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Zusammenfassung

Die gezielte Beeinflussung des Blutgefäßsystems eines soliden Tumors hat ein herausragendes 

Potential für verschiedene therapeutische Anti-Tumor-Strategien. So erscheint beispielsweise die 

Targetierung von Tumorgefäßen mittels Arzneistoffcarriern, die Wirkstoffe für eine Intervention 

der Endothel- bzw. Gefäßfunktion enthalten, als innovatives und neuartiges therapeutisches 

Prinzip. Für diese Targeting-Strategien müssen geeignete Carrier entwickelt werden. Als 

Zielstrukturen bieten sich solche endotheliale Epitope an, die spezifisch nur oder verstärkt von 

Gefäßsystem des Tumors exprimiert werden. Hierbei eignet sich besonders das vascular cell 

adhesion molecule 1 (VCAM-1). 

In der vorliegenden Arbeit wurden Immunliposomen (Antikörper-gekoppelte 

Liposomen), die gegen VCAM-1 gerichtet sind, hergestellt und hinsichtlich ihrer endothelialen 

Targetierung unter in vitro- und in vivo-Bedingungen untersucht. Als vaskulär aktive Wirkstoffe 

wurden Tumor Nekrose Faktor-alpha (TNF- ) und der TNF- -induzierende Wirkstoff DMXAA 

in den Liposomen eingeschlossen. Diese Wirkstoffe sollten die Exprimierung von Tissue Faktor 

an den Endothelzellen und damit einen prokoagulativen Zustand in den Tumorgefäßen induzieren, 

der letztendlich mit der Kollabierung der Gefäßfunktion seine Anti-Tumor-Wirksamkeit entfaltet. 

Für die Untersuchungen des liposomalen Targetings wurden die Liposomen unter Verwendung 

verschiedener Ankerlipide mit anti-VCAM-Antikörpern gekoppelt und umfassend charakterisiert. 

Das Bindungsverhalten an zwei verschiedene Endothelzelllinien wurde unter in vitro-

Bedingungen mittels unterschiedlicher Techniken quantifiziert und erwies sich gegenüber 

Kontrollliposomen als positiv. 

Das Targeting der Immunliposomen unter in vivo-Bedingungen wurde in Colo 677-

Tumorxenograft-Mäusen untersucht. Dabei zeigten die Organverteilungs-Studien mittels Tritium-

gelabelter Liposomen, 30 Minuten bzw. 24 Stunden nach i.v. Injektion keine deutlichen Vorteile 

der VCAM-Immunliposomen hinsichtlich der Akkumulierung im Tumor. 

Fluoreszenzmikroskopische und immunhistochemische Untersuchungen der Tumoren zeigten 

aber, dass die Lokalisierung der Liposomen innerhalb der Tumoren sehr differierte. Während 

nicht-gerichtete Liposomen unspezifisch vom Tumorgewebe aufgenommen und dort akkumuliert 

wurden, binden die VCAM-gerichteten Immunliposomen hochspezifisch am Gefäßsystem. So 

konnte erstmals die Funktion von Immunliposomen als spezifischer vaskulärer Carrier 

verdeutlicht werden. 

  Die Wirkung von TNF-  und DMXAA hinsichtlich einer verstärkten Tissue Faktor-

Exprimierung auf Endothelzellen wurde zuerst in Endothelzell-Kulturen verifiziert. Für den 

Einbau beider Wirkstoffe in Liposomen in ausreichendem Maße wurden die 

Herstellungsbedingungen optimiert, letztendlich resultierten Liposomen mit einer prozentualen 

Einschlussquote von 33% für TNF-  und 18 % für DMXAA. Deren Wirkung wurde wiederum in 

den Colo 677-Mäusen hinsichtlich einer Wachstumsverzögerung der Tumoren analysiert. Es 

zeigte sich eindeutig, dass der Wachstums-verzögernde Effekt beider Wirkstoffe nur in 

Kombination mit dem VCAM-Targeting der Liposomen zum Tragen kommt. ZurAufklärung der 

molekularen Mechanismen der Anti-Tumor-Wirkung wurden verschiedene immunhistochemische 

Untersuchungen der behandelten Tumore angeschlossen. Die Anwendung eines TNF- -ELISA, 

eines Tissue Faktor-Stainings sowie die Verwendung des TUNEL-Assays zur Überprüfung der 

apoptotischen Aktivität konnten nicht eindeutig die Wirkung über die Tissue Faktor Exprimierung 

und damit Koagulation beweisen. 

Orientierende erste therapeutische Experimente mit TNF- -Liposomen zeigten aber nach 

24 und 72 Stunden erhöhte Tissue Faktor Werte im Tumor und stellen somit dieses postulierte 

Prinzip der Anti-Tumor-Wirkung als sehr aussichtsreich dar.  





Abstract

Targeting the tumor vasculature and selectively modifying endothelial functions with agents that 

exert their action on the tumor endothelial cells instead of the tumor cells themselves, is an 

attractive anti-tumor strategy. Polyethylenglycol modified immunoliposomes (IL) directed against 

vascular cell adhesion molecule 1 (VCAM), a surface receptor over-expressed on tumor vessels, 

were prepared and investigated the liposomal targetability in vitro and in vivo. The vascular 

destructing agents, tumor necrosis factor alpha (TNF- ) and the TNF-  inducing drug, DMXAA, 

are known to selectively target the tumor endothelium and induce a pro-coagulative state, which 

leads to a collapse of the tumor vasculature. The hypothesis that TNF-  and DMXAA modulate 

the coagulative state of the endothelium through the up-regulation of tissue factor (TF) was 

investigated in vitro. VCAM-targeted and non-targeted liposomes loaded with either TNF-  or 

DMXAA were formulated and upon administration tumor growth delay was investigated in vivo.

In vitro, VCAM antibodies conjugated to PEGylated liposomes through the cyanur 

anchor displayed specific binding to activated endothelial cells under static conditions, as well as 

under simulated blood flow conditions. The in vivo targeting of IL was analyzed in mice bearing 

human Colo 677 tumor xenografts 30 min and 24 h post i.v. injection. Whereas biodistribution 

studies using [
3H]-labeled liposomes displayed only marginal higher tumor accumulation of 

VCAM targeted vs. unspecific ILs; fluorescence microscopy evaluation revealed that their 

localization within tumors differed strongly. VCAM targeted ILs accumulated in tumor vessels 

with increasing intensities from 30 min to 24 h, while control ILs accumulated in the tumor tissue 

by passive diffusion. 

TNF-  and DMXAA displayed a direct cytotoxic effect on the murine endothelial cells, 

and induced an 3-fold up-regulation of TF expression and activity after 6 and 12 hours in vitro.

TNF-  and DMXAA were encapsulated into PEGylated liposomes with reasonable encapsulation 

efficiencies of 33 % and 18 %, respectively. Treatment of mice bearing human Colo 677 

xenografts with VCAM-targeted liposomes loaded with TNF-  or DMXAA delayed the tumor 

growth compared to mice treated with non-targeted TNF-  liposomes and non-treated mice. The 

mechanism behind the tumor growth delay was investigated using TNF-  ELISA, TUNEL assay 

and TF immunohistochemistry, but did not add to the understanding of the mechanism behind the 

tumor growth delay. However, in a pilot experiment, tumors from mice treated with VCAM-

targeted TNF-  liposomes displayed an increased TF expression after 24 and 72 hours, indicating 

that the mechanism behind the targeted TNF-  liposomes might be the induction of TF. 

This is the first morphological evidence for selective in vivo targeting of tumor vessels 

using ILs and the first study to show that VCAM-targeted TNF-  loaded liposomes have an 

antitumor effect in a human xenograft model.    
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1. Introduction 

1.1 Targeting solid tumors 

Solid tumors account for at least 85 % of cancerous deaths [Jain, 2005]. Therefore 

it is essential to develop treatments which kill tumor cells efficiently without damaging 

healthy cells. While traditional therapeutics, such as chemotoxic drugs or ionizing 

radiation, are very successful at killing tumor cells, they often fail to adequately 

discriminate between normal and malignant tissues. Thus, the severe side effects of these 

treatments often limit dosages to suboptimal levels or the duration of patient’s treatment, 

resulting in poor outcomes for the management of disease, quality of life, and overall 

survival. Also, tumor cell resistance in itself restricts the use and effect of cytostatic 

treatment in therapy and calls for targeted therapy forms. However, targeting tumor cells 

with monoclonal antibodies or immuno-conjugates is hampered by an uneven spatial 

distribution of the drugs in the tumor and inadequate accumulation of the injected 

antibodies at the target site [Christiansen and Rajasekaran, 2004].

1.1.1 Disadvantages of targeting the tumor cells in  solid tumors 

Solid tumors are composed of two distinct compartments: the malignant cells 

(parenchyma) and the supporting stroma. All solid tumors, regardless of their cellular 

origin require stroma and cannot grow beyond the minimal size of 1 - 2 mm without it 

[Dvorak et al, 1979; Folkman, 1986]. The stroma provides the vasculature needed for the 

supply of nutrients and oxygen. It also sets up a barrier that limits the influx of 

inflammatory cells. Therefore, the stroma acts as both a lifeline for tumor cells and a 

barrier that can regulate the interchange of cells and molecules with the host [Nagy et al,

1988]. There are at least three different physiological barriers that can inhibit therapeutics 

from reaching their target: the endothelial barrier, interstitial pressure, binding to stromal 

components and in some tumors the epithelial barrier [Christiansen and Rajasekaran, 

2004].

  The microenvironment of solid tumors is distinguished from normal tissue by 

exhibiting high interstitial fluid pressure (IFP), hypoxia and low extracellular pH 

[Tannock, 2001; Cairns et al., 2006]. The mechanisms responsible for this 

microenvironment are shown in Fig.1. In normal tissues the vascular system is regulated 



Introduction 

______________________________________________________________________________________ 

6

by a balance of anti-angiogenetic and pro-angiogenetic factors which ensure the 

formation and maintenance of a functional and orderly network of blood vessels. In 

addition, a network of lymphatics drains away waste, such as cellular by-products and 

fluids. However, in solid tumors the balance is shifted towards the pro-angiogenetic, 

which leads to the formation of a disorganized vasculature with structural and functional 

abnormalities [Vauple, 2004]. The vasculature is often leaky due to an incomplete 

endothelial lining, to the lack of a layer of pericytes and to a leaky basal membrane 

[Vauple, 2004; Kumagai et al., 2006].

The tumor vessels are generally long and the vessel organization is often chaotic 

and heterogeneous with vessel hotspots, blind ends, arteriolar-venous shunts and plasma 

channels devoid of red blood cells [Dewhirst et al., 1996]. Solid tumors characteristically 

lack lymphatics, which leads to an increased accumulation of fluid and waste products in 

the tumor and further to an elevated IFP [Leu et al., 2000; Cairns et al., 2006] and a 

hydrostatic pressure gradient that causes fluid to move toward the periphery [Jain, 1987; 

Boucher et al., 1990]. The net outward flow inhibits the extravasation of  therapeutics, 

such as antibodies, immuno-conjugates or small drug molecules like doxorubicin 

[Lankelma et al., 1999] by reducing their penetration depth into the tumor by convection 

[Jain and Baxter, 1988; Burrows and Thorpe, 1994]. Thus, molecules can only penetrate 

the tumor by diffusion which is a slow process [Jain and Baxter, 1988]. 
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Figure 1. Schematic overview of biological barriers to effective treatment of solid tumors with monoclonal 

antibody-based immunotherapy. To reach a target antigen at the surface of a solid tumor, i.v. injected 

monoclonal antibody must first traverse the microvascular endothelium (A), and must subsequently contend 

with stromal barriers (B), and high interstitial fluid pressure characteristic of bulky tumor masses (C). 

Monoclonal antibodies may also confront epithelial barriers (D), including E-cadherin and tight junctional 

complexes that may have a profound impact on therapy [From Christiansen and Rajasekaran, 2004]. 

Another possible barrier against the homogenous distribution of 

antibodies/immuno-conjugates is the binding-site barrier [Burrows and Thorpe, 1994], in 

which monoclonal antibodies with high affinity for tumor antigens bind stably to the first 

encountered tumor antigen leading to a heterogeneous antibody delivery to the tumor 

cells [Adams et al., 2001; Juweid et al., 1992]. Sung et al., compared the spatial 

distribution of the diphtheria toxin (DT) and non-binding DT linked to a transferrin 

antibody. They found that the spatial distribution of the toxin was remarkably even 

throughout the tumor compared to the anti-transferrin coupled toxin, which was localized 

primarily in the perivascular space [Sung et al., 1993]. It was suggested that as the tumor 

cells in this study exhibited an extremely low number of DT receptors (< 3000/cell), DT 

was therefore not depleted rapidly by the perivascular tumor cells, whereas the tumor 

cells exhibited a high number of transferrin receptors (60,000 receptors/cell). Therefore, 

the immuno-toxin was quickly sequestered by the perivascular tumor cells [Sung et al.,

7
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1993]. The difference in distribution could also have been due to the different sizes of the 

two tested molecules. Site-directed mutagenesis made it possible to compare the 

distribution of antibodies targeting the same epitope with different affinities. One study 

showed that single chain fragments (scFv) targeting the human epidermal growth factor 

recptor 2 (HER-2) with low affinity (3.2 x10
-7

 M) were distributed homogenously 

throughout the tumor, whereas the same scFv with a higher antigen affinity (1.5 x10
-11

 M) 

only traversed 2-3 cell diameters [Adams et al., 2001]. In summary, targeting the tumor 

cells with antibodies or immuno-conjugates is often hampered by a combination of an 

elevated IFP and sequestering of the antibody by various cellular barriers, such as the 

binding-site barrier.

Another problem with targeting tumor cells is the heterogeneous expression of 

antigens within a given tumor population and between various tumors [Burrows and 

Thorpe, 1994]. Epithelial cancer cells are known for their genetic instability generating a 

high degree of heterogeneity of the different tumor cell clones found in an individual 

tumor [Braun et al., 1999]. This is thought to impose a major limitation on treatments 

aimed at targeting the tumor cells. Much work has been put into refining the selectivity of 

monoclonal antibodies to target a larger fraction of the tumor population and successful 

candidates have indeed been found [Christiansen and Rajasekaran, 2004]. The therapeutic 

antibody Herceptin
®

 against HER-2, a member of class 1 receptor tyrosine kinases, is 

approved for treatment of metastatic breast cancer [Cobleigh et al., 1999]. Also, an 

antibody against the epithelial cellular adhesion molecule Panorex
®

 is being used in the 

treatment of colorectal cancer [Riethmuller et al., 1994; Riethmuller et al., 1998]. 

However, due to the heterogeneous expression of tumor antigens, different antibodies 

must be developed for different types of cancer. Extensive typing of the different cellular 

subtypes in the individual tumor needs to be carried out during treatment, making it 

difficult to develop a targeted therapy with a broad applicability [Burrows and Thorpe, 

1994].    

Targeting tumor cells in solid tumors has encountered several problems, such as 

heterogeneous distribution of antibodies and immuno-conjugates, and antigen 

heterogenicity within one tumor and between tumors. However, targeting the tumor 

vasculature instead of the tumor cells could prove to be an advantage because of several 

distinctive features, which will be described below.    
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1.1.2 Advantages of targeting the tumor vasculature 

Historically, the vasculature has been known as the “Achilles heel” of solid tumor 

growth [Siemann et al., 2005] and has been an indirect target in cancer therapy since the 

1700s, where bacterial infections were used in the treatment of cancer [Starnes, 1992]. As 

previously mentioned, the tumor needs to form new blood vessels by the process of 

angiogenesis in order to grow beyond  2 mm [Brem et al., 1976; Folkman, 1986]. 

Angiogenesis occurs rarely in healthy adults, i.e. during the menstrual cycle, wound 

healing and embryonic development. The angiogenic tumor vasculature is therefore an 

interesting and selective target in solid tumors, present in both primary tumors and 

metastases [Bazan-Peregrino et al., 2007]. Vascular-targeted drugs inhibit or kill tumors 

by starvation with agents that target and selectively damage tumor endothelium by either 

inhibiting angiogenesis or inducing a vascular collapse as opposed to exerting a direct 

effect on the rapidly growing tumor cells, [Huang et al., 1997; Philipp et al., 2003; 

Siemann et al., 2005]. Vascular targeting looks promising for the delivery of drugs 

[Pastorino et al., 2003], genes [Hood et al., 2002] and radionuclide’s [Li et al., 2004] to 

the tumor.  

 One advantage of vascular targeting is the easy accessibility of the tumor 

endothelial cells. Targeting tumor vasculature with antibodies or immuno-conjugates is 

attractive because receptors and other target structures are readily available for binding 

directly in the blood stream [Oh et la., 2004; Simberg et al., 2007]. The direct access to 

the target skips the extravasation step from the blood into the tumor parenchyma [Oh et

al., 2004]. In addition, accumulation of antibodies at the endothelium is fast compared to 

accumulation in the solid tumor parenchyma [Burrows et al., 1992]. Kennel et al.,

showed that the maximal level of IgG accumulation in solid tumors was reached after 7 

days [Kennel, et al., 1991], whereas a saturation of endothelial binding sites at the tumor 

endothelium could be seen after 1 hour [Burrows et al., 1992; Kennel, et al., 1991]. It 

might therefore be easier and quicker to achieve accumulation of antibodies or immuno-

conjugates at the tumor vasculature as compared to tumor cells.   

In normal tissues, there are usually 1 or 2 layers of cells surrounding an individual 

vessel; in muscle tissue several capillaries supply one muscle fiber. The vessel network is 

highly organized and responds well to extra demands during stress [Denekamp, 1999]. In 

contrast, in tumor tissues one vessel supplies many hundreds or even thousands of tumor 

cells (Fig. 2). Untreated tumors show viable cells lying in a cuff around open vessels 
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cuffs are however surrounded by foci of necrosis [Kerbel and Folkman, 2002]. The 

destruction of one vessel therefore results in massive tumor cell death [Burrows and 

Thorpe, 1994; Denekamp, 1999], thereby amplifying the initial response.  

Figure 2. Tumor cells within 110 µm of a microvessel are viable (dashed line). Outside of this radius, 

tumor cells are dead [Kerbel and Folkman, 2002]. 

During the transformation from normal cell to neoplastic cells, tumor cells undergo 

multiple genetic changes [Hoffmann, 1990], which enables the tumors to quickly adapt to 

hostile environments by generating a new subpopulation. The plasticity of the tumor cell 

genome induces the development of resistance to therapies which are aimed directly at 

the tumor cell population [Kerbel, 1991]; in contrast, the tumor endothelial cells are 

genetically stable and therefore less likely to acquire mutations and develop drug 

resistance [Kerbel, 1991; Boehm et al., 1997; Kerbel and Folkman, 2002]. 

Tumor endothelial cells have a relatively high proliferation due to the tumor cell 

production of pro-angiogenetic cytokines, such as vascular endothelial growth factor 

(VEGF), basic fibroblast growth factor (bFGF), transforming growth factor  (TGF- )

and various interleukins [Kerbel and Folkman, 2002]. The pro-angiogenetic state results 

in the expression of surface antigens that are not expressed by normal endothelium 

[Burrows and Thorpe, 1994]. The similarities in tumor vasculature and behavior between 

various tumors make it possible to target the same tumor endothelial antigen in a broad 

10 
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variety of solid tumors [Denekamp, 1990; Lee et al., 2007]. In contrast to when targeting 

tumor cells, a single antibody could have a broad applicability. Furthermore, tumor 

endothelial cells express several proteins, including adhesion molecules, such as vascular 

cell adhesion molecule 1(VCAM), E-selectin and endoglin [Burrows and Thorpe, 1994], 

-intergrins [Arap et al., 1998; Lee et al., 2007] and receptors for certain angiogenic 

growth factors [Arap et al., 1998; Bazan-Peregrino et al., 2007], or stromal components 

[Simberg et al., 2007], which are not expressed by normal endothelium and can therefore 

be used to specifically target tumor vasculature. 

The development of a drug delivery system that specifically targets tumor 

endothelium has many advantages; one such delivery system could be liposomes.    

1.2 Immunoliposomes as a drug delivery system 

 Liposomes are nanoscale biocompatible drug carriers which can accommodate 

large amounts of both hydrophilic and lipophilic drugs entrapped in the aqueous core or 

the lipid bilayer, respectively [New, 1990; Sharma and Sharma, 1997]. Liposomes have 

been used as delivery systems for a broad spectrum of drugs including chemotherapy, 

imaging agents, antigens, lipids and nucleic acids [Marty et al., 2002].

Plain liposomes are made of phospholipids and sometimes cholesterol [Torchilin, 

1994]. When these liposomes are introduced into circulation, they are rapidly sequestered 

by macrophages of the reticuloendothelial system (RES) mainly located in the liver and 

spleen [Papahadjopouls et al., 1991]. Thus, they display a short blood half-life (min) and 

have a limited use as drug delivery carriers for transporting drugs to other sites than the 

RES. This led to the development of long-circulating liposomes, where specific 

amphiphiles, such as polyethylene glycol (PEG)-coupled phospholipids [Lasic et al.,

1991], the ganglioside GM1 [Allen and Chonn, 1987; Gabizon and Papahadjopoulos, 

1992] or hydrogenated phosphatidylinositol [Gabizon and Papahadjopoulos, 1992], were 

incorporated into the lipid membrane. This created a sterical stabilisation, which to 

increased liposome stability and blood half-lives required to ensure targeted delivery of 

the liposome to the right place of action [Allen et al., 1995]. PEG turned out to be the 

most applicable to sterically stabilise liposomes and other nano-carriers, because it is easy 

to prepare, its molecular weight is easy to control, it links easily to lipids and increases 

circulation time most effectively [Maruyama et al., 1995].   
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Figure 3. Immunoliposomes - (A1) antibodies attached to the surface of conventional liposomes; (A2)

antibodies attached to the surface of sterically stabilized liposomes (B) antibodies attached to the distal ends 

of polyoxyethylene chains in sterically stabilized liposomes. [Modified from 
www.pjonline.com/.../education/parenteral.html]

The coupling of antibodies or antibody fragments to the surface of liposomes for site-

specific targeting results in immunoliposomes (ILs) (Fig. 3) [Kontermann, 2006]. Three 

different types of ILs have been investigated. Type A1 where the antibody is conjugated 

to the lipids of the lipid bilayer, type A2 where the antibody is conjugated to the lipid 

bilayer on the surface of a PEG-liposome and type B where the antibody is conjugated to 

the distal end of the PEG chain [Maruyama et al., 1995]. Type A1 liposomes are, like 

conventional liposomes, cleared rapidly from circulation by RES, which reduces the 

targetability of the liposome [Torchilin, 1994; Hansen et al., 1995]. Type A2 liposomes 

attain longer circulation time because of the PEG, but encounter problems with binding to 

the target site. This is due to the steric barrier created by PEG [Klibanov et al., 1991]. 

Type B ILs have the advantage over type A1 and type A2 in that they bind to their binding 

site efficiently, because the antibody is presented on the tip of the PEG [Blume et al.,

1993; Maruyama et al., 1995]; and at the same time they retain a long circulation time 

[Maruyama et al., 1995]. 

1.2.1 Liposome distribution in vivo 

 The process of targeted drug delivery can be divided into two phases after 

administration [Mastrobattista et al., 1999]. The transport phase, where liposomes travel 

to the target cells, and the effector phase, where the liposomes are taken up by cells or 

12 

deliver the drug at the target site. During the transport phase the liposomes encounter 

various problems that are discussed below. 
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especially to the liver and spleen, has been 

leen, remove foreign 

particle

y with a Fc-

domain

y coupled to the liposome. Allen et al. showed that a high antibody density (140 

/µm

as et al., 2003] and that repeated 

administration of ILs results in drastically decreased circulation times. Antibody titers 

The biodistribution of systemically administered liposomes has been studied extensively, 

and unspecific localization of liposomes, 

observed [Proffitt et al., 1983; Dams et al., 2000; Bendas et al., 2003]. Elimination of 

liposomes through the RES [Gabizon and Papahadjopoulos, 1988] presents a problem, 

since it reduces the effective bioavailability of administered drugs. 

The removal of foreign particles in RES is part of a host defense mechanism, 

where macrophages in various tissues, such as the liver and sp

s from the circulation [Oku and Namba, 1994]. Plasma proteins and components 

play an important role in RES-mediated clearance as it has been shown that liposomes in 

media without blood components are not taken up by the liver [Semple et al., 1998]. 

