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SUMMARY 
 

SUMMARY 

The relevance of dietary insulin demand and dietary protein intake during adolescence for the 
development of body composition and the adult GH-IGF axis 

Obesity is associated with the development of chronic diseases such as type 2 diabetes. Obese children 
are likely to stay obese, resulting comorbidities may emerge already in childhood and tend to persist 
until adulthood. Puberty is a so-called critical period for overweight development, characterised by a 
physiological insulin resistance. Additionally, early life and the time around the adiposity rebound are 
potentially critical, developmental periods. The growth hormone insulin-like growth factor (GH-IGF) 
axis plays an important role during growth. It remains to be clarified whether it can be programmed by 
protein intake during growth. The first aim of this thesis was to examine the associations between 
dietary insulin demand during adolescence and its relevance for both adult body composition among 
healthy individuals and weight loss among obese adolescents with clinical features of insulin 
resistance. Under the second aim, prospective relations between dietary protein intake during different 
potentially critical, developmental periods and body composition as well as the GH-IGF axis in 
adulthood were investigated. Data came from two studies conducted in Germany and Australia; an 
ongoing, open cohort study, the DOrtmund Nutritional and Anthropometric Longitudinally Designed 
(DONALD) study and a randomised controlled trial, the Researching Effective Strategies to Improve 
Insulin Sensitivity in Children and Teenagers (RESIST) study, respectively. 

Four analyses (studies I-IV) were conducted. Study I revealed that among 262 DONALD participants, 
a higher pubertal dietary insulin demand, but not a higher dietary glycaemic index or glycaemic load, 
was associated with higher body fat percentage in young adulthood. In Study II, a higher dietary 
insulin demand, estimated by dietary glycaemic load and insulin load, was related to less weight loss 
expressed as BMI as percentage of the 95th percentile (BMI %95 centile) among 91 RESIST 
participants. Inclusion of total energy intake in the model explained the observed associations between 
dietary insulin demand and change in BMI %95 centile. Study III, including 262 DONALD 
participants, indicated that a higher pubertal animal protein intake was independently associated with 
higher adult fat-free mass index (FFMI), but not fat mass index (FMI), in women. Among men, a 
higher pubertal animal protein intake was related to higher FFMI and lower FMI only after adjusting 
FFMI for FMI levels in young adulthood and vice versa. Plant protein intake was not associated with 
adult body composition among either sex. Higher animal protein intake around the adiposity rebound 
(n=220) tended to be related to higher adult FFMI among boys, but not girls. No relations were found 
between animal or plant protein intake in early life (n=159) and body composition in young adulthood. 
Study IV, also based on data from the DONALD study (n=213 and n=201, respectively), showed that 
a habitually higher animal protein intake during puberty was related to higher levels of adult IGF-I, 
IGFBP-3, and lower IGFBP-2, but not to IGFBP-1 among women. In turn, animal protein intake in 
early life (n=130) was inversely related to IGF-I levels in younger adulthood among males only. 
However, no association was observed between animal protein intake around adiposity rebound 
(n=179) and IGF-I in younger adulthood. No relations were observed between plant protein intakes in 
all three periods and adult GH-IGF axis. 

In conclusion, results indicate that a lower dietary insulin demand and a higher dietary protein intake 
may be favourably related to adult body composition. Among women, a higher pubertal animal protein 
intake may induce an up-regulation of the GH-IGF axis which persists until adulthood. By contrast, 
inverse associations between higher animal protein intakes in early life and IGF-I concentrations 
among men support the idea that habitually higher animal protein intakes in this period may trigger an 
early programming of the GH-IGF axis. Although these findings need to be confirmed in other 
populations, a reduction of dietary insulin demand and a moderate increase in dietary protein intake 
may have beneficial effects in the prevention of obesity. Moreover, it needs to be identified which 
mechanisms lie behind observed associations between dietary animal protein intake and the GH-IGF 
axis so as to determine to what extent they reflect physiological adaptations or whether these 
associations indicate higher or lower risks of future diseases. 
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ZUSAMMENFASSUNG 

Die Relevanz des ernährungsbedingten Insulinbedarfs und der Proteinaufnahme in der Jugend 
für die Entwicklung der Körperzusammensetzung und der GH-IGF Achse 

Adipositas ist mit einer Reihe von chronischen Erkrankungen wie Typ 2 Diabetes assoziiert. Adipöse 
Kinder und Jugendliche haben ein hohes Risiko adipös zu bleiben und sind zudem anfälliger, bereits in 
jungen Jahren chronische Erkrankungen zu entwickeln, die bis ins Erwachsenenalter bestehen bleiben. 
Dabei ist die Pubertät durch eine vorübergehende physiologische Insulinresistenz gekennzeichnet und 
eine sogenannte kritsche Phase der Adipositasentwicklung. Zudem sind die frühe und mittlere 
Kindheit mögliche kritische Entwicklungsphasen. Die Wachstumshormon-insulin-like growth factor 
(GH-IGF) Achse spielt eine wichtige Rolle im Wachstum. Bisher ist unklar, ob die GH-IGF Achse 
durch die Proteinaufnahme programmiert werden kann. Erstes Ziel dieser Arbeit war Assoziationen 
zwischen dem ernährunsbedingten Insulinbedarf und der Körperzusammensetzung von gesunden 
Erwachsenen sowie der Gewichtsreduktion bei adipösen Jugendlichen mit Insulinresistenz und/oder 
Prädiabetes zu untersuchen. Zweites Ziel war, den prospektiven Zusammenhang zwischen der 
Proteinzufuhr in verschiedenen, potentiell kritischen Entwicklungsphasen und der 
Körperzusammensetzung sowie der GH-IGF Achse bei gesunden Erwachsenen zu untersuchen. Als 
Datengrundlage dienten sowohl die deutsche DOrtmund Nutritional and Anthropometric 
Longitudinally Designed (DONALD) Studie, eine offene, prospektive Kohortenstudie, als auch die 
australische Researching Effective Strategies to Improve Insulin Sensitivity in Children and Teenagers 
(RESIST) Studie, eine randomisierte, kontrollierte Interventionsstudie zur Gewichtsreduktion. 

Vier Analysen (Studien I-IV) wurden durchgeführt. Studie I zeigte, dass bei 262 Probanden der 
DONALD Studie ein höherer Insulin Index und eine höhere Insulin Last, aber nicht ein höherer 
glykämischer Index bzw. eine höhere glykämische Last in der Pubertät mit einem höheren 
Körperfettanteil im jungen Erwachsenenalter assoziiert war. In Studie II war bei 91 Probanden der 
RESIST Studie ein höherer Insulinbedarf, geschätzt durch die insulinämische und glykämische Last 
der Ernährung, mit weniger Gewichtsverlust ausgedrückt als BMI in Prozent der 95. Perzentile (BMI 
%95 Perzentile) assoziiert. Die Berücksichtigung der Gesamtenergieaufnahme im Modell erklärte den 
Zusammenhang zwischen ernährungsbedingtem Insulinbedarf und Veränderung von BMI %95 
Perzentile. Studie III schloss 262 DONALD Probanden ein und zeigte, dass eine höhere Aufnahme an 
tierischem Protein während der Pubertät bei Frauen unabhängig von anderen Covariaten mit einem 
höheren Fettfreie-Masse-Index (FFMI), aber nicht Fettmasse-Index (FMI) assoziiert war. Bei Männern 
hing eine höhere Aufnahme an tierischem Protein mit einem höheren FFMI und niedrigerem FMI nur 
nach Adjustierung des FFMI für FMI im jungen Erwachsenenalter und vice versa zusammen. Die 
Aufnahme von pflanzlichem Protein in der Pubertät war dagegen weder bei Frauen noch bei Männern 
mit der Körperzusammensetzung assoziiert. Allein bei Jungen war die Tendenz zu beobachten, dass 
eine höhere Aufnahme an tierischem Protein zum Zeitpunkt des adiposity rebound (n=220) mit einem 
höheren FFMI im jungen Erwachsenenalter einherging. Weder tierisches noch pflanzliches Protein in 
der frühen Kindheit (n=159) waren mit der Körperzusammensetzung im jungen Erwachsnenalter 
assoziiert. Studie IV basierte ebenso auf Daten der DONALD Studie (n=213 bzw. n=201) und zeigte, 
dass nur bei Frauen eine höhere Aufnahme an tierischem Protein während der Pubertät mit höheren 
IGF-I und IGF-Bindungsprotein(BP)-3, niedrigeren IGFBP-2, aber nicht IGFBP-1 Konzentrationen im 
frühen Erwachsenenalter zusammenhing. Die Aufnahme von tierischem Protein in der frühen Kindheit 
(n=130) war wiederum nur bei Männern invers mit IGF-I Konzentrationen im frühen 
Erwachsenenalter assoziiert. Zwischen der Aufnahme an tierischem Protein zum Zeitpunkt des 
adiposity rebound (n=179) und IGF-I Konzentrationen im frühen Erwachsenenalter konnten keine 
Zusammenhänge gefunden werden. Pflanzliches Protein war in keiner Phase mit der GH-IGF Achse 
im frühen Erwachsenenalter assoziiert. 

Zusammenfassend legen die Resultate nahe, dass ein geringerer Insulinbedarf und eine höhere 
Aufnahme an tierischem Protein in der Pubertät vorteilhaft mit der Körperzusammensetzung im 
jungen Erwachsenenalter assoziiert sind. Bei Frauen bedingte ein höherer Verzehr an tierischem 
Protein in der Pubertät eine Hochregulation der GH-IGF Achse bis ins frühe Erwachsenenalter. Bei 
Männern hingegen deutet der inverse Zusammenhang zwischen einer höheren Aufnahme an 
tierischem Protein in der frühen Kindheit und niedrigeren IGF-I Spiegeln im frühen Erwachsenalter 
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auf eine langfrisige Programmierung der GH-IGF Achse hin. Obwohl diese Ergebnisse noch in 
anderen Populationen bestätigt werden müssen, könnten eine Reduktion des Insulinbedarfs und eine 
moderate Erhöhung der Proteinaufnahme positive Auswirkungen in der Adipositasprävention haben. 
Des Weiteren muss geklärt werden, welche Mechanismen hinter den beobachteten Zusammenhängen 
von tierischem Protein und der GH-IGF Achse liegen, um zu verstehen, ob es sich dabei um eine 
physiologische Adaptation oder ein erhöhtes/verringertes Risiko für spätere chronische Erkrankungen 
handelt. 
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INTRODUCTION 
 

1. INTRODUCTION 

The obesity prevalence is rising since the 1980s, with a concomitant increase of affected 

children. Obese children are likely to stay obese and resulting comorbidities, like type 2 

diabetes, hypertension or dyslipidaemia emerge already in childhood and are also likely to 

persist until adulthood. With regard to obesity development, there may exist critical periods in 

which stimuli like nutritional factors might have sustained effects on adult health. Particularly 

early life, adiposity rebound, and puberty are potentially critical and sensitive phases in which 

nutritional influences may affect an individual´s predisposition to later obesity [1, 2], hence 

providing potential for prevention. Puberty may be of specific relevance, since this phase is 

characterized by a physiological insulin resistance [3], changes in various hormone levels, 

including the insulin-like growth factor (IGF)-I, growth hormones as well as sex steroids [4], 

and concomitant changes in body composition. 

The importance of diet composition for the prevention and management of obesity has been 

controversially debated and it has not yet been elucidated whether the conventional low fat 

diets are the best approach [5-7]. Official dietary guidelines in Germany and Europe still 

focus on restricting energy by reducing fat in the prevention of overweight as well as for 

weight loss [5, 8, 9]. A reduction of fat intake for short-term weight loss as well as long-term 

weight maintenance will lead to a relative increase in carbohydrate and/or protein intake 

compensating the reduction in fat. In this context, interest in the effect of dietary carbohydrate 

and protein intake on weight management has risen [10, 11]. With regard to high 

carbohydrate diets particular concern lies on excursions of postprandial glucose and insulin 

response, which might increase the risk of obesity and related chronic diseases [12, 13]. 

Hence, there exists increasing interest in the dietary glycaemic index (GI) estimating the 

relative glycaemic potency and glycaemic load (GL) indirectly estimating the dietary insulin 

demand of available carbohydrates consumed. However, high-GI foods influence both blood 

glucose and insulin levels and it has not yet been clarified which of these postprandial 

changes is potentially more relevant for an unfavourable development of body composition. 

Insulin secretion is also stimulated by dietary protein and moreover, dietary protein and fat 

may both act synergistically with carbohydrates, raising insulin levels and reducing 

postprandial glycaemia [14-16]. Therefore, the concept of the food insulin index (FII), 

estimating the dietary insulin demand may be of importance. With the knowledge of the FII 

and the foods energy content the insulin demand of a diet can be estimated. Of note, the FII 

1 



INTRODUCTION 
 

concept, unlike the GI concept, also considers foods with no or low amounts of carbohydrates 

[17]. 

High protein diets [18-20] as well as low-GI diets [21-23] have been reported to play a role in 

body weight regulation and modification of obesity related risk factors. The Diet, Obesity and 

Genes (DiOGenes) study, a multi-centre, randomized, dietary intervention investigated the 

efficacy of different low-fat diets, varying in protein content and GI, in preventing weight 

(re)gain and certain obesity-related risk factors in obese European families. A diet 

characterised by both a modest increase in protein content and a modest reduction in the GI 

led to maintenance of weight loss among adults [24]. Furthermore, the combination of a high 

protein and low-GI diet was found to be related to decreases in overweight or obesity rates 

among children and adolescents [25]. However, overall evidence relating insulin demand and 

protein intake during adolescence to body composition or weight loss is scarce and their 

relevance for prevention and management of obesity is not clear. 

Protein intake particularly in childhood may not only be related to body composition but to 

the growth hormone (GH)-IGF axis because the GH-IGF axis plays an important role in foetal 

and childhood growth and metabolism [26]. Some, but not all [27, 28], intervention studies 

have shown a relation between higher milk intake and higher IGF-I [27, 29, 30] and IGFBP-3 

[29], whereas prospective evidence suggest an inverse association between milk intakes in 

early childhood and IGF-I levels in later life [31, 32]. Prospective evidence covering different, 

potentially critical, developmental periods is lacking, so as to unravel whether such an inverse 

association between animal protein intake and the GH-IGF axis is confined to early life. 

Therefore, the first aim of this thesis was to examine the dietary insulin demand and its 

relevance for both the development of body composition until young adulthood among a 

healthy population and weight loss among obese adolescents with clinical features of insulin 

resistance. The second aim was to examine dietary protein intake during different potentially 

critical, developmental periods and its relevance for the development of body composition 

and the GH-IGF axis in adulthood in a healthy population, respectively. Data came from two 

comprehensive studies conducted in Germany and Australia: an ongoing, open cohort study, 

the DOrtmund Nutritional and Anthropometric Longitudinally Designed (DONALD) study 

and a randomised controlled trial, the Researching Effective Strategies to Improve Insulin 

Sensitivity in Children and Teenagers (RESIST) study, respectively. 
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Outline of this thesis 

This thesis begins with a Theoretical background (chapter 2), first describing the different 

predictors of postprandial insulin response which might play a role for the development of 

body composition and obesity. Thereafter, the epidemiology of obesity is described, with 

specific focus on Germany and Australia because the two studies on which this thesis is based 

were conducted in Germany and Australia. Consequences and determinants of obesity are 

summarized. This chapter also includes a summary of potential mechanisms of dietary protein 

intake as well as dietary glucose and insulin response and obesity. Consecutively, the 

regulation and the relevance of the GH-IGF axis for chronic disease risk are presented. In this 

context, the concept of critical periods for obesity development is outlined, focussing on early 

life, adiposity rebound and puberty as these periods are important in the context of this thesis. 

The last part of the theoretical background presents evidence from previous studies linking 

dietary GI and GL to body composition and weight loss and protein intake to body 

composition, obesity and the GH-IGF axis. Chapter 3 specifies the Aims and research 

questions addressed in this thesis and is followed by a short overview of the General 

methodology of the two studies on which the original articles of this thesis are based (chapter 

4). Chapter 5 summarizes the results and includes the abstracts of the respective publications; 

copies of the original articles are included in the appendices (1-4). In the General discussion, 

the results of the original studies are discussed with regard to their scientific background 

(chapter 6). Finally, overall Conclusions are drawn and perspectives for future research are 

given (chapter 7). This thesis is cumulative and does not include detailed descriptions on the 

performed statistical analyses or the obtained results. The information on the analytical 

approaches, detailed presentations of the results and discussions of specific findings can be 

found in the original articles (appendices 1-4). 
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2. THEORETICAL BACKGROUND 

2.1 Dietary predictors of insulin response 

Studies among individuals with and without diabetes have found that higher levels of HbA1c 

(glycosylated haemoglobin) were associated with higher risks of cardiovascular disease and 

all-cause mortality [33-35]. HbA1c indicates the exposure to postprandial elevations of blood 

glucose among non-diabetic individuals. Therefore, the effect of food on glycaemic 

excursions might be relevant for disease risk including obesity. Likewise, postprandial rises of 

insulin levels might be of relevance for unfavourable health outcomes including weight gain 

and diabetes development. It has been assumed that insulin response is proportional to 

glucose response, hence supposing that glycaemic response is a precise predictor of insulin 

response, which is however not the case [36]. Postprandial insulinaemia has been shown to 

predict weight gain over a mean of 16.7 y, especially among individuals with high insulin 

sensitivity [37] as well as weight gain and change in waist circumference over 6 years in 

adults, especially among those consuming lower-fat diets [38]. Prospective long-term, 

observational studies found that glycaemic load, an indicator of insulin demand, was an 

independent risk factor for type 2 diabetes in women and men [39, 40]. Yet, the relevance of 

insulin response within disease risk including obesity has been controversially debated [41-

43]. Mechanisms relating glucose response to the development of obesity have been 

established, whereas the relevance of insulin response for the development of obesity has not 

been fully elucidated. Potential mechanisms relating glucose and insulin response to body 

composition and obesity in order to disentangle effects of glucose and insulin response will be 

presented in chapter 2.2.1 (Potential mechanisms relating glucose and insulin response to 

body composition and obesity).  

The concepts of dietary GI and FII originate from the idea to better estimate the dosage of 

insulin required to metabolise the postprandial glycaemic response in type 1 diabetes [44, 45]. 

In this context, the dietary GL as indirect and the insulin load (IL) as direct estimate of the 

postprandial insulin demand are of relevance. In addition, research has been interested in the 

intake of dietary protein, which has been shown to influence postprandial insulin response. 

The following chapters describe the determinants of insulin response firstly from the 

methodological and metabolic perspective of dietary GL and IL and secondly with regards to 

the macronutrient level (dietary protein and its sources). 
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2.1.1 Dietary glycaemic load 

Carbohydrate containing foods are the major stimulus of postprandial blood glucose but their 

glycaemic potential varies with the type of carbohydrate [46]. It was assumed that the 

chemical structure of carbohydrates could be accounted for increases in blood glucose levels; 

“simple sugars” (mono- and disaccharides) being digested faster than “complex 

carbohydrates” (oligo- and polysaccharides) [47]. However, evidence suggested that these 

observations were not necessarily true as some starches resulted in similar blood glucose rises 

compared to glucose [48, 49]. This lead to the proposal of a new concept to classify 

carbohydrate containing foods based on their glycaemic potential – the concept of the GI [44]. 

Definition 

The dietary GI is defined as the incremental area under the blood glucose response curve 

(AUC) following the intake of 50 g of available carbohydrates from a test food as compared 

with the AUC of blood glucose response induced by the same amount of carbohydrates 

ingested as glucose (reference food) [44]. GI measurements are done in at least 10 healthy 

individuals after an overnight fast. Capillary blood samples are taken during the first 2 hours 

after the ingestion of the test food to measure the glycaemic response, i.e. at baseline (0) and 

at 15, 30, 45, 60, 90 and 120 min after starting to eat the test meal [50]. The GI of a test food 

is calculated as the mean of individual ratios, i.e. (area under the 120 min glucose response 

curve elicited by the test food)/(area under the 120 min glucose response curve elicited by the 

reference food) multiplied by 100. The actual blood glucose response varies depending on the 

type of carbohydrates as well as a number of other factors such as the physical form of foods, 

the grade of food processing, the cooking method or the presence of organic acids (see also 

Table 1) [50]. 
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Table 1 Factors affecting the glycaemic response to foods or meals (adapted from Brouns et al [50]) 

Food factor Effect on glycaemic response / glycaemic index 
Gross matrix structure 
Cell-wall and starch structure  
Granular starch structure  
Amylose and amylopectin content 
 
Gelling dietary fibre content 
Organic acids, e.g. acetic acid  
Amylase inhibitor  
Monosaccharide composition 
Molecular composition of carbohydrate 
Resistant starch content 

Higher when homogenised 
Higher with ripening 
Higher when gelatinised (e.g. through heat treatment) 
Lower with higher amylose content, higher with increased 
amylopectin content 
Reduced when gelling fibres are added 
Reduced when acids are added 
Reduced when added 
Reduced with increased fructose content 
Reduced with increased number of bonds other than α1–4 and α1–6 
Indifferent when testing equal amounts of available carbohydrate 

 

The GI is a qualitative measure of carbohydrate containing foods, classifying them according 

to their glycaemic response to a defined carbohydrate amount. Foods with a GI<55 are 

regarded as low-GI foods, whereas those with a GI>70 are considered high-GI foods [51]. 

However, the total amount of carbohydrates also affects the glycaemic response. Salmeron et 

al introduced the concept of the GL to describe the absolute glucose response induced by a 

serving of a carbohydrate-rich food [39]. The GL corresponds to the amount of available 

carbohydrates multiplied by their respective GI and can be interpreted as the amount of 

carbohydrates adjusted for its glycaemic potency. 

Estimation 

To estimate the GI of a diet, assignment of a published GI [52] to each carbohydrate 

containing food recorded in dietary records or 24h dietary recalls is required. Alternatively, 

when a food frequency questionnaire (FFQ) is used, mean dietary GI values for food groups 

need to be estimated and assigned. The total daily GL of a participant is obtained by summing 

the product of all consumed food’s carbohydrate content (in grams) by the food’s GI, divided 

by 100. The average dietary GI is estimated by dividing the total daily GL by the total daily 

carbohydrate intake multiplied by 100. While the dietary GI resembles the overall glycaemic 

potency of a diet, the dietary GL is an indirect estimate of the insulin demand. 

2.1.2 Dietary insulin load 

Analogous to glucose response, the actual insulin response varies depending on the type of 

carbohydrates as well as other factors such as the physical form of foods, grade of food 

processing or cooking method. Furthermore, insulin secretion is stimulated by dietary protein 

and dietary protein and fat may both act synergistically with carbohydrates, raising insulin 
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levels and reducing postprandial glycaemia [14, 15] (see also chapter 2.1.3). Beyond that, 

studies have shown that the postprandial insulin responses differed between several types of 

bread; for example, rye breads had lower insulin responses compared to white wheat bread 

[53, 54] and some rye varieties may be more insulin saving than others [55]. Several factors 

exist that mediate postprandial insulin response such as amino acids, glucose-dependent 

insulinotropic polypeptide (GIP) or glucagon-like peptide (GLP)-1 [56-58]. Since 

postprandial insulin responses are not always proportional to blood glucose responses, the 

postprandial insulin response cannot be estimated by GI, as already mentioned. Recent 

findings of an intervention trial among 10-13 healthy participants showed superiority of 

dietary GL over carbohydrate content alone to estimate postprandial insulinaemia [17], 

nonetheless, GL is only an indirect measure of postprandial insulin demand. Accordingly, a 

direct measure of the actual postprandial insulin response is needed. 

Definition 

The concept of the FII provides a classification of all foods according to their postprandial 

insulin response [59]. The FII is defined as the insulinaemic response (AUC) following the 

intake of 1 MJ of a food relative to the insulinaemic response to glucose i.e. the reference 

food (FII=100) [60]. Similar to GI, FII measurements are conducted in groups of 10 healthy 

individuals after an overnight fast. Capillary blood samples are taken during the first 2 hours 

after the ingestion of the test food to measure the insulinaemic response, i.e. at baseline (0) 

and at 15, 30, 45, 60, 90, 105 and 120 min after starting to eat the test meal [59]. The FII of a 

test food is calculated as the mean of individual ratios, i.e. (area under the 120 min insulin 

response curve elicited by the test food)/(area under the 120 min insulin response curve 

elicited by the reference food) multiplied by 100 [17, 59]. 

Estimation 

Estimation of the dietary insulin index (II) requires the assignment of published FII values to 

each food recorded in dietary records or 24h dietary recalls. When using a FFQ, mean FII 

values for food groups need to be estimated and assigned if no tested FII value of food 

samples representative for FFQ items were available [61]. To date, 121 published FII values 

[17] and 6 recently measured values [62] are available. The total dietary IL of a participant is 

estimated by summing the product of FII, energy content and consumption frequency over all 

recorded food items. The average dietary II is calculated by dividing the total dietary IL by 

the total energy intake. Both, II and IL resemble the dietary insulin demand; however, they 

still have slightly different interpretations: While the dietary II is more a qualitative measure, 
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ranking foods according to their postprandial insulin response, the dietary IL gives a 

quantitative insight of the insulin demand of the diet. 

2.1.3 Dietary protein 

Although carbohydrate containing foods are the major stimulus of insulin secretion, they are 

not the only one. Already in the 1960s, researchers found that protein or amino acids given 

orally or intravenous stimulated insulin response in healthy or diabetic individuals [63-66]. 

Nonetheless protein rich foods vary in their insulin stimulating capacity [57, 59] and the 

relation might be different with respect to the protein source. Therefore, the following 

paragraphs focus on the macronutrient level of the diet and are presented by protein sources, 

i.e. dairy and meat products. 

Dairy products 

Several studies have examined the effect of dairy products such as milk, whey and cheese on 

postprandial glucose and insulin response and found that there exist differences in the 

metabolic responses. 

Milk products have been shown to have a disproportionally high insulin response compared 

to what would have been expected from the corresponding glucose response among healthy 

participants [58, 67]. For example, the addition of milk to a low-GI spaghetti meal resulted in 

a 300% increase of the insulin response compared to the spaghetti alone, while there was no 

difference seen with regard to the glucose response. Thus, even the addition of a usual amount 

of milk (200mL) to a low-GI meal may elevate the postprandial insulinaemia to the extent of 

high-GI white bread alone [67]. In addition, milk products have been shown to reduce 

postprandial glycaemia, in fact induce hypoglycaemia in healthy participants [57, 58, 68], 

which may be explained by the high insulin concentrations. 

On a food level, components like lactose, whey and casein are discussed to be responsible 

for high insulin responses. Lactose stimulates insulin response; however, it has been shown 

that consumption of milk products caused greater increases of insulin levels than the 

consumption of an equivalent amount of lactose among healthy adults. This suggests that 

there may exist milk components besides lactose which are responsible for increased insulin 

releases [58]. Studies which investigated the effect of dairy products with an equivalent 

amount of lactose demonstrated that casein produced similar insulin responses compared to 

milk and white wheat bread (reference food) among healthy participants. Conversely, whey 

had a more than 50% higher insulin response than white wheat bread and all dairy products 
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decreased the glucose response [57, 68]. However, not all studies confirmed an effect of whey 

on insulin response [69]. Earlier studies have investigated the influence of cottage cheese, 

which still contains whey, on insulin response, finding that it stimulated insulin response and 

decreased blood glucose in healthy and type 2 diabetic individuals [16, 70]. Furthermore, a 

co-ingestion of cottage cheese and glucose among type 2 diabetic individuals resulted in an 

increase of insulin response which was more than 2 times greater than that following the 

consumption of glucose alone, while no differences were observed with regards to glucose 

response between the two groups [16]. The sum of insulin responses of cottage cheese and 

glucose alone was smaller than the insulin response of the co-ingesting cottage cheese and 

glucose. Thus, studies in type 2 diabetic individuals indicate that the effect of protein and 

carbohydrates on insulin response may not be additive but synergistic. The reason for this is 

unknown [16]. Nonetheless, a synergistic effect of protein and carbohydrate would result in 

disproportional insulin responses which may have an implication on treatment of type 2 

diabetes. 

Overall, milk has insulinotropic effects; but this property might predominantly be related to 

the whey fraction. 

Meat products 

Earlier studies have examined the relation between meat products and postprandial glucose 

and insulin response. Similar to what has been observed for dairy protein, results showed that 

among healthy and type 2 diabetic individuals the ingestion of meat protein resulted in 

postprandial insulin increases, while the postprandial glucose response was rather decreasing 

[71, 72]. The co-ingestion of meat protein and carbohydrates given as glucose caused 

increases in postprandial glucose and a 2.7 to 4.5 fold higher increase in postprandial insulin 

response compared to meat protein alone. In addition, Nuttall et al observed that the co-

ingestion of meat protein and glucose worked synergistically to increase the postprandial 

insulin response because it was 1.3 times greater than the sum of insulin responses of protein 

and glucose alone. Furthermore, the authors observed a dose-response relation between 

insulin response and the protein dose given (10 g to 50 g) [72]. In contrast, Krezowski et al 

observed that the co-ingestion of meat protein and glucose on postprandial insulin response 

was as high as the sum of insulin responses following glucose and protein alone suggesting an 

additive effect only. Observations for meat protein are similar to what has been observed for 

dairy products, however, the effect of meat protein seems to be smaller compared to dairy 

protein and whey protein in specific. Furthermore, it is controversial whether meat protein and 
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carbohydrate act synergistically. Understanding the relation of dietary protein intake and 

insulin secretion as well as potential mechanisms may identify novel targets for future 

diabetes therapies. 

Potential mechanisms 

The mechanisms for the insulinotropic effect of protein and dairy and/or meat protein in 

specific have not been fully elucidated. The amino acid profile and specific amino acids of the 

ingested protein itself may play a role in the hormonal response. Furthermore, the physical 

form of proteins, and/or bioactive peptides which are released during digestion seem to be 

involved. 

Branched chain amino acids (leucine, isoleucine, valin) appear to have a higher insulinogenic 

effect than others, but also amino acids such as lysine, threonine, alanine or arginine have 

been found to stimulate postprandial insulin response [57, 73-77]. It is known that the 

mitochondrial metabolism is crucial for the coupling of amino acid and glucose recognition to 

the exocytosis of the insulin [78]. However, mechanisms by which amino acids enhance 

insulin secretion vary and depending on the amino acid different metabolic pathways are 

activated. Amino acids with a positive charge such as arginine increase insulin secretion by 

direct depolarization, while others like alanine which co-transport NA+ can depolarise the cell 

membrane as a consequence of this co-transport [78]. Leucine may have allosteric effects on 

regulatory enzymes such as the glutamate dehydrogenase, hence increasing the glutamine-

stimulated insulin secretion or stimulate insulin secretion via the activation of the mTOR 

(mammalian target of rapamycin) signalling pathway [79, 80], which will not be described in 

detail here. Overall, meat such as beef contains higher contents of amino acids compared to 

cow’s milk or whey [81], but insulinotropic effects might be influenced by the physical form 

of proteins too [56]. Compared to solid proteins, liquid proteins pass the stomach faster and 

thus they are digested and absorbed quicker [82], resulting in higher plasma concentration of 

amino acids [57]. 

Another possible pathway may work through the activation of the incretin system, i.e. the 

system of insulinotropic hormones. Two relevant incretin hormones are the GIP and the GLP-

1. They are released from the intestinal mucosa in response to food intake, enhancing insulin 

secretion in excess to what is caused by absorbed nutrients such as glucose or amino acids 

[83]. The GIP response may be a key factor for the higher insulin responses and subsequent 

decrease of glucose as seen after the ingestion of whey at least in healthy participants [57, 73]. 

In type 2 diabetic patients this insulinotropic effect of GIP is more uncertain because the 
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GLP-1 secretion and the insulinotropic activity of GIP are both impaired resulting in an 

impaired incretin effect [83]. In addition, carbohydrate and fat intake have been shown to 

mediate GIP response, whereas this effect is more uncertain for protein ingestion [84], 

although stimulation effects have been reported [73, 85, 86]. 

2.2 Body Composition and GH-IGF axis - Markers of later disease risk 

Both body composition and the GH-IGF axis play a role in the development of chronic 

diseases. Obesity is related to comorbidities such as type 2 diabetes, hypertension or 

dyslipidaemia; the GH-IGF axis may play a role in the development of obesity, type 2 

diabetes, and cardiovascular disease as well as different types of cancers. Knowledge on the 

development of body composition and the GH-IGF axis which may indicate an increased 

disease risk is needed. In this context, potentially critical developmental periods may play a 

role in the development of body composition and the GH-IGF axis. 

2.2.1 Body composition and obesity 

Definition of obesity 

Overweight and obesity are defined as an abnormal or excessive body fat accumulation that 

may have detrimental health effects [87]. Among adults, body mass index (BMI) is the most 

commonly used, even though crude indicator for obesity, and it is estimated as weight / 

height2 (kg/m2). A BMI ≥25 kg/m2 defines overweight, while a BMI ≥30 kg/m2 classifies 

obesity [87]. BMI does not distinguish between weight associated with muscle or fat mass for 

which the BMI has been criticised [88-90] and the relation between BMI and body fat varies 

according to build and proportion [87]. To properly use and interpret BMI values it is 

important to also consider age, sex, ethnicity, physical activity, and body fat distribution. 

During growth the BMI changes, which is why age- and sex-specific BMI percentiles are used 

to assess paediatric overweight and obesity [91]. These percentiles are typically based on 

national data and different cut-offs exist in different nations. In Germany there exist two 

datasets, the Kromeyer-Hausschild percentiles based on data from 17 regional studies 

conducted between 1985 and 1999 [92] and the newer KiGGS percentiles based on a 

representative Examination Survey for Children and Adolescents (KiGGS) conducted 

between 2003 and 2006 [93]. Because the KiGGS percentiles reflect the BMI distribution 

from 2003 to 2006, these data already include 50% more overweight children compared to the 

data assessed by Kromeyer-Hausschild (1985 to 1999) [94]. Hence, the use of the Kromeyer-
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Hausschild percentiles to classify overweight and obesity is rational. A BMI above the 90th 

and 97th percentile of German reference curves is classified as overweight and obesity, 

respectively [92]. By contrast, in the United States (US) the 85th and 95th percentiles of the 

2000 Centers for Disease Control and Prevention (CDC) growth charts are used to define 

overweight and obesity, respectively, and data was derived from 5 representative national 

surveys conducted from 1963 to 1994 [95-97]. To overcome the problem of different national 

definitions, the International Obesity Task Force (IOTF) has developed an international 

standard based on 6 nationally representative surveys from Brazil, Great Britain, Hong Kong, 

the Netherlands, Singapore and the US conducted between 1963 and 1993 to provides age- 

and sex-specific cut-offs that correspond to an adult BMI of 25 and 30 kg/m2 at 18 years of 

age [98]. 

In research and evaluation of weight loss trials involving children and adolescents of different 

ages and sexes, BMI z-scores, also called standard deviation scores (SDS), are calculated 

using population based BMI reference data to adjust for changes which occur with normal 

growth. They provide a quantitative measure of how far away a child’s BMI lies from the 

mean BMI value for sex and age, expressed in units of standard deviations (SD) [99]. 

However, change in BMI SDS can represent a broad range of weight changes, depending 

upon age, sex, initial BMI and reference data used [100-102]. Furthermore, reference data 

such as provided by the CDC were not designed to provide exact SDS values for children and 

adolescents beyond the 97th percentile, i.e. a BMI SDS >1.881 [103]. An alternative measure 

to assess and track the development of extremely heavy children and adolescents, their BMI 

can be described as a percentage of the 95th percentile (%95 centile) [103]. It has been shown 

that the association between weight change and change in BMI %95 centile is stronger than 

the association between weight change and BMI SDS in obese adolescents [104]. Using CDC 

data, a decrease in BMI SDS of ~0.25 was found to represent weight changes between -6.1 kg 

and +0.1 kg [104]. If a clinically significant change in BMI SDS was assumed to be 0.25 

[101], the 15.1 year old boy who lost 9.6 kg (baseline BMI 39) would be classified as a 

treatment “failure“ because the change in BMI SDS was ~0.16 (estimated from figure), 

whereas the 10.8 year old girl (baseline BMI 27), who maintained her weight would be 

classified as treatment “success” because the BMI SDS was ~0.25 (estimated from figure). 

Their respective decreases in BMI %95 centile were 13% and 4% [104], showing that BMI 

%95 centile may be a better indicator of weight change compared to change in BMI SDS 

among obese adolescents. 
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Besides BMI as a surrogate measure of body fatness researchers have suggested to also 

distinguish between fat mass and fat-free mass [90, 105-107]. Therefore, percentage body fat 

(%BF) as well as fat mass index (FMI) and fat-free mass index (FFMI), calculated as  

([weight · %BF] / height2) and ([weight - weight · %BF] / height2), respectively, are 

frequently used. To define excess of body fat, %BF reference values for adults [108, 109] as 

well as for children and adolescents [110] have been published. For children and adolescents, 

reference percentile curves were developed using total body fat data of 1,985 British 

Caucasian children aged 5-18 years measured by bioelectrical impedance analysis (BIA). 

%BF above the 85th and 95th percentile is defined as overfat and obese, respectively [110]. 

For this thesis Kromeyer-Hausschild reference curves were used to derive sex- and age-

independent SDS for the analyses of the DONALD study, since KiGGS percentiles have not 

yet been available for the first analysis. CDC growth charts were used for estimations within 

data of the RESIST study. Within the RESIST study weight loss was assessed using BMI 

%95 centile to better describe changes among obese participants. Overweight and obesity 

were defined according to the International Obesity Task Force criteria to allow 

comparability. 

Epidemiology 

Worldwide obesity has nearly doubled since 1980 and became a major health burden [111]. 

The International Association for the Study of Obesity (IASO) and the IOTF analysis 

estimated that in 2010 approximately 1.5 billion adults were overweight, including 475 

million who were obese. Furthermore, up to 200 million school aged children were classified 

as overweight with 40-50 million of them being obese [112]. 

For Germany, the German Health Interview and Examination Survey for Adults (DEGS1) 

conducted from 2008 to 2011 and KiGGS conducted from 2003 to 2006 provide the latest 

representative data. According to DEGS1, 67.1% of men and 53.0% of women (≥18 years of 

age) were overweight and 23.3% of men and 23.9% of women were obese, with an evidently 

higher prevalence in the older age groups [113]. Using the definition for overweight and 

obesity by Kromeyer-Hausschild as described above [92], the KiGGS survey revealed that 

15.4% of children between the ages of 7 and 10 were overweight (BMI > 90th percentile) and 

6.4% were obese (BMI > 97th percentile). Among adolescents aged 11-13 years, 18.6% were 

overweight and 7.2% were obese. Among 14-17 year olds, less adolescents were overweight 

and more obese, i.e. 17.1% and 8.5%, respectively [94]. Similar proportions were observed 

among girls and boys. 
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For Australia, the 2011 to 2012 National Health Survey provides data on overweight and 

obesity prevalence, revealing that 63.4% adults (≥18 years of age) were overweight and 

28.3% were obese. More men (70.3%) were overweight or obese compared to women 

(56.2%). Rates for both men and women have increased since 2007 to 2008 (67.7% for men 

and 54.7% for women) [114, 115]. Similar to what has been observed in Germany, the highest 

rate of overweight and obesity were observed in the older age groups [115]. Among children 

and adolescents aged 5 to 17 years, 25.7% were overweight and 7.6% obese (defined 

according to IOTF [98]). The proportion of girls who were overweight or obese was higher 

than for boys (27.1% compared to 23.6%) [116]. There has been no change in the proportion 

of children who were overweight or obese between 2007 to 2008 and 2011 to 2012. The 

newest data specifically on adolescents is derived from the 2007 Australian National 

Children’s Nutrition and Physical Activity Survey (ANCNPAS) which used the IOTF cut-

offs. Among 9-13 year olds, 25% boys were overweight and 7% were obese. Girls had a 

higher overweight prevalence of 30% compared to boys, but similarly 7% of girls were obese. 

The overweight prevalence of older adolescents (14-16 years of age) was 25% for boys and 

23% for girls; the obesity prevalence was 6% for boys and 7% for girls [117]. To date, 

prevalence data on overweight and obesity among specific ethnic groups, including 

Aboriginal and Torres Strait Islander children and adolescents, is missing. Though, it has been 

recognised that overweight and obesity is a problem among these ethnic groups, even though 

less well understood [118]. However, ANCNPAS was not designed to collect information on 

representative samples of children living in remote areas or on those children of indigenous 

origin. Hence, only 3% of children included in the survey were of indigenous origin [117]. 

Consequences 

Consequences of obesity are diverse. Obesity is a major risk factor for multiple health 

problems, including several of the major causes of death and disability, and psychosocial 

problems; affecting individual’s health and quality of life along with the whole society due to 

economic consequences. 

Adverse health effects associated with an increased BMI and in fact often overweight, not 

only obesity, are sleep apnoea, reproductive disorders, osteoarthritis, gall bladder disease, 

liver disease such as non-alcoholic fatty liver, hypertension, type 2 diabetes, and cancer [119]. 

Furthermore, childhood obesity is also associated with metabolic and cardiovascular 

complications such as impaired glucose regulation, type 2 diabetes, hypertension, 

dyslipidaemia, and systemic “low grade” inflammation [120]. These complications develop 
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already during childhood and are closely linked to concomitant insulin resistance/ 

hyperinsulinaemia [121] and degree of obesity [122]. Affected children are likely to stay 

obese and existing comorbidities are likely to persist until adulthood. 

Obesity is strongly associated with insulin resistance, which is why obesity, particularly 

central obesity, is an important risk factor for type 2 diabetes [121]. A recent review reported 

consistent evidence that overweight in childhood and adolescence was associated with 

increased risk of type 2 diabetes in adulthood [123]. Type 2 diabetes was long considered to 

be an adult disease [124]. For adults, the incidence of type 2 diabetes has risen since the 

1970ies. In 1985, the best prevalence data available suggested that 30 million people 

worldwide had diabetes [125]. According to the International Diabetes Federation (IDF), the 

prevalence increased by almost 13 times with 382 million adults aged 20-79 years having 

diabetes in 2013, approximately half of them undiagnosed [126]. The prognosis for 2035 is 

that this number will increase to 592 million people [126]. Among children and adolescents, 

the prevalence and/or incidence of type 2 diabetes vary substantially between countries, age 

categories and ethnic groups which is due to variations in population characteristics and 

methodological dissimilarities between studies [127]. There exist only few population based 

studies. In 2001, the SEARCH for Diabetes in Youth Study in the US identified that the 

proportion of type 2 diabetes ranged from 19/100,000 (non-Hispanic white youth) to 

174/100,000 children and adolescents (American Indian youth) aged 10-19 years [128]. The 

overall prevalence of type 2 diabetes was 42/100,000 children and adolescents. Newer data 

from 2002-2005 indicated a prevalence of 18/100,000 children and adolescents for 10-19 year 

old non-Hispanic whites [129] which was similar to what had been observed earlier for this 

ethnic group [128]. The 2002-2005 incidence of type 2 diabetes among 10-19 year olds 

ranged from was 3.7/100,000 (non-Hispanic white youth) to 27.7/100,000 person years 

(Navajo youth) [129, 130]. A German cross-sectional survey among 721 school-leaving 

students with a mean age of 15.5 years found that 2.5% of adolescents had an impaired fasting 

glucose, impaired glucose tolerance or type 2 diabetes [131]. Another German study which 

used the diabetes registry (DIARY) found a type 2 diabetes prevalence of 2.3/100,000 

children and adolescents aged 0-20 years in Baden-Württemberg [132], hence much lower 

compared to the US prevalence. To date, there are no type 2 diabetes incidence data available 

German children and adolescents. For Australia, accurate data on the type 2 diabetes 

prevalence of children and adolescents are not yet available. However, two relatively recent 

studies using data from a review of prospectively recorded diabetes data (Western Australia 

Childhood Diabetes Database) [133] and from a prospective population-based incidence study 
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(Australian Paediatric Endocrine Group New South Wales Diabetes Register) [134] both 

showed an incidence of type 2 diabetes among 0-19 year olds of 2.5/100,000 person-years 

among Indigenous children and adolescents. Non-Indigenous children and adolescents had an 

incidence of 0.2/100,000 person-years. These incidences are also lower than what has been 

observed in the US. Differences in the incidence between Indigenous and non-Indigenous 

children and adolescents which were observed in the US were also seen in Australia, but at a 

lower level. Reasons for observed differences are not entirely clear. However, different levels 

of physical activity, dietary habits and genetics may have led to different increases of obesity 

and type 2 diabetes over time. The fact that the diabetes prevalence is currently rising leads to 

increases in complications because an early onset of type 2 diabetes is associated with 

increased risk of morbidity and mortality [135, 136]. 

Besides the relation of obesity and type 2 diabetes, obesity is also considered a major risk 

factor for cardiovascular diseases, the world’s leading cause of death [137]. This risk is 

increased due to rises in blood pressure and lipids, i.e. hypertension and dyslipidaemia. In 

adults, positive associations between obesity and hypertension [138-140] as well as 

dyslipidaemia [139] have been shown. Similarly unfavourable associations have been 

observed in children and adolescents [123, 141-143]. Although there are studies showing an 

association between childhood BMI and cardiovascular outcomes, evidence is lacking 

showing effects independent of adult BMI [123]. Moreover, obesity has also been related to 

cancer risk and it is proposed that the GH-IGF axis plays a key role within the development 

and progression of cancer [144] (see chapter 2.2.2 for details). 

In addition to physical consequences there also exist psychosocial ones. Overweight and 

obesity are associated with stigmatization and discrimination. This contributes to difficulties 

and inequities in working life, increased vulnerability to low self-esteem, poor body image, 

and risk of developing serious psychological problems such as depression or anxiety 

disorders. Coping strategies to deal with the psychological pressure include dysfunctional 

eating behaviour and exercise avoidance [145, 146]. Among the overweight and obese youth, 

psychological consequences gain more recognition [147]. It has been found that weight-

related teasing was consistently associated with body dissatisfaction, low self-esteem, high 

depressive symptoms, and thought and or attempt of suicide and nearly doubled the rates of 

all psychological complications in a sample of 4,746 adolescents [148]. 

Alongside with the described health consequences of obesity, there exists an economic burden 

for the whole society. According to the World Health Organisation (WHO) in 2000, the 
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worldwide economic costs of obesity in developed countries ranged from 2% to 7% of the 

total health care costs [87]. In 2008, the overall German costs for obesity (defined according 

to ICD 10 (E65-E68), i.e. BMI ≥30 kg/m2) among all ages were 863 million Euro [149], 

accounting for 0.3% of the German total ICD 10 disease costs and hence much lower than the 

proportions of costs estimated by the WHO. It is of note, that the German total costs for 

obesity were 70, 65, and 728 million Euro for children and adolescents (<15 years of age), 

younger adults (15 to 30 years of age), and adults (>30 years of age), respectively [149]. 

