates of dark respiration in 

grains may be severely detrimental to yield (Wardlaw et al. 1980). 

Heat shock proteins are synthesized at very high rates under high temperature stress and are 

thought to have a protective role under stress; nevertheless, their role in determining genetic 

differences in heat tolerance has not been established. Chlorophyll fluorescence may be a more 

promising screening trait, given that associations between heat tolerance and lower fluorescence 

signals have been reported in a number of crops (Moffat et al. 1990).  
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When growth resources are limited by heat stress, the size of plant organs such as leaves, tillers, 

and spikes are reduced (Fischer, 1984). The apparent sensitivity of metabolic processes to heat 

stress in the field (Reynolds et al. 1998), coupled with the reduced length of life cycle at high 

temperature (Midmore et al. 1984), explains why grain yield is strongly associated with total plant 

biomass in hot environments. These interactions make crop management practices critical to 

sustaining wheat yields in warm environments. 

 Heat stress reduced both the grain growth duration and the grain growth rate (Viswanathan 

and Renu 2001). In many parts of the Asian subcontinent, crop damage due to heat stress under late 

planting conditions has become an important factor limiting wheat yields as a result of the rice-

wheat cropping system, (Aslam et al. 1989). A growing demand for food due to global warming 

will in the future push crops further into heat stress environments.  

Heat stress reduces grain weight and quality (Ciaffi et al. 1995). It reduces the grain growth 

duration (Ishag and Mohamed 1996) and grain growth rate (Tashiro and Wardlaw 1990). Starch 

synthesis is highly sensitive to high temperature stress due to the susceptibility of the soluble starch 

synthesis in developing kernels of wheat (Denyer et al. 1994). Protein synthesis is less heat 

sensitive than starch accumulation (Bhullar and Jenner 1985). However, even short periods of very 

high temperature (35-40 °C) during development can have a negative effect on grain quality (Ciaffi 

et al. 1995). The steady expansion of the environmental range encompassed by temperate cereals 

since their domestication 5,000-100,000 years ago has meant that both temperature extremes and 

water availability have become important factors limiting the production of these cereals in many 

parts of the world. An added complication in the projected rise in both global mean temperature and 

frequency of periods of very high temperature (heat shock), as part of the greenhouse climate 

change, which may further increase the pressure of heat stress in many temperate cereal growing 

regions (Conroy et al. 1994) 

High temperature late in the development of the crop are a feature of many of the wheat growing 

areas in US and maximum day temperatures above 32°C during the last 15 days of kernel filling, is 

associated with reduced quality. Thompson (1975) made the observation that the importance of 

high temperature during kernel filling was reinforced by series of time-of-planting. High 

temperature during grain filling can considerably reduce yield. At high temperature, photosynthesis 

declined (Paulsen, 1994), dark respiration and photorespiration increased (Lawlor, 1979). Heat 

stress caused a reduction in mean yield of the random inbred line population by 47% as compared 

with normal winter growing conditions (non-stress) (Blum et al. 2001). The cause for death after 

lethal heat shock is not well understood. A shift from low to intermediate temperature causes the 

induction of heat-shock proteins in most organisms (Davidson et al. 1996). Although, the 
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importance of temperatures greater than 32°C, coverage was also given to altered performance due 

to warming in the moderate temperature range from of 15-32°C during grain filling, recognizing 

that these two heat ranges may produce distinct reactions (Wardlaw and Wrigley 1994). The heat-

shock responses of barley (Hordeum vulgare L. cv Himalaya) aleurone layers incubated with or 

without gibberellic acid (GA3) were compared. Sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis revealed that heat shock blocked the synthesis and secretion of secretary proteins 

from GA3-treated layers but not untreated layers. Heat shock modestly increased the degree of fatty 

acid saturation in untreated aleuronic layers. The same trend was noted in fatty acids isolated from 

ER membranes purified by continuous sucrose density centrifugation. Increased fatty acid saturation 

may help sustain ER membrane function in heat-shocked aleuronic layers incubated in the absence 

of GA3 (Grindstaff et al. 1996). Cells must survive challenges from the environment with regard to 

heat, UV radiation and heavy metals as well as tolerate the endogenous generation of reactive 

oxygen intermediates during respiration (Raitt et al 2000). Activation of heat shock factor binding 

and inducible heat shock protein expression enables cells to resist various stress forms (Schett et al. 

1999). However, there were no major differences between heat-tolerant variants and non-tolerant 

variants in the time or temperature required to induce the heat shock response (Park et al. 1996). 

 Evidence suggests that the small chloroplast heat-shock protein is involved in plant thermo 

tolerance but its site of action is unknown. Functional disruption of this heat-shock protein using 

anti-heat-shock protein antibodies or addition of purified heat-shock protein to chloroplasts 

indicated that (a) this heat-shock protein protects thermolabile photosystem II and, consequently, 

whole-chain electron transport during heat stress; and (b) this heat-shock protein completely 

accounted for heat acclimation of electron transport in pre-heat-stressed plants. Therefore, this heat-

shock protein is a major adaptation to acute heat stress in plants (Heckathorn et al 1998). There is 

increasing evidence for considerable interlinking between the responses to heat stress and oxidative 

stress (Panchuk et al. 2002). Grain sterility and specific forms of morphological and cellular 

damage depend on the stage of development of grain at the time of transfer (Tashiro and Wardlaw 

1990). Temperature (27/22°C) (50% shade) during spike development can reduce the response of 

the developing grain to high temperature (30/25°C) following anthesis (Wardlaw 1994 and 

Wardlaw et al. 1995). Temperature stress during kernel development affects maize grain growth 

and yield stability (Cheikh and Jones 1994) 

Short periods of high temperature have been shown to reduce grain weight and baking 

quality in wheat, but little is known about their effects on barley. The high temperature (maximum 

40°C for 6 h day-1) and drought treatments were maintained for 5 or 10 days. Drought reduced 
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individual grain weight much more (ca 20%) than high temperature (ca 5%) (Savin and Nicolas 

1996)  

2.6 Osmotic adjustment  

Drought is an important abiotic factor affecting the yield and yield stability of food cereals of 

the Mediterranean basin. This stress acts simultaneously on many traits, leading to a decrease in 

yield. Drought tolerance could therefore, be studied by identifying the traits which have a 

significant impact on yield, and genetic factors controlling them (Teulat et al 2001). Tolerance to 

drought stress is difficult to characterize and quantify, and there has been relatively little progress in 

improving drought tolerance in cereals. Among the many physiological characteristics proposed as 

drought tolerance traits, osmotic adjustment is one of the few that has been associated with 

increased yield under drought stress (Morgen et al. 1986). Measurement made at full turgor may 

allow this distinction, osmotic adjustment depending only on the amount of solute molecules. 

Osmotic adjustment is defined as the difference between the osmotic potential at maximal turgor 

(Wilson et al 1979) of the stressed and the unstressed plants. The evaluation of osmotic adjustment 

requires a comparison between well-watered plants and plants under a defined water stress. 

However, the definition of well-watered plants also differs according to authors (Basnayake et al. 

1993). The degree of osmotic adjustment increased as the soil water content decreased (Kuang et al. 

1990). 

Barley could serve as a simple genetic model as it is known to be well adapted to several 

abiotic stresses, especially to water deficit (Ceccarelli 1987). The maintenance of relative water 

content and a high osmotic adjustment are known to contribute to increase yield and yield stability 

under drought in cereals (Clarke and McCiag 1982). Osmotic adjustment is defined as a decrease of 

osmotic potential within cells, due to an active solute accumulation after water-potential reduction 

in response to water stress (Blum, 1988). Osmotic adjustment could arise from an increase in the 

amount of solutes by active solute accumulation or a decrease in the water content on a dry weight 

basis (Wilson et al. 1980). The decrease in osmotic potential leads to maintenance of cell turgor, 

and, more generally, turgor-dependent processes, suggesting that osmotic adjustment is a good 

physiological trait to be considered in breeding for drought tolerance. The solutes, which 

accumulate during osmotic adjustment, include inorganic cations, organic acids, free amino acids 

and carbohydrates (Turner and Jones 1980). The main solutes accumulated during osmotic 

adjustment in barley are water-soluble carbohydrates (Lewicki 1993).  
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Plants resort to many adaptive strategies in response to abiotic environmental stresses such as high 

salt, dehydration, cold, heat, and excessive osmotic pressure. These adaptive mechanisms include 

changes in morphological and developmental patterns as well as physiological and biochemical 

processes (McCue and Hanson, 1990). Among them, the accumulation of compatible solutes 

according to the metabolic responses has drawn much attention. Some stress-responsive genes 

encoding proteins for compatible solute synthesis have been cloned and expressed in transgenic 

plants (Bartels and Nelson, 1994). The compatible solutes may be classified into two categories: 

one is nitrogen-containing compounds such as proline and other amino acids, quaternary 

ammonium compounds and polyamines, and the other is hydroxy compounds, such as sucrose, 

polyhydric alcohols, and oligosaccharides (McCue and Hanson, 1990). Significant differences 

existed between wild desert barley and cultivated barley in resistance to a uniform root water 

deficit. These differences appeared to be primarily related to their differing genetic abilities of 

osmotic adjustment under drought conditions. The findings suggest that further genetic mapping 

and marker-assisted transfer of the osmotic-adjustment genes in the wild progenitor could improve 

resistance of cultivated barley grown in water-limited environments (Lu et al. 1999). The 

accumulation of solutes varies with the variation in adverse conditions and plant species, or even 

plant varieties. In general, a plant cell suspension culture is considered a relatively homogeneous 

population of cells. Much research has used cultured cells as a model system to study the cellular 

responses under various abiotic stresses, even to distinguish the difference between the short-term 

response and long-term adaptation involving physiological characters.  

2.7 Carbon isotope discrimination 

 

There are two naturally occurring stable isotopes of carbon 12C and 13C. Most of the carbon is 
12C (98.9%), with 1.1% being 13C. This isotope is unevenly distributed among and within different 

compounds, and this isotopic distribution can reveal information about the physical, chemical, and 

metabolic processes involved in carbon transformation. The overall abundance of 13C relative to 12C 

in plant tissue is commonly less than in the carbon of atmospheric carbon dioxide. This indicates 

that carbon isotope discrimination occurs in the incorporation of CO2 into plant biomass. Because 

the isotopes are stable, the information inherent in the ratio of abundances of carbon isotope 

discrimination, presented by convention as 13C/ 12C, is invariant as long as carbon is not lost 

(Farquhar et al. 1989). Theoretical and empirical studies have demonstrated that carbon isotope 

discrimination is highly correlated with plant water use efficiency. Carbon isotope discrimination 

provides an integrated measure of water-use efficiency, samples are easily collected, and processed, 
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and large numbers of samples may be collected from diverse environments. Moreover, in woody 

plants, carbon isotope discrimination can be determined on annual ring samples, providing a 

historical report of plant responses to environmental conditions (Cregg and Zhang 2001). In several 

crops including cereals, carbon isotope discrimination (CID) has been associated with drought 

tolerance in terms of water-use efficiency and yield stability in drought-prone environments (Teulat 

et al. 2002).  

The Mediterranean basin is one of the regions where drought leads to substantial yield 

reductions (Loss and Siddique 1994). Drought tolerance and yield stability is therefore an important 

aim for breeders in these regions. As an alternative, a multitude of morph-physiological characters 

have been suggested as indicators for increasing grain yield under drought conditions. Amongst 

these, transpiration efficiency (TE: the ratio of dry matter produced to water transpired) is 

considered as an important drought-adaptive trait in cereals. Carbon isotope discrimination (CID) 

provides an integrated measurement of TE of C3 crop species (Farquhar and Richards 1984). 

During photosynthesis, plants discriminate against the heavy isotope of carbon (13C). And, as a 

result, in several C3 species including wheat and barley, CID is positive correlated with the ratio of 

internal leaf CO2 concentration to ambient CO2 concentration (Ci/Ca) and negatively correlated 

with TE (Farquhar and Richards 1984; Johnson and Bassett 1991). Thus, a high Ci/Ca leads to a 

higher and a lower TE (Farquhar and Richards 1984). The major advantage of using CID in 

selection is its high habitability, which is primarily due to small genotype x environment 

interactions in dryland areas (Richards et al. 1999; Merah et al. 2001b). CID has been found to be 

positive correlated with grain yield in cereals within and across contrasting environments (Acevedo 

1993; Araus et al. 1997; Voltas et al. 1998; Merah et al. 2001a, b; Teulat et al. 2001b). Although 

the accession which part of the plant to use for CID measurements is still being debated, for cereals 

grown under Mediterranean conditions, the grain is considered most appropriate (Voltas et al. 1998; 

Merah et al. 2001b). Measuring CID by mass spectrometry remains expensive. As a result, a 

number of alternative criteria for CID have been suggested including stomatal conductance 

(Rebetzke et al. 2001), leaf structural traits such as dry weight per unit leaf area (Araus et al. 1997; 

Merah et al. 2001a) and as content (Araus et al. 1997; Voltas et al. 1998; Merah et al. 2001a). 

Overall these have been shown to be less-effective measures. CID is therefore a good example of a 

trait, which could be efficiently, tracked by molecular markers through the identification of 

quantitative trait loci (QTLs). Markers diagnostic of individual QTLs represent an important 

surrogate for physiological trait measurements (Price and Courtois 1999), and may ultimately 

improve selection efficiency through marker-assisted breeding. 
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There is currently limited insight into the genetic control of TE and CID. Matin et al. (1989) 

found that 70% of the genetic variation for CID in populations derived from a cultivated and a wild 

tomato was associated with three RFLP loci, mapped on three different chromosomes. In soybean, 

several QTLs for CID were identified under favorable plant growth conditions (Mian et al. 1996). 

Surprisingly, the identification of QTLs involved in CID variation under drought conditions is 

undocumented in cereals.  

 

2.8  Systematic decency of the barley BC2DH lines  
Doubled haploid 323 lines of a backcross population between wild barley (ISR42-8) from the Middle East 

and German barley cultivars (Scarlett) were examined for their tolerance to drought and heat. The German 

Scarlettt cultivar is a variety with high yield good quality characteristics was crossed with a wild barley 

accession from the Middle East. The resulting backcross population with Scarlettt as recurrent parent carries 

average 87, 5% of the barley cultivars genotype and 12.5% of the wild barley genotype. Since the wild 

barley originates from a semiarid area. 

 

2.9 Doubled haploids population (BC2DH) 

Doubled haploids are commonly used in many plant species in recent years, which are 

amenable to anther or microspore culture (usually from F1 plants), followed by chromosome 

doubling. Because the plant has two identical homologues, the amount of recombination 

information is exactly equivalent to a backcross. However, BC2DH individuals are completely 

homozygous, and can be self-pollinated to produce large numbers of progenies, which are all 

genetically identical. This permit replicated testing of phenotypes, and also facilitates distribution of 

identical BC2DH populations to many different researchers. Thus, a BC2DH population can also be 

called a permanent population. Major drawbacks of BC2DH populations are firstly, it is impossible 

to estimate effects and types of epistasis; secondly, the rates of pollen or microspores successfully 

turned into BC2DH plants vary between genotypes, which may cause segregation distortion and 

false linkage between some marker loci (Zhao 2002). 

 

2.10 The role of plant physiology in plant breeding for drought tolerance 

 

Plant mechanisms that enable plants to become better adapted to water-scarce environments 

are widely, but most of them are not yet well understood. Among the most important are root 

architecture, leaf morphology, physiological characters such as osmotic adjustment or proline 

accumulation, partitioning of total biomass (as determined by dry matter or harvest index), timing 

for plant development (e.g. earliness), or others associated to the plant reproductive biology. Some 

http://link.springer.de/link/service/journals/00122/contents/02/01028/paper/s00122-002-1028-8ch102.html#N609
http://link.springer.de/link/service/journals/00122/contents/02/01028/paper/s00122-002-1028-8ch102.html#N615
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of these characteristics are specific while others are common for many species. Some reports 

indicate a significant association between crop tolerance to heat and respective adaptation to 

drought-prone environments in the warm tropics (Ortiz et al. 2001).  

 

2.11 Use of backcross populations for QTL analysis  

The reason for the production of a DH population for a QTL analysis is to induce the 

recombination of genes and alleles in the descendants to those created from variability. The alleles 

are distributing in equal parts to the two homozygosis class genotypes.  

A DH population specified so far is however not suitable for the identification of positive 

alleles from wild forms with the goal to increase and improve of quantitative characteristics. After 

two recurrent of backcrossing of a wild species with an elite variety, the wild form portion of the 

entire genome is on the average decreased to12, 5% the restriction of the wild alleles genome 

portion in each individual line of the backcross population quantitative traits like increased yield or 

improve quality can be better seized, since unwanted wild alleles and epistatic effects are reduced. 

The idea is based on the fact that favorable QTL alleles of the wild form barley can be identified 

and transferred in elite barleys to stabilize the drought and heat tolerance. First successful 

experiments on applications of the QTL analysis were reported on tomato (Tanksley et al. 1996; 

Fulton et al. 1997a, 2000; Bernacchi et al. 1998), rice (Xiao et al. 1996, 1998), barley (Pillen et al. 

2003; 2004) and wheat (Huang 2003). In, a self-pollinating diploid crop likes barley, variation 

evolved primarily by mutation and selection. Since the middle of the last century more or less pure 

lines in the form of land-races have been collected and crossed (Horvath et al. 2001). 

 

2.12 Application of simple sequence repeats (SSRs) marker  

Barley is one of the most important crop species in the world and has been subject to 

considerable genetic study. It is a diploid (2n = 2x = 14) largely self-pollinating species with a large 

genome of 5.3 x 109bp/1C (Bennett and Smith 1976). The development of SSR markers for barley 

has followed a common pattern with the first few derived from sequences held in public databases 

(Saghai-Maroof et al. 1994; Becker and Heun 1995). This has been followed by screening small 

insert genomic libraries for SSRs motifs (Struss and Plieske 1998). The limited progress indicates 

that SSR isolation and characterization from plants is not trivial, and that effective strategies need to 

be devised which increase the efficiency of the SSR discovery and development phase (Ostrander et 

al. 1992; Edwards et al. 1996). 

The ubiquity of SSRs in eukaryotic genomes and their usefulness as genetic markers is well 

established. In mammalian systems, SSRs are the primary assay for detecting molecular 
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polymorphism and well-developed SSR linkage maps are available for a number of species 

(Sverdlov et al. 1998). A high level of SSR in formativeness has also been revealed for plant 

species (Milbourne et al. 1997) and this has prompted the initiation of SSR discovery programmers 

for all major crops (Milbourne et al. 1998). However, there exist a number of limitations associated 

with SSR discovery and application in plants, including a lack of DNA sequence information in 

databases, a perceived low abundance of SSRs, differences in the most common types of repeats 

and the problem of rapid forward and back mutation rates making assumptions of 'allelic identity' 

based on repeat number difficult to confirm.  

In humans, it has been estimated that, on average, one SSR occurs every 6 kb (Beckmann and 

Weber 1992). Dinucleotide repeats are most frequent, with CA/GT repeats estimated to occur every 

30 to 60 kb (Stallings et al. 1991). In plants, analysis of DNA sequence database entries for all 

possible motifs has revealed a frequency of one SSR every 29kb (Lagercrantz et al. 1993) to one 

every 50kb (Morgante and Olivieri 1993). AT/TA repeats comprise the majority of the database-

derived plant SSRs. Because of the relatively low number of plant DNA sequences and the bias 

towards coding regions, SSR frequency has also been assessed by oligonucleotide hybridization. 

Such analyses have suggested figures of one SSR every 80 kb in rice (Panaud et al. 1996) and one 

every 65 kb in pine (Echt and Maymarquardt 1997). Generally lower estimates have been obtained 

in studies using only dinucleotide repeats (Roeder et al. 1995) with CA/GT and CT/GA repeats 

approximately an order of magnitude less frequent in plants than in animals (i.e. one every 250 - 

750kbp).  

To overcome this problem of abundance, plant geneticists have suggested screening large 

numbers of clones (Roeder et al. 1995) or develop selective SSR enrichment techniques (Edwards 

et al. 1996; Milbourne et al. 1998). These were generally successful and resulted in the 

development of significant collections of SSRs (Roeder et al. 1998).  

2.13 Mapping quantitative trait loci 

2.13.1 Quantitative traits 

 The Advanced Backcross Quantitative Trait Locus (AB-QTL) strategy (Tanksley and Nelson 

1996) was proposed as a new molecular breeding method based on QTL mapping, that can integrate 

the processes of QTL analysis and variety development while exploiting the full potential of genetic 

variation available in unadapted germplasm for the improvement of quantitative traits. This study 

intends to apply the AB-QTL strategy, to the simultaneous detection and introgression of favorable 

barley wild species genes of quantitative traits.  

Characters exhibiting continuous variation are termed quantitative traits. Continuous variation is 

caused by two factors: simultaneous segregation of many genes affecting the trait and/or 
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environment influencing the expression of the trait (Falconer and Mackay 1996). In crop plants 

most traits of economical importance, including yield, heading date, height and many quality traits, 

are quantitative by inherited. The unknown genes affecting these traits are commonly referred to as 

quantitative trait loci (QTL). Biometrical approaches have traditionally been used for studying 

quantitative traits and the statistical quantitative genetic model assuming essentially infinitely many 

genes with tiny effects works well for many applied purposes, such as plant breeding. The details of 

the genetic basis of quantitative traits however remained unclear until genetic maps based on DNA 

markers were marked.  

2.13.2 Method of QTL mapping 

Association of morphological markers with quantitative traits in plants was observed early on (Sax 

1923) and the first steps towards mapping of QTLs or polygenes were taken based on the scarce 

markers available (Thoday 1961). Currently, complete genetically maps exist for many crop species 

and algorithms have been developed for QTL mapping in a wide range of pedigrees and 

experimental designs including F2, backcross, recombinant inbred, doubled haploid and many other 

designs (Paterson 1995). All share the basic principle of testing association between marker 

genotypes and quantitative phenotypes.  

The simplest methods were based on single marker analysis, where the difference between the 

phenotypic means of the marker classes are compared using F-statistics, t-tests, linear regression or 

nonparametric tests (Sax 1923, Edwards et al. 1987, Soller and Brody 1976). A major shortcoming 

of single marker analysis is that it cannot distinguish between tight linkage to a QTL with small 

effect and loose linkage to a QTL with large effect (Lander and Botstein 1989).  

The significance thresholds used for reclaiming a QTL are of major importance. Because QTL 

mapping involves many analyses of independent genetic markers throughout the genome, there are 

many opportunities for false-positive results. The appropriate threshold for controlling the type I 

error rate depends on the size of the genome and on the density of markers genotyped: a LOD 

threshold of 2.4 was considered adequate in simple interval mapping (SIM) for a genome of 1100 

cM covered with markers every 20 cM (Lander and Botstein 1989). This threshold was deduced 

from an assumed distribution for the test statistics, but the true distribution may deviate from the 

assumed distribution due to random distribution of the markers on the map (Tinker and Mather 

1995a). Alternate methods are based on resembling: permutation involves shuffling the phenotypes 

so that the effects of the parameters are lost and the distribution of test statistics under the null 

hypothesis can be derived from repeated permutations (Churchill and Doerge 1994).  
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The power of finding a QTL can be increased by decreasing the variation caused by the 

environment as well as by the background genome. Environmental variation can be decreased by 

repeated phenotype measurements or by using progeny testing for phenotype measures (Lander and 

Botstein 1989). The power of QTL detection also depends on the type and numbers of progeny 

studied. Based on computer simulation studies, progeny sizes from a few hundreds to a thousand 

have been suggested to detect QTLs of minor effect. In practical barley studies, doubled haploid 

population of 100-200 lines have been used frequently for mapping purposes. The density of the 

marker map is not as important as the progeny size: a map with 50 cM marker spacing is adequate 

for detection of QTLs. A denser map helps to locate the QTLs more precisely (Darvasi et al. 1993). 

Recent advances in QTL mapping procedures include analysis of QTL x environment interaction 

(Tinker and Mather 1995a, b, Jansen et al. 1995, Korol et al. 1998), a nonparametric approach to 

map QTLs (Kruglyak and Lander 1995), Bayesian mapping of QTLs (Satagopan et al. 1996, 

Sillanpaeae and Arjas 1998) and methods for differentiating pleiotropy from close linkage 

(Lebreton et al. 1998).  

2.14  Method of QTL calculation 

 The basic principle of using genetic markers to study quantitative trait loci (QTL) is well 

established (Sax 1923, Lander and Botstein1989; Jansen 1993; Zeng1994). Sax (1923) first used 

pattern and pigment markers in beans by investigating the segregation ratio of F2 progeny of 

different crosses. Thoday (1961) proposed the idea of using two markers to bracket a region for 

detecting QTL. The basic idea of Sax and Thoday for detecting the association of a QTL with a 

marker rests on the comparisons of trait means of different marker (chromosomal segment) classes. 

These methods, such as t-test and simple and multiple regressions, directly analyze markers.  

A further AB-QTL study, which used L. hirsutum as the donor species, revealed 25 

favorable wild species QTL alleles out of 121 detected QTLs (Bernacchi et al. 1998a) Again, the 

authors detected wild species alleles which increased yield by 15 %. The most recent AB-QTL 

study in tomato was published by (Fulton et al. 2000). In rice yield QTL effect on chromosome 1 

was validated in a second cross using the same Oryza rufipogon donor accession (Moncada et al. 

2001).  

2.15 Marker assisted selection  

In breeding autogamous species lines are developed from crossing schemes including two parents. 

In a backcross programmer a few traits would be transferred from a donor to a recipient. In line 
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development, however, good characteristics from all parents should be combined in a single line 

(Weber and Wricke 1994). Information on mapped QTLs can be used to design mating that 

maximize the probability of pyramiding most, if not all, favorable QTL alleles in a single genotype 

(Dudley 1993). For traits with significant interactions between QTLs emphasis should be placed on 

identification of the best multi-locus allelic combinations instead of simply collecting many alleles 

with positive effects (Zhu et al. 1999). 

The relative efficacies of marker assisted selection and traditional selection for improving 

quantitative traits have been considered in several simulation studies, as reviewed by Lee (1995), 

the efficiency of marker assisted selection is enhanced and may be more efficient than traditional 

selection under the following circumstances: 1) the trait under selection has low heritability; 2) a 

tight linkage is parent between the trait an the marker (<5cM); 3) in earlier generations of selection 

prior to fixation of alleles at or near marker loci; 4) large sample sizes for mapping and selecting 

QTL are used to improve estimates of QTL alleles. Markers very closely linked to the target genes 

or even located in the gene can greatly enhance the use of marker-assisted selection in advanced 

generations, where the linkage disequilibrium becomes smaller. The accurate chromosomal 

locations of QTLs, as well as the magnitude of QTL effects, should be verified prior to their use in 

an applied breeding program. In barley, the effect of four yield QTLs was verified using a set of 

BC2DH lines different from the lines used for mapping (Romagosa et al. 1999). In that study, 

selections based on marker genotypes, or combined information from markers and phenotype, were 

at least as efficient as phenotypic selection alone, but qualitative QTL x E interactions decreased the 

efficiency of marker-assisted selection for some of the QTLs. In the same barley lines, effects of 

only one of the two major QTL regions for several malting quality traits were verified, the effects of 

the other region were lost probably due to inaccurate location of the QTL (Han et al. 1997). 

Simultaneous selection for multiple traits complicates the use of marker-assisted selection in 

breeding. Information on several markers needs to be combined when selection is made. One 

method is to determine the marker genotype of each line being tested and sum the significant 

additive effects of each marker locus to an index value (Dudley 1997). A large number of plants 

have to be scored in order to find the desired marker combination in the progeny, which may render 

the selection procedure costly (Graner 1996). 
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2.16 Advanced backcross quantitative trait (AB-QTL) strategy 

The advanced backcross quantitative trait (AB-QTL) strategy was introduced by Tanksley 

and Nelson (1996). The authors integrated the mapping of favorable QTL alleles and the 

introgression of these alleles into one process. In order to achieve this goal, they utilized exotic 

germplasm as the genetic donor for the improvement of quantitative traits and conducted the marker 

and phenotype analysis in advanced backcross generations like BC2. It is expected that through the 

introgression of new exotic QTL alleles, the AB-QTL strategy will contribute to an increased level 

of genetic diversity in our modern crop varieties.  

To date, several reports on the application of the AB-QTL strategy are available for tomato 

and rice. In all cases, favorable exotic QTL alleles for important agronomic traits have been 

identified. For instance, fruit yield could be improved in tomato through the introgression of wild-

species alleles from Lycopersicon pimpinellifolium and L. peruvianum by 17% and 34%, 

respectively (Tanksley et al. 1996; Fulton et al. 1997). A further AB-QTL study, which used L. 

hirsutum as the donor species, revealed 25 favorable wild-species QTL alleles out of 121 detected 

QTLs (Bernacchi et al. 1998a). Again, the authors detected wild-species alleles which increased 

yield by 15%. A recent AB-QTL study in tomato was reported by Fulton et al. (2000). As in other 

tomato wild species, the authors could localize favorable exotic QTL alleles from L. parviflorum 

which, for instance, increased yield by 27%. Similar results could be found in AB-QTL studies in 

rice. Here, two wild-species QTL alleles have been associated with an increase of yield by 17% and 

18% on rice chromosomes 1 and 11, respectively (Xiao et al. 1996, 1998). Subsequently, the yield 

QTL effect on chromosome 1 was validated in a second cross using the same Oryza rufipogon 

donor accession (Moncada et al. 2001). Recently, reports appeared on the first AB-QTL analyses in 

maize (Ho et al. 2002), wheat (Huang et al. 2003) and barley (Pillen et al. 2003; 2004). In most 

instances, significant improvements in yield and yield components could be associated with exotic 

donor segments. The effects were dramatic in tomato and rice, where yield increased up to 34% and 

18%, respectively. The effects of exotic QTL alleles on yield were less pronounced in maize, wheat 

and barley but still reached levels of 11%, 15% and 7%, respectively. 

The favorable wild-species QTL alleles are useful as a breeding resource after they have been 

fixed in nearly isogenic lines (QTL-NILs) and after the superior performance of a QTL-NIL has 

been confirmed in comparison to the recurrent elite line. Bernacchi et al. (1998b) have already 

validated the effects of exotic tomato QTLs in QTL-NILs. In field evaluations at five locations 

worldwide, 22 QTL-NILs out of 25 tested (88%) exhibited phenotypic improvement compared to 
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the recurrent parent, as had been predicted in the previous AB-QTL analysis. For instance, a QTL-

NIL possessing an exotic QTL allele for a 15% yield increase did, indeed, outperform the control 

line by 12%. These reports clearly illustrate that the AB-QTL strategy is a powerful tool for the 

improvement of quantitative agronomic traits in elite varieties.  
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3. Materials and Methods 

The present study was carried out during the period of 2001-2003 at Poppelsdorf 

Experimental Station, Department of Crop Science and Plant Breeding, Faculty of Agriculture, 

Rheinische Friedrich-Wilhelms-University Bonn. 