Liposome uptake is believed to involve opsonic and scavenger receptors. Opsonins bind 

to the surface of liposomes and tag them so that they are recognized and engulfed by 

macrophages of the RES [Semple et al., 1998; Ishida et al., 2002]. The rate of clearance 

and opsonization is dependent on lipid composition, particle size and surface 

hydrophilicity [Allen and Chonn, 1987; Gabizon and Papahadjopoulos, 1992]. Thus small 

liposomes with a rigid membrane and incorporated PEG are removed slower from 

circulation by opsonization and RES [Gabizon and Papahadjopoulos, 1988]. 

There are other clearance problems specific for immunoliposomes. The clearance 

of immunoliposomes is enhanced when the target moiety is a whole antibod

. This makes the immunoliposome susceptible to Fc-mediated phagocytosis by Fc-

receptor expressing cells from RES [Aragnol and Leserman, 1986; Mastrobattista et al.,

1999]. Instead of using whole antibodies, several investigators have suggested the use of 

Fab’ [Maruyama et al., 1997], scFv [Xu et al., 2002; Völkel et al., 2004; Mamot et al.,

2005] or peptides [Kondo et al., 2004; Simberg et al., 2007], which could reduce the 

interaction with the RES and thereby prolong circulation time [Shahinian and Silvius, 

1995].

  Another factor that influences immunoliposomal clearance is the amount of 

antibod

µg ol lipid) increased the plasma clearance of IL as compared to moderate antibody 

densities (20-80 µg/µmol lipid) [ Allen et al., 1995]. 

Antibodies on the liposomal surface have been shown to induce an immune response 

[Phillips et al., 1994; Harding et al., 1997; Bend



Introduction 

______________________________________________________________________________________ 

14 

ere are also forces that enhance the 

accumu

The advantages of targeting the tumor endothelium and using ILs instead of 

immuno-conjugates as a drug delivery system have been combined in the development of 

itro studies report on targeting endothelial cells 

with IL

against ILs were elevated in individuals compared to those injected repeatedly with free 

antibody or PEG-liposomes and antibody separately [Harding et al., 1997]. Thus, it seems 

that it is the administration of the whole immunoliposomal complex that induces the 

immune response [Phillips et al., 1995]. Bendas et al. investigated the influence of the 

grafted position of the antibody (i.e. type A2 vs. type B) on the immunogenicity and found 

that ILs with antibodies on the tips of the PEG chains exhibited sufficient circulation 

time, also after repeated injections [Bendas et al., 2003]. It was suggested that the 

coupling method has an important impact on the immunogenicity and should therefore be 

determined for individual liposome preparations. 

The binding of antibodies to the surface of liposomes and the macrophages of the 

RES are factors that reduce the circulation time thereby preventing the liposome from 

reaching its target in the tumor. However, th

lation of liposomes in solid tumors. These forces are the result of the enhanced 

vascular permeability of the endothelial barrier and the lack of lymphatics in tumors, and 

are termed “the enhanced permeability and retention (EPR) effect” [Matsumura and 

Maeda, 1986; Maeda et al., 2004]. As previously mentioned, it has been shown that 

macromolecules, such as albumin, poly-(styrene-co-maleic acid half-n-butylate),

conjugated neocarzinostatin [Matsumura and Maeda, 1986], proteins and liposomes 

[Kirpotin et al., 2006], exhibit an enhanced accumulation in solid tumors [Noguchi et al.,

1998]. EPR is responsible for the passive accumulation of non-targeted sterically 

stabilized liposomes in the tumor, and the reason why non-targeted and targeted 

liposomes targeting the tumor endothelium or cells accumulate in the tumor to the same 

degree [Kirpotin et al., 2006]. Therefore, it is essential to determine the exact localization 

of the targeted liposomes when evaluating whether the ILs target successfully.  

1.2.2 Vascular-targeted liposomes 

vascular targeted liposomes. Several in v

s in an effort to ultimately place liposomes at sites of inflammation or tumor 

vasculature. The targeted receptors in those studies include endoglin [Volkel et al., 2004], 

vascular endothelial growth factor receptor 2 [Benzinger et al., 2000], galectin-1 
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 the Fc-receptor containing cells [Maruyama et al., 1997] and properly also 

reducin

[Brandwijk et al., 2007] intercellular adhesion molecule 1 [Bloemen et al., 1995] E-

selectin [ Spragg et al., 1997; Kessner et al., 2001 ], P-selectin [Scott et al., 2006] and 

VCAM [Chiu et al., 2003; Voinea et al., 2005, Gosk et al., 2005]. In vivo, ILs can be 

made to target inflamed vasculature [Everts et al., 2003] or vessels in areas of myocardial 

infarction [Nallamothu et al., 2006; Scott et al., 2006]. Several in vivo studies have 

investigated the tumor vascular targetability of liposomes decorated with peptides. These 

peptides include RGD motifs binding to v 3 integrins [reviewed in Temming et al.,

2005; Nallamothu et al., 2006; Lee et al., 2007], NGR motifs binding to aminopeptidase 

N [Pastorino et al., 2006], CREKA binding to fibrinogen or fibrin [Simberg et al., 2007], 

GPLPLR binding to membrane type-1 matrix metalloproteinase [Kondo et al., 2004], 

peptides binding to unknown receptors such as APRPG [Maeda et al., 2004], and the 

synthetic angiostatic peptide aniginex binding to galectin-1 [Brandwijk et al., 2007], 

which is a carbohydrate-binding protein with affinity for ß-galactosidase [Camby et al.,

2006].

Much research is being carried out with liposomes coupled to peptides. Peptides, 

instead of antibodies, have the advantage of a lesser clearance from the circulation by 

escaping

g the immunogenic response. Conceptually, peptides should also be superior to 

antibodies when aiming at targeting a compartment. Their small size and generally lower 

affinity potentially facilitates penetration into the tumor tissue. Furthermore, the generally 

lower binding affinity of peptides compared to antibodies can be of advantage when 

targeting the tumor cell compartment [Maeda et al., 2004], by escaping the binding site 

barrier. In contrast, high affinity binding would be preferable for robust tumor vascular

targeting, since ligands that bind to the luminal side of blood vessels are exposed to the 

dynamic flow environment of the blood stream. It is generally believed that most 

antibodies possess higher affinity binding properties than peptides. For example, to block 

the VCAM mediated leukocyte-endothelium interaction, a VCAM-binding peptide was 

applied at a 650-fold higher molar concentration than a VCAM-binding antibody to 

obtain similar degrees of inhibition [Kelly et al., 2005].  
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1.2.3 VCAM as a target on the tumor endothelium 

As mentioned earlier the tumor vasculature expresses molecules that are not 

present on normal endothelium. In the development of a vascular targeting drug delivery 

system it is important to choose a target, which ensures specificity and is widely 

applicable. VCAM was chosen for the work described here. 

VCAM is an immunoglobulin-like transmembrane glycoprotein of 110 KDa (Fig. 

4) expressed on activated endothelial cells during inflammation and cancer [Osborn et al.,

1989].

Figure 4. Protein structure of VCAM. VCAM-1 has 6-7 immunoglobulin-like domains [Kobayashi et al.,

2007].  

VCAM, also known as CD106, is a molecule with a well-characterized role in the 

immune system where it promotes firm cell-cell adhesion between migrating leukocytes 

and activated endothelial cells (Fig. 5). The mechanism of leukocyte migration to sites of 

inflammation is well characterized. Briefly, the cells interact in a sequential manner, 

where different types of adhesion molecules play different roles. First, the circulating 

leukocytes bind to selectins on the activated endothelium; this induces the leukocytes to 

roll along the endothelium. Following the rolling movement, other cell adhesion 

molecules of the integrin family that interact with members of the Ig-superfamily, such as 

VCAM or ICAM-1, mediate firm adhesion of leukocytes to the activated endothelium. 

16 
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Subsequently, this leads to the transendothelial migration of the leukocytes [Kobayashi et

al., 2007].

VCAM is an endothelial ligand for both integrins, very late antigen 4 (VLA-4) 

and 4 7 [Wu et al., 2007], where VLA-4 is the most common receptor [Charpin et al.,

1998]. VLA-4 is expressed on inflammatory leukocytes, on some tumor cells and also on 

tumor endothelial cells. Besides their role in promoting cell-cell contacts between 

leukocytes and inflamed endothelium [Rice et al., 1990], the VCAM-VLA-4 interactions 

mediate binding of VCAM-positive pericytes and tumor endothelium [Garmy-Susini et

al., 2005], pro-angiogenic macrophages and tumor endothelium [Jin et al., 2006], or 

metastatic tumor cells and tumor vasculature [Klemke et al., 2007]. Therefore, VCAM 

plays an important role in tumor angiogenesis and metastasis.  

Figure 5. Leukocytes or cancer cells interact in a sequential fashion with adhesion molecules on vascular 

endothelium; 1) Rolling along the endothelial surface; 2) Firm adhesion to endothelium; 3) Extravasation of 

leukocytes or cancer cells to targeted tissue [Kobayashi et al., 2007]. 

If VCAM is to be considered a potential target structure in the tumor vasculature, VCAM 

expression needs to exhibit some degree of tumor vasculature specificity. VCAM 

expression is inducible and virtually absent in normal human vasculature [Kuzu et al.,

1993]. Its expression is induced by pro-inflammatory cytokines such as tumor necrosis 

factor  (TNF- ), interleukin 1  (IL-1 ) [Wuthrich, 1994], IL-4 and interferon-  (INF-  ) 

[Wu et al., 2007]. Non-vascular cells with VCAM expression include bone marrow cells, 

17 
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follicular dendritic cells, fibroblasts, and epithelial cells in the kidney [Ryan et al., 1991; 

Seron et al., 1991]. However, the expression of VCAM outside the vasculature does not 

pose a major problem when targeting VCAM on tumor vascular, as the targeted 

liposomes will not come into contact with the other cells.  

Several diseases are associated with VCAM expression on the vascular 

endothelium, such as atherosclerosis, inflammatory diseases and autoimmune diseases 

[Dedrick et al., 2003]. In cancer, robust vascular VCAM expression has been observed in 

leukemias and lymphomas, such as Hodgkin’s disease and B-cell chronic lymphatic 

leukemia, and to varying degree in a variety of solid tumors such as lung cancer, breast 

cancer, melanoma, renal cell carcinoma, gastric cancer and nephroblastoma [reviewed in 

Dienst et al., 2005]. The expression of VCAM on various solid tumors makes VCAM an 

ideal target on the tumor endothelium. 

The fate of VCAM upon binding to its ligand is controversial. One study showed 

that after ligand binding, VCAM was internalized via a clatrin-dependent pathway with a 

half-life of 15 minutes in human umbilical vein-derived endothelial cells (HUVEC) 

[Ricard et al., 1998]. Another study found that VCAM remained mostly on the surface of 

the activated HUVEC [Kuijpers et al., 1994], whereas other studies suggest that parts of 

VCAM are shedded from the endothelial surface. The fate of VCAM after ligand binding 

needs still to be investigated. 

An alternative to creating an immunoliposomal system that targets the tumor cells 

would be the development of a liposomal drug delivery system that targets the VCAM at 

the tumor endothelium. The development of vascular acting anti-tumor drugs is being 

studied extensively. They could be used alone or in concert with conventional 

chemotherapy.  

 1.3 Vascular targeting drugs 

As described above, targeting tumor vasculature has many advantages. The use of 

conventional chemotherapy to kill tumor endothelium has been investigated. Two 

approaches have been tried; changing the treatment schedule [Hanahan et al., 2000; 

Miller et al., 2001] and targeting conventional cytotoxic anticancer drugs to the tumor 

endothelium using i.e. liposomes [Maeda et al., 2004; Pastorino et al., 2003; 2006; Lee et

al., 2007]. Conventional anticancer drugs are known to have an anti-angiogenic effect in
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vitro and in vivo [Miller et al., 2001]. The administration of low doses of conventional 

chemotherapy at constant intervals without resting periods can kill the tumor vasculature 

and at the same time exhibit low host toxicity [Browder et al., 2000; Hanahan et al.,

2000].

Apart from conventional therapy, two novel classes of drugs have emerged. They 

primarily target the tumor endothelial cells and exhibit an alternative molecular action. 

One approach targets key factors required for the formation of new vessels: anti-

angiogenesis agents [Kerbel, 2001; Siemann et al., 2005], who inhibit angiogenesis and 

are thought to normalize the vascular function by reestablishing the balance between the 

pro- and anti-angiogenesis factors [Jain, 2005]. Some angiogenesis inhibitors have been 

clinically approved. One example is Bevacizumab, a humanized monoclonal antibody 

targeting VEGF. Bevacizumab has shown clinical effects on colorectal cancer, breast 

cancer and non-small cell lung cancer in combination with cytotoxic chemotherapy 

[Hurwitz et al., 2004; Ramaswamy et al., 2006; Sandler et al., 2006]. Furthermore, it is 

used as a single agent in the treatment of metastatic renal cell carcinoma [Hinnen and 

Eskens, 2007].

  The second approach takes advantage of the differences between blood vessels in 

normal tissue and those of the tumor vasculature by targeting and destroying the existing 

tumor vasculature. These agents are called vascular disrupting agents (VDA) [Dienst et

al., 2005; Siemann et al., 2004].

VDAs destroy the tumors by inducing occlusion of the tumor vasculature. 

Occlusion leads to tumor cell starvation due to the lack of oxygen and nutrients [Thorpe, 

2004] which in turn leads to widespread necrosis in the tumor. VDAs are distinguished 

from anti-angiogenic drugs by targeting existing vessels which makes them well suited in 

the treatment of large bulky tumors (Fig. 6) [Siemann et al., 2004; Thorpe, 2004]. 
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Figure 6. Proposed principle of action of vascular-disrupting agents. A single vessel provides nutritional 

support to large numbers of tumor cells. Treatment with a vascular-disrupting agent induces endothelial cell 

dysfunction, which leads to partial occlusion of the vessel. The resulting diminished blood flow causes 

tumor cells farthest from the vessel to become increasingly hypoxic. As damage to the endothelium 

progresses, coagulation events are initiated, and blockage of the vessel ultimately occurs. This loss of vessel 

patency results in widespread tumor cell necrosis. [From Siemann et al., 2005]  

VDAs can be divided into two types; the ligand-directed VDAs and the small 

molecule VDAs. The ligand-directed VDAs use targeting ligands that specifically bind to 

structures on tumor endothelium and thereafter induce occlusion of the tumor vessel 

[Huang et al., 1997; Ran et al., 1998; Chiu et al., 2003; Dienst et al., 2005]. The small 

molecule VDAs exploit the pathophysiological differences between tumor and normal 

vasculature, i.e. increased proliferation, permeability and a reduced reliance on the 

tubulin cytoskeleton to maintain cell shape [Denekamp, 1990; Thorpe, 2004]. 

However, treatment with VDAs does not lead to complete tumor regression, but 

leaves a ring of viable tumor cells in the tumor periphery [Pastorino et al., 2003; Huang et

al., 1997]. These tumor cells obtain oxygen and nutrition from normal tissue vessels that 

are not targeted by the VDAs and therefore exhibit a good oxygen status resulting in 

tumor cells that are susceptible to conventional therapies, i.e. radiation or chemotherapies, 

which are most effective on well-oxygenated cells [Siemann et al., 2004; Horsman and 

Siemann, 2006].  

1.3.1 Ligand-directed VDAs 

 Several approaches based on linking antibodies or peptides that recognize tumor 

endothelium epitopes to effector molecules, that induce endothelial damage by selective 
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occlusion, have been investigated. The properties essential for the targeting moieties have 

been described above. The effector molecules exhibit a variety of activities including a 

direct or indirect induction of thrombosis. They redirect the host defense to attack the 

tumor, or change the morphology of the tumor endothelial cells to physically block the 

vessel [Thorpe, 2004]. The direct killing of endothelial cells by targeting toxins to the 

tumor was proven to be a successful approach. Several studies used chimeric fusion 

proteins with a toxin as the effector moiety targeted to the VEGF receptor. The effects of 

at least two different toxins, gelonin [Veenendaal et al., 2002] and diphtheria toxin [Arora 

et al., 1999], have been studied in vitro and in vivo. They induced thrombotic damage 

selectively at the tumor vessels and delayed tumor growth [Arora et al., 1999; 

Veenendaal et al., 2002]. Matsuno et al., targeted deglycosylated ricin A to the 

proliferation-associated antigen, endoglin, in mice bearing MCF-7 human breast cancer 

xenografts. This resulted in complete tumor regression [Matsuno et al., 1999].

 An alternative approach is to activate the host defense system by targeting 

inflammatory cytokines to the tumor vasculature. Targeting the tumor vasculature by 

creating a fusion protein in which the targeting part is the angiogenesis-associated 

isoform of fibronectin, ED-B, and the effector part being either IL-2 [Carnemolla et al.,

2002] or IL-12 [Halin et al., 2002] resulted in a significant, higher accumulation of tumor 

infiltrating T-lymphocytes, natural killer cells, macrophages and a delay in tumor growth 

time [Carnemolla et al., 2002; Halin et al., 2002]. However, the clinical application of 

cytokines is often hampered by severe systemic side effects.  

To avoid cytokine-induced side effects, ILs have been proposed as a delivery 

system in the development of ligand-directed VDAs. Liposomes have the advantage over 

immuno-conjugates in that they can encapsulate many effector molecules and therefore 

display a much higher ratio of effector molecules per targeting moiety [Marty et al.,

2002]. In addition, liposomes change the biodistribution and pharmacokinetics of drugs, 

thereby protecting the drug from metabolization and protecting the organism against the 

cytotoxic effects of the drug. The majority of studies on liposomal targeting of tumor 

vasculature have used liposomes encapsulated with conventional chemotherapeutics, such 

as doxorubicin [Volkel et al., 2004; Hölig et al., 2004; Pastorino et al., 2003, 2006; Lee et

al., 2007] or adriamycin [Maeda et al., 2004]. However, a few studies encapsulated a 

different class of drugs in the liposomes. Encapsulation of combretastatin A4, a small 

molecule VDA that induces depolymerisation of microtubules and disorganization of 
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actin and tubulin, was successful in vitro [Nallamothu et al., 2006]. Cationic liposomes 

were developed carrying a mutated form of the Raf gene, ATP
µ
-Raf, which blocks 

endothelial signaling and angiogenesis as a response to multiple growth factors. 

Treatment with these nano-particles resulted in endothelial apoptosis and regression of 

both primary and metastatic tumors [Hood et al., 2002]. In addition, vascular targeted 

liposomes with the stable isotope 
10

B were shown to reduce cell viability in vitro by 

neutron capture therapy [Koning et al., 2004]. 

1.3.2 Coagulation inducing VDAs 

1.3.2.1 Tissue factor as the effector in ligand-directed VDAs 

Another strategy that has proven successful is enhancing the pro-coagulative state 

of the tumor vasculature by directing truncated tissue factor (TF) to the tumor 

endothelium. Expression of TF at the tumor endothelium initiates the coagulation cascade 

leading to occlusion of the vessel. Truncated TF, consisting of the extracellular domain of 

the protein, has been investigated for anticancer treatment. The ability of truncated TF to 

induce coagulation is greatly reduced compared to full length TF [Philipp et al., 2003]. 

Free truncated TF in circulation does not induce clotting but becomes pro-coagulant when 

in contact with the endothelium [Thorpe, 2004]. One study describing the effect of 

truncated TF on tumor vasculature showed that free truncated TF alone did not have 

significant effects on tumor cell death. In contrast, when truncated TF was given in 

combination with low concentrations of bacterial lipopolysaccharide (LPS), which is an 

initiator of the immune system and coagulation system, a selective thrombosis of tumor 

vessels was found [Philipp et al., 2003]. This indicates that an additional pro-coagulative 

activation was essential for the non-targeted truncated TF to become fully active. 

Therefore, to increase the activity and localize the truncated TF directly to the tumor 

endothelium, several research groups created fusion proteins linking a targeting moiety to 

truncated TF.  

Tumor vessel markers such as MHC class II [Huang et al., 1997], VCAM [Ran et

al., 1998; Dienst et al., 2005], the ED-B domain of fibronectin [Nilsson et al., 2001], and 

prostate-specific membrane antigen [Liu et al., 2002] conjugated to truncated TF, induced 

intravascular thrombosis and tumor growth delay in various solid tumors in vivo [Thorpe, 

2004]. The hypothesis that an increase in TF concentration and activity at the tumor 
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endothelium could lead to tumor regression due to vessel occlusion was proven 

successful. However, inducing an up-regulation of native TF on the tumor vessels with 

cytokines or drugs could be an alternative to the treatment with truncated TF. 

1.3.2.2 TF and the coagulation cascade 

TF is a membrane-bound 47 kDa glycoprotein which plays an essential role in the 

initiation of extrinsic coagulation cascade in vivo (Fig. 7). The primary function of TF (in 

adults) is to initiate coagulation. This occurs when TF is exposed to coagulation factors in 

the bloodstream due to vascular injury. The extracellular domain of TF then becomes 

essential by binding to and acting as a cofactor for factor VII/ VIIa. The TF:VIIa complex 

acts as a serine protease converting factor IX and X to factor IXa and Xa, respectively, 

via limited proteolysis [Rehemtulla et al., 1991; Bogdanov et al., 2006]. The activated 

factor Xa together with its co-factor factor Va catalyses the conversion of prothrombin to 

thrombin. Thrombin cleaves fibrinogen to fibrin which together with platelets forms a 

stable clot (Fig. 7).   

The vast majority of factor VII is found as a zymogene in circulation and less than 

1 % is found as the activated factor VIIa. The conversion of factor VII in circulation is 

mediated by coagulation proteases, presumably primarily by factor XIa [Wildgoose et al.,

1992], but other factors such as factor IXa, Xa, XIIa, thrombin and plasmin have been 

shown to convert factor VII to factor VIIa in vitro [Morrissey, 2001]. TF can bind both 

the zymogene and the activated factor VIIa. The majority of factor VII is rapidly 

converted to its active state after binding to TF [Nemerson and Repke, 1985; Rao and 

Rapaport, 1988], and the TF:VIIa complex can catalyze the activation of factor VII in an 

auto-activation reaction [Morrissey, 2001].

The activity of coagulation proteins is strongly enhanced by binding to negatively 

charged membrane phospholipids, such as phosphatidylserine (PS). Therefore, free 

coagulation factors in the circulation display a negligible activity towards their respective 

substrates [Zwaal et al., 1998]. Under normal conditions PS is found in the inner leaflet of 

the membrane. However, upon cell injury or platelet activation it is translocated to the 

outer leaflet, thereby controlling the coagulation cascade under normal conditions. 
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Figure 7. Schematic illustration of the intrinsic (contact system) and extrinsic (cell injury) coagulation 

cascade. Tissue factor pathway: the main role of the tissue factor pathway is to generate a "thrombin burst". 

TF forms a complex with FVIIa (TF-FVIIa) which activates FIX and FX. FVII itself is activated by 

thrombin, FXIa, plasmin, FXII and FXa. The activation of FXa by TF-FVIIa is almost immediately 

inhibited by tissue factor pathway inhibitor (TFPI). FXa and its co-factor FVa form the prothombinase

complex, which activates prothrombin to thrombin. Thrombin then activates other components of the 

coagulation cascade, including FV and FVII (which activates FXI which in turn activates FIX), and 

activates and releases FVIII from being bound to vWF. FVIIIa is the co-factor of FXIa and together they 

form the "tenase" complex which activates FX and so the cycle continues. The contact activation pathway: 

formation of the primary complex on collagen by high molecular weight kininogen (HMWK), prekallikrein

and FXII (Hageman factor), prekallikrein is converted to kallikrein and FXII becomes FXIIa. FXIIa 

converts FXI into FXIa. FXI is also activated by FVIIa. Factor IX is in turn activated by FXIa which with 

its co-factor FVIIIa form the tenase complex which activates FX to FXa. Thrombin primary role is the 

conversion of fibrinogen to fibrin, the building block of a haemostatic plug. In addition, it activates Factors 

VIII and V and their inhibitor protein C (in the presence of thrombomodulin), and it activates Factor XIII, 

which forms covalent bonds that crosslink the fibrin polymers that form from activated monomers. 

http://www.biocrawler.com/encyclopedia/Image:Coagulation_cascade.png

The coagulation proteins that participate in the lipid-associated complexes can be 

divided into three categories. The first category includes factors VII, IX, X and protein C 

that have 9 to 12 - carboxyglutamic acid residues in the N-terminal, which are involved 

in the Ca
2+

 dependent binding to negative phospholipids. These residues are created by 

postribosomal vitamin K-dependent carboxylation [Zwaal et al., 1998]. Secondly, non-

enzymatic co-factors, such as factor V and VIII, are Ca
2+

 dependent, and need proteolytic 
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activation to facilitate the enzyme-substrate reaction [Davie et al., 1991]. The last group 

contains TF, a member of the class 2 cytokine receptor super family and a type I integral 

protein. TF does not need proteolytic activation, but must be anchored to a membrane to 

fully support the proteolytic activity of factor VIIa [Morrissey, 2001].