Furthermore, results from the KORA (Kooperative Gesundheitsforschung in der Region 

Augsburg) survey found that medical costs were about three times higher for individuals with 

severe obesity (BMI ≥35 kg/m2) compared to those with normal weight [150]. An Australian 

study analysing 5-year follow-up data from the Australian Diabetes, Obesity and Lifestyle 

study which started in 1999-2000 showed that among adults, 30 years or older, the health 

costs related to overweight (BMI ≥25 kg/m2) accounted for 18.8 billion Australian Dollar 

[151], i.e. 12.5 billion Euro [152]. The costs for obesity (BMI ≥30 kg/m2) were 8.3 billion 

Australian Dollar [151], i.e. 5.5 billion Euro [152]. Overall, appropriate treatment would have 

enormous benefit, both to patients in terms of increasing life expectancy and quality of life, as 

well as in economic terms for the society and the health-care system. 

Determinants 

Determinants of obesity are manifold. There is general agreement that the obesity epidemic 

cannot be solely attributed to a genetic change since it is taking place in stable populations 

over a relatively short period of time [153]. However, some hereditary factors can influence 

an individual’s susceptibility to become overweight or obese. There exist rare genetic defects 

(e.g. mutations of gene encoding leptin or the leptin receptor) which result in severe obesity 

[154] and furthermore, gene defects which have been found to impair satiety and affect 

appetite control [155]. Overall, studies in families, adoptees, twins and also adopted twins 

have shown that heritable factors are likely to be responsible for 40-75% of inter-individual 

variation in BMI [154, 156]. Besides hereditary factors, any factor increasing energy intake or 

decreasing energy expenditure will lead to obesity in the long-term [153, 157]. The expression 

“obesogenic environment” has been coined [158], which is characterised by a lifestyle lacking 

of physical activity and present inactivity, the availability of energy-dense foods and drinks, 

their promotion in the media, large portion sizes and changes in the home and working 

environment [153, 157]. 
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Among adults many dietary weight loss strategies have been focusing on the macronutrient 

content of the diet, i.e. low-fat diets, low-carbohydrate diets or moderate-protein-content 

(30%) diets. They have been shown to have beneficial short-term effects on obesity while 

long-term effects still need to be determined. It is noteworthy, that (long-term) compliance 

was shown to be positively affected by moderate-protein-content diets [159]. A recent meta-

analysis emphasised that modest instead of large increases in protein content are probably 

more likely to have favourable effects on body weight or BMI [18]. In turn, little is known 

about the optimal dietary approach for weight loss and weight maintenance in obese children 

and adolescents. To date, studies conducted among overweight or obese children and 

adolescents to determine whether altering the macronutrient distribution of the diet has any 

impact on weight loss report inconclusive results [160]. One focus of this thesis was the 

relevance of dietary protein intake for body composition and obesity among children and 

adolescents; chapter 2.3.2 will present an overview of existing literature. Mechanisms relating 

dietary protein intake to body composition will be described in the following paragraphs in 

this chapter. Furthermore, the quality of carbohydrates, including the concept of the dietary 

GI, has received considerable attention in relation to body composition and obesity [161, 

162]. Low-GI and/or GL diets have been reported to play a role in body weight regulation and 

modification of obesity related risk factors [21-23]. Chapter 2.3.1 will give an overview of the 

existing literature linking dietary GI and GL to body composition and obesity among children 

and adolescents. Potential mechanisms linking glucose response to body composition and 

obesity have been established, but to date, the relevance of insulin response for the 

development of obesity has not been fully elucidated. Studies examining the relation of the 

dietary insulin demand, as estimated by the dietary II and IL, with body composition are 

lacking thus far. Discussed mechanisms for glucose perhaps apply for insulin response too or 

that insulin response might have its own importance within the development of obesity. 

Hence, potential mechanisms relating glucose and insulin response to body composition and 

obesity will be presented in the last part of this sub-chapter, in order to disentangle effects of 

glucose and insulin response. 

Potential mechanisms relating dietary protein and body composition 

Potential mechanisms linking high protein intake with optimal body weight regulation are 

related to increased satiety, increased thermogenesis, lower energy efficiency, and 

maintenance of fat-free mass. They will be briefly described in the following paragraphs, 

focussing on a high protein diet rather than acute effects of high protein consumption. In 

addition, the potential effect of higher protein intake on muscle mass will be described. 
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Among macronutrients, dietary protein is the most satiating, followed by carbohydrates and 

fat [163, 164]. Mechanisms linking dietary protein intake and satiety include an increased fat 

oxidation, which also itself has been suggested to reduce appetite [165] as well as an 

increased production of ketone bodies from ketogenic amino acids (e.g. leucine, lysine) [164]. 

Furthermore, the digestion rate may play a role: Rapid gastric emptying and a postprandial 

increase in plasma amino acid concentrations after ingestion of specific proteins (e.g. whey 

vs. casein) [69] may increase satiety because of a greater stimulatory effect on gastrointestinal 

hormones such as cholecystokinin and GLP-1, but sufficient evidence is still lacking [164, 

166]. 

More importantly, only satiety induced by high protein diets is primarily related to elevated 

energy expenditure [163, 166]. The daily energy expenditure consists of (i) basal metabolic 

rate, which entails sleeping metabolic rate and energy cost of arousal, (ii) diet-induced energy 

expenditure, and (iii) activity-induced energy expenditure [20, 163]. Dietary protein intake 

primarily affects the diet-induced energy expenditure. In fact, dietary protein has the highest 

thermic effect (20-30%), followed by dietary carbohydrates (5-10%) and dietary fat (0-3%) 

[167]. Adenosine-triphosphate is required for the initial steps of metabolism, storage and 

oxidation and may therefore mediate the short-term effect on diet-induced energy 

expenditure. The metabolic efficacy of dietary protein oxidation is dependent on amino acids, 

but overall it is relatively low compared to glucose or fatty acids [168]. This lower energy-

efficiency of dietary protein contributes to higher diet-induced energy expenditure of a high 

protein diet, which in turn may be related to higher satiety feeling [164]. In addition, it has 

been shown that the consumption of pork meat resulted in a 2% higher 24h energy 

expenditure, including an increase in sleeping metabolic rate and diet-induced energy 

expenditure, compared to the ingestion of soy [169]. Thus, effects on energy expenditure may 

vary due to different protein sources (also depending on the level of energy intake in relation 

to energy requirement) [163], which may be a result of an increase stimulation of protein 

synthesis and protein turnover [164]. Since protein synthesis requires an adequate availability 

of essential amino acids, the intake of animal protein, which generally has a higher essential 

amino acid content compared to dietary plant protein [170], may result in more protein 

synthesis and hence larger increases of energy expenditure compared to plant protein intake 

[164]. 

A higher protein intake may also support mechanisms of sparing fat-free mass by its 

metabolic inefficiency and its ability to increased energy expenditure [163, 164, 171]. In fact, 

fat-free mass is the major determinant for basal energy expenditure. Not only the percentage 
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of energy, but the absolute protein intake, has to be considered. Within an energy restricted 

diet, the required daily protein intake needs to be within the range of 0.8g/kg and 1.2g/kg 

body weight to maintain the original absolute protein intake and to only limit carbohydrate 

and fat intake. Within this range, a daily protein intake of 0.8g/kg body weight is sufficient for 

substantial weight loss, subsequent weight maintenance, and a decrease in %BF, whereas 1.2 

g/kg body weight is necessary for improvement of fat-free mass and a sustained resting 

energy expenditure [164, 171]. 

The above described mechanisms focus on the relation between higher dietary protein, weight 

loss and weight maintenance. On the other hand, dietary (animal) protein intake may be 

directly related to increases in muscle mass. An anabolic effect of essential amino acids on 

muscle mass was observed in small experimental studies among younger and older adults 

[172]. Especially branched chain amino acids, in specific leucine, may be involved. The 

potential biochemical pathway by which leucine may stimulate the muscle protein synthesis 

may work through the activation of the protein kinase mammalian target of rapamycin 

(mTOR) and its downstream effectors eukaryotic initiation factor 4E (EIF4E) and ribosomal 

S-6 kinase (S6K1) [173]. Furthermore, it has been suggested that branched chain amino acids, 

and again leucine, may inhibit proteolysis in skeletal muscles [174, 175]. Therefore, dietary 

animal protein intake may be more relevant in these anabolic processes due to the higher 

content of essential amino acids than dietary plant protein [170]. 

Potential mechanisms relating glucose and insulin response to body composition and obesity 

The majority of short-term studies found that low-GI meals were followed by an increased 

satiety, decreased hunger or lower voluntary energy intake compared to high-GI meals [176]. 

Mechanisms linking the consumption of high-GI diets to body composition include reduced 

satiety signalling, as fully gelatinized starches in high-GI foods do not reach the lower parts of 

the ileum and hence do not stimulate satiety signals such as GLP-1 or cholecystokinin [176-

179]. Nonetheless, satiety may not be exclusively related to postprandial glucose response as 

described by the dietary GI. With regards to insulin response, Graaf et al suggested that 

insulin may not be the best biomarker of satiety, since it is influenced by metabolic processes 

involving glucose and incretin responses [178]. However, a lower insulin response has been 

related to improved satiety in some [54, 55, 180-182], but not all studies [183]. Overall, 

satiety is possibly affected by the type of carbohydrates and their absorption rather than 

insulin concentrations per se [54]. 
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The consumption of a high-GI meal results in a rapid and high postprandial increase of blood 

glucose levels. This relative hyperglycaemia is accompanied by elevated concentrations of 

GLP-1 and GIP, which potently stimulate insulin secretion and inhibit glucagon secretion in 

the early postprandial phase. The high insulin-glucagon ratio results in increased anabolic 

effects: stimulating the uptake of glucose and fatty acids into insulin sensitive tissues (muscle, 

adipose tissue, and liver), stimulating carbohydrate oxidation, and suppressing fat oxidation 

[177, 184]. Over the long term, this may result in a preferential direction of nutrients away 

from oxidation in the muscle towards storage in fat [176] and suppression of lipolysis [161]. 

Nutrient absorption declines in the middle postprandial phase, while high insulin and low 

glucagon levels persist. Subsequently, glucose levels fall rapidly and often below baseline 

levels, a condition which is named “reactive hypoglycaemia”. In addition, circulating fatty 

acids, the other metabolic fuel, are reduced. These low concentrations of metabolic fuels lead 

to enhanced levels of counter-regulatory hormones which in turn stimulate hunger and food 

intake to restore energy homeostasis, and also increase free fatty acid concentrations in the 

late postprandial phase [13, 161, 177]. Over the long-term, recurrent metabolic responses to 

high-GI diets will gradually increase food intake and together with even small energy 

imbalances promote weight gain and obesity [13, 23]. Moreover, counter-regulatory hormone 

responses following a high-GI meal may have proteolytic effects and increase the loss of lean 

body mass over time. This in turn may reduce resting energy expenditure [177, 185] and 

eventually lead to a gain in body weight. In general, high-GI diets result in a sequel of 

postprandial glycaemia, insulinaemia, counter-regulatory hormones, and increases in free 

fatty acids [13]. Healthy and active individuals may adjust to these metabolic challenges by 

increasing the insulin sensitivity of their peripheral tissues [186], but less insulin sensitive 

individuals must increase their insulin secretion in order to re-establish glucose homeostasis 

[187]. Higher insulin levels are required to compensate relative hyperglycaemia induced by 

high-GI diets, which subsequently contribute to the development of insulin resistance [188]. 

Insulin resistance leads to compensatory increased hyperinsulinaemia and an increased the 

demand on β-cells [13]. Furthermore, higher levels of counter-regulatory hormones and free 

fatty acid concentrations in the late postprandial phase (as described above) can contribute to 

insulin resistance too [13]. The habitual consumption of diets with a high dietary GI may 

initiate a cycle of hyperinsulinaemia, reduced insulin sensitivity, and insulin resistance and 

may thus contribute to an increased risk of obesity as well as type 2 diabetes over the longer-

term [13, 189, 190]. 
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These mechanisms described for high-GI meals are related to both postprandial glucose and 

insulin responses. Foods with a high dietary II specifically stimulate postprandial insulin, but 

not necessarily glucose response. Hence some of the mechanisms may primarily apply for 

insulin responses in relation to body composition and obesity, including the redirection of 

nutrients towards storage in fat [176], suppression of lipolysis [161], and reduction of insulin 

sensitivity [13]. In addition, cross-stimulation of both insulin and IGF-I secretion may 

promote development of obesity [191]. In vitro as well as in vivo studies have shown that 

IGF-I plays an important role during adipogenesis [192, 193]. IGF-I was found to exert 

distinct effects on stem cells to stimulate proliferation and differentiation of pre-adipocytes, 

which may therefore contribute to body fat formation. Additionally, IGF-I may stimulate 

cellular glucose uptake in pre-adipocytes and adipocytes as well as it may increase lipogenesis 

and inhibit lipolysis in adipocytes [192-194]. On the other hand, the GI of a meal has been 

shown to acutely affect the GH-IGF axis, i.e. a high-GI meal decreased IGFBP-3 levels 

suggesting an increased available amount of free biologically active IGF-I in the tissue as it is 

no longer bound to IGFBP-3 and the acid labile subunit (see also chapter 2.2.2) [195]. 

Taken together, postprandial glucose and insulin response are interconnected and both seem 

to be related to body composition development. It is however not clear whether glucose or 

insulin response is more important for the development of body composition and obesity. 

2.2.2 GH-IGF axis 

The endocrine system of the GH-IGF axis plays an important role in postnatal growth and 

development, which are important determinants for the final phenotype of the adult organism 

[196]. This system includes three endocrine organs, hypothalamus, pituitary, and liver, 

consecutively releasing hormones to regulate anabolic processes [197]. 

Regulation of the GH-IGF axis 

The structure of the GH-IGF axis is illustrated in Figure 1. GH-releasing hormone (GHRH) 

and a small amount of ghrelin are released by the hypothalamus; most of circulating ghrelin 

is, however, secreted by the stomach [198]. They both bind to their respective receptors in the 

pituitary to stimulate GH secretion. The hypothalamic factor somatostatin on the other hand 

inhibits GH secretion [197]. Together with GHRH, the oscillatory release of somatostatin may 

be responsible for the pulsatile secretion of GH [199]. Through binding to GH-binding protein 

(GHBP) in the circulation, GH bioactivity and its cell receptor binding is modulated and 

partly limited [200]. GH acts through specific cell-surface receptors stimulating the release of 
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IGF-I primarily from the liver and other tissues such as skeletal muscle cells [201-203]. IGF-I 

mediates most of the anabolic actions of GH including induction of cell growth, prevention of 

apoptosis, and induction of cellular differentiation [26]. Signalling works through the IGF-I 

receptor. IGF-I can bind to receptors that are present either on the cell of its own origin and 

stimulate growth (autocrine) or by binding to receptors on adjacent cells such as epithelial cell 

types that do not synthesise IGF-I but are stimulated to grow by locally secreted IGF-I 

(paracrine) [197, 204]. IGF-I also acts through endocrine mechanisms. In the circulation as 

well as extracellular, IGF-I is bound to IGF-binding proteins (IGFBP) that coordinate and 

regulate its biological functions. IGF-I circulates almost entirely (>99%) bound to IGFBPs 

[197, 205]. Through a negative feedback mechanism IGF-I inhibits GHRH and GH secretion 

[197]. 

 

Figure 1 Structure of the GH-IGF axis (after Holt [197]). GH, growth hormone; GHBP, GH-binding 

protein; GHRH, GH-releasing hormone; IGF, insulin-like growth factor; IGFBP, IGF-binding protein. 
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Nutrition is a major regulator of circulating IGF-I. Scarcity of energy and/or protein results in 

decreased serum IGF-I concentrations [206]. After fasting, an optimal intake of both energy 

and protein is required to restore IGF-I levels in the circulation. However, while even a low 

protein intake is able to increase IGF-I in the presence of adequate energy intake, this effect is 

not achieved when both protein and energy intake are low [207]. Hence, there seems to be a 

threshold of energy requirement below which protein fails to increase IGF-I after fasting. 

Furthermore, when energy is restricted, an adequate carbohydrate, not fat, content of the diet 

is an important determinant of the responsiveness of IGF-I to GH [206]. With regards to 

protein intake, it has been shown that essential amino acids are more potent to increase IGF-I 

than non-essential amino acids after fasting [208]. Therefore, essential amino acids within the 

diet are necessary for optimal restoration of IGF-I levels, when protein intake is low [206]. 

Nevertheless, also non-essential amino acids (such as glutamine [209] or arginine [210]) or 

the combination of amino acids (lysine and arginine [211]) increase GH concentrations and 

lead to the stimulation of hepatic IGF-I secretion, even though this might be to a lower extent. 

As it is important for this thesis, the relevance of dietary protein intake for the GH-IGF axis 

will be presented more detailed in chapter 2.3.3. 

There is a variation of IGF-I levels in serum and tissues due to ontogenic, hormonal and 

nutritional regulation, with GH being the most important postnatal stimulus for IGF-I 

production if energy supply is not reduced [26]. However, in human foetal serum, IGF-I 

levels are largely GH-independent and relatively low. During childhood, serum IGF-I levels 

rise gradually [26], whereas they rise steeply during puberty, peak clearly before the end of 

puberty and correlate with Tanner stages until peak height velocity is attained. Circulating 

IGF-I is partly either directly or indirectly related to the action of sex steroids [3, 26] (see also 

chapter 2.2.3). In adulthood, secretion of human GH progressively declines with age, 

accompanied by decreased levels of serum IGF-I [26]. 

The IGFBP family includes six distinct high-affinity binding proteins (IGFBP-1 to IGFBP-6). 

Under most conditions, the IGFBPs appear to inhibit IGF action. Additionally IGFBPs 

convey IGF independent functions including growth inhibition and direct induction of 

apoptosis [26]. In the following paragraphs, the roles of IGFBP-1 to IGFBP-3 will be 

described, since they are relevant for this thesis. 

IGFBP-3 is the most abundant IGFBP in the blood, binding 70-90% of circulating IGF-I 

within a ternary complex comprising IGF-I, IGFBP-3 and an acid labile subunit [197, 205]. 

Throughout the day, IGFBP-3 levels are relatively stable and they do not respond acutely to 
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nutritional influences, however, chronic dietary restriction may decrease IGFBP-3 

concentrations [206]. IGFBP-3 is well documented to inhibit cell growth and/or promote 

apoptosis, which is achieved through the attenuation of IGF-I/IGF-insulin receptor 

interaction. On the other hand, it has also been shown that IGFBP-3 stimulates cell growth 

and other cell functions independent of IGF-I [205]. It appears evident that IGFBP-3 limits 

the bioavailability of IGF-I [205]. IGFBP-1 binds only a small fraction of circulating IGF-I. 

It fluctuates acutely in response to dietary and metabolic changes, increasing in the fasting 

state because of some inhibitory effects of insulin and stimulatory effects of cortisol and 

glucagon. IGFBP-1 decreases in the postprandial state with increased levels of insulin and 

glucose [206, 212]. High IGFBP-1 levels limit the acute IGF-I bioavailability and decrease 

the insulin-like activity of IGF-I on peripheral metabolism. By contrast, in certain situations 

IGFBP-1 can potentiate the effects of IGF-I on cellular responses because posttranslational 

modifications of the protein can diminish the affinity of IGFBP-1 for IGF-I, potentially 

releasing IGF-I in the circulation [212]. For instance, IGF-I was found to be involved in the 

process of dermal wound healing by stimulating reepithelialisation of the wounds and this 

action is potentiated by IGFBP-1 [213]. Furthermore, IGFBP-1 can induce IGF-I independent 

effects on cell signalling. Independent of IGF-I, IGFBP-1 seems to modulate insulin 

sensitivity by a putative mechanism involving stimulation of insulin signalling via the 

integrin–focal adhesion kinase–integrin-linked kinase–phosphatidylinositol-3-kinase–protein 

kinase B pathway and stimulation of glucose uptake in cells [212]. Similar to IGFBP-3, 

IGFBP-2 levels are more stable than IGFBP-1 and do not respond to postprandial metabolic 

changes [206], but still seem to be dependent on nutrition [214]. Dietary restriction of protein 

was shown to increase IGFBP-2 levels in children and adults [215]. IGFBP-2 interaction with 

IGF-I possibly include the delivery of IGF-I to its target cells [212]. Independent of IGF-I, 

IGFBP-2 has been found to enhance cellular proliferation and decrease apoptosis also in the 

pathological state of cancer [216]. By both IGF-dependent and IGF-independent mechanisms, 

IGFBP-2 might potentially activates the focal adhesion kinase, which was shown to enhance 

skeletal insulin sensitivity in vitro [217] and might inhibit enzyme activity of a phosphatase 

and tensin homolog which has been shown to supress insulin signalling in adipocytes and 

skeletal muscle and glucose uptake [212]. Thereby IGFBP-2 may modulate insulin sensitivity 

in metabolically active tissues so that higher IGFBP-2 levels primarily reflect higher insulin 

sensitivity. In fact, IGFBP-2 concentrations mirror longer term insulin sensitivity [212]. 
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Relevance of the GH-IGF axis 

The GH-IGF axis plays a central role in cell growth, proliferation, differentiation and 

apoptosis [218], affecting nearly every organ system in the body. Furthermore, evidence of 

the relevance of the GH-IGF axis in the glucose metabolism is increasing. IGF-I has great 

structural homology to insulin and exerts similar metabolic actions such as glucose uptake in 

peripheral tissues [219]. In individuals with or without type 2 diabetes, administration of IGF-

I has been shown to decrease glucose levels and improve insulin sensitivity [220-222]. 

Obesity 

Besides other processes, IGF-I regulates adipose tissue growth and differentiation of pre-

adipocytes into adipocytes [192] and elevated IGF-I levels may be related to later obesity, as 

described in chapter 2.2.1 (Potential mechanisms relating glucose and insulin response to 

body composition and obesity). Briefly, effects of IGF-I include the stimulation of cellular 

glucose uptake in pre-adipocytes and adipocytes as well as the possible increase of 

lipogenesis and inhibition of lipolysis in adipocytes [192-194]. Therefore, higher levels of 

IGF-I may contribute to body fat formation and thus in situations of abundant energy 

availability may contribute to the development of obesity. However, in humans, relations 

between IGF-I and obesity are contradictory. Studies have been conducted in different 

populations and age groups. Obese adults were found to have low or low-normal IGF-I levels, 

compared to normal weight adults, whereas normal to high IGF-I levels were reported for 

overweight children [214]. Among obese adolescent girls IGF-I decreased after weight loss 

[223]. On the other hand, higher animal protein intake or permanent essential amino acid 

supplementation improves lean body mass and basal muscle protein synthesis probably via an 

increased IGF-I protein expression [224]. IGF-I increases are also considered to stimulate 

muscle protein synthesis and glycogen storage [225].  

Diabetes 

Cross-sectional data suggest that insulin resistance is associated with changes in the GH-IGF 

axis. Among individuals with impaired glucose tolerance and type 2 diabetes elevated free 

IGF-I levels have been observed [226]. These individuals had also lower IGFBP-1 [227-229] 

and IGFBP-2 [226] levels compared to healthy controls. In contrast, higher IGFBP-3 levels 

were associated with higher fasting insulin levels [226, 230, 231]. Rajpathak et al speculated 

that low IGFBP-1, possibly low IGFBP-2, and high free IGF-I may represent compensatory 

mechanisms in response to increasing insulin resistance. High IGFBP-3 levels on the other 

hand may be a risk factor for insulin resistance and type 2 diabetes [232]. Cross-sectional 
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studies are however overall limited in their ability to assess causality of such relations. In fact, 

it is difficult to examine whether the diabetic state itself may be the cause of changes in the 

GH-IGF axis or whether it is the other way around, i.e. a result of impaired GH-IGF-action – 

a situation termed “reverse” causality [232].  

Prospective cohort studies examining the relation between GH-IGF axis and type 2 diabetes 

are scarce. The only prospective cohort study among 615 healthy women and men aged 45-65 

years investigated total IGF-I and IGFBP-1 levels [233]. Sandhu et al found an inverse 

association between IGF-I levels and the risk of developing impaired glucose tolerance or 

type 2 diabetes after an average of 4.5 years of follow-up. In particular, in adults with IGF-I 

levels above the median (≥152µg/L) the risk of type 2 diabetes was only half the risk than that 

in participants with IGF-I levels below the median. In addition, an inverse association 

between total IGF-I levels at baseline and the 2-hour post-load glucose concentration 

measured at the end of follow-up was observed, but only among participants with low IGFBP-

1 concentrations (≤25µg/mL) [233]. 

It has been proposed, that in a state of insulin resistance, circulating IGF-I helps maintaining 

euglycaemia by influencing peripheral glucose uptake by IGF-I receptors. If insulin resistance 

becomes worse, an increased expression of insulin/IGF-I hybrid receptors helps to increase 

the glucose uptake in muscle as well as adipose tissue [232]. Furthermore, insulin like effects 

of IGF-I together with the increase in insulin/IGF-I hybrid receptors result in an uptake of free 

fatty acids, reducing the negative impact of free fatty acids on insulin sensitivity and their 

lipotoxic effect on β-cells [13, 234]. With the worsening of insulin resistance insulin levels 

increase, resulting in lower serum IGFBP-1 levels, up-regulation of hepatic IGF-I production, 

and higher levels of free IGF-I levels. Additional possible mechanisms might work through 

the influence of the GH-IGF axis to preserve β-cell mass and function as well as the anti-

inflammatory effect of IGF-I, reducing inflammatory cytokine levels and thereby affecting 

insulin resistance and the progression to type 2 diabetes [232]. Higher IGF-I may therefore 

reduce the risk of type 2 diabetes. 

Cardiovascular disease 

Moreover, higher IGF-I levels have been prospectively related to lower risks of heart failure, 

ischaemic heart disease and stroke [235-238]. In the cardiovascular system, IGF-I is 

postulated to protect against endothelial dysfunction, atherosclerotic plaque development, and 

ischemic myocardial damage. Some of these effects are related to nitric oxide production, 

induced by IGF-I. The release of nitric oxide has multiple metabolic and vascular-protective 
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effects such as vasodilation, antiplatelet actions or endothelial cell migration, proliferation, 

and survival [239]. 

Cancer 

Evidence from mouse models, animal and human cancer cell lines showed that GH, IGF-I, 

and insulin can stimulate and contribute to cancer progression [240]. An inappropriate 

expression of the GH-IGF axis appears to contribute to the growth, maintenance and 

progression of the most common cancers, including breast, lung and colon cancers [241]. 

Biological literature has stressed mitogenic and anti-apoptotic effect of IGF-I hence 

promoting tumorigenesis [242]. Because IGFBP-3 binds IGF-I it regulates the bioavailability 

of IGF-I and may thus contribute to a reduced cancer risk. Independent of IGF-I, IGFBP-3 has 

also antiproliferative and pro-apoptotic effects which may explain inverse associations 

between IGFBP-3 concentrations and cancer risk [205, 242]. 

Prospective studies were conducted to assess the relation between the GH-IGF axis and 

cancer incidence to provide direct evidence of cancer risks in healthy individuals. Meta-

analyses of prospective data [243-247], including pooled analyses of individuals patient’s data 

[244, 247], suggest that raised IGF-I levels are associated with a slightly increased risk of 

some cancers: In fact, high IGF-I levels have been related to an increased risk of prostate 

[245, 247], breast [244], and colorectal cancer [245, 246]. No relations were found between 

IGF-I and lung cancers [243, 245]. Moreover, meta-analyses examined the relation between 

IGFBP-3 and cancer risks: Increased IGFPB-3 levels have been found to be associated with 

higher risks of prostate cancer [247] and breast cancer in postmenopausal, but not 

premenopausal women [244]. While associations between IGFI and risk of prostate cancer 

[247] or breast cancer [244] were unaffected by adjustment for IGFBP3 levels, the 

associations between IGFBP3 and cancer risk were eliminated in these studies by adjustment 

for IGF-I, hence, questioning a direct association between IGFBP-3 and cancer. In line with a 

probable anticancer potential, increased IGFBP-3 seemed to be related to a reduced risk of 

lung cancer [243], this association could nevertheless be confounded by smoking status 

because current smoking had been associated with significant reductions in mean IGFBP-3 

levels [248]. In addition, recent evidence from a case-control study showed that IGFBP-3 

were lower in women with breast cancer [249]. Thus, increased IGFBP-3 concentrations may 

not be as detrimental as it has been suggested. 
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2.2.3 Concept of critical periods 

The concept of critical periods for obesity development has been proposed by Dietz [1, 250], 

defining them as “developmental stage in which physiologic alterations increase the risk of 

later obesity” [250]. The four critical periods include the prenatal period, the early postnatal 

period, the period of adiposity rebound, and puberty [1, 2]. There exists the possibility that 

nutritional alterations during critical periods of development lead to adverse health conditions, 

such as adult obesity [1]. Early life, adiposity rebound, and puberty are relevant phases for 

this thesis and will be described subsequently. 

Early life 

Research on the relevance of early life factors for later disease risk, a concept often referred to 

as programming, has mainly focussed on rapid infancy weight gain and breastfeeding [251, 

252]. Breastfeeding is now considered to result in a small, but protective effect against 

childhood obesity [253, 254], which could be due to the lower protein content in human milk 

compared to formula [255]. According to the “early protein hypothesis”, high protein intake 

with infant formula feeding, in excess of metabolic requirements, might induce increased 

circulating concentrations of insulin-releasing amino acids, which in turn might stimulate the 

secretion of IGF-I, thereby inducing an increased weight gain during the first 2 years of life as 

well as increased adipogenic activity [255]. In this regard, protein intake has also received 

attention under the consideration that higher protein intake provided by formulas may 

stimulate insulin release and the GH-IGF axis [256], leading to increased weight gain as has 

been shown recently [257]. In addition, studies which examined the importance of protein 

intake on the GH-IGF axis indicated inverse associations between milk intakes in early life 

and IGF-I levels in adulthood (see also chapter 2.3.3) [31, 32]. This inverse relation reflects 

an early programming of the GH-IGF axis in response to higher protein intakes in early life. 

To date, no data is available on the relevance of animal protein, including meat and dairy 

protein, as well as plant protein intakes in early life and body composition or the GH-IGF 

axis. In this context, the relevance of insulin demand in early life would also be of interest as 

increased insulin levels in early life may play a role in the development of obesity [255]. 

However, there are no published GI or FII values available for human breast milk or formulas 

thus far and only four published GI values for baby foods [52]. Therefore, analyses included 

in this thesis could only consider dietary protein intake when examining relations of dietary 

factors during early life with body composition and the GH-IGF axis. 
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Adiposity rebound 

Another potentially critical period is the time around the adiposity rebound. After birth, 

changes in BMI occur and they can be displayed in characteristic growth curves: After a steep 

increase in the first months of life, growths peaks around 12 months of age, followed by a 

subsequent decrease, reaching the lowest point before the second and final increase in growth 

to reach adult levels. The adiposity rebound corresponds to the turning point before the 

second rise in the BMI curve [258]; in Germany, the mean age at adiposity rebound is around 

4.5 years for girls and 5 years for boys [92] (Figure 2). 
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Figure 2 Adiposity rebound in German girls (red) and boys (blue) with a BMI corresponding to the 

50th BMI percentile [92] 

Rolland-Cachera et al first suggested that an early adiposity rebound might represent a risk 

factor for obesity later in life [259]. Since then, several analyses have confirmed an inverse 

association between the age at adiposity rebound and BMI later in childhood as well as 

adulthood [260-262]. Later on, it was discovered that differences in BMI during adiposity 

rebound were caused specifically by alterations in body fat and not by alterations in lean mass 

or height. Children undergoing early adiposity rebound gained fat at a faster rate than children 

who rebounded at a later age [263] which eventually justified using the term “adiposity 

rebound” [264]. In addition, an early adiposity rebound was found to be a risk factor for type 

2 diabetes [265, 266]. Studies have also demonstrated that a higher BMI at adiposity rebound 

seems to increase subsequent obesity risk too [262, 267]. Consequently, debate continued 

whether the age or the BMI at adiposity rebound predicts fatness later in life. It has been 

hypothesised that an early adiposity rebound represents a growth pattern different from the 

one associated with a high BMI at adiposity rebound, but both result in a higher risk of 
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obesity later in life. Children with an early adiposity rebound have normal or even low BMI 

levels before the adiposity rebound and show higher body fatness after the adiposity rebound, 

whereas children with a high BMI at adiposity rebound probably had a high BMI at all ages 

before the adiposity rebound [258]. Results from the DONALD study displayed an 

association between a higher habitual protein intake between the age of 12 and 24 months and 

higher BMI SDS values at adiposity rebound among girls only, but no consistent relation 

between habitual protein intake in early childhood and timing of adiposity rebound was found 

[268]. Furthermore, dietary habits such as high intakes of vegetable and animal protein during 

the years before puberty may influence pubertal timing [269], supporting a specific relevance 

of dietary intake during the potentially critical period of adiposity rebound.  

Puberty 

Puberty represents the last period discussed to be potentially critical for later disease risk, 

including the risk of adverse changes in body composition, obesity [1] and type 2 diabetes 

[270]. Overall, this period of growth and maturation is marked with behavioural changes in 

diet, physical activity, sedentary behaviour and psychological health [271]. Puberty is also 

characterized by changes in levels of IGF-I, growth hormones and sex steroids [4] as well as a 

physiological insulin resistance. In fact, IGF-I levels rise steeply during puberty and peak 

before the end of puberty, while the development of the insulin sensitivity follows the reverse 

course (Figure 3, see also chapter 2.2.2) [3, 272]. The fall in insulin sensitivity during puberty 

is not related to body fat content, but due to increases in growth hormone, which is also 

known to increase rates of lipolysis in the liver and elevate circulation of free fatty acids [3, 

271]. Lower insulin sensitivity indicates a greater insulin resistance: Compared to males, 

females have greater insulin resistance during puberty [3]. Furthermore, the physiological 

insulin resistance is characterised by higher levels of both fasting glucose and insulin, while 

the acute insulin responses are disproportionally low. This suggests either a conservation in β-

cell function or an inadequate β-cell response because β-cells do not fully adapt to the 

decrease in insulin sensitivity [272]. However, higher postprandial glycaemic and 

insulinaemic excursions result in greater demands on β-cell function which may lead to 

exhaustion of β-cells. In this context, specifically the relevance of dietary insulin demand, but 

also protein intake, is of interest in this critical period with regard to development of body 

composition and type 2 diabetes [273]. 
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Figure 3 Changes in IGF-I levels (solid line) and insulin sensitivity (dashed line) from Tanner 

stages 1 to 5 in females (red) and males (blue). A lower insulin sensitivity value indicates 

greater insulin resistance. lbm, lean body mass (after Moran et al [3]) 

2.3 Evidence linking dietary insulin demand and protein intake to body composition, 

obesity and GH-IGF axis 

2.3.1 Glycaemic index, glycaemic load, body composition and weight loss 

There exists controversy concerning the role of dietary GI and/or GL for the development of 

body composition and obesity; potential mechanisms have been described earlier (see chapter 

2.2.1). Prospective cohort studies suggest a detrimental role of high dietary GI [162, 274-276] 

and GL [276] for body composition among women, while only one study reported an 

association between a higher dietary GI and higher waist circumference among men [276]. By 

contrast, a cross-over intervention study did not observe an effect of dietary GI on changes in 

body weight, waist circumference or %BF among overweight and obese women [277]. 

Regarding weight loss, reviews concluded that among overweight or obese adults, low-GI/GL 

diets are as effective as other dietary alternatives [21]. However, little is known about the role 

of dietary GI or GL in the development of obesity among children and adolescents as well as 

about an optimal dietary approach for weight loss in overweight or obese children and 
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adolescents. Among children and adolescents, four observational studies, six intervention 

studies including two retrospective analyses of two interventions and four clinical trials were 

identified which examined the relation between dietary GI and/or GL (in childhood and 

adolescence), body composition (BMI, fat mass, %BF, waist and hip circumference, waist to 

hip ratio) and weight loss (Table 2 and Table 3). 

Observational studies 

Four prospective studies among healthy children and adolescents in Germany [278, 279] and 

Australia [280] and overweight Latino adolescents in the US [281] were identified, which 

examined dietary GI and or GL and body composition (Table 2). 

Among 856 healthy school children aged 12 years at baseline, Gopinath et al did not find a 

prospective relation between GI or GL at baseline and change in BMI, %BF or waist 

circumference at 5 year follow-up. However, among girls (n=421), an increase of 1 SD GL at 

baseline was significantly associated with a concurrent increase in BMI and waist 

circumference at follow-up [280]. In two prospective analyses of the DONALD study, no 

association between changes in GI or GL and simultaneous development of BMI and %BF 

were found for either childhood (2-7 years; n=380) [278] or adolescence (8.7-12.7 years in 

girls; n=116 and 10.3-14.3 years in boys; n=99) [279]. However, overweight adolescents with 

a higher dietary GI at baseline tended to have higher %BF and BMI SDS at baseline, while no 

association was observed for normal weight adolescents [279]. Among 85 overweight Latino 

adolescents aged 14 years at baseline, changes in GI or GL during a 2-year follow-up were 

not associated with changes in BMI, total body fat or with changes in the visceral or 

subcutaneous adipose tissue, respectively [281]. 

Prospective studies do not draw a clear picture for healthy as well as overweight children and 

adolescents and they do not support a strong relation between dietary GI and/or GL in the 

development of body composition. 
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Table 2 Observational studies in children and adolescents examining the relation between dietary GI and GL and adiposity measures1 

Results 
• Among girls, no prospective relation between 

dietary GI and BMI, %BF or waist circumference 
(all p for trend >0.1) and a prospective trend between 
dietary GL at baseline and change in BMI, %BF, but 
not waist circumference (p for trend were 0.08, 0.07 
and >0.9, respectively) 

• Each 1 SD increase in dietary GL was associated 
with a concurrent increase in BMI and waist 
circumference (0.77 kg/m2 and 1.45 cm, respectively; 
both p for trend=0.01), but not %BF (1.1%; p for 
trend=0.18) in girls 

• Each 1 SD increase in dietary GI tended to be 
associated with a concurrent increase in BMI and 
waist circumference (0.28 kg/m2; p for trend=0.09 
and 0.40 cm; p for trend=0.08), but not %BF (0.61%; 
p for trend=0.15) in girls 

• Among boys, no relation between dietary GI or GL 
and change in anthropometric measures were found 
(analyses of prospective and concurrent associations) 

• Overall, dietary GI or GL were not related to %BF 
or BMI SDS (analyses of cross-sectional and 
concurrent associations) 

• Trend for prospective associations between GI, but 
not GL, and %BF (p for trend were 0.07 and 0.4, 
respectively) 

• Trend for prospective associations between GL, but 
not GI, and BMI SDS (p for trend were 0.07 and 0.2, 
respectively) 

Exposure and Outcome 
Exposure: Dietary GI and GL at baseline 

Mean (SD) dietary GI at baseline: girls: 54 (3), 
boys: 54 (3) 
Mean (SD) dietary GL (g/d) at baseline: girls: 
138 (SD: 53), boys: 145 (54) 

Assessment method: 120 item self-administered 
FFQ 
Outcome: BMI, %BF (BIA), and waist 
circumference (measured at baseline and 5 years) 
Covariates: Age, sex, ethnicity, parental education, 
exposure to passive smoking, change in height, 
screen viewing time, time spent in physical activity, 
and energy intake 

Exposure: Dietary GI and GL between 2 and 
7 years of age: 

Mean (SD) dietary GI was 52 (4) at age 2 years 
and 56 (3) at age 7 years 
Mean (SD) dietary GL (g/d) was 63 (15) at age 
2 years and 113 (24) at age 7 years 

Assessment method: 3-day weighed dietary 
records 
Outcomes: %BF (estimated using skinfold 
measurements) and BMI SDS (measured at 2 and 
7 years of age) 
Covariates: Age, age2, age3, sex, maternal 

Design and population 
• Population-based survey (Sydney 

Childhood Eye Study); started 
between 2004 and 2005; 
prospective and concurrent analyses 

• n=856 (435 males) with complete 
5 year follow-up data 

• 12 years of age at baseline 

• Ongoing open cohort study 
(DONALD study); started in 1985; 
cross-sectional, prospective, and 
concurrent analyses 

• n=380 (203 males) healthy term 
singletons with complete dietary 
and anthropometric data at least at 
ages 2 and 7 years 

Author 
Gopinath et al 
2013 [280] 
Australia 

Buyken et al 2008 
[278] 
Germany 
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Table 2 continued. 

Results 
 

• Dietary GI or GL were not related to %BF or BMI 
SDS throughout puberty (analyses of cross-sectional 
and concurrent associations) 

• Overweight adolescents with a higher dietary GI at 
baseline tended to have higher %BF (p for 
trend=0.05) and BMI SDS (p for trend=0.01) at 
baseline, while no association was observed for 
normal weight adolescents (p for interaction at 
baseline: 0.04 for %BF and 0.07 for BMI SDS) 

• Estimates of the concurrent association among 
overweight adolescents analysis did not reveal any 
associations (p for interaction for concurrent 
association: 0.03 for %BF and 0.08 for BMI SDS) 

• Dietary GI or GL were not related to changes in 
adiposity variables or changes in glucose and insulin 
indexes 

1 Only relevant exposures and outcomes are presented; Adjusted p-values are presented, if not indicated otherwise 

Exposure and Outcome 
overweight, year of birth, birth weight, rapid weight 
gain between birth and age 2, intakes of energy, 
protein, fibre, and added sugar 

Exposure: Dietary GI and GL at baseline and 
endpoint 

Mean (SD) dietary GI was 56 (3) at baseline 
and 57 (4) at endpoint 
Mean (SD) dietary GL (g/d) was 120 (30) at 
baseline and 152 (43) at endpoint 

Assessment method: 3-day weighed dietary 
records 
Outcomes: %BF (estimated using skinfold 
measurements) and BMI SDS (measured at baseline 
and endpoint) 
Covariates: Age, age2, age3, sex, maternal 
overweight, breastfeeding, energy, and fibre intake 
Exposure: Dietary GI and GL at baseline 

At baseline, mean dietary GI (SD) was 59 (6) 
and mean dietary GL (g/d) was 133 (51) 

Assessment method: Multiple pass 24h dietary 
recalls 
Outcomes: Whole body fat, soft lean mass tissue 
(DEXA), subcutaneous abdominal adipose tissue 
and visceral adipose tissue (MRI), glucose, and 
insulin indexes (OGTT) (measured at baseline and 
follow-up) 
Covariates: Sex, Tanner stage, time between visits, 
baseline visceral adipose tissue, energy and fibre 
intake, and baseline subcutaneous abdominal 
adipose tissue 

Design and population 
 

• Ongoing open cohort study 
(DONALD study); started in 1985; 
cross-sectional and concurrent 
analyses 

• n=215 (99 males) healthy term 
singletons with complete dietary 
and anthropometric data around the 
time of puberty onset (defined by 
age at take-off) 

• Overall mean age (SD) at baseline 
and endpoint: 9.4 (1.2) and 13.4 
(1.2) years, respectively 

• Prospective cohort study (Study of 
Latino Adolescents at Risk for 
Diabetes cohort); started in 2000 

• n=85 (48 males) overweight Latino 
adolescents with 2 complete annual 
visits 

• Mean age (SD) at baseline: 14.2 
(1.6) years 

• Mean follow-up (SD): 
1.5 (0.5) years 

Author 
Buyken et al 2008 
continued 

Cheng et al 2009 
[279] 
Germany 

Davis et al 2009 
[281] 
US 
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Clinical trials 

Two retrospective studies of a 3 [282] and 4 months [283] intervention among obese children 

in the US were identified. Furthermore, four randomised controlled diets were found of which 

three were conducted in the US and examined the effect of low-GI and/or GL diets compared 

to low fat [284, 285] or portion controlled and low carbohydrate diets [286] among 

overweight and/or obese children and adolescents. Intervention periods were 3 months [286], 

6 months [284], and 2 years [285], respectively. The forth study is the DIOGenes study, an 

European multicentre, randomized, controlled 6 month intervention study investigating the 

effects of dietary protein and glycaemic index on weight (re)gain in obese and overweight 

families. Families with parents who lost >8% of their body weight during an 8 week run-in 

low-calorie diet period were randomly assigned to 1 of 5 ad libitum diets (i.e. a low protein 

(LP)/low glycaemic index (LGI), LP/high-GI (HGI), high protein (HP)/LGI, HP/HGI or a 

control diet). It should be noted that this study primarily focussed on the obese/overweight 

parents and hence children included in the study represent a group at risk of overweight with a 

baseline prevalence of obesity/overweight of 47.5% (Table 3). 

The first retrospective study found that among 11 year old participants, those on a low-GI 

Healthy Eating Plan (HEP), additionally supported by a dietician, decreased their BMI (n=21) 

compared to participants on a HEP without support by a dietician (n=15) or on a portion 

controlled diet (n=28) [282]. Similarly, among 10 year old participants those in the low-GI 

group (n=64) had greater decreases in their BMI and weight compared to participants in the 

low fat group (n=43). However, the macronutrient content of the diets was not matched and 

results cannot be attributed to GI only [283]. 

