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1 Introduction
This thesis investigates some combinatorial properties of different groups and monoids
with a view towards their classifying spaces and their homology. One of the methods
to compute the homology of a group is to consider the bar complex of this group. Yet,
the bar complex is very large and hard to deal with. While studying the homology of
moduli spaces, C.-F. Bödigheimer and B. Visy discovered that symmetric groups have
an additional structure allowing to reduce the bar complex to a considerably smaller one.
This structure is a particular choice of a transposition for each permutation, which can
be split off to obtain a new permutation. The new permutation in turn can be written as
a shorter product of transpositions. This procedure gives us a preferred way of writing
each permutation as a product of transpositions, and these choices are coherent in some
precise sense. C.-F. Bödigheimer and B. Visy abstracted this structure and defined the
notion of a factorable group (cf. [60]).

A factorability structure depends not only on the group or monoid itself but also on
the chosen generating system. The factorability structure consists of a factorization map
which assigns to each element of the monoid a preferred generator that is split off in a
geodesic, i.e., word-length-preserving way. This map is subject to several axioms, which
in particular ensure a certain, non-obvious compatibility with the multiplication in the
monoid. Such a factorability structure yields a choice of geodesic normal forms, i.e.,
minimal representatives of each element of the monoid in terms of the chosen generating
system.

Later on, R. Wang and A. Heß extended the definition of factorability to categories
and monoids in [61] and [42]. The definitions are set up so that there exists a quite small
complex computing the homology of those objects. This was partially shown by B. Visy
and R. Wang and in general by A. Heß in his Ph.D. thesis ([42]) using discrete Morse
theory.

The first aim of this thesis is to find groups and monoids equipped with such a fac-
torability structure. Among the few families of examples besides symmetric groups,
the dihedral groups and certain Thompson groups and monoids were known to carry
an interesting factorability structure. One should keep in mind that the existence of a
factorability structure depends on the choice of the generating system. For example,
the symmetric groups are factorable with all transpositions as a generating system, but
they do not admit a factorability structure if we take the generating system of simple
transpositions. One obstruction to being a factorable monoid is the theorem due to
M. Rodenhausen stating that the monoid has to admit for the given generating system
a presentation with relations of length at most 4. Since there is no published version of
this theorem till now, we include a proof into this thesis.

Here, we give several further examples. One of the main results provides factorability
structures on the wide class of left locally Gaussian monoids (see Theorem 4.2.5):

Theorem. Let M be a left locally Gaussian monoid, E a generating subset of M that is
closed under left least common multiple and left complement. Then (M , E) is factorable.
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This provides a large new class of factorable monoids. This class includes in particular
the Artin monoids introduced by E. Brieskorn and K. Saito ([10]) to study the corre-
sponding Artin groups. Locally left Gaussian monoids were introduced by P. Dehornoy
and Y. Lafont in [28]. Similar concepts have already been defined by P. Dehornoy in
[24] and by P. Dehornoy and L. Paris in [29]. These concepts were developed to abstract
and generalize the work by F. Garside ([38]), where he solves the word problem and the
conjugation problem for braid groups. There are several further treatments of these and
similar structures in the literature, mostly united by the term “Garside theory”, e.g.
in [27], [39], [32]. For a certain subclass of left locally Gaussian monoids, the Garside
monoids, it is possible to extend the factorability structure to the group of fractions of
the monoid. In particular, one obtains a factorability structure on the braid groups and,
more generally, on all Artin groups of finite type.

This leads us to a further important question of this thesis: What can be said about
homology of Artin groups? Artin groups are closely related to Coxeter groups. Coxeter
groups can be seen as a generalization of the finite subgroups of O(n) generated by
reflections. Like these, Coxeter groups have standard real representations by isometries
with respect to some associated symmetric bilinear form. For Artin groups of finite type,
i.e., for those Artin groups which have a positive definite associated bilinear form, there
are well-known small models for the classifying spaces (as proved first by P. Deligne
in [30]) given by certain hyperplane complements. The definition of such hyperplane
complements makes perfect sense for all Artin groups. They are known to have always
the corresponding Artin group as fundamental group. Thus, it is natural to ask whether
those hyperplane complements are also classifying spaces for general Artin groups. This
is exactly the subject of the still open K(π, 1)-conjecture. It is sometimes attributed to
V. Arnold, R. Thom and F. Pham.

Conjecture (K(π, 1)-conjecture). Let G be an Artin group and W the corresponding
Coxeter group. Let V be the standard representation of W by isometries, and denote by
R ⊂ W the set of elements r mapped to reflections in hyperplanes Hr ⊂ V . Then the
quotient of the complex hyperplane complement V ⊗C \

⋃
r∈RHr ⊗C by the W -action

is a K(G, 1)-space.

This conjecture would in particular imply the existence of finite-dimensional manifold
models for K(G, 1)-spaces for Artin groups G. This conjecture is not solved in general,
but known to be true in many cases. There are many good expositions on this topic,
e.g. [16], [34], [17], [18], [39], [54]. They give also several equivalent formulations of the
K(π, 1)-conjecture. The one which will be important for us is the following (cf. e.g.
[18]):

Conjecture (K(π, 1)-conjecture II). Let G be an Artin group and let C be the following
category: The objects are the subsets I of the Coxeter generating set S such that the
Coxeter subgroup W (I) of W is finite. The morphisms are given by

C(I, J) =
{
G(J), if I ⊂ J
∅, else.
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Here, we denote by W (I) ⊂ W and G(J) ⊂ G the subgroups generated by I and J ,
respectively. The composition of g ∈ C(J ,K) = G(K) and h ∈ C(I, J) = G(J) is given
by gιJK(h), where ιJK is the inclusion of G(J) into G(K). Then BG is homotopy
equivalent to BC.

Loosely speaking, we can rephrase this formulation of the K(π, 1)-conjecture by saying
that BG is already completely described by the subgroups of G of finite type and their re-
lationship. We will repeat this formulation combined with the language of Grothendieck
constructions as Conjecture 5.3.9.

Besides the finite type Artin groups, also other Artin groups are known to satisfy the
K(π, 1)-conjecture, e.g. Artin groups of FC-type ([18]) and Artin groups of large type
([40]). A more detailed account of the state of the conjecture can be found e.g. in [34]
and [16]. In this thesis, we are going to give an alternative proof to a recent theorem first
proved by N. Dobrinskaya which reformulates the K(π, 1)-conjecture. It connects the
K(π, 1)-conjecture with the classifying space of the corresponding Artin monoid. We
will reprove the following theorem in Section 5.3.

Theorem (cf. [33]). The K(π, 1)-conjecture holds for G if and only if the inclusion
BM → BG is a homotopy equivalence, where M is the Artin monoid associated to the
Artin group G.

Our proof is based on a completely different method than the original proof: Our main
tool will be discrete Morse theory, a combinatorial analogue of the usual Morse theory,
developed for well-behaved CW-complexes by K. Brown ([12]) and R. Forman ([36]).
For technical reasons, we will need the slightly more general version due to E. Batzies
([4]).

Back to factorability, we will exhibit two new families of factorable groups: The or-
thogonal groups O(V ) (found jointly with C.-F. Bödigheimer) and the Coxeter groups
of the B-series, both with all reflections as a generating system. Whether the D-series
and the exceptional finite Coxeter groups are factorable with respect to all reflections,
is still open.

For the more systematic treatment of factorable monoids, we deal with the question
whether the short-relation presentation of a factorable monoid gives rise to a complete
rewriting system. A rewriting system is just a monoid presentation with a preferred
choice of the direction in which each relation may be applied. Completeness guarantees
in particular that the rewriting rules lead to unique normal forms. Moreover, a complete
rewriting system on a monoid provides a better understanding of its homology.

The question about the connection between factorability and complete rewriting sys-
tems was posed by A. Heß. It naturally arises since a factorability structure quite
obviously yields a rewriting system, and this rewriting system induces a matching (a
discrete analogue of the gradient vector field in Morse theory), which is exactly the one
described by A. Heß in his thesis ([42]). Although this matching is always noetherian,
this turns out not to be the case for the rewriting systems coming from factorability
structures. Indeed, counterexamples exist even if this rewriting system is finite and the
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monoid described by it is right-cancellative. An example of such a monoid is given in
Section 7.1. Yet, there are several cases where the corresponding rewriting system is
noetherian, as for example in the following theorem (see 7.4.5):

Theorem. The rewriting system associated to the factorability structure on a left locally
Gaussian monoid as above is complete.

This statement generalizes the complete rewriting systems for Garside groups de-
scribed in [41].

Now we describe in more detail the plan of the thesis. In Chapter 2, we report on basic
definitions and existing results about factorability, including the proof of an alternative
description by M. Rodenhausen.

In Chapter 3, we give a brief overview of rewriting systems and discrete Morse theory
in two different flavors, and of their connection. We also include some auxiliary results
we are going to use later. This section is quite technical and may be skipped during first
reading and consulted for definitions as needed.

In Chapter 4, we first report on basic Garside theory. Then we explore the connection
between factorability and Garside theory. Furthermore, we prove a generalization of
the theorem by R. Charney, J. Meier and K. Whittlesey ([20]) providing a small chain
complex for the homology of a class of left locally Gaussian monoids. This proof is
joint work with A. Heß. We will also show that Thompson monoids, closely connected
to Thompson’s group F and introduced by A. Heß([42]), are left locally Gausssian.
Furthermore, we will describe a new factorability structure induced by this fact.

In Chapter 5, we introduce several small complexes computing the homology of Artin
monoids. Furthermore, we reprove the theorem of N. Dobrinskaya ([33]) by means of
discrete Morse theory in Section 5.3.

In Chapter 6, we report on work of T. Brady and C. Watt ([9]), which allows us to
describe a factorability structure on the orthogonal group. This structure is inherited
by the Coxeter groups of the B-series. It is also compatible with the Visy factorability
structure on the symmetric groups, which are exactly the Coxeter groups of the A-series.
In Section 6.3, the factorability structure on the orthogonal groups is shown to coincide
with the geometric description proposed by C.-F. Bödigheimer.

In Chapter 7, we deal with the connection between factorability structures and rewrit-
ing systems: We show that a factorability structure always yields a rewriting system,
which is in general not necessarily noetherian, and exhibit some cases where noetheri-
anity yet holds.
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2 Factorability Structures
In this chapter, we are going to define factorability structures. We will collect some basic
facts and notation. In Section 2.3, we are going to describe a criterion for factorability
due to M. Rodenhausen.

2.1 Factorability: Basic Definitions
Factorability structures are a central object of study in this thesis. The idea is to
provide a special sort of structure on groups (and later on monoids) which allows to get,
starting with the bar complex, a much smaller complex for computing group homology
(or corresponding analogues). The definition of this structure is due to B. Visy ([60])
and C.-F. Bödigheimer. It was generalized to monoids by R. Wang([61]) and A. Heß
([42]).

The first object we want to define is a normed group.

Definition 2.1.1. Let G be a group. A map N : G→N0 is called a norm on G if the
following conditions hold:

1. The equality N(g) = 0 holds if and only if g = 1.

2. For any g ∈ G, we have N(g) = N(g−1).

3. The triangle inequality holds: For any g,h ∈ G, we have N(gh) ≤ N(g) +N(h).

Natural examples for norms are provided by the word length with respect to some
chosen generating system. It turns out that all norms we are going to deal with are
word lengths with respect to some generating system.

Now, for any group G with a norm N we can define the notion of factorability, as
originally done by B. Visy and C.-F. Bödigheimer:

Definition 2.1.2 ([60]). Let (G,N) be a normed group with multiplication µ. Let T (G)
be the set of elements of minimal positive norm. A factorization map is a function
η = (η, η′) : G→ G×G with the following properties:

(F1) For all g ∈ G, we have g = η(g)η′(g).

(F2) For all g ∈ G, we have N(g) = N(η(g)) +N(η′(g)).

(F3) For all g ∈ G \ {1}, the element η′(g) lies in T (G).

The group (G,N) is called factorable if it admits a factorization map η with the fol-
lowing additional properties: Define α = η ◦ µ and β = (µ× id)(id×η)(id×µ)(η × id).
Then η must satisfy for all a ∈ G, b ∈ T (G):

(F4) N(α(a, b)) = N(a) +N(b)⇔ N(β(a, b)) = N(a) +N(b).

(F5) N(α(a, b)) = N(a) +N(b) implies α(a, b) = β(a, b).

9



We will often denote η′(g) by g′ and η(g) by g. We call g the remainder of g and g′

the prefix of g.

Remark 2.1.3. The properties (F4) and (F5) guarantee to a certain extent the com-
patibility of the factorization map with multiplication. We can depict the compositions
α and β in the following diagram (note that in general, it does not commute properly; it
has to commute only in the “graded sense”, i.e. either both compositions lower the norm
or both compositions preserve the norm. In the latter case, we ask for the commutativity
of the diagram.)

G× T

µ

��

η×id// G× T̃ × T
id×µ

��
G×G

id×η // G×G× T̃
µ×id

��
G

η // G× T̃

where T̃ = T ∪ {1}. Written once again for single elements, we have

(g, t)
_

���
�
�
�
�
�
�

� //___ (g, g′, t)
_

���
�
�

(g, g′t) � //____ (g, g′t, (g′t)′)
_

���
�
�

gt � //____ (gt, (gt)′) (g · g′t, (g′t)′)

Note that in the original Definition 3.1.3 of [60], the conditions (F4) and (F5) are
formulated for pairs of group elements and not only for G× T . Yet, these definitions
are shown to be equivalent in Proposition 3.1.8 of [60].

Definition 2.1.4. In a normed group (G,N), a pair (g,h) of group elements is called
a geodesic pair if N(gh) = N(g) +N(h).

In a monoid M with a chosen generating set E, we call a pair a, b ∈ M geodesic if
NE(ab) = NE(a) +NE(b), where NE denotes the word length with respect to E.

Remark 2.1.5. By a result of Visy([60], Corollary 3.1.7), given a factorization map
η on a normed group (G,N) and a geodesic pair (g,h), the pairs (g′,h) and (g, g′h)
are automatically geodesic. Moreover, if we use word-by-word the same definition of
factorization map for a monoid, the same property will hold.

There is an alternative description of the last two axioms, which is often easier to
handle.
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Lemma 2.1.6 ([60]). For a factorization map, the conditions (F4) and (F5) for a
pair a ∈ G and b ∈ T (G) are equivalent to: If both (η′(a), b) and (η(a), η(η′(a)b))
are geodesic pairs, then (a, b) is a geodesic pair and the equality η′(ab) = η′(η′(a)b)
holds. For monoids, we need to add the condition that if both pairs are geodesic, both
η′(ab) = η′(η′(a)b) and η(a)η(η′(a)b) = η(ab) hold. In groups or, more generally,
right-cancellative monoids, this last condition holds automatically by cancellation.

Note furthermore that if η′(ab) = η′(η′(a)b) and η(a)η(η′(a)b) = η(ab) hold for some
pair (a, b), the condition (F4) for this pair is automatically satisfied.

The following (folklore) observation allows us to attribute a factorability structure to
a group with a chosen generating system instead of a normed group.

Lemma 2.1.7. Let (G,N , η) be a factorable group and let T = T (G) be the set of
elements of minimal positive norm m. Then for any element g ∈ G, we have N(g) =
m ·NT (g), where NT denotes the word length norm with respect to T .

Proof. First, we observe that for any norm N with N(x) = m for all x ∈ T , we have
N(g) ≤ m ·NT (g) for any g ∈ G. To see this, let NT (g) = k, then there are g1, . . . , gk ∈
T such that g = gk . . . g1. By iterated use of the triangle inequality, we obtain

N(g) ≤ N(gk) +N(gk−1) + . . .+N(g1) = m · k = m ·NT (g).

Now we are going to prove the other inequality for the case of factorable groups. The
claim is certainly true for g = 1 and for g ∈ T . We proceed by induction on N(g).
Assume N(g) = k > m, and the claim is already shown for elements of smaller norm.
Thus we already know that N(g) = mNT (g) and N(g′) = m. By the triangle inequality,
m ·NT (g) ≤ m ·NT (g) +m = N(g). This completes the proof.

From now on, we are going to consider a group with a chosen generating system when
looking for factorability structures; the norm considered is then the corresponding word
length, i.e., we set m = 1 since any other norm is just a multiple of this one. We require
the generating system to be closed under taking inverses. Note that the choice of the
generating system does matter. We will demonstrate it first by some examples; more
advanced examples come up in later chapters of this thesis.

Example 2.1.8. 1. Any group is factorable if we choose T = G \ {1} and set η(g) =
(1, g) for all g ∈ G. This obviously satisfies the axioms of Definition 2.1.2.

2. The free group on {x1, . . . ,xn} is factorable with respect to the generating system
T = {x1, . . . ,xn,x−1

1 , . . . ,x−1
n }. Here, one can write each element x uniquely in

the form xεkik . . . x
ε1
i1

with 1 ≤ ij ≤ n and εj ∈ {±1} if we require k to be minimal.
For such an x, define

η(x) = (xεkik . . . x
ε2
i2

,xε1
i1
).

This defines a factorability structure (cf. [60]).
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3. The symmetric group Sn with the generating system of all transpositions is the
most important example given in the thesis of B. Visy ([60]). He defines η as
follows. For any permutation σ ∈ Sn, let k ∈ {1, . . . ,n} be the maximal number
not fixed by σ. Then we set η′(σ) to be the transposition (k,σ−1(k)) and σ =
σ · (η′(σ))−1. It can be checked to define a factorability structure on Sn.

There is a generalization of factorability to arbitrary monoids due to A. Heß. Note
that the Definition 2.1.2 does not use inverses so it could be directly transferred to
monoids. This property will be later called weakly factorable. Yet, it turns out in
general not to be the right definition for our purposes, in particular, in order to obtain
a small chain complex computing the monoid homology. A. Heß introduces instead the
following definition.

Definition 2.1.9 (Heß[42]). Let M be a monoid and E a generating set. Let

η : M →M ×M

be a factorization map, i.e., let it satisfy the analogs of (F1)-(F3) of Definition 2.1.2.
For 1 ≤ i ≤ n− 1, we denote by fi the map Mn → Mn which assigns to (xn, . . . ,x1) ∈
Mn the tuple (xn, . . . ,xi+2, η(xi+1xi),xi−1, . . . ,x1). We define η to be a factorability
structure if the three maps

f1f2f1f2, f2f1f2, f2f1f2f1 : M3 →M3

are equal in the graded sense, i.e., for each tuple (x3,x2,x1) ∈M3, the three maps agree
or each of them lowers the sum of the norms of the entries. In this case, we call the
triple (M , E , η) a factorable monoid.

Remark 2.1.10. To illustrate the situation, we will depict fi by the following diagram:

xn . . . xi+2 xi+1 xi xi−1 . . . x1

xn . . . xi+2 xi+1xi (xi+1xi)′ xi−1 . . . x1

Notation 2.1.11. Similarly to the notation of the last remark, if we have any map
α : Xk → X l for some set X and some natural numbers k and l, we will define maps
αi : Xn → Xn−k+l for n ≥ k and 1 ≤ i ≤ n− k+ 1 via

αi(xn, . . . ,x1) = (xn, . . . ,xi+k,α(xi+k−1, . . . ,xi),xi−1, . . . ,x1).

Since the Definition 2.1.9 above is rather hard to check, we are going to use also an
equivalent description given by A. Heß. We will now define the recognition principle and
then formulate this equivalent description.

12



Definition 2.1.12 ([42]). Let M be a monoid, let E be a generating system for M and
let η : M →M ×M be a factorization map, i.e., it satisfies the analogs of (F1)-(F3) of
Definition 2.1.2. We say that η satisfies the recognition principle if for all m ∈ M ,
a ∈ E, the pair (m, a) satisfies η(ma) = (m, a) if and only if the pair (m′, a) satisfies
η(m′a) = (m′, a), where m′ = η′(m).

Theorem 2.1.13 (Heß[42], Theorem 2.2.6). Let M be a monoid, let E be a generating
system for M and let η : M →M ×M be a factorization map. Then η is a factorability
structure on M in the sense of Definition 2.1.9 if and only if it satisfies the conditions
(F4) and (F5) of the Definition 2.1.2 and in addition the recognition principle 2.1.12.

The following corollary will be important in our setting.

Corollary 2.1.14 (Heß [42], Sections 2.1-2.2). For right cancellative monoids, the notion
of factorability as in Definition 2.1.9 coincides with the one given by the monoid version
of Definition 2.1.2.

An important property of factorable monoids is the existence of well-behaved normal
forms. Indeed, if we start with an element x ∈ M , we first write it as x = xx′. We
can continue with x and write it again as x = x · (x)′. Inductively, we can write x as a
product xk . . . x1 of k = N(x) generators. This normal form has the property of being
everywhere stable. We start by the definition of this notion.

Definition 2.1.15 (Heß [42], Rodenhausen [53]). Let (M , E , η) be a factorable monoid.
We say a tuple (xn, . . . ,x1) ∈Mn is stable at the i-th position if η(xi+1xi) = (xi+1,xi).
We call a tuple everywhere stable if it is stable at each position.

The tuple (xk, . . . ,x1) associated to x ∈ M by the procedure defined above has now
the following property:

Lemma 2.1.16 (Heß [42] Remark 2.1.27, Rodenhausen [53]). Let (M , E , η) be a fac-
torable monoid. Then the tuple (xk, . . . ,x1) associated to x ∈ M by the procedure as
above is everywhere stable. This tuple associated to x will be called the normal form
of x (with respect to this factorability structure).

There is a special case of factorability which is particularly nice since it can simplify
the differentials in the Visy complex, which will be defined later (cf. [42], Section 4.2).

Definition 2.1.17 (Heß, Rodenhausen). Let (M , E , η) be a factorable monoid. We call
the factorability structure braided factorable if f1f2f1 and f2f1f2 are equal on E3 in
the graded sense, i.e., for all (a, b, c) ∈ E3, the elements f1f2f1(a, b, c) and f2f1f2(a, b, c)
have both norm less than 3 or are equal.

2.2 Homology of Factorable Monoids
Now, we are going to describe a complex computing the homology of factorable groups
and monoids which is smaller than the bar complex. Recall that the inhomogeneous
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normalized bar complex (B∗M , d) associated to a monoid M is a chain complex with
free Z-modules BnM generated by n-tuples of elements in M , written [xn| . . . |x1], with
xi 6= 1 for all 1 ≤ i ≤ n. The differential d is given by the sum

∑n
i=0(−1)idi, where the

di are defined on the basis by

di([xn| . . . |x1]) =


[xn| . . . |x2], if i = 0,
[xn| . . . |xi+2|xi+1xi|xi−1| . . . |x1], if 0 < i < n,
[xn−1| . . . |x1], if i = n.

A smaller complex for factorable groups was first introduced by B. Visy ([60]); it was
shown to compute the homology of a factorable right-cancellative monoids with finite
generating system by R. Wang ([61]). This statement was reproved by means of discrete
Morse theory and extended to the case of general monoids by A. Heß ([42]). Furthermore,
A. Heß showed that this complex comes from a free resolution of Z over ZM . In wide
parts of this section, we follow the exposition of [42].

The differentials of the complex are rather complicated. Here, we will not give the
original definition but rather a description found by A. Heß. Before this, we need some
further definitions. We will also need them later to make a link between factorability
structures and rewriting systems.

First, we consider the monoids Pn, Qn and Q′n whose actions describe to a certain
extent the effect of the factorability structure on the bar complex. We will need Q′n in
Chapter 7 to show in some cases that the rewriting system associated to a factorability
structure is noetherian.

Definition 2.2.1 (Heß[42]). Let Fn be a free monoid on letters 1, 2, . . . ,n (with the
empty string as a neutral element). The elements of Fn will be denoted either like (1 2 3 4)
or like (1, 2, 3, 4) to increase the readability; sometimes, we also omit the brackets. Let
∼P be the congruence generated by

ab ∼P ba for |a− b| ≥ 2 and
a2 ∼P a for 1 ≤ a ≤ n.

Recall that a congruence is a left and right invariant equivalence relation. Let Pn be the
quotient of Fn by this congruence. Define now a congruence ∼Q on Pn generated by

(k k+ 1 k k+ 1) ∼Q (k+ 1 k k+ 1) and
(k+ 1 k k+ 1 k) ∼Q (k+ 1 k k+ 1).

Let Qn be the quotient of Pn by this congruence. Last, define a congruence ∼ on Qn
generated by the following relation: If for I, J ∈ Fn the relation kIJ ∼Q IJ holds,
kI ∼P Ik and k does not occur in I, then we set kJ ∼ J . Define the quotient monoid
of this congruence to be Q′n.

The following evaluation lemma should motivate the definition of Qn.

14



Lemma 2.2.2 (Heß[42], Section 2.2, Evaluation Lemma). Let (M , E , η) be a factorable
monoid. For any sequence I = (is, . . . , i1) ∈ Fn, we define fI : Mn+1 →Mn+1 to be the
composition fis ◦ fis−1 ◦ . . . ◦ fi1. Such a map descends to a map fI : Bn+1M → Bn+1M .
If I ∼Q J , then the maps

fI , fJ : Bn+1M → Bn+1M

are equal in the graded sense.

In the “graded sense” means here that the following two conditions are satisfied. First,
if fI([xn+1| . . . |x1]) = [yn+1| . . . |y1] and fJ ([xn+1| . . . |x1]) = [zn+1| . . . |z1], then

NE(xn+1) + . . .+NE(x1) = NE(yn+1) + . . .+NE(y1)

if and only if

NE(xn+1) + . . .+NE(x1) = NE(zn+1) + . . .+NE(z1)

holds, and in this case, fI([xn+1| . . . |x1]) = fJ ([xn+1| . . . |x1]). Second, the equation
fI([xn+1| . . . |x1]) = 0 is equivalent to fJ ([xn+1| . . . |x1]) = 0.

Thus, instead of proving graded identities for the fi’s, we may often prove the corre-
sponding identities in Qn. We will also show later that a similar, but weaker evaluation
lemma holds for Q′n.

For later use, we fix some notation for those monoids and collect some facts about
them.

Notation 2.2.3. We denote by shk : Fn−k → Fn the shift homomorphism induced by
i 7→ i+ k.

For I, J ∈ Fn, we write I ⊂ J if I is a (possibly disconnected) subsequence of J .
Denote by Iba the sequence (a a+ 1 . . . b− 1 b).
Denote by Dk the sequence Ikk Ikk−1 . . . I

k
2 I

k
1 .

The elements Dn play a very special role in the monoids Qn.

Theorem 2.2.4 (Heß[42], Section 2.3). The element represented by Dn in Qn is an
absorbing element, i.e., for any I ∈ Fn, we have IDn ∼Q Dn ∼Q DnI.

In particular, the Evaluation Lemma implies that fDn(xn, . . . ,x1) is everywhere stable
if fDn does not drop the norm. Even more is true:

Proposition 2.2.5 (Heß[42], Section 2.3). Let (M , E , η) be a factorable monoid. Let m
be an element of M and let mn . . .m1 be a minimal word in E representing m. Then
fDn−1(mn, . . . ,m1) is the normal form of m.

The following definitions introduce particularly nice representatives of elements in Pn.
These are going to make it easier to track down applications of some fI to tuples of
monoid elements.
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Definition 2.2.6 (Heß[42]). A sequence (is, . . . , i1) ∈ Fn is called left-most if for every
s > t ≥ 1, the following holds: if |it+1− it| ≥ 2, then it+1 > it. In other words, it exceeds
it+1 at most by 1. A sequence (is, . . . , i1) is called reduced if it contains no subsequent
equal entries.

The following criterion provides an equivalent description of left-most sequences.

Lemma 2.2.7 (Heß[42], Section 2.3). A sequence I = (is, . . . , i1) ∈ Fn is left-most
if and only if for every connected subsequence J holds: If a < b and (a, b) ⊂ J , then
Iba ⊂ J .

A. Heß showed that we can always find left-most, reduced representatives for elements
in Pn:

Proposition 2.2.8 (Heß[42], Section 2.3). Every sequence I ∈ Fn is ∼P -equivalent to
a left-most, reduced one.

The following lemma shows that choosing such a representative preserves existence of
certain subsequences:

Lemma 2.2.9. Let J ∈ Fn be a sequence with In1 ⊂ J . Let furthermore J ′ be a left-most,
reduced sequence with J ′ ∼P J . Then In1 ⊂ J ′ holds.

Proof. This follows directly as one observes that whenever (i, i+ 1) is a (possibly dis-
connected) subsequence of some word in Fn, those entries can never be interchanged
using relations in Pn.

This finishes the list of general properties of Pn and Qn which will be used later. We
need a last definition before we can describe the Visy complex.

Notation 2.2.10. Let �n be the two-sided ideal in Qn generated by all elements

[2 1 2], [3 2 3], . . . , [nn− 1n].

Here, we use the square brackets to stress that we mean the elements of Qn represented
by the corresponding strings.

Thus, �n consists exactly of all elements of Qn which have a representative with a
connected subsequence of the form (i+ 1 i i+ 1) for some 1 ≤ i ≤ n− 1.

Now we are ready to describe the complex mentioned above.

Definition 2.2.11. Let (M , E , η) be a factorable monoid. We are going to define a chain
complex (V, ∂V) over Z, computing the homology of M . (By this, we mean the homology
of the inhomogeneous bar complex of M .) We will call this complex Visy complex. The
modules Vn are free modules over Z with basis given by the n-tuples [xn| . . . |x1] with
xi ∈ E and η(xi+1xi) 6= (xi+1,xi) for all 1 ≤ i ≤ n− 1.

The differentials can be written as follows:

∂V = πn−1 ◦ d ◦

 ∑
α∈Qn−1\�n−1

(−1)l(α)fα

 ◦ in.
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Here, in denotes the inclusion of Vn into the n-th module of the normalized inhomoge-
neous bar complex Bn(M), d denotes the n-th differential in the same bar complex, and
πn−1 : Bn(M)→ Vn denotes the projection. Last, by l(α) we denote the word length of
α in Qn−1 with respect to the generating system {[1], [2], . . . , [n− 1]} ⊂ Qn−1.

The property which originally motivated the definition of factorable groups may now
be formulated as follows:

Theorem 2.2.12 (Heß [42], Visy [60], Wang[61]). Let (M , E , η) be a factorable monoid.
Then the homology of the Visy complex (V, ∂V) is isomorphic to the monoid homology
of M , i.e., to the homology of the normalized inhomogeneous bar complex (B∗M , d).

2.3 An Alternative Description of Factorability
M.Rodenhausen gave the following alternative description of factorability, which needs
to be defined only on pairs of generators. A byproduct of this description is the existence
of very special presentations for factorable monoids. Since the proofs of M. Rodenhausen
are unpublished till now, we will write them down with his kind permission.

Definition 2.3.1. (Rodenhausen, [53]) Let M be a monoid and E a generating system
of this monoid. Denote by E+ the union of this generating system with {1}, and by E∗
the free monoid generated by E. In this section, we always assume 1 /∈ E. Then a local
factorability structure is a map

ϕ : E+ ×E+ → E+ ×E+

with the following properties:

1. M ∼= 〈E|(a, b) = ϕ(a, b)〉.

2. Idempotency: ϕ2 = ϕ.

3. Value on norm 1 elements: ϕ(a, 1) = (1, a).

4. Stability for triples: ϕ2ϕ1ϕ2(a, b, c) is (ϕ-)totally stable (i.e., applying any ϕi to
this tuple leaves it unchanged) or contains a 1, for all a, b, c ∈ E.

5. Normal form condition: NF(a, b, c) = NF(ϕ1(a, b, c)) for all a, b, c ∈ E.

(Recall we use the notational convention 2.1.11 to define ϕi). Here, the normal form of
a tuple (an, . . . , a1) is an element of E∗ defined inductively as follows: The normal form
of a string containing 1 is the normal form of the same string with 1 removed. For a
string not containing 1, define

NF(an, . . . , a1) =

{
ϕn−1 . . . ϕ1(NF(an, . . . , a2), a1), if it contains no 1;
NF(ϕn−1 . . . ϕ1(NF(an, . . . , a2), a1)), otherwise.

Define NF(a) = a for all a ∈ E and NF(()) = (). Furthermore, we call a string of the
form (1, 1, . . . , 1, NF(x)) an extended normal form of x.
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Theorem 2.3.2. (Rodenhausen, [53]) If a monoid M with a generating system E is
factorable, then ϕ(a, b) = η(ab) defines a local factorability structure on this monoid.
Conversely, one can construct out of a local factorability structure a factorability struc-
ture in the usual sense, and those share the same normal forms. These constructions
are inverse to each other.

The proof of this theorem will be subdivided in several smaller steps. First, we are
going to indicate the connection between being a normal form and total stability.

Proposition 2.3.3. ([53]) Let E be a set. Let

ϕ : E+ ×E+ → E+ ×E+

be a map with ϕ2 = ϕ and ϕ(a, 1) = (1, a). (In other words, we start with any set E and
a map ϕ satisfying the second and third conditions of Definition 2.3.1.) Furthermore,
we define the normal form function NF : E∗ → E∗ as in Definition 2.3.1. Then if a word
(an, . . . , a1) with ai ∈ E is totally stable, i.e., if ϕj(an, . . . , a1) = (an, . . . , a1) for all
1 ≤ j ≤ n− 1, then it is its own normal form.

If in addition the stability for triples condition of Definition 2.3.1 is satisfied by ϕ,
then also the converse holds: Any normal form is totally stable.

Proof. We will first show that any totally stable word (without 1’s) is its own normal
form. We will prove the statement by induction on the length of the word n. For n = 0
or n = 1, NF(()) = () and NF(a) = a for all a ∈ E . These are by definition all totally
stable and in their normal form. For a stable pair (a2, a1), we have to apply ϕ, which
does not change the pair by assumption. In particular, no 1’s occur, so (a2, a1) is its
own normal form.

Now assume we have already shown the claim for all natural numbers smaller than n.
We are now going to prove the claim for strings of length n. Observe that (an, . . . , a2)
is also totally stable and of length n− 1, so it is its own normal form. For computing
the normal form of (an, . . . , a1), we now have to compute ϕn−1 . . . ϕ1(an, . . . , a1), which
is by assumption just (an, . . . , a1) itself. Thus, in particular, it does not contain 1’s and
this is the normal form itself. This yields the first claim.

Now assume the stability for triples condition holds for ϕ. We want to show that any
normal form is totally stable. We proceed again by induction on the length n of the
string. The statement is clear for n = 0, 1, 2. Now assume we have already shown the
statement for all strings of length less than n. We want to show that NF(an, . . . , a1) is
totally stable. We may assume that ϕn−1 . . . ϕ1(NF(an, . . . , a2), a1) is the normal form of
(an, . . . , a1) and in particular does not contain 1’s. Indeed, otherwise NF(an, . . . , a1) is
at the same time the normal form of a shorter string, thus, by the induction hypothesis,
totally stable. Hence, applying ϕn−1 to NF(an, . . . , a1) does not change the tuple due
to ϕ2

n−1 = ϕn−1. Furthermore, since NF(an, . . . , a2) is totally stable by the induction
hypothesis, we know that

ϕj(NF(an, . . . , a2), a1) = (NF(an, . . . , a2), a1)
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for all 2 ≤ j ≤ n− 1.
Note that the application of ϕi+1ϕiϕi+1 to ϕi−1ϕi−2 . . . ϕ1(NF(an, . . . , a2), a1) does

not produce a 1: Otherwise, there would be a 1 in

ϕn−1 . . . ϕi+2ϕi+1ϕiϕi+1ϕi−1ϕi−2 . . . ϕ1(NF(an, . . . , a2), a1)

= ϕn−1 . . . ϕi+1ϕiϕi−1 . . . ϕ1ϕi+1(NF(an, . . . , a2), a1)

= ϕn−1 . . . ϕi+1ϕiϕi−1 . . . ϕ1(NF(an, . . . , a2), a1)

= NF(an, . . . , a1),

and thus we would obtain a contradiction. Here, we used that ϕl and ϕk obviously
commute whenever |l− k| ≥ 2.

Using the commutativity again, we conclude for 1 ≤ i ≤ n− 2:

ϕi(NF(an, . . . , a1)) = ϕiϕn−1 . . . ϕ1(NF(an, . . . , a2), a1)

= ϕiϕn−1 . . . ϕ1ϕi+1(NF(an, . . . , a2), a1)

= ϕn−1 . . . ϕi+2ϕiϕi+1ϕiϕi+1ϕi−1ϕi−2 . . . ϕ1(NF(an, . . . , a2), a1).

As we already know that the application of ϕi+1ϕiϕi+1 to

ϕi−1ϕi−2 . . . ϕ1(NF(an, . . . , a2), a1)

does not produce a 1, the stability for triples condition implies that ϕi+1ϕiϕi+1 makes
the triple in positions i+ 2, i+ 1, i totally stable, and thus

ϕiϕi+1ϕiϕi+1ϕi−1ϕi−2 . . . ϕ1(NF(an, . . . , a2), a1)

= ϕi+1ϕiϕi+1ϕi−1ϕi−2 . . . ϕ1(NF(an, . . . , a2), a1).

Performing the same manipulations backwards, we see that this implies the stability in
position i. This yields the second claim.

This proposition immediately implies the following corollary.

Corollary 2.3.4. Let E be a set and ϕ : E+ × E+ → E+ × E+ a map satisfying the
second, third and fourth condition of Definition 2.3.1. Let the normal form be defined
as before. Then:

1. Building of normal form is idempotent: NF ◦NF = NF holds for all tuples.

2. Connected subwords of normal forms are normal forms.

The following small observation about the normal form of triples is going to be helpful.

Lemma 2.3.5. Let E be a set. Let

ϕ : E+ ×E+ → E+ ×E+

be a map with ϕ2 = ϕ and ϕ(a, 1) = (1, a) for which stability of triples holds. (In
other words, we start with any set E and a map ϕ satisfying the second, third and
fourth conditions of Definition 2.3.1.) Furthermore, we define the normal form function
NF : E∗ → E∗ as in Definition 2.3.1. Then it follows that an application of ϕ1ϕ2ϕ1ϕ2 to
a triple (a, b, c) yields an extended normal form for this triple.
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Proof. By Corollary 2.3.4, we have

NF(an, . . . , a1) = NF(NF(an, . . . , a2), a1)

for every tuple (an, . . . , a1) with ai ∈ E+. Thus,

NF(a, b, c) = NF(NF(a, b), c) = NF(ϕ(a, b), c).

If ϕ(a, b) = (1, d) for some d ∈ E∗, then ϕ1ϕ2 yields already an extended normal form
of this triple and it is totally stable by the Proposition 2.3.3. If ϕ(a, b) does not contain
a 1, then by definition NF(a, b, c) = ϕ2ϕ1ϕ2(a, b, c) if this does not contain a 1. If it
does contain a 1, it is on the very left, and the application of ϕ1 brings the triple into
an extended normal form.

In order to define a factorability structure in the usual sense on a monoid with a local
factorability structure, we have to check that the normal form of a monoid element does
not depend on the word representing it. This is our next aim.

Proposition 2.3.6 (Rodenhausen). Let ϕ be a local factorability structure on E, and
let NF be the associated normal form as in Definition 2.3.1. Then for any 1 ≤ j ≤ n− 1
and all (an, . . . , a1) with entries in E+, the following equality holds:

NF(an, . . . , a1) = NF(ϕj(an, . . . , a1)).

Proof. Recall that by Corollary 2.3.4, we have

NF(an, . . . , a1) = NF(NF(an, . . . , a2), a1)

for every tuple (an, . . . , a1) with ai ∈ E+. Iterating this, we obtain furthermore for each
2 ≤ k ≤ n:

NF(an, . . . , a1) = NF(NF(an, . . . , a2), a1)

= NF(NF(NF(an, . . . , a3), a2), a1)

= NF(NF(an, . . . , a3), a2, a1)

= . . .

