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ABSTRACT 

Lake Hawassa is a topographically closed lake in the Central Main Ethiopian Rift Valley. 

The water level of this lake has been rising significantly with an average rate of 4.9 

cm/year over the study period (1970-2010). The cause of this rise is not yet sufficiently 

investigated. The main target of this study is to investigate causal variables for lake level 

variability in general, and its resultant rise in particular. The study is based on two main 

hypotheses. The first is concerned with the effect of climate variability on the lake level 

variability; and the second is related to the effect of sedimentation on the storage capacity 

of the lake.  

The first hypothesis (the effect of climate variability) was investigated through the 

application of diverse statistical techniques. It comprises the coherence analysis to study 

the linear relationship between the 3.4 ENSO index and lake level changes. A sequential 

regime shift algorithm was employed to investigate the variations in the mean values of 

some selected hydro-climatic variables. Trend test was also used to investigate the 

variability of the hydro-climatic variables overtime. A simple water balance approach was 

applied to simulate the lake level variability so as to examine how the model behaves 

throughout the study period. 

The second hypothesis (the effect of sedimentation) was approached by conducting a new 

bathymetric survey. The result of the new survey was compared with the existing 

bathymetric map of 1999. The Pacific-Southwest Inter-Agency Committee (PSIAC) model 

was also employed to identify the "hot-spots" of sediment production in the watershed. In 

this semi-quantitative model, nine factors affecting sediment yielding the watershed were 

characterized, rated, and an overlay analysis was performed. Participatory assessment of 

anthropogenic factors that affect the hydrological status of the lake was conducted through 

the application of DPSIR (Drivers-Pressures-State-Impact-Response) analytical 

framework. 

The result of the coherence analysis between the monthly lake level changes and the 

corresponding changes in the ENSO index reveals that the two variables have significant 

linear relationship over frequencies ranging from 0.13 to 0.14 cycles/month or 1.56 to 1.68 

cycles/year. This corresponds to a dominant average periodicity (coincident cycle) of about 

7.4 months. Furthermore, the result of sequential regime shift detections show that most of 

the significant change points coincide with the occurrences of ENSO events and climate 

shifts. Generally, the lake level tends to be high during El Niño and low during La Niña 

years. The typical example is the coincidence of extreme historical maximum lake level to 

the strongest El Niño event of the century that occurred in 1997/98. The coincidence of 

climate regime shift in the Pacific Ocean in 1976/77 with an equivalent regime shift in the 

lake level and rainfall records of this period is considered as additional evidence. The study 

further reveals the existence of sequential regime shifts in stream flow, runoff coefficient, 

and lake evaporation which clearly coincide with the occurrences of ENSO phenomena. 
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Results of the Mann-Kendall trend analyses also reveal the significant increasing trend of  

the lake level and streamflow. On the contrary, decreasing trend of evaporation was 

observed while rainfall exhibits no trend over the study period. 

The long-term increasing trend of streamflow from Tikur Wuha sub-watershed without the 

corresponding increment in rainfall is found to explain the role of land use/cover changes 

at least in modifying the impact of climate.  

The application of simple spreadsheet water balance model estimates the long-term (1986-

2006) average annual magnitudes of the water balance components as follows: over-lake 

precipitation (89 Mm³), evaporation from the lake surface (132 Mm³), streamflow from the 

Tikur Wuha sub-watershed (94 Mm³), and streamflow from the un-gauged sub-watershed 

(77 Mm³) and storage changes (3 Mm³). 

Comparison of the two bathymetric maps shows that the average accumulated sediment 

between the years 1999 and 2010 was estimated as 14 ± 5cm or 13.3 x10
6
 m

3
. Assuming a 

constant rate, the mean annual average rate of sedimentation in the lake is about 1.2 

cm/year or 1.1 x10
6
 m

3
. Accordingly, the mean annual reduction in storage capacity of the 

lake due to siltation is 0.08 %.  

The attempt to link sediment yield estimate of the bathymetric approach with the estimates 

of the PSIAC model results in a considerable disagreement as the former estimates 967 

m
3
/km

2
/year whereas the latter estimates the sediment yield to be in the range of 95-250 

m
3
/km

2
/yr.  

The result of participatory assessment of anthropogenic factors and review of previous 

studies shows that anthropogenic factors show considerable impact on the hydrological 

status of the lake. Sedimentation and increased runoff are perceived as pressures 

(immediate causes) for the lake level rise (state). These pressures are perceived to arise 

from drivers (land use changes, deforestation and misuse/mistreatment of land resources). 

These drivers in turn had resulted from indirect drivers that comprised population growth 

and density, agricultural development, the use of wood as fuel, socio-economic changes, 

and the existing land tenure system. The interesting finding of this assessment of 

anthropogenic factors is the presence of promising policy instruments (responses) that 

support the integrated management of the lake and the watershed. The failure of 

implementation of these policy instruments is the commonly complained issues among the 

stakeholders. 
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KURZFASSUNG 

Der Hawassa-See ist ein Endsee im afrikanischen Grabenbruch, dessen Wasserstand im 

Zeitraum dieser Studie (1970-2010) jährlich im Durchschnitt um 4,9 cm gestiegen ist. Der 

Grund für diesen Anstieg ist noch nicht ausreichend erforscht. Das Hauptziel dieser Studie 

ist die Untersuchung der Ursachen für die Variabilität des Seewasserstandes  im 

Allgemeinen und für den beobachteten Anstieg insbesondere. Dieser Arbeit liegen zwei 

Hypothesen zugrunde. Die erste bezieht sich auf die Auswirkungen der Klimavariabilität 

und die zweite auf die Auswirkung der Sedimentation auf die Speicherkapazität des 

Hawassa-Sees. 

Für die Untersuchung der ersten Hypothese (Auswirkung der Klimavariabilität) wurden 

verschiedene statistische Verfahren eingesetzt, darunter die Kohärenzanalyse, um die 

lineare Beziehung zwischen dem 3.4 ENSO-Index und der Wasserstandsänderung zu 

prüfen. Der sequential regime shift algorithm wurde verwendet, um zu untersuchen, ob die 

Kipppunkte der Mittelwerte ausgewählter hydro-klimatischer Variablen mit dem Auftreten 

bzw. der Intensität der ENSO-Ereignisse übereinstimmen. Weiterhin wurde eine 

Trendanalyse durchgeführt, um die zeitliche Variabilität klimatischer Parameter zu 

bestimmen. Mittels eines einfachen Wasserbilanzverfahrens wurden die 

Wasserstandsänderungen simuliert, um das Modellverhalten im Untersuchungszeitraum zu 

analysieren. 

Für die Analyse der zweiten Hypothese (Sedimentationseffekt) wurde eine neue 

bathymetrische Untersuchung durchgeführt und mit einer existierenden Bathymetrie aus 

dem Jahr 1999 verglichen. Das  Pacific-Southwest Inter-Agency-Committee-Modell 

(PSIAC) wurde für die Bestimmung von „Hot-Spots“ der Sedimentproduktion eingesetzt. 

In diesem Modell werden neun Faktoren der Erosion und Sedimentation im Einzugsgebiet 

berücksichtigt, flächenhaft berechnet und überlagert. Abschließend wurde eine 

partizipative Bewertung der  beeinflussenden anthropogenen Faktoren im Rahmen der 

DPSIR-Methode (Drivers-Pressures-State-Impact-Response) durchgeführt.  

Das Ergebnis der Kohärenzanalyse zwischen monatlichen Wasserstandsänderungen und 

den entsprechenden ENSO-Indices zeigt, dass die beiden Variablen eine signifikante 

lineare Beziehung im Frequenzbereich von 0,13 bis 0,14 Zyklen/Monat bzw. 1,56 bis 1,68 

Zyklen/Jahr aufweisen. Dies entspricht einer dominierenden mittleren Periodizität  von ca. 

7,4 Monaten. Darüber hinaus zeigen die Ergebnisse der sequential regime shift detection, 

dass die überwiegenden Kipppunkte der ENSO-Ereignisse und der Klimaparameter 

übereinstimmen. Der Seewasserstand tendiert in El Niño-Jahren zu höheren und in La 

Niña-Jahren zu niedrigeren Werten. Ein typisches Beispiel ist die Übereinstimmung des 

historisch höchsten Seewasserstandes mit dem stärksten El Niño-Ereignis des letzten 

Jahrhunderts im Winter 1997/1998. Eine weitere Evidenz ist die Übereinstimmung der 

Verschiebung des Klimaregimes im pazifischen Ozean 1976/1977 mit einer 

entsprechenden Verschiebung des Seewasserstände und der Niederschläge im gleichen 

Zeitraum. Die Untersuchung zeigt auch die Existenz von weiteren Regimeverschiebungen 

in Abfluss, Abflussbeiwert und Evaporation in Übereinstimmung mit ENSO-Ereignissen. 
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Die Ergebnisse der Mann-Kendall-Trendanalyse zeigen eine Übereinstimmung zwischen 

Seewasserstand und gemessenem Zufluss, wohingegen die Evaporation abnimmt und der 

Niederschlag keinen Trend zeigt. 

Die langfristige Zunahme der beobachteten Zuflüsse am Pegel Tikur-Wuha ohne Änderung 

des Niederschlags ist ein Hinweis auf die Bedeutung von Landnutzungs- und 

Landbedeckungsänderungen im Einzugsgebiet.  

Die Anwendung einer einfachen Tabellenkalkulation ergibt die langfristigen (1986-2006) 

mittleren Jahresbilanzen: Niederschlag über dem See (89 Mm³), Evaporation des Sees (132 

Mm³), Zufluss des Tikur-Wuha Einzugsgebietes (94 Mm³), und Zufluss des nicht 

instrumentierten Einzugsgebietes (77 Mm³) sowie Speicheränderung (3 Mm³). 

Der Vergleich der beiden Bathymetrien ergibt eine Sedimentakkumulation in der Zeit von 

1999 bis 2010 in Höhe von 14 ± 5cm oder 13.3 x10
6
 m

3
, was einem mittleren Wert von 1.2 

cm/a oder 1.1x10
6
 m

3
 entspricht. Dies bedeutet einen Verlust an Speichervolumen in Höhe 

von 0.08% pro Jahr. 

Beim Versuch, die Ergebnisse der Bathymetrie (967 m³/km²/a) mit denen des PSIAC 

Modells (95-250 m³/km²/a) zu vergleichen, werden klare Unterschiede deutlich.  

Die Analyse vorheriger Studien und die teilnehmende Bewertung der anthropogenen 

Einflussfaktoren zeigen einen deutlichen Einfluss derselben auf die Hydrologie des Sees. 

Sedimentation und zunehmender Gebietsabfluss werden als Belastung (pressure) für den 

Seewasserstand (Status, state) angesehen. Diese Belastung ist eine Folge verschiedener 

Treiber (drivers: Landnutzungsänderung, Abholzung, unangemessene Nutzung der 

Landressourcen). Diese direkten Treiber werden von indirekten Treibern wie 

Bevölkerungswachstum, landwirtschaftliche Entwicklungen, Feuerholznutzung, sozio-

ökonomische Änderungen sowie den existierenden Besitzverhältnissen beeinflusst. 

Interessanterweise existieren vielversprechende politische Instrumente (response), die das 

integrierte Management des Sees und seines Einzugsgebietes unterstützen. Das Versagen 

der Implementierung dieser politischen Instrumente wird von den betroffenen Stakeholdern 

beklagt. 



Chapter 1: Introduction 

 

3 
 

Chapter 1. Introduction 

1.1. Background information 

A lake is generally defined as an inland body of fresh or saline water, appreciable in size (i.e. 

larger than a pond), and too deep to permit vegetation (excluding submergent vegetation) to 

take root completely across its expanse (Schertzer et al., 2012). They are subjected to multiple 

interacting stressors (Christensen et al., 2006) such as atmospheric, meteorological, geological, 

hydrological and astronomical influences (Altunkaynak, 2003). The human-induced changes 

are also found to affect the hydrology of lakes in many parts of the world. 

One of the most significant and broadly impacting effects of climate variability on lakes is the 

changes in water level. Such changes reflect an alteration of the lake water balance, which can 

result from changes in: precipitation, surface runoff, ground water flow, and evaporation from 

the lake surface (Elsawwaf and Willems, 2012; Lenters et al., 2005). The water in a lake is 

balanced by the basic hydrological relationship in which the change in water storage is 

governed by the water input and output to the system (Limgis, 2001). 

In the 1960s, lakes throughout East Africa were rising (Lamb, 1966) resulting from a series of 

remarkably wet years (Flohn, 1987; Nicholson, 1995). The spatial extent and the magnitude of 

fluctuations were considered as a signal to major global climate change (Lamb, 1966). 

According to Arnell et al. (1996) and Bergonzini (1998), African lakes are known to be very 

sensitive to climate variations with special sensitivity of closed lakes. The impact of non-

climatic factors on water level variability was also reported by different scholars in Ethiopia, 

such as Görner et al. (2009) and Belay (2009). 

In addition to climatic and non-climatic factors, the type of lake can also influence the water-

level fluctuation character of a lake (Deganovsky and Getahun, 2008). For instance, lakes 

without outlets (called closed or terminal lakes) fluctuate in a greater degree as compared to 

open lakes (Langbein, 1961). The Ethiopian Rift Valley Lake Basin contains such terminal 

lakes that make the basin hydrologically sensitive. These terminal lakes are also sensitive to 

pollution by constantly taking pollutants without chances of releasing them. Xu (2011), Zhao 

et al. (2009), Milliman et al. (2008) and many other researchers concluded that climate change 

and human activities are the main driving forces that affect the hydrological status of a given 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854826/#R16
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lake. However, the discrimination between these two causes is still one of the major 

challenges in hydrology (Yang et al., 2012). 

The Ethiopian Rift Valley (figure 1.1) is characterized by a chain of lakes varying in size, 

hydrological and hydrogeological settings. The water levels of some of these lakes showed 

dramatic changes in the last few decades (Alemayehu et al., 2006).  

 
Figure 1.1. Locations of the Ethiopian Rift Valley lakes Source: Alemayehu et al. (2006) 

The lakes in the Rift Valley are situated within three sub-basins: Awash basin (Lake Koka, 

Beseka, Gemari, Abe), which is located in the Northern Main Ethiopian Rift (MER), the lakes 

region (Lake Ziway, Langano, Abiyata, and Shalla) occupying a central part of the MER, and 

the Southern basin (Lake Hawassa, Abaya, Chamo, and Chewbahir). Hydrologically, the 

basins form separate units, but hydrogeologically they form a unique system within the rift due 

to the underground interconnection by NE-SW aligned regional faults (Belay, 2009; 

Alemayehu et al., 2006). 
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Lake Hawassa has been experiencing a progressive rise in water level during the past two 

decades (1981-1998) (Gebreegiziabher, 2004; WWDSE, 2001). The concern of this rise 

achieved its peak in the aftermath of the extreme flooding of the surrounding area as a result of 

extreme rise in 1998/99. It was because of this problem that the regional government funded 

an extensive studies conducted by WWDSE (2001) and WRDB (2007). Regarding the lake 

level rise, WWDSE (2001) explained that it was caused by deforestation which increased the 

runoff and siltation of the lake. However, Ayenew and Gebreegiziabher (2006) argued that the 

justifications are speculative rather than supported by scientific data. Another recent project 

was undertaken between 2008-2010 by Ministry of Water Resources with the aim of 

generating a development master plan for Ethiopian Rift Valley Basin in general (MoWR, 

2008; 2009; and 2010). The governmental funding of the above three projects indicates the 

level of concern of policy makers towards the management of water resources in the region. 

These projects produced extensive information including the first bathymetry map of the lake, 

land use dynamics, soil and geological classifications, gully networks, and supportive 

information about the lake. They were development-oriented than dealing with scientific 

arguments. 

There were earlier researches to understand the hydrology of Lake Hawassa and many studies 

associated the causes of the water-level rise of Lake Hawassa with  climate changes (Lamb et 

al., 2002; Ayenew, 2006; Deganovsky and Getahun, 2008; Gebreegziabher, 2004; WWDSE , 

2001; MoWR, 2008; Bewketu, 2010). Other researchers considered the problem as resulting 

from land use changes that in turn affect the runoff generation mechanism (Lamb et al, 2002; 

Gebreegziabher, 2004; Ayenew, 2004; MoWR, 2008; Bewketu, 2010). Less number of studies 

reported the role of sedimentation process into the lake (Esayas, 2010; Gebreegziabher, 2004; 

Geremew, 2000). The involvement of tectonic processes that affect the ground water flow 

regime is also recognized by Ayenew (2006), WWDSE (2001) and others. Generally, the 

underlying cause of the water level rise of Lake Hawassa is still a spot of confusion. 

1.2. Problem statement 

Over the past few years, several researchers have studied the long-term water balance of Lake 

Hawassa, such as Gebreegiziabher (2004), Ayenew (2004), Deganovsky and Getahun (2008), 

WWDSE (2001), Ayenew and Gebreegiziabher (2006), Gebremichael (2007), and 

Shewangizaw (2010). Land use/cover changes have also been studied by Wagesho et al. 
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(2012), Beetle (2009), and WWDSE (2001). Despite the number of studies and their 

importance, the cause of Lake Hawassa‟s water level rise has not been concluded and not yet 

explicitly investigated.  

Limitations of previous studies:  

(1) Previous studies focused primarily on long-term variations in the lake level which have 

disadvantage of obscuring particular temporal responses of the lake to extreme events. A 

better insight could have been grasped if the analyses had focused on both long-term 

variations (trends) and temporal extreme events (regime shift) simultaneously. A trend is 

likely to continue in the future but does not necessarily change the stationarity of the 

system; but a regime shift is likely to persist until a new regime shift takes place (Villarini 

et al., 2011); 

(2) The implicit assumptions of the so-called stationarity (stability of mean values over time) 

of hydro-climatic variables can be erroneous unless the presences of shifts in mean values 

are statistically tested and the causes of those shifts assessed. Change points violate 

stationarity and so their identification becomes an important issue (Breaker, 2007; 

Wagesho et al., 2012, and Box and Jankins, 1970); 

(3) No previous attempt was made to study the impact of lake-bed sedimentation on the 

storage capacity of the lake; and 

(4) Some of the previous studies analyzed part of the story and their results should be 

synthesized in a logical way to show the cause-effect chain of the main environmental 

problems by applying a suitable analytical model, such as DPSIR framework. 
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1.3. Overall objectives of the thesis  

The general aim of this research is to investigate the effect of natural and anthropogenic 

factors on the temporal variability of Lake Hawassa water level. Even though the specific 

objectives are within the respective chapters, the following list compiles the overall objectives: 

 To test the coherence between Sea Surface Temperature (SST) anomalies and lake 

level variability; 

 To test the presence of significant variability over-time (trend) and variability across-

time (regime shift) of the hydro-climate variables (lake level, rainfall, stream flow, and 

evaporation); 

 To simulate the long-term variability of the lake level using spreadsheet water balance 

model; 

 To quantify the effect of sedimentation on the storage capacity of the lake by 

conducting new bathymetry and comparing the results with the existing one; 

 To assess the linkage of in-lake sedimentation to the watershed characteristics by 

applying PSIAC model; 

 To synthesize the preliminary cause-effect chain responsible for the lake level rise by 

employing the Drivers-Pressures-State-Impact-Response (DPSIR) analytical 

framework. 

1.4. Thesis architecture and general approach 

This thesis contains nine chapters where the first three cover "general introduction", 

"description of the study area", and "literature review" consecutively. As shown in figure 1.2, 

chapter four deals with an investigation into the impact of climate shifts and ENSO 

phenomena on the hydrological status of Lake Hawassa; chapter five presents simulation of 

the long-term lake level variability and computation of the magnitudes of water balance 

components. Moreover, chapter six is about an investigation of the effect of recent 

sedimentation on the storage capacity of the lake; whereas chapter seven is about tracing the 

hot-spots of sediment sources in the watershed. Finally, chapter eight deals with an assessment 

of the anthropogenic factors that affect the hydrology of the lake in a preliminary and 

qualitative manner while chapter nine presents a synthesis of the causal-links by linking 

natural and anthropogenic factors prevailing in the hydrosystem in a comprehensive way.  



Chapter 1: Introduction 

 

8 
 

The impact of 
climate shifts and 

ENSO phenomena on the 
hydrological status
 of Lake Hawassa

Simulation of 
long-term water 

level variability of  Lake 
Hawassa in the presence    of 

regime shifts in water     
balance components

C
h

a
p

te
r 
6

C
h

a
p

te
r 
7

C
h

a
p

te
r 
4

C
h

a
p

te
r 
5

C
h

a
p

te
r 
8

C
h

a
p

te
r 
9

S
y
n

th
e

s
is

Cl
im

at
e 

va
ria

bi
lit

y

Sources of sediment

 The effect of recent 
sedimentation on the 

storage capacity of Lake 
Hawassa

The linkage of 
 sedimentation in 

Lake Hawassa  to the 
watershed characteristics: an 

application of 
PSIAC  model

Participatory assessment 
of anthropogenic factors 

affecting the hydrology of 
Lake Hawassa: an appication 

of DPSIR framework 

Syste
m sim

ulatio
n

Sedimentation

 H
um

an factors  

What are 
the causes of 

variations in Lake Hawassa 
water level over time (trend) 

and across time 
(regime shift)?

Figure 1.2. Thesis architecture and general approach 



Chapter 2: Description of the study area 

 

9 
 

Chapter 2.  Description of the study area 

2.1. Location 

Lake Hawassa watershed is located in the central North-East of the Ethiopian Rift Valley 

Basin (figure 2.1) and covers an area of 143,651 ha. It contains five sub-watersheds: 

Dorebafena-Shamena, Wedesa-Kerama, Tikur Wuha, Lalima-Wendo Kosha and Shashemene-

Toga. The geographical co-ordinates of the watershed are 6
0
45

1
 to 7

0
15

1 
North and 38

0
15

1
 to 

38
0
45

1 
East latitude and longitude respectively. The city of Hawassa, named after the lake, is 

located at 275 km south of the capital city-Addis Ababa and is established in the very eastern 

shore of the lake (MoWR, 2010). 

A

D

B

C

Main Ethiopian Rift Valley Basin (MER) 

Lake Hawassa Catchment 
(Clipped SPOT5 image)3D view of Lake Hawassa

Surface area=96 km2

     
  52,000 km2

 
Figure 2.1. Maps of the study area at different scales 

A: The 12 river basins of Ethiopia source: Vilalta (2010) ; 

B: The Main Ethiopian Rift Valley basin source: MoWR (2010);  

C: Lake Hawassa watershed as clipped from SPOT5 satellite image source: own study;  

D: 3D view of Lake Hawassa as generated by ArcGIS10 from the 1999 bathymetry map source: own 

study 
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2.2. Climate and Agro-ecology 

According to Legesse et al. (2003), the watershed is characterized by three main seasons. The 

long rainy season in the summer from June-September is known locally as Kiremt and is 

primarily controlled by the seasonal migration of the inter-tropical convergence zone (ITCZ), 

which lies to the north of Ethiopia at this period. The wet period (locally named as Kiremt) 

represents 50-70% of the mean annual total rainfall.  The dry period (locally named as baga) 

extends between October and February when the ITCZ lies to the south of Ethiopia (Legesse 

et al., 2004). During March and May, the "small rain" season (locally named as belg) occurs 

when about 20-30% of the annual rainfall falls. The climate in the area varies from dry to sub-

humid according to the Thornthwaite‟s system of defining climate or moisture regions (Dessie, 

1995). 

As computed from the long-term (1973-2010) rainfall record of Hawassa meteorological 

station, the annual average magnitude is computed to be 961 mm and distributed as 50% for 

Kiremt (June-September); 20% for baga (October-February) and 30% for belg season (March-

May). Figure 2.2 shows the long-term average monthly distribution of rainfall and 

temperature at Hawassa meteorological station. 

 

Figure 2.2. Distribution of monthly rainfall (a) and temperature (b) at Hawassa Station 
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The isohytal map of the watershed is shown in figure 2.3 and the rainfall time series of the five 

meteorological stations in and around the watershed is shown in figure 2.4. 

 

Figure 2.3. Isohytal map of Lake Hawassa watershed Source: Shamo (2008) 
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Figure 2.4. Partitioning of the watershed by Thiessen´s polygon (the red lines show average 

annual rainfall values. The green line for Shashemene station shows the presence of change in 

mean values as tested by Pettit’s homogeneity statistics that detect single breaking point in a 

series) (The raw data was obtained from the local Meteorology Agency) 

2.3. Topography 

Majority of the watershed is flat to gently undulating but bounded by steep escarpments. The 

altitude ranges from 1,680m at Lake Hawassa to 2,700m on the Eastern escarpment: an 

altitude range of 1,020m.  Most slopes (56%) are flat to gentle (0-8%) with a further 

33% moderately sloping (8-30%) and only 5% steep to very steep (>30%) (MoWR, 2010). 

Figures 2.5, 2.6, and 2.7 demonstrate the topographical variations in the watershed. 
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 Figure 2.5. Hill shade view of the watershed landscape as processed from DEM 

(The unprocessed SRTM DEM of 30 x 30 m resolution was obtained from Ministry of Water 

Resources) 

 

 
Figure 2.6. Three dimensional view of topographic diversity of the watershed (Elevations are 

exaggerated to some extent) (The unprocessed SRTM DEM of 30 x 30 m resolution was 

obtained from the Ministry of Water Resources) 

 

 

 

Figure 2.7. Elevation range of Lake Hawassa watershed Source: Abraham (2007). 

N
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2.4. Soils 

Twelve soil types are identified in the watershed (MoWR, 2010) as shown in figure 2.8 and 

described in table 2.1. 

 
Figure 2.8. Soil types of the watershed Source: MoWR (2010). For details see table 2.1. 
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Table 2.1. Description of soil types in Lake Hawasssa watershed 
 Soil type 

code 

Soil type description 

1 LVcr-Mde Well drained; deep to very deep; dark brown to dark reddish brown; fine and medium 

textured; moderate, fine to coarse sub angular blocky structured chromic luvisols (eutric) 

developed on medium to high gradient mountains with slope of 8-30%.  

2 CMeu-Ede Excessively drained; moderately deep to deep (gravely and pumice below 60cm); very dark 

grayish brown and very dark gray; coarse textured; weak, very fine crumb and massive 

structured vitric Andosols developed on level plain land form with slope of 0-2%.  