The clinical trial of Ebbeling et al found that after a 6 month intervention and 6 months 

follow-up, BMI and fat mass had decreased more in the low-GL diet group compared to the 

low fat diet group among 16 obese adolescents aged 13-21 years [284]. Among 113 obese 

Hispanic children aged 7-15 years, a 2 year intervention showed that a low-GL and a low fat 

diet were equally effective for reduction of BMI [285]. Likewise, a low-GL diet was found to 

be as efficient as a standard portion-controlled or low carbohydrate diet for weight 

management in a 3 month intervention among 102 obese children aged 7-12 years [286]. The 

analysis within the DiOGenes study included 465 children aged 12 years at baseline. The 

dietary GI did not have an isolated effect on body composition, but that the LP/HGI diet was 

related to an increase in %BF and that the HP/LGI was related to a reduction in the percentage 

of overweight and obese children after 6 months of intervention [25]. 
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Retrospective studies suggest an association between GI and adiposity measures among obese 

children. Among the randomised controlled trials, only Ebbeling et al showed differences in 

BMI and body fat between the reduced GL and control diet [284], but with 16 participants and 

only 14 completing the study this result is rather weak. Overall, data available to date does not 

support a strong role of dietary GI or GL for the development of body composition during 

childhood or adolescence. However, the combination of a lower GI diet with higher protein 

content may offer some benefits for children or adolescents at risk of overweight. 
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Table 3 Clinical trials in children and adolescents examining the relation between dietary GI and GL, weight loss and adiposity measures1 

 

• Participants within HEP supported by a dietician 
had a significantly larger decrease in BMI from 
baseline to 4 months follow-up (-1.25 kg/m2) 
compared to the other groups (PC: -0.2 kg/m2 and 
HEP no dietician: +0.4 kg/m2; unadjusted p for 
difference<0.001) 

• Participants on the low-GI diet had a larger decrease 
in BMI (-1.15 kg/m2 (95% CI -1.69, -0.60) vs. -0.03 
kg/m2 (-0.51, 0.57); p for difference=0.001) and body 
weight (-1.16 kg (-2.64, 0.33) vs. 1.44 kg (-0.03, 
2.91); p for difference=0.007) than those on the 
reduced fat diet 

• A larger percentage of participants in the low-GI diet 
had a decrease in BMI of at least 3 kg/m2 compared to 
participants in the reduced fat diet (11 participants 
(17.2%) vs. 1 participant (2.3%); p for 
difference=0.03) 

• Macronutrient content of the diets was not matched 
and results cannot be attributed to GI only 

Exposure and Outcome 

PC and dietician 
HEP and dietician 
HEP no dietician 
HEP: <10% of food items calories are saturated fat 
and low-GI (≤ 50) 

Mean GI or GL of the diets were not reported 
Outcome: BMI (measured at baseline and 
3 months) 
Covariates: n/a 

Low-GI/GL diet, ad libitum (45-50%En 
carbohydrate, 20-25%En protein, 30-35%En fat) 
Reduced fat diet (55-60%En carbohydrate, 15-
20%En protein, 25-30%En fat) 

Mean dietary GI or GL of the diets were not 
reported 

Outcome: Weight and BMI (measured at baseline 
and last visit) 
Covariates: Age, sex, ethnicity, duration of follow-
up, behavioural therapy referral, and baseline BMI 

Design and population 

• Retrospective study of a 3 months 
intervention 

• Obese children assigned to a 
Healthy Eating Plan (HEP; 
assignment started in 10/2009), 
including a visit with a dietician; 
parents decide whether child stayed 
in HEP or switched to portion 
controlled diet (PC) 

• Complete data was available for 
n=64 participants (36% males) who 
were following a portion controlled 
diet (PC; n=28), a HEP (n=21), and 
a HEP, but not seeing a dietician 
(n=15) 

• Mean age (SD): 11.3 (3.3) years 

• Retrospective study of a 4 months 
intervention 

• Obese children assigned to a weight 
loss program (09/1997 to 12/1998), 
based on schedule availability, i.e. a 
low-GI n=64 (30 males) or reduced 
fat diet n=43 (19 males) with 
complete data 

• Mean age (SD) of children 
consuming a low-GI and reduced 
fat diet was 10.6 (4.0) and 
10.2 (3.1) years, respectively 

Author 

Siegel et al 2011 
[282] 
US 

Spieth et al 2000 
[283] 
US 
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 Table 3 continued. 

Results 

• At 12 months, BMI and fat mass had decreased 
significantly more in the RGL compared with RFD 
(mean (SEM): −1.3 (0.7) vs. 0.7 (0.5) kg/m2; p=0.02 
and −3.0 (1.6) vs. 1.8 (1.0) kg; p for difference=0.01) 

• Decrease in BMI (p for difference=0.03) and fat mass 
(p for difference=0.02) from 0 to 12 months in RGL 
group 

• No changes in the RFD group 

• Change in GL (g/1000kcal) was a strong predictor 
of change in %BF (0-6 months), explaining about 
half of the variance in both groups combined 
(R2=0.51; p for trend=0.006) 

• No differences in averaged mean BMI z-score at any 
of the measured time points (all p for difference>0.1) 
or the decrease in overall BMI z-score between LGD 
and LFD (controlled for baseline BMI z-score; p for 
difference=0.8) 

• Both dietary groups decreased their BMI z-scores at 3, 
12 months, and 2 years post-intervention (p for 
difference were <0.0001, 0.003, and 0.002, 
respectively; using multiple imputation as well as 
completers-only analyses) 

Exposure and Outcome 

Randomisation groups: 
RGL (45-50%En carbohydrate, 30-35%En fat) 

Mean (SEM) dietary GI and GL (g/1000kcal) 
were 53 (3) and 69 (6), respectively 

RFD (55-60%En carbohydrate, 25-30%En fat; 
negative energy balance of 250 to 500 kcal/day) 

Mean (SEM) dietary GI and GL (g/1000kcal) 
were 56 (2) and 79 (7), respectively 

Outcome: BMI, %BF, and fat mass (DEXA) 
(measured at 0, 6, and 12 months) 
Covariates: Energy intake, change in BMI 

Exposure: Change in GL and fat intake (baseline to 
6 months) 
Assessment method: 7-day food diaries 

Randomisation groups: 
LGD, ad libitum (45-50%En LGI carbohydrate, 20-
25%En protein, and 30-35%En fat) 

Mean (SE) dietary GI was 51 (1) after 3 
months and 56 (1) after 2 years 
Mean (SE) dietary GL (g/1000kcal) was 64 (3) 
after 3 months and 77 (4) after 2 years 

LFD (55-60%En carbohydrate (with no 
discrimination by GI), 15-20%En protein, and 
25-30%En fat; moderate decrease in caloric intake 
(500-1,000 kcal/day) [287]) 

Mean (SE) dietary GI was 55 (1) after 3 
months and 54 (2) after 2 years  
Mean (SE) dietary GL (g/1000kcal) was 

Design and population 

• Randomised controlled trial; started 
between 12/2000 and 09/2001 

• 6 months intervention, 6 months 
follow-up 

• Obese adolescents (n=16 (5 males)) 
randomised to either an ad libitum 
reduced GL diet (RGL) or energy 
restricted, reduced fat diet (RFD) 

• 13-21 years of age 
• N=14 completed the study, 7 

participants in each diet group 

• Pooled analysis using data from 
both diet groups 

• Randomised controlled trial; started 
between 11/2003 and 05/2008 

• 2-year intervention (from baseline 
on, 12 weeks of nutrition education 
and dietary counselling sessions) 

• Hispanic, obese, otherwise healthy 
children randomised to either a low-
GL diet (LGD; n=57 (25 males)) or 
low fat diet (LFD; n=56 (33 males)) 

• n=33 (18 males) and n=31 (18 
males) completed the 2 year follow-
up 

• 7-15 years of age 

Author 

Ebbeling et al 
2003 [284] 
US 

 

Mirza et al 2013 
[285] 
US 
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Table 3 continued. 

Results 

 

• No differences in BMI z-scores, %BF or waist 
circumference between the diet groups 

• In all diet groups, BMI z-scores and %BF decreased 
after 3 months of intervention (all p for difference 
were ≤0.0001 and ≤0.0002, respectively), remaining 
reduced through to 12 months (all comparisons with 
baseline p for difference were ≤0.0001 and ≤0.0002, 
respectively) 

• Waist circumference was lower than baseline at 3 and 
6 months (both p for difference≤0.0001), but not 12 
months (p for difference≥0.08) 

Exposure and Outcome 

73.8 (2.5) after 3 months and 73.6 (3.4) after 2 
years 

Assessment method: 24h dietary recall and 2-week 
dietary recall 
Outcome: BMI z-score (measured at baseline, 3, 
12 months, and 2 years) 
Covariates: Baseline BMI z-score 

Randomisation groups: 
LC (2-week induction phase with ≤20 g 
carbohydrate/day, increased by 5-10 g/week up to a 
maximum of 60 g/day, no limit on intake of high 
protein foods and fats) 

At baseline, mean (SD) dietary GL 
(g/1000kcal) was 73 (11) 

RGL (limited intake of high-GI foods, no 
restrictions on protein or fat intake) 

At baseline, mean (SD) dietary GL 
(g/1000kcal) was 77 (11) 

PC (55%-60%En carbohydrate, 10%-15%En 
protein, and 30%En fat; daily 500kcal deficit 
relative to each subject’s expected energy 
requirement) 

At baseline, mean (SD) dietary GL 
(g/1000kcal) was 74 (13) 

Outcome: BMI z-scores, %BF (DEXA), waist 
circumference, insulin, and glucose (measured at 
baseline and 3, 6, and 12 months) 
Covariates: Energy intake, change in BMI z-scores 

Design and population 

 

• Randomised clinical trial; started in 
03/2005 

• 3 months intervention 
• Obese children randomised to one 

of the following diet groups: Low 
carbohydrate diet (LC; n=35 (16 
males)), reduced GL diet (RGL; 
n=36 (10 males)) or portion 
controlled, energy restricted diet 
(PC; n=31 (8 males)) 

• Dietary counselling for the first 12 
weeks 

• 7-12 years of age 
• N=85 completed the 12 months 

assessment 

Author 

Mirza et al 2013 
continued 
 

Kirk et al 2012 
[286] 
US 
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Table 3 continued. 

Results 

• No differences in changes in outcome measures 
among the dietary groups during the intervention 

• Increase in %BF in the LP/HGI group over 26 
weeks (1.53%; p for difference=0.04) compared to the 
other groups 

• Reduction in the percentage of overweight/obese 
children in the HP/LGI group over 26 weeks (-
6.6%; p for difference=0.03) compared to the other 
groups 

• The achieved differences between the GI and 
protein groups were 2.3 GI points (p for 
difference=0.01) and 4.9 protein percentage points (p 
for difference<0.001), respectively. Hence the 
intervention was not successful in achieving the 
recommended 15 GI point difference between LGI 
and HGI groups 

1 Only relevant exposures and outcomes are presented; Adjusted p-values are presented, if not indicated otherwise 

Exposure and Outcome 

Randomisation groups: 
LP/LGI, LP/HGI, HP/LGI, HP/HGI, Control 
diet 

All diets were ad libitum and low in fat (25%-
30%En); target protein intake was 10%-15%En 
for LP and 23%-28%En for HP groups (accepted 
range 10%-30%En protein) 
Aim to achieve a 15 GI point difference and 13 
protein percentage points between LGI and 
HGI groups, respectively 

Assessment method: 3-day weighed dietary 
records (at baseline, 4 and 26 weeks) 
Outcomes: Differences in GI and protein intake 
between GI and protein groups 
BMI, %BF (DEXA), waist and hip circumference, 
and waist to hip ratio (measured at baseline, 4 and 
26 weeks) 
Covariates: Age, gender, family structure, and 
country 

Design and population 

• Analysis within an randomised 6 
months intervention trial, a family 
based study (DiOGenes; started 
between 11/2005 and 04/2007) 

• Families with parents who lost >8% 
of their body weight during an 
8 week run-in low-calorie diet 
period were randomly assigned to 1 
of 5 ad libitum diets 

• n=465 (201 males) children with 
complete data were allocated to a 
low protein (LP)/low glycaemic 
index (LGI; n=102), LP/high-GI 
(HGI; n=87), high protein (HP)/LGI 
(n=92), HP/HGI (n=96) or a control 
diet (n=88) 

• Mean age (SD) at baseline: 12.4 
(3.5) years in girls and 11.9 (3.4) 
years in boys 

Author 

Papadaki et al 
2010 [25] 
Europe: 
Netherlands, 
Denmark, UK, 
Greece, Germany, 
Spain, Bulgaria, 
and Czech 
Republic 
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2.3.2 Protein intake, body composition and obesity 

Besides the dietary GI and GL, dietary protein intake might be related to body composition 

(see chapter 2.2.1). Prospective studies in adults propose an unfavourable effect of dietary 

(animal) protein intake on body weight and BMI (but not specifically FMI or %BF) [288-

291], whereas intervention studies in adults suggest that higher dietary protein intakes might 

have beneficial effects on weight loss, weight control and maintenance of fat-free mass, at 

least in the short-term [7, 19, 24, 292-295]. These results are controversial; however, it needs 

to be kept in mind that body weight and BMI are not the best proxy measures for body fat (see 

chapter 2.2.1). In fact, a recent randomized controlled trial examined that weight regain due to 

overeating protein resulted from gain in fat-free mass only [296]. Furthermore, protein intake 

is important during growth. As already mentioned, high protein intake with infant formula 

feeding, in excess of metabolic requirements, might increase weight gain during the first 2 

years of life and increased adipogenic activity [255]. Among children and adolescents, four 

observational studies and six clinical trials were identified which examined the relation 

between dietary protein intake (in childhood and adolescence) – in specific dairy and meat 

products – and body composition (BMI, FMI and fat mass, FFMI and lean body mass, and 

%BF) and weight loss (Table 4 and Table 5). 

Observational studies 

Four observational studies with a prospective design were identified, which investigated the 

association between dietary protein intake (%En) and body composition. Two studies were 

conducted in Denmark, including primary school-aged, healthy children who were followed-

up until adolescence [297, 298]. The other two studies included healthy children and/or 

adolescents who were followed-up for 3 years in the US [299] and until young adulthood in 

the Netherlands [300] (see Table 4). 

Two analyses of the Danish cohorts stratified their results according to participants BMI, i.e. 

quartiles of their BMI. The first study included 328 healthy children aged 6-7 years and found 

that only among lean girls (1-4th quantile of BMI), protein intake was inversely related to 

changes in FMI after 6 years of follow-up [298]. The second Danish study including 203 

children aged 6-7 years observed that protein intake was inversely associated with changes in 

FMI after 3 years follow-up among heavier girls only (5th quantile of BMI) [297]. In addition, 

the first study showed a direct relation between protein intake and changes in FFMI in heavier 

girls (5th quantile of BMI) [298]; the second study could not confirm this [297]. While the 

relation between higher dietary protein intake and lower FMI was found once among lean and 
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once among heavier girls, the relation between higher protein intake and higher FFMI was 

only found among heavier girls. This may suggest that protein intake may have a beneficial 

effect on body composition specifically among heavier girls. Overall, these results are largely 

confined to females as no relation between dietary protein intake and FMI or FFMI was found 

in boys [297, 298]. This could result from differences in body composition development 

during puberty [298]. 

Berkey et al examined the relation between milk consumption and concurrent changes in BMI 

among 12,829 children and adolescents aged 9-14 years. Milk intakes were related to small, 

concurrent increases in BMI per year, which were specifically seen for milks with a lower fat 

content (skim milk among females and 1% milk among males). However, adjustment for 

energy intake attenuated the relation between intakes of skim milk and concurrent BMI 

change per year in females towards non-significance. Multivariate analyses suggested that 

total energy intake was the most important predictor for weight gain [299]. A Dutch cohort 

including 350 adolescents showed that dietary protein intake at the age of 13 years was not 

prospectively related to the sum of four skinfolds at the age of 36 years. Nevertheless, women 

with a >35%BF had about 1% lower protein intakes at the age of 13 years compared to 

women with lower %BF. These relations were not observed in men [300]. 

Taken together the results from observational studies there may not exist a direct relation 

between protein intake and an unfavourable body composition among children and 

adolescents. However, there is evidence available that protein intake may have a specific 

relevance among girls. Among heavier girls, protein intake may be related to a higher lean 

and lower fat mass. 
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Table 4 Observational studies in children and adolescents assessing the relation between dietary protein intake and adiposity measures1 

Results 

• Results were stratified according to BMI quintiles 
• Only among girls with a BMI in lower quintiles (1-4th) 

(i.e. lean girls), protein intake was inversely 
associated with changes in FMI (-1.22 ± 0.56; p for 
trend=0.03) 

• Only among girls with a BMI in the 5th quintile, 
protein intake was directly associated with changes 
in FFMI (3.99 ± 1.87; p for trend=0.04)  

• No associations were found in boys 

• Results were stratified according to BMI quintiles 
• Only among girls with a BMI in the 5th quintile, 

protein intake was inversely associated with changes 
in FMI (ß ± SE, -0.03 ± 0.01; p for trend=0.01) 

• Among boys, no associations were found between 
protein intake and changes in FMI 

• No associations were found between protein intake 
and FFMI among girls or boys 

Exposure and Outcome 

Exposure: Dietary protein (%En) at baseline 
Among lean boys and girls (1-4th BMI 
quintiles), mean (SD) protein intakes were 
72.0g (21.3) and 69.2g (18.8), respectively 
(accounting for 12.9%En and 13.1%En, 
respectively) 
Among boys and girls in the 5th BMI quintile, 
mean (SD) protein intakes were 70.6g (21.8) 
and 62.3g (20.0), respectively (accounting for 
12.8%En and 13.1%En, respectively) 
(%En was estimated from table 1) 

Assessment method: 24h dietary recall 
Outcome: 6 year change in body composition: 
Fat-free mass index (FFMI) and fat mass index 
(FMI) (estimated using skinfold measurements; 
measured at baseline and follow up) 
Covariates: Baseline FMI or FFMI, age, energy 
intake, physical activity, SES and puberty stage 

Exposure: Dietary protein (%En) at baseline 
Among lean boys and girls (1-4th BMI 
quintiles), mean (SD) protein intakes were 
69.5g (17.8) and 63.4g (15.2), respectively 
(accounting for 14.2%En and 14.0%En, 
respectively) 
Among boys and girls in the 5th BMI quintile, 
mean (SD) protein intakes were 71.3g (15.7) 
and 59.7g (13.7), respectively (accounting for 
14.8%En and 13.5%En, respectively) 
(%En was estimated from table 1) 

Assessment method: Booklet for dietary record 

Design and population 

• Data from a prospective cohort 
study (The European Youth Heart 
Study); started in 1997 

• n=328 (148 males) with complete 
baseline (8-10 years of age) and 
follow-up (14-16 years of age) 
measurements 

• 6 year follow-up 

• Data from a prospective cohort 
study (Copenhagen School Child 
Intervention Study); started in 2000 

• n=203 (94 males) with complete 
baseline (6-7 years of age) and 
follow-up (9-10 years of age) 
measurements 

• 3 year follow-up 

Author 

van Vught et al 
2009 [298] 
Denmark 

van Vught et al 
2010 [297] 
Denmark 
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Table 4 continued. 

Results 

 

• Continuous milk intakes were related to small BMI 
increases per year (ß ± SE, 0.019 ± 0.009 kg/m2; p 
for trend=0.03 and 0.015 ± 0.007 kg/m2 per serving a 
day; p for trend=0.04, for males and females 
respectively) 

• No relations were seen between whole milk or 2% 
milk and change in BMI per year (p for trend>0.1) 

• Skim milk (females) and 1% milk (males) were 
associated with BMI gain per year (ß=0.020 kg/m2 
and ß=0.027 kg/m2 per serving a day, respectively; 

both p for trend<0.05), however, among girls the 
relation attenuated after adjusting for energy intake 
(ß=0.020 kg/m2 per serving a day; p for trend=0.09) 

• Total energy intake was the most important 
predictor of weight gain (multivariate analyses) 

• Dietary protein intake at age 13 was not related to 
the sum of the four skinfolds at 36 years 

• Among women with body fat >35% at the age of 36 
years, dietary protein intake was about 1% higher at 
the age of 13 (p for difference<0.001), 32 and 36 

Exposure and Outcome 

Outcome: 3 year change in body composition: 
FFMI and FMI (estimated using skinfold 
measurements; measured at baseline and follow 
up) 
Covariates: Baseline FMI or FFMI, age, 
energy intake, physical activity, and socio-
economic status 

Exposure: Past year milk intake (daily 
servings) 

Mean daily milk intake at baseline was 2.2 
and 1.9 servings among boys and girls, 
respectively 
Among children who completed the FFQ 
all 4 years, boys consumed on average 2.3 
servings milk per day in 1996 but only 2.0 
by 1999, and girls consumed 2.0 servings in 
1996, which declined to 1.7 by 1999 

Assessment method: Semi-quantitative 
132 item FFQ (typical past-year intake) 
Outcome: BMI change per year (year following 
the FFQ; self-reported heights and weights) 
Covariates: Race/ethnicity, age, same-year 
height growth, prior BMI z-score, pubertal 
stage, menstrual history, and same-year 
physical activity and inactivity, energy intake 

Exposure: Dietary protein (%E) (measured at 
13, 14, 15, 16, 22, 28, 32, and 36 years of age) 

Mean protein intakes were not reported 
Assessment method: Cross-check dietary 
history interview 

Design and population 

 

• Data from a prospective cohort study, 
(Growing Up Today Study); started in 
1996 

• n=12,829 (5,550 males) with complete 
baseline (9-14 years of age) and 3 year 
follow-up (12-17 years of age) 

• Data from a prospective cohort study 
(Amsterdam Growth and Health 
Longitudinal Study); started in 1977; 
prospective and cross-sectional 
analyses 

Author 

van Vught et al 
2010 continued 

Berkey et al 2005 
[299] 
US 

Koppes et al 2009 
[300] 
The Netherlands 
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Table 4 continued. 

Results 

years (for both p for difference<0.01) than in women 
with lower %BF; no differences were found at other 
time points (14, 15, 16, 22 or 28 years of age) 

• Among men with body fat >25% at the age of 36 
years, dietary protein intake was about 1% higher at 
the ages of 32 and 36 years (p<0.05 and p<0.01, 
respectively) than compared to men with lower %BF; 
no differences were found at other time points (13, 
14, 15, 16, 22 or 28 years of age) 

1 Only relevant exposures and outcomes are presented; Adjusted p-values are presented, if not indicated otherwise 

Exposure and Outcome 

Outcome: Sum of skinfolds (measured at 
baseline and after 1, 2, 3, 8, and 19), %BF 
(DEXA; used at the last measurement, 23 year 
follow-up), and energy intake 
Covariates: Age, level of education (at 36 
years of age) and smoking; analyses with total 
energy intake and sum of skinfolds are 
additionally adjusted for the physical activity 
level; energy intake is considered to be a 
mediator 

Design and population 

• n=350 (168 males) with complete 
baseline and follow up data 

• Mean age (SD) at baseline: 13 (0.7) 
years of age 

• 23 year follow-up 

Author 

Koppes et al 2009 
continued 
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Clinical trials 

Six randomised controlled trials were identified examining the impact of milk, dairy and/or 

meat interventions and body composition and weight loss among children and adolescents. 

One included a 1 year intervention and was conducted the US [301], the second involved a 

1.5 year intervention and was conducted in the UK [30]. The next two randomised controlled 

trials both included a 2 year intervention period and were conducted in New Zealand [302] 

and Kenya [303]. The last two studies were with 7 days and 16 weeks only rather short-term 

interventions, conducted in Denmark [29] and Chile [304], respectively (Table 5). 

A 1.5 year intervention study did not show an effect of the milk intervention on weight, fat 

mass, and lean muscle mass among 82 adolescents aged 12 years [30] and in another 2 year 

intervention study dairy products had no impact on weight, fat mass, and lean muscle mass 

among 73 adolescents aged 15-16 years [302]. Similarly, another study did not find an impact 

of a 1 year intervention of dairy products on weight, body fat, and fat-free mass among 

11 year old adolescents (n=46) [301]. These three studies were originally designed to 

investigate changes in bone mineral composition [30, 301, 302], only one specifically 

included body composition in the aim [301], and had smaller sample sizes (n<90). 

A 7 day intervention did not show differences in weight or BMI between a milk and meat 

supplementation among 24 boys aged 8 years. However, milk supplementation resulted in 

weight gain and thus an increase in BMI, while there were no changes in the meat group [29]. 

Among 98 Chilean girls, who were counselled to drink 3 portions of the milk beverages per 

day and not to consume sugar sweetened beverages, a 16 week intervention resulted in an 

additional gain in fat-free mass, but not weight, BMI, or fat mass, in comparison with the 

control group [304]. A larger study including 910 Kenyan children aged 6-14 years showed an 

effect of meat as well as milk supplementation over 2 years on the mid-upper-arm muscle 

area, but not mid-upper-arm fat area [303]. 

Taken together, data from clinical trials among children and adolescents either suggest no 

effect of dietary protein intake in form of milk or dairy products on body composition or they 

suggest that dietary protein intake in form of milk and meat could lead to a higher lean body 

mass. 
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Table 5 Clinical trials in children and adolescents assessing the relation between dietary protein intake, weight loss and adiposity measures1 

Results 

• No differences between the groups, both groups 
showed similar increases in weight, fat mass, and lean 
body mass (no p-values reported) 

• The milk group showed a tendency towards greater 
gain in weight (+8.0 kg vs. +7.2 kg) and lean body 
mass (+5.6 kg vs. +5.1 kg), and reduction in %BF  
(-1.4% vs. +0.4%) compared to the control group, 
albeit non-significant; no p-values given (absolute data 
approximated from graph showing %changes) 

• No differences in changes in weight, fat mass, and 
lean body mass (from baseline to 2 or 3 years) were 
observed between the groups 

Exposure and Outcome 

Randomisation groups: 
Milk group, i.e. whole or reduced fat milk with the 
same Calcium content 

The daily mean (SD) dietary protein intake 
was 59.1g (14.2) accounting for 12.5%En at 
baseline and 70.3g (13.6) accounting for 
14.0%En at 1.5 years 

Control group, no milk, girls continued with their 
habitual diet 

The daily mean (SD) dietary protein intake 
was 55.8g (11.7) accounting for 11.9%En at 
baseline and 56.4g (9.9) accounting for 12.8%En 
at 1.5 years 
(%En was estimated from table 2) 

Assessment method: 7-day weighed food record 
(assessed at baseline and end of study) and 4-day 
unweighed food diary (five interim occasions) 
Outcome: Weight, fat mass, %BF, and lean body 
mass (measured at baseline, 6, 12, and 18 months) 
Covariates: pubertal status 

Randomisation groups: 
Dairy group 

At baseline, 2, and 3 years, mean (SEM) 
dietary protein intake was 62.5g (3.5), 81.2g 
(4.1), and 64.7g (3.3), respectively ( accounting 
for 13.1%En, 16.0%En, and 14.6%En, 
respectively) 

Control group 
At baseline, 2, and 3 years, mean (SEM) 
dietary protein intake was 66.2g (3.5), 62.4g  

Design and population 

• Randomised controlled trial; start 
not reported 

• White girls randomised to either 
568 mL of whole or reduced fat 
milk per day for 1.5 years (n=44) or 
no intervention (n=38) 

• Mean age (SD): 12.2 (0.3) years 

• Randomised controlled trial; started 
in 1993 

• Healthy girls (n=105) randomised 
to either a 2 year dairy intervention 
(dairy food products (≥1000 mg/d), 
including milk, flavoured milk, 
dairy dessert, cheese or yoghurt; 
low fat options were available; 
supplements were provided 
fortnightly) or no intervention 

Author 

Cadogan et al 
1997 [30] 
UK 

Merrilees et al 
2000 [302] 
New Zealand 
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Table 5 continued. 

Results 

 

• There were no differences between the diet groups 
in lean body mass or %BF 

• Weight, body fat, and fat-free mass increased in the 
control group (7.2 kg, 2.6 kg, and 3.8 kg, respectively) 
as well as in the dairy group (6.4 kg, 2.6 kg, and 
4.3 kg, respectively); no p-values given 

• The dairy group reported a significantly higher mean 
intake (SD) of protein (70 (16) g/d vs. 52 (16 g/d; p 
for difference=0.0003) compared to the control group, 
the total energy and fat intake did not differ between 
groups 

• No differences in weight or BMI were observed 
between the groups 

• The milk group gained an average of 550 g of weight 
during the intervention, causing an increase in BMI 

Exposure and Outcome 

(3.5), and 64.4g (2.6), respectively ( accounting 
for 14.8%En, 14.4%En, and 14.9%En, 
respectively) 
At year 2 protein intakes differed between 
groups (p for difference<0.001) 
(%En was estimated from table 2) 

Assessment method: 3-day dietary record 
Outcome: Weight, fat mass, and lean muscle mass 
(DEXA) (measured at baseline, 2 and 3 years) 
Covariates: n/a 

Randomisation groups: 
Dairy group, ≥1200 mg Calcium/d through milk, 
cheese, yoghurt 

The daily mean (SD) dietary protein intake 
was 70g (16), accounting for 19.1%En  

Control group, usual diet continued 
The daily mean (SD) dietary protein intake 
was 52g (16), accounting for 14.8%En  
(%En was estimated from table 2) 

Assessment method: 3-day dietary history and 
FFQ at baseline, after 3, 6, 9, and 12 months 
Outcome: Weight, body fat and lean body mass 
(DEXA) (measured at baseline, after 3, 6, 9, and 12 
months) 
Covariates: n/a 

Randomisation groups: 
Milk group 

At baseline and day 7, daily mean (SD) protein 
intakes were 68.6g (10.0) and 121.4g (17.2), 

Design and population 

• 15-16 years of age at baseline 
• n=91 completed the 2 year visit 
• n=73 had complete data of the 

3 year follow-up 

• Randomised controlled trial with a 
duration of 1 year; start not reported 

• n=48 girls randomised to either a 
supplementation of dairy products 
or the usual diet 

• Mean age (SD) at baseline: 11 
(1) years 

• n=46 completed the study and were 
included in the final analysis 

• Randomised controlled trial 
• Boys born between 10-12/1992, 

drawn at random from the Central 
Personal Register 

Author 

Merrilees et al 
2000 continued 
 

Chan et al 1995 
[301] 
US 

Hoppe et al 2004 
[29] 
Denmark 
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Table 5 continued. 

Results 

from 17.2 to 17.5 kg/m2 (p for difference=0.015), 
while there were no changes in the meat group (29.0 
and 29.0 kg, respectively) 

• The mean accretion of lean body mass was greater 
in the intervention than in the control group (mean 
(SE) 0.92 (0.10) kg vs. 0.62 (0.11) kg; p for 
difference=0.04) 

• No differences were observed regarding changes of 
weight, BMI, total body fat, %BF or trunk body 
fat 

Exposure and Outcome 

respectively (accounting for 13.1%En and 
20.6%En, respectively 

Meat group 
At baseline and day 7, daily mean (SD) protein 
intakes were 65.3g (11.4) and 105.6g (33.8), 
respectively (accounting for 12.7%En and 
19.9%En, respectively 
Intakes at day 7 were all significantly different 
from intakes a baseline (all p for 
difference<0.001) 

Outcome: Weight and BMI (measured at baseline 
and day 7) 
Covariates: n/a 

Randomisation groups: 
Milk group 

At baseline, daily mean (SEM) protein intake 
was 87.1g (2.5) accounting for 13.2%En 
Change between baseline and 16 weeks was 
11.5g (1.8) 

Control group 
At baseline, daily mean (SEM) protein intake 
was 85.5g (2.1) accounting for 13.3%En 
Change between baseline and 16 weeks was 
1.8g (0.7) 
Changes in protein intake differed between 
groups (p for difference<0.0001) 
(%En was estimated from table 2) 

Assessment method: FFQ at baseline and 
16 weeks 

Design and population 

• Randomisation to either 1.5 L low 
fat milk per day (n=12) or 250 g 
low fat meat per day (n=12) 
supplementation for 7 days (that is 
53 g protein daily) 

• 8 years of age 

• Randomised controlled trial; data 
collected between 07/2004 and 
12/2005 

• Overweight and obese children 
randomly assigned to either a 16 
week milk (replacement of sugar-
sweetened beverages by 3 × 200g 
milk/d; n=50 (26 males)) or no 
intervention (n=28 (26 males)) 

• n=47 (23 males) in the milk group 
and n=46 (26 males) in the control 
group completed the study 

• 8-10 years of age 

Author 

Hoppe et al 2004 
continued 

Albala et al 2008 
[304] 
Chile 
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Table 5 continued. 

Results 

 

• The meat group showed the steepest gain in MUAC 
and MAMA over time (ß=0.025 and ß= 6.571, 
respectively) compared with the slopes of githeri and 
control group (MUAC: p for difference=0.0005 and 
0.0001, respectively; MAMA: both p for 
difference<0.0001) 

• The milk group showed the next largest MUAC and 
MAMA gain (ß=0.018 and ß= 4.354, respectively) 
compared with the slopes of githeri and control group 
(albeit non-significant for MUAC: both p for 
difference>0.1; tendency for MAMA: p for 
difference=0.008 and 0.076, respectively) 

• Triceps skinfold and MAFA slopes of the three 
feeding groups (meat, milk and githeri) did not differ 
from the control group 

• However, the meat group showed the least increase in 
triceps skinfold and MAFA of all groups, even though 
non-significant 

• Weight increased in all three feeding groups (meat, 
milk and githeri) compared to control group (F-Test: p 
for difference=0.008) 

1 Only relevant exposures and outcomes are presented; Adjusted p-values are presented, if not indicated otherwise 

Exposure and Outcome 

Outcome: Weight, BMI, total body fat, %BF, trunk 
fat, and lean mass (DEXA) (measured at baseline 
and 16 weeks) 
Covariates: Age, sex, and group duration sex 
interaction term 

Randomisation groups: 
Meat group 

At baseline, daily mean (SD) protein intake 
was 57.1g (26.7) accounting for 13.5%En 

Milk group 
At baseline, daily mean (SD) protein intake 
was 49.8g (18.6) accounting for 12.4%En 

Githeri group 
At baseline, daily mean (SD) protein intake 
was 59.1g (32.9) accounting for 13.1%En 

Control group 
At baseline, daily mean (SD) protein intake 
was 51.4g (20.3) accounting for 12.5%En 
(%En was estimated from table 2) 
For the intervention period, no intake values 
reported. 

Assessment method: 24 h recall every 1-2 months 
Outcomes: Weight, triceps skinfold, and mid-
upper-arm circumference (MUAC); mid-upper-arm 
muscle area (MAMA) and mid-upper-arm fat area 
(MAFA) were calculated 
Covariates: Time, intervention × time, socio-
economic status, age at baseline, sex, time2, socio- 
economic status × time, sex × time, and school 

Design and population 

 

• Randomised, controlled trial, 
undertaken in two cohorts of 518 
and 392 schoolchildren, 
respectively; cohort one started 
between 07/1998 and 08/1998 and 
cohort two started between 07/1999 
and 08/1999 

• Twelve elementary schools were 
randomly assigned to either an 
isoenergetic feeding interventions 
containing meat, milk or plain 
traditional vegetable stew (githeri) 
or a control group receiving no 
snack 

• 2 year intervention 
• 6-14 years of age (median age 7.4 

years) 

Author 

Albala et al 2008 
continued 

Neumann et al 
2013 [303] 
Kenya 
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2.3.3 Protein intake and GH-IGF axis 

The relevance of dietary protein intake for the GH-IGF axis has not been fully elucidated yet. 

Cross-sectional studies in adults suggest that high (animal) protein intakes are related to 

higher IGF-I [305-309] and IGFBP-3 levels [308]. Moreover, sources of animal protein have 

been found to be an important determinant of IGF-I levels, with most studies pointing to dairy 

products or milk [307-309] and others to meat [305, 306]. Because the IGF system has a 

central role in the regulation of foetal and childhood growth and metabolism [26], protein 

intake in infancy and childhood in particular may be related to the GH-IGF axis (see also 

chapter 2.2.2). Five observational studies and seven clinical trials were identified, which 

examined the relation between dietary protein intake (in infancy and childhood) and the GH-

IGF axis in infancy, childhood, adolescence, and adulthood (IGF-I, IGFBP-2, and IGFBP-3) 

(Table 6 and Table 7). 

Observational studies 

Out of five observational studies, seven analyses were identified examining the relation 

between dietary protein intake and/or dairy products with the GH-IGF axis. Five analyses had 

a cross-sectional design including three analyses of the Avon Longitudinal Study of Parents 

and Children (ALSPAC) conducted in the UK [310-312]. These three analyses used ALSPAC 

data to examine protein intake and GH-IGF axis, albeit with slightly different sample sizes 

and focus (dietary total, animal, vegetable protein intake [310, 312], cow’s milk and dairy 

products [311, 312] and meat products [310]). The other two analyses came from studies 

conducted in Denmark, i.e. a follow-up of a randomised intervention study examining the 

effect of fish oil or olive oil supplementation of lactating Danish mothers [313] and a pooled 

analysis of a randomised controlled trial examining whole milk and infant formula [314]. In 

addition, two analyses had a prospective design of which one was from a prospective cohort 

study conducted in the UK [32] and the other one a prospective long-term follow-up of a 

randomized controlled trial examining prenatal and postnatal milk supplementation [31]. 

Among 83 infants, positive correlations between protein intake and IGF-I at 9 and 12 months 

of age as well as between whole milk and whole milk products and IGF-I at 9 months of age 

were observed [314]. Similarly, a direct association of animal protein and milk intake, but not 

vegetable protein or meat intake with IGF-I were found among 90 infants aged 32 months 

[313]. The three analyses of ALSPAC included 7-8 year old children (n≈500 each) observing 

positive relations of total protein, animal protein, but not vegetable protein intake with IGF-I 

[310, 312]. No associations were observed for total protein, animal protein or vegetable 
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protein and IGFBP-3 [310, 312]. Furthermore, Martin et al also examined cow’s milk and 

dairy intake which was positively associated with IGFBP-3, but not IGF-I [312] while Rogers 

et al investigated dietary meat intake which was not related to IGF-I or IGFBP-3 [310]. The 

third ALSPAC analysis, published one year later, focussed on cow’s milk and dairy products 

only, finding a direct relation with IGF-I and also IGFBP-3. Furthermore, sex-stratified results 

were presented showing relations between cow’s milk and dairy products and IGF-I and 

IGFBP-3 only among boys [311]. 

Only two analyses had a prospective design, addressing the long-term relevance of (animal) 

protein intake and/or its sources during growth in relation to the GH-IGF axis. No relations 

between protein or meat intakes in early childhood and IGF-I in older age (n=679; 65 years of 

follow-up) were found [32], but both studies observed an inverse association between milk 

intakes in early childhood and IGF-I levels in young adulthood (n=352; 25 years of follow-

up) [31] and in older age [32]. The authors proposed that this inverse relation reflects an early 

programming of the GH-IGF axis in response to higher (animal) protein intakes in early life. 

Under this hypothesis, an early pituitary resetting in response to higher ambient IGF-I 

concentrations may occur, which would ultimately result in an inverse association between 

animal protein intake in early life and IGF-I levels in young adulthood. No associations were 

observed with regards to IGFBP-2 or IGFBP-3. 

In conclusion, cross-sectional studies indicate a direct relation between total protein, animal 

protein and/or dairy protein intake with IGF-I in infancy and childhood. By contrast, 

prospective studies rather suggest an inverse relation between milk intakes and IGF-I in later 

life. With regards to IGFBP-3, observational studies do not support a strong relation with 

protein intakes. Only two cross-sectional studies and one prospective study have examined 

meat intake and the GH-IGF axis and do not support an association between them. 
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Table 6 Observational studies in infants and children assessing the relation between dietary protein intake and GH-IGF axis1 

Results 

At 9 months of age: 
• Positive correlation between protein intake (%En) 

and IGF-I (r=0.329; p=0.015) 
• Positive correlation between intake of whole milk 

and whole milk products and IGF-I (r=0.356; 
p=0.008) 

At 12 months of age: 
• Positive correlation between protein intake (%En) 

and IGF-I (r=0.272; p=0.044) 

• Positive correlation between total protein, animal 
protein or milk intake and IGF-I (p<0.05) 

• Multiple linear regression analysis showed direct 
relations of animal protein and milk intake with 
IGF-I (ß ± SE 1.4 ± 0.53ng/mL; p for trend=0.013 
and 0.049 ± 0.024ng/mL; p for trend=0.045, 
respectively) 

• Vegetable protein and meat intake were not related 
to IGF-I 

Exposure and Outcome 

Exposure: Dietary protein (%En, at 9 and 12 
month of age) 

Daily mean dietary intake among the pooled 
sample was not reported 

Assessment method: 7-day precoded dietary 
record 
Outcome: IGF-I (at 9 and 12 months of age) 
Covariates: Sex and duration of  
full breastfeeding 

Exposure: Dietary total, animal, and vegetable 
protein intake (g), milk (g), and meat intake (g) 

Among boys, daily mean (SD) dietary total, 
animal and vegetable protein intakes were 
41.8g (8.3), 26.2g (6.4), and 14.5g (4.2), 
respectively; daily milk and meat intakes were 
369g (130) and 39.4g (25.9), respectively 
Among girls, daily mean (SD) dietary total, 
animal and vegetable protein intakes were 
43.5g (10.8), 28.4g (7.8), and 13.9g (4.1), 
respectively; daily milk and meat intakes were 
410g (179) and 33.7g (16.3), respectively 

Assessment method: 7 day dietary questionnaire 
(adapted from Danish National Food Survey) 
Outcome: Serum IGF-I 
Covariates: Sex, weight, previous meal size, birth 
size (weight and length), and parental height 

Design and population 

• Cross-sectional 
• Pooled analysis within an 

randomised controlled trial; started 
in 2003 

• Healthy term infants randomised to 
either whole milk (n=38 (16 males)) 
or infant formula (IF, n=45 (25 
males)) and either a daily fish oil 
supplement (FO) or no supplement 
(2x2 factorial design) 

• n=83 (41 males) 

• Cross-sectional 
• Data from a follow-up examination 

of an intervention study [315]; 
carried out from 11/2001 to 
09/2002 

• n=90 (54 males) healthy term 
singletons with complete blood data 
at follow-up 

• Mean age (SD) of girls and boys at 
follow-up was 31.9 (0.86) months 
and 31.6 (0.89) months, 
respectively 

Author 

Larnkjær et al 
2009 [314] 
Denmark 

Hoppe et al 2004 
[313] 
Denmark 
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Table 6 continued. 

Results 

• Total and animal protein, but not vegetable protein 
intakes were positively correlated with IGF-I 
(r=0.19 and r=0.16; both p<0.001, respectively) and 
the IGF-I/IGFBP-3 ratio (r=0.14; p<0.002 and 
r=0.14; p<0.003, respectively), adjusted for age, sex, 
and energy intake 

• No correlation between total, animal or vegetable 
protein and IGFBP-3 

• Red meat, processed meat or poultry were not 
related to IGF-I, IGFBP-3 or the IGF-I/IGFBP-3 
ratio 

• Total protein and animal protein intakes, but not 
vegetable protein, were positively associated with 
IGF-I (median (IQR): 0.8 (0.4, 1.3); p for trend<0.001 
and 0.6 (0.2,1.0); p for trend<0.01, respectively; 
values are change in IGF-I per unit increase in 
continuous variable) 

• No associations between total, animal or vegetable 
protein and IGFBP-3 

Exposure and Outcome 

Exposure: Dietary total, animal, and vegetable 
protein intake (g), red meat (g), processed meat (g), 
and poultry (g) 

Among boys, daily mean (IQR) dietary total, 
animal and vegetable protein intakes were 
56.3g (49.0, 65.4), 34.5g (26.7, 40.7) and 22.2g 
(18.8, 26.5), respectively; daily red meat, 
processed meat, and poultry intakes were 38g 
(20, 73), 32g (15, 53) and 28g (0, 47), 
respectively 
Among girls, daily mean (IQR) dietary total, 
animal and vegetable protein intakes were 
52.0g (46.5, 60.1), 30.6g (25.0, 37.6), and 21.8g 
(17.9, 25.3), respectively; daily red meat, 
processed meat, and poultry intakes were 40g 
(19, 70), 30g (8, 55), and 20g (0, 38), 
respectively 

Assessment method: 3-day unweighed dietary 
record (1week before clinic) 
Outcome: Serum IGF-I, IGFBP-3, and IGF-
I/IGFBP-3 ratio 
Covariates: Energy intake, sex, maternal 
education, housing tenure, birth weight, and BMI 

Exposure: Dietary total, animal, and vegetable 
protein intake (g), cow’s milk (g), and dairy 
products (g) 
The daily mean (SD) total, animal, and vegetable 
protein intakes were 55.6g (12.4), 32.9g (11.3), 
and 22.7g (6.0), respectively, for participants who 
had been breastfed and 55.1g (13.9), 34.2g (13.4), 
and 20.8g (4.8), respectively, for participants who 

Design and population 

• Cross-sectional 
• Data from a prospective birth 

cohort; started between 04/1991 
and 12/1992 (ALSPAC) 

• The children forming the basis of 
this analysis were part of a 
randomly selected 10% sub-cohort 
of ALSPAC called Children in 
Focus (n=1,335) 

• n=521 (287 males) children aged 7-
8 years with complete blood data at 
follow-up 

• Cross-sectional 
• Data from a prospective birth 

cohort; started between 04/1991 
and 12/1992 (ALSPAC) 

• The children forming the basis of 
this analysis were part of a 
randomly selected 10% sub-cohort 
of ALSPAC called Children in 

Author 

Rogers et al 2005 
[310] 
UK 

Martin et al 2005 
[312] 
UK 

 

55 



TH
EO

R
ETIC

A
L B

A
C

K
G

R
O

U
N

D
 

 

Table 6 continued. 

Results 

• Cow’s milk and dairy intake were positively 
associated with IGFBP-3 (median (IQR): 119.5 
(−0.4, 239.5); p for trend=0.05 and 139.6 (17.9, 
261.2); p for trend=0.05, respectively; values are 
change in IGFBP-3 per unit increase in continuous 
variable), but not IGF-I 

• In the total sample, cow’s milk and dairy product 
intakes were positively associated with IGF-I (p for 
trend=0.040 and 0.027, respectively) and tended to be 
associated with IGFBP-3 levels (p for trend=0.082 
and 0.067, respectively) 

• After sex-stratification, both cow’s milk and dairy 
product intakes were positively associated with IGF-
I (p for trend=0.084 and 0.031, respectively) and 
IGFBP-3 levels (p for trend=0.024 and 0.022, 
respectively) among boys 

• No relations were seen among girls 

Exposure and Outcome 

had never been breastfed 
The daily median (IQR) intakes for cow’s 
milk and dairy products were 233g (110, 369) 
and 300g (186, 461), respectively, for 
participants who had been breastfed and 240g 
(112, 340) and 292 (184, 445), respectively, for 
participants who had never been breastfed  

Assessment method: 3-day unweighed dietary 
record (1week before clinic) 
Outcome: Serum IGF-I and IGFBP-3 (measured at 
follow-up) 
Covariates: Current age, sex, energy intake using 
the residuals method 

Exposure: Cow’s milk, dairy products (g) 
Among boys, daily mean (SD) cow’s milk and 
dairy product intakes were 278g (195) and 
348g (209), respectively 
Among girls, daily mean (SD) cow’s milk and 
dairy product intakes were 243g (187) and 
313g (193), respectively 

Assessment method: 3-day unweighed dietary 
record (1week before clinic) 
Outcome: Serum IGF-I and IGFBP-3 
Covariates: Energy intake, sex, maternal 
education, housing tenure, birth weight, and BMI 

Design and population 

Focus (n=1,215) 
n=488 (267 males) children aged 7-8 
years with complete blood data at 
follow-up 

• Cross-sectional 
• Data from a prospective birth 

cohort; started between 04/1991 
and 12/1992 (ALSPAC) 

• The children forming the basis of 
this analysis were part of a 
randomly selected 10% sub-cohort 
of ALSPAC called Children in 
Focus (n=1,432) 

• n=538 (295 males) children aged 7-
8 years with complete blood data at 
follow-up 

Author 

Martin et al 2005 
continued 

Rogers et al 2006 
[311] 
UK 
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Table 6 continued. 

