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Abstract

In order to take full advantage of short-range forecasts from deterministic high-resolution
NWP models, the direct model output must be addressed in a probabilistic framework.
A promising approach is mesoscale ensemble prediction. However, its operational use is
still hampered by conceptual deficiencies and large computational costs.

This study tackles two relevant issues: (1) the representation of model-related forecast
uncertainty in mesoscale ensemble prediction systems and (2) the development of post-
processing procedures that retrieve additional probabilistic information from a single
model simulation. Special emphasis is laid on mesoscale forecast uncertainty of summer
precipitation and 2m-temperature in Europe. Source of forecast guidance is the deter-
ministic high-resolution model Lokal-Modell (LM) of the German Weather Service.

This study gains more insight into the effect and usefulness of stochastic parametri-
sation schemes in the representation of short-range forecast uncertainty. A stochastic
parametrisation scheme is implemented into the LM in an attempt to simulate the
stochastic effect of sub-grid scale processes. Experimental ensembles show that the
scheme has a substantial effect on the forecast of precipitation amount. However, objec-
tive verification reveals that the ensemble does not attain better forecast goodness than
a single LM simulation. Urgent issues for future research are identified.

In the context of statistical post-processing, two schemes are designed: the neighbourhood
method and wavelet smoothing. Both approaches fall under the framework of estimat-
ing a large array of statistical parameters on the basis of a single realisation on each
parameter.

The neighbourhood method is based on the notion of spatio-temporal ergodicity in-
cluding explicit corrections for enhanced predictability from topographic forcing. The
neighbourhood method derives estimates of quantiles, exceedance probabilities and ex-
pected values at each grid point of the LM. If the post-processed precipitation forecast
is formulated in terms of probabilities or quantiles, it attains clear superiority in com-
parison to the raw model output.

Wavelet smoothing originates from the field of image denoising and includes concepts
of multiresolution analysis and non-parametric regression. In this study, the method is
used to produce estimates of the expected value, but it may be easily extended to the
additional estimation of exceedance probabilities. Wavelet smoothing is not only com-
putationally more efficient than the neighbourhood method, but automatically adapts
the amount of spatial smoothing to local properties of the underlying data. The method
apparently detects deterministically predictable temperature patterns on the basis of
statistical guidance only.
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1 Introduction

1.1 The need for probabilistic mesoscale forecasting

Prediction of small-scale surface weather

Predictability of the atmospheric state is of great societal and economic significance.
Especially surface weather parameters are relevant for a wide range of man’s activities
and operations. For example, surface weather affects agricultural management, water
resource management, and the transportation, energy and construction sector (BMBF,
2004). As many surface weather parameters are highly intermittent, it is also crucial to
predict their timing and location as precisely as possible.

During the past decade, limited area models (LAM) have become a major source of fore-
cast guidance on small-scale surface weather. The horizontal grid spacing of operational
LAM has steadily been decreased. The model output contains more and more spatial
details. Today, most operational LAM resolve the meso-β-scale and produce forecasts
for a range of two or three days.

The core of a numerical weather prediction (NWP) model consists of a suitably discre-
tised version of the laws which approximately govern the dynamics of atmospheric flow,
augmented by so-called parametrisations of the processes that are unresolvable on the
computational grid of the model.

Uncertainty in small-scale weather forecasts

In reality, neither model formulation nor input parameters are perfect, mainly due to
the need of parametrising unresolved processes and due to operational constraints in the
collection of observational data and their assimilation. Furthermore, the atmosphere be-
haves in a chaotic way (Lorenz, 1963) so that predicted states are extremely sensitive to
small changes in model formulation and input parameters. There is substantial amplifi-
cation of errors during the time integration of a NWP model. The inherent error growth
is a consequence of nonlinearity and instability of atmospheric dynamics. Through the
so-called inverse error cascade, errors in the smallest scales induce errors in successively
larger scales. Eventually all scales are contaminated, in a systematic and/or random
way.
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1 Introduction

Thus, the predicted state of interest can possess a substantial amount of intrinsic uncer-
tainty, depending on forecast lead time, spatial scale, terrain, flow and forcing. With the
advent of high-resolution NWP models this fact can not be neglected even in short-range
forecasts since small-scale phenomena are particularly prone to forecast uncertainties.
The relation between spatial scale and prediction skill has become evident in a multitude
of theoretical and experimental studies (Lorenz, 1969; Zepeda-Arce et al., 2000; de Elía
et al., 2002; Walser et al., 2004; Casati et al., 2004).

Consequently, the output of a deterministic NWP model must not be regarded as purely
deterministic, but rather as an outcome of a random experiment that behaves according
to a given probability density function (pdf ). In other words, the output of a determin-
istic NWP model should be viewed as a realisation of a random variable and should be
described by instruments of probability theory. Especially precipitation-related forecast
products and information must be addressed in a probabilistic framework that accounts
for their intrinsic uncertainty (Fritsch et al., 1998).

User’s gain from a probabilistic forecast

The general public and specific users make many different decisions each day that de-
pend at least in part on surface weather forecasts. Decisions may either be reached
after a formal analysis or in an essentially intuitive manner. The connection between
forecasts and decision making is self-evident. If a user consulted a forecast without even
considering to use it within a decision making process, the purpose of a weather forecast
would degenerate into mere entertainment.

In order to realise the full advantage of forecasts, regardless of the nature of the activity or
of the individual’s approach to decision making, the uncertainty inherent in the forecasts
must be quantified and expressed in a concise and unambiguous manner (Murphy, 1979).
Murphy (1977) has shown that the value of reliable—and even moderately reliable—
probabilistic forecasts generally exceeds the value of traditional categorical forecasts.
The superiority of a probabilistic forecast originates from its ability to suit different
users and their different needs.

However, many users are not automatically able to properly interpret and use proba-
bilistic forecasts. Similarly, subsequent prediction systems such as the prediction of air
quality, water depth gauge, or road conditions are not immediately ready to cope with
input from probabilistic weather forecasting. An operational program of probabilistic
forecasting needs to be accompanied by a concerted effort to educate its users and to
adapt subsequent prediction systems (Mylne, 2002).

Until such an effort takes effect, users and subsequent models still demand a categorical
forecast. The direct NWP model output provides a categorical forecast, but it does
not acknowledge the uncertainty in the prediction. An alternative to the direct NWP
model output is the expected value of the random variable that underlies the prediction.
Although the expected value is categorical, it can also be understood as probabilistic.
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1.2 Existing approaches to probabilistic prediction

It is a function of the forecast pdf and takes the probabilistic nature of the direct NWP
model output into account. A good estimate of the expected value contains less noise
than a single realisation and is therefore a more reliable forecast.

1.2 Existing approaches to probabilistic prediction

Theoretical approach

In theory, probabilistic prediction could be achieved by solving equations that describe
the time evolution of the pdf of the atmospheric state vector. Such evolution equations
are known indeed: The Liouville equation and the Fokker-Planck equation (e. g. see
Ehrendorfer, 1997, for a review). The Liouville equation is based on the notion that
forecast uncertainties exclusively arise from an imperfectly known initial state and model
nonlinearities. The Fokker-Planck equation additionally allows for model imperfections
by the inclusion of stochastic elements. These equations have been successfully solved
for low-dimensional systems, such as the Lorenz system (Lorenz, 1963).

In weather forecasting though, the solution of these equations is hampered by the ex-
tremely large dimensionality of the atmospheric equations. For example, a state-of-the-
art mesoscale NWP model possesses a dimensionality of the order of 107. At present,
using the Liouville or Fokker-Planck equation in operational NWP is out of reach. Their
application is currently doomed to remain a purely theoretical approach and is not fur-
ther mentioned in this study.

Ensemble prediction

The aim of ensemble prediction is to attain a Monte Carlo sampling of the phase space
of the future atmospheric state. Ensemble prediction is a tool to investigate error growth
and infer probabilistic properties of the future atmospheric state.

In ensemble prediction, a NWP system produces several simulations so as to derive
multiple deterministic numerical weather predictions for the same forecast time. Each
simulation or ensemble member forms another realisation of the random variable that
underlies the prediction.

The simulations differ in the specification of one or several elements of the NWP sys-
tem which are subject to uncertainty. Most commonly, initial condition uncertainty is
addressed, because small differences in initial conditions can have a large impact on the
prediction. An initial condition sample is produced and a deterministic NWP model
is started from each sample element. This is the perfect model scenario which neglects
uncertainties in model formulation and corresponds to the perspective of the Liouville
equation.
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1 Introduction

An ideal ensemble design should involve perturbations of all elements of the NWP system
which are subject to uncertainty (Balzer, 1998). This vision has not been put into
practice yet, but remains as a guiding idea. Other sources of uncertainty are listed in
Section 1.3.

Statistical methods based on historical data

Probabilistic prediction has also been achieved by purely statistical methods. The de-
velopment of these methods requires a sufficiently large historical data base of NWP
model output and/or observations.

A well-known example of statistical prediction is model output statistics (MOS) (Glahn
and Lowry, 1972). Common MOS versions produce a categorical forecast, but prob-
abilistic formulations also exist (cf. Applequist et al., 2002). MOS consists in linear
regression conditional on NWP model output. In addition to linear regression, there
is a multitude of other statistical approaches, for example logistic regression, neural
networks, discriminant analysis, a classifier system (see Applequist et al., 2002, for an
overview), quantile regression (Bremnes, 2004), Markov chains (Raible et al., 1999) or
a Bayesian recursive method (Craig et al., 2001). Another example is the derivation of
statistical ensembles which are used as a supplement to dynamical ensembles (Wilks,
2002; Roulston and Smith, 2003).

Statistical methods based on historical data have shown to be a valuable contribution to
probabilistic forecasting. However, the need for a historical data set can be an obstacle.
Most methods require a data base of historical model simulations that are representative
of the model version currently in use. Due to frequent model refinements such a data
base might not be at hand so that time-consuming reruns of the model become necessary
before the statistical method can be developed.

In an attempt to limit the scope of this study, statistical methods based on historical
data sets are not further mentioned here, despite their beneficial effect on probabilistic
forecasting. Methodologies developed in this study do without historical data in order
to extend their applicability to environments that do not have historical data sets at
their disposal. Whenever such data should become available, it is recommended to use
statistical methods based on historical data as a supplementary tool in probabilistic
forecasting.

Forecaster’s subjective judgment

At some forecast centres probabilistic forecasts are issued by the forecaster. A fore-
caster’s probabilistic judgment is usually based on the deterministic output of one or
several NWP model simulations, combined with the forecaster’s experience and intu-
ition.
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1.3 Current achievements and problems in ensemble prediction

The success of subjective probabilistic forecasts have only been proven in part (Hamill
and Wilks, 1995; Krzysztofowicz and Sigrest, 1999). One problem of subjective judgment
is its dependency on the intuitive process which may vary from forecaster to forecaster,
and even from situation to situation for a particular forecaster. Another problem is that
forecasters tend to formulate forecasts in a manner designed to suit a particular user’s
needs which cannot be representative of all users. For example, this can result in an
overestimation of probabilities if forecasters tend to err on the safe side. Furthermore,
the use of subjective judgment in operational high-resolution forecasting may cause
large costs for the forecast centre, since the production of each local forecast involves
the assistance of an experienced forecaster. Due to these reasons the subjective approach
to probabilistic forecasting is not tackled in this study.

1.3 Current achievements and problems in ensemble
prediction

Overview of mesoscale ensemble prediction

During the past decade, the simulation of initial condition related errors in global en-
semble prediction systems has been well established (Toth and Kalnay, 1993; Molteni
et al., 1996; Houtekamer et al., 1996). Operational use of mesoscale ensemble predic-
tion has lagged far behind. It has been proposed that ensemble methods could also
benefit short-range mesoscale forecasts (Brooks and Doswell III, 1993; Brooks et al.,
1995). Though this is by no means guaranteed, results are generally positive (Du et al.,
1997; Hamill and Colucci, 1998; Stensrud et al., 1999; Hou et al., 2001; Wandishin et al.,
2001; Grimit and Mass, 2002). Mesoscale ensemble forecasting is on the agenda of many
weather forecasting centres. Some ensemble prediction systems have already come into
operational use, for example the short-range ensemble forecasting (SREF) system at
the National Centers of Environmental Prediction (NCEP) in the United States and
the limited-area ensemble prediction system (LEPS) of the Consortium for Small-scale
Modeling (COSMO) in Europe. A recent overview of current research and issues of dis-
cussion in short- and medium-range ensemble forecasting can be found in (Hamill et al.,
2005).

Experimental and operational limited-area ensemble prediction systems currently ad-
dress various sources of forecast uncertainty:

• initial conditions (Du et al., 1997; Misra and Yau, 2001; Walser et al., 2004),

• lateral boundary conditions (Laprise et al., 2000; Marsigli et al., 2001; Frogner and
Iversen, 2002),

• model physics (Arritt et al., 2001; Bright and Mullen, 2002),

9
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• surface conditions (Hamill and Colucci, 1997; Wen et al., 2000; Mölders, 2001;
Theis et al., 2002),

• and combinations thereof (Du et al., 1997; Stensrud et al., 2000; Hou et al., 2001;
Grimit and Mass, 2002; Bright and Mullen, 2002).

Many questions remain concerning optimal design and potential benefits of mesoscale
ensemble prediction. The best method of defining initial condition perturbations is
unclear since error growth in limited-area mesoscale models is not a straightforward
extension of error growth in global models. The presence of lateral boundary conditions
introduces an added complexity. Large scales that are provided as nesting information
at the lateral boundary are almost perfectly reproduced, whereas shorter scales behave
chaotically and diverge as in an autonomous global model (de Elía et al., 2002). Ensemble
dispersion may be inhibited even when perturbed lateral boundary conditions are applied
(Nutter, 2003). In addition, the different role of physics and surface forcing (Anthes
et al., 1985) requires special attention. In summary, it is still an open question how
errors grow and organise on the mesoscale.

Horizontal resolution and ensemble size

A drawback of operational ensemble prediction is its large computational cost due to the
need of multiple simulations. Together with the time-pressure in operational weather
forecasting and the immense complexity of a state-of-the-art NWP model, this poses a
challenge to computing environments of operational weather forecasting centres. The
result is usually a trade-off between the horizontal grid box size of the model and the
number of ensemble members. The optimal balance is still an issue of discussion.

An increase in grid box size is especially disadvantageous in mesoscale prediction. A
realistic simulation of phenomena on the meso-β-scale and meso-γ-scale requires a grid
box size of the order of 10 km and less. The model output of quantitative precipitation
benefits from decreased grid spacing in mesoscale models, mainly because the realism of
the results is improved (e. g. Mass and Kuo, 1998; Cacciamani et al., 2000; Colle et al.,
2000; Riphagen et al., 2002; Mass et al., 2002).

As the number of ensemble members puts a limit to model grid box size, operational
mesoscale prediction systems usually confine themselves to a relatively small ensemble
size, typically a size of approximately ten members. However, such a small ensemble
size can lead to considerable undersampling of the phase space of the future atmospheric
state. The undersampling problem has lately been recognized as an important issue in
the forecast quality assessment of ensemble systems (Richardson, 2001b; Mason, 2004).

Undersampling does not only arise out of practical limitations in the number of ensemble
members, but is severely aggravated by the immense dimensionality of complex NWP
models and the so-called curse of dimensionality. The curse of dimensionality expresses
a major problem in direct sampling Monte Carlo simulation of high-dimensional sys-
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tems. In order to maintain a given level of accuracy, the number of samples per variable
must increase exponentially with the number of variables. Due to the large dimension-
ality of NWP models, the undersampling problem will remain omnipresent in ensemble
prediction of weather and climate.

The undersampling problem becomes most prominent when a forecast centre puts max-
imum emphasis on small grid box size and refuses operational ensemble prediction as
a whole. Then the operational forecast is based on a single deterministic simulation
which provides only one realisation of the future atmospheric state. Due to the lack
of an ensemble, forecast uncertainties are not quantified automatically. For example,
such a situation arose at the German Weather Service (DWD) in 1999 when the non-
hydrostatic Lokal-Modell (LM) was introduced, one of the world’s leading operational
NWP models in terms of small grid box size.

The problem becomes even more relevant since the model output of a high-resolution
simulation explicitly contains small-scale phenomena. As smaller scales generally pos-
sess a shorter predictability limit, the direct model output is expected to contain a larger
amount of randomness. This can substantially impair overall forecast quality and offset
the benefits due to a smaller model grid box size if forecast uncertainties are not ad-
dressed explicitly. In fact, the objectively scored accuracy of a quantitative precipitation
forecast does not necessarily improve compared to forecasts that lack spatial detail (Mass
et al., 2002, and references within). The short predictability limit of small scales confines
the gain of high-resolution models if the application aims to increase the accuracy of the
prediction in intensity and phase at a given point (de Elía et al., 2002). In order to
realise the full advantage of the small-scale simulation despite the lack of an ensemble
or a sufficiently large ensemble, the model output needs statistical treatment.

Representation of model related uncertainty

The role of model related uncertainty has recently attracted increased attention in the
field of ensemble prediction (Smith, 2000; Palmer, 2001; Toth and Vannitsem, 2001;
Hansen, 2002). In principle, model related uncertainty arises from every part of the
model which might be formulated in one or another way. Consequently, model uncer-
tainty also refers to the uncertainty of model physics.

Model related uncertainty needs to be addressed explicitly, as results drawn from the
perfect model scenario are of limited applicability. The perfect model scenario potentially
leads to shortage of ensemble spread, i. e. underdispersiveness. Just as uncertainty in the
initial condition severely limits the utility of a single forecast even in a perfect model,
so model uncertainty severely limits attempts to obtain the forecast pdf (Smith, 2000;
Orrell et al., 2001). Experiments with complex models indicate a high relevance of model
related uncertainty. In short-range mesoscale prediction, model formulation appears to
play a larger role than initial conditions when the large-scale forcing is weak (Stensrud
et al., 2000).
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A significant part of random model error in complex weather and climate models may
be caused by neglect of sub-grid scale variability (Palmer, 2001; Lin and Neelin, 2002;
Shutts, 2003). Because atmospheric models have finite grid sizes, they must parametrise
sub-grid phenomena in terms of grid-scale variables. A measurement of the effect of
the collective behaviour of unresolved processes must be some sort of average from an
ensemble of fluctuating entities; it is inherently probabilistic. Parametrisations replace
probability density functions in our physical description by conditional expectations that
we then call deterministic bulk formula. Deterministic bulk representations of small-
scale processes within a grid box only account for their mean or first-order effect, higher
moments associated with sub-grid variability are not explicitly considered.

The amount of sub-grid scale variability can be substantial, as (Xu et al., 1992) have
shown for convective processes in a cloud resolving model. Even if the sub-grid scale
motions are energetically weak compared with the large-scale circulations, sub-grid scale
variability can act as noise forcing that potentially shows up at the large scales. The
upscale transformation from small-scale to large-scale error is a fundamental character-
istic of error growth in weather and climate modelling. It is associated with an upscale
energy transfer, also called energy backscatter (e. g. Shutts, 2004). Possible scenarios for
an upscale cascade of model error are described in (Palmer, 2001). However, little is un-
derstood about the extent to which sub-grid scale variability affects large-scale motions
stochastically in weather modelling.

A few years ago, most operational ensemble systems followed the perfect model scenario,
i. e. they neglected uncertainties in the model formulation. Recently, more attempts have
been made to account for model uncertainty. One approach is stochastic parametrisa-
tion (Buizza et al., 1999; Palmer, 2001; Lin and Neelin, 2002) which aims at the rep-
resentation of sub-grid scale variability through introducing a stochastic element into
current parametrisations. Another approach is the multi-model or multi-scheme ensem-
ble (Palmer et al., 2000; Krishnamurti et al., 2000; Wandishin et al., 2001; Richardson,
2001a; Mylne et al., 2002) which pools several parametrisation schemes or models in one
ensemble. Both approaches are unsatisfying, at least in their current state. Stochastic
parametrisations are still in their infancy and multi-model or multi-scheme ensembles
lack scientific underpinning. A more extensive overview of existing approaches follows
in Section 3.1.

1.4 Aims of this study

This study aims to set the basis for further improvements of the ensemble approach and
it aims to develop novel methods of probabilistic forecasting that improve the output
of a single deterministic forecast and are suited for immediate operational use. The
study focusses on mesoscale short-range forecasting of surface weather parameters in
Europe. Forecast uncertainty encompasses random error only; systematic errors are not
addressed in this study. Special focus is laid on small-scale forecast uncertainties and on
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the warm season. Source of forecast guidance is the deterministic high-resolution model
LM of DWD.

Isolation of certain aspects

This study looks into specific aspects of probabilistic forecasting in isolation instead of
devising a fully-fledged probabilistic prediction system. The study tackles two prob-
lems: (1) stochastic representation of model related uncertainties in mesoscale ensem-
ble forecasting and (2) probabilistic mesoscale forecasting when only one deterministic
simulation is available, i. e. when the undersampling problem is most prevalent. The
first problem is addressed through the implementation of a stochastic parametrisation
scheme. The second problem is addressed through the development of statistical post-
processing methods.

Stochastic parametrisation in the LM In terms of model related uncertainties, the
study aims to gain more insight into the effect and usefulness of stochastic
parametrisation schemes in short-range ensemble forecasting. In an attempt to
simulate the stochastic effect of unresolved processes on the predictability of the
resolved scales, this study designs a stochastic parametrisation scheme and imple-
ments it into the LM. The stochastic scheme introduces a random element into
the existing parametrisation schemes of the LM. An ensemble of simulations is
produced and each ensemble member is generated through a different realisation
of the random element.

Statistical post-processing of LM output In terms of probabilistic forecasting on the
basis of one deterministic simulation, the study aims at the development of a sta-
tistical post-processing scheme that accounts for forecast uncertainty in the oper-
ational LM output and does without ensemble simulations, historical error statis-
tics, or the operational interaction of a forecaster. The statistical post-processing
scheme attempts to parametrise forecast uncertainty, in the sense that it does
not trace forecast uncertainty to its origins, but uses ancillary indicators for its
estimation. In this study, two different schemes are developed: the so-called neigh-
bourhood method and wavelet smoothing. If the respective post-processing products
prove worthwhile, the schemes are envisaged to become operational at DWD.

The issue emerged from a bilateral project of DWD and the University of Bonn. In
1999 DWD introduced the high-resolution NWP model LM into operational use.
The model has an exceptionally small grid box size and is used for high-resolution
short-range forecasting. However, the benefits of small grid box size came with a
price tag, as one simulation demanded such a large amount of computing power
that an operational ensemble prediction system went out of reach. Due to limited
predictability of small scales, DWD ran into problems in the interpretation of the
forecast. DWD called for a pragmatic remedy that would require a minimum
amount of computing power and be suitable for almost immediate operational use.
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Pretensions of the approaches in this study

The stochastic parametrisation scheme and the statistical post-processing scheme are
associated with very different intentions and expectations. In order to understand the
achievements of this study, their respective pretensions is outlined in the following para-
graphs.

The LM stochastic parametrisation scheme aims at gaining more insight into the stochas-
tic simulation of model uncertainties in ensemble prediction. The field is relatively unex-
plored so that it is probably too early for downright answers in terms of an operational
system. This study rather aims at defining relevant questions which must be tackled by
future research. Furthermore, the stochastic parametrisation scheme could serve as a
guideline in the development of the LM post-processing schemes. The experimental LM
ensembles might provide insight into LM small-scale predictability and might be gener-
alized in some way. Thus, the computationally less demanding post-processing method
might be tuned to resemble the results of the LM ensemble and then be able to roughly
mimic small-scale forecast uncertainties without actually producing an ensemble.

The statistical post-processing schemes need to satisfy the technical requirements of op-
erational use; they must be application-oriented, ready-to-use and computing-efficient.
The statistical post-processing schemes should attain noticeable improvements in prob-
abilistic forecasting with a minimum of effort. The post-processing schemes do not aim
at replacing the ensemble approach, but are designed as a supplementary tool in situa-
tions that temporarily do not allow for sufficient ensemble simulations. The value of the
post-processed forecast is limited compared to that attainable through an ensemble of
forecasts that can properly account for forecast uncertainty due to initial conditions and
model related errors (cf. Toth et al., 2001). However, conceptual deficiencies and compu-
tational limitations still prevent the ensemble approach from reaching its full potential.
The LM statistical post-processing schemes aim at a remedy for these shortcomings.
Note that this should not discourage any simultaneous effort to improve the ensemble
design itself.

Possible use in a wider context

Investigations of this study take place in very special situations. The experimental
ensembles exclusively focus on the stochastic effect of sub-grid scale processes and neglect
all other sources of forecast uncertainty; the statistical post-processing scheme pretends
that no ensemble simulations are available at all.

The findings of this study may also be useful in various other contexts of proba-
bilistic forecasting. The investigation of the stochastic parametrisation scheme can
show whether such schemes might benefit existing ensembles that currently neglect
the stochastic effect of sub-grid scale processes. The investigation of the statistical
post-processing scheme can indicate whether statistical post-processing might be able to
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enrich the statistical information derived from a small-sized mesoscale ensemble which
severely suffers from undersampling.

Forecast products and variables

Recall that the LM output should be regarded as a realisation of a random variable.
This study aims to estimate certain statistical properties of its underlying pdf. The
estimates are issued at each grid point and output time of a LM simulation so that they
can be coded in the same way as the operational LM output and used as supplementary
information. The following statistical properties are estimated:

Exceedance Probability The exceedance probability is a function of a certain threshold
value and denotes the probability that the observation will exceed the threshold.
This probability is assumed to equal the probability that the forecast exceeds a
certain threshold. The exceedance probability is interesting in terms of warnings,
especially if the exceedance of a certain threshold is associated with the sudden
onset of disastrous weather.

Quantiles Quantiles are the inverse of the exceedance probability. Quantiles denote
certain exceedance values and are a function of a probability. If the quantile is
correctly forecast, there will be a probability p that the corresponding quantile is
greater than the observation. Again, quantiles are interesting in terms of warnings,
especially if the forecast user wishes to control a certain amount of risk.

Expected Value In this study the estimate of the expected value is intended for those
users who are not trained to cope with probabilistic formulations. Loosely speak-
ing, the expected value is the value which would be attained on average if an
infinite number of realisations of the same random variable were available. For
example, the average of a perfect ensemble would be an unbiased estimator of the
expected value of the forecast. The expected value is a categorical forecast which
is reduced to features that are deterministically predictable. A good estimate of
the expected value should be more reliable than the direct model output. The
expected value can also be seen in the context of signal preservation and noise
removal. The signal represents features that are deterministically predictable and
the noise represents others. The field of the estimated expected values is then a
denoised forecast.

The experimental ensemble derives estimates of the expected value and the exceedance
probability, the neighbourhood method derives estimates of all three quantities and
wavelet smoothing derives estimates of the expected value.

A selection of forecast variables is considered which bear special relevance to users: pre-
cipitation at the ground (1h-, 6h-, 12h-, 24h-accumulations), temperature in 2m height
(hourly, minimum, maximum), wind speed in 10m height (mean and gusts), cloud cover
and surface net radiative flux (solar and thermal). For the sake of brevity, this report
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restricts itself to the presentation of selected variables. In terms of the experimental LM
ensemble, the report shows investigations of the precipitation forecast only; in terms of
the statistical post-processing scheme the report shows investigations of precipitation
and hourly 2m-temperature (temperature in 2m height above the ground).

1.5 Overview of this study

After a brief introduction to the model LM (Chapter 2), Chapter 3 deals with the
stochastic parametrisation scheme which is developed in this study. The chapter gives
an overview of existing approaches to the simulation of model uncertainties and outlines
the benefits of stochastic parametrisation schemes. It then describes the design of the
LM stochastic parametrisation scheme and draws conclusions from the corresponding LM
ensemble experiments. These experiments are carried out for a case study of extreme
summer precipitation (10 July 2002) and for 14 additional short-range forecasts which
are investigated statistically.

Chapters 4 and 5 present the post-processing schemes that estimate the statistical prop-
erties of the underlying pdf from the data of a single deterministic LM simulation.
Two methods are developed: The neighbourhood method and wavelet smoothing. The
neighbourhood method (Chapter 4) is based on the notion of spatio-temporal ergodicity
including explicit corrections for enhanced predictability from topographic forcing. It
merges the estimation of quantiles, expected value and exceedance probabilities into a
single concept. Wavelet smoothing (Chapter 5) originates from the field of image de-
noising and includes concepts of multiresolution analysis and non-parametric regression.
In this study, wavelet smoothing estimates the expected value, but the method may be
extended to the additional estimation of exceedance probabilities in a future study.

These chapters are organised as follows: First, the new post-processing scheme is put into
the context of existing methodologies. Similarities and differences are revealed and the
particular design of the new scheme is motivated. Underlying assumptions are discussed
in detail and an optimal configuration is sought. The schemes are applied to the raw
LM output of the case study above (10 July 2002). First conclusions are drawn from
eye-ball inspection of the post-processed forecast fields.

Chapter 6 supplements the subjective assessment by objective verification of 15 short-
range forecasts. The ensemble forecasts and the post-processed forecasts are compared to
corresponding observational data and forecast goodness is evaluated. Forecast goodness
is condensed into a few verification measures which allow for a direct comparison between
the results of different forecast systems. Chapter 7 gives a summary of the whole study
and compiles the main conclusions.
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2 Lokal-Modell (LM)

2.1 Overview

The LM is a numerical model of the atmosphere, designed to model the meso-β- and
meso-γ-scale. Its development was organised as an internal project of DWD in the 1990’s.
In 1999 the LM replaced the regional model Deutschland-Modell (DM) at DWD and the
LM is the regional part of the DWD operational modelling system since then. Today
LM is also the basic model component of the Consortium for Small-scale Modeling
(COSMO), an international association of currently seven meteorological services in
Europe. A major use of the model is its application to operational weather forecasting
within the COSMO system.

The LM is a non-hydrostatic, elastic model that is designed to cover all resolutions from
50 km to 50m. The development of the LM was motivated by the desire to decrease
the grid spacing of operational weather forecasts below 10 km. It is an attempt to
capture explicitly all small-scale, short-duration severe weather events and significant
flow systems which are related to the non-hydrostatic scales of motion. The key issue is
the numerical prediction of near-surface weather.

Using a model with a grid spacing below 10 km for operational weather forecasting broke
new ground in science. The operational version of LM is run with a grid spacing of 7 km
compared to a 14 km grid spacing of its predecessor DM.

2.2 Short description

A description of the LM and some examples of model predictions at the meso-γ-scale can
be found in Steppeler et al. (2003). An extensive documentation of the LM (Doms and
Schättler, 1999) is available in the Internet (www.cosmo-model.org). The LM undergoes
constant refinements and new versions are frequently released. Updated information on
DWD models are regularly presented in the “Quarterly Report of the German NWP Sys-
tem” (www.dwd.de/en/FundE/Veroeffentlichung/Quarterly_new/Quarterly_new.htm).
This study uses versions 2.14 and 2.19 which were both released in the year 2002. In
the following subsections, the basic features of the LM are described.
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Model equations

The LM is a non-hydrostatic model based on the primitive equations. Prognostic vari-
ables comprise the three-dimensional wind vector, pressure, temperature, specific water
vapour content, specific cloud water content, and (optional) specific cloud ice content.
A multitude of further variables are calculated diagnostically, such as the total density,
flux of rain and snow, cloud cover, 2m-temperature and wind gusts.

Initial and boundary conditions

Initial conditions are generated by LM assimilation runs using the nudging method
(Schraff, 1997; Schraff and Hess, 2002). As the LM is a limited-area model, it also re-
quires lateral boundary conditions during the simulation. They are usually provided
by the simulation of a coarse-grid global model via one-way nesting using the relax-
ation technique by Davies (1976). In the operational setting of DWD, forecasts of their
global model GME1 are used. The top boundary condition of the LM is a rigid lid,
supplemented by a Rayleigh damping layer.

Model grid

In the horizontal, spherical co-ordinates are used. The grid is rotated on the sphere, so
that the model domain is almost uniform and avoids regions with strong convergence of
the meridians. The equations are formulated on an Arakawa-C grid (Arakawa, 1966).
In the vertical, a generalized terrain following co-ordinate is used. The thickness of
the layers increases with distance to the model surface. In the operational setting of
DWD, horizontal grid spacing is 7 km and the model atmosphere is divided into 35 layers.
Vertical spacing is less than 100m in the planetary boundary layer and almost 1 km in the
upper troposphere. The highest vertical level is located at a pressure level of 20 hPa.

Numerical integration

The model equations are discretised in time and space and their solution is derived
by numerical integration. The numerical integration scheme has to be computationally
effective and should yield a sufficient degree of accuracy.

The LM integration scheme splits fast and slowly varying modes of motion. The time
integration method is the leapfrog scheme (Klemp and Wilhelmson, 1978). Standard
second order differences are used for the evaluation of the slow mode tendencies. For
the fast modes the integration step is subdivided into a number of small time steps and

1The expression GME is a combination of its predecessors: GM (Global-Modell) and EM (Europa-
Modell)
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2.2 Short description

a split-explicit scheme is used. Horizontal motion of fast and slow modes is treated
explicitly, whereas vertical motion is treated by the implicit Crank-Nicholson scheme
(e. g. Großmann and Roos, 1994).

Parametrisations

A multitude of physical processes operates on small scales that are not resolved by
the model grid. However, many sub-grid scale processes have a considerable effect on
the resolved scales. Prominent examples are radiation, convection, cloud microphysics
and turbulence. Their effect is covered by parametrisations that formulate the sub-
grid scale forcing as deterministic functions of the resolved scales. An overview of LM
parametrisations is given in Heise (2002).

The heating rate due to short-wave and long-wave radiation fluxes is calculated by
the δ-two-stream approximation of the radiative transfer equation according to Ritter
and Geleyn (1992). The parametrisation scheme for the formation of grid-scale clouds
and precipitation is based on a Kessler-type bulk formulation (Kessler, 1969). Moist
convection is parametrised by the mass flux scheme of Tiedtke (1989). Vertical diffusion
due to turbulent transport is represented by a prognostic equation for turbulent kinetic
energy (Raschendorfer, 2001) that is a level 2.5 closure scheme according to Mellor and
Yamada (1974). The lowest model layer is assumed to be located within the Prandtl
layer. A stability and roughness-length dependent surface flux formulation according to
Louis (1979) is used.

For land surfaces, the soil-vegetation-atmosphere-transfer (SVAT) model TERRA pro-
vides the temperature and the specific humidity at the ground. Usually SVAT models
are classified as parametrisations, too, although they mainly consist of explicit forecasts
of temperature and humidity in several soil layers.

Additionally, parametrisations need external parameters, such as orographic height, sur-
face type or roughness length. Due to their close relation to parametrisation schemes,
their determination is also classified as a parametrisation.

Overall picture

The structure of the LM is made up of several modules. The sequence of actions within
one slow mode time step (Fig. 2.1) is repeated again and again during a model simula-
tion. First, the parametrisation schemes are invoked which calculate the parametrised
forcings or tendencies. Then the parametrised forcings are added to the grid scale forc-
ings and enter the numerical integration scheme that modifies the prognostic variables.
An exception is the parametrisation of turbulence, as vertical motion is integrated im-
plicitly, not explicitly. The turbulence parametrisation is directly entangled with the
implicit integration scheme (not shown in Fig. 2.1). The relevant tangible output of the
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Figure 2.1: Sequence of actions within one slow mode time step. The modules are invoked
clockwise, starting at the upper left. The prognostic variables are in the
center of the diagram and the diagnostic variables at the brim are used for
communication between the modules (after Ament, 2001).

turbulence scheme are the turbulent transfer rates that enter the integration scheme.
Only a small part of the entire parametrised forcing of turbulence shows up explicitly.

Implementation

The implementation of the LM is based on features of FORTRAN 90 and is suitable for
parallel computers using the communication standard message passing interface (MPI).
The code performs on a variety of platforms and is designed to facilitate the co-operation
of different model developers.
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3 Stochastic parametrisation in the
Lokal-Modell

In order to set the basis for improvements in mesoscale ensemble forecasting, a stochas-
tic parametrisation scheme is implemented into the LM and experimental ensembles are
produced. This endeavour aims to give insight into the effect and usefulness of stochastic
parametrisation schemes in mesoscale forecasting. Additionally, the findings are envis-
aged to serve as a guideline in the development of the post-processing schemes in this
study.

First, Section 3.1 gives an overview of existing approaches that deal with the simulation
of random model error and motivates the use of a stochastic parametrisation scheme in
more detail. Then the design of the stochastic parametrisation scheme is introduced in
Section 3.2. Experimental ensembles are produced for a case study (Section 3.3) and
then for a forecast data set covering two weeks (Section 3.4). The case study gives a
subjective impression of the scheme’s impact and is also used to explore sensitivities to
the setup of the scheme. The more extensive data set serves as a basis for a statistically
more robust analysis of simulated error growth. Furthermore, the data are used in
Section 6.7 which assesses forecast goodness by comparison with observational data.
The outcome of the ensemble experiments is discussed in Section 3.5. The experiments
are juxtaposed with related research, possible deficiencies of the scheme are raised, and
its use in the development of the statistical post-processing scheme is discussed.

3.1 Existing approaches to the representation of

model uncertainties

Subsection 3.1.1 presents a brief overview of past research activities that have already
dealt with stochastic approaches to the representation of model uncertainties. Subsec-
tion 3.1.2 juxtaposes the stochastic approaches with the multi-model and multi-scheme
approaches. These approaches are more pragmatic and much more popular than the
stochastic approaches, but lack scientific underpinning.
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3.1.1 Stochastic approaches

Little is known about the dynamics of model error in complex systems, but some experi-
ments have been carried out with low-order chaotic models (Smith et al., 1999; Judd and
Smith, 2001; Nicolis, 2003). Recent results (Judd and Smith, 2001) establish that, given
an imperfect nonlinear chaotic model of a deterministic system, better state estimation
and better probability forecasts can almost certainly be obtained by using a stochastic
model.

Since the landmark paper of Hasselmann (1976) the use of stochastic noise to represent
unpredictable small-scale variability has become familiar in a number of geophysical
models and in a number of different research fields. A review on stochastic modelling
can be found in Penland (2003) or Imkeller and von Storch (2001).

In the field of complex NWP models and general circulation models, the use of stochas-
tic noise has only recently gained attention (Buizza et al., 1999; Palmer, 2001; Lin and
Neelin, 2002). There has been an increasing awareness that the neglect of sub-grid scale
variability may be a cause of insufficient ensemble spread. Stochastic parametrisation
schemes could improve ensemble outcomes by addressing another origin of uncertainty
that has been left out so far. Its future implementation into existing prediction systems
is currently on the agenda of numerous weather forecasting centres. Expectations are
especially high in terms of short-range mesoscale forecasting since the perturbation of
initial conditions and lateral boundary conditions have not led to a sufficient represen-
tation of forecast uncertainty so far.

One way of representing sub-grid scale variability is through introducing a stochastic ele-
ment into current parametrisations. Papanicolaou and Kohler (1974) show that rapidly
varying quantities with small but finite correlation times may be treated as stochas-
tic noise. However, the best method of defining a stochastic parametrisation scheme
is unclear. Only few experiments have been carried out with NWP models that are
used operationally otherwise (Evans et al., 1998; Buizza et al., 1999; Bright and Mullen,
2002; Shutts, 2004) and very little experience has been gained in terms of high-resolution
modelling. Many questions are still unanswered.

Since 1999 the European Centre of Medium-Range Weather Forecasts (ECMWF) has
been applying a stochastic parametrisation scheme in the operational version of their
global ensemble prediction system. One of its main achievements is an improvement
of the short-range precipitation forecast (Buizza et al., 1999). The scheme is simplistic
though and needs further research and development (Shutts, 2004).

3.1.2 Multi-model and multi-scheme approaches

Obviously, the application of stochastic methods in operational NWP models is still in
its infancy. Nevertheless, a simulation of model related uncertainties is urgently needed.
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This discrepancy led to the development of multi-model and multi-scheme approaches
which are much more common in operational weather forecasting today.

In a multi-scheme ensemble the model uses different parametrisation schemes in each
ensemble member while the multi-model approach simply combines different models in
one ensemble. Multi-model approaches offer a way to address model uncertainties with
a minimum of effort in ensemble system development. Multi-scheme approaches involve
somewhat more effort, as the schemes have to be tuned to the respective model first.

First experiments have shown that, despite the larger ensemble size, the quality of an
initial condition ensemble is not superior to that of the multi-model ensemble (Ziehmann,
2000). Multi-model ensembles have been successfully applied to a variety of time scales,
ranging from short-range forecasting to climate change scenarios (Palmer et al., 2000;
Krishnamurti et al., 2000; Wandishin et al., 2001; Richardson, 2001a; Mylne et al.,
2002).

However, neither multi-model nor multi-scheme ensembles explicitly address the neglect
of sub-grid scale variability, because each individual scheme or model still uses deter-
ministic bulk formulae. The probability density function of sub-grid scale processes is
assumed to be sharp around the mean and the ensemble accounts for the fact that the
mean itself is not well known. Each individual model or scheme still aims at simulating
the most probable state. As a practical consequence, the multi-model or multi-scheme
ensemble may yield poor results in terms of estimating the risk of extreme events.

Additionally, a multi-model or multi-scheme ensemble can pose problems in the interpre-
tation of its direct output. The individual schemes or models may possess very different
error characteristics which can be flow-dependent or entirely unknown. The ensemble
forecasts cluster strongly by scheme or model. It may be necessary to assign weights to
the individual simulations, but their definition is unclear.

As long as the stochastic approach is still in its infancy, multi-model and multi-scheme
ensembles are a valuable approach to the representation of model uncertainties. However,
the quick success of multi-model ensembles should not hide the fact that the stochastic
approach is theoretically more sound. Stochastic model formulation needs continued
research effort so that the approach may eventually mature and provide convincing
answers to ensemble prediction at some point in the future.

3.2 Design of the stochastic parametrisation

scheme

In order to explore the use of stochastic parametrisation schemes in high-resolution
modelling, this study implements such a scheme into the LM. The scheme is similar to the
operational scheme at ECMWF, but adapts to the smaller grid size and shorter time step
of the LM, contains several upgrades such as an energetically consistent perturbation of
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the turbulence scheme, a perturbation of roughness length and a correction for energetic
inconsistency.

3.2.1 Notation and overview

As most other climate or weather prediction models, the LM subdivides the vertical
and horizontal extent of the atmosphere into a finite number of layers and grid boxes
(cf. Chapter 2). At each grid box, a vector e is defined that contains the seven prognostic
variables (cf. Chapter 2). The model possesses a dimensionality of 107.

The operational version of the LM does not contain any stochastic elements. Its
parametrisation schemes are based on deterministic bulk formulae P

(
e(t);α

)
that are

functions of the prognostic variables e on the model grid and functions of fixed param-
eters α that need to be set empirically and are independent of the simulation.

Prognostic variables of a future point of time are calculated by numerical schemes which
use a time step ∆t. The prognostic variables at time t + ∆t are a function of the non-
parametrised processes A and the parametrised processes P.

e(t+ ∆t) = e(t) + ∆t ·
{
A

(
e(t)

)
+ P

(
e(t);α

)}
. (3.1)

As the choice of the particular scheme is not in the focus of interest here, Eq. 3.1 is
formulated in terms of the simple Euler forward scheme, although the LM applies more
complex schemes (cf. Chapter 2). In the context of this study, a model simulation can
be seen as the successive application of Eq. 3.1.

There are about as many different approaches to stochastic parametrisations as there
are investigations in this field. The perturbations can enter into different parts of the
parametrisations P

(
e(t);α

)
. Some examples are listed here.

Input fields e: Lin and Neelin (2000) and Bright and Mullen (2002) perturb input
fields e before they enter the parametrisation schemes. Lin and Neelin (2000)
perturb a measure of convective available potential energy (CAPE) before its use
in the convective bulk formula and Bright and Mullen (2002) perturb input fields e
of the convective trigger function. Aside from their use in parametrisation schemes,
the prognostic variables e remain unperturbed.

Tunable parameters α: In addition to the perturbation of input fields e, Bright and
Mullen (2002) perturb a tunable parameter α, the critical bulk Richardson number
in the turbulence parametrisation scheme.

Parametrised tendency P(e(t);α): The operational ECMWF ensemble prediction sys-
tem directly perturbs the parametrised tendency P(e(t);α) which represents the
net diabatic forcing from all parametrisation schemes (Buizza et al., 1999).
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Recently, the research department at ECMWF has started to perturb the non-
parametrised tendency as well. Shutts (2004) developed a stochastic backscatter forcing
which introduces vorticity perturbations into the model flow.

The LM stochastic parametrisation scheme of this study mainly follows the scheme of
the operational ECMWF system (Buizza et al., 1999) and transfers the approach from
a global model to a limited-area high-resolution model. In addition to the ECMWF
scheme, the LM stochastic scheme contains several upgrades such as an energetically
consistent perturbation of the turbulence scheme, a perturbation of roughness length
and a correction for energetic inconsistency.

The LM contains four individual parametrisation modules: cloud microphysics, turbu-
lence, convection and radiation scheme. Stochastic forcing enters the cloud microphysics,
convection and radiation scheme via the perturbation of their net diabatic forcing (Sec-
tion 3.2.2). For the sake of simplicity, a separate treatment of these parametrisation
schemes is omitted.

Due to the specific design of the LM, the tendencies of the turbulence scheme are not
included in the perturbation of the net diabatic forcing, as the respective tendencies
do not explicitly appear in the code of the model. Thus, stochastic forcing enters the
turbulence scheme via the perturbation of input parameters (Section 3.2.3).

The choice of input noise is discussed in Section 3.2.4. An attempt is made to restore
energetic consistency with respect to radiative forcing (Section 3.2.5). Additionally,
stochastic forcing enters the turbulence scheme via the perturbation of a tunable pa-
rameter: the roughness length (Section 3.2.6). By perturbing the roughness length, the
LM ensemble demonstrates how the perturbation of tunable parameters can be generally
included in a stochastic parametrisation scheme.

3.2.2 Cloud microphysics, convection and radiation scheme

The perturbations of the cloud microphysics scheme, the convection scheme, and the
radiation scheme follow the approach of Buizza et al. (1999). The perturbation directly
accesses the net diabatic forcing Pm/c/r of these schemes. At every grid point r and
at every time t the parametrised tendency P(e(t);α) is multiplied by a random num-
ber

〈
x(r, t)

〉
D,T

:

P′
m/c/r

(
e(t)

)
≡

〈
x(r, t)

〉
D,T

· Pm/c/r

(
e(t);α

)
. (3.2)

The indices D, T imply some spatio-temporal auto-correlation of the random numbers
which are specified in Section 3.2.4. The multiplication is carried out for each component
of the state vector e and for all vertical levels. The random number varies in time and
horizontal directions, but the same number is used for different prognostic variables
within the atmospheric state vector and for different vertical layers.

In the experimental LM ensemble, each ensemble member results from the iterative
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application of the perturbed equations:

ej(t+ ∆t) = ∆t ·
{
A

(
ej(t)

)
+ P′

m/c/r

(
ej(t);α

)}
. (3.3)

The perturbed equations arise from a series of random numbers
〈
xj(r, t)

〉
D,T

that is

unique to each ensemble member j. The random numbers are distributed according to a
specific probability distribution function that is chosen a priori. Note that the perturbed
equations (Eq. 3.3) have a discretised form of the Langevin equation (Gardiner, 1997)
which is the prototypical stochastic differential equation.

3.2.3 Turbulence scheme

Due to the specific design of the LM, the perturbation of the net diabatic effect (Eq. 3.2)
does not include the tendency from the turbulence parametrisation scheme. As the
LM integrates the turbulence part of the parametrised tendencies implicitly, the ten-
dency Pturb

(
e(t);α

)
due to turbulence is not directly accessible in the LM source code.

Instead of perturbing the tendency itself, the stochastic scheme perturbs the diffu-
sion coefficients for turbulent vertical transport of momentum and heat. The diffusion
coefficients directly relate to the turbulence tendency via the closure approximation
(cf. e. g. Stull (1988)). As the diffusion coefficients are calculated from a combination of
grid-scale fields and fixed parameters, the perturbation implicitly addresses both input
fields e and tunable parameters α.

The perturbation of turbulence is directly connected with the perturbation of the other
three parametrisation schemes, because the stochastic scheme multiplies the diffusion
coefficients by the same random number as the net diabatic forcing P′

m/c/r (Eq. 3.2).
In contrast to the perturbation of tendencies, the perturbation of the diffusion coeffi-
cients has the positive side-effect of conserving the energetic consistency of parametrised
tendencies with associated surface fluxes.

3.2.4 Choice of random numbers

Determining the specific pdf of the input noise is one of the key issues in the development
of a stochastic parametrisation scheme. The calibration of stochastic parametrisation
schemes is still subject of current discussion and research. As this is the very first
approach to implementing stochasticity in the LM, the choice of input noise follows
the design of the operational scheme at ECMWF (Buizza et al., 1999) and adapts the
approach to the smaller grid size and shorter time step of the LM.
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The distribution function

Following the ECMWF scheme (Buizza et al., 1999), the pdf of the random numbers is
chosen to be uniform. The random number

〈
xj(r, t)

〉
D,T

is sampled uniformly from the

interval [1 − a, 1 + a] where a is a fixed parameter of noise amplitude (0 < a ≤ 1).

Strictly speaking, there are more scientific grounds for a Gaussian distribution, because
the central limit theorem states that a multi-scale dynamical system may be approxi-
mated as depending on the realisations of a white-noise process under certain conditions
(cf. e. g. Papanicolaou and Kohler, 1974; Penland, 2003). However, the uniform distribu-
tion is also justifiable, because it is still superior to the delta-function which is implicitly
applied in the deterministic parametrisation schemes of the operational LM version.

Noise amplitude and spatio-temporal auto-correlation

Once the shape of the distribution has been chosen, the values of the noise amplitude a
and the spatio-temporal noise auto-correlation (D, T ) have to be selected. In terms
of the auto-correlation function, the approach of Buizza et al. (1999) is followed: The
random numbers are identical in a spatial region of D×D grid boxes and during a time
interval of T time steps of the model integration. Apart from the constancy within boxes
and time intervals, the auto-correlation is zero.

Operational values of amplitude a and auto-correlation D and T can be determined
through an empirical optimisation or tuning process. Buizza et al. (1999) pick several
configurations of amplitude a and auto-correlation D and T , carry out fairly extensive
test simulations for each configuration and apply the one giving best verification results
in future operational use. However, this procedure is only feasible in generously equipped
computing environments like that at ECMWF.

As a fully-fledged tuning process is associated with prohibitive computational costs, this
study has to choose the noise properties a priori. The a priori choice of noise properties
is relatively unexplored. Perturbations in the parametrisation increments generated by
the stochastic scheme are meant to represent statistical fluctuations about the ensemble-
mean value. In case of convective parametrisation one could relate these fluctuations to
the low convective cloud population density so that the number of clouds within a grid
box fluctuates substantially (Shutts, 2004). Either observational data or simulations
from a model with a finer horizontal mesh size might serve as a guidance. Bright and
Mullen (2002), for example, base their estimate of temporal auto-correlation on radar-
derived information about the lifetime of individual convective cells, but also admit that
their estimate is somewhat arbitrary. Especially the discrepancy between the size of
individual convective cells and a model grid box is a problem. Principally, problems
of this kind are always expected to come up, when applying observational findings to
model grid box variables.

As a first step, this study carries out a sensitivity study (cf. Section 3.3). The study
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Table 3.1: The parameter settings of the four experimental ensembles with stochastic
forcing. ∆x denotes the grid spacing of the model and ∆t denotes the time
step in the model integration.

Amplitude a Spatial Auto-Correlation D Temporal Auto-Correlation T
LLL 0.25 5 · ∆x = 35 km 4 · ∆t = 160 s
MLL 0.50 5 · ∆x = 35 km 4 · ∆t = 160 s
HLL 1.00 5 · ∆x = 35 km 4 · ∆t = 160 s
HHH 1.00 10 · ∆x = 70 km 16 · ∆t = 640 s

investigates the impact of the injected noise on the ensemble forecast by applying four
different configurations of noise amplitude and auto-correlation (see Tab. 3.1). In relation
to the grid box size and time step of the respective model, the values of D and T are
equivalent to those of the ECMWF setup (cf. Buizza et al., 1999). In an absolute sense,
the values D and T are considerably smaller here, since the grid box size of the LM is
much finer. The configurations are termed LLL, MLL, HLL and HHH, where L denotes
“low”, M denotes “medium” and H denotes “high”. The denotation is specified in order
of amplitude, spatial auto-correlation and temporal auto-correlation.

Results of the sensitivity study are presented in Section 3.3. The crude spatio-temporal
correlation of the random numbers is refined in Section 3.4. Details are given there.

Random number generator

Before concluding this subsection a brief remark should be made about the random
number generator that is applied throughout the investigations. The need for a careful
choice of an appropriate generator should not be underestimated (Press et al., 1992;
Penland, 2003). A fairly efficient, but simple random number generator is used: the basic
generator of the NAG Fortran Library Mark 19. It applies a multiplicative congruential
algorithm and its period is 257. The random number generator is used to produce a
series of random numbers during LM simulations which have a maximum lead time of
48 hours and a maximum of 325 × 325 grid boxes. As the time step of the integration
is ∆t = 40 seconds, the generator is invoked 4320 consecutive times on a maximum of
105625 grid boxes each. In this application the period of the generator is still ample and
the use of the generator appears justified.

Another remark should be made on the implementation of the random number generator
in the parallel computing environment of the LM. All random numbers are generated
by a single process and are then distributed to the remaining processes. This approach
does not take full advantage of the available computing resources, but ensures that the
random numbers satisfy the statistical properties that are guaranteed by the generator.
Parallelisation of the random number generator would run the risk of altering these
properties. In order to make sure that the statistical properties are still satisfied to a
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sufficient extent, the resulting numbers would have to undergo an additional statistical
test.

