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ABSTRACT 
 
 
Deforestation and habitat fragmentation that arise largely due to the conversion of forests to 
other agricultural land-use types and over-utilization of forest resources to satisfy the food and 
energy requirements of the increasing population are major environmental concerns in northern 
Ethiopia. Understanding plant species diversity and spatial distribution along environmental 
gradients is crucial in the management of the remnant forest ecosystems. However, the ecology 
of the forest remnants in northern Ethiopia is poorly studied. The purpose of this study is 
therefore to (i) investigate plant species diversity and natural regeneration in relation to selected 
environmental factors, (ii) quantify the elevation patterns of species diversity and community 
composition, (iii) examine the extent and spatial distribution pattern of standing dead stems and 
the effect of mass tree dieback on forest structure and diversity, and (iv) compare the 
regeneration response of Juniperus procera and Olea europaea subsp. cuspidata in an open-
access forest area to a closed forest management system. The study was conducted in the Desa’a 
and Hugumburda Afromontane forest remnants, which are the largest forest fragments in 
northern Ethiopia and are national forest priority areas. 

A total of 153 species belonging to 63 families was found in the study area; shrub and 
herb species dominate (ca. 70 %). The vegetation is mainly a dry Afromontane forest type with 
Juniperus and Olea as the dominant species; a riverine plant community in Hugumburda forest 
represents a moist forest type. Elevation, slope, soil depth, distance to the nearest stream, soil 
moisture, and forest disturbance are the main environmental factors influencing species 
distribution and partitioned plant communities. 

The diversity of species and the composition of plant communities in Desa’a forest 
significantly respond to elevation. Species richness and diversity show a unimodal, hump-
shaped relationship with elevation that peaked at mid elevation (1900 – 2200 m). The beta 
diversity values indicate medium species turnover along an elevational gradient. The 
percentages of dead standing trees (snags) due to natural disturbance at Desa’a forest are high 
for both J. procera (57  7 %) and O. europaea subsp. cuspidata (60  5 %), but show a 
decreasing trend with increasing elevation suggesting that restoration is more urgent at the 
lower elevations. Higher tree dieback at the lower elevation has pushed the tree species to the 
higher elevation by about 500 m, and this can lead to a shift in the forest-shrubland ecotone to 
higher elevations. Total stand density and basal area are reduced by 30 and 44 % when 
excluding snags of the two species, respectively.  Thus, mass tree dieback of the two key 
species strongly influences the forest structure. High amounts of dead standing biomass are a 
particular risk in a fire-prone semi-arid forest environment, and controlling snag densities is of 
critical concern in the management of the remaining dry Afromontane forests in northern 
Ethiopia.  

The natural regeneration of native tree species in both forest remnants is low. 
Exclosure was found to be an effective management option to improve the regeneration of O. 
europaea, but it does not improve the regeneration of J. procera. Thus, a closed management 
system in the open-access and degraded forests may not guarantee a successful regeneration of 
native woody species. It rather favors grass and herbaceous species and can lead to a gradual 
conversion of the forest land to wooded grassland.  Most of the seedlings in forest remnants are 
shrubs, while tree species are less diverse and abundant. The standing vegetation is only partly 
represented in the seedling bank and many of the rare tree species, e.g. Afrocarpus falcatus, 
show poor or no regeneration. A smaller number of saplings than mature individuals suggest 
that locally some forest species are experiencing extinction. Thus, it is important to give 
conservation priority to the last Afromontane forest remnants in northern Ethiopia to achieve 
local, national and international biodiversity conservation goals. 
  