Results 

 

• Milk and milk product intake during childhood was 
inversely associated with IGF-I in older age (change 
in IGF-I -2.5 (95% CI -5.1, -0.1) ng/mL; p for 
trend=0.05); fully adjusted model 

• No associations between protein or meat intake 
during childhood and IGF-I in older age 

• No associations between protein, milk and milk 
product or meat intake during childhood and 
IGFBP-2 or IGFBP-3 in older age 

• Subjects in the milk group in prenatal/early life 
period had lower adult IGF-I levels (-8.5 (95% CI -
15.1, -1.8) ng/mL; p for difference=0.01) and lower 
adult molar IGF-I/IGFBP-3 ratio (-1.20 (95% CI -
2.33, -0.04); p for difference=0.04) compared to the 
control group 

• Differences could not be explained by follow-up bias 
or confounding factors 

• No differences between the groups were seen for 
IGFBP-3 

Exposure and Outcome 

 

Exposure: Dietary protein intake (g), milk and 
milk product (g), and meat intake (g) at baseline 

Per person, the daily mean (SD) childhood 
households dietary protein, milk and milk 
product, and meat intake was 65g (16), 258g 
(188), and 85g (38), respectively 

Assessment method: 7-day household food 
inventories 
Outcome: Serum IGF-I, IGFBP-2, and IGFBP-3 
(measured at follow-up) 
Covariates: Adult age, sex, type of sample (clinic 
or bloods by post), energy intake, social class in 
childhood, social class in adulthood, and lifestyle 
factors (pack-years of smoking, alcohol 
consumption, levels of exercise and BMI); IGF-I 
additionally adjusted for IGFBP-3; IGFBP-3 
adjusted for IGF-I 

Randomisation groups: 
Milk group 
Control group 

Mean milk or protein intakes were not 
reported 

Outcome: Serum IGF-I, IGFBP-3, molar IGF-
I/IGFBP-3 ratio (measured at 25 year follow up) 
Covariates: Adult age, sex, maternal systolic blood 
pressure, maternal smoking, birth weight, birth 
length, gestational age, adult smoking behaviours, 
alcohol consumption, and adult BMI 

Design and population 

Long-term follow-up 

• Prospective birth cohort (Carnegie 
(Boyd Orr Cohort) Survey of Diet 
and Health in Pre-War Britain); 
started between 1937 and 1939 

• Median age at baseline: 5.8 (IQR: 
2.9, 9.6) 

• n=679 with complete data 
• Mean age at follow-up: 71.1 years 

(range 64.0-82.6) 

• Long-term follow-up of a 
randomised controlled trial of 
prenatal and postnatal milk 
supplementation; 1972-1974 

• Pregnant women were randomised 
to either the milk intervention or 
control group (no milk 
supplementation) 
Milk tokens were provided 
throughout pregnancy and 
subsequently for their child until the 
until the age of 5 years 

Author 

Martin et al 2007 
[32] 
UK 

Ben-Shlomo et al 
2005 [31] 
South Wales 
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Table 6 continued. 

Results 

 

1 Only relevant exposures and outcomes are presented; Adjusted p-values are presented, if not indicated otherwise 

Exposure and Outcome 

 

Design and population 

• Children with complete blood data 
at 25 year follow-up (1997-1999) 
were included (milk group n=352, 
control group n=312) 

• Mean age at follow-up: 25 years 

Author 

Ben-Shlomo et al 
2005 continued 
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Clinical trials 

Seven intervention studies were identified that examined dietary protein intake and the GH-

IGF axis. Of these, two studies were conducted in infants, of which one randomised trial 

examined whole milk vs. regular infant formula (over a 3 months intervention period) in 

Denmark [314], the other multicentre, double-blind, randomised controlled trial, i.e. the EU 

CHOP, studied cow’s milk formulas with different protein content (over the first year of life). 

It should be noted that pooled results regarding the GH-IGF axis were published twice, albeit 

with slightly different sample sizes and objectives [256, 316]; Closa-Monasterolo et al also 

examined whether sex modified the GH-IGF axis in response to protein intakes in early life 

[316]. In addition, five studies were conducted in children. A Danish randomised controlled 

trial evaluated a 7 day milk vs. meat intervention [29]. The other three randomised controlled 

trials studied a milk interventions vs. a control in the UK (18 months duration) [30], in China 

(24 months duration) [28], and the US (2 × 2 weeks cross-over design) [27]. The last study 

was a 1 months pilot study which studied the influence of a milk intervention in Mongolia 

[27]. 

Analyses of CHOP included 577 and 584 infants, respectively [256, 316], results showed that 

high protein cow’s milk formula intake in early life increased IGF-I and decreased IGFBP-2 

levels at 6 months of age compared to low protein cow’s milk formula [256, 316]. Compared 

to infant formula, no overall effect of a 3 months whole milk intervention, starting at 9 

months of age, on IGF-I levels at the age of 12 months was observed (n=83), whereas an 

effect of whole milk on increased IGF-I levels was seen among boys only [314]. By contrast, 

Closa-Monasterolo et al observed that only among female infants high protein cow’s milk 

formula increased IGF-I levels at 6 months of age compared to low protein cow’s milk 

formula. Furthermore, their sex stratified analysis revealed that decreases in IGFBP-2 levels 

due to high protein cow’s milk formula were of a greater magnitude in girls compared to boys 

(410.8 ng/mL vs. 271.1 ng/mL, respectively) [316]. No effect of whole milk or high protein 

formula on IGFBP-3, were observed [256, 314, 316]. 

Among 24 boys aged 8 years, milk supplementation over 7 days increased IGF-I and IGFBP-

3 levels and the IGFI-I/IGFBP-3 ratio at day 7 compared to baseline, while no differences 

were seen among the meat group. No differences were observed between the groups [29]. An 

18 months milk intervention resulted in higher IGF-I concentrations among 82 girls ages 12 

years [30] and a 24 months school-milk intervention increased IGF-I levels at the endpoint 

among 10 year olds compared to the control group [28]. Similarly, a 2 week milk 
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supplementation led to small, but non-significant increases in IGF-I concentrations and the 

IGF-I/IGFBP-3 ratio among 28 pre-pubertal girls [27]. The 1 months pilot study among 46 

children aged 10-11 years showed increases in in IGF-I levels and the IGF-I/IGFBP-3 ratio 

compared to baseline [27]. 

Hence overall, the majority of the presented clinical trials support an effect of high protein 

intakes, consumed as cow’s milk, to increase IGF-I and decrease IGFBP-2 levels during 

infancy and childhood, but yet available data does not strongly support an influence on 

IGFBP-3 concentrations. Only one study has examined meat intake and did not find any 

influences on the GH-IGF axis. 

 

 

 

 

 

 

 

 

 

 

 

60 



TH
EO

R
ETIC

A
L B

A
C

K
G

R
O

U
N

D
 

 

Table 7 Clinical trials in infants and children assessing the relation between dietary protein intake and GH-IGF axis1 

Results 

 

• Total and free IGF-I were about 40% higher in the 
HP group compared to the LP group (median total 
IGF-I 48.4 (IQR: 27.2, 81.8) vs. 34.7 (IR: 17.7, 57.5) 
ng/mL; p for difference<0.001) 

• IGFBP-2 was about 30% lower in the HP group 
compared to the LP group (765 (IR: 575,1013) vs. 
1090 (IR: 865, 1438) ng/mL; p for difference<0.001) 

• IGFBP-3 did not differ between groups 

• HP formula was associated with higher 
concentrations of free IGF-I and lower concentrations 
of IGFBP-2 compared to the LP formula (p for 
difference<0.001 for all cases) 

• No differences between HP and LP formula 
regarding IGFBP-3 

• Interaction between sex and formula for IGFBP-2 (p 
for interaction=0.04) and total IGF-I (p for 
interaction=0.06) 

• In female infants HP formula induced an increase in 
total IGF-I of 24.4 ng/mL (95% CI 11.4, 37.3; p for 
difference<0.001) compared to LP formula, which 
was not seen among male infants (mean difference 
was 11.2 ng/mL (95% CI 1.9, 24.3; p for  

Exposure and Outcome 

 

Randomisation groups: 
Low protein group (LP) 
1.77 and 2.2 g/100 kcal, respectively 
High protein group (HP) 
2.9 and 4.4 g/100 kcal, respectively 

Mean protein intakes were not reported 
Control group, breastfed infants 
Outcome: Serum total IGF-I, free IGF-I, IGFBP-2, 
and IGFBP-3 (measured at 6 months of age) 
Covariates: Baseline measurement of weight-for-
length 

Randomisation groups: 
Low protein group (LP) 
1.77 and 2.2 g/100 kcal, respectively 

At 3 months, the median daily protein intake 
was 1.7g/kg (approximated from figure 2) 
At 6 months, the daily median (IQR) protein 
intake was 1.98g/kg (1.70, 2.31) 

High protein group (HP) 
2.9 and 4.4 g/100 kcal, respectively 

At 3 months, the median daily protein intake 
was 2.7g/kg (approximated from figure 2) 
At 6 months, the daily median (IQR) protein 
intake was 3.11g/kg (2.59, 3.57) 

Design and population 

 

• Multi-centre, double-blind 
randomised clinical trial; CHOP 
started between 10/2002 and 
07/2004 

• Healthy infants randomised to 
either a lower (n=291) or higher 
protein cow’s milk-based infant 
formula (first 8 weeks of life) and 
follow-on formula until the age of 
12 months (n=286) and an 
observational group of breastfed 
infants (Control group: n=187) 

• Median age at study entry: 14 days 
• Complete blood data at the age of 6 

months 

• Multi-centre, double-blind 
randomised clinical trial; CHOP 
started between 10/2002 and 
07/2004 

• Healthy infants randomised to 
either a lower (n=290 (137 males)) 
or higher protein cow’s milk-based 
infant formula (first 8 weeks of life) 
and follow-on formula until the age 
of 12 months (n=294 (149 males)) 
and complete blood data at the age 
of 6 months 

• Observational group of breastfed 
infants (Control group) was not  

Author 

Infants 

Socha et al 2011 
[256] 
Europe: Germany, 
Belgium, Italy, 
Poland, and Spain 

Closa-
Monasterolo et al 
2011 [316] 
Europe: Germany, 
Belgium, Italy, 
Poland, and Spain 
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Table 7 continued. 

Results 

difference=0.1)) 
• HP formula induced an increase in IGFBP-2 of 

410.8 ng/mL (95% CI 283.7, 538.0; p for 
difference<0.001) among female infants and 
271.1 ng/mL (95% CI 142.4, 399.8; p for 
difference<0.001) among male infants compared to 
LP formula 

• Compared to male infants, female infants showed 
higher concentrations of total and free IGF-I and 
IGFBP-3 at 6 months of age (p= 0.002; p= 0.04, and p 
for difference<0.001, respectively) 

• Overall, whole milk had no effect on IGF-I 
• Whole milk had no effect on IGFBP-3 
• Among boys, randomization to whole milk increased 

IGF-I by 27% compared to the infant formula 
group (p for difference≤0.05, but not in girls 

• Intake of fish oil had no effect on the outcomes 

Exposure and Outcome 

Overall, intakes were not different between boys 
and girls 

Outcome: Serum total IGF-I, free IGF-I, IGFBP-2, 
and IGFBP-3 (measured at 6 months of age) 
Covariates: Weight 

Randomisation groups: 
Whole milk plus FO 

At 9 and 12 months, the daily mean (SD) 
dietary protein intake was 11.8%En (1.7) and 
11.4%En (1.3), respectively  

Any infant formula with protein content between 
1.1 and 1.5 g protein/100 mL, no FO 

At 9 and 12 months, the daily mean (SD) 
dietary protein intake was 11.8%En (2.5) and 
14.2%En (2.2), respectively 

Outcome: Weight, serum IGF-I, and IGFBP-3 
(measured at baseline (9 months of age) and 12 
months of age) 
Covariates: Breastfeeding 

Design and population 

included in this study 

• Randomised clinical trial; started in 
2003 

• Healthy term infants randomised to 
either whole milk (n=38 (16 males)) 
or infant formula (n=45 (25 males)) 
and either a daily fish oil 
supplement (FO) or no supplement 
(2x2 factorial design); 3 months 
intervention 

• Those still breastfed continued to 
do so 

Author 

Closa-
Monasterolo et al 
2011 continued 

Larnkjær et al 
2009 [314] 
Denmark 
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Table 7 continued. 

Results 

 

• IGF-I, IGFBP-3, and IGF-I/IGFBP-3 ratio at day 7 
did not differ between the milk and meat group 

• In the milk group, IGF-I increased by 39.7 ng/mL 
(i.e. 19%; p for difference<0.001), IGFBP-3 by 194 
ng/mL (i.e. 5%; p for difference<0.001) and the IGF-
I/IGFBP-3 ratio by 0.03 (i.e. 13%; p for 
difference<0.0001) from baseline to day 7 

• No changes were seen in the meat group 

• The milk group showed higher concentrations of IGF- 
I over the course of the study compared to the control 
group (p for difference=0.08) which was significant 
after adjustment for pubertal status (mean increase: 
132 (i.e. 33%) vs. 63 (i.e. 16%) ng/mL; p for 
trend=0.02) 

Exposure and Outcome 

 

Randomisation groups: 
Milk group 

At baseline and day 7, daily mean (SD) protein 
intakes were 68.6g (10.0) and 121.4g (17.2), 
respectively (accounting for 13.1%En and 
20.6%En, respectively 

Meat group 
At baseline and day 7, daily mean (SD) protein 
intakes were 65.3g (11.4) and 105.6g (33.8), 
respectively (accounting for 12.7%En and 
19.9%En, respectively 

Intakes at day 7 were all significantly different from 
intakes a baseline (all p for difference<0.001) 
Outcome: IGF-I, IGFBP-3, and IGF-I/IGFBP-3 
ratio (measured at baseline and day 7) 
Covariates: n/a 

Randomisation groups: 
Milk group, i.e. whole or reduced fat milk with the 
same Calcium content 

The daily mean (SD) dietary protein intake 
was 59.1g (14.2) accounting for 12.5%En at 
baseline and 70.3g (13.6) accounting for 
14.0%En at 1.5 years 

Control group, no milk, girls continued with their 
habitual diet 

The daily mean (SD) dietary protein intake 
was 55.8g (11.7) accounting for 11.9%En at 
baseline and 56.4g (9.9) accounting for 12.8%En 
at 1.5 years 

Design and population 

 

• Randomised controlled trial 
• Boys born between 10-12/1992, 

drawn at random from the Central 
Personal Register 

• Randomisation to either 1.5 L low 
fat milk per day (n=12) or 250 g 
low fat meat per day (n=12) 
supplementation for 7 days (that is 
53 g protein daily) 

• 8 years of age 

• Randomised controlled trial; start 
not reported 

• White girls randomised to either 
568 mL of whole or reduced fat 
milk per day for 18 months (n=44) 
or no intervention (n=38) 

• Mean age (SD): 12.2 (0.3) years 

Author 

Children 

Hoppe et al 2004 
[29] 
Denmark 

Cadogan et al 
1997 [30] 
UK 
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Table 7 continued. 

Results 

 

• Milk supplementation had increased IGF-I 
concentrations at 24 months compared to the control 
group (adjusted percentage difference from baseline to 
24 months: Ca milk group: 16.7% (95% CI 1.8, 31.6); 
p for difference=0.03; CaD milk group: 23.3% (95% 
CI 10.6, 36.0); p for difference=0.001). Adjustment 
for clustering by school attenuated effect (both p≥0.1)  

• In all 3 groups plasma IGF-I at 24 months was higher 
compared to baseline (p for difference<0.001) 

Exposure and Outcome 

(%En was estimated from table 2) 
Outcome: Serum IGF-I (measured at baseline, 6, 
12, and 18 months) 
Covariates: Pubertal status 

Randomisation groups: 
Ca milk group 

At baseline and 2 years, the mean (SD) daily 
protein intake was 52.0g (14.3) and 54.5g 
(14.7), respectively 

CaD milk group 
At baseline and 2 years, the mean (SD) daily 
protein intake was 53.7g (15.0) and 58.1g 
(17.3), respectively 

Control group, no supplementary milk and 
consumed their usual diet 

At baseline and 2 years, the mean (SD) daily 
protein intake was 54.6g (14.8) and 54.4g 
(16.3), respectively 

Outcome: Plasma IGF-I (measured at  
12 and 24 months) 
Covariates: Baseline IGF-I, pubertal status, 
menarcheal status at 12 and 24months, school 
clustering 

Design and population 

 

• Randomised controlled trial; start 
not reported 

• Chinese girls randomised to either 
daily 330 mL calcium-fortified milk 
(n=43), calcium and vitamin D-
fortified milk (n=44) or control 
group (n=41) according to their 
schools in a 24 months school milk 
intervention trial with complete 
blood data 

• Mean (SD) age at baseline: 10 (0.3) 
years 

Author 

Cadogan et al 
1997 continued 

Zhu et al 2005 
[28] 
China 
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Table 7 continued. 

Results 

• After a week of drinking 2% fat milk, Boston girls had 
small and non-significant increases in IGF-I, IGF-
I/IGFBP-3 ratio and GH 

• After 1 month of drinking whole milk, Mongolian 
children had higher mean plasma levels of IGF-I 
(13.34 ng/mL, i.e. 5%; p for difference<0.0001), 
IGF-I/IGFBP-3 ratio (0.002, i.e. 14%; p for 
difference<0.0001), and 75th percentile of GH levels 
(0.36 ng/mL, i.e. 103%; p for difference=0.005) 

1 Only relevant exposures and outcomes are presented; Adjusted p-values are presented, if not indicated otherwise 

Exposure and Outcome 

Randomisation groups: 
Milk supplement, 2% fat cow’s milk per day 
Control, milk substitute with the same calorie, 
protein, fat, carbohydrate, Calcium, and Vitamin D 
content as 2% fat cow’s milk (containing coconut 
milk, almond milk, and protein powder) Otherwise 
dairy-free diets 

Overall, mean (SD) daily servings of milk and 
other dairy were 14.9 (5.8) and 18.9 (10.3), 
respectively 

Outcome: GH, IGF-I, and IGF-I/IGFBP-3 ratio 
(measured at the end of each interventional week in 
the US) 
Covariates: n/a 

Milk supplement, conventional US UHT-
pasteurized vitamin D fortified whole milk 

The mean (SD) daily servings of milk and 
other dairy were 0.8 (1.3) and 6.5 (6.0), 
respectively, among boys and 0.5 (1.0) and 4.1 
(4.0), respectively, among girls 

Outcome: Plasma GH, IGF-I, and IGFBP-3 
(measured at baseline and after 1 months) 

Design and population 

• Randomised cross-over feeding 
study; start not reported 

• 5 week protocol, including 2 
intervention weeks with either 710 
mL milk or milk substitute per day, 
and an intervening 3 week ‘wash 
out’ return to normal diet 

• Prepubertal girls (n=28) were 
randomised to the order of the 
interventions 

• 6-8 years of age 

• Pilot study (05-06/2005): 1 month 
710 mL/d milk supplementation 
among school children (n=46 (24 
males))  

• 10-11 years of age 

Author 

Rich-Edwards et 
al 2007 [27] 
US 

Rich-Edwards et 
al 2007 [27] 
Mongolia 
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2.4 Conclusive considerations 

Taken together the results from observational and intervention studies among children and 

adolescents, the evidence on a potential benefit of low-GI and/or GL for the development of 

body composition and weight loss is still limited. With regards to mechanisms linking high-

GI and GL to obesity it is not clear whether high postprandial glucose or insulin responses are 

involved in an unfavourable development of body composition. To date, prospective data 

relating dietary insulin demand during adolescence to body composition development and 

weight loss in obese adolescents is lacking (Aim 1, Research question 1 and 2). 

Current evidence relating protein intake and the development of body composition among 

children and adolescents raises the question whether dietary protein has differential effects on 

fat mass and/or fat-free mass. Research has focussed on total protein intakes as well as milk, 

dairy products, and meat intakes among children and adolescents. However, the relevance of 

animal protein – and its sources meat and dairy protein – as well as plant protein intakes in 

different potentially critical periods, namely early life, adiposity rebound, and puberty, is not 

fully established (Aim 2, Research question 3). 

To date, there exists controversy among observational studies whether there is a direct or 

inverse relation between protein intake and the GH-IGF axis. Although the majority of 

clinical trials support effects of higher protein intakes consumed as milk on the GH-IGF axis, 

data for protein consumed as meat is scarce. It remains to be elucidated whether habitual 

intakes of animal protein and its sources meat and dairy protein as well as plant protein have a 

long-term relevance for the GH-IGF axis. Prospective inverse relations of (animal) protein 

intakes in early life with the GH-IGF axis have been shown, which may reflect an early 

programming of the GH-IGF axis. Hence, prospective evidence covering different, potentially 

critical, developmental periods is lacking, so as to unravel whether an inverse association 

between animal protein intake and the GH-IGF axis is confined to early life (Aim 2, Research 

question 4). 
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3. AIMS AND RESEARCH QUESTIONS 

As summarized in the previous chapters, dietary insulin demand and dietary protein intake 

might play an important role in the development of body composition and/or weight loss. To 

date, evidence for the role of insulin demand and protein intake in childhood and adolescence 

is limited. Furthermore, protein intake might be relevant in the programming and 

development of the GH-IGF axis. However, evidence covering different developmental 

periods is lacking. To address these issues the following two aims, i.e. four research questions 

have been formulated: 

Aim 1 To examine the dietary insulin demand, body composition and weight loss 

Research question 1.1 Are dietary insulin demand, glycaemic index, and glycaemic load 
during puberty prospectively associated with body composition in 
young adulthood? 

Research question 1.2 Are the dietary glycaemic load and insulin load associated with weight 
loss, changes in percentage of body fat and insulin sensitivity in obese 
adolescents with clinical features of insulin resistance? 

Aim 2 To examine dietary protein sources, body composition and the GH-IGF axis 

Research question 2.1 Are different dietary protein sources during childhood and adolescence 
prospectively related to body composition in young adulthood? 

Research question 2.2 Are different dietary protein sources during childhood and adolescence 
prospectively associated with the growth hormone-insulin-like-growth-
factor axis in younger adulthood? 

This thesis aimed to address these research questions using data from the DONALD study and 

the RESIST study. The DONALD study entails repeated assessments of dietary intake, 

anthropometry, and metabolism in healthy German children from birth until adulthood (see 

chapter 4.1). With regards to dietary intake, data on the dietary insulin demand, GI, and GL 

were available for puberty, while data on dietary protein intake and its sources were available 

for the periods of early life, adiposity rebound, and puberty. The RESIST study included a 3 

months lifestyle and metformin intervention designated to examine the efficacy of two diets 

differing in macronutrient content, i.e. lower vs. increased protein content. The RESIST study 

provided the required data on dietary intake, anthropometry, and metabolism in obese 

Australian adolescents with clinical features of insulin resistance (see chapter 4.2). For this 

thesis, the author was able to conduct a secondary data analysis to examine the dietary GL and 

IL. Based on these studies, a set of four analyses has been carried out and their original 
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articles will be presented subsequently (chapter 5). The four research questions that were 

addressed are summarized in Figure 4. 
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Figure 4 Scheme of research questions over the course of childhood and adolescence. OA, original 

article; RQ, research question 
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4. GENERAL METHODOLOGY 

4.1 DONALD study 

The DONALD study is an ongoing, open cohort study conducted at the Research Institute of 

Child Nutrition in Dortmund. The major aims of the DONALD study are [317, 318]: 

• Analysis of interrelations between dietary intake, metabolism, development and growth 
• Determination of intra- and inter-individual trends of dietary intake and nutritional 

behaviour 
• Provision of metabolic reference data from healthy children and adolescents 
• Provision of dietary intake data for specific assessments of exposures 
Since recruitment started in 1985, detailed data on diet, growth, development, and metabolism 

have been collected from over 1300 children who are systematically followed up until 

adulthood. Every year, 35 to 40 healthy infants are newly recruited and first examined at the 

age of 3 months. Each child returns every 3 months in the first year of life, twice a year in the 

second year of life and then once annually until adulthood (Figure 5). Assessments include 

medical examinations, anthropometric measurements, parental questionnaires, and 3-day 

weighed dietary records. Since 2005, participants are asked to provide fasting blood samples 

from the age of 18 years, until then the study is purely observational and non-invasive. 

Moreover, parental information including weight and height is repeatedly assessed [317, 318]. 

The DONALD study was approved by the Ethics Committee of the University of Bonn, and 

all examinations are performed with parental and participant’s consent. 

Ages (years)

0 1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 21 25 3530

Study Modules

Parents

Medical examination
and anamnesis

Anthropometry

3-day weighed
dietary record

24h-urine

Blood
sample

Anamnesis, 
Anthropometry

 

Figure 5 Examination schedule of the DONALD study, from [317] 
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The 3-day weighed dietary records are analysed using the continuously updated in-house 

nutrient database LEBTAB (Lebensmitteltabelle) [319], which provides information on 

energy and nutrients including total protein, animal protein and plant protein. To also allow 

the examination of dietary GI, GL and insulin demand, the database was extended by the 

dietary GI according to existing standard procedures [320] and FII, for which a standardized 

assignment procedure was developed and implemented [321]1. Composite foods are entered 

as recipes, therefore, providing comprehensive data on ingredients [319]. In order to create 

the food groups “dairy products” and “meat products”, foods were broken down into their 

ingredients as appropriate (e.g. pizza was broken down into dairy products, meat products and 

other product groups). All foods and ingredients were then assigned to their respective food 

groups, i.e. meat products, dairy products, and miscellaneous. 

Venous blood samples are drawn after an overnight fast. IGF-I and IGFBP measurements are 

not included in the DONALD routine and were measured at the Laboratory of Translational 

Hormone Analytics in Pediatric Endocrinology Center of Child and Adolescent Medicine at 

the Justus-Liebig-University in Giessen, Germany. Anthropometric measurements performed 

in the DONALD study are based on simple measurements only. The estimation of body fat is 

derived from skinfold measurements. Detailed description of the study methods can be found 

in the original articles (appendices 1, 3, and 4). 

Different, potentially critical, developmental periods comprise the following ages: Early life 

0.5-2 years, adiposity rebound 4-6 years, and puberty as 9-14 years for girls and 10-15 years 

for boys. It should be noted that puberty was defined according to chronological age. 

Chronological age might be confounded because children of the same age may differ 

substantially in their pubertal stage. However, the chronological age range we used starts at 

the same time point at which DONALD participants on average are undergoing puberty 

according to the age at take-off (onset of pubertal growth spurt). Furthermore, the 

chronological age range ends where most girls and boys included in the DONALD study have 

already experienced their first menarche and their voice break, respectively [322, 323]. 

Therefore, we supposed that chronological age as defined, adequately covers the period of 

puberty. In addition, preliminary analyses using age at take-off and peak height velocity to 

define puberty were run and yielded similar results for the relationships of the dietary GI, GL, 

1 Contribution of Gesa Joslowski: Complementation of assignment of GI values, development and 
implementation of a standardized procedure to assign FII values to recorded foods, assignment of all FII values 
to the 3-day weighed dietary records (together with Janina Goletzke) 
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and insulin demand with %BF. Thus, chronological age was used to define puberty in order to 

not reduce the sample size too much. 

4.2 RESIST study 

The RESIST study is a randomised control trial (Australian New Zealand Clinical Trial 

Registration Number 12608000416392) conducted at the Children’s Hospital at Westmead in 

Sydney. The primary aim of the RESIST study was to determine the effectiveness of two 

structured lifestyle interventions differing in diet composition on insulin sensitivity in 

adolescents with clinical features of insulin resistance and/or prediabetes treated with 

metformin [324]. 

In total, 111 participants (66 girls) from 10 to 17 years of age were recruited and randomised 

to either a high carbohydrate, low fat or a moderate carbohydrate, increased protein diet and 

commenced on metformin. The study is structured in 3 Phases: dietary intervention, intensive 

exercise, and maintenance phase (Figure 6). Assessments include medical examinations, oral 

glucose tolerance tests (OGTT) and blood tests, anthropometric measurements, 

questionnaires, and 24h dietary recalls using a standardized three-pass methodology [324]. To 

assist with estimating the amounts of foods a food model booklet was used [117].The study 

was approved by The Children’s Hospital at Westmead Human Research Ethics Committee 

(07/CHW/12), Sydney South West Area Health, Western Zone (08/LPOOL/195) and Sydney 

South West Area Health Service, Royal Prince Alfred Hospital (08/RPAH/455). Written 

informed consent from parents and assent from the young people was sought prior to their 

enrolment in the study. 
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Phase 1
(0-3 months)

Phase 2
(4-6 months)

Phase 3
(7-12 months)

At baseline, randomisation to one of two study diets 
and commencement of metformin treatment, n=111

Allocation to a high 
carbohydrate, low fat diet

(in E%), n=55

Allocation to a moderate 
carbohydrate, increased protein 

diet (in E%), n=56

Dietary intervention
(medical consultation, dietitian

consultation and support, 
24hour dietary recall)

Dietary intervention
(medical consultation, dietitian

consultation and support, 
24hour dietary recall)

Intensive exercise intervention
(Gym sessions: 2 x per week, home based physical activity: 1 x per week, 

participants continue with their prescribed diet,
medical consultation, dietitian consultation and support)

Maintenance
(Participants continue with their prescribed diet and their exercise routine,

medical consultation, dietitian consultation and support)

 

Figure 6 Design of the RESIST study (modified after [324]). %En, percentage energy 

For this thesis, 24h dietary recalls at weeks 6, 9, and 12 were used and analysed using 

FoodWorks 2009 which uses the Australian Food and Nutrient Database (AusNut) compiled 

and regularly updated by Food Standards Australia and New Zealand. GI and FII values have 

been assigned to each food recorded according to standard procedures [321, 325]2. After an 

overnight fast, OGTTs were performed and venous blood samples were drawn. 

Anthropometric measurements are based on single measurements for weight and two 

measurements for height, using the average value for data analysis. Body composition was 

analysed using dual-energy X-ray absorptiometry (DEXA). All outcomes were assessed at 

baseline and after 12 weeks. Detailed description of the study methods can be found in the 

original article (appendix 2). 

All statistical analyses were carried out using the Statistical Analyses System SAS (versions 

9.1.3, SAS Institute Inc., Cary, NC). A p-value <0.05 was considered statistically significant. 

Detailed description of the analytical approaches can be found in the original articles 

(appendices 1-4). 

2 Contribution of Gesa Joslowski: Complementation of assignment of GI values, assignment of all FII values to 
the 24hour recalls (together with Janina Goletzke) 
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5. ORIGINAL ARTICLES 

Aim 1 To examine dietary insulin demand, body composition and weight loss 

Nutritional and anthropometric data from the DONALD and RESIST study were used to 

investigate this aim. Besides GI and GL, the analyses addressed a novel measure of dietary 

insulin demand. Published GI values were assigned to all carbohydrate containing foods, 

while published values of the FII were assigned to all foods, i.e. carbohydrate-, protein or fat 

containing foods, recorded during adolescence in 3-day weighed dietary records in DONALD 

and 24-hour dietary recalls in RESIST. Percentage body fat (%BF) and BMI in young 

adulthood were considered as outcome measures for body composition in the DONALD sub-

sample. In the RESIST sub-sample, the outcome measures were weight loss expressed as 

change in BMI %95 centile between baseline and 3months as well as changes in %BF and 

whole body insulin sensitivity index (ISI) between baseline and 3months. 

RQ 1.1 Are dietary insulin demand, glycaemic index, and glycaemic load during puberty 

prospectively associated with body composition in young adulthood?  

The focus of this research question was to examine whether habitual postprandial glycaemic 

or insulinaemic excursions during the critical period of puberty (girls 9-14 years; boys 10-

15years; see chapter 2.2.3) may be of long-term relevance for body composition in young 

adulthood (18-25 years). 

In this study including 262 DONALD participants, dietary GI and GL during puberty were 

not related to body composition in young adulthood. A higher dietary insulin demand during 

puberty was associated with higher levels of %BF, but not BMI in young adulthood. The 

relation to %BF was particularly pronounced in models addressing the effect of substituting 

carbohydrate- and protein-rich foods with a higher insulin demand for carbohydrate- and 

protein-rich foods with a lower insulin demand (OA1 Joslowski 2012). 

RQ 1.2 Are the dietary glycaemic load and insulin load associated with weight loss, changes 

in percentage of body fat and insulin sensitivity in obese adolescents with clinical 

features of insulin resistance? 

This research question addressed the relevance of dietary insulin demand, estimated by GL 

and IL, for weight loss, %BF and ISI. A secondary data analysis was performed including 91 

RESIST participants aged 10-17 years. 
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Higher dietary GL and IL were associated with less weight loss, i.e. a smaller decrease in 

BMI %95 centile; however, adjustment for total energy intake attenuated the relation. In 

addition, conditional models supported a mediation of the association between GL or IL and 

change in BMI %95 by energy, i.e. that lowering GL or IL facilitated a reduction of overall 

total energy intake. No relation was observed between dietary GI and weight loss. Dietary 

GL, GI or insulin demand was not related to change in %BF or ISI. The macronutrient content 

of the diet (%En) was not related to weight loss, %BF or ISI (OA2 Joslowski 2013). 

 

For summaries on the respective analysis see the abstracts on the following pages. The 

original articles can be found in the appendices 1 and 2. 
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OA1 Prospective associations of dietary insulin index, glycemic index, and glycemic load 
during puberty with body composition in young adulthood 
Joslowski G3, Goletzke J, Cheng G, Günther ALB, Bao J, Brand-Miller JC, Buyken AE. 

International Journal of Obesity (London) (2012) 36: 1463-1471. doi: 10.1038/ijo.2011.241 

 

Background: Puberty is a so-called critical period for overweight development and 
characterized by physiological insulin resistance during mid-puberty. This study addressed the 
hypothesis that habitual consumption of a diet inducing higher levels of postprandial 
glycaemia or insulinaemia during puberty may have an unfavourable effect on body 
composition in young adulthood. 

Methods: Multivariate regression analysis was performed on 262 DONALD participants with 
at least two 3-day weighed dietary records during puberty (baseline: girls 9-14years; boys 10-
15years) and anthropometric measurements in young adulthood (18-25years). A published 
dietary glycaemic index was assigned to each carbohydrate containing food. Similarly, each 
food was assigned a food insulin index (insulinaemic response to a 1MJ portion of food 
relative to 1MJ of glucose) using 121 values measured at Sydney University. 

Results: Dietary glycaemic index or glycaemic load during puberty was not related to body 
composition in young adulthood. In contrast, a higher dietary insulin index and a higher 
dietary insulin load during puberty were associated with higher levels of percentage of body 
fat (%BF) in young adulthood, even after adjustment for early life, socioeconomic and 
nutritional factors; %BF in energy-adjusted tertiles of dietary insulin index were 22.9 (95%CI: 
21.6, 24.1), 24.5 (23.2, 25.7), 24.7 (23.5, 25.9) %, p for trend=0.01; %BF in energy-adjusted 
tertiles of dietary insulin load were 22.8 (95%CI: 21.5, 24.0), 24.5 (23.2, 25.7), 24.8 (23.6, 
26.0) %, p for trend=0.01. Adjustment for baseline %BF attenuated these relationships (p for 
trend=0.1 and 0.08 respectively). Dietary insulin demand was not related to BMI. 

Conclusion: This study suggests a prospective adverse influence of dietary insulin demand 
during puberty on %BF in young adulthood. Postprandial increases in insulinaemia rather 
than increases in glycaemia appear to be implicated in an unfavourable development of body 
composition. 

3 Contribution of GJ: Complementation of assignment of GI values, development and implementation of a 
standardized procedure to assign FII values to recorded foods, assignment of all FII values to the 3-day weighed 
dietary records (together with JG), conduction of statistical analysis, interpretation of the data (together with all 
co-authors), and drafting of the manuscript 
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OA2 Dietary glycemic load, insulin load, and weight loss in obese, insulin resistant 
adolescents: RESIST study 
Joslowski G4, Halim J, Goletzke J, Gow M, Ho M, Louie J C-Y, Buyken AE, Cowell CT, 

Garnett SP (under revision) 

Background & Aims: The optimal dietary approach for weight loss and improving insulin 
sensitivity in adolescents is unknown. The aim of this study was to explore the association of 
dietary glycaemic load (GL), insulin load (IL), and weight loss, percentage body fat (%BF), 
and whole body insulin sensitivity index (ISI) in obese, insulin resistant adolescents after a 3 
month lifestyle/metformin intervention. 

Methods: Secondary data analysis of 91 adolescents (median age 12.7 years (range 10.1-
17.4) participating in an RCT (RESIST; ACTRN12608000416392) who provided at least one 
24h dietary recall. Weight change between baseline and 3months was measured by BMI 
expressed as percentage of the 95th centile (BMI%95). %BF was measured using DEXA. ISI 
was determined by an oral glucose tolerance test. Linear regression analysis was used to 
examine the association between diet change in BMI%95, %BF and ISI between baseline and 
3 months. 

Results: Higher dietary GL and IL were associated with less weight loss (BMI%95), adjusted 
for sex and pubertal stage (GL: β=0.0466, P=0.007, IL: β=0.0124, P=0.04). Inclusion of total 
energy intake in the model explained observed associations between dietary GL or IL and 
change in BMI%95 (GL: P=0.4, IL: P=0.3). Dietary GL and IL were not associated with 
changes in %BF or ISI. Dietary GI and macronutrient content of the diet (%En) were not 
associated to changes in BMI%95, %BF or ISI. 

Conclusion: Reduced energy diet contributes to weight loss in obese, insulin resistant 
adolescents. Lower dietary GL and IL diets were associated with a lower energy intake and 
may hence assist with weight loss. 

4 Contribution of GJ: Complementation of assignment of GI values, assignment of all FII values to the 24hour 
recalls (together with JG), conduction of statistical analysis, interpretation of the data (together with all co-
authors), and drafting of the manuscript 
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Aim 2 To examine dietary protein sources, body composition and the GH-IGF axis 

Analyses performed in the context of this aim used protein intake data from DONALD 

participants collected during three potentially critical periods, covering early life, the period 

of the adiposity rebound and adolescence (see chapter 2.2.3). With regards to the outcomes, 

the studies examined body composition and the GH-IGF axis in young(er) adulthood. 

RQ 2.1 Are different dietary protein sources during childhood and adolescence prospectively 

related to body composition in young adulthood? 

The analysis investigated whether dietary animal or plant protein intake during puberty (girls 

9-14 years; boys 10-15years; n=262) were related to body composition in young adulthood 

(18-25 years). All foods recorded during puberty were assigned to their respective food 

groups i.e. meat products, dairy products, and miscellaneous. Furthermore, the association of 

dietary animal or plant protein intake during early life age (0.5-2 years; n=159) and around 

the adiposity rebound (4-6 years; n=220) with body composition in young adulthood was 

investigated. Animal protein did not include protein from human milk. 

Among women, a higher dietary animal protein intake during puberty was prospectively 

associated with higher FFMI, but not with FMI in young adulthood. Among men, a higher 

dietary animal protein intake was related to higher FFMI and lower FMI, but only after 

adjusting FFMI for FMI levels in young adulthood and vice versa, i.e. comparable levels of 

FFMI or FMI, respectively. Examining the sources of animal protein intake, meat, but not 

dairy protein intakes during puberty were related to higher FFMI in young adulthood among 

women. No associations were found between dietary plant protein intake during puberty and 

FFMI or FMI in young adulthood. With regards to early life no relation was found between 

dietary animal protein intake and FFMI or FMI in young adulthood. A higher dietary animal 

protein intake around the adiposity rebound tended to be related to higher adult FFMI among 

men only (OA3 Assmann 2013). 

RQ 2.2 Are different dietary protein sources during childhood and adolescence prospectively 

associated with the growth hormone-insulin-like-growth-factor axis in younger 

adulthood? 

The last research question addressed whether dietary animal or plant protein intake during 

early life (0.5-2 years; n=130), around the adiposity rebound (4-6 years; n=179) or puberty 

(girls 9-14 years; boys 10-15 years; n=213) were related to the GH-IGF axis in younger 

adulthood (18-36 years). Compared to the research aims considering body composition as an 
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outcome, this sub-sample was smaller, even though the age range was larger. This is due to 

the fact that only since 2005, adult participants (aged 18 years or older) were asked to provide 

fasting blood samples. Analogous to the analysis of RQ 2.1, all foods recorded during puberty 

were assigned to the respective food groups i.e. meat products, dairy products, and 

miscellaneous. Animal protein did not include protein from human milk. 

Only among women, habitually higher dietary animal protein intake during puberty was 

related to higher levels of IGF-I, IGFBP-3, and lower IGFBP-2, but not to IGFBP-1 in 

younger adulthood. In turn, dietary animal protein intake in early life was inversely related to 

IGF-I levels in younger adulthood among males only. However, no association was observed 

between dietary animal protein intake around adiposity rebound and IGF-I in younger 

adulthood. No relations were observed between dietary plant protein intake and GH-IGF axis 

(OA4 Joslowski 2013). 

For summaries on the respective analysis see the abstracts on the following pages. The 

original articles can be found in the appendices 3 and 4. 
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OA3 Prospective association of protein intake during puberty with body composition in 
young adulthood 
Assmann KE, Joslowski G5, Buyken AE, Cheng G, Remer T, Kroke A, Günther ALB. 

Obesity (2013) 21(12):E782-9. doi: 10.1002/oby.20516 

 

Objective To examine the association of habitual animal and plant protein intake during the 
potentially critical period of puberty with body composition in young adulthood. 

Methods Multivariable regression analyses were performed on data from participants of the 
DONALD study with at least two 3-day weighed dietary records during adolescence (girls 9-
14 years; boys 10-15 years; n=262), around the adiposity rebound (4-6 years; n=220) or early 
life (6-24 months6; n=159), and anthropometric measurements in young adulthood (18-25 
years). Fat-free mass index (FFMI) and fat mass index (FMI) were estimated from four 
skinfolds.  

Results In women, a higher pubertal animal protein consumption was independently related 
to higher levels of FFMI (p for trend=0.001), but not to FMI (p for trend=0.5). Adjusted 
means of FFMI in energy-adjusted tertiles of animal protein intake were 15.3 (95% 
confidence interval: 15.0, 15.5), 15.4 (15.1, 15.7), 16.2 (15.9, 16.6) kg/m². In men, a higher 
animal protein intake was related to a higher FFMI (p for trend=0.04) and a lower FMI (p for 
trend=0.001) only after adjusting FFMI for current FMI levels and vice-versa. Plant protein 
was not associated with body composition among either sex. Higher animal protein intake 
around the adiposity rebound tended to be related to higher adult FFMI among boys, but not 
girls. No relations were found between animal protein intake in early life and body 
composition in young adulthood. Neither plant protein intake in early life or around the 
adiposity rebound were associated with body composition in young adulthood. 

Conclusions Our results indicate that, in women, higher pubertal animal protein consumption 
yields a higher fat-free mass in young adulthood. 

5 Contribution of GJ: Compilation of the dataset, support with statistical analysis, and interpretation of the data 
(together with all co-authors) 
6 Erratum: On page E782, in the second sentence of the last paragraph of the introduction the age in early 
childhood defined as “12-24 months” is incorrect. It should have read “6-24 months” instead. 
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OA4 Prospective associations of different protein sources during childhood and 
adolescence with the growth hormone-insulin-like-growth-factor axis in younger 
adulthood 
Joslowski G7, Remer T, Assmann KE, Krupp D, Cheng G, Garnett SP, Kroke A, Wudy SA, 

Günther ALB, Buyken AE. 

Journal of Nutrition (2013) 143(7):1147-54. doi: 10.3945/jn.113.175877 

 

Background Recent studies provide evidence that insulin-like-growth-factor I (IGF-I) and its 
binding proteins IGFBP-2 and IGFBP-3 are related to the risk of several common cancers. It 
remains to be clarified whether their levels can be programmed by protein intake from 
different sources during growth. This study addressed the hypothesis that animal protein 
intakes during infancy, mid-childhood and adolescence differ in their relevance for the GH-
IGF axis in young adulthood.  

Methods Data from DONALD participants with at least two plausible 3-day weighed dietary 
records during adolescence (age girls 9-14 years/boys 10-15 years; n=213), around the 
adiposity rebound (age 4-6 years; n=179) or early life (age 0.5-2 years; n=130), and one blood 
sample in young adulthood were included in the study. Parameters of the GH 

Results Mean serum levels of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 were compared 
between tertiles of habitual animal protein intake using multivariable regression analysis. 
Habitually higher animal protein intakes in females during puberty were related to higher 
levels of IGF-I (p for trend=0.005), IGFBP-3 (p for trend=0.01), and lower IGFBP-2 (p for 
trend=0.04), but not to IGFBP-1 in young adulthood. In turn, IGF-I levels in young adulthood 
were inversely related to animal protein intakes in early life among males only (p for 
trend=0.03), but not to animal protein intake around adiposity rebound (p for trend>0.5). 

Conclusion Our data suggest that, among females, a habitually higher animal protein intake 
during puberty may precipitate an up-regulation of the GH-IGF axis which is still discernible 
in young adulthood. By contrast, among males, higher animal protein intakes in early life may 
exert a long-term programming of the GH-IGF-I axis. 

7 Contribution of GJ: Conduction of statistical analysis, interpretation of the data (together with all co-authors), 
and drafting of the manuscript 
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6. GENERAL DISCUSSION 

The overall aim of this thesis was to investigate the relevance of dietary insulin demand and 

dietary protein intake during adolescence for the development of body composition and/or the 

adult GH-IGF axis. In the following chapters, the central findings of the conducted studies, 

based on the aims and research question presented in chapter 3, will be discussed. 

Consecutively, the general methodological issues concerning the DONALD and RESIST 

study will be discussed. Finally, public health considerations will be presented. 

6.1 Research aims 

In this chapter, the findings are discussed with respect to the research questions (see chapter 

3) and their common scientific background. Since this thesis is cumulative, more detailed and 

specific discussion can be found in the original articles (for details see appendices 1-4). 

6.1.1 Aim 1 To examine the dietary insulin demand, body composition and weight loss 

The first research question (RQ 1.1) of aim 1 addressed whether the dietary insulin demand, 

glycaemic index, and glycaemic load during puberty were prospectively associated with body 

composition in young adulthood and was addressed by OA1 (appendix 1).  

