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1. Introduction: 

Signaling molecules, including steroids, peptids, radicals of oxygen and nitrogen as well as 

the six classical phytohormone groups (auxins, abscisic acid, cytokinines, ethylene, 

jasmonates and gibberellines) are extremely important in plants. Controlled plant growth 

would not be possible without these regulators. Phytohormones are generally small molecules. 

Their distribution throughout the plant body occurs in many different ways, i.e., from cell to 

cell (e.g. auxin), across vascular bundles (e.g. cytokinines) or via the intercellular space (e.g. 

ethylene). As a general rule all known phytohormones have a broad and complex spectrum of 

activity. Some phytohormone effects appear immediately and some reactions are revealed 

only several hours after hormone application. Instantaneous reactions are supposed to be 

channeled by membrane associated enzymes (Schopfer and Liszkay 2006). Delayed effects 

are often caused, when an alteration of transcriptional activity is involved (e.g. Theologis et 

al. 1985).  Differentiation processes are rather controlled  by  a complex balanced equilibrium 

of regulator molecules than by a single class of molecule (Aloni et al. 2006a) and often 

external factors, such as light (Cheng et al. 2007) or nutrients (Jain et al. 2007; Shishova et al.

2007) are of importance. Some combinations of phytohormones act synergistically, like auxin 

and ethylene (Eklöf et al. 2000; Ruzicka et al. 2007), while others work antagonistically like 

auxin and cytokinines (Nordström et al. 2004; Aloni et al. 2006b). Moreover, hormones can 

mediate external signals to be transformed into physiological activity (e.g. auxin function for 

gravitropism).

Historically, auxin is the earliest phytohormone studied. Charles Darwin postulated in 

his book „The Power of Movement in Plants" a hypothetical substance, which enables 

phototropism in etiolated coleoptiles, that phototropic reactions are characteristic for growing 

tissues and are less easily detected in fully differentiated ones.

In his studies he showed that the tip of the coleoptile plays a decisive role in the 

detection of the light stimulus, but the bending reaction, through cellular elongation growth on 

the shaded side, occurs some distance beneath the tip. Accordingly, Darwin implied a 

mechanism for signal transmission downwards through the tissue.

Removing of the tip prevents a phototropic reaction. A re-attachment of the cut-off 

part of the tip rescues the bending reaction. All this pointed to the existence of a substance, 

which originates at the tip to the organ, is basipetal transported and promotes cellular 

elongation in the target area. 
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In 1926, substantial evidence for the existence of this hypothetical substance was 

provided by Frits Warmolt Went, who gave it the name auxin. The name is deduced from the 

greek word „auxein“, „to grow“. Chemically, auxin is indolyl-3-acetic acid (IAA) and it is 

derived from the amino acid tryptophan. Besides IAA, several molecules with a comparable 

spectrum of growth promoting activity are known. They are originating from plants (Woodward 

et al. 2005a), microorganisms (Spaepen et al. 2007) or are even synthetically produced (Fig. 

1.3). The term auxin may refer collectively to molecules, which are capable of promoting 

growth by cell elongation of the gramineous coleoptile used as a bioassay. Nevertheless, in the 

narrow sense the term auxin is used for the most potent native auxin, namely IAA.  

Nearly every developmental stage (embryonal and postembryonal) and every growth 

process of a plant (formation of lateral organs, growth of leafs) is affected directly (Teale et al.

2005, 2006; Heisler et al. 2005) or indirectly (Pagnussant et al. 2004) by IAA. Furthermore, 

phototropism and gravitropism (Went et al.1937; Friml et al. 2002a; Li et al. 2005) are closely 

connected to auxin action. 

The polar transport of auxin (PAT) is a unique feature, which separates the effect of 

auxin from that of all other signaling molecules in plants. While almost all tissues of the plant 

body could produce auxin, the bulk of it originates in primordia and young leaves near the stem 

apical meristem (Ljung et al. 2001; Aloni et al. 2003). It is transported along the complete plant 

body from cell to cell to the root tip. This transport is always directional, ATP-dependent and 

substrate specific. The transport velocity is beyond diffusion and can run opposite to a 

concentration gradient.  

The cellular auxin propagation is dependent of transport proteins located at the plasma 

membrane (Muday and DeLong 2001). One class of these comprises specialized influx - efflux 

carriers another one the ABC transporters (Petrasek et al.2006; Bandyopadhyay et al. 2007; 

Zazimalova et al. 2007). Following the classical chemiosmotic model of auxin transport, the 

central role in the cell to cell transport of auxin is played by efflux carriers (facilitators), which 

provide a checkpoint of the transport mechanism (Zazimalova et al. 2007). The pH value of the 

apoplastic cell wall is maintained at approximately pH 5 resulting in an uncharged form of 

extracellular IAA, which can diffuse through the plasma membrane easily (Gutknecht and 

Walter 1980). The pH of the cellular lumen is maintained at pH about 7 by proton pumps 

continuously pumping hydrogen ions (H+) from the cytoplasm to the extracellular space. In the 

cytoplasm, IAA is ionized at this pH condition and is not permeable anymore to the cell 

membrane, requiring efflux carrier proteins. Such an efflux is limited to specialized cell surface 

areas at the polar cell poles, thus providing a base of a directional transport.  
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Fig. 1.1. Root Apex 

Several proteins, which have been classified as members of the PIN-family are known 

to export auxin. The polar localization of these at distinct subcellular domains corresponding 

to the direction of PAT makes them ideal tools to study the setup and maintance of the 

cellular IAA export mechanism (Gälweiler et al. 1998; Terasaka et al. 2005). However, some 

MDR/PGP-transporters (Multidrug Resistance/P-Glycoprotein transporter) apparently can 

also export auxin (Petrasek et al. 2006; Geisler et al. 2005) and might be accountable for 

some auxin effects, though they are much less well studied. 

Evidence is emerging that the domain-specific asymmetric localization of efflux and 

influx carriers require localized targeting of vesicles and interactions with the actin 

cytoskeleton (Rahman et al. 2007). 

A perfect model system in plants to analyze PAT is the root apex, which is defined here as the 

apical part of the root up to the beginning of the elongation zone encompassing a stretch of 

several hundred micrometers in Arabidopsis or even several millimeters as in maize. Root 

apices have a simple anatomy and morphology (Fig. 1.1), which makes them a suitable 

system to understand the complex interactions 

between the environment and endogenous plant 

polarity cues. They are composed of two major 

parts. Central vascular cylinder (stele) enclosed by 

the endodermis and by the cortex, which is further 

enclosed by the epidermis. In comparison shoot 

apices have a more complex geometry (Baluska et

al. 1990, 1994, 2001, 2003 2006; Verbelen et al.

2006). Interestingly, despite the simple structure 

the root apex shows the rather complex 

phenomenon of the polar auxin transport (Bilou et 

al. 2005). Out of eight PIN proteins in Arabidopsis

thaliana, five members are expressed in the root 

apex. They are part of an intricate system, which 

operates the auxin flow loop in the root apex (Bandyopadhyay et al. 2007).  Shoot derived 

auxin transported down the stele by PIN1, arrives at the central part of the root cap, and is 

then channeled to the lateral root cap via activities of PIN3, 4 and 7. After that it is 

transported through the cortex upwards to the transition zone by PIN2, where again PIN3 and 

7 direct the auxin flow inwards to the stele and back again to the apical root tip (Blilou et al.
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Fig. 1.2. Auxin actions in roots 

2005). In contrast, despite its higher anatomical complexity shoot apices express only PIN1 

for polar transport of auxin. 

This network of auxin transporters at the root apex controls a dynamic feedback loop 

(see Fig 1.1) of auxin flow, which allows rapid reactions to environmental signals like 

gravitropism or light.

A central point to understand all the facets of auxin activities is the identification of 

possible interaction partners on the cellular level. Around 20 years ago the first auxin binding 

protein (ABP1) was found (Hesse et al. 1989). Located at the cellular periphery ABP1 

participates in the extracellular aspects of auxin induced cell elongation, by activating H+-

ATPases in the plasma membrane. The proton efflux acidifies and loosens the cell walls thus 

enabling turgor-driven cell expansion (e.g. Christian et al. 2006).

Three years ago, two research groups found independent of each other an intracellular 

auxin receptor. This receptor controls the degradation of a subset of transcription factors 

(Dharmasiri et al. 2005; Kepinski and Leyser 2005).

However, many aspects of auxin action are still not understood. The apparent 

competence of auxin to alter root architecture may involve other components and interactions 

such as Reactive Oxygen Species (ROS) and Nitric Oxide (NO). These known stress 

molecules in plants play crucial parts 

during cell apoptosis (e.g. Torres et al.

1998) and defense against pathogens 

(Bolwell et al. 1999). And recently a 

more fundamental role in basic growth 

processes has been discussed. For 

example, ROS assist in cell elongation 

by inducing acidification of cell walls 

(Schopfer and Liszkay 2006) and serve 

additionally as landmark signal for tip 

orientated growth in root hairs (e.g. 

Foreman et al. 2003). NO has a marked 

function in the formation of lateral and 

adventivous roots (Pagnussant et al.

2003, 2004). All these examples are 

processes, which are induced by auxin, but are depending on ROS and NO, respectively, as 

down-stream signals. 
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In the present work several aspects of auxin actions in roots are studied (Fig. 1.2). 

First, the cellular basis of IAA efflux from cells and polar auxin transport in root apices is 

analyzed. A second aim is to scrutinize the role of classical stress signaling molecules for 

root-architecture-modifying effects of auxin. Furthermore, a third facet of this study will be 

the impact of the novel signaling molecule, D´orenone, on auxin signaling in root apices. 

1.1. The cellular basis of the auxin efflux 
PAT is important for growth regulation and control of polarity and pattern formation in plants 

(Swarup and Bennett 2003; Bhalero and Bennett 2003, Friml et al. 2003; Friml and 

Wisniewska 2005; Leyser 2005). In the last few years our knowledge on several proteins, 

known to be involved in auxin transport has dramatically increased (Gälweiler et al. 1998; 

Bhalero and Bennett 2003; Petrasek et al. 2006; Geisler et al. 2005), but we are still in need of 

more detailed information as to how exactly auxin moves across cellular boundaries. 

According to the chemiosmotic theory, efflux of auxin is mediated by polarly localized putative 

auxin efflux carriers within the plasma membrane. Auxin transporters like PIN proteins are 

pumping IAA across the cell border into the apoplast. This theory predicts that the localization of 

PINs at the plasma membrane is tightly linked with the activity of polar auxin transport.   

Surprisingly, PIN proteins show a fast recycling between plasma membrane and 

endosomal compartments (Geldner et al. 2001, 2003), and recycling is indispensable for PAT 

(Petrasek et al. 2005). Known auxin transport inhibitors, like 2,3,5-Triiodobenzoic acid (TIBA), 

1-Naphthylphthalamic acid (NPA) or actomorphine are potent endocytosis blocker, that prevent 

the internalization of PINs (Geldner et al. 2001; Paciorek et al. 2005; Schlicht et al. 2006). Vice 

versa, secretion inhibitors such as Brefeldin A (BFA) and Monensin block rapidly the polar auxin 

transport (Paciorek et al. 2005). Delbarre et al. (1996) have shown that a drastic drop of PAT 

occurs within 15 minutes of BFA-treatment. 

Brefeldin A eliminates exocytosis and causes the formation of subcellular structures in 

the cells of root tips, which are called BFA-induced compartments (e.g. Baluska et al. 2002).

These compartments are locally defined accumulations of endocytic vesicles, endosomes and 

trans-golgi network elements (Samaj et al. 2004). Components of the IAA transport 

machinery, like PIN1, recycle between the plasma membrane and endosomes and are 

enriched consequently within BFA-compartments. It is significant that BFA rapidly inhibits 

PAT, while more than two hours are needed to internalize a better part of auxin exporters 

(Geldner et al. 2001). 
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PAT depends on the actin cytoskeleton, and this dependency is not consistent with the 

passive chemiosmotic theory. According to Baluska et al. (2001) the formation and 

maintenance of cellular polarity is enabled by actin. This connection is observable particularly 

clearly in cells of the transition zone. Root cells are polarized in the longitudinal direction and 

the cross walls between them separate apical and basal pole of neighboring cells in a cell file. 

These cell poles are enriched with filamentous actin and are connected by actin bundles. 

These bundles run along the sides of the nucleus, almost forming a spindle-like structure 

around the nucleus and hold it tight in the cell center. This actin cytoskeleton provides a 

transport system for endocytic and secretory vesicles through the cell. Depolymerisation of 

actin filaments by toxins, like Latrunculin B or Cytochalasin D, stops vesicular trafficking and 

inhibits polar auxin transport. 

Only recently, the contribution of phospholipids and phospholipid-converting enzymes 

in the regulation of endocytosis and exocytosis has been realized.  For instance, phospholipase 

D 2 regulates vesicle trafficking at the plasma membrane (endo- and exocytosis). A 

substantial portion of the polar transport of auxin in root apices is driven by vesicle-mediated 

secretion regulated by the PLD 2 activity and its product phosphatidic acid (PA). The genetic 

”Knock-Out“ mutant of PLD 2 has a strongly reduced endocytosis and flawed auxin reactions 

(Li et al. 2007). In the pld 2 mutant and also after 1-butanol treatment, auxin fluxes measured 

by the IAA-sensitive microelectrode are strongly suppressed despite undisturbed localization 

of PINs (Li et al. 2007; Mancuso et al. 2007). Interestingly, mutants over expressing PLD 2

show a reversed behavior, i.e., amplified endocytosis and increased auxin transport (Li et al.

2007; Mancuso et al. 2007).

After the phototropism of coleoptiles (see above), gravitropism of the root is the 

longest known auxin-controlled process in plants (Ciesielski, 1872). For gravitropism PAT is 

even more important than transcriptional auxin signaling. Several mutants with defects in root 

auxin transport, like Aux1 or PIN2, are agravitropic, but mutants of transcriptional auxin 

signaling, for example TIR1, can still sense and grow along the gravity vector.  Interestingly,

gravitropic bending of root apices is also strongly reduced or completely prevented, if ROS 

(reactive oxygen species) formation is blocked (Joo et al. 2001, 2005). Noteworthy, the most 

common and for this feature used ROS-formation inhibitors (Wortmannin und LY294005) are 

potent endocytosis reducing chemicals (Lam et al. 2007).

Moreover, changing the endogenous ROS-level, either reducing or increasing by chemical 

treatment, disturbs endocytosis (see diploma thesis by G. Njio). Together with the knowledge that 
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IAA itself can affect endocytosis (Paciorek et al.2005) a strong link between PLD 2 maintained 

endocytosis, endogenous ROS-level and auxin transport is becoming evident. 

One aim of this thesis is a better understanding of how vesicle trafficking and the 

cytoskeleton provide a basis for cellular auxin transfer. For this antibody labelings of root 

sections with a new high-class IAA-specific antibody were done, giving an until now 

unmatched resolution of subcellular located free IAA (see also Schlicht et al. 2006). Beside 

the snapshots of „in-situ“ labelings, several „in-vivo“ observations  with GFP-fusion proteins 

and auxin flux measurements were done. 

1.2. Auxin modifies root architecture by affecting the status of ROS (reactive

oxygen species)
ROS are radical forms of oxygen produced photochemically or enzymatically. Besides 

unstable radicals like superoxide anion (O2· ) or the highly reactive hydroxyl radical (OH·) 

stable molecular oxidants such as hydrogen peroxide (H2O2) and ozone (O3) are also 

considered as ROS. Because of their highly reactive and oxidizing properties these molecules 

cause a wide range of damage to cellular structures and macromolecular components, 

including DNA and proteins (Taylor and Millar 2007). 

In addition to the damaging effects within plant cells, some forms of ROS mainly 

H2O2 and nitric oxide (NO) play also a crucial role as defense agents against pathogens 

(Delledonne et al. 1998; Durner et al. 1998). This includes reactive nitrogen species (RNS), 

for instance NO· and peroxynitrite (ONOO ), which is formed in vivo by the reaction of the 

free radical superoxide with the free radical nitric oxide. Recent studies have shown that ROS/ 

RNS not only play a role in stress reactions and defense (Mala and Lamattina 2001), but also 

in signaling and cell-cell communication  (Zelko et al. 2002; Appel and Hirt et al. 2004) and 

this involves a crosstalk with auxin signaling. 

Auxin may act by two different mechanisms. The first is a direct effect on the 

transcriptional level (Abel 2007), involving an auxin receptor (Dharmasiri et al. 2005; 

Kepinski and Leyser 2005). The second is acting much faster and therefore cannot primarily 

depend on transcriptional regulation (Schopfer and Liszkay 2006). Schopfer and coworkers 

have shown that auxin triggers ROS/RNS molecules, which in turn promote cell expansion by 

loosening the cell walls (Schopfer and Liszkay 2006) and it has further been demonstrated 

that auxin triggered ROS signals fed into cGMP and MAP-kinase pathways (Pagnussant et al.

2003, 2004). Eventually these pathways have their own modulatory effect on gene 

transcription, revealing surprisingly strong similarities between stress adaptation and auxin 



~ 8 ~ 

answers. This indicates a possible shared origin of stress adaptation and auxin response. 

A new interesting avenue that may help to understand ROS/RNS-based auxin 

signaling is to take a closer look at the effects of indole butyric acid (IBA), which is a 

naturally occurring IAA analogue (Fig.1.3.) known from several plant species (Epstein and 

Ludwig-Müller 1993).

Unlike auxin, it is generally believed that IBA has nearly no transcriptional induction capacity 

on its own (e.g. Oono et al. 1998), it rather serves mainly as a transport and storage form of 

IAA (Bartel et al. 1997; Zolman et al. 2001).  IAA can be converted to IBA (Ludwig-Müller 

and Epstein 1994) and it is thought that IBA is turned back to IAA in a ß-oxidation like 

process (Poupart and Waddell 2000). In plants ß-oxidation is localized in the peroxisomes 

(Gerhardt 1992; Kindl 1993). Mutants with defects of peroxisomal biosynthesis or -

oxidation are “blind” to externally applied IBA (Zolman et al. 2000, 2001a, b; Zolman and 

Bartel 2004; Woodward and Bartel 2005b) indicating that ß-oxidation-like conversion of IBA 

to IAA is the explanation for IBA to be effective. However, independent experimental proof 

for this hypothesis is still missing. 

In auxin bioassays IBA shows only weak growth promoting activity (Woodward et al.

2005a) with the exception of adventivous and lateral root induction. At this, IBA has a 

stronger effect than IAA (Zolman et al. 2000). 

Parallel to the present work, a recent publication is showing that IBA, much like IAA, 

uses nitric oxide as downstream signal to induce adventivous and lateral roots (Kolbert et al.

2007). This suggests a strong link between auxin-induced root formation and RNS-mediated 

signaling and it argues against 

a mechanism that requires a 

change of transcriptional activity. 

Another experimental 

tool to divide transcriptional 

and redox-based activities of 

auxin is the protein-degradation inhibitor Terfestatin A. Transcriptional auxin signaling 

pathways depend on TIRscf complex-mediated degradation of transcriptional repressor 

proteins. Auxin-triggered degradation of the Aux/IAAs leads to the derepression of auxin 

response factors-mediated transcription. The F-box protein TIR1, which is part of the TIRscf

ubiquitin ligase complex, is an auxin receptor. Upon auxin binding TIR1 recruits specific 

transcriptional repressors (the Aux/IAA repressors) for ubiquitination by the proteasome 

complex. This marking process leads to specific gene expression in response to auxins. 

Fig. 1.3. Indole acetic acid (IAA) and Indole butyric acid 
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Terfestatin A binds specifically the TIRscf proteasome complex and deactivates this 

ubiquitination machinery and such preventing auxin specific changes of the gene repression 

(Yamazoe et al. 2005). 

In this thesis work, the effects of IAA and IBA are compared in different plant model 

systems (Zea mays and Arabidopsis thaliana) using wild types and mutant plant lines. 

Particular emphasis is laid on the involvement of ROS/RNS in root growth and development, 

transcriptional activity and localization and transport of auxin. 

1.3. Auxin influences the polarized tip-growth of root hairs  
Root hairs are tip-growing tubular outgrowths emerging from specialized root 

epidermis cells known as trichoblasts (Dolan et al. 1993) and expanding locally at their apical 

dome (Schiefelbein, 2000). The development of the root hair cell can be divided into three 

stages: determination of hair and non-hair cellular identity in the rhizodermis (Schiefelbein 

2000), initiation of hair outgrowth, and apical growth at the tip (Baluska et al. 2000).

Once initiated, the rapid tip-focused growth is maintained by a polarized 

cytoarchitecture and supported by cytoplasmic streaming directing secretory vesicles to the 

tip. The presence of internal gradients, the trans-membrane flux of ions, especially Ca2+, and 

the tip-focused formation of ROS are all integral elements of tip growth. To facilitate these 

dynamic processes, the cytoskeleton of root hairs turns over rapidly, supporting a high rate of 

vesicle trafficking and polarized cytoarchitecture (Šamaj et al. 2004; Campagnoni and Blatt, 

2007).

Root hair formation is regulated by phytohormone-based signaling pathways, 

especially those triggered by ethylene and auxin (Pitts et al. 1998; Rahman et al. 2002). 

Auxin transport provides vectorial information for the planar localization of hair outgrowth at 

the apical end of the trichoblasts, which are the ends facing the root tip. (Grebe 2004, Fischer 

et al. 2006) Once initiated, tip-focused growth of the hair bulge is based on a critical level of 

auxin in the trichoblast (Lee and Cho, 2006; Cho et al. 2008). Auxin export out of trichoblasts 

is driven by the PIN2 auxin efflux carrier (Blilou et al. 2005).

The conclusion that auxin levels in trichoblasts strongly influence root hair growth 

comes from the observation that trichoblast-specific over-expression of the serine/threonine 

kinase, PINOID, and the PIN3 efflux carrier resulted in increased auxin efflux from these 

cells, and root hair growth was inhibited due to a decrease of cellular auxin levels below the 

required threshold value (Lee and Cho, 2006). More recently, trichoblast-specific 

overexpression of three other efflux transporter (PIN2, PIN4, PGP4) was reported to block 
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root hair tip growth, but root hair tip-growth is restored by exogenously applied auxin (Lee 

and Cho, 2006; Cho et al. 2008). Altogether these observations implicate the existence of an 

auxin monitoring system in trichoblasts, which stops tip-growth, when the endogenous level 

of auxin drops below a critical level. 