KURZFASSUNG 
 

 
Biodiversität in den Wäldern der fragmentierten Landchaften von 
Nordäthiopien und die Folgerungen für ihren Schutz 
 
 
Abholzung und die Fragmentierung der Lebensräume, hauptsächlich als Folge der 
Umwandlung der Wälder in andere landwirtschaftliche Nutzungen sowie die 
Ausbeutung der Waldressourcen, um den Nahrungsmittel- und Energiebedarf der 
wachsenden Bevölkerung zu befriedigen, verursachen erhebliche Umweltprobleme in 
Nordäthiopien. Kenntnisse der Pflanzenvielfalt und räumlichen Verteilung entlang 
Umweltgradienten ist entscheidend bei der Bewirtschaftung der verbleibenden 
Waldökosysteme. Jedoch ist die Ökologie der noch vorhandenen Waldfragmente in 
Nordäthiopien nur wenig untersucht. Das Ziel dieser Studie ist daher (i) die Vielfalt der 
Pflanzenarten und ihre natürliche Regeneration im Zusammenhang mit ausgewählten 
Umweltfaktoren zu untersuchen, (ii) die höhenabhängige Verteilung der Artenvielfalt 
und die Zusammensetzung der Pflanzengemeinschaften zu quantifizieren, (iii) das 
Ausmaß und die räumliche Verteilung stehender toter Baumstämme sowie die 
Auswirkungen eines Baumsterbens auf die Waldstruktur und -vielfalt zu untersuchen, 
und (iv) den Einfluss eines geschlossenen Waldbewirtschaftungssystems mit dem eines 
zugänglichen Waldes auf die Regeneration von Juniperus procera und Olea europaea 
subsp. cuspidata zu vergleichen. Die Studie wurde in den afromontanen Wäldern 
Desa’a und Hugumburda, die größten Waldfragmente in Nordäthiopien und mit 
nationaler Schutzpriorität, durchgeführt. 

Insgesamt 153 Arten aus 63 Familien kommen im Untersuchungsgebiet vor; 
Strauch- und Kräuterarten dominieren (ca. 70 %). Die Vegetation ist hauptsächlich vom 
trockenen afromontanen Waldtyp mit den dominierenden Arten Juniperus und Olea; 
eine gewässernahe Pflanzengesellschaft im Hugumburda Wald ist vom Typ 
Feuchtwald. Höhenlage, Hangneigung, Bodentiefe, Nähe zum nächsten Kleingewässer, 
Bodenfeuchte und anthropogene Störungen sind die wichtigsten Umweltfaktoren, die 
die Artenverteilung und die Zusammensetzung der Pflanzengesellschaften beeinflussen. 

Die Artenvielfalt und die Zusammensetzung der Pflanzengesellschaften in 
Desa’a Wald sind signifikant abhängig von der Höhenlage. Artenreichtum und 
Diversität bilden eine unimodale Beziehung mit der Höhenlage; der höchste Wert ist bei 
einer mittleren Höhenlage (1900 - 2200 m). Die Betadiversitätswerte deuten auf einen 
mittleren Artenwechsel  entlang eines Höhengradienten hin. Die Anteile stehender toter 
Baumstämme als Folge natürlicher Störungen im Desa’a Wald sind hoch, sowohl für J. 
procera (57  7 %) als auch für O. europaea subsp. cuspidata (60  5 %), zeigen jedoch 
einen abnehmenden Trend mit zunehmender Höhenlage, was darauf hindeutet, dass 
Rekultivierungsmaßnahmen in den unteren Höhenlagen dringender sind als in höheren. 
Das stärkere Baumsterben in den unteren Höhenlagen hat dazu geführt, dass das 
Vorkommen der betroffenen Baumarten sich um ca. 500 m nach oben verschoben hat. 
Dies kann auch zu einer Verschiebung der Wald-Buschland-Vegetation in höhere Lagen 
führen. Bestandsdichte bzw. Basalfläche sind um 30 bzw. 44 % reduziert wenn die 
stehenden toten Individuen der beiden Arten nicht berücksichtigt werden; das  
Absterben der beiden Hauptbaumarten beeinflusst also stark die Waldstruktur. Große 
Mengen toter Baumbiomasse sind ein besonderes Waldbrandrisiko in einem semi-



ariden Wald und die Kontrolle der Dichte des Totholzes ist von entscheidender 
Bedeutung bei der Bewirtschaftung der noch verbleibenden trockenen afromontanen 
Wälder in Nordäthiopien.  

