
A S TAT I C A L LY T Y P E D L O G I C

C O N T E X T Q U E RY L A N G U A G E W I T H

PA R A M E T R I C P O LY M O R P H I S M A N D S U B T Y P I N G

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Tobias Rho

aus Geldern

Bonn, 2011

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

erstgutachter: Prof. Dr. Armin B. Cremers, Bonn
zweitgutachter: Prof. Dr. Robert Hirschfeld, Potsdam

tag der promotion: 30. April 2012

erscheinungsjahr: 2012

A B S T R A C T

The objective of this thesis is programming language support for context-sensitive pro-
gram adaptations. Driven by the requirements for context-aware adaptation languages, a
statically typed Object-oriented logic Context Query Language (OCQL) was developed,
which is suitable for integration with adaptation languages based on the Java type system.

The ambient information considered in context-aware applications often originates
from several, potentially distributed sources. OCQL employs the Semantic Web-language
RDF Schema to structure and combine distributed context information.

OCQL offers parametric polymorphism, subtyping, and a fixed set of meta-predicates.
Its type system is based on mode analysis and a subset of Java Generics. For this reason a
mode-inference approach for normal logic programs that considers variable aliasing and
sharing was extended to cover all-solution predicates.

OCQL is complemented by a service-oriented context-management infrastructure that
supports the integration of OCQL with runtime adaptation approaches. The applicability
of the language and its infrastructure were demonstrated with the context-aware aspect
language CSLogicAJ. CSLogicAJ aspects encapsulate context-aware behavior and define
in which contextual situation and program execution state the behavior is woven into the
running program.

The thesis concludes with a case study analyzing how runtime adaptation of mobile ap-
plications can be supported by pure object-, service- and context-aware aspect-orientation.
Our study has shown that CSLogicAJ can improve the modularization of context-aware
applications and reduce anticipation of runtime adaptations when compared to other
approaches.

iii

A C K N O W L E D G M E N T S

First of all, I would like to thank my adviser Armin Cremers for supervising this thesis
and guiding me over the last years.

I want to thank Mark von Zeschau for putting so much effort into the Ditrios framework,
which has been an important building block for the implementation of this thesis. My
colleagues Holger Mügge, Daniel Speicher, and Pascal Bihler had an important impact
on the direction of my work in the course of joint work in the project context-sensitive
intelligence.

Special thanks go to Malte Appeltauer, who accompanied my work from generic aspect
languages to context-sensitive modularization approaches. It has always been productive
and enjoyable to work with him. Robert Hirschfeld and his group at the Hasso Plattner
Institute have given me the impulse to generalize my approach from aspect-orientation
to general adaptation languages.

Stephan Lerche implemented the initial version of the context-management system and
influenced the context query language significantly with his ideas.

I am also indebted to a number of people who have helped proof-reading my thesis.
Lunjin Lu commented on an early draft of chapter 3, Jan Wielemaker gave in-depth
comments concerning the semantics and standardization of Prolog. I want to thank
Jan-Paul Imhoff, Günter Kniesel, Daniel Morales, Jan Nonnen, Daniel Speicher, and Josh
Ward for their helpful feedback in the finalization phase of this work.

Finally I want to thank my family and friends for encouraging and supporting me
during this period of life.

v

C O N T E N T S

1 introduction 1

1.1 Motivation 1

1.2 Definition and Representation of Context 3

1.3 Running Example 4

1.3.1 Realization Considerations 5

1.4 Requirements for Context-based Adaptations 6

1.4.1 Query Language Properties 9

1.5 Contributions 9

1.6 Thesis Outline 10

i state of the art 11

2 basic concepts 13

2.1 OSGi 13

2.1.1 OSGi Shortcomings 13

2.1.2 LDAP Attributes and Filters 15

2.2 Semantic Web 16

2.2.1 RDF Schema 17

2.2.2 RDFS Entailment 17

2.2.3 Ontology Web Language 18

2.2.4 Open World vs. Closed World Reasoning 18

2.3 Prolog 19

2.3.1 Operational Semantics 20

2.3.2 Module Concept 21

2.3.3 Meta Predicates 21

2.3.4 Prolog Syntax 22

2.4 Typed Logic Programming 22

2.4.1 Instantiation Modes 24

2.4.2 Type System based on Restricted Modes 25

2.4.3 Order-sorted Unification 25

2.5 Mode Analysis 26

2.5.1 Abstract Interpretation 26

2.5.2 Sound Approximation 28

2.5.3 Chosen Mode Inference Approach 28

2.6 Aspect-Oriented Programming 30

2.6.1 Join Points and Pointcuts 30

2.6.2 Advice 32

2.6.3 Inter-type Declarations 33

2.6.4 Aspects 33

ii approach 35

3 findall-extended mode analysis 37

3.1 Mode Analysis Approach by Lu 37

3.1.1 Program Graph 40

3.1.2 Concrete Semantics 41

3.1.3 Collecting Semantics 42

3.1.4 Abstract Semantics 43

3.2 Findall-extended Mode Analysis 43

3.2.1 Concrete Semantics 45

3.2.2 Collecting Semantics 47

3.2.3 Abstract Semantics 47

vii

viii Contents

3.2.4 Example 50

3.2.5 Computational Complexity 51

3.2.6 Application to Further All-Solutions Predicates 52

3.3 Summary 53

4 object-oriented logic context query language 55

4.1 RDF Schema - Java Mapping 55

4.1.1 Namespace Binding 57

4.1.2 Class and Property Mapping 57

4.1.3 RDF Reification 63

4.2 Object-oriented logic Context Query Language 64

4.2.1 Arrays and Tuples 66

4.2.2 Predicates 67

4.2.3 Built-in Predicates 67

4.2.4 Generic Types & Mapping Predicates 67

4.2.5 Context History 70

4.2.6 Querying Context Sources 70

4.2.7 Type Checks & Casts 71

4.3 Type Checking 71

4.3.1 Overview 71

4.3.2 Pre-Mode Analysis Type Checking 73

4.3.3 Type Inference for Generic Predicates 79

4.3.4 Translation To Prolog 81

4.3.5 Mode Analysis and Final Type Checking 88

4.3.6 Mode Checking for Other Unsafe Expressions 90

4.4 Summary 90

5 context management infrastructure and service aspects 91

5.1 Context Management Infrastructure 91

5.1.1 Context Listeners 93

5.1.2 OCQL Compilation 93

5.1.3 Requesting Context 95

5.1.4 Queries and Language Integration 96

5.2 Query Context Sources 99

5.3 Service Discovery and Interception 99

5.3.1 Proxy Indirection 100

5.3.2 Service Adaptation 101

5.3.3 Transaction-awareness 102

5.4 Context-Sensitive Service Aspects 103

5.4.1 Context Pointcut Language 103

5.4.2 Service Pointcut 105

5.4.3 Asynchronous Onchange Advice 105

5.4.4 First-Class Join Point 106

5.4.5 Referring to Context Sources 106

5.5 Music Player Example Revisited 107

5.6 Reconsidering Requirements 110

5.7 Summary 110

iii implementation and evaluation 113

6 implementation 115

6.1 Mode Analysis 115

6.2 Context Management System 115

6.2.1 OCQL Parsing Framework 116

6.3 CSLogicAJ 118

6.3.1 Compiler 118

Contents ix

6.3.2 Extensible OCQL/Pointcut Parser 120

6.3.3 Static Analysis 121

6.3.4 Mapping Advice Constructs to Java Source Code 122

6.3.5 Integrated Development Environment 123

6.3.6 Realization of Query Context Sources 124

6.4 Summary 124

7 evaluation 125

7.1 Programming for Context-based Adaptability - A Case Study 125

7.1.1 Requirements Elicitation 126

7.1.2 General Requirements for Context-Sensitive Adaptivity 127

7.1.3 Pure Object-Orientation - Patterns for Adaptivity 127

7.1.4 SOA and Object-Orientation - Patterns for Adaptivity 128

7.1.5 SOA and Aspect-Orientation - Patterns for Adaptivity 130

7.1.6 Summary 133

7.2 JCop Query Library 133

7.2.1 Overview 133

7.2.2 Example 134

7.2.3 Summary 135

7.3 Intercepted Service Call Benchmark 135

7.4 Summary 136

iv related work , conclusions , and future work 139

8 related work 141

8.1 Context Query languages 141

8.1.1 SPARQL 141

8.1.2 SWRL 142

8.1.3 MUSIC CQL 143

8.1.4 F-Logic / Flora-2 143

8.1.5 Prova 2 143

8.2 Context-management Systems 144

8.2.1 Context-aware Aspect-oriented Programming 144

8.2.2 Dynamic Component-based Aspect-oriented Programming 145

9 conclusions and future work 147

9.1 Conclusions 147

9.2 Future Work 148

9.2.1 Weaving Optimizations 148

9.2.2 OWL Support 148

9.2.3 Typed Java Library 149

v appendix 151

a appendix 153

a.1 XML Primitive Type Mapping 153

a.2 XSD Built-in Type Hierarchy 154

a.2.1 Lunjin Lu - Abstract Unification Algorithm 155

a.2.2 Implementation of Array Index Access 157

a.2.3 Predefined Predicates and Arithmetic Expressions 157

bibliography 161

L I S T O F F I G U R E S

Figure 1.1 Context-sensitive adaptation of mobile applications. Adapted book-
marks, notes and email applications provide prompt access to cur-
rently relevant documents. 1

Figure 1.2 Comparison of a monolithic and modularized implementation.
The modularized variant on the right is based on a component
framework, a context management system, and a context-sensitive
adaptation. 2

Figure 1.3 Basic music player and contact application 5

Figure 1.4 Context-sensitive music player 6

Figure 2.1 OSGi bundle lifecycle 14

Figure 2.2 OSGi service tracker 14

Figure 2.3 The RDF triple 16

Figure 2.4 Steps to abstract interpretation 27

Figure 2.5 Illustration of aspect weaving. An aspect selects a set of join points
in the base classes of a program and weaves additional code at these
points. 31

Figure 2.6 JoinPoint interface 33

Figure 3.1 ∇ operator, over-estimates the mode of two unified terms. Adapted
from [130, Figure 5.1]. 39

Figure 3.2 Call graph example 41

Figure 3.3 Extended call graph example 45

Figure 4.1 RDFS classes considered subsets 57

Figure 4.2 Hierarchy of mapped Java objects 58

Figure 4.3 Exemplary mapping of the rdfs class Contact 59

Figure 4.4 Cycle in case of naive powerset mapping. The dotted lines are
subtype relationships introduced by E℘. 60

Figure 4.5 Illustration of RDF instance to J Ie mapping 62

Figure 4.6 RDF reification Statement interface 63

Figure 4.7 EBNF of OCQL expressions 64

Figure 4.8 Syntax of the findall predicate 67

Figure 4.9 EBNF of generic predicates 68

Figure 4.10 Type conformance 75

Figure 4.11 Typing rules - core 77

Figure 4.12 Typing rules for select, one, and findall 78

Figure 4.13 Type checking rules - first pass 78

Figure 4.14 Our simplification of the Java type parameter inference algorithm
[88, 15.12.2.7] 80

Figure 4.15 Final typing rules for delayed checking 89

Figure 4.16 Final typing rules for findall calls with a single variable tem-
plate 90

Figure 5.1 Overview of the context management system 91

Figure 5.2 The IContextProvider interface 92

Figure 5.3 Context data snapshots 92

Figure 5.4 Requesting context - dynamic approach 93

Figure 5.5 The query and listener interfaces 94

Figure 5.6 The compilation interface 94

Figure 5.7 Mapping from concrete to abstract syntax and to a term-serialized
form 95

Figure 5.8 Requesting context - dynamic approach 96

x

Figure 5.9 Three different alternatives of integrating OCQL with a host lan-
guage 97

Figure 5.10 Generic context class IContext 99

Figure 5.11 Lastfm context source 100

Figure 5.12 The client service interface, Ditrios’ entry point for service searching
and tracking 100

Figure 5.13 Ditrios service lookup workflow 101

Figure 5.14 Ditrios Invocation Handler 102

Figure 5.15 Services are transaction-aware 102

Figure 5.16 Syntax of CSLogicAJ’s generalized advice construct. 104

Figure 5.17 EBNF of Primitive Pointcuts 105

Figure 5.18 Service level logging call pointcut. 105

Figure 5.19 Requesting Context - Static Approach 106

Figure 5.20 Context-Sensitive Music Player, modularized by an aspect 107

Figure 5.21 Binding different pointcuts 107

Figure 5.22 Context Sensitive Media Player Adaptation 108

Figure 5.23 The sharedArtist pointcut binds artist by collecting all artis from
nearby contacts with the findall meta-call. 108

Figure 5.24 Last.fm onchange advice 109

Figure 5.25 Intercepting service events 109

Figure 5.26 Filtered Address Book Entries 109

Figure 5.27 Around Advice Example with Proceed Statement 110

Figure 6.1 Compilation of a Java language extension with embedded
OCQL 116

Figure 6.2 Prolog clause generation overview 117

Figure 6.3 Ditrios service runtime model 119

Figure 6.4 JTransformer Prolog AST 119

Figure 6.5 Ditrios interceptor interface 122

Figure 6.6 CSLogicAJ’s integrated development environment 123

Figure 7.1 Simple document management tools for mail, minutes and book-
marks 125

Figure 7.2 Combining services leads to a beneficial adaptation 126

Figure 7.3 Adapted tools provide prompt access to currently relevant docu-
ments. 127

Figure 7.4 Strategy Pattern in a service-oriented architecture 129

Figure 7.5 Usage of the Strategy Pattern in PimPro for the view categoriza-
tion 129

Figure 7.6 The anticipated decorator pattern for the bookmark tree decora-
tion 130

Figure 7.7 Aspect-oriented Strategy Pattern based on user preferences 131

Figure 7.8 Dynamic strategy change 132

Figure 7.9 Aspect-oriented decorator pattern for the bookmark tree decora-
tion 132

Figure 7.10 Bookmarks Flattening Aspect 133

Figure 7.11 Cop modularization approach; Figure adapted from [15] 134

Figure 7.12 Implementation of the ToDo application using JCop’s query li-
brary. 137

Figure 7.13 Cached service call compared with normal calls 138

xi

1I N T R O D U C T I O N

1.1 motivation

Context-awareness is essential for a large number of today’s mobile applications. Location-
awareness, in particular, has become an integral feature of many smartphone applications.
An example for that is a bus schedule application that determines the current location of
the user and shows the arrival times at nearby bus stops.

Still, context is more than the location of the device. By combining the data from
different context sources, the situation can be analyzed and facilitated to adapt the
application to the user’s current needs. For example, an email client can filter emails
relevant to the current situation such as a meeting, or a music player can arrange playlists
according to the musical taste of the people in a car.

In order to analyze the user’s situation and adapt themselves to the environment, ap-
plications need to access the sensors of the mobile device1, the state of other applications,
user preferences and even external data-sources, such as social networks (e.g., Google
Latitude, Facebook, last.fm, Twitter, etc).

In most applications context retrieval, analysis, and modifications are typically repeti-
tively implemented in every application leading to a lot of small, specialized “context
management systems” embedded within each application. This has several drawbacks.
First, a lot of development time goes into implementing and maintaining all these context-
management systems. Derived context, such as the history of visited locations, is calculated
and stored by several applications, thereby repeatedly consuming computing time and
memory, both of which are limited resources on mobile devices. Next, there might be
generic adaptations, spanning several applications that need to be repetitively imple-
mented in each application, which again leads to more development and maintenance
effort. Moreover, the tangling of context-aware adaptation and core features leads to
complex designs, which can result in badly modularized code that is prone to errors and
high testing complexity.

Figure 1.1 exemplary shows three context-aware mobile applications in which the
repetition becomes apparent. A mobile phone with a notes, a bookmarks, and an email
application is brought to a trade fair. The trade fair offers a service which highlights
and re-orders documents on mobile applications relevant to fair stands nearby. All three

1 orientation, light, proximity, accelerometer, temperature, etc.

context-
sensitive
adaptation

Figure 1.1: Context-sensitive adaptation of mobile applications. Adapted bookmarks, notes and
email applications provide prompt access to currently relevant documents.

1

2 introduction

Mail App
Core Functionality

Notes App
Core Functionality

Mail App
Core Functionality

Categorize
Documents
Adaptation

Context Management

Notes App
Core Functionality

Categorize
Mails

Functionality

Stand List
Sensor

Context
Management

Location
Sensor

adapt
Categorize

Notes
Functionality

Context
Management

Embedded Context-Awareness Modularized Context-Awareness

Stand List
Sensor

Location
Sensor

…

Figure 1.2: Comparison of a monolithic and modularized implementation. The modularized variant
on the right is based on a component framework, a context management system, and a
context-sensitive adaptation.

applications need the same context-information (nearby stands, keywords relevant to the
stands) and similar, additional functionality (highlight entries, re-order the application’s
documents)2.

Figure 1.2 illustrates the problem from an architectural point of view and gives a
glimpse of our solution. The dilemma as described is depicted on the left-hand side.
Every application contains core functionality and additional categorization functionality,
which reorders and highlights documents based on context information. All applications
use their own context-management the categorization functionality is an integral part of
the whole application.

On the right, we see a modularized solution in which the document categorization is
extracted from the applications and encapsulated in an adaptation module. Only one
context-management system is deployed, which can also be used by other adaptation
modules. And the adaptation module can be added and removed while the applications
are running, which is especially useful in the given scenario, where the functionality is
only useful while the user stays in the area of the trade fair.

This leads to the question of how context-sensitive program adaptation and the core
functionality of an application can be separated. Software architecture research has
approached this concern with dynamism or self-adaptivity architectures [154]. These are
software architectures that allow component reconfiguration at runtime. Bradley et al.
[42] and Medvidovic et al. [138] have surveyed a number of architectural approaches
that apply graph rewriting rules, first-order logic, π-calculus or architecture modification
languages to realize the runtime adaptation. Most systems follow a four step approach of
component graph reconfiguration [42]:

1. An internal component triggers a change based on a state change, events, etc.

2. An appropriate change is selected, whether pre-defined or calculated at runtime.

3. An implementation realizes the component graph modification.

4. The modification is assessed, e.g., analyzed for consistency.

What all these approaches have in common is that they are applied on a set of compo-
nents and connectors, and that dynamic reconfiguration is not an intrinsic part of the

2 The example is fully elaborated on in section 7.1.

1.2 definition and representation of context 3

architecture and needs the mentioned extensions to support dynamism. Components
are typically not prepared for dynamic adaptation and often use stateful calls to other
components, which makes replacing of components a complex task since the state has to
be transferred to the other, newly introduced component.

Lately, service-oriented architectures (SOA) [70] have proven to be a good conceptual
base for dynamic reconfiguration. In a SOA, software components are intrinsically loosely
coupled. Service consumers query a registry for providers offering a service of certain
properties. A fixed binding between a consumer and a provider is not intended. Services
storing consumer specific state (as in classic component architectures) are possible, but
they are typically avoided. SOA architectural patterns such as Stateful Services [71],
decouple state of service usage from a service performing a concrete task. This leads to
low coupling between consumers and producers as well as effortless switching between
different service providers at runtime. Tsai et al. [200] state that

“SOA has provided a new direction for software architecture study, where
the architecture is determined at runtime and architecture can be dynamically
changed at runtime to meet the new software requirements.”

To implement context-aware applications based on a SOA, they need to be decomposed
into services. Applications are then built by composing these services and configuring
them at runtime based on context-information. Truong and Dustdar [199] surveyed a
range of systems following this approach and determined that adaptation based on
context information is applied in a range of use cases:

“Service selection and task adaptation: context information is mostly used to
select the most suitable service and task to perform actions, given a situation.
One example of this purpose is how to use context for service provisioning.”
Further it is used in “Security and privacy control”, “Communication adaptation”,
and “Content adaptation: context information is used to adapt content resulting
from a request and to return the content in a form suitable to the context of
the requester. One example is to adapt content in mobile Web services.”

The adaptation/reconfiguration in the considered systems are carried out by actuators
that configure service properties or orchestrate the service configuration.

Numerous researchers argue that there needs to be additional programming lan-
guage support for context-aware program adaptation. Hirschfeld et al. [107] have pro-
posed Context-Oriented Programming (COP), a programming technique realizing context-
dependent adaptation based on a layer concept. Layers enrich existing objects with
additional functionality and state and they are context-sensitively (de-)activated. The
context of a running program is the whole perceivable program state, which may make
use of further technologies or frameworks to describe this context.

Frei [80], Fuentes and Jimenez [82], Prezerakos et al. [80, 82, 174, 165] and we [174]
have shown that aspect-orientated programming is a good means for dynamic service recon-
figuration. The main stream aspect-oriented programming (AOP) languages [76] offer
constructs to describe where additional functionality should be added to an existing pro-
gram in a declarative manner3. The existing program is typically unaware (oblivious) [75]
of the concern implemented by the aspect, meaning it does not prepare for modifications
carried out by the aspect.

1.2 definition and representation of context

The term context has been widely used in ubiquitous computing literature to describe the
physical and virtual environment of a person or device, starting with Weiser’s influential
"The computer for the 21st century” [207]. For the Context Toolkit, Dey [65] formulated a

3 Section 2.6 covers aspect-orientation in detail.

4 introduction

definition based on previous descriptions by Schilit [179] and Pascoe [159] with the aim
of enhancing practical applicability:

“Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves.” [65]

Hirschfeld et. al [107] have given an even more technical definition of context in the field
of COP:

“Any information which is computationally accessible may form part of the
context upon which behavioral variations depend.”

We consider the combination of these context definitions suitable for our approach.
Context is perceived through a range of context sources [169] describing the situation of
context entities. The information from different context sources is aggregated so as to
form the basis for further analysis. The context sources can represent program state (e.g.,
contacts stored in the local address book), local sensors (e.g., a gyroscope) or remote
services offering access to a broad range of information, such as the current weather or
data from social (media) networks.

The context information needs to be modeled, aggregated, and analyzed to trigger
adaptations. A range of context management systems have been proposed to manage
context sources and information, such as Semantic Space [204], WildCAT [61], and MUSIC
context-management [169]. Baldauf et al. [24] surveyed eight further systems. A majority
of them are based on the Semantic Web stack [34] (also see Section 2.2), which in turn
is build on the resource description framework (RDF) [121], the W3C standard data
interchange format for the Web. Semantic Web-based context models are defined in
(distributed) schemas, reasoning deduces implicit knowledge from given context data,
and query languages (e.g., SPARQL) allow for further context analysis. Once a certain
context situation is detected, actuators are activated and execute an action. We follow
this approach and build context modeling on RDF Schema[45], a means to model simple
ontologies in RDF.

1.3 running example

The following example is used throughout this thesis to illustrate the requirements of
context-aware adaptation of mobile applications. Consider the user of a smartphone. We
assume that he and most of his contacts are registered to the social networks last.fm and
latitude and that the account names are integrated into the phone’s contact application.

The last.fm [4] service is a music stream service, which creates music playlists based
on the user’s preferred artists and songs. Furthermore it is able to analyze similarities
between two users interests and provide lists of equally liked songs and artists. Latitude
[5], on the other hand, is a localization service, which shows the current position of
contacts, which have agreed to make their current position visible to this user. The
sentences in the following scenario are marked with enumeration annotations for later
reference:

The user is driving a car and is taking a number of friends with him. He connects
the smartphone to the car’s audio system4 (b) and starts a music application. The user
has installed an extension to his music player, which allows context-sensitive selection
of songs based on his last.fm profile. The extension detects the startup of the player
(a) and asks if the music should be selected based on the group of people nearby (b).
Based on the profile of the user and his friends a new playlist is created and played (d)
and updated once the group of nearby people changes (e). In case some of the last.fm

4 For example, by using it as an UPnP media render [113]

1.3 running example 5

Music Player
Component

IPlayerControl

Contacts
Contacts
Model

IContacts

Figure 1.3: Basic music player and contact application

accounts are unknown, the user is offered to edit those contacts in the phone’s address
book application (c).

The last.fm extension is independent from the music player. It can be installed from an
application store after the music player was installed (f).

To realize such a context-aware adaptation of an existing music player, a number of
requirements have to be fulfilled:

(a) The startup of the player must be observed by the adaptation. It must intercept the
startup to ask the user if the extension should be activated.

(b) The extension must access and aggregate different kinds of context information:

• audio system connection status (docking station)

• user’s contacts (contact application)

• nearby contacts (latitude Web service)

• profile comparison (last.fm Web service)

(c) The model of the contact application must be filtered to show only nearby contacts
without last.fm accounts.

(d) There must be a means (e.g., a service interface) to configure the player’s playlist.

(e) It must react to context changes once the set of nearby contacts change.

(f) It should enable the user to (de)activate the last.fm extension at runtime.

1.3.1 Realization Considerations

Such a functionality could be hard-coded into a music player and offered as a stand-alone
mobile application. As discussed above, we are striving for a modularized solution - an
existing music player is extended by a context-sensitive adaptation, which encapsulates
the last.fm-based playlist generation.

We assume that the device’s application environment is based on a component-oriented
architecture and the music player manages and plays music files stored on the device. A
simple contact application is deployed on the device, which is modularized into a contact
GUI5 component and a model component.

Both applications are illustrated in Figure 1.3. The components have the following
responsibilities:

5 Graphical User Interface

6 introduction

Context Management

Music Player
Component

Component Framework + Interception Mechanism

Last.fm
Adaptation

Contacts
Audio
System
Status

Ask user for
permission to

play music

Context data
provided by
Sensors in RDF

Nearby
Persons Nearby

Contacts

Location

IEvents IQuery

IPlayerControl

Contacts
Contacts
Model

filter

IContacts
LastFM

Streaming

LastFM
Webservice

LastFM
Tasteometer

Figure 1.4: Context-sensitive music player

The Music Player Component encapsulates the music player. It offers the interface
IPlayerControl for creating playlists from local or remote (URL) files as well
as starting, pausing, and stopping the player.

The Contacts Component is the GUI component of a contacts application. It shows a list
of contact entries, containing the name, address fields and custom fields for social
network (login) names.

The Contacts Model Component stores the contacts in a database and offers access to the
model via an interface. The GUI component uses it to retrieve the list of all contacts
and the contact entry details.

Figure 1.4 illustrates a realization of such an adaptation based on a given component
architecture and the given components. Again we annotate sentences with the related
requirements from the last section. The Last.fm Adaptation is realized as a component,
which can be installed, started, stopped and deleted while the system is running (f). To
filter message calls (a, c) we need to intercept the communication between components,
so we assume an interception mechanism is in place.

Framework events (a) can be monitored via listeners, represented here as the interface
IEvents. The aggregation and querying (b) of context information is encapsulated in a
generic context management component that gathers data from local and remote sources
and offers means to attach listeners for context changes (e). The interfaces to components
are modeled as services (d) to make them accessible for other components.

1.4 requirements for context-based adaptations

Although the previous section highlighted a number of important requirements for
context-based adaptation, it is not a thorough analysis of the technical requirements
for context-awareness development support in general. Programming language and
framework support for context-aware applications has been studied by a large number of
researchers. The surveys by Baldauf et al. [24] and Truong et al. [199] give an overview
of context-awareness frameworks, [107, 177, 197, 82, 64, 87, 169] have argued for the
need of explicit language constructs to simplify the development of context-awareness
features. The EU project MUSIC6[169] has gathered a number of common requirements

6 An acronym for “Self-adapting applications for Mobile USers In ubiquitous Computing environments”

1.4 requirements for context-based adaptations 7

for context-query languages (CQL) and context-oriented frameworks. We will take these
requirements as a basis for our approach. Reichle et al. [169] state that context-query
languages should provide means to

1. retrieve sets of elements, such as the persons in a room;

2. specify filters and conditions (queries) on contexts so as to select contexts by their
properties and qualities;

3. query context meta data, such as the accuracy of a context source;

4. combine elementary conditions with logic operators in order to analyze complex
context situations;

5. allow subscriptions on asynchronous context change events so as to react to context
changes;

6. aggregate context, for example to find the best location sensor or the average of a
network bandwidth;

7. access the context history, for example to calculate the average network bandwidth
from the last ten bandwidth measurements;

8. have loosely coupled context queries and sources;

9. have context sources residing on the device or be remotely connected.

The requirements 1 - 6 are supported by the requirements (a) - (f) elicited from the music
player example. Requirement 8 and 9 go back to Perich et al. [161], who characterize
context management systems as mobile distributed databases [68]. Mobile databases
are not necessarily located on a single device and the availability of context sources is
not guaranteed. A context source may therefore be replaced by another context source
providing similar data, transparent to the using clients. For this reason a context query
should generally not be linked to a fixed context source, but rather only specify the
requested context information.

In addition to meeting these common context-query language requirements, the music
player example contributes to the following requirements. The component framework
should

10. support the interception of service communication, to allow filtering and replacing
of services;

11. support interception of infrastructure events and access to the component manage-
ment to start and stop existing components; and

12. allow dynamic activation and deactivation of adaptations.

Runtime adaptation comes in different levels of granularity. Here we will divide them into
two different kinds: controlled adaptation and unrestricted adaptation. The first level assumes
an abstraction layer that provides well-defined points for adaptation. An example is the
well-known software plug-in concept [196], which offers a fixed API for customizations.
Plug-in concepts are typically specialized for a concrete application. These applications
explicitly open parts of their functionality for extensions.

A number of AOP approaches operating on a similar level of abstraction have been
proposed. Aspect-oriented software development (AOSD) [77]7 focuses on the modu-
larization of crosscutting concerns. Crosscutting concerns are aspects of a program that
are scattered throughout the program. The basis for most AOP approaches is a join point
model [118], which defines points in a program flow (called “join points”) can be modified

7 see also Section 2.6

8 introduction

by inserting additional code before, after or around the code. Typical join points are
method calls or field accesses. In general, these join points are not further restricted.
AOP approaches for component frameworks (e.g., Jadabs [80] and to some extent Jasco
[194]) restrict the join point to the component interface level. Only method calls on
component interfaces can be adapted. Gudmundson and Kiczales [90] have proposed
a similar approach on the programming-language level. So called pointcut interfaces8

provide an abstraction layer between aspects and program base code, ensuring that only
join points that are meant to be adapted are visible to aspects. Furthermore Fuentes
and Jimenez [82] have presented an approach on architecture-level that encapsulates
context-aware functionality with aspect-orientation and semantic web technology. They
use a library/framework approach instead of a programming language-level integration.

In contrast unrestricted adaptation allows the adaptation of arbitrary program code.
Dynamic AOP approaches such as JAC [160] and PROSE [163], allow runtime weaving
of aspects at arbitrary join points in the program. Dynamic software update approaches
such as Gilgul [56] or JavAdaptor [168], go even further and allow for arbitrary runtime
patches of running applications.

Also AOP approaches for dynamically-typed languages, such as AspectL (Lisp) [57]
and AspectS (Smalltalk) [104], and reflective languages such as Newspeak [41] fall into
this category.

We decided to use a controlled adaptation approach and have applied AOP on service
interface level. We apply this restriction for several reasons. First, in a SOA environment,
the concrete implementation of services are not necessarily on the local system, and its
core logic might be written in a different language running on a different infrastructure.
Likewise even if the service implementation is available there may still be different uses
of the same service from the local or a remote system which are in a different contexts.
This is further supported by the Parnas’ information hiding principle [156] which postulates
that an evolvable design should provide functionality through a controlled interface and
hide the concrete implementation details. These observations result in the last set of
requirements:

11. considering components as black-boxes, according to which the implementation of
the components may be distributed or written in a different language;

12. making the query language statically type safe. In other words, in a scenario of
dynamic reconfigurations and changing contexts, the aspect language should check
for potential ill-use of types already at compile-time. We will see later on (Section
2.4.3) that this further reduces the number of runtime-type tests necessary compared
to an untyped query language.

13. including support for distributed context schemas. For example since the last.fm
username of a contact is unlikely to be predefined in a common contact application,
other context sources should be able to add properties to existing types.

Although we have good reasons to use the blackbox approach, it also has its drawbacks.
Should components be coarse-grained, a great part the program’s implementation is
not accessible for adaptations. In [142], we discussed how components could be further
opened up for controlled adaptation by exposing parts of the internal structure as explicit
adaptation points. By annotating essential parts of a component’s structure, such as filter
and sorting hooks of GUI widgets, they are exposed to adaptation code via an interface
of the enclosing component. This approach is orthogonal to the concepts presented in
this thesis and can therefore be easily combined, thereby reducing this limitation of black
box components.

8 Pointcuts is an AOP term for an expression which selects events in the program flow.

1.5 contributions 9

1.4.1 Query Language Properties

AspectJ and most derived aspect languages use logic expressions (called pointcuts) to
select the join points effected by an aspect. We decided to develop a query language based
on logic programming so as to allow a natural integration with pointcut languages. The
type system of the language must support subtyping, since the Semantic Web languages
are inherently based on concept taxonomies.

Queries typically make use of generic operations on lists such as sorting, aggregation,
selection and projection. Modern static type systems typically employ parametric poly-
morphism to define generically typed operations. Parametric polymorphism steams from
ML-inspired functional languages [95], and has been applied to generic types in object-
oriented languages such as Java [40] and C# [101] and to a range of logic programming
languages such as Mercury [189], Gödel [102], Typical [139], and many others [162].

As an example, consider the generic append function for lists, with the type signature
[T] x [T]Ñ [T]. Here, the brackets stand for a list and T is an unrestricted type parameter,
representing the type of all elements. Once the function is called with concrete parameters
the type T is instantiated to the least upper bound in the type hierarchy of the two
arguments. For example assume the type hierarchy nat <: int, where nat are the natural
numbers, int are all integer values, and <: represents the subtype relationship. When
append is called with the concrete types [nat] x [int], T is bound to int, and the return
type of the expression is bound to the most general type [int].

We cannot apply this type checking procedure directly to logic programming. The
“dataflow” in the evaluation of logic predicates is not unique as in method calls. For
example the list concatenation predicate append can be used to append the list [c,d] to
[a,b] and bind the resulting list [a,b,c,d] to the variable Var:

append([a,b],[c,d],Var)

Alternatively it can be used to bind the postfix [c,d] of the list [a,b,c,d] to
PostfixVar:

append([a,b],PostfixVar,[a,b,c,d]).

The different options to handle different dataflows in the type system and the chosen
solution are discussed in Section 2.4.

1.5 contributions

In this thesis we developed a Context Management Infrastructure (CMI) that simplifies
the development of context-sensitive (adaptation) languages based on Java. Next to the
infrastructure itself, the following main contributions have been made:

Object-oriented logic Context Query Language (OCQL). We developed a statically typed
logic query language that supports subtyping and parametric polymorphism. In
the type system we developed

• a mapping from RDF Schema to Java interfaces with statically typed properties
that covers multiple range definitions, and

• an extension of Lu’s mode analysis algorithm for normal logic programs [130]
and its formal semantics to support the higher-order predicate findall.

Context- and Service-oriented Aspect-Language (CSLogicAJ). We have shown the applica-
bility of the CMI with the integration of OCQL in an aspect-language. The resulting
language CSLogicAJ fulfills all requirements of a context-sensitive adaptation lan-
guage elicited above.

10 introduction

• For this purpose CSLogicAJ introduces a generalized advice construct allowing
synchronous and asynchronous program adaptation.

• In a case study we demonstrate the practicability of CSLogicAJ and show that
the modularization is improved over traditional modularization approaches.

1.6 thesis outline

Chapter 2 introduces necessary fundamental concepts used in this thesis. It shortly
summarizes Java Generics, the Semantic Web, the OSGi component framework, logic
programming, and mode analysis; it discusses approaches for typed logic programming
and, lastly introduces AOP to the unfamiliar reader.

Chapter 3 develops an extension of an existing mode analysis for logic programs. The
higher-order predicate findall is added to a mode analysis with high precision [130].

Chapter 4 presents OCQL, a statically typed logic language with meta predicates
based on a polymorphic type system with subtyping. It starts with a mapping from RDF
schema classes to Java types which ensures type-safe property definitions. The syntax
and semantics of the language are then depicted and a type checking method based on
Java Generics, the mode analysis from Chapter 3, and the RDF Schema - Java mapping is
presented.

Chapter 5 gives an overview of a CMI, a framework for the definition of context-aware
adaptation languages. Based on the CMI we develop the aspect language CSLogicAJ and
show that is fulfills all the requirements discussed above.

Chapter 6 illustrates the realization of the presented concepts, while Chapter 7 eval-
uates them. A case study comparing a purely object-oriented solution with a solution
based on context-aware aspects is then conducted. Afterwards, the CMI is evaluated by
extending the COP-approach JCop with context-analysis capabilities. The chapter closes
with thoughts on the platform’s performance.

Chapter 8 summarizes related work from AOP and context-awareness frameworks.
Chapter 9 provides a conclusion and discussion of future work.

Part I

S TAT E O F T H E A RT

2B A S I C C O N C E P T S

2.1 osgi

The OSGi Service Platform is a specification introduced by the OSGi Alliance in March 1999

[12]. It specifies a Service-Oriented Architecture (SOA) framework for Java based upon a
component concept, the so called bundles. Bundles are a unit of Java classes, libraries and
resources. They define static and optional package level dependencies to other bundles.
They can be independently deployed, as long as static dependencies are fulfilled, and
have a framework-controlled life cycle. Figure 2.1 shows the states a bundle goes through.
OSGi was build with runtime installations and updates in mind. A bundle can be installed
at the startup of the runtime environment or at any time after that and can be loaded
from both a file as well as a URL. Once a new version of the bundle becomes available it
can be stopped, updated and restarted.

Bundles communicate via services. Bundles provide their services via a central service
registry and at which consumers may request specific services by using service attribute
filters. Section 2.1.2 presents the LDAP filters used in service queries in detail. The
dynamic nature of service compositions makes tracking of registered services necessary.
A consumer needs to be notified once a referenced service is unregistered or alternative
services become available.

OSGi introduced the ServiceTracker ([11, 701]) class to support tracking with a common
concept. A bundle does not use a direct reference to a service but a reference controlled
by the ServiceTracker class. The ServiceTracker is thereby notified about service events
and can update the reference as necessary. Bundles react to service events program-
matically and define for instance how a service is rebound. Figure 2.2 illustrates the
indirection. Every time the bundle refers to a service it calls the method getService()1 that
may rebind the service reference depending on previous calls to addingService(..) and
removedService(..) that are called on OSGi service events.

2.1.1 OSGi Shortcomings

OSGi is a SOA framework that has to fit many different requirements. It has to stay
technically low-level while providing all further needed support as an API to accomplish
the requisites. The following subsections enumerate the limitations of OSGi concerning
an ambient intelligence setting and its particular requirements.

Stale References

The abrupt departure of services often implies the appearance of so-called stale references
([12, 5.4]), which are a very common problem to handle. On the one hand OSGi provides
tools and techniques such as listeners [12, 6.1.23] and the described service trackers to
help dealing with this. On the other hand this indirection must be used consistently
throughout the code. Especially when building ontop of frameworks that expect a fixed
reference to a service, e.g., a content provider for a GUI framework, the ServiceTracker is
not applicable.

Furthermore, the service selection strategies have to be implemented in the bundle itself,
even if the selection is based upon architectural considerations made on the deployment
level.

1 Alternatively getServiceReference() can be called. A ServiceReference contains further meta data about a service
and holds a reference to service.

13

14 basic concepts

StoppingUninstalled

Active

StartingInstalled

Resolved

update

update

start

stop

uninstall

uninstall

Figure 2.1: OSGi bundle lifecycle

Providing
Bundle1

ServiceX

Consumer
Bundle

ServiceTracker
getService()
addingService(..)
removedService(..)
…

Providing
Bundle2ServiceX

Figure 2.2: OSGi service tracker

Service management and composition

OSGi offers different means for service binding. By default clients handle service bindings
themselves. They have to manage the requested services after the binding succeeded.
This implies they also have to deal with the departure and the (re-)arrival of services and,
of course, with stale references. With respect to OSGi as a platform for highly dynamic
services this problem even increases.

OSGi R3 does not provide composition support for services. The standard procedure
for service interaction is to find them in the service registry, track and use them. This
approach does not consider relationships between services and therefore there is no
way to express the composition of services. In particular the dynamic (re)composition of
services according to external changes is not supported.

Eclipse OSGi R4 introduced Declarative Services to solve this problem to some extend.
A bundle can statically define service references, which are configured and bound. This
concept was introduced to simplify the automatic composition of services and the
configuration of fallbacks. Declarative services allow for dynamic reconfiguration to a
small extend. Service references marked as dynamic can be reconfigured at runtime once
a bound service becomes unavailable. Equivalent services are automatically retrieved,
and if necessary started and bound. But OSGi does not offer the means to influence this
behavior further by providing it with a custom implemented logic.

In this work we concentrate on the standard tracking approach and show how it can
be extended to support dynamic reconfiguration, which can be configured by adaptation
code.

2.1 osgi 15

2.1.2 LDAP Attributes and Filters

The LDAP (Lightweight Directory Access Protocol) [18] was originally developed as a
directory service to manage information about users, hardware and services in company
networks. The LDAP standard defines a filter language to search for (filter) resources on
the network based on attributes attached to the resource. Each attribute stores a single
type of information. The predefined attribute objectclass represents all class (interface)
names under which a service was registered to the system. OSGi services are optionally
registered with a set of attributes attached to the service. For example, the location sensor
below is registered with a quality property with value 10:

Hashtable props = new Hashtable();

props.put("quality", "10");

LocationSensor sensor = ...;

bc.registerService(LocationSensor.class.getName(),

sensor, props);

LDAP filters define conditions on these attributes, based on the following operators:

Equality: (attribute=value) , e.g.,
(objectclass=org.cs3.AddressBook), the service was registered under the class name
org.cs3.Addressbook

Negation: (!(attribute=value)) , e.g.,
(!objectClass=group)

Presence: (attribute=*) , e.g.,
(quality=*), the argument quality is present

Absence: (!(attribute=*)) , e.g.,
(!quality=*), the argument quality not is present

Greater than: (attribute>value) , e.g.,
(precision> 10), the precision property is greater than 10

Less than: (attribute<value) , e.g.,
((precision<90), the precision property is less than 90

Logic And: (&(attribute1=value1),...) , e.g.,
(&(objectclass=org.cs3.Location),(precision< 100))

Logic Or: (|(attribute1=value1),...) , e.g.,
(|(objectclass=org.cs3.Location),(objectclass=org.cs3.GPS))

Wildcards: (mail=*@uni-bonn.de)

The full syntax of LDAP filters in OSGi is defined in OSGi Specification [12, 3.2.7]. The
attributes can be updated at runtime by altering the properties on the service reference:

ServiceReference ref =

bc.registerService(LocationSensor.class.getName(),

sensor, props);

...

ref.setProperties(props);

In case the properties change, a service event is fired and all registered listeners are
notified. This will be relevant for the definition and implementation of context source
services in Section 5.1.3.

16 basic concepts

Subject Object

Predicate

Figure 2.3: The RDF triple

2.2 semantic web

The term Semantic Web was coined by Tim Berners-Lee [36]:

It “is a Web of action-able information - information derived from data through
a semantic theory for interpreting the symbols. The semantic theory provides
an account of “meaning” in which the logical connection of terms establishes
interoperability between systems.” [182]

The semantic web is based on the Resource Description Framework (RDF) [121]. RDF is a
specification for the representation and exchange of resources and their metadata. An
RDF resource is any resource that can be referred to by a URI, such as Web pages, servers,
or other resource descriptions. Resources are associated with properties, consisting of a
property type, describing the property’s relationship to the resource, and a value. RDF
uses triples to describe resources, which are structured into

• a Subject

• an Object, and

• a Predicate, called property.

A property is, like a resource, described by a globally unique Unified Resource Identifier
(URI). Each subject is associated either with a URI or a blank node. Blank nodes are distinct
in their defined context (e.g., a file), but have no globally defined URI reference. They
are mostly used for constructing auxiliary structures such as ordered lists, which are
otherwise not expressible in RDF. Objects can be URIs, blank nodes or Literals. Literals
are either typed or untyped (plain) and may have an additional language tag. Literals
store arbitrary strings. Typed literals have an datatype URI attached, which typically
refers to XML Schema2 built-in datatypes [203]. For example, to refer to the Integer type
the URI http://www.w3.org/2001/XMLSchema#int is used. The triples can be viewed as
a directed graph, see Figure 2.3.

Triples are usually serialized as XML or in the N3 notation [35], a more compact and
human readable representation of triples. A subset of N3 was specialized for RDF and
named Turtle (Terse RDF Triple Language). The following two code examples illustrate
the serialization of the triple “Distance to Stephan is 10 Meters” in XML

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:cms="http://www.cs.bonn.edu/cslaj/cms#">

<rdf:Description

rdf:about="http://www.cs.bonn.edu/cslaj/cms#Stephan">

<cms:distanceTo rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

10

</cms:distanceTo>

</rdf:Description>

</rdf:RDF>

and in the Turtle triple syntax:

@prefix cms: <http://www.cs.bonn.edu/cslaj/cms#>.

cms:Stephan cms:distanceTo "10"^^<http://www.w3.org/2001/XMLSchema#int>.

Throughout this thesis we will use the Turtle syntax for brevity.

2 Fallside and Walmsley [74]

2.2 semantic web 17

2.2.1 RDF Schema

Except for typed literals triples are untyped in RDF. RDF Schema (RDFS) [45] was in-
troduced to enable the modeling of simple ontologies. RDF schema allows to describe
classes and their properties as well as the subtype relationships between classes and
properties. The members of a class are called instances. The following constructs and their
explanation are an excerpt of the RDF schema specification [45, Section 2]. The constructs
will be used in Section 4.1 that describes a mapping from RDF schema to a Java type
taxonomy.

Classes

Classes describe sets of resources. The following concepts are instances of rdfs:Class -
even rdfs:Class itself:

rdfs:Resource is the class of everything. All other classes are subclasses of this class.

rdfs:Class is the class of resources which are RDF classes.

rdfs:Literal is the class of plain and typed literals. Typed literals are instances
of rdfs:Datatype. rdfs:Literal is an instance of rdfs:Class and a subclass of
rdfs:Resource.

rdfs:Datatype is the class of data types, a subclass of rdfs:Literal.

rdf:XMLLiteral is the class of XML literal values, an instance of rdfs:Datatype

rdf:Property is the class of RDF properties.

Properties

RDF Properties describe the relationship between subject and object resources. The
following constructs are all instances of rdf:Property:

rdfs:range states that the value of a property is an instance of a certain class. In case of
several range definitions the value is an instance of all declared classes.

rdfs:domain states that subject of a property is an instance of a certain class or a set of
classes.

rdf:type states a resource is an instance of a class.

rdfs:subClassOf describes the subtype relationship between two classes.

rdfs:subPropertyOf describes the subtype relationship between two properties.

rdfs:label states a human-readable version of a resources’s name.

Additionally RDFS defines the container classes rdf:Bag, rdf:Seq, rdf:Alt, for sets, lists
and enumerations and the collections class rdf:List. Since they will all be represented as
lists in our approach we will not further investigate their semantics.

2.2.2 RDFS Entailment

The RDFS entailment is the complete deductive closure of a given set of triples. RDF and
RDF Schema define a number of axiomatic triples [98, Section 3.1] and entailment rules
[98, Section 7] like the following:

18 basic concepts

uuu rdfs:subClassOf xxx.

vvv rdf:type uuu.
ùñ vvv rdf:type xxx.

It states that if there is a subclass relationship between uuu and xxx and a resource vvv is
of type uuu, then vvv is also of type xxx. Applying the rules on the triple set is a monotonic
function, once a fixpoint is reached the entailment is complete. Approaches computing the
entailment by a fixpoint computation are called forward chaining. They typically apply the
RETE algorithm [78], which optimizes the recalculation of the entailment on modifications
of the triple base. Semantic web reasoners, such as Pellet and Jena, follow this approach
[157, 48].

Alternatively the rules are applied by backward chaining when executing a query as
realized in the SWI-Prologs semantic web library [208]. Wielemaker optimizes the query
evaluation by reordering literals. Other approaches [176, 211] avoid redundant evalua-
tion of rules by applying tabling, a caching technique that stores previously evaluated
(sub)queries.

2.2.3 Ontology Web Language

RDFS was the first attempt to describe resources in the Semantic Web. As an ontology
language it shows a number of drawbacks. Among other things it does not offer constructs
to define cardinalities, describe complement relationships, declare classes to be equivalent
or instances to be the same3.

To tackle these limitations the W3C developed the Ontology Web language family
(OWL) [124]. Initially it contained three languages with different levels of expressiveness
and reasoning complexity. They are built around the description logic [22] inspired
language OWL DL and contains a decidable subset of first-order predicate logic. The
ontologies describe sets of individuals4 and their relationships. The rather restricted
language OWL lite, is intended to simplify tool support and reduce worst-case reasoning
complexity.

OWL Full has different semantics than the other two and was designed to preserve
compatibility with RDF Schema, so the separation between individuals and classes is not
enforced. In general OWL Full is not decidable. Since OWL Full uses an RDF-style model
theory a serialization and combination with RDFS graphs is possible. Under certain
restrictions5, OWL DL can also be serialized into RDFS.

2.2.4 Open World vs. Closed World Reasoning

The semantic web is based on the open world assumption (OWA). Reasoning with OWA
assumes that we have only partial knowledge about the world, meaning the absence
of a fact does not imply this fact is false. Here, negative knowledge like “Peter is not a
computer scientist.” must explicitly asserted. The absence of the fact “Peter is a computer
scientist.” does not imply it. In other words the query “Is Peter not a computer scientist?”
will result in the answer “unknown”.

In turn logic programming approaches like Prolog are based on the closed world assump-
tion(CWA) [170]. Prolog assumes a fact is false if it is not asserted or inferable. This is
called Negation as Failure (NaF). Under NaF the query “Is Peter not a computer scientist?”
results in the answer “no”.

3 Declared class equivalence can be an important means for merging independent ontologies.
4 instead of instances in RDFS
5 Amongst other things the graph must not contain cyclic constructions, for a detailed discussion see [22, Chapter

14].

2.3 prolog 19

2.3 prolog

An in-depth introduction to Prolog is given in [52]. Here we will only summarize the core
principles and terms relevant to this work. The name Prolog stands for PROgramming in
LOGic. Prolog is a declarative language based on horn clauses [109], a subset of first-order
logic (FOL). A horn clause is a set of atomic literals with at most one positive literal. Let’s
assume pi and u are positive literals. Then
✥p1 ❴ ...❴✥pn ❴ u
is a definite horn clause. Rewritten as an equivalent implication
p1 ❫ ...❫ pn Ñ u
it represents a definite Prolog clause, meaning there is no negative literal in the body of

a clause. The Prolog syntax of the corresponding clause is

u:-p1,...,pn.

A clause without a head is called a goal, a clause without a body is called a fact. The
disjunction of all clauses with the same name and argument arity assemble a predicate.
A predicate is fully determined by its name and argument arity, written as <Predicate-
Name>/<Arity> in short. A set of predicates forms a logic program.

A logic program is called a normal logic program [128] in case the clause bodies are
conjunctions of optionally negated literals. Queries are goals posted by a user to the Prolog
system for evaluation. In the following example the first two lines are facts forming the
predicate person with arity 1. Line 1-8 represent a Prolog program, the last line a query,
querying for the father of Frank.

person(’Peter’).

person(’Frank’).

male(’Peter’).

parent(’Peter’,’Frank’).

father(Father,Child) :-

parent(Father,Child),

male(Father).

?- father(Father,’Frank’).

Prolog’s only data type is a term. Terms are either variables, atoms, numbers and com-
pound terms.

Variables are denoted as identifiers starting with an upper-case character. A special case
are anonymous variables denoted with an underscore “_”. Every occurrence of an
anonymous variable stands for a new, unique variable.

Atoms are atomic character arrays, which are either arbitrary characters enclosed by
single quotes, e.g., ’atom 1’ or identifiers starting with a lower character.

Numbers can be float or integer values.