Four experiments were used to study the performance of genotypes of barley for heat and 

drought tolerance. The experiments were arranged in a split-plot design with heat or drought 

assigned to main plot treatments and genotypes or BC2DH lines to sub-plot treatments.  

In 2001 Thuringia, Scarlett, Harry and Apex were evaluated for morphological, physiological, 

and agronomical traits in a green house trial using a randomized complete block design with three 

replications and four treatments for drought and heat tolerance. 

In 2002 and 2003 two experiments (drought tolerance and heat tolerance) the population 

parents (Scarlett and ISR42-8) were evaluated for morphological, physiological, and agronomical 

traits in a green house trial using a randomized complete block design with three replications, four 

treatments and two years 

In 2002 and 2003 two separate experiments (of drought tolerance and heat tolerance) were 

conducted with 323 BC2DH lines to evaluate morphological, physiological, and agronomical traits 

inside the green house trial using two treatments for two years.  

 Recording of phenotype data  

Growth habit: 

Scarlett showed a slow growth and development, hence has a medium stature. The shoot 

growth is good, due to the dense tillering, somewhat weaker seed strength is to be selected. A 

Scarlett high inventory density, a long, upright standing ear and middle TGW. 

The F1 was backcrossed twice with Scarlett by Dr. K. Pillen and friendly subjected to a 

double haploid procedure in order to develop a set of 323 BC2DH. 

 

 

 

 

 

 

 

 

 

 

http://www.ipf.uni-bonn.de/popp/index.html
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Table 1: Pedigree description of European spring barley cultivars and Wild barley (H. vulgare ssp. 
spontaneum) genotypes 

Variety Breeder Type Pedigree/ Source 

Apex v.Lochow/ Cebeco S2 Aramir*F1(Ceb.6721*(Julia(Volla*L100))) 

Harry Svalöf Weibull S2 Arls M*Tellus 

Scarlett Saatzucht Breun S2 Amazone Br.St.2730e*Kym 

Thuringia SZ Schöndorf S2 (Steffi*Gerlinde)*(243/4*Salome) 

ISR42-8 Prof. G.Fischbeck S2 Israel, Eastern Lower Galilee 

S2: spring form in two rows 

This pedigree for cultivars and wild genotypes was taken according to Pillen (2002). 

 

 

 

 

Plant material 

Scarlett was crossed onto ISR42-8 and then backcrossed with Scarlett, the observed Scarlett 

population (323 BC2DH lines). Doubled haploid lines of a backcross population between a wild 

barley accession from the Middle East (ISR 42-8) and a German barley cultivar were examined on 

their tolerance in relation to drought and heat. Scarlett is a high yielding German cultivar, where as 

high quality characteristics. Scarlett was crossed with the wild accession ISR 42-8.  

 

 

Scarlett x ISR42-8

F1 x Scarlett 

BC1F1 x Scarlett

BC2F1

BC2 DH

Hordeum vulgare ssp. vulgare x      Hordeum vulgare ssp.spontaneum
Elite-Line Wild species
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 Location 

The experiments were carried out in the green house during the years 2001-2003 at the 

Poppelsdorf Experimental Station, Department of Crop Science and Plant Breeding, Faculty of 

Agriculture, Rheinischen Friedrich-Wilhelms-University Bonn. 

 

3.1 Measurement of phenotypic data  

 

3.1.1 Experimental evaluation of Thuringia, Scarlett, Harry and Apex barley genotypes for 

drought tolerance 

The soil water holding characteristics were determined through the devolvement of soil 

absorption and thereafter the quantity of daily water supply was determined. Four levels of water 

treatment (irrigation) were used (35%, 50%, 65% and 100% field capacity (FC)), in case of 

irrigation studies Four treatments (35%, 50%, 65% and 100% FC), were tested in four different 

drought stress (see Table 2) in order to evaluate a drought stress regime, which could be used to test 

the BC2DH lines for their drought tolerance. The day/night regime was exposed14/10 hour light in 

the green house (Morgan 1980). The remaining water content was determined by weighting the pots 

every day until the weight became constant.  

Four genotypes (Thuringia, Scarlett, Harry and Apex) in 3 replicates and with 4 treatments 

(35% FC, 50% FC, 65% FC and 100 % FC) were selected for drought experiment. The water stress 

was imposed at 4-leaf stage by stopping the irrigation. The relative soil moisture content was 14% 

of the FC for the stressed-plants and 100% FC for irrigated plants (pots were weighed and watered 

daily) (This et al 2000; Teulat et al. 2001). After the second leaf reached up to the first true leaf 

length, the drought treatment via water withholding was started, and it was maintained 8 days 

without watering when the sand water content was about 50% field capacity (Guoxiong et al. 2002).  

Barley seeds were sown in plastic pots of 28-cm-diameter and 22 cm in length, with nine 

holes pierced at the bottom for drainage. Plastic pots contained a mixture of loamy soil, sand and 

peat moss (3:1:1 v/v) respectively. The parents were germinated in green house without temperature 

and humidity control. High �pressure sodium lamps supplemented natural sunlight by a 14-h 

photoperiod and 10-h dark period.  

3.1.2 Experimental evaluation of 323 BC2DH lines for drought tolerance 

323 BC2DH lines and two drought treatments (50% and 100% FC) a cross two years were 

observed for drought tolerance. On the other hand, two parents (Scarlett and ISR 42-8), 18 

replicates and 4 treatments (25%, 50%, 75% and 100% FC) a cross two years were tested.  

 



MATERIALS AND METHODS  26 

 

 Table 2: Drought treatment for parents and BC2DH lines  

Treatments Field capacity Start of treatment 

1-Stress 50% of field capacity After one month from planting. 

2-Control 100 % of field capacity After one month from planting. 

3-Parents 25%, 50%, 75%, 100 % of field capacity After one month from planting. 

 

Barley seeds were sown in 14-cm-diameter and 12 cm in length, with four holes pierced at the 

bottom for drainage plastic pots containing a mixture of clay /loam soil, sand and peat moss (3:1:1 

v/v) and germinated in greenhouse set at greenhouse temperature. High �pressure sodium lamps 

supplemented natural sunlight a 14-h photoperiod. Humidity was uncontrolled. 

 

3.1.3 Experimental evaluation of four barley genotypes for heat tolerance 

Four genotypes (Thuringia, Scarlett, Harry and Apex), were tested in three different heat 

regimes (see Table 3) in order to evaluate a heat stress regime, which could be used to test the 

BC2DH lines for their heat tolerance. Our method for heat stress is similar with the method used by 

Blum et al. (1994); Stone and Nicolas (1996). 

 

A Hydro-Thermograph (ADOLF THIES GMBH & CO.KG Goettingen) was used to measurement 

the temperature and humidity in the greenhouse. 

 

 Table 3: Temperature treatment in and outside the green house 

Treatments Temperature 

Heat stress 

In greenhouse season 2001 

Maximum temperature between 26-48.5°C. 

Minimum temperature between 14-25°C. 

Heat stress + drought stress In greenhouse + 65% field capacity 

Control 

In normal weather season 2001 

Maximum temperature between 6-34.6 °C 

Minimum temperature between -2.3- 18 °C 

(Out greenhouse) 
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3.1.4 Heat experiment for 323 BC2DH lines  

The 323 BC2DH lines were tested for heat tolerance for two years. The control was planted 

outside the green house under field condition. The lines were grown under high temperature 

conditions inside green house.  

323 genotypes, two heat treatments across two years were observed for heat tolerance. On the 

other hand, two parents (Scarlett and ISR 42-8), 18 replicate and two heat treatments a cross two 

years were made only for parents 

 Table 4: Treatment of BC2DH lines for heat stress 

Treatments Temperature 

Heat stress 

In greenhouse season 2002 

Maximum temperature from 19 to 52 °C. 

Minimum temperature from 15 to 27 °C. 

In greenhouse season 2003 

Maximum temperature from 19 to 45 °C. 

Minimum temperature from 10 to 24°C. 

Control 

Out of greenhouse in season 2002 

Maximum temperature from 4,8 to 36,9 °C 

Minimum temperature from -2,8 to 19,8 °C 

Out of greenhouse in season 2003 

Maximum temperature from -1.7 to 38.7°C 

Minimum temperature from -8.1 to 20.6 °C 

 

 

3.1.5 Fertilization  

The seedling of the four barley genotypes of the drought and heat tolerance experiment were 

fertilized with a solution of 4 g of Ammonium sulfate fertilizer containing 21 % N and 24 % S, and 

NPK fertilizer 12-12-17-2, containing 12 % N, 12 P2O5%, 17 % K2O and 2 % Mg; (1: 2 v/v) for 

three time. The BC2DH lines seedlings were fertilized with a liquid fertilizer, containing 7 % N, 3% 

P2O5, and 6% K2O for one time every two weeks. 

 

 

 

 

 



MATERIALS AND METHODS  28 

 

Table 5: Traits abbreviation for studied drought and heat stress parameters 

Trait Abbreviation 
AValue for drought 

experiment 

AValue for heat 

experiment 

Relative Leaf water content RWC + + 

Number of tillers per plant TILL + + 

Number of spikes per plant SPK + + 

Number of kernels per spike KER + + 

Plant height PH - - 

Chlorophyll content CHL + + 

Osmotic adjustment OA + + 

Days until heading HEA - - 

Number of leaves of main tiller LEA + + 

Flag leaf area FLA - + 

First leaf area ARE1 - + 

Second leaf area ARE2 - + 

Carbon isotope discrimination CID - not tested 

Yield YLD + + 

Biomass MAS + + 

Harvest index HI + + 
 AThe value of the trait should be increased (+) or reduced (–) with respect to the breeding goal.  

 

3.1.6  Data collection and sample harvesting  

 

 Measurement of traits for four genotypes and BC2DH lines were measured for the falling traits 

drought and heat tolerance:  

 

 Number of tillers per plant: average number of tillers per plant carried from six plants. 

 Number of spikes per plant: number of tillers with fertile spike observed from six plants. 

Number of kernels per spike: number of kernels measured as an average of 6 spikes sample. 

Relative leaf water content  

Relative leaf water content was measured different field capacity levels according to (Matin et 

al. 1989; Ali et al. 1999). The relative water content of the leaf tissues was calculated as follows: 

RWC (%) =(FW- DW) x 100 /(TW-DW), on the last fully expanded leaf according to (Barrs and 

Weatherly 1962), where FW is leaf fresh weight, TW the turgid weight obtained after 24 h floating 
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on distilled water at room temperature under dim light. Dry weight (DW) was measured after the 

samples had been dried for 24 h at 80 °C. 

 Osmotic adjustment 

For evaluation of leaf osmotic values, the penultimate leaf was cut, wrapped in plastic foil, 

frozen in liquid nitrogen. Then 500 µl sterile water was added and material was homogenize with 

ultraturrax. Then the material was incubated 1.5 hours in the refrigerator at 4 °C, centrifuged at 

13000 U/min for 3 minutes and finally stored at � 20°C until measurement. A sample of 50µl was 

taken and measured by Osomat 300 (gonotec, Berlin) with sterile water as standard. Osmotic 

adjustment was calculated according to (Wilson et al. 1979 and Ludlow et al. 1983).  

Chlorophyll content 

Chlorophyll-Photometer SPAD-502 (Fa. Minolta) was used to measure chlorophyll content. 

We measured chlorophyll content in fresh leaves in the first part of leaf, medium part of leaf and 

last part of leaf as an average of a three leaves.  

Days until heading  

 Number of days observed from sowing until the upper most spikes appeared beyond the 

auricles of the flag leaf sheath (50% heading on plants basis) 

Plant height (cm) 

The distance from the base of the culm to the tip of the spike of the main culm  

 Yield (g) 

 It was recorded as the grain weight from six plants for four barely genotypes for from two plants 

for BC2DH lines. 

Biomass (g) 

The above ground dry matter was produced by a crop during the growing season of six plants for 

four barely genotypes or for two plants for BC2DH lines (excluding roots). 

 Harvest Index 

 It carried from the ratio between grain yield and biomass 

Leaf area index (LAI) 

Leaf length (cm) x width (cm) x 0.75 was observed according to (Jatimliansky et al. 1984). 

 

Carbon isotope discrimination (13C12 ratio)  

 

 Carbon isotope discrimination (CID) was measured on a bulk of flag leaf from several plants 

of each BC2DH lines ground into a fine powder and dried for 48 h at 80 °C. The carbon isotope 

composition was determined using an isotope mass spectrometer (20-20 European Scientific, UK). 
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CID13C (%) = [(13C/12C) sample/ (13C/12C) reference-1] x 1000. The carbon isotope discrimination 

values were obtained from CIDa and CIDp according to the formula (Farquhar and Richards 1984): 

CID (%) = (CIDa - CIDp)/ (1+CIDp), where a and p refer to air and plant.  

 

 

3.2 Execution of genotypic data  

3.2.1  Extraction of barley DNA  

 This method was described by Saghai-Maroof (1984). Briefly, young expanded leaves were 

collected from each plant and kept in (-80°C) freezing. Leaf tissue from each plant of the BC2DH 

lines were used for DNA extraction. 15ml Sorbitol-Buffer was used and 0.075g Sodium-disulphite 

and was added to the leave samples and homogenized with ultraturrax. The filtrate was token into a 

new tube. The filtrate was centrifuged at 5000 U/min and 4°C for 15 minutes. The pellet was 

resuspended in 2.5ml Sorbitol and 0.0125g Sodium-disulphite. 2.5ml lysis buffer and 1ml 

Laurylsarkosin was added. The suspension was incubated in a water bath under continuous gentle 

rocking at 60°C for 30-60 minutes (150 U/min). 6ml chloroform/isoamyl alcohol was added and 

gently but thoroughly mixed for 10 minutes. The suspension was centrifuged at 5000 U/min and 

4°C for 30 minutes. 4.5 ml of the aqueous phase were transferred with a pipette into a new sterile 

tube. 4.5ml of cold isopropyl alcohol was added and gently mix to precipitate the nucleic acids. The 

solution was incubated at 4°C for 60 minutes or over night. There upon centrifuged at 5000 U/min, 

4°C, for 30 minutes. The supernatant was discarded isopropyl. 2 ml ethanol (70%) was added and 

centrifuged briefly at 5000 U/min for 4 minutes at 4°C. The supernatant was decanted and the pellet 

was in air-dried for 10 minutes at 60°C. The DNA pellet was finally dissolved in 50-1000µl ddH2O 

(depending on DNA quantity) at 4° C over night. Then DNA solution was centrifuged of 2000 

U/min for 5min and the DNA was transferred in deep well plates and stored at �20° C.  

 

 

3.2.2 Agarose gel electrophoresis procedure  

Agarose gel electrophoresis separates DNA fragments according to their size. Typically, a 

DNA molecule is digested with restriction enzymes, and the agarose gel electrophoresis is used as a 

diagnostic tool to visualize the fragments. An electric current is used to move the DNA molecules 

across an agarose gel, which is a polysaccharide matrix that functions as a sort of sieve to help 

"catch" the molecules as they are transported by the electric current. This technique has lots of 

applications. Generally speaking you can determine the size of DNA fragments. In addition to its 

usefulness in research techniques, agarose gel electrophoresis is a common forensic technique and 
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is used in DNA fingerprinting. Unknown DNA samples are typically run on the same gel with a 

"DNA ladder." A DNA-ladder is a sample of known-fragments DNA. After electrophoresis you can 

compare the unknown fragments to the DNA ladder fragments and determine the approximate size 

of the unknown DNA bands by how they match up to the known bands of the ladder. 

To pour a gel, agarose powder is mixed with 0.5 x TBE buffer to the desired concentration, 

and then heated in a microwave oven until completely melted. Most commonly, ethidium bromide 

(final concentration 0.5 ug/ml) is added to the gel at this point to facilitate visualization of DNA 

after electrophoresis. After cooling the solution to about 60°C, it is poured into a casting tray 

containing a sample comb and allowed to solidify at room temperature. After the gel has solidified, 

the comb is removed. The gel, still in its plastic tray, is inserted horizontally into the electrophoresis 

chamber and just covered with buffer. Samples containing DNA mixed with loading buffer are then 

pipeted into the sample wells, the lid and power leads are placed on the apparatus, and a current is 

applied. You can confirm that a current is flowing by observing bubbles coming off the electrodes. 

DNA will migrate towards the anode. 

The DNA migration in the gel can be judged by visually monitoring migration of the blue tracking 

dyes.  

DNA fragments are visualized by staining with ethidium bromide. This fluorescent dye intercalates 

between bases of DNA. It is often incorporated into the gel so that staining occurs during 

electrophoresis, but the gel can also be stained after electrophoresis by soaking in a dilute solution 

of ethidium bromide. To visualize DNA, the gel is placed on an ultraviolet transilluminator. Be 

aware that DNA will diffuse within the gel over time, and examination or photography should take 

place shortly after cessation of electrophoresis.  

 

  

1x Tris-acetate-EDTA-buffer 
(TAE)-Solution 

200 ml 

1 % Agarose 2 g 
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5x Tris-borate-EDTA-buffer (TBE)-Solution, pH 8.3 

0.45 M Tris 275.56 g 
0.45 M Boric oxide  139.12 g 
10 mM Ethylenediaminetetraacetate 

(EDTA) 
18.61 g 

 H2O high purity ad 5 l 

Adjust to pH 8.3 with NaOH at room temperature  

Sorbitol – Solution       nucleic lysis -Solution  

350 mM Sorbitol 127.5 g   200 mM Tris 121.14 g 
100 mM Tris 24.2 g   50 mM EDTA 93.06 g 
5 mM EDTA 3.36 g   2 M NaCl 584.4 g 
 H2O high purity ad 2 l   2 % CTAB 100 g 
      H2O high purity ad 5 l 

Adjust to pH 7, 5 with HCl  

 

5 % Laurylsarkosin 25 mM MgCl2  

Laurylsarkosin 25 g   25 mM MgCl2 0.254 g 

H2O high purity ad 500 ml    H2O high purity ad 50 ml 
 

3.2.3 SSR-Marker analysis 

Plant material: for all 323 BC2DH lines, DNA was extracted from 3-week old leaf material 

using the Cetyltrimethylammoniumbromide (CTAB) method (Saghai-Maroof et al. 1984).  

Polymerase chain reaction (PCR) and fragment analysis  

 PCR reactions were performed in a total volume of 25µl and consisted of 50 ng genomic 

DNA, 2.5µl 10x PCR buffer, 0.05 µl Taq (Thermus aquaticus) polymerase (Promega 5 unites/µl), 

0.25 µl(10µm) of forward and reverse primers, 2.5 µl dNTP (2mM) and 2.5 µl MgCl2 (25mM). The 

optimized PCR conditions varied and have been given a letter code for each primer. The following 

prefixes of SSR names indicate the published sources from which the primer sequences were taken: 

HVM, Liu et al. (1996); Bmac, Bmag, Ebmag and Ebmac, Ramsay et al. (2000); Hv, Becker and 

Heun (1995) and Pillen et al. (2000). A suffix with the chromosomal identifier in brackets was 

added to each SSR name as a simple reference. Linkage distances between SSR markers were 

inferred from Ramsay et al. (2000) and Pillen et al. (2000).  
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Table 6: Reactants for Polymerize chain reaction (PCR) for SSR markers 

PCR-React. µL 

Template DNA 5µl 

H2O (high purity) 11.95µl 

 dNTP* 2,5µl 

MgCl2 2.5µl 

10x Puffer 2.5µl 

Forward-primer 0.25µl 

Reverse-primer 0.25µl 

Taq-Polymerase 0.05µl 

 

* 2'-Desoxynukleotid (dNTP) 

Table 7: Procedure for Polymerize chain reaction  

Denaturing 

°C Min. 

Annealing 

°C Min. 

Extension/polymers 

°C Min. 

Number of 

cycles 
Notes 

94 3 -  -   Hot start 

94 1 64-55 0.5 72 1 10 SSR (A) 

94 1 55 1 72 1 30 SSR (A) 

-  -  72 5   

94 8 -  -   
Denaturing for 

sequences 

-  4 ∞ -   Cold 

 

Stop-mix 

95% formamide 47, 5 ml 

0. 05% Xylencyanol 25 mg 

10Mm NaOH, 10 M 50 µl 

H2O high purity ad. 50 ml 

 

For the Electrophoresis injection was every PCR �add. With 10 µl micro Stop-Mix was 

heated at 95 °C for 3 min. for denaturing. 
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3.2.4 Gel electrophoresis 

DNA fragments are separated in a horizontal electrophoresis system using a polyacrylamide-

based vinyl polymer Gels were prepared as follows: 

Electrophoresis was carried out in TBE buffer for 45 minutes for warm. 1 L of 5 x TBE buffer 

was added. 1 µL of the loading buffer and 5 µL of the final DNA were injected, Load this sample 

into the gel and conduct electrophoresis at 2600 Volt, 25 Amper and 90 Watt. The DNA was 

visualized on gel transfer illuminator for 90 minutes. Stop the electrophoresis when the front of the 

dye migrates blue was in the bottom of the gel. 

 

3.2.5 Silver Staining for DNA visualization 

 Gels were silver stained using a modified procedure. Gently shake the gel in glacial acetic 

acid for 20 min at room temp. Rinse the gel in sterile water three times for about 2 min each. 

Immerse the gel in silver staining solution (2 g silver nitrate and 1.6 L water) for 30 min. Pour out 

the silver stain solution, and wash the gel quickly with sterile water. Immerse the gel in an 40 g 

sodium carbonate, 2.4 ml formaldehyde, and 320 µl sodium thiosulfate in 1.6 L water) until optimal 

image intensity is obtained. Stop the developing process by immersing the gel in glacial acetic acid. 

Airs dry the gel and back it with a Gel Band plastic film. 

Fixer (10 % Acetic acid) 

160 ml Acetic acid 
ad 1600 ml H2O high purity 
 

Color solution  

2 g Silver nitrate 
ad 1600 ml H2O high purity 

 

Acidifications 

48 g Na2CO3 (water free) 
2,4 ml Formaldehyde (37 %) 
320 µl Na-Thiosulfat 
ad 1600 ml H2O high purity  
 
 Before use on 10 °C Cold. Formaldehyde and Na-Thiosulfat we were gave short time for 

acidification  

 

 

http://dict.leo.org/?p=lURE.&search=acetic
http://dict.leo.org/?p=lURE.&search=acetic
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Marker  

A) BC2DH population: the BC2DH population Scarlett*ISR42-8 was developed by PD Dr. Klaus 

Pillen and colleagues. The initial cross Scarlett x ISR42--8 was backcrossed twice and thereafter in 

vitro propagated by production of doubled haploids. 

B) Genotyping: the 323 BC2DH individuals were genotyped with 97 markers. The maternal or 

paternal inheritance of a chromosome segment was identified by means of SSR analysis on a Li-Cor 

4200S automated sequencer. The SSR data were collected and provided by Mrs. Maria von Korff 

and Mr. Huajun Wang.  

C) SSR map: The SSR-map was provided by Mrs. Maria von Korff. The SSRs were integrated into 

a consensus map using mapping information from Ramsay et al. (2000, = Lina x H. spontaneum 

cross), Kleinhofs et al. (1993, = Steptoe x Morex cross), Graner et al. (1991, = Igri x Franka cross) 

and von Korff et al. (personal communication, = Scarlett x ISR42-8 cross). 

 

3.3 Statistical analysis of data 

Statistic evaluation for experiment data arranged in 2 parts: 

•  The evaluation of phenotype data was conducted by means of variance and correlation 

analysis. 

•  QTL were detected by means of three factorial (drought or heat treatment, marker and year) 

ANOVA of the BC2DH population. 

3.3.1 Variance analysis and coefficient of correlation for drought and heat treatments 

The data were calculated using the SAS software (SAS Institute 1999). Three factors can use 

the quick and easy ANOVA to analyze the variation and correlation coefficient explained by those 

factors (analysis of variance, or ANOVA).  

Experiments Analysis of variance of the attempt data the execution of the more-factorial 

analysis of variance served the question whether significant differences between the individual 

factor levels of the worked on characteristics are present. The analysis of variance became under 

SAS 6, 12 (company: SAS of institutes Inc., USA) with procedure GLM (General linear Model) 

accomplished.  

3.4  Detection of putative QTLs 

The QTL detection from BC2DH genotype and phenotype data were conducted using the 

procedure GLM (General Linear Model) from the SAS software (SAS Institute 1999). The model 

used to detect QTLs included the effects marker genotype (M), drought treatment (D), or heat 

treatment (H) and M*D or M*H interaction. A mixed model with the marker and the drought or 

heat treatment was chosen as fixed effects and year as a random effect. Following Stuber et al. 
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1992; Xiao 1998; and Pillen et al. 2003, the presence of a stable QTL in the vicinity of a marker 

locus was accepted, if the marker main effect was significant at P < 0.01. Adjacent marker effects 

(distance <20cM) are considered as one putative QTL. The presence of a drought or heat treatment-

dependent QTL was accepted, if the M*D or M*H interaction was significant at P < 0.01.  

The relative performance of the homozygous (H. v. ssp. spontaneum, is hereafter abbreviated 

with Hsp) Hsp genotype (RP [Hsp]) as a measure of the improvement of a trait by replacing both 

(Hordeum v. L. distichon, hereafter abbreviated with Hvd) Hvd elite alleles with the exotic Hsp 

alleles was calculated as follows:  

 

For each trait, aa and AA are the least square means calculated across all BC2DH lines of the 

homozygous Hvd and the homozygous Hsp genotypes, respectively. 

RP [Genotype] = 
Mv
MvMs 100*)( −  in % effect of the Hsp alleles a cross both environments.  

RP [T*M T1] = 
1

100*)11(
MvT

MvTMsT − in % was effects of the Hsp alleles for control treatments 

RP [T*M T2] = 
2

100*)22(
MvT

MvTMsT − in % was effects of the Hsp alleles for drought or heat stress. 

Mv = trait value of homozygote of Hvd genotypes. 

Ms = trait value of homozygote of Hsp genotypes. 

T1 = Control treatment  

T2 = Stress treatment for drought or heat  

 

Favorable QTL: Ms < Mv for example days until heading.  

 Ms > Mv for example grain yield (Table 5).  

The goal from our studies are detection favorable QTL, because the favorable QTL improve all 

traits and this the goal for breeder. 
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4. Result 
4.1 Drought tolerance 

Phenotypic characters  

We have in this study 11 quantitative (tillers per plant, number of spikes per plant, number of 

kernels per spike, relative leaf water content, osmotic adjustment, chlorophyll content, days to 

heading, plant height, yield, biomass and harvest index) traits for evaluation of barley (Thuringia, 

Scarlett, Harry, and Apex) genotypes, then found non-significant for the interaction among 

genotypes and drought treatments for tillers, but for chlorophyll content non-significant the 

interaction among genotypes. In the study for (Scarlett and ISR42-8) parents and BC2 DH 

population we have tillers per plant, plant height, and chlorophyll content not studied, but we have 

(number of kes per plant, number of kernels per spike, relative leaf water content, osmotic 

adjustment, days to heading, yield, biomass and harvest index) and other traits more like carbon 

isotope discrimination, flag leaf area, first lea area and second leaf area, because related for drought 

study.  

 

4.1.1 Evaluation of four barley genotypes  

1) Number of tillers per plant 

Analysis of variance among replications and the interaction among genotypes and drought 

treatments showed non-significant. Whereas, there were highly significant effects for genotypes and 

drought treatments (see Table 8). The Harry and Thurnigia ranges from 10.42 to 15.25 tillers per 

plant respectively (see Table 9). Mean for drought treatments ranged from 5.83 tillers for 35% field 

capacity (FC) to 16.0 tillers for 100% FC (see Table 10). 

2-Number of spikes per plant 

The replication was not significant. The interaction among genotypes was highly significant. 

The difference among genotypes, and drought treatments were highly significant, there are showed 

in Table 8 and Figure 1). The genotypes Scarlett and Harry ranged from 4.99 to 9.0 spikes per plant 

respectively (see Table 9). Mean for drought treatments ranged from 5.69 spikes per plant for 35% 

FC to 8.51 spikes per plant for 100% FC (see Table 10). 
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Table 8: Analysis of variance for drought treatment in Thuringia, Scarlett, Harry, and Apex 

genotypes 

Trait  Replications 
Drought 

treatments 
Genotypes G x D Error 

 DF: 2 3 3 9 29 

Ms 3.04 16.87 51.28 7.74 4.78 
TILL 

F 0.64 3.53** 10.72** 1.62  

Ms 7.65 258.41 558.46 45.73 14.87 
SPK 

F 0.51 17.38** 37.38** 3.08**  

Ms 2.52 141.82 27310 18.43 10.58 
KER 

F 0.24 13.41** 25.81** 1.74  

Ms 122.31 499.34 123.51 64.48 78.70 
RWC 

F 1.55 6.34** 1.57 0.82  

Ms 0.0000014 0.0114 0.0088 0.00043 0.000066 
OA 

F 0.02 172.5** 133.4** 6.48**  

Ms 18.74 38.45 32.25 27.82 11.93 
CHL 

F 1.57 3.22* 2.7 2.33*  

Ms 3.81 317.47 1248.31 7.92 24.57 
HEA 

F 0.16 12.92** 50.81** 0.32  

Ms 3.69 514.40 449.99 35.59 24.08 
PH 

F 0.15 21.36** 18.68** 1.48  

Ms 3.75 99.97 93.45 15.88 1.53 
YLF 

F 2.45 65.22** 60.97** 10.36**  

Ms 6.68 1565.12 113.88 51.19 15.38 
MASS 

F 0.43 101.79** 7.41** 3.33**  

Ms 52.311 301.76 1955.12 100.78 33.04 
HI 

F 1.58 9.13** 59.18** 3.05*  

*, **, *** Significant at 0.05, 0.01 and 0.001 levels, respectively. 
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Figure 1: Effect of drought on the number of spikes per plant of Thuringia, Scarlett, Harry, 
and Apex genotypes. 

 Figure 1 shows little differences among 35%, 50%, and 65% FC for Thuringia, but high 

differences between 100% FC and other treatments. Scarlett obtained little differences between 

(35% and 50%), (65% and 100%), on other hand revealed high differences between (35% and 65%, 

35% and 100%), (50% and 65%, 50% and 100%) for spikes per plant. Harry genotype was very 

susceptible for 35% and 50% FC treatments were no-spike and for 65% and 100% treatments nearly 

no spikes. The different was little among all treatments for Apex. Were little different between 

Scarlett and Apex, on other hand high different between Harry and other genotypes. 

3) Number of kernels per spike 

 The analysis of variance was non-significant for replications, and interaction among 

genotypes and drought treatments, but was highly significant for genotypes and drought treatments 

(see Table 8). The average number of kernels per spike ranged from 1.92 for Harry to 12.27 kernels 

for Scarlett (see Table 9). Mean for drought treatments ranged from 4.87 kernels per spike for 35% 

FC to 12.67 kernels per spike for 50% FC (see Table 10). 