1.3.2.3 Regulation of TF expression on endothelial cells 

The level of TF expression varies in the different organs. Brain, lung, heart, 

kidney, uterus, testis, skin and placenta express high levels, whereas organs such as the 

liver, spleen and skeletal muscle express only low levels of TF [Fleck et al., 1990]. Under 

normal conditions TF is not expressed on the surface of the endothelial cells, but by cells 

surrounding the vasculature that act as a protective haemostatic barrier upon disruption of 

the blood vessels. However, inflammatory mediators such as TNF- , IL-1  and LPS 

[Bevilacqua et al., 1986], and angiogenetic stimuli such as VEGF and TGF- , have been 

shown to induce TF expression on endothelial cells, monocytes and fibroblasts [Osterud 

and Bjorklid, 2001; O’Reilly et al., 2003]. As a consequence, an inappropriate expression 

of TF is seen under various pathological conditions i.e. endotoxemia [Sharma et al.,

2004], atherosclerosis [Westrick et al., 2001] and in the development and progression of 

cancer [Yu et al., 2004].

VEGF is an important mediator of angiogenesis that activates endothelial cell 

survival, proliferation, migration and tube formation. VEGF also functions as a cytokine 

inducing the expression of different adhesion molecules (VCAM and integrins) and 

increasing endothelial permeability [Carmeliet, 2000]. Several studies have investigated 

the induction of TF on endothelial cells by VEGF alone or in synergy with TNF- . The 

biological effects of VEGF are mediated by its binding to the two tyrosine kinase 

receptors Flt-1 and KDR, where the latter has been shown to be the main receptor 

associated with endothelial cell proliferation, migration, vascular permeability, cell 

survival and angiogenesis [Shinaruk et al., 2003]. It has been suggested that KDR 

receptor signaling governs the VEGF-induced TF expression [Shen et al., 2000] through 

activation of the early growth response-1 (EGR-1) transcription factor [Mechtcheriakova 

et al., 2001].

TF expression is only slightly up-regulated by VEGF alone, but it is significantly 

enhanced when induced in synergy with TNF-  [Clauss et al., 1996; Shen et al., 2001]. 
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TNF-  is a potent pro-inflammatory cytokine, which originally was described as a 

mediator of hemorrhagic necrosis in murine tumors. Furthermore, TNF-  affects the 

haemostatic properties of endothelial cells [Conway et al., 1989] through stimulation of 

two receptors in the cell membrane, the 60 kDa TNF-  receptor (TNFR60) and the 80 

kDa TNFR (TNFR80). The principle receptor involved in the TNF-  induced up-

regulation of TF is TNFR60 [Clauss et al., 1996].  

TF is classified as an immediate-early response gene, because its transcription is 

directly induced before de novo synthesis of other proteins [Mackmann, 1995]. TNF-

induced de novo synthesis of the TF protein in human microvascular dermal endothelial 

cells. Experiments blocking either the nuclear factor- B (NF- B) or p38 mitogen-

activated protein kinase partly blocked the expression of TF [O’Reilly et al., 2003], 

indicating that these two signaling pathways are involved in the TNF-  induced TF 

expression in human microvascular dermal endothelial cells. In contrast, the expression of 

TF in porcine aortic endothelial cells after LPS treatment was the result of a concerted 

action mediated by transcription factor AP-1, NF- B and Sp-1-like factors, which lead to 

transcription from the TF promoter [Moll et al., 1995]. It appears that different signaling 

pathways are involved in the induction of the TF protein, and the process might be both 

species and cell type specific.

In addition to the transcriptional control of TF activity, i.e. increasing its 

expression on the vasculature, it has been suggested that TF exists in an encrypted state 

on the surface of non-perturbed cells, and that encryption of TF may contribute to 

controlling its activity in coagulation. Previous studies have shown that some quiescent 

endothelial cells express TF on their surface, but exhibit limited TF activity. However, 

when detached with trypsin the TF activity was increased [Maynard et al., 1975]. This 

suggests the existence of a mechanism that maintains TF in a protected or encrypted state, 

and that stress or stimulation can induce decryption of TF. The mechanisms behind 

decrypting TF are now being investigated. One study found that an increase in cytosolic 

Ca
2+

 concentrations increased TF activity [Bach and Rifkin, 1990]. Other studies found 

that the presence of the anionic lipid, PS, increased TF activity, and that PS therefore 

might participate in the activation of TF [Bach and Rifkin, 1990; Pendurthi et al., 2007].

The TNF-  induced expression and activation of TF is well documented. 

Therefore the use of TNF-  to induce TF expression and clotting in the tumor vessels is 

an attractive strategy. In addition, solid tumors secrete VEGF due to their angiogenetic 
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state. Thus tumor-derived VEGF, together with targeted TNF- , can synergistically 

increase the TF expression on tumor endothelium. TNF-  has previously been used in the 

treatment of solid tumors and being a pleotropic cytokine, it has multiple effects on the 

endothelium. The sum of these effects can induce vascular collapse.

1.3.3 TNF- ; as a VDA 

 TNF-  is a multifunctional cytokine that plays an important role in inflammation 

and immunity, as well as in the control of cell proliferation, differentiation and apoptosis. 

TNF-  was isolated in 1975 from serum of mice treated with LPS as the active 

component of Coley’s toxin. It got its name from its ability to induce necrotic hemorrhage 

in murine solid tumors [Carswell et al., 1975; Wanatabe et al., 1988]. Currently, TNF-  is 

used in anticancer treatment of soft tissue sarcoma, irresectable tumors of different 

histological origin and in-transit melanomas in the limbs by isolated limb perfusion [ten 

Hagen and Eggermont, 2004]. The antitumor effect induces vascular occlusion leading to 

tumor cell necrosis [Stoelcker et al., 2000; Friedl et al., 2002].

 TNF-  is a 17 kDa protein that forms a homotrimer in solution. It is mainly 

produced by activated macrophages, T lymphocytes and natural killer cells, but other cell 

types such as fibroblasts, smooth muscle cells and tumor cells also produce low levels of 

TNF-  [van Horssen et al., 2006]. TNF-  is synthesized as the membrane bound pro-

TNF- , which is cleaved by the TNF-  converting enzyme and released into the 

circulation [Bemelmans et al., 1996]. As mentioned above, TNF-  exerts its action 

through two receptors. TNF-  has highest affinity for TNFR80 but seems to exert most of 

its biological function through the TNFR60 (also called TNFR1), which is expressed on 

all cell types. TNFR80 is mainly expressed on cells of the immune system [Aggarwal et

al., 2003]. The two receptor have been shown to cooperate; at low TNF-  concentrations 

TNFR80 seems to be involved in catching and passing the ligand on to the TNFR60 

[Clauss et al., 1996]. 
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Figure 8. Schematic overview of the signaling pathways initiated upon binding of TNF-  and TNFR60 

trimerzation. The signaling pathways are reviewed in van Horssen et al (2006) [from van Horssen et al.,

2006] 

The main difference between the two receptors is the presence of the death 

domain (DD) on the TNFR60, but not on TNFR80. The DD therefore makes TNFR60 a 

member of the family of death receptors, which are apoptosis-inducing receptors [van 

Horssen et al., 2006]. Besides signaling apoptosis, the TNFR60 also signals cell survival 

and activation by inducing the expression of inflammatory proteins [Kuldo et al., 2005]. 

 When TNF-  homotrimer binds to the TNFR60, the receptor trimerizes, causing 

the protein silencer of death domain (SODD) to be released. Thereafter the protein 

TNFR-associated death domain (TRADD) binds to the DD, which in turn recruits the 

adaptor proteins receptor interacting protein (RIP), TNFR associated factor 2 (TRAF-2) 

and Fas-associated death domain (FADD) [Aggarwal, 2003; van Horssen et al., 2006]. 

Here, the two signaling pathways split up depending on the outcome of the signaling. 

TNFR60 signals apoptosis when it recruits FADD which thereafter initiates the caspase 

cascade (Fig. 8). However, when it signals survival TRAF-2 is recruited to the complex. 

The binding of TRAF-2 inhibits apoptosis and induces phosphorylation and activation of 

more signaling pathways. This process results in the activation of the transcription factors 

cFos/cJun and NF- B, where NF- B constitutes the major signaling pathway [Devin et

28 
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al., 2000]. The effect that TNF-  exerts is concentration-dependent. High concentrations 

induce the vascular-toxic pathway, whereas lower concentrations promote DNA and 

protein synthesis [van der Veen et al., 2000]. 

 As mentioned above, TNF-  exerts many effects on endothelium. It can induce 

coagulation through up-regulation and activation of TF and it can permeabilize the 

endothelial barrier and induce vascular obstruction due to endothelial apoptosis. 

  The apoptotic effect of TNF-  on endothelial cells has been investigated in 

HUVECs [Ramana et al., 2004; Carroll et al., 2004] and bovine pulmonary arterial 

endothelial cells [Polunovsky et al., 1994]. The inhibition of protein synthesis by treating 

the cells with either actinomycin D or cycloheximide attenuates the TNF-  induced 

apoptosis [Polunovsky et al., 1994]. This could be due to the dual signaling of TNF-

where the cell upon TNFR60 activation up-regulates the pro-survival genes and renders 

the cells less sensitive to TNF-  mediated apoptosis [Jimienez et al., 2003]. It has also 

been suggested that the production of reactive oxygen species (ROS) plays a role in TNF-

 mediated cell death. TNF-  increases the production of ROS, but the role of ROS in the 

apoptotic pathway is conflicting. When initiating the apoptotic pathway, TNF-  also 

activates the anti-apoptotic pathway, including the transcription factor NF- B [Ramana et

al., 2004]. NF- B regulates genes that promote cell survival and their activation and 

might therefore rescue the cell from death. However, activation of NF- B is redox-

sensitive, and it has been shown that ROS, as a secondary effect, inhibits NF- B

activation [Ramana et al., 2004] thereby promoting apoptosis.  

 TNF-  provokes the biosynthesis and release of multiple endogenous mediators 

that directly or indirectly influences the endothelial barrier function. Neumann et al.

showed that Evans blue labeled albumin was cleared from the pulmonary micro-vessel 

endothelial monolayer within 30 min of TNF-  treatment [Neumann et al., 2006]. The 

increased permeability of the endothelial barrier is mediated through the activation of 

multiple protein tyrosine kinases [Angelini et al., 2006], which results in the down-

regulation of primary endothelial intracellular adhesion molecules, vascular endothelial-

cadherin, and in the contraction of F-actin cytoskeletal elements [Friedl et al., 2002].

 TNF-  induces a pro-coagulative state, increased permeability and apoptosis in 

endothelial cells. Treatment with TNF-  induces thrombosis and necrosis in mice bearing 

human xenograft tumors [Watanabe et al., 1988; Nawroth et al., 1988]. However as TNF-

 is a multi-functional cytokine, systemic treatment with even the minimal clinical doses 
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is often hampered by severe side effects [Kim et al., 2002a], such as hypotension, fever, 

nausea, headache, and tachycardia. Therefore, TNF-  is not applied in systemic treatment, 

but is given through isolated limb perfusion, often together with melphalan [Grunhagen et

al., 2006; Verhoef et al., 2007]. This technique allows for 10-fold higher doses of the 

systemic mean-tolerated dose of TNF- , with negligible systemic toxicity [Hayes et al.,

2006].

Treatment with low doses of TNF-  is another way to circumvent the severe side 

effects. Low doses of TNF-  in combination with liposomal doxorubicin (Doxil
®

)

produces a better tumor response in osteosarcoma-bearing rats [Hoving et al., 2005] and 

in B16BL6 melanoma xenograft-bearing mice [Seynhaeve et al., 2007] as compared to 

treatment with Doxil
®

 alone. Another study employed low doses of TNF-  and liposomal 

cisplatin and found that the combination resulted in a prolonged anti-tumor activity in rats 

bearing soft-tissue sarcomas, but not in rats bearing ostesacroma [Hoving et al., 2005]. 

The effect of the combination treatments is thought to be due to an increased vascular 

permeability, increased tumor accumulation and a more homogenous drug distribution in 

the tumor [Seynhaeve et al., 2007]. However, the outcome might depend on the type of 

tumor [Hoving et al., 2005].  

 Apart from isolated limb perfusion and low levels of TNF- , investigators have 

tried to target TNF-  specifically to the tumor. TNF-  conjugated to the tumor cell 

antigen, carcinoembryonic antigen [Larbouret et al., 2007] and NGR-peptide [Corti and 

Ponzoni, 2004], exhibited anti-tumor activity and resulted in fewer side effects [Larbouret 

et al., 2007]. Another approach was to encapsulate TNF-  in sterically stabilized 

liposomes [Kim et al., 2002a,b; Debs et al., 1990; ten Hagen et al., 2002; Morishige et

al., 1993]. Incorporation of TNF-  into sterically stabilized liposomes has many 

advantages in systemic treatment. Liposomal TNF-  exhibits a prolonged circulation 

time, accumulation in the tumor and decreased cytotoxicity [Debs et al., 1990; van der 

Veen et al., 2000; Kim et al., 2002a; ten Hagen et al., 2002].

The immunomodulatory and toxic effects of TNF-  liposomes were initially 

investigated in rats. Liposomal TNF-  exhibited the same immunomodulatory effects as 

free TNF- , but with fewer toxic side effects [Debs et al., 1990]. The anti-tumor effect of 

TNF-  liposomes alone or in combination with other conventional anti-cancer treatments 

has also been studied. Treated mice bearing LS174T human colon cancer xenografts 

exhibited prolonged the recruitment and activation of leukocytes as compared to 
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treatment with free TNF-  [Kim et al., 2002a]. When TNF-  liposomes were given in 

combination with radiation, the inhibition of tumor growth was enhanced synergistically 

without the dose-limiting toxicities [Kim et al., 2001]. It was suggested that the reason for 

this was that TNF-  liposomes resulted in a prolonged activation of the immune system 

[Kim et al., 2002a]. Moreover, the combination of liposomal TNF and liposomal 

doxorubicin (Doxil
®

) markedly augmented the antitumor activity, without increasing the 

toxic side effects seen in the combination of free TNF-  and Doxil
®

 [ten Hagen et al.,

2002]. Since the encapsulation of TNF-  reduced the systemic side effects, TNF-

liposomes seems to be a promising alternative when using TNF-  in anti-tumor treatment. 

It might even enhance the effects of TNF-  on the tumor endothelium when targeting the 

liposomes directly to the tumor endothelium. 

1.3.4 DMXAA as a TNF-  inducing small molecule VDA 

In an attempt to limit the TNF-  induced side effects, a search for agents that 

stimulate the synthesis of TNF-  in tumors was initiated. This led to the finding of 

flavone acetic acid (FAA), which by inducing TNF-  synthesis, is a potent drug against 

solid tumors in mice. FAA showed regression of Colon 38 tumors in mice [Plowmann et 

al., 1986], but phase II trials showed that FAA had no effect on human tumors [Kerr and 

Kaye, 1989]. Derivatives of FAA were therefore synthesized, the most potent being 5,6-

dimethylxanthenone-4-acetic acid (DMXAA, Fig. 9) [Rewcastle et al., 1991].

Figure 9. The chemical structure of DMXAA. 

DMXAA’s activities in mice include induction of TNF-  and INF-  [Joseph et al.,

1999], serotonin release [Baguley et al., 1997], increased vascular permeability [Chung et

al., 2007], tumor blood flow inhibition and induction of hemorrhagic necrosis and tumor 

regression (Fig. 10) [Zhao et al., 2002]. In contrast to FAA, DMXAA was shown to 

induce TNF-  synthesis in both mouse and human cells in vitro [Philpott et al., 1997]. 
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DMXAA also induced a rapid vascular collapse in the tumors of mice transplanted with 

Colon 38 xenografts [Joseph et al., 1999]. As mentioned above, apart from TNF- ,

DMXAA also induces other cytokines, such as interferons. To investigate whether the 

antitumor effects of DMXAA were dependent on the synthesis of TNF-  and INF- ,

knock-out mice lacking their receptors were treated with DMXAA. Treatment of IFN-

receptor knock-out mice bearing Colon 38 tumors with DMXAA resulted in 100% 

regression of the tumor, even though the required dose was higher and the reduction in 

tumor volume was slower. This suggested that IFN-  was not crucial for the anti-tumor 

response [Pang et al., 1998]. In order to evaluate the role of TNF-  in the DMXAA 

induced anti-tumor response, TNF-  receptor knock-out mice were compared to wild type 

mice with respect to the dose and curability. The TNF-  knock-out mice showed a 

considerably higher maximum-tolerated dose when compared to wild type mice (>100 

mg/kg vs. 25mg/kg), and treatment with 50 mg/kg DMXAA resulted in a curative and 

comparable effect to wild type mice treated with 25 mg/kg DMXAA [Zhao et al., 2002]. 

Although TNF-  plays an important role in the DMXAA-induced host toxicity and anti-

tumor effect, it can be replaced with a TNF-  independent mechanism. Comparing the 

levels of TNF-  induced by DMXAA and LPS in the tumor it was shown that DMXAA 

induced a larger amount of TNF-  in tumors as compared to LPS [Joseph et al., 1999], 

indicating that the activity of DMXAA is more specifically located to the tumor and that 

DMXAA is a potent inducer of TNF- .

Figure 10. Schematic depiction of the direct and indirect activities of DMXAA.DMXAA exerts a direct 

effect on the endothelium where it induces apoptosis, but also indirect effects such as the synthesis of TNF-

 and serotonin [Rosenthal and Pili, 2007]. 
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Pre-clinically, DMXAA has been shown to target tumor vasculature and cause 

tumor regression, necrosis and a reduction in micro-vessel density in mice bearing head 

and neck squamous cell carcinomas [Seshadri et al., 2006] and Colon 38 tumors [Zhao et

al., 2002] and in rats bearing chemically induced primary mammary tumors [Liu et al.,

2007a]. DMXAA exhibits anti-tumor activity and reduction in tumor blood flow at well 

tolerated doses in clinical phase I trials [Jameson et al., 2003]. However, treatment with 

DMXAA alone, as with the other VDAs, does not lead to complete tumor regression. 

Currently, DMXAA is undergoing clinical phase II trials in combination with 

conventional anticancer drugs [McKeage, 2008]. One study is assessing the efficacy of a 

triple treatment with paclitaxel, carboplatin and DMXAA in patients with recurrent 

ovarian cancer. Preliminary data reveal that DMXAA does not add significantly to 

toxicity [Gabra, 2006]. No additional toxicity was found in patients with non-small cell 

lung cancer receiving the same triple treatment and initial data suggest that the 

combination has a beneficial effect compared to conventional treatment [McKeage, 

2008]. The combination of docetaxel and DMXAA for patients with hormone-refractory 

metastatic prostate cancer did not add to the toxicities and showed promising activity 

[Rosenthal and Pili, 2007]. These phase II trials are encouraging and support further 

development of DMXAA as an anticancer drug.

One problem with DMXAA is that it exhibits a steep dose curve in mice, resulting 

in a narrow therapeutic window. Treatment with 15 mg/kg has no anti-tumor effect, while 

a treatment with 30 mg/kg kills the mice [Murate et al., 2001]. Subsequently, employing a 

vascular targeted approach, with i.e. tumor endothelium targeted liposomes might 

broaden the therapeutic window by either making it possible to work with lower doses or 

by reducing the toxicity of higher doses.
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1.4 Aim of study  

The main goal of this project was to evaluate and develop a novel therapeutic 

principle for treating solid tumors by combining a non-cytostatic drug carrier targeted to 

the tumor vasculature and the occlusion and destruction of the tumor blood vessel system. 

Therefore, the project is divided into two parts; (i) a liposomal carrier system for specific 

targeting of the tumor vasculature had to be generated and evaluated under in vitro and in 

vivo conditions with respect to targetability, tumor specificity and the fate of the 

liposomes at the target site. (ii) The molecular mechanisms of TF expression by 

endothelial cells as a key for inducing blood coagulation had to be investigated. Potential 

inducers of TF expression were evaluated as possible agents for liposomal targeting and 

their anti-tumor activity was evaluated in a mouse tumor model. 

VCAM appears to be the most attractive target molecule on the endothelium for a 

liposomal targeting strategy; VCAM is not expressed on normal endothelium but is up-

regulated on tumor endothelial cells. Consequently, different VCAM-directed 

immunoliposomes were introduced and investigated. Special emphasis has been put on 

the vascular localization of these immunoliposomes vs. the unspecific uptake in the tumor 

tissue. As a novel approach, TNF-  and the TNF-  inducing, DMXAA was encapsulated 

into targeted liposomes. This will protect the organism against potential systemic effects 

of TNF- , and simultaneously, ensure selective delivery to the tumor endothelial cells. 

This should lead to an induction of TF expression and activity with a subsequent initiation 

of the coagulation cascade and ultimately, to occlusion of the tumor vessels and starvation 

of the tumor cells (Fig. 11). Hence, the strategy is to starve tumor cells by injuring 

existing tumor-feeding blood vessels by inducing occlusion of the vessel and stopping the 

flow of nutrients and oxygen to the tumor cells. This will lead to killing the cancer cells in 

the core of the tumor, which will make the peripheral parts of the tumor particularly 

amenable for adjuvant therapy with radiation or cytostatic treatment (cf. Horsman and 

Siemann, 2006). The aim of the thesis is schematically summarized in Fig. 11. 
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Coagulation 

TNF-

Figure 11. Illustration of intra-tumor blood coagulation induced by the release of TNF-  from vascular-

targeted liposomes conjugated with anti-VCAM antibodies. 

    = TNF-loaded liposomes coated with anti-VCAM antibodies target VCAM-   

       expressing endothelial cells of the tumor. 

Starved tumor cells



Materials and Methods 

________________________________________________________________________

36 



Materials and Methods 

________________________________________________________________________

37 

2. Material and Methods 

2.1. Reagents

Reagents were obtained from the following sources: soy phosphatidylcholine 

(SPC) was kindly donated by Lipoid AG Ludwigshafen (Germany), polyethylenglycol 

(2000)-phosphatidylethanolamine (PEG-PE), Lissamine
®

Rhodamine-B-DPPE, N-

glutaryl-PE (Ng-PE) were purchased from Avanti Polar Lipids (Alabaster, USA). 

Cyanuric chloride, cholesterol (Chol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimid 

(EDC), N,N diisopropylethylamin, 3,3´- Dioctadecyloxacarbocyanine perchlorate (DiO) 

and recombinant murine TNF-  were from Sigma-Aldrich (Deisenhofen, Germany). 

DMXAA was a kind gift from M. Horseman, (Århus University, Denmark).  

The antibodies were as follows: rat anti-mouse VCAM (clone MK271, rat anti-mouse 

CD31 (clone 390) and rat anti-mouse Meca32 antigen (clone Meca32) were purified from 

hybridoma cell supernatant (see section 2.2) using rat anti-mouse-IgG-agarose affinity 

columns (resin from Sigma-Aldrich); isotype-matched rat control antibodies (IgG1) and 

anti-CD11b (clone OX 42) were obtained from BD Pharmingen (Heidelberg, Germany); 

fractionated human IgG with irrelevant specificity and FITC-conjugated goat anti-rat 

secondary antibody came from Sigma-Aldrich; anti-macrophage BM8 antibody, 

recognizing the F4/80 maturation antigen, came from Dianova (Hannover, Germany), 

Alexa Fluor
®

 568 conjugated goat anti-rat secondary antibody and goat anti-mouse came 

from Molecular Probes (Invitrogen, Karlsruhe, Germany). Rabbit anti-mouse tissue factor 

from immunized rabbit was a kind gift from C. Gottstein (Santa Barbara, USA). Goat 

anti-rabbit IgG conjugated to horseradish peroxidase was obtained from BD Pharmingen 

(Heidelberg, Germany) and FITC-conjugated goat anti-rabbit IgG was from Sigma-

Aldrich (Deisenhofen, Germany). 