Compound Term is an atom, called functor in this case, which has a number
of arguments that are enclosed by parenthesis and separated by commas:
functorname(term1,...,termn). Terms are strict, meaning they are of finite depth6.

In the following we do not distinguish between atoms and numbers, because the distinc-
tion is not relevant to this work. Since both are atomic we consider both to be constant
and therefore in the set Atom.

6 Most of the current Prolog implementations support rational trees[54], also known as cyclic trees. They result
from recursion in the unification process, for example in X = t(X), which leads to the infinite tree t(t(t(...))). We
will not consider rational trees any further here and only assume that strict terms.

20 basic concepts

2.3.1 Operational Semantics

The operational semantics of Prolog is essential for this work, since we base the semantics
and static type analysis of the context-query language on Prolog semantics.

A substitution θ ✏ tV1 Ð t1, ..., Vn Ð tn✉ with Vi P LVar, ti P Term represents the
assignment of terms to variables. The application of a substitution to a term t is written
as tθ. All occurrences of variables in t, which occur on the left-hand-side (lhs) of θ, are
replaced by the terms on the right-hand side. In case all ti are variables and all variables
are unique the substitution is called a renaming substitution.

At the core of Prolog’s resolution process is the concept of unification [128]. Unification
is a symmetric and transitive operation that makes two terms equal. Two terms t1 and t2

are unifiable if there is a substitution θ with t1θ ✏ t2. In this case θ is called a unifier. θ is
the most general unifier (mgu) of two terms t1 and t2 if for all other substitutions θ✶ there
is a substitution η with t1θ✶ ✏ t1θη. Unification can be implemented efficiently [135], with
linear time complexity.

From a logical perspective, Prolog evaluates a goal by finding the resolution refuta-
tion of the negated goal. In case the negated goal can be refuted, the goal is a logical
consequence of the program. The evaluation of Prolog is based on (SLDNF) [16] with
the left-to-right selection rule [128]. Linear here means that literals in a clause body are
processed in order of their definition. The left-to-right selection rule results in depth-first
search on the resolution tree, accordingly the variable bindings occur from left to right.

The operational semantics of Prolog are based on a depth-first left-to-right search with
backtracking. A literal is unified with the head of the called clauses starting with the first
clause and backtracks over all defined clauses to find bindings for given variables.

Every time multiple clause heads can be matched by a literal a choice point is added
by the Prolog system. If a (sub-)goal fails in the further execution all variable bindings
that have been made since the last choice point, are undone and the evaluation continues
with the next alternative at this choice point.

Consider the following example:

C1 :a :- c,b.

C2 :b.
C3 :c :- d.

C4 :c :- e.

C5 :d.
C6 :e.

Let’s assume the goal ?- a is evaluated. Below we list the resolution steps and the evaluated
clauses:

Evaluated Term Clause

a

c,b C1

d,b C3

true,b C5

true C2

The literal a is unified with clause C1 and a is replaced by c, b. Next, c is unified with
C3 and d is unified with the fact C5. Finally b is unified with C2, resulting in “true”.

SLDNF adds negation as failure to the SLD resolution. A sub-goal ✥Goal succeeds if the
sub-proof of Goal fails and vise versa.

2.3 prolog 21

2.3.2 Module Concept

Most Prolog systems modularize predicates with a module system, where most of the
current approaches7 adopted the module system of Quintus Prolog [6]. Via modules,
predicates can be defined in a namespace. Modules can export predicates and import
predicates from other modules. For details we refer to the Quintus Prolog documentation
[6].

2.3.3 Meta Predicates

Prolog offers a set of meta predicate to, e.g., map predicates to lists, convert lists to
terms, terms to goals, or backtrack over all solutions of a goal. Further Prolog allows the
definitions of new meta predicates. The univ predicate “=..” converts between a term
and a list and allows the constructions of terms at runtime. The predicate call(Term) calls
Term as a goal. The following meta-predicate constructs the term Goal from the name
PredName and a list of arguments ArgList and calls the constructed goal:

call_pred(PredName,ArgList):-

Goal =.. [PredName|ArgList],

call(Goal).

In this thesis we only consider a small subset of the meta predicate facilities, the three
- so called - all-solution predicates findall/3, bagof/3 and setof/3. They will later be
used in the specification and implementation of the logic query language OCQL.

The predicate findall(Template, Goal, Bag) backtracks over all solutions of Goal and
aggregates the results as a list of the instantiations of the term Template and unifies the list
with Bag. In case Goal fails, Bag is an empty list. For example, the following goal binds
the variable Bag to the cross product of the two lists [a,b] and [c,d]:

?- findall((A,B),(member(A,[a,b]),member(B,[c,d])),Bag).

Bag = [(a, c), (a, d), (b, c), (b, d)].

The meta-predicates bagof/3 and setof/3 are similar to findall/3, but allow backtracking
over variables not part of the template term. For example:

?- bagof(A,(member(A,[a,b]),member(B,[c,d])),Bag).

B = c, Bag = [a, b] ;

B = d, Bag = [a, b].

The variable B is not part of the template and the evaluations backtracks over each binding
of B, collecting all corresponding bindings of A in Bag for each binding of B. The setof/3

predicate binds the last argument to a set instead of a bag of bindings. The two predicates
make use of so called existential variables. The semantics is similar to template variables.
They are also not bound in the evaluation of bagof, even if they are not contained in the
template term. The syntax for existential variables is Var^Goal. Applied to the example
above, the result is:

?- bagof(A,B^(member(A,[a,b]),member(B,[c,d])),Bag).

Bag = [a, a, b, b].

Existential variables are syntactic sugar. They can be realized by forwarding predicates,
which omit existential variables [153]. For the given example the code can be rewritten
into:

7 SICStus, Ciao, YAP and SWI, to some extend Eclipse

22 basic concepts

forward(A) :-

member(A,[a,b]),

member(B,[c,d]).

?- bagof(A,forward(A),Bag).

2.3.4 Prolog Syntax

We will use only a subset of Prolog in this work, except for the findall predicate we will
not use any meta predicates. We will now define the syntax that will be used throughout
this thesis to describe Prolog code. Let LVars be the set of logic variables, Term the set of
terms, Literal the set of literal, the PosLiteral the set of positive literals, Atom the set of
atoms, Formula the set of formulas, Clause the set of clauses, Program the set of Prolog
programs and Goal the set of goals. To refer to single elements of these lists we use the
characters: V P LVars, t P Term, L P Literal, B P PosLiteral, A P Atom, φ P Formula, Cl P
Clause,P P Program,G P Goal. The single elements have the following syntax:

t ::✏ VT⑤ f ♣t1, ..., tnq⑤A
VT ::✏ V⑤tuple♣t1, ..., tnq

B ::✏ A♣t1, ..., tnq
L ::✏ B⑤③ � B

A ::✏ string⑤number

φ ::✏ ǫ⑤L⑤φ1, φ2⑤t1 ✏ t2⑤φ1✁ → φ2; φ2⑤ f indall♣t, L, Vq⑤V is f ♣t1, ..., tnq
Cl ::✏ A : ✁φ

P ::✏ Cl1, ..., Cln

G ::✏ ? ✁ φ

2.4 typed logic programming

Logic programming languages have not been developed with type systems in mind.
Flexibility and conciseness have been the main design goals. But, this has lead to problems
in debugging and code comprehensibility. A range of approaches have been proposed
to integrate type systems with logic programming [162]. They follow two different
perspectives, prescriptive typing and descriptive typing. Prescriptive type systems require
type annotations for every predicate. Based on the typed predicate declarations the types
of untyped variables are inferred and finally type checkers verify the well-typedness of a
program, partially guided by mode annotations8.

Descriptive typing approaches approximate types from a program without type anno-
tations. They describe semantic properties of a program mostly based on regular tree sets
[100, 120]. The approximated types are not necessarily intuitive or reflect the intention
of the user. Nevertheless they can help to understand the programs semantics, detect
errors in the program or guide evaluation optimization. Here we will focus on a static
type system that can be aligned with the Java type system and therefore concentrate on
prescriptive type systems. We will now illustrate the general considerations that led to
the chosen approach.

The first type systems for Prolog containing parametric polymorphism were based
on type terms [144, 125, 102, 189], which declare type constructors and predicate type
signatures. For example, the following declarations define two type constructors:

:- type int := {...,-1,-2,0,1,2,...}.

8 Modes will be discussed later in this section

2.4 typed logic programming 23

:- type list(T) := {[], [T|list(T)]}.

The first represents the set of integer as a list of negative, 0 and positive numbers. The
parametric type list with type variable T is recursively defined as an empty list or a list,
where the first element hast the same type as the type parameter of the rest of the list.
Based on the parametric types generic predicates can be declared:

:- pred append(list(T), list(T), list(T)).

:- pred member(T, list(T)).

The append predicate appends the two lists in the first and second argument to form the
list in the third argument. All lists share the same component type. The member predicate
tests membership of the first argument in the list given in the second argument. The type
of the element and the component type of the list are the same.

The goals and predicates are type checked with regards to the type declarations.
Typically a constraint solving algorithm based on Mycroft O’Keefe’s type checking
algorithm [144] is applied, which is an adaptation of Milner’s constraint-based type
checking algorithm for the functional language ML [141].

For example consider combining two lists of integers and comparing their contents
with 1:

append([1,2,3],[1,2],List),member(A,List),A==1.

The goal is well-typed and type variable T is unified with the type int. Later approaches
considered also subtyping [188, 103, 162], but Meyer [139] has shown deficiencies in their
combination of polymorphism and subtyping. He gave a number of examples for typing
problems, one is the generic list concatenation predicate append/3 with type signature

append(list(T),list(T),list(T))

where T is a type variable. The type system contains two primitive types, nat, negint,
and int, where nat and negint are subtypes of int. Further a predicate p/1 is defined
with a type signature p(list(nat)). Now we consider the following goal:

?- p(L), append([1], [-1], L).

The goal is obviously ill-typed, since L is a list over natural numbers, but the list to
append contains negative values. The afore-mentioned approaches consider the goal
well-typed, since their type checking algorithms do not consider the subtype relationships
between the type parameters of the arguments. The constraint solving results in type int

for T:

append(list(int),list(int),list(int))

Meyers solution in the type system of Typical, was the introduction of subtype relation-
ships between type arguments. Here is the revised version for the append predicate with
subtype constraints:

:- pred appendnew(list(@T1), list(@T2), list(@T3)) |> T1 =< T3, T2 =< T3.

When we reconsider the append example from above, the type checking fails, because
the constraints for the type parameters are not solvable. T3 must be of type nat and a
supertype of negnat. Meyer considered static typing as a type approximation, which detects
ill-typed goals, but does not give any runtime guarantees. In addition, the approach does
not consider any operational semantics, but is applicable to arbitrary evaluation schemes,
for instance to SLD resolution or bottom-up approaches as in deductive databases [69].

The drawback is, that type checking does not detect obviously ill-typed goals that
contain non-ground arguments. Consider the following type definition of the predicate
nat_list and the unification operator:

24 basic concepts

pred nat_list := list(nat).

pred ’=’ := @T x @T.

nat_list([1,_]).

The nat_list predicate declares a list of natural numbers as its only argument type,
unification is a polymorphic predicate over arbitrary arguments. The definition of nat_list
contains an important detail, the argument is unified with a non-ground list with one
argument of type nat. The type checker accepts this unification, since the list is only
partially instantiated, but the instantiated part has the correct type.

Now we evaluate a goal on a predicate that binds LNat to the list [1,-1,1], and is
obviously not of type list(nat):

?- nat_list(LNat),LNat=[1,_],append(LNat, [1], L), append(L, [-1], X),L=[_,-1]

Meyers approach considers the program as well typed. The main issue here is that the
type checking does not consider the dataflow between variables occurrences. This was
not his intention, since type approximation, was the main aim of his work. The same
considerations apply for TCLP [73]. TCLP is type checker for Prolog and Constraint Logic
Programming [114]. TCLP extends the typing rules by Mycroft O’Keefe with subtyping
rules and solves them with by constrain logic programming. Besides subtyping and
parametric polymorphism TCLP considers predicate overloading9. Subtype hierarchies
are restricted to type lattices, meaning a least upper bound and greatest lower bound must
be defined for every pair of type. The constraint system resulting from rule application is
solved via Constraint Handling Rules [81].

Already Hill and Todor [103, Example 1.4.14] have shown that subtyping can go wrong
in typed logic programming and needs further restrictions. To solve this problem the
dataflow between variables can be taken into account, by making use of a mode system.

2.4.1 Instantiation Modes

One of the unique features of logic programming is that predicates can be used in multiple
directions, meaning arguments of predicates might be bound or unbound when calling a
predicate. For example consider the predicate

atom_concat(Atom1,Atom2,Atom3)

It can be used on the one hand to concatenate to atoms Atom1 and Atom2 and bind a
unbound third argument Atom3 to result:

?- atom_concat(a,b,Atom3).

Atom3 = ab

Alternatively Atom3 could be bound and Atom1 and Atom2 are bound to all combinations
of prefixes and postfixes of Atom3.

?- atom_concat(Atom1,Atom2,ab).

Atom1 = ”, Atom2 = ab ;

Atom1 = a, Atom2 = b ;

Atom1 = ab, Atom2 = ”.

The different instantiations are called modes. Legal modes of a predicate can be annotated
for documentation or optimization purposes [189, 206]. The sign + means the argument
must be bound, - must not be bound and ? that it can be used in both ways. For
atom_concat/3 this means that (+,+,+),(+,-,+),(-,+,+),(+,+,-) and (-,-,+) are legal modes for
the predicate. The logic language presented in this work is based on Prolog semantics

9 This can avoid subtyping relationships, e.g., between float and integer, that are typically not found in ISO
Prolog implementations

2.4 typed logic programming 25

and needs to deal with different directions of variable unification in the presence of a
static type system. Let’s assume that int is a subtype of float in the following example.
The type of a variable is postfixed with a colon to the variable name:

p(A:int, B:float):-

A=B.

If the predicate is called with mode (+,-) B is bound to an int value. This is type safe
since int is a subtype of float. When p is called with the mode (-,+) an illegal unification
of A with a float value happens. To overcome this problem different solutions have
been proposed. One solution is the extension of the unification process to order-sorted
unification [29, 30], the other is to restrict predicates to certain modes [189] allowing to
restrict only type-correct unification.

2.4.2 Type System based on Restricted Modes

Several logic programming languages are based on strong mode and type systems with
parametric polymorphism, e.g., Mercury [189] and Gödel [102], but do not consider
subtype relationships10.

Dietrich and Hagl [66] included subtyping in their type system. They facilitate the
modes to describe a dataflow relation between variable occurrences to rule out illegal
dataflows between a subtype and a supertype variable bindings, as shown in Section 2.4.

Since the subtype relationship between polymorphic types depends on the concrete
values of type variables Dietrich and Hagl introduced the notion of conditional subtype
relations (CSR). CSRs lead to a constraint system that has to be solved to type check a
program, which is not decidable in general [66, 212].

Another approach based on mode annotations was proposed by Smaus et al. [185]. They
have shown subject reduction11 for typed logic programs with subtyping and parametric
polymorphism, but further restricted unification to moded unification [185]. In short, moded
unification demands a fixed data-flow for each argument in a literal unification. This is a
severe restriction, as also Smaus stated in his PhD thesis [186]. Even simple clause testing
the equality of two arguments, cannot be type checked:

eq(A,A).

The two arguments are naturally input arguments, but the dataflow depends on the
concrete usage.

Although the approaches by Dietrich and Smaus show the mentioned deficiencies, both
have presented possible solutions for statically typed logic programming in Prolog, which
support subtyping and parametric polymorphism facilitating a mode analysis. This will
be the starting point for our own approach for a typed logic language, based on the Java
type system.

2.4.3 Order-sorted Unification

An alternative approach to type checking, is order-sorted unification [162], which extends
term unification in typed logic languages. Predicates and variables are typed based
on an ordered type language T based on an ordered type alphabet of partially ordered
term constructors L, K. The type constructors are either monotypes, representing a non-
parameterized set of values, e.g., integer or float values, or parameterized constructors
K♣α1, ...q, where αi are type parameters. A partial order ➔: on the set of type constructors

10 Mercury’s theoretically supports undiscriminated unions, which have not been implemented, because type
checking would take exponential time.

11 Subject reduction is a consistence property, that ensures that in a well-typed program, all derivations starting a
well-typed goal are again well-typed.

26 basic concepts

represents the subtype relationship between the constructors L ➔: K. A type declaration
is constructed based on (nested) type constructors.

Order-sorted unification on typed variables unifies two unified terms, as well as the
declared types of contained variables. Assume that the variable V is a typed integer and
W is typed float, and that these are ordered in the following way: integer ➔: float. Now an
order-sorted unification V=W with the most-general type unifier (mgtu) is calculated, which
represents the lower bound in the type hierarchy of the two types, in this case integer.
The new type for both variables in the rest of the resolution process is integer. On every
unification of a typed variable with a non-variable term a type-check is applied with
respect to the variable’s domain. Statically we can type check a unification by calculating
the mgtu for each effected type pair. Still we need to test at runtime the unification of
constants with a typed variables.

Let’s assume we defined the following typed predicate p with typed arguments integer
and float. We use Mercury’s [189] syntax for typing predicates for this example:

:- pred p(integer, float).

p(V, W):-

V=W.

The goal will fail, since Z’s type is integer, which is the lower bound of integer and float,
resulting from the unification in the body of p. Then at runtime the unification of Z and
1.0 will fail. Either as an error or silently, depending of the chosen semantics.

?- p(_,Z),Z=1.0.

Order-sorted unification can be integrated with Prolog in different ways [162, 1.4.3]. Either
by transforming the language to an untyped language with embedded type checking
code, or by extending the SLDNF resolution to directly support order-sorted unification.
In both cases this goes along with an evaluation overhead and in the latter case the
Prolog system needs to be modified. Paschke [158] applied the concept of order-sorted
unification to description logic-typed unification to ensure type safety in the earlier versions
of the knowledge reasoning system Prova [123]. He extended the normal unification
algorithm with the description logic reasoner Pellet [184], resulting in an EXPTIME worst
case unification complexity in case of the description logic OWL lite.

2.5 mode analysis

This thesis makes use of a mode analysis to analyze possible dataflows in logic programs.
It is used to detect potentially illegal dataflows between two typed variables and illegal
instantiation patterns of mode-restricted predicates. In the following we summaries the
abstract interpretation[59] concept, the basis of most mode analysis approaches. Afterwards
we introduce the chosen mode analysis approach and its distinguishing properties.

2.5.1 Abstract Interpretation

Cousot [59] presented the mathematical framework of abstract interpretation in 1977.
Abstract interpretation statically approximates dynamic properties of a language and
has become a common basis for data-flow analysis algorithms. For instance, it has
been applied to type inference, code optimizations, garbage collection, and program
transformations such as partial evaluation [60].

The initial step in the application of the abstract interpretation framework is the
definition a program’s formal semantics, the so called concrete semantics, for instance,
formalized by a transition system [60].

Based on the concrete semantics the collecting semantics [58] is defined that associates
every program point with the set of possible states of the program when the execution

2.5 mode analysis 27

Abstract
Semantics

Collecting
Semantics

Concrete
Semantics

Least Fixpoint
Algorithm

Figure 2.4: Steps to abstract interpretation

(evaluation) reaches that point. The described state at a program point only considers
properties the analysis is focused on, ignoring information irrelevant for the later defined
abstractions, e.g., the execution traces. Based on the collection semantics an abstract
semantics is defined that approximates the program state with regards to the properties
in focus. Figure 2.4 summarizes the process. In every step the soundness approximation
of the more concrete representation must be proven.

A simple example for abstract interpretation is the rule of sign analysis taken from [60].
Integer values are categorized into the sets �v (positive or 0), 0, ✁v (negative values
or null) and the symbol ❏ that denotes arbitrary integer values. These abstract values
are called an abstract domain. Operations on the concrete domain, such as addition and
multiplication, are reinterpreted on the abstract domain in the following way:

�v��v ✏ �v �v✂�v ✏ �v ✁v✂�v ✏ ✁v

✁v�✁v ✏ ✁v �v✂✁v ✏ ✁v ✁v✂✁v ✏ �v

�v�✁v ✏ ❏ �v�❏ ✏ ❏ ❏✂�v ✏ ❏ ✁v✂❏ ✏ ❏
✁v� v ✏ ❏ ✁v�❏ ✏ ❏ ❏✂✁v ✏ ❏ ✁v✂❏ ✏ ❏
❏� v ✏ ❏ ❏�❏ ✏ ❏ �v✂❏ ✏ ❏
❏�✁v ✏ ❏
0��v ✏ �v �v� 0 ✏ �v 0✂�v ✏ 0 �v✂ 0 ✏ 0

0�✁v ✏ ✁v ✁v� 0 ✏ ✁v 0✂✁v ✏ 0 ✁v✂ 0 ✏ 0

0�❏ ✏ ❏ ❏� 0 ✏ ❏ 0✂❏ ✏ 0 ❏✂ 0 ✏ 0

0� 0 ✏ 0 0✂ 0 ✏ 0
Applied to the formula ♣3✂ 3q � ♣4✂ 4q the result is �v. The different abstract values

are not distinct. A partial order can be introduced to compare the precision of the values,
here represented as a complete lattice:

T

0

-v+v

It means that ❏ is the most general abstraction, in which �v and ✁v are subsets of ❏,
and 0 represents a subset of both �v and ✁v.

The definition of an abstract domain is usually a tradeoff between precision and costs.
For example, it might consider the context of a call at a certain point in the program,

28 basic concepts

resulting in more precise approximations, but at increased space costs compared to a
semantics only considering program points in isolation.

2.5.2 Sound Approximation

Abstract interpretation is a sound approximation of program’s concrete semantics. Ideally,
Galois connections are used to formalize the approximation process. The abstract domain
and the concrete domain are described as complete lattices in this case. A complete
lattice L♣❸,❑,❏,❬,❭q is a partial ordered set in which any two elements have a least
upper bound ❭ and a greatest lower bound ❬. For the concrete domain, typically the
power set ℘♣Cq over the set of concrete values C is chosen, which forms a lattice via an
order induced by the subset relationship: ♣℘♣Cq,❸,❍, C,❨,❳q. Between the two lattices
D✺♣❸✺,❑✺,❏✺,❬✺,❭✺q for the abstract domain and D#♣❸#,❑#,❏#,❬#,❭#q for the concrete
domain a Galois connection represents the concretion function γ and abstraction function
α with the following properties:

γ : D✺ Ñ D#

α : D# Ñ D✺

❅a P D✺ : ❅c P ℘♣Cq, α♣cq ❸✺ a ô c ❸# λ♣aq
These properties guarantee the soundness of the abstraction in both directions. By the

Knaster-Tarski fixpoint theorem [198] the fixpoints of a monotone mapping on a complete
lattice L♣❸,❑,❏,❬,❭q form a complete lattice. The collecting semantics is described as
the least fixpoint (lfp) on l f p F#, with F# being a monotone function on the concrete
domain D#. The abstract semantics l f p F✺, with the monotone function F✺ on the abstract
domain D✺, is a sound approximation of the collecting semantics (l f p F# ❸ γ♣l f p F✺q) if
❅d✺ P D✺.♣F# ✆ γ♣d✺q ❸ γ ✆ F✺♣d✺qq
For the proof in see [134].

2.5.3 Chosen Mode Inference Approach

A large number of mode inference approaches for logic languages based on abstract
interpretation have been proposed [62, 46, 55, 192, 53, 131]. Lu [130] gives an extensive
overview, we only give a short summary here and argue why we have chosen Lu’s
approach over others. Besides the mode information, mode inference approaches consider
variable relationships in their analysis. Most approaches observe sharing between vari-
ables to ensure correctness of the analysis. Sharing means that two variables are bound to
two terms, which may contain each other. So in case the mode of one variable changes,
the mode of the other variable is influenced. For example, consider the two variables A
and B. In case A is bound to t(B) or to B itself the variables are in the sharing relationship,
or A=a(B,C) and B=b(A).

We base our analysis on the mode analysis by Lu [131], since his approach has a high
approximation accuracy in contrast to former approaches, because his chosen abstract
product domain [25] considers - next to variable sharing - also variable aliasing.

The abstract domain is an abstract substitution consisting of mode abstractions, vari-
able aliasing and variable sharing. Here, variable sharing ensures the soundness of the
approximation, while aliasing increases the accuracy. Modes are described by the set
∆ ✏ t f , g, o✉, in which

f stands for unbound (free) variables

g for ground terms, which do not contain any variables

o for nested terms, which contain unbound variables, e.g., the term t(X)

2.5 mode analysis 29

Example for Aliasing

Already simple examples show the improved precision by a product domain including
variable aliasing. Consider the following predicates c/2, p/1 and b/112:

p(A):-

b(A),

c(A,B),

B=val.

c(A,B):-

A=B.

b(a(_A)).

b(1).

The goal p(A) results in the substitution ([A=val]), so we expect the inferred mode tg✉.
But, when we apply a mode analysis, which only considers variable sharing, the inferred
mode for A is tg, o✉. Below we see the goal and the two predicates annotated with the
inferred modes for each program point and the corresponding sharing information.
The annotation is written as a comment beginning with a list of variable/mode pairs
followed by a list of variable sharing tuples. The goal is represented by the common
Prolog command prompt “?-”.

At the first program point before the call of p(A) the variable A has the mode t f ✉ and
the sharing list is empty. In the predicate p the predicate b is called, which results in a
mode tg, f ✉ for A, since the first clause does not bind it and the second binds it to an atom.
Now predicate c is called, which results in a sharing relationship between A and B. Now
B is unified with val and the mode of B changes to tg✉. Since B shares with A, the mode
of A also changes. But the analysis does not know that the variables have been unified
and updates the mode on the grounds of the sharing relationship only. Since B might
have been just one part of a partially bound term, like A=t(B,_), the sharing information
is not sufficient to infer the correct mode tg✉ for A in this case. So the resulting mode for
A is t f , g, o✉.

?-

%[A/{f}],[]

p(A),

%[A/{f,g,o}],[]

p(A) :-

%[A/{f},B/{f}],[]

b(A),

%[A/{f,g},B/{f}],[]

c(A,B),

%[A/{f,g},B/{f,g,o}],[(A,B), (B,A)]

B=val,

%[A/{f,g,o},B/{g}],[]

c(U,U). %[U/{f,g}],[]

b(A). %[A/f],[]

b(1). %[],[]

Now we consider the product domain with aliasing. A list with the aliasing relationship is
postfixed to the sharing information. We ignore the reflexive alias case here for brevity:

?-

%[A/{f}],[],[]

p(A),

%[A/{g}],[],[]

12 The example was adopted from [131]

30 basic concepts

p(A) :-

%[A/{f},B/{f}],[],[]

b(A),

%[A/{f,g},B/{f}],[],[]

c(A,B),

%[A/{f,g},B/{f,g}],[(A,B), (B,A)],[(A,B), (B,A)]

B=val,

%[A/{g},B/{g}],[],[(A,B), (B,A)]

c(U,U). %[U/{f,g}],[],[]

b(A). %[A/f],[],[]

b(1). %[],[],[]

The essential difference here is when B is unified with val. Now aliasing information is
available and the mode tg✉ can be propagated correctly to A, resulting in the expected
mode for A.

2.6 aspect-oriented programming

Aspect-Oriented Software Development (AOSD) [77] is a paradigm to enhance the separation
of concerns. Functionality that would otherwise be scattered throughout a program,
because it cannot be modularized in the dominant decomposition [155] of a particular
language, is encapsulated into an aspect. This functionality is called a crosscutting concern.
Typical crosscutting concerns are tracing, transactions and exception handling. Filman
and Friedman [75] characterize AOSD as a modularization concept with two desirable
properties: quantification, the ability to declare actions to be applied consistently to many
places of a program, and obliviousness, which means that the modified program entities
do not need to be aware of being subject to the execution of aspect code and do not need
to provide special hooks or interfaces for enabling aspect application, also known as
weaving.

A large number of approaches have been proposed to modularize crosscutting concerns
[77]. We can divide them into two groups. The first are composition approaches, like
the Hyper/J language [155] inspired by subject-oriented programming [96]. Hyper/J is
based on the concept of multi-dimensional separation of concerns (MDSoC) [155], in which
features are independent modules. A program is defined via composition descriptions
that form a concrete application from the feature modules.

The second group [127, 33, 118, 17] distinguishes between a base program and aspects.
Aspects encapsulate a crosscutting concern and define where in the base program the
concern should be woven. For the later group of programming languages the term
Aspect-Oriented Programming (AOP) has been coined [117].

Most AOP approaches are based on a join point model, inspired by AspectJ [118], the
first AOP language for Java. The join point model defines which points in the execution
of a program can be modified by an aspect. Typical join points are method calls, thrown
exceptions and field accesses. Aspects select join points in the so called base classes of a
program and weave the crosscutting concern into the application. Figure 2.5 illustrates the
weaving process.

The following sections introduce the core concepts of AspectJ, which has been a role
model for our and many other aspect-oriented language designs [105, 91, 32, 47, 191].

2.6.1 Join Points and Pointcuts

Join Points are well-defined points in the execution of a program. A pointcut selects sets of
join points. AspectJ distinguishes between primitive pointcuts, an atomic construct, which
selects join points of a certain kind, such as method calls, and the pointcut construct,
which represents a logic expression over a set of primitive pointcuts.

2.6 aspect-oriented programming 31

Base classes with
woven aspect

.

.

.

Base Classes Aspect

Figure 2.5: Illustration of aspect weaving. An aspect selects a set of join points in the base classes of
a program and weaves additional code at these points.

call(Signature) selects all calls to methods whose signature matches the pattern
Signature: e.g.
public * Contact.*(..)
selects all method calls on the class Contact with arbitrary number
of parameters.

target(Type|Var) binds all join points whose runtime receiver object is of type type.
In case the argument is the name of an advice14 parameter the
type comparison is applied on the parameters type and the advice
parameter is bound to the receiver object.

this(Type|Var) similar to target, but here the enclosing runtime instance of the
join point’s call site is checked and bound.

args(Type|Var,...) binds all join points, whose arguments are compatible with the list
of type names or advice variables. Arguments are either method
call arguments or the values assigned to a field. For method calls
the wildcard ’..’ can be used for an arbitrary number of
parameters.

further AspectJ offers a number of additional pointcuts for selecting
method executions and field read and write accesses that are not
further considered in this thesis, see also [118].

Table 2.1: AspectJ’s primitive pointcuts

In AspectJ join points can be field accesses, method calls and thrown exceptions. A
pointcut not only selects sets of join points, it may additionally refer to their context. This
can be the enclosing class or method, the object the join point is executed on, the enclosing
object of the join point itself or the call’s arguments. Table 2.1 summarizes the pointcuts
with focus on the pointcuts used in this thesis. The target, this and args pointcuts are also
called state-based pointcuts, because they refer to the runtime state of the program. In
contrast to the other primitive pointcuts, runtime checks have to be woven at the selected
join points13, the so-called dynamic residue.

Primitive pointcuts use either explicit class or construct names or use patterns with
wildcards. The wildcard ’*’ stands for arbitrary legal Java identifier characters. In type
name patterns the pattern ’**’ can be used to match also the dots in fully qualified type
names, so that several sub-packages can be matched at once. To include subtypes in the
pattern, too, a ’+’ sign can be attached to a type name. The following example illustrates
the type pattern in a call pointcut:

call(void com.**.Test+.set*(Object, ..))

13 Attempts have been made to partially remove the runtime tests with static analysis [20].

32 basic concepts

This poincut selects all calls to methods of the types named Test and it’s subtypes. Test
must be defined in a sub-packages of com. The method names must start with set and the
first parameter must be of type Object. The primitive pointcuts can be composed by logic
operators. These terms can be reused by defining a named pointcut containing the term:

pointcut allTestMethods() : call(void Test.set*(Object, ..));

The pointcut allTestMethods selects all methods of the class Test, which must have been
resolved in the context of the enclosing aspect.

2.6.2 Advice

Advice constructs encapsulate the functionality, which should be executed at a join point,
and define where the functionality should be executed. Four different advice kinds are
defined in AspectJ:

before(): The before advice is executed before the join points.

after(): The after is always executed after the join point, regardless if it returns regularly
or with a thrown exception. This advice kind is further specialized into two variants,
which consider the two mentioned cases:

after() throwing(): The advice is only executed if the join point throws an exception.
The thrown exception is bound in the throwing clause to an advice parameter.

after() returning(): The advice is executed on successful execution of the join point.
The return value is bound in the returning clause to an advice parameter.

around(): The around advice is the most generic advice and subsumes all others. It is
executed around a join point. Optionally the advice body can execute the original
join point.

The following advice adds tracing messages before all calls of the method m of the class
Test:

before() : call(void Test.m()) {

System.err.println("called method Test.m()");

}

The around advice offers a special call statement: proceed. A call of proceed either calls the
original join point or the next advice woven at this join point. The following example
shows an advice, which caches the values returned by a method m of the class Test:

private Hashtable cached = new Hashtable();

String around() : call(String Test.m(..)) {

if (cached.get("Test.m") != null)

return (String)cached.get("Test.m");

String ret = proceed();

cached.put("Test.m", ret);

return ret;

}

Advices can access the runtime context of a join point via the field thisJoinPoint. Figure
2.6 shows the field’s interface. The method getThis() returns the enclosing instance,
getTarget() the target objects and getArgs() the arguments of the join point. Further the
advice can access the method signature elements.

State-based pointcuts offer means to bind the join point’s context. The target object, the
current instance, the return value, and the arguments of a join point can be bound to
advice parameters, which can further be processed in the advice body. In around advices

2.6 aspect-oriented programming 33

interface JoinPoint {

Object getThis();

Object getTarget();

Object[] getArgs();

Signature getSignature();

DitriosFacade getDitriosFacade();

}

Figure 2.6: JoinPoint interface

parameters can be passed to the proceed call, allowing the arguments and also the target
object of a join point to be altered.

We can make use of advice parameters in our caching example. Let’s assume the
method has a parameter of type Object. We include the hash code of this argument in
our cache, to cache results separately for each unique argument:

Hashtable cached = new Hashtable();

String around(Object arg) : call(String Test.m(..))

&& args(arg) {

String key = "Test.m." + arg.hashCode();

if (cached.get(key) != null)

return (String)cached.get(key);

String ret = proceed(arg);

cached.put("Test.m." + arg.hashCode(), ret);

return ret;

}

2.6.3 Inter-type Declarations

AspectJ offers inter-type declarations, a means to alter the class hierarchy or add new
fields and methods to existing classes. Since this thesis is only concerned with runtime
adaptations and these features is not applicable at runtime (in Java), we will not consider
them any further here.

2.6.4 Aspects

Aspects encapsulate pointcut, advice and inter-type declarations in a class-like construct.
They are mainly a syntactic extension of a Java class, in which the class keyword is
replaced by the keyword aspect. Next to aspect constructs, they can contain the definition
of fields and methods which can be referenced in the body of the advices. Aspects are by
default singleton instances. Below we define an exemplary tracing aspect. It puts out a
tracing message before every method call that prints the number of calls since the start of
the application:

public aspect TraceAspect {

int counter = 0;

before(Object target) : call(* *.*(..)) &&

target(Object target){

counter++;

System.err.println("current class:" +

o.getClass().getName() + " +

"number of method calls: "+counter);

}

}

Part II

A P P R O A C H

3F I N D A L L - E X T E N D E D M O D E A N A LY S I S

This chapter introduces an essential ingredient for a later presented statically-typed
logic query language. As we discussed in Section 2.4.2, typed logic programming with
parametric polymorphism and subtyping needs to consider the dataflow in the resolution
of a goal, to avoid type errors. We will facilitate the mode analysis by Lu [131] to resolve
the dataflow. His approach has a high approximation accuracy, resulting from an abstract
product domain [25] that considers variable aliasing in contrast to former approaches.
In Section 2.5.3 we argued why aliasing support is important for the precision of the
analysis.

Our query language makes use of the higher-order predicate findall/3 and other
all-solution predicates, but higher-order predicates are not considered by Lu’s abstract
semantic. In this chapter we will first introduce the formal underpinning of Lu’s approach
and then we extend the semantics and the algorithm to support findall/3 and similar
meta-predicates.

In his Phd thesis [131] Lu presented a generic abstract interpretation approach for
normal logic programs [128]1, which can be tailored to static analysis problems. Next to
type inference he presented a mode analysis as an application of the framework. Section
3.1 summarizes the syntax and relevant definitions from [131], but we only consider the
abstract mode domain and ignore the generic parts. The definitions and syntax used in
Section 3.1 are precisely taken over from Lu’s thesis Lu [131, Chapter 4 and 5], which
simplifies references to his work. For readability reasons we will not cite each single
definition, since all originate from the same publication.

Section 3.2 presents our extension to Lu’s approach.

3.1 mode analysis approach by lu

Lu’s analysis is based on the abstract interpretation framework, which we summarized in
Section 2.5.1. The abstract domain considered in Lu’s semantics is an abstract substitution
Sub✺ consisting of mode abstractions, variable aliasing and variable sharing. Two aliased
variables have be unified directly or indirectly in previous resolution step. Two sharing
variables v1 and v2 are not unified directly, but one of the variables is unified with a term
containing the other variable, for example, v1 ✏ t♣v2q.

The modes of a variable are described by the set ∆ ✏ t f , g, o✉, where

f stands for unbound (free) variables

g for ground terms, which do not contain any variables

o for nested terms, which contain unbound variables, e.g., the term t(X)

The abstract substitution correlates every variable with a subset m P ∆. The abstract
domain is build up from the power set ℘♣∆q forming the complete lattice ➔ ℘♣∆q,❸→. An
abstract substitution θb is ➔ I ,S ,A →, with the instantiation state function I : V Ñ ℘♣∆q,
the sharing relation S and aliasing relation A. The sharing between two variables X and
Y under substitution θ means that Xθ and Yθ contain a common variable. Aliasing means
that two variables are unified by a substitution.

A program point p refers to a location before or after a literal in a program. We refer
to the enclosing clause or goal of p with pr1s. Only the variables used in the context of
the enclosing clause of a program point are relevant for the mode of p. Section 3.1.1 will

1 In a normal logic program all clause bodies are conjunctions of optionally negated literals.

37

38 findall-extended mode analysis

explain the program graph representation in more detail, but for now we introduce its
syntax without further explanation. The set of variables used in a clause i is referred to
as Vi. So Vpr1s represents the set of variables used in the enclosing clause of p. Sub✺✈V✇
denotes the domain of abstract substitutions for describing values of variables in V . Sub✺

denotes the set of all abstract substitutions and ➔ Sub✺✈V✇,❸ ✈V✇ → forms a complete
lattice with ❸ ✈V✇ defined as

➔ I1,S1,A1 →❸ ✈V✇ ➔ I2,S2,A2 →
de f✏ ❅X P V .I1♣Xq ❸ I2♣Xq❫ ♣S1 ❸ S2q❫ ♣A1 ❸ A2q

The concretion function on the domain is defined on the abstract substitution as

γ✈V✇♣θ✺q de f✏ γi✈V✇♣θ✺ Ó Instq ❳ γs✈V✇♣θ✺ Ó Shareq ❳ γa✈V✇♣θ✺ Ó Aliasq
where

γi✈V✇♣Iq
de f✏ tθ P Sub⑤❅X P V .♣Xθ P γ̌♣I♣Xqqq✉

γs✈V✇♣Sq
de f✏

✩✬✬✫
✬✬✪θ P Sub

✞✞✞✞✞✞✞✞
❅X, Y P V .♣X ✙ Yq ❘ S Ñ vars♣Xθq ❳ vars♣Yθq ✏ ❍q

❫
❅X P V.♣♣X, Xq ❘ S Ñ χ♣Xθq ✘ 2q

✱✴✴✳
✴✴✲

γa✈V✇♣Aq
de f✏ tθ P Sub⑤❅X, Y P V .♣♣X, Yq P A Ñ Xθ ✑ Yθq✉

γ̌♣Mq de f✏ tt P Term⑤mo♣tq P M✉

χ♣tq de f✏

✩✬✬✬✫
✬✬✬✪

0 i f vars♣tq ✏ ❍

2 i f ❉X P vars♣tq.repeat♣X, tq

1 otherwise

The Ó operator extracts the corresponding component from Sub✺. γi✈V✇♣Iq represents
the set of substitutions binding all variables X P V to terms having the same mode as
given by the instantiation function I♣Xq. The set γs✈V✇♣Sq contains all substitutions that
contain the sharing property given by the relation S and finally γa✈V✇♣Aq covers all
substitution resulting in the aliasing defined in A.

For example, for the abstract substitution2

➔ tA④t f ✉, B④t f ✉, C④t f ✉, D④to✉✉, ttA, B✉, tC, D✉✉, ttA, B✉✉ →
some of the corresponding concrete substitutions are:
➔ tA ✏ B, D ✏ t♣a, Cq✉ →
➔ tA ✏ B, D ✏ t♣Cq✉ →
...
The abstract unification operation uni f y✺♣B1, θ✺, B2, σ✺q for the mode analysis is build

around the ∇ operator ∇ : ℘♣∆q ✂ ℘♣∆q Ñ ℘♣∆q, shown in Figure 3.1. It unifies two
terms based on their abstract modes resulting in the most general common abstract value
of the terms. For example, t f , g✉∇to✉ ✏ tg, o✉, since the unification of a free term with
a partially instantiated term results in a partially ground term, and the unification of
a ground term with a partially ground term is a ground term. Both combinations are
summed up in the resulting set.

The abstract unification algorithm solves a set of equations E in solved form3 resulting
from the most-general unifier (mgu) of B1 and B2. The instantiation state resulting from
one equation in E is defined by estm♣X ✏ t, Iq, where I is an abstraction instantiation
state on V, X P V a variable, and t a term with vars♣tq ❸ V. Let Ve ✏ tX✉ ❨ vars♣tq.

2 we omit the reflexive aliasing and the symmetric sharing and aliasing tuples for brevity
3 the left-hand side (lhs) of all equations in E is variable and occurs only once on the lhs in the equation set and

the lhs does not occur in the rhs of any equation in E.

3.1 mode analysis approach by lu 39

∇ ❍ t f ✉ tg✉ to✉ t f , g✉ t f , o✉ tg, o✉ ∆

❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍
t f ✉ ❍ t f ✉ tg✉ to✉ t f , g✉ t f , o✉ tg, o✉ ∆

tg✉ ❍ tg✉ tg✉ tg✉ tg✉ tg✉ tg✉ tg✉
to✉ ❍ to✉ tg✉ tg, o✉ tg, o✉ tg, o✉ tg, o✉ tg, o✉
t f , g✉ ❍ t f , g✉ tg✉ tg, o✉ t f , g✉ ∆ tg, o✉ ∆

t f , o✉ ❍ t f , o✉ tg✉ tg, o✉ ∆ ∆ tg, o✉ ∆

tg, o✉ ❍ tg, o✉ tg✉ tg, o✉ tg, o✉ tg, o✉ tg, o✉ tg, o✉
∆ ❍ ∆ tg✉ tg, o✉ ∆ ∆ tg, o✉ ∆

Figure 3.1: ∇ operator, over-estimates the mode of two unified terms. Adapted from [130, Figure
5.1].

estm♣X ✏ t, Iq de f✏ λU P Ve.

✩✬✬✬✬✬✬✫
✬✬✬✬✬✬✪

I♣Xq∇mo✺♣t, Iq i f t ✑ U ❴U ✑ X

❍ i f I♣Xq ✏ ❍❴mo✺♣t, Iq ✏ ❍

tg✉ i f I♣Xq ✏ tg✉ ❴mo✺♣t, Iq ✏ tg✉

∆∇I♣Uq otherwise

where mo✺ evaluates the mode of the term t:

mo✺♣t, Iq de f✏

✩✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✪

I♣tq i f t P V

❍ i f ❉X P vars♣tq.I♣Xq ✏ ❍

tg✉ i f ❅X P vars♣tq.I♣Xq ✏ tg✉

tg, o✉ i f ❅X P vars♣tq.♣g P I♣Xqq

to✉ otherwise

estm♣X ✏ t, Iq evaluates the mode of X after unification with t, based on the previous
known modes for X and t. For example, for I♣Xq ✏ t f ✉, I♣Yq ✏ t f ✉ and t ✏ a♣Yq the
evaluation of estm♣X ✏ t, Iq results in tg✉.

The full uni f y✺ algorithm with equation solving is quoted in appendix A.2.1. The mode
analysis is build up from a collecting semantics abstracting from a transition system that
approximates a variant of SLDNF resolution [130, 4.1.2], abbreviated as VSLDNF. The
evaluation of VSLDNF is semantically equivalent to SLDNF, but instead of preserving
the variable names of a goal it focuses on preserving variable names at a program point.
We mainly illustrate the SLD and transition system here. For a detailed description and
the SLDNF VSLDNF equivalence proof see [130, 4.1]. A clause Ci is represented as head
Hi with a list of literals L♣i,jq, where m : N Ñ N denotes the number literals in Ci.

Ci ✑ Hi Ð L♣i,1q, ..., L♣i,mrisq
In SLDNF resolution a sub-refutation step of a positive literal Bi,j, which is unified with

a clause head Hk with a current substitution θ, is processed by the calculating the most
general unifier:

mgu♣Hkρ, Bi,jρ
✶θq ✏ η

Here, ρ✶ and is a renaming substitution from previous evaluation steps and ρ a renaming
substitution ensuring that the right-hand side does not share variable names with Hk.

Afterwards, the literals Lk,l are processed under the substitution θ ✆ η. So in case a goal
g(A) is unified with clause g(B) the variable name A is preserved through the refutation
steps in the clauses of g/1. VSLDNF differs in that the renaming of variables takes
place on the right-hand side, preserving the name of the clause Ci instead of the goal’s
variables:

40 findall-extended mode analysis

mgu♣Hk, Bi,jρ
✶ρθq ✏ η

This makes a new unification step necessary once a sub-refutation of a clause is
completed, since otherwise the variables do not match the variables in further literals
in the context anymore. Assume a goal Ð L♣i,1q, ..., L♣i,mrksqθ, and the refutation of L♣i,1q
on the clause Cj was completed with θ✶, then in exit step a renaming substitution ρ✷

with vars♣Hj, θ✶q ❳ vars♣Ciθq ✏ ❍ is created and the substitution of this step becomes
θ✷ ✏ mgu♣B♣i,1qθ, Hjθ

✶ρ✷q, resulting in the new goal

Ð L♣i,2q, ..., L♣i,mrksqθ
✷.

3.1.1 Program Graph

Lu abstracts VSLDNF with a transition system based on the program graphEP,G defined
as follows4:

EP ,G♣Xq
de f✏

↕
0↕j↕5

E
j
P ,G♣Xq (3.1)

E0
P ,G♣Xq

de f✏
✦

entry♣kqÐ✌♣0, 0q ⑤k P ℵG

✮
(3.2)

E1
P ,G♣Xq

de f✏

✩✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✪

entry♣iqÐ✌q

✞✞✞✞✞✞✞✞✞✞✞✞✞

qr2s ↕ mrqr1ss
❫ i P ℵC

❫ ❉ρ.

☎
✝✝✆

ρ is a renaming substitution

❫ vars♣Bqρq ❳ vars♣Hiq ✏ ❍
❫ mgu♣Bqρ, Hiq ✘ f ail

☞
✍✍✌

✱✴✴✴✴✴✴✴✳
✴✴✴✴✴✴✴✲

(3.3)

E2
P ,G♣Xq

de f✏
✦

pÐ✌exit♣iq
✞✞✞ entry♣iqÐ✌p✁ P E1

P ,G❫Lp✁ ✑ Bp✁

✮
(3.4)

E3
P ,G♣Xq

de f✏
✦

pÐ✌p✁
✞✞✞ Lp✁ ✑ ✥Bp✁

✮
(3.5)

where ℵG represents a set of natural numbers enumerating goals, ℵC the set of clause

numbers, with ℵG ❳ ℵC ✏ ❍. The set of initial goals G
de f✏ t➔ Gk, Θk → ⑤k P ℵG✉, where

Gk stands for goal and Θk is a set of substitutions θk. Each Gkθk is an initial goal. Program
points are represented as tuples ♣i, jq, where the first argument is the clause number and
the second the position in a clause body or goal, starting with 1. The set of program
points is named PP. The entry : N Ñ PP refers the first program point in goal ♣i, 1q or a
clause, exit : N Ñ PP the last one ♣i, mris � 1q. The functions p✁ and p� are used to refer
to point before resp. after a program point in a clause or goal. The functions are only
defined if there is such a point. An edge in the graph is represented as pÐ✌q, meaning
the edge starts at q and ends at p. A literal indexed by a program point Lp is the literal
directly following the program point p. Literal kinds can be tested with the equivalence
relation ✑. They can be either positive Lp ✑ Bp or negative Lp ✑ ✥Bp.

EP ,G
0 is a set of edges from the dummy program point (0,0) to the entry points of initial

goals. EP ,G
1 contains the edges to clause-entry points, EP ,G

2 from exit points to program
points after the calls from positive literals. EP ,G

3 considers negation as failure rules. In
this case the called clause is entered, but no bindings are returned to the calling literal.

Figure 3.2 gives an example of a program graph. The goal g(A,B) is referenced from
from program point (0,0). Program point (1,1) is located before the first literal in the goal
g(A,B). L♣1,1q refers to this literal. The program graph contains call edges to the program
point (2,1), after the head of the fact g(a2,E), referred to as H2. Since the clause has no
body the call immediately exits to (1,2). The rest of the graph follows the same scheme.

4 the definition is a copy from [130]

3.1 mode analysis approach by lu 41

g(A,B)

g(C,D):- g(C,D). g(a2,E).

call

(1,1) (1,2)

(2,1)

(0,0)

(3,1)

Goal :-

exit

(3,2)

Figure 3.2: Call graph example

3.1.2 Concrete Semantics

We will now summarize the transition system approximating VSLDNF, which is then
approximated by the collecting semantics as the least fixed-point of the function F#

P ,G ,
defined below. A state in the transition system is a stack of stack items. A stack item has
the form ‖ pÐ✌q, θ ‖, where pÐ✌q P EP ,G and θ P Sub. The set of possible stack items is

S# ✏ t‖ pÐ✌q, θ ‖ ⑤pÐ✌q P EP ,G ❫ θ P Sub✉
The empty stack is denoted as $, the set S of stack items is inductively defined:

• $ P S;and

• ‖ pÐ✌q, θ ‖ ☎S P S if ‖ pÐ✌q, θ ‖P S# ❫ S P S.

