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Abstract

String theory represents a unifying framework for quantum field theory as well as
for general relativity combining them into a theory of quantum gravity. The topological
string is a subsector of the full string theory capturing physical amplitudes which only
depend on the topology of the compactification manifold. Starting with a review of the
physical applications of topological string theory we go on to give a detailed description
of its theoretical framework and mathematical principles. Having this way provided the
grounding for concrete calculations we proceed to solve the theory on three major types
of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau
manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic
anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions.
We determine the correct parameterization of the ambiguity and new boundary conditions
at various singularity loci in moduli space. Among the main results of this thesis are the
tables of degeneracies of BPS states in the appendices and the verification of the correct
microscopic entropy interpretation for five dimensional extremal black holes arising from
compactifications on Grassmannian Calabi-Yau manifolds.
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Chapter 1

Introduction

1.1 Motivation

One of the major problems of modern theoretical physics, both conceptually as well as
practically, is the reconcilliation of the two pillars of 20th century physics, namely gravi-
tation and quantum mechanics. The theory of gravitation is described in an astonishingly
elegant way by Einstein’s theory of general relativity and has thus far passed a few but
impressive experimental tests. These tests are mainly of astrophysical and cosmological
nature, the most prominent of which being the manifestation of the dynamical nature
of space-time through Hubble’s observation of an expanding universe. The conceptual
core of general relativity in the context of the dialectic development of physical theories
is the unification of Newton’s theory of gravitation with special relativity, being itself
a synthesis of Maxwell’s electromagnetism and the concept of inertial systems. On the
other hand the history of quantum mechanics has taken a different road on the landscape
of physical theories, having it’s origin in atomic physics as well as the physics of radiation
and light. This time it was not a contradiction between physical theories which led to the
birth of the new theory but rather a contradiction between classical theories compared to
experimental observations about the radiation of black bodies and the spectrum of light
emitted by individual atoms. Quantum mechanics found its climax in the development of
quantum field theory which is capable of explaining the interactions between individual
particles to an accuracy unprecedented among the predictive power of human theories.

Today we are standing in front of the conceptual incompatibility between quantum
field theory and general relativity. As a dynamical classical theory general relativity
admits a Lagrangian formulation and its dynamical variables expanded around a classical
solution can be interpreted as quantum fields giving rise to a spin two particle known as
the graviton. However, it turns out that this quantum field theory is ill defined in the
sense that it is not renormalizable. Here, we should point out that within the so called
asymptotic safety program, a lot of efforts are being devoted to establishing the existence
of an ultraviolet fixed point at which Quantum Einstein Gravity can be renormalized. Up
to now the results of these efforts are still speculative. Nonrenormalizability of general
relativity makes practical calculations concerning the quantum nature of space-time at
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2 CHAPTER 1. INTRODUCTION

the time right after the big bang and near black holes impossible from the beginning.
Furthermore, it is known from the work of Hawking and Bekenstein, that a black hole is a
thermodynamical object with an entropy which goes linearly with the area of its horizon.
However, there is no way to look behind the horizon of a black hole, even theoretically,
to find out what the microscopic states are which give rise to the macroscopic entropy
and radiation. These issues can only be addressed in a theory of quantum gravity where
the interactions of gravitons with the microscopic objects forming the black hole are
well described. Switching the point of view to the one of contemporary particle physics
we find similar difficulties in explaining the observed richness of particle spectra and
interactions. One of the major problems of the Standard Model of particle physics are
the large quantum corrections contributing to the square of the Higgs mass, known as
the hierarchy problem. One way to solve it is to introduce a new symmetry, namely
supersymmetry, which doubles the particle spectrum and thus provides a mechanism to
cancel the quadratic divergencies appearing in loop corrections to the Higgs mass. There
are also other problems like the explanation of the amount of dark matter in the universe
as well as gauge coupling unification at the GUT scale, for which solutions can be found
within the supersymmetric extension of the standard model.

String theory is a modern theoretical approach which incorporates both, quantum
gravity as well as supersymmetry. It regularizes field theory by introducing a new scale,
known as the string scale, and it naturally incorporates gravitation. Furthermore, it is a
supersymmetric theory providing the framework for constructing supersymmetric models.
In string theory the one-dimensional trajectory of a particle in spacetime is replaced by
a two-dimensional orbit of a string denoted by worldsheet. In mathematical terms the
worldsheet is a Riemann surface, i.e. a complex manifold with complex dimension one.
The situation is very similar to the quantum mechanical case where the introduction of
Planck’s constant ~ is responsible for passing from classical to quantum physics. In a sim-
ilar manner, in string theory one introduces a new fundamental constant α′ ∼ (10−32cm)2

being a parameter for the tension of the string. It turns out that this way gravity is
regularized as it is no longer possible to probe spacetime beneath distances of order√
α′ ∼ 10−32cm. In other words there is an absolute minimum uncertainty in length.

Classical field theory results and in particular general relativity arise then in the limit
α′ → 0. However, it turns out that string theory is only consistent, i.e. anomaly free, in
a spacetime with ten dimensions. This makes it unavoidable to compactify the theory on
a six dimensional compact space to establish contact with our observed four dimensional
world. In order to preserve the amount of supersymmetry relevant for phenomenology the
compactification manifold has to satisfy several conditions, namely it must be complex
and Kähler and allow for one covariantly constant spinor. Although being very strin-
gent, these conditions lead to a vast number of solutions known as Calabi-Yau manifolds.
Each such space leads to a different four dimensional particle content and interactions
and thus to a different physical vacuum state. It is conjectured that all these vacua are
connected through the notion of extremal transitions [1]. The major challenge of string
phenomenology is then to find the right vacuum describing our universe at the current
state of evolution. On the other hand string theory also suffers from some drawbacks

2



1.1. MOTIVATION 3

from the conceptual point of view. It is known that there is not only one string the-
oretic construction but there are five consistent theories at once, all being known only
in their perturbative regimes. But since 1995 it has become clear that all five theories
are connected through a chain of dualities and to an eleven-dimensional theory called M
theory which is only known in its low energy limit as eleven dimensional supergravity.
This picture involves the existence of new extended objects known as Dp-branes which
are p-dimensional analogs of the string but different in some important properties. The
best understood duality is the so called mirror symmetry which relates type IIA string
theory compactified on a Calabi-Yau manifold M to type IIB string theory on a “mirror”
Calabi-Yau W . In the extremely simplified case where M is a circle of radius R, W would
be a circle of radius α′/R. The symmetry states that the two theories compactified in
such a way admit the same particle spectrum and four dimensional physics. We will make
extensive use of mirror symmetry in this thesis. The other symmetry we will be needing
for our calculations is the so called heterotic - type II duality which is a symmetry of a
completely different nature. Here the string coupling constant gs in the one theory which
is a field theoretical quantity is related to the size of a sphere in the other theory which is
a purely geometric quantity. To test such dualities BPS states become very important as
these are the only states in the theory which prevail and are protected against corrections
even in the nonperturbative regime.

One of the major breakthroughs of string theory in recent years is the calculation
of the Bekenstein-Hawking entropy for supersymmetric black holes in terms of a string
theoretic microscopic description. Such an entropy calculation is possible for black holes
which are extremal in the sense that their charge and their mass are in a fixed relation.
On the string theory side this involves a counting of BPS states which are realized as
D-branes wrapping certain cycles of the compactification manifold.

Another important line of research in string theory is the construction of four di-
mensional supersymmetric vacua by choosing a certain compactification geometry. This
involves calculating the four dimensional effective action together with its superpotential
and prepotential.

There are several tools available in string theory to address the above questions, each of
which emphasizing a different viewpoint. One of these tools is the topological string. It is
a simplified version of the critical string theory in which the path integral localizes on the
topological subsector of the theory. Physically this is a simplified approximation. Within
the sigma model representation of the critical string the path integral is an integral over
all possible maps of the two dimensional worldsheet to the target space which in general
is a complex three dimensional Calabi-Yau manifold tensored with Minkowski spacetime.
Whereas in the topological string the space of integration is reduced to the space of the
distinct classical solutions. One may ask why one should look at such a simplified version
of the original theory. For this question there are two main answers. First of all in its
standard formulation string theories exhibit an infinite number of fields and particles, an
infinite dimensional symmetry algebra which is only very vaguely understood and where
a lot of these symmetries are “broken”. There is a claim that the topological version
is another phase of the physical theory, in which much more symmetries are preserved

3



4 CHAPTER 1. INTRODUCTION

and unbroken and in which the spectrum is considerably simpler. Therefore one hopes
that from the examination of the one theory one gets clues about some principals of the
physical theory. The other important advantage of the topological string is that it is
able to compute certain physical amplitudes of the real string theory. These are terms of
the effective four-dimensional theory which depend holomorphically on the moduli. The
most important examples of such terms are the superpotential, the prepotential and the
gauge kinetic function of N = 1 and N = 2 supersymmetric field theories. Furthermore,
topological string theory counts naturally certain BPS states and is therefore ideally suited
for computing the microscopic entropy of extremal spinning five dimensional black holes.
Within the OSV conjecture [2] there are clues that the theory is also of great relevance
for the entropy of four dimensional supersymmetric black holes.

There are two main approaches present for solving the topological string on Calabi-
Yau backgrounds. The first approach is called the topological A model and has also great
relevance for the mathematical point of view. In the A model the classical solutions around
which the string path integral localizes are holomorphic maps from the Riemann surface
of the world sheet to curves of the Calabi-Yau target space. These are instantons labeled
by the genus g of the holomorphically embedded curve and the degrees di which count
the number of intersection with the divisors of the Calabi-Yau. The mathematical tool to
calculate the number of such maps is called localization. It makes use of the fact that the
ambient space, being the space in which the Calabi-Yau manifold is embedded, admits a
group action (i.e. (C∗)n in case of a n dimensional toric variety) in order to localize the
path integral to fix points of the group action. The disadvantage of the A model is that it
only provides solutions at the large volume point in moduli space. The second approach
is called the topological B model and rests heavily on the use of mirror symmetry. Here
one performs all calculations in the mirror Calabi-Yau knowing that there the classical
solutions are just maps from the worldsheet to points of the target space which are much
easier to control. Then one “translates” the result by mirror symmetry to the original
Calabi-Yau where they can be interpreted as A model results. The calculation on the B
model side makes use of the properties of the topological free energies around boundary
divisors of the mirror Calabi-Yau moduli space where physical descriptions of the particle
spectrum are available. Such information can consist of the number and type of particles
becoming massless at the relevant divisor as well as phase transitions going through an
enhanced symmetry point. In this thesis we shall follow the second approach to topological
string theory, i.e. the B model, as this provides us with solutions on the whole of moduli
space.

1.2 Outline

This thesis is organized as follows.
In chapter 2 we review the physics lying behind and the physics captured by topolog-

ical string theory. That is we start with an introduction to type II supergravity where
we compactify the ten dimensional bosonic actions down to four dimensions. This way it
is possible to identify the four dimensional multiplets with the moduli fields of the com-

4



1.2. OUTLINE 5

pactification manifold. Next, we pass over to the description of gauge theories within the
framework of N = 2 supersymmetry where in particular we concentrate on the Seiberg-
Witten solution of the SU(2) gauge theory. Having reviewed this construction we present
its embedding into string theory and comment on how the topological string captures
certain nonperturbative aspects of these gauge theories. Finally we discuss four and five
dimensional supersymmetric black holes, their macroscopic entropy, and their embedding
into string theory together with a microscopic interpretation of the entropy.

Chapter 3 is devoted to an introduction of the main ideas and calculational tools
behind the topological string. This implies a presentation of complex geometry and the
notion of Calabi-Yau manifolds as relevant target spaces. Here we will include a sec-
tion about the moduli space of Calabi-Yau manifolds and special geometry as this is of
great relevance for later discussions. Then we will pass over to present a review of su-
persymmetric sigma models. Here we describe N = (2, 2) world sheet supersymmetry
compactifications and some details of the N = (2, 2) CFT. Furthermore, we include a
section about the linear sigma model perspective which represents a unifying framework
for various geometric constructions and phases in string theory. Following these discus-
sions there will be a description of the A and B twists leading to topological theories.
Finally the topological models are combined with a Calabi-Yau target space and coupled
to topological gravity. Here we subdivide again between the A and the B model. Having
discussed the topological A and B models we turn our attention to mirror symmetry,
where we will explain the mirror map and the genus zero sector. Last but not least, we
will pass over to solving the holomorphic anomaly equations. The first step is to find a
recursive solution of the equations genus by genus and the second will be to explain the
boundary conditions at various points in moduli space.

In chapter 4, solutions of the topological string on Calabi-Yau manifolds which are
complete intersections in Grassmannians are presented. These results are also published
in [3]. The chapter starts with an introduction to Grassmannian varieties and the notion
of Calabi-Yau complete intersections in these. Next, mirror symmetry for these spaces is
reviewed. Then we pass on to present results of the solutions to the anomaly equations
expanded on boundary points of the moduli space. Having derived topological amplitudes
for this class of spaces up to genus 5 we turn our attention to the black hole interpre-
tation and analyze the discrepancy between the microscopic and macroscopic entropy
evaluations.

The next chapter, chapter 5, analyzes the solutions to the anomaly equations on
local Calabi-Yau manifolds. The results of this part were published in [4]. First we
give a toric description for this class of manifolds and identify a Riemann surface as
their mirror. Then the direct integration procedure for these spaces is described and the
boundary information from conifold expansions is extracted. The last section clarifies the
relations between topological amplitudes and in particular generators of the amplitudes
with modular forms.

Chapter 6 deals with the topological string on K3 fibrations. The results are pub-
lished in [5]. The first section deals with the description of compact toric varieties and
the construction of Calabi-Yau hypersurfaces in them. An important application of the

5



6 CHAPTER 1. INTRODUCTION

toric description, which we shall review, is the derivation of Picard-Fuchs equations from
symmetries of the ambient space. The second section is concerned with the duality of the
Heterotic String with the type II string and the importance of K3 fibrations in this con-
text. Then, we give an overview over the moduli space and identify all relevant boundary
divisors. Having described the geometry of the moduli space we summarize the physical
boundary conditions at the various divisors and present expansions of the free energies.
The last section deals with the question of integrability on these spaces.

The last chapter contains some concluding remarks and directions for the future.
The appendices A, B contain supplementary material about the calculation of Yukawa-
couplings and definitions for SL(2,Z) modular forms. The last three appendices, namely
C, D, E, contain the tables of BPS degeneracies, a plot about the macroscopic and micro-
scopic black hole entropies for Grassmannians and a table for the topological invariants
of Grassmannian Calabi-Yau three-folds.
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Chapter 2

The Physics of the Topological
String

This chapter is meant to be an overview about the physical principles underlying the
topological string and its main physical applications. To this respect we first review the
compactification of type IIA/IIB string theory on Calabi-Yau manifolds. Then we pass
over to the discussion of N = 2 gauge theories and how one can obtain them from the
choice of the compactification geometry. Here we present the Seiberg-Witten solution and
its relevance for topological string computations. Last but not least we turn to a short
exposition of macroscopic and microscopic black hole physics.

2.1 Compactifications to N = 2 supergravity

2.1.1 Type IIA / IIB string theory in ten dimensions

Superstring theories are only consistent as quantum theories and anomaly free in ten
spacetime dimensions. Their perturbative description is given by a supersymmetric sigma
model with target space a ten dimensional manifold which usually splits up into R1,3×M ,
where M is denoted by compactification space. In the limit of large volume of M and
small string coupling the interacting theory captured by the sigma model reduces to
supergravity, i.e. a quantum field theory. The nonperturbative sector of string theory
contains solitonic states, namely the D-branes, which also admit a supergravity description
in terms of p-forms. The nature of the nonperturbative description of string theory is still
not clear and therefore a full description of D-branes and their bound states remains far
away. However, in many phenomenological applications it is convenient to consider first
the supergravity limit of string theory and include nonperturbative corrections as a second
step. This said, we want to describe in the following the supergravity picture arising from
string theory and its impact on four dimensional physics.

We shall focus our exposition on the bosonic sector of low energy effective actions
of type IIA and type IIB string theory. That is, we will be dealing with type IIA and
type IIB supergravity in 10 dimensions. Both theories are N = 2 supersymmetric, the

7



8 CHAPTER 2. THE PHYSICS OF THE TOPOLOGICAL STRING

difference being that in the one theory the gravitino multiplet has opposite chirality to
the gravitino sitting in the graviton multiplet1.

Starting with the non-chiral type IIA theory, its massless spectrum comprises the
metric ĝMN , the two-from B̂2, the dilaton φ̂ , and a one and a three-form denoted by
Â1 and Ĉ3. Note that the fermionic components follow by supersymmetry. The bosonic
action of this theory is given by [7]

SIIA =

∫ [
e−2φ̂

(
−1

2
R̂ ∗ 1 + 2dφ̂ ∧ ∗dφ̂− 1

4
Ĥ3 ∧ ∗Ĥ3

)
−1

2

(
F̂2 ∧ ∗F̂2 + F̂4 ∧ ∗F̂4

)
+ Ltop

]
, (2.1.1)

where the fields strengths are defined as

F̂2 = dÂ1, F̂4 = dĈ3 − B̂2 ∧ dÂ1, Ĥ3 = dB̂2, (2.1.2)

and we will ignore the topological terms Ltop as they are not of particular importance for
the argumentation we want to carry out.

The type IIB theory is the chiral type II theory and its massless bosonic fields are given
by the metric ĝMN , the two-form B̂2, the dilaton φ̂, and the zero, two and four-forms l,
Ĉ2 and Â4. Speaking in string theoretic terms, one sees that the two theories differ only
in their RR sectors while their NS-NS sectors comprising the fields ĝMN , B̂2 and φ̂ are
equal. As the RR sector contains only even forms in type IIB the action will only contain
odd form field strengths. Its bosonic part is

SIIB =

∫
e−2φ̂

(
−1

2
R̂ ∗ 1 + 2φ̂ ∧ ∗dφ̂ −1

4
Ĥ3 ∧ ∗Ĥ3

)
−1

2

(
dl ∧ ∗dl + F̂3 ∧ ∗F̂3 +

1

2
F̂5 ∧ ∗F̂5

)
− 1

2
Â4 ∧ Ĥ3 ∧ dĈ2, (2.1.3)

where the field strengths are defined as

Ĥ3 = dB̂2, F̂3 = dĈ2 − ldB̂2, F̂5 = dÂ4 −
1

2
Ĉ2 ∧ dB̂2 +

1

2
B̂2 ∧ dĈ2. (2.1.4)

2.1.2 Compactifications to four dimensions

To obtain a four dimensional physical theory the ten dimensional supergravities have to be
compactified on a manifold M . One can choose the amount of preserved supersymmetry
by the choice of the holonomy of the internal manifold M . The number of left supersym-
metries will be equal to the number of spinors which can be chosen to be singlets under
the holonomy group. A spinor is an irreducible representation of the algebra so(1, d− 1)
and has dimension 2d/2 for d even and 2(d−1)/2 for d odd. Furthermore, a spinor may be

1The latter is known as the chiral theory and the former as the non-chiral
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2.1. COMPACTIFICATIONS TO N = 2 SUPERGRAVITY 9

real (R), complex (C), or quaternionic (H) depending on d, see [8] for more details. The
general rule is

R if d = 1, 2, 3(mod 8)
C if d = 0(mod 4)
H if d = 5, 6, 7(mod 8).

A complex representation has twice as many degrees of freedom as a real representation
and a quaternionic representation has the same number of degrees of freedom as a complex
representation due to constraints. To see what happens when one compactifies type II
supergravity down to a lower number of dimensions replace the space R1,d0−1 by R1,d1−1×
M , for M a compact space of dimension d0 − d1. Then one has to consider how a spinor
of so(1, d0 − 1) decomposes under the maximal subalgebra so(1, d1 − 1) ⊕ so(d0 − d1) ⊂
so(1, d0−1). The holonomy of M acts on this maximal subalgebra and each representation
which is invariant under its action will lead a new supersymmetry in the compactified
target space. For N = 2 in ten dimensions the general rule is the following

Holonomy of M N in D = 4
SO(6) 8
SU(2) 4

Z2 × SU(2), SU(3) 2

Table 2.1.1: Holonomy and supersymmetry.

Here N is the number of supersymmetries and D the dimension of spacetime. An
example for the first type is the torus T 6, for the second case one can choose the target
space to be K3 × T 2, and the last case comprises any Calabi-Yau manifold. A mathe-
matical definition of K3 surfaces and Calabi-Yau manifolds will be given in section 3.1.
As our main interest lies in theories with N = 2 supersymmetry we will look at type II
compactifications on Calabi-Yau manifolds in more detail.

Compactification on Calabi-Yau manifolds

The field content of N = 2 supersymmetry in four dimensions can be constructed from the
multiplets of N = 1 supersymmetry. An N = 2 hypermultiplet is build from two chiral
multiplets resulting in two complex scalars and two fermions. On the other hand a vector
and a chiral superfield together give rise to an N = 2 vector multiplet, its field content
being a vector, two gaugini and one complex scalar. The N = 2 graviton multiplet is the
union of the N = 1 graviton and gravitino multiplets. We summarize these observations
in table 2.1.2.

Let us start by compactifying type IIA on a Calabi-Yau. We want to identify the
bosonic field content of the resulting theory with the bosonic fields presented in table
2.1.2. In a reduction of a higher dimensional theory to a lower dimensional one, denoted
by the term Kaluza-Klein-compactification, one expands the higher dimensional fields in
terms of harmonics of the compact space in order to only keep massless modes in the

9



10 CHAPTER 2. THE PHYSICS OF THE TOPOLOGICAL STRING

Multiplet Bosons Fermions
hyper-multiplet 4× φ 2× ψ

vector Aµ,Φ 2× λ
graviton gµν , A

0
µ 2×Ψµ

Table 2.1.2: N = 2 supermultiplets in four dimensions. The symbol φ is reserved for real
scalars and Φ for complex ones.

effective theory. Expanding in this spirit the ten dimensional fields Â1, B̂2 and Ĉ3 in
Calabi-Yau harmonic forms one obtains 2

Â1 = A0,

B̂2 = B2 + biωi,

Ĉ3 = C3 + Ai ∧ ωi + ξAαA − ξ̃AβA, (2.1.5)

where C3 is a three-form, B2 a two-form, (A0, Ai) are one-forms and bi, ξA, ξ̃A are scalar
fields in D = 4. Note that ωi, i = 1, · · · , h1,1(M) are harmonic 2-forms and αA, βA,
A = 0, · · · , h2,1, are harmonic three-forms of the internal manifold M . However, these
are not yet all fields appearing in the four dimensional theory. There are also massless
modes associated to metric deformations of the internal geometry. In the case of Calabi-
Yau manifolds these are Kähler and complex structure deformations denoted by vi, i =
1, · · · , h1,1 and za, a = 1, · · · , h2,1, as will be described in more detail in section 3.1.2. The
bi and vi combine together to form the complex fields ti = bi + ivi. These scalars together
with the one-forms Ai form the bosonic content of h1,1 vector multiplets. Turning our
attention to the complex structure deformations we see that the complex fields za and
the scalars ξa, ξ̃a form together exactly the bosonic content of an N = 2 hypermultiplet,
namely 4 scalar bosons. The remaining fields adjust themselves into the tensor and the
gravitational multiplet.

Next, we pass over to the compactification of type IIB theory. Again, in order to derive
the massless spectrum the ten dimensional fields are expanded into Calabi-Yau harmonic
forms

B̂2 = B2 + biωi, Ĉ2 = C2 + ciωi,

Â4 = Di
2 ∧ ωi + V AαA − UBβB + ρiω̃

i, (2.1.6)

where now in addition to the harmonics already present in the type IIA case, this time we
also have harmonic (2, 2)-forms ω̃i, i = 1, · · · , h1,1 being dual to the ωi introduced earlier.
Here one has to note that the bosonic fields Di

2 and ρi are duals of one another and the
one-form fields (V A, UA) are related by electric-magnetic duality. Thus we only have to
consider half of these fields. We choose the scalar fields ρi, 1 = 1, · · · , h1,1, and the vector
fields V A, A = 0, · · · , h2,1, to be physical. Combining these with the Calabi-Yau moduli
we see that one is left with h1,1 hyper-multiplets (ρi, vi, bi, ci) and h2,1 vector multiplets
(V a, za).

2Such a reduction was performed the first time in [9]
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2.1. COMPACTIFICATIONS TO N = 2 SUPERGRAVITY 11

Comparing with the type IIA spectrum in four dimensions we see that the number of
hyper- and vector multiplets are exchanged. This observation is the supergravity origin
of mirror symmetry. In the full string theory picture these two moduli spaces receive
quantum corrections and thus make mirror symmetry a far more nontrivial statement.
Looking at the vector moduli spaces, the type IIA side gets quantum corrected by world-
sheet instantons while the type IIB vector moduli space remains uncorrected. Worldsheet
instantons can be interpreted as BPS states arising from D-brane bound states which in
turn have important applications to nonperturbative aspects of string theory. Indeed, in
this thesis we will make extensive use of mirror symmetry to calculate the degeneracy of
specific BPS states and hence we will use the next subsection to introduce them briefly
to the reader.

2.1.3 BPS states

BPS states are massive supersymmetric states which play an important role in the un-
derstanding of the nonperturbative nature of Superstring theory as their properties are
protected against corrections even in the nonperturbative regime. Let us present their
definition and their main properties in a short exposition here, for more detail we refer to
the lecture notes [10]. Consider a theory with N supersymmetries where N = 2r for some
r. Diagonalizing the anti-symmetric central charge matrix Zab = −Zba of the theory into
blocks of 2× 2, we obtain

Z = diag(εZ1, · · · , εZr) ε12 = −ε21 = 1, (2.1.7)

where the Zā, ā = 1, · · · , r are called the real central charges. Next, we look at the massive
representations of the theory and define creation and annihilation operators by Qāα± ≡
1
2
(Q1ā

α ± σ0
αβ̇

(Q2ā
β )†) and their hermitian conjugates. The only nontrivial supersymmetry

algebra relation left is then {
Qāα±, (Qb̄β±)†

}
= δāb̄ δ

β
α(M ± Zā). (2.1.8)

The left hand side (2.1.8) must be positive for any unitary representation of the su-
persymmetry algebra. This immediately gives us the so called BPS bound for the mass
of the particles in the spectrum

M ≥ |Zā| ā = 1, · · · , r = [N/2]. (2.1.9)

For configurations with |Zā| = M the BPS bound is saturated and one of the super-
charges Qāα+ or Qāα− must vanish. As a consequence we obtain a shorter supersymmetry
representation, i.e. the phenomenon of multiplet shortening occurs. If M = |Zā| for
ā = 1, · · · , r0, and M > |Zā| for other values of ā, the corresponding supersymmetry
representation has dimension 22N−2r0 and is denoted by 1/2r0 BPS. For N = 2 supersym-
metry in four dimensions we list the number of irreducible spin representation for BPS
saturated multiplets in table 2.1.3.

11



12 CHAPTER 2. THE PHYSICS OF THE TOPOLOGICAL STRING

spin ≤ 1 0 1/2 1
N = 2 BPS hyper 2 1 0
N = 2 BPS vector 1 2 1

Table 2.1.3: Number of irreducible representations as a function of spin

The names hyper and vector arise from state counting which shows that they have the
same number of states as massless hyper- and massless vector multiplets.

The condition M = |Zā| will remain valid even in the strong coupling regime and
will not suffer corrections as one does not expect short multiplets to turn into the full
multiplets, with many more states!

2.2 Gauge theories from geometry

Having described four dimensional supergravity we turn next to supersymmetric gauge
theories. We will see that in string theory there exists a mechanism to decouple gravity
from these theories and thus obtain a purely gauge theoretic description. In the following
we will first describe the Seiberg-Witten gauge theory as it gives rise to many interesting
features, and as a second step we will explain its embedding into string theory.

2.2.1 The Seiberg-Witten model

The setup

Consider N = 2 supersymmetric Yang-Mills theory in four dimensions. Assume that the
gauge theory is SU(2) with one vector supermultiplet A. Then the particle content of A
is, according to section (2.1.2), given by an N = 1 chiral multiplet, whose components we
shall denote by φ and ψ, and an N = 1 vector multiplet with components λ and one gauge
field Aµ. All fields come in the adjoint representation. Under the global SU(2)R symmetry
the bosonic fields Aµ and φ are singlets and λ, ψ form a doublet. Furthermore, there is an
additional U(1)R symmetry acting on the fields φ,ψ. However, quantum mechanically this
R-symmetry is broken to its Z8 subgroup by an anomaly in the theory we are considering.
In N = 1 superspace formalism, the Lagrangian is expressed as

1

4π
Im

[∫
d4θ

∂F(A)

∂A
A+

∫
d2θ

1

2

∂2F(A)

∂A2
WαW

α

]
, (2.2.1)

where A is the N = 1 chiral multiplet in the N = 2 vector multiplet A, and its scalar
component we denote by a. The prepotential F gives rise to the Kähler potential

K = Im

(
∂F(A)

∂A
A

)
. (2.2.2)

12



2.2. GAUGE THEORIES FROM GEOMETRY 13

Note that we have not included a superpotential, but the D-term gives rise to the
following classical scalar potential

V (φ) =
1

g2
Tr[φ, φ†]2. (2.2.3)

So, classically the vacua of the theory are given by the configurations where φ and φ†

commute. In our case the gauge group is SU(2) and thus we can take φ = 1
2
aσ3, with

σ3 = diag(1,−1) and a a complex parameter. As SU(2) acts by its Weyl group on the
field a, sending it to −a, we see that the gauge inequivalent vacua are parametrized by
the gauge invariant quantity u = 1

2
a2 = Trφ2. For non-zero a supersymmetry remains

unbroken while the gauge symmetry is broken to U(1) and the global Z8 symmetry is
broken to Z4.

The solution

Seiberg and Witten [11] have presented a solution to the effective infrared limit of the
theory, described by the Wilsonian action. That is, they have constructed the space
of effective quantum corrected gauge inequivalent vacua and have deduced the particle
spectrum from it. Their Ansatz relies on three major considerations

• holomorphy,

• global symmetries,

• the existence of a nonsingular weak coupling limit.

As all quantities of interest can be deduced from the holomorphic prepotential F , the
goal will be to compute its full quantum corrected expansion. The perturbative corrections
to F were already deduced in [12]. The tree level and one loop contributions add up to

Foneloop = i
1

2π
A2ln

A2

Λ
, (2.2.4)

where Λ is the dynamically generated scale and all higher loop contributions vanish. The
logarithm in the expression is responsible for the anomalous transformation behavior of
the U(1)R. Further corrections arise from instantons. The new terms have to be invariant
under the remaining Z4 R-symmetry which suggests the holomorphic Ansatz

F = i
1

2π
A2ln

A2

Λ2
+
∞∑
k=1

Fk
(

Λ

A

)4k

A2, (2.2.5)

where the k’th term arises as a contribution of k instantons. Negative powers of k are
absent as they would violate the existence of a nonsingular weak coupling limit. It will
turn out that infinitely many of the Fk are nonzero. Seiberg and Witten deduce the
instanton corrected prepotential by looking at the metric on the space of vacua (the

13



14 CHAPTER 2. THE PHYSICS OF THE TOPOLOGICAL STRING

moduli space) and computing its behavior around specific points in moduli space. The
metric is given by

(ds)2 = Imτ(a)dadā, (2.2.6)

where τ(a) is a holomorphic function τ = ∂2F/∂a2. The first major observation is that
Imτ cannot be a globally defined smooth function as it would cease to be positive definite.
As such it must have singularities on the moduli space leading to monodromies around
singular points. A correct description of the metric uses the variables aD = ∂F/∂a and
a, in terms of which we have

(ds)2 = ImdaDdā = − i
2

(daDdā− dadāD). (2.2.7)

If we parameterize the moduli space by a variable u (corresponding to Trφ2), the
functions a and aD will transform nontrivially by going around singular points on the
u-plane. Indeed one can show that these monodromy transformations form a subgroup
of SL(2,Z) denoted by Γ2. What is the origin of these monodromies and how can one
compute them ? The answer lies at the heart of the physics. Seiberg and Witten conjecture
that the singularities come from massive particles of spin ≤ 1/2 that become massless at
particular points in the moduli space. Moreover, these particles are not elementary but
bound states and correspond to monopoles and dyons. These are BPS states whose mass
is given by the formula M =

√
2|nmaD + nea|. Let us look at a monopole with mass aD

which is becoming massless at the point aD(u0) = 0. Then the Wilsonian effective action
will incorporate the effect of integrating out such a massless particle. More precisely,
using the one loop beta function one can show that the magnetic coupling is

τD ∼ −
i

π
lnaD. (2.2.8)

Using this result and the relation between the functions a and aD described in [11] one
can show that by going in a loop around the point u0 in the u-plane a and aD transform
as

aD → aD (2.2.9)

a → a− 2aD. (2.2.10)

A similar behavior shows up around two other points in moduli space: the massless
dyon point and the weak coupling point u =∞.

The picture unraveled here is the one of a Riemann surface with periods a and aD!
Using the symmetries of the theory and the details of the monodromy behavior just
described this Riemann surface can be identified to be described by the equation

y2 = (x− 1)(x+ 1)(x− u). (2.2.11)

The singular points x = 1 and x = −1 correspond the massless monopole and the
massless dyon point. This beautiful picture finally solves the initial problem as deducing
the prepotential associated to the moduli space of this Riemann surface is equivalent to
computing the instanton corrected holomorphic function F of the N = 2 theory.

14



2.2. GAUGE THEORIES FROM GEOMETRY 15

Figure 2.1: The Seiberg-Witten u-plane with a choice of base point.

2.2.2 Gauge theories from local Calabi-Yau manifolds

The Seiberg-Witten SU(2) gauge theory can be embedded into string theory in the sense
that it can be obtained in a certain limit from a Calabi-Yau compactification. This was
analyzed in [13]. The main idea can be traced back to the observation that in type IIA
compactifications over K3 fibrations (a K3 surface fibred over P1 = S2) ADE singularities
of K3 lead to enhanced gauge symmetry of ADE type [14]. The reason is that 2-branes of
type IIA wrapped around vanishing 2-cycles lead to precisely the missing states expected
for gauge symmetry enhancement.

In the case of the SU(2) theory the geometry of the Calabi-Yau will consist of a
base P1 with fibre in the singular limit being C2/Z2. Blowing up C2/Z2 we see that
the geometry locally contains a fibration of P1 over P1. The W± will correspond to 2-
branes wrapped around the P1 fibre and their mass is proportional to the area of the
2-sphere. Furthermore, 1/g2 is proportional to the area of the base sphere, where g is
coupling constant of the gauge theory. Now, the nature of the particular limit taken in
[13] is sending Mplanck →∞ in order to decouple gravity and obtain a pure gauge theory.
Geometrically this is realized by sending size of the base, denoted by tb, to infinity, i.e.
tb →∞, and the size of the P1 fibre, denoted by tf , to zero. However, as we have

exp(−1/g2) = exp(−tb) ∼ ε4Λ4

tf ∼ εa,
(2.2.12)

we have to ensure that the ratio exp(−1/g)

t4f
stays finite in order to obtain the finite instanton

contributions in (2.2.5) while sending ε→ 0.
Of what use is the topological string here? The genus 0 topological free energy, denoted

by F 0, encodes all instanton corrections of the type IIA vector moduli space. Due to mirror
symmetry it can be computed classically on the mirror manifold and then translated back
to the type IIA side. As it turns out, in the local limit we are employing here the mirror
manifold is characterized by a Riemann surface which turns out to be exactly the same as
the Seiberg-Witten curve (2.2.11). Therefore, the genus 0 topological string free energy
contains all instanton contributions of the gauge theory. This result can be used to obtain
systematically nonperturbative corrections to quantum field theories.

15



16 CHAPTER 2. THE PHYSICS OF THE TOPOLOGICAL STRING

A further generalization of the setup just presented, apart from going to higher gauge
groups, is to couple the gauge theory to matter. This is done by including hypermultiplets
in the adjoint or in the fundamental representation. Geometrically the inclusion of r
hypermultiplets in the adjoint is engineered by fibering ADE singularities over a complex
curve of genus r (see figure 2.2).

Figure 2.2: Illustration of an N = 2 SU(2) gauge theory with 3 hypermultiplets in the
adjoint.

2.3 Counting the entropy of Black Holes

Now we shall leave the path of pure gauge theories and return to the supergravity picture.
This is the correct arena for analyzing the theory of black holes. From the point of view
of the topological string this means including the higher free energies F g(ti) as these
correspond to the following F-terms in the effective four dimensional N = 2 supergravity∫

d4xF g(ti)R
2
+F

2g−2
+ . (2.3.1)

Here, R+ is the self-dual part of the Riemann tensor and F+ is the self-dual part of the
graviphoton field strength. The couplings F g(ti) depend on the vector moduli arising from
compactification of type IIA string theory on a Calabi-Yau manifold. The general rule to
compute the F g is very similar to the one used in the Seiberg-Witten solution. The terms
(2.3.1) arise in the Wilsonian effective action by integrating out massive states. However,
on certain points on the moduli space of the Calabi-Yau manifold some of the states
integrated out become massless and lead to singularities in the effective four dimensional
theory. In the case of the topological string these are BPS states corresponding to D-brane
bound states. A knowledge of the expansion of the F g(ti) around singular points in the
moduli space and of the monodromy of the periods there can be restrictive enough to fix
the F g completely. This has important applications for the theory of black holes to which
we shall turn next.
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2.3. COUNTING THE ENTROPY OF BLACK HOLES 17

2.3.1 Black Holes in four and five dimensions

One of the central goals of string theory is to provide a quantum version of general
relativity. An immediate application and consistency check of such a theory would be the
counting of the microscopic entropy of black holes, i.e. providing a quantum explanation
for the Bekenstein-Hawking entropy formula. Thus far, this has been achieved for so called
extremal black holes, i.e. charged black holes with their mass equaling their charge. One
of the major breakthroughs was the work of Strominger and Vafa [15]. Let us start
by reviewing the classical geometry of the Reissner-Nördstrom (RN) black hole. It is
a time independent, spherically symmetric solution of Einstein gravity coupled to the
electromagnetic field. The solution of the metric and vector field is as follows:

ds2 = −
(

1− 2GNM

r
+
GNQ

2

r2

)
dt2 +

(
1− 2GNM

r
+
GNQ

2

r2

)−1

dr2 + r2dΩ2,

A0 =
Q

r
, Ai = 0, i = 1, 2, 3, (2.3.2)

where Aµ are the spacetime components of the vector potential and Q denotes the charge
of the solution. There are two coordinate singularities (grr =∞) at r = r+ (outer horizon)
and r = r− (inner horizon)

r± = GNM ±
√

(GNM)2 −GNQ2, (2.3.3)

where the event horizon is given by the outer horizon r = r+. When M = |Q|/
√
GN ,

r+ coincides with r− and the black hole is called extremal. Such a solution embedded
into supergravity is called BPS as the charges correspond to the central charges of the
supersymmetry algebra. One can see that such a black hole is completely characterized
by its charge. When looking at spinning black holes with angular momentum J the
situation is slightly different. Here, supersymmetric configurations, i.e. configurations
which preserve half of the supersymmetry, are achieved for M = |Q|/

√
GN for arbitrary

value of angular momentum J . However, the extreme limit for a spinning black hole is
reached at M2 − |Q|2/GN = J2 and therefore the solution does not have any unbroken
supersymmetry. On the other hand, lifting the situation to 5D, rotating extremal black
hole solutions have been constructed which do have unbroken supersymmetries. The
metric of a rotating black hole with one half of the supersymmetries of N = 2 supergravity
in five dimensions is given by

ds2 = (1− µ

r2
)2

[
dt− 4J sin2 θ

π(r2 − µ)
dφ +

4J cos2 θ

π(r2 − µ)
dψ

]2

−(1− µ

r2
)−2dr2 − r2(dθ2 + sin2 θdφ2 + cos2 θdψ2). (2.3.4)

One sees that for the rotating solutions near the horizon at r2 → µ ≡ r2
0 the metric

does not split into a product space as there are non-diagonal components. Furthermore,
the metric for the three-sphere is distorted and one has

r2
0d

2Ω3(J) = r2
0

(
d2Ω3 −

(
4J

r3
0π

)2

(sin2 θdφ− cos2 θdψ)2

)
. (2.3.5)

17



18 CHAPTER 2. THE PHYSICS OF THE TOPOLOGICAL STRING

The volume of the distorted 3-sphere defines the area of the horizon of the rotating
black hole

A(J) = 2π2
√
r6

0 − J2. (2.3.6)

In order to deduce the Bekenstein-Hawking entropy SBH = A/(4GN) one first has to
fix the value of r0. To this respect one property of such black hole configurations is very
useful, namely extremal supersymmetric black holes behave as attractors [16, 17]. That
is, the moduli take fixed values at the horizon which depend only on the charges and not
on the values of the moduli at infinity. Furthermore, the area of these black holes can be
found by extremizing the value of the central charge in moduli space. Using this attractor
mechanism the authors of [17] derive the following relation

S0 = 2π
√
Q3 − J2, (2.3.7)

where Q is the graviphoton charge of the black hole. We have given the entropy the index
0 to stress the fact that this result is only valid in classical regime. This result will receive
further corrections from higher derivative interactions according to Wald’s formula [18].

2.3.2 Microscopic interpretation of the entropy

In order to present a microscopic interpretation for black hole entropy, we first have
to embed the supergravity picture into string theory. In fact, in the case of 5 dimen-
sional rotating extremal black holes, the corresponding supergravity solution is obtained
by compactifying M theory on a Calabi-Yau threefold X. Then the black hole will be
characterized by a charge Q ∈ H2(X,Z) and SU(2)L ⊂ SO(4) angular momentum J .
Microscopically, a 5d black hole with membrane charge Q ∈ H2(X,Z) is engineered by
wrapping M2 branes around the two-cycle Q. The result of this in 5d is a supersymmetric
spectrum of BPS states which are labeled by Q and by their spin content (jL, jR). One
further has to sum over jR with an insertion of (−1)2jR which finally gives as resulting
spectrum for a membrane charge Q

RQ =

g∑
r=0

nrQIr+1, (2.3.8)

where

Il =

[
2(0) +

(
1

2

)]l
(2.3.9)

encodes the spin content jL, and nrQ are called Gopakumar-Vafa invariants. The nrQ are
computed by the topological string and can be extracted by the knowledge of the free
energies of the genera 0 ≤ g ≤ r. For a given charge Q there are only finitely many
nonzero nrQ. As argued in [19] one can write down the following generating function for
the supersymmetric degeneracies of BPS states with membrane charge Q∑

J,Q

Ω(Q, J) =
∑
Q

trRQ(−1)2jLyjL . (2.3.10)

18
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This way the Ω(Q, J) can be extracted to be

Ω(Q, J) =
∑
r

(
2r + 2

J + r + 1

)
nrQ, (2.3.11)

where J = 2jL. As the black hole entropy is given by the logarithm of the number of
microstates we arrive at

S(Q, J) = log(Ω(Q, J)). (2.3.12)

This should agree with the macroscopic result in the large charge limit Q � 1 and
Q� J .

Now we have talked enough about the applications of the topological string. It is time
to explain how to actually compute topological amplitudes in string theory. This will be
the purpose of the rest of this thesis.

19
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Chapter 3

The Topological String

This chapter forms the theoretical grounding on which the calculations of later chapters
rest. As a first step we will introduce the background geometry relevant for us, namely
Calabi-Yau manifolds and their moduli spaces. Then we come to the description of
nonlinear sigma models on such spaces which are part of the perturbative description of
string theory. Twisting the nonlinear sigma model gives rise to topological field theories,
namely the A and B model. The succeeding sections deal with a detailed description of
these two models and their coupling to gravity. In the case of the B model the coupling
to gravity leads to the holomorphic anomaly equations for which a solution method is
presented in the last section.

3.1 The background geometry

3.1.1 Calabi-Yau manifolds

The background geometries of the topological string in the critical case consist of so called
Calabi-Yau manifolds of complex dimension 3 which we shall discuss in this section. As
we will move on the ground of complex geometry we refer the reader to the excellent
treatises [21, 22] for mathematical details. Let us start with a first definition which says
that a Calabi-Yau manifold X is a complex, Kähler manifold with vanishing first chern
class c1(TX) = 0. On a complex manifold the expansion of the total Chern class of the
tangent bundle TX reads

c(TX) = 1 +
∑
j

cj(TX) = det(1 +R) = 1 + trR+ tr(R∧R− 2(trR)2) + · · · . (3.1.1)

Here R is the curvature two form which in complex coordinates is given by

R = iRk
lij̄dz

i ∧ dz̄ j̄, (3.1.2)

Written in this form the curvature two-form can be thought of as the curvature of the
holomorphic tangent bundle TX = TX(1,0) endowed with the spin connection. In this

21



22 CHAPTER 3. THE TOPOLOGICAL STRING

picture the indices k and l arise from the Lie Algebra matrix which acts on vectors of
the bundle. Taking the trace over the above form leads to the so called Ricci form which
is a closed form as can be checked easily. The first chern class is a cohomology element
defined by the linear term in the expansion (3.1.1), namely c1(X) = [trR/2π] ∈ H2(X,R).
Therefore, we see that a vanishing Ricci form also implies a vanishing first Chern class.
However, the converse is a very nontrivial theorem proved by Yau which says that if
the first Chern class vanishes then X admits a Ricci-flat metric. The exact form of the
statement is:

Theorem(Calabi-Yau). If X is a complex Kähler manifold with vanishing first Chern
class and with Kähler form ω, then there exists a unique Ricci-flat metric on X whose
Kähler form ω′ is in the same cohomology class as ω.