= NF(NF(an, . . . , ak), ak−1, . . . , a1).

Observe furthermore that applying ϕn−1 . . . ϕ1 to the tuple (NF(an, . . . , a2), a1) produces
a one or yields the normal form.

We proceed by induction on n. For n = 1, there is nothing to prove. For n = 2, note
that ϕ1(a2, a1) yields an extended normal form of the tuple. Thus, the claim follows
since ϕ2 = ϕ.

Now assume we have proved the statement for all numbers smaller than n. First, if
j ≥ 2, then we are done by induction hypothesis, since the following holds:

NF ◦ϕj(an, . . . , a1) = NF(NF ◦ϕj−1(an, . . . , a2), a1) = NF(NF(an, . . . , a2), a1)

= NF(an, . . . , a1).
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So we have to deal with the case j = 1. By the considerations above, we may assume
that (an, . . . , a3) is already in the normal form. We want to show that the application
of

ϕn−1 . . . ϕ2ϕ1ϕn−1 . . . ϕ3ϕ2

does not change the normal form. Note that it either produces the normal form or a 1
at the leftmost place. We have already seen that the application of ϕn−1 . . . ϕ2 does not
change the normal form since all indices are ≥ 2. If this application produces a 1, we
obtain a new tuple with less than n non-trivial letters and application of any ϕk to it
does not change the normal form by induction hypothesis. Thus, if ϕn−1 . . . ϕ2 produces
a 1, the concatenation above does not change the normal form. If ϕn−1 . . . ϕ2 does not
produce a 1, it brings the entries (an, . . . , a2) into their normal form. Note then after
this, the concatenation ϕn−1 . . . ϕ2ϕ1 either produces the normal form or a 1 at some
point. In the first case, we are immediately done by Corollary 2.3.4. In the second case,
the normal form of the original tuple is defined as the normal form of the new tuple with
1 deleted. So the concatenation ϕn−1 . . . ϕ2ϕ1ϕn−1 . . . ϕ3ϕ2 does not change the normal
form.

Thus, we have shown that starting with a tuple (an, . . . , a1) with (an, . . . , a3) already
in the normal form, then

NF (ϕn−1 . . . ϕ2ϕ1ϕn−1 . . . ϕ3ϕ2(an, . . . , a1)) = NF(an, . . . , a1)

holds. Rearranging now the applications of ϕ on the left-hand side according to ϕiϕk =
ϕkϕi for |i− k| ≥ 2, we obtain

ϕn−1 . . . ϕ2ϕ1ϕn−1 . . . ϕ3ϕ2 = ϕn−1 . . . ϕ2ϕn−1 . . . ϕ3ϕ1ϕ2,

where on the right-hand side, we have only indices greater than 1 after the application
of ϕ1ϕ2. As already shown, those do not change the normal form, thus we obtain

NF(an, . . . , a1) = NF (ϕn−1 . . . ϕ2ϕ1ϕn−1 . . . ϕ3ϕ2(an, . . . , a1))

= NF(ϕ1ϕ2(an, . . . , a1))

for any tuple (an, . . . , a1) with (an, . . . , a3) in normal form. Again, since we have already
shown NF ◦ϕj = NF for j ≥ 2 for n letters, we see that we can continue our computation
to obtain

NF(an, . . . , a1) = NF(ϕ1ϕ2(an, . . . , a1)) = NF(ϕ2ϕ1ϕ2(an, . . . , a1)).

By the definition of local factorability, ϕ2ϕ1ϕ2 makes the right-most triple totally stable
or produces a 1. If it makes it totally stable and the result does not contain a 1, this
yields by definition the normal form of the last triple. If this application does produce a
1, this 1 will appear at the very left of this triple (thus, on the third place from the right
of the whole tuple), and we can use ϕn−1 . . . ϕ3 to move this 1 to the very left without
changing the normal form of the tuple. From here, we are dealing with a tuple with
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at most n− 1 non-empty letters, thus, by induction hypothesis, ϕ1 does not change its
normal form. All in all, we conclude for the case where ϕ2ϕ1ϕ2 produces a 1:

NF(ϕ2ϕ1ϕ2(an, . . . , a1)) = NF(ϕn−1 . . . ϕ3ϕ2ϕ1ϕ2(an, . . . , a1))

= NF(ϕ1ϕn−1 . . . ϕ3ϕ2ϕ1ϕ2(an, . . . , a1))

= NF(ϕn−1 . . . ϕ3ϕ1ϕ2ϕ1ϕ2(an, . . . , a1))

= NF(ϕ1ϕ2ϕ1ϕ2(an, . . . , a1))

= NF(an, an−1, . . . , a5, a4, NF(a3, a2, a1)).

In the last step, we use Lemma 2.3.5.
In any case, we have

NF(an, . . . , a1) = NF(ϕ2ϕ1ϕ2(an, . . . , a1)) = NF(an, an−1, . . . , a5, a4, NF(a3, a2, a1))

for tuples (an, . . . , a1) with (an, . . . , a3) in normal form. Since ϕ1 does not affect the
latter property, the claim now follows directly from this last observation using the normal
form condition of local factorability, namely,

NF(a3, a2, a1) = NF(ϕ1(a3, a2, a1)).

This completes the induction step and so the whole proof.

The proposition implies the following corollary.

Corollary 2.3.7. Let M be a monoid with a generating system E and a local factorability
structure ϕ. Then any element m ∈ M has a unique normal form, i.e., a unique word
in E∗ which represents m and which is obtained by picking any representative of m and
applying the normal form procedure to it. In other words, if m = an . . . a1 = bk . . . b1
with ai, bi ∈ E+, then

NF(an, . . . , a1) = NF(bk, . . . , b1).

Proof. The only thing to show is the independence of the representative of m we are
starting with. This follows immediately from the last proposition since all the relations
in M are by definition given by ϕ.

Now we are going to make some preparations in order to prove the other implication of
Theorem 2.3.2, i.e., in order to show that usual factorability induces a local factorability
structure on the monoid.

Lemma 2.3.8. Let (M , E , η) be a factorable monoid, and set ϕ(a, b) = η(ab) for all
a, b ∈ E+. Then for any a, b, c ∈ E, the word ϕ2ϕ1ϕ2(a, b, c) is totally ϕ-stable or
contains a 1 on the very left. Furthermore, ϕ1ϕ2ϕ1ϕ2(a, b, c) is totally ϕ-stable, and it
equals the triple (η(η(abc)), η′(η(abc)), η′(abc)).
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Proof. In this proof, we mean again with “stable” ϕ-stable.
First, observe that ϕ(a, b) always gives a stable pair by (F1). Furthermore, we observe

using (F2) that ϕ gives an idempotent map with ϕ(a, 1) = (1, a). Moreover, for x, y ∈
E+, we know that NE(xy) ≤ 2, so that

NE(η(xy)) = NE(xy)−NE(η′(xy)) ≤ 1

and η(xy) ∈ E+. We will need this in the following case distinction.

Case 1: If ab is in E+, then ϕ(a, b) = (1, ab). In this case, ϕ1ϕ2(a, b, c) = ϕ1(1, ab, c) =
(1, η(abc)) and the application of ϕ2 does not change this triple. In particu-
lar, the triple ϕ2ϕ1ϕ2(a, b, c) contains a 1 on the very left. Furthermore, the
triple ϕ2ϕ1ϕ2(a, b, c) is totally stable. Since NE(abc) ≤ 2, we have η(η(abc)) =
(1, η(abc)), and this in turn implies

ϕ1ϕ2ϕ1ϕ2(a, b, c) = ϕ1ϕ2(a, b, c) = (1, η(abc)) = (η(η(abc)), η′(η(abc)), η′(abc)).

Case 2: Next, assume ab /∈ E+, thus η(ab) = (d, e) with d, e ∈ E . Furthermore, now we
assume that ec ∈ E+. Then we have

ϕ2ϕ1ϕ2(a, b, c) = ϕ2ϕ1(d, e, c) = ϕ2(d, 1, ec) = (1, d, ec).

So this triple contains a 1 on the very left. Obviously, such a triple is made totally
stable by applying ϕ1, and we then obtain

ϕ1ϕ2ϕ1ϕ2(a, b, c) = ϕ1(1, d, ec) = (1, η(dec)) = (1, η(abc)).

As in the first case, we have here (1, η(abc)) = (η(η(abc)), η′(η(abc)), η′(abc))
since η(abc) has norm at most 1, which proves the last claim for this case.

Case 3: Now we assume ab /∈ E+, η(ab) = (d, e) with d, e ∈ E and ec /∈ E+. In this case, we
have η(ec) = (f , g) for some f , g ∈ E , in particular, NE(ec) = 2. If now df is in E+,
we are done again. So assume that df /∈ E+. Since d, f ∈ E+, NE(df) ≤ 2, and since
df /∈ E+, we obtain NE(df) = 2. Thus, the pair (d, f) = (ab, (ab)′c) is geodesic.
Furthermore, we have assumed that ((ab)′, c) = (e, c) is a geodesic pair, so we
can apply the condition (F5) of Definition 2.1.2, as reformulated in Lemma 2.1.6.
(Recall that factorability of monoids in the sense of Definition 2.1.9 implies, in
particular, factorability in the sense of Definition 2.1.2, cf. Theorem 2.1.13.) This
implies that g = ((ab)′c)′ = (abc)′ and df = abc, so that ϕ(d, f) = (abc,

(
abc
)′
).

In particular, the pair (df , g) is η-stable. By the recognition principle 2.1.12 (and
Theorem 2.1.13), we know that also ((df)′, g) has to be η-stable and thus ϕ-stable.
This yields the first claim. Furthermore, we have also shown

ϕ2ϕ1ϕ2(a, b, c) =
(
abc,

(
abc
)′

, (abc)′
)
= ϕ1ϕ2ϕ1ϕ2(a, b, c)

in this case. This completes the proof.

23



In the next lemma, we are going to generalize the observation of the last lemma,
linking η-normal forms to ϕ-normal forms. It will be important later in order to show
that each factorable monoid has a presentation of a special form. Recall from Lemma
2.1.16 and the preliminary remarks to it that we can obtain an η-normal form of an
element of M by iterated application of η to the remainders, and this normal form is
everywhere η-stable. We will call this normal form the η-normal form, and the normal
form given by ϕ the ϕ-normal form, in order to distinguish them until we have shown
that they coincide.

Lemma 2.3.9. Let (M , E , η) be a factorable monoid, and set ϕ(a, b) = η(ab) for all
a, b ∈ E+. Then for any tuple (an, . . . , a1), the ϕ-normal form of this tuple equals the
η-normal form of the product [an . . . a1] ∈M .

Here, the square brackets stress that we are considering the element of the monoid M
represented by this word. For one-letter words and sometimes elsewhere, we will omit
the brackets if there is no danger of confusion.

Proof. We proceed by induction on n. The claim is clear for n = 1 and n = 2, and is
proved for n = 3 in Lemmas 2.3.5 and 2.3.8.

Now assume the claim is already proved for all tuples of length smaller than n. Since
applications of ϕi and deleting the 1’s do not affect the product of the tuple, we may
assume that (an, . . . , a1) is already in its ϕ-normal form, and have only to show that
this is also the η-normal form of the product. First, observe that by Corollary 2.3.4,
the word (an, . . . , a2) is also in its ϕ-normal form. By the induction hypothesis, this is
also the η-normal form of the product. In particular, we know that η′([an . . . a2]) = a2.
Furthermore, we know that

ϕ(a2, a1) = η(a2a1) = (a2, a1)

since the ϕ-normal form is everywhere ϕ-stable. Now this implies that the pair

(η′([an . . . a2]), a1)

is η-stable. Since η satisfies the recognition principle by Theorem 2.1.13, it follows
that ([an . . . a2], a1) is η-stable. This implies that the η-normal form of the product
[an . . . a2a1] is given by the normal form of [an . . . a2], followed by a1. The η-normal
form of [an . . . a2] is by the induction hypothesis given by (an, . . . , a2), so the η-normal
form of [an . . . a2a1] is (an, . . . , a2, a1), which completes the proof.

We are now ready for the proof of Theorem 2.3.2, due to M.Rodenhausen.

Proof. (of Theorem 2.3.2)
Assume first that we are given a monoid M , a generating system E and a local fac-

torability structure ϕ on it. Due to Corollary 2.3.7, we know that each element of the
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monoid has a well-defined normal form. For m = 1, set η(1) = (1, 1). If m 6= 1 and
NF(m) = (an, . . . , a2, a1), define

η(m) = ([an . . . a2], [a1]).

First, this is well-defined since the normal form is well-defined. It also satisfies

η(m) · η′(m) = m

by definition. Next, η′(m) is an element of E unless m = 1, where we set η(1) = (1, 1).
Moreover, observe that the normal form given by a local factorability structure is

geodesic. Indeed, since we are allowed to start with any representative of an element
m ∈ M in order to compute the normal form, we can start with one with the minimal
number of letters. Since the normal form procedure cannot increase the number of
letters, we obtain as a result also a minimal representative for the word. We also know
that if NF(m) = (an, . . . , a2, a1), then

NF([an . . . a2]) = (an, . . . , a2)

by Lemma 2.3.3. In particular, we see that NE(η(m)) = n− 1 = NE(m)− 1 for m 6= 1.
This implies that η is a factorization map.

We are going to use Theorem 2.1.13 and will show that η satisfies (F4) and (F5) of
Definition 2.1.2 as well as the recognition principle. So assume m ∈ M is any element
not equal to 1, and let NF(m) = (an, . . . , a1) be its normal form. Let furthermore b
be some element of E . By Lemma 2.1.6, for (F4) and (F5), we have first to show that,
whenever (a1, b) and ([an . . . a2], c) are geodesic, then so is (m, b), where c is defined by

NF(a1, b) = ϕ(a1, b) =: (c, d).

So assume (a1, b) and ([an . . . a2], c) are geodesic. Note that c 6= 1 and d 6= 1 since
NE(a1b) = 2. Now we have already shown that the length n of the ϕ-normal form of
m coincides with the E-word length of m. Recall that computing the normal form of
mb, we may start with the word (an, . . . , a1, b) and observe that the left n letters are
in normal form. The normal form procedure tells then to apply ϕn . . . ϕ1 to this tuple.
The application of ϕ1 turns this tuple into (an, . . . , a2, c, d), in particular, no 1 appears.
But applying ϕn . . . ϕ2 to this tuple corresponds exactly to computing the normal form
of [an . . . a2] · c, which does not produce a 1 since the pair ([an . . . a2], c) was assumed
to be geodesic. Thus, the application of ϕn . . . ϕ1 to the tuple (an, . . . , a1, b) does not
produce a 1 and so yields the normal form containing n+ 1 letters. This shows that the
norm condition is satisfied.

Furthermore, we stay in the situation where (a1, b) and ([an . . . a2], c) as defined above
are geodesic, and we are going to check that

η′(η′(m)b)η′(mb),
η(m) · η(η′(m)b) = η(mb).
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But we have already seen that the normal form of mb has d as the end of the normal
form and [an . . . a2] · c is going to be the remainder of mb. Altogether, we have:

η′(η′(m)b) = η′(a1b) = d = η′(mb),
η(m) · η(η′(m)b) = [an . . . a2] · c = η(mb),

which shows the conditions of Lemma 2.1.6 are satisfied. Thus, (F4) and (F5) of Defi-
nition 2.1.2 hold.

Last, we are going to prove that η satisfies the recognition principle. Let as before m
be an element of M with (an, . . . , a1) as a normal form, and let b be an element of E .
Assume first that η(η′(m)b) = (η′(m), b), i.e., (a1, b) is in normal form and thus stable
under ϕ. This implies in particular that

ϕ1(an, . . . , a1, b) = (an, . . . , a1, b).

Since (an, . . . , a1) is a normal form, it also follows by Lemma 2.3.3 that

ϕn . . . ϕ2ϕ1(an, . . . , a1, b) = (an, . . . , a1, b),

so (an, . . . , a1, b) is the normal form of mb and η(mb) = ([an . . . a1], b) = (m, b), as we
wanted to show.

Assume now for the other implication that η(mb) = (m, b). Assume NF(mb) =
(ck, . . . , c1). Then by definition, c1 = b, and [ck . . . c2] = m, where the word (ck, . . . , c2)
is in normal form (using Lemma 2.3.3 again). Since the normal form is unique, we know
that the tuples (ck, . . . , c2) and (an, . . . , a1) have to coincide, so (an, . . . , a2, a1, b) is the
normal form of mb. It is everywhere ϕ-stable, in particular,

η(a1b) = ϕ(a1, b) = (a1, b).

This completes the proof that local factorability induces factorability in the usual sense.
Now we will assume to have a factorable monoid (M , E , η) and we want to construct

a local factorability structure for it. As announced before, we define a map

ϕ : E+ ×E+ → E+ ×E+

via ϕ(a, b) := η(a · b). This map is idempotent since

η(ab) · η′(ab) = ab.

Furthermore, it obviously satisfies ϕ(a, 1) = (1, a). The stability for triples (i.e., Prop-
erty 3 of the Definition 2.3.1) is satisfied due to Lemma 2.3.8.

Now we are going to check the fifth condition of Definition 2.3.1, the normal form
condition. Note that by Lemma 2.3.8, we know that the ϕ-normal form of the triple
(a, b, c) is given by (η(η(abc)), η′(η(abc)), η′(abc)), so coincides with the η-normal form
of the element of M given by the product abc. Since applying ϕ1 to (a, b, c) does not
change this product in M , the fifth condition is satisfied.
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Now we have to show that the first condition of Definition 2.3.1 is satisfied, i.e., that
the monoid M admits a presentation of the form

〈E|a · b = ab · (ab)′ for all a, b ∈ E〉.

Observe first that M surely admits a surjective map ψ from the monoid

M ′ = 〈E|a · b = ab · (ab)′ for all a, b ∈ E〉,

given by identity on the generators. Next, observe that we already showed that ϕ turns
the monoid M ′ into a local factorable monoid. By Lemma 2.3.9, the η-normal form of
the image ψ(x) of some element x ∈M ′ coincides with the ϕ-normal form of this element
x, which implies that ψ is also injective. This completes the proof of the theorem.

We want to emphasize the following corollary since it is important for us and also a
bit surprising when first looking at the definition of factorability.

Corollary 2.3.10. ([53]) Let (M , E , η) be a factorable monoid. Then it admits a pre-
sentation of the form

〈E|a · b = ab · (ab)′ for all a, b ∈ E〉.

The following observation will be useful while checking the conditions of Definition
2.3.1 to be satisfied.

Lemma 2.3.11. Let E be a set. Let

ϕ : E+ ×E+ → E+ ×E+

be a map with ϕ2 = ϕ and ϕ(a, 1) = (1, a) and satisfying stability for triples. (In
other words, we start with any set E and a map ϕ satisfying the second, third and
fourth conditions of Definition 2.3.1.) Furthermore, we define the normal form function
NF : E∗ → E∗ as in Definition 2.3.1. Then the fifth condition of Definition 2.3.1 is
satisfied for a triple (a, b, c) whenever (a, b) or (b, c) is a stable pair.

Proof. If (b, c) is a stable pair, the statement is clear. If (a, b) is stable, then by Lemma
2.3.5 we have

NF(a, b, c) = ϕ1ϕ2ϕ1ϕ2(a, b, c) = ϕ1ϕ2ϕ1(a, b, c).

Furthermore, we know by Lemma 2.3.8 that the resulting triple is everywhere stable, so
we obtain

ϕ1ϕ2ϕ1(a, b, c) = ϕ1ϕ2ϕ1ϕ2ϕ1(a, b, c) = NF(ϕ1(a, b, c)).

This yields the claim.

Last, we want to show a corollary to the Criterion 2.3.2, which is sometimes convenient.
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Corollary 2.3.12. Let M be a monoid, E a generating system and

ϕ : E+ ×E+ → E+ ×E+

be a map satisfying:

1. M ∼= 〈E|(a, b) = ϕ(a, b)〉.

2. Idempotency: ϕ2 = ϕ.

3. Value on norm 1 elements: ϕ(a, 1) = (1, a).

4. The equality ϕ1ϕ2ϕ1ϕ2 = ϕ2ϕ1ϕ2 = ϕ2ϕ1ϕ2ϕ1 holds evaluated on every triple in
E.

Then ϕ is a local factorability structure, and the monoid M is factorable with respect to
the generating system E.

Proof. First, note that ϕ2ϕ1ϕ2 makes a totally stable triple out of any triple: It is
stable under ϕ2 since ϕ2

2 = ϕ2 and it is stable under ϕ1 since ϕ1ϕ2ϕ1ϕ2 = ϕ2ϕ1ϕ2.
In particular, ϕ2ϕ1ϕ2 yields in this situation always an extended normal form. Thus,
ϕ2ϕ1ϕ2 = ϕ2ϕ1ϕ2ϕ1 implies NF ◦ϕ1 = NF when applied to triples. This completes the
proof.
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3 Rewriting Systems and Discrete Morse Theory
In this chapter, we collect the basic definitions and facts about rewriting systems and
discrete Morse theory. Discrete Morse theory comes in two flavors: an algebraic ver-
sion for chain complexes and a geometric version for CW complexes. In Section 3.4,
we present some tools we will need in order to apply discrete Morse theory to several
examples later in this thesis.

3.1 Rewriting System Basics
One of the results of this thesis is joint work with A. Heß and reveals a connection
between factorability structures and complete rewriting systems. The basic notions of
rewriting systems are the topic of this section. We closely follow the exposition by A. Heß
(cf. [42]), which is in turn based on D. Cohen’s survey article [22].

The basic idea of a rewriting system is easy: In a monoid presentation with generating
set S, we specify a relation not just by a set, but by a pair of two words in the free monoid
S∗ over S, i.e., an element in S∗ × S∗. Thus, we are going to determine a “direction”
for each relation, and it must not be applied in the other direction. There are several
properties which are desirable when considering such a rewriting system. We will be
mostly interested in the notion of a complete rewriting system. In a complete rewriting
system, any non-trivial chain of applications of rewriting rules stops after finite time
producing a nice normal form. For our purposes, a result of K. Brown ([12]), which
relates complete rewriting systems and noetherian matchings, is of particular interest.
It will be made more precise in the next section.

Definition 3.1.1. Let S be a set (sometimes called alphabet) and denote by S∗ the free
monoid over S. A set of rewriting rules R on S is a set of tuples (l, r) ∈ S∗ × S∗.
The string l is called the left side and r is called the right side of the rewriting rule.

1. We introduce a relation on S∗ as follows: We say that w rewrites to z, denoted
by w →R z, if there exist u, v ∈ S∗ and some rewriting rule (l, r) ∈ R such that
w = ulv and z = urv.

2. A word w ∈ S∗ is called reducible (with respect to R) if there is some z such that
w →R z. Otherwise, it is called irreducible (with respect to R).

3. Denote by ↔R the reflexive, symmetric and transitive closure of →R. Two words
w, z over S are called equivalent if w ↔R z. Set M = S∗/ ↔R. We then say
that (S,R) is a rewriting system for the monoid M .

We now can define complete rewriting systems.

Definition 3.1.2. Let (S,R) be a rewriting system.

1. (S,R) is called minimal if the right side r of every rewriting rule (l, r) ∈ R is
irreducible and if in addition the left side l of every rewriting rule (l, r) ∈ R is
irreducible with respect to Rr {(l, r)}.
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2. (S,R) is called strongly minimal if it is minimal and if in addition every element
s ∈ S is irreducible.

3. (S,R) is called noetherian if there is no infinite sequence

w1 →R w2 →R w3 →R . . .

of rewritings. This implies that every sequence of rewritings eventually arrives at
an irreducible word.

4. (S,R) is called convergent if it is noetherian and if in every equivalence class of
↔R there is only one irreducible element.

5. A rewriting system is called complete if it is strongly minimal and convergent.

As already mentioned, successive rewritings in a complete rewriting system (S,R)
induce a normal form, assigning to each x ∈M the unique irreducible word in S∗ in its
equivalence class.

We want to illustrate the notions with some small examples.

Example 3.1.3. 1. The set S = {a, b} can be equipped with the rewriting system
aba→ bab. The word bab ∈ S∗ is then irreducible, the word abab is reducible. This
rewriting system is strongly minimal. It is noetherian since each rewriting strictly
decreases the number of a’s in the word. It is not convergent: We can rewrite
ababa to babba and to abbab, which are both irreducible. The monoid defined by
this rewriting system is isomorphic to the positive braid monoid B+

3 on 3 strands.
(cf. Definition 4.1.7.)

2. We can also equip the set S = {a, b} with the rewriting system ab → ba. It is
not hard to see that this system is complete, and the set of normal forms is given
by bkal with k, l ≥ 0. The monoid given by this rewriting system is just the free
abelian monoid on two generators.

3. We can equip the set S = {a, b, c} with the rewriting system ab → bc, bc → ca.
This system is not minimal since there is a rewriting rule (ab→ bc), the right-hand
side of which is reducible due to bc → ca. The monoid defined by this rewriting
system is a special case of Birman-Ko-Lee monoids, described in Definition 4.7.2.
These are closely related to the braid groups.

4. We consider the set S = {a, b, c} with the rewriting system ab→ bc, ab→ ca. This
system is again not minimal, since the left side ab of the rewriting rule ab → bc
is reducible even if we delete this rewriting rule. Note that this rewriting system
defines the same monoid as the one in the last point.

5. An easy example of a rewriting system which is not noetherian is given by a rewrit-
ing system a→ a2 on the single generator a.
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3.2 Discrete Morse Theory Basics
Later on, we will need techniques from discrete Morse theory. We introduce an algebraic
version here. Again, we follow the exposition of A. Heß. (see also [42]).

A based chain complex is a non-negatively graded chain complex (C∗, ∂), where
each Cn is a free Z-module, together with a choice of basis Ωn for each Cn. In what
follows, (C∗, Ω∗, ∂) will always be a based chain complex.

We equip each Cn with the inner product 〈 , 〉 : Cn×Cn → Z obtained by regarding
Ωn as an orthonormal basis for Cn. For elements x ∈ Cn and y ∈ Cn−1, we say that
〈∂x, y〉 is their incidence number. If x, y have the “wrong” dimensions, i.e., if x ∈ Cn,
but y /∈ Cn−1, then we set their incidence number 〈∂x, y〉 to be zero.

Definition 3.2.1. A Z-compatible matching on a based chain complex (C∗, Ω∗, ∂) is
an involution µ : Ω∗ → Ω∗ satisfying the following property: For every x ∈ Ω∗ which is
not a fixed point of µ, we have 〈∂x,µ(x)〉 = ±1 or 〈∂µ(x),x〉 = ±1. (This last condition
is going to be called Z-compatibility.)

The fixed points of a matching µ : Ω∗ → Ω∗ are called essential. If x ∈ Ωn is not
a fixed point, then µ(x) ∈ Ωn−1 ∪Ωn+1. We say that x is collapsible if µ(x) ∈ Ωn−1,
and it is called redundant if µ(x) ∈ Ωn+1.

Remark 3.2.2. Note that it is enough to check 〈∂µ(x),x〉 = ±1 for redundant cells in
order to check that an involution µ : Ω∗ → Ω∗ is Z-compatible if we know that all non-
fixed points are either collapsible or redundant. Indeed, let x ∈ Ωn be a non-fixed point
of an involution µ as above. We have to show that 〈µ(x), ∂x〉 = ±1 for the case that x
is collapsible. In this case, the image µ(x) ∈ Ωn−1 is redundant since µ(µ(x)) = x is in
Ωn. So we know that for y = µ(x), we have 〈∂µ(y), y〉 = ±1. Inserting y = µ(x), we
obtain 〈µ(x), ∂x〉 = ±1.

Let µ be a matching on (C∗, Ω∗, ∂). For two redundant basis elements x, z ∈ Ω∗ set
x ` z to be the relation “z occurs in the boundary of the collapsible partner of x”, i.e.
of 〈∂µ(x), z〉 6= 0.

Definition 3.2.3. A matching on a based chain complex is called noetherian if every
infinite chain x1 ` x2 ` x3 ` . . . eventually stabilizes.

Given a noetherian matching µ on (C∗, Ω∗, ∂), we define a linear map θ∞ : C∗ → C∗
as follows. Let x ∈ Ω∗. If x is essential, we set θ(x) = x. If x is collapsible, we set
θ(x) = 0, and if x is redundant we set θ(x) = x− ε · ∂µ(x), where ε = 〈∂µ(x),x〉.

Note that, if x is redundant, then 〈x, θ(x)〉 = 0. It is now not hard to check that for
every x ∈ Ω∗ the sequence θ(x), θ2(x), θ3(x), . . . stabilizes (cf. also [42], Section 1.1),
and we define θ∞(x) := θN (x) for N large enough. We linearly extend this map to
obtain θ∞ : C∗ → C∗.

We can now state the main theorem of discrete Morse theory.

Theorem 3.2.4 (Brown, Cohen, Forman). Let (C∗, Ω∗, ∂) be a based chain complex
and let µ be a noetherian matching. Denote by Cθ∗ = im(θ∞ : C∗ → C∗) the θ-invariant
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chains. Then (Cθ∗ , θ∞ ◦ ∂|im(θ∞)) is a chain complex, and the map

θ∞ : (C∗, ∂) −→
(
Cθ∗ , θ∞ ◦ ∂|im(θ∞)

)
is a chain homotopy equivalence. A basis of Cθ∗ is given by the essential cells.

For a proof see e.g. [36].
As already announced, there is an interesting connection between complete rewriting

systems and noetherian matchings. The following theorem is due to K. Brown ([12]):

Theorem 3.2.5 (Brown [12]). Let M be a monoid given by a complete rewriting system
(S,R). Then there exists a noetherian matching on the bar complex with essential cells
[xn| . . . |x1] given by the following conditions: If wi ∈ S∗ is the irreducible representative
of xi, then we require

(a) w1 ∈ S,

(b) The word wi+1wi is reducible for every 1 ≤ i ≤ n− 1,

(c) For every 1 ≤ i ≤ n− 1, any proper (right) prefix of wi+1wi is irreducible.

3.3 Discrete Morse Theory for Graded CW-complexes
In this section, we recollect a version of discrete Morse theory due to E. Batzies ([4]). We
follow his exposition very closely. This version can be applied to infinite CW-complexes;
furthermore, Batzies formulates the theory in the language of acyclic matchings (instead
of discrete Morse functions) which seems to be convenient for our approach. This section
is quite technical, and the intuition to keep in mind is the same as in the last section.
The reader may also want to skip this section in the beginning and return to it whenever
discrete Morse theory for CW-complexes is needed. We start with the basic definitions.

Definition 3.3.1. Let X be a CW-complex, and let X(∗) be the set of its open cells. For
two cells σ,σ′ ∈ X(∗), we write σ ≤ σ′ iff the closed cell σ is a subset of a closed cell σ′,
and call σ a face of σ′. We say that a cell σ is a facet of a cell σ′ if σ 6= σ′, σ ≤ σ′

and for any τ ∈ X(∗) with σ ≤ τ ≤ σ′ we have either σ = τ or σ′ = τ .
If (P ,�) is any poset, a P -grading on X is a poset map f : X(∗) → P . Given a

P -grading f and p ∈ P , we write X�p for the sub-CW-complex of X consisting of all
cells σ with f(σ) � p.

Definition 3.3.2 ([36]). Let X be a CW complex, let σ be an n-dimensional cell of X
and let τ be an (n+ 1)-dimensional cell with characteristic map fτ : Dn+1 → X. Assume
σ ≤ τ . We call σ a regular face of τ if fτ restricted to f−1

τ (σ) is a homeomorphism
onto σ and, in addition, f−1

τ (σ) is a closed n-ball in Dn+1.

Remark 3.3.3. Here, for the definition of regular faces, we use the terminology by
Forman ([36]). It seems to us that the Definition 3.1.1 of [4] is at this point incomplete;
based on the Proposition 3.2.11 of [4], we conjecture that the author uses in fact the
same definition as Forman.
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Definition 3.3.4. Let X be a CW-complex. The cell graph GX of X is a directed
graph with X(∗) as the set of vertices and edges given by

EX := {σ → τ |τ is a facet of σ}.

A matching on X is a subset A ⊂ EX such that the following conditions hold:

(M1) If (σ → τ ) ∈ A, then τ is a regular face of σ.

(M2) Each cell of X occurs in at most one edge of A.

We associate to a matching A a new graph GAX with same vertices and with the edge set

EAX := (EX \A) ∪ {σ → τ |(τ → σ) ∈ A},

i.e., we invert all arrows in A and keep all other arrows unchanged. A matching A is
called acyclic if we in addition have

(M3) The graph GAX contains no cycle.

A cell of X is called A-essential if it does not occur in A. We denote by X(∗)
ess the set

of essential cells of X.

Such a matching defines now a new poset which we will need:

Definition 3.3.5. Let X be a CW-complex and A an acyclic matching on it. We set
A(∗) = A∪X(∗)

ess. We define a partial order on A(∗) as follows: Let G̃AX be a graph with
vertices X(∗) and edge set

EAX := EX ∪ {σ → τ |(τ → σ) ∈ A},

i.e., we add to GX all reversed edges of A. For a, b ∈ A(∗), we set a �A b if there is a
path in G̃AX from b to a. If b is an element of the form σ → τ , this means that the path
may start either from σ or from τ ; similarly, if a is of the form σ → τ , the path may
end either at σ or at τ .

This defines a partial order on A(∗). We call the poset (A(∗),�A) the matching poset
of A.

The map given by

X(∗) → A(∗)

σ 7→

σ, if σ ∈ X(∗)
ess,

(τ → τ ′), if σ ∈ {τ , τ ′} and (τ → τ ′) ∈ A

can be checked to be order-preserving. We call it the universal A-grading on X.

We will need some finiteness conditions to handle our CW complexes, which are often
not finite dimensional.
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Definition 3.3.6. Let (P ,�) be a poset and f : X(∗) → P a grading on a CW complex
X. We call the grading f compact if X�p is compact for all p ∈ P .

Last, we need the definition of the Morse complex of a matching. It is quite technical.
We will still cite it here since we will need it quite explicitly.

Definition 3.3.7. Let X be a CW complex and A an acyclic matching on it such that
the universal A-grading is compact. For all a ∈ A(∗), we define first inductively (XA)�a,
and also a map H(A)�a : X�a → (XA)�a. These are going to be the pieces of the Morse
complex and of the homotopy equivalence from X to the Morse complex.

First, if a ∈ A(∗) is minimal, we know that a ∈ X(∗)
ess and X�a = a. We define (XA)�a

to be equal to a and the map H(A)�a to be just the identity.
Now take any a ∈ A(∗) and suppose the associated piece of the Morse complex (XA)�b

and the Morse equivalence H(A)�b are already constructed for all b ≺ a in a way such
that b � b′ ≺ a induces an inclusion of the associated pieces of the Morse complex and the
restrictions of the future Morse equivalence are compatible with these inclusions. Then
define first

(XA)≺a :=
⋃
b≺a

(XA)�b

to be the colimit over the poset {b ≺ a} of already known pieces and let the map H(A)≺a
from X≺a be induced by the already known pieces. Now we have to distinguish whether
a is an element of A or of X(∗)

ess. If a = (τ → σ) ∈ A, then we define (XA)�a = (XA)≺a
and let the map be defined by

H(A)�a = H(A)≺a ◦ h̃τ→σ

where the map h̃τ→σ deforms X�a into X≺a by deforming τ into the union of its faces
different from σ. This is possible since σ is a regular face of τ ; for more details, we refer
again to [4].

Now we consider the other case a = σ ∈ X(∗)
ess, where σ is a cell of dimension i with

characteristic map fσ : Di → X�a. We define

(XA)�a = Di ∪H(A)≺a◦f∂σ (XA)≺a

so we glue a new cell to (XA)≺a via H(A)≺a ◦ f∂σ. The new piece of map is now induced
by the identity on the new cell: Define

H(A)�a = idDi ∪f∂σH(A)≺a.

Last, define the Morse complex XA to be the colimit of all pieces and the Morse
equivalence H(A) : X → XA to be the induced map on it.

We will need the following theorem which is a version of main theorem of discrete
Morse theory in Batzies’ flavor.

34



Theorem 3.3.8. ([4]) Let X be a CW complex and A an acyclic matching on it such
that the universal A-grading is compact. Then the i-cells of the Morse complex XA are
in one-to-one correspondence with the essential cells of A of dimension i. Furthermore,
the Morse equivalence H(A) : X → XA is a homotopy equivalence.

Last, we will need a criterion to check whether the universal A-grading is compact.
We will use the following lemma.

Lemma 3.3.9. ([4]) Let X be a CW complex and A an acyclic matching on it. Fur-
thermore, let P be a poset and let f : X(∗) → P be a compact grading on X such that
f(τ ) = f(σ) holds for all (τ → σ) ∈ A. Then the universal A-grading is also compact.

We derive a corollary of Theorem 3.3.8.

Proposition 3.3.10. Let X be a CW complex and A an acyclic matching on it such
that the universal A-grading is compact. Assume furthermore that the essential cells of
A form a subcomplex Xess of X, i.e., that if σ ∈ X(∗)

ess and τ ≤ σ, then τ ∈ X(∗)
ess. Then

the inclusion i : Xess → X is a homotopy equivalence.

Proof. We will show that the composition H(A) ◦ i : Xess → XA is a homotopy equiv-
alence; this will imply the claim. More precisely, we will first show inductively that
(Xess)�a = (XA)�a for all a ∈ A(∗) and the map H(A) ◦ i is the identity. For
a ∈ A(∗) minimal, the statement is clear. Assume we have proven the statement for
all b ≺ a and we would like to show it for a. If a is of the form (τ → σ) in A, then
(Xess)�a = (Xess)≺a ⊂ X≺a. Note that h̃τ→σ is identity on (Xess)�a, so that we are
done in this case.

Now assume that a = σ is an essential cell of dimension n. Let fσ : Dn → X�a be the
characteristic map of this cell. Note that by assumption the attaching map f∂σ has its
image in (Xess)≺a and (Xess)�a = (Xess)≺a ∪f∂σ Dn. It is also (XA)�a by the induction
hypothesis and by the definition of XA. Moreover, the composition of the inclusion with
H(A)�a is again the identity. This completes the induction step. (Observe that the
compactness of the grading enables the induction arguments.) Taking the union of all
(XA)�a, we see that Xess = XA and H(A) ◦ i is the identity.

Altogether, we have shown that Xess → X is a homotopy equivalence.

3.4 Geometric Realization
The aim of this section is to make some observations about properties of geometric
realization which will be used later on. We start with the following two well-known
properties:

Proposition 3.4.1 ([37], Section 4.3). 1. The geometric realization of a simplicial
set X is a quotient space of the subset

∐
X#
n ×∆n of

∐
Xn×∆n, where X#

n denotes
the set of non-degenerate n-dimensional simplices of X.

2. For a simplicial set X, each point of the geometric realization |X| has a unique
presentation as a pair (x, t), where x is non-degenerate and t ∈ ∆dimx is an inner
point.
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We prove the following easy consequence:

Lemma 3.4.2. Let X be a simplicial set with the following property: All faces of a
non-degenerate simplex are again non-degenerate. Then there is a homeomorphism

r(X) :=
(∐

X#
n × ∆n/ ∼

)
→ |X|

where ∼ is generated by (dix, (t0, . . . , tn−1)) ∼ (x, (t0, . . . , ti−1, 0, ti, . . . , tn−1)). More-
over, the projection

∐
X#
n × ∆n →

∐
X#
n × ∆n/ ∼

defines a CW structure on r(X). Furthermore, each element of r(X) has a unique
representative of the form (x, t), where t ∈ ∆dimx is an inner point.