Instead of x1 ☎ ... ☎ xn ☎ S we write
x1

...
xn

S
The set of S0 ❸ S represents the set of initial states, determined by the set of initial

goals in SLDNF:

S0
de f✏ t‖ pÐ✌q, θ ‖ ☎$⑤ ‖ pÐ✌q, θ ‖P S# ❫ pÐ✌q☎ P E0

P ,G ❫ θ P Θpr1s✉
where Θpr1s are the initial substitutions at the initial goals. The set of final states is

S✽
de f✏ t‖ exit♣kqÐ✌q, θ ‖ ☎$⑤k P ℵG ❫ θ P Sub ❫ exit♣kqÐ✌q P E0

P ,G✉
The set of descendent stats of the initial states in S0 is the least fixed-point of the

function FP ,G as follows:

42 findall-extended mode analysis

FP ,G♣Xq
de f✏

↕
0↕j↕3

F
j
P ,G♣Xq (3.6)

F0
P ,G♣Xq

de f✏ t‖ pÐ✌q, θ ‖ ☎$⑤pÐ✌q☎ P E0
P ,G ❫ θ P Θpr1s✉ (3.7)

F1
P ,G♣Xq

de f✏

✩✬✬✫
✬✬✪

‖ pÐ✌q, θ ‖

‖ qÐ✌u, σ ‖

S

✞✞✞✞✞✞✞✞
pÐ✌q☎ P E1

P ,G ❫ Lq ✑ Bq

❫ ‖ qÐ✌u, σ ‖ ☎S P X

❫ θ ✏ uni f y♣Bq, σ, Hpr1s, ǫq ✘ f ail

✱✴✴✳
✴✴✲ (3.8)

❨

✩✬✬✫
✬✬✪ ‖ pÐ✌q, θ ‖ ☎S

✞✞✞✞✞✞✞✞
pÐ✌q☎ P E1

P ,G ❫ Lq ✑ ✥Bq

❫ ‖ pÐ✌q, σ ‖ ☎S P X

❫ θ ✏ uni f y♣Bq, σ, Hpr1s, ǫq ✘ f ail

✱✴✴✳
✴✴✲ (3.9)

F2
P ,G♣Xq

de f✏

✩✬✬✬✬✬✫
✬✬✬✬✬✪

‖ pÐ✌q, θ ‖ ☎S

✞✞✞✞✞✞✞✞✞✞✞

pÐ✌q☎ P E2
P ,G

❫ ‖ qÐ✌u, σ ‖

‖ p✁Ð✌v, η ‖

S

P X

❫ θ ✏ uni f y♣Hqr1s, σ, Bp✁ , ηq ✘ f ail

✱✴✴✴✴✴✳
✴✴✴✴✴✲

(3.10)

F3
P ,G♣Xq

de f✏ t‖ pÐ✌q, θ ‖ ☎S⑤pÐ✌q P E3
P ,G❫ ‖ qÐ✌u, θ ‖ ☎S P X✉ (3.11)

The uni f y operation reflects VSDLNF semantics, ensuring to preserve variable names
at the call-side:

uni f y♣A, θ, B, ωq de f✏

✩✬✬✬✬✬✫
✬✬✬✬✬✪

let ρ be a renaming substitution that

vars♣Aθρq ❳ vars♣Bωq ✏ ❍ in✩✫
✪ω ✆mgu♣Aθρ, Bωq i f mgu♣Aθρ, Bωq ✘ f ail

f ail otherwise

(3.12)

The domain D of FP ,G is ℘♣Sq, where ➔ D,❸,❍, S,❳,❨ → forms a complete lattice,
FP ,G is monotone on D. F0

P ,G♣Xq represents all program starts, with all edges from (0,0)

to the graph’s goals combined with all initial substitutions Θk for a goal Gk. F1
P ,G♣Xq

represents the stacks with calls on top, either on positive (equation 3.8) or negative literals
(equation 3.10).

F2
P ,G♣Xq represents the exit edges from positive literal calls. F3

P ,G♣Xq the exits from
negative literal calls. In this case the substitution in the call of ✥Bq are ignored, since they
do not contribute to the substitution in the clause qr1s. So the substitution θ of the edge
qÐ✌u, with q ✏ p✁, is taken over for pÐ✌q.

3.1.3 Collecting Semantics

The fixed-point collecting semantics abstracts from the traces by collecting sets of sub-
stitutions at a program point and classifies the stack items according to the edges pÐ✌q.
Let A, B be atoms, and Θ, Ω be sets of substitutions. The unification in the collecting
semantics is defined as:

uni f y#♣A, Θ, B, Ωq de f✏ tuni f y♣A, θ, B, ωq ✘ f ail⑤θ P Θ❫ω P Ω✉

The fix-point collection semantics is defined as follows:

3.2 findall-extended mode analysis 43

rF#
P,G♣X

#qspÐ✌q
de f✏

Θpr1s i f pÐ✌q P E0
P,G➈

tuni f y#♣Bq, X#
qÐ✌u, Hpr1s, tǫ✉q⑤qÐ✌u P EP,G✉ i f pÐ✌q P E1

P,G➈★
uni f y#♣Hqr1s, X#

qÐ✌u, Bp✁ , X#
p✁Ð✌v

q

✞✞✞✞✞ p✁Ð✌v☎ P EP ,G

❫ qÐ✌u☎ P EP ,G

✰
i f pÐ✌q P E2

P,G➈
tX#

qÐ✌u⑤qÐ✌u P EP,G✉ i f pÐ✌q P E3
P,G

The proof that l f pFP,G♣Xq is approximated by l f pF#
P,G♣X

#q is given by Lu [130] based
on transfinite induction.

3.1.4 Abstract Semantics

The abstract semantics associates abstract substitutions with each edge pÐ✌q, approximat-
ing the sets of substitutions described by the l f pF#

P,G♣X
#q. Let θ✺

pr1s P Sub✺✈Vk✇ be the least

abstract substitution such that Θk ❸ γ✈V✇♣θ✺q for each k P ℵG. The least upper-bound
❭✈V✇ approximates the most specific substitution from the elements of the complete
lattice ➔ Sub✺✈V✇,❸ ✈V✇ →:

rF✺P,G♣X
✺qspÐ✌q

de f✏ (3.13)

tθ✺pr1s⑤pÐ✌q P E0
P,G✉ (3.14)

❭ ✈Vpr1s✇

★
uni f y✺♣Bq, X✺

qÐ✌u, Hpr1s, ǫ✺✈Vpr1s✇q

✞✞✞✞✞ pÐ✌q P E1
P,G

❫ qÐ✌u P EP,G

✰
(3.15)

❭ ✈Vpr1s✇

✩✬✬✫
✬✬✪uni f y✺♣Hqr1s, X✺

qÐ✌u, Bp✁ , X✺
p✁Ð✌vq

✞✞✞✞✞✞✞✞
pÐ✌q P E2

P,G

❫ p✁Ð✌v P EP ,G

❫ qÐ✌u P EP ,G

✱✴✴✳
✴✴✲ (3.16)

❭ ✈Vpr1s✇

★
X✺

qÐ✌u

✞✞✞✞✞ pÐ✌q P E3
P,G

❫ qÐ✌u P EP,G

✰
(3.17)

Where the abstract identity substitution

ǫ✺✈V✇ de f✏➔ tX④t f ✉⑤X P V✉,❍, t♣X, Xq⑤X P V✉ →

abstracts from the identity substitution ǫ such that ǫ P γ✈Vi✇♣ǫ✺✈Vi✇) for each i P ℵC.

3.2 findall-extended mode analysis

Lu’s mode analysis does not provide support for meta predicates. The program graph,
concrete semantics, collecting semantics, and abstract semantics only consider calls of
positive or negative literals. We extend the program graph and the abstractions with
edges from the meta predicate findall literals (see Section 2.3.3) to the called predicate
and back.

Instead of the regular findall predicate we use a more general definition f indallB that
binds the permutation of all subsets of answer substitutions of the regular findall/3

predicate (see Section 2.3.3):

44 findall-extended mode analysis

Definition 3.2.1. Let permutation(List, PermList) be a permutation predicate binding
PermList to all permutations of List. And subset(Sub, List) be predicate binding Sub to
all subsets including the empty list of the list List. Then

f indallB(Template,Literal,Bag):-
findall(Template,Literal,BagTmp),
subset(Sub,BagTmp),
permutation(Bag,Sub).

The bindings of f indallB/3 are obviously a superset of bindings of the regular findall/3

predicate. But this will not influence the precision of the mode analysis. We will not give
a formal proof for this assertion, but give a short explanation. The modes of variables are
only considered locally for each program point. The order of list elements or the bindings
of list members are not relevant for the abstraction. Since we cannot statically detect if
the goal in the second argument of findall will fail or not, the collecting semantics for
the Bag argument must include the binding “[]”. So the subsets and permutations will
not influence the later abstraction and allow for the set representation of the possible
bindings for the template.

We further restrict f indallB literals to simplify the later abstractions, and name its
arguments and program points:

Definition 3.2.2. Let Bq be a positive literal, TlpÐ✌q a template term and Bagp be a variable,
then f indallB♣TlpÐ✌q, Bq, Bagpq is a literal with the following three program points:

q is the program point before the literal.

p represents the point after meta-call Bq and before the unification of the list
of bindings rTlpÐ✌qθ1, . . . , TlpÐ✌qθns ✏ Bagq, where the θi represent answer
substitutions from the call Bq, whose variables are renamed such that ❅i, j :
i ✘ j ñ vars♣TlpÐ✌qθiq ❳ vars♣TlpÐ✌qθjq ✏ ❍.

p� represents the program point after the f indallB literal.

We restrict Bagp to a variable to allow for a later simplification in the abstraction semantics.
We only consider the case of one positive literal in the second argument of a positive
findall literal. Other formulas can be normalized into this case by extracting the formulas
in the second argument or negative calls into a separate clause.

The program graph EP ,G♣Xq (see Section 3.1.1) is extended to the graph E f
P ,G♣Xq

by three additional edge sets. E4
P ,G♣Xq represents the meta calls starting at the second

argument of the f indallB predicate. It is aligned with positive literal calls in E1
P ,G♣Xq

(3.3). E5
P ,G♣Xq represents the exit edges from the meta call, and E6

P ,G♣Xq is a set of edges
representing the unification of the answer substitution list rTlpÐ✌qθ1, . . . , TlpÐ✌qθns with
the Bagp variable.

3.2 findall-extended mode analysis 45

E f
P ,G♣Xq

de f✏
↕

0↕j↕5

E
j
P ,G♣Xq (3.18)

... (3.19)

E4
P ,G♣Xq

de f✏

✩✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✪

entry♣iqÐ✌q

✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞

qr2s ↕ mrqr1ss
❫ i P ℵC

❫ Lq ✏ f indallB♣TlpÐ✌q, Bq, Bagpq

❫ ❉ρ.

☎
✝✝✆

ρ is a renaming substitution

❫ vars♣Bqρq ❳ vars♣Hiq ✏ ❍
❫ mgu♣Bqρ, Hiq ✘ f ail

☞
✍✍✌

✱✴✴✴✴✴✴✴✴✴✳
✴✴✴✴✴✴✴✴✴✲

(3.20)

E5
P ,G♣Xq

de f✏

★
pÐ✌exit♣iq

✞✞✞✞✞ entry♣iqÐ✌q P E4
P ,G

❫ Lq ✑ f indallB♣TlpÐ✌q, Bq, Bagpq

✰
(3.21)

E6
P ,G♣Xq

de f✏

★
p�Ð✌p

✞✞✞✞✞ pÐ✌v P E5
P ,G

❫ Lq ✑ f indallB♣TlpÐ✌q, Bq, Bagpq

✰
(3.22)

Figure 3.3 illustrates the new edges from the sets E4
P ,G♣Xq, E

5
P ,G♣Xq, and E6

P ,G♣Xq and

shows which program points are linked by which kind of edges. We use a f indallB call
here, which backtracks over all solution of the predicate g/2. The literal is partitioned
in the to program points (1,2) (before the meta-call), (1,3) (after the meta-call) and (1,4)
(after the unification of answer set and the variable Bag. The substitutions resulting from
edge set ((1,2)Ð✌(4,1)) are applied on Bag and unified with the list of renamed answer
substitutions of the goal g(A,B), which are associated with exit edges ((1,3)Ð✌(2,1)) and
((1,3)Ð✌(3,2)).

f(C), findallB((A,B),g(A,B), Bag)

g(C,D):- g(C,D). g(a2,E).

(1,2) (1,3)

(2,1)

(0,0)

(3,1)

Goal :-

(3,2)

(1,4) (1,1)

f(C). (4,1)

Figure 3.3: Extended call graph example

3.2.1 Concrete Semantics

We now extend the concrete semantics FP ,G♣Xq by F
f
P ,G♣Xq. F4

P ,G is similar to F1
P ,G , but

instead of positive calls edges from E1
P ,G it describes the meta-call of a positive literal in the

second argument of f indallB literals. F5
P ,G handles the exits to the goals and is based on

the definition of F2
P ,G , but additionally it renames the variables in the substitution resulting

from unification of Hqr1s and Bp✁ . The renaming emulates the f indallB semantics, which
ensures distinct variable sets in the set of answer substitutions of the goal Bp✁ . And the
renaming ensures that no variable binding in the clause Cqr1s is affected.

46 findall-extended mode analysis

F6
P ,G collects all renamed substitutions σi from F5

P ,G , which are the top elements on a

common stack ‖ q✁Ð✌v, η ‖ ☎S. F6
P ,G applies them all to the template term TlpÐ✌q and

unifies the resulting list with Bagp. F6
P ,G collects all permutations of subsets of the lists

of lists of stacks‖ p Ð✌q, σi ‖ ☎ ‖ q✁Ð✌v, η ‖ ☎S, with i P r1, ns, and n ✏ ⑤t‖ p Ð✌q, σ1 ‖
☎ ‖ q✁Ð✌v, η ‖ ☎S, . . .✉⑤, the number of stacks ending in the two given top elements. This
emulates the semantics of f indallB, except for the empty list case. This special case is
defined in the set F7

P ,G♣Xq.
F6
P ,G ignores the order of substitutions σi, S contains all lists with all permutations of

rTlpÐ✌qσ1, . . .s. The transition system could be extended to preserve the order, but this
precision would be removed in the abstracted semantics anyway. Therefore we kept
this imprecision already in the concrete semantics, although it is, strictly speaking, no
approximation of the f indallB backtracking semantics, but a superset of possible bindings.

F
f
P ,G♣Xq de f✏

↕
0↕j↕7

F
j
P ,G♣Xq (3.23)

F4
P ,G♣Xq de f✏

✩✬✬✬✬✬✫
✬✬✬✬✬✪

‖ pÐ✌q, θ ‖

‖ qÐ✌u, σ ‖

S

✞✞✞✞✞✞✞✞✞✞✞

pÐ✌q☎ P E4
P ,G

❫ Lq ✑ f indall♣Tlq�Ð✌q, Bq, Bagq�q
❫ ‖ qÐ✌u, σ ‖ ☎S P X

❫ θ ✏ uni f y♣Bq, σ, Hpr1s, ǫq ✘ f ail

✱✴✴✴✴✴✳
✴✴✴✴✴✲

(3.24)

F5
P ,G♣Xq de f✏

✩✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✪

‖ pÐ✌q, θ ‖

‖ qÐ✌v, η ‖

S

✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞

pÐ✌q☎ P E5
P ,G

❫ ‖ pÐ✌u, σ ‖

‖ qÐ✌v, η ‖

S

P X

❫ Lq ✏ f indall♣TlpÐ✌q, Bq, Bagpq
❫ θ ✏ uni f y♣Hqr1s, σ, Bp✁ , ηq ✆ ρ ✘ f ail

❫ ρ renaming substitution

✱✴✴✴✴✴✴✴✴✴✴✳
✴✴✴✴✴✴✴✴✴✴✲

(3.25)

F6
P ,G♣Xq de f✏

✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

‖ p�Ð✌p, θ ‖ ☎S

✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞

pÐ✌q☎ P E5
P ,G

❫ Lq ✏ f indall♣TlpÐ✌q, Bq, Bagpq

❫ ‖ pÐ✌q, σ1 ‖

‖ q✁Ð✌v, η ‖

S

P X

...

❫ ‖ pÐ✌q, σk ‖

‖ q✁Ð✌v, η ‖

S

P X

❫ θ ✏ uni f y♣rTlpÐ✌qσ1ρ1, . . .s, ǫ, Bagp, ηq
❫ θ ✘ f ail

❫ ρi renaming substitutions

✱✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✳
✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✲

(3.26)

F7
P ,G♣Xq de f✏

✩✬✬✬✬✬✫
✬✬✬✬✬✪

‖ p�Ð✌p, θ ‖ ☎S

✞✞✞✞✞✞✞✞✞✞✞

q✁Ð✌v☎ P E4
P ,G

❫ ‖ q✁Ð✌v, η ‖

S
P X

❫ Lq ✏ f indall♣TlpÐ✌q, Bq, Bagpq
❴ θ ✏ uni f y♣rs, ǫ, Bagp, ηq

✱✴✴✴✴✴✳
✴✴✴✴✴✲

(3.27)

3.2 findall-extended mode analysis 47

3.2.2 Collecting Semantics

The f indallB abstract semantics F
f
P ,G♣Xq is extended into the f indallB collection semantics

rF# f
P,GspÐ✌q:

rF# f
P,G♣X

#qspÐ✌q
de f✏ (3.28)

rF#
P,G♣X

#qspÐ✌q (3.29)

❨

✩✬✬✫
✬✬✪uni f y#♣Bq, X#

qÐ✌u, Hpr1s, tǫ✉q

✞✞✞✞✞✞✞✞
pÐ✌q P E4

P,G

❫ qÐ✌u P EP,G

❫ Lq ✑ f indall♣Tlq�Ð✌q, Bq, Bagq�q

✱✴✴✳
✴✴✲ (3.30)

❨

✩✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✪

Θ

✞✞✞✞✞✞✞✞✞✞✞✞✞

pÐ✌q P E5
P,G

❫ p✁Ð✌v☎ P EP ,G

❫ qÐ✌u☎ P EP ,G

❫ Lp✁ ✑ f indallB♣TlpÐ✌p✁ , Bp✁ , Bagpq
❫ Θ ✏ uni f y#♣Hqr1s, X#

qÐ✌u, Bp✁ , X#
p✁Ð✌v

q

✱✴✴✴✴✴✴✴✳
✴✴✴✴✴✴✴✲

(3.31)

❨

✩✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✪

θ#

✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞

pÐ✌q P E6
P,G

❫ qÐ✌u P E5
P,G

❫ p✁Ð✌v P EP,G

❫ tσ1, . . . , σk✉ ❸ X#
qÐ✌u

❫ Lp✁ ✑ f indallB♣TlpÐ✌p✁ , Bp✁ , Bagpq
❫ θ# ✏ uni f y#♣rTlpÐ✌qσ1ρ1, . . .s, tǫ✉, Bagp, X#

p✁Ð✌v
q

❫ ρi renaming substitutions

✱✴✴✴✴✴✴✴✴✴✴✴✴✴✳
✴✴✴✴✴✴✴✴✴✴✴✴✴✲

(3.32)

The subformulas 3.30 to 3.31 are adaptions of the positive call and exit subformulas in
the definition of F#

P,G♣X
#q. The subformula 3.32 abstracts from the sets F6

P ,G♣Xq and edges,

by selecting all subsets, including the empty set (and is therefore subsuming F7
P ,G♣Xq), of

the possible bindings σi from X#
qÐ✌u, defined by the subformula 3.31. The variables in σi

are renamed by disjoint renaming substitutions ρi to reflect the renaming substitution
from 3.32.

Lemma 3.2.3. l f pF
f
P ,G♣Xq ❸ F

f
P ,G♣Xq

The proof of l f pFP ,G♣Xq ❸ F#
P ,G♣Xq in [130], Lemma 4.2.3, can be directly applied to

l f pF
f
P ,G♣Xq ❸ F

f
P ,G♣Xq .

3.2.3 Abstract Semantics

To use the existing uni f y✺ algorithm for the f indallB call we need to abstract from the list
of bindings, since uni f y✺ expects two fixed terms. We need to find an abstraction for the
list rTlpÐ✌qσ1, . . .s with a fixed term that abstracts from

uni f y#♣rTlpÐ✌qσ1, . . .s, tǫ✉, Bagp, X#
p✁Ð✌v

q.
We will exploit a beneficial property of uni f y✺ for the mode abstraction domain in the

following lemma:

48 findall-extended mode analysis

Lemma 3.2.4. Let t P T, Bag P LVars and ti ✏ tρi, θ✺
i ✏ θ✺ρi, with i P r1, .., ns, n →

0 and ρi renaming substitutions with ❅i,ji ✘ j ñ vars♣θ✺
i q ❳ vars♣θ✺

j q ✏ ❍, then

uni f y✺♣rts, θ✺, Bag, σ✺q ✏ uni f y✺♣rt1, ..., tns, θ✺
1 ✆ ... ✆ θ✺

n, Bag, σ✺q.

The call of uni f y✺♣t✶

, θ✺, Bag, ǫq calculates the mgu of Bag and t
✶

and normalizes the
result to equations in solved form. Since Bag is a variable, this set is Eo ✏ t♣Bag ✏ t

✶q✉.
In the following we can ignore aliasing and sharing, since the resulting substitu-
tion is restricted to the variable list tBag✉. So we only need to consider abstract
unification of the abstract instantiations, reducing the problem to the equality of

estm♣Bag ✏ rtls, θ✺ Ó Instq ?✏ estm♣Bag, rtl1, ..., tlns, θ✺
1 Ó Inst ✆ . . . ✆ θ✺

n Ó Instq. From its defi-

nition this is equivalent to mo✺♣rtls, θ✺ Ó Instq ?✏ mo✺♣rtl1, ..., tlns, θ✺
1 Ó Inst ✆ ... ✆ θ✺

n Ó Instq,
since I♣Bagq is the same in both cases. We now consider all four conditions of mo✺♣t, Iq.
Its definition is repeated below for easier reference:

mo✺♣t, Iq de f✏

✩✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✪

I♣tq i f t P V

❍ i f ❉X P vars♣tq.I♣Xq ✏ ❍

tg✉ i f ❅X P vars♣tq.I♣Xq ✏ tg✉

tg, o✉ i f ❅X P vars♣tq.♣g P I♣Xqq

to✉ otherwise

The first conditions, t P V , is never true for both lists. The second condition is equivalent
for both lists, since if there is a variable with an impossible mode (❍) in vars♣tq, there
are at least n variables in rtl1, ..., tlns with this abstract state. The same consideration
can be made for the third and the fourth condition. The universal quantifier applied on
duplicated terms has the same semantics.
❧

But, the second and fourth condition need the prerequisite on the list size n → 0. In
case that t ✏ rs, the second condition can never be true and the fourth condition is always
true, which is apparently not true in general for arbitrary rtls terms. We will now define

the f indallB-extended abstract semantics F
✺ f
P,G ignoring this restriction at first:

3.2 findall-extended mode analysis 49

rF✺ f
P,G♣X

✺qspÐ✌q
de f✏

rF✺P,G♣X
✺qspÐ✌q (3.33)

❭✈Vpr1s✇

✩✬✬✬✬✫
✬✬✬✬✪

θ✺

✞✞✞✞✞✞✞✞✞✞

pÐ✌q P E4
P,G

❫ qÐ✌u P EP,G

❫ Lq ✑ f indallB♣Tlq�Ð✌q, Bq, Bagq�q
❫ θ✺ ✏ uni f y✺♣Bq, X✺

qÐ✌u, Hpr1s, ǫ✺✈Vpr1s✇q

✱✴✴✴✴✳
✴✴✴✴✲

(3.34)

❭✈Vpr1s✇

✩✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✪

θ✺

✞✞✞✞✞✞✞✞✞✞✞✞✞

pÐ✌q P E5
P,G

❫ p✁Ð✌v☎ P EP ,G

❫ qÐ✌u☎ P EP ,G

❫ Lp✁ ✑ f indallB♣TlpÐ✌p✁ , Bp✁ , Bagpq
❫ θ✺ ✏ uni f y✺♣Hqr1s, X✺

qÐ✌u, Bp✁ , X✺
p✁Ð✌v

q

✱✴✴✴✴✴✴✴✳
✴✴✴✴✴✴✴✲

(3.35)

❭✈Vpr1s✇

✩✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✪

θ✺

✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞

pÐ✌q P E6
P,G

❫ qÐ✌p✁ P E5
P,G

❫ p✁Ð✌v P EP,G

❫ Lp✁ ✑ f indallB♣TlpÐ✌p✁ , Bp✁ , Bagpq
❫ η✺ ✏ uni f y✺♣rTlpÐ✌qs, X✺

qÐ✌p✁
, Bagp, Xb

p✁Ð✌v
q

❫ ζ✺ ✏ uni f y✺♣rs, X✺
qÐ✌p✁

, Bagp, Xb
p✁Ð✌v

q

❫ θ✺ ✏ ζ✺ ❭ ✈Vpr1s✇η✺

✱✴✴✴✴✴✴✴✴✴✴✴✴✴✳
✴✴✴✴✴✴✴✴✴✴✴✴✴✲

(3.36)

We extended the abstract semantic rF✺P,GspÐ✌q (row 3.33) by abstractions of the f indallB

meta call, the exit of the call and unification of the list of bindings and the Bagp variable.
The meta-call in row 3.34 is equivalent to the common positive literal call 3.15. The
call exit (row 3.35) is similar to the return of the positive literal (see sub equation 3.16),
but additionally renames the variables with ρ. The set 3.36 abstracts from 3.32. For
substitutions complying to the antecedent of Lemma 3.2.4 η✺ is a valid abstraction.
Additionally we need to consider the case of an empty set of substitutions in sub-equation
3.32. In this case Bagp is unified with an empty list resulting in a ground mode. Therefore

we can define a discrete abstract substitution ζ✺ for this case.

Theorem 3.2.5. l f pF
f
P,G ❸ l f pF

✺ f
P,G.

We base the proof for theorem 3.2.5 on [130, theorem 4.3.3], which proofs l f pF#
P,G ❸

l f pF✺P,G, the general case for generic abstract substitutions. The antecedents of theorem

4.3.3 are already fulfilled, since we restricted F
✺ f
P,G to the mode analysis abstract domain.

Lu reduced the proof of l f pF#
P,G ❸ l f pF✺P,G to the poof that X✺ P D✺, F#

P,G ☎γ✺♣X✺q ❸# γ✺ ☎
F✺P,G♣X

✺q, the same consideration follow for the findall extension. Let σ P rF# f
P,G ☎γ✺♣X✺qspÐ✌q.

We need to proof that σ P rγ✺ ☎ F
✺ f
P,G♣X

✺qspÐ✌q. The proof of the meta-calls (3.34) follows the
proof of the abstraction of the subformula for positive calls 3.15 and the proof for clause
exits (3.35) are equivalent to the exits of positive literals (3.16). The case left to proof is
subformula 3.36. We divide it into two parts. The first for non-empty answer substitution
lists (a), the second for the empty list (b).

a) First, we transform the substitutions of the collection semantics, where σi are substitu-
tions and ρi are disjoint renaming substitutions, with i P r1, ns:

50 findall-extended mode analysis

uni f y#♣rTlpÐ✌qσ1ρ1, . . .s, tǫ✉, Bagp, X#
p✁Ð✌vq ✏

uni f y#♣rTlpÐ✌qρ1, . . .s, tσ1ρ1 ✆ . . .✉, Bagp, X#
p✁Ð✌vq

Now we consider all permutations of subsets of the set of all substitutions σi P X✺
qÐ✌p✁

:

σ P ♣ uni f y#♣rTlpÐ✌qρ1s, γ✈Vvars♣ρ1q
✇♣X✺

qÐ✌p✁ρ1q, Bagp, γ✈Vpr1s✇♣X✺
p✁Ð✌vqq (3.37)

❨
...

❨ uni f y#♣rTlpÐ✌qρ1, . . . , TlpÐ✌qρns, γ✈Vvars♣ρ1,...,ρnq✇♣X
✺
qÐ✌p✁ρ1 ✆ . . . ✆ X✺

qÐ✌p✁ρnq,

Bagp, γ✈Vpr1s✇♣X✺
p✁Ð✌vq q

❸ ♣γ✈Vpr1s✇ ☎ uni f y✺♣rTlpÐ✌qσ1ρ1s, X✺
qÐ✌p✁ρ1, Bagp, Xb

p✁Ð✌vq (3.38)

❨
...

❨ γ✈Vpr1s✇ ☎ uni f y✺♣rTlpÐ✌qσ1ρ1, . . .s, ♣X✺
qÐ✌p✁ρ1q ✆ ... ✆ ♣X✺

qÐ✌p✁ρnq,

Bagp, Xb
p✁Ð✌vq q

✏ γ✈Vpr1s✇ ☎ uni f y✺♣rTlpÐ✌qs, X✺
qÐ✌p✁ , Bagp, Xb

p✁Ð✌vq (3.39)

❸ γ✈Vpr1s✇♣r♣F
✺ f
P,G♣X

✺qspÐ✌qq (3.40)

✏ rγ✺ ☎ F
✺ f
P,G♣X

✺qspÐ✌q (3.41)

The equation 3.39 is true by lemma 3.2.4.

b) Now we consider the empty list unification with Bagp:

σ P uni f y#♣rs, γ✺✈Vpr1s✇♣ǫ✺✈Vpr1s✇q, Bagp, γ✺✈Vpr1s✇♣X✺
p✁Ð✌vqq

❸ γ✈Vpr1s✇ ☎ uni f y✺♣rs, ǫ✺✈Vpr1s✇, Bagp, X✺
p✁Ð✌vq

❸ γ✈Vpr1s✇♣r♣F✺
P,G♣X

✺qspÐ✌qq

✏ rγ✺ ☎ F✺
P,G♣X

✺qspÐ✌q

❧

3.2.4 Example

The mode analysis algorithm is applied by fixpoint iteration of uni f y✺ and the least-upper
bound calculation ❭✈Vpr1s✇ on the abstract substitutions at every program point. We
illustrate with an example how this is applied for the following goal containing a findall
meta-call:

findall(t(A,B),c(A,B),

C)

We formatted the call with an additional line break to make space for the additional
program point after the call of c/2. Let’s assume only one fact for the predicate c/2 is
defined:

c(1,_)

The goal is called with the abstract substitution

3.2 findall-extended mode analysis 51

?-

% <{A/{f},B/{f},C/{f}},{},{}>

findall(t(A,B),c(A,B),

C).

In a first step c(A,B) is unified with c(1,D), by application of rule 3.34. Since B has mode
{f}, the mode of D is {f}:

c(1,D).

%[D/{f}],[],[].

Now the exit edge 3.21 in the program graph is considered. The rule 3.35 is applied and
c(1,D) is unified with c(A,B), resulting in mode {g} for A:

?-

findall(t(A,B),c(A,B),

% <{A/{g},B/{f}},{},{}>

C).

At a last step rule 3.36 is applied. Two abstract unifications are evaluated. The first
case considers a successful call of c, the second the failing case. As a first step uni f y✺

renames the variables of the first term and its substitution and unifies it with the abstract
unification at the program point before the findall call. This reflects the findall semantics,
where the evaluation of the goal in the second argument does not influence the binding
of the variables at the call site. Now we will evaluate the unifications and the least upper
bound of the resulting abstract substitutions:

η✺ ✏ uni f y✺♣➔ tA2④tg✉, B2④t f ✉, C2④t f ✉✉, t✉, t✉ →, rc♣A2, B2qs,
➔ tA④t f ✉, B④t f ✉, C④t f ✉✉, t✉, t✉ →, Cq

✏ ➔ tA④t f ✉, B④t f ✉, C④to✉✉, t✉, t✉ →
ζ✺ ✏ uni f y✺♣➔ tA2④tg✉, B2④t f ✉, C2④t f ✉✉, t✉, t✉ →, rs,

➔ tA④t f ✉, B④t f ✉, C④t f ✉✉, t✉, t✉ →, Cq
✏ ➔ tA④t f ✉, B④t f ✉, C④tg✉✉, t✉, t✉ →

θ✺ ✏ ζ✺ ❭ ✈Vpr1s✇η✺

✏ ➔ tA④t f ✉, B④t f ✉, C④tg, o✉✉, t✉, t✉ →

So the mode for C is over-approximated with {g,o}, because the algorithm must assume
that c might fail, resulting in an empty list, with mode {g}. The program point after the
findall call has not been considered before, and is initialized with ❑. Since
➔ tA④t f ✉, B④t f ✉, C④tg, o✉✉, t✉, t✉ → ❭✈Vpr1s✇❑=➔ tA④t f ✉, B④t f ✉, C④tg, o✉✉, t✉, t✉ →
we have evaluated the abstract substitution for the program point. The fixpoint algo-

rithm stops here, because the edges in the program graph do not change anymore. The
resulting program graph with modes is the following:

?-

% <{A/{f},B/{f},C/{f}},{},{}>

findall(t(A,B),c(A,B),

% <{A/{g},B/{f},C/{f}},{},{}>

C).

% <{A/{f},B/{f},C/{g,o}},{},{}>

3.2.5 Computational Complexity

The computational complexity of the fixpoint iteration algorithm is not effected by the
findall extension. The complexity of the basic algorithm is O♣dmax ✂ #ℵC ✂ pmax3q [130,

52 findall-extended mode analysis

4.3.4] of uni f y✺ evaluations, where pmax is the maximum number of predecessors of
program points, #ℵC number of clauses and dmax is the maximum height of the Hasse
diagram for Sub✺✈Vi✇ for i P ℵ. The complexity considerations are based on [152], which
states that the worst case computing costs of the l f pF✺P ,G is proportional to the product

of dmax and the number of operations in F✺P ,G . Lu estimated the worst case number

of operation by #ℵC ✂ pmax3, which is the estimation of evaluations in 3.16, the most
complex rule in F✺P ,G♣Xq. For every program at the exit of a call up to pmax2 uni f y✺

operations have to be evaluated. The call in the findall meta-call (3.35) has the same
complexity. In rule 3.36, the aggregation of call results, only two calls of uni f y✺ occur. So
the complexity of the algorithm is not affected.

3.2.6 Application to Further All-Solutions Predicates

The all-solution predicates bagof/3 and setof/3 are very similar in their semantics to
findall, but need further considerations in the mode inference. We will not extend the
given semantics in all steps, but rather illustrate the extensions that have to be made. In
the following we only refer to bagof. The same principle applies for the setof predicate.

First, we ignore existential variables. They are syntactic sugar and can be realized by
forwarding predicates, which omit the existential variables O’Keefe [153]. The other two
variable types are considered separately.

The mode of the third argument (Bag) can be inferred by the findall inference algorithm
above with a slight modification. Bag can never be bound to the empty list []. So the
corresponding bago f B predicates must only consider non-empty subsets:

bago f B(Template,Literal,Bag):-
bagof(Template,Literal,BagTmp),
non_empty_subset(Sub,BagTmp),
permutation(Bag,Sub).

Further, the abstract semantics F
✺ f
P,G♣X

✺q must omit empty lists in the unification of the
template bindings and Bag (rule 3.36), which ensures that the mode list of Bag in findall/3

at least contains the ground mode {g}. The rule 3.36 is replaced the simplified rule:

❭✈Vpr1s✇

✩✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✪

θ✺

✞✞✞✞✞✞✞✞✞✞✞✞✞✞

pÐ✌q P E6
P,G

❫ qÐ✌p✁ P E5
P,G

❫ p✁Ð✌v P EP,G

❫ Lp✁ ✑ bago f B♣TlpÐ✌p✁ , Bp✁ , Bagpq
❫ θ✺ ✏ uni f y✺♣rTlpÐ✌qs, X✺

qÐ✌p✁
, Bagp, Xb

p✁Ð✌v
q

✱✴✴✴✴✴✴✴✴✳
✴✴✴✴✴✴✴✴✲

The predicate bagof/3 backtracks over all variables that are not used in the template
argument. So, we can apply the normal mode analysis for these variables. To keep the
modification of the algorithm minimal, we apply the following pre-processing for the
mode analysis:

bagof(Template,Goal,Bag) Ñ bago f B(Template,Goal, Bag),Goal
But, this modification will also influence the mode of the variables in Template. To avoid

this mode update we define the new rule 3.42, an extension of rule 3.16 that considers
call exits. Rule 3.42 is applied if a literal Goal directly follows a bagof/3 call. In this case
a renaming substitution Ψ is added that renames all variables in Template before it is
unified with Hqr1s:

3.3 summary 53

❭✈Vpr1s✇

✩✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✪

θ✺

✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞✞

pÐ✌q P E2
P,G

❫ Bp✁2 ✏ bago f B♣Template, Goal, Bagq
❫ Ψ ✏ ren. subst. f or vars♣Templateq
❫ p✁Ð✌v☎ P EP ,G

❫ qÐ✌u☎ P EP ,G

❫ θ✺ ✏ uni f y✺♣Hqr1s, X✺
qÐ✌u, Bp✁ , X✺

p✁Ð✌v
Ψq

✱✴✴✴✴✴✴✴✴✴✴✳
✴✴✴✴✴✴✴✴✴✴✲

(3.42)

This ensures that the modes of variables in Template are not updated.

3.3 summary

This chapter extended the mode analysis approach by Lu [130]. The approach is based on
abstract interpretation with a product domain that considers modes, variable aliasing,
and variable sharing. We extended the concrete, collection, and abstract semantics with an
approximation of the findall/3 Prolog predicate and have proofed that the least fixpoint
over the abstract domain is a safe approximation of the concrete semantics.

Further we illustrated how the abstract semantics can be extended to cover the Prolog
meta-predicates bagof/3 and setof/3, too.

4O B J E C T- O R I E N T E D L O G I C C O N T E X T Q U E RY L A N G U A G E

This chapter presents the specification and semantics of an Object-oriented logic Context
Query Language (OCQL) that operates on RDFS-modeled context data. The OCQL
is designed to be embeddable into Java-based languages. In Section 4.1 we present a
mapping from RDF Schema classes to Java types, bridging the gap between these different
type systems. Section 4.2 introduces OCQL which operates on the mapped Java types.

4.1 rdf schema - java mapping

For this thesis we decided to use RDF Schema for context modeling. The Semantic Web
stack provides the more expressive ontology language family OWL, but RDFS is sufficient
to model a large class of context taxonomies with a small and easily understandable set
of constructs. Complex relationships between concepts will be expressed on the level of
predicates in the query language, see also [126]. Nevertheless, OWL context sources can
be used in our approach. Under certain restrictions1 OWL can be serialized into RDFS
and combined with other RDFS graphs.

Although the RDFS class and property system is similar to the type system of object-
oriented languages, it is very different in its type definition. It follows a “property-centric
approach ... [, which] allows anyone to extend the description of existing resources” [44].
Properties of a class can be defined in several parts that are aggregated to form a concrete
class specification. Not only the class specifications, but also the instances can be scattered
over several of these parts. To bridge the conceptual gap between RDFS classes and Java
types this chapter introduces a mapping.

Various proposals for mappings from Semantic Web classes to Java have been made,
but all have limitations that make them unsuitable for our needs. Jena Schemagen [178]
lacks static typing of properties in general. It uses a generic class to represent the set of
related properties. All other approaches do not handle multiple definition of rdfs:range
definitions correctly or fall back to an untyped solution in this case. We will now analyze
this issue in more detail. RDF Schema allows the definition of more than one range
declaration for a property. An instance of a property must therefore be a subtype of all
range declarations. The mapper RDFReactor [202] maps each RDF class to a Java class.
Since Java does not support multiple inheritance, there is no way to define subclasses for
two classes that are not in an inheritance relationship.

For example, consider a property nearbyLocation with the rdfs:domain Contact and
two rdfs:range declarations:

@prefix ex: <http://www.example.org/>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

ex:nearbyLocation rdf:type rdf:Property;

rdfs:domain ex:Contact;

rdfs:range ex:Nearby;

rdfs:range ex:Location.

Here, the property’s type must be a subtype of both Nearby and Location. Except for
type variables such an enumeration of types is not legal in Java member declarations, e.g.,
consider a method definition whose return enumerate all types separated with an ’&’2:

1 see Section 2.2.3
2 This source code is not legal Java syntax. It is just used for illustrative purpose. We use the syntax of multiple

bounds for type variables, which are separated with ’&’ and have similar semantics.

55

56 object-oriented logic context query language

interface Contact {

Nearby & Location nearbyLocation();

}

RDFReactor does not offer a solution to this issue and ignores multiple rdfs:range

definitions. It selects the last defined range definition as the property’s type. Jastor [116]
uses an untyped list in this case, which is guarded at runtime by a VetoableChangeListener,
a concept defined by the Java JDK [3]. Jastor uses the listener to ensure that arguments of
a class’s property are subtypes of all declared range definitions.

In the following, we present a mapping of RDFS class specifications to Java types, which
is statically typed and considers type definitions for multiple rdfs:range definitions.
The prerequisite for the mapping is an rdfs and xsd-consistent [98] rdf graph. Here,
consistency means the graph does not contain contradicting triples and no datatype clashes
[98, Section 5], such as a property with two disjunctive datatypes3. The mapping is based
on the rdfs entailment4 of a schema. The RDFS entailment for instances always contains
the following triple for every URI reference XXX:

XXX rdf:type rdfs:Resource

For this reason, there are at least the following rdfs:range and rdfs:domain definitions
for each property XXX:

XXX rdfs:range rdfs:Resource

XXX rdfs:domain rdfs:Resource

For the mapping and the followup chapters we define a set of terms. Let XDT be the set
of predefined xml datatypes [203, Section 3], limited to the suitable types defined in [98,
section 5].

Definition 4.1.1. The function rtjp : XDT Ñ JPTW maps all datatypes to Java primitive
type wrappers classes JPTW ⑨ JT, with JT being the set of all Java types.

An example for the mapping is:

xsd:int -> java.lang.Integer

We have chosen primitive wrapper types over Java primitive types to have the common
super type Object for all types in OCQL and to avoid considerations of auto-boxing [88,
5.1.7] in the type checking algorithm.

However, there is a drawback in this solution - the wrapper types are only subtypes
of Number (resp. Object) and no widening primitive conversion5 is applied as it is only
defined for primitive types [88, 5.1.2]. Widening for wrapper classes is not possible in
Java, because a conversion of a class C to class D, where D is not subtype of C, is illegal.
We change the subtype relationship for primitive type wrappers here to reflect widening
primitive conversion for primitive types, e.g., Integer extends Double. This allows us to
apply conversions consistently with the type hierarchy. Section A.1 lists the complete
mapping.

Let RS be the set of RDF schemas, RC be the set of all subclasses of
rdfs:Resource and LVT be the set of all literal value types with LVT :✏ XDT ❨
trdfs : Literal, rdfs : XMLLiteral✉.

Let Id be the set of legal Java identifiers, RT be the set of all rdfs types, RNVT :✏
RT③LVT ❨ rd f s : Resource the set of RDF non-literal classes and J I the set of Java types
representing types from RNVT. Figure 4.1 illustrates how these sets are related to each
other.

3 for example, xsd:string and xsd:int
4 see Section 2.2.2
5 If the domain of a primitive type is a subset of another type it is convertible to this type. For example, an int

value can be assigned to a double variable and is converted to a double value.

4.1 rdf schema - java mapping 57

Literal

Resource

XMLLiteral Datatype
ଶ����݊݋� ଵ����݊݋�

RT

RNVT
LVT

Figure 4.1: RDFS classes considered subsets

Ci P RNVT denotes an RDF class, Ii P J I the corresponding Java interface for Ci, in
which the index i links the RDFS class with its Java interface. With p we refer to an RDF
property and pTi

, i ✏ 1, .., n denotes the RDF types of p. The corresponding Java method
representing p is denoted with mp : τ a, where τ stands for return type of the method.
We write C ➔: D when C is a subtype of D. The subtype relation is a partial order - the
reflexive, anti-symmetric and transitive closure of the rdfs:subclassOf relationship.

In the following, we will refer to the usage of the types as the importing context. The
specification of an RDFS class can be distributed among several RDF schemas, of which
only a subset S ⑨ RS may be imported by context C. C is type checked against the RDFS
class fragments defined in its schema import S. The types described in the following are
therefore not necessary globally defined, but only valid for the imported schemas in the
scope of an importing context.

4.1.1 Namespace Binding

We adopted the prefix namespace binding from XML namespaces [43] in order to distin-
guish class and property names with different namespaces. Prefixes are defined in the
header of the OCQL expression similar to xml namespace definitions, but we employ a
more Java-like syntax:

namespace <ns> = "<URI Prefix>";

The namespace ns is mapped to a Java package, which can be imported as a regular Java
package. The following expression imports all RDF classes of the namespace ex:

namespace ex = "http://www.example.com";

import ex.*;

4.1.2 Class and Property Mapping

In a first step, we describe the mapping of a single RDFS class to Java interfaces and their
subclass relationships. We will also refer to mapped classes as context classes.

We denote this base set of Java interfaces J Ib ❸ J I. The function rtj : RNVT Ñ J Ib map
a non-literal (uri-referenced) class Ci to Java interface Ii with the same simple name and

58 object-oriented logic context query language

URIResource Number String

Object

Double

Float

Integer

Figure 4.2: Hierarchy of mapped Java objects

package name following the namespace mapping defined in the Section 4.1.1. The simple
names of classes and properties must be in Id.

The restriction to legal Java identifiers restricts the set of mappable RDF schemas. Legal
URIs in RDF are XML qualified names (QName) as defined in [43, 4]. QName allows a
superset of Java identifier strings in its local part: Prefix:LocalPart., e.g., ns:local-name is
a valid QName. This illegal characters could be quoted in a Java identifier, but we ignore
this issue in the following for simplicity reasons.

Figure 4.2 illustrates the target Java class hierarchy JT of the mapping. The class
rdfs:Resource is mapped to java.lang.Object, the common super type for all types. Addi-
tionally, we introduce a common super interface for all non-literal classes, the interface
rdfs.URIResource. It inherits all properties whose rdfs:domain is rdfs:Resource. This
common super type is necessary because java.lang.Object cannot be extended with addi-
tional methods. Since RDF literals cannot have properties [98, section 4.3] this aligns well
with the RDF semantics.

The following, preliminary mapping has the prerequisite that exactly one rdfs:range is
defined for each property. The case of more than one rdfs:range definition is considered
in Section 4.1.2.

All properties p and sub-properties6 defined by rdfs:domain definitions are mapped
to methods mp with an array return type. The methods always have an array return type
because rdfs does not have the means to declare multiplicities on properties. Therefore
we have to assume that an arbitrary number (0..r) of properties are defined.

The name of the method equals the simple property name if there are no ambiguities
(see Section 4.1.2) and the component type is the mapped rdfs:range type. Each C1

rdfs:subclassOf C2 property is mapped to the I1 extends I2 relationship. The predefined
property source links each uri-referenced class to the class Source:

@prefix core:

<http://sam.iai.uni-bonn.de/rdf/core.rdfs#>.

core:Source rdf:type rdfs:Class.

core:source rdf:type rdf:Property;

rdfs:domain rdfs:Resource;

rdfs:range core:Source.

Context sources, which are further elaborated in the context management Section 5.1, may
additionally define arbitrary meta data, e.g., accuracy, in their RDF Schema definition.
This meta-data is added as properties to the Source class by convention.

Figure 4.3 illustrates this with the class Contact and one property surname with
rdfs:range xsd:string. RDF containers and collections are represented in the same

6 rdfs:subPropertyOf

4.1 rdf schema - java mapping 59

ex:Contact rdf:type rdfs:Class.

ex:surname rdf:type rdf:Property;

rdfs:domain ex:Contact;

rdfs:range xsd:string.

Ñ

public interface Contact

extends URIResource {

String[] surname();

}

Figure 4.3: Exemplary mapping of the rdfs class Contact

way, but annotated as collection properties7. Since rdfs:range definitions do not allow
for parametric polymorphism the return type of the method always is Object[].

Namespaces and Property Names

Property name ambiguities may occur if two or more properties share the same domain
and simple name, but have different namespaces. A property access v.<propname>() is not
well defined in this case. Therefore we qualify the property names in case of ambiguities
with the corresponding namespace. This is only necessary if properties with the same
name are defined in the same domain.

The following example illustrates the use of a namespace prefix for a property name.
The local name ex of the prefix and the separator character $ are prefixed to the property
name.

namespace ex = "http://www.example.com";

public aspect A {

... var = context.ex$PropertyName();

}

Multiple range definitions

Rdf schema allows the definition of more than one rdfs:range [45], with the following
restriction:

“Where [predicate] P has more than one rdfs:range property, the resources
denoted by the objects of triples with predicate P are instances of all the
classes stated by the rdfs:range properties”.

The simple mapping of rdf properties above will not work in case of multiple rdfs:range

definitions, if the types are not in a subtype relationship. For example, consider the two
classes geo:SpacialThing ex:Place representing a geo location and place:

@prefix ex: <http://www.example.com>.

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>.

ex:spacialPlace rdf:type rdf:Property;

rdfs:domain rdfs:Resource;

rdfs:range geo:SpacialThing;

rdfs:range ex:Place.

The property spacialPlace declares its objects to be of type SpacialThing and Place. We
cannot assign a type for the corresponding method, yet, because no subtype of both is
defined in J Ib. Let’s assume a property p has several range definitions p rdfs:range pT1

,
p rdfs:range pT2

,... . To assign a Java type to such a property we extend the J Ib type
hierarchy with types J Ie, containing interfaces representing sets of interfaces from J Ib

with the following properties:

7 They will be handled differently by the context query language, see Section 4.2 for details.

60 object-oriented logic context query language

I1

I2

},{ 21 III

cycle

Figure 4.4: Cycle in case of naive powerset mapping. The dotted lines are subtype relationships
introduced by E℘.

Definition 4.1.2. Let J Ie be the set of set interfaces IS P J Ie with S ❸ J Ib. J Ib is embedded
into J Ie in the following way: J Ib ⑨ J Ie, where ❅I P J Ib, ItI✉ P J Ie : I ✏ ItI✉. We define a
subtype relationship ➔:e on J Ie with the following properties:

1. IS ➔:e IS✶ ô ❅I✶ P S✶ : ❉I P S : I ➔: I✶

2. ➔ J Ie,➔:e→ is a partial order

The subtype relationship ➔: in property 1 is defined by the extends relationship on
the interfaces in J Ib. Property 2 states that the set interfaces represent a taxonomy,
especially that ➔:e must not contain non-reflexive cycles.

A self-evident starting point for the construction of J Ie is the power set of J Ib:

Definition 4.1.3. Let G℘ be a directed graph induced by the power set of J IB and the subtype
relationship in J IB, where G℘ ✏➔ ℘♣J Ibq, E℘ →, with

E℘ ✏
✥
♣S, S✶q P ℘♣J Ibq ✂ ℘♣J Ibq

✞✞❅I✶ P S✶ : ❉I P S : I ➔: I✶
✭

.

Lemma 4.1.4. IS with S P ℘♣J Ibq and subtype relationship E℘ fulfills property 1 from defini-
tion 4.1.2.

Proof: Directly from its definition of E℘.
G℘ does not fulfill property 2 from definition 4.1.2. Every subtype relationship in J Ib

induces a cycle in E℘. Figure 4.4 illustrates this issue. Every real subtype relationship in
J Ib induces a strongly connected component (SCC) in G℘, and therefore illegal cycles in
the subtype relationship. The reason is that set interfaces contain a subtype interface I
and I✶s supertypes are equivalent with the interface I itself. In this context equivalent
means that they represent the same set of RDFS classes. To remove these cycles we need
remove the SCCs from the G℘.

Definition 4.1.5. The function st♣℘♣J Ieqq Ñ ℘♣J Ieq returns the supertype closure of a set

of types including the types themselves: st♣Sq de f✏ tr⑤s P S❫ r P J Ib ❫ s ➔: r✉.

Lemma 4.1.6. A cycle between two set interfaces IS and I
S

✶ exists if and only if ❅I P S : ❉I✶ P
S✶ : I✶ ➔: I ❫❅I✶ P S✶ : ❉I P S : I ➔: I✶.

Proof: From right to left the proof is directly from definition 4.1.3. For the left to right
case let’s assume there is a cycle between two interfaces IS and I

S
✶ with S ✘ S✶. To build a

cycle there must be a path in the graph G℘ from IS to IS✶ and vice versa. For every edge
♣IR, ITq P E℘ the supertype closure is either reduced or the same st♣ITq ❸ st♣IRq, so the
path is monotone. In case there is a cycle between IS and IS✶ the closure must be the same:
st♣Sq ✏ st♣S✶q. This implies the condition from lemma 4.1.6.

4.1 rdf schema - java mapping 61

❧

From lemma 4.1.6 SCCs only contain set interfaces with the same supertype closure.
So the solution is to remove all redundant set interfaces and replace the SCCs with a
minimal representative, where IS P SCC is minimal iff ❅ISi

P SCC③tIS✉ : ⑤Si⑤ → ⑤S⑤. This
is the case if S does not contain interfaces in a subtype relationship anymore. For this
purpose we define the function remst8:

Definition 4.1.7. Let S ❸ J Ib and remst : ℘♣J Ibq Ñ ℘♣J Ibq defined as remst♣Sq de f✏ ts P
S⑤✥❉r P S : r ➔: s✉.

Lemma 4.1.8. Sm ✏ remst♣Sq is the minimal representative for the set SCC of S and does not
contain interfaces in a subtype relationship.