Several inhibitors are also able to stop tip growth of root hairs,. for example, 

Latrunculin B and Cytochalasin D, which disrupt filamentous actin (Baluška et al. 2001), or 

Wortmannin, which blocks the phosphoinositide signal pathways and interrupts endocytosis 

(Lam et al. 2007). Moreover the fungal metabolite, Hypaphorine inhibits root hair growth. 

This substance is made by the ectomycorrhiza fungus, Pisolithus tinctorius (Reboutier et al.

2002), to suppress root hair formation in its eucalyptus tree host.

Hypaphorine is an indolic compound, and as such a natural antagonist of IAA. It 

competes with auxin for auxin-binding proteins (Kawano et al. 2001) and prevents 

transcription of IAA-inducible genes (Reboutier et al. 2002). The stop of root hair growth is 

accompanied by a collapse of the tip-focused calcium gradient (Dauphin et al. 2007) and 

disturbances of the cytoskeleton of the root hair. External auxin rescues tip growth in these 

Hypaphorine-treated root hairs (Ditengou et al. 2003). It might be noted, that the Hypaphorine 

effect is host specific. Non host plants are only affected at concentrations of more than 

100μM.

1.4. D’orenone as possible interactor of auxin actions.  
The C18-ketone D’orenone (Fig.1.4) has been postulated to be an early cleavage product of ß-

carotene en route to trisporic acids; these act as morphogenetic factors during the sexual 

reproduction of zygomycetes (Gooday 1978, 1983; Gessler et al. 2002; Schachtschabel et al.

2005; Schachtschabel and Boland 2007).

An early report connecting the action of fungal 

apocarotenoids to that of auxin in planta described the 

inhibitory effect of trisporic acids on the auxin-induced 

elongation of coleoptiles of Avena sativa (Blaydes and 

Saus, 1978). This observation gave the inspiration to 

study the effect of trisporoids on root growth, focusing on 

early and late intermediates of the biosynthetic pathway to 

trisporic acids (Sutter et al., 1996). The C18-ketone 

(5E,7E)-6-methyl-8-(2,6,6–trimethylcyclohex-1-enyl) octa-

5,7-die-2-one (D’orenone) significantly inhibits the 
Fig. 1.4. Structure of  D´orenone  
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polarized growth of root hairs at nanomolar concentrations (Schlicht et al. 2008). This effect 

could be monitored in different plant species. Significant parts of this study are based on the 

current thesis work and will be presented and discussed here in detail. 

The third part of this work uses the D´orenone features described above to explore the 

role of auxin actions that underlie the sensory-driven root growth responses in general, and 

these will be compared with the processes controlling polarized tip-growth of root hairs. 
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2. Material and Methods 

2.1. Plant material and inhibitor treatments 
Maize grains (Zea mays L.) of wild type and Semaphore1, lrt1, rum1 and lrt1-rum1 mutants were 

soaked for 6 h and germinated in well moistened rolls of filter paper for 4 d in darkness at 20oC.

Young seedlings with straight primary roots, either 50-70 mm long (wildtype, lrt1 and rum1), or 

25-60 mm (of the slower growing Semaphore1 and lrt1-rum1) were selected for inhibitor 

treatments and subsequent immunolabeling studies. For pharmacological experiments, root apices 

were submerged into appropriate solutions at room temperature. For Brefeldin A treatment, a 10-2 

M stock solution (made in DMSO) was used and further diluted in distilled water to achieve 

effective working concentration of 10-4 M immediately before submerging root apices for 10min 

or 2h. Latrunculin B, NPA, TIBA, Flurenol, Chlorflurenol, Chlorflurenolmethyl and IAA were 

used at 10-5 M for 2h.

Seeds of wild type Arabidopsis thaliana (ecotype Columbia), GFP lines or mutants (see 

table 3.1.), were surface-sterilized and placed on the ½ strength MS culture medium (Murashige 

and Skoog, 1962) without vitamins and containing 1% sucrose (1.5% for ß-oxidation mutants and 

wild type controls)  that was solidified by 0.8 % phytagel. Plates with seeds were stored at 4°C for 

48 hours to break dormancy and then vertically mounted under continuous light for 3-4 days or in 

darkness for one week in the case of D´orenone treatments, because this inhibitor is sensitive to 

light.

For microscopy 3-4 day-old seedlings were transferred to microscopic slides that were 

modified into thin chambers made of cover-slips. Chambers were filled with the same liquid 

medium but without phytagel and placed in sterile glass cuvettes containing the medium at a level 

that reached the open lower end of the chambers. This allowed free exchange of medium to take 

place between chambers and the cuvette. Seedlings were grown in a vertical position under 

continuous light for up to 24 hours. During this period, the seedlings stabilized their root growth 

and generated new root hairs. Inhibitors and chemicals for treatments (retinal, retinol, retinoic 

acid, Wortmannin, Terfestatin A, IAA, IBA, Latrunculin B, NPA, TIBA, cPTIO, SNAP, 

D’orenone and analogues) were added to the ½ strength MS culture medium (Murashige and 

Skoog, 1962). D’orenone, D´orenol and 3,4-dihydro-D’orenone were synthesized as described 

previously (Schachtschabel and Boland, 2007). Terfestatin A was a gift H. Nozaki (described in 

Yamazoe et al. 2005). Unless stated otherwise, all chemicals were obtained from Boehringer-

Mannheim (Germany), MBI Fermentas (USA), Merck (Germany), Roth (Germany) or Sigma 

(Munich, Germany). 
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GFP-transformed lines 

35s::GFP-FABD2 Visualizes f-actin; see Voigt et al. 2005a 

35s::GFP-FYVE Visualizes endosomes containing PI3P rich membranes; see Voigt et al. 2005b 

35s::pts1-GFP Visualizes a peroxisomal import signal; courtesy of B. Bartel 

35s::mit-GFP Visualizes a mitochondrial protein; see for example Logan and Leave 2000 

PIN1p::PIN1-GFP Visualizes PIN1 auxin efflux facilitator; courtesy of R. Chen 

PIN2p::PIN2-GFP Visualizes PIN2 auxin efflux facilitator; courtesy of R. Chen 

DR5::GFPrev Visualizes an IAA inducible reporter construct;  courtesy of J. Friml 

   

GUS-transformed lines 

PIN2::GUS Visualizes promoter activity of PIN2; courtesy of C. Luschnig 

PIN2::PIN2-GUS Visualizes putative PIN2 auxin efflux facilitator;  courtesy of C. Luschnig 

BA3::GUS Visualizes an IAA inducible reporter construct;  courtesy of Y. Oono 

pro3DC::GUS Visualizes an  ABA and stress inducible reporter construct;  courtesy of C. Rock 

Arabidopsis mutants 

PLD 2+mutant  PLD 2 gain of function mutant; courtesy of G. Li 

PLD 2-mutant  PLD 2 loss of function mutant; courtesy of G. Li 

agr1-2 Mutant with strongly reduced PIN2 protein content; courtesy of R. Chen 

eir1-4 Mutant with knocked out  PIN2 protein; courtesy of C. Luschnig 

pex5/7 IBA resistant mutant with peroxisomal defects; courtesy of B. Bartel 

pex6 IBA resistant mutant with peroxisomal defects; courtesy of B. Bartel 

pxa1 IBA resistant mutant with peroxisomal defects; courtesy of B. Bartel 

ped1 IBA resistant mutant with peroxisomal defects; courtesy of B. Bartel 

NOA1 Mutant with reduced ability to produce nitric oxide; courtesy of  N.M. Crawford 

Maize mutant 

lrt1 Mutant lacking lateral roots; courtesy of F. Hochholdinger 

rum1 Mutant lacking lateral and crown roots; courtesy of F. Hochholdinger 

lrt1-rum1 Mutant lacking lateral, adventious. and crown roots; courtesy of F. Hochholdinger 

semaphore Mutant lacking a negative regulator of KNOX1; courtesy of M. Scanlon 

2.2.  Stably transformed GUS and GFP-fusion protein expressing Arabidopsis 

lines
For description of PIN2p::PIN2-GFP see Shin et al. (2005) and for description PIN1p::PIN1-GFP

see for example Vieten et al. (2005). The auxin response element DR5rev-GFP line was used under 

the same conditions as described by Friml and coworkers (Friml et al. 2003). The PIN2p::GUS line 

Table 2.1. List of mutants and transgenic lines used for this thesis 
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was characterized by Malenica et al. (2007) and Shin et al. (2005). PIN2p::PIN2-GUS line 

visualizing PIN2 protein in plant tissues was described by Sieberer et al. (2000). 

For monitoring the actin cytoskeleton, the ABD2-GFP line was used. Endosomes and vesicles were 

visualized with the 2xFYVE-GFP line. Both were made and described by Voigt et al. 2005 (a, b). In 

vivo monitoring of peroxisomes and mitochondria were done with pts1-GFP and mit-GFP 

respectively (see Woodward and Bartel 2005b and Logan and Leave 2000 respectively). 

2.3.  Histochemical ß-Glucoronidase (GUS) staining 
Seedlings of stably transformed promoter-GUS plants were stained for ß-Glucoronidase activity. 

Samples were vacuum infiltrated for 10 min with substrate solution (100 mM sodium phosphate 

buffer, pH 7.0, 10 mM EDTA, 0.1% Triton X-100, 0.5 mM potassium ferricyanide, 0.5 mM 

potassium ferrocyanide, and 1 mM 5-bromo-4-chloro-3-indolyl glucuronide) and incubated at 

37°C for 2h up to 8h. The stained seedlings were cleared in absolute ethanol, passed through a 

graded ethanol series diluted with H2O. The seedlings were kept in H2O and transferred to 

microscope slides and mounted using an anti-fade mounting medium containing p-

phenylenediamine. Roots were examined using a Leica MZ FL III binocular equipped with a 

CCD camera. 

2.4. Indirect immunofluorescence labeling 
Apical root segments (~7mm) encompassing the major growth zones were excised and 

placed in 3.7% formaldehyde in stabilizing buffer (SB; 50 mM PIPES, 5 mM MgSO4 and 5 mM 

EGTA, pH 6.9) for 1 h at room temperature. Following a short (15min) rinse in SB, the root 

segments were dehydrated in a graded ethanol series diluted with phosphate buffered saline 

(PBS). Subsequently they were embedded in Steedman’s wax and processed for 

immunofluorescence (for details see Baluška et al. 1997). To enable efficient penetration of 

antibodies, sections were dewaxed in absolute ethanol, passed through a graded ethanol series 

diluted with PBS, and then kept in PBS for 20 min. After that, sections were transferred to PBS 

containing 2% BSA for 15 min at room temperature and incubated with antibodies.  

 The following primary antibodies were used: Actin monoclonal antibody (actin-C4 clone 

from ICN) diluted 1:100, catalase monoclonal antibody (from Sigma) diluted 1:100, JIM5 

monoclonal antibody (Baluška et al. 2002) diluted 1:20, anti-RGII polyclonal antibody (Baluška 

et al. 2002) diluted 1:100, anti-PIN1 polyclonal antibody (courtesy of K. Palme, Uni Freiburg) 

diluted 1:40, anti-IAA polyclonal antibody (courtesy of M. Strnad, Palacký University) diluted 

1:20. All primary antibodies were diluted in PBS and buffers were supplemented with 1% BSA. 
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Sections were incubated in primary antibody for 1 h at room temperature. After rinsing in PBS, 

the sections were incubated for 1 h either with FITC/TRITC-conjugated anti-rat IgGs, anti-mouse 

IgGs  or with anti-rabbit IgGs, each raised in goat and diluted 1:100 in appropriate 

buffer containing 1% BSA. A further rinse in PBS (10 min) preceded a 10 min treatment with 

0.01% Toluidine Blue to diminished autofluorescence of root tissues. The sections were then 

mounted using an anti-fade mounting medium containing p-phenylenediamine (Baluška et al. 

1997). Sections were examined with an Axiovert 405M inverted microscope (Zeiss, Oberkochen, 

Germany) equipped with epifluorescence and standard FITC/TRITC excitation and barrier filters. 

2.5. Double immunofluorescence labelling: 
After labelling of IAA with TRITC-conjugated anti-rabbit IgGs samples were postfixed for 45 

min with 3.7% formaldehyde prepared in PBS, followed by a second blocking step with PBS 

containing 2% BSA for 15 min at room temperature. The subsequent labelling procedure 

followed the standard protocol. 

2.6. Sucrose Density Gradient, Aqueous Two-Phase preparation, DRM-

purification and Immunoblotting: 
Root tissue was collected from 4d old treated or untreated plants (maize or arabidopsis) and 

ground in TE-buffer: 10 mM TRIS (pH 7.2), 1mM EDTA and 20%  sucrose (w/v), 1 mM DTT 

and protease inhibitors in the form of "Compressed, EDTA-free" tablets (One tablet is 

recommended for the inhibition of proteases present in a maximum of 20 g of tissue extract.) at 

4°C. 2-3 ml buffer were used were used per 1g fresh weight. All following steps were done on ice 

at 4°C. The homogenate was cleared by spinning at 2,500xg for 5 min. The pellet was discarded 

and the supernatant was separated into the cytosolic and microsomal fractions by centrifugation at 

100,000xg for 45 min at 4°C. The cytosolic supernatant was discarded and the microsomal pellet 

was resuspended in 2ml TE-buffer for the sucrose density gradient centrifugation or in 330/5 

buffer (330mM Sucrose, 5 mm potassium phosphate [pH 7.8]) for the two-phase separation.

2.6.1. Sucrose Density Gradient centrifugation: 

A 20% to 60% sucrose step gradient was prepared in TE-buffer by layering five 2ml steps over 

each other (see also Dhonuske et al. 2006). The resuspended microsomal fraction was layed on 

top of the gradient and samples were centrifuged for 18 hours in a SW41 swinging bucket rotor at 

35,000rpm at 4�C. After the run, twelve 1ml fractions were collected from the top of the 

gradient. The sucrose concentration in each fraction was determinded using a refractometer. In 

addition, the protein concentration of each fraction measured with the Bradford method. 
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2.6.2. Aqeous Two-Phase System:  

The aqueous two-phase partitioning method was performed according to the batch procedure 

described by Larson et al. (1987). Phase separations were carried out in a series of 10-g phase 

systems with a final composition of 6.2% (w/w) dextran T500, 6.2% (w/w) polyethylene 

glycol 3350, 330mM sucrose, and 5 mm potassium phosphate (pH 7.8), 3mM KCl, and 

protease inhibitors. Three successive rounds of partitioning yielded final upper and lower 

phases. The combined upper phase was enriched in plasma membranes vesicles and the lower 

phase contained intracellular membranes. The final upper and lower phases were diluted 5- 

and 10-fold, respectively, in ice-cold Tris-HCl dilution buffer (10mm, pH 7.4) containing 

0.25M sucrose, 3mM EDTA, 1mM DTT, 3.6mM l-Cystein, 0.1mM MgCl, and the protease 

inhibitors. The fractions were centrifuged at 100,000g for 60min. The pellets were then 

resuspended in TE buffer and used further or the protein content was measured after Bradford. 

2.6.3. Separation of detergent soluble and insoluble components of the plasma membrane:

Samples were split and one half was treated with 1% Triton X-100 for 30 minutes on ice 

(4°C), the second half was sonicated without addition of Triton X-100. After treatment, 

samples were mixed with TE-buffer containing 60% sucrose (w/w) to yield a final sucrose 

concentration of 48%, 2ml were overlaid with a continuous sucrose gradient (15-45%) and 

centrifuged for 24 hours in a SW41 swinging bucket rotor at 35,000rpm at 4�C. Protein 

content was determined in the resulting low density Triton X-100 insoluble membrane 

fractions and the high density plasma membrane fractions.

2.6.4. Immunoblotting:

Membrane protein samples obtained from the previous step were precipitated with methanol and 

chloroform by mixing 500μl of a sample with 500μl MetOH and 125μl chloroform in an 

Eppendorf tube and vortexed. After a microfugation for 10min at 13.000 rpm and 4°C the upper 

phase of the resulting two-phased sample was discarded. Another 500μl MetOH was added to the 

lower phase and microfuged a second time for 10min at 13.000 rpm and 4°C. The resulting pellets 

was dried completely and resuspended in 1x SDS-PAGE sample buffer (final protein 

concentration of 1μg per μl). Each sample was loaded onto a 15% SDS-PAGE gel, 

electrophoretically separated and western blotted onto nitrocellulose. 

All working steps of the immunoblotting procedure were carried out at room temperature. The 

nitrocellulose was washed in TBS buffer (10mM TRIS (pH 7.4), 150mM NaCl) and then blocked 

with 4% BSA in TBS for 1h. After five minutes washing in TBS the blots were incubated in the 
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primary antibody (1:1000 or 1:2000) in TBS  for 1h, washed again three times in TBS with 0,05% 

Tween 20 (TTBS) and incubated in the secondary, alkaline phosphatase-conjugated antibody 

diluted at 1:10.000 in TBS. After incubation for 1 h blots were washed three times with TTBS. 

Positive bands were detected by the BCIP-NBT (Sigma Chemical) staining reaction. The staining 

reaction was stopped with 1% acetic acid in water. 

2.7. Microscopic dye staining protocols 
Staining of cytoplasmic calcium with Fluo3-AM: Loading of Ca2+-sensitive Fluo3-AM in 

roots was carried out as described by Zhang et al. 1998. 

Labeling with the endocytosis tracer FM4-64: Roots were incubated for 10 min with 5μM 

FM-dye at 4°C to slow down endocytosis and then washed before observation. To monitor the 

red fluorescent dye,  488 nm excitation and 620 nm or 710 nm emission filters were used. 

Nitroblue tetrazolium staining of root hairs: To visualize the subcellular sites of superoxide 

production in root hair tips, staining was carried out as described by Carol et al. (2005).

2.8. Nitric oxide labelling and measurements in root apices 
Detection of NO was achieved by the specific fluorescent probe 4,5- diamino-fluorescein 

diacetate (DAF-2 DA; Calbiochem, USA). Briefly, roots were incubated with 15μM DAF-2 DA 

for 30min and washed before observation. As a negative control a treatment with 10μM of the 

NO-scavenger cPTIO was included (see for example Correa-Aragunde et al. 2004).

2.8.1. Monitoring of nitric oxide accumulation in roots: 

Roots were incubated in the dark for 30min. at 25°C in 10mM Tris HCl (pH 6.5) containing 

10μM DAF-2DA added from a 10mM stock in DMSO (Sigma). Then the roots are washed three 

times in fresh buffer to remove excess fluorophore, mounted in buffer on microscope slides, and 

then examined immediately under a confocal laser scanning microscope (Leica TCS-4D). For the 

detection of the green fluorescing DAF-2 a 495nm excitation filter and a 515nm emission filter 

were used. 

Dihydrorhodamine 123 is an uncharged and nonfluorescent peroxynitrite indicator that can 

passively diffuse across membranes, where it is oxidized to the cationic form of rhodamine 123, 

which exhibits green fluorescence (Szabó et al. 1995). Roots are incubated in the dark for 10min 

at 25°C in 10mM Tris HCl (pH 6.5) containing 10μM Dihydrorhodamine 123 and then examined 

with an Axiovert 405M inverted microscope equipped with epifluorescence and standard FITC 

excitation and barrier filters. 
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2.8.2. Semiquantitative measuring of nitric oxide in root extracts: 

Roots were incubated in the dark for 30min at 25°C in 10mM Tris HCl (pH 6.5) containing 10μM 

4,5-diaminofluorescein diacetate (DAF-2DA) added from a 10mM stock in DMSO (Sigma). The 

supernatant was captured in a 1ml cuvette for fluorimetric measurement and roots were frozen in 

liquid nitrogen, homogenized in 1ml buffer, incubated for 15min and spun down. The resulting 

supernatant was collected in a 1ml cuvette and measured with a fluorometer at 488nm excitation 

and 515nm emission. 

2.9. ROS measurements of root extracts 
2.9.1. Determination of O2

.- by measuring nitro blue tetrazolium (NBT) reducing activity: 

Measurement of NBT (Sigma) reduction, a method used for the determination of O2
.-, was 

described by Doke (1983). About 3-5 roots were immersed in 3ml 0.01M potassium phosphate 

buffer (pH 7.8) containing 0.05% NBT and 10mM NaN3 (Sigma) for 1h. After removing the roots 

the mixture was heated at 85°C for 15min and cooled. The NBT reducing activity of the roots was 

expressed as light absorbance at 580nm  h-1 per 1g of fresh weight. The effect of SOD on the 

reduction of NBT by the roots was determined by adding SOD (100μg ml-1) to the reaction 

solution from which NaN3 was omitted. Results are shown as relative values. 

2.9.2. Assay of hydrogen peroxide concentration: 

Hydrogen peroxide was measured as described by Capaldi and Taylor (1983). Roots were ground 

in 5% trichloroacetic acid (TCA, 2.5ml per 0.5g root tissue) with 50mg activated charcoal at 0°C, 

and centrifuged for 10min at 15,000 x g. The supernatant was collected, titrated with 4N KOH to 

pH 3.6 and used for H2O2 assay. The reaction mixture contained 200μl of root extract, 100μl of 

3.4 mM 3-methylbenzothiazoline (MBTH, Sigma). The reaction was initiated by adding 500μl of 

horseradish peroxidase solution (90 U per 100ml) in 0.2M sodium acetate (pH 3.6). Two minutes 

later 1400μl of 1N HCl was added. Absorbance was read out at 630nm after 15min. Results are 

shown as relative values. 

2.9.3. Assay for the determination of hydroxyl radical secretion by root tissue: 

Secreted hydroxyl radicals were measured by the method described by Tiedemann (1997). 2-

Deoxyribose (DOR) (Sigma) was used as a scavenger and molecular probe for HO. radicals. 

DOR was slightly sensitive to degradation by HO. Radicals, which resulted in the 

accumulation of thiobarbituric acid-reactive degradation products. 5-10 roots were immersed 

in 1ml of 1mM DOR incubated at room temperature in the dark for 45min. Then 0.5ml of the 

incubated DOR solution was added to a preheated mixture of 0.5ml thiobarbituric acid (TBA) 
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(Sigma) 1% w/v in 0.005 M NaOH and 0.5ml trichloroacetic acid (TCA) (Sigma) 2.8% w/v, 

and immediately boiled for 10min. Absorbance was measured at 540nm. The results are given 

as absorbance units per g, of fresh weight and shown as relative values. 