Proof. Since both r(X) and |X| are quotient spaces of
∐
X#
n × ∆n (using Proposition

3.4.1), it is enough to construct mutually inverse bijections r(X)→ |X| and |X| → r(X)
which are compatible with the quotient maps. Then, by the definition of the quotient
topology, both maps are continuous and thus homeomorphisms.

The map f : r(X) → |X| is given by simply regarding an equivalence class [x, t] in
r(X) as an equivalence class in |X|. This is clearly well-defined and compatible with the
quotient maps.

For the other direction, we take any [y, s] ∈ |X| and consider its unique representative
[x, t] as in Proposition 3.4.1. Since x ∈ X#

m for some m, it also defines a point g([y, s])
in r(X). This gives us again a well-defined map, which is obviously compatible with the
quotient maps.

It is also immediate that fg = id. For the other direction, let [x, t] ∈ r(X) and assume
t is not an inner point of ∆dimx. Then there is an inner point u ∈ ∆m and a sequence of
natural numbers i1, . . . , ik such that t = δi1 . . . δik(u). Then

[x, t] = [dik . . . di1(x),u] ∈ r(X)

where dik . . . di1(x) is again a non-degenerate simplex by assumption. This shows that
also gf = id. Altogether, this proves the first claim.

The second claim is completely analogous to the statement that |X| is a CW complex.
The last claim follows immediately from the second part of the Proposition 3.4.1.

Remark 3.4.3. 1. Simplicial sets like in Lemma 3.4.2 are said to have Property
A, like in [49].

2. We will from now on identify r(X) and |X| under the conditions of the last lemma
since these spaces are then homeomorphic and have the same CW structure.

In discrete Morse theory, we have to check whether a smaller cell is a regular face of a
larger one. We provide for this purpose a regularity criterion for realizations of simplicial
sets.
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Lemma 3.4.4. Let Y be a simplicial set fulfilling Property A and let s be a non-
degenerate n-simplex in Y . Consider t = di(s) for some 0 ≤ i ≤ n. Let σ and τ
be cells of r(Y ) (as defined above) corresponding to s and t, respectively. If dj(s) 6= t
for all 0 ≤ j 6= i ≤ n, then τ is a regular face of σ.

Proof. Choose a fixed homeomorphism ψ : Dn → ∆n such that Sn−1
≥0 is mapped homeo-

morphically to the i-th side of ∆n. The map

fσ : {s} ×Dn ψ−→ {s} × ∆n ↪→
∐
j

Y #
j × ∆j � r(Y )

is the characteristic map of σ. Any point in the (open) cell τ is of the form

x = [t, (t0, . . . , tn−1)]

with ti > 0 and (t0, . . . , tn−1) ∈ ∆n. Note that this is also the unique representative
with an inner point in the second coordinate, as described in Lemma 3.4.2. This point
is by definition identified with the point represented by

(s, (t0, . . . , ti−1, 0, ti, . . . , tn−1))

of {s}×∆n. Assume there is another point with representative of the form (s,u) which
is identified with x. Then u cannot be an inner point by the uniqueness statement of
Lemma 3.4.2. So we can write u = δi1 . . . δik(v), where k ≥ 1 and v is an inner point of
an appropriate simplex. Thus, x has also a representative of the form (dik . . . di1(s), v).
Using again the uniqueness, we see that v = (t0, . . . , tn−1) and dik . . . di1(s) = t. This
implies that k = 1. By hypothesis of the lemma, di1(s) = t implies i1 = i. This
implies that fσ is injective when restricted to f−1

σ (τ ), where the last one is the interior
of ∆n−1 considered as i-th boundary of ∆n. Thus, the second condition for regularity is
already fulfilled. Furthermore, the map fσ : Dn → σ is an identification. It is a simple
observation that for an identification map q : Z → Z ′ and B ⊂ Z ′ open or closed subset,
the restriction q : q−1B → B is an identification again (cf. e.g. the textbook by T. tom
Dieck [59]). Thus the restriction of fσ to f−1

σ (τ ) is an identification since τ ⊂ σ is closed.
We can now apply same argument again since τ ⊂ τ is open in τ . This completes the
proof that fσ restricted to f−1

σ (τ ) is a homeomorphism.

We will need the following Lemma later to apply our regularity criterion. For a small
category C, we denote by NC its nerve.

Lemma 3.4.5 ([49], Lemma 11). Let C be a small category. Then NC has Property A
if and only if the following holds: Whenever f : A → B and g : B → A are morphisms
in C such that g ◦ f = idA, then we already have A = B and f = g = id.

Remark 3.4.6. K. Brown ([12]) uses a variant of discrete Morse theory for simplicial
sets similar to the one we will use. We stick to the version by Batzies since there we
have a more detailed description of the Morse complex.
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We will later need the following lemma linking both flavors of discrete Morse theory
introduced so far.

Lemma 3.4.7. Let M be a cancellative monoid without non-trivial invertible elements.
Let ν be a noetherian, Z-compatible matching on its normalized inhomogeneous bar com-
plex B∗(M), which is a based complex with basis Ω∗ consisting of all tuples [xn| . . . |x1]
with xi ∈M \ {1} for all i. If [xn| . . . |x1] is a ν-collapsible cell, it was already mentioned
in [42], Section 1.2.2, that its ν-redundant partner equals some dj([xn| . . . |x1]). We will
assume that for ν, this j does not lie in {0,n}. Then the matching ν can be extended to
an acyclic matching on the CW complex BM .

Proof. Recall that the set of cells of BM is given exactly by the non-degenerated sim-
plices of the nerve NM . This set coincides with the set Ω∗ above. Thus, ν determines
a set of edges in the corresponding graph of the poset of cells BM (∗). For the first
condition of Definition 3.3.4, we need to check that every redundant cell is a regular face
of its collapsible partner. First, observe that according to Criterion 3.4.5 and since M
has no non-trivial invertible elements, the simplicial set NM satisfies the Property A.
Thus we may apply the Regularity Criterion 3.4.4. Let [xn| . . . |x1] be a ν-collapsible
cell, and its redundant partner equals some dj([xn| . . . |x1]) with 1 ≤ j ≤ n− 1.

We want to show that di([xn| . . . |x1]) is not equal to dk([xn| . . . |x1]) for all i 6= k with
{i, k} 6= {0,n}. Assume di([xn| . . . |x1]) = dk([xn| . . . |x1]) for some i 6= k with {i, k} 6=
{0,n}. We may assume that i < k. If i 6= 0 and k 6= n, then this would imply that the
i-th entry of dk([xn| . . . |x1]), which is xi, and the i-th entry of di([xn| . . . |x1]), which
equals xi+1xi, coincide. By right cancellation we get xi+1 = 1. This is a contradiction
since xl 6= 1 for all l. For i = 0, we know that k 6= n and the k-th entry of dk([xn| . . . |x1]),
which is xk+1xk, and the k-th entry of di([xn| . . . |x1]), which is xk+1, coincide. By left
cancellation, we conclude xk = 1, which is again a contradiction. Last, consider the case
k = n (and so i 6= 0): The i-th entry of di([xn| . . . |x1]) is, on the one hand, xi+1xi, and
it would be equal to the i-th entry of dn([xn| . . . |x1]), which is xi. Right cancellation
now implies xi+1 = 1. All in all, this shows that the first condition (M1) of Definition
3.3.4 is satisfied.

The second condition (M2) is clearly satisfied since ν is an involution. The acyclicity
(M3) is a consequence of the noetherianity of ν: Assume we have a cycle

a1, a2, . . . , am = a1

in the graph associated to the matching ν on the vertex set BM (∗) as in Definition 3.3.4.
Without loss of generality, we may assume a1 to be a vertex corresponding to a cell of
the smallest dimension among a1, . . . , am. Note that each edge in the graph changes the
dimension, moreover, the edges decreasing the dimension by 1 are exactly the ones not
in the matching, and the edges increasing the dimension by 1 are exactly the inverted
edges from the matching. So we know that the dimension of a2 has to be dim(a1) + 1,
since it is not smaller than dim(a1). Thus, a1 and a2 have to be some matched pair,
i.e., ν(a1) = a2. So the cell corresponding to a1 is redundant, a2 is collapsible and
so any edge starting in a2 decreases the dimension. Hence, dim(a3) = dim(a1) is the
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smallest dimension in the cycle, so a3 is different from a1 and has to be redundant by
the same argument. Therefore, a3 is a redundant boundary of the collapsible partner of
the redundant cell a1. Inductively, we obtain a chain

a1 ` a3 ` a5 ` . . . ` a2bm2 c−1 ` . . .

where ` is defined before Definition 3.2.3. By the definition of noetherianity, this chain
has to stabilize, contradicting our assumption of starting with a cycle. This completes
the proof.
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4 Garside theory
In this chapter, we investigate the connection between Garside theory and factorability
structures. Garside theory provides families of examples of factorable monoids and
groups. In particular, we will exhibit two factorability structures on the braid groups.

4.1 Garside theory: Basics
In this section we give a short overview of Garside theory needed in this thesis. Garside
theory deals amongst other things with greedy normal forms, for example on monoids,
and with consequences arising from the existence of such normal forms. These normal
forms will provide a wide class of examples of factorable monoids and groups.

The notion of a Garside monoid arises from the following observation: The properties
of the braid monoids used by F. Garside in [38] to solve the word and the conjugacy
problems in the braid monoids and braid groups are also present in a wider class of
groups. There are several sets of axioms which reflect the most important of those
properties (e.g. [24], [29], [28], [27]). We will stick to the definition below, which seems
to be most appropriate in our context. First however, we clarify which sort of properties
is needed. These are certain conditions on the divisibility order in the monoid.

Definition 4.1.1. [28] Let M be a monoid and let x, y be elements in M . We say “x is
a left divisor of y” or, equivalently, “y is a right multiple of x”, and write x � y if
there is a z ∈M such that y = xz. We write x ≺ y if x � y and x 6= y. We call M left
noetherian if there are no infinite descending sequences of the form . . . ≺ x3 ≺ x2 ≺ x1.
Symmetrically, we write x � y for y being a right divisor of x.

A weak form of Garside structure is described by the notion of a locally left Gaussian
monoid.

Definition 4.1.2. [28] A monoid M is called locally left Gaussian if it is right
cancellative, left noetherian, and any two elements admitting a left common multiple also
admit a left least common multiple. The notion of locally right Gaussian monoid is
defined symmetrically. A monoid is called locally Gaussian if it is both left and right
locally Gaussian.

Remark 4.1.3. A left least common multiple c of two elements a, b of a monoid M is
a left common multiple of this elements with the following property: whenever d is a left
common multiple of a and b, we have d � c. This should not be confused with the notion
of left minimal common multiple of a and b, meaning a left common multiple of a and
b which is not right-divisible by any other left common multiple of a and b.

Remark 4.1.4. This is one of many variants of the Garside theory. It seems not to be
used often in more recent papers, yet it fits exactly in our context. Unfortunately, “left
locally Gaussian” was also called “right locally Garside” in [26]. We will nevertheless
stick to the name above. This notion is closely related to the notion of a preGarside
monoid in a recent paper by E. Godelle and L. Paris ([39]). It can also be put in the
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context of the book project by P. Dehornoy, F. Digne, E. Godelle, D. Krammer and
J. Michel ([27]).

Definition 4.1.5. A monoid M is called atomic if for any element m ∈ M \ {1}, the
number

‖a‖ := sup{n | ∃ a1, . . . , an ∈M \ {1} such that m = a1 . . . an}

is finite.

The following special cases of locally left Gaussian monoids are of particular interest.

Definition 4.1.6. [24] A monoid M is called Garside monoid (resp. Gaussian
monoid) if it is atomic, cancellative and the following conditions (resp. first of the
following two conditions) hold:

1. For any two elements x, y in M , their left and right least common multiples and
their left and right greatest common divisor exist. (We denote them by l-lcm(x, y),
r-lcm(x, y), l-gcd(x, y), r-gcd(x, y), respectively.)

2. There is an element ∆ ∈ M , called a Garside element, such that the set of the
left divisors of ∆ coincides with the set of right divisors of ∆, is finite and generates
M .

The braid groups were the inspiration for the notion of Garside groups, so it is not sur-
prising that these and similar groups provide examples for locally Gaussian and Garside
monoids.

Definition 4.1.7. Recall that an Artin group is a group given by a group presentation
of the form

G(S) = 〈S|(st)ms,t = 1 for all s 6= t, s, t ∈ S〉,

where ms,t are natural numbers ≥ 2 or infinity, with ms,t = mt,s for all s 6= t ∈ S. Here,
ms,t = ∞ means that the pair s, t does not satisfy any relation. We can associate to
each Artin group a Coxeter group W (S) by adding relations s2 = 1 for all s ∈ S; this
corresponds to setting the numbers ms,s to be 1. The matrix MS = (ms,t)s,t∈S will be
called the Coxeter matrix defining G(S) or W (S), and the pair (S,MS) will be also
called the Coxeter system. For each Coxeter system, we can define the corresponding
(positive) Artin monoid by the monoid presentation

M(S) = 〈S| sts . . .︸ ︷︷ ︸
ms,t

= tst . . .︸ ︷︷ ︸
ms,t

for all s 6= t ∈ S〉.

For later use, we will denote the alternating word sts . . . with m factors by 〈s, t〉m. Note
that there are a monoid homomorphism π : M (S)→W (S) and a group homomorphism
π : G(S)→W (S) mapping each generator s to its image in the quotient group. We will
call M(S) as well as G(S) or sometimes, by abuse of notation, even S of finite type
if the associated Coxeter group W (S) is finite.
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Remark 4.1.8. Artin monoids of finite type turn out to determine the behavior of the
corresponding Artin group quite completely, as first shown by E. Brieskorn and K. Saito
([10]). In the same article, they investigate more generally the structure of all Artin
monoids. Amongst other things, they show that any Artin monoid is (left and right)
locally Gaussian. Moreover, it is a Garside monoid if and only if it is of finite type.
This class of examples is one of the most important in this thesis.

Remark 4.1.9. There are further examples of Garside and Gaussian monoids as e.g.
torus knot groups; see [27] for a detailed account.

Now, we are going to describe the normal form mentioned above. This is a greedy
normal form: Loosely speaking, one tries to split off a generator which is as large as
possible. We are now going to make this more precise. Furthermore, we are going to
recall that being normal form can be checked locally. The following relation makes it
easier to describe the local behavior of the normal forms.

Definition 4.1.10. [28] Let M be a monoid and let E be a subset of M . For x, y ∈M ,
we say that x CE y if every right divisor of xy lying in E is a right divisor of y.

We are ready to formulate the main property of the future normal form.

Definition 4.1.11. [28] Let M be a monoid and E a subset of M . We say that a finite
sequence (xp, . . . ,x1) in Ep is E-normal if for 1 ≤ i < p, we have xi+1 CE xi.

The following result is closely related to the existence of the normal form:

Lemma 4.1.12. ([28], Lemma 1.7) Let M be a left locally Gaussian monoid, and E a
generating set closed under left least common multiples. Then every element x ∈M \ {1}
admits a unique greatest right divisor lying in E. Here, “greatest” means again: Every
other right divisor of x lying in E is a right divisor of the greatest one.

The following theorem of P. Dehornoy and Y. Lafont ([28]) ensures the existence of
normal forms in left locally Gaussian monoids. Before stating it, we will need one more
notion. It is closely connected to the notion of least common multiples: the notion of a
left and right complement.

Definition 4.1.13. Let M be a left-cancellative monoid. For any two x, y ∈ M whose
right least common multiple exists, we denote by x\y the unique element such that
r-lcm(x, y) = x · (x\y), called the right complement of y in x.

Analogously, we define x/y to be the left complement in a right-cancellative monoid,
i.e., the unique element with l-lcm(x, y) = (x/y) · y.

From now on, we assume 1 6= E . By abuse of notation, we say E is closed under left
complements if E ∪ {1} is closed under left complements.

Theorem 4.1.14. ([28], Proposition 1.9) Let M be a locally left Gaussian monoid, E a
generating subset of M that is closed under left least common multiples and left comple-
ments. Then every nontrivial element x of M admits a unique minimal decomposition
x = xp . . . x1 such that (xp, . . . ,x1) is a E-normal sequence.
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Remark 4.1.15. The original formulations in [28] use right locally Gaussian monoids
and left E-normal forms. We use everywhere the mirrored version: We use CE as in Def-
inition 4.1.10 symmetrically to BE of [28] and our E is closed under left least common
multiples and left complement instead of right least common multiples and right comple-
ments in [28]. In what follows, we use the term “normal form” for the right E-normal
form of Theorem 4.1.14.

For a Garside monoid, it is possible to make some conclusions about its group of
fractions. Recall that the group of fractions of a monoid M consists of a group G
together with a monoid homomorphism i : M → G (often suppressed in the notation)
and it is characterized by the following universal property: Whenever G′ is a group and
f : M → G′ is a monoid homomorphism, f factors uniquely through i, i.e., there is a
unique group homomorphism f ′ : G → G′ such that f ′i = f . As usual, such a group is
unique up to canonical isomorphism if it exists. One possible construction of the group
of fractions is given by taking any monoid presentation of M and considering it as a
group presentation.

Note that in general i needs not to be injective. Obviously, a necessary condition
for i to be injective is the cancellativity of M . Yet, it was shown already by Malcev
in 1937 ([48]) that this is not sufficient. One simple sufficient condition is provided by
the Ore criterion: If in a cancellative monoid any two elements admit a left common
multiple, then this monoid embeds into a group, which is equivalent to the injectivity
of i. Moreover, if the Ore condition is satisfied, any element of the group of fractions
can be written in the form a−1b with some a, b ∈ M (cf. e.g. [21], Section 1.10). In
particular, any Garside monoid satisfies the Ore condition and embeds into its group
of fractions. Furthermore, for the example of Artin groups and Artin monoids above,
the above description shows that an Artin group is exactly the group of fractions of
the corresponding Artin monoid. It is clear from facts collected so far that an Artin
monoid of finite type embeds into the corresponding Artin group. In the general case,
this question was open for a long time and it was answered affirmatively by L. Paris:

Theorem 4.1.16. ([52]) Every Artin monoid injects into the corresponding Artin group.

The fact that Garside monoids satisfy the Ore condition allows to extend the normal
form of a Garside monoid to its group of fractions. This is our next aim. A group which
can be written as a group of fractions of a Garside monoid is called Garside group.
We introduce some notation in the following remark.

Remark 4.1.17. ([24]) Let M be a Garside monoid with a Garside element ∆. We
denote the set of left divisors of ∆ except for 1 by D, and set S = D ∪ {1}. Recall that
S also coincides with the set of right divisors of ∆. For any t ∈ S, we define t∗ = t\∆
and ∗t = ∆/t. Observe that ∆ = tt∗ = ∗tt and (∗t)∗ = t. We also denote ∗t by α(t).

Furthermore, we denote by ϕ the extension as an endomorphism M →M of the map
t 7→ t∗∗ on D. Note that for any x ∈ M we have ∆ϕ(x) = x∆. Denote furthermore
δ = ϕ−1. Note that δ = α2 on D.
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Proposition 4.1.18 ([24]). Let M be a Garside monoid with a Garside element ∆ and
let G be its group of fractions. Then each element of G has a unique decomposition
xp . . . x1y

−1
1 . . . y−1

q with yi,xi ∈ D for all i, r-gcd(x1, y1) = 1 and

r-gcd(∗xk,xk+1) = 1
r-gcd(∗yk, yk+1) = 1

for all k.
In particular, if q = 0, xp . . . x1 ∈ M and x1 = r-gcd(x, ∆). The normal form of the

monoid elements coincides with the D-normal form described in Theorem 4.1.14.

The condition in this proposition reformulates the “greediness” of the normal form.
For the rest of this section, we collect several facts of Garside theory needed in later

proofs. To investigate the behavior of the normal form with respect to products, we
begin with the following lemma.

Lemma 4.1.19 ([24]). Let M be a Garside monoid with a Garside element ∆ and let
x, y be elements in M . Then we have:

r-gcd(xy, ∆) = r-gcd(r-gcd(x, ∆) y, ∆)

For our proofs, we will need some rules for the operations of left least common multiple
and left complement. They are summed up in the following lemma.

Lemma 4.1.20 ([24]). Let S be again the set of left divisors of the Garside element ∆
in the Garside monoid M . Let x, y, z be elements of M and s, t ∈ S. Then we have:

1. (xy)\z = y\(x\z)

2. z\(xy) = (z\x)((x\z)\y)

3. r-gcd(st, ∆) = (δ(t)\α(s))∗

4. st = (α(s)\δ(t)) · ((δ(t)\α(s))∗)

To provide a factorability structure on Garside groups, we need to investigate the
properties of the normal form given by Proposition 4.1.18. First, we need to know how
it behaves with respect to the norm. This question is answered by R. Charney and
J. Meier ([19]):

Lemma 4.1.21 ([19]). Let M be a Garside monoid and G its group of fractions. The
normal form (as in Proposition 4.1.18) for an element g ∈ G is geodesic, i.e., the word-
length norm of g with respect to E = D ∪D−1 is exactly the length of the normal form
of g.

We will need some further properties of the word length in a Garside group.

Lemma 4.1.22 ([19]). Let M be a Garside monoid, G its group of fractions. If a ∈M
has the word length k with respect to D and n is a positive integer, then a∆−n has word
length NE(a∆−n) ≤ max{k,n} and the equality holds if and only if ∆ � a.
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The normal forms as in Proposition 4.1.18 were already used to describe the homology
of Garside groups by R. Charney, J. Meier and K. Whittlesey in [20], as stated more
precisely in the next theorem. We will slightly generalize this result in Section 4.8.

Theorem 4.1.23 ([20]). Let M be a Garside monoid and G its group of fractions. Recall
that we denote the set of left divisors of ∆ except for 1 by D. Define

Dn = {[µ1| . . . |µn] |µi ∈ D for all i and µ1 . . . µn ∈ D}

Let d be the maximal number of non-trivial factors ∆ can be expanded into. Then there
is a free resolution of Z as a trivial ZG-module of the form

0 //
ZG|Dd| // . . . //

ZG|D2| //
ZG|D| // Z // 0

and the differentials are as in the bar resolution.

We are going to need the technique of word reversing in our proofs. This technique,
developed by P. Dehornoy, allows to read off some properties of the monoid from its
presentation if this presentation satisfies certain regularity conditions. In particular, it
provides a criterion for a monoid being left locally Gaussian. We will use this criterion
later to show in Section 4.10 that Thompson monoids are left locally Gaussian. We
recall the right set-up for word reversing.

Definition 4.1.24 ([28]). A monoid presentation (X,R) is called positive if all rela-
tions in R are of the form u = v with u, v ∈ X∗ non-empty, where X∗ denotes the free
monoid generated by X. A presentation is called complemented if it is positive and,
for all α,β ∈ X, there is at most one relation of the form uα = vβ in R and no relation
of the form uα = vα for u 6= v.

Definition 4.1.25 ([28], [25]). Let (X,R) be a positive monoid presentation. Let X−1

be a copy of X, where we denote by x−1 ∈ X−1 the element associated to x ∈ X. For
w, z words over X ∪X−1, we say that w is R-reversible to z if we can transform w
into z by iteratively deleting subwords uu−1 with u ∈ X∗ and replacing subwords of the
form uv−1 by v′−1u′ where u, v are non-empty words in X∗ and v′u = u′v is a relation
in R.

We will use the following suggestive notation for the complements inside the presen-
tation.

Definition 4.1.26 ([28]). Let (X,R) be a complemented presentation and let u, v be
words over X. Denote by u/v and v/u the unique words over X such that uv−1 is
R-reversible to (v/u)−1(u/v) if such words exist.

Remark 4.1.27 ([28]). Let (X,R) be a complemented presentation. For α,β ∈ X, the
elements α/β and β/α are the unique words u, v such that uβ = vα is a relation in R
if they exist.

Now we are in the position to state the criterion mentioned above.
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Theorem 4.1.28 ([28], [29]). Let (X,R) be a complemented presentation of a monoid
satisfying the following conditions:

1. There exists a map ν of X∗ to the ordinals, compatible with the congruence ≡
generated by R, and satisfying ν(uv) ≥ ν(u) + ν(v) for all words u, v in X∗ and
ν(α) > 0 for all α ∈ X.

2. For all α,β, γ ∈ X, we have

(α/β)/(γ/β) ≡ (α/γ)/(β/γ),

i.e., either both sides exist and coincide or neither of them exists.

Then the monoid with the presentation (X,R) is locally left Gaussian.

Remark 4.1.29 ([28]). The operation −/− on words represents the left complement
operation −/− in a locally left Gaussian monoid, which justifies the use of the same
notation.

Remark 4.1.30. In locally left Gaussian monoid, there are no non-trivial invertible
elements: Assume ab = 1. Multiplying with an on the left yields an+1b = an. Hence, for
each n, the element an+1 is a left divisor of an. Thus, we obtain a chain of left divisors
. . . � a3 � a2 � a1 � 1. Since the monoid is left noetherian, this chain has to stabilize.
So for some k, we have ak+1 = ak and this implies by right cancellation a = 1. This
implies also b = 1.

We will need later the following easy lemma.

Lemma 4.1.31. Let M be a locally left Gaussian monoid, and let x, y ∈M have the left
least common multiple ax = by. Then for any z ∈ M , xz and yz admit a left common
multiple which is equal to axz.

Proof. Since axz = byz is a left common multiple of xz and yz, the elements xz and
yz have to admit a left least common multiple. We write it in the form cxz = dyz. By
right cancellation, we have cx = dy, and since ax = by is the left least common multiple
of x and y, we have cx = uax for some u ∈ M . By definition, there is then an element
t in M such that axz = tcxz holds. Right cancellation implies a = tc and c = ua, so
1 = tu. Since M is left noetherian, this implies u = t = 1, hence axz is the left least
common multiple of xz and yz.

4.2 Factorability Structure on Left Locally Gaussian Monoids
The aim of this section is to exhibit a factorability structure on locally left Gaussian
monoids. It will correspond to the normal form we discussed in Section 4.1. First, we
give a reformulation of Theorem 4.1.14. Again, we assume 1 6= E . By abuse of notation,
we say E is closed under left complements if E ∪ {1} is closed under left complements.
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Corollary 4.2.1. Let M be a left locally Gaussian monoid, E a generating subset of
M that is closed under left least common multiples and left complement. For any x ∈
M \ {1}, the beginning x1 of the (unique) E-normal form of x is the greatest right divisor
of x lying in E (greatest with respect to “being right divisor”).

Proof. This follows immediately from the proof of Theorem 4.1.14 in [28].

Lemma 4.2.2. Let M be a left locally Gaussian monoid, E a generating subset of M
that is closed under left least common multiples and left complements. Let x ∈ M \ {1}
be any non-trivial element and let a ∈ E be a generator. Let NF(x) = xp . . . x1 be the
(right) E-normal form as described in Theorem 4.1.14. Let NF(xa) = yq . . . y2y1. Then
either x1a = y1 or there is a generator z ∈ E such that

NF(x1a) = zy1.

Proof. Assume y1 6= x1a. We know by the maximality of y1 that y1 is a left multiple
of a, so there is a t ∈ M with y1 = ta. Thus t is the left complement y1/a, and hence
t ∈ E . Furthermore, we have xa = yq . . . y2ta. This implies by cancellation x � t. By
maximality of x1, we have x1 � t and by assumption, t 6= x1. So there is a z ∈M \ {1}
such that x1 = zt. As above, z ∈ E . We already have x1a = zta = zy1 and have to show
that y1 is the greatest right divisor of x1a lying in E . Now, for any u ∈ E with x1a � u,
we also have xa = (xp . . . x2)x1a � u and thus, by definition, y1 � u. This proves the
statement.

This lemma allows us to compare the lengths of normal forms of x and xa for a
generator a.

Corollary 4.2.3. Let M be a left locally Gaussian monoid, E a generating subset of M
that is closed under left least common multiple and left complement. Let x ∈ M \ {1}
and a ∈ E. Let NF(x) = xp . . . x1 be the (right) E-normal form of x. Let NF(xa) =
yq . . . y2y1. Then either q = p or q = p+ 1.

Proof. We proceed by induction on p. For p = 1, we have x = x1, and the claim follows
directly from Lemma 4.2.2. Now assume we have proved the statement for all lengths
of normal forms ≤ p− 1. Set v = xp . . . x2. We know that this is the normal form of v
by the definition of E-normal sequences. Again, by Lemma 4.2.2 we can conclude that
either x1a = y1 or there exists a z ∈ E such that NF(x1a) = zy1.

In the first case, xa = vy1 = yq . . . y2y1, thus v = yq . . . y2 and by the uniqueness of
normal forms, q = p follows.

In the second case, NF(x1a) = zy1, so we know by the induction hypothesis that vz
has a normal form of length either p− 1 or p on the one hand. On the other hand, we
have

vzy1 = xp . . . x2zy1 = xp . . . x2x1a = xa = yq . . . y2y1

and NF(vz) = yq . . . y2 by cancellation and by the uniqueness of the normal form. So
q− 1 = p− 1 or q− 1 = p, and the claim follows.
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Now we can apply the previous corollary to show that the E-normal form is geodesic.
The following lemma is an analogue of Lemma 4.1.21 by R. Charney and J. Meier.

Lemma 4.2.4. Let M be a left locally Gaussian monoid, E a generating subset of M
that is closed under left least common multiples and left complements. Then the length p
of the normal form x = xp . . . x1 coincides with the word length with respect to E, NE(x),
for any x ∈M \ {1}.

Proof. It is clear that l(NF(x)) ≥ NE(x). For the other inequality, we proceed by
induction on k = NE(x). For k = 1, the claim is clearly true. Assume we have proven the
statement for all word lengths ≤ k− 1. Let ak . . . a1 be a minimal word in E representing
x. Then v = ak . . . a2 is also a minimal word, i.e., word of minimal length, and has thus
word length k − 1, so NF(v) = vk−1 . . . v1 by the induction hypothesis. By Corollary
4.2.3, we know that the normal form of x = va1 is either of length k− 1 or of length k,
so ≤ k. Hence we are done.

We sum up the results of this section in the following theorem.

Theorem 4.2.5. Let M be a left locally Gaussian monoid, E a generating subset of M
that is closed under left least common multiple and left complement. Then (M ,NE) is
factorable with η(x) = (xp . . . x2,x1) with NF(x) = xp . . . x2x1 for x 6= 1 and η(1) =
(1, 1).

Proof. The proof will essentially assemble the results of the last lemmas. First, since
left locally Gaussian monoids are right cancellative, we can use the original Definition
2.1.2 due to Corollary 2.1.14. By definition, η′(x) is an element of E for x 6= 1, and

η(x) · η′(x) = x

holds. Since xp . . . x2 is the normal form of η(x) for an x with NF(x) = xp . . . x2x1, we
conclude by Lemma 4.2.4 that NE(x) = p and NE(η(x)) = p− 1, so the norm condition
is satisfied.

For the conditions (F4) and (F5), we have to compare NF(x) = xp . . . x2x1 with
NF(xa) for some a ∈ E . Write NF(xa) = yq . . . y1 as before. First, by Lemma 2.1.6, we
have to show that NE(xa) = p+ 1 if (x1, a) and (x,x′a) = (xp . . . x2, z) are assumed to
be geodesic, where z ∈ E \ {1} is characterized by NF(x1a) = zy1. The case distinction
in the proof of Lemma 4.2.3, combined with Lemma 4.2.4, shows that in this case, the
E-norm of xa is p+ 1. Furthermore, we know that in this case

(xa)′ = y1 = (x′a)′

holds. This completes the proof.

4.3 Factorability Structure on Artin Monoids
We are going to describe the factorability structures on Artin monoids in more detail.
In particular, we are going to take a closer look at square-free elements which are an
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appropriate generating system for factorability. We will rely on the analysis of divisibility
in Artin monoids due to E. Brieskorn and K. Saito ([10]). The following results will be
needed.

Proposition 4.3.1 ([10], Prop. 2.3). All Artin monoids are cancellative.

The following lemma gives a necessary condition for three generators to have a common
multiple. (It turns out also to be sufficient.)

Lemma 4.3.2 ([10], §2). An element z of an Artin monoid M(S) can only be divisible
by three different letters a, b, c ∈ S if the Coxeter matrix M{a,b,c} defines a finite Coxeter
group.

The following basic observation is also important for us.

Lemma 4.3.3 ([10], §3). For two letters a, b, their least common multiple is given by
〈a, b〉ma,b = aba . . . (a product of ma,b factors).

Furthermore, we will need some results about the square-free elements. Recall that
an element of an Artin monoid M(S) is square-free if there is no word representing
this element and containing a square of a generator s2 (s ∈ S). We will denote the set of
square-free elements in M(S) by QF(S). A classical theorem often attributed to J. Tits
or H. Matsumoto indicates the importance of square-free elements (cf. e.g. [45]).

Theorem 4.3.4 (Tits, Matsumoto). Any two reduced words representing the same el-
ement in a Coxeter group W (S) can be transformed into each other only using braid
relations, i.e., without increasing the length of the word in between.

In particular, one obtains a set-theoretic section τ : W (S) → QF(S) ⊂ M(S) of the
projection π : M(S) → W (S). One can use this to show that π : QF(S) → W (S) is
a bijection. Furthermore, τ is not a monoid homomorphism in general, but we have
τ (uv) = τ (u)τ (v) whenever l(uv) = l(u) + l(v) holds for the Coxeter length l on W (S).

The following proposition is proven by F. Dinge and J. Michel ([32]), based on [50].

Proposition 4.3.5. ([32]) Let M(S) be an Artin monoid. Then the set of all square-
free elements QF(S) ⊂M(S) is closed under left and right least common multiples and
left and right complement. In particular, there are QF(S)-normal forms in M(S) like
described in Theorem 4.1.14.

This implies the following corollary concerning factorability structures.

Corollary 4.3.6. Let M(S) be an Artin monoid. Then there is a factorability structure
on M(S) with respect to the generating system QF (S) of all square-free elements. The
prefix η′(x) of an element x ∈M(S) is given by the maximal square-free right-divisor of
x.

In some cases, it is possible to show that this is the smallest subset of M(S) closed
under left least common multiples and left complements and containing S. For example,
this is surely true for all Artin groups of finite type. (cf. e.g. Section 6.6 of [47]). Yet,
this does not hold in general. A counterexample, where such a subset is again finite, is
given in Section 4.4.
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4.4 Example: A Non-Spherical Artin Group
Let M4,4 (resp. G4,4) be the monoid (resp. group) given by the presentation

〈a, b, c|abab = baba, bcbc = cbcb, ac = ca〉 .

The group G4,4 is non-spherical, i.e., it is not of finite type. In particular, M4,4 contains
infinitely many square-free elements.

We are going to describe the smallest generating set of M4,4 closed under left least
common multiples and left complements.

Lemma 4.4.1. The smallest generating set of M4,4 closed under left least common
multiples and left complements is given by

E+ = {1, a, b, c, ab, ba, bc, cb, ac, aba, bab, bcb, cbc, acb,
baba, cbcb, bcba, babc, ababc, bcbca, ababcb, cbcbab, bcbcabc, ababcba}.

Proof. We will explain the main steps of the proof. First, we start with S = {a, b, c}.
We add to this set all left least common multiples and left complements for pairs in this
subset. According to Lemma 4.3.3, the least common multiples are

abab = baba, cbcb = bcbc, ac,

so that the new left complements are given by

aba, bab, cbc, bcb.

Observe that a set in an Artin monoid which is closed under left complement and contains
the generating set S is also closed under left divisors. Thus we have to add

ab, ba, cb, bc.

Now we form all possible left least common multiples for pairs in the new set. We rely
hereby in particular on the fact that a, b, c cannot have a common multiple according
to Lemma 4.3.2. This is applicable since the Coxeter group associated to M4,4 is not
finite, cf. e.g. the classification of finite Coxeter groups in [45]. We demonstrate our
method in some cases: First, we show that c and ab cannot have a common multiple.
For symmetry reasons, this implies that a and cb cannot have a common multiple. So
assume xc = yab is a common multiple of both, and assume x to have minimal S-length
amongst all possible choices for x. Now it is in particular a common multiple of b and
c, so there exists a z ∈M such that

xc = yab = zcbcb.

By cancellation, we obtain ya = zcbc, which is a common multiple of a and c. This
implies there exists a w ∈M such that

ya = zcbc = wac.
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Cancelling again on the right, we obtain zcb = wa, which is a common multiple of b and
a. So we obtain an element u ∈M such that

zcb = wa = uabab.

So we see that zc = uaba and we deduce there is a v ∈M such that

zc = uaba = vca.

This implies in turn uab = vc, which yields another common multiple of ab and c. We
compute the S-length of v: Because of vca = zc, it is given by

NS(v) = NS(z)− 1.

Since z satisfies the equation xc = zcbcb, we have NS(z) = NS(x) − 3, so NS(v) =
NS(x) − 4, which contradicts the minimality assumption on x. Similarly, one proves
that c and aba and, by symmetry, a and cbc, do not admit common multiples.

In contrast, we compute some least common multiples which do exist. Recall that
by Lemma 4.1.31, we know that the left least common multiple of ab and cb is given
by acb. Furthermore, observe that any common multiple of c and ba is in particular a
common multiple of a and c, so also a multiple of ca. Thus, using again Lemma 4.1.31,
we conclude that

l-lcm(c, ba) = l-lcm(ca, ba) = bcbca,
l-lcm(a, bc) = l-lcm(ac, bc) = babac.

As new left divisors, we obtain bcba and babc. Careful analysis shows that these are all
elements produced by pairs of old ones. So we continue allowing now pairs containing
elements produced in the last step. Lemma 4.1.31 gives us again

l-lcm(babc, cbc) = bcbcabc,
l-lcm(bcba, aba) = babacba,

l-lcm(bab, cab) = bcbcab,
l-lcm(bcb, acb) = babacb.

Now we check that the set obtained this way is indeed closed under left least common
multiple and left complement, which completes the proof.

The structure of the poset E+ (with respect to “right divisibility”) is shown in the
following picture.

51



Observe that in this example we have

Proposition 4.4.2. The inclusion (M4,4, E) → (G(M4,4), E ∪ E−1) is not geodesic;
more precisely, there exists an x ∈M4,4 with NE(x) = 3 and NE∪E−1(x) ≤ 2.

Proof. Consider x = cbacbc. We know that the right greedy normal form is a geodesic
normal form on M4,4 with respect to E , so we can just compute η(x) to determine the
norm. Observe that cbc is a right divisor of x, so by definition it has to be the right divisor
of x′. Note that the only other generators right-divisible by cbc are bcbc and bcbacbc.
But x cannot be divisible by the last one since the relations of M4,4 with respect to
{a, b, c} are homogeneous and bcbacbc has word length 7 with respect to {a, b, c} while
N{a,b,c}(x) = 6.

Assume that there was a y ∈ M4,4 such that x = y(bcbc), then we would have (by
cancellation) cba = yb, so cba would be a left common multiple of a and b and thus a left
multiple of abab. Yet, this is impossible (again by considering the {a, b, c}-word length).

So we have shown x′ = cbc, x = (cb)a /∈ E , so NE(x) = 2 and the first part of the
statement is proven. On the other hand, x = b−1(bcbacbc), so it has at most norm 2 in
G(M4,4) with respect to E ∪ E−1. This yields the claim.