Proof: Since the subtype relationship <: on J Ib is monotone Sm must be minimal. The
second condition follows directly from the definition 4.1.7.

We can now define the graph G℘red
based on the graph induced by the SCCs and the

original subtype relationship on J Ib:

Definition 4.1.9. Let G℘red
✏➔ Tmin, Emin → be the minimal solution of G℘, with Tmin ✏

tIS⑤S✶ ❸ J Ie ❫ S ✏ remst♣S✶q✉ and
Emin ✏

✥
♣S, S✶q P Tmin ✂ Tmin

✞✞❅I✶ P S✶ : ❉I P S : I ➔: I✶
✭

.

Theorem 4.1.10. G℘red
fulfills the properties of J Ie .

Proof: Property 1 of definition 4.1.2 follows directly from the definition of Emin. By
lemma 4.1.6 G℘ does not contain any non-reflexive cycles. Therefore the graph is anti-
symmetric. Since the subtyping relationship ➔: on J Ib is transitive and reflexive the
relation Emin is transitive and reflexive directly from its definition. Therefore Emin is a
partial order.
❧

Based on J Ie we determine type mp with mapts : ℘♣RCq Ñ JT. The function is defined
as follows assuming the rdfs:entailment of an RDF schema definition:

Definition 4.1.11. The function mapts : ℘♣RCq Ñ JT maps a set of RDFS classes to a
unique type from JT, with mapts♣tpT1

, ...✉q :✏✩✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✪

rtjp♣pTq
tpT1

, ...✉③trdfs : Resource, rdfs : Literal✉ ⑨ XDT

❫pT ✏ glb♣tpT1
, ...✉q ♣1q

mapnvs♣trtj♣pT1
q, ...✉q tpT1

, ...✉ ⑨ RNVT ♣2q

String rdfs : XMLLiteral P tpT1
, ...✉ ♣3q

String trdfs : Literal✉ ✏ tpT1
, ...✉③trdfs : Resource✉ ♣4q

Object tpT✉ ✏ trdfs : Resource✉ ♣5q
with

mapnvs♣tτ1, ...✉q :✏

✩✫
✪τr remst♣tτ1, ...✉q ✏ tτr✉

Itτ1,...✉ else

Since we assume an rdfs-consistent graph the rdfs:range definitions of a property
cannot contain disjunctive types, we can distinguish between datatypes, plain literals,
XMLLiteral and non-literal classes. Case 1 of mapts considers a set of datatypes XDT.
Since datatypes are subtypes of rdfs:Resource and rdfs:Literal they are substracted
from the set of pTi

for the subset test. Then the most specific subtype of all pTi
is

determined. Section A.2 shows the whole type hierarchy, a partially ordered set of

8 REMove Super Types

62 object-oriented logic context query language

URIResource

 �{�భ,�మ}

 �{�మ,�య}

 �{�భ,�య}

rdfs:Resource

C1

C2

ro1

rdfs:subclassOf

rdf:type

C3

ro2

instanceof

 �{�భ,�మ,�య}

jo2: jo1:

a) RDF c) Chosen Java Mapping

I1

I2 I3 remst

remst

Figure 4.5: Illustration of RDF instance to J Ie mapping

primitive and derived types. By determining the greatest-lower bound (glb) in the subtype
graph, the most-specific subtype pT can be determined. The function rtjp returns the
corresponding (primitive) Java type.

Case 2 considers the case that all range definitions are non-literal types. The function
mapnvs facilitates remst to determine either a type from J Ib that is a subtype of all pT1

, ...
or, in case remst returns a set, the corresponding type from J Ie. Case 3 - 5 consider the
special cases of XMLLiteral (3), plain literal (4) and rdfs:Resource (5).

Reconsidering the example from the beginning of the chapter we can now map the
property nearbyLocation to Java interfaces. For simplicity reasons, let’s assume the
set interfaces are mapped to a regular Java interface name by an alphabetic-ordered
concatenation of the interface names:

mapts♣tLocation, Nearby✉q ✏ ItLocation,Nearby✉ ✏ LocationNearby.

And here are the resulting Java interface declarations:

interface Contact {

LocationNearby[] nearbyLocation();

}

interface LocationNearby extends Location,Nearby{}

Java Instances

Literals are mapped to Java objects determined by rtjp. Non-literals with types T1, ... given
by rdf:type triples are instantiated as Java objects of type mapts♣tT1, ...✉q.

Figure 4.5 illustrates the type mapping with an example. The rdf instances of an
instance ro1 and ro2 are represented by the Java objects jo1 and jo2. The instance ro1 is an
instance of C1 and C2. And ro2 is an instance of C1, C2 and C3. Since C2 is a subtype of
C1 remst♣tI1, I2✉q ✏ tI2✉ and remst♣tI1, I2, I3✉q ✏ tI1, I3✉. Therefore jo1 is an instance of I2

and jo1 is an instance of ItI2,I3✉
.

The concrete instantiation of the objects depends on the concrete implementation.
Possible options are instances of anonymous classes or the generation of one class for
every J Ie interface, However, is not relevant for the type system.

4.1 rdf schema - java mapping 63

public interface Statement {

Object getSubject();

Object getObject();

String getPredicate();

}

Figure 4.6: RDF reification Statement interface

4.1.3 RDF Reification

RDF reification is used to make statements on a statement. This can be a dependent
statement or extra information about a property, e.g., time stamp or author of a statement.
Reification statements are represented as four triples, also called reification quad [133,
Section 4.3]:

:reificationNode rdf:type rdf:Statement.

:reificationNode rdf:subject <some rdfs:Resource>.

:reificationNode rdf:predicate <some rdfs:Resource>.

:reificationNode rdf:object <some rdfs:Resource>.

They explicitly denote the subject, predicate and object of a node. The :reificationNode

can then be referenced by another predicate, which may refer to other properties. We
can only provide minimal typing information about reification statements, because we
cannot restrict the range of rdf:object for special statements. Let’s assume we define a
statement about products:

:productDetails rdfs:subClassOf rdf:Statement.

:timeStamp a rdf:Property;

rdfs:domain :productDetails;

rdfs:range xsd:double.

Now we have static information about the properties of productDetails. But, there are
no further means to restrict the subject or object relationships. The following triple would
restrict the range for all statements:

rdf:object rdf:range :productStatement

For this reason we introduced a general Statement interface, see Figure 4.6. For a subclass
of Statement, like productDetails, additional properties, such as timeStamp, can be
added as regular rdf properties.

By this means details about a product are statically known:

product1 -> productDetails -> timeStamp

This is just an idiom that can be employed by a schema creator. If the creator does not
consider sub-statements in the schema definition, only the minimal types defined in the
Statement interface is known.

64 object-oriented logic context query language

Start ::= Condition

Condition ::=

’!’ (ParenCondition | BooleanExpr)

| BooleanExpr

| ParenCondition [ConditionLogicOp]

ParenCondition ::=

’(’ [Condition] ’)’

ConditionLogicOp ::=

’&&’ | ’||’ Condition

EmptyArray ::=

’{’ ’}’

BooleanExpr ::=

If

| ExistsCheck

| Pcd

| ContextExpression

| CompOperation

If ::=

’if’ ’(’ Condition ’)’

’then’ ’(’ Condition ’)’ ’else’ ’(’ Condition ’)’

ContextExpression ::=

QualifiedName [ExprOnQualifiedName]

ExprOnQualifiedName ::=

ClassPredicate (PropertyAccess | MapPredicate)*

ClassPredicate ::=

MapOperator (Pull | ArrayOp)

PropertyAccess ::=

’.’ Identifier

ArrayOp ::=

ClassPredicateName ’(’ [DeclareVariable] [Condition] ’)’

DeclareVariable ::=

Identifier ’|’

ClassPredicateName ::=

’one’ | ’select’

Pull ::=

Identifier ’(’ TupleInit ’)’

MapOperator ::=

’-’ ’>’

ExistsCheck ::=

’exists’ ’(’ QualifiedName ’)’

CompOperation ::=

TermOrParen Comparator TermOrParen

Comparator ::=

’=’| ’<’ | ’>’ | ’<=’ | ’>=’

TermOrParen ::=

ParenTerm | Term

ParenTerm ::= ’(’ Term ’)’

Term ::=

TupleInit

| ContextExpression

| Literal

| ArithOperation

| EmptyArray

TermList ::= Term (’,’ Term)*

MapPredicate ::=

MapOperator Identifier ’(’ [TermList] ’)’

ArithOperation ::=

’(’ Term ArithOperator Term ’)’

ArithOperator ::=

’+’ | ’-’| ’*’ | ’/’

Tuple ::=

’Tuple’ ’{’ TupleParam (’,’ TupleParam)* ’}’

TupleParam ::=

Identifier ’:’ QualifiedName [InitTupleParam]

InitTupleParam ::=

’=’ Term

TupleInit ::=

’{’ Init (’,’ Init)* ’}’

Init ::=

Identifier ’=’ Term

QualifiedName ::=

(’this’ | Identifier) (’.’ Identifier)*

Pcd ::=

Identifier ’(’ Term (’,’ Term) * ’)’

Literal::=

Float

| Int

| String

Figure 4.7: EBNF of OCQL expressions

4.2 object-oriented logic context query language

This chapter introduces the Object-oriented logic Context Query Language (OCQL9),
a statically typed logic language with meta predicates10 based on a polymorphic type
system with subtyping. The language is the central conceptual contributions of our
approach. It is used to query context models in the later presented context management
infrastructure (see Chapter 5).

OCQL operates on the J Ie types, which we introduced in Section 4.1. The language was
designed to be embeddable into Java language extensions. The type system is a subset of
Java’s type system. The OCQL is based on context predicates that combine the syntax and
semantics of the Object-Constraint Language (OCL) [51] with predicate logic. We have
chosen OCL as a role model, because it is a popular object-oriented constraint language,
provides good means for object graph traversals, and fits well into an object-oriented host
language. Figure 4.7 shows the OCQL syntax in EBNF.

We will now explain the language by examples. A formal description is given in Section
4.3 and following, in which we present the type system and the semantics of the language
via a mapping to Prolog.

Contexts are queried by predicates over J Ie types (see Definition 4.1.2). Context instances
of a class C are either queried one at a time (with C->one), or the whole collection of

9 A more meaningful abbreviation would have been OLCQL, but OCQL is more readable and underlines the
mixture of the abbreviations OCL and CQL.

10 We provide the all-solution predicates findall, bagof and setof known from Prolog [52].

4.2 object-oriented logic context query language 65

classes is queried at once (C->select). In the first case the OCQL expression backtracks11

over all resolvable variable bindings.
All logic variables used in an expression must be declared and typed. The following

expression declares a variable c of type Contact and binds it to contacts with first name
"Peter":

(Contact c) : c = Contact->one(firstname = "Peter")

The query retrieves all solutions for the expression by backtracking over the solution
space. The results are collected in a list of tuples. The one construct takes logic expressions
as an argument. It operates in the context of the enclosing expression’s type and can refer
to its properties via their name. The following example extends the previous one and
bind the surname of Peter to the variable name:

(Contact c, String name) :

c = Contact->one(firstname = "Peter" && surname = name)

The query results in the binding:

c name

http://laj.iai.uni-bonn.de/contacts/1 "Schmidt"

http://laj.iai.uni-bonn.de/contacts/2 "Meyer"

Assuming there are two contacts named Peter Schmidt and Peter Meyer in the context
database, the variable t is bound to both instances - one after the other. A property of
an instance can be bound with notation expr.propertyName. In the following example we
bind the surname of a contact with first name Peter to the variable name:

(String name) : name = Contact->one(firstname = "Peter").surname

The query results in the binding:

name

"Schmidt"

"Meyer"

If the property has an rdfs:range of rdfs:Container or collection (rdf:List)12 it
will be bound to the array of all elements. Otherwise it will backtrack over all defined
properties, e.g., in case Contact->one().name over all defined name properties.

Property accesses can be arbitrarily nested. The query below binds the street property
of contacts’ addresses:

(String street) : street = Contact->one().address.street

The expression Classname->select(condition) selects a subset of a Classname’s instances
for which condition holds. In the following query the variable contacts is bound to
Contact instances whose firstname property equals "Peter".

(Contacts[] contacts) :

contacts = Contact->select(firstname = "Peter")

The select expression is always true and returns an empty array if no instance of the set
satisfies the condition. Selections of properties on an array are mapped. Here, mapping
means that for all array elements for which the property exists, the property is added to
the returned array. So the following expression binds all addresses of contacts named
Peter:

11 see Section 2.3.1
12 See Section 2.2.1.

66 object-oriented logic context query language

(Address[] addresses) :

addresses = Contact->select(firstname ="Peter").address

The condition in a one or select expression is evaluated in the scope of the queried type.
Here, the identifier this refers the currently analyzed context instance. Further, the
instance of the queried context classes can be named. The example below illustrates the
explicit naming and the use of the this identifier. In the query instances of the class Time

are bound to the variable t. This has the same semantics as unqualified property names
that refer to properties of the type of the enclosing one expression, in this example the
second reference to the hour property:

(Time time) : time = Time->one(t | t.hour > 12 && this.hour < 13)

The naming is necessary if there are name clashes between property names and advice
parameters or once the instance is used in a nested expression. The following expression
that selects today’s calendar entries gives an example:

(CalendarEntry[] entries) :

entries = CalendarEntry->select(cal|

Time->one(cal.day=day && cal.month=month && cal.year=year))

Following OCL, the notation for universally quantified statements is expr->forall(c) and
the existential quantification is written as expr->exists(c). These are boolean expressions
and the primary logic operations (and, or, not) can be applied to them, e.g., the following
conditions bind c to a Contact object and compares its name property with the string
"Zoe".

(Contact c) : c = Contact->one() && c.name = "Zoe"

In case the referenced property does not exist, the expression fails silently. The exists

predicate tests the existence of a property explicitly:

(Contact c) : c = Contact->one() &&

if(c->exists(name))(

name = c.name

) else (

name = "No name given"

)

4.2.1 Arrays and Tuples

Two kinds of data structures can be used in OCQL: arrays and tuples. Arrays are
constructed as Java arrays with curly brackets {v1,...} and a range of array manipulation
predicates are provided. The following expression represents an array of integers:

(int[] ints) : ints = {1,2}

The type of the expression is inferred from the contained elements. In case a member
contains a term with variables the component type must be the same as the declared type
of the variable.

Tuples are data types following the OCL syntax for both declaration and construction.
A tuple declaration must state the types for all tuple properties: Tuple{name1:T1,...}. The
tuple instantiation has the following syntax: Tuple{name1[: T1]=expr1,...}, in which expri

may contain any expression from the ValueExpr from Figure 4.7. If the type is omitted, it
is inferred from the expression. The query below gives an example for a declaration and
a tuple instantiation:

(Tuple{value1:String, value2:String} t) :

t = Tuple{value1="user1", value2="user2"}

4.2 object-oriented logic context query language 67

FindallCall ::= ’findall’ ’(’

[Ident | ’Tuple’ ’{’ KeyValue (’,’ KeyValue)* ’}’] ’,’

BooleanExpr ’,’ Ident ’)’

KeyValue ::= Ident:QualifiedName ’=’ Term

Figure 4.8: Syntax of the findall predicate

4.2.2 Predicates

Queries in OCQL can be structured with predicates, whose body are context expres-
sions:

predicate [< TP1,...>] name (Type pname1, ...) [(Type var1, ...)] :

ContextExpression

All parameters and local variables must be declared and typed. The type parameters
TPi are described in Section 4.2.4. The declaration of local variables follows after the
parameter declaration and is enclosed by parentheses. Predicates can be recursively
defined. As in Prolog, a predicate may consist of several clauses that have the same
signature and describe alternative cases that form a predicate. The exemplary predicate
below prefixes the string "get" to the first argument and binds the resulting string to the
second argument:

predicate toGetter(String name, String getter) :

concat("get",name,getter);

4.2.3 Built-in Predicates

The OCQL contains a range of predefined operations13, for example set operations
(union, intersection, difference), instanceof checks, string operations, and the all-solution
predicate findall known from Prolog (see Section 2.3.3). Figure 4.8 shows the EBNF of
the findall predicate. The tuple in the first argument encapsulates solutions of the goal
in the second argument. The last argument collects all solutions in an array of tuples of
the first argument. The example below illustrates the use of findall. The predicate names

collects all first and last names bound by predicate contactNames to variable l:

predicate names(Tuple{first:String,last:String}[] l) :

(String v, String v2) :

findall(Tuple{first=v,last=v2},

contactNames(v,v2),l).

OCQL adopts two further Prolog built-ins. The predicate var/1 tests if a variable has
not been been bound yet. The predicate ground/1 tests if the variable is bound to a term
that does not contain any variables.

4.2.4 Generic Types & Mapping Predicates

Predicates in OCQL allow the use of type parameters with similar typing semantics to
type parameters in generic Java methods. For instance, the predefined predicate sortedBy
sorts the elements from the first argument based on the list of arguments in the second
argument and binds the sorted list to the argument out:

predicate <T> sortedBy(T[] in, double[] values, T[] out)

13 A full list of built-in predicates is provided in Appendix A.2.3.

68 object-oriented logic context query language

Predicate ::= ’predicate’ [TParams] Ident ’(’ Formals ’)’ [’:’ ’(’ Formals ’)’] ’:’ Condition ’;’

TParams ::= <’ TParam (’,’ TParam)* ’>’

Formals ::= FormalDec (’,’ FormalDec)*

TParam::= Ident (’extends’ QualifiedTypeName (’&’ QualifiedTypeName)*)

QualifiedTypeName::= Ident (’.’ Ident)*

ArrayTypeName::= QualifiedTypeName (’[]’)*

Tuple::= ’Tuple’ ’{’ TupleParam (’,’ TupleParam)* ’}’

TupleParam::= TupleParam ’:’ TypeName’

TypeName::= (ArrayTypeName | Tuple)

FormalDec ::= QualifiedTypeName Ident

Figure 4.9: EBNF of generic predicates

The type arguments for type parameters are inferred. We rely on the type inference
algorithm for generic Java methods and therefore a unique data flow between variables
must be guaranteed. For example, without unique input or output arguments the type of
the type parameter T in sortedBy, would not be defined in the following expression14

(with Sub ➔ Sup):

sortedBy(e1:Sup[], e2:double[], e3:Sub[])

The Sections 4.3.5 and 4.3.3 elaborate on the applied mode analysis used to analyze
possible dataflows and the inference algorithm adopted from Java.

The type parameters are more restricted compared to Java, since polymorphism is only
allowed in predicates, but not on the context classes. Figure 4.9 summarizes the syntax
for generic predicates. Type parameters have an optional set of bounds. Variables, whose
type declaration contain type parameters, must only be bound to variables of the same
type. The following code is only type correct if t is already bound when unified with s:

predicate <T extends C> p(T t,C s) :

t = s; // <-- t must be bound

Again, the mode analysis is facilitated to ensure that these cases are detected.

Using the sortedBy predicate directly is cumbersome. First we have to extract the values
from the input array and then call sortedBy. To simplify this application we provide the
concept of predicate mapping. Predicates with 2+n-arguments can be mapped onto the
results of a ContextExpression (see Figure 4.7). The syntax for predicate mapping is

expr->p♣e1,...,enq

The predicate p must have 2+n arguments, the first argument takes the expression expr
as an input, the expressions ei are evaluated on the expr and the argument an�1 binds the
result. This can be used for two kinds of predicate mapping kinds: N Ñ N and N Ñ R:

N Ñ N Mapping

This mapping is applied if the type of expr is an array type and its component type is
a subtype of the first parameter type τ0 of p♣τ0, τ1, ..., τn�1q. The subtype relation must
also hold for all the types of the arguments ei evaluated on elements on expr and τi. The
predicate p is applied to all successive tuples of elements expr and the ei applied on
corresponding elements of expr. The bindings of the last argument of p are aggregated
into an array and represent the result of the whole mapping expression. For example,
consider the predicate toLower(String, String) and the calls

v = {"U","P"}->toLower()

will result in the array {"u","p"} and is equivalent to

14 To each sub-expression ei we appended a colon and the type of the expression.

4.2 object-oriented logic context query language 69

findall(vTmp,(member(m,{"U","P"}),toLower(m,vTmp)),v)

with declared variables vTmp and m.

N Ñ R Mapping

This mapping calls p with expr as its first argument and the results of the expressions
expr.ei are passed to p’s arguments 2 to n-1.

The last argument is an output element that represents the result of the whole mapping
expression. This mapping can be used for a variety of predicate calls. The most simple is
a 1Ñ 1 mapping. Consider the toLower predicate again. This time we map it onto the
town property of a Location instance and compare it with the string ”cologne”:

Location(town->toLower() = "cologne")

This is equivalent to passing the town property and a result variable name to the toLower

predicate:

(String name):

Location(toLower(this.town,name) && name = "cologne")

The predicate can also be used for N Ñ 1 aggregations, like summing up an array of
numbers or calculating the average. OCQL does not offer a special syntax for array access.
It is realized by the predefined generic predicate index/3 and typically applied as a
N Ñ 1 mapping:

value = arrayInstance->index(1)

The index predicate is realized based on the predicate arrayAccess/315, another prede-
fined predicate that binds the element at index i of array to out:

predicate <T> index(T[] array, int i, T out) :

arrayAccess(i,array,out);

We now come back to the sorting predicate example, which motivated generic predicates.
We can use the sortedBy(..) predicate in a N Ñ N mapping to retrieve the most precise
location, by sorting an array of Location instances by their precision and selecting the last
element of the sorted array:

predicate contactLocations(Location l):

myLocation = Location->select(l|

Contact->one(me).locatedAt(self))->

sortedBy(source.precision)->last();

The expression source.precision is evaluated on each Location object and the array of
all values is passed to the second argument of sortedBy(..).

If both predicate mappings are possible, e.g., in case the first argument is an unrestricted
type parameter, which is a supertype of both arrays and objects, the first mapping is
chosen. The reason for this is that the second semantics is simpler to achieve without
predicate mapping.

Besides of being syntactic sugar for more complex expressions the static checks for
predicate mappings ensure that the first n arguments are in-arguments and the last
argument is a ground output argument. On the one hand this underlines that predicate
mapping is similar to a function call16, on the other hand this simplifies type checking of
nested calls on generic predicates. Consider the following example, in which the property
latitude is selected on the result of the generic predicate sortedBy:

Locations->select()->sortedBy(source.precision).latitude

To resolve the latitude property the type of sortedBy’s third parameter must be known
and therefore the first argument must be ground. Section 4.3.2 elaborates this further.

15 For the implementation of arrayAccess/3 see Section A.2.2.
16 except for possible backtracking

70 object-oriented logic context query language

4.2.5 Context History

By default an OCQL query always queries a snapshot of context data. For some context
analysis it is essential to refer to older context data. Section 5.1 will discuss context
snapshots in detail, for now we just assume that an arbitrary number of snapshots
exist. The OCQL offers a meta-predicate to switch the evaluation to an older context
snapshots:

(long ts): history(ts,<condition>)

The history predicate binds for all snapshots the associated timestamp ts and backtracks
over all snapshots and conditions. The current snapshot is always the latest and can be
retrieved via the built-in predicate currentSnapshot/1.

Let’s assume we would like to get the current compass orientation of a device. Since
users cannot keep the device completely steady in their hands, the compass sensor read
is typically fluctuating. To avoid these minimal movements often low-pass filters are
applied, which smooths sensor read changes, by taking previous measurements into
account:

predicate lowpass(float[] old,float current, float alpha, float result):

if(old->size(0)) then (

result = current

) else (

result = current + (alpha * (old->index(0) - current)) &&

lowpass(old->rest(), result, alpha*alpha, result)

);

predicate smoothCompass(float degree): (long ts, Compass[] cs):

findall(c, history(ts,c = Compass->one()),cs) &&

lowpass(cs->rest().degree, cs->index(0).degree, 0.25, degree);

The smoothCompass predicate retrieves the compass instances of all existing snapshots,
and passes all old entries to the first argument of lowpass and the current degree to the
second argument. The third argument is a constant factor by which the older values are
taken into account.

The predicate lowpass recurses over the array of old values and adds the difference
between the old and the current value, multiplied by alphai to the current value. The
index i stands for the index in the array in the i-th recursion.

4.2.6 Querying Context Sources

Querying data on a (mobile) client has a major restriction. We cannot hold and query large
sets of data on the client side. To access such information or parts of it17 we introduce
query context sources (QCS). These are context sources with predefined queries to external
systems. Examples for such sensors are social network APIs providing access to their
databases via Web services. They take a set of parameters and return a structured set of
data. QCSs are queried with the following expression:

var = SensorTypeName->methodName({paramName1 ✏ value1,...})

The definition of the QCSs themselves will be introduced in Section 5.2.
The predicate lastfm shows how this can be applied to a concrete Web Service, the

tasteometer service from last.fm. We assume that the Web Service was wrapped by the
Java class Lastfm. The method takes as an argument a tuple with two last.fm usernames
(name1 and name2) and returns a set of artists that both users like. This predicate will be
later used in the realization of the last.fm example.

17 e.g., a view onto a relational database

4.3 type checking 71

predicate lastfm(Artist[] artists,

String myName, String otherName) :

artists = Lastfm->tasteometer(

{name1=myName,name2=otherName});

4.2.7 Type Checks & Casts

OCQL offers built-in predicates for type-tests that can be called by predicate mapping:

expr ->isTypeOf(Typename) is a boolean expression that checks that an expression is of a
type Typename.

expr ->asType(Typename) is a type cast to subtype Typename. It fails if the expression is
not of type Typename.

exprs->typeSelect(Typename) operates on an array of expressions. It selects and returns
all elements of type Typename.

Let’s assume the two classes Contact and Colleague exist and Colleague is a subtype of
Contact. A cast of Contact to Colleague is evaluated as follows:

predicate getContact(Contact c, Colleague cl):

cl= c->asType(Colleague);

The predicate asType can also be applied on array types. Expressions in OCQL do not
have a fixed runtime component type, as in Java. So asType tests all elements in the array
if the cast is legal:

predicate getContact(Contact[] cs, Colleague[] cls):

cls= cs->asType(Colleague[]);

4.3 type checking

Typing of OCQL is based on an adaptation of Java’s type system. In the first place, the
adaptation is needed, since the data flow in logic programs is not easily recognizable
from the syntax of the language. In particular, the data flow direction is not a property of
a predicate, but can differ depending on each of its call sites. However, mode information
can be facilitated to analyze the direction of dataflow between logic variables18, and a
suitable mode analysis has been described in Chapter 3.

Local variables in OCQL must be typed, as it is common in the Java type system.19

Arithmetic expressions, comparisons and string operations in SLD resolution fail if
unbound variables are used in the wrong arguments. We tackle both problems, type
checking and groundness checks, by a three-step analysis.

The next Section repeats the syntax for modes and explains the general idea of our
approach. In the follow-up section we present OCQL’s type language and the three-step
analysis.

4.3.1 Overview

The central idea of this approach is to reduce all typing problems to the unification of two
typed terms. In case they have the same type, the unification is valid for any “dataflow”

18 as we discussed in Section 2.4.2
19 OCQL’s type system is very reduced compared to typed terms in logic programming. Type inference for unary

type constructors with subtyping (inclusion polymorphism) and parametric polymorphism becomes decidable
in this case [85]. Since it is common that all variables in Java are typed, we think type inference for local
variables is not essential and consider an application to OCQL’s local variables as possible future work.

72 object-oriented logic context query language

between the terms. In case their types differ, a mode analysis is applied to test if the
unification is valid, otherwise no further handling is need. Especially in the presence of
type parameters, a number of considerations have to be made. This section only gives a
first intuition, which problems can already occur in the non-generic case.

In the following, we look at the unification of the two variables v1 ✏ v2, where either
the type of v1 is a subtype of type of v2 or vice versa. We assume, the mode of the
variables before and after the unification is already known. The analysis (see Chapter 3)
uses the following mode kinds:

f for a variable,

g for ground term, and

o if it is neither a variable nor ground term.

The analysis is a safe approximation of SLD resolution, in the worst case resulting in the
set of all modes {f,g,o} instead of a single possible mode {f } or {g}. Variables with mode o
and f must not be passed to an argument expecting a ground variable. In the following a
ground variable has mode {g} and a bound variable might have mode {o}, {g}, or {g,o}.

For all unifications we first check if the declared types of the unified variables20 v1 : τ1

and v2 : τ2 are in a subtype relationship: τ1 ➔: τ2 or τ1 :→ τ2, and signal a type error if
they are not. In case they are in a proper subtype relation τ1 ➔ τ2, where ➔ stands for the
non-reflexive subtype relationship, we check for potentially illegal flows with the inferred
mode annotations. The typing rule below illustrates the principle21:

τ1 ➔ τ2, mo♣v1, ppq ✏ tg✉
♣v1 : τ1 ✏ v2 : τ2qpp

The function mo♣V, ppq Ñ t f , g, o✉ represents the mode of the variable V at the program
point pp. The typing rule states that the unification of two typed variables v1 : τ1 and
v2 : τ2 with : τ1 ➔: τ2 is legal if the variable v1 is ground at pp. The reverse case is
analogous.

We demonstrate the rule with the OCQL query below, where pp1,2 is the program point
before the unification of o and s:

(String[] strs, String s, Object[] objs) : strs = {"str"} && ♣objs = strsqpp1,2

Applied to the unification typing rule we get the following:

Stringrs ➔ Objectrs, mo♣s, pp1,2q ✏ tg✉
♣s : Stringrs ✏ o : Objectrsqpp1,2

If the mode of v1 is not ground, an illegal binding of a subtype to its supertype might
occur in this unification. For example, in case that mo♣v1, ppq ✏ to✉ ❫mo♣v2, ppq ✏ to✉,
the unification of v1 ✏ v2 might assign a subtype to a member to a partially ground array,
e.g., in the following query:

(String[] strs, String s, Object[] objs, Object o) :

strs = {"str",s} && objs = {o,1} && ♣objs = strsqpp1,2

We illustrate in an example how the analysis is applied. Each program point in the
friends predicate is annotated with modes for each declared variable v. We indicate the
inferred mode information with [v/m] for every variable in a clause, before and after each
program point22, where the mode m is m ❸ t f , g, o✉. Let’s assume the two types Contact

20 constants are processed analogously
21 The typing rule only demonstrates the general idea and is not part OCQL’s type system.
22 A program point is a location in a logic program before or after a literal, see Section 3.1.1 for details.

4.3 type checking 73

and Colleague exist and are in the subtype relation supertype Colleague < Contact. We
want to calculate the closure of all friends of a contact with a maximum search depth
implemented in the predicate friendsClosure23:

01 predicate friendsClosure(Contact p,Contact p2,int depth,int max): (Contact temp):

02 // [p/{o}, p2/{f}]

03 p = p2

04 // [p/{o}, p2/{o}]

05 ||

06 // [p/{o}, p2/{f}, temp/{f}, depth/{g}, max/{f}]

07 (depth < max &&

08 p->hasFriend(temp) &&

09 // [p/{g}, p2/{g}, temp/{g}]

10 friendsClosure(temp, p2, depth + 1)

11 // [p/{g}, p2/{g}, temp/{g}]

12);

13

14 predicate knownColleague(Colleague c, Colleague c2) :

15 .. c=Colleague->one() &&

16 // [c/{g}, c2/{f}, max/{f}]

17 friendsClosure(c,c2,0,max); // error

18 // [c/{g}, c2/{g}, max/{f}]

Let’s assume the predicate friendsClosure is called with the mode (g,f,g,f). The algorithm
will detect two errors. In line 6 the variable max is not bound and has been passed to
the expression depth < max. In line 16 the unbound variable c2 is passed to the second
parameter p2 of friends, which has the declared supertype Contact.

OCQL offers type casts of value expressions (e.g., location->asType(GPSLocation)) and
type checks (location->isTypeOf(GPSLocation)). These expressions are only allowed to
be called with ground variables. The cast is treated as a boolean expression that either
succeeds or fails. No runtime errors or exceptions are raised if the check fails. With the
help of a cast we can rewrite the code to make it type safe:

01 predicate knownColleague(Colleague c, Colleague c2) : (Contact tmp) :

02 .. c=Colleague->one() &&

03 // [c/{g}, tmp/{f}]

04 friendsClosure(c,tmp,0,3) &&

05 // [c/{g}, c2/{f}, tmp/{g}]

06 c2 = tmp->asType(Colleague); // no compiler error

07 // [c/{g}, c2/{g}, tmp/{g}]

In the following, we present the complete type checking algorithm, which is structured
into three major steps. At the beginning we apply an initial type checking (Section 4.3.2)
for all expressions where the mode information is not relevant. In this step all variables
and properties are resolved in their corresponding context. Some further assumptions are
made about modes in this phase, which have to be confirmed once the mode inference has
been carried out. Section 4.3.4 covers the transformation to Prolog and finally Section 4.3.5
describes the application of the mode analysis as a final type checking step. Furthermore,
the assumptions about modes from the first step are validated and the modes are used to
check valid inputs for arithmetic expressions, string operations, etc.

4.3.2 Pre-Mode Analysis Type Checking

This Section describes OCQL’s type system. Section 2.4 sums up the different kinds
of type systems for logic programming and their motivation. The purpose of our type
system is to statically guarantee the well-typedness of a goal. This means that in the

23 For brevity, we ignore cycle checks in this example.

74 object-oriented logic context query language

untyped resolution of a goal each variable is either unbound or (partially) bound to a
value of the declared type or subtype. So types can be ignored at runtime, in contrast to
typed logic programming approaches such as Prova [123] and Protos-L Beierle [28].

The type system contains three kinds of types: elementary, array and tuple types. The
elementary types in OCQL are the interface types defined in J Ie (see Definition 4.1.2) and
the data types JPTW in the co-domain of rtjp, see Definition 4.1.1. In OCQL the methods
of types represent the properties of the corresponding RDFS class as defined in the RDF
mapping Chapter 4.1. Array types can have elementary or tuples as their component types.
Tuple arguments are considered to be alphabetically sorted by their names. This will be
relevant in the later translation process to Prolog. The language of types τ is defined as
follows:

T ::✏
C an elementary type

⑤X a type parameter

⑤ Tupleta : τ✉ tuple with named arguments and their types

τ ::✏
T

⑤ a♣T, Dimq array with component type T and dimension Dim

⑤ τ♣τ1q instantiation of the parametrized type τ with type τ1

⑤ τ0 Ñ τ typing of a method declared in type τ0 with the return type τ,

a rdf property p of type τ is represented by the method τ p♣q
⑤ τ0 ✂ . . .✂ τn predicate signature

One further restriction applies for typle types - they must not contain type variables.
We made this restriction to simplify the description of the type checking algorithm, but
consider an extension to tuples straight forward.

By this restriction, only array types may contain type parameters. The type parameters
of the predicates are not explicitly represented in the signature, because an explicit
representation in the predicate signature will not be necessary.

We define the two helper functions comp and arrayOf, which decrease and increase the
dimension of an array:

comp♣τq △✏✩✬✬✬✫
✬✬✬✪

τ i f τ is not an array

τ✶ i f τ ✏ a♣τ✶, 1q

a♣τ✶, Dim✁ 1q otherwise

arrayOf ♣τq △✏✩✫
✪a♣τ, 1q i f τ ✘ a♣τ✶, Dimq

τ ✏ a♣τ✶, Dim� 1q otherwise

We write typing rules in the natural deduction style [26], where a rule consists of an
antecedent and a conclusion, separated by a line, based on the production rules of the
context-free grammar given in Figure 4.7.

Properties given in the antecedent must be proven to conclude the conclusion. We
assume that every type from J Ie is already resolved, based on the RDF Schema imports
defined in the OCQL queries’s preamble.

The set of class types are defined by the imported RDF schemas. A context E maps
variable names v to their type τ. E♣vq ✏ τ means v has type τ in E . E also contains
the subtype relation between types, which are derived from the type hierarchy of the
imported context classes.

We define a type environment ∆ with a finite mapping from type variables to bounds,
predicate types predicateName : τ0 ✂ . . . ✂ τn, property method typing methodName :
τ0 Ñ τ, and subtype relationships. We write τ ➔: τ✶ to state that τ is a subtype of τ✶. The

4.3 type checking 75

Bound of type:
bound∆♣Xq ✏ ∆♣Xq
bound∆♣a♣T, Dimqq ✏ a♣bound∆♣Tq, Dimq
bound∆♣Cq ✏ C
bound∆♣Tupleta : τ✉q ✏ Tupleta : τ✉

∆ ✩ τ ➔: ζ, ∆ ✩ ζ ➔: τ✶

∆ ✩ τ ➔: τ✶ ♣transq

∆ ✩ τ ➔: τ✶

∆ ✩ a♣τ, Dimq ➔: a♣τ✶, Dimq ♣arrayq

∆ ✩ ❑ ➔: τ ♣bottomq

∆ ✩ t✉ : a♣❑, 1q ♣emptyarrayq

∆ ✩ e : a♣❑, nq
∆ ✩ te✉ : a♣❑, n� 1q ♣nestedeaq

∆ ✩ τ ➔: τ✶

∆ ✩ τrs ➔: τ✶rs ♣arraycovq

Figure 4.10: Type conformance

term ∆ ✩ τ ➽ τ✶ denotes either ∆ ✩ τ ➔: τ✶ or ∆ ✩ τ :→ τ✶. We call two types compatible
in this case.

Figure 4.10 lists the subtyping rules for component types and arrays and introduces
the bottom type ❑ that is a subtype of all types. The ❑ type will be used to type check
empty arrays. The rules emptyarray and nestedea recursively define the type of nested
empty arrays. Array types are covariant, as noted by rule arraycov.

The function bound∆ retrieves the bound for τ. For type τ without type variables it
returns τ, otherwise it is recursively called on all component types. Since tuple types
must not contain type variables, bound∆ is the identity function for tuples.

In a pre-processing step all bounds of type variables X extends τ are replaced by
mapts♣τq, see Definition 4.1.11. This does not change the semantics of the predicates,
since

• all subtypes of τ are subtypes of mapts♣τq by definition,

• mapts ensures that all occurrences of τ are replaced by mapts♣τq, and

• all supertypes of τ are supertypes of mapts♣τq by definition of J Ie.

This replacement simplifies the typing rules, since only one bound has to be considered
instead of n.

Figure 4.11 lists the typing rules for the logic operators and first order predicates. The
rules are defined on non-terminals of the EBNF24; the environment E is initialized with
the parameters and local variables of the enclosing predicate.

The first four rules describe the straight-forward typing of boolean operators. The
var-access rule states that if Identi f ier has type τ in E then the expression Identi f ier has
type τ. The emptyarray rule assigns the array of bottom type (❑rs) to the empty array.
This ensures that it can be assigned or compared to expressions of arbitrary arrays types
with dimension 1. The rule constant states that the constant c P Const has its pre-assigned
primitive type inferred from the EBNF syntax during parsing.

24 see Figure 4.7

76 object-oriented logic context query language

The rule prop-access covers property accesses on a non-array expression, and prop-
access-array on array types. A property access on an array results in an array of the same
dimension. Nested arrays therefore result in nested property arrays. The predicate call
pred-call-pre checks for potential applicability of a predicate disregarding the yet unknown
dataflow direction.

The rules var-access and constant cover unqualified identifier resolution and constant
typing. The rule prop-access-this covers an unqualified property access equivalent to
this.propname. Since identifiers in E take precedence over implicit property accesses,
E ✫ Identi f ier : τ ensures that no Identifier is already defined in the current scope E . The
rule prop-access considers the variable access on an arbitrary ContextExpression.

The rule arith-plus is a placeholder for all arithmetic expressions. The typing rules follow
binary numeric promotion [88, 5.6.2], meaning that a widening conversion is performed in
case the operands have different types, e.g., 1 + 1.1 is typed Double.

The unify-pre rule states that the unification of two expressions must be type compatible
for at least one dataflow direction. The rule takes the bound∆ of τ and τ✶ since they may
contain type variables and the subtype relationship is only defined on non-generic types.
The unif-pre rule is a pre-step and the final type checking step for unification is postponed
until information on the direction of the data flow at that unification has been inferred.

Figure 4.12 lists the typing rules for class predicates and meta predicates. Newly
defined identifiers, e.g., defined in select or one expressions, hide existing identifiers in a
context. Therefore we define the operator ❨③ on the environment E that subtracts existing
identifier associations which are defined in the right set from the left set and then takes
the union of both sets, e.g., ta : τ, b : τ✶✉ ❨③ ta : τ✷✉ ✏ ta : τ✷, b : τ✶✉.

The select rule assigns an type C[] to the select expression and updates the environment
in which Condition is type checked, with the variables v and this with type C. The
one case is analogous. The findall rule considers findall calls with a variable as a first
parameter. The third argument collects all results from findall in vbag which declared type
must be compatible with v’s declared type. This is also a pre-check. Possible dataflows
between v and vbag are not defined at this point. The variable vbag might have been bound
beforehand and v might not be bound in Condition at all. The rule findall-t considers a
tuple type for vbag. The argument names bi must all be declared in the type vbag and their
types τaj

must be type compatible with the corresponding type τvi
.

Figure 4.13 considers predicate mapping, as described in Section 4.2.4 and 4.2.4. In
contrast to the pred-call-pre rule the mode of the first argument is restricted here. With
this premise, we are able to infer the type of the predicate based on the type infer-
ence algorithm elaborated in 4.3.3. For now, we only informally define the function
in f er♣X, B, ζ, τ, τq Ñ ζ. The function infers the output type ζ for arguments ζ for a
predicate p(τ✂ τ), with type variables X with associated bounds B. The notation τ stands
for a list of types τ1, ..., τn and τ ✂ τ for τ1 ✂ ...✂ τn ✂ τ.

The rule map-N-N considers a predicate pred, which is mapped onto the component
types of the array bound by CxtExpr, an abbreviation for the EBNF non-terminal Contex-
tExpression. The premise checks that the type of CtxExpr is an array type ζ and the type
of the first parameter of the mapped predicate pred is a supertype of the component type
of ζ. The arguments e of the mapping call are evaluated in the context of the component
type ζcomp, therefore the identifier this with type ζcomp is added to the environment in
which e are type checked. The types of arguments must be subtypes of the predicates
second to n-1 parameter and finally the inference must succeed with type η. The type
of the whole expression η✶ is η[]. Consider the following query, which sorts contacts by
their surname:

(Contact[] cs, Contact[] sorted):

cs = Contact->select() &&

sorted = cs->sort(surname);

The query calls the following generic sort predicate:

E ✩ e : Boolean, E ✩ e✶ : Boolean

E ✩ e && e✶ : Boolean
(and)

E ✩ e : Boolean, E ✩ e✶ : Boolean

E ✩ e⑤⑤ e✶ : Boolean
(or)

E ✩ e : Boolean, E ✩ e✶ : Boolean, , E ✩ e✷ : Boolean

E ✩ if♣eqthen♣e✶qelse♣e✷q : Boolean
(if)

E ✩ e : Boolean

E ✩ !e : Boolean
(not)

E ✩ Identi f ier : τ (var-access)

E ❨ tLiteral : τ✉ ✩ Literal : τ (constant)

E ✫ Identi f ier : τ, E ✩ this : τ0, ∆ ✩ Identi f ier : τ0 Ñ τ

E ✩ Identi f ier : τ
(prop-access-this)

E ✩ e : τ0, τ0 ✘ a♣ζ, Dimq, ∆ ✩ Identi f ier : τ0 Ñ τ

E ✩ e.Identi f ier : τ
(prop-access)

E ✩ e : τ0, τ0 ✏ a♣τ✶, Dimq, ∆ ✩ prop : τ✶ Ñ τ

E ✩ e.prop : a♣τ✶, Dimq (prop-access-array)

E ✩ e : τ, E ✩ e✶ : τ✶, τ ➔: Double, τ✶ ➔: Double, lub♣τ, τ✶q ✏ ζ

E ✩ ♣e : τ�e✶ : τ✶q : ζ
(arith-plus✝)

E ✩ e : τ, E ✩ e✶ : τ✶, bound∆♣τq ➽ bound∆♣τ✶q
E ✩ e✏e✶ : Boolean

(unify-pre)

∆ ✩ pred : ♣τq, E ✩ e : ζ, bound∆♣ζq ➽ bound∆♣τq
E ✩ pred♣eq : Boolean

(pred-call-pre)

✝A representative for all arithmetic operations. See Section A.2.3 for all arithmetic opera-
tions.

Figure 4.11: Typing rules - core

77

78 object-oriented logic context query language

E ❨③ tv : C, this : C✉ ✩ Condition : Boolean

E ✩ C->select♣v⑤Conditionq : a♣C, 1q (select✝)

E ❨③ tv : C, this : C✉ ✩ Condition : Boolean

E ✩ C->one♣v⑤Conditionq : C
(one✝)

E♣vq ✏ τ, E ✩ Condition : bool, E ✩ vbag : τ✶, bound∆♣τrsq ➽ bound∆♣τ✶q
E ✩ findall♣v, Condition, vbagq : Boolean

(findall)

E ✩ Condition : Boolean, E ✩ vbag : Tupleta1 : τa1
, ...✉, E ✩ v1 : τv1

, ...

tb1, ...✉ ❸ ta1, ...✉,❅bi, aj : bi ✏ aj ñ bound∆♣τvi
q ➽ bound∆♣τaj

q
E ✩ findall♣tb1 ✏ v1, ..., bn ✏ vn✉, Condition, vbagq : Boolean

(findall-t)

✝The variants without the variable declaration v only differ by the lack of v in the premise
and conclusion of the rule.

Figure 4.12: Typing rules for select, one, and findall

∆ ✩ pred : ♣τ ✂ τ ✂ τ✶q, E ✩ CxtExpr : ζ, ζ ✏ a♣ζ✷, Dimq, comp♣ζq ✏ ζcomp,

bound∆♣ζcompq ➔: bound∆♣τq, E ❨③ tthis : ζcomp✉ ✩ e : ζ,

bound∆♣ζq ➔: bound∆♣τq, in f er♣ζcompζ, ττ, ηq ✏ η, η✶ ✏ arrayOf ♣ηq
E ✩ CxtExpr✁ →pred♣eq : η✶ (map-N-N)

∆ ✩ pred : ♣τ ✂ τ ✂ τ✶q, E ✩ CxtExpr : ζ,

ζ ✏ a♣ζ✷, Dimq ❫ bound∆♣τq ✘ Object❫ bound∆♣τq ✘ Object,

comp♣ζq ✏ ζ✶, bound∆♣ζ✶q ➔: bound∆♣τq, E ❨③ tthis : ζ✶✉ ✩ e : ζ,

bound∆♣ζq ➔: bound∆♣τq, in f er♣ζ ✂ ζ, τ ✂ τ, τ✶q ✏ η

E ✩ CxtExpr✁ →pred♣eq : η
(map-N-R)

Figure 4.13: Type checking rules - first pass

<T> sort(T in, String[] compareValue, T out)

The query is translated into a semantically equivalent variant without predicate map-
pings:

(Contact[] cs, Contact[] sorted, String[] sns):

cs = Contact->select() &&

sns = cs.surname &&

sort(cs,sns,sorted);

The only difference is that the mode {g} of cs and sns is already checked
in the pre-mode analysis type checking phase. The predicate sort is called
with the modes sort({g},{g},{f }). The typing rule map-N-N is applied and in-
fer({X},{Object},{Contact[],String[]},{T[],String[]},T[]) evaluates to Contact[].

The rule map-N-R considers the simpler case where pred is directly called on CxtExpr
and an array of expressions on CtxExpr. The second row rejects the case where the
argument 1 to n-1 of pred all have the bound Object. Otherwise both premises of map-N-N
and map-N-R would overlap in this case.

4.3 type checking 79

4.3.3 Type Inference for Generic Predicates

In case the modes for all variables in a predicate call are known, we can infer the type of
a predicate’s output parameters.

Definition 4.3.1. The function in f er♣X, B, ζ, τ, τq Ñ ζ infers the output type ζ for the
argument types ζ, the predicate input parameters τ and the output parameter type τ.
The first argument is a list of type variables X, the second argument is the list of bounds
B associated with X .

The inference is independently applied for each output parameter. It is a reduced
form of the inference algorithm of [88, 15.12.2.7], “Inferring type arguments based on
actual arguments”. In our algorithm, we do not need to consider primitive type boxing,
wildcards, type parameters in type parameter bounds. The only parametric types are
arrays. Type parameters used in “out” parameters must be present in “in” parameters,
because otherwise only the empty array could be assigned the variable as in the following
example:

<T> p(T[] t):

t = {};

The empty array is the only expression containing bottom type ❑ that is compatible with
arbitrary concrete array types. Since this scenario is of very limited use, OCQL does not
support type inference from inner-predicate calls.

Figure 4.14 cites the Java inference algorithm from [88, 15.12.2.7], where all parts related
to primitive type boxing, wildcards, type parameters in type parameter bounds have
been removed.

Since no generic types can be defined in OCQL no capture conversion [88, 5.1.10] needs
to be applied in the determination of the predicate return type as it is necessary for the
general Java case [88, 15.12.2.6].

In a final step we apply remst♣tW1, ..., Wr✉q ✏ITj to determine the greatest lower bound
for the Wi to retrieve just one type instead of several bounds.

Example

This paragraph applies the type inference algorithm exemplarily. Let’s assume the follow-
ing type hierarchy is given:

Super2

Super1 Sub2

Sub1

Further, the following predicate definitions are given:

01 <T> p(T[] p1_in, T p2_in, T[] out).

02

03 <T2 extends Sub2> q(Sub1[] p1, T2 p2, Super2 p3) :

04 // [p1/{g},p2/{g},p3/{f}]

05 p(p1, p2, p3);

The notational conventions used in this section are

• Type expressions : A, F, U, V and W, where A denotes the type of an actual parameter
and F is only used to denote formal parameters.

• Type parameters are represented by T

Inference begins with a set of initial constraints of the form A ➔: F, A = F, or A :→ F, where U
➔: V indicates that type U is convertible to type V by widening reference conversion [88, 5.1.5],
and U :→ V indicates that type V is convertible to type U by widening reference conversion.

• If F does not involve a type parameter Tj then no constraint is implied on Tj.

• Otherwise, F involves a type parameter Tj.

– if the constraint has the form A ➔: F

* if F = Tj, then the constraint Tj :→ A is implied.

* If F = U[], where the type U involves Tj, then if A is an array type V[], or a type
variable with an upper bound that is an array type V[], where V is a reference
type, this algorithm is applied recursively to the constraint V ➔: U.

– Otherwise, if the constraint has the form A = F

* If F = Tj, then the constraint Tj = A is implied.

* If F = U[] where the type U involves Tj, then if A is an array type V[], or a type
variable with an upper bound that is an array type V[], where V is a reference
type, this algorithm is applied recursively to the constraint V = U.

Next, for each type variable Tj, 1 ↕ j ↕ n, the implied equality constraints are resolved
as follows:

For each implied equality constraint Tj = U or U = Tj:

• If U is not one of the type parameters of the method, then U is the type inferred for Tj.
Then all remaining constraints involving Tj are rewritten such that Tj is replaced with
U. There are necessarily no further equality constraints involving Tj, and processing
continues with the next type parameter, if any.

• Otherwise, if U is Tj, then this constraint carries no information and may be discarded.

• Otherwise, the constraint is of the form Tj = Tk for k ✘ j. Then all constraints involving
Tj are rewritten such that is replaced with Tk, and processing continues with the next
type variable.

Then, for each remaining type variable Tj, the constraints Tj :> U are considered. Given that
these constraints are Tj :> U1 ... Tj :> Uk, the type of Tj is inferred as lub(U1, ..., Uk), computed
as follows:
For a type U, we write ST(U) for the set of supertypes of U, and define the erased supertype set
of U, EST(U) = { V | W in ST(U) and V = erasure(W) }, where the erasure of

• an array type T[] is erasure(T)[].

• a type parameter is the erasure of its bound.

• every other type is the type itself.