3.2.5 Restoring energetic consistency in surface heat fluxes

Introductory Remarks

The stochastic perturbation of the parametrised tendencies in Eq. 3.2 is not energetically
consistent with associated surface fluxes of heat and momentum. This fact is simply ne-
glected in the ECMWF scheme. In order to regain energetic consistency the perturbation
of parametrised tendencies should be accompanied by a surface flux correction.

This study takes a first step towards an energetically consistent scheme by addressing
the surface heat flux due to solar radiation. The heat flux is adjusted in a way as to
be energetically consistent with the stochastic perturbation of temperature tendencies
from the radiation scheme. A virtual solar radiation flux is defined which cumulatively
accounts for energetic discrepancies due to stochastic perturbation and compensates for
them by replacing the solar heat flux of the unperturbed simulation at the surface.

Methodology

The radiation scheme of the LM (Chapter 2) separates the total radiative flux Q ac-
cording to short-wave radiation fluxes Qsol and long-wave radiation fluxes Qth. Both
fluxes are calculated by a δ-two-stream approximation of the radiative transfer equation
(Ritter and Geleyn, 1992) at each vertical model level. Due to energy preservation the
vertical derivative of the solar radiation flux Qsol yields the solar heating rate at each
model level and is proportional to the temperature tendency due to solar radiation:

∂Qsol

∂z
∝ ∂Tsol

∂t
. (3.4)

The surface heat flux due to solar radiation is simply the solar radiation flux Qsol at the
lowest model level.

Perturbing the radiative tendency of temperature in the LM ensemble destroys the
energy balance between the radiative heating rate and the vertical derivative of radiation
flux Q. A virtual radiation flux Qv

sol is defined which is energetically consistent with the
perturbed simulation at each model level:

∂Qv
sol

∂z
=

〈
x(r, t)

〉
· ∂Qsol

∂z
(3.5)

where
〈
x(r, t)

〉
is the random number in the tendency perturbation (Eq. 3.2).
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surface
solar radiation flux

top

Figure 3.1: Vertical profile of solar radiation fluxes. Schematic view. Solid line: Solar
radiation flux Qsol in an unperturbed LM simulation. Dashed line: Vir-
tual radiation flux Qv

sol in a perturbed LM simulation. The virtual radiation
flux is consistent with the perturbed temperature tendency from the radiation
scheme. In this case the random number

〈
x(r, t)

〉
has the value 0.5. The

circles at the surface mark the corresponding surface heat fluxes due to solar
radiation. The surface heat flux of the unperturbed simulation is replaced by
the virtual surface heat flux so as to restore energetic consistency in terms
of solar radiation fluxes.

Let us assume that the perturbation does not affect the solar radiation flux at the top
of the model atmosphere:

Qv
sol = Qsol at the top of the model atmosphere.

Then the virtual radiation flux Qv
sol can be inferred at any vertical model level by piece-

wise downward integration. In particular, a virtual surface heat flux due to solar radia-
tion becomes available (cf. Fig. 3.1). It cumulatively accounts for energetic discrepancies
due to the stochastic perturbation of ∂Tsol

∂t
. The surface heat flux of the unperturbed sim-

ulation is replaced by the virtual surface heat flux so as to restore energetic consistency
in terms of solar radiation fluxes.

A correction of the thermal radiative heat flux has not been implemented so far, but
is strongly recommended for future work. Corrections of other heat fluxes would be
desirable as well.

3.2.6 Perturbation of tunable parameters

Motivation

Amongst the multitude of tunable parameters α within LM parametrisation schemes,
this study focusses on surface parameters and selects two examples: orographic elevation
and roughness length. The surface roughness length determines the turbulent transfer
rates of heat and momentum at the surface (cf. e. g. Stull, 1988). Over land surfaces the
LM uses roughness length values that are constant with time.
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At first glance, the idea of perturbing surface parameters might be startling, as one might
argue that they are measurable quantities and not subject to uncertainty. However, an
atmospheric model does not simply contain the measurable surface parameters, but a
grid box mean which represents their mean effect on the atmosphere best. The parameter
values are optimised with regard to their best performance and do not represent related
uncertainty or sub-grid scale variability in a deterministic model simulation. Especially
the optimisation of roughness length is associated with a considerable statistical spread
(Duynkerke, 1992; Verhoef, 1997; Mölder, 1998). The spread is due to shortcomings
of the theoretical concept, to the neglect of relevant effects such as the seasonal or
diurnal cycle, and to measurement uncertainty. In addition, many spatial fields of surface
parameters exhibit self-similarity. A very typical example is orographic elevation. The
self-similarity makes the determination of the grid box mean difficult, no matter how
small the grid box size is chosen. A small lateral shift of the entire model grid might
induce large changes in the surface parameter fields.

Houtekamer et al. (1996) already implement perturbations of orographic elevation and
roughness length into the assimilation cycle and forecast simulations of the global ensem-
ble prediction system at the Canadian Meteorological Centre. Here the idea is carried
over to a mesoscale forecast system.

The following subsection describes the methodology of perturbing roughness length.
Experiments with perturbed orography are not followed up further, because the pertur-
bation causes the position of vertical levels to re-adjust and thereby changes the entire
physiognomy of the LM.

Perturbation methodology

As to simulate the effect of roughness length uncertainty on forecast uncertainty in the
LM ensemble, perturbed fields of roughness length are produced and a different field is
prescribed in each ensemble member except for the control simulation. The roughness
length perturbation can be coded according to the notation of the previous subsections,
as it adds a stochastic element to one of the fixed parameters α within the turbulence
parametrisation:

P′
rough

(
e(t)

)
≡ Prough

(
e(t); {α · 〈y(r)〉}

)
.

In this study the probability density function of the random numbers 〈y(r)〉 depends
on location r only. The random numbers do not vary with forecast time, so it is not a
stochastic scheme in the classical sense.

How are the perturbed fields of land surface roughness length derived in the LM en-
semble? A probability density function of roughness length is postulated at each grid
box and used to draw realisations of roughness length for each ensemble member. The
differences between the realisations should ideally represent the uncertainty of roughness
length or the stochastic effect of sub-grid scale variations of roughness length. For the
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Figure 3.2: Left: The unperturbed field of LM roughness length. Middle and right: Ex-
amples of perturbed roughness length fields in the LM ensemble. Unit: meter.
Large-scale characteristics such as big cities or mountain ranges are identical
in each perturbed field.

sake of simplicity, the perturbations are not auto-correlated in space. Such a refinement
remains for future research.

The LM contains a roughness length for momentum exchange and a roughness length for
heat exchange. In this study, the roughness length for momentum exchange is explicitly
perturbed. This also affects the roughness length for heat exchange, because the two
quantities are closely related in the model design of the LM. If the roughness length for
momentum exchange is smaller than 0.1m the LM applies this value to heat exchange
as well, otherwise a constant value of 0.1m is chosen for heat exchange.

It would be straightforward to derive the probability density function directly from
the optimisation procedure of roughness length. However, details of the optimisation
procedure are not available, so several assumptions are made instead:

• The amplitudes of the perturbations depend on the local spatial variability of the
model roughness length on the resolved scale.

• They are small enough to preserve large-scale features, such as big cities or moun-
tain ranges.

• The median of the perturbed roughness lengths at a certain location is equal to
the unperturbed roughness length at that location.

Roughness length uncertainty is deduced from grid-scale information that is not directly
related to roughness length uncertainty in a physical sense, i. e. roughness length uncer-
tainty is basically parametrised. The parametrisation of roughness length variability is
developed empirically and checked by statistical and eye-ball inspection of the resulting
fields. Examples of perturbed fields are shown in Fig. 3.2. As intended, large-scale char-
acteristics such as big cities or mountain ranges are identical in each perturbed field. The
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Figure 3.3: Left: Empirical standard deviation between the ten roughness length fields
which are prescribed to the ensemble members, respectively. Unit: meter.
Right: Difference between the empirical mean of the ten roughness length
fields and the unperturbed roughness length field. Unit: meter.

actual amount of perturbation can be seen in the standard deviation between the ten
roughness length fields which are prescribed to the ensemble members, respectively (left
of Fig. 3.3). In many areas the perturbation amplitude turns out to be roughly propor-
tional to the unperturbed roughness length and amounts to 5%–10% of the unperturbed
values. The perturbation amount is still conservative compared to the uncertainties en-
countered in the derivation of roughness length values (Duynkerke, 1992; Verhoef, 1997;
Mölder, 1998).

As the perturbation methodology preserves the median instead of the mean, the differ-
ence between the empirical mean of the ten roughness length fields and the unperturbed
roughness length field is checked in addition (right of Fig. 3.3). The difference turns out
to be sufficiently small.

3.3 Ensemble experiments for the case study Berlin

A variety of ensemble experiments is carried out. First experiments of this study were
confined to the perturbation of roughness length. Five case studies of severe precipitation
were investigated: 4 July 1994; 5 May 2001; 10 July 2002; 21 May 1999; 25 Dec 1999.
The experiments showed that the perturbation of roughness length has a considerable
effect on the small-scale quantitative precipitation forecast.
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More recent experiments test the stochastic parametrisation scheme. Two case studies
are investigated: 4 July 1994 and 10 July 2002. Both case studies are characterised by
intense convective precipitation. In this section and the following, the case study of 10
July 2002 is presented as an example. It is named Berlin, because strong wind gusts led
to severe damages and casualties in the city of Berlin on that day.

First, the experimental setup is described in Subsection 3.3.1. Subsection 3.3.2 shows
the effect of the stochastic parametrisation scheme and Subsection 3.3.3 compares it
to the impact of initial conditions. As the multiple ensemble forecasts demand a large
amount of computer capacities, these investigations are confined to one case study. A
more extensive data set is produced in Section 3.4 which also forms the basis for a
comparison to observational data in Section 6.7.

3.3.1 Configuration of the ensemble experiments

Starting time of the ensemble forecast is 00 UTC, July 10, 2002. Each ensemble com-
prises 10 members, consisting of 9 perturbed simulations and the control simulation.
The lateral boundary conditions are provided by LM analyses. The model domain is
reduced to 177 × 177 grid points and is centred over Germany. Version 2.14 of the LM
is used. Details of the model such as the grid box size are presented in Chapter 2.

The stochastic parametrisation scheme described in Section 3.2 is used to add a stochas-
tic element into the deterministic model simulations. The ensemble forecast is pro-
duced four times. Each ensemble employs a different parameter setting of the stochastic
parametrisation scheme (Tab. 3.1). In addition to the perturbation of diabatic forcing,
the roughness length is perturbed. The perturbation methodology is the same in each
of the four ensembles and is described in the previous section.

Ensembles of this experimental setting are presented in the following Subsection 3.3.2.
Results reveal the overall impact of the stochastic parametrisation scheme and its sen-
sitivity to the configuration of the scheme.

Subsection 3.3.3 compares the impact of stochastic parametrisation to the impact of
initial conditions. A “poor man’s method” of perturbing initial conditions is developed
and further ensemble experiments are produced.

3.3.2 Impact of the stochastic parametrisation scheme

Fig. 3.4 shows the precipitation forecast of the control simulation. The precipitation
amount is a combination of convective and grid scale precipitation. With the exception
of precipitation amounts of approximately 5 mm/h and higher, the coherent precipita-
tion field in northern Germany and southern Denmark is entirely caused by grid scale
precipitation. The patterns are moving northeastwards. The western part of the precip-
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Figure 3.4: 1h-accumulations of precipitation (mm/h) at 17–18 UTC on July 10, 2002.
Precipitation forecast of the unperturbed simulation. Starting time of the
forecast is 00 UTC, July 10, 2002.

itation near the Alps is also due to grid scale precipitation. All remaining precipitation
fields are generated by the convection scheme.

Results of the LLL and the HHH configurations are presented. The standard deviation
between the ensemble members estimates the impact of the perturbations on the pre-
cipitation forecast (Fig. 3.5). The standard deviation is also called ensemble spread. In
the LLL ensemble the impact of the perturbations is fairly low. The standard deviation
reaches approximately 30% of the precipitation amounts in the unperturbed forecast
(Fig. 3.4). The perturbations only affect the smallest spatial scales of the forecast.
Occurrence and non-occurrence of precipitation are hardly affected.

The HHH ensemble (right of Fig. 3.5) exhibits a much larger impact of the stochas-
tic parametrisation scheme. The ensemble spread is often as high as the precipitation
amount in the unperturbed forecast (Fig. 3.4). Compared to the LLL ensemble the per-
turbations affect slightly larger scales of the forecast. In some locations the structure of
convective precipitation patterns is changed, but the broad pattern of precipitating and
non-precipitating regions is still hardly affected. The enhanced impact of the perturba-
tions results both from increasing the amplitude and from increasing the spatio-temporal
auto-correlation.

In summary, the impact of stochastic parametrisation on the LM precipitation forecast
can be substantial, but strongly depends on the amplitude and the spatio-temporal auto-
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Figure 3.5: 1h-accumulations of precipitation (mm/h) at 17–18 UTC on July 10, 2002.
Starting time of the forecast is 00 UTC, July 10, 2002. The figure shows the
ensemble spread, i. e. the standard deviation between the precipitation fore-
casts of the ensemble members. The two ensembles differ by their configura-
tions of stochastic parametrisation (cf. Tab. 3.1). Left: LLL configuration.
Right: HHH configuration.

correlation of the random numbers. However, all configurations show that the effect is
restricted to small scales of the forecast field and to quantitative precipitation. The
stochastic parametrisation scheme barely influences occurrences and non-occurrences of
precipitation. Therefore, it must be suspected that the experimental ensemble captures
only a small portion of the total error in a precipitation forecast. This suspicion is
reaffirmed by a comparison to observational data in Section 6.7.

3.3.3 Impact of initial conditions

In order to assess the relative impact of stochastic parametrisation compared to the
impact of initial conditions, a “poor man’s method” of perturbing initial conditions is
developed. The “poor man’s method” is expected to give only a crude insight into the
impact of initial conditions on the forecast.

The LM simulation is initialised by an LM-analysis of a slightly shifted time. Such an
analysis is available from the nudged LM assimilation run for any point of time. At
present, the LM analysis of 01UTC and the analysis of 23UTC of the previous day are
used, while the LM simulation is actually started at 00UTC. The various analyses are
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Figure 3.6: Setup of the ensemble including perturbations of initial conditions. Three
simulations per initial condition are started, differing by the stochastic
parametrisation and roughness length. Together with the control simulation,
the ensemble consists of 10 members.

considered equally likely initial conditions at starting time 00UTC. Together with the
analysis of 00UTC, the LM analyses of 23UTC and 01UTC constitute three different
initial conditions. The time difference of one hour is selected for convenience, as these
analyses are readily available from the data base. A somewhat shorter time step may be
more reasonable and remains as an issue for future work. Likewise, the number of differ-
ent initial condition fields should be raised above the small number of three. A simple
way to achieve this might consist in averaging or mirroring the initial conditions.

The new ensemble setup combines the variation of initial conditions with the previous
ensemble setup. An outline of the methodology is given in Fig. 3.6. From each of the
three initial conditions, three simulations are started. They differ by the stochastic
parametrisation and the roughness length. In the stochastic parametrisation scheme the
LLL configuration is used (see Tab. 3.1). Altogether the ensemble comprises 9 perturbed
simulations plus the control simulation.

Fig. 3.7 presents the ensemble spread of the precipitation forecast. The ensemble spread
is about as large as in the HHH ensemble (right of Fig. 3.5), but the effect of initial
condition perturbations is very different from the effect of the stochastic parametrisation
scheme. The ensemble forecasts cluster strongly by the choice of initial conditions (not
shown). The clustering causes the three maxima in the field of ensemble spread (Fig. 3.7).
The initial conditions of 23UTC result in a southward shift of the original maximum
(Fig. 3.5) by 100 km, while the initial conditions of 01UTC result in a northward shift
of the maximum by 100 km. Whereas the stochastic parametrisation scheme mainly
affects scales close to the grid box size, initial conditions affect scales up to 200 km. This
becomes obvious through a scale-dependent calculation of ensemble spread (not shown)
or simply by looking at individual ensemble members (not shown).

In summary, the magnitude of the ensemble spread suggests that initial conditions
and the stochastic parametrisation scheme have a similar effect when the stochastic
parametrisation scheme applies a large noise amplitude and large spatio-temporal cor-
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Figure 3.7: 1h-accumulations of precipitation (mm/h) at 17–18 UTC on July 10, 2002.
Starting time of the forecast is 00 UTC, July 10, 2002. The figure shows
the ensemble spread, i. e. the standard deviation between the precipitation
forecasts of the ensemble members. In addition to perturbations of rough-
ness length and stochastic parametrisation, the initial conditions are varied
according to Fig. 3.6.

relations. However, the initial conditions affect much larger scales of the forecast than
the stochastic parametrisation scheme. As opposed to the stochastic parametrisation
scheme, the perturbation of initial conditions is able to shift patterns of precipitation
and it affects the occurrence of precipitation instead of precipitation amount only. There-
fore, the initial condition perturbations are suspected to capture a substantially larger
portion of total forecast uncertainty.

Note, however, that this investigation is only expected to give a very crude insight
into the relative effects of the stochastic scheme and of initial condition perturbations.
A direct comparison between the two effects may be unfair, because the intensities of
the respective perturbations may not agree at all. The initial condition perturbations
probably possess a much larger magnitude and a much larger spatio-temporal auto-
correlation than the perturbations within the stochastic parametrisation scheme.
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3.4 Ensemble experiments with more extensive data

The validity of the findings in the previous section are confined to just one case study.
In an attempt to carry out a statistically more robust analysis and to produce a fore-
cast data set suitable for verification in Section 6.7, consecutive ensemble forecasts are
produced for a period of two weeks. First, the experimental setup of the ensemble is de-
scribed in Subsection 3.4.1 and then the effect of the stochastic parametrisation scheme
is analysed in Subsection 3.4.2.

3.4.1 Configuration of the ensemble experiments

General design

On each day of the time period July 10–24, 2002, an ensemble forecast is started at
00UTC. The 15 ensemble forecasts comprise 10 members each, consisting of 9 perturbed
simulations and one control simulation. All forecasts have a lead time of 48 hours.

The configuration of the experimental ensemble is similar to Subsection 3.3.2. The
perturbation of ensemble members consists in the stochastic parametrisation scheme
and a perturbed roughness length. Perturbations of initial conditions are omitted here,
so as to look at the effect of the stochastic scheme in isolation. Again, the lateral
boundary conditions are provided by LM analyses.

In contrast to the experiments in Subsection 3.3.2, a more recent version of the LM
(version 2.19) is used and the operational model domain of 325 × 325 grid points is
chosen. Thus, the experimental configuration is closer to the operational setting of DWD
so that the results bear more implications for operational forecasting at DWD. Using
the operational domain increases the computational cost of the simulations substantially,
but appears necessary, as changing the domain size can modulate the intrinsic unstable
dynamics substantially (Chomé et al., 2002).

Furthermore, the specification of random numbers in the stochastic parametrisation
scheme differs from the configuration in Subsection 3.3.2. The random numbers used
so far have a crude spatio-temporal auto-correlation through their constancy within
boxes and time intervals. An attempt is made to establish a more sophisticated auto-
correlation. As the simulation of 15 ensembles comprising 10 members each demands
a considerable amount of computing time, the ensemble forecasts are produced only
once. One specific configuration of input noise must be chosen which is described in the
following paragraph.
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Amplitude and spatio-temporal auto-correlation of input noise

For the sake of simplicity, it is decided to retain the uniform distribution. The ampli-
tude a is chosen to be 0.25. In terms of turbulence, the order-of-magnitude is in some way
supported by Högström (1988) who estimate observational uncertainties of the dimen-
sionless wind shear and lapse rate. In terms of radiation, some support may be drawn
from Scheirer and Macke (2001) who investigate radiative flux uncertainties in a high-
resolution model, arising from the simplification of cloud geometries as plane-parallel
homogeneous layers.

The simple spatio-temporal auto-correlation function of Subsection 3.2.4 is refined. The
spatio-temporal auto-correlation function in Subsection 3.2.4 assumes that a unique
spatial scaleD and temporal scale T act as separators of perfect and zero auto-correlation
between sub-grid scale effects. Such scales are difficult to determine, because their
existence is far from reality. The approach is simplistic and needs refinement. This is also
an issue of current research at ECMWF. Palmer (2001) proposes more dynamically based
techniques such as stochastic forcing in singular vector space or a cellular automaton
model. Shutts (2004) has recently used a cellular automaton to generate a forcing field
in his stochastic kinetic energy backscatter algorithm.

In this study, the simplistic auto-correlation function is replaced by an exponentially
decaying function. Bright and Mullen (2002) use a similar approach for their simulation
of convective sub-grid scale effects. As a first step, the auto-correlation is confined to
the time direction. Just like Bright and Mullen (2002), this study provisionally omits
the spatial auto-correlation of stochastic noise and leaves its implementation to future
research.

The refined auto-correlation function results from a first-order auto-regression model
(Wilks, 1995):

yt = η · yt−1 + εt, with y0 = ε0,

where t = 1, . . . , n counts the number of time steps during the simulation, εt is a re-
alisation of a Gaussian white noise process and 0 < η < 1. Consequently, the random
number yt is also Gaussian and the random variables yt and yt−τ at time steps t and
t− τ are correlated by ητ . The e-folding time of the auto-correlation is T = − 1

lnη
. Its

value is chosen to be T = 5 minutes so as to be of the same order-of-magnitude than the
time auto-correlation in the sensitivity experiments of the previous section.

In order to regain a uniform distribution of the random numbers, the Gaussian ran-
dom number yt is transformed to a random number xt, before it enters the stochastic
parametrisation scheme. The random number xt is uniformly distributed in the interval
[1 − a, 1 + a] (0 < a ≤ 1). An excerpt of the random number series applied in the LM
stochastic parametrisation scheme is shown in Fig. 3.8.

The random variable xt is derived by the inverse of a logit transformation. Generally, the
inverse of a logit transformation can be used to convert a Gaussian sequence of random
numbers into a sequence of realisations that are approximately distributed according
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Figure 3.8: Excerpt of the random number series applied in the LM stochastic parametri-
sation scheme. Abscissa: Numbering of the time steps in the model integra-
tion.

to a beta-distribution. This property is also useful with respect to the generation of
uniformly distributed numbers, because the uniform distribution is a special case of the
beta-distribution.

However, the transformation results in a distortion of the correlation in xt. The cor-
relation between realisations with a value close to (1 + a) or (1 − a) is larger than the
correlation between realisations with a value close to 1. A more sophisticated trans-
formation should avoid this side-effect. Alternatively, a future study could circumvent
the problem by letting the random numbers follow a Gaussian distribution. Initially,
the uniform distribution was motivated by its simplicity, but now it turns out that the
uniform distribution introduces more complexity than the Gaussian distribution.

Case study

Before handing over to the statistical analysis of the entire forecast data set, let us have
a look at a single case, as the previous paragraph introduces some alterations in the
configuration of the stochastic scheme compared to the sensitivity study described in
Subsection 3.3. Fig. 3.9 shows the ensemble mean and the ensemble spread. The effect
of the stochastic parametrisation scheme is similar to the effect of the LLL configuration
(Fig. 3.5). Note that a straight comparison is not possible, because there are also changes
in model version, model domain and the starting time of the forecast which already cause
differences in the respective unperturbed forecasts. These differences become obvious
when comparing the original forecast of the previous setup (Fig. 3.4) with the ensemble
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Figure 3.9: 1h-accumulations of precipitation (mm/h) at 17–18 UTC on July 10, 2002.
Starting time of the forecast is 00 UTC, July 9, 2002. A section of 165 × 165
grid points is shown. Left: Ensemble mean. Right: Ensemble spread, i. e.
standard deviation between the precipitation forecasts of the ensemble mem-
bers. As opposed to Fig. 3.5 and 3.7, a new ensemble configuration is used
which is described in Subsection 3.4.1.

mean of the new setup (left of Fig. 3.9).

3.4.2 Statistical analysis of error growth

An interesting issue in ensemble forecasting are the characteristics of error growth. Do
forecast perturbations keep growing with time or do they reach a level of saturation? Is
there an upscale transformation from small-scale to large-scale error?

Fig. 3.10 shows the normalised ensemble spread as a function of forecast lead time. The
normalised ensemble spread is the ratio of ensemble spread and ensemble mean. The
spread is normalised because the spread itself strongly depends on the values of the mean.
It tends to be larger for higher precipitation values, because the probability distribution
of precipitation is skewed towards higher values. Normalisation reduces this dependency,
but the diurnal cycle of the mean is still visible in the normalised spread. Note that
the decay of normalised spread during the afternoon does not indicate a recovery of
predictability, but is simply a result of the diurnal cycle of the mean.

In Fig. 3.10 only cases are taken into account with an ensemble mean greater than
0.01mm. The spread is averaged over the domain shown in Fig. 3.9 and then averaged
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Figure 3.10: Time series of the ensemble spread, normalised by the ensemble mean. The
abscissa shows the lead time of the forecast in hours. Only cases are taken
into account with an ensemble mean greater than 0.01mm. The spread
is averaged over the area shown in Fig. 3.9 and then averaged over all
15 ensemble forecasts within the time period 10–24 July 2002.

over all 15 ensembles. The ensemble spread increases throughout the simulation and
does not appear to reach a saturation level. This does not only become obvious in the
averaged data, but also in each of the 15 individual ensemble simulations (not shown).

The differences between a perturbed and the original simulation are not only analysed in
terms of their amplitude, but also in terms of their spatio-temporal coherence. Fig. 3.11
shows an example of the difference between a perturbed and the original simulation.
Some spatial auto-correlation of the differences are already noticeable by eye-ball in-
spection.

A statistical analysis of spatio-temporal error correlation is carried out and its results
are shown in Fig. 3.12. Forecasts with an ensemble mean greater than 0.01mm and
with a lead time of 25–48 hours enter the calculation. Data of the domain shown in
Fig. 3.11 is used, from all 15 forecasts with a starting date within the period of 10–24
July, 2002 and from the 9 perturbed simulations within the ensemble. The results reveal
that spatial auto-correlation drops down to zero for spatial distances larger than 30 km.
Temporal auto-correlation is still existent for a time lag of one hour. A time lag of one
hour is quite large compared to the temporal auto-correlation function of the prescribed
noise which possesses an e-folding time of only 5minutes. This might indeed indicate
an upscale error propagation in terms of time scales.
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Figure 3.11: 1h-accumulations of precipitation (mm/h) at 17–18 UTC on July 10, 2002.
Differences between the unperturbed simulation and one of the perturbed
simulations.

Figure 3.12: The closed circles indicate the spatial and temporal auto-correlation of
the differences between the original simulations and perturbed simulations
(cf. Fig. 3.11). Left: Auto-correlation in space. Right: Auto-correlation
in time. The auto-correlation is shown as a function of horizontal distance
and time lag, respectively. For comparison, the auto-correlation of the input
noise is visualised by the solid lines (red and blue). The closed circles are es-
timated from all 15 ensemble forecasts and from the 9 perturbed simulations
within each ensemble forecast. Forecasts with an ensemble mean greater
than 0.01mm and with a lead time of 25–48 hours enter the calculation.
Data of the domain shown in Fig. 3.11 are used.
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3.5 Discussion and summary

3.5.1 Possible explanations of the small effect

The previous sections have shown that the LM stochastic parametrisation scheme has
only little effect on LM forecasts when compared to the total uncertainty of the forecast.
There is a considerable influence on the predicted precipitation amount on small scales
close to grid box size, but the stochastic parametrisation scheme does not change the
occurrence of precipitation and it does not shift the position of precipitation patterns.
The experimental ensemble misses a substantial portion of total forecast uncertainty.
This is reaffirmed by objective verification which attests to extreme underdispersiveness
of the experimental ensemble (Section 6.7).

Two explanations are conceivable:

• Sub-grid scale variability is not an important player in forecast uncertainty.

• The stochastic parametrisation scheme does not produce a realistic simulation of
sub-grid scale variability.

If we trust the LM stochastic parametrisation scheme, the first conclusion is valid. Sim-
ilar investigations show that their parametrisation perturbations also have extremely
weak effects (Anderson et al., 2002; Bright and Mullen, 2002), so it can be argued that
they support this conclusion.

However, some doubts about the abilities of current stochastic parametrisation schemes
might be justified. A multitude of reasons may be held responsible for an unrealistic
simulation of sub-grid scale processes, ranging from implementation-related problems
to very fundamental problems, such as the applicability of the central limit theorem
(Penland, 2003) or the ability of the model to represent certain states of the atmosphere
realistically (Smith, 2000, 2003). In the following subsection, problems related to the
implementation of stochastic parametrisation schemes are discussed. Two key issues are
highlighted: properties of the injected noise and the role of the integration scheme.

3.5.2 Possible problems in the implementation

Properties of the prescribed noise

The appropriate choice of perturbation amplitude and correlation remain an open ques-
tion. As only little is known about sub-grid scale variability, the choice of noise prop-
erties (Section 3.2.4) is somewhat arbitrary. At the same time, Section 3.3 points out
that the simulated effect is very sensitive to the chosen noise properties, so the outcome
of stochastic schemes may be somewhat arbitrary as well.
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Larger noise amplitudes and larger noise correlations attain larger effects on the forecast.
Thus, a diffident attitude towards amplitude and correlation might dilute the inherent
power of the LM stochastic parametrisation scheme. For comparison, Bright and Mullen
(2002) choose an e-folding time of T = 164 minutes for their time auto-correlation of
convective sub-grid scale effects as opposed to T = 5 minutes in the auto-correlation
of the LM scheme. A somewhat shorter value does seem to be justified for the LM, as
the area of a LM grid box is about 25 times smaller than in their model. Nevertheless,
the choice of T = 5 minutes may still be on the short side. Shutts (2004) argues that
small correlation scales tend to generate high frequency gravity waves whose impact on
weather system evolution is only slight.

One way out of this problem is tuning, given that the computational environment allows
for the operating expenses. The tuning procedure alters the configuration of the stochas-
tic parametrisation scheme until the experimental ensemble matches observed forecast
uncertainties best (cf. Buizza et al., 1999). As tuning is certainly of immediate practical
use, it would be very interesting to find a way of minimising its technical expenses so as
to widen its applicability. However, tuning also has some drawbacks. The more tuning
parameters are added to a simulation system, the more shaky its theoretical foundation
gets. Caution has to be taken not to end up in headless action. Improvements might be
achieved for wrong theoretical reasons. Subsequent alterations of a different part of the
simulation system might actually degrade the results, although they really point into
the right direction.

There is yet another possibility to circumvent the need for an a priori selection of a
particular spatio-temporal auto-correlation of the input noise. Along the lines of Palmer
(2001), the general design of the stochastic scheme could move away from grid point
forcing towards a dynamical approach. Then the coupling between the stochastic system
and the resolved processes extends over a range of scales. These scales are determined by
certain modes that result from a dynamical model. Palmer (2001) suggests two examples:
the application of singular vector modes and the cellular automaton model.

Numerical integration scheme

There is an important aspect in stochastic parametrisation that has not been touched
upon in this study so far: the numerical integration scheme. The operational version
of the LM does not contain any stochastic elements. Thus, its numerical scheme is
designed to solve deterministic differential equations with a sufficient degree of accu-
racy and a minimum of computational cost. By introducing stochastic elements into
the LM parametrisation schemes the model equations are no longer deterministic, but
stochastic. A standard algorithm for integrating deterministic differential equations is
not properly sanctioned for the integration of stochastic differential equations. Simply
adding a stochastic term to existing computer code may yield results that look rea-
sonable, and yet be completely spurious. Ewald et al. (2003) state that “the choice of
integration technique can greatly affect the outcome of a stochastically forced numerical
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model, and the variety of results possible in different implementations of a single model
is frightening”.

The impact of the numerical integration scheme is only starting to be recognised in
stochastic modeling of weather and climate. Although Kloeden and Platen (1992)
present a collection of well-researched stochastic integration schemes, most meteoro-
logical implementations of stochasticity have not applied them yet (e. g. Buizza et al.,
1999; Lin and Neelin, 2000; Bright and Mullen, 2002), as the adequate rewriting of
complex numerical models is an extensive task. Only recently, a numerical scheme has
been developed by which stochastic forcing can be introduced into one of the simplest
meteorologically relevant numerical models, the barotropic vorticity model (see Ewald
et al., 2003, and references within).

As the numerical integration scheme appears to have such a tremendous impact, cur-
rent experiments with complex stochastic models should be extremely careful in their
interpretation, if not pause for a moment. It may be appropriate to take a step back
and invest in research activities that aim at adjusting the numerical scheme first.

3.5.3 Summary

This study is one of the first to systematically analyse the benefits of stochastic
parametrisation in operational short-range forecasting. The implementation of stochas-
ticity in short-range ensemble forecasting is on the agenda of several operational fore-
cast centres and high expectations are raised. In contrast, only little experience has
been gained using complex weather forecasting models. Thus, this study provides a
significant advancement of current research.

Initially, this study envisaged the experimental LM ensemble to serve as a guidance
in the development of statistical post-processing procedures. However, the ensemble
requires a specific configuration of input perturbations, which has a considerable impact
on the ensemble results. Therefore, this configuration must be justified in a theoretical
or empirical way. In the absence of such justification, the choice of input perturbations
remains largely open leading to results of the experimental LM ensemble that remain
arbitrary to a large extent. As a consequence, it is elected to shelve this initial plan until
the ensemble can settle for a specific configuration of input perturbations.

Apart from the context of statistical post-processing, the study provides useful guidance
for the future development of stochastic parametrisation schemes in ensemble predic-
tion systems. The study raises relevant questions which need to be tackled first before
stochastic parametrisation may produce more credible results and provide better insight
into small-scale predictability. Future fields of research should not only include the spe-
cific configuration of input perturbations, but also a reconsideration of the numerical
integration scheme.
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While the previous chapter deals with the ensemble approach, this chapter presents
a different approach to probabilistic forecasting: statistical post-processing of a single
deterministic LM simulation. In this study, statistical post-processing offers a low-budget
approach to probabilistic forecasting that is suitable for almost immediate operational
use and requires only little computing effort compared to ensemble forecasting. A brief
overview of the method and an outline of this chapter are given below.

4.1 Introductory remarks

4.1.1 Overview

The statistical post-processing scheme attempts to parametrise forecast uncertainty, in
the sense that it does not trace forecast uncertainty to its origins, but uses ancillary
indicators for its estimation. In other words, forecast dependence on initial conditions
and on model physics is not taken into account. Instead, the model output is perceived
as a function of space and time only. The method relies on the spatio-temporal structure
of the forecast which may give some information on deterministic predictability.

It is certainly a bold attempt to base predictability estimates on the spatio-temporal
structure of one deterministic simulation. However, a few generic characteristics of deter-
ministically predictable structures are vaguely known, for example the scale-dependency
of predictability or the enhancement of predictability through topographic forcing. The
post-processing scheme attempts to take advantage of such knowledge.

The notion of a so-called neighbourhood is central to the post-processing methodology in
this chapter. The post-processing scheme looks in the spatio-temporal neighbourhood
of a point to get a set of forecasts and assumes that the set is a sample of the forecast
at the central point of the neighbourhood. The neighbourhood sample is then used to
derive a probabilistic forecast at this grid point. The procedure is repeated for each grid
point of the LM so that an entire field of probabilistic forecasts is generated.

The neighbourhood sample is also called surrogate sample, implying that it is a surrogate
for a dynamically produced ensemble. The surrogate ensemble serves as a starting point
for the estimation of the expected value, quantiles and exceedance probabilities. The
estimation of exceedance probabilities and of the expected value simply applies the
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respective maximum-likelihood estimators. Due to the risk of a large variance error in
quantile estimates, quantile estimation uses a more complex methodology which consists
in a kernel regression of an empirical quantile function.

The estimation procedures of this study are non-parametric. The term non-parametric
delimits such procedures from parametric approaches. Parametric estimation makes a
rigid pre-assumption which confines the solution space of the resulting pdf to a certain
family of functions. Within such a family, functions only differ by the specification of
a few parameters. Parametric methods are reduced to the direct estimation of these
parameters. Estimates of the pdf or certain statistical quantities are then inferred from
the estimated parameters. In non-parametric estimation the resulting estimate is more
freely guided by the data. Certain pre-assumptions about a pdf are still allowed, but
they do not pre-determine the estimate to such a large extent. This is an advantage
here, because the shape of the pdf is often not known. Thus, parametric methodologies
can be inappropriate, as they may force the estimate to go awry.

4.1.2 Why another methodology?

Existing non-parametric methodologies

The neighbourhood method estimates statistical parameters at each point of the model
grid on the basis of a single model simulation. Thus, the approach falls under the
framework of estimating a large array of statistical parameters on the basis of a single
realisation on each parameter, a recently recurring theme in geostatistics. Approaches to
non-parametric estimation already exist and are briefly mentioned here. A more detailed
presentation follows in Section 4.3.

The neighbourhood concept bears similarities to two prominent methodologies: kernel
smoothing and kriging. In the last 40 years, kernel smoothing has been a standard
methodology in non-parametric density estimation and in non-parametric regression
(Silverman, 1986; Härdle, 1990; Simonoff, 1996). Kriging is the central methodology
in geostatistics, a field that emerged in the 1960s with the work of Georges Matheron
(Wackernagel, 1998; Chilès and Delfiner, 1999).

Kernel smoothing and kriging are able to derive estimates of the expected value and the
exceedance probability. A quick overview is given by Fig. 4.1 and 4.2. More extensive
explanations follow in Section 4.3.

In summary, kriging and kernel smoothing mainly consist in weighted averaging of re-
alisations that are available at different locations. The key element of the methods
is the determination of appropriate spatio-temporal weights. In order to estimate the
exceedance probability, the realisations can be transformed to indicator data before av-
eraging. The transformation function is valued 1 if the realisation is larger than the
exceedance threshold, and valued 0 if it is not.
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Figure 4.1: Kriging is an existing non-parametric methodology that produces estimates
of the expected value and the exceedance probability on the basis of single
realisations from several locations. When applied to the LM output, it starts
out from the direct model output (DMO) of a single LM simulation and is able
to derive estimates of the expected value and exceedance probabilities at each
point of the model grid. Estimates of the expected value can be derived via
universal kriging (Chilès and Delfiner, 1999). Estimates of the exceedance
probability can be derived via indicator kriging or disjunctive kriging.
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Figure 4.2: Kernel smoothing is an existing non-parametric methodology that produces a
large array of statistical parameters on the basis of a single realisation on each
parameter. When applied to the LM output, it starts out from the direct model
output (DMO) of a single LM simulation and is able to derive estimates of
the expected value and exceedance probabilities at each point of the model
grid. The kernel estimate of the expected value arises from the framework
of non-parametric regression of a function (Härdle, 1990; Simonoff, 1996).
The kernel estimate of the exceedance probability arises from the framework
of estimating the intensity function of a point process (Cressie, 1991).
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Kernel smoothing and kriging are similar to the neighbourhood methodology, because
they are non-parametric and because they assume that the statistical quantity possesses
some degree of smoothness. Kernel smoothing and kriging are based on the notion that
many variables exhibit some form of structure, in an average sense, reflecting the fact
that points close in space tend to assume close values. Just like the neighbourhood
method, they result in spatio-temporal smoothing of the noisy field.

The need for a surrogate sample

In terms of expected value and exceedance probability, kernel smoothing and kriging are
useful concepts of non-parametric estimation. They would provide a sufficient starting
point for the development of an adequate post-processing procedure in this study, if the
aim of LM post-processing was limited to the estimation of the expected value and the
exceedance probability. However, LM post-processing is required to achieve quantile
estimates in addition. Quantiles are interesting in terms of warnings, especially if the
forecast user wishes to control a certain amount of risk.

Whereas the estimation of the expected value and exceedance probabilities can be mas-
tered by weighted averaging of the realisations, quantile estimation at a specific point
demands a rough survey of the probability function at that point. As opposed to the
estimation of exceedance probabilities, such a survey cannot be circumvented by prior
transformation of the realisations. Non-parametric quantile estimation is inseparably
linked to the operations of ordering and sorting the realisations by their value. There-
fore, the availability of a sample is indispensable.

As the underlying data only consist of single realisations at several locations, the sur-
rogate sample must be generated at each point of estimation. As kernel smoothing and
kriging only provide weights instead of a sample, quantile estimation requires the devel-
opment of an additional methodology in this study: the neighbourhood methodology.

When the neighbourhood methodology succeeds to generate the sample, it is only a tiny
step to derive estimates of the expected value and the exceedance probabilities as well.
Thus, the neighbourhood methodology is able to combine the estimation of quantiles,
expected value and exceedance probabilities into a single concept (cf. Fig. 4.3).

Although kernel smoothing and kriging are not explicitly applied in this study, parts of
their concepts certainly enter into the development of the neighbourhood methodology.
In fact, it is shown that the basic version of the neighbourhood methodology can be
reformulated as a special case of kernel smoothing and kriging when estimates of the
expected value and exceedance probability are derived. Details follow in the course of
this chapter.
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Figure 4.3: When applied to the LM output, the neighbourhood methodology starts out
from the direct model output (DMO) of a single LM simulation and is able to
derive estimates of quantiles, the expected value and exceedance probabilities
at each point of the model grid. The crucial step of the methodology consists
in the generation of a surrogate sample at each point of estimation.

4.1.3 Organisation of the chapter

A simple, preliminary version of neighbourhood sample generation is described and dis-
cussed in Section 4.2. The section contains a definition of the simple version of the
neighbourhood, some examples, and a discussion of key assumptions. Section 4.3 works
out the differences and analogies between the neighbourhood method, kriging and ker-
nel smoothing. The comparison provides new insight into the underlying assumptions of
the neighbourhood methodology and into the errors in resulting estimates. Section 4.4
develops the final definition of the neighbourhood sample by introducing so-called ex-
planatory variables. Explanatory variables represent sources of deterministic small-scale
predictability such as orography. Section 4.5 describes the estimation of quantiles in
more detail. An empirical quantile function is determined and then transformed to the
final quantile estimate via kernel regression.

Throughout this chapter the resulting estimates are assessed by eye-ball inspection.
Several examples of the post-processed forecast are presented for the case study of 10 July
2002. The subjective assessment is supplemented by objective verification in Chapter 6.
A more extensive set of post-processed forecast data is compared to observational data
and forecast goodness is assessed by various verification measures.
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4.2 General concept of a neighbourhood

4.2.1 Definition and notation of the surrogate sample

First, some notation is introduced. The LM output of interest consists of one or several
surface predictands on a three-dimensional grid comprising two dimensions in space and
one dimension in time. Thus, the model output may be seen as a function which relates
all points of the discrete model domain N = {1, . . . , Nx} × {1, . . . , Ny} × {1, . . . , Ntt} to
values of the predictands. The number of grid points is given by Nx ∈ �

, Ny ∈ �
,

Ntt ∈ �
and the model grid spacing is given by ∆x, ∆y, ∆tt. The size of a grid box

is determined by ∆x and ∆y. The time step between successive model output times is
denoted ∆tt. In an operational LM simulation the grid spacing is ∆x = ∆y = 7 km and
∆tt = 1 h.

When post-processing the LM output at a given spatio-temporal location (ia, ja, ka) ∈ N
of the model grid, a neighbourhood around this grid point is defined. The neighbourhood
is the set of points (i, j, k) that lie within a certain distance from the point (ia, ja, ka):

Uiajaka
=

{
(i, j, k) ∈ N

∣∣∣∣
( ia − i

ρx

)2

+
(ja − j

ρy

)2

+
(ka − k

ρtt

)2

≤ 1

}
. (4.1)

The distances (ia − i), (ja − j), (ka − k) can be phrased in terms of indices here, because
a Cartesian grid is used. The size of the neighbourhood is determined by ρx ∈ � +,
ρy ∈ � + and ρtt ∈ � +.

The simplest version of the neighbourhood is isotropic in space so that the neighbourhood
sizes in the two spatial co-ordinate directions are equal:

ρxy ≡ ρx = ρy.

Fig. 4.4 shows a schematic view of the neighbourhood in the (i, j)-plane and in the
(i, k)-plane. Shaded grid boxes belong to the neighbourhood. If the point (ia, ja, ka)
is near a boundary of the discrete model domain N the neighbourhood is simply cut
off at the boundary. This happens when ia is less than ρxy or greater than (Nx − ρxy).
Similarly, the case occurs if ja < ρxy, ja > (Ny − ρxy) or ka < ρtt, ka > (Ntt − ρtt).

The set of forecasts within the neighbourhood Uiajaka
is denoted

Siajaka
=

{
zijk

∣∣(i, j, k) ∈ Uiajaka
} (4.2)

where zijk are the direct LM output data of the predictand. In order to estimate statis-
tical properties of the predictand at the point (ia, ja, ka), the set Siajaka

is taken to be
the surrogate sample of the predictand at point (ia, ja, ka).
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Figure 4.4: Example of a spatio-temporal neighbourhood of a given grid point at loca-
tion (ia, ja, ka) ∈ N . Left: The spatial neighbourhood in the (i, j)-plane.
Right: The spatio-temporal neighbourhood in the (i, k)-plane. Shaded grid
boxes belong to the neighbourhood.

4.2.2 Neighbourhood in action: Simple examples

Once the sample Siajaka
has been successfully determined, all sorts of statistical prop-

erties of the random variable Ziajaka
may be estimated. This study derives estimates of

the expected value, quantiles for various probabilities and exceedance probabilities for
various thresholds. Definitions and examples of the estimators of expected value and
exceedance probability are presented in the following paragraphs. The estimation of
quantiles is tackled in Section 4.5.

Expected value

The neighbourhood Uijk provides a sample Sijk = {z1, . . . , zN}ijk of the forecast at each
arbitrarily chosen location (i, j) on the model grid and at each model output time k. The
estimator µ̂ijk of the expected value E[Z] at location (i, j) and time k is the maximum-
likelihood estimator

µ̂ijk =
1

N

N∑

l=1

zl with zl ∈ Sijk. (4.3)

Fig. 4.6 shows an example of the estimated expected value of 2m-temperature for the
case study of 10 July 2002. It is a post-processed version of the respective LM forecast
in Fig. 4.5.

Exceedance probability

The exceedance probability πc = Pr[Z > c] is closely related to the distribution func-
tion F of the predictand: πc = 1 − F (c). The exceedance probability can be derived for
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Figure 4.5: Original LM forecast of 2m-temperature on July 10, 2002, 14 UTC. Unit:
Degree Celsius. A section of 165 × 165 grid points is shown.

arbitrarily chosen exceedance thresholds c ∈ � +
0 . The function

δ̃c(z) ≡
{

1 : z > c
0 : z ≤ c

(4.4)

uses the threshold c as a criterion for relating the model output variable z to the values
zero and one. Fig. 4.8 shows an example of a field δ̃c(zij) with threshold c = 0.01mm.
It is derived from the LM precipitation forecast in Fig. 4.7.

Similarly, a set S = {z1, . . . , zN} can be transformed into a set Sc = {δ̃c(z1), . . . , δ̃
c(zN)}.

The set Sc can be viewed as a sample of the discrete random variable Zc defined on the
mutually exclusive events Ac = {1} and Āc = {0}. The neighbourhood methodol-
ogy estimates the probability πc of Ac at point (i, j, k) from the maximum-likelihood
estimator

π̂c
ijk =

1

N

N∑

l=1

δ̃c(zl) with zl ∈ Sijk. (4.5)

The probability πc is the exceedance probability with exceedance threshold c. Fig. 4.9
shows an example of the estimate. It is a post-processed version of the LM precipitation
forecast in Fig. 4.8 and the exceedance threshold is chosen to be c = 0.01mm.

55



4 Neighbourhood methodology

Figure 4.6: Post-processed version of the 2m-temperature forecast in Fig. 4.5. Unit: De-
gree Celsius. The estimate of expected value is shown. Post-processing proce-
dure: maximum likelihood estimator (Eq. 4.3) from the simple neighbourhood
sample Sijk (Eq. 4.2).
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Figure 4.7: Original LM forecast of 1h-accumulations of precipitation on July 10, 2002,
13–14 UTC. Unit: mm. A section of 165 × 165 grid points is shown.

Figure 4.8: Transformation of the LM precipitation forecast in Fig. 4.7 to values of zero
and one. The transformation follows Eq. 4.4 with a threshold c = 0.01mm.
Values of one are grey and values of zero are white.
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Figure 4.9: Post-processed version of the precipitation forecast in Fig. 4.7. Estimate of
exceedance probability with exceedance threshold 0.01mm. Post-processing
procedure: maximum likelihood estimator (Eq. 4.5) from the simple neigh-
bourhood sample Sijk (Eq. 4.2).

4.2.3 The underlying assumption: Ergodicity

What is the underlying assumption of the neighbourhood concept?

The neighbourhood concept assumes that the values zijk ∈ Siajaka
are independent and

identically distributed (iid) according to the distribution of the random variable Ziajaka
.

Further, it postulates a strictly stationary process which is even ergodic, i. e. the spatial
and temporal space is assumed to be equivalent to probability space. Ergodicity is
confined to small spatio-temporal scales of up to ρxy and ρtt (Eq. 4.1) in size.

The ergodic assumption may be illustrated in terms of a probabilistic precipitation
forecast. Ergodicity implies the deliberate mixing of two different terms: (1) the spatio-
temporal distribution of the deterministic precipitation forecast and (2) a probabilistic
precipitation forecast at a specific point in space and time on the model grid. Both are
single event probabilities, but they refer to different reference classes. The first type of
probability could be used to state that it will rain tomorrow in, say, 30% of the area
and time; the second type of probability could be used to state that it will rain on,
say, 30% of the days like tomorrow. Reference classes are often accidently confused,
as they are not always specified (Gigerenzer and Edwards, 2003). This study does not
intend to encourage such erroneous confusion, but deliberately uses the spatio-temporal
distribution as an estimator of the probabilistic precipitation forecast at a specific point
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4.2 General concept of a neighbourhood

in space and time on the model grid.

The underlying assumption of the post-processing methodology implies that patterns
within the neighbourhood are unpredictable and entirely due to noise, whereas the large-
scale model forecast is assumed to be perfect. The size of the neighbourhood defines
a universal spatio-temporal scale which acts as a hypothetical separation between pre-
dictable scales and unpredictable scales. Forecast uncertainty is assumed to be solely
associated with spatio-temporal small-scale variability of the forecast itself. Small lo-
cation and timing errors are supposedly the only source of the overall forecast error.
Systematic error and large-scale uncertainties are neglected. Furthermore, forecasts at
neighbouring grid points are assumed to be independent of each other.

Arguments against the neighbourhood concept

Plenty of cases can be imagined which do not meet these conditions even crudely. For
example, variations of predictability with terrain, flow, forcing and forecast lead time
are not taken into account at all, despite their large impact.

Furthermore, the assumption of small-scale spatio-temporal stationarity is unrealistic,
especially since the post-processing procedure still allows random variables Ziajaka

and
Zibjbkb

at neighbouring grid points to differ. If a value zijk is contained in both neighbour-
hoods Uiajaka

and Uibjbkb
, one and the same value zijk is used as a realisation of differing

random variables. It might be more appropriate to soften the stationarity assumption
and replace it by an assumption of spatio-temporal smoothness. This is discussed in the
following Section 4.3.

Last but not least, the fact that meteorological fields are spatio-temporally coherent
and that atmospheric models apply numerical smoothing contradicts the assumption of
small-scale independence and zero covariance in the realisations zijk. Relevant meteoro-
logical structures often pertain to scales that are substantially larger than grid box size.
As a consequence, random variables Zijk at neighbouring grid points might not just be
correlated, but the elements zijk of a small-scale sample Siajaka

most probably depend
on each other, as they belong to the same realisation of a large-scale structure.

Arguments in favour of the neighbourhood concept

On the other hand, some results of verification and predictability studies provide basic
arguments in favour of the neighbourhood concept. Theory (Lorenz, 1969) as well as
investigation of forecast data (Zepeda-Arce et al., 2000; Casati et al., 2004) point to
a relation between spatial scale and prediction skill, thus giving rise to the hope that
scale-dependent smoothing could be an appropriate tool in this study. Precipitation
forecast errors are largest on the smallest spatial scales (Zepeda-Arce et al., 2000; Mass
et al., 2002; Casati et al., 2004) and predictability of small spatial scales is shorter than
that of larger scales (Laprise et al., 2000; de Elía et al., 2002; Walser et al., 2004).
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Location and timing errors are indeed a dominant source of the total precipitation fore-
cast error (Hoffmann et al., 1995; Ebert and McBride, 2000). Often a simulated con-
vective storm is a few hours off, or a few tens of kilometers away from the observed one
(Bernardet et al., 2000). Kumar and Foufoula-Georgiou (1993a) argue that large-scale
features of rainfall capture the morphological organisation of a storm which should be
modelled deterministically, whereas small-scale features of rainfall exhibit scaling laws
and merely contain statistical information or noise. These studies support the notion
that forecast uncertainty is mostly due to small-scale uncertainty in space and time.

Some advanced verification strategies like entity-based or object-based approaches im-
plicitly take this fact into account. In addition, Atger (2001) develops a simple verifica-
tion procedure which resembles the concept of the neighbourhood even more. It consists
of taking into account all precipitation amounts that are predicted in the vicinity of an
observation in order to produce a probabilistic forecast from a single model run. Atger
(2001) argues that forecasters usually consider the whole model output and take advan-
tage of its spatial distribution in order to predict its local probability. Harold E. Brooks
(NSSL, Oklahoma) presented a similar approach at the 1998 Workshop on Mesoscale
Model Verification (Davis and Carr, 2000), confined to a spatial neighbourhood.

Before concluding this subsection, it should be mentioned that there are also numerical
arguments which state that the grid spacing of a model is not synonymous with its
ability to represent accurately a given feature (Pielke, 1991; Grasso, 2000). Even in the
absence of predictability limits it would be inappropriate to infer the forecast at a given
point by considering the deterministic model prediction at the corresponding model grid
point only.