The last proposition indicates one of the reasons why it is complicated to get infor-
mation about the group of fractions of a monoid, even in the relatively simple case of
Artin monoids.
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4.5 Factorability Structure on Garside Monoids
In a special case of left locally Gaussian monoids, namely in the case of Garside monoids,
we are going to show that the factorability structure is particularly nice: Garside monoids
are braided factorable. Throughout this section, let M be a Garside monoid and let ∆
be a Garside element in M . Furthermore, let D be the set of its non-trivial left divisors.
Here and later in this context, we mean by “non-trivial” all divisors except for 1.

First, we prove the following easy lemma:

Lemma 4.5.1. Let A be a locally Gaussian monoid, and let ψ : A→ A be an automor-
phism of monoids. Then we have for all x, y ∈ A such that l-lcm(x, y) exists:

ψ(l-lcm(x, y)) = l-lcm(ψ(x),ψ(y)),
ψ(x/y) = ψ(x)/ψ(y).

Similarly, for all x, y ∈ A such that r-lcm(x, y) exists, we obtain

ψ(r-lcm(x, y)) = r-lcm(ψ(x),ψ(y)),
ψ(x\y) = ψ(x)\ψ(y).

Moreover, for all x, y ∈ A, the identity

r-gcd(ψ(x),ψ(y)) = ψ(r-gcd(x, y))

holds.

Proof. First, we have ψ(x/y)ψ(y) = ψ(y/x)ψ(x) = ψ(l-lcm(x, y)), thus ψ(l-lcm(x, y))
is a left common multiple of ψ(x) and ψ(y). Let now z ∈ A be any left common multiple
of ψ(x) and ψ(y), i.e., uψ(x) = vψ(y) = z for some u, v ∈ A. Then we also have

ψ−1(u)x = ψ−1(v)y = ψ−1(z).

Thus, by definition, t · l-lcm(x, y) = ψ−1(z) for some t ∈ A and ψ(t)ψ(l-lcm(x, y)) = z.
So any left common multiple of ψ(x) and ψ(y) is right-divisible by ψ(l-lcm(x, y)). This
yields the first claim. Since by definition of the left complement we have

l-lcm(ψ(x),ψ(y)) = (ψ(x)/ψ(y))ψ(y),

and we have just identified the left-hand side with ψ(l-lcm(x, y)) = ψ(x/y)ψ(y), the sec-
ond claim follows by right cancellation. The claims about right least common multiples
and right complements follow symmetrically.

Last, we want to show that an automorphism ψ preserves right greatest common
divisors. By definition, there are some elements a, b ∈ A so that x = a · r-gcd(x, y) and
y = b · r-gcd(x, y). So we have ψ(x) = ψ(a)ψ(r-gcd(x, y)), and similarly for y, hence
ψ(r-gcd(x, y)) is a right common divisor of ψ(x) and ψ(y). Now let z be any right
common divisor of ψ(x) and ψ(y), thus there exist elements c, d ∈ A with ψ(x) = cz
and ψ(y) = dz. Applying ψ−1, we obtain x = ψ−1(c)ψ−1(z) and similarly, ψ−1(z) is a

53



right divisor of y, so it is a right divisor of r-gcd(x, y) since ψ−1(z) is a right common
divisor of x and y. This implies the existence of some t ∈ A with r-gcd(x, y) = tψ−1(z).
Applying ψ again shows that z is a right divisor of ψ(r-gcd(x, y)), so ψ(r-gcd(x, y)) is
the right greatest common divisor of ψ(x) and ψ(y).

The set D is closed unter left least common multiples: Since any two elements are
right divisors of ∆, so is their left least common multiple. Similarly, D is closed under
left complements. Thus, there is a factorability structure on (M ,D) given by Theorem
4.2.5. We will prove now that Garside monoids are even braided factorable (cf. Definition
2.1.17).

Proposition 4.5.2. The factorability structure from Theorem 4.2.5 on a Garside monoid
(M , ∆) is braided factorable.

Proof. The proof works simply by direct, yet tedious computation. Observe that δ : M →
M , uniquely described by ∆x = δ(x)∆ for all x ∈ M , is an automorphism of M , thus
Lemma 4.5.1 applies. Furthermore, as in Remark 4.1.17, we denote for s ∈ D by α(s)
the unique element such that α(s)s = ∆. Similarly, s∗ is the unique element such
that ss∗ = ∆. We have α(s∗) = s for all s ∈ D ∪ {1} by definition. We depict the
compositions f1f2f1 and f2f1f2 schematically below. Let a, b, c be in D.

a b c

a x y

z w y

z u v

a b c

x̃ ỹ c

x̃ z̃ w̃

ũ ṽ w̃

Recall that the factorability structure on Garside monoids is a special case of the
factorability structure on left locally Gaussian monoids as described in Theorem 4.2.5.
Using Corollary 4.2.1, we know that for any t ∈M \ {1}, the prefix η′(t) is given by the
greatest right divisor of t lying in D. Being the greatest right divisor of t lying in D can
be rephrased as being the greatest right divisor of t which is also a right-divisor of ∆.
So we have (cf. also Proposition 4.1.18):

η′(t) = r-gcd(t, ∆).

This implies in the picture above: v = r-gcd(wy, ∆) and w = r-gcd(ax, ∆).
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First, we check that v = w̃. Indeed, we obtain by inserting definitions and using
Lemma 4.1.19:

v = r-gcd(∆,wy) = r-gcd(r-gcd(ax, ∆)y, ∆) = r-gcd(axy, ∆) = r-gcd(abc, ∆)

and

w̃ = r-gcd(∆, ỹc) = r-gcd(r-gcd(ab, ∆)c, ∆) = r-gcd(abc, ∆).

So we are going to verify u = ṽ and z = ũ to establish the statement. Note that by
cancellation it is enough to show z = ũ since zuv = abc = ũṽw̃. By Parts 3 and 4 of
Lemma 4.1.20, we observe:

y = r-gcd(bc, ∆) = (δ(c)\α(b))∗,
x = α(b)\δ(c).

Applying the Lemma 4.1.20 again, we obtain

z = α(a)\δ(x)
= α(a)\δ (α(b)\δ(c))
= α(a)\

(
δ(α(b))\δ2(c)

)
= (δ(α(b)) · α(a)) \δ2(c),

where the third equality is an application of Lemma 4.5.1 and the last equality follows
from Part 1 of Lemma 4.1.20. Now we are going to compute ũ in order to compare it
with z. A first application of 4.1.20(4) yields

ũ = α(x̃)\δ(z̃).

For the same reason, the following identity for z̃ holds:

z̃ = α(ỹ)\δ(c).

Next, we insert the formula for z̃ into the one for ũ and we get

ũ = α(x̃)\δ (α(ỹ)\δ(c))
= α(x̃)\

(
δ(α(ỹ))\δ2(c)

)
= (δ(α(ỹ)) · α(x̃)) \δ2(c).

This implies that it is enough to show:

δ(α(ỹ)) · α(x̃) = δ(α(b)) · α(a).

By multiplication with x̃ on the right, we see that this identity is equivalent to

δ(α(b))α(a)x̃ = δ(α(ỹ))α(x̃)x̃

= α3(ỹ)∆
= ∆α(ỹ),
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where we used the definition α(s)s = ∆, as well as α2 = δ and ∆s = δ(s)∆ for all s ∈M .
Multiplying both sides by ỹ on the right, we observe that it is enough to show that

δ(α(b))α(a)x̃ỹ = ∆α(ỹ)ỹ = ∆2.

Recall that x̃ỹ = ab, so we reduced the statement to

∆2 = δ(α(b))α(a)ab.

We simplify the right-hand side:

δ(α(b))α(a)ab = δ(α(b))∆b
= ∆α(b)b = ∆2.

Thus, the simplified statement is true, and so is the one we started with. This completes
the proof.

4.6 Factorability Structure on Garside Groups
We have already shown that there is a factorability structure on left locally Gaussian
monoids. Yet, it is hard to transfer information about monoids into information about
the corresponding groups of fractions in the general case. In this section, we show
how this works in the case of Garside monoids. The key ingredient is the normal form
described by P. Dehornoy ([24]) as in Proposition 4.1.18. Furthermore, we will use the
results by R. Charney and J. Meier concerning the lengths of normal forms.

In this section, let M be a Garside monoid with a Garside element ∆ and let D be the
set of its non-trivial left divisors. Let G be the group of fractions of M .

We define now η on G as follows: For any z ∈ G, let xp . . . x1y
−1
1 . . . y−1

q be the normal
form of Proposition 4.1.18. We set

η′(z) = y−1
q

η(z) = xp . . . x1y
−1
1 . . . y−1

q−1

in the case that q 6= 0 and

η′(z) = x1

η(z) = xp . . . x2

for q = 0 (equivalently, for z ∈M).

Proposition 4.6.1. The map η turns the normed group (G,NE) into a factorable group.
Here, NE denotes the word-length norm with respect to the generating set E = D∪D−1.

Before proving the proposition, we need the following lemma varying slightly the
normal forms already known in the literature. Since we need to connect these normal
forms with the ones in Proposition 4.1.18, we will give a short proof of this lemma.
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Lemma 4.6.2. For any z ∈ G, there is a unique decomposition z = wr . . . w1∆−m

with m ≥ 0 where wr . . . w1 ∈ M is in its normal form like in Proposition 4.1.18, and
wr . . . w1 � ∆ if m > 0. If the normal form of z described in Proposition 4.1.18 is given
by

xp . . . x1y
−1
1 . . . y−1

q

and q > 0, then m = q and r ≤ p+ q. Furthermore, if in this case z is not a power
of ∆, the relation between w1 and yq is given by w1 = ϕq−1(y∗q ) or, equivalently, y−1

q =
∆−1ϕ−q(w1).

Proof. If q = 0 (equivalently, z ∈ M), there is nothing to show. So we assume q > 0
(equivalently, z /∈ M).

We start with the normal form of z as in Proposition 4.1.18 and apply the observations
of Remark 4.1.17. In particular, we know for each divisor s of ∆ that s−1 = s∗∆−1 holds.

z = xp . . . x1y
−1
1 . . . y−1

q

= xp . . . x1y
∗
1∆−1 . . . y∗q∆−1

= xp . . . x1y
∗
1ϕ(y

∗
2) . . . ϕ

q−1(y∗q )∆
−q.

Observe that all ϕi−1(y∗i ) are divisors of ∆ since ϕ(∆) = ∆ and y∗i are divisors of ∆. Yet,
it can happen that ϕi−1(y∗i ) = 1. Since ϕ is a monoid automorphism, this is equivalent
to y∗i = 1, and this in turn is equivalent to yi = ∆. Observe that if p > 0, this cannot
occur. Indeed, if yj = ∆, then we have

xp . . . x1y
−1
1 . . . y−1

q = xp . . . x2(x1∆−1)ϕ−1(y−1
1 ) . . . ϕ−1(y−1

j−1)y
−1
j+1 . . . y

−1
q

which would contradict the fact that this normal form is geodesic (cf. Lemma 4.1.21)
since x1∆−1 ∈ E ∪ {1}. Now let p = 0. Then z−1 = yq . . . y1 is a right greedy normal
form normal form of Proposition 4.1.18. In it, all ∆’s are on the very right. Indeed, if
an element of M can be written in the form a∆b, then it is equal to aϕ−1(b)∆. Now
follows from the definition of greediness that if the normal form of z−1 contains a ∆,
then ∆ = r-gcd(∆, z−1) = y1. Iterating this argument, we see that all ∆’s in the normal
form are on the very right.

Denote now by wr, . . . ,w1 the letters xp, . . . ,x1, y∗1,ϕ(y∗2), . . . ,ϕq−1(y∗q ) if p > 0 and
the letters ϕj−1(y∗j ), . . . ,ϕq−1(y∗q ) for p = 0 where j is the smallest index such that
yj 6= ∆.

We check that z∆q has wr . . . w1 as its normal form. Indeed, the equation

r-gcd(∗xk,xk+1) = 1

holds by definition. Next, we obtain

r-gcd(∗(y∗1),x1) = r-gcd(y1,x1) = 1.
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At last, we note that Remark 4.1.17 implies x∗ = ∗ϕ(x) and ϕ(x∗) = ϕ(x)∗ for all
∆ � x. Recall furthermore from Remark 4.1.17 that for all t ∈ D, the identity (∗t)∗ = t
holds. Analogously, also the identity ∗(t∗) = t holds true. We use this to check

r-gcd(∗ϕi(y∗i+1),ϕi−1(y∗i )) = r-gcd(ϕi(yi+1),ϕi(∗yi))
4.5.1
= ϕi(r-gcd(∗yi, yi+1)) = 1.

So, xp . . . x1y
∗
1ϕ(y

∗
2) . . . ϕ

q−1(y∗q ) is a normal form.
Assume now, for contradiction, xp . . . x1y

∗
1ϕ(y

∗
2) . . . ϕ

q−1(y∗q ) � ∆ holds. Then we
know that ϕq−1(y∗q ) = ∆ by the second part of Proposition 4.1.18, thus also y∗q = ∆ and
yq = 1 follows. This contradicts the choice of yi.

The uniqueness of the new normal form now follows from the uniqueness of the normal
form in Proposition 4.1.18.

We have defined w1 to be ϕq−1(y∗q ). We want to prove the equivalent formulation
y−1
q = ∆−1ϕ−q(w1). The definition is equivalent to

ϕ1−q(w1) = y∗q .

We can rewrite yqy∗q = ∆ to y∗q = y−1
q ∆. Inserting this into the equation above and

multiplying with ∆−1, we obtain

y−1
q = ϕ1−q(w1)∆−1 = ∆−1ϕ−q(w1).

This completes the proof.

The following easy fact will be used several times in the proof:

Lemma 4.6.3. Let M be a Garside monoid and let a, b ∈ D be two divisors of ∆. Then
a∗ � b is equivalent to ab � ∆. Indeed, in this case one can even show that there is a
t ∈ D ∪ {1} so that ab = t∆.

Proof. The statement a∗ � b is equivalent to the existence of a d ∈ M with a∗d = b.
Due to cancellativity, this is equivalent to the existence of d ∈M with ∆d = aa∗d = ab,
and this is in turn equivalent to the existence of d ∈M with ab = ∆d = ϕ−1(d)∆. This
proves the first statement.

Now we assume these equivalent conditions hold. Since b is a right-divisor of ∆ and d
is a right-divisor of b, the element d lies necessarily in D∪ {1}. Since ϕ−1 maps divisors
of ∆ to divisors of ∆, this completes the proof.

We are now ready to prove the proposition above.

Proof. (of Proposition 4.6.1) Note that for a non-trivial z with normal form

xp . . . x1y
−1
1 . . . y−1

q

the element y−1
q is in D−1 and x1 ∈ D, so (F3) of Definition 2.1.2 holds. Furthermore,

(F1) holds by definition. By Lemma 4.1.21 and since by definition η(z) has the normal
form xp . . . x1y

−1
1 . . . y−1

q−1 or xp . . . x2, we observe that (F2) is fulfilled.
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We now proceed to show that (F4) and (F5) are true as well. Note that if α and β from
Definition 2.1.2 as described in Remark 2.1.3 coincide, then (F4) and (F5) are satisfied.
Indeed, observe that if both compositions always coincide, then the norm condition is
automatically fulfilled.

We have to distinguish several cases.

1. First, take z ∈M , s ∈ D. We use Proposition 4.1.18 and Lemma 4.1.19 to see:

η′(zs) = r-gcd(zs, ∆) = r-gcd(r-gcd(z, ∆)s, ∆) = η′(η′(z)s).

This implies that on such elements, α and β from Definition 2.1.2 as described in
Remark 2.1.3 coincide, thus (F4) and (F5) are satisfied.

2. Now assume z /∈ M , s ∈ D. Recall that by Lemma 2.1.6, we have to show
that if the pairs (η′(z), s) and (η(z), η(η′(z)s)) are geodesic pairs, then (z, s) is a
geodesic pair and that in this case η′(η′(z)s) = η′(zs) holds. So we assume the
pairs (η′(z), s) and (η(z), η(η′(z)s)) are geodesic.
We use the normal form z = wr . . . w1∆−q, q > 0, of Lemma 4.6.2. Observe that
we can write

zs = wr . . . w1∆−qs = wr . . . w1ϕ
q(s)∆−q.

This implies in particular that

NE(zs) ≤ max{NE(wr . . . w1ϕ
q(s)), q}

by Lemma 4.1.22.
Now we have to analyze when the pairs (η′(z), s) = (y−1

q , s) and (η(z), η(η′(z)s))
are geodesic. We show first that if r = 0, the pair (η′(z), s) is non-geodesic. If
r = 0, we have z = ∆−q and η′(z) = ∆−1. This implies

NE(η
′(z)s) = NE(∆−1s) = NE

(
(s∗)−1

)
≤ 1.

So we don’t need to consider the case r = 0.
Assume from now on r ≥ 1, i.e., w1 6= 1. By Lemma 4.6.2, we have

y−1
q = ∆−1ϕ−q(w1) = ϕ−q+1(w1)∆−1.

The product η′(z)s can thus be written as

η′(z)s = ϕ−q+1(w1)∆−1s = ϕ−q+1(w1ϕ
q(s))∆−1.

Since we assumed the pair (η′(z), s) to be geodesic, the element η′(z)s has length
2. So we use Lemma 4.1.22 to see

2 = NE
(
ϕ−q+1(w1ϕ

q(s))∆−1
)
≤ max{ND(ϕ−q+1(w1ϕ

q(s))), 1}.
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Thus, we know that the D-length of ϕ−q+1(w1ϕ
q(s)) is at least 2. Since ϕ is an

automorphism of M mapping D to itself, we conclude that w1ϕ
q(s) has at least

D-length 2. But as a product of two elements of D, it has D-norm exactly 2. In
particular, we know that the above inequality is in this case an equality, so by
Lemma 4.1.22, the element ϕ−q+1(w1ϕ

q(s)) and thus also w1ϕ
q(s) is not divisible

by ∆.
Denote η(w1ϕ

q(s)) by (a, b). Since w1ϕ
q(s) has norm 2, the pair (a, b) is already

the normal form of w1ϕ
q(s). In particular, a and b are in D, and by the definition

of the normal form in Proposition 4.1.18, we have r-gcd(∗b, a) = 1. Moreover,
since w1ϕ

q(s) is not divisible by ∆, the prefix b is not equal to ∆. We would like
to express η′(η′(z)s) in a and b using Lemma 4.6.2. Since ϕ−q+1(w1ϕ

q(s)) is not
divisible by ∆, the normal form of η′(z)s in the sense of Lemma 4.6.2 is given by
NF(ϕ−q+1(w1ϕ

q(s)))∆−1. Observe that

η′(z)s = ϕ−q+1(w1ϕ
q(s))∆−1 = ϕ−q+1(ab)∆−1 = ϕ−q+1(a)ϕ−q+1(b)∆−1.

We check that ϕ−q+1(a)ϕ−q+1(b) is the normal form of ϕ−q+1(w1ϕ
q(s)). We only

have to show that ϕ−q+1(b) is the right-most letter of the normal form since the
element ϕ−q+1(w1ϕ

q(s)) has norm 2. For this, we use Lemma 4.5.1:

r-gcd(ϕ−q+1(a)ϕ−q+1(b), ∆) = ϕ−q+1(r-gcd(ab, ∆)) = ϕ−q+1(b).

So we know by Lemma 4.6.2 that

η′(η′(z)s) = ∆−1ϕ−1(ϕ−q+1(b)) = ∆−1ϕ−q(b) = ϕ−q+1(b)∆−1

and thus η(η′(z)s) = ϕ−q+1(a).
We now look at the second pair. By definition, η(z) is given by zyq. We want to
compute its normal form as given in Lemma 4.6.2. We have

zyq = wr . . . w1∆−qyq = wr . . . w1ϕ
q(yq)∆−q.

We look closer at the product w1ϕ(yq) using Lemma 4.6.2 once again:

w1ϕ
q(yq) = ϕq−1(y∗q )ϕ

q(yq) = ϕq−1(y∗qϕ(yq)).

We can now simplify y∗qϕ(yq) by observing that

yqy
∗
qϕ(yq) = ∆ϕ(yq) = yq∆,

which immediately implies y∗qϕ(yq) = ∆. So we obtain in total

zyq = wr . . . w1ϕ
q(yq)∆−q = wr . . . w2∆−q+1,

which is now again a normal form in the sense of Lemma 4.6.2. Here, we use that
wr . . . w2 is not divisible by ∆ since wr . . . w1 is not divisible by ∆. Hence, the
E-length of wr . . . w2∆−q+1 is by Lemma 4.1.22 given by max{r− 1, q− 1}.
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Since the pair

(η(z), η(η′(z)s)) = (wr . . . w2∆−q+1,ϕ−q+1(a))

is geodesic, we know that the norm of

wr . . . w2∆−q+1 ·ϕ−q+1(a) = wr . . . w2a∆−q+1

must be equal to max{r− 1, q− 1}+ 1 = max{r, q}. Combining this with Lemma
4.1.22 applied to wr . . . w2a∆−q+1, we see that

max{r, q} ≤ max{ND(wr . . . w2a), q− 1} ≤ max{r, q− 1}.

This, in turn, implies r = max{r, q} = max{r, q − 1}. So we conclude that the
norm of wr . . . w2a is r and by the second part of Lemma 4.1.22, ∆ does not right-
divide wr . . . w2a.
Using Lemma 4.1.19 and Proposition 4.1.18 once again, we see that the normal
form of wr . . . w1ϕ

q(s) ends with

r-gcd(wr . . . w1ϕ
q(s), ∆) = r-gcd(r-gcd(wr . . . w1, ∆)ϕq(s), ∆)

= r-gcd(w1ϕ
q(s), ∆) = b.

In particular, since we have seen b 6= ∆, it follows that ∆ does not right-divide
wr . . . w1ϕ

q(s). So the normal form of wr . . . w1ϕ
q(s) is given by

NF(wr . . . w1ϕ
q(s)) = NF(wr . . . w2a)b.

Since NF(wr . . . w2a) has length r (e.g. by Lemma 4.2.4), the normal form of
wr . . . w1ϕ

q(s) is of length r+ 1 and the norm of

zs = wr . . . w1ϕ
q(s)∆−q

is max{q, r + 1} = r + 1. So we have shown that (z, s) is a geodesic pair. Using
Lemma 4.6.2, we can compute η′(zs): It is given by

∆−1ϕ−q(b) = ϕ−q+1(b)∆−1.

This coincides with η′(η′(z)s). So we have proven the statement for this case.

3. Consider now the case z ∈ M , s ∈ D−1. There is a t ∈ D ∪ {1} \ {∆} with
s = t∆−1, namely, if s = u−1 with u ∈ D, we have t = u∗. Let z = xp . . . x1 be the
normal form of z. Then zs = xp . . . x1t∆−1.
If x∗1 � t, then there is by Lemma 4.6.3 an element c ∈ D∪{1} such that x1t = c∆.
Therefore,

η′(z) · s = x1t∆−1 = c
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so the pair (η′(z), s) is not geodesic. Thus, (F4) and (F5) of Definition 2.1.2 are
satisfied in this case by Lemma 2.1.6.
If x∗1 � t, then Lemma 4.6.3 implies that x1t � ∆. We show first that this implies
xp . . . x1t is not right-divisible by ∆. Suppose it were, then there is a u ∈ M so
that

xp . . . x1t = u∆ = u · ∗tt,

and by cancellation, ∗t ∈ D is a right-divisor of xp . . . x1. By definition, x1 is the
greatest divisor of xp . . . x1 lying in D, so this would imply the existence of some
v ∈M with x1 = v · ∗t, and x1t = v · ∗tt = v∆, contradicting our assumptions.
Hence, NF(xp . . . x1t)∆−1 is a normal form in the sense of Lemma 4.6.2. The
normal form NF(xp . . . x1t) ends with

r-gcd(xp . . . x1t, ∆) = r-gcd(r-gcd(xp . . . x1, ∆)t, ∆) = r-gcd(x1t, ∆),

which we will denote by a. Here, we use Lemma 4.1.19 for the first equality. Thus
by Lemma 4.6.2 and by definition of η, we have η′(zs) = ∆−1ϕ−1(a). On the other
hand,

η′(η′(z) · s) = η′(x1t∆−1) = ∆−1ϕ−1(r-gcd(x1t, ∆)) = ∆−1ϕ−1(a).

This implies that on such elements z and s, the maps α and β from Definition
2.1.2 as described in Remark 2.1.3 coincide, thus (F4) and (F5) are satisfied.

4. Last, we come to the case z /∈ M , s ∈ D−1. There is again a t ∈ D∪{1} \ {∆} with
s = t∆−1. Let as before z = wr . . . w1∆−q, q > 0, be the normal form of Lemma
4.6.2. Then zs = wr . . . w1ϕ

q(t)∆−q−1. Again, two cases are possible.
If w∗1 � ϕq(t), we have w1ϕ

q(t) = d∆ for some d ∈ D ∪ {1} by Lemma 4.6.3. We
obtain using Lemma 4.6.2:

η′(z)s = ∆−1ϕ−q(w1)t∆−1 = ∆−1ϕ−q(w1ϕ
q(t))∆−1 = ∆−1ϕ−q(d) ∈ D−1 ∪ {1}.

So (η′(z), s) is not geodesic. Thus, (F4) and (F5) of Definition 2.1.2 are satisfied
in this case by Lemma 2.1.6.
If w∗1 � ϕq(t), we conclude again that ∆ is not a divisor of wr . . . w1ϕ

q(t). There-
fore, NF(wr . . . w1ϕ

q(t))∆−q−1 is the normal form of zs in the sense of Lemma
4.6.2. We compute again as before:

r-gcd(wr . . . w1ϕ
q(t), ∆) = r-gcd(w1ϕ

q(t), ∆) =: a.

Thus by Lemma 4.6.2, we have η′(zs) = ∆−1ϕ−q−1(a) = ϕ−q(a)∆−1. On the other
hand, we have to determine η′(η′(z) · s). First, we can write η′(z)s as follows using
Lemma 4.6.2:

η′(z) · s = ϕ−q+1(w1)∆−1s = ϕ−q+1(w1)∆−1t∆−1 = ϕ−q+1(w1)ϕ(t)∆−2.
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We now want to compute its prefix. By Lemma 4.6.3, our assumption w∗1 � ϕq(t)
implies w1ϕ

q(t) � ∆, and thus also

ϕ−q+1(w1)ϕ(t) = ϕ−q+1(w1ϕ
q(t))

is not divisible by ∆. So NF(ϕ−q+1(w1)ϕ(t))∆−2 is the normal form of η′(z)s in
sense of Lemma 4.6.2. We use this lemma as well as the Proposition 4.1.18 and
Lemma 4.5.1 once again to conclude:

η′(η′(z)s) = ϕ−1
(
r-gcd(ϕ−q+1(w1)ϕ(t), ∆)

)
∆−1

= ϕ−q (r-gcd(w1ϕ
q(t), ∆))∆−1 = ϕ−q(a)∆−1

This implies that on such elements z and s, the maps α and β from Definition
2.1.2 as described in Remark 2.1.3 coincide, thus (F4) and (F5) are satisfied. This
completes the case distinction.

4.7 Braid Groups and Monoids
In this section, we want to use a special case of Proposition 4.3.5 to give a more explicit
example of the factorability structures described in the last sections.

Consider the braid monoid B+
n , n ≥ 1, i.e., the monoid generated by n− 1 generators

σ1, . . . ,σn−1, subject to relations

σiσj = σjσi if |i− j| ≥ 2,
σiσjσi = σjσiσj if |i− j| = 1.

This is a special case of an Artin monoid (cf. Definition 4.1.7), which historically was
the prototypical example generalized then to Artin groups and monoids.

On this monoid, we have shown the existence of a factorability structure with respect
to the generating system D of all non-trivial divisors of the Garside element. The Garside
element of this monoid can be chosen to be a half-twist, given by the formula

∆n = (σ1σ2 . . . σn−1)(σ1σ2 . . . σn−2) . . . (σ1σ2)σ1 ∈ B+
n .

This braid can be drawn as follows:

1
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It is shown by E. Brieskorn and K. Saito ([10]) that for Artin monoids of finite type,
the square-free elements are exactly the divisors of the standard Garside element ∆. As
described in Section 4.3, the square-free elements are in bijection to the corresponding
Coxeter group, which in the braid group case is the symmetric group. In particular, we
know that D has n!− 1 elements.

The factorability structure on B+
n yields by the last section a factorability structure

on the braid groups with respect to the generating system D ∪D−1.

Example 4.7.1. We want to illustrate the factorability structure by a calculation exam-
ple. We consider the braid σ3σ2σ

−3
1 σ2 ∈ B4. We would like to compute the value of η on

it. First, we write it in the form xy−1 with x, y ∈ B+
4 . Since in B+

3 we have

σ1∆3 = σ1(σ2σ1σ2) = (σ1σ2σ1)σ2 = ∆3σ2,

it follows that ϕ(σ1) = σ2 holds in B+
3 and one easily concludes

σ−3
1 (σ2σ1σ2) = (σ2σ1σ2)σ

−3
2 .

Using this, we obtain

σ3σ2σ
−3
1 σ2 = σ3σ2σ

−3
1 σ2σ1σ2σ

−1
2 σ−1

1
= σ3σ2(σ2σ1σ2)σ

−3
2 σ−1

2 σ−1
1

= σ3σ
2
2σ1σ

−3
2 σ−1

1 .

Now we compute the normal forms in B+
4 for x = σ3σ

2
2σ1 and y = σ1σ

3
2 (cf. Proposition

4.1.18). One can check that

x = (σ3σ2) · (σ2σ1)

y = (σ1σ2) · σ2 · σ2

are the normal forms and that r-gcd(σ2σ1,σ2) = 1. Thus,

η(σ3σ2σ
−3
1 σ2) = (σ3σ

2
2σ1σ

−2
2 ,σ−1

2 σ−1
1 ).

Instead of the positive braid monoid we may also consider the Birman-Ko-Lee monoids.
These are monoids which also have the braid groups as their groups of fractions. They
were first defined in [7]. These monoids were shown to be Garside by D. Bessis, F. Dinge
and J. Michel ([6]).

Definition 4.7.2. ([7]) The n-th Birman-Ko-Lee monoid BKLn can be defined in
terms of generators and relations as follows:

〈 ats, 1 ≤ s < t ≤ n|atsarq = arqats if the intervals [s, t] and [q, r] are disjoint or nested
atsasr = atrats = asratr for 1 ≤ r < s < t ≤ n 〉

The element ats corresponds to the braid interchanging the t-th and the s-th strand in
front of all other strands (cf. the picture of a52 with n = 7 below).
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This monoid is Garside with a Garside element (as shown in [6]) given by

δ = an(n−1)a(n−1)(n−2) . . . a21 = σn−1σn−2 . . . σ1.

In particular, the Birman-Ko-Lee monoid BKLn embeds into the braid group Bn and
satisfies the Ore condition. Moreover, it follows from Theorem 4.2.5 that there is a
factorability structure on BKLn with respect to the generating system of all divisors of
δ. By the last section, it can be used to define a second factorability structure on the
braid groups.

Remark 4.7.3. It is shown by D. Bessis ([5], Proposition 5.2.1) that the set of right-
divisors of δ in BKLn contains exactly 1

n+2 (
2n+2
n+1 ) elements (which is the (n + 1)-st

Catalan number) and is in general smaller than the set of right-divisors of ∆ in B+
n ,

which has n! elements. So the factorability structure given by the Birman-Ko-Lee monoid
has a smaller generating system than the one associated to the positive braid monoid.
Note yet that the positive braid monoid seems to be the more “natural” one and was
already considered much earlier.

4.8 Homology of Locally Left Gaussian Monoids
The results of this section were found partially joint with A. Heß. The aim of this section
is to generalize Theorem 4.1.23 by R. Charney, J. Meier and K. Whittlesey ([20]) for
Garside monoids to left cancellative, locally left Gaussian monoids which are atomic.
For this, we give a proof using discrete Morse theory, thus also reproving the original
result as already written down in [42].

The proof of the following statement follows closely the proof of Lemma 1.7 of [28].

Lemma 4.8.1. Let M be a locally left Gaussian monoid, S a generating set closed under
left complement and left least common multiple. Let a 6= 1 be an element of M , and
let b be in S ∪ {1}. Then there exists a (unique) greatest right divisor d of a for which
db ∈ S.

Proof. First, we observe that the set A = {z ∈M |a = zu and ub ∈ S} is non-empty and
thus has to have a minimal element with respect to relation “being left divisor” since M
is left noetherian. Let c be such a minimal element and assume a = cd. Note that by
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definition db ∈ S. We are going to show that d has the desired property. Let a = uv for
u, v ∈M such that vb ∈ S. We have to show that v is a right divisor of d.

Observe that vb is the left least common multiple of b and vb, thus v is a left comple-
ment of those (cf. Definition 4.1.13) and has to lie in S; similarly we observe that d ∈ S.
Since a is a common left multiple of d and v, they must have the left least common
multiple sd = tv and sd, s, t ∈ S by assumption. Moreover, there exists x ∈M such that
a = x(sd). Furthermore, by Lemma 4.1.31, sdb = tvb is the left least common multiple
of db and vb, thus lies again in S. So x ∈ A and, since a = xsd = cd, we have xs = c
and x is a left divisor of c. By the minimality of c, we have s = 1, so d = tv. This yields
the claim.

Notation 4.8.2. Let M be a locally left Gaussian monoid, S a generating set closed
under left complement and left least common multiple. Let a 6= 1 be an element of M ,
and let b be in S ∪ {1}. We write γ(a, b) for the greatest right divisor d of a for which
db ∈ S. Furthermore, we write ψ(a, b) for the unique element with a = ψ(a, b)γ(a, b).

Let M be a locally left Gaussian monoid and denote by B∗M the normalized inhomo-
geneous bar complex of M . The modules BnM have a canonical basis Ωn, consisting of
all tuples [xn| . . . |x1] satisfying xi 6= 1 for all i. We write Ω∗ for the union of all Ωn. As
before, we denote as usual the summands in the differential in the inhomogeneous bar
complex by di.

Let S be a generating set for M , closed under left complement and left least common
multiple. Define

Sn = {[xn| . . . |x1] ∈ Ωn | For all 1 ≤ k ≤ n,xk . . . x1 ∈ S }.

The following proposition constructs a noetherian matching on the bar complex (cf.
Section 3.2) of a left cancellative, atomic, locally left Gaussian monoid and will be the
main part of our proof.

Proposition 4.8.3. There exists a noetherian matching µ : Ω∗ → Ω∗ on B∗(M) with
the property that x ∈ Ωn is a fixed point if and only if x ∈ Sn.

Proof. First, we define the height of a generator [xn| . . . |x1] ∈ B∗M to be the maximal
integer h ≥ 0 subject to [xh| . . . |x1] ∈ Sn. If h = n, then µ is defined to fix this element.
Otherwise, h+ 1 ≤ n and by definition xh+1xh . . . x1 /∈ S. For convenience, set x0 = 1.
We now distinguish two cases.

1. If γ(xh+1,xh . . . x1x0) = 1, then we call the cell [xn| . . . |x1] collapsible and set

µ([xn| . . . |x1]) = [xn| . . . |xh+2|xh+1xh|xh−1| . . . |x1].

Observe that the new cell has height h− 1.

2. If γ(xh+1,xh . . . x1x0) 6= 1, then we call [xn| . . . |x1] redundant and set

a = ψ(xh+1,xh . . . x1),
d = γ(xh+1,xh . . . x1) and
µ([xn| . . . |x1]) = [xn| . . . |xh+2|a|d|xh| . . . |x1].
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Note that a 6= 1, because by definition dxh . . . x1 ∈ S but

adxh . . . x1 = xh+1xh . . . x1 /∈ S.

Furthermore, by this argumentation we see that the new cell has height h+ 1. In
particular, if we started with a cell of height 0, we will get into this case since
γ(x1,x0) = γ(x1, 1) is exactly the greatest divisor of x1 lying in S. The element
γ(x1, 1) is non-trivial since x1 6= 1.

We are now going to show step by step that µ defined in this way is a noetherian
matching.

Our first goal is to show that µ is an involution.
Let x = [xn| . . . |x1] be redundant of height h. We will first show that

µ(x) = [xn| . . . |xh+2|a|d|xh| . . . |x1]

is collapsible of height h+ 1.
Set c = γ(a, dxh . . . x1). Then a = yc for y = ψ(a, dxh . . . x1), so xh+1 = ad = y(cd)

and (cd)xh . . . x1 ∈ S. By definition of d, we have cd = d and c = 1. Thus, µ(x) is
collapsible of height h+ 1. Hence,

µ2(x) = µ([xn| . . . |xh+2|a|d|xh| . . . |x1]) = [xn| . . . |xh+2|ad|xh| . . . |x1] = x.

Now let x = [xn| . . . |x1] be collapsible of height h. We will first show that

µ(x) = [xn| . . . |xh+2|xh+1xh|xh−1| . . . |x1]

is redundant of height h− 1.
We have to compute u = γ(xh+1xh,xh−1 . . . x1). Observe that xh is a right divisor of

xh+1xh and xh(xh−1 . . . x1) ∈ S by assumption on x. So by the definition of u, we have
u = sxh for some s ∈ M , and xh+1xh = ru = r(sxh) for r = ψ(xh+1xh,xh−1 . . . x1).
Thus, xh+1 = rs and u(xh−1 . . . x1) = s(xhxh−1 . . . x1) ∈ S. By definition, s is a right
divisor of γ(xh+1,xh . . . x1) which is 1 since x was collapsible. This implies s = 1 and
γ(xh+1xh,xh−1 . . . x1) = xh by Remark 4.1.30. Since xh 6= 1, this proves that µ(x) is
redundant of height h− 1. Hence,

µ2(x) = µ([xn| . . . |xh+2|xh+1xh|xh−1| . . . |x1]) = x.

This shows that µ is an involution.
Next, we claim that if x is redundant, then 〈dµ(x),x〉 = ±1.
Let x = [xn| . . . |x1] be redundant of height h. Then its partner µ(x) is collapsible

of height h+ 1. The claim follows from the observation that dh+1(µ(x)) = x, and that
di(µ(x)) 6= x for i 6= h+ 1. Here is the only place where the left-cancellativity enters.
The argument is essentially the same as the proof of (M2) in Lemma 3.4.7.

Last, we are going to check that the matching µ is noetherian.
Let x = [xn| . . . |x1] be a redundant cell of height h, and let z 6= x be redundant with

x ` z. First, we can assume that z is of the form di(x) with i 6= h. We want to show that
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we can assume i /∈ {0,n}. Recall that ‖m‖ denotes the maximal number of non-trivial
factors m ∈ M \ {1} can be expanded into. This number is finite since we assumed M
to be atomic. If di([xn| . . . |x1]) = [yn−1| . . . |y1] and i ∈ {0,n}, then

‖xn . . . x1‖ > ‖yn−1 . . . y1‖.

So in a chain with respect to the relation `, we may assume that ‖xn . . . x1‖ is constant
and i /∈ {0,n}.

We will prove that now z has height at least h + 1. For this, let y = µ(x) =
[xn| . . . |xh+2|a|d|xh| . . . |x1] and consider the boundaries diy for i 6= h + 1. We dis-
tinguish several cases.

1. n− 1 ≥ i ≥ h+ 3: We have di(y) = [xn| . . . |xixi−1| . . . |xh+2|a|d|xh| . . . |x1], which
has height h+ 1 since, as above, xk . . . x1 ∈ S for 1 ≤ k ≤ h, dxh . . . x1 ∈ S and
adxh . . . x1 /∈ S. As computed above, γ(a, dxh . . . x1) = 1, so di(y) is collapsible.