The erased candidate set for type parameter Tj, EC, is the intersection of all the sets EST(U) for
each U in U1 .. Uk. The minimal erased candidate set for Tj is MEC = { V | V in EC, and for all
W✘V in EC, it is not the case that W➔: V}.
Then the inferred type for Tj is lub(U1, ..., Uk) = W1 & ... & Wr where Wi, 1↕i↕r, are the
elements of MEC.

Figure 4.14: Our simplification of the Java type parameter inference algorithm [88, 15.12.2.7]
80

4.3 type checking 81

In line 5 the predicate p is called with the modes {g}, {g}, {f }. Now we infer the type of T
of p’s out parameter for this call.

From the parameters of p the constraints T :> Sub1 and T :> T2 are inferred, resulting in
the erased super types as defined in Figure 4.14:

EST(Sub1) ={Sub1,Super1,Super2,Object} and

EST(T2) ={Sub2,Super2,Object}.

As the next step we calculate EC, the intersection of all EST sets:

EC({{Sub1,Super1,Super2,Object},{Sub2,Super2,Object}} = {Super2,Object}

Now we evaluate MEC on the result of EC, which removes all supertypes of types in
EC:

MEC({Super2,Object}) = {Super2}

Finally, we apply the remst function to the result of MEC, which just preserves the type
in this case:

remst({Super2}) = Super2

So, the resulting type for the out argument is Super2[]. In case we call the predicate with
the arguments p(T2[], T2, Super2) the inferred type for T is T2.

4.3.4 Translation To Prolog

This section defines the semantics of the language by defining a translation25 to a subset
of Prolog. The predicates of OCQL represent logic expressions that naturally map to
Prolog predicates and facts. In this step all Prolog variables are annotated with their
associated types. They will be used in final type checking phase (in Section 4.3.5), but
this type information is solely used for static checks and is removed afterwards.

OCQL’s context model is based on RDF Schema. RDF triples are represented by Prolog
fact rdf/3. Consider the following context query, which selects a contacts email and
lastfmUsername:

c = Contact.one(email=eMail && lastfmUsername=lastfm)

This expression is translated to the following Prolog code:

subtype(SubContact,’http://.../Contact’),

rdf(C,rdf:type,SubContact),

rdf(C,’http://.../email’,EMail),

rdf(C,’http://.../lastfmUsername’,LastFm)

Slightly more complicated is the translation of predicate mapping:

Location.select().sortedBy(source.precision).last()

The expression is translated to the following query that binds the variable Last to the
location with the highest precision:

subtype(Location,’http://.../Location’),

findall(_L,rdf(_L,rdf:type,SubContact),Locs),

findall(P, (member(L,Locs),

rdf(L,’http://.../source’,Source),

rdf(Source,’http://.../precision’,P),

),Ps),

sortedBy(Locs,Ps,SortedLocs),

last(SortedLocs,Last)

25 We use the term translation here to avoid confusion with predicate mapping.

82 object-oriented logic context query language

Notation

The target language for our translation is a subset of the Prolog language. The syntactic
categories used in the following have already been introduced in Section 2.3.4 and are
only repeated for easier reference:

V P LVars, t P Term, L P Literal, B P PosLiteral,

A P Atom, φ P Formula, Cl P Clause,P P Program,G P Goal

The single elements have the following syntax

t ::✏ VT ⑤ f ♣t1, ..., tnq ⑤ A

VT ::✏ V ⑤ tuple♣t1, ..., tnq
B ::✏ A♣t1, ..., tnq
L ::✏ B ⑤ ③ � B

A ::✏ string ⑤ number

φ ::✏ ǫ ⑤ L ⑤ φ1, φ2 ⑤ t1 ✏ t2 ⑤ φ1✁ → φ2; φ2 ⑤ f indall♣t, L, Vq ⑤V is f ♣t1, ..., tnq
Cl ::✏ A : ✁φ

P ::✏ Cl1, ..., Cln

G ::✏ ? ✁ φ

where f ♣t1, ..., tnq is restricted to arithmetic functions and arrays.
The following translation is based on the RDF entailment triples, therefore no subclasses

or sub-properties have to be considered in the mapping. An implementation may use an
RDFS reasoner, such as Cliopatria [2], to infer the entailment or replace the triples by
predicates in the generated queries to reflect rdfs semantics. Section 6.2 elaborates this in
more detail.

Let Id be the set of identifiers. The EBNF to Prolog translation is defined by the two
functions

• TB✈V , E , E✇ Ñ S , φ translates boolean expression E to auxiliary predicates (S) and a
Prolog formula φ.

• TE✈V , E , E✇ Ñ S , V : τ④φ translates expression E to auxiliary predicates (S), a
typed variable V and an optional Prolog formula φ that represents a prefix for the
currently translated expression.

E represents the expression scope stack with scope elements se ⑨ E , se ✏ x : T, where
x P Id, v P LVar. Capital letter E stands for EBNF expressions (terminal or non-terminal).
The second parameter of TE either uniquely matches an OCQL input expression, where
each Ei takes the place of sub-expressions, or an appended where clause restricts the
clause to a certain case. For comprehensibility, some of the expressions are named starting
with a capital letter, e.g., Template.

Let S be the set of sub goals that are represented by terms of the form
pred♣E , Head, tE1, ...✉q, where Head is the predicate head and Ei are OCQL expressions
from the set of expressions, named O. Section 4.3.4 describes how the pred/3 term is
translated to Prolog clauses. Let e, V and t be translated Prolog terms, where e denotes an
arbitrary term, V a Prolog variable, and t a tuple term of the form tuple(...). The argument
names of tuples are represented by a and b. Finally, we define two functions to retrieve
the corresponding RDF classes and property names for Java classes and methods. The
function c2r :✏ J I Ñ ℘♣RNVTq returns the corresponding set of non-value RDF classes
representing a Java interface from J I:

c2r♣τq :✏

✩✫
✪rtj✁1

p ♣τrq τ P J Ib

trtj✁1
p ♣τ1q, ...✉ τ ✏ Itτ1,...✉ P J Ie

4.3 type checking 83

The function rtj✁1
p is the reverse function of rtjp defined in Definition 4.1.1 and RNVT

is the set of RDF non-literal classes.
From the definition of J Ie this set is minimal, meaning it does not contain any classes

in a subtype relationship. The partial function m2r : J I ✂ Id Ñ URI translates a method
name back to it corresponding property’s URI. The context E maps identifiers to their
types and the variable environment V P Vs is a finite set of associations between identifiers
and Prolog variables V P LVar, in which Vs is the set of variable environments. V♣Idq ✏ V
means the identifier Id is mapped to V.

We use the symbol
△✏to denote the translation operation.

Translation

The first rule we consider, handles negated expressions:

TB✈V , E ✩!E : boolean✇ △✏ let h ✏ ω♣V , Eq in
S ❨ tpred♣E ,V , h, tE✉q✉, not(h)

(not)

This rule creates a new predicate h based on the variables in expression E. It uses the
auxiliary function ω : Vs✂ ℘♣Oq Ñ Literal that takes a variable environment and a set
of OCQL expressions as arguments and returns a literal with a unique functor and all
translated Prolog variables as arguments. For example, the expression

(String a, String b) : !p(a,b)

is translated to

not(pred_1(A,B))

The variable a is mapped to the Prolog variable A and b is mapped to B. The generated
literal pred_1(A,B) is added to the set of sub goals S , together with the environments V
and E .

The next case case handles the if condition, which is translated to the Prolog built-in if
operator (->):

TB✈V , E ✩ if♣E1qthen♣E2qelse♣E3q✇
△✏

let S1, e1 ✏ TB✈E ,V , E1✇ in
let S2, e2 ✏ TB✈E ,V , E2✇ in
let S3, e3 ✏ TB✈E ,V , E3✇ in
S1 ❨ S2 ❨ S3, e1 -> e2 ; e3

(if)

The logical or expression E1||E2 is translated to a predicate with two clauses, one for
E1 and one for E2:

TB✈V , E ✩ E1||E2✇
△✏ let h ✏ ω♣tE1, E2✉q in

tpred♣E ,V , h, tE1, E2✉q✉, h
(or)

For the logical and expression E1 && E2, TB recurses on the two sub expressions E1 and
E2, builds the union of all sub goals generated in this recursion and returns the formula
of comma-separated Prolog expressions e1 and e2.

TB✈V , E ✩ E1 && E2✇
△✏

let S1, e1 ✏ TB✈E , E1✇ in
let S2, e2 ✏ TB✈E , E2✇ in
S1 ❨ S2, e1 , e2

(and)

84 object-oriented logic context query language

The translation of the unification expression is similar to the last rule. But here the
expressions are typed and the application of TE returns prefix formulas pre f ix1 and
pre f ix2 that bind the variables V1 and V2 and that are placed infront of the Prolog
unification of the two variables. The types of the variables are not part of the final Prolog
code. They annotate the code for the final type checking phase after the mode analysis has
been applied. At the end of the type checking phase the type annotations are removed.

TB✈V , E ✩ E1= E2✇
△✏

let S1, V1 : τ1④pre f ix1 ✏ TE✈E ,V , E1✇ in
let S2, V2 : τ2④pre f ix2 ✏ TE✈E ,V , E2✇ in
S1 ❨ S2, pre f ix1, pre f ix2 , V1 : τ1 ✏ V2 : τ2

(unify)

The next two rules describe the translation of the singe-variable template findall and
the tuple template variant:

TB✈V , E ✩ findall♣Var, Condition, BagVarq✇ △✏
let S , e ✏ TB✈E ,V , Condition✇ in
let V1 ✏ pvar♣Varq in
let V2 ✏ pvar♣BagVarq in

S, findall(t, e, V)
where E♣Nameq ✏ a♣C, Dimq

(findall-v)

TB✈V , E ✩ findall♣Var, Condition, vq✇ △✏
let S , e ✏ TB✈E ,V , Condition✇ in
let t ✏ template♣E ,V , tuple♣ai :

τai
, ..q, Template, Nameq in
let V ✏ V♣vq in

S, findall♣t, e, Vq
where E♣Nameq ✏ a♣Tupletai : τai

, ..✉, 1q

(findall-v-t)

The auxiliary function template generates a template term with all arguments bound to
the variables selected in the template tuple and an anonymous variable for all ignored
arguments:

template♣E ,V , tuple♣ai : τai
, ..q, tb1 ✏

v1, ...✉, Nameq✇ △✏

let V1 ✏

✩✫
✪V♣vjq i f a1 ✏ bj

_ otherwise
in

let V2 ✏ ...
in
tuple♣V1, ...q

For example, for the call findall({a=v,c=v2},p(v,v2),bag) with bag:Tuple{a:τ1,b:τ1,c:τ1}
the template returns tuple(V,_,V2), assuming V♣vq ✏V and V♣v2q ✏V2.

Every arithmetic operation is translated to a separate evaluation literal, which is typed
according to Figure 4.11, rule (arith-plus):

TE✈V , E ✩ E1 BinaryArithOp E2 : τ✇ △✏
let S1, V1 : τ1④p1 ✏ TE✈V , E ✩ E1 : τ1✇ in
let S2, V2 : τ2④p2 ✏ TE✈V , E ✩ E2 : τ2✇ in
S1 ❨ S2, V : τ④p1, p2, V isV1 BinaryArithOp V2

(arithmetic expression)

Empty arrays are type compatible with arrays of arbitrary component types:

4.3 type checking 85

TE✈E , t✉✇ △✏❍, rs : a♣❑, 1q (empty array)

Nested arrays are recursively processed:

TE✈E , ttExpr✉✉✇ △✏
let V : a♣τ, Nq④φ ✏ TE✈E ,V , tExpr✉✇ in
let N1 ✏ N � 1 in

φ, rVs: a♣τ, N1q

(nested array)

A property access on a context expression first evaluates the context expression the
identifier is selected on:

TE✈E ,V , ContextExpression.Ident✇ △✏
let V0 : τ0④Pre f ixes ✏ TE✈E ,V , ContextExpressionq✇ in
let V : τ④BindSimpeName ✏

simpleName♣E ,V , τ0, V0, Identq
V : τ④Pre f ixes,BindSimpeName

(property selection)

Processing the ContextExpression results in the Pre f ixes formula and the variable V0.
The function simpleName is called, which translates Ident in the context of τ0. In case the
identifier is selected without further qualification, the context is retrieved from E and V :

TE✈E ,V , Ident✇ △✏✩✫
✪V♣Identq : τ④true E ✩ Ident : τ

simpleName♣E ,V , E♣thisq,V♣thisq, Identq E ✫ Ident : τ

We will now consider the different cases of the simpleName function. A property access
on a non-tuple, non-array type maps directly to the corresponding RDF triple:

simpleName♣E ,V , τ0, V0, Identq △✏
let pName ✏ m2r♣τ0, Identq in
let τarg ✏ ∆♣Ident : τ0q in

V : τarg④rdf(V0,pName,V)

where τ0 ✘Tuple{Args} ❫τ0 ✘ a♣τ✶, Dimq

The function m2r resolves the full property name and via ∆ the type of the property. In
case that τ0 is a Tuple type simpleName returns a prefix, which binds the corresponding
tuple argument to the variable VArg:

simpleName♣E ,V , τ0, V0, Identq △✏
let VArg : τarg, TupleArgs ✏ tupleQueryArgs♣Tuple{Args}, Identq in

VArg : τarg④V0 = tuple(TupleArgs)
where τ0 ✏Tuple{Args}

tupleQueryArgs♣Tupleta1 : τ1, ...✉, ArgNameq △✏
let tτ✉ ✏ tτi⑤ai ✏ ArgName✉
V : τ/i f ♣a1 ✏ ArgNameqV else _ ,i f ♣a2 ✏ ArgNameqV else _ ,....

For example, consider the variable declaration

Tuple{a:int,b:double} v

and the argument access

v.a

86 object-oriented logic context query language

The argument access is translated into:

V0 = tuple(V,_)

The function tupleQueryArgs is applied to generate a comma separated list of arguments,
which equal the first returned variable and otherwise anonymous Prolog variables (_),
e.g.,
tupleQueryArgs(Tuple{a:int,b:int},a)=V:int④V,_
The next clause handles array types. The findall predicate backtracks over all members

of V0 and calls the formula ComponentExpr generated for the component type. The comp
and arrayOf functions defined in the beginning of this section are utilized to decrease
resp. increase the dimension of the array type.

simpleName♣E ,V , τ0, V0, Identq △✏
let τ0comp ✏ comp♣τ0q in
let Vmember P LVar in

let Vcomp : τcomp④ComponentExpr ✏ simpleName♣E ,V , τ0comp, Vmember, Identq in
let τ ✏ arrayOf ♣τcompq in

VList : τ④findall♣Vcomp,member(Vmember,V0),(ComponentExpr),VList)

where τ0 ✏ a♣τ✶, Dimq

For example, called with a property access p on a nested array Crsrs,
simpleName♣E ,V , Crsrs, V0, pq with m2r♣pq ✏ prop results in the formula:

findall(Vcomp,

(member(Vmember,V0),

findall(Vcomp✶,

(member(Vmember✶,Vmember),rdf(Vmember✶,prop,Vcomp✶)

),VList✶)

),VList)

The class predicates C✁ → select and C✁ → one define the implicit variable this : C and
may define an explicit instance variable v. We only consider the case where the instance
variable v is defined. Both v and this are added to the type and variable environment.
In the select case a findall expression gathers all bindings that fullfill the condition
Condition:

TE✈E ,V , C✁ → select♣v⑤Conditionq✇ △✏
let call ✏ ω♣tCondition✉q in
let V P LVar in

tpred♣E ❨③ tv : C, this : C✉,V ❨③ tv : V, this : V✉, h, tCondition✉q✉,
VAll : a♣C, 1q④findall(V,call,VAll)

(select)

In case of the one predicate only the environments are extended and TE is called
recursively on Condition:

TE✈E ,V , C✁ → one♣v⑤Conditionq✇ △✏
let V P LVar in
let S , V0④pre f ix ✏

TE✈E ❨③ tv : C, this : C✉,V ❨③ tv : V, this : V✉, Condition✇ in
S , V : C④pre f ix

(one)

Property existence checks are processed similarly:

4.3 type checking 87

TB✈E ,V , contextExpression✁ → exists♣Ident1....Identnq✇
△✏

let S , V : τ, φ ✏TE✈E ❨③ tthis : C✉,V ❨③ tthis :
V✉, Ident1....Identn✇ in
S , ④once((φ))

(exists check)

Here the resulting literal is a pure check, which is wrapped by the once/1 literal,
so backtracking is avoided. Now we consider the different predicate mapping cases
described in Section 4.2.4. The first case is N0, N1...Nr Ñ N. The mapping is applied on a
context expression with an array type. A predicate p is mapped onto this expression and
its first argument type is a supertype of the context expression’s component type:

TE✈E ,V , contextExpression : τ✁ → p♣e1 : τa1
, ..., er : τarq✇

△✏
let τ0 ✂ τ1 ✂ ...✂ τr�1=∆♣pq in
let S , Vexprs : τ, φpre f ix ✏TE✈E ,V , contextExpression✇ in
let tV, Vout, Vall✉ ✏ uniqueVars♣q in
let Sp, tVp1, ...Vpr✉④φparams ✏ genParamsList♣τ, V,e1, ..., erq in
S ❨ Sp, Vall : a♣C, 1q④φpre f ix,

findall(Vout,

(member(V,Vexprs),φparams,p(V,Vp1,...,VprVout)),

Vall)

where τ ✏ a♣τ✶, Dimq ❫ τ0 :→ comp♣τq ❫ τr�1 ✏
a♣τ✶r�1, Dimr�1q ❫Dim ✏ Dimr�1

(map-n-n)

The predicate facilitates the genParamList function that evaluates the arguments of the
mapping in the context of the component type. Therefore we replace or add this to the
environment and evaluate TE on the sub-expressions.

genParamsList♣τ, V, t1, ..., tnq
△✏

let S1, V1, φ1 ✏TE✈E ❨③ tthis : τ✉,V ❨③ tthis : V✉, t1✇ in
...
let Sn, Vn, φn ✏ ... in➈

i Si, tV1, ...Vn✉④φ1,...,φn

The second mapping case N0, N1...Nr Ñ R is shown below:

TE✈E ,V , contextExpression : τ✁ → p♣t1 : τ1, ..., tr : τrq✇
△✏

let τ0 ✂ τ1 ✂ ...✂ τr�1=∆♣pq in
let S , Vexprs : τ, φpre f ix ✏TE✈E ,V , contextExpression✇ in
let tV1, ..., Vr, Vall1 , ..., Vallr , Vout✉ ✏ uniqueVars♣q in
let Sp, φparam1

, ..., φparamr , tVp1, ...Vpr✉ ✏
genParamsList♣τ, V,t1, ..., trq in
S ❨ Sp, Vout : a♣C, 1q④φpre f ix,

findall(Vall1,(member(V,Vexprs),φparams1
),Vall1),...

findall(Vallr,(member(V,Vexprs),φparamsr),Vallr),

p(Vexprs,Vall1,...,Vallr,Vout)

where τ ✏ a♣τ✶, Dimq ❫ τ0 :→ comp♣τq ❫ τr�1 ✏
a♣τ✶r�1, Dimr�1q ❫Dim ✏ Dimr�1

(map-n-r)

Initially, the solutions for the contextExpression are bound to Vexprs. The function
genParamsList generates the Prolog formulas for all sub-expressions ti. Since they are
evaluated separately for each member of Vexpr a findall literal is added to each formula
φparamsi

to collect the bindings in the variables Valli . Now the mapped predicate p is called
with Vexprs and the lists of mapped parameters Valli . This call exclusively binds the output
parameter Vout.

88 object-oriented logic context query language

Sub-predicate Processing

To complete the translation process, we iterate on the collected set S of sub-predicates
pred♣E ,V , h, tE1, ..✉q. For every expression Ei we generate a new clause with head h and
the translation of expression Ei as its body. The clause sub-pred formalizes this step. It is
iterated on all the sub-expressions Si of Ei. This iteration terminates since we only operate
on sub-expressions.

TE✈pred♣E ,V , h, tE1, ..., En✉q✇
△✏

let S1, φ1 ✏ TE✈E ,V , E1✇ in
...
let Sn, φn ✏ TE✈E ,V , En✇ in
S1 ❨ ...❨ Sn,h:-φ1....h:-φn.

(sub-pred)

The transformation rules are applied recursively on an OCQL expression until it is
completely transformed into a type-annotated Prolog goal and predicates.

4.3.5 Mode Analysis and Final Type Checking

Now we apply our adaptation of Lu’s mode analysis from Chapter 3 to the generated
Prolog code. The analysis annotates every program point pp with mode information
rv④ms about every variable v used in the enclosing clause.

We reconsider all unifications and predicate calls that were postponed in the first check.
The function mo♣V, ppq Ñ t f , g, o✉ represents the mode of the variable V at the program
point pp.

First, we validate that the mode of each predicate mapping expr->p(a1, ...) is according
to the assumptions we made in the pre-mode analysis type checking phase. The predicate
mapping is translated to a predicate call (p(V1,...,Vn))pp, where the following premise
must hold:

mo♣V1, pp✁q, ..., mo♣Vn✁1, pp✁q ✏ tg✉, mo♣Vn, ppq ✏ tg✉
E ✩ ♣p♣V1, ..., Vnqqpp : Formula

Meaning, before the call (program point pp✁) the variable V1 bound to the result
of expr must be ground and all the expressions that have been evaluated on the expr
(V2, ..., Vn✁1q. After the evaluation (pp) the variable in the last argument must be ground,
too (mo♣Vn, ppq ✏ tg✉). This is necessary, since the types for type parameters of mapped
predicates are inferred under this assumption in the initial type checking part.

Second, the type check of unifications and predicate calls is completed. Since the initial
type checking step already tested the type compatibility relation ➽ we do not need to
include the subtype condition in the premise.

Figure 4.15 lists the corresponding typing rules.
The rule unify-g and unif-t-eq consider the trivial cases of ground operands and

operands of the same type. In both cases no illegal dataflow between subtypes is possible.
The following example illustrates a problem in presence of type parameters. The

superscript m, with m ❸ ∆, denotes a mode of a variable at the given program point:

<T extends C> pred(T p) : (Sl l):

l=Sl->one() &&

pt f✉= ltg✉; // typing error, although bound∆♣Tq :→ Sl

Let’s assume Sl ➔: C and Sv ➔: C, and the predicate pred is called with an unbound
variable v of type Sv:

(Sv v): p(v)

The parameter p is unified with variable v of type Sv. In the body of pred, the parameter
p is unified with l of type Sl . This unification is not type safe. Therefore non-ground

4.3 type checking 89

mo♣V1, ppq ✏ mo♣V2, ppq ✏ tg✉
E ✩ ♣V1 : τ1 ✏ V2 : τ2qpp : Formula

(unify-g)

τ1 ✏ τ2

E ✩ ♣V1 : τ1 ✏ V2 : τ2qpp : Formula
(unify-t-eq)

τ1 ✘ τ2, mo♣V1, ppq ✏ tg✉, mo♣V2, ppq ✘ tg✉,
tp♣τ2q ✏ ❍, bound∆♣τ1q ➔: τ2

E ✩ ♣V1 : τ1 ✏ V2 : τ2qpp : Formula
(unify-no-tp)✝

∆ ✩➔ T → p : τ, in♣pp, ζ, τq ✏ ♣ζ✶, τ✶q, in f er♣T, τ✶, ζ✶q ✏ T : η,

out♣pp, ζ, τq ✏ ♣ζ✷, τ✷q
E ✩ p♣a1 : ζ1, ...qpp : Formula

(gen-pred-call)

mapped♣ppq, mo♣V1, ppq ✏ ...mo♣Vr, ppq ✏ tg✉
E ✩ p♣V1, ...Vr, Voutqpp : Formula

(mapped-pred-call)

✝the case where lhs and rhs are switched is analogous

Figure 4.15: Final typing rules for delayed checking

variables that contain type parameters in their type τ must not be unified with a (concrete)
subtype of τ or its bounds.

The premise of rule unify-no-tp rules out the case where V2 contains type parameters
because the concrete type of the parameter is not known and must only be unified with
variables with the exact same type (parameter), which is covered by unify-t-eq.

In the Java type system array types are covariant, meaning τ1 ➔: τ2 ñ τ1rs ➔: τ2rs. This
can lead to runtime errors, when values are assigned to an array element, because the
component type of the array can differ from the declared type of a variable that has
statically been type checked:

Integer ints = new Integer[1];

Object[] objs = ints;

objs[0] = "value"; // <- runtime error

Arrays are also covariant in OCQL, but we avoided the need for runtime type informa-
tion. Since arrays are immutable once bound, the rule unify-no-tp statically ensures that
modifications after the unification are not possible. Considering the example above, the
assignment of ints to objs is only valid if ints is ground. This assignment is also valid in
case that τ1 contains a type parameter. Again, the array cannot be modified and therefore
a variable can safely be bound to a variable v : τ2, where bound∆♣τ1q ➔: τ2

26.
The rule gen-pred-call considers generic predicate calls and facilitates the infer function

from Section 4.3.3 to infer the output types.
Rule mapped-pred-call ensures that the first r arguments of a mapped predicated call

are ground, because the translation to Prolog is based on this assumption. It facilitates a
function mapped, which checks if a program point represents a mapped predicate call.

Figure 4.16 shows the final typing rules for findall calls with single variable templates.
They are similar to the first rules in Figure 4.15. Instead of an explicit unification they type
the unification of the array of bindings for V and the Vbag variable. The mode for the Vbag

variable is taken from the program point pp before the call of findall. The mode for the
array of bindings is known at the next program point pp�, after findall has backtracked
over all solutions for Condition. The rule findall-no-tp tests the mode {g} for V and not the
mode of the array of all bindings. But for mode {g} the modes are obviously the same.
The typing rules for the findall tuple template are very similar and are therefore omitted.

26 This is similar to the typing of out type parameters in C#, a construct that allows read-only covariance in C#
Generics Albahari and Albahari [8].

90 object-oriented logic context query language

mo♣V, pp�q ✏ mo♣Vbag, ppq ✏ tg✉, E ✩ Condition : Formula

E ✩ findall♣V : τ1, Condition, Vbag : τ2qpp : Formula
(findall-g)

τ1 ✏ τ2, E ✩ Condition : Formula

E ✩ findall♣V : τ1, Condition, Vbag : ø2qpp : Formula
(findall-eq)

mo♣V, pp�q ✏ tg✉, mo♣Vbag, ppq ✘ tg✉, tp♣τ2q ✏ ❍,

bound∆♣τ1rsq ➔: τ2, E ✩ Condition : Formula

E ✩ findall♣V : τ1, Condition, Vbag : ø2qpp : Formula
(findall-no-tp)✝

Figure 4.16: Final typing rules for findall calls with a single variable template
✝the case where lhs and rhs are switched is analogous

4.3.6 Mode Checking for Other Unsafe Expressions

Next to type checking, the mode analysis is used to detect unbound variables in arithmetic
expressions and string operations. Variables with mode o and f must not be passed to an
argument expecting a ground variable, e.g., the following expression is not valid, since
the variable i is not ground:

(int i) : i + 1 > 0

Type casts are checked type conversions to a subtype, therefore casted expressions must
be ground.

4.4 summary

This chapter introduced the syntax and semantics of the Object Context Query Language,
a statically typed logic language based on a polymorphic type system with subtypes. The
type system is based on the context interface hierarchy J Ie, which contains greatest lower
bounds for the partial order on the subtype relationship. Next to context interfaces it
builds on the Java basic type wrapper classes. In contrast to Java, the wrapper classes
reflect the subset relationship of the contained values, e.g., Float is a subtype of Integer.
These component types are complemented by polymorphic array types, and tuple types
over array and component types.

In the second part we have shown a three-step type checking method based on typing
rules, mode analysis and a reduced variant of the type parameter inference algorithm
for Java. Finally, we described the semantics of the language by a mapping to a subset of
Prolog.

5C O N T E X T M A N A G E M E N T I N F R A S T R U C T U R E A N D S E RV I C E
A S P E C T S

This Chapter presents an OSGi-based context management infrastructure (CMI), which
facilitates RDF Schema (RDFS) for the specification of context models. We present the
general architecture of the infrastructure, its adaptation facilities, and how OCQL can
be used or embedded by host languages. We close the Chapter with an application of
the CMI to aspect-orientation programming. We present the aspect-language CSLogicAJ,
which embeds OCQL into its pointcut language and makes use of the adaptation and
context query facilities.

5.1 context management infrastructure

The Semantic Web stack was designed to aggregate data and data schemas from different
sources and reason on this aggregated information. A large number of context manage-
ment approaches have argued for Semantic Web-based context modeling [169, 204, 205],
since this matches the demands for aggregation of context information well.

The CMI uses RDF Schema since it is the common base for semantic web based
knowledge representation languages. This ensures compatibility with a large number of
existing RDF resources on the web. The semantically richer OWL family can be integrated
via RDFS serializations [72].

The central component is an RDF-based context management system (CMS), responsible
for context data aggregation, managing context requests, and evaluating queries. The
Figure 5.1 depicts an overview of the system.

Context sources are realized as OSGi services implementing the interface IContextSource,
see Figure 5.2. They either push RDF data to the context aggregator on context changes
or the context aggregator polls for changes via the getSnapshot() method. Every context
modification leads to a new snapshot of the context data following a common approach
for context-management systems [213]. By default older snapshots are only kept while
they are locked by a query. Context consumers may lock older snapshots in order to
refer to historic contexts, e.g., previous locations. Figure 5.3 gives an example. At first the
context data is updated by a context source resulting in snapshot s1. After that, query

Context Management System

Context Data

OCQL

Compiler

IQuery

 Location

 Time

Contacts

IContextAggregator

Context Source
Services

RDF

 ICompile

 (OCQL AST)

Context Aggregator

Local Contact
Application

IContextSource

Figure 5.1: Overview of the context management system

91

92 context management infrastructure and service aspects

public interface IContextSource {

String getId();

String[] getRDFSchemas();

void start(IContextAggregator aggregator);

void stop();

InputStream getSnapshot();

}

Figure 5.2: The IContextProvider interface

t
s
1 s

2

query 1

query 2

s
3

Figure 5.3: Context data snapshots

1 starts on snapshot s1. A new snapshot s2 is created that does not influence query 1.
Now query 2 is starts and is evaluated on s2. Once query 1 is processed, snapshot s1 is
released and after query 2 is finished snapshot s2 is deleted. The snapshot s3 is created
while query 2 is running, but does not effect the queries.

An OCQL query can result in follow-up queries, since context objects are returned in a
shallow fashion. Resources referenced by property relationships are retrieved lazily via a
proxy and therefore a query must block its queried snapshot until all relevant data has
been retrieved.

This cannot be automatized in general, since the system does not know which properties
will be accessed1. Consequently, clients must manually manage the lifetime of query by
explicitly invalidating a service request once the processing of query results has come to
an end.

Clients use the IQuery interface shown in Figure 5.4 to query for contexts. A query
returns an object of type IResult which encapsulates the binding of variables contained
in the query and the snapshot timestamp. Once the result is fully processed a client must
call the IResult.release() method. The system calls this method once IResult is garbage
collected or the client bundle is stopped. But clients should free the snapshot immediately
after the result is fully processed to release system resources. The request parameter will
be explain in Section 5.1.3.

A query is always evaluated on a fixed set of context source snapshots as well as
their associated schemata2 and is not affected by snapshots created in parallel or other
context source data requested by other queries. The RDF schemas are passed to the query
methods in the first parameter. The second parameter takes the whole query. Alternatively
a precompiled predicate can be called via the queryCompiledPredicate method. It has
the same parameters as the query method, but additionally the caller must specify the
module, the predicate was defined in. OCQL takes over the module concept from Prolog3,
Section 5.1.2 will explain predicate compilation and encapsulation in more detail.

1 Only if the whole transitive closure of referenced properties has been accessed.
2 including its entailed rdf triples, e.g., the closure of the subtype relationship
3 See Section 2.3.2.

5.1 context management infrastructure 93

public interface IQuery {

IResult query(ContextRequest request,

String[] rdfSchemas,

String query) throws OCQLException;

IResult queryCompiledPredicate(String module, ...);

...

}

public interface IResult {

long getSnapshot();

HashMap<String,Object> getBindings();

release();

}

Figure 5.4: Requesting context - dynamic approach

5.1.1 Context Listeners

Besides normal context queries, the CMS supports context change listeners. For ex-
ample, a client can react to updated sensor information or service arrival/departure.
Figure 5.5 contains the corresponding listener registration methods. A client passes a
IContextChangeListener instance to the query which is notified once the queried context
information changes. The second to fourth parameters are equivalent to the synchronous
query and take the request, rdf schemas, and query expression to be observed.

The last parameter defines under which constraints the listener is notified. A logic
expression on mapped predicates compares the current results with the results from
the previous notification. Each predicate is applied to variables declared in the query.
The predicates are mapped to the list of current and the previous substitutions of the
variable, following the scheme from Section 4.2.4. But here the list of the previous results
is prefixed to the arguments, so that the predicates can compare the new and old values:

predicateName♣OldList, NewList, OptArg1, . . .q

Two comparison predicates are predefined for changed expressions: ne/2 and th/3.
The first checks if the lists are equal, the second if a certain threshold is exceeded. The
expression below triggers the listener if the value of variable v1 has changed and the
difference between the old and new value of v2 is greater than 1:

"ne(v1) && th(v2,1)"

The predicate ne/2 compares primitive types and context class types. For the later it
applies a shallow comparison of context class properties. First, it checks if the URI of
the instance itself changed. Next, it checks if any direct property has changed. Arbitrary
predicates, e.g., a deep equivalence check, can be defined and used instead.

5.1.2 OCQL Compilation

Queries and listeners can use pre-compiled predicates. Figure 5.6 shows an excerpt of the
compile interface. The pre-compilation has two advantages. First, the pre-compilation
avoids runtime compilation overhead. Second, the static correctness of the queries can be
checked before the query is executed. Either at configuration time of the application or
even statically by a compiler, as realized in the CSLogicAJ aspect language in Section 5.4.
The compile() method takes a module name as a first parameter. All OCQL predicates
contained in the src parameter are compiled into this module. To query these predicates
IQuery.queryCompiledPredicate() takes the module name as its first argument.

94 context management infrastructure and service aspects

public interface IQuery {

...

void addContextListener(

IContextChangeListener listener,

ContextRequest request,

String[] rdfSchemas,

String query,

String changedExpression) throws OCQLException;

void addCompiledContextListener(String module, ...) ... ;

}

public interface IContextChangeListener {

void changed(IResult result);

ContextRequest getRequest();

}

Figure 5.5: The query and listener interfaces

public interface ICompile {

void compile(String module,

String[] rdfSchemas,

String src) throws OCQLException;

void compileAST(...) throws OCQLException;

}

Figure 5.6: The compilation interface

The OCQL was designed to be embedded in other languages. Host languages can
parse OCQL as part of the language’s common compilation step. The parser builds an
abstract syntax tree (AST), which does not have to be build again. The CMI takes the
parsed AST as an input. It applies static analysis, type checking, and compiles the AST to
Prolog. The input format for the AST is a nested compound term representation derived
from the OCQL EBNF given in 4.7. Each parsed non-terminal (NT) is represented as a
compound term with the lower letter functor NT. For example, the token int is compiled
to qualifiedName(identifier(’int’),[]), representing the non-terminal QualifiedName.
Sub-expressions are represented as comma-separated arguments and star expressions
like (expr)* are wrapped by brackets, corresponding to Prolog lists. Below is an excerpt of
the OCQL EBNF we will need for the mapping:

Predicate ::= ’predicate’ [TParams] Ident ’(’ Formals ’)’ [’:’ ’(’ Formals ’)’] ’:’ Condition ’;’

CompOperation ::= TermOrParen Comparator TermOrParen

Comparator ::= ’=’| ’<’ | ’>’ | ’<=’ | ’>=’

TermOrParen ::= ParenTerm | Term

ParenTerm ::= ’(’ Term ’)’

Term ::= QualifiedName | Int | ...

QualifiedName ::= Identifier | ’this’ (’.’ Identifier)*

Figure 5.7 illustrates the mapping of a predicate p which compares the argument var with
the value 1. At first an AST is build up from the concrete syntax. We use abbreviations
for the CompOperation, QualifiedName, etc. Every non-terminal symbol is mapped
to an AST node and references its right-hand side symbols. Each terminal node refers
to a terminal symbol, which represent the leaf of the tree. In the serialized form each
node wraps the sub-symbols as a compound term. Optional sub-rules, which have been

5.1 context management infrastructure 95

comp

qn int

1

predicate p(int var):
 var = 1;

predicate(
 identifier('p'),
 '/opt',
 formals(
 formalDec(
 qualifiedName(identifier('int',[]),
 identifier('var')
),[]
),
 '/opt',
 condition(
 compOperation(
 qualifiedName(
 identifier('var'),[]
),
 '=',
 int(13)
)
)
).

Concrete Syntax AST Term Serialized AST

id

var

pred

fdecs

fdec

cond

=

id

p

id

var

qn

id

int

Figure 5.7: Mapping from concrete to abstract syntax and to a term-serialized form

rejected by the parser, are replaced by the ’/opt’ atom. The implementation Chapter 6

will describe the analysis and compilation of the AST to a Prolog predicate further.

5.1.3 Requesting Context

A calling client or the host language4, which embeds the query, must specify which
context sources should be queried. For this purpose the framework offers different ways
to request context sources. A client can either request context sources explicitly by their
type or attributes, or implicitly by specifying the RDF schemas a context source must
provide.

The first is suitable if a concrete source, e.g., a GPS sensor, is needed by a client. The
second is useful if only the context kind, e.g., location information, is relevant for the
client and the active context source may freely be chosen and switched by the system.
Additionally, both requests can be combined with a LDAP filter string to filter context
sources via meta-data attached to the context source services. The LDAP filter matching
of services is already built into OSGi service queries, see Section 2.1.2. The filter allows for
fine-grained selection of context-sources based on attributes attached to context sources.
The predefined filters include equality and comparison checks of attribute values of a
single source.

LDAP filters lack the means of weighting service attributes, which is often necessary to
select between different context sources. For this reason, we added the min(attribute) and
max(attribute) conditions which are true for the sensor with the minimum resp. maximum
property value. If several services have the same attribute value the condition is true for
an arbitrary service. Figure 5.8 shows a service interface used to request contexts. The
parameters of the request methods have the following meaning:

source is an array of context sources types, which must be subtypes of IContextSource.

schema is an array of schema URLs

strategy is filter expression string following the syntax described above. If left empty
("") no further strategy is applied. The system will use the filter (object-
class=org.cs3.context.IContextSource) in this case.

cardinality is the cardinality of the request. It is specified via an enumeration with the
options “single” and “multiple”. In case of the “single” option only one (arbitrary)

4 In the following we will use the term client to subsume both a runtime client and host language.

96 context management infrastructure and service aspects

public interface IRequest {

ContextRequest requestSource(

BundleContext bc,

Class source,

String strategy,

Cardinality cardinality,

int history);

ContextRequest requestSchema(

BundleContext bc,

String schema,

String strategy,

Cardinality cardinality,

int history);

public void removeRequest(ContextRequest schema);

...

}

public interface ContextRequest {

void release();

}

Figure 5.8: Requesting context - dynamic approach

context is chosen which matches the filter. Otherwise all matching context sources
are selected at once. In the later case the data from all context sources is available at
once.

history is the number of snapshots that should be kept. The parameter is 0 if no additional
snapshot should be kept. Queries can facilitate previous snapshot via the history

predicate, see Section 4.2.5.

Context sources can also be requested and removed dynamically via the IRequest inter-
face. The IRequest API allows a client to change the requested contexts at runtime, for
instance based on program state or user interaction. For example, a user might be asked
which address book service should be used to reason about contacts in context-sensitive
application. Each request is represented as a ContextRequest instance and must be re-
moved, once the context is not needed anymore by calling the release() method. Similar
to the context snapshots this happens automatically once the enclosing bundle is stopped
or the ContextRequest object is garbage collected.

5.1.4 Queries and Language Integration

Context-query languages typically follow two different approaches for integrating a
context model into a programming language.

The first category of approaches define the context model in a host programming
language like Java5. This has the advantages that only one compiler is needed, static type
safety is easily achieved and processing of query results need no further type mapping.

Approaches of the second category use a different type system for the query language.
Here, the query language types are optionally mapped to host language’s types after
completing a query. A lot of semantic-web based approaches [169, 204, 205] and object-
relational mappers for relational databases belong to this category. A non-fixed type
binding to a statically typed language is reasonable in case of a Semantic Web-based
approach, since a class definition may vary over different queries in the system. For
example, a type Contact has a lastfmUsername property for queries related to the last.fm

5 e.g., McFadden et al. [137]

5.1 context management infrastructure 97

Host Language Types

RDFS Classes

Untyped Generic
CQL Type

Representation

Host Language Types

RDFS Classes

Static Mapping
of CQL Types

Host Language Types

RDFS Classes

Static Mapping C1

Static Mapping C2

…

RDF Schema
Set 2

RDF Schema
Set 1

1. Untyped 2. Fixed
Static Types

3. Context-Sensitive
Static Types

Figure 5.9: Three different alternatives of integrating OCQL with a host language

adaptation described in the introduction. Other queries, which have been independently
developed, use the Contact type without this property. This approach is more flexible,
since the type of a context entity may change dynamically when a new adaptation and
sensors are loaded into the system.

But also more effort is necessary in processing query results, since context types do
not have a fixed mapping to host language types. Since the tradeoff between the two
approaches is not in general solvable the CMI supports different levels of host language
integration with RDFS types:

1. A client does not embed OCQL. OCQL queries are send as strings to the query
method of the IQuery interface. The results of the queries are bound to a generic
objects graph that contains key-value pairs representing RDF properties. All nodes
are of the type IContext depicted in Figure 5.10. In [175] we applied this variant to
the context-oriented programming language JCop. The JCop OCQL integration is
further discussed in Section 7.2.

2. All RDF schemas are statically known. The RDFS classes are once mapped to Java
interfaces and clients are compiled against these interfaces. In case that no runtime
loading of querying clients will happen, this is a suitable solution and does not
involve further language extensions.

3. A language extension statically types context classes only against the referenced
RDFS classes in their usage context. Meaning different adaptation/query modules6

using different sets of RDFS schemas are compiled against different context classes.
Once a context class is passed out of module the graph looses all its static typing.
In this case the object graph based on IContext object from option 1 is passed to
other modules. So the third solution is a tradeoff between option 1 and 2 and its
application is most suitable when the results of a query is not passed outside the
query’s module. The aspect language presented in Section 5.4 follows this approach.
Each aspect is considered as a module with a separated context model.

Figure 5.9 illustrates the three different approaches and different mappings of RDFS
classes to Java types. The CMS offers two IQuery services. The first returns untyped

6 The adaptation module could be an OSGi plugin, an aspect or other modules encapsulating code.

98 context management infrastructure and service aspects

results (service with attribute typed=”false”) and the second typed results (attribute
typed=”true”). Variant 1 and 3 use the untyped approach, variant 2 the typed approach.
For the typed approach the calling client must ensure that corresponding Java context
interfaces are available, their packages are exported and imported by the calling client
bundle.

We will now illustrate variant 1 and 2 with small examples and combine the second
variant with pre-compiled predicates. The most flexible but completely untyped solution
uses the generic IContext interface for representing context. Let’s assume we want to
retrieve our own contact entry from the address book, which is provided by a context
source based on the schema introduced in Section 4.1.2. We extend the RDFS class Contact
with a boolean property me, marking the contact entry of the device’s user:

@prefix ex: <http://www.example.org/>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

ex:Contact rdf:type rdfs:Class.

ex:me rdf:type rdf:Property;

rdfs:domain ex:Contact;

rdfs:range xsd:boolean.

Untyped Dynamically Compiled Queries

At first we need a reference to the untyped IQuery service. Service retrieval in the CMI is
based on the ClientService, which will be presented in detail Section 5.3. Here we assume
an instance of the ClientService is already available. It provides the getService() method,
which we use to retrieve a service of type IQuery with the attribute typed=false:

BundleContext bc;

IRequest ir = clientService.getService(IRequest.class);

ContextRequest cr =

ir.requestSource(bc,AddressBook.class,"",Cardinality.single);

IQuery iq = clientService.getService(IQuery.class, "(typed=false)");

As a first parameter we pass an array of RDF schemata URLs the query is compiled with.
The second argument is an OCQL query string. It queries for the users own Contact entry
in the address book. The Contact instance is marked with the boolean property me:

IResult r = iq.query(

cr,

new String[]{"http://sam.iai.uni-bonn.de/cmi/contact.ttl"},

"namespace ex = \"http://www.example.com\";" +

"(ex.Contact c) : c = ex.Contact->(me)");

String surname =

(String)((IContext)r.getBindings().get("c")).getProperty("surname")[0];

iq.releaseQuery(r);

The query is dynamically compiled against the contact.ttl RDF schema and returns an
IResult object containing a list of variable bindings. The Contact object is represented
by an object of type IContext. Via the getProperty() method we retrieve the surname

property of type Object, which we cast to the type String. An application of this variant
for context-oriented programming is presented in Section 7.2.

Typed Pre-Compiled Queries

The compiled variant is very similar, but separates the compilation and query step. The
typed variant of the IQuery service returns J Ie types. The ICompile interface is retrieved
similar to the IQuery interface, but here no further LDAP attributes must be given, since
only one service exists. We assume the ir and cr instances are already set. The predicate

5.2 query context sources 99

public interface IContext {

public String getSensorId();

public Object[] getProperty(String fieldName);

public String[] getPropertyNames();

public long getTimestamp();

public String getContextClass();

public IContext castTo(String uri);

public boolean isSubTypeOf(String uri);

}

Figure 5.10: Generic context class IContext

me() is compiled into module module1 and queried from the same module. The bindings
of the result are still typed Object, but we can now cast it to the type Contact, which
contains the method getSurname().

ICompile ic = clientService.getService(ICompile.class);

IQuery iq = clientService.getService(IQuery.class,"(typed=true)");

// get IQuery and ICompile service

ic.compile("module1",

cr,

new String[]{"http://sam.iai.uni-bonn.de/cmi/contact.ttl"},

"namespace ex = \"http://www.example.com\";" +

"predicate me(ex.Contact c) : c = ex.Contact->(me)");

IResult r = iq.query("module1", "(Contact c) : me(c)");

String surname = ((Contact)r.getBindings().get("c")).getSurname()[0];

5.2 query context sources

The query context sources (QCS), introduced in Section 4.2.6, are implemented in Java.
They implement the ContextSource interface and contain one query method for each query.
Since there is not necessary a Java representation for a context class7 we cannot refer
to mapped rdf classes in regular Java code. For this reason each query method has an
RDFSClass annotation attached, representing the RDF class returned by the method. The
only parameter must be of the type Map<String,Object> taking key value pairs with
values of type string or basic types.

Figure 5.11 illustrates this with the last.fm testeometer Web service that is wrapped in
an equally named method. Query methods must return an instance of the type Snapshot
that contains the expiration time of the data, and the RDF graph. The type declaration
in the @RDFSClass annotation describes the returned RDF type of the method, which is
necessary for the static type safety of the query language.

The connection to the Web service and the mapping to RDF is in the responsibility of
the ContextSource.

5.3 service discovery and interception

The CMI builds on Ditrios8 [174], an OSGi extension for service management and
interception. The interception mechanism offers means for runtime service adaptation. A
full description of Ditrios can be found in [180], here we only describe the parts relevant
for this thesis.

7 except for mapping variant 2 in Section 5.1.4
8 DIstributed TRacking and Interception Of Services

100 context management infrastructure and service aspects

public interface Lastfm extends ContextSource {

@RDFClass(type="http://fm.last.Artist",list=true)

Snapshot testeometer(Map<String,Object> parameters);

}

interface Snapshot {

int getExpirationTime();

InputStream getData();

}

Figure 5.11: Lastfm context source

public interface ClientService {

<T> T getService(Clazz<T> clazz);

<T> T getService(Clazz<T> clazz, String ldapFilterExpression);

...

}

Figure 5.12: The client service interface, Ditrios’ entry point for service searching and tracking

Searching, tracking and service provisioning is realized by Ditrios while remaining
fully transparent to service consumer. Ditrios replaces the OSGi API for service searching
and tracking with the ClientService interface. The ClientService establishes communication
between client applications and Ditrios and thereby provides access to registered OSGi
services. Figure 5.12 shows an excerpt of the ClientService interface and its getService()
methods9, which retrieve a service of type clazz. They configure and return a proxy
instance to the consumer bundle10. This indirection enables flexible control over services
and allows for generic adaptation triggered by method calls. Ditrios offers an service
interception hook which is used by the aspect language CSLogicAJ for runtime weaving
of aspects (see Section 5.4). A client inquires services via its ClientService by means of
the common OSGi LDAP filter definition.

5.3.1 Proxy Indirection

All services belonging to the same filter are wrapped within a proxy object. An arbitrary
service is chosen as the default service which is then transparently utilized by the client.
This default service is switched automatically once the bound service becomes unavailable
and alternatives are available. This behavior can further be configured by the service
adaptation mechanism described in the Section 5.3.2. So clients usually do not have to be
aware of the proxy indirection and let the architecture handle stale references, service
unavailability, and service substitutions.

Clients initiate their communication with the Ditrios framework by acquiring a
ClientService instance which is thenceforward exclusively assigned to it. Instead of
retrieving and tracking a Ditrios API service the ClientService itself is designed as a
service and only needs to be registered with the framework in order to be used. Configu-
ration and tracking of the ClientService is realized by Ditrios. This dependency inversion
has also been named the OSGi Whiteboard pattern [10].

9 Clients referring to all registered services are not considered in this thesis. Similar getServices() methods can
easily be added to Ditrios, but would have bloated this Chapter with additional cases which mostly repeat the
single service case.

10 The full specification of the ClientService can be found in [180], where it is named DitriosClientService

instead.

5.3 service discovery and interception 101

OSGi/Ditrios

:Client
Bundle1

:GPSSensor

ILocation

:GSM
Localization

ILocation

:ClientService

:ServiceProxy

Service
Ref1

Service
Ref2

perform calls on
ILocation interface

getService〉｠〉objectclass=ILocation《を《

create proxy and
return to client

Forward method calls
to selected service

Figure 5.13: Ditrios service lookup workflow

After that the client requests one or more services by defining a search request. All
requests are delegated with the help of the ClientService to the Ditrios core system that
in turn attempts to track the corresponding services. A proxy instance wrapping all
matching services will be created for each request. References to the proxies are then
returned to the ClientService so that the owning client can utilize them over the API.
Every status change of the requested services is reflected by an event, which informs
corresponding clients provided that they implement the appropriate event listener.

Figure 5.13 depicts the workflow. An instance of ClientBundle1 requests a service with
interface ILocation from the ClientService instance, which returns a Proxy instance
configured with references to services registered by GPSSensor and GSMLocalization

bundles. One of the services is chosen by default, since no priority is defined in the filter
expression.

5.3.2 Service Adaptation

In the CMI, service adaptation is achieved by modifying attributes, reconfiguration the
service references, or by service call interception.

The later is supported by Ditrios, which offers an infrastructure for method call
interception. Interceptors must implement the interface DitriosInterceptor, see Figure
5.14, and register themselves as services. Having done that, the interceptors are able to
intercept all service method calls.

An interceptor calls the original method or activates the next interceptor by calling
processor.proceed(..) following a common AOP technique. The target service and argu-
ments might be altered in between. An interceptor might change the default service by
accessing the corresponding ServiceProxy via the DitriosFacade.

An interceptor must provide a priority value; by default it is 0. Interceptors with higher
values have precedence and are executed before interceptors with lower values.