2.10. Enzyme activity assays 
2.10.1. Assay of NADPH-oxidase activity: 

The activity of NADPH-oxidase was assayed by its ability to reduce XTT (Sigma), following a 

modified protocol after Sagi and Fluhr (2001). The reaction mixture contained Tris-HCl buffer 

(pH 7.4), 100μm CaCl2, 350μM XTT, and 20μl of plasma membrane enriched protein fractions

(see chapter 2.8.2.). The reaction was started by the addition of 1mM NADPH and absorbance 

measurements at 470nm were performed every minute (Sagi and Fluhr 2001). XTT reduction was 

determined at 470 nm in the presence and absence of 50 units CuZn-SOD. The results are given 

as relative value (absorbance of sample with CuZn-SOD divided by sample without CuZn-SOD). 

2.10.2. Preparation of enzyme extracts: 

Root tissue of 0,5g was homogenized in 5ml of 50mM phosphate buffer pH 7,0 containing 1N 

NaCl, 1% PVP (Sigma) MW 40.000, 1mM ascorbate (Sigma) at 4°C. The supernatant was 

collected after a centrifugation at 15.000 x g for 15min. 

2.10.3. Assay of SOD activity: 

The activity of SOD was assayed by measuring its ability to inhibit the photochemical reduction 

of NBT using the method of Beauchamp and Fridovich (1971). The 3ml reaction mixture 

contained 50mM phosphate buffer (pH 7.8), 13mM methionine, 75μM NBT, 2μM riboflavin, 

1mM EDTA and 20μl enzyme extract. Riboflavin was added last and the reaction was initiated by 

placing the tubes 30cm below a 15W fluorescent lamp. The reaction was started by switching on 

the light and was allowed to run for 10min. Switching off the light stopped the reaction and the 

tubes were covered with black cloth. Non-illuminated tubes served as control. The absorbance at 

560nm was recorded. The volume of enzyme extract corresponding to 50% inhibition of the 

reaction is considered as one enzyme unit. Results are shown as relative values. 

2.10.4. Assay of ascorbate peroxidase (APX) activity: 

APX activity was determined spectrophotometrically by the decrease in absorbance at 265nm 

( =13,7 mM-1 cm-1) using the method of Nakano and Asada (1981). The reaction mixture 

contained 50mM potassium phosphate buffer (pH 7.0), 5mM ascorbate, 0.5mM H2O2 and 20μl 

enzyme extract. The reaction was started by the addition of H2O2. The rates were corrected for 
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non-enzymatic oxidation of ascorbate by the inclusion of reaction mixture without enzyme 

extract. Enzyme activity is expressed in μmol ascorbate min-1. Results are shown as relative 

values.

2.10.5. Assay of Catalase (CAT) activity: 

CAT activity was determined by consumption of H2O2 using the method of Dhindsa et al. (1981). 

The reaction mixture contained 50mM potassium phosphate buffer 7.0, 16mM H2O2 and 20μl 

plant extract. The consumption of H2O2 was monitored spectrophotometrically at 240mm ( =45,2 

mM-1 cm-1). Enzyme activity was calculated from the slope of the absorbance change over time 

( A) divided by the molar absorption coefficient ( ) and expressed in μM H2O2 min-1. Results are 

shown as relative values. 

2.11. Measurement of the conversion of IBA to IAA  
The conversion of IBA to IAA was measured by Prof. J. Ludwig-Müller (University Dresden) 

using a radiometric assay. Five weeks old plants were incubated with a [indole-13C9]-IBA 

(139IBA) for 16 h. Duplicate measurements were performed on wild type, ped1, pxa1 and NOA1

plants.

Concentration of labeled IBA was calculated in the tissue as ng / mg fresh weight. For IAA 

determination a [indole-13C6]-IAA (136-IAA) standard was added, because a 139- labeled IAA was 

not available. This might cause a slight underestimation of the  conversion of IBA to IAA in each 

sample. 

2.12. RNA isolation and reverse transcriptase-PCR 
Total RNA was isolated from the excised root of 7-d-old seedlings using RNeasy Plant Mini 

kit (Qiagen) and treated with on-column DNase digestion according to the manufacturer's 

instruction. The corresponding cDNAs were synthesized and amplified by the PCR using 

primers for the indicated genes as follows: IAA1, 5'-ggattacccggagcacaag and 5'-

ggagctccgtccatactcac; IAA19, 5'-gagcatggatggtgtgccttat and 5'-ttcgcagttgtcaccatctttc; and 

UBIQUITIN (UBI), 5 -gatctttgccggaaaacaattggaggatggt and 5 -cgacttgtcattagaaagaaagagataacagg. 

The amplified products (IAA1, 208 bp after 24 cycles; IAA19, 141 bp after 27 cycles ; UBI,

206 bp after 25 cycles) were analyzed by 3% agarose gel electrophoresis. 

2.13. Microscopy,  Image Processing and Cytofluorimetric Measurement 
Confocal microscopy was carried out with either a Leica TCS 4D or a Nikon Eclipse C1si 

Spectral Imaging Confocal Microscope. The Leica TCS 4D was equipped with an argon/krypton 
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mixed gas laser and excitation/emission filter combinations for FITC/GFP and TRITC/FM-dye 

detection. The Nikon Eclipse C1si Spectral Imaging Confocal Microscope acquires high 

resolution data over a spectral range of 400-750nm, in a single scan. Samples were examined 

using 40x oil immersion and 63x water-immersion objectives. The red fluorescent dye FM4-64 

was excited by the 488 nm laser line and emission was filtered between 620 and 710 nm. Serial 

confocal optical sections were taken at different step sizes ranging from 0.5 to 2μm. Projections of 

serial confocal sections and final image processing were done with Adobe Photoshop 7. 

For growth and curvature measurements seedlings were observed directly on the Petri dishes with 

a binocular (ICS Leica, Germany) using Discus imagesoftware (Carl H. Hilgers, Königswinter), 

or the Petri dishes were placed on a standard PC scanner. Analysis and measurements were made 

with the open source software Image-J (http://rsb.info.nih.gov/ij/).
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Figure 3.1. IAA labelings in maize root apices: antibody specificity.
A/ Labeling with the IAA antibody immunodepleted with an excess of IAA for 24 h.  
B-D/ Labeling with the IAA antibody incubated with an excess of 2,4D (B), 1-NAA (C) or IBA (D) for 24 h.  
White arrows indicate auxin-enriched end-poles (cross walls).  
E/ Comparison of the fluorescence intensities of transition zone cells after treatments with different IAA 
concentrations. average intensities of transition zone cells of 5 roots per treatment are represented. For the 
comparison, root sections labeled with the same antibody concentration were used. The images were recorded 
with the same exposure settings. (CW, cell wall; N, nucleus).  
Bars: (B) 18 M, (C) 12 M, (D) 10 M.

3. Results:

3.1. Cellular basis of auxin efflux 
3.1.1.      Antibody-studies in Zea mays

3.1.1.1. Characterization of the IAA-specific antibody 

A number of structurally related indoles and IAA metabolites may be present in plant tissues. 

Antibody specificity is, therefore, a crucial point in the immunocytochemical assay of IAA. The 

IAA-N1 antibody used in this thesis work was produced in M. Strnad´s lab and subsequent 

ELISA tests indicated that the antibody is specific (Data presented in Schlicht et al. 2006). 

Several controls were performed in order to confirm the specificity of the IAA antibody at 

the level of immunolabelling: (1) labelling with the preimmune rabbit IgG instead of IAA 

antibody (data not shown), (2) labelling with the IAA antibody immunodepleted with an excess of 

IAA for 24 h (Fig. 3.1A), (3) labelling with the IAA antibody in the presence of an excess of 

NAA, IBA, and 2,4D, respectively,  for 24 h (Figs. 3.1B-D), (4) labelling only with the anti-rabbit 

IgG, omitting the first antibody step (data not shown). Labellings with the IAA antibody of root 

apices treated with different concentrations of IAA showed an increase in the fluorescence signal 

corresponding with the increase in IAA concentration (Fig. 3.1E). All these cytological controls 

unequivocally confirmed the specificity of the IAA antibody, as documented already by our co-

operation partner at the biochemical level (Schlicht et al. 2006).  
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3.1.1.2.       IAA immunolocalization in cells of control, BFA-, IAA-, and TIBA-treated 

maize root apices and Arabidopsis thaliana root apices 

Untreated maize roots showed the most prominent signal in cells of the root apex, especially in 

the transition zone (Fig. 3.2A) and in the quiescent centre (Fig. 3.2B). In these cells, a prominent 

auxin signal was visible in the nuclei and at the polar cross-walls, (Fig. 3.2A, D, E), which mark 

the apical and basal end poles of the cells. In BFA-treated roots, IAA was still localized within 

nuclei while a slightly weaker signal was scored at the polar cross-walls (Figs. 3.2C, F, G). 

Additionally, BFA-induced compartments are enriched with auxin (Fig. 3.2G).  

At higher magnification the signal at the cell end-poles was resolved as a cloud of closely 

apposed spots at which IAA co-localized with PIN1 (Fig. 3.3A). This co-localisation was obvious 

also in BFA-treated cells when endocytic BFA-induced compartments were positive for PIN1 

(Fig. 3.3B), IAA, and recycling cell wall pectins recognized by the JIM5 antibody (Fig. 3.3C). In 

control roots, all cell end-poles in the transition zone were enriched with auxin while nuclei were 

also labelled (Fig. 3.4A). In TIBA treated roots, IAA was more enriched within nuclei while a 

strong signal was scored also in the cytoplasm and at some cross-walls (Fig. 3.4B). Exposure of 

root apices to external IAA resulted in an increased signal in the cytoplasm, and both nuclei and 

cell ends showed strong immunofluorescence (Fig. 3.4C). Importantly, BFA-treated wild type 

roots showed IAA-enriched BFA-induced endocytic compartments (Fig. 3.4D). These 

compartments were smaller in roots pretreated with TIBA and auxin (Figs. 3.4E, F).  

The IAA-labelling patterns in Arabidopsis roots were slightly different than in maize root apices. 

All together the fluorescent signal was weaker and the nuclear labelling was less pronounced. 

Instead, stronger cytoplasmic signal with many spot-like structures were visible (Fig.3.5). Auxin 

transporting tissues of Arabidopsis roots showed signal at end poles like already in maize 

monitored (Fig.3.5B, C). 

The labeling of IAA in Arabidopsis root tips revealed a maximum of fluorescence intensity in the 

root tip (Fig.3.5D), only weakly resembling the maximum of the well established DR5-construct 

(see also Fig.3.22 or 3.27). The cells of the quiecent center, surrounding of the apical meristem 

and the lateral root cap cells showed the strongest signal intensity (Fig. 3.5D) The behavior of this 

maximum in response to inhibitors is quite different to the DR5 signal. Terfestatin A, a inhibitor 

of auxin induced transcriptional activity, shifted the antibody detected maximum to the central 

root cap, but disposes DR5 signal at the root tip (Fig. 3.5E, compare with Fig. 3.27 or see 

Yamazoe et al. 2005). A treatment with auxin transport inhibitor NPA alleviated the maximum in 

the root cap and increased the meristematic located IAA, which is detected by the antibody (Fig. 

3.5F). Consequently, an IAA treatment increased signal in the complete root tip (Fig. 3.5G). 
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Figure 3.2. IAA labelings in maize root apices: sub-cellular and cellular distributions.
A, B, D and E/ In the untreated root, IAA enriched cross-walls (end-poles) are prominent in stele cells of the 
transition zone (A) and the whole quiescent centre (QC) (B).  
C, F and G/ In BFA-treated root tips (2 h), IAA labeling of end-poles vanishes in the stele while the nuclear 
labeling gets more prominent. BFA treatment shifts IAA signal into BFA-induced compartments.  
D/ In cells of the cortex, intensity of the cross-wall labeling gets weaker while labeling of nuclei increases. 
Yellow arrowheads point on auxin-enriched BFA-induced compartments.  
Red Line in (B) and (C) marks the border between meristem and root cap. (S, stele; e, endodermis; C, cortex) 
Bars: 10 M.

Figure 3.3.  
PIN1-IAA colocalization in control and BFA-treated 
root apices.
A/ In untreated roots, co-localization of PIN1 with 
IAA in distinct patches at the end-poles is obvious.  
B and C/ After 2 h of BFA exposure, PIN1, IAA, 
and JIM5-positive cell wall pectins co-localize in 
patch-like structures within endocytic BFA-induced 
compartments. Bars: 10 M.

Figure 3.4.  
IAA labelings at the end-poles and within 
nuclei.
A/ Control. B/ 2 hrs of TIBA-treatment.  
C/ 2 hrs of IAA-treatment. D/ Wild-type after 2 
hrs of BFA treatment. E/ 2 hrs of TIBA 
followed by 2 hrs of BFA treatment. F/ 2 hrs of 
IAA followed by 2 hrs of BFA treatment. Bars: 
(A–C) and (F) 10 M; (D and E) 8 M.
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Figure 3.5.  
IAA labelings in Arabidopsis thaliana root apices
A/ Overview of the root tip.  Prominent signal in the root cap and quiescent center and striking weak signal in columnella cells.
Note: Figure A is composed of several microscopic pictures. 
B/ Rhizodermis, outer cortex and lateral root cap cells show antibody signal mainly at cross walls. 
C/Endodermal cells show signal at polar cross walls, cytoplasma and nuclei, but prominent spot like structures are also visible 
in the cells.  
D-G: Intensity of IAA labelings in Arabidopsis thaliana root apices 
D/ Overview of the root tip. Visualization of fluorescence intensity shows an auxin-maximum quite similar to the known auxin 
signaling maximum of the DR5-reporter. 
E/ Overview of a Terfestatin A (2h with 10μM) treated root tip. No visible quenching effect on the IAA maximum but a 
distinct shift to the central root cap. 
F/ Overview of a NPA (2h with 10μM) treated root tip shows an alleviated IAA tip maximum in the root cap and an increase in 
the meristem. 
G/ Overview of IAA (2h with 1μM) treated root shows elevated intensity of the IAA labelling at the root tip maximum. 
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Figure 3.6. PIN1 antibody 
A-E/  PIN1 localization in cells of the transition zone in wild type roots  
Control, untreated (A), 2 hours of TIBA treatment (B), TIBA/BFA treatments combined, 2 hours of TIBA 
followed by 2 hours of BFA (C), BFA-treatment for ten minutes (D), BFA-treatment for 2 hours (E); Bars: 10 M.
F/ Aqueous Two-Phase System reveals that BFA induces shift of PIN1 from the plasma membrane-enriched 
upper phase (U) into the endomembrane enriched lower phase (L). Pretreatment with IAA inhibits this BFA-
induced shift. 
G/ Sucrose density gradient analysis of PIN1 localization reveals that BFA induces shift of PIN1 from the 
plasma membrane into the endosomal fractions, but not to the Golgi apparatus fractions. Pretreatment with 
TIBA and IAA inhibits this BFA-induced shift. Comparison of treatments with fractions of matchable 
sucrose density. Sucrose density of fractions increases from left to right. 
58K is cis-golgi marker and serves as example of lower density fractions of the gradient 

3.1.1.3. BFA treatment shifts PIN1 from the plasma membrane into endosomes 

PIN proteins are showing rapid vesicle recycling. A maize specific PIN1 antibody was 

used, which was tested on western blots. The maize antibody showed one specific band around 

70kDA (Fig. 3.6F).  Immunofluorescent labelings with the maize PIN1 antibody showed, that 

after 2 h TIBA and after 10 min BFA treatments, when auxin transport was inhibited, PIN1 

protein was almost exclusively located at the plasma membrane of the apical cell end pole Figs. 

3.6A-D). Only after 2h duration of BFA-treatment the PIN1 signal was shifted into the BFA-

induced compartments (Fig. 3.6E). TIBA 

pretreatment prevented this accumulation of 

PIN1 within the endocytic BFA-induced 

compartments (Figs. 3.6C). Biochemical 

analysis using sucrose density gradients and 

aqueous two-phase system also showed that 

PIN1 was strongly present at the plasma 

membrane after the 10 minutes BFA treatment. 

However, after two hours of BFA treatment, a 

shift from the PM protein fractions into 

endosomal protein fractions took place (Fig. 

3.6F,G). This shift can be prevented by TIBA 

and IAA pre-treatments, which are known to 

inhibit the endocytosis of PIN1 in Arabidopsis

root cells (Katekaar and Geissler 1980; Geldner 

et al. 2001).



~ 27 ~ 

3.1.1.4. BFA and different PAT inhibitors deplete F-actin from polar cell ends  

BFA had an obvious effect on the actin cytoskeleton of the root apex cells Instead of a strong 

and continuous labeling of the actin filament bundles and a strong labeling of the end-poles, 

the fluorescent label became sketchy along the bundles and weakened at the cell ends 

indicating a partial disruption and break down of the actin cytoskeleton (Figs. 3.7A, B; see 

also Paciorek and Friml 2006).  

In fact, all PAT inhibitors tested in this study, as well as Latrunculin B, depleted F-actin at the cell 

end poles and more or less disintegrated the F-actin cables interconnecting the opposite end 

poles of the cells (Figs. 3.7A-H). Moreover, all inhibitors induced a shift in the positioning of 

the nuclei towards the basal cell pole (Figs. 3.7B-G). Latrunculin B induced a conspicuous 

accumulation of G-actin within the nuclei (Fig. 3.7H) which is a phenomenon not further 

addressed in this study.   

To monitor effects of the auxin transport inhibitors and Latrunculin B on recycling of vesicles an 

immunofluorescence labeling of cell wall pectins was performed, because pectins recycle 

between the cell wall and the endosomes (Baluska et al. 2005). After BFA-treatment pectin 

was located within the BFA-induced endocytic compartments, thus showing the same behavior as 

PIN1 (Fig. 3.8). The size of these compartments reflects the recycling rate of cell wall pectins. 

The data revealed that two hours of pre-treatment with latrunculin B (Fig. 3.7F), as well as with 

all PAT inhibitors tested, resulted in smaller BFA-induced compartments than those scored 

after BFA treatment alone (Figs. 3.8G, H, L, M, N).  
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Figure 3.7.  
F-Actin arrangements in cells of the transition zone.  
A/ Control. B/ BFA treatment. C/ TIBA treatment. D/ NPA treatment. E/Flurenol treatment. F/ Chlorflurenol 
treatment. G/ Chlorflurenolmethyl treatment. H/ Latrunculin B treatment. Note the depletion of F-actin from end-
poles and disintegration of F-actin cables while nuclei are shifted from their original central position towards the 
basal cell pole. Bar: 8 M.  
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Figure 3.8.  Labeling of the recycling pectin RGII in cells of the transition zone. 
A/ Control wild-type roots.  B/ Latrunculin B-treated roots.  C/ TIBA-treated roots.  D/NPA-treated roots. 
E/BFA-treated roots.  F/ Latrunculin B/BFA-treated roots.  G/ TIBA/BFA-treated roots.  H/ NPA/BFA-
treated roots.  I/Flurenol-treated roots.  J/ Chlorflurenol-treated roots.  K/ Chlorflurenolmethyl- treated 
roots.  L/ Aluminium-treated roots.  M/ Flurenol/BFA-treated roots.  N/ Chlorflurenol/BFA-treated roots.  
O/ Chlorflurenolmethyl/ BFA-treated roots.  P/ Aluminium/BFA-treated roots.  
Note that BFA-induced compartments are smaller in cells of roots pretreated with PAT inhibitors. All treatments 
were done for two hours, the combined treatments consisted of two hours of PAT inhibitors followed by two 
hours of BFA. Bar: 8 M.
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3.1.1.5. Immunolabeling in maize mutants with auxin related phenotype  

The maize mutant semaphore1 is impaired in the negative regulation of KNOX1-genes and is 

characterized by reduced PAT which is the reason for the pleiotropic phenotype of this mutant 

(Scanlon et al. 2002). The rum1 mutant is deficient in the initiation of seminal and lateral roots 

from the primary root (Woll et al. 2005) and shows strongly reduced polar auxin transport 

capacities. The lrt1 mutant (Hochholdinger and Feix 1998) which shares some phenotypical 

similarities with rum1, including the missing initiation of lateral roots, has wild type like PAT 

rates (Santelia et al. 2005). The double mutant rum1-lrt1 shows a novel phenotype and has 

reduced PAT just like rum1 (Woll et al. 2005). Immunofluorescent labeling revealed that the 

polarized root cell organization of mutants with reduced PAT is strongly disturbed.  

The actin cytoskeleton in transition zone cells of semaphore1 (Fig. 3.9F), rum1 (Fig. 3.9P) and 

rum1-lrt1 (Fig. 3.9U) mutants showed changes which have strong similarity to those observed 

after treatments with diverse PAT inhibitors (see Fig. 3.7). Moreover, auxin failed to accumulate 

at the cross-walls in those mutants (Fig. 3.9G, Q, V). The lrt1 mutant showed neither significant 

disturbances of the actin cytoskeleton nor a reduced IAA-labeling (Fig. 3.9K, L). Exposure of 

semaphore1 roots to BFA revealed that mutant cells had smaller BFA-induced compartments 

indicating decreased vesicular recycling rates (Fig. 3.9J). Moreover, BFA-treated cells of 

rum1 and lrt1 / rum1 double mutants completely lacked any BFA-induced compartments 

(Figs. 3.9T, Y).

In conclusions, disturbances of vesicle recycling, irrespective of whether this is induced by 

inhibition of polarized secretion by BFA or by PAT inhibitors, appear to be a consequence of the 

disintegration and depletion of the actin cytoskeleton at the polar cross walls. 
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3.1.3. Phospholipase D affects the auxin signaling maximum of DR5 in root apices 

Figure 3.9  
Actin, IAA, PIN1, and RGII labelings in root apices of wild-type and maize mutants. 
Actin (A, F, K, P, U), IAA (B, G, L, Q, V), PIN1 (C, H, M, R, W), and RGII (D, I, N, S, X) and RGII after two 
hours of BFA-treatment (E, J, O, T, Y) labelings in stele periphery cells of the transition zone the wild-type (A–E), 
semaphore1 (F–-J), lrt1 (K–O), rum1 (P–T), and lrt1/rum1(U–Y) mutants. Note the depletion of F-actin and IAA 
from the cellular end-poles, which is correlated with small size of BFA-induced compartments (E, J, O, T, Y) but 
PIN1 shows still a signal on the end-poles. The only exception is the lrt1 mutant which is, in contrast to all other 
mutants, also not affected in PAT. Bars: A, C, F, K, N, P, S, U and X, 8 M; B, D, E, G, H, I, J, L, M, O, Q, R, T, 
V,W and Y, 10 M.
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3.1.2. Phospholipase D affects the auxin signaling maximum of DR5 in root apices

Phosphatidic acid (PA) generated via PLD activity is essential for the positioning of the DR5-

typical auxin signaling maximum at the distal portion of the root apex transition zone, which 

is the most active part of the whole plant body with respect to polar auxin transport.