Die natürliche Regeneration der einheimischen Baumarten in den beiden 
untersuchten Waldfragmenten ist niedrig. Es zeigt sich, dass eingezäunte Flächen eine 
wirksame Bewirtschaftungsoption sind, um die Regeneration von O. europaea zu 
begünstigen. Diese Maßnahme bleibt jedoch ohne Wirkung auf J. procera. Daher würde 
ein Bewirtschaftungssystem mit Zugangsbeschränkungen in den offenen, degradierten 
Wäldern eine erfolgreiche Regeneration der einheimischen Holzgewächse nicht 
garantieren. Es werden eher Gras- und Kräuterarten begünstigt, was zu einer langsamen 
Umwandlung des Waldes in Grasland mit Gehölzen führen kann. Die meisten 
Keimlinge in den Waldfragmenten sind von Straucharten, während Baumarten weniger 
vielfältig bzw. zahlreich sind. Die bestandsbildenden Arten sind nur zum Teil in der 
Samenbank vertreten, und viele der seltenen Arten, z. B. Afrocarpus falcatus, zeigen 
wenig bzw. gar keine Regeneration. Die geringe Bedeutung von Jungwuchs im 
Vergleich zu den voll ausgewachsenen Baumindividuen deutet daraufhin, dass lokal 
einige bestandsbildenden Baumarten aussterben könnten. Daher muss den letzten 
afromontanen Waldfragmenten in Nordäthiopien eine hohe Schutzpriorität eingeräumt 
werden, auch um die lokalen, nationalen und internationalen Ziele zum Schutze der 
Artenvielfalt zu erreichen.  
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1 GENERAL INTRODUCTION 

 

1.1 Background 

Biological diversity is the diversity of life at genetic, organism and ecological levels, 

and there have been attempts to include cultural biodiversity as a fourth component 

(Jeffries 2005). The various definitions of biodiversity are partly reviewed by Sanderson 

and Redford (1997), and a more comprehensive definition is given in the Convention on 

Biological Diversity (CBD 1992) where diversity is "the variability among living 

organisms from all sources including, inter alia, terrestrial, marine and other aquatic 

ecosystems and the ecological complexes of which they are part; this includes diversity 

within species, between species and of ecosystems". In this thesis, diversity is 

considered at species level.  

The roles of biodiversity are documented by many authors (Naeem et al. 1974; 

Loreau et al. 2001; Cardinale et al. 2006). Biodiversity plays a key role in ecosystem 

functioning and has been widely used as an indicator of ecosystem health (FAO 2005). 

According to the millennium ecosystem assessment (MA 2005), biodiversity provides 

four main services: (1) supporting (nutrient cycling, soil formation, primary production, 

etc.), (2) provisioning (food, fresh water, wood and fiber, fuel, etc.), (3); regulating 

(climate regulation, flood regulation, disease regulation, water purification, etc.), and (4) 

cultural (aesthetic, spiritual, educational, recreational, etc.).  

Although biodiversity is understood as a key factor for the sustainability of 

life, biodiversity loss is one of the greatest environmental crises. The growing human 

population and the demand for natural resources have put great pressure on the 

biodiversity wealth of the world through deforestation, habitat fragmentation, and over-

exploitation of species (Terborgh and van Schaik 1997; Noss 1999). Habitat loss and 

change, over-harvesting, pollution, and climate change have been the direct causes of 

global biodiversity loss (Wood et al. 2000), while  population growth, changes in 

economic activities, socio-political factors, cultural factors, and technological change 

are indirect drivers (MA 2005). Besides these global factors, lack of technical 

knowledge and awareness, and political instability have exacerbated the problem in 

many developing countries (Ayyad 2003). Forest degradation in Sub-Saharan Africa, 
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for instance, has widely taken place because people gain immediate economic benefits 

from the forest -related economic activities (Mogaka et al. 2001). 