Octyl-ß-D glucopyranoside was obtained from Alexis (Grünberg, Germany). The 

salts used to prepare the buffers (PBS, TRIS, HEPES, Borat-buffer, Lysis-buffer) were all 

analytical grade salts from Fluka (Neu-Ulm, Germany). The detergents Triton-X-100 and 

sodiumdeoxycholate, the chromogenic horseradish peroxidase substrate 3, 3’, 5, 5’-

tetramethyl benzidine (TMB), fluorescence mounting buffer, paraformaldehyde, 65 mM 

phosphate standard, Folin-Ciocalteau reagent were obtained from Sigma-Aldrich 

(Deisenhofen, Germany). The TNF-  ELISA kit was obtained from Endogen (USA) and 
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the in situ Apoptag® TUNEL assay kit was from Chemicon (CA, USA). NuPage® 

Western Blot kit was obtained from Invitrogen (Karlsruhe, Germany). 

2.2. Cell lines 

Hybridoma cell line MK271 was from ATCC, Manassas, VA, USA; hybridoma 

cell line 390 was from S. Albelda, University of Pennsylvania, Philadelphia, PA, USA; 

hybridoma cell line Meca32 was from E. Butcher, Stanford University, Stanford, CA, 

USA. The murine brain endothelium cells, bEnd3, were obtained from B. Engelhardt, 

Theodor Kocher Institute, University of Bern, Switzerland. A2780, a human ovarian 

cancer cell line, was obtained from M. Wiese, Pharmaceutical Department, University of 

Bonn. Human tumor cell line Colo677, originally described as non-small cell lung cancer 

cell line, is a myeloma cell line from DSMZ, Braunschweig, Germany, which forms solid 

tumors with VCAM-positive vessels after subcutaneous injection [Dienst et al., 2005]. 

B16F10 are murine melanoma cells, which express tissue factor constitutively, came from 

R. Ludwig, University Clinic Frankfurt. All cell lines except bEnd3 and B16F10 were 

cultured in RPMI 1640 medium supplemented with 10 % fetal calf serum (FCS), 100U 

penicillin and 100 µg streptomycin at 37 C in a 5% CO2 incubator. The bEnd3 and 

B16F10 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10 % FCS, 100U penicillin, 100µg streptomycin and 4mM glutamine. 

All cell culture reagents were obtained from Sigma-Aldrich (Deisenhofen, Germany).  

2.3 Synthesis of the cyanur-PEG-PE anchor 

The synthesis of the cyanur-PEG-PE anchor was performed as previously 

described by Bendas et al. [1999], in one step. Briefly, 50 mg DSPE-PEG2000-NH2 was 

dissolved in 18 ml chloroform, after which 5 mg cyanuric chloride and 2.5 mg N,N 

diisopropylethylamin were added. The reaction was allowed to run to the end for 72 hours 

under constant agitation at room temperature. The reaction product was checked using 

thin layer chromatography (TLC). A silicate TLC plate (Merck, Germany) was used. 2-5 

µl of reaction solution was applied to the TLC plate. Furthermore, to identify the lipid 

spots, standards consisting of cyanuric chloride and DSPE-PEG-NH2 were also applied. 

The lipids were eluted with chloroform: methanol: NH3 (65:35:1 v/v/v) and visualized 
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with UV and molybdenum blue reaction [Dittmer and Lester, 1964] (solution 1: 4.011 g 

MoO3, 100 ml H2SO4 boiled for 3-4 hours and cooled down overnight; solution 2: 0.178 g 

molybdenum, 50 ml solution boiled for15 min; spray reagent: equal volumes of solution 1 

and 2 to 4.5 volume parts H2O). The reaction mixture was washed twice with methanol 

and after evaporation the Cyanur-PEG-PE was dissolved in chloroform to a concentration 

of 1 µmol/ml.  

2.4. Liposome preparation

The liposomes used in this work, regardless of the different labels (fluorescence or 

radioactive) and different encapsulated drugs (TNF-  and DMXAA), were all prepared 

with the hydration method.  

2.4.1 Preparation of empty liposomes 

Liposomes were prepared from SPC/cholesterol/mPEG2000-PE/anchor/DiO in a 

ratio of 60/30/5/5/0.5 mol % and hydrated with a 0.9 % NaCl solution to a final lipid 

concentration of 30 mM. In some preparations, trace amounts of [
3
H]-

cholesteryloleylether (Amersham, Buckinghamshire, U.K.) (0.25 µCi/µmol lipid) were 

added instead of the DiO label. To couple a protein to the liposomal surface, two different 

coupling-anchors were used; either the NgPE anchor or the cyanur-PEG2000-PE anchor, 

which couples the targeting device directly to the surface of the liposomes or to the 

terminal ends of the PEG chain, respectively [Bendas et al., 1999]. When preparing 

liposomes with the cyanur-anchor the mPEG2000-PE was omitted.  

Unilamellar liposomes were prepared with a Mini-extruder (Avanti Polar Lipids, 

Alabaster, USA) from multilamellar vesicles extruded 19 times through a 200 nm 

polycarbonate membrane, 19 times through a 100 nm polycarbonate membrane and 10 

times through a 50 nm polycarbonate membrane (Whatman Nuclepore 18 mm 

polycarbonate membrane, Richmond, USA).  
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2.4.2 Preparation of TNF-  and DMXAA liposomes 

2.4.2.1 FITC-labeling of TNF-

1 mg TNF-  was dissolved in 1ml 0.9% NaCl solution. Before labeling, the buffer 

was replaced with a carbonate/bicarbonate buffer pH 8.8 using a Biospin 6 column 

(BioRad Laboratories, München, Germany). The amount of fluorescein isothiocyanate 

(FITC) labeling reagent (Pierce, Il, USA) to be added was calculated by using a 24-fold 

molar excess of the fluorescent dye to protein according to the manufacturere’s 

recommendation. The FITC salt was dissolved in carbonate/bicarbonate buffer and added 

to the TNF- , vortexed thoroughly and incubated for 1 hour at room temperature in the 

dark. Thereafter, excess FITC was removed by gel filtration using a BioSpin 6 column 

(cut-off: 6000 Da). The concentration and the degree of labelling were determined by 

measuring the absorbance at 280 nm and at the dye’s maximum wavelength (494 nm for 

FITC, A494). Thereafter equation 1 was used. 

Protein concentration (M) = (A280 – (A494 x Correction factor))/   (1) 

where A280 gives the protein concentration in the sample and the correction factor is used 

to correct for the absorbance of the fluorescence dye at 280 nm.  is the molar extinction 

coefficient of the labeled protein (TNF- , 17500) and A494 the absorbance at the dye’s 

maximum wavelength. 

The degree of labelling is then calculated with equation 2 

 moles dye per mole protein = A494/ ’ x protein concentration (M)  (2) 

where ’ is the extinction coefficient of the fluorescence dye. 

2.4.2.2 Liposomal encapsulation of TNF-  and DMXAA

TNF-  and DMXAA liposomes were prepared by hydration of a 10 µmol 

SPC/Cholesterol/cyanur-PEG2000-PE molar ratio 65/30/5/ film with 100 µl TNF-  (1 

mg/ml) or 100 µl DMXAA (20 mg/ml), respectively. Unilamellar liposomes were formed 

by sonicating the liposomes 3 times for 5 seconds with 3 cycles. The particle size was 

thereafter determined as described in section 2.5.1. Non-encapsulated TNF-  or DMXAA 
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was removed by gel permeation chromatography using a Sepharose 4B column and a 0.9 

% NaCl solution as eluant.

Encapsulation efficiency was given as g TNF-alpha/ mol lipid and was established by 

measuring the amount of lipid using the phosphate assay (section 2.5.2) and the 

fluorescence of the FITC labeled TNF-  or by measuring protein concentration.

The amount of encapsulated DMXAA was determined by measuring the fluorescence of 

DMXAA. A calibration curve for DMXAA in 0.9 % NaCl solution was obtained using a 

LS 30 Fluorescence Spectrometer (Perkin-Elmer, Jügesheim, Germany) with an 

excitation wavelength of 350 nm and an emission of 412 nm, after which the fluorescence 

of the unknown sample was measured.  

2.4.3 Coupling proteins to the liposomes 

Two different anchor lipids (Ng-PE and Cyanur-PEG-PE anchor) were compared 

and used to couple proteins to the liposomes. Rat anti-mouse VCAM monoclonal 

antibody (mAb) (M/K-271) was used as homing devices. Control liposomes were coupled 

to an irrelevant IgG (human fractionated IgG with ~70% IgG1 content or purified rat 

IgG1) or to bovine serum albumin (BSA) (grade V). Coupling was performed in the 

optimal 1:1000 protein:lipid molar ratio [Hansen et al., 1995]. 

To form a protein linkage to liposomal Ng-PE, 6 mg EDC was added to 10 mol 

liposomes in PBS (pH 7.4) followed by an incubation period of 4 h at room temperature. 

Antibodies were added and incubated overnight at room temperature. The ILs were 

separated from unbound antibodies by gel permeation chromatography using a Sepharose 

4B column and 0.9 % NaCl solution as eluant.  

To couple the proteins to the cyanur anchor the calculated amount of antibody was added 

to liposomes in borate buffer pH 8.8 (solution 1:4.77 g Borax in 250 ml H2O; solution 

2:0.1 M HCl; Borate buffer:75 ml solution 1, 25 ml solution 2) and incubated at room 

temperature for about 16 h. Unbound antibodies were separated by gel permeation 

chromatography using a Sepharose 4B column with a 0.9% NaCl solution as eluant.
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2.5 Liposome characterization 

Liposomes were characterized with respect to particle size by dynamic light 

scattering (Malvern autosizer IIc, Malvern, UK), and with respect to phospholipid 

concentration [Ames and Dubin, 1960]. The concentration of coupled proteins was 

determined with a modified Lowry assay [Peterson, 1977].

2.5.1 Particle sizing 

Dynamic light scattering can be used to measure the size of small particles with a 

diameter of 5-5000 nm. Particles of this size are characterized by their constant random 

thermal movement. When monochromatic light hits a particle, the particle movement 

causes the intensity of light scattering to vary with time. The principle is that larger 

particles move slower than small particles, which causes the rate of fluctuation of the 

scattered light to be slower for large particles as compared to small particles [Malvern, 

1993]. These properties make it possible to calculate the diffusion coefficient of a 

particle. The diffusion coefficient can be used to calculate the hydrodynamic radius by 

using the Stroke-Einstein equation (3) 

r  = k T/6 D   (3) 

where k  is Bolzmann’s constant, T is temperature,  is the fluid viscosity and D is the 

diffusion time [Øgendahl, 2001]. After analysis the hydrodynamic diameter and the 

polydisperisty is given. The polydispersity is a factor that describes the homogeneity of 

the sample and lies in the range of 0-1, with 0 being very homogenous [Constantinides 

and Yiv, 1995]. Polydispersity should be lower than 0.5, as samples with a higher 

polydispersity are not homogenous and not suited for the technique.

 Measurements were carried out on a Malvern Autosizer 2c (Malvern Instruments, 

Worcestershire, UK). 1 ml 0.9 % NaCl solution was filtered sterile (Sterilfilter Satorius, 

0,22 m), placed in a cuvette and approx. 30 µl liposome suspension was added. 

Thereafter the size (nm) and polydispersity was given as a mean of 3 times 10 

measurements.  
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2.5.2 Phospholipid concentration determination 

Phosphate determination was performed as described by Ames and Dubin [1960]. 

Briefly, this method is based on a colorimetric determination of PO4
3-

. The liposomal 

phospholipids were oxidized with perchloric acid to produce inorganic phosphate, which 

reacts to phosphomolybdate acid. This can be converted quantitatively to a blue 

compound after being reduced by ascorbic acid while heated.

A calibration curve was made with a 65 mM phosphate standard. Known amounts 

of phosphate standard, from 2-65 nmol, were added to glass test tubes. Small amounts of 

the liposome solution (15-30 µl) were transferred to a glass test tube. Thereafter 0.2 ml 

perchloric acid was added to each tube, the tubes were covered with aluminum foil to 

prevent evaporation, and the mixtures were incubated for 30 min on a heating block at 

180 C. The test tubes were cooled down and 2 ml hexa-ammoniummolybdate solution 

(2.2 g (NH
4
)
6
Mo

7
O

24
× 4H

2
O, 14.3 ml conc. sulfuric acid ad 1000 ml dH2O) and 0.25 ml 

10 % ascorbic acid solution (w/v) were added to each test tube. The mixture was 

vortexed, incubated for 10 min at 100 C in a water bath and thereafter cooled down in 

cold water. Absorbance was measured at 812 nm. 

2.5.3 Protein concentration determination according to Peterson-Lowry 

A modified Peterson-Lowry assay was used to determine the amount of protein 

coupled to the liposome. The advantage of this method is that the phospholipids only 

interfere minimally and that other interfering substances can be removed by precipitating 

the proteins prior to running the assay. The principle behind the Lowry method of 

determining protein concentrations lies in the reactivity of the peptide nitrogens with the 

copper [II] ions under alkaline conditions and the subsequent reduction of the Folin-

Ciocalteau phosphomolybdic acid to heteropolymolybdenum blue by the copper-

catalyzed oxidation of aromatic acids [Dunn, 1992]  

Briefly, a calibration curve was produced with either human IgG or BSA as 

reference depending on the protein coupled to the liposome. Known amounts of protein 

between 2-12 µg were transferred to Eppendorf tubes. The protein concentration in the 

liposome samples was measured in 10-30 µl liposome suspension. dH2O was added to 

each tube to give a final volume of 1 ml. The proteins were then precipitated. First, 50 µl 

0.3% sodiumdeoxycholate was added to each tube; the samples were vortexed and 
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incubated for 10 min at room temperature. Then 100 µl 70% trichloracetic acid was added 

and the samples were vortexed and centrifuged for 20 min at 11.000 rpm at 4 ºC in an 

Eppendorf centrifuge. The supernatant was discarded and the pellet was dissolved in 1 ml 

solution C consisting of 49 volume parts of solution A (4 g NaOH, 20 g Na2CO3, 1L 

milliQ H2O) and 1 volume part of solution B (0.5 g CuSO4 x 5 H2O, 1 g Na-citrate, 100 

ml milliQ H2O) and vortexed and incubated for 10 min at room temperature. Finally, 50 

µl of Folin-Ciocalteau reagent was added and after vortexing, the samples were incubated 

for 30 min in the dark at room temperature. Absorbance was measured at 750 nm.  

2.6 VCAM expression and liposome targeting to bEnd3 cells in

vitro

2.6.1 VCAM expression and liposome binding using flow cytometry (FACS) 

analysis

Flow cytometry measures the fluorescence and optical characteristics of single 

cells by using the principles of light scattering, light excitation, and emission of 

fluorochrome molecules to generate specific multi-parameter data from particles and 

cells. Inside a flow cytometer, cells in suspension are drawn into a stream created by a 

surrounding sheath of isotonic fluid that creates laminar flow, allowing the cells to pass 

individually through an interrogation point. Lasers are most often used as a light source in 

flow cytometry. As the cells of interest intercept the light source they scatter light and 

fluorochromes are excited to a higher energy state. This energy is released as a photon of 

light with specific spectral properties unique to different fluorochromes. The emitted light 

signals are detected by photomultiplier tubes and digitized for computer analysis [Brown 

and Wittwer, 2000].  

2.6.1.1 bEnd3 cells expression of VCAM  

VCAM expression on activated bEnd3 cells was analyzed by flow cytometry. 

bEnd3 cells were incubated with 50 ng/ml TNF-  for 4 hours, rinsed twice in washing 

buffer (PBS containing 1% BSA), detached with 0.025% EDTA, and fixed in 4% neutral 

buffered paraformaldehyde for 10 min at room temperature. After two more washes, cells 

were stained with rat anti-mouse VCAM mAb MK271 (10 g/ml) for one hour on ice and 
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labeled with FITC-conjugated goat anti-rat secondary antibody for 30 min on ice, prior to 

analysis on a flow cytometer (BD Biosciences, San Jose, CA, USA). 

2.6.1.2 Liposome binding to bEnd3 cells 

Liposomal binding to the bEnd3 cells was determined by FACS analysis. bEnd3 

cells were seeded in 96-well microtiter plates (density: 1x10
4
 cells/well) 24 hours prior to 

the assay. The cells were activated with TNF-  (50 ng/ml) for 4 hours to ensure VCAM 

expression. Seven different liposome preparations carrying a DiO label were investigated: 

three with the NgPE anchor anti-VCAM mAb-liposomes ( VCAM-NL) human IgG 

(hIgG-NL) of irrelevant specificity and albumin-liposomes (Alb-NL) and four with the 

cyanur anchor; anti-VCAM mAb-liposomes ( -VCAM-CL), liposomes conjugated to rat 

IgG1 (rIgG-CL) or human IgG (hIgG-CL) of irrelevant specificity and albumin-liposomes 

(Alb-CL). The liposomes (75 nmol) were incubated with the cells for 1 hour at 4°C in 

normal cell medium. Unbound liposomes were removed by washing with 0.1 M PBS with 

1 mM CaCl2 and 0.5 mM MgCl2. The cells were detached with 0.025% EDTA and 

liposomal binding was analyzed on the flow cytometer (BD Biosciences, San Jose, CA, 

USA). 

2.6.2 Fluorescence- based cell assay 

The binding of VCAM-directed liposomes to murine endothelial cells was 

measured using a fluorescence-based cell assay and compared to control liposomes. 

Murine bEnd3 endothelial cells were seeded and activated as described in section 2.6.2. 

Five different liposome preparations (see 2.4.) carrying a DiO label were investigated. 

The liposomes (75 nmol) were incubated with the cells for 1 hour at 4°C in normal cell 

medium. Unbound liposomes were removed by washing with 0.1 M PBS (pH 7.4) 

containing 1 mM CaCl2 and 0.5 mM MgCl2, and the liposomal binding was analyzed in a 

FLUOstar Optima micro plate reader (BMG Labtech, Offenburg, Germany).  

To investigate whether the unspecific binding of control liposomes to endothelial cells 

was due to any interaction with the Fc receptor, a blocking assay was performed. 30 min 

prior to the addition of the liposomes, 2 g / 1 × 10
6
 cells rat anti-mouse Fc-receptor 

antibody or 60 µmol plain liposomes was added to the cells. Thereafter the liposomes 

were added and the same procedure as described above was followed. 
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2.6.2.1 Internalization of - VCAM Cyanur-L 

The internalization of VCAM-targeted liposomes was investigated using the acid 

wash method. This method uses the principle that the antigen/antibody binding is 

destroyed under acidic conditions and has the advantage that it straightforwardly 

discriminates and quantifies between cell surface bound and internalized antibody-

coupled particles [Liu et al., 2007b].

To quantify the internalization of VCAM-directed liposomes upon binding to 

bEnd3 endothelial cells, the same procedure was followed as described above except that 

the cells were incubated with liposomes for 2 hours at 37ºC. Thereafter, unbound 

liposomes were removed by washing with PBS containing 1 mM CaCl2 and 0.5 mM 

MgCl2 and liposome binding was measured. To determine the fraction of cell-associated 

liposomes that were internalized, the cells were stripped of their surface-bound liposomes 

by one wash for 5 min with citrate buffer (pH 3.0) followed by one wash with PBS. The 

remaining cell-associated liposomes were considered internalized. 

2.6.3 Dynamic flow assay 

In order to simulate the in vivo binding of the liposomes to the endothelial cells 

under shear force conditions, a dynamic flow assay was performed as previously 

described [Bendas et al., 1998; Kessner et al., 2001].  

Figure 12. Schematic presentation of the laminar flow chamber. Immunoliposomes in the flow medium 

were rinsed through the chamber by hydrodynamic drag to interact with VCAM –expressing cells [Bendas 

et al., 1998]. 

46 
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Briefly, the endothelial cells were seeded on circular (18 mm) coverslips (5 ×105 cells) 

24 hours prior to the assay. The cells were activated with TNF-  (50 ng/ml) for 4 hours 

and subsequently washed once with PBS. The coverslips were inserted into a double flow 

chamber (Fig.12). Each chamber was perfused with 5 ml of RPMI 1640 medium 

containing 1% penicillin/streptomycin, 10% FCS and 0.5 µM liposome dispersion for 20 

hours at a shear rate mimicking capillary blood flow (about 200 s-1) using a peristaltic 

pump at approx. 37°C. Two different liposome preparations carrying a rhodamine-label, 

were investigated; -VCAM-CL and hIgG-CL. At different time points (t = 0, 1 hour, 2 

hours and 20 hours), the flow was stopped and pictures of the liposomal binding to the 

cell layer were taken through an inverted fluorescence microscope Axiovert 200 equipped 

with an AxioCam MRc camera (Carl Zeiss, Germany). 

2.7 -VCAM IL targeting and biodistribution in vivo 

 2.7.1 Xenograft mouse model and biodistribution studies 

Female CD1 nude mice (Charles River Laboratories, Germany) were housed in 

cages with free access to food and water with a 12 hour light/dark cycle. Human Colo 677 

xenograft tumors were created by a subcutaneous co-injection of 1 × 10
6
 Colo 677 cells 

with Matrigel (BD Science, Heidelberg, Germany) diluted 1:1 into one flank of 4 - 5 

week-old mice. The tumor size was measured every second day with a caliper in three 

perpendicular directions a, b and c, and tumor volumes were calculated according to the 

formula V = /6 × a × b × c. When the tumors had grown to 200 - 500 mm
3
, the mice 

were injected with 0.5 mol liposomes into the tail vein. Three different liposome 

preparations were investigated; -VCAM-Ls, irrelevant IgG-liposomes and Alb-L (n = 3 

per group), all containing DiO as a fluorescent label. The mice were sacrificed either 30 

min or 24 hours after liposome injection. Experiments were terminated by transcardial 

perfusion of deeply anesthetized mice with PBS for 10 min and major organs and tumors 

were snap frozen in dry ice/isopentane slush and stored at -80°C until further use. The 

organs and tumors were cut into 5 m sections on a Leica CM 3050 G cryostat (Leica, 

Wetzlar, Germany) and were either used directly or stored at - 80°C. 

Total liposome tumor accumulation and biodistribution were investigated using 

Tritium-labeled liposomes. [
3
H]-labeled liposomes coupled to either anti-VCAM 
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antibody or an irrelevant human IgG were injected i.v. at a dose of 0.5 µmol 

liposome/mouse (n = 4-5 mice per group). The animals were anesthetized after 24 hours 

and blood was collected by heart puncture. This was followed by a transcardial perfusion 

with PBS for 10 min the before liver, spleen, kidney, lungs, heart, skin, muscle and tumor 

were removed, weighed and stored at -20°C until further use. To measure the amount of 

accumulated radioactive liposomes in the organs and tumor, the tissues were 

homogenized using a Potter Elvehjelm tube in 3 ml homogenization buffer per g tissue. 

Radioactivity was measured in 500 µl tissue homogenate after adding 100 µl of 10% SDS 

and 4 ml scintillation liquid (Ultima Gold). Blood samples were allowed to clot for 3 

hours and centrifuged for 20 min at 13.520 g at 4 ºC.

2.7.2 Fluorescence microscopy of tissue sections 

Cryosections of tumors and organs were thawed, fixed in 4 % paraformaldehyde 

for 10 min and incubated with one of the following primary antibodies: rat anti-mouse 

CD31 or rat anti-mouse Meca32 against endothelial cells; rat anti-mouse BM8 against 

macrophages; rat anti-mouse CD11b against macrophages and dendritic cells. Sections 

were incubated with primary antibodies for 1 hour at room temperature. Excess primary 

antibody was removed by three successive washes for 5 min with PBS. Thereafter, Alexa 

Fluor 568 conjugated secondary antibody was applied for one hour at room temperature, 

followed by three washes with PBS. Coverslips were mounted with a fluorescence-

mounting medium (Dako, Glostrup, Denmark). The sections were stored in the dark at 

4°C until further analysis. Overlay analysis was performed using AxioVision software 

(Carl Zeiss AxioVision release 4.6). Percentages of liposomes co-localized with the 

endothelium were determined in four randomized microscopic fields and calculated as the 

ratio between the amount of co-localised pixels x 100 and the total number of green 

pixels. The co-localization percentages are given as mean ± SD.  

2.8 Cytotoxicity studies 

Both TNF-  and DMXAA influence cells in many different ways. Therefore the 

two drugs themselves were tested for any cytotoxic effect that might act in synergy with 

the induction of coagulation in the tumor. 
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2.8.1 Propidium iodide (PI) assay

PI is a DNA-binding agent that is impermeable to the membranes of viable cells, 

but penetrates plasma membranes of dead cells and binds to the DNA of dead cells. PI is 

known as an indicator of necrosis or late-stage apoptosis .5 × 10
4
 bEnd3 cells / well were 

plated out in 6 well plates and allowed to attach overnight. The following day the cells 

were treated with TNF-  (50 – 200 ng/ml) for 24 and 48 hours in the incubator. 