3 CMeu-Rcd Well drained; deep to very deep; medium textured; weak to moderate fine and medium sub 

angular blocky structured; slightly to non-calcareous eutric cambisols developed on rolling 

plain with a dominant slope range of 5-15%. 

4 LVha-Rcd Well drained; deep to very deep; dark brown to dark reddish brown; fine and medium 

textured; weak to moderate medium sub angular blocky structured; non-calcareous haplic 

luvisols developed on rolling plain with a dominant slope range of 5-15%. 

5 CMeu-PLab Well drained; very deep; dark brown over very dark grayish brown; medium textured; 

weak, medium and coarse sub angular blocky and single grain structured eutric cambisols 

developed on level plain land form with slope of 0-2%.  

6 CMeu-PLbc Well drained; very deep; dark brown over very dark grayish brown; medium textured; 

weak, medium and coarse sub angular blocky and single grain structured eutric cambisols 

developed on level plain land form with slope of 2-5%.  

7 ANvi-PLab Excessively drained; moderately deep to deep (pumice below 45cm); very dark grayish 

brown; coarse textured; weak, medium crumb and massive structured vitric Andosols 

developed on level plain with slope of 0-2%.  

8 CMcr-Mde Well to excessively drained; moderately deep; dark reddish brown; fine and medium 

textured; weak to moderate fine and medium sub angular blocky structured; non calcareous 

chromic cambisols developed on a very steep topography with slope >8%. 

9 ANvi-Rcd Well to excessively drained; moderately deep to very deep; dark brown to dark yellowish 

brown; medium and coarse textured; weak fine and medium sub angular blocky structured 

vitric Andosols developed on rolling plain (0-15% slope) with few to many fine pumice 

gravels. 

10 CMvr-PLab Very poorly drained; deep to very deep; very dark grey to black; fine and medium textured; 

moderate, medium sub angular blocky structured non-calcareous vertic cambisols 

developed on flat topography (0-2%) of alluvial plain landforms.  

11 CMeu-Rbc Well drained; deep to very deep; medium textured; weak to moderate fine and medium sub 

angular blocky structured; slightly to non-calcareous eutric cambisols developed on rolling 

plain with dominant slope range 2-8%). 

12 LP-Hde Excessively to well drained; very shallow; dark brown to very dark yellowish brown; 

medium textured; weak to moderate medium sub angular blocky structured; friable moist; 

slightly sticky and slightly plastic wet; slightly to non-calcareous leptosols developed on a 

hill with slope >8%. 

Source: MoWR (2010) 

2.5. Land use/cover 

According to MoWR (2010), land use in the watershed is dominated by cultivation which 

occupies 61% of the total area (or 66% of the land area) with intensive cultivation. The major 

land cover splits into smallholder cultivation (95%) of which 31% is cereals and perennials 

(CI3) and 64% cereals only (CI4) and mechanized cultivation (5%) most of which is state 

owned rather than private. Intensive cultivation with perennial crops occurs in the eastern hills 

with cereal cultivation dominating the western, southern and northern areas. 
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Other important land covers include disturbed and plantation forests in the Wendo Koshe hills 

and around Wendo Genet comprising 3% of the area; dense and open shrubland in the Wendo 

Koshe hills and west of Cheleleka comprising 6%, grassland (11%) comprising open grassland 

in the Wendo Koshe hills (3%), in association with marshland at Cheleleka (4%), in 

association with moderate smallholder cultivation in the Eastern hills (3%) and wooded 

grassland (1%) in the eastern hills.  

Table 2.2. Types of land cover in Lake Hawassa watershed 

Land cover Land cover 
[ha] 

% of sub-

basin 
% of sub-

basin land 

area 

Urban – U 2,531 1.76 1.88 
Intensive Mechanized Cultivation (Private) CIMP 1,015 0.71 0.76 
Intensive Mechanized Cultivation (State) CIMS 3,287 2.29 2.45 
Intensive Smallholder Cultivation CI3 27,664 19.26 20.59 
Intensive Smallholder Cultivation CI4 56,055 39.02 41.73 

Total Intensive Smallholder Cultivation 88,021 61.27 65.53 

Disturbed High Forest – FD 3,599 2.51 2.68 
Plantation Forests – FP 328 0.23 0.24 
Dense Shrubland – SD 2,104 1.46 1.57 
Open Shrubland – SO 5,995 4.17 4.46 
Open Grassland – GO 3,534 2.46 2.63 
Open Grassland with moderate smallholder cultivation – 

GO/CM3 4,520 3.15 3.37 
Open Grassland and Marshland - GO/MA 5,333 3.71 3.97 
Wooded Grassland- GW 1,559 1.09 1.16 
Marshland – MA 2,335 1.63 1.74 
Open Woodland - WO 422 0.29 0.31 
Dense Woodland - WD 5,744 4.00 4.28 
Bare Eroded Land with scattered vegetation – EES 7,913 5.51 5.89 
Bare Rock – ER 388 0.27 0.29 

Total land 134,328 93.51 100 

Water 9,324 6.49  

Watershed total 143,651 100  

Source: MoWR (2010) 

2.6. Geology 

According to MoWR (2010), the watershed forms the Corbetti caldera with the steep western 

and eastern escarpments of the caldera walls (figure 2.9). The majority of the watershed, the 

flat caldera floor, is composed of lacustrine sediments of Pleistocene age, evidence of the 

gradual desiccation and infilling of the former Lake Shallo. The Wendo Koshe hills to the 

north-west of Lake Hawassa are composed of pumice, unwelded tuffs, obsidian and pitchstone 

while other hills (Alge, Kike, Kuwe etc) and the steep escarpment immediately to the north of 



Chapter 2: Description of the study area 

 

17 
 

Lake Cheleleka are rhyolitic and trachrytic lava flows. The hills forming the eastern 

escarpment are composed of Nazret silicicvolcanics comprising ignimbrites, unwelded tuffs, 

ash flows, rhyolites and trachytes while the land to the east of the Wendo Koshe hills is 

underlain by rocks of the Dino formation comprising ignimbrites, tuffs, water lain pyroclastics 

and occasional lacustrine beds. 

 

Figure 2.9. Geological map of Lake Hawassa watershed 

[The red lines are the main roads crossing the watershed and the green dots are well points and 

not relevant in our case] Source: WRDB (2007) 

2.7. Morphology of Lake Hawassa 

Lake Hawassa is the smallest and the highest in altitude among the Great Ethiopian Rift 

Valley lakes (1680 m.a.s.l) and located at the geographic coordinates of Lake 7
1
06

0 
N and 

38
1
33

0 
E between the Ziway-Shalla lakes to the north and Lakes Chamo and Abaya to the 

south. The lake lies within a nested caldera complex and is predominantly underlain by highly 

faulted ignimbrites and other silicic pyroclastic deposits (Kazmin, 1979 as cited in Lamb et al., 

2002).  

When we compare the elevation (figure 2.10) of Lake Hawassa (1680 m) with lake Ziway 

(1636 m), Langano (1585 m), Abiyata (1578 m), Shalla (1550 m) and Abaya and Chamo 
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(~1180m) (Gebreegziabher, 2004), it is possible for ground water to flow from Lake Hawassa 

to low lying lakes when hydrogeological condition permits.  

 

Figure 2.10. Elevation diversity of some Rift Valley lakes Source: Gebreegziabher, 2004) 

The bathymetry survey of this research, which was conducted on January 2011, revealed that 

the maximum depth of the lake is 23.4 m and an average depth of 13.3 m. As extracted from 

satellite imagery, the length of north-to-south axis is 16 km and the east-west axis is 8 km. The 

water storage capacity of the lake is 1.36 km
3
 (Ayenew et al., 2007). The elevation-area-

volume curve of the lake is shown in figure 2.11. 

Table 2.3. Summary of physical characteristics of Lake Hawassa 

 Parameters Size and location  References 

1 Watershed area (including 

the lake)  
1436.5 km

2 

@ Lat. 6
0
45

1
 to 7

0
15

1
North   and 

@ Long. 38
0
15

1
 to 38

0
45

1
East 

MoWR (2010) 

2 Maximum lake depth 23.4 m (on Jan. 2011) 
@ Lat. 7.082019 deg. and  
Long. 38.45225 deg. 

Own study 

3 Average lake depth 13.3 m (on Jan. 2011) Own study 
4 Lake surface area 96 km

2 Own study 
5 Water storage volume 1.36 km

3 Ayenew et al. (2007) 
6 Residence time  1.3 year Ayenew et al. (2007) 
7 Lake Surface area (m

2
) 

(rating curve) 
= 4*10

6
 x d+ 9*10

6 
(where d is the actual depth of the lake m) 

Gebreegziabher 

(2004) 
8 Lake volume (m

3
)  

(rating curve) 
= 2*10

6
x d

2
+ 1*10

7
d-5.95*10

7 
Gebreegziabher 

(2004) 
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Figure 2.11. Elevation-area-volume curve for Lake Hawassa Source: WWDSE (2001)

FIGURE 3.2   AREA - CAPACITY CURVES OF LAKE AWASA
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Chapter 3. Characterization of the water level variability of the Main Ethiopian Rift 

Valley (MER) lakes 

3.1. Introduction 

Water level variability of a given lake results from water exchange characteristics within its 

watershed (Vuglinskiy, 2009). Lake levels fluctuate naturally in response to climatic and 

hydrological factors within natural amplitudes (Zohary and Ostrovsky, 2011) as far as they are 

undisturbed by external forces such as climate anomalies or anthropogenic factors. Scheffer 

and Carpenter (2003) also remarked that the usual state of affairs in nature is to fluctuate 

around some stable average. The seasonal and annual water level fluctuation of lakes is a 

common phenomenon in every lake. Such fluctuations are usually due to the differences 

between precipitation and evaporation in that specific season (Kinshiro, 1974). These 

dynamics are controlled by the balance between inputs and outputs of water, which are in turn 

controlled by the hydrological processes (Hayashi and Kamp, 2007). These natural 

fluctuations are an inherent feature of lake ecosystems and essential for the survival and well-

being of many species that have evolved to suit their life cycle to those fluctuations (Gasith 

and Gafny, 1990).  

In the Main Ethiopian Rift Valley region, there has been no increasing/declining precipitation 

trend for the last 50 years except for the inter-annual and seasonal variations (Ayenew, 2004). 

This  kept the level of some lakes constant, with little or no change (Ayenew, 2007) but some 

of the lakes in the region experienced either an increasing or decreasing trend (Belay, 2009; 

Ayenew, 2004; Gebreegiziabher, 2004). These fluctuations are disturbing the stability of the 

ecosystems, putting serious impacts on the lives of many animals and plants around the lakes 

(Bewketu, 2010). Reviewing the characteristics of lake level variability in the region is 

relevant to this study in providing an insight into the similarity or dissimilarity of such 

variability among the lakes in the region. The hypotheses of this study arise from this review. 

3.2. Objectives of the chapter 

The aim of this chapter is to characterize the lake level variability of Rift Valley lakes in 

general and Lake Hawassa in particular. The dominant processes controlling the lake level 

variability are reviewed. Such characterization is expected to identify research gaps and 

provide information while designing the hypotheses of the main thesis work. Diverse 



 
Chapter 3: Literature review 

21 
 

particularities of lake level regimes in the Rift Valley Basin are intended to answer the 

question “what is common to these lakes?".  

The lakes under consideration are: (1) Lake Ziway, (2) Lake Langano, (3) Lake Abiyata, (4) 

Lake Shalla, (5) Lake Beseka, (6) Lake Hawassa, (7) Lake Abaya, and (8) Lake Chamo. 

3.3. Methodology 

3.3.1. Description of the study area and characteristics of the lakes 

The Rift Valley Lakes Basin (RVLB) is one of the eleven major river basins in Ethiopia with a 

total area of approximately 52,000 km
2 

(MoWR, 2010). The basin is characterized by a chain 

of lakes varying in size, hydrological and hydrogeological settings (Alemayehu, et al., 2006). 

It constitutes seven main lakes: Lake Ziway, Lake Langano, Lake Abiyata, Shalla, Lake, Lake 

Abaya, and Lake Chamo (figure 3.1) where all are located south of the Ethiopian capital Addis 

Ababa. 

http://en.wikipedia.org/wiki/Lake_Zway
http://en.wikipedia.org/wiki/Lake_Langano
http://en.wikipedia.org/wiki/Lake_Abijatta
http://en.wikipedia.org/wiki/Lake_Awasa
http://en.wikipedia.org/wiki/Lake_Abaya
http://en.wikipedia.org/wiki/Lake_Chamo
http://en.wikipedia.org/wiki/Lake_Zway
http://en.wikipedia.org/wiki/Lake_Langano
http://en.wikipedia.org/wiki/Lake_Abijatta
http://en.wikipedia.org/wiki/Lake_Abaya
http://en.wikipedia.org/wiki/Lake_Abaya
http://en.wikipedia.org/wiki/Lake_Chamo
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Figure 3.1. Base map of the Ethiopian Rift Valley basin Source: MoWR, 2010) 
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Table 3.1 and 3.4 depict the morphological characteristics of individual lakes in the Rift 

Valley Basin as compiled from different sources. The water quality parameters are also 

presented in table 3.2. 

Table 3.1. Morphological characteristics of Rift Valley lakes 
  Altitude (m.a.s.l) Max. depth (m) Mean depth (m) Volume (km

3
) 

1 Lake Ziway 1636 8.95 2.5 1.6 

2 Lake Langano 1582 47.9 17 5.3 

3 Lake Abiyata 1578 14.2 7.6 1.1 

4 Lake Shalla 1558 266 87 36.7 

5 Lake Hawassa 1680 22 11 1.34 

6 Lake Abaya 1285 13.1 7.1 8.2 

7 Lake Chamo 1233 13 6 3.3 

8 Lake Beseka 1200    

Sources: Wood and Talling (1988), Kebede et al. (1994), Chernet (1982), Ayenew (1998), Tessema 

(1998), Halcrow and partners (1989), WWDSE (2001), Deganovsky et al. (2004), and Görner et al. 

(2009) 

Table 3.2. Selected water quality parameters of the Rift Valley lakes 

Parameter Ziway Abiyata Shalla Langano Hawassa Abaya Chamo Beseka 

pH 8.37 9.60 9.80 9.04 9.00 9.07 9.48  

EC (µS/cm) 453 47,915 46,075 1,937 867 1,218 1,966 7,155 

Na (mg/l) 61 7,520 6,475 390 165 234 428  

F (mg/l) 1.6 220.0 188.0 9.1 8.7 8.1 9.1  

SAR 3.0 653 267 41.5 10.2 15.7 27.0  

Source: MoWR (2009), Ayenew (1998), Wood and Talling (1988), and Halcrow and partners (1989)  

3.3.2. Available data 

Table 3.3 presents the magnitudes of available water balance components for the eight Rift 

Valley lakes of Ethiopia and table 3.4 shows the relative surface areas of the lakes and their 

watershed.  
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Table 3.3. Water balance components of the eight Rift Valley lakes (the units are as appeared 

in their respective literatures, no conversion made) 
 

Name of the lake 

Inflow Outflow  

References 
P Sin Run GWi E Sout A GWo 

1 

 

Ziway       (in 106 m3) 323 656.5 48 80.5 890 184 28 14.6 Ayenew (2004) 

                    (mm) 750 1530  1720    Deganovsky and Getahun (2004) 

                          (mm) 753 0.692km3 0.05km3 100 1740   200 (net) Vallet-Coulomb et al. (2001) 

2 Langano (in x106 m3) 186 212  135.4 463 46  18.9 Ayenew (2004) 

3 
 

Abiyata   (in x106 m3) 113 230 15 26.8 372 0 13 1.2 Ayenew (2004) 

            (in x106 m3) 97.2 179.87 13.92 290.97 0  0 Ayalew (2003) 

4 Shalla    (in x106 m3) 232 245 18 40 781 0   Ayenew (2004) 

5 Hawassa (in x106 m3) 106 83.1   132 0  58 Ayenew (2004) 

 

 

 

                       (mm) 950 1440  1440 0  570 Deganovsky and Getahun (2004) 

(in x106 m3) 80.6 74 90  164.6 0  71 WWDSE (2001) 

(in x106 m3) 106 83  131 0  58 Ayenew and Gebreegiziabher 

(2006) 
(in x106 m3) 90  167  148 Gebremichael (2007) 

(in x106 m3) 98.9 54.9 44.44  178.93 0   Shewangizaw (2010) 

 (in x106 m3) 90.72 88.29 91.57 3.2 166.66   71.5 WRDB (2007) 

 (in x106 m3) 106 83.7             -  132 0  58 Gebreegiziabher (2004) 

 (in x106 m3) 106 83.7             -  132   58 Ayenew et al. (2007) 

 (in x106 m3)       52.5 Ayenew and Tilahun (2008) 

6 
 

 

Abaya      (in x106 m3) 556    1900    Ayenew (2004) 

(in x106 m3) 980 750 691  2009    Belete (2009) 

(mm) 730 1080  1700    Deganovsky and Getahun (2004) 

7 Chamo    (in x106 m3) 406    900.9    Ayenew (2004) 

8 Beseka    (in x106 m3) 22 30  52.8 98.8    Ayenew (2004) 

            (in x106 m3) 24.4 7.7 33.8 61.8   0.22 Belay (2009) 

P=over lake precipitation; Sin= stream flow; Run= surface runoff from the watershed; E= evaporation from the 

lake; Sout= stream outflow; A= abstraction; GWi= ground water inflow; GWo= ground water outflow 

 

Table 3.4. Results of characterization based on specific watershed 
 Names of the Rift Valley lakes Surface area (km

2
) Watershed area (km

2
) 

1 Lake Ziway 442 7025 

2 Lake Langano 241 1600 

3 Lake Abiyata 176 1630 

4 Lake Shalla 329 3920 

5 Lake Hawassa 90 1250 

6 Lake Abaya 1162 17300 

7 Lake Chamo 551 2210 

8 Lake Beseka 43 505 

Sources: Ayenew (2004), and Deganovsky and Getahun (2004) 

3.3.3. Methods 

This chapter intended to investigate the hydrology of Main Ethiopian Rift Valley lakes by 

assessing their long-term water balances and their morphological characteristics. Assuming the 

fundamental similarity of all lakes, the review adopted two different approaches to estimate 

the natural responses of the lakes. These techniques of characterizing the lake level regime are 

suggested by Szestzay (1974) based on long-term water balances and another suggestion by 

Litinskaya (1973) based on morphological nature of lakes. The methods are meant to show the 
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expected natural behavior of the lake hydrology and deviations from these are considered to be 

shifts from the natural state. The following sections discuss the methods in detail. 

3.3.3.1. Water balance approach to characterize the lake level regimes 

An earlier publication of Szesztay (1974) suggested the possibility of classifying lakes based 

on their water balance as shown in figure 3.2 and 3.3. Inflow factor (i), outflow factor (o) and 

aridity factor (a) are the basic criteria for characterization of the lakes. The basic equations of 

these factors are presented below:  

1.               ( )  
                          

                         
 

 

     
      .….……………... (3.1) 

2.                ( )  
                           

                          
 

 

    
     .………......... (3.2) 

3.                ( )  
           

             
 
 

 
    ……………..………………..….... (3.3) 

A lake which belongs to one of the nine categories of figure 3.2 and 3.3 is considered as 

having particular characteristics in terms of stability of the water balance and the factors 

controlling water level fluctuation. For instance, the quadrant  I-O represents  those lakes 

which are flow-dominated and equilibrium condition of their water balance are quickly 

followed by corresponding changes in the height and regime of the water level. The quadrant 

P-E comprises "atmosphere-controlled" lakes with self-regulating mechanism responsive to 

climatic changes. The quadrants IP-E and I-E are expected to accumulate short term variations 

of precipitation which in turn increase the imbalance during extreme dry and wet periods.  The 

other five quadrants of the scheme (I-OE, IP-OE, P-OE, P-O, and IP-O) are conceived as 

representing intermediate situations between the "flow-controlled" and "climate-controlled" 

lakes.   

3.3.3.2. Morphological approach to characterize the lake level regimes 

This approach is based on the suggestion by Litinskaya (1973). In this approach, it is 

recommended to use the term specific watershed (F) which is computed as: 

Specific watershed (F) = lake basin area / lake surface area ……….…….. (3.4) 

According to the approach, the lakes would be classified into three groups based on the 

magnitude of specific watershed that is considered as a proxy to characterize the level-regime 
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of the lakes. Those lakes having specific watersheds less than 10 are assumed to have stable 

lake level regime with mean annual amplitude of fluctuation ranging from 30 to 65 cm. The 

other category includes those lakes having specific watersheds ranging from 10 to 50 cm. 

These lakes are expected to be less stable in terms of increased annual fluctuation (mean 

annual amplitude of water-level fluctuations rises 50 to 130 cm). The third category of lakes 

comprises those lakes with specific watershed exceeding 50 cm. The mean annual amplitude 

of lake level variability in this case increases to 110 to 210 cm. 
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3.4. Results and discussion 

3.4.1. Classification of the lakes based on their long-term water balance 

Table 3.5 presents the computational results of inflow factor, outflow factor and aridity using 

equations 3.1, 3.2, and 3.3. The grouping of these lakes into their respective quadrants based 

on their calculated particularities is also presented in table 3.5, figure 3.2, and 3.3. 

Table 3.5. Results of inflow, outflow, aridity, and the corresponding quadrants 

  Inflow factor 

(i) 

Outflow 

factor (o) 

Aridity(a) Without 

aridity factor 

With aridity 

factor 

1 Lake Ziway 69.0 22.6 2.5 I-E* IP-E* 

2 Lake Langano 65.1 12.3 2.5 IP-E* IP-E* 

3 Lake Abiyata 68.6 3.7 3.1 I-E* I-E* 

4 Lake Shalla 56.6 0.0 3.4 IP-E* I-E* 

5 Lake Hawassa 53.3 23.2** 1.5 IP-E* IP-E* 

6 Lake Abaya 59.5 0.0 2.6 IP-E* IP-E* 

7 Lake Chamo  incomplete  incomplete 2.2   

8 Lake Beseka 79.0 0.0 4.5 I-E* I-E* 

* Interpretation: Climate controlled (with little role of inflow) 

**The value represents the ground water outflow 
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Figure 3.2. Classification of lakes by water balance criteria (aridity factor is not included) 
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Figure 3.3. Classification of lakes by water balance criteria (aridity factor included) 

The water balance analyses show that most of the lakes have similar characteristics in terms of 

their sensitivity to climate variability. This similarity is depicted in both cases of "with" and 

"without" the use of aridity factors as classification criteria. All of the lakes are under I-E or 

IP-E quadrant, and these two quadrants are known for their dominance in climate (with some 

exceptions) during extreme dry and wet periods in which runoff from the watershed increases 

the imbalance. 

3.4.2. Classification of the lakes based on their morphology 

Based on equation 3.4, the ratio of watershed area with lake surface area was computed and 

results are presented in table 3.6 below.  
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Table 3.6. Results of characterization based on specific watershed 
  Surface area 

(Km
2
) 

Watershed 

area (km
2
) 

Specific 

watershed 

About level-regime Expected mean 

annual amplitude 

(cm) ** 

1 Lake Ziway 442 7025 16 Moderately  stable 50-130 

2 Lake Langano 241 1600 6.6 stable 30-65 

3 Lake Abiyata 176 1630 9.3 stable 30-65 

4 Lake Shalla 329 3920 12 Moderately  stable 50-130 

5 Lake Hawassa 90 1250 14 Moderately  stable 50-130 

6 Lake Abaya 1162 17300 15 Moderately  stable 50-130 

7 Lake Chamo 551 2210 4 stable 30-65 

8 Lake Beseka 43 505 11.7 Moderately  stable 50-130 

**The expected amplitudes are as suggested by Litinskaya (1973) 

The result shows that lakes of mean stable level regime are dominant in the basin (Ziway, 

Shalla, Hawassa, and Abaya) and the rest are in the range of stable level regime (Langano, 

Abiyata, and Chamo) indicating the potential of the lakes to naturally regulate the surface 

runoff flowing into them from their watershed. This technique appears to underestimate the 

role of climate on Lake Hawassa as compared to the report of  Tesfaye (1982) in which Lake 

Hawassa is found to be sensitivity to slight climatic changes.  

3.4.3. Recent/actual situations of individual lake level regimes 

As shown in figure 3.4, the long-term water level records of individual lakes.  Each lake has 

experienced particular rise and/or drop in water levels which cannot be explained by 

monotonic trends (defined as the slow move up or down from the mean value and keep on 

moving in the same direction over time). Table 3.7 also shows the monotonic trend of each 

lake under study based on raw data from literatures (for the first six lakes) and based on the 

results of previous studies for Lake Beseka and Lake Shalla. 
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Lake Shalla

 

Lake Beseka

 

Figure 3.4. Long-term lake level plots of the eight Rift Valley lakes 

N.B: Analysis of regime shifts were done for the first six lakes and the red lines represent mean lake 

level (above local bench marks) before the regime shift (µ1) and the green line after the regime 

(µ2).The blue bold lines for Lake Shalla and Lake Beseka represent the measured water level and the 

pink color for Lake Beseka, though irrelevant to this review, represents modeled lake level as reported 

by Belay (2009). (Raw data source for Lake Ziway, Langano, Abiyata, Hawassa, Abaya and Chamo is 

Bewketu (2010); the graph for Lake Shalla is from Crétaux et al. (2011); and for Lake Beseka is from 

Belay (2009). 
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Table 3.7. Monotonic trends of level of individual lakes 
  MK ** Interpretation 

1 Lake Ziway 0.324 Increasing 

2 Lake Langano 0.037 No trend 

3 Lake Abiyata -0.492 Decreasing 

4 Lake Shalla - - 

5 Lake Hawassa 0.531 Increasing 

6 Lake Abaya 0.363 increasing 

7 Lake Chamo 0.106 No trend 

8 Lake Beseka - Increasing 

** MK  is the Mann-Kendall coefficient as shown in section 4.4.5. 

3.4.3.1. Lake Ziway 

The lowest level of Ziway was recorded in June 1975 (0.13 m) and the maximum in 

September and October 1983 (2.17 m). However, for the last three years of the late 1970s and 

early 1980s, the level was slightly lower due to the dry years of the 1970s. The lake shows a 

slight reduction after the late 1980s due to the abstraction of water for irrigation (Legesse and 

Ayenew, 2006; Vilalta, 2010). The existence of land degradation in the watershed that induced 

large scale sedimentation rate was reported by Legesse and Ayenew (2006) and Billi and 

Dramis (2003). 