DR5::GFP transgenic lines (Fig. 3.10) show a maximum of auxin induced gene activity at the 

root tip and this maximum was increased after treatment with PA (Fig. 3.10C), whereas it 

disappeared after the inhibition of PLD with 0.4% 1-butanol (Fig. 3.10D). 0.4% of tert-

butanol, which cannot inhibit PLD activity, has no effect on DR5 expression (Fig. 3.10E). 

Noteworthy, the PLD inhibitor 1-butanol and the PLD product PA were canceling each other with 

respect to DR5::GFP activation (Fig. 3.10F). 

Figure 3.10  
DR5::GFPrev expression in root apices 
Treatments of 4 hours are sufficient to show the effect of PLD activity on IAA signaling in root tips. 
A/ untreated Control. B/ IAA treatment (1μM). C/ Phosphatidic acid treatment (10μM). D/ 1-butanol treatment 
(0.4%). E/ tert-butanol treatment( 0.4%). F/ Double treatment of phosphatidic acid (10μM) and 1-butanol (0.4%) 
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Figure 3.11.  
PIN1-GFP recycling rate and not localization is dependent from PLD activity                                              
A/ In untreated control roots PIN1-GFP is localized at the apical plasma membrane.  B/ Phosphatidic acid 
treatment (10μM) for 1h shows no visible effect on the PIN1-GFP localization.  C/ 1-butanol treatment (0, 4%) 
for 1h shows no visible effect on the PIN1-GFP localization.   D/ t-Butanol treatment (0,4%) for 1h  shows no 
visible effect on the PIN1-GFP localization.  E/ Treatment with BFA (35μM) for 30min induces PIN1-GFP 
positive BFA-compartments.  F/ Treatment with phosphatidic acid (10μM) for 1h followed by a BFA treatment 
(35μM) for 30min. The phosphatidic acid pretreatment prevents formation of BFA-induced compartments. 
G/ Treatment with 1-butanol (0, 4%) for 1h followed by a BFA treatment (35μM) for 30min. The pretreatment 
prevents formation of BFA-induced compartments. H/ Treatment with tert-Butanol (0, 4%) for 1h followed by 
a BFA treatment (35μM) for 30min. The pretreatment shows no visible effect on the BFA-induced 
compartments. I/ Double treatment with phosphatidic acid (10μM) & 1-butanol (0, 4%) for 1h followed by a 
BFA treatment (35μM) for 30min. Simultaneous applied  pretreatments  do not disturb the formation of BFA-
induced compartments. 

3.1.3. Phospholipase D activiy targets recycling and not localization of PIN1-GFP 

Loss of Phospholipase D function either by mutation or by 1-butanol treatment leads to 

reduced auxin transport (Li et al. 2007). Treatment with PA (Fig. 3.11B) or 1-butanol (Fig. 

3.11C, D) had no effect on PIN1 localization. 1-butanol inhibits PLD action and depresses 

endocytosis. PA, the signaling product of PLD activity, strongly increases endocytosis (Li et 

al. 2007). Interestingly, both chemicals reduce BFA-compartment formation (Fig. 3.11F, G). 

The size of the BFA-induced compartments reflects the recycling rate of PIN1. This indicates 

that PA not only increases endocytosis but stimulates exocytosis. Therefore, altering PLD 

activity modifies auxin transport rates by changing PIN recycling. 
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3.1.4. PIN proteins are enriched in detergent resistant fractions of the plasma membrane 

The distinct localization of PINs at polar domains of the plasma membrane, i.e., membranes of the 

end poles, points to the operation of a polar sorting mechanism.  

In order to address the nature of the sorting mechanism that directs PINs to polar membrane 

domains and to determine if PIN proteins are preferentially associated with lipid rafts, the 

plasma membrane of root apex tissue was analyzed. Triton X-100 treatment at 4°C of purified 

plasma membranes yielded a detergent resistant membrane fraction (DRM), which should 

contain lipid raft components and a detergent soluble fraction, which should contain the 

remainder of the plasma membrane. Testing immunoblots with antibodies directed against 

PINs1-4 showed that all four PINs were retrieved from the DRM fraction (Fig. 3.12) and 

hence are lipid raft components. However, only PIN1 and PIN2 were as tightly associated 

with the DRM as the genuine DRM-marker H+ PM-ATPase, whereas PIN3 and PIN4 show 

only a slight enrichment in the DRM fraction.  

Fig. 3.12.  
PIN proteins are enriched in detergent resistant membranes 
Detergent resistant parts (DRM, right lanes) and complete fractions (left lanes) of enriched plasma membrane 
extracts of root apices (first cm of root tip from 100-200 roots per antibody) from Arabidopsis wild type and the 
PIN2::PIN2-GFP transgenic line were compared. All lanes were loaded with 15μg of protein content.  
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Fig. 3.13.        D’orenone 
blocks tip-growth of root hairs but stimulates 
root system density.            
A/ Relative growth rates of root hairs during short time 
treatments with different concentrations of D’orenone. 
(Means of five different plants from the first 30 min). 
Treatments with retinal, D´orenol and 3, 4-Dihydro-
d´orenone along the same protocol show weaker 
effects than treatment with D’orenone.               
B/ Comparison of bright field pictures from a DMSO 
mock-treated root hair and a root hair treated with 
D’orenone (10 μM). Note prominent cytoplasmic cap 
at the tip of the fast growing control root hair. Bar = 
100 μm.                                                
C/ Chemical structure of D´orenone and its 
analogues. 

3.2. D’orenone blocks polarized tip-growth of root hairs, modifies root 

architecture and interacts with auxin actions

3.2.1. D’orenone blocks tip-growth of root hairs but stimulates root system density 

Root hair tip-growth depends on the intracellular concentration of Auxin. From the following 

experiments it is concluded that the apocarotene 

inhibitor D’orenone interacts with this process. 

D´orenone rapidly blocked tip-growth of root 

hairs. This effect started at nanomolar levels 

(400 nM) and involved not only the rapid 

inhibition of polarized tip-growth of existing root 

hairs and but also the formation of new root hairs. 

Higher concentrations (4-400 μM) completely 

stopped root hair growth (Fig. 3.13A & B) 

without negatively affecting growth of the 

primary root in the range of 1-40 μM (see 

below). At higher concentrations, however, the 

density of lateral roots was slightly increased. 

Of all tested compounds (Fig. 3.13), only 

D’orenone was effective at concentrations as low 

as 400 nM. Other apocarotenoids, such as all-

trans retinal or all-trans retinoic acid, were much 

less active or not active at all. For example, 

retinal (4 μM) affected the relative growth rate of 

root hairs but required a ten-fold higher 

concentration to achieve an effect comparable to 

that of D’orenone (Fig. 3.13A). Lower 

concentrations of retinoic acid (1-4 μM), a 

bioactive signal molecule in animal systems 

(Chambon, 1996; Liou et al. 2005), had no visible 

effect on the growth of root hairs (data not 

shown). The activity of D’orenone decreased, 

when the conjugation of the double bond with the 

keto group was abolished by reducing the 
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Fig. 3.14. 
Gravistimulated roots during D´orenone treatment still perceive direction of gravity, but the growth behaviour shows a reduced sensitivity 
of the root. Repetitions of gravistimulation from different directions reveal the reduced answer to the gravity signal. 

A/ 90° gravistimulated seedlings on ½ MS Medium mock treated with added DMSO as solvent. 
B/ 90° gravistimulated seedlings on ½ MS Medium treated with added 1μM D´orenone dissolved in DMSO 
C/ Multiple gravistimulated seedlings on ½ MS Medium mock treated with added DMSO as solvent.  
D/ Multiple gravistimulated seedlings on ½ MS Medium mock treated with added 1μM D´orenone dissolved in 
DMSO.  
Arrows indicate direction of gravity vector. Numbers count the repetition of gravity direction change. 

C(3)=C(4) double bond of the side chain (Schachtschabel and Boland, 2007). Activity also 

decreased upon reduction of the keto group to an alcohol. Both, the resulting 3,4-dihydro-

conformation and the hydroxy-derivative of D’orenone displayed only weak inhibitory activity 

when tested on growing root hairs (Fig. 3.13A). Thus, already minor changes in the 

stereochemistry and polarity of the molecule are sufficient to reduce its biological activity. 

At concentrations higher than 5 μM, D’orenone also transiently affected the root gravity 

responses of Arabidopsis thaliana. Although roots responded to gravistimulation in the 

presence of D´orenone, careful analysis revealed that consecutive gravistimulations caused 

subtle disturbances (Fig. 3.14B). For instance, after the third rotation of root apices relative to 

the gravity vector, a reduction  of gravity-oriented growth response was monitored only in the 

D’orenone-treated root apices (Fig. 3.14D). 

Moreover, D’orenone rescues the root 

agravitropic phenotype of a PIN2 mutant 

with reduced PIN2-protein level but fails to 

completely stop root hair tip growth in this 

mutant (see below). D’orenone also 

promoted root system complexity by 

increasing the lateral root density (Fig. 

3.22C).

3.2.2. Effects of D’orenone on cytoarchitecture, F-actin, ROS, calcium and endosome 

gradients

Treatment with 10 μM D’orenone led to a rapid disintegration of the F-actin- and vesicle-rich ‘clear 

zone’ at the tip of root hairs, and at the same time tip growth was inhibited. Dynamic vacuoles 

protruded up to the very tips of the root hairs after exposure to 10 μM D’orenone (Fig. 3.15). 

Experiments with FABD2-GFP plants (Voigt et al. 2005a) revealed that after about 15 minutes of 

exposure to D´orenone, the F-actin meshwork at the tip disintegrated. Only some longitudinal F-
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Fig. 3.15. 
Left/ Dynamic vacuoles protrude as far as the very tips of the growth ceasing root hair after exposure to 
D’orenone at 40 μM. Yellow arrows mark the tonoplast;  
Purple arrowheads mark enlarged endosomes, which are often inside of vacuoles (red arrowheads).  
Right/ Effect of D’orenone (10 μM) on FABD2-GFP-labelled actin bundles in growing root hair. The F-actin 
meshwork at the tip disintegrated and only some longitudinal F-actin cables, originally from the hair base, remain 
preserved.  

actin cables, connecting to the root hair base, remained (Fig. 3.15). Higher concentrations (>10 

μM) did not result in faster or stronger effects. Exposure to lower concentrations of D’orenone

caused the same effects, however, it required more time - up to 40 min (data not shown). 

ROS forms a tip focused gradient in the root hair due to the activity of NADPH-oxidase and this is 

an essential precondition for polarized tip growth (Foreman et al. 2003; Rentel et al. 1994; Carol 

et al. 2005). Labelling with the O2
.--sensitive dye NBT revealed that treatment with D’orenone 

blocks the formation of the tip-focused ROS gradient (Fig. 3.16A). However, the ability of plasma 

membrane resident NADPH-oxidase to produce ROS is not instantaneously blocked. The 

enzymatic activity of NADPH-oxidase decreased only after treatment with D´orenone for more 

than 30 minutes (Fig. 3.16C). This delay indicates that the NADPH-oxidase is not a primary 

target of D´orenone action.

Loading the roots with the cell-permeable Ca2+ dye Fluo3-AM revealed, that  D’orenone also 

eliminated the tip-focused Ca2+-gradient (Fig. 3.16B) and finally, the apical accumulation of 

endosomes made visible in the 2xFYVE-GFP transgenic line was also lost (Ovecka et al. 2005; 

Voigt et al. 2005b) after D’orenone treatment (Fig. 3.17). 
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C

Fig. 3.16. 
A/ NBT-staining of mock treated (left) and D’orenone-treated (10 μM) root hair showing ROS production. D’orenone 
blocks the formation of ROS and results in the loss of the tip-focused ROS gradient.  
B/ Fluo3-AM-staining of mock treated (left) and D’orenone-treated (10μM) growing root hairs showing the 
distribution of cytosolic Ca2+.
C/ NADPH-oxidase dependent ROS production decreases in plasma membrane extracts of D’orenone-treated (10 μM) 
roots after 25min treatment time. In contrast DPI treatment inhibits immediately NADPH-oxidase activity.  

Figure 3.17. 
2xFYVE-GFP localization in growing root hairs. A-C/ Growing stages of DMSO mock treated control root hairs. D-G/
Growing stages of D’orenone-treated (10 μM) root hairs. During root hair formation, FYVE-labeled early endosomes are 
recruited to the bulging site (A). In tip-growing root hairs, abundant and motile small endosomes accumulate within the 
growing hair tip (B & C). During the first 40 min of the D’orenone treatment, only a few FYVE-positive early endosomes 
were recruited to the bulging site (arrowhead in D). In tip-growing root hairs, endosomes are enlarged and aggregated. The 
'clear-zone' in the growing hair tip disappears (arrowhead in F). Depletion of endosomes from the hair tip is often associated 
with the emergence of FYVE-labeled MVB-like structures (arrowhead in G) and enlarged endosomes (arrows in F & G).
The root hairs in stages, which show under control conditions a tip orientated enrichment of FYVE-positives endosomes, 
show also a depletion at the tip (H) and bigger FYVE-positive aggregates after wortmannin treatment (33μM) (I).
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3.2.3. D’orenone increases PIN2 abundance and enlarges PIN2 expressing tissue 

domains

D’orenone increased the abundance of PIN2 protein in roots (Fig. 3.18). In order to find  an 

explanation for this effect, GUS lines visualizing both PIN2 transcripts and PIN2 proteins 

(introduced in Sieberer et al. 2000) were analyzed. While PIN2 transcript localization was not 

changed significantly in response to D´orenone (Fig. 3.26A), PIN2 protein was found over a 

larger root apex area than in untreated plants (Fig. 3.18B), covering both the apical meristem 

and the transition zone. This expansion of PIN2 protein expressing tissue domains was 

confirmed using the GFP-PIN2 line (Fig. 3.20). In the D’orenone-treated root apices, the 

PIN2-GFP signal vanished from the lateral root cap and a new, rather diffuse signal appeared 

prominently in transition zone cells (Fig. 3.20C). Although the overall PIN2 polarity at the 

cell periphery was maintained at this location, there was an additional signal in small 

subcellular compartments and at the tonoplast (Fig. 3.20E, F).

This change of PIN2 recycling activity is supported by the finding that double treatment with 

D’orenone and BFA caused the formation of the PIN2-GFP-positive BFA-induced 

compartments only after much longer treatment periods (> 1 hour instead of typical 20 – 30 

minutes; Fig. 3.20K, L). Western blotting showed increased protein levels of PIN2. This high 

PIN2 level is quite resistant to the protein biosynthesis inhibitor CHX after D´orenone treatment 

(Fig. 3.20G). In contrast, PIN1 remained unaffected (compare Fig. 3.27I).  

In order to address auxin signalling, transcription of IAA inducible genes (RT-PCR of the IAA1-

mRNA, Fig 3.19) and expression of the DR5-reporter gene (Fig. 3.20A) were compared in control 

and D´orenone exposed roots. While transcription of IAA1 is not affected (Fig. 3.19), the 

auxin-responsive reporter DR5rev-GFP, which responds to gravistimulation (Friml et al. 2002b; 

Ottenschläger et al. 2003,) was strongly activated in the root apex after exposure to D’orenone, 

starting 30 minutes after the begin of treatment (Fig. 3.20A). Experiments with gravistimulated 

roots pre-exposed to D’orenone showed a somewhat higher expression of the DR5rev-GFP

reporter on the lower root side; but on the upper root side an unusually prominent signal of the 

DR5 reporter was also observed (Fig. 3.20). 
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Fig. 3.18.   
D´orenone affects PIN2 proteins 
but not transcripts. 

A, B/ PIN2::GUS and PIN2::PIN2-
GUS expression in root apices. The
GUS signal in the apex of control 
and D´orenone (4μM) exposed 
rootd shows no significant responses 
of PIN2 promoter transcipt 
(PIN2::GUS) localization to 
D´orenone treatment (A) while 
PIN2-GUS protein (PIN2p:PIN2-
GUS) was found in larger root apex 
domain after the D´orenone 
treatment (B).
C/ Diagram comparing the 
PIN2::GUS (proteins) and 
PIN2::PIN2-GUS (transcripts) 
expression domains in the control 
root apices as well as in the 
D´orenone and Wortmannin treated 
root spices.

Fig.3.19. RT-PCR against auxin inducible IAA1 gene 
Treatment for two hours with 1μM IAA or/and D´orenone 
(10μM) 
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Fig.3.20.                
D’orenone interacts with PIN2  
A-B/ DR5::GFPrev expression in root 
tips.
The GFP signal in the apex of control 
roots (A upper panel) and after 
gravistimulation (B) (90 min, arrow 
indicates the lower part of the root 
apex). 10 μM D’orenone activates 
DR5::GFPrev expression in the whole 
root cap and lateral root cap cells (A, 
lower panel). Gravistimulation of the 
D’orenone exposed root apices (10 μM 
, 90 min, arrow indicates the lower part 
of the root apex) shows DR5::GFPrev 
signal also on the upper side of the root 
apex (B). 
C-F/ PIN2-GFP localization in green 
and localization of endocytic tracer 
FM4-64 in red.               C/
Overview of control root tip and 
overview of the D’orenone-treated (10 
μM) root tip. In the D’orenone-treated 
root apices, nearly all PIN2-GFP 
signals vanished from the lateral root 
cap (arrowheads), whereas new signals 
for PIN2–GFP appeared prominently in 
transition zone cells. Root tips of the 
controls show typical polar localization 
of PIN2-GFP at the plasma membrane 
of the cross poles (D). Besides the 
polar localization of PIN2 at the PM, 
treatment with D’orenone (10 μM) 
induces a diffuse cytoplasmic PIN2-
GFP signal (F arrow heads) along 
with PIN2-GFP positive tonoplast 
and vacuoles (E arrow). Western 
blots of membrane fractions labelled 
with Anti-PIN2 reveals a more 
distinct band in extracts of D´orenone 
treated roots (4μM for 2h) (G). 
Treatment with protein biosynthsis 
inhibitor CHX diminished signal 
intensity, whereas double treatment 
with D´orenone and CHX shows only a 
light effect (G).
H-I/ PIN1-GFP localization in green 
and localization of endocytic tracer 
FM4-64 in red.   

PIN1-GFP shows typical polar localization at the plasma membrane. cross poles of stele cells are clearly labelled 
(H). D´orenone has no influence on subcellular localization of PIN1-GFP (I).  J-L/ PIN2-GFP localization in green 
and localization of endocytic tracer FM4-64 in red. Treatment with the secretion inhibitor brefeldin A (BFA) at the 
concentration 35 μM revealed the PIN2-GFP positive BFA-induced compartments are already formed after 30 min (J). 
Pretreatment with D’orenone (10 μM) for 30 min revealed that BFA-induced compartments are formed slower (compare 
K with results from 30 min of BFA treatment and L with 1 h BFA treatment). Only after a longer treatment period of 
1 hour are bigger BFA compartments monitored. Interestingly, only the endocytic tracer FM4-64 is found in the 
compartments. 
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Fig. 3.21. 
Auxin rescues the root hair phenotype in D’orenone treated roots.        
A/ The external addition of auxin (IAA, 30nM) rescues the D’orenone-induced root hair phenotype (D’orenone,
4μM). Root hairs of double treated plants show comparable growth rates to control root hairs. External auxin 
also makes the roots more resistant to additionally applied D’orenone (first 4μM followed by 8μM). Wortmannin 
(40μM) induced stop of root hair growth is not rescued by external applied auxin (30nM). These data are 
mean values of at least 10 hairs.  
B/ Pretreatment with external auxin (30nM) makes root hairs more resistant to additionally applied D’orenone (first 
4μM followed later by 20μM and 400μM).     
C/ D´orenone has no significant effects on growth of primary roots. However, at concentrations of 10μM or 

higher, D´orenone increases slightly the number of lateral roots. These data are mean values of at least 25 plants. 
The root lengths are measured in mm and the lateral root density values are mean number of lateral roots per 
mm.

3.2.4. Auxin rescues the root hair phenotype in D’orenone treated roots  

Root hairs of plants treated simultaneously with auxin (30 nM) and D’orenone (4 μM) showed 

comparable growth rates to root hairs of controls (Fig. 3.21A,C). Moreover, the pretreatment 

of roots with external auxin resulted in roots insensitive to externally applied D’orenone (Fig. 

3.21B). Therefore, it appears that auxin rescues the D’orenone-induced block of root hair tip 

growth (Fig. 3.21). On the other hand external auxin was not able to rescue the wortmannin-

induced inhibitory effects on root hairs and root apices (Fig. 3.21A), demonstrating that either 

targets or mode of binding of D’orenone and wortmannin are not identical. 
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3.2.5. D’orenone rescues the agravitropic phenotype of PIN2 mutant roots  

All above data indicate that D’orenone manipulates the root hair  growth via its effects on 

polar auxin transport and PIN2 protein. To provide the final genetic evidence for this 

scenario, roots of two pin2 mutant lines (agr1-2 and eir1-4) were analyzed after exposure to 

D’orenone. The agr1-2 mutant is not a null line, i.e. some PIN2 protein is still found in this 

mutant.  

D’orenone rescued agravitropic phenotype of roots of the agr1-2 mutant line (Fig. 3.22A). 

Importantly, D’orenone did not block completely the root hair tip growth in the agr1-2 mutant 

line (Fig. 3.22B), indicating that the PIN2 protein is nessecary for the D´orenone mediated stop of 

the root hair growth. On the other hand, in the pin2 null mutant line (eir1-4), without any PIN2 

protein left, root growth was agravitropic after D´orenone treatment. In addition, 

cytoarchitecture and growth rates of root hairs was not affected by D´orenone in this line (Fig. 