Subsequently, PI solution (5µg/ml) was added to each well and the cells were incubated 

for 5 min at 37 C. Thereafter the cells were analyzed in a flow cytometer. PI has an 

excitation wavelength of 488 nm and an emission of 630 nm. 

2.8.2 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide (MTT) 

assay

The MTT assay is a quantitative colorimetric assay used to measure mammalian 

cell survival and cell proliferation. The assay measures cellular respiration by determining 

the mitochondrial activity. MTT is a pale yellow substrate that is cleaved by living cells 

to yield a dark blue formazan product. The process requires active mitochondria, and the 

amount of formazan produced is proportional to the number of living cells present in a 

given culture [Hayton et al., 2003].

 The bEnd3 cells were seeded out with a density of 5 × 10
3
 cells/ well and allowed 

to attach overnight. The cells were treated with TNF-  in a range of 1 – 10.000 ng /ml 

and with DMXAA in a range of 0.2 – 3000 µg/ml for 24, 48 and 72 hours. One hour 

before assay termination, 20 µl MTT solution (5mg/ml MTT in 0.1M PBS pH 7.4) was 

added to each well and the cells were incubated for 1 hour in the incubator. The reaction 

was then stopped by lysing the cells and dissolving the formazan salt by adding 150 µl 

acidic isopropanol solution (160 µl HCl in 50 ml isopropanol) to each well. After 

extensive mixing with a pipette, the formazan salt was allowed to dissolve completely at 

4 C for 2 hours. Finally the absorbance was measured at 580 nm. The background 

absorbance was also measured at 690 nm and subtracted. 
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2.9 TNF-  induced TF expression and activity in vitro

 2.9.1 TF cell-based enzyme-linked Immunosorbent Assay (ELISA) 

A cell-based ELISA was developed to measure the relative amount of TF 

expressed on the endothelial cells after TNF-  stimulation. bEnd3 cells and/or B16F10 

cells were seeded out with a density of 1 × 10
4
 cells/well and allowed to attach overnight. 

B16F10 cells are melanoma cells that have been shown to express tissue factor 

constitutively and are therefore used as a positive control. The bEnd3 cells were activated 

with 50 ng/ml TNF-  for 6 hours after which a sandwich ELISA was carried out on top 

of the cells. The cells were washed twice with 0.1 M PBS (pH 7.4) and thereafter fixed 

with 1 % paraformaldehyde for 10 min at 4 C. The cells were rinsed twice with PBS; 

unspecific antibody binding was inhibited by incubating the cells with blocking solution 

(0.1 M PBS pH 7.4, 0.5 % BSA) for 15 min. The cells were stained with 10 µg/ml rabbit 

anti-mouse tissue factor antibody for 45 min at room temperature, washed 3 times with 

PBS and labeled with 1:5000 goat anti-rabbit horse radish peroxidase conjugated 

secondary antibody for 30 min at room temperature. After three washes with PBS, 100 µl 

of the peroxidase substrate TMB was added and the reaction was allowed to run for 10 

min. Thereafter the reaction was stopped with 2 N H2SO4 and absorbance was measured 

at 450 nm.  

2.9.2 TNF-  induced TF expression analyzed with flow cytometry

The cell-based ELISA does not analyze the TF expression on each single cell, but 

on the cells as a population. To investigate the TF expression on single cells, flow 

cytometry was used. 

bEnd3 cells were incubated with 50 ng/ml TNF-  in serum depleted (normal 

medium with 1% FCS) for 6, 12 and 24 hours. After two washes in 0.1 M PBS (pH 7.4) 

containing 1 mM CaCl2, cells were stained with rabbit anti-mouse tissue factor (200 

g/ml) in incubation buffer (0.1 M PBS (pH 7.4), 1 mM CaCl2, 1% BSA) for one hour on 

ice and labeled with FITC-conjugated goat anti-rat secondary antibody in incubation 

buffer for 30 min on ice. Before analysis the cells were detached from the plates by 

washing the cells twice with 0.1 M PBS (pH 7.4) and incubation with 0.025% EDTA for 
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15 min at 37 C. The cells were finally analyzed by flow cytometry (BD Biosciences, San 

Jose, CA, USA). 

2.9.3 Western Blot 

Western Blot analysis was used to investigate the total tissue factor expression by 

b.End.3 cells and in tumor tissue from animals treated with TNF-  encapsulated 

liposomes.  

2.9.3.1 Cell lysis 

bEnd3 cells were seeded in T25 flasks and activated with 50 ng/ml TNF-  for 6 

hours. Thereafter the cells were rinsed twice with PBS. Protease inhibitor cocktail 

(Roche, Basel, Switzerland) was added to the lysis buffer (50 mM Tris/HCl; 100 mM 

NaCl, 1 mM EGTA, 10 mM, 1% triton X-100, 0.2 % SDS) in a dilution of 1:100 and 400 

l was added to each flask. The cells were scraped off with a rubber scraper, transferred 

to an Eppendorf tube and kept on ice. To disperse any large aggregates, the cells were run 

through a 27 G needle 4-5 times. Thereafter the protein concentration was measured using 

a Bio-Rad Dc Kit (Bio-Rad, CA, USA) according to the manufacturere’s instructions. The 

lysates could be used directly or stored at -20 C until later use.  

2.9.3.2 Tissue homogenization 

The tumor tissue was homogenized in a ratio of 1 g tumor tissue to 1 ml lysis 

buffer (50 mM Tris/HCl, 100 mM NaCl, 1 mM EGTA, 10 mM MgCl2, 1 % Triton X-

100, 0.1% SDS) added 1 complete® tablet (Roche, Basel, Switzerland) with protease 

inhibitors per 50 ml. First, the tissue was homogenized with a Potter Elvehjem tube (5 

strokes) and thereafter with an Ultra-Turrax (KIA®, Wilmington, USA) for 3 times 20 

seconds. The protein concentration was then measured as described above. 

2.9.3.3 SDS page 

A SDS page is run to separate the sample proteins by size. The samples were 

prepared by mixing 20 g protein with NuPage LDS sample buffer (1:4) and reducing 

agent (0.25 % mercaptoethanol, 1:10), after which the samples were heated for 10 min at 

70 C and then loaded. A NuPage
®

 4-12% Bis-Tris gel with MOPS running buffer was 
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prepared by washing the gel in distilled water, removing the comb and washing the wells. 

The samples were loaded and run, first, for 10 min at 150 V and then for 40 min at 200 V. 

2.9.3.4 Immunoblotting 

While the gel was running, the blotting pads, filter paper and nitrocellulose 

membrane were soaked in NuPAGE transfer buffer mixed with 10% methanol. The 

proteins were transferred to a 0.20 µm nitrocellulose membrane (LKB Diagnostics) using 

NuPAGE transfer buffer mixed with 10% methanol to provide optimal protein transfer at 

30 V for 1 hour. Membranes were blocked for nonspecific immunoreactivity by 

incubation for 1 hour with 5 % skimmed milk powder dissolved in 0.1 M PBS, (pH 7.4). 

The membrane was thereafter incubated with primary antibody solution containing 5 

g/ml rabbit anti-mouse tissue factor in 0.1 M PBS, (pH 7.4) with 0.05% Tween 20, 

overnight at 4 C. The membrane was washed 3 times 10 min with 0.1 M PBS containing 

0.05 % Tween 20. Antibody binding was detected with horse radish peroxidase-coupled 

goat anti-rabbit immunoglobulin 1:10,000 in blocking buffer (5 % skimmed milk powder 

in 0.1 M PBS (pH 7.4)) for 1 hour at room temperature. The membrane was washed 3 

times 10 min with PBS containing 0.05% Tween 20. The immunoreaction was visualized 

using the chemiluminescent ELC plus Western Blot reagent (GE Healthcare Life 

Sciences, Buckinghamshire, UK) and Amersham Hyperfilm ELC (Amersham, 

Buckinghamshire, UK).

2.9.4 TF induced coagulation

To investigate whether the up-regulated tissue factor was active, a simple 

coagulation assay was developed. A single-stage assay where CaCl2 was added to a 

mixture of cell lysate and citrated mouse plasma was performed. The mouse plasma 

contains all the components except tissue factor needed for fibrin formation and clotting. 

Therefore clotting is dependent on the presence of the active tissue factor protein 

expressed by the cells. The clotting time was measured by detecting changes in the 

intensity of light scattered by the samples due to the increased turbidity caused by the 

clotting particles [Seetharam et al., 2003].  

2.9.4.1 Coagulation assay cell lysates

The bEnd3 or B16F10 cells were seeded out in 6 well plates with a density of 5 × 

10
4
 cells/well. The cells were allowed to adhere overnight in normal medium. The next 
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day the cells were activated in serum-depleted cell medium containing 1% FCS and 50 

ng/ml TNF-  or 800 µg/ml DMXAA and stimulated for different time points 4 - 24 hours. 

The cell lysates were prepared according to Kim et al. [2001]. Briefly, the cells were 

washed twice with 0.1 M PBS (pH 7.4) and lysed in 100 µl lysis buffer (15 mM octyl-ß-D 

glucopyranoside in 25 mM HEPES buffer). The cell lysates were transferred to 

Eppendorf tubes, vortexed for 1 min and incubated at 37 C for 15 min. Thereafter 200 µl 

of 25 mM HEPES buffer was added to each tube and the cell lysates were ready for use. 

2.9.4.2 Single-stage coagulation assay 

The assay was carried out in a flat-bottomed 96 well plate. To each well 50 µl cell 

lysate and 50 µl citrated mouse plasma (Equitech Bio, Texas, USA) were added and the 

mixture was incubated for 1 min at 37 C. Thereafter 50 µl 25 mM CaCl2 was added to 

each well and the absorbance was measured continuously at 405 nm with intervals of 8 

sec for 2 min using a FLUOstar Optima microplate reader (BMG Labtech, Offenburg, 

Germany). Negative controls were performed where citrated mouse plasma, cell lysate or 

CaCl2 were omitted. Cell lysates from B16F10 cells were used as positive controls. 

Clotting could be delayed or completely inhibited by pre-incubating the cell lysates with a 

rabbit anti-mouse tissue factor antibody (10 µg/ml) for 30 min prior to starting the assay. 

2.10 Treatment of colo 677 tumors with DMXAA and TNF-

liposomes in vivo

2.10.1 Treatment with TNF-alpha and DMXAA liposomes 

The Colo 677 tumors were grown as previously described in section 2.7.1. When 

the tumors reached a size of 150 - 200 mm the animals were treated with one bolus 

injection of TNF-  loaded -VCAM-L or TNF- -loaded rIgG-L in a concentration of 

200 µg/kg TNF- . The tumor size was measured daily until the tumors reached a size of 

900 - 1000 mm
3
, after which the animals were sacrificed. A control group of mice were 

not treated. Each group contained 10 animals. The tumors from four animals in each 

group were either fixed in 4 % formaldehyde overnight or embedded in paraffin, or snap 

frozen used for TNF-  ELISA.
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2.10.1.1 Tissue factor expression in tumors treated with TNF-L after 24 and 72 hours

A small pilot experiment was carried out in which the expression of TF after 

treatment with VCAM targeted TNF-L and empty liposomes 24 hours and 72 hours after 

treatment. Western blot was used to investigate whether TF was upregulated. 

 The Colo 677 tumors were grown and when the tumors reached a size of 150 - 200 mm 

the animals were treated with one bolus injection of either TNF-  loaded -VCAM-L or 

empty -VCAM-L in a concentration of 200 µg/kg TNF- . After 24 and 72 hours the 

animals were sacrificed, the tumors immediately snap frozen and stored at -80ºC until 

further use. 

 The tumors were then homogenized. First, 1 g tumor tissue was homogenized 

using 1 ml lysis buffer (50 mM Tris/HCl, 100 mM NaCl, 1 mM EGTA, 10 mM MgCl2, 1 

% Triton X-100) added one complete® tablet with protease inhibitors (Roche, Basel, 

Switzerland) per 50 ml. Secondly, the tissue was homogenized with a Potter Elvehjem 

tube (5 strokes) and then with an Ultra-Turrax for 3 times 10 seconds. Thereafter the 

same Western Blot procedure was followed as described in section 2.8.3. 

2.10.2 TNF-  ELISA 

A TNF-  ELISA was carried out to measure the amount of TNF-  accumulated in 

the tumors after treatment. First, 1 g tumor tissue was homogenized using 1 ml lysis 

buffer (50 mM Tris/HCl, 100 mM NaCl, 1 mM EGTA, 10 mM MgCl2, 1 % Triton X-

100) added one complete® tablet with protease inhibitors per 50 ml. Then the tissue was 

homogenized with a Potter Elvehjem tube (5 strokes) and further homogenized with an 

Ultra-Turrax for 3 times 10 seconds. The homogenate was centrifuged at 11000 rpm for 

20 min at 4 C in a Eppendorf centrifuge. The supernatant was collected and the protein 

concentration was measured with a Bio-Rad Dc Kit according to the manufacturere’s 

recommendations. The amount of TNF-  was measured in the supernatants using a TNF-

 ELISA kit according to the manufactures instructions. 
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2.10.3 Immunohistochemistry and histology 

2.10.3.1 Fluorescence microscopy of tissue sections 

Cryosections of tumors were thawed, fixed in 4 % paraformaldehyde for 10 min 

and incubated with rabbit anti-mouse tissue factor (10 µg/ml). Sections were incubated 

with primary antibodies for 1 hour at room temperature. Excess primary antibody was 

removed by three successive washes for 5 min with PBS. Thereafter, Alexa Fluor 568 

conjugated secondary antibody was applied for one hour at room temperature, followed 

by three washes with PBS. Coverslips were mounted with a fluorescence-mounting 

medium (Dako, Glostrup, Denmark). The sections were stored in the dark at 4°C until 

further analysis.

2.10.3.2 In situ TUNEL assay 

In order to investigate whether treatment with TNF-  and DMXAA induced cell 

death in the tumor a terminal deoxynucleotidyl tranferase dUTP nick end labeling 

(TUNEL) assay was employed.  

 Apoptosis is a well controlled process, which among other things, results in DNA 

fragmentation. The TUNEL assay takes advantage of the apoptosis-induced single and 

double strand breaks by labeling the free 3’OH DNA termini with digoxigenin-labeled 

and unlabeled nucleotides. The reaction is catalyzed by the enzyme deoxynuclotidyl 

transferase, which catalyses a template independent of the addition of nucleotide 

triphosphates to the 3’OH ends. The DNA fragments labeled with digoxigenin are then 

labeled with a peroxidase labeled anti-digoxigenin antibody, which enzymatically 

generates an intense localized staining of chromogenic substrates such as 

diaminobenzidine (DAB).    

The TUNEL assay was carried out according to the manufacturere’s 

recommendations. Briefly, 20 µm paraformaldehyde-fixed tumor cryosections were post-

fixed in pre-cooled ethanol:acetic acid (2:1 v/v) for 5 min at -20ºC. Thereafter the 

sections were washed two times 5 min in PBS. Endogenous peroxidase activity was 

quenched in 3 % H2O2 in PBS for 5 min at RT and thereafter washed twice with PBS for 

5 min. The sections were equilibrated with EQULIBRATION BUFFER for 10 seconds. 

Excess liquid was tapped off and immediately thereafter, working-strength TdT enzyme 

was added. The sections were incubated for 1 hour in a humid chamber at 37 ºC. The 

reaction is stopped by washing the sections twice in stop/wash buffer for 15 sec agitation 
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and thereafter for 10 min. The sections are washed 3 times in PBS for 5 min and excess of 

liquid is removed. The sections were incubated with anti-digoxigenin peroxidase 

conjugated antibody for 30 min in a humid chamber at RT. The sections were washed 4 

times in PBS for 2 min. Thereafter the substrate DAB was applied for 6 min. DAB was in 

0.01% H2O2 0.05 M Tris/HCl buffer. The sections were washed in demineralized water 

twice for 5 min. Tissue sections were placed on slides and coverslips were mounted with 

Pertex mounting medium. Some sections were not exposed to TdT and served as negative 

controls.

 To investigate whether there was a quantitative difference in the amount of 

apoptotic cells within the different treatment groups, two different fields were counted 

from 4 tumors in each group. Both fields were in the periphery, one in a hot spot area and 

one in a normal area. 

2.11 Statistical analysis 

Statistical significance between groups in the in vitro binding assays and in the in 

vivo biodistribution experiment was calculated using unpaired Student’s t-test. 

Significance was assumed at a p-value < 0.05. Statistical significance between multiple 

groups in the treatment experiment were calculated using one way analysis of variance 

(ANOVA), and post-hoc the Newman-Keuls test was used to test for significance 

between the individual groups. 
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3. Results and Discussion 

The concept of targeting liposomes to tumor vasculature provides an opportunity 

for specific and effective delivery of drugs to the diseased sites and is an appealing 

strategy for therapy. The accessibility and stability of tumor endothelial cells makes them 

convenient targets, both for drug delivery and drug action. Targeting ILs against 

endothelial cell surface antigens has been used to target the endothelium [Kessner et al.,

2001; Voinea et al., 2005]. The cell adhesion molecule VCAM is one promising target 

receptor and plays a role in the pathogenesis of inflammatory diseases such as 

atherosclerosis, rheumatoid arthritis and multiple sclerosis [Dienst et al., 2005]. VCAM 

expression is inducible and is selectively expressed on activated endothelium, i.e. in 

human malignant tumors [Guccione et al., 2004]. Firstly, the targetability of endothelial 

cells by VCAM-targeting liposomes was investigated in vitro and in vivo. Subsequently 

experiments were carried out to ensure that the liposomes targeted tumor vasculature 

selectively and not the vasculature in other organs. 

3.1 In vitro targeting of VCAM-1 

The first step in the development of an -VCAM liposomal drug delivery system 

was to investigate the targetability of -VCAM-coupled liposomes to activated 

endothelium in vitro.

3.1.1 VCAM-1 expression in two different endothelial cells 

The two murine endothelial cell lines, 2F2B and bEnd3, were chosen for the 

establishment of an in vitro model of vascular liposomal targeting. 2F2B is a murine 

endothelial cell line isolated from a Kaposi tumor [Walter-Yohrlin et al., 2004], while 

bEnd3 is a brain endothelial cell line that is used to study adhesion molecule expression 

because the cells responds well to cytokine activation. The two different cell lines were 

investigated to ensure that activated endothelium could be targeted in general. 

  Flow cytometry was used to establish that the two cell lines indeed expressed 

VCAM on their surface. Although the non-activated bEnd3 cells (A) and 2F2B cells (not 

shown) also exhibited some surface expression of VCAM, 4 hours of incubation with 

TNF-  increased VCAM expression on both bEnd3 cells (B) and 2F2B cells (C) as 
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illustrated in Fig. 13. Based on these data, all further experiments were carried out with 

cells activated for 4 hours with TNF- .

Figure 13. VCAM expression on bEnd3 cells and 2F2B cells after 4 hours. A: VCAM expression on non-

activated bEnd3 cells; B: VCAM expression on TNF-  (50 ng/ml, 4 h) activated bEnd3 cells; C: VCAM 

expression on TNF-  (50 ng/ml, 4 h) activated 2F2B cells. D: VCAM staining of activated bEnd3 cells. The 

histograms A to C are representative for 3 or more similar diagrams.  

3.1.2 Targeting VCAM on activated endothelium in vitro with -VCAM 

liposomes

 Fluorescence-labeled liposomes were prepared with various proteins coupled to 

their surface via an NgPE-anchor (Fig. 14). Liposomes carrying anti-VCAM mAb ( -

VCAM-NL) where compared to liposomes carrying a human IgG of irrelevant specificity 

(hIgG-NL), or albumin-conjugated liposomes (Alb-NL) in a fluorescence-based cell assay 

using both cell lines. As illustrated in Fig. 14A, the binding of the -VCAM-NL to 2F2B 

cells was higher than that of the two control liposome-formulations coupled to hIgG and 

albumin, respectively, although the differences were not statistically significant. The 
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same observation was made in bEnd3 cells, where the binding of -VCAM-NL was 

higher than that of control liposomes and even reached statistical significance with the 

Alb-NL (p<0.05) (Fig. 14B).
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Figure 14. Targeting NgPE- liposomes to VCAM-1 expressing 2F2B cells and bEnd3 cells using plate 

reader analysis. A comparison of the binding efficiency of -VCAM-NL and hIgG-NL or Alb-NL is made 

in 2F2B cells (A) and bEnd3 cells (B) * p < 0.05 -VCAM-NL vs. Alb-NL. Data points represent the 

average of at least three experiments, error bars are SD.  

BA

To investigate whether the relatively high binding of the control hIgG-NL was 

mediated via Fc-receptors, which have been reported to be up-regulated on activated 

endothelium [Ryan, 1986; Pan et al., 1998], the same assay was carried out in the 

presence of a Fc-receptor blocking antibody. The inhibition of binding FITC-labeled 

human IgG to activated 2F2B cells was investigated using the -Fc-receptor antibody. As 

seen in Fig. 15A, 50 % of the binding was inhibited. However, when repeating the 

experiment with hIgG-NL instead of FITC-labeled human IgG, the binding was only 

partially inhibited (approximately 25 %) (Fig. 15B). The fact that the binding was not 

totally abolished suggests that other mechanisms could be involved in the unspecific 

binding of the hIgG-NL. Fc-receptors are mostly expressed by monocytes, macrophages 

and lymphocytes [Dasgupta et al., 2000], where they are involved in activating and down-

modulating immune responses and combining the humoural and cell mediated immunity 

[Takai, 2005]. The Fc-receptor-mediated uptake of liposomes by macrophages of the RES 

has been studied extensively [Koning et al., 2001; Koning et al., 2002; Koning et al.,

2003]. Pre-treatment of Kupfer cells with aggregated IgG resulted in a 30 % or 50 % 

reduction of unspecific IgG-liposome binding, depending on the grafted position of the 
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antibody; either to the tip of the PEG chain with a hydrazide anchor or randomly to the 

reactive bilayer lipid through MPB-PE, respectively [Koning et al., 2002]. Apart from the 

Fc-receptor, a scavenger receptor was shown to be involved in the Kupfer cell uptake of 

ILs [Koning et al., 2003]. In comparison, our results showed that 25% of the unspecific 

binding was reduced when the antibody was coupled directly to the activated lipid 

bilayer, indicating that other factors might be involved in the unspecific binding. This 

could be the presence of other scavenger receptors on the activated endothelium. 

Furthermore, the concentration of the blocking antibody could not have been sufficient to 

completely block the unspecific binding.    

 It was also investigated whether lipids could play a role in the unspecific binding 

by adding excess of lipid prior to addition of the liposomes. The results showed that this 

treatment did not reduce the binding of hIgG-CL to the activated endothelium, but on the 

contrary showed a tendency to increase the unspecific binding, indicating that excess lipid 

could render the cell surface stickier. 
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Figure 15. Inhibition of unspecific binding by blocking the Fc-receptor. A) Binding and inhibiting binding 

of FITC-labeled human IgG to activated bEnd3 cells. B) Binding of DiO labeled hIgG-NL to activated 

bEnd3 cells and inhibiting binding using a blocking anti-Fc-receptor antibody or 60 µmol of lipid to 

activated bEnd3 cells.  

An alternative protein coupling technique was applied to improve binding 

selectivity. While the NgPE-anchor coupled the proteins directly to the surface of the 

liposome, the cyanur-PEG2000-PE anchor attached the protein to the terminal end of the 

PEG chain [Bendas et al., 1999]. This grafted position of the homing device has been 
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shown to decrease the unspecific interactions at the membrane surface [Kessner et al.,

2001].