Let us now present some equivalent definitions of a Calabi-Yau manifold which will
prove useful in different circumstances. The first is concerned with the question of holon-
omy. Note that a complex Kähler manifold always has a holonomy group which is con-
tained in U(n), n being the complex dimension of the manifold. This is due to the
closeness property of the Kähler form ω which translates to the covariant constancy of
the almost complex structure J which in turn requires the holonomy group to commute
with J . In order to further constrain the holonomy to SU(n) the U(1) part of the spin
connection must be set to zero. But the U(1) part of the spin connection is exactly the
Ricci form. Therefore we see that a Kähler manifold with vanishing first Chern class has
holonomy SU(n). Utilizing the holonomy principle this leads us to a further equivalent
definition of a Calabi-Yau manifold. The assumption that the holonomy group is con-
tained in SU(n) says that any chosen trivialization of ΛnT ∗pX

(1,0) = det(T ∗pX
(1,0)) is left

invariant by parallel transport. Hence there exists a covariantly constant section Ω of the
canonical bundle KX . The holomorphic three form Ω is without zeros as the zero section
itself is covariantly constant. Hence, KX is trivialized by Ω. Similarly one shows that
there are no parallel sections of the kth power of the cotangent bundle where 1 < k < n.
This implies that h0,k = hk,0 = 0. In summary we obtain the following form for the Hodge
diamond of Calabi-Yau manifolds

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

, (3.1.3)

where we have restricted to the three dimensional case. There is a specialty in the case of
complex surfaces, i.e. Calabi-Yau manifolds which are of complex dimension two. Here
one can use the Hirzebruch-Riemann-Roch theorem to compute

χ(X,OX) =

∫
X

ch(OX)td(X) =

∫
X

td(X) =

∫
X

c2
1(X) + c2(X)

12
. (3.1.4)
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3.1. THE BACKGROUND GEOMETRY 23

On the other hand we have χ(X,OX) = h0(OX)−h1(OX)+h2(OX) = h0,0(X)−h0,1(X)+
h0,2(X) which is equal to 2 from the above discussion. As c1(X) = 0 by definition we
obtain

2 =

∫
X

c2(X)

12
=

1

12
χ(X), (3.1.5)

thus χ(X) = 24. This puts severe constrains on the topology of such manifolds and one
finds that up to diffeomorphism there is only one such Calabi-Yau, called the K3 surface.
Combining all results, its Hodge diamond is given by

1
0 0

1 20 1
0 0

1

. (3.1.6)

Let us now turn over to a concrete example. Consider the hypersurface in CP 4 given
by the locus P (x1, · · · , x5) =

∑
i x

5
i = 0 where x1, · · · , xn are the homogeneous coordi-

nates of the projective space. This hypersurface is called the Quintic hypersurface as the
polynomial P is of degree 5. In order to see why it is Calabi-Yau we have to go one step
back and analyze the chern classes of projective space. These are deduced by making use
of the Euler sequence

0→ C→ H⊕(n+1) → TCPn → 0, (3.1.7)

to show that
c(TCPn) = c(H⊕(n+1)) = c(H)n+1 = (1 + ω)n+1, (3.1.8)

where H is the hyperplane bundle and ω its first Chern class. Specializing to the case of
CP 4 we get

c(CP 4) = (1 + ω)5. (3.1.9)

Here one should note that the right hand side is subject to ω5 = 0 as the manifold is
four-dimensional. A direct consequence of the above formula is that c1(CP 4) = 5ω. To
proceed further, we have to find a way to relate the Chern class of X = {P = 0} in CP 4

to the one of CP 4 itself. Such a relation is obtained by noting that

TCP 4|P=0 = TX ⊕NX/CP 4 , (3.1.10)

where TX and NX/CP 4 are the tangent bundles of X and the normal bundle of X inside
of CP 4. Together with the Whitney product formula this gives

c(TX) =
c(TCP 4)

c(NX/CP 4)
. (3.1.11)

The only ingredient still missing is the Chern class of the normal bundle. It can be shown
that it is given by the degree of the polynomial P , i.e. in our case c(NX/CP 4) = (1 + 5ω).
Interpreting the right hand side of (3.1.11) as a formal power series in ω we find

c(TX) =
(1 + ω)5

(1 + 5ω)
= 1 + (5− 5)ω + · · · . (3.1.12)
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24 CHAPTER 3. THE TOPOLOGICAL STRING

Thus, we have proved that c1(TX) = 0 and a quintic hypersurface in CP 4 is a Calabi-Yau
manifold with complex dimension 3. We can carry out the discussion even a bit further.
Expanding (3.1.11) to third order, we see that c3 = −40ω3 and using

∫
X
ω3 =

∫
CP 4 ω

4 = 5
we obtain χ(X) =

∫
X
c3(TX) = −200.

There are numerous examples of Calabi-Yau manifolds and many generalizations of
the above construction. In this thesis we will be dealing with models which are described
through several constraints in Grassmannian spaces, with local toric Calabi-Yau manifolds
and with manifolds which are hypersurfaces in weighted projective space.

3.1.2 The Moduli Space

Yau’s theorem suggests to view the parameter space of Calabi-Yau manifolds as the pa-
rameter space of Ricci-flat Kähler metrics. In the following we will analyze the conse-
quences of this picture for the metric deformations δgµν where we will follow [24]. Let
gµν be a Ricci-flat metric for X and gµν + δgµν a perturbation of the former so that the
Ricci-flatness is still fulfilled. Then we have

Rµν(g) = 0, Rµν(g + δg) = 0. (3.1.13)

Using the gauge ∇νgµν = 0 and expanding (3.1.13) to first order in δg one finds that δgµν
satisfies the Lichnerowicz equation

∇λ∇λδgµν + 2R κ τ
µ ν δgκτ = 0. (3.1.14)

The special properties of Kähler manifolds imply that this equation is satisfied by metric
perturbations of mixed type δgmn̄, and of pure type δgmn, δgm̄n̄, separately. We can
associate to the variations of mixed type the (1, 1)-form

iδgmn̄dx
m ∧ dxn̄, (3.1.15)

which is harmonic if and only if the metric variation satisfies equation (3.1.13). Similarly
metric variations of the pure type may be contracted with the unique holomorphic three-
form to yield the (2, 1)-form

Ω n̄
ij δgm̄n̄dx

i ∧ dxj ∧ dxm̄ (3.1.16)

which is again harmonic due to (3.1.13). Thus, we have mapped the zero modes of the
Lichnerowicz equation to elements of H1,1(X) and H2,1(X). As is already evident the
zero modes of mixed type correspond to variations of the Kähler class and give rise to b11

parameters. On the other hand variations of pure type correspond to complex structure
deformations. This can be seen as follows. As each variation transforms X again into a
Kähler manifold there must be a coordinate system in which the pure parts of the metric
vanish. But under coordinate transformations xm 7→ xm + fm(x) we have

δgm̄n̄ 7→ δgm̄n̄ −
∂f r

∂x̄m̄
grn̄ −

∂f r

∂x̄n̄
gm̄r (3.1.17)
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3.1. THE BACKGROUND GEOMETRY 25

For those transformations which keep the complex structure fixed, f is a holomorphic
function, and therefore in this case there is no impact on the metric. In other words the
pure part of metric variations can only be removed through non holomorphic coordinate
transformations which change the complex structure.

Consider the example of the previous section, i.e. the quintic hypersurface in CP 4. As
we have not specified the form of the polynomial P each coefficient in front of a monomial
in P maps into the space of complex structure deformation parameters. Although this
map is surjective it is not injective as many of these coefficients turn out to be equivalent
by coordinate redefinitions. These are given by maps xi 7→ M j

i xj with M ∈ GL(5,C).
Counting the monomials of a degree five polynomial and the generators of GL(5,C) one
sees that there are 126− 25 = 101 complex structure deformation parameters.

Complex structure moduli space

Let us parameterize the complex structure deformations by parameters za, a = 1, · · · , h2,1.
Then we can define

χaijk̄ = −1

2
Ω l̄
ij

∂gk̄l̄
∂za

, χa =
1

2
χaijk̄dx

i ∧ dxλ ∧ dxk̄, (3.1.18)

where each χa ∈ H2,1(X). There is yet another way to see how elements of H2,1(X)
parameterize complex structure deformations. The inverse relation is given by

δgk̄l̄ = − 1

||Ω||2
Ω̄ mn
k̄ χamnl̄δz

a, (3.1.19)

where we have defined ||Ω||2 := 1
3!

ΩlmnΩ̄lmn. Now we are ready to obtain an expression
for the metric on the complex structure moduli space. This is done by integrating the
square of the metric variations over the whole Calabi-Yau, i.e.

2Gab̄δz
aδzb̄ ≡ 1

2V

∫
X

gkl̄gmn̄δgkmδgl̄n̄g
1
2d6x

= − 2i

V ||Ω||2
δzaδzb̄

∫
X

χa ∧ χb̄, (3.1.20)

where V is the volume of the manifold. From this we conclude

Gab̄ = −
∫
X
χa ∧ χb̄∫

X
Ω ∧ Ω

. (3.1.21)

The metric Gab̄ is called the Weil-Peterson metric. It admits certain special properties
to which we shall turn in the following. First of all note that we can write Ω in the
form Ω = 1

3!
h(f)εijkdf

idf jdfk, where f i(x, z) are holomorphic coordinates varying with z
such that f i(x, z0) = xi. Under a change of complex structure df i(x, z) becomes partly of
type (1, 0) and partly of type (0, 1). Together with the fact that the exterior derivative d
commutes with the variation of complex structure ∂

∂za
we then obtain the relation

∂Ω

∂za
∈ H3,0(X)⊕H2,1(X). (3.1.22)
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26 CHAPTER 3. THE TOPOLOGICAL STRING

It can be shown that the (2, 1) part is equal to χa, thus one gets

∂Ω

∂za
= kaΩ + χa, (3.1.23)

where ka is only a function of the za as the space H3,0 is one dimensional. A direct
consequence of (3.1.23) is that the Weil-Peterson metric can be derived from a potential,
i.e. it can be written in the form

Gab̄ = − ∂

∂za
∂

∂zb̄
log(i

∫
X

Ω ∧ Ω), (3.1.24)

which shows that the space of complex structures is Kähler with Kähler potential

− log(i

∫
X

Ω ∧ Ω). (3.1.25)

Next, we want to derive an expression for (3.1.25) in terms of the periods of the holomor-
phic 3-form. Let (Aa, Bb), a, b = 0, · · · , h2,1 be a canonical homology basis for H3(X,Z)
and (αa, β

b) be the dual cohomology basis defined by∫
Aa
αa =

∫
X

αa ∧ βb = δba,

∫
X

βb =

∫
X

βb ∧ αa = −δba. (3.1.26)

In terms of this basis the following integrals define the periods of Ω

Xa ≡
∫
Aa

Ω, Fa ≡
∫
Ba

Ω. (3.1.27)

The Xa are homogeneous projective coordinates of the complex structure moduli space
and Ω can be viewed as being homogeneous of degree 1 in these coordinates [25]. This
implies Fa = Fa(X). Looking at the above definitions we find that

Ω = Xaαa −Fa(X)βa, (3.1.28)

which establishes an expansion of the holomorphic 3-form in terms of its periods. Together
with the identity ∫

X

(Ω ∧ ∂Ω

∂Xa
) = 0, (3.1.29)

which is a direct consequence of (3.1.23), this yields

2Fa =
∂

∂Xa
(XcFc). (3.1.30)

We see that Fa is the gradient of a function which is homogeneous of degree two

Fa =
∂F
∂Xa

, F(λX) = λ2F(X). (3.1.31)
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3.1. THE BACKGROUND GEOMETRY 27

In the light of these results we can return to the formula for the Kähler potential (3.1.25)
and express it in terms of the periods in the following way

e−K = −i
(
Xa ∂F

∂X
a −X

a ∂F
∂Xa

)
, (3.1.32)

which establishes the manifold as of special Kähler type with F being the prepotential.
All identities which we shall establish in the following as a consequence of (3.1.32) are
properties of the so called special geometry. Defining affine coordinates

ti =
X i

X0
, i = 1, · · · , h2,1, (3.1.33)

we can rewrite the Kähler potential as

− log

(
i

∫
X

Ω ∧ Ω

)
= − log

(
i

[
2(F − F)− (ti − t̄i)

(
F
∂ti

+
∂F
∂t̄i

)])
. (3.1.34)

Let us now state some formulae which will become important in the following sections.
First of all note that taking derivatives of the holomorphic three form Ω with respect to
the Xa yields

∂

∂Xa
Ω ∈ H3,0 ⊕H2,1

∂2

∂Xa∂Xb
Ω ∈ H3,0 ⊕H2,1 ⊕H1,2 (3.1.35)

∂3

∂Xa∂Xb∂Xc
Ω ∈ H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3,

where we have used again the fact that each complex structure derivative transforms
a (1, 0)-form into a linear combination of (1, 0)- and (0, 1)-forms and vice versa. For
example the last summand in the last line of (3.1.35) is produced only if each of the
three derivatives with respect to the complex structure parameters ∂

∂Xa hits one df i in
Ω = 1

3!
h(f)εijkdf

idfkdf l. Equations (3.1.35) can be rewritten in a simple way once we
introduce the spaces

Fp =
⊕
i≥p

H i,k−i, k = dimCX = 3. (3.1.36)

With this notation the right hand side of the first line in (3.1.35) is equal to F2, the
right hand side of the second line is F1 and the right hand side of the third line corresponds
to F0. Furthermore, note that the subspace H3,0(X) within H3(X,C) defines a line bundle
over the complex structure moduli space which we shall denote by L from now on. A
choice of the holomorphic three-form Ω defines a section of this line bundle. For a section
of L, the action of the gauge transformation (Kähler transformation) is parametrized by
a holomorphic function f(t) and expressed as

K(t, t̄)→ K(t, t̄)− log f(t)− log f̄(t̄), Ω→ f(t)Ω. (3.1.37)
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Therefore, we see that the covariant derivative of a section h(t) of the line bundle Ln
is defined as

Dth = ∂t + n(∂tK)h. (3.1.38)

A consequence of the nonzero (0, 3)-part of ∂3

∂Xa∂Xb∂XcΩ is that we can define the so
called Yukawa coupling

Cijk =

∫
X

Ω ∧ ∂3

∂X i∂Xj∂Xk
Ω

=
∂3F

∂X i∂Xj∂Xk

= (X0)2 ∂3

∂ti∂tj∂tk
F(t), i, j, k ∈ {1, · · · , h2,1} (3.1.39)

This is a pseudo-topological invariant in that it does depend on the complex structure
of X. The first line in (3.1.39) transforms covariantly with respect to coordinate trans-
formations X i 7→ zi(X). This is due to the fact that we get only nonzero contributions
from terms where all derivatives with respect to z act on Ω(z) and none acts on terms of

the form ∂zi

∂Xj . Therefore, we can rewrite the triple couplings in terms of periods which
provide expressions valid in every coordinate system

Cijk =

∫
X

Ω ∧ ∂i∂j∂kΩ =
h2,1∑
a=0

(Xa∂i∂j∂kFa −Fa∂i∂j∂kXa). (3.1.40)

One can see from the first equality in equation 3.1.40 that the Yukawa coupling is a
section of Sym3(TM)⊗ L2 where by M we denote the complex structure moduli space.
Another important consequence of special geometry is the following relation connecting
the antiholomorphic derivative of the metric connection to the three-point couplings

∂̄īΓ
k
ij = δkiGjī + δkjGīi − CijlC̄kl

ī , (3.1.41)

where we have C̄kl
ī = e2KGkk̄Gll̄Ck̄l̄̄i.

Up to here we have focused on the local properties of the complex structure moduli
space. Let us now briefly comment on the global form of such a space. For ease of
explanation consider the case where the Calabi-Yau is given by the vanishing locus of
a homogeneous polynomial P of degree d in weighted projective four-dimensional space
P(k1,k2,k3,k4,k5)

4 . In this case the Calabi-Yau condition translates into the identity d =
∑

i ki.
The most general form for P would then be

P =
∑

i1,i2,i3,i4,i5

ai1i2i3i4i5x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 , (3.1.42)

where
∑

j kjij = d and the (x1, · · · , x5) are homogeneous coordinates of the weighted
projective space. Different choices for the constants ai1i2···i5 correspond to different choices
for the complex structure of the underlying Calabi-Yau manifold. However, as in the case
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3.1. THE BACKGROUND GEOMETRY 29

Figure 3.1: The complex structure moduli space

of the quintic not all such choices are independent and one has to divide out by the
automorphism group of the ambient space. The resulting space is in general a quasi-
projective variety. Furthermore, in order to obtain a smooth Calabi-Yau manifold the
ai1i2···i5 have to be chosen such that P and ∂P

∂xj
have no common zero (for all j), as this

would correspond to a singular Calabi-Yau. The set of all choices of the coefficients ai1i2···i5
which correspond to such singular manifolds is denoted as the discriminant locus of the
family of Calabi-Yau spaces associated with P . The discriminant locus forms a complex
codimension one subspace of the complex structure moduli space. We present a schematic
picture of this in figure 3.1 where the singular divisors are depicted in red.

Among the singular loci in the Calabi-Yau moduli space there exist so called conifold
singularities which are universal, i.e. they are present in the moduli space of all Calabi-
Yau manifolds. They are characterized by the shrinking of a three-sphere S3 to zero size.
Locally, at the singular locus in the complex structure moduli space, the conifold is a
cone with sections having the topology of S2×S3 and shrinking to zero size at the origin.
Deforming the complex structure away from the singular locus, the S3 at the tip of the
cone remains of finite size and the space is denoted by the term deformed conifold.

Kähler moduli space

In this section we will show how the parameter space for the Kähler class turns out to be
a Kähler manifold by itself with a holomorphic prepotential analogous to the one of the
complex structure moduli space.

Let us define the metric of Kähler deformations as a pairing between (1, 1) cohomology
classes

G(ρ, σ) =
1

2V

∫
X

%ij̄σkl̄g
il̄gkj̄g

1
2d6x =

1

2V

∫
X

% ∧ ∗σ, (3.1.43)

where V is the volume and we interpret the (1, 1)-forms σ and % as metric variations of
mixed type δgij̄. The above metric is positive definite and symmetric due to the positivity

of gij̄ and the symmetry of the pairing. As was observed by Strominger in [23] G(%, σ)
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may be expressed entirely in terms of triple intersection numbers

κ(%, σ, τ) :=

∫
% ∧ σ ∧ τ, (3.1.44)

giving

G(%, σ) = −3

(
κ(%, σ, ω)

κ(ω, ω, ω)
− 3

2

κ(%, ω, ω)κ(σ, ω, ω)

κ2(ω, ω, ω)

)
. (3.1.45)

Here ω is the Kähler form of X and we have κ(ω, ω, ω) = 6V . The main ingredient in the
derivation of this formula is the identity

∗σ = −ω ∧ σ +
3

2

κ(σ, ω, ω)

κ(ω, ω, ω)
ω ∧ ω, (3.1.46)

which one can prove as follows. There exists a direct sum decomposition

σ = σP + kω, (3.1.47)

where σP is the primitive part of σ and k is a constant. On Kähler manifolds the primitive
part of a (1, 1)-form is defined by the relation

∫
X
ω ∧ ∗σP = 0, i.e. the adjoint of the

Lefschetz operator (being defined as multiplication by ω) applied to σP is zero. A theorem
in complex geometry [22] says that for primitive (1, 1)-forms ∗σP = −ω ∧ σP . One can
use this theorem together with the decomposition (3.1.47) to compute

∗σ = ∗σP + k ∗ ω

= −ω ∧ σP +
k

2
ω2

⇒
∫
ω ∧ ∗σ = −

∫
ω ∧ ω ∧ σP︸ ︷︷ ︸

=0

+
k

2

∫
ω ∧ ω ∧ ω. (3.1.48)

On the other hand we have
∫
ω∧∗σ =

∫
∗ω∧σ = 1

2

∫
ω∧ω∧σ, which gives k =

R
ω∧ω∧σR
ω∧ω∧ω .

Thus, we have

∗σ = −ω ∧ σP +
1

2
kω ∧ ω − kω ∧ ω + kω ∧ ω,

= (3.1.46). (3.1.49)

Next, we show how the metric is derived from a Kähler potential. Fix a basis eA, A =
1, · · · , b2 of H2(X,Z) and write the B-field together with the Kähler form in terms of this
basis

B + iω = wAeA, wA = uA + ivA. (3.1.50)

A straightforward calculation then yields

GAB :=
1

2
G(eA, eB) = − ∂

∂wA
∂

∂wB
log κ(ω, ω, ω). (3.1.51)
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Figure 3.2: The Kähler structure moduli space

Thus, the exponential of the Kähler potential is up to a proportionality factor the volume
of the Calabi-Yau manifold. We can even rewrite this Kähler potential further. Define a
holomorphic function

F (w) = − 1

3!

κABCw
AwBwC

w0
, (3.1.52)

where κABC = κ(eA, eB, eC) and w0 has been introduced in order to make F a homoge-

neous function of degree 2. Introducing affine coordinates tA = wA

w0 this can be rewritten
as

F (t) = − 1

3!
(w0)2κABCt

AtBtC . (3.1.53)

Taking 3rd derivatives of F (t) we see that κABC can be written analogously to Cijk in
equation (3.1.39). After some algebra we arrive at the identity

exp(−K) =
4

3

∫
X

ω3 = −i
(
wj

∂F

∂w̄j
− w̄j ∂F

∂wj

)
, (3.1.54)

which shows that the moduli space of Kähler deformations is again a Kähler manifold
with holomorphic prepotential.

Having described the local situation we next turn to the global description in a short
exposition. From the Kähler metric gij̄ one constructs the Kähler form ω = igij̄dx

i ∧ dxj̄.
It can be shown using the positivity of the volume form∫

X

ωr > 0, r = dimCX, (3.1.55)

that the set of allowed ω’s forms a cone known as the Kähler cone of X. In string theory
one has to add the antisymmetric tensor field B = Bij̄ to ω yielding the complexified
Kähler form B + iω. Choices of this form which correspond to points on the walls of the
Kähler cone correspond to singular manifolds where the condition (3.1.55) is no longer
satisfied. Geometrically, one can think of such singularities as a shrinking of a complex
curve to zero size within the Calabi-Yau. We sketch this picture of the Kähler moduli
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32 CHAPTER 3. THE TOPOLOGICAL STRING

space as a bounded domain with its boundary corresponding to the singular geometries
(red colour) in figure 3.2.

From the point of view of the Kähler moduli space the conifold singularities of the
previous section are also present and lie on the walls of the Kähler cone. Moving the
Kähler form away from the wall means introducing a finite S2 at the tip of the cone. The
smooth space obtained this way is denoted by resolved conifold.

3.2 Supersymmetric nonlinear Sigma Models

In this section we will review N = (2, 2) nonlinear sigma models and their superconformal
algebra. This will be important for the later introduction of twisting to form the so called
topological field theories. Then we change the view point to the one of the gauged linear
sigma model. We will see that this represents a far more general setup which contains
the nonlinear sigma model as a specific phase in its low energy effective theory.

3.2.1 N = (2, 2) nonlinear Sigma Models

The N = (2, 2) superconformal algebra

The perturbative description of superstring theory involves a two-dimensional supercon-
formal field theory with a central charge of c = 15. The most interesting setting for us is
the realization of the central charge viaM4×{an N = 2, c = 9 superconformal field theory},
where M4 denotes Minkowski space, i.e. the c = 6 superconformal field theory of four free
bosons and their super partners. In our presentation we shall focus on N = 2, c = 9 the-
ories as these are the theories describing the dynamics of the superstring on the internal
6-dimensional space. References [26] [27] contain a more detailed version of the material
presented here, for a general introduction to conformal field theory see [28].

As a first step we write down the superconformal algebra which forms the backbone
of type II perturbative string theory and its twisted topological versions.

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[Jm, Jn] =
c

3
mδm+n,0,

[Ln, Jm] = −mJm+n,[
Ln, G

±
r

]
= (

n

2
− r)G±r+n,[

Jn, G
±
r

]
= ±G±r+n,

{G+
r , G

−
s } = 2Lr+s + (r − s)Jr+s +

c

3
(r2 − 1

4
)δr+s,0. (3.2.1)

Here, Ln are the familiar generators of the N = 0 conformal algebra and G±n are the
modes of the worldsheet super partners G±(z) of the energy-momentum tensor T (z).
G±(z) are primary fields of weight 3

2
and we have two of them as the theory exhibits

N = 2 supersymmetry. The Jn are the modes of the U(1)-current generator J(z) which
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3.2. SUPERSYMMETRIC NONLINEAR SIGMA MODELS 33

is a primary field of weight one. Furthermore, c is the central charge of the algebra and
must be equal to 9 if the CFT represents the internal manifold M . In fact in this case
c is divisible by 3 and we have d := dimCM = c

3
. The above formulas are valid for

sectors where r, s run over half-integral values, denoted by NS sector, and for the case
when they take only integral values, denoted by R sector. The algebra (3.2.1) is doubled
in type II string theory with one set describing the left moving sector and the other
describing the right moving sector. We shall write generators of the right moving sector
with barred letters. Let us define fields T (z) =

∑
n∈Z

Ln
zn+2 with conformal dimension and

U(1) charge (h,Q) = (2, 0), a U(1) current J(z) =
∑

n∈Z
Jn
zn+1 with (h,Q) = (1, 0) and

G± =
∑

r∈Z±ν
G±

zr+
3
2

with (h,Q) = (3
2
,±1) and ν being 0 or 1

2
. With these definitions

equations (3.2.1) can be deduced from the following short distance operator expansions

T (z)T (0) =
c

2z4
+

2

z2
T (0) +

1

z
∂T (0),

T (z)G±(0) ∼ 3

2z2
G±(0) +

1

z
∂G±(0),

T (z)J(0) ∼ 1

z2
J(0) +

1

z
∂J(0),

G+(z)G−(0) ∼ 2c

3z3
+

2

z2
J(0) +

2

z
T (0) +

1

z
∂J(0),

G+(z)G+(z) ∼ G−(z)G−(0) ∼ 0,

J(z)G±(0) ∼ ±1

z
G±(0),

J(z)J(0) ∼ c

3z2
. (3.2.2)

Let us now pass over to some definitions and the structure of the ground states of the
algebra. We denote a left-chiral state as a state in the NS Hilbert space satisfying

G+
− 1

2

|φ〉 = 0, (3.2.3)

and an anti-chiral state as a state satisfying equation (3.2.3) with G+ replaced with G−.
Right-chiral states are defined similarly, by replacing G with G. From now on we shall
concentrate on the left-moving sector. States which satisfy in addition to (3.2.3) the
condition

G−
n+ 1

2

|φ〉 = G+
n+ 1

2

|φ〉 = 0 for n ≥ 0 (3.2.4)

are called primary chiral states. One can write an immediate property of such states by
using the commutation relation of the G’s

{G−1
2

, G+
1
2

}|φ〉 = (2L0 − J0)|φ〉 = 0, (3.2.5)

which implies the relation h = Q
2

for the charge Q and weight h of such a state. For

anti-chiral states the analogous equation is h = −Q
2

. Note that {G−1
2

, G+
1
2

} is a positive
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operator (as G+
1
2

= G−1
2

†
), so we have

〈ψ|{G−1
2

, G+
1
2

}|ψ〉 ≥ 0 (3.2.6)

for any state ψ in the Hilbert space, i.e. h ≥ |Q|/2. One can show that this inequal-
ity is saturated if and only if one is dealing with a primary chiral or anti-chiral state.
Furthermore, one can show by using the positivity of the operator

{G−3
2

, G+
− 3

2

} = 2L0 − 3J0 + 2
c

3
(3.2.7)

and the property h = Q/2 that primary chiral states always satisfy h ≤ c/6. Up to now,
we were solely dealing with states in the NS sector. However, these can be related to
states in the R sector by the so called spectral flow

Ln 7→ L′n = Ln + θJn +
1

6
θ2cδn,0 (3.2.8)

Jn 7→ J ′n = Jn +
1

3
θcδn,0 (3.2.9)

G±r 7→ = (G±r )′ = G±r±θ. (3.2.10)

The above is an algebra automorphism interpolating for θ ∈ Z + 1
2

between the NS and
R sectors, and for θ ∈ Z it maps the NS to NS and R to R. For θ = 1

2
one can check

that chiral primary states are mapped to the ground states of the Ramond sector, defined
by G±0 |φ̃〉 = 0. The anticommutator {G−0 , G+

0 } constrains the conformal weight of these
states to satisfy h = c/24 and once again one deduces from its positivity that all states
in the R sector have h ≥ c/24. Consider now the flow from the NS sector to the NS
sector with flow parameter θ = 1. As the flow is possible for the left and right sectors
independently, we choose parameters (θL, θR) = (1, 0). Using this map and starting with
(c, c) (here c stands for chiral) primary states in the (NS,NS) sector, we end up with (a, c)
(where a stands for anti-chiral) elements again in the (NS, NS) sector. This can be seen
immediately form (3.2.8) as G+

− 1
2

maps to G+
1
2

and G−1
2

maps to G−− 1
2

. We can be even

more precise. The vacuum of the left moving chiral sector is a state |ρ〉 annihilated by
G±− 1

2

. Under spectral flow it is mapped to a state |ρ̃〉 given by

G+
n+ 1

2

|ρ̃〉 = G−
n− 3

2

|ρ̃〉 = 0 for all n ≥ 0. (3.2.11)

Thus, in particular, it is annihilated by the operator

{G−− 3
2

, G+
3
2

} = 2L0 + 3J0 + 2c/3. (3.2.12)

Using the property h = −Q/2 for anti-chiral primary states we deduce that the vacuum
of the left moving chiral sector is mapped to the highest weight state of the left moving
anti-chiral sector. These properties will become important later when we come to mirror
symmetry and analyze the relation between chiral primary fields and cohomology elements
of the internal manifold.
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The Sigma Model

N = 2 superconformal non-linear sigma models are given by a map

X : Σ→M, (3.2.13)

from the worldsheet Σ being a Riemann surface to the target space M which is a curved
Riemannian manifold with non-trivial metric. The bosons X can be thought of as co-
ordinates on the target space and their fermionic superpartners will be sections of the

pullback of the tangent bundle of the target space, i.e. Ψµ
+ ∈ Γ(K

1
2 ⊗ X∗(TM)) and

Ψµ
− ∈ Γ(K

1
2 ⊗X∗(TM)) where Γ denotes sections of the indicated bundles. Here, K and

K denote the canonical and anti-canonical line bundles of Σ (the bundles of one forms

of types (1, 0) and (0, 1), respectively), and K
1
2 and K

1
2 are square roots of these. The

action for such a theory is given by

S = 2t

∫
Σ

d2z

(
1

2
gµν(X)∂zX

µ∂z̄X
ν + gµν(Ψ

µ
+Dz̄Ψ

ν
+ + Ψµ

−DzΨ
ν
−) +

1

4
RµνρσΨµ

+Ψν
+Ψρ
−Ψσ
−

)
,

(3.2.14)
where t is the coupling constant of the theory and gµν is the metric on the target manifold
with Rµνρσ being its Riemann tensor. Let us now look at the conditions under which this
theory has (2, 2) superconformal symmetry. As was shown in [29] the condition for (2, 2)
supersymmetry is that the target manifold be a complex Kähler manifold. To see this,
note that the N = 2 superspace version of (3.2.14) is:

S = 2t

∫
d2zd4θK(X i, X j̄), (3.2.15)

where the X i are chiral superfields whose lowest components are the bosonic coordinates
above and

gij̄ =
2i

π

∂2K

∂X i∂X j̄
. (3.2.16)

Conformal invariance is an even more stringent condition. Viewing the metric g as a
coupling “constant” of the two-dimensional theory one can compute its β function. The
result is that the β function, to lowest order, is proportional to the Ricci tensor of the
target manifold. Therefore, we see that in order to establish conformal invariance the
target manifold has to be chosen to be Ricci flat which by our analysis in section (3.1) is
equivalent to a Calabi-Yau manifold.

From now on we shall only deal with sigma models on Kähler manifolds and will
therefore rewrite the action (3.2.14) in terms of complexified coordinates. Local complex
coordinates on M will be denoted by X i and their complex conjugates are X ī. The
projections of Ψ+ in K

1
2 ⊗X∗(TM (1,0)) and K

1
2 ⊗X∗(T (0,1)), respectively, will be written

as Ψi
+ and Ψī

+. Analogously, Ψi
− is the projection of Ψ− in K

1
2 ⊗X∗(TM (1,0)) and Ψī

− is

the projection in K
1
2 ⊗X∗(TM (0,1)). The action is now given by

S = 2t

∫
Σ

d2z

(
1

2
gij̄∂zX

i∂z̄X
j̄ + igīiΨ

ī
−DzΨ

i
− + igīiΨ

ī
+Dz̄Ψ

i
+ +Rīijj̄Ψ

i
+Ψī

+Ψj
−Ψj̄
−

)
,

(3.2.17)
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where t denotes an arbitrary coupling constant and we have the connection

Dz̄Ψ
i
+ = ∂z̄Ψ

i
+ + Γikl∂z̄X

kΨl
+,

DzΨ
i
− = ∂zΨ

i
− + Γikl∂zX

kΨl
−. (3.2.18)

The supersymmetry variations of the fields in this action are parametrized in terms of
infinitesimal fermionic parameters ε−, ε̄− (being holomorphic sections of K−

1
2 ) and ε+, ε̄+

(being antiholomorphic sections of K
− 1

2 )

δX i = −ε−Ψi
+ + ε+Ψi

−

δX ī = ε̄−Ψī
+ − ε̄+Ψj

−

δΨi
+ = 2iε̄−∂zX

i + ε+Ψj
+ΓijmΨm

−

δΨī
+ = −2iε−∂zX

ī + ε̄+Ψj̄
−Γīj̄m̄Ψm̄

+

δΨi
− = −2iε̄+∂z̄X

i + ε−Ψj
+ΓijmΨm

−

δΨī
− = 2iε+∂z̄X

ī + ε̄−Ψj̄
−Γīj̄m̄Ψm̄

+ . (3.2.19)

Apart from variation under supersymmetry the action is also invariant under the
so called R-symmetries U(1)R/L which can be identified with the left moving and right
moving symmetries under J and J of the N = (2, 2) superconformal algebra (3.2.1). For
our purposes it is convenient to define U(1) generators which are linear combinations of
these, namely FV corresponding to the vector R-symmetry U(1)V = U(1)L + U(1)R and
FA corresponding to the axial R-symmetry U(1)A = U(1)L − U(1)R. On the quantum
level U(1)V remains a symmetry of the theory while the U(1)A R-symmetry is broken to
Z2k where k is

k =

∫
Σ

c1(X∗(TM (1,0)) =

∫
Σ

X∗c1(TM (1,0)) = 〈c1(M), X∗ [Σ]〉. (3.2.20)

Thus, we see that U(1)A is not anomalous if and only if c1(M) = 0, namely when M
is a Calabi-Yau manifold.

Let us also introduce generators Q∓ and Q∓ corresponding to the supersymmetry
transformations generated by ε± and ε̄±. From the conformal field theory point of view
these are obtained by the contour integrations

Q+ =

∮
G−, Q− =

∮
G
−
, Q+ =

∮
G+, Q− =

∮
G

+
. (3.2.21)

Now we are ready to write down the algebra which the conserved charges of the field
theory defined by the action (3.2.17) fulfill

Q2
+ = Q2

− = Q
2

+ = Q
2

− = 0
{Q±, Q±} = H ± P, {Q+, Q−} = {Q+, Q−} = {Q−, Q+} = {Q+, Q−} = 0,
[ME, Q∓] = ∓Q±,

[
ME, Q±

]
= ∓Q±,

[FV , Q±] = −Q±,
[
FV , Q±

]
= Q±,

[FA, Q±] = ∓Q±,
[
FA, Q±

]
= ±Q±.

(3.2.22)
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Here ME is the generator of the compact Euclidean rotation group U(1)E obtained after
Wick rotation from the two dimensional Lorentz group SO(1, 1). Furthermore, beside the
supersymmetry generators, one has the generator of (euclidian) time translations H, and
the generator of translations P . The above operators act on operators Oφ corresponding
to a field φ by [Q,Oφ] = δQOφ, where Q is a general operator and δQOφ describes the
infinitesimal field transformation.

Deformations

Perturbations of two-dimensional conformal field theory are parametrized by marginal
operators of weight h+h̄ = 2. Of most interest to us are operators which do not change the
central charge of a given conformal field theory and so can be used to deform the original
theory to as “nearby conformal field theory”. Such operators are spinless operators with
h = h̄ = 1. In order for these operators to remain of type (1, 1) even after deformation of
the theory, they have to be “truly marginal”. It can be shown [30] [31] that such operators
are given by the following constructions:

• Take a field φ in the ring (c, c) with h = h̄ = 1
2
, Q = Q = 1. Then define φ̂ by

φ̂(w, w̄) ≡
∮
dzG−(z)φ(w, w̄)). (3.2.23)

φ̂ has h = 1
2

+ 1
2

= 1 and h̄ = 1
2
, furthermore Q = 0 and Q̄ = 1. Now define

Φ(1,1)(w, w̄) ≡
∮
dz̄G

−
(z̄)φ̂(w, w̄). (3.2.24)

It follows immediately that Φ(1,1) has h = h̄ = 1, Q = Q = 0. It is a truly marginal
operator.

• Start with φ ∈ (a, c) with h = h̄ = 1
2

and Q = −Q = 1. Next, define

φ̂(w, w̄) ≡
∮
dzG

−
(z̄)φ(w, w̄), (3.2.25)

and

Φ(−1,1) ≡
∮
dzG+(z)φ̂(w, w̄) = (G+

− 1
2

G
−
− 1

2
φ)(w, w̄). (3.2.26)

Its definition shows that Φ(−1,1) has h = h̄ = 1, Q = Q = 0. This operator is truly
marginal.

These operators have the following interpretation from the point of view of the non-
linear sigma model. As one can show (a, c) fields can be written as bij̄Ψ

i
+Ψj̄
− with bij̄ a

harmonic (1, 1)-form on M . The map between (a, c) fields and marginal operators applied
to this field is to lowest order bij̄∂zX

i∂z̄X
j̄. This shows, that in this case the marginal

operator corresponds to deformations of the Kähler class of M . On the other hand defor-
mations arising from (c, c) fields lead to pure-index type metric perturbations and thus
to complex structure deformations of M .
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3.2.2 Linear Sigma Model view point

In [32] Witten shows how the nonlinear sigma model described in the previous section can
be understood as a specific phase in a more general theory, namely the so called gauged
linear sigma model. This view point turns out to be very powerful as the linear sigma
model incorporates a rich phase structure including points where a Landau-Ginzburg
description arises. This way the important CY/LG correspondence can be deduced from
an underlying theory. Way shall describe this construction briefly here.

Let us consider the simplest setup, where we have a two-dimensional N = 2 linear
sigma model which is gauged under the group U(1), and has thus a single vector superfield
V . Solving for the auxiliary fields by their equations of motion, one gets

D = −e2

(∑
i

Qi|φi|2 − r

)

Fi =
∂W

∂φi
, (3.2.27)

where D is the D-term, W is the superpotential, φi are scalar components of chiral su-
perfields with charge Qi and r is the Fayet-Iliopolous parameter. These fields sit together
with the scalar fields φi, σ in the scalar potential

U(φi, σ) =
1

2e2
D2 +

∑
i

|Fi|2 + 2σ̄σ
∑
i

Q2
i |φi|2. (3.2.28)

Here, Qi is the charge under U(1) corresponding to the field φi. Next, we choose n
of the chiral superfields Φi to have charge 1 and denote them by Si, and one field P of
charge −n. Then, one can write down the following gauge invariant superpotential

W = P ·G(S1, · · · , Sn), (3.2.29)

where G is a homogeneous polynomial of degree n and we will think of the Si as homo-
geneous variables corresponding to Pn−1. G has furthermore to be chosen such that the
equations

0 =
∂G

∂S1

= · · · = ∂G

∂Sn
(3.2.30)

have no solutions except at Si = 0 (this fact is called transversality of G). Geometrically
this means that G = 0 cuts out a smooth hypersurface X in Pn−1. Having specified the
setup we conclude that the scalar potential (3.2.28) can be expressed in terms of si, p, σ
and the homogeneous polynomial G as

U = |G(si)|2 + |p|2
∑
i

|∂G
∂si
|2 +

1

2e2
D2 + 2|σ|2

(∑
i

|si|2 + n2|p|2
)
, (3.2.31)

with

D = −e2

(∑
i

s̄isi − np̄p− r

)
. (3.2.32)
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Now we are ready to present the two most important phases for two extremal values
of r.

The Calabi-Yau phase

This picture arises as the low energy physics of the phase r � 0. Minimizing the scalar
potential requires D = 0 which in turn implies that not all si can vanish. As a consequence
we see that the vanishing of |p|2

∑
i |∂iG|2 in the potential requires that p = 0. Therefore,

vanishing of D leads us to the equation∑
i

s̄isi = r. (3.2.33)

As we are dealing with a gauge theory the space of solutions of (3.2.33) must be divided
by the gauge group U(1) and this way we arrive at the complex projective space Pn−1,
with Kähler class proportional to r. Finally, the condition G = 0 has to be imposed on the
vacuum to ensure the vanishing of the first term in the expression for the scalar potential,
and for the vanishing of the last term σ has also to be set to zero. We see that the space
of classical vacua is isomorphic to the hypersurface X ⊂ Pn−1 defined by G = 0. In order
for the hypersurface to be Calabi-Yau in Pn−1 the degree of the defining equation must
be n. This restriction is from the point of view of the linear sigma model not accidental
as it is automatically chosen in order to ensure anomaly-free R-invariance. All modes
which are not parallel to oscillations tangent to X have masses at tree level. Therefore,
the low energy theory is precisely a sigma model with target space X and Kähler class
proportional to r.

The Landau-Ginzburg phase

Next we turn to the phase r � 0. First of all we see that the vanishing of D requires
p 6= 0. Then the vanishing of |p|2

∑
i |∂iG|2 leads to the condition si = 0 for all i, where

we have used the transversality of G. Having established this, the modulus of p must be
|p| =

√
−r/n which shows that the theory has a unique classical vacuum up to gauge

transformation. A property of this vacuum is that the si remain massless in expansions
around it (this holds for n ≥ 3). Integrating out the massive field p is equivalent to
setting p to its expectation value. This way one arrives at the effective superpotential
W̃ =

√
−r ·W (si). This effective superpotential describes a Landau-Ginzburg theory as

it has a unique classical vacuum with a degenerate critical point at the origin. Indeed it
is even a Landau-Ginzburg orbifold, the reason being that the vacuum expectation value
of p does not completely destroy the gauge invariance but rather breaks it to the discrete
group with the action

si → ξsi, (3.2.34)

where ξ is an nth root of unity. This residual gauge invariance means that we are dealing
with a Zn orbifold of a Landau-Ginzburg theory.

Let us look at the consequences of this observation. Allowing renormalization group
flow the Landau-Ginzburg theory will reach a conformally invariant infrared fixed point.
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Indeed, one can show that there is an isomorphism between a conformal field theory
minimal model at level P and the Landau-Ginzburg theory of a single chiral superfield
X with superpotential W = XP+2. Therefore, one immediately learns that a Landau-
Ginzburg theory with scalar action

S =

∫
d2zd4θ

n∑
j=1

Kj(Sj, S̄j) +

(
d2zd2θ

n∑
j=1

S
Pj+2
j + h.c.

)
(3.2.35)

is isomorphic to the tensor product ⊗nj=1MMPj of minimal model at level Pj at its con-
formally invariant fixed point.

Consequences

Here we want to outline the overall picture which arises from the phase structure of
the linear sigma model. First of all note that one should take |r| to be large in each
regime in order to suppress the massive excitations which would cause significant changes
to a non-linear sigma model or a Landau-Ginzburg model. r determines the Kähler
form in the Calabi-Yau case and the expectation values of twist fields in the Landau-
Ginzburg theory. Hence, we can think of r as a Kähler moduli space parameter and the
moduli space will consist of R divided into two regions r ≥ 0 and r ≤ 0. Physically,
we have the interpretation of an infinite volume Calabi-Yau space in the one region and
a Landau-Ginzburg orbifold point with an enhanced quantum symmetry at the value
r →∞. In fact, we have to complexify the variable r by including the B-field in the way
r → t = b + ir. As shifts of b do not affect the theory, the natural complex variable to
use is w = e2πi(b+ir). This way one can map the sigma model region of the moduli space
to the upper hemisphere of a sphere. Similar arguments for the Landau-Ginzburg region
[33], [32] lead to a map from the complexified region r < 0 to the lower hemisphere of
a sphere. The lower hemisphere which gives rise to a Landau-Ginzburg theory can be
thought of as the analytic continuation of a Calabi-Yau sigma model with a particular
Kähler class. The picture one should have in mind here is depicted in figure (3.3).

The setup described in this section can be generalized to more involved linear sigma
models as follows:

• Hypersurfaces in weighted projective space and generalizations: Consider a U(1) gauge
theory with n chiral superfields Si, i = 1, · · · , n, of charge qi, together with one
more chiral superfield P of charge −

∑
i qi. This choice ensures

∑
iQi = 0, which

is equivalent to anomaly-free R symmetry and leads to Calabi-Yau manifolds at
low energies. However, as different fields now may have different U(1) charge the
D-term vanishing condition tells us that we are dealing with the weighted projective
space Pq1,··· ,qnn−1 with Kähler class proportional to r. The hypersurface G = 0 cuts out
a Calabi-Yau in this space.

Another way to generalize the previous construction is by considering degree dr
polynomials Gr of S1, · · · , Sn(r = 1, · · · , l). Putting appropriate transversality con-
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Calabi-Yau Large Radius Limit

Sigma-Model
Region

Landau-Ginzburg
Orbifold Region 

Landau-Ginzburg 
Enhanced Symmetry point

Figure 3.3: The Kähler moduli space associated to the linear sigma model.

ditions on the Gr one sees that the submanifold

X = {Gr(s1, · · · , sn) = 0∀r} ⊂ Pn−1 (3.2.36)

is a smooth complex manifold of dimension n− l − 1 which is denoted by the term
complete intersection. Requiring n− d1 − · · · − dl = 0 furthermore ensures that the
first chern class of this manifold is 0.

Combining these two generalizations and introducing several U(1) gauge fields one
can even describe complete intersections in toric ambient spaces by this construction.

• Non-compact Calabi-Yau manifolds: Consider a theory with chiral matter fields
S1, · · · , Sn with charges Q1, · · · , Qn. Note that this time we do not add a su-
perpotential to the theory. Assuming that there are both positive and negative
Qi’s the vacuum manifold is non-compact. Let now Q1, · · · , Ql be positive and
Ql+1, · · · , Qn be negative. In this case the vacuum manifold is the U(1) quotient of∑l

i=1Qi|si|2 = r+
∑n

j=l+1 |Qj||sj|2, which can be described as a vector bundle over
weighted projective space

X =

[
n⊕

j=l+1

LQj → P(Q1,··· ,Ql)
l−1

]
. (3.2.37)

• Hypersurfaces in Grassmannians: To achieve a realization of a sigma model with
target space a Calabi-Yau in a Grassmannian of k planes in complex n space (de-
noted by G(k, n)), one includes kn chiral superfields Siλ, i = 1, · · · , k, λ = 1, · · · , n.
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One can think of the Siλ as matrix elements of a k × n matrix S with an adjoint S.
The group G = U(k) acts on the S’s by

Siλ →M i
i′S

i′

λ , (3.2.38)

for M i
i′ ∈ U(k). Furthermore, one has to include a k × k hermitian matrix V of

vector superfields and take the Lagrangian to be the gauge and matter kinetic energy
plus a Fayet-Iliopoulos term for the central factor U(1) ⊂ U(k). Next, introduce a
complex superfield P which transforms as P → (detM)−nP and a superpotential
W = PG(Siλ), where G is a polynomial that transforms as G → (detM)nG. This
way we obtain a theory which in the regime r � 0 is described as a sigma model
with target space X ⊂ G(k, n) given by G = 0.