4) Relative leaf water content 

 The analysis of variance revealed non-significant for replications, genotypes and the 

interaction between genotypes and drought treatments, but a highly significant effect for drought 
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treatments (Table 8). The relative leaf water content ranged from 74.58% for Thuringia to 82.01% 

for Harry (see Table 9). Mean for drought treatments ranged from 72.72% for 35% FC to 87.28% 

for 100% FC (see Table 10). 

5) Osmotic adjustment 

The analysis of variance revealed highly significant effects genotypes, drought treatments and 

the interaction among genotypes and drought treatments, but no effect for replications in Table 8 

and Figure 2. The value of osmotic adjustment for four genotypes ranged from 0.078 for Harry to 

0.143 for Thuringia (see Table 9). Mean for drought treatments ranged from 0.079 for 100% FC to 

0.147 for 35% FC (see Table 10). 
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Figure 2: Osmotic adjustment of Thuringia, Scarlett, Harry, and Apex genotypes for drought 

experiment. 

Figure 2 shows, Thuringia obtained little different between (35% and 50%), (65% and 100%), 

on other hand revealed high different between (35% and 65%, 35% and 100%), (50% and 65%, 

50% and 100%) for osmotic adjustment. Were little different among all treatments Scarlett. Harry 

obtained little different between (35% and 50%), (65% and 100%), on other hand revealed high 

different between (35% and 65%, 35% and 100%), (50% and 65%, 50% and 100%) for osmotic 

adjustment. The different were moderate among all treatments for Apex. General was moderate 

different between all genotypes.  

6) Chlorophyll content 

The variation among replications and genotypes were non-significant, but the effects for 

drought treatments and the interaction between genotypes and drought treatments were significant 

(Table 8 and Figure 3). The average chlorophyll content for the genotypes ranged from 50.49 for 
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Apex to 54.48 for Scarlett (see Table 9). Mean for drought treatments ranged from 49.95 for 35% 

FC to 53.91% chlorophyll content for 100% FC (see Table 10). 
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Figure 3: Chlorophyll content of Thuringia, Scarlett, Harry, and Apex genotypes for drought 

experiment. 

 

Figure 3 shows the different were little for all treatments and genotypes except 35% treatment 

in Thuringia has few Chlorophyll content.  

7) Days until heading 

The variation among replications and the interaction between genotypes and drought 

treatments were non-significant, but the difference among genotypes and drought treatments were 

highly significant in Table 8. The average of days to heading ranged from 64.83 days for Apex to 

87.17 days for Harry (see Table 9). Mean for drought treatments ranged from 68.58 days for 35% 

FC to 80.50 days plant for 100% FC (Table 10). 

 8) Plant height 

The analysis of variance among replications and the interaction between genotypes and 

drought treatments were non-significant, but the difference among genotypes and drought 

treatments were highly significant (Table 8). The average plant height among genotypes ranged 

from 41.71 cm for Harry to 56.33 cm for Scarlett (see Table 9). Mean for drought treatments ranged 

from 40.81 cm for 35% FC to 55.61 cm for 100% FC (see Table 10). 

 9) Yield 
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The analysis of variance among replications was non-significant, but the difference among 

genotypes, drought treatments and the interaction between genotypes and drought treatments were 

highly significant (Table 8 and Figure 4). The grain yield ranged from 0.14 g for Harry to 6.43 g for 

Apex (see Table 9). Mean for drought treatments ranged from 1.51 g for 35% FC to 8.13 g for 

100% FC (see Table 10). 
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Figure 4: Yield of Thuringia, Scarlett, Harry, and Apex genotypes for drought experiment. 

 

Figure 4 shows, Thuringia obtained little different between (35% and 50%), (65% and 100%), 

on other hand revealed high different between (35% and 65%, 35% and 100%), (50% and 65%, 

50% and 100%) for yield. Were little different among (35%, 50% and 65%), but high different 

between 100% and other treatments Scarlett. Harry genotype was very susceptible for 35% and 

50% FC treatments were no-yield and for 65% and 100% treatments almost no yield. The different 

was little between 50% and 65% treatments, but high different between 35% and 100% treatments 

for Apex. General was high different between all genotypes.  

10) Biomass 

The analysis of variance among replications was non-significant, while the effects of 

genotypes, drought treatments and the interaction between genotypes and drought treatments were 

highly significant (Table 8 and Figure 4). The result found average for biomass ranged from 20.68 g 

for Apex to 27.36 g for Harry (see Table 9). Mean for drought treatments ranged from 11.08 g for 

35% FC to 38.88 g for 100% FC (see Table 10). 
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Figure 5: Biomass of Thuringia, Scarlett, Harry, and Apex genotypes for drought experiment. 

Figure 5 shows, Thuringia obtained little different between (50% and 65%), on other hand 

revealed high different between (35% and 65%, 35% and 50%, 35% and 100%), (50% and 100%, 

65% and 100%) for Biomass. Were moderate differenced among all treatments for Scarlett. Harry 

obtained high different among all treatments. The different were moderate among all treatments 

except 35% treatment for Apex. General was high different between all genotypes.  

11) Harvest index 

The variation among replications was non-significant, but was highly significant among 

genotypes, drought treatments and the interaction among genotypes and drought treatments (Table 8 

and Figure 6). The average harvest index ranged from 0.35% for Harry to 30.83% for Apex (see 

Table 9). Mean for drought treatments ranged from 11.31% for 50% FC to 22.79% for 100% FC 

(see Table 10). 
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Figure 6: Harvest index of Thuringia, Scarlett, Harry, and Apex genotypes for drought 

experiment. 

The above figure shows that, Thuringia obtained small difference between (35% and 50%), (65% 

and 100%), on other hand, it revealed high difference between (35% and 65%, 35% and 100%), 

(50% and 65%, 50% and 100% for harvest index. Whereas, small difference among (35%, 50% and 

65%), and high difference between 100% and other treatments for Scarlett were recorded. Harry 

genotype was very susceptible for 35% and 50% FC treatments where no-harvest index and for 

65% and 100% treatments nearly no harvest index. The different was little for all treatments for 

Apex. General was high different between all genotypes.  
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Table 9: Means of traits for Thuringia, Scarlett, Harry, and Apex genotypes with Ryan-
Gabriel-Welsch Multiple Range Test in drought experiment 

Trait Thuringia Scarlett Harry Apex 

Tillers per plant 15.25A 11.00B 1 0.42B 14.42AB 

 Spikes per plant 8.34A 4.99AB 9.00A 5.26B 

 Kernels per spike 7.56B 12.27A 1.92C 11.65A 

Relative leaf water content 74.58A 79.26A 82.01A 80.73A 

Osmotic adjustment 0.143A 0.101C 0.078D 0.114B 

Chlorophyll content 52.31AB 54.48A 52. 74AB 50.49B 

Days to heading 68.00C 78.50B 87.17A 64.83C 

Plant height 49.79B 56.33A 41.71C 46.66BC 

Grain yield 4.22B 5.61A 0.14C 6.43A 

Biomass 27.06A 25.27A 27.36A 20.68B 

Harvest index % 13.88C 20.48B 0.35D 30.83A 

 Mean values with different superscript letters are significantly different at P < 0.05. 

 

Table 10: Mean value of traits of heat treatments with Ryan-Gabriel-Welsch Multiple Range 
Test for drought experiment 

Traits 
35% FC 50% FC 65% FC 100% FC 

N0.Tillers per plant 5.83C 9.08B 11.17B 16.00A 

No. Spikes per plant 5.69B 8.51A 6.92AB 6.47AB 

No. Kernels per spike 4.87C 6.45BC 9.40B 12.67A 

Relative leaf water content 72.72B 75.18B 80.84AB 87.28A 

Osmotic adjustment 0.147A 0.121B 0.0898C 0.0789D 

Chlorophyll content 49.95B 53.91A 53.54A 52.63AB 

Days to heading 68.58C 72.67BC 76.75AB 80.50A 

Plant height 40.81B 46.01B 52.01A 55.61A 

Grain yield 1.51C 2.68C 4.07B 8.13A 

Biomass 11.08C 23.66B 26.76B 38.88A 

Harvest index % 13.74BC 11.31C 17.69AB 22.79A 

 Mean values with different superscript letters are significantly different at P < 0.05. 
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4.1.2  Drought result for parents Scarlett and ISR42-8 

 

Relative leaf water content: the differences were significant among drought treatments and 

parents for relative leaf water content. There were significant result of interaction between drought 

treatments and years, the interaction between drought treatments and parents and interaction among 

drought treatments, years and parents for relative leaf water content, but was non-significant for the 

interaction between years and parents (Table 11). Number of spikes per plant: variation among 

drought treatments, parents, interaction between drought treatments and years as well as, the 

interaction between drought treatments and parents and the interaction between years and parents 

were significant. It was non-significant between years, and interaction among drought treatments, 

years and parents (Table 11). Number of kernels per spike: it was highly significant among 

drought treatments, parents, years, the interaction between drought treatments and parents, the 

interaction between years and parents and interaction between drought treatments and years. It was 

non-significant for among the interaction drought treatments, years and parents (Table 11). Osmotic 

adjustment: variation among drought treatments, parents, years and the interaction between 

drought treatments and parents were highly significant. It was non-significant for interaction 

between drought treatments and years, the interaction between years and parents and interaction 

among drought treatments, years and parents (Table 11). Days until heading: the result showed 

highly significant among drought treatments, parents, years, interaction between drought treatments 

and parents, the interaction between years and parents as well as, interaction between drought 

treatments, years and parents. On other hand, was non-significantly for the interaction between 

drought treatments and years (Table 11). Number of leaves per main tiller: variation significant 

for number of leavers per tiller between years, parents, and interaction between drought treatments, 

years and parents. It was non-significantly for drought treatments, the interaction between drought 

treatments and parents, interaction between drought treatments and years, the interaction between 

years and parents (Table 11). Yield: the result indicated highly significant among drought 

treatments, parents. It was non-significant between years. Whereas, were highly significant for all 

interactions in yield (Table 11). Biomass: the result revealed highly significant among drought 

treatments, parents, years whilst, were highly significant for all interactions in biomass (Table 11). 

Harvest index: the value among drought treatments and interaction between drought treatments, 

years and parents were non-significantly. It was significant for parents, years, interaction between 

drought treatments and parents, the interaction between drought treatments and years and the 

interaction between years and parents (Table 11). Flag leaf area: variation among drought 

treatments, years, the interaction between years and parents, the interaction between drought 
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treatments and years were highly significant, as well as, interaction among drought treatments, 

years and parents. It was non-significantly for parents, the interaction between drought treatments 

and parents (Table 11). First leaf area: it was non-significantly between years, parents, the 

interaction between years and parents, while was significantly between drought treatments, 

interaction between drought treatments and years, the interaction between drought treatments and 

parents and as well as, interaction among drought treatments, years and parents (Table 11). Second 

leaf area: the variation among drought treatments, years and the interaction between drought 

treatments and years, the interaction between drought treatments and parents as well as, interaction 

among drought treatments, years and parents were significant, whereas was non-significantly for 

parents and the interaction between years and parents (Table 11). Carbon isotope discrimination: 

the result revealed highly significant between drought treatments, parents, and years. Whilst, were 

highly significant for all interactions (Table 11). 
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Table 11: Analysis of variance of Scarlett and ISR42-8 for drought tolerance  

*, **, *** Significant at 0.05, 0.01 and 0.001 levels, respectively 

 

Trait  
Drought 

(D) 

Year 

(Y) 

Parents 

(P) 

 

D*Y 

 

D* P 

 

Y* P 

D*Y* 

P 
Error 

 DF: 3 1 1 3 3 1 3 191 

M S 5913.63 2957.61 564.96 2432.65 518.07 105.61 393.30 100.5 
RWC 

F 58.82*** 29.42*** 5.62* 24.20*** 5.15** 1.05 3.91**  

MS 22.27 4.87 25.24 44.84 8.08 189.09 3.11 1.28 
SPK 

F 17.37*** 3.80 19.69*** 34.75*** 6.30*** 147.45*** 2.43  

MS 832.93 685.53 5566.37 764.66 127.17 1669.5947 20.51 11.18 
KER 

F 74.47*** 61.29*** 497.67*** 68.37*** 11.37*** 149.27*** 1.83  

MS 0.022 0.0065 0.0073 0.00049 0.0061 0.00035 0.00016 0.00068 
OA 

F 31.97*** 9.55** 10.72** 0.71 8.91*** 0.52 0.24  

MS 324.39 604.52 7411.35 4.24 33.41 84.85 72.79 2.71 
HEA 

F 119.75*** 223.17*** 2735.99*** 1.57 12.33*** 31.32*** 26.87***  

MS 0.27 51.03 10.36 0.39 0.12 0.01 1.01 0.38 
LEA 

F 0.7 134.47*** 27.30*** 1.03 0.33 0.03 2.67*  

MS 89.44 0.69 756.57 35.39 63.01 11.36 4.34 0.88 
YLD 

F 101.49*** 0.79 858.44*** 40.16*** 71.49*** 12.89*** 4.92**  

MS 737.40 200.44 1293.14 87.29 68.69 37.59 118.29 3.60 
MASS 

F 204.73*** 55.65*** 359.02*** 24.24*** 19.07*** 10.44** 32.84***  

MS 76.54 845.63 810.04 583.95 297.01 2569.71 146.72 106.3 
HI 

F 0.72 7.95** 214.51*** 5.49** 2.79* 24.17*** 1.38  

MS 141.24 382.52 0.35 25.42 37.14 0.17 27.48 2.74 
FLA 

F 51.5*** 139.52*** 0.13 9.27*** 13.91*** 0.06 10.03***  

MS 327.25 7.94 0.95 14.74 89.72 5.79 96.79 4.88 
ARE1 

F 67.01*** 1.63 0.19 3.02* 18.37*** 1.19 19.82***  

MS 419.36 472.30 20.88 35.67 132.59 0.0025 156.94 8.42 
ARE2 

F 49.79*** 56.07*** 2.48 4.23** 15.74*** 0.00 18.63***  

MS 56.46 48.11 10.99 29.13 4.59 6.9 4.86 0.78 
CID 

F 72.24*** 61.55*** 14.07*** 37.27*** 5.87*** 8.84** 6.22***  
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Table 12: T test (LSD) for average mean values of parents Scarlett and ISR42-8 for 13 

quantitative traits. 

 

Trait Scarlett ISR42-8 

Relative leaf water content  68.23A 65.23B 

Number of spikes per plant 5.64A 4.09B 

Number of kernels per spike 24.31A 10.74B 

Osmotic 0.075B 0.087A 

Heading 86.84A 73.35B 

Number of leaves per main tiller 5.18A 4.71B 

 Yield 5.42A 1.08B 

 Biomass 13.43A 8.36B 

 Harvest index 40.59A 14.98B 

 Flag leaf area  5.44A 5.31A 

 First leaf area 11.91A 11.59A 

 Second leaf area 16.21A 15.57A 

 Carbon isotope discrimination -27.92A -28.37B 

 Mean values with different superscript letters are significantly different at P < 0.05. 

 

Table 12 shows LSD between mean values of parents Scarlett and ISR42-8 was significant when different 

litters. All traits were significant difference for parents except flag leaf area, first leaf area and second leaf 

area. 
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Table 13: Mean value of traits for drought treatments with Student-Newman-Keuls Test 

(SNK) Test in drought experiment. 

Trait 
100% FC 75% FC 50% FC 25% FC 

 Relative leaf water content  78.29A 63.17C 67.96B 57.66D 

Number of spikes per plant 5.17A 5.09A 4.82AB 4.40B 

Number of kernels per spike 20.22A 19.61A 16.18B 14.27B 

Osmotic adjustment 0.059D 0.085C 0.07B 0.109A 

Heading days 82.98A 81.73B 78.56C 77.27D 

Number of leaves tiller 4.85A 4.92A 4.98A 5.04A 

Yield 4.62A 3.62B 2.62C 2.19D 

Biomass 15.62A 11.52B 9.08C 7.42D 

Harvest index 26.99A 29.19A 27.21A 28.03A 

Flag leaf area  8.23A 5.37B 4.48C 3.42D 

First leaf area 15.60A 12.18B 10.44C 8.79D 

Second leaf area 19.82A 17.10B 14.69C 11.96D 

Carbon isotope discrimination -29.42C -28:33B -27.9B -26:91A 

 Mean values with different superscript letters are significantly different at P < 0.05. 

 

Table 13: shows LSD between mean values of parents Scarlett and ISR42-8 was significant when 

different litters. All traits were significant difference among drought treatments except number of 

leaves per main tiller and harvest index. 

 

4.1.3  Drought results for BC2DH lines (AB-DH lines Scarlett*ISR42-8 population) 

 Relative leaf water content: the value effects of drought treatments, BC2DH lines, the 

interaction between drought treatments and BC2DH lines, the interaction between years and BC2DH 

lines and the interaction among drought treatments, years and BC2DH lines were highly significant. 

The effect of years and the interaction between drought treatments and years was non-significantly 

(Table 14). Number of spikes per plant: variation between drought treatments, BC2DH lines, 

years, the interaction between drought treatments and years, the interaction between years and 

BC2DH lines, interaction among treatments, years and BC2DH lines were significant, while was 

non-significant for between the interaction between drought treatments and BC2DH lines (Table 

14). 
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Table 14: Analysis of variance of traits of BC2DH lines, years and drought treatments in 
drought experiment 

Trait  
Drought 

(D) 
Years (Y) 

lines 

(DH) 
D*Y D*DH Y*DH D*Y*DH Error 

 DF: 1 1 318 1 313 309 304 80 

MS 21014.17 285.07 243.06 18.43 239.57 227.1 220.38 77.78 
RWC 

F 270.19*** 3.67 3.13*** 0.24 3.08*** 2.93*** 2.83***  

MS 45.86 982.91 3.12 7.68 1.52 3.18 1.62 1.13 
SPK 

F 40.47*** 867.40*** 2.75*** 6.78* 1.34 2.80*** 1.62*  

MS 26677.92 1734.66 107.29 2739.22 45.98 55.96 48.96 10.76 
KER 

F 2478.67*** 161.17*** 9.97*** 254.50*** 4.27*** 5.20*** 4.55***  

MS 0.063 0.033 0.0011 0.0000075 0.00074 0.00084 0.00085 0.00029 
OA 

F 216.17*** 113.49*** 4.05*** 0.03 2.53*** 2.88*** 2.92***  

MS 

 
8539.81 745.63 233.68 964.51 30.04 195.90 26.69 2.78 

HEA 

F 3071.26*** 268.16*** 84.04*** 346.88*** 10.80*** 70.45*** 9.60***  

MS 2.63 450.44 0.67 7.69 0.55 0.75 0.44 0.36 
LEA 

F 7.26** 1242.59*** 1.84*** 21.22*** 1.52* 2.08*** 1.21  

MS 1943.97 713.13 5.09 82.08 2.22 2.75 1.48 0.91 
YLD 

F 2132.72*** 782.72*** 5.58*** 90.05*** 2.43*** 3.02*** 1.62**  

MS 15853.28 21018.96 17.43 124.25 12.79 12.99 11.04 2.90 
MASS 

F 5457.75*** 7236.12*** 6.00*** 42.77*** 4.40*** 4.47*** 3.80***  

MS 4010.41 49217.68 305.74 4222.37 161.58 215.74 171.41 99.71 
HI 

F 40.22*** 493.63*** 3.07*** 42.35*** 1.62** 2.16*** 1.72**  

MS 1009.61 3450.13 20.66 325.39 9.72 15.03 9.86 3.38 
FLA 

F 299.12*** 1022.17*** 6.12*** 96.40*** 2.88*** 4.45*** 2.92***  

MS 4321.87 4178.86 31.65 1399.09 13.76 19.99 15.77 6.04 
ARE1 

F 1047.12*** 692.12*** 5.24*** 231.72*** 2.28*** 3.31*** 2.61***  

MS 6192.49 15766.34 94.26 231.7 59.08 79.31 53.63 10.16 
ARE2 

F 609.60*** 1552.08*** 9.28*** 22.81*** 5.82*** 7.81*** 5.28***  

MS 849.93 8.91 4.9 40.05 2.76 5.84 2.85 1.18 
CID 

F 719.21*** 7.55** 4.15*** 33.89*** 2.34*** 4.95*** 2.41***  

*, **, *** Significant at 0.05, 0.01 and 0.001 levels, respectively. 
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 Number of kernels per spike: the result showed highly significant between drought 

treatments, BC2DH lines, years, the interaction between drought treatments and years, the 

interaction between drought treatments and BC2DH lines, the interaction between years and BC2DH 

lines and the interaction among treatments, years and BC2DH lines (Table 14). Osmotic 

adjustment: the value revealed highly significant between drought treatments, BC2DH lines, years, 

the interaction between drought treatments and BC2DH lines, the interaction between years and 

BC2DH lines and the interaction between treatments, years and BC2DH lines, whereas was non-

significantly for the interaction between drought treatments and years (Table 14). Days until 

heading: the analysis of variance indicated highly significant results of days until heading between 

drought treatments, among BC2DH lines and years. All interactions were also highly significant for 

days until heading (Table 14). Number of leaves per main tiller: variation was significant for 

number of leavers per tiller between drought treatments, years, for BC2DH lines, interaction drought 

treatments and years, the interaction between drought treatments and BC2DH lines, the interaction 

between years and BC2DH lines, whereas was non-significantly for interaction among drought 

treatments, years and BC2DH lines (Table 14). Yield: the result indicated highly significant for 

yield between drought treatments, years, BC2DH lines, the interaction between drought treatments 

and years, the interaction between drought treatments and BC2DH lines, the interaction between 

years and BC2DH lines as well as, interaction among drought treatments, years and BC2DH lines 

(Table 14). Biomass: variation was highly significant for biomass between drought treatments, 

years, BC2DH lines, the interaction between drought treatments and years, the interaction between 

drought treatments and BC2DH lines, the interaction between years and BC2DH lines as well as, 

interaction among drought treatments, years and BC2DH lines (Table 14). Harvest index: the 

variation was found highly significant for harvest index between drought treatments, years, BC2DH 

lines, the interaction between drought treatments and years, the interaction between drought 

treatments and BC2DH lines, the interaction between years and BC2DH lines as well as, interaction 

among drought treatments, years and BC2DH lines (Table 14). Flag leaf area: the result revealed 

highly significant for flag leaf area between drought treatments, years, BC2DH lines, the interaction 

between drought treatments and years, the interaction between drought treatments and BC2DH 

lines, the interaction between years and BC2DH lines as well as, interaction among drought 

treatments, years and BC2DH lines (Table 14). First leaf area: variation were significant for first 

leaf area between drought treatments, years, BC2DH lines, and the interaction between drought 

treatments and years, the interaction between drought treatments and BC2DH lines, the interaction 

between years and BC2DH lines as well as, interaction among drought treatments, years and 

BC2DH lines (Table 14). Second leaf area: result obtained highly significant for second leaf area 
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between drought treatments, years, BC2DH lines, the interaction between drought treatments and 

years, the interaction between drought treatments and BC2DH lines, the interaction between years 

and BC2DH lines as well as, interaction among drought treatments, years and BC2DH lines (Table 

14). Carbon isotope discrimination: the result indicated highly significant for carbon isotope 

discrimination between drought treatments, years, BC2DH lines, the interaction between drought 

treatments and years, the interaction between drought treatments and BC2DH lines, the interaction 

between years and BC2DH lines as well as, interaction among drought treatments, years and 

BC2DH lines (Table 14).  
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Table 15:  Pearson's correlation coefficients (r) between 13 quantitative traits1 for drought tolerance 

 

*, **, *** Significant at 0.05, 0.01 and 0.001 levels, respectively.                                            (1) Abbreviation for traits Table 5. 

 

 
SPK KER OA HEA LEA FLA ARE1 ARE2 CID YLD MAS HI 

RWC -0.01 0.11*** -0.03 0.02 0.02 0.09*** 0.11*** 0.054 -0.12*** 0.12*** 0.12*** -0.03*** 

SPK  -0.00 -0.02 0.02 -0.27*** 0.05* 0.10*** 0.18*** -0.05* 0.51*** 0.49*** -0.01 

KER   -0.06* 
0.24**

* 

-0.02 

 
0.13*** 0.27*** 0.18*** -0.24*** 0.68*** 0.47*** 0.20*** 

OA    -0.05* -0.09*** 0.01 -0.02 
0.00 

 
0.04 -0.10*** -0.03 -0.11*** 

HEA     
0.04 

 
-0.09*** 0.08** 0.11*** -0.07** 0.27*** 0.15*** 0.17*** 

LEA      -0.21*** -0.18*** -0.22*** 0.01 -0.16*** -0.35*** 0.22*** 

FLA       0.69*** 0.38*** -0.08** 0.17*** 0.34*** -0.26*** 

ARE1        0.52*** -0.21*** 0.34*** 0.47*** -0.23*** 

ARE2         -0.16*** 0.30*** 0.41*** -0.13*** 

CID          -0.27*** -0.29*** 0.10*** 

YLD           0.76*** 0.18*** 

MAS            -0.35*** 
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Correlation coefficient among 13 traits for all BC2DH population 

The correlation result for 13 traits is shown in Table 15. We have three levels for correlation 

<0.2 was weak, from >0.2 to <0.5 was moderate, and more than >0.5 was strong. Relative leaf 

water content was weak correlated with number of kernels per spike, (P<0.001), flag leaf area 

(P<0.001), first leaf area (P<0.001), yield (P<0.001), biomass (P<0.001) and harvest index 

(P<0.001). Positive and strong correlations were revealed for number of spikes per plant with 

yield (P<0.001), while moderate correlations were obtained for SPK with number of leaves per 

main tiller (P<0.001) and biomass (P<0.001), whilst it weak correlation were obtained with flag leaf 

area (P<0.05), first leaf area (P<0.001), and second leaf area (P<0.001). Number of kernels per 

spike was revealed strongly correlation with yield (P<0.001), while it moderate correlations were 

obtained for kernels per spike with days until heading (P<0.001), first leaf area (P<0.001), biomass 

(P<0.001), and harvest index (P<0.001), whereas it weak correlation was obtained with osmotic 

adjustment (P<0.05), relative leaf water content (P<0.001), flag leaf area (P<0.001) and second leaf 

area (P<0.001). Osmotic adjustment was associated weak with number of kernels per spike 

(P<0.05), days until heading (P<0.05), and number of leaves per main tiller (P<0.001), yield 

(P<0.001) and harvest index (P<0.001). Correlations were positive and moderate for days until 

heading with number of kernels per spike (P<0.001) and yield (P<0.001), whereas it was weak 

correlation osmotic adjustment (P<0.05), flag leaf area (P<0.001), and first leaf area (P<0.01) 

second leaf area (P<0.001), biomass (P<0.001) and harvest index (P<0.001). Number of leaves per 

main tiller was moderate with number of spikes per plant (P<0.001), flag leaf area (P<0.001), 

second leaf area (P<0.001), biomass (P<0.001), and harvest index (P<0.001), whereas it was 

negatively and weak with osmotic adjustment (P<0.001), first leaf area (P<0.001) and yield 

(P<0.001). Flag leaf area positive and strongly correlated with first leaf area (P<0.001), whilst it 

was correlated moderate with number of leaf for tiller (P<0.001), second leaf area (P<0.001), 

biomass (P<0.001) and harvest index (P<0.001), however it was wear correlated with relative leaf 

water content (P<0.001), number of spikes per plant (P<0.05), number of kernels per spike 

(P<0.001), and days until heading (P<0.001), and yield (P<0.001). However, first leaf area was 

positive and strongly with flag leaf area (P<0.001) and second leaf area (P<0.001), while it was 

moderate correlation with number of kernel per plant (P<0.001), yield (P<0.001), biomass (P<0.05), 

and harvest index (P<0.001), whilst it was weak correlation with relative leaf water content 

(P<0.001), number of spikes per plant (P<0.001), days until heading (P<0.01) and number of leaves 

per main tiller (P<0.001). Positive and strong correlations were expressed by second leaf area with 

first leaf area (P<0.001), whereas it was moderate correlated with number of leaves per main tiller 

(P<0.001), flag leaf area (P<0.001), yield (P<0.001) and biomass (P<0.001), while was weak 



RESULTS   56 

 

correlation with number of spikes per plant (P<0.001), number of kernels per spike (P<0.001), days 

until heading (P<0.001) and harvest index (P<0.001) were detected. Carbon isotope 

discrimination was moderate correlated with number of kernels per plant (P<0.001), first leaf area 

(P<0.001), yield (P<0.001) and biomass (P<0.001), furthermore it was weak correlated with relative 

leaf water content (P<0.001), number of spikes per plant (P<0.05), days until heading (P<0.01), flag 

leaf area (P<0.01), second leaf area (P<0.001) and harvest index (P<0.001). Yield was positive and 

strongly correlated with number of spikes per plant (P<0.001), number of kernels per spike 

(P<0.001), and biomass (P<0.001), whereas it was moderate correlation with days until heading 

(P<0.001), first leaf area (P<0.001), and second leaf area (P<0.001), while it was weakly 

correlations with relative leaf water content (P<0.001), osmotic adjustment (P<0.001), number of 

leaves per plant (P<0.001) flag leaf area (P<0.001) and harvest index (P<0.001). However, biomass 

was strongly and positively correlation with yield (P<0.001), while it was moderate correlations 

with number of spikes per plant (P<0.001), number of kernels per plant (P<0.001), number of 

leaves per main tiller (P<0.001), flag leaf area (P<0.001), first leaf area (P<0.001), second leaf area 

(P<0.001) and harvest index (P<0.001), furthermore it was weak and positive correlated with 

relative leaf water content (P<0.001), and days until heading (P<0.001). Harvest index was 

moderate correlated with number of kernels per spike (P<0.001), number of leaves per main tiller 

P<0.001), flag leaf area (P<0.001), first leaf area (P<0.001) and biomass (P<0.05), while it was 

weak correlations with relative leaf water content (P<0.001), osmotic adjustment (P<0.001), days 

until heading (P<0.001), second leaf area (P<0.001), and yield (P<0.001). 
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Table 16: Pearson's correlation coefficients (r) between 13 quantitative traits1 under drought stress 

 

 
SPK KER OA HEA LEA FLA ARE1 ARE2 CID YLD MAS HI 

RWC -0.09* 0.085 0.11** -0.00 -0.02 0.06 0.04 0.07 -0.00 -0.00 -0.00 -0.01 

SPK  0.02 -0.02 -0.02 -0.29*** 0.14*** 0.24*** 0.26*** -0.03 0.62*** 0.53*** 
0.05 

 

KER   0.07 0.06 
-0.22*** 

 
0.13*** 0.27*** 0.18*** -0.01 0.68*** 0.47*** 0.20*** 

OA    -0.01 -0.08* 0.12** 0.10** 0.09* -0.07 -0.00 0.11** -0.15*** 

HEA     
0.01 

 
-0.05 -0.00 0.08* 0.26*** 0.06 

-0.04 

 
0.21*** 

LEA      -0.37*** -0.35*** -0.44*** 0.1* -0.40*** -0.55*** 0.23*** 

FLA       0.76*** 0.65*** -0.12** 0.39*** 0.55*** -0.28*** 

ARE1        0.78*** -0.13*** 0.43*** 0.56*** -0.25*** 

ARE2         -0.06 0.48*** 0.63*** -0.25*** 

CID          -004 -0.15** 0.17*** 

YLD           0.72*** 0.14*** 

MAS            -0.45*** 

*, **, *** Significant at 0.05, 0.01 and 0.001 levels, respectively.                               (1) Abbreviation for traits Table 5. 
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Correlation among 13 traits under for BC2DH population drought stress 

 Results of correlation studies of among 13 traits are shown in Table16. We have three levels 

for correlation <0.2 was weak, from >0.2 to <0.5 was moderate, and more than >0.5 was strong. 