4.2.4 Neighbourhood size

A crucial issue is the determination of an optimal size and shape of the neighbourhood.
Some indication of the order of magnitude can be inferred from verification and pre-
dictability studies, especially from those using scale decomposition (e. g. Casati et al.,
2004).

Three different sizes are tested in this study. They are termed “small”, “medium” and
“large” and are listed in Tab. 4.1. Fig. 4.4 depicts the spatial and temporal extension of
the “medium” size and Fig. 4.10 shows the spatial extension of all three configurations.

The ratio between spatial and temporal extension is kept relatively small, because small-
scale variations in terrain are suspected to limit spatial representativeness of surface
weather parameters. Therefore, the ratio does not correspond to the expected speed of
mesoscale precipitation and temperature patterns. An expected speed of 10 m/s would
call for larger spatial extensions so as to match the respective temporal extensions.

In the current version of the post-processing procedure the size of the neighbourhood
is held fixed on the entire model domain and at all lead times of the simulation. In
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Table 4.1: The three different configurations of the post-processing procedure which are
applied and evaluated. They differ in the size of their spatio-temporal neigh-
bourhood.

Configuration Spatial Diameter Temporal Diameter Size ρxy Size ρtt

of Neighbourhood of Neighbourhood (Eq. 4.1) (Eq. 4.1)
“Small” 6 · ∆x = 42 km 3 · ∆tt = 3 h ρxy = 3 ρtt = 1.5
“Medium” 12 · ∆x = 84 km 4 · ∆tt = 4 h ρxy = 6 ρtt = 2
“Large” 20 · ∆x = 140 km 6 · ∆tt = 6 h ρxy = 10 ρtt = 3
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Figure 4.10: The three different sizes of the neighbourhood as described in Tab. 4.1. Only
the spatial extension is shown.

a more sophisticated study, a variable neighbourhood size could be considered, for ex-
ample a neighbourhood size that grows with forecast lead time. A spatially varying
neighbourhood shape is already developed in this study (Section 4.4.3).

Neighbourhood size does not only determine the assumed scales of deterministic pre-
dictability, but it is also highly relevant in terms of computational efficiency: The
smaller the neighbourhood, the less computing time is required in the execution of the
post-processing scheme. The large neighbourhood of Tab. 4.1 already entails a severely
increased computing effort which may be difficult to justify in an operational environ-
ment.

4.2.5 Consistency between precipitation and 2m-temperature

The current methodology deals with precipitation and 2m-temperature separately.
When the user looks at both parameters simultaneously, consistency between them be-
comes an issue. Surface precipitation amount and 2m-temperature are expected to be
correlated in a physical and statistical way. For example, a negative statistical correlation
becomes obvious in the forecast on 4 July 1994 (not shown), a situation characterised
by heavy, convective summer precipitation. So as to achieve a realistic post-processed
forecast, the post-processing procedure should ideally retain this correlation.
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A Bayesian method is elaborated that explicitly takes this correlation into account. First,
an unconditional probabilistic precipitation forecast is formulated. Then a probabilistic
temperature forecast is derived which is conditional on the hypothetical outcome of pre-
cipitation. For example, the procedure could result in three unconditional precipitation
quantiles for the probabilities 25%, 50% and 75% and another three conditional tem-
perature quantiles for each of the three precipitation quantiles. Obviously, the forecast
then consists of nine different probabilistic forecast values.

The ordering of the procedure can also be reversed, i. e. an unconditional probabilistic
temperature forecast may be derived first and then the probabilistic precipitation fore-
cast conditional on temperature may be added. In general, the respective results are
different.

From a standard user’s perspective, a number of nine forecast values for two param-
eters is likely to be impractical. Thus, it is recommended to abandon the Bayesian
methodology and to simply use identical shapes and sizes of the neighbourhood for each
parameter instead. This way exactly the same points contribute to the derivation of
the precipitation forecast and to the derivation of the 2m-temperature forecast. This
is a much simpler solution which roughly preserves the correlation as well. However, it
comes with a price tag, as it prevents any attempts of tailoring the neighbourhood to
individual characteristics of different parameters.

4.3 Relation to existing non-parametric

methodologies

As outlined in Section 4.1.2, the neighbourhood methodology bears similarities to two
existing methodologies in non-parametric statistics: kernel smoothing and kriging. This
section works out the differences and analogies between the neighbourhood method,
kriging and kernel smoothing. A direct comparison is only possible for the estimation of
the expected value and the exceedance probability, because kernel smoothing and kriging
do not derive estimates of quantiles (cf. Fig. 4.1 and 4.2). The comparison allows to
view the neighbourhood in the light of existing research. Furthermore, the underlying
assumptions of the neighbourhood methodology and errors in the resulting estimates are
reconceived.

In terms of expected value estimation, an overview of the differences and analogies be-
tween the three methods is shown in Fig. 4.11. Apart from the estimation procedure
itself, the methods also differ in their underlying statistical models and in their assump-
tions about the raw data. Additionally, they offer different explanations of the error in
their estimates. Explaining the error in the estimate is not only crucial for the interpre-
tation and evaluation of the post-processed forecast, but also for optimising the tuning
parameters of a method.
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Figure 4.11: Differences and analogies between the neighbourhood method, kernel smooth-
ing and kriging with respect to the estimation of the expected value.

Kriging and kernel smoothing are briefly introduced in Subsection 4.3.1. Emphasis is laid
on the description of the estimation procedure, its applicability to LM post-processing
and a discussion of their underlying statistical models. Subsection 4.3.2 shows that the
neighbourhood estimators of expected value and exceedance probability can even be
reformulated as a special case of kernel estimators and kriging estimators. This insight
sheds new light on the neighbourhood concept. The different explanations of errors in
the resulting estimates are discussed in Subsection 4.3.3.

4.3.1 Brief introduction to kriging and kernel smoothing

Similarly to the neighbourhood methodology, kriging and kernel smoothing perceive the
LM model output as a realisation of some random process. The nature of the random
process is stated in a statistical model. Depending on the respective methodology and
the estimated quantity, different statistical models are postulated. It turns out that the
underlying assumptions of kriging and kernel smoothing are less rigid than the ergodic
assumption in the neighbourhood methodology.

Kriging estimator of the expected value

Kriging has originally been designed to estimate the value of a realisation at an un-
sampled location on the basis of some realisations at nearby locations (Cressie, 1991;
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Wackernagel, 1998; Chilès and Delfiner, 1999). The available realisations are usually
located at irregularly spaced points.

Kriging offers a multitude of specific procedures: simple kriging, ordinary kriging, univer-
sal kriging, cokriging, quantile kriging, indicator kriging, probability kriging and disjunc-
tive kriging, to name only some of them. Cokriging, for example, offers the possibility
to preserve the consistency between several variables so that it could be very useful in
LM post-processing (cf. Subsection 4.2.5).

In general, the kriging estimate is a weighted average of the available realisations at the
sampled locations. The weights are determined by some theoretical covariance structure
between the random variables at different locations. This covariance structure is a
relevant part of the underlying statistical model in kriging.

In LM post-processing, the initial situation is slightly different than the standard kriging
problem. The available realisations are located on a regular grid. Instead of an additional
realisation, an estimate of the expected value is sought. A realisation is already available
at the location under consideration.

Kriging is still useful in this situation, because the universal kriging estimator of a
realisation is unbiased, i. e. the expected value of the estimator is equal to the expected
value of the underlying random variable itself. Furthermore, the kriging estimator of the
expected value is a better estimator than the realisation which is already available at
that point, because the kriging estimator theoretically has a lower variance error. The
regularity of the grid does not pose any additional problems.

In universal kriging the realisations are believed to be the sum of a random residual
and a deterministic function, the so-called drift. The drift is assumed to be a smooth
function in space and the residuals are assumed to have zero mean. The smoothness of
the drift expresses the notion that deterministically predictable features at neighbouring
locations tend to assume close values.

Due to the notion of a drift, the statistical model of kriging is far less rigid than the
ergodic assumption of the neighbourhood methodology. Whereas the neighbourhood
method postulates that forecasts within a small-scale spatio-temporal region must be
realisations of exactly the same random variable, the kriging methodology allows the ran-
dom variables to differ at different locations. The differences in their first moment must
be small though, because the drift is assumed to be smooth. Furthermore, the kriging
concept is able to explicitly acknowledge the spatio-temporal coherence of meteorolog-
ical fields whereas the neighbourhood concept is confined to the simplistic assumption
of independence.

Kernel estimator of the expected value

When estimating the expected value, kernel smoothing can be applied in the context
of non-parametric regression of a function (Härdle, 1990; Simonoff, 1996). Statistical
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regression aims at recovering an unknown continuous function from noisy data that are
available at discrete locations, mostly on a regular grid. The motivation is twofold:
(1) interpolation of the function at unsampled locations and (2) denoising the available
data, i. e. the replacement of the noisy data by new estimates of the function values
that possess a reduced variance error. In the context of LM post-processing, the second
motivation is determining, as the estimates are derived at grid point locations.

Similarly to the kriging estimator, the kernel estimator is a weighted average of the avail-
able data at different locations. As opposed to kriging, the weights are not determined
by the theoretical covariance structure, but by a pre-defined kernel function that usually
depends on spatial distance only.

Kernel smoothing of a function is based on the statistical regression model which makes
assumptions on the uncertainty of the data and the roughness of the unknown function.
The model is similar to the kriging model, but contains more restrictions. In the fol-
lowing paragraphs, the regression model is introduced in detail, because it is picked up
again when the wavelet estimator of the expected value is introduced in the following
Chapter 5.

When applied to LM post-processing, the regression model regards the LM model output
as a three-dimensional function of space and time that is contaminated by noise. The
noisy data is given by the LM output data zijk at discrete grid locations (i, j) and output
times k. Nx, Ny are the number of discrete model grid points in the x- and y-direction,
respectively, and Ntt denotes the number of discrete model output times.

The simplest paradigmatic regression model is

Zijk = ζ(xi, yj, ttk) + εijk, i = 1, . . . , Nx j = 1, . . . , Ny k = 1, . . . , Ntt. (4.6)

The direct model output zijk is a realisation of Zijk and the random variables Zijk

refer to the predictand at grid points (xi, yj, ttk) = (i∆x, j∆y, k∆tt) ∈ � 3. The random
variables εijk are iid and follow the normal distribution N(0, σ2), i. e. the noise is assumed
to be white, Gaussian and homoscedastic with zero mean.

As the noise εijk has zero mean, the function value ζ(xi, yj, ttk) is also the expected value
of the random variable Zijk. Therefore, it is the estimate of ζ(xi, yj, ttk) which is sought
in LM post-processing.

In LM post-processing, the random variables εijk represent forecast error and the func-
tion value ζ(xi, yj, ttk) represents the “true” or deterministically predictable state of the
predictand. Again, it is assumed that the underlying function ζ(xi, yj, ttk) possesses some
degree of smoothness.

Similarly to the kriging model, the regression model is far less rigid than the ergodic
assumption, because it allows the first moments of the random variables to differ at
different locations. Still, the statistical regression model contains some simplifications
that are generally not in accordance with the real world. For example, the assumption of
homoscedastic noise is not justified, because forecast errors mostly depend on location,
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time and the atmospheric state. Furthermore, spatio-temporal correlation in forecast
error is neglected and systematic forecast error is not addressed either.

Before concluding this subsection, a general remark should be made on the “true” state
of the atmosphere. So far, all of the statistical models in this study express the true
state by a parameter value. In reality, the true state is not perfectly known even when
observations are available, because it is an estimated mean of a grid box area and a
time period. Strictly speaking, the true state should be treated as a random variable.
However, it is still common practice to neglect this fact. This study simply conforms to
this practice, because this problem is outside the scope of this study.

Kriging estimator of the exceedance probability

The simplest kriging estimate of the exceedance probability is provided by so-called
indicator kriging (Chilès and Delfiner, 1999). The concept is very similar to the kriging
estimator of the expected value (cf. Fig. 4.11), but replaces the initial data z by indicator
data δ̃c(z) (Eq. 4.4) first.

Analogously to the neighbourhood estimation of exceedance probability, a function
transforms the realisations z of the continuous random variable Z into realisations of a
random variable with a discrete distribution having the two possible outcomes zero and
one (cf. Eq. 4.4). The transformation function is also known as the indicator function.
The expected value of the discrete random variable is then the exceedance probability
associated with the exceedance threshold c.

The replacement by indicator data constitutes a clear loss of information, because it
takes into account the position of a value relative to the threshold but not its proxim-
ity. Therefore, more sophisticated kriging procedures have been developed: probability
kriging, indicator cokriging and disjunctive kriging (cf. Chilès and Delfiner, 1999).

The neighbourhood methodology does not take advantage of such advanced concepts,
because they are specific to the estimation of the exceedance probability and because
the neighbourhood methodology is required to provide a uniform concept for the simul-
taneous estimation of exceedance probability, expected value and quantiles. Therefore,
the neighbourhood estimator of exceedance probability is less refined than other existing
estimators. This is the price tag when requiring a single methodology that covers the
estimation of three statistical quantities.

Kernel estimator of the exceedance probability

Kernel estimation of the exceedance probability bears many technical similarities to
kernel estimation of the expected value (cf. Fig. 4.11), but the underlying statistical
model is entirely different. Whereas the estimation of the expected value is based on
function regression, the estimation of the exceedance probability can be viewed as the

66



4.3 Relation to existing non-parametric methodologies

estimation of the intensity function of a spatio-temporal point process (cf. Diggle, 1985;
Reiss, 1993).

Informally speaking, point process theory is a mathematical tool that describes the
occurrence of isolated events in time and/or space. After transforming the realisations
to indicator data with values 0 and 1, they can be viewed as an outcome of a spatio-
temporal point process. Locations that exhibit an indicator value of 1 are interpreted
as the outcome of the spatio-temporal point process.

In the context of precipitation fields, the application of point process theory is already
familiar in meteorology. Models for spatio-temporal precipitation based on stochastic
point processes go back at least as far as the fundamental work of Cam (1961). This
approach developed rapidly in the 1980s through a series of papers (e. g. Waymire et al.,
1984; Rodriguez-Iturbe and Eagleson, 1987) and is still subject of current research (e. g.
Salsón and Garcia-Bartual, 2003). However, the majority of these papers does not focus
on weather forecasting, but on rainfall generators and hydrological applications.

A point process is partly characterised by its intensity function. In LM post-processing,
the intensity function of a point process is of special interest, because it is directly
linked to the probability of the event under consideration, i. e. the event of exceeding a
threshold (cf. Cressie, 1991). A local estimate of the intensity function can be derived
by the kernel method (Diggle, 1985). Kernel intensity estimation bears many analogies
with kernel density estimation which is extensively described in Silverman (1986). The
kernel estimate consists in a weighted average of the indicator values and the weights
are determined by the kernel function. The unknown intensity function is assumed
to be smooth, again reflecting the notion that deterministically predictable features at
neighbouring locations tend to assume close values.

The notion of a spatio-temporal point process requires a different statistical perspective
than in the previous subsections. So far, this study has perceived the model output
as the realisation of a random variable Zijk at some point (i, j, k) on the model grid.
Forecast uncertainty has been expressed via the uncertainty in the amount zijk while the
point (i, j, k) has been taken as fixed. Now a new approach is pursued which takes the
amount as fixed and treats the point (i, j, k) as a realisation of a multivariate random
variable (I, J,K). The random variable (I, J,K) follows a discrete distribution confined
to the discrete model grid locations (i, j) and the discrete output times k.

The approach bears similarities to the neighbourhood method, as it treats forecast un-
certainty as a result of spatio-temporal uncertainty. However, the formalisation of this
notion is obviously different here. As opposed to the small-scale ergodic assumption
in the neighbourhood methodology, the kernel estimator merely requires the validity of
the point process concept and a certain degree of smoothness in the unknown intensity
function.

Before concluding this subsection, some remarks should be made on the discrimination
between discrete and continuous point processes. In the LM output the realisations
of the point process are confined to the discrete model grid points, so model output
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data must be described as a discrete point process. However, standard kernel density
estimation or kernel intensity estimation starts from the assumption that the function
to be estimated is continuous. Therefore, special care must be taken when applying the
kernel estimator in the discrete case. So-called discrete kernel functions (Rajagopalan
and Lall, 1995) could be able to cope with this special situation.

4.3.2 Neighbourhood methodology as a special case of kernel

smoothing and kriging

In terms of expected value and exceedance probability estimation, the basic version of
the neighbourhood methodology can be reformulated as a special case of kernel smooth-
ing and kriging. The reformulation allows to discover definite parallels between the
various methods and it reveals that the neighbourhood method may still be justified
even if the data do not satisfy the rigid prerequisite of small-scale ergodicity. This fact
may alleviate the uneasiness about the ergodic assumption in the neighbourhood con-
cept. Furthermore, the comparison also allows a different view of errors in the resulting
neighbourhood estimates (Subsection 4.3.3).

Preparatory remarks

Just like the kriging and kernel estimators of expected value and exceedance probability,
the corresponding neighbourhood estimators (Eq. 4.3 and 4.5) can be expressed as a
weighted average of the direct or transformed model output, respectively:

µ̂i′j′k′ =
Nx∑

i=1

Ny∑

j=1

Ntt∑

k=1

zijk · ωijk(i
′, j ′, k′) (4.7)

and

π̂c
i′j′k′ =

Nx∑

i=1

Ny∑

j=1

Ntt∑

k=1

δ̃c(zijk) · ωijk(i
′, j ′, k′). (4.8)

Inside the neighbourhood the weights possess a constant value greater than zero, outside
the neighbourhood they are zero and their overall sum is unity:

ωijk(i
′, j ′, k′) =

{
1
N

: zijk ∈ Si′j′k′

0 : zijk 6∈ Si′j′k′

(4.9)

where N is the number of elements in the neighbourhood sample Si′j′k′ (Eq. 4.2).

Kriging estimators

In order to reformulate the neighbourhood estimate as a special case of kriging, the co-
variance structure of the data must yield the same kriging weights as the neighbourhood
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does. In other words, when the neighbourhood estimator is interpreted in the context of
kriging, the neighbourhood implicitly postulates an extremely simple covariance struc-
ture. Realisations within the neighbourhood are supposed to have unit covariance matrix
and realisations outside the neighbourhood are supposed to have zero covariance. This
covariance structure does not necessarily correspond to the true spatial structure of the
signal.

The neighbourhood method gives away one of the main advantages of kriging, i. e. the
neighbourhood does not let the data itself determine the degree and structure of spa-
tial smoothing within the estimation process. Although kriging is a much more flexible
method than the neighbourhood, this study chooses to refrain from kriging methods, be-
cause they are not apt for quantile estimation. However, some existing ideas from kriging
find their way into the neighbourhood method when its refinements are introduced in
Section 4.4.

Kernel estimators

In order to reformulate the neighbourhood estimate as a special case of kernel smooth-
ing, a kernel function must be determined that yields the same kernel weights as the
neighbourhood does.

Let the point (i′, j ′, k′) lie within a sufficient distance from the boundaries of the model
domain so that the lateral boundaries of the LM do not interfere with the neighbour-
hood Ui′j′k′. Then the corresponding kernel function represents a spherical ball with
radius one and volume one:

Kball(u, v, w) =

{
V −1

ball : u2 + v2 + w2 ≤ 1
0 : u2 + v2 + w2 > 1

with u, v, w ∈ � (4.10)

where the inverse of volume Vball = 4
3
π ensures that

∫ ∫ ∫
Kball(u, v, w) dwdv du = 1.

The function satisfies the standard requirements of a kernel function (cf. Silverman,
1986).

If a kernel estimate is sought at some grid point (ia, ja, ka), the kernel weights at a
point (i, j, k) are given by

ωijk(ia, ja, ka) =
1

hxhyhtt
· 1

∆x∆y∆tt
·

[
(i+ 1

2
)∆x

]
∫

[
(i− 1

2
)∆x

]

[
(j+ 1

2
)∆y

]
∫

[
(j− 1

2
)∆y

]

[
(k+ 1

2
)∆tt

]
∫

[
(k− 1

2
)∆tt

]
Kball

(u− xa∆x

hx∆x
,
v − ya∆y

hy∆y
,
w − tta∆tt

htt∆tt

)
dw dv du (4.11)

where hx, hy, htt ∈ � + are the corresponding kernel bandwidths. As to match the kernel
methodology with the neighbourhood methodology, the values of the bandwidths are
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simply chosen according to the neighbourhood size defined in Eq. 4.1: hx = hy = ρxy,
htt = ρtt.

When the neighbourhood estimator is interpreted in the context of kernel smoothing, the
neighbourhood implicitly postulates a very simple shape of the kernel function. This
is not a severe constraint in kernel smoothing, because the kernel shape theoretically
does not have a great impact on the error of the estimate, at least when compared
to the impact of kernel bandwidth. This is proven theoretically (Silverman, 1986) and
reaffirmed by sensitivity studies with LM forecasts in this study (not shown). Subjective
assessment of a case study reveals only a minor impact of kernel shape and objective
verification does not indicate any influence of kernel shape on forecast quality. Thus,
there should be no reservations to view the neighbourhood estimates of expected value
and exceedance probability as fully-fledged kernel estimates.

Before concluding this subsection, it should be mentioned that the kernel weights above
do not exactly correspond to the neighbourhood weights. In the neighbourhood method-
ology, all weights within the neighbourhood are equal. However, a kernel weight near
the boundary of the neighbourhood is smaller than the interior kernel weights if the
kernel function drops down to zero within the grid box. The correspondence between
the neighbourhood methodology and the kernel methodology is only exact if the kernel
weights ωijk (Eq. 4.11) are formulated in terms of a discrete kernel function as defined
in Rajagopalan and Lall (1995).

4.3.3 Different explanations of errors in the estimate

The errors in the neighbourhood, the kriging and the kernel estimates are expected to
possess certain statistical properties (cf. Fig. 4.11). Statistical models that explain the
error in the resulting estimate are not only crucial for the interpretation and evaluation of
the post-processed forecast, but also for optimising the tuning parameters of a method.

Expected statistical properties of the error are closely linked to the underlying statistical
model of the respective methodology. Only if the assumptions of the model are satisfied
by the data, the statistical properties of the error in the resulting estimate are satisfied
as well. If the underlying model is not satisfied, the method runs the risk of introducing
spurious errors that cannot be explained by the statistical model anymore.

As the neighbourhood, kriging and kernel methodologies are based on different statistical
models, the errors of the resulting estimates are expected to possess different statistical
properties as well. For example, the kernel methodology is the only one that allows
for a bias (cf. Fig. 4.11). This might seem like a paradoxon after having shown that
the neighbourhood estimates can be rephrased as a special case of kriging and kernel
smoothing. Different viewpoints should certainly not change the quality of one and the
same estimate. However, different viewpoints may well differ in their ability to explain
the quality of one and the same estimate. The analogies between the neighbourhood
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method, kriging and kernel smoothing allow for a better insight into the expected quality
of the neighbourhood estimates.

Errors in the estimate are generally composed of a bias term and a variance term.
Whereas the neighbourhood estimator and the kriging estimator are theoretically un-
biased, the underlying model of kernel smoothing expects a non-zero bias term in the
kernel estimate. If at all, the neighbourhood concept and the kriging concept only al-
low for a qualitative discussion of a possible bias in their estimates. One of the main
arguments in such a discussion would be the violation of small-scale ergodicity or the
violation of the theoretical covariance structure, respectively.

The kernel concept reveals a direct link between kernel bandwidth and the error in the
resulting estimate. In the context of kernel smoothing, the error in the estimate can be
phrased as a function of the roughness of the unknown function, the variance error of the
available data, kernel shape and kernel bandwidth. The choice of bandwidth is a trade-
off between bias and variance in the estimator. A larger bandwidth increases the bias
and reduces the variance so that there exists an optimal bandwidth which maximises
the overall accuracy in the estimate. As kernel bandwidth and neighbourhood size are
directly linked, the kernel concept provides a very important insight into the quantitative
effect of neighbourhood size.

4.4 Neighbourhood concept revisited: Explanatory
variables

4.4.1 General remarks

Motivation

Small-scale 2m-temperature variations are often associated with small-scale variations of
topographic forcing. In such a case, 2m-temperature variations within a neighbourhood
are not entirely due to chance, but partly determined by the deterministic effect of
topographic forcing. There are many variables that can enhance small-scale deterministic
predictability of 2m-temperature and/or precipitation. Some examples are orographic
elevation, orographic slope, land-sea mask, snow cover, leaf area index, albedo, time of
day (i. e. position of the sun).

The existence of small-scale deterministic effects severely conflicts with the assumptions
of the neighbourhood method and is one of the key problems of the neighbourhood
methodology. Simple scale separation alone is not always sufficient to differentiate be-
tween deterministically predictable features and deterministically unpredictable features.
If topographic forcing is not taken into account, the neighbourhood method erroneously
assumes that all small-scale variations of 2m-temperature are entirely unpredictable. In
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other words, the plain ergodic assumption of small scales (Section 4.2.3) is not always
valid and needs some refinement.

The existence of deterministic effects has already received much attention in geostatistics.
The causative variables are described as explanatory variables (e. g. Diggle et al., 1998)
and their deterministic effect is called external drift (e. g. Chilès and Delfiner, 1999).

Aims

Accounting for explanatory variables in LM post-processing is a complex problem, espe-
cially when ensemble simulations are not available. The problem is probably not fully
solvable, so this study merely aims at an alleviation of the unwanted effect of explana-
tory variables in statistical post-processing, but does not hope for a complete removal of
the problem. Furthermore, the consideration of explanatory variables must be computa-
tionally cheap so that the low-budget character of post-processing is retained. One has
to resist the temptation of expanding the LM post-processing procedure into another
extensive model.

Overview of the method

Geostatistics have already elaborated methodologies that deal with explanatory vari-
ables. The kriging methodology narrows the problem down to a more complex model of
the underlying covariance structure and suggests multivariate methods such as cokriging
(e. g. Chilès and Delfiner, 1999).

This study refrains from the laborious procedure of cokriging, because LM post-
processing starts from a more favourable situation than the standard kriging problem.
The values of explanatory variables are known at each grid point and there is some
rudimentary external knowledge about their effect.

In this study, the effect is formalised by the statistical model

Zijk = Z̆ijk + gijk(d
1
ijk, . . . , d

Nd

ijk). (4.12)

The random variable Zijk represents the raw model output realisations zijk. They are

composed of a random variable Z̆ijk and a term gijk(d
1
ijk, . . . , d

Nd

ijk) which represents

the deterministic effect of explanatory variables. The variables (d1
ijk, . . . , d

Nd

ijk) represent
explanatory variables at point (i, j, k) and the function gijk relates them to their deter-
ministic effect. The function is allowed to vary with location and time. Note that the
statistical model addresses the deterministic effect of explanatory variables, since the
term gijk(d

1
ijk, . . . , d

Nd

ijk) is a parameter value instead of a random variable.

As the sample S (Eq. 4.2) contains realisations of Zijk, it captures the full small-scale
variability of the raw model output, including the deterministic variability caused by
explanatory variables dijk. The variation within the sample S is not suited to represent
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forecast uncertainty, as it also encompasses a substantial part that is deterministically
predictable. Therefore, a refined version of S is sought whose elements are less influenced
by explanatory variables.

This study alleviates the unwanted, small-scale effect of explanatory variables in two
ways:

1. The raw model output is modified so as to reduce the deterministic effect of ex-
planatory variables within the neighbourhood sample S (Subsection 4.4.2).

2. The shape of the neighbourhood is altered so as to reduce the variation of the
explanatory variables within the neighbourhood U (Subsection 4.4.3).

4.4.2 Linear modification of the model output

Parametric assumption about the deterministic effect

First, a parametric assumption is made about the function gijk (Eq. 4.12):

gijk(dijk) = β◦
ijk + (dijk)

T βijk (4.13)

where the vector dijk contains the explanatory variables (d1
ijk, . . . , d

Nd

ijk), the parame-
ter β◦

ijk is an offset parameter at dijk = 0 and βijk is a parameter vector with Nd el-
ements. The parametric assumption resembles the external drift model known from
geostatistics (cf. Chilès and Delfiner, 1999) which provides a shortcut to bypass the
more complex approach of cokriging.

The refined neighbourhood sample

The simple neighbourhood sample S (Eq. 4.2) is now upgraded to a refined version
whose elements are less influenced by explanatory variables:

S̆ijk ≡
{(

zi′j′k′ − (di′j′k′)T βijk + (dijk)
T βijk

)∣∣∣∣(i′, j ′, k′) ∈ Uijk

}
. (4.14)

At each point (i′, j ′, k′) ∈ Uijk the deterministic effect is subtracted from zi′j′k′ and
replaced by the deterministic effect at the central point (i, j, k) of the neighbourhood
(cf. Fig. 4.12).

In contrast to the simple neighbourhood sample Sijk the variation of the elements in

S̆ijk is not influenced by the unwanted effect of explanatory variables di′j′k′ 6= dijk.

Thus, the refined version S̆ijk is more suitable to form a sample of the predictand at
point (i, j, k) than the original set Sijk. This refinement of the neighbourhood is called
linear modification throughout this study.
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Figure 4.12: Linear modification of the forecast values within the neighbourhood. Left:
Estimation of a linear relation between the LM 2m-temperature forecast
and orographic elevation. Right: The LM 2m-temperature values within the
neighbourhood are modified according to the estimated regression line and
the orographic elevation at the central point of the neighbourhood (Eq. 4.14).

Estimating the effect of explanatory variables

In order to derive the modified sample S̆ijk, the value of the parameter vector βijk is
needed. This study refrains from prescribing a fixed value of βijk, because the effect of
explanatory variables may vary with the current weather situation and because external
knowledge about the deterministic effect might not even be available. In order to capture
the current effect of explanatory variables, the value of the parameter vector βijk is
estimated from the model output data itself. The parameter is allowed to vary with
location and time, so new estimates are derived at each grid point and output time.

For example, a flat estimate of the association between orographic elevation and 2m-
temperature would be −0.0065K/m. This is the gradient of the standard atmosphere
near the ground. In reality, however, the gradient varies with the weather situation,
for example a temperature inversion exhibits quite a different gradient. Furthermore,
the orographic influence on precipitation is even harder to capture (Prudhomme and
Reed, 1999). The relation often depends on the prevailing wind direction. However,
additional variables such as wind direction are deliberately excluded from the parametric
assumption (Eq. 4.13), so as to keep the post-processing procedure simple. The influence
of wind direction might also be covered by the spatio-temporal variability of βijk.

Combining equations 4.12 and 4.13 and assuming the regression model 4.6 for the random
variable Z̆ijk yields the following statistical model of the raw model output:

Zijk = β◦
ijk + (dijk)

T βijk + ζ(xi, yj, ttk) + εijk.

The assumptions about εijk (Eq. 4.6) and a certain degree of spatial smoothness in ζ and
βijk set the theoretical basis for the estimation of the parameter vector βijk. The vector
is estimated by a spatially weighted least squares fit between the raw model output and
explanatory variables.
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Choice of weights

When estimating the parameter βijk at location (i, j), more weight is given to those

data zi′j′ that are close to the point (i, j) and vice versa. The corresponding weights ωij
i′j′

are chosen to follow a symmetric, truncated and normalised Gaussian function centered
at point (i, j):

ωij
i′j′ ∝

{
e−

1

2
(u2+v2) : |u| ≤ B ∧ |v| ≤ B

0 : |u| > B ∨ |v| > B
(4.15)

with

u =
(i′ − i)

γexpl

and v =
(j ′ − j)

γexpl

and
Ny∑

j′=1

Nx∑

i′=1

ωij
i′j′ = 1.

The smoothing parameter γexpl determines to what degree a point (i′, j ′) contributes to
the estimate of βijk at point (i, j). Its value is chosen to be equal to the neighbourhood
size ρxy. The truncation parameter B = 2γexpl guarantees that the weighting function
has compact support so that the procedure is computationally efficient.

The smoothing parameter γexpl is a key figure, as it controls the trade-off between bias

and variance error in the estimator β̂. On the one hand, the smoothing parameter must
be small enough to capture essential spatial variations of β. If the smoothing parameter
is too large, the resulting estimate β̂ becomes unrealistically smooth and runs the risk
of having a large bias. On the other hand, the value of γexpl must be large enough so as
to avoid an over-fit of the data due to small sample size. An over-fit results in a large
variance in the estimate.

As many explanatory variables are connected to land surface characteristics with a con-
stant value over the sea, the estimation of the parameter βijk and the derivation of the

modified sample S̆ijk (Eq. 4.14) are exclusively carried out at land points (i, j).

In addition, the weights ωij
i′j′ adapt to surface characteristics. For example, the LM

data show that the relation between 2m-temperature and snow cover changes abruptly
at the transition between areas that are covered with snow and areas that are free of
snow. Thus, weights ωij

i′j′ are set to zero if the surface at point (i′, j ′) differs from that
at point (i, j) in such a respect.

Similarly, the weights ωij
i′j′ also adapt to characteristics of the forecast field itself. In

case of precipitation post-processing, linear modification is only applied to precipitation
amounts greater than zero. At locations without precipitation the weights ωij

i′j′ are set
to zero.

If many weights are set to zero, the estimate of βijk is based on only few data zi′j′k

and the risk of obtaining a bad estimate is larger. For example, such a case occurs in
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Figure 4.13: Post-processed version of the 2m-temperature forecast in Fig. 4.5. Unit: De-
gree Celsius. Estimate of expected value. Post-processing procedure: max-
imum likelihood estimator (Eq. 4.3) from the refined neighbourhood sam-
ple S̆ijk with linear modification (Eq. 4.14).

temperature post-processing if the point (i, j) is located within a very small region with
snow cover. Therefore, the number of relevant data zi′j′k in the estimation procedure is
checked. If the total number is less than 15 or if the sum of weights ωij

i′j′ drops down

to less than 20% of the original sum, the estimator β̂ijk is set to zero. In precipitation
post-processing one or both of these criteria are met quite frequently, depending on the
occurrence of precipitation. In temperature post-processing one or both of these criteria
are met in less than 0.3% of all grid locations.

Example

Fig. 4.13 shows an example of a post-processed LM 2m-temperature forecast. The
post-processing procedure is the same than applied to Fig. 4.6 except that the refined
sample S̆ijk (Eq. 4.14) is now used instead of the simple neighbourhood sample Sijk

(Eq. 4.2). Orographic elevation is taken into account as an explanatory variable of the
2m-temperature forecast.

Let us first discuss the estimate of the temperature gradient βijk (not shown). In large
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parts of the domain the value of β̂ijk ranges from -0.01K/m to 0.00K/m. The values
appear realistic, because they are close to the gradient −0.0065K/m of the standard at-
mosphere. It also turns out that the data yield a spatially variable temperature gradient
indeed.

Some regions exhibit surprising values of β̂ijk that range from 0.00K/m up to almost
0.04K/m. Typically, such regions are located near the coast. In these regions a slight de-
crease of orographic elevation coincides with decreasing distance to the coast. Generally,
2m-temperature values systematically decrease with decreasing distance to the coast on
a clear summer day. As a result, the linear fit misinterprets the 2m-temperature drop
as an effect of changes in orographic elevation. This is a typical example of mistaking a
correlation for a causation.

In this case such misinterpretation does not deteriorate the post-processing procedure.
First, orographic elevation exhibits only small spatial variability in the coastal regions
under consideration so that the correction term (di′j′k′ − dijk)

T βijk (cf. Eq. 4.14) remains
small in spite of a large value of βijk. Secondly, distance to the coast can be seen as
an explanatory variable that needs to be considered anyway. The least squares fit to
orographic elevation automatically takes care of it, as the two gradient vectors are mostly
parallel in coastal regions.

Now let us turn back to the post-processed forecast in Fig. 4.13. Compared to Fig. 4.6
linear modification retains a considerable amount of spatial variability in the estimated
expected value. Regions over the sea are unaffected because linear modification is only
applied over land. A very nice effect is the preservation of small-scale 2m-temperature
structures in the Alpine region and in regions of low mountain range, because these
structures are expected to be deterministically predictable.

Linear modification certainly runs the risk of erroneously retaining features that are
not deterministically predictable. This case typically occurs when small-scale 2m-
temperature variations are correlated with orographic variations without any causation.
Objective verification against observational data provides a more objective and com-
prehensive evaluation of the refined neighbourhood procedure with linear modification
(Chapter 6).

Before concluding the issue of linear modification, a brief note should be made on consis-
tency between several predictands. As mentioned in Section 4.2.5, consistency between
several predictands should be preserved. A simple way of achieving consistency is the
application of identical neighbourhood shapes and sizes to different predictands. How-
ever, linear modification introduces additional difficulties in terms of consistency. This
issue remains for future research.
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Figure 4.14: Alteration of neighbourhood shape. Left: Distorted neighbourhood with ellip-
tic shape. The distortion aims at reducing the orographic variability within
the neighbourhood by choosing an appropriate eccentricity and orientation
of the ellipse. For example, the main axis of the ellipse might align with
a valley. Right: The neighbourhood is cut off along coastlines (red line) so
as to include land points or sea points only. Boundaries of snow cover are
treated similarly.

4.4.3 Shape of the neighbourhood

Introductory remarks

Linear modification (Section 4.4.2) already alleviates the problem of explanatory vari-
ables substantially. However, the modification is restricted to the reduction of the linear
effect, so it is advisable to apply yet another methodology in addition.

In this section the effect of explanatory variables is additionally alleviated by changing
the shape of the neighbourhood Uijk so as to reduce the variability of the explanatory
variables within the neighbourhood. If there is less variability in the explanatory vari-
ables, there is also less variability in their effect, and the effect is less disturbing within
the sample Sijk.

The shape of the neighbourhood is changed in two ways (cf. Fig. 4.14):

1. The neighbourhood is simply cut off along certain boundaries.

2. The neighbourhood retains the shape of an ellipsoid, but it is distorted and rotated
additionally.

In this study, the neighbourhood shape aims to comply with the structure of orographic
elevation, snow cover and the land-sea mask. Thus, neighbourhood shape strongly
depends on location and rarely on time.

Refining the neighbourhood shape can be seen as a step towards the kriging method, be-
cause the refined shape aims at a better conformation with the real covariance structure
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of the data. The refined shape implicitly accounts for the fact that the raw model output
does not have unit covariance matrix in reality. However, there is still a fundamental
difference between the kriging method and the refined neighbourhood shape, because
the neighbourhood method exclusively uses external data to draw information about
the presumed covariance structure. The smoothing procedure is neither influenced by
the predictand itself, nor does it vary with the atmospheric flow.

The refined neighbourhood shape also finds an equivalent in kernel methods, in the sense
that kernel functions may be non-isotropic. However, the refined neighbourhood shape
is still an extension to the classical kernel method, since it allows the kernel function to
vary across the domain.

Neighbourhood cut-off

Neighbourhood cut-off is a method to alleviate the deterministic effect of explanatory
variables that can be expressed in a categorical way. For example, surface type can be
perceived as a categorical variable: d = 1 if there is mainly land surface and d = 0 if
there is mainly sea surface within a grid box. Another example is the presence of snow
cover at the ground.

In terms of 2m-temperature forecasts, the land-sea mask and the presence of snow cover
must be considered as explanatory variables. For the moment, let us define the vector
of explanatory variables dijk = (d1

ijk, d
2
ijk)

T with d1
ijk ∈ {0, 1} expressing land-sea mask

and d2
ijk ∈ {0, 1} expressing snow cover at the ground.

If there is a switch from sea to land or if there is a switch from snow-covered ground
to snow-free ground within a neighbourhood Uijk, the refined neighbourhood excludes
those points (i′j ′k′) which differ from the central point (i, j, k) in at least one of the two
explanatory variables (cf. right portion of Fig. 4.14):

U cutoff
ijk ≡ Uijk \

{
(i′, j ′, k′)

∣∣∣∣di′j′k′ 6= dijk

}
. (4.16)

The cut-off procedure may induce a problem, as it diminishes the amount of elements
within the respective neighbourhood sample S. The reduction can be severe in some
cases, for example on a small island on the sea. Reducing the sample size increases
the risk of obtaining unreliable statistical estimators from the sample. Especially the
quality of quantile estimates is affected. Therefore, post-processing is not applied at
points with extremely small sample size. When a neighbourhood U cutoff

ijk comprises less
than 15 points, the estimation at point (i, j, k) is omitted and the estimator is set to a
missing value at this point.

Missing values usually occur on less than 1% of the total grid points. Still, operational
requirements do not tolerate the existence of missing values. As a very last step of
statistical post-processing, all missing values within the post-processed forecast field are
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replaced by spatially interpolated values from surrounding valid estimates. The inter-
polation procedure is bi-linear, isotropic and applies Gaussian weights that decrease
with increasing spatial distance from the location under consideration. The Gaussian
weighting function is defined analogously to Eq. 4.15 with a spatial smoothing parame-
ter $intpol = 2 instead of γexpl.

Neighbourhood distortion

While the cut-off procedure considers explanatory variables in their categorical form, the
procedure of neighbourhood distortion addresses explanatory variables in their continu-
ous form. In contrast to linear modification and neighbourhood cut-off, neighbourhood
distortion is able to treat only one explanatory variable at a time. The explanatory
variable is chosen to be orographic elevation here, because it is presumed that effects
due to orographic elevation enhance deterministic predictability most.

The neighbourhood Uijk (Eq. 4.1) is determined by spatio-temporal distance to the
point (i, j, k). The approach of neighbourhood distortion combines the distance cri-
terion with the criterion of spatial variability of the explanatory variable within the
neighbourhood. A predictand zi′j′k′ is believed to be more representative of the predic-
tand zijk if the difference between the corresponding explanatory variables dijk and di′j′k′

is smaller.

In the simple definition of the neighbourhood Uijk (Eq. 4.1), the projection of its bound-
aries on the spatial dimensions forms a sphere with central point (i, j, k) and radius ρxy

(cf. left portion of Fig. 4.4). In the refined version of the neighbourhood this projection
forms an ellipse with central point (i, j, k) (cf. left portion of Fig. 4.14). Its eccentricity
and the directions of its axes are determined by the quadratic differences (dijk − di′j′k′)2

of the explanatory variables at the central point (i, j, k) and nearby points (i′, j ′, k′).

The methodology is developed along the lines of Hodges (1999). Hodges (1999) con-
structs a Gaussian kernel function on � 2 which orientates itself according to the spatial
density of events in the vicinity of the central point (i, j, k). The kernel function takes
on large values in places where the density of events is large and vice versa.

This study replaces the criterion of event density by the criterion cs,s′ which is determined
by the variability of explanatory variables and by spatial distance. The indices s, s′

refer to the 2-dimensional vectors s ≡ (i, j)T and s′ ≡ (i′, j ′)T which denote spatial
locations. The term cs,s′ is a product of an orography term os,s′ and a distance weighting
term ωs,s′:

cs,s′ ≡ os,s′ · ωs,s′ (4.17)

where

os,s′ ≡ exp

(
− (dijk − di′j′k′)2

χ2

)
(4.18)
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and

ωs,s′ ≡ exp

(
− (s − s′)(s − s′)T

2%2

)
. (4.19)

The term os,s′ has a large value at locations where the values of explanatory variables dijk

and di′j′k′ are close to each other. The weight ωs,s′ depends on the distance between the
locations s and s′. A larger weight is given to the term os,s′ when the locations s and s′

are closer to each other. The exponential form exp(−x2) is chosen, because it is a non-
negative, symmetric, smooth function with a global maximum at zero. For the sake of
computational efficiency, the exponential functions are truncated to zero when their value
is very small. The tuning parameter χ = 70m determines the general degree of influence
of the orographic field on the term os,s′ by scaling the orographic differences. The tuning
parameter % ≈ 2

3
ρxy scales the spatial distances within the weighting function ωs,s′.

The term cs,s′ is used in the definition of a 2 × 2 covariance matrix

R̃s,s′ ≡ C−1
s,s′

Nx∑

i′=1

Ny∑

j′=1

[
(s − s′)(s − s′)T · cs,s′

]
(4.20)

with the normalising constant

Cs,s′ ≡
Nx∑

i′=1

Ny∑

j′=1

cs,s′.

As the covariance matrix R̃s,s′ is symmetric, it has two eigenvalues λ̃1 ≥ λ̃2 with the
corresponding normalised eigenvectors ẽ1 and ẽ2. The eigenvector ẽ1 points into the
direction of smallest local variability of orographic elevation and ẽ2 is perpendicular to
ẽ1.

A preliminary definition of a refined neighbourhood is given by:

Ũdistort
ijk ≡

{
(i′, j ′, k′)

∣∣∣∣
(
s − s′)T

R̃−1
s,s′

(
s − s′) +

(
k − k′

ρtt

)2

≤ 1

}
(4.21)

where R̃−1
s,s′ denotes the inverse of R̃s,s′ (Eq. 4.20). If the inverse does not exist, neigh-

bourhood distortion is omitted and the simple neighbourhood Uijk (Eq. 4.1) is applied
instead. Such a case is expected to happen in regions of constant orographic elevation,
but has not occurred in any of the case studies investigated so far.

The refined neighbourhood Ũdistort
ijk (Eq. 4.21) rescales the distances between locations s

and s′ according to the explanatory variables. A projection of the neighbourhood on
its spatial dimensions results in an ellipse with the semi-major axis pointing into the
direction of eigenvector ẽ1, i. e. the direction of lowest local orographic variability. The
eccentricity of the ellipse is determined by the ratio between the two eigenvalues λ̃1 and
λ̃2, i. e. the ratio between the orographic variability in the respective directions of the
two semi-axes. The time direction is not affected by the distortion.
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The definition of the distorted neighbourhood Ũdistort
ijk (Eq. 4.21) is preliminary, because

it does not preserve the volume of the original neighbourhood Uijk (Eq. 4.1) yet. Volume
preservation is achieved by the final definition

Udistort
ijk ≡

{
(i′, j ′, k′)

∣∣∣∣
(
s − s′)T

R−1
s,s′

(
s − s′) +

(
k − k′

ρtt

)2

≤ 1

}
(4.22)

where the matrix Rs,s′ is a refined version of matrix R̃s,s′. The matrix Rs,s′ is determined
by its eigenvalues λ1, λ2 and by its eigenvectors e1 = (e11, e12)

T and e2 = (e21, e22)
T :

Rs,s′ =

(
e11 e21
e12 e22

) (
λ1 0
0 λ2

)
. (4.23)

The eigenvectors and eigenvalues of Rs,s′ are closely related to those of the matrix R̃s,s′.
They are defined by the three conditions

e1 = ẽ1 and e2 = ẽ2

λ1 · λ̃2 = λ̃1 · λ2

λ1 · λ2 = ρ4
xy.

The first condition preserves the directions of the semi-axes; the second condition pre-
serves the eccentricity; the third condition restores the original volume of the neighbour-
hood Uijk.

Example

Fig. 4.15 shows an example of a post-processed LM 2m-temperature forecast with a
refined neighbourhood shape. The post-processing procedure is the same than applied
to Fig. 4.6 except that the neighbourhood is distorted according to orographic elevation
(Eq. 4.22) and cut off along coastlines and boundaries of snow cover (Eq. 4.16).

The effect of neighbourhood cut-off becomes clearly visible in the resulting estimate
(Fig. 4.15). Compared to results of simple post-processing (Fig. 4.6) the post-processed
field now exhibits temperature discontinuities along coastlines and also along snow
boundaries in the Alpine region.

The abrupt changes along coastlines are in perfect accordance with those in the orig-
inal 2m-temperature forecast (Fig. 4.5). As they are believed to be deterministically
predictable, the cut-off procedure improves the estimate of expected value indeed.

Neighbourhood cut-off along snow boundaries produces some cold “islands” within the
Alpine region. Such islands are not visible in the original forecast (Fig. 4.5) so that neigh-
bourhood cut-off along snow boundaries apparently results in causing artefacts instead
of preserving realistic features. Other case studies, however, show a more favourable
effect of neighbourhood cut-off along snow boundaries (not shown). In these cases
the original forecast indeed contains temperature discontinuities along snow boundaries
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Figure 4.15: Post-processed version of the 2m-temperature forecast in Fig. 4.5. Unit: De-
gree Celsius. Estimate of expected value. Post-processing procedure: maxi-
mum likelihood estimator (Eq. 4.3) from a neighbourhood that is both dis-
torted according to orographic elevation and cut off along coastlines and
boundaries of snow cover (cf. Fig. 4.14).

that are nicely preserved in the post-processed forecast. In summary, it remains open
whether neighbourhood cut-off along snow boundaries is generally beneficial in LM post-
processing.

The effect of neighbourhood distortion is extremely small. Compared to simple post-
processing (Fig. 4.6) some small-scale temperature variance is additionally recovered.
An instance of this becomes slightly visible in the region of Erzgebirge and Böhmerwald
where the distorted neighbourhood rudimentarily retains a small part of the orographic
2m-temperature pattern of the original forecast (Fig. 4.5). In other places it is not clear
whether the distorted neighbourhood works towards an improved estimate of expected
value or not.

All in all, the effect of neighbourhood distortion is small compared to the large effort
invested. A possible cause might be an inadequate adjustment of the tunable parame-
ters χ (Eq. 4.18) and % (Eq. 4.19). Further investigations of this issue are needed and
remain for a future study.
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Table 4.2: Explanatory variables under consideration and their alleviation in the neigh-
bourhood methodology. Standard version.

Predictand Explanatory Variable Alleviation Method

2m-temperature land-sea mask neighbourhood cut-off
snow cover neighbourhood cut-off
orographic elevation linear modification of DMO

precipitation none

4.4.4 Standard version of considering explanatory variables

Aims and motivation

Subsections 4.4.2 and 4.4.3 present several methodologies that alleviate the deterministic
effect of explanatory variables. Both the 2m-temperature forecast and the precipitation
forecast are examined. In terms of temperature post-processing, the methods include a
linear modification according to orographic elevation, neighbourhood distortion accord-
ing to orographic elevation and neighbourhood cut-off according to the land-sea mask
and snow cover. These examples represent only a small fraction of the large number of
experiments carried out. Besides orographic elevation, land-sea mask and snow cover,
further explanatory variables are considered in addition: orographic slope, distance to
the sea and position of the sun. Including the position of the sun is motivated by the
diurnal cycle of 2m-temperature. The diurnal cycle can be seen as small-scale vari-
ability in time which is deterministically predictable. Linear modification is formulated
in a multivariate way which allows a simultaneous consideration of several explanatory
variables.

Before post-processing a forecast, one has to specify the explanatory variables and the
corresponding method to alleviate their deterministic effect. The post-processing proce-
dure possesses maximum flexibility so that any combination can be set up immediately.

Since the neighbourhood method is envisaged to enter the operational system of DWD,
it is desirable to define a standard version of considering explanatory variables that is
optimal in some sense. Optimality is not solely attained through best quality of the
post-processing forecasts, but through a best trade-off between the complexity of the
post-processing procedure and the quality of the resulting forecasts.

Presentation of the standard version

The standard version of considering explanatory variables (Tab. 4.2) is chosen on the
basis of subjective and objective evaluation of the post-processed forecasts. The stan-
dard version of 2m-temperature post-processing includes linear modification according
to orographic elevation only and the neighbourhood is cut off along boundaries of snow
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cover and along coast lines. The standard version of precipitation post-processing does
not consider any explanatory variables. The reason for this is not a lack of explanatory
effects, but the difficulties in dealing with them appropriately.

Variants of this version are taken up again when the results of objective verification are
explicitly presented in Chapter 6. The standard version is compared to simpler versions
and more complex versions. In this context the question of an optimal neighbourhood
size is also raised.

Justification of the standard version

Various different versions of considering explanatory variables are set up and investi-
gated. In its first stage, the investigation consists in the subjective evaluation and
in-depth study of several case studies in Europe. In its second stage, a more extensive
and objective investigation is carried out in co-operation with DWD. Ulrich Damrath
(DWD, Offenbach) and Volker Renner (DWD, Offenbach) selected four summer time
periods with a duration of two weeks each and applied different post-processing versions
to the respective LM forecasts. They used standard verification measures to evaluate the
quality of the resulting estimates of expected value and quantiles. Similar endeavours
are also made in this study and are presented in Chapter 6.

Linear modification In-depth studies of several cases indicate the lack of a linear, deter-
ministic association between the explanatory variable and the forecast to be post-
processed. For example, the problem occurs for the following pairings: precipita-
tion and orographic elevation, precipitation and orographic slope, 2m-temperature
and distance to the coast, 2m-temperature and position of the sun. Several math-
ematical transformations of explanatory variables and forecast variables are tried
out, but do not lead to the desired improvement (not shown).

Only in terms of 2m-temperature and orographic elevation the data roughly ex-
hibit a linear, deterministic relation. Accordingly, results of objective verification
indicate a clear improvement when the 2m-temperature forecast undergoes linear
modification according to orographic elevation. Due to these results, the stan-
dard version of considering explanatory variables (Tab. 4.2) only includes a linear
modification with respect to orographic elevation and 2m-temperature.

More sophisticated alleviation methods – possibly going beyond the linear ap-
proach – might yields better results. Their development remains for a future
study. However, their operational application might be impractical due to a po-
tential increase in computing time.

Neighbourhood cut-off In terms of 2m-temperature post-processing, a subjective as-
sessment of several case studies indicates an improvement due to neighbourhood
cut-off along coastlines and boundaries of snow cover. In terms of precipitation
post-processing, a neighbourhood cut-off makes less sense, because the precipita-
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tion field generally does not regularly exhibit sharp discontinuities at locations that
are marked by an explanatory variable. Thus, the choice of the standard version
(Tab. 4.2) appears to be justified.

Neighbourhood distortion Recall that neighbourhood distortion according to oro-
graphic elevation only leads to tiny improvements in the case study presented
(Fig. 4.15). Accordingly, results of objective verification do not reveal a consider-
able effect of neighbourhood distortion either. This applies both to the temperature
and to the precipitation forecast.