We will analyze the topological string on all these three types of spaces in this thesis.

3.3 Twisting the N = (2, 2) theories

Twisting nonlinear sigma models turns them into topological field theories which do not
depend on the worldsheet metric any more. Also the dependence on target space pa-
rameters is reduced to either Kähler or complex structure deformations. States of the
topological field theory are isomorphic to ground states of the N = (2, 2) CFT forming a
vector bundle over the moduli space of deformation parameters.

3.3.1 Generalities about topological field theories

Topological field theories arise from an underlying theory with a nilpotent BRST op-
erator Q. The symmetry generated by Q is used to define physical states which lie in
Q-cohomology classes with trivial states being Q-exact. The analogy with De Rham co-
homology is not only accidental at this point as in the case of supersymmetric sigma
models there is a map between the cohomology classes of the physical states and those of
the target space manifold. The identification works as follows. Consider the supersym-
metric version of quantum mechanics of a particle moving in a Riemannian manifold M
of dimension n and metric g, and supersymmetry generator Q. Due to the relation

H =
1

2

{
Q,Q†

}
≥ 0 (3.3.1)

a state has zero energy if and only if it is annihilated by Q and Q†:

H|α〉 = 0⇔ Q|α〉 = Q|α〉 = 0. (3.3.2)

Witten showed [34] that the Q-cohomology (i.e. if one takes the BRST operator to
be Q) of the theory corresponds to nothing else but the ground states of the theory. His
argument goes roughly as follows. If a state |α〉 has energy En and is Q-closed, Q|α〉 = 0,
then by the relation 1 = (QQ† +Q†Q)/(2En) we have |α〉 = QQ†|α〉/(2En), and thus |α〉
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is Q-exact. At zero energy this is no longer possible and the cohomology is nothing but
the space of the ground states. The space of the ground states is special due to another
property as well. Consider the operator Q1 := Q+Q† obeying

Q2
1 = 2H. (3.3.3)

As the Hamiltonian commutes with the supercharges this operator preserves each
energy level and maps the space of even fermionic number HB

(n) at energy level En to the

space of odd fermionic number HF
(n) and vice versa. For En > 0 we have Q2

1 = 2En at the
nth level, and thus Q1 is invertible and defines an isomorphism

HB
(n)
∼= HF

(n). (3.3.4)

From this we see that the bosonic and fermionic states are paired at each excited
level. However, this argument does not go through at the zero energy level H(0) as the
operator Q1 squares to zero and there is no isomorphism. If we now consider continuous
deformations of the theory which preserve supersymmetry the number of states at each
energy level will change. But due to the isomorphism (3.3.4) the zero energy level can
receive and loose states only in pairs of a bosonic together with a fermionic state. Thus
the net number of bosonic minus the number of fermionic ground states is an invariant

dimHB
(0) − dimHF

(0) = Tr(−1)F e−βH . (3.3.5)

Furthermore Witten observed that the Q operator can be identified with the de Rham
operator d and one has

H =
1

2

{
Q,Q

}
=

1

2
(dd† + d†d) =

1

2
∆, (3.3.6)

where ∆ is the Laplace-Beltrami operator. Therefore, we see that the supersymmetric
ground states (i.e. the zero energy states) are simply the harmonic forms

H(0) = H(M, g) =
n⊕
p=0

Hp(M, g). (3.3.7)

From this it follows that
Hp(Q) = Hp

DR(M), (3.3.8)

where p is the fermion number on the left hand side and the form-degree on the right hand
side. The supersymmetric index is the Euler characteristic of the Q-complex, namely

Tr(−1)F =
n∑
p=0

(−1)pdimHp(Q) =
n∑
p=0

(−1)pdimHp
DR(M) = χ(M). (3.3.9)
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Supersymmetric Localization

In supersymmetric field theories there exists a mechanism known as supersymmetric lo-
calization which reduces the path integral to fixed points of the supersymmetric action.
In our presentation we follow a path of argumentation first outlined by Witten [35]. Con-
sider an arbitrary quantum field theory with the function space over which one has to
integrate denoted by E . Suppose that the theory admits a group of symmetries F which
acts free on E . This allows us to write E as a fibration E → E/F , and the path integral
can be evaluated by first integrating over the fibers F of this fibration. This reduces the
integration space from E to E/F . For F invariant observables O the integration over the
fibers is particularly simple and just gives a factor of vol(F ) (which is the volume of the
group F ): ∫

E
e−LO = vol(F ) ·

∫
E/F

e−LO. (3.3.10)

Let us apply this prescription to the case where we have a supersymmetric theory with
the supercharge Q being the BRST operator and F is the supergroup generated by it.
The special feature of this specific case is that the volume of the group F is zero, since
for a fermionic variable θ, ∫

dθ · 1 = 0. (3.3.11)

From this and equation (3.3.10) it follows that if Q acts freely, the expectation value
of any Q invariant operator O vanishes.

The general case, however, is that F does not act freely. Let us denote its fixed
point locus by E0. Furthermore, let C be an F -invariant neighborhood of E0 and E ′ its
complement. As the path integral restricted to E ′ vanishes by the above argument, the
entire contribution to the path integral comes from the integral over C. Note that C can
be an arbitrarily small neighborhood which localizes the computation to an integral on
E0.

For pedagogical reasons we will sketch the way this works in the case of a 0 dimensional
quantum field theory, but the proof can be extended to an arbitrary dimension. Consider
the path integral Z :=

∫
dXdψ1dψ2e

−S(X,ψ1,ψ2) with the action given by

S(X,ψ1, ψ2) :=
1

2
(∂h)2 − ∂2hψ1ψ2. (3.3.12)

Here ψ1, ψ2 are fermionic Grassmann variables and X is a bosonic coordinate. This action
is supersymmetric in the sense that it is invariant under the transformations

δX = ε1ψ1 + ε2ψ2,

δψ1 = ε2∂h,

δψ2 = −ε1∂h. (3.3.13)

The fixed locus of the above variable transformations is given by ∂h = 0. Thus we see
that we get only contributions from critical points h′(Xc) = 0. These contributions can
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be calculated by considering h(X) = h(Xc) + κc
2

(x − xc)2, with κc = h′′(Xc). Thus the
partition function can be calculated through the Gaussian integral

Z =
∑
Xc

∫
dXdψ1dψ2√

2π
e−

1
2
κ2
c(X−Xc)2+κcψ1ψ2 =

∑
Xc

h′′(Xc)

|h′′(Xc)|
. (3.3.14)

This result implies that Z counts the sum of zeros of h′(X) weighted with +1(−1) for
positive (negative) slope at h′(Xc). Note, that this “index” is invariant under deforma-
tions of h(X) as a +1 zero of h′(X) can only disappear together with a −1 zero under
deformations, which leave the behavior of h′(X) for |X| → ∞ invariant.

3.3.2 The A- and B-twists

In this section we leave the path of general considerations and outline how one can turn
N = (2, 2) theories into cohomological field theories.

By twisting one means a modification of the Euclidean rotation group U(1)E by a
generator of the global U(1) R-symmetry groups. This amounts to defining a U(1)E′ with
ME′ = ME+R as the new generator of the Euclidean rotation group. The reason why this
twist is performed is that some of the Q± and Q± can be made to transform as scalars
under U(1)E′ . As these “scalar” operators are then globally defined on worldsheets of
arbitrary genus they can be used to define a cohomological theory on an arbitrary Riemann
surface. This would fail in the untwisted case as there are no covariantly constant spinors
on a Riemann surface of arbitrary genus.

In the (2, 2) theory there are two fundamentally different twists possible,

A-Twist: ME′ = ME + FV
B-Twist: ME′ = ME + FA.

(3.3.15)

This leads to a change of the “spin” of the fields as follows. Consider, as an example,
a chiral superfield of trivial R-charges qV = qA = 0

Φ = X + θ+Ψ+ + θ−Ψ− + · · · . (3.3.16)

The zero ME charge, vector R-charge and axial R-charge of the lowest component X
lead to a zero ME′ charge which shows that X remains a scalar field after twisting. On the
other hand, the ME charge of Ψ− is 1 which means that Ψ− is a spinor field, or a section
of the spinor bundle

√
K before twisting. After A-twist, it has ME′ charge 1+qV = 0 and

it thus becomes a scalar field. The B-twist gives ME′ charge 1 + qA = 2 and transforms
the spinor into a vector or one-form field being a section of K. We summarize this and
the results for other components in table (3.3.1).

Twisting affects the spin of the supercharges as well. From the commutation relations
of ME, FV , FA (3.2.22) one can deduce the changes in the transformation rules. This is
summarized in table 3.3.2. We see that in the A-twisted theory Q+ and Q− have spin
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Before Twisting A twist B twist
U(1)V U(1)A U(1)E L U(1)′E L U(1)′E L

X 0 0 0 1C X 0 1C X 0 1C

Ψi
− −1 1 1 K

1
2 χi 0 1C ρiz 2 K

Ψ̄ī
+ 1 1 −1 K̄

1
2 χī 0 1C −1

2
(θī + ηī) 0 1C

Ψ̄ī
− 1 −1 1 K

1
2 ρīz 2 K 1

2
(θī − ηī) 0 1C

Ψi
+ −1 −1 −1 K̄

1
2 ρiz̄ −2 K̄ ρiz̄ −2 K

Table 3.3.1: In this table, L is the complex line bundle on Σ in which the field takes
values. We also indicate the names of the fields in the A and B model.

zero, while in the B-twisted theory Q+ and Q− are the spin-zero charges. Thus we notice
that the combinations

QA = Q+ +Q−

QB = Q+ +Q− (3.3.17)

define scalar, nilpotent operators which can be used to define two different cohomological
theories, the topological A- and the topological B-model respectively. We can also call
the A-twist a (+,−) twist and the B-twist a (+,+) twist according to the relevant U(1)
charges. Let us look at the twisting from the CFT point of view. A +/− twist in the left
respectively right moving sector gives

T̂ (z) = T (z)±′ 1

2
∂J(z)→ L̂0 = L0 ±′

1

2
J0. (3.3.18)

This immediately leads to the following short distance expansions

T̂ (z)T̂ (0) ∼ 2

z2
T̂ (0) +

1

z
∂T̂ (0),

T̂ (z)G±(0) ∼ 3±′ ∓1

2z2
G±(0) +

1

z
∂G±(0),

T̂ (z)J(0) ∼ 1

z2
J(0) +

1

z2
∂J(0)∓′ c

3z3
,

G+(z)G−(0) ∼ 2c

3z3
+

2

z2
J(0) +

2

z
T̂ (0) +

1∓′ 1
z

∂J(0). (3.3.19)

Here we stress two points which will become important later on.

• No ghost system is required to quantize the world sheet theory as there is no central
term in the first OPE

• Looking at the third OPE we see that J(z) has an anomalous transformation. In
particular we have

∇µJµ = −3χ(Σg) (3.3.20)

which is completely analogous to the ghost number anomaly of the bosonic string
with ghost current Jghost = − : bc : in the BRST quantization.
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Before Twisting A twist B twist
U(1)V U(1)A U(1)E L U(1)′E L U(1)′E L

Q− −1 1 1 K
1
2 0 1C 2 K

Q+ 1 1 −1 K̄
1
2 0 1C 0 1C

Q− 1 −1 1 K
1
2 2 K 0 1C

Q+ −1 −1 −1 K̄
1
2 −2 K̄ −2 K̄

Table 3.3.2: In this table, L is the complex line bundle on Σ in which the supercharges
take values.

3.3.3 Physical Observables of the topological theories

In a topologically twisted theory one defines physical operators to be operators that
commute with Q = QA or QB. Furthermore, physical states are labeled by Q-cohomology
classes, being in one-to-one correspondence with the ground states of the supersymmetric
theory. Let us analyze the consequences of this approach.

An operator φ is called chiral if

[QB, φ] = 0. (3.3.21)

The lowest component of a chiral superfield Φ obeys
[
Q+, φ

]
= 0 which identifies it as a

chiral operator. The equations (3.2.21) furthermore show that φ belongs to the (c, c)-ring
of the superconformal theory. On the other hand an operator φ is called twisted chiral if

[QA, φ] = 0. (3.3.22)

The lowest component ν of a twisted chiral superfield Σ (i.e. a superfield satisfying
D+Σ = D−Σ = 0) obeys

[
Q+, ν

]
= [Q−, ν] = 0 and is thus a twisted chiral operator.

Following the relations (3.2.21) we see that such operators belong to the (a, c) ring.
In the cohomological theory the operators have to fulfill either of the closeness con-

ditions (3.3.21), (3.3.22). Furthermore, operators become equivalent if they are equal up
an exact operator dΛ = [Q,Λ]±, i.e.

φ ∼ φ+ [Q,Λ]± . (3.3.23)

Note that correlation functions of Q closed operators do not depend on the represen-
tative of the class, i.e.

〈φ1 · · · (φk + {Q,Λ}) · · ·φn〉 = 〈φ1 · · ·φn〉 ± 〈0|φ2 · · ·φk−1Λφk+1 · · ·φnQ|0〉
∓〈0|Qφ1 · · ·φk−1Λφk+1 · · ·φn|0〉

= 〈φ1 · · ·φn〉. (3.3.24)

In the last step we have used that the vacuum is annihilated by Q. Another important
property of these correlation functions is that they are independent on the position of
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insertions of the twisted chiral operators and chiral operators. To see this one uses the
algebra (3.2.22) and the identity [{A,B} , C] = {[A,C] , B}+ {A, [B,C]} to show

i

2

(
∂

∂x0
+

∂

∂x1

)
φ = [(H + P ), φ] =

[{
Q+, Q+

}
, φ
]

= · · · = {QB, [Q+, φ]} (3.3.25)

i

2

(
∂

∂x0
− ∂

∂x1

)
φ = [(H − P ), φ] =

[{
Q−, Q−

}
, φ
]

= · · · = {QB, [Q−, φ]} (3.3.26)

Therefore, we see that the OPE of two (twisted) chiral fields is (twisted) chiral again
and position independent. Using a basis φk of the ring one defines

φiφj = Ck
ijφk + [Q,Λ]± , (3.3.27)

where the structure constants of the ring Ck
ij satisfy the usual associativity conditions

Cm
jlC

l
ik = Cm

lkC
l
ij.

These relations can be generalized in the following way. If O(0) = O is a Q-closed
operator, then one can find a one-form operator O(1) and a two-form operator O(2) such
that

0 =
[
Q,O(0)

]
, (3.3.28)

dO(0) =
{
Q,O(1)

}
, (3.3.29)

dO(1) =
[
Q,O(2)

]
, (3.3.30)

dO(2) = 0. (3.3.31)

In case of the B-twist the one- and two-form operators are given by

B-twist:

{
O(1) = idz [Q−,O]− idz̄ [Q+,O] ,
O(2) = dzdz̄ {Q+, [Q−,O]} ,

}
, (3.3.32)

and for A-twist they are obtained from the above by the replacement Q− → Q−. The
equations (3.3.28-3.3.31) are called descent relations. From Eqs (3.3.29-3.3.30) one de-
duces that ∫

γ

O(1) and

∫
Σ

O(2) (3.3.33)

are Q-invariant operators, where γ is a closed one-cycle and Σ is the world-sheet (as-
sumed to have no boundary). These operators will become important when we consider
deformations of the twisted topological theories.

3.3.4 Metric (in)dependence and topological string theory

In order to understand the dependence of correlation functions on the worldsheet metric
we have to analyze the effect of the energy momentum tensor insertions. The reason is
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that classically the energy momentum tensor Tµν = 1√
h

δS
δhµν

is the generator of metric

variations. Thus the first order variation of the weight factor eS in the path integral gives
the following operator variations

δh〈O〉g = 〈O
∫

Σg

√
hd2σδhµνTµν〉g, (3.3.34)

where g denotes the genus of the worldsheet Riemann surface. In a topological theory
δh〈O〉g = 0 as the energy momentum tensor can always be written in the form

Tµν = {Q,Gµν} . (3.3.35)

This identity is a refinement of the equations (3.3.25)-(3.3.26). In ordinary bosonic string
theory the same relation holds with Gµν replaced by the antighost field bµν .

Thus far we have been dealing with topological field theories. In a topological string
theory, which will be our main focus in the next chapters, one does not keep the worldsheet
metric fixed but rather integrates the metric h of Σg over all possible choices of Hg.
However, there is a redundancy here as the classical string action is invariant under
diffeomorphism and Weyl-transformations of the metric h̃ab(σ̃) = exp [2ω(σ)] ∂σ

c

∂σ̃a
∂σd

∂σ̃b
hcd.

These are “gauge” transformations which even prevail at the quantum level in a critical
string theory. The standard method of gauge fixing then reduces the moduli space to

Mg = large gauge tranf.\Hg/(diff.×Weyl)g. (3.3.36)

Here large gauge transformations refer to diffeomorphisms of Σg which are not connected
to the identity. For more details on the moduli space and the procedure of gauge fixing
see the standard reference [6]. The tangent vectors ofMg are anti-holomorphic one-forms
on Σg with values in the holomorphic tangent bundle. These “Beltrami differentials”
µzz̄dz̄

∂
∂z
∈ H1(TΣ) parameterize independent first order complex structure deformations

of Σ and there are 3g − 3 of them. Denoting the complex structure variables of Σ by
ma, a = 1, · · · , 3g− 3 we can thus describe a first order deformation of the metric modulo
Weyl and diffeomorphisms as∫

Σ

d2σ
√
hδhabTab =

∫
Σ

d2zµ
(a)z
z̄ δmaTzz + µ̄az̄z δm̄

aT̄z̄z̄ (3.3.37)

which inserted into (3.3.34) gives

∂

∂ma
〈O〉g = 〈O

∫
Σ

d2zµazz̄ Tzz〉g =: 〈OT a〉g. (3.3.38)

But (3.3.35) means that T is exact and therefore in a cohomological theory any cor-
relation function with a T insertion should vanish. This line of thought would make
topological string theory completely trivial and metric independent. It turns out that
this is not the case as the calculation (3.3.24) which lies behind the above argument fails
at one step. This step is the Q invariance of the vacuum. As will be explained in section
3.5.3 the measure on the moduli space of higher genus Riemann surfaces, which is part of
the vacuum definition, is not Q closed.
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3.3.5 Dependence on the parameters

In this section we want to outline how topological string correlation functions depend on
the target space metric which determines the parameters of the model. In supersymmetric
nonlinear sigma models there are three classes of parameters. The first class consists of
parameters that enter in D-terms, the second is the class of complex parameters that
enter in F-terms (and their conjugates), and finally there is a third class of parameters
that determine twisted F-terms (and their conjugates). In the following we will analyze
all these from the viewpoint of the B-twisted theory and then state the result for the
A-twist.

Let us first consider D-term deformations of the theory. Such a variation inserts in
the path-integral an operator of the form∫

d4θ∆K =

∫
dθ̄+dθ̄−dθ−dθ

+∆K. (3.3.39)

This is proportional to{
Q+,

[
Q−,

∫
dθ+dθ−∆K|θ̄±=0

]}
=

{
QB,

[
Q−,

∫
dθ+dθ−∆K|θ̄±=0

]}
, (3.3.40)

where in the last step we have used the nilpotency of Q−. This shows that the variation
of a D-term leads to a QB-exact term in the correlation function and thus vanishes.

Variations of twisted F-terms are induced by twisted chiral operators ∆W̃ (φ̃) annihi-
lated by both Q+ and Q−∫ √

hd2x

∫
d2θ̃∆W̃ (Φ̃) ∼

∫ √
hd2x

{
Q+,

[
Q−,∆W̃ (φ̃)

]}
. (3.3.41)

Using the fact that ∆W̃ (φ̃) is annihilated by Q+ we arrive at{
Q+,

[
Q−,∆W̃ (φ̃)

]}
=

{
Q+,

[
Q− +Q+,∆W̃ (φ̃)

]}
= −

{
QB,

[
Q+,∆W̃ (φ̃)

]}
+ total derivative, (3.3.42)

where the total derivative term arises from the anti-commutation relations of the super-
charges. Therefore, we see that the inserted operator is Q-exact and therefore annihilates
any topological correlation function. An analogous statement can be proven for anti-
twisted chiral parameters.

The only parameters left are anti-chiral and chiral deformations. The first type is
again trivial due to∫ √

hd2x

∫
d2θ̄∆W (φ) ∼

∫ √
hd2x

{
Q+,

[
Q−,∆W (φ)

]}
=

{
Q+ +Q−,

[
Q−,∆W (φ)

]}
=

{
QB,

[
Q−,∆W (φ)

]}
, (3.3.43)
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where nilpotency of Q− has been used. The chiral parameters are the only parameters
on which the topological theory can depend. They lead to the following insertion in
correlation functions∫ √

hd2x

∫
d2θ∆W (Φ) ∼

∫ √
hd2x {Q+, [Q−,∆W (φ)]}

∼
∫

∆W (φ)(2). (3.3.44)

In the language of CFT this is the second descendant of the chiral operator ∆W (φ).
It corresponds to the CFT operator (3.2.24) describing complex structure deformations of
the Sigma model. Similarly one can show that in the A-twisted theory, topological corre-
lations functions depend holomorphically on twisted chiral parameters corresponding to
the operator (3.2.26). As was explained in 3.2.1 these operators describe Kähler structure
variations of the Sigma model.

3.3.6 The tt∗ equations

The ground states of N = (2, 2) two dimensional theories, which also represent the states
of the topological theories, change when the theory is deformed by the operators intro-
duced in the previous section. They can be viewed as sitting in the fibers of a vector
bundle over the space of deformations. This geometric picture is governed by the tt∗

equations which we shall present in the following.
The operator state correspondence of 2d CFT associates to every operator φ in the

ring R of chiral and twisted chiral operators a state |φ〉. Now, there is a canonical way
to assign to each state obtained from R a Ramond-Ramond vacuum state defined by

Q|α〉 = Q†|α〉 = 0. (3.3.45)

States obeying (3.3.45) have zero energy due to{
Q,Q†

}
= H, (3.3.46)

and the space of such states will be denoted by V from now on. Let us denote the image of
a chiral basis φi ∈ R, i = 0, · · · , r in V by |i〉. Then by the operator state correspondence
we can also define a representation of the structure constants of the ring (3.3.27) on the
vacuum states

φi|j〉 = Ck
ij|k〉. (3.3.47)

Anti-chiral fields φ̄i ∈ R∗ define an anti-topological basis |̄i〉. The two basis found this
way, |i〉 and |̄i〉, are related by a linear transformation

|i〉 = M ī
i |̄i〉. (3.3.48)

By CPT we also have |̄i〉 = M j
ī
|j〉 where M j

ī
are the matrix elements of the conjugated

matrix M∗. Thus, we follow MM∗ = 1. There are two bilinear pairings among these
states. The first is the topological bilinear pairing

〈i|j〉 = ηij, (3.3.49)
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and the other is the hermitian bilinear pairing called the tt∗ metric

〈̄i|j〉 = gīj. (3.3.50)

These two pairings are connected by the formula

g l̄iηij = M l̄
j. (3.3.51)

The attribute topological in the case of the pairing ηij means that this pairing does not
depend on the representative of the Q cohomology class. This means that the changes
|i〉 7→ |i〉+Q|λ〉 or 〈j| 7→ 〈j+ 〈λ|Q do nothing to 〈i|j〉 as |j〉 and 〈i| are Q closed. For the
paring gīj this argument does not apply. The changes 〈̄i|+ 〈λ|Q† and |i〉 7→ |i〉+Q|λ〉 will
not lead to the same result as |j〉 is not Q† and 〈̄i| not Q closed. However, the invariance
will be maintained once we insert the projector e−HT into the correlation function and
take the limit T → ∞. This can be derived from the fact the only states of zero energy
are R-R ground states and thus any exact state Q|λ〉 6= 0 will be projected out by the
operator e−HT in the T → ∞ limit. For more details on this construction see [36] and
[37, 38].

Let us now describe the change in the parameters of the sigma model on V . If we
denote the parameters by m ∈M, it turns out that the space of the ground states varies
as a subspace of the Hilbert space as we vary m. The relevant parameters are the ones
appearing in the relevant superpotential and its conjugate

S =

∫
Σ

d2zL0 +
∑
i

ti
∫

Σ

d2zOi +
∑
ī

t̄ī
∫

Σ

d2zŌi, (3.3.52)

where by Oi we denote the two-form descendants. Thus we see that the ground states
have the structure of a vector bundle V over the moduli space parametrized by m = (t, t̄).
Let eγ be a basis, then we can define a connection

Aαβγ = gακ〈eκ|∂β|eγ〉. (3.3.53)

To see that A is a connection note that under a change of basis states |eγ〉 7→ |e′γ〉 = Λγδ|eδ〉
it undergoes a gauge transformation A 7→ Λ−1AΛ + Λ−1dΛ. One can show that in a
holomorphic basis the mixed indices of the form Aiīj = gik̄〈k̄|∂ī|j〉 = ηik〈k|∂ī|j〉 and

Aikj̄ = ηil〈l|∂k|j̄〉 vanish. This in turn shows that the vacuum bundle V is a holomorphic
bundle with a connection compatible with it. The covariant constancy of the metric

Dkgij̄ = ∂kgij̄ − (∂k〈i|)j̄〉 − 〈i|∂k̄|j̄〉 = ∂kgij̄ − (∂k〈i)|j̄〉 (3.3.54)

allows us finally to derive the following formulas for Ajkm and Aj̄
k̄m̄

Ajkm = gij̄∂kgmj̄, Aj̄
k̄m̄

= gmj̄∂k̄gmm̄. (3.3.55)

Now we are ready to state the tt∗ equations which govern the geometry of the vacuum
bundle. The first set of equations is

[Di, Dj] =
[
Dī, Dj̄

]
= 0. (3.3.56)
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These identities follow from Aī in case of the holomorphic basis and Ai = 0 in case of the
anti-holomorphic basis. The most important equation is however[

Di, Dj̄

]
= ∂iAj̄ − ∂̄j̄Ai = −

[
Ci, C j̄

]
. (3.3.57)

Here Ci is the matrix of structure constants and the above equation relates the curvature
of the vacuum bundle with the structure of chiral/anti-chiral rings. It can be proved by
path integral methods in conformal field theory (see [36] for a derivation). There are some
more identities and we summarize all below in the topological basis[

Di, Dj̄

]
= −

[
Ci, C j̄

]
[Di, Dj] =

[
Dī, Dj̄

]
=

[
Di, C j̄

]
=
[
Dī, Cj

]
= 0 (3.3.58)

DiCj = DjDi DīC j̄ = Dj̄C ī.

This allows us to define a flat [∇i,∇j] =
[
∇,∇j

]
=
[
∇i,∇j

]
= 0 connection

∇i = Di + αCi, ∇j̄ = ∇j̄ = Dj̄ + α−1C j̄. (3.3.59)

This flat connection is called the Gauss Manin connection. Although it is flat the
connection can have monodromies which can make the theory very interesting. We will
have more to say about this in later chapters.

3.4 The topological A-model

The topological A-model is important for counting holomorphic curves on the target space
manifold as the path integral localizes to holomorphic maps from the worldsheet to the
target space. In the M-theory interpretation the A-model can be seen as counting D2−D0
bound sates as D2 branes wrap holomorphic curves of the Calabi-Yau.

3.4.1 A model without worldsheet gravity

The nonlinear sigma model on a Kähler manifold M of dimension n is described, before
twisting, by n chiral multiplet fields Φi whose lowest components X i represent the complex
coordinates of the map of the worldsheet to the target space

X : Σ→M. (3.4.1)

Recall that the A-twist changes the spin of the fermions Ψ± and Ψ̄± as indicated in
table 3.3.1. Ψ− and Ψ̄+ become scalars (denoted by χi and χī) while Ψ+ and Ψ̄− are
anti-holomorphic and holomorphic one-forms (denoted by ρiz̄ and ρīz) respectively. The
action then takes the form

S = 2t

∫
d2z

(
gij̄∂νX

i∂νXj + iεµνbij̄∂µX
i∂νX

j̄ − igij̄ρiz̄Dzχ
j̄ − 1

2
Rik̄jl̄ρ

i
z̄χ

l̄ρk̄zχ
j

)
,

(3.4.2)
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where a term involving the antisymmetric 2-form bij̄ ∈ H2(M,Z) has been added. The
supercharges which remain scalar after the twist are Q+ and Q−. Therefore we set ε̄+ =
ε− = 0 in the supersymmetry transformations (3.2.19). This leaves us with the variation
of the fields under δ = ε̄−Q+ + ε+Q−:

δX i = ε+χ
i, δX j̄ = ε̄−χ

ī

δρiz̄ = 2iε̄−∂z̄X
i + ε+Γijkρ

j
z̄χ

k, δχī = 0

δχi = 0 δρī = −2iε̄+∂zX
ī + ε̄−Γī

j̄k̄
ρk̄zχ

j̄

(3.4.3)

with δ2 = 0.

Physical Operators

Here we want to analyze the QA-cohomology classes of operators. We will consider oper-
ators which are associated to points on the manifold (i.e. operators of type O(0) and not∫
γ
O(1) or

∫
Σ
O(2)). Thus the only operators left are X and χ to which we can associate

differential forms on M according to the rule

χi ↔ dxi, χī ↔ dx̄ī, (3.4.4)

leading to

O(0)
Ω = ωi1i2···ipj̄1j̄2···j̄q(X)χi1χi2 · · ·χipχj̄1χj̄2 · · ·χj̄q

↔
Ω = ωi1i2···ipj̄1j̄2···j̄q(x)dxi1 ∧ dxi2 · · · dxip ∧ dx̄j̄1 ∧ dx̄j̄2 · · · x̄j̄q .

(3.4.5)

One checks that under this correspondence Q− and Q+ are identified with the exterior
derivatives of Dolbeault cohomology ∂ and ∂̄. From this it follows that QA = Q−+Q+ is
identified with the de Rham operator d = ∂ + ∂̄ and the operator of QA is identified with
the exterior derivative

{QA,OΩ} = −OdΩ. (3.4.6)

Thus QA cohomology classes are mapped to d-cohomology classes of differential forms

{physical operator} ∼= H∗DR(M). (3.4.7)

Correlation functions and selection rules

Correlation functions of physical operators Oi are given by

〈O1 · · · Os〉 =

∫
DXDχDρe−SO1 · · · Os, (3.4.8)

where the path-integral is taken over all possible configurations. These configurations
split into different topological sectors classified by the homology class of the map X from
Σ go M :

β = X∗ [Σ] ∈ H2(M,Z). (3.4.9)
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Let us now turn to the discussion of selection rules for correlators. Looking at table
3.3.1 we see that χi has vector R-charge qV = −1 and axial R-charge qA = 1. Because of
the splitting of the tangent bundle of M , namely TM = TM (1,0)⊕TM (0,1) we can associate
to OΩk an element in the Dolbeault cohomology group H(pk,qk)(M). Since U(1)V remains
a symmetry even in the quantum theory, all correlation functions must be invariant under
this symmetry and we get qv =

∑n
k=1 pk −

∑n
k=1 qk = 0. However this does not hold for

the U(1)A symmetry as this symmetry is anomalous at quantum level. The anomaly is
given by

qA =
n∑
k=1

pk +
n∑
k=1

qk

= #(χzero modes)−#(ρzero modes) = 2(h0(X∗(TM))− h1(X∗(TM)))

= 2

∫
Σ

ch(X∗(TM (1,0)))td(TΣ) = 2(c1(TM) · β + dimCM(1− g)). (3.4.10)

The combination of the two constraints now gives

n∑
k=1

qk =
n∑
k=1

pk = c1(TM) · β + dimCM(1− g). (3.4.11)

Localization to Q-fixed points

As there is a fermionic symmetry Q under which all inserted operators are invariant, we
can use the localization principle outlined in section 3.3.1 to compute the contributions
picked up by the path-integral (3.4.8). We only get contributions from the loci where the
Q-variation of the fields vanishes. Looking at (3.4.3) we see that first of all we have to
set χ = 0 in order for δX to vanish. Then as a second step one sees that the vanishing of
δρiz̄ and δρīz is equivalent to

∂z̄X
i = 0. (3.4.12)

The interpretation of this equation is that the path integral localizes on configurations
where the map X : Σ→M is holomorphic. The bosonic part of the action is given by

SB =

∫
Σ

gij̄

(
∂zX

i∂z̄X
j̄ + ∂z̄X

i∂zX
j̄
)

= 2

∫
Σ

gij̄∂z̄X
i∂zX

j̄ +

∫
Σ

X∗(ω) ≥
∫

Σ

X∗ω = ω · β, (3.4.13)

where ω is the Kähler form.
One can see that for holomorphic maps (3.4.12) this action reduces to

∫
Σ
X∗(ω) = ω ·β

which shows that the path integral is reduced to finite dimensional integrals over an in
general infinite series of components of moduli spaces of holomorphic maps labeled by

Mg,β(M) =

{
X : Σ→M holomorphic

X∗ [Σ] = β

}
. (3.4.14)
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Furthermore this shows that correlation functions are only dependent on the complex-
ified Kähler class ωC = ω − iB.

Let us turn to the calculation of the dimension of this moduli space. Assume for
simplicity that the number of χ zero modes is positive and the that the number of ρ
zero modes is zero. Then one deduces from (3.4.3) that deformations which preserve the
holomorphic structure must satisfy

∂z̄χ
i = 0. (3.4.15)

Thus we see that the tangent space of the moduli space Mg,β(M) is identified as the
space of χ zero modes yielding

dimCMg,β = #χ-zero modes. (3.4.16)

The path integral (3.4.8) splits into path integrals over the finite dimensional spaces
Mg,β(M). In the following we want to identify the measure. Consider the evaluation map
at xi ∈ Σ

evi :Mg,β(M)→M (3.4.17)

X 7→ X(xi). (3.4.18)

Then the operator OΩ,i inserted at xi ∈ Σ can be viewed as the pull-back of ωi ∈
H∗(M) by the evaluation map and the correlation function turns out to be given by

〈OΩ1 · · · OΩs〉β = e−i(ω−iB)·β
∫
Mg,β(M)

ev∗1Ω1 ∧ · · · ev∗sΩs. (3.4.19)

Defining cycles Di in M as Poincare duals of [Ωi], Ωi can be chosen to have delta
function support on Di and the integral can be identified as the number of holomorphic
maps of degree β where xi is mapped into Di. Looking at formula (3.4.11) we see that
for Calabi-Yau manifolds c1(TM) = 0 and the genus g = 0 sector one can have a non-
vanishing coupling 〈OΩiOΩjOΩk〉, where all Ωl are (1, 1)-forms. Furthermore, with β
denoting the cohomology class of the image of the worldsheet in M denoted by C we can

write β · ω = 2π
∑h1,1

k=1 tkdk, where dk = C ∩Dk is the number of intersections of C with
Dk or in other words the degree. Let us look at the map with dk = 0 for all k. This
maps the sphere with three punctures Σ3,0 to a point in M . Together with the fact that
OΩk,k maps to Dk this implies that the path integral collapses to the intersection number
of Di ∩Dj ∩Dk. Thus the correlation function can be rewritten in terms of qk = e−2πitk

as

Cijk(t) = 〈OΩiOΩjOΩk〉 = Di ∩Dj ∩Dk +
∑
di 6=0

rg=0
di

(Di, Dj, Dk)
h1,1∏
i=1

qdii . (3.4.20)

This is a deformation of the classical intersection ring and is known as the quantum
cohomology ring of M . The second term is called the instanton correction and its effect
is to smooth the structure functions Cijk(t) at singularities in codimension two in M [39].
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Let us now turn to deformations of correlation functions. We observe from the tables
(3.3.1,3.3.2) that the second descendants O(2)

Ωj
have trivial U(1)V and U(1)A charges. From

this it follows that nontrivial derivatives of Cijk(t)

∂

∂ti
〈OΩlOΩkOΩj〉

∣∣∣∣
ti=0

= 〈OΩjOΩkOΩl

∫
Σ

O(2)
Ωi
〉 (3.4.21)

do exist according to the selection rules. Using SL(2,C) invariance on S2 one can fix
three points among the {i, j, k, l} and integrate over the fourth yielding

∂iCjkl(t) = ∂jCikl(t). (3.4.22)

This is an integrability condition which guarantees the existence of a function F 0(t)
obeying the property

Cijk(t) = ∂i∂j∂kF
0. (3.4.23)

F 0(t) is the quantum corrected version of (3.1.52).

3.4.2 Coupling to topological gravity

Here we shall concentrate on the case c1(TM) = 0, i.e. we will be dealing with Calabi-Yau
manifolds. So far we have been ignoring the degrees of freedom of the worldsheet metric
in our discussion. However, as explained in 3.3.4 this would make our theory completely
trivial and all correlation functions would vanish for g > 1. In order to get a feeling for
what is going on let us first have a look at the g = 1 case with Σ = T 2 and target space
M = T 2 as well. By definition there would be no holomorphic maps between Σ and M
unless the complex structure parameter of Σ, denoted by τΣ, is equal to the one of M ,
denoted by τM . The free energy for genus 1 would then be F (1) = − log(η(τM))δ(τM − τΣ)
due to multicovering contributions. Integrating this over the complex structure of Σ then
gives a result which depends in a modular way on the target space parameter τM as the
unique parameter. Let us now turn to g > 1. According to equation (3.4.10) the axial
anomaly becomes negative giving no room for correlation functions to stay nontrivial by
insertion of operators. Looking at the problem from the mathematics point of view the
dimension of the moduli space Mg,n,β(M) of maps from a Riemann surface of genus g
with n punctures into the class β = [X(Σ)] of the manifold M is given by

vdimCMg,n,β = h0(X∗(TM))− h1(X∗(TM)) + dim Def(Σ, p)− dim Aut(Σ, p)

= c1(TM) · β + (dimCM − 3)(1− g) + n. (3.4.24)

This formula demands some explanation. Here vdimC denotes the virtual complex
dimension of the stable compactification Mg,β,n of the moduli space. By stable com-
pactification we mean that all boundary points where the Riemann surface degenerates
are added to the moduli space. h0(X∗(TM)) measures deformations of the map X and
h1(X∗(TM)) measures obstructions of the same map. Furthermore Def(Σ, p) is the space
of deformations of Σ with marked points p and Aut(Σ, p) is the relevant automorphism
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space. In the last step the Riemann Roch formula has been used to compute the two
indices.

Thus we see that Calabi-Yau threefolds play a special role in topological string theory.
Substituting c1(TM) = 0, dimCM = 3 and n = 0 we get vdimCMg,β,0 = 0 which means
that the integration over moduli space reduces to the contribution of a few single points.
Intuitively one can understand this result as follows. The complex dimension of the moduli
space of maps for a fixed Riemann surface (g ≥ 2) in these cases is formally negative:
dimCM = (dimM)(1−g) = 3(1−g) < 0. On the other hand the dimension of the moduli
space of metrics on a genus g ≥ 2 surface has dimension 3(g − 1). So in these cases the
integration over the complex structure of the Riemann surface exactly cancels the positive
violation of axial charge.

3.4.3 Target space perspective

According to our discussion in chapter 2 type II string compactifications on Calabi-Yau
threefolds lead to N = 2 supergravity in four dimensions. Now, it can be shown that
certain superpotential terms in the four-dimensional effective theory are captured by
topological string amplitudes. In other words for these terms the string integral over
the space of all maps from Riemann surfaces to the target space manifold reduces to
the A-model topological string result. In particular it can be shown [40, 41] that in the
four-dimensional action there is a term generated which looks like∫

d4xd4θW2gF g(ti) =

∫
d4xF g(ti)R

2
+F

2g−2
+ + · · · , (3.4.25)

where F g(ti) denotes the genus g topological amplitude depending on the vector moduli
ti. Furthermore, F+ and R+ denote the self-dual parts of the graviphoton field strength
and the Riemann tensor respectively.

The Gopakumar-Vafa invariants

The Gopakumar-Vafa invariants are integer numbers capturing the BPS content of topo-
logical string amplitudes. They arise in an expansion of the one-loop quantum correction
to the graviton graviphoton couplings (3.4.25) where BPS states are running in the loop.
The way they are encoded in the topological string amplitudes can thus solely be ex-
tracted from a supergravity or field theory calculation first performed in [42, 43]. Let us
see in some detail how this works.

In passing from the full string theory to its field theory limit a key point lies in the fact
that one has to integrate out nonperturbative states of the full string Hilbert space. In our
case - namely type II A theory on Calabi-Yau manifolds - these are solitonic states which
arise by wrapping D2 branes over Calabi-Yau two-cycles. In order for these states to be
BPS the two cycles in question must be holomorphic. Compactification of type IIA on a
Calabi-Yau M can be equivalently viewed as compactifying M-theory on M × S1. This
way one gets a U(1) gauge field for each 2-cycle of M , obtained by dimensional reduction
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of the M-theory 3-form C on the 2-cycle, i.e. via the ansatz Cµαβ = Aµωαβ, where ωαβ
is the harmonic 2-form dual to the 2-cycle. This way a D2-brane wrapped on a 2-cycle
(equivalent to a M2 brane wrapped on the same cycle) gives a particle charged under the
corresponding U(1). Therefore we see that the charges in the theory are classified by the
second homology of M , namely Q ∈ H2(M,Z). The mass of such a particle is given by

m =
1

λ

∫
Q

k =
1

λ
tQ, (3.4.26)

where λ is the string coupling constant and where k denotes the Kähler form on M .
Moreover the particle is charged under the graviphoton field with its charge being equal
to its mass. Now the effective action corresponding to integrating out these particles at
one loop can be computed in a very similar manner to the Schwinger computation where
charged particles are integrated out in the presence of the electromagnetic field (see for
example [44]). In our case - as we will soon see - the charged particle has to transform in
a non-trivial representation R of the four-dimensional Lorentz group. At the Lie-algebra
level we have SO(4) = SU(2)L × SU(2)R and as F+ only couples to the left-handed
representation, only the SU(2)L content of the representation R will enter our formulas.
Thus Schwinger’s calculation carried out with our setup gives

S = log det(∆ +m2 + σLF+) =

∫ ∞
ε

ds

s

Tr(−1)F e−sm
2
e−2seσLF+

(2 sinh(seF+/2))2
. (3.4.27)

This formula demands some explanation. First of all e is the charge of the particle
and σL denotes the Cartan element of SU(2)L. Second, we have to take into account that
fermions and bosons have opposite powers of determinant which leads to the insertion of
(−1)F . Note that we are dealing with a supersymmetric theory and the particles running
in the loop are BPS and thus half-hypermultiplets transforming in a representation

[(1/2, 0) + 2(0, 0)]⊗R, (3.4.28)

where R is some representation of SO(4). The other difference to the ordinary Schwinger
calculation is that we have a further

∫
R2

+ insertion. Luckily it turns out that the extra
R2

+ insertion absorbs the representation [(1/2, 0) + 2(0, 0)] and leaves us only with R.
The same would happen if we were dealing with a vector multiplet running in the loop -
the only difference being that we would get a minus sign due to the presence of an extra
fermion. Our results reduce to the non-supersymmetric Schwinger calculation and we get
formula (3.4.27) with the substitutions e = m, m = tQ/λ, and F+λ 7→ λ, i.e.

S =

∫
F (t, λ)R2

+, where F (t, λ) =

∫ ∞
ε

ds

s

Tr(−1)F e−stQe−2sσLλ

(2 sinh(sλ/2))2
. (3.4.29)

In order to extract the final result let us switch to the M-theory picture. Upon com-
pactification on the Calabi-Yau M M-theory reduces to a five dimensional effective theory
and M2 branes wrapping two-cycles of the Calabi-Yau will correspond to particles trans-
forming under the rotation group SO(4) ∼ SU(2)L × SU(2)R. In this picture D2 branes
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arise from M2 branes through dimensional reduction on the extra S1. As each such M2-
brane can have an additional momentum of n units around the extra circle for each M2
brane we get infinitely many D2-branes labeled by n. The masses of these branes are then
proportional to |tQ + 2πin|.

Next, we introduce numbers nQ(jL,jR) which count the number of BPS M2-branes in the
class Q giving rise to particles transforming in the representation

[(1/2, 0) + 2(0, 0)]⊗ (jL, jR). (3.4.30)

From this we can deduce the numbers

nQjL =
∑
jR

(−1)(2jR)(2jR + 1)nQ(jL,jR), (3.4.31)

which are invariant under smooth deformations of the theory (this will be explained in
more detail in the next subsection).

For the SU(2)L representation we will choose the basis

Ir = I⊗r1 = [(1/2) + 2(0)]⊗r , (3.4.32)

whose significance will again become clear when we switch to the geometric point of view
in the next subsection. Thus we arrive at the following redefinition of the numbers nQnL

∞∑
r=0

nQr Ir =
∑
jL

nQjL [jL] , (3.4.33)

where the integer numbers nQr are implicitly defined. Using the identities

TrI1(−1)F e−2sσLλ = 2− e−2s − e2s = [2i sinh(sλ/2)]2 ,

⇒ TrIr(−1)F e−2sσLλ =
[
TrI1(−1)F e−sσLλ

]r
= [2i sinh(sλ/2)]2r ,

(3.4.34)

and the expression ∑
n

exp(−2πins) =
∑
m

δ(s−m), (3.4.35)

we see that for each wrapped D2-brane in the charge class Q and in the representation Ir
the contribution to F (t) is given by∑

n

∫
ds

s
e−s(tQ+2πin) [2i sinh(sλ/2)]2r−2 =

∑
m≥0

1

m
e−mtQ [2i sinh(mλ/2)]2r−2 . (3.4.36)

Adding to the above result the contribution of unwrapped D2-branes living in the
representation I0 and the classical terms we obtain as final result

F (t, λ) =
1

λ2

[
1

6
κijkt

itjtk + P2(t)

]
+
−1

24
ci2ti + const. (3.4.37)

+
∑
g>1

−χBgBg−1

4g(2g − 2)(2g − 2)!
λ2g−2 +

∑
m,Q,r

e−mtQ

m [2 sin(mλ/2)]2−2rn
Q
r ,(3.4.38)

where Bg is the gth Bernoulli number and the sum on the RHS is over all m > 0, r ≥ 0,
Q ∈ H2(M,Z) and the nQr are all integers and are known as Gopakumar-Vafa invariants.