Similarly, accelerated deforestation and habitat fragmentation that arise largely 

due to the conversion of forests to other agricultural land-use types and the over-

utilization of forest resources to satisfy the food and energy requirements of the 

increasing population are major environmental concerns in Ethiopia (Machado et al. 

1998; Tekle and Hedlund 2000; Friis et al. 2001; Taddese 2001; Teketay 2001; Zeleke 

and Hurni 2001; Dessie and Kleman 2007). With annual forest clearance of about 

150,000 to 200,000 ha (Mogaka et al. 2001), the forest cover of Ethiopia was reduced to 

16 % during the 1950s, and to 2.7 % by 1989 (Campbell 1991; EFAP 1994). The 

average forest decline between 1990 and 2000 in Ethiopia was 1 % (FAO 2007). 

Between 2000 and 2005, this value declined by 1.1 %, which exceeds the average value 

of east Africa (0.97), total Africa (0.62), and the world (0.18 %) (FAO 2007). Currently, 

natural forests in Ethiopia mainly occur in the south-western part of the country, while 

the forests that originally existed in central and northern Ethiopia have almost 

disappeared (EFAP 1994; Feoli et al. 2002; Bekele 2003). 

According to pollen and charcoal studies in northern Ethiopia, forest 

disturbance has a 3000-year history (Darbyshire et al. 2003), and soil erosion following 

vegetation clearance in Tigray occurred in the middle Holocene (Bard et al. 2000). 

Around 50 BC, the pre-disturbance Podocarpus-Juniperus forest was converted into a 

secondary vegetation of Dodonaea scrub and grasslands that dominated the northern 

Ethiopia for 1800 years while Juniperus, Olea and Celtis spread around AD 1400 to 

1700 (Darbyshire et al. 2003). The travertine deposition in the plateau of Tigray 

indicates the dense forest cover that once covered northern Ethiopia during the middle 

Holocene (Bard et al. 2000). 

In 2003, the natural forest  cover in Tigray was only 0.2 % of the total land 

mass of the region (Ministry of Agriculture 2003), indicating the severe forest 

degradation in the region. Currently, the western escarpment of the Great Rift Valley is 

the only site with an intact Afromontane forest cover in northern Ethiopia. The present 

study was therefore carried out on this escarpment which includes Desa’a and 

Hugumburda forests; these are national forest priority areas in Ethiopia. Conversion of 

forests to agricultural land (Nyssen et al. 2004), high dependency on biomass energy 
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(Hagos et al. 1999; Gebreegziabher 2007) and free grazing (EFAP 1994; Worku 1998; 

Feoli et al. 2002) are the major causes of forest degradation in northern Ethiopia. 

According to the Ministry of Agriculture (2003), fuel wood and charcoal contribute 

69.2 and 2.5 % of the household energy consumption in Tigray, respectively. 

Forest degradation and deforestation in Ethiopia entails several socio-

economic and environmental challenges that have strongly affected the capacity of 

forests to provide ecosystem services (Badege 2001; Teketay 2001). Shortage of fuel 

wood is a serious problem in the region, and the use of animal dung and agricultural 

residues as household fuels has increased, which otherwise could be used as organic 

fertilizer (Gebreegziabher 2007). Deforestation is also a major reason for the accelerated 

soil erosion in the highlands of Ethiopia (Hurni 1988), where the annual soil loss is 

estimated to be 1493 million tons (Zeleke and Hurni 2001). This again causes an 

estimated annual grain yield loss of 1-1.5 million tons (Taddese 2001). Following early 

human settlements, the extent of soil degradation in northern and eastern Ethiopia is 

higher than in other parts of the country (Zeleke and Hurni 2001). Tamene and Vlek 

(2007) report a mean annual  soil loss of 19 tons ha-1 year-1 in Tigray, which exceeds the 

mean values of Africa and the world. Large-scale degradation of forests has affected the 

natural regeneration of key native tree species in northern Ethiopia (Aynekulu et al. 