Neighbourhood distortion does not contribute to an optimal version, because it
requires additional computing time without improving the forecast substantially.
For the moment, neighbourhood distortion is not included in the standard version
of considering explanatory variables, but further research is recommended.

4.5 Quantile estimation via the neighbourhood

In the previous subsections, neighbourhood estimates of the expected value and the
exceedance probability are introduced. This section extends the neighbourhood method
to the estimation of quantiles.

4.5.1 Introductory remarks

Definition of the quantile function

Let z be a realisation of the random variable Z which is distributed according to a
distribution function F . The quantile function q(p) is defined as

q(p) = F−1(p)

where p ∈ [0, 1] is a probability and F−1 is the inverse of F . There is a probability of p
that the realisation z will be less than the quantile q(p):

Pr
[
Z < q(p)

]
= p for all p ∈ [0, 1].

If z is the 2m-temperature forecast at a certain location and a certain time, there should
be a probability p that the quantile q(p) is greater than the corresponding observation
of 2m-temperature, given that the quantile is correctly forecast.

Overview of the estimation procedure

Several approaches to estimating the quantile function are conceivable. This study fol-
lows a non-parametric approach, because parametric assumptions would severely con-
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Generation of
a Sample

Kernel
RegressionDMO QuantilePosition

Formula

Plotting

Figure 4.16: Flowchart of quantile estimation. First, the neighbourhood yields a surro-
gate sample at each grid point and output time of the DMO. Then the ele-
ments of the sample are arranged according to an empirical ranking formula
or a so-called plotting position formula. The formula gives a rough, discrete
estimate of the quantile function: the empirical quantile function. Kernel
regression transforms the empirical quantile function into a denoised, con-
tinuous estimate of the quantile function.

strict the diversity of resulting estimates and might misinterpret the information con-
tained in the raw data.

This study starts out from the neighbourhood sample and combines two existing methods
(cf. Fig. 4.16): (1) application of a ranking formula or a so-called plotting position
formula to the construction of an empirical quantile function and (2) kernel regression of
the empirical quantile function by the Gasser-Müller technique. Moon and Lall (1994)
propose the combination of ranking formulas and kernel regression for the statistical
analyses of hydrological data.

The neighbourhood sample is generated according to the procedure described in the
previous subsections. Explanatory variables are considered in the standard way as listed
in Tab. 4.2. The plotting position formula sorts the sample elements by their value and
assigns probabilities. The resulting empirical quantile function yields unbiased estimates
of the unknown quantile function at discrete locations. The kernel regression method
interpolates these estimates to the location of interest and reduces their variance error.
The reduction of variance error is an essential aspect, because a quantile estimate usually
possesses a larger variance error than a corresponding estimate of the expected value.

The estimation procedure takes account of several aspects of forecast uncertainty. While
sample generation via the neighbourhood accounts for forecast uncertainty in location
and time, processing the sample via kernel quantile regression additionally takes account
of forecast uncertainty in precipitation amount or temperature value.

First, the derivation of the empirical quantile function is explained (Subsection 4.5.2) and
then the kernel regression procedure is described (Subsection 4.5.3). Subsection 4.5.4
presents some examples of quantile estimates and Subsection 4.5.5 additionally deals
with the mixed discrete-continuous distribution of precipitation in quantile estimation.
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Figure 4.17: Sketch of an empirical quantile function (pl, z(l)) (l = 1, . . . , N). The sample
elements z(l) are sorted and arranged according to an empirical ranking for-
mula or a so-called plotting position formula. The plotting position formula
determines the probability values pl (l = 1, . . . , N).

4.5.2 Estimate of the empirical quantile function

The empirical quantile function

Let {z1, . . . , zN} be a set of N independent realisations of the random variable Z and
rearrange them in ascending order of magnitude:

z(1) ≤ · · · ≤ z(N).

Then z(l) is a realisation of the lth order statistic Z(l) (l = 1, . . . , N) (David, 1981).
The empirical quantile function qe associates cumulative probabilities pl (l = 1, . . . , N)
to the realisations z(l) (l = 1, . . . , N), as illustrated in Fig. 4.17. The function qe is
determined by an empirical ranking formula or plotting position formula that lays down
the probability values pl. Ideally, the plotting position formula should be unbiased so
that the data (pl, z(l)) satisfy E[z(l)] = E[q(pl)].

Choice of the plotting position formula

Plotting position formulae have been used for many decades, mainly in the field of hydrol-
ogy (Cunnane, 1978). They are also a statistical instrument in up-to-date atmospheric
research (Folland and Anderson, 2002). A multitude of plotting position formulae have
been suggested in the literature (e. g. the Weibull, Beard, Hazen or Adamowski formula).
Most of the formulae follow the general form

pl =
l − α

N + 1 − 2α
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Table 4.3: The chosen value of the plotting position parameter α for different predictands.

Predictand Parametric Assumption Choice of α

hourly 2m-temperature normal distribution α = 0.375
(Blom, 1958)

max/min 2m-temperature Gumbel distribution α = 0.44
(Gringorten, 1963)

precipitation amount, gamma distribution α = 0.4
conditional on occurrence (see Folland and Anderson, 2002)

which is also applied here. The parameter α is a constant value mostly ranging between
α = 0 (Weibull’s formula) and α = 0.5 (Hazen’s formula) (Moon and Lall, 1994).

Choice of the parameter α

The optimal choice of the parameter α depends on the shape of the unknown distribution
function F of the random variable Z. Thus, the choice of α is connected to a parametric
assumption about the distribution F , but the parametric assumption has much less
impact on the resulting estimate than in parametric methodologies. In this study, the
choice of α varies with the weather parameter under consideration, because precipitation,
hourly 2m-temperature and daily max/min 2m-temperature follow different distributions
(Tab. 4.3).

4.5.3 Kernel regression of the empirical quantile function

Introductory remarks

The empirical quantile function qe : {p1, . . . , pN} → {z(1), . . . , z(N)} must be transformed
to an estimate of the continuous quantile function q : [0, 1] → � . Obviously, some sort of
interpolation or curve fitting is necessary, for example by piecewise linear interpolation,
least squares fitting or non-parametric regression. Non-parametric regression appears to
be the most favourable choice, as the resulting function is differentiable and not confined
to a parametric assumption. Further, non-parametric regression contributes to denoising
the data z(l).

Discussion of underlying assumptions

In the context of quantile regression, the underlying assumption of non-parametric re-
gression can be phrased as

qe(pl) = q(pl) + εl (l = 1, . . . , N) (4.24)
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where εl is normally distributed with E[εl] = 0 and VAR[εl] = σ2 <∞. The assumption
E[εl] = 0 is justified, as it is in accordance with the assumption of an unbiased plot-
ting position formula in Subsection 4.5.2. The assumption of a normal distribution is
disputable though.

The precipitation data follow a mixed discrete-continuous distribution which largely
deviates from the normal distribution. For the moment, this fact is ignored and its
discussion is postponed to Subsection 4.5.5. Subsection 4.5.5 finds a way for the proper
treatment of the mixed discrete-continuous distribution and revises the estimation pro-
cedure accordingly.

In terms of 2m-temperature, the data do not follow the normal distribution either, but
the deviation is less severe. It is reasonable indeed to assume that the random variable Z
is normally distributed, but the assumption of normality really concerns the empirical
quantile qe(pl) = z(l) which is a realisation of the order statistic Z(l) (Eq. 4.24). Even if
the random variable Z itself was normally distributed, the order statistic would follow a
different distribution, for example the Gumbel distribution in case of the extremes Z(1)

and Z(N) (David, 1981). Moon and Lall (1994) do not mention this inconsistency and
this study simply neglects it, too. A possible consequence might be a loss of optimum
properties in the kernel quantile estimate, but the effect might be irrelevant compared
to the effect of other inconsistencies between the statistical model and the raw data.

Definition of the kernel estimator

After the provisional approval of the regression model above (Eq. 4.24), this study applies
the non-parametric kernel regression methodology by Gasser and Müller (1984). The
estimator q̂ at probability pa ∈ [0, 1] is defined as a weighted sum of the realisations z(l)

(l = 1, . . . , N):

q̂(pa) =

N∑

l=1

z(l) · ωl(pa).

As illustrated in Fig. 4.18, the weights ωl(pa) (l = 1, . . . , N) are given by the definite
integrals of a kernel function K:

ωl(pa) =
1

hp

∫ κl

κl−1

K
(pa − s

hp

)
ds (4.25)

where κl (l = 0, . . . , N) is an interpolating series of pl, given by κl = (pl + pl+1)/2,
l = 1, . . . , (N − 1), κ0 = 0 and κN = 1; hp is a bandwidth around point pa, also known
as the smoothing parameter.

Choice of the kernel function

Usually, a kernel function K is symmetric and satisfies
∫
K(t) dt = 1,

∫
tK(t) dt = 0

and
∫
t2K(t) dt 6= 0, where t = (pa − s)/hp. In this study, the Epanechnikov kernel
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Figure 4.18: Kernel regression of the empirical quantile function; schematic view. The
quantile estimate q̂ at probability pa is the weighted sum of realisations z(l)

(l = 1, . . . , N). The weights ωl(pa) are given by definite integrals of the
Epanechnikov kernel K (Eq. 4.25). By definition, the Epanechnikov kernel
is symmetric about the origin and has a bandwidth of one (Eq. 4.26). Here,
the kernel is shifted to probability pa and compressed to bandwidth hp so that
a shaded area below z(l) visualizes the value of the respective weight ωl(pa).
Curves near the upper end of the quantile domain [0, 1] illustrate the shape
of the Müller boundary kernel (Eq. 4.27) in an analogous way. The Müller
kernel is applied if pa ∈ [0, hp[ or pa ∈](1 − hp), 1].

(Epanechnikov, 1969)

K(t) = 0.75(1 − t2) if |t|< 1
K(t) = 0 if |t|≥ 1

(4.26)

is applied if hp ≤ pa ≤ (1 − hp) (Fig. 4.18). The Epanechnikov kernel has been shown to
have optimum asymptotic properties in terms of the error in the estimated function.

The limitation 0 ≤ p ≤ 1 causes a bias in the kernel quantile estimate if pa ∈ [0, hp[ or
pa ∈](1 − hp), 1]. So as to circumvent this unwanted effect, the corresponding optimum
boundary kernel Kr is applied in these cases (cf. Fig. 4.18). The boundary kernel has
been derived from Müller (1991):

Kr(t) = 6(1 + t)(r − t) 1
(1+r)3

{
1 + 5

(
1−r
1+r

)2
+ 10 1−r

(1+r)2
t
}

if t∈ [−1, r]

Kr(t) = 0 if t6∈ [−1, r]
(4.27)

where
r = pa/hp

t = (pa − s)/hp

}
if pa ∈ [0, hp[ (left boundary)

and
r = (1 − pa)/hp

t = (s− pa)/hp

}
if pa ∈](1 − hp), 1] (right boundary).
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Note for r = 1, the Müller kernel is identical to the Epanechnikov kernel. Whereas the
Epanechnikov kernel provides a weight series ωl that is suitable for interpolating the
realisations z(l), the Müller boundary kernel provides extrapolation.

Choice of the smoothing parameter

Compared to the choice of the kernel function, the choice of the smoothing parameter hp

has a much larger impact on the accuracy of the estimated function q̂(p) (Silverman,
1986). A smoothing parameter is globally optimal when it minimizes the average mean
integrated squared error (MISE)

MISE(q̂) = E
[ ∫ (

q̂(p) − q(p)
)2
dp

]

over the domain 0 < p < 1. The MISE can be decomposed into bias and variance compo-
nents. The smoothing parameter controls the trade-off between bias and variance terms;
decreasing the smoothing parameter hp reduces the bias at the expense of increasing the
variance, and vice versa.

In terms of the Epanechnikov kernel and Müller boundary kernel, expressions for the
optimum global bandwidth and optimum bandwidth variation near endpoints can be
found in Gasser et al. (1991) and Müller (1991), respectively. As the optimum global
bandwidth generally depends on the unknown variance σ2 of the data z(l) = qe(pl) and
on the roughness of the unknown quantile function q, the derivation of the optimum
bandwidth is not straightforward. A multitude of data-driven automatic optimisation
techniques exist, e. g. an iterative plug-in method by Gasser et al. (1991) or a variety
of cross validation methodologies. There is as yet no universally accepted approach to
automatic bandwidth selection.

In LM post-processing, the implementation of a data-driven automatic bandwidth op-
timisation algorithm is omitted due to its computational effort involved. In addition to
the quantile estimation procedure itself, the bandwidth optimisation procedure would
have to be called up for each forecast, because the data are expected to yield different
optimal bandwidths depending on the weather situation. Thus, the associated computa-
tional effort might be substantial and the low-budget character, an essential justification
of the post-processing procedure, might be diluted.

Instead, the value of the smoothing parameter is chosen subjectively. Various values of h
are tried out and the respective results are inspected visually on the basis of several case
studies (not shown). The investigation results in the following choice for all forecasts:

hp =

{
1
16

: N ≥ 40
5

2N
: N < 40

.

For N < 40 the bandwidth adapts to the sample size N so as to ensure that there are
always at least five weights ωl > 0 if hp ≤ pa ≤ 1 − hp, even if the sample size N
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Figure 4.19: Post-processed version of the precipitation forecast in Fig. 4.7. Unit: mm.
Estimate of the 90%-quantile. Post-processing procedure: quantile regres-
sion with standard consideration of explanatory variables (Tab. 4.2) and a
medium neighbourhood size (Tab. 4.1).

gets smaller and the spacing (N + 1 − 2α)−1 between the discrete probability values pl

(l = 1, . . . , N) becomes larger. This idea is related to nearest neighbour smoothing, a
standard method that keeps the number of interpolating data points fixed (Silverman,
1986).

4.5.4 Examples of quantile estimates

Field representation

The field representations in Fig. 4.19 and 4.20 give a first overview of the resulting
quantile estimates. Fig. 4.19 depicts the 90%-quantile estimate of precipitation and
Fig. 4.20 depicts the 50%-quantile estimate of 2m-temperature. If the quantile estimates
are perfect, there will be a probability of 90% that the 90%-quantile estimate at a
specific grid point exceeds the corresponding value of the observation. Analogously, there
will be a probability of 50% that the 50%-quantile estimate exceeds the corresponding
observation. Thus, the values of the 90%-quantiles in Fig. 4.19 exhibit much larger
values than the DMO in Fig. 4.7, whereas the values of the 50%-quantiles in Fig. 4.20
have a similar magnitude than the values of the DMO in Fig. 4.5.

Similarly to estimates of the expected value (Fig. 4.6), the fields of estimated quantiles
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Figure 4.20: Post-processed version of the 2m-temperature forecast in Fig. 4.5. Unit:
Degree Celsius. Estimate of the 50%-quantile. Post-processing procedure:
quantile regression with standard consideration of explanatory variables
(Tab. 4.2) and a medium neighbourhood size (Tab. 4.1).

are much smoother than the original LM output. This is a consequence of deriving proba-
bilistic information from the spatio-temporal neighbourhood. One might get the impres-
sion that post-processing results in a loss of information, but there is merely a transfer
of information. Small-scale spatio-temporal variability of the DMO is transformed into
probabilistic information. The probabilistic information in the post-processed forecast
becomes visible in a boxplot representation.

Boxplot representation

Fig. 4.21 and 4.22 contain a time series of boxplots at a specific grid point. The boxplots
comprise quantiles for five different probabilities, the expected value and the DMO
(cf. Fig. 4.23). The 50%-quantile and the expected value are expected to offer a more
reliable forecast compared to the DMO. The 90%-quantile is a forecast of risk and
the difference between the 90%-quantile and the 10%-quantile is a measure of forecast
uncertainty.
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Figure 4.21: Time series of precipitation boxplots at grid point (185, 195). Forecast vari-
able is the 1h-accumulation of the previous hour. Unit: mm. A corre-
sponding field representation of the 90%-quantile for the accumulation time
13–14 UTC is shown in Fig. 4.19. Estimates of five quantiles, estimates of
the expected value and the DMO are shown. See Fig. 4.23 for an explanation
of the layout.

As the probabilistic information in the boxplot originates from small-scale spatio-
temporal variability in the DMO, there is a clear link between measures of forecast
uncertainty in the boxplot and the roughness of the DMO field. Large differences be-
tween quantile estimates of different probabilities are found in times and locations where
the DMO exhibits large spatio-temporal variability. For example, if a region of fairly
low precipitation values contains a marked precipitation peak in the DMO, the 90%-
quantiles in the vicinity of the peak shoot up while the 10%-quantiles stay down. The
large difference between these two quantiles indicates large forecast uncertainty, as the
exact location of the peak is not deterministically predictable. Correspondingly, the dif-
ference between different quantiles is much smaller in fairly smooth areas of the DMO,
thus indicating low forecast uncertainty.

Note that the boxplot of precipitation (Fig. 4.21) exhibits an estimate of the expected
value that is systematically larger than the corresponding estimate of the 50%-quantile.
These differences are due to the fact that the probability density function of precipitation
is generally not symmetric about its mean, but skewed towards higher values.

As this study also focusses on the needs of the standard user of a forecast, the boxplot
representations in Fig. 4.19 and 4.20 deserve even more attention. The boxplots reflect
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Figure 4.22: Time series of temperature boxplots at grid point (185, 195). Forecast vari-
able is the 2m-temperature at the full hour. Unit: Degree Celsius. A corre-
sponding field representation of the 50%-quantile at time 14 UTC is shown
in Fig. 4.20. Estimates of five quantiles, estimates of the expected value and
the DMO are shown. See Fig. 4.23 for an explanation of the layout.

10%−quantile

25%−quantile

expected value

75%−quantile

90%−quantile

50%−quantile or median

direct model output

Figure 4.23: Layout of the boxplots depicted in Fig. 4.21 and 4.22.
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the user’s perception of a forecast better than the field representations in Fig. 4.19
and 4.20, because the standard user generally looks into the forecast at a very specific
location instead of its geographical distribution. Subsection 6.4.1 resumes this aspect
of the post-processed forecast and argues that post-processing enhances the information
content of the forecast and thus contributes to forecast goodness.

4.5.5 Considering the mixed discrete-continuous distribution of

precipitation

Motivation and notation

The procedure of kernel quantile regression in Subsection 4.5.3 acts on the assumption
that the order statistics {z(1), . . . , z(N)} follow a normal distribution (Eq. 4.24). However,
the distribution of precipitation severely conflicts with this assumption so that the kernel
estimation procedure needs a revision.

Precipitation values {z1, . . . , zN} are realisations of a random variable Z with a probabil-
ity distribution F that is mixed discrete-continuous. The probability π◦ of precipitation
occurrence is determined by a discrete distribution F ◦ having the two possible outcomes
{Z|Z > 0} and {Z|Z = 0}. The probability of exceeding a certain precipitation amount
is determined by the continuous distribution F+. The distribution F+ is defined on � +

0

and gives the probability that a precipitation amount is less than a certain value za,
given that precipitation occurs.

As the mixed discrete-continuous distribution is a major deviation from the underlying
assumption of kernel quantile regression, the estimation of the quantile function q = F −1

requires some extra thought when dealing with precipitation. This subsection finds a
way how the mixed discrete-continuous distribution can be considered in the estimation
procedure of the quantile function q = F−1.

A new expression for the quantile function

Let us first seek a new expression for the quantile q at a probability pa which takes the
mixed discrete-continuous distribution into account. If π◦ = 0 the random variable Z
is simply distributed according to F ◦, so let us assume that π◦ > 0. Then the quantile
q(pa) is not defined for pa ∈ [0, 1 − π◦[, so only pa ∈ [1 − π◦, 1] is considered.

Let za > 0 be an arbitrarily chosen precipitation value with F (za) = pa. The proba-
bility of Z ≥ za may be written as the product of a conditional and an unconditional
probability:

Pr
[
Z ≥ za

]
= Pr

[
Z ≥ za|Z > 0

]
· Pr

[
Z > 0

]
.
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This is equivalent to

1 − Pr
[
Z < za

]
=

(
1 − Pr

[
Z < za|Z > 0

])
· Pr

[
Z > 0

]

and may be rewritten as

1 − pa = (1 − p+
a ) · π◦

with the additional definition

p+
a ≡ Pr

[
Z < za|Z > 0

]
, p+

a ∈ [0, 1].

According to the above-named restrictions π◦ > 0 and pa ∈ [1−π◦, 1], the probability p+
a

can be related to the probabilities pa and π◦:

p+
a = 1 − 1 − pa

π◦ . (4.28)

Let Z+ be a random variable with distribution F+ as defined above, then:

Pr
[
Z+ < za

]
= Pr

[
Z < za|Z > 0

]
= p+

a .

With the quantile function q+ ≡ (F+)−1 it follows that

q+(p+
a ) = za = q(pa) for all pa ∈ [1 − π◦, 1] and π◦ ∈]0, 1] and za > 0.

Estimator of the quantile function

The previous Eq. q(pa) = q+(p+
a ) implies that the estimator q̂(pa) may be defined as

q̂(pa) = q̂+(p̂+
a ) (4.29)

with p̂+
a = 1 − (1 − pa)/π̂

◦ for π̂◦ > 0 and π̂◦ ≥ 1 − pa. The probability π◦ of precip-
itation occurrence is estimated by the maximum likelihood estimator π̂◦ = n/N where
0 ≤ n ≤ N denotes the number of elements zl > 0 in the set {z1, . . . , zN}.

The quantile q+ at probability p̂+
a is estimated through the kernel quantile estimation

procedure described in the previous section. As the distribution F+ is conditional on
precipitation occurrence, the estimation is based on the subset of the n non-zero precipi-
tation amounts

{
zl|zl > 0

}
⊆ {z1, . . . , zN}. The plotting position parameter α is chosen

according to a gamma distribution (see Tab. 4.3).

If π̂◦ = 0 or π̂◦ < (1−pa), the estimator q̂(pa) is set to zero. If a prohibitively small sample

size n does not allow the derivation of q̂+(p̂+
a ), the estimator q̂(pa) remains undefined

and remains for spatial interpolation by surrounding estimates that are valid.
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Figure 4.24: Post-processed version of the precipitation forecast in Fig. 4.7. Unit: mm.
Estimate of the 90%-quantile. Post-processing procedure: quantile regres-
sion with standard consideration of explanatory variables (Tab. 4.2) and a
medium neighbourhood size (Tab. 4.1). As opposed to Fig. 4.19 the mixed
discrete-continuous distribution of precipitation is taken into account here.

Effect of considering the mixed discrete-continuous distribution

When the mixed discrete-continuous distribution is explicitly taken into account quantile
estimates according to Eq. 4.29 markedly differ from the conventional quantile estimates
of the previous Section 4.5. Fig. 4.24 shows an example of the revised 90%-quantile
estimates which can be juxtaposed with the conventional estimates in Fig. 4.19. Several
differences can be noticed:

• The field of the revised quantile estimates exhibits discontinuities at the transition
from estimates q̂ = 0 to estimates q̂ > 0.

• The revised estimates of 90%-quantiles are generally larger than the conventional
estimates in regions of π̂◦ ≥ (1 − pa).

• The consideration of the mixed discrete-continuous distribution results in a sub-
stantial increase in missing values. In the case study presented here, the number
of missing values increases from less than 1% to approximately 10%–20%. This
effect does not explicitly show in Fig. 4.24, because the missing values are already
interpolated by surrounding quantile estimates that are valid.
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The discontinuities at the transition from zero estimates to non-zero estimates are due
to the explicit distinction between cases of π̂◦ < (1 − pa) and cases of π̂◦ ≥ (1 − pa).
Quantiles in regions of π◦ < (1−pa) are simply set to zero whereas quantiles in regions of
π̂◦ ≥ (1−pa) are estimated by elements of the neighbourhood sample that are exclusively
greater than zero.

Revised estimates of 90%-quantiles are generally larger than the conventional estimates
in regions of π̂◦ ≥ (1 − pa), because precipitation values of zero are explicitly excluded
from the kernel regression procedure. Thus, the resulting quantile estimates are not
“diluted” by zero-valued sample elements anymore.

The increased number of missing values arises from the occasional omission of kernel
regression. Kernel regression is cancelled when there is a prohibitively small number of
non-zero precipitation values that are assigned non-zero kernel weights. This case occurs
in regions where the estimated probability π̂◦ exceeds the value (1 − pa) only slightly.

Then the quantile estimator q̂+(p̂+
a ) (Eq. 4.29) is not set to zero and the probability p̂+

a

is close to zero (Eq. 4.28). Probabilities close to zero pose a challenge to quantile esti-
mation. The Müller boundary kernel is applied which has a smaller support than the
Epanechnikov kernel (cf. Fig. 4.18). Consequently, an even smaller number of precipi-
tation values is assigned non-zero kernel weights, unless there is an exceptionally large
sample of non-zero precipitation values. Thus, it becomes more likely that the kernel
regression procedure is cancelled and quantile estimates are set to a missing value.

In summary, the eye-ball inspection of the resulting estimate does not indicate that
the revised estimate were superior to the conventional estimate. However, there might
be a measurable improvement in the quality of the post-processed forecast, because
the revised estimation procedure is theoretically more sound. This is investigated by
the verification procedure described in Chapter 6 (not shown). The resulting quantiles
estimates of the conventional and the refined version are compared to each other in terms
of their reliability, but the differences are marginal.

Although it cannot be demonstrated that the consideration of the mixed-discrete distri-
bution has any influence on the quality of the resulting estimates, the consideration of
the mixed-discrete distribution is still included in the standard version of quantile esti-
mation. The corresponding computational cost is negligible, forecast quality does not
deteriorate and theoretical arguments still speak in favour of taking the mixed discrete-
continuous contribution into account.
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5.1 Introductory remarks

In addition to the neighbourhood methodology another post-processing scheme is devel-
oped: wavelet smoothing. Subsection 5.1.1 outlines the aims and motivations of wavelet
smoothing in this study and Subsection 5.1.2 puts them in perspective of existing wavelet
applications in meteorology. Subsection 5.1.3 gives an overview of the remaining sections
in this chapter.

5.1.1 Overview

Which statistical quantities are estimated?

Wavelet smoothing combines statistical concepts with the mathematical framework of
the wavelet transform. Similarly to the neighbourhood methodology, kriging or kernel
smoothing, it also aims to derive non-parametric estimates of a large array of parameters
on the basis of a single realisation on each parameter.

Unlike the neighbourhood methodology, wavelet smoothing does not provide a tool for
the simultaneous estimation of expected value, exceedance probability and quantiles.
In this study, wavelet smoothing is exclusively used for the estimation of the expected
value. As in kernel smoothing, the smoothing procedure is applied within the framework
of non-parametric regression of a function.

In a future study, the procedure can easily be extended to the estimation of exceedance
probabilities by replacing the data of the raw model output by indicator data (cf. Eq. 4.4)
before wavelet smoothing is applied. Then the smoothing procedure would be applied
within the framework of non-parametric density estimation or intensity estimation.

Similarly to kriging and kernel smoothing, wavelet smoothing can also be phrased as
a weighted sum of the model output values located at different points in space. For
this reason, wavelet smoothing cannot provide a direct gateway to the non-parametric
estimation of quantiles which is inseparably linked to the operations of ordering and
sorting the realisations by their value (see also Subsection 4.1.2).

Note, however, that the procedure of wavelet smoothing markedly differs from the pro-
cedures of the kernel, kriging or neighbourhood method. The spatial weights implicitly
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result from a selective alteration of the model output in the wavelet domain, as is de-
scribed below. As compared to the kriging, kernel, and neighbourhood method, this is a
completely new approach to the estimation of the expected value in this study so far.

Relation to image processing and the concept of denoising

Wavelet smoothing belongs to the wide class of methods in image processing. Methods
of image processing are particularly suitable for the treatment of LM output, because
the data is available on a lattice. For comparison, the kriging method does not take
advantage of this fact, because it has originally been developed for the treatment of
irregularly spaced data.

In the context of wavelet smoothing, some new technical terms are introduced. Esti-
mating the expected value is synonymous with denoising the DMO. Wavelet smoothing
aims at the decomposition of the raw model output into a signal and the noise. The
signal comprises deterministically predictable features and the noise comprises determin-
istically unpredictable features. The expected value is estimated by a filtering operation
which removes the noise and preserves the signal.

Why using wavelets?

The use of wavelets in meteorology is in some way “natural”, as there is often a structural
affinity between the mathematical framework they offer and the physical nature of the
process under study. We often seek to decompose a function into components using
basis functions in the hope that this decomposition will enable us to see something
different about the process or enable us to perform certain operations on the process
with greater ease. Usually, the choice of the basis set for the decomposition is governed
by the property that we wish to be revealed by the decomposition.

In the context of denoising the LM output, the use of wavelets is considered advantageous
because of their connection to statistical multi-scale modelling, their ability to represent
data in a parsimonious way and their noise-whitening property. When the LM output is
transformed to the wavelet domain, the signal may become easily accessible and clearly
distinguishable from the noise. Thus, the denoising procedure may become very simple
and very flexible.

As opposed to the kernel method, wavelet smoothing can even be nonlinear, in the
sense that the weights in the spatial averaging procedure are not pre-determined, but
directly influenced by the noisy data itself. In this study, wavelet smoothing is set up
as a linear filter (Section 5.3) and as a nonlinear filter (Section 5.4). The linear filter is
theoretically similar to a kernel-based filter, but computationally much more efficient.
The nonlinear wavelet-based filter is not only faster than the kernel-based filter, but also
adapts to the noisy data in an automatic way. The degree of smoothing is not connected
to a pre-defined global bandwidth but locally adapts to the unknown smoothness of
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the underlying signal. The nonlinear estimator even has desirable statistical optimality
properties if the nonlinear filter is properly tuned and if the noisy data satisfy a certain
statistical model.

Pretensions of wavelet smoothing in comparison with the neighbourhood
method

Wavelet smoothing does not contain any explicit consideration of explanatory variables
in the way the neighbourhood method does (cf. Section 4.4). Thus, wavelet smoothing
rather relies upon statistical reasoning than upon physical reasoning. Due to the lack
of physical elements in the method, the resulting estimates of wavelet smoothing are
not necessarily expected to outperform the resulting estimates of the neighbourhood
method. Compared to the design of the neighbourhood methodology, the design of
wavelet smoothing lays more emphasis on computational efficiency and flexibility. This
study shows whether the underlying statistical concept of wavelet smoothing is also
sufficient to yield reasonable results in LM post-processing. If so, wavelet smoothing
would be an alternative tool in LM post-processing that requires less computational and
conceptual effort than the neighbourhood method.

Although wavelet smoothing does not aim at an immediate improvement of the neigh-
bourhood results, it certainly does aim at an improvement of results obtained from
the simple neighbourhood that does without explanatory variables. It has been shown
that the simple neighbourhood method is equivalent to kernel smoothing (cf. Subsec-
tion 4.3.1). A comparison between kernel smoothing and wavelet smoothing may be
informative indeed, because their concepts are closely related. Both methods are based
on the statistical model of non-parametric regression (Eq. 4.6) and consist in a filtering
operation. Kernel smoothing can be viewed as the conventional method, while wavelet
smoothing is an innovative method which has emerged only recently. Therefore, results
of simple kernel smoothing play the role of a low benchmark when results of wavelet
smoothing are assessed.

5.1.2 Existing wavelet applications

General remarks

The concept of wavelet transforms was formalized in early 1980’s and has been ex-
tensively applied in a wide area of subjects since then. Wavelet transforms possess a
multitude of nice properties and there is a great variety of commonly used wavelet trans-
forms. The choice of a particular type of wavelet depends on the kind of mathematical
properties that are desired in the application. Therefore, it is important to be aware
which mathematical properties are needed and to understand the particular motivation
for the use of wavelets. Appendix A.1 presents a general overview of wavelets and their
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applications. In particular, the difference between continuous and discrete wavelets is
explained.

Here the focus is on existing wavelet applications in meteorology. Even within the
subject of meteorology the motivations of wavelet applications can differ substantially
and the motivations for their use are multifaceted. First, a general overview is given and
then emphasis is laid on wavelet-based noise reduction of meteorological fields, an area
that coincides with the aims of wavelet smoothing in this chapter.

Wavelet applications in meteorology

As wavelet transforms are apt to address different scales while retaining “local” informa-
tion, they are a popular tool in time series analysis (e. g. Torrence and Compo, 1998)
or multi-scale analysis of unsteady and intermittent signals such as rainfall or clouds
(e. g. Kumar and Foufoula-Georgiou, 1993a). Wavelets are also used to detect scaling in
rainfall and clouds or turbulence (Farge, 1992; Kumar and Foufoula-Georgiou, 1993b,c)
and thereby take advantage of the self-similarity of wavelets (Abry et al., 2000).

As there is often a link between the scale of a phenomenon, its statistical properties
and the respective physical process (Perica and Foufoula-Georgiou, 1996; Harris and
Foufoula-Georgiou, 2001), wavelets also serve as a lens for decomposing meteorological
fields according to processes (e. g. Yano et al., 2001).

Another motivation for the use of wavelets is their noise-whitening property (Flandrin,
1992; Masry, 1993) which could be useful in the analysis and approximate synthesis of
stochastic processes that are present in meteorology.

Furthermore, wavelets are applied to develop multivariate measures in spatial forecast
verification (Briggs and Levine, 1997; Casati et al., 2004), in the analysis of global
synoptic data such as atmospheric blocking (Fournier, 2000), and for data compression
of global atmospheric data on the sphere (Göttelmann, 1999). In these studies it is the
connection to the mathematical concept of multiresolution analysis (MRA) which makes
the use of wavelets attractive, together with the fact that the wavelet transform of many
meteorological phenomena is a sparse signal. These mathematical properties are also
essential in wavelet-based post-processing of the LM output.

Wavelet-based noise reduction of meteorological forecast fields

Wavelet-based noise reduction of spatial fields belongs to the subject “Wavelets and
Statistics” which includes the use of wavelets in non-parametric regression and density
estimation. The subject emerged in the early 1990’s, has gained increasing attention
and has undergone further development since then. Ogden (1997), Härdle et al. (1998)
and Vidakovic et al. (2000) are good references to statistical applications of wavelet
transforms.
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Wavelet-based noise reduction of meteorological forecast fields has been demonstrated in
the context of field forecast verification. Briggs and Levine (1997) successfully apply the
technique to synthetic forecast data. The data are generated by adding idealised noise to
a meteorological analysis field. The design of the synthetic forecast data guarantees that
the statistical properties of the data are in accordance with the underlying statistical
model of the noise reduction technique.

Still, it remains open whether “real” forecast data yield similar results. It is even unclear
to which extent “real” forecast data are statistically similar to their synthetic counterpart.
LM post-processing presents a first attempt to apply wavelet-based denoising techniques
to “real” forecast data and to derive a novel forecast product by doing so.

5.1.3 Organisation of the chapter

Section 5.2 outlines the general procedure of wavelet smoothing. Then Section 5.3
presents a linear wavelet smoothing procedure which is scale-dependent. Section 5.3
also points to a lack of robustness in the resulting estimate and cures the problem by
developing the translation-invariant wavelet smoothing procedure. Section 5.4 presents
a nonlinear wavelet smoothing procedure: wavelet thresholding. Section 5.5 introduces a
refinement to wavelet thresholding: the consideration of another forecast variable which
provides additional information about the signal-to-noise ratio in the field to be post-
processed. Section 5.6 presents a summary and an outlook.

Resulting estimates of the expected value are presented and subjectively assessed
throughout this chapter. An objective assessment of their forecast goodness by com-
parison with observational data follows in Chapter 6.

Technical and mathematical details of the wavelet transform are transferred to Ap-
pendix A and Appendix B whenever possible. The interested reader is referred to these
appendices if she desires more background information.

5.2 General methodology

5.2.1 Overview

The noise filtering procedure consists of three steps (Fig. 5.1): (1) transformation of the
forecast field into wavelet domain, (2) curtail those wavelet coefficients which are believed
to be primarily associated with noise and retain the others, (3) backward transformation
of the data to the original spatial grid.

As opposed to the spatio-temporal neighbourhood methodology of the previous chapter,
wavelet smoothing is confined to two dimensions, i. e. to purely spatial forecast fields.
From a physical point of view, an additional inclusion of the time dimension would be
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Figure 5.1: Procedure of wavelet-based post-processing.

desirable. Theoretically, this would be feasible by extending the wavelet method to a
3D wavelet transform. Due to technical reasons, however, the time dimension is still
omitted in this study, because a 3D wavelet transform would require a much finer grid
of output times than currently available. The 3D version of wavelet smoothing would
not be applicable to the operational environment of DWD, since the operational output
interval of ∆tt = 1 hour is far too large.

5.2.2 Wavelet transform

The wavelet transform algorithm

The wavelet transform algorithm is chosen to be the two-dimensional lifting scheme.
Appendix A.4 describes the algorithm in detail. Thomas Gerstner (Institute for Numer-
ical Simulation, University of Bonn) has kindly provided the corresponding software.
The wavelet transform of the lifting scheme possesses several nice properties which are
further explained in Appendix A. In this study, the following are beneficial:

• The wavelet transform is bi-orthogonal, i. e. the transform is directly linked to the
mathematical concept of multiresolution analysis (MRA).

• The wavelet transform is moment-preserving, i. e. the first moment of the function
is preserved in every approximation space of the MRA (cf. Appendix A.2).

• The corresponding wavelets are defined on a lattice, so discretisation is unneces-
sary.

• The transformation algorithm is highly efficient.

The connection to MRA is indispensable in this study, because the MRA framework is
essential to the statistical wavelet regression concept (Ogden, 1997; Härdle et al., 1998;
Vidakovic, 1999). MRA holds the key to a scale-dependent field decomposition, to a
parsimonious data representation and to approximation in Besov spaces (Härdle et al.,
1998). A comprehensive definition of MRA can be found in Appendix A.2.
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Bi-orthogonality is a slightly weaker condition than orthogonality (cf. Appendix A).
Orthogonality is set aside in this study, because the only real and compactly supported
symmetric or antisymmetric wavelet that fits the orthogonal MRA is the Haar wavelet.
The Haar wavelet is abandoned in favour of a smoother function, because the square-
edged shape of the Haar wavelet might cause artefacts in the post-processed forecast
field.

Moment preservation (Härdle et al., 1998; Jensen and la Cour-Harbo, 2001) is especially
desirable, as this study deals with physical fields. When a meteorological forecast field
is post-processed by linear wavelet smoothing, the area average of the forecast variable
is preserved.

The fact that the lifting scheme is a highly efficient algorithm further maintains the low-
budget character of LM post-processing and lays the technical foundations for possible
operational use of the method.

The lifting scheme requires that the side length of the model grid consists of a number
of points that is a power of 2 plus 1 (Appendix A.4), i. e. Nx = Ny = 2n + 1, n ∈ �

.
In general, this is not satisfied by the spatial domain of the LM. Adapting the wavelet
transform algorithm to arbitrary-length data sets is not trivial. Another option is to
manipulate the data set so that the size of the data set is increased to the next larger
power of two (Ogden, 1997). However, these attempts introduce problems such as a
dilution of the signal or the introduction of an artificial auto-correlation between wavelet
coefficients. For these reasons a very simple solution is selected: Only a fraction of the
entire LM domain is post-processed which has the desired size of (2n +1)× (2n +1) grid
points.

Illustration of the wavelet transform

The following example illustrates the wavelet transforms of a LM precipitation fore-
cast and a LM 2m-temperature forecast. First, a section of (28 + 1) × (28 + 1)
= 257 × 257 grid points in size is selected from the entire LM domain (Fig. 5.2 and
5.4). The entire LM domain comprises 325 × 325 grid points.

Then the respective wavelet transforms are derived. The absolute values of the wavelet
coefficients are depicted in Fig. 5.3 and 5.5. Fig. 5.6 illustrates the layout of their
presentation. Each square represents one of the three directional subspaces of the detail
space W l and contains wavelet coefficients that pertain to a specific level l and to a
specific direction v, h or d. Within a square, the coefficients are arranged in order of
their two location indices m1, m2. In the following paragraphs, the terms level, direction
and location are explained very briefly. More comprehensive explanations can be found
in Appendix A.

The level l ∈ {−n, . . . ,−1} relates the wavelet coefficient to a spatial scale. The finest
scale is l = −1 and the coarsest scale is l = −n. The coarser the level, the smaller the
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Figure 5.2: Original LM forecast of 2m-temperature on July 10, 2002, 14 UTC. Unit:
Degree Celsius. A section of (28 + 1) × (28 + 1) grid points is selected from
the LM domain.
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Figure 5.3: Wavelet transform of Fig. 5.2. Absolute value of the wavelet coefficients.
Unit: Kelvin.
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Figure 5.4: Original LM forecast of 1h-accumulations of precipitation on July 10, 2002,
13–14 UTC. Unit: mm. A section of (28 +1)× (28 +1) grid points is selected
from the LM domain.

110



5.2 General methodology

2 2 2
etc.

2 
+

 1

2 + 1

8

8

7 6 5

Figure 5.5: Wavelet transform of Fig. 5.4. Absolute value of the wavelet coefficients.
Unit: mm.
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Figure 5.6: Layout of wavelet coefficients depicted in Fig. 5.3 and 5.5. The horizon-
tal, vertical and diagonal directions are perpendicular to the direction of the
gravitational force. See text for details.

number of different locations (cf. Appendix A.4). In Fig. 5.3 and 5.5 the coarsest levels
are omitted.

Each level contains three directional subspaces: the horizontal (h), vertical (v) and diag-
onal (d) direction. The terms “horizontal”, “vertical” and “diagonal” are borrowed from
the language of two-dimensional image processing. When the wavelet transformation is
applied to meteorological fields in this study, the horizontal, vertical and diagonal direc-
tions are perpendicular to the direction of the gravitational force. The vertical direction
is parallel to the northward direction and the horizontal direction is parallel to the east-
ward direction. The explicit consideration of the diagonal directions originates from
the fact that the wavelet transform is restricted to only one level index l although the
transform relates to a function that has two dimensions in space (cf. Appendix A.3).

Wavelet coefficients of the same level and direction belong to different locations. When
they are arranged in order of their two location indices m1 and m2, they roughly reflect
the structure of the original function in space. For example, this becomes visible in the
various “tiles” of Fig. 5.3 and 5.5.

In this section, Fig. 5.3 and 5.5 are simply used to illustrate the technical issues of the
wavelet transform. Further discussion of Fig. 5.3 and 5.5 follows in Section 5.4 which
reveals interesting characteristics in the wavelet transform of the LM forecasts.
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5.2 General methodology

5.2.3 Wavelet curtailing

The key element of the post-processing procedure is the modification of the wavelet
coefficients. This step is supposed to separate deterministically predictable features
from random forecast error. Coefficients that are suspected to have a high signal-to-
noise ratio are retained and coefficients with a presumably low signal-to-noise ratio are
curtailed in some way.

Criteria are sought that enable to estimate the approximate signal-to-noise ratio of a
wavelet coefficient. Several criteria are conceivable:

• level l (= associated spatial scale) of the wavelet coefficient

• location m1, m2 of the wavelet coefficient

• direction h, d, v of the wavelet coefficient

• absolute value of the wavelet coefficient (thresholding)

• properties of an additional field

• combinations of the criteria above

The level criterion implies that the signal-to-noise ratio depends on spatial scale and
allows for scale-dependent smoothing. The location criterion assumes that the signal-to-
noise ratio varies with spatial location. For example, the location criterion can be used to
explicitly prevent spatial smoothing of 2m-temperature along coastlines. The direction
criterion allows for anisotropic smoothing, for example in line with the spatial orientation
of orographic structures. The absolute value criterion allows for nonlinear smoothing and
is motivated in Section 5.4. The additional field criterion looks in the wavelet transform
of an additional field in order to get information on the signal-to-noise ratio of the field
to be post-processed. This approach is promising if there are interrelations between
the deterministic predictability of one variable and field characteristics of an additional
variable.

As to give a first insight into the technique of wavelet smoothing, the level criterion is
presented in Section 5.3. The absolute value criterion and the additional field criterion
are investigated and combined in the following sections. The application of other criteria
remains for future research.
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5.3 Level criterion

5.3.1 Curtailing procedure

Motivation

Using the level as a criterion in curtailing wavelet coefficients is motivated by the scale-
dependency of predictability that is discussed in the context of the neighbourhood
methodology (Section 4.2.3).

Methodology

In order to remove the statistical information and retain the deterministic information
of a model forecast, it is reasonable to set the wavelet coefficients of the finest levels to
zero. The rule of modifying the wavelet coefficients reads as follows:

γmod
l,m1,m2

=

{
γl,m1,m2

: l ≥ lcurtail

0 : l < lcurtail
(5.1)

with γl,m1,m2
denoting the wavelet coefficient of the forecast field on level l ∈ {−n, . . . ,−1}

and at location (m1, m2) and γmod
l,m1,m2

denoting the modified wavelet coefficient. The
level lcurtail ∈ {−n+ 1, . . . ,−1} is chosen a priori . The level lcurtail − 1 is the finest level
where the corresponding wavelet coefficients remain untouched.

Linearity of the method and relation to kernel smoothing

Wavelet regression according to the level criterion is a linear filter, in the sense that the
estimator of the expected value is a linear function of the original noisy forecast field.
The estimate of the expected value is a projection of the original forecast field on the
subspace V lcurtail

(cf. Appendix A.2). The wavelet functions Ψl,m1,m2
and the scaling

functions Φl,m1,m2
(cf. Appendix A.2) can be regarded as certain scaled “kernels”, and

their scale is defined by the value l ∈ [lcurtail, 0] (Vidakovic, 1999).

5.3.2 Level criterion in action

Wavelet smoothing according to the level criterion is applied to the original LM forecast
of 2m-temperature and precipitation. The forecasts are transformed to the wavelet
domain, all coefficients of the finest two levels are set to zero and then the spatial fields
are reconstructed. The choice of lcurtail = −2 merely serves as a first example and might
not be optimal yet. The procedure is expected to coarsen the direct model output to
an effective grid box size of approximately 4∆x. Fig. 5.7 and 5.8 present the respective
results which are discussed in the following paragraphs.
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Figure 5.7: Post-processed version of the 2m-temperature forecast in Fig. 5.2. Unit:
Degree Celsius. Reconstruction after curtailing the two finest levels
(lcurtail = −2). The full domain of the post-processed forecast comprises
257 × 257 grid points; here a section of 165 × 165 grid points is shown.

Spatial smoothing

A comparison between the original forecasts (Fig. 5.2 and 5.4) and the post-processed
forecasts (Fig. 5.7 and 5.8) shows that the main effect of the linear wavelet filter consists
in spatial smoothing. The coarser the level lcurtail, the larger the spatial scales which are
smoothed.

This is in accordance with the notion that small scales are associated with processes
that possess a smaller amount of deterministic predictability. Therefore, the estimate of
the expected value should not exhibit any small-scale details indeed.

Artefacts

In addition to the smoothing effect, the post-processed fields appear ragged in some
places. Here and there narrow streaks intersperse with the smooth field. The streaks
are strictly horizontal, vertical or diagonal. Subsection 5.3.3 shows that they arise from
the lifting scheme and develops a method for their elimination.
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Figure 5.8: Post-processed version of the precipitation forecast in Fig. 5.4. Unit: mm.
Reconstruction after curtailing the two finest levels (lcurtail = −2). The full
domain of the post-processed forecast comprises 257 × 257 grid points; here
a section of 165 × 165 grid points is shown.

Explanatory variables

Explanatory variables (cf. Section 4.4) are not taken into account in wavelet smoothing.
This becomes particularly obvious in deficiencies of the post-processed 2m-temperature
forecast (Fig. 5.7). Sharp edges in the temperature field that are associated with the
land-sea mask or complex orography are eliminated in the estimated expected value even
though they are deterministically predictable and are therefore part of the signal. This
issue is followed up by wavelet thresholding in Section 5.4.

Preservation of the area mean

The moment-preserving property of the lifting scheme ensures that linear wavelet
smoothing does not change the area mean of the forecast field. Due to the conser-
vation principles of physical quantities the preservation of the area mean appears to be
very desirable in this study.

When taking a closer look at the post-processed field of precipitation, it becomes visible
that a few values are slightly below zero (not shown in Fig. 5.8). This is a consequence
of the negative values in the wavelet function (cf. Appendix A). The example shows that
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the moment-preserving property is only of mathematical nature and does not necessarily
contribute to a compliance with physical conservation principles.

As negative precipitation values might be disturbing to the user of the forecast, all
negative values of the post-processed forecast are set to zero. Consequently, the area
mean of the post-processed forecast is slightly larger compared to the original forecast.
This fact is accepted here, because the difference amounts to only 0.7% of the area mean
in the case study shown.

Is linear wavelet smoothing superior to kernel smoothing?

Subsection 5.1.1 already indicates that results of wavelet smoothing should not be com-
pared to results of the standard neighbourhood method, but to results of the simple
neighbourhood method without explanatory variables or to results of kernel smoothing.
Subsection 4.3.2 shows that the simple neighbourhood method is equivalent to the use
of the spherical kernel Kball (Eq. 4.10) in kernel smoothing.

Since the results of kernel smoothing are supposed to play the role of a low benchmark
in this study, an even simpler kernel function is used here, namely the two-dimensional
rectangular kernel Krect:

Krect(u, v, w) =

{
1 : |u| ≤ 1 ∧ |v| ≤ 1 ∧ |w| = 0
0 : |u| > 1 ∨ |v| > 1 ∨ |w| > 0

with u, v, w ∈ � . (5.2)

In order to reach best correspondence with the procedure of wavelet smoothing, the
rectangular kernel is confined to the two spatial dimensions and omits the temporal
dimension. The bandwidths take the values hx = hy = 2 so that the smoothing intensity
of the kernel method is similar to that of the linear wavelet method when the two finest
wavelet levels are curtailed (lcurtail = −2).

A subjective inspection of the post-processed precipitation forecasts does not reveal
any decisive superiority of linear wavelet smoothing as compared to kernel smoothing
(cf. Fig. 5.9 and 5.8). On the contrary, linear wavelet smoothing introduces several
disadvantages: the size of the LM domain is required to have a certain size, the degree
of smoothing is confined to a few categories, the post-processed field exhibits artefacts,
some values of precipitation become negative and the inclusion of the time dimension is
hampered by technical obstacles.

However, these shortcomings are more than balanced by the massive gain of compu-
tational efficiency that comes with wavelet smoothing. Especially when the degree
of smoothing is large, even the simple neighbourhood method consumes an immense
amount of computational effort so that the desired low-budget character of LM post-
processing is lost. In this respect, the computationally elegant wavelet methodology
comes to the rescue.
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Figure 5.9: Example of kernel smoothing with the rectangular kernel function Krect and
bandwidths hx = hy = 2 (Eq. 5.2). Unit: mm. The original data come from
the LM precipitation forecast in Fig. 4.7.

5.3.3 Translation-invariant wavelet smoothing

The previous subsection points to artefacts in the post-processed 2m-temperature and
precipitation fields (cf. Fig. 5.7 and 5.8). They originate from the particular wavelet
transform in this study, the lifting scheme. This subsection introduces the so-called
translation-invariant wavelet transform which succeeds in eliminating the artefacts from
the post-processed fields. If the translation-invariant transform is applied, level curtailing
becomes equivalent to kernel smoothing.

Illustration of the problem

Linear wavelet smoothing does not only produce artefacts; the post-processed value
at a specific location also depends on its position within the domain. If the post-
processing procedure is repeated for a domain that is shifted by a few grid points, the
same geographical location can exhibit a different estimate of the expected value. An
illustration of this behaviour is presented in Appendix B.1.

The effect of shifting is due to the dependence of the wavelet transform on details of
the lattice. The lattice is determined by the choice of its origin, i. e. the geographical
location of the south-western corner of the domain. Further explanations are given in
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Figure 5.10: Translation-invariant wavelet denoising by averaging shifts. Application of
a range of shifts, reconstruction of the respective fields after curtailing some
wavelet coefficients and averaging the several results so obtained.

Appendix B.1.

As the particular choice of origin is made in an arbitrary way, the resulting estimate is
arbitrary to a certain extent, too. In this sense, the estimator lacks robustness. In order
to attain an improved estimate and to avoid artefacts in the field, the effect of the origin
needs to be eliminated.

Methodology

The problem can be solved by applying a range of shifts, and average over the several
results so obtained (Fig. 5.10). The approach of averaging shifts is also called translation-
invariant wavelet denoising (cf. Coifman and Donoho, 1995).

Appendix B.2 elaborates the details of the method. A key question is the optimal range
of shifts. A large number of shifts results in a substantial increase in computational
effort and in a smaller number of grid locations where the estimator is derived. This
study succeeds in determining a limited range of shifts by discovering redundancies in
the effect of different shifts (cf. Appendix B.2). Therefore, the computational effort is
kept within the bounds of feasibility.

Before delving into LM applications of the averaging shifts approach, an alternative ap-
proach to translation-invariant wavelet smoothing should be mentioned: the so-called
stationary wavelet transform (Nason and Silverman, 1995). The stationary wavelet
transform can be constructed from any ordinary wavelet transform and directly enables
translation-invariant wavelet denoising without repeating the denoising procedure sev-
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Figure 5.11: Post-processed version of the precipitation forecast in Fig. 5.4. Unit: mm.
Same post-processing procedure than applied in Fig. 5.8, but with additional
shift averaging (cf. Fig. 5.10). The full domain of the post-processed forecast
comprises 250 × 254 grid points; here a section of 165 × 165 grid points is
shown.

eral times. The stationary wavelet transform is equivalent to averaging different shifts of
the ordinary wavelet transform, but it is more elegant and computationally more efficient
(Nason and Silverman, 1995). However, the implementation of the stationary wavelet
transform is conceptually more complicated than the brute force approach of averaging
shifts, so LM post-processing starts out with the latter. Nevertheless, the stationary
wavelet transform still appears to be an attractive concept in LM post-processing and
its implementation remains for future research.