Insulin demand has so far never been related to body composition and with this analysis a 

new link between dietary insulin demand and body composition has been demonstrated. The 

finding that a higher dietary insulin demand, but not dietary GI or GL, was related to higher 

levels of body fat in young adulthood indicates that postprandial rises in insulinaemia rather 

than glycaemia may have adverse consequences for the development of adult body 

composition. This is in line with animal and human studies [38, 326], suggesting that early 

postprandial insulin response (at 30 min) might be related to a higher obesity risk. Potential 

mechanisms including redirection of nutrients away from oxidation in the muscle and towards 

storage in fat [176], suppression of lipolysis [161], and reduction of insulin sensitivity [13] 

seem plausible (see chapter 2.2.1). Still there exists controversy about insulin response being 

causal for obesity and a heated debate has also entered the day press [327]. Under the 

hypothesis that insulin response is causal for obesity, Gary Taubes claims that the “lipophilia 

hypothesis” explains overnutrition; his essay was recently published in the British Medical 

Journal [42]. Foods stimulating insulin levels, especially carbohydrate rich foods, trigger the 

development of obesity, because they cause a hormonal response that drives fat accumulation. 

Hence, overeating is a compensatory response to lipophilia rather than a cause. Furthermore, 
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Taubes rejects the energy balance hypothesis, which states that overnutrition is causal for 

obesity [42]. The essay has been controversially debated [328-332]. Yet, it is not clear 

whether hyperinsulinaemia is a cause or an effect of obesity, but our data provide some 

support for an involvement of hyperinsulinaemia within obesity development. 

There exists evidence that hyperinsulinaemia, at least in early stages, may be a physiological 

adaptation to obesity helping to limit further weight gain [41, 333, 334]. On the other hand, 

suppression of insulin response using octreotide (a somatostatin analog) among 44 severely 

obese adults with a mean age of 39 years was associated with loss in weight and fat mass as 

well as concomitant decrease in total energy intake [335], suggesting that hyperinsulinaemia 

may be a risk factor for developing obesity. In addition, among 5-9 year old children from a 

Pima Indian population (n=328) those with insulin resistance gained more weight than 

insulin-sensitive children after a 10 year follow-up [336]. However, this is only indirect 

support as this study did not provide data on insulin secretion. The debate whether insulin 

response is related to obesity has not been resolved yet [43]. Nevertheless, our observed 

associations may provide an explanation why observational and clinical trials among children 

and adolescents did not find a strong relation between GI or GL and body composition and 

weight loss (see chapter 2.3.1), since dietary GL may perhaps capture the dietary insulin 

demand less precisely compared to the dietary II/IL. Nonetheless, results need to be 

confirmed in other populations. 

Children and adolescents with an increased BMI may be more vulnerable to a higher insulin 

demand. Results from the DONALD study showed that overweight adolescents with a higher 

dietary GI at baseline tended to have higher %BF and BMI SDS at baseline, while no 

association was observed for normal weight adolescents [279]. Thus, a relevance of insulin 

demand among obese and insulin resistant adolescents is conceivable. In this regard, findings 

from Papadaki et al are interesting as they show that a diet high in dietary protein and low in 

dietary GI was related to decreased rates in overweight or obesity among children and 

adolescents at risk for overweight [25] (see also chapter 2.3.1). A high protein and low-GI 

diet is characterised by a lower insulin demand because of partial substitution of insulin 

demanding carbohydrates for less insulin demanding proteins (particularly non-dairy protein). 

Hence, it is of interest to examine the relation between dietary insulin demand and body 

composition among an obese population. 

The second research question (RQ 1.2) of aim 1 addressed the association of the dietary 

glycaemic load and insulin load with weight loss, changes in percentage of body fat and 
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insulin sensitivity in obese adolescents with clinical features of insulin resistance. In contrast 

to what has been observed among participant of the DONALD study, we did not find an 

independent association between dietary insulin demand and weight loss or body composition 

as has been discussed (for details see OA2, appendix 2). Similarly, dietary insulin demand 

among the RESIST participants was not independently related to weight loss after 6 months 

(n=83, data not shown). The observation that the association between dietary GL or IL and 

weight loss might be mediated by energy, i.e. that lowering GL or IL facilitated a reduction of 

overall total energy intake, is in line with the results of the RESIST study’s intention-to-treat-

analysis, as briefly described in the following paragraph. 

Ninety-eight participants (58 girls) completed the 6-month intervention. Both dietary 

interventions and metformin treatment resulted in a decrease in BMI %95 centile after 

3 months (p for difference<0.001). BMI %95 centile also decreased significantly between 3 

and 6 months (p for difference=0.009) and remained different from baseline. However, no 

differences were seen between diet groups at any time point. Results for %BF have not been 

reported thus far. After 3 months of dietary interventions and metformin treatment, the mean 

ISI had increased by 0.3 (95%CI 0.2, 0.4; p for difference<0.001), but no differences were 

seen between diet groups. Garnett et al discuss that a lack of observed differences among the 

outcomes could stem from the poor dietary adherence or limitations of monitoring and 

reporting in both diet groups. In addition, this trial was undertaken in a real-life setting and 

the difficulty the adolescents had in altering the macronutrient content of their prescribed diet 

may be a consequence of readily available high-carbohydrate snack foods [337]. 

Using data from RESIST, we were able to also examine insulin sensitivity as an outcome, but 

did not see any relation between insulin demand and change in ISI. As mentioned in the 

original article (OA2), some studies report an effect between lower dietary GL and GI on 

decreased insulin resistance during a 6 months intervention period [284, 338], while others 

did not find an effect of a lower dietary GL and insulin resistance after a 6 months [339] and 2 

year intervention [285]. As described in the previous paragraph, insulin sensitivity improved 

during 3 months of intervention. However, a 3 months intervention might not have been 

sufficient to detect a relation between dietary GL or IL and ISI. Among 226 participants of the 

DONALD study, a higher dietary GI during puberty was prospectively related to higher 

insulin resistance in younger adulthood [340]. Moreover, higher pubertal protein intake, but 

not insulin demand, tended to be related to higher insulin resistance in younger adulthood as 

will be discussed below (chapter 6.1.2). Hence, it is conceivable that there exists a long-term 
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relevance of dietary factors, including GI and protein, on insulin sensitivity resulting from 

greater demands on β-cell function. 

Overall, insulin demand has never been related to weight loss. Although the findings with 

regard to dietary insulin demand and body composition from the DONALD study (OA1) 

seem plausible, the results should not be overinterpreted. This is underpinned by the fact that 

no independent relation between insulin demand and %BF or weight loss was found in the 

RESIST study. To date, data does not support any dietary recommendations for insulin 

demand, but as suggested by the qualitative approach in the DONALD analyses, a specific 

relevance of insulin demand with respect to body composition is conceivable. Even though 

the analyses of the RESIST study suggest that lowering energy intake is more relevant for 

weight loss, it can be speculated that reducing the insulin demand of the diet might be an 

alternative to help reducing energy intake, since the conditional models suggested that total 

energy intake may mediate the relation between dietary GL or IL and change in BMI %95 

centile. There exists the possibility to exchange foods with a high FII for foods with a low FII 

or to have one serving of a food with a low FII within a meal, similar to what is done for GI. 

Table 8 provides some examples of potential food exchanges mainly among carbohydrate 

rich foods. Among these, a lower FII may result from lower GL, but also higher protein 

and/or fat contents of a food. The exchange of carbohydrate rich foods for protein rich foods 

would in general result in a rather lower dietary insulin demand, because protein rich foods 

tend to have a lower FII (e.g. poached eggs: FII=23; tuna canned in water: FII=26; beef steak: 

FII=37; but also lentils served in tomato sauce: FII=42; canned Navy beans: FII=23 [17]). 

Even though protein rich foods result in a postprandial insulin response, especially the co-

ingestion of protein and carbohydrates [16, 72], but also fat [14], may result in increases of 

postprandial insulin response. Of course, an exchange of foods as described would only be 

feasible if the whole diet is considered [341], i.e. not only focussing on FII. For example, this 

includes a limited intake of foods containing saturated fat, added salt, added sugars and 

alcohol. 
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Table 8 Potential food insulin index exchange list1  

Instead of... FII Choose... FII Explanatory 

BREAKFAST     

Cornflakes (Kellogg Foods Inc. 
USA, Wells Fargo Bank, MN) 

82 
 

Porridge (Uncle Toby’s Inc. Nestle 
Pty Ltd, Sydney, Australia) 
or 100% Natural Granola Oats, 
Honey Raisins (Quaker Oats Inc. 
Chicago) 

29 
 

41 
 
 

Products with a lower GL and 
higher protein and fat content 

have a lower FII 

Skim-fat milk (Dairy Farmers) 60 1% fat milk (Dairy Farmers) 34 Products with a higher fat 
content have a lower FII 

LUNCH     

Potatoes (russet boiled, peeled; 
Australia) 88 

Lentils, served with tomato sauce 
(Australia) 
or Brown pasta (both Sam Remo, 
Australia)  

42 
 

29 

Products with a lower GL 
and/or a higher protein and 
fat content have a lower FII 

SNACKS     

Bananas (raw, peeled, Australia) 59 Apple, Red Delicious, raw 
(Australia) 43 Products with a lower GL 

have a lower FII 

Mars bar (Mars Confectionary Inc. 
Auburn, Australia) 89 

Hershey’s milk, chocolate 
(Hershey Foods Inc. Hershey, PA) 
or Snickers bar (Masterfoods, 
Hackettstown, NJ) 

34 
 

37 

Products with a lower GL and 
higher fat content have a 

lower FII 

DINNER     

White bread (Sunblest; Tiptop Pty 
Ltd, Enfield, Australia) 
Whole meal bread (Riga Bakeries 
Inc. Sydney, Australia) 

73 
 

70 
 

Grain bread (Tiptop Bakeries Inc. 
Australia or Burgen, Soy-Lin, 
Chatswood, Australia) 

41 
52 

Products with a lower GL and 
higher protein and/or fat 
content have a lower FII 

1 All FII values were measured among 10 healthy individuals [17]. FII, Food insulin index 

6.1.2 Aim 2 To examine dietary protein sources, body composition and the GH-IGF axis 

Whether different dietary protein sources during childhood and adolescence were 

prospectively related to body composition in young adulthood was considered by the first 

research question of aim 2 (RQ 2.1). Earlier findings of the DONALD cohort suggest that a 

higher habitually animal protein intake, but not plant protein intake, in early life (12 months 

of age) and around the adiposity rebound (5-6 years) was associated with an unfavourable 

body composition at the age of 7 years, i.e. a higher BMI SDS and %BF (n=203) [342]. This 

analysis did not provide information about fat mass and lean body mass in specific in order to 

disentangle a potential differential relation of animal protein intake to fat mass and lean body 

mass. 

The question remains whether the association between dietary animal protein intake in early 

life and body composition in childhood is transitory or whether it extends into adulthood. The 
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analysis enclosed in this thesis (see OA3, appendix 3) addressed the long-term relevance of an 

early animal protein intake (0.5-2 years) for body composition in young adulthood (n=157) 

and did not find a relation; thus suggesting that a relation may not extend into young 

adulthood. By contrast, higher animal protein intake around the adiposity rebound (4-6 years) 

tended to be related to higher adult FFMI among boys (n=107), but not girls (n=113), 

indicating a relation towards higher lean body mass in young adulthood. Nevertheless, the 

analyses are limited by small sample sizes and need to be interpreted with caution. Similar to 

what has been observed by Günther et al [342], no relations were found between plant protein 

intake in childhood and adolescence and body composition in young adulthood. This might be 

explained by the fact that plant protein contains less essential amino acids, which are 

important for anabolic processes of lean body mass and lower bioavailability compared to 

animal protein [170, 343] – a circumstance, which also applies to the associations examined 

in puberty (see below). 

In addition, higher animal protein intake during puberty was related to higher FFMI in young 

adulthood (for details see OA3). Earlier results from the DONALD study showed that a 

higher dietary insulin demand during puberty was associated with higher FMI in young 

adulthood, even though adjustment for baseline FMI attenuated the relation (similar to the 

observation regarding %BF, see OA1). These findings demonstrate a relevance of puberty for 

the development of body composition, although relations may be different with regards to 

exposures. Dietary animal protein intake during puberty seemed to be favourable for an 

increase in lean body mass, whereas the dietary insulin demand during puberty was related to 

higher levels of fat mass. These different observations might be partly explained by the fact 

that the insulin demand of a diet is indeed driven by protein, but primarily by carbohydrate 

intake. The relevance of differences between sources of dietary animal protein, i.e. dairy and 

meat protein will be discussed below in more detail. 

Controversy exists on the relation of protein intake with body composition or weight loss 

between results from observational studies and clinical trials among adults (see also chapter 

2.3.2). Body weight and BMI are only a proxy measure for %BF. In fact, BMI can reflect 

both a higher lean body mass and a higher %BF, which is important to keep in mind when 

examining relations between dietary protein intake and BMI. This has been elegantly 

demonstrated by a recent randomised controlled trial among 25 healthy young adults aged 18-

35 years examining the effect of overeating among 3 different protein groups: 5%En from 

protein (low protein), 15%En (normal protein) or 25%En (high protein). Data was collected 

under rigorous experimental conditions in a metabolic ward. Weight gain and the increase in 
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BMI in the low protein group was about half of that in the normal and high protein group. On 

the other hand, this trial showed that the increase in %BF was similar among all diet groups 

and that the gain in weight and BMI was particularly resulting from an increase in fat-free 

mass only [296]. Therefore, considering solely the gain in weight or BMI would incorrectly 

suggest an unfavourable effect of protein on body composition. 

In the observational analysis enclosed in this thesis we were able to distinguish between fat 

mass and fat-free mass showing that higher animal protein intake may not necessarily be 

adverse with regard to body composition, but in fact increase lean body mass. Overall, our 

results are broadly in line with findings from observational studies and randomised controlled 

trials among children and adolescents (see chapter 2.3.2 and OA3). With regards to FFMI, 

prospective relations between higher protein intake at the age of 8-10 years and higher FFMI 

after 6 years of follow-up were observed among girls in the 5th BMI quintile [298]. Taken 

together, it is important to consider both fat mass and fat-free mass when examining relations 

between dietary protein intake and body composition and there may exist a specific relevance 

among girls. For boys, hormonal influences during puberty may be more important than 

differences in protein intakes as discussed in the original article. With respect to FMI, 

statistical power might have been insufficient, as mentioned in the original article. Therefore, 

it cannot be ruled out that there may exist a relation between dietary animal protein intake 

with FMI, possibly inverse, as was found in other prospective studies [297, 298]. 

Concerning the sources of pubertal animal protein intake among females, the variance for 

meat protein intake was greater than for dairy protein intake (ϭ2=2.2 vs. ϭ2=1.4; data not 

presented in OA3) and the actual differences between the highest and lowest tertile were 

1.7%En vs. 4.6%En for meat and 3.0%En vs. 5.1%En for dairy protein intake (data not 

presented in OA3). This may explain why we did not observe a relation with regards to dairy 

protein intake. In addition, milk has been shown to result in high insulin responses [58, 67] 

and a high dairy protein intake may therefore reflect a higher insulin demand compared to 

meat protein intake. While higher meat protein intake is related to higher FFMI, it is thus 

conceivable that dairy protein intake might be related to FMI, but not FFMI. However, 

statistical power might not have been sufficient to detect a relation with regards to FMI as 

mentioned above. 

No relation between dietary plant protein intake during puberty and body composition in 

young adulthood was observed. The overall proportion of plant protein intake was relatively 

low, which might explain why no associations were observed with body composition (median 
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plant and animal protein intakes among females were 4.8%En and 7.9%En, respectively and 

4.8%En and 8.4%En, respectively, among males). As already mentioned, plant protein 

contains less essential amino acids than animal protein, for details on potential mechanisms 

see the original article (OA3), which might further explain the lack of an association. 

These results suggest that dietary protein intake in childhood, and in specific the early life, 

may not be as relevant for adult body composition as puberty. Besides the greater time lag 

between early life or childhood and young adulthood, puberty is in general a period of change 

in which adolescents start being more independent from their parents and are influenced by 

their social environment including their peer group, school, and life style factors. Moreover, 

this goes hand in hand with changes in health behaviour which may persist into adulthood 

[344, 345]. Hence, it is possible that a nutritional pattern developed during adolescence is 

more relevant for the later life compared to childhood. 

The second research question (RQ 2.2) of aim2 was to gain insight whether different dietary 

protein sources during childhood and adolescence were prospectively associated with the GH-

IGF axis in younger adulthood. Besides its role in childhood growth and metabolism, it has 

been hypothesised that there may exist an early programming of the GH-IGF axis, i.e. an 

inverse association between (animal) protein intake in early life and IGF-I levels in young 

adulthood (a resetting of the GH-IGF axis; see chapter 2.3.3). In other words, a high early 

protein intake may down-regulate the GH-IGF axis in the long-term. Our results partly 

support this hypothesis and are mostly in accordance with earlier studies from Ben-Shlomo 

and Martin et al [31, 32]: We found that animal protein intakes in early life were inversely 

related to IGF-I levels in younger adulthood. This result was, however, confined to males 

only. No relations were observed between early plant protein intake and GH-IGF axis in 

women or men in younger adulthood (see OA4, appendix 4). 

Moreover, an analysis of a Dutch sub-sample of the European Prospective Investigation into 

Cancer and Nutrition study provides evidence on the long-term effect of nutrition on the GH-

IGF axis. Among a small sample of 87 postmenopausal women, caloric restriction (famine) at 

the ages of 2-20 years was prospectively related to higher IGF-I and IGFBP-3 concentrations 

in later life (age 52-69 years) [346]. This result suggests an up-regulation of the GH-IGF axis 

in adulthood in response to caloric restriction and is compatible with our finding which 

indicated a down-regulation of the adult GH-IGF axis in response to high animal protein 

intakes accompanied with adequate energy intake in early life. It could be argued that energy 

intake may play a primary role for this early programming, but additional adjustment for 
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energy intake in early life did not alter the relation between high animal protein intake in early 

life and lower IGF-I younger adulthood (data not shown in OA4). To date, it is not clear 

which mechanism lies behind this programming. 

This resetting hypothesis was not confirmed for breast feeding using data of the DONALD 

study; in neither women nor men, breastfeeding duration was associated with mean adult 

concentrations of IGF-I, IGFBP-1 or IGFBP-3 [347]. Animal protein intake in our analysis 

did not include breast milk. When comparing breast milk to infant formulas and cow’s milk, 

protein content in breast milk is lower. In fact, breast milk contains on average 1.13g (min, 

max: 1.03, 1.43) protein per 100g [81], while the European guideline for infant formula based 

on cow’s milk protein claims a protein content of 1.26-2.1g per 100g infant formula and 1.26-

2.45g per 100g follow-on formula8 [348]. This guideline is relatively new, however, older 

German and European guidelines claim a comparable or slightly higher protein content for 

infant formula based on cow’s milk protein, respectively (i.e. the German reference: 1.2-1.9g 

per 100g until 31. May 1994 and the European guideline: 1.58-2.1g per 100g since 

1. December 19929) [349], which is of note, as all participants were born between 1971 and 

1993. In this comparison cow’s milk has the highest protein content, i.e. 3.32g protein (min, 

max: 3.08, 3.70) per 100g [81]. With respect to essential amino acids, lower concentrations 

are found in human breast milk compared to cow’s milk. In fact, concentrations of leucine, 

isoleucine, and valine are around 2.7 times higher in cow’s milk compared to breast milk. 

Similarly, the content of arginine and lysine is 2.3 and 3 times higher in cow’s milk compared 

to human breast milk [81]. Therefore, it can be speculated that the protein content of breast 

milk may be too low to play a role within programming of the GH-IGF axis. 

While no associations of animal protein intake around the adiposity rebound with IGF-I in 

younger adulthood were seen, a habitually higher animal protein intake during puberty was 

related to higher levels of IGF-I, IGFBP-3, and lower IGFBP-2, but not to IGFBP-1 in 

younger adulthood among women only. Due to the time lag between the adiposity rebound 

and younger adulthood, one would rather expect to see a relation between pubertal diet and 

adult GH-IGF axis. Furthermore, puberty may also be a critical period for the development of 

the GH-IGF axis, similar to what has been observed for body composition. Especially girls, 

who have a higher degree of physiological insulin resistance during puberty [3], may be more 

vulnerable to dietary effects on the GH-IGF axis than boys, as has been discussed in the 

8 Data per 100 kcal were converted under the assumption that infant formula contains 70 kcal/100g to make 
comparisons with other guidelines possible 
9 Data for energy density of 70kcal/100g 
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original article. Initially, we also examined associations of the pubertal dietary insulin demand 

with the GH-IGF axis. A trend was observed that pubertal insulin demand was related to IGF-

I, but it emerged that this association was driven by dietary protein intake. Thus, trends 

between dietary insulin demand and IGF-I might be explained by the fact that protein 

contributes to the dietary insulin demand. 

Potential mechanisms relating dietary animal protein intake and higher IGF-I may work 

through amino acids (for details see OA4). This is supported by the finding that higher 

pubertal meat, but not dairy, protein intake was prospectively related to higher IGF-I 

concentrations in younger adulthood, again, only among women. Even though dairy and meat 

products both contain amino acids, their contents differ between them. Of note, IGF-I is not 

only stimulated by essential amino acids [208], but also by non-essential amino acids such as 

glutamine [209], arginine [210] or the combination of amino acids (lysine and arginine) [211]. 

On the other hand, no prospective associations were observed for pubertal intakes of plant 

protein and the GH-IGF axis in younger adulthood. Similar to what has been observed among 

the DONALD sub-sample used to examine protein intake and body composition, the overall 

proportion of dietary plant protein intake was relatively low (median plant and animal protein 

intakes among females were 4.8%En and 7.9%En, respectively and 4.8%En and 8.4%En, 

respectively, among males) and thus explanations given above might also apply in this regard. 

Results of our analysis showed, that among women, higher pubertal animal protein intakes 

were related to lower IGFBP-2 concentrations in younger adulthood, hence reflecting lower 

insulin sensitivity [212]. In line with this, a tendency between higher pubertal animal protein 

intake and higher levels of insulin resistance (HOMA-IR) among adult women was observed 

(data were not shown in OA4). By contrast, no relations were found between dietary plant 

protein intakes during puberty and IGFBP-2 or HOMA-IR in younger adulthood. These 

findings are in line with results from prospective cohort studies among adults [350, 351] and 

potential mechanism have been already discussed (OA4). As previously described, higher 

protein intakes may be beneficial for weight loss and body composition at least over the short-

term [19, 352]. Hence, it is possible that high protein intake and induced weight loss may 

compensate negative effects of high protein intake on insulin sensitivity in the short-term 

[352]; however, long-term effects are less clear. 
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6.2 Methodological considerations 

Analyses in this thesis were based on sub-samples of the DONALD and the RESIST study. In 

the following chapters, general methodological issues concerning these studies will be 

discussed. The focus will lie on the study populations, the dietary assessment and estimating 

dietary intake, anthropometric and blood measurement which built the basis for the exposure 

and outcomes variables investigated. 

6.2.1 Study populations 

The DONALD and RESIST study comprise both a longitudinally designed cohort study and 

an intervention study. Even though a longitudinal, prospective cohort study is purely 

observational, a group of individuals can be followed over time and it is possible to study 

different exposures in order to determine how these factors are related to specific outcomes. 

By contrast, an intervention study examines the direct effect of a random or non-random 

assigned exposure on an outcome. However, the analysis included in this thesis was 

secondary data analysis of the RESIST study and hence also purely observational. 

DONALD Study 

The prospective and longitudinal nature of the DONALD study entails the possibility to 

investigate periods from 3 months of age until adulthood. This design is superior to cross-

sectional studies which can only assess an association at a certain time point. Prospective 

cohort studies are able to identify occurrences of diseases and/or their development. 

Furthermore, risk factors for specific populations can be identified and give clues of possible 

causal relations [353]. 

The DONALD study is an appropriate but non-representative sample, as discussed in the 

original articles (OA1, OA2, and OA4). Only Caucasians are included and participants 

display a higher education and a generally high interest in nutrition and health-related topics 

[318]. However with regards to anthropometrics, former comparisons of the BMI distribution 

in the DONALD study with the German reference population did not suggest major 

deviations [354]. DONALD participants included in the analyses of this thesis had slightly 

lower or comparable BMI values during puberty compared to the German reference 

population [92]. Furthermore, DONALD participants appeared to have slightly higher BMI 

values during early life and comparable BMI values around the adiposity rebound than the 

German reference population [92]. 
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Participants included in the DONALD sub-sample for the body composition analyses (OA1 

and OA3) had a median %BF of 17% for men and 29% for women in young adulthood 

(median age was 19 years (the age range was 18 to 25 years)). Among men, 30.3% were 

overweight and 4.1% obese; among women, 12.2% were overweight and 4.3% obese. 

Similarly, men and women who were included in the DONALD sub-sample for the IGF 

analysis (OA4) had a median %BF of 18% and 31% in younger adulthood (median age was 

22 years (the age range was 18 to 36)), respectively. Among men, 33.7% were overweight and 

7.4% obese; among women 17.8% were overweight and 5.9% obese. These prevalence are 

lower, especially for women, than compared to the results of the German Health Interview 

and Examination Survey for Adults (DEGS1; conducted from 2008 to 2011) for 18-29 year 

old men and women where 35.3% of men and 30.0% of women were overweight, 8.6% of 

men and 9.6% of women were obese [113]. This large nationwide survey used BMI to 

identify overweight and obesity since it can be measured relatively quickly, easy and highly 

standardised compared to other indicators of overweight. Therefore, no data on %BF were 

available. 

The KiGGS study included a nutrition module, so-called EsKiMo (Ernährungsstudie als 

KiGGS Modul) [355], providing representative data on dietary intake among children and 

adolescents. The median daily macronutrient intakes during puberty were 13%En protein, 

51%En carbohydrates, and 36%En fat among girls and boys in the DONALD sub-samples 

(median age was 12 years). Therefore, dietary protein intake of boys and girls was 

comparable to that of 12 year old boys and girls in EsKiMo. The dietary carbohydrate intake 

in the DONALD sub-samples was a bit lower for boys and girls (i.e. 1%En for boys and 

1.5%En for girls), while dietary fat intakes were higher for boys and girls (i.e. around 3%En 

for boys and girls), compared to the results of EsKiMo. The median energy intake in the 

DONALD samples was around 9MJ for boys and 7MJ for girls, thus around 1MJ lower 

compared 12 year old boys and girls in EsKiMo. 

Longitudinal cohort studies may in general have the problem of non-representativeness, as 

only participants who are really interested in a study will participate over the long-term and 

this may be often associated with a higher education and socioeconomic status. The 

DONALD study focusses on details, as it includes repeated, closely spaced measurements, 

which allow the investigation of relations between habitual dietary intakes in childhood and 

adolescence (see also chapter 6.2.2, Dietary assessment) and health-related outcomes later in 

life. With these multiple assessments during growth, potentially critical developmental 

periods for later disease risk are covered and made it possible to consider them within the 
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analyses, i.e. early life, adiposity rebound and puberty. This is an advantage compared to 

other large studies, which are less detailed. 

RESIST study 

The RESIST study included obese adolescents with clinical features of insulin resistance 

and/or prediabetes. This is a clinical population at risk of developing type 2 diabetes and other 

chronic diseases, not meant to be representative for the general population. 

The vast majority of the RESIST participants (91%) were born in Australia, but only 27% of 

participants (n=30) reported having both parents born in Australia [337]. Of these, 6 had at 

least 1 parent who was an Aboriginal or Torres Strait Islander. The country of birth of the 

remaining participants’ parents included North African/Middle Eastern (16%), 

Southern/Central Asia (12%), Southern/Eastern Europe (8%), New Zealand (Maori)/Pacific 

Islands (6%), and South American (6%). One fifth (20%) reported speaking a language other 

than English at home. In addition, most participants (87%) reported a family history of 

obesity [337]. 

The secondary data analysis included in this thesis was not clearly prospective. This is due to 

the fact that the average dietary intake was calculated from 24h dietary recalls at weeks 6, 9, 

and 12 to examine associations with outcomes at 3 months and not all participants completed 

3 recalls. It is not possible to draw a conclusion with regards to cause and effect, as discussed 

in the original article (see OA2). On the other hand, the RESIST sample is the sample of 

particular interest. RESIST participants are obese and have features of clinical insulin 

resistance and/or prediabetes, thus they are at risk of developing type 2 diabetes. Especially 

among adolescents, development of type 2 diabetes is of concern as complications are 

common and may appear early in children and adolescents with type 2 diabetes [356, 357]. 

The recruitment of this sample was difficult and it is therefore remarkable that overall 96% 

and 88% of participants completed the 3 and 6 months visit of the study, respectively [337]. 

With both studies and their specific characteristics it was possible to study and answer the 

underlying research questions of this thesis (see chapter 3). Even though the studies are non-

representative, it should be noted that representativeness is of minor importance when 

examining internal associations between exposure and outcome, since it does not affect 

internal validity. Unquestionably, the results cannot be generalised. In addition, the study 

samples drawn from the DONALD and RESIST study were both relatively small. This 

specifically applies to the sub-samples of the DONALD study examining early life and the 

adiposity rebound (OA3 and OA4) and hence statistical power might not have been sufficient. 
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With regards to the secondary data analysis of the RESIST study, explanatory power may be 

limited due to the small sample size and the not clearly prospective design. 

6.2.2 Data assessment 

Dietary assessment 

The doubly labelled water technique is considered the standard reference and therefore the 

“gold standard” for measurement of total energy expenditure in humans, but it is of seldom 

use due to high cost and high facility requirements [358]. In the DONALD study the dietary 

intake is assessed using 3-day weighed dietary records, which is often regarded to be the 

“gold standard” within traditional dietary assessment methods [359].  

Weighed food records do not rely on an individual’s memory and portion sizes are very 

precise as they do not rely on estimations. Information of type and brand name of all foods 

consumed is requested. In the DONALD study, recipes are collected as well as the packages 

or the food labels for commercial foods consumed. These additional information are then 

added to the dietary record data [318]. Disadvantageous of weighed diet records and 

prospective methodologies in general are the high burden to participants and participants need 

to be motivated. Due to the act of weighing and recording food intake in prospective methods, 

participant’s food choices may be influenced during the recording period and hence the 

method is reactive [360]. In addition, a 3-day dietary record may not be able to capture foods 

which are seldomly eaten such as nuts or fish and repeated 3-day weighed dietary records are 

needed to capture the habitual dietary intake [361]. 

Furthermore, DONALD participants grow up with this method and detailed data on dietary 

intake are assessed repeatedly. As discussed earlier, interest in the study may be due to the 

higher socioeconomic and educational status of the DONALD population and an excellent 

example of the motivation and compliance among DONALD participant’s is the collection of 

dietary records during puberty. Puberty is a phase of change and development for adolescents, 

which may not be the easiest time to impose high standards in terms of data collection. It is 

therefore of note that DONALD participants included in the analyses provided 88% (OA1 and 

OA3) and 86% (OA4) of the maximum number of food records which had been scheduled. 

Additionally, 94% (OA1 and OA3) and 93% (OA4) of all 3-day weighed dietary records 

completed were plausible. A 3-day weighed dietary record was considered plausible when the 

total recorded energy intake was adequate in relation to the basal metabolic rate (estimated 

from the Schofield equations [362]) using modified cut-offs from Goldberg et al [363]. A 
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validation study among DONALD participants has shown that dietary protein intake in 

children and adolescents can be estimated with acceptable validity by 3-day weighed dietary 

records [364], suggesting good validity of dietary data. 

The RESIST study used 24h dietary recalls to estimate participant’s intake of food and 

beverages. This method has the ability to collect detailed, qualitative information about foods 

consumed with lower burden for participants. Therefore, it is applicable to broad populations 

of different ethnicity, can be conducted successfully either face-to-face or over the phone. 

Disadvantageous of 24h recalls are that they rely on memory, perception, conceptualization of 

food portion sizes and the presence of an observer [365]; in the RESIST study, 24h dietary 

recalls were conducted by trained dieticians. To capture the habitual intake of a population 

repeated 24h dietary recalls are needed. For the RESIST study this was the appropriate 

method to assess dietary intake and suitable for this young study population. It has been 

previously used in a nationwide study among Australian adolescents and a food model 

booklet was applied to assist with estimating the amounts of foods [117]. The analyses of the 

DONALD study included only participants who had provided plausible or more plausible 

than implausible food record data. With regards to the RESIST study a plausibility check 

based on basal metabolic rate was not an option because this study was designed as a weight 

loss study. Therefore, all 24h dietary recalls provided were included in the analyses. Overall, 

RESIST participants included in the secondary data analyses provided 78% of all scheduled 

recalls (i.e. 13 participants provided 1 recall, 34 participants provided 2 recalls, and 44 

participants provided 3 recalls), thus less diet data than that available from the DONALD 

participants. 

Estimating dietary intake 

Concern has been raised regarding the reproducibility of measuring the GI value of a food 

[36], because there exist numerous factors influencing the glycaemic response to a food (see 

chapter 2.1.1, Table 1). Furthermore, the GI can vary between similar foods due to regional 

or seasonal differences. Variability of glycaemic response is however, not only a problem of 

GI, but of other nutrients as well [51, 366]. As already discussed in the original articles (OA1, 

OA2), estimation of dietary GI and GL as well as II an IL is challenging. The GI assignment 

is often difficult using FFQs, due to the problem that low and high-GI foods end up in one 

food group (e.g. whole-kernel and whole meal breads). In addition, assignment of GI values 

to foods is often based on GI values available for similar foods only and may vary from 

researcher to researcher. Considering these problems, some studies may not be able to validly 
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discriminate consumers of diets with a high dietary GI from those consuming a lower GI diet 

[367]. By contrast, 3-day weighed dietary records as well as 24h dietary recalls provide 

detailed data on reported foods allowing the assignment of GI and FII value to each 

(carbohydrate containing) food recorded. Nevertheless, assignments of GI values to foods 

recorded may vary and it is hence important to follow standard procedures (see OA1 and 

OA2). Finally, the method of estimating GI and GL of a whole diet has been criticised [36], 

since the glucose response is known to be influenced by proportions of macronutrients in a 

mixed meal. However, many, but not all studies [368, 369], suggest that the estimation of the 

GI of a whole diet or mixed meal can be accurately estimated from GI values of the 

constituent foods [41, 370-372]. Consequently, limitations raised for GI may also apply to the 

estimation of dietary insulin demand (as mentioned in OA1). 

Anthropometric measurements 

In both studies, DONALD and RESIST, anthropometric measurements were performed 

according to standardised procedures by trained personnel. Skinfold measurements were used 

within the DONALD study to estimate %BF, whereas the RESIST study used the DEXA 

method to estimate %BF, fat mass and lean mass. 

Even the best methods used in epidemiology and clinical trials are indirect and the choice for 

an optimal “gold standard” is not completely clear [373]. However, DEXA method has been 

regarded as a “gold standard” [374]. It is practicable and provides reproducible measurements 

of body components, i.e. fat mass, fat-free mass, bone-mineral mass. Furthermore, the validity 

of DEXA is high among most populations; errors have only been reported in younger and 

older populations [373]. Even though the radiation dose is low, further disadvantages of the 

DEXA method are its costs and trained radiology personnel are needed to operate. Another 

disadvantage exists especially with regard to obese participants, because they may exceed the 

maximum scan widths of the DEXA machine. If so, participants need to be “mummy 

wrapped” using thin sheets if Velcro straps were not sufficient, with arms placed in a lateral 

position to reduce participants width in order to get a result [324]. Skinfold measurements 

would not be an alternative to estimate %BF in obese adolescents, because they only poorly 

predict total fat mass if compared to DEXA [375].  

Furthermore, it has been shown that among overweight and obese children, the DEXA 

method produced similar estimations for %BF as air-displacement-plethysmography (using a 

Bod Pod) and total body water (determined by deuterium oxide (2H2O) dilution using saliva 
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samples) compared to the four-compartment model [376], making DEXA an appropriate 

method for the RESIST study. 

Within the DONALD study it is important to use a method that is applicable on an annual 

measurement basis and hence the DEXA method would not be an option. As already 

discussed in the original article (see OA1), hydrostatic weighing would be more precise 

method to estimate %BF [377]. This method is, however, not feasible for epidemiological 

studies or clinical trials such as those on which this thesis is based on. Even though the 

skinfold technique has been controversially discussed, it is probably the most widely used 

method in epidemiological studies, providing a direct measure of %BF [373]. Skinfold 

measurements are preferred within an epidemiological setting due to its low costs, but again, 

trained personnel are needed. To ensure quality of data within the DONALD study, the three 

study nurses undergo an annual quality control. More details on this are given in the original 

article (OA1, appendix 1; Methods – Anthropometric measurements). Nevertheless, one major 

limitation is that only subcutaneous fat is measurable by callipers, hence not all metabolically 

relevant fat, i.e. visceral fat, can be assessed. 

BIA could be considered another alternative method feasible within a setting of a cohort study 

or clinical trial, because it is of simple practice, quick and safe [373]. However, relatively 

recent findings suggest that BIA is mainly useful because it includes height and weight within 

the equations to estimate fat and lean mass. The measurement of impedance itself adds only 

little to the final result and sometimes random error only [378]. Therefore, BIA does not seem 

to be an actual alternative within epidemiological studies [373]. 

Looking at these alternatives the DEXA method as well as skinfold measurements are the best 

methods practicable and available to be used in the RESIST and DONALD study, 

respectively. 

Blood measurements 

Because of the open cohort design of the DONALD study, many participants have not yet 

reached young adulthood and of those who did, to date, only one blood sample was available. 

Therefore, as it was discussed in the original article (OA4, appendix 4); the analysis was 

based on this single measurement of the GH-IGF axis in younger adulthood to represent long-

term circulating levels. Nevertheless, an advantage of the analytics was that each sample was 

measured twice to obtain all parameters of the GH-IGF axis. 

Epidemiological studies usually rely on single biological specimen (e.g. blood sample) from 

each participant, which is both for cost and logistical reasons [379, 380]. It could be argued 
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that repeated measurements of IGF-I and its binding proteins might more accurately reflect 

circulating levels [380]. However, in the case of the GH-IGF axis this may not be a problem 

as IGF-I values from repeated measurements (mean time between measurements was 42 days 

(SD 4.8)) were found to have a low intra-individual variation [381] and serum measurements 

of IGF-I and its binding proteins have been found to be quite representative of serum 

concentrations over longer time periods. In a subset of 76 participants of the New York 

University Women’s Health Study correlations between repeated measurements (lag-time 

between the baseline and second visit ranged from 11-65 months, the median lag-time was 14 

months) of IGF-I, IGFBP-3 and IGFBP-1 were strong, albeit weaker for IGFBP-2 (n=68) 

[382, 383]. 

In the RESIST study an OGTT was used to calculate the ISI, which was the primary outcome. 

According to Yeckel et al the ISI is a good and reliable method to assess whole body insulin 

sensitivity among obese children and adolescents. In fact, the ISI represents a good estimate 

of clamp-derived insulin sensitivity (r=0.78, p<0.0005) [384]. 

Lifestyle and parental characteristics 

One problem of epidemiological studies is that covariates are often imperfectly measured or 

unmeasured. Of all variables obtainable for our analyses (e.g. early life and socioeconomic 

factors) a drawback was that only a relatively crude measure of physical activity was 

available (time spent outdoors, active, moderately active or inactive). Including this physical 

activity measure in the models did not change the results (OA1, OA3, and OA4). Since 2004, 

physical activity is assessed using a detailed questionnaire, but this data was only available for 

35% (OA1 and OA3) and 37% (OA4) of all DONALD participants included in the analyses 

and was hence not used as covariate. Since 2013, physical activity is assessed with 

accelerometers which will be available in the future. In addition, sample sizes, which may be 

small, restrict the number of covariates. With the use of “too” many covariates the model will 

lack precision and will be unreliable to validly examine an association [385]. Overall, residual 

confounding may remain which cannot be controlled for. Adolescence in general is a period 

of change and there exist many potential influencing factors, such as socio-environmental, life 

style or psychological factors, which cannot be accounted for and may therefore confound 

when the relations between dietary exposures and outcomes are examined. The DONALD 

sample is, however, relatively homogenous, which might reduce vulnerability to residual 

confounding. 
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The RESIST trial has a relatively small sample size, which is not unusual for clinical trials, 

and owed to the fact that RESIST includes a high risk study population, i.e. obese adolescents 

with features of insulin resistance and/or prediabetes. Not only recruitment, as mentioned 

before, but also data assessment can be challenging and missing data may occur. Within the 

analysis only little adjustment was conceivable and it was for example not possible to adjust 

for physical activity or metformin treatment (compliance) as this data were not available for 

this analysis. With regards to metformin, this may not be a problem since all participants 

received a standard dosage (initial dose was 250 mg twice a day; after the first two weeks this 

was increased to a final dose of 500 mg twice a day). Regarding the family history, RESIST 

was relatively homogenous, as the majority of parents were overweight, obese or had a 

history of type 2 diabetes. 

6.3 Public health considerations 

The findings of this thesis suggest that a higher dietary insulin demand is potentially 

unfavourable for the development of body composition among healthy individuals and weight 

loss among obese adolescents. Furthermore, higher pubertal animal protein intake may be 

related to higher lean body mass and an up-regulation of the GH-IGF axis which persists until 

adulthood. 

The question remains what the implications of a higher insulin demand and higher protein 

intake are. Theoretically, a higher insulin demand might be driven by a higher protein intake. 

However, particularly a co-ingestion of protein rich foods with carbohydrates was found to be 

an efficient insulin secretagogue in type 2 diabetic subjects allowing an improved response to 

ingested carbohydrates [16, 72, 386]. The specific stimulation of disproportionally high 

insulin secretion may reduce the glucose response of carbohydrate rich foods, thus 

postprandial glucose spikes may not occur. Possibly, in order to lower postprandial blood 

glucose levels, the specific stimulation of disproportionally high insulin responses by protein 

rich foods might postpone the need for medication of pre-diabetic individuals or support 

treatment of type 2 diabetic patients. On the other hand, higher postprandial glycaemic and 

insulinaemic excursions and greater demands on β-cell function could promote β-cell failure 

and a more rapid development of type 2 diabetes [56, 273]. A new study may shed light on 

this issue: The PREVention of diabetes through lifestyle Intervention and population studies 

in Europe and around the World (PREVIEW) study. It is a multicentre, clinical randomized 

intervention of 3 years duration including pre-diabetic participants of all ages and will 

compare two different diets (moderate-protein, moderate-GI or high-protein, low-GI) on 
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weight loss and type 2 diabetes development. The diet is based on findings from the 

DIOGenes study, which revealed that a high protein and low-GI diet was the best diet for 

weight loss maintenance among overweight adults [24] and prevention of obesity among 

children and adolescents [25]. When protein rich foods are ingested with carbohydrates higher 

insulin responses may however reduce postprandial glucose spikes. Overall, an increase of 

dietary protein intake may actually reduce the dietary insulin demand, especially when 

substituting insulin demanding carbohydrates for less insulin demanding proteins such as non-

dairy proteins. 

Findings also suggest a potential beneficial relation of higher animal and meat protein intakes 

and an increase in adult fat-free mass, which in turn would lead to a higher energy 

expenditure [164] and may prevent obesity. This has been discussed earlier in more detail, 

stressing the importance to distinguish between fat and lean body mass in observational 

studies and clinical trials (see chapter 6.1.2). But besides a potential favourable effect on body 

composition, higher animal and meat protein intakes may increase the risk of other chronic 

diseases. Increased intakes of animal protein [350] and red meat [387, 388] were 

prospectively related to an increased diabetes risk. In addition, Pan et al recently showed that 

red meat consumption was prospectively related to an increased risk of cardiovascular disease 

and cancer mortality [389]. The authors also estimated that a daily replacement of one serving 

of red meat with one serving of other foods, including fish, poultry, nuts, legumes, low-fat 

dairy, and whole grains, was associated with a 7% to 19% lower mortality risk [389], 

suggesting that a substitution of red meat would indeed be beneficial. In general, it is difficult 

to only consider a single nutrient or food such as animal protein or red meat, respectively, 

since this approach may be inadequate to unravel interactions with dietary-lifestyle pattern 

existing under free-living conditions. For instance, among adolescents a Western diet pattern 

has been identified, which was characterised by high intakes of processed and red meats, 

refined grains, French Fries, sweets and desserts, and sugar sweetened beverages [390]. This 

is considered an unhealthy diet and thus red meat might be a marker of an overall unhealthy 

lifestyle and contribute to adverse health effects. Hence, simply avoiding the consumption of 

animal (meat) protein in order to prevent the development of future chronic diseases may be 

too simplistic, since not only one nutrient, but the whole diet needs to be considered. It is of 

note, that the proportion of dietary protein intake in the highest tertile of animal protein intake 

was 14.4%En for females and 14.6%En for males and thus within German/European dietary 

recommendations [391, 392], showing that the habitually high animal (meat) protein observed 

in the DONALD population was still within the range of dietary guidelines. It is however not 

100 



GENERAL DISCUSSION 
 

clear for what an increased protein intake would be substituted. A moderate increase of 

(animal) protein intake may be favourable if it is substituted for unfavourable carbohydrates, 

whereas a substitution for favourable carbohydrates or fat may not be beneficial. It appears 

wise not to increase animal (meat) protein intake to a large extent as this would also increase 

the environmental burden [393] and may confer risks indicated by observational studies. 

Another aspect in this thesis was that higher animal (meat) protein intakes may upregulate the 

GH-IGF axis, but it remains to be elucidated whether this reflects a physiological adaptation 

or whether these associations indicate higher or lower risks of future diseases (see also OA4). 

In this thesis, no associations were found between plant protein intake and either body 

composition or the GH-IGF axis. Therefore, it can be speculated that increases in protein 

intake due to an increased plant protein intake may not result in adverse health effects. 

Overall, it is difficult to draw a final public health conclusion, however, if considering the 

whole diet a lower dietary insulin demand and a moderately higher protein intake may offer 

some benefits. 
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7. CONCLUSIONS AND PERSPECTIVES 

The results presented in this thesis indicate that a lower dietary insulin demand and a higher 

dietary protein intake may be favourably related to body composition. In the view of a high 

obesity prevalence among children and adolescents as well as adults, preventive strategies 

starting early in life are urgently needed. Although these findings need to be confirmed in 

other populations, it seems prudent and conceivable that a reduction of the insulin demand of 

the diet resembles a safe and potentially promising dietary alternative. Besides a possible 

exchange of carbohydrate rich foods with a high FII for carbohydrate rich foods with a lower 

FII, this may also include a modest increase in the consumption of protein rich foods and 

hence, a moderate increase in dietary protein intake. This thesis suggests that moderate 

increases of dietary protein intake might not be detrimental, nonetheless with increased 

intakes the question of protein quality should be considered. Moreover, the results included in 

this thesis revealed that among women, a higher pubertal animal protein intake may induce an 

up-regulation of the adult GH-IGF-I axis. By contrast, inverse associations between higher 

animal protein intakes in early life and IGF-I concentrations among adult males support the 

idea that habitually higher animal protein intakes in this period may trigger an early 

programming of the GH-IGF axis. Yet, it has not been elucidated whether this reflects a 

physiological adaptation or higher or lower risks of future diseases. 