102 context management infrastructure and service aspects

ServiceProxy

void setActiveService(Object service)
void setTransactionMode(boolean mode)
boolean getTransactionMode()

InterceptionProcessor
Object proceed(Object target, Object[] args);

DitriosInterceptor

Object invokeAdvice(
 DitriosAdviceProcessor processor,
 DitriosFacade ditriosFacade,
 Object targetService,
 Object[] args)
int getPriority();

DitriosFacade

DitriosServiceProxy getServiceProxy()
Bundle getBundle(String name)
DitriosRegistryOffice getRegistryOffice()

proceed with
intercepted method

Figure 5.14: Ditrios Invocation Handler

:Client :ServiceProxy

setTransactionMode(true)

:DitriosInterceptor

m()
m()

:DitriosFacade

getServiceProxy()

inTransaction()

true

:ServiceX

m()

Figure 5.15: Services are transaction-aware

5.3.3 Transaction-awareness

Some service adaptations, such as upgrades and substitutions, must not occur while a
client is in a conflicting processing state. For example, consider a table view processing
a number of entries from a service. In case the service is switched while the tree is
filled, the table will contain entries from different services. Hence, Ditrios offers the
client to set transaction boundaries wherein no context change, service upgrade, etc.
may affect the program flow. A client can cast a service reference to the ServiceProxy
interface and set the transaction mode. An interceptor can access this information via
DitriosFacade.getServiceProxy().getTransactionMode(). In case it tries to modify the active
service the exception ProxyLockedException is thrown.

Figure 5.15 illustrates the usage in a sequence diagram. Let’s assume a client has
retrieved a service reference to a service with interface ServiceX containing the method
m(), which should be set into transaction mode and one interceptor is registered in the
system. At first the client sets the transaction by casting the service reference to the
ServiceProxy interface. Then it calls the method m() on the original service interface. The
service proxy redirects the call to the interceptor, which now checks if the proxy is in an
transaction. The call returns true and the interceptor just forwards the call to the original
instance. This forwarding happens in the InterceptionProcessor as described in the
previous Section, but we left out this indirection here for brevity.

5.4 context-sensitive service aspects 103

5.4 context-sensitive service aspects

This Section presents context-sensitive service aspects, a context-sensitive adaptation means
building on the CMI and OCQL, which follows the third variant of OCQL language
integration from Section 5.1.4. Service aspects operate on service proxies and control the
dynamic composition of services. Building up the glue between context information and
services they enable the latter to be context-sensitive.

Service aspects are implemented in the language CSLogicAJ (Context-aware Service-
oriented Logic Aspects for Java). CSLogicAJ combines a subset of the AspectJ language11 -
the advice constructs and the call, target, this and args pointcuts - with OCQL expressions
and a service pointcut that binds OSGi service instances. We distinguish between two
different kinds of advice, both of them share the same syntax, but have different semantics.

Synchronous Advice are applicable to the service message level. Such an advice inter-
cepts calls to service interfaces, taking the program flow and all available context
information into account. The commonly known before, after and around advices
can be used to execute additional code. Furthermore a transparent (re)binding
and (re)composition of services is possible due to the proxy concept. Synchronous
advices correspond to the common dynamic aspect weaving.

Asynchronous Advice react exclusively on context changes, which are induced by context
sources. These advices are comparable to event-condition-action (ECA) rules known
from relational databases. The event is the change of the context, the condition is
represented by a pointcut designator and the action by the advice code. The poincut
designator must not contain the pointcuts call, target, this and args, since they select
program join points and their execution context.

The terms asynchronous and synchronous refer to the execution time relative to the appli-
cation work flow. Based on these two kinds of advice the architecture controls service
composition and dynamic code weaving. All information gathered and provided by con-
text sources is consolidated in the context management system, see Section 5.1. CSLogicAJ
mostly provides a concrete syntax to combine the context query and context listener
mechanisms with an aspect language.

CSLogicAJ aspects are encapsulated in OSGi bundles where each bundle can hold one
or more service aspects. The aspects are woven/unwoven, by starting/stopping their
enclosing bundle.

5.4.1 Context Pointcut Language

The Context Pointcut Language is a subset of the AspectJ pointcut language extended
by OCQL and service-level join points. Figure 5.17 gives the syntax of the pointcut
designators as an extension of OCQL. The Pcd non-terminal is extended by the AspectJ
primitive pointcuts call, target, this and args, and the additional pointcut service
which binds service instances to pointcut or predicate parameters. The pointcut designator
of a synchronous advice must contain a call pointcut to select the service methods to
intercept. The target(param) pointcut binds the called service to its argument.

AspectJ’s pointcut language can be considered a logic language with a reduced form of
logic variables. All pointcut and advice parameters are bound by the primitive pointcuts
args, target, this. An implicit join point variable is bound by the enclosing advice and
restricted by primitive pointcuts. The aspect-language Carma [92] even made the join
point variable explicit in the pointcut language. The join point variable is explicitly named
and bound by advices, and passed to primitive pointcuts, which test and restrict it further.
Here is an exemplary syntax how an explicit join point variable would look like in
CSLogicAJ:

11 see Section 2.6

104 context management infrastructure and service aspects

(onchange | before | after | around)

name(var_decls)[changed(expr)] :

[(var_decls) :]

PointcutExpression

{

java_body_and_proceed

}

Figure 5.16: Syntax of CSLogicAJ’s generalized advice construct.

before(JoinPoint jp):

call(jp, * Musicplayer.play()) { ... }

In CSLogicAJ the join point variable is hidden from the developer, but has the same
semantics as an explicit variable. By integrating OCQL, CSLogicAJ becomes a general
logic language. It enables the definition of local variables and the binding of logic variables
by unification. Pointcuts, just as OCQL predicates, can define parameters of primitive
types, context classes, array and tuple types. All advice and pointcut parameters are
universally quantified, resulting in potentially more than one binding for a common
AspectJ join point. An advice might therefore be executed more than once.

Primitive pointcuts restrict the implicit join point variable. This implicit variable is
passed over every named pointcut in the evaluation of a pointcut designator. Therefore
calling (primitive) pointcuts only has semantics in the context of a pointcut designator
and must not be used in conditionals or meta-predicates.

We decided to keep the join point variable of pointcuts implicit and distinguish more
general between pointcut and predicate constructs. Pointcuts may contain AspectJ’s primi-
tive pointcuts, but are not allowed to be used in context conditions or meta-predicates..
Figure 5.16 shows an excerpt of CSLogicAJ’s advice construct. The asynchronous advice
is determined by the onchange12 keyword.

Around advices can use the proceed construct like AspectJ around advices, but must
omit all context arguments in the proceed call, since the pointcuts of each advice is
evaluated independently. The exerpt of the filterModel advice gives an example:

List around filterModel(Contact[] nolfms,IAddress t) :

call(* IAddress.getAddresses()) &&

target(t) &&

contactsWithoutLastfm(nolfms)

{

...

return proceed(t);

}

The advice intercepts the getAddresses() method of the IAddress service, which offer access to an

address book model. The target pointcut binds the target object to the variable t and passes it to the

proceed call. The predicate contactsWithoutLastfm binds all contacts without last.fm user names

to the variable nolfms. Since it is a context variable it is not passed to the proceed call.

12 Which is an abbreviation for “on context change”.

5.4 context-sensitive service aspects 105

Pcd ::=

Identifier ’(’ Term (’,’ Term) * ’)’

| ’call’ ’(’ MethodPat ’)’

| ’args’ ’(’ ArgsPat ’)’

| ’target’ ’(’ Identifer ’)’

| ’this’ ’(’ Identifer ’)’

| ’service’ ’(’ Identifer [’,’ LDAPString] ’)’

MethodPat ::=

[Modifiers] TypePat ’.’ IdPattern ’(’ Formals ’)’

Formals ::=

TypePat (’,’ TypePat) * [’,’ ’..’]

| ’..’

IdPat ::=

(’?’ | ’*’ | Character) (’?’ | ’*’ | Character | Number) *

TypePat ::=

IdPat (. IdPat)* (’[]’) * [’+’]

ArgsPat::=

Identifier (’,’ Identifier) * [’,’ ’..’]

Figure 5.17: EBNF of Primitive Pointcuts

onchange locationChanged(Location l, MapView map) changed(ne(l)) :

l = Location->one() &&

service(map,{centered="true"})

{

map.setCenter(l.longitude,l.latitude);

}

Figure 5.18: Service level logging call pointcut.

5.4.2 Service Pointcut

Advices refer to registered OSGi services via the service pointcut, with the following
syntax:

’service’ ’(’ Identifer [’,’ TupleInit]’)’

The first argument is bound to service instances, whose objectclass property matches
the declared type of the logic variable, e.g., the parameter map in the following advice:

onchange locationChanged(MapView map) :

service(map) { ... }

Here, the variable map is bound to MapView services. Optionally the LDAP properties of
the service can be queried in the second argument. The non-terminal TupleInit, defined
in Figure 4.7, represents a list of LDAP property unifications. The example in the next
section facilitates this query argument in Figure 5.18.

5.4.3 Asynchronous Onchange Advice

The pointcut expression is reevaluated every time the context information it refers to
changes. But, the onchange advice is only triggered if at least one of the arguments of
the changed(..) expression has changed. In case no changed expression is given, it reacts
to any change of an advice parameter. The expression argument embeds the changed
expression from context listeners in Section 5.1.1. Figure 5.18 gives an example for an
onchanged advice. The advice locationChanged binds the current location and a service
of type MapView with the OSGi property “centered” with the value “true”.

106 context management infrastructure and service aspects

public @interface RequestContext {

Class[] source() default {};

String[] schema() default "";

String[] strategy() default "";

Cardinality[] cardinality() default "single";

}

public enum Cardinality { single, multiple }

Figure 5.19: Requesting Context - Static Approach

5.4.4 First-Class Join Point

Advices can access the runtime context of a join point via the field thisJoinPoint, as
defined in Figure 2.6. Compared to AspectJ, the semantics of the JointPoint instance is
slightly changed. The getThis() method returns the calling bundle of the call, getTarget()
returns the target service instance and getArgs() the arguments of the method. Further
the join point has access to the DitriosFacade13, which provides access to the service
proxy and the bundle management. For example, the following advice starts up the
address book bundle:

after ditriosEvent(...) :

{

// open address book application:

thisJoinPoint.getDitriosFacade().getBundle("org.cs3.AddressBook").start();

}

}

5.4.5 Referring to Context Sources

The static definition of a context request is realized as an Java annotation attached to an
aspect. Consider the following example:

@RequestContext(

contextSource={LocationSensor.class},

strategy={"max(precision)"}

aspect A {...}

The aspect A requests a context source of type LocationSensor with maximum precision
of all registered services of LocationSensor type. As long as the aspect is active the
context request is active and the corresponding set of context sources are updated based
on the given strategy. The attributes, such as precision, may change at runtime. Section
2.1.2 illustrates how context sources can update their attributes at runtime. Figure 5.19

contains the source code of the RequestContext interface. Its members are aligned with
the IRequest interface defined in Section 5.1.3.

Each aspect independently specifies which RDF type schemas and context sensors are
needed by the aspect. Schemas are referenced via the directive import_schema, corre-
sponding namespaces are defined as in OCQL.

For example, the LastFMAspect below defines a namespace contact, imports a contact
schema from an URL, and refers to a Contacts and a Nearby context source:

namespace contact = "http://laj.iai.uni-bonn.de/contact/";

import_schema "http://sam.iai.uni-bonn.de/cmi/contact.ttl";

import contact.*;

13 The facade was introduced in Section 5.14.

5.5 music player example revisited 107

Context Management

Music Player
Component

OSGi + Interception Mechanism

LastFm
Aspect

Contacts

Nearby
Persons

IEvents
IQuery

IPlayerControl

Contacts
Contacts
Model

filter

IContacts

LastFM
Streaming

LastFM
Webservice

LastFM
Tasteometer

Audio
System
Status

Figure 5.20: Context-Sensitive Music Player, modularized by an aspect

predicate nearby(Contact other, double maxDistance): (Nearby n):

n = Nearby->one(distance < maxDistance) &&

other = Contact->one(email = n.email);

predicate sharedArtistsWithOne(Artist[] artists,double maxDistance) :

(Contact me, Contact other):

me = Contact->one(this.isMe) &&

nearby(other,maxDistance) &&

lastfm(artists,me.lastfmUsername,other.lastfmUsername);

Figure 5.21: Binding different pointcuts

@RequestContext(sources={Nearby.class,Contacts.class})

aspect LastFMAspect { ... }

5.5 music player example revisited

In this section we use CSLogicAJ to realize the example from Section 1.1. We have
built on the two open-source projects Xtreme Media Player [31] and Oracle’s Java DB
AddressBook example project [147] and converted them into OSGi bundles. The address
book application was modularized into a view and a model bundle as depicted in Figure
5.20.

The main task of the LastFMAspect is to reconfigure the player’s playlist based on
context changes (nearby contacts, connected audio system, and tasteometer). Additionally,
it reacts to the startup of the player. In case that there are contacts nearby, which do not
have last.fm listed, the Contacts application is opened and only shows these persons in
the contact’s list.

For the first task, the aspect must aggregate information about the nearby contacts and
their taste of music. In order to retrieve all artists, which a user and his nearby contacts
both like, we introduce two pointcuts, sharedArtistsWithOne and sharedArtists. The
purpose of the first one, sharedArtistsWithOne, is to retrieve a contact and the equally
liked artists for this contact. The pointcut definition is given in Figure 5.21. The predicate
makes use of the Nearby class, to bind all contacts currently in the vicinity of the user.
The vicinity is indicated by maxDistance. Afterwards the lastfm Web service is utilized
to retrieve the artists that the user’s and contacts’s both like. The lastfm predicate call

108 context management infrastructure and service aspects

Original Playlist Adapted Playlist
(Only Plays Tracks with Artist Queyras)

Figure 5.22: Context Sensitive Media Player Adaptation

predicate sharedArtists(Artist[] artists,double maxDistance):

(Artist[] sharedWithOne, Artist[][] listOfList):

AudioSystem->one(connected) &&

findall(sharedWithOne,

sharedArtistsWithOne(sharedWithOne, maxDistance),

listOfList) &&

intersection(listOfList, artists);

Figure 5.23: The sharedArtist pointcut binds artist by collecting all artis from nearby contacts
with the findall meta-call.

is only successful, if the lastfmUsername property is available for both, the user and the
contact. By backtracking over this pointcut all contacts for whom these constraints hold
true can be selected one after another.

The second pointcut is called sharedArtists. It checks that the device is connected to
an audio system and aggregates mutually liked artists by backtracking over all results of
the sharedArtistsWithOne pointcut and collects them in the variable listOfList.

Afterwards the intersection of these lists is calculated, resulting in a list of artists for
whom a mutual preference is shared by all participants. See Figure 5.23 for more details
on the implementation.

The LastFm aspect makes of use the pointcuts in the onchange advice play. It is
triggered once the list of artists, bound by the sharedArtists predicate, changes. The
second argument of the predicate is the maximum distance in meters to nearby contacts.
See Figure 5.24.

Finally we notify the user about missing lastfm usernames of nearby contacts at the
startup of the music player. Figure 5.25 shows how service events are intercepted and all
nearby contacts with missing lastfmUsername property are bound to he contact array
contacts. Figure 5.26 shows the filtered address book application. Only entries without
last.fm entries are shown.

aspect LastFm {

// ... pointcuts ...

onchange play(Artist[] artists) : changed(artist):

sharedArtists(artists,100.0) {

if(artists.length > 0){

MusicPlayer.play(artists);

}

}

Figure 5.24: Last.fm onchange advice

predicate contactsWithoutLastfm(Contact[] cs):

cs = Contact->select(current | Nearby->one(current.email=email &&

!exists(current.lastfmUsername)));

pointcut eventFired(ServiceEvent event) :

execution(* EventManager.serviceEvent(..))&&

args(event);

after ditriosEvent(ServiceEvent event) :

(Contact[] contacts, Contact contact, Nearby n) :

eventFired(event) &&

contactsWithoutLastfm(contacts)

{

if(event.getType() == ServiceEvent.BUNDLE_STARTED && ..) {

// notify user about missing lastfm usernames cs:

...

// open address book application:

thisJoinPoint.getDitriosFacade().getBundle("org.cs3.AddressBook").start();

}

}

Figure 5.25: Intercepting service events

Figure 5.26: Filtered Address Book Entries

109

110 context management infrastructure and service aspects

List around filterModel(Contact[] nolfms) :

call(* IAddress.getAddresses()) &&

contactsWithoutLastfm(nolfms)

{

List addresses = proceed(nolfms);

return filterList(nolfms,addresses);

}

Figure 5.27: Around Advice Example with Proceed Statement

5.6 reconsidering requirements

This section analysis how CSLogicAJ adheres to the requirements for context-aware
adaptation languages from Section 1.4.

CSLogicAJ and its embedded OCQL allow retrieving sets of elements, specification
of filters and conditions, querying context meta data, subscriptions on asynchronous context
change events, and the use of logic operators and therefore fulfill requirements 1-5. Context
aggregation and selection (requirement 6) can either be realized by context requests by
defining context selection strategies, or in OCQL by aggregating different context sources
via predicates. The history predicate offers means to manage and access context histories
(requirement 7).

Requirement 8 demands that context queries and sources are loosely coupled. CMI
context sources do not have a reference to queries at all, and queries either refer to a
context source interface or the RDF schema provided by a source. By no means it can
directly refer to one concrete context source instance.

By requirement 9, context sources can reside on the device or are connected remotely.
The CMI distinguishes between local context sources and query context sources14, where the
later enable predefined queries to external systems.

Requirement 10, the service communication interception, is a central concept of Ditrios
and CSLogicAJ. Requirement 11 asks for an interception facility for infrastructure events
and control over the component life cycle. The first is supported by the EventManager,
the second by the DitriosFacade that gives aspects access to an component management
API.

Ditrios aspects are deployed as bundles and each advice is represented as a service. By
starting/stopping a bundle the aspects are woven/removed from the system. This fulfills
the last requirements (12), the dynamic (de-)activation of adaptations. The implementation
Chapter 6 will go into details how aspects are encapsulated in bundles.

5.7 summary

This Chapter introduced the Context Management Infrastructure (CMI) and its compo-
nents. The CMI contains a context management system (CMS), which uses a snapshot
approach for context data aggregation. The snapshots ensure that context queries are
evaluated on a consistent state and supports storing and querying context histories. The
CMS stores an RDFS-based context model and is queried by OCQL. The CMI offers
different levels of OCQL language integrations with Java-based host languages, with
different levels of static type safety and flexibility. The CMI extends the OSGi component
platform with a service interception mechanism and enables runtime adaptations of OSGi
components on the service level.

14 see Section 4.2.6

5.7 summary 111

Finally, we presented the aspect language CSLogicAJ, which combines context analysis
and aspect orientation to a context-aware runtime adaptation language and fulfills all
requirements elicited in Section 1.4.

Part III

I M P L E M E N TAT I O N A N D E VA L U AT I O N

6I M P L E M E N TAT I O N

6.1 mode analysis

The mode analysis implementation is based on Lu’s Logic Program Analysis Engine
(LPANE) project [129]. The LPANE mode analysis implementation does not consider
variable aliasing in its abstract domain, so we integrated aliasing following the formalism
defined in [130]. And we integrated the findall meta-predicate extension described in
Section 3.2 by extending LPANE’s fix-point operation implementation.

Lu’s formalism and implementation only consider a subset of Prolog syntax: normal
logic programs (NLP). Negation is only allowed on literals, not on arbitrary formulas
and the operators or (“;”) and if (“->”) are not implemented. In OCQL’s Prolog subset,
negation is also allowed on formulas and the “;” and “->” operator are part of the syntax1.
To bridge this gap we realized a normalization step which translates these cases to
equivalent normal logic program syntax.

We only illustrate the transformation exemplarily for the “;” operator. Consider the
following formula:

(a(A;B),b(B,C));c(C,D)

First all variables V are extracted from the term and a unique predicate signature (n④A)
is generated with arity A ✏ ⑤V⑤. Then, two clause are generated for each argument of the
conjunction:

n(A,B,C,D):-

a(A;B),b(B,C).

n(A,B,C,D):-

c(C,D).

The transformation of negated formulas is similar. A new clause is generated containing
the formula and the formula is replaced by the call of this clause. The “->” operator is
transformed based on the definition:

(If -> Then; _Else) :- If, !, Then.

(If -> _Then; Else) :- !, Else.

The cut is ignored by the mode analysis. Since the result of the If literal call is unknown,
both cases, success and failure, must be considered. The abstract semantics F✺

P,G♣X✺q (see
Section 3.1.4) abstracts from all possible execution stacks that lead to a program edge.
The evaluation of clauses of the same predicate are therefore always abstracted into one
abstract substitution.

6.2 context management system

The context-management system is based on SWI-Prolog and its semantic-web library
[209]. The semantic-web library provides a parsing framework for turtle and XML rdf
syntax and an rdf triple store with optimized hash indexes as well as predicates to
evaluate the RDFS entailment.

The context-management system and the query language are designed to be embedded
into programming languages. A context-aggregator provides a flexible API for requesting

1 See Section 2.3.4.

115

116 implementation

Java Language
Extension

+
CQL

Sourcecode

Java Language
Extension

+
CQL

Sourcecode

OSGI bundle

Java Language
Extension X

+
OCQL

Sourcecode OCQL AST
(Prolog)

Prolog Predicates & Queries

OCQL Type Checking +
Prolog Translation

Byte Code
Context Management

Compiler X

Factbase

IQuery

IRequest

Figure 6.1: Compilation of a Java language extension with embedded OCQL

context sources. The query language is embeddable with other Java language extensions
(JLE)2 with little effort. The query interface to the framework is a textual AST representa-
tion of OCQL, which can be generated straightforward from a compiler for JLE + OCQL.
The textual description of the AST is represented as nested Prolog terms for which the
framework provides a type checker and a Prolog code generator. Figure 6.1 illustrates the
compilation steps: A JLE embeds OCQL. Its compiler generates byte code for the core
JLE and an OCQL AST in Prolog syntax for the OCQL expressions.

The OCQL AST is type checked, translated to Prolog predicates/queries, and integrated
into an OSGi bundle. At runtime the predicates are loaded into the context-management
system and the queries are executed from byte code via the IQuery interface. Via the
IRequest interface a client describes the necessary context information for the enclosing
bundle.

The fact representation for RDF-facts contains a fourth argument referencing its source
sensor(s) via bitmasks in an integer value3. The mask allows us to keep each triple unique
even if several sensors resp. schemas reference it. The sensor bitmask argument allows us
to keep just one factbase for all queries, although they may query different sensor subsets
at a time. Since there is only one unique triple, pure SLD-resolution can be applied.
Otherwise choice points for several definitions would have to be removed, e.g., through a
meta-interpreter or by altering the underlying Prolog virtual machine.

6.2.1 OCQL Parsing Framework

We specified dynamic and static compilation of OCQL via the ICompile interface in
Section 5.1.2. In the implementation we only realized the static variant. The runtime
version is mostly an integration of existing components and is left for future work. The
main aim of this work is to provide an infrastructure for language extensions. Therefore
we provide a compiler for OCQL abstract syntax to Prolog, the extensions must implement
the OCQL parser for the concrete syntax.

We coupled the compilation infrastructure with the Eclipse framework, which is also
based on the OSGi standard. This allows us to use the same modularization means at
compilation time as at runtime. Further, Eclipse supports the creation of OSGi bundles,
from which the predicates can be loaded in a standardized way.

To compile files containing pre-parsed OCQL, an Eclipse bundle project must be
created that contains a folder ocql. The bundle is marked as a cmi bundle in the META-
INF/MANIFEST.MF, by adding an entry

Bundle-Category: cmi-bundle.

An OCQL parser must generate the following predicate specification fact for each predi-
cate:

2 or other languages running on the JVM, e.g., JRuby
3 SWI-Prolog uses the GNU multi precision arithmetic library [79] to support arbitrary large integer values. So

the length of the bitmask and thereby the number of sensors is only limited by memory.

6.2 context management system 117

predicate th(int v):
v < 30;

ocql_predicate_spec(th,m,predicate,
[('v','http://www.w3.org/2001/XMLSchema#int',V)],
[],[TS],

compOperation(
qualifiedName('v',[]),
'<',
literal(

'http://www.w3.org/2001/XMLSchema#int',
30)

)).

th(TS,V):-
pmac(

V<30,
'<',
groundness_check

).

th(TS,V):-
V<30.

OCQL Prolog AST Prolog With TC Prolog

Figure 6.2: Prolog clause generation overview

ocql_predicate_spec(

Name,Module,Kind,TypeParameters,Parameters,

LocalVars,RdfUrls,PrefixedLVars,EBNF).

In the first two arguments the name and the module where the predicate should reside
must be given. The other arguments have the following meaning:

Kind gives extensions the means to specialize a predicate. The default kind is predicate.
Extensions can extend the later described transformation process and thereby
read this argument. E.g., the CSLogicAJ aspect introduces the kind pointcut and
provides a specialized transformation for pointcut predicates.

TypeParameters is the list of type parameters and their bounds.

Parameters is the list of predicate parameters, their types and an associated Prolog
variable (Name, Type, Var). The Prolog variable will be necessary for potential
extensions, e.g., for CSLogicAJ aspects.

LocalVars is a list of declared local variables following the same schema as the previous
argument.

RdfUrls is the list of RDF schema URLs the OCQL code is compiled against.

PrefixedLVars is a list of Prolog variables, which can be prefixed to the final predicate. By
convention the first argument is always the variable associate with the associated
snapshot’s timestamp. Extensions might add arbitrary variables here.

EBNF the term-serialized abstract syntax of OCQL. We will consider this in more detail
in the next paragraph.

Let’s assume we would like to compile the predicate

predicate th(int v):(int tmp):

tmp = 30 && v < tmp;

The parser generates the file in the module m:

ocql_predicate_spec(th,m,predicate,[],

[(v,’http://www.w3.org/2001/XMLSchema#int’,V)],

[(v,’http://www.w3.org/2001/XMLSchema#int’,Tmp)]),

[], % No RdfUrls needed

[Timestamp],

<EBNF>).

118 implementation

EBNF Abstract Syntax

The term-serialization of the EBNF maps the (non-)terminals to Prolog terms. The name
of the non-terminals is used as a term name. All sub-expressions are arguments of the
non-terminal. The repeated sub-expression (in a * expression) are comma-separated and
embraced by brackets. For example, the qualified name c.name is serialized to

qualifiedName(’c’,[’name’])

Terminals are differentiated in their usage context into two different symbol kinds:
separators and terminals. The separators (e.g., comma) are left out in the serialization. The
terminals (e.g., the arithmetic operators “+” and “-”) are added to the term.

The Figure 6.2 illustrates the mapping of the predicate named th, which checks if
the argument v reached a threshold of 30. In the second column, we see the resulting
predicate specification. The OCQL compiler takes the term as an input and applies the
pre-mode analysis-type checking from Section 4.3.2 and the transformation to Prolog
from Section 4.3.3 in one traversal step. Additionally it wraps all terms, which must be
type or mode checked after the mode analysis, with the term pmac/34.

In the example the variable V must be ground, otherwise the comparison would lead
to a runtime error. Therefore it is wrapped with the pmac/3 term, which is tested for
groundness after the mode analysis has been applied. The last box shows the final Prolog
code for the predicate. The predicate is added to the Prolog module m and can access all
other predicates in m. The module is added to/updated in the folder OCQL in the Eclipse
bundle project.

Extension

The transformation and the type checking steps can be extended by application frame-
works or language extensions by adding additional clauses to transformation or type
checking checks. The transformation is realized by the multifile5 predicate

translate_term(+TermToNormalize,-TranslatedTerm,-SubGoalsList,+Scope)

The predicate takes an arbitrary term and the current scope as inputs and bind the
translated term and optionally sub-goal specifications to the second and third argument.
The next section will show how this extension is applied to add a predicate to OCQL.

6.3 cslogicaj

CSLogicAJ is realized on-top of the CMI. We implemented a compiler which generates
extended OCQL syntax and a runtime engine that intercepts method calls and maintains a
runtime state of the bundles and services. The Ditrios framework maintains a runtime
model of all registered services, their LDAP properties and all service requests6 in
the CMS Prolog engine. It associated each registered service with an unique identifier,
allowing Prolog to refer to the service. For a detailed description of Ditrios see [180].

6.3.1 Compiler

The CSLogicAJ compiler uses the OCQL parsing framework to generate Prolog code
from OCQL AST. To support pointcuts and advices it defines two new OCQL predicate
specifications kinds:

4 Post Mode Analysis Check
5 The Prolog directive multifile declares that clauses of a predicate can be defined in different files.
6 Provides as context class ContextRequest with the property objectclass and ldap, where the later is the complete

LDAP query.

6.3 cslogicaj 119

Prolog
Engine

Ditrios

Service Registry

And

Service Requests

Synchronized with Prolog Engine

Context Management

System

Figure 6.3: Ditrios service runtime model

package p;

class C {

 int m(int i);

}

C

parent

name

name

m method

class

p
name

package

parent

paramT(4, 3, 'i'‚ int)

methodT(3, 2, 'm', int)

classT(2, 1, 'C')

packageT(1, 0, 'p')

Source Graph Facts

Figure 6.4: JTransformer Prolog AST

pointcut and

advice(before|after|around|onchange)

They represent the pointcut expression of pointcut and advice declarations. Additionally
to the Timestamp variable, the aspect constructs prefix the Prolog variable Jp to all
predicates. Jp represents the join points bound by the pointcut expression. Next to the
generated context model, the predicates operate on a runtime model of the registered
OSGi services. For this purpose the abstract syntax tree (AST) of the interface of each
registered service is represented by so called Program Elements Facts (PEF) in the Prolog
engine of the CMS. The AST representation was adapted from the Java static analysis
and transformation framework JTransformer [190, 122]. For a detailed specification of
the PEF representation see [171]. Figure 6.4 gives an example how a class is represented
in Prolog. For each AST element a fact7 is generated. The first argument is always the
unique identifier of the element. The other arguments are either references to other
nodes or atoms representing names or numbers. We only show exemplarily how the
transformation is realized, for details see [180].

Consider the pointcut eventFired pointcut from the LastFMAspect introduced in Figure
5.25:

pointcut eventFired(ServiceEvent event) :

call(* EventManager.serviceEvent(..))&&

args(event);

7 For brevity we only list PEFs with a reduced number or arguments here.

120 implementation

The pointcut is transformed into a Prolog predicate evaluated on the PEF representation:

eventFired(Timestamp, Jp, Formal_event) :-

fully_qualified_named(Class,’org.cs3.ditrios.facade.EventManager’),

methodT(Jp,Class,firedServiceEvent,Type,Exceptions,Params),

match_args(Params,[(’org.cs3.ditrios.facade.ServiceEvent’,Formal_event)]).

Pointcut expressions are purely evaluated in Prolog. Since the service pointcut and the
state-based pointcuts target, this and args refer to runtime objects, CSLogicAJ must
have a mapping between the variable bindings in Prolog and the Java objects. For the
state-based pointcuts this mapping is realized by naming patterns. A variable bound to
the following atoms results in the binding of advice/pointcut arguments:

target: target service

this: the calling BundleContext

arg:n: the n-th argument of the call

service:id : the service associated with the identifier id

6.3.2 Extensible OCQL/Pointcut Parser

The compiler is based on the parser of the AspectJ 1.0.6 compiler. It was extended to parse
OCQL as part of the pointcut expressions and generate an OCQL Prolog AST. To allow
for extensions, the concrete syntax of the OCQL parser implementation is not fixed. It can
be easily adapted by modifying a Prolog predicate. The language provides a number of
predefined non-terminals: identifier, formal_or_identifier, type, int, float, string,
this, pcd. Further non-terminals are defined in the predicate:

non_terminal(Name:atom,Symbols:list,inline:boolean)

The inlined argument is true if all parsed elements are inlined, and false if the parser
should wrap the elements with a term which functor is the non-terminal’s name. The
production body is a list of non-terminals and EBNF operators. The following operators
are defined:

optional expression: opt(EXPR); in case the expr is missing the token ’$$’ is added to the
list of arguments

optional and remove: opt_remove(EXPR); in case the expr is missing no argument is
added to the term

alternatives: or(EXPR_1,...)

repetition: star(EXPR_1,...)

terminals: terminal(ATOMIC); the token ATOMIC is parsed and added to the token list

ignored non-terminals: separator(ATOMIC); the token ATOMIC is parsed, but not added
to the token list

For example, consider the non-terminal PropertyAccess that represents the access of a
property:

non_terminal(propertyAccess, [separator(’.’), identifier], false).

The expression .propertyName is parsed via this non-terminal to the term
propertyAccess(propertyName).

6.3 cslogicaj 121

6.3.3 Static Analysis

The compiler framework offers two different means to apply static analysis. First, pre-
mode-analysis type checks are possible by the predicate

type_check(+Scope,+LhsType,+RhsType,+OnlyRightToLeftAssignment)

which either checks the assignment from right-to-left or, if the last argument equals ’fail’,
it checks that at least one direction is correct (➽).

For post-mode-analysis checks the term wrap_check/4 wraps a term in the resulting
Prolog code to be marked for later checks:

wrap_check(+CTName,+Check,+Term,-Wrapped)

The Check attribute may take three different terms as an argument, which are evaluated
in the final type checking phase8:

assign(LhsType,Operator,RhsType): assignment and findall

call(ArgumentTypes,Parameters): calls

allVarsGround(Vars): arithmetic operations, checks of the first n-i arguments of mapped
predicate calls.

Post mode-analysis is applied by the extensible multifile predicate:

process_ocql_post_check(+Check,+PtExit,+PtFrom,+MC,+NodeId)

The NodeId argument can be used to generate error messages. The MC argument contains
the modes before and after the transition between the program pointcut PTExit and
PTFrom, e.g.:

MC=mc([B/2, C/1, D/1],[B/2, C/2, D/2])

Using the history predicate as an example, we show how the extension of the syntax
can be realized. At first, we define the syntax of the predicate:

non_terminal(historyExpr,

[separator(’history’),

separator(’(’),formal,separator(’,’),booleanExpr,separator(’)’)],

false).

The argument starts with history, then an advice argument follows, then a comma and
a boolean expression. In the next step the translation and pre-mode-type checking is
applied:

translate_term(

historyExpr(formal(_Name,NewTS),Expr),

(cms_timestamp(NewTS),Normalized),

SubGoals,

scope(Module,Predicate,[_TS|UntypedVars],Vars)) :-

% Retrieve Type of Formal:

resolve_varname_in_scope(Vars,NewTS,Name,FormalType),

% Check that long is assignable to the formal type of the time stamp variable NewTS:

type_check(CTName,FormalType,’http://www.w3.org/2001/XMLSchema#long’,fail),

translate_sub_term(Expr,Normalized,SubGoals,

scope(Module,Predicate,[NewTS|UntypedVars],Vars)).

The mode of the predicates is not relevant in this case. We exemplary show how post-
mode-analysis checks are prepared and evaluated. Consider the unification of two typed
variables A=B. The translate_term uses wrap_check to prepare checks that are run after
the mode analysis:

8 For example for the delayed typing rules defined in Figure4.15.

122 implementation

public interface DitriosInterceptor {

Object invokeAdvice(

InterceptionProcessor processor,

DitriosFacade ditriosFacade,

Object targetService,

Object[] args)

...

}

public interface InterceptionProcessor {

public Object proceed(Object target, Object[] args);

}

Figure 6.5: Ditrios interceptor interface

wrap_check(Module:Predicate,assign(LhsType,Operator,RhsType),Normalized,Wrapped)

After the mode check has been applied the post check is evaluated for all prepared checks.
Below is the clause which tests ground variable assignments defined in the rule unify-g
in Figure 4.15:

process_ocql_post_check(assign(_LhsT,’=’,_RhsT),PtExit,_PtFrom,MC,_NodeID):-

% Retrieve the left and right hand side expression from the program point:

build_in_predicate(PtExit,Lhs=Rhs),

% Test that both left and right-hand side are ground variables or atoms:

ground_variable(Rhs,MC),

ground_variable(Lhs,MC),

!.

6.3.4 Mapping Advice Constructs to Java Source Code

For each advice construct a Java class is generated, which is an instance of
the DitriosInterceptor interface that is defined in Figure 6.5. The interceptor is
called with the DitriosFacade9, the target service, the call’s arguments and an
InterceptionProcessor. The interception processor contains a proceed method to realize
call forwarding to the next advice or the original join point.

The advice body operates on a generic graph of IContext-typed instances instead of the
statically typed context classes. An alternative would be the generation of Java classes for
each aspect bundle representing the RDF classes imported by the aspect. But, these classes
would only be valid in the context of the aspect, potentially leading to the redundant
creation of a context instance for different aspects.

For this reason only XML primitive types (see Section A.1) have a static mapping to Java
types in CSLogicAJ. Method calls, type casts and type checks are realized by reflection. The
IContext interface, defined in Figure 5.10, offers the methods getProperty(uri), castTo(uri),
and isSubtypeOf(uri), which realize property access, type cast and runtime type check
(instanceof).

Since a property can be of type IContext or a primitive type, the return type of
getProperty() is Object[]. If an array containing context classes is handed over to regular
Java code, the object array must be converted, since Java arrays have a fixed component
type, which is not automatically converted on casts. The array conversion is realized with
by the class TypeUtils which defines the generic method

static <T> T[] copyOf(Object[] original, Class<? extends T[]> newType)

9 see Figure 5.14

6.3 cslogicaj 123

Figure 6.6: CSLogicAJ’s integrated development environment

It converts the object array original to an array with component type newType. The
example below illustrates the mapping. Consider that the Java class LastFMPlayer plays
the URL of a last.fm artist. In CSLogicAJ the code retrieves the first element of the bound
artist array, retries the URL property array and looks up the first element:

LastFMPlayer.play(artists[0].getUrl()[0]);

After OCQL type checking, the generated Java code of the artist array is typed IContext[].
The call of getProperty on the artist object retrieves as an object array, which is converted
via TypeUtils to a string array. Finally, we access the first element of the list and pass it to
the play method of LastFMPlayer class:

LastFMPlayer.play(TypeUtils.copyOf(artists[0].getProperty(

"http://ws.audioscrobbler.com/2.0/url"),String[].class)[0]);

6.3.5 Integrated Development Environment

We provide an integrated development environment for CSLogicAJ based on Eclipse [83],
JTransformer [190, 122] and the Prolog Development Tools [172]. It contains an editor
with syntax highlighting, predicate/pointcut completion, error/warning markers and
an outline, see Figure 6.6. On every save operation the aspects are compiled and on
success an aspect bundle is generated, which contains the compiled Prolog code and
advice classes. The Eclipse-integrated OSGi launch configuration can be facilitated to
start aspects and base components of an application. The IDE can be installed into Eclipse
3.7 via the LogicAJ update site10.

10 http://sewiki.iai.uni-bonn.de/research/logicaj/installation

124 implementation

6.3.6 Realization of Query Context Sources

The connection to the Web service and the mapping to RDF is in the responsibility of the
ContextSource. The queries on external context sources are executed via the bidirectional
Prolog-Java bridge JPL, which is part of SWI-Prolog. The Prolog queries access the remote
context services via a Ditrios interface. Since accessing remote data is a time consuming
operation, queries are cached by the Prolog engine CMI. All data belonging to the same
query and containing the same input parameters is cached until the expiration time
is reached. The returned triples are added to the factbase and can be queried by later
expressions, following logic update semantics11 [38]. The retrieved RDF triples are only
visible to the querying module although they share the same cache.

6.4 summary

The CMI and the OCQL compiler rely on a number of projects and frameworks. The mode
analysis was implemented based on the LPANE project [129]. The Context Management
Infrastructure facilitates the OSGi architecture to expose its API and to encapsulate context
queries in OSGi components. The CMS delegates RDF parsing and the query evaluation
to the semantic web library of SWI-Prolog. The CSLogicAJ compiler is separated into a
Java parser, based on the AspectJ compiler 1.0.6. The type checker and the Prolog code
generator are implemented in Prolog. The compiler was implemented with extensibility
in mind. Via Prolog predicates the concrete syntax and the type checker can be extended
to form new OCQL predicates.

And finally, we provide an IDE for CSLogicAJ, based on the Eclipse framework. It
contains a full-fledged editor and an aspect compiler, which generates aspect bundles
deployable on OSGi.

11 also called deferred update semantics, the ISO-Prolog standard update semantics.

7E VA L U AT I O N

This Chapter evaluates the application of the Context Management Infrastructure and the
aspect language CSLogicAJ. First, we summarize two publications. The first (Mügge et al.
[143]) describes how dynamic adaptation of mobile applications can be achieved with a
statically typed object-oriented language and how dynamic context-aware aspect-oriented
programming can improve the realization, concerning adaptation anticipation and code
quality.

Section 7.2 is a summary of Rho et al. [175] and describes the integration of the CMI
framework with the Java language extension JCop [15], a context-oriented programming
approach for Java. Here we evaluated the most dynamic variant of OCQL language
integration (see Section 5.1.4). We close the Chapter with the results of a micro benchmark
on service method calls 7.3 and discuss the consequences for future work.

7.1 programming for context-based adaptability - a case study

We will first introduce and analyze the requirements for a dynamic mobile adaptation
scenario. In our scenario a business user visits a trade fair. He keeps a lot of documents
on his mobile device and manages them by different applications, as illustrated in Figure
7.1.

Figure 7.1: Simple document management tools for mail, minutes and bookmarks

When he enters the fair and is about to be engaged in meetings and negotiations, his
device recognizes the new situation automatically and scans for adequate adaptations.
The fair organization offers some special services for document management support: a
document indexing service, which creates an index for searching and classifying documents;
a vicinity explorer calculating the fair stands closest to your current location; an index
matcher, which determines how similar two index lists are; a sorter, a filter, and a tree
flattener for list data manipulation. These services can be combined to offer a real benefit
for the user while he is on the fair, as shown in Figure 7.2.

These adaptations work together in the following way: Initially, the indexing service
creates a (potentially weighted) index characterizing the content of the document for
each locally stored user document. Second, the vicinity explorer calculates the distance

125

126 evaluation

Local

Documents

Closest
Stands

Mail

Client

Notes

Client

Bookmark

Manager

Fair

Map

Stand

Index

Lists

Indices for
Documents

Document
Classifications

Tree
Flattener

Sorter

Filter

Indexing
Index

Matcher

Vicinity
Explorer

Context

incl.

Location

1

2

3

4

4

4

Figure 7.2: Combining services leads to a beneficial adaptation

between the user and all stands on the fair (given by the Fair Map) and determines
which stands are close to the user’s current position. In the third step the document
set gets ordered with respect to their relevance for each of the stands in the user’s
vicinity. Therefore, each exhibitor provides an index list describing his company (Stand
Descriptions). The index matching service estimates the relevance of each document
to a stand by comparing both index lists and thus produces a document classification.
Finally in step four the relevance classification for the documents are used to display
them in a more convenient way. Therefore three services can be used for sorting, filtering
and flattening document entries in list- and tree-like structures. Figure 7.3 illustrates the
adapted client tools, providing prompt access to those documents relevant for the closest
stands. We will call the adapted applications PimPro1.

7.1.1 Requirements Elicitation

What requirements can be elicitated from the given scenario? First, the adaptation should
be done at runtime, since the user will probably have his tools already started before he
enters the fair. Second, the situation should be recognized automatically, since the user
will not manually specify each situation change without knowledge about a possible
benefit through adaptation. Third, the services popping up at the fair, should be detected
automatically, since a busy user won’t be able to scan manually for new services every
now and then. Fourth, we assume that there will be a large cloud of services offered. The
user needs support for discovering appropriate services. This holds for services that are
separately useful (e.g., the vicinity explorer service might be suitable to show the closest
stands on a map, or simply in a list) when it is tedious to find the service in a long list,
but it becomes definitely necessary when it comes to combinations of services as shown
in this example. Fifth, the adoption of new services must be tightly integrated into the
functionality of the user’s applications. In our example service adaptations are spread
across three different client applications, and more complex scenarios are easy to think
of, i.e., adaptation should allow for cross-cutting changes.

1 Personal Information Manager Pro

7.1 programming for context-based adaptability - a case study 127

Figure 7.3: Adapted tools provide prompt access to currently relevant documents.

7.1.2 General Requirements for Context-Sensitive Adaptivity

Most of the requirements deduced from the scenario in the last Sections, can be abstracted
to a general form and occurs frequently in context-sensitive settings. Additionally we
found some basic technical requirements regarding the tight integration of the adaptation
into the existing applications. I.e., we need to care for replacing existing functionality with
more appropriate alternatives, we must allow for extending the set of given functionality
by new elements, and lastly we also need to be able to remove functionality, which has
been added before. The following list summarizes the requirements and gives a first short
comment about how we are going to accomplish each of them. Thus, we tackle

• replace existing functionality by enhancing the strategy pattern

• enhance given functionality by enhancing the decorator pattern

• add new functionality by enhancing the visitor pattern

• adaptation at runtime by enhancing design patterns, using SOA, and applying run-
time aspect weaving

• automatic service detection using a service-oriented architecture

• cross-cutting adaptations by aspect quantification

• minimizing anticipation by applying aspects and thus introducing details about the
variation points not before runtime

These requirements further support the more general requirements 10. - 12. gathered in
Section 1.4 that are related to framework-level adaptation support.

7.1.3 Pure Object-Orientation - Patterns for Adaptivity

We start with pure object-oriented methods for software adaptability. Design patterns are a
well-known means for introducing flexibility to software (c.f. [84]). For the field of product

128 evaluation

line engineering Svahnberg discusses in [195] several patterns for introducing systematic
variability. Hence, we investigated what could be achieved applying appropriate patterns.

In general, design patterns mostly address statical flexibility, e.g., adaptivity during
the software evolution process. Although this is fundamentally different to our setting,
were adaptations generally occur at runtime, some selected patterns seem to be a good
starting point. In particular we applied the strategy pattern to exchange functionality and
the decorator pattern to enhance functionality at runtime.

Originally, the strategy pattern provides an infrastructure for dynamically exchanging
a certain functionality at runtime. While exchanging strategies (and thus functionality)
at runtime is supported by the pattern, two problems remain: we need to be able to
detect strategies and load them at runtime. The latter is relatively easy to achieve by
extending the strategy pattern with a dynamic strategy repository, which is able to load
new strategies at runtime and offer them to the business logic of the application. Detection
of strategies or even discovering appropriate strategies remains a complex problem in its
own right, calling for abstractions on the architecture level of the software.

The case for enhancing functionality by decorators is even more complicated. A decora-
tor wraps a given object so that a call to its methods will first be executed by the decorator,
potentially specifying additional behavior and then by the original object. The decorator
could also specify to enhance the behavior after the original object’s functionality has
been executed or even replace it completely by a new functionality (which would have
the same effect as a strategy).

At least when multiple decorators come into play, the client who configures the decora-
tion of objects, needs detailed knowledge about possible or reasonable combinations. This
is feasible in a static setting, since flexibility then means to have the option of convenient
re-specification of decorator combinations at development-time. In our setting, we need a
dynamic decorator in the sense that we can robustly add or remove decorators to objects
at runtime, without explicitly taking care of permitted combinations.

We achieved this by extending the decorator pattern with a configuration logic that
automatically cares for reconfiguration of the objects decorations when it is changed. This
means basically, that the combination of decorator is self-managed by an "intelligent"
decorator manager.

Furthermore we used a variant of the adapter pattern to allow for flexible connections
between not quite fitting interfaces and the observer pattern for dynamically recombining
functional units.

While design patterns can provide for basic adaptivity, relying on them as the only
means cannot reasonably cope with the requirements of context-sensitive adaptivity. For
example, cross-cutting concerns will lead to a proliferation of similar structures within
the whole software and introduce a high level of maintenance complexity. Detection of
available adaptations and discovery of appropriate adaptations will lead to very specific
implementations with a high level of complexity. Hence, using separate abstractions for
coping with these issues seems appropriate, as we will describe by using services in
Section 7.1.4. The general problem of aiming for least anticipation cannot be reached
solely by applying patterns, too. Hence, we use Aspect-Orientation as discussed in Section
7.1.5.

7.1.4 SOA and Object-Orientation - Patterns for Adaptivity

Service-oriented Architecture Supports Adaptivity

Service-orientation simplifies dynamic adaptation because components are low coupled.
The use of components, such as the viewer categorization2 or the tree decoration, must
be completely anticipated in a pure OO solution. A configuration class is necessary to

2 We assume that the applications we adapt support categorization in their views. This allows us to apply
document classification in the application.

7.1 programming for context-based adaptability - a case study 129

Strategy IIStrategy II

Strategy IStrategy I

ContextContext

tracking code responsible for the
strategy change

IStrategy Service
Registry

register
service

requests
service

Service ProviderService Consumer

Figure 7.4: Strategy Pattern in a service-oriented architecture

organize the dynamic change of decorations and categorizations. In a service-oriented
approach a service registry is responsible for organizing the available services. Service
Providers register services and Service Consumers request services. Figure 7.4 depicts how
this architecture can be used to implement a Strategy Pattern. Consider the components
Context, Strategy I and Strategy II. The Context component requests a service IStrategy,
which is implemented by services registered by the component Strategy I and Strategy II.
We call code that is responsible to select one or several strategies based on the availability
and properties tracking code.

Service-oriented Strategy

The Strategy Pattern can be applied when a functional part of an application should be
dynamically replaceable by an equivalent or different part having the same interface. If
no implementation is available a default implementation or a null object can be used to
avoid null or stale references in the Context object that is using the strategy. We used the
strategy pattern in the PimPro application for adaptation of Notes, Mail and Bookmarks
categorization. All three applications were implemented as bundles with a service request
for an IDocumentCategorization service. Therefore service tracking code was introduced
to all bundles to react to changes concerning the availability of services. The user is
responsible for activating and deactivating bundles containing categorization services.
Only if no service is available the default service is activated that associates all documents
with the same (default) category. Figure 7.5 illustrates this example for the PimPro
Notes, Mail and Bookmarks bundles. Here, the user may select a gradual, vicinity or
no categorization for his mails, notes or bookmarks. For the default categorization no
selection is necessary.

Categorization
Gradual

Categorization
Gradual

Categorization
DEFAULT

Categorization
DEFAULT

Categorization
Vicinity

Categorization
Vicinity

BookmarksBookmarks

Categorization

Categorization

MailClientMailClient

NotesNotes

Categorization

Service tracking code user based selection

Figure 7.5: Usage of the Strategy Pattern in PimPro for the view categorization

130 evaluation

Categorization

BookmarksModel

TreeContentDecorator
TreeDecorator

Flattening

TreeDecorator
Enriching

user based selectionAnticipated Decoration

Bookmarks
View

BookmarksModel

Bookmarks
Model

Figure 7.6: The anticipated decorator pattern for the bookmark tree decoration

Service-oriented Decorator

The dynamic tree decoration also takes advantage of SOA. Here, the configuration of the
bookmark tree decorator is realized via services. All available tree decorators3 are tracked
and added to the dynamic decorator implementation in the Bookmarks View component.
The general concept of a decorator pattern as described in Section 7.1.3 is preserved.

Limitations

Several downsides remain. Concerning the strategy solution the necessity of tracking
code itself is problematic. The selection criteria of the concrete service must be anticipated
in the tracking implementation. For a context dependent selection the bundles must be
context-aware. This is a strong restriction since a bundle should be usable in arbitrary
settings.

The main limitation of the decorator solution is the anticipation in the Bookmarks View
component. Every service request that should be decorated must be extended with the
relatively complex dynamic decorator pattern structure.

For both patterns an inherent OSGi problem, the uncertainty about the service reference,
must be taken into account in the concrete implementation. While using the reference
and passing it to the internals of the component, the service may become unavailable.
This problem must be anticipated by the programmer. There is no means in OSGi to
replace a service reference on the platform level.

7.1.5 SOA and Aspect-Orientation - Patterns for Adaptivity

Hannemann et al. [94] and we [173] have shown that AOP, and especially generic aspect
languages, simplify and improve the implementation of most of the GOF design patterns
[84]. Here, we show how aspect-oriented techniques combined with a context-aware
service-oriented architecture can even go further. With the help of CSLogicAJ aspects4 we
are able to remove most of the tracking code - and thereby the anticipation of possible
contexts - from the components.