Effect of shift averaging

The examples in Fig. 5.11 and 5.12 demonstrate that shift averaging does not only result
in improved robustness but also in improved smoothness when compared with results
of single shift wavelet smoothing (Fig. 5.8 and Fig. 5.7). The artefacts disappear with
shift averaging.

These subjective impressions are confirmed by objective verification of a larger set of
forecasts (Section 6.6.4). As both subjective and objective assessment indicate a benefi-
cial effect of the translation-invariant wavelet transform, averaging shifts is included in
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Figure 5.12: Post-processed version of the 2m-temperature forecast in Fig. 5.2. Unit:
Degree Celsius. Same post-processing procedure than applied in Fig. 5.7,
but with additional shift averaging (cf. Fig. 5.10). The full domain of the
post-processed forecast comprises 250 × 254 grid points; here a section of
165 × 165 grid points is shown.

all applications of the wavelet transform that follow in this study.

Equivalence between level curtailing and kernel smoothing

The results of translation-invariant wavelet level curtailing resemble those of kernel
smoothing (Fig. 5.9) very much. In the following paragraphs, it is shown that translation-
invariant wavelet smoothing according to the level criterion (Eq. 5.1) is even equivalent
to the kernel method. The kernel method is assumed to leave kernel function and band-
width unchanged on the whole domain.

Recall that linear wavelet smoothing can be rephrased as a weighted average of the
original forecast. When applying the level criterion in combination with shift averaging,
the spatial weights only depend on the location relative to the point where the estimate
is derived. Fig. 5.13 and 5.14 depict the respective weights for two different choices of
the curtailing level lcurtail. The different weighting functions only differ by a dilation
factor.
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Figure 5.13: The “wavelet kernel”. Spatial weighting function that results from the
wavelet smoothing procedure if the level criterion is applied in combination
with shift averaging. The weighting function corresponds to a curtailing
level of lcurtail = −1.

Figure 5.14: The “wavelet kernel”. Same as Fig. 5.13, but for a curtailing level of
lcurtail = −2.
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The weighting function can even be viewed as a kernel function, because it indeed satisfies
the requirements of a discrete, two-dimensional kernel K(i, j) (Rajagopalan and Lall,
1995); the function is symmetric, the weights are centred around zero and sum up to
unity. Note that the “wavelet kernel” exhibits some negative values. This is unusual in
a kernel function, but does not contradict the general requirements. Kernel bandwidth
is fully determined by the level lcurtail. In contrast to kernel smoothing, the bandwidth
is confined to a few categories.

Differences between the kernel smoothed field (Fig. 5.9) and the wavelet smoothed field
(Fig. 5.11) are simply due to the impact of kernel shape and slight differences in kernel
bandwidth. The most obvious difference between the kernel smoothed field and the
wavelet smoothed field consists in an improved preservation of relative maxima and
minima. A detailed interpretation of the effect due to different kernel shape is probably
not worthwhile at this stage, because bandwidth selection and the selection of lcurtail have
not been optimised yet. In comparison to kernel bandwidth, kernel shape only plays a
minor role in terms of the root mean squared error of the estimate (Silverman, 1986).
Linear wavelet smoothing is expected to achieve a similar accuracy in the estimate than
kernel smoothing if their smoothing degree is equivalent.

Is there a relation between shift variability and forecast uncertainty?

As different smoothing results due to different shifts are treated as equally valid, they
may be able to serve as a means to synthesize noise and derive an estimate of forecast
uncertainty εij in addition to the estimate of expected value µij (Eq. 4.6). Appendix B.3
briefly discusses whether the variability within the set of smoothed forecasts is estimating
something. It is argued that there is no equivalence to forecast uncertainty. Further
research is needed until a statistically sound interpretation of the inflated variability
field might become possible.

5.4 Absolute value criterion: Wavelet thresholding

Up to this point, this work has dealt with linear smoothing methodologies only. Wavelet
smoothing according to the level criterion is even equivalent to kernel smoothing. This
section moves on to another item of the list of curtailing criteria (cf. Section 5.2.3): the
absolute level criterion, also known as wavelet thresholding. Wavelet thresholding clearly
goes beyond kernel smoothing, as it is a nonlinear wavelet filter. The corresponding spa-
tial weights are no longer pre-determined, but adapt to local properties of the underlying
data.
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5.4.1 Introductory remarks

Potentials of a nonlinear approach

Linear filters can only be optimised with regard to one particular degree of smoothness.
It has been pointed out by many researchers that linear filters are not efficient when
signals have considerable inhomogeneity such as varying degrees of smoothness (see
introductory section of Donoho and Johnstone, 1998). Varying degrees of smoothness
are certainly typical of spatial precipitation fields and 2m-temperature fields so that the
application of nonlinear filters appears promising in LM post-processing.

In meteorology there is a structural affinity between the physical origin of the noisy
fields under study and the mathematical framework a nonlinear filter offers. Noise in
meteorological fields arises from a multitude of different stochastic processes. Whereas a
linear approach to noise filtering implicitly assumes that one stochastic process explains
the full range of noise in meteorological fields, a nonlinear approach offers the flexibility
to account for multiple sources of noise.

Wavelet thresholding

The simplest nonlinear wavelet filter is thresholding. Wavelet thresholding was developed
in the early 1990’s (Donoho and Johnstone, 1994; Donoho et al., 1995) and has been used
in a wide range of applications including meteorology (Briggs and Levine, 1997; Katul
and Vidakovic, 1998; Yano et al., 2001). It uses the absolute value of the wavelet coeffi-
cient as a criterion in the curtailing step. This is motivated by the fact that the measures
of smoothness of a function often depend on the magnitudes of its wavelet coefficients.
Further explanations about the underlying theory are given in Subsection 5.4.3.

5.4.2 Curtailing procedure

Universal threshold

The two most common thresholding policies are hard and soft thresholding (Donoho
and Johnstone, 1994). Hard thresholding retains wavelet coefficients that possess an
absolute value greater than or equal to a universal threshold ν and sets others to zero:

γmod
l,m1,m2

=

{
γl,m1,m2

: |γl,m1,m2
| ≥ ν

0 : |γl,m1,m2
| < ν

. (5.3)

Soft thresholding additionally reduces the absolute values of the retained coefficients by
the value of ν.
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Level-dependent thresholds

The procedure of wavelet thresholding is extended from using a universal threshold ν
to using level-dependent thresholds νl. Statistical arguments maintain that the largest
scale’s wavelet coefficients should be left un-thresholded regardless of their size (Donoho
and Johnstone, 1994). Physical arguments state that signal characteristics differ at dif-
ferent levels, because coarse levels show a larger proportion of important signal features
(cf. Section 4.2.3). Even if noise is the same on each level, smaller thresholds on coarse
levels should be preferred.

5.4.3 Why thresholding works well in theory

Intuitive arguments

Wavelet thresholding is a successful denoising procedure if small wavelet coefficients are
mainly associated with noise and large wavelet coefficients are mainly associated with
the signal. This assumption is justified if all of the following is true:

• The noisy data satisfies the two-dimensional statistical regression model (Eq. 4.6),
i. e. the noise is Gaussian, stationary, white and zero-mean in the grid point domain.

• The chosen wavelet transform is connected to MRA and possesses the noise-
whitening properties, i. e. the wavelet transform is orthogonal.

• The signal is intermittent.

• The noise does not dominate the signal.

With these prerequisites the wavelet transform of the noisy data satisfies the following
conditions:

• Noise is stationary and white, i. e. it is spread out evenly over all wavelet coeffi-
cients.

• The signal is a sparse signal, i. e. the signal is represented by only few wavelet
coefficients greater than zero.

• The noise level is low enough, so that wavelet coefficients are still distinguishable
in the noisy field.

These characteristics of the wavelet transform allow to distinguish the signal from noise
by merely looking at the magnitude of the wavelet coefficients.
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Statistical optimality properties

In addition to the intuitive arguments above, several statistical optimality properties
have been proven for the wavelet thresholding approach (Donoho and Johnstone, 1994;
Donoho et al., 1995; Härdle et al., 1998). If the conditions above are satisfied and if the
threshold ν is optimally chosen, the estimator attains smoothness and adaptation.

Smoothness states that there is a high probability that the estimator is as smooth as the
unknown function to be estimated (Vidakovic, 1999). Adaptation refers to the so-called
minimax risk of the estimator. The risk is the expected distance between the estimator
and the unknown function, where the distance is determined by a norm which can be
quite general. The minimax risk minimizes the worst case risk of the estimator within
the function space. Adaptation states that the estimator achieves almost minimax risk
over one of a wide range of smoothness classes, including the classes in which linear
estimators do not achieve the minimax rate (Vidakovic, 1999).

These vaguely described properties of smoothness and adaptation can be formalised
with the help of Besov spaces and are presented in mathematical detail by Härdle et al.
(1998). Adaptation and smoothness are often illustrated by the notion of an “oracle”
which provides best information on the locally optimal bandwidth in case of spatially
variable bandwidth kernel estimation.

As this study uses the average shift approach (cf. Fig. 5.10), it should be mentioned that
these optimality properties have only been proven for wavelet thresholding with a single
shift. Nason and Silverman (1995) presume that the averaging shifts approach retains
the adaptivity of ordinary wavelet thresholding and improves its performance on smooth
parts of the function of interest.

5.4.4 Possible problems in practice

The above-named optimality properties might not be attained (1) if the wavelet trans-
form is far from orthogonal or (2) if the noisy data does not even crudely satisfy the
necessary conditions. In the following paragraphs, the necessary prerequisites of wavelet
thresholding are discussed in view of LM post-processing. Furthermore, the wavelet
coefficients of LM forecasts undergo a visual inspection with regard to their statistical
properties.

Wavelet transform

Problems may arise in wavelet thresholding because the lifting scheme

• is only bi-orthogonal instead of orthogonal,

• is a second generation wavelet transform.
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As the wavelet transform is not strictly orthogonal, it is no longer guaranteed that the
noise is stationary in the wavelet transform even if it is stationary in the grid domain. In
this case thresholding becomes difficult, because the amount of noise is different for each
wavelet coefficient so that it is hard to remove it decently by a universal threshold. A pos-
sible remedy is to normalise the wavelet coefficients before thresholding (Jansen, 2001).
The normalisation requires knowledge of the noise covariance structure in the wavelet
domain. If the noise is stationary in the grid domain, the non-orthogonal transformation
algorithm itself provides all necessary information. Implementing this proposal into LM
post-processing remains for a future study.

Further problems may arise because the lifting scheme is a second generation wavelet
transform, i. e. the transform is purely spatial and does without Fourier techniques (see
Appendix A.4 for details). Jansen (2001) calls attention to problems with the condition
number of the transform. A badly conditioned transform makes it difficult, if not im-
possible, to predict the effect of a threshold. However, it is not clear whether this issue
is relevant in this study.

Conditions of the data

Ideally, the noisy data should satisfy the regression model (Eq. 4.6) and should possess an
intermittent, sufficiently large signal. However, random error in original LM forecasts is
suspected to exhibit the following deviations from these conditions (cf. Section 4.2.3):

• heteroscedastic noise,

• colored noise,

• non-Gaussian noise (precipitation only),

• weak signal-to-noise ratio (precipitation only).

In this study the wavelet thresholding procedure simply neglects these data deficiencies
and a proper treatment remains for future research. The data deficiencies, their expected
effect on wavelet thresholding and possible remedies are discussed in the following para-
graphs.

The noise is heteroscedastic, because forecast uncertainty is generally not uniform in
space (cf. Section 4.2.3). As a consequence, the expected noise amplitude is also different
for each wavelet coefficient, and it may be impossible to remove noise by a universal
threshold. The application of individual thresholds could be an alternative, but new
problems may arise when trying to estimate the individual thresholds.

The noise is colored, since spatial coherence of forecast uncertainty is omnipresent in
meteorological fields. As a consequence, the noise is colored in the wavelet domain, too,
and thresholding becomes difficult. If the spatial covariance matrix of the noisy field
was known up to constant factor, the problem can be solved by normalisation of the
wavelet coefficients (Jansen, 2001). However, it is difficult to attain information about
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the spatial covariance matrix without an ensemble at hand. Then the covariance matrix
may be derived via a model, in a similar way as common techniques of meteorological
data assimilation.

Deviations from the Gaussian distribution and a weak signal-to-noise ratio occur in the
fields of precipitation. Both facts increase the risk that wavelet thresholding may fail to
suppress the noise. The weak signal-to-noise ratio originates from the relatively small
degree of deterministic predictability. The non-Gaussian distribution causes substantial
problems if the distribution is heavy-tailed. As wavelet based methods are sensitive
to outliers, the associated wavelet coefficients have a large magnitude and are wrongly
classified as part of the signal.

Visual inspection of the LM wavelet coefficients

If the lifting scheme and the original LM forecasts satisfied the prerequisites of wavelet
thresholding, the wavelet coefficients of LM forecasts would form the following picture:
The noise is spread out evenly over all wavelet coefficients and the noise amplitude would
be the same for each location and each level. Only few coefficients would represent the
signal and would clearly protrude the noise amplitude.

When applying the lifting scheme to real LM forecast data, a somewhat different picture
is generated (Fig. 5.3 and Fig. 5.5). In case of 2m-temperature one can distinguish
regions with complex orography, smooth orography and the sea. In case of precipitation
one can distinguish regions of convective rain, stratiform rain and no rain.

The differences between those regions could either originate from non-stationary noise
or from variable signal characteristics. If only the signal were responsible then the
prerequisites of wavelet thresholding would not be violated. However, this possibility is
unrealistic, because it implies that the noise amplitude does not vary with location and
therefore must comply with the lowest noise level that is apparent in Fig. 5.3 and 5.5.
In case of 2m-temperature it is the noise amplitude over the sea that would control the
standard and in case of precipitation it is the amplitude in non-precipitating regions.
However, both appear far too low as a representative of the entire region. Therefore,
it must be concluded that the wavelet transforms of LM forecast data contain non-
stationary noise indeed. It remains to be seen whether this is an obstacle in wavelet
thresholding.

5.4.5 Choice of the threshold

Existing methods

A central question in wavelet thresholding is the choice of the threshold value. The
choice is either a priori or data driven. Numerous data driven approaches exist in
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the literature, for example the universal threshold and the minimax threshold (Donoho
and Johnstone, 1994), the SURE (Stein’s unbiased risk estimate) threshold (Donoho
et al., 1995), generalised cross validation procedures with regard to minimisation of
mean squared error (Nason, 1995), application of multiple hypothesis tests with regard
to the false discovery rate (Abramovich and Benjamini, 1995; Benjamini and Hochberg,
1995) and Bayesian approaches (Abramovich et al., 1998; Vidakovic, 1998).

In contrast to kernel bandwidth selection methods, wavelet threshold selection methods
focus on rather different criteria than just balancing bias and variance. In fact, there
is a great variety of different criteria: minimising the risk of erroneously curtailing the
signal, minimising the risk of erroneously keeping a noisy coefficient or achieving a certain
degree of smoothness in the estimate, to name only few. Consequently, there can be huge
differences between the results of different threshold selection methods.

Approach in LM post-processing

In general, data driven methods should be preferred to an a priori approach, because
they tend to be more objective. In case of threshold selection, however, the mere choice
of a certain data driven method is already of subjective nature, because it is governed
by the a priori vision of the desired result. Therefore, it is justifiable to set data driven
methods aside for the moment and to start with a visual inspection of the data first.

Furthermore, an ordinary application of standard data driven methods is expected to
fail in LM post-processing, because they rely on the assumption that the noisy data
follows a uniform statistical model. This assumption is not satisfied by LM forecast
data (cf. Subsection 5.4.4) so that existing procedures would have to be modified before
they are applied to LM forecast data.

The very first attempt at choosing a threshold is based on a visual inspection of the
wavelet coefficients from noisy LM forecast data (Fig. 5.5 and Fig. 5.3). A threshold
value is sought that classifies the wavelet coefficients into signal and noise. The selection
is roughly led by the notion that the signal must pertain to only few coefficients that
clearly protrude the noise amplitude. Thus, the chosen threshold must be slightly smaller
than the values of the largest wavelet coefficients.

Obviously, the selection is hampered by the fact that LM forecast noise is heteroscedastic
(cf. Section 5.4.4), but a very crude guess is still made: 1.8 K for the 2m-temperature
forecast and 1 mm for the precipitation forecast. In correspondence with the argu-
ments of Section 5.3 coefficients of the coarsest levels remain un-thresholded so that the
threshold is level-dependent (cf. Tab. 5.1).

In terms of 2m-temperature, the threshold value of 1.8 Kelvin is geared to land regions
with smooth orography (cf. Fig. 5.3). In terms of precipitation, it is difficult to identify
single coefficients that protrude the others. Therefore, the threshold value of 1 mm is just
an arbitrary guess which roughly corresponds to the magnitude of wavelet coefficients
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Table 5.1: Level-dependent thresholds for wavelet thresholding.

level l −1 −2 −3 −4 −5 −6 −7 −8
2m-temperature:
threshold νl [Kelvin] 1.8 1.8 1.8 1.8 0 0 0 0
precipitation (version A):
threshold νl [mm] 1 1 1 1 0 0 0 0
precipitation (version B):
threshold νl [mm] ∞ 1 1 0 0 0 0 0

in regions of precipitation occurrence (cf. Fig. 5.5). There are two versions of threshold
values (cf. Tab. 5.1). Version A is a first guess according to the considerations above;
Version B is motivated in the next subsection.

5.4.6 Thresholding in action: 2m-temperature forecast

Wavelet thresholding is now applied to the 2m-temperature forecast field in Fig. 5.2.
A visual inspection of the result in Fig. 5.15 gives a first impression whether wavelet
thresholding is able to preserve features that are deterministically predictable and re-
move the others. The threshold is chosen according to Tab. 5.1. The averaging shifts
approach is also applied so that the wavelet transform is translation-invariant (cf. Sub-
section 5.3.3).

Data-driven variations in the amount of spatial smoothing

The main effect of wavelet thresholding is spatial smoothing. This is in accordance with
the notion that small scales are deterministically less predictable than large scales. In
contrast to level curtailing (Fig. 5.12) the amount of smoothing varies much with location
though. Whereas medium gradients and small temperature gradients are smoothed,
steep temperature gradients are mostly retained. This becomes especially obvious in
regions of complex orography, along the cold front, along the coastlines of Denmark or
at the cities of Berlin and Prague.

The preservation of steep gradients can be explained by the way wavelet thresholding
operates. Wavelet thresholding retains wavelet coefficients with large magnitudes. Large
magnitudes indicate large spatial variability, because a wavelet coefficient is the deviation
from a piecewise linear interpolation of the spatial field (cf. Appendix A).

Principally, variations in the amount of spatial smoothing can also be achieved by kernel
smoothing with a spatially variable bandwidth. When the underlying signal is assumed
to be rough, the amount of smoothing is small and vice versa. The concepts of wavelet
thresholding and kernel smoothing are still entirely different; kernel smoothing uses a
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Figure 5.15: Post-processed version of the 2m-temperature forecast in Fig. 5.2. Unit:
Degree Celsius. Reconstruction after hard thresholding (Eq. 5.3) with
level-dependent thresholds (Tab. 5.1). Shift averaging is also applied
(cf. Fig. 5.10). The full domain of the post-processed forecast comprises
226 × 242 grid points; here a section of 165 × 165 grid points is shown.

pre-determined bandwidth, whereas wavelet thresholding automatically adapts to local
properties of the data. It is not prior knowledge, but the data itself that indicates the
local roughness of the signal and controls the amount of smoothing.

Note, however, that it is unknown at this stage whether wavelet thresholding really
attains adaptivity in a mathematical sense (cf. Subsection 5.4.3).

Successful preservation of the signal

Recall that wavelet smoothing aims at the preservation of the signal, i. e. the preservation
of deterministically predictable features. In comparison to level curtailing (Fig. 5.12)
the thresholding procedure is very good at preserving the signal.

Fig. 5.15 shows that wavelet thresholding generally preserves abrupt jumps within the
2m-temperature field. They are often associated with coastlines, orography, cities or
changes in snow cover. All of these belong to the group of explanatory variables (cf. Sec-
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tion 4.4) which induce deterministic predictability in temperature. Thus, wavelet thresh-
olding preserves exactly those patterns that represent the signal.

While the neighbourhood methodology needs a lot of additional effort to retain this part
of the signal, wavelet thresholding achieves the same “for free”. The simple statistical
model of wavelet thresholding achieves the same result than the explicit implementation
of physical interrelations in the neighbourhood.

Successful removal of noise

Wavelet thresholding does not only succeed in signal preservation, but also in noise
removal. A successful removal of noise eliminates all field elements that are determin-
istically unpredictable. For example, small-scale variations of 2m-temperature that are
not associated with explanatory variables are suspected to represent the noise.

Fig. 5.15 shows indeed that wavelet thresholding has a spatial smoothing effect in those
regions that are free of explanatory variables. Compared to level curtailing (cf. Fig. 5.12)
the amount of smoothing is even more intense in these regions. The amount of smoothing
is largest just behind the cold front where deterministic predictability is expected to be
especially low.

Erroneous preservation of noise

We have seen that wavelet thresholding is surprisingly often correct in identifying the
signal. However, sometimes the procedure erroneously classifies noisy coefficients as
part of the signal, too, and wrongly preserves features that are deterministically unpre-
dictable.

Such a case becomes obvious when looking at the cold front in Fig. 5.15. As the cold front
is marked by steep temperature gradients, wavelet thresholding interprets the front as
part of the signal, i. e. it assumes that the front is deterministically predictable in every
detail. This assumption is not valid, with regard to the exact shape of the frontal line
and with regard to the exact location of the front within the domain.

First, wavelet thresholding leaves the frontal line very ragged. As such details within
the front are not deterministically predictable, a properly post-processed version of the
frontal line should rather resemble a smooth curve instead. The simple thresholding
procedure is not able to deal with discontinuities along a smooth curve, but Do et al.
(2001) have recently developed a directional smoothing technique for the filtering of
smooth curves. This algorithm may be able to cope with this challenge so that it
is recommended for implementation into a future version of the LM post-processing
procedure.

Secondly, the exact location of the front is associated with forecast uncertainty, because
the front velocity is difficult to predict. In this case the proper post-processing technique
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depends on the intended use of the post-processed forecast. If the post-processed forecast
is strictly used as an estimate of the expected value, the field should indeed contain
smoother temperature gradients in the frontal region than the original field. If the post-
processed forecast is merely intended as a visual forecast guidance, it is important to keep
patterns visible that are meteorologically relevant. In this case it would be suggested to
retain the frontal gradients so that the front is not disguised by spatial smoothing.

Erroneous removal of the signal

Another potential weakness of wavelet thresholding is the erroneous removal of a coeffi-
cient that possesses a large signal-to-noise ratio. This case would result in spatial smooth-
ing of deterministically predictable features in the field reconstruction of Fig. 5.15.

If at all, this case might occur in regions of the sea, since wavelet thresholding en-
tirely removes the respective coefficients of the four finest levels there. However, ex-
cessive smoothing cannot introduce large errors over the sea, because the original 2m-
temperature forecast is already very smooth.

Summary and outlook

Wavelet thresholding does a very good job in preserving elements that are deterministi-
cally predictable and in retaining the others. The criteria of wavelet thresholding appear
to match our physical notion of deterministic predictability of temperature. This is due
to the fact that abrupt jumps in the temperature field generally coincide with the pres-
ence of explanatory variables.

The results of wavelet thresholding appear in an even better light when considering
that wavelet thresholding is such a simple and efficient methodology. In contrast to the
neighbourhood methodology an explicit consideration of explanatory variables is not
implemented.

Demonstrated shortcomings within the frontal area are tackled in Section 5.5. Above
all, more work needs to be done on optimal threshold selection. In the long run, an
automatic method is needed which is more efficient and objective than visual inspection
of the data.

5.4.7 Thresholding in action: Precipitation forecast

Fig. 5.16 shows the result of applying wavelet thresholding to a LM precipitation forecast
(cf. Fig. 5.4). The threshold is chosen according to version A in Tab. 5.1. Shift averaging
is applied so that the wavelet transform is translation-invariant (cf. Subsection 5.3.3).
Again, the post-processed forecast is examined with regard to data-driven variations in
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Figure 5.16: Post-processed version of the precipitation forecast in Fig. 5.4. Unit: mm.
Reconstruction after hard thresholding (Eq. 5.3) with level-dependent thresh-
olds (Tab. 5.1, version A). Shift averaging is also applied (cf. Fig. 5.10).
The full domain of the post-processed forecast comprises 226 × 242 grid
points; here a section of 165 × 165 grid points is shown.

the amount of spatial smoothing, the successful preservation of deterministically pre-
dictable features and removal of others.

Data-driven variations in the amount of spatial smoothing

The main effect of wavelet thresholding is spatial smoothing of the original forecast. As
opposed to level curtailing (Fig. 5.11) the amount of smoothing varies with location. The
transition between precipitation occurrence and no precipitation occurrence is diluted
very much. The interior of precipitating regions almost remain untouched, especially
within the rainband along the cold front.

As explained in the context of 2m-temperature, the amount of smoothing is governed
by the roughness of the original precipitation field (cf. Fig. 5.4). Abrupt jumps are
preserved and smoothing is applied to regions that already possess a certain degree of
smoothness.
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Are deterministically predictable features preserved and others removed?

Whereas the smoothing strategy of wavelet thresholding is absolutely suitable for 2m-
temperature fields, it is totally inconsistent when it comes to precipitation fields.

Large gradients in the original precipitation field are often associated with convective,
small-scale, intense precipitation and small gradients are generally associated with strat-
iform, large-scale, slight precipitation. The former is expected to possess much less de-
terministic predictability than the latter. Following this argumentation, the amount of
smoothing should ideally be larger at locations that exhibit large gradients in the orig-
inal forecast and smaller at locations that exhibit small gradients. This is exactly the
opposite of the effect wavelet thresholding achieves.

The poor result of wavelet thresholding is probably due to the fact that the noise is
heavy-tailed and dominates the signal. Furthermore, the noise is heteroscedastic and
there appears to be a coherence between noise amplitude and signal amplitude. All
these properties contradict the plan to distinguish signal and noise via the magnitude
of a wavelet coefficient.

The only positive aspect of wavelet thresholding is its occasional ability to preserve oro-
graphically induced variability of precipitation. Orographically induced precipitation
patterns are generally deterministically predictable and need to be preserved. As oro-
graphically induced precipitation is sometimes associated with abrupt jumps within the
spatial field, wavelet thresholding preserves this part of the signal indeed.

Mixture of level curtailing and wavelet thresholding

As wavelet thresholding of precipitation fields does not lead to the desired results, an-
other attempt is made on precipitation post-processing. The new version is a mixture of
level curtailing and wavelet thresholding (see version B in Tab. 5.1). Coefficients of the
finest level are entirely discarded, because the smallest scales of precipitation are gen-
erally not expected to possess deterministic predictability. Coefficients of levels coarser
than l = −3 are entirely retained so as to limit the excessive smoothing at the transition
between precipitation occurrence and no precipitation occurrence. The remaining levels
are exposed to thresholding again.

The mixture of level curtailing and wavelet thresholding leads to much better result than
thresholding alone (Fig. 5.17). Convective precipitation is less noisy and the patterns of
stratiform precipitation are preserved in a better way.

However, it is not clear whether the result is superior to that of simple level curtailing
(cf. Fig. 5.11). Wavelet thresholding produces a more detailed pattern in regions of
complex orography and in regions of convective precipitation. The former may be part
of the signal, but the latter may be part of the noise. Furthermore, wavelet thresholding
produces greater precipitation maxima and a more frequent occurrence of small precip-
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Figure 5.17: Same as Fig. 5.16 except that version B of the thresholds is used instead of
version A (cf. Tab. 5.1).

itation amounts. As the original LM forecasts already suffer from overforecasting small
amounts (cf. Chapter 6), the more frequent occurrence of small precipitation amounts
may be unfavourable.

Summary and outlook

In terms of precipitation, wavelet thresholding is not able to improve results of simple
level curtailing. This is due to the fact that the statistical properties of precipitation data
are not in line with the underlying assumptions of wavelet thresholding. Wavelet thresh-
olding of precipitation is not as successful as wavelet thresholding of 2m-temperature,
because quantitative precipitation forecasts lack an eminent link between large gradients
in space and deterministic predictability. Further attempts on wavelet thresholding of
quantitative precipitation fields do not appear promising.

However, it would be interesting to investigate the use of wavelet thresholding in the
estimation of exceedance probabilities of precipitation (cf. Subsection 5.6.2). Post-
processing would then start from fields of precipitation occurrence (e. g. Fig. 4.8) instead
from fields of quantitative precipitation (e. g. Fig. 4.7). Wavelet thresholding may be
able to automatically recognise and preserve characteristic shapes within the field of
precipitation occurrence, for example rainbands.
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5.5 Additional field criterion

5.5.1 Introductory remarks

Motivation

In the previous section we have seen that the correct differentiation between signal and
noise does not always become obvious from the LM forecast field alone. For example,
orographically induced precipitation is difficult to discriminate from convective precip-
itation. Deterministically unpredictable temperature patterns along the front resemble
those that are associated with explanatory variables.

Sometimes there are interrelations between the deterministic predictability of one vari-
able and field characteristics of an additional variable. The additional variable could
either be another forecast variable or a constant variable such as the orographic height.
For example, deterministically predictable precipitation patterns are often associated
with orographic variability. Furthermore, ensemble experiments (Chapter 3) indicate an
interrelation between predicted convective precipitation and the ensemble spread of 2m-
temperature. Thus, noisy temperature discontinuities along the front may be associated
with the predicted field of convective precipitation.

Wavelet smoothing may take advantage of such interrelations between several variables.
In order to account for the interrelation between two different variables, another wavelet
curtailing criterion is introduced: the additional field criterion (cf. Subsection 5.2.3).

Related concepts

The additional field criterion can be viewed as an attempt to enrich the statistical
procedure by physical information. The idea is not new in non-parametric estimation;
the kriging method (Section 4.3) pursues similar aims in the framework of cokriging and
multivariate kriging.

In the context of wavelet thresholding in meteorology, Yano et al. (2001) elaborate a
concept of using additional fields, but with a slightly different intention. Instead of
filtering a deterministically predictable pattern, they decompose a meteorological field
according to its governing processes.

Overview

In this study, the precipitation forecast plays the role of the additional field in the
post-processing procedure of the 2m-temperature forecast. It is suspected that the de-
terministic predictability of small-scale temperature decreases if convective precipitation
occurs simultaneously. This interrelation is incorporated into the procedure of wavelet
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curtailing (Subsection 5.5.2). An example of the post-processed 2m-temperature forecast
is presented in Subsection 5.5.3.

5.5.2 Curtailing procedure

The additional field criterion is used in combination with the criterion of absolute value
(cf. Section 5.4). An extension of the wavelet thresholding procedure (Eq. 5.3) is devel-
oped. The level-dependent thresholds νl (Tab. 5.1) are upgraded to thresholds νl,m1,m2

that depend on level and location. The thresholds are derived via the wavelet coefficients
of the additional field. The additional field must be available on the same lattice than
the forecast field itself so that the respective wavelet coefficients are compatible.

The additional field criterion is related to the criterion of location (cf. Subsection 5.2.3),
because it causes the post-processing procedure to be location-dependent. However,
the role of different locations m1, m2 is governed by the additional field. The relation
between the additional field criterion and the criterion of location becomes especially
close when the additional field is static.

In the following example, the 2m-temperature field is post-processed and the precipi-
tation field plays the role of the additional field in the curtailing procedure. The pre-
dictability of small-scale temperature is assumed to depend on the occurrence of precip-
itation. An indicator of local precipitation occurrence is small-scale variability within
the precipitation field, so that the corresponding wavelet coefficient γz

l,m1,m2
of the finest

level l = −1 deviates from zero: |γz
−1,m1,m2

| ≥ 0.001. In order to affect the small-scale
temperature field, this condition is used as a criterion to modify the threshold value of
the finest level:

ν̃−1,m1,m2
=

{
ν−1 : |γz

−1,m1,m2
| < 0.001

∞ : |γz
−1,m1,m2

| > 0.001
. (5.4)

As a result, the finest level of the 2m-temperature forecast is entirely eliminated at
locations with precipitation occurrence.

5.5.3 Additional field criterion in action

The additional field criterion is now applied to the 2m-temperature forecast field in
Fig. 5.2. Wavelet thresholding is applied according to Eq. 5.3, the threshold value is
chosen according to Tab. 5.1 and modified according to the additional field criterion in
Eq. 5.4. The precipitation forecast in Fig. 5.4 serves as the additional field.

Shift averaging is also applied (cf. Fig. 5.10), both to the temperature field and to the ad-
ditional field of precipitation. The temperature field undergoes the wavelet thresholding
procedure of Eq. 5.4 for a range of shifts. When the temperature field and the precipita-
tion field are combined in the thresholding procedure, identical shifts are chosen. Each
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Figure 5.18: Post-processed version of the 2m-temperature forecast in Fig. 5.2. Unit: De-
gree Celsius. Reconstruction after thresholding with the additional field cri-
terion. The level-dependent thresholds are selected according to Tab. 5.1 and
location dependency is introduced via the additional field (Eq. 5.4). Shift av-
eraging is also applied (cf. Fig. 5.10). The full domain of the post-processed
forecast comprises 226 × 242 grid points; here a section of 165 × 165 grid
points is shown.

result is transformed back to grid point space and then the smoothed temperature fields
are averaged.

Fig. 5.18 shows the resulting post-processed forecast. Differences between the post-
processed forecasts in Fig. 5.15 and 5.18 are exclusively due to the modification of the
threshold value according to the precipitation field. As expected, the additional field
criterion affects regions with predicted occurrence of precipitation and increases the
spatial smoothness of the forecast. The temperature gradients within the front and
within the Alpine region are decreased. In the frontal region this effect is desirable, as
frontal temperature gradients are considered to be noisy indeed. In the Alpine region
the benefit of the effect is questionable, as temperature gradients that are associated
with complex orography may well be part of the signal, especially if the small-scale
precipitation forecast is induced by orography as well.

Consequently, an even more sophisticated version of wavelet thresholding may benefit
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from introducing orographic height as another additional field. The inclusion of orogra-
phy might not only be useful in terms of 2m-temperature, but also in terms of separating
convective precipitation from orographically induced precipitation.

Note, however, that the additional field criterion increases the computational effort of
wavelet thresholding, because it requires the wavelet transform of the additional field.
If the additional field is constant with time, the increase is only marginal, because the
wavelet transform is derived only once for all times. If the additional field is time-
dependent, however, the associated gain in forecast quality should always be rated in
connection with the increase in computational cost.

Up to this point, it can be concluded that the additional field criterion apparently has the
potential to improve signal detection, noise detection and consistency between several
forecast variables in LM post-processing. Further investigations are recommended, but
remain for future research.

5.6 Summary and outlook

5.6.1 Summary

New paths trodden

In addition to the neighbourhood, kriging and kernel smoothing, wavelet smoothing is
another attempt to derive non-parametric estimates of a large array of parameters on
the basis of a single realisation on each parameter. In this study, the wavelet method
is used to estimate the expected value, but may be easily extended to an additional
estimation of the exceedance probability.

The statistical concepts of wavelet smoothing and kernel smoothing are the same, but
the wavelet method extends the scope of the kernel method considerably, because the
wavelet-based filter is able to adapt to the noisy data in an automatic way. This study
is the first to apply a wavelet-based denoising techniques to “real” forecast data and to
derive a novel forecast product by doing so.

The wavelet transform algorithm is chosen to be the lifting scheme, a highly efficient,
bi-orthogonal, second generation wavelet transform. Wavelet curtailing is governed by
certain criteria chosen a priori. Spatial scale, location and the absolute value of the
coefficient are explored as curtailing criteria. The results of wavelet smoothing are
discussed on the basis of a case study and its visual inspection.
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Lessons learned

Wavelet smoothing proves to be much more efficient than kernel smoothing. This
achievement is very desirable, because computational efficiency is generally one of the
decisive advantages of LM post-processing compared to ensemble techniques.

The use of a translation-invariant wavelet transform is indispensable in order to prevent
disturbing artefacts in the post-processed forecast. In this work, a brute force approach
to translation-invariant wavelet smoothing is explored: averaging shifts. Averaging shifts
has the side effect of an increased computational expense. This is accepted, because the
averaging shifts approach successfully removes the artefacts.

Among the criteria used in wavelet curtailing, wavelet thresholding is most interesting.
In terms of 2m-temperature post-processing the method scores a resounding success with
regard to the effortless preservation of small-scale structures associated with explanatory
variables. In terms of precipitation post-processing, a clear superiority to the results of
kernel smoothing has not become apparent. This demonstrates that the result of wavelet
thresholding largely depends on the underlying data. Certain statistical properties in
the noisy data are indispensable for the success of wavelet thresholding.

Note that all conclusions drawn so far are based on the visual inspection of one case study.
Such an investigation serves as a first indicator of the potentials of wavelet smoothing.
Further affirmation follows in Chapter 6 which contains the objective evaluation of a
larger set of case studies.

5.6.2 Outlook

Suggestions for possible refinements

As the computational efficiency of wavelet smoothing is still hampered by shift aver-
aging, additional attempts should be made to decrease the computational cost of the
translation-invariant wavelet transform. For example, it could be investigated whether
the application of only few shifts might yield a result that is already very close to the
optimum.

More thought should be given to threshold selection in wavelet thresholding. Visual
inspection is no longer an option when a larger set of forecasts is post-processed. Instead,
one of the existing data driven threshold selection methodologies should be adapted to
the problem of LM post-processing so that the method is able to cope with the special
properties of LM forecast data. In particular, the method may have to account for
location-related differences in noise amplitude.

Furthermore, the additional field criterion could be refined. Especially the consideration
of orography appears promising in terms of improved discrimination between signal and
noise.
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The two-dimensional wavelet transform could be extended to three dimensions so as to
enable smoothing in time, too. In this case the option of asymmetric wavelet smooth-
ing would gain in importance so that the direction criterion would have to be applied
additionally. Note, however, that the inclusion of the time direction would also result
in an increased computational effort and would require a smaller increment ∆tt between
consecutive output times.

Possible applications in related contexts

Wavelet smoothing may not only be used for the non-parametric estimation of the ex-
pected value, but also for the estimation of the exceedance probability. As explained
in Section 4.3 the exceedance probability can be expressed by the intensity function of
a point process. Non-parametric estimation of the intensity function is closely related
to the problem of non-parametric density estimation. The use of wavelet transforms in
non-parametric density estimation has been well tried and tested (Ogden, 1997; Härdle
et al., 1998; Vidakovic et al., 2000). The procedure is similar to the use of wavelet trans-
forms in non-parametric regression which is already demonstrated in this study. Thus,
the application of wavelet transforms in the estimation of exceedance probabilities only
requires another tiny step.

Furthermore, wavelet transforms can be very useful in connection with ensembles, both
as an analysing tool of experimental ensembles and as a post-processing tool of oper-
ational ensembles. Wavelet analysis of LM ensemble experiments may reveal general
information on signal and noise characteristics that are present in an operational LM
forecast. This information can be very valuable in the development stage of LM post-
processing methodologies such as those investigated in this study.

Interpretation of an operational ensemble forecast may also benefit from wavelet post-
processing. For example, the ensemble mean can be derived by a combination of wavelet
thresholding and ensemble averaging. This combination is explicitly discussed in the
context of image processing, namely with the aim to denoise multiple noisy image copies
(Chang et al., 2000). Further investigations in this area are strongly suggested, especially
since the idea of combining statistical and dynamical ensembles has lately become an
issue in meteorological research (Wilks, 2002; Roulston and Smith, 2003).
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Chapters 3–5 present the motivations, methodologies and results of the LM ensemble,
neighbourhood post-processing and wavelet smoothing. The respective results are as-
sessed by subjective eye-ball inspection of a case study.

This chapter supplements these investigations by a statistical evaluation of a larger data
base of forecast data. The forecasts are compared to corresponding observational data.
Forecast assessment is condensed into objective verification measures of forecast good-
ness which allow for a direct comparison between results of different forecast systems.

6.1 Introductory remarks

6.1.1 Aims

The aim of objective verification in this chapter is to

• assess forecast goodness of the various forecast systems in this study,

• decide on the optimal configuration of the neighbourhood method,

• assess the user’s gain when applying a forecast system to her individual needs,

• identify the forecast system with the optimal ratio of forecast goodness and com-
putational cost.

6.1.2 Organisation of the chapter

The chapter is organised as follows. The verification strategy is outlined in Section 6.2.
Sections 6.3–6.5 deal with the evaluation of neighbourhood post-processing. Section 6.3
contains a comprehensive forecast quality assessment of the standard neighbourhood
post-processing procedure. Estimates of expected value, quantiles and exceedance prob-
ability are examined. Other important aspects of forecast goodness, such as the user’s
gain in applying the forecast, are investigated in Section 6.4. Section 6.5 examines vari-
ous configurations of the neighbourhood method and looks for an optimal neighbourhood
size and an optimal consideration of explanatory variables. Section 6.6 assesses forecast
goodness of wavelet smoothing. Section 6.7 assesses the experimental LM ensemble of
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Chapter 3 and compares it to the post-processing systems developed in this study. In
order to avoid repetitions, intermediate recapitulations of the respective sections are
combined and postponed to Section 6.8 which contains a summary of the entire chap-
ter.

6.2 Verification strategy

6.2.1 Verification data

Observational data

Observed precipitation data from rain gauges are collected for the time period
July 10–24 2002. The rain gauges are located within the area of Germany and its close
surroundings (47.0◦N–55.5◦N; 5.5◦E–15.5◦E). Precipitation measurements are obtained
from approximately 200–300 stations per observation time so that the ratio of the num-
ber of reporting stations to the number of model grid boxes is approximately 1/50. The
observational data set comprises measurements of 1h-accumulations, 6h-accumulations,
12h-accumulations or 24h-accumulations of precipitation. Some additional values of
6h-accumulations are derived by subtracting measurements of 6h-accumulations from
measurements of 12h-accumulations.

Temperature data in two meters height are collected for the same time period. The data
comprises hourly measurements as well as the daily minimum and daily maximum. The
measurements also originate from SYNOP stations and are obtained from approximately
310–330 stations per observation time. This study focusses on the hourly measures of
2m-temperature.

At DWD an additional verification study exists in parallel which uses a more extensive
data set of observations of the warm season (Tab. 6.1). The DWD study and this
study have been carried out independently. Verification at DWD exclusively looks at
the neighbourhood method and assesses the quality of the expected value and quantiles.
Sensitivity studies concerning neighbourhood size and explanatory variables are carried
out as well. The results of DWD agree with the findings of this study whenever a direct
comparison is possible. Thus, the findings of this study are indirectly supported by a
larger data base.

Forecast data

The verification procedure is applied to LM short-range simulations (version 2.19) that
are started at 00UTC every day and run for 48 hours. The model configuration is
identical to the operational setting except for the lateral boundary conditions which are
provided by LM analyses instead from predictions by the global model GME.
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Table 6.1: Verification periods considered in this study and by a parallel study at DWD.

Verification Period Predictand Area compiled by

Jul 10–24, 2002 precipitation Germany Susanne Theis
(1h, 6h, 12h, 24h) and close
2m-temperature surroundings
max and min temp.

Sep 01–15, 2001 precipitation Germany V. Renner (DWD)
(1h, 6h, 12h, 24h) U. Damrath (DWD)
2m-temperature

May 01–15, 2001 precipitation (1h) Germany V. Renner (DWD)
2m-temperature U. Damrath (DWD)

Aug 01–15, 2001 precipitation (1h) Germany V. Renner (DWD)
2m-temperature U. Damrath (DWD)

Aug 01–15, 2002 max and min temp. Germany V. Renner (DWD)
U. Damrath (DWD)

The choice of LM analyses was originally motivated by the desire to reduce the large-
scale error induced by imperfect lateral boundary conditions. The existence of large-
scale errors might blur the benefits of the experimental ensemble forecast and the post-
processed forecast, because both methods are especially designed to address small-scale
uncertainties of the forecast. If the observations and the forecast field already differ
on the large scale, small-scale features might become irrelevant in forecast verification
so that achievements of the experimental ensemble or the post-processing procedure
may become invisible. For the sake of comparison, forecast verification is repeated for
simulations driven by GME boundary conditions (not shown) and it turns out that the
choice of LM analyses has only a minor impact on verification results. This implies that
the findings of this chapter also apply to the operational setup with GME boundary
conditions.

The short-range simulations comprise 48 hours each, but only forecast hours 7–30 are
used in the verification procedure of this chapter. This time range is considered to yield
optimal forecasts, because the spin-up time is excluded and forecast lead time is still
very short. Furthermore, the forecast data sets do not overlap, if they originate from
simulations that are started on consecutive days. For the sake of comparison, forecast
verification is also carried out for the full time range of the 48h-forecasts (not shown).
The results are very similar to those presented in this chapter.

Objective verification of this study investigates the raw LM output, the LM ensemble
forecast and the LM post-processed forecast (Tab. 6.2). In the experimental ensemble,
the estimates of expected value and exceedance probability are derived by assigning
equal weights to each of the 10 ensemble members.

Various configurations of the neighbourhood procedure and wavelet smoothing are
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Table 6.2: Matrix of forecast methods and their respective forecast products in this study.
The entry RR denotes that the corresponding forecast system derives a re-
spective estimate for the precipitation forecast; the entry T denotes that the
corresponding forecast system derives a respective estimate for the forecast of
2m-temperature. Neighbourhood PP denotes neighbourhood post-processing.

Forecast Procedure Single Realisation Expect. Value Quantile Exceed. Prob.

single LM forecast RR, T
LM ensemble forecast RR, T RR
neighbourhood PP RR, T RR, T RR
wavelet smoothing RR, T
observation RR, T

tested. A direct comparison between the whole set of forecast methodologies is not
always possible, because the different methodologies estimate different sets of statisti-
cal quantities. For example, quantile estimates are only derived by the neighbourhood
methodology (Tab. 6.2).

Matching pairs of forecast and observation

Any forecast verification method involves comparisons between matched pairs of fore-
casts and the observations to which they pertain. In this study, for each observation
the nearest grid point of the model output is selected for comparison. In case of tem-
perature data the raw model output and estimates of expected values are adjusted to
the orographic height of the observation site using a standard temperature gradient of
-0.0065K/m.

Note that this approach is different from the linear modification of the model out-
put in the neighbourhood procedure (cf. Section 4.4.2). In the neighbourhood proce-
dure the temperature gradient is derived by linear regression of the forecast data itself
(cf. Fig. 4.12) and varies with location and time.

6.2.2 Forecast goodness and corresponding measures

Forecast goodness is not only determined by forecast quality, but also by consistency
and value (Murphy, 1993). Forecast goodness is therefore defined by the following three
determinants:

Forecast quality Forecast quality relates to the degree of correspondence between fore-
casts and observations.
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Table 6.3: Matrix of forecast products and their verification measures in this study. RR
denotes precipitation, T denotes 2m-temperature, BS denotes Brier score and
its decomposition, ROC denotes relative operating characteristics, rmse de-
notes root mean squared error. For definitions of the measures see Ap-
pendix C.

Predictand Single Realisation and Quantiles Exceed. Probability
Expected Value

RR 2 × 2 contingency table reliability BS and its decomposition
BS, economic value economic value ROC curve

reliability diagram
economic value

T rmse, correlation, etc. reliability

Forecast consistency Forecast consistency relates to the correspondence between the
forecast and the forecaster’s best judgment.

Forecast value Forecast value relates to the expenses incurred by a user who employs
the precipitation forecast as an input into her decision making process. Measures
of forecast value particularly stress the user’s perspective.

Each of these forecast characteristics therefore needs to be considered when evaluating
forecast goodness.

There is a multitude of different verification measures and each measure reflects a differ-
ent aspect of forecast goodness. Forecast quality is expressed by the joint distribution of
forecasts and observations. A single forecast measure reflects only a certain aspect of the
joint distribution. Therefore, a variety of measures is consulted in order to give a general
judgment of forecast quality. Consistency is difficult to measure, so this study presents
a qualitative discussion of consistency instead of a quantitative assessment. Forecast
value is investigated in the context of a prototypical decision making situation, the cost-
loss scenario (Appendix C.4). The corresponding verification measure of relative value
(Appendix C.4) quantitatively assesses the economic value of the forecast and relates it
to the economic value of a perfect forecast and of a benchmark forecast.

Furthermore, probability forecasts and categorical forecasts require different measures
of forecast quality (cf. Appendix C). As visible from Tab. 6.2, the forecast data of
this study are a mixture of probability forecasts and categorical forecasts. Quantiles
and exceedance probabilities refer to probabilities while the expected value and the raw
model output consist of a flat statement that exactly one of a set of possible events will
occur. Their corresponding measures of forecast quality are listed in Tab. 6.3.

Even though the expected value is a categorical forecast in terms of forecast verification,
it is essentially of probabilistic nature when compared to the direct model output. The
definition of the expected value still refers to the probability density function of the
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forecast. The raw model output, on the contrary, is a single realisation and therefore
not probabilistic.

6.2.3 Choosing a benchmark

In order to evaluate the experimental ensemble forecast and the post-processed forecast
it is useful to relate its measures of forecast quality to those of a reference forecast. In
this study the following references are applied:

• The raw LM output,

• a “climatological” forecast,

• various versions of the post-processing procedures,

• simple kernel smoothing with the rectangular kernel (Eq. 5.2),

• the inflated LM output which is introduced in Section 6.4.2,

• the perfect forecast.

The most prominent reference forecast is the raw LM output of a single simulation. It
serves as a low benchmark, because the LM ensemble and the post-processing methods
aim at outperforming this reference.

Another low benchmark is the climatological forecast, i. e. a simple forecast that con-
sists in the average of a historical data set. In this study, historical data sets are not
available so that a substitute is derived from the observational data of the verification
period. As the period only comprises 15 days, the substitute is far more specific than
a typical climatology. Nevertheless, the term “climatological” refers to the 15-day-mean
in this study, because there is currently no alternative. As a consequence, this study
clearly overestimates the forecast quality of the climatological forecast and corresponding
conclusions must be handled with caution.

Other low benchmarks are derived through simplified variants of the post-processing
methods, simple kernel smoothing and inflation of the forecast (cf. Section 6.4.2).

High benchmarks include the perfect forecast and refined versions of the post-processing
procedures. The perfect forecast enables the interpretation of the degree of forecast
improvement between a low benchmark and the forecast system under consideration.

6.3 Quality of the standard neighbourhood results

This section contains a comprehensive forecast quality assessment of the standard neigh-
bourhood post-processing procedure. The standard version uses medium neighbourhood
size (cf. Tab. 4.1) and considers explanatory variables in the way as listed in Tab. 4.2.
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The central question of this section is whether neighbourhood post-processing improves
the original LM forecast in terms of forecast quality, i. e. the correspondence between
forecasts and observations. Estimates of expected value (Sections 6.3.1 and 6.3.2), quan-
tiles (Section 6.3.3) and exceedance probability (Section 6.3.4) are examined. Other
aspects of forecast goodness, such as the user’s gain in applying the forecast, are inves-
tigated in Section 6.4.

6.3.1 Expected value of precipitation

Overview

The expected value of precipitation is a categorical forecast of a continuous predictand
(cf. Appendix C). An exceedance threshold is chosen which converts the continuous
precipitation forecast into a dichotomous forecast. Then several verification measures
are derived from the respective contingency table (Tab. C.1): the probability of detection
(POD), the false alarm rate (FAR), the frequency bias (FBI), the equitable threat score
(ETS) and the logarithm of the odds ratio (LOR). For definitions of these measures see
Appendix C.2.

Several thresholds are chosen and the procedure is repeated for each of them. This
approach enables a separate forecast assessment of light precipitation events and heavy
precipitation events. A measures-oriented investigation of extreme precipitation is omit-
ted here, because the observational data set contains only very few extreme events and
the expected value does not capture them. It can already be concluded that the expected
value does not properly represent extreme events.

Fig. 6.1 and 6.2 show the resulting verification measures as a function of the exceedance
thresholds. Fig. 6.1 refers to 1h-accumulations and Fig. 6.2 refers to 24h-accumulations.
The respective results of 6h-accumulations and 12h-accumulations are not shown here,
because they lead to the same conclusions. Results are shown for the raw model output
and neighbourhood estimates of the expected value.

Frequency bias

The FBI is the ratio of two unconditional frequencies: the frequency of forecast events
and the frequency of observed events. Ideally, a forecast should exhibit a frequency bias
of 1.

Fig. 6.1 and 6.2 show that the raw model output suffers from overforecasting light precip-
itation and from underforecasting heavy precipitation. Neighbourhood post-processing
intensifies this unwanted effect for almost all precipitation thresholds and accumulations
because the post-processing procedure effectively smooths the model output.
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Figure 6.1: Measures of forecast quality from the contingency table. POD: Probability
of detection. FAR: False alarm rate. FBI: Frequency bias. The long dashed
line denotes a perfect FBI. ETS: Equitable threat score. LOR: Log odds ratio.
LOR(BC): Log odds ratio with bias correction. Predictand: 1h-accumulations
of precipitation, original forecast (dotted line) and post-processed forecast
(solid line). The standard version of the neighbourhood procedure is applied
(cf. Tab. 4.2). The abscissa lists various precipitation thresholds.

Mullen and Buizza (2000) note that this is also typical of most ensemble prediction sys-
tems (e. g. Eckel and Walters, 1998; Hamill and Colucci, 1998). Thus, the deterioration
in FBI also occurs in more sophisticated methods of expected value estimation.

Probability of detection

Except for heavy precipitation events the POD of the expected value is larger than the
POD of the direct model output. Note that the increase in POD is at least partly
a consequence of increased overforecasting. The POD benefits from overforecasting,
because it is a measure of correct hits and not a measure of false alarms, misses or
correct rejections.
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Figure 6.2: Same as Fig. 6.1, but for 24h-accumulations of precipitation.