Future studies are needed to confirm the specific relevance of the dietary insulin demand 

(during adolescence) for obesity risk and weight loss. In general, studies examining body 

composition should use indicators for fat mass and fat-free mass in addition to BMI. 

Furthermore, it would be interesting to know what the impact of an increase in plant protein 

consumption would be, since the results of this thesis do not suggest any adverse relation 

between plant protein intake and either body composition or the GH-IGF axis. Therefore, 

studies are required to disentangle differences in protein quality and to determine the 

relevance of plant protein intake for body composition as well as the GH-IGF axis. Also, a 

comprehensive appraisal of the relevance of dietary protein would need to differentiate 

between protein-carbohydrate-exchanges, e.g. substitution of carbohydrate rich foods having 

a high FII/GI for plant protein. With regards to the GH-IGF axis, it is not clear which 

mechanisms lie behind the observed programming and whether observed associations 

between dietary animal protein and the GH-IGF axis are a physiological adaptation, thus 

further research is needed. 
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Prospective associations of dietary insulin demand, glycemic
index, and glycemic load during puberty with body composition
in young adulthood
G Joslowski1, J Goletzke1, G Cheng1, ALB Günther2, J Bao3, JC Brand-Miller3 and AE Buyken1

BACKGROUND: Puberty is a so-called critical period for overweight development and is characterized by physiological insulin
resistance during mid-puberty. This study addressed the hypothesis that habitual consumption of a diet inducing higher levels
of postprandial glycemia or insulinemia during puberty may have an unfavorable effect on the body composition in young
adulthood.
METHODS: Multivariate regression analysis was performed on 262 participants of the Dortmund Nutritional and
Anthropometric Longitudinally Designed Study with at least two 3-day weighed dietary records during puberty (baseline: girls
9 --14 years; boys 10--15 years) and anthropometric measurements in young adulthood (18--25 years). A published dietary
glycemic index was assigned to each carbohydrate-containing food. Similarly, each food was assigned a food insulin index
(insulinemic response to a 1 MJ portion of food relative to 1 MJ of glucose) using 121 values measured at Sydney University.
RESULTS: Dietary glycemic index or glycemic load during puberty was not related to body composition in young adulthood. In
contrast, a higher dietary insulin index and a higher dietary insulin load during puberty were associated with higher levels of
percentage of body fat (%BF) in young adulthood, even after adjustment for early life, socioeconomic and nutritional factors;
%BF in energy-adjusted tertiles of dietary insulin index were 22.9 (95% confidence intervals (CI): 21.6, 24.1), 24.5 (23.2, 25.7),
24.7 (23.5, 25.9) %, Pfor trend¼ 0.01; %BF in energy-adjusted tertiles of dietary insulin load were 22.8 (95% CI: 21.5, 24.0), 24.5
(23.2, 25.7), 24.8 (23.6, 26.0) %, Pfor trend¼ 0.01. Adjustment for baseline %BF attenuated these relationships (Pfor trend¼ 0.1
and¼ 0.08, respectively). Dietary insulin demand was not related to body mass index.
CONCLUSION: This study suggests a prospective adverse influence of dietary insulin demand during puberty on %BF in young
adulthood. Postprandial increases in insulinemia rather than increases in glycemia appear to be implicated in an unfavorable
development of body composition.

International Journal of Obesity (2012) 36, 1463--1471; doi:10.1038/ijo.2011.241; published online 17 January 2012
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INTRODUCTION
Over the previous years, the relevance of the dietary glycemic
index (GI) for the development of obesity has been controversially
debated. Among adults, prospective cohort studies suggest a
role of the dietary GI for body composition.1 -- 4 However, similar
associations have not been observed among healthy children and
adolescents5,6 or overweight Latino adolescents.7

Intervention studies in overweight and obese adults suggest a
specific efficacy of low-GI weight-loss diets8,9 for persons with
already increased insulin secretion levels.9 Puberty is a so-called
‘critical period’ for overweight development, which is character-
ized by physiological insulin resistance and changes in levels of
various hormones, including insulin-like growth factor (IGF)-1,
growth hormones as well as sex steroids.10 In fact, IGF-1 levels rise
steeply during puberty and peak before the end of puberty,
whereas the development of the insulin sensitivity follows the
reverse course.11,12

It is possible that postprandial glycemia and insulinemia are
relevant targets during puberty so as to prevent the development
of an unfavorable body composition. Mechanisms linking the

habitual consumption of high-GI foods to body composition
include reduced satiety signaling, as fully gelatinized starches in
high-GI foods do not reach the lower parts of the ileum, and
enhanced carbohydrate oxidation and decreased fat oxidation in
response to habitual postprandial glycemia and insulinemia.13 In
addition, reactive hypoglycemia in the late postprandial phase has
been proposed to induce hunger and higher voluntary energy
intakes.14 Counter-regulatory hormone responses following this
reactive hypoglycemia may have proteolytic effects, favoring the
loss of lean body mass and a reduction of resting energy
expenditure.13 Finally, elevated IGF-1 levels may predispose to
obesity later in life,15 and the GI of a meal has been found to
acutely affect the IGF-1 axis.16

As high-GI foods influence both blood glucose and insulin
levels, it is not clear which of these postprandial changes is
potentially more relevant for an unfavorable development of body
composition. Insulin secretion is also stimulated by dietary protein
and, moreover, dietary protein and fat may both act synergistically
with carbohydrates, raising insulin levels and reducing post-
prandial glycemia.17 -- 19 The food insulin index (FII) compares the
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postprandial insulin response to any food relative to a reference
food (glucose) and also, unlike the GI, considers foods with no or
low amounts of carbohydrates.20

This study addressed the hypothesis that habitual consumption
of a diet inducing higher levels of postprandial glycemia or
insulinemia during puberty may have an unfavorable effect on
body composition in young adulthood.

METHODS
Study population
The present study was ancillary to the Dortmund Nutritional and
Anthropometric Longitudinally Designed Study (DONALD Study), an
ongoing, open cohort study conducted at the Research Institute of
Child Nutrition in Dortmund, Germany. Details on this study have been
described elsewhere.21

Briefly, as the recruitment began in 1985, detailed data on diet, growth,
development, and metabolism between infancy and adulthood have been
collected from 41300 healthy children. Every year, an average of 50
infants are newly recruited and first examined at the age of 3 months. Each
child returns for three more visits in the first year, two in the second and
then once annually until adulthood. The study was approved by the Ethics
Committee of the University of Bonn, and all examinations are performed
with parental consent.

The children who were initially recruited for the DONALD Study differed
considerably in age. Because of the open cohort design, many children
have not yet reached young adulthood. In total, 394 subjects were aged 18
years or older by the time of this analysis. They were term (37 --42 week
gestation) singletons with a birth weight X2500g and had at least one
anthropometric measurement in young adulthood. As we were interested
in the long term-relevance of dietary parameters during adolescence for
adult body composition, we regressed dietary intake on the last
anthropometric measurement available during young adulthood (X18
and p25 years of age, mean age¼ 20.3 years). Of these, 308 participants
had provided at least two 3-day weighed dietary records at baseline
(puberty was defined by chronological age: girls 9 --14 years, boys 10 --15
years), allowing the estimation of habitual dietary intake during puberty.
Participants who were identified to consistently underreport their energy
intake (that is, all food records were implausible or they had provided more
implausible than plausible food records) were excluded from the study
(n¼ 23). A 3-day weighed dietary record was considered plausible when
the total recorded energy intake was adequate in relation to the basal
metabolic rate (estimated from the Schofield equations22) using modified
cut-offs from Goldberg et al.22,23 Overall, 1379 records were included (2 --7
records per participant). Furthermore, participants had to have anthropo-
metric data available at baseline and information on relevant covariates
such as early life (for example, breast feeding) and socioeconomic factors
(for example, maternal overweight). This resulted in a final sample of
262 participants (53.6% female, 46.4% male).

Anthropometric measurements
Participants are measured at each visit according to standard procedures,24

dressed in underwear only and barefoot. From the age of 2 years onward,
standing height is measured to the nearest 0.1 cm using a digital
stadiometer (Harpenden Ltd., Crymych, UK). Body weight is measured to
the nearest 100 g using an electronic scale (Seca 753E; Seca Weighing and
Measuring Systems, Hamburg, Germany). Skinfold thicknesses are mea-
sured from the age of 6 months onward at four different sites (supra-iliacal,
subscapular, biceps, triceps) on the right side of the body to the nearest
0.1mm using a Holtain caliper (Holtain Ltd., Crosswell, United Kingdom).
Since 2005, waist circumference is also routinely measured according to
World Health Organization recommendations at the midpoint between
the lower rib margin and the iliac crest.25 The three trained nurses who
perform the measurements undergo an annual quality control, conducted
in six to eight healthy young adult volunteers. Average inter- and intra-
individual variation coefficients obtained in the last 6 years (2005--2010)
were 0.7 and 1.8% for waist circumference, 7.9 and 12.7% for biceps,

5.4 and 6.2% for triceps, 5.2 and 7.8% for subscapular, and 7.5 and 9.1%
for supra-iliacal skinfolds.

Anthropometric calculations
Regarding body mass index (BMI, kgm�2) in puberty, sex- and age-
independent standard deviation scores were calculated using the German
reference curves for BMI.26 Percentage body fat (%BF) was derived using
equations of Slaughter et al.27 for pubescent children, which consider
triceps and subscapular skinfolds. Overweight during puberty was defined
according to values proposed by the International Obesity Task Force,
which correspond to an adult BMI of 25 kgm�2.28 The reference values for
%BF published by McCarthy et al.29 were used to determine pubertal
participants with excess body fatness, that is, %BF above the 85th
percentile.29

Regarding anthropometric data in young adulthood, BMI was calculated
and %BF was estimated from skinfolds using Durnin and Womersley
equations,30 which are based on triceps, biceps, scapular and iliacal
skinfolds.

Nutritional assessment
Food consumption in the DONALD Study is assessed annually using 3-day
weighed dietary records. All foods and beverages consumed are weighed
and recorded, as well as leftovers, to the nearest 1 g over 3 days using
electronic food scales (initially Soehnle Digita 8000; Leifheit SG, Nassau;
Germany; now WEDO digi 2000; Werner Dorsch Gmbh, Muenster/Dieburg,
Germany). For this analysis, dietary variables were calculated as individual
means of the 3-day weighed dietary records using LEBTAB,31 the in-house
database, which is continuously updated to include all recorded food
items. LEBTAB is based on the German standard food tables32 and data
obtained from commercial food products. Currently, LEBTAB contains more
than 13 100 entries, including additives, supplements and medicine, that is,
1207 basic food items and 10 832 composite foods.

To better describe the habitual dietary intake during puberty, an
individual average intake was calculated from at least two records during
puberty.

Dietary GI and insulin index
Dietary GI is defined as the incremental area under the curve of glucose
response following the intake of 50 g of carbohydrate from a test food as
compared with area under the curve of glucose response induced by the
same amount of carbohydrate ingested as glucose in 5 --10 separate
individuals.33 A published GI value34 was assigned to each carbohydrate-
containing food recorded in the dietary records (based on glucose as the
reference food) according to a standardized procedure.35 The carbo-
hydrate content (in grams) of each consumed food was then multiplied by
the food’s GI to obtain its glycemic load (GL). The sum of these GL values
for each subject corresponds to the total daily GL. The overall GI is
obtained by dividing the total daily GL by the total daily carbohydrate
intake.

The FII is defined as the insulinemic response (area under the curve)
following the intake of 1000 kJ of a food relative to the insulinemic
response to glucose that is, the reference food (FII¼ 100).20 Foods
originally tested against a white-bread standard were converted to the
glucose standard by a conversion factor of 0.73. For the present analysis,
121 FII values measured at Human Nutrition Unit School of Molecular and
Microbial Biosciences University of Sydney, Australia in groups of 10
individuals36 were available to assign a FII value to each food recorded in
the dietary records according to a standardized procedure similar to that
established for GI assignment (Figure 1). The dietary GL was the principal
consideration when matching foods rich in carbohydrates with an
available FII, as it is the best predictor of FII.20,36 The protein content
was used as a guide to find the best match when carbohydrate content
was low. A published FII or a close match was available for 36% of the
foods (steps 1 and 2), a weighted mean was calculated for another 33%
(step 4) and 18% of the foods were assigned the mean FII of the respective
food group (step 3). For 11% of the foods the FII value was assigned
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zero (step 6) and the GL ratio was used to calculate the FII of 3% foods
(for example, FIIsucrose¼GLsucrose/GLglucose� FIIglucose; step 5). The average
dietary insulin load was calculated by summing the product of FII, energy
content and consumption frequency over all recorded food items in the 3-
day dietary records. The average dietary insulin index was calculated by
dividing the insulin load by total energy intake.37

Potentially confounding factors
On their child’s admission to the study, parents are interviewed by the
study pediatrician, and weighed and measured by the study nurses using
the same equipment as for children from 2 years onward. Information on
the child’s birth characteristics are abstracted from the ‘Mutterpass’, a
standardized document given to all pregnant women in Germany. The
duration of full breastfeeding (no solid foods and no liquids other than
breast milk, tea or water) is inquired by the pediatricians at the first visits
until complementary feeding is initiated. For this analysis the following
characteristics were considered: breastfeeding status (ever fully breastfed
(yes/no) was defined as fully breastfed 42 weeks), maternal overweight
status (BMI X25 kgm�2), high maternal educational status (X12 years of
schooling) and smoking in the household (yes/no).

Statistical analysis
To analyze the potential relation of dietary insulin index, insulin load, GI
and GL during puberty with body composition in young adulthood, the
distribution of these dietary variables was grouped into tertiles (T1 -- T3).
Tests for differences were performed among the tertiles of dietary insulin
index, insulin load, GI and GL using ANOVA for normally distributed
continuous variables, Kruskal --Wallis test for non-normally distributed
continuous variables and w2-test for categorical variables. Analysis of the
association between diet during puberty and body composition in young
adulthood was performed by multiple linear regression analysis. As BMI
was not normally distributed it was log-transformed before the analysis.
Each potential confounder was initially considered separately and included
if it modified the respective association substantially. Thus, sex was
retained in the basic model (model A). In a further step, we also adjusted
for early life (breastfeeding) and socioeconomic factors (maternal over-
weight) as well as other nutritional factors (model B). In a final model, we
controlled for confounding by body composition at baseline (model C). All
dietary variables except dietary insulin index and GI were energy adjusted

using the residual method.38 To account for age-dependent changes in
intake levels all variables were standardized by age group and sex
(mean¼ 0, s.d.¼ 1).6

The adjusted means (that is, least-squares means predicted by the
model when the other variables were held at their mean values) are
presented with their 95% confidence interval by tertiles. P-value o0.05
was considered as statistically significant. All statistical analyses were
carried out using SAS procedures (version 9.1.3, SAS Institute, Cary,
NC, USA).

RESULTS
Subjects who were excluded from the study sample (n¼ 132) did
not differ in sex, birth weight or length, gestational age, BMI and
%BF in young adulthood from those who were included (n¼ 262)
(data not shown).
Baseline characteristics of the 262 healthy participants did not

differ across tertiles of GI and GL. However, subjects with a diet in
the lowest tertile of insulin index and insulin load were less likely
to be overweight at baseline and those in the lowest tertile of
insulin load tended to have lower levels of %BF at baseline.
Furthermore, participants in the lowest tertile of the dietary insulin
load were less likely to have had mothers with a high level of
education (Table 1). Mean BMI--standard deviation scores during
puberty were close to zero, indicating that the BMI values at
baseline were comparable to the German reference population.
Participants in the highest dietary insulin index and insulin load

tertile had lower of total and saturated fat, total and animal
protein, but higher intakes of vegetable protein, carbohydrate,
and added sugar (% of total energy, %E) as well as higher dietary
GI and GL compared with participants in the lowest dietary insulin
index and insulin load tertile (Table 2). Comparable differences
were seen across tertiles of GL. A higher dietary GI was related to
lower intakes of total and animal protein as well as fiber, and
higher added sugar intake (%E), a higher dietary insulin index and
a higher GL.
Overall, dietary insulin index, insulin load, GI and GL during

puberty were not related to BMI in young adulthood, (Table 3) and
dietary GI and GL during puberty were not related to %BF in
young adulthood (Table 4). However, a higher dietary insulin index

Figure 1. Flowchart for the assignment of FII values to food items recorded in the 3-day weighed dietary records (FII values measured at
Human Nutrition Unit School of Molecular and Microbial Biosciences University of Sydney, Australia).
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Table 1. Demographic, anthropometric, birth, and socioeconomic characteristics by energy-adjusted tertiles of dietary insulin index, insulin load, GI, and GL at baseline (n¼ 262), DONALD Study,
Germany

Subjects
Dietary insulin index at baseline Dietary insulin load at baseline Dietary GI at baseline Dietary GL at baseline

n T1 T2 T3
P

valuea T1 T2 T3
P

valuea T1 T2 T3
P

valuea T1 T2 T3
P

valuea

Female (n (%)) 262 46 (53.5) 47 (53.4) 47 (53.4) 40.9 46 (53.5) 47 (53.4) 47 (53.4) 40.9 46 (53.5) 47 (53.4) 47 (53.4) 40.9 46 (53.5) 47 (53.4) 47 (53.4) 40.9
Age (years)b 262 9.8 9.9 9.3 0.7 9.8 9.9 9.3 0.6 9.9 9.5 9.2 0.7 9.8 9.8 9.6 40.9
Weight (kg)b 262 32.3 34.6 34.5 0.5 33.1 33.0 35.0 0.5 34.9 33.1 32.7 0.3 33.5 34.9 33.4 0.7
Height (m)b 262 139.7 142.1 142.2 0.6 139.9 141.3 142.5 0.8 142.0 140.0 142.1 0.2 141.0 142.1 141.1 0.7
BMI --SDS 262 -0.12 -0.02 0.06 0.4 -0.08 -0.10 0.10 0.3 0.10 -0.03 -0.15 0.2 0.06 -0.05 -0.09 0.5
BMI (kgm�2)b 262 16.6 16.7 16.8 0.6 16.9 16.5 16.9 0.3 17.2 16.7 16.1 0.2 17.0 16.7 16.5 0.5
Overweight
(n (%))c

262 6 (7.0) 12 (13.6) 16 (18.2) 0.09 6 (7.0) 12 (13.6) 16 (18.2) 0.09 11 (12.8) 13 (14.8) 10 (11.4) 0.8 10 (11.6) 11 (12.5) 13 (14.8) 0.8

Body fatness
(%)b,d

262 15.1 16.3 17.4 0.1 15.1 16.3 17.5 0.09 15.4 16.4 16.0 0.9 16.3 15.9 16.0 0.7

Excess body fat
(n (%))e

262 11 (12.8) 15 (17.1) 19 (21.6) 0.3 12 (14.0) 14 (15.9) 19 (21.6) 0.4 14 (16.3) 15 (17.1) 16 (18.2) 0.9 15 (17.4) 12 (13.6) 18 (20.5) 0.5

Birth weight (g) 262 3443 3429 3542 0.2 3458 3423 3533 0.2 3506 3473 3436 0.6 3477 3481 3456 0.9
Birth length (cm)b 262 51.5 52.0 52.0 0.5 52.0 51.0 52.0 0.7 52.0 52.0 51.0 0.5 52.0 52.0 52.0 0.8
Pregnancy
duration (weeks)b

262 40.0 40.0 40.0 0.6 40.0 40.0 40.0 0.2 40.0 40.0 40.0 0.5 40.0 40.0 40.0 0.2

Breast feeding
(42weeks (n (%))f

262 58 (67.4) 66 (75.0) 61 (69.3) 0.5 56 (65.1) 69 (78.4) 60 (68.2) 0.1 62 (72.1) 56 (63.6) 67 (76.1) 0.2 60 (69.8) 61 (69.3) 64 (72.7) 0.9

Maternal
overweight
(n (%))g

262 22 (25.6) 31 (35.2) 31 (35.2) 0.3 22 (25.6) 31 (35.2) 31 (35.2) 0.3 24 (27.9) 27 (30.7) 33 (37.5) 0.4 23 (26.7) 30 (34.1) 31 (35.2) 0.4

Maternal
education (n (%))h

260 30 (35.3) 44 (50.0) 41 (47.1) 0.1 28 (32.9) 47 (54.0) 40 (45.5) 0.02 40 (46.5) 37 (42.5) 38 (43.7) 0.9 30 (35.3) 44 (50.6) 41 (46.6) 0.1

Smoking in the
household (n (%))

208 25 (34.7) 22 (31.9) 23 (34.3) 0.9 25 (34.2) 20 (28.6) 25 (37.3) 0.5 15 (22.7) 29 (40.3) 26 (37.1) 0.07 23 (31.9) 23 (32.4) 24 (36.9) 0.8

Abbreviations: BMI, body mass index; GI, glycemic index; GL, glycemic load; SDS, standard deviation scores; T, tertile. aSignificant differences between the tertiles were tested using analysis of variance for
normally distributed continuous variables, Kruskal --Wallis test for not normally distributed continuous variables and w2-test for categorical variables. Values are means unless indicated as mediansb or
otherwise. cDerived from the age- and sex-specific cut-points proposed by the International Obesity Task Force, which are linked to the adult cut-off point of a BMI of 25 kgm�2.28 dCalculated according to
Slaughter et al.27 eDerived from age-specific cut-points proposed by McCarthy et al.,29 the 85th percentile of body fat was used as cut-off for excess of body fat. fBreast feeding categories: p2 weeks, 42 weeks
of full breastfeeding. gMaternal BMI X25 kgm�2. hSchool education for at least 12 years.
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and insulin load during puberty was associated with a higher %BF
in young adulthood, even after adjustment for early life,
socioeconomic and nutritional factors (model B for insulin index
and insulin load, both Pfor trend¼ 0.01). Additional consideration
of baseline %BF attenuated these relationships (model C,
Pfor trend¼ 0.1 for insulin index and Pfor trend¼ 0.08 for insulin
load). Model B did not include fiber as a covariate because it did
not affect the associations between dietary insulin index or insulin
load and body composition. Intakes of carbohydrate, protein or fat
were not considered because those macronutrients contribute to
the dietary insulin index and insulin load. However, as protein may
also conduce higher lean mass,39 we included this macronutrient
as a covariate in a further step (data not shown) and observed a
similar association between higher dietary insulin index and
insulin load during puberty, and higher %BF in young adulthood
(insulin index: Pfor trend¼ 0.0965; insulin load: Pfor trend¼ 0.07).
In an additional analysis we included carbohydrates and protein

to address the effect of qualitative changes in dietary insulin index
only, by holding the macronutrient intake constant, that is, the
effect of substituting carbohydrate- and protein-rich foods of a
high insulin demand for carbohydrate- and protein-rich foods with
a low insulin demand on %BF in young adulthood. Using this
qualitative approach, a higher dietary insulin index (Figure 2, Panel
A) and a higher dietary insulin load (Figure 2, Panel B) were both
related to a higher %BF in young adulthood even when
controlling for baseline %BF (Pfor trend¼ 0.04 and Pfor trend¼ 0.03,Ta
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Table 3. Relation of dietary insulin index, insulin load, GI, and GL at
baseline to body mass index (kgm�2) in young adulthood (n¼ 262),
DONALD Study, Germany

T1 T2 T3 Pfor trend

Insulin index
Model A 22.5

(21.9, 23.2)
22.5

(21.8, 23.2)
22.8

(22.2, 23.5)
0.5

Model B 23.1
(22.3, 23.8)

23.0
(22.3, 23.7)

23.3
(22.6, 24.0)

0.5

Model C 23.0
(22.4, 23.6)

22.7
(22.2, 23.3)

22.9
(22.4, 23.5)

0.8

Insulin load
Model A 22.6

(21.9, 23.3)
22.3

(21.6, 22.9)
23.0

(22.3, 23.7)
0.5

Model B 23.1
(22.4, 23.8)

22.9
(22.2, 23.6)

23.4
(22.7, 24.1)

0.6

Model C 22.9
(22.3, 23.5)

22.7
(22.2, 23.3)

23.0
(22.4, 23.6)

0.9

GI
Model A 22.8

(22.1, 23.5)
22.5

(21.8, 23.2)
22.5

(21.8, 23.2)
0.8

Model B 23.0
(22.3, 23.7)

23.0
(22.3, 23.7)

23.3
(22.6, 24.0)

0.4

Model C 22.8
(22.2, 23.4)

22.8
(22.2, 23.3)

23.1
(22.5, 23.7)

0.4

GL
Model A 23.2

(22.5, 23.9)
22.6

(21.9, 23.3)
22.1

(21.4, 22.8)
0.3

Model B 23.3
(22.6, 24.1)

23.1
(22.5, 23.8)

22.8
(22.1, 23.5)

0.4

Model C 23.3
(22.7, 23.9)

22.9
(22.3, 23.5)

22.5
(21.9, 23.1)

0.6

Abbreviations: GI, glycemic index; GL, glycemic load; T, tertile. Values are
means and 95% confidence interval. Model A: adjusted for sex. Model B:
adjusted for sex, early life factors (breast feeding), socioeconomic factors
(maternal overweight) and nutritional factors (insulin index: energy; insulin
load: energy; GI: energy, fiber, protein; GL: energy, fiber, protein). Model C:
Model B + adjustment for baseline (body mass index).
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respectively). Similar results were obtained when adjusting for
intakes of carbohydrates and fat, or intakes of protein and fat
(data not shown).
Dietary insulin index, insulin load, GI and GL were not related to

waist circumference, which was, however, available for a
subsample of 196 participants only (data not shown).
We performed a number of additional analyses using

� the minimum number of two dietary records per subject
only, randomly selecting two records for those participants
who had provided more than two records (n¼ 262)

� the first anthropometric measurement in young adulthood as
an outcome (n¼ 262)

� anthropometric measurements at the age of 18 years as an
outcome (n¼ 218)

All approaches yielded similar results for the relationships of the
dietary insulin index or insulin load to %BF (data not shown).

DISCUSSION
To the best of our knowledge, the present study provides new
epidemiological evidence on a prospective relevance of dietary
insulin demand during puberty for %BF in young adulthood

among a healthy free-living population. Although our data are
purely observational and hence need to be interpreted cautiously,
our study suggests that postprandial rises in insulinemia rather
than glycemia may have adverse consequences for the develop-
ment of body composition in early adulthood.

Table 4. Relation of dietary insulin index, insulin load, GI, and GL at
baseline to percentage body fat in young adulthood (n¼ 262),
DONALD Study, Germany

T1 T2 T3 Pfor trend

Insulin index
Model A 22.3

(21.1, 23.4)
23.8

(22.7, 25.0)
24.2

(23.0, 25.3)
0.01

Model B 22.9
(21.6, 24.1)

24.5
(23.2, 25.7)

24.7
(23.5, 25.9)

0.01

Model C 23.2
(22.1, 24.3)

24.2
(23.1, 25.3)

24.2
(23.1, 25.3)

0.1

Insulin load
Model A 22.2

(21.1, 23.4)
23.7

(22.5, 24.9)
24.3

(23.2, 25.5)
0.007

Model B 22.8
(21.5, 24.0)

24.5
(23.2, 25.7)

24.8
(23.6, 26.0)

0.01

Model C 23.1
(22.0, 24.2)

24.2
(23.1, 25.3)

24.3
(23.3, 25.4)

0.08

GI
Model A 23.3

(22.1, 24.5)
23.5

(22.4, 24.7)
23.5

(22.3, 24.7)
0.9

Model B 23.5
(22.2, 24.9)

24.1
(22.9, 25.3)

24.4
(23.1, 25.6)

0.7

Model C 23.7
(22.5, 24.8)

24.0
(22.9, 25.1)

24.0
(22.9, 25.1)

40.9

GL
Model A 23.8

(22.6, 25.0)
23.6

(22.5, 24.8)
22.8

(21.7, 24.0)
0.8

Model B 24.3
(23.0, 25.6)

24.3
(23.1, 25.5)

23.5
(22.2, 24.8)

0.4

Model C 24.3
(23.1, 25.5)

24.2
(23.1, 25.3)

23.2
(22.1, 24.3)

40.9

Abbreviations: GI, glycemic index; GL, glycemic load; T, tertile. Values
are means and 95% confidence intervals. Model A: adjusted for sex.
Model B: adjusted for sex, early life factors (breast feeding), socioeconomic
factors (maternal overweight) and nutritional factors (insulin index: energy;
insulin load: energy; GI: energy, fiber, protein; GL: energy, fiber, protein).
Model C: Model B + adjustment for baseline (percentage body fat).
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Figure 2. Percentage body fat in young adulthood by energy-
adjusted tertiles of dietary insulin index (II) (a) and insulin load (IL)
(b) during puberty (baseline) for 262 subjects. Data are means (95%
CI) adjusted for sex, early life factors (breast feeding), socioeconomic
factors (maternal overweight), nutritional factors (energy,
carbohydrates, protein) and percentage body fat at baseline. P for
trend refers to the P value obtained in linear regression models with
percentage body fat as continuous variable. T, tertile.
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The mechanistic role of high postprandial insulin levels for a
specific gain in %BF may be traced to the preferential direction of
nutrients away from oxidation in muscle and toward storage in
fat.40 In line with this, Chaput et al.41 reported that postprandial
hyperinsulinemia at 30min strongly predicted weight gain and
change in waist circumference over 6 years in adults, especially
among those consuming lower-fat diets. Furthermore, high insulin
and low plasma glucagon levels may restrain hepatic glucose
production and suppress lipolysis.42 Thus, over a longer term,
consistently high postprandial demand on the beta-cells may
eventually reduce insulin sensitivity14 and also promote the
development of higher %BF.43,44

Another plausible mechanism by which a high dietary insulin
index or insulin load (that is, insulin demand) may contribute to a
higher %BF may work through cross-stimulation of both insulin
and IGF-1 secretion.45 In vitro studies using cultures of adipocyte
precursor cells found a stimulatory effect of higher levels of
IGF-1 on the proliferation of preadipocytes, which may therefore
contribute to body-fat formation. Furthermore, IGF-1 stimulated
the cellular glucose uptake in preadipocytes and adipocytes,
increased lipogenesis and inhibited lipolysis in adipocytes.46

We speculate that the physiological insulin resistance and
the concurrent elevations of IGF-1 levels during puberty may
work together to increase the susceptibility to postprandial
insulinemic spikes and thus contribute to the development of
high body fat.
In our view, it is plausible that we did not observe an association

between dietary GI and body composition in our cohort of
relatively lean subjects with physiological insulin resistance
affecting peripheral tissues,47 as a higher dietary GI may be of
relevance primarily among persons who already respond with
exaggerated insulin responses.9 This may also explain why other
studies reported associations between dietary GI and body
composition mainly among overweight and less insulin-sensitive
persons.8,9 Conversely, we had expected to find at least a
tendency for a comparable relation between dietary GL and
body composition, as dietary GL has recently been identified as
the best indirect predictor of the postprandial insulin response.36

However, although the main contribution to the insulin responses
arises from carbohydrate-rich foods, Bao et al.36 reported dietary
GL to explain only 46% of the observed variability in insulin
responses, that is, foods with little or no carbohydrates and a
higher protein and fat content make additional important
contributions.
It could be argued that the association between dietary insulin

demand and unfavorable body composition may be primarily
attributable to one macronutrient only (for example, carbohy-
drates). However, our additional analysis adjusting for protein,
carbohydrates and energy suggests that in particular substitutions
of carbohydrate- and protein-rich foods with a higher insulin
demand for carbohydrate- and protein-rich foods with a lower
insulin demand are the relevant principle for the associations with
body fat. In addition, further adjustment for protein enhanced the
association between dietary insulin demand and body fat. This
may reflect a bi-directional relevance of dietary protein, which
may contribute to a higher lean body mass on the one hand39 and
a higher insulin secretion17 or lower insulin clearance on the other
hand.48

The relationship between a higher dietary insulin demand
during puberty and a higher %BF in young adulthood was
attenuated by the additional consideration of baseline %BF. While
this confirms the prevailing long-term relevance of %BF already in
childhood, we may have also corrected for earlier effects of dietary
insulin demand on body composition. It may be that the dietary
insulin demand has a more important role in adolescents who are
overweight or have a higher %BF. In our sample we did not find a
consistent interaction between overweight or excess body fat at
baseline and dietary insulin demand concerning %BF in young

adulthood, but this may be attributable to the fact that our sample
is comparatively healthy with lower prevalences of overweight or
excess body fat.
Our study has several limitations. First, we applied the FII

concept, developed to quantify the insulin response to foods --- to
estimate the dietary insulin demand. Hence, the limitations
debated for the estimations of dietary GI49 -- 51 also apply to the
estimation of dietary insulin demand. As the FII assignment was
based only on 121 published FII values it must be considered
crude, yet allowing a classification of foods in FII groups.52 Second,
%BF was estimated from skinfold thickness measurements, which
are known to be more susceptible to measurement error than are
specialized research-based techniques. Other more accurate
methods to estimate %BF, such as hydrostatic weighing, may be
preferable to estimate body fat,53 but the skinfold equations of
Durnin and Womersley30 are feasible and agree, on average, very
well with results from hydrostatic weighing.53 Furthermore,
measurements were conducted by trained and quality-monitored
personnel, which has been shown to reduce intra- and inter-
observer variability considerably,54 as was the case in the present
study. Third, the DONALD population has a relatively high
socioeconomic status,55 as reflected by the parental educational
level. It is possible that the relative homogeneity of the healthy
DONALD sample means that extremes of diet or behavior are not
represented. However, non-representativeness is less relevant for
the present analysis and will likely result in underestimation rather
than overestimation of the true associations. On the other hand,
the homogeneity of our sample might have reduced our
vulnerability to residual confounding. Finally, we examined the
long-term relevance of the dietary insulin demand, GI and GL on
body composition at a single point in young adulthood only, as
presently only 141 participants had at least two anthropometric
measurements in both adolescence and young adulthood. In the
future, continued follow-up of our participants will also allow
analyses of growth trajectories.
A clear strength of our study is its prospective nature and the

carefully collected, repeated data on growth, the availability of
data on several possible confounders, such as parental character-
istics and repeated dietary data. Overall the analyses were based
on 1379 weighed 3-day dietary records, that is, on average each
subject had provided 5 dietary records during puberty (2 --7
records). A further advantage lies in the use of 3-day weighed
dietary records, which permitted a particularly detailed assign-
ment of dietary GI values for each carbohydrate-containing and
FII values for all foods.
In conclusion, our analysis indicates that postprandial increases

in insulinemia rather than glycemia are implicated in an
unfavorable development of body fat in the critical period of
puberty.
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s u m m a r y

Background & aims: The optimal dietary approach for weight loss and improving insulin sensitivity in
adolescents is unknown. This study aimed to explore the association between the estimated insulin
demand of the diet, as measured by glycemic and insulin load, weight loss, percentage body fat and
insulin sensitivity index (ISI) in obese adolescents with clinical features of insulin resistance and/or
prediabetes after a 3 month lifestyle and metformin intervention.
Methods: Secondary data analysis of 91 adolescents (median age 12.7 years (range 10.1e17.4) partici-
pating in a randomized controlled trial, known as RESIST; ACTRN12608000416392. Weight change be-
tween baseline and 3 months was measured by BMI expressed as percentage of the 95th centile (BMI %
95). Body composition was measured by dual energy X-ray absorptiometry and ISI was determined by an
oral glucose tolerance test.
Results: Higher dietary glycemic load and insulin load were associated with less weight loss (BMI %95),
adjusted for sex and pubertal stage, b ¼ 0.0466, P ¼ 0.007 and b ¼ 0.0124, P ¼ 0.040, respectively. In-
clusion of total energy intake in the model explained observed associations between dietary glycemic
load and insulin load and change in BMI %95. Neither dietary glycemic load nor insulin load were
associated with changes in percentage body fat or ISI. Dietary glycemic index and macronutrient content
(% of total energy) were not associated to changes in BMI %95, percentage body fat or ISI.
Conclusion: Reduced energy diet contributes to weight loss in obese, insulin resistant adolescents. Diets
with a lower insulin demand were associated with a lower energy intake and may hence assist with
weight loss.

� 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

1. Introduction

Adolescent obesity is a global public health concern and is
associated with a range of health related problems including pre-
and type 2 diabetes. Lifestyle interventions, including diet and

exercise, with metformin can lead to improvements in weight and
insulin sensitivity in adolescents.1 Yet, little is known about the
optimal dietary approach for weight loss in obese adolescents,
including those at risk of developing type 2 diabetes.

The conventional therapeutic approach focuses on restricting
energy by reducing fat and increasing carbohydrates which may
not be the preferred option to treat obese adolescents with insulin
resistance. It is speculated that this diet might induce higher levels
of postprandial glycemia and/or insulinemia and increase insulin
resistance potentially leading to type 2 diabetes.2,3 Intervention
studies in overweight and obese adults indicate an efficacy of low
glycemic index and/or glycemic load diets on weight loss4 espe-
cially for individuals with a compensatory increased insulin
secretion.5,6 But there is a paucity of data relating dietary glycemic
index or glycemic load and weight loss in obese adolescents and
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results from intervention studies are conflicting. One 6 month
intervention trial indicated a beneficial effect of dietary glycemic
load on weight loss,7 however, after 3 and 24 month interventions
Kirk et al. and Mirza et al., respectively, found that ad-libitum diets
with reduced glycemic load were as effective as portion size
controlled or low fat diets.8,9

Dietary glycemic load is considered to be an indirect estimate of
insulin demand resulting from carbohydrate containing foods.10

Nevertheless, insulin secretion is also stimulated by dietary pro-
tein. Dietary protein and fat may both act synergistically with
carbohydrates to increase insulin levels and reduce glycemia.11 The
new concept of the food insulin index was developed to quantify
postprandial insulin responses to all foods including foods with low
or no carbohydrate amounts.10 The average insulin load of the diet
can be calculated by summing the product of food insulin index,
energy content and consumption frequency over all recorded food
items, hence estimating the insulin demand of the overall diet.
Novel results from the healthy free living DONALD population
suggest that a habitually higher insulin demand during puberty
may predispose to higher percentage body fat in adulthood.12

However, it is unknown whether glycemic or insulin load affects
weight loss in obese adolescents with clinical features of insulin
resistance.

The aim of this studywas to explore the association between the
estimated insulin demand of the diet, as measured by glycemic and
insulin load and weight loss, percentage body fat and insulin
sensitivity index (ISI) in obese adolescents with clinical features of
insulin resistance and/or prediabetes after a 3 month lifestyle and
metformin intervention.

2. Materials and methods

2.1. Participants

This study is secondary data analysis of a randomized control
trial, known as RESIST (Australian New Zealand Clinical Trial
Registration Number 12608000416392). The primary aim of RESIST
was to determine the efficacy and effectiveness of two structured
lifestyle interventions differing in diet composition on insulin
sensitivity, in adolescents with clinical features of insulin resistance
and/or prediabetes treated with metformin. Prediabetes was
defined according to theAmericanDiabetesAssociation, as impaired
fasting glucose 5.6e6.9 mmol/L and/or impaired glucose tolerance
2 h post load 7.8e11.0 mmol/L.13 Clinical features of insulin resis-
tancewere defined as a fasting insulin (pmol/L) to glucose (mmol/L)
ratio greater than 20 with one or more of the following: acanthosis
nigricans, polycystic ovarian syndrome, hypertension, fasting high-
density lipoprotein cholesterol less than 1.03 mmol/L or fasting tri-
glycerides 1.7 mmol/L or greater, as previously described.14 The
design and methods of the study have been previously published14

as well as the 6 months intention-to-treat analysis.15 This second-
ary data analysis was conducted after the adolescents had
completed 3 months of intensive dietary intervention.

At baseline 111 participants aged 10e17 yearswere recruited and
randomized to either a high carbohydrate, low fat diet (55%e60% of
total energy as carbohydrate (moderate glycemic load), 30% fat, and
15% protein) or a moderate carbohydrate, increased protein diet
(40%e45%of total energyas carbohydrate (moderate glycemic load),
30% fat, and 25%e30% protein). Both groups were educated and
instructed to consume low-moderate glycemic index foods. Both

diets were prescriptive and two different energy levels were pre-
scribed depending upon age: 6000e7000 kJ (10e14 year olds) or
7000e8000 kJ (15e17 year olds). All participants were commenced
on metformin and received the same overall lifestyle intervention.
The only difference between the two groups was themacronutrient
content of the diets. This study focuses on those 91 participantswho
completed the initial 3 months of the trial, had at least one assess-
ment of dietary intake and had anthropometry, body composition
and insulin sensitivity measured at baseline and 3 months. There
was no significant difference in baseline age, anthropometry, body
composition or insulin sensitivity between those RESIST partici-
pants who included or excluded (n ¼ 20) from this study, data not
shown. However, there was a higher proportion of females who
werenot followedup or excluded from this study compared to those
participants who were included (85% vs. 54%; P ¼ 0.010). The study
was approved by The Children’s Hospital at Westmead Human
Research Ethics Committee (07/CHW/12), Sydney South West Area
Health,Western Zone (08/LPOOL/195) and Sydney SouthWest Area
Health Service, Royal Prince AlfredHospital (08/RPAH/455).Written
informed consent from parents and assent from the young people
was sought prior to their enrolment in the study.

2.2. Anthropometry

Weight and height were measured according to standard pro-
cedures. Weight wasmeasured to the nearest 100 g using electronic
scales. Height was measured twice, to the nearest 0.1 cm using a
wall mounted stadiometer, and the average value was used for data
analysis. Body mass index (BMI, kg/m2) was calculated. Z-scores for
weight, height, and BMI were calculated from age and sex specific
reference values.16 BMI was expressed as a percentage of the 95th
centile (BMI %95 centile).17 Overweight and obesity were defined
according to the International Obesity Task Force criteria.18

2.3. Body composition

Dual energy X-ray absorptiometry (DEXA; Prodigy, Lunar-GE,
Madison, WI USA) equipped with propriety software version 13.6
was used to measure body composition. The manufacturer rec-
ommended scan mode was used for total body mass measure-
ments. When possible, standard positioning techniques were used.
When the participant width exceeded the maximum scan width,
they were “mummy wrapped”, with arms placed in a lateral posi-
tion. Scans were analyzed using manufacturer recommended
techniques. Repeated measurements in children are often consid-
ered unethical, but precision of repeated measurement in adults
expressed as the percent coefficient of variation has been shown to
be 2.2% for percentage body fat.19 Fat free mass index (kg of fat free
mass/m2) was calculated.

2.4. Insulin sensitivity

Insulin sensitivity was measured by the ISI determined from an
oral glucose tolerance test performed after an overnight fast. The
dose of glucose was 1.75 g/kg of body weight to a maximum of 75 g.
Plasma glucose and insulin was sampled every 30 min for 2 h as
previously described.14 The ISI was calculated using the following
formula20:

10 000=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
insulinfasting � glucosefasting

�
� mean 2h glucose�mean 2h insulinð Þ

r
:
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2.5. Nutritional assessment

Dietary intake was assessed by 24 h dietary recalls using a
standardized three-pass methodology14 which has been previ-
ously used in Australian adolescents (2007 Australian National
Children’s Nutrition and Physical Activity Survey).21 To assist
with estimating the amounts of foods a food model booklet was
used.21 Recalls were collected by trained dieticians, face-to-face
in the hospital at weeks 6 and 12 and a telephone interview at
week 9. Overall, 213 24 h dietary recalls were included in the
analyses and on average participants provided two 24 h dietary
recalls (1e3 per participant). The foods consumed were entered
into FoodWorks version 6.0.2539 (Xyris Software Inc., Brisbane,
QLD 4101, Australia) by research dieticians for nutritional anal-
ysis. Macronutrient and energy intake were calculated as means
of the 24 h dietary recalls of each participant using the Australian
Food and Nutrient Database (AusNut) compiled in 2007 by Food
Standards Australia and New Zealand and amended by product
and brand specific information using AusNut (AllFoods) and
AusNut (Brands) compiled in 1999 by Food Standards Australia
and New Zealand.

2.6. Dietary glycemic index and insulin index

Dietary glycemic index is defined as the incremental area under
the curve (AUC) of glucose response following the intake of 50 g of
carbohydrate from a test food compared with AUC induced by the
same amount of carbohydrate ingested as glucose.22 All
carbohydrate-containing foods recorded in the 24 h dietary recalls
were assigned a glycemic index value23 according to a standardized
procedure.24 The content of available carbohydrate (in grams) of
each food itemwasmultiplied by the food’s glycemic index (as %) to
obtain the glycemic load. The sum of glycemic load values for each
participant corresponds to the total daily glycemic load. The overall
glycemic index of the diet was obtained by dividing the total daily
glycemic load by the total daily available carbohydrate intake.

The insulin index of foods is defined as the insulinaemic
response (AUC) following the intake of 1000 kJ of a food relative to
the insulinaemic response to glucose as reference food. For the
present analysis,121 published insulin index values of foods10 and 6
recently measured values were available for the assignment to each
food recorded according to a standardized procedure.12 Foods
which could not be assigned an insulin index value of a food
following this procedure (3% of the foods) were assigned a median
insulin index value of its corresponding food group based on the
2007 Australian National Children’s Nutrition and Physical Activity
Survey. The participant’s average dietary insulin load was calcu-
lated by summing the product of insulin index values of foods,
energy content and consumption frequency over all recorded food
items in the 24 h dietary recall.

2.7. Metformin

All participants received metformin therapy. The initial dose
was 250 mg twice a day. After the first two weeks this was
increased to a final dose of 500 mg daily. Metformin compliance
was assessed by pill counts by the clinical trials pharmacist at 3
months. From the participants of this study sample 60 participants
(66%) returned pills. From the pill count, it was estimated that
participants who lost weight consumed [median (interquartile
range, IQR)] 88% (66, 99) of the prescribed metformin, and partic-
ipants who did not lose weight 90% (56, 96). Metformin compliance
did not differ between participants who lost weight and those who
did not (P ¼ 0.782).

2.8. Statistical analysis

All statistical analyses were carried out using SAS (version 9.2,
SAS Institute, Cary, NC, USA). A P-value <0.050 was considered as
statistically significant.

Change in weight status was measured by change in BMI
expressed as BMI %95 centile. Participants were categorized ac-
cording to their weight loss from baseline to 3 months, i.e. partic-
ipants who lost weight (BMI %95 centile decreased) and
participants who did not lose weight (BMI %95 centile increase
�0%). Differences between groups were analyzed using indepen-
dent sample t-test for normally distributed continuous variables
and Wilcoxon rank sum test for non-normally distributed contin-
uous variables, chi-square-test for categorical variables, and Fisher
Exact test for categorical variables if �50% of cells had expected
counts less than 5.