3.22C), showing clearly the PIN2 dependance for the D´orenone induced root hair phenotype. 

Fig. 3.22.  D’orenone rescues agravitropic phenotype of leaky PIN2 mutant roots and has no effect on PIN2 null 
mutant root hair growth.  
A/ PIN2-mutants lines with less PIN2 protein than wildtype are agravitropic. D’orenone rescued agravitropic phenotype       
     of PIN2 mutant roots (The data are of at least 25 plants per experiment.).
B/ D’orenone does not block completely root hair tip growth in the PIN2 mutant in contrast to wild type roots. 
C/ Treatment with D’orenone (4μM) shows no visible effects on the root hair growth rate and root hair  
    cytoarchitecture in the pin2 null mutant line (eir1-4). (The data are of at least 45 root hairs.)

C



~ 44 ~ 

3.3. Auxin modifies root architecture via ROS (reactive oxygen species) production 
3.3.1. Indirect activation of auxin-induced transcription activity by IBA

Indole butyric acid shows only weak activity in most auxin growth assays. The only exceptions 

are the ability to induce lateral (Zolman et al. 2000) and adventitious roots (Nordström et al.

1991) more strongly than other auxins at comparable concentrations (reviewed in Woodward and 

Bartel 2005a).

To understand the activity of IBA, several tests for typical auxin transcription activity were 

conducted. First,  the two reporter constructs BA3::GUS and DR5::GFPrev were checked, which 

are reliable tools to follow auxin signalling in roots.  Both reporters are driven by a promoter 

containing an auxin response element that activates transcription  after exposure to auxin 

(constructs were originally presented by Oono et al. 1998 and Friml et al. 2003 respectively).

The appearance of a strong BA3::GUS labelling of the transition zone was detected after a 6h 

treatment with 1μM IAA (Fig.3.23B). But no BA3::GUS was monitored after treatment with 

1μM IBA (Fig.3.23C). A similar behaviour was seen with the more sensitive DR5::GFPrev

reporter. Compared to the IAA-induced reporter signal the IBA-induced GFP signal only weakly 

detectable in the root tip (Fig. 3.23D I and II). 

Terfestatin A (Trf A) a root specific auxin signalling inhibitor disturbs the TIRscf proteasome 

complex and disables the IAA induced transcription of naturally occurring Aux-IAA proteins and 

of the synthetic DR5-reporter (Fig. 3.23D III and see also Yamazoe et al. 2005).  

A co-treatment with Trf A prevented IAA or IBA induced activation of the DR5::GFPrev reporter 

(Fig. 3.23D III and IV), indicating that IBA-signalling involves the same TIRscf complex for its 

transcriptional regulation. 

To distinguish whether IBA shows auxin transcriptional activity directly via a weaker affinity to 

the TIRscf complex or indirectly via a conversion to IAA, semi-quantitative RT-PCRs were 

performed to determine the transcript levels of IAA1 and IAA19 in wild type and mutants. 

Like the artificial reporter, both transcripts were induced by IBA. But longer treatments or higher 

concentrations of IBA were needed, compared to the IAA induced activity (Fig. 3.23E). 

Three Arabidopsis mutants pex5-7 (Fig. 3.23E), pxa1 and pex6 (data not shown) with defects of 

ß-oxidation and IBA-insensitivity were also tested. All mutants showed a normal behaviour upon 

IAA treatments with a strong activation of the IAA1 and IAA19 transcripts, however, after IBA 

treatment no transcriptional activation was detectable. This indicates , that a ß-oxidation-like 

conversion from IBA to IAA is needed for an IBA induced transcriptional activity of Aux/IAA 

genes.
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Fig. 3.23. 
Auxin induced transcription activity 
A-C/ BA::GUS auxin response line. No visible promoter activity of the auxin inducible gene in untreated root 
apices (A). Treatment with 10μM IAA for 6h induces strongly GUS activity in transition zone and stele tissue 
(B). Treatment with 10μM IBA does not induce promoter activity (C). 
D/ DR5::GFP auxin response line. Strong promoter activity in columella cells in root tip of untreated plants. 
Root tips treated with 1μM IAA show activation in outer cortex and stele cells (I). This activation is 
prevented by co-treatment with 10μM Terfestatin A (Trf A) (III). IBA (1μM) can also induce the DR5 
promoter but slightly weaker (II). Again, this activation is prevented by Trf A (IV).   
E/ RT-PCR of auxin inducible genes (IAA1 and IAA19) from cDNA of roots. Both transcripts are expressed 
in root apices after IAA treatment. Transcripts are detectable after 30 minutes treated with 1μM or after 1 
hour with 0, 1μM IAA. System was adjusted with ubiquitin expression for semi quantitative comparison. IBA 
is able to induce transcripts starting with one hour treatment time and a concentration of 1μM. 
Comparison of transcription activity of IAA1 and IAA19 after two hours treatment with 1μM of IAA or IBA 
in wild type and pex 5/7 mutants. In the IBA resistant mutant pex 5/7 IBA fails to induce transcripts. 

I                         II 

III             IV 
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Arabidopsis 
Line

fresh
weight [mg] 

Labeled IBA 
[ng / mg fresh weight] 

Labeled IAA 
[ng / mg fresh weight] 

conversion
IBA  IAA [%]

Wild Type 68,03 0,61 0,29 55,8 
ped1 60,7 1,14 0,10 8,5 
pxa1 40,8 0,32 0,05 16 

AtNOA1 46,7 0,72 0,41 55,2 

Table I.  
IBA to IAA conversion (Data are a courtesy of Prof. Dr. Ludwig-Müller) 

3.3.2. Measurement of IBA to IAA conversion 

In co-operation with Prof. Dr. Ludwig-Müller (Dept. Of Botany/TU Dresden) a protocol to 

measure IBA to IAA conversion was developed. 2 weeks old Arabidopsis plants were 

incubated with radioactive 139IBA for 16h and harvested. To determine the conversion rate 

from a mass spectrograph, a labeled standard (136IAA) was added. The 139- label in the IAA 

peak was calculated on the basis of the standard. Then based on this value conversion of IBA 

to IAA in each sample was measured (Table I)  

Wild type plants show an average conversion rate of 55, 8% of 139IBA in this system, the 

IBA-insensitive mutant pxa1 has a rate of 8% and the ped1 mutant which exhibits a partially 

impaired ß-oxidation and is slightly less sensitive to IBA shows a rate of 16%.

The Arabidopsis mutant AtNOA1 has a greatly diminished ability to generate endogenous 

nitric oxide compared to wild type. The mutant has up to 80% lesser NO production after 

exposure to different environmental changes (Guo et al. 2003). The NOA1 mutant shows a 

comparable conversion rate (55, 2%) to the wild type.  
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3.3.3. IAA localization and behavior of peroxisomes after an indole-butyric-acid treatment 

One assay that could help to prove ß-oxidation-like conversion of indole-butyric-acid to indole-

acetic-acid in peroxisomes is to immunolocalize IAA in the peroxisomes after the root tissue has 

been treated with IBA using the specific IAA antibody described above (see chapter 3.1.).

With this antibody big spot-like structures were recognized after IBA-treatment in 

addition to labelling of the nuclei and cross wall domains (Fig. 3.24A). Co-localisation 

experiments with antibodies against organelle specific proteins confirm, that these structures are 

peroxisomes. Clearly seen in maize root apices, the appearance of IAA-positive peroxisomes was 

limited to certain tissues at the border between root stele and root cortex, starting with cells behind 

the quiescent-center of the root apical meristem (Fig. 3.24C).   

Co-localisation studies in Arabidopsis of IAA with catalase also confirmed an accumulation of IAA 

in peroxisomes after treatment with IBA. Importantly Arabidopsis mutants like pxa1, pex6 and 

pex5-7, which are showing an insensitivity towards IBA and in addition are impaired in ß-oxidation 

and other peroxisomal functions, were lacking almost completely IAA-positive peroxisomes after 

IBA treatments (Fig. 3.24). 

It is noteworthy that both auxins (IAA and IBA) induced a peroxisomal proliferation which 

yielded bigger sprawled peroxisomal structures than the circular peroxisomes normally found 

in mock treated maize and Arabidopsis roots.   
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Fig. 3.24. Peroxisomal IAA localization after IBA-treatment  
A-D/ IAA labeling in maize root apices. After an IBA-treatment spot-like structures positively recognised with 
the IAA antibody appear (A). IAA-positive structures are limited to certain tissues at the border between root 
stele and root cortex, starting with cells at the quiescent-center of the root apical meristem (B). The spot-like 
structures are peroxisomes. Co-labelling of IAA (green) and catalase (red) show that after an IBA-treatment (D)
but not after an IAA-treatment (C) a co-localisation occurs, indicating a peroxisomal location of auxin after IBA 
exposure.  
E-H/ IAA labeling in arabidopsis root apices. The nuclei labelling is less pronounced, compared to maize 
labelings. Instead, stronger cytoplasmic signal with many spot like structures are visible. 
E/ After IBA-treatment bigger and more pronounced spots appear (white arrows). They are positive for IAA 
(green) and catalase (red). Mutants pxa1 (F) and pex5/7 (H) which are highly resistant to IBA, show no co-
localisation of IAA (green) and catalase (red). Catalase positive peroxisomes are highlighted by white 
arrowheads. The mutant pex6 which responds to IBA at higher concentrations shows IAA negative (arrowheads) 
but also few IAA positive peroxisomes (G)
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Monitoring of peroxisomes in vivo with a pts1-GFP Arabidopsis line (pts1 is a peptide 

sequence which targets Proteins to peroxisomes) revealed that proliferation of peroxisomes in 

root tissues was already prominent after one hour of auxin exposure (Fig. 3.25). 

Experiments with the red fluorescent endocytic tracer FM4-64 showed a partial co-

localisation with pts1-GFP after auxin treatment, implicating an involvement of recycling 

endosomal vesicles in the peroxisomal proliferation. The most prominent and easiest to follow 

example were epidermal cells (Fig. 3.25D), but this effect was also seen in the other types of 

root cells. The tips of root hairs are perfect to monitor this co-localisation. The tip is quite 

small and peroxisomes and endosomes follow swiftly the cytoplasmic streaming. Tracking 

movement of both revealed that indeed a fraction of both co-localised after an auxin treatment 

(Fig. 3.25E-H). The strong red halation of FM4-64 labelled plasma membrane and pts1-GFP

peroxisomes located nearby leads to the appearance of false positive spots. To minimize this 

error, only spots which were showing co-localisation during movement were considered as 

truly connected (shown in blue). 

Fig. 3.25. 
Peroxisomes (pts1-GFP)
and endosomal membranes 
(red) co-localize after auxin-
treatment
A-C/ pts1-GFP at emerging 
lateral roots in untreated 
control (A) and in 1μM IAA 
(B) and 1μM IBA (C) treated 
plants (auxin treatment of 1 
hour). Auxin treatment 
induces strong proliferation 
of pts1-GFP positive 
peroxisomes. 
D/ Single optical section of 
epidermal cell after IBA 
treatment (1μM).  Pts1-GFP
is seen in green and FM 4-64 
in red. Collocation is shown 
in blue  
E-H/ / pts1-GFP at FM 4-64 
labeled root hair tips. Single 
optical section (E) projection 
of image stack representing 
the complete tip (G) show no 
co-localization of GFP and 
dye. 
Root hair tips of 1μM IAA treated roots show a partial overlapping of FM4-64 and pts1 positive spots (F;
indicated in blue) in single layer image. Stack images show proliferation of peroxisomes. The peroxisomal 
structures appear not only enlarged because of the proliferation effects but also due to movements along the z-
axis of the stack, giving summation of size. FM-dye positive peroxisomes are shown in blue.  
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Fig. 3.26. Measured fluorescence intensity at wavelength 515nm of DAF-2T 
by a fluorometer 
To adjust system of inducible/dynamic nitric oxide measurement (photons per 
second) two extracts treated with both the NO-Donor SNAP (1μM) and the NO-
scavenger cPTIO (10μM) were used. Wild type measurements are shown in 
blue. The measurements for the NO deficient mutant NOA1 and 
peroxisomal/developmental mutant pex5/7 are displayed in green and orange 
respectively.
IAA (1μM) builds up an increase of fluorescence about 10%in wild type and 
both mutants. IBA (1μM) induces the light signal much stronger in wild type 
(~23%). NOA1 shows after IBA treatment the same proportion of NO rise as 
after IAA treatment. In the IBA resistant mutant pex5/7 is no induction of nitric 
oxide by IBA gaugeable.  
Before extraction for each 25 plants were exposed to SNAP, cPTIO auxin or mock 
treated for 2h. 

3.3.4. IBA-to-IAA conversion promotes RNS formation

An indirect effect of IBA, i.e., by its conversion to IAA, could explain the slow response of 

transcriptional activation and the weak inhibition of primary root growth upon IBA treatment. 

Nevertheless, this scenario 

can not explain the fact 

that IBA is effective in 

boosting lateral root 

formation. Several lines 

of data indicate the feature 

of IAA to induce these 

roots by using reactive 

NO as downstream signals 

(Correa-Aragunde et al. 

2004). The NO specific 

dye Diaminofluorescein–2 

Diacetate (DAF-2DA) 

was used, to test if IBA 

induces RNS in a 

comparable manner as 

IAA does it.

DAF-2DA emits a green 

fluorescence in living 

cells under physiological 

conditions. Once inside the cell the diacetate groups on the DFA-2DA reagent are hydrolyzed 

by cytosolic esterases thus sequestering the reagent inside the cell. Production of RNS 

converts the non-fluorescent dye, DAF-2, to its fluorescent triaole derivative, DAF-2T. The 

resulting fluorescence can be monitored by confocal microscopy (Foissner et al. 2000) or 

semi-quantified by a fluorometer under stable pH conditions of pH 6, 5. 

The fluorescence measurements of 2h treated Arabidopsis roots showed both auxins boost 

RNS production and IBA even promoted RNS production much more strongly than IAA (Fig. 

3.26).

Furthermore, the mutants pex5-7 (Fig. 3.26), pex6 and pxa1 (data not shown) were enabled to 

produce additional RNS after an IAA treatment but not after an IBA treatment. 
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Both auxins induced nitric oxide production in the AtNOA1 mutant, although on a lower level 

than in wild type plants. The IAA-induced ratio of NO-production in showed more or less the 

same ratio to untreated controls was nearly the same as in wild type roots. While IBA still 

induceed a rise of detectable NO, the ratio to untreated roots was clearly lesser than compared 

with wild type roots. 

A slight adaptation of the DAF-2DA labelling protocol allowed monitoring of the sub-cellular 

distribution of nitric oxide sources. Besides a strong diffuse cytoplasmic signal near the 

plasma membrane several strongly fluorescent moving spots were detectable (Fig. 3.27). 

Since DAF-2DA has fluorescein as chromophore the fluorescence spectrum of the emitted 

light is distinguishable from the GFP-spectrum. The maximum intensity peaks of DAF-2DA 

(515nm) and GFP (509nm) differ by ~7nm. New generation spectral confocal microscopes 

can separate the two signals. Thus, the usage of different Arabidopsis GFP-lines allowed the 

identification of NO producing spots in untreated and auxin treated roots (Fig. 3.27). The GFP 

fluorescence is somewhat lower at a pH of 6,5 than at neutral pH  but this pH allows to just 

visualize the rather low DAF-2T fluorescence of nitric oxide production in untreated cells. At 

higher pH´s the specifity of the dye is abolished and the stronger GFP-signal could more 

easily outshine the DAF-2T signal (data not shown). A handicap of this method, treatments 

which are strongly enhancing NO production (e.g. SNAP treatment with 10μM 

concentration) will lead to the opposite effect of DAF-2T fluorescence outshining the GFP-

signal. Loading the cells with the optimal amount (15μM) of DAF-2DA is important for the 

success of this labelling technique. Otherwise, this method is only limited by the ability of 

tissues to take up DAF-2DA and the photostability of DAF-2T. 

In untreated cells the bulk of the DAF-2T spots were identified as mitochondria and FVYE-

GFP positive endosomes. Interestingly, after auxin treatment peroxisomes appeared as the third 

major source of NO (Fig. 3.27). They were only insignificant NO sources in untreated control 

cells.
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Fig. 3.27. Cellular localization of DAF-2T 
A/ Green DAF-2T labeling pattern in root cells consists of diffuse cytoplasmic signal often near the plasma membrane 
and moving intracellular spots (left). Normalized fluorescence spectra of DAF-2 and GFP are quite similar but not 
identical (right).  
B-F/ DAF-2T staining of GFP lines monitored with a spectral-confocal microscope. After unmixing of GFP and DAF 
signal GFP is shown in green, DAF in red and co-localization of both in blue/white. Mito-GFP a mitochondrial 
marker shows a strong co-localization with DAF-2T in growing root hairs (B). The endosomal marker FYVE-GFP 
shows also a strong co-localization with DAF-2T in growing root hairs (C). Several DAF-2T positive spots which are 
not endosomes are visible. Pts1-GFP shows only a partial co-localization with DAF-2T in growing root hairs (D). The 
spot-like structures of peroxisomes show an increased co-localisation with DAF after IAA treatment (E).A extremely 
strong co-localisation of pts1-GFP and DAF-2T is monitored after an IBA treatment (F).
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Fig. 3.28. 
Mean average of lateral roots from 25 plants (DAG 4) per sample were measured and the number of lateral 
roots per centimeter of primary root was calculated. NO-Donor “SNAP”, NO-scavenger “cPTIO” and auxin 
signaling inhibitor “Terfestatin A” (Trf A) were used with a concentration of 10μM and the auxins were used 
with a concentration of 1μM. Wild type measurements are shown in blue. The measurements for the NO 
deficient mutant NOA1 and peroxisomal/developmental mutants pex5/7 and pxa1 are displayed in green, 
orange and yellow respectively.  

3.3.5. IBA promotes NO-pathways for lateral root formation (LRF)

To examine if IBA promotes lateral root formation by promoting RNS production a simple 

growth assay was performed (Fig. 3.28). 

Both auxins at a concentration of 1μM promoted lateral root formation (LRF) in Arabidopsis 

wild type roots. The root specific auxin signalling inhibitor Terfestatin A reduced LRF of wild 

type plants in the presence of either IAA or IBA (see also Yamazoe et al. 2005). Though, the 

driving force of IBA is much less hindered than the effect of IAA. This suggests a partially 

IAA-independent mode for LRF by IBA.  

Treatments with the NO-donor SNAP induced the formation of additional lateral roots similar to 

both auxins. A double treatment of the auxins with the nitric oxide scavenger cPTIO led to a 

decrease of LRF.

ß-oxidation defective mutants had a very low rate of LRF, which could be tripled by the 

addition of IAA, however not by IBA. Both auxins were ineffective in promoting LRF in the 

AtNOA1 mutant. 
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3.3.6. IBA and IAA promote different ROS populations 

Measurements of ROS production of root extracts from plants with or without auxin pretreatment 

revealed big differences with respect to the type of ROS that was induced by either IAA of IBA 

(Fig. 3.29A). IAA reduced the level of O2
.- ,increased the level of OH- moderately, whereas the 

H2O2-level was increased enormously. On the other hand, IBA increased the levels of both O2
.-

and OH-  moderately,  and the rise of the H2O2-level less pronounced. Activity assays of ascorbate 

peroxidases, catalases and superoxide dismutases (SOD) yielded complementary results (Fig. 

3.29B). IAA had a negative effect on ascorbate peroxidases, catalases, whereas IBA affected 

them only moderate, but was stronger inhibiting SOD. The peroxynitrite specific dye 1,2,3-Di-

Hydro-Rhodamine showed a stronger and faster increase of signal intensity after auxin treatments. 

Taken the higher O2
- and NO level 

after IBA treatment, it was not 

surprising that the 1,2,3-Di-Hydro-

Rhodamine labeling was stronger after 

incubation with IBA than with IAA 

(Fig. 3.29C). 

Fig. 3.29. 
Auxin induced ROS production 
A/ Relative ROS-Measurement in root 
extracts of control and auxin treated 
plants. Before extraction, about 20 plants 
were incubated for one hour with an auxin 
or mock treated. 
B/ Relative enzyme activity in root 
extracts of control and auxin treated 
plants. Before extraction, about 20 plants 
were incubated for one hour with an auxin 
or mock treated. 
C/ Fluorescence intensity of peroxynitrite 
specific dye 1, 2, 3-Di-Hydro-Rhodamine 
monitored with a confocal microscope.  
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3.3.7. Stress-and ABA-response reporter is activated by auxin 

To verify if ROS production after auxin treatments reflects a stress situation GUS labelings 

with two stress and ABA responsive reporter lines were performed. The pro3DC::GUS line is 

a well documented and reliable tool to visualize transcriptional changes by different ROS-

producing stresses (Chak et al. 2000). Pro3DC::GUS expression in root apices is activated by 

treatment with IAA and IBA. The staining pattern is similar for both auxins but differs from 

the pattern induced by ABA. (Fig. 3.30).

Fig. 3.30.  
ABA-response element reporter 
Five days old plants were incubated for one hour with 1μM auxin or 1μM ABA. Shown are 
typical examples of the treatments. 
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3.3.8. The maize mutant lrt1 and IBA 

The lateral rootless (lrt1) Oryza sativa (rice) mutant is insensitive to auxin (IAA, IBA and 2, 4-

D) with respect to root elongation. The only auxin that can restore lateral root initiation in the 

mutant is IBA (Chhun et al. 2003).

The analogous maize mutant lrt1 shows a similar behavior (Fig. 3.31). It was insensitive to IAA 

and NAA, whereas treatment with 1μM IBA resulted in a qualitative rescue of the lateral root 

phenotype. The IBA-induced lateral roots were stunted and grouped closely together, giving 

rise to small clusters with several lateral roots (Fig. 3.31). 

Interestingly, a co-treatment with the NO production inhibitor c-2-Phenyl-4,4,5,5-tetra-

methylimidazoline-1-oxyl 3-oxide (cPTIO) inhibited the rescuing effects of IBA. Moreover a 

co-treatment with the NO donor S-Nitroso-N-acetyl-DL-penicill-amine (SNAP) increased the 

quality of the rescue immensely. Treatment with SNAP alone resulted only in a partially 

rescue with about 60% of all individual mutants showing stunted lateral roots, delayed by one 

or two days. 