2. h ≥ i ≥ 1: For i ≤ h− 1 we have di(y) = [xn| . . . |xh+2|a|d|xh| . . . |xi+1xi| . . . |x1],
and for i = h we have di(y) = [xn| . . . |xh+2|a|dxh|xh−1| . . . |x1]. In both cases
di(y) has height h, because the product of the first k ≤ h entries from the right is
xm . . . x1 ∈ S for 1 ≤ m ≤ h, or dxh . . . x1 ∈ S, whereas the product of the first
h+ 1 entries from the right gives adxh . . . x1 /∈ S. Computing γ(a, dxh . . . x1) = 1,
we see that di(y) is again collapsible.

3. i = h+ 2: Here, di(y) = [xn| . . . |xh+3|xh+2a|d|xh| . . . |x1]. This cell has height at
least h+ 1, for dxh . . . x1 ∈ S and xk . . . x1 ∈ S for all 1 ≤ k ≤ h. The cell di(y)
may or may not be redundant.

Altogether we have shown that if z 6= x and x ` z, then z has strictly larger height than
x. Note that the height of a cell is bounded by its dimension. It follows that every chain
x1 ` x2 ` . . . eventually stabilizes since all xn have the same dimension.

This finishes the proof of the proposition.

Applying Theorem 3.2.4 to the matching constructed in the proof of Proposition 4.8.3,
we obtain that

θ∞ : (B∗M , d) −→ (S∗, θ∞ ◦ d)

is a chain homotopy equivalence.
Furthermore, we observe that for x ∈ S∗ we have θ∞(d(x)) = d(x) since all boundaries

of an essential cell are essential again. (To see this for d0[xn| . . . |x1], observe that x1 ∈ S
and xk . . . x1 ∈ S, and their least common multiple is xk . . . x1. So xk . . . x2 lies in S as
a left complement of elements in S.) This yields the following corollary.

Corollary 4.8.4. Let M be a left cancellative, atomic, locally left Gaussian monoid, S
a generating set closed with respect to left least common multiple and left complement.
Then there is a Z-module complex computing the homology of M , with basis S∗ as defined
above and differentials given by restriction of the bar differential.
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Next, we want to make this matching into a matching on the classifying space BM
for a locally left Gaussian monoid M .

Corollary 4.8.5. Let M be a left cancellative, atomic, finitely generated, locally left
Gaussian monoid, S a generating set closed with respect to left least common multiple
and left complement. (Note that S is not necessarily finite under these conditions.) Then
BM is homotopy equivalent to the subcomplex of all cells given by S∗.

Proof. We want to use Lemma 3.4.7 first to obtain an acyclic matching on the CW
complex BM . This is possible since M is by definition cancellative, has no non-trivial
invertible elements by Remark 4.1.30, and a collapsible cell x has always height h with
1 ≤ h ≤ n− 1 and fulfils

µ(x) = dh(x).

So we obtain out of µ an acyclic matching on BM .
In order to apply Theorem 3.3.8, we have to check that the universal grading for this

matching is compact. We will use the Criterion 3.3.9. Define the map

ψ : BM (∗) → N,
[xn| . . . |x1] 7→ ‖xn . . . x1‖,

[ ] 7→ 0.

This number is finite since we assumed M to be atomic.
We observe that ψ is a map of posets: Taking boundaries either leaves the value of ψ

constant (if it is di for 1 ≤ i ≤ n− 1) or decreases the value (for i ∈ {0,n}). Moreover,
by the definition of µ, the value of ψ is the same on the elements matched by µ.

Last, we want to show that there are only finitely many elements of BM (∗) such that
the norm of the product over all entries does not exceed a given value. Let A be any
finite generating system for M . Then there are only finitely many elements of M of a
fixed A-norm. Surely, the inequality NA(m) ≤ ‖m‖ holds for any m ∈M \ {1}, so there
are only finitely many elements m ∈ M with ‖m‖ = k for some fixed k. Moreover, if
‖xn . . . x1‖ = l, we know that ‖xi‖ ≤ l for all 1 ≤ i ≤ n and that n ≤ l. This implies that
the preimage under ψ of any finite subset of N is finite. So the cells ψ−1({0, 1, . . . ,n})
build a finite subcomplex of BM , and we may apply the Criterion 3.3.9. Thus, the
compactness condition is also satisfied.

So we obtain a compact, noetherian matching on BM (∗), and the essential cells of this
matching form a subcomplex. Hence, we can use the Proposition 3.3.10 which implies
the claim.

Example 4.8.6. All Artin monoids as in Definition 4.1.7 are atomic, finitely gener-
ated, left cancellative and left locally Gaussian. Thus, the corollary above is applicable
to them, and we obtain a rather small subcomplex of BM homotopy equivalent to BM .
In particular, according to Proposition 4.3.5, the subcomplex of all cells [xn| . . . |x1] with
xn . . . x1 square-free is homotopy equivalent to BM . In some cases, we can use the last
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corollary to obtain even smaller models for BM , e.g., for the example of Section 4.4, we
can use the generating set E described there to get a finite-dimensional complex homo-
topy equivalent to BM . Yet, there are already smaller models (with more complicated
differentials) known; we will comment on it in more detail in Section 5.2.

Remark 4.8.7. There are now several chain complexes available for computing the ho-
mology of left locally Gaussian monoids. The two complexes already mentioned are the
Visy complex associated to the factorability structure as described in Section 4.2 and the
complex of Corollary 4.8.4. Dehornoy and Lafont give in [28] a further complex com-
puting the homology of left locally Gaussian monoid; furthermore, they describe a yet
different complex computing the homology of a locally Gaussian monoid and compare
it in some cases to the Charney-Meier-Whittlesey complex. Moreover, there is a con-
struction by Albenque and Nadeau ([1]) applicable in particular to left locally Gaussian
monoids which are atomic and finitely generated. Note that they formulate everything
symmetrically with right common multiples.

We want to compare the different chain complexes. Let M be a left cancellative,
atomic, left locally Gaussian monoid and S a generating system closed under left least
common multiples and left complements.

In the Visy complex, we know that the modules Vn are generated by tuples [xn| . . . |x1]
with xi ∈ S and with each pair (xi+1,xi) being unstable with respect to the factorability
structure chosen. In particular, any n-cell of the generalized Charney-Meier-Whittlesey
complex as in the Corollary 4.8.4 is contained in the module Vn of the Visy complex
since xi+1xi ∈ S for any two adjacent entries in [xn| . . . |x1] ∈ S∗. We want to show that
the whole complex is a subcomplex of the Visy complex. Thus, we have to evaluate the
Visy differential as in Definition 2.2.11. Recall that the differentials can be written as
follows:

∂V = πn−1 ◦ d ◦
∑

α∈Qn−1\�n−1

(−1)l(α)fα ◦ in,

where in denotes the inclusion of Vn in the n-th module of the normalized inhomoge-
neous bar complex Bn(M), d denotes the n-th differential in the same bar complex, and
πn−1 : Bn(M ) → Vn denotes the projection. Now observe that any application of fi to
a tuple [xn| . . . |x1] ∈ S∗ drops the norm, thus the only non-zero summand in the sum
above will be given by α = ∅ (corresponding to no application of fi). Thus, the Visy
differential evaluated at [xn| . . . |x1] ∈ S∗ is exactly the restriction of the bar differential.

So we know that the generalized Charney-Meier-Whittlesey complex is always a sub-
complex of the Visy complex. The comparison with the other complexes is not as easy.
The complex obtained from the “order resolution” in [28] has in general much smaller
modules: They are given by subsets of any chosen generating system E of M with cer-
tain properties. On the other hand, the differentials are very involved and defined only
recursively.

The other complex described in [28], based on the “reversing resolution”, is for the
case where M is a locally Gaussian monoid and the generating system S has to be closed
under left and right least common multiples and left and right complements. The n-th
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module of the complex is generated by all subsets of S admitting a left common multiple.
The differentials are somewhat involved, but explicit. In [28], it is shown that for Garside
monoids, this complex contains a complex isomorphic to the Charney-Meier-Whittlesey
complex as a subcomplex. The same argument can be used to identify the complex of
Corollary 4.8.4 with a subcomplex of the complex obtained by reversing in the case of
locally Gaussian monoids.

In [1], there is a complex constructed for an atomic, left-cancellative monoid M with
a finite generating system S with the property that any subset of S admitting a right
common multiple also admits a right least common multiple. Note that atomic, finitely
generated right locally Gaussian monoids are special cases of such monoids. Albenque
and Nadeau provide a small complex for the homology of such monoids: The generators
in degree n are given by the n-element subsets of S admitting right common multiples.
This construction is quite similar to the construction of [56] for Artin monoids.

4.9 Factorable Monoids are not Always Locally Left Gaussian
From the examples seen so far, one could suspect that a non-trivially factorable monoid
without non-trivial inverses could have nice divisibility properties, e.g., one could conjec-
ture it is always locally left Gaussian. The following example disproves this conjecture.

Proposition 4.9.1. Let M be a monoid given by the presentation〈
a, b|ab = ba, a2 = b2

〉+
.

Then this monoid is cancellative, has no non-trivial invertible elements and has a fac-
torability structure with respect to the generating system {a, b}. Yet, there are elements
which admit left common multiples but no least left common multiple.

Proof. The first two statements and also the lack of least common multiples are well-
known, see e.g. [27], Section II.3.3. Note that any element of the monoid is of the form
aεbk with ε ∈ {0, 1} and k ∈ N0, and this presentation is unique. Note furthermore
that the relations have same lengths on both sides, so any product of two elements is
geodesic. Define now the factorability structure on M by

η(aεbk) =

{
(aεbk−1, b), if k ≥ 1
(1, aε), if k = 0.

We have only to check (F4)+(F5) in order to show that this is a factorability structure
with respect to the generating set {a, b}. We may assume the first entry to have norm
> 0. Distinguish the following cases:
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Case 1: Consider the pair (aεbk, b) with k ≥ 1:

(aεbk, b)
_

���
�
�
�
�
�
�

� //___ (aεbk−1, b, b)
_

���
�
�

(aεbk−1, b2)
� //___ (aεbk−1, b, b)

_

���
�
�

aεbk+1 � //____ (aεbk, b) (aεbk, b)

Case 2: For the pair (a, b), we have

(a, b)
_

���
�
�
�
�
�
�

� //___ (1, a, b)
_

���
�
�

(1, ab) � //___ (1, a, b)
_

���
�
�

ab
� //____ (a, b) (a, b)

Case 3: Consider now the pair (bk, a) with k ≥ 1:

(bk, a)
_

���
�
�
�
�
�
�

� //___ (bk−1, b, a)
_

���
�
�

(bk−1, ab) � //___ (bk−1, a, b)
_

���
�
�

abk
� //____ (abk−1, b) (abk−1, b)

Case 4: For the pair (a, a), we have

(a, a)
_

���
�
�
�
�
�
�

� //___ (1, a, a)
_

���
�
�

(1, b2) � //___ (1, b, b)
_

���
�
�

b2 � //____ (b, b) (b, b)

Case 5: Last, consider (abk, a), k ≥ 1:
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(abk, a)
_

���
�
�
�
�
�
�

� //___ (abk−1, b, a)
_

���
�
�

(abk−1, ab) � //___ (abk−1, a, b)
_

���
�
�

bk+2 � //____ (bk+1, b) (bk+1, b)

This shows that α = β in all cases and, therefore, completes the proof.

4.10 Thompson Monoids
In this section, we are going to show that a subfamily of the generalized Thompson
monoids introduced by A. Heß consists of locally left Gaussian monoids. This yields
also a factorability structure on this monoids, different from the one described in [42].
Thompson’s group F itself is a geometric object studied in different contexts (for a short
introduction, see e.g. [11], cf. also [42], Section 4.3, [57]; for a detailed introduction
and historical background, cf. [13]). It can be defined as the group of piecewise linear
self-homeomorphisms of the interval [0, 1] with only finitely many breaking points which
all have rational coordinates with denominator being a power of 2 and each slope being
a (possibly negative) power of 2. This group admits a finite presentation (cf. [13], §3)

F ∼=
〈
x0,x1 |x−2

0 x1x
2
0 = x−1

1 x−1
0 x1x0x1, x−3

0 x1x
3
0 = x−1

1 x−2
0 x1x

2
0x1
〉

.

The elements x0 and x1 are depicted below.

0 11
2

3
4

1

0 11
2

3
4

7
8

1
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For our purposes, another, infinite presentation is of more interest:

F ∼= 〈ξ0, ξ1, . . . |ξiξk = ξkξi+1, i > k〉 .

Here, ξ0 and ξ1 are the same functions as x0 and x1 above; the other ξi may be defined
as ξi = ξ−1

0 ξi−1ξ0. One can also say that each ξi is identity on [0, 1
2 ] and a rescaled

version of ξi−1 on [ 1
2 , 1] (cf. [11]).

We will consider the following class of monoids first defined by A. Heß.

Definition 4.10.1. ([42]) We define (generalized) Thompson monoids by

t(m)
p,q = 〈ξ0, ξ1, . . . , ξm−1|ξi−pξk = ξkξi, i− k ≥ q, i ≥ p〉

for p, q ≥ 0. We also allow m =∞.

Remark 4.10.2. 1. For q = p+ 1 = 2 and m = ∞, the associated group of the
monoid t∞1,2 is the “classical” Thompson group F . As shown by A. Heß ([42],
Section 4.3), this monoid satisfies the Ore condition and hence embeds into the
Thompson group F .

2. In [42], the Thompson monoid t(m)
p,q is defined to have generators ξ1, . . . , ξm. This

index shift is not an issue; the monoids t(m)
p,q in our definition are isomorphic to

those of [42].

We are going to show:

Proposition 4.10.3. Thompson monoids t(m)
p,q are locally left Gaussian for the param-

eters q ≥ p ≥ 1.

Proof. We are going to check that the assumptions of the Theorem 4.1.28 hold for
the presentation of t(m)

p,q from Definition 4.10.1. The presentation is obviously positive.
Furthermore, each pair (i, k) of indices between 0 and m− 1 belongs to at most one
relation of the form uξk = vξi since exactly one of the inequalities i− k ≥ q, k − i ≥ q
or −q < i− k < q is satisfied. Thus, the presentation is complemented. Furthermore,
the first condition of Theorem 4.1.28 is fulfilled since the presentation is homogeneous.

It remains to check the second condition. This will involve a lengthy case distinction.
Note that whenever i− k ≥ q, we have in particular i ≥ k + q ≥ q ≥ p by assumption.
So the condition i ≥ p from the defining relations of t(m)

p,q is always satisfied if i− k ≥ q
since we assumed q ≥ p. Let α = ξa, β = ξb, γ = ξc be three different generators. Note
that for 0 ≤ r, s ≤ m− 1 with r − s ≥ q, we have the relation ξr−pξs = ξsξr and thus
ξr/ξs = ξr−p and ξs/ξr = ξs. Note also that the left-hand side of the condition to check
can only be defined if |a− b| ≥ q and |b− c| ≥ q (it may though even be undefined if
these inequalities hold, as we will see in some cases). The same way, the right-hand side
can only be defined if |a− c| ≥ q and |b− c| ≥ q. Here is the list of the considered cases:

Case 1: If −q < b− c < q, then both sides are undefined. We may assume that |b− c| ≥ q
in the following cases.
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Case 2: The inequality b− c ≥ q implies ξc/ξb = ξc and ξb/ξc = ξb−p. We proceed by
distinguishing several subcases:

Case 2.1: The additional inequality a− b ≥ q implies a− c ≥ 2q. So the left-hand side
is ξa−p/ξc. Now (a− p)− c = a− c− p ≥ 2q − p ≥ q, so ξa−p/ξc = ξa−2p.
On the other hand, we have ξa/ξc = ξa−p, and the right-hand side is given
by ξa−p/ξb−p. To compute this, note that (a− p)− (b− p) = a− b ≥ q, so
ξa−p/ξb−p = ξa−2p. Thus, both sides coincide.

Case 2.2: Now assume −q < a− b < q. As we mentioned before, the left-hand side is
undefined. Furthermore, the inequality implies −q < 0 < a− c.

Case 2.2(a): If a− c < q, then the right-hand side is also undefined.
Case 2.2(b): If a− c ≥ q, we have as the right-hand side ξa−p/ξb−p. Now

−q < (a− p)− (b− p) = a− b < q,

thus the right-hand side is undefined as well.

Case 2.3: Now let b− a ≥ q. Thus ξa/ξb = ξa, and the left-hand side is ξa/ξc. We
have again to consider several subcases:

Case 2.3(a): If a− c ≥ q, then we have ξa/ξc = ξa−p on the left-hand side. On the
right-hand side, we obtain ξa−p/ξb−p and since

(b− p)− (a− p) = b− a ≥ q,

we have ξa−p/ξb−p = ξa−p on the right-hand side.
Case 2.3(b): Consider now −q < a− c < q. The right-hand side is obviously unde-

fined. Yet, the expression ξa/ξc on the left-hand side is also undefined.
Case 2.3(c): Last, we deal with the case c− a ≥ q. The left-hand side is now equal

to ξa. On the right-hand side, we have ξa/ξb−p. Note that

b− a = (b− c) + (c− a) ≥ 2q,

thus (b− p)− a = b− a− p ≥ 2q− p ≥ q, so the right-hand side amounts
to ξa.

Case 3: Now we assume c− b ≥ q which implies ξc/ξb = ξc−p and ξb/ξc = ξb. We have to
consider several subcases again.

Case 3.1: We start with b− a ≥ q. Thus, we have ξa/ξb = ξa and c− a ≥ 2q. The
left-hand side is ξa/ξc−p and since (c− p)− a = (c− a)− p ≥ 2q− p ≥ q, we
see that the left-hand side equals ξa. For the right-hand side, we first obtain
ξa/ξb, which is ξa.

Case 3.2: Assume next the inequality −q < b− a < q holds, thus the left-hand side is
undefined. We observe furthermore c− a = (c− b) + (b− a) > 0. This allows
two different relation types:
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Case 3.2(a): If c− a < q, then the right-hand side is also immediately undefined.
Case 3.2(b): If c− a ≥ q, then the right-hand side equals ξa/ξb which is in turn un-

defined.
Case 3.3: Now let a− b ≥ q. On the left-hand side, the expression simplifies to ξa−p/ξc−p.

For a and c, we have to deal with three cases again:
Case 3.3(a): For a− c ≥ q, note that we even have a− b = (a− c) + (c− b) ≥ 2q.

Then ξa−p/ξc−p = ξa−2p since (a− p) − (c− p) = a− c ≥ q. For the
right-hand side, we have ξa−p/ξb which equals ξa−2p since

(a− p)− b = (a− b)− p ≥ 2q− p ≥ q.

Case 3.3(b): Consider the case −q < a− c < q. The right-hand side is undefined. The
left-hand side is undefined as well since −q < (a− p)− (c− p) = a− c <
q.

Case 3.3(c): Last, we assume c− a ≥ q. The left-hand side is ξa−p/ξc−p and since
(c− p)− (a− p) = c− a ≥ q, we see that the left-hand side equals ξa−p.
On the right-hand side, we get ξa/ξb = ξa−p.

This covers all possible combinations of three different generators (by which we mean
elements of X={ξ0, ξ1, . . . , ξm−1}). Thus, Thompson monoids with q ≥ p ≥ 1 are locally
left Gaussian.

Now we are going to investigate a generating set for t(m)
p,q which is closed under left least

common multiples and left complement. For the rest of the section, fix q ≥ p+ 1 ≥ 2.
We make this further restriction since we need the following fact proven by A. Heß.

Lemma 4.10.4 ([42], Section 4.3). The monoids t(m)
p,q are left cancellative for p < q.

We want to show:

Proposition 4.10.5. The set

{ξi1 . . . ξik |ij+1 − ij ≥ q for all 1 ≤ j ≤ k− 1} ⊂ t(m)
p,q

is closed under left least common multiples and left complements.

First, we make several observations about left least common multiples in these monoids.

Remark 4.10.6. By Remark 4.1.29, we know that the left complement of ξa and ξb is
represented by ξa/ξb.

In particular, we know that the left least common multiple of two distinct generators ξa
and ξb exists if and only if |a− b| ≥ q, and is then ξaξb if b− a ≥ q and ξbξa if a− b ≥ q.

Definition 4.10.7. Let ξi1 . . . ξik be a word in ξ0, . . . , ξm−1. We call this word ascend-
ing if for all 1 ≤ l ≤ k− 1, we have il+1 − il ≥ q.
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Remark 4.10.8. Note that the ascending words are exactly the totally unstable words
in the sense of [42], Section 4.3.

We will show the following divisibility property for elements represented by ascending
words.

Lemma 4.10.9. Let ξi1 . . . ξik be an ascending word representing x ∈ t
(m)
p,q . Then for

any 1 ≤ l ≤ k, there is an ascending word ξj1 . . . ξjk−1 representing y ∈ t(m)
p,q such that

x = yξil.

Proof. The statement is clear for l = k. If l < k, consider the subword ξil−1ξilξil+1 . By
definition, we know that ξilξil+1 = ξil+1−pξil , and

(il+1 − p)− il−1 = (il+1 − il) + (il − il−1)− p ≥ 2q− p ≥ q,

so the word ξi1 . . . ξil−1ξil+1−p to the right of ξil is ascending. (The latter consideration is
superfluous if l = 1.) Furthermore, if ξil is not on the very right after this manipulation,
we can continue moving it to the right since il+2 − il ≥ q. The resulting word for y
is given by ξi1ξi2 . . . ξil−1ξil+1−p . . . ξik−p, which is obviously ascending. This yields the
claim.

We compute the left least common multiples for elements represented by ascending
words. In the first step, we compute the left least common multiple of such an element
with a generator ξl.

Lemma 4.10.10. Let ξi1 . . . ξik be an ascending word representing x ∈ t
(m)
p,q . Then

ξl right-divides x if and only if l ∈ {i1, . . . , ik}. Furthermore, x and ξl have a left
common multiple if and only if {r| − q < r− l < q} ∩ {i1, . . . , ik} ⊂ {l}. If the left least
common multiple of x and ξl exists, it and also the left complements x/ξl and ξl/x can
be represented by ascending words.

Moreover, if {r| − q < r − l < q} ∩ {i1, . . . , ik} = ∅, consider the unique index 0 ≤
s ≤ k such that is+1 − l ≥ q and l − is ≥ q (if s = 0 or s = k, the inequality which
doesn’t make sense is omitted). Then the word ξi1 . . . ξisξlξis+1 . . . ξik represents the left
least common multiple of x and ξl.

Proof. Let l be an element of {0, . . . ,m− 1}.
From Lemma 4.10.9, we immediately see that ξl right-divides x if l ∈ {i1, . . . , ik}.
Suppose now that {i1, . . . , ik} contains an element r of {r| − q < r− l < q} which is

different from l. Then by Lemma 4.10.9, we know that x is a left multiple of ξr. By
Remark 4.10.6, we know that x cannot have a left common multiple with ξl. For the
rest of the proof, we thus may assume that {r| − q < r− l < q} ∩ {i1, . . . , ik} ⊂ {l}.

We now show by induction on k that l /∈ {i1, . . . , ik} implies that x is not right-divisible
by ξl. For k = 1, this is clear since any non-trivial multiple of ξl has to have word length
larger than 1 with respect to the ξi’s. Assume now we have shown the claim for k− 1,
and assume ξl divides x. Then x is a left common multiple of ξik and ξl. We consider
two cases: First, assume ik − l ≥ q. Then ξik−pξl = ξlξik is by Remark 4.10.6 a left
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least common multiple of ξik and ξl. Thus, there is a z ∈ t
(m)
p,q such that x = zξlξik .

This, in turn, implies by right cancellation that ξl right-divides ξi1 . . . ξik−1 which is again
represented by an ascending word. So we obtain a contradiction by induction hypothesis.

Now assume l − ik ≥ q. (Note that we already excluded −q < l − ik < q.) Then
ξl−pξik = ξikξl is the left least common multiple of ξl and ξik , and there is a z ∈ t(m)

p,q
such that x = zξl−pξik . Cancelling on the right again, we see that ξl−p must right-divide
ξi1 . . . ξik−1 . By induction hypothesis, l− p ∈ {i1, . . . , ik−1}. But since

−q < (l− p)− l = −p < q,

this is a contradiction to {r| − q < r − l < q} ∩ {i1, . . . , ik} ⊂ {l}. So we have proven
the first assertion.

Now if {r| − q < r − l < q} ∩ {i1, . . . , ik} = ∅, there is a unique index 0 ≤ s ≤ k
such that is+1 − l ≥ q and l− is ≥ q (if s = 0 or s = k, the inequality which doesn’t
make sense is omitted). Consider the word ξi1 . . . ξisξlξis+1 . . . ξik representing u ∈ t(m)

p,q .
Then this word is by definition ascending and represents an element right-divisible by
ξl by Lemma 4.10.9. This lemma also shows that the element y with u = yξl can be
represented by an ascending word. Furthermore, u is also divisible by x:

u = ξi1 . . . ξisξlξis+1 . . . ξik
= ξi1 . . . ξis−1ξl−pξisξis+1 . . . ξik
= . . .

= ξl−spξi1ξi2 . . . ξik = ξl−spx.

(Note that l − sp > 0 since, by definition of s and of an ascending sequence, we have
l ≥ is + q ≥ is−1 + 2q ≥ . . . ≥ i1 + sq > sp.)

Since we have already shown that ξl does not right-divide x, the element u is also a left
least common multiple of x and ξl for word length reasons: since u provides a common
multiple of x and ξl, we know that there is the left least common multiple w for x and
ξl. Since the relations in ξi’s have same length on both sides, any word representing an
element of a Thompson monoid has the same word length in the ξ’s. So the word length
of w must be at least k + 1 since w 6= x as shown before. On the other hand, w is a
divisor of u and the word length of u is also k+ 1. This yields u = w. Since ξl−sp is an
ascending word, we are done.

Now we can proceed to the general case.

Lemma 4.10.11. For any two elements in t
(m)
p,q represented by ascending words, their

left least common multiple can be also represented by an ascending word if it exists.

Proof. Let ξi1 . . . ξik and ξj1 . . . ξjl be ascending words representing the elements x and
y of t(m)

p,q . First, we observe that if there is an a ∈ {i1, . . . , ik} and a b ∈ {j1, . . . , jl} with
−q < a− b < q and a 6= b, then there is no left common multiple for x and y. Indeed,
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since x is then a left multiple of ξa and y a left multiple of ξb, a left common multiple for
x and y would be a left common multiple for ξa and ξb, which is impossible by Remark
4.10.6.

Now assume there are no such a, b in the index sets. We will show the statement by
induction on l. For l = 1, the claim is just Lemma 4.10.10. For the induction step, note
that taking left least common multiple is associative and, using the proof of Lemma
4.10.10 again, l-lcm(ξj1 . . . ξjl−1 , ξjl) = ξj1 . . . ξjl . Thus we have

l-lcm(ξi1 . . . ξik , ξj1 . . . ξjl) = l-lcm(ξi1 . . . ξik , l-lcm(ξj1 . . . ξjl−1 , ξjl))
= l-lcm(lcm(ξi1 . . . ξik , ξj1 . . . ξjl−1), ξjl).

But l-lcm(ξi1 . . . ξik , ξj1 . . . ξjl−1) can be represented by an ascending word by the induc-
tion hypothesis, and thus l-lcm(l-lcm(ξi1 . . . ξik , ξj1 . . . ξjl−1), ξjl) can be represented by
an ascending word by Lemma 4.10.10.

We are ready to prove the Proposition 4.10.5.

Proof. (of the Proposition 4.10.5)
We have already shown in the last lemma that the set in the statement of the propo-

sition is closed under left least common multiple. Now let x and y be two elements of
t
(m)
p,q which can be represented by ascending words. Let z be their left least common

multiple. Then there is a w ∈ t
(m)
p,q with z = wx, and we want to show that w can

be represented by an ascending word. We will show inductively that for any a = bc in
t
(m)
p,q with a, c represented by ascending words, b can be also represented by an ascend-

ing word. For word length of c equal to 1, the claim is given by Lemma 4.10.10. For
the induction step, assume c is represented by an ascending word ξi1 . . . ξik with k > 1.
In particular, ξik right-divides a, so there is an ascending word a′ such that a = a′ξik
and, by left cancellation due to Lemma 4.10.4, we obtain a′ = bξi1 . . . ξik−1 . Thus, by
induction hypothesis, b can be represented by an ascending word.

From the Propositions 4.10.3, 4.10.5 and 4.2.5, we get:

Corollary 4.10.12. The monoid t(m)
p,q is factorable with respect to the generating system

{ξi1 . . . ξik |ij+1 − ij ≥ q for all 1 ≤ j ≤ k− 1}.
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5 Homology of Artin Groups and Monoids
In this chapter, we are going to give an overview of different attempts to determine the
homology of Artin monoids. Their homology is linked to the homology of Artin groups
by the K(π, 1)-conjecture. We will treat it in Section 5.3.

5.1 Brieskorn-Saito Normal Forms
In this section, we present a rather small complex computing the homology of Artin
monoids. It arises from a noetherian matching on the bar complex, induced by the
Brieskorn-Saito normal form (cf. [10]). First, we will recall some facts about these
normal forms. Then we imitate the proof of Brown that complete rewriting systems yield
noetherian matchings on the normalized bar complex (cf. [22], also [42] for the proof
that factorability structures yield noetherian matchings). It is natural to conjecture that
the Brieskorn-Saito normal form comes from a complete rewriting system, yet it seems
complicated to write it down explicitly if it exists.

Let M :=M(S) be an Artin monoid with Artin-Coxeter generating set S. Let W (S)
be the corresponding Coxeter group. For I ⊂ S, let W (I) be the Coxeter group given by
the restriction of the Coxeter matrix to I. (It is well-known that W (I) is the subgroup
of W (S) generated by I). Set

Sf = {I ⊂ S|W (I) is finite}.

Furthermore, set D = {∆I := l-lcm(I)|∅ 6= I ∈ Sf}. Note that these least common
multiples exist, which follows from the proposition below.

Observe that in [10], Brieskorn-Saito normal forms are left normal forms. We will
formulate everything symmetrically since we always work with right normal forms; it is
clear that symmetric statements always hold: We use the anti-automorphism of M (S)
(similarly for W (S) or G(S)) defined by s1s2 . . . sk 7→ sk . . . s2s1 for any representative
s1s2 . . . sk with si ∈ S. This anti-automorphism makes left least common multiples out
of right least common multiples, left divisors out of right divisors and so on.

Proposition 5.1.1 ([10], 5.6). In an Artin monoid, a fundamental element (i.e. left least
common multiple of all Artin-Coxeter generators) exists if and only if the corresponding
Coxeter group is finite.

Note furthermore that S ⊂ D since {a} ∈ Sf for all a ∈ S. In particular, D is a
generating set for M .

For x ∈ M , let I(x) := {a ∈ S| ∃y ∈ M : x = ya} be the set of letters in S with
which a word for x may start (on the right). Note that I(∆J ) = J for any subset J ⊂ S
admitting the left least common multiple (cf. e.g. [56], Part II, §5). The Brieskorn-Saito
normal form is given by the following theorem.

Theorem 5.1.2 ([10], §6). For any w ∈M , there are unique non-empty subsets

Ik, . . . , I1 ⊂ S
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such that

w = ∆Ik∆Ik−1 . . .∆I2 ∆I1

and I(∆Ik . . .∆Ij ) = Ij for 1 ≤ j ≤ k.

Remark 5.1.3. This set of normal forms does not consist only of words of minimal
length with respect to D. For example, in the monoid M4,4, we can see that for x =
babac = ∆{a,b}∆c, the normal form of x is given by ∆b∆a∆b∆{a,c}. So the normal form
is not geodesic.

We now define a noetherian matching on the bar complex of an Artin monoid M ,
relying on the Brieskorn-Saito normal form. As already mentioned, we will mimic the
proof of Brown like in [22], §7.3, and the proof of Heß like in [42], §1.2.4 and §3.1. Only
for the noetherian property, one needs some new arguments. In this section, we always
mean by “normal form” the Brieskorn-Saito normal form.

We denote the graded set of standard basis elements of the bar complex by Ω∗.
Consider a cell [xn| . . . |x1] ∈ Ω∗ of the bar complex of the monoid. We denote by
wi ∈ D∗ the normal form of xi.

Definition 5.1.4. We say that a cell [xn| . . . |x1] is essential if the following three
conditions hold:

(a) x1 ∈ D,

(b) The word wi+1wi is not the normal form of xi+1xi for every 1 ≤ i ≤ n− 1,

(c) For every 1 ≤ i ≤ n− 1, any proper (right) prefix of wi+1wi is a normal form.

For any cell [xn| . . . |x1], we define its height by

ht([xn| . . . |x1]) = max{j | [xj | . . . |x1] is essential}.

If x1 /∈ D, set ht([xn| . . . |x1]) = 0. Clearly, an n-cell is essential iff its height is n.
We partition the non-essential cells into redundant and collapsible according to the
following rules.

• If ht([xn| . . . |x1]) = 0, call the cell redundant.

• If ht([xn| . . . |x1]) = h > 0 and wh+1wh is the normal form of xh+1xh, call the cell
collapsible.

• If ht([xn| . . . |x1]) = h > 0 and wh+1wh is not the normal form of xh+1xh, but also
some proper prefix of wh+1wh is not a normal form, call the cell redundant.

Note that any cell is now either essential or redundant or collapsible.
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We are now in the position to define the matching µ : Ω∗ → Ω∗. We define µ to
be the identity on the essential cells. If [xn| . . . |x1] is collapsible of height h (observe
0 < h < n), we define

µ([xn| . . . |x1]) = [xn| . . . |xh+2|xh+1xh|xh−1| . . . |x1].

If [xn| . . . |x1] is redundant of height 0 and I = I(x1), there is by definition a unique
y ∈M \ {1} with x1 = y∆I . Then define

µ([xn| . . . |x1]) = [xn| . . . |x2|y|∆I ].

Last, if [xn| . . . |x1] is redundant of height h > 0, i.e., some proper prefix of wh+1wh is
not a normal form, let wh+1 = ab ∈ D∗ with b minimal such that bwh is not a normal
form. By definition, a 6= 1, and b 6= 1 since wh is a normal form. Set in this case

µ([xn| . . . |x1]) = [xn| . . . |xh+2|a|b|xh|xh−1| . . . |x1].

We are going to prove the following proposition.

Proposition 5.1.5. For any Artin monoid M , the map µ : Ω∗ → Ω∗ defined as above
gives a noetherian, Z-compatible matching on the bar complex.

We begin by some preliminary considerations.

Lemma 5.1.6. If ∆Jk∆Jk−1 . . .∆J2 ∆J1 is a normal form, then so are ∆Jk∆Jk−1 . . .∆J2

and ∆Jk−1 . . .∆J1.

Proof. The first claim follows directly from the definition.
Observe that for any product xy ∈M , we have I(y) ⊂ I(xy). Furthermore, I(∆J ) =

J . (cf. [10]). For the second part, we proceed by induction on k. For k = 1 and k = 2,
the claim is clear. Assume we have proven the claim for k− 1. For k, we have

J1 ⊂ I(∆Jk−1 . . .∆J1) ⊂ I(∆Jk∆Jk−1 . . .∆J2 ∆J1) = J1

thus the last generator in the normal form of ∆Jk−1 . . .∆J1 is ∆J1 . So we have to show
that ∆Jk−1 . . .∆J2 is a normal form. This follows from the first statement of the Lemma
and from the induction hypothesis.

For the proof of noetherianity, the following partial order will be useful.

Definition 5.1.7. We define a partial order on the tuples of subsets of S as follows:
set (Ar,Ar−1, . . . ,A1) < (Bs,Bs−1, . . . ,B1) if, for some k ≤ max{r, s}, Ai = Bi for
1 ≤ i < k and Ak ( Bk holds. (If i > r, set Ai = ∅, similar for B.)

Definition 5.1.8. For any x ∈ M with normal form x = ∆Ik∆Ik−1 . . .∆I2 ∆I1, set Ĩ(x)
to be the tuple (Ik, Ik−1, . . . , I1) of subsets of S.

For a basis element of the bar complex [xn| . . . |x1], let Ĩ([xn| . . . |x1]) be the tuple of
subsets of S obtained by concatenation of the tuples Ĩ(xn), . . . , Ĩ(x1).
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Lemma 5.1.9. 1. If x = ∆Js . . .∆J1 is any expression in D representing x with
normal form x = ∆Ik∆Ik−1 . . .∆I2 ∆I1, then (Js, . . . , J1) ≤ (Ik, . . . , I1), and the
equality holds if and only if ∆Js . . .∆J1 is the normal form.

2. For any x, y ∈M , we have Ĩ(xy) ≥ (Ĩ(x), Ĩ(y)), and the equality holds if and only
if the normal form of xy is the product of normal forms of x and y.

Proof. The second part follows obviously from the first one by considering the concate-
nation of normal forms of x and y as an expression for xy.

For the first part, we proceed by induction on s. If x = ∆J , this is already the normal
form, so the claim is proven for s = 1. Now assume we already have proven the claim
for s− 1. We have J1 ⊂ I(x) = I1, thus either J1 ( I1 and we are done, or J1 = I1.
In the second case, ∆Js . . .∆J2 has the normal form ∆Ik∆Ik−1 . . .∆I2 and, by induction
hypothesis, (Js, . . . , J2) ≤ (Ik, . . . , I2). Since J1 = I1, it follows also (Js, . . . , J2, J1) ≤
(Ik, . . . , I2, I1). The equality case is clear. This completes the proof.

We are now ready to prove the last proposition.

Proof. [of Proposition 5.1.5] We first prove that µ is an involution. This is clear for
essential cells. Now let [xn| . . . |x1] be a collapsible cell of height h. Then

µ([xn| . . . |x1]) = [xn| . . . |xh+2|xh+1xh|xh−1| . . . |x1].

Note that 1 ≤ h < n.
Consider the case h = 1. Then x2x1 /∈ D and the image cell is redundant of height 0.

Since the cell we started with was collapsible of height 1, we know that x1 ∈ D and the
normal form of x2x1 is the product of normal forms of the factors. Thus, x1 is the last
generator in the normal form of x2x1 and, by definition, µ2([xn| . . . |x1]) = [xn| . . . |x1].
(Here, we for simplicity do not distinguish between x1 and its normal form w1 since, by
definition, both consist of the same single element of D.)

Now assume we have a collapsible cell of height h > 1. Then [xh−1| . . . |x1] is by
definition essential, so the height of µ([xn| . . . |x1]) is at least h − 1. We first want
to show that [xh+1xh|xh−1| . . . |x1] is not essential which will imply that the height of
µ([xn| . . . |x1]) is exactly h − 1. Recall we denote by wi the normal form of xi, and
that wh+1wh is the normal form of xh+1xh by assumption. We know that whwh−1
is not the normal form for xhxh−1, thus by Lemma 5.1.6, wh+1whwh−1 is also not a
normal form. This implies that [xn| . . . |xh+2|xh+1xh|xh−1| . . . |x1] is redundant of height
h− 1, and that wh is the minimal prefix b of wh+1wh such that bwh−1 is not the normal
form (minimality follows from condition (c) for the original cell in the position h −
1). Thus we conclude that µ([xn| . . . |xh+2|xh+1xh|xh−1| . . . |x1]) = [xn| . . . |x1] and so
µ2([xn| . . . |x1]) = [xn| . . . |x1].