Equitable threat score

Similarly to the POD, the ETS refers to correct hits, but additionally accounts for
forecasts that verify by chance. Thus, it implicitly compensates for a simultaneous
change in FBI. Hit rates are penalised by a high FBI and vice versa. This becomes
visible in Fig. 6.1 and 6.2: the ETS exhibits slightly different results than the POD
whenever the FBI deviates very much from 1. All in all, the estimated expected value
exhibits a better ETS than the raw model output.

A striking feature is the extraordinarily high ETS of 24h-accumulations. Such high
values are unprecedented in the results of other verification periods investigated by
DWD (cf. Tab. 6.1). Similar results are attained when the lateral boundary conditions
are provided by GME forecasts instead of LM analyses (not shown). Therefore, these
high scores do not originate from the application of LM analyses.

False alarm rate

The FAR complements the POD and the ETS as it refers to false alarms instead of hits.
Neighbourhood post-processing increases the FAR of light precipitation and decreases
the FAR of heavy precipitation.
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As long as these changes in FAR are caused by changes in the FBI, they do not truly
indicate a change in forecast quality yet. Only a simultaneous decrease of FAR and
increase of POD would indicate a true enhancement of forecast quality.

A simultaneous decrease of FAR and increase of POD is visible indeed for the 10mm-
thresholds of 24h-accumulations (Fig. 6.2), for the 10mm-threshold of 12h-accumulations
(not shown), for the 5mm-threshold of 6h-accumulations (not shown) and for the
0.5mm- and 1.0mm-threshold of 1h-accumulations (Fig. 6.1). In other words, the esti-
mated expected value improves forecast quality of the raw model output in the range of
moderate to large precipitation amounts.

Log odds ratio

The LOR relates the odds of a hit and the odds of a false alarm. It deserves special
attention for several reasons. It combines measures of hits and false alarms, it implicitly
accounts for the unconditional frequency of an event, and it allows for a simple test of
statistical significance.

Fig. 6.1 and 6.2 show that the LOR of the estimated expected value outperforms the
LOR of the raw model output. However, the increase in LOR may not indicate a true
enhancement of forecast quality, because the LOR benefits from a large FBI. In order to
separate the effect of the FBI, a bias-corrected LOR (LOR(BC)) is calculated in addition
(cf. Appendix C.2).

Fig. 6.1 and 6.2 show that the LOR(BC) of the estimated expected value is larger than
the LOR(BC) of the raw model output for exactly those precipitation amounts that
attain an improvement in both FAR and POD. Thus, the LOR(BC) nicely summarises
and reconfirms the findings above.

The differences between the log odds ratios (LOR) of the post-processed output and the
raw model output are tested for statistical significance. In case of 1h-accumulations, the
differences are statistically significant to the 95% confidence level. Other accumulations
do not attain statistical significance. This is probably due to the fact that the respec-
tive observational data sets are substantially smaller than the set of 1h-accumulations.
However, the 95% confidence level of 1h-accumulations may be overestimated, because
precipitation data from different locations and timings may not satisfy the requirement
of independence.

Synthesis of the results

Compared to the raw model output, the expected values achieve more hits and more
false alarms for light precipitation and achieve less hits and less false alarms for heavy
precipitation. Such a forecast can be beneficial to some users and disadvantageous to
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Table 6.4: Forecast quality measures for the estimate of the expected value. Predictand:
2m-temperature. Comparison between the post-processed forecast and the di-
rect model output of the LM. The standard neighbourhood procedure is applied
(cf. Tab. 4.2).

Measure Single LM Forecast Neighbourhood PP
rmse 1.92 K 1.81 K
mae 1.40 K 1.33 K
bias -0.01 K -0.05 K
stdv_fc 4.04 K 3.86 K
corr 0.89 0.90
skill_DMO 0.000 0.054

others, depending on their individual ability of tolerating high false alarm rates or low
hit rates.

For most precipitation thresholds it cannot be concluded that the expected value is a
better precipitation forecast compared to the raw model forecast. Only for a small range
of moderate to heavy precipitation a general improvement can be noted indeed.

Note that these results need to be affirmed by a larger data base, because some of them
do not attain statistical significance. As the parallel study of DWD (Tab. 6.1) yields
similar results, it is likely that statistical significance can be reached if the data base of
the verification procedure is extended.

6.3.2 Expected value of 2m-temperature

The expected value of 2m-temperature is a categorical forecast of a continuous predic-
tand and is evaluated by calculating the following verification measures: the root mean
squared error (rmse), the mean absolute error (mae), the bias (bias), the standard de-
viation of the model data itself (stdv_fc), the correlation (corr) between forecasts and
observations and the skill_DMO which uses the direct model output (DMO) of the single
unperturbed LM simulation as a reference forecast. For definitions and explanations of
these measures see Appendix C.2.

The verification measures are derived for the direct model output and the post-processed
forecast. They are listed in Tab. 6.4. The post-processed forecast exhibits a reduction
in rmse, a reduction in forecast variability stdv_fc, an increase in forecast bias and a
slight increase in correlation corr. The DWD verification studies (Tab. 6.1) produce
quite similar results in terms of the post-processing effect. However, the rmse of the
raw model output substantially varies with the verification period. Its value ranges from
1.37 K to 2.25 K.

Neighbourhood post-processing improves the quality of 2m-temperature forecasts
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slightly. The reduction in root mean squared error rmse is exclusively attained through
a reduction in random error. A reduction in random error is especially valuable, because
random error cannot be tackled by re-calibrating the forecast. Moreover, Tab. 6.4 shows
that the reduction in forecast variability is attained without any loss of correlation be-
tween forecast and observation so that it is not only achieved through a reduction in
forecast variance (stdv_fc)2 (see Taylor, 2001). The improvement in correlation is very
small though. The physical relevance and the statistical significance of this increase
should be tested first before drawing any further conclusions.

Note that there is a reduction in forecast variability (stdv_fc). At first glance, this
seems unfavourable, since the variability of the direct model output is already lower
than the variability of the observations (stdv_obs= 4.11 K) and a further decrease of
model variability might seem equivalent to a less realistic forecast. However, reducing
forecast variability may be a step into the right direction since it acknowledges limits of
deterministic predictability. The raw model output may contain small-scale details that
are not deterministically predictable. Spatial smoothing may account for the presence
of noise and may yield a more reliable forecast.

Although the theory of neighbourhood post-processing assumes an unbiased estimate
(cf. Subsection 4.3.3), the neighbourhood estimate of the expected value has a larger
bias than the raw model output. This contradiction is solved by the insight that the
simple version of neighbourhood post-processing is equivalent to kernel smoothing (Sub-
section 4.3.2). The statistical model of kernel smoothing clearly shows that a reduction
in random error must be paid by an increase in bias (cf. Subsection 4.3.3).

6.3.3 Quantiles of precipitation and 2m-temperature

In contrast to verification measures of categorical forecasts and forecasts of exceedance
probability, the literature offers only few verification measures that refer to quantiles
(cf. Appendix C.3.2). Due to this lack of standard measures, verification of quantiles
is restricted to the assessment of forecast reliability here (cf. Appendix C.3.1). An
assessment of forecast resolution (cf. Appendix C.3.1) is omitted, even though resolution
is also a very essential property of any probability forecast, because it cannot be improved
by forecast calibration.

The reliability diagram (Fig. 6.3) shows the observed frequency of the event
[obs < quantile]. So as to account for the mixed discrete-continuous probability
distribution of precipitation, only quantiles greater than 0.01 mm enter the reliability
diagrams of precipitation (see Krzysztofowicz and Sigrest, 1999). Reliability is not only
juxtaposed with the original forecast (closed circle), but also with the perfect forecast
(diagonal).

This study and the parallel study at DWD reveal that

• the quantile forecast is superior to the raw model output,

154



6.3 Quality of the standard neighbourhood results

Figure 6.3: Reliability diagrams for quantiles of precipitation and 2m-temperature. The
10%-, 25%-, 50%-, 75%- and 90%-quantiles are evaluated. The standard ver-
sion of the neighbourhood procedure is applied in the derivation of quantiles
(cf. Tab. 4.2). Precipitation quantiles enter the reliability calculation only if
they are greater than 0.01 mm. The dotted line denotes perfect reliability.
The closed circle shows the unconditional frequency of [obs < DMO].

• the quantile forecast is not perfectly reliable,

• the quantile forecast is generally underdispersive,

• the quantile forecast does not always capture variations in forecast uncertainty,

• there is overforecasting in 1h-accumulations.

Among these results, underdispersiveness is probably most striking in the reliability
diagram. Compared to a perfectly reliable forecast the reliability curve of the quan-
tiles is tilted clockwise, i. e. the 90%-quantile is usually too low and the 10%-quantile
is too high. This means that forecast uncertainty is generally underestimated. Under-
dispersiveness may result from the fact that neighbourhood post-processing exclusively
focusses on small-scale forecast uncertainty whereas the comparison to observational
data automatically accounts for the overall forecast error.

Simple inflation of the probability forecast is not able to cure the problem entirely,
because it turns out that the reliability of a certain quantile estimate also depends on its
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value. For example, observations exceed a fairly high estimate of the 90%-quantile less
often than a low estimate (not shown). This indicates that the neighbourhood procedure
does not always capture variations in forecast uncertainty.

The 1h-accumulations show slightly different results than other accumulations and 2m-
temperature; the observed frequency is additionally shifted towards higher values. This
reveals that overforecasting is an ubiquitous feature of the post-processed forecast. This
feature is not introduced by neighbourhood post-processing, but originates from the
frequency bias of the raw model output. The frequency bias of the raw model output
becomes obvious by looking at the unconditional frequency of [obs < DMO] (closed
circle, Fig. 6.3). It also becomes visible in the FBI of Fig. 6.1 and is most eminent for a
precipitation threshold of 0.01 mm (not shown in Fig. 6.1).

Although the reliability of the post-processed quantile forecast is far from perfect, it is
still superior to the raw model output. As the raw model output does not deliver any
estimate of quantiles, the reliability curve of the direct model output can be imagined
as a horizontal line intersecting the closed circle in Fig. 6.3. Thus, the reliability of
neighbourhood temperature quantiles is approximately half-way between the reliability
of the raw model output and of a perfect forecast. This is also true for quantiles of 12h-
accumulations of precipitation, but is not achieved by all quantiles of 1h-accumulations
and 24h-accumulations because of their frequency bias.

Before concluding this subsection it should be noted that operational ensemble prediction
systems do not attain perfect reliability either (Hamill and Colucci, 1998; Eckel and
Walters, 1998). The ensemble forecast is often recalibrated using historical model data
sets.

Richardson (2001b) shows that limited sample size is one explanation of imperfect re-
liability. Even a perfect ensemble with finite ensemble size would exhibit shortcomings
in reliability, depending on the frequency and predictability of the event under con-
sideration. The effect of limited sample size may also play a role in neighbourhood
post-processing, because the neighbourhood only derives a finite sample. This study in-
vestigates the quantitative influence of limited sample size on the quantile estimate (not
shown). The investigation offers an explanation why the observations exceed a fairly
high value of the estimated 90%-quantile more often than a fairly low value. However,
it turns out that limited sample size explains the lack of reliability only to a very small
extent. Therefore, limited sample size appears to be an irrelevant cause.

6.3.4 Exceedance probability of precipitation

Forecast skill compared to the climatological forecast

Accuracy and skill encompass a relevant portion of forecast quality aspects. The ac-
curacy of probability forecasts is measured by the Brier score (cf. Appendix C.3). The
Brier score is calculated for several exceedance probabilities of precipitation, each using
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Figure 6.4: Brier skill score of exceedance probabilities of precipitation. The skill score
relates to a climatological forecast as a reference. The climatological reference
forecast is based on the observational data of the verification period only. The
standard version of the neighbourhood procedure is applied in the derivation of
exceedance probabilities (cf. Tab. 4.2). The abscissa lists various exceedance
thresholds. Several accumulations are shown: 1h-accumulations (circle), 6h-
accumulations (diamond), 12h-accumulations (square), 24h-accumulations
(triangle). The dotted line denotes zero skill.

a different exceedance threshold. Low exceedance thresholds represent the ability to
predict light precipitation and high exceedance thresholds represent the ability to pre-
dict heavy precipitation. Skill of the exceedance probability is measured by the Brier
skill score which relates the Brier score of the forecast to the Brier score of a reference
forecast (cf. Appendix C.3).

Fig. 6.4 depicts the Brier skill score with the climatological forecast as a reference fore-
cast. The Brier skill score is shown as a function of the exceedance thresholds. When
the climatological forecast is used as a reference, the estimated exceedance probabili-
ties hardly attain any positive skill. Only exceedance probabilities of 24h-accumulations
clearly outperform the climatology in terms of Brier score.

Using the climatological forecast as a reference yields misleading results. Recall that this
study derives the climatological forecast from the observational data of the verification
period itself which is far too short for an appropriate representation of climate. The
quality of the climatological forecast is overestimated and it does not really play the
role of a low benchmark. Therefore it makes the quality of the post-processed forecast
appear in a bad light which is not justified.

Especially the reliability of the climatological forecast is overestimated. Due to this fact,
the estimated exceedance probabilities are mainly punished for their imperfect reliability
which does not even originate from the post-processing procedure, but is mainly caused
by the raw model output. Thus, the Brier skill score of Fig. 6.4 merely visualises the
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deficiencies of the direct model output as compared to the observational mean of the
verification period.

The good Brier score of 24h-accumulations is probably due to good forecast quality of the
direct model output itself. The exceptionally good forecast quality of 24h-accumulations
has already become obvious in the verification measures of the direct model output, for
example in the ETS (cf. Fig. 6.2). As other verification periods at DWD do not exhibit
such good results of ETS, the good Brier skill scores of 24h-accumulations are exclusively
associated with the particular verification period here.

As the Brier skill score is a very common forecast measure of probabilistic forecasts,
it has been calculated for many other forecast systems such as model output statistics
or ensemble prediction. Although the comparison between two completely different
forecast systems must be handled with much caution, some other values of the Brier
skill score are listed here. They refer to short-range forecasts of exceedance probabilities
of precipitation and use a climatological forecast as a reference. Note that the scores are
not fully compatible, because they result from different verification strategies, different
verification areas and time periods and also from different definitions of the climatological
forecast. Mentioning the scores of other forecast systems only aims at a very rough
juxtaposition.

Current high-resolution short-range ensemble prediction systems do not necessarily
achieve a better Brier skill score than the post-processed forecast in this study. Hamill
and Colucci (1998) report Brier skill scores of less than 0.1 for their Eta-Regional Spec-
tral Model short-range ensemble forecasts of 12h-accumulations. Bright and Mullen
(2002) investigate numerous versions of MM5 short-range ensemble precipitation fore-
casts. Their Brier skill scores mostly do not exceed a value of 0.2 for an exceedance
threshold of 0.25mm/24h and are thus even lower than the score achieved in this study
(cf. Fig. 6.4).

Applequist et al. (2002) evaluate current model output statistics methodologies that
forecast exceedance probabilities of 24h-accumulations in the short-range. These tech-
niques achieve similar Brier skill scores or slightly better Brier skill scores than the
neighbourhood method. This is probably due to their good calibration which originates
from their use of historical error statistics. Note that historical error statistics are not
used in the post-processing methods of this study, because they are currently not avail-
able. Thus, the methods are still open for an additional application of historical error
statistics. Their application may lead to a substantial increase of the Brier skill score,
maybe even beyond the skill of model output statistics.

Forecast skill compared to the raw model output

A more appropriate reference forecast is the raw model output, because the main aim
of the post-processing procedures consists in the improvement of this forecast. Fig. 6.5
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Figure 6.5: Same as Fig. 6.4, but with the direct model output as a reference. The Brier
skill score of the 20mm-threshold of 1h-accumulations is not shown, because
the sample is very small.

shows that this aim is reached indeed, as all of the estimated exceedance probabilities
possess positive skill.

When using the raw model output as a reference, the estimated exceedance probability is
not punished for shortcomings that are already contained in the raw data. Thus, the lack
of reliability in the exceedance probabilities is rated less and resolution becomes more
relevant. Resolution is an even more essential aspect of forecast quality as it cannot be
improved by calibration.

Fig. 6.5 shows that shorter accumulations of precipitation mostly attain a slightly better
skill than longer accumulations. This might be due to the fact that the post-processing
procedure is designed to alleviate random error and runs the risk of deteriorating system-
atic error (cf. Subsection 4.3.3). Furthermore, shorter accumulations are associated with
smaller spatio-temporal scales and are therefore expected to possess a smaller amount
of deterministic predictability and a larger ratio of random error and systematic error.
In this case neighbourhood post-processing is expected to attain a larger improvement
of the raw model output and the Brier skill score is expected to be better indeed.

Decomposition of the Brier score: Forecast reliability, resolution and
uncertainty

After having looked at the overall accuracy of the forecast, the distribution-oriented
approach of forecast verification is followed up now. The Brier score is decomposed into
resolution, reliability and uncertainty which all refer to the conditional distribution of
the observations given the forecasts (cf. Appendix C.3.1). Whereas resolution pertains
to the differences between the conditional average frequencies of the observations for
different values of the forecast, reliability compares the conditional average frequencies
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Figure 6.6: Decomposition of the Brier score into resolution, reliability and uncertainty:
resolution of precipitation exceedance probability as a function of exceedance
threshold. Resolution of the deterministic direct model output (dotted lines)
and of the post-processed probability forecast (solid lines). The standard ver-
sion of the neighbourhood procedure is applied in the derivation of exceedance
probabilities (cf. Tab. 4.2). Resolutions of several accumulations are shown:
1h-accumulations (circle), 6h-accumulations (diamond), 12h-accumulations
(square), 24h-accumulations (triangle).

of the observations with the forecast values themselves. Uncertainty depends only on
the variability of the observations and is not influenced by the forecast system.

The decomposition is derived for the estimated exceedance probabilities and for the
raw model output. Fig. 6.6, 6.7 and 6.8 depict the results as a function of the pre-
cipitation threshold. In the language of the Brier score, high values of resolution and
low values of reliability contribute to good forecast quality. Fig. 6.6 and 6.7 show that
neighbourhood post-processing improves both reliability and resolution. Thus, using a
spatio-temporal neighbourhood for the generation of probabilistic forecasts appears to
be a useful approach.

Forecast uncertainty (Fig. 6.8) is shown as well, although it is independent of the forecast
system. The accuracy of weather forecasts is not only influenced by the forecasting
system, but also by the predictability of the weather (Göber et al., 2004). In order to
allow for a meaningful interpretation of resolution and reliability, their values must be
related to the respective values of uncertainty. For example, the decrease in reliability
and resolution towards higher exceedance thresholds (Fig. 6.6 and 6.7) is mainly due
to a decrease in forecast uncertainty (Fig. 6.8) and cannot be accredited to the forecast
system itself.
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Figure 6.7: Decomposition of the Brier score into resolution, reliability and uncertainty:
reliability of precipitation exceedance probability as a function of exceedance
threshold. Reliability of the deterministic direct model output (dotted lines)
and of the post-processed probability forecast (solid lines). The standard ver-
sion of the neighbourhood procedure is applied in the derivation of exceedance
probabilities (cf. Tab. 4.2). Reliabilities of several accumulations are shown:
1h-accumulations (circle), 6h-accumulations (diamond), 12h-accumulations
(square), 24h-accumulations (triangle).

Figure 6.8: Decomposition of the Brier score into resolution, reliability and uncertainty:
uncertainty of precipitation exceedance probability as a function of exceedance
threshold. The uncertainty depends on observational data only and is in-
dependent of the forecast system. Uncertainties of several accumulations
are shown: 1h-accumulations (circle), 6h-accumulations (diamond), 12h-
accumulations (square), 24h-accumulations (triangle).
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Which degree of forecast sharpness is beneficial?

Improvements in reliability and resolution are presumably consequences of reducing ran-
dom error and of creating alternatives to the forecast values “yes” and “no” of the raw
model output. However, moving away from the categorical “yes/no” forecast comes with
a price tag: a reduction in forecast sharpness (Wilks, 1995).

Good sharpness is achieved when the forecasts deviate much from the climatological
frequency. Thus, a categorical “yes/no” forecast is expected to attain better sharpness
than a probabilistic forecast with intermediate values between 0 and 1.

In cases of limited predictability, however, a reduction in forecast sharpness may still
be useful, because then the categorical “yes/no” forecast is not able to attain maximum
resolution and reliability. In other words, the categorical “yes/no” forecast has difficulties
to discern subsample forecast periods with different relative frequencies of the event
and to forecast these frequencies correctly. Cases of limited predictability require a
reduction of forecast sharpness in order to retain resolution and reliability. A good
forecast maximises forecast sharpness without a loss in resolution and reliability.

The reliability diagram: Forecast reliability, resolution and sharpness

The reliability or attributes diagram (e. g. Wilks, 1995) interprets the Brier score and
its decomposition in a geometric way (Fig. 6.9). Contributions from the eleven forecast
categories of exceedance probability are shown separately. Additionally, the frequency of
use of the forecast categories is depicted in the right boxes of Fig. 6.9. They indicate the
relative amount of data that contribute to the eleven forecast categories of the reliability
diagram.

The reliability diagrams in Fig. 6.9 indicate that the exceedance probabilities of 1h-
accumulations

• possess good forecast resolution,

• are underdispersive,

• suffer from the frequency bias of the raw model output,

• possess little sharpness especially for heavy precipitation.

Good forecast resolution is an essential property of a probability forecast, because res-
olution cannot be improved by an additional calibration procedure. Good resolution
becomes visible, because there is a monotonic relation between forecast probabilities and
conditional observed frequencies. Deviations from the monotonic relation only occur at
high forecast probabilities of high precipitation amounts. They are most probably due to
effects of a small verification data set. Due to a lack of an appropriate verification mea-
sure, forecast resolution is not investigated in terms of quantiles (cf. Subsection 6.3.3).
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6.3 Quality of the standard neighbourhood results

Figure 6.9: Reliability diagrams for various precipitation events. The events are defined
by the exceedance thresholds which are indicated by the respective titles of the
diagrams. The predictand is the probability of such an event. The probability
is split up into 11 forecast categories. The open circles in the left boxes show
the observed relative frequency of precipitation occurrence as a function of
the probability that is forecast. The histograms in the right boxes indicate
frequency of use of the 11 forecast categories. They are independent of the
observations and indicate the relative number of forecasts that contribute to
one of the open circles in the left diagrams. The diagonal in the right boxes
denotes perfect reliability. The dotted horizontal line denotes zero resolution
which is plotted at the level of the sample climatological frequency. The dotted
line between the “perfect reliability” and “no resolution” line is the “no Brier
skill” line (referring to a climatological reference forecast). Points falling into
the region between the vertical line and the “no Brier skill” line contribute
positively to forecast skill (referring to a climatological reference forecast).
The closed circles indicate the reliability of the original deterministic LM
forecast.
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As the quantile estimates originate from the same neighbourhood sample than the esti-
mates of exceedance probability, it can be assumed that the quantile estimates possess
good forecast resolution as well.

Underdispersiveness and the frequency bias are also detected in the context of quantiles
and discussed in Subsection 6.3.3. They lead to poor reliability and small skill. Under-
dispersiveness becomes visible, because the reliability curve is tilted clockwise compared
to the diagonal of perfect reliability. The frequency bias becomes obvious, because the
observed relative frequency of precipitation occurrence is always lower than the forecast
probability. Note that the bias does not originate from the post-processing procedure,
but from the raw model output, indicated by the two closed circles in the diagram.

The sharpness of the forecast can be inferred from the right boxes of the reliability di-
agrams (Fig. 6.9). The histograms indicate frequency of use of the forecast categories
and are independent of the observations. Good sharpness is achieved when the his-
togram deviates much from a single column at the climatological frequency of the event.
Fig. 6.9 shows that the probability forecasts exhibits especially poor sharpness for those
events that are defined by large exceedance thresholds, for example RR > 1.0mm/h and
RR > 2.0mm/h. On the one hand, this might seem as a disadvantage. On the other
hand, the deterministic predictability of heavy precipitation may be so small that the
forecasts must be kept close to the sample climatology in order to retain reliability and
resolution of the forecast.

Reliability diagrams of 6h-, 12h-, and 24h-accumulations (not shown) give slightly differ-
ent results than the reliability diagrams of 1h-accumulations. Resolution becomes more
difficult to estimate, overforecasting is less prevalent and the forecast is still underdisper-
sive. The estimation of resolution becomes difficult, because the respective verification
data sets contain less observations so that sampling effects become omnipresent in the
reliability diagram. This is especially a problem in case of 24h-accumulations. Over-
forecasting is reduced, because the raw model output is more reliable for 6h-, 12h-, and
24h-accumulations. In terms of 24h-accumulations, forecast sharpness is also increased,
but not punished by a simultaneous reduction in Brier skill score. The increased sharp-
ness may be due to the fact that 24h-accumulations possess better predictability than
shorter accumulations.

The ROC curve: Discriminating between occurrences and non-occurrences

The relative operating characteristics (ROC) curve (cf. Appendix C) is qualitatively
similar to resolution in the sense that it assesses the ability of the forecast system to dis-
criminate between occurrences and non-occurrences. The ROC curve is generated both
for the raw model output and for the exceedance probabilities derived from the neigh-
bourhood. The probability forecast is classified into eleven evenly spaced categories of
forecast probabilities. The ROC curve of the deterministic forecast system is represented
by a single point, complemented by the points (0,0) and (1,1) for “never” and “always
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Figure 6.10: Relative operating characteristics (ROC) for 1h-accumulations of precipita-
tion. A ROC curve lying above the diagonal line indicates a skillful forecast
system. The curves are shown for two different thresholds: 0.01mm/h (cir-
cle) and 2.0 mm/h (square). Probabilities of exceedance (open symbols)
and the direct model output (closed symbols). The standard version of the
neighbourhood procedure is applied in the derivation of exceedance probabil-
ities (cf. Tab. 4.2).

forecast”. ROC curves are obtained for 1h-accumulations of precipitation. Results are
shown for a low and a high precipitation threshold, respectively (Fig. 6.10). For the
exceedance threshold of 2.0 mm/h, many points of the ROC curve are indistinguishable
from each other, because they cluster at the lower left of the diagram.

When compared to the raw model output, the exceedance probabilities of all exceedance
thresholds are skillful in terms of the ROC curve. The lower the exceedance threshold,
the better the results become. An exception is the threshold of 0.01mm, as these results
are slightly worse than results of the 0.1mm threshold (not shown).

The superiority of the probabilistic forecast becomes obvious when the area under the
ROC curve is calculated (cf. Fig. 6.10). The area is obtained by using the trapezoid
rule. Due to the different number of points the areas for the categorical forecast suffer in
comparison to areas calculated from the probability forecast. However, this reflects the
additional ability to discriminate between events and nonevents associated with having
multiple decision criteria (Wandishin et al., 2001).

The ROC curves of the exceedance probabilities are not perfect yet. Existing deficiencies
partly result from the frequency bias of the raw model output again. ROC curves of light
precipitation suffer from high false alarm rates and ROC curves of heavy precipitation
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suffer from low hit rates. This is due to the fact that the raw model output suffers from
overforecasting light precipitation and from underforecasting heavy precipitation (see
FBI in Fig. 6.1).

Is there a trade-off between random error and systematic error?

Neighbourhood smoothing is expected to reduce random error at the expense of an
increased systematic error (Subsection 4.3.3). Resolution does not penalise forecast
bias, so this aspect is not reflected by resolution, but might show in reliability. However,
reliability does not deteriorate either (Fig. 6.7).

It is unclear why the increase in systematic error does not become visible in forecast
reliability although it is expected theoretically. Several explanations are possible. First,
random error might be such a dominating source of overall forecast error in the raw model
output that a reduction in random error outweighs any increase in systematic error.
Secondly, an additional introduction of systematic error might incidentally compensate
for an existing bias in the raw model output. Thirdly, neighbourhood post-processing
generally brings the forecast closer to a climatological forecast which yields improved
reliability at the expense of declined sharpness.

6.4 Forecast consistency and forecast value

As pointed out in Subsection 6.2.2, forecast goodness consists in forecast quality, forecast
consistency and forecast value. After having discussed forecast quality in the previous
section, this section discusses forecast consistency (Subsection 6.4.1) and forecast value
(Subsection 6.4.2) of the standard neighbourhood results. As consistency is difficult to
measure, this study presents a qualitative discussion instead of a quantitative assess-
ment. The assessment of forecast value is based on the cost-loss scenario and applies
the quantitative measure of relative value.

6.4.1 Forecast consistency of the neighbourhood results

An essential aspect of consistency is the inclusion of forecast uncertainty into the forecast
(Murphy, 1993). If a description of the inherent uncertainty is missing, the forecast does
not correspond to the forecaster’s best judgment. The approach wrongly suggests that
the forecaster is 100% sure of the precipitation amount at a specific time and a specific
location.

As the LM is a deterministic model, the raw model output does not contain any estimate
of forecast uncertainty or risk and therefore lacks consistency. The time series of the
DMO in Fig. 4.21 and 4.22 reflect the way a user without meteorological background
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Table 6.5: Contingency table for the cost-loss scenario. A user suffers a loss L if an
event occurs and the user is not protected. If the user takes preventive action
to guard against this potential loss, the user will incur a cost C.

Observed
Yes No

Forecast Yes C C
Forecast No L -

typically interprets the model forecast, i. e. she mistakes grid box size with forecast
resolution, isolates the grid box nearest her specific location of interest and takes the
forecast at face value.

Post-processing clearly enriches the information content of the meteogram. For example,
adding probabilistic information via the quantile estimates (Fig. 4.21 and 4.22) informs
the user of forecast uncertainty. Although it is not known whether the given estimate
of forecast uncertainty reflects a hypothetical forecaster’s judgment correctly, the mere
existence of a probabilistic forecast formulation is certainly a step towards the right
direction.

6.4.2 Forecast value of the neighbourhood results

Introduction to the concept of forecast value

The concept of forecast value presupposes that the user employs the precipitation fore-
cast as an input into her decision making process. Forecast value then refers to the
economic saving a user gains by using the forecast. Forecast value does not only depend
on forecast quality, but also on the particular decision making situation of the individual
user.

In this study, the prototypical decision making situation is described by the cost-loss
scenario (Tab. 6.5) which is already proposed by Thompson and Brier (1955). The cost-
loss scenario is based on the idea that a user suffers a loss L if an event occurs and the
user is not protected. If the user takes preventive action to guard against this potential
loss, the user will incur a cost C.

Forecast value is assessed by the verification measure relative value (Richardson, 2000;
Zhu et al., 2002; Mylne, 2002). Its definition can be found in Appendix C.4. Relative
value follows the form of a skill score, i. e. it is related to the perfect forecast and to a
reference forecast. In this study, the reference forecast is the climatological forecast from
the verification period. It can be shown that relative value depends on the values a, b, c, d
from the contingency table (Tab. C.1) and on the cost-loss ratio C/L (Richardson, 2000).
The individual values of C and L do not need separate consideration. Different users and
decision making situations are sufficiently represented by the range of values C/L ∈ [0, 1].
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If C > L the cost-loss scenario becomes trivial, because then the user should never take
protective action, irrespective of the forecast.

Relative value is estimated for the expected value, the exceedance probabilities and the
90%-quantile of the standard neighbourhood results. The relative value of the neigh-
bourhood estimates is compared to the relative value of low benchmark foreasts: the
direct model output and a so-called inflated version of the direct model output.

It should be mentioned that relative value has originally been designed for the assessment
of categorical and probability forecasts. This study is the first to derive relative value
of a quantile forecast in addition. This requires a minor reformulation of the decision
making situation (cf. Appendix C.4).

Characteristics of the ex ante approach

Before delving into the assessment of forecast value, some remarks should be made about
the specific approach in this study. If the forecast is expressed in terms of probabilities,
the user has to define a threshold probability pt in order to convert the probability
forecast into a categorical guidance in her decision making process (App. C.4). If the
threshold probability pt is exceeded, the user takes protective action and vice versa. In
this study the ex ante approach (Murphy, 1993) is chosen, i. e. the optimal probability
threshold pt for a particular cost/loss ratio is directly identified by evaluating the relative
value associated with the use of different decision criteria and taking the maximum (cf.
Richardson, 2000; Mylne, 2002).

In case of the ex ante approach, the relative value is automatically non-negative for all
cost-loss ratios if the climatological forecast is chosen as a reference forecast. When the
relative value is zero, the decision criterion of the respective user is “never protect” (if
C/L is high) or “always protect” (if C/L is low), irrespective of the forecast. Only when
the forecast system yields a positive relative value, the user really bases her decision on
the forecast.

Note that the ex ante approach implicitly involves a recalibration of the forecasts on
the basis of the observations (Murphy, 1993). The recalibration is encoded in choosing
the optimal probability threshold pt by maximizing relative value, a procedure that
is not feasible in an operational forecast setting. The results of the study point out a
potential value of the exceedance probability, assuming that the forecast can be perfectly
calibrated.

Expected value and exceedance probability

Fig. 6.11 shows the relative value of the expected value and the exceedance probability.
For comparison, the relative value of the direct model output is presented as a low
benchmark. Value of the climatological forecast and value of the perfect forecast are
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Figure 6.11: Relative value of exceedance probabilities as a function of the user’s cost-
loss ratio. Upper row: Exceedance threshold of 0.1mm. Lower row: Ex-
ceedance threshold of 2.0mm. Results are shown for the probability forecast
(solid line), the expected value (dashed line) and the original forecast (dotted
line). The standard version of the neighbourhood procedure is applied in the
derivation of the probabilities and expected values (cf. Tab. 4.2).
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already contained in the verification measure itself (cf. Appendix C.4). As outlined
in Subsection 6.2.3, this study uses a substitute of the climatological forecast which is
derived from the 15-day-mean of the verification period itself.

Relative value is estimated as a function of the user’s individual cost-loss ratio. Again,
forecast variables under consideration are precipitation accumulations over time periods
of 1 hour, 6 hours, 12 hours and 24 hours. The estimates of relative value are shown for
two exceedance thresholds: 0.1mm and 2.0mm.

Fig. 6.11 shows that the exceedance probability outperforms the direct model output
and the expected value. This is the case for most cost-loss ratios, accumulation times
and exceedance thresholds. Furthermore, the exceedance probability also widens the
range of cost-loss ratios for which the forecasts exhibit positive relative value, indicating
that a larger group of users can benefit from the exceedance probability as compared to
the direct model output and the expected value.

The maximum of relative value is always attained by users whose cost-loss ratio equals
the climatological frequency of the event, as expected theoretically (Richardson, 2000).
Note that the climatological frequency of the event is lower for 24h-accumulations
than for 12h-accumulations. This is not necessarily a contradiction, because a sub-
stantial part of the 24h-accumulations are obtained from stations that do not report
12h-accumulations.

Differences between expected value and direct model output are not as clear as the
superiority of the exceedance probability, but are in accordance with the result of Sub-
section 6.3.1. For small cost-loss ratios the expected value often possesses a slightly
larger relative value than the direct model output. This corresponds with the fact that
the expected value of low precipitation thresholds also exhibits a higher frequency bias,
a higher probability of detection and a higher false alarm rate than the direct model out-
put (Fig. 6.1 and 6.2). Such a forecast is more beneficial to users with a small cost-loss
ratio, because they can tolerate high false alarm rates better than low hit rates.

As the ex ante approach implicitly assumes that forecast calibration is perfect, the
superiority of the exceedance probability can be explained by the findings of Murphy
(1977). He demonstrates that the value of a probabilistic forecast is always greater than
or equal to the value of a categorical forecast, if the probabilistic forecast of concern
is perfectly calibrated. This insight does not belittle the results of the forecast-value
study here, but emphasises the need for probabilistic forecast formulation even more
strongly.

In terms of forecast value, the main advantage of the exceedance probability is its variety
of forecasts for different users and their different needs. In case of categorical forecasts,
the forecaster adopts the role of a decision maker and “tailors” the probabilistic forecast
to a particular user without considering her individual needs. When issuing warnings,
this often results in high false alarm rates, since many forecasters tend to err on the safe
side. The advantage of a probabilistic forecast is the possibility to clearly separate the
roles of the forecaster and the decision maker.
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Figure 6.12: Relative value of 90%-quantiles as a function of quantile threshold y0.9. The
quantile threshold denotes the lowest precipitation amount that corresponds
to a user’s cost-loss ratio of 10%. It is assumed that the cost-loss ratio is a
strictly monotonically decreasing function of precipitation amount. Results
are shown for quantiles derived by the neighbourhood post-processing proce-
dure (solid line) and for quantiles derived by simple inflation of the direct
model output (dotted line) (cf. Tab. 6.6).

90%-quantile

Additionally, forecast value of the 90%-quantile (cf. Appendix C.4) is addressed. The
90%-quantile is an appropriate forecast for those users with a cost loss ratio of 10% or
less. Therefore, the 90%-quantile is useful for issuing warnings, because warnings mostly
refer to events that cause an immense loss compared to a fairly low cost of preventive
action.

In order to assess forecast value of a quantile, the decision making problem must be
reformulated. In contrast to the previous section the cost-loss ratio possesses a fixed
value of 10% now. Different users are represented by so-called quantile thresholds y0.9.
The quantile threshold is defined as the precipitation amount for which the user’s cost-
loss ratio is less than or equal to 10%. A monotonic relation between precipitation
amount and cost-loss ratio is assumed. Only if the forecast of the 90%-quantile exceeds
the lowest precipitation amount which corresponds to a cost-loss ratio of 10%, the user
takes preventive action.

Fig. 6.12 shows the relative value of the 90%-quantile as a function of quantile thresholds
that represent the decision making situation of different users. For 1h-accumulations and
24h-accumulations the neighbourhood estimate of the 90%-quantile possesses positive
relative value (solid line in Fig. 6.12) whereas relative value is zero for almost all quantile
thresholds of 6h-accumulations and 12h-accumulations (not shown). In the following
paragraphs, the value of 1h- and 24h-accumulations is discussed further. An explanation
is given why they possess larger value than 6h-accumulations and 12h-accumulations.
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Highest values are achieved for low quantile thresholds of 1h-accumulations. Low quan-
tile thresholds imply that a cost-loss ratio of ≤ 10% is already attained at low precipi-
tation amounts, i. e. the corresponding user suffers a relatively high loss even in case of
light precipitation.

The relatively high value of 1h-accumulations is probably due to good reliability
(Fig. 6.3). However, the good reliability of 90%-quantiles originates from the coincidence
of two shortcomings: strong overforecasting of 1h-accumulations and underdispersive-
ness (cf. Subsection 6.3.3). For low quantile thresholds, their negative effects cancel each
other out. When the quantile threshold is increased, overforecasting disappears (cf. FBI
in Fig. 6.1) and underdispersiveness remains so that relative value deteriorates (cf. solid
line in Fig. 6.12). It is likely that the good forecast value of low quantile thresholds
will be reduced if a new version of the LM is introduced that alleviates the problem
of overforecasting. As overforecasting is less prevalent for 6h-accumulations and 12h-
accumulations, the respective 90%-quantiles do not achieve relative values greater than
zero.

Another low benchmark for the 90%-quantile: The inflated model output

As the verification procedure looks at relative value, the 90%-quantile is implicitly com-
pared to the 15-day-mean of the verification period and to the perfect forecast. It would
be desirable to compare the 90%-quantile to another benchmark. A comparison to the
DMO would be interesting, because it might conceal shortcomings that originate from
the LM itself and reveal the benefits of the post-processing procedure more clearly. How-
ever, a direct comparison between the DMO and the 90%-quantile would be unfair to
the DMO. By prescribing a fixed cost-loss ratio of 10%, the DMO would be silently
assumed to be a forecast of risk. This is obviously not the case. In order to convert the
DMO into a very simple forecast of risk, the DMO is inflated.

Inflation means that the forecasts from the DMO are simply replaced by somewhat
larger values. For example, the inflation rule might consist in adding a constant value to
the forecast or in multiplying the forecast by a constant factor. In this study, a slightly
different procedure is applied so as to roughly preserve the unconditional distribution of
precipitation amounts. The precipitation values are classified into several categories of
precipitation amount and the inflation rule moves the forecast value up by one category
(Tab. 6.6). In contrast to the neighbourhood estimates, the inflated forecast is inferred
from the precipitation amount alone instead of using a spatio-temporal neighbourhood.

Details of the inflation rule (Tab. 6.6) are somewhat arbitrary. All 90%-quantiles are
assumed to exceed 0.01mm; if the direct model output exceeds 0.01mm, the 90%-
quantile is assumed to exceed 0.1mm; if the direct model output exceeds 0.1mm, the
90%-quantile is assumed to exceed 0.2mm etc. Larger intervals are chosen for higher
precipitation amounts so as to roughly account for the quasi-logarithmic distribution of
precipitation amounts.
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Table 6.6: Inflation of the direct model output (DMO) so as to infer a simple 90%-
quantile estimate from the precipitation amount alone instead of using a
spatio-temporal neighbourhood.

DMO → estimated 90%-quantile
all → > 0.01mm

> 0.01mm → > 0.1mm
> 0.1mm → > 0.2mm
> 0.2mm → > 0.5mm
> 0.5mm → > 1.0mm
> 1.0mm → > 2.0mm
> 2.0mm → > 5.0mm

More systematic approaches to deriving an alternative 90%-quantile estimate would
become possible if historical error statistics were available for the LM. Then the 90%-
quantile could be inferred through quantile regression or recalibration. Quantile regres-
sion involves a minimisation of the weighted mean absolute error (Koenker and Hallock,
2001; Bremnes, 2004) and recalibration involves a maximisation of reliability. These
approaches are not followed up here, because the continuous refinement of the LM does
not allow for the establishment of error statistics that are consistent throughout a long
time period.

Relative value of the inflated DMO is derived in the same way than the relative value
of the 90%-quantiles in the previous subsection. The result is shown in Fig. 6.12. As
expected, the inflated forecast achieves a larger relative value than the DMO itself (not
shown). In comparison to the neighbourhood estimate, the inflated DMO is still inferior
(Fig. 6.12).

This result gives the impression as if the local spatio-temporal neighbourhood of a fore-
cast revealed more valuable information about forecast uncertainty than the precipita-
tion amount at an isolated grid point. Recall, however, that the neighbourhood estimates
of the 90%-quantile (1h-accumulations) benefit from the accidental combination of two
shortcomings: overforecasting and underdispersiveness. If the inflated forecast should
be affected by only one of these shortcomings, objective verification will make it ap-
pear in a worse light than the neighbourhood estimate. Therefore, partial improvements
of the post-processing methodology may not become obvious in the 90%-quantile of
1h-accumulations. Caution must be exercised in the interpretation of Fig. 6.12.
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6.5 Optimal configuration of the neighbourhood
method

The neighbourhood method includes several free parameters, such as neighbourhood
size and the way of considering explanatory variables. A standard version of the neigh-
bourhood method is defined in Chapter 4. The standard version uses a medium neigh-
bourhood size (cf. Tab. 4.1) and considers explanatory variables in the way as listed in
Tab. 4.2. Chapter 4 justifies the particular choice of the standard version by subjective
assessment of case studies and by theoretical arguments. This section complements these
investigations by a sensitivity study which is based on a larger data base and on ob-
jective verification measures. A configuration is sought that maximises forecast quality
while keeping the computational cost low.

6.5.1 Neighbourhood size

Introductory remarks

In terms of neighbourhood size, three configurations “small”, “medium” and “large” are
defined (cf. Tab. 4.1). Theoretical implications of neighbourhood size are discussed in
Chapter 4. Some indication of the order of magnitude can be inferred from existing
studies (Subsection 4.2.4). Chapter 4 and Section 6.3 focus on results from the medium
size. This subsection tackles the following questions:

• How large is the effect of neighbourhood size on forecast quality?

• Does neighbourhood size really result in a trade-off between bias and variance
error?

• Is there an optimum neighbourhood size?

As outlined in Subsection 4.2.4), neighbourhood size is tantamount to the uncertainty
in location and time we expect of a precipitation amount or temperature value. When
neighbourhood size is increased, a grid box forecast is taken to be representative of a
larger area, the degree of expected smoothness in the field of the resulting estimate is
increased and the location and time of an event is assumed to be deterministically less
predictable.

The link between simple neighbourhood post-processing and kernel smoothing (Subsec-
tion 4.3.2) offers a more detailed explanation of the effect of neighbourhood size on the
resulting estimates. Neighbourhood size is equivalent to the bandwidth in kernel regres-
sion and kernel intensity estimation problems. In kernel smoothing the mean squared
error of the estimate can be expressed as a function of kernel bandwidth, showing that
kernel bandwidth plays a key role in the error of the resulting estimate as it determines
the balance in the trade-off between bias and variance error (Subsection 4.3.3). Larger
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Table 6.7: Forecast quality measures of the expected value of 2m-temperature. Compar-
ison of different neighbourhood sizes (Tab. 4.1) in the post-processing proce-
dure. Standard neighbourhood post-processing is applied (cf. Tab. 4.2).

Measure Small Medium Large
rmse 1.82 K 1.81 K 1.81 K
mae 1.35 K 1.33 K 1.34 K
bias -0.03 K -0.05 K -0.05 K
stdv_fc 3.92 K 3.86 K 3.76 K
corr 0.90 0.90 0.90
skill_DMO 0.048 0.054 0.057

bandwidths lead to a larger bias; the estimate is influenced by values from a larger region
in which the shape of the unknown function may vary substantially so that the realisa-
tions from the region are not representative of each other. Smaller bandwidths lead to
a larger variance error; the estimate is based on comparatively few realisations.

In this section it is shown whether the error concept above actually becomes visible in the
verification results. If so, it should be possible to determine an optimal neighbourhood
size. However, it is also conceivable that the error concept might not be applicable to
LM post-processing, because the fundamental assumptions in kernel smoothing might
be too simplistic when applied to LM post-processing.

Expected value of 2m-temperature

Estimates of the expected value of 2m-temperature are derived from the small, medium
and large neighbourhood, respectively. The resulting estimates are compared and evalu-
ated by standard measures of forecast quality (Tab. 6.7). A variation of neighbourhood
size amplifies or diminishes some of the post-processing effects described in the com-
parison between the post-processed forecast and the direct model output (cf. Tab. 6.4).
Increasing the neighbourhood size generally leads to an increase in bias (bias), a slight
reduction in root mean squared error (rmse) and a strong reduction in the estimate’s
variability (stdv_fc).

The expected trade-off between bias and variance error becomes visible. The medium
size yields a smaller root mean squared error and a larger bias than the small size. The
reduction in root mean squared error must originate from a reduction in variance error.

An optimal neighbourhood size appears to be somewhere in the range of the small and
medium neighbourhood size. Verification measures do not indicate a clear superiority
of either the small or the medium size and the large neighbourhood size does not lead
to further improvements.

Before concluding this subsection it should be noted that the time extension of the large
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Figure 6.13: Same as Fig. 6.1, but for different sizes of the neighbourhood: small (short
dashed line), medium (solid line), large (long dashed line) (Tab. 4.1).

neighbourhood (cf. Tab. 4.1) is inappropriately large when applied to 2m-temperature.
A time window of 7 hours (cf. Fig. 4.10) allows for considerable variability of solar
radiation. Solar radiation is an explanatory variable, i. e. it enhances predictability
instead of contributing to random error. Currently, the neighbourhood method does
not contain any correction for daily variability due to solar radiation. This may be a
reason why the large neighbourhood does not attain better forecasts than the medium
neighbourhood.

Expected value of precipitation

The three different neighbourhood sizes are also applied to the precipitation forecast.
The resulting estimates of expected value are compared and evaluated by standard
measures from the contingency table. As the results from different accumulations are
very similar, only the 1h-accumulations are highlighted as an example (Fig. 6.13). The
different choices of neighbourhood size result in slightly different outcomes of verification
measures which are described in the following paragraph. It should be noted that the
results need further confirmation by a larger verification data set. When the differences
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in log odds ratio undergo a significance test, statistical significance is not attained.

Similarly to the 2m-temperature forecast, a variation of neighbourhood size amplifies
or diminishes the post-processing effects that is described in the comparison between
the post-processed precipitation forecast and the direct model output (cf. Fig. 6.1).
Increasing the neighbourhood size generally leads to a worse FBI and corresponding
changes in POD, FAR, ETS and LOR. When a large neighbourhood size is applied,
the bias-corrected log odds ratio (LOR(BC)) indicates better forecast quality for high
thresholds and lower forecast quality for low thresholds.

The deterioration of FBI with increasing neighbourhood size corresponds to the theo-
retical expectations, as the FBI represents the bias error. A simultaneous reduction of
random error is difficult to detect, since most other verification measures are influenced
by the FBI. Only the bias-corrected log odds ratio can give an indication of random
error reduction. The result is ambiguous; the small neighbourhood size is favourable
when small precipitation thresholds are considered and vice versa.

This behaviour can be a consequence of decreasing predictability with increasing pre-
cipitation amount. Optimal neighbourhood size is closely connected with the expected
degree of deterministic predictability and large precipitation amounts often originate
from convective processes that possess less deterministic predictability than large-scale
processes. However, further investigations are still needed to give more confidence.

As a summary, an optimal universal neighbourhood size cannot be determined with
respect to the expected value of precipitation. The effect of neighbourhood size does
not only depend on precipitation amount, but also on the user’s needs. As stated in
Section 6.3.1 the value of the forecast depends on the user’s ability of tolerating high
false alarm rates or low hit rates.

Quantiles and exceedance probabilities

The question of an optimal neighbourhood size is also raised when estimating quantiles
and exceedance probabilities. Again, the three different neighbourhood sizes are applied
and resulting measures of forecast quality are compared. Temperature and precipitation
quantiles are assessed via the reliability diagram (Fig. 6.14); exceedance probabilities
of precipitation are assessed via the Brier skill score (Fig. 6.15), its decomposition,
reliability diagrams and relative value (not shown).

For 2m-temperature and all precipitation accumulations the large neighbourhood size
achieves best verification results. Saturation or decay of forecast quality with increasing
neighbourhood size does not seem to be in sight. The decomposition of the Brier score
(not shown) reveals that the superiority of the large size is due to an improvement
in both resolution and reliability. The results of the reliability diagram reaffirm the
great impact of neighbourhood size and the superiority of the large neighbourhood in
terms of reliability. Relative value of the exceedance probability is less sensitive to
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Figure 6.14: Same as Fig. 6.3, but for different sizes of the neighbourhood: small (short
dashed line), medium (solid line), large (long dashed line) (Tab. 4.1).

Figure 6.15: Same as Fig. 6.5, but for different sizes of the neighbourhood: small (short
dashed line), medium (solid line), large (long dashed line) (Tab. 4.1).
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neighbourhood size. For almost all cost-loss ratios the large neighbourhood reaches only
marginally better forecast value than the medium and small neighbourhood.

On the one hand, it may be conceivable that the large neighbourhood sample represents
forecast uncertainty best. The large neighbourhood possesses a spatial diameter of
140 km so this is in accordance with findings of Walser et al. (2004) who note that
mesoscale predictability limitations may be critical even at scales exceeding 100 km.

On the other hand, this impression may be misleading. Recall that post-processed
probability forecasts are generally underdispersive (Section 6.3). This means that the
variance of the realisations within a medium-sized neighbourhood sample underestimates
forecast uncertainty. Any measure that contributes to an increase of variance is likely to
alleviate the problem so that the forecast achieves better verification scores. Increasing
the neighbourhood size certainly has such an effect, no matter whether the realisations
within the neighbourhood sample are still representative of the probability function to
be estimated or not. Even if the large-sized neighbourhood yields a forecast that is
less underdispersive, it is not guaranteed that the spread does mirror observed forecast
uncertainty or even captures observed variations in forecast uncertainty. For example,
it should be tested whether a small-sized neighbourhood sample with inflated variance
yields better estimates than a large-sized neighbourhood sample.

An optimal neighbourhood size with respect to quantile estimation cannot be determined
at this stage. The problem of underdispersiveness may superimpose any measurable
effect of neighbourhood size on forecast reliability. Further investigations need to deal
with the question whether the variance within the neighbourhood sample represents
forecast uncertainty in a sufficient way.

The error concept of kernel smoothing may not be fully applicable to LM post-processing
as it is deduced from the assumption that the available realisations exhibit realistic
variance and no bias. In LM post-processing the underlying data from the raw model
output probably do not possess realistic variance, as uncertainty in location and time
represents only a fraction of overall forecast uncertainty. In addition, the data are
biased if the large-scale forecast does not correspond to the observational data at all.
Thus, an optimal neighbourhood size may not exist in the sense of the optimal kernel
bandwidth.

Summary

The choice of neighbourhood size plays an important role in forecast quality of the
resulting estimates. However, it is difficult to determine an optimal choice among the
three sizes tested.

In terms of 2m-temperature, the small or medium size yields best expected values, but
this may be due to an insufficient alleviation of the explanatory effect of solar radiation
in the large neighbourhood. In terms of precipitation, an optimal neighbourhood size
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cannot be found at all. The quality of expected value depends on precipitation amount
and its value depends on the user’s needs.

The quality of quantiles and exceedance probabilities seems to be best when the largest
neighbourhood size is applied. Saturation or decay of forecast quality with increasing
neighbourhood size does not seem to be in sight. An increase in neighbourhood size
alleviates the problem of underdispersiveness, because it increases the variability within
the neighbourhood sample. It could be concluded that the large size was optimal,
but this conclusion may be premature. A large neighbourhood size probably does not
address the origin of the post-processing deficiencies. Increasing the neighbourhood size
can be seen as a way of hedging, as it can be used as a means of improving the score by
forecasting something other than one’s true beliefs.

Before concluding this section of neighbourhood size, it should be mentioned that a one-
size-fits-all approach is most likely inadequate. A more elaborate methodology should
allow for a variable size depending on surface forcing, flow, forecast lead time etc.