Fig. 3.31.  
The maize mutant lrt 1
One week old maize plants were incubated for 48 hours with 1μM auxins and/or 10μM inhibitors. Shown are 
typical examples, N = 25. Note that the plant representing the SNAP treatment is 11 days old. 
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4. Discussion 

4.1. A New Model of Cellular Auxin Transport  
Active efflux (pumping out) of auxin was hypothesized to be mediated by putative auxin 

carriers inserted in polarly localized plasma membrane domains. About ten years ago, the first 

of these carriers has been identified in several laboratories and subsequent localization of the 

carrier protein and its analysis in auxin transport-defective mutants confirmed almost all 

expectations, i.e. the polar plasma membrane localization of the carrier fit the measured 

direction of PAT. Numerous papers have been published since on both efflux carriers of the 

PIN family and influx carriers of the AUX family (for recent reviews see Teale et al. 2006; 

Blakeslee et al. 2005; Sieberer et al. 2005; Vieten et al. 2007; Bandyopadhyay et al. 2007).

All this has been interpreted as the final evidence for the chemiosmotic theory. It is an 

interesting phenomenon that this theory is now generally accepted; despite the fact that 

several published observations contradict several of the predictions made by this theory (e.g. 

Geldner et al. 2001).

4.1.1. Several aspects of PAT contradict the classical chemiosmotic theory 

Importantly, this theory predicts that the localization of PINs in the plasma membrane is 

tightly linked with the activity of polar auxin transport (PAT) at the plasma membrane. Both 

pharmacological and mutant approaches document, that this is not the case. The classical 

chemiosmotic theory (Fig. 4.1.) cannot explain the rapid PAT inhibition induced by Brefeldin 

A (BFA) within a few minutes (Delbarre et al. 1996; Mancuso et al. 2005; Delbarre et al.

1998), when the auxin transporters are still at the plasma membrane (Paciorek et al. 2005). 

Moreover, the most likely BFA target is an ARF-GEF protein, which is necessary for PIN1 

recycling. A genetic modification of this protein results in a BFA resistant mutant with 

undisturbed PIN1 localization after the secretion inhibitor treatment (Geldner et al. 2003). The 

chemiosmotic theory completely ignores vacuoles and endosomes as possible compartments 

participating in PAT.  

Published papers do not critically address these issues and the concept of the classical 

chemiosmotic theory has remained unchallenged. Several circumstances, the availability of a 

new, specific auxin antibody, the Steedman’s wax embedding technique and the recently 

characterized maize mutants impaired in PAT have made it possible to reinvestigate several 

key aspects of polar auxin transport in this work. As a consequence, several new observations 

have been made, which are incompatible with the classical chemiosmotic theory of PAT. 

First, auxin is enriched within the endosomal membrane compartment at the auxin 
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transporting end-poles of cells active in PAT, but not in cells impaired in PAT, either due to 

inhibitors or as a result of genetic lesions. Next, in maize mutants affected in polar transport 

of auxin (semaphore1, rum1 and lrt1-rum1), PIN1 localizes abundantly to the end-poles but 

as judged from the immunolocalization results presented here, auxin is depleted from the end-

poles. At the same time F-actin is also missing and BFA-treatment does not induce BFA-

compartments in these mutants. In addition, biochemical analysis like the 2 phase portioning 

and sucrose gradients (see Chapter 3.1.1.3)  confirmed the obtained cytological data that PIN1 

is still at the plasma membrane after 10 minutes of BFA treatment, when auxin efflux is 

already strongly inhibited (Delbarre et al. 1996; Delbarre et al. 1998). Similar evidence is 

provided by forcing wild type roots to grow against the gravity vector due to placing them into 

thin glass capillaries. Such roots get progressively thinner and because the number of dividing 

cells decreases in the apical meristem due to a possible inhibited supply of auxin, which 

apparently can not be transported effectively against the gravity vector. Nevertheless, PIN1 in 

these root apices is localized properly at the cross-walls but apparently does not support auxin 

transport. Preliminary observations have shown, that under these conditions, BFA-induced 

compartments do not form, indicating that these cells do not accomplish rapid recycling of PIN1 

(Markus Schlicht, Alina Schick, Dieter Volkmann, and František Baluška, data unpublished). 

Moreover, three classes of PAT inhibitors, clearly separable by their chemical 

structure (TIBA, NPA, morphactins, see also Schneider 1970), all deplete F-actin from the 

end-poles and inhibit endocytosis/vesicle recycling at the same time (see Chapter 3.1.1.4). A 

substantial portion of the polar transport of auxin in root apices is driven by vesicle-mediated 

secretion regulated by the PLD 2 activity and its product phosphatidic acid (PA). In the 

Arabidopsis PLD 2 mutant and after 1-butanol treatment, auxin fluxes in root apices 

measured by an IAA-sensitive microelectrode are strongly suppressed despite undisturbed 

PIN localization (Mancuso et al. 2007). Results obtained here from the study of 

phospholipase D 2 mutants and over-expressing lines (Li et al. 2007) as well as results 

obtained by the application of its signaling product, PA, support the auxin immune-

localization data, that vesicular recycling and secretion, and not just the mere presence of 

PINs at the plasma membrane, are essential for polar cell-cell auxin transport. The PLD 2

mutant shows strongly reduced auxin fluxes in root apices and Brefeldin A has almost no 

additional negative effect on polar auxin transport in the PLD 2 mutant, which also fails to 

form BFA-induced compartments. All this is suggesting that the BFA-sensitive portion of the 

polar auxin transport needs PA produced by the activity of PLD 2 (Mancuso et al. 2007). The 

tissue area, where PLD 2-Expression is observed, corresponds exactly to the root apex region, 
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which is relevant for the PLD 2/PA-driven vesicular secretion of auxin (Li et al. 2007; 

Mancuso et al. 2007). Four PINs (isoforms 1, 2, 3 and 4) are expressed in this zone of the root 

and three PGPs (isoforms 1, 4, and 21). This is the highest number of IAA transporters ever 

scored for any part of the plant body (Bandyopadhyay et al. 2007) It is also this region, in 

which the basipetal transport in the epidermis links up with the acropetal transport in the stele 

(Blilou et al. 2005). Previous results and in vivo recordings show that this particular root 

region has by far the highest rate of auxin transport (Mancuso et al. 2005; Santelia et al. 2006; 

Bouchard et al. 2006), so it is unique from the perspective of polar auxin transport. 

There are several important conclusions with respect to the PLD 2 activity and the 

role of PINs in polar auxin transport. Recycling of PINs is essential for the undisturbed polar 

auxin transport in root apices and this is in agreement with the observations of Geldner and 

coworkers (Geldner et al. 2001; 2003). Recycling of both PIN2 (Li et al. 2007) and PIN1 

depends on the vesicular secretion driven by PA the product of PLD activity. The auxin 

transport not sensitive to manipulation of PA levels is accomplished in all probability via 

PGP-type ABC transporters, which are abundantly expressed in the root apex (Santelia et al.

2006; Bouchard et al. 2006; Bandyopadhyay et al. 2007). 

4.1.2. Auxin response elements do not distinguish between IAA-signaling and polar 

          auxin transport processes 

Direct localization of IAA, using the new specific antibody, in cells of the root apex of maize 

failed to reveal the previously reported auxin maximum specific in cells of the quiescent 

centre and root cap statocytes, as shown with the DR5 promoter line of Arabidopsis (Sabatini 

et al. 1999; Friml et al. 2003; Ottenschläger et al. 2003). The IAA-labeling of Arabidopsis

shows a maximum of IAA antibody fluorescence in the root tip, which is not identical to DR5 

promoter line maximum. This discrepancy is not unexpected, because other auxin reporters 

visualize ‘auxin maxima’ at other locations. For instance, a second popular reporter the BA3 

construct visualizes an ‘auxin maximum’ in those cells, which are embarking on rapid cell 

elongation (Oono et al. 1998; Armstrong et al. 2004). These conflicting observations indicate 

that these reporters just reflect particular signaling cascades feeding into the activation of 

different auxin-responsive transcription promoters, but they do not necessarily reflect a 

maximum of IAA-molecules. There are also several other problems associated with auxin- 

response reporters. For example, different auxins (IAA, NAA or 2,4-D) and several other 

substances like brassinolides can induce transcription of auxin response reporters (Nakamura 

et al. 2003; Nemhauser et al. 2004), and the root specific auxin signaling inhibitor Terfestatin A, 
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which causes, as one would expect, the disappearance of the DR5 root tip maximum (Yamazoe 

et al. 2005), leads only to a small dislocation of the auxin maximum, when looked at it with 

the auxin antibody (see chapter 3.1.1.2). So, with regard to these problems, it is surprising that 

in many publications the DR5-signal is taken as the true representation of Auxin distribution 

in plant tissue (e.g. Sabatini et al. 2003).

One should also consider the possibility, that a maximum activity of the expression of 

auxin-response reporters reflects a prolongation of IAA transit through the cells, i.e., in tissue 

regions, where Auxin becomes redirected (Bandyopadhyay et al. 2007), rather than reflecting a 

local rise in concentration.  

All this makes it obvious that, in order to understand the nature of PAT, the direct 

localization of auxin with a specific antibody is essential. Unfortunately, those antibodies, which 

are available and currently in use, recognize auxin as well as auxin conjugates (Aloni et al.

2006b). The newly generated antibody used in this thesis work (see also Schlicht et al. 2006), 

which is mono-specific for IAA and does not recognize IAA conjugates, solves this problem. The 

data show, that a prominent cell compartment in root tissue, which accumulates auxin, is the 

nucleus. This is not surprising, particularly with regard to the auxin-responsive elements discussed 

above, but especially because of the nuclear auxin receptor TIR1, which is active in its auxin-

bound form within nuclei, activating transcription of auxin-regulated genes (Dharmasiri et al.

2005; Parry and Estelle 2006). Further, actin-enriched cell-end poles and adjacent endosomal 

compartments are identified as auxin enriched domains in cells of the root apex. This finding has 

far-reaching consequences for the field of auxin research. Cellular end-poles conceptually 

characterized as “plant synapses”, (Baluška et al. 2003, 2005a) emerge as subcellular domains 

specialized for the transcellular transport of auxin along cell files. The currently popular version of 

the chemiosmotic theory is considering only the auxin pools, which are localized within the pH 

neutral cytoplasm and the acidic cell wall compartment (apoplast, for recent reviews and 

dispatches: Friml et al. 2003; Friml and Wisniewska 2005; Leyser 2005; Moore 2002; Blakeslee 

et al. 2005). This assumption ignores any possible contribution of acidic endosomes for the 

maintenance and regulation of PAT. The immunofluorescence data on auxin localization reveal 

that auxin is accumulated within endosomes, which communicate with the auxin-transporting 

cell-sites (Baluška et al. 2003, 2005a). In accordance with previous observations on the 

partitioning of endosomal components in BFA-induced compartments, PIN-proteins and auxin 

get also aggregated into BFA-induced compartments, which lends additional support to the 

concept that both are bona fide endosomal components. Importantly, the auxin-enriched

endosomes may represent the elusive BFA-sensitive source of auxin from which auxin is secreted 
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out of cells via BFA-sensitive processes (Baluška et al. 2003). Auxin accumulating endosomes 

may also act as intracellular “auxin vacuum cleaners” (Baluška et al. 2005a; Samaj et al. 2006), 

which would effectively remove all free auxin from the orifices of plasmodesmata in order to 

prevent their “uncontrolled” diffusion from cell-to-cell. This function of auxin-accumulating 

endosomes would be particularly important during early embryogenesis, when plasmodesmata are 

known to allow free passage of signaling molecules, hormones and peptides, demonstrating that 

all embryonic cells are part of a single syncytium (symplast) (Stadler et al. 2005; Kim et al.

2005). Free and uncontrolled passage of auxin within this syncytium would be incompatible with 

the intricate local and polar auxin accumulations in early embryos (Friml et al. 2003). Cells of the 

root apex transition zone are unique also with respect to the actin organization. They assemble F-

actin enriched plasma membrane domains at the end-poles, which serve as dynamic platforms for 

rapid endocytosis and high rate of vesicle recycling. Those tissues, which are active in PAT, such 

as the stelar cells accomplishing acropetal PAT and the cells of the epidermis and outer cortex 

performing basipetal PAT, are enriched in F-actin (Baluška et al. 1997, 2003, 2005a, b; Schlicht 

et al. 2006). 

F-actin at the end-poles allows effective cell-cell communication based on secretory processes as 

is known from neuronal and immunological synapses (Baluška et al. 2003, 2004, 2005a, b). For 

instance, auxin that has been secreted into the cross-wall space has been reported to elicit electric 

responses in the adjacent cells (reviewed in Baluška et al. 2004). All this indicates that auxin acts, 

in addition to its hormonal and morphogen-like properties, as a neurotransmitter-like agent (e.g. 

Baluška et al. 2003). Other puzzling data also fall into place. For instance, the rapid blockage of 

PAT after cold exposure (Wyatt et al. 2002), which is known to block endocytosis in root cells 

(Baluška et al. 2002) and an almost immediate recovery of PAT after returning the plants to room 

temperature (Wyatt et al. 2002; Nadella et al. 2006). Another example, the finding that synaptic 

proteins occur in plants, like synaptotagmin and BIG, which are present in plant and animal 

genomes.  BIG has similarity to the synaptic protein CALLOSIN/ PUSHOVER driving synaptic 

signal transmission at neuromuscular synapses, is essential for PAT in plants (Paciorek et al.

2005b; López-Bucio et al. 2005) and its action is related to endocytosis and vesicle recycling 

(Baluška et al. 2003, 2005a). Other puzzling facts are beginning to make sense now, namely the 

observation that high concentrations of extra cellularly applied auxin inhibit endocytosis, and BIG 

in a still unknown mode is important for this unexpected auxin action (Paciorek et al. 2005). BIG 

is relevant also for the endosomal BFA-sensitive secretion, because lpr1 mutant, which is allelic 

to BIG, is phenocopied by treatment of wild-type seedlings with BFA (López-Bucio et al. 2005). 

Obviously, the classical chemiosmotic model has difficulties to explain the rapid blockage of the 
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auxin export after inhibition of vesicular secretion with BFA and monensin (Paciorek et al.

2005b; Wilkinson et al. 1994; Delbarre et al. 1996, 1998; Mancuso et al. 2005). Furthermore, it 

cannot explain rapid inhibition of PAT after cold exposure (Wyatt et al. 2002; Nadella et al. 2006) 

and after the application of actin polymerization inhibitors (Sun et al. 2004; Li et al. 2005). 

Delbarre et al. (1998) reported that auxin efflux from plant cells is blocked with agents affecting 

proton gradients and intracellular pH status. The latter authors interpreted these data only from the 

perspective of the classical chemiosmotic theory. However, these findings appear in a new 

perspective if one considers the accumulation of auxin within endosomes. Intriguingly, the 

activity of H+-pyrophosphatase AVP1 is involved in PAT (Hu et al. 2000) and this further 

supports the concept of secretion via endosomes as a major pathway for exporting auxin (Friml et 

al. 2005; Baluška et al. 2003, 2005a). Pyrophosphatases represent single-subunit H+ pumps, 

which generate an electrochemical gradient across delimiting membranes of small vacuoles and 

endosomes (Ratajczak et al. 1999; Rea and Poole 1999). Overexpression of AVP1 stimulates 

PAT, while avp1-1 null mutants show a reduction of PAT (Li et al. 2005). Moreover, 

overexpression of AVP1 stimulates root growth (Li et al. 2005; Park et al. 2005) while null 

mutants develop severely disrupted roots. In addition to the vacuolar membrane, the AVP1 signal 

was found at punctated structures and, importantly, discontinuous sucrose gradient analysis 

revealed an association of AVP1 with the endosomal fraction (Li et al. 2005). There is no way at 

all of explaining all these observations with the classical chemiosmotic concept. The Perspectives 

Science article, commenting this paper suggested that AVP1 acidifies the putative X compartment 

(Grebe 2005). This corresponds nicely to the auxin-enriched endosomes reported here and 

summarized in the model (Fig. 4.1). Further support for this concept comes from the observation 

that VHA-a1 subunit of the vacuolar ATPase (V-ATPase), which acidifies endosomes, vacuoles 

and the trans-Golgi network (TGN) in plant cells, localizes to the early endocytic compartments in 

root cells of Arabidopsis (Dettmer et al. 2006). It will be important in the future to analyze PAT in 

the available V-ATPases mutants in Arabidopsis. The dwarf phenotype of the det3 mutant (c 

subunit), which is due to lack of cell elongation (Schumacher et al. 1999), indicates that PAT 

requires both PPase and V-ATPase activities. Moreover, VHA-a1 subunit of the V-ATPase co-

localizes with TGN SNAREs (Schumacher et al. 1999) and one of these (VTI1) is essential for 

basipetal PAT (Surpin et al. 2003). Intriguingly, PM-based PIN1 localizes properly in the polar 

manner (Schumacher et al. 1999) despite the fact that PAT is strongly affected in the VTI1 

mutant, resembling the situation reported in the present study for maize mutants affected in PAT. 

The acidic nature of auxin and of endosomes implies that auxin relies on the continuous activity 

of putative vesicular transporters in order to be enriched within endosomes. The vesicular nature 
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of PIN2 was strongly indicated by a recent study using yeast and HeLa cells (Petrasek et al.

2006). In vitro mutation of PIN2 by changing Serine 97 to glycine resulted in a loss of PM 

localization and only a vesicular localization of PIN2 in yeast cells that accumulated auxin. It 

seems that PIN proteins are also functional inside the cell since yeast cells expressing the mutated 

version of PIN2 accumulate more auxin than control cells (Petrášek et al., 2006). 

When interpreting these data, it is important to keep in mind that the endosomal interior 

originates from the extracellular space. This means that by transporting auxin into the endosomal 

interior with PIN2 efflux protein, it is removed from the cytoplasm. 

4.1.3. Polar cellular localization of PIN proteins and hence PAT direction is maintained

 via recycling processes 

The polar localisation of PINs at distinct subcellular domains corresponds with the direction of 

PAT, i.e., in case of a basipetal direction of transport, PINs are localized at the basal end of the 

cell (Gälweiler et al. 1998; Terasaka et al. 2005).

Changes of PIN localizations by different mutations or treatments from one cell pole to 

another, result in disturbances of PAT (e.g. Michniewicz et al. 2007). Evidence is growing that 

the dynamic recycling of PINs co-determines the polar positioning at the plasma membrane (Men 

et al. 2008; Kleine-Vehn et al. 2008). For example after cytokinesis, PIN2 localizes initially to 

both newly formed membranes but subsequently disappears from one by endocytosis, suggesting 

a recycling based mechanism for the establishment of asymmetric PIN localization (Men et al.

2008). Furthermore, it was shown that apical and basal PIN targeting pathways are regulated in 

part by BFA sensitive vesicle-trafficking regulators (Kleine-Vehn et al. 2008). The molecular 

target of BFA is a GDP/GTP exchange factor for small G proteins of the ARF class (ARF-GEF); 

in Arabidopsis it is named GNOM. PIN1 proteins constitutively cycle between endosomes and 

the plasma membrane in a GNOM-dependent manner (Geldner et al. 2001).  Consequently, BFA 

disrupts the polarity of apical located PIN1. In epidermal cells of root tips PIN2 is located at the 

basal cell pole and recycles in a GNOM independent manner between sorting nexin 1 - defined 

endosomes and the plasma membrane (Jaillais et al. 2006). Consequently, BFA has no effect of 

PIN2 localization in those cells. 

Disturbance of endocytosis by treatments targeting the actin cytoskeleton with inhibitors 

such as Latrunculin B (e.g. Schlicht 2004; Rahman et al. 2007) or else by the auxin transport 

inhibitors TIBA (Geldner et al 2001; Dhonuske et al. 2008) and NPA (Ruegger et al. 1997) also 

indicate a crucial role of endocytosis for maintaining polar orientation of PIN proteins after 

cytokinesis.  
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4.1.4. A possible role of lipid rafts for polar positioning of PINs 

The cytoskeleton sorts PINs in a polar manner, but how the correct areas of the plasma 

membrane are marked for PIN accumulation is still unknown. Some recent publications 

indicate that the lipid composition in the plasma membrane plays a crucial role in this process 

(Men et al. 2008). 

Lipid rafts are detergent insoluble membranes (Mongrand et al. 2004) with plant-

specific lipid steryl-conjugates, free sterols and sphingolipids (Lefebvre et al. 2007). Lipid 

rafts in plasma membranes are hypothesized to play key roles in signal transduction and 

membrane trafficking (Morel et al. 2006; Lefebvre et al. 2007). Early endocytic sterol 

trafficking involves transport via actin dependent endosomes. Sterol-enriched endosomes are 

found in BFA induced compartments, suggesting a connection between endocytic sterol 

transport and polar sorting events (Grebe et al. 2003). Moreover, sterol-dependent

endocytosis mediates polar localization of PIN2 (Men et al. 2008), as seen in the sterol-

biosynthesis mutant cpi1-1 (cyclopropylsterol isomerase1-1). This mutant has altered sterol 

composition and defects in PIN2 internalization causing PAT related defects such as reduced 

gravitropic bending.

Furthermore, the smt1orc mutant, that lacks a sterol methyltransferase, displays several 

noticeable cell polarity defects; among other things, the polar initiation of root hairs is more 

severely randomized. Sterol methyltransferase is required for the appropriate synthesis and 

composition of major membrane sterols. In smt1orc mutants, polar auxin transport is disturbed 

and expression of the auxin reporter DR5-GUS is aberrant. Consistently, the membrane 

localization of PIN1 and PIN3 proteins is disturbed, suggesting that a balanced sterol 

composition is a major requirement for cell polarity and auxin efflux (Grebe et al. 2003).

Preliminary results, shown here in Chapter 3.1.4, indicate that PIN proteins are located 

in detergent resistant membrane fractions (DRM-fractions), but in different quantity. PIN2 

and PIN1 are very strongly enriched in lipid rafts, whereas only small amounts of PIN3 and 

PIN4 proteins are found. Moreover, several MDR/PGP ABC transporters (e.g. PGP1, PGP4, 

PGP19) are also located in lipid rafts (Murphy et al. 2002; Geisler et al. 2003; Terasaka et al.