60



3.4. THE TOPOLOGICAL A-MODEL 61

Geometric interpretation

As noted in the previous section the nQr capture the SU(2)L content of the number of
wrapped BPS D2-branes with charge Q ∈ H2(M,Z) in a particular basis for the SU(2)L
representation ring. In this section we want to give a geometric interpretation of this
following naturally from the worldvolume theory of the D2 branes. The bosonic sector
of the worldvolume theory of a single D2-brane consists of 7 scalars and one U(1) gauge
field. Among the 7 scalars four of them describe deformations of the D-brane within the
Calabi-Yau and the other three are movements in the uncompactified directions. Let us
from now on assume that the D2-brane is wrapping a genus g Riemann surface Σ. Then
the quantum of flux of the U(1) field strength on the Riemann surface is the number of
D0-branes bound to the D2 brane. Focusing on the movement of the D2-brane within the
Calabi-Yau the worldvolume theory is a supersymmetric sigma model with target space
M̂, which is the moduli space of deformations of Σ together with a choice of a flat U(1)
connection on Σ. Denoting by M the moduli space of deformations we thus see that we
have the following fibration structure

M̂ →M, (3.4.39)

where the fiber is generically T 2g, i.e. the Jacobian of Σ. As usual in supersymmetric
sigma models the number of bound states (ground states) in this formulation is in exact
correspondence with the cohomology of M̂. Our aim is now to give the SU(2)L content of
the cohomology of this moduli space. Note that Kähler manifolds admit an SU(2) action
of their cohomology (denoted by Lefschetz action), where the SU(2) raising operator J+

corresponds to wedging with the Kähler class, J− corresponds to its adjoint and J3 acting
on Hp,q has eigenvalue given by

(p+ q − dimCM̂)/2. (3.4.40)

In the case of the Kähler manifold M̂ the Lefschetz action on the baseM is identified
with our previous SU(2)R. This can be seen most easily in the M-theory picture. The
scalars parameterizing the deformations of Σ in the threefold are paired with fermions
who have quantum numbers (0, 1

2
) under the spacetime rotation group SO(4) ∼= SU(2)L⊗

SU(2)R. Furthermore, quantizing the fermions which come in pairs with one-forms of Σ
gives rise to the representation [

(
1

2
, 0) + 2(0, 0)

]g+1

, (3.4.41)

which transforms under SU(2)L of the four dimensional rotation group. Note that
this is exactly the representation of a BPS-hypermultiplet tensored with Ig. As Ig =[
(1

2
, 0) + 2(0, 0)

]g
is the SU(2) content of T 2g = Jac(Σ) we thus see that the SU(2)L is

identified with the fiber Lefschetz action.
Let us now outline how one can use this geometric picture to compute the Gopakumar-

Vafa invariants nQr . The first point will be to relate H∗(Σ) to H∗(Jac(Σ)). Denoting the
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Kähler class of the fiber of M̂ by θ one can see easily the following identity

θg−1Jac(Σ) =

(
1

2

)
⊕ 2g(0), (3.4.42)

which combined with H∗(Σ) =
(

1
2

)
⊕ 2g(0) gives

H∗(Σ) = θg−1Jac(Σ). (3.4.43)

Note that summand (a) on the right hand side of (3.4.42) denotes a vector space with
weights equal to the weights of the (a) representation shifted by a certain amount. In
order to generalize (3.4.43) to actions of θr on Jac(Σ) it turns out that one has to look at
the pth symmetric product of Σ, namely Symp(Σ). The symmetric product of Σ consists
of p unordered points of Σ. As an example let us look at the second symmetric product.
Then we have H∗(Sym2(Σ)) ∼= Sym2H∗(Σ), giving

H∗(Sym2Σ) = (1)⊕ 2g

(
1

2

)
⊕
(

2g
2

)
(0). (3.4.44)

Again an easy calculation using induction shows

θg−2Ig = (1)⊕ 2g

(
1

2

)
⊕ (2g2 − g − 1)(0), (3.4.45)

which combined with H∗(Sym0Σ) = (0) and (3.4.44) yields

H∗(Sym2Σ) = θg−2Ig ⊕H∗(Sym0Σ). (3.4.46)

This equation can be generalized and one arrives at the following result

H∗(SympΣ) = θg−pH∗(Jac(Σ))⊕H∗(Symp−2Σ). (3.4.47)

The symmetric product is well defined in this case only for smooth curves. For singular
curves we have to use the Hilbert scheme Hilbp(Σ) which coincides with the former for
smooth curves. An element of Hilbp(Σ) consists of the curve Σ together with the choice
of p points on it. Letting Σ vary in a family M we arrive at the relative Hilbert scheme

C(p) = {(Σ, Z)|Σ ∈M, Z ∈ Hilbp(Σ)} . (3.4.48)

As Symp(Σ) varies as the fibers of the C(p) over M and Jac(Σ) varies as the fibers of
the family M̂ over M equation (3.4.47) generalizes to

H∗(C(p)) = θ(g−p)H∗(M̂)⊕H∗(C(p−2)). (3.4.49)

Now, as the definition of the nr[Σ] reads

H∗(M̂) =
∑

nr[Σ]Ir, (3.4.50)
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we can use equation (3.4.49) to compute the nr[Σ] in explicit cases. Consider the case

p = 0, then equation (3.4.49) simplifies to

H∗(M) = θgH∗(M̂) (3.4.51)

as C(0) =M. Applying Tr(−1)F to this we arrive at

(−1)dimMe(M) = ng[Σ], (3.4.52)

where e(M) is the Euler characteristic of M. This is a simple and important formula
which is a general result in the theory of Gopakumar-Vafa invariants. Next, we turn to
the case p = 1. Then equation (3.4.49) reads

H∗(C) = θg−1H∗(M̂)

= θg−1(ng[Σ]Ig + ng−1
[Σ] Ig−1 + · · · ) (3.4.53)

= ng−1
[Σ] (0)⊕ ng[Σ]

((
1

2

)
⊕ 2g(0)

)
.

Again applying Tr(−1)F to this , we get

(−1)dimM+1e(C) = (2g − 2)ng[C] + ng−1
[C] , (3.4.54)

where it was used that dimC = dimM+ 1. We will not delve more into these calculations
at this point but will refer the reader to the beautiful expositions [45] and [19].

3.4.4 Interpretation around the Conifold singularity

Calabi-Yau manifolds admit so called Conifold singularities, see section 3.1.2, where in
the A model the local geometry near the singularity is given by

O(−1)⊕O(−1)
↓
P1

. (3.4.55)

Near a conifold singularity, the metric of the moduli space is degenerate and the
prepotential takes the following form

F 0
c ∼ t2c log tc +O(t0c), (3.4.56)

where tc is the Kähler parameter of the shrinking cycle. Strominger [20] argued that the
occurrence of such a singularity in the four dimensional effective action can be traced back
to integrating out light Ramond-Ramond black holes with mass tc. A further argument
by Vafa [54] shows that the genus one free energy is singular as well for tc → 0 due to
integrating out the same massless hypermultiplet, namely we have

F 1
c = − 1

12
log tc +O(tc). (3.4.57)
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For higher genus calculations one can use (3.4.55) to show that for any class Q = d[P1]
the moduli space M̂ of deformations is just a point. Consider first the case d = 1. As
the local geometry (3.4.55) has no complex structure deformations, the baseM is trivial.
Also, there are no flat connections on the P1 which shows that the fibre is trivial as
well. Now look at the space of stable rank d bundles on P1. This set is also empty,
the physical interpretation being that there are no D2-brane bound states on P1. We
therefore see that there is only one hypermultiplet getting massless at the conifold and
is sitting in the representation [(1/2, 0) + 2(0, 0)]. Denoting the size of the P1, i.e. the
mass of the hypermultiplet by tc and following the argumentation in the section about
the Gopakumar-Vafa-invariants we arrive at the one loop integral

F (λ, tc) =

∫ ∞
ε

ds

s

exp(−stc)
4 sin2(sλ/2)

+O(t0c) =
∞∑
g=2

(
λ

tc

)2g−2
(−1)g−1B2g

2g(2g − 2)
+O(t0c). (3.4.58)

This bears the following interpretation. Expanding the topological free energies around
Conifold-singularities in the Calabi-Yau moduli space we expect the above gap structure.
This phenomenon was first observed in [51] and we will make extensive use of it in this
thesis.

3.5 The topological B-model

The topological B-model is much simpler than the A-model as the relevant path integral
configurations turn out to be constant maps to the Calabi-Yau. However, the B-model is
still very powerful due to mirror symmetry which can be used to translate its correlation
functions to A-model amplitudes. Note that the B-model is only consistent for Kähler
manifolds with vanishing first Chern class, as the axial U(1)A which is used for twisting
is anomalous with an anomaly proportional to

∫
Σ
X∗(c1(TM)).

3.5.1 B-model without worldsheet gravity

In the case of the B-model the scalar BRST operator is given by

QB = Q− +Q+. (3.5.1)

Once we go over to new convenient variables

ηī := −(Ψī
− + Ψī

+), θj := gjī(Ψ
ī
+ −Ψī

−), (3.5.2)

the action of the QB transformation simplifies to

δX i = 0, δθi = 0,

δX ī = ε̄ηī, δηī = 0,
δρiµ = ±2iε̄∂µX

i.
(3.5.3)
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Physical operators

The space of physical operators is constructed from X i, X ī, ηī and θi. As the fields ηī

and θi are connected through the metric gīj one immediately sees the correspondence

ηī ←→ dxī (3.5.4)

θi ←→
∂

∂xi
. (3.5.5)

Therefore, a general operator which is a string in the ηī and θi multiplied with an X i,
X ī dependent field corresponds to

ω
j1···jq
ī1···̄ip η

ī1 · · · ηīpθj1 · · · θjq ←→ ω
j1···jq
ī1···̄ip dz̄

ī1 ∧ · · · dz̄ īP ∂

∂zj1
∧ · · · ∂

∂zjq
. (3.5.6)

This is an anti-holomorphic p-form with values in the q-th exterior power of the holo-
morphic tangent bundle TM - an element of Ω0,p(M,∧qTM). One can show easily that the
operator QB is identified with the Dolbeault operator ∂. This way the QB-cohomology is
identified as the Dolbeault cohomology groups

H∗QB =
KerQB

ImQB

=
n⊕

p,q=0

H0,p(M,∧pTM). (3.5.7)

Correlation functions

In this section we want to obtain selection rules for physical correlation functions and
relate them to topological quantities. Consider the correlation function

〈O1 · · · Os〉 =

∫
DXDθDηe−SO1 · · · Os, (3.5.8)

where the Oi correspond to ωi ∈ H0,pi(M,∧qiTM). From the U(1)V symmetry condition
it follows that this correlator is non-vanishing if

∑s
i=1 pi =

∑s
i=1 qi. On the other hand

the U(1)A symmetry has an anomaly after twisting which implies that
∑s

i=1(pi + qi) =
2dimCM(1− g) has to hold for the correlator to be nonvanishing. For genus 0 these two
requirements give together

s∑
i=1

pi =
s∑
i=1

qi = dimCM, (3.5.9)

whereas for g = 1 the correct condition is
∑

i pi =
∑

i qi = 0.
As a next step we shall evaluate the correlation function (3.5.8) by the principle of

localization. Looking at equations (3.5.5) we see that a Q-fixed point obeys

∂µX
i = 0, (3.5.10)

which identifies it as a constant map. Thus, as a consequence, the path integral is taken
over M as the space of constant maps is M itself. All we need now is to find a canonical
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measure on M . Note that the operators are not ordinary differential forms but rather
(0, p)-forms with values in the ∧qTM . Furthermore, for Calabi-Yau threefolds we have
p = q = 3 and thus the holomorphic three form Ω can be used to “absorb” the tangent
indices. This works as follows, define a (3, 3)-form via

ω 7→ 〈ω,Ω〉 := ωi1···in
j̄1···j̄ndz̄

j̄1 ∧ · · · dz̄ j̄nΩi1···in ∧ Ω. (3.5.11)

For genus 0 this translates to

〈O1O2O3〉 =

∫
M

µi1 ∧ µ
j
2 ∧ µk3Ωijk ∧ Ω, (3.5.12)

where µ1, µ2, µ3 ∈ H1(M, TM) are the Beltrami differentials. Note that this result for
the three point function is precisely the third-order derivative of the prepotential of the
complex structure moduli space (see section 3.1.2)

∂1∂2∂3F . (3.5.13)

3.5.2 Picard-Fuchs equations

The complex structure deformation space for Calabi-Yau manifolds is unobstructed and
one can turn on a final deformation starting from a given complex structure [55, 56].
Thus Calabi-Yau manifolds come in families which are smoothly connected. Our aim in
this section is to find a parameterization of the holomorphic three-form and its periods in
terms of affine coordinates on the deformation space. From the viewpoint of the B-model
these can be interpreted as follows. Chiral primary fields of U(1) charge q correspond to
elements of H3−q,q(M) which are subspaces of the ordinary de Rham cohomology group
H3(M,C). However, the de Rham cohomology group depends only on the topology
of M and is thus independent of the complex structure deformations ti. On the other
hand the charge subspaces H3−q,q(M) do rotate within H3(M,C) as one moves the ti’s.
Thus they form a bundle over the moduli space which in fact can be identified with the
bundle V introduced in section 3.3.6. Fields with charge (0, 0) can be identified with
the holomorphic 3-form and charge (1, 1) fields correspond to (2, 1) cohomology classes
according to section 3.5.1.Furthermore, the Gauss-Manin connection of section 3.3.6 tells
us how the space V moves within the Hilbert space. Geometrically this is captured by the
so called Picard-Fuchs equations which are ordinary differential equations annihilating
the periods of Ω.

Having described the basic setup we want to specialize to the case where the complex
structure moduli space is a compact Riemann surface C where in our exposition we
will follow the references [57, 58]. Assuming that the Calabi-Yau manifold Mz over a
point z ∈ C is n-dimensional we choose topological n-cycles Γ0, · · · ,Γr−1 which give a
basis for the nth homology of one particular M0. Furthermore we choose a holomorphic
n-form Ω on M0. The existence of the Picard-Fuchs equation can be deduced by the
following argument. As closed cycles Γi(z) can always be chosen to be covariantly constant
sections of the homology bundle differentiations with respect to z can be passed over the
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integral
∫

Γi(z)
and thus only act on the holomorphic three-form Ω. On the other hand,

one knows from the analysis in section (3.1.2) that derivatives of Ω always stay in the
finite dimensional subspace F 0 = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3. Therefore, we see that the
vectors

Πj(z) :=

[
dj

dzj

∫
Γ0(z)

Ω(z), · · · , d
j

dzj

∫
Γr−1(z)

Ω(z)

]
∈ Cr, (3.5.14)

where Π0(z) is the period vector, remain in a maximally r-dimensional space. Furthermore,
for generic values of the parameter z, the dimensions

dj(z) := dim(span{Π0(z), · · · ,Πj(z)}) (3.5.15)

must be constant. Thus we conclude that there will be a smallest s such that

Πs(z) ∈ span{Π0, · · · ,Πs−1}. (3.5.16)

The last equation can be rewritten as the Picard-Fuchs equation, satisfied by all peri-
ods of Ω(z), namely

Πs(z) = −
s−1∑
j=0

Cj(z)Πj(z)⇔ dsf

dzs
+

s−1∑
j=0

Cj(z)
djf

dzj
= 0, (3.5.17)

where f is an arbitrary period.
Note that the coefficients Cj(z) may acquire singularities at special values of z. How-

ever, it turns out that these singularities are of regular type such that multiplication of
the Picard-Fuchs operator by zs turns it into the form

(z
d

dz
)s +

s−1∑
j=0

Bj(z)(z
d

dz
)j, (3.5.18)

where the redefined coefficients Bj(z) are holomorphic functions of z. This equation can
be transformed to the matrix equation

z
d

dz
w(z) = A(z)w(z), (3.5.19)

where

A(z) =


0 1

0 1
. . . . . .

0 1
−B0(z) −B1(z) · · · · · · −Bs−1(z)

 , (3.5.20)

and

w(z) =


f(z)

z d
dz
f(z)
...

(z d
dz

)s−1f(z)

 . (3.5.21)
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The solutions to equation (3.5.19) can be written in terms of a constant s× s matrix
R and a single valued s× s matrix S(z) which consists of functions of z, regular around
z = 0, as follows

Φ(z) = S(z) · zR. (3.5.22)

Φ is called the fundamental matrix for the system. Furthermore, we have the following
expansion

zR := e(log z)R = I + (log z)R +
(log z)2

2!
R2 + · · · , (3.5.23)

defining a multiple-valued matrix function of z. The matrix e2πiR is called the monodromy
matrix of the system as it gives the local monodromy on the solutions around z = 0. For
applications of Mirror Symmetry we will particularly be interested in points of maximal
unipotent monodromy. This is, by definition, a point in moduli space where (e2πR− I)m+1

is a unipotent matrix, such that (e2πR − I)m 6= 0, (e2πiR − I)m+1 = 0 for m+ 1 being the
order of the Picard-Fuchs-operator.

Generally, one has nontrivial monodromy transformations about the boundary divisors
in moduli space. That is, if we consider a closed loop γ ∈ H1(C) around a boundary point
z0 ∈ C (here C is the closure of C), then the period vector transforms as

Π(z) = M(γ)Π(z), M(γ) ∈ Sp(h3,Z). (3.5.24)

The group generated by transport around all closed loops is denoted by the monodromy
group Γ ⊆ Sp(h3,Z). In addition, since the monodromy group must be a representation
of the fundamental group of the moduli space C with boundary points removed, we have
the fundamental property

ΠiM(γi) = 1h3 (3.5.25)

for loops γi which go around all singular loci zi.
We will not delve more into the theory of Picard-Fuchs operators at this point as the

methods for obtaining such operators and solving the relevant equations can be quite
specific for distinct Calabi-Yau geometries. In section 4.2 we will give some details on
Picard-Fuchs equations for one-parameter models, in section 5.1.2 the theory of Picard-
Fuchs equations for local Calabi-Yau manifolds is reviewed and section 6.2 contains a
generalization for compact hypersurfaces.

3.5.3 Coupling to topological gravity

In order to couple the B-twisted sigma model to topological gravity we have to integrate
over the moduli space Mg introduced in section 3.3.4. The expected complex dimension
of this space is 3g− 3 and therefore the correct measure will be consisting of a real 6g− 6
volume form. The way this measure is found is completely analogous to the bosonic string
case due to the following correspondence. The structure of the twisted N = 2 algebra
is isomorphic to the one which is obtained from the BRST quantization of the bosonic
string. In particular we have
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(G+, J, T,G−)↔ (Q, Jghost, T, b), (3.5.26)

where Q is the BRST generator of the bosonic string, b the antighost corresponding to
diffeomorphism symmetry on the string worldsheet, and Jghost, T are the ghost number
and the energy momentum tensor respectively. Recall that in the case of the bosonic
string after having performed the Faddeev-Popov procedure one obtains the following
measure factor ∫

Mg

〈|
3g−3∏
i=1

b(µi)|2〉, (3.5.27)

where the µi are “Beltrami” differentials introduced in section 3.3.4 and b(µi) is given by

b(µ) =

∫
Σg

bzzµ
z
z̄. (3.5.28)

Note, that the number of b insertions in the correlator is just enough to soak up all
zero modes of the b ghost which count 6g− 6 = −3χ(Σg). Analogously, we introduce the
following measure into the B-twisted theory

F (g) =

∫
Mg

〈|
3g−3∏
i=1

G−(µi)|2〉, (3.5.29)

where by F (g) we denote the free energy of the topological theory at genus g. Here we

use the fact that G−, G
−

have h = 2 after B-twist to define

G−(µ) :=

∫
Σg

G−zzµ
z
z̄. (3.5.30)

In place of the ghost number anomaly this time we have an axial current anomaly
(section 3.3.2) which is again equal to 6g − 6 = −3χ(Σg). This anomaly is canceled by
the insertion of (6g − 6)×G−.

3.5.4 The holomorphic anomaly equations

Let us first explain what we mean here by anomaly in the holomorphic context. Recall
that as stated in section 3.3.5 correlation functions of the B-twisted topological theory do
not depend on anti-chiral insertions. This on the other hand implies that deformations of
the Sigma-model Lagrangian do not depend on anti-chiral parameters and thus that anti-
holomorphic derivatives of the free energies should vanish. However, as argued in section
3.3.4 this relies crucially on the Q-closeness of the vacuum. In this section we shall see
that insertions of anti-chiral fields lead to an integration over the boundary components
of the moduli spaceMg of genus g Riemann surfaces. As this boundary is generically not
empty we arrive at the so called holomorphic anomaly, that is the failing of decoupling of
ani-chiral fields.
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Anti-chiral insertion

Figure 3.4: Contribution from first type degeneration

Taking the derivative of F (g) with respect to t̄i we obtain

∂

∂t̄i
F (g) =

∫
Mg

[dm]

∫
d2z〈

∮
Cz

G+

∮
C′z

G
+
φ̄ī(z)

3g−3∏
a=1

∫
µaG

−
∫
µ̄aG

−〉Σg

=

∫
Mg

[dm]

3g−3∑
b,b̄=1

〈
∫
φ̄ī

∫
2µbT

∫
2µ̄bT

∏
a6=b

∫
µaG

−
∏
ā6=b̄

∫
µ̄āG

−〉Σg

=

∫
Mg

[dm]

3g−3∑
b,b̄=1

4
∂2

∂mb∂m̄b

〈
∫
φ̄ī
∏
a6=b

∫
µaG

−
∏
ā6=b̄

∫
µ̄āG

−〉Σg . (3.5.31)

These lines demand some explanation. In the first line the contours Cz and C ′z are
around the point z where the anti-chiral field φ̄ī is inserted. Moving these contours
around in the Riemann surface, one picks up the commutators

∮
Cw
G+ ·G−(w) = 2T (w)

and
∮
Cw
G

+ · G−(w̄) = 2T (w̄). The T and T insertions can then be converted to moduli

derivatives ∂
∂m

and ∂
∂m̄

as outlined in section 3.3.4. As a last step the Cauchy theorem
can be used to convert the final line to an integral over the boundary of the moduli space
Mg. We will be rather brief in the following and refer the reader to [40] for a detailed
explanation and calculation. There are basically two types of boundary components of
the moduli space Mg. The first type arises when a handle pinches off and the surface
becomes a connected surface of genus (g−1) with two punctures once the node is removed.
The other type consists of surfaces of genus r and (g − r) connected through a long thin
tube. After removing the tube we obtain two disconnected surfaces of genus r and (g− r)
each with one puncture. The first type gives rise to the following anomaly term

1

2
C īj̄k̄e

2KGij̄Gkk̄DjDkF (g−1), (3.5.32)

where C denotes the antiholomorphic three-point function, K is the Kähler potential of
the complex structure moduli space and Gij̄ is the Weil-Peterson metric. There is only a
contribution to the integral for configurations where φi sits on the tube connecting the two
nodes which is also the reason for the appearance of Cijk. This configuration is depicted
in figure 3.4.

The two covariant derivatives Dj and Dk are remnants of the removed node and
correspond to the insertion of chiral fields at the two punctures. Note that the Di are
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Anti-chiral insertion

Figure 3.5: Contribution from second type degeneration

covariant derivatives with respect to the Weil-Peterson metric and the line bundle L, i.e.
one has

Di = ∂i − Γi − (2− 2g)∂iK, (3.5.33)

where ∂iK is the connection on L. The integration over the second type of component
gives the following contribution to the anomaly

1

2

g−1∑
r=1

C īj̄k̄e
2KGjj̄Gkk̄DjF (r)DkF (g−r). (3.5.34)

Again the two covariant derivatives arise from the one puncture on each of the discon-
nected surfaces where the anti-chiral field is inserted within the long tube as depicted in
figure 3.5.

Together these two boundary integrals yield

∂̄īF (g) =
1

2
C īj̄k̄e

2KGjj̄Gkk̄

(
DjDkF (g−1) +

g−1∑
r=1

DjF (r)DkF (g−r)

)
. (3.5.35)

This gives a recursion relation for F (g) with respect to the genus g which we will
solve up to an ambiguity in section 3.7.2. One should bear in mind that the above
argumentation only goes through for Riemann surfaces with genus g ≥ 2. In the case of
g = 1 the holomorphic anomaly was computed in [46] and reads

∂̄k̄∂mF (1) =
1

2
C
ij

k̄ Cmij − (
χ

24
− 1)Gk̄m, (3.5.36)

where we have defined C
kl

ī = e2KGkk̄Gll̄C īk̄l̄.

3.6 Mirror Symmetry

As we have seen in our discussion of nonlinear Sigma-models on Calabi-Yau manifolds
the two geometric deformations of the target space, namely complex structure and Kähler
structure parameters, can be described from the conformal field theory point of view by
so called marginal deformations. Kähler structure deformations can be parametrized
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by fields Φ(−1,1) with (U(1)L, U(1)R) charge (−1, 1) and complex structure deformations
correspond to fields Φ(1,1) with the charges (U(1)L, U(1)R) = (1, 1). These two kinds
of conformal field theory operators just differ by a conventional sign of a U(1) charge.
However, from the geometric point of view we have the cohomology groups H1(M, TM)
and H2,1(M) which are vastly different mathematical objects. This observation caused
the authors of [30] and [27] to postulate the following correspondence: for each Calabi-
Yau manifold M there is a second Calabi-Yau W such that the two are described by the
same conformal field theory but with a reversed association of H2,1(M) and H1(M, TM)
to conformal field theory marginal operators. This can be rephrased into the geometric
conditions

h1,1(M) = h2,1(W ), h2,1(M) = h1,1(W ). (3.6.1)

We see that this implies that the Hodge diamond for W is a mirror reflection through
a diagonal axis of the Hodge diamond for M which is the reason why such a pair (M,W )
is denoted by the term mirror manifolds.

3.6.1 Implications for the Topological String

As we have seen mirror symmetry identifies two manifolds M and W in a way such that the
Kähler structure parameters of the one manifold get mapped to the complex structure
variations of the other manifold. From the point of view of the topological string this
observation appears to be very powerful. Indeed it can be shown that the partition
function of the topological A model on M gets identifies with the one of the topological
B model on W under the so called mirror map. Following this line of thought we see
that calculations on the B model side, i.e. solving the holomorphic anomaly equations,
already contain A model results and in particular the Gopakumar-Vafa invariants can be
extracted from them by the use of the mirror map. In mathematical terms we thus have
the following correspondence

F (g)
A (tA,M) ≡ F (g)

B (tB,W ), (3.6.2)

where the equivalence means the identification of the two free energies depending on A
model parameters tA and B model parameters tB using the mirror map tA = tA(tB). We
shall denote complex structure deformations by the collective coordinates z and Kähler
deformation parameters by the collective coordinates t, i.e. we have tA = t and tB = z.
We will make this correspondence more precise later on. As a first step we present
the construction of the B model prepotential, i.e. F (0), in terms of the periods of the
holomorphic three-form. Being solutions to the Picard-Fuchs equations these periods can
be calculated as a power series expansion around every point in moduli space but there
also exist closed expressions for them.

For a general set of Picard-Fuchs equations, the solution space has dimension h3(W )
and one obtains the following set of periods:
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Π(z) =



∫
B1

Ω
...∫

Bh2,1+1
Ω∫

A1 Ω
...∫

Ah
2,1+1 Ω


=



F (0)

...
Fh2,1

X0
...

Xh2,1


=



ω2h2,1+2 +
∑2h2,1−1

i=1 c0
iωi∑2h2,1−1

i=0 c1
iωi

...
ω0
...

ωh2,1


. (3.6.3)

Here the ωi are solutions to the Picard-Fuchs equations at the maximal unipotent
monodromy point in moduli space and are organized as follows. ω0 is the single solution
starting with a constant, ωk for k = 1, · · · , h2,1 denote single logarithmic solutions, ωl
for l = h2,1 + 1, · · · , 2h2,1 + 1 denote solutions with two logarithms in the z and finally
ω2h2,1+2 is the single triple logarithmic solution. Using the fact that the ωi are periods of
the holomorphic three-form in a specific basis one sees that they can be transformed to
the special geometry basis (X0, X i, (∂F/∂X i), (∂F/∂X0)) by a symplectic rotation.

On the other hand, working on the mirror side, the period vector Π(t) = (1, ti, ∂iF, 2F−
ti∂iF ) encodes Kähler deformations of the Calabi-Yau M with Kähler parameter ti. Here
F is the prepotential for the Kähler side and admits the formal large radius expansion

F =
1

6
κijkt

itjtk +
1

2
aijt

itj + bit
i +

1

2
c+ Finst. (3.6.4)

For a specific choice of the constants cji in (3.6.3) these two period vectors are related
around Im(ti)→∞ through Π(z) = X0Π(t) with the choice

ti(z) =
ωi(z)

ω0(z)
, i = 1, · · · , h2,1. (3.6.5)

From the periods we can calculate the triple couplings

Cijk =

∫
W

Ω ∧ ∂i∂j∂kΩ = DiDjDkF . (3.6.6)

Note that the covariant derivatives w.r.t. the Weil-Petersen metric and the Kähler con-
nection become ∂ti in the coordinates (3.6.5). This justifies the name flat coordinates for
the ti. Furthermore, we have the identification K = − log(X0) with K being the Kähler
potential associated to the prepotential.

As the higher genus prepotentials are sections of the line bundle L2−2g we have the
following identity relating the A to the B model free energy

F g
A(t) = (X0)2g−2F (g)(z(t)). (3.6.7)

The F g
A(t) are called Gromov-Witten potentials.
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3.7 Solving the holomorphic anomaly equations

In this section we want to outline a method of solution of the B-model higher genus
amplitudes using the holomorphic anomaly equations [40], the modular properties of the
F g [47, 49, 50] and boundary conditions in particular the gap conditions of [51].

3.7.1 The holomorphic limit

Before delving into the details of the direct integration method for solving the holomorphic
anomaly equations let us first clarify the limit procedure we will use in order to perform
actual computations. This limit procedure is called the holomorphic limit as it is an
expansion around the base point t̄ → ∞. In such an expansion all non-holomorphic
quantities will become purely holomorphic. As the genus 0 free energy and correlation
functions are purely holomorphic from the start, looking at the holomorphic anomaly
equations (3.5.36), (3.5.35) we see that all anti-holomorphic dependence will come only
from the metric Gij̄, the Christoffel symbol Γkij, and the Kähler potential K. Using the
mirror map t = t(z) and its inverse the holomorphic limits of these quantities are extracted
to be

Gīj ∼
∂tk
∂zl

,

Γkij ∼
∑
m

∂zk
∂tm

(z)∂zi
∂tm(z)

∂zj
,

K ∼ − log(ω0), (3.7.1)

where ω0 is the solution starting with least possible power in the z 1. All following
calculations will make use of this limit, when calculating propagators and extracting the
Gopakumar-Vafa invariants. However, it is important to keep in mind that all these
quantities in fact exhibit anti-holomorphic dependence which is crucial for the procedure
of direct integration to which we shall turn next.

3.7.2 Direct Integration

The method of direct integration relies on four key properties. The first is the fact that the
F (g) fulfill the holomorphic anomaly equations. The second is the fact that the F (g) are
modular invariant under the monodromy group Γ of the Calabi-Yau target space, which
is a subgroup of Sp(h3,Z), and can be built from a finite polynomial ring of modular
objects. In the large phase space these objects can be identified directly with modular
forms under Γ [50], while the modular generators that appear below are obtained after a
projection to the small phase space. The third important ingredient is the existence of
a canonical antiholomorphic extension of the ring of modular forms to a ring of almost
holomorphic forms, with the property that the appropriate covariant derivatives closes on

1At the large complex structure point this is the solution starting with 1 + · · ·
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the almost holomorphic ring and that the antiholomorphic derivative in the holomorphic
anomaly equation can be replaced by a derivative w.r.t the antiholomorphic generators
of the almost holomorphic ring. The integration of the polynomials F (g) w.r.t. the
antiholomorphic generators leaves a holomorphic modular ambiguity, which is finitely
generated over the smaller holomorphic ring. The final ingredients are physical boundary
conditions at the discriminant components of the Calabi-Yau space, which determine the
coefficients of the holomorphic modular ambiguity and allow only for a restricted class
of modular objects in the rings, comparable to requiring restricted cusp behaviour for
modular forms of Γ0 = Sl(2,Z).

Indeed the comparison to the classical theory of Γ0 modular forms of elliptic curves [52]
is very instructive. The ring of modular formsM∗[E4, E6] is here generated by the Eisen-
stein series E4 and E6. The covariant derivative is the Mass derivative acting on weight

k modular forms by Dk =
(

d
2πidτ

− k
4πIm(τ)

)
. It does not close on M∗[E4, E6], but on

the ring of almost holomorphic functions M![Ê2, E4, E6], where Ê2 is the anholomorphic
extension of the second Eisenstein series Ê2 = E2 − 3

πIm(τ)
. The latter plays the role of

the anholomorphic propagators in the formalism of [40]. Moreover a modular form w.r.t.
Γ0 of weight k fulfills a linear differential equation in the J-function of order k + 1. This
is the analog of the Picard-Fuchs equation and even if we know little about the modular
objects of the Calabi-Yau group Γ it is possible to reconstruct them from the solutions
of the Picard-Fuchs system. The totally invariant complex parameters z on the moduli
space play here the rôle of the J-function. It should be noted that this is more than a
formal analogy, because in certain local limits, as will be the subject of chapter 5, the
formalism of the global Calabi-Yau space reduces to the one of a family of elliptic surfaces.
For more details on modular forms we refer the reader to appendix B.

For the Calabi-Yau case the method of direct integration was developed in the work
of Yamaguchi and Yau [47] for the one parameter models and extended in the work [49]
to the multimoduli case.

Here we first follow the latter one as it is the more general construction and will give
afterwards a short presentation of the method of [47] as this method is particularly suited
for one-parameter models.

General case

The construction and the properties of the anholomorphic objects rely crucially on special
geometry relation (3.1.41)

∂̄īΓ
k
ij = δkiGjī + δkjGīi − CijlC̄kl

ī , (3.7.2)
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from which one can show [49, 47]

DiS
jk = δjiS

k + δki S
j − CimnSmjSnk + hjki ,

DiS
j = 2δjiS − CimnSmSnj + hjki Kk + hji ,

DiS = −1

2
CimnS

mSn +
1

2
hmni KmKn + hjiKj + hi,

DiKj = −KiKj − CijkSk + CijkS
klKl + hij, (3.7.3)

where
∂īS

ij = C̄ij
ī
, ∂īS

j = GīiS
ij, ∂īS = GīiS

i, Ki = ∂iK, (3.7.4)

and hjki , hij, hi and hij denote holomorphic functions. The propagators Sij, Si and S are
obtained as solutions of the equations (3.7.4) up to holomorphic functions f ikl, fkl and f :

Sij = (C−1
k )jl((δik∂l + δil∂k)K + Γikl + f ikl),

Si = (C−1
k )il(∂kK∂lK − ∂k∂lK + f jkl∂jK) + fkl),

S =
1

2h11

[
(h1,1 + 1)Si −DjS

ij − SijSklCjkl
]
∂i(K + log(|f |)/2)

+
1

2h1,1
(DiS

i + SiSjkCijk), (3.7.5)

where the matrix C−1
k is the inverse of the matrix (Ck)ij = Cijk. The relations (3.7.3) imply

that the topological free energies F (g) are polynomials in a finite set of non-holomorphic
generators, namely the propagators Sij, Si, S and the Kähler derivatives Ki. To see this,
note that equation (3.7.23) can be written in terms of these generators as

∂iF (1) =
1

2
CijkS

jk − (
χ

24
− 1)Ki + Ai, (3.7.6)

where the holomorphic ambiguity is encoded in the ansatz Ai = ∂i(ãj log ∆j + b̃j log zj).
Rewriting the left hand side of equation (3.5.35) as

∂̄ı̄F (g) = C̄jk
ī

∂F (g)

∂Sjk
+Gīı

(
F (g)

∂Ki

+ Si
∂F (g)

∂S
+ Sij

∂F (g)

∂Sj

)
, (3.7.7)

and assuming independence of the C̄jk
ı̄ and the Gīı gives

∂F (g)

∂Sij
=

1

2
DiDjF (g−1) +

1

2

g−1∑
r=1

DiF (g−r)DjF (r),

0 =
∂F (g)

∂Ki

+ Si
F (g)

∂S
+ Sij

∂F (g)

∂Sj
. (3.7.8)

Due to (3.7.3) and (3.7.6) the right hand side of these equations is always a polynomial
in the generators (3.7.4). Therefore, it is straightforward to integrate the equations (3.7.8)
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which finally shows the polynomiality of the free energies. The last equation in (3.7.8)
can be used to show that F (g) becomes independent of the Ki in the redefined basis

S̃ij = Sij,

S̃i = Si − SijKj,

S̃ = S − SiKi +
1

2
SijKiKj,

K̃i = Ki, (3.7.9)

and one has ∂F (g)/∂K̃i = 0.
For practical calculations it is convenient to work in the basis of the tilted generators

and we therefore rewrite the truncation relations (3.7.3) in terms of these as

DiS̃
kl = S̃lδki + S̃kδli + K̃jS̃

jlδki + K̃jS̃
jkδli − CimnS̃kmS̃ln + hkli ,

DiS̃
k = 2S̃δki + K̃mS̃

mδki − δmi K̃mS̃
k − himS̃mk + hki ,

DiS̃ = −2S̃K̃i − himS̃m +
1

2
CimnS̃

mS̃n + hi,

DiK̃j = −K̃iK̃j − CijkS̃k + hij. (3.7.10)

The holomorphic functions hkli , hki , hi and hij are extracted from expansions of the
above equations around the large complex structure point in moduli space and are valid
after tensor transformation at every other point on the deformation space.

Method of Yamaguchi and Yau for one-parameter models

The basic idea is to introduce two sets of generators, given by

Ak = Gzz̄θkzGzz̄, Bk = eK(z,z̄)θkze
−K(z,z̄), (3.7.11)

where θz = z d
dz

and z is the only complex structure deformation parameter. A short
calculation shows

θzAk = Ak+1 − A1Ak, θzBk = Bk+1 −B1Bk. (3.7.12)

Noticing the relation e−K(z,z̄) = 〈Ω(z), Ω̄(z)〉2, the fourth order Picard-Fuchs equation
usually obtained for one-parameter models can be rewritten in terms of the Bk

B4 = r1(z)B1 + r2(z)B2 + r3(z)B3 + r4(z), (3.7.13)

where the rk(z) are rational functions.
Furthermore, there exists a similar relation for the Ak. As was shown in [47] A2 is

given by

2Here 〈Ω,Ω〉 denotes the scalar product −iΠ†ΣΠ, where Π is the period vector and Σ the symplectic
bilinear form
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A2 = −4B2 − 2B1(A1 −B1 − 1) + θzlog(zCzzz)Tzz + r(z), (3.7.14)

where Tzz is defined through the Szz propagator

Tzz = −(zCzzz)S
zz, (3.7.15)

and r(z) is a holomorphic function to be specified later. Also the propagators are defined
up to holomorphic functions f and v

Szz =
1

Czzz

(
2∂log(eK |f |2)− (Gzz̄v)−1∂(vGzz̄)

)
= − 1

zCzzz

(
2B1 + 2

∂f

f
+ A1 −

∂v

v

)
.

The choice for f and v is done such that the invariant combinations eK |f |2 and Gzz̄|v|2
remain finite around z = 0.

The rational function r(z) is obtained by taking the holomorphic limit of both sides
of equation (3.7.14) and making an appropriate Ansatz in terms of the discriminants.

The two equations (3.7.14) and (3.7.13) show that the θz-derivative acts within the
ring generated by A1,B1,B2 and B3. More precisely, we have the property

θz : C(z)[A1, B1, B2, B3]→ C(z)[A1, B1, B2, B3]. (3.7.16)

Similarly, the action of the ∂z̄ derivative just adds two more generators to the above
polynomial ring, namely ∂z̄B1 and ∂z̄A1. This is because, as was shown in [47], one has
the following identities

∂z̄B2 = (1 + A1 + 2B1)∂z̄B1, (3.7.17)

∂z̄B3 = (A2 + 3B1 + 3B2 + 3A1B1 + 1)∂z̄B1. (3.7.18)

The next step will be to show that rewriting the holomorphic anomaly equations allows
us to rewrite the solutions in terms of polynomials in A1, B1, B2 and B3. In order to
proceed we first introduce the quantities P

(g)
n defined through

P (g)
n = (z3Czzz)

g−1znDn
zF (g) (n = 0, 1, 2, . . .). (3.7.19)

Under the assumption that ∂z̄A1, ∂z̄B1 are independent the holomorphic anomaly
equation

∂z̄P
(g) =

1

2
∂z̄(zCzzzS

zz)

P (g−1)
2 +

(g−1)∑
r=1

P g−1
1 P

(r)
1

 (3.7.20)

can be translated into
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0 = 2
∂P (g)

∂A1

−
(∂P (g)

∂B1

+
∂z̄B2

∂z̄B1

∂P (g)

∂B2

+
∂z̄B3

∂z̄B1

∂P (g)

∂B3

)
,

∂P (g)

∂A1

= −1

2

{
P g−1

2 +

g−1∑
r=1

P
(g−r)
1 P

(r)
1

}
.

This shows the polynomiality of the solutions. Performing the following variable
change

u = B1, v1 = 1 + A1 + 2B1, v2 = −B1 − A1B1 − 2B2
1 +B2,

v3 = −B1 − 2A1B1 − 5B2
1 − A1B

2
1 − 2B3

1 +B1B2 +B3

−B1(r(z) + Tzzθzlog(zCzzz)),

one can furthermore obtain ∂
∂u
P (g) = 0 which reduces the number of independent variables

to three. Notice that the above equations are generic for all kinds of one parameter models,
once r(z) is extracted from the truncation relation (3.7.14). The holomorphic anomaly

equation can now be solved recursively with the initial data P
(0)
3 = 1 and P

(1)
1 , given by

P
(1)
1 =

1

2

{
−A1 − (2 + h1,1 − χ

12
)B1 − 1− c2 · J

12
− θz(dis(z))

6 dis(z)

}
, (3.7.21)

where J is the Kähler form of the Calabi-Yau M .
However, the integration of the holomorphic anomaly still leaves us with the holo-

morphic ambiguity. The relation between the genus g free energy F (g), the holomorphic
ambiguity fg(z) and the polynomials P (g) is given by the following equation

F (g) = (z3Czzz)
(1−g)P (g) + fg(z). (3.7.22)

3.7.3 The holomorphic ambiguity

Having integrated the anomaly equations we remain with the task of fixing the integration
constant which in fact is a meromorphic function defined on the whole of moduli space
and called holomorphic ambiguity. This ambiguity is fixed by requiring certain boundary
conditions at the boundary loci in moduli space. Taking the point of view of modular
forms, the correct solution for the F (g) has to admit singular expansions at cusps of the
moduli space and be regular everywhere else. The degree and coefficient of the singularity
will depend on the massless particle spectrum at the singular locus. In this thesis we will
deal with the following types of singularities.

• Conifold locus: This divisor is universal and appears in the moduli space of all
Calabi-Yau manifolds. As discussed in section 3.4.4, exactly one hypermultiplet
becomes massless as the size of a S2 shrinks to zero.
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• Lense spaces: Lense spaces are cousins of conifolds where in the B model geometry
the vanishing sphere is a three-sphere modded out by a discrete group. That is, at
the divisor the space S3/G, where G ⊂ SU(2), shrinks to zero size. As is explained
in [53] the number of hypermultiplets becoming massless is equal to the number
of irreducible representations of G. We will come across examples of lense space
singularities in chapter 4.

• ADE singularities: This type of singularity is common for K3 fibrations. It is char-
acterized by singularities of type C2/Zn fibred over a Riemann surface. The new
feature of such a point in moduli space is the occurence of enhanced gauge sym-
metries as additional vector multiplets become massless. This phenomenon was
discussed in section 2.2 and will be reviewed in more detail in chapter 6. The num-
ber of massless hypermultiplets is 2g for a genus g Riemann surface and that of
massless vectormultiplets is 2 for a complex codimension 1 singularity.

• Landau-Ginzburg enhanced symmetry point: The Landau-Ginzburg enhanced sym-
metry point lies in a region of moduli space which is the analytic continuation of the
geometric Kähler moduli space and thus the number of massless vector and hyper-
multiplets from vanishing cycles is zero. For hypersurfaces in weighted projective
space there is a CFT description available at this point, see chapter 6.

Next, we will discuss the parametrization of the holomorphic ambiguity and boundary
conditions at the singular loci.

Genus g = 1:

Equation (3.5.36) can be integrated straightforwardly and one obtains

F (1) =
1

2
log
[
exp

[
K(3 + h1,1 − χ

12
)
]

detG−1
ij̄
|f1|2

]
. (3.7.23)

f1 is the holomorphic ambiguity arising form the integration and can be written in

terms of the discriminant loci of the Calabi-Yau moduli space, i.e. f =
∏

i ∆
ai
i

∏h2,1

i=1 z
bi
i .

All free parameters ai, bi are obtained through the limiting behavior of F (1) near singu-
larities. Canonical boundary conditions are given by the limit

lim
zi→0
F (1) = − 1

24

h2,1∑
i=1

log(zi)

∫
M

c2Ji (3.7.24)

as well as by the universal behavior at conifold singularities acon = − 1
12

. The integral∫
M
c2Ji is performed on the mirror Calabi-Yau and M and Ji denote the Kähler forms

associated to the different Kähler moduli.
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Genus g ≥ 2:

As in the case of genus 1 there also arise holomorphic ambiguities at higher genus due to
the anti-holomorphic derivative in (3.5.35). These ambiguities, denoted by fg, are rational
functions defined on the whole moduli space and transform as sections of L2−2g. One of
the major challenges of topological string theory is to fix the ambiguity at each genus,
after each integration step. This is done through using physical boundary conditions at
the boundary divisors of the moduli space. In the case of compact Calabi-Yau manifolds
one is dealing with several boundary divisors and many of them arise through a blow
up of the moduli space and do not manifest themselves as singular loci of the Calabi-
Yau hypersurface. A convenient way to see what is happening around these divisors and
whether they have to be introduced in the holomorphic ambiguities for higher genera is
to look at the behaviour of the genus 1 free energy F 1

i (ti,N , ti,T ). Here, i is a label for the
divisor in question and ti,N , ti,T denote the flat coordinates normal as well as tangential
to the divisor. In the work of Vafa [54] it is argued that the coefficient in front of the
term logarithmic in ti,N counts the difference between hyper- and vector multiplets which
become massless at the divisor ∆i, i.e. we have the following expansion

F 1
i (ti,N , ti,T ) = (nH − nV ) log(ti,N) + · · · . (3.7.25)

This allows us to constrain the form of the ambiguity for higher genera by demanding
regularity at all divisors whose corresponding F 1-expansion does not come with a loga-
rithmic term in the normal direction. This path of argumentation leads us to the following
ansatz for the holomorphic ambiguities

fg =
∑

|I|≤P∞(g)

aIz
I +

∑
k

∑
|I|≤Pk(g)·deg∆k

ckIz
I

∆
Pk(g)
k

, (3.7.26)

where zI is a short hand notation for zi11 z
i2
2 · · · zinn and |I| = i1 + · · · in. Furthermore, Pk(g)

denotes the power of the boundary divisor ∆k as a function of the genus g. Note that we
also have terms which are polynomial in the zi and therefore become singular around the
locus ∆∞ where zi →∞.