3.4.3.2. Lake Langano 

Lake Langano experienced only small seasonal water level variations of about 1 m, and lower 

inter-annual water level variations compared to other lakes in the basin (Vilalta, 2010; 

Ayenew, 2001). The absence of considerable water abstraction and large ground water flow 

from springs are considered to be the factors against its relative stability of lake level 

variability. Lake-bed sedimentation is also estimated to the magnitude of about 0.5 to 0.6 

cm/yr, with 85-95% water content (Legesse and Ayenew, 2006). 

3.4.3.3. Lake Abiyata 

Lake Abiyata is a saline-alkaline type (Wood and Talling, 1988) and in terms of lake level 

variability, it has experienced a drop of about five meters over the last three decades 

(Alemayehu et al., 2006) and also found to be heavily impacted by human activities 

(Alemayehu et al., 2007; Vilalta, 2010). Its size, for instance, was decreased by 25% over the 

last thirty years because the lake water is under pressure due to the production of Soda Ash 

using solar evaporation of brines from the lake and the maximum drop coincides with the time 
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of large scale water abstraction (Legesse and Ayenew, 2006). But the inter-annual fluctuations 

are controlled by climate variability. According to Legesse et al. (2004), this lake also reacts 

more rapidly to an abrupt shift to wetter conditions than to dry conditions. The production of 

Soda Ash has not taken place for the last three years of the reporting time because of the 

significant decline in the water level (MoWR, 2008). The fluctuation of Abiyata follows the 

same trend as Lake Ziway, with an average time lag of about 20 days. Any abstraction of 

water in the Ziway watershed results in a greater reduction in the level of Abiyata than in 

Ziway (Legesse and Ayenew, 2006). 

3.4.3.4. Lake Hawassa 

The monthly and annual Hawassa lake level and Tikur Wuha stream flow showed an 

increasing overall trend (Wagesho et al., 2012). The possible causes of the water-level rise of 

the lake is associated to climate changes (Lamb et al., 2002; Ayenew, 2006; Deganovsky et 

al., 2008; Gebreegziabher, 2004; WWDSE, 2001; MoWR, 2008; and Bewketu, 2010); the 

upset of hydrological variables (Lamb et al., 2002; Gebreegziabher, 2004; Ayenew, 2004; 

MoWR, 2008; and Bewketu, 2010); sedimentation process (Esayas, 2010; Gebreegziabher, 

2004; and Geremew, 2000) and geological tectonic processes that affect the ground water flow 

towards the lake (Ayenew, 2006 and WWDSE, 2001). 

3.4.3.5. Lake Abaya 

Lake Abaya experienced the rise of about 3.35m between 1987-1998 (12 years) followed by 

continuous drop of  3.12m in the years 1998-2006 and then rose by 0.91m between 2006 and 

2007. While discussing these variations, Belete (2009) stated that these fluctuations are mainly 

caused by precipitation as input and evaporation as output and limited role of deforestation 

and agricultural expansion in the watershed. Even though the role is limited, the watershed 

experienced an expansion of agricultural lands by close to 200% in the year 2000, while bush 

land increased by 17% during the same period, which can be explained by continuous 

deforestation for agriculture and charcoal production for commercial and community use. 

Table 3.8 below shows the land use/cover changes in the watershed. 
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Table 3.8. Land use/cover changes in Lake Abaya watershed 

Land use/Land cover In the year 1986 (ha) In the year 2000 (ha) Changes in percent 

Bush land  50459.8 59442.4 17.8 

Wet land  31512.7 20790.8 -34 

Forest  180832 143195 -20.8 

Agriculture  24506.7 72254.3 194.84 

Water  137734 137320 -0.3 

Grassland  17150.2 9192.48 -46.4 

Source: Belete (2009) 

3.4.3.6. Lake Chamo 

This lake rose in the years 1989, 2006 and 2007 only and the El Niño event in 1997/1998 

which caused heavy rainfall and runoff in southern Ethiopia didn‟t cause substantial lake level 

rise (Awulachew, 2006) in contrast to many other Rift Valley lakes. 

3.4.3.7. Lake Shalla 

Regarding Lake Shalla, the available literature is very limited. That might be due to the little 

interest on the lake water because of its alkaline nature (Vilalta, 2010) which discourages its 

use for irrigation purpose.  

3.4.3.8. Lake Beseka 

Despite small inter-annual variations, the water level of Lake Beseka has been rising for more 

than three decades which is evidenced by the quadrupled expansion of its surface area from 

11.1 km
2 

to 39.5 km
2
 between 1973 and 2002 with the corresponding rise in lake level (Görner 

et al., 2009). The main cause for this expansion in surface area and rise in lake level is the 

increased ground water flow from the western part of the watershed. The discharges to the lake 

in the form of hot springs constitute the major water inflow to the lake (Görner et al., 2009; 

Belay, 2009; Williams, 1981; and Ayenew, 2004). It is estimated to be 51% of the total inflow 

to the lake (Belay, 2009). Some investigators relate the phenomena to neotectonism (Ayenew, 

1998; Tessema, 1998). The average annual increment of the lake was 0.2m and the level of the 

lake has risen by four meters between 1976 and 1997 (Zemedeagegneh and Egizabher, 2004). 

Due to the expansion and flooding, the loss of 57 human lives, inundation of about 35 km
2 of 

grazing land, and displacement of 910 people was reported.  The Methara sugar plantation has 

also been inundated and the company lost income from 161.55 ha of land (WWDSE, 1999). 

Damages on the nearby railway line and highway caused a loss amounting to 2.6 million US$ 

(Tessema, 1998; Ayenew, 2004). 



 
Chapter 3: Literature review 

34 
 

 
Figure 3.5. Lake level rise of Lake Beseka in relation to climatic factors (temperature, 

precipitation, evaporation) Source: Görner et al., 2009 

3.5. Conclusions 

The results of this chapter suggest that the hydrological statuses of most Ethiopian Rift Valley 

lakes are not stable in terms of their lake level variability. Few of them such as Lake Abiyata 

tend to be at the verge of extinction as was observed from its drastic and continuous drop in 

level.  

In the previous section in which each lake in the Rift Valley was separately assessed, one can 

observe the similarity among the lakes, for instance, Lake Abaya and Lake Hawassa 

experienced lake level peaks in the year of 1998/99 and both of the peaks were caused by short 

term climatic variability. The analyses and syntheses of this review showed that long-term 

monotonic changes provide limited information in explaining the dynamics of lake levels. The 

lake level changes seem to be explained better with the consideration of specific periods and 

the corresponding events. In addition, the extent of the problem is not the same on each lake 

and each lake suffers from diverse factors and deserves individual and separate analyses. In 

terms of research gap identification, it was found that there existed nearly no attempt to 

estimate the impact of sedimentation on the storage capacity of the lakes. The explicit attempt 

to study the relationship between Lake Hydrology and climate anomalies is also absent. The 

upcoming thesis work benefits from the above research gaps. This thesis is focused on 

assessing the causal links of water level dynamics of Lake Hawassa, where there is a clear 

research gap observed. 
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Chapter 4. The impact of climate shifts and ENSO phenomena on the hydrological status 

of Lake Hawassa 

4.1. Introduction 

The significant rising trend of Lake Hawassa water level (as shown in section 4.5.2.1) is one 

of the main environmental threats for the city of Hawassa, which has been established at the 

eastern shore of the lake. It is still the subject of concern and center of debate among the 

stakeholders since the last few decades especially in the aftermath of the 1998 flood that 

caused displacement of resident population, destruction of properties and infrastructure by 

inundating vast areas along the lake shore. According to WRDB (2007) and WWDSE (2001), 

the lake level rise and the associated surface expansion affected about 162 urban and 2244 

farmers‟ households, 13 different organizations, water supply schemes, 10 ha of sand quarry, 

roads, and forestland. In monetary terms, the total physical damage was estimated to be 

43,490,524 Ethiopian birr (about € 5.4 million). 

The hypothesis of "climate-hydrology link" was conceived in this study after the recognition 

of coincidence between the lowest lake level record in the year 1975 with a strong La Niña 

year and the maximum lake level in 1998 with the strongest El Niño year (please compare 

figure 4.4 and appendix 1). La Niña and El Niño are anomalies in ocean surface water 

temperature. They are commonly termed as "teleconnections" (Wallace and Gutzler, 1981). 

There are reports of coherence between lake levels and teleconnection signals. For instance, 

Namdar-Ghanbari and Bravo (2008) reported the significant coherence between Great Lake 

water levels and some teleconnection signals.  

One of the questions to be answered in this study is whether there is a quantifiable coherence 

between ENSO signals and water level variability of Lake Hawassa. Appropriate pairs of 

monthly step time series data were undergone through spectral analysis for the explicit 

estimation of "coherency" between these series. The Niño-3.4 index (N3.4), which is the 

average SST anomaly within the region 5°S-5°N, 170°-120°W is used as a representative 

index for ENSO phenomena. This index is usually employed to predict rainfall in Ethiopia 

(Korecha and Barnston, 2007; Babu, 2009). It is one of the most widely used ENSO index 

(Barnston et al., 1997). 

The use of spectral coherence analysis is quite recent in the area of hydrology. The coherence 

analysis in this study was made following the idea of Jenkins and Watts (1968) and 

javascript:popRef2('i1520-0442-18-5-651-Barnston1')
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Bloomfield (1976). This technique is employed to quantify analyze the relationship between 

Niño 3.4 index and lake level data series. The significance of coherence resulting from this 

technique suggests that changes in one series is related to changes in the other. 

In addition to coherence analysis, the coincidences of significant regime shifts in lake level, 

streamflow, and lake-evaporation with climate shifts and timing/intensity of ENSO 

phenomena were investigated to further strengthen the result of coherence analysis towards a 

better understanding of climate-hydrology link. 

The concept of "regime" in hydrology tells us the temporal pattern of the variable under 

discussion over a period of time and "regime shift" was originally proposed in relation to 

oceanic ecosystem (Steele, 1996; Hare and Mantua, 2000) to describe sudden drastic changes 

in temporal characteristics of a variable (Yang et al., 2012). The definition of climatic regime 

shifts can be viewed as "differing average climatic levels over a multi-annual duration" 

(Overland et al., 2006). Shifts in the mean are the most common type of shifts considered in 

literature (Rodionov, 2004; 2005). The main driving forces of variability in hydrological 

variables are climate change and human activities (Zhao et al., 2009; Xu, 2011). 

Improved understanding of the effects of climate variability on the water level of Lake 

Hawassa can help in managing the hydrosystem in general. According to Lenters et al. (2005), 

the changes in water level reflect alteration of water balance components. So, the explicit 

analysis of hydro-climatic variables together with their linkage with climate anomalies would 

provide a better insight into the inherent variability of hydrological status of the lake. 

4.2. Hypothesis and objectives of the chapter 

The sort of hypothesis to be proved in this chapter is stated as: 

"The water level variability of Lake Hawassa is linked to Sea Surface 

Temperature (SST) anomalies. It is further studied, whether regime 

shifts occur in the hydro-climatic variables corresponding to the 

occurrence of North Pacific climate shifts and El Niño/La Niña events". 
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In line with the hypothesis, the objectives of this chapter are: 

 To analyze the coherence between data series of Niño 3.4 Index (N3.4) and Lake 

Hawassa water level; 

 To analyze the long-term trends (variation over-time) and sequential regime shifts 

(variation across-time)  for lake level, rainfall, streamflow, and lake-evaporation data 

series; and 

 To compare significant change points of the above hydro-climatic variables with the 

timing and intensity of North Pacific climate shifts/El Niño/La Niña occurences. 

4.3. Impact of El Niño/La Niña on climate variability of East Africa 

National Oceanic and Atmospheric Administration - NOAA's (www.nws.noaa.gov) and many 

other websites provide the detailed characteristics, impacts, intensities and answers to 

frequently asked questions about El Niño/La Niña events. So any interested reader can refer 

these sources. According to these sites, El Niño represents the warm phase of the El 

Niño/Southern Oscillation (ENSO) cycle and La Niña represents the cool phase of the cycle, 

and is sometimes referred to as a Pacific cold episode.  

The El Niño-Southern Oscillation (ENSO) phenomena have a strong impact on the weather 

and climate variability of Ethiopia (Haile, 1988). Farther to the north, Eastern Equatorial 

Africa-a region that includes Kenya, Southern Ethiopia, Somalia, Uganda, and Tanzania - 

generally experiences more rainfall during El Niño years. There, the deluge associated with 

the 1997 El Niño was nearly unprecedented (Ropelewski, 1999). Similarly, Goddard and 

Graham (1999) commented that the rainfall variability in Eastern and Southern Africa is the 

conjunction of two competing effects of the Pacific and the Indian Oceans. Warming of the 

Eastern Tropical Pacific, during an ENSO event, tends to alter the atmospheric circulation 

dynamics above Eastern Africa and to reduce rainfall rate on this area. The effects of La Niña 

are generally less pronounced in Eastern Equatorial Africa and tend to be the opposite of those 

of El Niño (Nicholson and Selato, 2000). The interval between the two strongest El Niño 

events occurred only 15 years apart and it should be typically 30 to 40 years and these changes 

are unlikely to be due to natural variability alone (Trenberth and Hoar, 1997), and natural 

atmospheric cycles such as the Pacific Decadal Oscillation (PDO), the Madden-Julian 

http://www.noaa.gov/
http://www.nws.noaa.gov/
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensofaq.shtml#SOSCILL
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensofaq.shtml#SOSCILL
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Oscillation (MJO) or the chaotic nature of the atmosphere might also have a role to play 

(McPhaden, 1999).  

The Oceanic Niño Index (ONI) has become the de-facto standard that NOAA uses for 

identifying El Niño (warm) and La Niña (cool) events in the tropical Pacific.  For the purpose 

of reporting, for an event to be categorized as weak, moderate or strong it must have equaled 

or exceeded the threshold for at least three months. The threshold is broken down into Weak 

(with a 0.5 to 0.9 SST anomaly), Moderate (1.0 to 1.4) and Strong (≥ 1.5) events (Null, 2013). 

4.4. Methods 

4.4.1. Data availability 

As shown in table 4.1, there exists fairly long sequence of hydro-climatic data for Hawassa 

meteorological station which is the nearest station for the lake under consideration. Other 

meteorological stations in the watershed (refer figure 2.4 in chapter two) have limited data. 

Data gaps are filled by linear interpolation throughout the study.  

Table 4.1. The core set of hydro-climatic data employed in the study 

Data type Temporal scale Period Sources 

Lake level records Daily 1970-2010 Ministry of Water Resources 

Stream flow » 1980-2006 » 

Rainfall for:    

 Hawassa Daily 1972-2010 Meteorological Agency 

 Wendo Genet Monthly 1974-2010 » 

 Shashemene » 1974-2010 » 

 Yirbaduwancho » 1974-2010 » 

 Haisawita » 1974-2010 » 

Pan-evaporation Daily 1986-2007 » 

Wind speed » 1989-2010 » 

Relative humidity » 1985-2010 » 

Temperature » 1973-2010 » 

Sun-shine hours » 1985-2010 » 

4.4.2. Estimation of coherence between ENSO index and lake level variability 

Time series data records of any two continuous variables suitable for computing a covariance, 

if of sufficient length for computing a stable fast Fourier transform (fft), can be transformed 

into the frequency domain for computation of a dimensionless squared spectral coherence 

(Biltoft and Eric, 2009). Transforming from the time to the frequency domain and computing 

the squared spectral coherence (CH) provides frequency-stratified results that can be tested for 

http://www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
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statistical significance using the F distribution (Biltoft and Eric, 2009). Frequency is defined as 

the number of cycles per unit time. Coherence, also known as coherency spectrum, is a widely 

used measure for characterizing linear dependence between two time series. Classical books 

on time series analysis present coherence as “the frequency domain analogue of the 

autocorrelation function” (Hernando and Bellegem, 2006). Further information on spectrum 

analysis can be referred from books such as Koopmans (1974) and Bendant and Piersol 

(1986). 

The presence of trend in a time series data produces a spectral peak at zero frequency, and this 

peak can dominate the spectrum in that other important features are obscured (GEOS, 2013). 

Due to this, detrending should be part of the analysis. In this study, the time series were 

detrended using linear regression (that means: the difference between the expected value 

computed from a linear regression through the series and the data point is added to the mean of 

the series). The autocorrelations in the time series were also removed by differencing 

techniques with order 1.  

According to the coherence analysis that is used in this study (Von Storch and Zwiers, 1999; 

Jenkins and Watts, 1968;  and Bloomfield,1976): 

The cross-spectrum (coherence analysis) is defined from the covariance function Cxy: 

   ( )  ∑       *      +  
 

    
 [   ⁄      ⁄ ]……………………… (4.1) 

This is a complex function where the power is: 

   ( )
    (   ( ))

    (   ( ))
 …………………...…… (4.2) 

and the phase is: 

   ( )=     (
  ((   ( ))

  (   ( ))
) ………………………….……..…… (4.3) 

A cross-spectrum for two similar processes, but with one shifted in time with respect to the 

other (x(t) and x(t + )), gives the same power spectrum as for the same analysis applied to 

two identical time series, x(t) but instead of a phase difference of zero, the phase is linear in 

frequency with a slope proportional to the phase shift: Φxy(x) = 2  . 
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The coherence spectrum is analogous to the conventional correlation coefficient and is defined 

as: 

   ( )  
   ( )

 

   ( )   ( )
……………………………..…….…… (4.4) 

Namdar-Ghanbari et al. (2009) employed similar analysis to examine the relationships 

between ice, local climate and the teleconnections, Southern Ocean Oscillation (SOI), Pacific 

Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Northern Pacific Index 

(NP). 

4.4.3. Significance limits of the spectral coherence estimation 

As noted by Thomson and Emery (2001), the final step in any coherence analysis is to specify 

the confidence limits (i.e. the level up to which the coherence-square values can occur by 

chance) for the coherence-square estimates. This step places the spectral results in a complete 

statistical context. 

It is noted that each Fourier frequency is associated with only two degrees of freedom 

(Thomson and Emery, 2001) regardless of length of the records. In this spectral analysis, there 

exist 492 data points (pairs of monthly records) in the time series and the band width is 

computed as 1/492=0.002 cycle/month (Band width is the width of the frequency interval 

applicable to a spectral estimate (GEOS, 2013)). The 492 observations have 256 points in the 

spectrum and each of these 256 (half of the total observation) spectral estimates would have 

two degree of freedom. However, results based on two degrees of freedom are not statistically 

reliable (Thomson and Emery, 2001) or unlikely to be reproducible (Hartmann, 2013). Hence, 

some sort of ensemble averaging or smoothing of spectral estimates is required. As noted by 

Engle (1976), the width of the window is an important parameter in the estimation. The wider 

the window, the smaller is the variance of the resulting estimate. The wider the window, the 

more serious may be the bias of smoothing over non-smooth portions of the spectrum. The 

more smoothing we do, the narrower the confidence limits and the greater the reliability of any 

observed spectral peaks. The trade-off is loss of spectral resolution and longer processing time. 

The windowing approach, which partitions the time series into a series of shorter overlapping 

segments, is one of the computation methods used to smooth (average) spectral estimates 

(Thomson and Emery, 2001). 

http://www.amazon.de/William-J.-Emery/e/B001IU4ZR0/ref=sr_ntt_srch_lnk_1?qid=1366696497&sr=1-1
http://www.amazon.de/William-J.-Emery/e/B001IU4ZR0/ref=sr_ntt_srch_lnk_1?qid=1366696497&sr=1-1
http://www.amazon.de/William-J.-Emery/e/B001IU4ZR0/ref=sr_ntt_srch_lnk_1?qid=1366696497&sr=1-1
http://www.amazon.de/William-J.-Emery/e/B001IU4ZR0/ref=sr_ntt_srch_lnk_1?qid=1366696497&sr=1-1
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According to Engle (1976), the spectral estimator resulting from smoothing the periodogram is 

approximately proportional to another chi squared random variable, this time with more 

degrees of freedom. The equivalent degrees of freedom (EDF) are equal to: 

EDF=B * m  …………………………………………..…………. (4.5) 

where B is band width and m is the number of observations. 

Considering the recommendation of Engle (1976) in that the sensible value of windows span 

(the author used the term "range" in the paper) is the square root of the number of 

observations. Span of 23 was used in this study. "Range" is defined as the number of spectral 

points used in each moving average. It gives the separation between which two points are 

known to be completely independent.  

As a method to increase the degree of freedom, smoothing of the data series using Daniell´s 

window with span of 23 was used and the degree of freedom was increased to 46 (which is 

assumed to be against the resolution of the spectrum). "Resolution" is the ability of the 

spectrum to represent the fine structure of the frequency properties of the series (GEOS, 

2013). The new bandwidth of this spectrum now becomes 46/492=0.093 cycle/month. 

Smoothing the spectrum means that we have fewer independent estimates but greater 

statistical confidence in the estimate we retain. The number of degrees of freedom for each 

spectral estimate is just twice the number of realizations of the spectrum that we average 

together (Hartmann, 2013). Biltoft and Eric (2009) conformed that the best solution will likely 

include equivalent degrees of freedom in the midrange between 10 and 100. The F test results 

with degrees of freedom that fall within the middle of this range produce the most consistent 

and reliable results. As presented by Ghanbari et al. (2009), the estimated coherencies are 

considered significant at the 99% and 95% level of confidence when they are larger than the 

critical value T derived from the upper 1% and 5% points of the F-distribution on (2, d-2) 

degrees of freedom: 

  
  

      
………………………………………………….……… (4.6) 
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where d is the degrees of freedom associated with the univariate spectrum estimates. 

Coherence peaks indicate frequencies at which the principal flux activity is occurring (Biltoft 

and Eric, 2009). 

4.4.4. Sequential regime shift detection using Regime Shift Index (RSI) 

A jump in a series that is detected by a regime shift test can imply changes in either climatic 

factors or watershed characteristics (Tu et al., 2004). According to Breaker (2007), change 

points occur where the changes are relatively abrupt. Formally, a change point exists at a time 

t0, if all of the observations up to t0 share a common statistical distribution, and those after t0, 

share a different statistical distribution.  

Rodionov (2004) introduced an algorithm for detecting sequential regime shifts in time series 

data in seven steps. Figure 4.1 summarizes the seven steps of Rodionov (2004) in the form of 

flow chart.  
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Figure 4.1. The procedure to determine sequential regime shifts N.B: the diagram is drawn 

based on the seven procedural steps proposed by Rodionov, 2004 

The above procedures are automated and freely downloadable in the form of an Excel Add-In 

at www.BeringClimate.noaa.gov. The latest version (Ver. 3.4) is used in this study which has 

additional attribute of considering the presence of auto-correlation in the datasets using the 

procedure as shown in figure 4.2 below.  

Set the cut-off length l of the regime to be 

determined for a given variable

Determine the difference diff between mean values of 

subsequent regimes that would be statistically 

significant according to the student´s t-test 

Compute the mean value μR1 of the initial l 

values as an estimate for regime R1 

Use each new value of xi, where i > j,  to confirm or 

reject the null hypothesis of a regime shift at year j.

If the new value <  μR1 ± diff.

If the new value > μR1 ± diff.

The current regime has not 

changed

Compute RSI value

Positive value

Significant regime shift

 Calculate the actual mean value of the new 

regime μR2  (now, this value becomes base 

one against which the test will continue)  

Search for the next shift to regime R3 starts 

from year i = j + 1

For each new value starting with i = l + 1, 

compute μR2 = μR1 ± diff.

Possible start point j of the new regime R2.

Recalculate the average μR1 to 

include the new value xi and l-1 

previous values of variable X and wait 

for the next value to come

Negative value
The test for a regime shift at year 

j failed. 

http://www.beringclimate.noaa.gov/
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Figure 4.2. The procedure to account for the existence of autocorrelation 

Source: Rodionov, 2004: version 3.4 

4.4.5. Detection of long-terms trends using Mann-Kendall test 

The statistical significance of long-term monotonic trend of Lake Hawassa water level had not 

been computed before, at least to our knowledge, and need to be computed. Statistical trend 

analysis is a hypothesis testing process. The null hypothesis (H0) is that there is no trend. Each 

test has its own parameters for accepting or rejecting H0. Failure to reject H0 does not prove 

that there is no a trend, but indicates that the evidence is not sufficient to conclude with a 

specified level of confidence that a trend exists (NNSMP, 2011). Trend analysis enables to 

detect significant variations over time. It is easily understood and communicated, and readily 

accepted due to its widespread use (TSOA, 1995). In this study, the Mann-Kendall (MK) 

statistical trend test (Mann, 1945; Kendall, 1975) was employed to investigate trends in time 

series data. It is a kind of non-parametric test and compares the relative magnitudes of sample 
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data rather than the data values themselves (Gilbert, 1987 as cited in Tabari et al., 2011; 

Tabari and Marofi, 2011). It allows us to investigate long-term trends of data without assuming 

any particular distribution. The other advantage is its low sensitivity to abrupt breaks due to 

inhomogeneous time series (Jaagus, 2006 as cited in Tabari et al., 2011; Tabari and Marofi, 

2011). In this study, the 5% level of significance was considered.  

The test statistic S measures the monotonic dependence of X on t: 

S = P –M   …………………………………….………… (4.7) 

where :  

 P = # of (+), the # of times the X‟s increase with t, or the # of Xi < Xj for all ti< tj 

(“concordant pairs”). 

 M = # of (-), the # of times the X‟s decrease with t, or the number of Xi > Xj for all ti < 

tj (“discordant pairs”). 

 i = 1, 2, … (n-1); and j = (i+1), …, n. 

There are n(n-1)/2 possible comparisons to be made among the n data pairs. If all y values 

increased along the x values, S = n (n-1)/2. In this situation, τ= +1, and vice versa. Therefore, 

dividing S by n(n-1)/2 will give a -1 < τ < +1. 

  
 

  (   )  
…………………………………….…………… (4.8) 

The null hypothesis in accordance with this test H0 states that the data (x1,…,xn) is a sample of 

n independent and identically distributed random variables. The alternative hypothesis H1 of a 

two-sided test is that the distributions of xk and xj are not identical for all k, j ≤ n with k ≠ j. 