2009; Wassie et al. 2009a), while favoring shrub and herb colonizers (Feoli et al. 2002). 

Following the long history of land degradation, many land rehabilitation and 

conservation programs have been carried out in northern Ethiopia. A historical 

vegetation cover change study by Nyssen et al. (2009) indicates that the vegetation 

cover in northern Ethiopia has improved during the last century through land 

rehabilitation programs. Community woodlots and household tree plantations have also 

contributed to the improvement of the vegetation cover in northern Ethiopia (Jagger and 

Pender 2003). However, in relation to the scale of land degradation in the region, 

conservation efforts could not significantly contribute to reversing the land degradation 

process (Teketay 2001). The major drawbacks in the conservation efforts are related to 

policy setting and implementation, which are often criticized for lacking an active 

participation of the local people (Campbell 1991; Hagos et al. 1999). State ownership of 

land and forests and lack of forest property rights are also identified as causes of forest 

degradation in Ethiopia (Bekele 2003). 
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Many degraded sites have been managed as exclosures, and attempts have been made to 

document the regeneration and ecology of the plants in these exclosures. Exclosure is an 

assisted natural regeneration strategy to restore degraded forests by protecting areas 

from livestock intervention (Parrotta et al. 1997; Shono et al. 2007). Studies have 

indicated that vegetation recovery in the exclosures is quick, particularly in the younger 

stages (Mengistu et al. 2005; Abebe et al. 2006). Many of the exclosures on the 

degraded hillsides are covered with pioneer shrubs like Acacia etbaica, Euclea 

racemosa subsp. schimperi, Dodonaea viscosa, and grass and herb species. However, 

no significant improvements in species diversity and biomass production were found 

after a decade of closing (Asefa et al. 2003; Yayneshet et al. 2009), suggesting the need 

to introduce additional management measures to restore native key species. 

Studies elsewhere indicate that restoration of the original flora may not be 

achievable for centuries, particularly in dry climates where moisture is a limiting factor 

(Woodwell 1994). Although exclosures in the degraded sites have shown promising 

results, the natural forest remnants are experiencing a retrogressive succession. For 

instance, in Desa’a forest, the originally dominating J. procera and O. europaea, have 

been gradually been replaced by encroaching light-demanding shrubs such as Cadia 

purpurea and Tarchonanthus camphoratus with increasing deforestation and forest 

degradation (Gebreegziabher 1999). This indicates that the natural forest remnants, 

which are expected to serve as sources of propagules (Aerts et al. 2006c) for the 

restoration of the native species in the degraded sites, are not able to sustain the 

populations of the relevant forest species. Thus, conserving the existing natural forest 

remnants needs conservation priority, otherwise a local extinction of plant species and 

their associated fauna may occur.  

 

1.2 Problem statement  

The dry lands constitute almost 50 % of the landmass, but they are fragile ecosystems 

mainly due to erratic rainfall (CBD 1992). Recently, conservation of biodiversity in the 

dryland ecosystems has been receiving greater international attention. Accordingly, the 

Convention on Biological Diversity has set goals to promote the conservation of the 

biological diversity of ecosystems, habitats and biomes (goal 1) and promote the 
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conservation of species diversity (goal 2) of the drylands by 2010 (UNEP/CBD 2006). 

This convention is relevant to Ethiopia where drylands constitute about 65 % of the 

landmass and forest habitat deterioration is high (Teketay 2001; Yirdaw 2001). 

However, lack of adequate understanding of biological resources and their interaction 

with the environment is among the major challenges when defining and implementing 

effective policies for the sustainable utilization and conservation of biodiversity 

resources in Ethiopia (EFAP 1994; Teketay 2001).  

The study site is part of the eastern Afromontane (Tigray highlands) and the 

arid Horn of Africa (Afar lowlands) global diversity hotspots (Conservation 

International 2007). Despite the high conservation values of the natural forest remnants 

in northern Ethiopia, they are poorly studied (Friis 1992; Aerts et al. 2006c). Recently, 

studies have given emphasis to the restoration ecology in the exclosures  (Mengistu et 

al. 2005; Abebe et al. 2006; Descheemaeker et al. 2006; Mekuria et al. 2007; Aerts et al. 