Now start with a redundant cell [xn| . . . |x1] of height 0. There is by definition a
y ∈M \ {1} with x1 = y∆I(x1), and µ([xn| . . . |x1]) = [xn| . . . |x2|y|∆I(x1)]. Let w be the
normal form for y, then w∆I(x1) is the normal form of x1. In particular, we see that the
image cell is collapsible of height 1 and µ([xn| . . . |x2|y|∆I(x1)]) = [xn| . . . |x2|y∆I(x1)].
Thus µ2([xn| . . . |x1]) = [xn| . . . |x1].
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Last, consider a redundant cell [xn| . . . |x1] of height h > 0. We have

µ([xn| . . . |x1]) = [xn| . . . |xh+2|a|b|xh|xh−1| . . . |x1],

where b is the minimal prefix of wh+1 such that bwh is not a normal form. Therefore, the
cell [b|xh|xh−1| . . . |x1] is essential. Furthermore, we see that the normal form of ab is the
concatenation of normal forms for a and b since we defined wh+1 = ab and, by Lemma
5.1.6, both subwords a and b are then normal forms. So the image cell is collapsible of
height h+ 1, and

µ([xn| . . . |xh+2|a|b|xh|xh−1| . . . |x1]) = [xn| . . . |xh+2|ab|xh|xh−1| . . . |x1].

So we have again µ2([xn| . . . |x1]) = [xn| . . . |x1]. This shows that µ is an involution.
Next, we are going to show that µ is Z-compatible. Consider a redundant cell x :=

[xn| . . . |x1]. Clearly, dh+1([xn| . . . |xh+2|a|b|xh|xh−1| . . . |x1]) = x if ht(x) = h > 0 and
d1([xn| . . . |x2|y|∆I(x1)]) = x for ht(x) = 0, and it is easy to see that none of the other
di’s produces x using cancellativity of M (cf. also the proof of Lemma 3.4.7). This shows
that µ is a Z-compatible matching.

Now we proceed by showing that this matching is noetherian. Note that µ does not
change the product of all entries of the cell. The maps di for 1 ≤ i ≤ n− 1 also preserve
the product of the cell [xn| . . . |x1].

Assume now we have an infinite sequence of redundant cells x1,x2, . . ., such that
xi+1 is dki(µ(xi)) for some ki, and we may assume that ki 6= h+ 1, so that xi+1 6=
xi. Let x1 = [xn| . . . |x1]. Then only finitely many ki can be 0 or n since d0 and dn
strictly lower the S-length of the product. So we can directly assume there are only
ki ∈ {1, 2, . . . ,n− 1}. Next, we observe that Ĩ(µ(xi)) = Ĩ(xi) since xi is redundant.
Also, Ĩ(dj(y)) ≥ Ĩ(y) for 1 ≤ j ≤ n− 1 and y of dimension n as a consequence of
Lemma 5.1.9. Furthermore, it follows from Lemma 5.1.9 that Ĩ(xi) ≤ Ĩ(xn . . . x1). Note
moreover that, since the product of entries of xi is constantly xn . . . x1, the tuple Ĩ(xi)
may contain at most NS(xn . . . x1) non-empty sets. Now there are only finitely many
tuples of subsets of S which are smaller than Ĩ(xn . . . x1) in the described order and have
bounded length. Therefore, Ĩ(xi) must be constant from a certain step on, and we may
directly assume that it is constant for our sequence. In particular, each dki multiplies
two elements in the way such that the normal form of the product is the concatenation
of the normal forms of the factors. We are going to investigate the cases where it can
happen.

First, let y = [yn| . . . |y1] be a redundant cell of height h > 0, and let

µ([yn| . . . |y1]) = [yn| . . . |yh+2|a|b|yh|yh−1| . . . |y1]

be its collapsible partner. Note that the cell [a|b|yh|yh−1| . . . |y1] is collapsible of height
h+ 1 as shown before. Thus, dj(µ(y)) is also collapsible for h+ 3 ≤ j ≤ n. Furthermore,
by definition of the height, yjyj−1 does not have the product of normal forms as a normal
form for 2 ≤ j ≤ h, and same is true for byh. So the differentials dj for 1 ≤ j ≤ h do
not satisfy the condition above. So the only possible successor of y in our sequence is
[yn| . . . |yh+2a|b|yh|yh−1| . . . |y1], and its height is at least h+ 1 > h.
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Now let y = [yn| . . . |y1] be a redundant cell of height 0, set I = I(y1) and z ∈M \ {1}
with y1 = z∆I . So we have µ([yn| . . . |y1]) = [yn| . . . |y2|z|∆I ] which is collapsible of
height 1. Again, dj(µ(y)) is also collapsible for 3 ≤ j ≤ n. So the only possible
successor y in our sequence is [yn| . . . |y2z|∆I ] of height at least 1 > 0.

In any case, we see that the height must strictly increase in each step. On the other
hand, the height is bounded by n, so that the sequence has to stabilize. So we have shown
that the matching is noetherian, and this completes the proof of the proposition.

This noetherian matching gives us the following complex computing the homology of
Artin monoids.

Corollary 5.1.10. Let M (S) be an Artin monoid. Then its homology can be computed
as the homology of the following chain complex (Cθ∗ , dθ): The module Cθn is a free Z-
module with basis

[xn| . . . |x1]

subject to the conditions (a)-(c) of Definition 5.1.4. If we denote again by wi ∈ D∗ the
Brieskorn-Saito normal forms of xi, we can formulate the conditions as follows:

(a) x1 ∈ D,

(b) The word wi+1wi is not the normal form of xi+1xi for every 1 ≤ i ≤ n− 1,

(c) For every 1 ≤ i ≤ n− 1, any proper (right) prefix of wi+1wi is a normal form.

We want to show that this matching can also be lifted to the CW complex BM .

Corollary 5.1.11. Let M(S) be an Artin monoid. Then the space BM (S) is homotopy
equivalent to a CW complex with cells of the form

[xn| . . . |x1]

in dimension n, subject to the conditions (a)-(c) of Definition 5.1.4. If we denote again
by wi ∈ D∗ the Brieskorn-Saito normal forms of xi, we can formulate the conditions as
follows:

(a) x1 ∈ D,

(b) The word wi+1wi is not the normal form of xi+1xi for every 1 ≤ i ≤ n− 1,

(c) For every 1 ≤ i ≤ n− 1, any proper (right) prefix of wi+1wi is a normal form.

Proof. We want to apply Lemma 3.4.7 to obtain an acyclic matching on BM out of µ.
This is possible since M is cancellative and has no non-trivial invertible elements (e.g.
due to the fact that all relations in an Artin monoid are homogeneous.), and furthermore
µ(x) = dht(x)(x) for any µ-collapsible cell x, and the height ht(x) of a µ1-collapsible cell
satisfies 1 ≤ ht1(x) ≤ n− 1. In order to apply Theorem 3.3.8, we have to check that the
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universal grading for this matching is compact. We will use the Criterion 3.3.9. Define
the map

ψ : BM (∗) → N

[xn| . . . |x1] 7→ NS(xn . . . x1)

First, we observe that this is a map of posets: Taking boundaries either leaves the
value of ψ constant (if it is di for 1 ≤ i ≤ n− 1) or decreases the value (for i ∈ {0,n}).
Moreover, by definition of µ, the value of ψ is the same on the elements matched by µ.
Last, there are only finitely many elements of BM (∗) such that the norm of the product
over all entries does not exceed a given value. Thus, the compactness condition is also
satisfied.

5.2 Squier Complex for Artin Monoids
In this section, we define a noetherian matching µ1 on the bar complex of an Artin
monoid and a further noetherian matching µ2 on the obtained chain complex, so that
the resulting chain complex is related to the one defined by Squier ([56]). We start by
defining µ1 and proving that it is a noetherian matching.

Let M := M(S) be again an Artin monoid with Artin-Coxeter generating set S. Let
W (S) be the corresponding Coxeter group. Set

Sf = {I ⊂ S|W (I) is finite}.

Furthermore, set D = {∆I := l-lcm(I)|∅ 6= I ∈ Sf}.

Definition 5.2.1. We call an n-cell [xn| . . . |x1] of the bar complex µ1-essential if for
any 1 ≤ k ≤ n, the product xk . . . x1 lies in D. Define µ1([xn| . . . |x1]) = [xn| . . . |x1] for
every essential cell [xn| . . . |x1].

For an arbitrary cell [xn| . . . |x1], we define its µ1-height by

ht1([xn| . . . |x1]) = max{j|[xj | . . . |x1] is essential}

If x1 /∈ D, set ht1([xn| . . . |x1]) = 0. (Set for further use x0 = 1.)
For an n-cell [xn| . . . |x1] of height h and 1 ≤ k ≤ h, define Ik ⊂ S to be the unique

subset such that xk . . . x1 = ∆Ik . Note that I1 ( I2 ( . . . ( Ih, and, furthermore,
Ih ⊂ I(xh+1xh . . . x1) = I(xh+1∆Ih).

Define an n-cell [xn| . . . |x1] of height h < n to be µ1-collapsible if I(xh+1xh . . . x1) =
Ih holds. In this case, set

µ1([xn| . . . |x1]) = [xn| . . . |xh+2|xh+1xh|xh−1| . . . |x1].

Define an n-cell [xn| . . . |x1] of height h < n to be µ1-redundant if Ih ( J :=
I(xh+1xh . . . x1). In this case, there exists a unique y ∈ M \ {1} such that xh+1∆Ih =
y∆J ; furthermore, there is a unique z ∈M \ {1} such that ∆J = z∆Ih. Define

µ1([xn| . . . |x1]) = [xn| . . . |xh+2|y|z|xh|xh−1| . . . |x1].
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In particular, if [xn| . . . |x1] is of height 0, i.e., if x1 /∈ D, we want to define this cell to
be redundant (according to our convention, I(x0) = ∅ ( I(x1)). There is then a unique
y ∈M \ {1} such that x1 = y∆I(x1); in this case, z = ∆I(x1). We define

µ1([xn| . . . |x1]) = [xn| . . . |x2|y|∆I(x1)].

As promised, we are now going to prove the following proposition.

Proposition 5.2.2. For any Artin monoid M , the map µ1 : Ω∗ → Ω∗ defined as above
gives a noetherian, Z-compatible matching on the bar complex.

Proof. First, we are going to show that µ1 is an involution. We begin with a collapsible
n-cell x = [xn| . . . |x1] of height h. Then

µ1([xn| . . . |x1]) = [xn| . . . |xh+2|xh+1xh|xh−1| . . . |x1]

is of height h− 1, since xk . . . x1 = ∆Ik for 1 ≤ k ≤ h− 1 and (xh+1xh)(xh−1 . . . x1) /∈ D
by definition. Now since x was collapsible, we know that I((xh+1xh)(xh−1 . . . x1)) =
Ih ) Ih−1. Hence, µ1(x) is a redundant cell of height h− 1. Furthermore, we have
∆Ih = xh∆Ih−1 and xh+1xh∆Ih−1 = xh+1∆Ih .

This implies µ2
1(x) = [xn| . . . |xh+2|xh+1|xh|xh−1| . . . |x1].

Next, consider a redundant n-cell x = [xn| . . . |x1] of height h > 0 with

µ1([xn| . . . |x1]) = [xn| . . . |xh+2|y|z|xh|xh−1| . . . |x1].

Then we know that xk . . . x1 = ∆Ik for 1 ≤ k ≤ h. Furthermore, by definition,
zxh . . . x1 = z∆Ih = ∆J and yzxh . . . x1 = xh+1xh . . . x1 /∈ D. Thus, the cell µ1(x)
has height h+ 1. Moreover, we have I(yzxh . . . x1) = I(xh+1xh . . . x1) = J , so that
µ1(x) is collapsible.

Last, we consider the case of a redundant n-cell x = [xn| . . . |x1] of height h = 0. We
know that µ1([xn| . . . |x1]) = [xn| . . . |x2|y|∆I(x1)]. The height of this new cell is at least
1 since ∆I(x1) ∈ D. Moreover, it is of height exactly 1 since

I(y∆I(x1)) = I(x1) = I(∆I(x1)),

and since by assumption y∆I(x1) = x1 /∈ D. This implies that the cell µ1([xn| . . . |x1]) is
collapsible of height 1, and it is mapped by µ1 to

µ2
1([xn| . . . |x1]) = µ1([xn| . . . |x2|y|∆I(x1)]) = [xn| . . . |x1].

We conclude that µ2
1(x) = [xn| . . . |xh+2|xh+1|xh|xh−1| . . . |x1]. This shows that µ1 is

indeed an involution.
Now we observe that µ1 is Z-compatible. Consider a redundant cell x := [xn| . . . |x1].

Clearly, dh+1([xn| . . . |xh+2|y|z|xh|xh−1| . . . |x1]) = x if ht1(x) = h and it is easy to see
that none of the other di’s produces x due to the cancellativity of M (cf. proof of the
Lemma 3.4.7). This shows that µ1 is a Z-compatible matching.
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Finally, we are going to show that the matching µ1 is noetherian. Suppose we have
an infinite chain of redundant cells x1,x2, . . . such that xi+1 is dki(µ(xi)) for some ki,
and we may assume that ki 6= h + 1 so that xi+1 6= xi. Then only finitely many
ki can be 0 or n since d0 and dn strictly lower the S-length of the product. So we
can directly assume there are only ki ∈ {1, 2, . . . ,n − 1}. We look for possible suc-
cessors of a redundant x = [xn| . . . |x1] of height h. For h + 3 ≤ k ≤ n, the cell
dk([xn| . . . |xh+2|y|z|xh|xh−1| . . . |x1]) is obviously collapsible, as well as for 1 ≤ k ≤ h.
The cell dh+2([xn| . . . |xh+2|y|z|xh|xh−1| . . . |x1]) may or may not be redundant, so it is
the only possible successor. In any case, note that ht1([xn| . . . |xh+2y|z|xh|xh−1| . . . |x1]) ≥
h+ 1. Thus, the height in such a chain must strictly increase, so the sequence of redun-
dant cells as above must stabilize after finitely many steps.

Remark 5.2.3. By Theorem 3.2.4, we know that the complex (Cθ1
∗ , dθ1

∗ ) computes the
homology of an Artin monoid M , where Cθ1

n has as a Z-basis the µ1-essential n-cells,
and dθ1

∗ = θ∞1 ◦ d. Now if x = [xn| . . . |x1] is an essential cell, it is clear that di(x) is
essential for 1 ≤ i ≤ n, while d0(x) may or may not be essential. Thus, we have

dθ1
∗ ([xn| . . . |x1]) = d(x)− [xn| . . . |x2] + θ∞1 ([xn| . . . |x2])

Note that the summands of dθ1
∗ (x) are either ±di(x) for 1 ≤ i ≤ n− 1 or the product of

their entries have smaller S-length than such of x. We will need this description later.
Furthermore, note that any µ1-essential cell [xn| . . . |x1] is uniquely characterized by

the sequence In ) In−1 ) . . . ) I1. We denote the set of such cells in dimension n by
Ωθ1
n . (This is a basis for Cθ1

n .)

Now we are going to define a noetherian matching µ2 on the obtained chain complex
(Cθ1
∗ , dθ1

∗ ) making it smaller again. For this, choose any linear order < on the set S. We
now describe the essential, collapsible and redundant cells of the matching µ2.

Definition 5.2.4. Let [xn| . . . |x1] be an n-cell in Ωθ1
n . We say [xn| . . . |x1] to be µ2-

essential if for any 1 ≤ k ≤ n, Ik \ Ik−1 = {ak} and ak = max Ik. (Here, we set
I0 = ∅.) Define µ2([xn| . . . |x1]) = [xn| . . . |x1] for an essential cell [xn| . . . |x1].

For an arbitrary cell [xn| . . . |x1], we define its µ2-height by

ht2([xn| . . . |x1]) = max{j|[xj | . . . |x1] is essential}

If #I1 > 1, set ht2([xn| . . . |x1]) = 0.
Define an n-cell [xn| . . . |x1] of height h < n to be µ2-collapsible if max Ih+1 = max Ih

holds. In this case, set

µ2([xn| . . . |x1]) = [xn| . . . |xh+2|xh+1xh|xh−1| . . . |x1].

The characterizing sequence of the new element is

In ) . . . ) Ih+2 ) Ih+1 ) Ih−1 ) . . . ) I1.

Define an n-cell [xn| . . . |x1] of height h < n to be µ2-redundant if b := max Ih+1 >
ah = max Ih. Observe that in this case #Ih+1 ≥ 2 + #Ih since otherwise the cell would
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have at least height h+ 1. Thus there exist u, v ∈ M \ {1} such that ∆Ih+1 = u∆Ih∪{b}
and ∆Ih∪{b} = v∆Ih. Define

µ2([xn| . . . |x1]) = [xn| . . . |xh+2|u|v|xh|xh−1| . . . |x1].

Note that the characterizing sequence of the new element is

In ) . . . ) Ih+2 ) Ih+1 ) Ih ∪ {b} ) Ih ) Ih−1 ) . . . ) I1.

Observe furthermore that ∆Ih+1 = u∆Ih∪{b} = uv∆Ih implies xh+1 = uv.

We are going to prove that µ2 is a noetherian matching on (Cθ1
∗ , dθ1

∗ ). This works
quite the same way as the last proof.

Proposition 5.2.5. For any Artin monoid M , the map µ2 : Ωθ1
∗ → Ωθ1

∗ defined as above
gives a noetherian, Z-compatible matching on (Cθ1

∗ , dθ1
∗ ).

Proof. First, we are going to show that µ2 is an involution. We begin with a collapsible
n-cell x = [xn| . . . |x1] of height h. Then

µ2([xn| . . . |x1]) = [xn| . . . |xh+2|xh+1xh|xh−1| . . . |x1]

is of height h − 1, since Ik \ Ik−1 = {ak} and ak = max Ik for 1 ≤ k ≤ h − 1 and
#(Ih+1 \ Ih−1) ≥ 2. Since x was collapsible of height h, we know that max Ih+1 = ah >
max Ih−1 = ah−1, so that µ2(x) is a redundant cell of height h− 1. Furthermore, we
have Ih = Ih−1 ∪ {ah} and ∆Ih = xh∆Ih−1 as well as ∆Ih+1 = xh+1∆Ih . This implies by
definition µ2([xn| . . . |x1]) = [xn| . . . |xh+2|xh+1|xh|xh−1| . . . |x1].

Next, consider a redundant n-cell x = [xn| . . . |x1] of height h with µ2([xn| . . . |x1]) =
[xn| . . . |xh+2|u|v|xh|xh−1| . . . |x1] as defined above. Again, we have Ik \ Ik−1 = {ak}
and ak = max Ik for 1 ≤ k ≤ h. Furthermore, we know that vxh . . . x1 = ∆Ih∪{b} and
b = max(Ih ∪ {b}) > max Ih by definition. In addition, we have that b = max(Ih ∪
{b}) = max Ih+1, so that µ2(x) is a collapsible cell of height h+ 1.

We conclude that µ2
2(x) = [xn| . . . |xh+2|xh+1|xh|xh−1| . . . |x1]. This shows that µ2 is

indeed an involution.
Now we observe that µ2 is Z-compatible. Consider a redundant cell x := [xn| . . . |x1].

Clearly, dh+1([xn| . . . |xh+2|u|v|xh|xh−1| . . . |x1]) = x if ht2(x) = h and it is easy to
see that none of the other di-summands for 1 ≤ i ≤ n produces x. Since the other
summands of dθ1

∗ have smaller S-norm, they cannot coincide with x. This shows that µ2
is a Z-compatible matching.

Finally, we are going to show that the matching µ2 is noetherian. Suppose we have
an infinite sequence of redundant n-cells x1,x2, . . ., such that xi+1 is a summand of
dθ1
∗ (µ2(xi)). We may assume that xi+1 6= xi. Moreover, we may assume that the S-

length of the product of all entries is constant, since it is non-increasing and finite. Thus,
we may assume that xi+1 = dki(µ2(xi)) with ki ∈ {1, 2, . . . ,n}.

Define a (lexicographic) order on characterizing sequences as follows: Let

(Am ) Am−1 ) . . . ) A1) < (Bl ) Bl−1 ) . . . ) B1)
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hold if there exist s < max{m, l} such that maxAi = maxBi for all 1 ≤ i ≤ s− 1 and
maxAs < maxBs, or if maxAi = maxBi for all 1 ≤ i ≤ max{m, l} and there is a
t < max{m, l} such that #Ai = #Bi for 1 ≤ i ≤ t− 1 and #At > #Bt. (For i > m, set
Ai = Am, similar for Bi. The opposite directions of the inequality signs may be a bit
confusing at the beginning, but this is the definition we will need.)

We consider the characterizing sequences for the successors of a redundant cell x =
[xn| . . . |x1] of height h. For h+ 3 ≤ k ≤ n, the cell dk([xn| . . . |xh+2|u|v|xh|xh−1| . . . |x1])
is obviously collapsible and thus not a successor of x. For 1 ≤ k ≤ h, the charac-
terizing sequence of dk([xn| . . . |xh+2|u|v|xh|xh−1| . . . |x1]) is larger than the one of x
since both coincide for 1 ≤ i ≤ k − 1 and for i = k we have max Ik+1 = ak+1 >
max Ik = ak. (This holds also for k = h since also b = max(Ih ∪ {b}) > max Ih.) The
cell dh+2([xn| . . . |xh+2|u|v|xh|xh−1| . . . |x1]) = [xn| . . . |xh+2u|v|xh|xh−1| . . . |x1] has the
characterizing sequence

In ) . . . ) Ih+2 ) Ih ∪ {b} ) Ih ) Ih−1 ) . . . ) I1

This sequence has in each place the same maximum as the original one and #(Ih∪{b}) <
#Ih+1, so that this sequence is again larger than the one of x.

Thus, the characterizing sequence in such a chain must strictly increase, so the se-
quence of redundant cells as above must stabilize after finitely many steps.

Note that the essential cells in dimension k of the new complex are in one-to-one
correspondence with the k-element subsets of S which lie in Sf . This property is shared
by the following complex, found by Squier:

Proposition 5.2.6. ([56], Theorem 7.5) Let M (S) be an Artin monoid, and let S be
linearly ordered. Then the following complex computes the homology of M(S): The free
modules Ck are generated by the k-element subsets of S which lie in Sf . The value of
the differential on the generator [I ] = [a1 < a2 < . . . < ak] is given by

∂([I ]) =
k∑
i=1

(−1)i−1 ·

 ∑
uv=∆I∆−1

I\{ai}

(−1)NS(u)

 [I \ {ai}] .

We will call this complex the Squier complex.

Remark 5.2.7. There is at least one further complex in the literature computing the
homology of Artin monoids which has the same number of generators as the Squier
complex: It comes from a space homotopy equivalent to BM and is often called Salvetti
complex. It can be found e.g. in [23], [54], cf. also [17]. It seems to be not written down
whether the Salvetti complex and the Squier complex coincide (cf. Introduction of [34]).
It is unclear to the author how the differentials in the complex obtained after applying
the matching µ2 of this section compare to those of the Salvetti complex and to those of
the Squier complex.

These complexes seem to be the smallest written down in this generality in the lit-
erature. Note that the generalized Charney-Meier-Whittlesey complex of Section 4.8 is
larger, but has much simpler differentials.
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5.3 A Reformulation of the K(π, 1)-conjecture
The aim of this section is to reprove a theorem by N. Dobrinskaya ([33]) claiming that
the K(π, 1)-conjecture for an Artin group G(S) is equivalent to the question whether
the inclusion BM (S)→ BG(S) is a homotopy equivalence. Her proof is rather lengthy
and uses a complicated machinery of configuration spaces. It seems that our proof is,
though in a sense less geometrical, yet more transparent and less involved.

Let M := M(S) be an Artin monoid with Artin-Coxeter generating set S and let
G(S) be the corresponding group. Let W (S) be the corresponding Coxeter group (cf.
Definition 4.1.7). For I ⊂ S, let W (I) be the Coxeter group given by the restriction of
the Coxeter matrix to I. (It is well-known that W (I) is the subgroup of W (S) generated
by I). Set furthermore again

Sf = {I ⊂ S|W (I) is finite}

Theorem 5.3.1 ([18]). We have a natural isomorphism G(S) ∼= colimT∈Sf G(T ).

We want to observe that the same holds for monoids.

Lemma 5.3.2. The canonical map colimT∈Sf M(T )→M(S) is an isomorphism.

Proof. Let N be any monoid, and assume we have compatible monoid homomorphisms
ϕT : M (T )→ N for T ∈ Sf . Since for each a ∈ S, we have {a} ∈ Sf , we can set ϕ(a) :=
ϕ{a}(a). We now want to show that ϕ defines a monoid homomorphism M(S) → N .
Recall that all relations in M(S) are of the type

〈a, b〉ma,b = 〈b, a〉ma,b

whenever ma,b is finite. But if ma,b is finite, the corresponding dihedral group associated
to M({a, b}) is finite, thus {a, b} ∈ Sf . Since ϕ{a,b}(a) = ϕ{a}(a) = ϕ(a) and similar
for b, we know that the elements ϕ(a),ϕ(b) ∈ N satisfy

〈ϕ(a),ϕ(b)〉ma,b = 〈ϕ(b),ϕ(a)〉ma,b

since ϕ{a,b} is a monoid homomorphism. So ϕ is a well-defined monoid homomorphism,
and it is compatible with each ϕT since they coincide on T . Moreover, since the values
of ϕ on S are fixed by the family ϕT , the monoid homomorphism ϕ is unique. So M(S)
has the universal property of the colimit, and this implies the claim.

We will need the Grothendieck construction for a functor F : C → Cat, where C is a
small category and Cat is the category of small categories, like described in [58]. We
follow Thomason for the exposition. To such a functor, we assign a category C

∫
F .

Its objects are pairs (C,x), where C is an object in C and x is an object in F (C). A
morphism from (C1,x1) to (C2,x2) is given by a map c : C1 → C2 in C and a map
ϕ : F (c)(x1) → x2 in the category F (C2). The composition with a further morphism
(c′,ϕ′) : (C0,x0)→ (C1,x1) is given by

(c,ϕ) ◦ (c′,ϕ′) = (cc′,ϕ ◦ F (c)(ϕ′)).
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Note that the construction is functorial: a natural transformation α : F ⇒ F ′ induces
a functor C

∫
α : C

∫
F → C

∫
F ′, given by (C

∫
α) (C,x) = (C,α(C)(x)) on objects and

by (C
∫
α) (c,ϕ) = (c,α(C2)(ϕ)) on morphisms. One checks that this defines a functor

from the functor category Fun(C, Cat) into Cat.
For the exact definition of a homotopy colimit, see e.g. [8]. We will need, besides the

theorem below, mainly the following homotopy lemma:

Lemma 5.3.3 ([8], XII, 3.7 and 4.2). Let X,Y be two functors from a small category
C to simplicial sets, and let ψ : X → Y be a natural transformation. Then there exists
an induced map hocolimψ : hocolimX → hocolimY making hocolim into a functor.
Furthermore, if for all objects C in C, the map ψ(C) : X(C)→ Y (C) is a weak homotopy
equivalence, then the induced map hocolimψ is also a weak homotopy equivalence.

We will use the following homotopy colimit theorem by Thomason:

Theorem 5.3.4 ([58]). Let F : C → Cat be a functor. Then there is a natural weak
homotopy equivalence

η(F ) : hocolimNF → N(C
∫
F )

of simplicial sets.

Combining these two results, we obtain:

Proposition 5.3.5. Let F ,G : C → Cat be two functors starting from a small category
C, and let ψ : F ⇒ G be a natural transformation between them such that

N(ψ(C)) : NF (C)→ NG(C)

is a weak homotopy equivalence for each object C of C. Then the induced map of sim-
plicial sets N(C

∫
ψ) : N(C

∫
F )→ N(C

∫
G) is a weak homotopy equivalence.

We will now apply this proposition to our situation. We consider the functors

M(−),G(−) : Sf → Cat

associating to T ∈ Sf the corresponding Artin monoids and Artin groups, respectively.
Here, the category Sf means the category associated to the poset Sf with usual inclusion
as ordering. There is a natural transformation i : M(−)→ G(−) given by the canonical
map. By [10], the Artin monoids of finite type satisfy the Ore condition and are can-
cellative. By [14], Ch. X, §4, we know that for a cancellative monoid M satisfying the
Ore condition and its associated group G, the Tor-term TorZ[M ]

n (Z[G], Z) vanishes for
all n > 0. Now we will use the following proposition of Fiedorowicz:

Proposition 5.3.6 ([35]). Let M be a monoid and let G be its associated group. Then,
the following are equivalent:

1. πk(BM ) = 0 for all k ≥ 2.

92



2. The map BM → BG is a homotopy equivalence.

3. TorZ[M ]
n (Z, Z[G]) = 0 for all n > 0

So we know that the inclusion BM (T ) → BG(T ) is a homotopy equivalence for
T ∈ Sf . Altogether, we have proven:

Corollary 5.3.7. The map N(Sf
∫
M(−)) → N(Sf

∫
G(−)) induced by inclusion is a

weak homotopy equivalence.

Now we are going to describe Sf
∫
M(−) and Sf

∫
G(−) more concretely. Since each

M(T ) and G(T ) has exactly one object, the set of objects of either Grothendieck con-
struction is exactly Sf . There can be a map from T to T ′ only if T ⊂ T ′. Each such
map is given by a self-map of the only object of M(T ′), so we have

Sf
∫
M(−)(T ,T ′) =

{
M(T ′), if T ⊂ T ′

∅, else.

Note that the composition is given by the monoid multiplication. The category Sf
∫
G(−)

has a completely analogous description. We are now going to show:

Proposition 5.3.8. The space BM (S) is homotopy equivalent to |N(Sf
∫
G(−))|.

Before proving the Proposition, we are going to point out why this shows the desired
equivalence. It follows from [18], Corollary 3.2.4, that the K(π, 1)-conjecture for G(S)
is equivalent to the following:

Conjecture 5.3.9 ([18]). For any Artin group G(S), the space |N(Sf
∫
G(−))| is ho-

motopy equivalent to BG(S).

We can now use the results proven above to conclude the following theorem, first
proven (by completely different means) by N. Dobrinskaya.

Theorem 5.3.10. (cf. [33]) The inclusion BM (S)→ BG(S) is a homotopy equivalence
if and only if the space |N(Sf

∫
G(−))| is homotopy equivalent to BG(S).

Proof. If the inclusion BM (S) → BG(S) is a homotopy equivalence, Conjecture 5.3.9
holds for G(S) by Proposition 5.3.8.

For the other implication, we use again Proposition 5.3.6: If the Conjecture 5.3.9
holds for G(S), again Proposition 5.3.8 implies that all higher homotopy groups of BM
vanish, thus the claim.

We still need to show Proposition 5.3.8. As a first step, we are going to show that the
matching µ1 of the last section is also defined on the CW complex BM (S). For short,
we write M :=M(S).

We want to apply Lemma 3.4.7 to obtain an acyclic matching on BM out of µ1. This
is possible since M is cancellative and has no non-trivial invertible elements (e.g. due
to the fact that all relations in an Artin monoid are homogeneous), and furthermore
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µ1(x) = dht1(x)(x) for any µ1-collapsible cell x, and the height ht1(x) of a µ1-collapsible
cell satisfies 1 ≤ ht1(x) ≤ n− 1.

In order to apply Theorem 3.3.8, we have to check that the universal grading for this
matching is compact. We will use the Criterion 3.3.9. Define the map

ψ : BM (∗) → N

[xn| . . . |x1] 7→ NS(xn . . . x1)

First, we observe that this is a map of posets: Taking boundaries either leaves the
value of ψ constant (if it is di for 1 ≤ i ≤ n− 1) or decreases the value (for i ∈ {0,n}).
Moreover, by definition of µ1, the value of ψ is the same on the elements matched by µ1.
Last, there are only finitely many elements of BM (∗) such that the norm of the product
over all entries does not exceed a given value. Thus, the compactness condition is also
satisfied.

Now we will show that this matching restricts to a certain subcomplex of BM . Observe
that for any I ⊂ S, we have M(I) ⊂ M and NM(I) is a simplicial subset of NM . So
we can consider

K =
⋃
I∈Sf

BM (I) ⊂ BM (S),

realizing the simplicial subset
⋃
I∈Sf NM (I) of NM . First, we observe that all essential

cells lie in K(∗), a subposet of BM (∗). Now if a µ1-collapsible cell [xn| . . . |x1] lies in
some BM (I)(∗), so does dh([xn| . . . |x1]), its redundant partner. On the other hand, if
[xn| . . . |x1] is µ1-redundant and lies in BM (I)(∗), it is a consequence of the fact that
the relations do not change the set of letters of a word that xh+1 = yz and xh+1 ∈
M(I) implies y, z ∈ M(I). So the matching restricts to the subcomplex K, and it
automatically satisfies the conditions of the Definition 3.3.4 as well as the compactness
condition.

Next, we show that the associated Morse complexes of the matching given by µ1 and of
its restriction to K are the same, and the projections defined in Definition 3.3.7 coincide
on K. Observe that the cells of both Morse complexes (BM )µ1 and Kµ1 are in one-to-
one correspondence with essential cells of either complex, which coincide. Furthermore,
it follows inductively from Definition 3.3.7 that the projections to the Morse complex
coincide on K, and this in turn implies that the attaching maps for the Morse complexes
coincide. (Here, we also exploit the fact that K is a subcomplex.) Thus we obtain

Proposition 5.3.11. The inclusion

K =
⋃
I∈Sf

BM (I) ↪→ BM (S)

is a homotopy equivalence.

Next, we want to show that
⋃
I∈Sf NM (I) ' hocolimSf NM (−). We prove first the

following auxiliary lemma.
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Lemma 5.3.12. The simplicial set K̃ :=
⋃
I∈Sf NM (I) is the colimit of the functor

Sf → sSet, given by J 7→ NM(J).

Proof. Since there are compatible maps NM (J)→ K̃, given just by inclusion, we obtain
a map of simplicial sets

colimJ∈Sf NM(J)→ K̃ =
⋃
I∈Sf

NM(I).

This map is obviously surjective. We will now show that it is also injective. Assume
there are some [x], [y] ∈ colimJ∈Sf NM(J) coming from simplices x ∈ NM (J1)k, y ∈
NM (J2)k and mapped to the same element in

⋃
I∈Sf NM (I). This implies that there is

a simplex z ∈ NM (J1)k ∩NM(J2)k = NM(J1 ∩J2)k mapping both to x and to y under
corresponding inclusions. This implies exactly that [x] = [z] = [y] ∈ colimJ∈Sf NM (J),
proving the injectivity.

Now we are ready to show the following proposition.

Proposition 5.3.13. The functor Sf → sSet is cofibrant as an object of Fun(Sf , sSet),
where the model structure on the latter is given by levelwise weak equivalences and level-
wise fibrations. This implies in particular that K̃ :=

⋃
I∈Sf NM (I) ∼= colimJ∈Sf NM(J)

has the weak homotopy type of the homotopy colimit of the functor Sf → sSet given by
I 7→ NM (I). (cf. [43], Proposition 18.9.4)

Proof. First, we recall that in order to obtain a model structure on Fun(Sf , sSet) where
we have a nice description of cofibrations and which satisfies the conditions above, we
need for example Sf to be a direct category. This is fulfilled since the assignment I 7→ #I
gives a linear extension to an ordinal given by, for example, #S. Thus, Theorem 5.1.3
of [44] assures the existence of such a model structure, and it furthermore gives a char-
acterization of cofibrant objects in this model structure. So we only need to check that
for each object I ∈ Sf , the induced map LI(NM (−))→ NM (I) is a cofibration, where
LI(F ) denotes the I-latching object of functor F . Recall (e.g. from [44]) that LI(F ) is
the colimit of the “restriction” of F to the category of all non-identity morphisms with
target I. Note that here, this category is exactly the poset of all proper subsets of I. So
LI(NM (−)) is by the same argument as in the proof of Lemma 5.3.12 given by⋃

J(I
NM (J),

and the map is just the inclusion. This yields the claim.

Proof. (of Proposition 5.3.8) We put together all the steps done so far. In Proposition
5.3.11, we have shown that K ' BM (S). Going through the definition, we observe that
K is the geometric realization of the simplicial set K̃. By Proposition 5.3.13, we obtain
a weak homotopy equivalence in simplicial sets between K̃ and hocolimSf NM(−). By
Theorem 5.3.4, this last simplicial set is weakly homotopy equivalent to N(Sf

∫
M(−)),

and by Corollary 5.3.7, this simplicial set is in turn weakly homotopy equivalent to
N(Sf

∫
G(−)). After geometric realization, we obtain a true homotopy equivalence

K ' |N(Sf
∫
G(−))|. This completes the proof.
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Remark 5.3.14. There are already several applications of discrete Morse theory to
hyperplane arrangements in the literature, e.g. in [55], [51], [31]. Recall that the original
formulation of K(π, 1)-conjecture claims that a certain hyperplane arrangement is a
K(G(S), 1) for an Artin group G(S).
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6 Coxeter Groups and the Orthogonal Group
In this chapter, we are going to investigate the existence of factorability structures on
orthogonal groups and on some Coxeter groups.

6.1 Basics on Orthogonal Group
We will use the insights of Brady and Watt ([9]) to define a factorability structure on
O(V ). First, we recollect their results and methods.

Let V be an n-dimensional vector space over a field F, char(F) 6= 2, with an anisotropic
symmetric bilinear form 〈−,−〉. Recall that a symmetric bilinear form is called anisotropic
if 〈x,x〉 = 0 implies x = 0. We consider the group O(V ) of orthogonal transformations
of V .

Definition 6.1.1. [9] For A ∈ O(V ), define the fixed space of A by F (A) = Ker(A−
id) and the moved space of A by M(A) = im(A− id).

Example 6.1.2. Denote by Rα the reflection in the hyperplane orthogonal to α for each
α ∈ V \ {0}. Then we observe that for any α ∈ V \ {0}, we have M(Rα) = Fα. Indeed,
we can write for any x ∈ V :

Rαx = x− 2 〈α,x〉
〈α,α〉α

or, equivalently, (Rα − I)x = −2 〈α,x〉
〈α,α〉α ∈ Fα; since char(F) 6= 2, the image of Rα − I

is the whole of Fα.

It is not hard to see that the moved and the fixed spaces are orthogonal complements
of each other.

Proposition 6.1.3. [9] For any A ∈ O(V ), we have F (A) = (M(A))⊥.

The dimension of the moved space satisfies the triangle inequality. It allows to relate
this dimension to the word length with respect to all reflections.

Proposition 6.1.4. [9] For A,B ∈ O(V ) the inequality dimM(AB) ≤ dimM(A) +
dimM(B) holds. The equality holds if and only if M(AB) =M(A)⊕M(B).

This leads to the following definition by Brady and Watt:

Definition 6.1.5. [9] We write A ≤ C if dimM(C) = dimM(A) + dimM(A−1C).

The following realization theorem by Brady and Watt is the main ingredient in their
construction of normal forms.

Theorem 6.1.6. [9] If C ∈ O(V ) and W ⊂ M(C) is a subspace, then there exists a
unique A ∈ O(V ) with A ≤ C and M(A) = W .

Iterating this procedure, one obtains the following corollary.
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Corollary 6.1.7. [9] Let C ∈ O(V ) have dimM(C) = k and fix a maximal flag W1 ⊂
W2 ⊂ . . . ⊂Wk =M(C) in M(C). Then C factors uniquely as a product of k reflections
in hyperplanes, C = R1 . . . Rk such that M(R1R2 . . . Ri) = Wi for all i ∈ {1, 2, . . . , k}.

Given this, we will define easily a norm on O(V ) and identify it with the word length
norm with respect to all reflections in hyperplanes (in what follows, we always mean by
“reflections” reflections in some hyperplanes).

Lemma 6.1.8. For any A,B ∈ O(V ), we have M(AB) ⊂M(A) +M(B).