A linear regression analysis was conducted (using the general
linear models procedure) to adjust dietary glycemic load and in-
sulin load of participants who lost weight and thosewho did not for
total energy intake. In addition, we ran linear regression analysis,
pooling data from all participants, to analyze whether changes in
dietary glycemic load or insulin load, as well as dietary glycemic
index and macronutrient content (% of total energy) during the
dietary intervention (average of values used from weeks 6, 9, and
12) were associated with changes in BMI %95 centile, percentage
body fat, and ISI from baseline to 3 months. Furthermore, we ran
two sets of conditional models. First, we analyzed the relation be-
tween dietary glycemic load or insulin load and BMI %95 centile
and then introduced total energy intake as a pathway variable.
Second, we analyzed the relation between total energy intake and
BMI %95 centile and then introduced dietary glycemic load or in-
sulin load as a pathway variable. All models conform to the as-
sumptions of linear regression models (linearity, normality and
homoscedasticity of residuals, absence of multicollinearity).

3. Results

Baseline general characteristics and nutritional characteristics
during the intervention of the participants are shown in Table 1.
Overall the median change in BMI %95 centile over the 3 month
intervention was �6.5 (IQR: �9.7, �2.5), 79 participants decreased
BMI %95 centile and 12 participants increased BMI %95 centile. The
total median change in percentage body fat and ISI was �1.3 (�3.1,
0.01) and 0.29 (�0.08, 0.67), respectively. Participants who lost
weight were significantly younger (2.2 years) and tended to be
taller than participants who did not lose weight. There were no
other statistically significant differences in general characteristics
between participants who did lost weight and those who did not
(Table 1).

The median energy intake of all participants was 6.3 MJ/d, car-
bohydrate, protein and fat contributing 47.7%, 20.1%, and 29.4% of
total energy, respectively. No differences inmacronutrient intake (%
of total energy) were observed between the participants who lost
weight and those who did not. However, participants who lost
weight reported consuming 1.4 MJ less energy (Table 1) which
corresponded to a significantly (P < 0.001) lower absolute intake of
carbohydrate (mean difference 26.1 g), protein (27.0 g) and fat
(29.4 g) compared to participants who did not lose weight. The
dietary glycemic index did not differ between participants who lost
weight and those who did not. But on average, participants who
lost weight had a significantly lower dietary glycemic load and
insulin load of 18 and 37 points, respectively compared to partici-
pants who did not lose weight (P ¼ 0.013 and P ¼ 0.003, respec-
tively, Table 1). After adjusting for energy intake, the dietary
glycemic load and insulin load were no longer different between
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groups (glycemic load: 95 vs. 96, P ¼ 0.917; insulin load: 282 vs.
282, P ¼ 0.987).

The reported median dietary glycemic index and glycemic load
of participants who consumed a high carbohydrate, low fat diet did
not differ significantly to those reported by participants consuming
a moderate carbohydrate, increased protein diet (glycemic index:
53.2 vs. 54.1 and glycemic load: 93.4 vs. 98.0, respectively; P for all
>0.050).

Analysing data as continuous variables showed that a higher
dietary glycemic load and higher dietary insulin load were associ-
ated with less weight loss between baseline and 3 months, even
after the adjustment for sex and pubertal stage (glycemic load:
P ¼ 0.007, insulin load: P ¼ 0.040; Table 2). In fact, an increase in
dietary glycemic load by 50 units was associated with a 2.3% in-
crease in BMI %95 centile, while an increase in dietary insulin load
by 50 units was associated with a 0.6% increase in BMI %95 centile.
Further adjustment for ethnicity, parental education, baseline ISI or
change in ISI did not significantly change the results. Including total
energy intake within an additional mediation model explained the
associations between dietary glycemic load or insulin load and
weight loss between baseline and 3 months (glycemic load:

P ¼ 0.419, insulin load: P ¼ 0.302; Table 2). Dietary glycemic load
and insulin load were not associated with changes in percentage
body fat or ISI between baseline and 3 months and the adjustment
of percentage body fat for insulin sensitivity vice versa did not
change the results, data not shown.

Moreover, dietary glycemic index and macronutrient content (%
of total energy) of the diet were not associated to changes in BMI %
95 centile, percentage body fat or ISI between baseline and 3
months and the adjustment of percentage body fat for insulin
sensitivity and vice versa did not change the results, data not
shown.

3.1. Sensitivity analyses

We performed additional sensitivity analyses using only data
from the 78 participants (85.7%) who had provided two or more
24 h dietary recalls during the intervention and all results were
similar, data not shown. Using only data from 24 h dietary recalls
collected at weeks 6 and 9 (n ¼ 79; 86.8%) yielded comparable
results for dietary glycemic load. However, dietary insulin load was
significantly associated with weight loss in the unadjusted model
only (P ¼ 0.046). Further adjustments for sex and pubertal stage
attenuated the relation (P ¼ 0.070).

3.2. Conditional models

Introducing total energy intake in the model attenuated the
association between glycemic load or insulin load and change in
BMI %95 centile between baseline and 3 months (as described,
Table 2). Hence, total energy intake may lie on the pathway be-
tween dietary glycemic load or insulin load and change in BMI %95
centile. Introducing dietary glycemic load attenuated the associa-
tion between total energy intake change in BMI %95 centile be-
tween baseline and 3 months (P ¼ 0.005 and P ¼ 0.419,
respectively), yet introducing dietary insulin load did not notably
attenuate the association between total energy intake and change
in BMI %95 centile between baseline and 3 months (from P ¼ 0.005
to P ¼ 0.030). Therefore, the results do not consistently suggest a
mediation of dietary energy intake and change in BMI %95 centile
between baseline and 3 months by dietary glycemic load or insulin
load.

4. Discussion

To our knowledge this is the first study to examine the associ-
ation between dietary insulin demand, measured by glycemic load
and insulin load, and weight loss in obese adolescents with clinical
features of insulin resistance and/or pre-diabetes. The central

Table 2
Associations between dietary glycemic load, insulin load and weight change
expressed as a percentage of the 95th centile (BMI %95 centile, in %) of the RESIST
study (n ¼ 91).

Predictors b SE R2 P value

Glycemic load
Unadjusted 0.0436 0.0167 0.07 0.011
Model A 0.0466 0.0170 0.11 0.007
Model B 0.0219 0.0269 0.13 0.419

Insulin load
Unadjusted 0.0128 0.0059 0.05 0.032
Model A 0.0124 0.0059 0.08 0.040
Model B �0.0137 0.0132 0.13 0.302

Model A: Adjustment for sex and pubertal status (n ¼ 90, one missing for pubertal
stage).
Model B: Model A plus adjustment for total energy intake.
n ¼ 90 for Model A and B: one missing for pubertal status at baseline.

Table 1
Baseline general characteristics and nutritional characteristics during the inter-
vention of participants stratified by change in weight status expressed as BMI %95
centile after 3 months of intervention. Categories are participants who did not lose
weight (BMI %95 centile increase �0%) and participants who lost weight (BMI %95
centile decreased).

Non-weight
loser

Weight
losers

P valuea

n 12 79
Median change in

BMI %95 centile (%)
1.3 (0.8, 1.8) �7.7 (�10.1, �1.4) <0.001

General characteristics
Age (years) 14.9 (11.9, 15.9) 12.7 (11.6, 14.1) 0.021
Female, n (%) 4 (33.3) 45 (57.0) 0.126
Pubertal stage, n (%)b 7 (58.3) 52 (66.7) 0.745

Anthropometry
Weight z-score 2.49 � 0.76 2.70 � 0.53 0.240
Height z-score 0.63 � 1.59 1.36 � 1.09 0.046
BMI z-score 2.30 � 0.32 2.34 � 0.29 0.598
BMI %95 centile 125 (118, 139) 127 (117, 143) 0.721
Obese, n (%)c 11 (91.7) 76 (96.2) 0.438

Body composition (DEXA)
Total body fat (%) 48.8 � 5.5 48.5 � 5.5 0.862
Fat free mass (kg) 45.3 (34.7, 55.8) 41.6 (35.7, 52.6) 0.602
Fat free mass index (kg/m2) 15.9 (14.4, 18.7) 17.5 (14.6, 18.4) 0.703

Clinical and metabolic profile
Fasting blood glucose
(mmol/L),

5.0 (4.6, 5.4) 4.7 (4.4, 5.0) 0.064

Fasting insulin (pmol/L) 225 (186.5, 250.5) 244 (173.1, 311.0) 0.483
Insulin sensitivity indexd 1.35 (1.01, 1.62) 1.23 (0.84, 1.57) 0.635
Prediabetic, n (%)e 1 (8.3) 8 (10.1) 1

Nutritional characteristics
Total Energy (MJ/d) 7.5 (6.8, 9.0) 6.1 (5.3, 6.8) <0.001
Fat (% of energy) 32.0 (6.8) 29.7 (6.4) 0.255
Protein (% of energy) 20.7 (4.8) 20.3 (4.2) 0.752
Carbohydrate (% of energy) 45.8 (6.6) 48.2 (6.8) 0.247
Dietary glycemic index 54.5 (4.8) 54.4 (4.3) 0.933
Dietary glycemic load 111 (104, 122) 93 (78, 111) 0.013
Dietary insulin load 324 (302, 365) 287 (242, 312) 0.003

Values are mean � standard deviation, median (interquartile range).
BMI, body mass index; BMI %95 centile, percentage BMI of the 95th centile.

a Significant differences between participants who lost weight and those who did
not were tested using t-test for normally distributed continuous variables, Wilcoxon
rank sum test for not normally distributed continuous variables, Chi-square test for
categorical variables, and Fisher Exact test if �50% of cells have frequencies under 5.

b Tanner stage �3.
c Derived from the age- and sex-specific cut-points proposed by the International

Obesity Task Force,18 which are linked to the adult cut-off point of a BMI of 25 kg/m2.
d Derived from Matsuda and DeFronzo.20
e Derived from the American Diabetes Association.13
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finding of our secondary data analysis was that participants who
lost weight over 3 months reported a lower energy diet, with a
reduced insulin demand compared to participants who gained
weight. There was no significant difference in the glycemic index or
macronutrient content (% of total energy) of the diet between those
who those who lost weight and those who did not.

Our findings relating to glycemic load and weight loss are
broadly consistent with previous, but limited, trials indicating that
low glycemic load diets, compared to reduce fat diets are effective
in promoting weight loss in obese children and adolescents.7,25 Not
all studies support this association; no differences were observed in
weight loss among children when a low glycemic load diet was
compared to a portion controlled or low fat diet after 3 and 24
month interventions.8,9 Mechanisms linking glycemic load to
weight loss are based on postprandial insulin response, which is
though captured by glycemic load,10 may be better described by
insulin load itself. Foods and/or diets producing lower postprandial
insulin responses are considered to induce higher satiety and a
lower voluntary food intake at a subsequent meal, compared to
foods inducing a high insulin demand.26 We speculate that RESIST
participants consuming a lower glycemic load or insulin load diet
may have increased satiety after eating, which in turn facilitated a
reduction in energy intake.7

After adjustment for total energy intake, glycemic load and in-
sulin load did not differ between participants who lost weight and
those who did not. It is thus possible that the unadjusted associa-
tion between glycemic load or insulin load and BMI %95 simply
reflects the fact that lower energy intake was accompanied by a
lower glycemic load and insulin load. However, the conditional
models support a mediation of the association between glycemic
load or insulin load and BMI %95 by energy, i.e. that lowering
glycemic load or insulin load facilitated a reduction of overall total
energy intake.

In contrast to a recent systematic review, which concluded that
consuming a low glycemic index diet, not a low glycemic load diet,
had favorable effects on reducing energy intake and subsequent
obesity in children and adolescents,27 we did not observe any
relation between dietary glycemic index and weight loss. Dietary
glycemic index is a qualitative rather than quantitative measure
indicating the ranking of postprandial glucose and insulin re-
sponses to foods.22 We postulate that reducing the insulin demand
of the diet might be more important in our study population with
compromised glycemic status, as they need to adapt their insulin
secretion with increased amounts of carbohydrates, compared to
metabolically healthy obese children. In addition, it could be argued
that the variation of the dietary glycemic index was too small to
detect any relation, because all participants were instructed to
follow a moderate glycemic index diet.

We also found no significant association between glycemic load,
insulin load or glycemic index and percentage body fat. A recent
cohort study including healthy participants found that a higher
dietary insulin demand during puberty, estimated by dietary in-
sulin load, was prospectively associated with higher percentage
body fat in young adulthood.12 Postprandial insulin levels may
direct nutrients from oxidation in the muscle towards storage in fat
as well as restrain hepatic glucose production and suppress lipol-
ysis. We speculate that the lack of a relationwith regards to body fat
may stem from the short study time and/or hormonal effects of
pubertal participants, particularly in girls who may be expected to
increase their fat mass during the pubertal growth spurt.

Associations between dietary glycemic load and glycemic index
and measures of insulin sensitivity have been inconsistently re-
ported. Two6month intervention studies amongobese children and
adolescents observed significant decreases in insulin resistancewith
a reduced glycemic load diet without energy restriction7 and within

an energy restricted low glycemic index group only.28 By contrast, a
12months interventionamongobeseHispanic childrendidnot show
any association between dietary glycemic load and insulin sensi-
tivity.9 Similarly, we did not observe any relation between dietary
glycemic load, insulin load or glycemic index and ISI.

This study had a number of limitations. Firstly, it was not clearly
prospective as the average dietary intake was calculated from 24 h
dietary recalls at weeks 6, 9, and 12 to examine associations with
outcomes at 3months andnot all participants completed3 recalls. It is
not possible to draw a conclusion regarding cause and effect because
this study is purely observational. Secondly, dietary intake was self-
reported diet assessment and hence may not accurately represent
food intake. Furthermore, themethodology of three-pass 24 h dietary
recalls isnot asprecise asweigheddietary records, but suitable for this
young study population and has been used in the 2007 Australian
National Children’s Nutrition and Physical Activity Survey.21 Thirdly,
we applied the food insulin index concept, developed to quantify the
insulin response to foods e to estimate the dietary insulin demand.
Hence, the limitations debated for the estimations of dietary glycemic
index also apply to the estimation of dietary insulin demand. The
assignment of insulin index values of foods was based on 127 values
only and therefore it must be considered crude. Finally, the specific
effect of metformin therapy on outcome measures is not clear. Evi-
dence indicates that metformin therapy combined with lifestyle in-
terventions can lead to improvements in weight status and insulin
sensitivity in adolescents with clinical features of insulin resistance,1

even though the effects of metformin therapy alone are conflict-
ing.29,30 Since all RESIST participants received the same metformin
dose, a potential influence of metformin would be expected to be
comparable across all participants.

A strength of this study is the recruitment and high retention
rate of a high risk study population e obese adolescents with fea-
tures of insulin resistance and/or prediabetes. Dietary compliance
was assessed using three scheduled 24 h dietary recalls at weeks 6,
9, and 12 and the estimated energy intake from the recalls was
broadly consistent with the prescribed diet14 i.e. the median
(interquartile range)reported energy intakes during the 3 months
for the were 6.1 MJ (5.3, 7.2) for the 10e14 year old participants and
6.6 MJ (6.2, 6.9) for the 15e17 year old participants.

To date, this is the first and largest study to examine dietary
insulin demand in a high risk population. Moreover, the study was
well controlled and participants were supported by dieticians to
follow prescribed diets.

In conclusion, our data supports the increasing body of evidence
that a reduced energy diet contributes to weight loss in obese ad-
olescents at high risk of type 2 diabetes. Lower dietary glycemic
load and insulin load diets were associated with a lower energy
intake and may hence assist with weight loss.
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Prospective Association of Protein Intake
During Puberty with Body Composition in
Young Adulthood
K. E. Assmann1, G. Joslowski1, A. E. Buyken1, G. Cheng2,3,4, T. Remer1, A. Kroke2 and A. L. B. G€unther2

Objective: To examine the association of habitual animal and plant protein intake during the potentially

critical period of puberty with body composition in young adulthood.

Design and Methods: Multivariable regression analyses were performed on data from 140 female and

122 male participants of the DONALD Study with �2 3-day weighed dietary records during puberty (girls

9-14 years; boys 10-15 years) and anthropometric measurements in young adulthood (18-25 years). Fat-

free mass index (FFMI) and fat mass index (FMI) were estimated from four skinfolds.

Results: In women, a higher pubertal animal protein consumption was independently related to higher

levels of FFMI (ptrend 5 0.001), but not to FMI (ptrend 5 0.5). Adjusted means of FFMI in energy-adjusted

tertiles of animal protein intake were 15.3 (95% confidence interval: 15.0, 15.5), 15.4 (15.1, 15.7), 16.2

(15.9, 16.6) kg/m2. In men, a higher animal protein intake was related to a higher FFMI (ptrend 5 0.04) and

a lower FMI (ptrend 5 0.001) only after adjusting FFMI for current FMI levels and vice versa. Plant protein

was not associated with body composition among either sex.

Conclusions: Our results show that a higher pubertal animal protein consumption may yield a higher fat-

free mass in young adulthood.

Obesity (2013) 00, 00�00. doi:10.1002/oby.20516

Introduction
Substantial controversy exists concerning a potential effect of die-

tary protein intake on body mass and body composition. A benefi-

cial effect of a higher dietary protein content has been observed in a

number of weight loss- and weight control-trials (1-5). On the other

hand, some evidence from prospective observational studies points

to a detrimental effect of (animal) protein intake on body weight

and body mass index (BMI) in adults over the long term (6-9).

While it is plausible that these two study types—with their different

designs, contexts, and times of duration—yield diverging results, the

issue of how long-term protein intake relates to health remains far

from being solved.

The particularities of study designs are not the only obstacle in

assessing the evidence. The limited validity of body weight or BMI

as proxies for body fat may be of special relevance with regard to

dietary protein: In a recent randomized controlled trial (RCT) with

healthy young adults (10), overeating on a low protein diet produced

less weight gain than overeating on a diet with a normal or high

protein content. Yet, the additional weight gained on the higher pro-

tein diets stemmed from fat-free mass only. Subsequently, a link of

higher protein intakes to higher body weight may not be specific to

fat mass. Puberty is a developmental phase during which major

changes in body composition occur. It is possible that, because of

the anabolic nature of metabolism during this phase (11), a diet that

is relatively high in protein favors a body composition characterized

by a higher fat-free mass.

In this study, we investigated the association of habitual protein

intake during puberty with fat mass index (FMI) and fat-free mass

index (FFMI) in young adulthood. A secondary aim was to consider

protein intake during early childhood (age 12-24 months) and adi-

posity rebound (age 4-6 years) as these windows represent, similar

to puberty, potentially critical periods for later obesity risk (12,13).

Methods and Procedures
Study population
The present study was ancillary to the Dortmund Nutritional and

Anthropometric Longitudinally Designed Study (DONALD Study),

an ongoing, open cohort study conducted in Dortmund, Germany.

Details on this study have been described elsewhere (14). Briefly,
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since the recruitment began in 1985, detailed data on diet, growth,

development, and metabolism between infancy and adulthood have

been collected from over 1300 healthy children. The study was

approved by the Ethics Committee of the University of Bonn, and

all examinations are performed with parental consent.

Because of the open cohort design, many DONALD participants

have not yet reached young adulthood. In total, data from 394 sub-

jects aged > 18 years were available for this analysis. These sub-

jects were term (37-42 week gestation) singletons with a birth

weight > 2500 g and had at least one anthropometric measurement

taken in young adulthood (� 18 and � 25 years of age, mean age

5 20.3 years), of which we used the last for the present analysis.

Three hundred and eight of these participants had provided at least

two 3-day weighed dietary records during puberty (girls 9-14 years,

boys 10-15 years). Participants who consistently underreported their

energy intake (i.e. who had provided more implausible (15,16) than

plausible food records) were excluded from the study (n 5 23). Fur-

thermore, participants had to have anthropometric data at puberty

and information on relevant covariates such as early life and socioe-

conomic factors. This resulted in a final sample of 262 participants

(53.6% female, 46.4% male). Overall, 1376 food records were

included in the present analysis (2-7 records per participant, on aver-

age five per subject). Concerning our additional analyses on the

associations of protein intake during early childhood and adiposity

rebound with adult body composition, data were available for 159

participants (86 males, 73 females) and 220 participants (107 males,

113 females), respectively. As these sample sizes are quite small

and as our main focus was puberty, the respective results are not

presented in detail.

Anthropometric measurements
Participants are measured at each visit according to standard proce-

dures (17), dressed in underwear only and barefoot. From the age of

2 years onward, standing height is measured to the nearest 0.1 cm

using a digital stadiometer (Harpenden, Crymych, UK). Body weight

is measured to the nearest 100 g using an electronic scale (Seca

753E; Seca Weighing and Measuring Systems, Hamburg, Germany).

Skinfold thicknesses are measured from the age of 6 months onward

at four different sites (suprailiacal, subscapular, biceps, triceps) on

the right side of the body to the nearest 0.1 mm using a Holtain cal-

iper (Holtain, Crosswell, United Kingdom). The three trained nurses

performing the measurements undergo annual quality controls, con-

ducted in six to eight healthy young adult volunteers. Average inter-

and intra-individual variation coefficients obtained in the last seven

years (2005-2011) were 9.1% and 12.8% for biceps, 5.0% and 5.9%

for triceps, 5.1% and 7.6% for subscapular, and 8.4% and 8.5% for

supra-iliacal skinfolds.

Anthropometric calculations
Body fat mass and fat-free body mass were calculated as “(percent-

age body fat (%BF) * body mass) /100” and “((100 2 %BF) * body

mass) /100”, respectively, and related to height to obtain the indices

FMI and FFMI (kg/m2). %BF at puberty was derived using equa-

tions of Slaughter et al. for pubescent children (18), which consider

triceps and subscapular skinfolds. %BF in young adulthood was esti-

mated from skinfolds using Durnin and Womersley equations, which

are based on triceps, biceps, scapular and iliacal skinfolds (19). We

chose to investigate FMI and FFMI rather than %BF as the use of

this measure has recently been criticized to incorrectly reflect body-

size-adjusted adiposity (20).

Nutritional assessment
Food consumption in the DONALD Study is assessed annually using

3-day weighed dietary records. All foods and beverages consumed

are weighed and recorded, as well as leftovers, to the nearest 1 g

over three days using electronic food scales (initially Soehnle Digita

8000; Leifheit SG, Nassau; Germany; now WEDO digi 2000;

Werner Dorsch GmbH, Muenster/Dieburg, Germany). For this analy-

sis, dietary variables were calculated as individual means of the

3-day weighed dietary records using LEBTAB, the in-house data-

base, which is continuously updated to include all recorded food

items. LEBTAB is based on the German standard food tables (21)

and data obtained from commercial food products. Individual aver-

age intakes were calculated from at least two records during

puberty. In a validation study conducted with data from DONALD

participants, the correlation coefficient between protein intake as

determined by 3-day weighed records and as determined by 24-h-

urinary excretion was 0.59 among 11-13 year olds (22). In order to

create the food groups “dairy protein” and “meat protein”, foods

were broken down into their components as appropriate (e.g. a pizza

was broken down into dairy products, meat products, cereal prod-

ucts, and other product groups).

Early life and socioeconomic characteristics
On their child’s admission to the study, parents are interviewed by

the study paediatrician, and weighed and measured by the study

nurses using the same equipment as for children from two years

onward. Information on the child’s birth characteristics is abstracted

from the ‘Mutterpass’, a standardized document given to all preg-

nant women in Germany. The duration of full breastfeeding (no

solid foods or liquids other than breast milk, tea or water) is

inquired by dieticians at the first visits. For this analysis, the follow-

ing early life and socioeconomic characteristics were considered as

potentially confounding factors: breastfeeding status (fully breastfed

(yes/no), defined as fully breastfed > two weeks), birth weight (two

variables were tested: < 3000 g vs. � 3000 g and < 3500 g vs. �
3500 g (an approximate median split)) maternal overweight status

(BMI � 25 kg/m2) and high maternal educational status (� 12 years

of schooling).

Statistical analysis
Participant characteristics are presented by gender and energy-

adjusted tertiles of animal protein intake at puberty. Tests for differ-

ences across tertiles were performed using Kruskal-Wallis tests for

continuous variables and v2-tests for categorical variables. The asso-

ciation between diet during puberty and body composition in young

adulthood was analyzed by multiple linear regression models. As

FMI and FFMI in puberty and young adulthood were not normally

distributed, they were log-transformed (FMI) or 1/x-transformed

(FFMI). To account for the major gender-specific differences in the

development of body composition (11), all analyses were stratified

by sex. Age at the measurement in young adulthood and the respec-

tive baseline anthropometric variable (FMI, FFMI) were included in

basic models (Model A). Early life and socioeconomic factors were

considered separately and included if they modified the respective

association substantially (that is, if their inclusion caused a change

Obesity Protein Intake and Body Composition Assmann et al.

2 Obesity | VOLUME 00 | NUMBER 00 | MONTH 2013 www.obesityjournal.org

APPENDIX 3

137



in the regression coefficient for protein intake of > 10% (23)). In a

further step, we additionally adjusted for nutritional factors using the

same criterion (model B). Here, we merely considered total energy

intake and nutritional factors which do not provide energy (dietary

glycemic index, dietary fiber, calcium), so as to avoid presenting

estimates that partially reflect the substitution of protein for other

macronutrients. Instead, we ran additional models that explicitly

assess the effect of a substitution of animal/plant protein for carbo-

hydrates or for fats. To simulate substitution effects, total energy

and the energy-bearing nutrients to be held constant (fats and plant/

animal protein or carbohydrates and plant/animal protein, respec-

tively) were included in the models (24). We only present substitu-

tion models for associations identified as significant in fully adjusted

analyses (model B).

In order to understand more specifically how protein intake was

related to fat-free mass—independently of current fat mass—and

vice versa, we ran additional analyses in which we adjusted adult

FFMI levels for adult FMI levels and adult FMI levels for adult

FFMI levels.

All dietary variables were energy-adjusted using the residual method

(24). To account for age-dependent changes in intake levels, all vari-

ables were standardized by age group and sex. In addition to multi-

ple linear regression analyses, which were used to obtain informa-

tion on linear trends (pfor trend), we conducted analyses of

covariance. Here, protein intake was included as a categorical vari-

able (in the form of energy-adjusted tertiles) to obtain adjusted

means (least-squares means) of FMI and FFMI in young adulthood

by tertiles of protein intake. A P-value < 0.05 was considered statis-

tically significant. All analyses were carried out using SAS proce-

dures (version 9.1.3, SAS Institute, Cary, NC, USA).

Results
In Table 1, early-life and familial characteristics and anthropometric

data of the 140 female and the 122 male participants are presented

by energy-adjusted tertiles of animal protein intake during puberty.

Male participants in the highest tertile had a higher FFMI at base-

line, but did not differ in their adult anthropometry. Females in the

highest tertile had higher pubertal levels of BMI as well as higher

adult levels of BMI, FMI, and FFMI and were the most likely to be

overweight in young adulthood. Moreover, they were least likely to

have a mother with a high educational status.

Nutritional data at baseline by tertiles of animal protein intake are

presented in Table 2. As expected, intakes of protein and calcium

differed notably between tertiles in both genders. Similarly, carbohy-

drate nutrition was associated with animal protein, except for fiber

intake levels. Of note, higher animal protein intakes were related to

higher total fat and saturated fat intakes in females only.

Pubertal protein intake and adult body
composition
Among females, neither intake of animal protein nor intake of plant

protein during puberty was related to FMI in young adulthood in

our main multivariable analyses (Table 3. However, a higher intake

of animal protein during puberty was associated with a higher FFMI

in young adulthood (Table 4, pfor trend 5 0.001). Substitution mod-

els revealed that consuming more energy from animal protein while

consuming less energy from carbohydrates was significantly related

to a higher FFMI among females (pfor trend 5 0.01; adjustment for

age, baseline FFMI, breastfeeding, maternal education status, cal-

cium, fats, plant protein, and energy; data not shown). Concerning a

substitution of animal protein for fats, we observed only a trend

(pfor trend 5 0.08; adjustment for age, baseline FFMI, breastfeeding,

maternal education status, glycemic index, calcium, carbohydrates

and plant protein; data not shown). In males, animal or plant protein

intake during puberty was neither related to FMI nor to FFMI

(Table 3. Further adjustment for a variable describing the presence/

absence of smokers in the family household (yes/ no) did not change

our main results (within the subset of participants for which the

variable was available, (n 5 242)).

To acquire additional information on the relevant protein source

driving the association between animal protein intake and FFMI in

females, we investigated two major sources of animal protein: meat

and dairy foods. A higher intake of protein from meat during

puberty was related to a higher FFMI in young adulthood (adjusted

means of FFMI within tertiles of meat protein intake: 15.4 (15.1-

15.7), 15.5 (15.2-15.8), 16.0 (15.7-16.4) kg/m2; pfor trend 5 0.002).

There was no significant relation of dairy protein intake during

puberty and FFMI in young adulthood (adjusted means of FFMI

within tertiles of milk protein intake: 15.7 (15.4-16.0), 15.6 (15.3-

16.0), 15.5 (15.2-15.8) kg/m2; pfor trend 5 0.17).

Pubertal protein intake and FMI at fixed levels of
FFMI and vice versa
Additional analyses in which we adjusted FMI for current FFMI and

vice versa (Table 4 yielded similar results for the association

between animal protein and FMI or FFMI among females. In men,

on the other hand, a higher consumption of animal protein during

puberty was now significantly related to a lower FMI (pfor trend 5
0.001) and to a slightly higher FFMI in young adulthood (pfor trend

50.04). Plant protein remained unrelated to adult body composition

among both sexes.

Protein intake during earlier phases of life and
body composition in young adulthood
We observed no associations between protein intake during early

childhood and body composition in young adulthood (all pfor trend -

values � 0.3). By contrast, dietary animal protein during the period

of adiposity rebound tended to be related to FFMI in young adult-

hood among males (adjusted means of FFMI within tertiles of

animal protein intake: 18.8 (18.1-19.5), 19.7 (19.0-20.4), 19.7 (19.0-

20.5) kg/m2; pfor trend 5 0.05), but not in females [adjusted means:

15.5 (14.9-16.1), 16.1 (15.6-16.6), 16.2 (15.6-16.8) kg/m2; pfor trend

5 0.13]. Animal or plant protein in the period of adiposity rebound

was not related to adult FMI.

Discussion
Our data suggest a link between a higher pubertal animal protein

consumption and a higher adult FFM, primarily among women. In

terms of the driving force of this association, a substitution of ani-

mal protein for carbohydrates seemed to be slightly more relevant
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TABLE 1 Demographic, anthropometric, birth, and socioeconomic characteristics by energy-adjusted tertiles of animal protein intake during puberty

Total n

Males (n 5 122) Females (n 5 140)

Tertile 1

(n 5 40)

Tertile 2

(n 5 40)

Tertile 3

(n 5 41) Pa

Tertile 1

(n 5 46)

Tertile 2

(n 5 47)

Tertile 3

(n 5 47) Pa

Young adulthood characteristicsb

Age (years) 262 18.2 (18.0, 22.1) 22.0 (18.1, 22.7) 21.2 (18.0, 22.1) 0.2 19.1 (18.3, 22.4) 19.0 (18.1, 21.9) 19.0 (19.0, 22.5) 0.5

Overweight, n (%)c 262 13 (32.5) 15 (36.6) 9 (22.0) 0.3 5 (10.9) 2 (4.3) 10 (21.3) 0.04

BMI (kg/m2) 262 23.1 (20.4, 25.4) 23.4 (20.7, 26.1) 23.2 (21.1, 25.0) 0.8 21.5 (19.4, 22.9) 20.7 (19.7, 23.4) 22.4 (21.4, 24.8) 0.001

FMI (kg/m2) 262 4.1 (2.7, 5.5) 4.0 (2.9, 5.6) 3.9 (3.0, 4.8) 0.7 6.2 (5.0, 7.3) 6.0 (4.8, 7.2) 6.7 (6.1, 7.8) 0.02

FFMI (kg/m2) 262 18.7 (17.3, 19.8) 19.4 (18.3, 20.2) 19.2 (18.3, 20.3) 0.18 15.3 (14.2, 16.1) 15.1 (14.4, 16.2) 15.9 (15.3, 17.3) 0.001

Pubertal characteristicsd

Age (years) 262 10.0 (10.0, 10.0) 10.0 (10.0, 10.1) 10.0 (10.0, 10.1) 0.4 9.0 (9.0, 9.1) 9.0 (9.0, 9.1) 9.0 (9.0, 9.1) 0.4

BMI (kg/m2) 262 16.2 (16.3, 18.3) 17.4 (15.9, 18.2) 17.7 (16.2, 18.8) 0.12 16.0 (15.1, 17.1) 16.3 (14.9, 17.4) 17.3 (15.6, 19.0) 0.049

FMI (kg/m2) 262 2.1 (1.6, 3.7) 2.6 (1.8, 3.4) 2.5 (1.9, 3.5) 0.3 2.7 (2.3, 3.3) 2.7 (2.1, 3.6) 3.0 (2.3, 4.4) 0.3

FFMI (kg/m2) 262 13.9 (13.4, 14.6) 14.5 (13.5, 15.1) 15.0 (13.9, 15.7) 0.02 13.3 (12.6, 14.0) 13.4 (12.8, 13.8) 13.8 (13.0, 14.6) 0.06

Early life characteristics
Birth weight � 3500g, n (%) 262 26 (65.0) 23 (56.1) 18 (43.9) 0.16 22 (47.8) 17 (36.2) 17 (36.2) 0.4

Fully breastfed > 2 weeks, n (%) 262 30 (75.0) 25 (61.0) 32 (78.1) 0.19 32 (69.6) 37 (78.7) 29 (61.7) 0.2

Family characteristics
Maternal overweight, n (%)c 262 9 (22.5) 14 (34.2) 14 (34.2) 0.4 15 (32.6) 13 (27.7) 19 (40.4) 0.4

Smoking in the household, n (%) 242 8 (21.6) 18 (48.7) 11 (28.2) 0.04 14 (33.3) 18 (41.9) 13 (29.6) 0.5

Mother � 12 y schooling, n (%) 262 23 (57.5) 10 (24.4) 23 (56.1) 0.003 22 (47.8) 25 (53.2) 12 (25.5) 0.02

DONALD Study, Germany
Abbreviations: BMI, body mass index; FMI, fat mass index; FFMI, fat-free mass index.
Values are medians (25th percentile, 75th percentile) for continuous variables and n (%) for categorical variables.
aDifferences between the tertiles were tested using a Kruskal-Wallis test for continuous variables and v2-test for categorical variables. P-values � 0.2 with one decimal.
b18�25 years; one measurement available per participant.
cBMI � 25 kg/m2.
dGirls 9�14 years, boys 10�15 years; we used the first measurement available.
FMI and FFMI were derived on the basis of skinfold thicknesses. Height, weight, and skinfold measurements were conducted by trained nurses.
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TABLE 2 Nutritional data by energy-adjusted tertiles of animal protein intake during puberty

Total n

Males (n 5 122) Females (n 5 140)

Tertile 1

(n 5 40)

Tertile 2

(n 5 40)

Tertile 3

(n 5 41) Pa

Tertile 1

(n 5 46)

Tertile 2

(n 5 47)

Tertile 3

(n 5 47) Pa

Total energy (kcal) 262 2139 (1838, 2396) 2086 (1945, 2343) 2039 (1920, 2304) 0.9 1738 (1565, 1887) 1703 (1568, 1890) 1711 (1584, 1902) 0.95

Fat (% of energy) 262 35.7 (32.5, 38.0) 36.2 (33.9, 38.4) 35.9 (33.2, 38.1) 0.6 34.7 (32.1, 37.0) 35.4 (33.1, 37.1) 37.6 (35.7, 39.9) 0.0005

Saturated fatty acids (% of energy) 262 15.0 (13.1, 16.7) 15.9 (14.9, 16.8) 15.5 (14.2, 17.0) <.0001 15.6 (13.9, 16.6) 15.4 (14.2, 16.3) 16.4 (15.3, 17.8) 0.01

Protein (% of energy) 262 12.0 (11.3, 12.6) 13.3 (12.7, 13.7) 14.6 (14.0, 15.4) <.0001 11.2 (10.9, 11.8) 12.8 (12.2, 13.4) 14.4 (13.4, 15.2) <.0001

Animal protein (% of energy) 262 7.0 (6.6, 7.5) 8.4 (8.1, 8.8) 10.0 (9.5, 10.6) <.0001 6.4 (5.9, 6.6) 7.9 (7.7, 8.2) 9.6 (9.0, 10.4) <.0001

Meat protein (% of energy) 262 2.6 (2.0, 3.3) 3.3 (2.8, 3.9) 4.3 (3.1, 5.5) <.0001 2.0 (1.3, 2.5) 3.0 (2.3, 4.0) 4.2 (3.0, 4.9) <.0001

Dairy protein (% of energy) 262 3.4 (2.5, 4.3) 4.2 (3.7, 4.7) 4.8 (3.8, 5.8) 0.0001 3.4 (3.0, 3.9) 3.8 (3.1, 4.5) 4.6 (3.6, 5.3) <.0001

Vegetable protein (% of energy) 262 5.1 (4.6, 5.5) 4.8 (4.2, 5.2) 4.6 (4.1, 4.9) 0.009 5.0 (4.5, 5.5) 4.8 (4.2, 5.3) 4.6 (4.2, 5.1) 0.03

Carbohydrate (% of energy) 262 53.3 (50.0, 55.5) 50.0 (48.7, 52.9) 49.2 (47.5, 52.7) 0.001 53.6 (51.9, 56.3) 52.2 (49.7, 53.6) 48.5 (45.4, 50.0) <.0001

Added sugar (% of energy) 262 14.9 (12.7, 19.9) 14.4 (11.9, 17.6) 12.3 (10.2, 15.3) 0.03 15.6 (12.4, 19.6) 14.7 (11.2, 18.7) 11.8 (10.0, 16.2) 0.007

Dietary GI 262 57.0 (55.3, 58.6) 56.5 (55.0, 57.7) 55.0 (52.3, 56.9) 0.001 56.1 (55.4, 57.6) 56.3 (54.3, 57.9) 55.3 (53.8, 56.4) 0.01

Dietary GL (g/ 1000 kcal 262 74.8 (72.1, 77.7) 72.0 (67.7, 74.8) 67.8 (65.1, 71.9) <.0001 75.3 (72.0, 79.9) 73.9 (67.1, 77.1) 66.5 (63.2, 70.9) <.0001

Dietary fiber (g/ 1000 kcal) 262 10.6 (9.1, 11.9) 9.7 (8.6, 11.0) 9.6 (8.1, 10.5) 0.007 10.9 (9.7, 12.1) 10.2 (9.0, 12.3) 10.1 (9.0, 11.6) 0.15

Calcium (mg/ 1000 kcal) 262 420 (348, 488) 487 (429, 524) 526 (420, 591) 0.0009 415 (377, 466) 472 (380, 521) 501 (428, 575) <.0001

DONALD Study, Germany
Abbreviations: GI, glycemic index; GL, glycemic load. Values are medians (25th percentile, 75th percentile).
aDifferences between the tertiles were tested using a Kruskal-Wallis test for continuous variables and v2-test for categorical variables. P-values � 0.2 with one decimal.
Intakes of meat protein and milk protein do not add up to total animal protein consumption as fish- and egg protein are missing.
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than a substitution for fats. Moreover, it seemed to be protein from

meat sources that was responsible for the results observed concerning

animal protein in women. However, as the variation of dairy protein

intake in our female study sample was substantially smaller than that

of meat protein intake, the interpretability of this finding is limited.

Young adult FMI levels were not related to pubertal plant or animal

protein consumption in females. However, the difference in mean

FMI between the extreme tertiles of animal protein intake was

essentially the same as for FFMI (both 0.9 kg/m2; see Table 5). The
width of the confidence intervals, on the other hand, was much

TABLE 3 Relation of dietary protein intake during puberty to fat mass index and fat-free mass index in young adulthood

Fat mass index, FMI (kg/m2) Fat-free mass index, FFMI (kg/m2)

Tertile 1 Tertile 2 Tertile 3 pfor trend Tertile 1 Tertile 2 Tertile 3 p for trend

Animal protein
Females (n 5 140) 6.4%a 7.9% 9.6% 6.4% 7.9% 9.6%

Model A 6.2 (5.8�6.7) 6.1 (5.7�6.5) 6.9 (6.4�7.4) 0.4 15.3 (15.0�15.6) 15.3 (15.0�15.6) 15.9 (15.6�16.2) 0.02

Model B 6.3 (5.9�6.9) 6.4 (5.9�6.9) 7.2 (6.6�7.8) 0.5 15.3 (15.0�15.5) 15.4 (15.1�15.7) 16.2 (15.9�16.6) 0.001

Males (n 5 120) 7.0% 8.4% 10.0% 7.0% 8.4% 10.0%

Model A 4.2 (3.7�4.7) 3.7 (3.3�4.2) 3.6 (3.2�4.1) 0.4 18.9 (18.5�19.3) 19.1 (18.7�19.5) 18.9 (18.5�19.3) 0.2

Model B 4.3 (3.7�5.0) 3.7 (3.2�4.2) 3.6 (3.1�4.1) 0.14 18.9 (18.4�19.3) 19.0 (18.6�19.4) 18.9 (18.5�19.4) 0.3

Plant protein
Females (n 5 140) 4.1% 4.8% 5.5% 4.1% 4.8% 5.5%

Model A 6.3 (5.8�6.7) 6.5 (6.0�6.9) 6.4 (6.0�6.9) 0.4 15.6 (15.3�15.9) 15.7 (15.4�16.0) 15.2 (14.9�15.5) 0.13

Model B 6.4 (6.0�6.9) 6.8 (6.3�7.3) 6.7 (6.2�7.2) 0.3 15.7 (15.3�16.0) 15.8 (15.5�16.1) 15.4 (15.1�15.7) 0.3

Males (n 5 122) 4.1% 4.8% 5.5% 4.1% 4.8% 5.5%

Model A 3.9 (3.4�4.5) 3.8 (3.4�4.4) 3.7 (3.2�4.2) 0.99 19.0 (18.6�19.4) 19.0 (18.6�19.4) 18.9 (18.5�19.3) 0.9

Model B 3.8 (3.3�4.3) 4.1 (3.6�4.7) 3.6 (3.1�4.1) 0.7 18.8 (18.4�19.2) 19.2 (18.7�19.6) 18.8 (18.4�19.2) 0.97

DONALD Study, Germany
Values are least squares means and 95% confidence intervals.
Tertiles: energy-adjusted tertiles of animal protein intake during puberty (baseline).
p for trend: p for linear trend, calculated in multiple linear regression analyses.
Model A: adjusted for the respective baseline value (FMI in FMI-models and FFMI in FFMI-models) and age in young adulthood.
Model B: Model A 1 adjustment for early life factors (breast feeding), socioeconomic factors (maternal education status) and nutritional factors (dietary glycemic index,
intakes of calcium and energy). Models for FMI were further adjusted for birth weight and maternal overweight, as well as for dietary fiber—except when considering plant
protein in order to avoid multicollinearity.
aMedian intake levels of animal protein, as % of energy.

TABLE 4 Relation of pubertal protein intake to young adult levels of FMI at fixed levels of FFMI, and vice versa

Fat mass index, FMI (kg/m2) Fat-free mass index, FFMI (kg/m2)

Tertile 1 Tertile 2 Tertile 3 pfor trend Tertile 1 Tertile 2 Tertile 3 pfor trend

Animal protein
Females (n 5 140) 6.4%a 7.9% 9.6% 6.4% 7.9% 9.6%

6.5 (6.1�7.0) 6.5 (6.0�6.9) 6.7 (6.2�7.2) 0.3 15.3 (15.0�15.5) 15.4 (15.2�15.7) 16.0 (15.7�16.3) 0.001

Males (n 5 120) 7.0% 8.4% 10.0% 7.0% 8.4% 10.0%

4.5 (4.0�5.1) 3.6 (3.2�4.1) 3.4 (3.0�3.8) 0.001 18.7 (18.3�19.0) 19.0 (18.7�19.4) 19.0 (18.7�19.4) 0.04

Plant protein
Females (n 5 140) 4.1% 4.8% 5.5% 4.1% 4.8% 5.5%

6.5 (6.1�7.0) 6.5 (6.0�6.9) 6.6 (6.2�7.1) 0.2 15.6 (15.3�15.9) 15.8 (15.5�16.0) 15.3 (15.1�15.6) 0.09

Males (n 5 122) 4.1% 4.8% 5.5% 4.1% 4.8% 5.5%

3.8 (3.4�4.3) 4.0 (3.5�4.5) 3.6 (3.2�4.1) 0.9 18.9 (18.5�19.2) 19.0 (18.6�19.4) 18.9 (18.5�19.2) 0.7

DONALD Study, Germany
Values are least squares means and 95% confidence intervals.
Tertiles: energy-adjusted tertiles of animal protein intake during puberty (baseline).
p for trend: p for linear trend, calculated in multiple linear regression analyses.
FMI-models: adjusted for FFMI in young adulthood, baseline- fat mass index, age in young adulthood, breast feeding, birth weight, maternal overweight, maternal educa-
tion status, glycemic index, intakes of fiber, calcium and energy. When considering plant protein, there was no adjustment for fiber in order to avoid multicollinearity.
FFMI-models: adjusted for FMI in young adulthood, baseline- fat-free mass index, age in young adulthood, breast feeding, maternal education status, glycemic index,
intakes of calcium and energy.
aMedian intake levels of animal protein, as % of energy.
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bigger for FMI than for FFMI. Thus, insufficient statistical power

resulting from the relatively high variance of FMI (34) and from our

relatively small sample sizes must be considered as one cause for

the absence of significant results concerning FMI.

In men, we only observed relations between animal protein intake

and adult FFMI or FMI when holding levels of the respective com-

plementary component of body composition (adult FMI, FFMI) con-

stant. The emergence of significant associations after vice versa

adjustment is probably because of the opposing associations (i.e. the

fact that higher pubertal animal protein intakes tended to be related

to lower adult FMI and higher adult FFMI levels) as well as the

marked correlation of adult FMI and FFMI levels (r 5 0.61 among

males and r 5 0.55 in females). The public health relevance of these

findings is not straightforward, as holding one part of body mass

constant makes it difficult to consider body composition as the

entity that it is in reality. However, the results are of interest from a

mechanistic point of view. In men, the difference in FMI between

low and high pubertal animal protein consumption (absolute differ-

ence between the first and the third tertile, Table 4: 1.1 kg/ m2) was

notably larger than the respective difference in FFMI (absolute dif-

ference, Table 4: 0.3 kg/ m2), indicating that among males variations

in pubertal animal consumption may primarily affect adult fat mass.