2005; Bhat and Panstruga 2005; Morel et al. 2006; Lefebvre et al. 2007). PGP/ABC-

transporter show auxin transport ability across the plasma membrane (e.g. Geisler et al. 2003) 

and can build complexes with PIN-proteins (shown in Arabidopsis for PIN1-PGP19 and 

PIN1-PGP1 respectively by Blakeslee et al. 2007). Heterologous systems of yeast and HeLa 

cells expressing plant PGPs and/or PINs show that PINs and PGPs form functioning 
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complexes with different auxin efflux/influx capacities depending on the binding partners 

(Blakeslee et al. 2007; Bandyopadhyay et al. 2007). 

Both PGP and PIN gene expression and the distribution of the corresponding proteins 

are regulated by light and other factors (Geisler et al. 2003). It is also likely that specific 

PGP–PIN interactions occur in cells in which both components are expressed and that other 

additional factors, may regulate their interactions.   

One such candidate is TWD1 (twisted dwarf 1) also named UCU2 (ultracurvata 2) an 

immunophilin-like protein, which can interact with PGP1 and modulates indirectly PGP1 

efflux activity. TWD1 acts as a positive regulator of PGP mediated long-range auxin transport 

(Geisler et al. 2003; Pérez-Pérez et al. 2004; Bouchard et al. 2006). 

 The auxin transport inhibitor N-1-naphylphtalamic acid (NPA) display its ability to 

inhibit PAT by binding to auxin transporting complexes (e. g. Jacobs and Rubery 1988) and 

by disturbing the polar PIN positioning. Both PGP1 and TWD1 bind NPA unless they are 

present as a PGP1-TWD1 complex, which is less sensitive to NPA (Geisler et al. 2003; 

Bouchard et al. 2006). 

 NPA is a synthetic inhibitor, but naturally occurring flavonoids can bind and compete 

with NPA for the same protein domains (e.g. Peer et al. 2004). Flavonoids are plant-specific 

phenylpropanoid compounds, which can modulate the gravity response. Except for the 

competion to NPA for the same binding domains (NPA Binding Domains = NBDs) and the 

existence of mutants with altered flavonoid levels that show disturbed PAT (which can be 

rescued by externally applied flavonoids) neither the identity of specifically involved flavonoids 

nor their exact mode of action are known. Transport assays with PIN proteins indicate an 

indirect role of flavonoids on PIN expression, localization and trafficking (Peer et al. 2004; Peer 

and Murphy 2007).  

Flavonoids have a brought spectrum of activity ranging from ROS scavengers to 

modulators of membrane fluidity. This makes it difficult to discern their role in PAT. But it is 

thought that flavonoids act as non-essential auxin transport inhibitors, which can modulate 

PAT by influencing NBD-proteins and such mediate alterations of auxin concentrations (Peer 

et al. 2004, 2006). Interestingly, flavonols are potent inhibitors of protein phosphatases and 

kinases. Taken into account that PIN localization is controlled by antagonistic 

phosphorylation/dephosphorylation by the AGC-kinase PID (PINOID) and a PP2A protein 

phosphatase, respectively (Friml et al. 2004; Shin et al. 2005; Michniewicz et al. 2007), a 

possible pathway for flavonol activity in polar PIN positioning seems to emerge.  
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In addition, a novel function of flavonols was shown recently, in that agravitropic root 

growth of PIN2 knockout mutants was rescued by low concentrations of flavonols that do not 

inhibit PAT. A laterally asymmetric distribution of PIN1 in the root cortex occurred and root 

growth followed the gravitropic vector after flavonol treatment in the mutant (Santelia et al.

2008).

PIN1 and PIN2 have redundant roles in size control of the root meristem and PIN1 can 

replace PIN2, when ectopically expressed and localized at the basal cell pole of epidermal 

cells (Wisniewska et al. 2006). Moreover, after flavonol treatment PIN1 showed the same 

localization at the basal cell pole as PIN2 in the epidermis and apical localization in cortex 

cells. It is important to note, that NPA is not able to induce asymmetrical PIN1 distribution 

and could not rescue gravitropic bending of PIN2 mutant. Moreover the flavonol permitted 

gravitropic bending in PIN2-mutants is still NPA sensitive (Santelia et al. 2008). This shows 

nicely that this flavonol activity is not linked to NBDs. PIN1 and PIN2 are redundant in 

function and are controlled by specific tissue expression and different interaction partners. 

Obviously, flavonols have the capacity to change these features.

A control of PID and PPA2 activity could at least partly explain this modulation 

activity of flavonoids. These two enzymes are antagonistically controlling polar sorting of 

PIN proteins in root tissues (Michniewicz et al. 2007). A loss of PP2A activity or a PID 

overexpression leads to an apical-to-basal PIN polarity shift in roots, as was shown for PIN1, 

PIN4 and PIN2 (in cortical cells). Interestingly, the basal localization of PIN2 in epidermal 

cells remained unaffected (Michniewicz et al. 2007) by any changes of the PID/PP2A 

phosphorylation balance. 

Moreover, the flavonol accumulating mutants tt7 and 3 (transparent testa7 and 3)

show increased PIN1 expression in cortex cells and increased expression of PIN4 but no 

difference of PIN2 expression (Peer et al. 2001). Level and composition of flavonols only 

modulate expression of the PINs, which are affected by PID/PP2A mediated polar 

positioning.  Interestingly, PINOID is activated by PDK1 mediated trans-phosphorylation. 

The binding of plasma membrane located PID to PDK1, which is a component of the 

detergent resistant membrane fraction raises the possibility that PID could be recruited to lipid 

rafts and activated by PDK1 (Zegzouti et al. 2006).

In plants PGPs and TWD1 are located within lipid rafts and are targets of flavonoid action 

and several members of the PIN-family are more or less abundantly found in DRMs and their 

expression, polar localization and activity react strongly to altered lipid composition of the plasma 

membrane (Grebe et al. 2003; Men et al. 2008; Santelia et al. 2008). PIN1 subcellular localization 
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is sensitive to flavonoids, and tissue-specific PIN1 distribution is auxin responsive at the root tip. 

PIN2 localization and distribution are neither auxin nor flavonoid responsive, but PIN2 expression 

increases in the absence of flavonols (Peer et al. 2004).

The two most frequently occurring flavonols Kaempferol and Quercecitin accumulate in 

the root cap and the transition zone (Peer et al. 2001), strikingly similar to auxin signaling 

maxima shown with reporter constructs. The subcellular localization shows that a good part of 

flavonoids is associated with the plasma membrane at the cross walls. 

Increasing evidence shows that PIN proteins are internalized into cells by at least two 

different pathways. Firstly, clathrin mediated endocytosis powers the constitutive route of basally 

located PIN1 and PIN2 uptake (Dhonukshe et al. 2007) to BFA sensitive GNOM-positive 

endosomes and secondly, the above mentioned sterol dependent endocytosis, which controls at 

least partly PIN2 internalization in a BFA insensitive manner (Men et al. 2008). Both pathways 

are likely connected. 

In mammals clathrin mediated and lipid raft based endocytosis are two mutally excluding 

pathways. But it is important to note, that plant detergent resistant membrane fractions (DRM-

fractions) possess a much more heterogeneous lipid composition than mammalian DRM fractions 

(e.g. Borner et al. 2005). This opens the possibility, as has been observed in yeast (Malinska et al. 

2003), that in plants, several subclasses of lipid rafts exist. 

Also protein classes, which are enriched in plant DRM fractions can be quite different 

from those in mammalian lipid rafts. GPI anchored proteins appear to be common components in 

plant and animal lipid rafts (Borner et al. 2005; Sangiorgio et al. 2004 ), however, proteomic 

analyses of plant DRMs have shown that several proteins of the clathrin depend endocytosis 

machinery are found in lipid rafts (Mongrand et al. 2004; Morel et al. 2006) In mammalian is the 

lipid raft mediated endocytosis clathrin independend (Nichols et al. 2001; Kirkham et al. 2005). 

Taken the results on PIN endocytosis, it appears that both, clathrin and sterol derived mechanisms 

(Dhonukshe et al. 2007; Men et al. 2008) are linked together in plants. 

The question remains, how PINs are sorted in- or out of lipid raft domains? An important 

role will be played by their interaction-partners, such as PGPs and PINOID, which have been 

mentioned above. A recent publication shows even such a role for PGP19 to sort PIN1 in  

detergent resistant membrane fractions (Titapiwatanakun et al. 2008). Further studies will be 

necessary to shed light on the processes which govern correct sorting and positioning of PINs.  

Taken together it may be concluded that lipid rafts emerge as signaling platforms, which 

play an important role in polar auxin transport and auxin related signaling. They are controlled by 
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flavonoids, which modulate PGP (PGP-TWD1) activity and may also regulate polar PIN 

localization via indirect recruitment into lipid rafts by the modulation of PID/PP2A activity. 

4.1.5. An update of the classical chemiosmotic model for PAT 

Considering all points of inconsistency discussed above with regard to the chemiosmotic model, 

there is an urgent need for the proposition of an updated, better fitting version of this concept to 

explain PAT. Besides acidic cell walls and neutral cytoplasm, the acidic endosome emerges as a 

new important player in the transcellular pathway of auxin transport. Regulated secretion out of 

cells via secretory endosomes, would then be accomplished by a quantal efflux of protonated 

auxin into the extracellular space. From there, it can either freely diffuse back to the same cell or 

into adjacent cell. In addition, adjacent cells could also import auxin through the activities of 

putative auxin transporters at the plasma membrane and/or via endocytosis of auxin molecules 

embedded within cell wall material like pectins and hemicelluloses. In accordance with this latter 

notion, it has been shown that the internalization of these cell wall molecules is particularly active 

at the auxin transporting end-poles (Baluška et al. 2002, 2005a; Samaj et al. 2004, 2005a; Dettmer 

et al. 2006). The “synaptic” nature (Baluška et al. 2003, 2005) of these end-poles has been 

strongly supported recently by showing that PIN1 localization to these sub-cellular domains is 

dependent on the contact between cells (Boutté et al. 2006). As soon as the cells lose their contact 

between each other, due to a long-term absence of microtubules, PIN1 rapidly redistributed from 

these domains to the whole plasma membrane (Boutté et al. 2006).  
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Fig.: 4.1. Classical and updated model of cellular auxin transport 
The updated model postulates endosomes and vesicle recycling as essential parts of the auxin transport 
machinery. 
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4.1.6. Implications of auxin secretion 

One of the most characteristic feature of polar auxin transport, which still awaits its biological 

explanation, is that the auxin transport in the root cap columella is tightly linked to gravity, i.e., its 

direction is always perpendicular to the gravity vector (Dolan 1998; Ottenschläger et al. 2003). 

Within a few minutes, a gravistimulated root apex curves downward after its auxin-secreting cell 

poles have shifted to the transversal position with respect to the gravity vector. PIN3-mediated 

auxin asymmetry starts to become detectable in the root cap within a few minutes (Friml et al.

2002a). Obviously, auxin is released out of root cells all the time towards the physical bottom 

facing the center of gravity, this is irrespective of the type of organ and of the preset polarity in 

this organ. In other words, internal genetic and epigenetic programmes, which are extremely 

robust so that single or even double-gene mutations are unable to change them, are prone to be 

easily overridden by  physical information from the environment. One can explain this gravity-

dependent secretion of auxin via differential stretch-stress reactions at the plasma membrane 

which is expected, due to protoplast settling within the casing of the wall, to have the highest 

values at the physical bottom and the lowest values at the physical top of cells (Baluška et al.

2005a, 2007). As high tension stress of the plasma membrane can be relieved by exocytosis, while 

on the other hand low tension stimulates endocytosis, the secretory model of auxin transport has 

the power to explain gravity dependent auxin transport. This unique feature of gravisensing at cell 

poles implies that the poles are inherently asymmetric not only molecularly but also mechanically. 

Importantly, epigenetic physical information, underlying the inherent mechanical asymmetry of 

the end poles, is at the heart of the plant synapse concept which describes  auxin secretion in 

response  to the gravity vector as the basic mechanis that provides flexibility to the shaping of the 

plant body (Baluška et al. 2005a, 2007). 

Future studies should focus on both endosomes and regulated vesicular recycling in order 

to unravel critical and often neglected details of the polar transport of auxin across cellular 

boundaries in plant tissues. Vesicular secretion of auxin can be expected to be under tight control 

allowing quantal release of auxin after perception of specific stimuli. It can be expected that this 

feature will serve to feed extracellular auxin into various signalling channels, i.e., by manipulating 

levels of reactive oxygen species and nitric oxide as well as lipid signaling molecules (Joo et al.

2005; Lamattina et al. 2003; Lanteri et al. 2006, 2008) . 

If the quantal release of auxin after an appropriate signal could be proven, it will have 

diverse consequences for the field of plant developmental biology. Among other aspects, vesicle 

recycling and secretion-based auxin efflux can be envisioned to act as the elusive flux sensor in  

the so called canalization theory (see also merks et al. 2007). This would then make new 
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hypotheses dispensable such as the travelling-wave hypothesis, which has recently been  proposed 

in order to explain the dependency of cellular PIN1 expression from auxin maxima formation 

during vascular development in leafs (Merks et al. 2007).

The current status of auxin as a plant hormone seems to be based on a much too narrow 

perception of its multipurpose mobile signaling functions in the developmental or environmental 

context. It acts as plant hormone, morphogen, neurotransmitter-like elicitor and even 

transorganismic communicator molecule.  It is used by fungi and bacteria such as Rhizobia and 

Mycorrhiza to establish symbiosis by manipulation of auxin flow and by using auxins as a means 

of communication (van Noorden et al. 2006; Ditengou et al. 2003).
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4.2. D’orenone blocks polarized tip-growth of root hairs by interfering with the  

PIN2-mediated auxin transport network in the root apex 

Highly polarized tip-growth of root hairs is relatively well understood and represents one of the 

best examples of polar cell growth inherently linked to signaling pathways via the dynamic 

cytoskeleton and endosomal vesicular trafficking (Baluška et al. 2000; Šamaj et al. 2004). Signal-

mediated actin polymerization (Volkmann and Baluška 1999; Staiger 2000) is essential for tip-

growth of root hairs; such growth stops immediately after exposure to latrunculin B (Baluška et 

al. 2000; Voigt et al. 2005a; de Ruijter et al. 1999). It is shown here, that after growing root hairs 

of Arabidopsis were exposed to D’orenone, their tip-growth stopped within just a few minutes 

and was associated with the disintegration of the vesicle-rich secretory ‘clear zone’ at the apex of 

the root hair. At the same time, the vacuoles protruded into the very tip and consequently tip 

growth was stopped. Further analysis revealed that D’orenone also targets other processes, which 

are essential for root hair tip growth, including actin polymerization, vesicle trafficking, as well as 

reactive oxygen species (ROS) and cytosolic free Ca2+.

4.2.1. Root hair growth 

To determine cellular target(s) of D’orenone, the actin cytoskeleton was analyzed, which is 

essential for tip-growth of root hairs (Baluška et al. 2000; de Ruijter et al. 1999). Indeed, the 

dynamic actin cytoskeleton proved to be extremely sensitive towards D’orenone: apical F-actin 

meshworks were lost within 30 minutes of treatment at a low concentration of D’orenone (10 

μM) and only immobile actin bundels orginating from the hair base remained (see chapter 3.2.2.). 

Obviously, D’orenone affects the tip-focused actin polymerization machinery linked to signaling 

cascades (Šamaj et al. 2002, 2004; Huang et al. 2006) and partially mimics the effects of 

Latrunculin B, a potent inhibitor of actin polymerization (Baluška et al. 2000, 2001; Šamaj et al.

2002). This implies that putative D’orenone targets could be linked, directly or indirectly, to the 

actin polymerization machinery. In addition, D’orenone also mimics some effects of Wortmannin 

(Jaillais et al. 2006), an inhibitor of PI(3)K kinase, which blocks endocytosis and affects 

endosomes (for plant cells, see Lam et al. 2007).

The artificial dissipation of the tip-focused calcium gradient with the calcium ionophore 

A23187 has the same effect (Wymer et al. 1997) and disintegrates the vesicle-rich ‘clear zone’ 

(Preuss et al. 2006) in the same way as D’orenone does (see chapter 3.2.2.). The dynamic 

turnover of the actin cytoskeleton is controlled not only by Ca2+ but also by ROS generated by 

the plasma membrane protein NADPH oxidase. Both are essential for the polarized tip-growth 

(Foreman  et al. 2003; Rentel  et al. 1994; Carol et al. 2005). It is shown here (chapter 3.2.2) that 
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D’orenone inhibited the production of ROS, in contrast to the well-characterized NADPH oxidase 

inhibitor DPI (Foreman et al. 2003) delayed. Indicating that NADPH oxidases are only secondary 

targets of D´orenone. A recently released publication revealed an important secondary ROS-

source in root hairs, PI(3)K kinases controlled endosomes (Lee et al. 2008). By a similar method, 

as presented here (results  section 3.2.) This study uses a similar method for the co-localisation of 

a ROS sensitve dye with cell organelles as shown here (see chapter 3.3.4). A disruption of 

endosomal motility and membrane fusion processes by LY294002, an inhibitor of PI(3)K kinase, 

or root hair specific FYVE overexpression led to a reduced tip orientated ROS gradient in root 

hairs.

Growth of Arabidopsis root hairs stops within just a few minutes after the exposure to 

D´orenone which mimics some effects of the PI(3)K inhibitors wortmannin (Jaillais et al. 2006) 

or LY294002 (Lee et al. 2008). Other effects of wortmannin and LY294002 differ from the 

D’orenone-induced effects. I.e.,  both  affect growth of root hairs and primary roots and both 

inhibit root gravitropism as well (see Jaillais et al. 2006, Joo et al. 2001, 2005). A further 

difference between D’orenone and PI(3)K kinase inhibitors is, that the application of exogenous 

auxin fully rescues all effects of D’orenone on root hairs, but not the effects of PI(3)K kinase 

inhibitor. 

4.2.2. PAT influences root hair growth 

At low concentrations (below 5 μM), D’orenone effectively blocked tip growth of root hairs but 

did not affect growth of the main root. Even at concentrations of up to 40 μM, D’orenone did 

not inhibit primary root growth significantly but, instead, promoted the formation of lateral 

roots. Moreover, D’orenone rapidly and prominently activates the DR5-promoter suggesting 

that this apocarotenoid interacts with auxin action at the root apex. As PINs localize 

dynamically to the plasma membrane and become rapidly internalized, which can be 

demonstrated by treatment with the vesicle recycling inhibitor brefeldin A (Geldner et al. 2001; 

Baluška et al. 2002; see also first part of this work). Moreover, vesicular trafficking of PIN2 is 

relevant for its proteasomal degradation (Sieberer et al. 2000; Abas et al. 2006) which leeds 

when prevented to an accumulation of PIN2 within multivesicular bodies (Jaillais et al. 2006, 

2008; Jaillais and Gaude 2007). 

Exogenous auxin fully rescues the D´orenone-inhibited root hairs, resembling the 

situation when overexpression of diverse auxin efflux transporters in trichoblasts imposes a 

block on the tip-growth of root hairs that can be overriden by exogenous auxin (Lee and Cho 

2006; Cho et al. 2008). All this is in agreement with the model, originally proposed by Lee 
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and Cho, according to which the tip-growth of root hairs is tightly controlled by critical 

endogenous levels of auxin within the trichoblasts (Lee and Cho 2006; Cho et al. 2008). The 

most critical question in order to understand the D´orenone action is the identity of the 

molecular target(s) of this compound.  

The obvious candidate is PIN2 as this is the auxin efflux transporter expressed and 

active in root hair trichoblasts driving basipetal auxin transport (Müller et al. 1998; Rashotte 

et al. 2000) toward the transition zone and distal elongation zone (Verbelen et al. 2006), 

where the auxin stream is redirected from the root periphery towards the central cylinder to 

join the acropetal auxin stream (Blilou et al. 2005). In support of this scenario, it is shown 

here (chapter 3.2.3) that D’orenone prominently increases PIN2 protein abundance and shifts 

the PIN2 domain from the transition zone into the elongation zone. In that respect, D’orenone 

resembles the effects of brassinosteroids (Li et al. 2002). Because PIN2 transcription is not 

affected, it may be concluded that D’orenone extends the half-life of PIN2 protein via a 

manipulation of proteasomal degradation (Sieberer et al. 2000; Abas et al. 2006). Indeed, 

PIN2 degradation is promoted in the upper side of gravistimulated roots, but slowed down in 

the lower side (Abas et al. 2006; Jaillais et al. 2006) and strong over-stabilization of PIN2 by 

mutation of the protein results in defective root gravitropism (Abas et al. 2006).

It is further shown (chapter 3.2.3) that an increase of PIN2 occurs in D’orenone exposed 

roots within vacuole-like compartments, resembling the increased vacuolar localization of PIN2 

in the PIN2 over-expressing line (Abas et al. 2006). Similar vacuolar-like PIN2 localization was 

reported after treatment of roots with the phosphatidyl inositol-3-OH kinase inhibitor 

wortmannin (Jaillais et al. 2006) as well as the actin polymerization inhibitor latrunculin B 

(Rahman et al. 2007). This strengthens the hypothesis that D’orenone targets processes, which 

are related to PIN2 degradation, causing slower turn-over and increased protein levels of this 

auxin efflux carrier. Interestingly,  D´orenone pre-treatment prevents fast transfer of PIN2 from 

the plasma membrane into BFA-compartments. Only longer BFA treatments are sufficent to 

relocate PIN2. 

As sorting nexin 1 - defined endosomes are involved in both recycling and targeting of 

PIN2 for degradation (Jaillais et al. 2006, 2008; Jaillais and Gaude 2007), further studies will 

focus on this critical sorting platform of root cells, in order to understand how it integrates 

incoming sensory information to be fed into the regulatory circuits of adaptive behaviour. 

Two mutant lines which differ in the stringency of PIN2 degradation helped to identify PIN2 as 

the potential D´orenone target. The arg1-2 line, which represents a weak phenotype still 

possessing small amounts of PIN2, still reacts to some extend to D’orenone exposure and its  
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agravitropic behavior can be rescued by D´orenone.  On the other hand, the eir1 line, which is a 

strong phenotype completely lacking PIN2 protein is not sensitive to D’orenone. This provides 

crucial genetic evidence that PIN2 is a D’orenone target and this may well be the same in the case 

of roothair growth. 