6.5.2 Consideration of explanatory variables

Introductory remarks

Several refinements of the neighbourhood are amended to the basic concept of neigh-
bourhood post-processing (Chapter 4). Most of them refer to the effect of explanatory
variables (Section 4.4) and consist in a linear modification of the model output (Sec-
tion 4.4.2) or in changing the shape of the neighbourhood (Section 4.4.3).

A standard version of considering explanatory variables is defined in Tab. 4.2. The
choice is justified by subjective assessment of a case study. In this subsection, objective
verification of a larger data set reaffirms the optimality of the standard version. Variants
of the standard version are defined and forecast quality of the respective results are
measured. Recall that optimality is not solely attained through best quality of the
post-processing forecasts, but through a best trade-off between the complexity of the
post-processing procedure and the quality of the resulting forecasts.

2m-temperature

The standard version of temperature post-processing includes linear modification due
to orographic height and neighbourhood cut-off due to snow cover and land-sea mask
(cf. Tab. 4.2). Two test versions are defined here. The first one is a low benchmark; it
does not take into account any explanatory variables. The second one is a high bench-
mark; it additionally includes neighbourhood distortion due to orographic height.

A comparison of the resulting verification measures (Tab. 6.8) shows that the version
without consideration of explanatory variables performs considerably worse than the

180



6.5 Optimal configuration of the neighbourhood method

Table 6.8: Forecast quality measures of the expected value of 2m-temperature. Compari-
son of different considerations of explanatory variables in the post-processing
procedure.

Measure Standard Without Consideration With Additional
of Explanatory Variables Neighbourhood Distortion

rmse 1.81 K 2.00K 1.80 K
mae 1.33 K 1.48 K 1.33 K
bias -0.05 K -0.15 K -0.05 K
stdv_fc 3.86 K 3.61 K 3.87 K
corr 0.90 0.87 0.90
skill_DMO 0.054 -0.045 0.059

standard version. In fact, forecast quality is markedly inferior to the forecast quality of
the direct model output (cf. Tab. 6.4). This result clearly justifies the higher computa-
tional expenses of the standard version as compared to the simple version.

In terms of quantiles, however, the version without consideration of explanatory variables
attains higher reliability (Fig. 6.16). Again, this is an effect of increased variance within
the neighbourhood sample, similarly to an increase in neighbourhood size. The standard
version yields an underdispersive forecast, so omitting explanatory variables tends to
alleviate this problem. As discussed in the context of neighbourhood size (Section 6.5.1),
the seeming improvement in forecast reliability is probably misleading. Any method that
increases the sample variance is rewarded, no matter whether it addresses the origin of
the deficiency or not.

An additional neighbourhood distortion due to orographic height results in a marginal
improvement of the standard version (Tab. 6.8). Note that it simultaneously achieves a
reduction in root mean squared error and an increase in forecast variability (stdv_fc).
A future study should test whether these differences are statistically significant.

When selecting a version for an operational environment, increase in forecast quality
needs to be related to the increase in computational expenses. Neighbourhood distor-
tion requires a large amount of additional computing time. The slight increase in forecast
quality does not justify the increased effort so that the standard version without neigh-
bourhood distortion should still be preferred in an operational setting.

Precipitation

The standard version of precipitation post-processing does not consider any explanatory
variables (cf. Tab. 4.2) although it is known that orography has a deterministic effect
on the precipitation forecast. It is desirable to test whether the post-processed forecast
would benefit from the additional consideration of orography as an explanatory variable.
Therefore, a test version is defined which includes neighbourhood distortion due to
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Figure 6.16: Same as Fig. 6.3, but for different configurations of the neighbourhood pro-
cedure. Precipitation: standard version (solid line), version with neighbour-
hood distortion and linear modification of the output (dashed line). Tem-
perature: standard version (solid line), version without consideration of
explanatory variables (dashed line).
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Figure 6.17: Same as Fig. 6.5, but for different configurations of the neighbourhood pro-
cedure: standard version (solid line), version with neighbourhood distortion
and linear modification of the output (dotted line).

orographic height and linear modification of the model output due to orographic height
and orographic slope.

The test version is used to derive estimates of expected value, quantiles and exceedance
probability. Verification measures are calculated and compared to those derived from the
standard version. Measures from the contingency table (not shown), quantile reliability
(Fig. 6.16) and Brier skill score (Fig. 6.17) give unanimous results. In all cases the ad-
ditional consideration of orography has a similar effect as decreasing the neighbourhood
size (cf. Subsection 6.5.1). Thus, the standard version appears to be superior, at least
in terms of quantiles and exceedance probability.

The similarity between the effect of neighbourhood size and the effect of considering
explanatory variables is not surprising. Both the decrease in size and the additional
consideration of explanatory variables reduces the variance within the neighbourhood
sample. A reduction of variance results in a forecast that is less smooth and even more
underdispersive. The latter is a clear disadvantage. Thus, the increased computational
expense is not justifiable. Although theoretical arguments speak in favour of an addi-
tional consideration of orography, the neighbourhood procedure does not seem to have
the ability to cope with this challenge. At this stage the standard post-processing ver-
sion (Tab. 4.2) should be preferred to the test version for the time being, but further
research is still needed so as to develop a better approach to considering explanatory
variables in post-processing the precipitation forecast.

An additional neighbourhood distortion due to orographic height results in a marginal
improvement of the standard version (Tab. 6.8). Note that it simultaneously achieves a
reduction in root mean squared error and an increase in forecast variability (stdv_fc).
A future study should test whether these differences are statistically significant.

Neighbourhood distortion requires a large amount of additional computing time. The
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slight increase in forecast quality does not justify the increased effort so that the standard
version without neighbourhood distortion should still be preferred in an operational
setting.

6.6 Wavelet smoothing

This section uses objective verification to evaluate the results of linear and nonlinear
wavelet smoothing (Chapter 5). Wavelet smoothing is used to estimate the expected
value in this study. Thus, this section exclusively deals with the quality of categorical
forecasts (cf. Appendix C.2).

6.6.1 Overview

Wavelet smoothing is another way to estimate the expected value. Several variants of
wavelet smoothing are developed which use different criteria in the separation of signal
from noise (Chapter 5). Scale-dependent wavelet smoothing is a linear procedure and
uses the level criterion (Section 5.3). Wavelet thresholding is a nonlinear procedure and
uses the absolute value criterion (Section 5.4). The additional field criterion (Section 5.5)
accounts for correlations between different variables and is used as an augmentation to
wavelet thresholding of the temperature field. All versions use shift averaging so as to
attain more robustness in the estimate of expected value (Subsection 5.3.3).

Scale-dependent wavelet smoothing with shift averaging is equivalent to kernel smooth-
ing (cf. Section 5.3.3). Wavelet thresholding is a step beyond kernel smoothing; the
amount of smoothing is not only spatially variable, but also adapts to the data to be
smoothed.

In this section, objective verification is used to evaluate and compare the resulting
estimates of the different wavelet smoothing procedures to other post-processing proce-
dures. Emphasis is laid on the forecast of 2m-temperature, because the case study in
Chapter 5 already indicates that wavelet smoothing is more promising when applied to
2m-temperature instead of precipitation.

Tab. 6.9 lists the usual measures of forecast quality (cf. Appendix C.2) for the tempera-
ture forecast. Simple kernel smoothing and different versions of wavelet smoothing are
applied, respectively. The results are discussed in the following subsections.

In terms of precipitation, objective verification merely shows that the precipitation field
does not benefit from wavelet thresholding and that scale-dependent wavelet smoothing
leads to the same effect than simple spatial smoothing.
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Table 6.9: Forecast quality measures of the expected value of 2m-temperature. Compari-
son of rectangular kernel smoothing and various wavelet smoothing procedures.

Measure Kernel Krect Level Criterion Wavelet Wavelet Thresholding
(Eq. 5.2) lcutlevel = −2 Thresholding with Additional
hx = hy = 2 Field Criterion

rmse 1.93 K 1.93 K 1.89 K 1.88 K
mae 1.42 K 1.42 K 1.39 K 1.39 K
bias -0.12 K -0.10 K -0.06 K -0.07 K
stdv_fc 3.76 K 3.79 K 3.86 K 3.84 K
corr 0.88 0.88 0.89 0.89
skill_DMO -0.005 -0.005 0.015 0.017

6.6.2 Scale-dependent wavelet smoothing of 2m-temperature

Scale-dependent smoothing with the wavelet level criterion is compared to two low bench-
marks: the direct model output and simple kernel smoothing with the rectangular kernel
(Eq. 5.2).

As expected from theory (cf. Section 5.3.3), the level criterion attains the same degree
of forecast quality as the rectangular kernel (Tab. 6.9). In comparison to kernel smooth-
ing, the only advantage of linear wavelet smoothing is the increase in computational
efficiency.

In comparison to the direct model output (Tab. 6.4), linear wavelet smoothing and simple
kernel smoothing attain slightly poorer forecast quality. This is due to the neglect of
explanatory variables and stresses the enormous relevance of their consideration.

6.6.3 Wavelet thresholding of 2m-temperature

Comparison to scale-dependent wavelet smoothing and to the DMO

The visual inspection of the case study (Chapter 5) indicates that wavelet thresholding
yields better forecast fields than the level criterion (Fig. 5.15 and 5.12). This impression
is now confirmed by objective verification.

Compared to kernel smoothing and linear wavelet smoothing, wavelet thresholding at-
tains a reduction in root mean squared error (Tab. 6.9). This is even more valuable
when considering that wavelet thresholding causes a much smaller amount of spatial
smoothing than kernel smoothing (see stdv_fc). Moreover, the bias and the mean abso-
lute error are reduced as well. The correlation between forecast and observations is also
slightly improved.

This is a great achievement when recalling the simplicity of wavelet thresholding. The
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computational cost is very low and the method is exclusively based on statistical consid-
erations. Recall that no physical considerations enter the method and there is no explicit
consideration of explanatory variables. Note, however, that the neglect of explanatory
variables prevents wavelet thresholding from a large forecast improvement compared to
the direct model output (Tab. 6.4 and Tab. 6.9). This lack of physical guidance becomes
even more obvious in the next paragraph which compares wavelet thresholding to the
neighbourhood method.

Comparison to the neighbourhood method

The comparison between wavelet thresholding and the neighbourhood method allows for
a direct comparison between statistical guidance and physical guidance. Both methods
allow for a spatially variable amount of local smoothing. In neighbourhood smoothing
physical considerations guide the amount of local smoothing, whereas in wavelet thresh-
olding statistical properties of the data itself determine the amount of local smoothing.

A comparison of wavelet thresholding with the standard neighbourhood method is not
straightforward, because it is difficult to choose a neighbourhood size so that the average
amount of smoothing corresponds to that of wavelet thresholding. Further, the neigh-
bourhood is a three-dimensional smoothing procedure, whereas wavelet thresholding is
a two-dimensional smoothing procedure. Nevertheless, a rough comparison should be
possible. Among the three neighbourhood sizes it is the small size that fits the average
amount of smoothing in wavelet thresholding best.

Results from the small neighbourhood with consideration of explanatory variables
(cf. Tab. 6.7) clearly outperform the results of wavelet thresholding (Tab. 6.9). This
indicates that physical considerations are more valuable in temperature post-processing
than statistical guidance only. The explicit consideration of explanatory variables is a
key mechanism when post-processing 2m-temperature. Note, however, that it involves
a much larger computational cost when compared to the purely statistical concept of
wavelet thresholding.

Although wavelet thresholding is currently based on statistical guidance only, it is quite
possible to additionally include physical considerations into the existing procedure. For
example, wavelet thresholding could include the field of orographic elevation by the
additional field criterion (Eq. 5.4) so that there is less smoothing in regions of complex
orography. Such a combination of physical considerations and statistical guidance may
yield best results. Wavelet thresholding still bears a potential for another great leap in
forecast quality.
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Table 6.10: Forecast quality measures of the expected value of 2m-temperature. Simi-
larly to Tab. 6.9, various wavelet smoothing procedures are applied, but shift
averaging is omitted here.

Measure Level Criterion Wavelet Wavelet Thresholding
lcutlevel = −2 Thresholding with Additional

Field Criterion
rmse 1.97 K 1.96 K 1.95 K
mae 1.44 K 1.44 K 1.44 K
bias -0.10 K -0.07 K -0.06 K
stdv_fc 3.82 K 3.90 K 3.87 K
corr 0.88 0.88 0.88
skill_DMO -0.026 -0.020 -0.020

6.6.4 Refinements of wavelet thresholding

The additional field criterion

Wavelet thresholding of 2m-temperature is augmented by the additional field criterion
in order to account for the interrelation between different variables (cf. Section 5.5). The
additional field is the precipitation forecast.

Objective verification shows that the additional field criterion has very little effect on
forecast quality (Tab. 6.9). The increased effort is not rewarded, at least not when
precipitation is chosen as the additional field.

As mentioned in the previous subsection, the inclusion of orographic elevation may be
more beneficial. As the field of orography is static, the additional field criterion then
becomes equivalent to the location criterion.

Shift averaging

Shift averaging is introduced so as to attain more robustness in the estimate of expected
value (Subsection 5.3.3). Objective verification strongly confirms the decision to include
shift averaging in all variants of wavelet smoothing.

The beneficial effect of shift averaging on objective verification becomes obvious when
comparing Tab. 6.10 with Tab. 6.9. Shift averaging improves the root mean squared
error, the mean absolute error and the correlation between forecasts and observations.
Forecast bias is not affected. Surprisingly, shift averaging increases the degree of spatial
smoothing only to a small extent, as forecast variability (stdv_fc) is only slightly reduced
when compared to the smoothed forecast that does without shift averaging (Tab. 6.10).
Therefore, the reduction in root mean squared error does not simply originate from an
increased spatial smoothness, but indicates a true enhancement of the forecast. In fact,
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the application of shift averaging is absolutely essential in terms of wavelet thresholding.
Only in combination with shift averaging, the wavelet thresholding procedure attains an
improvement of the direct model output (see skill_DMO in Tab. 6.9 and 6.10).

6.7 Experimental ensemble with stochastic

parametrisation

Overview

In addition to the post-processed forecasts, a stochastic parametrisation scheme is im-
plemented into the LM and experimental ensemble forecasts are produced for the veri-
fication period July 10–24, 2002. The ensemble members are exclusively perturbed by
the stochastic parametrisation scheme. Section 3.4 describes the specific configuration
of the ensemble experiments and the input noise.

The experimental ensemble is partly motivated by the desire to create another bench-
mark forecast for the development and verification of the post-processing methods
(cf. Chapters 1 and 3). The outcome of the ensemble was projected to be an appro-
priate guidance for LM post-processing, because the ensemble and the post-processing
presumably address a similar portion of total forecast error.

In this section, quality measures of the LM ensemble forecast are presented. The en-
semble results are juxtaposed with the quality of the raw model output of the unper-
turbed simulation, kernel smoothing, wavelet smoothing and the standard neighbour-
hood method. Estimates of the expected value and of the exceedance probability of
precipitation are investigated. The ensemble estimates are derived by assigning equal
weights to each of the 10 ensemble members. The ensemble mean is an estimator of the
expected value; the ensemble mean of the indicator data δ̃c(z) (Eq. 4.4) is an estimator
of the exceedance probability.

As the experimental ensemble does not aim at the representation of overall forecast
uncertainty, it is likely that the comparison between ensemble forecasts and observations
makes the forecast look underdispersive. Nevertheless, the ensemble is expected to
increase the quality of a single simulation to a certain degree.

Ensemble mean of 2m-temperature

Tab. 6.11 shows the verification measures for the ensemble mean of 2m-temperature.
Several other estimates of the expected value are added for comparison and listed in the
order of their computational cost. The results of the ensemble mean are almost identical
to those of the deterministic LM forecast, i. e. the unperturbed simulation. Compared
to the effect of post-processing, the effect of the stochastic parametrisation scheme is
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Table 6.11: Forecast quality measures of the expected value of 2m-temperature. Com-
parison of the original forecast, kernel smoothing, wavelet smoothing, the
standard neighbourhood method and the ensemble mean. Recall that kernel
smoothing with kernel Kball is equivalent to neighbourhood post-processing
without explanatory variables.

Measure Original Kernel Kball Wavelet Standard Ensemble
LM Forecast (Eq. 4.10) Thresholding Neighbourh. Mean

(Small Size) (Small Size)
rmse 1.92 K 1.91 K 1.89 K 1.82 K 1.91 K
mae 1.40 K 1.41 K 1.39 K 1.35 K 1.40 K
bias -0.01 K -0.11 K -0.06 K -0.03 K -0.01 K
stdv_fc 4.04 K 3.72 K 3.86 K 3.92 K 4.03 K
corr 0.89 0.89 0.89 0.90 0.89
skill_DMO 0.000 0.006 0.015 0.048 0.003

negligible. This is in accordance with the findings of Chapter 3 which already stated
that the effect of stochastic parametrisation on the forecast is surprisingly small.

Ensemble mean of precipitation

The ensemble mean of precipitation is assessed by forecast quality measures from the
contingency table (cf. Section 6.3.1 and Appendix C). The results (not shown) imply
again that there is no discernible difference between the quality of the ensemble mean
and the quality of the deterministic LM forecast.

Relative value (Subsection 6.4.2 and Appendix C) of the ensemble mean is also assessed
and compared to other estimates of the expected value (not shown). It turns out that
forecast value of the ensemble mean and forecast value of the unperturbed simulation
are identical. While the neighbourhood estimate of the expected value improves the raw
model output to a very small extent (cf. Fig. 6.11), the ensemble mean does not lead to
any improvement.

The only difference between the ensemble mean and the unperturbed simulation consists
in a slightly larger number of light precipitation events (not shown). This originates
from a small degree of spatial smoothing which is caused by ensemble averaging. Spatial
smoothing of the unperturbed simulation becomes also visible in the ensemble mean of
the 2m-temperature forecast (see stdv_fc in Tab. 6.11). Many other ensemble forecasting
systems exhibit this behaviour, too (e. g. Eckel and Walters, 1998; Hamill and Colucci,
1998).
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Figure 6.18: Same as Fig. 6.5, but for the ensemble forecast and neighbourhood
post-processing: exceedance probability from the standard neighbourhood
method/medium size (dashed line); exceedance probability from the ensemble
forecast (dotted line).

Exceedance probability of precipitation

The exceedance probability from the ensemble forecast is assessed by the Brier skill score
(Section 6.3.4 and Appendix C.3.1). The skill score uses the deterministic simulation
as a reference forecast. Fig. 6.18 shows that the ensemble forecast still possesses some
positive skill, but the amount of skill is very small compared to that attained by standard
neighbourhood post-processing. One might speculate on a similar amount of skill when
simply complementing the deterministic LM forecast by a climatological spread. The
generally poor Brier scores of the LM ensemble result from an extreme underdispersion.
Although underdispersiveness is expected to some extent, the spread is still surprisingly
poor.

An investigation of forecast value leads to similar results as the investigation of forecast
quality. The ensemble forecast attains a slightly larger relative value than the single sim-
ulation, but standard neighbourhood post-processing outperforms ensemble forecasting
by far (Fig. 6.19).

6.8 Summary and outlook

Objective verification supplements the subjective investigations of the previous chapters.
Verification measures are estimated from a data base of forecasts and corresponding
observations. The data cover a summer period of two weeks. The various forecast
systems are investigated in terms of forecast quality, consistency and value.
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Figure 6.19: Same as Fig. 6.11, but for the original forecast (solid line), the ex-
ceedance probability from standard neighbourhood post-processing/medium
size (dashed line) and the exceedance probability from the ensemble forecast
(dotted line).
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Forecast goodness of the neighbourhood methodology

Neighbourhood post-processing derives estimates of the following quantities: the ex-
pected value of temperature and precipitation, quantiles of temperature and precipita-
tion and exceedance probabilities of precipitation. The standard neighbourhood version
(Subsection 4.4.4) with a medium size (Tab. 4.1) is investigated.

Benefits of the post-processed forecast

Neighbourhood post-processing is able to improve the direct model output in terms
of all three aspects of forecast goodness: quality, consistency and value. However, the
improvements are only substantial if the user has the possibility to choose an appropriate
forecast according to her demands of expected false alarm rates and hit rates. In other
words, only if the user receives a probability or a quantile forecast, i. e. a range of
forecasts that somehow characterises the probability function of the forecast, the user
has the possibility to take full advantage of the neighbourhood method. Then the user
can base her decisions on the forecast according to her individual needs and the role of
the forecaster and of the decision maker can be clearly separated.

This result stresses the need for a concerted effort to educate users so that the acceptance
of probability forecasts is increased and so that users are able to integrate the weather
forecast into their individual decision making process.

Small improvements are also attained in the categorical forecast, namely in the expected
value of 2m-temperature. The improvement originates from a reduction in random error
and is accompanied by a slight increase in bias. Such a trade-off between bias and
variance error is in accordance with theoretical expectations.

Necessary reduction in forecast sharpness

The improvement of the direct model output is accompanied by a reduction in forecast
sharpness. The direct model output possesses good sharpness, because it contains very
precise information. However, such preciseness exceeds the amount of information which
is deterministically predictable. As a consequence, the direct model output exhibits poor
reliability and resolution. A reduction in forecast sharpness is necessary in order to regain
good forecast quality.

Shortcomings of the post-processed forecast

When compared to a perfect forecast, verification scores indicate two shortcomings:
forecast bias and underdispersiveness. Forecast bias is a problem of the precipitation
forecast and does not originate from the post-processing procedure. It is already present
in the direct model output and is simply transmitted to the post-processed forecast.
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Underdispersiveness may result from the fact that neighbourhood post-processing ex-
clusively focusses on small-scale forecast uncertainty whereas the comparison to obser-
vational data makes the overall forecast error visible. In addition, the neighbourhood
method assumes that small-scale error is exclusively associated with uncertainty in tim-
ing and location. In reality, this is only a portion of the total error.

A new verification strategy for the 90%-quantile

A new verification strategy is developed with respect to the assessment of the 90%-
quantile. In order to assess forecast value, the standard decision making problem is
reformulated. In addition, another low benchmark is defined: the inflated DMO.

When looking at 1h-accumulations of precipitation, relative value indicates that the
neighbourhood estimate of the 90%-quantile is superior to the inflated DMO. This re-
sult must be interpreted with caution. In case of the 90%-quantile, negative effects
of forecast bias and underdispersiveness cancel each other out. If only one of the two
shortcomings is partly removed, verification measures may still record a deterioration of
forecast goodness in the 90%-quantile.

Forecast calibration: A potential remedy?

Underdispersiveness and forecast bias are the main factors that deteriorate forecast reli-
ability. As a supplementary calibration procedure may be able to improve the reliability
of a forecast, calibration of the forecast appears promising. However, the setup of a
calibration procedure would require a historical data set of model simulations which is
not available at the moment.

Optimal configuration of the neighbourhood methodology

The neighbourhood methodology contains several free parameters such as neighbourhood
size or the consideration of explanatory variables. In order to decide on an operational
configuration of the neighbourhood method, these parameters need to be optimised in
some way.

Neighbourhood size

Neighbourhood size is probably the key parameter in the post-processing procedure.
Although theoretical considerations point to the existence of an optimal neighbourhood
size, its identification turns out to be difficult.

In terms of 2m-temperature, objective verification suggests an optimal neighbourhood
size which possesses a diameter of 40–85 km in space and a diameter of 3–4h in time.
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However, this result is not entirely trustworthy. Further investigations need to include
a larger number of different options and need to take the diurnal cycle into account.

In terms of precipitation, best verification results are attained by the largest neigh-
bourhood size among those tested. A point of maximum forecast quality or a point of
saturation does not come into sight. The results may be blurred by the general problem
of underdispersiveness so that any increase in spread may have a beneficial effect on
verification measures, irrespective of its true appropriateness.

Consideration of explanatory variables

Subsection 4.4.4 suggests a standard version of considering explanatory variables on
the basis of subjective investigations. Objective verification reaffirms its optimality.
Optimality is not solely attained through best quality of the post-processing forecasts,
but through a best trade-off between the complexity of the post-processing procedure
and the quality of the resulting forecasts.

When post-processing 2m-temperature, the linear modification due to orographic eleva-
tion is indispensable. An additional neighbourhood distortion is set aside, because the
improvement is too small when compared to the associated increase in computational
cost.

In terms of precipitation post-processing, the consideration of orographic elevation does
not enhance forecast quality at all. This does not imply that a proper treatment of orog-
raphy were unnecessary. It rather implies that the current methods are still insufficient
and that even more complex methods are required than those tested in this study.

Wavelet smoothing of 2m-temperature

Objective verification of wavelet smoothing reveals most interesting results when look-
ing at the expected value of 2m-temperature. Estimates from level-dependent wavelet
smoothing and wavelet thresholding are compared to neighbourhood estimates and to
the direct model output. In this comparison, the influence of smoothing intensity is
excluded to the greatest possible extent. Level-dependent wavelet smoothing, simple
kernel smoothing and the neighbourhood method without consideration of explanatory
variables are theoretically equivalent. The investigation results in the following ranking
of forecast quality, starting with the best result:

1. standard neighbourhood post-processing with explanatory variables

2. wavelet thresholding (nonlinear smoothing)

3. direct model output

4. level-dependent wavelet smoothing (linear smoothing)
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Linear wavelet smoothing is not able to improve the direct model output. This is due
to the neglect of explanatory variables and demonstrates that the consideration of ex-
planatory variables is very relevant when post-processing 2m-temperature. With this
fact in mind, the success of wavelet thresholding is all the more resounding, as wavelet
thresholding attains improvements of the raw model output without an explicit phys-
ical consideration of explanatory variables. The use of a translation-invariant wavelet
transform is absolutely essential here.

The superiority of the neighbourhood method shows that physical considerations are
more valuable in temperature post-processing than statistical guidance only. However,
the inclusion of explanatory variables into wavelet thresholding is still possible, for exam-
ple via the additional field criterion. Therefore, wavelet thresholding is a very promising
post-processing technique, because it may attain another leap in forecast quality if ex-
planatory variables are included successfully.

It should be noted that the differences between results from the neighbourhood method,
wavelet thresholding and the direct model output are very small. The current conclusions
are preliminary and need further confirmation by tests of statistical significance and a
larger data set.

Ensemble experiments with stochastic parametrisation

The investigations in Chapter 3 state that the ensemble concept of this study is not
mature enough to serve as a guidance in the development of LM post-processing until the
specific configuration of input perturbations is justified. Objective verification presents
an additional reason. Forecast quality of the experimental ensemble is not considerably
better than the quality of a single simulation. Moreover, it is even far below the quality
of the post-processed forecast.

The poor verification results of the stochastic parametrisation scheme either indicate
that the stochastic effect of sub-grid scale processes is not a key player in small-scale
predictability or indicate that the ensemble fails to simulate the effect realistically. This
result confirms the urgent need for more research in ensemble forecasting and in the
simulation of model uncertainties. Pertinent issues for future investigations are pointed
out in Chapter 3.

Potential enhancements of the verification procedure

Observational data

As the verification period only comprises a summer time period of two weeks, the ver-
ification procedure covers a limited range of weather regimes and the results are not
representative of a general case. In addition, the limited number of observations raises
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the question of statistical significance, especially since the various forecast systems yield
verification measures that differ only marginally when compared to the natural variabil-
ity in forecast measures. This study examines the statistical significance only sporadi-
cally. Additional confidence arises from the fact that the findings of this study generally
agree with those derived from the DWD verification periods whenever a direct compar-
ison is possible. Nevertheless, there is further need for a comprehensive investigation of
statistical significance.

Furthermore, using observational data as comparative data may result in misleading
verification results. The comparison to observational data implicitly addresses the whole
spectrum of forecast errors while the post-processing method is designed to account
for small-scale random error only. An instance of such misleading results may be the
seemingly never-ending improvement in Brier score with increasing neighbourhood size
(Section 6.5.1). It would be desirable to establish a comparative data base that addresses
the same part of the overall forecast uncertainty as the post-processing method does. The
experimental ensemble forecast was envisaged to provide such a data base (Chapter 1).
However, it turns out that further research is needed until the ensemble may serve as a
useful guidance in the evaluation of the post-processing methods.

Variety of verification measures

As a specific verification measure reflects only a certain aspect of the joint distribution
of forecasts and observations, it is desirable to apply a large variety of forecast measures.
Although this study already looks into a very large number of common measures, it is
not guaranteed that all information affecting predictability are already captured.

Most obviously, resolution of the quantile forecasts is not assessed due to a lack of a
corresponding forecast measure. Moreover, it should be tested whether neighbourhood
post-processing is able to correctly reproduce day-to-day variations in predictability and
whether it can correctly distinguish forecasts with small uncertainty from forecasts with
large uncertainty. This issue is very interesting, because even for operational ensemble
prediction systems the ability to forecast the forecast skill is still a challenge (Hamill
and Colucci, 1998).

Matching pairs of forecasts and observations

Another important issue is the appropriate matching of forecasts and observations. The
current approach of choosing the nearest grid point is probably the simplest matching
procedure among those currently known. Although one could argue that the nearest
grid point approach represents the user’s perspective best, the approach can still be
improved.

Comparing point observations with model grid boxes is a general problem in forecast
verification, especially when dealing with precipitation which is a highly intermittent
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6.8 Summary and outlook

variable. The spatial representativeness of the observation is unknown and may not
correspond to the model grid box. More elaborate procedures should take care of this
problem, for example by estimating the spatial covariance of precipitation observations
(see Chilès and Delfiner, 1999). Some existing methods apply bilinear interpolation or
directly take field properties into account, e. g. by scale decomposition (Casati et al.,
2004) or pattern matching (Ebert and McBride, 2000).

Last but not least, more attention should be paid to the fact that an observation is only
one realisation of the true state of the atmosphere. Forecast verification should treat
observational data in a probabilistic way as well.
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7 Summary and conclusions

Overview

In order to take full advantage of short-range forecasts from deterministic high-resolution
NWP models, the direct model output must be addressed in a probabilistic framework.
A promising approach is mesoscale ensemble prediction. However, its operational use is
still hampered by conceptual deficiencies and large computational costs.

This study tackles two relevant issues: (1) the representation of model related forecast
uncertainty in mesoscale ensemble prediction systems and (2) the development of statis-
tical post-processing procedures that retrieve additional probabilistic information from
a single model simulation.

Representation of model related forecast uncertainty The insufficient representa-
tion of model related forecast uncertainty is one of the main problems in
mesoscale ensemble forecasting. Theoretical arguments speak in favour of stochas-
tic parametrisation, but only few studies have carried out experiments with
stochastic parametrisation schemes in complex weather prediction models. By
implementing stochasticity in an operational high-resolution model, this study
constitutes a novel contribution to current research in ensemble forecasting and
provides a basis for future research in this area.

Statistical post-processing of a single simulation Statistical post-processing fills
the current gap between the need for probabilistic forecasting and its operational
constraints. The study designs two schemes: the neighbourhood method and
wavelet smoothing. The schemes are intended to derive probabilistic information
in computing environments that currently do not allow for sufficient ensemble
simulations. Both approaches fall under the framework of estimating a large
array of statistical parameters on the basis of a single realisation on each param-
eter. In this study, the statistical post-processing schemes derive probabilistic
information from a single simulation, but the schemes may also be used as a
supplement to an existing ensemble. Compared to ensemble forecasting, the
statistical post-processing schemes require a very small amount of computing
time and are suitable for immediate implementation. The schemes do not rely
on historical error statistics so that they are ready to use if such data are not at
hand. Moreover, the source code of the schemes satisfies operational requirements
at the German Weather Service, i. e. it is portable, it is tailored to the respective
data formats, it includes error-handling schemes and it is thoroughly documented.
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Special emphasis is laid on mesoscale forecast uncertainty of summer precipitation and
2m-temperature in Europe. The choice is motivated by the desire to address forecast
variables that are especially relevant to a standard user in Germany. Source of forecast
guidance is the deterministic high-resolution model Lokal-Modell (LM) of the German
Weather Service.

Conclusions of this study are based on subjective assessment of a case study (10 July
2002) and on objective verification of 15 short-range forecasts. Objective verification
condenses forecast goodness into a few verification measures which are derived from
statistical comparison between forecasts and observations. The observational data en-
compasses the SYNOP data of Germany during a time period of two weeks. Forecast
goodness is examined in terms of quality, consistency and value.

Experimental ensembles with stochastic parametrisation

A stochastic parametrisation scheme is implemented into the LM in an attempt to
simulate the stochastic effect of sub-grid scale processes on the resolved scales. The
scheme is similar to the operational scheme at ECMWF, but contains several upgrades
such as an energetically consistent perturbation of the turbulence scheme, a perturbation
of roughness length and a correction for energetic inconsistency. In order to reveal the
effect of the stochastic parametrisation scheme on the forecast, experimental ensemble
simulations are produced. The results are investigated by eye-ball inspection, statistical
analysis and objective verification.

This study, being one of the first to systematically analyse the benefits of stochastic
parametrisation in operational short-range forecasting, clearly points out previously un-
defined issues and therefore provides the basis for essential future research. Subjective
eye-ball inspection of case studies shows that the stochastic parametrisation scheme has
a substantial effect on precipitation amount. However, objective verification demon-
strates that the ensemble does not attain better forecast goodness than a single LM
simulation. Current stochastic parametrisation schemes do not yet benefit short-range
high-resolution ensemble simulations in the mid-latitudes. Either the stochastic effect of
sub-grid scale processes is not a key player in model related uncertainty or the scheme
does not yield a realistic simulation.

These results point the way to relevant future research. Stochastic parametrisation may
produce more credible results and provide better insight into small-scale predictability
if the following issues are tackled. First, the specific configuration of the input pertur-
bations needs better justification. Its choice is still somewhat arbitrary, but sensitivity
studies of this study demonstrate that they have an enormous influence on the ensemble
outcome. Secondly, the numerical integration scheme needs reconsideration. Current
numerical schemes are not properly sanctioned for use in combination with stochastic
perturbation and may cause errors that generally do not become obvious by eye-ball
inspection.
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7 Summary and conclusions

Neighbourhood method

The neighbourhood method is based on the notion of small-scale spatio-temporal ergod-
icity including explicit corrections for so-called explanatory variables which are suspected
to enhance small-scale predictability. It looks in the spatio-temporal neighbourhood of
a point to get a set of forecasts and creates a surrogate ensemble for the forecast at
the central point of the neighbourhood. While the idea of a neighbourhood has already
started to emerge in the context of forecast verification, this study is one of the first to
apply the concept to the derivation of additional forecast products.

The neighbourhood method derives estimates of quantiles, exceedance probabilities and
expected values at each grid point of the LM. While the estimation of exceedance proba-
bilities and expected value simply applies the respective maximum-likelihood estimator,
quantile estimation involves the concepts of a ranking formula and of kernel quantile
regression so as to preclude a large variance error in the estimate. Technically, the
neighbourhood method satisfies requirements of operational use so that it is ready for
immediate implementation into the operational forecasting system of DWD.

Although the neighbourhood concept bears similarities to geostatistics, it is still unique,
because there is no geostatistical approach which combines the estimation of expected
value, quantiles and exceedance probabilities into a single concept. Especially the prob-
lem of quantile estimation requires a new approach, because it is not covered by standard
geostatistical methods. A consultation of the geostatistical perspective turns out very
useful, as it helps to clarify the underlying statistical assumptions of the neighbourhood
and to interpret errors in the resulting estimates.

This study does not only develop and apply a novel post-processing concept, but also
evaluates the goodness of the resulting forecasts in a systematic way. Objective verifi-
cation demonstrates that neighbourhood post-processing is able to improve the direct
model output. Improvements in forecast quality are associated with a reduction of de-
tailed forecast information on the small scales. The reduction is necessary, because the
direct model output contains very precise forecast information which exceeds the amount
that is deterministically predictable. Such information contributes to the noise level and
deteriorates forecast quality. Verification measures show that post-processing reduces
the preciseness and regains good forecast quality.

The improvement in forecast goodness varies with the statistical quantity and the
forecast variable under consideration. Improvements are only substantial if the post-
processed forecast is formulated as an exceedance probability or as a quantile. The
estimates of exceedance probabilities and quantiles clearly outperform the direct model
output in terms of quality, consistency and value.

When compared to a perfect forecast, some deficiencies become visible in the estimates
of exceedance probabilities and quantiles. The precipitation forecasts exhibit a forecast
bias. The bias does not originate from the post-processing procedure, but is already
present in the direct model output and is simply transmitted to the post-processed
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forecast. Furthermore, all estimates are underdispersive, i. e. they capture a certain
aspect of forecast uncertainty which is not representative of the full range.

If the post-processed forecast is formulated as the expected value, the neighbourhood
method gives less advantage. The expected value of 2m-temperature attains a small but
consistent improvement in forecast quality. The improvement originates from a reduc-
tion in random error and is accompanied by a slight increase in bias. This trade-off is
in accordance with theoretical expectations from geostatistics. The expected value of
precipitation does not achieve an overall improvement; improvements depend on pre-
cipitation amount and the user’s ability to tolerate low hit rates or high false alarm
rates.

The main advantage of the post-processed forecast is its ability to convert the determin-
istic model output into probabilities or quantiles. Their benefit consists in the variety of
forecasts for different users and their different decision making processes. The expected
value is at a disadvantage with probabilities and quantiles, because it is a categorical
forecast which is “tailored” to only one specific type of user. This result stresses the
need for a concerted effort to educate users so that the acceptance of probability fore-
casts is increased and so that users are able to integrate the weather forecast into their
individual decision making process.

This study points to issues of future research that may lead to a further increase of the
benefits already attained. Neighbourhood size is a key parameter of the post-processing
procedure. Theoretical considerations indicate the existence of an optimal size, but the
identification of this size needs further investigation. Furthermore, the inclusion of ex-
planatory variables benefits the post-processed temperature forecast, but does not yet
lead to a further enhancement of the precipitation forecast. The post-processed pre-
cipitation forecast may further gain in quality if future research succeeds in developing
cost-effective methods that describe and capture the complex effect of explanatory vari-
ables on precipitation. Last but not least, the post-processed forecast may additionally
profit from a supplementary calibration procedure. This plan may be tackled as soon
as a historical data set of model simulations becomes available. Generally, best re-
sults may be obtained if the neighbourhood method is combined with other approaches
to probabilistic forecasting such as ensemble prediction or probabilistic model output
statistics.

Wavelet smoothing

The concept of wavelet smoothing originates from the field of image denoising and
includes concepts of multiresolution analysis and non-parametric regression. The use
of wavelets is considered attractive because of their connection to statistical multi-scale
modeling, their ability to represent data in a parsimonious way and their noise-whitening
property. In this study, the method is used to produce estimates of the expected value,
but it may be easily extended to the additional estimation of exceedance probabilities.
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7 Summary and conclusions

Two main types of wavelet smoothing procedures are applied to LM output fields: scale-
dependent wavelet smoothing and wavelet thresholding. In order to avoid artefacts in
the post-processed field, the study augments the standard smoothing procedure by in-
troducing the translation-invariant wavelet transform. Incidentally, it is shown that
scale-dependent wavelet smoothing with the translation-invariant transform is equiva-
lent to simple kernel smoothing. In the context of wavelet thresholding, the application
of the translation-invariant wavelet transform proves to be absolutely essential.

Wavelet thresholding is especially interesting, because it is a nonlinear smoothing tech-
nique that automatically adapts the amount of spatial smoothing to local properties
of the underlying data. This study is the first to apply wavelet thresholding to “real”
meteorological forecast data and to derive an additional forecast product by doing so.

As opposed to the neighbourhood methodology, the current version of wavelet thresh-
olding does not contain an explicit consideration of explanatory variables. Instead, it
merely relies on a clever data representation via the wavelet transform and on the va-
lidity of statistical assumptions. In comparison to the neighbourhood methodology,
wavelet thresholding is almost effortless, both in terms of its development and in terms
of its computational costs. From a technical viewpoint, wavelet smoothing is even better
suited for operational use than the neighbourhood methodology.

The study reveals that the success of wavelet thresholding largely depends on the sta-
tistical properties of the underlying data. The relevance of the underlying data is im-
pressively demonstrated by two contrasting examples. Wavelet thresholding proves very
useful for post-processing 2m-temperature, but is unsuitable for post-processing summer
precipitation. Obviously, precipitation data do not satisfy the statistical assumptions of
wavelet thresholding so that the procedure does not manage to filter those patterns that
are deterministically predictable. The particular cause probably consists in the fact that
the noise is heavy-tailed and that the signal-to-noise ratio is weak.

Wavelet thresholding is much more interesting in terms of 2m-temperature, because
the smoothing procedure apparently preserves deterministically predictable tempera-
ture patterns and removes others. Verification shows that wavelet thresholding achieves
a slight improvement of the raw model output even though explanatory variables are
not explicitly considered. This is a resounding success when compared to the dramatic
deterioration in forecast quality that results from simple kernel smoothing without ex-
planatory variables.

In spite of this success, wavelet thresholding does not reach the same forecast quality as
the neighbourhood method yet. The explicit consideration of explanatory variables ap-
pears indispensable when post-processing 2m-temperature. The study already presents a
concept for a cost-effective inclusion of explanatory variables into the wavelet threshold-
ing procedure. Additional research along this avenue has the potential to attain another
leap in forecast quality which might be competitive with the quality achieved by neigh-
bourhood post-processing. A change from neighbourhood post-processing to wavelet
thresholding would be associated with an enormous reduction of complexity and com-
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putational costs. Thus, this study has developed a novel approach to post-processing
which is very promising.

Final remarks

In summary, the study investigates and advances pertinent issues in probabilistic fore-
casting. The investigations of this study are multi-faceted, delving both into theoretical
and into application-oriented issues. The study develops and carefully evaluates prag-
matic short-term solutions and also moves towards ambitious long-term solutions. The
implementation and evaluation of the stochastic parametrisation scheme provides a basis
for further progress in the ensemble approach. The development and extensive evalua-
tion of novel post-processing techniques demonstrates that they are immediately able to
fill the gap between the need for probabilistic forecasting and its operational constraints.
Thus, the study fosters the sensible use of deterministic models in cases of limited pre-
dictability. All in all, the study adds another tessera to the mosaic of probabilistic
prediction in weather and climate.
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A Wavelets and the lifting scheme

In order to make this study self-contained, a short introduction to wavelets is given here.
Section A.1 starts with some fundamentals of the wavelet transform. In particular, the
difference between continuous and discrete wavelets is explained. Section A.2 continues
with the definition of multiresolution analysis and states that there is a direct link to
discrete wavelets if they are (bi-)orthogonal. Section A.3 generalises these explanations
to the two-dimensional case. This is not trivial due to the introduction of a diagonal
direction in addition to the vertical and horizontal. Section A.4 introduces the lifting
scheme, the particular wavelet transform used in this study. Thomas Gerstner (Insti-
tute for Numerical Simulation, University of Bonn) kindly provided the corresponding
software of the wavelet transform algorithm.

A.1 Fundamentals of the wavelet transform

A.1.1 Overview

The concept of wavelet transforms was formalized in early 1980’s and has been exten-
sively applied in a wide area of subjects since then, for example image compression,
signal processing, time frequency analysis or accelerating numerical methods, to list
only few.

Introductions to wavelet theory can be found in Chui (1992), Daubechies (1992) or
Kumar and Foufoula-Georgiou (1994), for example. An overview of wavelet based
multiresolution analyses is presented by Jawerth and Sweldens (1994). Introductory
texts with regard to applications in geophysics are contained in Kumar and Foufoula-
Georgiou (1993a) and Kumar and Foufoula-Georgiou (1997). A mathematical overview
on wavelets in statistics is presented by Härdle et al. (1998) and corresponding texts for
the non-specialist with emphasis on applications is presented by Ogden (1997) and Vi-
dakovic (1999). The content of the following subsections is taken from this literature.

Wavelet applications take advantage of various nice properties inherent in wavelet trans-
forms (Vidakovic, 1999). Wavelets generate local bases that provide more adaptive and
parsimonious representations of real phenomena with complicated time and frequency
behaviours; wavelets enable sub-band decomposition; wavelets dis-balance energy in
data so that a signal can be well described by only a few energetic components; wavelets
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A.1 Fundamentals of the wavelet transform

whiten data so that time correlated signals become almost uncorrelated in the wavelet
domain; wavelets detect self-similar phenomena by being self-similar themselves.

The choice of a wavelet is not unique. On the contrary, there is a great variety in
commonly used wavelet functions, as different applications make different demands on
the wavelet transform. It would not be reasonable to present an exhaustive list here.
The wavelets used in this study are discrete, bi-orthogonal and two-dimensional.

In the following subsections, wavelets are formally introduced. In order to emphasize the
difference between discrete and continuous wavelets, the continuous form is described
first and then the discrete form is introduced.

A.1.2 Continuous form

The first definitions of wavelets are given in the Fourier domain: A wavelet ψ is a L2( � )
function for which the Fourier transformation Υ satisfies∫ ∞

0

|Υ(tω)|2dt
t

= 1 for almost all ω.

A wavelet has (1) zero mean and (2) compact support, or sufficiently fast decay, to
obtain localisation in space. It is because of these two properties that the function ψ is
called a wavelet. The first property ensures that ψ has a wiggle, and the second ensures
that it is not a sustaining wave.

A wavelet transform of a function f(x) ∈ L2( � ) is defined as the integral transform

Wf(x) =

∫ ∞

−∞
f(u)ψµ,x(u)du µ > 0 (A.1)

with a family of functions

ψµ,x(u) ≡
1√
µ
ψ

(u− x

µ

)

where the functions ψµ,x(u) are wavelets and ψµ,x(u) denotes their complex conjugates.
The function f is mapped from one index x to two indices consisting of the scale pa-
rameter µ and the location parameter x. The wavelets are translates and dilates of the
mother wavelet ψ1,0(u). Changing the value of µ has the effect of dilating or contracting
the mother function and changing the value of x has the effect of changing the position
of the mother function in space. The normalising constant 1√

µ
is chosen so that

∫
| ψµ,x(u) |2 du = 1

for all scales µ.

The integral transform (Eq. A.1) can also be looked upon as convolution of f(u) with the
function ψµ,x(u), and the wavelet transform can be looked upon as a sub-band decom-
position or sub-band filtering operation. Whereas the Fourier transform allows exact
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localisation in frequency and using the Dirac delta function allows exact localisation
in space, the wavelet transform is a compromise between localisation in frequency and
localisation in space. There is a trade-off between the degree of precise localisation in
frequency and precise localisation in space, following Heisenberg’s uncertainty principle.
Wavelets with a relatively precise localisation in space generally have a small support,
so that the localisation in frequency is less precise.

A.1.3 Discrete form and wavelet basis

In the discrete wavelet transform the parameters µ and x are discretised, whereas the
continuous wavelet transform is characterised by continuous parameters µ and x. One
can choose µ = µl

0 and x = mx0 · µl
0 where l and m are integers, x0 > 0 and µ0 > 1 are

fixed translation and dilation steps, respectively. The indices l, m replace the indices
µ, x of the wavelet ψµ,x. Often µ0 = 2 and t0 = 1 are chosen:

ψl,m(x) = 2l/2ψ(2lx−m) l, m ∈ � .

Discrete wavelet transforms can be constructed so as to constitute a basis of L2( � ).
They give a non-redundant representation of a function f without loss of information.
Non-redundant transforms are more efficient and parsimonious, whereas redundant rep-
resentations are more robust to noise and can give representations close to the continuous
case.

A.2 (Bi-)orthogonal wavelets and multiresolution

analysis

If a discrete wavelet basis satisfies certain conditions, it qualifies as a wavelet frame, as
bi-orthogonal or even orthogonal. Bi-orthogonal and orthogonal wavelet transforms offer
an elegant key to multiresolution analysis (MRA). The framework of MRA allows for
an especially parsimonious representation of data so that only few components achieve
a good description of the signal.

A family of closed subspaces Vl ⊂ L2( � ), l ∈ � is called a dyadic multiresolution analysis
(e. g. Madych, 1992; Jawerth and Sweldens, 1994) if

∀l ∈ � : Vl ⊂ Vl+1, (A.2)

lim
l→∞

Vl =
⋃

l∈ �
Vl = L2( � ), (A.3)

lim
l→−∞

Vl =
⋂

l∈ �
Vl = {0}, (A.4)

f(x) ∈ Vl ⇔ f(2x) ∈ Vl+1, l ∈ � (scale invariance), (A.5)
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A.3 The two-dimensional counterpart

f(x) ∈ V0 ⇔ f(x+m) ∈ V0, m ∈ � (shift invariance), (A.6)

∃φ(x) ∈ V0 : {φ(x−m)}m∈ � is a Riesz basis for V0. (A.7)

The MRA framework is neither unique nor arbitrary; several multiresolution frameworks
can be constructed. Projecting a given function f into a subspace Vl is like using a
telescope: every time we proceed to a finer scale l + 1, we add more details to the
approximation. Furthermore, we look with the same eyes at all scales (Eq. A.5) and in
all directions (Eq. A.6).

The function φ(x) is commonly referred to as the scaling function and defines the original
space V0. The scaled versions Vl of the original space V0 can be expressed by

Vl = span{φl,m|m ∈ � }

where φl,m = 2l/2φ(2l −m). The function φ is also called father wavelet.

In practice, the scaling function φ itself is generally not used for constructing the sub-
spaces Vl or projecting a given function f into a subspace Vl. Instead, orthogonal or
bi-orthogonal wavelet transforms are used, as they are also directly related to MRA. Ev-
ery approximation space Vl+1 can be written as the sum of a coarser approximation Vl

and a detail space Ol given by the (bi-)orthogonal wavelets ψl,m (m ∈ � ).

Vl+1 = Vl +Ol with Ol = span{ψl,m|m ∈ � }.

If orthogonal wavelets ψl,m are chosen, the detail space Ol and the approximation space Vl

are even orthogonal. However, under the orthogonal wavelet multiresolution framework
the only real and compactly supported symmetric or antisymmetric wavelet is the Haar
wavelet. The generalisation to bi-orthogonal wavelets has been considered to allow for
more flexibility when smoother wavelets or wavelets with better frequency localisation
are needed. Bi-orthogonal wavelets consist of two sets of wavelets, of which one set
is used for decomposition and the other set is used for reconstruction of a function f
(Cohen, 1992).

A.3 The two-dimensional counterpart

Now consider a two-dimensional function that is square integrable over the real plane:
f(x, y) ∈ L2( � 2). The simplest way of constructing a wavelet basis for L2( � 2) is to take
the simple product of two uni-dimensional wavelets:

Ψl1,l2,m1,m2
(x, y) = ψl1,m1

(x) · ψl2,m2
(y).
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This approach does not retain the nice features of two-dimensional multiresolution anal-
ysis, though. A two-dimensional multiresolution analysis is defined through six proper-
ties that are analogue to those above, but the one-dimensional spaces Vl ⊂ L2( � ) are
replaced by two-dimensional subspaces V l ⊂ L2( � 2):

∀l ∈ � : V l ⊂ V l+1,

lim
l→∞

V l =
⋃

l∈ �
V l = L2( � 2),

lim
l→−∞

V l =
⋂

l∈ �
V l = {0},

f(x, y) ∈ V l ⇔ f(2x, 2y) ∈ V l+1, l ∈ � (scale invariance),

f(x, y) ∈ V 0 ⇔ f(x+m1, y +m2) ∈ V 0, m1, m2 ∈ � (shift invariance),

∃Φ(x, y) ∈ V 0 : {Φ(x−m1, y −m2)}m1,m2∈ � is a Riesz basis for V 0.

Note that the two-dimensional multiresolution analysis involves two translation in-
dices m1, m2, but allows only a single dilation index l.

Two-dimensional wavelet functions are sought that fit into the two-dimensional mul-
tiresolution framework. The wavelet functions should span the two-dimensional detail
spaces Ol:

V l+1 = V l + Ol.

Let us extend the one-dimensional case to the two-dimensional case by defining the
two-dimensional space V 0 as the tensor product of two one-dimensional spaces:

V 0 = V0 ⊗ V0 = span{f(x)g(y), f, g ∈ V0}
and define V l = Vl ⊗ Vl for any l. Also, define the two-dimensional scaling func-
tion Φ(x, y) ≡ φ(x)φ(y). This set of subspaces inherits the two-dimensional versions
of the multiresolution analysis properties. Breaking down the two-dimensional sub-
space V l+1 into its one-dimensional parts gives insight into the nature of the two-
dimensional detail space W j:

V l+1 = Vl ⊗ Vl

= (Vl +Wl) ⊗ (Vl +Wl)

= Vl ⊗ Vl +
(
(Vl ⊗Wl) + (Wl ⊗ Vl) + (Wl ⊗Wl)

)

= V l + W l.

It can be seen that the detail space W l is made up of three subspaces. Bases for these
three sub-detail spaces are the corresponding tensor products of their components, so
define the following two-dimensional wavelets:

Ψh(x, y) = φ(x, y)ψ(x, y)

Ψv(x, y) = ψ(x, y)φ(x, y)

Ψd(x, y) = ψ(x, y)ψ(x, y).
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They fit the two-dimensional multiresolution framework by satisfying

W l = span{Ψh
l,m1,m2

(x, y),Ψv
l,m1,m2

(x, y),Ψd
l,m1,m2

(x, y)|m1, m2 ∈ � }
where

Ψ×
l,m1,m2

(x, y) = 2lΨ×(2lx−m1, 2
ly −m2) and × = h, v, d.

Note that the two-dimensional case exhibits several mother wavelets instead of only
one. They correspond to specific spatial orientations. As already indicated by the
upper indices, the wavelet Ψh corresponds to the horizontal direction, the wavelet Ψv

corresponds to the vertical direction and the wavelet Ψd corresponds to the diagonal
direction. The wavelet transform acts like spatially oriented frequency channels.