2008; Yayneshet et al. 2009). However, except for a few management plans (BoANR 

and IDC 1997; Worku 1998), reports (e.g., TFAP 1996; Gebreegziabher 1999), and 

unpublished MSc theses (Hadera 2000; Janssen 2009), no detailed scientific 

investigation has been carried out in the large forest remnants in Tigray. To my 

knowledge no work has been published to date on the ecology of these forests. As a 

result, historical comparisons of the vegetation composition in northern Ethiopia relies 

more on paleo-botanical studies (Bard et al. 2000). Thus, a detailed study on the 

ecology of the existing forest remnants is the basis for defining appropriate conservation 

strategies before these lose their potential to provide ecosystem services. Income from 

forest-related economic activities account for the second largest share of the average 

total household income in Tigray (Babulo et al. 2009). Thus, it is important to develop 

the forestry sector to improve the rural livelihoods in northern Ethiopia. 

The study focuses on two national forest priority areas in northern Ethiopia. 

The first study site covers large parts of Desa’a forest, which mainly occurs largely 

found on the western escarpment of the Great Rift Valley in northern Ethiopia. The 

second site covers Hugumburda forest, which is an isolated forest not only because the 

surrounding area has been cleared, but also because it is located in a secluded valley 

next to the parallel rift of Lake Hashenge. In such isolated areas, limited cross-

pollination, inbreeding, and genetic drift are likely to negatively impact plant 



General introduction 

 

6 

 

populations. This is expected to be observed in the population structure of the trees: low 

numbers of seedlings, and smaller numbers of saplings than mature species. If so, the 

forests are facing local extinction, i.e., some tree species are still present, but will 

become locally extinct because there is no further regeneration. Thus, it is important to 

know the natural regeneration potential in relation to the standing vegetation. 

Understanding plant species distribution patterns and plant community 

composition along environmental gradients also gives key information for effective 

management of forest ecosystems (Naveh and Whittaker 1979; Noss 1999; Lovett et al. 

2000). The concept of identifying areas with high biodiversity along environmental 

gradients, for instance, has been used as a criterion for biodiversity conservation priority 

setting (Rudel and Roper 1997; Myers et al. 2000; Mittelbach et al. 2001; Breshears et 

al. 2005). Thus, it is important to identify plant species diversity and community 

composition along environmental gradients. 

Moreover, understanding the extent of tree dieback and spatial patterns of dead 

standing trees (snags) is crucial in managing forest ecosystems (Craig and Friedland 

1991; Gitlin et al. 2006). However, the status and roles of snags in the tropics have been 

less studied (Grove 2001). Mass tree dieback occurred on the escarpments of Desa’a 

forest, and the occurrence of large snags in the dry Afromontane forest is a clear sign of 

forest degradation. For effective management of the existing forest remnants, it is 

imperative to investigate the influence of such mass tree dieback on the forest structure 

and diversity. 

Natural regeneration is a site-specific ecological process, and it is usually 

difficult to characterize the factors that control regeneration processes (Schupp 1988; 

Khurana and Singh 2001). Studying the contribution of previous conservation efforts in 

improving the restoration of native species is important to plan further conservation 

strategies. This study thus assesses the regeneration response of key tree species to 

exclosure. 

 

1.3 Objectives 

The main objective of this study is to investigate the plant species diversity and natural 

regeneration in relation to selected environmental factors in two dry Afromontane forest 

remnants in northern Ethiopia as a basis for biodiversity conservation. 
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The specific objectives of the study are: 

 Assessment of plant species diversity and natural regeneration in relation to 

selected environmental factors in Hugumburda forest; 

 Assessment of the distribution of plant species and communities along an 

elevational gradient on the western escarpment of the Great Rift Valley; 

 Investigation of the extent and spatial patterns of dead standing trees (snags) and 

effects of mass tree dieback on forest structure and diversity; and 

 Investigation of the regeneration response of Juniperus procera and Olea 

europaea subsp. cuspidata to exclosure. 