 Overexpression of the ABC-transporter, PGP4, which shares the auxin transporting 

abilities with PIN2,  leads to the inhibition of root hair growth, i.e. an overall length reduction 

(Cho et al. 2008). This could mean that PGP4 is another potential target of D´orenone. However, 

this and other components of PAT are clearly of secondary relevance as D´orenone targets. 

D’orenone has been previously postulated as an early intermediate in the biosynthesis 

of trisporic acids which act as chemical signals between the (+)- and (-)-mating types of 

zygomycetes (Gooday 1978, 1983; Gessler et al. 2002; Schachtschabel et al. 2005; 

Schachtschabel and Boland, 2007). Even slight structural modifications of D'orenone result in 

a strongly reduced activity of the compound. In particular, the low activity of the 3,4-dihydro 

derivative is important, since this structural modification separates D’orenone from the entire 

group of structurally related fungal trisporates, which act as morphogenetic signals between 

the mating partners of zygomycetes.  

It is tempting to speculate that this ketone or a closely related apocarotenoid could 

resemble or mimic a still unknown endogenous retinoid signal molecule that interacts with 

particular branches of the auxin signaling pathways (see also Bennett et al. 2006). This 

scenario would be consistent with the fact that primary root growth remains virtually unaffected, 

whereas root hair growth is clearly inhibited, concomittant with an increased amount of PIN2 

protein  and an enlarged and shifted PIN2 expressing tissue domain in the D'orenone-exposed root 

apices. It is interesting to note, that D’orenone is produced, along with other apocarotenoids 

already by cyanobacterial enzymes in vitro (Synechocystis spp.). Even higher plants seem to be 

able to generate D’orenone from certain apocarotenoids as has been recently shown for a carotene 

oxygenase from rice (Alder et al. 2008). 

In conclusions, D´orenone is  a hormone-like organismic signalling molecule, resembling 

closely hypothetical branching factors (Sieberer et al. 2006; Bennett et al. 2006), and/or as an 

inter-organismic signalling molecule for complex fungal/nematode – plant/root communication 

(Prusty et al. 2004; De Meutter et al. 2005: Bianco et al. 2006a,b; Curtis 2007). D’orenone has the 

potential to become a valuable tool, with which to dissect those integrated elusive processes that 

underlie the sensory-driven PIN2-mediated root growth in general (for salt stress see Sun et al.

2008; Li and Zhang 2008), and distinguish them from those processes controlling polarized tip-

growth of root hairs (Šamaj et al. 2004).
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In the root apex, D’orenone specifically interacts with PIN2-mediated auxin transport 

and signalling (see also Fig. 4.2). D’orenone holds the key for understanding how the 

integrated auxin signaling is linked to the complex auxin transport networks of the root apex.

How D´orenone influences PIN2 in roots, still remains to be answered. D´orenone 

alters expression and distribution of PIN2 and manipulates plasma membrane recycling rate. 

D´orenone action could be targeting PIN2 at the plasma membrane directly or by remodeling 

of lipid raft composition and/or localisation. In this scenario, the primary target of D’orenone 

could be the lipids of the plasma membrane themselves. D’orenone would then target primarily 

the plasma membrane fluidity (e.g. lipid rafts). This would secondarily affect signalling 

proteins embedded with, or associated with, the plasma membrane. This ‘Top-Bottom’ scenario 

implicates that the D’orenone-induced alterations to the actin cytoskeleton, endosomes, vesicle 

recycling and cytoarchitecture are downstream effects of the D’orenone binding to receptor 

(irrespective of this is single protein, lipid rafts, or the whole plasma membrane itself). Such a 

scenario would not be surprising considering the fact that carotenoids can be integrated into 

membranes and modulate plasma membrane fluidity (Subzynski et al. 1991). Polar carotenoids 

increase the structural order of lipid layers and thus decrease membranes fluidity. Apolar 

carotenoids (e.g. ß-carotenoids) are integrated between the two lipid layers and decrease their 

order. An increased fluidity is the consequence.  

It could also be, that the putative receptor of D'orenone is some component of the actin 

cytoskeleton, endocytic vesicle recycling machinery, or embedded in membranes of endosomes, 

recycling vesicles, or tonoplast. In this ‘Bottom-Top’ scenario, the effects on signalling 

molecules (receptors, sources of second messengers, second messengers itself) is only a secondary 

effects due to alterations of some intracellular structures such as the cytoskeleton or internal 

membranes. 
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Fig.: 4.2.  
D´orenone blocks polarized tip growth of root hairs by interfering with the polar auxin transport 
The tip-growth of root hairs is tightly controlled by endogenous levels of auxin within the trichoblasts. 
Root hair growth (indicated by black arrow) takes place above a critical level of auxin. D´orenone 
increases intensity of expressed PIN2 and stimulates PAT (indicated by darker blue color of PAT 
direction arrow). Increased auxin export lowers endogenous level of auxin within the trichoblasts and 
averts formation of new root hairs and any existing root hair stops its growth respectively.  
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4.3. The Role of Redox-related Stress for Auxin Signaling 
The ability of auxin to control processes like gravitropic bending is tightly linked with auxin 

induced ROS/RNS (e.g. Joo et al. 2005). Gravitropic curvature not only induces auxin 

accumulation at the lower root flank, but also nitric oxide and ROS (Hu et al. 2005; Joo et al.

2005). Moreover, NPA inhibits both PAT and nitric oxide formation (Hu et al. 2005) in root 

apices and a reduction of the ROS/RNS level alone is enough to impede gravitropic bending (Joo 

et al. 2005). 

Because auxin influences virtually every aspect of plant growth and development, numerous 

papers on auxin responses have been published. Besides the well documented effect on the 

transcriptional level (Abel 2007), which shows the ability of auxin to switch on/off several genes, 

other effects occur, such as the activation of cGMP formation, MAP-kinase pathways and other 

redox level modifying signal chains (Mockaitis et al. 2000; Pagnussant et al. 2003, 2004; Lanteri 

et al. 2008). To measure the impact of only one of the mentioned aspects, genetic studies with 

DNA-chips and/or auxin related mutants are important tools. Such approaches uncovered many 

aspects of auxin biosynthesis (reviewed in Woodward and Bartel 2005a) and details of 

transcription regulation pathways of auxin inducible genes (Sawa et al. 2002; Pufky et al. 2003; 

Cluis et al. 2004; Himanen et al. 2004). But these kinds of approaches are  not sufficiently 

specific to distinguish different pathways of non transcriptional auxin action. For example auxin 

transport mutants are difficult to separate from auxin signaling mutants (Bennett et al. 1996; 

Okada et al. 1991) or from mutants affected in downstream signalling components such as  MAP-

kinases. The same holds true for inhibitor studies which may reflect a complex impact on plant 

growth/behavior not necessarily linked to auxin action (e.g. Lam et al. 2007). A possible 

additional tool to distinguish transcriptional and redox-related auxin activity is the auxin 

derivative indole butyric acid. This auxin occurs in different plant species naturally (Epstein and 

Ludwig-Müller 1993) and its metabolism is linked to indole acetic acid.  IAA can be converted to 

IBA and vice versa (reviewed in Woodward and Bartel 2005a). 
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4.3.1. Indole butyric acid (IBA) as tool to unravel auxin action 

IBA is  transported in a polar fashion (Poupart et al. 2005; Rashotte et al. 2003) and strongly 

promotes the formation of lateral roots (Zolman et al. 2000) and adventitious roots (Nordström et

al. 1991). These are typical auxin activities, but IBA does not show a direct effect on 

transcriptional activity and influences cell elongation growth of the root only at higher 

concentrations. It can, of course, activate transcription of Aux/IAA genes, if it is converted to 

IAA. Growth of mutants with specific ß-oxidation defects is IBA insensitive and IBA is unable to 

activate transcription of Aux/IAA genes in such mutants. Moreover, as shown in chapter 3.3.1 

these mutants show very low IBA to IAA conversion rates. All this is suggesting that IBA is 

converted to IAA in a process paralleling fatty acid ß-oxidation.

ß-oxidation of fatty acids in plants resides solely in the peroxisomes (Gerhardt, 1992; 

Kindl, 1993). IAA is found in peroxisomes of wild type roots after IBA treatment and this is not 

monitored in several peroxisomal mutants defective in IBA-response, supporting the assumption 

that the conversion of IBA to IAA is indeed peroxisomal.  

Terfestatin A (Trf A) a root specific auxin signalling inhibitor disturbs the TIRscf

proteasome complex and disables transcription of Aux-IAA response proteins and of the synthetic 

DR5-reporter (Yamazoe et al. 2005). The blocking of auxin inducible gene transcription by 

Terfestatin A prevents the formation of lateral roots (LRF, see also Yamazoe et al. 2005) and 

neutralizes the positive LRF promoting effect of IAA. But inhibition of TIRscf-complex controlled 

gene expression has only a moderate detrimental effect on IBA activity, pointing towards the 

existence of a second LRF promoting pathway in response to IBA (see chapter 3.3.5). 

   

4.3.2. IBA-dependent NO-pathways induce lateral roots 

During IBA-treatment a considerably amount of nitric oxide is generated (see also Kolbert et al 

2007). This is not so in the IBA-insensitive mutants, indicating that ß-oxidation-like IBA 

conversion is responsible for the induction of the nitric oxide pathway. This is consistent with the 

finding that peroxisomes proliferate and emerge as the major nitric oxide source after IBA 

treatment. This is accompanied by a partial co-localization of FM 4-64 with peroxisomes, 

suggesting fusion processes between recycling endosomes/vesicles and peroxisomes. Endosomes 

appear together with mitochondria as the major source of organelle-based RNS production. But 

given the fact that peroxisomes are slightly weaker nitric oxide sources after IAA treatment than 

after IBA treatment, fusion of peroxisomes with the RNS producing endosomes is not a sufficient 

explanation for the strong nitric oxide formation inside of peroxisomes after an IBA-treatment. 

More likely is the scenario, that the IBA-to-IAA conversion is responsible for the stronger 
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peroxisomal nitric oxide signal. This would also provide a satisfactory explanation for the higher 

DAF-2T fluorescence after IBA treatment compared to IAA (chapter 3.3.4). 

Consequently, the indole butyric acid impact on LRF is more susceptible to nitric oxide 

inhibition by cPTIO than the IAA effect. The Arabidopsis mutant NOA1 has a diminished ability 

to produce nitric oxide in particular in stress conditions (Guo et al. 2003, 2005). The auxin 

promoting effect on lateral root formation is alleviated in the mutant. Similar to a cPTIO 

treatment, IBA-induced action is diminished more strongly than IAA-induced action. The NOA1

mutant is not only quite resistant to IBA in the lateral root growth assay, but shows also a much 

weaker nitric oxide production ratio after indole butyric acid treatment compared to control. More 

important, the rate of conversion of IBA-to-IAA is not affected in the mutant.  

NOA1, formerly known as NOS1 was thought to be a plant NO-synthase (Guo et al. 2003) 

located in mitochondria (Guo et al 2005). However, sequence analysis revealed that NOA1 shares 

nearly no homologies to animal NO-synthases (NOS), making a role as NOS in plants 

implausible. On the other hand, the NOA1 protein produces nitric oxide from L-Arginine, which 

is a typical NOS feature. By now it is accepted that NOA1 is an essential co-factor for a plant 

NOS-like enzyme. Interesting results revealed a NOS-like enzyme in peroxisomes of pea 

hypocotyls (Corpas et al. 2001, 2004). Moreover, peroxisomes and mitochondria can exchange 

material via a specialized vesicle transport (Neuspiel et al. 2007). This gives a possible pathway to 

unite all obtained conflicting data concerning peroxisomal or mitochondrial based NOS-like 

activity in plants.  

By using a nitrate reductase (NR) mutant, a recent study suggested, that nitric oxide formation, 

which is required for IBA-action, was produced by NR rather than NOS (Kolbert et al. 2007). But 

this study failed to provide convincing results to link NR activity with IBA activity beside an 

IBA-insensitivity of the nitrate reductase mutant. More importantly, the inhibition of nitrate 

reductase prevents not only IBA but also IAA induced nitric oxide (Hu et al. 2005). This shows 

that NR is a general important source for auxin induced nitric oxide formation and is a reasonable 

explanation why nitrate reductase mutants show IBA insensitivity (Kolbert et al. 2007). It may 

rather be assumed that stimulation of NO production by IBA involves some cooperation between 

nitric oxide synthase-like activity and nitrate reductase activity, as both NOS and NR inhibitors 

block NO accumulation (Hu et al. 2005; Kolbert et al. 2007; Pagnussant et al. 2003, 2004). 

Moreover, auxin-induced acidification may also contribute to non-enzymatic NO production by 

spontaneous reduction of nitrite at acidic pH (Stöhr et al. 2002). 

Taken together, the IBA-to-IAA conversion is needed for the bulk of IBA induced nitric 

oxide production. Despite the as yet unresolved questions concerning the NO-producing enzyme 
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systems it is clearly observable that the difference of nitric oxide level between IBA and IAA 

treatment is NOA1 dependent. 

An additional line of evidence shows the involvement of NO in IBA-induced lateral root 

formation. The lateral rootless (lrt1) maize mutant is insensitive to the auxins IAA, NAA and 

2,4D in terms of lateral root initiation (see also Hochholdinger et al. 1998). But IBA as well as 

NO can induce lateral roots in this mutant, resulting in a qualitative rescue of the phenotype. The 

primary root shows local agglomerations of stunted lateral roots. Both treatments are amplified if 

applied together, resulting in a wild type like phenotype. An inhibition of NO production by 

cPTIO abolishes IBA´s ability to induce lateral roots completely, indicating - similar as in 

Arabidopsis (compare chapter 3.3.5 and 3.3.8) - a strong NO dependency of IBA activity in maize.  

4.3.3. Auxin produced ROS and RNS implicates auxin as a redox-related stress factor 

The fact that auxins promote  ROS formation (e.g. Liszkay et al. 2004) could explain, why auxin 

signaling shares some key aspects with stress related signaling. The phytohormone abscisic acid 

(ABA) plays a crucial role in plant responses to abiotic stresses, such as anoxia. Interestingly, 

auxin induces the transcription of certain genes (e.g. Dc3), which are also induced by ABA (Rock 

and Sun 2005). It is known, that high concentrations of auxin induce ethylene and ABA synthesis 

(Raghavan et al. 2006), but even at lower concentrations the transcription of some Daucus carota

genes under the control of the Dc3 promoter is induced, even though there is no appreciable 

amount of ABA synthesis (Raghavan et al. 2006). Similar to auxin, the production of NO and 

ROS is involved in a subset of the ABA induced activities (Mata and Lamattina 2001; Yan et al.

2007). ROS/RNS play crucial roles in root development and stomatal movement control (Desikan 

et al. 2004). Finally, the activation of ABA signalling pathways by ROS is well documented for 

stress-induced adaptations (Rock and Sun 2005). 

Remarkably, pro3DC::GUS expression in root apices is activated by treatment with IAA, 

2,4-D and NAA (Rock and Sun 2005). The staining pattern of the GUS-product is identical for all 

three auxins but differs from the pattern induced by ABA or by an osmoticum. IBA induces the 

same pattern as the other auxins (chapter 3.3.7). It is a peculiar finding that IBA is transported 

polar from cell to cell, but this transport is AUX1 and PIN1 independent and not sensitive to NPA 

(Rashotte et al. 2003, 2001) indicating a PGP independent transport. Given the weak capability of 

IBA to activate IAA-inducible genes (see above) and the different mode of intercellular transport, 

some other auxin feature has to be responsible for the pro3DC::GUS expression pattern. One such 

feature would be the ROS-formation. Moreover, the auxin induced peroxynitrite pattern in root 
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apices fits nicely the auxin induced pro3DC::GUS pattern, indicating a possible role of ROS/RNS 

and not auxin as actual transcriptional activator.  

Considering the ROS/RNS dependency of auxin induced gravitropic bending (Joo et al.

2001, 2005; Hu et al. 2005) and auxin induced lateral root formation, a feedback regulation 

between auxin and stress related signaling molecules emerges, which together appear to 

orchestered plant root growth.

Auxin is used by fungi to communicate with host plants and to induce mycorrhizal 

symbiosis (e.g. Fitze et al. 2005). Members of the Glomus family of fungi (Fitze et al. 2005; 

Paszkowski and Boller 2002) manipulate “host” plants via IBA and not IAA. The IBA action 

modifies effectively root systems primarily by induced ROS and nitric oxide.

Differences in ROS formation between the two auxins IAA and IBA are probably linked 

with the IBA-to-IAA conversion that causes peroxisomal changes. The resulting 

compartimentation of auxin could also be linked with the changes of the ROS composition (see 

chapter 3.3.7).

An interesting side note is, that the ability of auxin to shape root architecture by inhibiting 

primary root elongation and formation of new lateral roots is not only linked to nitric oxide but 

also to ROS formation or more precisely to peroxidase activity. The lateral rootless (lrt1) rice 

mutant is insensitive to auxin (IAA, IBA and 2, 4-D) in terms of root elongation and lateral root 

initiation (Chhun et al., 2003). In the analogous maize mutant lrt1 (Hochholdinger et al. 1998) 

auxin inhibits root elongation only moderate (compared to wild type root elongation inhibition). 

Proteomic analyses of maize lrt1 showed that in addition to proteins, which are involved in lignin 

metabolism, one cytosolic ascorbate peroxidase is strongly up regulated (Hochholdinger et al.

2004). Not surprisingly, a treatment with the ascorbate peroxidase inhibitor, salicylhydroxamic 

acid (SHAM), induces lateral roots in lrt1. Another peroxidase over-expressing mutant (from 

tobacco) shows a phenotype lacking lateral roots almost completely and failing to react to IAA 

treatment by root elongation. Importantly, the level of free IAA is comparable to the wild type 

level (Lagrimini et al. 1997), indicating that peroxidase activity is counteracting auxin activity. 

The role of transcription independent auxin pathways highlights several details, which 

corroborate stress related redox-signalling with auxin activity. This means that auxin may have 

evolved from a simple stress elicitor to one of the most important signaling molecule in plants and 

such it is not surprising  that it still participates in general stress signaling pathways.

The comparison of IBA with IAA shows that the various forms of auxin affect not only gene 

transcription but also physiological pathways to unfold their broad spectrum of activity (see 

Fig.4.3).
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Fig.: 4.3.  
Auxin shapes the root 
Auxin modulates root architecture by at least two interwoven mechanisms, which are not directly PAT 
dependent. A direct effect of auxin on the transcriptional level which is sufficient to explain all longtime 
modifications and a second mechanism regarding primarily fast induced changes using several induced second 
messengers. 
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4.4. Summary 
Nearly every developmental phase and every growth process of a plant is affected by auxin. 

Auxin is transported over long distance via the phloem but also polarly from cell-to-cell, along the 

entire plant body; from the shoot tip downwards and from the root tip upwards. This rather unique 

feature is not shared by any other known signaling molecule in plants. Auxin transport is always 

directional, energy dependent, and substrate specific. The mechanism of polar auxin transport 

(PAT) is described by the chemiosmotic model, proposed some 33years ago by Raven  and 

independently by Rubery and Sheldrake. Since then it has obtained paradigm status receiving 

only marginal modifications by the discovery of some molecular components such as auxin 

influx and efflux transporters. However, the current study is describing and discussing 

observations, which contradict several predictions of the classical chemiosmotic theory of PAT, 

which makes it desirable to update our view of cellular auxin efflux.

For example, the chemiosmotic theory cannot explain the rapid inhibition of PAT by Brefeldin A, 

an inhibitor of secretion. Under these conditions, i.e., while PAT is inhibited, PIN auxin 

transporters are still present at the plasma membrane. This observation is the motivation and 

starting point in the current study to investigate the relationship between PAT and endosomal 

membrane recycling with some consideration of auxin action on root hair formation, and 

upstream effectors of auxin such as D´orenone and indole butyric acid (IBA). 

A new IAA specific antibody has been used here to re-investigate several key aspects of polar 

auxin transport. The conclusions from this work are: (1) Endosomes and vesicle recycling are 

essential parts of the auxin transport machinery. Auxin is enriched at cross wall domains (end 

poles) of IAA transporting cells, but not of cells impaired in PAT either due to inhibitors or to 

genetic lesions. (2) The mere presence of PIN proteins at the plasma membrane is not sufficient to 

sustain auxin transport. (3) Continuous F-actin-dependent vesicle recycling between the plasma 

membrane and endosomes is necessary for polar positioning of PIN.

It is further shown, that auxin transport provides vectorial information for the localization of root 

hair initiation sites close to apical ends of hair-forming cells (ends that are oriented towards the 

root tip). Once initiated, root hair tip growth is based on a threshold level of auxin in the 

trichoblasts. Auxin export out of trichoblasts is driven by the PIN2 auxin efflux transporter to the 

next basal epidermis cell.  
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This study provides evidence, that one cleavage product of ß-carotene, called D’orenone, inhibits 

root hair formation and modifies the root architecture. Analysis of cellular changes after 

D´orenone treatment reveal an effect of this substance on PAT. In the D´orenone treated roots 

more PIN2 protein is found in root apices and the PIN2 expression zone is increased in size and 

shifted basally (away from the root apex). Root hair growth inhibition by D´orenone is rescued by 

externally applied IAA. Moreover, PIN2 knock-out mutants are insensitive towards D´orenone. 

Taken together, D´orenone targets root hair growth by upregulating PIN2 and thereby increasing 

the rate of PAT. 

It is important to note, that auxin based modulation of root architecture involves second 

messengers such as reactive oxygen species and reactive nitrogen species (ROS/RNS). It is shown 

here, that mutants which are insensitive to the naturally occuring auxin, indole butyric acid (IBA), 

proove to be useful experimental tools to examine the relevance of the ROS/RNS dependent 

activity mechanism. Apparently there are two pathways involved in the action of IBA. One is that 

IBA is converted to IAA, which then feeds IAA into intracellular signalling pathways, and the 

other is that the IBA-conversion induces ROS/RNS production, though in a similar pattern as IAA 

within root tissues. Both  generated IAA and alongside the IBA-to-IAA conversion produced 

nitric oxide are necessary for any IBA related root architecture altering effects. The comparison of 

IBA and IAA activity in this study implicates that all mentioned auxin-dependent changes of root 

growth and development are formed by complex feedback interactions between auxin and stress-

related signalling molecules, which together underly environment-dependent phenotypic plasticity 

of the plant root system architecture. 
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