Proof. This easy fact is implicitly proven in [9]. We know that F (A) ∩ F (B) ⊂ F (AB)
(since each vector fixed by A and B remains fixed after applying AB) and (U ∩W )⊥ =
U⊥ +W⊥ (cf. [9]) for any two subspaces U ,W ⊂ V . The claim now follows from
Proposition 6.1.3.

Lemma 6.1.9. The map A 7→ dimM(A) defines a norm on O(V ), and this norm
coincides with the word length norm with respect to all reflections.

Proof. Denote by NR the word length norm with respect to all reflections. First, we
assume that A ∈ O(V ) can be written as a reduced word A = Rα1 . . . Rαk , i.e., NR(A) =
k. Then by inductive application of Lemma 6.1.8, we obtain

M(A) =M(Rα1 . . . Rαk) ⊂ Fα1 + . . .+ Fαk,

thus dimM(A) ≤ k = NR(A).
For the other inequality, we use Corollary 6.1.7. After choosing any maximal flag

in M(A), where dimM(A) = m, Corollary 6.1.7 implies that there exist reflections
R1, . . . ,Rm with A = R1 . . . Rm, thus NR(A) ≤ m = dimM(A). This yields the
claim.

The following lemma is essentially due to Carter ([15]). We prove it here since Carter
proves this result for Weyl groups. Yet, the proof goes quite analogously; similar argu-
ments can also be found in [2].

Lemma 6.1.10. [15] Let α1, . . . ,αk be vectors in V . Then the word Rα1 . . . Rαk is
reduced (i.e., it cannot be written as a product of fewer reflections in O(V )) if and only
if α1, . . . ,αk are linearly independent. In this case,

M(Rα1 . . . Rαk) = Fα1 ⊕ . . .⊕Fαk.

Proof. Write A = Rα1 . . . Rαk .
First, we assume this word is reduced. Then, by Lemma 6.1.9 we know dimM(A) = k.

On the other hand, by Lemma 6.1.8 we have

M(A) ⊂ Fα1 + . . .+ Fαk

thus the latter vector space is also k-dimensional and α1, . . . ,αk are linearly independent.
Furthermore, we note that in this case, we have

M(Rα1 . . . Rαk) = Fα1 ⊕ . . .⊕Fαk.
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Conversely, assume α1, . . . ,αk are linearly independent. We proceed by induction on k.
For k = 1, there is nothing to show. For k = 2, the determinant of A is +1 and the word
Rα1Rα2 is either trivial or reduced; it is trivial if and only if the reflections coincide
and α1,α2 are linearly dependent. (For this fact in the case of a general anisotropic
symmetric bilinear form, cf. [46], Section 6.4).

For the induction step, assume we have shown the claim for all integers ≤ k− 1. Then
we already know by the induction hypothesis (and by the first part of the proof) that

M(Rα2 . . . Rαk) = Fα2 ⊕ . . .⊕Fαk

Consider in Fα1 ⊕ . . .⊕Fαk a non-zero vector y orthogonal to the hyperplane Fα2 ⊕
. . .⊕ Fαk. Such a y can be constructed using the Gram-Schmidt procedure (without
normalization). Then 〈y,α1〉 6= 0 since otherwise y would be orthogonal to the basis
α1, . . . ,αk and thus vanish. Then we know that Rαiy = y for all i ∈ {2, . . . , k} and thus

(A− I)y = Ay− y = Rα1 . . . Rαky− y = Rα1y− y

= y− 2 〈y,α1〉
〈α1,α1〉

α1 − y = −2 〈y,α1〉
〈α1,α1〉

α1

It follows that α1 ∈ M(A). Now, since αi ∈ M(Rα2 . . . Rαk) for i ∈ {2, . . . , k}, we can
find xi ∈ V such that

Rα2 . . . Rαkxi = xi + αi for i ∈ {2, . . . , k}.

Apply now to both sides Rα1 and obtain:

Axi = xi + αi − 2〈xi + αi,α1〉
〈α1,α1〉

α1.

Thus, αi ∈M(A) for i ∈ {2, . . . , k} and Fα1 ⊕ . . .⊕Fαk ⊂M(A). By iterated applica-
tion of Lemma 6.1.8, we know that M(A) ⊂ Fα1 + . . .+Fαk. This yields together with
Lemma 6.1.9 the claim.

Remark 6.1.11. We have to remark that the results of this section are interesting almost
only for infinite fields: Over a finite field, a symmetric bilinear form on a vector space
of dimension ≥ 3 is necessarily isotropic (cf. [46], Exercise 6 of Section 6.4).

6.2 Factorability Structure on O(V )

Again, let V be an n-dimensional vector space over a field F, char(F) 6= 2, with an
anisotropic symmetric bilinear form 〈−,−〉. Fix for the rest of the section a maximal
flag V in V :

{0} = V0 ⊂ V1 ⊂ . . . ⊂ Vn = V

with dimVi = i.
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We now define a factorization map on O(V ) with respect to the norm of Lemma 6.1.9.
For any non-trivial A ∈ O(V ), the maximal flag V in V induces (after forgetting equal
subspaces) a maximal flag in M(A): There exist 1 ≤ i1 < i2 < . . . < im = n (where
m = dimM(A)) such that for any 1 ≤ k ≤ m, we have dimM (A) ∩ Vik = k. Then,
by Corollary 6.1.7, there exist up to scaling unique vectors α1,α2, . . . ,αm such that
A = Rα1 . . . Rαm and M(Rα1 . . . Rαk) =M (A) ∩ Vik for all 1 ≤ k ≤ m. Set

η(A) = (Rα1 . . . Rαm−1 ,Rαm)

We will show:

Proposition 6.2.1 (Bödigheimer, O.). The map η defined above provides a factorability
structure on (O(V ),NR).

Proof. By definition, (F1) and (F3) are obviously satisfied. Furthermore, by definition
dimM(Rα1 . . . Rαm−1) = m− 1 and by Lemma 6.1.9 we observe that (F2) is satisfied.
Thus, η is a factorization map. Next, we show that the axioms (F4) and (F5) are fulfilled.
We use the reformulation of the Lemma 2.1.6. Let A be any element of O(V ) and let
B = Rβ be a reflection in the hyperplane orthogonal to β.

As in Lemma 2.1.6, we have to consider the pairs

(Rαm ,Rβ) and (Rα1 . . . Rαm−1 , η(RαmRβ)).

As mentioned before, the first pair is geodesic if and only if β is not a multiple of αm.
If so, we have by definition to choose for the second pair a j ∈ {1, . . . ,n} such that

Vj ∩ (Fαm ⊕Fβ) = Fγ.

Then η(RαmRβ) = Rγ .
By Remark 2.1.5, if (A,B) is a geodesic pair, both other pairs in question are auto-

matically geodesic.
We prove the other implication: Assume that the pairs (Rαm ,Rβ) and

(Rα1 . . . Rαm−1 ,Rγ)

are geodesic. Equivalently, we know that αm is not a multiple of β and that the
vectors α1, . . . ,αm−1, γ are linearly independent by Lemma 6.1.10. We have to show
that α1, . . . ,αm,β are linearly independent. Suppose not. Since the vectors α1, . . . ,αm
are linearly independent, we have β ∈ Fα1 ⊕ . . .⊕ Fαm = M(A). Thus, γ ∈ M(A)
since it is a linear combination of β and αm. On the other hand, by assumption
γ /∈ Fα1 ⊕ . . .⊕ Fαm−1 = M(A) ∩ Vim−1 and we conclude that γ /∈ Vim−1 . Since γ is
contained in M(A)∩Vj , this subspace cannot be contained in M(A)∩Vim−1 , thus by def-
inition M (A) ∩ Vj = M(A) ∩ Vim = M(A), i.e. M(A) ⊂ Vj . But then Fαm ⊕Fβ ⊂ Vj ,
contradicting the choice of j. This completes the proof of the first condition in the
Lemma 2.1.6.

Thus, it remains to show that the last condition of Lemma 2.1.6 is satisfied. Assume
(A,B) is a geodesic pair as above. Let C = η(AB). Since the axiom (F2) is fulfilled, we
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know that C ≤ AB in the sense of Definition 6.1.5. Furthermore, Rα1 . . . Rαm−1Rγ ≤ AB
since the norm of Rα1 . . . Rαm−1Rγ is m by above consideration. In order to complete
the proof of the proposition, it is enough to show that M(C) = M(Rα1 . . . Rαm−1Rγ).
Indeed, the last one is by Lemma 6.1.10 equal to Fα1 ⊕ . . .⊕ Fαm−1 ⊕ Fγ and thus a
subspace of Fα1 ⊕ . . .⊕ Fαm ⊕ Fβ = M(AB) (the last equality holds, again, due to
6.1.10). By the uniqueness part of Theorem 6.1.6, we’re done then.

By definition, M (C) is

Vt ∩M(AB) = Vt ∩ (Fα1 ⊕ . . .⊕Fαm ⊕Fβ).

where t ∈ {1, . . . ,n} has to fulfill dim(Vt ∩M(AB)) = m. Since M(Rα1 . . . Rαm−1Rγ) =
Fα1 ⊕ . . .⊕Fαm−1 ⊕Fγ is also m - dimensional, it is enough to show that one of those
two subspaces of V is contained in the other one. Write for short W := Fα1 ⊕ . . .⊕
Fαm−1 =M (A) ∩ Vim−1 . We have to consider several cases.

1. Let j ≤ im−1. We consider

Vim−1 ∩M(AB) = Vim−1 ∩ (W ⊕Fαm ⊕Fβ).

This vector space is at most m-dimensional since it is a subspace of an m+ 1-
dimensional vector space W ⊕Fαm ⊕Fβ and does not contain αm. On the other
hand, by definition W ⊂ Vim−1 thus W ⊂ Vim−1 ∩ (W ⊕ Fαm ⊕ Fβ) and, since
γ ∈ Vj ⊂ Vim−1 , we have an m-dimensional subspace

W ⊕Fγ ⊂ Vim−1 ∩ (W ⊕Fαm ⊕Fβ).

Thus we have Vt ∩M(AB) = Vim−1 ∩M(AB) = W ⊕Fγ and we’re done in this
case.

2. Let now im−1 ≤ j. We consider

Vj ∩M(AB) = Vj ∩ (W ⊕Fαm ⊕Fβ)

First, we observe again that since Fαm ⊕Fβ is not contained in Vj (by definition
of j), this vector space is at most m-dimensional. Since W ⊂ Vim−1 ⊂ Vj , we have
W ⊂ Vj ∩ (W ⊕Fαm ⊕Fβ). Furthermore,

γ ∈ Vj ∩ (Fαm ⊕Fβ) ⊂ Vj ∩ (W ⊕Fαm ⊕Fβ).

Thus we conclude as in the first case that Vt ∩M(AB) = Vj ∩M(AB) = W ⊕Fγ
and we’re done.
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6.3 Geometric Interpretation
We are going to show now that the geometric interpretation of the factorability structure
on O(V ) given by C.-F.Bödigheimer coincides with the description given earlier.

Fix a flag (Vi)1≤i≤n in V determining a factorability structure on O(V ) as in Proposi-
tion 6.2.1. Fix furthermore an orthogonal basis e1, e2, . . . , en corresponding to this flag,
i.e., we have Vi = Fe1 ⊕ . . .⊕ Fei. Consider A ∈ O(V ). Then there is a 1 ≤ k ≤ n
such that M(A) ⊂ Vk but M(A) 6⊂ Vk−1, where V0 := {0}. Since M(A) is the or-
thogonal complement of F (A) by Proposition 6.1.3 and Fek+1 ⊕ . . . ⊕ Fen is the or-
thogonal complement of Vk, we have Fek+1 ⊕ . . . ⊕ Fen ⊂ F (A). So, in particular,
ek+1, . . . , en are fixed by A. On the other hand, if ek was fixed by A, we would have
Fek ⊕ . . .⊕Fen ⊂ F (A) and thus M(A) ⊂ Vk−1, contradicting our assumption. From
this, k can be described as the largest index such that ek is not fixed by A.

We claim that η′(A) is the reflection at the hyperplane orthogonal to A−1ek − ek, so
that multiplication with this reflection turns ek into an additional fixed basis vector. We
make this fact precise in the following Proposition. The situation is illustrated in the
picture below.

Proposition 6.3.1. Let A be in O(V ), and k, as above, the largest index such that ek
is not fixed by A. Then η′(A) = Rα with α = A−1ek − ek.

Proof. We will prove that M(ARα) = M(A) ∩ Vk−1. This will yield the claim, since
then dimM(ARα) = dimM(A)− 1 and we can use Theorem 6.1.6 and the definition of
the factorability structure on O(V ).

First, we check that ARα(ek) = ek. Note that α is not 0 since Aα = ek −Aek 6= 0 by
considerations above. We have by definition

Rα(ek) = ek − 2〈ek,α〉
〈α,α〉 α.
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Note that

〈α,α〉 = 〈A−1ek − ek,A−1ek − ek〉 = 2〈ek, ek〉 − 2〈ek,A−1ek〉 = −2〈ek,α〉

since A−1 is also orthogonal. Thus Rα(ek) = ek + α = A−1ek and ARα(ek) = ek.
Next, we observe that α ∈M (A). Indeed, we can write α = A(−A−1ek)− (−A−1ek).

In particular, 〈α, ej〉 = 0 for j ≥ k+ 1 and ARα(ej) = ej for j ≥ k+ 1.
Thus, we conclude as above that M(ARα) ⊂ Vk−1. On the other hand, by Lemma

6.1.8, we have M(ARα) ⊂ M(A) +M(Rα) = M(A) + Fα = M(A), since α ∈ M(A).
So M(ARα) ⊂M(A) ∩ Vk−1.

Last, by Lemma 6.1.4, we have dimM(A) ≤ dimM(ARα) + dimM(Rα), so

dimM(ARα) ≥ dimM(A)− 1 = dim(M(A) ∩ Vk−1).

This yields M(ARα) =M(A) ∩ Vk−1 and also the claim of the Proposition.

6.4 Factorability Structures on Some Coxeter Groups
We consider the Coxeter groups of type An−1 = Sn and Bn. Unfortunately, the Coxeter
groups of the B-series are usually denoted by the same letter as usual braid groups,
which are Artin groups corresponding to the A-series. We hope that this does not cause
confusion. Recall that the Coxeter group Bn may be identified with the semi-direct
product (Z/2)noSn, where the symmetric group acts on (Z/2)n by permutations.

Our goal is to show that the Coxeter groups of type A and B inherit the factora-
bility structure from the orthogonal group, and for symmetric groups, this factorabil-
ity structure coincides with the one defined by Visy (cf. [60]). Recall that we have
An−1 ⊂ Bn ⊂ O(n), where O(n) denotes now the usual orthogonal group of Rn with
standard scalar product. It is well-known that: (see e.g. [45])

Lemma 6.4.1. The Coxeter groups of type An−1 have a root system consisting of

T (An−1) ∪−T (An−1) with T (An) = {ei − ej |1 ≤ i < j ≤ n}.

The Coxeter groups of type Bn have a root system consisting of T (Bn) ∪−T (Bn) with

T (Bn) = {ei − ej |1 ≤ i < j ≤ n} ∪ {ei + ej |1 ≤ i < j ≤ n} ∪ {ei|1 ≤ i ≤ n}

We are going to show the following proposition.

Proposition 6.4.2. Let An−1 ⊂ Bn ⊂ O(n) be the standard inclusions and let η be
the factorability structure on O(n) given by Proposition 6.2.1 with respect to the flag
Vk = ⊕1≤i≤kRei. Then η restricts to Bn and An−1 (with the generating set of all
reflections in Bn and An−1, respectively), i.e., for any x ∈ Bn, the element η(x) lies in
the subset Bn ×Bn of O(n)×O(n), and similarly for An−1.
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Proof. Write G for Bn or An−1.
Note that the reflections in G are exactly the reflections Rα with α ∈ T (G). Suppose

we have shown that for α 6= β ∈ T (G) we have η(RαRβ) = Rγ with γ ∈ T (G). Then we
have also η′(RαRβ) ∈ G since G is a group. For an arbitrary element x of G, choose any
geodesic (in G) word in Rα’s representing x with α ∈ T (G). Then we know by Theorem
2.2.4 that we either obtain a normal form in O(n) by applying fDn to this word or we
would decrease the norm. Note that under our assumptions, any fi makes out of a word
in Rα’s with α ∈ T (G) again such a word. In particular, the norm can’t drop since we
started with a geodesic word in G, and the normal form lives also in G.

So we only need to show that for α 6= β ∈ T (G) we have η(RαRβ) = Rγ with
γ ∈ T (G). For doing so, we have to distinguish several cases. Recall that for α 6= β, we
have M(RαRβ) = Rα⊕Rβ and that γ as above is given by Vs ∩ (Rα⊕Rβ) = Rγ for
s defined by Rα⊕Rβ ⊂ Vs+1 and Rα⊕Rβ * Vs. Observe that it’s enough to find any
s such that the intersection as above is one-dimensional. We will use this below.

We start with G = An−1. Consider α = ei − ej , β = ek − el, i < j, k < l.

Case 1: If j < l, we have Vl−1 ∩ (Rα⊕Rβ) = R(ei − ej).

Case 2: If l < j, we have symmetrically Vj−1 ∩ (Rα⊕Rβ) = R(ek − el).

Case 3: If l = j, note that α− β = ei − ek is again a root. Thus Vl−1 ∩ (Rα⊕Rβ) =
R(ei − ek) as desired.

So we see that An−1 is a factorable subgroup of O(n). Observe we need not to check
these cases again for Bn.

Now we examine G = Bn.

Case 1: Let α = ei + ej , β = ek + el, i < j, k < l

Case 1.1: If j < l, we have Vl−1 ∩ (Rα⊕Rβ) = R(ei + ej).
Case 1.2: If l < j, we have symmetrically Vj−1 ∩ (Rα⊕Rβ) = R(ek + el).
Case 1.3: If l = j, note that α− β = ei− ek is again a root. Thus Vl−1 ∩ (Rα⊕Rβ) =

R(ei − ek) as desired.

Case 2: Let α = ei − ej , β = ek + el, i < j, k < l.
Case 2.1: If j < l, we have Vl−1 ∩ (Rα⊕Rβ) = R(ei − ej).
Case 2.2: If l < j, we have Vj−1 ∩ (Rα⊕Rβ) = R(ek + el).
Case 2.3: If l = j and i 6= k, note that α+ β = ei + ek is again a root. Thus

Vl−1 ∩ (Rα⊕Rβ) = R(ei + ek)

as desired.
Case 2.4: If l = j and i = k, note that 1

2 (α + β) = ei is a root. Thus we have
Vl−1 ∩ (Rα⊕Rβ) = Rei as desired.
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Case 3: Let α = ei ± ej , β = ek, i < j.
Case 3.1: If j < k, we have Vk−1 ∩ (Rα⊕Rβ) = R(ei ± ej).
Case 3.2: If k < j, we have similarly Vj−1 ∩ (Rα⊕Rβ) = Rek.
Case 3.3: If k = j, note that α∓ β = ei is again a root. Thus

Vk−1 ∩ (Rα⊕Rβ) = Rei

as desired.

Case 4: Last, assume α = ei, β = ej . In this case, the claim is obvious. This completes
the proof.

Remark 6.4.3. The factorability structure on Sn obtained in Proposition 6.4.2 is ex-
actly the Visy factorability structure as described in Example 2.1.8.
Proof. We will check that the restriction of the factorability structure on O(n) and
the Visy factorability structure coincide when evaluated at a product of transpositions.
This is enough since a factorability structure is determined by the corresponding local
factorability structure by a result of M. Rodenhausen (cf. Theorem 2.3.2), i.e., the
factorability structure is determined by its values on the products of two generators.

First, observe Rei−ej is the image of (ij) under the standard inclusion into O(n); the
factorability structure of 6.4.2 can be characterized as follows. Assume i < j, k < l.

η((ij)(kl)) =



((ij), (kl)), j < l

((kl), (lj)), l < j, i = k

((kl), (kj)), l < j, i = l

((kl), (ij)), l < j, i /∈ {k, l}
((ik), (il)), l = j, i 6= k

We compare this with the Visy factorability structure:
Assume again i < j, k < l and consider (ij)(kl).
1. If j < l, then l is the largest non-fixed point of (ij)(kl), and

((ij)(kl))−1(l) = (kl)(ij)(l) = k,

since i < j < l. Thus η′((ij)(kl)) = (kl) in this case.

2. If l < j and i /∈ {k, l}, then (ij)(kl) = (kl)(ij) and by the previous case
η′((ij)(kl)) = (ij).

3. If l < j and i = k, then (kj)(kl) = (klj), so (klj)−1(j) = l and η′((ij)(kl)) = (lj).

4. If l < j and i = l, then (lj)(kl) = (kjl), so (kjl)−1(j) = k and η′((ij)(kl)) = (kj).

5. If l = j and i 6= k, then (il)(kl) = (ilk), so (ilk)−1(l) = i and η′((ij)(kl)) = (il).
This completes the proof.
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7 Rewriting Systems out of Factorability Structures
We want to deal with the question when a factorability structure on a monoid provides
a complete rewriting system (as defined in Section 3.1) for this monoid. This question
was raised by A. Heß. We always obtain a rewriting system with exactly one irreducible
element in each equivalence class, but we will show that it is not necessarily noetherian.
We will yet exhibit several cases where the given rewriting system is noetherian.

7.1 Rewriting System of a Factorable Monoid
First, we are going to make precise which rewriting system is going to be associated to
a factorability structure on a monoid. The choice is quite self-evident.

Lemma 7.1.1 (Heß, O.). Let (M , E , η) be a factorable monoid. Then the rewriting rules

(x, y)→ η(xy) for x, y ∈ E if (x, y) is unstable

define a strongly minimal rewriting system on M with exactly one irreducible element in
each equivalence class. (here, if xy = 1, we interpret the rewriting rule as (x, y)→ xy).

Proof. First, by Proposition 2.3.2 of M. Rodenhausen, we know that this rewriting sys-
tem defines exactly the monoid M we started with. Since the right-hand side of each
rewriting rule is always a stable pair or a single element of E or 1, we know that right
sides of our rewriting rules are irreducible. Furthermore, the elements of E are irre-
ducible, and left-hand sides are irreducible if we remove the rule containing them. Thus
this rewriting system is strongly minimal.

Furthermore, each element of the monoid can be brought into its normal form with
the normal form procedure described in Section 2.3, which is obviously a chain of appli-
cations of the rewriting rules above. Furthermore, we observed in Lemma 2.3.3 that the
obtained normal form is totally stable, which translates exactly into irreducible in the
language of rewriting systems. This implies there is exactly one irreducible element in
each equivalence class of words in the free monoid on E (under the equivalence relation
generated by above rules).

Unfortunately, this rewriting system is not always noetherian, even if E is finite and the
resulting monoid is right-cancellative. We present now an example of a factorable monoid
where the associated rewriting system is not noetherian. We prove the factorability by
exhibiting a local factorability structure and using then the criterion 2.3.2.

Since the proof is quite technical, we first show how the example was constructed. We
want to find a cycle in the system of rewritings when (ϕ3ϕ2ϕ1ϕ2)N is applied. (This
can be checked to be the only candidate to produce a cycle when applied to a 4-tuple.)
One can construct a monoid with a cycle of length N = 1, but naive attempts yield then
a not right-cancellative monoid. So we will force the cycle to have length 2. Thus, we
have necessarily rewritings of the following form:
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a1 b1 c1 d1

a2 b2 c1 d1

a2 b3 c2 d1

a2 b3 c3 d2

a2 b4 c4 d2

a1 b5 c4 d2

a1 b6 c5 d2

a1 b6 c6 d1

a1 b1 c1 d1

. . . . . . . . . . . .

Furthermore, one can see that the pairs (a2, b3) and (a1, b6) should not be geodesic
since otherwise, the rewritings have to stabilize. The further rewriting rules arose during
the proof. This should justify the definition in the following proposition.
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Proposition 7.1.2. Let E be the following set:

{a1, a2, b1, b2, b3, b4, b5, b6, c1, c2, c3, c4, c5, c6, d1, d2, e2, e3, f2, f3, g2, g3,h2,h3, i, j, k}

Define a function ϕ : E+ ×E+ → E+ ×E+ as follows:

ϕ(a1, b1) = (a2, b2)

ϕ(b2, c1) = (b3, c2)

ϕ(c2, d1) = (c3, d2)

ϕ(b3, c3) = (b4, c4)

ϕ(a2, b4) = (a1, b5)

ϕ(b5, c4) = (b6, c5)

ϕ(c5, d2) = (c6, d1)

ϕ(b6, c6) = (b1, c1)

ϕ(a2, b3) = (1, e2)

ϕ(a1, b6) = (1, e3)

ϕ(e2, c2) = (f2, g2)

ϕ(e3, c5) = (f3, g3)

ϕ(e2, c3) = (f3, g3)

ϕ(e3, c6) = (f2, g2)

ϕ(g2, d1) = (h2, i)
ϕ(g3, d2) = (h3, i)
ϕ(f2,h2) = (j, k)
ϕ(f3,h3) = (j, k)
ϕ(s, 1) = (1, s) for all s ∈ E+

and ϕ(s, t) = (s, t) if (s, t) is not in the list above.
This function is a local factorability structure in the sense of Definition 2.3.1. The

associated rewriting system is not noetherian. Furthermore, the monoid M defined by
this local factorability structure is right cancellative.

Proof. The map ϕ satisfies by definition ϕ(x, 1) = (1,x) for all x ∈ E+ and also ϕ2 = ϕ.
Now we are going to check the fourth condition of the Definition 2.3.1, the stability

for triples condition. We will consider several cases. Note that the stability for triples
condition is automatically satisfied if the triple we start with is totally stable. Moreover,
we are done as soon as the triple contains a 1; thus, we do not have to consider triples
already containing 1 and we are also immediately done with triples of the form (a2, b3, t)
or (a1, b6, t) for all t ∈ E . To make the steps more transparent, we will use graphical
presentation.

Case 1: Here, we start with the triple (a1, b1, t) for some t ∈ E . Observe that we are done
after applying ϕ2 unless t = c1, so we assume this from the second step on.
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a1 b1 t

a2 b2 t

a2 b3 c2

1 e2 c2

Thus, in this case, application of ϕ2ϕ1ϕ2 yields a 1.

Case 2: We start with the triple (b2, c1, t) for some t ∈ E . Here, we are done after applying
ϕ2 unless t = d1, so we assume this from the second step on.

b2 c1 t

b3 c2 t

b3 c3 d2

b4 c4 d2

Since the pair (c4, d2) is stable, the resulting triple is totally stable.

Case 3: We start with the triple (c2, d1, t) for some t ∈ E . Here, we are done after applying
ϕ2 since all pairs of the form (d2, t) are stable.

c2 d1 t

c3 d2 t
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Case 4: We start with the triple (b3, c3, t) for some t ∈ E . Here, we are done after applying
ϕ2 since all pairs of the form (c4, t) are stable.

b3 c3 t

b4 c4 t

Case 5: Here, we start with the triple (a2, b4, t) for some t ∈ E . Observe that we are done
after applying ϕ2 unless t = c4, so we assume this from the second step on.

a2 b4 t

a1 b5 t

a1 b6 c4

1 e3 c4

Thus, in this case, application of ϕ2ϕ1ϕ2 yields a 1.

Case 6: We start with the triple (b5, c4, t) for some t ∈ E . Here, we are done after applying
ϕ2 unless t = d2, so we assume this from the second step on.
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b5 c4 t

b6 c5 t

b6 c6 d1

b1 c1 d1

Since the pair (c1, d1) is stable, the resulting triple is totally stable.

Case 7: We start with the triple (c5, d2, t) for some t ∈ E . Here, we are done after applying
ϕ2 since all pairs of the form (d1, t) are stable.

c5 d2 t

c6 d1 t

Case 8: We start with the triple (b6, c6, t) for some t ∈ E . Here, we are done after applying
ϕ2 since all pairs of the form (c1, t) are stable.

b6 c6 t

b1 c1 t

Case 9: We start with the triple (e2, c2, t) for some t ∈ E . Here, we are done after applying
ϕ2 unless t = d1, so we assume this from the second step on.
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e2 c2 t

f2 g2 t

f2 h2 i

j k i

Since the pair (k, i) is stable, the resulting triple is totally stable.

Case 10: We start with the triple (e3, c5, t) for some t ∈ E . Here, we are done after applying
ϕ2 unless t = d2, so we assume this from the second step on.

e3 c5 t

f3 g3 t

f3 h3 i

j k i

Since the pair (k, i) is stable, the resulting triple is totally stable.

Case 11: We start with the triple (e2, c3, t) for some t ∈ E . Here, we are done after applying
ϕ2 unless t = d2, so we assume this from the second step on.
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e2 c3 t

f3 g3 t

f3 h3 i

j k i

Since the pair (k, i) is stable, the resulting triple is totally stable.

Case 12: We start with the triple (e3, c6, t) for some t ∈ E . Here, we are done after applying
ϕ2 unless t = d1, so we assume this from the second step on.

e3 c6 t

f2 g2 t

f2 h2 i

j k i

Since the pair (k, i) is stable, the resulting triple is totally stable.

Case 13: We start with the triple (g2, d1, t) for some t ∈ E . Here, we are done after applying
ϕ2 since all pairs of the form (i, t) are stable.

g2 d1 t

h2 i t

113



Case 14: We start with the triple (g3, d2, t) for some t ∈ E . Here, we are done after applying
ϕ2 since all pairs of the form (i, t) are stable.

g3 d2 t

h3 i t

Case 15: We start with the triple (fn, hn, t) for some t ∈ E and n ∈ {2, 3}. Here, we are
done after applying ϕ2 since all pairs of the form (k, t) are stable.

fn hn t

j k t

From now on, we may assume that the first pair is stable, so we only have to show that
the application of ϕ2ϕ1 to such a triple yields either a 1 or a totally stable triple.

Case 16: We consider the triple (t, a1, b1) for some t ∈ E . Here, we are done after ϕ1 since
all pairs of the form (t, a2) are stable.

t a1 b1

t a2 b2

Case 17: We consider the triple (t, b2, c1) for some t ∈ E . Here, we are done after applying
ϕ1 unless t = a2, so we assume this in the second step.

t b2 c1

t b3 c2

1 e2 c2
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We are done in this case since this generates a 1.

Case 18: We consider the triple (t, c2, d1) for some t ∈ E . Observe that by assumption
t 6= e2. Thus, we are done after applying ϕ1 unless t = b3, so we assume this in
the second step.

t c2 d1

t c3 d2

b4 c4 d2

We are done in this case since the pair (c4, d2) is stable.

Case 19: We consider the triple (t, b3, c3) for some t ∈ E . Observe that by assumption
t 6= a2. Thus, we are done after applying ϕ1 since all other pairs (t, b4) are stable.

t b3 c3

t b4 c4

Case 20: We consider the triple (t, a2, b4) for some t ∈ E . Here, we are done after ϕ1 since
all pairs of the form (t, a1) are stable.

t a2 b4

t a1 b5

Case 21: We consider the triple (t, b5, c4) for some t ∈ E . Here, we are done after applying
ϕ1 unless t = a1, so we assume this in the second step.
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t b5 c4

t b6 c5

1 e3 c5

We are done in this case since this generates a 1.

Case 22: We consider the triple (t, c5, d2) for some t ∈ E . Observe that by assumption
t 6= e3. Thus, we are done after applying ϕ1 unless t = b6, so we assume this in
the second step.

t c5 d2

t c6 d1

b1 c1 d1

We are done in this case since the pair (c1, d1) is stable.

Case 23: We consider the triple (t, b6, c6) for some t ∈ E . Observe that by assumption
t 6= a1. In this case, we are done after applying ϕ1 since all pairs of the form (t, b1)
are stable if t 6= a1.

t b6 c6

t b1 c1

Case 24: We consider the triple (t, a2, b3) for some t ∈ E . In this case, we are done after
applying ϕ1 since it produces a 1.
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t a2 b3

t 1 e2

Case 25: We consider the triple (t, a1, b6) for some t ∈ E . In this case, we are done after
applying ϕ1 since it produces a 1.

t a1 b6

t 1 e3

Case 26: We consider the triple (t, e2, c2) for some t ∈ E . In this case, we are done after
applying ϕ1 since all pairs of the form (t, f2) are stable.

t e2 c2

t f2 g2

Case 27: We consider the triple (t, e3, c5) for some t ∈ E . In this case, we are done after
applying ϕ1 since all pairs of the form (t, f3) are stable.

t e3 c5

t f3 g3

Case 28: We consider the triple (t, e2, c3) for some t ∈ E . In this case, we are done after
applying ϕ1 since all pairs of the form (t, f3) are stable.

t e2 c3

t f3 g3
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Case 29: We consider the triple (t, e3, c6) for some t ∈ E . In this case, we are done after
applying ϕ1 since all pairs of the form (t, f2) are stable.

t e3 c6

t f2 g2

Case 30: We consider the triple (t, g2, d1) for some t ∈ E . Here, we are done after applying
ϕ1 unless t = f2, so we assume this in the second step.

t g2 d1

t h2 i

j k i

We are done in this case since the pair (k, i) is stable.

Case 31: We consider the triple (t, g3, d2) for some t ∈ E . Here, we are done after applying
ϕ1 unless t = f3, so we assume this in the second step.

t g3 d2

t h3 i

j k i

We are done in this case since the pair (k, i) is stable.

Case 32: Last, we consider the triple (t, fn, hn) for some t ∈ E and n ∈ {2, 3}. In this case,
we are done after applying ϕ1 since all pairs of the form (t, j) are stable.
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t fn hn

t j k

Since the above list contains all triples which are not everywhere stable or contain 1,
this completes the proof of the fourth condition.

Now we are going to check the fifth condition for local factorability, the normal form
condition. Recall that we have to show that the normal form of a triple remains un-
changed under applying ϕ1. We will use Lemma 2.3.11 which says we only have to check
the totally unstable triples. For the given map ϕ, these are only the triples (a2, b3, c3),
(a1, b6, c6), (e2, c2, d1) and (e3, c5, d2). We use Lemma 2.3.5 to compute normal forms
for triples.

In the first case, the application of ϕ1ϕ2ϕ1ϕ2 gives the following picture.

a2 b3 c3

1 e2 c3

1 f3 g3

which is everywhere stable and thus already the (extended) normal form.
On the other hand, the application of ϕ1ϕ2ϕ1ϕ2ϕ1 yields the following.
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a2 b3 c3

a2 b4 c4

a1 b5 c4

a1 b6 c5

1 e3 c5

1 f3 g3

So both normal forms coincide in this first case.
The second case is very similar: The application of ϕ1ϕ2ϕ1ϕ2 gives the following

picture.

a1 b6 c6

1 e3 c6

1 f2 g2

which is everywhere stable and thus already the (extended) normal form.
On the other hand, the application of ϕ1ϕ2ϕ1ϕ2ϕ1 yields the following.
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a1 b6 c6

a1 b1 c1

a2 b2 c1

a2 b3 c2

1 e2 c2

1 f2 g2

So both normal forms coincide in this case.
We continue with the third case: The normal form of (e2, c2, d1) is obtained as follows.

e2 c2 d1

f2 g2 d1

f2 h2 i

j k i

and the tuple (j, k, i) is already everywhere stable. On the other hand, the application
of ϕ1ϕ2ϕ1ϕ2ϕ1 yields the following.
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e2 c2 d1

e2 c3 d2

f3 g3 d2

f3 h3 i

j k i

So we obtain in both cases the same normal form. The last case is again very similar:
The normal form of (e3, c5, d2) is obtained as follows.

e3 c5 d2

f3 g3 d2

f3 h3 i

j k i

and the tuple (j, k, i) is already everywhere stable. On the other hand, the application
of ϕ1ϕ2ϕ1ϕ2ϕ1 yields the following.
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e3 c5 d2

e3 c6 d1

f2 g2 d1

f2 h2 i

j k i

Thus, also in this case, the normal form condition is satisfied. This implies that the
map ϕ defined in this Lemma is indeed a local factorability structure.

Next, observe that the associated rewriting system is not noetherian. Indeed, we have
the chain of rewritings
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a1 b1 c1 d1

a2 b2 c1 d1

a2 b3 c2 d1

a2 b3 c3 d2

a2 b4 c4 d2

a1 b5 c4 d2

a1 b6 c5 d2

a1 b6 c6 d1

a1 b1 c1 d1

. . . . . . . . . . . .

So we obtain a cycle in the rewritings. Observe that this cycle is non-trivial: For
example, note that if a1 = a2, there had to be a zigzag of rewritings from a1 to a2. But
none of the non-trivial rewriting rules starts or ends with a1, so this is impossible.

Last, we are going to show that the monoid M defined by the local factorability
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structure as above is right-cancellative. We are going to rely on the ϕ-normal forms
in this monoid. Assume M is not right-cancellative. Then there are some elements
x, y, z ∈ M such that xz = yz, but x 6= y. Obviously, z 6= 1. We want to consider an
example with minimal E-word length of z. Then NE(z) = 1: Indeed, otherwise there
is an s ∈ E and w ∈ M \ {1} such that z = ws. Then (xw)s = (yw)s, so that either
xw = yw contradicting the minimality of z, or xw 6= yw, which is again contradicting
the minimality.

So we know that there are x 6= y ∈M and z ∈ E such that xz = yz. Let (xm, . . . ,x1)
be the normal form of x and (yn, . . . , y1) the normal form of y. We may choose an
example where m + n is minimal. First, we want to demonstrate that m + n ≥ 3.
Indeed, m + n has to be at least 1 by definition. Then, if m = 1 and n = 0 (the
other case can be treated symmetrically), we have x1z = z, which in particular implies
ϕ(x1, z) = (1, z). But there is no pair (x1, z) with x1 6= 1 and image (1, z) under ϕ, so
this cannot happen. More generally, we can exclude the case n = 0 (and so symmetrically
m = 0): We compute the normal form of (xm, . . . ,x1, z) using the definition. We already
know that this normal form has to be z. Note that in the step where the number of
non-trivial letters in the string reduces to one, we have to get a 1 out of a pair of elements
by applying ϕ, so that z must be ei with i ∈ {2, 3}. But all pairs of the form (x1, ei)
are stable, so that (xm, . . . ,x1, ei) has to be already the normal form, contradicting the
assumption m+ n > 0. Furthermore, we can exclude the case m = n = 1, observing
that in the definition of ϕ, there are no distinct pairs (x1, z), (y1, z) which are mapped
to the same pair by ϕ.

Now we knowm+n ≥ 3. In order to compute the normal forms of tuples (xm, . . . ,x1, z)
and (yn, . . . , y1, z), we first have to apply ϕmϕm−1 . . . ϕ1 or ϕnϕn−1 . . . ϕ1, respectively.
Observe that if both (x1, z) and (y1, z) are stable pairs, then we would have two different
normal forms for the same element xz = yz of M , yielding a contradiction. So we may
assume ϕ(x1, z) = (u1, v1) with (x1, z) 6= (u1, v1). Note that this in particular implies
z 6= v1 by the definition of ϕ.

Consider now the case where applications of both ϕmϕm−1 . . . ϕ1 and ϕnϕn−1 . . . ϕ1 do
not produce a 1. Then the results have to be equal, in particular, n = m. Furthermore,
this implies ϕ(x1, z) = (u1, v1) and ϕ(y1, z) = (t1, v1) with the same v1, in particular,
(y1, z) 6= (t1, v1). There are no two distinct pairs with same right letters in the list
defining ϕ, i.e., if ϕ(α,β) = (γ, δ) and ϕ(α̃,β) = (γ̃, δ) and β 6= δ, we know that
α̃ = α and γ̃ = γ. Hence, we may conclude that x1 = y1 and u1 = t1. Now since
x 6= y, we know that xm . . . x2 6= yn . . . y2. The normal forms of (xm, . . . ,x2,u1) and
(yn, . . . , y2,u1) have to coincide since they are the same as the normal form of xz = yz
with the right-most letter v1 deleted, and so the elements xm . . . x2u1 and yn . . . y2u1
have to coincide. But this contradicts the minimality assumption on n+m.