The power of ∆k in the denominator is fixed by the leading behaviour of F g near the
corresponding singularity. In the case of the conifold singularity the behaviour is of the
form

F g
c =

cg−1B2g

2g(2g − 2)t2g−2
c,N

+O(t0c), (3.7.27)

where tc,N → 0 is a flat coordinate normal to the singularity locus. For more general
singularities where nH hypermultiplets and nV vector multiplets become massless one
expects the behaviour

F g
s = (nH − nV )

cg−1B2g

2g(2g − 2)t2g−2
s,N

+O(t0s), (3.7.28)

81



82 CHAPTER 3. THE TOPOLOGICAL STRING

where ts,N is again the coordinate normal to the singularity locus. In order to extract the
power of the discriminant component in the denominator of the ansatz one has to take
into account the relation between ∆s and ts,N . In the case of the conifold discriminant this
behaviour is a direct proportionality which is the reason why this discriminant appears
to inverse powers of 2g − 2. In the case of the strong coupling discriminant we will be
dealing in our examples the relation is ∆s ∼ t2s,N which leads to the ansatz

fg = . . .+

∑
|I|≤g−1 c

s
Iz
I

∆g−1
s

+ . . . . (3.7.29)

Formula (3.7.28) is a generalization of the Schwinger loop calculation performed in
section 3.4.4 where one BPS hypermultiplet was running in the loop. As a BPS-vector
multiplet contains one more fermion than a BPS-hypermultiplet there is a relative minus
sign between the two loop calculations. Another way to see this is that in N = 4 theories
where one has no quantum corrections N = 2 vector- and hypermultiplets are forming
together one N = 4 multiplet. Therefore, one expects that quantum corrections come
with a sign difference.

However, the above argumentation leading to the result (3.7.28) goes only through
once the theory is noninteracting and the calculation for the various BPS particles can be
done separately. In an interacting theory several BPS states can form a bound state and
then the calculation of the effective field theory becomes much more involved.

In the case of local Calabi-Yau manifolds with one conifold discriminant, reviewed in
chapter 5, the ansatz (3.7.26) specializes to

fg =
Ag

∆2g−2
con

, (3.7.30)

where the Ag are polynomials in z of degree (2g− 2) ·∆con. We find that the vanishing of
subleading terms in (3.7.27) provides enough boundary conditions in order to fix the Ag
and therefore the ambiguity completely. We claim that this is also the case in the compact
examples, i.e. that the constants ckI are fixed completely by the leading behaviour near
the corresponding singularity ∆k. This claim is supported by calculations done in [3, 5],
reviewed in chapters 4 and 6. However, once we are dealing with compact manifolds
also terms of the form aIz

I appear in the ambiguity which become singular near the
divisors zi = ∞. The constant term in this series is always solved for by the constant
map contribution to F g at the point of large radius in moduli space

F g =
χB2g−2B2g

4g(2g − 2)(2g − 2)!
+O(e2πit). (3.7.31)

The terms linear and of higher order in the zi are connected to new physics becoming
important at the divisors zi =∞ and/or their intersections. For hypersurfaces in weighted
projective space one can prove that at the intersection point z1 = · · · = zh2,1 =∞ one has
an exact CFT description and thus one can impose regularity on the amplitudes around
this point.
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Chapter 4

Grassmannian Calabi-Yau
backgrounds

Mirror symmetry of Calabi-Yau manifolds has been understood to large extent for com-
plete intersections or hypersurfaces in toric ambient space. However a huge and much less
explored class of Calabi-Yau manifolds, with distinct low energy spectrum, can be realized
in ambient spaces, which are defined by other homogeneous spaces like the Grassmannians
G(k, n) = U(n)/(U(k)×U(n− k)). We shall denote denote Calabi-Yau manifolds, which
are complete intersections in Grassmannians as “Grassmannian Calabi-Yau manifolds”
and such which are realized as complete intersections in toric spaces as “toric Calabi-
Yau manifolds”. As discussed in section 3.2.2 from the point of view of the 2-d linear
σ-model description of the ambient space the difference is that the former have U(1)r

gauge symmetries, while the latter have non-abelian
∏

k U(Nk) gauge symmetries.
This chapter reviews the results of reference [3] which analyzes the topological string

on Grassmannian Calabi-Yau manifolds. In our presentation we will concentrate on those
models which contain new distinct physics and will refer to [3] for other models with
similar behaviour.

4.1 Calabi-Yau complete intersections in Grassman-

nians

In this section we introduce the Calabi-Yau intersections in Grassmannian, calculate their
topological data and review the mirror construction of [59].

4.1.1 Topological invariants of the manifolds

Compact Calabi-Yau manifolds M can be constructed by considering complete intersec-
tions in Kähler ambient spaces with positive Chern class. The first Chern class of the
complete intersections is controlled by the adjunction formula and we can chose appropri-
ate degrees of the complete intersection constraints so that c1(TM) = 0. We will calculate
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84 CHAPTER 4. GRASSMANNIAN CALABI-YAU BACKGROUNDS

the topological data of M by basic algebraic geometry. All necessary tools are reviewed
in [21, 60].

We restrict to complete intersections in smooth Grassmannians. In this way one
finds 5 complete intersections M with h1,1 = 1. The ambient space will be denoted as
G(k, n) = (U(k) × U(n − k)), where U(n) are the unitary groups. For the complete
intersection we use the notation

(G(k, n)||d1, . . . , dl)
h1,1

χ . (4.1.1)

Here the degrees di of the Calabi-Yau intersection are given w.r.t. the principal canonical
bundle Q of the Grassmannian, see below. In addition we give the Euler number χ as
subscript and the Picard number h1,1 as superscript. Of course, h3,0 = 1, hk,0 = 0 for
k = 1, 2 and h2,1 = −χ

2
+ h1,1. Together with Poincareé and Hodge duality this fixes all

Hodge numbers of M . All necessary topological data, which fix the topological type of
M , are calculated below using the Schubert calculus.

Let us first give a closed expression for the Chern classes of Grassmannians follow-
ing Borel and Hirzebruch in [60]. Their method is based on an identification of Chern
classes with elementary symmetric polynomials or combinations of them, which we will
summarize here.

Let S{x1, · · · , xl} denote the set of elementary symmetric polynomials in the vari-
ables x1, · · · , xl. Then the integral homology H∗(G(k, n),Z) of the Grassmannian can be
identified with the quotient

S{x1, · · · , xn−k} ⊗ S{xn−k+1, · · · , xn}/I, (4.1.2)

where I is the ideal generated by the symmetric power series in x1, · · · , xn without con-
stant term. Now, in this representation, the closed formula for the total Chern class
reads

c(G(k, n)) =
n−k∏
i=1

(1− xi)n
∏

1≤i≤j≤n−k

(1− (xi − xj)2)−1. (4.1.3)

Practically, in order to calculate the Chern classes, substitute each xl by hxl and make
a series expansion in h. Then, the i’s Chern class is given by the coefficient of hi which
can be expressed in terms of elementary symmetric polynomials σr, r ≤ i in x1, · · · , xn−k.
For example, we have

c1(G(k, n)) = −nσ1, (4.1.4)

c2(G(k, n)) =

((
n

2

)
+ n− k − 1

)
σ2

1 + kσ2.

The formula for the first Chern class shows that−σ1 is a positive generator ofH2(G(k, n),Z).
Next, note that σr is (up to a possible sign) the r-th Chern class of the canonical principal
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4.1. CALABI-YAU COMPLETE INTERSECTIONS IN GRASSMANNIANS 85

U(n− k)-bundle Q over G(k, n) and as such represents the class of a hyperplane section.
We have σ1 = −c1(Q), σ2 = c2(Q), σ3 = −c3(Q), . . ..

Finally, we are ready to write down the total Chern class of Calabi-Yau complete

intersections (G(k, n)||d1, . . . , dl)
h1,1

χ , l = k(n− k)− 3, d1 + · · ·+ dl = n :

c((G(k, n)||d1, . . . , dl)
h1,1

χ ) =
c(G(k, n))

(1 + d1c1(Q)) · · · (1 + dlc1(Q))
. (4.1.5)

Denoting by H the hyperplane σ1 , the topological invariants χ(M), c2(M) · H, H3

can be expressed through intersection numbers of the Grassmannian G(k, n). As an
example, we review the calculation of the Euler number. The Gauss-Bonnet formula
gives

∫
M
c3(M) = χ. Now, using the adjunction formula, this integral can be expressed

through an integral over the whole Grassmannian

χ(M) =

∫
M

c3(M) =

∫
G(k,n)

c3(M)
l∏

i=1

diH =

∫
G(k,n)

c3(M)
l∏

i=1

dic1(Q). (4.1.6)

Similarly, the other topological invariants are given by

c2(M) ·H =

∫
G(k,n)

c2(M)c1(Q)
l∏

i=1

dic1(Q), (4.1.7)

H3 =

∫
G(k,n)

c1(M)3

l∏
i=1

dic1(Q). (4.1.8)

As all Chern classes of M are expressed through Chern classes of Q, which are Poincare
dual to the Schubert cycles of the Grassmannian, all invariants can at the end be expressed
through intersection numbers of Schubert cycles. These numbers can then be calculated
utilizing the Schubert calculus and Pieri’s formula. Denoting by σa the special Schubert
cycle given by the indices a = (a, 0, · · · , 0) and by σb a general Schubert cycle with indices
b = (b1, · · · , bk), Pieri’s formula reads

σa · σb =
∑

bi≤ci≤bi−1P
ci=a+

P
bi

σc. (4.1.9)

Note that in the above formula the index c1 must always be greater or equal to b1.
For further details we refer to [21].

We have performed the above steps and list the result for our Calabi-Yau complete
intersections in the Appendix.

4.1.2 Plücker embedding

In order to describe the mirror of the complete intersections in Grassmannians it is useful
to have an embedding of the Grassmannian into the projective space. The Plücker map
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provides such an embedding. It simply sends a k-plane Λ = C{v1, · · · , vk} ⊂ Cn to the
multivector v1 ∧ · · · ∧ vk.

Explicitly, in terms of the basis {eI = ei1 ∧ · · · ∧ eik}#I=k for ∧kCn, this map is given
by the data

p : G(k, n)→ P(∧kCn) = P(nk)−1, (4.1.10)

Λ 7→ [· · · , |ΛI |, · · · ], (4.1.11)

where the |ΛI | are the determinants of all the k×k minors of ΛI of a matrix representative
of Λ.

To describe this embedding algebraically we need to find a set of equations which cut

out the Grassmannian in P(nk)−1, i.e. which define conditions on a multivector Λ ∈ ∧kV
to be of the form

Λ = v1 ∧ · · · ∧ vk. (4.1.12)

Some calculations show that this is equivalent to demanding

(i(Ξ)Λ) ∧ Λ = 0, (4.1.13)

for all Ξ ∈ ∧k−1V . Here, the map i(Ξ)Λ is defined by

〈i(Ξ)Λ, v〉 = 〈Ξ,Λ ∧ v〉 (4.1.14)

for all v ∈ V .
Now, a Calabi-Yau complete intersection is obtained by choosing hypersurfaces of ap-

propriate total degree in P(nk)−1, such that their intersection with G(n, k) is a nonsingular
Calabi-Yau space.

4.1.3 Mirror Construction

A mirror construction for the above type of Calabi-Yau spaces was given in [59]. Here,
we will only sketch the method introduced there which is based on conifold transitions.

Let M be a Calabi-Yau complete intersection described by the Grassmannian G(k, n)
and hyperplanes Hi. As was shown by Sturmfels [61] a flat deformation of G(k, n) in

its Pluecker embedding leads to a Gorenstein toric Fano variety P (k, n) ⊂ P(nk)−1. Now,
denote by M0 the intersection of P (k, n) with generic hypersurfaces Hi. This manifold has
a locus of conifold singularities which come from the singularities of P (k, n). Resolving
these by restriction of a small toric resolution of singularities in P (k, n) one obtains a
second Calabi-Yau M∗. M∗ is a complete intersection in a toric manifold and as such its
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mirror construction is known. The remaining task is to find an appropriate specialization
of the toric mirror W ∗ for M∗ to a conifold W0 whose small resolution provides the mirror
W of M . This task was performed in [59] for the manifolds we will be dealing with in
this paper.

The above steps can be summarized in the following graph:

Conifold transition

Conifold transition

Mi
rro

r S
ym

me
try

Mirror Symmetry

0MM *M

W 0W *W

Figure 4.1: Mirror construction for Grassmannian Calabi-Yau manifolds.

4.2 Picard-Fuchs equations for one-parameter mod-

els

As the third homology groupH3(W ) of a mirror Calabi-YauW with one complex structure
parameter is four-dimensional the Picard-Fuchs equations governing the Hodge structure
of such models are 4th order differential operators.

In order to obtain period expressions one therefore has to solve an ordinary fourth
order differential equation. Solutions at different points in moduli space are constructed
by first transforming the Picard-Fuchs operator to the relevant point and then solve its
indicial equation. Applying the Picard-Fuchs operator to expressions of the form

zρ(1 +
∞∑
n=1

anz
n), (4.2.1)

the indicial equation arises as the vanishing condition for the lowest order term in z. The
roots (ρ1, ρ2, ρ3, ρ4) will then determine the leading power behaviour of the four period
solutions at the relevant point in moduli space. In the following we will stress some
properties of the roots ρi and refer to [62] for a more complete treatment.
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Picard-Fuchs operators with degenerate roots of the indicial equation admit regular
singular points and signal the occurrence of logarithms. At the point of maximal unipotent
monodromy in moduli space the roots are given by

(ρ1, ρ2, ρ3, ρ4) = (0, 0, 0, 0). (4.2.2)

From this it follows that only one of the solutions is polynomial in z, all others being
logarithmic. Another important point in moduli space is the conifold point. It is charac-
terized by the indicials (ρ1, ρ2, ρ3, ρ4) = (0, 1, 1, 2). This suggests that the third solution
will be the product of the second one with a logarithm plus a polynomial part, i.e.1

ωc2 = ωc1 log(z − zc) + g(z), (4.2.3)

where zc is a conifold point. Going around zc once ωc2 is replaced by ωc2(z) + 2πiωc1.
This has the following geometric interpretation where we shall follow the notations and
conventions of [65]. Locally at the conifold the defining function of the singularity is given
by

f : C4 → C, f(x, y, z, t) = x2 + y2 + z2 + t2. (4.2.4)

The fibre Fs of f over s ∈ C−{0} is called the Milnor fibre and can be identified with
the cotangent bundle to the sphere {(x, y, z, t) ∈ R4|x2 + y2 + z2 + t2 = s}. Therefore one
sees that a three-sphere S3 is shrinking to zero size as s→ 0. Let δ be the homology class
of this sphere and ε the covanishing cycle in the dual group Hcl

3 (Fs,Z)2 One has

H3(Fs,Z) = Zδ, Hcl
3 (Fs,Z) = Zε, 〈δ, ε〉 = 1, (4.2.5)

where 〈·, ·〉 denotes the intersection number of two homology cycles. With these definitions
the monodromy operator of transporting a homology cycle in the integral homology lattice
Λ once around the singularity zc is determined to be

S1,δ : Λ→ Λ, S1,δ(γ) = γ − 〈δ, γ〉. (4.2.6)

This is known as the classical Picard-Lefschetz formula. However, we can generalize it
to the following case. Consider a discrete subgroup G ⊂ SU(2) = S3 which acts linearly
on R4 and by complexification on C4, leaving the defining function f of the singularity
invariant. This way one can define a function g : C4/G → C such that the Milnor fibre
Gs = g−1(s) contains a vanishing cycle S3/G. Denote the homology class of this vanishing
cycle by d ∈ H3(Gs,Z). Then it follows by comparing the volume of d and δ that the
Picard-Lefschetz formula gets modified to

γ 7→ γ − |G|〈d, γ〉d. (4.2.7)

A comment is at order here. The generalized Picard-Lefschetz operator Sλ,β(α) =
α − λ〈β, α〉β is not of finite order, i.e. we have Sλ,β ◦ Sλ′,β = Sλ+λ′,β. This finishes our

1We shall refer to periods at the conifold with an index c
2cl denotes homology with closed support.
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discussion of the conifold and its cousins for one-parameter models. A further singular
point in moduli space is usually the point at infinity z∞ := 1

z
= 0. Here the solutions can

admit fractional roots which signals a local Zn orbifold for common denominators n.
Last but not least let us describe the connection between the solutions of the Picard-

Fuchs equation and the periods of the A model mirror in the special geometry basis.
To recover the period integrals over the basis {Ak, Bk} from the solutions of the Picard-
Fuchs equations we use special geometry and the typical degeneration of the periods at the
point of maximal unipotent monodromy. First we note that the Xk serve as homogenous
coordinates for the space of complex structures. Recall that F (0)(Xk) := 1

2
XkFk(Xk) is

homogenous of degree 2 in Xk and Fk = ∂XkF (0). At the point of maximal unipotent
monodromy we have

~Π =


∫
B1

Ω∫
B2

Ω∫
A1 Ω∫
A2 Ω

 =


F0

F1

X0

X1

 = ω0


2F 0 − t∂tF 0

∂tF
0

1
t

 =


ω3 + c ω1 + e ω0

−ω2 − aω1 + c ω0

ω0

ω1

 ,

(4.2.8)
where ω0 is the unique power series solution and ωk are solutions, which behave like
ω0(z) log(z)k at infinity. The Frobenius method gives a canonical basis of these solutions.
t = ω1

ω0
is the mirror map and in terms of the latter the prepotential looks as follows

F 0 = − κ
3!
t3 − a

2
t2 + ct+

e

2
+ finst(q) , (4.2.9)

where κ = H3, c = 1
24

∫
M
c2 ∧ H, e = ζ(3)χ(M)

(2πi)3 and a = 1
2

∫
M
i∗c1(H) ∧ H. All these

numbers are calculated on M using the formalism in section 4.1.1 and they fix the integral
symplectic basis on W completely.

4.3 The Grassmannian Calabi-Yau (G(2, 5)||1, 1, 3)1
−150

This Calabi-Yau manifold is obtained as a complete intersection of hypersurfaces in the
Grassmannian G(2, 5) as described in section (4.1). In our special case the Plücker em-
bedding is an embedding of G(2, 5) into P9 and equations (4.1.14) take the form

z23z45 − z24z35 + z25z34 = 0,

z13z45 − z14z35 + z15z34 = 0,

z12z45 − z14z35 + z15z34 = 0,

z12z35 − z13z25 + z15z23 = 0,

z12z34 − z13z24 + z14z23 = 0. (4.3.1)

Now, the Calabi-Yau (G(2, 5)||1, 1, 3)1
−150 is defined to be a smooth 3-dimensional

Calabi-Yau complete intersection of 3 hypersurfaces of degrees 1, 1 and 3 in P9 with
G(2, 5). A calculation shows that we have h1,1 = 1, h2,1 = 76 and χ(M) = −150.
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4.3.1 Picard-Fuchs differential equation and the structure of the
moduli space

The Picard-Fuchs operator for this model was extracted in [59] and is given by:

P = −18z − 360z2 + (−147z − 2106z2)θ + (−444z − 3969z2)θ2 (4.3.2)

+(−594z − 2916z2)θ3 + (1− 297z − 729z2)θ4,

where θ = z d
dz

. As one can read off, the discriminant is given by dis(z) = 1 − 297z −
729z2. The Yukawa coupling can be extracted from the Picard-Fuchs operator and its
normalization is determined by the intersection number H3 as explained in appendix A.

Czzz =
15

z3(1− 11 · 33z − 39z2)
. (4.3.3)

We expect the solutions to develop logarithmic singularities around the points dis(αi) =
0, i ∈ {1, 2}. These indeed occur as can be seen from the possible solutions ρi of the
indicial equation:

(ρ1, ρ2, ρ3, ρ4) = (0, 1, 1, 2). (4.3.4)

The monodromy behaviour at these points together with the expression for F 1 (see
(4.3.10)) suggests that they are conifold-points of the moduli space. As discussed in section
(3.4.4) at these points non-perturbative RR-states become massless and integrating them
out leads to singularities in the effective action calculated by the topological string. We
will use the gap condition discussed in section (3.4.3) to put restrictive bounds on the
holomorphic ambiguity.

Another special point in our particular moduli space is the point at infinity. Here
the Picard-Fuchs-operator develops the following indices: (ρ1, ρ2, ρ3, ρ4) = (1

3
, 2

3
, 4

3
, 5

3
).

The Z3-symmetry at this point suggests that it is the enhanced symmetry point of a
particular Landau-Ginzburg orbifold model. Putting regularity conditions on topological
string free energies at this point gives us another bound on the holomorphic ambiguity
and the resulting Gopakumar-Vafa invariants will give us a consistency check whether our
regularity assumption was justified.

Finally, the structure of the singularities can be summarized in the following table

z 0 α1 α2 ∞
ρ1 0 0 0 1/3
ρ2 0 1 1 2/3
ρ3 0 1 1 4/3
ρ4 0 2 2 5/3

(4.3.5)
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4.3.2 g = 0 and g = 1 Gopakumar-Vafa invariants

In this section we summarize the calculations of the genus zero and one Gopakumar-Vafa
invariants for the Grassmannian. We will solve the Picard-Fuchs equation around the
point z = 0 corresponding to maximal unipotent monodromy and obtain the mirror map
at this point.

The normalized regular solution and the linear-logarithmic solution are

ω0(z) = 1 + 18z + 1710z2 + 246960z3 + 43347150z4 + · · ·
ω1(z) = logω0(z) + 75z + 16497

2
z2 + 1257046z3 + 907324065

4
z4 + · · ·

}
(4.3.6)

The complexified Kähler modulus is defined through 2πit = ω1(z)
ω0(z)

and the q-expansion
of the z-coordinate takes the following form:

z = q − 75q2 + 1539q3 − 60073q4 + · · · , (4.3.7)

where q := e2πit.
Now, we are able to determine the quantum corrected Yukawa coupling Kttt(t) at

z = 0. It is given by

(
1

ω0(z)

)2

Czzz

(
dz

dt

)3

= 15+540q+100980q2+16776045q3+2873237940q4+· · · . (4.3.8)

From these Yukawa couplings we can obtain the Gromov-Witten potential

Kttt(t) =

(
q
d

dq

)3

F0(t). (4.3.9)

The genus one invariants are obtained by taking the holomorphic limit of (3.7.23)

F (1)(z) =
1

2
log

{(
1

ω0(z)

)3+h1,1− χ
12
(
dz

dt

)
dis(z)−

1
6 zc−1− c2·H

12

}
, (4.3.10)

where we determine c = 0 through the boundary behavior (3.7.24). As both zeros of the
discriminant describe conifold points , it appears with factor −1/12 in the logarithm.

Using the mirror map z = z(q) we finally obtain the genus one Gromov-Witten po-
tentials

F 1(t) = F (1)(z(q)). (4.3.11)

4.3.3 Higher genus free energies

In this section we compute higher genus free energies by exploiting the method of Ya-
maguchi and Yau outlined in section 3.7.2. The holomorphic limits at certain points
in the moduli space are calculated. Imposing boundary conditions on the holomorphic
ambiguity we can fix the holomorphic ambiguity at least up to genus 5.
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Holomorphic ambiguity and boundary conditions

Requiring regularity for F g(t) at z = 0 and z = ∞, we parameterize the holomorphic
ambiguity through the Ansatz

fg(z) = a0 + a1z + · · ·+ a2g−2z
2g−2 +

c0 + c1z + · · ·+ c4g−5z
4g−5

dis(z)2g−2
. (4.3.12)

From this we see that the total number of unknown parameters is 6(g − 1) + 1 and
grows linearly in g.

Boundary conditions may be given through the effective 4d action as discussed in
section 3.7.3, but also, in some cases, geometrical considerations can be of use. For
example, we can utilize the first few ngd in the Gopakumar-Vafa expansion of the Gromov-
Witten potential once they are known through geometrical calculations. Usually, one puts
the lower degree Gopakumar-Vafa invariants ngd to zero as they count the number of genus
g holomorphic curves in the Calabi-Yau. Once one knows that the ngd are vanishing up a
certain degree for a specific genus g, then one knows that they must be zero at least up to
the same degree for genus g + 1. This knowledge one can impose as boundary condition
for the Gromov-Witten potentials. As boundary conditions from physical considerations
are far more restrictive for higher genus calculations we will concentrate on these in this
paper. In order to fix the ambiguity we evaluate the Gromov-Witten potentials at special
points on the moduli space, where the physics is sufficiently well understood.

Expansion around the conifold points

In order to make use of the gap condition we have to compute the holomorphic limit
around each conifold singularity. We denote the conifold singularity by c, i.e. in our case
c stands for either α1 = 1/54(−11− 5

√
5) or α2 = 1/54(−11 + 5

√
5). In the following we

will obtain a normalized set of solutions of the Picard-Fuchs differential equation. From
the index structure around the conifold (4.3.5), the existence of a logarithmic solution can
be deduced. Furthermore, we have solutions which start with si (s = (z − c), i = 0, 1, 2)
which we will denote by ωci (s). We normalize the logarithmic solution log(s)ωc1(s)+O(s1)
by requiring ωc1(s) = s + O(s2). The solution corresponding to the index ρ4 = 2 is
normalized to be of the form ωc2(s) = s2 + O(s3). A suitable linear combination with
ωc1(s) and ωc2(s) allows us to choose the solution for the index ρ1 = 0 to be of the form

ωc0(s) = 1 +O(s3). (4.3.13)

The mirror map can be now specified to be

kttc =
ωc1(s)

ωc0(s)
, (4.3.14)

where kt is a constant which for the moment we can set to one.
We solve the Picard-Fuchs equations over the ring Q[α]/dis(α) and obtain the following

results for the periods and the mirror maps
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ωα0 (s) = 1 +
81

250
(435709 + 1060776α)s3 +O(s4)

ωα1 (s) = s− 3

50
(3709 + 9126α)s2 +

3

25
(446957 + 1088046α)s3 +O(s4)

(4.3.15)

s(tα) = tα −
3

50
(3709 + 9126α)t2α +

3

50
(770597 + 1875852α)t3α +O(t4α)(4.3.16)

In order to regain the solutions around the points αi, i ∈ {1, 2} one has to substitute
α by αi. For more details about this method see [63].

The holomorphic limits around the conifold points are obtained by making the re-
placements

A1(s+ c, s̄+ c̄)→ (s+ c)
d

ds
log

dtc
ds
, Bk →

1

ωc0(s)
((s+ c)

d

ds
)kωc0(s) (4.3.17)

in the expansions of the free energies in terms of the A and B generators.
Specializing the gap condition to one-parameter models we now obtain

F g
c (tc) = (ω0(s))2g−2F (g)

c (s) =
const.

t2g−2
c

+O(t0c), (4.3.18)

for g ≥ 2. This provides us with (2g − 2) − 1 equations which are vanishing conditions
for the coefficients of 1

tic
(1 ≤ i ≤ 2g− 3). Actually, the condition is even stronger as there

exists a choice of the constant kt under which in all higher genus expansions the leading
term is of the form |B2g |

2g(2g−2)
1

t2g−2
c

.

It is interesting to have a look at this gap structure in the expansions of Gromov-
Witten potentials once the holomorphic ambiguity is fixed completely,

F 2
α(tα) =

41− 12276α

874800t2α
+
−14874743 + 3442099023α

36450000
+O(tα),

F 3
α(tα) = −5(−15005 + 4493016α)

4821232752t4α
+O(t0α). (4.3.19)

Again, substitute α by αi to obtain the solutions around the specific vanishing point
of the discriminant.

Expansion around the orbifold point

The index structure (4.3.5) of the Picard-Fuchs operator suggests that the point at infinity
is a Z3 orbifold point. Therefore, we have to impose regularity of the free energies at
this point in the moduli space. To obtain the topological limits we follow a path of
argumentation presented in [63]. Let x be the coordinate at infinity, i.e. x = 1

z
. Then
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we can define F̃ (g)(x, x̄) to be the solutions of the BCOV equation in x-coordinates with

initial conditions F̃ (1)
1 (x, x̄) and F̃ (0)

3 = DxDxDxF̃ (0)(x, x̄). On the other hand these initial
conditions are related by

F̃ (0)
3 (x, x̄) = Cxxx(x) = Czzz

(1

x

)(dz
dx

)3

= F (0)
3

(1

x
,

1

x̄

)(dz
dx

)3

. (4.3.20)

From this we can infer that F̃ (g)(x, x̄) and F (g)(z, z̄) are in the same coordinate patch
of a trivialization of the line bundle L, which again gives

F̃ (g)(x, x̄) = F (g)
(1

x
,

1

x̄

)
. (4.3.21)

Therefore, the topological limit at infinity is simply obtained by setting F̃ (g)(x, x̄) =
F (g)(A1( 1

x
, 1
x̄
), Bk(

1
x
, 1
x̄
), 1
x
) and taking the limits

A1

(1

x
,

1

x̄

)
=

(dz
dx

dz̄

dx̄
Gxx̄

)
(−θx)

(dx
dz

dx̄

dz̄
Gxx̄

)
→ −

( dx
dt∞

)
θx

(dt∞
dx

)
− 2 (4.3.22)

Bk

(1

x
,

1

x̄

)
= eK̃(x,x̄)(−θx)ke−K̃(x,x̄) → 1

ω∞0 (x)
(−θx)kω∞0 (x), (k = 1, 2, 3),(4.3.23)

where ω∞0 (x), ω∞1 (x) and t∞(x) =
ω∞1 (x)

ω∞1 (x)
are the periods and mirror map at infinity.

So in order to proceed we have to calculate these quantities first. From the index
structure we have the following set of solutions, ω∞0 (x) = x1/3 +O(x4/3), ω∞1 (x) = x2/3 +
O(x5/3), ω∞2 (x) = x4/3 +O(x7/3) and ω∞3 (x) = x5/3 +O(x8/3). Using a linear combination
with ω∞2 (x) we can fix the first solution to be of the form

ω∞0 (x) = x1/3 +O(x7/3). (4.3.24)

Furthermore, the second solution can be fixed by taking a linear combination with the
third solution to

ω∞1 (x) = x2/3 +O(x8/3). (4.3.25)

With these choices the relevant solutions are given by

ω∞0 (x) = x1/3 +
x7/3

131220
− 67

51018336
x10/3 +O(x13/3),

ω∞1 (x) = x2/3 − 2

45927
x83− 467

55801305
x11/3 +O(s14/3),

x = t3∞ −
11

102060
t9∞ +

12599

595213920
t12
∞ +O(t15

∞). (4.3.26)

Using these data and the holomorphic limit discussed above we obtain the following
Gromov-Witten potentials
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F 2
∞(t∞) =

41031
160

+ a2

t4∞
+

1367
80

+ a1

t∞
+O(t∞),

F 3
∞(t∞) =

22453281
1600

+ a4

t8∞
+

4572543
3200

+ a3

t5∞
+
−121464319

567000
+ a2 + 73a4

229635

t2∞
= +O(t∞). (4.3.27)

As the orbifold point is a conformal field theory point and thus has to be regular, we
see that demanding the vanishing of the coefficients of inverse powers of t∞ gives us g
conditions on the parameters of the holomorphic ambiguity.

Counting the number of boundary conditions from the orbifold and conifold points one
notices that they are not yet enough to fix the ambiguity completely. This is no problem
for lower genera as the vanishing of lower degree Gopakumar-Vafa invariants gives us
enough conditions to fix all free parameters. On the other hand, as mentioned earlier, our
example shows that there are not enough boundary conditions to solve the model up to
genus infinity.

4.4 Other Models

We have analysed three other Calabi-Yau complete intersections in Grassmannians, namely
(G(2, 5)||1, 2, 2)1

−120, (G(3, 6)||16)
1
−96 and (G(2, 6)||1, 1, 1, 1, 2)1

−116. All three admit interest-
ing new features and share common properties with the model analysed previously. In
particular, we have found a lense space point in the moduli space of the second model.

4.4.1 (G(2, 5)||1, 2, 2)1
−120

The topological data of this Calabi-Yau are given by χ = −120, h2,1 = 61, h1,1 = 1,
c2 · J = 68. The Picard-Fuchs operator which was obtained in [59] admits the following
index structure

z 0 α1 α2 ∞
ρ1 0 0 0 1/2
ρ2 0 1 1 1/2
ρ3 0 1 1 3/2
ρ4 0 2 2 3/2

(4.4.1)

and the Yukawa coupling is determined to be

Czzz =
20

z3(1− 11 · 24z − 28z2)
. (4.4.2)

95



96 CHAPTER 4. GRASSMANNIAN CALABI-YAU BACKGROUNDS

The indicial structure at the points α1 and α2 suggests that these points are conifold
points and indeed the expansion F 1(tc) = 1

12
log(tc) + · · · gives the universal conifold

coefficient 1
12

. However, the from the index structure at infinity we see that logarithmic
solutions are to appear. So although the fractional indices suggest a Z2 orbifold point,
this point will be a hybrid of orbifold type and conifold type singularities.

For the solutions around the conifold points we choose exactly the same normalization
as in the case of (G(2, 5)||1, 1, 3)1

−150.
Looking at the point at infinity, we see that there are two logarithmic solutions. In

order to obtain the mirror map only the first two solutions ω∞0 and ω∞1 are needed. They
are of the form

ω∞0 = x1/2 +O(x5/2),

ω∞1 = log(x)x1/2 +O(x9/2), (4.4.3)

and we take the mirror map to be of the form t =
ω∞1 (x)

ω∞0 (x)
.

With these conventions we calculate the expansions of the free energies around the
singular points of the moduli space. We find the same gap conditions as in the case
of (G(2, 5)||1, 1, 3)1

−150 around the two conifolds. The point at infinity turns out to be a
regular point as we have to impose regularity on the Gromov-Witten potentials in order to
obtain integral Gopakumar-Vafa numbers. We list the genus 2 and 3 expansions around
this point

F 2
∞(t∞) =

51/4(136 + 3a2)

48
√

3t
1/4
∞

+ (a1 +
−119464− 4047a2

32000
) +O(t∞),

F 3
∞(t∞) =

√
5(1024

3
+ a4)

768
√
t∞

+
−28849664 + 144000a3 − 36423a4

460800
√

353/4t
1/4
∞

+O(t∞). (4.4.4)

As one can see regularity restrictions give us g − 1 boundary conditions on the ambi-
guity.

4.4.2 (G(3, 6)|
∣∣16
)1
−96

This Calabi-Yau has the topological data χ = −96, h2,1 = 49,h1,1 = 1, c2 · J = 84. The
Picard-Fuchs operator given in [59] admits the following index structure

z 0 α1 α2 ∞
ρ1 0 0 0 4/3
ρ2 0 1 1 1
ρ3 0 1 1 1
ρ4 0 2 2 5/4

(4.4.5)
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The Yukawa coupling is given by

Czzz =
28

z3(1− 26 · 22z − 27 · 24z2)
. (4.4.6)

The point at infinity admits one logarithmic solution which corresponds to a vanishing
cycle and it appears that it also admits some orbifold features. The mirror map is given

by t =
ω∞1 (x)

ω∞0 (x)
, where

ω∞0 = x3/4 +O(x7/4),

ω∞1 = x+O(x2). (4.4.7)

An interesting feature of this model is the fact that the two vanishing points of the
discriminant, although having the same Picard-Fuchs-indices, behave differently when
we analyze the Gromov-Witten potentials. In particular, the genus 1 Gromov-Witten
potential of this model is

F 1(z) =
1

2
log

{(
1

ω0(z)

)3+h1,1− χ
12
(
dz

dt

)
(−1 + z)−

1
3 (−1 + 64z)−

1
6 z−1− c2·H

12

}
. (4.4.8)

This suggests that the point z = 1 is not an ordinary conifold point but rather a lense
space point, that is a point, where a cycle C(for example S3) modded by a group G shrinks
to zero size. In the case of C = S3 G is a discrete subgroup of SU(2) and the resulting
space S3/G has fundamental group G. Spaces of this form where investigated in [64],
where the number of BPS states admitted by such cycles was calculated. There it was
argued that the number of D-brane bound states which are BPS is equal to the number
of irreducible representations of G and their mass is given by the formula Mi = µdi/G
where µ is the size of the unmodded cycle and di is the dimension of the ith irreducible
representation of G. Comparing this with the genus one free energy of the topological
string one finds

F 1 =
∑
i

− 1

12
log(Mi) =

∑
i

− 1

12
log(µdi/G). (4.4.9)

In our particular example this is

F (1) = − 1

12
log(t1/64)− 2

12
log(t1). (4.4.10)

Using the identification t1 = µ/2 we find from the above formula that the group G
must be Z2. This also shows that two hypermultiplets are becoming massless at z = 1.

Our result is supported by the monodromy calculations made in [65]. There it was
found that the monodromy matrix at the point z = 1 is of Picard-Lefschetz form Sλ,v,
where λ = 2 which shows that this point is not an ordinary conifold point.
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Higher genus calculations show that the ordinary gap condition holds at z = 1/64
which is to be expected as this point is a conifold point. On the other hand the gap
condition has to be slightly modified around z = 1. If we assume that the two hypermul-
tiplets becoming massless are not interacting the modification to the leading term of the
higher genus Gromov-Witten potential reads as follows

F g
1 (t1) = 2

|B2g|
2g(2g − 2)

1

µ2g−2
+O(t01) = 2

|B2g|
2g(2g − 2)

1

22g−2

1

t2g−2
1

+O(t01). (4.4.11)

This is exactly what we observe.
It remains to be discussed the point at infinity. It admits a gap-like structure as can

be seen for example from the genus 4 expansion

F 4
∞(t∞) =

7

240 t6∞
+

101797151

11010048000
t2∞ +O(t3∞). (4.4.12)

4.4.3 (G(2, 6)||1, 1, 1, 1, 2)1
−116

This manifold is characterized by the data χ = −116, h2,1 = 59, h1,1 = 1, c2 ·J = 76. The
structure of the solutions of the Picard-Fuchs operator is the following

z 0 α1 α2 ∞
ρ1 0 0 0 1/2
ρ2 0 1 1 2/3
ρ3 0 1 1 4/3
ρ4 0 2 2 3/2

(4.4.13)

The Yukawa coupling is given by

Czzz =
42

z3(1− 65z − 64z2)
. (4.4.14)

The conifold locus is treated as usual. The mirror map at z =∞ is obtained by taking
the ratio of the first two periods. They are of the form

ω∞0 = x1/2 +O(x5/2),

ω∞1 = x2/3 +O(x5/3). (4.4.15)

Now, our calculations show that the gap condition holds at the conifold locus. Fur-
thermore, the point at infinity at first sight seems to be a regular orbifold point with
Z6-symmetry and indeed this seems to be the case up to genus 3. But at genus 4 we
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find that the expansion of the Gromov-Witten potential around this point is singular. In
particular we find

F 4
∞(t∞) =

−8606402923
164640

+ a6

t18
∞

+
−500305024099

49787136
+ a5 − 10

63
a6

t12
∞

+
−443407050538901893

179412923289600
+ a4 − 20

189
a5 + 831575

54486432
a6

t6∞
+O(t0∞), (4.4.16)

before fixing the ambiguity and

F 4
∞(t∞) =

2

2187 t6∞
+

108172361

131681894400
+O(t∞), (4.4.17)

after having fixed the ambiguity.

4.4.4 (G(2, 7)|
∣∣17
)1
−98

This manifold is characterized by the data χ = −98, h2,1 = 50, h1,1 = 1, c2 · J = 84. The
structure of the solutions of the Picard-Fuchs operator is the following

z 0 α1 α2 α3 3 ∞
ρ1 0 0 0 0 0 1
ρ2 0 1 1 1 1 1
ρ3 0 1 1 1 3 1
ρ4 0 2 2 2 4 1

(4.4.18)

We see that the Picard-Fuchs differential operator has the property of maximal de-
generation at both z = 0 and z =∞. It was found in [67] that the expansion about z = 0
corresponds to the Kähler moduli of the Grassmannian Calabi-Yau M = (G(2, 7)||17)

1
−98,

and the expansion about z =∞ to that of a Pfaffian Calabi-Yau M ′. In [63] the instanton
calculations for this model were extended up to genus 5 and we confirm their results for
low genus.

4.5 5d black hole entropy

As outlined in section 2.3 solving the topological string to all genus is important to study
black holes in five and four dimensions [66]. E.g. for five dimensional black holes in N = 2
supergravity with spin m and charge Q ∈ H2(M,Z) there is a microscopic prediction (see
equation (2.3.11) of section 2.3)

S(Q,M) = log

(
∞∑
r=0

(
2r + 2

m+ r + 1

)
ng(Q)

)
, (4.5.1)
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where ng(Q) are the BPS degeneracies that we can calculate now on the Grassmannian
Calabi-Yau manifolds. Note that we have h2(M,Z) = 1 and we denote the charge Q from
now on, like in the previous parts of this chapter, by the degree d of the curve w.r.t. the
divisor H.

The macroscopic calculations are valid in the limit d � m. The N = 2 supergravity
action has higher derivative corrections of the form F 2g−2

+ R2
+, where F+ and R+ are

the selfdual part of the graviphoton field strength and the curvature respectively. The
evaluation of Wald’s entropy formula for the uncorrected action yields

S0 = 2π
√
Q3 −m2, (4.5.2)

where Q is the graviphoton charge which is determined by the attractor mechanism in

terms of the triple intersection Q =
(

2
9H3

) 1
3 d. The first correction yields

S1 =
πc2 ·H

8

(
6

H3

) 1
3 √

d3 −m2

(
1

d
+
m2

3d4

)
. (4.5.3)

Higher F 2g−2
+ R2

+ corrections are expected to be of the form Sg =
∫
M
c3Q

3
2
−g. We can now

make a large d expansion of the total macroscopic entropy S = b0d
3
2 + b1d

1
2 +O

(
1

d
1
2

)
and

compare the coefficients bi with the corresponding expansion of (4.5.1). So far this can
be done only numerically as the exact asymptotic of the BPS states is not known. It is
notable that the range of the topological data, which determine the bi take more extreme
values for the Grassmannians than for the toric varieties. In particular c2 · H and the
triple intersection H3 take the highest values for Grassmannian Calabi-Yau. This is very
useful for comparing the semiclassical and the microscopic description of black holes along
the lines of [66]. Indeed we find that the microscopic entropy the Richardson transforms
converge within 4 % to the expected value of the macroscopic calculation. For reference
we show one plot for the extreme value of H3 = 42 in the appendix.

4.6 Summary of the models

Let us summerize at this point the results we have obtained for the various models ana-
lyzed. We find that the model (G(3, 6)||16)

1
−96 has a conifold at z = 1

64
and a lense space

S3/Z2 shrinking at z = 1. We find that at the lense space singularity the analysis of
the leading terms is exactly as predicted in [53] and that in addition there is a full gap
structure in the subleading terms. The physical interpretation is that the two BPS states
do not interact and in particular do not form light bound states. This model has also at
t∞ a branch point of order 12, a single logarithmic solution and a full gap structure.

The models (G(2, 5)||1, 1, 3)1
−150, (G(2, 5)||1, 2, 2)1

−120 are regular at t∞ = 0 at least to
genus 5. The first has regular solutions, which hints at a CFT with a Z3 automorphism
at t∞ = 0. In this model the BPS invariant n4

6 = 5 has been checked geometrically by
Sheldon Katz, who found also the vanishing of the BPS invariants for the other model in
accord with Castelnouvos Theory.
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The model (G(2, 5)||1, 2, 2)1
−120 has two logarithmic solutions and a branch point of

order 2. It is conceivable that higher F g are not regular at t∞ = 0.
The model (G(2, 6)||1, 1, 1, 1, 2)1

−116 has two different conifolds with a full gap structure.
At the point t∞ = 0 it has regular solutions with a Z6 branching. Curiously we find that
the integrality of the BPS require that it has singular behavior in the F g for g > 3.

For the Rodland example (G(2, 7)||17)
1
−98, which has two points of maximal unipotent

monodromy we confirm the analysis of [63] for low genus.
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Chapter 5

Local Calabi-Yau backgrounds

String theory on non-compact Calabi-Yau geometries is relevant for the construction of
4d supersymmetric theories decoupled from gravity as outlined in section 2.2.2. More-
over it provides simple examples for important concepts of string theory in nontrivial
geometrical backgrounds, as e.g. the behavior of the amplitudes under topology change
of the background geometry. From the point of view of the 2d σ model these geometries
correspond to σ models without superpotential and with both, positive and negative U(1)
charges. Exploring the topological sector has been especially fruitful in providing exam-
ples of large N -dualities connecting topological string theory on these backgrounds to 3d
Chern-Simons theory and matrix models.

This chapter reviews the results of reference [4] where it was shown that the holomor-
phic anomaly equations become integrable for local Calabi-Yau geometries whose mirror
contains a Riemann surface of at least genus 1. We restrict ourselves to the models F0

and F1.

5.1 Local Mirror Symmetry

The term local mirror symmetry refers to mirror symmetry for non-compact Calabi-Yau
manifolds. Examples for the A-model geometry are the canonical line bundle KS =
O(−KS) → S over a Fano surface 1 S. The compact part of the B-model geometry is
in this case given by a family of elliptic curves and a meromorphic differential. Using
toric geometry as below an infinite set of examples of non-compact three-folds can be
constructed. They have a partial overlap with the KS cases namely S = P1 × P1 or
S = P2 and blow-ups thereof S = BP2

1,BP2
2,BP2

3. The mirror geometry are Riemann
surfaces with a meromorphic differential, whose genus is given by the number of closed
meshes in the degeneration locus in the base of symplectic fibration, where two S1’s
degenerate. For early applications of local mirror symmetry to BPS state counting and

1 Simpler examples involve line bundles over a complex curve such as O(2(g−2)+k)⊕O(−k)→ Cg [68]
or manifolds M , which are given by a toric tree diagrams of the degeneration locus that correspond to
genus 0 mirror curves.
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geometric engineering of gauge theories see [69] and [13] respectively. For a systematic
formulation see [70][71][72]. Below we give a very short review of the techniques.

5.1.1 The local A-model

The A-model geometry of a non-compact toric variety is given by a quotient

M = (Ck+3 − Z)/G, (5.1.1)

where G = (C∗)k [74]. On the homogeneous coordinates xi ∈ C the group G acts like

xi → µ
Qαi
α xi, α = 1, . . . , k with µα ∈ C∗, Qα

i ∈ Z. Here Z is the Stanley-Reissner ideal,
which has to be chosen so that the above quotient M exists as a variety2. The standard
example is Pn = (Cn+1 − {0})/(C∗), with Q1

i = 1, i = 1, . . . , n. We denote generically by
S the compact part of M .