Relative leaf water content was resulted weak correlations with number of spikes per plant 

(P<0.05) and osmotic adjustment (P<0.01). Strongly and positive correlations were revealed for 

number of spikes per plant with yield (P<0.001), and biomass (P<0.001), as well as it was 

moderate with number of leaves per main tiller (P<0.001), first leaf area (P<0.001), second leaf area 

(P<0.001), while it was a weak correlated with relative leaf water content (P<0.05) and flag leaf 

area (P<0.001). Number of kernels per spike was revealed strong correlation with yield 

(P<0.001), whereas moderate correlations with number of leaves per main tiller (P<0.001), first leaf 

area (P<0.001), biomass (P<0.001), and harvest index (P<0.001), altogether it was weak correlated 

with flag leaf area (P<0.001) and second leaf area (P<0.001). Osmotic adjustment was associated 

weakly with relative leaf water content (P<0.01), number of leaves per main tiller (P<0.05), flag 

leaf area (P<0.01), first leaf area (P<0.01), second leaf area (P<0.05), biomass (P<0.01), and harvest 

index (P<0.001). Correlations were positive and moderate for days until heading with harvest 

index (P<0.001), whereas it was positive and weak correlation with second leaf area (P<0.05). 

Number of leaves per main tiller was moderate with number of spikes per plant (P<0.001), 

number kernels per plant (P<0.001), flag leaf area (P<0.001), first leaf area (P<0.001), second leaf 

area (P<0.001), yield (P<0.001) and harvest index (P<0.001), whereas it was negatively and 

strongly correlated biomass (P<0.001), but was negatively and weak with osmotic adjustment 

(P<0.05). Flag leaf area strong and positive correlated with first leaf area (P<0.001), second leaf 

area (P<0.001), and biomass (P<0.001), whilst it is moderate correlated with number of leaves for 

tiller (P<0.001), yield (P<0.001), and harvest index (P<0.001), in addition it was weak correlated 

with number of spikes per plant (P<0.001), number of kernels per spike (P<0.001) and osmotic 

adjustment (P<0.01). However, first leaf area was strongly and positively correlated with flag leaf 

area (P<0.001), second leaf area (P<0.001), and biomass (P<0.05), while it was moderate 

correlation with and number of spikes per plant (P<0.001), number of kernels per plant (P<0.001), 

number of leaves per main tiller (P<0.001), yield (P<0.001) and harvest index (P<0.001), while was 

weak correlated with osmotic adjustment (P<0.01). Strong and positive correlations were expressed 

by second leaf area with number of flag leaf area (P<0.001), first leaf area (P<0.001) and biomass 

(P<0.001), while it was moderate correlations with number of spikes per plant (P<0.001), leaves per 

tiller (P<0.01), yield (P<0.001) and harvest index (P<0.001), however was weak correlation with 

number of kernels per spike (P<0.001), osmotic adjustment (P<0.05) and days until heading 

(P<0.001). Carbon isotope discrimination was moderate correlated with days until heading 



RESULTS   59 

 

(P<0.01), furthermore it was weak correlated with number of leaves per main tiller (P<0.05), flag 

leaf area (P<0.01), first leaf area (P<0.001), biomass (P<0.001), and harvest index (P<0.001). Yield 

was strongly and positively correlated with number of spikes per plant (P<0.001), with number of 

kernels per spike (P<0.001), and biomass (P<0.001), whereas was moderate correlation with 

number of leaves per main tiller (P<0.001) flag leaf area (P<0.001), first leaf area (P<0.001), and 

second leaf area (P<0.001), whereas a weak correlated with harvest index (P<0.001). However, 

biomass was strongly correlated with number of spikes per plant (P<0.001), number of leaves per 

main tiller (P<0.001) flag leaf area (P<0.001), first leaf area (P<0.001), second leaf area (P<0.001), 

yield (P<0.001), and whereas it was moderate correlation with number of kernels per spike 

(P<0.001), harvest index (P<0.001). Harvest index was moderate with number of kernels per spike 

(P<0.001), days until heading (P<0.001), number of leaves per main tiller (P<0.05) flag leaf area 

(P<0.001), first leaf area (P<0.001), second leaf area (P<0.001) and biomass (P<0.001), whilst it 

was weak correlated with osmotic adjustment (P<0.001) and yield (P<0.001). 

 

Result of marker analysis 

4.1.4 Identification of Microsatellite markers in the Scarlett backcross population  

Ninety-seven SSR markers detected polymorphisms in the BC2DH population. The 

distribution of the 97 mapped SSRs is show in Figure 7. They were distributed over all seven barley 

chromosomes. The 323 BC2DH lines were successfully genotyped with 97 SSRs. The chromosomal 

location of the SSRs were inferred from Ramsay et al. (2000), Pillen et al. (2000, 2003), from 

linkage analysis in a reference BC2DH population from the Scarlett and ISR42-8 cross. All 97 

mapped SSRs cover 1013 cM of the barley genome; the mean SSR density is equal to 11.1 cM (see 

Table 17). The linkage map for sugar beet covered 789 cM and 1057.3 cM equivalent to an average 

genetic spacing of 6.8 cM and 6.0 cM per marker respectively (Pillen et al. 1992; 1993). The first 

SSR map for barley includes 299 SSRs and covers 1173 cM (Ramsay et al 2000), while the SSRs 

map of Pillen et al. (2003) contains 67 mapped SSRs and covers 852 cM of the barley genome. The 

Scarlett*ISR42-8 map includes four gaps with a marker distance of more than 30 cM, four gaps are 

located on chromosomes 3H, 5H and 6H (Table 18, Figure 7).  
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Figure 7: Linkage map of spring barley (Scarlett*ISR42-8)

Linkage map of spring barley (Scarlett*ISR42-8) based on 323 BC2DH lines from the cross of 
Scarlett*ISR42-8. Marker loci on the left side of each linkage group were used for linkage map 

construction. Distances are in Kosambi centiMorgen (cM) units on the right side of the map.
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Table 17: Number of markers and genome coverage putative QTLs for drought and heat 
tolerance 

 

 

4.1.2.1 Results of the AB-QTL-analysis in the backcross population 

The 97 polymorphic SSRs revealed 54 putative QTLs from 78 regions in two groups. The first 20 

putative QTLs found for drought treatments; and the second 34 putative QTLs found for heat 

treatments. Altogether, 30 (55.5%) favorable QTL effects were detected for both drought and heat 

experiment (see Table 29 and 30). At these loci, the homozygous ISR42-8 (H. v. ssp. spontaneum, 

is thereafter abbreviated with Hsp). Genotype was associated with an improvement of the trait 

compared to the homozygous (Hordeum vulgare L. distichon, hereafter abbreviated with Hvd) had 

genotype as shown in (Figure 8, 13 and Table 18). 

  

4.1.5 Detection of QTLs for drought tolerance. 

Single-point marker analysis by means of a three-factorial ANOVA rather than interval 

mapping was preferred for QTL analysis. Ninety-seven markers, 20 putative QTLs were detected. 

Eight regions for the marker main effect and 25 regions for the M*D interaction were significant at 

P < 0.01 (Figure 8 and Table 18). In two cases, both effects (marker main effect and M*D 

interaction) were significant.  

Chromos

ome 

Number 

of 

mapped 

markers 

Genome 

coverage 

(cM) 

Marker 

density (cM 

pro map 

marker) 

Number 

of Gaps 

 

(>30cM) 

Number 

of 

putative 

QTLs  

Number 

of drought 

experimen

t QTLs 

Number 

of heat 

experimen

t QTLs 

1H 17 123 7.2 0 8 4 4 

2H 10 98 9.8 0 9 0 9 

3H 13 142 10.9 1 5 1 4 

4H 20 176 8.8 0 10 2 8 

5H 11 165 15.0 1 11 8 3 

6H 9 149 16.7 2 5 2 3 

7H 17 160 9.4 0 6 3 3 

Total 97 1013 - 4 54 20 34 

Mean 13.8 144.7 11.1 0.57 7.7 2.8 4.7 
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Altogether, 14 (70.0%) favorable QTL effects were detected (see Table 29). At these loci, the 

homozygous Hsp genotype was associated with an improvement of the trait compared to the 

homozygous Hvd genotype (Figure. 8 and Table 18). The putative QTLs were unevenly distributed 

over the chromosomes (Figure. 8). While four QTLs were located on chromosome 1H, one QTLs 

were located on chromosome 3H, two QTLs were located on chromosome 4H, eight QTLs were 

located on chromosome 5H, two QTLs were located on chromosome 6H, three QTLs were located 

on chromosome 7H, and zero QTLs were detected on chromosomes 2H. Most of the favorable 

QTLs were located on chromosomes 1H, 5H and 7H (2, 8 and 3 respectively). The distribution of 

putative QTLs among the 18 genotyped SSR markers was also irregular. Marker Bmag0357 [5H] 

showed putative QTL effects on three traits (LEA, MAS and YLD), Marker Bmac0316 [6H] obtained 

putative QTL effects on two traits (OA and YLD) and Marker HW01M22T3 [5H] revealed putative 

QTL effects on two traits (MAS and OA). The detected putative QTLs are represented for the traits 

in the Table 18.  

Figure 8: Linkage map of QTL in spring barley (Scarlett*ISR42-8) for drought tolerance. 

 Linkage map contain 20 QTLs for drought experiment. The short and long arms are from top to 

bottom respectively. Map contains 20 putative QTLs with 20 favorable Hsp alleles detected from the 

BC2DH cross Scarlett x ISR42-8. Putative QTLs which revealed either a significant (P < 0.01) 

marker main effect or M*D interaction are written to the right of the SSR locus. Adjacent marker 

effects (distance study <20cM) are considered as one putative QTL. A vertical for represent markers 

were showing a significant QTL effect within a vicinity of 20 cM. The abbreviations of the 

quantitative traits follow Table 5. 
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Table 18 : List of 20 putative QTLs detected from the BC2DH cross Scarlett x ISR42-8A for 

drought tolerance.  
ATrait Marker BCh CPosition 

(cM) 

DEffect ESig. FRP 

Wild 

allele 

effect 

GRP 

Wild allele 

effect for 

control  

HRP  

Wild allele 

effect for 

drought stress  

QTLs 

FLA GMS021 1H 18 M ** -16.4 -13.6 -20.1 1 

LEA Bmag0357 5H 47 M*D ** 2.2 -1.6 6.1 1 

HY03I05T3 1H 7 M*D ** 1.2 3 -2.1 1 

Bmag0357 5H 47 M*D ** 8.9 13.1 1.7 2 

MASS 

 

HW01M22T3 5H 165 M*D ** -7.8 -15.5 6.3 3 

HVALAAT 1H 63 M *** -11.2 -8.6 -13.3 1 

HY02J05T3 5H 0 M *** 11.5 7.2 15.2 2 

Bmag0223 5H 69 M *** 8.1 7 9 3 

Bmag0222 5H 162 M*D ** 19.7 2.6 34 4 

HW01M22T3 5H 165 M*D ** 22.3 1.6 39.5 4 

Bmac0316 6H 6 M *** -11.2 -2.5 -18 5 

HVA22S 7H 75 M*D ** 8.4 -0.9 16.2 6 

Bmag0011 7H 93 M *** 8.8 1.2 15.3 6 

GMS056 7H 133 M + M*D *** 14.8 4.7 23 7 

BMS64 7H 146 M + M*D *** 14.3 1.4 25 7 

OA 

 

 

Bmag0120 7H 152 M*D *** 17.7 3.6 29.8 7 

GBM1007 1H 28 M*D ** -4.3 3.4 -12.8 1 

GMS089 4H 57 M*D ** -0.8 -4.8 3.9 2 

TACMD 4H 125 M*D ** -0.8 4 -6.1 3 

EBmac0701 4H 130 M*D ** -0.3 4 -5 3 

EBmac0635 4H 131 M*D ** -0.8 3.4 -5.5 3 

EBmac0679 4H 132 M*D ** -0.9 3.6 -5.8 3 

RWC 

 

EBmac0788 4H 150 M*D ** -0.7 3 -4.7 3 

HV13GEIII 3H 152 M*D ** 10 14.5 2 1 

HVM62 3H 154 M*D *** 10.8 16.3 0.9 1 

HW01N04T3 3H 159 M*D ** 9.9 14.2 2.1 1 

Bmac0029 3H 167 M*D ** 18.4 21.4 13.1 1 

Bmag0357 5H 47 M*D ** 8.9 14.5 -1.2 2 

YLD 

 

Bmac0316 6H 6 M*D ** 4.4 11 -7.4 3 

Bmac0163 5H 10 M*D ** -0.9 1.2 -3.2 1 CID 

EBmac0755 7H 166 M*D ** -1.3 -3.1 0.6 2 
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 *, **, *** Significant at 0.05, 0.01 and 0.001 levels, respectively. 

 
AThe quantitative traits are defined in Table 5. 
BChromosomal assignment of SSRs  
CChromosomal position of SSRs deduced from Ramsay et al. (2000) and Pillen et al. (2000). 
DEffect A QTL was assumed within the vicinity of a marker locus if the marker main effect or the M*D 

interaction was significant in the three-factorial ANOVA at P < 0.01  
ELevel of significance of the marker main effect and the M*D interaction, respectively, with: P < 0.01, ***P < 

0.001.  

FRP [Genotype] = (Ms�Mv)*100/Mv in % in % effect of the Hsp alleles a cross both environments.. 
GRP [T*M T1] = (MsT1�MvT1)*100/MvT1 in % was favorable effects of the Hsp alleles for control 

treatments. 
HRP [T*M T2] = (MsT2�MvT2)*100/MvT2 in % was effects of the Hsp alleles for drought stress. 
IQTLs number of QTLs for every trait. 

M + M*D their marker plus interaction between marker and drought treatment. 

Relative leaf water content (RWC)  

Three putative QTLs for Relative leaf water content were located on chromosomes 1H and 4H. All 

seven loci exhibited significant M*D interactions. On chromosome 4H was found TACMD highly 

significant than other marker EBMAC0701, EBMAC0635, EBMAC0679, and EBMAC0788. At 

three loci, the presence of the Hsp allele led to a reduction in relative leaf water content of up to 

4.3% at GBM1007 [1H]. The Hsp alleles showed positive effects for control treatment except 

GMS089 [4H]. The Hsp increased relative leaf water content in the control treatment with 4.0% at 

Ebmac0701 [4H] and TACMD [4H], while the Hsp allele decreased the RWC in the control treatment 

by 4.8% at GBM089 [4H]. On the other hand, the Hsp allele decreased the RWC in the drought stress 

with maximum of 12.8% at GBM1007 [1H], while the Hsp allele increased the RWC in the drought 

stress up to 3.9% at GMS089 [4H] (see Table 18).  

Osmotic adjustment (OA) 

 

A total of 7 putative QTLs have effect on osmotic adjustment were located on chromosomes 1H, 

5H, 6H and 7H. Seven loci exhibited a significant marker main effect, the other 6 loci showed a 

significant D*M interaction. Three regions at Bmag0222 [5H], HW01M22T3 [5H] and Bmag0222 [5H] 

were found on chromosome 5H like one QTL, but were found Bmag0222 [5H] highly significant. On 

chromosome 7H, were found HVA22S highly significant than Bmag0011, while GMS056 was 

found highly significant than BMS64 and Bmag0120. However, five favorable Hsp alleles effect 
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was detected, these loci improved osmotic adjustment to a maximum value 22.3% at HW01M22T3 

[5H]. On other hand, two Hsp allele decreased OA up to 11.2% at both Bamg0120 [7H], HVALAAT 

[1H]]. The Hsp allele four loci lifted OA in control treatment up to maximum 7.2% HY02J05T3 [5H], 

while, three loci Hsp allele decreased OA in control treatment for osmotic adjustment up to 8.6% at 

HVALAAT [1H]]. Two wild allele loci decreased OA in drought stress to maximum 18.0% 

Bmag0316 [7H], whilst five Hsp alleles showed increasing OA for drought stress up to 39.5% at 

HW01M22T3 [5H] (Table 18). 

Number of leaves per main tiller (LEA)  

 

Only one putative QTL for number of leaves per main tiller was located on chromosome 5H. It 

showed a significant M*D interaction at P < 0.01. The Hsp allele has favorable effect increasing the 

LEA by 2.2% at Bmag0357 [5H]. The Hsp allele resulted decrease LEA control treatment with 1.6%. 

Whereas, Hsp allele lifted LEA under drought stress by 6.1% (see Table 18). 

Flag leaf area (FLA)  

 

One putative QTL was located for flag leaf area on chromosome 1H. QTL was detected, exhibited a 

significant marker main effect. Favorable Hsp allele effect was detected at GMS021 [1H] reduce FLA 

by 16.4%. The Hsp allele one locus showed a decrease in FLA in control treatment 13.6% at 

GMS021 [1H]. Drought stress obtained negative effect FLA in one locus of Hsp allele value found 

20.1% at GMS021 [1H] (see Table 18). 

 Yield (YLD)  

 

Three putative QTLs for yield were located on chromosomes 3H, 5H and 6H. Six loci showed an 

M*D interaction were significant at the linked loci for their four loci located on chromosome 3H 

and one QTL, HV13GEIII [3H] and HVM62 [3H] highly significant than Bmac0029 [3H] and 

HW01N04T3 [3H]. Three Hsp alleles have favorable effects were detected, was improved positive 

effects for yield to maximum 18.4% at Bmac0029 [3H]. Control treatment resulted positive effects 

for yield at three loci of the Hsp alleles up to 21.4 % at Bmac0029 [3H]. Result showed positive 

effects for yield at one locus of the Hsp alleles under drought stress up to 13.1% at Bmac0029 [3H], 
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whereas, drought stress obtained negative effects at two loci of Hsp alleles in 1.2% and 7.4% at 

Bmac0316 [6H] and Bmac0357 [5H] respectively (see Table 18). 

 Biomass (MAS)  

Three QTLs were located for biomass trait on chromosomes 1H and 5H. All QTLs were 

showed as significant M*D interactions. The negative effect of the Hsp allele at one locus resulted 

in a 7.8% reduction of the above ground biomass at HW01M22T3 [5H] and favorable effects of the 

Hsp alleles detected for biomass, positive effects, 1.2% and 8.9% were found at tow loci both at 

HY03I05T3[1H] and Bmag0357[5H] respectively. Control treatments increased biomass at two loci 

Hsp allele a maximum 13.1% at Bmag0357 [5H], whereas other locus reduced biomass control 

treatments up to 15.5% at HW01M22T3 [5H]. Drought stress decreased biomass at all two loci Hsp 

allele a maximum 6.3% HW01M22T3 [5H], whereas other locus reduced biomass under drought 

stress up to 2.1% at HY03I05T3 [1H] (Table 18). 

 Carbon isotope discrimination (CID)  

 

Two putative QTLs for carbon isotope discrimination were located on chromosomes 5H and 7H. 

Two loci showed an M*D interaction were significant. Two Hsp alleles, which have favorable 

effects, were detected. They improved negative effects for carbon isotope discrimination up to 0.9% 

and 1.3% at both Bmac0163 [5H] and Ebmac0755 [7H]. Control treatment resulted positive effects for 

carbon isotope discrimination at one locus of the Hsp allele up to 1.2 % at Bmac0163 [5H], while was 

negative effects for CID discrimination at one locus the Hsp allele up to 3.1% at EBmac0755 [7H]. 

The Hsp allele obtained negative effect at one locus for CID under drought stress in 0.6% 

EBmac0755 [7H], while it was positive effect for CID at one locus of Hsp allele in 3.2% Bmac0163 

[5H] (see Table 18). 
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4.2  Heat results 
 Morphological characters  

In this study 11 quantitative traits (tillers per plant, number of spikes per plant, number of 

kernels per spike, relative leaf water content, osmotic adjustment, chlorophyll content, days to 

heading, yield, biomass and harvest index) traits were investigated for evaluation of barley 

(Thuringia, Scarlett, Harry, and Apex) genotypes. The number of tillers was found to be non-

significant between genotypes as well as the interaction among genotypes and drought treatments, 

but chlorophyll content non-significant for the interaction among genotypes. In the study for 

(Scarlett and ISR42-8) parents and BC2 DH population, we have tillers per plant, plant height, and 

chlorophyll content not studied, but we have (number spikes per plant, number of kernels per spike, 

relative leaf water content, osmotic adjustment, days to heading, yield, biomass and harvest index) 

and other traits more like flag leaf area, first lea area and second leaf area, because related for 

drought study.  

 

4.2.1  Evaluation of four barley genotypes  

 

1) Number of tillers per plant  

 The analysis of variance for replicates, genotypes and the interaction for genotypes and heat 

treatments were non-significant, but highly significant for heat treatments (Table 19). Result 

showed that the mean number of tillers ranged from 11.89 tillers for Harry to 26.78 tillers for Apex 

(Table 20).). Mean for heat treatments ranged from 12.50 tillers for heat treatment + 65% FC to 

33.08 tillers for control (see Table 21). 

 

2) Number of spikes per plant 

Variation for replications and the interaction among genotypes and heat treatments were non-

significant, but highly significant (P<0.001) among genotypes, and heat treatments (Table 19). The 

average number of spikes per plant ranged from 2.01 for Harry genotype to 3.09 spikes for Apex 

(see (Table 20). Mean for heat treatments ranged from 0.89 spikes for heat treatment + 65% FC to 

4.23 spikes for control (see Table 21). 
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Table 19: Analysis of variance traits for Thuringia, Scarlett, Harry, and Apex genotypes for 
heat experiment. 

Trait  Replications 
Heat 

treatments 
Genotypes G x H Error 

 DF: 2 2 3 6 22 

MS 4.98 34.85 4.54 8.42 5.66 
TILL 

F 0.88 6.16** 0.80 1.49  

MS 16.33 1271.08 472.62 14.88 49.06 
SPK 

F 0.33 25.91*** 9.63** 0.30  

MS 22.82 802.84 71.84 12.83 21.44 
KER 

F 1.06 37.44*** 3.35* 0.60  

MS 27.81 1482.57 886.73 262.62 29.21 
RWC 

F 0.95 50.76*** 30.36*** 8.99***  

MS 0.000044 0.0051 0.001 0.00025 0.00003 
OA 

F 1.43 164.78*** 32.48*** 8.10***  

MS 1.12 301.82 49.81 4.66 6.85 
CHL 

F 0.16 44.09*** 7.28** 0.68  

MS 2.27 1.09 273.04 21.92 4.67 
HEA 

F 0.49 0.23 58.43** 4.69***  

MS 0.94 254.39 240.64 17.70 4.10 
PH 

F 0.23 62.05*** 58.69*** 4.32**  

MS 6.38 2148.13 157.35 10.88 8.99 
YLD 

F 0.71 238.88*** 17.50*** 1.21  

MS 146.69 2031.90 116.33 112.09 107.17 
MASS 

F 1.37 18.96*** 1.09 1.05  

MS 36.67 5133.75 840.71 57.47 27.39 
HI 

F 1.34 187.42*** 30.69*** 2.10  

*, **, *** Significant at 0.05, 0.01 and 0.001 levels, respectively 
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3) Number of kernels per spike 

ANOVA revealed that replications and interaction between genotypes and heat treatments 

were not significant for kernels per spike. Genotypes and heat treatments, however, were highly 

significant, ((Table 19). Average number of kernels per spike ranged from 10.51 for Harry to 16.90 

kernels per spike for Apex (see Table 20). Mean for heat treatments ranged from 6.40 kernels for 

heat treatment + 65% FC to 22.74 kernels for control (see Table 21). 
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Figure 7: Relative leaf water content of Thuringia, Scarlett, Harry, and Apex genotypes for 

heat experiment. 

 

Figure 9 shows that a difference was weak for all treatments and genotypes except for the heat 

treatment + 65% FC which resulted in low RWC for all genotypes.  
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4) Relative leaf water content 

Variation was highly significant for the genotypes, heat treatments, and the interaction of 

genotypes and heat treatments, but was non-significant for the replicates (Table 19 and Figure 9). 

Result obtained for relative leaf water content revealed that average RWC ranged from 39.99 in for 

Apex to 63.45 for Thuringia (see Table 20). Mean for heat treatments ranged from 40.32 for heat 

treatment + 65% FC to 62.55 for control (see Table 21). 

5) Osmotic adjustment 

The variation among replications was non-significant, but highly significant among the 

genotypes, heat treatments, and the interaction of genotypes and heat treatments in (Table 19 and 

Figure 10). It was found that the average for osmotic adjustment ranged from 0.084 for Scarlett to 

0.107 for Apex (see Table 20). Mean for heat treatments ranged from 0.071 for control to 0.112 for 

heat treatment + 65% FC (see Table 21). 
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Figure 8: Osmotic adjustment of Thuringia, Scarlett, Harry, and Apex genotypes for heat 
experiment. 
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Figure 10 shows considerable differences for all treatments, but moderate differences among 

all genotypes.  

6) Chlorophyll content 

 The variation among replications and the interaction between genotypes and heat treatments 

were non- significant, but among genotypes and heat treatments highly significant (Table 19). Table 

20 shows that average the chlorophyll content for the genotypes ranged from 49.98 for Harry and 

Apex to 55.04 for Scarlett (see Table 20). Means for heat treatments were ranged from 46.82 for 

chlorophyll content for heat treatment + 65% FC to 56.81 of chlorophyll content for control 

treatment (see Table 21). 

7) Days until heading 

 Variation among replicates and heat treatments was non-significant, but highly significant 

among genotypes and highly significant interaction of genotypes and heat treatments (Table 19 and 

Figure11). The average number of days to heading ranged from 56.00 days for Thuringia to latest 

69.67 days for Harry (see Table 20). Means for heat treatments ranged from 60.78 days for heat 

treatment + 65% FC to 61.42 days for heat treatment (see Table 21). 

 

 

 

 

Figure 9: Days until heading of Thuringia, Scarlett, Harry, and Apex genotypes for the heat 
experiment. 
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Figure11 shows that differences were small treatments except for the heat treatment + 65% 

FC in Harry were susceptible the plant not arrived to heading. The variation among all genotypes 

was moderate for days to heading.  

 

8) Plant height 

Variation among the replicates was non-significant, but genotypes, heat treatments and the 

interaction of genotypes and heat treatments were highly significant (Table 19 and Figure12). As 

above, the mean of plant height for the genotypes ranged from 48.74 cm for Apex as shortest 

genotype to 59.87 cm for Scarlett as tallest genotype (see Table 20). Mean height for heat 

treatments ranged from 48.03 cm for heat treatment + 65% FC to 56.81 cm for control (see Table 

21). 
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Figure 10: Plant height of Thuringia, Scarlett, Harry, and Apex genotypes for the heat 

experiment. 

Figure12 shows the differences were small for all treatments and genotypes except for the heat + 

65% FC treatment in Harry and Apex which resulted in a considerable reduction of plant height. 

The height differences of genotypes were moderate for plant height.  

9) Yield 

 Variation among the replicates and the interaction of genotypes and heat treatments were non-

significant, but between genotypes and heat treatments were highly significant (Table 19). 
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The lower yield (9.71) was revealed for Harry, whereas the highest yield (19.33 g) was found 

by Apex (see Table 20). Mean for heat treatments ranged from 3.68 g for heat treatment + 65% FC 

to 30.08 g for control (see Table 21). 

10) Biomass 

Analysis of variance among replications, genotypes and the interaction among genotypes and 

heat treatments were non-significant, but were highly significant among heat treatments (Table 19). 

The average for biomass of the genotypes ranged from 39.94 g for Thuringia to 48.43 g for Apex 

(see Table 20). The mean for heat treatments ranged from 30.42 g for heat treatment + 65% FC to 

56.44 g for control (see Table 21). 

11) Harvest index 

The analysis of variance among replications and the interaction between genotypes and heat 

treatments were non-significant, but were highly significant among heat treatments and genotypes 

(Table 19). The average of harvest index for the genotypes ranged from 17.61 % for Harry lowest 

genotype to 38.51% for Apex highest genotype (see Table 20). Mean for heat treatments ranged 

from 12.11% for heat treatment + 65% FC to 53.38% for control (see Table 21). 

Table 20: Mean value of traits for Thuringia, Scarlett, Harry, and Apex genotypes with Ryan-
Gabriel-Welsch Multiple Range Test for heat experiment. 

Trait Thuringia Scarlett Harry Apex 

Tillers per plant 26.22A 26.11A 11.89B 26.78A 

No. spikes per plant 2.83A 2.56A 2.01A 3.09A 

No. kernels per spike 13.75AB 16.10A 10.51B 16.90A 

Relative leaf water content 63.45A 54.58B 48.21C 39.99D 

Osmotic adjustment 0.089B 0.084B 0.087B 0.1077A 

Chlorophyll content 50.30B 55.04A 49.98B 49.98B 

Days until heading 56.00C 63.79B 69.67A 58.11C 

Plant height 54.73B 59.87A 49.52C 48.74C 

Grain yield 15.91A 17.53A 9.71B 19.33A 

Biomass 39.94A 43.10A 42.21A 48.43A 

Harvest index 35.26A 36.48A 17.61B 38.51A 

 Mean values with different superscript letters are significantly different at P < 0.05. 
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Table 21: Mean value of traits of heat treatments with Ryan-Gabriel-Welsch Multiple Range 
Test for heat experiment. 

Trait Heat+65% FC Heat in greenhouse Control out greenhouse 

Tillers per plant 12.50C 22.67B 33.08A 

No. Spikes per plant 0.89B 1.98B 4.23A 

No. Kernel per spike 6.40C 13.87B 22.74A 

Relative leaf water content 40.32C 51.80B 62.55A 

Osmotic adjustment 0.112A 0.093B 0.071C 

Chlorophyll content 46.82C 51.08B 56.81A 

Days to heading 60.78A 61.42A 61.25A 

Plant height 48.03C 54.79B 56.83A 

Yield 3.68C 13.10B 30.08A 

Biomass 30.42C 43.41B 56.44A 

Harvest index 12.11C 30.40B 53.38A 

 Mean values with different superscript letters are significantly different at P < 0.05. 