Service aspects enable replacement or decoration of services and can refer to arbitrary
context information. By this, service tracking can be moved to the architecture level
making dynamic changes of services transparent for the application. The same is true
for the dynamic decorator preparation described in Section 7.1.3. Bundles are only

3 implementing the interface TreeContentDecorator
4 The case study applied an early version of CSLogicAJ, where the context pointcut language was based on

untyped Prolog predicates instead of OCQL. For this thesis the aspects were translated into latest CSLogicAJ
syntax.

7.1 programming for context-based adaptability - a case study 131

Categorization
Gradual

Categorization
Gradual

Categorization
DEFAULT

Categorization
DEFAULT

Categorization
Vicinity

Categorization
Vicinity

BookmarksBookmarks

Categorization

Categorization

MailClientMailClient

NotesNotes

Categorization

selected by
Categorization

Aspect

Context
Management

User
Preferences

based on

Figure 7.7: Aspect-oriented Strategy Pattern based on user preferences

responsible for specifying their service dependencies via service requests. The service
aspects organize the reconfiguration of the composition.

Section 7.1.5 and 7.1.5 illustrate how the language enables dynamic strategy change
and decoration.

Dynamic Strategy Change

This example realizes the dynamic change of a categorization service based on user
preferences. Let’s assume that a context provider is available, which represents the user
preferences on a certain device. Since the context management is not in the focus of this
case study, we skip the definition and registration of the provider.

Once the context provider is registered, a context class UserPreference is available via
the context management system. Based on this class it is now possible to define a dynamic
strategy change via CSLogicAJ aspects. Figure 7.7 depicts how the CategorizationAspect

selects one of the available categorization types based on the user preferences. If the pref-
erences or the set of available services change, the aspect selects a different categorization
service. If no service is available the default (DEFAULT) service is selected.

The onchange advice strategyChange in Figure 7.8 facilitates the service pointcut5

and the predefined ServiceRequest context class. The service pointcut binds registered
services and their attributes, the ServiceRequest context captures all active service requests.
The advice is re-executed every time the aspect is activated or one of the advice parameters
service and kind changes. The advice accesses the Ditrios facade via the built-in field
thisJoinPoint.

The setActiveService(requestId, Object) method performs the actual strategy change.
Each request for services with interface IDocumentCategorization is set to the service
bound to the variable service. The pointcut backtracks over all possible request bindings
and the advice is executed for each binding separately. Here the crosscutting application
of the aspect on all bundles becomes evident. This change is transparent for the using
bundles. They keep their references to requested services.

Dynamic Service Decoration

As an example for service decoration we only consider the TreeFlatteningAspect. In the
PimPro example this aspect is responsible for flattening the model of the bookmarks
model. This is realized by around advices on all TreeContentProvider services, such
as the model of the Bookmarks applications (see Figure 7.9). Every method call to the
Bookmarks model is intercepted and modified to flatten the tree structure.

5 see Section 5.4.2

132 evaluation

aspect CategorizationAspect {

onchange strategyChange(IDocumentCategorization service,

String kind, ServiceRequest request)

changed(ne(service) || ne(kind)):

UserPreference->one(categorizationKind = kind) &&

service(service, { categorizationKind = kind }) &&

request=ServiceRequest->one(

objectclass="org.cs3.csi.IDocumentCategorization")

{

try {

thisJoinPoint.getDitriosFacade().

setActiveService(request.id, service);

} catch(Exception ex) {

throw new RuntimeException(ex);

}

}

Figure 7.8: Dynamic strategy change

TreeFlattening
Aspect

TreeEnriching
Aspect

Categorization

BookmarksModel

Bookmarks
View

BookmarksModel

Bookmarks
Model

Figure 7.9: Aspect-oriented decorator pattern for the bookmark tree decoration

The aspect implementation is shown in Figure 7.10. We concentrated on the most
relevant advice that intercepts the getElements(Object) method. First the tree content
provider object and its arguments are bound in the pointcut expression.

The helper method getAllElementsRecursively6 retrieves all elements of the provider
and returns a list. The list is converted to an array and returned as the flattened element
list. The proceed call represents the delegation to the original service method or the next
advice that was woven, e.g., by another aspect that decorates the tree.

If more than one decorator aspect is woven the order of weaving is important. For
example, an aspect that adds new bookmarks to the tree must be executed before the
flattening takes place. Otherwise the result is a mixture of flattened original bookmarks
and a new tree of added bookmarks.

A first solution to this problem is explicitly annotating the dependencies between the
aspects.

Limitations

The implementation of bundles becomes much easier with AOP but in concrete adaptation
scenarios anticipation is still needed in the bundles. The strategy change in Section 7.1.5
is only possible if the service change is possible at any time. The transaction concept
presented in Section 5.3.3 overcomes this problem, but results in the necessity to define
transaction start and end points in the bundle.

6 This method was implemented straight forward. We left it out only for brevity.

7.2 jcop query library 133

aspect TreeFlatteningAspect {

Object[] around flattenElementTree(

ITreeContentProvider provider, Object inputElement) :

execution(* ITreeContentProvider.getElements(Object)) &&

target(provider) &&

args(inputElement)

{

List result = getAllElementsRecursively(provider,

proceed(provider,inputElement));

return result.toArray();

}

// ... around advices that intercept the other

// methods of ITreeContentProvider and return

// null or false for the other methods

}

Figure 7.10: Bookmarks Flattening Aspect

7.1.6 Summary

The case study addressed the question how adaptive software for context-sensitive
scenarios could be developed based on a statically typed language like Java or C++.
We first outlined a scenario and deduced the most crucial requirements this kind of
software faces. Solely relying on object-oriented abstractions cannot reasonably cope with
the problems of not fully anticipated runtime adaptation, detecting, discovering and
integrating adaptations. These requirements call for more sophisticated abstractions, as
provided by a Service-Oriented Architecture. As we illustrated rich adaptations frequently
make cross-cutting changes necessary. Aspects can cover this issue to a large extend. They
also address the general issue of reducing the level of needed anticipation.

7.2 jcop query library

This Section gives an example of the most dynamic use of the CMI, the first variant
of language integration presented in Section 5.1.4. The CMI was integrated with the
context-oriented programming language JCop [15, 14]. We developed a library for JCop
as an interface to the query system. JCop is a language extension to Java implementing
the context-oriented programming approach (Hirschfeld et al. [106]). It provides first-
class layers (modules that encapsulate variations of methods) and explicit, implicit, and
declarative constructs to control layer activation at run time (controlling which method
variation a call is being dispatched to). Offering these constructs, JCop supports means to
modularize and control context-depended functionality. Context queries, however, were
not explicitly supported in the language core.

Figure 7.11, illustrates the modularization technique with a generic example. A set
of base classes is extended by three layers α, β, γ, which redefine different methods in
base. At runtime, an arbitrary number of layers can be activated/deactivated in a certain
program flow, adding new functionality to the base program.

7.2.1 Overview

Our JCop query library supports executing context queries and defining actions - for
example, layer activation - to be taken on context change. In the following, we briefly
describe the most important API objects and methods7.

7 The classes ContextQuery and IContextHandler belong to the library package jcop.query; Layer refers to
jcop.lang.Layer.

134 evaluation

΅

Ά

·

base

Ά ◦ · ◦ base

΅ ◦ base

 Modularization Runtime Adaptation

Figure 7.11: Cop modularization approach; Figure adapted from [15]

ContextQuery(ContextRequest, String, String) A query object is instantiated with
its context type schema, a default namespace, and a string representation of the
CQL expression.

boolean ContextQuery.evaluate() A query can be executed synchronously and will
immediately return a Boolean value whether the context is accessible or not.

void ContextQuery.evaluate(IContextHandler) Queries can also be executed asyn-
chronously. In that case, an IContextHandler object is passed to the query’s evalua-
tion method that is called by the CMS on context entry and exit.

ResultSet ContextQuery.getResultSet() The variable bindings of the last executed
query are represented by a ResultSet that holds a list (for each solution found via
backtracking) containing maps of key-value pairs. In addition, ResultSet provides
some auxiliary methods such as boolean isEmpty().

void ContextQuery.addLayers(Layer[]) Layers can be associated with a query, for ex-
ample, to make them accessible to the IContextHandler callback methods.

void IContextHandler.onContextEntry / Exit(Layer[]) The callback methods are acti-
vated on context change and can be used for implementing any kind of reaction to
the new state. They are parametrized with Layer objects if they have been associated
with the query.

7.2.2 Example

In the following, we sketch a decomposition of the ToDo application example using our
context query library. The example in Figure 7.12 presents three main activities: modu-
larized definition of adaptation code with layers, context reasoning with the query language,
and activation of the adaptation by a context object .

The layer NearbyContactsMsg implements the nearby contacts message display at the
start of the calendar application (Lines 6–15). The layer and its partial methods require

7.3 intercepted service call benchmark 135

context data in form of references to the nearby contact objects. This information is
passed to the arguments of the layer constructor8. The layer activation is controlled by
a NearbyContacts context object that is created and activated during generation of the
corresponding ToDoItem (Lines 20–21). The context query is created on instantiation of
NearbyContacts. First, we request a context schema from the IContextAggregator that
defines the context types to be used in our query (Lines 35–40) and declare the default
RDF namespace (Line 43). With that, we are able to specify the actual query as a string,
using Contact and NearbyService and their properties. The query first selects all Contact
entities that fulfill the condition of the select predicate, i.e. where first and last name
match a Contact object (associated with the ToDoItem). These entries are then filtered by
a forAll predicate. It only selects those entries for which the NearbyService context type
finds a match within a range of 100 meters (Lines 44–47). We use JCop’s on predicate to
evaluate the context query at any layered method, that is, any method potentially affected
by the respective layer activation (Lines 28–29). In this example we use the synchronous
query evaluation that returns a Boolean value indicating if the context is active.

7.2.3 Summary

The integration of JCop with the CMI allows full runtime flexibility by parsing OCQL
expressions before each call. The downsides of the approach are missing type safety for
the returned context classes and a OCQL compilation overhead of > 100 ms for each
call. Although the compilation step could likely be optimized further9, an considerable
overhead will remain compared to the pre-compiled variant that we benchmarked in the
next section.

7.3 intercepted service call benchmark

The service method interception in Ditrios is realized by facilitating Java Proxies and
reflection [136]. We have created a micro benchmark to evaluate the overhead of service
method calls compared to regular Java calls. Every call kind is repeated for 5 second
twice. First, to give the Java Hotspot just-in-time compiler time to optimize the calls, the
second phase measures the optimized call values. Figure 7.13 shows the results. The
analysis was carried out on an Intel Core i7-2600K, with 8-GB and the Java JDK 1.7 32-bit
client VM10 and the 32-bit SWI-Prolog 5.11.28, which is queried via the native Java Prolog
Library (JPL).

We call a dummy service method which increments a field and is intercepted by the
context-aware advice below:

pointcut benchmarkPointcut(Person l) :

execution(* IQueryTestService.executeStringTest()) &&

bind(l = Person->one(firstName="Mina"));

before benchmarkAdvice(Person p, QueryTestService service) :

service(service) && benchmarkPointcut(p)

{

BenchmarkTest.setAspectCalled(true);

}

The most-left result shows the evaluation of an un-cached service call, which evaluates
the pointcut above on an RDF factbase with 500 contact classes. The whole call and

8 Layer instantiation has been recently introduced as a new feature to the JCop language.
9 In the current implementation parsing, static analysis, and generation of Prolog predicates write and read

intermediate files stored in the file system.
10 The server VM improves the reflective call values by a factor of 4, but since we are targeting clients with the

approach we use these more realistic values.

136 evaluation

pointcut evaluation takes about 0.5 ms. As long as the context factbase is not changing,
the subsequent advice calls are cached. In this case the advice call is in the order of
magnitude of a reflective proxy call. For the cached advice call we measured 4500 calls/ms
and for the reflective proxy call about 16000 calls/ms. The rest of the Figure shows how
proxies and reflective calls compare to the direct invocation of a dummy method11.

Since we only intercept service method calls, the performance is typically sufficient
for most scenarios, without high-performance demands. In the benchmark example the
method is empty except for a field increment. In a real-world example the calls on service
will likely evaluate much more complex code and therefore the overhead of the call is
neglectable. The main bottleneck are the non-cached advice methods, which can reduce
the performance significantly when the context is changed in small time ranges, making
a reevaluation necessary. To overcome this limitation the weaving could be separated into
a primitive-pointcut evaluation part and a context query residue, where the later is only
evaluated if the join point is matched by the primitive pointcuts. The first part can then
be woven by optimized dynamic aspect approaches, restricting the evaluation of context
queries to where necessary. A number of approaches can be used for the pre-weaving:

For arbitrary Java virtual machines JAC[160] and Handiwrap [23] weavers are applica-
ble, which add advice hooks at every join point to a class at load- or compile-time. If the
application is deployed on x86/amd64 Linux also PROSE 2 [164]12 and Steamloom [37]
aspect weavers are an option which extend the Jikes RVM [115] and realize weaving by
Java byte code manipulation.

7.4 summary

In this Chapter we have presented a case study on context-aware mobile applications,
which compared different implementation variants based on pure object-orientation,
service oriented-architecture and context-aware aspect-oriented programming. The study
has shown that aspect-orientation successfully encapsulated crosscutting concerns in the
analyzed application and reduced the need for adaptation anticipation.

The CMI offers three different variants to integrate OCQL into a language13. CSLogicAJ
represents the most sophisticated approach concerning static type safety. Aspects are only
type checked against their imported RDF schemata. In case of several deployed aspects,
this leads to potentially different, aspect specific type hierarchies in an application.

In Section 7.2 we have presented the most dynamic use of OCQL, which does not
rely on static typing at all. We embedded OCQL into the context-oriented programming
language JCop, and enabled layer activation based on the state of the context management
system. The realization demands a runtime compilation of the OCQL predicates, and
therefore presents a very different use-case for the CMI as CSLogicAJ. The third OCQL
integration variant, a global RDFS type hierarchy for the whole application, is left for
future work, since it is mostly a specialization of the CSLogicAJ case.

We closed the Chapter with performance measurements of LogicAJ aspect weaving,
which has shown potential for further optimization. We have discussed a possible opti-
mization approach, which combines the underlying Ditrios architecture with a common
dynamic weaving framework for aspect-languages.

11 The method was called on volatile field to avoid method in-lining.
12 The first version of PROSE facilitated the Java low level debugging interface, which resulted in an overall

slow-down of the virtual machine execution.
13 see Section 5.1.4

1 public class CalendarApp {
2 public void initialize() {...}
3 ...
4 }
5

6 public layer NearbyContactsMsg {
7 private void ResultSet contacts;
8

9 public NearbyContactsMsg(ResultSet rs) {
10 thislayer.contacts = rs;
11 }
12 before public void CalendarApp.initialize() {
13 //show message which contacts are nearby
14 }
15 }
16

17 public class ToDoApp {
18 public addContactsToItem(Contact[] cts) {
19 ... //create a new ToDoItem
20 ctx = new NearbyContacts(cts);
21 ctx.activate();
22 }
23 }
24

25 public context NearbyContacts {
26 private ContextQuery nearby;
27

28 on(nearby.evaluate()) :
29 with(new NearbyContactsMsg(nearby.getResultSet()));
30

31 public NearbyContacts(Contact[] cts) {
32 this.nearby = createQuery(cts);
33 }
34 private ContextQuery createQuery(Contact[] cts) {
35 ContextRequest request =
36 CMS.getContextAggregator().requestSchema(
37 null,
38 "http://www.example.org/nearby.rdf",
39 "max(precision)",
40 Cardinality.single);
41 return new ContextQuery(
42 request,
43 "http://www.example.com",
44 "Contact->select(" + createCond(cts) + ")
45 ->forAll(c | NearbyService
46 ->nearby({maxDistance=100})
47 ->exists(c.email=email))");
48 }
49 private String createCond(Contact[] cts) {
50 // for each contact c in this.cts, generate:
51 // (firstName=c1.getFirstName() &&
52 // lastName=c1.getLastName()) || ...
53 }
54 }

Figure 7.12: Implementation of the ToDo application using JCop’s query library.

137

140000

292313

100,000.00

150,000.00

200,000.00

250,000.00

300,000.00

350,000.00

calls/ms

1.90 4516
16168 18195

0.00

50,000.00

100,000.00

Advice Call Cached Advice

Call

Reflective

Proxy Call

Reflective Call

Without Proxy

Proxy Call Invokevirtual

On Volatile

Figure 7.13: Cached service call compared with normal calls

138

Part IV

R E L AT E D W O R K , C O N C L U S I O N S , A N D F U T U R E
W O R K

8R E L AT E D W O R K

This thesis has related work in several research areas. The OCQL language shares
characteristics with other context query languages and the aspect-language with other
(context-aware) dynamic aspect languages, and the context management system is similar
to a range of approaches supporting context-awareness. The related work on RDF-Java
mappings has already been discussed in Section 4.1 and will not be repeated here.

8.1 context query languages

8.1.1 SPARQL

SPARQL is the standard query language for querying RDF graphs and is inspired by
SQL. It uses triple patterns, which are matched with the given RDF graphs. Queries
are evaluated on the RDF simple entailment [97, Section 2], but SPARQL endpoints1

implementation may offer RDF Schema or OWL entailment, e.g., Pellet [184].
SPARQL and its precursors have been used as query languages for a number of context

management systems [201, 193], but we did not base our approach on SPARQL for several
reasons. Especially the current version, SPARQL 1.0, is limited in its expressiveness to
relational algebra [13], and therefore recursive expressions, such as closures2, are not
expressible. And there are number of further limitations:

• It does not support meta-calls such as the findall statement in OCQL/Prolog.

• Variables cannot be typed, only explicit runtime tests can be added to ensure that
the variable is bound to instances of a certain type.

• Does not support aggregation functions.

• Variable assignments are not possible, e.g., for string processing such as concatena-
tion.

• Sub-queries in general and especially to remote databases (endpoints) are not
supported.

• Negation-as failure (NaF) cannot be expressed directly.

As motivated in Section 5.5 we consider NaF essential for testing sensor reads. In SPARQL
1.0 NaF is only implicitly expressible via a combination of the optional and filter expression,
see [167]. The expression first optionally binds an expression to a variable and later tests
if it was bound, here is the original example from [167], which binds all persons which
do not have the dc:date property:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?name

WHERE { ?x foaf:givenName ?name .

OPTIONAL { ?x dc:date ?date } .

FILTER (!bound(?date)) }

1 SPARQL endpoints are services, which provide access to an RDF knowledge base via the SPROT protocol [50].
2 For example, the transitive friends relationship.

141

142 related work

In SPARQL 1.1 [181], which is at time of this thesis still a working draft, many limitations
will be removed. For example, support for queries on the RDFS and OWL entailment
[86] have been added, NaF is directly supported, path expressions allow the definition
closures, variable assignment is possible, sub-queries enable alternating quantifiers on
sub-queries, remote queries (federate expressions [166]) and aggregations will be added
to the core of the language.

Still, SPARQL does not support variable typing and meta-calls and is limited in its
general expressiveness. Further, universal quantification is only indirectly expressible.
This makes queries like “a contact that knows all other contacts” more complex than in
OCQL. Let’s assume the following triples for a class :Contact are defined:

@prefix : <http://example.org/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

:Contact rdf:type rdfs:Class.

:knows

rdfs:range :Contact ;

rdfs:domain :Contact.

:contact1

rdf:type :Contact ;

:knows :contact1 ;

:knows :contact2.

:contact2

rdf:type :Contact;

:knows :contact2.

The given query can be defined straight forward in OCQL:

Contact->select(contact|

Contacts->forall(other| other = contact ||

contact.knows->one() = other)

In contrast SPARQL expression must simulate the universal quantification via an OP-
TIONAL clause and a later not-bound test:

PREFIX ex: <http://example.org/>

SELECT ?contact

WHERE {

?contact a ex:Contact .

OPTIONAL {

?other a ex:Contact.

NOT EXISTS {?contact ex:knows ?other }

FILTER (?other != ?contact).

} .

FILTER (!bound(?other)) .

}

In general SPARQL’s SQL-like approach does not fit well with a pointcut language, which
resembles more to logic than a relational language.

8.1.2 SWRL

The Semantic Web Rule Language (SWRL) is a W3C proposal for an OWL rule language,
based on Rule Markup Language [111]. The antecedent of the rule is conjunction of
positive literals. Negation is not allowed to avoid non-monotonic reasoning. All variables
in the consequent must occur in the antecedent and are universally quantified. Literals

8.1 context query languages 143

in SWRL are either OWL concepts C(x), properties P(x,y) or the comparison predicates
sameAs(x,y) and differentFrom(x,y), where x and y are variables. Further SWRL specifies
a number of math, comparison, string, date/time/duration and URI handling built-ins.

Its concrete syntax is defined in XML, but exemplarily we write a query with common
formal logic operators. Let’s assume we want to define the friends closure in SWRL:

friend(P1, P2) ❫ friend(P2, P3) ñ friend(P1, P3)

The rule is an axiom on the OWL ontology. In an implementation it is successively applied
until a fixpoint is reached (e.g., by forward chaining [148]). The limitations compared to
OCQL are quite obvious. Negation-as-failure is not possible in SWRL, no meta-predicate
support, no variable typing. SWRL was not developed as a query language, but to enhance
the expressiveness of OWL ontologies with Horn-like rules. With SQWRL [149], a query
language was proposed, and implemented in Semantic Web framework Protégé [146]
and has been used to build context-aware applications [150].

8.1.3 MUSIC CQL

As a critique of SPARQL Reichle et al. [169] presented a context query language, which
was developed as part of the EU project MUSIC3. The first nine requirements4 for our
approach are based on requirements elicited for MUSIC project and therefore also fulfilled
by their CQL approach. The MUSIC CQL is a XML-based query language based on an
OWL context model. Queries are defined as constraints on the ontology and can explicitly
specify reasoning of relations and apply time range restrictions. Compared to OCQL
it does support variable typing, meta-predicates and, similar to SPARQL, it follows a
relational approach.

8.1.4 F-Logic / Flora-2

Frame Logic (F-Logic) [119] is a general purpose object-oriented logic language that
features the common object-oriented properties object identity, inheritance, polymorphic
types, query methods and encapsulation. A number of languages have extended or
adapted the concept [63, 183, 211, 132], where Flora-2 [211] is the most expressive
approach, which also supports higher-order logic (Hi-Log) [49], and transaction logic
[39].

Flora-2 was implemented based on the deductive database engine [176], and takes
advantage of XSB’s built-in tabling [176]. Attempts have been made to standardize the
Flora-2 / F-Logic concepts as a Semantic Web language, the Semantic Web Services
Language (SWSL) [27], but the competing SWRL approach has found more community
and tool support [99].

Flora-2 takes a much more general and expressive approach than OCQL, but does not
consider type checking. Via meta-programming runtime type checking is possible [210],
but results in runtime overhead, and should only be used for debugging purposes [210,
26.2].

8.1.5 Prova 2

The knowledge reasoning system Prova 2 [158] is a typed logic language for the Semantic
Web5. Instead of a static typing approach chosen for OCQL Prova2 applies a runtime type
check on unifications. More precise, it uses description logic-typed unification, by extending
the normal unification algorithm with the description logic reasoner Pellet [184], resulting

3 Self-adapting applications for Mobile Users In ubiquitous Computing environments
4 see Section 1.4
5 See also Section 2.4.3.

144 related work

in an EXPTIME worst case complexity in case of the description logic OWL lite on
unifications.

Prova2 is more an extension of Prolog, allowing the use of arbitrary complex terms
in literal arguments that only allows tuples and lists. But the main differences between
Prova2 and OCQL are static vs dynamic typing and OCQL’s integration with the Java
type system.

8.2 context-management systems

Most context-aware platforms concentrate on context management, providing a well-
defined interface for an application for context data handling and querying. The ap-
plication anticipates the interfaces to the context management and is therefore itself
context-aware. One example is the SOCAM approach [89] by Gu et al., an approach
built on top of the OSGi framework. The context model is based on the Web Ontology
Language OWL Lite [187] and RDF schema. Context reasoning is carried out with a
rule system based on first-order predicate calculus. The rules can be evaluated with
forward- or backward chaining, and both evaluation techniques can be combined. Based
on triggered rule actions, which are not further specified, a client can react to context
changes.

Semantic Space [204] is another related framework, which focuses on providing

• an explicit representation of raw context data,

• the means to acquire contexts via expressive queries, and

• high-level contexts through reasoning.

The context itself is modeled as an OWL ontology, which is queried by RDQL [140]
an precursor of SPARQL. Context wrappers provide these contexts, they are discovered
and handled by a context aggregator. Four basic classes can be used to characterize smart
spaces; user, location and computing entity represent real world objects and activity a
conceptual object. Though conceptually similar, it does not support AOP and context
analysis is limited by SPARQL’s expressiveness.

Oh et al. [151] developed a “context management architecture for large scale smart
environments”. Instead of a full-fledged ontology language they base on the context
modeling language 5W1H [108], which represents a user centered context representation
describing Who did What, Where, When, Why, and How. In contrast to most approaches
community management is considered already on the architectural level. Communities
are explicitly modeled and managed. Once community members are located in the
same environment and have a similar goal context information between them is shared.
Compared to our approach, the 5W1H language has a very limited expressiveness, it
does not go beyond propositional logic [108].

The Ditrios architecture provides an exception handling mechanism by means of
aspects. Architecture level exception handling for distributed services has also been
proposed by [9]. The DeEvolve platform provides an exception handler concept with user
interaction to look up service alternatives on failure. The handlers are defined in an
XML description, which is also used to describe the service composition. Although the
means are different the possibilities are similar. The aspects can be used for automatic
reconfiguration or to incorporate the user into the selection process.

8.2.1 Context-aware Aspect-oriented Programming

AspectJ [118] offers a generic if(BooleanExpression) pointcut that executes an arbitrary
boolean expression on static members of an aspect. For example consider the following

8.2 context-management systems 145

aspect that facilitates the boolean method contextActive(..) to check if a certain context is
active at call-time:

public aspect ContextAwareAspect {

static boolean contextActive(JoinPoint jp){ ... }

static Context getContext() { ... }

before() : if(contextActive(thisJoinPoint)) {

getContext();

}

}

But the transfer from the if pointcut expression to an advice is not possible with this
construct, the advice must explicitly gather the context information in the advice. The
AspectBench compiler [19] introduced the let pointcut [21] to bind objects to advice/-
pointcut parameters. Avgustinov et al. used the let pointcut to bind the current join point
object to compare it in trace matches, but did not combine this approach with a context
model or context management framework.

Tanter et al. [197] presented a framework approach for context-aware aspects (CAA),
which took this further step. CAAs is based on the Reflex AOP kernel [7], which offers a
Java based-context definition framework and an API for defining context-related aspect
constructs on metaobject provided by the Reflex framework. Tanter et al. used the
framework approach instead of extending an existing aspect language for fast prototyping
reasons [197].

CAAs can adapt the advice execution to the runtime state of the program. They
proposed a Java-based context model and provide a pointcut-like API to bind and
evaluate the current context. The CAA approach also supports context snapshots and
pointcuts may refer to past events. But here the snapshot approach is targeted for storing
only small parts of the global context, and relate it to single objects. For example, they
define a promotional context for an online shop and associate its snapshot with creation
time of a shopping cart. Later all join points on methods of this shopping card instance
can refer to this snapshot although the promotional context might have vanished or
changed in the meanwhile. The context classes are in responsibility for snapshot creation
themselves, since the snapshot creation can become expensive in the presence of deep
context object graphs. This approach differs from our realization of snapshots and in
the representation of context information. No explicit context query model or language
is defined. Since it is a framework approach a context management system could be
combined with CAAs, but this step was left for future work.

Fuentes et al. [82] proposed an ambient intelligence domain-specific language for
architecture level adaptations. Adaption strategies can be written, which change the
application at runtime. The analysis of the context is carried out with SWRL [110]. Next
to the limitation inherited from SWRL6 the system does not offer asynchronous advice
and does not offer a concept like query context sources.

8.2.2 Dynamic Component-based Aspect-oriented Programming

Several dynamic aspect languages for component systems have been proposed for Java
[80, 160, 145, 194]. The performance for first and cached method calls is much better
(orders of magnitudes for the first call) in these systems, see also Section 7.3. Our current
approach is a pure on-demand weaving approach, which evaluates all pointcuts at every
unvisited join point7. This is similar to the technique used by Morphing Aspects [93],
which weaves aspects on-demand by meta-programming in Smalltalk. But CSLogicAJ
considers, next to the pure program join point, also context data.

6 See Section 8.1.2.
7 The visit marker is resetted after every context change

146 related work

Our dynamic weaving approach was not optimized for runtime performance, and we
consider a combination of optimized dynamic weaving approaches with our context
framework as future work (see Section 9.2). This can be achieved by separating aspect
weaving and context analysis, which is by now realized in one step.

9C O N C L U S I O N S A N D F U T U R E W O R K

9.1 conclusions

The main contribution of this work is the Object-oriented logic Context Query Language
(OCQL), a query language that bridges logic programming, a Semantic Web-based
context model, and the Java type system. It’s type system allows for a tight integration
with programming languages based on the Java type system. OCQL is complemented by
a flexible context management infrastructure (CMI). Together, they support the creation
of statically typed context-aware adaptation languages. We demonstrated this by means of an
integration with an aspect-oriented and a context-oriented programming language.

We started this work with the identification of requirements for context-aware adapta-
tion frameworks and languages. As a basis we took the requirements for context-query
languages gathered by the MUSIC EU project [169] and extended the list to cover context-
aware adaptation languages. Based on these requirements, we developed a CMI for
context-aware adaptation languages, which relies on RDF Schema for context modeling.
The CMI manages context sensors, either local or remote, and aggregates them in a
context management system. The context information is queried via OCQL. As building
blocks for this language, we developed

• an RDF Schema to Java mapping that considers multiple rdfs:range definitions;

• an extension of Lu’s mode analysis algorithm for normal logic programs [130] and
its formal semantics to support the higher-order predicate findall;

• a concept for the integration of a subset of Java Generics with a typed logic language,
resulting in a type system with parametric polymorphism and subtyping, and
support for a selected set of all-solution predicates;

• a type checking algorithm for OCQL that employs the mode analysis for dataflow
analysis; and

• the specification of OCQL’s semantics by a translation to a subset of Prolog.

We have build the CMI on top of the OSGi-based component framework Ditrios [180, 174],
which offers a service interception mechanism. Combining both, service interception and
context analysis, offers the means for context-aware service adaptation. The CMI and the
OCQL language compiler were designed with extensibility in mind and allow for simple
integration into programming languages based on the Java type system. The CMI offers
three different levels of language integration, with tradeoffs concerning flexibility and
static type safety (see Section 5.1.4).

We evaluated two different variants on two different languages. First, OCQL was
combined with the context-oriented programming language JCop [175]. This approach
demonstrated how OCQL can be applied in a dynamic setting, where OCQL is parsed
and evaluated at runtime, at the expense of untyped query results and potential runtime
errors.

The aspect language CSLogicAJ [174] demonstrated the full integration into a host
language. Each aspect is type checked only against the RDFS classes it imports, building
up its own context class taxonomy. This allows for the separate compilation of CSLogicAJ
aspects. Further, the class hierarchy and properties used by an aspect cannot be influenced
by RDF schemas referenced by other aspects. To our knowledge, CSLogicAJ is the first
aspect language that fulfills all requirements we elicited for context-aware adaptation

147

148 conclusions and future work

systems. OCQL was integrated into CSLogicAJ’s pointcut language, resulting in a hybrid
context analysis and pointcut language.

Additionally, CLogicAJ offers an asynchronous advice construct. Asynchronous advice
defines program-flow independent actuators, which react to context change and is a
unique mechanism for aspect languages. This concept unifies common Event-Condition-
Action rules [67] with aspect-orientated programming.

In a case study we compared the implementation a context-aware adaptation sce-
nario, with plain object-oriented and service-oriented solutions. The comparison showed
how context-aware aspect-oriented programming, combined with a service oriented
architecture can

• reduce the anticipation of adaptations significantly,

• encapsulate crosscutting concerns on the architecture level, and

• dynamically apply adaptations on running applications.

9.2 future work

The work presented in this thesis can be evolved in several directions:

9.2.1 Weaving Optimizations

The dynamic aspect weaving approach used in the thesis is not optimized for runtime
performance, and we consider the combination of other dynamic weaving approaches
with Ditrios as a natural step. To achieve this we plan to separate the weaving process
into a pure AspectJ primitive pointcut evaluation part and a context query residue, which
is only evaluated if the join point is matched by the primitive pointcuts. The first part can
be woven by an optimized dynamic aspect approach, restricting the evaluation of context
queries to where necessary. A number of approaches can be used for the pre-weaving
part:

For common Java virtual machines JAC [160] and Handiwrap [23] weavers are applica-
ble, which add advice hooks at every join point to a class at load- or compile-time. If the
application is deployed on x86/amd64 Linux also PROSE 2 [164]1 and Steamloom [37]
aspect weavers are an option, which extend the Jikes RVM [115] and implement weaving
by Java byte code manipulation.

9.2.2 OWL Support

The context model developed in this thesis is based on RDF Schema. All other Semantic
Web languages can be serialized into RDF Schema and therefore a large number or
resources are available for the CMI. However, RDF Schema is very limited its expres-
siveness. For example, we cannot restrict the cardinality of property relationships and
cannot declare two individuals to be the same. The missing cardinality constraints lead
to the general assumption in this work that a property of a context class is related to 0-N
resources, although for a large number of properties, e.g., surname or the birthday of a
person, the cardinality restrictions would avoid unnecessary checks and indirections.

The OWL languages, see Section 2.2.3, extend the vocabulary of RDFS resulting in more
concise class definitions, including constructs to define cardinalities, mark two classes or
objects as equivalent and more. Further, the variants OWL lite and OWL DL, distinguish

1 The first version of PROSE facilitated the Java low level debugging interface,which resulted in an overall
slow-down of the virtual machine execution.

9.2 future work 149

classes from objects (individuals), which is not the case in RDFS. This leads to a clear
separation of type declarations and objects.

To accommodate OWL in OCQL’s type system, we plan to extend the RDF-Java
mapping2 gradually, starting with a mapping of the most restricted variant OWL lite.

9.2.3 Typed Java Library

We defined three different levels of OCQL language integrations3. The second variant
has the perquisite that all RDF schemas used in an application are statically known. This
leads to a fixed context type taxonomy, enabling the generation of concrete Java interfaces
for RDFS classes. Java clients can be compiled against these interfaces. In case that no
runtime loading of querying clients will happen this is a suitable solution and does not
involve further language extensions. A good candidate for such a controlled environment
is the Android platform [1]. Android applications represent fixed deployments without
any static or runtime dependencies, except for the Android SDK classes.

We will develop a context-management system for Android, which manages a central
RDF-based context repository. A standalone variant of OCQL generates Java interfaces
for the local context model for an Android application and an Java API4 to represent the
predicates as queries.

2 see Section 4.1
3 See Section 5.1.4.
4 Application Programming Interface

Part V

A P P E N D I X

AA P P E N D I X

a.1 xml primitive type mapping

The table below lists the mapping of XML basic types to Java:

XML Primitive Type Java Types

string java.lang.String

boolean Boolean

decimal Integer

int Integer

long Long

short Short

byte Byte

float Float

double Double

duration javax.xml.datatype.Duration

dateTime java.util.Date

time java.util.Date

date java.util.Date

153

154 appendix

a.2 xsd built-in type hierarchy

The following diagram shows the hierarchy of built-in xml schema primitive and derived
datatypes.

Copyright © 2004 World Wide Web Consortium, (Massachusetts Institute of Technology, European Research Consortium for
Informatics and Mathematics, Keio University). All Rights Reserved. http://www.w3.org/Consortium/Legal/2002/copyright-
documents-20021231

A.2 xsd built-in type hierarchy 155

a.2.1 Lunjin Lu - Abstract Unification Algorithm

The following generic abstract unification algorithm is an extract from [130], Chapter 5:

Algorithm ����� Let U �V � VAR� �� � Sub���U ��� �� � Sub���V ��� and A�B be atoms such that

vars�A� � U and vars�B� � V � De�ne share�X� t�S�
def
� �Y � vars�t���X� Y � � S where X is

a variable� t is a term and S is a pair sharing relation�

unify��A� ��� B� ���
def
�

��������������������
�������������������

let 0 be a renaming substitution such that

U0 � V � ��

E� � eq�mgu�A0� B���

V � vars���!Alias�

in���
��

restrict�solve�E�� �
�0 # ����V� if E� �� fail

���V �� otherwise

�	���

�I�S�A� # �I��S��A��
def
� �I � I ��S � S ��A� A�� �	�
�

solve�E� ���
def
�

����������������
���������������

let E� � f�X � Y � � E j Y � VARg�

E� � E nE��

�� � solve��E�� �
��

in���
��

���vars��� !Alias��� if failure���!Alias� E��

solve��E�� �
�� otherwise

�	���

solve��E� ���
def
�

���
��

�� if E � �

solve��E�� soln�e� ���� if E � feg � E�
�	���

restrict��I�S�A��V�
def
� �fX�I�X� j X � Vg�S � V��A� V�� �	�	�

soln�e� ���
def
� reduce�compose���� unieq�e� ���� vars�e��� �	���

unieq�X � t� �I�S�A��
def
���I��S��A���Z �� �	���

where

I� �

���������
��������

let I� � est�X � t� I�

in

�U�

���
��

I��Y � if �Y � vars�t�� fXg���U� Y � � A�

I�U� otherwise

��

156 appendix

S� �

�����������������������
����������������������

let Vt � vars�t� n fV j grd�I�V ��g�

�� � ���X��I�S�A��� �� � ���t� �I�S�A��� � � ���� ���

in�������������
������������

� if �� � � " �� � �

f�X� Y �� �Y�X�jY � Vtg if � � ��� ��

f�X� Y �� �Y�X�jY � Vtg � f�X�X�g if � � ���
�
 �share�X� t�S�

f�X� Y �� �Y�X�jY � Vtg � V
�
t if � � �
� ��
 �share�X� t�S�

f�X� Y �� �Y�X�jY � Vtg � f�X�X�g� V�
t otherwise

A� �

���
��

�f�X� t�� �t� X�g� A�� if t � VAR

A otherwise

Z � �

�������������
������������

� if grd�I�X��
 �Y � vars�t��grd�I�Y ��

" var�I�X��
 t � VAR
 var�I�t��

fXg if var�I�X��

vars�t� if t � VAR
 var�I�t��

fXg � vars�t� otherwise

compose��I�S�A����I��S��A���Z ���Z��
def
��I���S���A��� �	�
�

where

I�� � �U�

������
�����

I��U� if �Y � Z���U� Y � � A

ins�I��U�� if �Z � Z ���U� Z� � S

I��U� otherwise

�	���

S�� � S � S ��

f�U� Z�j�V���U�V � � S �
 �V� Z� � S�g�

f�W�V �j�U���W�U�� S
 �U� V � � S ��g�

f�W�Z�j�U� V���W�U�� S
 �U� V � � S�
 �V� Z� � S�g

�	����

A�� � A� �	����

reduce��I�S�A��
def
��I�

���
���X� Y � � S

�grd�I�X��
 �grd�I�Y ��g

 �X � Y � �var�I�X���

���
�� �A� �	��
�

solve solves a set of equations in an abstract substitution by calling solve� to solve those

equations whose right sides are variables� calling failure to detect failure in concrete uni�cation�

���

A.2 xsd built-in type hierarchy 157

a.2.2 Implementation of Array Index Access

Below the predicate arrayAccess/3 is defined, which is used in the realization of the
OCQL predicate index/3:

arrayAccess(0, [Head|_], Head) :- !.

arrayAccess(N, [_|Tail], Elem) :-

nonvar(N),

M is N-1,

arrayAccess(M, Tail, Elem).

arrayAccess(N,[_|T],Item) :-

arrayAccess(M,T,Item), N is M + 1.

a.2.3 Predefined Predicates and Arithmetic Expressions

This sections contains a number of predefined CSLogicAJ/OCQL predicates and arith-
metic expressions. The built-in OCQL predicates can easily be extended with arbitrary
Prolog predicates, see also Section 6.2.1.

CSLogicAJ Aspect Pointcuts

call(MethodPat) the AspectJ call pointcut, e.g., call(void Foo.m(int)) selects all calls to
the method void Foo.m(int)

target(Type|Var) binds all join points whose runtime receiver object is of type Type. In
case the argument is the name of an advice parameter (Var) the type comparison is
applied on the parameters type and the advice parameter is bound to the receiver
object.

this(Type|Var) similar to target, but here the enclosing runtime instance of the join point’s
call site is checked and bound.

args(Type|Var,...) binds all join points, whose arguments are compatible with the list of
type names or advices variables. Arguments are either method call arguments or
the values assigned to a field. For method calls the wildcard ’..’ can be used for an
arbitrary number of parameters.

currentAspect(String aspectName) Bind aspectName to the enclosing concrete aspect’s
class.

Service Predicates

service(advicdArg) binds adviceArg to services implementing the adviceArg’s interface.
The type of adviceArg must be an interface.

service(advicdArg[, TupleInit]) binds adviceArg to the first service implementing ad-
viceArg’s interface and that the constraint on the service’s LDAP properties de-
fined by the TupleInit expression, for instance the predicate p(MapView map) :
service(map,{centered="true"}). Binds a map to service that has a property centered
with the value “true”.

String Predicates

concat(String arg1, String arg2, String arg3) The third argument forms the concatenation
of the first and the second argument

158 appendix

camelCase(String identifier, String camelCaseIdentifier) converts to an identifier to camel
case syntax, for example: camelCase("myField", "MyField")

lowerCase(String anyCase, String lowerCase) Converts the characters of anyCase into
lower case and binds the String to lowerCase.

regex(String arg, String regEx, String[] groups) Checks if the pattern regEx matches the
first argument.

replace(String input,char search,char replace,String result) replaces in the string input the
character search with the character replace and binds the resulting string to
result, e.g., replace("asdf","s","f","afdf")

stringToCharacters(String s, String[] characters) Converts between a string s and an array
of characters.

subString(String string, int start, int length, int after, String sub) subString maintains the
following relation: sub is a sub-string of str that starts at before, has len characters
and str contains after characters after the match.

upperCase(String anyCase, String upperCase) Converts the characters of anyCase into up-
per case and binds the String to upperCase.

Array Predicates

<T> member(T[] member, T[] array) Checks if the first argument is a member of the array

bound to the second argument; the second argument must already be ground

length(Object[] a, int len) Succeeds if len represents the number of elements of the array
a.

<T> union(T[] array1, T[] array2,T[] union) the last argument is a set and the union of
array1 and array2

<T> removeElements(T[] remove, T[] fromArray, T[] resultArray) removes the elements in
array remove from the array fromArray and binds the resulting array to resultArray.

Meta Predicates

findall(varOrTuple,BooleanExpr,Bag) backtracks over all solutions of BooleanExpr and ag-
gregates the results as an array of the instantiations of the variable or tuple Template
and unifies the array with Bag.

bagof(varOrTuple,BooleanExpr,Bag) is similar to the bagof/3 predicate in Prolog, but
without existential variables1. The semantics is similar to findall, but bagof back-
tracks over the alternatives of free variables in BooleanExpr which are not in varOr-
Tuple.

setof(varOrTuple,BooleanExpr,Set) is similar to the bagof/3, but the last argument will
be bound to a set instead of a bag of bindings.

Variables

var(varname) tests if the variable varname has not been bound, yet.

ground(varname) tests if the variable varname is ground, meaning it is either bound to an
class instance/literal or a tuple/array that does not contain non-bound variables.

1 Which are syntactic sugar an can be simulated by a forward predicate

A.2 xsd built-in type hierarchy 159

Arithmetic Expressions

OCQL supports all arithmetic expressions and bitwise functions defined in the ISO Prolog
standard ISO [112, 9.3, 9.4]. These include the expressions power, sine, cosine, arctangent,
exponential, logarithm, and square root. And the bitwise functions left shift, right shift,
bitwise and, bitwise or, and bitwise complement.

B I B L I O G R A P H Y

[1] Android Software Development Kit. URL http://developer.android.com/sdk/

index.html. (Cited on page 149.)

[2] Cliopatria: the SWI-Prolog rdf toolkit. http://cliopatria.swi-prolog.org. (Cited on
page 82.)

[3] Java platform standard edition 6, api specification. URL http://download.oracle.

com/javase/6/docs/api/. (Cited on page 56.)

[4] last.fm. URL http://www.last.fm/about. (Cited on page 4.)

[5] Google latitude. URL http://www.google.com/latitude. (Cited on page 4.)

[6] Quintus Prolog Modules. URL http://www.sics.se/isl/quintus/html/quintus/

ref-mod.html. (Cited on page 21.)

[7] A versatile kernel for multi-language aop. (Cited on page 145.)

[8] Joseph Albahari and Ben Albahari. C# 4.0 in a nutshell: The definitive reference.
2010. (Cited on page 89.)

[9] Sascha Alda and Armin B. Cremers. Towards composition management for
component-based peer-to-peer architectures. In Proceedings of the Workshop Software
Composition (SC 2004), pages 42 – 58, April 2004. (Cited on page 144.)

[10] OSGi Alliance. Listeners Considered Harmful: The “Whiteboard” Pattern - Revision 2,
August 2004. (Cited on page 100.)

[11] OSGi Alliance. OSGi Service Platform Service Compendium - Release 4.2, Juni 2009.
(Cited on page 13.)

[12] OSGi Alliance. OSGi Service Platform Core Specification - Release 4.2, Juni 2009. (Cited
on pages 13 and 15.)

[13] Renzo Angles and Claudio Gutierrez. The expressive power of sparql. The Semantic
Web-ISWC 2008, pages 114–129, 2008. (Cited on page 141.)

[14] Malte Appeltauer, Robert Hirschfeld, and Tobias Rho. Dedicated programming
support for context-aware ubiquitous applications. In Mobile Ubiquitous Comput-
ing, Systems, Services and Technologies, 2008. UBICOMM ’08. The Second International
Conference on, pages 38–43, oct 2008. doi: 10.1109/UBICOMM.2008.56. (Cited on
page 133.)

[15] Malte Appeltauer, Robert Hirschfeld, Hidehiko Masuhara, Michael Haupt, and
Kazunori Kawauchi. Event-specific software composition in context-oriented pro-
gramming. In Software Composition, pages 50–65. Springer, 2010. (Cited on pages xi,
125, 133, and 134.)

[16] Krzysztof R. Apt and Maarten H. van Emden. Contributions to the theory of logic
programming. J. ACM, 29(3):841–862, 1982. URL http://doi.acm.org/10.1145/

322326.322339. (Cited on page 20.)

[17] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview of
caesarj. Transactions on Aspect-Oriented Software Development I, pages 135–173, 2006.
(Cited on page 30.)

161

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://www.last.fm/about
http://www.google.com/latitude
http://www.sics.se/isl/quintus/html/quintus/ref-mod.html
http://www.sics.se/isl/quintus/html/quintus/ref-mod.html
http://doi.acm.org/10.1145/322326.322339
http://doi.acm.org/10.1145/322326.322339

162 bibliography

[18] Brian Arkills. LDAP Directories Explained: An Introduction and Analysis. Addison-
Wesley Professional, 2003. ISBN 020178792X. (Cited on page 15.)

[19] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer
Lhoták, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and
Julian Tibble. abc: An extensible aspectj compiler. Transactions on Aspect-Oriented
Software Development, October 2005. (Cited on page 145.)

[20] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer
Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Ju-
lian Tibble. Optimising aspectj. In Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’05, pages 117–128, New
York, NY, USA, 2005. ACM. ISBN 1-59593-056-6. doi: http://doi.acm.org/10.1145/
1065010.1065026. URL http://doi.acm.org/10.1145/1065010.1065026. (Cited on
page 31.)

[21] Pavel Avgustinov, Eric Bodden, Elnar Hajiyev, Laurie Hendren, Oege De Moor,
Neil Ongkingco, Damien Sereni, Ganesh Sittampalam, Julian Tibble, and Mathieu
Verbaere. Efficient trace monitoring. Technical report, Formal Approaches to Testing
Systems and Runtime Verification (FATES/RV), Lecture Notes in Computer Science,
2006. (Cited on page 145.)

[22] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider. The description logic handbook: theory, implementation, and applications.
Cambridge University Press, 2003. (Cited on page 18.)

[23] Jason Baker and Wilson Hsieh. Runtime aspect weaving through metaprogramming.
In Proceedings of the 1st international conference on Aspect-oriented software development,
pages 86–95. ACM, 2002. (Cited on pages 136 and 148.)

[24] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on context-
aware systems. International Journal of Ad Hoc and Ubiquitous Computing, 2(4):263–
277, 2007. (Cited on pages 4 and 6.)

[25] Roberto Barbuti, Roberto Giacobazzi, and Giorgio Levi. A general framework
for semantics-based bottom-up abstract interpretation of logic programs. ACM
Transactions on Programming Languages and Systems (TOPLAS), 15(1):133–181, 1993.
(Cited on pages 28 and 37.)

[26] Jon Barwise and John Etchemendy. Language, Proof, and Logic. CSLI Publications,
Stanford, California, 1999. (Cited on page 74.)

[27] Steve Battle, Abraham Bernstein, Harold Boley, Benjamin Grosof, Michael Gruninger,
Richard Hull, Michael Kifer, David Martin, Sheila McIlraith, Deborah McGuinness,
Jianwen Su, and Said Tabet. Swsl-rules: A rule language for the semantic web.
Technical report, Semantic Web Services Language Committee of the Semantic Web
Services Initiative, 2005. (Cited on page 143.)

[28] C. Beierle. Logic programming with typed unification and its realization on an
abstract machine. IBM Journal of Research and Development, 36(3):375–390, 1992.
(Cited on page 74.)

[29] Christoph Beierle. Concepts, implementation, and applications of a typed logic
programming language. In Logic Programming: Formal Methods and Practical Appli-
cations, pages 139–167. 1995. (Cited on page 25.)

[30] Christoph Beierle, Gregor Meyer, and Heiner Semle. A brief description of the
protos-l system. pages 402–404, 1991. URL http://dl.acm.org/citation.cfm?id=

648111.748585. (Cited on page 25.)

http://doi.acm.org/10.1145/1065010.1065026
http://dl.acm.org/citation.cfm?id=648111.748585
http://dl.acm.org/citation.cfm?id=648111.748585

bibliography 163

[31] Besmir Beqiri. Xtreme media player project. URL http://xtrememp.sourceforge.

net/. (Cited on page 107.)

[32] Sebastian Bergmann and Günter Kniesel. Gap: Generic aspects for php. Proc. 3rd
European Workshop on Aspects in Software, 2006. (Cited on page 30.)

[33] Lodewijk Bergmans and Mehmet Aksit. Composing crosscutting concerns using
composition filters. Communications of the ACM, 44(10):51–57, 2001. (Cited on
page 30.)

[34] Tim Berners-Lee. Www past & future. URL http://www.w3.org/2003/Talks/

0922-rsoc-tbl/. http://www.w3.org/2003/Talks/0922-rsoc-tbl/. (Cited on
page 4.)

[35] Tim Berners-Lee and Dan Connolly. Primer: Getting into rdf & semantic web using
n3. World Wide Web Consortium, 2000. (Cited on page 16.)

[36] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, 284(5):34–43, 2001. (Cited on page 16.)

[37] Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus Ostermann. Virtual
machine support for dynamic join points. In AOSD ’04: Proceedings of the 3rd
international conference on Aspect-oriented software development, pages 83–92, New
York, NY, USA, 2004. ACM Press. ISBN 1-58113-842-3. doi: http://doi.acm.org/10.
1145/976270.976282. (Cited on pages 136 and 148.)

[38] Egon Boerger and Bart Demoen. A framework to specify database update views
for Prolog. Lecture Notes in Computer Science, 528, 1991. ISSN 0302-9743. (Cited on
page 124.)