The test statistic S, which has mean zero and a variance computed by equation 4.11, is 

calculated using equation 4.9 and 4.10, and is asymptotically normal: 

  ∑ ∑     (
 

     

   

   
     ) …………………….……….…… (4.9) 

   (     ) = {

      (     )    

       (     )   

      (     )   

} …………………..……..…….. (4.10) 

http://www.sciencedirect.com/science/article/pii/S0921818111001202
http://www.sciencedirect.com/science/article/pii/S0921818111001202
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where n is the number of data points, m is the number of tied groups (a tied group is a set of 

sample data having the same value), and ti is the number of data points in the ith group. In 

cases where the sample size n >10, the standard normal variable Z is computed by using 

equation 4.12. 
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……………………………………..…….…… (4.12) 

Positive values of Z indicate increasing trends, while negative values of Z show decreasing 

trends. When testing either increasing or decreasing monotonic trends at α significance level, 

the null hypothesis is rejected for an absolute value of Z greater than Z1−α/2, obtained from the 

standard normal cumulative distribution tables (Partal and Kahya, 2006; Modarres and Silva, 

2007 as cited in Tabari and Marofi, 2011). This statistical analysis is performed 

using xlstat2013 statistical software. 

  

http://www.sciencedirect.com/science/article/pii/S0921818111001202
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4.5. Results and discussion 

4.5.1. Results of coherence analysis 

Figure 4.3 shows the result of coherence analysis. The values of coherency (y-axis) versus 

frequency (x-axis) between the Niño 3.4 ENSO index and monthly mean lake level changes.   

 
Summary statistics and options: 

 Type of smoothing: Daniell´s window (a simple (equal weight) moving average spectral window) 

 Window span (width)= 23 months (which must be an odd number) 

 Degree of freedom = 2 x 23 = 46 

 Preprocessing: Detrending (by linear regression) and removal of autocorrelation (by differencing) 

 Total number of paired observations in the series: 492 monthly data (implying 256 in the spectrum) 

 Bandwidth=46/492 = 0.093 cycle/month 

 F2,44=5.12 (for 99% confidence limit) and F2,44 =3.21 (for 95% confidence limit) 

 Critical coherence squared @99% confidence limit =0.196 and @95%= 0.133 

Figure 4.3. Coherence between ENSO index and lake level variability in frequency domain 

As evidenced by the result of coherence analysis (figure 4.3), the cyclic nature of Lake 

Hawassa water level variability has significant linear relationship to the climate variability at 

some frequencies. Here appear two significant peaks at 95% confidence limit. Further probe to 

the prominent peak reveals that the peak occurred at a frequency between 0.13-0.14 

cycle/month or 1.56-1.68 cycle/year. This corresponds to a period of about 7.14-to-7.69 

months (=1/0.14 -to- 1/0.13) or a dominant average periodicity (coincident cycle) of about 7.4 

months. A relevant finding was reported by Namdar-Ghanbari and Bravo (2008) in which the 

levels of Great Lakes and Trans-Niño Index (TNI) show significant coherence in the 

frequency range (3-7)
-1

 cycles/year. 

The vital importance of the above analyses is the detection of significant coherence at some 

specific frequency ranges and confirmed that significant portion of the lake level variability is 

caused by factors operating on a scale larger than processes in the watershed. The upcoming 
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sections attempt to further analyze the existence of regime shifts in some of hydro-climatic 

variables and reconcile the timing and intensities of El Niño/La Niña events with regime shift 

points in time domain.  

4.5.2. Variability in the lake level 

4.5.2.1. Long-term trend (1970-2010) 

The visual inspection of figure 4.4 (below) uncovers the underlying variability of the observed 

lake level by suggesting that the overall oscillation tends to be chaotic than periodic. The 

highest peak was observed in November 1998 (22.54 m) followed by October and December 

of the same year (22.49 m each). The lowest level in this year (June) (21.8 m) was greater than 

92.5 % of historical records. This particular year was known for its peak records in many parts 

of the world. The cases of Lake Abaya (another Rift Valley lake in Ethiopia) (Belete, 2009); 

Lake Nasser (Egypt), Lake Chad, Lake Turkana, Lake Tanganyika, Lake Victoria, and Lake 

Mwero (Mercier et al., 2002) are among the few examples.  

 
 Figure 4.4. Hydrograph of monthly maximum lake level 

Despite the multiple rises and falls, the lake level experienced a significant resultant upward 

trend with Mann-Kendall τ values of 0.558, 0.629, and 0.545 (at = 0.05 and p <0.01%) for 

monthly maximum, average and minimum values respectively. The ultimate evolution of 

increasing trend is not gradual and consistent in direction (monotonic) rather sharp rises and 

falls have been frequently appearing and such variations are likely to bias the monotonic trend. 

Similar comment was given by Hartmann and Wendler (2005) in that the use of trend analysis 

in climate change research depends greatly upon the time period studied, and results can be 

biased when an abrupt climate change is observed during the study period. 

19,00

20,00

21,00

22,00

23,00

19
70

19
71

19
72

19
73

19
74

19
75

19
76

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

M
o

n
th

ly
 m

ax
im

u
m

 la
ke

 
le

ve
l (

m
) 



Chapter 4: The impact of climate shifts and ENSO phenomena on the hydrological status of Lake Hawassa 

49 
 

The long-term  annual average increment was also estimated to be 4.9 cm/yr (as computed by 

regression equation) which is low as compared to Lake Beseka (another lake located in the 

same basin), which has average annual increment of 20 cm (Zemedeagegneh and Egizabher, 

2004).  

Regarding the connection of  ENSO events to the extreme values of observed lake levels, the 

1998 record (historical maximum) can easily be justified for its connection to the worst El 

Niño event of the twentieth century (Tereshchenko et al., 2002, Magaña et al., 1999, and Strub 

and James, 2002) as measured by changes in the Pacific (Marucci, 2002). Globally, this El 

Niño year caused loss of approximately 35-45 billion USD (Sponberg, 1999). On the contrary, 

the lowest lake level was observed in 1975 which is likely linked to the two consecutive strong 

La Niña events of 1973-74 (the strongest in the period 1950-2012) and 1975-76 (appendix 1). 

4.5.2.2. Sequential regime shifts in the lake water level  

Figure 4.5 (a, b and c) and appendix 2 demonstrate that the observed annual average, 

maximum, and minimum lake levels have undergone a couple of regime shifts reflecting the 

instability of the hydro-system. 

  

javascript:popRef2('i1520-0442-18-5-651-Sponberg1')
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Figure 4.5. Sequential regime-shifts in annual lake levels (a) average, (b) maximum and (c) 

minimum 

The important aspect of the prevailing regime shifts lies on their occurrence in the year 1976-

78 (figure 4.5: a,b,c) which was known for the climatic regime shift period of  the North 

Pacific (Miller et al., 1994, and Yletyinen et al., 2012). The year 1977 also experienced the 

highest historical recorded annual total rainfall (1226 mm) (appendix 3). The maximum lake 

level has undergone a regime shift in 1983 (figure 4.5: b) which is likely associated to the 

devastating El Niño of 1983. The other smaller shift in mean value of lake level occurred in 

1986 which was likely caused by moderate but prolonged El Niño of 1986-87. Another 
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connection that is manifested by the overlap of regime shift of Lake Hawassa water level and 

the North Pacific climate regime shift was observed in 1989 (figure 4.5: c) and Yletyinen et al. 

(2012) reported that in 1989, a new regime shift (in the climate of the Pacific) had also 

occurred but the changes were not as remarkable or pervasive as in the 1976-77. 

The highest regime shift was observed in 1992 which showed an upward shift in mean value 

of the lake level from 20.43 m to 21.2 m (appendix 2), implying a regime shift of 0.77 m. This 

regime was extended up to 2002 and known for its frequent El Niño years of 1991-92 (strong), 

1994-95 (moderate), and the 1997-98 El Niño (strong). Swanson and Tsonis (2009) also noted 

that climate shifts occurred around 2001/2002 too and Lake Hawassa also experienced water 

level regime shift in this year. The relatively sustained maximum lake level regime extended 

from 1992 up to 1999 (figure 4.5: b) signifies the occurrences of three El Niños (strong, 

moderate, strong consecutively) without the occurrence of La Niña in between (appendix 1). 

The general upward shifts between 1978 and 1998 are in agreement with the work of Peterson 

and Schwing (2003). They identified the PDO index to be negative for most years during 

1948-1976 and positive during 1977-1998. In addition, Niebauer (1998) observed that before 

the regime shift, the occurrence of El Niño and La Niña conditions was about even. Since the 

regime shift, El Niño conditions are about 3 times more prevalent and this further signifies the 

effect of climate. 

4.5.3. Rainfall variability in the watershed 

4.5.3.1. Hawassa meteorological station as representing the over-lake precipitation 

Figure 4.6 and appendix 3 show the sequential regime shifts in annual rainfall at Hawassa 

meteorological station that represents the over-lake rainfall (refer figure 2.4). According to the 

figure, the rainfall time series shows high variability with nine distinct regimes over the study 

period. The relatively long and stable regime extended from 1986-to-1994 (upward shift) 

followed by regimes of 1999-2004 (downward) and 2005-2010 (upward). The remaining 

regimes are short lived and most of the breaking points coincided with the occurrences of 

ENSO phenomena (1976, 1983, and 1994). The climate regime shift of North Pacific Ocean 

that occurred in 1976/77 seems to manifest itself by causing an upward shift in both years. The 

annual total rainfall record of 1977 was the highest of the records (1226 mm). The shift in 

http://www.agu.org/pubs/crossref/2009/2008GL037022.shtml
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1998 was also most likely linked to the transition from strong El Niño (97-98) to the two 

consecutive strong La Niñas (98-99 and 99-00). 

 
Figure 4.6. Regime shift of over-lake rainfall 

The monotonic trend analysis on this rainfall data shows no significant trend throughout the 

recorded time span (both monthly and annual scale). The markedly uniform inter-annual 

fluctuations of rainfall in East Africa were also reported by Nicholson (1996). The author also 

showed the strong links between rainfall fluctuations and ENSO phenomena.  

4.5.3.2. Rainfall at the other stations 

As shown in figure 4.7, the years 1986 and 1987 are the common breaking points for the 

upward shift for Wendo Genet. The year 1982 (strong El Niño) likely caused the shift in the 

rainfall of Wendo Genet and Shashemene. Because of the presences of wide data gaps, the 

data from these stations are less reliable and may only serve as a support to the other analyses. 

Rainfall data at Yirbaduwancho and Haisawita stations are not included in this analysis due to 

similar reason. 
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Figure 4.7. Sequential regime shifts in the annual rainfall on the watershed 

4.5.4. Variability in the streamflow of Tikur Wuha River 

4.5.4.1. Long-term trend 

The trend analysis result of Tikur Wuha streamflow (the only perennial river flowing into the 

lake) shows a significant increasing trend (MK =0.66 for the annual average and 0.385, 0.662 

and 0.508 for the three local seasons of June-Sep (Kiremt), Oct-Feb (Baga) and March-May 

(Belg) respectively. Monthly values also show similar trend (MK =0.440 at p <0.01%). 

The increasing trend of the stream flow without the corresponding trend in rainfall indicates 

the modification of the hydro-system (Chang, 2007). This argument is discussed in section 

4.5.6. 

4.5.4.2. Detection of regime shifts 

Figure 4.8 and appendix 4 demonstrate the variability of streamflow of Tikur Wuha across 

time. The first breaking point occurred at 1986 which is known for its moderate El Niño. As 

shown in the previous section, rainfall records at Hawassa and Wendo Genet experienced 

similar upward shifts implying that the rainfall was the likely cause of the shift. The years 

1994 and 1997 are also another change points corresponding to the timing of ENSO events. 
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Figure 4.8. Regime shift in Tikur Wuha stream flow 

4.5.5. Shift detection in the runoff coefficient of Tikur Wuha sub-watershed 

Tikur Wuha River is the only stream that has been gauged in the watershed and the time series 

data of this river was used to analyze the regime shifts in runoff coefficient values. The runoff 

coefficient is the ratio of total streamflow volume to the total precipitation over a certain area 

and time (Kadioglu and Sen, 2001). Four meteorological stations are found in and around 

Tikur Wuha sub-watershed as shown in figure 4.9.  

 
Figure 4.9. Tikur Wuha sub-watershed and Thiessen polygon 

The percentage contribution of each station to Tikur Wuha sub-watershed is: Hawassa (24%), 

Wendo Genet (38%), Haisawita (27%) and Shashemene (11%). As presented in table 4.2, the 

annual runoff coefficient (C) for Tikur Wuha River is computed by dividing the weighted 
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rainfall depth to the resulting streamflow. The long-term average value is computed to be 

C=0.14.  

Table 4.2. Annual total rainfall and runoff coefficients in the Tikur Wuha sub-watershed 
Year Haisawita Wendo 

Genet 

Hawassa Shashemene Weighed  rainfall* 

(mm) 

Stream flow 

(mm) 
C** 

1981 1295 1314 1040 953 1110 106 0.10 

1982 1403 821 992 1241 1132 108 0.10 

1983 491 1158 1160 1108 947 136 0.14 

1984 1348 1107 725 674 920 95 0.10 

1985 1151 1229 902 892 991 87 0.09 

1986 1079 1175 1194 565 1025 121 0.12 

1987 1316 1241 955 1208 1123 110 0.10 

1988 1035 931 957 887 954 126 0.13 

1989 843 1191 1025 1073 987 126 0.13 

1990 805 1277 751 962 847 146 0.17 

1991 767 1124 889 594 809 131 0.16 

1992 1287 1288 975 951 1078 129 0.12 

1993 1133 1025 928 992 998 144 0.14 

1994 1060 1250 861 745 921 132 0.14 

1995 917 1403 1004 853 976 148 0.15 

1996 1186 1305 1189 1207 1190 182 0.15 

1997 1226 917 1055 1227 1114 143 0.13 

1998 1265 943 1146 1175 1156 195 0.17 

1999 817 1291 810 822 850 203 0.24 

2000 1014 1161 822 986 931 135 0.14 

2001 1298 1096 1022 662 1027 157 0.15 

2002 1167 1031 920 338 878 173 0.20 

2003 1037 1124 821 605 860 - - 

2004 1030 1314 896 669 919 185 0.20 

2005 1304 821 998 689 999 162 0.16 

      Average = 0.14 

*computed as = value of (Haisawita x 0.285) + (Wendo Genet x 0.42) + (Hawassa x 0.195) + (Shashemene x 

0.09) 

**computed as the ratio of runoff from Tikur Wuha stream flow to the weighted rainfall for the sub-watershed  

Figure 4.10 (below) and appendix 5 depict the sequential regime shift of the runoff coefficient 

of Tikur Wuha. As depicted by the figure, the year 1997 (strong El Niño) is the breaking point. 

In the same way, the maximum runoff coefficient in 1999 (table 4.2) is likely attributed to the 

saturation of the soil as a result of high rainfall during 1997-98.  
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Figure 4.10. Shift detection in runoff coefficient of Tikur Wuha sub-watershed 

4.5.6. Land use/cover changes: a potential anthropogenic factor 

Often, the impact of climate change and human activities on hydrological variables cannot be 

distinguished (Uhlenbrook, 2009) or is still a challenge in hydrology (Elfert and Bormann, 

2010). Climate and land use are key factors controlling the hydrological behavior of a 

watershed (Hörmann et al., 2005; Li et al., 2009). Technical details on the impact of land use 

on watershed hydrology is given in Maidment (1993) and other hydrology books. In terms of 

spatial scale, distinguishing the impact of land use changes on hydrology from the impact of 

climatic variability is more difficult at the watershed scale than at the plot scale or small 

watershed (Archer, 2003). Many studies have considered these factors separately. However, 

these factors do not act in isolation, but rather interact to affect ecosystem structure and 

function (Kulakowski et al., 2011). Their influence on the rainfall-runoff relationship is 

usually investigated through the analysis of long hydro-meteorological time series or by 

hydrological modeling (Tu et al., 2004).  

Land use is a key factor controlling the hydrological behavior of watersheds and different 

approaches are thinkable to identify possible impacts of land use change on watershed 

hydrology. If long-term data series on the hydrological behavior as well as land use and other 

influencing factors are available, statistics can reveal the contribution of land use change to 

hydrological change in general (Elfert and Bormann, 2010). 

A number of studies were conducted in Lake Hawassa watershed in relation to the impact of 

land use/cover of the local water cycle. Abrha (2007) attempted to assess its impact on ground 

water recharge. Gebreegziagher (2004) considered it as the most likely cause for the increasing 

tendency of runoff over time in combination with the effect of climate.  
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There could be different reasons for land use changes to occur and the social and physical 

forces that drive those changes are explained in the DPSIR analysis of chapter eight. Table 4.3 

presents some of the land use changes for the years: 1973, 1986, and 2000.  

Table 4.3. Land use changes in Lake Hawassa watershed (units are in km
2
) (Abrha, 2007). 

  Agriculture  Grass land  Bush land  
Shrubby 

wood land  Urban Area  

1973 323.3 15.5 165.9 704.7 6 

1986 466.2 59.5 180.3 548.6 8 

2000 565.9 68.7 145.6 448.2 13 

On average, 9.5 km
2 

areas of shrub woodlands have been converted into other land uses types 

mostly into agricultural lands and instead, 9 km
2
 new agricultural lands have been introduced. 

The general trends in land use/cover changes at country level also show similar tendency. For 

instance, forest cover in Ethiopia fell from 16% in the 1950s to 2.7% by the early 1990s, and 

continues to decline by nearly 1% per year as woodlands are converted to fuel wood, farmland 

and building materials (Shiferaw and Holden, 2001 as cited in Reynolds et al., 2010). 

Generally, the long-term increasing trend of streamflow from Tikur Wuha sub-watershed 

(figure 4.8) without a corresponding increment in rainfall (figure 4.6 and 4.7) is found to 

justify the role of land use/cover changes at least in modifying the impact of climate. Chang 

(2007) also argued similarly where such situation indicates the modification of the hydro-

system. This justification, which is based on statistical analysis of long hydro-meteorological 

time series, is supported by Tu et al. (2004) and Elfert and Bormann (2010). 

4.5.7. Detection of regime shift in lake-evaporation (1986-2007) 

The variation in the rate of evaporation from the surface of the lake is considered as one of the 

factors that affect the variations in water level. Monitoring of lake-evaporation has never been 

done for Lake Hawassa. Due to this situation, indirect methods were employed in our case. 

The first option was to use the pan-evaporation time series data and the second was to apply 

the Penman-Monteith model (Monteith, 1965; Penman, 1948) (equation 4.15). Figure 4.11 

shows the comparison between the estimates of lake-evaporation using both methods. A pan-

coefficient of 0.75 was used as recommended by Ayenew and Gebreegziagher (2006), Legesse 

et al. (2003), and Ayenew (2002). The Penman-Monteith model uses five climate variables 

(minimum and maximum temperature, relative humidity, wind speed, and sun-shine hours) to 

compute the potential evapotranspiration (ETo) (equation 4.13), which is equivalent to 

http://www.sciencedirect.com/science/article/pii/S0921800909001153
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evaporation from the surface of open water. In this study, the annual values of ETo were 

computed from monthly values of input parameters using CROPWAT 8.0 software. 

    
 

  
  
 (    )      (  )  

   (  
  
  ⁄ )

               (    ) 

 

ETo = Water volume evapotranspired (mm s
−1

) 

Lv = Volumetric latent heat of vaporization. Energy required per water volume vaporized. 

(Lv = 2453 MJ m
−3

) 

Δ = Rate of change of saturation specific humidity with air temperature. (Pa K
−1

) 

Rn = Net irradiance (W m
−2

), the external source of energy flux 

G = Ground heat flux (W m
−2

)  

cp = Specific heat capacity of air (J kg
−1

 K
−1

) 

ρa = dry air density (kg m
−3

) 

δe = vapor pressure deficit, or specific humidity (Pa) 

ga = Conductivity of air, atmospheric conductance (m s
−1

) 

gs = Conductivity of stoma, surface conductance (m s
−1

) 

γ = Psychrometric constant (γ ≈ 66 Pa K
−1

) 

The long-term annual average estimates of lake-evaporation are to the magnitude of 1432 mm 

(using the pan method) and 1406 mm (using the Penman-Monteith model) (figure 4.11). 

 
Figure 4.11. Comparison of lake-evaporation estimates of pan vs. Penman-Monteith model 

As observed from figure 4.11, pan-evaporation appears to have a striking drop in annual 

magnitude between 1995 and 1996 and such drop is unusual and can be suspected of 

artificially induced resulting from changes in the position of instrument or recording 

technique. As witnessed by officials and experts of the meteorological agency (personal 

communication), there were no changes in data recording. Even though a general decline of 

pan-evaporation rate has been observed in many part of the world (Peterson et al., 1995; 

Chattopadhyay and Hulme, 1997), such drastic drop needs special attention. It is likely that 
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some noise entered in the measurement of pan-evaporation after the year 1995 and needs to be 

further investigated. 

In terms of variability across time, figures 4.12 and 4.13 present the sequential regime shifts 

between the period 1986 and 2006. 

 
Figure 4.12. Regime shifts in lake-evaporation as computed from pan records (Data source: 

Meteorological Agency) 

 
Figure 4.13. Regime shifts in lake-evaporation as computed by the Penman-Monteith model 

As depicted by figures 4.12 and 4.13, the lake-evaporation exhibited significant regime shift at 

the year 1995 but this shift is pronounced in the estimates of pan-method. The effect of ENSO 

phenomena seems better shown by the Penman-Monteith method in which the year 1999 

(strong La Niña) is found to be the change point. 

4.6. Conclusions 

The diverse statistical analyses of this chapter provide a plausible explanation for the 

interaction among the hydrology-climate-human components of the system. The hydrologic 

component includes lake level and streamflow; the climate component comprises evaporation, 

rainfall, and ENSO events; and the human component refers to the prevailing land use/cover 

changes. 
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More importantly, the evidences helped us to conclude about the effect of ENSO phenomena 

and climate shifts on the local climate and hydrology of the lake. Generally, it is observed that 

high lake level tends to follow moderate to strong El Niño and the reverse is true for La Niña 

events.  

The general suggestions of this study supported the idea of Szestzay (1974) in which water 

level fluctuations of closed lakes are considered as meaningful indicators of climatic changes 

which strengthens the results of Nicholson et al. (2000), Arnell et al. (1996), and Bergonzini 

(1998) regarding the sensitivity of numerous lakes of East Africa. 

The association of extreme lake level rises of Lake Hawassa to the occurrences of El Niño 

events (as in the case of 1998 flood) could have two management dimensions. On one hand, it 

would be difficult to mitigate the problem because of its dependence on macro-scale processes 

and on the other hand, those large El Niño events which are notorious for their extreme floods 

are acceptably predictable within period at lead times of up to two years (Chen et al., 2004). 

Climate forecasts are also shown to be more accurate during El Niño and La Niña events and 

furthermore, stronger ENSO events lead to greater predictability of the climate (Goddard and 

Dilley, 2005). These are opportunities to get alarms against the urgency of flood occurrences 

and it is recommended to mainstream the updated information regarding the probable 

occurrences of ENSO events and climate shifts in a regular emergency and preparedness 

actions to reduce the impact of potential flood risks. 
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Chapter 5.  Simulation of the long-term water level variability of Lake Hawassa in the 

presence of regime shifts in water balance components 

5.1. Introduction 

In chapter four, it was shown that the lake level, rainfall, streamflow, and evaporation 

experienced sequential regime shifts during the study period. In this chapter, the effect of 

these regime shifts on the fitness of a lake level simulation model is hypothesized. As 

reported by Ayenew et al. (2007), Ayenew and Gebreegziabher (2006), and Gebreegziabher 

(2004), sharp rises in water level of Lake Hawassa had been occurred that could not be 

explained in terms of the water balance components. They explained the existence of 

divergence between the observed and simulated lake as it could be the effect of neotectonic 

activities, which in turn possibly affect the ground water flow regime. They also suggested 

the need for detailed investigation of hydro-climatic variables for better efficiency of the 

water balance model. Water balance technique is a means of solving important theoretical 

and practical hydrological problems (Chokolov and Chapma, 1974) and the idea of 

simulating the lake level variability in this study was conceived after recognizing the 

presence of hydro-climatic regime shifts that the simple spreadsheet water balance model 

may not account for.  In addition, this study extends the previous water balance studies by 

about seven years. 

5.2. Objectives of the chapter 

The aim of this chapter is to simulate the long-term variability of Lake Hawassa water level 

using a simple spreadsheet water balance model and to examine how the model behaves 

throughout the study period. 

5.3. Previous water balance studies of Lake Hawassa 

Table 3.3 in chapter three presented the previous results of water balance modeling of Lake 

Hawassa. Among these, the work of WWDSE (2001) was one of the earliest available 

studies which computed water balance of Lake Hawassa for the period 1970-1998. This 

study used the historical records of over-lake rainfall, stream flow, surface runoff (using a 

runoff coefficient of 0.13 and 0.19) and evaporation (using pan coefficient of 0.8) together 

with the observed lake storage (as computed from change in lake level) to estimate the 

ground water flow component as the residual of the balance.  The estimated magnitude of 
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net ground out flow was 71 x10
6
 m

3
. The works of Ayenew et al. (2007) and Ayenew and 

Gebreegziabher (2006) followed similar approach. The assumed pan coefficient in these 

studies was 0.75 and a runoff coefficient for the un-gauged part of the watershed was 0.14. 

These studies estimated the constant annual ground water outflow of Lake Hawassa as 58 

x10
6
 m

3
. Using the above values together with historical records of hydroclimatic series, it 

was shown that the observed and simulated lake level values were acceptably fitted for the 

period from 1981 to 1999.  

5.4. Methods 

5.4.1. Representing the water balance of Lake Hawassa 

Water balance for a lake is based on the law of conservation of mass that states any change 

in water storage of a given lake during a specified period of time is equal to the difference 

between the amount of water added to the lake and the amount of water withdrawn from it 

and this balance can be constructed at any level of complexity (Lu et al., 2002). Figure 5.1 

represents the water balance of closed lakes (a kind of lake with no surface outflow). 