 

4.2.2 Heat results for population parents Scarlett and ISR42-8. 

 

Relative leaf water content: the analysis of variance among heat treatments and parents 

were highly significant for relative leaf water content, it was non-significant between the years, 

interaction between heat treatments and years, the interaction between heat treatments and parents, 

The interaction between years and parents, as well as, interaction among heat treatments, years and 

parents (Table 22). Number of spikes per plant: variation among heat treatments, parents, years, 

interaction between heat treatments and years as well as, the interaction between heat treatments 

and parents were significant. It was non-significant for the interaction between years and parents as 

well as, interaction between heat treatments, years and parents (Table 22). Number of kernels per 

spike: it was highly significant among heat treatments, parents, years, the interaction between heat 

treatments and parents, the interaction between years and parents as well as, interaction between 

heat treatments, years and parents. It was non-significant for interaction between heat treatments 

and years (Table 22). Osmotic adjustment: variation among heat treatments, parents, years and the 

interaction between heat treatments and parents were significant, it was non-significant for 

interaction between heat treatments and years, the interaction between years and parents and 

interaction among heat treatments, years and parents were highly significant (Table 22). Days until 
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heading: the result was highly significant for heat treatments, parents, years, interaction between 

heat treatments and years, the interaction between years and parents as well as, interaction among 

heat treatments, years and parents. It was significant for the interaction between heat treatments and 

parents (Table 22). Number of leaves per main tiller: the variation was significant for number of 

leavers per tiller between years and parents. It was non-significant for heat treatments, the 

interaction between heat treatments and parents, interaction between heat treatments and years, the 

interaction between years and parents as well as, interaction between heat treatments, years and 

parents (Table 22). Yield: the result indicated highly significant among heat treatments, parents, 

years, interaction between heat treatments and years as well as, interaction between heat treatments 

and parents. It was non-significant for the interaction between years and parents as well as, 

interaction between heat treatments, years and parents (Table 22). Biomass: the result revealed 

highly significant for heat treatments, parents, years, interaction between heat treatments and 

parents, the interaction between years and parents as well as, interaction between heat treatments, 

years and parents. It was non-significant for the interaction between heat treatments and years 

(Table 22). Harvest index: the variation of heat treatments, interaction heat treatments and parents, 

the interaction between heat treatments and years, as well as, interaction between heat treatments, 

years and parents were non-significantly. It was significant for parents, years, the interaction 

between years and parents (Table 22). Flag leaf area: variation among heat treatments, years, 

interaction heat treatments and parents, the interaction between heat treatments and years were 

highly significant. It was non- significant for parents, the interaction between years and parents, as 

well as, interaction among heat treatments, years and parents (Table 22). First leaf area: it was 

non-significantly among heat treatments, parents, years, interaction between heat treatments and 

years, the interaction between heat treatments and parents, the interaction between years and parents 

as well as, interaction among heat treatments, years and parents (Table 22). Second leaf area: the 

variation between heat treatments, parents and interaction between heat treatments and years were 

significant. Whereas, was non-significantly for years, the interaction between heat treatments and 

parents, the interaction between years and parents as well as, interaction for heat treatments, years 

and parents (Table 22). 
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Table 22: Analysis of variance of traits for population parents (Scarlett and ISR42-8) for heat 
tolerance. 

Trait  Heat (H) Year (Y) Parents (P) H*Y H* P Y* P H*Y* P Error 

 DF: 1 1 1 1 1 1 1 80 

MS 5179.518 45.505 3135.613 5.235 335.833 580.031 44.888 95.491 
RWC 

F 54.24*** 0.48 22.36*** 0.05 3.52 0.06 0.47  

MS 122.778 37.430 77.778 11.505 3.940 1.278 1.394 0.575 
SPK 

F 312.27*** 6.5* 135.10*** 19.99*** 6.84* 2.22 2.42  

MS 597.354 3330.727 4293.242 0.565 131.670 387.067 1776.13 7.201 
KER 

F 82.94*** 462.48*** 596.12*** 0.08 18.28*** 53.74*** 246.6***  

MS 0.0156 0.0019 0.021 0.00003 0.0018 0.00007 0.00011 0.00007 
OA 

F 217.83*** 26.88*** 293.2*** 0.46 25.36*** 1.04 1.58  

MS 1037.557 6651.840 2715.578 4677.57 10.669 193.76 60.669 1.886 
HEA 

F 5558.35*** 3563.49*** 1454.77*** 2505.8*** 5.72* 103.80*** 32.50***  

MS 0.363 9.091 5.818 0.363 0.010 1.454 0.010 0.531 
LEA 

F 0.69 17.13*** 10.97* 0.69 0.02 2.74 0.02  

MS 189.005 34.379 212.446 7.320 105.989 1.855 0.203 0.773 
YLD 

F 244.50*** 44.47*** 274.82*** 9.47* 137.11*** 2.4 0.26  

MS 1788.293 25.361 353.496 3.099 161.555 103.351 64.561 2.123 
MASS 

F 842.29*** 11.95** 166.5*** 1.46 76.09*** 48.68*** 30.41***  

MS 0.369 1004.386 6615.186 102.189 184.385 749.048 107.242 103.5 
HI 

F 0.00 9.70* 63.91*** 0.99 1.78 7.24* 1.04  

MS 168.898 54.637 1.4540 122.471 17.979 0.006 2.184 4.037 
FLA 

F 41.84*** 13.53** 0.36 30.33*** 4.45* 0.00 .054  

MS 197.568 56.872 64.353 0.364 247.821 58.645 224.812 235.9 
ARE1 

F 0.84 0.24 0.24 0.00 1.05 0.25 0.95  

MS 738.519 2201740 65.288 220.897 20.800 28.004 7.634 11.89 
ARE2 

F 62.11*** 0.02 5.49* 18.58*** 1.75 2.36 0.64  

*, **, *** Significant at 0.05, 0.01 and 0.001 levels, respectively. 
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Table 23: T Tests (LSD) for parents (Scarlett and ISR42-8) for heat experiment 

Traits  Scarlett ISR42-8 

Relative leaf water content 86.38A 71.51B 

No. Spikes per plant 4.56A 3.68B 

No. Kernels per spike 21.11A 6.46B 

Osmotic adjustment 0.046B 0.1064A 

Heading date 68.41A 56.45B 

Number of leaves per main 

tiller 
5.29A 4.84B 

Flag leaf area 5.92A 6.27A 

First leaf area 15.73A 12.17A 

Second leaf area 16.87B 13.71A 

Yield 4.54A 0.75B 

Biomass 11.21A 7.8B 

Harvest index 40.06A 12.77B 

Mean values with different superscript letters are significantly different at P < 0.05. 

 

Table 23 shows LSD for parents Scarlett and ISR42-8 of heat experiment, different significant 

between Scarlett and ISR42-8 for all traits except flag leaf area and first leaf area.  
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Table 24: T Tests (LSD) between mean values of heat treatments for 12 quantitative traits 

Trait Control 

(Outside green house) 

Heat treatment 

(Inside green house) 

Relative leaf water content 83.518A 63.224B 

No. spikes per plant 6.3295A 2.6705B 

No. kernels per spike 17.233A 10.346B 

Osmotic adjustment 0.05100B 0.086614A 

Days until heading 82.523A 42.341B 

Number of leaves per main tiller 4.9318A 5.2045A 

Flag leaf area 8.8689A 3.3307B 

First leaf area 15.845A 12.066A 

Second leaf area 20.3570A 10.2320B 

Yield 4.3098A 0.9859B 

Biomass 15.5018A 3.5043B 

Harvest index 25.608A 27.218A 

 Mean values with different superscript letters are significantly different at P < 0.05. 

Table 24 shows LSD for control and heat stress of the heat experiment, different significances 

between control and heat stress for all traits except number of leaves per main tiller, first leaf area 

and harvest index. 
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4.2.3 Heat result for BC2DH lines (Scarlett*ISR42-8 population) 

Table 25: Analysis of variance in traits for BC2DH for heat tolerance. 

Trait  Heat (H) Year (Y) 
lines 

(DH) 
H*Y H*DH Y*DH H*Y*DH Error 

 DF: 1 1 318 1 313 309 304 80 

MS 1641.89 384.915 193.742 265.439 219.382 183.155 159.981 108.054 
RWC 

F 15.19** 3.56 1.79* 2.46 2.03*** 1.70* 1.48*  

MS 2960.480 260.473 1.593 160.511 1.756 1.848 1.273 1.057 
SPK 

F 2800.36*** 246.39*** 1.51* 151.83*** 1.66* 1.75* 1.20  

MS 12512.218 16686.667 70.261 5616.155 35.750 48.601 52.821 7.411 
KER 

F 1688.17*** 2251.40*** 9.48*** 757.74*** 4.82*** 6.56*** 7.13***  

MS 0.002 0.095 0.001 0.207 0.001 0.001 0.001 0.0001 
OA 

F 12.65** 648.40*** 4.87*** 1415.55*** 5.37*** 3.43*** 4.49***  

MS 204272.807 28032.342 166.88 12456.481 56.091 95.087 85.08 1.886 
HEA 

F 109432.0*** 15017.3*** 89.40*** 6673.12*** 30.05*** 50.94*** 45.87***  

MS 8.120 415.287 0.702 5.451 0.524 0.711 0.531 0.531 
LEA 

F 15,31** 782,74*** 1,32 10,27* 0,99 1,34 1,00  

MS 6.118.397 188.589 5.399 65.219 4.746 5.270 5.751 0.773 
YLD 

F 7914.82*** 243.96*** 6.98*** 84.37*** 6.14*** 6.82*** 7.44***  

MS 47691.921 5299.560 14.400 3678.265 12.082 11.623 10.188 2.123 
MASS 

F 22462.9*** 2496.09*** 6.78*** 1732.46*** 5.69*** 5.47*** 4.80***  

MS 7831.613 563.863 224.009 13675.641 225.992 185.398 230.872 103.509 
HI 

F 760.62*** 5.45* 2.16*** 132.12*** 2.18*** 1.79* 2.23***  

MS 1583.887 515.816 16.322 209.942 15.071 13.616 14.680 4.037 
FLA 

F 392.33*** 127.77*** 4.04*** 52.00*** 3.73*** 3.37*** 3.64***  

MS 9175.435 118.781 32.962 1255.061 20.597 23.683 23.632 235.927 
ARE1 

F 38.89*** 0.50 0.14 5.32* 0.09 0.10 0.10  

MS 9368.265 612.452 46.095 6085.611 30.637 29.480 34.944 11.891 
ARE2 

F 787.84*** 51.51*** 3.88*** 511.78*** 2.58*** 2.48*** 2.94***  

*, **, *** Significant at 0.05, 0.01 and 0.001 levels, respectively. 
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 Relative leaf water content: the variation among heat treatments, BC2DH lines, years, the 

interaction between heat treatments and years, the interaction between heat treatments and BC2DH 

lines, the interaction between years and BC2DH lines and the interaction among heat treatments, 

years and BC2DH lines were significant, whereas it was non-significant for years and the interaction 

between heat treatments and years (Table 25). Number of spikes per plant: variation among heat 

treatments, BC2DH lines, years, the interaction between heat treatments and years, the interaction 

between heat treatments and BC2DH lines, the interaction between years and BC2DH lines were 

significant. While it was non-significant for interaction among heat treatments, years and BC2DH 

lines (Table 25). Number of kernels per spike: the result showed highly significant among heat 

treatments, BC2DH lines, years, the interaction between heat treatments and years, the interaction 

between heat treatments and BC2DH lines, the interaction between years and BC2DH lines, as well 

as, the interaction among heat treatments, years and BC2DH lines (Table 25). Osmotic adjustment: 

the variation was highly significant for heat treatments, BC2DH lines, years, the interaction between 

heat treatments and years, the interaction between heat treatments and BC2DH lines, the interaction 

between years and BC2DH lines and the interaction among heat treatments, years and BC2DH lines 

(Table 25). Days until heading: the analysis of variance for heat treatments, BC2DH lines, years, 

the interaction between heat treatments and years, the interaction between heat treatments and 

BC2DH lines, the interaction between years and BC2DH lines and the interaction among heat 

treatments, years and BC2DH lines was highly significant (Table 25). Number of leaves per main 

tiller: variation was significant for number of leaves per main tiller of heat treatments and years 

interaction heat treatments and years, whereas was non-significantly for BC2DH lines, the 

interaction between heat treatments and BC2DH lines, the interaction between years and BC2DH 

lines as well as, interaction among heat treatments, years and BC2DH lines (Table 25). Yield: result 

indicated highly significant for yield among heat treatments, years, BC2DH lines, the interaction 

among heat treatments and years, the interaction between heat treatments and BC2DH lines, the 

interaction between years and BC2DH lines as well as, interaction among heat treatments, years and 

BC2DH lines (Table 25). Biomass: variation was highly significant for biomass among heat 

treatments, years, BC2DH lines, the interaction between heat treatments and years, the interaction 

between heat treatments and BC2DH lines, the interaction between years and BC2DH lines as well 

as, interaction among heat treatments, years and BC2DH lines (Table 25). Harvest index: the result 

found high significant difference for harvest index among heat treatments, BC2DH lines, the 

interaction for heat treatments and years, the interaction between heat treatments and BC2DH lines, 

the interaction between years and BC2DH lines as well as interaction among heat treatments, years 

and BC2DH lines. However, the difference was significant among years (Table 25). Flag leaf area: 
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the result revealed highly significant for flag leaf area among heat treatments, years, BC2DH lines, 

the interaction among heat treatments and years, the interaction between heat treatments and 

BC2DH lines, the interaction between years and BC2DH lines as well as, interaction among heat 

treatments, years and BC2DH lines (Table 25). First leaf area: variation was significant for first 

leaf area among heat treatments and the interaction among heat treatments and years. The analysis 

of variance was non-significant among years, BC2DH lines, the interaction between heat treatments 

and BC2DH lines, the interaction between years and BC2DH lines, as well as, interaction between 

heat treatments, years and BC2DH lines (Table 25). Second leaf area: result obtained highly 

significant for second leaf area among heat treatments, years, BC2DH lines, the interaction among 

heat treatments and years, the interaction between heat treatments and BC2DH lines, the interaction 

between years and BC2DH lines, as well as, interaction among heat treatments, years and BC2DH 

lines (Table 25). 

 

Correlation for 12 traits for heat treatments and BC2DH lines 

Results of correlation studies of 12 traits are shown in Table 26. Three levels of correlation were 

established <0.2 was weak, from >0.2 to <0.5 was moderate, and more than >0.5 was strong. 

Relative leaf water content showed a weak correlation with number of spikes per plant (P<0.01), 

osmotic adjustment (P<0.05), biomass (P<0.05) and harvest index (P<0.05). Positive and strong 

correlations were obtained for number of spikes per plant with days until heading (P<0.001), 

yield (P<0.001), and biomass (P<0.001), while it moderate correlations were revealed for spike with 

flag leaf area (P<0.001), first leaf area (P<0.05) second leaf area (P<0.01), and harvest index 

(P<0.05), whereas it was weak correlated with relative leaf water content (P<0.01), number of 

kernels per spike (P<0.001), osmotic adjustment (P<0.05), and number of leaves per main tiller 

(P<0.001). Number of kernels per spike was revealed positive and moderate correlation with days 

until heading (P<0.001), number of leaves per main tiller (P<0.001), yield (P<0.001), biomass 

(P<0.001), and harvest index (P<0.001), while it showed a weak correlation with relative leaf water 

content (P<0.01), number of spikes per plant (P<0.001), flag leaf area (P<0.05), and second leaf 

area (P<0.001). Osmotic adjustment had a medium association with heading date (P<0.001), and 

number of leaves per main tiller (P<0.001), whilst a weak correlated with relative leaf water content 

(P<0.05), number of spikes per plant (P<0.05), second leaf area (P<0.001). Correlations were 

positive and strong for days until heading with number of spikes per plant (P<0.001), yield 

(P<0.001) and biomass (P<0.001), while showed a medium correlation with number of kernels per 

spike (P<0.001), osmotic adjustment (P<0.001), first leaf area (P<0.001), second leaf area 

(P<0.001), and harvest index (P<0.001). There was a weak correlation with number of leaves per 
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main tiller (P<0.05), and flag leaf area (P<0.001). Number of leaves per main tiller revealed a 

positive and moderate correlation with number of kernels per spike (P<0.001), and osmotic 

adjustment (P<0.001), whereas the correlation was weak for number of spikes per plant (P<0.001), 

days until heading (P<0.05) and flag leaf area (P<0.05), second leaf area (P<0.05), yield (P<0.001) 

and biomass (P<0.001). Flag leaf area positive and strongly correlated with first leaf area 

(P<0.001), and second leaf area (P<0.001), moderate correlated with number of spikes per plant 

(P<0.001), and biomass (P<0.001), a weak correlated with number of kernels per spike (P<0.05), 

heading date (P<0.001), number of leaves per main tiller (P<0.05), and yield (P<0.001). However, 

this first leaf area was positive and strongly correlated with flag leaf area (P<0.001), and second 

leaf area (P<0.001), while showed a moderate correlation with number of spikes per plant 

(P<0.001), heading date (P<0.001), yield (P<0.001) and biomass (P<0.001). The correlation was 

weak for number of kernels per spike (P<0.001) and harvest index (P<0.001). Positive and strong 

correlations were exhibited by second leaf area with flag leaf area (P<0.001), and first leaf area 

(P<0.001), whereas the correlated was medium for number of spikes per plant (P<0.01), days until 

heading (P<0.001), yield (P<0.001) and biomass (P<0.001), a weak correlated with osmotic 

adjustment (P<0.001), number of leaves per main tiller (P<0.05), and harvest index (P<0.001). 

Yield was positive and strongly correlated with number of spikes per plant (P<0.001), heading date 

(P<0.001), biomass (P<0.001) and harvest index (P<0.001), however the correlation was moderate 

for number of kernels per spike (P<0.001), first leaf area (P<0.001), and second leaf area (P<0.001), 

whilst a weak correlated with number of leaves per main tiller (P<0.001) and flag leaf area 

(P<0.001). However, biomass was positive and strongly correlated with number of spikes per plant 

(P<0.001), days until heading (P<0.001) and yield (P<0.001), whilst was positive and moderate 

correlations with number of kernels per spike (P<0.001), number of leaves per main tiller 

(P<0.001), flag leaf area (P<0.001), first leaf area (P<0.05), second leaf area (P<0.001) and harvest 

index (P<0.001), whilst the correlation was a wear with relative leaf water content (P<0.05). 

Harvest index was weak correlated with relative leaf water content (P<0.001), first leaf area 

(P<0.001) and second leaf area (P<0.001), while the correlation was moderate with number of 

spikes per plant (P<0.05), number of kernels per spike (P<0.001) heading date (P<0.001) and 

biomass (P<0.001), while the correlation was positive and strongly with yield (P<0.001).  
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Table 26: Pearson's correlation coefficients (r) between 12 quantitative traits1 for heat tolerance  

 
 

 
SPK KER OA HEA LEA FLA Are1 Are2 YLD MAS HI 

RWC -0.07** 0.01 -0.06* 0.04 -0.05 0.05 -0.03 -0.02 0.04 0.06* -0.06* 

SPK  0.12*** 0.06* 0.63*** -0.16*** 0.22*** 0.31*** 0.40*** 0.71*** 0.81*** 0.38*** 

KER   0.00 0.48*** 0.26**** -0.05* 0.13*** 0.05 0.38*** 0.25*** 0.40*** 

OA    0.22*** 0.22*** -0.03 0.04 0.13*** 0.04 0.021 -0.09 

HEA     0.14*** 0.18*** 0.35*** 0.43*** 0.61*** 0.67*** 0.32*** 

LEA   
 

 
  -0.07** -0.01 -0.05* -0.12*** -0.21*** -0.05 

FLA   
 

 
   0.58*** 0.51*** 0.18*** -0.21*** -0.05 

Are1   
 

 
    0.62*** 0.29*** 0.36*** 0.14*** 

Are2   
 

 
     0.39*** 0.49*** 0.14*** 

YLD   
 

 
      0.77*** 0.69*** 

MAS   
 

 
       0.27*** 

*, **, *** Significant at 0.05, 0.01 and 0.001 levels, respectively.                                      1) Abbreviation for traits Table 5. 
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Table 27 : Pearson's correlation coefficients (r) between 13 quantitative traits1 under heat stress 

 
 

 
SPK KER OA HEA LEA FLA Are1 Are2 YLD MAS 

HI 

RWC -0.03 -0.02 -0.02 0.03 0.03 0.01 -0.00 0.01 -0.05 0.00 -0.08* 

SPK  -0.19*** 
0.02 

 
-0.15*** -0.08* -0.12** 0.04 -0.09* 0.38*** 0.13** 0.30*** 

KER   0.11** 0.33*** 0.17*** 0.00 0.04 0.116** 0.44*** 0.15*** 0.27*** 

OA    0.56*** 0.46*** -0.03 0.06 0.19*** -0.28*** -0.04 -0.30*** 

HEA     0.50*** 0.05 0.10** 0.24*** -0.23*** 0.01 -0.32*** 

LEA   
 

 
  -0.01 0.08* 0.18*** -0.25*** -0.05 -0.25*** 

FLA   
 

 
   0.49*** 0.58*** -0.04 0.05 -0.07 

Are1   
 

 
    0.51*** -0.01 0.03 -0.06 

Are2   
 

 
     -0.13*** 0.01 -0.14*** 

YLD   
 

 
      0.37*** 0.72*** 

MAS   
 

 
       -0.21*** 

*, **, *** Significant at 0.05, 0.01 and 0.001 levels, respectively.                                  1) Abbreviation for traits Table 5. 
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Correlation of 12 traits under heat stress in BC2DH population 

 Results of correlation studies of 12 traits are shown in Table 27. There are three levels of 

correlation <0.2 was weak, from >0.2 to <0.5 was moderate, and more than >0.5 was strong. Relative leaf 

water content was resulted in negative and weak correlation with harvest index (P<0.05). Moderate 

correlations was revealed for number of spikes per plant with yield (P<0.001), and harvest index 

(P<0.001), correlation was calculated with number of kernels per spike (P<0.001), days until heading 

(P<0.001), number of leaves per main tiller (P<0.05) flag leaf area (P<0.01), second leaf area (P<0.05) and 

biomass (P<0.01). Number of kernels per spike was revealed moderate correlations with yield (P<0.001), 

days until heading (P<0.001) and harvest index (P<0.001), whereas it was wear correlations with number 

of spikes per plant (P<0.001), osmotic adjustment (P<0.01), number of leaves per main tiller (P<0.001), 

second leaf area (P<0.01), and biomass (P<0.001). Osmotic adjustment was strongly and positive 

associated with days until heading (P<0.001), while it was associated moderate number of leaves per main 

tiller (P<0.001), yield (P<0.001) and harvest index (P<0.001), the other hand, it was associated positive 

and weak with number of kernels per spike (P<0.001), second leaf area (P<0.001). Correlations were 

strong for days until heading with osmotic adjustment (P<0.001), and number of leaves per main tiller 

(P<0.001), whereas it were moderate correlation for number of kernels per spike (P<0.001), second leaf 

area (P<0.001), yield (P<0.001) and harvest index (P<0.001), it was wearily correlated with number of 

spikes per plant (P<0.001) and first leaf area (P<0.01). Number of leaves per main tiller was strong by 

correlated with hading days (P<0.001), whereas correlation was moderate with osmotic adjustment 

(P<0.001), yield (P<0.001) and harvest index (P<0.001), while it weak by correlated with number of spikes 

per plant (P<0.05), number kernels per plant (P<0.001), (P<0.001), first leaf area (P<0.05, and second leaf 

area (P<0.001). Flag leaf area was positive and strongly correlated with second leaf area (P<0.001), whilst 

positively and moderate correlated with first leaf area (P<0.001), while a weak number of spikes per plant 

(P<0.01). However, first leaf area was positive and strong correlated with second leaf area (P<0.001), 

while it was positive and moderate correlated with flag leaf area (P<0.001), however positive and weak 

correlation with heading date (P<0.01), and number of leaves per main tiller (P<0.05). Positive and strong 

correlations were expressed by second leaf area with flag leaf area (P<0.001), first leaf area (P<0.001), 

while the correlation was moderate with days until heading (P<0.001), while it was weakly correlated with 

number of spikes per plant (P<0.05), number of kernels per spike (P<0.01), osmotic adjustment (P<0.001), 

number of leaves per main tiller (P<0.001), yield (P<0.001) and harvest index (P<0.001). Yield was 

positive and strongly correlated with harvest index (P<0.001), whereas it showed a moderate correlation 

with number of spikes per plant (P<0.001), number of kernels per spike (P<0.001), osmotic adjustment 

(P<0.001), days until heading (P<0.001), number of leaves per plant (P<0.001), and biomass (P<0.001), 

while the correlation was wear with second leaf area (P<0.001). However, biomass showed positive and 

moderate correlations with yield (P<0.001), and harvest index (P<0.001), while the correlation with 
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number of spikes (P<0.001), number of kernels per plant (P<0.001) was wear. Harvest index was 

negatively and strongly correlated with yield (P<0.001), while the correlation with number of number of 

spikes per plant (P<0.001), kernels per spike (P<0.001), osmotic adjustment (P<0.001), days until heading 

(P<0.001), number of leaves per main tiller (P<0.001), and biomass (P<0.001) was medium. The 

correlation with relative leaf water content (P<0.05), second leaf area (P<0.001) was weak. 

 

4.2.4 QTL detection for heat experiment 

Ninety-seven polymorphic markers detected 34 putative QTLs were detected from 45 regions. For 4 

regions, marker main effect and at 41 regions the M*H interaction were significant at P < 0.01 (Figure. 13 

and Table 28). 16 (47.0%) favorable QTL effects were detected (see Table 30). At these loci, the 

homozygous Hsp genotype was associated with an improvement of the trait compared to the homozygous 

Hvd genotype (Figure 13. and Table 28). The putative QTLs were unevenly distributed over the 

chromosomes (Figure 13). 8 and 9 QTLs were located on chromosomes 4H and 2H, respectively. Most of 

the favorable QTLs were located on chromosomes 3H and 4H (3, and 5 respectively). No favorable QTLs 

were detected on chromosome 1H. At the marker GMS003 [2H] has putative QTLs effects for three traits 

(MAS, YLD and HI). HV13GEIII [3H] were found a putative QTLs effects for four traits (OSM, FLA, MAS 

and YLD). HVM62 [3H] marker was detected for putative QTLs on four traits (OSM, FLA, MAS and YLD). 
HW01N04T3 [2H] showed putative QTLs effects on three traits (OSM, FLA and YLD). HY02P09T3 [1H] 

obtained putative QTLs effects on three traits (ARE1, FLA and OSM). The detected putative QTLs are 

represented for each trait is shown in Table 28. 
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Figure 13: Linkage map of spring barley (Scarlett*ISR42-8) for heat tolerance
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 Figure 13: Linkage map of spring barley for heat tolerance (Scarlett*ISR42-8) 

Linkage map containing 34 putative QTLs for heat experiment. The short arms of the chromosomes represented at the 

top. The linkage map for spring barley contains 34putative QTLs with16 favorable Hsp alleles detected in the BC2DH 

population Scarlett x ISR42-8. Putative QTLs which revealed either, a significant (P < 0.01) marker main effect or 

M*H interaction are written to the right of the SSR locus. Adjacent markers effects (distance<20cM) are considered as 

one putative QTL. A vertical line represents markers showing a significant QTL, which show an effect within a vicinity 

of 20 cM. The abbreviations of the quantitative traits follow Table 5. 

 

Table 28: List of 34 putative QTLs detected from the BC2DH cross Scarlett x ISR42-8A for 
heat experiment. 
ATrait Marker BCh CPositi

on 

(cM) 

DEffect ESig

. 

FRP Wild 

allele 

effect 

GRP 

Wild allele 

effect for 

control  

HRP  

Wild allele 

effect for 

drought 

stress  

IQTLs 

GMS003 2H 48 M*H *** -9.89 -10.62 -6.57 1 

HV13GEIII 3H 152 M*H ** 8.25 10.36 -0.98 2 

HVM62 3H 154 M*H ** 7.85 10.01 -1.57 2 

MASS 

Bmag0321 7H 100 M *** -5.55 -5.38 -6.27 3 

GBM1007 1HS 25 M*H ** -1.88 13.17 -30.14 1 

HVM36 2H 17 M*H ** 9.04 -1.74 30.84 2 

GMS003 2H 48 M*H ** 3.16 -4.63 19.02 3 

HI 

 

GBM1008 6HL 140 M*H *** 1.67 14.57 -21.4 4 

HEA HVABAIP 1HL 130 M*H ** 2.67 4.62 -0.19 1 

HY02P09T3 2H 44 M*H ** -13.62 -3.2 -28.7 1 

HY03N03T3 4H 95 M*H ** 17.66 23.81 8.59 2 

ARE1 

 

GMS061 5H 126 M*H ** -6.27 -19.11 13.16 3 

HY02P09T3 2H 44 M*H *** -8.54 8.77 -31.41 1 

HV13GEIII 3H 152 M*H *** 15.42 -1.11 39.72 2 

HVM62 3H 154 M*H ** 19.6 -0.05 35.97 2 

HVM40 4H 14 M*H *** -0.46 14.17 -19.89 3 

HVKNOX3 4H 35 M*H ** 5.16 14.96 -7.81 4 

HW01N04T3 4H 95 M*H ** 16.93 3.52 36.67 5 

GBM1015 4HL 152 M*H *** -1.96 12.29 -20.13 6 

HW01M22T3 5H 165 M*H ** 5.16 25.37 -22.21 7 

FLA 

 

HVSS1 7H 62 M*H ** 3.76 -27.32 47.86 8 
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ATrait Marker BCh CPosition 

(cM) 

DEffect ESig. FRP Wild 

allele 

effect 

GRP 

Wild allele 

effect for 

control  

HRP  

Wild allele 

effect for 

drought stress  

QT

Ls 

GMS021 1H 16 M*H ** -6.44 -18.67 5.75 1 

S53707 1H 19 M*H ** -6.22 -19.36 6.7 1 

HY02P09T3 2H 44 M *** -11.61 -11.79 -11.44 2 

HV13GEIII 3H 152 M*H *** -0.55 15.43 -15.32 3 

HVM62 3H 154 M*H *** -1.68 13 -15.2 3 

HW01N04T3 3H 159 M*H *** -3.64 9.09 -15.38 3 

TACMD 4H  135 M*H *** -0.84 -10.75 9.21 4 

GBM1015 4HL 160 M*H *** 1 -8.11 10.26 5 

HVJASIP 4H 180 M*H *** 3.4 -3.89 10.79 5 

HVM67 4H 180 M*H ** 3.1 -4.6 10.91 5 

HVM74 6H 102 M*H ** 4.1 13.11 -4.35 6 

GMS056 7H 133 M *** 6.93 4.24 9.56 7 

OA 

 

BMS64 7H 146 M *** 8.71 2.96 14.38 7 

HVM36 2H 17 M*H ** -3.46 -7.5 11.8 1 

GMS061 5H 126 M*H *** 18.94 27.01 -9.96 2 

SPK 

 

AF043094A 5H 137 M*H ** 11.51 14.51 0.69 2 

GBM1016 2HL 100 M*H ** -1.09 6.51 -8.4 1 RWC 

GMS006 6H 96 M*H ** -3.53 0.05 -6.95 2 

HVABAIP 1HL  130 M*H ** -12.93 -14.05 -3.22 1 

GMS003 2H 48 M*H ** -12.9 -15.05 6.3 2 

HV13GEIII 3H 152 M*H *** 19.32 21.74 -0.39 3 

HVM62 3H 154 M*H *** 20.77 23.15 1.56 3 

HW01N04T3 3H 159 M*H *** 20.75 22.77 4.32 3 

YLD 

 

HVB23D 4H 21 M*H ** 19.11 21.37 0.24 4 

*, **, *** Significant at 0.05, 0.01 and 0.001 levels, respectively. 
 AThe quantitative traits are defined in Table 5.  