So we have to consider the case where we obtain a 1 while building the normal form.
We may assume that application of ϕp to ϕp−1 . . . ϕ1(xn,xn−1, . . . ,x1, z) produces the
first 1. Define uq and vq inductively via u0 := z and ϕ(xq+1,uq) = (uq+1, vq+1) for
0 ≤ q ≤ p− 1. By assumption, up = 1. (We illustrate the situation by the following
picture.)
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xn . . . xp xp−1 . . . x3 x2 x1 z

xn . . . xp xp−1 . . . x3 x2 u1 v1

xn . . . xp xp−1 . . . x3 u2 v2 v1

xn . . . xp xp−1 . . . u3 v3 v2 v1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

xn . . . xp up−1 . . . v4 v3 v2 v1

xn . . . 1 vp . . . v4 v3 v2 v1

ϕ1

ϕ2

ϕ3

ϕp

Observe that by definition of the normal form, we have

NF(xp−1, . . . x1, z) = ϕp−1 . . . ϕ1(xp−1, . . . x1, z) = (up−1, vp−1, . . . , v1).

In particular, this tuple is totally stable.
Now since ϕ(xp,up−1) = (1, vp) and we know that xp 6= 1 and up−1 6= 1, we conclude

that vp = er with r ∈ {2, 3}. Thus, the pair (xp,up−1) equals (a4−r, b3r−3). Furthermore,
observe that there is no unstable pair which ends with er on the right, so the tuple
(xm, . . . ,xp+1, er) is totally stable.

If we assume p = 1, then z = b3r−3 and x1 = a4−r and (xm, . . . ,x2, er) is the normal
form of xz = yz. So in particular, this is the normal form of the tuple (yn, . . . , y1, b3r−3).
In particular, since b3r−3 6= er, the tuple (y1, b3r−3) has to be unstable, so that y1 = a4−r
follows. This now implies that yn . . . y2er = xm . . . x2er, while yn . . . y2 6= xm . . . x2,
contradicting the minimality of n+m.

So we have shown that p ≥ 2. To simplify the notation, we consider first the case
r = 2. Here, we know that xp = a2 and up−1 = b3. Since the pair (xp,xp−1) was stable,
we know that xp−1 is nor b3 neither b4. In particular, the pair (xp−1,up−2) cannot
be stable since up−1 6= xp−1. Thus, (xp−1,up−2) has to be an unstable pair such that
ϕ(xp−1,up−2) = (b3, vp−1). This implies xp−1 = b2, up−2 = c1 and vp−1 = c2.
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If p = 2, then z = c1 and we have

ϕmϕm−1 . . . ϕ1(xm, . . . ,x1, z) = ϕmϕm−1 . . . ϕ1(xm, . . . ,x3, a2, b2, c1)

= ϕmϕm−1 . . . ϕ2(xm, . . . ,x3, a2, b3, c2)

= ϕmϕm−1 . . . ϕ3(xm, . . . ,x3, 1, e2, c2)

= (1,xm, . . . ,x3, e2, c2).

Computing the normal form of this tuple is done after applying ϕ1 since then we obtain
the tuple (xm, . . . ,x3, f2, g2) and all pairs of the form (x3, f2) are stable. So we know
that (yn, . . . , y1, c1) is not in the normal form. In particular, the pair (y1, c1) is unstable
and so y1 = b2, so that ϕn . . . ϕ1 yields a c2 in the right-most place when applied to
(yn, . . . , y1, c1). Since the normal form of this tuple ends with g2 on the right, we know
that applying ϕn . . . ϕ1 must have produced a 1. If y2 would not be equal to a2, the triple
(y2,ϕ(y1, c1)) = (y2, b3, c2) would be stable and thus the whole tuple (yn, . . . , y2, b3, c2),
which contradicts our assumptions. So y2 = a2, and thus we have the equality

(yn . . . y3e2)c2 = (yn . . . y3a2b3)c2 = (yn . . . y3a2)b3c2 = yn . . . y3y2b2c1

= yn . . . y3y2y1z = xm . . . x1z = (xm . . . x3e2)c2.

Now since x1 = y1 and x2 = y2 and x 6= y, we conclude that xm . . . x3 6= yn . . . y3.
Then either (yn . . . y3)e2 = (xm . . . x3)e2 and this produces a counterexample to right-
cancellativity contradicting the minimality of n+m, or (yn . . . y3)e2 6= (xm . . . x3)e2,
then we have a contradictory counterexample due to

(yn . . . y3e2)c2 = (xm . . . x3e2)c2.

So we know that p ≥ 3. Recall that xp = a2, up−1 = b3, xp−1 = b2, up−2 = c1 and
vp−1 = c2. Now the pair (xp−1,xp−2) is stable, thus xp−2 is not c1. As before, this
implies that the pair (xp−2,up−3) is unstable and is mapped via ϕ to (c1, vp−2). Yet,
this is impossible! This completes the proof for the case r = 2.

The proof in case r = 3 is completely analogous. This can be also seen as follows:
There is a map γ : M →M , defined below by its values on generators, which is a monoid
homomorphism and involution and which maps e2 to e3 and preserves ϕ. This allows to
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avoid the symmetrical argument. The map γ is given as follows.

a1 7→ a2

a2 7→ a1

b1 7→ b4

b2 7→ b5

b3 7→ b6

b4 7→ b1

b5 7→ b2

b6 7→ b3

c1 7→ c4

c2 7→ c5

c3 7→ c6

c4 7→ c1

c5 7→ c2

c6 7→ c3

d1 7→ d2

d2 7→ d1

e2 7→ e3

e3 7→ e2

f2 7→ f3

f3 7→ f2

g2 7→ g3

g3 7→ g2

h2 7→ h3

h3 7→ h2

i 7→ i

j 7→ j

k 7→ k

This completes the proof.

7.2 Remark on Stable Pairs
When we consider a local factorability structure associated to a general factorability
structure, we may ask whether the normal form of some tuple (xn, . . . ,x1) is related to
the normal form of the subtuple (xn−1, . . . ,x1). The aim of this section is to provide an
example where the normal form of the subtuple is not a subtuple of the normal form.
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Indeed, we show that this can even happen for triples and even under the assumption
that the right-most letter is already the right-most letter of the normal form.

Proposition 7.2.1. Consider the monoid

M = 〈a, b, c, d, e, f , g,h, i, j| ab = de, af = hi, bc = fg,hj = de, ig = jc〉 .

Set E = {a, b, c, d, e, f , g,h, i, j} and E+ = E ∪ {1}. Consider the map

ϕ : E+ ×E+ → E+ ×E+

assigning the left-hand side of each relation its right-hand side, with ϕ(x, 1) = (1,x) for
all x ∈ E+ and identity otherwise. Then ϕ defines a local factorability structure on M
with respect to the generating system E.

Proof. We use the criterion of Corollary 2.3.12. Observe that by definition, the first
three conditions are satisfied. We are going to show

ϕ2ϕ1ϕ2ϕ1 = ϕ2ϕ1ϕ2 = ϕ1ϕ2ϕ1ϕ2 : E3 → E3.

Apply the maps to a triple (x, y, z) ∈ E3. Observe that if a triple is stable, any com-
bination of ϕ1 and ϕ2 leaves it unchanged. Thus, all three maps are identities if both
pairs are stable. We have to consider the other cases. The only unstable pairs of length
2 are (a, b), (a, f), (b, c), (h, j), (i, g). Note furthermore that the first equality holds au-
tomatically if the pair (y, z) is stable.

Consider now the possible cases for (x, y, z).

Case 1: For (a, b, z), an application of ϕ2 turns it into (d, e, z). This triple is stable since
no unstable pair starts with e.
The first equality holds except for possibly z = c since in other cases, (b, z) is
stable. In this case, we have

ϕ2ϕ1ϕ2ϕ1(a, b, c) = ϕ2ϕ1ϕ2(a, f , g)
= ϕ2ϕ1(h, i, g) = ϕ2(h, j, c) = (d, e, c)

and, on the other hand, ϕ2(a, b, c) = (d, e, c). The triple (d, e, c) is everywhere
stable so that the first equality holds for (a, b, c).

Case 2: For (a, f , z), an application of ϕ2 turns it into (h, i, z). This triple is stable unless
z = g; in this case, we have ϕ1(h, i, g) = (h, j, c) and ϕ2ϕ1ϕ2(a, f , g) = (d, e, c) is
everywhere stable so that the second equality holds.
The first equality is true for any z since there are no unstable pairs starting with
f .

Case 3: For (b, c, z), an application of ϕ2 turns it into (f , g, z). This triple is stable since
no unstable triple starts with a g.
The first equality is true for any z since there are no unstable pairs starting with
c.
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Case 4: For (h, j, z), an application of ϕ2 yields (d, e, z) which is stable since no unstable
pair starts with e.
The first equality is also true for any z since all pairs starting with j are stable.

Case 5: For (i, g, z), an application of ϕ2 yields (j, c, z), which is stable since no unstable
pair starts with c.
For the first equality, observe that also all pairs starting with g are stable.

From now on, we may assume that the left pair (x, y) is stable; in particular, applying
ϕ2 immediately doesn’t change the triple.

Case 6: For (x, a, b), an application of ϕ1 yields the triple (x, d, e), which is stable since
no unstable pair ends with d.

Case 7: For (x, a, f ), an application of ϕ1 gives us the triple (x,h, i), which is stable since
no unstable pair ends with h.

Case 8: For (x, b, c), an application of ϕ1 ends with (x, f , g). This triple is stable unless
x = a, but this case was already excluded since (a, b) is unstable (we have already
considered the triple (a, b, c) in Case 1).

Case 9: For (x, h, j), an application of ϕ1 gives (x, d, e), which is stable since no unstable
pair ends with d.

Case 10: For (x, i, g), we apply ϕ1 and obtain (x, j, c). This triple is stable unless x = h. In
this case, ϕ2ϕ1(h, i, g) = ϕ2(h, j, c) = (d, e, c) is stable. The three compositions
coincide in this case.

Observe that in M , the normal form NF(a, b, c) equals (d, e, c) but NF(b, c) = (f , g).
In particular, the normal form of some tuple does not have the normal form of its
subtuple on the right.

7.3 Finiteness of Q′
n

The content of this section is joint work with A. Heß.
Our aim is to prove the following theorem. It is closely connected to the proof that

the rewriting system defined by a factorability structure is noetherian in some cases. We
will use the notation of Section 2.2.

Theorem 7.3.1. The monoids Q′n are finite for every n.

The proof will proceed in several steps. We will first show the following important
proposition:

Proposition 7.3.2. For all n, the statements A(n), B(n), C(n) hold.
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A(n) Let I be a sequence in Fn with I = 1X̃n and X̃ = sh1(X) for some X ∈ Fn−2
(in other words, 1 and n do not occur in X̃). Furthermore, we assume In1 ⊂ I.
Then there are sequences J ,K ∈ Fn−2 such that I ∼ sh2(J)In1 sh1(K). This can be
rephrased as follows: In Q′n, if a representing sequence I starts with 1, ends with
n, contains all other letters in increasing order in between (not necessarily as a
connected subsequence), and no 1’s and n’s occur in between, then I is equivalent to
another representative which contains In1 as a connected subsequence, only entries
greater than 2 left to In1 and entries between 2 and n− 1 on the right of it.

B(n) Let Z be a sequence in Fn−1 and set Z̃ = sh1 Z. Then we have 1Z̃In1 ∼ Z̃In1 .

C(n) Let L be any sequence in Fn and let M be a sequence obtained from L by deleting
all 1’s in L. Then LIn1 ∼MIn1 .

Proof. The statement C(n) is an easy consequence of B(n) for any fixed n. Indeed, we
can write L as

L = sh1(Lm)1 sh1(Lm−1)1 . . . sh1(L1)1 sh1(L0)

with Li ∈ Fn−1. Now we can iteratively apply B(n) with Z = LiLi−1 . . . L1L0 to delete
the 1’s.

For n = 1 and n = 2, X in A(1) has to be the empty sequence, so I = 1 = In1 and
A(1) holds. Similarly, for n = 1, the string Z in B(1) is empty, so B(1) holds. For
n = 3, the only non-empty case of A(3) is X = 1. Then I = (1 2 3), and the statement
A(3) obviously holds.

We now prove A(n) and B(n) by induction. Assume A(k) and B(k) hold for all
1 ≤ k ≤ n− 1. We prove first B(n). So let Z be in Fn−1 and set Z̃ = sh1 Z. We would
like to show 1Z̃In1 ∼ Z̃In1 .

Without loss of generality we may assume that Z is left-most due to Proposition 2.2.8.
If Z does not contain a 1, all entries of Z̃ are at least 3 and 1Z̃ ∼P Z̃1, so we conclude

1Z̃In1 ∼P Z̃1In1 ∼P Z̃In1

as In1 starts with a 1. Now assume that Z does contain a 1. Then we can write Z = Z ′Z ′′

with Z ′ ∈ Fn−1 not containing a 1 and Z ′′ ∈ Fn−1 starting with a 1. If Z̃ ′ = sh1(Z ′) and
Z̃ ′′ = sh1(Z ′′), then Z̃ ′ again contains only entries commuting with 1, so it is enough to
show that 1Z̃ ′′In1 ∼ Z̃ ′′In1 since then we have

1Z̃In1 = 1Z̃ ′Z̃ ′′In1 ∼P Z̃ ′1Z̃ ′′In1 ∼ Z̃ ′Z̃ ′′In1 = Z̃In1 .

Let r be the maximal entry occurring in Z ′′; by assumptions r ≤ n− 1. By the definition
of r, we know that Z ′′ ∈ Fr. There must be a connected subsequence of Z ′′ starting with
1, ending with r and not containing 1 or r in between: Find the first occurrence of r in
Z ′′ starting from the left, then there is at least one 1 left from it since Z ′′ starts with
1; from all the 1’s left to this r take the one on the very right. So we may write Z ′′ as
Z ′′ = U1Ṽ rW with U ,W ∈ Fr, Ṽ = sh1(V ) with V ∈ Fr−2. Since 1Ṽ r is a connected
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subsequence of Z ′′ and Z ′′ is a connected subsequence of the left-most sequence Z, we
conclude that 1Ṽ r is left-most. This implies Ir1 ⊂ 1Ṽ r by Lemma 2.2.7. Then we
may apply A(r) and get two sequences J ,K ∈ Fr−2 such that 1Ṽ r ∼ sh2(J)Ir1 sh1(K).
Therefore, Z ′′ ∼ U sh2(J)Ir1 sh1(K)W .

Observe that all entries of sh2(J) are at least 3. By C(r), which holds since we
assumed B(r), we may also change U to Ũ ′ by deleting all 1’s in U so that Ũ ′ = sh1(U ′)
for some U ′ ∈ Fr−1.

Now we put together what we have done so far:

1 sh1(Z
′′)In1 ∼ 1 sh2(U

′) sh3(J)I
r+1
2 sh2(K) sh1(W )Ir+1

1 Inr+2.

Consider now the product of sh2(Dr−1) with the left-hand side. It is obvious that
sh2(Dr−1) commutes with 1 by ∼P and the 1 does not occur in sh2(Dr−1). It is enough
to show that

sh2(Dr−1)1 sh2(U
′) sh3(J)I

r+1
2 sh2(K) sh1(W )Ir+1

1 Inr+2 ∼Q
sh2(Dr−1) sh2(U

′) sh3(J)I
r+1
2 sh2(K) sh1(W )Ir+1

1 Inr+2

since that by definition of ∼ in Definition 2.2.1 implies

1 sh2(U
′) sh3(J)I

r+1
2 sh2(K) sh1(W )Ir+1

1 Inr+2 ∼
sh2(U

′) sh3(J)I
r+1
2 sh2(K) sh1(W )Ir+1

1 Inr+2.

Now we have

sh2(Dr−1)1 sh2(U
′) sh3(J)I

r+1
2 sh2(K) sh1(W )Ir+1

1 Inr+2 ∼P
1 sh2(Dr−1U

′ sh1(J))I
r+1
2 sh2(K) sh1(W )Ir+1

1 Inr+2 ∼Q
1 sh2(Dr−1)I

r+1
2 sh2(K) sh1(W )Ir+1

1 Inr+2,

where the first equivalence follows from the fact that sh2(Dr−1) has entries greater or
equal to 3, and the second one from the absorption property 2.2.4 of Dr−1 in Qr−1,
where U ′ and sh1(J) define elements in.

Observe now that we can write sh2(Dr−1)I
r+1
2 as sh1(Dr). Again by Theorem 2.2.4,

we have

sh1(Dr sh1(K)W ) ∼Q sh1(Dr)

since sh1(K),W ∈ Fr represent elements in Qr. Together this yields

1 sh2(Dr−1)I
r+1
2 sh2(K) sh1(W )Ir+1

1 Inr+2 ∼Q 1 sh1(Dr)I
r+1
1 Inr+2

= 1Dr+1I
n
r+2 ∼Q Dr+1I

n
r+2,

where we again used the absorption property in the last step.
Using the same arguments, one observes that also

sh2(Dr−1) sh2(U
′) sh3(J)I

r+1
2 sh2(K) sh1(W )Ir+1

1 Inr+2 ∼Q Dr+1I
n
r+2
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implying the claim B(n).
Now we show that also A(n) holds. Suppose we have X ∈ Fn−2 such that I = 1X̃n

contains In1 as a (possibly) disconnected subsequence with X̃ = sh1(X). Without loss
of generality we may assume X to be left-most; due to Lemma 2.2.9, the property
In−2

1 ⊂ X is preserved. Write X as X = X̃t1X̃t−11 . . . 1X̃21X̃1 where X̃i = sh1(Xi),
with Xi ∈ Fn−3. The sequences Xt and X1 are possibly empty, whereas Xi can be
assumed non-empty for 2 ≤ i ≤ t − 1. (Observe that X has to contain a 1 since
In1 ⊂ I = 1X̃n, and that the Xi are left-most again.) Set ˜̃Xi = sh2(Xi). Then

I = 1˜̃Xt2
˜̃
Xt−12 . . . 2 ˜̃X22 ˜̃X1n.

Since In1 ⊂ I, there must be a smallest k such that n− 1 ∈ ˜̃
Xk, i.e. n− 3 ∈ Xk. As we

already showed A(n) for n ≤ 3, we may assume n ≥ 4. Thus, n commutes with 2, and

I ∼P 1˜̃Xt2
˜̃
Xt−12 . . . 2˜̃Xk+12 ˜̃Xkn2˜̃Xk−12˜̃Xk−22 . . . 2 ˜̃X1

Note that k < t since In1 ⊂ 1X̃n, so there must be an entry n−1 after the first appearance
of 2. Now we have 2 ˜̃Xkn = sh1(1X̃k(n− 1)), where Xk ∈ F(n−1)−2. Moreover, 2 ˜̃Xk is
left-most and contains (2,n− 1) by assumptions, thus it contains In−1

2 by Lemma 2.2.7
and therefore In−1

1 ⊂ 1X̃k(n− 1). So we may use A(n− 1) and obtain sequences J ′,K ′ ∈
Fn−3 such that 1X̃k(n− 1) ∼ sh2(J ′)I

n−1
1 sh1(K ′). Putting this into the formula above

leads to

I ∼ 1˜̃Xt2
˜̃
Xt−12 . . . 2˜̃Xk+1 sh3(J

′)In2 sh2(K
′)2˜̃Xk−12˜̃Xk−22 . . . 2 ˜̃X1.

Use now sh1(C(n− 1)) to see

I ∼ 1˜̃Xt
˜̃
Xt−1 . . .

˜̃
Xk+1 sh3(J

′)In2 sh2(K
′)2˜̃Xk−12˜̃Xk−22 . . . 2 ˜̃X1.

Since all entries in ˜̃
Xt
˜̃
Xt−1 . . .

˜̃
Xk+1 sh3(J ′) are at least 3, this term commutes with 1

and we obtain

I ∼ sh2(XtXt−1 . . . Xk+1 sh1(J
′))In1 sh1(sh1(K

′)1X̃k−11X̃k−21 . . . 1X̃1).

Since J := XtXt−1 . . . Xk+1 sh1(J ′) is in Fn−2 as well as

K := sh1(K
′)1X̃k−11X̃k−21 . . . 1X̃1,

this completes the proof of the proposition.

The following corollary was already announced by A. Heß ([42]).

Corollary 7.3.3. In Q′n, the equality In1 I
n
1 = In2 I

n
1 follows from C(n) with L = In1 .

Applying the statement C(n) iteratively, we obtain furthermore

(In1 )
n ∼ InnInn−1 . . . I

n
2 I

n
1 = Dn.
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Now we are ready to prove that Q′n is finite.

Proof. (of the Theorem 7.3.1)
We proceed by induction. For n = 1, we have Q′1 = {[∅], [1]}, so Q′1 is finite. For

n = 2, we have

Q′2 = {[∅], [1], [2], [12], [21], [121], [212]}.

Now assume we have proven the statement for all smaller numbers than n. Set q′n−1 to
be the number of elements in Q′n−1. Recall that by Proposition 2.2.8, we may consider
only left-most representatives. So let I be a left-most representative of some element in
Q′n. If I does not contain n, the element represented by I is one of the at most q′n−1
elements in the image of the map Q′n−1 → Q′n. Assume now I has an n, and consider
the right-most appearance of n, so we can write

I = XnY

with Y ∈ Q′n−1. If there are no 1’s in X, then X ∈ sh1(Q′n−1); this gives at most
q′n−1 · q′n−1 possibilities for [I ]. Otherwise, X contains 1, and we may now writeX = U1V
with V not containing 1, i.e., we look for the right-most appearance of 1 in X. Now V
may or may not contain n. In general, we can rewrite I as

I = U1WnZ

with W not containing 1 or n and Z either not containing n or of the form JnJ ′ with
J not containing 1 and J ′ not containing n. Thus, varying Z will give only finitely
many possibilities for [I ] by previous considerations. Since I is left-most and 1Wn
is a connected subsequence of I, it is also left-most. Thus, 1Wn contains In1 as a
possibly disconnected subsequence. Now by Proposition 7.3.2, Part A(n), we can find
J ,K ∈ Fn−2 with 1Wn ∼ sh2(J)In1 sh1(K). By Proposition 7.3.2, Part C(n), we know
that U1Wn is equivalent to a word of the form

sh1(U
′)In1 sh1(K).

with U ′ ∈ Fn−1. Applying again the induction hypothesis, we see that there are also only
finitely many possibilities for the word represented by U1Wn. This yields the claim.

7.4 Factorable Monoids with Complete Rewriting Systems
Recall that for the monoid Qn, the Evaluation Lemma 2.2.2 of A. Heß holds, i.e., for
any tuples I, J ∈ Fn with I ∼Q J , we know that we have the equality fI ≡ fJ in the
graded sense. Unfortunately, only weak analogs are true for the monoid Q′n. Yet, they
are sufficient to provide some examples of complete rewriting systems. So we will show
a suitable Evaluation Lemma for Q′n. First, we will prove a variant of the Evaluation
Lemma 2.2.2 for the original monoid Qn.
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Lemma 7.4.1. Let (M , E , η) be a factorable monoid satisfying the stronger conditions
(xs)′ = (x′s)′ and xs = x · x′s for any x ∈M and s ∈ E. Then

f1f2f1f2 = f2f1f2 = f2f1f2f1

holds for all triples in this monoid. Recall that for a sequence I = (is, . . . , i1) ∈ Fn, we
defined fI : Mn+1 → Mn+1 to be the composition fis ◦ fis−1 ◦ . . . ◦ fi1. If I ∼Q J and
(xn+1,xn, . . . ,x1) is a tuple of elements xi ∈ E, then

fI(xn+1, . . . ,x1) = fJ (xn+1, . . . ,x1).

(Note that this equality holds not only in the graded sense.)

Proof. Note we can rewrite the assumption (xs)′ = (x′s)′ and xs = x ·x′s for any x ∈M
and s ∈ E as η1d1 = d2η1d1η2 : M × E → M ×M , where we use Notation 2.1.11. For
the proof, we have first to show that η1d1 = d2η1d1η2 also holds for all pairs in M ×M .
This works exactly as the proof of the graded equality by deleting the word “graded”
(cf. Proposition 2.1.20 in [42] and its proof). The second part of the proof works by
applying the same method to the proof of Lemma 2.2.5 in [42].

Now we are ready to prove the Evaluation Lemma for Q′n.

Lemma 7.4.2. Let (M , E , η) be a factorable monoid satisfying the stronger conditions
(xs)′ = (x′s)′ and xs = x ·x′s for any x ∈M and s ∈ E. If I ∼ J and (xn+1,xn, . . . ,x1)
is a tuple of elements xi ∈ E, then

fI(xn+1, . . . ,x1) = fJ (xn+1, . . . ,x1).

Proof. It is enough to show this for the defining relation of ∼. So let U ,V ∈ Fn be two
words in letters 1, . . . ,n and 1 ≤ k ≤ n such that kU ∼P Uk, the letter k does not
occur in U and such that kUV ∼Q UV . We want to show that fkfV and fV are equal
evaluated on each (xn+1,xn, . . . ,x1). We have only to show that under these conditions,
fV (xn+1,xn, . . . ,x1) is stable at the position k. Note that since k does not occur in U ,
the only possibility for kU ∼P Uk to be true is that neither k+ 1 nor k−1 occur in U . So
applying fU does not affect the letters in the k-th and the k+ 1-st place! Hence, in this
places, fUfV (xn+1,xn, . . . ,x1) and fV (xn+1,xn, . . . ,x1) have equal entries. Thus, the
same holds for fkfUfV (xn+1,xn, . . . ,x1) and fkfV (xn+1,xn, . . . ,x1). But kUV ∼Q UV ,
so we can apply the Evaluation Lemma 7.4.1, which now holds in the proper and not
only in the graded sense.

This gives us a (quite restrictive) sufficient condition for the completeness of the
associated rewriting system.

Theorem 7.4.3. Let (M , E , η) be a factorable monoid satisfying the stronger conditions
(xs)′ = (x′s)′ and xs = x · x′s for any x ∈ M and s ∈ E. Then the associated string
rewriting system is complete.
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Proof. This is basically proven in [42], Lemma 3.4.10. The only point to take care of
is the proof of Lemma 3.4.9 in [42], which uses Proposition 3.4.4 of [42]. Although this
proposition is not true in full generality, in our situation Corollary 7.3.3 and Lemma
7.4.2 guarantee that the statement of Proposition 3.4.4 of [42] holds under our stronger
assumptions. This completes the proof.

Remark 7.4.4. Proposition 3.4.4 of [42], stating a stronger version of our Lemma
7.4.2, is unfortunately wrong. It cannot be proved without further assumptions, as the
counterexample in Section 7.1 shows. Thus, the proof of noetherianity for the rewriting
system associated to a factorable monoid cannot be fixed in general. Yet, it can be fixed
in special cases, e.g. as in Theorem 7.4.3 above. Note that the first half of Section 3.4 of
[42] and parts of present section were developed jointly by A.Heß and the current author.

Corollary 7.4.5. The rewriting system on a left locally Gaussian monoid associated to
a factorability structure from Theorem 4.2.5 is complete.

Proof. Let M be a left locally Gaussian monoid and E a generating set closed under left
least common multiples and left complements. We have to show that (xs)′ = (x′s)′ and
xs = x ·x′s for any x ∈M and s ∈ E . Recall that the factorability structure was defined
via η(x) = (xp . . . x2,x1) for NF(x) = xp . . . x2x1 for x 6= 1 and η(1) = (1, 1), where
NF denotes the E-normal form. Recall furthermore that by Corollary 4.2.1, x1 can be
characterized as the greatest right divisor of x lying in E .

So we have to compare the greatest right divisors of xs and x1s lying in E . Call them
a and b, respectively. Observe that since xs � x1s, we can conclude that a � b. Since
NE(x1s) ≤ 2, we know that the E-normal form of x1s has length at most 2. So write
x1s = tb with t ∈ E ∪ {1}. Furthermore, we can write a = cb with c ∈ E ∪ {1} since E is
closed under left complements.

Now if t = 1, then a = cx1s and there is a d ∈M such that

xs = xp . . . x1s = da = dcx1s,

so that cx1 right-divides x by right-cancellativity. Now observe that since s, a ∈ E , also
cx1 ∈ E since E is closed under left complements. Thus, cx1 is a right divisor of x lying
in E and by definition of x1, it has to right-divide x1. So we conclude c = 1 and thus
a = b in the case t = 1.

Assume now t 6= 1. Since b is the greatest right-divisor of x1s lying in E , it has to be
right-divisible by the right divisor s ∈ E of x1s; so there is a u ∈ E such that b = us. By
the same argument, there is a v ∈ E so that a = vs holds. We can again find a d ∈ M
such that xs = da. Inserting a = vs and cancelling on the right, we obtain x = dv.
Hence, there is a w ∈ E so that x1 = wv, by the definition of x1. This implies that
x1s = wvs = wa. By the definition of b, this shows that a is a right divisor of b. Since
we already had a � b, the statement a = b follows. This proves (xs)′ = (x′s)′.

Since xs = xs · (xs)′ on the one hand, and, on the other hand,

xs = xx′s = x · x′s · (x′s)′,
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and since we have already shown (xs)′ = (x′s)′, right-cancellativity implies x · x′s = xs.
This completes the proof since now we are in the situation to use Theorem 7.4.3.

Remark 7.4.6. Note that the corollary above in particular provides a complete rewriting
system on each Artin monoid. Besides the finite-type Artin monoids ([41]), some other
complete rewriting systems for subclasses of Artin monoids were known before (cf. [3]).

In the case of Garside groups, there are already complete rewriting systems describing
them due to S. Hermiller and J. Meier ([41]).

Remark 7.4.7. Let M be a Garside monoid with a Garside element ∆. Let G be the
group of fractions of M , and let D be the set of left-divisors of ∆ except for 1. Then
Lemma 7.1.1 allows us to associate a rewriting system to the factorability structure
on (G,D ∪D−1) described in Section 4.6. This rewriting system is exactly the second
rewriting system R2 for Garside groups in [41]. There, this rewriting system is shown
to be complete. By this argument, we know that the rewriting systems associated to
factorability structures in Garside groups are complete.

137



References
[1] M. Albenque and P. Nadeau. Growth function for a class of monoids. In 21st

International Conference on Formal Power Series and Algebraic Combinatorics
(FPSAC 2009), Discrete Math. Theor. Comput. Sci. Proc., AK, pages 25–38. Assoc.
Discrete Math. Theor. Comput. Sci., Nancy, 2009.

[2] D. Armstrong. Generalized noncrossing partitions and combinatorics of Coxeter
groups. Mem. Amer. Math. Soc., 202(949):x+159, 2009.

[3] P. Bahls and T. Smith. Rewriting systems and orderings on Artin monoids. Internat.
J. Algebra Comput., 17(1):61–75, 2007.

[4] E. Batzies. Discrete morse theory for cellular resolutions. http://archiv.ub.
uni-marburg.de/diss/z2002/0115/pdf/deb.pdf, 2002. PhD thesis.

[5] D. Bessis. The dual braid monoid. Ann. Sci. École Norm. Sup. (4), 36(5):647–683,
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Zusammenfassung
Diese Dissertation beschäftigt sich mit kombinatorischen Eigenschaften von Gruppen
und Monoiden im Hinblick auf ihre Homologie und ihre klassifizierende Räume.

C.-F. Bödigheimer und B. Visy haben bei den Berechnungen der Homologie von Mod-
ulräumen festgestellt, dass die symmetrischen Gruppen Sn eine Zusatzstruktur tragen,
die für jede Permutation eine bevorzugte Zerlegung in Transpositionen liefert. Sie haben
die Eigenschaften dieser Zusatzstruktur zum Begriff der Faktorabilität axiomatisiert, der
einen kleineren Komplex als den Bar-Komplex zur Berechnung der Homologie dieser
Gruppen liefert.

Ist eine Gruppe mit einem festen Erzeugendensystem vorgegeben, so ist die Faktora-
bilitätsstruktur eine Abbildung, die von jedem Element der Gruppe einen Erzeuger ab-
spaltet, sodass gewisse Verträglichkeitsbedingungen im Bezug auf die Wortlänge und auf
die Multiplikation erfüllt sind. Die Existenz solcher Abbildungen hängt mitunter von
dem gewählten Erzeugendensystem ab. So ist beispielsweise die symmetrische Gruppe
mit dem Erzeugendensystem aller Transpositionen faktorabel, aber für das Erzeugen-
densystem der einfachen Transpositionen kann gezeigt werden, dass es keine Faktora-
bilitätsstruktur zulässt. Dies ist ein Spezialfall des Satzes von M. Rodenhausen, der
besagt, dass es für jede faktorable Gruppe bezüglich des gewählten Erzeugendensystems
eine Präsentation mit Relationen der Länge höchstens 4 geben muss. Da der Beweis
dieses Theorems bisher unveröffentlicht ist, nehmen wir ihn im Abschnitt 2.3 auf.

R. Wang([61]) und A. Heß([42]) haben die Definition der Faktorabilität auf Monoide
verallgemeinert. A. Heß hat mit Hilfe der diskreten Morsetheorie gezeigt, dass auch
dieser Begriff einen kleinen Komplex zur Berechnung der Homologie faktorabler Monoide
liefert. Das ist unter anderem deswegen von Interesse, da man manchmal auf die Ho-
mologie verwandter Gruppen schließen kann.

Ein wichtiges Ziel dieser Dissertation ist es, neue Familien von Beispielen für Faktora-
bilität vorzustellen. Eine wichtige Quelle für Beispiele stellt die Garside-Theorie dar.
Eins der Hauptresultate dieser Arbeit ist das folgende Theorem:

Theorem. (vgl. 4.2.5) Sei M ein linkes lokal-gaußsches Monoid, und E ein Erzeugen-
densystem, das unter linken kleinsten gemeinsamen Vielfachen und unter linken Komple-
menten abgeschlossen ist. Dann kann (M , E) mit einer Faktorabilitätsstruktur versehen
werden.

Die Garside-Theorie wurde von P. Dehornoy begründet (z.B. [24]); zu weiteren wichti-
gen Entwicklungen zählen Artikel von P. Dehornoy und Y. Lafont ([28]) und von P. De-
hornoy und L. Paris ([29]). Heutzutage gibt es viele Varianten der Garside-Theorie. Eine
ausführliche Abhandlung zu diesem Thema ist in [27] zu finden. Zu den wichtigsten
Beispielen für die Garside-Theorie zählen die Artin-Gruppen, eine Verallgemeinerung
von den Zopfgruppen.

Mit Artin-Gruppen beschäftigt sich auch ein weiterer Teil dieser Arbeit. Artin-
Gruppen sind in der gleichen Weise zu allgemeinen Coxeter-Gruppen assoziiert wie die
Zopfgruppen zu den symmetrischen Gruppen. Die Artin-Gruppen, die zu den endlichen
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Coxeter-Gruppen assoziiert sind, sind recht gut verstanden. Unter anderem weiß man,
dass ein gewisses Hyperebenenkomplement in der Standarddarstellung der zugehörigen
Coxeter-Gruppe ein Modell für den klassifizierenden Raum der Gruppe liefert. Man
kann analoge Hyperflächenkomplemente auch im Falle der unendlichen Coxeter-Gruppen
betrachten; es ist bekannt, dass deren Fundamentalgruppe genau die zugehörige Artin-
Gruppe ist. Man kann sich also fragen, ob diese Räume ebenfalls Modelle für die klas-
sifizierenden Räume liefern. Dieses Problem ist im Allgemeinen ungelöst und ist der
Gegenstand der K(π, 1)-Vermutung:

Vermutung (K(π, 1)-Vermutung). Sei G eine Artin-Gruppe und W die zugehörige
Coxeter-Gruppe. Sei V die Standarddarstellung von W durch Isometrien, und R ⊂ W
bezeichne die Menge der Elemente r, die auf eine Reflektion an einer Hyperebene Hr ⊂
V abgebildet werden. Dann ist der Quotient des komplexen Hyperebenenkomplements
V ⊗C \

⋃
r∈RHr ⊗C nach der W -Wirkung ein K(G, 1)-Raum.

Die Vermutung ist bereits in vielen Fällen bewiesen: Zum Beispiel von P. Deligne
in [30] für den Fall der endlichen Coxeter-Gruppen, in [18] für die sogenannten Artin-
Gruppen vom FC-Typ und in [40] für die Artin-Gruppen vom großen Typ. Weitere
Informationen zu Artin-Gruppen und der K(π, 1)-Vermutung können beispielsweise in
[16], [34], [17], [18], [39], [54] gefunden werden.

Wir werden eine alternative Formulierung der K(π, 1)-Vermutung aus [18] nutzen,
um einen neuen Beweis des kürzlich erschienenen Theorems von N.Dobrinskaya ([33])
zu liefern, das die K(π, 1)-Vermutung mit dem klassifizierenden Raum des zugehörigen
Monoids in Beziehung setzt (s. auch Abschnitt 5.3):

Theorem. (vgl. [33]) Ist G eine Artin-Gruppe und M das zugehörige Artin-Monoid, so
ist die natürliche Abbildung BM → BG genau dann eine Homotopieäquivalenz, wenn
die K(π, 1)-Vermutung für die Gruppe G wahr ist.

Der in dieser Arbeit präsentierte Beweis unterscheidet sich deutlich von dem ur-
sprünglichen und basiert auf diskreter Morse-Theorie, einem Analogon der gewöhnlichen
Morse-Theorie für CW-Komplexe. Es gibt viele verschiedene Varianten diskreter Morse-
Theorie; für unsere Zwecke scheint die Version von E. Batzies ([4]) am besten geeignet.

In dieser Arbeit werden außerdem neue Familien von faktorablen Gruppen erarbeitet:
Die orthogonalen Gruppen und die Coxeter-Gruppen der B-Reihe, jeweils mit dem
Erzeugendensystem aller Reflektionen. Die Einschränkung der Faktorabilitätsstruktur
auf der orthogonalen Gruppe O(n) auf die Untergruppe Sn stimmt mit der Faktora-
bilitätsstruktur von Visy und Bödigheimer überein.

Zuletzt beschäftigen wir uns mit der Frage nach der Verbindung zwischen faktorablen
Monoiden und vollständigen Neuschreibsystemen, die zuerst von A. Heß gestellt wurde.
Ein Neuschreibsystem ist einfach eine Monoidpräsentation, in der jede Relation mit einer
Richtung versehen ist, in die sie angewendet werden kann. Ein vollständiges Neuschreib-
system erlaubt es, jedes Wort in endlich vielen Schritten durch die Anwendung der
Neuschreibregeln in eine Normalform zu bringen. Ein vollständiges Neuschreibsystem
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auf einem Monoid erlaubt auch gewisse Aussagen über die Homologie dieses Monoids.
Jedem faktorablen Monoid ist ein Neuschreibsystem zugeordnet, das jedoch nicht immer
vollständig ist, wie an einem Beispiel gezeigt wird. Jedoch kann man in einigen Fällen
zeigen, dass das Neuschreibsystem vollständig ist. Wir beweisen das folgende Theorem
im Abschnitt 7.4.

Theorem. Das Neuschreibsystem, das der Faktorabilitätsstruktur auf einem linken lokal-
gaußschen Monoid zugeordnet ist, ist stets vollständig.
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