Abstraction (t) 
 

 
 

 

 

 

 
 

 

 

 

 Ground water outflow (t) 
 

 

Ground water inflow (t) 
 

 

Evaporation (t) 
 

 

Rain over lake (t) 
 

 Runoff  (t) 
 

 

Storage (t) 
 

 
 
Figure 5.1. Schematic representation of the water balance components for a closed lake 

The use of water balance model to investigate the hydrology of a lake is a common 

approach. For instance, Acreman et al. (1993) used this approach to explain the declining 

level of Lake Toba in Indonesia and Bechtand Harper (2002) to understand the 

anthropogenic impact upon the hydrology of Lake Naivasha in Kenya. Kebede et al. (2006) 

also employed similar approach to study the hydrological sensitivity of Lake Tana 

(Ethiopia) to variations in rainfall. The water balance of Lake Hawassa has been of wide 
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interest for many years: initially because of scientific curiosity about the causes of the level 

rise, but lately for its influence on the infrastructure of the rapidly growing Hawassa town 

located in the eastern shore (Ayenew and Gebreegziabher, 2006).  

According to the equation of continuity, the change in water level of a lake (H) is 

controlled by the difference between the input and output of the water balance and the water 

surface area (AL) (Szestzay, 1974) as shown in equation 5.1 below. 

H = 
Total input – Total output

 L
………………………………..…….………      (5.1) 

Whereby (AL) may considerably vary with water level H and the aggregate flux terms of the 

numerator consist of a number of components largely differing from each other with regard 

to the dimension and time pattern of controlling physical processes.  

The elevation-area-volume equations for Lake Hawassa were derived by Gebreegziabher 

(2004) as shown in equations 5.2 and 5.3. These equations were employed in this study. 

Lake Surface area (m
2
) = 4*10

6
d+ 9*10

6
……………………………….…… (5.2) 

Lake volume (m
3
) = 2*10

6
d

2
+ 1*10

7
d-5.95*10

7
……………………….…… (5.3) 

Where d is the actual depth of the lake in meter 

The extended mathematical relationship among the components of water balance in figure 

5.1 can be constructed based on conservation of mass as shown in equation 5.4 below for 

hydrologically closed/terminal lakes like Hawassa in which the surface outflow component 

is omitted because of their terminal nature. 

Storage (t) = Rain over lake (t) + Runoff (t) - Evaporation (t)- Abstraction (t) + Gnet ground water flow (t)………(5.4) 

5.4.2. Quantification of water balance parameters 

5.4.2.1. Over-lake precipitation  

As shown in figure 2.4, time series rainfall records of Hawassa meteorological station 

represents the direct over-lake rainfall.  
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5.4.2.2. Stream flow into the lake  

Tikur Wuha River is the only flow that has been gauged and time series of this data was 

used in this study. 

5.4.2.3. Streamflow from the un-gauged part of the watershed 

This component of the water balance was computed by adopting the runoff coefficient of the 

gauged sub-watershed as shown in table 4.2. The un-gauged portion of the watershed falls 

under the span of Hawassa and Yirbaduwancho meteorological stations with proportional 

share of 60 and 40% respectively (see figure 2.4). The two closed sub-watersheds: Muleti 

and Wendo Kosha with areas of 91.6 km
2
 and 114 km

2 
 respectively (MoWR, 2010) were 

excluded from the computation. Refer figure 2.9 for the locations of these two sub-

watersheds. 

5.4.2.4. Evaporation from the lake (Elake) 

Evaporation from a water surface is rarely measured directly (Jones, 1992) and the use of 

standard pan with pan-coefficient is the most common method (Jensen 2010; Winter, 1981). 

Similar attempts were made by Ayenew and Gebreegziagher (2006), Legesse et al. (2003), 

and Ayenew (2002) in the Rift Valley of Ethiopia. This technique was adopted in this study 

with a pan-coefficient (k) of 0.75 following the recommendation of Ayenew and 

Gebreegziagher (2006), Legesse et al. (2003), and Ayenew (2002). As an alternative to the 

pan method, the Penman-Monteith model (Monteith, 1965; Penman, 1948) was used as 

described in section 4.5.7 of chapter four. 

5.4.2.5. Water abstraction from the lake (Elake) 

As reported by Nidaw (1995) and Gebreegziagher (2004), there is no apparent evidence of 

water abstractions from the lake, but in terms of water that could have entered the lake, if 

not abstracted, are estimated to the magnitude of 22.56 x10
5
m

3
/year which totally accounts 

to about 1% of the total mean annual inflow. WWDSE (2001) and Ayenew et al. (2010) also 

confirmed the absence of abstraction. In this study, this component is assumed to be nil. 

5.4.2.6. Consideration of ground water 

The presence of considerable amount of net ground water outflow from the lake has been 

reported by WWDSE (2001), Ayenew et al. (2007) and Ayenew and Gebreegziagher (2006). 
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In terms of magnitude, WWDSE (2001) estimated the annual value to be 71 x10
6 

m
3
, and 

Ayenew et al. (2007) and Ayenew and Gebreegziagher (2006) estimated it as 58 x 10
6
m

3
. 

The average of the two estimates was used in this study.  

5.4.3. Simulation procedure 

The first step in simulating the lake level variability is the construction of the lake water 

balance. In this study, the long-term (1986-2006) water balance of Lake Hawassa is 

constructed on monthly basis according to equation 5.4. Figure 5.2 represents the simulation 

procedure. 

Monthly over-lake 

rainfall (depth)

Monthly rainfall on 

Tikur Wuha sub-

watershed

Monthly rainfall on 

the un-gaged 

subwatershed

Monthly pan-

evaporation depth

Monthly flow 

(volume) of Tikur 

Wuha River

Constant ground 

water outflow 

(volume)

Depth-area-volume 

equation

Computation of 

lake volume at 

the end of each 

month

Comparison 

of observed and 

simulated lake 

level series

Observed lake depth 

at the beginning and 

end of each month

Run-off coefficient  (C) Monthy run-off (Ungaged)

Computation of 

lake depth at 

the end of each 

month

 
Figure 5.2. Flow chart of the lake level simulation procedure 

As represented in figure 5.2, the raw data of the water balance equation were sequentially 

arranged on monthly basis in Microsoft Excel columns. Monthly rainfall and pan-

evaporation data series are available in depth terms (mm) and stream flow records from 

Tikur Wuha River is available in volume term (m
3
). Time series of streamflow from the un-

gauged sub-watershed were generated by multiplying the runoff coefficients as computed 

for Tikur Wuha River (table 4.2). 



 
Chapter 5: Simulation of the long-term water level variability of Lake Hawassa  

66 
 

The observed water depths at the beginning of each month serve as input for equations 5.2 

and 5.3 to calculate the corresponding lake surface area and stored volume. The volume of 

stored water at the end of a given month was calculated by adding the volume of on-lake 

rainfall, streamflow from the watershed and subtracting volume of evaporation and net 

ground water outflow from the amount of water computed at the beginning of the month. 

Once the volume of stored water at the end of each month was known, the corresponding 

lake depths were calculated by solving the positive roots of a quadratic equation as derived 

from equation 5.3. The simulation process started on January 1986 and the corresponding 

lake depth was 19.93m and its surface area of 88.72 km
2
, with a storage volume of 

934,209,800 m
3
. 

After the initial surface area and volume were set, the simulation process can continue in 

two ways. The first approach is the simulation "with updating" as equation 5.7 and the 

second is "without updating" as equation 5.8, normally known as "simulation mode" in 

scientific literature. Model runs in updating mode normally can issue a reliable estimate at 

one time step ahead of the current time step, but the ultimate performance of a model 

depends on the model to give good estimates in the simulation mode. The simulation mode 

involves the use of previously estimated values as the input function in the model in order to 

issue a forecast (Kumambala and Ervine, 2010; Kachroo, 1992). 

    ( )      (   )   ( )  ……………..………………………...… (5.7) 

    ( )      (   )   ( )  ……………..……………….……….…. (5.8) 

Where     ( ) estimated lake level and     ( ) is observed lake levelin a given period of 

time. In this research, the second approach (equation 5.8) was employed. 

5.4.4. Updating procedure using Autoregression (AR) 

Since the simulation of the lake level is going to run in "simulation-mode", it is sensible to 

expect the propagation of errors in the outputs of the model because of the reliance of a 

given output on the accuracy of other preceding outputs and such dependency is termed as 

autocorrelation. The autoregression (AR) model is one of the most favored updating 

procedures, which is extensively used in applied hydrology (Serban and Askew, 1991). This 
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procedure is based on the modification or partial correction of the un-updated output 

variables of the model using their error estimates (Shamsedin and Connor, 1999).  

According to Box and Jenkins (1976) and Kachroo (1992), an AR model of order p with 

mean of zero or an error time series can be defined as: 

   ∑   
 
          ………………………………………….…. (5.9) 

where    is the error at the ith time period and Φ  is the AR model parameter set and (ideally 

at least)    is a pure white noise sequence having mean zero and constant variance   
 . Once 

the error series is determined, an AR model is separately calibrated on this series and 

subsequently used for forecasting the output errors. In principle, the success of this 

procedure depends on the degree of error persistence (Serban andAskew, 1991; Shamsedin 

and Connor, 1999). 

5.4.5. Model efficiency test using Nash-Sutcliffe Efficiency (NSE) 

The Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) is a well-known normalized 

statistic that indicates how well the plot of observed versus simulated data fit the 1:1 line. It 

is computed as: 

      
∑ (  

      
    

   ) 

∑ (  
          

   ) 
………………………………….…. (5.10) 

where Yi
 obs 

is the i
th

 observed value in the series and Yi
sim 

is the corresponding simulated 

value. Ymean is mean of the observed, and n is the total number of observations. NSE values > 

0.5 are generally viewed as acceptable levels of performance, whereas values <0.0 indicates 

unacceptable performance.  
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5.5. Results and discussion 

5.5.1. Results of water level simulation 

As shown in figure 5.5 the model was unable to capture the full range of lake level 

variability. The simulation up until 1996 was relatively acceptable but constant drift 

occurred afterwards. Similar divergence was reported by Belete (2009) while simulating the 

water level of Lake Abaya, another lake in Rift Valley Basin. Considering that the 

simulation before 1996 is acceptable, the error analysis was done for the remaining years 

after 1996 as presented in the upcoming section.  

5.5.2. Result of residual error analysis 

Figure 5.3 shows the procedure for error analysis. The persistent systematic error with 

continuous over-estimation (figure 5.5) is considered to be attributed to the accumulation of 

imbalances in the month-to-month error in model output. Such type of simulation is named 

as "simulation-mode" (without updating) in literatures and the model error is usually 

accumulated due to its auto-correlated elements (Kachroo, 1992; Kumambala and Ervine, 

2010) and this may be particularly difficult to see unless analysis of the residual errors is 

done (Kumambala and Ervine, 2010). The errors between the simulated and the observed 

values can be compensated for through the use of implicit or explicit error updating 

procedures (Shamsedin and O´Connor, 1999). The predicted lake level at a given time step 

is a function of errors induced in the previously predicted values and its own. Such situation 

can be analyzed by studying the trend of the error propagation and fitting to error models 

like autoregressive (AR), so that persistent errors can be analyzed separately as shown in the 

following section. Similar approach was employed by Kumambala and Ervine (2010).  

Simulated lake 

level series

Obsereved lake 

level series

Simulation 

error

Autoregression 

updating model

Updated lake 

level series

 
Figure 5.3. Schematic diagram of the linear Auto-Regressive (AR) updating model 

Time series of model error was constructed by subtracting the observed lake level values 

from estimated values. From the result of residual analysis (figure 5.4), a linear relationship 
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was observed between series of model error and time steps t (chronological sequence of 

months) with r
2
 = 0.97 (equation 5.11).  

Error = 0.042 t   (r
2
 = 0.97)…………………………………….….…. (5.11) 

where t is the chronological sequence of months with t=1 for the first month (January 1996) 

and t=132 for the last month in the sequence (December 2006).The model errors (residuals) 

are assumed to be independent (uncorrelated) and normally distributed noise with mean 

equal to zero and constant variance (Ajami et al., 2006). 

 
Figure 5.4. Trend of residual error (predicted - observed lake level values) 

(Jan 1996-Dec 2006) 

As shown in figure 5.5, the updating procedure improves the performance of the model with 

a Nash-Sutcliffe efficiency of 0.73. 

 
Figure 5.5. Simulated vs. observed lake level 
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5.5.3. Which components of the water balance show particularity at the year 1996? 

The divergence of simulated and observed lake levels (figure 5.5) is assumed to result from 

the corresponding uncertainties in one or more input parameters of the model. Figure 5.6 

plots volumetric magnitudes of the five components of the water balance against time.  

 
Figure 5.6. Annual magnitudes of water balance components 

The visual interpretation of figure 5.6 reveals that the year 1996 was so particular in that 

most of the water balance parameters experienced abrupt changes. The drastic drop in 

annual evaporation and the sharp rise in storage changes between 1995 and 1996 are the 

prominent particularities. The magnitude of annual rainfall also exhibited some increment 

during this period with a corresponding increment in runoff. Another variable that worth 

mentioning is the case of ground water flow in that the occurrence of particular imbalance 

on the ground water flow was reported by Yirgu et al. (1997), Ayenew and Gebreegziabher 

(2006), Gebreegziabher (2004), and WWDSE (2001). The analysis of ground water flow is 

not included in this study because of the absence of monitoring data.  

5.5.4. Replacing the pan-evaporation by the Penman-Monteith model 

As shown in figure 4.11 (chapter four) and figure 5.6, evaporation shows a drastic drop in 

annual magnitude and such occurrence induces suspect on the records of pan-evaporation to 

be erroneous at some point. To account for such uncertainty, it was attempted to replace the 

monthly values of pan based lake-evaporation estimates by an alternative time series based 

on the Penman-Monteith model (Monteith, 1965; Penman, 1948) (which is based on 

minimum and maximum temperature, relative humidity, wind speed, and sunshine hours to 
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calculate evaporation from open water surface) as described in section 4.5.7 of the previous 

chapter. The result of the new simulation is presented in figure 5.7 below.  

 
Figure 5.7. Simulation result after replacing pan-evaporation by Penman-Monteith model 

As shown in figure 5.7, the simulation of the lake level is improved in the case of Penman-

Monteith model. However, the divergence is still in existence except that it begins around 

the year of 1998. The situation partially shows the likely erroneous data of the pan-

evaporation and such uncertainties shall be investigated in the future. 

5.5.5. Annual magnitudes of water balance components 

Annual magnitudes of the water balance components were computed as the sum of monthly 

values following equation 5.4. Table 5.1 shows the time series of annual magnitudes of Lake 

Hawassa water balance components.   
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Table 5.1. Annual volume of some components of water balance of Lake Hawassa (Mm
3
) 

Year  
Over-lake 

rainfall 
Lake 

evaporation 
Stream flow 

(gauged) 
Stream flow  
(un-gauged) 

Storage 

changes 

1986 105 147 76 68 24 

1987 86 150 69 53 15 

1988 86 147 79 55 43 

1989 94 141 79 63 -3 

1990 69 145 91 66 -23 

1991 80 140 82 69 -41 

1992 87 142 81 64 53 

1993 85 150 90 76 17 

1994 79 164 82 72 -7 

1995 91 146 92 73 -27 

1996 109 116 113 94 98 

1997 99 125 90 66 29 

1998 111 115 122 103 49 

1999 78 132 127 105 -50 

2000 77 126 84 65 -54 

2001 96 116 98 86 38 

2002 87 121 108 56 -49 

2003 76 121 100 89 -55 

2004 82 113 115 99 -5 

2005 91 116 101 90 9 

2006 110 97 95 98   

Mean 89 132 94 77 3 

N.B 
 Negative values show the removal of water from the lake while the positive values show the 

addition of water.  
 The gauged sub-watershed accounts for 625 km

2
, whereas the un-gauged sub-watershed = 

512.66 km
2
. Area of the un-gauged sub-watershed was computed by subtracting the area of 

the lake (93.24 km
2
), and the two closed sub-watersheds: Wendo Kosha = 114 km

2
; and 

Muleti = 91.6 km
2
 from the total watershed area = 1436.5 km

2
   

5.6. Conclusions 

This chapter is not the first attempt to simulate the lake level variability of Lake Hawassa; 

rather it is a sort of updating the existing water balance estimations. It also shows the 

potential future inconveniences that would occur due to uncertainties in some of water 

balance components.  

Regarding the estimated magnitudes of long-term annual water balance components, the 

over-lake precipitation (89 Mm
3
), evaporation (132 Mm

3
), and gauged stream flow from the 

gauged sub-watershed (94 Mm
3
) are about the same magnitudes as compared to the previous 

results (table 3.3 of chapter three). Streamflow from un-gauged sub-watershed (77 Mm
3
) is 
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higher than the estimates of Shewangizaw (2010); and lower than the estimate of WRDB 

(2007) and WWDSE (2001). Such disagreement seems to be associated with the 

consideration of the two closed sub-watersheds: Wendo Kosha and Muleti. Gebremichael 

(2007) computed magnitude of the combined (gauged and un-gauged) streamflow which is a 

little lower than our estimate. The magnitude of storage changes (3 Mm
3
) could not be 

compared to the previous results because of the absence of comparable estimates. 
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Chapter 6. The effect of recent sedimentation on the storage capacity of Lake Hawassa 

6.1. Introduction 

Most of the lowlands in the Central Rift Valley of Ethiopia are arid or semiarid and in 

degradation, with frequent occurrence of droughts. Soil erosion by water during the rainy 

season is a serious problem in the region, leading to declining agricultural production, 

decreased food security, and a sedimentation risk for water bodies (Meshesha et al., 2012). 

This situation has been accelerated by many human activities such as clearing forests and 

woodlands, complete removal of crop residues, and overgrazing, exacerbated by poor soil 

management and land use practices (Bekele, 2003).  

Soil erosion causes accumulation of sediment in lakes and reservoirs, which results in the 

degradation and impairment of use of these water bodies (Fitzpatrick et al., 1987). 

Sedimentation has undesirable impacts on water quality, storage capacity, recreational value, 

and natural lake bed habitat of natural and/or artificial lakes. For instance, John Redmond 

Reservoir in US lost 37% of its storage capacity in 50 years (Martinko et al., 2011). LIA 

(2010) also affirmed the impact of sedimentation in causing reductions in water depths, 

smothering animals living in the bed, reducing light penetration (water clarity), and hence the 

water depth in which aquatic plants with roots in the bed can grow. Drying-up of some lakes 

in Ethiopia, such as, Lake Haromaya in the Eastern part (Alemayehu et al., 2007) and Lake 

Cheleleka in the upstream of Lake Hawassa (see figures 6.5, 6.6 and 6.7) are among the live 

examples for the impact of sedimentation on the reduction of storage capacities and then 

disappearance of  the entire lakes.  

Recent siltation of Lake Hawassa has been perceived as one of the environmental dangers 

threatening the lake that can lead to changes in its morphology, which may decrease the water 

storage capacity that in turn contribute to the rise of the water level. There have been many 

speculations on the impact of sedimentation process on the storage capacity and lake level rise 

such as Esayas (2010), Gebreegziabher (2004), and Geremew (2000). 

The study of sedimentation records has been widely used in palaeolimnological 

reconstructions to evidence long-term trends of the climate change during the geological years 

(Tiercelin et al., 1988) and these techniques often used only little number of cores (point data) 

from the deepest part of a lake (Terasmaa, 2011). Such kind of study was conducted for Lake 
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Hawassa by Lamb et al. (2002). According to them, sediment accumulation rate in the lake 

was estimated to vary between 1.2 and 2.0 mm/yr (mean rate 1.7 mm/yr) but this magnitude is 

valid in time scale of centuries and less informative in explaining the contemporary situation. 

So, it is timely task to study the recent in-lake sedimentation.  

The most conventional technique and accurate determination of sediment load being carried to 

a lake by streams is to measure the flow rate and sediment concentration of the inflowing 

waters just upstream of the lake. The other conventional methods involve periodic bathymetric 

surveys of the lake (limgis, 2001). Temporal comparison of bathymetry maps is an indicator 

for environmental changes like lake or reservoir sedimentation. From this information, lake 

ecosystem functioning, life time of reservoirs or erosion-sedimentation rates of watersheds can 

be derived (Dost and Mannaerts, 2006). 

The use of maps to study sediment accumulation in reservoirs is a common practice in many 

parts of the world. For instance, prior to the mid-80‟s, the Natural Resource Conservation 

Service (NRCS), formerly known as the U.S. Soil Conservation Service (US SCS), 

hydrographically surveyed Triadelphia and Rocky Gorge Reservoirs approximately once every 

10 years to determine the amount and rate of sediment accumulation. The approach in this 

case is to calculate the temporal differences of reservoir capacities between long-term 

consecutive mapping periods. For this, the range method, which utilized a number of transects 

to determine the cross-sectional area of the reservoir at different locations and reservoir 

volumes are calculated and from that, the deposited sediment volumes are deduced (Ortt et al., 

2008). Repeated bathymetric surveys can provide significant insight into the nature of 

sedimentation within a reservoir. Changes in reservoir bottom topography can be monitored 

over time to provide an overall estimate of the sediment accumulation rate and spatially 

explicit representation of sediment accumulation (DeNoyelles and Jakubauskas, 2008).  

Despite the importance, the in-lake sedimentation of Lake Hawassa has never been monitored 

because of some perceived reasons such as cost, little awareness about the degree of the 

problem, and probably due to the absence of an explicitly responsible organization for such 

activities.  
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In response to the above situations, the assessment of in-lake sedimentation helps to recognize 

its effect on the storage capacity of Lake Hawassa. At this moment, the bathymetric approach 

appears to be an attractive and judicious choice because of the presence of previous 

bathymetry maps to compare with the new one.  

6.2. Hypothesis and objectives of the chapter 

In accordance with the hypothesis on the effect of recent sedimentation on the storage capacity 

of Lake Hawassa, the objectives of this chapter are: 

 To produce a new bathymetry map (of 2010) from a new hydrographic survey and  to 

compare it with the old map (of 1999); 

 To demonstrate the application of comparative analysis of the two bathymetric maps in 

estimating the amount of sediment accumulation; and 

 To compare the sediment volume with the storage capacity of the lake. 
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6.3. Materials and methods  

6.3.1. The old bathymetric map (1999) 

The first intensive bathymetry survey was done by Water Works Design and Supervision 

Enterprise in 1999 using Bathy 1500 echo sounder (Version P02585). Echosounder is a device 

for measuring depth of water by sending pressure waves down from the surface and recording 

the time until the echo returns from the bottom (the free dictionary: accessed in 2012). The 

technical specifications are shown in table 6.1. The output of this survey was obtained from 

the archive of respective office in the form of hard copies as four A1 sized original blue prints 

with a scale of 1:10000. To keep the originality of the information, these A1 sized papers were 

scanned with a 300 dpi resolution scanner in University of Bonn (Germany) at the Department 

of Geography and the scanned images were georeferenced (figure 6.2: a) to fit the lake using 

the standard georeferencing technique available in ArcGIS10.  

6.3.2. Tying local bench marks with standard elevations 

Since the start of monitoring the lake level by Ministry of Water Resources, the data has been 

recorded relative to the local bench marks. The elevation of the datum for water level 

monitoring station of Lake Hawassa which is coded as 082004 and operated by MoWR was 

set to be 1678.17 m.a.s.l. (WWDSE, 2001). The new survey also relied on this setup for the 

sake of future comparison.  

6.3.3. The new bathymetric survey (2010) 

Before the commencement of the bathymetry survey, the SPOT5 satellite image of the lake 

was gridded with 500 x 500m spacing and 337 points (figure 6.2: c) were generated to cover 

the entire surface area of the lake. The contour lines of the old bathymetry map were 

interpolated and converted into raster surface using ArcGIS 10 software and then with the use 

of "extract values to points" option, the old elevation of each gridded locations were extracted 

from the old bathymetry map as a kind of re-sampling. 

The echosounder generates acoustic pulses for bottom recognition (water/sediment interface). 

The data were collected as discrete x, y, z points where x and y are geographic coordinates of 

the discrete points and z represents the depth of the lake bottom as measured from the surface 

of the lake.  A sonarmite echosounder, with technical specifications as shown in table 6.1, was 
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used, and a stadia rod was used to measure water depth shallower than 0.3m where large 

grasses dominate.  The  basic  components are:  a  recorder,  the  transmitting  and receiving  

transducer  and  a  power  supply. A total of 32 to-and-fro trips were made to cover the entire 

lake surface during the survey which was made between December 2010 and January 2011.  

Table 6.1. Main technical parameters of the two echosounders 

 Old (1999) New (2011) 

Brand name Bathy 1500 echosounder (P02585) Sonarmite echosounder 

Transducer frequency  33/200 kHz (Dual) 235 kHz 

Minimum depth  0.5 m (transducer dependent) 0.3 m 

Maximum depth  1000 m 75 m (software limit) 

Beam pattern  8 to 24 Degrees 8 to 10 degrees 

Accuracy + / - 0.025 m (for 0-40m depth) + / - 0.025 m  

 
               (a) Bathy 1500 echosounder                    (b) Sonarmite echosounder                                             

Figure 6.1. Partial view of echosounders for the old and new bathymetry surveys 

6.3.4. Assessment of sediment by topographic differencing technique 

The bathymetric approach in this study was based on a direct comparison of lake bottom 

elevation at two different time periods (topographic differencing technique), first in January 

1999 (referred as old map) and second in December 2010 and January 2011 (referred as new 

map) to detect the changes. The approach was based on the procedure used by Ortt et al. 

(2008) that consisted of an assessment phase and of a historical comparison phase. The 

distribution of sediment accumulation thicknesses and volume in the lake was determined by 

comparing the new and old bathymetry maps. The sediment thickness map was generated by 

subtracting the new bottom elevation from the old values.  
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(a) Original blueprint (1999)  (b) Interpolated raster (1999) (c) New measurement points (2010) 

Figure 6.2. Basic steps in the topographic differencing between the two bathymetry maps 
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6.4. Results and discussion 

6.4.1. Estimation of sediment thickness and distribution 

The result of topographic differencing between the two bathymetry maps is presented in figure 

6.3. It is found that the average sediment thickness between 1999 and 2010 was to the 

magnitude of 14 ± 5cm. The ± 5cm allowance is given to the estimation due to the accuracy 

level of the echosounders (refer table 6.1). If a constant annual rate is assumed in the period, 

the sedimentation rate would be 1.2 cm/year. Computation of sediment volume is discussed in 

the next section. At the moment, we cannot compare this value with other results due to the 

absence of recent sediment studies in the region. In terms of geological scale, which is less 

informative regarding the recent situation, Lamb et al. (2002) estimated the average 

sedimentation rate in Lake Hawassa to the magnitude of 0.17 cm/year placing the basal date at 

6400 
14

Cyr. Generally, as compared to the recently expanding gullies and the presence of 

continuous land use changes as reported by Abraha (2007); Shewangizaw and Michael (2010); 

Dessie and Christiansson (2008); WWDSE (2001); and Wagesho et al. (2012), the magnitude 

of sedimentation rate seems to be underestimated or below the expectation of many 

stakeholders. The distribution of sediment thicknesses over the entire lake bed is shown in 

figure 6.3 below. 