[39] Anthony J. Bonner and Michael Kifer. A logic for programming database transac-
tions. Logics for Databases and Information Systems, pages 117–166, 1998. (Cited on
page 143.)

[40] Gilad Bracha. Generics in the java programming language. Sun Microsystems, java.
sun. com, 2004. (Cited on page 9.)

[41] Gilad Bracha, Peter von der Ahe, Vassili Bykov, Yaron Kashai, William Maddox,
and Eliot Miranda. Modules as objects in newspeak. In Theo D’Hondt, editor,
European Conference on Object-Oriented Programming 2010, volume 6183 of Lecture
Notes in Computer Science, pages 405–428. Springer Berlin, Heidelberg, 2010. ISBN
978-3-642-14106-5. (Cited on page 8.)

[42] Jeremy S. Bradbury, James R. Cordy, Juergen Dingel, and Michel Wermelinger. A
survey of self-management in dynamic software architecture specifications. Pro-
ceedings of the 1st ACM SIGSOFT workshop on Selfmanaged systems WOSS 04, 04

(November):28–33, 2004. URL http://oro.open.ac.uk/23229/. (Cited on page 2.)

[43] Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in XML. World
Wide Web Consortium, Recommendation REC-xml-names-19990114, January 1999.
(Cited on pages 57 and 58.)

[44] Dan Brickley. Rdf vocabulary description language 1.0: Rdf schema, 2004. URL
http://www.w3.org/tr/rdf-schema/. (Cited on page 55.)

[45] Dan Brickley and Ramanathan V. Guha. RDF vocabulary description language 1.0:
RDF schema. World Wide Web Consortium, Recommendation REC-rdf-schema-
20040210, February 2004. (Cited on pages 4, 17, and 59.)

http://xtrememp.sourceforge.net/
http://xtrememp.sourceforge.net/
http://www.w3.org/2003/Talks/0922-rsoc-tbl/
http://www.w3.org/2003/Talks/0922-rsoc-tbl/
http://oro.open.ac.uk/23229/
http://www.w3.org/tr/rdf-schema/

164 bibliography

[46] Maurice Bruynooghe. A Practical Framework for the Abstract Interpretation of
Logic Programs. Journal of Logic Programming, 10(2):91–124, 1991. revised version
of K.U.L. technical report CW 62, 1987. (Cited on page 28.)

[47] Avi Bryant and Robert Feldt. AspectR - simple aspect-oriented programming in
ruby, 2004. (Cited on page 30.)

[48] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,
and Kevin Wilkinson. Jena: implementing the semantic web recommendations.
In Proceedings of the 13th international World Wide Web conference on Alternate track
papers & posters, pages 74–83. ACM, 2004. (Cited on page 18.)

[49] Weidong Chen, Michael Kifer, and David S. Warren. Hilog: A foundation for
higher-order logic programming. The Journal of Logic Programming, 15(3):187–230,
1993. (Cited on page 143.)

[50] Kendall Grant Clark, Elias Torres, and Lee Feigenbaum. SPARQL protocol for RDF.
W3C recommendation, W3C, January 2008. http://www.w3.org/TR/2008/REC-
rdf-sparql-protocol-20080115/. (Cited on page 141.)

[51] Tony Clark and Jos Warmer. Object Modeling with the OCL: The Rationale behind the
Object Constraint Language, volume 2263. Springer Verlag, 2002. ISBN 3540431691.
(Cited on page 64.)

[52] William F. Clocksin and Christopher S. Mellish. Programming in Prolog: Using the
ISO Standard. Springer Verlag, July 2003. (Cited on pages 19 and 64.)

[53] Michael Codish, Dennis Dams, Gilberto Filé, and Maurice Bruynooghe. Freeness
analysis for logic programs-and correctness? In David S. Warren, editor, Proceedings
of the Tenth International Conference on Logic Programming, pages 116–131, Budapest,
Hungary, 1993. The MIT Press. ISBN 0-262-73105-3. (Cited on page 28.)

[54] Alain Colmerauer. Prolog and infinite trees. Logic Programming, 16:231–251, 1982.
(Cited on page 19.)

[55] Agostino Cortesi and Gilbert Filé. Abstract interpretation of logic programs: an
abstract domain for groundness, sharing, freeness and compoundness analysis.
ACM SIGPLAN Notices, 26(9):52–61, September 1991. ISSN 0362-1340 (print), 1523-
2867 (print), 1558-1160 (electronic). (Cited on page 28.)

[56] Pascal Costanza. Dynamic replacement of active objects in the gilgul programming
language. Component Deployment, pages 391–411, 2002. (Cited on page 8.)

[57] Pascal Costanza. A short overview of AspectL. In European Interactive Workshop on
Aspects in Software (EIWAS’04), Berlin, Germany, 2004. (Cited on page 8.)

[58] Patrick Cousot. Methods and Logics for Proving Programs. In Jan van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics,
pages 814–993. MIT Press/Elsevier, 1990. (Cited on page 26.)

[59] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints. In
4th POPL, Los Angeles, CA, pages 238–252, January 1977. (Cited on page 26.)

[60] Patrick Cousot and Radhia Cousot. Abstract Interpretation and applications to logic
programs. J of Logic Programming, 13(2-3):103–180, July 1992. (Cited on pages 26

and 27.)

bibliography 165

[61] Pierre-Charles David and Thomas Ledoux. Wildcat: a generic framework for context-
aware applications. In Proceedings of the 3rd international workshop on Middleware for
pervasive and ad-hoc computing, pages 1–7. ACM, 2005. (Cited on page 4.)

[62] Saumya K. Debray and David S. Warren. Automatic Mode Inference for Logic
Programs. Journal of Logic Programming, 5(3):207–230, September 1988. (Cited on
page 28.)

[63] Stefan Decker, Michael Erdmann, Dieter Fensel, and Rudi Studer. Ontobroker:
Ontology based access to distributed and semi-structured information. Database
Semantics: Semantic Issues in Multimedia Systems, 351, 1999. (Cited on page 143.)

[64] Brecht Desmet, Jorge Vallejos, and Pascal Costanza. Introducing mixin layers to
support the development of context-aware systems. In 3rd European Workshop on
Aspects in Sofware (EWAS 2006), University of Twente, Enschede, The Netherlands,
August 2006. URL http://p-cos.net/documents/mixin-layers.pdf. (Cited on
page 6.)

[65] Anind K. Dey. Understanding and using context. Personal Ubiquitous Computing,
5(1):4–7, 2001. ISSN 1617-4909. doi: http://dx.doi.org/10.1007/s007790170019.
(Cited on pages 3 and 4.)

[66] Roland Dietrich and Frank Hagl. A polymorphic type system with subtypes for
Prolog. In ESOP’88, pages 79–93. Springer, 1988. (Cited on page 25.)

[67] Klaus R. Dittrich, Stella Gatziu, and Andreas Geppert. The active database manage-
ment system manifesto: A rulebase of adbms features. Rules in Database Systems,
pages 1–17, 1995. (Cited on page 148.)

[68] Margaret H. Dunham and Abdelsalam Helal. Mobile computing and databases:
Anything new? Acm Sigmod Record, 24(4):5–9, 1995. (Cited on page 7.)

[69] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems. Ben-
jamin/Cummings, 1994. ISBN 0-8053-1753-8. (Cited on page 23.)

[70] Thomas Erl. Service-oriented architecture: concepts, technology, and design. Prentice
Hall PTR, 2005. ISBN 0-131-85858-0. (Cited on page 3.)

[71] Thomas Erl. SOA design patterns. Prentice-Hall PTR, 2009. ISBN 0-136-13516-1.
(Cited on page 3.)

[72] Patel-Schneider Peter F. and Boris Motik. Owl 2 web ontology language mapping
to rdf graphs - w3c recommendation. 2009. (Cited on page 91.)

[73] Francois Fages and Emmanuel Coquery. Typing constraint logic programs. Theory
and Practice of Logic Programming, 1(6):751–777, 2001. URL citeseer.ist.psu.edu/

496783.html. (Cited on page 24.)

[74] David C. Fallside and Priscilla Walmsley. Xml schema part 0: primer second edition.
W3C recommendation, 2004. (Cited on page 16.)

[75] Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is quan-
tification and obliviousness. In Workshop on Advanced separation of Concerns, volume
2000, 2000. (Cited on pages 3 and 30.)

[76] Robert E. Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Akşit. Aspect-oriented
software development. 2004. (Cited on page 3.)

[77] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, editors. Aspect-
Oriented Software Development. Addison-Wesley, Boston, 2005. ISBN 0-321-21976-7.
(Cited on pages 7 and 30.)

http://p-cos.net/documents/mixin-layers.pdf
citeseer.ist.psu.edu/496783.html
citeseer.ist.psu.edu/496783.html

166 bibliography

[78] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem* 1. Artificial intelligence, 19(1):17–37, 1982. (Cited on page 18.)

[79] Free Software Foundation. The GNU multiple precision arithmetic library, 2011.
URL http://gmplib.org/. (Cited on page 116.)

[80] Andreas Frei. Jadabs - An Adaptive Pervasive Middlerware Architecture. No. 16273,
ETH, October 2005. (Cited on pages 3, 8, and 145.)

[81] Thom Frühwirth. Constraint handling rules. Cambridge University Press, 2009. ISBN
0-521-87776-8. (Cited on page 24.)

[82] Lidia Fuentes and Daniel Jimenez. An ambient intelligent language for dynamic
adaptation. ECOOP Workshop OT4AmI, 2005. (Cited on pages 3, 6, 8, and 145.)

[83] Erich Gamma and Kent Beck. Contributing to Eclipse. Addison Wesley, 2003. ISBN
0-321-20575-8. (Cited on page 123.)

[84] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley, 1994. (Cited on pages 127 and 130.)

[85] Sabine Glesner and Karl Stroetmann. Combining inclusion polymorphism and
parametric polymorphism. Technical report, Jan 1999. (Cited on page 71.)

[86] Birte Glimm and Markus Krötzsch. Sparql beyond subgraph matching. In Peter
Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Pan, Ian
Horrocks, and Birte Glimm, editors, The Semantic Web - ISWC 2010, volume 6496 of
Lecture Notes in Computer Science, pages 241–256. Springer Berlin Heidelberg, 2010.
ISBN 978-3-642-17745-3. (Cited on page 142.)

[87] Sebastian Gonzales, Wolgang Demeuter, Pascal Costanza, Stéphane Ducasse,
Richard Gabriel, and Theo D’hondt. Report of the ECOOP’03 workshop on object-
oriented language engineering in post-java era, 2004. URL http://www.iam.unibe.

ch/~scg/Archive/Papers/Gonz04aoolepje04-report.pdf. (Cited on page 6.)

[88] James Gosling, Bill Joy, Guy L. Steele, and Gilad Bracha. Java (TM) Language
Specification, The Third Edition. Addison-Wesley Professional, third edition edition,
May 2005. ISBN 0-321-24678-0. (Cited on pages x, 56, 76, 79, and 80.)

[89] Tao Gu, Hung Keng Pung, and Da Qing Zhang. Toward an osgi-based infrastructure
for context-aware applications. In IEEE Pervasive Computing, vol. 03, no. 4, Oct-Dec
2004. (Cited on page 144.)

[90] S. Gudmundson and G. Kiczales. Addressing practical software development
issues in aspectj with a pointcut interface. Advanced Separation of Concerns, 168,
2001. (Cited on page 8.)

[91] Kris Gybels. Using a logic language to express cross-cutting through dynamic
joinpoints. In In Second Workshop on Aspect-Oriented Software Development, pages
21–22, 2002. (Cited on page 30.)

[92] Kris Gybels and Johan Brichau. Arranging language features for more robust
pattern-based crosscuts. In Proceedings of the 2nd international conference on Aspect-
oriented software development, pages 60–69. ACM, 2003. (Cited on page 103.)

[93] Stefan Hanenberg, Robert Hirschfeld, and Rainer Unland. Morphing aspects:
incompletely woven aspects and continuous weaving. In Proceedings of the 3rd
international conference on Aspect-oriented software development, pages 46–55. ACM,
2004. (Cited on page 145.)

http://gmplib.org/
http://www.iam.unibe.ch/~scg/Archive/Papers/Gonz04aoolepje04-report.pdf
http://www.iam.unibe.ch/~scg/Archive/Papers/Gonz04aoolepje04-report.pdf

bibliography 167

[94] Jan Hannemann and Gregor Kiczales. Design pattern implementation in java and
aspectj. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on Object-
orientedprogramming, systems, languages, and applications, pages 161–173, New York,
NY, USA, 2002. ACM Press. ISBN 1-58113-471-1. doi: http://doi.acm.org/10.1145/
582419.582436. (Cited on page 130.)

[95] Robert Harper. Programming in standard ml. Online tutorial notes available from
http://www. cs. cmu. edu/rwh/introsml/index. html, 1998. (Cited on page 9.)

[96] William Harrison and Harold Ossher. Subject-oriented programming: a critique of
pure objects. In ACM Sigplan Notices, volume 28, pages 411–428. ACM, 1993. (Cited
on page 30.)

[97] Patrick Hayes. RDF semantics. W3C recommendation, W3C, February 2004.
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/. (Cited on page 141.)

[98] Patrick Hayes. RDF semantics. World Wide Web Consortium, Recommendation
REC-rdf-mt-20040210, February 2004. (Cited on pages 17, 56, and 58.)

[99] John Hebeler, Matthew Fisher, Ryan Blace, Andrew Perez-Lopez, and Mike Dean.
Semantic web programming. Wiley, 2009. (Cited on page 143.)

[100] Nevin Heintze and Joxan Jafar. A finite presentation theorem for approximating
logic programs. In Conference record of the 17th ACM Symposium on Principles of
Programming Languages (POPL), pages 197–209, 1990. (Cited on page 22.)

[101] Andres Hejlsberg, Scott Wiltamuth, and Peter Golde. C# language specification.
Addison-Wesley Longman Publishing Co., Inc., 2003. (Cited on page 9.)

[102] Patricia M. Hill and Jloyd Lloyd. The Gödel programming language. The MIT Press,
1994. (Cited on pages 9, 22, and 25.)

[103] Patricia M. Hill and Rodney W. Topor. A semantics for typed logic programs. Types
in Logic Programming, pages 1–62, 1992. (Cited on pages 23 and 24.)

[104] Robert Hirschfeld. Aspects - Aspect-Oriented Programming with Squeak. Objects
Components Architectures Services and Applications for a Networked World, 1(2591):216–
232, 2003. (Cited on page 8.)

[105] Robert Hirschfeld. Aspects-aspect-oriented programming with squeak. Objects,
Components, Architectures, Services, and Applications for a Networked World, pages
216–232, 2003. (Cited on page 30.)

[106] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented pro-
gramming. Journal of Object Technology, 7(3), march 2008. (Cited on page 133.)

[107] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented pro-
gramming. Journal of Object Technology, March-April 2008, ETH Zurich, 7(3):125–151,
2008. (Cited on pages 3, 4, and 6.)

[108] Dongpyo Hong, Hedda R. Schmidtke, and Woontack Woo. Linking context mod-
elling and contextual reasoning. In 4th International Workshop on Modeling and
Reasoning in Context (MRC), pages 37–48, 2007. (Cited on page 144.)

[109] Alfred Horn. On sentences which are true of direct unions of algebras. Journal of
Symbolic Logic, 16:14–21, 1951. (Cited on page 19.)

[110] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof,
and Mike Dean. Swrl: A semantic web rule language combining owl and ruleml.
W3C Member submission, 21:79, 2004. (Cited on page 145.)

168 bibliography

[111] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Ben-
jamin Grosofand, and Mike Dean. SWRL: A semantic web rule lan-
guage combining OWL and RuleML. W3C Member Submission, May 2004.
URL http://www.w3.org/Submission/SWRL/. Last access on Dez 2008 at:
http://www.w3.org/Submission/SWRL/. (Cited on page 142.)

[112] ISO. ISO/IEC ISO/IEC 13211-1:1995: Information technology — Programming lan-
guages — Prolog — Part 1: General core. ISO/IEC, 1995. (Cited on page 159.)

[113] ISO. ISO/IEC 29341-3-2:2008: Information technology — UPnP Device Architecture –
Part 3-2: Audio Video Device Control Protocol - Media Renderer Device. ISO/IEC, 2008.
(Cited on page 4.)

[114] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of
the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 111–119. ACM, 1987. (Cited on page 24.)

[115] Jikes. The Jikes research virtual machine. URL http://jikesrvm.org.
http://jikesrvm.org. (Cited on pages 136 and 148.)

[116] Aditya Kalyanpur, Daniel Pastor, Steve Battle, and Julian Padget. Automatic
mapping of OWL ontologies into Java. In Proceedings of the International Conference
on Software Engineering & Knowledge Engineering (SEKE), 2004. (Cited on page 56.)

[117] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Mehmet
Aksit and Satoshi Matsuoka, editors, Proceedings ECOOP ’97, volume 1241 of LNCS,
pages 220–242, Jyvaskyla, Finland, June 1997. Springer-Verlag. (Cited on page 30.)

[118] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In Proceeding ECOOP 2001, number
2072 in LNCS, pages 327–353. Springer Verlag, 2001. (Cited on pages 7, 30, 31,
and 144.)

[119] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-oriented
and frame-based languages. Journal of the ACM (JACM), 42(4):741–843, 1995. (Cited
on page 143.)

[120] Feliks Kluźniak. Type synthesis for ground Prolog. In Proc. Fourth International
Conference on Logic Programming (Melbourne), pages 788–816. MIT Press, 1987. (Cited
on page 22.)

[121] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF):
Concepts and abstract syntax. Changes, 2004. URL http://www.w3.org/TR/

rdf-concepts/. (Cited on pages 4 and 16.)

[122] Günter Kniesel, Jan Hannemann, and Tobias Rho. A comparison of logic-based
infrastructures for concern detection and extraction. Workshop on Linking Aspect
Technology and Evolution (LATE’07), in conjunction with Sixth International Con-
ference on Aspect-Oriented Software Development (AOSD.07), March 12-16, 2007,
Vancouver, British Columbia, Mar 2007. URL http://roots.iai.uni-bonn.de/

research/logicaj/downloads/papers/knieselHannemannRho-late07.pdf. (Cited
on pages 119 and 123.)

[123] Alexander Kozlenkov and Michael Schroeder. PROVA: Rule-based Java-scripting
for a Bioinformatics Semantic Web. Lecture Notes in Computer Science, 2994:17–30,
2004. ISSN 0302-9743. (Cited on pages 26 and 74.)

http://www.w3.org/Submission/SWRL/
http://jikesrvm.org
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://roots.iai.uni-bonn.de/research/logicaj/downloads/papers/knieselHannemannRho-late07.pdf
http://roots.iai.uni-bonn.de/research/logicaj/downloads/papers/knieselHannemannRho-late07.pdf

bibliography 169

[124] Lee W. Lacy. OWL: Representing information using the web ontology language. Trafford
Publishing, 2005. ISBN 1-4120-3448-5. (Cited on page 18.)

[125] T. K. Lakshman and Unday S. Reddy. Typed Prolog: A semantic reconstruction of
the Mycroft-O’Keefe type system. In Int. Logic Programming Symp, pages 202–217,
1991. (Cited on page 22.)

[126] Stephan Kenji Lerche. Kontextverwaltung und die erweiterung einer pointcut-
sprache um eine objektorientierte kontextanfrage basierend auf rdf modelliertem
kontext. Diploma thesis, University of Bonn, August 2009. (Cited on page 55.)

[127] Karl J. Lieberherr. Adaptative Object-Oriented Software: The Demeter Method. PWS
Publishing, 1996. ISBN 053494602-X. (Cited on page 30.)

[128] John W. Lloyd. Foundations of Logic Programming. Second Edition, Springer-Verlag,
1987. (Cited on pages 19, 20, and 37.)

[129] Lunjin Lu. Logic program analysis engine download page. URL http://www.secs.

oakland.edu/~l2lu/software.html. (Cited on pages 115 and 124.)

[130] Lunjin Lu. Abstract interpretation, bug detection and bug diagnosis in normal
logic programs. PhD thesis, University of Birmingham, 1994. URL http://www.cs.

waikato.ac.nz/~lunjin/PHD.ps.gz. (Cited on pages x, 9, 10, 28, 39, 40, 43, 47, 49,
51, 53, 115, 147, and 155.)

[131] Lunjin Lu. A mode analysis of logic programs by abstract interpretation. In Dines
Bjørner, Manfred Broy, and Igor V. Pottosin, editors, Ershov Memorial Conference,
volume 1181 of Lecture Notes in Computer Science, pages 362–373. Springer, 1996.
ISBN 3-540-62064-8. URL http://dx.doi.org/10.1007/3-540-62064-8_30. (Cited
on pages 28, 29, and 37.)

[132] Bertram Ludäscher, Rainer Himmeröder, Georg Lausen, Wolfgang May, and Chris-
tian Schlepphorst. Managing semistructured data with FLORID: a deductive
object-oriented perspective. Information Systems, 23(8):589–613, 1998. (Cited on
page 143.)

[133] Frank Manola, Eric Miller, and Brian McBride. Rdf primer. w3c recommendation.
World Wide Web Consortium, 2004. (Cited on page 63.)

[134] Kim Marriott and Harald Søndergaard. Bottom-up abstract interpretation of logic
programs. In R. A. Kowalski and K. A. Bowen, editors, Logic Programming: Proc.
Fifth Int. Conf. Symp., pages 733–748. MIT Press, 1988. (Cited on page 28.)

[135] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Trans.
Program. Lang. Syst., 4:258–282, April 1982. ISSN 0164-0925. doi: http://doi.acm.
org/10.1145/357162.357169. URL http://doi.acm.org/10.1145/357162.357169.
(Cited on page 20.)

[136] Glen McCluskey. Using java reflection. URL http://java.sun.com/developer/

technicalArticles/ALT/Reflection/. (Cited on page 135.)

[137] Ted McFadden, Karen Henricksen, and Jadwiga Indulska. Automating context-
aware application development. In UbiComp 1st International Workshop on Advanced
Context Modelling, Reasoning and Management, Nottingham, pages 90–95, 2004. (Cited
on page 96.)

[138] Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Trans. Softw.
Eng., 26:70–93, January 2000. ISSN 0098-5589. doi: 10.1109/32.825767. URL
http://portal.acm.org/citation.cfm?id=331520.331527. (Cited on page 2.)

http://www.secs.oakland.edu/~l2lu/software.html
http://www.secs.oakland.edu/~l2lu/software.html
http://www.cs.waikato.ac.nz/~lunjin/PHD.ps.gz
http://www.cs.waikato.ac.nz/~lunjin/PHD.ps.gz
http://dx.doi.org/10.1007/3-540-62064-8_30
http://doi.acm.org/10.1145/357162.357169
http://java.sun.com/developer/technicalArticles/ALT/Reflection/
http://java.sun.com/developer/technicalArticles/ALT/Reflection/
http://portal.acm.org/citation.cfm?id=331520.331527

170 bibliography

[139] Gregor Meyer. On Types and Type Consistency in Logic Programming. PhD thesis,
FernUniversität Hagen, 1999. Published as volume 235 of DISKI, Akademische
Verlagsgesellschaft Aka, Berlin, 2000. http://www.fernuni-hagen.de/pi8/typical.
(Cited on pages 9 and 23.)

[140] Libby Miller, Andy Seaborne, and Alberto Reggiori. Three implementations of
squishql, a simple rdf query language. The Semantic Web-ISWC 2002, pages 423–435,
2002. (Cited on page 144.)

[141] Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348–375, 1978. (Cited on page 23.)

[142] Holger Mügge, Tobias Rho, and Armin B. Cremers. Integrating aspect-orientation
and structural annotations to support adaptive middleware, workshop on
middleware-application interaction (mai’07), in conjunction with the second euro-
pean conference on computer systems (eurosys.07). Lisbon, Portugal, March 2007.
(Cited on page 8.)

[143] Holger Mügge, Tobias Rho, Daniel Speicher, Pascal Bihler, and ArminB. Cremers.
Programming for context-based adaptability — lessons learned about oop,soa, and
aop. SAKS Workshop in conjunction with GI/ITG-Tagung Kommunikation in
verteiltenSystemen, March 2007. (Cited on page 125.)

[144] Alan Mycroft and Richard A. O’Keefe. A polymorphic type system for Prolog.
Artif. Intell., 23(3):295–307, 1984. ISSN 0004-3702. doi: http://dx.doi.org/10.1016/
0004-3702(84)90017-1. (Cited on pages 22 and 23.)

[145] Luis Daniel Benavides Navarro, Mario Südholt, Wim Vanderperren, Bruno De
Fraine, and Davy Suvée. Explicitly distributed AOP using AWED. In Proceedings
of the 5th Int. ACM Conf. on Aspect-Oriented Software Development (AOSD’06). ACM
Press, March 2006. (Cited on page 145.)

[146] Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubézy, Ray W. Fergerson,
and Mark A. Musen. Creating semantic web contents with Protégé-2000. Intelligent
Systems, IEEE, 16(2):60–71, 2001. (Cited on page 143.)

[147] John O’Conner. Using java db in desktop applications. URL
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/javadb/.
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/javadb/. (Cited
on page 107.)

[148] M. O´Connor, H. Knublauch, S. Tu, B. Grosof, M. Dean, W. Grosso, and M. Musen.
Supporting rule system interoperability on the semantic web with swrl. The Semantic
Web–ISWC 2005, pages 974–986, 2005. (Cited on page 143.)

[149] Martin O’Connor and Amar Das. Sqwrl: a query language for owl. In OWL:
Experiences and Directions (OWLED), Fifth International Workshop, 2009. (Cited on
page 143.)

[150] Martin O’Connor, Ravi Shankar, Csongor Nyulas, Samson Tu, and Amar Das.
Developing a web-based application using owl and swrl. In AAAI Spring, 2008.
(Cited on page 143.)

[151] Yoosoo Oh, Jonghyun Han, and Woontack Woo. A context management architecture
for large-scale smart environments. Communications Magazine, IEEE, 48(3):118–126,
2010. (Cited on page 144.)

[152] Richard A. O’Keefe. Finite fixed-point problems. In ICLP, pages 729–743, 1987.
(Cited on page 52.)

http://java.sun.com/developer/technicalArticles/J2SE/Desktop/javadb/

bibliography 171

[153] Richard A. O’Keefe. The Craft of Prolog, 1990. (Cited on pages 21 and 52.)

[154] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimhigner, Gregory
Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L.
Wolf. An architecture-based approach to self-adaptive software. Intelligent Systems
and Their Applications, IEEE, 14(3):54–62, 1999. (Cited on page 2.)

[155] Harold Ossher and Peri Tarr. Using multidimensional separation of concerns to (re)
shape evolving software. Communications of the ACM, 44(10):43–50, 2001. (Cited on
page 30.)

[156] David L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053 – 1058, December 1972. URL http://www.

acm.org/classics/may96/. (Cited on page 8.)

[157] Bijan Parsia and Evren Sirin. Pellet: An owl dl reasoner. In Third International
Semantic Web Conference-Poster, 2004. (Cited on page 18.)

[158] Adrian Paschke. A typed hybrid description logic programming language with
polymorphic order-sorted DL-typed unification for semantic web type systems.
CoRR, abs/cs/0610006, 2006. URL http://arxiv.org/abs/cs/0610006. informal
publication. (Cited on pages 26 and 143.)

[159] Jason Pascoe. Adding generic contextual capabilities to wearable computers. In
Wearable Computers, 1998. Digest of Papers. Second International Symposium on, pages
92–99. IEEE, 1998. (Cited on page 4.)

[160] Renaud Pawlak, Laurence Duchien, Gerard Florin, and Lionel Seinturier. Jac: A
flexible solution for aspect-oriented programming in Java. MetaLevel Architectures
and Separation of Crosscutting Concerns, pages 1–24, 2001. (Cited on pages 8, 136,
145, and 148.)

[161] Filip Perich, Anupam Joshi, Timothy Finin, and Yelena Yesha. On data manage-
ment in pervasive computing environments. Knowledge and Data Engineering, IEEE
Transactions on, 16(5):621–634, 2004. (Cited on page 7.)

[162] Frank Pfenning. Types in logic programming. MIT Press, Cambridge, MA, USA, 1992.
ISBN 0-262-16131-1. (Cited on pages 9, 22, 23, 25, and 26.)

[163] Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic weaving for
aspect-oriented programming. In Proceedings of the 1st international conference on
Aspect-oriented software development, pages 141–147. ACM Press, 2002. ISBN 1-58113-
469-X. doi: http://doi.acm.org/10.1145/508386.508404. (Cited on page 8.)

[164] Andrei Popovici, Gustavo Alonso, and Thomas Gross. Just-in-time aspects: efficient
dynamic weaving for Java. In Proceedings of the 2nd international conference on Aspect-
oriented software development, pages 100–109. ACM Press, 2003. ISBN 1-58113-660-9.
doi: http://doi.acm.org/10.1145/643603.643614. (Cited on pages 136 and 148.)

[165] Georg N. Prezerakos, Nikolaos D. Tselikas, and G. Cortese. Model-driven composi-
tion of context-aware web services using contextuml and aspects. 2007. (Cited on
page 3.)

[166] Eric Prud hommeaux. SPARQL 1.1 Federation Extensions, June 2010. URL http:

//www.w3.org/TR/sparql11-federated-query/. (Cited on page 142.)

[167] Eric Prud’Hommeaux and Andy Seaborne. Sparql query language for RDF. W3C
working draft, 4(January), 2008. (Cited on page 141.)

http://www.acm.org/classics/may96/
http://www.acm.org/classics/may96/
http://arxiv.org/abs/cs/0610006
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-federated-query/

172 bibliography

[168] Mario Pukall, Grebhahn, Christian Kästner, Walter Cazzola, and Sebastian Götz.
JavAdaptor: Unrestricted Dynamic Software Updates for Java. In Proceedings of
the 33rd International Conference on Software Engineering, pages 1–3, 2011. (Cited on
page 8.)

[169] Roland Reichle, Michael Wagner, Mohammad Ullah Khan, Kurt Geihs, Massimo
Valla, Cristina Fra, Nearchos Paspallis, and George A. Papadopoulos. A con-
text query language for pervasive computing environments. In 5th IEEE Work-
shop on Context Modeling and Reasoning (CoMoRea) in conjunction with the 6th IEEE
International Conference on Pervasive Computing and Communication (PerCom). IEEE
Computer Society Press, 2008. URL http://www.vs.uni-kassel.de/publications/

2008/RWKGVFPP08. (Cited on pages 4, 6, 7, 91, 96, 143, and 147.)

[170] Raymond Reiter. On closed world data bases. Plenum Press, New York, 1978. (Cited
on page 18.)

[171] Tobias Rho and Guenter Kniesel. Jtransformer 2.9 java pef specification,
. URL https://sewiki.iai.uni-bonn.de/research/jtransformer/api/java/

pefs/2.9/java_pef_overview. (Cited on page 119.)

[172] Tobias Rho and Guenter Kniesel. Prolog development tools, . URL https://sewiki.

iai.uni-bonn.de/research/pdt. (Cited on page 123.)

[173] Tobias Rho and Guenter Kniesel. Uniform genericity for aspect languages, technical
report iai-tr-2004-4, computer science department iii, university of bonn. In Uniform
Genericity for Aspect Languages, Technical Report IAI-TR-2004-4, Computer Science De-
partment III, University of Bonn. Dec 2004. URL http://roots.iai.uni-bonn.de/

research/logicaj/downloads/papers/RhoKniesel-IAI-TR-2004-4.pdf. (Cited
on page 130.)

[174] Tobias Rho, Mark Schmatz, and Armin Cremers. Towards context-sensitive service
aspects. In Workshop on Object Technology for Ambient Intelligence and Pervasive Com-
puting, in conjunction with 20th European Conference on Object Oriented Programming
(ECOOP 06), July 3-7, Nantes, France. July 2006. URL http://roots.iai.uni-bonn.

de/research/logicaj/downloads/papers/RhoSchmatz-OT4AmI06.pdf. (Cited on
pages 3, 99, and 147.)

[175] Tobias Rho, Malte Appeltauer, Stephan Lerche, Armin B. Cremers, and Robert
Hirschfeld. A context management infrastructure with language integration support.
In In Proceedings of the Workshop on Context-oriented Programming (COP) 2011, co-
located with ECOOP 2011. ACM DL, Lancaster, UK, July 2011. (Cited on pages 97,
125, and 147.)

[176] Konstantinos Sagonas, Terrance Swift, and David S. Warren. XSB as an efficient
deductive database engine. In ACM SIGMOD Record, volume 23, pages 442–453.
ACM, 1994. (Cited on pages 18 and 143.)

[177] Neal Sample, Dorothea Beringer, Laurence Melloul, and Gio Wiederhold. CLAM:
Composition language for autonomous megamodules. In Paolo Ciancarini and
Alexander L. Wolf, editors, Proceedings of Coordination ’99, volume 1594 of LNCS,
pages 291–306, 1999. (Cited on page 6.)

[178] Marco L. Sbodio and Wolfgang Thronicke. Ontology-based context management
components for service oriented architectures on wearable devices. In Industrial
Informatics, 2005. INDIN’05. 2005 3rd IEEE International Conference on, pages 129–133.
IEEE, 2005. (Cited on page 55.)

http://www.vs.uni-kassel.de/publications/2008/RWKGVFPP08
http://www.vs.uni-kassel.de/publications/2008/RWKGVFPP08
https://sewiki.iai.uni-bonn.de/research/jtransformer/api/java/pefs/2.9/java_pef_overview
https://sewiki.iai.uni-bonn.de/research/jtransformer/api/java/pefs/2.9/java_pef_overview
https://sewiki.iai.uni-bonn.de/research/pdt
https://sewiki.iai.uni-bonn.de/research/pdt
http://roots.iai.uni-bonn.de/research/logicaj/downloads/papers/RhoKniesel-IAI-TR-2004-4.pdf
http://roots.iai.uni-bonn.de/research/logicaj/downloads/papers/RhoKniesel-IAI-TR-2004-4.pdf
http://roots.iai.uni-bonn.de/research/logicaj/downloads/papers/RhoSchmatz-OT4AmI06.pdf
http://roots.iai.uni-bonn.de/research/logicaj/downloads/papers/RhoSchmatz-OT4AmI06.pdf

bibliography 173

[179] Bill N. Schilit and Marvin M. Theimer. Disseminating active map information to
mobile hosts. Network, IEEE, 8(5):22–32, 1994. (Cited on page 4.)

[180] Mark Schmatz. Generische kontext-sensitive Aspekte für Service-orientierte Ar-
chitekturen. Diploma thesis, University of Bonn, 2007. (Cited on pages 99, 100, 118,
119, and 147.)

[181] Andy Seaborne and Steve Harris. SPARQL 1.1 query. W3C working draft, W3C,
oct 2009. http://www.w3.org/TR/2009/WD-sparql11-query-20091022/. (Cited on
page 142.)

[182] Nigel Shadbolt, Wendy Hall, and Tim Berners-Lee. The semantic web revisited.
Intelligent Systems, IEEE, 21(3):96–101, 2006. (Cited on page 16.)

[183] Michael Sintek and Stefan Decker. TRIPLE - A query, inference, and transformation
language for the Semantic Web. The Semantic Web-ISWC 2002, pages 364–378, 2002.
(Cited on page 143.)

[184] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. Web Semantics: Science, Services and
Agents on the World Wide Web, 5(2):51–53, 2007. doi: doi:10.1016/j.websem.2007.03.
004. (Cited on pages 26, 141, and 143.)

[185] Jan G. Smaus, Francois Fages, and Pierre Deransart. Using modes to ensure subject
reduction for typed logic programs with subtyping. FST TCS 2000: Foundations of
Software Technology and Theoretical Computer Science, pages 214–226, 2000. (Cited on
page 25.)

[186] Jan-Georg Smaus. Modes and Types in Logic Programming. PhD thesis, University of
Kent at Canterbury, Germany, 1999. (Cited on page 25.)

[187] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. Owl web ontology
language reference. http://www.w3.org/TR/owl-ref, Feb. 2004. World Wide Web
Consortium (W3C) recommendation. (Cited on page 144.)

[188] Gert Smolka. Logic programming over polymorphically order-sorted types. PhD thesis,
Universität Kaiserslautern, Germany, 1989. (Cited on page 23.)

[189] Zoltan Somogy, Fergus Henderson, and Thomas Conway. The execution algorithm
of mercury, an efficient purely declarative logic programming language. Journal of
Logic Programming, 29(1-3):17–64, 1996. (Cited on pages 9, 22, 24, 25, and 26.)

[190] Daniel Speicher, Tobias Rho, and Günter Kniesel. Jtransformer - eine logikbasierte
infrastruktur zur codeanalyse. In Workshop Software-Reengineering, WSR, pages 2–4,
2007. (Cited on pages 119 and 123.)

[191] Olaf Spinczyk, Andread Gal, and Wolfgang Schröder-Preikschat. Aspectc++: an
aspect-oriented extension to the c++ programming language. In Proceedings of
the Fortieth International Conference on Tools Pacific: Objects for internet, mobile and
embedded applications, pages 53–60. Australian Computer Society, Inc., 2002. (Cited
on page 30.)

[192] Renganathan Sundararajan and John S. Conery. An abstract interpretation
scheme for groundness, freeness, and sharing analysis of logic programs. In
R. Shyamasundar, editor, Proceedings of the 12th Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS’92 (New Delhi, In-
dia, December 18-20, 1992), volume 652 of LNCS, pages 203–216. Springer-
Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong-Barcelona-
Budapest, 1992. URL http://springerlink.metapress.com/openurl.asp?genre=

article&issn=0302-9743&volume=652&spage=203. (Cited on page 28.)

http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=652&spage=203
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=652&spage=203

174 bibliography

[193] Michael Sutterer, Olaf Droegehorn, and Klaus David. User profile selection by
means of ontology reasoning. In Telecommunications, 2008. AICT’08. Fourth Advanced
International Conference on, pages 299–304. IEEE, 2008. (Cited on page 141.)

[194] Davy Suvée, Wim Vanderperren, and Viviane Jonckers. JAsCo: An aspect-oriented
approach tailored for component based software development. In Proceedings of
the 2nd international conference on Aspect-oriented software development, pages 21–29.
ACM, 2003. (Cited on pages 8 and 145.)

[195] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A taxonomy of variability
realization techniques: Research articles. Softw. Pract. Exper., 35(8):705–754, 2005.
ISSN 0038-0644. doi: http://dx.doi.org/10.1002/spe.v35:8. (Cited on page 128.)

[196] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component software:
beyond object-oriented programming. Addison-Wesley Professional, 2002. (Cited on
page 7.)

[197] Eric Tanter, Kris Gybels, Marcus Denker, and Alexandre Bergel. Context-Aware
Aspects. In Proceedings of the 5th International Symposium on Software Composition
(SC 2006) LNCS, Springer-Verlag., March 2006. (Cited on pages 6 and 145.)

[198] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5(2):285–309, 1955. (Cited on page 28.)

[199] Hong-Linh Truong and Schahram Dustdar. A survey on context-aware web service
systems. International Journal of Web Information Systems, 5:5–31, 2009. (Cited on
pages 3 and 6.)

[200] W.T. Tsai, Chun Fan, Yinong Chen, Raymond Paul, and Jen-Yao Chung. Architecture
classification for soa-based applications. In Object and Component-Oriented Real-Time
Distributed Computing, 2006. ISORC 2006. Ninth IEEE International Symposium on,
page 8 pp., april 2006. doi: 10.1109/ISORC.2006.18. (Cited on page 3.)

[201] Herma van Kranenburg, Mortaza S. Bargh, Sorin Iacob, and Arjan Peddemors. A
context management framework for supporting context-aware distributed applica-
tions. Communications Magazine, IEEE, 44(8):67–74, 2006. (Cited on page 141.)

[202] Max Völkel. RDFReactor - From ontologies to programmatic data access. In
Poster Proceedings of the Fourth International Semantic Web Conference, 2005. (Cited
on page 55.)

[203] w3c. XML Schema Part 2: Datatypes Second Edition, 2001. URL http://www.w3.

org/TR/xmlschema-2/. (Cited on pages 16 and 56.)

[204] Xiaohang Wang, Jin Song Dong, ChungYau Chin, SankaRavipriya Hettiarachchi,
and Daqing Zhang. Semantic space: An infrastructure for smart spaces. IEEE Perva-
sive Computing, 3:32–39, 2004. ISSN 1536-1268. doi: http://doi.ieeecomputersociety.
org/10.1109/MPRV.2004.1321026. (Cited on pages 4, 91, 96, and 144.)

[205] Xiaohang Wang, Daqing Zhang, Tao Gu, and Hung Keng Pung. Ontology based con-
text modeling and reasoning using OWL. In PerCom Workshops, pages 18–22. IEEE
Computer Society, 2004. URL http://csdl.computer.org/comp/proceedings/

percomw/2004/2106/00/21060018abs.htm. (Cited on pages 91 and 96.)

[206] David H. D. Warren. Implementing Prolog — compiling logic programs. D.A.I.
Research Report 39, 40, University of Edinburgh, 1977. (Cited on page 24.)

[207] Mark Weiser. The computer for the 21st century. Scientific American, 265(3):94–104,
1991. (Cited on page 3.)

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://csdl.computer.org/comp/proceedings/percomw/2004/2106/00/21060018abs.htm
http://csdl.computer.org/comp/proceedings/percomw/2004/2106/00/21060018abs.htm

bibliography 175

[208] Jan Wielemaker. An optimised semantic web query language implementation in
Prolog. Logic Programming, pages 128–142, 2005. (Cited on page 18.)

[209] Jan Wielemaker, Michiel Hildebrand, and Jacco van Ossenbruggen. Using Prolog
as the fundament for applications on the semantic web. In S. Heymans, A. Polleres,
E. Ruckhaus, D. Pearse, and G. Gupta, editors, Proceedings of the 2nd Workshop
on Applications of Logic Programming and to the web, Semantic Web and Semantic Web
Services, volume 287 of CEUR Workshop Proceedings, pages 84–98. CEUR-WS.org,
2007. (Cited on page 115.)

[210] Guizhen Yang, Michael Kifer, Hui Wan, and Chang Zhao. Flora-2: User’s manual.
Department of Computer Science, Stony Brook University, Stony Brook, page 49, 2002.
(Cited on page 143.)

[211] Guizhen Yang, Michael Kifer, and Chang Zhao. Flora-2: A rule-based knowl-
edge representation and inference infrastructure for the semantic web. In Robert
Meersman, Zahir Tari, and Douglas C. Schmidt, editors, CoopIS/DOA/ODBASE,
volume 2888 of Lecture Notes in Computer Science, pages 671–688. Springer, 2003.
ISBN 3-540-20498-9. URL http://springerlink.metapress.com/openurl.asp?

genre=article&issn=0302-9743&volume=2888&spage=671. (Cited on
pages 18 and 143.)

[212] Eyal Yardeni, Thom W. Frühwirth, and Ehud Y. Shapiro. Polymorphically typed
logic programs. In Types in Logic Programming, pages 63–90. 1992. (Cited on
page 25.)

[213] Andreas Zimmermann, Andreas Lorenz, and Marcus Specht. Applications of a
context-management system. In CONTEXT 2005, pages 556–569, 2005. (Cited on
page 91.)

http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=2888&spage=671
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=2888&spage=671

N O M E N C L AT U R E

Context Management Infrastructure

AOP Aspect-oriented Programming

CMI Context Management Infrastructure

CMS Context Management System

CSLogicAJ Context-sensitive Service-oriented Logic Aspects for Java

OCQL Object-oriented logic Context Query Language

OSGi Open Services Gateway initiative

QCS Query Context Sources

Prolog

G Goal

P Program

φ Formula

A Atom

B Positive Literal

Cl Clause

L Literal

SLDNF Selective Linear Definite clause resolution with Negation as Failure

t Term

V Logic Variable

RDFS Java Mapping

Id Legal Java identifiers

J I Java Interfaces representing classes from RNVT

JIb Java interfaces with a one to one mapping to RDFS classes

J Ie Powerset-extended set of mapped Java types

JPTW Java primitive type wrappers

JT Java Types

LVT RDFS literal value types

RC All subclasses of rdfs:Resource

RNVT RDF non-literal classes

RS RDFS schemas

XDT XML Schema datatypes

177

I N D E X

Abstract Domain, 27

abstract domain, 28

Abstract Semantics, 27, 43

Abstract Substitution, 28, 37, 37

Actuator, 4

Aliasing, 28, 37, 37

All-Solution Predicate, 21

Aspect, 33

Aspect-Oriented Programming, 30

Aspect-Oriented Software Development,
30

Asynchronous Advice, 103

Atom, 19

Backward Chaining, 18

Base Class, 30

Blank Node, 16

Bundle, 13

ClientService, 100

Closed World Assumption, 18

Collecting Semantics, 26, 42

Component Types, 74

Compound Term, 19

Concrete Semantics, 26, 41

Context Class, 57

Context Management Infrastructure, 91

Context Management System, 91

Context Pointcut Language, 103

Context Predicate, 64

Context Sources, 4

Context-Oriented Programming, 3

Context-Query Languages, 6

COP, 3

CQL, 7

Crosscutting Concerns, 7, 30

CSLogicAJ, 103

CWA, 18

Declarative Services, 14

Ditrios, 99

Dynamic Residue, 31

dynamism, 2

EBNF, 64

Entailment, 17

First-Order Logic, 19

FOL, 19

Forward Chaining, 18

Functor, 19

Importing Context, 57

Join Point, 30

Join Point Model, 7, 30

JTransformer, 123

last.fm, 4

Literal, 16

Named Pointcut, 32

Negation a Failure, 20

Negation as Failure, 18

Normal Logic Programs, 19, 37

Object-oriented logic Context Query Lan-
guage, 64

OCL, 64

Open World Assumption, 18

OSGi, 13

OWA, 18

OWL, 18

Pointcut, 9

Predicate Mapping, 68

Program Eements Facts, 119

Program Graph, 40, 43

Program Point, 37

Program points, 40

Prolog, 19

Proper Subtype Relationship, 72

Proxy indirection, 100

Query Context Source, 70

RDF, 16

RDF Schema, 17

RDFS, 17

Resource Description Framework, 16

Semantic Web, 4, 16

Sharing, 28, 37, 37

SLDNF, 20

Synchronous Advice, 103

Tabling, 18

Term, 19

Turtle, 16

Type Compatible, 75

179

180 bibliography

Unified Resource Identifier, 16

URI, 16

VSLDNF, 39

	Abstract
	Acknowledgments
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Definition and Representation of Context
	1.3 Running Example
	1.3.1 Realization Considerations

	1.4 Requirements for Context-based Adaptations
	1.4.1 Query Language Properties

	1.5 Contributions
	1.6 Thesis Outline

	State of the Art
	2 Basic Concepts
	2.1 OSGi
	2.1.1 OSGi Shortcomings
	2.1.2 LDAP Attributes and Filters

	2.2 Semantic Web
	2.2.1 RDF Schema
	2.2.2 RDFS Entailment
	2.2.3 Ontology Web Language
	2.2.4 Open World vs. Closed World Reasoning

	2.3 Prolog
	2.3.1 Operational Semantics
	2.3.2 Module Concept
	2.3.3 Meta Predicates
	2.3.4 Prolog Syntax

	2.4 Typed Logic Programming
	2.4.1 Instantiation Modes
	2.4.2 Type System based on Restricted Modes
	2.4.3 Order-sorted Unification

	2.5 Mode Analysis
	2.5.1 Abstract Interpretation
	2.5.2 Sound Approximation
	2.5.3 Chosen Mode Inference Approach

	2.6 Aspect-Oriented Programming
	2.6.1 Join Points and Pointcuts
	2.6.2 Advice
	2.6.3 Inter-type Declarations
	2.6.4 Aspects

	Approach
	3 Findall-Extended Mode Analysis
	3.1 Mode Analysis Approach by Lu
	3.1.1 Program Graph
	3.1.2 Concrete Semantics
	3.1.3 Collecting Semantics
	3.1.4 Abstract Semantics

	3.2 Findall-extended Mode Analysis
	3.2.1 Concrete Semantics
	3.2.2 Collecting Semantics
	3.2.3 Abstract Semantics
	3.2.4 Example
	3.2.5 Computational Complexity
	3.2.6 Application to Further All-Solutions Predicates

	3.3 Summary

	4 Object-oriented logic Context Query Language
	4.1 RDF Schema - Java Mapping
	4.1.1 Namespace Binding
	4.1.2 Class and Property Mapping
	4.1.3 RDF Reification

	4.2 Object-oriented logic Context Query Language
	4.2.1 Arrays and Tuples
	4.2.2 Predicates
	4.2.3 Built-in Predicates
	4.2.4 Generic Types & Mapping Predicates
	4.2.5 Context History
	4.2.6 Querying Context Sources
	4.2.7 Type Checks & Casts

	4.3 Type Checking
	4.3.1 Overview
	4.3.2 Pre-Mode Analysis Type Checking
	4.3.3 Type Inference for Generic Predicates
	4.3.4 Translation To Prolog
	4.3.5 Mode Analysis and Final Type Checking
	4.3.6 Mode Checking for Other Unsafe Expressions

	4.4 Summary

	5 Context Management Infrastructure and Service Aspects
	5.1 Context Management Infrastructure
	5.1.1 Context Listeners
	5.1.2 OCQL Compilation
	5.1.3 Requesting Context
	5.1.4 Queries and Language Integration

	5.2 Query Context Sources
	5.3 Service Discovery and Interception
	5.3.1 Proxy Indirection
	5.3.2 Service Adaptation
	5.3.3 Transaction-awareness

	5.4 Context-Sensitive Service Aspects
	5.4.1 Context Pointcut Language
	5.4.2 Service Pointcut
	5.4.3 Asynchronous Onchange Advice
	5.4.4 First-Class Join Point
	5.4.5 Referring to Context Sources

	5.5 Music Player Example Revisited
	5.6 Reconsidering Requirements
	5.7 Summary

	Implementation and Evaluation
	6 Implementation
	6.1 Mode Analysis
	6.2 Context Management System
	6.2.1 OCQL Parsing Framework

	6.3 CSLogicAJ
	6.3.1 Compiler
	6.3.2 Extensible OCQL/Pointcut Parser
	6.3.3 Static Analysis
	6.3.4 Mapping Advice Constructs to Java Source Code
	6.3.5 Integrated Development Environment
	6.3.6 Realization of Query Context Sources

	6.4 Summary

	7 Evaluation
	7.1 Programming for Context-based Adaptability - A Case Study
	7.1.1 Requirements Elicitation
	7.1.2 General Requirements for Context-Sensitive Adaptivity
	7.1.3 Pure Object-Orientation - Patterns for Adaptivity
	7.1.4 SOA and Object-Orientation - Patterns for Adaptivity
	7.1.5 SOA and Aspect-Orientation - Patterns for Adaptivity
	7.1.6 Summary

	7.2 JCop Query Library
	7.2.1 Overview
	7.2.2 Example
	7.2.3 Summary

	7.3 Intercepted Service Call Benchmark
	7.4 Summary

	Related Work, Conclusions, and Future Work
	8 Related Work
	8.1 Context Query languages
	8.1.1 SPARQL
	8.1.2 SWRL
	8.1.3 MUSIC CQL
	8.1.4 F-Logic / Flora-2
	8.1.5 Prova 2

	8.2 Context-management Systems
	8.2.1 Context-aware Aspect-oriented Programming
	8.2.2 Dynamic Component-based Aspect-oriented Programming

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work
	9.2.1 Weaving Optimizations
	9.2.2 OWL Support
	9.2.3 Typed Java Library

	Appendix
	A Appendix
	A.1 XML Primitive Type Mapping
	A.2 XSD Built-in Type Hierarchy
	A.2.1 Lunjin Lu - Abstract Unification Algorithm
	A.2.2 Implementation of Array Index Access
	A.2.3 Predefined Predicates and Arithmetic Expressions

	Bibliography