Liposomes were prepared with various proteins coupled to the PEG terminus via 

cyanur-PEG2000-PE anchor. First, the binding efficiency of liposomes carrying anti-

VCAM mAb ( -VCAM-CL) to 2F2B cells was compared to liposomes carrying a human 

IgG of irrelevant specificity (hIgG-CL). The targetability of the two different liposomal 

preparations to activated 2F2B cells was analyzed in a fluorescence micro-plate assay. -

VCAM-CL bound with significantly higher intensity (p<0.001) to the activated 

endothelial cells when compared to control liposomes, as illustrated in Fig. 16A. Binding 

was also analyzed by flow cytometry. Flow cytometry has the advantage that the 

interrogation of single cells in solution represents more accurate data and gives better 

signal-to-background ratios by eliminating background fluorescence remaining in the 

well after washes [Robinson, 2004].  
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Figure 16. The in vitro targeting of cyanur liposomes to VCAM-1 expressing 2F2B cells and bEnd3 

cells A: Plate reader analysis comparing the binding efficiency of -VCAM directed IL with hIgG-

IL to 2F2B cells. B: FACS analysis of the binding efficiency of anti-VCAM directed ILs ( -

VCAM-CL), ILs with human IgG (hIgG-CL) of irrelevant specificity to 2F2B cells, *** p< 0.001 

-VCAM-CL vs. hIgG-CL. C: Comparison of the targetability of -VCAM-CL, rIgG-CL, hIgG-CL 

and Alb-CL to activated bEnd3 cells analyzed by fluorescence based cell assay ** p< 0.005 -

VCAM-CL vs. all three control liposome populations. D: FACS analysis of the binding efficiency of 

anti-VCAM directed ILs ( -VCAM-CL), ILs with coupled rat IgG1 (rIgG-CL) or human IgG 

(hIgG-CL) of irrelevant specificity and albumin (Alb-CL) to bEnd3 *** p=0.001 -VCAM-CL vs. 

all three control liposome populations. E: Comparison of the binding efficiency of VCAM- targeted 

IL coupled with different anchors NgPE and cyanur-PEG-PE determined by fluorescence based cell 

assay *** p=0.001 NgPE vs. the Cyanur anchor. Data points represent the average of at least three 

experiments, error bars are SD.  
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Indeed, the VCAM-mediated binding of -VCAM-CL was confirmed and showed 

a 4-fold higher binding in comparison with the negative control (Fig. 16B). Coupling the 

antibody to the liposome via the cyanur anchor seemed to be the most successful. 

Therefore, the same experiments were repeated on activated bEnd3 cells. Additionally, 

two accessory controls that included albumin and isotype matched rat IgG1 antibody 

conjugated to the liposomes were enrolled in the study. The fluorescence micro-plate 

assay showed that -VCAM-CL bound with significantly higher intensity (p<0.005) to 

the activated endothelial cells compared to all three types of control liposomes (Fig. 16C). 

The isotype matched rat IgG1 is, compared to fractionated human IgG, a better control for 

the IgG mediated unspecific binding. There were no differences between binding of the 

purified rat IgG1-conjugated liposomes (rIgG-CL) and the fractionated human IgG-

conjugated liposomes (hIgG-CL) to the target cells. 60-70 % of fractionated human IgG 

has the IgG1 subtype [Hamilton, 1987], and the mouse Fc receptor has been shown to bind 

all IgGs independent of the species [Ober et al., 2001], indicating that the hIgG would 

behave similarly to rIgG1 in circulation. Therefore, due to cost benefits, fractionated 

human IgG was used as a control.  

As an additional negative control, it was shown that, -VCAM-CL did not bind to 

a VCAM-negative control cell line (A2780, data not shown), suggesting that the VCAM-

mediated targeting was specific. Flow cytometry analysis confirmed the VCAM-mediated 

binding and showed a higher binding in comparison to negative controls (Fig. 1D; p< 

0.001).

Finally, -VCAM liposomes with the two different anchors were compared 

against each other in a micro plate assay. As illustrated in Fig. 16E, the VCAM targeted 

cyanur-coupled liposomes showed a significantly higher binding efficiency compared to 

the NgPE liposomes (p < 0.001). The difference was not caused by differences in the 

amount of protein coupled to the liposomal surface. Table 1 shows that the liposome 

populations used were comparable in size and protein coupling. Therefore, it is unlikely 

that any differences in targeting behavior were related to liposomal physical 

characteristics.
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Particle size 

(nm) 
Polydispersity g protein/ mol PL 

Protein

content/molecule 

per liposome 

-VCAM-NL 83.1 ± 14.4 0.13 ± 0.05 54.8 ± 35.5 63.1 ± 52.0 

hIgG-NL 91.3 ± 13.2 0.12 ± 0.06 69.9 ± 51.6 70.1 ± 53.2 

-VCAM-CL 83.1 ± 14.4 0.13 ± 0.05 59.0 ± 17.9 52.3 ± 15.8 

rIgG-CL 93.4 ± 12.0 0.15 ± 0.04 67.0 ± 51.8 68.2 ± 36.1 

hIgG-CL 91.3 ± 13.2 0.12 ± 0.06 74.4 ± 40.2 71.1 ± 35.2 

Alb-CL 84.5 ±13.1 0.15 ± 0.06 70.3 ± 42.0 85.0 ± 4.31 

Table 1: Comparison of the liposomal characteristics with respect to particle size and protein coupling 

yield 

The superior behavior of the cyanur liposomes could be explained by the position 

of the grafted protein. Proteins coupled to the tip of the PEG chain might have better 

access to the target compared to proteins that are coupled directly to the surface of the 

liposomes and therefore are partly masked by the PEG chains [Maruyama et al., 1995]. 

Finally the cyanur anchor was chosen as the best in achieving a VCAM-mediated binding 

and all further IL preparations in this work contain this anchor. The data confirm specific 

targeting of ILs via VCAM in two different cell models. Since both cell lines displayed 

identical targeting behavior, one cell line was chosen for further experiments. bEnd3 cells 

were selected because of their easier cultivation conditions with respect to safety 

requirements. 

3.1.2.1 Internalization of VCAM-targeted liposomes by activated endothelium 

To gain further insight into the behavior of the liposomes after binding to the 

endothelial cells, liposomal internalization was investigated. As illustrated in Fig. 17 

(upper panel) the total association of liposomes with the activated endothelial cells 

increased with time; from 30 min to 2 hours, whereas the amount of liposomes that were 

internalized reached a maximum after 1 hour.
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Figure 17. Internalization of DiO labeled -VCAM liposomes by activated endothelial cells. The binding 

and internalization, depicted in the upper panel (top), and percentage endocytosis, in the lower panel 

(bottom), of -VCAM liposomes was determined as a function of time at 37 ºC. 

Calculating the percentage of internalized liposomes showed that after 30 min 

approx. 24 % of the total liposomes associated with the cells were internalized, but after 2 

hours the amount of internalized liposomes compared to total cell associated liposomes 

was reduced to 8 % (Fig. 17, lower panel). These results suggest that the -VCAM-CL

were initially internalized rapidly, but reached a plateau after 1 hour. The fate of the 

VCAM receptor after antibody binding is, as mentioned before, controversial [Kuijpers et

al., 1994; Ricard et al., 1998]. One study showed that monoclonal antibodies against 

VCAM remained on the surface of HUVEC cells 20 min after binding [Kuijpers et al.,

1994], whereas another study found that -VCAM antibodies were rapidly internalized 

and that 50% of the antibody was internalized after 11.2 min by HUVEC cells [Ricard et

al., 1998]. VCAM-targeted nanoparticles are also internalized. Voinea et al. [2005] 

showed that VCAM-targeted liposomes were internalized after binding to activated 

HUVECs [Voinea et al., 2005] and a phage display-derived peptide with homology to the 

-chain of VLA-4 was used to internalize nanoparticles into the endothelial cells via 

VCAM as a way to amplify signals (“biological amplification through intracellular 

trapping “) [Kelly et al., 2005]. The bEnd3 cells internalized -VCAM-CL and reached a 

plateau after 1 hour (Fig. 17, upper panel); in contrast, HUVECs were shown to increase 
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the amount of internalized liposomes from 1 to 24 hours [Voinea et al., 2005]. The 

discrepancy between these two studies could be due to the different time frames. After 1 

hour the internalizing mechanism might have been saturated, and the bEnd3 cells could 

after 24 hours have internalized a bigger fraction of the -VCAM-CL. Another 

explanation could be that VCAM behaves differently in murine endothelial cells 

compared to human endothelial cells.  

 The experiment showed that a fraction of the liposomes were internalized after 

binding to the endothelium. Whether the internalization was a passive or active process 

was not investigated. However, previous studies have shown that VCAM internalization 

occurs via clatrin-mediated endocytosis [Ricard et al., 1998; Voinea et al., 2005].

The liposomes in this study are used to target TNF-  and DMXAA to the endothelium. 

TNF-  exerts its activity through TNFR60 which is expressed on the cell surface; the 

release of TNF-  at the endothelial surface is therefore preferable. However, a study 

showed that delivering TNF-  to the TNF-  resistant human cancer cells via internalizing 

ILs induced TNF-  cytotoxicity [Morishige et al., 1993], suggesting that TNF-  is also 

cytotoxic when delivered intracellulary.   

3.1.3 The targeting of activated endothelium in a dynamic flow assay  

Static binding of liposomes to the cell surface does not mimic the vascular 

targeting of liposomes under physiological shear force conditions in circulation, 

especially considering the highly variable flow conditions in tumor vasculature 

[Denekamp et al., 1985]. 
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Figure 18. Binding of rhodamine-labeled -VCAM-CL to stimulated bEnd3 cells under shear force 

conditions illustrated in a phase contrast image (left), as a fluorescence image (middle) and as an overlay 

image (right). The binding of rhodamine-labeled -VCAM-CL to the cell monolayer was analyzed at 0, 1 

and 20 hours (A-C) and compared to the binding of rhodamine- labeled hIgG-CL after 20 hours (D). The 

bar represents 50 µm. 

Therefore, we employed a flow chamber assay [Kessner et al., 2001] to 

investigate whether liposome binding was sufficient to target bEnd3 cells under shear 

stress conditions similar to those found in capillary venules. The binding of -VCAM-CL

and hIgG-CL to endothelial cells was followed microscopically over a time period of 20 
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hours. As shown in Fig. 18 A-C, the binding of -VCAM-CL to the cell layer increased 

in a sustainable manner illustrated by the increasing fluorescence intensity with time. In 

contrast, no binding was observed with the hIgG-CL (Fig. 18D). The staining of the 

bEnd3 cells (Fig. 18C) represents both internalized and surface-bound liposomes. The 

ratio of surface-bound and internalized ILs was not determined, and should be 

investigated further. 

Dynamic flow based analysis of endothelial adhesion is mainly used to investigate 

the interactions between leukocytes and endothelial cells [Florey and Haskard, 2007]. 

However the technique has also been used to study liposomal interaction with endothelial 

cells. Previous studies targeted liposomes to the adhesion molecule, E-selectin, under 

shear stress conditions [Bendas et al., 1998; Kessner et al., 2001]. Antibody-based 

vascular targeting strategies are more advantageous because the antibody/antigen binding 

exhibits excellent bond dissociation constants; however it also has potential problems. 

One problem is the relatively low bond formation rates between antibody and antigen, 

which could hamper the attachment of rapidly transiting particles in shear stress where 

contact time is short [Kaufmann et al., 2007]. The dynamic binding studies proved that -

VCAM-CLs were able to target VCAM on activated endothelium in a circulation relevant 

time range despite the shear stress. The dynamic flow assay also offers the advantage of 

being a method that mimics the conditions in circulation and reduces the number of 

animal experiments.  

  The in vitro studies showed that -VCAM-CLs target activated endothelium 

successfully under both static and dynamic conditions. After binding, internalization of 

the -VCAM-CLs was observed. Targeting ILs to VCAM on activated HUVEC cells has 

previously been investigated in vitro [Chiu et al., 2003; Voinea et al., 2005]. VCAM is a 

convenient target as it is found up-regulated on activated endothelium. Furthermore, -

VCAM nanoparticles have been used to detect areas of early inflammation [Tsourkas et

al., 2005] and in vivo detection of atherosclerotic lesions [Kelly et al., 2005; Kaufmann et

al., 2007]. The VCAM nanoparticles could therefore be suitable candidates for a variety 

of therapies and as imaging agents.  
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3.2 In vivo targeting of VCAM-1 expressed on tumor endothelium 

Since the in vitro results appeared promising, the vascular targeting of -VCAM-

CL was investigated in mice bearing human Colo 677 xenograft tumors.

3.2.1 VCAM expression on the vasculature of the human Colo 677 xenograft 

model

The Colo 677 tumor model has previously been investigated by Dienst et al.

[2005] and has been shown to express VCAM on the endothelium. The Colo 677 cells 

form solid tumors when injected subcutaneously, although Colo 677 cells are myeloma 

cells that normally would not form solid tumors. However, in this model, ~30% of the 

tumor vasculature is VCAM-positive. The model was chosen because the expression of 

VCAM is generally low on blood vessels in other tumor mouse models, in contrast to 

tumor vascular VCAM expression in humans [Dienst et al., 2005]. 

Figure 19. VCAM expression by tumor endothelial cells in a human Colo 677 xenograft tumor. 

Immunohistochemical staining showed that VCAM (Fig. 19) was expressed throughout the tumor in a 

vessel-like pattern confirming the previous results [Dienst et al., 2005]. For our purpose the expression of 

VCAM on the endothelium is more important than the origin of cancer cell, therefore this tumor model was 

chosen for targeting and therapy experiments.  

3.2.2 Tumor distribution of 3H-labelled targeted and non-targeted liposomes 

The intra-tumor accumulation of -VCAM-CL versus hIgG-CL 30 min and 24 

hours after i.v. injection, was quantified by detecting the [
3
H]-labeled liposomes in the 

tumor tissue. The data given in Fig. 20 indicate that the accumulation of both liposomal 

populations increased with time. At 24 hours, about 2% of injected dose per gram of 

tissue was localized to the tumor, although – in contrast to human tumors - only ~30% of 
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tumor vessels show a medium strong expression of VCAM-1 in this mouse model [Dienst 

et al., 2005].

30 min 24 hours
0
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hIgG-L
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Figure 20. Comparison of the quantitative tumor accumulation of -VCAM-CL and hIgG-CL. The [3H]-

activity in tumors was detected 30 min and 24 h after injection of the [3H]-labeled liposomes into Colo 677 

tumor xenograft mice (data are means ± SD, n  4).  

The tumor accumulation of VCAM-directed ILs was slightly higher than that of 

control liposomes, but this difference did not reach statistical significance. This was not 

unexpected and should be related to unspecific tumor accumulation of the control 

liposomes. Unspecific accumulation of liposomes has been described previously [Huang 

et al., 1992; Emanuel et al., 1996; Charrois et al., 2003] and is attributed to an EPR effect 

[Noguchi et al., 1998].

 The accumulation of doxorubicin-loaded liposomes targeted against polyoma 

virus-induced tumor associated antigen showed an accumulation of approximately 3 % 

ID/g tissue after 6 hours in mice bearing stage 1 A9 lung metastasis [Emanuel et al.,

1996], even though the time frame was different, this is comparable to the accumulation 

found in our study. However, other studies showed that approximately 5-8 % of both 

targeted and non-targeted liposomes accumulated in the tumor after 24 hours [Marty et

al., 2002; Maeda et al., 2004; Kirpotin et al., 2006; Pastorino et al., 2006]. The difference 

might be attributed to the fact that the Colo 677 tumor model only expresses VCAM on 

approximately 30 % of the endothelium, resulting in a lower accumulation. It might also 

be case that different tumor model exhibit a different degree of EPR.
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The differences between unspecific and specific tumor targeting of liposomes cannot be 

distinguished by quantitative evaluation. Therefore experiments were performed to 

investigate the specific localization of the liposomes after injection.  

In order to evaluate whether vascular-directed versus unspecific ILs were

localized to different compartments within the tumor, we investigated the targeting 

behavior of DiO-labeled ILs by fluorescence microscopy. The images, in Fig. 21 clearly 

indicate that tumor accumulation of -VCAM-CL was evident after only 30 min (Fig. 

21A1) and had increased by 24 hours (Fig. 21B1). At both time points the tumor 

accumulation of -VCAM-CL was more intense than that of both control liposomes (Fig. 

21C1-D1), which was unexpected when considering the data in Fig. 20. The lower 

fluorescence intensity of the control liposomes in the tumors could be related to a higher 

degree of extravasations and dilution of the liposomes throughout the tumor which 

renders their fluorescence below the detection level.  

To confirm whether the different liposomes were localized to the tumor 

vasculature, tumor sections were counterstained with a fluorescent antibody against 

murine CD31 (Fig. 21A2-D2). This double labeling procedure (Fig. 21A3 and B3 low 

magnification, A6 and B6 high magnification) revealed a clear co-localization between 

the -VCAM-CL and the endothelium after 30 min (91.7%) and after 24 hours (73.1%). 

In contrast, both types of control liposomes displayed a much lower degree of co-

localization with vascular endothelium (30.3% and 23.7%, resp.; Fig. 21 C3-D3 low 

magnification, C6-D6 high magnification). Endothelial cells are known to express 

receptors for the Fc portion of antibodies [Olafsen et al., 2006] as well as for albumin 

[Antohe et al., 1991]. Labeling activated endothelial cells with a negative control IgG-

antibody coupled to nanoparticles has been described in a mouse model for vascular 

inflammation [Tsourkas et al., 2005]. This background binding could probably be 

decreased if recombinant antibody fragments devoid of the Fc portion, such as scFv, were 

to be used as a targeting moiety.  
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Figure 21. Localization of the different liposome populations within the tumors. (A1-6) -VCAM-CL 30 

min after i.v. injection; (B1-6) -VCAM-CL 24 h after i.v. injection; (C1-6) hIgG-CL 24 h after i.v. 

injection; (D1-6) Alb-CL, 24 h after i.v. injection illustrating a high degree of co-localization for A and B, 

but not for C and D. 1) liposome distribution (green), 2) endothelial staining with CD31 (red), 3) overlay at 

low magnification, 4) liposome distribution (green), 5) endothelial staining with CD31 (red), 6) overlay at 

high magnification of liposome distribution (green) and endothelial marker CD31 (red). The bar in the low 

magnification images corresponds to 50 m. The bar in the high magnification images corresponds to 5 m. 
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Similar studies investigating the distribution of tumor vasculature targeting 

liposomes showed that the peptide SP5-52 accumulated in lung tumors by recognizing the 

tumor neo-vasculature [Lee et al., 2007]. However, this study only investigated the 

localization of the homing peptide and lacked investigations of the whole liposomal 

particle. Another example is a nano-particle containing iron oxide that targeted clotted 

plasma proteins. This nano-particle was found localized to the tumor endothelium, but 

only after pretreatment with Ni
2+

-liposomes. Ni
2+

and iron oxide are thought to attract 

plasma opsonins and deplete opsonins from circulation, thereby increasing the circulation 

time of the nanoparticles [Simberg et al., 2007].

These data indicate that the -VCAM-CLs behave differently from the unspecific 

tumor accumulation of non-targeted liposomes, supporting the effort to develop a specific 

and receptor-mediated vascular targeting. In a similar study, Kirpotin et al. [2006] 

investigated the distribution and localization of liposomes targeted against tumor cells 

compared to non-targeted liposomes. Their results showed that although approximately 

the same amounts of liposomes were found in the tumor, the specific localization of the 

liposomes differed. The non-targeted liposomes accumulated in the perivascular and 

extracellular space, whereas the targeted liposomes were found in the tumor cell cytosol 

[Kirpotin et al., 2006]. Knowledge about the cellular distribution within the tumor is an 

important factor when choosing an appropriate effector molecule.  

3.2.3 The localization of liposomes in organs 

To investigate whether -VCAM-CL would target vasculature outside the tumor, 

the localization of the liposomes in major organs, such as heart, lung, liver, spleen and 

kidney, was investigated. The biodistribution of the liposomes was quantitatively 

determined using both [
3
H]-labeled -VCAM-CL and hIgG-CL with subsequent activity 

detection in the organs after 30 min and 24 hours. After 30 min, the majority of -

VCAM-CL was localized in the liver (16.3 % ID/g) and the spleen (11.5 % ID/g); 

whereas the organ distribution was much lower in the other organs. The same was seen 

for the hIgG-CL. Although there was a difference in the amount of liposomes 

accumulated in the liver and the spleen for the two types of liposomes it was not 

significant due to high standard deviations. There was also no difference observed for all 

other organs except the blood, where the difference between the levels of -VCAM-CL 
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(15.7 %) and hIgG-CL (4.4 %) was statistically significant (p = 0.008). This was not 

excepted and is most likely explained by technical difficulties in the 30 min series, which 

was also evident by the large standard deviation found in the liver and spleen. Heart 

puncture could have been the wrong blood sampling technique to use after 30 min or 

might have been carried out wrongly. Another explanation could be that the liposomes 

where still localized in the tail. In further experiments the radioactivity in the tail should 

be measured as a control. 

Muscle Skin Heart Lung Kidney Spleen Liver Blood

-VCAM-L

30 min 

24 hours 

0.25 ± 023 

0.25 ± 0.18 

0.86 ±0.69 

0.69± 0.45 

0.72± 0.56

1.03± 0.67 

0.94± 0.56 

1.85± 0.94 

1.21 ± 0.40 

3.59 ± 2.14 

11.5 ± 7.3 

3.40± 2.32 

16.3 ± 7.9 

8.11± 1.24 

15.7 ± 4.5

1.02± 0.82 

hIgG-L

30 min 

24 hours 

0.34 ± 0.07 

0.46 ± 0.14 

0.86 ± 0.40 

0.99± 0.53 

0.3 ± 0.25 

0.97± 0.37 

0.52± 0.35 

1.66± 0.13 

1.21 ± 0.14 

2.65± 1.73 

3.04± 1.79 

3.30 ± 0.3 

8.01± 2.20  

6.72± 2.20 

4.40± 0.95

1.11± 0.39 

Statistics

(p =) 

30 min 

24 hours

0.55 

0.130 

1

0.42 

0.302 

0.893 

0.293 

0.747 

1

0.546 

0.140 

0.931 

0.135 

0.285 

0.008 

0.864 

Table 2: Biodistribution of -VCAM-CL and hIgG-CL after 30 min and 24 hour as % injected dose per 

gram tissue. 

The data given for the 24 hours point indicate that the majority of liposomes were 

accumulated in the liver (8% ID/g), followed by kidney, spleen, and lung, whereas other 

organs showed lower liposome accumulation. High uptake into liver, spleen and lung was 

not unexpected, since localization of liposomes into these organs is a well known 

phenomenon and is generally attributed to extraction via the RES [Emanuel et al., 1996]. 

No statistically significant differences were seen between VCAM targeted liposomes and 

control liposomes after 24 hours, consistent with unspecific accumulation being part of 

the liposome elimination pathway. This is different from previous reports with both 

NGR-targeted and RGD-targeted liposomes, which accumulate in higher amounts in lung 

and/or spleen [Pastorino et al., 2003; Schiffelers et al., 2003]. 

To define the tissue compartments to which the liposomes localized within the 

different organs, a similar study as the one described above was carried out. Cryosections 

of lungs, kidneys, liver and spleen from mice injected with DiO labeled liposomes (Fig. 
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22A-D, left images) were counterstained with fluorescent antibodies detecting either 

endothelial cells (Fig. 22A-D, middle) or tissue resident macrophages (Fig. 22A-D, right). 

Liposome signals in the lung were rare and, if present, co-localized primarily with 

alveolar macrophages (Fig. 22A, right). Fluorescent signals in the kidney were observed 

in glomeruli, occasionally on endothelial cells, in tubuli and as scattered events. 

Glomerular staining could be explained by VCAM expression of mesangial cells [Seron 

et al., 1991]. In contrast to human kidneys [Kuzu et al., 1993], endothelial cells in murine 

kidneys show a low level of VCAM expression [Fries et al., 1993 and Gottstein C., 

unpublished data]. The tubular stain appeared more diffuse possibly due to free dye 

reabsorbed by the tubuli after escaping into the glomerular filtrate. Scattered staining was 

found within tubular lumina, and also in co-localization with kidney macrophages (Fig. 

22B, right). 

The liver sections exhibited a clear co-localization between the liposomes and 

liver macrophages (Fig. 22C, right image), while virtually no co-localization was 

observed in sections stained against the endothelium (Fig. 22C, middle). Accumulation of 

liposomes in the liver has been studied extensively [Gabizon and Papahadjopoulos; 1988; 

Papahadjopoulos et al., 1991] and the Kupfer cells have been shown to play an important 

role in removing liposomes from circulation [Huang et al., 1992; Litzinger et al., 1994]. 