As explained in 3.2.2 M can also be viewed as the vacuum field configuration of a 2d
gauged linear (2, 2) supersymmetric σ model. The coordinates xi ∈ C, i = 1, . . . , k+3 are
the vacuum expectation values of chiral superfields transforming as xi → eiQ

α
i εαxi, Q

α
i ∈ Z,

εα ∈ R, α = 1, . . . , k under the gauge group U(1)k. The vacuum field configuration are the
equivalence classes under the gauge group, which fulfill in addition the D-term constraints

Dα =
k+3∑
i=1

Qα
i |xi|2 = rα, α = 1, . . . , k . (5.1.2)

The rα are the Kähler parameters rα =
∫
Cα
ω, where ω is the Kähler form and Cα are

curves spanning the Mori cone, which is dual to the Kähler cone. rα ∈ R+ defines the
Kähler cone. For M to be well defined, field configurations for which the dimensionality
of the gauge orbits drop have to be excluded. This corresponds to the choice of Z. In
string theory rα is complexified to Tα = rα + iθα with θα =

∫
Cα
B, where B is the NS

B-field, while in the gauged linear σ-model the θα are the θ-angles of the U(1)k gauge
group.

One can always describe M by a completely triangulated fan. In this case the Qα
i

are linear relations between the points spanning the fan. A basis of such relations, which
corresponds to a Mori cone can be constructed from a complete triangulation of the fan.
Z likewise follows combinatorially from the triangulation, see the examples3.

The Calabi-Yau condition c1(TM) = 0 holds if and only if4

k+3∑
i=1

Qα
i = 0, α = 1, . . . , k. (5.1.3)

2 We assume that M is simplicial, or that a simplicial subdivision in coordinate patches exists.
3 Often there are many possible triangulations, which correspond to different phases of the model see

section 3.2.2 and [75], e.g. Kähler cones connected by flopping a P1. The union of the cones define by all
triangulations is called the secondary fan.

4 Physically these are the conditions that the chiral U(1)A anomaly cancels in the gauged linear
σ-model see 3.2.2.
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Note from (5.1.2) that negative Qi lead to non-compact directions in M , so that by
(5.1.3) all toric Calabi-Yau manifolds M are necessarily non-compact. To summarize,
toric non-compact A-model geometries will be defined by suitably chosen charge vectors
Qα
i ∈ Z.

5.1.2 The local B-model

In the following we will describe the non-compact mirror W following [71, 13]. Let
w+, w− ∈ C and xi =: eyi ∈ C∗, i = 1, . . . , k + 3 are homogeneous coordinates5, i.e.
equivalence classes subject to the C∗ action

xi 7→ λxi, i = 1, . . . , k + 3, λ ∈ C∗ . (5.1.4)

The mirror W is defined from the charge vectors Qα
i by the exponentiated D-term con-

straints

(−1)Q
α
0

k+3∏
i=1

x
Qαi
i = zα, α = 1, . . . , k . (5.1.5)

and the general equation

w+w− = H =
k+3∑
i=1

xi . (5.1.6)

The Calabi-Yau condition (5.1.3) ensures the compatibility of (5.1.5) with (5.1.4). Using
the latter two equations to eliminate variables xi in (5.1.6) H can be parameterized by two
variables x = exp(u), y = exp(v) ∈ C∗ and the defining equations of the mirror geometry
W becomes

w+w− = H(x, y; zα), (5.1.7)

which is a conic bundle over C∗ ×C∗, where the conic fiber degenerates to two lines over
the family of Riemann surfaces with punctures

S(z) := {H(x, y; zα) = 0} ⊂ C∗ × C∗ , (5.1.8)

parameterized by the complex parameters zα. To establish that W is a non-compact
Calabi-Yau manifold note that

Ω =
dHdxdy

Hxy
(5.1.9)

is a regularizable no-where vanishing holomorphic volume form on W . Its periods are
regularizable in the sense that H, y can be integrated out to yield a meromorphic one-
form on S

λ =
log(y)dx

x
, (5.1.10)

whose periods clearly exist. They are annihilated by the linear differential operators

Dα =
∏
Qαi >0

∂
Qαi
xi −

∏
Qαi <0

∂
−Qαi
xi . (5.1.11)

5 The xi here should not be identified with the xi, which describe the A model in the previous section.
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The redundancy in the parameterization of the complex structure is removed using the
relations (5.1.5) and the scaling relation (5.1.4). To do that it is convenient to write the
differential operator (5.1.11) in terms of logarithmic derivatives θi := xi∂xi and transform
to logarithmic derivatives Θα := zα∂zα using θi = Qα

i Θα.
The solutions to (5.1.11) are constructed by the Frobenius method [70], i.e. defining

w0(z, ρ) =
∑
nα

1∏
i Γ[Qα

i (nα + ρα) + 1]
((−1)Q

α
0 zα)n

α

, (5.1.12)

then

X0 = w0(z, 0) = 1, tα =
∂

2πi∂ρα
w0(z, ρ)|ρ=0 (5.1.13)

are solutions. Note that the flat coordinates tα approximate tα ∼ log(zα) in the limit
zα → 0. Higher derivatives

X(αi1 ...αin ) =
1

(2πi)n
∂

∂ραi1
. . .

∂

∂ραin
w0(z, ρ)|ρ=0 (5.1.14)

also obey the recursion imposed by (5.1.11), i.e. they fulfill (5.1.11) up to finitely many
terms. However, a unique, up to addition of previous solutions, linear combinations
of the Xαi1 ...αi2 is actually the last solution of the Picard-Fuchs system. This solution
encodes the genus zero Gromov-Witten invariants. It is a derivative of the holomorphic
prepotential F0 and the triple intersection Cijk = ∂ti∂tj∂tkF0 can be constructed from it,
see the examples for more details. We will turn to generating functions for the higher
genus amplitudes in the next section.

5.2 Direct Integration in local Calabi-Yau geometries

Let us rephrase here the direct integration procedure explained in section 3.7 in the
context of local Calabi-Yau manifolds. Recall that the key input for the direct integration
procedure is the special geometry integration condition

∂̄ı̄Γ
k
ij = δkiGjı̄ + δkjGīı − CijlC̄kl

ı̄ . (5.2.1)

Here Cijl are the holomorphic Yukawa couplings which transform as Sym3(TM) ⊗ L−2

and C̄kl
ı̄ = e2KGkk̄Gll̄C̄ı̄k̄l̄.

(5.2.1) implies that the propagator Sij, which is defined by ∂̄k̄S
ij = C̄ij

k̄
, can be solved

from the integrated version of (5.2.1)

Γkij = δki ∂jK + δkj ∂iK − CijlSkl + f̃kij , (5.2.2)

up to the holomorphic ambiguity f̃kij. Taking the anti holomorphic derivative, using (5.2.1)
and ∂̄S

k = Sk̄ it follows that

∂̄k̄(DiS
kl) = ∂̄k̄(δ

k
i S

l + δliS
k − CinmSkmSln) , (5.2.3)
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and so
DiS

kl = δki S
l + δliS

k − CinmSkmSln + fkli . (5.2.4)

In the local case one has the following simplifications. The Kähler connection in Di

becomes trivial due to the relation exp(K) ∼ X0 → 1 in the holomorphic limit in the
non-compact models [76], and the Sl, (as well as the S, see 3.7.5) vanish, i.e. the above
equation becomes simply

DiS
kl = −CinmSkmSln + fkli . (5.2.5)

Also, the Kähler connection ∂jK in (5.2.2) drops out, so the Sij are solved from

Γkij = −CijlSkl + f̃kij . (5.2.6)

Note that this is an over-determined system in the multi moduli case which requires a
suitable choice of the ambiguity f̃kij. This choice is simplified by the fact [77] that ∂iF

(1)1
can be expressed through the propagator as

∂iF (1) =
1

2
CijkS

jk + Ai, (5.2.7)

with an ambiguity Ai, which can be determined by the ansatz Ai = ∂i(ãj log ∆j+b̃j log zj).
Once the Sij are obtained and the ambiguities in (5.2.5,5.2.6) have been fixed, the

direct integration of (3.5.35) is quite simple. Everything on the right hand side of the
holomorphic anomaly equation (3.5.35) can be rewritten in terms of the generators Sij

and holomorphic functions. This way equation (3.7.8) transforms to

∂F (g)

∂Sjk
=

1

2
(Dj∂kFg−1 +

g−1∑
r=1

∂jFg−r∂kFr). (5.2.8)

This equation can easily be integrated w.r.t. Sij and it can be shown that F (g) is a
polynomial in Sjk of degree 3g − 3.

This leaves us with the holomorphic ambiguity. In the case of the local Calabi-Yau
manifolds we are discussing here, the discriminant locus contains apart from the compo-
nents z1 = 0 and z2 = 0 only one conifold divisor given by ∆ = 0. The gap condition
(3.7.27) at the conifold divisor and regularity of the amplitudes everywhere else in the
moduli space then leads to the following ansatz for the ambiguity

fg =
Ag

∆2g−2
, (5.2.9)

where Ag is a polynomial of degree (2g − 2) ·∆ in the zi.

5.3 KP1×P1 = O(−2,−2)→ P1 × P1

We are considering the non-compact Calabi-Yau geometry O(−2,−2)→ P1×P1, i.e. the
canonical line bundle over the Hirzebruch surface F0 = P1 × P1. This local model can be
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obtained from the compact elliptic fibration over F0 with fiber X6(1, 2, 3). The three com-
plexified Kähler volumes have the corresponding Mori cone generators (−6; 3, 2, 1, 0, 0, 0, 0),
(0; 0, 0,−2, 1, 0, 1, 0), (0; 0, 0,−2, 0, 1, 0, 1). Roughly, in the local limit the volume of the
elliptic fiber is send to infinity. The B-model mirror description of the local geometry is
encoded in a Riemann surface with a meromorphic differential as pointed out before.
According to [78] and using the above mentioned charge vectors, one can derive a Picard-
Fuchs system governing the periods of the global mirror geometry. They are given by

D1 = Θ1(Θ1 − 2Θ2 − 2Θ3)− 18z1(1 + 6Θ1)(5 + 6Θ1)

D2 = Θ2
2 + z2(1−Θ1 + 2Θ2 + 2Θ3)(Θ1 − 2Θ2 − 2Θ3)

D3 = Θ2
3 + z3(1−Θ1 + 2Θ2 + 2Θ3)(Θ1 − 2Θ2 − 2Θ3),

(5.3.1)

where we denote the logarithmic derivative by Θi = zi
∂
∂zi

. z1 is the complex structure
parameter dual to the Kähler parameter of the elliptic fiber tF. The local limit is obtained
by sending this parameter to zero, z1 → 0.
Now let us turn to the non-compact geometry. The toric data of local F0 is summarized
in the following matrix, V denoting the vectors which span the fan and Q denoting the
charge vectors.

(V |Q) =


0 0 1 −2 −2
1 0 1 1 0
0 −1 1 0 1
−1 0 1 1 0
0 1 1 0 1

 (5.3.2)

From there we conclude the following quantities as was explained in section 5.1.2. C
(0)
ijk

denote the classical triple intersection numbers. They, as well as
∫
M
c2Ji, were computed

using toric geometry.

a) Q1 = (−2, 1, 0, 1, 0), Q2 = (−2, 0, 1, 0, 1)
b) Z = {x1 = x3 = 0} ∪ {x2 = x4 = 0}
c) M = (C5[x0, · · · , x4] \ Z)/(C∗)2

d) H(x, y) = y2 − x3 − (1− 4z1 − 4z2)x2 − 16z1z2x
e) D1 = Θ2

1 − 2z1(Θ1 + Θ2)(1 + 2Θ1 + 2Θ2)
D2 = Θ2

2 − 2z2(Θ1 + Θ2)(1 + 2Θ1 + 2Θ2)
∆ = 1− 8(z1 + z2) + 16(z1 − z2)2

f) C
(0)
111 = 1

4
, C

(0)
112 = −1

4
, C

(0)
122 = −1

4
, C

(0)
222 = 1

4

g)
∫
M

c2J1 =
∫
M

c2J2 = −1.

(5.3.3)

H(x, y) = 0 defines a family of elliptic curves Σ(z1, z2) whose j-function is given by

j(z1, z2) =
((1− 4z1 − 4z2)2 − 48z1z2)3

z2
1z

2
2(1− 8(z1 + z2) + 16(z1 − z2)2)

. (5.3.4)
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5.3.1 Review of the moduli space M
The moduli space, M, of the local Calabi-Yau O(−2,−2) → P1 × P1 is spanned by two
Kähler moduli controlling the sizes of the two P1’s. The B-model mirror description of
this geometry can be expressed through a Riemann surface together with a meromorphic
differential. The meromorphic differential is the reduction of the holomorphic three-
form of the mirror geometry to a one-form living on a Riemann surface as described
in section 5.1.2. In our particular case we get a genus one Riemann surface with two
non-trivial cycles. Apart from these the meromorphic differential has a residue arising
from integration over a certain trivial cycle. Together these periods parameterize the two
complex structure moduli which are mirror to the two Kähler moduli of the original model.
The period integrals satisfy two linear differential equations of order two, given by the
Picard-Fuchs operators. It is well known that these periods can at worse have logarithmic
singularities. The singular locus in the moduli space can be obtained by calculating the
discriminant of the Picard-Fuchs system (5.3.3). This yields

z1z2

(
1− 8(z1 + z2) + 16(z1 − z2)2

)
=: z1z2∆ = 0. (5.3.5)

One sees that the singular locus splits into three irreducible components given by the
divisors z1 = 0, z2 = 0 and ∆ = 0. The moduli z1, z2 are compactified to P2.
At the large complex structure point L1 ∩L2, two of the periods, t1 = log(z1) +O(z) and
t2 = log(z2) +O(z), give the classical large Kähler volumes of the two P1. As C touches
L1 at z2 = 1

4
, L2 at z1 = 1

4
and I at u = z1

z1+z2
= 1

2
and all intersections are with contact

order two, the Picard-Fuchs system cannot be solved around these points in moduli space.
Therefore, the moduli space has to be blown up around these points so that all divisors
have normal crossings. This is done by introducing two new divisors at each of these
points which is depicted in figure 5.1.

More details about this moduli space can be found in [77]. For us the most relevant
points are I ∩ F which is a Z2 orbifold point admitting a matrix model expansion, and
the conifold locus C, relevant for fixing the holomorphic ambiguity of the free energy
functions.

5.3.2 Solving the topological string on local F0 at large radius

By the method of Frobenius one can calculate the periods eliminated by the Picard-Fuchs
system. As the charge vectors are chosen such that they span the Mori cone, the periods
are calculated at the large radius point of the moduli spaceM(M). It is well known that
the regular solution for this local model is simply ω0(z, 0) = 1. Therefore the mirror map
is equal to the single logarithmic solution and given by

2πiT1(z1, z2) = log z1 + 2(z1 + z2) + 3(z2
1 + 4z1z2 + z2

2) + 20
3

(z3
1 + 9z2

1z2 + 9z1z
2
2 + z3

2) +O(z4)
2πiT2(z1, z2) = log z2 + 2(z1 + z2) + 3(z2

1 + 4z1z2 + z2
2) + 20

3
(z3

1 + 9z2
1z2 + 9z1z

2
2 + z3

2) +O(z4).
(5.3.6)
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Figure 5.1: Resolved moduli space of F0.

By inverting the above series we arrive at (Qi = e2πiTi)

z1(Q1, Q2) = Q1 − 2(Q2
1 +Q1Q2) + 3(Q3

1 +Q1Q
2
2)− 4(Q4

1 +Q3
1Q2 +Q2

1Q
2
2 +Q1Q

3
2) +O(Q5)

z2(Q1, Q2) = Q2 − 2(Q1Q2 +Q2
2) + 3(Q2

1Q2 +Q3
2)− 4(Q3

1Q2 +Q2
1Q

2
2 +Q1Q

3
2 +Q4

2) +O(Q5).
(5.3.7)

We observe that the following combination does not receive any instanton corrections
which can be easily derived from the Picard-Fuchs system

z1

z2

=
Q1

Q2

= e2πi(T1−T2) =: Qx
1 , (5.3.8)

or in other words, the mirror map can be brought in trigonal form by means of the
coordinate choice, x1 = z1

z2
and x2 = z2, as well as Qx

2 = Q2. We have

x1(Qx
1 , Q

x
2) = Qx

1 ,
x2(Qx

1 , Q
x
2) = Qx

2 − 2Qx
2

2 +Qx
1Q

x
2

2 + 3Qx
2

3 +O(Q4).
(5.3.9)

The next step is to determine the Yukawa couplings. Four independent combinations are

C111 =
(1− 4z2)2 − 16z1(1 + z1)

4z3
1∆

, C112 =
16z2

1 − (1− 4z1)2

4z2
1z2∆

,

C122 =
16z2

2 − (1− 4z2)2

4z1z2
2∆

, C222 =
(1− 4z1)2 − 16z1(1 + z2)

4z3
2∆

. (5.3.10)

The numerator is fixed by the help of the known classical triple intersection numbers as
well as the genus zero GV invariants, whereas the denominator is fixed by the Picard-Fuchs
system. Note, that the Yukawa couplings are of the well-known structure, i.e. a rational
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function in the zi’s multiplied by the inverse of the discriminant. Here we note, that in
local models the choice of the classical data is crucial for the success of direct integration.
This is due to the fact, that one can obtain the right GV invariants for different choices
of C(0) and

∫
c2J . However, if one does not use consistent data, higher genus calculations

become wrong or even impossible. In contrast, the dependence on some Euler number
drops out completely, as it does not effect the GV invariants. In this work we simply set
χ to zero.
Using the ansatz (3.7.23) for the free energy function of genus one and the classical data∫
c2Ji as well as the known genus one GV invariants we are able to fix the holomorphic

ambiguity at genus one, f1. The result as well as the expansion at large radius in the
holomorphic limit T → 0 reads as follows

F (1) = log
(

∆−
1
12 (z1z2)−

13
24 (det(Gi̄))

− 1
2

)
,

F 1(T1, T2) = − 1

24
log(Q1Q2)− 1

6
(Q1 +Q2)− 1

12
(Q2

1 + 4Q1Q2 +Q2
2) +O(Q3).

(5.3.11)

In order to perform the method of direct integration, we have to calculate the propa-
gator and express all quantities which carry non-holomorphic information through our
propagators. As a first step the holomorphic ambiguity, f̃ , in (5.2.6) can be fixed by the
choice

f̃ 1
11 = − 1

z1

, f̃ 1
12 = − 1

4z2

, f̃ 1
22 = 0,

f̃ 2
11 = 0, f̃ 2

12 = − 1

4z1

, f̃ 2
22 = − 1

z2

, (5.3.12)

where all other combinations follow by symmetry. We note that the propagator has only
one independent component for we can write

Sij =

 S(z1, z2)
z2

z1

S(z1, z2)

z2

z1

S(z1, z2)
z2

2

z2
1

S(z1, z2)

 (5.3.13)

where S(z1, z2) = 1
2
z2

1 − 2z3
1 − 2z2

1z2 − 8z3
1z2 − 32z4

1z2 + O(z6). This is due to the fact,
that the mirror geometry is solely determined by the elliptic curve Σ(z1, z2), which has
only one relevant elliptic parameter τ . The dependence on a second parameter is due to
a non-vanishing residue of the meromorphic differential on Σ(z1, z2).
Often it is convenient and also more natural to perform the calculations in the coordinates
x1, x2, in which some Christoffel symbols are rational

Γ1
11 =

1

x1

, Γ1
12 = 0, Γ1

22 = 0.

Noting, that from the tensorial transformation law of the propagator and the relation
(5.2.6) the ambiguity of the propagator f̃ has to transform as f̃ ijk(x) = ∂xi

∂zl
( ∂2zl
∂xj∂xk

) +
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∂xi
∂zl

∂zm
∂xj

∂zn
∂xk

f̃ lmn(x(z)). We obtain

f̃ 1
11 = − 1

x1

, f̃ 2
12 = − 1

4x1

, f̃ 2
22 = − 3

2x2

, (5.3.14)

where all other combinations are either 0 or follow by symmetry. As Γ1
ij = −f̃ 1

ij we
observe that the propagator takes the following simple form S11 = S12 = S21 = 0 and

S22 =
x2

2

2
− 2x3

2 − 2x1x
3
2 +O(x5).

In addition, we fix the holomorphic ambiguity of the covariant derivative of Sij, (5.2.5),
and obtain

f 11
1 = −1

8
z1(1 + 4z1 − 4z2), f 12

1 = −1
8
z2(1 + 4z1 − 4z2), f 22

1 = − z2
2

8z1
(1 + 4z1 − 4z2),

f 11
2 = − z2

1

8z2
(1 + 4z2 − 4z1), f 12

2 = −1
8
z1(1 + 4z2 − 4z1), f 22

2 = −1
8
z2(1 + 4z2 − 4z1),

(5.3.15)
where all other combinations follow by symmetry. Further we can express the covariant
derivative of F(1) through the generator S (5.2.7) by

DiF (1) =
1

2
CijkS

jk − 1

12
∆−1∂i∆ +

7

24zi
. (5.3.16)

Note, that in contrast to an one parameter model the holomorphic ambiguity Ai =
∂i(ãj log ∆j + b̃j log zj) in (5.3.16) cannot be set to zero. More generally, in the local
models we are considering here the geometry of the B-model is encoded in a Riemann
surface of genus one whose moduli space admits only one quasimodular form of weight
2, namely the second Eisenstein series. Therefore and from the discussions in the case
of local P2 in the previous section we expect there to be a coordinate system in which
the propagator is proportional to the second Eisenstein series. The relevant coordinate
system is given by the x-coordinates in which it is allowed to set all but one component of
the propagator to zero and subsequently one can use (5.2.7) and (3.7.23) to solve for this
non-zero component. Now, in the multi-parameter case this gives, for each direction of
the derivative of F (1) w.r.t. zi, h

2,1 equations on ãj, b̃j. In this and the following example,
we are lucky as these constraints fix the parameters completely. In addition one arrives
at a series expansion for the non-vanishing component of Sij. This can be used to fix all
ambiguities in the model as rational functions of the zi with poles only at the singular
divisors of the Picard-Fuchs system.

Now, all input to perform direct integration is provided and applying this method we
are able to determine F (g) for genus g up to four. Using that local F0 has a discriminant
with deg ∆ = 2 and we can further reduce the number of coefficients in Ag due to sym-
metry in z1 and z2, one can easily calculate, that at genus g there are (2g− 1)2 unknowns
in the holomorphic ambiguity. Therefore genus four corresponds to fixing 49 coefficients
in the holomorphic ambiguity fg = Ag

∆2g−2 . They are determined by the gap condition at
the conifold locus and the known constant map contributions. We will further comment
on this in the next section.
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Let’s present at least the genus two results. The free energy is given by

F (2) =
5

24z6
1∆2

S3 +
−13 + 48z2

1 + z1(40− 96z2) + 40z2 + 48z2
2

48z4
1∆2

S2+

384z3
1 + z2

1(80− 384z2) + (1− 4z2)2(17 + 24z2)− 16z1(7− 46z2 + 24z2
2)

144z2
1∆2

S + f2,

(5.3.17)

where the ambiguity f2 = A2

∆2 is fixed by the following choice

A2 =− 1

1440
(25− 258z1 + 696z2

1 + 416z3
1 − 2688z4

1 − 258z2 + 2768z1z2 − 6560z2
1z2 − 1536z3

1z2

+ 696z2
2 − 6560z1z

2
2 + 8448z2

1z
2
2 + 416z3

2 − 1536z1z
3
2 − 2688z4

2).

(5.3.18)

The solution around the conifold is described in the next section. The GV invariants can
be found in the appendix D.1. They are in accord with [79] as far as they have been
computed.

5.3.3 Solving the topological string on local F0 at the conifold
locus

Our next task is to solve the Picard-Fuchs equations around the conifold locus. In order
to do that we choose some convenient point on the locus and define variables which are
good coordinates around this point. In our case we choose the point to be z1 = 1

16
, z2 = 1

16
.

As one can easily check inserting these numbers into the discriminant yields zero. To find
the right variables we have to be careful as their gradients at the relevant point must not
be colinear. The following choice will do the job

zc,1 = 1− z1

z2

, zc,2 = 1− z2

1
8
− z1

. (5.3.19)

We transform the Picard-Fuchs system to the above coordinates and find the following
polynomial solutions

ωc0 = 1,

ωc1 = − log(1− zc,1),

ωc2 = zc,2 +
1

16
(2z2

c,1 + 8zc,1zc,2 + 13z2
c,2) +O(z3

c ). (5.3.20)

As mirror coordinates we take tc,1 := ωc1 and tc,2 := ωc2. Inverting these series gives the
following mirror map

zc,1(tc,1, tc,2) = 1− e−tc,1 ,

zc,2(tc,1, tc,2) = tc,2 −
1

16
(t2c,1 + 8tc,1tc,2 + 13t2c,2) +O(t5c). (5.3.21)
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{ }02, =cz{ }01, =cz

0=conD

Figure 5.2: Conifold coordinates.

The divisor {zc,1 = 0} is normal to the conifold locus at (z1, z2) =
(

1
16
, 1

16

)
= pcon whereas

{zc,2 = 0} is tangential (see figure 5.2). Therefore zc,1 parameterizes the tangential di-
rection to the conifold locus at pcon in moduli space and zc,2 the normal one. Hence we
expect the flat mirror coordinate tc,2 to be controlling the size of the shrinking cycle at
pcon, thus tc,2 should appear in inverse powers in the expansion of the free energies.

Transforming the Yukawa couplings, the Christoffel symbols and the holomorphic
ambiguities f̃ to the conifold coordinates we obtain the propagator around this locus.
In the choice of our coordinates (5.3.19) the propagator takes the following simple form
S11 = S12 = S21 = 0 and

S22 =
1

2
tc,2 +

1

1536
(24t2c,1tc,2 + t3c,2) +O(t4c).

Assuming the gap condition holds, we are able to fix all but one coefficients of the holo-
morphic ambiguity. Expanding the free energies at the large radius point in moduli space
the constant map contribution fixes the last unknown, i.e. we observe that the gap condi-
tion yields at genus two 8 out of 9 unknowns, at genus three 24 out of 25 unknowns, etc.
Our results up to genus four are given below (rescaling: tc,2 → 2tc,2)

F 2
c = − 1

240t2c,2
− 1

1152
+

53tc,2
122880

+
t2c,1

61440
−

2221t2c,2
14745600

+O(t3c)

F 3
c =

1

1008t4c,2
+

23

5806080
+

407tc,2
198180864

−
t2c,1

3096576
−

258485t2c,2
49941577728

+O(t3c)

F 4
c = − 1

1440t6c,2
− 19

278691840
+

114773tc,2
362387865600

+O(t2c).

(5.3.22)
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5.3.4 Solving the topological string on local F0 at the orbifold
point

As we have noted already there exists an orbifold point in the moduli space M at which
we can compare our results with the known matrix model expansions.
At this point we expand the periods in the local variables

zo,1 = 1− z1

z2

, zo,2 =
1

√
z2

(
1− z1

z2

) . (5.3.23)

Transforming the Picard-Fuchs system to these coordinates and solving it, we obtain the
following set of periods

ωo0 = 1,

ωo1 = − log(1− zo,1),

ωo2 = zo,1zo,2 +
1

4
z2
o,1zo,2 +

9

64
z3
o,1zo,2 +O(z5

o),

F
(0)
ωo2

= ωo2 log(zo,1) +
1

2
z2
o,1zo,2 +

21

64
z3
o,1zo,2 +O(zo

5). (5.3.24)

We define the mirror map to be given by the first two periods

to,1 := ωo1, to,2 := ωo2, (5.3.25)

and will express the B-model correlators in terms of these coordinates. In order to invert
the mirror map and find the function zo(to), we have to consider the two series t̃o,1 =
to,1 = zo,1 + 1 +O(zo

2) and t̃o,2 = to,2
to,1

= zo,2 +O(z2
o). Inverting these we obtain

zo,1(t̃o,1) = 1− e−t̃o,1 ,

zo,2(t̃o,1, t̃o,2) = t̃o,2 +
1

4
t̃o,1t̃o,2 +

1

192
t̃2o,1t̃o,2 −

1

256
t̃3o,1t̃o,2 +O(t̃o

5
), (5.3.26)

which together form the mirror map at the orbifold point in moduli space.
Transforming the Yukawa couplings, the Christoffel symbols and the holomorphic am-
biguities f̃ to the orbifold coordinates we obtain the propagator around this locus. In
the choice of our coordinates (5.3.23) the propagator takes the following simple form
S11 = S12 = S21 = 0 and

S22 =
1

16
(t2o,2 − t2o,1) +

1

6144
(t4o,1 − 6t2o,1t

2
o,2 + 5t4o,2) +O(t5o).

In order to match the matrix model expansion one has to choose appropriate coordinates.
As explained in [77] the right variables S1, S2 that match the ’t Hooft parameters on the
matrix model side are given by

S1 =
1

4
(to,1 + to,2), S2 =

1

4
(to,1 − to,2). (5.3.27)
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In addition the overall normalization of the all genus partition function F =
∑

g g
2g−2
s F (g)

has to be determined. By comparing to the matrix model one gets, that the string coupling
on the topological side, gtop

s , is related to the coupling on the matrix model side, ĝs, by
the identification gtop

s = 2iĝs. Using these expressions we find

F 2
orb = − 1

240

(
1

S2
1

+
1

S2
2

)
+

1

360
− 1

57600
(S2

1 + 60S1S2 + S2
2) +O(S4)

F 3
orb =

1

1008

(
1

S4
1

+
1

S4
2

)
+

1

22680
+

1

34836480
(S2

1 − 252S1S2 + S2
2) +O(S4)

F 4
orb = − 1

1440

(
1

S6
1

+
1

S6
2

)
+

1

340200
− 1

82944000
(S2

1 + 102S1S2 + S2
2) +O(S4).

(5.3.28)

The genus two results are in accord with [77], genus three corrects the misprints in this
article and genus four is a prediction on the matrix model.

5.3.5 Relation to the family of elliptic curves

At the beginning of this section we pointed out, that H(x, y) = 0 defines a family of
elliptic curves Σ(z1, z2) whose j-function is given by

j(z1, z2) =
((1− 4z1 − 4z2)2 − 48z1z2)3

z2
1z

2
2(1− 8(z1 + z2) + 16(z1 − z2)2)

. (5.3.29)

Using the usual j-function description (B.1.11) one can establish a relation between the
elliptic parameter q = e2πiτ and the complex structure variables z1 and z2 which reads

q = z2
1z

2
2 + 16z3

1z
2
2 + 160z4

1z
2
2 + 16z2

1z
3
2 + 400z3

1z
3
2 + 160z2

1z
4
2 +O(z7). (5.3.30)

We observe that
τ = 4∂tx,2∂tx,2F

0, ∂tx,2τ = −4Ctx,2tx,2tx,2 , (5.3.31)

where tx,i is obtained from Qx
i = e2πitx,i , which hints at that the not instanton corrected

parameter x1 or Qx
1 , respectively, is merely an auxiliary parameter.

[80] work with an isogenous description of Σ̃(z1, z2). They use the Segre embedding of
P1 × P1 into P3 given by the map

([x0 : x1], [x′0 : x′1]) 7→ [X0 : X1 : X2 : X3] = [x0x
′
0, x1x

′
0, x0x

′
1, x1x

′
1], (5.3.32)

where [x0 : x1] and [x′0 : x′1] are homogeneous coordinates of the P1’s and X0, . . . , X3 are
homogeneous coordinates of P3. Then Σ̃(z̃1, z̃2) is given by the complete intersection of
P1 × P1, defined by X0X3 − X1X2, with the hypersurface given by X2

0 + z̃1X
2
1 + X2

2 +
z̃2X

2
3 +X0X3. Its j-function reads

̃(z̃1, z̃2) =
((1− 4z̃1 − 4z̃2)2 + 192z̃1z̃2)3

z̃1z̃2(1− 8(z̃1 + z̃2) + 16(z̃1 − z̃2)2)2
. (5.3.33)
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Defining q̃ = e2πiτ̃ we can calculate that τ̃ = ∂tx,2∂tx,2F
0, i.e. their modular parameters

are related by a simple rescaling by a factor of 4

τ = 4τ̃ . (5.3.34)

This transfers to a rescaling of the periods of the elliptic curve.
With this input it is possible to write the full non-holomorphic F (1) as

F (1) = − log
√
τ̃2η(τ̃)η̄(¯̃τ). (5.3.35)

5.4 KF1 = O(−2,−3)→ F1

We are considering the non-compact Calabi-Yau geometry O(−2,−3) → F1, i.e. the
canonical line bundle over the Hirzebruch surface F1 = BP2

1, where BP2
1 denotes the first

del Pezzo surface, i.e. P2 with one blow up. This local model can be obtained again
from the compact elliptic fibration over F1 with fiber X6(1, 2, 3). The three complexified
Kähler volumes have the corresponding Mori cone generators (−6; 3, 2, 1, 0, 0, 0, 0),
(0; 0, 0,−1, 1,−1, 1, 0), (0; 0, 0,−2, 0, 1, 0, 1). A Picard-Fuchs system governing the periods
of the global mirror geometry is given by

D1 = Θ1(Θ1 − 2Θ2 −Θ3)− 18z1(1 + 6Θ1)(5 + 6Θ1)

D2 = Θ2(Θ2 −Θ3)− z2(−1 + Θ1 − 2Θ2 −Θ3)(Θ1 − 2Θ2 −Θ3)

D3 = Θ2
3 − z3(Θ1 − 2Θ2 −Θ3)(Θ2 −Θ3).

(5.4.1)

Now let us turn to the non-compact geometry. The toric data of local F1 is summarized
in the following matrix

(V |Q) =


0 0 1 −2 −1
1 0 1 1 0
−1 −1 1 0 1
−1 0 1 1 −1
0 1 1 0 1

 . (5.4.2)

From there we conclude the following quantities6

a) Q1 = (−2, 1, 0, 1, 0), Q2 = (−1, 0, 1,−1, 1)
b) Z = {x1 = x3 = 0} ∪ {x2 = x4 = 0}
c) M = (C5[x0, · · · , x4] \ Z)/(C∗)2

d) H(x, y) = y2 − x3 − (1− 4z1)x2 + 8z1z2x− 16z2
1z

2
2

e) D1 = Θ1(Θ1 −Θ2)− z1(2Θ1 + Θ2)(1 + 2Θ1 + 2Θ2)
D2 = Θ2

2 − z2(Θ2 −Θ1)(2Θ1 + Θ2)
∆ = (1− 4z1)2 − z2(1− 36z1 + 27z1z2)

f) C
(0)
111 = −1

3
, C

(0)
112 = −1

3
, C

(0)
122 = −1

3
, C

(0)
222 = 2

3

g)
∫
M

c2J1 = −2,
∫
M

c2J2 = 0.

(5.4.3)

6 Using toric geometry it is only possible to determine an one-parameter family of classical intersection
numbers C(0)

ijk, resulting in an one-parameter family for
∫
M
c2Ji. Their correct values are fixed by a limiting

procedure of local F1 = BP2
1 to local P2 which is described below.
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H(x, y) = 0 defines a family of elliptic curves Σ̃(z1, z2) whose j-function is given by

j(z1, z2) =
((1− 4z1)2 + 24z1z2)3

z3
1z

2
2((1− 4z1)2 − z2(1− 36z1 + 27z1z2))

. (5.4.4)

5.4.1 Solving the topological string on local F1 at large radius

The mirror map at the point of large radius is given by

2πiT1(z1, z2) = log z1 + 2z1 + 3z2
1 − 4z1z2 + 20

3
z3

1 + 24z2
1z2 +O(z4)

2πiT2(z1, z2) = log z2 + z1 + 3
2
z2

1 − 2z1z2 + 10
3
z3

1 +−12z2
1z2 +O(z4).

(5.4.5)

Inverting the series we obtain for Qi = e2πiTi

z1(Q1, Q2) = Q1 − 2Q2
1 + 3Q3

1 + 4Q2
1Q2 − 4(Q4

1 +Q3
1Q2) +O(Q5)

z2(Q1, Q2) = Q2 −Q1Q2 +Q2
1Q2 + 2Q1Q

2
2 −Q3

1Q2 +O(Q5).
(5.4.6)

Now, one realizes again that there is a relation between the Q coordinates:

Q1

Q2
2

=
z1

z2
2

= e2πi(T1−2T2) =: Qx
1 . (5.4.7)

Defining further Qx
2 := Q2 and x1 = z1

z2
2

as well as x2 = z2 one finds that

x1(Qx
1 , Q

x
2) = Qx

1 ,
x2(Qx

1 , Q
x
2) = Qx

2 −Qx
1Q

x
2

3 + 2Qx
1Q

x
2

4 +O(Q6).
(5.4.8)

The Yukawa couplings can be fixed through the relation ∂Ti∂Tj∂TkF
0 = CTiTjTk and the

known genus zero GV invariants up to a dependence on one unfixed parameter. This
unfixed parameter can be determined by the fact that there exists a limit of local F1 to
local P2, as F1 = BP2

1. This blow-down limit turns out to be

z1 → 0, with z1z2 = z fixed.

We obtain the following Yukawa couplings

C111 =
−1− 4z2

1 + z2 − z1(7− 6z2)

3z3
1∆

, C112 =
−1 + 8z2

1 + z2 + z1(2− 3z2)

3z2
1z2∆

,

C122 =
z2(1− 12z1)− (1− 4z1)2

3z1z2
2∆

, C222 =
2(1− 4z1)2 + z2(1− 60z1)

3z3
2∆

. (5.4.9)

The next step is to determine the propagators of local F1. This is best done in x
coordinates, where one finds again that some Christoffel symbols are either trivial or have
a rational form

Γ1
11 = − 1

x1

, Γ1
12 = 0, Γ1

22 = 0. (5.4.10)
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Choosing f̃ 1
11 = − 1

x1
, f̃ 1

12 = 0, f̃ 1
21 = 0, f̃ 1

22 = 0, one finds from (5.2.6) that S11, S12

are immediately zero. Demanding symmetry we are able to fix all ambiguities f̃ ijk by the
choice

f̃ 1
11 = − 1

x1

, f̃ 2
11 = − x2

12x2
1∆x

(1− x2 − 12x1x
2
2 + 49x1x

3
2 − 36x1x

4
2 + 32x2

1x
4
2 − 12x2

1x
5
2),

f̃ 2
12 = − 1

12x1∆x

(3− 3x2 − 32x1x
2
2 + 144x1x

3
2 − 108x1x

4
2 + 80x2

1x
4
2),

f̃ 2
22 = − 1

12x2∆x

(20− 21x2 − 176x1x
2
2 + 828x1x

3
2 − 648x1x

4
2 + 384x2

1x
4
2),

(5.4.11)

where ∆x denotes the discriminant in x coordinates and all other combinations of f̃ ijk are
either zero or follow by symmetry. This singles out one non-vanishing propagator only,

given by S22(x1, x2) =
x2

2

12
− 1

3
x1x

4
2 + x1x

5
2 + 4x2

1x
7
2 +O(x10). After tensor transforming to

z coordinates we obtain

Sij =

 S(z1, z2)
z2

2z1

S(z1, z2)

z2

2z1

S(z1, z2)
z2

2

4z2
1

S(z1, z2)

 , (5.4.12)

where S(z1, z2) =
z2
1

3
− 4z3

1

3
+ 4z3

1z2 + 16z4
1z2 +O(z6). This again has a similar form as in

the case of local F0.
In addition, we fix the holomorphic ambiguity of the covariant derivative of Sij, (5.2.5),
and obtain, that in x coordinates there are two non-zero contributions only, given by

f 22
1 = − x2

2

144x1∆x

(3− 3x2 + 4x1x
2
2)(1− 8x1x

2
2 + 24x1x

3
2 + 16x2

1x
4
2),

f 22
2 = − x2

144∆x

(8− 9x2)(1− 8x1x
2
2 + 24x1x

3
2 + 16x2

1x
4
2).

(5.4.13)

The f jki in z coordinates are again obtained after tensor transformation.
Further we can express the covariant derivative of F1) through the generator S by

DiF (1) =
1

2
CijkS

jk + Ai. (5.4.14)

As the free energy function of genus one is given by

F (1) = log
(

∆−
1
12 z
− 7

12
1 z

− 1
2

2 det(Gi̄))
− 1

2

)
,

F 1(T1, T2) = − 1

12
log(Q1)− 1

12
(2Q1 +Q2)− 1

24
(2Q2

1 + 6Q1Q2 +Q2
2) +O(Q3),

(5.4.15)

we find that Ai = ∂iA and

A = − 1

24
log ∆ +

1

24
log z1 +

1

12
log z2. (5.4.16)
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Now, we are prepared to perform the direct integration procedure. Demanding the gap
at the conifold and using further the known constant map contributions we are able to fix
the ambiguities up to genus three. In this more general two parameter model with one
discriminant component of degree three the number of coefficients in Ag is(

(2g − 2) deg ∆ + 2

2

)
= 10− 27g + 18g2, (5.4.17)

i.e. at genus three we have to fix 91 coefficients in the holomorphic ambiguity.
The invariants can be found in the appendix D.1. The solutions around the conifold locus
are described in the next section.

5.4.2 Solving the topological string on local F1 at the conifold
locus

In order to apply the gap condition in this example, we have to transform and solve the
Picard-Fuchs system at a specific point on the conifold locus. We make the choice z1 = 2,
z2 = −1

2
. Again we define two variables which vanish at this point

zc,1 = 1− z2

−1
4
(z1 − 2)− 1

2

, zc,2 = 1− z2

4(z1 − 2)− 1
2

. (5.4.18)

zc,1 is a coordinate normal to the conifold divisor and zc,2 describes a tangential direction.
Transforming the Picard-Fuchs system to these coordinates we find the following set of
periods:

ωc0 = 1,

ωc1 = zc,1 +
6773z2

c,1

14450
− 58zc,1zc,2

7225
−

z2
c,2

1445
+O(z3

c ),

ωc2 = zc,2 +
10858z2

c,1

7225
+

2871z2
c,2

2890
− 4886zc,1zc,2

7225
+O(z3

c ). (5.4.19)

Next, we can express the zc,i through the mirror coordinates tc,1 := ωc1 and tc,2 := ωc2 by
inverting the above series

zc,1(tc,1, tc,2) = tc,1 −
6773t2c,1
14450

+
58tc,1tc,2

7225
+

t2c,2
1445

+O(t3c),

zc,2(tc,1, tc,2) = tc,2 −
10858t2c,1

7225
+

4886tc,1tc,2
7225

−
2871t2c,2

2890
+O(t3c). (5.4.20)

Transforming the Yukawa couplings, the Christoffel symbols and the holomorphic ambi-
guities f̃ to the conifold coordinates we obtain the propagator around this locus. In the
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choice of our coordinates the propagator takes the following form

S11 =
5

12
− 2tc,1

25
−

337t2c,1
10625

− 4tc,1tc,2
2125

+O(t3c),

S12 = −55

4
+

66tc,1
25

+
11121t2c,1

10625
+

132tc,1tc,2
2125

+O(t3c),

S22 =
1815

4
− 2178tc,1

25
−

366993t2c,1
10625

− 4356tc,1tc,2
2125

+O(t3c).

(5.4.21)

Again the gap condition in combination with the known leading behavior at the large
radius point suffices to fix all coefficients in the holomorphic ambiguity. From the conifold
alone we get at genus two 27 out of 28 unknowns and at genus three 90 out of 91 unknowns.
Our results read

F 2
c =

1

48t2c,1
+

1567

9000000
+

98333

1593750000
tc,1 −

123

10625000
tc,2 +O(t2c)

F 3
c =

25

1008t4c,1
+

480217

283500000000
+

106245283tc,1
17929687500000

+
69949tc,2

167343750000
+O(t2c).

(5.4.22)

5.4.3 Relation to the family of elliptic curves

Starting point is again the j-function of Σ̃(z1, z2) which we will repeat here

j(z1, z2) =
((1− 4z1)2 + 24z1z2)3

z3
1z

2
2((1− 4z1)2 − z2(1− 36z1 + 27z1z2))

. (5.4.23)

Using again the usual j-function description (B.1.11) one can establish a relation between
the elliptic parameter q = e2πiτ and the complex structure variables z1 and z2 which reads

q = z3
1z

2
2 + 16z4

1z
2
2 + 160z5

1z
2
2 − z3

1z
3
2 − 60z4

1z
3
2 +O(z8). (5.4.24)

We observe that
τ = ∂tx,2∂tx,2F

0, ∂tx,2τ = −Ctx,2tx,2tx,2 , (5.4.25)

where tx,i is obtained from Qx
i = e2πitx,i , which hints at that the not instanton corrected

parameter x1 or Qx
1 , respectively, is merely an auxiliary parameter. As in the previous

cases it is possible to write the full non-holomorphic F (1) as

F (1) = − log
√
τ2η(τ)η̄(τ̄) + A, (5.4.26)

where A is given by (5.4.16).
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Chapter 6

K3 fibrations

In this chapter we construct solutions to the holomorphic anomaly equations for regular
K3-fibrations with two moduli, which are realized as hypersurfaces in toric ambient spaces.
From the perspective of the 2d σ model these geometries correspond to σ model with
superpotential. We focus in particular on two models whose moduli spaces have been
explored in detail [82]. These moduli spaces have identical types of boundary divisors,
which have been interpreted physically in the context of heterotic/type II duality. Apart
from the large radius point one has the weak coupling divisor, the strong coupling divisor, a
Seiberg-Witten divisor, the generic conifold locus and the Gepner point where a conformal
field theory description becomes available.

The material presented here was published in reference [5].

6.1 Calabi-Yau hypersurfaces in toric varieties

Compact toric ambient spaces PΣ of complex dimension d are described through the
quotient

PΣ = (Cn − Z)/G, (6.1.1)

where G ∼= (C∗)h with h = n − d and one has to exclude an exceptional set Z ⊂ Cn to
obtain a well-behaved quotient. The h independent C∗ identifications arise as follows. PΣ

is defined in terms of a fan Σ, which is a collection of rational polyhedral cones σ ∈ Σ
containing all faces and intersections of its elements [73, 74]. The cones are spanned
by vectors which are sitting in a d-dimensional integral lattice Γ∗ and PΣ is compact if
the support of Σ covers all of the real extension Γ∗R = Γ∗ ⊗ R of the lattice Γ∗. We
will concentrate on the case where Σ consists of the cones over the faces of an integral
polyhedron ∆∗ ⊂ Γ∗R, which contains the origin v0 = (0, . . . , 0). In toric geometry l-
dimensional cones of ∆∗ represent codimension l subvarieties of PΣ. Now, let Σ(1) denote
the set of one-dimensional cones with primitive generators vi, i = 1, · · · , n. One finds that
there are h n-vectors Qa

i ∈ Z, a = 1, · · · , h, called charge vectors, satisfying the linear
relations

∑n
i=1Q

a
i vi = 0 among the primitive lattice vectors vi. This defines an action of
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124 CHAPTER 6. K3 FIBRATIONS

the group G on the homogeneous coordinates xi ∈ C as follows: xi 7→ µ
Qai
a xi with µa ∈ C∗.