BChromosomal assignment of SSRs  
CChromosomal position of SSRs deduced from Ramsay et al. (2000), Pillen et al. (2003). 
DEffect a QTL was assumed within the vicinity of a marker locus if the marker main effect or the M*D 

interaction was significant in the three-factorial ANOVA at P < 0.01.  
ELevel of significance of the marker main effect and the M* H interaction, respectively, with: P < 0.01, ***P < 

0.001.  
FRP [Genotype] = (Ms�Mv)*100/Mv in % in % effect of the Hsp alleles a cross both environments.. 
GRP [T*M T1] = (MsT1�MvT1)*100/MvT1 in % was  effects of the Hsp alleles for control treatments. 
HRP [T*M T2] = (MsT2�MvT2)*100/MvT2 in % was effects of the Hsp alleles for heat stress. 
IQTLs number of QTLs for every trait. 
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Relative leaf water content (RWC)  

Two putative QTLs for Relative leaf water content were located on chromosomes 2H and 6H. 

Three loci exhibited significant M*H interaction. The presence of the Hsp allele at two loci led to a 

reduction in the RWC with maximum 3.5% (GBM1016 [2H]). The Hsp alleles at two loci were 

positive effects for control treatment, the Hsp increased RWC in control treatment with 6.5%, while 

the Hsp allele at two loci decreased the RWC heat treatment up to 8.4% at GBM1016 [2H] (Table 

28).  

Number of spikes per plant (SPK)  

Two QTL were detected for number of spikes per plant and located on chromosomes 2H and 

5H. Markers AF043094A [5H], GMS061 [5H] and HVM36 [2H] showed a significant M*H interaction. 

Two markers were compared AF043094A and GMS061. AF043094A was highly significant. One 

favorable Hsp allele detected for number of spikes per plant positive effect of 18.9% increase in the 

number of spikes per plant at markers GMS061 [5H]. The other QTL showed negative effect and the 

Hsp allele was associated with a 3.5% decrease of SPK at HVM36 [2H]. The Hsp allele caused an 

increase SPK in control treatment up to 27.0% at GMS061 [5H], the other hand it caused a decrease 

SPK in the control treatment of 7.5% at HVM36 [2H]. The Hsp allele caused an increase in heat 

stress 11.8% HVM36 [2H], while caused a decrease in heat stress up to 9.9% at GMS061 [5H] (Table 

28).  

Osmotic adjustment (OA)  

A total of 7 putative QTLs were located for osmotic adjustment and were showed on all 

barley chromosomes except for 5H. While three loci exhibited a significant marker main effect, the 

other 11 loci showed a significant M*H interaction. We have compared markers S53707 and 

GMS021 on chromosome. However, 1H, S53707 was highly significant. It was found on 

chromosome 3H HV13GEIII highly significant than HVM62 and HW01N04T3, on other hand was 

found GBM1015 marker on chromosome 4H highly significant than JVJASIP, HVM74, and 

TACMD, as well as on chromosome 7H was found BMS64 highly significant than GMS056. Four 

loci with the Hsp allele decreased OA maximum 11.6% at HY02P09T3 [2H]. On other hand, 3 

favorable effects of the Hsp alleles detected for OA improved up to 8.7% at BMS64 [7H]. The Hsp 

allele at 4 loci decreased OA in control treatment led to a 19.4% S53707 [1H]. On other hand the Hsp 

allele of 3 loci lifted OA in control treatment up to 15.4% at HV13GEIII [3H]. Three wild allele loci 
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decreased OA in heat stress maximum 15.4% HY02P09T3 [2H], whilst four loci Hsp allele showed 

increasing heat stress for OA up to 14.4% at BMS64 [7H] (Table 28). 

Days until heading (HEA) 

Only one putative QTL for days until heading was located one chromosome. In this case, 

showed a significant M*H interaction at P < 0.01. In addition, the loci HVABAIP [1H] exhibited a 

significant M*H interaction, which was located on chromosome 1H. At this locus, the Hsp allele 

increased days until heading 2.7% at HVABAIP [1H]. The Hsp allele obtained increase days until 

heading control treatment with 4.6%, whereas it reduced heading time by 0.2% under heat stress 

(Table 28). 

 Flag leaf area (FLA)  

 Eight putative QTLs were located for flag leaf area was on all barley chromosomes except for 

1H and 6H. On chromosome 3H, HV13GEIII was highly significant than HVM62, but on 4H 

marker HVKNOX3 highly significant than HVM40. All QTLs were detected as significant M*H 

interactions and exhibited at five favorable Hsp alleles effect detected for flag leaf area lifted 

improving at HVM62 [4H] by a maximum 19.6%, where three loci resulted decreasing FLA up to 

8.5% at HY02P09T3 [2H]. The Hsp allele at six loci showed increasing FLA in control treatment 

resulted in maximum 25.4% at HW01M22T3 [8H], whereas two loci resulted in decreasing FLA up 

to 27.3% at HVSS1 [7H]. Heat stress obtained negative effect FLA in five loci Hsp allele maximum 

value found 31.4% at HY02P9T3 [2H], however, the Hsp alleles at three loci had positive effect 

increasing FLA under heat stress for flag leaf area up to 47.9% at HVSS1[7H] (Table 28). 

First leaf area (ARE1)  

 Three putative QTLs were located for the first leaf area on chromosomes 1H, 4H and 5H. 

Both QTLs were detected significant marker main effects and M*H interactions. Due to the Hsp 

alleles at two loci were showed negative effects in control treatment for ARE1 3.2% and 19.1% at 

HY02P09T3 [2H], GMS061 [5H], respectively. Whilst, the Hsp allele at one locus positive effect was 

detected of ARE1 under control treatment up to 23.8 % at HY03N03T3 [4H]. Favorable effect of the 

Hsp allele detected first leaf area; positive effect (17.7 %) was detected by one locus HY03NO3T3 

[4H]. Furthermore, two loci Hsp alleles heat stress was showed positive effects 8.6% and 13.2% at 

HY03N03T3 [4H], GMS061 [5H], respectively. While, negative effect (28.7 %) was detected at one 

locus HY02P09T3 [2H], under heat stress (Table 28). 
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Yield (YLD)  

Altogether, 4 putative QTLs for yield were located on four chromosomes 1H, 2H, 3H and 4H. Six 

loci showed a significant M*H interaction. The interaction were significant at the linked loci for 

their three loci located on chromosome 3H like one QTL, but HV13GEIII [3H], highly significant 

than HVM62 [3H] and HW01N04T3 [3H]. Two favorable Hsp alleles effect detected for improved 

yield exhibited positive effects with maximum 20.8% at HVM62[3H]. In contrast, two loci Hsp 

alleles obtained negative effects for yield at HVABAIP [1H], GMS003 [2H] both by 12.9%. Control 

treatment resulted positive effects for yield at two loci Hsp alleles up to 23.1 % at HVM62 [3H]. 

While, Hsp alleles at two loci revealed negative effects in control treatment for yield in 14.0% and 

15.1% at HVABAIP [1H], GMS003 [2H] respectively. Result showed positive effects for yield at three 

loci Hsp alleles up to 6.3% at GMS003 [2H] whereas; Hsp alleles at one locus obtained negative 

effects heat stress in 3.2% HVABAIP [1H] respectively (Table 28). 

Biomass (MAS)  

 Three QTLs were located for biomass trait on chromosomes 2H, 3H and 7H. All QTLs were 

detected as significant M*H interactions and marker, favorable effects of the Hsp alleles, detected 

for biomass. On chromosome 3H, HV13GEIII was highly significant than HVM62. Markers 

Bmag0321 [7H] exhibited a significant main effect and an M× H interactions for GMS003 [2H], 

HV13GEIII [3H] and HVM62 [3H]. One favorable Hsp allele effect detected for biomass lifted 

improving a maximum 8.3% at HV13GEIII [3H], while the other two loci wild Hsp allele decreased 

biomass maximum 9.9 at GMS003 [2H]. The Hsp allele at two loci increased biomass in control 

treatments a maximum 10.4% at HV13GEIII [3H], whereas other Hsp alleles at two loci reduced 

biomass control treatments up to 10.6% at GMS003 [2H]. The Hsp alleles decreased at four loci 

under heat stress a maximum 6.6% at GMS003 [2H] (Table 28). 

 Harvest index (HI)  

 Three putative QTLs were located for harvest index on chromosomes 1H, 2H and 6H. All loci 

exhibited a significant M*H interaction at GBM1007 [1H], GBM1008 [6H], GMS003 [2H] and HVM36 

[2H]. The presence of the Hsp allele resulted one locus negative in a harvest index decrease of up 

1.9% (GBM1007 [1H]), while, three favorable Hsp alleles effect detected for harvest index obtained 

positive improved at three loci with a maximum 9.0% at HVM36 [2H]. Two loci Hsp allele increased 

harvest index in control treatments up to 14.6% at GBM1008 [6H], whereas other the Hsp alleles at 

two loci decreased harvest index up to 4.6% at GMS003 [2H]. Heat stress lifted HI in from two loci 

Hsp allele a maximum 30.8% at HVM36 [2H], whilst other two loci Hsp allele decreased HI in heat 

stress by 30.1% at GBM1007 [1H] (Table 28). 
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5. Discussion  

Comparative methods for drought and heat 

Environmental stresses come in many forms, yet the most prevalent stresses have a common effect 

on plant water status. The availability of water for its biological roles as solvent transport moderate, 

as electron donor in the Hill reaction, and as evaporative coolant is often impaired by environmental 

conditions. Although plant species vary in their sensitivity and response to the decrease in water 

potential caused by drought, low temperature, or high salinity, it may be assumed that all plants 

have encoded capability for stress perception, signaling and response (Bohnert et al. 1995).  

 

In the season (2001) 4 German barley cultivars were examined under four treatments (35%, 50%, 

65% and 100% FC) for drought treatments and three treatments for heat experiment normal 

climate, heat stress and heat stress plus 65% FC in the greenhouse. Twelve traits for heat and 

drought tolerance were examined in order to determine traits, for which the lines show significant 

variation under drought and heat stress and to determine the parameters of the treatments for 

drought experiment. Results of the first season showed small or in plant response no differences 

between 35% and 50% FC, 50% and 65% FC as well as 65% and 100% treatments. On the other 

hand, high differences between 35% and 65% as well as between 50% and 100% (Table 10). Two 

treatments 50% and 100% for drought experiment were selected, because of significant 

differences between the two treatments and reduce the work that would result from load with 

respect to daily weighing of the pots under four treatments. The drought or heat stress after one 

month was applied from planting for our study. Our methods for stress are in agreement with other 

Methods, the water stress was imposed at the 4-leaf stage by stopping the irrigation, the relative 

soil moisture content was 14% of the field capacity (FC) for the stressed-plants and 100% FC for 

irrigated plants Pots were weighed and watered daily (This et al. 2000; Teulat et al. 2001). After 

the second true leaf reached up to the first true leaf length, the drought treatment via water 

withholding was started, and it was maintained 8 days without watering when the sand water 

content was about 50% FC (Guoxiong et al. 2002). Different irrigation levels were studied in nine 

wild populations of Lycopersicon chilense, transferred to a common environment and grown under 

three soil water conditions: (80 % FC), (40 % FC) and (20 % FC) (Maldonado et al. 2003). Three 

treatments, normal climate, heat stress and heat stress plus 65% FC were included in the heat 

experiment in the season 2001 (Table 3). In this study results revealed high differences among the 

three treatments for heat experiment first season (Table 21). Due to insufficiency of experimental 

place only one treatment for 323 lines was carried out in the greenhouse, whereas the control was 

placed outside in the normal climate. Our methodology is similar to that proposed by Blum et al. 
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(1994) who used heat stress (35/25°C) or non-stress (25/15°C) conditions after anthesis in growth 

chamber. According to Stone and Nicolas (1996) heat-treated plants were moved at night to a 

naturally-lit glasshouse in which the night temperature of 19°C was maintained 11h and peak of 

40°C was kept for 6h. High-temperature stress 40°C for heat regime for three days (Blumenthal et 

al. 1995). Similar methodology temperature was of day/night 20/15°C for control and 35/30°C for 

heat stress (Xu and Huang 2001). Early heat shock 35-40°C 18h of temperature was for five days 

during grain filling (Corbellini et al. 1997).  

In the experiment carry out during (2002 to 2003), the DH population was evaluated in replicated 

greenhouse trials for drought and heat traits. Altogether 13 traits for the determination of the 

drought tolerance and 12 traits for the investigation of the heat tolerance were examined. Two 

treatments for drought experiment were used: 50% FC for drought stress and 100% FC for control. 

Two treatments for heat experiment were used: normal climate and heat stress in greenhouse. The 

data was obtained for the studied characters under two test environments (drought and heat). The 

DH lines were very contrasting in their characters as they were measurement on the basis of their 

performance under control and drought stress conditions, normal climate and heat stress across two 

years.  

 The goal of the present work was to detect putative QTL where the Hsp genotype (Accession 

ISR 42-8), which leads to an improvement of quantitative characteristics of the population. AB-

QTL analysis strategy after Tanksley and Nelson 1996 was applied in order to transfer favorable 

alleles from wild barley for the improvement of heat and drought tolerance into elite barley 

cultivars.  

  

5.1 Morphological traits 

In this study, 11 quantitative traits (tillers per plant, number spikes per plant, number of 

kernels per spike, relative leaf water content, osmotic adjustment, chlorophyll content, days to 

heading, plant height, yield, biomass and harvest index) were evaluated for barley genotypes 

(Thuringia, Scarlett, Harry, and Apex). The interaction among genotypes and drought treatments 

was for tillers as non-significant, but was for chlorophyll content, non-significant interaction among 

genotypes was observed. For this reason in the study for (Scarlett and ISR42-8) parents and BC2 

DH population, tillers per plant, plant height, and chlorophyll content were not studied, but we have 

(number spikes per plant, number kernels per spike, relative leaf water content, osmotic adjustment, 

days to heading, yield, biomass and harvest index) and other traits like carbon isotope 

discrimination, flag leaf area, first lea area and second leaf area, which are related to drought were 

studied.  
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Selection of the investigated traits, reasons and justification  

Number of spikes per plant is related to yield, thus it will be affected by drought or heat 

stress. When growth resources are limited by heat stress, the size of plant organs such as leaves, 

tillers, and spikes are reduced (Fischer, 1984). Temperature (27/22°C) (50% shade) during spike 

development can reduce the response of the developing grain to high temperature (30/25°C) 

following anthesis (Wardlaw 1994). Temperature stress during kernel development affects maize 

grain growth and yield stability (Cheikh and Jones 1994). Number of kernels per spike (KER) was 

related with yield; KER will be affected by drought or heat stress. Starch synthesis is highly 

sensitive to high temperature stress due to the susceptibility of the soluble starch synthesis in 

developing kernels of wheat (Denyer et al. 1994). High temperature late in the development of the 

crop are a feature of many of the wheat growing areas in US and maximum day temperatures above 

32°C during the last 15 days of kernel filling, is associated with reduced quality. Thompson (1975) 

made the observation that the importance of high temperature during kernel filling was reinforced 

by series of time-of-planting.  

 Relative leaf water content (RWC) identifies that can be used in cereal breeding programs 

for selecting drought tolerant individuals. The RWC was previously demonstrated to be a relevant 

screening tool of drought-tolerance in cereals, as well as a good indicator of plant water-status 

(Teulat et al. 2003). During the drought stress, relative growth rates were more reduced (Costa 

Franca et al. 2000). The parental genotypes of these cross also differed by at least two other traits �

leaf size and the relative water content (Altinkut et al. 2001). The maintenance of relative water 

content and a high osmotic adjustment are known to contribute to increased yield and yield stability 

under drought in cereals (Clarke and McCiag 1982). Osmotic adjustment could arise from an 

increase in the amount of solutes by active solutes accumulation or a decrease in the water content 

on a dry weight basis (Wilson et al. 1980). Osmotic adjustment has been found to be one of the 

most effective physiological mechanisms underlying plant resistance to water deficit. Osmotic 

adjustment, as a process of active accumulation of compatible osmolytes in plant cells exposed to 

water deficit, may enable (1) a continuation of leaf elongation, though at reduced rates (Turner 

1986); (2) stomatal and photosynthetic adjustment (Morgan 1984); (3) maintained root development 

and soil moisture extraction (Morgan and Condon 1986); (4) delayed leaf senescence and better dry 

matter accumulation and yield production for crops in stressful environments (Blum 1988).  
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Theoretical and empirical studies have demonstrated that carbon isotope discrimination is 

highly correlated with plant water use efficiency. Carbon isotope discrimination provides an 

integrated measure of water-use efficiency, samples are easily collected, and processed, and large 

numbers of samples may be collected in diverse environments. Moreover, in woody plants, carbon 

isotope discrimination can be determined on annual ring samples, providing a historical analysis of 

plants response to environmental conditions (Cregg and Zhang 2001). In several crops including 

cereals, carbon isotope discrimination (CID) has been associated with drought tolerance in terms of 

water-use efficiency and yield stability in drought-prone environments (Teulat et al. 2002).  

Flag leaf area, first leaf area and second leaf area are important traits for drought and heat 

tolerance. For drought if the leaf area is a large then more water is lost by transpiration. So it is 

better if the leaf area is small. For heat stress after optimal heat was decreased leaf area, it is better 

with a large leaf area (see Table 5). When growth resources are limited by heat stress, the size of 

plant organs such as leaves, tillers, and spikes are reduced (Fischer, 1984). Leaf area index of a 

canopy is an important variable in models for predicting crop growth and yields, quantifying crop�

weed competition, or modeling heat, energy and water exchanges in the plant�soil�atmosphere 

continuum. Empirical data have shown that nitrogen is an important factor-affecting crop at early 

stages (Zhong, 1999). Appropriate quantification of leaf area index (LAI) is important for accurate 

prediction of photosynthetic productivity by crop growth models. Estimation of LAI requires 

accurate modeling of leaf senescence (Yin et al. 2000). Irrigated versus non-irrigated treatment were 

significant influenced leaf areas of all leaves developed on the different nodal position of ryegrass 

plant. The same effect of the water treatment was observed on leaf length and width. The change in 

leaf length was found the major cause in change of leaf area development (Mohammad et al. 1999). 

Yield is very important trait, but has high effect with environment conditions. Temperature 

(27/22°C) (50% shade) during spike development can reduce the response of the developing grain 

to high temperature (30/25°C) following anthesis (Wardlaw 1994). Water deficit during meiosis in 

pollen mother cells of wheat induces male sterility, which can reduce grain set by 40 to 50% 

(Dorian et al. 1996). Morphological and physiological traits discussed so far all contribute to greater 

yields through increases in total biomass. At maturity a high harvest index is desirable to achieve 

high yields. Determinant of harvest index is independent on drought. Determinant of harvest index 

is drought dependent and depends largely on water availability during grain filling, but also on other 

factors such as pre-anthesis partitioning between structural and soluble carbohydrates (Richards et 

al. 2002 
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5.1.1 Evaluation of four barley genotypes for drought tolerance 

The analysis of variance for number of tillers per plant and number of spikes per plant for the 

genotypes and drought treatments were highly significant (Table 8). Our study shows differences 

among treatments; in which both number of tillers and spikes decreased under drought or heat 

stress. The results are in agreement with that onus obtained by Fischer (1984). For number of 

kernels per spike the interaction among genotypes was highly significant. The difference among 

genotypes and drought treatments were highly significant (see Table 8 and Figure 1). These results 

are similar those obtained by Wiegand and Cuellar (1981). The analysis of variance for relative leaf 

water content was highly significant among drought treatments (Table 8). The same results were 

obtained by Costa Franca et al. (2000) and Altinkut et al. (2001). The analysis of variance for 

osmotic adjustment of genotypes, drought treatments and the interaction among genotypes and 

drought treatments were highly significant in our study (Table 8 and Figure 2). The results are in 

agreement with Lu and Tamar (1999), who studied the differences between wild barley and modern 

cultivars in resistance to a uniform water deficit.  

In this study, the variation in chlorophyll content among drought treatments and the 

interaction between genotypes and drought treatments were significant different (Table 8 and Figure 

3). Similar results were obtained by Havaux and Tardy (1999), the Syrian barley landrace Tadmor 

is adapted to semi-arid environments and characterized by reducing chlorophyll content (ca-25% on 

a leaf area basis) compared to improved barley genotypes, such as the European variety Plaisant. 

Drought is a multi-dimensional stress, which causes various physiological and biochemical effects 

on plants. Such effects may include reduction in cell division and thus retardation of cellular 

growth, decrease in photosynthesis, closure of stomata and change in the amount of chlorophyll 

(Turner, 1986). 

 In the present study differences for days to heading among genotypes and drought treatments 

were highly significant (Table 8). The average days of heading were for genotypes between 64.83 

days for Apex to 87.17 days for Harry (Table 14). The analysis of variance for heading date 

between genotypes and drought treatments were highly significant (Table 13). The results are 

agreed with that obtained Ahmed et al. (2000), who reported mean heading date over two years 

from 27.3 to 55.8 days. Plant height was significantly correlated with the heading date. 

 The analysis for the data showed differences in yield among genotypes. Drought treatments 

and the interaction between genotypes and drought treatments were highly significant (Table 8 and 

Figure 4). Similar results were obtained by Sinclair and Muchow (2001), the analysis of putative 

plant traits to increase crop yields under water-limited conditions was undertaken as an approach 

particularly relevant to growers for increasing water use efficiency. Consequently, a number of 
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traits for improving crop performance under limited water conditions were tested in a simulation of 

growth and yield in maize and sorghum.  

The variation of biomass among genotypes, drought treatments and the interaction between 

genotypes and drought treatments were highly significant (Table 8 and Figure 5). The same results 

were reported by Simane et al. (1993), who showed that yield and straw varied among cultivars and 

was reduced under drought stress. The association between yield in drought stressed environments 

and yield in non drought-stressed environments was interpreted to reflect genotypic high yield 

potential, mainly by way of high biomass development (Ginkel et al. 1998). Variation for harvest 

index was highly significant among genotypes, drought treatments and the interaction among 

genotypes and drought treatments, (Table 8 and Figure 6). Same finding were obtained by (Richards 

et al. 2002). 

5.1.2 Drought results for BC2DH lines. 

The analysis of variance of BC2DH lines for 13 quantitative traits for the drought experiment 

was highly significant for all parameters. The variation between years of all quantitative traits was 

highly significant for all parameters except relative leaf water content. The analysis of variance 

between drought treatments of all quantitative traits was highly significant for all parameters. The 

interaction between drought treatments and years was significant for all parameters except relative 

leaf water content and osmotic adjustment. The interaction between drought treatments and BC2DH 

lines was significant for all parameters except number of spikes per plant. The interaction between 

years and BC2DH lines was highly significant for all parameters. The analysis of variance for the 

interaction between BC2DH lines, years, and BC2DH lines of all quantitative traits was significant 

for all parameters except number of leaves per main tiller (Table 14).  

 

5.1.3 Evaluation of four barley genotypes for heat tolerance 

 

The conditions encountered by plants during extended periods of drought, accompanied by brief 

exposures to heat shock typically occur between midday to late afternoon (Merquiol et al. 2001). He 

subjected tobacco plants to drought stress until they reached relative water content of 65% to 70%. 

Plants were then exposed to a heat shock treatment and sampled. As control, they used well-watered 

plants, drought-stressed plants that were not subjected to heat shock, and well-watered plants that 

were subjected to heat shock (heat shock). All plants were analyzed and sampled at the same time. 

Recovery tests indicated that plants subjected to a combination of drought stress and heat shock 

could recover within a few days upon watering and changing of temperature to 23°C. The 

conditions used were not lethal to plants (Rizhsky et al. 2002). The cause for death after lethal heat 
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shock is not well understood. A shift from low to intermediate temperature causes the induction of 

heat-shock proteins in most organisms (Davidson et al. 1996). The response of spring wheat to heat 

stress has been determined in several hot wheat growing environments worldwide on different types 

of germplasm. Physiological data has been collected to identify potential traits to assist in the 

empirical breeding for heat tolerance (Reynolds 1998). 

The analysis of variance for number of tillers per plant was highly significant among heat 

treatments (Table 21). Variation for number of spikes per plant was highly significant among 

genotypes and heat treatments (Table 21). Similar results were reported by (Fischer, 1984 and Xu 

and Huang 2001).  

 The analysis of variance for number of kernels per spike revealed highly significant difference 

for kernels per spike among genotypes and heat treatments (Table 19). The results are accordance to 

those obtained by Fischer, (1984) and Wiegand and Cuellar (19981). High temperature during 

reproductive development after kernel development reduces yield quality in wheat (Banowetz et al. 

1999). Heat treatment was exposed to very high temperature (40/19°C day/night) for periods or 1-

10 days duration. As little as 1 day of heat treatment reduced kernel mass by 14% in the heat-

sensitive variety, but only by 5% in the heat tolerant variety (Stone and Nicolas 1998). 

 

Variation for relative leaf water content was highly significant among the genotypes, heat 

treatments, and the interaction among genotypes and heat treatments (Table 19 and Figure 9). 

Similar results were reported by (Wilson et al. 1980 and Clarke and McCiag 1982).  

 

 The variation for osmotic adjustment was non-significant among replications, but highly 

significant among genotypes, heat treatments, and the interaction between genotypes and heat 

treatments (Table 19 and Figure 10). Our results were accordance with those obtained by (Turner et 

al. 1986). He observed differences in osmotic adjustment among rice cultivars, but no differences 

among treatments. Drought and high temperature usually occur simultaneously, but their effects on 

plant development are often studied separately. The level of the other stress might alter crop 

responses to one stress. For instance, high temperature might interact with osmotic adjustment in 

plants in several ways; it might interact with osmotic adjustment directly by increasing the rate of 

evaporation (Gates, 1968) or by interfering with the production and utilization of solutes involved 

in osmotic adjustment (Li et al. 1993).  
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The variation for chlorophyll content among genotypes and heat treatments was highly 

significant (Table 19). Similar results were reported by Reynolds et al. (1994). Physiological 

evidence indicates that loss of chlorophyll during grain filling is associated with reduced yield in 

the field. Chlorophyll fluorescence may be more promising as a screening trait, given that 

associations between heat tolerance and lower fluorescence signals have been reported in a number 

of crops (Moffat et al. 1990). 

  The Variation for days to heading was highly significant among genotypes and the 

interaction between genotypes and heat treatment (Table 19 and Figure 11). Results are in 

agreement with (Teulat et al. 2002).  

Variation for plant height among genotypes, heat treatments and the interaction among genotypes 

and heat treatments was highly significant (Table 19 and Figure 12). Our result is in agreement with 

those obtained by Ahmed et al. (2000). 

Variation for yield among genotypes and heat treatments was highly significant (Table 19). 

Similar results were reported by Condon et al. (2002). Grain sterility and specific forms of 

morphological and cellular damage depend on the stage of development of grain at the time of 

transfer (Tashiro and Wardlaw 1990). High temperature during reproductive development after 

kernel development reduces yield quality in wheat (Banowetz et al. 1999). Heat stress during grain 

filling is a major constraint to wheat (Triticum aestivum L.) yield. Significant variation was seen 

among cultivars in the reduction of grain weight per ear, kernel number, and single kernel weight 

under heat stress. Differences in grain weight per ear among cultivars were ascribed to variation in 

the reduction in both kernel number and kernel weight under heat stress (Fokar et al. 1998). 

Temperatures above 27°C, in a growth cabinet, have resulted in floral sterility and yield loss in 

Brassica napus (Morrison and Stewart 2002). Heat stress caused a reduction in main yield of the 

random inbred line population by 47% as compared with normal winter growing conditions (non-

stress) (Blum et al. 2001). Crop damage due to heat stress under late planting conditions has 

become an important factor limiting wheat yields (Aslam et al. 1989). When heat shock came late 

in grain filling and yield were not negatively affected but a `dough weakening´ effect, which may 

reduce the commercial value of the production, is to be expected (Corbellini et al 1997). Short 

period of very high temperature (>35°C) are common in many of the world�s wheat growing areas 

and can be a significant factor in reducing yield and quality (Stone and Nicolas 1995b). 
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Analysis of variance among heat treatments was highly significant for biomass. The variance 

was also, highly significant among heat treatments and genotypes for harvest index (Table 19). The 

same finding was reported by Badaruddin et al. (1999), Photo-assimilation is more likely to be yield 

limiting under heat stress than in temperate environments, especially as stress typically intensifies 

during grain filling, when demand for assimilates is greatest. This is borne out by the observation 

that under stress, total aboveground biomass typically shows a stronger association with yield than 

with partitioning and harvest index. The situation is usually reversed under temperate conditions. 

Hence traits affecting radiation use efficiency (such as ground cover, stay green, and photosynthetic 

rate) could be expected to be important under heat stress. Although early ground cover seems also 

important in an agronomic context, variation in this trait among genotypes does not seem to be 

associated with heat tolerance. Physiological evidence indicates that loss of chlorophyll during 

grain filling is associated with reduced yield in the field (Reynolds et al. 1994). 

 

5.1.4 Heat results for BC2DH lines  

 

The analysis of variance for BC2DH lines of 12 quantitative traits for heat experiment was 

significant for all parameters except number of leaves per main tiller and first leaf area. The 

variation between years of all quantitative traits was significant for all parameters except relative 

leaf water content and number of leaves per main tiller. The analysis of variance between heat 

treatments of all quantitative traits was highly significant for all parameters. The interaction 

between heat treatments and years was significant for all parameters except relative leaf water 

content. The interaction between heat treatments and BC2DH lines was significant for all 

parameters except number of leaves per main tiller and first leaf area. The interaction between years 

and BC2DH lines was highly significant for all parameters except number of leaves per main tiller 

and first leaf area. The analysis of variance of the interaction between BC2DH lines, years, and 

BC2DH lines of all quantitative traits for heat experiment was significant for all parameters except 

number of spikes per plant, number of leaves per main tiller and first leaf area (see Table 25). 

Similar results were found by (Wilson et al. 1980; Fischer, 1984; Reynolds et al. 1994; Stone and 

Nicolas 1998; Morgan and Condon 1986; Simane et al. 1993; Dorion et al. 1996; Ahmed et al. 

2000; Altinkut et al. 2001; Fokar et al. 1998 and Teulat et al. 2002).  
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5.2  Discussion of QTL analysis 

5.2.1 Discussion the AB-QTL-analysis in the BC2DH population  

Classical QTL analysis was conducted in early, balanced generations like doubled haploids. 