In the spleen, liposome signals were prominent in the marginal zone, in accordance with 

previous studies [Litzinger et al., 1994; Aichele et al., 2003]. No co-localization with 

spleen vasculature was observed (Fig. 22D, middle). Instead, co-localization was 

observed with F4/80 positive macrophages in the red pulp (not shown) and with CD11b 

positive cells (Fig. 22D, right). CD11b is a marker for macrophages and also for dendritic 

cells, which are known to express VCAM.  
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Figure 22. Distribution of liposomes in lung, kidney, liver and spleen from tumor bearing mice, 24 hours 

after i.v. injection. A: Lung section showing the -VCAM-CL distribution (left), lung section double-

stained against the endothelial marker Meca32 (middle) and double-stained against the macrophage marker 

CD11b (right). Note that the liposomes in the lung are co-localized with the lung macrophages. B: Kidney 

section showing the distribution of -VCAM-CL (left); kidney section double-stained against the 

endothelial marker CD31 (middle); kidney section double-stained against the macrophage marker CD11b 

(right). C: Liver section illustrating the -VCAM-CL (green) distribution (left). Liver section double-

stained against the endothelial marker Meca32 (middle) and liver section double-stained against the 

macrophage marker F4/80 (right). Note the clear co-localization between the liver macrophages and 

liposomes. D: Spleen section showing the distribution of VCAM-CL (green) in the white pulp and marginal 

zone (left). Spleen section double-stained against the endothelial marker Meca32 (middle) and spleen 

section double-stained against the macrophage and dendritic cell marker CD11b (right). The bar in the low 

magnification images corresponds to 50 m. The bar in the high magnification images corresponds to 5 m. 
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The VCAM-targeted liposomes were shown to not co-localize with the 

endothelium in the major organs investigated in this study. The accumulation observed in 

the spleen and liver were excepted as these are the organs involved in the clearance of 

liposomes from circulation [Blume et al., 1993; Maryama et al., 1995]. Attempts have 

been made to reduce the RES-mediated clearance such as depleting the RES for 

macrophages by pretreatment with clodrante liposomes or opsonin chelating Ni
2+

-iron

oxide nanoparticles [Simberg et al., 2007]. Saturating the RES with lipid [Sharma and 

Sharma, 1997; Simberg et al., 2007] or blocking the Fc receptors [Aragnol and Leserman, 

1986] are other methods that were proven efficient in prolonging the circulation time of 

therapeutic liposomes [Aragnol and Leserman, 1986; Simberg et al., 2007], resulting in a 

greater targeting potential. In our study the major concern was that the drugs encapsulated 

in the liposomes induce coagulation and vascular collapse and therefore a co-localization 

with the vasculature in other organs would not be desirable.   

The VCAM-targeted liposomes were shown to target the tumor vasculature but 

not the vasculature of other organs, thereby the -VCAM-CL show potential as a drug 

delivery system for drugs that are aimed at the tumor vasculature. 

3.3 TNF-  and DMXAA induced cytotoxicity and TF expression 

and activation in vitro

The next step was to find the effector molecule(s) to encapsulate into the targeted 

liposomes. The cytokine, TNF- , was chosen as a proof of concept drug, as it was shown 

to induce coagulation in tumors [Watanabe et al., 1988]. The small molecule VDA, 

DMXAA, was also investigated as it is a TNF-  inducing drug that is currently 

undergoing clinical phase II trials. TNF-  is known to exhibit multiple effects such as 

permeabilizing the endothelium [Friedl et al., 2002], inducing apoptosis [Pallerdy et

al.,1999; Deng et al., 2003; Xia et al., 2006] and inducing a pro-coagulative state by the 

induction of TF [Bevilacqua et al., 1986; Conway et al., 1989]. Therefore, in vitro studies 

were conducted to investigate the cytotoxic effect of TNF-  and DMXAA on murine 

endothelial cells. Thereafter the expression and activity of TF induced by TNF-  and 

DMXAA was studied.
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3.3.1 TNF-  and DMXAA induced cytotoxicity on endothelial cells 

The primary goal of our study was to induce TNF-  mediated clotting in tumors. 

However, TNF-  and DMXAA have also been shown to exert a direct cytotoxic effect on 

human endothelial cells [Xia et al., 2006]. 

3.3.1.1 TNF-  induced cytotoxicity 

A simple PI uptake assay and a MTT proliferation assay were used to study the 

TNF-  induced cytotoxicity. The cytotoxicity of TNF-  was first investigated using a 

crude assay that measures changes in the plasma membrane [Darzynkiewics et al., 1997]. 

PI is a membrane impermeable dye, which only stains those cells whose membranes have 

become permeable by i.e. TNF-  induced cell damages. The PI method is based on the 

binding of the fluorescent PI to nucleic acids [Wrobel et al., 1996].  

As shown in the dot plots (Fig. 23B and D) the percentage of PI positive cells increased 

with time from 27.11% at 24 hours to 76.99% at 48 hours. These results indicate that 

TNF-  induces cell death in murine endothelial cells.
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Figure 23. The uptake of PI after of TNF-  treatment on bEnd3 endothelial cells after 24 and 48 hours. A: 

PI stained not stimulated bEnd3 cells after 24 hour. B: PI stained bEnd 3 cells stimulated with 100 ng/ml 

TNF-  after 24 hours. C: PI stained not stimulated bEnd3 cells after 48 hour. D: PI stained bEnd 3 cells 

stimulated with 100 ng/ml TNF-  after 48 hours. R1 represents the still living, not stained cell fraction and 

R2 represents the dead or damaged (stained) cell fraction. The analyzed regions are representative for at 

least three similar experiments. 

Apoptosis is generally regarded as the opposite of necrosis. Cell necrosis is a 

passive degeneration of cells characterized by swelling of cells and organelles and loss of 

electrolytes balance followed by rupture of the cell membrane [Darzynkiewics et al.,

1997]. Necrosis is often technically defined by the permeability of dyes such as PI and 
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trypan blue, due to membrane rupture. However, in in vitro assays the apoptotic cells are 

not phagocytosed by cells of the immune system, which in turn results in the degeneration 

of apoptotic cell membrane that thereby become permeable for these dyes, a process 

called “secondary necrosis” [Pallerdy et al., 1999]. The PI positive cells in this 

experiment could therefore be both necrotic and late apoptotic cells. Another method to 

study apoptosis and necrosis using flow cytometry is given by analyzing the cell size 

using the forward scatter counts (FSC). During the process of apoptosis, the cells shrink, 

leading to a decrease in the FSC. As seen in Fig. 23B and D the PI positive cells have 

lower FSC, indicating cell shrinkage and thereby apoptosis. However, additional assays 

are necessary to more precisely differentiate between apoptosis and necrosis. This could 

simply be done by pre-incubating the cells with annexin V. Annexin V binds selectively 

to PS in the presence of Ca
2+

, which is present on the outer membrane of early apoptotic 

cells [Vermes et al., 1995].

 The PI assay showed that the percentage of dead cells increased with time. To 

investigate the cytotoxicity of TNF-  in a dose dependent manner a MTT assay was 

employed. The MTT assay does not measure cell death directly but cell viability, thereby 

giving an indirect measure for cell killing. 

The bEnd3 cells were treated with increasing concentrations of TNF-  for 6, 24 and 48 

hours. After 6 hours (Table 3) nearly no cytotoxicity was seen independent of the 

concentration. After 24 hours, approximately 30% of the bEnd3 cells were killed by 100 

ng/ml TNF- , and after 48 hours the number of killed cells increased to 80%. Treatment 

with 10 ng/ml TNF-  was also cytotoxic towards the bEnd3 cells, after 24 hours 15% of 

the cells were killed and after 48 hours 70 % were killed.
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ng/ml % survival 

6 hours 

% survival 

24 hours 

% survival 

48 hours 

0 99.89 ± 28.72 99.88 ± 16.20 101.33 ± 15.65 

10 100.50 ± 3.77 85.15 ± 4.30 33.68 ± 6.13 

100 82.32 ± 8.90 71.13 ± 7.95 22.71 ± 10.17 

Table 3: The cytotoxic effect of TNF-  on bEnd3 cells. The percentage of surviving cells at different 

concentration in the time range 6-48 hours 

The MTT assay is widely used to measure cytotoxicity of agents used in anti-

cancer treatment. TNF-  was previously shown to kill approximately 40% of bovine 

pulmonary arterial endothelial cells at a concentration of 20 ng/ml [Polunovsky et al.,

1994], or 40 % of HUVECs using 40 ng/ml TNF-  after 24 hours [Xia et al., 2006]. After 

24 hours the bEnd3 cells exhibited a lower degree of cytotoxicity ( 15 % - 30%) 

compared to the two studies described above. However the use of different doses 

complicates a direct comparison. TNF-  is not cytotoxic to most cells, because activation 

of the TNFR60 also leads to the activation of NF-  and JNK signaling pathway [Lee et

al., 1997], which protects the cells against the apoptotic effect of TNF-  [Deng et al.,

2003]. Co-treatment with inhibitors of protein synthesis by i.e. actinomycin D and 

cyclohexamide, which inhibits transcription and translation respectively, enhances the 

cytotoxicity of TNF-  [Polunovsky et al., 1994]. Thus, de novo synthesis of apoptosis 

protecting proteins seems to be essential for the protective effect of NF- . Treatment 

with TNF-  for 48 hours seems to be cytotoxic independent of the dose. The results 

presented here give no explanation for this. However, it might be that after 48 hour the 

amount of TNF-  induced ROS has increased to such a degree leading to a ROS mediates 

inactivation of NF-  [Deshpande et al., 2000]. This is very speculative and the 

mechanism is not known, however another study showed that appox 78 % of bovine 

adrenal cortex-derived microvascular endothelial cells were apoptotic after 48 hours of 

exposure to 1 µg/ml TNF-  [Lucas et al., 1998] corresponding well with the results in the 

present study. Further studies are needed to clarify the mechanism.   
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The two assays, PI and MTT, showed the same tendency namely that after 24 

hours about 30% and after 48 hours about 70 % of the cells are killed, confirming that 

both assay can be used to study the TNF-  induced cytotoxicity.

3.3.1.2. DMXAA induced cytotoxicity 

The cytotoxic effect of DMXAA on endothelial cell was also studied using the 

bEnd3 cells. The cytotoxicity assays of TNF-  on bEnd3 cells showed that TNF-  did not 

induce cell death after 6 hours. Therefore, the DMXAA induced cytotoxicity was studied 

after 24 and 72 hours of treatment. DMXAA showed a dose dependent cytotoxicity on 

bEnd3 after 24 and 72 hours (Table 4).

DMXAA

(µg/ml) 

% survival 

24 hours 

% survival 

72 hours 

0 100 ± 3.77 100 ± 6.18 

 100 50.97 ± 1.34 76.49 ± 11.14 

1000 34.89 ± 2.81 43.09 ± 6.68 

Table 4: The cytotoxic effect of DMXAA on bEnd3 cells. The percentage of surviving cells at different 

concentration after 24 and 72 hours 

The greatest cytotoxic effect was seen after 24 hours. Treatment with 100 µg/ml 

DMXAA resulted in killing of approx. 50% of the cells, and 1 mg/ml resulted in 65% 

dead cells. However, after 72 hours the percentage of viable cells was increased, 

indicating that especially for low doses of DMXAA, the cells recover from 24 to 72 

hours. The cytotoxicity of DMXAA on endothelial cells in vitro has been investigated 

using the TUNEL assay in another study. After 24 hours a dose of 400 µg/ml DMXAA 

induced apoptosis in approximately 40% of murine endothelial cells [Ching et al., 2002]. 

Two different methods were used to determined cell death, which might be the reason for 

the discrepancy between these two studies. The TUNEL assay labels apoptotic cells, 

whereas the MTT assay illustrates the cell viability but does not distinguish between 

apoptotic and necrotic cells.
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Apart for being cytotoxic against endothelial cells, the cytotoxic effects of 

DMXAA on tumor cells are controversial. DMXAA was not cytotoxic against RIF-1 cells 

[Bellnier et al., 2003], but approx 10 µg/ml DMXAA was shown to inhibit cell growth in 

70Z/3 and 1.3E2 pre-B lymphoma cells [Woon et al., 2003]. In both cases the 

cytotoxicity of TNF-  on the tumor cells was investigated and it was found that the tumor 

cell death was not affected by TNF-  [Bellnier et al., 2003; Woon et al., 2003]. The 

cytotoxic effects of DMXAA seen in the two pre-B lymphoma cell lines was independent 

of TNF- , indicating that DMXAA might exhibit some direct cytotoxic activities 

dependent on the tumor cell.   

3.3.2 TNF-  induced TF expression and activity 

Among several effects, TNF-  is known to induce the expression of TF. Since the 

expression of TF is of central importance in our targeting approach, we first wanted to 

study the TNF-  effect on TF expression in the bEnd3 cell system. The relationship 

between TNF-  and TF up-regulation has been described before, but most studies were 

carried out on human endothelial cells [Rehemtulla et al., 1991; Kim et al., 2001; 

O’Reilly et al., 2003]. In this work a murine model was used and therefore an 

investigation of the effect of TNF-  on murine endothelial cells was needed.  
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Figure 24. TNF-  induced tissue factor expression on bEnd3 cells investigated by Western blot and cell-

based ELISA. A: Immunoblot of bEnd3 cells either stimulated (1) with 50 ng/ml TNF-  for 6 hours or not 

treated (2). B: tissue factor expression on bEnd 3 cells that where either not activated or treated with 50 

ng/ml TNF-  for 6 hours; compared to B16 cells that constitutively express tissue factor. *** p = 0.001 no 

activation vs. TNF-  treated cells. Data points represent the mean of at least three experiments, error bars 

are SD.  
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Western Blot analysis of stimulated and not stimulated bEnd3 cells showed that 

both treatments resulted in an expression of TF protein. The band representing the 

activated cells (Fig. 24A) seems to be stronger than the band representing the control 

cells, when taking into account that the same amount of total protein was added to each 

well. However, to be able to quantify the increase, a cell-based ELISA was developed 

where the immunoreaction was carried out on top of fixed cells. As illustrated in Fig. 

24B, the stimulated bEnd3 cells showed a 3-fold increase in the TF expression. Untreated 

cells showed a basal level of TF expression, which was not unexpected as previous 

studies on human endothelial cells also found that the same [Kim et al., 2001; O’Reilly et

al., 2003]. B16F10 myeloma cells (B16 cells) have previously been shown to express TF 

constitutively [Amarzguioiu et al., 2006]. Therefore, they were included as a positive 

control and were shown to express a slightly increased amount of TF compared to the 

TNF-  treated bEnd3 cells.

Cell-based ELISAs have previously been used for detection and quantification of 

molecules expressed on the cell surface [Wewetzer et al., 1996; Liu et al., 2000; Yang et

al., 2006]. The advantages of cell-based ELISA are that it is a rapid method for screening 

for surface antigens [Arunachalam et al., 1990; Sedgwick and Czerkinsky, 1992; Liu et 

al., 2000], it is convenient for large scale screening [Wewtzer et al., 1996] and a quick 

test prior to further analysis by more discriminating methods, such as flow cytometry 

[Sedgwick and Czerkinsky, 1992]. In addition, another advantage is that adherent cells 

are not detached from the plate by trypsination or other detachment methods, which might 

enzymatically remove epitopes crucial for antibody binding [Gaffar et al., 1989] or 

induce cellular stress and thereby reducing or increasing the antibody binding. Fixation of 

cells is also known to interfere with the antigen/antibody binding [Wewetzer et al., 1996]. 

In this study the cells were fixed with 1% paraformaldehyde, which was found to be 

optimal with respect to keeping the cells bound to the plate and at the same time retaining 

antigen/antibody binding. The cell-based ELISA has the disadvantage of not directly 

measuring the TF expression on every single cell, but instead gives an average of the total 

increase in TF for the whole cell population. Therefore, to investigate the TF expression 

on single cells, flow cytometry analysis was carried out.

 As shown in Fig. 25, FACS analysis confirmed that TNF-  induced TF expression 

at a significant level. Furthermore, TF expression was again observed on the control cells. 

To assure that the TF antibody binds specifically to the TF protein, the reaction was 
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spiked with recombinant mouse tissue factor protein (50 µg/ml). This resulted in a 

blockage of the TF antibody/antigen reaction confirming that the detected binding was 

specific towards the TF protein. However, blockage did not completely abolished 

binding, which could indicate that the TF antibody also exhibited unspecific binding. 
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Figure 25. Tissue factor expression on bEnd3 cells treated with TNF-  or DMXAA. bEnd3 cells treated 

with plain medium, TNF-  (50 ng/ml) for 6 hours or DMXAA (100 µg/ml) for 12 hours were subjected to 

flow cytometry analysis. The specificity of the TF antibody/TF antigen was tested by spiking the reaction 

with excess TF protein. * P< 0.05 not treated vs. TNF-  and DMXAA treated. ¤¤ p< 0.001 TNF-  vs. 

blocked. Data points represent the mean of at least three experiments, error bars are SD.  

For further control, a similar experiment was carried out using the human ovarian 

cancer cell line (A2780Adr), which is negative for mouse TF. Only a slight unspecific 

binding was detected (results not shown). The antibody towards murine TF was of 

polyclonal nature. Polyclonal antibodies are known to exhibit a higher background 

binding compared to monoclonal antibodies [Lipman et al., 2005] and this might explain 

the unspecific binding seen in these experiments. 

 In addition, the expression of TF on bEnd3 cells after treatment with DMXAA 

was studied. The biochemical target of DMXAA is unknown but it has been shown to 

induce the synthesis of TNF- , which might lead to the up-regulation of TF either as a 

primary or secondary effect. The cells were treated with DMXAA for 12 hours and a 
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significant up-regulation of the TF expression, comparable to that TNF- , was seen (Fig. 

25). This is the first study showing that treatment of endothelial cells with DMXAA 

results in an up-regulation of TF. However, this was expected as DMXAA is known to 

induce the synthesis of TNF- . The question is whether the induced TF is the result of 

TNF-  dependent or independent action of DMXAA. Further studies are needed to clarify 

this.

 The protocols for both cell-based ELISA and flow cytometry have been 

thoroughly optimized. It was previously shown in mouse 3T3 cells [Gregory et al., 1989] 

and COS-7 cells transfected with human TF [Mackman et al., 1990] that expression of the 

TF gene was induced by serum through the regulatory element called serum response 

element [Mackman et al., 1990]. Therefore, the experiments were carried out with cells in 

serum starved medium (1% FCS), which was found to reduce the expression of TF in the 

control cells (not shown). Another problem was that the detachment process seemed to 

activate the cells. It was previously hypothesized that the detachment induces stress in 

cultured cells thereby resulting in a rapid up-regulation or decryption of TF expression 

[Maynard et al., 1975]. Subsequently, all TF expression experiments were carried out on 

attached cells, which were detached after the immunoreaction and right before flow 

cytometry measurement.   

TF is the primary cellular inducer of coagulation and acts as a high affinity 

receptor for factor VII /VIIa. Apart from inducing coagulation, TF also has other distinct 

functions such as participating in inflammation [Mackman, 1995], metastasis [Bromberg 

et al., 1995; Hjortoe et al., 2004], tumor associated angiogenesis [Zhang et al., 1994; 

Contorino et al., 1996] and embryonic development [Carmelit et al., 1997]. The TNF-

induced TF expression is regulated by the TNFR60, which in turn activates the 

transcription factors NF-  [Moll et al., 1995; Matschurat et al., 2003]. Cytokine 

activation might induce changes in cell surface expression of TF by changing gene 

transcription, mRNA stability, translation and protein trafficking [Hansen et al., 2001]. 

The TNF-  mediated TF up-regulation was found to be dependent on an increased 

transcription of TF mRNA in HUVECs [Conway et al., 1988] and human dermal micro 

endothelial cells (HDMEC) [O’Reilly et al., 2003]. An enhanced transcription might be 

assumed as the mechanism involved in the TNF-  induced up-regulation in bEnd3 cells. 

The signaling pathway involved in the induction of TF after TNF-  treatment varies 
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depending on the cell line [O’Reilly et al., 2003] but it is beyond the scope of this study 

to investigate the signaling pathways involved in TNF-  mediated TF in bEnd3 cell. 

 It has been hypothesized that cells express encrypted TF protein, which does not 

have full clotting activity and needs to be decrypted to regain full activity [Bach and 

Rifkin, 1990; Bogdanov et al, 2005]. Therefore a simple coagulation assay was developed 

to roughly validate that the up-regulated TF indeed was active.
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Figure 26. Coagulation time induced by tissue factor activity on bEnd3 cells treated with TNF-  or 

DMXAA or on B16 cells. B16 cells were used as positive control cell line. bEnd3 cells were treated with 

TNF-  (50 ng/ml) for 6 hours, DMXAA (100 µg/ml) for 12 hours or plain medium. TF mediated clotting 

was abolished with a TF antibody. *** p =0.0006 B16 vs. B16 + -TF. * P< 0.05 no stimulation vs. TNF-

and DMXAA. Data points represent the mean of at least three experiments, error bars are SD.  
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 The cells were stimulated with TNF-  for 6 hours or with DMXAA for 12 hours 

before cell lysis. The cell lysate was mixed with citrated mouse plasma and after addition 

of Ca
2+

 the change in absorption at 405 nm was observed. As illustrated in Fig. 26, 

clotting time decreased when stimulating the bEnd3 cells with DMXAA (26.8 sec.) or 

TNF-  (28.0 sec.) compared to non-stimulated endothelial cells (60 sec.). This indicates 

that the up-regulated TF indeed was active. Again the B16F10 cells were included in the 

experiment as a positive control and also showed a strong clotting potential that could be 

delayed by blocking with a TF antibody. This also confirms that the rapid clotting activity 

indeed was TF specific. Blocking the bEnd3 cells activated with TNF-  also resulted in 

an increased clotting time. However, the deviation in these experiments was rather high 
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and the differences between the clotting times for blocked and not blocked were not 

statistically significant. 

 Although this clotting assay has several restrictions and only allows for a crude 

evaluation of the clotting intensity, it confirms the active state of the TF protein expressed 

by the bEnd3 cells. Blood clotting induced by bEnd3 cells has previously been 

investigated [Dienst et al., 2005; Bhattacharjee et al, 2007]. The targeting of truncated TF 

to the bEnd3 cell surface induced coagulation in a cell-free two-stage coagulation assay 

[Dienst et al., 2005] confirming that bEnd3 cells could be made pro-coagulant. Also, LPS 

stimulated bEnd3 cells were subjected to a cell-free single-stage clotting assay, which 

resulted in a clotting time of 145 sec, whereas non-treated cells exhibited a clotting time 

of 200 sec [Bhattachajee et. al., 2007]. Compared to the presented results, the clotting 

times obtained in the other study were considerably longer, however this could be due to 

the different treatments (TNF-  and LPS) and different measurement methods. Other 

assays which directly determine the activity of factor VII or X were not performed, but 

could have been useful to more fully characterize the TF activity. 

 The TNF-  and DMXAA induced clotting time reduction correlates well with the 

up-regulation of TF. The normal bEnd3 cells were shown to express a basal level of TF. 

TF is thought to exist encrypted on the surface of endothelial cells also in culture [Bach 

and Rifkin, 1990; Pendurthi et al., 2007]. Decryption of TF is thought to be mediated by 

modulation of the cell surface in a calcium dependent manner. The precise mechanism of 

TF-decryption is unclear, but the presence of PS on the outer cell membrane [Bach and 

Rifkin, 1990; Henriksson et al., 2005] and changes to the TF protein itself [Henriksson et

al., 2005; Pendurthi et al., 2007] have been suggested as the mechanism. As shown above 

TNF-  and DMXAA induce cell death, which results in the translocation of PS from the 

inner leaflet to the outer leaflet of the membrane, indicating that activation of the 

endothelium both leads to cell death and at the same time to the induction of a pro-

coagulant state. There is evidence that apoptosis correlates with a pro-coagulant state and 

TF activity [Bombeli et al., 1997; Matschurat et al., 2003], which together might lead to 

the induction of endothelial apoptosis and vascular collapse. 

In conclusion, TNF-  upregulated and activated TF protein on bEnd3 cells. At 

sites of inflammation and in tumors the cells produce VEGF, which in synergy with TNF-

 have been shown to up-regulate TF expression [Kim et al., 2001; Shen et al., 2001]. 

Preliminary studies showed that cells treated with both TNF-  and VEFG expressed a 
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higher amount TF on the cell surface (data not shown). The delivery of TNF-  to the 

tumor endothelium, could therefore together with the endogenous tumor VEGF lead to 

increased TF expression and clotting.  

3.4 Combing VCAM-targeted liposomes and induction of TF 

activity 

Specific targeting of -VCAM liposomes to the tumor vasculature was achieved 

and it was shown that both, TNF-  and DMXAA are capable of inducing an increased TF 

expression and pro-coagulant activity in murine endothelial cells. The next step was 

therefore to combine the two parts and to investigate the anti-tumor effect of -VCAM 

targeted liposomes carrying either TNF-  or DMXAA in vivo. First, the encapsulation of 

the two agents was investigated. 