A.4 Constructing the wavelet transform: Lifting

scheme

A.4.1 Introductory remarks and motivation

In this study, the lifting scheme (Sweldens, 1997) is chosen among the various techniques
to construct wavelet bases. The original motivation for developing the lifting scheme in
the 1990’s was to build second generation wavelets, i. e. wavelets adapted to situations
where Fourier techniques are no longer available, for example in non-Euclidean spaces.
A construction using the lifting scheme is entirely spatial. It is a simple and fast scale-
by-scale transform. The lifting scheme is not confined to constructing second generation
wavelets; it also provides a framework for the construction of first generation wavelets,
which are all translates and dilates of one or a few basic shapes. When putting the
transformation algorithm in the wavelet framework, it turns out to correspond to the
moment-preserving, bi-orthogonal CDF(2,2) wavelet transform of Cohen et al. (1992)
which was originally constructed using Fourier arguments.

With regard to this study, the lifting scheme has the following advantages:

• The wavelets are directly defined on a spatial lattice, so discretisation is unneces-
sary.

• The original function can be perfectly reconstructed.

• There are no artefacts at the boundaries of a bounded domain.

• The wavelet transform is very efficient in terms of computing time and memory.

A.4.2 One-dimensional case

Sweldens (1996) briefly describes the one-dimensional version of the two-dimensional
wavelet transform algorithm that is used in this study. Consider a function f(x) defined
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Figure A.1: The wavelet coefficient is the failure to be linear (after Sweldens, 1996).

on 2n + 1 equidistant grid points. Its values at the grid points m = 0, . . . , 2n are denoted
as λ0,m := f(m). The lifting scheme consists of three steps: split, predict and update.

Split The signal is split into two disjoint sets of samples. One set contains the values λ0,m

at the odd indexed grid points m and the other set contains the values λ0,m at the
even indexed grid points m and is defined as follows

λ−1,m := λ0,2m for m = 0, . . . , 2n−1.

Predict If the signal has a local correlation structure, then λ0,2m+1 will be approximated
by the mean of its neighbours λ−1,m and λ−1,m+1. The difference between the
original value λ0,2m+1 and its approximation is contained in the wavelet coefficient

γ−1,m := λ0,2m+1 −
1

2
(λ−1,m + λ−1,m+1) for m = 0, . . . , 2n−1.

The wavelet coefficient contains the information to predict the odd set using the
even set. They measure to which degree the original function is a piecewise linear
function (Fig. A.1). In terms of frequency channels the wavelet coefficients γ−1,m

represent high frequencies, whereas {λ−1,m} represent low frequencies.

Update One could imagine to continue by iterating the two steps above: Starting from
{λ−1,m} one could find the values {λ−2,m} and {γ−2,m} on the next level −2 and so
on. The iteration terminates when the coarsest level −n has been reached. How-
ever, this procedure introduces considerable aliasing. We would like the average of
the coefficients {λl,m} to be the same on each level:

∑
m λl−1,m = 1

2

∑
m λl,m for all

l = 0, . . . ,−n. In order to ensure this, a third step is introduced: update or lifting
the λ−1,m with the help of the wavelet coefficients γ−1,m:

λ̃−1,m = λ−1,m +
1

4
(γ−1,m−1 + γ−1,m).
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ψ-1,1 ψ-1,2 ψ-1,3 ψ-1,4 ψ-1,5 ψ-1,6 ψ-1,7 ψ-1,8

ψ-2,4ψ-2,3ψ-2,2ψ-2,1

ψ-3,1

ψ-4,1

ψ-3,2

Figure A.2: Bi-orthogonal wavelet basis constructed by the lifting scheme with n = 4
(after Gerstner, 1998).

The inverse transform can immediately be found by inverting the operations above:
(1) undo update by sign inversion, (2) undo predict by adding in the failure to be linear,
(3) then merge the even and odd samples.

When the lifting scheme is put into the wavelet framework, the corresponding wavelet
basis functions ψl,m can be identified. Fig. A.2 shows the wavelet basis functions per-
taining to a function that is defined on 24 + 1 equidistant grid points. The interior
wavelet functions φl,m (l = −1,−2) (m = 2, . . . , 2n+l − 1) are translates and dilates of
one mother wavelet.

The boundary wavelets illustrate the boundary handling of the lifting scheme. As the
function is defined on a bounded domain, the conventional update step sometimes in-
terferes with a boundary. In such a case the update step is modified and yields modified
wavelet functions near the boundary of the domain (Fig. A.2). The modification is con-
structed in way that preserves the first moment of the function in every approximation
space.

A.4.3 Two-dimensional case

The transformation algorithm can be generalised to a two-dimensional function
f(m1, m2) defined on a finite number of equidistant grid points {0, . . . , 2n}×{0, . . . , 2n}.
While the location index m of the wavelet coefficients γ is extended to the horizontal lo-
cation index m1 and the vertical location index m2, there is still only one level index l.

The three steps of the lifting scheme are carried out in a similar manner as in the one-
dimensional case. The splitting step becomes more complex and in the prediction and
update step the horizontal, vertical and diagonal directions are considered separately.
In the following paragraph, the first iteration step is described.
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Split The signal λ0,m1,m2
≡ f(m1, m2) is split into four disjoint sets of samples. The even

set contains the values {λ0,2m1,2m2
|(m1, m2 = 0, . . . , 2n−1}, the odd set contains the

values {λ0,2m1+1,2m2+1} and the two mixed sets contain the values {λ0,2m1+1,m2
} and

{λ0,2m1,m2+1}, respectively. The even set is renamed as follows

λ−1,m1,m2
:= λ0,2m1,2m2

and is carried over to the next iteration whereas the two mixed sets and the odd
set are replaced by the wavelet coefficients γh, γv, γd. The upper indices refer to
the horizontal, vertical and diagonal directions, respectively.

Predict (horizontally) If the signal has a local correlation structure, the elements of
the odd set and the two mixed sets will be approximated by the mean of its
neighbours. The two mixed sets will be approximated by the mean of their two
horizontal neighbours and two vertical neighbours, respectively, and the odd set
will be approximated by the mean of two opposite diagonal members (Fig. A.3).
Let us first consider the horizontal approximation of the mixed set {λ0,2m1+1,2m2

}.
The difference between the original value and its approximation is contained in
the wavelet coefficient

γh
−1,m1,m2

= λ0,2m1+1,2m2
− 1

2
(λ−1,m1,m2

+ λ−1,m1+1,m2
)

for m1 = 0, . . . , 2n−1 − 1 and m2 = 0, . . . , 2n−1.

Predict (vertically) The other mixed set {λ0,2m1,2m2+1} is vertically approximated so
that the corresponding wavelet coefficient is

γv
−1,m1,m2

= λ0,2m1,2m2+1 −
1

2
(λ−1,m1,m2

+ λ−1,m1,m2+1)

for m1 = 0, . . . , 2n−1 and m2 = 0, . . . , 2n−1 − 1.

Update (horizontally and vertically) Again, the average of the coefficients {λl,m1,m2
}

are preserved on each level:
∑

m1

∑
m2
λl−1,m1,m2

= 1
4

∑
m1

∑
m2
λl,m1,m2

for all
l = 0, . . . ,−n. Both the elements of the even set {λ−1,m1,m2

} and the elements
of the odd set {λ0,2m1+1,2m2+1} are lifted with the help of the wavelet coefficients
from the two mixed sets:

λ̃−1,m1,m2
= λ−1,m1,m2

+ 1
12

(
γv
−1,m1,m2−1 + γv

−1,m1,m2

+ γh
−1,m1−1,m2

+ γh
−1,m1,m2

)

λ̃0,2m1+1,2m2+1 = λ0,2m1+1,2m2+1 + 1
12

(
γh
−1,m1,m2

+ γh
−1,m1,m2+1

+ γv
−1,m1,m2

+ γv
−1,m1+1,m2

)
.

Predict (diagonally) Before heading on to the next iteration step on level −2, the
odd set {λ0,2m1+1,2m2+1} is also expressed in terms of wavelet coefficients. The
λ0,2m1+1,2m2+1 is approximated by the mean of two opposite diagonal neighbours;
the pair is chosen out of two possibilities and the choice is based on the position m1,
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A.4 Constructing the wavelet transform: Lifting scheme

Figure A.3: Schematic illustration of the lifting scheme on a two-dimensional grid of
(23 + 1) × (23 + 1) grid points. Left: The first iteration. Right: The second
iteration. The first iteration (left) derives wavelet coefficients γ at the loca-
tions of the odd set and the two mixed sets (marked by ·). The coefficients
are the differences between the original function value and its linear inter-
polation of those two neighbours that are connected by the dashed line. The
function values λ of the even set (marked by �) are lifted and carried over
to the next iteration step. The second iteration (right) starts from the even
set of the first iteration. Again, the set is split into an even set (marked by
the double circle), an odd set and two mixed sets (marked by �). Wavelet
coefficients are derived for the locations � by linear interpolation of the two
neighbours that are connected by the dashed line. The values of the even set
(marked by the double circle) are lifted and carried over to the next iteration
step.
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m2 of λ0,2m1+1,2m2+1. If (m1 +m2) ∈ {2h|h = 0, . . . , 2n−1} the difference between
the original value and its approximation is contained in the wavelet coefficient

γd
−1,m1,m2

= λ̃0,2m1+1,2m2+1 −
1

2
(λ̃−1,m1,m2

+ λ̃−1,m1+1,m2+1)

and if (m1 +m2) ∈ {2h+ 1|h = 0, . . . , 2n−1 − 1} the difference is contained in the
wavelet coefficient

γd
−1,m1,m2

= λ̃0,2m1+1,2m2+1 −
1

2
(λ̃−1,m1,m2+1 + λ̃−1,m1+1,m2

)

for m1 = 0, . . . , 2n−1 − 1 and m2 = 0, . . . , 2n−1 − 1.

Update (diagonally) The λ̃−1,m1,m2
are lifted with the help of the wavelet coefficients

from the odd set:

˜̃λ−1,m1,m2
= λ̃−1,m1,m2

+ 1
12

(
γd
−1,m1−1,m2−1 + γd

−1,m1−1,m2

+ γd
−1,m1,m2−1 + γd

−1,m1,m2

)
.

The steps split, predict, update are iterated to coarser levels l < 0 until the level −n
has been reached. The grid spacing in the prediction and update steps is increased to
2−(l+1) (l < 0) in each iteration (cf. Fig. A.3).

When the lifting scheme is put into the wavelet framework, the corresponding two-
dimensional wavelet functions are equivalent to the k-disc wavelet with k = 1 (Stollnitz
et al., 1996). Four mother wavelets can be identified, representing the horizontal, the
vertical and the two diagonal directions, respectively. All interior wavelet functions
are translates and dilates of one of these four mother wavelets. Each mother wavelet
resembles the function in Fig. A.4. The horizontal and vertical mother wavelets are
rotated by 90◦, respectively, and the diagonal wavelets are rotated by 45◦ and dilated
by a factor of

√
2. Due to the various update steps in the lifting scheme, the mother

wavelet has a hexagonal support.
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Figure A.4: One of the mother functions of the wavelet basis, resulting from the two-
dimensional lifting scheme.
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B Translation-invariant wavelet
smoothing

B.1 Illustration of the problem

The resulting wavelet estimate at a specific location considerably depends on grid details
which are determined by the particular choice of the reduced fraction of the domain.
The reduced section is required to contain (2n + 1) × (2n + 1) grid points (cf. Subsec-
tion 5.2.2). If the detailed choice of this section is made in an arbitrary way the resulting
estimate is also arbitrary to a certain extent.

B.1.1 Effect of choosing the origin

Before the wavelet smoothing procedure (Fig. 5.1) is started, a fraction of the LM
domain is selected which contains (2n + 1) × (2n + 1) grid points (cf. Section 5.2).
The reduced domain is chosen to be as large as possible, i. e. the parameter n sat-
isfies (2n + 1) ≤ min(Nx, Ny) < (2n+1 + 1) if the size of the original LM domain is
Nx ×Ny grid points. The position of the reduced domain within the original domain
is determined by the co-ordinates of the south-western corner point of the reduced
domain. This point is also referred to as the origin (is, js). There is a number of
(Nx − 2n) · (Ny − 2n) possibilities to position the origin (cf. Fig. B.1).

At first glance, the a priori choice of origin seems to be irrelevant. However, the following
example illustrates that the choice of origin can have a surprisingly large effect on the
post-processed forecast. Fig. B.2 is a result of curtailing the two finest levels according
to Eq. 5.1 with lcurtail = −2. The post-processing procedure is the same than the one
leading to Fig. 5.8, except for the choice of origin. The origins differ by a westward shift
by one grid point and northward shift by one grid point. The shifted origin does not just
result in a shifted version of the post-processed forecast, but appears to affect the entire
post-processing procedure and also the resulting wavelet estimator of the expected value
(cf. Fig. 5.8 and Fig. B.2).

Note that the choice of origin does not necessarily have a larger effect when the distance
of the shift is increased. For example, a northward shift by eight grid points does not have
any effect and the post-processed forecast is indeed just a shifted version of Fig. 5.8.
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Figure B.1: Position of the reduced domain within the original domain. The original
domain comprises Nx ×Ny grid points and the reduced domain comprises
(2n + 1) × (2n + 1) grid points. The position of the reduced domain is deter-
mined by the co-ordinates (is, js) of the origin, i. e. the south-western corner
point of the reduced domain. The origin is marked by the symbol �.

Dealing with the effect of origin calls for some additional notation. The original forecast
is still denoted zij where the indices i = 1, . . . , Nx, j = 1, . . . , Ny still refer to the original
LM domain. A forecast field that has been reduced to a size of (2n+1)×(2n +1) and has
been post-processed by wavelet smoothing is now denoted as z̃i′j′ where the indices i′j ′

refer to the co-ordinates of the reduced field: i′ = 0, . . . , 2n, j ′ = 0, . . . , 2n. Furthermore,
the post-processed field z̃i′j′ is a function of the choice of origin: z̃i′j′(is, js). The origin is
represented by its spatial co-ordinates is = 0, . . . , (Nx−2n−1), js = 0, . . . , (Ny −2n−1)
(cf. Fig. B.1). The post-processed forecast z̃i′j′(isjs) is an estimator of the expected
value µij where the indices of µ refer to the original LM domain and are calculated from
i = i′ + is + 1, j = j ′ + js + 1.

At one and the same geographical location i = (i′+ is +1), j = (j ′+js +1) the smoothed
forecasts z̃i′,j′(is, js) can differ considerably for different choices of shifts is, js. As the
choice of origin is arbitrary, the wavelet estimator of the expected value µij is far from
robust. Ways must be found how to discover the best choice of origin or how to combine
different choices of origin. In order to achieve this, the role of the origin in wavelet
smoothing must be understood first.
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B Translation-invariant wavelet smoothing

Figure B.2: Post-processed forecast from a slightly shifted version of the original precip-
itation forecast in Fig. 5.4. Unit: mm. Reconstruction after curtailing the
two finest levels. The full domain of the post-processed forecast comprises
257× 257 grid points; here a section of 165× 165 grid points is shown which
is the same as the section shown in Fig. 5.8.

B.1.2 How does the effect come about?

The effect of a shifted origin is due to the dependence of the wavelet transform on the
lattice. The lifting scheme introduces a hierarchy to the points of the lattice (cf. Fig. A.3).
Positioning the lattice defines the rank of a certain grid point within the hierarchy. The
choice of origin determines whether a certain grid point belongs to the even set, to the
odd set or to a mixed set in the splitting operation of the lifting scheme (cf. Appendix A).
For example, if wavelet smoothing consists in curtailing the finest level, members of the
odd set and the mixed sets will be replaced by their predicted values, whereas members
of the even set will merely be lifted (cf. Appendix A).

The dependence of the wavelet transform on the choice of origin has been taken up in
the literature, initially in the context of first-generation wavelets. Coifman and Donoho
(1995) state that wavelet denoising of finite data sets exhibits pseudo-Gibbs phenomena
because of unfortunate mis-alignments between features in the signal and features in the
wavelet basis.
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B.2 Solution of the problem: Averaging shifts

B.2.1 General methodology

Optimisation with respect to shifts of the origin is not possible in general situations
(Coifman and Donoho, 1995). Therefore, different smoothing results due to different
shifts can be seen as equally valid. Coifman and Donoho (1995) suggest to apply a
range of shifts, and average over the several results so obtained (Fig. 5.10):

z̃invar
ij =

1

|O|
∑

(is,js)∈O

z̃i′j′(is, js) (B.1)

where the indices i′, j ′ of the reduced domain satisfy

i′ = (i− is − 1) and j ′ = (j − js − 1)

so that they refer to the same geographical location than the point (i, j) within the
original LM domain (cf. Fig. B.1). The range of different origins (is, js) is given by the
set O. The set O must satisfy

O ⊆
{

(is, js)
∣∣∣(is, js) ∈ {1, . . . , Nx − 2n} × {1, . . . , Ny − 2n}

}
(B.2)

so that the shifted reduced domain does not extend outward beyond the boundaries of
the original domain. The number of elements in O is denoted by |O|. The averaged
field z̃invar

ij (Eq. B.1) is only derived for those points (i, j) that are contained in each of
the shifted reduced domains:

(i, j) ∈
⋂

(is,js)∈O

{
(i′ + is + 1, j ′ + js + 1)

∣∣∣(i′, j ′) ∈ {0, . . . , 2n} × {0, . . . , 2n}
}
. (B.3)

The approach of averaging shifts is also called translation-invariant wavelet denoising
(Coifman and Donoho, 1995); that is why the resulting field z̃ invar

ij is denoted by the
upper index invar. The post-processed field z̃invar

ij is expected to yield a more robust
wavelet estimator of the expected value µij.

B.2.2 Optimum range of shifts

Even if the set O satisfies Eq. B.2, it is not necessarily the optimum choice for the
derivation of the averaged field z̃invar

ij (Eq. B.1). In the following, an optimum range of
shifts is sought.
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Criteria of optimality

On the one hand, the range of shifts O should be large enough to cover all possible
outcomes of wavelet smoothing which are due to the dependence of the wavelet transform
on the lattice. On the other hand, the range of shifts should be as small as possible in
order to minimise the increase in computational effort and to maximise the number
of points contained in each of the shifted domains. Every additional shift reduces the
number of points (i, j) that belong to the overlap of the applied shifts (cf. Eq. B.3) and
that can be averaged to the translation-invariant estimator z̃ invar

ij (Eq. B.1).

Redundancy in the outcome of different shifts

As already indicated in Subsection B.1.1 there is a redundancy in the outcome of different
shifts. The redundancy occurs if wavelet coefficients of coarse levels remain untouched in
the curtailing step of wavelet post-processing. Let us assume that only coefficients of the
finest level are modified. Then the curtailing step of the wavelet smoothing procedure
only affects those wavelet coefficients that are calculated in the first iteration step of
the transformation algorithm. The role of the lattice within the first iteration step is
illustrated by Fig. A.3. When the lattice is horizontally shifted by four grid points,
the transformation algorithm treats the respective grid points in an identical way again.
The same is true for vertical shifts by four grid points and diagonal shifts by two grid
points.

A non-redundant range of shifts

Redundancy comes to the rescue when trying to limit the number of shifts in O. Let
us assume that wavelet coefficients of levels coarser than lmod (lmod ∈ {−n + 1, . . . ,−1})
are not modified in the smoothing procedure. Then any range of shifts

Ononred(ia, ja) ={
(is, js)

∣∣(is, js) ∈ {ia, . . . , ia + 2−lmod+1 − 1} × {ja, . . . , ja + 2−lmod − 1}
}

ia, ja ∈ �
0

(B.4)

that still fits into the allowed range (Eq. B.2) yields a non-redundant set of smoothed
values z̃ij(is, js). The set is complete, in the sense that it attains the full range of possible
values z̃ij(is, js) that may occur due to different shifts. The point (ia, ja) provides an
arbitrary spatial offset for the shifts (cf. Fig. B.3).

The number of shifts in Ononred(ia, ja) is

|Ononred(ia, ja)| = 2−2lmod+1.

The overlap of the shifted domains is a rectangular field with side lengths that consist of
(2n + 1) − (2−lmod+1 − 1) grid points and (2n + 1) − (2−lmod − 1) grid points, respectively.

220



B.2 Solution of the problem: Averaging shifts

2  +1n

ia

a

N

N

y

x

j

n2  +1

Figure B.3: A range of shifts that yields a non-redundant set of smoothed values z̃ij(is, js)
according to Eq. B.4. The set is complete, in the sense that it attains the
full range of possible values z̃ij(is, js) that may occur due to different shifts.
The point (ia, ja) provides an arbitrary spatial offset for the shifts.

The lower left corner point of the overlap is situated at (ia + 2−lmod+1 − 1, ja + 2−lmod − 1)
(cf. Fig. B.3). When applying the range of shifts Ononred(ia, ja) to Eq. B.1, the
translation-invariant estimator z̃invar

ij can be derived for locations within this overlap.

If the size parameter n of the reduced domain is chosen to be as large as possible
(i. e. (2n + 1) ≤ min(Nx, Ny) < (2n+1 + 1)) there is a possibility that some of the shifts
in Ononred(ia, ja) (Eq. B.4) do not fit into the allowed range of the original domain
(cf. Eq. B.2). There might not be enough space between the boundaries of the orig-
inal field Nx ×Ny and the reduced field (2n + 1) × (2n + 1) for shifting the reduced
field around (cf. Fig. B.3). This case becomes more likely the coarser the level lmod.
This study circumvented the case by choosing a reduced field that is four times smaller
than the maximum size possible. Then the size parameter n satisfies the condition
(2n+1 + 1) ≤ min(Nx, Ny) < (2n+2 + 1).

An alternative with less computational costs

In practice, the number |Ononred(ia, ja)| of shifts might still turn out prohibitively large.
For example, there is already a number of 32 shifts in Ononred(ia, ja) if only the two
finest levels are modified and there is a number of 128 shifts if the three finest levels are
modified.
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B Translation-invariant wavelet smoothing

If all shifts in Ononred(ia, ja) are applied, the computational cost of the post-processing
procedure will rise substantially and the translation-invariant estimator z̃ invar

ij will be
derived at a smaller number of points (i, j). Computational efficiency had been one of
the decisive advantages of wavelet smoothing and is in danger of getting lost now.

As a remedy it is suggested to randomly select only a few shifts from Ononred(ia, ja),
derive the respective smoothed fields z̃i′j′ and take their average. This still contributes
to increased robustness of the estimate while keeping the computational effort within
the bounds of feasibility.

B.3 Is there a relation between shift variability and
forecast uncertainty?

As different smoothing results due to different shifts are treated as equally valid, they
might be able to serve as a means to synthesize noise and derive an estimate of forecast
uncertainty εij (Eq. 4.6) in addition to the estimate of the expected value µij. Does the
variability within the set of smoothed forecasts estimate anything?

B.3.1 Is there an equivalence?

Let us first clarify that the variability between the differently shifted smoothed forecasts
is not a direct estimator of forecast uncertainty, because the set of smoothed forecasts
is not a sample of the forecast itself. This becomes obvious when the set of smoothed
forecasts is juxtaposed with an existing realisation of the forecast, namely the original
non-smoothed forecast. The non-smoothed forecast remarkably sticks out of the set
of smoothed forecasts which illustrates the fact that they do not belong to the same
sample.

Equivalently, neither the differences between the shifted smoothed forecasts and the
original non-smoothed forecast are suitable for a direct estimate of forecast uncertainty.
The variability between those differences is exactly the same as the variability between
the smoothed forecasts themselves.

B.3.2 Is there a proportionality?

If at all, it is more conceivable to treat the differently shifted smoothed forecasts as iid
realisations of the expected value estimator. This would be of interest if the variance
between different realisations of the estimator were associated with the unknown variance
between different forecast realisations, i. e. forecast uncertainty or noise. For example,
such an association exists in case of the maximum-likelihood estimator of the expected
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B.3 Is there a relation between shift variability and forecast uncertainty?

Figure B.4: Square root σ̂shift
ij of the estimated variability between resulting estimates

(Eq. B.5) when the whole range of different shifts is applied. Unit: mm.
The two finest levels are curtailed in the smoothing procedure. Fig. 5.8 and
B.2 are two examples of estimates that contribute to the variability estimate.

value (cf. Eq. 4.3) which indeed possesses a variance proportional to the variance of the
realisations themselves.

Let us start with a visual inspection of the variability between the estimates that orig-
inate from differently shifted smoothing procedures. The square root of the variability
between those estimates is expressed by the term

σ̂shift
ij =

√
1

|O|
∑

(is,js)∈O

(
z̃ij(is, js) − z̃invar

ij

)2
. (B.5)

Fig. B.4 shows an example of the variability between the resulting estimates when the
whole range of possible shifts is applied. Fig. 5.8 and B.2 are two examples of estimates
that contribute to the variability estimate in Fig. B.4.

The spatial structures of the variability field indeed bear some similarities to those of the
neighbourhood and the ensemble estimators of forecast uncertainty. It seems as if the
variability between differently shifted smoothing results would only have to be inflated
by some factor until it could be interpreted in terms of forecast noise.
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B Translation-invariant wavelet smoothing

However, the existence and optimal choice of such an inflation factor is closely tied to
some fundamental questions that have not been answered yet. First, it is doubtful that
the differently shifted smoothed forecasts can be viewed as iid realisations. Secondly, it is
not clear whether the differently shifted smoothed forecasts really cover the phase space
we seek information about. For example, unlike the maximum-likelihood estimator, the
wavelet estimator may also be afflicted with a bias. The bias is not necessarily the same
for each shift so that the variability between differently shifted smoothed forecasts may
not only reflect forecast uncertainty, but also the difference between systematic errors of
different estimators. Furthermore, smoothed forecasts might not be independent because
every smoothed forecast is derived from the same forecast and via the same principle of
smoothing.

These issues must be tackled first in order to arrive at a statistically sound interpretation
of the inflated variability field. For the time being, the questions above and the statis-
tical interpretation of the inflated variability field are set aside and remain for future
investigations.

224



C Measures in forecast verification

C.1 Overview

This appendix briefly explains some measures in objective forecast verification. Only a
few aspects are highlighted here, just as much as is required to understand the measures
used in the verification sections of this report. For a more extensive review see Stanski
et al. (1989) or Wilks (1995), for example.

Forecast goodness can be divided into three types: consistency, quality and value (Mur-
phy, 1993). Consistency is the correspondence between forecasters’ judgments and their
forecasts; quality is the correspondence between the forecasts and the respective obser-
vations; value is the benefit gained by decision makers through the use of the forecasts.
Whereas consistency is difficult to measure objectively, objective measures of quality and
value exist. Sections C.2 and C.3 deal with measures of forecast quality and Section C.4
deals with measures of forecast value.

Furthermore, forecasts can be categorised into categorical forecasts and probability fore-
casts. A categorical forecast consists of a flat statement that one and only one of a set
of possible events will occur. Probability forecasts contain an expression of uncertainty,
in distinction to categorical forecasts.

Probability forecasts can be formulated for continuous predictands and discrete predic-
tands. In case of discrete predictands, the set of possible events is finite. The probability
forecast ranges from 0 to 1, with 0 for a certain “no” and 1 for a certain “yes”. The ex-
ceedance probability is a probability forecast for a predictand that has been discretised
beforehand.

Probability forecasts for continuous predictands can be formulated by quantiles. The
quantile specifies the value for which there is a probability p that the corresponding
observation will be less than this value.

Different measures of quality are used, depending on whether the forecast is a cate-
gorical or a probability forecast and whether the predictand is discrete or continuous.
Section C.2 deals with quality measures for categorical forecasts and Section C.3 deals
with quality measures for probability forecasts. The measure of forecast value in Sec-
tion C.4 can be applied to both types of forecasts.
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C Measures in forecast verification

Table C.1: Two-by-two contingency table for forecast and occurrence of binary events.
The numbers of cases in the different categories are denoted a, b, c and d.

Observed
Yes No

Forecast Yes a b
Forecast No c d

C.2 Quality of categorical forecasts

Different quality measures of categorical forecasts are used, depending on the set of
possible events. The set of possible events may either comprise all values on a relevant
portion of the real line (continuous predictand) or a finite set of possible events (discrete
predictand). If the finite set consists of only two events, i. e. “yes” or “no”, the predic-
tand is dichotomous. First, forecasts of dichotomous predictands are considered, then
forecasts of continuous predictands.

C.2.1 Forecasts of dichotomous predictands

Quality measures of a dichotomous forecast are usually derived from the contingency
table (Tab. C.1). Some of the common measures of forecast quality are the probability
of detection (POD), the false alarm rate (FAR), the frequency bias (FBI), the equitable
threat score (ETS) and the logarithm of the odds ratio (LOR).

The POD (Wilks, 1995) only looks in cases where the event was observed and relates the
number of correct forecasts to the total number of observed events. That is, the POD
is the conditional probability that the event would be forecast, given that it occurs. It
is computed as

POD =
a

a + c
.

The FAR only looks in cases where the event was forecast and relates the number of false
alarms to the total number of forecasts. That is, the FAR is the conditional probability
of a false alarm, given that the event is forecast. The FAR is defined as

FAR =
b

a + b
.

The frequency bias or bias ratio (Wilks, 1995) does not represent a conditional proba-
bility. It is defined as the ratio of “yes” forecasts to the number of “yes” observations:

FBI =
a + b

a+ c
.
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C.2 Quality of categorical forecasts

The equitable threat score is similar to the threat score (Wilks, 1995), but accounts for
forecasts that verify by chance. It is defined as

ETS =
a− achance

a+ b + c− achance

where achance is the number of hits which would be achieved by a random forecast:

achance =
(a+ b) · (a + c)

a+ b + c+ d
.

The odds ratio is defined as the ratio of the odds of making a good forecast (a hit) to the
odds of making a bad forecast (a false alarm) (Stephenson, 2000). It can be expressed
by the “cross-product-ratio”:

OR =
ad

bc
.

The logarithm of the odds ratio (LOR) ranges from zero to infinity. It is equal to zero
when the forecasts and the observations are independent. The log odds ratio can easily
be tested for statistical significance, because it is asymptotically Gaussian distributed
with a variance of (1/a+ 1/b+ 1/c+ 1/d) (Stephenson, 2000).

It should be noted that the odds ratio benefits from a large frequency bias. In order to
correct for this misleading effect a bias-corrected odds ratio OR(BC) is defined:

OR(BC) =
a ′d ′

b ′c ′

where the numbers from the contingency table are modified so that the forecast has zero
frequency bias:

a ′ = a− αa c ′ = c+ αa b ′ = b− αb d ′ = d+ αb.

The correction parameter α is defined as

α =
b− c

a+ b
.

C.2.2 Forecasts of continuous predictands

Some measures of categorical forecast quality are the root mean squared error (rmse), the
mean absolute error (mae), the bias (bias) and the correlation (corr) between forecasts
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and observations. The measures are defined as

rmse =

√√√√ 1

N

N∑

i=1

(yi − oi)2

mae =
1

N

N∑

i=1

|yi − oi|

bias =
1

N

N∑

i=1

(yi − oi)

corr =
1

(N − 1)

∑N
i=1(yi − y)(oi − o)

stdv_fc stdv_obs

where N is the number of observations, oi are the observations, yi the corresponding
forecasts and the overline denotes the mean. The standard deviation of the forecast
data (stdv_fc) and the standard deviation of the observational data (stdv_obs) are
defined as:

stdv_fc =

√√√√ 1

N − 1

N∑

i=1

(yi − y)2

stdv_obs =

√√√√ 1

N − 1

N∑

i=1

(oi − o)2.

The root mean squared error rmse is related to the bias, the standard deviation of
the forecast data, the standard deviation of the observational data and the correlation
between observational data and forecast data:

(rmse)2 = (bias)2 + (stdv_fc)2 + (stdv_obs)2 − 2 (stdv_fc) · (stdv_obs) · corr. (C.1)

The standard deviation of the observational data stdv_obs is independent of the forecast.
An improved rmse can be exclusively achieved through a reduction in stdv_fc which does
not necessarily imply a true improvement in forecast quality (Taylor, 2001). Therefore,
it is important to keep an eye on stdv_fc when the rmse is interpreted.

The skill relates the root mean squared error to a reference forecast and the perfect
forecast:

skill =
rmse − rmsereference

rmseperfect − rmsereference

Positive skill indicates that the forecast under investigation is more accurate than the
reference forecast. When the skill is related to the direct model output of the single
unperturbed LM simulation, it is denoted skill_DMO.
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C.3 Quality of probability forecasts

C.3 Quality of probability forecasts

Before describing the particular verification measures in detail, a brief remark should be
made on the general procedure that is applied to the verification of probability forecasts
in this study. Currently, it is common practice to compare the forecast probability to
the series of observed events having the categorical outcomes “yes” or “no” (e. g. Wilks,
1995). As this study does not aim at a revision of common verfication procedures, it
simply conforms to this practice. However, it would be more appropriate to compare
the forecast probabilities to the probability of the respective event instead of the series
of its categorical outcomes. This may be achieved by hierarchical Bayesian space-time
modelling (Wikle et al., 1998), but remains for future research.

C.3.1 Forecasts of dichotomous predictands

In this study the exceedance probability is a probability forecast of a dichotomous pre-
dictand. Some quality measures of the exceedance probability are the Brier score, the
ranked probability score, the reliability diagram (Wilks, 1995), the relative operating
characteristic (Stanski et al., 1989) or the rank histogram (cf. e. g. Hamill and Colucci,
1998). The Brier score and the Brier skill score are by far most common. This section
presents their definition including the concepts of reliability and resolution. Further-
more, the reliability diagram and the relative operating characteristic are introduced.

Brier score

The Brier score (e. g. Wilks, 1995) is essentially the mean squared error of probability
forecasts:

BS =
1

n

n∑

k=1

(yk − ok)
2

where yk denotes a forecast probability and ok denotes the subsequent observations with
ok = 1 if the event occurs and ok = 0 otherwise. The index k indicates a numbering
of the n forecast/event pairs. The Brier skill ranges from 0 to 1, with perfect forecasts
exhibiting BS = 0. Less accurate forecasts receive higher Brier scores.

The Brier score can be decomposed into the sum of three terms related to reliability,
resolution and uncertainty (e. g. Wilks, 1995):

BS = BSrel − BSres + BSunc.

Reliability measures the correspondence between the forecast probability and the con-
ditional probability of an observed event, given it was forecast. Resolution is a measure
of the degree to which the forecast frequencies differ from the sample climatology. Un-
certainty is independent of the forecast system and expresses the inherent uncertainty
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in forecasting the event. It attains a maximum when the overall sample climatology is
50%.

Brier skill score

The Brier skill score relates the Brier score to a reference forecast:

BSS =
BS − BSreference

BSperfect − BSreference
.

Often the reference forecast is chosen to be the climatological forecast. For climatological
forecasts the uncertainty term and the Brier score are equivalent (e. g. Wilks, 1995), so
the Brier skill score in reference to a climatological forecast reduces to:

BSS =
BS − BSclimate

BSperfect − BSclimate

= 1 − BS

BSunc

=
BSres − BSrel

BSunc

.

If the climatological forecast is chosen as a reference, the Brier skill score is only positive
when the uncertainty term is greater than the Brier score and when the resolution term
is greater than the reliability term.

Reliability diagram

Reliability is often illustrated by a reliability diagram (Wilks, 1995). The reliability
diagram shows the conditional frequency of the event given it was forecast as a function
of the forecast probability. Thus, the diagram shows forecast quality broken down to
the different forecast probabilities. The unconditional frequency of forecast probabilities
should be visualized in some way, too. Additionally, the reliability diagram relates the
forecast to a perfectly reliable forecast, a forecast without skill and a forecast without
resolution.

Relative operating characteristic

The relative operating characteristic (ROC) (e. g. Stanski et al., 1989) can be used to
compare probabilistic and deterministic forecasts. The ROC can be derived empiri-
cally from the 2 × 2 contingency table (Tab. C.1). For a probability forecast, a set of
contingency tables is constructed, one for each probability category. For example, in
the contingency table for forecast probability category 10%, an event is considered as
forecast, if the forecast probability is 10% or higher.

From each contingency table a hit rate HRROC = a/(a+ c) and a false alarm rate
FARROC = b/(b + d) is derived. A low forecast probability is expected to attain a large
hit rate and a large false alarm rate. A high forecast probability is expected to attain
a low hit rate and a low false alarm rate. The ROC curve is obtained by plotting the
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C.3 Quality of probability forecasts

hit rate HRROC (ordinate) versus the false alarm rate FARROC (abscissa) over the entire
range of probability categories. The point (0,0) is added for the case “never forecast”
and the point (1,1) is added for the case “always forecast”.

A perfect forecast system yields a HRROC = 1 and a FARROC = 0, so the closer the
forecasts come to the upper left corner, the better the forecast. If HRROC = FARROC,
the forecast is not able to distinguish between event occurrence and non-occurrence.
Therefore, the diagonal represents the line of “no skill”. The area underneath the ROC
curve is a measure of forecast quality. The larger the area the better the forecast. The
ROC is qualitatively similar to resolution in the sense that it assesses the ability of the
forecast system to discriminate between occurrences and non-occurrences.

In addition to the empirical estimation described above, the ROC curve and the area
underneath may also be parametrised by the odds ratio. The odds ratio (cf. Section C.2)
can be used to obtain the hit rate HRROC as a function of the false alarm rate FARROC

(Stephenson, 2000). In this function the odds ratio plays the role of a fixed parameter.
Such a parametrisation is only possible if the odds ratio has a constant value for all
probability categories that are defined. As this is not the general case, this study refrains
from a parametrisation of the ROC curve. Stephenson (2000) circumvents this problem
by defining only one probability category in addition to “never forecast” and “always
forecast”.

C.3.2 Forecasts of continuous predictands

Quantiles are probabilistic forecasts of a continuous predictand. As the definition of
quantiles is mathematically closely related to the exceedance probability, their concepts
of forecast quality are similar. Criteria such as resolution and reliability also apply to
quantiles. Reliability diagrams can also be produced for quantile forecasts. They show
how frequently a quantile of probability p exceeds the corresponding observation and
relate this frequency to the probability p itself.

Measuring resolution or the accuracy of quantiles poses a problem, because neither the
Brier skill score nor the root mean squared error are applicable to quantiles. Alternative
standard measures for quantiles do not exist in the literature yet.

In terms of resolution, Bremnes (2004) looks at empirical distributions of quantiles that
were forecast for a specific probability p. If the variance of the distribution is large, the
forecasts tend to deviate from climatology and supposedly possess high resolution.

In terms of accuracy it might be possible to transform the weighted mean absolute error
(WMAE) into a forecast measure. The WMAE is defined as

WMAE(p) =

N∑

i=1

ρ
(
qi(p), oi

)
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with ρ
(
qi(p), oi

)
=

{
(1 − p) · |qi(p) − oi| : qi(p) < oi

p · |qi(p) − oi| : qi(p) ≥ oi

where N is the number of observations, oi (i = 1, . . . , N) denotes the observations,
qi(p) denotes the corresponding quantile forecasts for a probability p. Perfect quantile
forecasts have zero WMAE. The WMAE attains a minimum when the quantile forecasts
are perfectly reliable. This can easily be seen by taking directional derivatives. So far, the
WMAE has been used as an optimisation term in quantile regression, a method to derive
conditional quantiles from a historical data set (Koenker and Hallock, 2001; Bremnes,
2004). The transformation into a forecast measure remains for future research.

C.4 Forecast value

C.4.1 Categorical forecasts

Forecast value (Richardson, 2000; Zhu et al., 2002; Mylne, 2002) is based on the idea
that a user suffers a loss L if an event occurs and the user is not protected. If the user
takes preventive action to guard against this potential loss, the user will incur a cost C.
The cost-loss scenario (Tab. 6.5) is proposed by Thompson and Brier (1955) and has
recently gained increased attention.

The user will experience a mean expense Eforecast, if she takes protective action whenever
the event is forecast:

Eforecast = (a + b)C − cL

where the symbols a, b and c refer to the contingency table in Tab. C.1. Forecast value
represents the saving the user gains by using the forecast, so the mean expense Eforecast

has to be related to a baseline reference expense. This baseline is inferred from climatol-
ogy. If no forecast is available, the user will always protect or never protect, depending
on her cost/loss ratio and on the climatological frequency of the event (Murphy, 1977).
The mean expense is denoted Eclimate in this case. When a perfect forecast system is
available, the mean expense Eperfect is not necessarily zero, since protective action might
only mitigate the loss L. So the relative value V of a forecast system is defined as the
following relation of expenses Eforecast, Eclimate and Eperfect (e. g. Richardson, 2000):

V =
Eclimate − Eforecast

Eclimate − Eperfect
.

The relative value ranges from zero to one, with V = 0 for a climatological forecast and
V = 1 for a perfect forecast. It is often assumed that the climatological frequency is equal
to the sample frequency when Eclimate is estimated. This leads to an underestimation
of Eclimate (Atger, 2001).
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C.4 Forecast value

C.4.2 Exceedance probability

If the forecast is expressed in terms of probabilities, the user has to define a threshold
probability pt for her decision making process. The process is as follows: When the
forecast probability is equal or greater than pt, the user decides to take preventive
action. It can be shown that the optimal decision level of a particular user is equal to
her cost/loss ratio if the forecast is perfectly reliable (e. g. Murphy, 1977). The value of
a probability forecasts is always greater than the value of a categorical forecast if the
respective probability forecast is perfectly reliable (Murphy, 1977).

C.4.3 Quantiles

If the forecast is expressed in terms of quantiles, relative value can also be estimated
under certain assumptions. Let us focus on the 90%-quantile of precipitation. The user
has to define a precipitation threshold y0.9 for her decision making process: When the
forecast 90%-quantile is equal or greater than y0.9, the user decides to take preventive
action. This decision making process implies that the user’s cost-loss ratio is a decreasing
function of precipitation amount y and that it attains 10% at the threshold y0.9.

In case of categorical forecasts or exceedance probabilities, relative value is usually dis-
played as a function of the cost-loss ratio. In case of 90%-quantiles, the cost-loss ratio
of 10% is fixed, but the user-specific precipitation threshold y0.9 can be varied.
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D List of symbols

Formal
Symbolism

Meaning defined in
Section

� real numbers
� + positive real numbers
� +

0 non-negative real numbers�
positive integers

E[·] expected value of a random variable ·
VAR[·] variance of a random variable ·
Pr[·] probability of an event ·
NV(µ, σ2) Gaussian distribution with parameters µ and σ2

ε realisation of a Gaussian white noise process
µ expected value of a Gaussian random variable
σ2 variance of a Gaussian random variable
·̂ statistical estimator of a parameter ·
i,j integer variables referring to location
k integer variable referring to a point of time
x, y continuous variables referring to location
t continuous variable referring to a point in time, for ex-

ample model integration time
tt continuous variable referring to model output time
∆t time step in the LM model integration (40 s)
∆x grid spacing of the model LM, eastward direction (7 km)
∆y grid spacing of the model LM, northward direction

(7 km)
∆tt time step in the LM model output (1 h)
ω spatial or spatio-temporal weights
e(t) vector of prognostic variables in the LM 3.2.1
A

(
e(t)

)
non-parametrised processes of the LM 3.2.1

P
(
e(t);α

)
parametrised processes of the LM; net diabatic forcing 3.2.1

α fixed parameters of a parametrisation scheme 3.2.1
P′(e(t);α

)
perturbed parametrised processes 3.2.2〈

x(r, t)
〉

D,T
random number in the stochastic parametrisation
scheme

3.2.2

r grid point of the model 3.2.2
D, T spatio-temporal auto-correlation of the random numbers 3.2.2
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Formal
Symbolism

Meaning defined in
Section

ej prognostic variables within an ensemble member 3.2.2〈
xj(r, t)

〉
D,T

series of random numbers that is unique to ej 3.2.2

Pm/c/r

(
e(t);α

)
diabatic forcing from a selection of parametrised pro-
cesses: microphysics, convection, radiation

3.2.2

Pturb

(
e(t);α

)
diabatic forcing from the turbulence scheme 3.2.3

a amplitude parameter of the input noise 3.2.4
Q total radiative flux 3.2.5
Qsol short-wave radiation flux 3.2.5
Qth long-wave radiation flux 3.2.5
∂Tsol

∂t
temperature tendency due to solar radiation 3.2.5

z height 3.2.5
Qv

sol virtual short-wave radiation flux which is energetically
consistent with the perturbed simulation

3.2.5

Prough

(
e(t);α

)
diabatic forcing from turbulent vertical mixing governed
by roughness length

3.2.6

z0(r) original LM roughness length at grid point r 3.2.6
z′0(r) perturbed roughness length at grid point r 3.2.6〈
y(r)

〉
random number 3.2.6

r̃ location near r 3.2.6
yt Gaussian random number used in the stochastic

parametrisation scheme
3.4.1

xt uniformly distributed random number used in the
stochastic parametrisation scheme

3.4.1

ητ auto-correlation for time lag τ 3.4.1
T e-folding time of the auto-correlation 3.4.1
N all points of the discrete model domain 4.2

N = {1, . . . , Nx} × {1, . . . , Ny} × {1, . . . , Ntt}
Nx, Ny, Ntt number of grid points in space and time 4.2
U spatio-temporal neighbourhood, set of points 4.2
ρxy, ρx, ρy, ρtt size of neighbourhood 4.2
Z random variable 4.2
z realisation of a random variable 4.2

direct model output of the predictand
{z1, . . . , zN} surrogate ensemble of Z from the neighbourhood 4.2
S sample of Z, S = {z1, . . . , zN} 4.2
N number of points within U , sample size of S 4.2
πc exceedance probability with threshold c: Pr[Z > c] 4.2
π exceedance probability 4.2
πc exceedance probability related to threshold c 4.2

δ̃c function δ̃c : � → {0, 1} referring to a threshold c 4.2
c threshold value 4.2
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D List of symbols

Formal
Symbolism

Meaning defined in
Section

z◦ random variable of a discrete distribution with two pos-
sible outcomes

4.2

F probability distribution function 4.2
A event, subspace of the probability space 4.2
Ā event, so that A and Ā are mutually exclusive 4.2
ζ (unknown) model-output function without noise 4.3
xi, yj, ttk spatial and temporal grid locations on a continuously

defined model output field
4.3

Kball spherical Kernel function, analogue to simple neighbour-
hood

4.3

u, v, w auxiliary variables in the integration of the kernel 4.3
Vball volume 4.3

Z̆ refined version of Z 4.4

Ŭ refined version of U 4.4

S̆ refined version of S 4.4
d vector of explanatory variables 4.4
Nd number of explanatory variables 4.4
g function or relation between explanatory variables and

model output
4.4

β parameter vector describing the explanatory effect 4.4
β◦ offset parameter 4.4
γexpl smoothing parameter in the regression of the explana-

tory effect
4.4

Ŭ refined version of the neighbourhood 4.4
U cutoff neighbourhood with a cut-off 4.4
Udistort distorted neighbourhood 4.4
cs,s′ criterion for the distortion of the neighbourhood 4.4
os,s′ orographic term in the criterion for the distortion 4.4
Rs,s′ distortion matrix 4.4

R̃s,s′ preliminary distortion matrix 4.4
e1, e2 eigenvalues of the matrix Rs,s′ 4.4

ẽ1, ẽ2 eigenvalues of the matrix R̃s,s′ 4.4
λ1, λ2 eigenvalues of the matrix Rs,s′ 4.4

λ̃1, λ̃2 eigenvalues of the matrix R̃s,s′ 4.4
$intpol spatial weighting parameter for bilinear spatial interpo-

lation at points with missing values
4.4

p probability p ∈ [0, 1] ⊂ � 4.5
Z(l) lth order statistic 4.5
z(l) realisation of lth order statistic 4.5
q quantile function, inverse of the distribution F 4.5
qe empirical quantile function 4.5
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Formal
Symbolism

Meaning defined in
Section

ε random number in the definition of the empirical quan-
tile function

4.5

α parameter in the plotting position formula 4.5.2
pl discrete values of probability p laid down by the plotting

position formula
4.5.2

κl interpolating series of pl 4.5.2
K kernel function in quantile regression 4.5.3
t kernel argument with t ∈ [−1, 1] 4.5.3
s integrating variable, corresponding to the p-axis 4.5.3
Kr boundary kernel function 4.5.3
r parameter of the boundary kernel 4.5.3
hp kernel bandwidth in quantile regression 4.5.3
n number of realisations z > 0 4.5.5
F ◦ discrete distribution function with two possible out-

comes
4.5.5

F+ continuous distribution function defined on � +
0 4.5.5

q+ quantile function of non-zero precipitation, inverse of
the distribution F+

4.5.5

n integer variable related to the number of spatial grid
points on the model domain: (2n + 1) × (2n + 1)

5.2

l level (= scale) in wavelet smoothing; dilation index
(l = 0, . . . ,−n)

5.2 and A

m location in wavelet smoothing; translation index
(m = 0, . . . , 2n)

5.2 and A

m1, m2 location referring to one of the two horizontal directions,
respectively

5.2 and A

h, v, d indices referring to the horizontal, diagonal, vertical di-
rection, respectively

5.2 and A

γl,m1,m2
wavelet coefficient 5.2 and A

γmod
l,m1,m2

modified (= de-noised) wavelet coefficient 5.2
Ψm1,m2,l wavelet function 5.2 and A
Φm1 ,m2,l scaling function 5.2 and A
Vl, Wl, Ol subspaces in multiresolution analysis 5.2 and A
Υ Fourier transformation of a function A
ω frequency A
Wf Wavelet transform of a function f A
ψµ,x(u) continuous wavelet function A
lcurtail curtailing level 5.3
Krect rectangular Kernel function (2D) 5.3
O range of different origins; range of shifts B
is choice of origin B
js choice of origin B
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Formal
Symbolism

Meaning defined in
Section

z̃ij(is, js) result of wavelet de-noising as a function of the origin B
z̃invar

ij translation invariant estimator B
Ononred range of non-redundant origins B
|Ononred| number of non-redundant origins B
ia, ja spatial offset of shifts B
σ̂shift

ij square root of the estimated variability between differ-
ently shifted smoothing results

B

ν threshold value in wavelet thresholding 5.4
νl level-dependent threshold in wavelet thresholding 5.4
ν̃ threshold that depends on an additional field 5.4
γz

l,m1,m2
wavelet coefficients of an additional field 5.5

ETS equitable threat score 6.3.1 and C
FAR false alarm rate 6.3.1 and C
FBI frequency bias 6.3.1 and C
OR log odds ratio 6.3.1 and C
LOR(BC) log odds ratio with bias correction 6.3.1 and C
OR odds ratio 6.3.1 and C
POD probability of detection 6.3.1 and C
a number of hits in contingency table C
b number of false alarms in contingency table C
c number of misses in contingency table C
d number of correct rejections in contingency table C
rmse root mean square error 6.3.2 and C
corr correlation between observations and forecasts 6.3.2 and C
stdv_fc standard deviation of the forecast data 6.3.2 and C
stdv_obs standard deviation of the observational data 6.3.2 and C
mae mean absolute error 6.3.2 and C
skill skill score that relates the rmse to a reference 6.3.2 and C
skill_DMO skill score that relates the rmse to the DMO 6.3.2 and C
BS Brier score 6.3.4 and C
BSrel reliability term of the BS 6.3.4 and C
BSres resolution term of the BS 6.3.4 and C
BSunc uncertainty term of the BS 6.3.4 and C
BSclimate BS of the climate forecast 6.3.4 and C
BSS Brier skill score 6.3.4 and C
pt threshold probability in the decision making process 6.4.2 and C
C cost 6.4.2 and C
L loss 6.4.2 and C
E expenses in cost-loss scenario C
V relative value of the forecast C
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E List of acronyms

Acronym Meaning defined in
Chapter

2m-temperature temperature in 2m height above the ground 1
2D two-dimensional 6
3D three-dimensional 6
BS Brier score 6
BSrel reliability term of the BS 6
BSres resolution term of the BS 6
BSunc uncertainty term of the BS 6
BSclimate BS of the climate forecast 6
BSreference BS of a reference forecast C
BSS Brier skill score 6
CAPE convective available potential energy 3
corr correlation between observations and forecasts 6
COSMO COnsortium for Small Scale MOdeling 1
DM high-resolution model, predecessor of the LM at

DWD
2

DMO direct model output 4
DWD German Weather Service (Deutscher Wetter-

dienst)
1

E geographical longitude (east) 6
ECMWF European Centre for Medium-Range Weather

Forecasts
3

ETS equitable threat score 6
FAR false alarm rate 6
FBI frequency bias 6
GME global NWP model of DWD 2
HHH parameter setting of experimental ensemble: high-

high-high
3

HLL parameter setting of experimental ensemble: high-
low-low

3

iid independent and identically distributed 5
LAM limited-area model 1
LLL parameter setting of experimental ensemble: low-

low-low
3
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E List of acronyms

Acronym Meaning defined in
Chapter

LEPS limited-area ensemble prediction system 1
LM Lokal-Modell 1
LOR log odds ratio 6
LOR(BC) log odds ratio with bias correction 6
mae mean absolute error 6
MLL parameter setting of experimental ensemble:

medium-low-low
3

MISE mean integrated squared error 4
MOS model output statistics 1
MPI message passing interface 2
MRA multiresolution analysis 5 and A
N geographical latitude (north) 6
NAG Numerical Algorithms Group Ltd 3
NCEP National Centres for Environmental Prediction 1
neighbourhood PP neighbourhood postprocessing 6
NWP numerical weather prediction 1
obs observation 6
OR odds ratio 6
pdf probability density function 1
POD probability of detection 6
rmse root mean squared error 6
ROC relative operating characteristic 6
RR precipitation at the ground 6
skill skill score based on the root mean squared error of

continuous forecasts
6

skill_DMO skill that relates to the direct model output of a
single simulation as a reference

6

SREF short-range ensemble forecasting 1
stdv_fc standard deviation of the forecast data 6
stdv_obs standard deviation of the observational data 6
SVAT soil-vegetation-atmosphere-transfer 2
SYNOP surface synoptic observation 6
T temperature in 2m height 6
UTC co-ordinated universal time 3
WMAE weighted mean absolute error C
h hour
hPa hectopascal
K Kelvin
km kilometer
m meter
mm millimeter
s second
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