 
Figure 6.3. Spatial distribution of sediment thicknesses during the period 1999-2010 
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According to figure 6.3, sediment accumulation thicknesses range from 3 cm to 73cm. It is 

higher at the western end of the lake and becomes lower while approaching the eastern end 

where the city of Hawassa is located. The maximum deposition occurred at the western part of 

the lake. Some of the northern parts and the entry of Tikur Wuha River also show 

comparatively higher sediment accumulation than the rest of the areas. The linkages of such 

sedimentation patterns to the catchment characteristics are discussed in section 6.6. Generally, 

sedimentation rate is consistent with the degradation and pumice nature of the western sub-

watershed.  

6.4.2. Sediment volume and its impact on the storage capacity 

In terms of volume, the total accumulated sediment between 1999 and 2010 is estimated to be 

in the magnitude of 0.0133 km
3
or 13.3x10

6
m

3 
(taking the surface area of 94.85 km

2
 as 

computed by ArcGIS based on depth measurement points) which is about 1.2% of the total 

volume in twelve years. Assuming a constant rate over the period, the annual sedimentation 

rate becomes 0.0011 km
3
 or 1.1x10

6
 m

3
. As per this rate, the annual reduction in storage 

capacity due to siltation is about 0.08%, which is a little higher than High Aswan Dam in 

Egypt (0.05% between 1967 and 1991); and lower than Imagi reservoir in Kenya (0.8%); 

Sennar (Makwar reservoir) in Sudan (0.6% between 1925 and 1986); and estimated global 

average rate for annual loss of reservoir capacity of 1% (Douglas et al., 2001). The specific 

sediment yield, which is the total annual sediment volume divided by the sediment 

contributing area of the catchment, is estimated to be 967 m
3
/km

2
/year. One could imagine 

that the effect of sedimentation is minimal in Lake Hawassa by looking at its physical 

magnitude, but the reality is that this sediment carries chemicals from the watershed which 

potentially affect the function of the watershed. So, this result should not be considered as 

discounting the devastating effect of the sedimentation process on the ecosystem. 

6.5. Methodological limitations/ shortcoming /challenges and solutions 

The practical implication of our results is a more optimistic view towards the possibility of 

estimating sediment depth and volume based on two bathymetric surveys. The success of such 

estimation will be more strengthened after consecutive similar survey. Meanwhile, the 

methodological problems encountered and their solutions while undertaking this study were 

presented in the following paragraphs.   
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One of the methodological problems in this study was the difference in the formats of the two 

maps which did not integrate directly. The old map was line data whereas the new map was 

point data. To bring the two maps into a common format, the old line data was converted into 

continuous surface in raster format using Kriging technique of ArcGIS 10. The Kriging 

procedure generated an estimated surface from the scattered set of contour lines with z-values. 

Hence, the "extract values to points" option of the spatial analyst tool was used to extract the 

values of old bed elevation for each x,y coordinates of the new survey. By doing so, the x,y,z 

values of the old bottom elevations were determined before the new survey and these values 

were fed to the GPS to navigate into the point of interest. This technique is also assumed to be 

more convenient for future comparison of changes in lake morphology.  

The presence of large number of outliers (31 out of 337 pairs of values = 9 %) was another 

problem in this approach. These outliers showed unrealistic elevation differences in that the 

former elevation is greater than the new ones, which is unlikely and replaced by average 

values of the eight points in the neighboring grids. The likely sources of the outliers might be 

the interpolation technique and/or the accuracy of depth measurements. More accurate result 

would come up if the two maps were generated by the same instrumentation and intensity. 

In addition, most of the surveys were conducted between 11:00 a.m. - 4:00 p.m. because there 

happened less wave occurrences during these hours. But, in few cases, there have been waves 

with a potential to change the depth measurements and possibility to tilt the transducer away 

from its vertical position. As a solution, repeated measurements were taken together with the 

consideration of the wave heights. To avoid the potential effect of depth measurements at the 

border of the lake where in-lake vegetation grow, a manually operated stadia rod was used to 

directly measure the water depths. 

6.6. The linkage of in-lake sedimentation to the sources in the watershed 

The sedimentation process is dependent on a multitude of biophysical and anthropogenic 

factors, such as the size of the lake, the size of watershed, soil type, climate, land cover, and 

land use (Dost and Mannaerts, 2006). Such linkage is considered in chapter seven which 

integrates nine factors affecting sediment production and transport processes. Those 

characteristics of the watershed which are not included in chapter seven are discussed in the 

upcoming sections. 



 
Chapter 6: The effect of recent sedimentation on the storage capacity of Lake Hawassa 

83 
 

6.6.1. Linkage to gully density in the watershed 

Gully erosion is the dominant type of erosion in the watershed and it is considered as a 

significant process for delivering sediment to the lake. Due to this, it was attempted to 

compare the extent and pattern of gully erosion across the watershed with the pattern of 

sediment accumulation in the lake. To this end, the spatial distribution of gully density is 

assessed based on the data provided by MoWR (2010). Accordingly, the watershed contains 

750 segments of gullies with a total linear length of about 668 km which are concentrated on 

the Western side of the lake (figure 6.4). As shown in the figure, the western part of the 

watershed is highly dissected by gully networks and it is in accordance with the result of in-

lake sedimentation figure 6.3.  

 
Figure 6.4. Map of gully density and pictures of active gullies in the watershed Sources of the 

raw data: MoWR (2010) 

6.6.2. Linkage to the disappearance of Lake Cheleleka 

In the nineteenth century, Lake Hawassa and Cheleleka had been a single lake (Grove et al., 

1975) and Lake Cheleleka was serving as a natural regulator of flow, sedimentation, and 

biogeochemistry for Lake Hawassa. The progressive silting up of Lake Cheleleka over the last 

35 years (figures 6.5; 6.6 and 6.7) is an example to the degree of sedimentation problem in the 

watershed. 

Unfortunately, the rate of siltation could not be estimated due to the absence of data but the 

rate of shrinkage in lake surface area was monitored by a series of images. Topographic map 
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with a scale of 1:50,000 was used to delineate the surface area of Lake Cheleleka in the year of 

1972; satellite imageries of thematic mapper (TM) was used for 1986 and 1995; ETM for 2000 

and Spot5 for 2007.  

 

Figure 6.5. The disappearance of Lake Cheleleka in the watershed Source: Own study 

 

                                    1972                                   1986 

                                      1995                                            2000 

                                     2007 
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Figure 6.6. Time series of changes in the surface area of Lake Cheleleka 

 
Figure 6.7. Current view of the former Lake Cheleleka (2011) 

In 1972, the surface area of Lake Cheleleka was 12 km
2
. In 1986, it shrank to 5 km

2
.  The 

1995 image shows that the surface was reduced to 3 km
2
, and the 2000 image evidenced the 

shrinkage of the surface area down to1 km
2
. The disappearance of Lake Cheleleka is shown in 

the 2007 image. Currently, the area is serving as a grazing land as shown in figure 6.7. Similar 

silting up of a large lake, Lake Haromaya in the Eastern part of Ethiopia, was reported by 

Alemayehu et al. (2007) as shown in figure 6.8 below. 
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Figure 6.8. Dropping down of Lake Haromaya till drying up Source: Alemayehu et al., 2007 

Generally, the susceptibility of Lake Hawassa for siltation seems high as observed from the 

diminishing rate of Lake Cheleleka. Lake Cheleleka was serving as a natural silt trap, but 

currently its damming effect is reduced exposing Lake Hawassa to an increased siltation.  

6.7. Conclusions 

This study is a first attempt to quantify the amount of contemporary sediment, to our 

knowledge, in Lake Hawassa and found to provide important information about the effect of 

sediment on the storage capacity of the lake. The case of sedimentation in a lake is different 

from the water balance components in affecting the lake level changes. That is because once 

this sediment joins the lake, it settles and remains there by creating permanent change in the 

capacity of the lake. In terms of storage capacity, the annual reduction due to siltation is found 

to be low (0.08% of the total volume) suggesting that the silting-up of Lake Hawassa is less 

than global average rate of reservoirs‟ sedimentation.  

Regarding the bathymetric approach employed in this study, the technique is found to give an 

insight to the depth and volume of in-lake sedimentation and provides important baseline 

information. The results suggested that the approach is promising and provide acceptable 

evidence against the hypothesis despite its limitations. Furthermore, the requirement of small 

commitment of time and no involvement of permanent monitoring make the approach more 

applicable. 
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Chapter 7. The linkage of sedimentation in Lake Hawassa to the watershed 

characteristics: an application of PSIAC model 

7.1. Introduction 

Erosion/sediment risk maps are specialized form of land resource evaluations, as they classify 

basins of similar erosion/sediment risk degree (Gournellos et al., 2004). Erosion risk 

assessment methods can be used for various tasks such as: assessment of average pattern of 

erosion risk, identification of high risk areas, identification of hot spots, location of 

depositional and major concentrated flow areas, detailed erosion and deposition pattern and 

effects of conservation measures, and detailed impact of erosion on roads (Blinkov and 

Kostadinov, 2010). Land use and soil conservation planning also require erosion risk maps and 

this mapping can be done using deterministic erosion models that describe processes and 

quantitative outcomes. However, the common drawback of these models is that they are 

developed for different regions than where they are applied (Vrieling et al., 2002). Vrieling et 

al. (2002) noted that a qualitative approach can be more effective in erosion risk mapping than 

the use of models that were not developed for the region to which they are applied. Morgan 

(2005) also considered the attempts of using a model for conditions outside those specified as 

bad practice and, at best, speculative.  

Generally, three types of approaches exist to assess erosion risks: qualitative approach, 

quantitative approach, and model approach. All these methods vary in their characteristics and 

applicability (Eckelmann et al., 2006). The ideal erosion model considers all of the factors 

controlling soil erosion as it constitutes: the erosivity of the eroding agent, the erodibility of 

the soil, the slope of the land, and the nature of the plant cover (Morgan, 2005); but in practice 

such consideration is not yet achieved. Depending on the scale, a single or combination of 

indices has been used by different researchers to assess the erosion risks. For instance, 

Stocking and Elwell (1976) used mean annual erosivity values to assess the generalized 

erosion risk in Zimbabwe. Similar attempts were made by Wischmeier and Smith (1978) for 

USA; Hudson (1981) for Bulawayo and Harare; and Rowntree (1983) for Kenya. Stocking and 

Elwell (1973) devised a factorial scoring system for rating erosion risk in Zimbabwe to the 

scale from 1 (low risk) to 5 (high risk) in respect of erosivity, erodibility, slope, ground cover, 

and human occupation. Vrieling et al. (2006) also showed the use of information on the 

steepness of slopes and vegetation cover to map erosion risk in a watershed. According to 
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Grimm et al. (2002), a problem with most methods based on scoring is that the results are 

affected by the way the scores are defined.  

In the same way, assessment of spatial variations of sediment yield potential provides 

information for prioritizing watershed management interventions. Watershed sediment yield is 

the product of all sediment producing processes and sediment transport within a watershed 

(Vente, 2009). The important factors affecting sediment yields are: size of drainage area, 

topography, soils, cover conditions, and degree of channelization (Robinson, 1977).  

Traditionally, the problems in predicting sediment yield at the basin scale are related to 

model‟s high data requirements (Vente et al., 2005) and these data are predefined to fit to the 

specific model. The pre-defined nature of those models does not allow the use of other data 

which are even better or latest. Such nature of the existing numerical models hinders their 

application in many regions. On the other hand, there exists local and global data base like 

DEM, satellite images and some kind of major land use/cover classifications and the less strict 

model that can accommodate available environmental information for its input can easily be 

adopted in many areas as far as it can be validated to the region. The more appropriate 

technique at this moment is assumed to adopt less strict model and modify its parameterization 

and validate in an area.  

Though they have received only limited attention in the international literature, there are some 

models that purport to have holistic approach, at least to some extent. Often, these models are 

a combination of descriptive and quantitative procedures to characterize a drainage basin and 

result in a quantitative or sometimes qualitative estimate of sediment yield in a basin. 

Therefore, these models can be classified in general as semi-quantitative (Vente et al., 2005). 

The PSIAC (Pacific-Southwest Inter-Agency Committee) model is one of the semi-

quantitative models (PSIAC, 1968) and it was employed in this study. The idea of employing a 

semi-quantitative model in Lake Hawassa watershed was conceived in response to the absence 

of validated model to readily apply and compare the output for the estimation of lake 

sedimentation. 
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7.2. Research questions and objective of the chapter 

Triggered by the sedimentation rate of the lake (that was estimated in chapter 6), other 

research questions were raised as: "Where is the source of sediment?" and "How is it linked to 

the watershed characteristics?".  

In addressing the above questions, this chapter targets: 

 To characterize the watershed in terms the nine sediment yield factors (geology, soils, 

climate, topography, land use, ground cover, run off, upland erosion, and sediment 

transport in the stream channel); 

 To compare the output of PSIAC model with previous findings. 

7.3. PSIAC model 

Table 7.1 presents different techniques of sediment source estimation and the various 

erosion/sediment processes to be estimated by the techniques. Further description can be 

referred from Gee and MacArthur (1996). 

Table 7.1. Sediment source estimation techniques 

Method/model Sheet 

and rill 

erosion 

Gully 

erosion 

Channel bed 

and bank 

erosion 

Mass 

movement 

Average 

annual 

yield 

Single 

event 

yield 

USLE     √  

MUSLE      √ 

RUSLE     √  

PSIAC     √  

Aerial photography     √ √ 

Topographic survey     √ √ 

Thompson or SCS TR32     √  

Dendy and Bolton     √  

Strand and Pemberten, USBR     √  

SCS yield rate map     √  

(Source: Gee and MacArthur, 1996) 

According to PSIAC (1968), the model is probably the most known semi-quantitative model 

which was developed by the Pacific Southwest Inter-Agency Committee (PSIAC) for 

application in arid and semi-arid areas in the southwestern USA. The model was 

recommended for use in broad planning purposes and for basins of at least 25 km
2
. The PSIAC 

model consists of a rating technique that characterizes a drainage basin in terms of sensitivity 
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to erosion, possibilities for sediment transport and flood plain storage, the protective role of 

vegetation, and the influence of human land use practices.  

Nine factors characterize a watershed in PSIAC model with a score to each factor (table 7.2 

and 7.3). The first division includes watershed parameters related to geographic features, 

namely: X1= geology; X2= soils; X5= topography; X7= land use; and X6= ground cover. The 

aforementioned parameters are natural parameters related to the geographical features. These 

parameters respond to other parameters, such as X3= climate (rainfall), which causes erosion 

and the development of gullies and rivers. The response of the geographic parameters to the 

rainfall is represented by the following parameters: X4= run off; X8= upland erosion; and X9= 

sediment transport in the stream channel. In PSIAC, the most important parameters are X8 and 

X9 (Seyed et al., 2008) which together can form one third to one-half of the total parameters 

together.  

Table 7.2. PSIAC parameters and their diagnostic criteria modified after PSIAC (1968) 
 PSIAC 

parameters 

Description Included in this factor Diagnostic criteria Unit 

X1 Surface 

geology 

Resistance of the surface rocks to 

erosion and sediment yield 

 Surface geology 

types 

class 

X2 Soils Resistance of the soil against erosion soil texture, the resistance 

of particles, lime stone, 

clay disperse and primary 

humidity of soil; 

Soil texture  class 

X3 Climate Aggressiveness of the rainfall to 

cause erosion 

 Rainfall erosivity 

(to be derived from 

rainfall amount) 

Value 

of  R 

X4 Runoff Potential of runoff generation  Hydrologic soil 

group classes 

 

X5 Topography Contribution of topography for runoff 

generation and erosion processes 

 Slope  class 

X6 Ground 

cover 

Availability of covering material on 

or above the surface of the ground 

against the effect of precipitation 

Vegetation, litter, and rock 

fragments 

Number of trees per 

hectare and 

abundance of coarse 

fragments 

 

X7 Land use Type and intensity of use of the land 

by human (degree of  natural 

vegetative cover removal) (degree of 

natural balance)  

  class 

X8 Upland 

erosion 

Existence and extent of rill, sheet and 

gully erosion 

 Observed erosion   class 

X9 Channel 

erosion and 

sediment 

transport 

Transport expectancy of  the streams  Shape of the channel, flow 

duration, channel cross 

section, drainage density, 

channel gradient, and 

width-depth ratio 
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Table 7.3. PSIAC factor ratings and degree of limitation modified after PSIAC (1968) 
Land quality Quantitative 

Ratings 

Qualitative 

Ratings 

Degree of 

limitation 

Description of suitability classes 

Surface geology 

(X1) 

0 Low Nil (a) massive hard formations 

5 Moderate 
Slight –to- 

moderate 

(a) rocks of medium hardness, (b) moderately weathered, (c) 

moderately fractured 

10 High 
Severe-to- very 

severe (a) marine shales and related mudstones and siltstone 

Soils  

(X2) 

0 Low Nil 
(a) high percentage rock fragments, (b) aggregated clays, (c) high 

in organic matter 

5 Moderate 
Slight –to- 

moderate 

(a) medium texture, (b) occasional rock fragments, (c) caliche 

layers 

10 High 
Severe-to- very 

severe 

(a) fine texture, easily dispersed, saline–alkaline, high shrink–

swell characteristics, (b) single grain silts and fine sands 

Climate  

(X3) 

0 Low Nil 

(a) humid climate with rainfall of low intensity, (b) precipitation 

in form of snow, (c) arid climate with low-intensity storms, (d) 

arid climate with rare convective storms 

5 Moderate 
Slight –to- 
moderate 

(a) storms of moderate duration and intensity, (b) infrequent 
convective storms 

10 High 
Severe-to- very 

severe 

 (a) storms of several days duration with short periods of intense 

rainfall, (b) frequent intense convective storms, (c) freeze–thaw 
occurrence 

Runoff 

(X4) 

0 Low Nil 
(a) low peak flows, (b) low volume of runoff per unit area, (c) 

rare runoff events 

5 Moderate 
Slight –to- 
moderate 

(a) moderate peak flows, (b) moderate volume of flow per unit 
area 

10 High 
Severe-to- very 

severe  (a) high peak flows, (b) large volume of flow per unit area 

Topography 

(X5) 
 

 

0 Low Nil (a) gentle upland slopes (<5%), (b) extensive alluvial planes 

10 Moderate 
Slight –to- 

moderate 

(a) Moderate upland slopes (<20%) (b) moderate floodplain 

development 

20 High 
Severe-to- very 

severe 

(a) steep upland slopes (>30%), high relief, little or no floodplain 

development 

Ground cover 

(X6) 

 
 

-10 Low Nil 
(a) completely protected by vegetation, rock fragments, litter; 

little opportunity for rainfall to reach erodible material 

0 Moderate 
Slight –to- 

moderate 

(a) cover <40%; noticeable litter, (b) if trees present understory 

not well developed 

10 High 
Severe-to- very 

severe 

(a) ground cover <20%, vegetation sparse, little or no litter, (b) 

no rock in surface soil 

Land use 

(X7) 

 
 

-10 Low Nil (a) no cultivation, (b) no recent logging, (c) low-intensity grazing 

0 Moderate 
Slight –to- 
moderate 

(a) <25% cultivated, (b) 50% or less recently logged, (c) <50% 
intensively grazed, (d) ordinary road and other construction 

10 High 
Severe-to- very 

severe 

 (a) >50% cultivated, (b) almost all of the area intensively grazed, 

(c) all of area recently burned 

Upland erosion 

(X8) 

0 Low Nil (a) no apparent signs of erosion 

10 Moderate 
Slight –to- 

moderate 

(a) about 25% of the area characterized by rill and gully or 
landslide erosion, (b) wind erosion with deposition in stream 

channels 

25 High 
Severe-to- very 

severe 
(a) >50% of the area characterized by rill and gully or landslide 
erosion 

Channel erosion 

and sediment 

transport 

(X9) 

 
 

0 Low Nil 

 (a) wide shallow channels with flat gradients, short flow duration 

(b) channels in massive rock, large boulders or well vegetated, (c) 

artificially controlled channels 

10 Moderate 
Slight –to- 
moderate 

(a)  moderate flow depths medium flow duration with 
occasionally eroding banks or bed 
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7.4. Materials and methods 

7.4.1. Parameterization of individual factors 

7.4.1.1. Geology factor 

There are nine geologic classes in the watershed as identified by MoWR (2010) with a scale of 

1:250,000 and the factor ratings were done by professional judgment (Ayenew, 2011: personal 

communication) at Addis Ababa University, department of Earth Science. The rating values 

range from 0 to10 as recommended by the PSIAC model. 

7.4.1.2. Soil factor 

The soil factor rating was done based on available erodibility (K) values of the four major soil 

types in the watershed as conducted by MoWR (2008, 2009, and 2010). The factor rating 

values were computed by multiplying the K values by 16.67 as recommended by MPSIAC 

which is the modified version and intended to avoid subjectivity in scoring the sediment yield 

factors. 

7.4.1.3. Climate factor 

The most commonly used index of rainfall aggressiveness, which is shown to be significantly 

correlated with sediment yields in rivers, is the ratio p
2
/P, where p is the highest mean monthly 

precipitation and P is the mean annual precipitation (Fournier, 1960). Morgan (1976) obtained 

significant correlation between p
2
/P and drainage texture (defined as the number of first-order 

streams per unit area). In this study, the climatic factor rating was based on Fourier Index (FI) 

which computes rainfall erosivity based on maximum monthly rainfall amount and annual 

rainfall amount (equation 7.1).  

      ⁄  ………………………………………………..…….. (7. 1) 

Where p is the mean monthly rainfall of the wettest month and P is the mean annual rainfall. 

7.4.1.4. Runoff factor 

The runoff factor rating values were assigned to each of the 12 soil types of the watershed 

(table 7.10). As a procedure, the infiltration capacity of each soil types was measured in the 

field using double-ring infiltrometer (figure 7.1). The double-ring infiltrometer is a simple and 
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routinely used instrument which is used to determine the infiltration rate of water into the soil. 

After presoaking of the test areas, the double-ring infiltrometer are established on a level 

surface. The larger ring has 60cm and the smaller one has 30cm with both depths of 25cm. 

The water drops within specified time limits are recorded. The cans are refilled after each 

reading.  The drops that occur in the inner ring during the final period or the average stabilized 

rate, expressed as cm/hr represents the infiltration rate for that specific soil type.  

 
Figure 7.1. Field measurement of infiltration capacity using double-ring infiltrometer 

7.4.1.5. Topographic factor 

The topographic factor rating was computed from the SRTM Digital Elevation Model (DEM) 

with 30 x 30 m resolution. Values were assigned according to the revised PSIAC as shown in 

table 7.4 below. 

  

Outer 

ring 

Inner 

ring Stop 

watch 

Graduated 

float 
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Table 7.4. Rating of topographic factor 
(%  Slope) = (Points) 

> 30= 20 18-20= 10 

28-30= 19 17-18= 9 

27-28= 18 15-17= 8 

26-27= 17 14-15= 7 

25-26= 16 12-14= 6 

24-25= 15 11-12= 5 

23-24= 14 9-11= 4 

22-23= 13 8-9= 3 

21-22= 12 6-8= 2 

20-21= 11 5-6= 1 

 < 5 = 0 

7.4.1.6. Land cover factor 

The rating of land cover factor was done as recommended by MPSIAC which utilizes the 

percentage of bare land and computes the rating value by equation 7.2. 

Y = 0.2X…………………………….…………….………… (7.2) 

Where Y is vegetation cover factor value and X is bare soil (%)  

The percentage of bare land is generated from VCF (Vegetation Continuous Fields) which is 

the product of MODIS (MODerate-resolution Imaging Spectroradiometer)(Hansen et al., 

2002a, 2002b,  2003) and downloaded from NASA website. MODIS is an extensive program 

using sensors on two satellites where each provides complete daily coverage of the earth. The 

VCF collection contains proportional estimates for vegetation cover types: woody vegetation, 

herbaceous vegetation, and bare ground. The product was derived from all seven bands of the 

MODIS sensor onboard NASA's Terra satellite. This product is good for showing how much 

of a land cover such as "forest" or "grassland" exists anywhere on a land surface. The VCF 

product represents the total area of the watershed by 5432 cells with pixel resolution of 500m 

(table 7.11). 

7.4.1.7. Land use factor 

The land use factor rating was done in a similar manner with the land cover factor as equation 

7.3.  

Y7 = 20 - 0.2X7 …………………………………………………… (7.3) 

Where Y7 is vegetation cover factor value and X7 is canopy cover (%)  
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 The percentage of canopy cover was derived by merging the percentage of trees and herbs 

from VCF of MODIS (Hansen et al., 2002a; 2002b; 2003). 

7.4.1.8. Upland erosion factor 

The rating of upland erosion was done based on the type and degree of upland erosion. MoWR 

(2010) classified the entire watershed into three erosion zones as high, medium and low. The 

same classes are used in this study and the class with high rating assigned a rating value of 25, 

a value of 15 for the medium class and 5 points for the low potential parts of the watershed.   

7.4.1.9. Channel erosion and sediment transport rating 

This rating was done based on the spatial distribution of the drainage density in the watershed. 

This technique is adopted from Buoko and Mazurova, 1958 (in Stroosnijder and Eppink 

(1993)) in which an erosion class is attached to an elementary watershed depending on its 

drainage density (table 7.5).  

Table 7.5. Erosion class based on drainage density (Buoko andMazurova, 1958 (in 

Stroosnijder andEppink (1993)) 

Class Erosion Degree Drainage density (km/km
2
) Rating value 

1 Slight < 0.1 2 

2 Moderate 0.1 ≤0.5 4 

3 High 0.5 ≤ 1.0 6 

4 Severe 1.0 ≤  2.0 8 

5 Very severe Greater or equal to 2 10 

7.4.2. Arithmetic procedure for erosion/sediment risk assessment 

The sediment yield index is the sum of values for the appropriate characteristics of each of the 

nine factors as shown in table 7.6. The final results are categorized into 5 classes as per the 

recommendation in the PSIAC model.  