3.4.1 Encapsulation of TNF-alpha and DMXAA into ILs 

Liposomes encapsulated with TNF-  and DMXAA were formulated and 

characterized. In order to encapsulate sufficient amount of drugs, another method of 

liposome preparation was used. A 100 mM concentration combined with small volumes 

excluded the use of extrusion. The liposomes were instead sonicated to achieve the right 

size. However, this method has a lower reproducibility with respect to particle size. As 

seen in Table 5, the particle size was slightly increased and so was the polydispersity, 

compared to the empty liposomes used in the targeting studies (Table 1).

Particle 

size(nm) 
Polydispersity 

Encapsulation 

efficiency (%) 

TNF-  -L 109 ± 2.3 0.294 ± 0.027 33.04 ± 10 

DMXAA-L 110 ± 1.8 0.306 ± 0.04 18.02 ± 3.7 

Table 5: Comparison of the liposomal characteristics with respect to particle size and encapsulation 

efficiency.
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The amount of encapsulated TNF-  was determined with FITC-labeled TNF- ,

whereas the determination of the DMXAA concentration was based on direct 

measurements of the fluorescent drug. A fluorescence spectrum was obtained and the 

optimal wavelength for excitation and emission were 350 nm and 412 nm, respectively. 

This was nearly identical to the wavelengths used by Zhou et al. [2001] who used an 

excitation wavelength of 345 nm and an emission wavelength of 409 nm. 

Fluorescence measurements showed that about 33% of TNF-  was encapsulated, 

which is in agreement with other studies, where encapsulation efficiencies were around 

24% [ten Hagen et al., 2002]. Using the reverse phase evaporation method to prepare the 

liposomes, a much higher encapsulation efficiency of 63 % was achieved [Morishige et

al., 1993]. Former studies focused whether the liposomal TNF-  was partly bound non-

covalently to the outer membrane of the liposome. The association efficiency of native 

TNF-  to preformed liposomes was 3.9 % [Utsumi et al., 1991], suggesting that TNF-

also might unspecifically associate with the liposomal membrane. However, this fraction 

appears tolerable and should not significantly influence the liposomal behavior. 

Modifications of the cytokine itself, by i.e. increasing its lipophilicity, can also increase 

the encapsulation efficiency, as shown in a study by Utsumi et al. [1991].

The encapsulation efficiency of DMXAA was approximately 18 %, which was 

lower compared to the encapsulation efficiency of TNF- , but not unexpected. DMXAA 

is a small molecule and a weak acid that is ionized at pH 7.4 [Rewcastle et al., 1991; 

Zhou et al., 2001]. DMXAA has therefore a low tendency to associate with the membrane 

and subsequently a lower percentage load of DMXAA is expected. Permeability studies 

in Caco-2 cells showed that DMXAA had a high permeability coefficient and that it was 

transported by passive diffusion over the cell membrane [Zhou et al., 2005]. This makes 

DMXAA a difficult drug to encapsulate in liposomes, as it will leak out of the liposomes 

following its concentration gradient. This explains the low encapsulation efficiency. New 

DMXAA derivatives are under investigation, where lipophilic groups are added to the 

molecule [Gobbi et al., 2006]; more lipophilic molecules might display a higher 

encapsulation efficiency. 
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3.4.2 Treatment of tumor xenografts with TNF-  and DMXAA loaded VCAM-

targeted liposomes

After successfully targeting -VCAM liposomes to the tumor vasculature, 

experiments were designed to combine the targeting with the clotting potential of TNF-

or DMXAA. VCAM targeted and non-targeted TNF-  or DMXAA loaded liposomes 

were injected into mice bearing Colo 677 xenografts.  
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Figure 27. Effect of different treatments with targeted and non-targeted TNF-  and DMXAA encapsulated 

liposomes on tumor growth of Colo 677 xenografts in mice. 10 animals per group were treated with either 

rIgG TNF-L (0.5 mg TNF- / kg), -VCAM TNF-L (0.5 mg TNF- / kg) or -VCAM DMXAA-L (7 mg 

DMXAA/kg). One group was not treated. One-way analysis of variance resulted in P< 0.001 *** P< 0.001 

not-treated and rIgG TNF- -L vs. -VCAM TNF- -L; ** P< 0.05 not treated vs. -VCAM DMXAA-L and 

P<0.01 rIgG TNF- -L and -VCAM DMXAA-L. Each data point is an average of at least 9 mice; error 

bars are SD. 

The two drugs have previously been shown not to induce complete tumor 

regression, but a delay in tumor growth or shrinkage of the tumor volume. The delay in 

tumor growth was selected as the experimental read-out, and the time was recorded which 

was needed for the tumor to reach 5 times its original size at treatment. As illustrated in 

Fig. 27 the treatment with -VCAM TNF- -CL and -VCAM DMXAA-CL delayed the 

tumor growth time compared to that of tumors treated with rIgG-TNF- -CL and animals 

that received no treatment. The growth delay was greatest for tumors treated with targeted 

TNF- -CL (approximately 4 days longer than control), but the difference between the two 

targeted treatments was not significant (DMXAA 2.7 days). Subsequently, the growth 
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time for the non-targeted TNF-  liposomes was only slightly increased compared to the 

control group, suggesting that targeting the liposomes to tumor vasculature is necessary 

for TNF-  to have an effect i.e. by inducing a collapse of the tumor vasculature.  

 This is the first study investigating the anti-tumor effect of targeted TNF-

liposomes on xenograft tumors. Previous studies have used sterically stabilized liposomes 

loaded with TNF-  in the treatment of solid tumors [van der Veen et al., 1998; Yuyamaa 

et al., 2000; Kim et al., 2002a; ten Hagen et al., 2002]. The encapsulation of TNF-  in 

PEGylated liposomes resulted in an increased circulation time of TNF-  and an enhanced 

TNF-  accumulation in the tumor [van der Veen et al., 1998]. TNF-  loaded liposomes 

were also shown to reduce tumor growth in rats transplanted with T9 gliosacroma cells in 

the time span of 14 days after two treatments [Wakabayashi et al., 1997] and in mice 

bearing Meth A sarcoma tumors [Yuyamaa et al., 2000]. However others found that 

treatment with TNF-  loaded PEGylated liposomes had no effect on tumor growth alone, 

but enhanced the anti-tumor effect of radiation [Kim et al., 2002b] or doxorubicin [ten 

Hagen et al., 2002] in a synergistic manner. Our results show that one bolus injection of 

VCAM targeted TNF-  loaded liposomes resulted in a tumor growth delay compared to 

control tumors and tumors treated with non-targeted TNF-  liposomes. It seems that the 

localization of the liposome in the tumor is of importance to the anti-tumor effect, thus 

this could explain why, in some studies, unspecific accumulation of sterically stabilized 

liposomes had no effect on tumor growth.   

After VCAM binding, the TNF- -CL might either release TNF- , thereby 

inducing an endothelial effect via the TNFR60 or be internalized and induce endothelial 

cell cytotoxicity [Morishige et al., 1993]. In addition to the direct effect on tumor 

endothelial cells, liposomal TNF-  has been shown to also have an immuno-modulatory 

effect [Kedar et al., 1997]. Liposomal TNF-  exhibits an altered biodistribution compared 

free TNF-  and is eliminated through the liposomal elimination pathway, which leads to 

accumulation in i.e. the spleen and liver. Especially, the accumulation of TNF- -

liposomes in the spleen was found to result in a sustained leukocyte recruitment [Kim et

al., 2002b] and activation, which might be an important factor in the additive or 

synergistic anti-tumor effect of liposomal TNF-  in combination with other cancer 

therapies [Kim et al., 2002a].

 The dose of DMXAA used in this study was considerably lower than the optimal 

dose (7 mg/kg vs. 25 mg/kg). DMXAA is known to have a narrow therapeutic window 
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ranging from 15- 25 mg/kg [Siemann et al., 2002]. However, targeting and encapsulation 

of drugs in liposomes has previously been shown to expand the therapeutic window, 

which could also be the case here. More studies are needed where higher concentrations 

of liposomal DMXAA are administered to investigate, whether a dose above 25 mg/kg is 

tolerated and the therapeutic window expanded.

When comparing these results with the results obtained from the distribution 

experiments with radiolabeled and DiO-labeled targeted and non-targeted liposomes, the 

significance of targeting is emphasized. The difference in tumor growth time could not be 

attributed to the physical properties of the liposomes used in this experiment (Table 6). 

Particle

size(nm) 
Polydispersity

Drug

 µg/ ml 

Coupling 

g Ab/ mol 

PL

-VCAM 

TNF-  -L 
168.5 ± 9.3 0.302 ± 0.07 41.01 181 

rIgG

TNF- -L
154.3 ± 3.2 0.350 ± 0.05 39.35 199 

-VCAM 

DMXAA-L 
161.0 ± 15.4 0.352 ± 0.04 504.00 96 

Table 6: Characteristics of liposomes used in the treatment experiment. Particle size, amount of drug and 

the coupling efficiency are described. 

The liposome populations used were comparable in size and protein coupling, 

except for the -VCAM DMXAA-L which exhibit a lower amount of antibodies coupled 

to the liposomal surface. The particle size of these liposomes was slightly increased 

compared to the liposomes used in the targeting study. This could have an effect on the 

biodistribution of the liposomes but should not interfere with the targeting.  

 The tumor xenograft model Colo 677 has previously been used to study tumor 

growth delay in mice treated with truncated TF targeted to VCAM on the tumor 

endothelium. This showed that the Colo 677 model was suited for long-term treatment 

experiments. Tumor growth was moderately delayed when mice were treated with the 

truncated TF conjugate alone, but in combination with multiple doxorubicin treatments 

tumor growth was inhibited for 14 days [Dienst et al., 2005]. The success of VDAs in 
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anti-cancer treatment is more pronounced when VDAs are used in combination with 

conventional anticancer treatments. 

3.4.2.1 The side effects of liposomal TNF-  and DMXAA

The use of TNF-  in cancer treatment is often hampered by multiple side effects 

due to the cytokines systemic effect. The use of liposomal encapsulation has the 

advantage that it may reduce the systemic effect of the drug by altering their organ 

distribution [Debs et al., 1990; Kim et al., 2002a; ten Hagen et al., 2002]. The severe side 

effects seen in mice treated with free TNF-  result in changes in blood pressure, shock-

like syndrome and death [ten Hagen et al., 2002]. It was therefore important to examine 

the toxic effect of TNF-  and DMXAA loaded liposomes. One study showed that the 

body weight of rats injected with 0.2 mg/kg free TNF-  was reduced > 30% [ten Hagen et

al., 2002]. Body weight is a sensitive parameter of systemic TNF-  induced toxicity. The 

body weight was monitored throughout the whole study and is illustrated in Fig. 28. Body 

weight loss was not detected for any of the TNF-  treatments, indicating that the mice 

were not suffering from systemic toxicity. 
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Figure 28. Side effect monitoring by following the body weight of the mice during TNF-  treatment. Each 

data point is an average of at least 4 animals. 

The dose of DMXAA administered in this study was relatively low and therefore no 

toxicity was expected. Based on the body weight, mice treated with DMXAA liposomes 

did not develop toxicities. 
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3.4.2.2 Distribution of TNF-  and TF in the tumors 

To understand the mechanism behind the tumor growth delay and to examine the 

amount of accumulated TNF-  in the tumor after treatment, a TNF-  ELISA was applied. 

The TNF-  ELISA should also quantify the amount of TNF-  induced by the DMXAA 

treatment.
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Figure 29. Distribution of murine TNF-  in the tumors using a TNF-  ELISA. The amount of TNF-  in the 

tumors was determined after the tumor reached the maximal size. Each data point is an average of at least 9 

mice; error bars are SD 

The amount of TNF-  in tumors from treated-mice, independent of the treatment, 

was shown to be slightly elevated compared to the control group that received no 

treatment (Fig. 29). However, the differences were not statistically significant. This was 

most likely due to the time point of investigation. All animals were sacrificed after their 

tumors reached a tumor size 5-fold to the treatment size. Therefore, some animals were 

sacrificed after 4 days, and other after 10 days. Thus, it is difficult to compare the groups. 

Another study is needed were animals are sacrificed at certain pre-defined time points 

after injection of TNF-  or DMXAA loaded liposomes. The accumulation of sterically 

stabilized TNF-  loaded liposomes in tumors was investigated in a time range of four 

days. The amount of TNF-  in the tumors was higher in animals receiving liposomal 

TNF-  compared to animals receiving free TNF-  and remained elevated for up to 4 days 
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[Kim et al., 2002a]. Confirming that experiments carried out within shorter time intervals 

after treatment are needed. 

 Administration of DMXAA results in an increase in TNF-  synthesis [Pang et al.,

1998; Joseph et al., 1999]. In the time range of 0 - 4 hours, tumor bearing mice treated 

with DMXAA showed a time-dependent increase in the intratumoral TNF-  activity 

[Joseph et al., 1999]. Another study found the same increase in TNF-  protein, which 

peaked after 4 hours, in tumors using a TNF-  ELISA [Seshadri et al., 2007]. Our results 

showed that there was no difference in the accumulation of TNF-  between the non-

treated control and DMXAA treated groups either indicating that the dose was too low to 

induce a TNF-  response or that a too long time had passed since the synthesis of TNF-

was peaked. The latter explanation is most likely, as a tumor growth delay was observed 

suggesting that DMXAA had exerted its action the tumor.  

Our hypothesis focused on administration of TNF-  or DMXAA to induce blood 

coagulation via TF at the tumor endothelium. Therefore immunohistochemistry was 

employed to investigate whether a treatment specific up-regulation of TF on tumor 

endothelium was found. However, the immunohistochemical detection of the TF 

expression in the tumor endothelium was not successful. This is due to the fact that the 

available antibodies were not suited for immunohistochemistry on paraffin embedded and 

paraformaldehyde fixed tissues. Thus, it was not possible to determine the localization of 

TF in tumor sections. 

A pilot experiment was performed where Colo 677 bearing mice were treated with 

VCAM-targeted TNF- -CL and sacrificed after 0, 24 or 72 hours. Thereafter, Western 

Blot analysis was used to investigate the TF expression in the tumors. As illustrated in 

Fig. 30, a clear up-regulation of TF protein was seen in tumors after 72 hours (Fig. 30, 

lane 1 and 2) compared to the control tumors (Fig. 30, lane 4 and 5). After 24 hours (Fig. 

30, lane 3) a slight increase in the expression of TF was seen, indicating that treatment 

with TNF-  loaded liposomes indeed leads to an increased TF expression.
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542 31

TF 45 kDa 

Figure 30. TNF-  induced tissue factor expression in Colo 677 xenograft tumors 0, 24 and 72 hours cells 

after treatment with -VCAM TNF- -L investigated by Western blot A: Immunoblot Colo 677 tumors 

either after treatment (1-2) for 72 hours, (3) for 24 hours and (4-5) for 0 hours. 

This study was only preliminary and the amount of mice used was not sufficient to 

exclude coincidences. Despite of that, these results indicate that TF was upregulated after 

TNF- -CL treatment, although the specific localization of TF could not be determined.  

TNF-  is known to induce thrombus and fibrin formation in tumor vasculature in mice 

[Watanabe et al., 1988]. We were not able to show thrombus formation in this study as 

the end-point of the treatment study was tumor growth delay and the tumors had 

recovered from the damages induced by the treatment at the time of scarification. 

However, it was important first to investigate whether the treatments had any effect on 

tumor growth before looking for a molecular reason. The performed pilot experiment 

showed that TF was up-regulated in a time-dependent fashion, which correlates well with 

previous studies. Indirectly, this might indicate that the tumor growth delay could have 

correlated with an up-regulation of TF and induction of coagulation.

3.4.2.3 Induction of apoptosis in tumors treated with TNF-  or DMXAA-L

The anti-tumor activity of TNF-  and DMXAA is based on the selective 

destruction of the tumor vasculature leading to a secondary ischemic necrosis of the 

tumor cells [Baguley and Ching, 2002]. Both TNF-  [Xia et al., 2006] and DMXAA 

[Ching et al., 2002] have been shown, in previous studies and in this study, to have a 

direct cytotoxic activity against endothelial cells. TNF-  also induces changes in the 

vascular permeability, and after DMXAA treatment, an increased tumor vascular 

permeability was strongly correlated with the induction of TNF-  [Seshadri et al., 2007]. 

The vascular permeability was associated with changes in cell shape and motility, as well 

as and the expression of TF and adhesion molecules [Friedl et al., 2002]. All together, 

these changes result in vascular collapse. 
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 In order to get a further insight into the mechanism behind the tumor growth 

delay, apoptosis was investigated using a TUNEL assay. As illustrated in Fig. 31 (A-D) 

all four types of tumors obtained from mice treated with either, nothing, rIgG TNF- -CL,

-VCAM TNF- -CL, and -VCAM DMXAA-CL contained TUNEL positive cells. 

Control sections that were not treated with the TdT enzyme, were included as negative 

controls for unspecific peroxidase activity (Fig. 31E), implying that the positive reactions 

seen in other sections indeed TdT activity specific. The staining pattern showed a hot spot 

area in the middle of the tumor (Fig 31A-D1; §), corresponding to the necrotic core of the 

tumor. In the periphery of the tumor occasionally similar hot spots were seen. To 

investigate whether there was a quantitative difference in the amount of apoptotic cells 

within the different treatment groups, two different fields were counted from 4 tumors in 

each group. Both fields were in the periphery, one in a hot spot area (*) and one in a 

normal area (#). Counting the positive cells in the cores of the tumors was difficult due to 

the exceeding number of positive cells (Fig. 31A-D 2). As illustrated by the graphs ( Fig. 

31 F and G), the amount of TUNEL positive cells was elevated in the hot spot area of the 

tumor periphery in tumors treated with -VCAM TNF- -L. In addition, the amount of 

TUNEL positive cells was increased in all groups except the control group in fields from 

the periphery without hot spots. These results indicate that treatment with all liposome 

preparations induced cell death in the tumors. However, the -VCAM TNF- -CL induced 

more hot spots, which could be due to an increased shut down of in the vasculature after 

this treatment. The results correlate well with the tumor growth delay, where the -

VCAM TNF- -CL liposomes also induced the greatest response. 
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Figure 31: Apoptosis induced in Colo 677 xenografts after treatment with targeted and non-targeted TNF-

or DMXAA loaded liposomes. A) TUNEL stained tumor section from a control mouse 1) at low 

magnification 2) the core of the tumor at high magnification (§). B) TUNEL stained tumor section from a 

rIgG TNF- -L 1) at low magnification 2) the core of the tumor at high magnification. C) TUNEL stained 

tumor section from -VCAM TNF- -L 1) at low magnification 2) the core of the tumor at high 

magnification. D) TUNEL stained tumor section from -VCAM DMXAA-L 1) at low magnification 2) the 

core of the tumor at high magnification. E) Control staining without addition of TdT enzyme. F) 

Quantification of TUNEL positive cells per field in fields like the one marked by (*)* p < 0.05 -VCAM 

TNF- -L vs. the rest. G) Quantification of TUNEL positive cells per field in fields like the one marked by 

(#); p < 0.05 control vs. the rest.  

The TUNEL assay was employed to investigate the apoptotic state of the 

endothelial cells and the tumor cell after administration of the different liposome 
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preparations. It was not possible to determine the origin of apoptotic cells, without double 

staining against i.e. CD31 or a tumor cell antigen. The TUNEL assay sensitively stains 

cells with damaged DNA primarily apoptotic cells, however necrotic cells also exhibit 

DNA fragmentation and the TUNEL assay fails to distinguish between apoptotic and 

necrotic cells [Gras-Kraupp et al., 1995]. Therefore staining represents both the necrotic 

and apoptotic cells. As expected, most tumors were shown to have a necrotic area in the 

middle of the tumor. Stainings in the periphery correlated well with the increased amount 

of TNF-  found in Fig. 29, indicating that this was not associated with the tumor growth 

delay. On the other hand, treatment with -VCAM TNF- –CL resulted in an elevated 

number of hotspots in the tumors and an increase in apoptotic cells, which might be 

treatment specific. However, as previously discussed this experiment was performed too 

late and the tumors had properly recovered from most of the TNF-  and DMXAA-

induced cell damage and death. DMXAA induced apoptosis was determined after 3 hour 

in Colon 38 tumors, where a 12-fold increase compared to tumors in untreated animals 

was found [Ching et al., 2002]. Another study directly investigated the effect of DMXAA 

on the endothelial cells and showed that 4 hours after DMXAA treatment a strong 

TUNEL reactivity was seen in CD31 positive cells, which was virtually absent after 24 

hours [Seshadri et al., 2007].

 Summarized, treatment with -VCAM liposomes loaded with either TNF-  or 

DMXAA were shown to induce a tumor growth delay after one bolus injection. Thus, the 

effect of vascular targeting was clearly evident. It was difficult to determine the 

mechanism for the treatment induced growth delay, as the tumors were excised to late 

after treatment. However, an increase in total tumor TF in mice treated with TNF-  was 

shown using Western Blot analysis and the amount of apoptotic/necrotic cells was also 

increased in this treatment group, indicating that coagulation might be the mechanism 

behind the tumor growth delay.  
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4. Conclusions 

The tumor vasculature has been recognized as an attractive drug target, and means 

for efficient delivery of payloads to tumor vascular markers are demanded. First, the 

development of a drug carrier system that specifically targets tumor endothelium was 

investigated. We have generated long-circulating ILs targeted to VCAM. The in vitro

targeting studies provides evidence that -VCAM-CLs, compared to VCAM-targeted-

NLs, specifically bound to activated endothelial cells in vitro under static and flow 

conditions. The non-targeted NgPE-coupled liposomes exhibited some unspecific 

binding, which could be inhibited by blocking the Fc-receptor. Investigation of the 

vascular targeting in vivo revealed that -VCAM-CLs, but not controls liposomes, 

effectively targeted tumor endothelial cells. The localization of VCAM-targeted-CLs in 

non-target organs was primarily found in phagocytic cells and not co-localized to the 

vasculature. The RES uptake of the targeted ILs was not significantly higher compared to 

non-targeted ILs. Thus, PEGylated -VCAM-CLs are candidate drug carriers for delivery 

of vascular specific payloads to tumor vasculature. 

 TNF-  and the TNF-  inducing drug, DMXAA, where chosen as they both are 

vascular disrupting agents, which act on the tumor endothelial cells instead of the tumor 

cells themselves. Their anti-tumor action is mediated through occlusion of tumor vessels. 

It was proposed that TNF-  and DMXAA had a pro-coagulative effect on murine 

endothelial cells in vitro. After 24 hours treatment with both agents, 30 to 50% of the 

murine endothelial cells were killed providing evidence that both agents exhibit a direct 

cytotoxic effect on endothelial cells. The hypothesis that TNF-  induced a pro-

coagulative state in endothelial cells through the up-regulation of TF was investigated. 

Stimulation of murine endothelial cells was shown to induce a TNF-  and DMXAA 

mediated up-regulation of TF expression and activity in vitro. TNF-  and DMXAA were 

therefore accepted as candidate drugs for the VCAM-targeted liposomes. 

 TNF-  and DMXAA loaded -VCAM liposomes were formulated and reasonable 

encapsulation efficiencies of 33% and 18%, respectively, were obtained. Treatment of 

Colo 677 tumors with VCAM-targeted TNF-  or DMXAA loaded liposomes resulted in a 

delay in tumor growth time compared to control mice and mice treated with non-targeted 
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TNF-  loaded liposomes. The mechanism responsible for the tumor growth delay was 

hypothesized be tumor vessel clotting due to an up-regulation of TF expression and 

activity. Investigation of the tumor tissues from mice used in the growth delay 

experiments with respect to the intra-tumor TNF-  levels, tumor cell apoptosis and TF 

localization could not sufficiently provide insights into the mechanism behind the tumor 

growth delay. However, clotting induced by up-regulated TF might be assumed. 

Experiments with a different endpoint would have been necessary. However, a pilot 

experiment showed that TF protein was upregulated after 24 and 72 hours and together 

with the in vitro data, this indicates that clotting through the up-regulation of TF could 

have been responsible for the VCAM- targeted TNF-  or DMXAA liposome induced 

tumor growth delay.  

In summary, sterically stabilized VCAM targeted liposomes loaded with either 

TNF-  or DMXAA specifically target the tumor vasculature and induce a tumor growth 

delay in mice bearing human xenografts, which might be due to an up-regulation of TF 

expression and activity.  Therefore, the vascular targeting of liposomal drugs aiming at 

interfering with the tumor vascular function appears as very attractive therapeutic 

approach in the anticancer research and will be continued in further studies.  
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