The AB-QTL analysis was based on a BC2DH population. This change was necessary since we 

used an exotic cross with the barley progenitor Hordeum Spontenum (Hsp) as the donor of potential 

favorable QTL alleles. However, it is still open if the identified favorable QTL alleles from Hsp are 

indeed unmatched in the elite gene pool of barley. Results for Hordeum have been reported by 

Powell and Russell (2000). Based on this findings, it is likely that at least a portion of the identified 

favorable QTL alleles from Hsp are new alleles, so far not present in the barley elite gene pool 

(Pillen et al. 2003). Several software programs which are based on these methods have been written 

for detection of QTLs, e.g. MAPMARKER/QTL (Lander and Botstein 1989), QTL-CARTOGRAPHER 

(Basten et al. 1994), MQTL (Tinker and Mather 1995) and PLAB-QTL (Utz and Melchinger 1996). 

Unfortunately, these programs are focused on the analysis of balanced populations, which are used 

in classical QTL analysis. For unbalanced populations, which are used in AB-QTL studies, the 

program QGENE was written (Nelson 1997). QGENE operates with single marker regression as well 

as simple interval mapping for QTL detection. Our AB-QTL study, in two separate drought or heat 

experiments were conducted and since we wanted to include the M*D interaction or the M*H 

interaction as a measure of the environment stability of a QTL effect, we preferred to use a 3-

factorial ANOVA with the marker genotype, the drought or heat treatment and the year as factors. 

By including the year in the statistical model, we expected to reduce the residual variance of the 

experiment. A 3-factorial model allowed us to differentiate between a QTL significant as a marker 

main effect, which is considered to be stable across the tested drought or heat tolerance, and a QTL 

significant as a M*D interaction or M* H interaction where the effect is considered to depend on a 

particular drought and heat treatment. 

5.2.2 AB-QTL Analysis in barley 

 The goals of the AB-QTL analysis are the identification and simultaneous transfer of those 

exotic QTL alleles, which have the potential to improve drought or heat tolerance. Within the 

Scarlett*ISR42-8 population, a total of 28 favorable Hsp alleles (53.8%) were identified among 52 

localized QTLs (see Table 29 and 30). These favorable Hsp alleles were detected for six of the 13 

traits for drought experiment and nine of the 12 traits for heat tolerance investigated. The QTLs 

consistent across drought stress for biomass on chromosome 1H and 5H were found separately in 
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drought treatments, exhibited significant M*D interaction. By contrast, one QTL detected in 

drought for flag leaf area on chromosomes 1H at GMS021, detected as significant marker main 

effect. This was also the case the QTL for number of leaves per main tiller for which identified on 

chromosome 5H, which exhibited a significant M*D interaction. The QTLs identified were QTLs 

interacting with drought on chromosomes 1H (HVALAAT), 5H (HY02J05T3; Bmag0223; 

Bmag0222; and HW01M22T3), 6H (Bmac0316), and 7H (HVA22S; Bmag0011; GMS056; 

BMS64; and Bmag0120) for osmotic adjustment, on chromosomes 1H (GMB1007) and 4H 

(GMS089; TACMD; Ebmac0701; Ebmac0635; Ebmac0679; and Ebmac0788) for relative leaf 

water content, and yield obtained on chromosome 3H (HV13GEIII; HVM62; HW01N04T3; and 

Bmac0029) 5H (Bmag0537), and 6H (Bmac0316) (Tables 26). The results are in agreement with 

those obtained by (Tinker et al. 1996; Xiao et al. 1998; Bernacchi et al. 1998a; Hemamalini et al. 

2000 and Pillen et al. 2003). 
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Table 29: List of 14 favorable QTL alleles detected from the BC2DH cross Scarlett x ISR42-8A 

for drought tolerance  

ATrait Marker BCh CValue  DRP Wild allele effect FFavorable QTL 

alleles 

FLA GMS021 1H - -16.4 1 

LEA Bmag0357 5H + 2.2 1 

HY03I05T3 1H + 1.2 1 MASS 

 Bmag0357 5H + 8.9 2 

HY02J05T3 5H + 11.5 1 

Bmag0223 5H + 8.1 2 

Bmag0222 5H + 19.7 3 

HW01M22T3 5H + 22.3 3 

HVA22S 7H + 8.4 4 

Bmag0011 7H + 8.8 4 

GMS056 7H + 14.8 5 

BMS64 7H + 14.3 5 

OA 

 

 

Bmag0120 7H + 17.7 5 

HV13GEIII 3H + 10 1 

HVM62 3H + 10.8 1 

HW01N04T3 3H + 9.9 1 

Bmac0029 3H + 18.4 1 

Bmag0357 5H + 8.9 2 

YLD 

 

Bmac0316 6H + 4.4 3 

Bmac0163 5H - -0.9 1 CID 

EBmac0755 7H - -1.3 2 

 

AThe quantitative traits are defined in Table 5. 
BChromosomal assignment of SSRs.  
CThe value of the trait should be increased (+) or reduced (�) with respect to the breeding goal.  

DRP [Genotype] = (Ms--Mv)*100/Mv in % in % effect of the Hsp alleles a cross both environments. 
FFavorable QTL alleles  
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Table 30: List of 16 favorable QTL alleles detected from the BC2DH cross Scarlett x ISR42-8A 

for heat experiment. 

ATrait Marker BCh CValu

e  

DRP Wild allele 

effect 

FFavorable QTL 

alleles 

HV13GEIII 3H + 8.25 1 MAS

S HVM62 3H + 7.85 1 

HVM36 2H + 9.04 1 

GMS003 2H + 3.16 2 

HI 

 

GBM1008 6HL + 1.67 3 

ARE1 HY03N03T3 4H + 17.66 1 

HVM62 3H     +   19.6     1 

HVKNOX3 4H + 5.16 2 

HW01N04T3 4H + 16.93 3 

HW01M22T3 5H + 5.16 4 

FLA 

 

 

HVSS1 7H + 3.76 5 

GBM1015 4HL + 1 1 

HVJASIP 4H + 3.4 1 

HVM67 4H + 3.1 1 

HVM74 6H + 4.1 2 

GMS056 7H + 6.93 3 

BMS64 7H + 8.71 3 

OA 

 

GMS061 5H + 18.94 1 

AF043094A 5H + 11.51 1 SPK 

 HV13GEIII 3H + 19.32 1 

HVM62 3H + 20.77 1 

HW01N04T3 3H + 20.75 1 

YLD 

 

HVB23D 4H + 19.11 2 
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Osmotic adjustment (OA) 

 Studies showed a total of 14 putative QTLs from 26 regions were found for osmotic 

adjustment on all barley chromosomes (see Table 18, 28 and Figure 8, 13). Recently, the region of 

rice chromosome 2 was also identified as involved in osmotic adjustment (Zhang et al. 2001). 22 

QTLs were leading to total regions 32 (Teulat et al. 1998; 2001a). Controlling traits were related to 

osmotic adjustment in the barley genetic background studied. It is necessary to identify the most 

consistent and important of these QTLs, in terms of improving drought or heat tolerance, based on 

the whole analysis. In a genetic study the traits are measured under standardized and often 

simplified conditions (e.g. given soil moisture, growth stage), and from this point of view it is 

difficult to give a physiological meaning to a QTL (This and Teulat-Merah 1999). Thus, to be 

relevant to plant improvement, the traits employed and the QTLs identified must be assessed 

according to their physiological effect on reducing yield losses under drought. Preliminary 

information can be obtained from a genetic evaluation: they could come: (a) from a correlative 

approach (correlation between traits) conducted on a large population, (b) from a comparison of 

results at several soils water status levels (here in our study 50% and 100% FC) or standardized at 

100% relative leaf water content by calculation. It was suggested a possible contribution of water-

soluble carbohydrates accumulated during osmotic adjustment in the crosses. However, even this 

hypothesis is in accordance with pervious results obtained from the parental genotypes (Teulat et al. 

1997b, 2000 and al. 2001a) and from observation made by (Lewicki 1993). He was suggested that 

was the solutes mostly accumulated during osmotic adjustment in barley, the role of this QTL in 

controlling solute content contributing to osmotic adjustment remains to be proven. Osmotic 

adjustment under 50% FC was weak correlated with relative leaf water content (r = 0.11**), flag 

leaf area (r = 0.12**), first leaf area (r = 0.10**), biomass (r =0.11**), and harvest index (r = -

0.15***) for drought tolerance Table 16. Osmotic adjustment in heat stress was weak correlated 

with number of kernels per spike (r = 0.11**) and second leaf area (r = 0.19**), it was associated 

moderate with number of leaves per main tiller (r =0.467***), yield (r = -0.286***) and harvest 

index (r = -0.3025***). On other hand, it was correlated positively and strongly with days until 

heading (r = 0.568***) for heat tolerance Table 27. These results are in agreement with those 

reported by Teulat et al. (2001a). For drought tolerance QTLs were identified on chromosomes 1H 

(HVALAAT), 5H (HY02J05T3; Bmag0223; Bmag0222; and HW01M22T3), 6H (Bmac0316), and 

7H (HVA22S; Bmag0011; GMS056; BMS64; and Bmag0120) for OA. For heat tolerance located 

on chromosome 1H (GMS021; S53707), chromosome 2H (HY02P09T3), chromosome 3H 

(HV13GEIII; HVM62; and HW01N04T3) 4H (HVJASIP; HVM67; TACMD; and GMB1015), 

chromosome 6H (HVM74) and chromosome 7H (GMS056; and BMS64). For drought tolerance a 
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total of 7 putative QTLs from 13 regions having effects on osmotic adjustment were located on 

chromosomes 1H, 5H, 6H and 7H. Five favorable QTL effects were detected of Hsp alleles, which 

improved osmotic adjustment with a maximum 22.3% at HW01N04T3 [5H] and an average value 

13.9%. Two Hsp alleles decreased osmotic adjustment an average by 11.2%. The Hsp allele 

increased osmotic adjustment at four loci for control treatment with by an average 4.0% and by a 

maximum of 8.6% at HVALAAT [1H]. At 3 Hsp loci alleles decreased osmotic adjustment in the 

control treatment by an average of 4.0%. Two Hsp alleles as loci decreased osmotic adjustment 

under drought stress by average 15.7%. At five QTLs the Hsp alleles showed increase in osmotic 

adjustment under drought stress with an average of 19.7% and with a maximum of 39.5% at 

HW01M22T3 [5H] (Table 18). In the present study for osmotic adjustment, the effects of Hsp alleles 

are weak to moderate for drought tolerance. Similar results were obtained in maize and barley 

where four and thirteen QTLs related to invertase activity and hexode content were identified when 

under control or under water stress conditions. Other QTLs were effective under one of the latter 

conditions (Pelleschi et al. 1999 and Teulat et al. 2001a). The trait was considered to be interesting 

when the allele effect at a QTL was in favor of a stronger relative water content under stress; the 

maintenance of relative water content, together with high osmotic adjustment capacity, being in 

favor of turgor maintenance and contributing to yield stability under drought conditions in cereals 

(Clarke and McCaig 1982; Blum 1988; Schonfeld et al. 1988; Matin et al. 1989). The intrinsic 

ability to accumulate solutes has also a physiological significance for drought tolerance. This 

capacity was detected for the susceptible parental genotype Er/Apm (Teulat et al. 1997b, 1998, and 

2001a. In Teulat et al. (1998), the 7H region was emphasized because it controlled the variation of 

relative water content and water stress at 14% FC in barley and common to the major QTL found by 

Lilley et al. (1996) for osmotic adjustment70% relative water content in homoeologous portion of 

rice chromosome 8 (Teulat et al. 1998; This and Teulat-Merah 1999). Zhang et al. (1999) Presented 

a figure where the gene (Morgan and Tan 1996) that could be involved in osmotic adjustment in 

wheat, seemed to be collinear to Lilley´s QTL for OA. The gene is linked to the xpsr 119 marker 

and the region could correspond to a portion of rice chromosome 6. Indeed, the small arm of 

Triticeae chromosome group 7 could correspond to rice chromosome 6 and 8. In the present study 

for heat tolerance a total of 7 putative QTLs from 13 regions were located for osmotic adjustment, 

which was on all barley chromosomes except for 5H. Four of the Hsp alleles decreased OA with an 

average of 4.4%. On the other hand, three favorable effects of three Hsp alleles improved osmotic 

adjustment up to 8.7% at BMS64 [7H] and an average by 4.5%. The Hsp allele of three loci increased 

osmotic adjustment in the control treatment up to 15.4% at HV13GEIII [3H] with an average of 

11.04%. On the other hand, the Hsp allele of four loci decreased osmotic adjustment in control 
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treatment by average 9.6%. Three wild alleles decreased osmotic adjustment in heat stress the by an 

average 12.3%, whilst eight loci Hsp allele showed an increase osmotic adjustment under heat stress 

by a maximum of 14.4% at BMS64[7H] with an average of 7.9% (Table 28). In the study for osmotic 

adjustment under heat tolerance found moderate effects for the Hsp alleles. A QTL found for leaf 

osmotic potential variation in rice chromosome 3 (Lilley et al. 1996) was mapped in the 

homologous portion of barley chromosome 5H. The region 2H is also interesting for several traits 

like osmotic adjustment and other traits in barley (Teulat et al. 2001a). Regions were found as 

directly involved in osmotic adjustment there are (4H, 6H and 5H) (Teulat et al. 2001a). Seven 

putative QTLs for OA regions found in the present study of drought tolerance detected five 

favorable alleles effect. These loci improved osmotic adjustment to a maximum value 22.3% at 

HW01M22T3 [5H]. However, at seven putative QTLs for OA of heat tolerance three favorable effects 

of Hsp alleles were detected as M*H interaction on chromosomes 4H, 6H and 7H. Recently, 

mapping single genes or/and quantitative trait loci (QTLs) for osmotic adjustment has been 

conducted in wheat (Morgan and Tan 1996), rice (Lilley et al. 1996) and barley (Teulat et al. 1998).  

Relative leaf water content (RWC) 

In this study a total of 5 putative QTLs from 9 regions were located for relative leaf water 

content on all barley chromosomes (see Table 18, 28 and Figure 8, 13). The QTL results obtained 

underlined that several putative genomic regions contribute to the total variation of relative leaf 

water content (Teulat et al. 2002). The first results obtained with a barley population grown under 

controlled conditions at two different soil-moisture contents have also revealed several loci 

involved (Teulat et al. 2001a). This is also in agreement with the results from Schonfeld et al. 

(1988), who have shown that the phenotypic distribution of relative leaf water content in F2 

indicated that the trait was quantitatively inherited and not controlled by one or two genes in wheat. 

In rice, Courtois et al. (2000) identified 11 QTLs grouped on nine genomic regions for relative leaf 

water content measured in two different environments, and Price et al. (2002) identified eight QTLs 

for relative leaf water content measured in three different environments. Among the nine genomic 

areas identified in the present study, two presented QTL*environment interaction (on the long arms 

of chromosomes 7H and 1H) and four were detected for only one of the environments studied. In 

contrast, three QTLs presented main effects across five environments and could be considered as 

stable regions controlling relative leaf water content (chromosomes 2H, 4H and 6H). In the present 

study from greenhouse experiments, drought tolerance for all alleles were positive effects for RWC 

in control treatment except at GMS089 [4H] marker. The Hsp alleles at two loci increased relative 

leaf water content in control treatment with average of 3.6%. The Hsp alleles decreased relative leaf 
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water content in the control treatment up to 4.8%. The Hsp alleles decreased relative leaf water 

content under drought stress by an average of 6.65%, while it was increased at one locus under 

drought stress up to 3.9% at GMS089 [4H] (Table 18). In our study of drought tolerance for relative 

leaf water content the Hsp allele effect were weak. Two QTLs were controlled RWC under drought 

stress were mapped on chromosomes 1H and 6H (Teulat et al. 1997). QTL controlling relative leaf 

water content for the trial was mapped in the same area. The most-consistent example is the 

genomic region on the long arm of chromosome 6H (Teulat et al 2002). It was previously identified 

as controlling leaf osmotic potential and osmotic potential at full turgor, with osmotic adjustment as 

well as relative leaf water content measured under water-deficit conditions (Teulat et al. 1998, 

2001a). Similarly Price et al. (2002) identified a QTL for relative leaf water content on rice 

chromosome 8 that was co-localized with a QTL for osmotic adjustment identified in another 

population (Lilley et al 1996). This region is homoeologous to a barley region near CDO673 where 

a QTL for relative leaf water content was identified in stressed conditions (Teulat et al. 1998). The 

osmotic adjustment capacity allows cell-turgor maintenance and turgor-dependent processes 

(Turner and Jones 1980). In addition, relative leaf water content is an indicator of the cell volume. 

These traits are involved directly or indirectly in plant water and turgor status. The genomic region 

of the barley chromosome 6H was again identified as controlling relative leaf water content 

measured in Mediterranean field conditions. In addition, this is probably the most stable and 

confident QTL obtained across the field environments studied. For the most-stable regions, the 

nearest molecular markers could be identified and used to improve breeding efficiency, as a 

selection criterion for the trait (Teulat et al. 2002). In present study for heat tolerance two putative 

QTLs for relative leaf water content were located on chromosomes 2H and 6H. At these loci, the 

presence of the Hsp allele led to a reduction in relative leaf water content in average 2.3%. The Hsp 

allele increased RWC in the control treatment with maximum 6.9% at GMB 1015 [2H] and with 

average 3.3% (Table 28 and Figure 13). The molecular genetics approach could also help our 

understanding of the process of drought-tolerance through genetic interaction between traits or co-

locations of QTLs with gene sequences (Teulat et al. 2002). It is now known that the grass genomes 

contain gene-rich compartments (Sandhu and Gill 2002). This has an effect on recombination that 

was shown to be high in gene-rich barley regions (Kunzel et al. 2000). This also shows the 

difficulty to identify the genes that are really involved in an individual-trait phenotypic variation. 

However, the co-locations of QTLs controlling water-status and/or turgor with sequences 

corresponding to dehydrin (dhn) genes on the same portion of chromosome 6H, was a great 

indication of the possible role of these genes in the variation of plant water-status under drought 

(Teulat et al. 2002). In present study Hsp allele increased under drought stress relative leaf water 
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content with average 3.9%, while Hsp alleles decreased relative water content under heat stress with 

average 7.6%. The latter region of chromosome 6H was previously proved to contain a cluster of 

dhn genes including the barley dhn4 and dhn5 (Campbell and Close 1997), whereas the wheat 

wsp23 sequence corresponds to an analog of barley and maize dehydrin protein, and to rice and 

wheat RAB proteins expressed under water stress (Joshi et al. 1992). Another chromosomal region 

contains a QTL for relative leaf water content and a dehydrin locus dhn1 on chromosome 5H. The 

dehydrins are water-soluble lipid-associated proteins that accumulate in response to dehydration, 

low temperature, osmotic stress, or during seed maturation (Close et al. 1989). Several QTLs 

controlling tolerance traits, and particularly freezing tolerance, have already been identified close to 

dehydrin genes (Campbell and Close 1997). These authors have underlined that the recurring 

physiological and genetic correlations constitute mounting evidence that dehydrin genes may be key 

genetic determinants of stress tolerance in a number of species, particularly freezing and drought-

tolerance. The first example was for a QTL for winter-hardiness overlapping with a cluster of dhn 

genes, including dhn1 on barley chromosome 5H associated with a cold- specific induction of a 

member of this dehydrin family (Pan et al. 1994; Van Zee et al. 1995). Recently Koag et al. (2003) 

have shown the binding of maize DHN1 to lipid vesicles, suggesting membrane stabilization under 

stress conditions. The link between cell volume/turgor maintenance and the properties of these 

proteins seems possible but must be proved. The positional cloning of the main QTL and the allelic 

variation study of dhn genes in a collection of barley genetic resources differing for their drought-

tolerance response could elucidate if the dhn genes are involved in plant water-status and drought-

tolerance variation. Ismail et al. (1999) have conducted this type of experiment on Vigna 

unguiculata plantlets. They have demonstrated the co-segregation of a dehydrin gene with chilling 

tolerance, and the usefulness of the normal protein compared to a dehydrin mutant-allele in this 

phenomenon. For drought tolerance relative leaf water content was weakly correlated under drought 

stress with number of spikes per plant (r = -0. 09*) and osmotic adjustment(r= -0.11**) see Table 

16. There was a weakly correlation under heat stress with harvest index (r = - 0.08*) Table 27. 

Similar some finding was obtained by (Teulat et al. 1997). 

Drought-tolerance evaluation and QTL value for breeding purposes 

Most of the drought-tolerance traits are quantitative. These are difficult to measure on a large 

number of plants. The difficulty increases when the traits are evaluated under field condition 

(Teulat et al 2002). Indeed the genetic part of the phenotypic variation is often hidden due to the 

abiotic or biotic source of variability acting on the trait (disease attack, risk of inappropriate 

rainfalls), involving difficulty of trial management and relevant measurement time. In addition, the 
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trait must be measured instantaneously on all the plants, which is nearly impossible. In parallel, it is 

now commonly accepted that the use of the molecular-genetics approach and of molecular markers 

could help to improve the selection efficiency. For all those reasons, QTLs for traits evaluating 

plant water-status and/or osmotic adjustment were previously investigated with barley lines grown 

under controlled conditions (Teulat et al. 1998, 2001a, 2002). However, Price and Courtois (1999) 

have underlined that locating QTLs for drought resistance mechanisms, by the use of controlled 

greenhouse or growth chamber experiments combined with field evaluations under relevant 

conditions, should allow us to identify QTLs of value for breeding. In the previous experiment 

conducted under controlled conditions, 13 chromosomal regions were identified as controlling traits 

related to plant water-status and/or osmotic adjustment with the same genetic background (Teulat et 

al. 2001a). Considering the difficulty of quantitative trait evaluation under field conditions, the 

measurements were restricted to relative water-content. However, to assess the variation in the trait 

and in the QTLs across different drought situations, the trait was measured under several 

Mediterranean field conditions to verity, the QTLs previously identified from the experiment 

conducted under controlled conditions. The compilation of the data from the two sets of 

experiments allowed us to identify common from both types of experiments, confirming the interest 

of the strategy undertaken. These regions seemed to be relevant targets for breeding purposes. The 

one on the long arm of chromosome 6H was also shown to control thousand-grain-weight across 

several Mediterranean environments (Teulat et al. 2001b), reinforcing its interest; A QTL for a 

drought-tolerance mechanism, or a criterion being of little value, cannot be shown to improve or 

stabilize yield under stress conditions or if it causes a substantial reduction of yield under ideal 

conditions (Price and Courtois 1999). In maize, encouraging results of molecular-assisted-selection 

under drought conditions were obtained (Ribaut et al. 1999). The Hsp allele in the present study 

was improved these traits; FLA, LEA, MASS, OA, YLD and CID with maximum up to 16.4%, 

2.2%, 8.9%, 22.3%, 18.4% and 1.3%, respectively, under drought stress. In addition, the Hsp allele 

was improved these traits; MAS, HI, HEA, ARE1, FLA, OA, SPK and YLD with maximum up to 

8.3%, 9%, 2.7%, 13.6%, 11.6%, 18.9% and 20.7%, respectively, under heat stress.  

Considering the drought-tolerant genotypes in terms of yield stability, Teulat et al. (1997a) 

have presented higher relative leaf water content values compared to Er/Apm at different soil-

moisture contents during an imposed water deficit. The large differences observed for relative leaf 

water content in the RIL population could be due to differences in solute accumulation and osmotic 

adjustment, the two traits characterizing the population and the two parental lines studied (Teulat et 

al. 1997a; 2001a). The use of adjusted entry means, generated by fixing the block within the 
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environment effect, has improved the power of QTL detection. This also underlined the need of 

relevant experimental designs in this type of strategy (Teulat et al. 2002). 

 

Yield (YLD) 

In this study a total of 7 putative QTLs from 12 regions were located for yield on all barley 

chromosomes except chromosome 7H (see Table 18, 28 and Figure 8, 13). Our results are in 

agreement with those obtained by Kandemir et al. (2000) and Hittalmani et al. (2002); three 

previously were identified grain yield QTL on chromosomes 1H, 2H and 3H, one QTL was 

identified for grain yield per plant respectively. The crop yield is a complex trait can be considered 

to be the result of many dynamic processes during crop ontogeny (Yin et al. 1999). For drought 

tolerance yield was positively and strongly correlated under drought stress with number of spikes 

per plant (r =0.62***), number of kernels per spike (0.68***), and biomass (r =0.72***), while it 

was moderately correlated with number of leaves per main tiller (r = -0.40***), flag leaf area (r 

=0.39***), first leaf area (r =0.43***), second leaf area (r =0.48***), and whereas it was weakly 

correlation with harvest index (r =0.14***) see (Table 16). Yield was positive and strongly 

correlated under heat stress only with harvest index (r = 0.72***), whereas it was moderately 

correlated with number of spikes per plant (r = 0.38), number of kernels per spike (r = 0.44***), 

number of leaves per main tiller (-0.26***) osmotic adjustment (r = - 0.29***), days until heading 

(r = - 0.23***) and biomass (r = 0.37***), yield was weakly correlated with second leaf area (r = - 

0.13***) (Table 27). The results agree with those obtained by Fokar et al. (1998), Pillen et al. 

(2003). The results indicated that drought stress influenced genotypes for yield in the AB-QTL 

analysis (Table 18). Alleles from the wild barley ISR42-8 were associated with a positive effect on 

yield for three QTLs detected for yield. The three QTLs for yield increase are located on 

chromosomes 3H at (HV13GEIII; HVM62; HW01N04T3; and Bmac0029), 5H (Bmag0537), and 

6H (Bmac0316) respectively (Table 18 and Figure 8). For heat tolerance four QTLs for yield 

increase were mapped on chromosomes 1H (HVABAIP), 2H(GMS003), 3H (HV13GEIII; HVM62; 

and HW01N04T3), and 4H (HVB23D) (Tables 28 and Figure 13). Similar results were found by 

(Tinker et al. 1996). Five QTLs were detected in barley for plant grain weight on chromosomes 2H, 

5H and 7H (Bezant et al. 1997b). The strength of the trait improvement can be taken as a further 

measure of the efficiency of the QTL detection. In all AB-QTL analyses published so far for tomato 

and rice, the total yield could be raised due to the presence of at least one favorable exotic allele. 

The yield increases amounted to maximal values of 18% in rice (Xiao et al. 1996; Xiao et al. 1998), 
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of 17%, 34%, 15% and 27%, respectively, in four tomato studies (Tanksley et al. 1996; Fulton et al. 

1997, 2000; Bernacchi et al. 1998a) and 7.7% in barley (Pillen et al. 2003). In our study for barley 

the maximum yield increase was associated with the exotic Hsp allele at three loci. The increase of 

yield at locus Bmac0029 [3H] could be detected in drought experiment and ranged from 4.4% to 

18.4% with an average of 10.4%. The control treatment resulted in positive effects at three loci of 

Hsp alleles with a maximum up to 21.4 % at Bmac0029 [3H] and an average of 15.3 %. Under 

drought stress result showed positive effects for yield from the Hsp allele with a maximum of 

13.1% at Bmac0029 [3H] and an average of 4.5%. Whereas, the Hsp allele at 2 loci resulted in 

negative effects for yield under drought stress in average for 4.3% (see Table 18). In the present 

study for heat tolerance in barley yield increase with the exotic Hsp allele at two loci the maximum 

up to 20.8% was associated with the exotic Hsp allele at HVM62 [3H]. The control treatment resulted 

in positive effects for yield at two Hsp alleles of up to 23.1 % at HVM62 [3H]. The control treatment 

negative effects in yield were revealed by Hsp alleles at 2 loci in average of 14.6%. Our results 

showed positive effects for yield from Hsp alleles at three up to 6.3% at GMS003 [2H] with average 

of 3.1%. Heat stress obtained negative effects for yield from Hsp alleles at two loci in average 1.8% 

(Table 28). The effects of Hsp allele of present study showed for drought and heat tolerance weak to 

strong effects. Classical QTLs for grain yield have been reported in overlapping BIN groups at 

marker Xpsb37 (L) (Bezant et al. 1997a) and in marker intervals ABG472-ABG366 (Tinker et al. 

1996) and ABG472-ABG397 (Hayes et al. 1993). In addition, Ellis et al. (2002) also reported a 

QTL for grain yield in the region between HVM68 and HVM67 on chromosome 4H where GMS89 

[4H] is placed. Moderate conformity between the QTLs identified in our AB-QTL analysis and in 

classical QTL analysis can be regarded as a confirmation that most QTL effects from the exotic 

donor Hsp are unique. Thus, these QTLs can be exploited for improving and broadening the genetic 

basis of the barely elite gene pool, Pillen et al. (2003); nevertheless, it should be noted that there is 

also little conformity present between classical QTL studies. Thomas et al (1995) reported 

considerable differences in QTL identification between the Scottish cross Blenheim × E224/3 and 

the North American crosses Steptoe × Morex and Harrington × TR306. Likewise, Mather et al. 

(1997) reported that, when comparing the two aforementioned North American crosses, they found 

more differences than confirmations of QTL positions. Although the favorable allele effects of the 

Hsp donor accession ISR42-8 are less pronounced than the effects from exotic donors in previous 

AB-QTL analysis. By means of marker-assisted BC2DH lines, we generate, BC2DH-lines, which 

harbor the yield increasing Hsp alleles around the SSR loci HVM62 [3H], Bmag0357 [5H] and 

Bmac0316 [6H]. The BC2DH lines will be exploited for the validation of the original favorable Hsp 

allele effect and, as pure introgression lines, can be utilized for further breeding cycles. Thus, the 
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BC2DH lines can be utilized for high-resolution mapping of the region of interest, ultimately 

leading to a map-based cloning of the QTL factor. The results are in agreement with those obtained 

by (Pillen et al. 2003). Both strategies have already been carried out in tomato. For example, 

Bernacchi et al. (1998b), Monforte and Tanksley (2000) and Monforte et al. (2001) produced 

detailed high-resolution maps of introgressed exotic tomato segments based on older AB-QTL 

analysis and validated the detected exotic effects in refined QTL- BC2DH lines. Furthermore, the 

production of a high-resolution map has already led to the first cloning of a QTL factor (Alpert and 

Tanksley 1996; Frary et al. 2000).  

Number of spikes per plant (SPK) 

Two QTL were detected from three regions for number of spikes per plant on chromosomes 

2H and 5H. The Hsp allele has a moderate effect for the NPK. The Hsp allele has positive effect of 

improved SPK 18.9% at GMS061 [5H]. The Hsp allele was associated with a 3.5% decrease of SPK 

at HVM36 [2H]. The Hsp allele caused an increase SPK in the control treatment of 27.0% at 

GMS061 [5H]. On the other hand, the Hsp allele caused a decrease SPK in the control treatment of 

7.5% at HVM36 [2H. The Hsp allele caused an increase SPK under heat stress of 11.8% at HVM36 

[2H], while it caused a decrease SPK under heat stress a 9.9% at GMS061 [5H] (Table 28). On contrast 

no QTL was detected for ear (Pillen et al. 2003). Only one QTL was detected for spike density on 

chromosome 3H (Kandemir et al. 2000). Moderately correlations under heat stress were revealed 

for number of spikes per plant with yield (r =0.38**), and harvest index (r =0.30***), as well as a 

weak association with number of kernels per spike (r = -0.19***), days until heading (r = -0.15***), 

number of leaves per main tiller (r = -0.8*) flag leaf area (r = -0.13**), second leaf area (r = -0.09*) 

and biomass (r =0.13**). The results are in agreement with this obtained by (Pillen et al. 2003). 