Table 7.6. PSIAC sediment classes 

Rating Sediment yield potential 

classes 

Qualitative classifications  

> 100 1 Very High potential 

75 – 100 2 High Potential 

50-75 3 Moderate potential 

25-50 4 Low potential 

0-25 5 Very low potential 
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7.5. Results and discussion 

7.5.1. Result of surface geology rating 

The result of the geology factor rating is shown in table 7.7 and figure 7.2 below.  

Table 7.7. Rating of geological formations (from least to most susceptible for erosion) 

 Coding 

in map 

Geological property PSIAC 

Rating 

1 Qwo Obsidian and pitch stone 2 

2 NQs Nazreth group and dino formation, undifferentiated 3 

3 Qwa Rhyolitic and trachytic lava flows 4 

4 Qdi Ignimbrites, tuffs, water lain byroclatics, occasional lacustrine beds 5 

5 N1_2n Stratoid silicics: ignimbrites, unwelded tuffs, ash flows, rhyolites and trachytes 6 

6 Qvs Volcanic sedimentary rocks: lacustrine dominantly volcanoclastics sediments, tuffs 7 

7 Qwpu Pumice and unwelded tuffs 8 

8 QI Lacustrine sediments: sand, silt, pyroclastic sediments, diatomites 9 

9 Qdp Coarse unwelded pumicious pyroclastics 10 

 
Figure 7.2. Spatial distribution of geology factor values 

7.5.2. Soil rating result 

As shown in table 7.8 and figure 7.3, there are four major soil types in the watershed. These 

are Andosols, Cambisols, Luvisols and Leptosols with Nitisols and Regosols (MoWR 2008, 

2009, and 2010). By adopting the recommendation of the modified PSIAC, the soil erodibility 

values (table 7.8) are multiplied by a factor of 16.67 to arrive at the soil rating values of each 

major soil. 
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Table 7.8. Soil rating of major soil types 

Major soil type K (USLE erodibility) Rating value (=16.67 K) 

Cambisols (CM) 0.13 2.17 

Luvisols (LV) 0.11 1.8 

Andosols (AN) 0.2 3.33 

Leptosols (LP) 0.22 3.67 

Source: MoWR (2010) 

 
Figure 7.3. Spatial distribution of soil factor values 

7.5.3. Climate rating result 

Table 7.9 presents the coordinates, elevation, and long-term annual rainfall for the five 

meteorological stations in and around the watershed. Figure 7.4 demonstrates how the 

Thiessen´s polygon delineates the respective area coverage of each station and the 

corresponding rating values of the climate factor. 

Table 7.9. Spatial distribution of meteorological station within and near to the study area 
 Station Name X 

coordin

ate(m) 

Y 

coordinate 

(m) 

Elevation 

(m.a.s.l) 

Mean 

Annual RF 

(mm) 

Rainfall of 

wettest 

month (mm) 

Fourier 

index 

Climate 

rating 

value 

1 Wendo Genet 456960 778399 1800 1151 150,80 19.8 6 

2 Yirbaduwancho 433423 765478 2000 1120 155,10 21.5 7 

3 Haisawita 451228 763012 2240 999 137,70 19 5 

4 Hawassa 442235 779921 1750 953 124,10 16.2 2 

5 Shashemene 455869 795581 1950 918 128,80 18.1 4 
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Figure 7.4. Location of meteorological stations and climate factor values 

7.5.4. Runoff rating results 

7.5.4.1. Results of Infiltration test 

With the support of handheld PDA, which is installed with ArcPAD 10, each soil type (table 

2.1 in chapter two) was investigated for its infiltration capacity. Totally, 10 infiltration 

measurements are made in this study (measurement sites are shown in figure 7.5). 

 
Figure 7.5. Locations of infiltration measurement sites 
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7.5.4.2. Rating of runoff potential from infiltration rate data 

Based on infiltration rate values, each soil type was grouped into the corresponding hydrologic 

soil group (HSG) as shown in table 7.10 below. The field assessment on the two soil types 

(CMeu-Rbc and LP-Hde) reveals that there exists water impermeable layer within 50 cm of 

the soil surface. According to the limits on the diagnostic physical characteristics of the 

hydrologic soil groups, both soil types are assigned to group D. The maximum value of 27 

cm/hr was recorded on Andosols which is characterized by deep to very deep and mostly 

pumice below 40 cm. It may be the underlying pumice responsible to the high infiltration 

capacity in addition to its medium to coarse texture. The final rating is shown in figure 7.6. 

Table 7.10. Rating of runoff factor 

Soil type Minimum infiltration rate 
 (cm/hr) 

Hydrologic soil 

group 
PSIAC rating 

LVcr-Mde 18 A 1 
CMeu-Ede 12 B 4 
CMeu-Rcd 7 B 4 
LVha-Rcd 6 B 4 
CMeu-PLab 5 B 4 
CMeu-PLbc 9 B 4 
ANvi-PLab 27 A 0 
CMcr-Mde 6 B 4 
ANvi-Rcd 15 A 1 
CMvr-PLab 3 C 7 
CMeu-Rbc Very shallow D 10 
LP-Hde Very shallow D 10 

Source: Findings of field measurement 

 
Figure 7.6. Distribution of hydrologic soil groups in the watershed 
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7.5.5. Topography rating result 

The rating of topographic factor was done as shown in table 7.4. Figure 7.7 shows the final 

rating. 

 
Figure 7.7. Rating of topographic factor based on slope percentage 

7.5.6. Land cover rating result 

7.5.6.1. Extracting percentage of bare land for each land cover type 

The available land cover types of MoWR (2010) was used in combination with the Vegetation 

Continuous Fields (VCF) of Hansen et al. (2002a; 2002b; 2003). The land cover types were 

used as classification units and the average percentages of bare land (figure 7.8) were 

extracted from VCF using ArcInfo tools as shown in table 7.11.  
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Figure 7.8. Derivation of bare land percentage from Continuous Fields (VCF) (with 500m 

grids) 

Table 7.11. Percentage of bare land in each land cover type (500m resolution) 
 Land cover type (Code) Count Mean %  

of bare land 

Land cover rating value 

( = 0.2X6) 

1 Open shrubland (SO) 355 1.5 0.3 

2 CI2 45 0 0 

3 Intensive Mechanized Cultivation (State) (CIMS) 142 2 0.4 

4 Plantation forests (FP) 54 0.9 0.2 

5 Open grassland (GO) 259 4.4 0.9 

6 Open grassland /Open woodland (GO/WO) 135 0 0 

7 Lake  392 - - 

8 Dense Shrubland (SD) 92 5.9 1.2 

9 Urban or Built-Up Areas (U) 177 3.3 0.7 

10 Intensive smallholders cultivation (CI3) 2468 0.7 0.1 

11 Marshland (MA) 295 33.5 6.7 

12 Open grassland with moderate smallholder 

cultivation (CM3/GO) 

141 0.2 

0.04 

13 Intensive smallholders cultivation (CI4) 1134 1.6 0.3 

14 Disturbed High Forest (FD) 119 0 0 

 

7.5.6.2. Land cover rating from percentage of bare land 

The final rating of land cover factor was computed through equation 7.2 as shown in figure 

7.9 below. 
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Figure 7.9. Rating of land cover factor 

7.5.7. Land use rating result 

7.5.7.1. Extracting percentage of canopy for each land use types 

VCF was produced for percentage bare soil, percentage of herbs and percentage of trees which 

constitute 100% of the entire area (figures 7.8 and 7.10).  

 

Figure 7.10. Derivation of tree percentage from Vegetation Continuous Fields (VCF) 

For the rating of land use factor, the percentage of herbs and trees were added up to give 

canopy percentage (figure 7.11).  
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Figure 7.11. Percentage of canopy cover computed from MODIS satellite data 

The average percentage of canopy was extracted for each land use types MoWR (2010) as 

shown in table 7.12. 

Table 7.12. Percentage of canopy in each land use type (500m resolution) 
 Land use type (Code) Count Mean % of  

tree  (T) 

Mean % of  

herbs (H) 

Total canopy %)  

(X7= T+H) 

Land use rating value 

(= 20 - 0.2X7) 

1 GB(FP) 507 17.3 82.4 99.7 0.06 

2 Intensively cultivated land (IAC) 608 10 90 100 0 

3 Intensively cultivated land (IAC) 54 7.8 91.9 99.7 0.06 

4 Intensively cultivated land (IAC) 88 10 90 100 0 

5 TMFP 54 11 88.1 99.1 0.18 

6 Grassland (G) 33 9.3 86 95.3 0.94 

7 Grassland (G) 204 10 86.3 96.3 0.74 

8 Grassland (G) 22 4.9 84.6 89.5 2.1 

9 Lake WSFR(NC) 392 - - - - 

10 GB(FP) 75 30 66.2 96.2 0.76 

11 Urban (RCI) 
177 

13.1 
(bare=3.34) 87.2 96.66 0.67 

12 IPAC 2468 25 75 100 0 

13 Swamp area (DGF(NC)) 295 0 96.8 96.8 1 

14 MPAC(L) 141 13.2 86.6 99.8 0.04 

15 Intensively cultivated land (IAC) 571 14.7 84.7 99.4 0.12 

16 TM(NC) 119 54.8 45.2 100 0 
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7.5.7.2. Land use factor rating from percentage of canopy cover 

Based on equation 7.3, the final rating of land use factor was computed as shown in figure 

7.12. 

 
Figure 7.12. Rating of land use factor 

7.5.8. Upland slope erosion rating result 

MoWR (2008, 2009, and 2010) assessed upland erosion in the watershed based on types and 

degree of erosion. This study categorized the entire watershed into three qualitative erosion 

classes as "severe", "medium" and "slight". The same erosion classes are used in this study. 

Following the recommendation of PSIAC model to assign the value of 25 for the worst case, 

the areas which had been classed as "severe" were assigned to have a value 25. The remaining 

"medium" and "slight" classes proportionally assigned values of 15 and 5 respectively as 

shown in figure 7.13.  
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Figure 7.13. Upland land erosion rating 

7.5.9. Channel erosion and sediment transport rating result 

This factor was rated based on the available drainage network as identified by MoWR (2008, 

2009, and 2010) and the corresponding density classes were adopted from Buoko and 

Mazurova (1958) (cited in Stroosnijder and Eppink, 1993) as shown in table 7.5. Based on the 

line density calculation tool of ArcGIS10, the final rating was done as shown in figure 7.14. 

 
Figure 7.14. Sediment transport rating 
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7.5.10. Identification of erosion/sediment source areas: the model output 

The final identification of the erosion/sediment source areas was made by overlaying the 

ratings of the nine factors using the "model run" option of ArcGIS10 as shown in figure 7.15.  

 
Figure 7.15. Output diagram of model builder after running the raster input data by ArcGIS10 

The final output of the modeling process is presented in figure 7.16 and table 7.13 below. 

According to the model result, 66.4% of the watershed area is found to be classed as "low 

potential"; 22.7% under "very low potential"; 10.6% "moderate potential" and only 0.3% is 

under "high potential" and none of the watershed area is categorized as "very high potential". 
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Figure 7.16. Spatial distribution of sediment yield potential classes in the watershed 

Table 7.13. Percentages of each potential classes 

Sediment 

class 

Qualitative 

categories 

PSIAC 

value 

Qs (Sediment yield = total 

volume of sediment /sediment 

producing area) (m
3
/km

2
/yr) 

% of the 

watershed 

area 

5 Very high Potential 100 1450 0 

4 High Potential 75-100 450-1450 0.3 

3 Moderate potential 50-75 250-450 10.6 

2 Low potential 25-50 95-250 66.4 

1 Very low potential 25  95 22.7 

The overall result of sediment source identification shows that the distribution of sediment 

sources in the watershed is disproportionate and two distinct patterns are distinctly identified 

by the model in the Western and Eastern parts of the watershed. Regarding the western part, 

the high erosion rate and the coinciding high drainage density (as shown in figure 7.14); 

sensitive geological formation (as shown in figure 7.2); high gully density (as shown in figure 

6.4);  and higher percentage of bare land (as shown in figure 7.8)  seem to make this part of 

the watershed to be the principal sediment source. But, the Eastern part seems to be influenced 

by its topography (very steep slope) (as shown in figure 7.7) and high drainage density (as 
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shown in figure 7.14). This part is the likely source of sediment that silted up in Lake 

Cheleleka. 

7.5.11. Comparison of sediment yield estimation to previous studies 

To validate the accuracy of prioritization, some measured data are required but such data are 

not available. In the current situation of data availability, testing for the prediction capacity of 

the PSIAC model cannot be undertaken, and also not intended. However, comparing the 

outputs with other studies offers some clue on the general and crude performance of the 

model. In this case, the output of PSIAC model is compared with the estimation in-lake 

sedimentation of chapter 6 and the Annualized Agricultural Non-point Sources (AnnAGNPS) 

model output as studied by Shamo (2008). Individual outputs are shown in table 7.14 below.  

Table 7.14. Summary of model outputs 

 Estimated Sediment yield Annual values of erosion and/or sediment yield Sources 

1 PSIAC 

 

95-250 m
3
/km

2
/yr 

 (66.4 % of  watershed area) and 

95 m
3
/km

2
/yr  

(22.7 % of  watershed area) 

Own study 

(chapter 7) 

2 Hydrographic survey 967 m
3
/km

2
/year  

(long-term average) 

Own study 

(chapter 6) 

3 Ann-AGNPS  

 
 1 mm/ha/yr  

(most part of the watershed) or   

1000 m
3
/km

2
/yr 

Shamo 

(2008) 

The magnitude of specific sediment as computed in chapter 6 is 967 m
3
/km

2
/year. In this case, 

sediment contributing area is considered by deducting the surface area of the lake (about 93.24 

km
2
) and the two closed sub-watershed: Muleti = 91.6 km

2
, and Wondo Kosha= 114 km

2
) 

from the total watershed area (1436.5 km
2
).  Whereas the PSIAC model estimates this 

parameter as to fall between 95-250 m
3
/km

2
/yr (66.4 % of the watershed area) and  95 

m
3
/km

2
/yr (22.7 %). Shamo (2008), who employed the AnnAGNPS model reported that most 

of the area of the watershed has sediment yield of less than 1 mm/ha/yr (1000 m
3
/km

2
/year).  

As shown in the above comparisons, the results of the hydrographic technique and 

AnnAGNPS can be considered as fairly similar, but the PSIAC estimation is considerably 

lower than the former results. The accuracy of all the three methods can be evaluated only if 

actual sediment flow from the watershed has been monitored. For the moment, it is thinkable 
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that result of the hydrographic survey is better because of the fact that it is the result of direct 

measurement and comparison of two bathymetric maps.  

7.6. Conclusion 

This study targets the identification of critical sediment source areas in Lake Hawassa 

watershed using PSIAC model. The model screens the hot-spots and the results are in good 

agreement with field verifications and justify its sufficiency in achieving the objective as a 

screening model. The final product remains qualitative because of the absence of measured 

data to validate the method. On the basis of our results, the watershed area is classified into 

four sediment yield classes (high, moderate, low, and very low potentials).  

The model is open in nature and can accommodate more number of factors as far as it 

influences the erosion and sedimentation process in the watershed. Such opportunity paves a 

way for future adoption of the model by including new inputs. The subjectivity of 

parameterization and final result deserve a special care. Moreover, the model shall be 

quantitatively validated for its maximum benefit. The result of this study can be used for 

watershed prioritization that is an inevitable part of watershed management which embodies 

reduction of sediment deliveries into the lake. 
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Chapter 8. Participatory assessment of anthropogenic factors affecting the hydrology of 

Lake Hawassa: an application of DPSIR framework 

8.1. Introduction 

The list of environmental issues has been growing and their inter-linkages with their complex 

causes and consequences are getting complex. To tell an integrated story of these issues, the 

need of structured process (framework) that can accommodate interdisciplinary knowledge is 

of a paramount importance (UNEP, 2008). In recent years, most of environmental assessment 

studies are based on the casual chain frameworks (e.g. Pressure-State-Response (PSR), 

Driving force-State-Response (DSR), and Driving force-Pressure-State-Impact-Response 

(DPSIR)). These frameworks have made an important contribution by emphasizing the 

importance of causality (Niemeijer and Groot, 2008).  

DPSIR (pronounced dipsir), as one of the conceptual tools, helps to identify and describe 

processes and interactions in human-environmental systems (Burkhard and Mueller, 2008). It 

has a potential to link the existing data, gathered from various previous studies, in causal 

relationship (Sekovski et al., 2012). As different cause and effect chains are included in the 

model and because it is intended as an iterative loop, the model is adaptive to arising changes 

and developments.   

The DPSIR framework is an extension of the Pressure-State-Response (PSR) model, 

developed by Anthony Friend in the 1970s, and subsequently adopted by the Organization for 

Economic Cooperation and Development (OECD). It was developed for reporting purpose and 

structures the description of the environmental problems by formalizing the relationships 

between various sectors of human activity and the environment as causal chains of links. 

Figure 8.1 presents the meaning of the DPSIR elements. 
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Figure 8.1. Terminology of DPSIR model Source: modified after EEA (1999; 2000). 

By definition, DPSIR model is considered as the best way to structure environmental 

information providing environmental socioeconomic integrity - in order to build links between 

natural and socio-economic sciences; science and management; qualitative and quantitative 

analyses; measured and modeled data; and definition of environmental syndromes (Turner et 

al., 1998; EEA, 2003). Since its conception, the framework has increasingly been applied in 

research projects with the aim of supporting decision making. A number of attributes of the 

framework regarding structuring and communication issues in research further strengthen its 

original purpose of bridging the science-policy gap (Tscherning et al., 2011). The full-fledged 

causal chain from driving forces to impacts and responses is a complex task, and tends to be 

broken down into sub-tasks, e.g. by considering the pressure-state relationship (Kristensen, 

2004). 

The previous chapters furnished the bio-physical information of the hydro-system and we 

know less about the associated socio-economic challenges that are often the causes of many 

biophysical challenges (Gregersen et al., 2007). Chapter four and five were devoted to the 

assessment of hydro-climatic factors and chapter six showed the rate and magnitude of 

sedimentation in the lake. Some of these variabilities are the result of a complex interplay 

between natural and anthropogenic factors.  

This chapter is intended to create a platform on which the cause-effect chain of anthropogenic 

factors can be viewed in an integrated manner. It considers the management of Lake Hawassa 

as synonymous with the "response"; and the current hydrological status of the lake as "state". 

  DRIVERS The underlying factors influencing a variety of relevant variables 

  PRESSURES The variables which directly cause environmental problems 

STATE The current condition of the environment 

IMPACT The ultimate effects of changes of state 

RESPONSE The efforts of  the stakeholders to solve the problems 
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D and P are considered to cause the current status of the lake. Figure 8.2 shows how the 

DPSIR framework used in a decisional context.  

 
Figure 8.2. The DPSIR framework in a decisional context Source: Vázquez, 2003) 

8.2. Objectives of the chapter 

The objectives of this chapter are dual. On one hand, the perception of stakeholders about the 

likely anthropogenic causes that affect the hydrology of Lake Hawassa is assessed. On the 

other hand, the findings of previous studies are assembled in the DPSIR framework so as to 

build an integrated story that tells "how the lake hydrologically operates".  
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8.3. Methodology 

8.3.1. General methodology 

Figure 8.3 presents the flow chart of the general methodology in which the process starts with 

identifying the stakeholders followed by contacting them as individual or group. Focus group 

discussions and individual interviews were the two main techniques employed. After building 

a common understanding on the existing cause-effect links, the participants were encouraged 

to fill the DPSIR story sheets (figure 8.4). The results then cross-checked and supplemented 

by secondary sources. 

Stakeholders 

identification

Contacting

stakeholders 

Individuals Group

Focus group 

discussion

Building common understanding on 

DPSIR and cause-effect links

Filling DPSIR story sheets in 

formal meetings

Reviewing secondary data for 

more information

Causal chain

Individual 

interviews

 
Figure 8.3. Flowchart for causal chain assessment of anthropogenic factors 

8.3.2. DPSIR story sheet and participatory approach 

The more detailed information was collected during the focus-group discussions (Cameron, 

2000) which were conducted with participants (representing stakeholders) who have good 

familiarity with the topics and the study area. To give everyone the opportunity to express 

her/his opinion, six to eight people participated in each focus group. A total of five focus 
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group discussions were conducted in this study. The participants were encouraged to fill the 

DPSIR story sheet (figure 8.4). Other participatory methods which were used as community 

truthing include (i) key informant interviews (Hay, 2004), and (ii) participants observations 

(Cook, 1997). Those "experts" who were identified by local people as having special 

knowledge (Warburton and Martin, 1999) were also interviewed.  

Once the participants of the focus group discussions were, they were oriented about the 

concept of DPSIR chain and provided with two DPSIR story sheets (figure 8.4) to write the 

most likely cause-effect chains as per their own perception. The two main issues/topics in the 

cause-effect chain were: lake level rise and lake sedimentation. The participants were 

encouraged to talk openly and discuss the issues with other members and state their opinion 

before filling the sheets. Due to the absence of incentives, the time of discussion was 

deliberately reduced.   

                 Drivers (D)                 Pressures (P)       State (S)                  Impacts (I)  

 

 

 

 

 

 

Figure 8.4. Template of DPSIR story sheet 

  

---------------

---------------

--------------- 

---------------

---------------

--------------- 

 

-------------- 

---------------

---------------

--------------- 

     Responses (R):   policies - strategies - proclamations - programs - plans 
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8.4. Results and discussion 

8.4.1. "Indirect drivers" (iD) 

This study identified the need for one more component to the original DPSIR which helps to 

explain causes of the drivers (D) and can be viewed as a variation to the framework. This 

additional component is named as "indirect driver" and abbreviated as "iD" as shown in figure 

8.5 below. Similar naming was used by Maxim et al.(2009). 

The perceived principal indirect drivers/root causes underlying the causal-chain affecting the 

hydrology of Lake Hawassa are found to include: population growth and density, agricultural 

development, the use of wood as primary source of energy, socio-political changes, and the 

existing land tenure system (figure 8.5). The upcoming sub-sections discuss the individual 

issues in detail. 

Indirect drivers (iD) Direct drivers (D)

1. Population growth and density

2. Agricultural development

3. The use of wood as fuel

4. Socio-political changes

5. Existing land tenure system

1. Land use changes

2. Deforestation

3. Unsustainable use of lands

 

Figure 8.5. Primary and secondary driving forces affecting the hydrology of the system 

8.4.1.1. Population growth and density 

Demographics of the watershed communities, as one of the root cause in the causal chain was 

also perceived by Esayas (2010), MoWR (2008), Dessie (2004), WWDSE (2001), 

Shewangizaw and Michael (2010) and many others. Having 2005 as base year, the population 

of the watershed is estimated to be 621,530 people. This is expected to double before 2025, 

and grow to nearly 1.6 million by 2035 at an average growth rate of 3.15%, but with a higher 

rate of 3.8% in the early years to 2010 (table 8.1). Population density of the watershed is 

estimated as 624 people/km
2 

(MoWR, 2008)  which is unusually high and about eight fold of 

the average value at country level, that is about 77.72 people/km
2
 (World Bank, 2012). 

The livestock population is also additional stress which constitutes 516,159 cattle, 95,035 

sheep, 95,035 goats, 12,763 horses, 28,912 donkeys and 486 mules. The livestock density is 
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calculated as 335 TLU/km
2 

(MoWR, 2008). TLU = tropical livestock unit; for example: 1 

TLU = Camels 1.0, Cattle 0.7, Sheep/Goats: 0.1 (FAO, 2005). The impacts of population 

growth are also being felt in the watershed with population pressure impacting many of the 

other issues such as deforestation, land degradation, overgrazing, and increasing food 

insecurity.  

Table 8.1. Population growth in seven administrative units in and around the watershed 
 

Place 

2005 2010 2015 2020 2025 2030 2035 

Total Male Female Population Population Population Population Population Population 

ArbeGona  12,971 6,521 6,451 15,590 18,479 21,621 25,080 28,931 33,128 

Hawassa  430,664 219,536 211,127 517,622 613,539 717,857 832,725 960,610 1,099,952 

Shebedino  77,594 39,428 38,165 93,261 110,542 129,337 150,032 173,073 198,178 

Siraro  1,811 888 924 2,241 2,695 3,142 3,614 4,167 4,790 

Kofele  8,553 4,242 4,311 10,583 12,728 14,840 17,067 19,679 22,623 

Shalla  15,748 7,717 8,031 19,485 23,433 27,320 31,421 36,229 41,647 

Shashemene  74,190 36,836 37,354 91,802 110,410 128,725 148,048 170,708 196,238 

Source: MoWR (2008) 

8.4.1.2. Expansion of agriculture 

This perception of the stakeholders is also supported by Dessie (2004), Esayas (2010) and 

others. According to these sources, expansion of agriculture in particular smallholder farming, 

contributes to over 80% of the forest area loss. This expansion is characterized by two major 

modes of change: 1) internal: clearings created by the intrusion of small farm plots, grazing 

lands, and villages 2) external: expansion of agriculture from the exterior into the forests. 

Generally, the changes from natural vegetation to cultivation as depicted by figure 8.6 

indicates that agricultural expansion in the watershed is the most important proximate cause of 

land use change and it takes place at the expense of other land uses. 

 

Figure 8.6. Trends of agricultural land expansion in the watershed Source of raw data: Abrha 

(2007) 
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8.4.1.3. The use of "wood" as energy source and absence of alternative energy 

Fuel woods  supplies 84% of total energy demands of which about 50% is from shrub-lands 

and wood-lands (exceeding their mean annual increment of woody biomass) and only 5-10% 

is from woodlots with the remainder from crop residues and dung (MoWR, 2008). Household 

energy requirements are supplied largely by fuel wood collected from existing woodland and 

shrub land, maize straw, and charcoal with cow dung also used in the western part of the 

watershed.  The use of biomass accelerates the rate of deforestation and erosion while the use 

of crop residues and dung as fuel, rather than returning this organic matter to the soil, causes a 

decline in soil fertility and deterioration in soil structure. 

8.4.1.4. Socio-political changes 

Ethiopia has witnessed several dramatic political changes during the course of the last century. 

These changes have been accompanied by transitional periods characterized by uncertainty 

and insecurity. In the absence of firm political control, control of resources has also been 

lacking. Many among the rural population have then taken the opportunity to usurp what has 

been available in terms of, for instance, forest land and forest products, adding to the process 

of forest decline (Dessie, 2004; Dessie and Christiansson, 2008). 