Of note, this contrasts to our findings for females, in whom a higher

pubertal animal consumption appeared to primarily affect adult fat-

free mass. It is imaginable that, in boys, hormonal influences on the

construction of muscle mass are much more important than varia-

tions in protein consumption within the range of usual intakes.

We conducted additional analyses that revealed that besides puberty,

the period of adiposity rebound, but not early childhood, may be rel-

evant for the long-term development of body composition: Among

males, we observed a positive relation between animal protein intake

during the period of adiposity rebound and FFMI in young adult-

hood with borderline significance (p 5 0.05). However, our analyses

conducted for the early life and the adiposity rebound period are

limited by small sample sizes and must hence be interpreted with

caution.

One physiological mechanism by which higher intakes of animal

protein could increase FFMI is an anabolic effect of essential amino

acids (EAA) on muscle mass, which has been observed in small

experimental studies among younger and older adults (25). A sug-

gested biochemical pathway for the stimulation of muscle protein

synthesis by the EAA leucine is the activation of the protein kinase

mammalian target of rapamycin (mTOR) and its downstream effec-

tors eukaryotic initiation factor 4E (EIF4E) and ribosomal S-6

kinase (S6K1) (26). Given the generally lower EAA content of plant

protein compared to animal protein (27), our finding that plant pro-

tein intake was not associated with FFMI, neither in males nor in

females, is quite plausible. Still, in order to verify that such a rela-

tion was not only masked because of a weak inverse correlation of

plant protein and animal protein consumption in our sample (r 5
0.27), we ran additional analyses in which we adjusted models

examining plant protein intake for animal protein (data not shown).

However, such an adjustment did not notably change our results.

RCTs conducted among a pubertal or young adult population pro-

vide evidence for a role of animal protein from different sources as

stimulants of fat-free mass increase: An RCT with 6-14 year old

Kenyan children showed an effect of a meat supplementation on

mid-upper-arm muscle area, but not mid-upper-arm fat area (28). In

an RCT with 98 eight to ten year old Chilean girls, replacement of

sugar-sweetened beverages for milk for 16 weeks yielded an addi-

tional gain in fat-free mass, but not fat mass, in comparison with the

control group (29). In three other intervention studies with pubertal

or young adult subjects, a supplementation with milk products had

no significant effect on body composition (30-32); however, these

studies were not specifically designed to investigate changes in body

composition and had smaller sample sizes. Hence, our main finding

of a prospective relation between animal protein during puberty and

FFMI in young adulthood among women is generally consistent

with evidence from RCTs.

The findings from other epidemiologic studies with pubertal or young

adult study populations concerning a link between protein intake and

fat mass are mixed. In a Danish cohort study with 350 participants,

higher protein intakes in puberty were related to a higher percentage

body fat in young adulthood among women (35), and in an American

cohort study with 2909 participants, higher protein intakes in young

adulthood were prospectively related to a slightly higher waist-to-hip-

ratio among white participants (7). On the other hand, in a Dutch epi-

demiologic study with 364 subjects, higher intakes of protein were

prospectively associated with a lower FMI among leaner girls, and

with a higher FFMI among girls in the 5th BMI-quintile (36).

In terms of public health relevance, our study does not suggest a

strong unfavorable effect of relatively high animal protein intake levels

on body composition. Even under the assumption that a larger sample

size would render the results for FMI seen in women significant, the

effect sizes seen in this study do not imply a disproportionally higher

increase in FMI than in FFMI. On the other hand, even in the highest

energy-adjusted tertile of animal protein intake, protein accounted for

less than 15% of energy intake (see Table 2. Still higher intake levels

could affect body composition in a different manner.

Limitations of our study include, first of all, its observational design.

We cannot exclude that our results might be biased by residual con-

founding. Additionally, as observational studies need energy-

adjustment to limit the impact of confounding and underreporting,

potential satiety-mediated effects of protein (38) can be shown less

well than in intervention studies under ad-libitum conditions.

Second, we determined FMI and FFMI on the basis of skinfold

thickness measurements, which have a higher susceptibility to mea-

surement error than specialized research methods such as hydroden-

sitometry, magnetic resonance imaging, and BodPod. Yet, the skin-

fold equations of Durnin and Womersley (19) agree, on average,

very well with the results from hydrodensitometry (39). In addition,

measurements were performed by trained and quality-monitored per-

sonnel, which has been shown to notably reduce intra- and interob-

server variability (40). It would have been interesting to specifically

consider abdominal fat mass as a body fat distribution characterized

by high intra-abdominal fat is known to be particularly detrimental.

However, in our sample, there was not enough data available to con-

duct such analyses. Third, DONALD participants are characterized

by a relatively high socio-economic status (14) and only 20.6% of

the participants study sample were overweight in young adulthood.

It is possible that the relative homogeneity of our sample means that

extremes of diet and behavior are not represented. Forth, we merely

disposed a crude measure of physical activity at the age of five

years derived from parental questionnaires, available for 198
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participants of our study sample. When we repeated our analyses

with further adjustment for physical activity in this subgroup, we

obtained essentially the same results as in our main analyses. The

main strengths of our study are its prospective nature and the care-

fully collected, repeated data on growth and diet, covering the entire

time of childhood and adolescence. The availability of data on sev-

eral potential confounders, such as parental characteristics, is an

additional strength of our analysis.

Conclusion
In conclusion, our results indicate that, particularly among females,

a habitually higher consumption of animal protein during puberty

yields a higher FFMI in young adulthood. This argues against a

selective increase in fat mass as a consequence of relatively high

intake levels of animal protein.O
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Abstract

Recent studies provide evidence that insulin-like-growth-factor I (IGF-I) and its binding proteins (IGFBP) IGFBP-2 and

IGFBP-3 are related to the risk of several common cancers. It remains to be clarified whether their concentrations can be

programmed by protein intake from different sources during growth. This study addressed the hypothesis that animal

protein intakes during infancy, mid-childhood, and adolescence differ in their relevance for the growth-hormone (GH)-IGF-I

axis in young adulthood. Data from the Dortmund Nutritional and Anthropometric Longitudinally Designed Study

participants with at least 2 plausible 3-d weighed dietary records during adolescence (age: girls, 9–14 y; boys, 10–15 y;

n = 213), around the adiposity rebound (age 4–6 y; n = 179) or early life (age 0.5–2 y; n = 130), and one blood sample in

young adulthood were included in the study. Mean serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 were

compared between tertiles of habitual animal protein intake using multivariable regression analysis. Habitually higher

animal protein intakes in females during puberty were related to higher IGF-I (P-trend = 0.005) and IGFBP-3 (P-trend =

0.01) and lower IGFBP-2 (P-trend = 0.04), but not to IGFBP-1 in young adulthood. In turn, IGF-I concentrations in young

adulthood were inversely related to animal protein intakes in early life amongmales only (P-trend = 0.03), but not to animal

protein intake around adiposity rebound (P-trend > 0.5). Our data suggest that, among females, a habitually higher animal

protein intake during puberty may precipitate an upregulation of the GH-IGF-I axis, which is still discernible in young

adulthood. By contrast, amongmales, higher animal protein intakes in early life may exert a long-term programming of the

GH-IGF-I axis. J. Nutr. 143: 1147–1154, 2013.

Introduction

The growth hormone (GH)10-insulin-like-growth-factor I (IGF-
I) axis plays a central role in cell proliferation and apoptosis (1)
and has been related to different cancers (2,3). The bioavaila-
bility of IGF-I is determined by its binding proteins (IGFBP),
with IGFBP-1 and IGFBP-3 limiting its acute and longer term

bioavailability. Furthermore, IGFBP-3 and IGFBP-2 concentra-
tions are inversely associated with cellular proliferation and

apoptosis independently of IGF-I (4,5), whereas lower IGFBP-2

concentrations are also considered to reflect a lower long-term

insulin sensitivity (4).
Several recent cross-sectional studies in adults suggest that

high protein intakes, particularly animal protein, are related to

higher IGF-I (6–8) and IGFBP-3 concentrations (7) and that the

source of animal protein is an important determinant of IGF-I

levels, with most studies pointing to dairy products or milk

(6,7,9) and others to meat (8,10).
The IGF system has a central role in the regulation of fetal

and childhood growth and metabolism (11). Hence, it is plau-

sible to assume that protein intake in childhood in particular

may be related to the GH-IGF-I axis. Indeed, a number of inter-

vention studies in children showed a relation between higher
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Kanker Onderzoek Fonds (grant no.2010/248).
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milk intake and higher IGF-I (12–14) and IGFBP-3 (13) concen-
trations. However, not all studies confirmed the association with
IGF-I concentrations (14,15). Only 2 prospective studies have
addressed the long-term relevance of (animal) protein intake
during growth and/or its sources in relation to the GH-IGF-I
axis. Ben-Shlomo et al. (16) and Martin et al. (17) found an
inverse association between milk intakes in early childhood and
IGF-I concentrations in young adulthood (16) and older age
(17). The authors proposed that this inverse relation reflects an
early programming of the GH-IGF-I axis in response to higher
(animal) protein intakes in early life. Hence, early pituitary
resetting in response to higher ambient IGF-I concentrations
may occur, which would ultimately result in an inverse associ-
ation between animal protein in early life and IGF-I concen-
trations in young adulthood. However, prospective evidence
covering different, potentially critical, developmental periods is
lacking to unravel whether such an inverse association between
animal protein intake and the GH-IGF-I axis is confined to
early life.

The main hypothesis of this study is that consumption of
animal protein and its components (i.e., meat and dairy protein)
during puberty, a period when the GH-IGF-I axis undergoes
major changes, is of prospective relevance for IGF-I and its
binding proteins in young adulthood. Because a reversal in the
long-term relation between animal protein and the GH-IGF-I axis
has been proposed, an additional aim was to examine whether
animal protein intakes in early life or around the adiposity re-
bound are inversely related to IGF-I concentrations in young
adulthood.

Methods

Study population. The Dortmund Nutritional and Anthropometric
Longitudinally Designed (DONALD) Study is an ongoing, open cohort

study conducted at the Research Institute of Child Nutrition in Dortmund,

Germany. Details on this study were previously described (18). In brief,

since recruitment began in 1985, detailed data on diet, growth, develop-
ment, and metabolism from infancy to adulthood have been collected

from >1300 healthy children. Every year, a mean of 40 infants are newly

recruited and first examined at the age of 3 mo. Each child returns for 3

more visits in the first year, 2 in the second, and then once annually until
adulthood. Since 2005, participants $18 y of age are invited for sub-

sequent examinations with fasting blood withdrawal. The study was

approved by the Ethics Committee of the University of Bonn and all
examinations are performed with parental and adult participants� consent.

Because of the open cohort design, many participants have not yet

reached young adulthood. Among those who did, age varied from 18 to

36 y. For 308 participants who were term (36–43 wk gestation) single-
tons with a birth weight $2500 g, one measurement of IGF-I and

IGFBP-3 was available. Of these, 222 participants had provided at least

2 plausible 3-d weighed dietary records during adolescence (age: girls,

9–14 y; boys, 10–15 y), describing habitual dietary intake during puberty.
Participants who had consistently underreported energy intake during

puberty (i.e., all food records were implausible or they had provided more

implausible than plausible food records) were excluded from the analysis
(n = 18). A 3-d weighed dietary record was considered plausible when the

total recorded energy intake was adequate in relation to the estimated

BMR using modified age-dependent cutoffs from Goldberg et al. (19). For

boys and girls aged 14 y and older, a ratio between reported energy intake
and basal metabolic rate <1.07 and 0.97, respectively, was considered

implausible. For boys and girls younger than 14 y, the cutoffs were 1.04

and 1.01, respectively (20). Furthermore, participants had to have

anthropometric data available at the beginning of puberty and young
adulthood and information on relevant covariates such as early life and

socioeconomic factors. This resulted in final samples of 213 (55.4%

females). Overall analyses are based on 1131 records (i.e., 2–6 records/

participant; mean = 5).

Among participants with a blood sample available in young adult-

hood, 130 and 179 had provided a minimum of 2 plausible, 3-d weighed

dietary records during early life (age 0.5–2 y) and around adiposity
rebound (age 4–6 y), respectively. IGFBP-1 and IGFBP-2 measurements

were missing for a few individuals, resulting in slightly lower sample

sizes for these outcomes (see tables).

Clinical measurements and calculations. Venous blood samples were

drawn after an overnight fast. Blood samples were frozen at 280�C and

then shipped to the Laboratory for Translational Hormone Analytics in

Pediatric Endocrinology at the University of Giessen. Serum samples
were analyzed for IGF-I and IGFBP-3 using an RIA according to Blum

et al. (21) and for IGFBP-2 and IGFBP-1 with an ELISA (Mediagnost,

Germany, lot 061010 and lot 050910), respectively.

Anthropometric measurements and calculations. Participants are

measured at each visit according to standard procedures with the par-

ticipants dressed in underwear only and barefoot. From the age of 2 y

onward, standing height is measured to the nearest 0.1 cm using a digital
stadiometer (Harpenden). Body weight is measured to the nearest 100 g

using an electronic scale (Seca 753E; Seca Weighing and Measuring

Systems). Skinfold thicknesses are measured from the age of 6 mo on-

ward at 4 different sites (supra-iliacal, subscapular, biceps, and triceps)
on the right side of the body to the nearest 0.1 mm using a Holtain

caliper (Holtain). The 3 trained nurses who perform the measurements

undergo an annual quality control conducted in 6–8 healthy young adult
volunteers.

Sex- and age-independent SD scores were calculated for BMI (kg/m2)

at baseline using the German reference curves for BMI (22). Percentage

body fat was derived using equations of Slaughter et al. (23) for pubes-
cent children, which includes triceps and subscapular skinfolds. From

this, fat mass index and fat-free mass index (FFMI) were calculated as

weight3 percentage body fat/height2 and [weight2weight3 percentage

body fat]/height2, respectively.

Nutritional assessment. Food consumption in the DONALD Study is

assessed annually using 3-d weighed dietary records. All foods and

beverages as well as leftovers consumed are weighed and recorded to the
nearest 1 g for 3 d using electronic food scales (initially Soehnle Digita

8000, Leifheit; now WEDO digi 2000, Werner Dorsch). For this ana-

lysis, dietary variables were calculated as individual means of the 3-d
weighed dietary records using LEBTAB (18), the in-house database that

is continuously updated to include all recorded food items. LEBTAB is

based on the German standard food tables (24) and data obtained from

commercial food products (25). With regard to breastfeeding, test
weighing is performed (i.e., weighing the infant before and after each

meal) to the nearest 10 g with the use of an infant-weighing scale

(Soehnle multina 8300) (25). In this analysis, 5% was added to the test

weighing results to account for insensible water losses (26).
To examine food groups providing animal protein in more detail, all

recorded foods were assigned to the respective food groups, i.e., meat

products, dairy products, and miscellaneous. Animal protein did not
include protein from human milk.

Statistical analysis. All statistical analyses were carried out using SAS

procedures (version 9.1.3, SAS Institute). P < 0.05 was considered
significant.

Baseline characteristics are presented in sex-specific and energy-

adjusted tertiles of dietary animal protein intake (T1-–T3). Tests for

differences were performed across the tertiles of dietary animal protein
intake using ANOVA for normally distributed continuous variables,

Kruskal-Wallis test for non-normally distributed continuous variables,

chi-square test for categorical variables, and Fisher�s exact test for
categorical variables if 50% of cells had expected counts less than

frequencies <5.

Multiple linear regression analysis was used to analyze the potential

relation of dietary animal intake during puberty to concentrations of
IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in young adulthood. Because the

outcome variables were not normally distributed, IGF-I and IGFBP-2

were transformed prior to analysis using the square root, and IGFBP-1 and

1148 Joslowski et al.
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IGFBP-3 were log-transformed to obtain normal distribution. Back-

transformed data are presented for ease of interpretation. All dietary
variables were energy adjusted using the residual method (27). To account

for age-dependent changes in intake, all variables were standardized by age

group and sex (mean = 0, SD = 1).

For this analysis, the following covariates were considered as poten-
tially confounding factors: birth weight and length appropriate for ges-

tational [yes/no, defined as birth weight and birth length between the

10th and 90th percentiles of the German sex-specific birth weight and
height-for-gestational age curves (28)], full breastfeeding for >2 wk (yes/

no), maternal or paternal overweight status (BMI $25 kg/m2, yes /no),

high maternal or paternal educational status ($12 y of schooling, yes

/no), maternal or paternal occupation (whether parents were employed,
yes/no), smokers in the household (yes/no), and FFMI at the beginning of

puberty. The basic model considers age in young adulthood only (model

A). In the next step, each potential confounder was initially considered

separately, yet only covariates that substantially affected the associations
between animal protein intakes and parameters of the GH-IGF-axis (by

~10% or more) were included in model B. To explicitly assess the effect

of substituting animal for plant protein, we ran an additional model that
included total energy and all energy-bearing macronutrients except plant

protein (i.e., total fat, total carbohydrate, animal protein in percent energy).

The coefficient (b) obtained for animal protein then reflects the effect of

substituting animal for plant protein, because total energy, fat, and carbo-
hydrates are held constant (27). Similar models were run to address sub-

stitution of animal protein for carbohydrates or fats.

All analyses were stratified by sex based on the following consider-

ations: 1) the association between animal protein intake during puberty
and our main outcome, i.e., IGF-I concentrations, differed between

males and females (P-interaction < 0.1); 2) stratified analyses revealed

that the relevance of the investigated exposure-outcome relations con-

sistently differed between genders; and 3) both growth and IGF-I con-
centrations are known to differ between genders (29,30), supporting the

biological plausibility of stratification. A similar approach was used to

analyze the potential relation of dietary animal protein intake in early

life and around adiposity rebound to IGF-I concentrations in young
adulthood. All models conform to the assumptions of linear regression

models (linearity, normality and homoscedasticity of residuals, absence

of multicollinearity).

Results

The characteristics of participants in this study at the beginning
of puberty are presented in tertiles of dietary animal protein
intake during puberty (Table 1). Females and males in the
highest tertile of dietary animal protein intake were more likely
to have had a higher BMI-SD score and a higher FFMI at the
beginning of puberty. Males in the middle tertile of dietary
animal protein intake were least likely to have a mother with a
high educational level and most likely to live in a household with
smokers (Table 1).

By definition, higher animal protein intakes were related to
higher total protein, meat, and dairy intakes, but not to plant
protein. Higher animal protein intakes in both males and
females were also related to lower carbohydrate intakes, but not
to fiber intakes. Of note, higher intakes of animal protein were
associated with higher intakes of total fat andMUFAs in females
only (Table 2).

TABLE 1 Demographic, anthropometric, birth, and socioeconomic characteristics by energy-adjusted tertiles of animal protein during
puberty (n = 213) (DONALD Study, Germany)1

Males Females

T1 T2 T3 T1 T2 T3

Animal protein intake, g/d 38.4 (30.7, 46.4) 42.9 (36.9, 49.4) 49.8 (46.9, 57.6)* 26.2 (21.8, 31.7) 32.8 (30.9, 36.2) 41.6 (37.8, 48.7)*

All, n 31 32 32 39 40 39

Age, y 10.00 (9.97, 10.18) 10.02 (9.98, 10.09) 9.99 (9.97, 10.05) 8.99 (8.97, 9.02) 9.03 (8.98, 9.07) 8.99 (8.98, 9.07)

BMI-SDS 20.27 6 0.93 0.13 6 0.83 0.34 6 0.59* 20.27 6 0.95 20.16 6 0.88 0.28 6 0.97*

BMI, kg/m2 15.7 (15.3, 18.8) 17.7 (16.1, 18.8) 18.0 (16.8, 18.7) 15.7 (15.0, 17.2) 15.9 (15.0, 17.4) 17.6 (15.4, 19.0)*

FMI,2 kg/m2 2.0 (1.6, 3.7) 3.0 (2.0, 4.4) 2.7 (2.3, 3.2) 2.6 (2.2, 3.3) 2.7 (2.2, 3.6) 3.7 (2.3, 4.6)

FFMI,3 kg/m2 13.8 (13.3, 14.6) 14.3 (13.3, 15.2) 15.2 (14.1, 15.8)* 13.2 (12.6, 13.9) 13.3 (12.6, 14.0) 13.7 (13.0, 14.7)*

Birth weight, g 3558 6 403 3487 6 461 3549 6 470 3490 6 489 3395 6 393 3381 6 425

Birth length, cm 53 (52, 54) 52 (50, 53) 52 (50, 54) 52 (50, 53) 51 (50, 53) 51 (49, 52)

Pregnancy duration, wk 40 (39, 41) 40 (39, 40) 40 (39, 40) 40 (40, 41) 40 (40, 41) 40 (39, 40)

Birth weight and length

appropriate for gestational age,4 n (%)

25 (80.6) 23 (71.9) 27 (84.4) 29 (74.4) 35 (87.5) 29 (74.4)

Breast feeding .2 wk,5 n (%) 23 (74.2) 20 (62.5) 22 (68.8) 29 (74.4) 29 (72.5) 26 (66.7)

Maternal overweight,6 n (%) 7 (22.6) 8 (25.0) 14 (43.8) 10 (25.6) 11 (27.5) 17 (43.6)

Maternal education,7 n (%) 16 (51.6) 9 (28.1) 21 (65.6)* 21 (53.8) 22 (55.0) 12 (30.8)

Maternal employment,8 n (%) 15 (48.4) 14 (43.8) 19 (59.4) 18 (46.2) 24 (60.0) 17 (43.6)

Paternal overweight,6 n (%) 12 (52.2) 12 (48.0) 20 (74.1) 16 (50.0) 20 (55.6) 14 (45.2)

Paternal education,7 n (%) 16 (55.2) 15 (46.9) 17 (53.1) 22 (59.5) 22 (57.9) 14 (36.8)

Paternal employment,8 n (%) 28 (96.6) 30 (93.8) 29 (90.6) 35 (94.6) 38 (100) 37 (97.4)

Smokers in the household, n (%) 6 (19.4) 17 (53.1) 10 (31.3)* 14 (35.9) 17 (42.5) 9 (23.1)

1 Values are means 6 SDs or median (25th and 75th percentiles). Differences between the tertiles were tested using ANOVA for normally distributed continuous variables,

Kruskal-Wallis test for not normally distributed continuous variables, chi-square test for categorical variables, and Fisher�s exact test for categorical variables if 50% of cells had

expected counts less than frequencies ,5. *P , 0.05 for differences between tertiles. DONALD, Dortmund Nutritional and Anthropometric Longitudinally Designed; FMI, fat

mass index; FFMI, fat-free mass index; SDS, SD score; T, tertile.
2 FMI calculated as weight 3 percentage of body fat/height2.
3 FFMI calculated as [weight – weight 3 percentage of body fat)]/height2.
4 That is, birth weight and length were between the 10th and 90th percentiles of the German sex-specific birth weight-for-gestational-age curves (28).
5 Breast feeding categories: #2 wk or .2 wk of full breastfeeding.
6 Maternal and paternal BMI $25 kg/m2; paternal BMI: n = 39 missing.
7 School education for at least 12 y; paternal education: n = 7 missing.
8 Maternal and paternal employment (yes/no); paternal employment: n = 7 missing.
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Puberty. Among females, a habitually lower animal protein in-
take during puberty was associated with lower concentrations
of IGF-I and IGFBP-3, but not with IGFBP-1 (Table 3, model
A). Similar results were seen after additional adjustment for
socioeconomic factors and FFMI at the beginning of puberty
(Table 3, model B). Conversely, a higher animal protein intake
was related to lower levels of IGFBP-2 (model B). Animal pro-
tein was not related to IGF-I, IGFBP-3, IGFBP-1, or IGFBP-2 in
males.

Substitution models revealed similar associations for a substi-
tution of animal protein intake for total fat (b animal protein = 0.5137;
P-trend = 0.01) or total carbohydrate intake (b animal protein =
0.4812; P-trend = 0.03) with respect to its association with IGF-I

concentrations. Substitution of animal protein intake for plant
protein intake was related to slightly lower, albeit nonsignif-
icant increases in IGF-I concentrations (b animal protein = 0.4131;
P-trend = 0.4).

Analysis of animal protein sources revealed that intake of
dietary meat protein only was significantly associated with adult
IGF-I concentrations (Fig. 1A). No associations were found in
males for any protein source. Plant protein was not related to the
IGF-I axis among females or males (data not shown).

Additional consideration of early-life characteristics (e.g.,
birth weight, full breastfeeding) or other nutritional variables
(e.g., monounsaturated fat or plant protein intake) did not affect
the results (data not shown).

TABLE 2 Nutritional data during puberty by energy-adjusted tertiles of animal protein intake during puberty (n = 213) (DONALD Study,
Germany)1

Males Females

T1 T2 T3 T1 T2 T3

Animal protein intake, g/d 38.4 (30.7, 46.4) 42.9 (36.9, 49.4) 49.8 (46.9, 57.6)* 26.2 (21.8, 31.7) 32.8 (30.9, 36.2) 41.6 (37.8, 48.7)*

All, n 31 32 32 39 40 39

Total energy, MJ/d 9.1 (8.1, 10.5) 8.62 (7.3, 9.6) 8.8 (8.2, 9.7) 7.3 (6.4, 8.1) 7.1 (6.3, 7.6) 7.2 (6.5, 8.1)

Fat, %en 35.3 6 4.3 35.9 6 3.5 35.8 6 3.5 34.9 6 3.9 35.7 6 3.5 37.5 6 4.3*

SFA, %en 15.5 6 2.6 16.0 6 1.9 15.5 6 1.5 15.7 6 2.2 15.9 6 1.9 16.4 6 2.6

PUFA, %en 5.3 6 1.3 5.1 6 0.9 5.2 6 1.2 5.2 6 1.1 5.2 6 0.9 5.6 6 1.1

MUFA, %en 10.9 6 1.3 11.2 6 1.4 11.5 6 1.4 10.6 6 1.6 11.1 6 1.3 11.8 6 1.6*

Protein, %en 11.8 6 1.1 13.2 6 0.8 14.5 6 0.9* 11.2 6 0.9 12.8 6 0.8 14.5 6 1.2*

Animal protein, %en 7.0 6 0.9 8.3 6 0.4 9.8 6 0.9* 6.2 6 0.9 7.9 6 0.4 9.8 6 1.0*

Meat protein, %en 2.7 (2.0, 3.2) 3.1 (2.6, 3.9) 3.5 (2.7, 5.4)* 1.8 (1.2, 2.3) 3.2 (2.2, 4.1) 3.9 (2.7, 4.6)*

Dairy protein, %en 3.5 6 1.2 4.4 6 0.7 4.6 6 1.3* 3.5 6 0.9 3.7 6 1.1 4.6 6 1.4*

Plant protein, %en 4.9 6 0.8 4.8 6 0.8 4.6 6 0.7 5.0 6 0.7 4.9 6 0.7 4.7 6 0.7

Consumers of alcohol, n (%) 5 (16.1) 2 (6.3) 2 (6.3) 2 (5.1) 1 (2.5) 3 (7.7)

Carbohydrate, %en 52.9 6 4.3 50.9 6 3.6 49.7 6 3.5* 53.9 6 4.1 51.5 6 3.3 48.0 6 4.4*

Added sugar, %en 16.8 6 5.6 14.8 6 4.6 13.9 6 3.9 16.4 6 4.9 15.1 6 4.2 12.6 6 4.6*

Fiber, g/d 21.3 (17.2, 26.9) 20.1 (17.6, 22.5) 20.6 (16.3, 24.4) 17.8 (16.2, 21.2) 16.8 (15.4, 19.9) 18.4 (16.0, 19.8)

1 Values are means 6 SDs or median (25th and 75th percentiles). Differences between the tertiles were tested using ANOVA for normally distributed continuous variables,

Kruskal-Wallis test for not normally distributed continuous variables, and Fisher�s exact test for categorical variables if 50% of cells had expected counts less than frequencies

under 5. *P , 0.05 for differences between tertiles. DONALD, Dortmund Nutritional and Anthropometric Longitudinally Designed; T, tertile; %en, percent energy.

TABLE 3 Relation of dietary animal protein intake during puberty to serum IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 concentrations
in young adulthood (DONALD Study, Germany)1

Males Females

T1 T2 T3 P-trend T1 T2 T3 P-trend

Animal protein intake,2 g/d 38.4 (30.7, 46.4) 42.9 (36.9, 49.4) 49.8 (46.9, 57.6) ,0.0001 26.2 (21.8, 31.7) 32.8 (30.9, 36.2) 41.6 (37.8, 48.7) ,0.0001

IGF-I, g � L21

Model A 237 (210, 267) 266 (237, 297) 218 (192, 245) 0.7 213 (185, 244) 268 (236, 302) 241 (211, 273) 0.01

Model B 242 (212, 273) 261 (232, 293) 222 (194, 253) 0.8 204 (177, 232) 261 (231, 292) 241 (209, 275) 0.005

IGFBP-1, mg � L21

Model A 6.5 (4.4, 9.6) 4.1 (2.8, 6.0) 6.6 (4.5, 9.7) 0.7 12.6 (9.4, 17.0) 7.8 (5.9, 10.5) 9.92 (7.40, 13.30) 0.7

Model B 5.4 (3.6, 8.1) 4.4 (3.0, 6.4) 5.6 (3.7, 8.3) 0.6 12.3 (9.1, 16.7) 7.8 (5.8, 10.4) 10.1 (7.31, 13.95) 0.9

IGFBP-2, mg � L21

Model A 193 (158, 232) 185 (151, 222) 219 (182, 260) 0.9 155 (130, 184) 136 (112, 162) 123 (100, 149) 0.09

Model B 183 (145, 225) 175 (139, 214) 224 (183, 268) 0.8 155 (128, 183) 130 (106, 157) 113 (90, 138) 0.04

IGFBP-3, mg � L21

Model A 3.3 (3.0, 3.6) 3.2 (2.9, 3.5) 3.5 (3.1, 3.8) 0.4 3.5 (3.3, 3.8) 3.6 (3.3, 3.8) 3.7 (3.4, 4.0) 0.02

Model B 3.3 (2.9, 3.6) 3.2 (2.9, 3.6) 3.3 (3.0, 3.7) .0.9 3.5 (3.3 3.8) 3.5 (3.3, 3.8) 3.7 (3.4, 4.0) 0.01

1 Values are means and 95% CIs unless otherwise indicated; n = 213. For IGF-I and IGFBP-3: 118 females/95 males; for IGFBP-1 and IGFBP-2: 109 females/92 males. Model

A: adjusted for age in adulthood. Model B for IGF-I, IGFBP-1, and IGFBP-3: model A + socioeconomic factors (maternal education, smokers in the household) and FFMI at the

beginning of puberty. Model B for IGFBP-2: model A + socioeconomic factors (maternal education, maternal overweight) and FFMI at the beginning of puberty. P-trend refers to

the P value obtained in linear regression models with dietary animal protein as continuous variable. DONALD, Dortmund Nutritional and Anthropometric Longitudinally Designed;

FFMI, fat-free mass index; IGF-I, insulin-like-growth-factor I; IGFBP, insulin-like-growth-factor binding protein; T, tertile.
2 Values are medians (25th and 75th percentiles).
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Early life (age 0.5–2 y). Among females, animal protein was
not related to IGF-I (Fig. 2A). Among males, a habitually higher
animal protein intake in early life was associated with lower
concentrations of IGF-I in young adulthood, after controlling for
early life and socioeconomic factors (Fig. 2B). Plant protein
intake in early life was not associated with IGF-I levels in young
adulthood, neither among males nor among females (data not
shown). Again, additional consideration of other nutritional
variables (e.g., total energy intake) did not affect the results (data
not shown).

Adiposity rebound (age 4–6 y). No associations were seen
between animal protein intake around adiposity rebound and
IGF-I in young adulthood in either females or males (Fig. 2C,D).
Similarly, there was no association with plant protein (data not
shown).

Discussion

This study provides epidemiological evidence for a prospective
association between a habitually higher animal protein intake
during puberty and higher concentrations of IGF-I and IGFBP-3
as well as lower IGFBP-2 concentrations in females only, sug-
gesting an upregulation of the GH-dependent components of
the GH-IGF-I axis in young adulthood. By contrast, higher ani-
mal protein intakes in early life may yield a long-term down-
regulation of the GH-IGF-I axis in males.

Potential mechanisms by which a higher animal protein
intake may contribute to higher IGF-I levels may relate to spe-
cific amino acids, e.g., arginine (31) or combinations of amino
acids (lysine and arginine) (32), which increase GH concentra-
tions and lead to an increase in hepatic IGF-I production. Dairy
and meat both contain glutamine, lysine, and arginine, but their
concentrations are ;10 times higher in meat than in milk. Al-
ternatively, it has been proposed that components in milk itself
rather than animal protein as such stimulates IGF-I secretion
(33). Most intervention studies in infants (34), children (12–15),
and also adults (35,36) suggest that milk and dairy products are
important upregulators of IGF-I concentrations. However, some
(8,10) but not all (6,7,9) cross-sectional studies in adults report
associations of a higher consumption of red meat with higher
IGF-I concentrations. Our study supports a relevance of animal
protein in general rather than dairy protein intake per se. In
addition, among females, the difference between the intake
levels in the lowest and highest tertiles was higher for meat
protein (12.4 g) than for dairy protein (9.6 g), which may partly
explain why we found an association with meat but not dairy
protein. Finally, our substitution analyses revealed broadly simi-
lar effect sizes when simulating substitutions of animal protein
for carbohydrate, fat, or plant protein.

We furthermore observed lower IGFBP-2 and higher IGFBP-
3, but not higher IGFBP-1 concentrations, in young adulthood
among females who had consumed more animal protein during

FIGURE 1 Relations of dietary meat (A,B) and dairy protein (C,D)

intake during puberty to IGF-I in young adulthood among 118 females

(A,C) and 95 males (B,D) in the DONALD Study, Germany. Data are

means (95% CI) adjusted for age in adulthood, socioeconomic factors

(maternal education, smokers in the household), and FFMI at the

beginning of puberty. P-trend refers to the P value obtained in linear

regression models with dietary meat or dairy protein as the continuous

variable. DONALD, Dortmund Nutritional and Anthropometric Longi-

tudinally Designed; FFMI, fat-free mass index; IGF-I, insulin-like-

growth-factor I; T, tertile.
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puberty. In contrast to the most abundant IGFBP-3, IGFBP-
1 concentrations are responsive to acute dietary stimuli (37). The
fact that the association with pubertal animal protein intake was
confined to adult IGFBP-3 concentrations hence supports the
underlying hypothesis of long-term nutritional influences on the
adult GH-IGF-axis. Lower IGFBP-2 concentrations in turn are
considered to also reflect a lower insulin sensitivity (4). In line
with this, we also observed a tendency toward higher HOMA
levels among females with a higher animal protein intake (P-
trend = 0.1; data not shown). In addition, prospective cohort
studies in adults suggest that a higher consumption of total
protein as well as animal protein or red and processed meat is
related to an increased risk of type 2 diabetes (38,39). One
explanation for a corresponding increase in insulin resistance
could be an amino acid-induced upregulation of the serine
kinase 6–1 pathway, which has been shown to result in lower
insulin sensitivity (40). A lower insulin sensitivity may in turn
decrease IGFBP-2 concentrations over the long-term (41) and
explain our findings of lower IGFBP-2 concentrations associated
with higher animal protein intake in puberty.

Our results indicate a relation between pubertal animal pro-
tein intake and GH-IGF-I axis among females only. Most studies
in adults or children were conducted in one gender only (12,14,15)
and others did not report gender differences (14,33). During
puberty, boys have higher testosterone levels than girls, which
have been found to increase IGF-I concentrations among healthy
men (42). Thus, higher testosterone levels in boys may have
overridden a potential effect of animal protein intake on IGF-I.
Furthermore, girls have a higher degree of physiological insulin
resistance during puberty (43), which may make them more
vulnerable than boys to dietary effects on the GH-IGF-I axis.
Finally, the smaller variation in animal protein intake levels could
partly explain the lack of discernible associations among males.

Our results further indicate that there may be a reversal in the
association between animal protein intake and adult IGF-I levels
between early life and adolescence. Although no relation was
observed with intakes in the period around the adiposity re-
bound, dietary animal protein intake in early life was inversely
associated with IGF-I concentrations in young adulthood among
males. This finding is in accordance with the long-term follow-
up of a milk intervention (16) and a prospective cohort study
(17). In our purely observational study, the association was
confined to males. The absence of an association among females
may be partly attributable to the small overall sample with
consumption data in early life. It has been proposed that higher
animal protein intakes in early life may cause an acute increase
in hepatic IGF-I production, which then negatively feedbacks to
the pituitary GH output, possibly leading to a long-term pro-

FIGURE 2 Relation of dietary animal protein intake in early life (A,B)

(n = 68 females, 62 males) and around adiposity rebound (C,D) (n = 94

females, 85 males) to IGF-I in young adulthood among females (A,C)

and males (B,D) in the DONALD Study, Germany. Data are means

(95% CI); model in early life: adjusted for early life (breast feeding) and

socioeconomic factors (maternal education and smokers in the

household); adiposity rebound: adjusted for age in adulthood, early

life (birth weight and length appropriate for gestational age), and

socioeconomic factors (maternal education and smoking in the

household). Additional consideration of body composition in early life

or at adiposity rebound yielded similar results. P-trend refers to the P

value obtained in linear regression models with dietary animal protein

as continuous variable. DONALD, Dortmund Nutritional and Anthro-

pometric Longitudinally Designed; IGF-I, insulin-like-growth-factor I; T,

tertile.
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gramming of the pituitary with lower IGF-I concentrations in
adulthood (17).

It remains to be determined whether our data may reflect
adaptive responses of the GH-IGF-I axis to intakes of animal
protein and/or whether these associations indicate higher or
lower risks of future disease. Higher intakes of animal protein
during puberty appear to upregulate the entire GH-IGF-I axis,
because we observed higher concentrations of both IGF-I and
IGFBP-3, but not of the IGF-I:IGFBP-3 ratio (data not shown).
In terms of disease risk, a higher concentration of IGF-I has been
linked to an increased risk of breast cancer (2), whereas a direct
association between IGFBP-3 and breast cancer is currently
questioned (3). On the other hand, higher IGF-I concentrations
are prospectively related to lower risks of cardiovascular disease
(44), osteoporosis (45), and impaired glucose tolerance (46),
further complicating a public health appraisal of our results.

A clear strength of our study is its prospective nature, care-
fully collected repeated dietary data, and the availability of data
on several possible confounders. By contrast, the analysis is
based on a single measurement of the GH-IGF-I axis in young
adulthood to represent long-term circulating levels. However,
IGF-I values were reported to have a low intra-individual var-
iation (47). The study sample is relatively small and the
DONALD population is characterized by a relatively high socio-
economic status (18). Therefore, extremes of diet or behavior
might not be represented in this healthy sample, which is, how-
ever, likely to result in an underestimation of the true associa-
tions. In addition, the homogeneity of our sample might have
reduced our vulnerability to residual confounding.

In conclusion, our data suggest that among females, a habit-
ually higher animal protein intake during puberty may precip-
itate an upregulation of the GH-IGF-I axis that is discernible in
the long-term in young adulthood. By contrast, inverse associa-
tions between higher animal protein intakes in early life and IGF-I
concentrations among adult males support the idea that habitu-
ally higher animal protein intakes in this period may trigger an
early programming of the GH-IGF-I axis.
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food composition database for dietary evaluations in children and
adolescents. J Food Compost Anal. 2007;20:63–70.

26. Reilly JJ, Wells JC. Duration of exclusive breast-feeding: introduction of
complementary feeding may be necessary before 6 months of age. Br J
Nutr. 2005;94:869–72.

Dietary protein sources and GH-IGF-I axis 1153

 at U
N

IV
E

R
S

ITY
 O

F S
Y

D
N

E
Y

 B
A

D
H

A
M

 LIB
R

A
R

Y
 on June 21, 2013

jn.nutrition.org
D

ow
nloaded from

 
APPENDIX 4

150



27. Hu FB, Stampfer MJ, Rimm E, Ascherio A, Rosner BA, Spiegelman D,
Willett WC. Dietary fat and coronary heart disease: a comparison of
approaches for adjusting for total energy intake and modeling repeated
dietary measurements. Am J Epidemiol. 1999;149:531–40.

28. Voigt M, Friese K, Schneider KTM, Jorch G, Hesse V. Kurzmitteilung zu
den Perzentilwerten für die Körpermaße Neugeborener. [A short
communication on the reference values for body weight and height in
newborns] Geburtshilfe Frauenheilkd. 2001;61:700–6.

29. Clark PA, Rogol AD. Growth hormones and sex steroid interactions at
puberty. Endocrinol Metab Clin North Am. 1996;25:665–81.

30. Barrett-Connor E, Goodman-Gruen D. Gender differences in insulin-
like growth factor and bone mineral density association in old age: the
Rancho Bernardo Study. J Bone Miner Res. 1998;13:1343–9.

31. Collier SR, Casey DP, Kanaley JA. Growth hormone responses to
varying doses of oral arginine. Growth Horm IGF Res. 2005;15:136–9.

32. Isidori A, Lo Monaco A, Cappa M. A study of growth hormone release
in man after oral administration of amino acids. Curr Med Res Opin.
1981;7:475–81.

33. Hoppe C, Udam TR, Lauritzen L, Molgaard C, Juul A, Michaelsen KF.
Animal protein intake, serum insulin-like growth factor I, and growth in
healthy 2.5-y-old Danish children. Am J Clin Nutr. 2004;80:447–52.

34. Larnkjaer A, Hoppe C, Molgaard C, Michaelsen KF. The effects of
whole milk and infant formula on growth and IGF-I in late infancy. Eur
J Clin Nutr. 2009;63:956–63.

35. Hoppe C, Kristensen M, Boiesen M, Kudsk J, Fleischer Michaelsen K,
Molgaard C. Short-term effects of replacing milk with cola beverages on
insulin-like growth factor-I and insulin-glucose metabolism: a 10 d
interventional study in young men. Br J Nutr. 2009;102:1047–51.

36. Manios Y, Moschonis G, Trovas G, Lyritis GP. Changes in biochemical
indexes of bone metabolism and bone mineral density after a 12-mo
dietary intervention program: the Postmenopausal Health Study. Am
J Clin Nutr. 2007;86:781–9.

37. Juul A. Serum levels of insulin-like growth factor I and its binding
proteins in health and disease. Growth Horm IGF Res. 2003;13:113–70.

38. Sluijs I, Beulens JW, van der AD, Spijkerman AM, Grobbee DE, van der
Schouw YT. Dietary intake of total, animal, and vegetable protein and

risk of type 2 diabetes in the European Prospective Investigation into
Cancer and Nutrition (EPIC)-NL study. Diabetes Care. 2010;33:43–8.

39. Song Y, Manson JE, Buring JE, Liu S. A prospective study of red meat
consumption and type 2 diabetes in middle-aged and elderly women:
The Women’s Health Study. Diabetes Care. 2004;27:2108–15.

40. Weickert MO, Roden M, Isken F, Hoffmann D, Nowotny P, Osterhoff
M, Blaut M, Alpert C, Gogebakan O, Bumke-Vogt C, et al. Effects of
supplemented isoenergetic diets differing in cereal fiber and protein
content on insulin sensitivity in overweight humans. Am J Clin Nutr.
2011;94:459–71.

41. Arafat AM, Weickert MO, Frystyk J, Spranger J, Schofl C, Mohlig M,
Pfeiffer AF. The role of insulin-like growth factor (IGF) binding protein-
2 in the insulin-mediated decrease in IGF-I bioactivity. J Clin Endocrinol
Metab. 2009;94:5093–101.

42. Hobbs CJ, Plymate SR, Rosen CJ, Adler RA. Testosterone administra-
tion increases insulin-like growth factor-I levels in normal men. J Clin
Endocrinol Metab. 1993;77:776–9.

43. Moran A, Jacobs DR Jr, Steinberger J, Cohen P, Hong CP, Prineas R,
Sinaiko AR. Association between the insulin resistance of puberty and
the insulin-like growth factor-I/growth hormone axis. J Clin Endocrinol
Metab. 2002;87:4817–20.

44. Conti E, Carrozza C, Capoluongo E, Volpe M, Crea F, Zuppi C,
Andreotti F. Insulin-like growth factor-1 as a vascular protective factor.
Circulation. 2004;110:2260–5.

45. Yamaguchi T, Kanatani M, Yamauchi M, Kaji H, Sugishita T, Baylink
DJ, Mohan S, Chihara K, Sugimoto T. Serum levels of insulin-like
growth factor (IGF); IGF-binding proteins-3, -4, and -5; and their
relationships to bone mineral density and the risk of vertebral fractures
in postmenopausal women. Calcif Tissue Int. 2006;78:18–24.

46. Sandhu MS, Heald AH, Gibson JM, Cruickshank JK, Dunger DB,
Wareham NJ. Circulating concentrations of insulin-like growth factor-I
and development of glucose intolerance: a prospective observational
study. Lancet. 2002;359:1740–5.

47. Goodman-Gruen D, Barrett-Connor E. Epidemiology of insulin-like
growth factor-I in elderly men and women. The Rancho Bernardo
Study. Am J Epidemiol. 1997;145:970–6.

1154 Joslowski et al.

 at U
N

IV
E

R
S

ITY
 O

F S
Y

D
N

E
Y

 B
A

D
H

A
M

 LIB
R

A
R

Y
 on June 21, 2013

jn.nutrition.org
D

ow
nloaded from

 
APPENDIX 4

151


	diss_2014-final6
	Acknowledgements
	Publications
	Summary
	Zusammenfassung
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	1. Introduction
	2.  Theoretical background
	2.1 Dietary predictors of insulin response
	2.1.1  Dietary glycaemic load
	2.1.2 Dietary insulin load
	2.1.3 Dietary protein

	2.2 Body Composition and GH-IGF axis - Markers of later disease risk
	2.2.1 Body composition and obesity
	2.2.2 GH-IGF axis
	2.2.3 Concept of critical periods

	2.3 Evidence linking dietary insulin demand and protein intake to body composition, obesity and GH-IGF axis
	2.3.1 Glycaemic index, glycaemic load, body composition and weight loss
	2.3.2 Protein intake, body composition and obesity
	2.3.3  Protein intake and GH-IGF axis

	2.4 Conclusive considerations

	3.  Aims and research questions
	4.  General methodology
	4.1 DONALD study
	4.2 RESIST study

	5.  Original articles
	6.  General discussion
	6.1 Research aims
	6.1.1 Aim 1 To examine the dietary insulin demand, body composition and weight loss
	6.1.2 Aim 2 To examine dietary protein sources, body composition and the GH-IGF axis

	6.2 Methodological considerations
	6.2.1 Study populations
	6.2.2 Data assessment

	6.3 Public health considerations

	7.  Conclusions and perspectives
	References

	APPENDICES_ALLE
	APP1
	APP2.
	APP3
	APP4