Flag leaf area (FLA) 

One putative QTL for drought tolerance was located for flag leaf area on chromosome 1H 

marker GMS021. Moderate to strong effects were seen for the Hsp allele for flag leaf area in both, 

drought and heat experiments. Favorable allele effect was detected, reduced flag leaf area by 16.4%. 

The Hsp allele showed a decrease for flag leaf area in the control treatment and drought stress 

13.6% and 20.1% respectively (see Table 18). Eight putative QTLs for heat tolerance were located 

for flag leaf area on all barley chromosomes except 1H and 6H. Five favorable allele effects of the 

Hsp alleles were detected for flag leaf area and improved at (HVSS1; HW01M22T3; HVKNOX3; 

HV13GEIII; HW01N04T3 and HVM62) by 3.7%, 5.2% 5.2%, 15.4% 16.9% and 19.6% 

respectively with an average 11.0%. Three loci resulted in a decrease by an average of 3.7%. The 
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Hsp allele at six loci showed an increase in flag leaf area in control treatment by an average 13.2%. 

Whereas two loci resulted in a decrease of flag leaf area by an average 9.6%. Heat stress reveled in 

negative effect for flag leaf area at five loci for the Hsp alleles with an average value of 20.3%. The 

Hsp alleles at three loci have positive effect increasing flag leaf area in heat stress up to 35.9%, 

36.7%, 39.7% and 47.9% at (HVM62; HW01M22T3; HV13GEIII; HVSS1) respectively with an 

average 40.1% (Table 28). In our study an increase for leaf area related to heat stress after optimal 

heat, because after optimal heat all growth in plant reduced. When growth resources are limited by 

heat stress, the size of plant organs such as leaves, tillers, and spikes are reduced (Fischer, 1984). 

Similar finding was obtained by (Grindlay 1997; Yin et al. 1999); two QTLs were detected on 

chromosome 2H and 3H. Pleiotropy has been observed between number of tiller and panicle size 

and leaf area in sorghum (Pereira and Lee 1995). One locus on chromosome 4H showed significant 

associations with leaf area (Blauth et al. 1998). Flag leaf area under drought stress strongly 

correlated with first leaf area (r = 0.76***), second leaf area (r = 0.65***), and biomass (r = 

0.55***), whilst moderate correlated with number of leaves per main tiller (r = - 0.37***), yield (r 

= 0.39***) and harvest index (r = - 0.28***). Altogether, it was weakly correlated with number of 

spikes per plant (r = 0.14***), number of kernels per spike (r = 0.13***), osmotic adjustment (r = 

0.12**) and carbon isotope discrimination (r = -0.12**) (Table 16). Flag leaf area under heat stress 

was positively and strongly correlated with second leaf area (r = 0.58***), whilst it was negatively 

and moderately correlated with first leaf area (r = 0.49***). In addition a weak correlation with 

number of spikes per plant (r = - 0.12**) was observed (Table 27). In contrast no significant 

correlations were noticed for leaf area (Blauth et al. 1998). 

First leaf area (ARE1) 

Three QTLs were found for first leaf area. One favorable effect of the Hsp allele detected for 

first leaf area in heat tolerance, with a positive effect (17.7 %) of the Hsp allele detected at one 

locus (HY03C23T3) on chromosomes 4H. Furthermore, due to the Hsp allele at one locus control 

treatment positive effects was showed 23.8% at HY02P09T3 [2H]. Positive effects (8.6 % and 

13.2%) were detected by two favorable loci HY03N03T3 [4H], and GMS061 [5H], under heat stress 

(Table 28). In our study an increase for leaf area related to heat stress after optimal heat all growth 

in plants reduced. When growth resources are limited by heat stress, the size of plant organs such as 

leaves, tillers, and spikes are reduced (Fischer, 1984). In the present study for first leaf area the Hsp 

allele was moderate to strong effect on first leaf area. Byrne et al. (1997) have two QTLs affecting 

leaf area were suggested the presence of a single gene. Differences have been observed between 

tiller number, panicle size and leaf area in sorghum (Pereira and Lee 1995). One locus on 

chromosome 4H showed significant associations with leaf area (Blauth et al. 1998). However, first 
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leaf area under heat stress was positive and strongly correlated with second leaf area (r = 0.58***), 

while was positively and moderate correlation with flag leaf area leaf (r = 0.49***), however 

positive and weak correlation with number of leaves per main tiller (r = 0.08*), and days until 

heading (r = 0.10**) Table 27. On contrast no significant correlations were observed for leaf area 

(Blauth et al. 1998). 

Heading date (HEA) 

Only one putative QTL for days until heading was located on chromosome 1H at marker 

HVABAIP. The Hsp allele increased time to in heading by 2.7% at HVABAIP [1H]. The Hsp allele 

resulted in an increase in time to heading in the control treatment of 4.6%. The favorable allele 

reduced time to heading under heat stress by 0.2%. A reduction in time to heading helps plants to 

escape from heat stress (Table 28). Lin et al. (1998) have five putative QTLs controlling heading 

date were detected on chromosomes 2H, 3H, 4H, 6H and 7H. Two previously detected QTLs on 

barley Ppd and Sh2 loci on chromosomes 2H and 7H (Karsai et al. 1997). The effect of Hsp allele is 

weak to moderate for time to heading under heat tolerance. Two QTLs were detected for heading 

date on chromosome 2H (Kicherer et al. 2000). Twenty-two putative QTLs for days until heading 

were located on five chromosomes (Pillen et al. 2003). In our study one putative QTL found in the 

Scarlett*ISR24-8 cross QTL for days until heading was found with (HVABAIP) [1H]. The first QTL 

is the putative QTL for heading date associated with HVM67 [4H] on BIN 13. A classical QTL for 

heading date was also detected in the same or in overlapping BIN groups at locus Bmy1 (Hackett et 

al. 1992) and in marker intervals ABG397-ksuH11 and ABG397-Bmy1 (Hayes et al. 1993, 1996). 

The second QTL was again detected for heading date but associated with HvPRP1B [7H] on BIN 12. 

This QTL was recovered at marker BCD512A (Laurie et al. 1995) and in marker interval 

MWG539-MWG929 (Backes et al. 1995). The third QTL was found for heading date associated 

with HVM6 [5H] on BIN 15. This QTL was also detectable in the marker interval MWG650-

MWG002 (Backes et al. 1995). For heading date four QTLs were mapped on emmer wheat (Peng et 

al. 2003). The resistance gene on 6H is located in the same region as a QTL for post-heading 

duration in the Rolfi x Botnia cross. A cluster of QTLs affecting yield, heading date and several 

malting quality traits has been recognized at the centromeric region of 6H in several barley crosses 

(Hayes et al. 1996). The putative linkage of this tolerance gene to QTLs for important characters 

may hinder its use in breeding. Correlations were strongly under heat stress for days until heading 

with osmotic adjustment (r = 0.56***) and number of leaves per main tiller (r = 0.50***), whereas 

there was a moderate correlation with number of kernels per spike (r = 0.33***) and second leaf 

area (r = 0.24***), yield (-0.23***) and harvest index (r = - 0.33), in addition was weakly 
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correlated with number of spikes per plant (r = - 0.15***), and first leaf area (r = 0.10*) (Table 27). 

Similar results were found by (Kicherer et al. 2000; Pillen et al. 2003). 

Number of leaves per main tiller (LEA) 

Only one putative QTL for number of leaves per main tiller for drought tolerance was 

located on chromosome 5H (Bmag0357). The Hsp allele has in an increase in effect for the number 

of leaves per main tiller 2.2% at Bmag0357 [5H]. The Hsp allele resulted decreasing number of 

leaves per main tiller in the control treatment of 1.6%.The Hsp allele increased the number of leaves 

per main tiller under drought stress by 6.1% (see Table 18). In the present study the Hsp allele was 

weak effect for number of leaves per main tiller. Four QTLs controlling number of leaves per main 

tiller under drought stress were found on chromosomes 1H, 5H, 6H and 7H (Teulat et al. 1997). 

Number of leaves per main tiller was moderately under drought stress correlated with number of 

spikes per plant (r = - 0.29***), number of kernels per plant(r = - 0.22***), flag leaf area (-

0.38***), first leaf area (r = - 0.35***), second leaf area (-0.44***), yield (-0.40***) and harvest 

index (r = 0.23***), whereas it was negatively and strongly correlated with biomass (r = - 0.55***), 

but it was negatively and weak with osmotic adjustment (r = - 0.08*) and carbon isotope 

discrimination (r = 0.1*) (Table 16). Significant positive correlations were noted between numbers 

of leaves on the main tiller (Teulat et al 1997); the results are in agreement with the present results.  

Biomass (MAS) 

 Three QTLs were found for biomass in drought tolerance on chromosomes 1H and 5H. The 

negative effect of the Hsp allele resulted in a 7.8% reduction of the biomass at HW01M22T3 [5H]. 

However, favorable effects of the Hsp alleles were detected for biomass. They caused an increase in 

biomass of 1.2% and 8.9% at HY03I05T3 [1H] and Bmag035 [5H] respectively. Therefore, the Hsp 

alleles increased on biomass an average 5.1%. The Hsp alleles increased biomass in the control 

treatment and drought stress by a maximum of 13.1% at Bmag035 [5H] and a maximum of 6.3% at 

HW01M22T3 [5H] with an average of 9.6% and 4.0% respectively (Table 18). Three QTLs were 

located for biomass for heat tolerance on chromosomes 2H, 3H and 7H. One favorable effect of the 

Hsp alleles were detected for biomass and increased biomass by a maximum of 8.25% at 

HV13GEIII [3H], while for the other two loci the Hsp allele decreased biomass by on average 7.7% 

for both Bmag0321 [7H] and GMS003 [2H]. Under control treatments biomass was increased by the 

Hsp alleles up to 10.0% at HVM62 [3H] and 10.4% at HV13GEIII [3H]. The other two loci Hsp 

reduced biomass under control treatments by an average 8% at GMS003 [2H and Bmad0321 [7H]. 

Heat stress decreased biomass at three Hsp alleles by an average 3.8% (Table 27). Similar finding 
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was obtained by (Li et al. 2001). One QTL was detected for biomass at �denso �locus (Yin et al. 

1999). One QTL was detected for biomass at marker HvA22S [7H] (Pillen et al. 2003). However, 

biomass was positive and strongly correlated under drought stress with number of spikes per plant 

(r = 0.53***), number of leaves per main tiller (r = - 0.55***) flag leaf area (r = 0.55***), first leaf 

area (r = 0.57***), second leaf area (r = 0.63***), and yield (r = 0.723***), while it was moderately 

correlated with number of kernels per plant (r = 0.476***), carbon isotope discrimination (r = -

0.15**) and harvest index (r = - 0.46***). Biomass was weakly correlated with osmotic adjustment 

(r = 0.108**) (Table 16). However, biomass was positively and moderately correlated under heat 

stress with yield (r = 0.37***), while it was weakly correlated for biomass with number of spikes 

per plant, number of kernels per plant (r = 0.15**), and harvest index(r = - 0.22***) (Table 27). 

Similar result was reported by (Pillen et al. 2003). 

Harvest index (HI)  

Four putative QTLs were located for harvest index on chromosomes 1H, 2H and 6H. 

Favorable effects of the Hsp alleles detected for harvest index resulted in improved biomass at three 

loci with a 1.7%, 3.2% and 9.0% at GMB1008[6H], GMS003[2H] and HVM36 [2H] with an average 

4.6%. Two loci Hsp allele increased harvest index in the control treatment by 13.17% and 14.6% at 

GBM1007 [1H] and GBM1008 [6H] with average 13.4%. Under heat stress harvest index was 

increased from two Hsp alleles by 19.1% and 30.8% at GMS003 [2H] and HVM36 [2H] respectively 

by an average 24.9% (Table 28). In the present study for harvest index is moderate to high effects 

from the Hsp alleles under heat stress. Two putative QTLs were located for harvest index obtained 

by (Pillen et al. 1998; 2003). A total of 8 QTLs were detected for harvest index (Okogbenin and 

Fregene 2001). Harvest index under heat stress was strongly correlated with yield (r = 0.72***), 

while it was moderately correlated with number of spikes per plant (r = 0.30***), osmotic 

adjustment (r = - 0.30), days until heading (r = - 0.33***), number of kernels per spike (r = 

0.27***), number of leaves per main tiller (r = - 0.25***), and biomass (r = - 0.21), whereas it was 

weakly correlated with relative leaf water content (r = - 0.08*) and second leaf area (r = - 0.14***) 

(Table 27). Similar finding was obtained by (Pillen et al. 2003). 

Carbon isotope discrimination (CID) 

Two putative QTLs for carbon isotope discrimination were located on chromosomes 5H and 7H. 

Two loci showed an M*D interaction were significant. Two Hsp alleles having favorable effects 

were detected, they improved negative effects for carbon isotope discrimination of 0.9% and 1.3% 

at Bmac0163 [5H] and Ebmac0755 [7H]. In the control treatment the Hsp allele at one locus were 
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positive effects for CID of up to 1.2 % at Bmac0163 [5H], while it had negative effect for CID at one 

locus of 3.1% at EBmac0755 [7H]. Drought stress resulted in a positive effect from the Hsp allele at 

one locus of 0.6% EBmac0755 [7H], while it had a negative effect for CID at one locus of Hsp allele 

of 3.2% at Bmac0163 [5H] (Table 18). Our results are in agreement with (Robinson et al. 2000); wild 

barley germplasm has been tested for physiological traits associated with abiotic stress tolerance. 

Biomass changes under experimentally imposed stress, measurements included shoot stable isotope 

discrimination (CID13C), % C. The abundance of carbon isotope discrimination has been used as a 

screening tool to assess barley genotypes for their responses to abiotic stress (Handley et al. 1997). 

Ten QTLs were identified: one was specific to one environment, two presented interaction with the 

environment, six presented main effects across three or two environments and one presented both 

effects. Heading date did not contribute to the environment (E) and G x E effects acting on CID. 

Seasonal rainfall and the ratio of rainfall to evapotranspiration made large contributions to the 

environmental effect, but their influence on G x E was weaker. Eight QTLs for CID co-located with 

QTLs for physiological traits related to plant water status and/or osmotic adjustment, and/or for 

agronomic traits previously measured on the same population. Some perspectives in terms of 

characterizing drought tolerance are evoked (Teulat et al. 2002). Present results for carbon isotope 

discrimination under drought stress was moderate correlation with days until heading (r = 26***), 

furthermore it was weak correlated with number of leaves per main tiller (r = 0.1*), flag leaf area (r 

= -0.12**), first leaf area (r = -0.13***), biomass (r = -0.15***), and harvest index (r = 0.17***). 

Our results are in agreement with those obtained by (Fischer et al 1998). 

In this study, we report on the first AB-QTL project which utilizes spring barley as a model. 

Our goal was: (1) to localize QTLs for the expression of quantitative traits in spring barley. The 97 

polymorphic SSRs revealed 54 putative QTLs from 78 regions in two groups. The 20 putative 

QTLs were detected for drought treatments; and the 34 putative QTLs found for the heat treatments. 

 (2) To identify favorable QTL alleles from the wild barley donor which improve the respective 

traits. On average, 30 (55.5%) favorable Hsp allele effects were detected for improvement of both 

drought and heat tolerance in the tested lines. 14 (70.0%) favorable Hsp alleles effects for drought 

tolerance and 16 (47.0%) favorable effects of the Hsp alleles for heat tolerance (see Table 29 and 

30). Theses results are pertaining to better improvement in drought tolerance than heat. 
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6. Summary 

In the season (2001) the performance of four German barley cultivars was examined under drought 

and heat stress. The four cultivars were grown under four treatments (35%, 50%, 65% and 100% 

FC) for drought experiment, under heat experiment three treatments (normal climate, heat stress and 

heat stress plus 65% FC) in the greenhouse, 12 traits for heat and drought tolerance were examined, 

in order to determine traits, which show significant deviations for drought and heat stress in the 

plants and to determine which treatments for the drought experiment is applause of analyze stress 

response in the BC2DH population. Results showed little or no differences between 35% and 50% 

FC, 50% and 65% FC as well as 65% and 100% treatments. On the other hand, high differences 

between 35% and 65% as well as between 50% and 100% (Table 10). The heat experiment the 

cultivars were tested under three treatments; normal climate, heat stress and heat stress plus 65% 

FC. The results revealed high differences among the three treatments for heat experiment (Table 

21).  

In the years 2002-2003, 323 individuals of BC2DH population derived from a cross between a 

cultivar variety (Scarlett) and wild variety (ISR42-8) were genotyped with 97 DNA markers. The 

BC2DH lines were evaluated in greenhouse trials for drought and heat. Altogether 13 parameters for 

the determination of the drought tolerance and 12 parameters for the investigation of the heat 

tolerance were examined. There were two treatments for drought experiment; 50% FC level for 

drought stress and at 100% FC level for control. Two treatments were used for the heat experiment 

(normal climate and in greenhouse) and the traits measured were: relative leaf water content, 

osmotic adjustment, heading date, number of spikes per plant, number of kernels per spike, number 

of leaves per main tiller, flag leaf area, first leaf area, second leaf area, carbon isotope 

discrimination (for drought experiment), yield, biomass and harvest index. Single-point marker 

analysis by means of a three-factorial ANOVA rather than an interval mapping was preferred for 

QTL analysis. A QTL analysis was calculated with 3-factorial ANOVA, with marker main effect, 

drought or heat treatment and year. The model used to detect QTLs included the effects of marker 

genotype (M), drought treatment (D), or heat treatment (H), M*D interaction or M*H interaction. 

Under the assumption of a mixed model with the marker as a fixed effect, the drought treatment or 

heat treatment was as a fixed effect and year as a random effect. The genotype and phenotype data 

were subjected to analysis in GLM procedure of SAS software (SAS institute, 1999). The 323 

BC2DH lines were successfully genotyped polymorphic with 97 SSRs. All 97 mapped SSRs cover 

1013 cM of the barley genome; the mean SSR density is equal to 11.1 cM (Table 17). The 

Scarlett*ISR42-8 map includes four gaps with a marker distance of more than 30 cM, the gaps are 

located on chromosomes 3H, 5H and 6H (Table 17, Figure 7).  
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The 97 polymorphic SSRs revealed 54 putative QTLs from 78 regions in two groups. The 20 

putative QTLs were detected for drought treatments; and the 34 putative QTLs found for the heat 

treatments. Altogether, 30 (55.5%) favorable Hsp allele effects were detected in both, the drought 

and the heat experiment (see Table 29 and 30), genotype was associated with an improvement of 

the trait compared to the homozygous (Hordeum vulgare L. distichon, hereafter abbreviated with 

Hvd) had genotype as shown in Figure 8, 13 and Table 18).  

20 putative QTLs were detected for drought experiment. Eight regions showed a marker 

main effect and 25 regions an M*D interaction (Figure 8 and Table 18). In two cases, both effects 

(marker main effect and M*D interaction) were significant. Altogether, 14 (70. %) favorable Hsp 

allele effects were detected (see Table 29). The putative QTLs were unevenly distributed over the 

chromosomes (Figure 8). Four QTLs were located on chromosome 1H, one QTL was located on 

chromosome 3H, two QTLs were located on chromosome 4H, eight QTLs were located on 

chromosome 5H, two QTLs were located on chromosome 6H, three QTLs were located on 

chromosome 7H, and zero QTLs were detected on chromosomes 2H. Most of the favorable Hsp 

alleles were located on chromosomes 1H, 5H and 7H (2, 8 and 3 respectively). The distribution of 

putative QTLs among the 97 genotyped SSR markers was also irregular. Marker Bmag0357 [5H] 

showed putative QTL effects on three traits (LEA, MAS and YLD), Marker Bmac0316 [6H] obtained 

putative QTL effects on two traits (OA and YLD) and Marker HW01M22T3 [5H] revealed putative 

QTL effects on two traits (MAS and OA). The detected putative QTLs are represented for the traits 

in the Table 18.  

Ninety seven polymorphic markers detected 34 putative QTLs were detected from 45 regions 

for heat experiment. Four marker main effect at 41 an M*H interaction were significant at P < 0.01 

(Figure 13 and Table 28). 16 (47.0%) favorable QTL effects were detected (see Table 30). The 

putative QTLs were unevenly distributed over the chromosomes (Figure 13). 8 and 9 QTLs were 

located on chromosomes 4H and 2H, respectively. Most of the favorable Hsp alleles were located 

on chromosomes 3H and 4H (3, and 5 respectively). No favorable were detected on chromosome 

1H. At the marker GMS003 [2H] was found putative QTLs effects for three traits (MAS, YLD and 

HI). HV13GEIII [3H] was found putative QTLs effects for four traits (OSM, FLA, MAS and YLD). 

HVM62 [3H] was detected putative QTLs effects on four traits (OSM, FLA, MAS and YLD). 

HW01N04T3 [2H] showed putative QTLs effects on three traits (OSM, FLA and YLD). HY02P09T3 

[1H] obtained putative QTLs effects on three traits (ARE1, FLA and OSM). The detected putative 

QTLs are represented for each trait is shown in Table 28. 
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 These traits were osmotic adjustment, yield, biomass, relative leaf water content; numbers of 

leaves per main tiller and flag leaf area were controlled with 7, 3, 3, 3, 1 and 1 QTL, respectively, in 

the drought experiment. Under drought stress first leaf area was positively and strongly correlated 

with flag leaf area (r = 0.77). Positive correlations were expressed by second leaf area with flag leaf 

area (r= 0.66) and first leaf area (r = 0.78). Yield was positively correlated with harvest index (r = 

0.72), number of spikes per plant (r = 0.63) and number of kernels per spike (r = 0.69). Biomass 

showed positively correlations with number of spikes per plant (r = 0.53), number of leaves per 

main tiller (r = -0.55), flag leaf area (r= 0.55), first leaf area (r = 0.56) second leaf area (r = 0.63) 

and yield (r = 0.72). The 16 (47.0%) favorable effects were detected for heat tolerance. Flag leaf 

area, osmotic adjustment, yield, harvest index, biomass, first leaf area, relative leaf water content, 

number of spikes per plant and heading date were controlled with 8, 7, 4, 4, 3, 3, 2, 2 and 1 QTL 

respectively, in heat experiment. Correlations for days until heading was with osmotic adjustment (r 

= 0.57), and number of leaves per main tiller (r = 0.51). Positive correlations were expressed by 

second leaf area with flag leaf area (r = 0.59) and first leaf area (r = 0.51). Yield was positive and 

strongly correlated with harvest index (r = 0.73). 

Drought results for BC2DH lines (AB-DH lines Scarlett*ISR42-8 population) 

  

The analysis of variance of BC2DH lines for the drought experiment was highly significant for all 

parameters. The variation between years was highly significant for all parameters except relative 

leaf water content. The analysis of variance between drought treatments was highly significant for 

all parameters. The interaction between drought treatments and years was significant for all 

parameters except relative leaf water content and osmotic adjustment. The interaction between 

drought treatments and BC2DH lines was significant for all parameters except number of spikes per 

plant. The interaction between years and BC2DH lines was highly significant for all parameters. The 

analysis of variance for the interaction between BC2DH lines, years, and drought treatments was 

significant for all parameters except number of leaves per main tiller (see Table 14). 

QTLs for drought tolerance 

Three putative QTLs for Relative leaf water content were found. All Hsp alleles showed 

positive effects for control treatment except GMS089 [4H]. The Hsp increased relative leaf water 

content in the control treatment of 4.0% at both Ebmac0701 [4H] and TACMD [4H]. On the other hand, 

the Hsp allele increased the RWC under the drought stress up to 3.9% at (GMS089 [4H] (Table 18). A 

total of 7 putative QTLs have effect on osmotic adjustment were found. However, five favorable 
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Hsp allele effects were detected, these Hsp allele improved osmotic adjustment with a maximum 

value of 22.3% at HW01M22T3 [5H]. The Hsp allele at four loci increased osmotic adjustment in the 

control treatment up to maximum of 7.2% HY02J05T3 [5H]. Five Hsp alleles showed an increase in 

osmotic adjustment under drought stress up to 39.5% at HW01M22T3 [5H] (see Table 18). Only one 

putative QTL for number of leaves per main tiller was located on chromosome 5H. The Hsp allele 

effect increased the number of leaves per main tiller by 2.2% at Bmag0357 [5H]. The Hsp allele 

resulted decrease control treatment of 1.6%. Whereas Hsp allele lifted the number of leaves per 

main tiller of 6.1% under drought stress (Table 18). One putative QTL was located for flag leaf on 

chromosome 1H. Favorable Hsp allele effect was reduced flag leaf area by 16.4% at GMS021 [1H]. 

The Hsp allele showed a decrease in flag leaf area in the control treatment 13.6% at GMS021 [1H]. 

The Hsp allele obtained negative effect of value found 20.1% at GMS021 [1H] under drought stress 

(Table 18). Three putative QTLs for yield were found. Three favorable Hsp alleles were detected 

positive effects, was improved yield to maximum of 18.4% at Bmac0029 [3H]. The Hsp alleles at 

three loci improved yield in Control treatment up to 21.4 % at Bmac0029 [3H]. Result showed 

positive effects from the Hsp alleles at two loci up to 13.1% at Bmac0029 [3H] under drought stress 

(Table 18). Three QTLs were located for biomass. Effects of favorable Hsp alleles were detected for 

biomass, positive effects were found at 1.2% and 8.9% at two loci both at HY03I05T3[1H] and 

Bmag035[5H], respectively. Biomass was increased in control treatments at two loci Hsp allele a 

maximum of 13.1% at Bmag0357 [5H]. The Hsp allele increased biomass at two loci a maximum 

6.3% HW01M22T3 [5H] under drought stresses (Table 18). Two putative QTLs for carbon isotope 

discrimination were located on chromosomes 5H and 7H. Two Hsp alleles having favorable effects 

were detected, they improved negative effects for carbon isotope discrimination of 0.9% and 1.3% 

at Bmac0163 [5H] and Ebmac0755 [7H]. In the control treatment the Hsp allele at one locus was 

negative effect for CID of 3.1% at EBmac0755 [7H]. Drought stress resulted in negative effect for 

CID at one locus of Hsp allele of 3.2% at Bmac0163 [5H] (Table 18). 

Heat results for BC2DH lines (AB-DH lines Scarlett*ISR42-8 population) 

 

The analysis of variance for BC2DH lines of heat experiment was significant for all parameters 

except number of leaves per main tiller and first leaf area. The variation between years was 

significant for all parameters except relative leaf water content and number of leaves per main tiller. 

The analysis of variance between heat treatments was highly significant for all parameters. The 

interaction between heat treatments and years was significant for all parameters except relative leaf 

water content. The interaction between heat treatments and BC2DH lines was significant for all 
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parameters except number of leaves per main tiller and first leaf area. The interaction between years 

and BC2DH lines was highly significant for all parameters except number of leaves per main tiller 

and first leaf area. The analysis of variance of the interaction between BC2DH lines, years, and heat 

treatments for heat experiment revealed a significant variation for all parameters except number of 

spikes per plant, number of leaves per main tiller and first leaf area (see Table 25).  

 

QTLs for heat tolerance  

Two putative QTLs for relative leaf water content were found. The Hsp alleles were positive 

effects, the Hsp at two loci increased RWC in control treatment with 6.5 % (GBM1016 [2H]) (Table 

28). Two QTL were detected for number of spikes per plant. Two favorable Hsp alleles detected for 

number of spikes per plant had positive effect of 18.9% of increase the number of spikes per plant 

at GMS061 [5H]. The Hsp allele caused an increase in control treatment 27.0% at GMS061 [5H]. The 

Hsp allele caused an increase under heat stress 11.8% at HVM36 [2H] (Table 28). A total of 7 

putative QTLs were located for osmotic adjustment. Favorable effects of the Hsp alleles for OA 

were observed for 3 alleles on chromosomes 4H, 6H and 7H. Four loci with the Hsp allele 

decreased OA a maximum of 11.6% at HY02P09T3 [2H]. On the other hand, 3 favorable effects of 

the Hsp alleles detected for OA improved up to 8.7% at BMS64 [7H]. The Hsp allele of 3 loci lifted 

OA in control treatment up to 15.4% at HV13GEIII [3H]. Four loci Hsp allele showed increasing 

under heat stress for OA up to 14.4% at BMS64 [7H] (Table 28). Only one putative QTL for days 

until heading was found. The Hsp allele increased heading date 2.7% at HVABAIP [1H]. The 

obtained Hsp allele increased heading date in control treatment with 4.6%, whereas, the Hsp allele 

reduced heading time by 0.2% under heat stress (Table 28). 

Eight putative QTLs putative were located for flag leaf area. Five favorable effects of the 

Hsp alleles detected for flag leaf area lifted improve at HVM36 [4H] by a maximum of 19.6%. The 

Hsp allele at four loci showed increase FLA in control treatment maximum of 25.4% at 

HW01M22T3 [5H]. The Hsp alleles at three loci showed a positive effect in increase of flag leaf area 

up to 47.9% at HVSS1 [7H] under heat stress (Table 28). Three putative QTLs were located for the 

first leaf area. Positive effect (23.8 %) was detected by one locus HY03N03T3 [4H] lifted ARE1 in 

control treatment. Favorable effect of the Hsp allele was detected for first leaf area, positive effect 

(17.7 %) was detected by one locus HY03C23T3 [4H]. Two loci Hsp alleles were showed positive 

effects 8.6% and 13.2% at HY03N03T3 [4H], GMS061 [5H], respectively under heat stress (Table 28). 

Altogether, 4 putative QTLs for yield were found. Two favorable effects of the Hsp alleles detected 
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for yield improved positive effects with maximum of 20.8% at HVM62 [3H]. The Hsp alleles 

resulted positive effects at two loci for yield in control treatment up to 23.1 % at HVM62 [3H]. 

Result showed positive effects Hsp alleles at three loci up to 6.3% at GMS003 [2H] (Table 28). Three 

QTLs were located for biomass. One favorable effect of the Hsp alleles detected for biomass lifted 

improve a maximum of 8.3% at HV13GEIII [3H]. The Hsp allele at one locus in control treatments 

increased biomass a maximum of 10.4% at HV13GEIII [3H. The Hsp allele decreased at three loci a 

maximum of 6.6% at GMS003 [2H] under heat stress (Table 28). Four putative QTLs were located 

for harvest index. Favorable effects of the Hsp alleles detected for harvest index obtained positive 

improved at three loci with a maximum of 9.0% at HVM36 [2H]. The Hsp allele at two loci increased 

harvest index in control treatments up to 14.6% at GBM1008 [6H]. The Hsp allele lifted harvest 

index at two loci a maximum of 30.8% at HVM36 [2H] under heat stress (Table 28). 
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