Anti-canonical hypersurfaces in PΣ are given by sections of the anti-canonical bundle
OPΣ

(
∑

vi∈Σ(1)Di), where Di is the corresponding divisor to vi ∈ Σ(1). In order for these
to be Calabi-Yau a further condition must be satisfied. PΣ will usually have singularities
which have to be blown up and the criterion for the canonical bundle to extend to a bundle
of the blow-up is that the singularities are of Gorenstein type. Once we also require PΣ

to be Fano, i.e. that the anti-canonical bundle is positive, the above hypersurfaces will
define Calabi-Yau hypersurfaces M ⊂ PΣ.

Let us now pass over to the description of mirror symmetry for these Calabi-Yau
hypersurfaces. We denote by Γ the dual lattice to Γ∗, ΓR the real extension and by 〈·, ·〉
the canonical pairing between the dual vector spaces and define the dual polyhedron ∆
as

∆ = {m ∈ ΓR|〈n,m〉 ≥ −1 for all n ∈ ∆∗}. (6.1.2)

If all vertices of ∆ belong to Γ and ∆ contains the origin, then ∆ is again an integral
polyhedron and both ∆∗ as well as ∆ are called reflexive. Note that this implies that in
both ∆∗ and ∆ the origin is the only interior point. In [83] Batyrev showed that ∆ is
reflexive if and only if the corresponding toric variety, denoted by PΣ∗ , is Gorenstein and
Fano. This opens up the way for the construction of the mirror Calabi-Yau manifold as
a hypersurface in PΣ∗ , where Σ∗ is the fan over the faces of ∆. The construction uses the
fact that the toric variety corresponding to a fan Σ can be defined alternatively through
the polyhedron ∆ as an embedding PΣ = PΣ(∆) ↪→ Pk with k = |∆∩Γ|−1 using the linear
relations among the vertices of ∆. The same applies to the toric variety corresponding
to Σ∗, where now PΣ∗ = PΣ(∆∗) ↪→ Pk′ with k′ = |∆∗ ∩ Γ∗| − 1. Batyrev showed that the
mirror Calabi-Yau manifold W is given by the anti-canonical hypersurface in PΣ∗ . The
Hodge numbers can be computed through methods of toric geometry and one obtains
[83]:

h1,1 = l(∆∗)− d− 1−
∑
γ∗

l∗(γ∗) +
∑
Θ∗

l∗(Θ∗)l∗(Θ̂∗) (6.1.3)

hd−2,1 = l(∆)− d− 1−
∑
γ

l∗(γ) +
∑

Θ

l∗(Θ)l∗(Θ̂) . (6.1.4)

Here γ∗ (γ) refers to codimension 1 faces of ∆∗ (∆) and Θ∗ (Θ) refers to codimension 2
faces of ∆∗ (∆). By Θ̂∗ we denote the face of ∆, which is dual to Θ∗ in ∆∗ and vice versa.
If F is a facet of the polytop ∆ or ∆∗ then l(F ) denotes the set of all integral points
on F , while l∗(F ) denotes only the interior integral points, i.e. those which do not lie in
codimension one facets of F .

In the following we will describe the case h = 1 and d = 4, i.e. 3-dimensional hyper-
surfaces in weighted projective space, as this is the relevant construction for our particular
models. We also assume that one weight is 1 and all weights divide the degree D of the
anticanonical hypersurface and denote the weight vector by (Q1, Q2, Q3, Q4, 1). Then ∆∗

spanned by the vertices

v1 = (1, 0, 0, 0), v2 = (0, 1, 0, 0), v3 = (0, 0, 1, 0), v4 = (0, 0, 0, 1),
v5 = (−Q1,−Q2,−Q3,−Q4)
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is an reflexive polyhedron and the charge vector is identified with the weight vector.
It is convenient to consider also the extended vertices v̄i = (1, vi). The linear relation
between the extended vertices

∑5
i=1Qiv̄i = Dv̄0 reproduces the Calabi-Yau condition for

c1(TM) = 0 namely D =
∑

iQi, where d is the degree of the hypersurface.
According to the above description this on the one hand defines the toric variety PΣ as

the weighted projective space P( ~Q)
d with the family of Calabi-Yau hypersurfaces M given

by generic degree D homogeneous polynomials and we write M = P( ~Q)
d [D] ⊂ PΣ. On the

other hand the linear dependence of the charge vectors leads to the identification

PΣ∗ = PΣ(∆∗) ≡ H5( ~Q) := {(U0, U1, U2, U3, U4, U5) ∈ P5|
5∏
i=1

UQi
i = UD

0 }. (6.1.5)

One can now consider the embedding map φ : P( ~Q)
4 → H5( ~Q) given by

[y1, y2, y3, y4, y5] 7→ [y1y2y3y4y5, y
D/Q1

1 , y
D/Q2

2 , y
D/Q3

3 , y
D/Q4

4 , y
D/Q5

5 ], (6.1.6)

which defines the isomorphism PΣ∗
∼= P( ~Q)

4 /Kerφ. Anti-canonical hypersurfaces in PΣ∗ are
defined through expressions linear in the Ui which in turn can be expressed as monomials
in the yi through equation (6.1.6). Resolution of the singularities arising from PΣ∗ then
gives the family of mirror Calabi-Yau hypersurfaces W ⊂ PΣ∗ .

6.2 Picard-Fuchs equations and the B-model

We want to analyze the periods of the mirror Calabi-Yau. The mirror is given by sections
of the anti-canonical bundle of PΣ∗ . These can be identified with the Laurent polynomials

f =
∑
i

aiY
mi , Y mi = Y

m1
i

1 Y
m2
i

2 · · ·Y mdi
d , (6.2.1)

where (Y1, · · · , Yd) are coordinates for the torus T ⊂ PΣ∗ and mi are points of ∆∗ ∩ Γ∗

which do not lie in the interior of codimension one faces of ∆∗. The Griffiths construction
[84] then gives the following set of Periods:

Πi(a) =

∫
γi

Ω =

∫
γi

1

f(a, Y )

d∏
j=1

dYj
Yj

, (6.2.2)

with γi ∈ Hd((C∗)d\Zf ). Here Zf is the vanishing locus of the polynomial f . These
periods satisfy a set of differential equations which are called the GKZ system [85]. In
order to obtain them, we extend the vectors vi from above to the Rd+1 dimensional vectors
v̄i = (1, vi) forming the set A = {v̄0, · · · , v̄n}. Assuming that these integral points span
Zd+1 we obtain h = n− d linear dependencies described by the lattice

Λ = {(l(k)
0 , · · · , l(k)

n ) ∈ Zn+1|
n∑
i=0

l
(k)
i v̄i = 0, k = 1, . . . , h}. (6.2.3)
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Now we are ready to write down the differential operators which annihilate the periods
(6.2.2):

Dk =
∏
l
(k)
i >0

(
∂

∂ai

)l(k)
i

−
∏
l
(k)
i <0

(
∂

∂ai

)−l(k)
i

, (6.2.4)

for each element l(k) of Λ and

Zj =
n∑
i=0

v̄i,jai
∂

∂ai
− βj, (6.2.5)

where β ∈ Rd+1 and v̄i,j represent the j-th component of the vector v̄i ∈ Rd+1. One
can show that equation (6.2.5) defines invariance under the rescalings ai 7→ λ

mi,j
j ai and

f 7→ c · f for λ, c ∈ C∗. Therefore we define the invariant variable

zj = (−1)l
(k)
0

∏
i

a
l
(j)
i
i , (6.2.6)

which transforms (6.2.4) to a generalized system of hypergeometric equations

DkΠi(z1, · · · , z|Λ|) = 0 (6.2.7)

for each l(k) ∈ Λ.
In general, these differential equations forming the so called A-system, contain the

periods among their solutions, but there will be also other solutions. The set of Picard-
Fuchs equations which vanish only on the periods can be obtained by factoring the above
equations. Then the resulting lower order operator is Picard-Fuchs once it annihilates all
periods.

For a general set of Picard-Fuchs equations, the solution space has dimension h3(W )
and one obtains the following set of periods [86]:

Π(z) =


ω0(z, ρ)|ρ=0

D
(1)
i ω0(z, ρ)|ρ=0

D
(2)
i ω0(z, ρ)|ρ=0

D(3)ω0(z, ρ)|ρ=0

 . (6.2.8)

Here, i runs from 1 to h21(W ), where h21(W ) is the number of moduli. Furthermore
we have the following definitions:

ω0(z, ρ) =
∑
ni≥0

c(n+ ρ)zn+ρ, (6.2.9)

D
(1)
i := ∂ρi , D

(2)
i :=

1

2
κijk∂ρj∂ρk , D

(3) := −1

6
κijk∂ρi∂ρj∂ρk , (6.2.10)
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where κijk are the classical intersection numbers of the Calabi-Yau M and c(n+ ρ) is
defined by

c(n+ ρ) =
Γ
(∑h

k=1 l
(k)
0 (nk + ρk) + 1

)
∏n

i=1 Γ
(∑h

k=1 l
(k)
i (nk + ρk) + 1

) . (6.2.11)

As described in section 3.6 the periods (6.2.8) describe complex structure deforma-
tions of the manifold W and can be written in terms of homogeneous special coordinates
(X0, X i) as (X0, X i, (∂F/∂X i), (∂F/∂X0)). With the choice (6.2.10) they are already in
the integer symplectic basis and thus correspond directly to the A model period vector
Π(t) = (1, ti, ∂iF, 2F − ti∂iF ) multiplied with X0.

Then the mirror map takes the form

ti(z) =
ωi(z)

ω0(z)
, ωi(z) := D

(1)
i ω0(z, ρ)|ρ=0 . (6.2.12)

6.3 Moduli Space of K3 Fibrations

In this section we want to give an overview of the moduli Space of K3 fibrations as pre-
sented in [82]. Special attendance will be given to boundary divisors and their importance
for physical boundary conditions.

6.3.1 K3 Fibrations

K3 fibrations arise in the context of heterotic/type II duality once one wants to haveN = 2
supersymmetry in four dimensions [87]. In order to achieve this amount of supersymmetry
on the heterotic side one has to compactify on K3 × T 2. In the heterotic picture vector
multiplets come from the 2-torus together with its bundle and the dilaton axion, while
hypermultiplets arise as deformations of the K3 surface and its bundle. On the type II side
vector multiplets arise from compactification of the R-R three-form and therefore count
h1,1(M), while the complex structure deformation parameters of the Calabi-Yau together
with the dilaton-axion form h2,1(M) + 1 hypermultiplets. Part of the duality conjecture
is that there is a complete match between the moduli spaces of the two theories. To see
the consequences it is easiest to start with the vector multiplet moduli of the heterotic
side. Here one has from the Narain moduli of the 2-torus and the dilaton-axion locally a
product of the form

O(2,m)

O(2)×O(m)
× SL(2)

U(1)
. (6.3.1)

The classical vector moduli spaceMV of the type IIA theory is a special Kähler manifold.
Choosing special coordinates, the Kähler potential takes the following form in terms of
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the prepotential F

K = − log

(
2(F + F̄ )− (ti − t̄i)

(
∂F

∂ti
− ∂F̄

∂t̄i

))
,

Gij̄ =
∂K

∂ti∂t̄j
. (6.3.2)

Here, Gij̄ is the metric on moduli space. Imposing the local product structure (6.3.1) on
a special Kähler manifold allows one to deduce the prepotential from equations (6.3.2).
This, on the other hand, opens up the way for calculating intersection numbers κijk =
](Di ∩Dj ∩Dk) from the special Kähler relation

κijk =
∂F

∂ti∂tj∂tk
. (6.3.3)

Such a calculation was performed in [88] and the result is

](D0 ∩D0 ∩D0) = 0,

](D0 ∩D0 ∩Di) = 0, i = 1, · · · , h1,1 − 1

](D0 ∩Di ∩Dj) = ηij, i, j = 1, · · · , h1,1 − 1, (6.3.4)

where ηij is a matrix of nonzero determinant and signature (+,−,−, · · · ,−). A theorem
of Oguiso [89] says that if M is a Calabi-Yau threefold and L a divisor such that

L · c ≥ 0 for all curves c ∈ H2(M,Z), L2 ·D = 0 for all divisors D ∈ H4(M,Z), (6.3.5)

then there is a fibration Φ : M → W , where W is P1 and the generic fibre L is either
a K3 surface or an abelian surface. The second condition of (6.3.5) follows from (6.3.4)
with L = D0. Further investigation [90] shows that the first condition in (6.3.5) is also
true and that the Euler characteristic of the fibre given by the second chern class is 24.
This determines the fibration as a K3 fibration over P1, where the first factor of (6.3.1)
arises from the Picard-lattice of the K3 fibre and the second factor is identified with the
Kähler form plus B-field on P1. Therefore we see that in this picture the heterotic dilaton
is identified with the size of the P1 on the type IIA side.

6.3.2 The Moduli Space of the Mirror

In this section we will concentrate on the example M1 = P(1,1,2,2,2)
4 [8] whose mirror moduli

space we will describe. The case of M2 = P(1,1,2,2,6)
4 [12] is analogous. M1 is a generic degree

8 hypersurface in the weighted projective space P(1,1,2,2,2)
4 . A typical defining polynomial

for such a hypersurface is
p = x8

1 + x8
2 + x4

3 + x4
4 + x4

5. (6.3.6)

One sees that there is a Z2-singularity along [0, 0, x3, x4, x5]. This may be blown up,
replacing each point in the locus by P1 with homogeneous coordinates [x1, x2] which will
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be the base of the fibration. Choosing a point on the base by fixing x1/x2 = λ projects

onto the subspace P(1,2,2,2)
3 with the fibre given by the hypersurface

(λ8 + 1)x8
2 + x4

3 + x4
4 + x4

5 = 0. (6.3.7)

This is seen to be a quartic K3 surface in P3 ones one makes the substitution y1 = x2
2.

Thus we see that M1 is a K3 fibration with two Kähler moduli t1 and t2, t2 being the size
of the P1 base while t1 corresponds to the curve cut out by a generic hyperplane in the
K3 fibre. Its mirror W1 may be identified with the family of Calabi-Yau threefolds of the
form {p = 0}/G, where

p = x8
1 + x8

2 + x4
3 + x4

4 + x4
5 − 8ψx1x2x3x4x5 − 2φx4

1x
4
2. (6.3.8)

Here, G consists of elements g = (αa1 , αa2 , α2a3 , α2a4 , α2a5) with the action

(x1, x2, x3, x4, x5;ψ, φ) 7→ (αa1x1, α
a2x2, α

2a3x3, α
2a4x4, α

2a5x5;α−aψ, α−4aφ), (6.3.9)

where a = a1 + a2 + 2a3 + 2a4 + 2a5, where αa1 and αa2 are 8th roots of unity, and where
α2a3 , α2a4 , and α2a5 are 4th roots of unity. Therefore, we see that the parameter space
{(ψ, φ)} is modded out by a Z8 acting in the form

(ψ, φ) 7→ (αψ,−φ). (6.3.10)

This translates to the description of the moduli space as an affine quadric in C3

ξ̃ζ̃ = η̃2, (6.3.11)

with invariant coordinates

ξ̃ = ψ8, η̃ = ψ4φ, ξ̃ = φ2. (6.3.12)

Compactification of this space leads to the projective quadric Q = {ξζ−η2 = 0} in P3 with
coordinates [ξ, η, ζ, τ ]. The relation to the tilted coordinates is ξ̃ = ξ/τ, η̃ = η/τ, ζ̃ = ζ/τ
for τ 6= 0. Having identified the global form of the moduli space let us now proceed to
the description of boundary divisors which correspond to parameter values for which the
original family of hypersurfaces {p = 0} develops singularities. The analysis was done in
[82] and the result is the following set of boundary divisors:

Ccon = Q ∩ {1− 2x+ x2(1− y) = 0}, (6.3.13)

C1 = Q ∩ {1− y = 0}, (6.3.14)

C∞ = Q ∩ {y = 0} : φ and ψ both approach infinity, (6.3.15)

C0 = Q ∩ {1/x = 0}. (6.3.16)

Here we have used the coordinates 1

x := −1

8
φψ−4, y = φ−2, (6.3.17)
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Figure 6.1: The blown up moduli space.

which are themselves related to the coordinates zi in (6.2.6) through z1 = x/256 and
z2 = y/4. This choice is convenient for the description of the mirror map which becomes

t1 ∼ log(x), t2 ∼ log(y). (6.3.18)

Ccon corresponds to the locus where the Calabi-Yau developers a conifold singularity
and along C1 the Calabi-Yau manifold M1 admits a whole singular curve of genus g over
which An−1 singularities are fibred (in our particular case g = 3 and n = 2). C∞ is the
locus where the volume of the P1 base goes to infinity. Next, one notices that the resulting
space is singular. First of all the quadric Q ⊂ P3 is singular by itself. This singularity is
of toric origin as Q can be identified isomorphically with P1,1,2. Further singularities arise
from the point of tangency between the divisors Ccon, C∞, from the tangency between
C1, C∞ (of toric origin), and from the common point of intersection of C0, C1 and Ccon.
Blowing up all singular points leads to the schematic picture of the moduli space presented
in figure 6.1.

6.4 Physical boundary conditions

6.4.1 The Strong coupling singularity

Consider the locus C1 = Q ∩ {φ2 = 1}. It can be shown that the mirror map converts
this locus to the locus t2 = 0 in the Kähler moduli space of the Calabi-Yau M1 [91]. As t2

1For the model P(1,1,2,2,6)
4 [12] use x := − 1

864
φ
ψ6 , y = 1

φ2 .
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describes the size of the P1 which is the base of the K3 fibration t2 = 0 translates to the
strong coupling regime in the dual heterotic picture. In M1 the singularity is described
by the equations

x1 = x2 = 0, x4
3 + x4

4 + x4
5 = 0, (6.4.1)

leading to a genus 3 curve 2 C of fixed points of the projective action xi 7→ µQixi. In the
language of toric geometry the singular curve C corresponds to a one-dimensional edge
of the dual polyhedron ∆∗ with integral lattice points on it. The resolution process adds
a new vertex for each of these points leading to an exceptional P1 bundle over C in the
blown up of the Calabi-Yau manifold for each ray added. The monomial divisor mirror
map relates each vertex to the addition of a new perturbation in the defining polynomial
of W1. In our case we blow up only once and the perturbation added is the term φx4

1x
4
2

in (6.3.8).
To see what happens from the physics point of view along C1 we look at the effective

action arising from compactification in the type IIA picture. This procedure has been
analyzed in [92]. Let us first clarify the setup. Assume that we have a smooth curve
of genus g and singularities of type AN−1 fibred over the curve. The resolution of the
transverse AN−1 singularity gives rise to an ALE space in which the vanishing cycles are
described by a chain of N − 1 two-spheres Γi and their intersection matrix corresponds
to the Dynkin diagram of AN−1. Now consider soliton states described by two-branes
wrapping the two-cycles Aij defined by the chain Γi ∪ Γi+1 ∪ · · · ∪ Γj. These become
charged under U(1)N−1 with their charges being identified with the positive roots of AN−1.
Compactification of the theory down to 4 dimensions leads to a N = 2 supersymmetric
SU(N) gauge theory with g hypermultiplets (coming from holomorphic 1-forms on C)
transforming in the adjoint representation of the gauge group. In N = 1 superfield
notation, we obtain the following effective Lagrangian

2πL = Im

[
Tr

∫
d4θ(Mi

†eVM i + M̃ †ieV M̃i + Φ†eV Φ) +
τ

2

∫
d2θTrW 2 + i

∫
d2θW

]
,

(6.4.2)
with the superpotential

W = TrM̃ i[Φ,Mi], (6.4.3)

and the scalar potential

V = Tr
[
[mi,m

†i]2 + [m̃i, m̃†i ]
2 + [φ, φ†]2

+ 2
(

[m†
i
, φ][φ†,mi] + [m̃†i , φ][φ†, m̃i] + [mi, m̃

i][m̃†j,m
†j]
)]
. (6.4.4)

Here Va is the vector multiplet in the adjoint and W a
α its field strength. Furthermore,

one has a chiral superfield Φa in the adjoint (comprising with V the N = 2 vector multi-
plet), and 2g chiral superfields M i

a, M̃
i
a in the adjoint (comprising the g hypermultiplets,

i = 1, · · · , g). Going to the Coulomb branch of the moduli space, φ = diag(φ1, φ2, · · · , φN)

2In M2 the equations describing the singularity lead to a genus 2 curve
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with
∑
φi = 0, one sees that at generic points along this the gauge symmetry is sponta-

neously broken to U(1)N−1. In codimension one (along the singular divisor C1 ∼ φN = 0)
the unbroken symmetry gets enhanced to SU(2) × U(1)N−2 and from (6.4.4) one can
deduce that 2g hypermultiplets and 2 vector multiplets are becoming massless near the
locus φN = 0. Therefore, the number nH − nV in (3.7.28) becomes 2g − 2.

6.4.2 The weak coupling divisor and meromorphic modular forms

The weak coupling divisor deserves its name from the definition y = 0 which inserted into
the mirror map (6.3.18) gives t2 →∞. Again as t2 describes the size of the dilaton in the
heterotic dual we are in the weak coupling regime of the heterotic string. This can be used
to calculate higher genus amplitudes in the type IIA string through a heterotic one loop
computation. As was explained in section 3.4.3 the topological free energies F g compute
the moduli dependent coupling of graviton-graviphoton scatterings. F g is a homogeneous
function of the homogeneous coordinates XI of degree 2− 2g and X0 can be chosen to be

X0 =
1

gs
eK/2, (6.4.5)

one can write
F g(X) = (X0)2−2gF g(t) = (g2

s)
g−1e(1−g)KF g(t). (6.4.6)

In type IIA string theory the Kähler potential K is independent of the dilaton since
the latter belongs to a hypermultiplet and there are no neutral couplings between vector
multiplets and hypermultiplets. The same argument tells us that F g(t) is independent of
the dilaton and it follows from (6.4.6) that the couplings (3.4.25) appear only at genus
g. Switching to the heterotic picture this statement changes as follows. Now the Kähler
potential contains a log(g2

s) term. This term arises from the vector moduli prepotential
of the type IIA theory

F ∼ ST 2 +
∞∑
n=0

fn(T )exp(−nS) (6.4.7)

with the identifications T = t1, S = t2 and the choice S = θ
2π

+ i8π
g2
s
. Next, notice that this

implies that X0 is of order 1 in the dilaton and therefore one extracts from (6.4.6) that
all F g appear at one loop in the heterotic theory. However, in the case of the heterotic
string the dilaton belongs to a vector multiplet and therefore all F g(t) can have nontrivial
dilaton dependence apart from the dependence through X0. This implies that the above
analysis is only valid in the limit S → ∞ where the dilaton dependence in the F g(t)
drops out. Translated to the type II picture we see that the one loop calculation gives
only control over the terms in F g(t) which are independent of the class of the P1 base
t2. Such a calculation was performed in [94, 95] and extended to arbitrary regular K3
fibrations in [96]. The result is [96] that the Gopakumar-Vafa invariants for the K3 fibre
are encoded in the following generating function

FK3(λ, q) =
2ΦN,n(q)

q

(
1

2 sin(λ
2
)

)2∏
n≥1

1

(1− eiλqn)2(1− qn)20(1− e−iλqn)2
, (6.4.8)
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where q = e2πiτ and ΦN,n(q) is a modular form of half integral weight with respect to a
congruent subgroup of PSL(2,Z) acting in the standard form on τ . Let us review the
essential points of this formula before we specify ΦN,n(q) explicitly for the relevant class
of K3 fibrations.

The formula applies to multi parameter K3 fibrations such as the 3 parameter STU
model, as the Gopakumar-Vafa invariant depends on the class [C] of the curve only via
the self intersection C2, and the latter is related to the exponents of the parameter q.

ΦN,n is fully determined by the genus zero Gopakumar-Vafa invariants of the fibre
direction. As it has been pointed out in [97], it can be also determined by classical
geometric properties of the fibration, namely the embedding

ι : Pic(K3) ↪→ H2(M,Z), (6.4.9)

and the Noether-Lefshetz numbers of regular, i.e. non singular, one parameter families of
quasi-polarized K3 surfaces π : X → C, where C is a curve. Let L be a quasi-polarization
of degree ∫

K3

L2 = 2N. (6.4.10)

Then the family π yields a morphism ı : C →M2N to the moduli space of quasi-polarized
K3 surfaces of degree 2N . The Noether-Lefshetz numbers are defined by the intersection of
C with the Noether-Lefshetz divisors inM2N . The latter are the closure of the loci inM2N

where the the rank of the Picard lattice is two. If β is an additional class in Pic(K3) the
Noether-Lefshetz divisor Dh,d ∈M2N may be labeled by

∫
K3
β2 = 2h−2 and

∫
K3
β ·L = d

and combined into a generating function. The seminal work of Borcherds [98] relates
these generating functions of the Noether-Lefshetz numbers to modular forms using the
relations between Heegner- and Noether-Lefshetz divisors. In fact one knows that they are
combinations of meromorphic vector valued modular forms of half integral weight. The
theory of Borcherds can be viewed as a further extension of the work of Hirzebruch and
Zagier on the modularity of counting functions of divisors in Hilbert modular surfaces.

In [96] a formula for ΦN,n(q) of weight 21
2

was found for regular K3 fibration Calabi-Yau,
if the fibre is a quartic in P3, i.e. N = 2, and if the fibre is a sixtic in the weighted projective
space P(1, 1, 1, 3), i.e. N = 1. In fact there is a general formula, which incorporates
not only the N parameter, but also a second parameter n parameterizing the different
embedding (6.4.9). For the N = 1 examples we have, [99],

Φ1,n(q) = UE4

(
U4 (39V 8 + 26U4 V 4 − U8)

25
+ n

V 4 (7U8 − 6U4 V 4 − V 8)

27

)
(6.4.11)

with U = θ3( τ
2
), V = θ4( τ

2
) in terms of Jacobian theta functions

θ2 =
∞∑

n=−∞

q
1
2

(n+1/2)2

, θ3 =
∞∑

n=−∞

q
1
2
n2

, θ4 =
∞∑

n=−∞

(−1)nq
1
2
n2

(6.4.12)
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and E4 = 1 − 240q + . . . is the weight 4 Eisenstein series. According to (6.4.8) this has
the following q expansion for the genus zero invariants

2Φ1,n

η24 (q4) = 2
q4−252−2496q−223752q4−725504q5−15530000q8−38637504q9 . . .

+n (q−3−56+384q−15024q4+39933q5−523584q8+1129856q9 . . .)
(6.4.13)

and the coefficients of the qd
2/N are the genus zero BPS numbers n0

d. We note in particular
that the constant term is known from physical arguments and enumerative geometry to
be the Euler number of the Calabi-Yau, i.e.

χ = −252− n 56 . (6.4.14)

The fibrations discussed in this paper belong to the n = 0 case, but several manifolds
with values n ∈ Z are realized as complete intersections or hypersurfaces in toric ambient
spaces.

For the second type of fibrations that we treat in this paper with N = 2 one has

Φ2,n = 1
221 (81U19V 2 − 3U21 + 627U18V 3 + 14436U17V 4 + 20007U16V 5 + 169092U15V 6

+120636U14V 7 + 621558U13V 8 + 292796U12V 9 + 1038366U11V 10

+346122U10 V 11 + 878388U9 V 12 + 207186U8 V 13 + 361908U7 V 14

+56364U6V 15 + 60021U5V 16 + 4812U4V 17 + 1881U3V 18 + 27U2V 19 − V 21)

− n
222U V (U2 − V 2)

4
(U11 − 21U10 V − 43U9V 2 − 297U8V 3 − 158U7V 4 − 618U6V 5

−206U5V 6 − 474U4V 7 − 99U3V 8 − 129U2V 9 − 7U V 10 + 3V 11)
(6.4.15)

with U = θ3( τ
4
) and V = θ4( τ

4
) so that

2Φ2,n

η24 (q8) = 2
q8−168−640q−10032q4−158436q8−288384q9−1521216q12−10979984q16 + . . .

+n
(

2
q4−28+64q−328q4−1808q8+2624q9−7656q12−27928q16 . . .

)
.

(6.4.16)

Again the genus zero invariants can be read of from the q
d2

N term and the d = 0 coefficient
is related to the Euler number

χ = −168− n28 . (6.4.17)

One difficulty with the above approach is that due to η24 in the denominator one has
to make an ansatz for the Γ(4N) modular forms in the numerator of very high weight,
as it is apparent in formula (6.4.16), while the quotient is always in M!

− 3
2

(Γ0(4N)) and

can be represented within a much smaller ring, as was pointed out by Zagier. The shriek
stands for meromorphic, i.e. these forms are allowed to have arbitrary pole order at the
cusp at τ → i∞.

Such half integral, meromorphic forms are denoted by M!
k+ 1

2

(Γ0(4N)) with k ∈ Z.

They can be labeled by their weight and the pole order at the cusp. For a given weight
there are forms of arbitrary pole orders, but our knowledge of the maximal pole order
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keeps the problem finite. For N = 1 one can start with θ = f 1,0
1
2

= θ3(2τ)3 and for N > 1

one has to use the right combination of vector valued half integral forms which transform
under the metaplectic representation of Γ0(4N). Let

φk =
∞∑

m=−∞

q2Nm+k, k = 0, . . . , N (6.4.18)

then we define

θ = φ0 + φN +
1

2

N−1∑
k=1

φk . (6.4.19)

Different weights and pole orders can be constructed systematically by the following
operations [100]:

• Multiplying fr with j(4Nτ), where j is the total modular invariant of Γ0 = PSL(2,Z),
keeps the weight and shifts the pole order of the cusp at i∞ by −4N .

• Taking derivatives fr+2 = frE2(4Nτ)− 3
Nr
f ′r(τ) will shift the weight by 2 but keeps

the pole order.

• Take the first Rankin-Cohen bracket fk+l+2 = [fk, El(4N)] = kfkE
′
l(4N)−lEl(4N)f ′k,

where E4, E6, E8 = E2
4 , etc. are holomorphic modular forms of Γ1, shifts the weight

by l + 2 but keeps the pole order. The bracket is build so that it cancels the
inhomogeneous transformation of the derivatives

D =
1

2πi

d

dτ
. (6.4.20)

We denote f ′ := Df etc. Similarly the nth rank Rankin-Cohen bracket of modular
forms f, g of weight k, l is

[f, g]n =
n∑
r=0

(−1)r
(
k + n− 1

n− r

)(
l + n− 1

r

)
DrfDn−rg . (6.4.21)

and is modular of weight k+ l+ 2n. Choosing f = fr and g a holomorphic modular
form changes the weight, but keeps the pole order.

• Dividing by ∆(4Nτ) = q4N
∏

m=1(1 − (q4N)m)24 lowers the pole order by −(4N)
and the weight by −12.

It is clear that 2Φ1,n

η24 (q4) must be of the form f 1,4

− 3
2

(q4), which can be build as follows.

First we construct u1,0
5
2

= θE2(4τ) − 6θ′(τ) = 1 − 10q − 70q4 − 48q5 + . . .. Form this

3Let us introduce the notation fN,pr , where we denote with r the weight, with p the pole order and
N labels the congruence subgroup as above. We reserve the character f for forms, which are of the form
fN,pr = 1

qp + reg., while forms denoted by other characters can have subleading poles.
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we can get two elements u1,4

− 3
2

= θE10(4τ)
∆(4τ)

and v1,4

− 3
2

=
u1,0

5
2

E8(4τ)

∆(4τ)
, which we combine into a

combination f 1,4

− 3
2

= (5u1,4

− 1
2

+v1,4

− 1
2

)/6 for which the third order pole 1
q3 vanishes. Further we

consider f 1,3

− 3
2

= −1
4

[θ,E8(4τ)]
∆(4τ)

. Using the results of Borcherds and matching a finite number

of genus zero invariants it can hence be proven that

2Φ1,n

η24
(q4) = 2f 1,4

− 3
2

+ nf 1,3

− 3
2

. (6.4.22)

For the fibration with N = 2 we use the general form (6.4.19). Then as before
we construct u2,0

5
2

= θE2(8τ) − 3θ′(8τ). In the next step we construct 4 functions of

weight −3
2

with leading pole 1
q8 : u2,8

− 3
2

= θE10

∆
, v2,8

− 3
2

=
u2,0

5
2

E8

∆
, w2,7

− 3
2

=
θE′8−16θ′E8

∆
and x2,7

− 3
2

=

u2,0
5
2

E′6−16θ′E6

∆
. One needs these in order to subtract all subleading poles and to define

f 2,4

− 3
2

= 1
576
w2,8

− 3
2

+ 5
864
x2,8

− 3
2

, f 2,7

− 3
2

= (u2,8

− 3
2

−v2,8

− 3
2

)/3−8f 2,4

− 3
2

and finally f 2,8

− 3
2

= u2,8

− 3
2

−f 2,7

− 3
2

−2f 2,4

− 3
2

.

Now we find the result for

2Φ2,n

η24
(q8) = 2f 2,8

− 3
2

+ 2nf 2,4

− 3
2

. (6.4.23)

It is conceivable that there exists a more general family of regular K3 fibrations with the
N = 2 fibre type, which involve mf 2,7

− 3
2

, but they have not been determined, yet (maybe

one should check in Kreuzers list for the Euler numbers).
The advantage of the method is that it gives the answer for all regular one parameter

families of K3 in a systematic manner. Since the construction should be clear by now we
list here only the significant terms of the relevant f 3,n

− 3
2

for the case with N = 3.

f 3,3

− 3
2

= q−3 − 2 + 6 q − 12 q4 + 14 q9+

f 3,8

− 3
2

= q−8 − 27 + 56 q + 214 q4 − 1512 q9

f 3,11

− 3
2

= q−11 − 54− 134 q + 924 q4 + 10098 q9

f 3,12

− 3
2

= q−12 − 74− 336 q − 2730 q4 − 17680 q9

(6.4.24)

We find that
2Φ1,n

η24
(q12) = 2f 3,12

− 3
2

− 4nf 3,3

− 3
2

(6.4.25)

reproduces the BPS numbers of the N = 3 fibrations. Examples with n = 0 are the
complete intersection CY X3,2(1, 1, 1, 1, 1) over P1 as well as X6,4(1, 1, 2, 2, 2, 2).

Let us finish the section with the description how to obtain from (6.4.8) the actual
topological string partition functions of the topological string in the fibre direction. If
d2

2N
= l ∈ Z we replace the power λ2g−2ql → λ2g−2

(2πi)3−2gLi3−2g(e
2πidt), where t is the Kähler

parameter of the fibre. All other qr powers are dropped. With this information and
the multicovering formula we get the following higher genus BPS invariants in the fibre
direction.
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d = 0 1 2 3 4 5 6
g
0 252 2496 223752 38637504 9100224984 2557481027520 805628041231176
1 4 0 -492 -1465984 -1042943520 -595277880960 -316194812546140
2 0 0 -6 7488 50181180 72485905344 70378651228338
3 0 0 0 0 -902328 -5359699200 -10869145571844
4 0 0 0 0 1164 228623232 1208179411278
5 0 0 0 0 12 -4527744 -94913775180
6 0 0 0 0 0 17472 4964693862
7 0 0 0 0 0 0 -152682820
8 0 0 0 0 0 0 2051118
9 0 0 0 0 0 0 -2124
10 0 0 0 0 0 0 -22

Table 6.4.1: BPS numbers for the N = 1 fibre

d = 0 1 2 3 4 5 6 7
g
0 168 640 10032 288384 10979984 495269504 24945542832 1357991852672
1 4 0 0 -1280 -317864 -36571904 -3478901152 -306675842560
2 0 0 0 0 472 875392 220466160 36004989440
3 0 0 0 0 8 -2560 -6385824 -2538455296
4 0 0 0 0 0 0 50160 101090432
5 0 0 0 0 0 0 0 -1775104
6 0 0 0 0 0 0 0 4480

Table 6.4.2: BPS numbers for the N = 2 fibre

6.4.3 The Seiberg-Witten plane

The emergence of the Seiberg-Witten plane as a divisor in the type II moduli space can
be seen best in the case of the Calabi-Yau P(1,1,2,2,6)

4 [12]. In terms of the T and S moduli
of the heterotic string one finds that the mirror map (6.3.18) can be written as [87] [82]

x =
1728

j(T )
+ · · · , y = exp(−S) + · · · . (6.4.26)

This immediately translates to a powerful relation between the SU(2) enhanced symmetry
point of the heterotic model at T = i and the singular point of the conifold locus on the
type IIA side. Observe that j(i) = 1728 which inserted into the duality map (6.4.26)
gives x = 1. On the type II side this is the point of tangency between the conifold
divisor Ccon and the weak coupling divisor C∞. Blowing up this singularity twice through
inserting two P1’s gives the picture in figure 6.1. The divisor E2 describes the physics of
the Seiberg-Witten plane [11] for rigid SU(2) Yang-Mills theory once we decouple gravity.
In order to see this we will follow the analysis in [101]. As in the Seiberg-Witten theory
the variable u = trφ2 vanishes at the SU(2) point , it should be identified with x − 1 to
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leading order
x = 1 + α′u+O(α′2), (6.4.27)

where the powers of α′ are chosen such as to make the above expansion dimensionally
correct. The second coordinate y is related to the SU(2) scale Λ and coupling constant

e−Ŝ through
y = α′2Λ4exp(−Ŝ) =: ε2. (6.4.28)

The above identifications translate the conifold locus (1− x)2 − x2y = 0 to

u2 = Λ4exp(−Ŝ). (6.4.29)

Decoupling gravity now means sending α′ → 0. That is we construct the variables x1 =
x2y/(x− 1)2 and x2 = (x− 1) which to leading order in α′ correspond to 1/ũ2 and εũ 4.
These variables describe the Seiberg-Witten plane consistently at the semiclassical limit
ũ = ∞, at the massless monopole points ũ = ±1 and at the Z2 orbifold point ũ = 0. It
was shown in [101] that one obtains the rigid periods a, aD as a subset of the periods of
the Calabi-Yau by specialization of the Picard-Fuchs system to the semi-classical regime,
ũ→∞:

(1, S,
√
α′a,
√
α′aD, α

′u, α′uS). (6.4.30)

As at the monopole point a charged dyon gets massless we expect that in the limit
where gravity becomes important this picture translates to a charged black hole becoming
massless. Therefore, we expect that the topological amplitudes at this point will admit
the conifold expansion (3.7.27).

6.4.4 The Gepner point

As Gepner found out [102], there is a Calabi-Yau minimal-model correspondence at the
Fermat point in moduli space of the mirror. This is the point where φ = ψ = 0 and
corresponds via the mirror map (6.3.18) to the deep interior point in the moduli space
of the Calabi-Yau M . In the picture 6.1 this is the point of intersection of the divisors
C0 and D−1,0. The CFT description arising here is the tensor product of minimal models
each at level Pi such that

d+2∑
j=1

3Pj
Pj + 2

= 3d, (6.4.31)

where d is the complex dimension of the Calabi-Yau. This implies that D, the least
common multiple of the Pj + 2, satisfies

D =
d+2∑
j=1

D

Pj + 2
. (6.4.32)

4Here, ũ = u/(Λ2e−Ŝ/2) is the correct dimensionless variable to use, see [101]
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Therefore, one can interpret the Calabi-Yau equation

d+2∑
j=1

x
Pj+2
j = 0 (6.4.33)

in the weighted projective space Pd+1( D
P1+2

, · · · , D
Pd+2+2

) as the superpotential of a Landau-

Ginzburg theory with chiral superfields xi [103](see [32] for a more rigorous description)
. Then the conformal field theory description arises as the infrared fixed point of this
theory.

The impact on the topological free energies F g is that these have to be regular in
an expansion around the CFT point imposing boundary conditions on the holomorphic
ambiguity and in particular on the constants aI appearing in (3.7.26).

6.5 Solution of the Models

In this section we present the results of our calculations for the model P(1,1,2,2,2)
4 [8]. The

computations and the boundary behaviour of the model P(1,1,2,2,6)
4 is very similar and we

therefore omit its discussion here and refer to reference [5] for further details.

6.5.1 M1 = P(1,1,2,2,2)
4 [8]

The toric data describing the ambient space of this Calabi-Yau can be summarized in the
following table, where by V we denote the collection of vectors v̄ = (v, 1) with v being
the integral points of the polyhedron ∆∗ and L are the corresponding charge vectors.

(V |L) =



−1 −2 −2 −2 1 0 1
1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 1 1 0
0 0 0 1 1 1 0
0 −1 −1 −1 1 1 −2
0 0 0 0 1 −4 0


(6.5.1)

Here, the vector v = (0,−1,−1,−1) = 1
2
(−1,−2,−2,−2) + 1

2
(1, 0, 0, 0) arises through

the blow-up of the unique singularity in P(1,1,2,2,2)
4 . Formula (6.1.3) gives h1,1(M1) = 2 and

furthermore from (6.5.1) we can deduce the following quantities

(1) D1 = Θ2
1(Θ1 − 2Θ2)− 4z1(4Θ1 + 3)(4Θ1 + 2)(4Θ1 + 1)

D2 = Θ2
2 − z2(2Θ2 −Θ1 + 1)(2Θ2 −Θ1)

∆con = −1 + 512z1 + 65536z2
1(−1 + 4z2)

∆s = 1− 4z2

(2) κ111 = 8, κ112 = 4, κ222 = κ221 = 0
(3)

∫
M1
c2J1 = 56,

∫
M1
c2J2 = 24

(6.5.2)
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Solution at large radius

By the method of Frobenius we calculate the periods at large radius as solutions of the
Picard-Fuchs system. This allows us to deduce the mirror map from (6.2.12)

2πit1(z1, z2) = log(z1) + 104z1 + 9780z2
1 − z2 + 48z1z2 − 3

2
z2

2 +O(z3),
2πit2(z1, z2) = log(z2) + 48z1 + 6408z2

1 + 2z2 − 96z1z2 + 3z2
2 +O(z3).

(6.5.3)

These series can be inverted through introducing qi = e2πiti and one obtains

z1(q1, q2) = q1 − 104q2
1 + 6444q3

1 + q1q2 − 304q2
1q2 +O(q4),

z2(q1, q2) = q2 − 48q1q2 − 262q2
1q2 − 2q2

2 + 240q1q
2
2 + 3q3

2 +O(q4).
(6.5.4)

The Yukawa-couplings can be deduced from the Picard-Fuchs system as is explained
in appendix A. Using the classical intersection numbers for normalization we obtain

C111 =
−8

z3
1∆con

, C112 =
4(256z1 − 1)

z2
1z2∆con

,

C122 =
8− 4096z1

z1z2∆s∆con

, C222 =
−4(1 + 4z2 − 256z1(1 + 12z2))

z2
2∆2

s∆con

. (6.5.5)

The Genus 0 invariants can be expressed in terms of these through the expansion

Kijk =
1

X2
0

Cijk(t1, t2) = ∂i∂j∂kF (t1, t2) = κijk +
∑
d1,d2

n0
d1,d2

didjdk

1−
∏2

l=1 q
dl
l

2∏
l=1

qdll . (6.5.6)

In order to obtain the genus 1 free energy the holomorphic ambiguity has to be solved
for. Using the ansatz (3.7.23) and as relevant boundary conditions

∫
c2Ji as well as the

known genus one GV invariants we arrive at

F (1) = log

(
∆
− 1

12
con ∆

− 5
12

s exp

[
K

2
(5− χ

12
)

]
detG−1

ij̄
z
− 17

6
1 z

− 7
8

2

)
, (6.5.7)

and sending t̄→∞ the following holomorphic limit

F 1(t1, t2) = −7

3
log(q1)− log(q2) +

160

3
q1 +

2588

3
q2

1 +
204928

9
q3

1

+
1

3
q2 +

160

3
q1q2 +

18056

3
q2

1q2 +O(q4). (6.5.8)

For higher genus calculations all propagators have to be obtained and F (1) has to
be brought into the form (3.7.6). Let us first concentrate on the propagators, they are
determined through the equations (3.7.5) where the holomorphic ambiguities are solved
for using symmetry properties. For Sij independence on the index k and symmetry in the
indices i and j is enough to fix all f ilk:

f 1
11 = − 1

z1

, f 1
12 = − 1

4z2

, f 1
22 = 0,

f 2
11 = 0, f 2

12 =
1

2z1

, f 2
22 = − 1

z2

. (6.5.9)
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These choices lead to the following series expansions of the Sij

S11 = − 1

16
z2

1 + 16z3
1 +

1

4
z2

1z2 − 152z3
1z2 +O(z5),

S12 =
1

8
z1z2 − 38z2

1z2 + 420z3
1z2 −

1

2
z1z

2
2 + 152z2

1z
2
2 +O(z5),

S22 = −1

4
z2

2 + 144z2
1z

2
2 + z3

2 +O(z5). (6.5.10)

We find that the ambiguities appearing in the other propagators can be set to zero and
obtain the following series expansions.