8.4.1.5. Land tenure system 

All lands in Ethiopia are nationalized and redistributed in 1975. This policy has continued with 

the present Government and the 1994 Constitution specifies that land cannot be subject to sale 

or exchange (FAO, 2004). Issues of land tenure could include insecurity of tenure, ability to 

use land as collateral and the transferability of property rights and the impacts these have on 

land investment or factor (land, labor or capital) allocation. A major source of tenure 

insecurity emanates from the periodic land redistribution to land-poor households (Mahmud 

Joseph and Pender, 2005). This indirect driver is also identified by MoWR (2010). Currently, 

the government is implementing a land certification programme that is expected to reduce the 

effect of land insecurity among the land users but its effectiveness is not yet evaluated. 
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8.4.2. "Direct drivers" (D) 

8.4.2.1. Deforestation, land use  and land cover changes 

As perceived by the stakeholders, expansion of agriculture and population growth are the two 

main causes for the land use changes in the watershed. The magnitudes of land use changes 

were attempted to be addressed by different studies, such  as Wagesho et al. (2012) and Abrha 

(2007) for the period of 1973, 1986, and 2000 at the watershed scale (table 4.3 in chapter 

four). Ayenew et al. (2007) also stated that the land use changes in the watershed affected the 

hydrology of the lake. While assessing the causes of these land use changes, Legesse et al. 

(2003) noted that they are resulted from multiple forces such as: demographic trends, climate 

variability, national policies, and macroeconomic activities. 

The watershed has also undergone progressive deforestation (Lamb et al., 2002) and the 

results of interview and individual/group discussions also reveal that "deforestation" is one of 

the direct drivers which is perceived to be caused by the use of "wood" as source of energy for 

cooking (its impact is also exaggerated by the absence of alternative energy); socio-political 

changes especially during the period of political transitions; and agricultural expansions. 

Similar causal chain was reported by Dessie (2004) which adds the economic activities and 

local conflicts over resources to play an important role. According to Dessie (2004), the total 

natural forest loss between 1972 and 2000 amounted to over 40,000 ha, which is over 80 % of 

the forest cover that was present in 1972. This corresponds to an annual loss of over 1400 ha, 

equivalent to 0.9% of the annual national loss. The decreasing trend of forest coverage in the 

study area coincides with the general forest decline pattern in Ethiopia. The forest decline 

during this period was not an isolated event, but rather a continuation of the past trend. Esayas 

(2010) also mentioned that forest clearing exerted pressures on the natural resources of the 

watershed.  

During field visit, it was also observed that forests which were owned by the community were 

depleting which might be explained by the lower regard for common property and common 

access land than for individual holdings. Woodlands are also depleted which seems to be 

driven by the demand for fuel wood and charcoal. There are few remnants of trees seen in the 

Western side of the lake. These remnants are preserved against cutting due to few influential 
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community members who created awareness among their neighbors, and now these trees are 

taken as symbols of environmental protection. 

8.4.2.3. Unsustainable use of lands 

Farmers seem to lack the commitment to implement and maintain the already implemented 

measures. Previously constructed soil and water conservation works are also destroyed or 

abandoned in many places in the watershed due to the lack of maintenance. Such reluctance is 

perceived by the participants as to emanate from the existing land tenure system. Some 

justified that it could be due to the lack of communal understanding on the importance of these 

measures and lack of land management enforcement. Cultivation of steep slopes is also one of 

the common misuses of the lands in the watershed. 

8.4.3. "Pressures" (P) 

The "pressure" component in this study constitutes the input of water and sediment to the lake 

that potentially affect the hydrological status of the lake.  

Direct drivers (D) Pressures (P)

1. Sedimentation

2. Increased runoff into the lake

1. Land use changes

2. Deforestation

3. Unsustainable use of lands

 

Figure 8.7. Link between direct drivers and pressures 

8.4.3.1. Sedimentation 

In chapter 6, it was shown that the thickness of accumulated sediment in the lake between 

1999 and 2010 was about 14 ± 5cm (figure 6.3). If  a constant annual rate is assumed, the 

sedimentation rate would be 1.2 cm/year and it can be considered as a pressure and part of the 

causal chain. Soil erosion and sedimentation can be influenced by both climate and 

anthropogenic factors and differentiation between them is recommended. 

8.4.3.2. Increased runoff from the watershed 

As discussed in section 4.5.4 of chapter four, the runoff from Tikur Wuha River shows an 

increasing trend whereas rainfall has no significant changes. The role of anthropogenic factors 
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(through land use/cover changes) can be deduced from the interplay between the trending 

runoff and non-trending rainfall. 

8.4.4. "State" (S) 

As a result of the factors that were described as pressures, the hydrology of Lake Hawassa has 

been changed as indicated in chapter four that was expressed in terms of  its significant 

increasing trend (average annual rise of 4.9 cm/yr). As justified in section  4.5.6 (chapter 

four), the anthropogenic factor has a stake atleast in modifying the impact of climate. This in 

turn contributes for the resultant rise of the lake level. The sequential regime shifts in the lake 

level series are less likely associated with human factors. 

8.4.5. "Impact" (I) 

The notable impact of Lake Hawassa water level rise is the historical recorded flood that had 

occurred in 1998/99 (WRDB, 2007; WWDSE, 2001). In monetary terms, this destruction 

accounted for about €5.4 million (WRDB, 2007). The corresponding impact on human well-

being and environment are not yet studied as to the author´s knowledge. However, it is 

apparent that when the environmental factors change, for whatever reason, the individuals, 

communities and even economic sectors that depend on these factors are also affected in 

myriad ways (UNEP, 2008). 

8.4.6. "Responses" (R) 

Various policies are available in Ethiopia which can serve as legal ground towards sustainable 

management of water resources in general and Lake Hawassa in particular. A "response" by 

society or policy makers is the result of an undesired impact and can affect any part of the 

chain between driving forces and impacts (Kristensen, 2004). Pursuing the enforcement of 

current policy instruments is taken as an option in this study and the following paragraphs 

discuss the existing policies, proclamations and programmes. 

While grouping the main findings of the first four components of the DPSIR framework as 

shown in the previous sections, the six major environmental issues as shown in figure 8.8 are 

apparently identified to examine the existing "response" instruments. These issues are: 

deforestation, population growth and density, the use of wood as fuel, land tenure system, 

unsustainable utilization of land resources, and socio-political changes. Corresponding to the 
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six key issues which belong to the D-P-S-I elements, there found about ten relevant and 

overlapping response instruments (more number of responses can be identified if more time 

was available than this study) that are directed towards managing them. 

Response 

Instruments

Productive Safety Net
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MERET project

Forestry research 
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Figure 8.8. List of responses (the red question mark at the bottom of the circle shows the gap 

of response instrument) 

As shown in the above figure, a couple of response instruments have been designed by the 

government to mitigate the deforestation problem (the left most box). These include: Forestry 

Research Strategic Plan, Forestry Action Programmes, Forest Conservation, Development, and 

Utilization Proclamation, and Conservation Strategy of Ethiopia. These response instruments 

provide legal framework for sustainable management of forest resources. 

Regarding population growth, the National Population Policy (NPP) articulated the 

Government‟s position on the relationship between demographic and economic growth, with 

sustainable and equitable human development as its central theme. The policy stated that 

without a reduction in population growth, the efforts to reduce poverty and the achievement of 

national development goals would be jeopardized.   

The Ethiopian Energy Policy encourages energy mix, and in the long-term, a replacement of 

the traditional sources of fuel by modern technologies. Parallel to this, the policy promotes 

country-wide afforestation programme to supplement traditional fuels. 



 
Chapter 8: Participatory assessment of anthropogenic factors affecting the hydrology of Lake Hawassa 

122 
 

The rural development policy and strategy justifies the voluntary resettlement programmes 

(can also be viewed as a response against population density). This response pays attention to 

the land tenure issue and the proper use of land. Important changes such as the moratorium on 

land re-distribution and the distribution of land certificates are given a legal basis in this 

instrument. 

The proclamation on rural land administration and use defines the individual land use and 

disposal rights. It defines obligations of rural land users and land use restrictions. Thus, 

protection of land becomes an obligation and failure to protect can lead to loss of title. 

The last, but not the least, is the issue of socio-political changes that induce uncertainty and 

insecurity during transition periods of political regimes. Dessie and Christiansson (2008) 

identified that large areas of forest were cut down during periods of political transition as a 

result of the political vacuum. Instruments to avoid such problems were not recognized by the 

stakeholders (the red question mark at the bottom of figure 8.8) except that they recommend 

creation of ownership feeling among the community so that socio-political changes have less 

effect on the natural resources. Such occurrences are exemplified in some parts of Ethiopia. 

Generally, as recognized from the causal chains, there is a loose link between response 

instruments (R) and the rest of the DPSIR components which are probably attributed to the 

inefficiency of institutional arrangements in implementing an established regulation. Such 

situation reminds the policy makers to pay more attention to the appropriate implementation of 

available management instruments together with designing new ones. Long-term education for 

the implementing bodies and for the general community seems to work at this point. 

8.5. Summary and conclusions 

The overall result of this section shows that the lake level rise (State) of Lake Hawassa has 

been accompanied by some anthropogenic factors. The immediate causes (Pressures) of this 

level rise comprise sedimentation into the lake and increased runoff in which both pressures 

are perceived to be influenced by land use changes, deforestation and unsustainable use of 

land resources (Drivers). These drivers in turn impacted by indirect drivers (indirect Drivers) 

that comprise population growth and density, expansion of agriculture, the use of wood as 

fuel, socio-economic changes, and the existing land tenure system. The impact of lake level 
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rise was assessed in view of its risk to produce flood (Impact) which usually impacts the 

environment and human well-being in addition to economic losses. 

This conceptual exercise about the causal paths is found to provide an aid to logically combine 

information from different sources to tell an integrated story. It effectively highlights the 

causal relationships and provides a useful first step towards the establishment of a full-fledged 

causal network for the major environmental problems of Lake Hawassa hydro-system. The 

results provide a better understanding of why and how people destroy their environment and 

careful translation of this understanding into plans and actions enables the stakeholders to 

prevent or reduce further destruction. The solutions are at the reach of stakeholders by acting 

locally while thinking at watershed scale. 

The structuring and integration of available and new environmental information using DPSIR 

conceptual framework is found to illustrate the overall status of the Lake Hawassa 

hydrosystem and paved a better understanding towards sustainable management of the 

ecosystem as a whole. 

With regard to the last component of the framework: R, a set of existing policies and legal 

documents were assessed to explore the possible management options towards the other four 

components of the model. It was then recognized that the available policies and legal 

documents have a promising potential for mitigation, adaptation or curative actions against the 

anthropogenic wings of the problems at hand.  

8.6. Limitation of the study 

Many of the relationships between the human system and environmental system are complex 

and may not be well understood (Maxim et al., 2009). The underlying assumption of simple 

causal relations cannot fully capture the complexity of interdependencies in the real world 

(Spangenberg et al., 2002). Besides, it is sometimes difficult to provide conclusive evidence of 

a cause-effect relationship as is required for the application of the DPSIR logic (EEA, 2005).  

Generally, a full-fledged causal-link is not always necessary or, if any, it needs long and 

intensive researches of integrated approach. In this study, the overall causal links were derived 

from available information, researcher‟s and stakeholders‟ experience on the topic at hand. In 
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this regard, it is strongly recommended to have future researches of similar framework, but 

with filling gaps in that this study falls short of, if possible, by generating primary evidences. 

 



Chapter 9: Synthesis 

 

125 
 

Chapter 9. Synthesis 

9.1. General remarks 

The main objective of this study was to investigate the causes of Lake Hawassa water level 

variability in general and its resultant rise in particular. A number of researchers attempted to 

address the issue and this research can be viewed as one of those efforts. In this study, the 

impact of climate variability and sedimentation was in a greater detail than has been done 

before. 

Particularity of this research is depicted by the diverse approaches employed to provide a 

comprehensive insight into the hydrological status of Lake Hawassa. The logical combination 

of coherence analysis, regime shift detection, trend analysis, lake level simulation, bathymetry 

surveys, sediment yield modeling, and DPSIR analysis enables the thesis to provide an 

integrated story about the characteristics of the hydrosystem. It can be considered as one of the 

potential documents to guide the future management of Lake Hawassa. The following section 

tries to summarize the over-all findings of this study in the form of DPSIR components. 

9.2. Synthesis of causal links 

The temporal variability of Lake Hawassa water level is shown to be influenced by the 

combined effect of anthropogenic, natural and climate related factors. Figure 9.1 (below) 

synthesized a simplified relationship among these factors in the DPSIR framework. 

As depicted by figure 9.1, the causes of Lake Hawassa water level rise can be broadly 

classified into two:  hydro-climatic variability (a) and anthropogenics (b).The occurrences of 

climate shifts and extreme events such as ENSO phenomena are among some of the 

variabilities responsible for the resultant rise of the lake level. The neotectonic process is 

believed to affect the lake level but not investigated in this study. Sedimentation in the lake 

and the increasing trend of runoff from the watershed are among the immediate causes to 

affect the lake level variability and these pressures can be related to both natural and human 

inductions and the dominant factors are not yet fully analyzed. Further in the causal chain, the 

sedimentation and increased runoff are manifested by land use changes, deforestation and 

unsustainable use of land. 
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Figure 9.1. Summary of causal link and relationship among anthropogenic and natural factors 

9.3. Overall Conclusions 

The primary factor that influences the level rise of Lake Hawassa is found to be climate 

variability. This factor is manifested by the extreme and simultaneous occurrences of high 

rainfall and the corresponding runoff which are responsible for the entry of extreme amount of 

water into the lake system. 
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The two prominent climate events which strongly influence the hydrology of Lake Hawassa 

are: the climate shift of North Pacific Ocean that occurred in 1976/77 and the El Niño events 

that occurred in 1972-73, 1982-83, 1997-98, and 2009-10. The neotectonic activities that 

occurred in 1996, ´97 and ´98 consecutively, are also considered to involve in the interplay but 

direct evidences are not available. 

In the long-term perspective, "rainfall" has neither been significantly increasing nor decreasing 

over time on both annual and monthly bases. Despite this, "runoff" has shown significant 

increasing trend. The interplay between these different trends is considered to justify the role 

of land use/cover changes at least in modifying the impact of climate.  

The increased runoff has been perceived to be directly driven by land use changes, 

deforestation, and unsustainable use of land. These direct drivers (D) have also been perceived 

to result from population growth and density, agricultural development, the use of wood as 

fuel, socio-economic changes, and the prevailing land tenure system and indirect drivers (iD).  

The effect of sedimentation in reducing the storage capacity of the lake is found to be low 

(0.08% per year) as compared to the total volume of water in the lake. 

The historical maximum recorded flood which had occurred in 1998/99 appeared to be caused 

by the simultaneous occurrence of the 1996 high rainfall followed by the worst El Niño (1997-

98) by which runoff, rainfall, and evaporation were affected. The tectonic activities that 

occurred in the consecutive years of 1996, ´97 and ´98 were also assumed to affect the ground 

water flow, but no concrete evidence to verify it. 

It is generally concluded that the lake level variability of Lake Hawassa is more reactive to 

extreme climate events than the long-term natural and anthropogenic factors.  

9.4. Perspectives 

This study provides a new dimension of articulating the causes of Lake Hawassa water level 

rise by considering both anthropogenic and natural factors on one hand and long-term and 

extreme temporal extents on the other. It was shown that almost the entire water balance 

components have been interplayed in one way or another in affecting the temporal variability 

of the lake level in general and its resultant increasing trend in particular. 
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The association of flood from Lake Hawassa to the climate anomalies resulting from natural 

mechanisms could have two managerial implications; on one hand, it would be difficult to 

mitigate the problem because of its dependence on macro-scale processes and on the other 

hand, an optimistic view of those large El Niño events which are notorious for their extreme 

floods are acceptably predictable within period at lead times of up to two years (Chen et al., 

2004). Such opportunities are useful to get an alarm against the urgency of flood occurrences, 

even in the absence of local monitoring data and downscaling can be endorsed and 

mainstreamed in a regular early warning and assessment activities to reduce the impact of 

potential flood risks.  

This causal-loop is by no means exhaustive, but believed to provide an orderly guidance for 

future research and development interventions. As noted by Gregersen et al. (2007), integrated 

watershed management can only be effective if they are grounded in the technical realities of 

what is going on with the soil, water and biophysical resources and the interactions between 

them. Thus fundamentally, an effective interaction or combination of institutional and 

technical information is required for successful watershed management that results in lasting 

benefits for the stakeholders living in the watershed. 
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Appendices 

Appendix 1:  (A) Oceanic Nino Index (ONI) Source: Null (2012) (accessed in September 2012) 

 
   

 

(B) El Niño and La Niña Years and Intensities: Based on Oceanic Niño Index (ONI) 

El Niño La Niña 
Weak Moderate Strong Weak Moderate Strong 
1969 1968 1972 1971 1970 1973 
1976 1986 1982 1974 1998 1975 
1977 1987 1991 1983 2007 1988 
2004 1994 1997 1984 

 
1999 

2006 2002   1995   2010 
  2009   2000     
      2005     
      2011     
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Appendix 2: RSI result of annual average lake level 

 
Av. Lake Depth (m) RSI Mean Weighed Length P Outliers 

1970 19.64 0.00 19.70 19.68 8 
  1971 19.83 0.00 19.70 19.68 8 
  1972 20.26 0.00 19.70 19.68 8 
 

0.76 

1973 19.92 0.00 19.70 19.68 8 
  1974 19.53 0.00 19.70 19.68 8 
  1975 19.37 0.00 19.70 19.68 8 
  1976 19.36 0.00 19.70 19.68 8 
  1977 19.67 0.00 19.70 19.68 8 
  1978 20.40 0.63 20.12 20.10 9 0.02 

 1979 20.74 0.00 20.12 20.10 9 
 

0.68 

1980 20.33 0.00 20.12 20.10 9 
  1981 19.86 0.00 20.12 20.10 9 
  1982 19.72 0.00 20.12 20.10 9 
  1983 20.15 0.00 20.12 20.10 9 
  1984 20.22 0.00 20.12 20.10 9 
  1985 19.77 0.00 20.12 20.10 9 
  1986 19.90 0.00 20.12 20.10 9 
  1987 20.27 0.88 20.43 20.43 6 0.06 

 1988 20.32 0.00 20.43 20.43 6 
  1989 20.71 0.00 20.43 20.43 6 
  1990 20.78 0.00 20.43 20.43 6 
  1991 20.33 0.00 20.43 20.43 6 
  1992 20.17 0.00 20.43 20.43 6 
  1993 20.72 1.10 21.20 21.16 10 0.001 

 1994 20.70 0.00 21.20 21.16 10 
 

0.95 

1995 20.53 0.00 21.20 21.16 10 
 

0.69 

1996 20.92 0.00 21.20 21.16 10 
  1997 21.33 0.00 21.20 21.16 10 
  1998 21.98 0.00 21.20 21.16 10 
 

0.53 

1999 21.90 0.00 21.20 21.16 10 
 

0.59 

2000 21.25 0.00 21.20 21.16 10 
  2001 21.31 0.00 21.20 21.16 10 
  2002 21.37 0.00 21.20 21.16 10 
  2003 20.87 -0.29 21.00 20.99 8 0.34 

 2004 20.58 0.00 21.00 20.99 8 
  2005 20.56 0.00 21.00 20.99 8 
  2006 20.72 0.00 21.00 20.99 8 
  2007 21.46 0.00 21.00 20.99 8 
 

0.93 

2008 21.47 0.00 21.00 20.99 8 
 

0.92 

2009 21.19 0.00 21.00 20.99 8 
  2010 21.16 0.00 21.00 20.99 8 
  RSI: Regime Shift Index 

Mean: Equal-weighed arithmetic means of the regimes 

Weighed: Weighed means of the regimes using the Huber's weight function with the parameter = 1 

Length: Length of the regimes 
P: Significance level of the difference between the mean values of the neighboring regimes based on the Student's two-tailed 
t-test with unequal variance (TTEST procedure in Excel) 
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Appendix 3: RSI result of annualtotal rainfall at Hawassa station 

 
Annual rainfall at Hawassa Met Station (mm) RSI Mean Weighed Length P Outliers 

1973 726 0 830 830 3 
  1974 937 0 830 830 3 
  1975 826 0 830 830 3 
  1976 954 0.18 954 954 1 
  1977 1226** 0.15 1130 1130 2 
  1978 1033 0 1130 1130 2 
  1979 968 -0.21 881 881 2 
  1980 794 0 881 881 2 
  1981 1040 0.047 1064 1064 3 
  1982 992 0 1064 1064 3 
  1983 1160 0 1064 1064 3 
  1984 725 -0.29 813 813 2 
  1985 902 0 813 813 2 
  1986 1194 0.13 948 942 9 
 

0.55 

1987 955 0 948 942 9 
  1988 957 0 948 942 9 
  1989 1025 0 948 942 9 
  1990 751 0 948 942 9 
 

0.73 

1991 889 0 948 942 9 
  1992 975 0 948 942 9 
  1993 928 0 948 942 9 
  1994 861 0 948 942 9 
  1995 1004 0.03 1099 1099 4 
  1996 1189 0 1099 1099 4 
  1997 1055 0 1099 1099 4 
  1998 1146 0 1099 1099 4 
  1999 810 -0.12 882 882 6 
  2000 822 0 882 882 6 
  2001 1022 0 882 882 6 
 

1.00 

2002 920 0 882 882 6 
  2003 821 0 882 882 6 
  2004 896 0 882 882 6 
  2005 998 0.43 1002 1025 6 
  2006 1198 0 1002 1025 6 
 

0.81 

2007 1157 0 1002 1025 6 
  2008 915 0 1002 1025 6 
  2009 704 0 1002 1025 6 
 

0.44 

2010 1039 0 1002 1025 6 
  **Highest annual rainfall in the period 
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Appendix 4: RSI result of  Mean annual Stream flow at Tikur Wuha (m
3
/s) 

 
Mean annual Stream flow (m3/s) RSI Mean Weighed Length P Outliers 

1980 0.76 0 1.89 1.95 7 
 

0.38 

1981 2.09 0 1.89 1.95 7 
  1982 2.14 0 1.89 1.95 7 
  1983 2.69 0 1.89 1.95 7 
 

0.61 

1984 1.88 0 1.89 1.95 7 
  1985 1.71 0 1.89 1.95 7 
  1986 1.945 0 1.89 1.95 7 
  1987 2.18 1.12 2.39 2.39 3 0.08 

 1988 2.48 0 2.39 2.39 3 
  1989 2.5 0 2.39 2.39 3 
  1990 2.9 0.51 2.90 2.90 1 
  1991 2.6 -0.08 2.65 2.65 4 
  1992 2.55 0 2.65 2.65 4 
  1993 2.85 0 2.65 2.65 4 
  1994 2.6 0 2.65 2.65 4 
  1995 2.92 0.74 3.12 3.11 3 
  1996 3.6 0 3.12 3.11 3 
 

0.91 

1997 2.84 0 3.12 3.11 3 
  1998 3.86 0.04 3.39 3.39 9 
 

0.96 

1999 4.02 0 3.39 3.39 9 
 

0.72 

2000 2.66 0 3.39 3.39 9 
 

0.61 

2001 3.12 0 3.39 3.39 9 
  2002 3.42 0 3.39 3.39 9 
  2003 3.535 0 3.39 3.39 9 
  2004 3.65 0 3.39 3.39 9 
  2005 3.2 0 3.39 3.39 9 
  2006 3 0 3.39 3.39 9 
   

Appendix 5: RSI result of annual runoff coefficient 

 
Runoff coefficient of Tikur Wuha sub-watershed (C) RSI Mean Weighed Length P Outliers 

1981 0.1 0 0.11 0.11 7 
  1982 0.1 0 0.11 0.11 7 
  1983 0.14 0 0.11 0.11 7 
 

0.84 

1984 0.1 0 0.11 0.11 7 
  1985 0.09 0 0.11 0.11 7 
  1986 0.12 0 0.11 0.11 7 
  1987 0.1 0 0.11 0.11 7 
  1988 0.13 0.85 0.13 0.13 2 0.01 

 1989 0.13 0 0.13 0.13 2 
  1990 0.17 0.31 0.17 0.17 2 0.09 

 1991 0.16 0 0.17 0.17 2 
  1992 0.12 -0.16 0.14 0.14 6 0.03 

 1993 0.14 0 0.14 0.14 6 
  1994 0.14 0 0.14 0.14 6 
  1995 0.15 0 0.14 0.14 6 
  1996 0.15 0 0.14 0.14 6 
  1997 0.13 0 0.14 0.14 6 
  1998 0.17 0.88 0.18 0.18 8 0.01 

 1999 0.24 0 0.18 0.18 8 
 

0.48 

2000 0.14 0 0.18 0.18 8 
 

0.70 

2001 0.15 0 0.18 0.18 8 
 

0.93 

2002 0.2 0 0.18 0.18 8 
  2003 0.2 0 0.18 0.18 8 
  2004 0.2 0 0.18 0.18 8 
  2005 0.16 0 0.18 0.18 8 
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Appendix 6: RSI result of annual total lake evaporation as computed from pan-evaporation (mm) 

 
evaporation RSI Mean Weighed Length P Outliers 

1986 1720 0 1717 1717 2 
  1987 1713 0 1717 1717 2 
  1988 1647 -0.29 1659 1659 8 0.08 

 1989 1554 0 1659 1659 8 
  1990 1625 0 1659 1659 8 
  1991 1606 0 1659 1659 8 
  1992 1682 0 1659 1659 8 
  1993 1696 0 1659 1659 8 
  1994 1818 0 1659 1659 8 
 

0.97 

1995 1645 0 1659 1659 8 
  1996 1298 -1.83 1329 1329 5 0.00001 

 1997 1343 0 1329 1329 5 
  1998 1236 0 1329 1329 5 
  1999 1385 0 1329 1329 5 
  2000 1382 0 1329 1329 5 
  2001 1258 -0.18 1295 1295 7 0.36 

 2002 1318 0 1295 1295 7 
  2003 1376 0 1295 1295 7 
  2004 1301 0 1295 1295 7 
  2005 1331 0 1295 1295 7 
  2006 1192 0 1295 1295 7 
  2007 1285 0 1295 1295 7 
   