S1 =
3

2
z2

1 − 105z3
1 − 12600z4

1 + 6z2
1z2 + 1548z3

1z2 +O(z5),

S2 = 3z1z2 + 282z2
1z2 + 33552z3

1z2 − 12z1z
2
2 − 1128z2

1z
2
2 +O(z5),

S = −18z2
1 − 2088z3

1 − 320328z4
1 − 144z2

1z2 − 60480z3
1z2 +O(z5). (6.5.11)

Next, we turn our attention to the truncation relations (3.7.3). The ambiguities hjki , hij,
hi and hij are fixed through a series expansion of the holomorphic limit on both sides of
(3.7.3)

h11
1 = − 1

32
z1(1− 4z2 + 512z1(11z2 − 1)), h12

1 =
1

16
(704z1 − 1)z2(4z2 − 1),

h22
1 =

z2
2(4z2 − 1)

8z1

,

h11
2 =

z2
1(1 + 4z2 − 256z1(1 + 15z2))

64z2

, h12
2 =

1

32
z1(256z1 − 1)(1 + 4z2),

h22
2 =

1

16
z2(1 + 4z2 + 448z1(4z2 − 1)),

h1
1 = 12z1z2, h

2
1 = 6(1− 4z2)z2, h

1
2 = 6z2

1 , h
2
2 = −12z1z2, (6.5.12)

where all other ambiguities are either zero or follow by symmetry. Having obtained the
truncation relations the process of direct integration demands for the covariant derivative
of F (1) in terms of the propagators,

DiF (1) =
1

2
CijkS

jk − 1

12
∆−1
con∂i∆con −

5

12
∆−1
s ∂i∆s + ∂i log(z

− 31
12

1 z
− 7

8
2 ). (6.5.13)

From here it is now straightforward to carry out the integration. First make an ansatz
for F (2) as a polynomial of degree 3g− 3 in the generators S̃ij, S̃i and S̃ and evaluate the
right hand side of the first equation in (3.7.8) by applying covariant derivatives to DiF (1)

and using the truncation relations (3.7.3). The right coefficients in F (2) follow then from
comparison. In order to apply this procedure iteratively genus by genus the holomorphic
ambiguity fg has to be fixed at each step. This is done as discussed in section (3.7.3) by
going to various boundary divisors in moduli space as will be described in the succeeding
paragraphs.
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Solution at the Conifold locus

We choose the monopole point of the Seiberg-Witten plane in order to carry out the
conifold expansion. As was noted in section (6.4.3) the correct coordinates at this point
are

zc,1 =
x2y

(x− 1)2
− 1, zc,2 = x− 1. (6.5.14)

Transforming the Picard-Fuchs system to these coordinates we find the following solutions
(see also [104])

ωc0 = 1 + zc,2 −
73

64
z2
c,2 −

73

192
zc,1z

2
c,2 +

7043

4608
z3
c,2 +O(z4

c ),

ωc1 = zc,1
√
zc,2 −

15

32
z2
c,1

√
zc,2 +

315

1024
z3
c,1

√
zc,2 +

11

64
z2
c,1z

3/2
c,2 +O(z5

c ),

ωc2 = zc,2 −
35

32
z2
c,2 −

35

96
zc,1z

2
c,2 +

3325

2304
z3
c,2 +O(z4

c ), (6.5.15)

where we have suppressed the dual logarithmic solutions. As mirror coordinates we take
tc,1 :=

ωc1
ωc0

and tc,2 :=
ωc2
ωc0

. Relevant for the expansions around zc,1 = zc,2 = 0 is the inverse

mirror map given by

zc,1(tc,1, tc,2) =
tc,1√
tc,2

+
15

32

t2c,1
tc,2
− 3

64
tc,1
√
tc,2 +

135

1024

t3c,1

t
3/2
c,2

+
1515

65536

t4c,1
t2c,2
− 1223

3072
t2c,1 +O(t3c),

zc,2(tc,1, tc,2) = tc,2 +
67

32
t2c,2 +

35

96
tc,1t

3/2
c,2 +

175

1024
t2c,1tc,2 +

18847

4608
t3c,2 +O(t4c). (6.5.16)

In order to perform the above inversion one has to define new variables s1 = tc,1√
tc,2

and

s2 = tc,2, calculate zc,i(s1, s2) and then insert back si(tc,i). The divisor {zc,2 = 0} is normal
to the conifold locus and {zc,1 = 0} is tangential. This means that zc,1 parameterizes the
normal direction to the conifold locus and zc,2 the tangential one. Therefore we expect
tc,1 to be appearing in inverse powers in the expansion of the free energies.

To obtain the free energies, all nonholomorphic generators appearing in the polynomial
expansion of the F (g) have to be transformed into the zc,i coordinates. That is Yukawa
couplings, the Christoffel symbols and the holomorphic ambiguities f appearing in (3.7.5)
must be transformed to the conifold coordinates. For the f ijk this means

f ijk(zc) =
∂zc,i
∂zl

(
∂2zl

∂zc,j∂zc,k

)
+
∂zci
∂zl

∂zm
∂zc,j

∂zn
∂zc,k

f lmn(z), (6.5.17)

while the Yukawa-couplings have to be tensor transformed and the Christoffel symbols
are obtained directly from the periods (6.5.15).
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We display our results for the F g
c up to genus 3:

F 1
c = − 1

12
log

(
tc,1√
tc,2

)
− 29

12
log(tc,2)− 137

128

tc,1√
tc,2
− 9827

768
tc,2 +

189

8192

t2c,1
tc,2

+O(t2c),

F 2
c = − 1

240t2c,1
+

155359

589824
−

550551t2c,1
33554432t2c,2

− 18321tc,1

524288t
3/2
c,2

+
1067

6144tc,2
+O(t1c),

Fc
3 =

1

1008t4c,1
+

788437361

21743271936
+O(t1c) (6.5.18)

Solution at the strong coupling locus

We expand around the point of intersection of the divisors C1 and D0,−1. The right
coordinates are

zs,1 = ∆
1
2
s , zs,2 = x1. (6.5.19)

The Picard-Fuchs system at this point contains among its solutions a one logarithmic
in x1 which is a continuation of the logarithmic solution already present at large radius.

ωs0 = 1 +
3

32
zs,2 +

945

16384
z2

2 +
28875

524288
z3

2 +O(z4
s),

ωs1 = zs,1 +
z3
s,1

3
+

1

32
z3
s,1zs,2 +O(z5

s),

ωs2 = ωs0 log(zs,2)− 1

2
z2
s,1 +

zs,2
2

+
2853

8192
z2
s,2 −

3

64
z2
s,1zs,2

+
273425

786432
z3
s,2 +O(z4

s). (6.5.20)

The mirror map is deduced from the quotients by ωs0: ts,1 :=
ωs1
ωs0

, ts,2 :=
ωs2
ωs0

. Building the

inverse we arrive at

zs,1(ts,1, qs,2) = ts,1 +
3

32
qs,2ts,1 +

177

16384
q2
s,2ts,1 −

t3s,1
3

+O(t4c),

zs,2(ts,1, qs,2) = qs,2 −
q2
s,2

2
+

603

8192
q3
s,2 +

1

2
qs,2t

2
s,1 +O(t4c). (6.5.21)

Transforming the Yukawa couplings, the Christoffel symbols and the holomorphic
ambiguities f to the strong coupling coordinates we obtain the propagators at this point.
Tensor transforming the propagators to zi coordinates and substituting in all holomorphic
quantities in the F (g) zi → zi(zs,1, zs,2) we obtain the F (g)

s . In the holomorphic limit this
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gives the following genus 1,2 and 3 expansions.

F 1
s = −1

3
log(ts,1)− 7

3
ts,2 +

5

24
qs,2 +

121

4096
q2
s,2 −

ts,1
18

+
5

48
qs,2ts,1

+
t2s,2
540

+O(t3s),

F 2
s =

1

240t2s,1
− 11

360
+

qs,2
1280

− 1057

2097152

q3
s,2

t2s,1
+O(t2s),

F 3
s =

1

4032t4s,1
+

11

90720
− qs,2

16128
+

18805

132120576

q3
s,1

t2s,1

− 62210349

549755813888

q5
s,2

t4s,1
+O(t2s). (6.5.22)

It is important to note here that the variable ts,1 is not the true variable characterizing the
size of the shrinking cycle. The true size is given by the rescaling ts,1 → 2ts,1. The factor
of 4 which then arises in the expansions in comparison to the conifold case is exactly the
difference between hyper- and vector multiplets calculated in section (6.4.1). However,
note that we have only displayed results up to genus 3. For genus 4 we find that there
is no simple gap structure and therefore the boundary conditions at this point remain
unclear. Also, we find that for genus 4 the parameterization of the ambiguity changes
slightly as the numerator of the strong coupling discriminant has to be parametrized to
a higher degree

fg = . . .+

∑
|I|≤2g−2 c

s
Iz
I

∆g−1
s

+ . . . . (6.5.23)

As in this modified ansatz some of the parameters lead to contributions of non regular
terms at the Gepner point they will be solved for by the regularity condition at that point.

The strong coupling divisor provides us with a further boundary condition to check
the consistency of our approach. At this locus there is an extremal transition to the
1-parameter complete intersection P5[4, 2]. The free energy expansions for P5[4, 2] should
come out naturally from the expansion at large radius of our 2-parameter model by setting
q2 = 1 which corresponds to shrinking the size of the P1 base to zero 5. Therefore the
Gopakumar-Vafa invariants of P5[4, 2] should be equal to the sum over the second degree

of the invariants of M1, i.e. n
(g)
k =

∑
d2
n

(g)
d1d2

. This is indeed true as can be checked from
the tables in appendix E.1.

5In the general case the transition is obtained by replacing (2g − 2)
(
N
2

)
two spheres by (2g −

2)
(
N
2

)
three spheres, where g is the genus of the singular curve and N − 1 is the rank of the gauge

group. This results in a change of Hodge numbers given by h1,1 7→ h1,1 − (N − 1), h2,1 7→ h2,1 + (2g −

2)
(
N
2

)
− (N − 1).
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Solution at the Gepner point

Here we expand around the point of intersection of the divisors C0 and D−1,0 which
corresponds to ψ = φ = 0. This gives the variables

zo,1 = ψ =
1

(z2z2
1)

1
8

, zo,2 = φ =
1

z
1
2
2

, (6.5.24)

where we have chosen the subscript o as the Gepner point is a Landau-Ginzburg orbifold.
The transformed Picard-Fuchs system admits the solutions

ωo0 = zo,1 +
1

32
zo,1z

2
o,2 +

27

2048
zo,1z

4
o,2 +O(z6

o),

ωo1 = zo,1zo,2 +
25

96
zo,1z

3
o,2 +

z5
o,1

6
+O(z6

o),

ωo2 = z2
o,1 +

1

8
z2
o,1z

2
o,2 +O(z6

o),

ωo3 = z2
o,1zo,2 +

3

8
z2
o,1z

3
o,2 +O(z6

o),

ωo4 = z3
o,1 +

9

32
z3
o,1z

2
o,2 +O(z6

o), (6.5.25)

where we have omitted the solution corresponding to the 6th period. From the above we
extract the mirror map t1,o :=

ωo1
ωo0

, t2,o :=
ωo2
ωo0

and its inverse

zo,1(to,1, to,2) = to,1 −
3

32
to,1t

2
o,2 +

17

6144
to,1t

4
o,2 +O(t6o),

zo,2(to,1, to,2) = to,2 −
11

48
t3o,2 −

1

6
t4o,1 +

31

768
t5o,2 +O(t6o). (6.5.26)

The genus 0 Prepotential can be extracted from the periods ωo3 and ωo4 through the special
geometry relation

ωo3 = ωo0

(
∂

∂to,1
Fo(to,1, to,2)

)
, ωo4 = ωo0

(
∂

∂to,2
Fo(to,1, to,2)

)
, (6.5.27)

yielding

Fo(to,1, to,2) = t2o,1to,2 +
1

48
t2o,1t

3
o,2 +

t6o,1
30

+O(t7o). (6.5.28)

The F g
o (to,1, to,2) can be calculated in the same way as in the case of the other bound-

ary divisors and we find that as expected the correct GV-invariants are produced once we
require the free energies to be regular at the orbifold point. This way also all polynomial
ambiguities aI are fixed uniquely. Let us delve a bit more into the details at this point
as the question of fixing the aI is ultimately related to the question of integrability. We
observe that the anomaly part of the F g

o always comes with a pole 1

z2g−2
o,1

+ . . . and that no

poles of type 1
zo,2

appear. This can be traced back to the expansion of propagators and
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Yukawa couplings around this point. Therefore, we are able to constrain the parameteri-
zation of the ambiguity in the following way: The coefficients ai1,i2 will be nonvanishing
only for indices i2 ≤ i1/2. The reason can be found in the relations inverse to (6.5.24)

z1 = − zo,2
256z4

o,4

, z2 =
1

4z2
o,2

. (6.5.29)

One can see that in order to avoid poles in the second variable zo,2 one has to multiply
each power of z2 with a power of z1 which is at least two times larger. We find that at
genus 2 the regularity condition is enough to fix all aI ’s without exception. On the other
hand the calculation at genus 3 yields that regularity is only strong enough to fix all but
one of the aI , namely a1,0. However, this single parameter is already solved for by the
knowledge of the fiber invariants extracted from the weak coupling divisor. At genus 4 we
find that two parameters remain unfixed after having imposed regularity, namely a1,0 and
a2,0. Again these two will be ultimately solved for by the knowledge of the fibre invariants
once all other parameters are fixed. This procedure will carry on up to genus infinity once
the parameters related to the strong coupling divisor and the conifold divisor can be fixed
at each genus by appropriate boundary conditions.

We display our results for the higher F g
o (to,1, to,2) (g ≥ 1) :

F 1
o (to,1, to,2) = − 3

16
t2o,2 +

7

384
t4o,2 −

1

16
t4o,1to,2 +

43

184320
t6o,2 −

5

256
t4o,1t

3
o,2

− 5

252
t8o,1 +

2237

20643840
t8o,2 −

35

6144
t4o,1t

5
o,2 −

7

1280
t8o,1t

2
o,2

+
40603

2972712960
t10
o,2 +O(t11

o ),

F 2
o (to,1, to,2) =

113

7680
t2o,1 −

377

122880
t2o,1t

2
o,2 +

363

655360
t2o,1t

4
o,2

+
59

307200
t6o,1to,2 −

153361

707788800
t2o,1t

6
o,2 +

39041

44236800
t6o,1t

3
o,2

− 143

3440640
t10
o,1 −

10379101

158544691200
t2o,1t

8
o,2 +O(t11

o ),

F 3
o (to,1, to,2) = − 61

3932160
to,2 +

29

9437184
t3o,2 +

875

4718592
t4o,1 −

581

603979776
t5o,2

+
1585

44040192
t4o,1t

2
o,2 −

236533

1014686023680
t7o,2 +

1221673

12683575296
t4o,1t

4
o,2

− 43439

1056964608
t8o,1to,2 −

6903751

73057393704960
t9o,2 +

20689415

304405807104
t4o,1t

6
o,2

+O(t11
o ). (6.5.30)
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Chapter 7

Conclusions

In this thesis, after having pointed out the main physical principles and applications of
topological string theory, we gave a detailed account on the construction of topological
field theories and their coupling to gravity, followed by a thorough discussion of solutions
to the holomorphic anomaly equations on the main three kinds of Calabi-Yau manifolds.
From the point of view of the gauged linear σ model presented in section 3.2.2 these are
the ones with a nonlinear gauge group, the ones with a linear gauge group but without
superpotential, and finally the ones with a linear gauge group and a superpotential.

Our work and in particular the tables of BPS invariants presented in the appendices
represent a test of mirror symmetry for situations where a mathematical proof is lacking
and which are not well understood from the mathematics point of view. This includes
the case of the Grassmannian Calabi-Yau manifolds for genus 0 and higher genera, and
higher genus calculations (g ≥ 1) for toric Calabi-Yau manifolds. This is due to the fact
that the proof that mathematicians [105] gave for the fact that the B-model calculation
of genus zero amplitude counts worldsheet instantons on the mirror relies on localization
w.r.t. the U(1)r action. It has not been extended to the non-abelian case, nor to higher
genera.

From the physics point of view the BPS invariants we have computed are important
for the calculation of microscopic black hole entropies in the case of compact Calabi-
Yau manifolds. We have performed tests of the equality of microscopic and macroscopic
entropy for the Grassmannian Calabi-Yau models and found a good matching between
the two results. This provides further support for the correct microscopic interpretation
of the entropy of extremal five dimensional spinning black holes. In the case of K3
fibrations the BPS states also encode nonperturbative corrections to the Heterotic string,
namely they count the number of gauge instantons as the exponential of the size of the
P1-base gets mapped to e1/g2

s . Furthermore, it would be interesting to identify a CFT
point for Calabi-Yau manifolds which come as hypersurfaces or complete intersections in
Grassmannians. At a CFT point in moduli space the complete string theoretic spectrum
of the model becomes computable and not only the massless one. We find that the model
(G(2, 5)||1, 1, 3)1

−150 is regular at t∞ = 0 at least to genus 5. This hints at a CFT point with
a Z3 automorphism group. One possibility would be that the CFT description emerging
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there is equivalent to the coset models of Suzuki and Kazama [106].
One of the main objectives of our approach was the question of integrability of the

topological string on Calabi-Yau backgrounds. For local Calabi-Yau geometries we find
that the gap condition at the conifold is strong enough to fix all holomorphic ambiguity
parameters. This makes the topological string integrable on non-compact Calabi-Yau
manifolds whose mirror geometry is encoded by a family of Riemann surfaces Σg and
a meromorphic differential λ. Indeed the successful direct integration in the case of
non-compact models can be traced back to well known transformation properties of the
topological string amplitudes w.r.t to the modular group of Σg, which is a finite index
subgroup of Sp(2g,Z). Moreover it can be established [107, 108] that the theory becomes
equivalent to a matrix model whose eigenvalue dynamics and correlators can be completely
fixed by its spectral curve and the meromorphic differential defining the filling fraction.
These data are precisely identified with the Riemann surface Σg and λ respectively [107,
108].

In the case of K3 fibrations discussed in section 6 the situation is more involved.
First of all the moduli space is much richer and apart from the conifold divisor the
physical boundary conditions at several other divisors become important when fixing the
holomorphic ambiguity. In mathematical terms the reason is that in the case of compact
Calabi-Yau manifolds the modular groups are not well understood. Even for the Quintic
one does not know whether the modular group is a finite index subgroup of Sp(4,Z) or not.
However, near the weak coupling divisor such a modular description becomes available
which solves the theory in the fibre direction up to genus infinity. This suggests that
augmenting the results at the weak coupling divisor with physical boundary conditions
at other divisors might ultimately lead to the integrability of the topological string on
K3 fibrations. Indeed we observe that the gap at the conifold, the regularity at the
CFT point and a further gap structure at the strong coupling divisor fix the ambiguity
completely up to genus 3. Surprisingly, at genus 4 we find that there is no simple gap
structure at the strong coupling divisor any longer. The reason must lie in the gauge
theory emerging at this divisor. As the divisor is of codimension one there will be an
SU(2) gauge enhancement at its locus in moduli space and the gauge theory will be in the
Coulomb branch. This means that near the singularity at high energies there will be two
light vector bosons, namely the W+ and W− bosons, and one massless U(1). Apparently,
this is an interacting gauge theory, so the question is not why the gap disappears at genus
4, but rather why it is present at genus 2 and 3. The answer must lie in the light spectrum
of the effective field theory arising from the gauge theory at low energies. It might well be
that the nontrivial cancellations which are present at genus 2 and 3 will also be there at
higher genera leading to the classical gap structure (3.7.28). So, from the physics point
of view, the question of integrability of the topological string on K3 fibrations seems to
be ultimately related to the details of the low energy gauge theory arising at the strong
coupling divisor.

Looking at topological string amplitudes on general Calabi-Yau manifolds and taking a
more mathematical point of view we find that the monodromy behaviour of the periods at
boundary divisors in moduli space has a direct impact on the structure of the amplitudes.
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In particular one finds that the topological string amplitudes are regular at points of finite
monodromy (examples are the maximal unipotent monodromy point and the Gepner
point), and suffer from a gap like or singular behaviour at points where the monodromy
is not of finite order1. Therefore, it would be interesting to determine more specific and
stringent conditions on the monodromy at points where a full gap in the amplitudes is
observed. Going further along this line of thought there is the hope that one can find
out more about the automorphic forms, which the topological free energies represent,
by analyzing their expansions around singular divisors in moduli space and classifying
the monodromy around these. Yet, another way to set up a proof of integrability is to
patch together local matrix model descriptions along a compact Calabi-Yau. We know,
for example, that the conifold locally admits such a universal matrix model description.
One could well succeed in finding such local descriptions on charts of the compact space,
which can be glued together by nontrivial coordinate transformations2.

One of the main reasons why it would be interesting to establish integrability on
specific compact spaces such as K3 fibrations, is that these are related to different Calabi-
Yau spaces, i.e. different string vacua, through extremal transitions [1]. Thus proving
integrability for one class of spaces would shed light on the physics for a huge class of other
models. A direct physical application would be the computation of the microscopic black
hole entropy to very high accuracy and thus clarify issues related to the OSV-conjecture
[2]. Another related important application would be the analysis of the nonperturbative
completion of topological string theory. As one finds, topological string amplitudes are
not convergent or Borel summable when going to high genus. The reason is that they
constitute a perturbative series in λ, the graviphoton vev, and miss terms which come
exponentially in λ. In a full description such terms might arise from KK-monopoles3,
which, however, is the subject of future work.

1I would like to thank Emanuel Scheidegger for pointing this out to me.
2Here, I have benefited greatly from discussions with Emanuel Scheidegger and Alireza Tavanfar.
3I would like to thank Stefan Vandoren for pointing this out to me.
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Appendix A

Yukawa-couplings from Picard-Fuchs
operators

In this appendix we present a method for obtaining Yukawa couplings from Picard-Fuchs
equations following reference [78]. As explained in 3.1.2 Yukawa-couplings are functions
of the complex structure moduli and are defined as

Cijk(z) =

∫
Ω(z) ∧ ∂zi∂zj∂zkΩ(z)

=
h2,1∑
l=0

(X l∂zi∂zj∂zkFl −Fl∂zi∂zj∂zkX l). (A.0.1)

We can now define

W (k1,··· ,kd) =
∑
l

(X l∂k1
z1
· · · ∂kdzdFl −Fl∂

k1
z1
· · · ∂kdzdX

l)

:=
∑
l

(X l∂kFl −Fl∂kX l), (A.0.2)

where 1 ≤ d ≤ h2,1. We see that the various types of Yukawa couplings are described
through W k with

∑
ki = 3 and that W k = 0 for

∑
ki = 0, 1, 21. Next, write the

Picard-Fuchs differential operators in the form

Dl =
∑
k

fk
l ∂

k, (A.0.3)

which together with (A.0.2) gives ∑
k

fk
l W

(k) = 0. (A.0.4)

These differential equations can be supplemented by further operators obtained by
applying further derivatives to the Picard-Fuchs operators, i.e. operators of the form

1This is due to the fact that second and lower order derivatives of Ω do not contain a (0, 3) part.
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∂ziDl. In the case of compact Calabi-Yau manifolds the differential equations obtained
this way are complete, and can thus be integrated to give the Yukawa couplings up to
an overall normalization. In order to perform the integration one has to make use of the
following identities

W (4,0) = 2∂z1W
(3,0)

W (3,1) =
3

2
∂z1W

(2,1) +
1

2
∂z2W

(3,0)

W (2,2) = ∂z1W
(1,2) + ∂z2W

(2,1), (A.0.5)

where we have specified to the two-parameter case as in this thesis we only look at
models which have at most two complex structure deformations. However, integrating
equations (A.0.4) is not yet the end of the story. An important task left is to fix the
overall normalization which is done by transforming the Yukawa-couplings to their A
model counterparts

Kijk =
1

X2
0

Cijk(t1, t2) = ∂i∂j∂kF
0(t1, t2) = κijk +

∑
d1,d2

n0
d1,d2

didjdk

1−
∏2

l=1 q
dl
l

2∏
l=1

qdll , (A.0.6)

and solving for the normalization factor in terms of the classical intersection numbers κijk
of the manifold M 2.

2The expressions Cijk(t1, t2) are obtained by tensor transformation of the quantities Cijk(z1(t), z2(t)).

152



Appendix B

Modular anomaly versus
holomorphic anomaly

Physically the amplitudes F g of the topological string are invariant under the space-time
modular group Γ of the target space. This is the most important restriction on these
functions. The nicest case is when the B-model geometry is a family of elliptic curves.
Then Γ is a subgroup of SL(2,Z) and the classical theory of modular forms applies.
We will recapitulate below the relevant aspects of SL(2,Z) almost holomorphic modular
forms. This gives some insight in the interplay between the breaking of the modularity
and the breaking of holomorphicity. The different modular forms that we need for the
general families of elliptic curves, i.e. general two cut matrix models, follow from the
Picard-Fuchs equations. The relation between the Picard-Fuchs equations and modular
forms is again a classical subject, which has been beautifully reviewed in [52].
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B.1 PSL(2,Z) modular forms

We define q := e2πiτ , with τ ∈ H+ = {τ ∈ C | Im(τ) = 1
2i

(τ − τ̄) > 0} and the projective

action PSL(2,Z) of Γ1 = SL(2,Z) =

{
γ =

(
a b
c d

)
| ad− bc = 1, a, b, c, d ∈ Z

}
on H+

by

τ 7→ τγ =
aτ + b

cτ + d
, (B.1.1)

for γ ∈ Γ1. It follows that

1

Im(τγ)
=

(cτ + d)2

Im(τ)
− 2ic(cτ + d) =

|cτ + d|2

Im(τ)
. (B.1.2)

Modular forms of Γ1 transform as

fk(τγ) = (cτ + d)kfk(τ) (B.1.3)

with weight k ∈ Z for all τ ∈ H+ and γ ∈ Γ1, are meromorphic for τ ∈ H+ and grow
like O(eCIm(τ)) for Im(τ)→∞ and O(eC/Im(τ)) for Im(τ)→ 0 with C > 0. A strategy to
build modular forms of weight k is to sum over orbits of Γ1

Gk =
1

2

∑
m,n∈Z

(m,n)6=(0,0)

1

(mτ + n)k
. (B.1.4)

It is easy to see that this expression transforms like (B.1.3), converges absolutely for
k > 2 and vanishes for k odd. In the standard definition of the Eisenstein series Ek
the sum runs over coprime (m,n), which yields a proportionality Gk(τ) = ζ(k)Ek(τ),
where ζ(k) =

∑
n≥1

1
nk

. One shows ([52]) the central fact that E4, E6 (or G4,G6 of course)
generate freely the graded (by k) ring of modular forms M∗(Γ1).

Still one may spot two shortcomings. Firstly the ringM∗(Γ1) does not close under any
differentiation and secondly there should be a modular form for weight 2. These facts are
related as dτ = d

2πidτ
has weight 2. The second is remedied by an ε regularization in the

sumG2,ε = 1
2

∑
m,n∈Z

(m,n)6=(0,0)

1
(mτ+n)k|mτ+n|ε after which it is possible to defineG2 = limε→0G2,ε.

Then all Gk, k ∈ 2Z, k ≥ 2 have a Fourier expansion1 in q = exp(2πiτ)

Gk(τ) =
(2πi)k

(k − 1)!

(
−Bk

2k
+
∞∑
n=1

σk−1(n)qn

)
, (B.1.5)

with σk(n) =
∑

p|n p
k the sum of kth powers of positive divisors of n and

∑∞
k=0

Bkx
k

k!
= x

ex−1

defining the Bernoulli numbers Bk, e.g. B2 = 1
6
, B4 = − 1

30
, B6 = 1

42
, B8 = − 1

30
, B10 = 5

66
,

B12 = − 691
2730

, B14 = 7
6

etc.

1 Note that the Eisenstein series start with coefficient 1.
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Very much like in QFT the regularization introduces an anomaly in the symmetry
transformation so that E2 transforms

E2(τγ) = (cτ + d)2E2(τ)− 6ic

π
(cτ + d) (B.1.6)

with an inhomogeneous term.
At least (E2, E4, E6) form a ring, the ring of quasi modular holomorphic forms M!,

which closes under differentiation, i.e.

dτE2 =
1

12
(E2

2 − E4), dτE4 =
1

3
(E2E4 − E6), dτE6 =

1

2
(E2E6 − E2

4) . (B.1.7)

Using (B.1.2) and (B.1.6) we see that the inhomogeneous terms in (B.1.2,B.1.6) cancel so
that

Ê2(τ) = E2(τ)− 3

πIm(τ)
(B.1.8)

transforms like a modular form of weight 2, albeit not a holomorphic one. (Ê2, E4, E6)
form the ring of almost holomorphic modular forms of Γ1. The latter closes under the
Maass derivative, which acts on forms of weight k by

Dτfk =

(
dτ −

k

4πIm(τ)

)
fk (B.1.9)

and maps Dτ : M!
k → M!

k+2. Note that the equations (B.1.7) hold with dτ replaced

by Dτ and E2(τ) replaced by Ê2(τ). This Maass derivative corresponds to the covariant
derivative that appears in topological string theory (3.5.35).

From the physical point of view there seems the following story behind these well
known mathematical facts. The holomorphic propagator, which in the case of local ge-
ometries can be made proportional to E2 needs some regularization, which breaks T
duality. The latter is restored by adding the non-holomorphic term (B.1.8). The modular
anomaly and the holomorphic anomaly are in this sense counterparts, which cannot both
be realized at least perturbatively. T -duality is physically better motivated. Attempts
in the literature, e.g. in an interesting paper [81], to define a holomorphic and modular
non-perturbative completion by summing over orbits seem to make sense only if absolute
convergence in the moduli is established, which is hard.

F 1 is an index, which is finite for smooth compact spaces. It diverges therefore only
from singular configurations, that occur if e.g. the discriminant of the elliptic curve given
below for the Weierstrass form y2 = 4x3 − 3xE4 + E6

∆(τ) = η24(τ) = q

∞∏
n=1

(1− qn)24 =
1

1728
(E3

4(τ)− E2
6(τ)) , (B.1.10)

vanishes. Note that the j for this curve is

j = 1728
E2

4

E3
4 − E2

6

=
1

q
+ 744 + 196884q + 21493760q2 +O(q3) . (B.1.11)
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It follows from (B.1.3) that η(τγ) = (cτ + d)
1
2η(τ) transforms with weight 1

2
and from

(B.1.7) that

dτ log(η(τ)) =
1

24
E2(τ). (B.1.12)

Further from (B.1.2) we see that
√

Im(τ)|η(τ)|2 is an almost holomorphic modular in-
variant and from (B.1.7,B.1.8,B.1.10) that

dτ log(
√

Im(τ)|η(τ)|2) =
1

24
Ê2(τ). (B.1.13)

We need also the theta functions of general characteristic

θ
[a
b

]
(z, τ) =

∑
n∈Z

exp

(
πi(n+ a)τ(n+ a) + 2πi

∑
i

(z + b)n

)
. (B.1.14)
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Details: Grassmannian Calabi-Yau
manifolds
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C.1 Chern classes and topological invariants

G(2, 5) :
∫
G(2,5)

σ6
1 = 5,

∫
G(2,5)

σ2σ
4
1 = 3,

∫
G(2,5)

σ3σ
3
1 = 1,

(G(2, 5)||1, 1, 3)1
−150 : c((G(2, 5)||1, 1, 3)1

−150)
= 1 + (5c1(Q)2 − c2(Q))
− (8c1(Q)3 + 5c1(Q)c2(Q)− 5c3(Q)) + · · · ,

⇒ χ = −150, c2 ·H = 66, H3 = 15.

(G(2, 5)||1, 2, 2)1
−120 : c((G(2, 5)||1, 2, 2)1

−120)
= 1 + (4c1(Q)2 − c2(Q))
− (4c1(Q)3 + 5c1(Q)c2(Q)− 5c3(Q)) + · · · ,

⇒ χ = −120, c2 ·H = 68, H3 = 20.

G(2, 6) :
∫
G(2,6)

σ8
1 = 14,

∫
G(2,6)

σ2σ
6
1 = 9,

∫
G(2,6)

σ3σ
5
1 = 4,

(G(2, 6)||1, 1, 1, 1, 2)1
−116 : c((G(2, 6)||1, 1, 1, 1, 2)1

−116)
= 1 + (4c1(Q)2 − 2c2(Q))
− (2c1(Q)3 + 6c1(Q)c2(Q)− 6c3(Q)) + · · · ,

⇒ χ = −116, c2 ·H = 76, H3 = 28.

G(3, 6) :
∫
G(3,6)

σ9
1 = 42,

∫
G(3,6)

σ2σ
7
1 = 21,

∫
G(3,6)

σ3σ
6
1 = 5,

(G(3, 6)||16)
1
−96 : c((G(3, 6)||16)

1
−96)

= 1 + 2c1(Q)2

− (6c1(Q)c2(Q)− 6c3(Q)) + · · · ,

⇒ χ = −96, c2 ·H = 84, H3 = 42.

G(2, 7) :
∫
G(2,7)

σ10
1 = 42,

∫
G(2,7)

σ2σ
8
1 = 28,

∫
G(2,7)

σ3σ
7
1 = 14,

(G(2, 7)||17)
1
−98 : c((G(2, 7)||17)

1
−98)

= 1 + (4c1(Q)2 − 3c2(Q))
− (7c1(Q)c2(Q)− 7c3(Q)) + · · · ,

⇒ χ = −98, c2 ·H = 84, H3 = 42.
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C.2 Tables of Gopakumar-Vafa invariants

d g = 0 g = 1 g = 2

1 540 0 0
2 12555 0 0
3 621315 -1 0
4 44892765 13095 0
5 3995437590 17230617 -1080
6 406684089360 6648808835 921735
7 45426958360155 1831575868830 6512362740
8 5432556927598425 433375127634753 5837267557035
9 684486974574277695 94416986839804040 3061620003073095
10 89872619976165978675 19571240651198871015 1223886411726167880

d g = 3 g = 4 g = 5

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 420 5 0
7 -26460 -2160 0
8 6528493485 218160 -2160
9 20216637579465 6735865790 2770635
10 22818718255545315 85314971897190 5441786955

Table C.2.1: Gopakumar-Vafa invariants ng(d)(g ≤ 5) of the Grassmannian Calabi-Yau
threefold (G(2, 5)||1, 1, 3)1

−150
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C

H
A

P
T

E
R

C
.

D
E

T
A

IL
S
:

G
R

A
S
S
M

A
N

N
IA

N
C

A
L

A
B

I-Y
A

U
M

A
N

IF
O

L
D

S

d g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

1 400 0 0 0 0 0
2 5540 0 0 0 0 0
3 164400 0 0 0 0 0
4 7059880 1537 0 0 0 0
5 373030720 882496 0 0 0 0
6 22532353740 214941640 15140 0 0 0
7 1493352046000 37001766880 57840400 -800 0 0
8 105953648564840 5388182343297 36620960080 10792630 320 5
9 7919932042500000 715201587952800 12817600017680 33952864320 697600 -1600
10 616905355407694800 89732472170109248 3295335805457360 29386059424200 32052405340 -32320

Table C.2.2: Gopakumar-Vafa invariants ng(d)(g ≤ 5) of the Grassmannian Calabi-Yau threefold (G(2, 5)||1, 2, 2)1
−120.
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T
A

B
L
E

S
O

F
G

O
P
A

K
U

M
A

R
-V

A
F
A

IN
V
A

R
IA

N
T

S
161

d g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

1 210 0 0 0 0 0
2 1176 0 0 0 0 0
3 13104 0 0 0 0 0
4 201936 0 0 0 0 0
5 3824016 84 0 0 0 0
6 82568136 74382 0 0 0 0
7 1954684008 8161452 0 0 0 0
8 49516091520 560512344 70896 0 0 0
9 1321186053432 31354814820 39198978 0 0 0
10 36729091812168 1568818990200 7239273552 1086246 0 0
11 1055613263065704 73339159104540 827701960638 932836632 1722 0
12 31184875579315920 3279169536538154 72679697259288 284870410986 55653752 0

Table C.2.3: Gopakumar-Vafa invariants ng(d)(g ≤ 5) of the Grassmannian Calabi-Yau threefold (G(3, 6)||16)
1
−96.
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C

H
A

P
T

E
R

C
.

D
E

T
A

IL
S
:

G
R

A
S
S
M

A
N

N
IA

N
C

A
L

A
B

I-Y
A

U
M

A
N

IF
O

L
D

S

d g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

1 280 0 0 0 0 0
2 2674 0 0 0 0 0
3 48272 0 0 0 0 0
4 1279040 27 0 0 0 0
5 41389992 26208 0 0 0 0
6 1531603276 5914124 -54 0 0 0
7 62153423432 745052912 56112 0 0 0
8 2699769672096 73219520613 120462612 -5267 0 0
9 123536738915800 6326648922384 40927354944 4713072 840 0
10 5890247824324990 506932941439940 8145450103430 15699104736 -91464 -404
11 290364442225572848 38717395881042032 1228133118935408 8307363701728 4174512664 66640
12 14713407331980050400 2863231551878100494 156147718274297768 2460694451990694 7534787308968 991403118

Table C.2.4: Gopakumar-Vafa invariants ng(d)(g ≤ 5) of the Grassmannian Calabi-Yau threefold (G(2, 6)||1, 1, 1, 1, 2)1
−116.
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T
A

B
L
E

S
O

F
G

O
P
A

K
U

M
A

R
-V

A
F
A

IN
V
A

R
IA

N
T

S
163

d g = 0 g = 1 g = 2 g = 3 g = 4 g = 5

1 196 0 0 0 0 0
2 1225 0 0 0 0 0
3 12740 0 0 0 0 0
4 198058 0 0 0 0 0
5 3716944 588 0 0 0 0
6 79823205 99960 0 0 0 0
7 1877972628 8964372 0 0 0 0
8 47288943912 577298253 99960 0 0 0
9 1254186001124 31299964612 47151720 -1176 0 0
10 34657942457488 1535808070650 7906245550 325409 0 0
11 990133717028596 70785403788680 858740761340 956485684 -25480 3675
12 29075817464070412 3129139504135680 73056658523632 301227323110 27885116 73892

Table C.2.5: Gopakumar-Vafa invariants ng(d)(g ≤ 5) of the Grassmannian Calabi-Yau threefold (G(2, 7)||17)
1
−98.
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C

H
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E
R
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.

D
E
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A
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S
:

G
R

A
S
S
M

A
N

N
IA

N
C

A
L

A
B

I-Y
A

U
M

A
N

IF
O

L
D

S

d g = 0 g = 1 g = 2 g = 3

1 588 0 0 0
2 12103 0 0 0
3 583884 196 0 0
4 41359136 99960 0 0
5 3609394096 34149668 12740 0
6 360339083307 9220666238 25275866 1225
7 39487258327356 2163937552736 21087112172 22409856
8 4633258198646014 466455116030169 11246111235996 58503447590
9 572819822939575596 95353089205907736 4601004859770928 67779027822044
10 73802503401477453288 18829753458134112872 1586777390750641117 50069281882780727

d g = 4 g = 5

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 25371416 3675
9 216888021056 33575388
10 521484626374894 1111788286385

Table C.2.6: Gopakumar-Vafa invariants ng(d)(g ≤ 5) of the Pfaffian Calabi-Yau threefold M ′.
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C.3 5D black hole asymptotic

Figure C.1: Leading behavior of the microscopic entropy for the 5d black hole for the
Grassmannian Calabi-Yau threefold (G(2, 7)||1, 1, 1, 1, 1, 1, 1)1

−98. A(d,m) are the Richard-
son transforms. The Richardson transforms of the microscopic entropy converge within 4
% to the expected value from the macroscopic calculation b0 = 4π

3
√

2H3
∼ .046 for H3 = 42,

see [66] for details.
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Appendix D

Details: Local Calabi-Yau manifolds
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D.1 Gopakumar-Vafa invariants of local Calabi-Yau

manifolds

d1 0 1 2 3 4 5 6

d2

0 -2 0 0 0 0 0
1 -2 -4 -6 -8 -10 -12 -14
2 0 -6 -32 -110 -288 -644 -1280
3 0 -8 -110 -756 -3556 -13072 -40338
4 0 -10 -288 -3556 -27264 -153324 -690400
5 0 -12 -644 -13072 -153324 -1252040 -7877210
6 0 -14 -1280 -40338 -690400 -7877210 -67008672

Table D.1.1: Instanton numbers ng=0
d1d2

of local KF0

d1 0 1 2 3 4 5 6

d2

0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 9 68 300 988 2698
3 0 0 68 1016 7792 41376 172124
4 0 0 300 7792 95313 760764 4552692
5 0 0 988 41376 760764 8695048 71859628
6 0 0 2698 172124 4552692 71859628 795165949

Table D.1.2: Genus one GV invariants ng=1
d1d2

of local KF0

d1 0 1 2 3 4 5 6

d2

0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 0 -12 -116 -628 -2488
3 0 0 -12 -580 -8042 -64624 -371980
4 0 0 -116 -8042 -167936 -1964440 -15913228
5 0 0 -628 -64624 -1964440 -32242268 -355307838
6 0 0 -2488 -371980 -15913228 -355307838 -5182075136

Table D.1.3: Genus two GV invariants ng=2
d1d2

of local KF0
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d1 0 1 2 3 4 5 6

d2

0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 0 0 15 176 1130
3 0 0 0 156 4680 60840 501440
4 0 0 15 4680 184056 3288688 36882969
5 0 0 176 60840 3288688 80072160 1198255524
6 0 0 1130 501440 36882969 1198255524 23409326968

Table D.1.4: Genus three GV invariants ng=3
d1d2

of local KF0

d1 0 1 2 3 4 5 6

d2

0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 0 0 0 -18 -248
3 0 0 0 -16 -1560 -36408 -450438
4 0 0 0 -1560 -133464 -3839632 -61250176
5 0 0 -18 -36408 -3839632 -144085372 -2989287812
6 0 0 -248 -450438 -61250176 -2989287812 -79635105296

Table D.1.5: Genus four GV invariants ng=4
d1d2

of local KF0

d1 0 1 2 3 4 5 6 7

d2

0 -2 0 0 0 0 0 0
1 1 3 5 7 9 11 13 15
2 0 0 -6 -32 -110 -288 -644 - 1280
3 0 0 0 27 286 1651 6885 23188
4 0 0 0 0 -192 -3038 -25216 -146718
5 0 0 0 0 0 1695 35870 392084
6 0 0 0 0 0 0 -17064 -454880
7 0 0 0 0 0 0 0 188454

Table D.1.6: Instanton numbers ng=0
d1d2

of local KF1
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d1 0 1 2 3 4 5 6 7

d2

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 9 68 300 988 2698
3 0 0 0 -10 -288 -2938 -18470 -86156
4 0 0 0 0 231 6984 90131 736788
5 0 0 0 0 0 -4452 -152622 -2388864
6 0 0 0 0 0 0 80948 3164814
7 0 0 0 0 0 0 0 -1438086

Table D.1.7: Genus one GV invariants ng=1
d1d2

of local KF1

d1 0 1 2 3 4 5 6 7

d2

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 -12 -116 -628 -2488
3 0 0 0 0 108 2353 23910 160055
4 0 0 0 0 -102 -7506 -161760 -1921520
5 0 0 0 0 0 5430 329544 7667739
6 0 0 0 0 0 0 -194022 -11643066
7 0 0 0 0 0 0 0 5784837

Table D.1.8: Genus two GV invariants ng=2
d1d2

of local KF1

d1 0 1 2 3 4 5 6 7

d2

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 15 176 1130
3 0 0 0 0 -14 -992 -18118 -182546
4 0 0 0 0 15 4519 179995 3243067
5 0 0 0 0 0 -3672 -447502 -16230032
6 0 0 0 0 0 0 290853 28382022
7 0 0 0 0 0 0 0 -15363990

Table D.1.9: Genus three GV invariants ng=3
d1d2

of local KF1
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E.1 Gopakumar-Vafa invariants

d1 0 1 2 3 4 5 6

d2

0 0 640 10032 288384 10979984 495269504 24945542832
1 4 640 72224 7539200 757561520 74132328704 7117563990784
2 0 0 10032 7539200 2346819520 520834042880 95728361673920
3 0 0 0 288384 757561520 520834042880 212132862927264
4 0 0 0 0 10979984 74132328704 95728361673920
5 0 0 0 0 0 495269504 7117563990784
6 0 0 0 0 0 0 24945542832

Table E.1.1: Instanton numbers ng=0
d1d2

of P(1,1,2,2,2)
4 [8]

d1 0 1 2 3 4 5 6

d2

0 0 0 0 -1280 -317864 -36571904 -3478899872
1 0 0 0 2560 1047280 224877056 36389051520
2 0 0 0 2560 15948240 12229001216 4954131766464
3 0 0 0 -1280 1047280 12229001216 13714937870784
4 0 0 0 0 -317864 224877056 4954131766464
5 0 0 0 0 0 -36571904 36389051520
6 0 0 0 0 0 0 -3478899872

Table E.1.2: Instanton numbers ng=1
d1d2

of P(1,1,2,2,2)
4 [8]

d1 0 1 2 3 4 5 6

d2

0 0 0 0 0 472 875392 220466160
1 0 0 0 0 -1232 -2540032 -1005368448
2 0 0 0 0 848 9699584 21816516384
3 0 0 0 0 -1232 9699584 132874256992
4 0 0 0 0 472 -2540032 21816516384
5 0 0 0 0 0 875392 -1005368448
6 0 0 0 0 0 0 220466160

Table E.1.3: Instanton numbers ng=2
d1d2

of P(1,1,2,2,2)
4 [8]
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d1 0 1 2 3 4 5 6

d2

0 0 0 0 0 8 -2560 -6385824
1 0 0 0 0 -24 3840 20133504
2 0 0 0 0 24 2560 -19124704
3 0 0 0 0 -24 2560 23433600
4 0 0 0 0 8 3840 -19124704
5 0 0 0 0 0 -2560 20133504
6 0 0 0 0 0 0 -6385824

Table E.1.4: Instanton numbers ng=3
d1d2

of P(1,1,2,2,2)
4 [8]

d1 0 1 2 3 4 5 6 7

d2

0 0 0 0 0 0 0 50160 101090432
1 0 0 0 0 0 0 -160512 -355794944
2 0 0 0 0 0 0 220704 478526720
3 0 0 0 0 0 0 56160 -366614784
4 0 0 0 0 0 0 220704 -366614784
5 0 0 0 0 0 0 -160512 478526720
6 0 0 0 0 0 0 50160 -

Table E.1.5: Instanton numbers ng=4
d1d2

of P(1,1,2,2,2)
4 [8]

d1 0 1 2 3 4 5

d2

0 0 2496 223752 38637504 9100224984 2557481027520
1 2 2496 1941264 1327392512 861202986072 540194037151104
2 0 0 223752 1327392512 2859010142112 4247105405354496
3 0 0 0 38637504 861202986072 4247105405354496
4 0 0 0 0 9100224984 540194037151104
5 0 0 0 0 0 2557481027520
6 0 0 0 0 0 0

Table E.1.6: Instanton numbers ng=0
d1d2

of P(1,1,2,2,6)
4 [12]
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d1 0 1 2 3 4 5

d2

0 0 0 -492 -1465984 -1042943520 -595277880960
1 0 0 480 2080000 3453856440 3900245149440
2 0 0 -492 2080000 74453838960 313232037949440
3 0 0 0 -1465984 3453856440 313232037949440
4 0 0 0 0 -1042943520 3900245149440
5 0 0 0 0 0 -595277880960

Table E.1.7: Instanton numbers ng=1
d1d2

of P(1,1,2,2,6)
4 [12]

d1 0 1 2 3 4 5

d2

0 0 0 -6 7488 50181180 72485905344
1 0 0 8 0 -73048296 -194629721856
2 0 0 -6 0 32635544 2083061531520
3 0 0 0 7488 -73048296 2083061531520
4 0 0 0 0 50181180 -194629721856
5 0 0 0 0 0 72485905344

Table E.1.8: Instanton numbers ng=2
d1d2

of P(1,1,2,2,6)
4 [12]

d1 0 1 2 3 4 5

d2

0 0 0 0 0 -902328 -5359699200
1 0 0 0 0 1357500 10139497472
2 0 0 0 0 -822968 -7645673856
3 0 0 0 0 1357500 -7645673856
4 0 0 0 0 -902328 10139497472
5 0 0 0 0 0 -5359699200

Table E.1.9: Instanton numbers ng=3
d1d2

of P(1,1,2,2,6)
4 [12]
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d1 0 1 2 3 4 5

d2

0 0 0 0 0 1164 228623232
1 0 0 0 0 -1820 -376523648
2 0 0 0 0 2768 144351104
3 0 0 0 0 -1820 144351104
4 0 0 0 0 1164 -376523648
5 0 0 0 0 0 228623232

Table E.1.10: Instanton numbers ng=4
d1d2

of P(1,1,2,2,6)
4 [12]
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