 

The findings of this research can serve as decision support for conservation 

workers, policy makers, and other stakeholders when they develop appropriate measures 

to protect the diminishing natural forest remnants in northern Ethiopia.  

 
1.4 Thesis layout 

The thesis is consists of eight chapters. Following the introduction, Chapter 2 provides 

an overview of the determinants of species diversity, methods for studying species 

diversity and the vegetation types of Ethiopia. Chapter 3 provides a brief description of 

the socio-economic and bio-physical characteristics of the study area and the study 

approach. Chapter 4 investigates (i) species and plant community compositions in 

relation to the selected environmental factors, and (ii) composition of the seedling in 

bank relation to standing vegetation. Chapter 5 examines (i) plant species and 

community compositions, (ii) species turnover (Beta diversity), and (iii) identifies areas 

with high species diversity for conservation priority setting along an elevational 

gradient. Chapter 6 investigates (i) extent and spatial patterns of mass tree dieback of J. 

procera and O. europaea subsp. cuspidata, (ii) applicability of NDVI of ASTER 

imagery in estimating percentage of mass tree dieback, and (iii) influence of mass tree 

dieback of the two species on the overall stand structure and species diversity. Chapter 7 

investigates the regeneration response of J. procera and O. europaea subsp. cuspidata 

in the dry forest remnants in northern Ethiopia. Chapter 8 synthesizes the major findings 

of the research, the implications for conservation and management, and suggests further 

areas of research. 
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2 DRIVERS AND MEASUREMENTS OF SPECIES DIVERSITY AND 

VEGETATION TYPES OF ETHIOPIA: AN OVERVIEW 

 

2.1 Determinants of biodiversity 

Biodiversity varies in space and time, and understanding patterns and drivers of 

variation in biodiversity distribution has been a central topic in ecology.  According to 

ter Steege and Zagt (2002), the determinates of biodiversity can be seen from both 

regional and local perspectives (Figure 2.1). Accordingly, regional biodiversity is 

determined by the ecological and evolutionary processes of speciation, immigration, 

and extinction, while local diversity is influenced by random extinction, competition, 

and adaptation (Terborgh and van Schaik 1997; ter Steege and Zagt 2002). A more 

comprehensive discussion on the patterns of species distribution is given by MacArthur 

(1972). 

 

Figure 2.1 Drivers of regional and local species diversity. Green arrows indicate 
processes that increase diversity (species are added) and red arrows 
those that decrease it (species are lost) (source: ter Steege and Zagt 
2002). 

 

Latitude and elevation are important drivers of species distribution patterns 

(Gaston 2000; Lomolino 2001). However, the effect of these two factors varies with 

local, regional, and global scales, as well as with historical factors (ter Steege and Zagt 

2002). The world’s forests have passed through many evolutionary processes. Europe, 

which was as diverse as America in tree species, for instance, lost many of its tree 

species through the Pleistocene glaciations (MacArthur 1972). A palaeobotanic study by 

Bobe (2006), for instance, indicates that the differentiation of moist forests and drier 

Acacia woodlands in Africa occurred during the early Cenozoic period. Pollen studies 

in Kenya (Lamb et al. 2003) and northern Ethiopia (Darbyshire et al. 2003) indicate that 
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the flora of East Africa has experienced several changes due to climate change and 

anthropogenic disturbances. 

At a global scale, diversity decreases with increasing distance from the equator 

(Gaston 2000; Mutke and Barthlott 2005; Kreft and Jetz 2007). However, the general 

species-richness pattern along latitudinal gradients is sometimes reduced due to other 

factors like longitude, elevation, topography, and aridity (Gaston 2000). There are 

several reasons for the higher species diversity in the tropics compared to other regions, 

one of which is the larger area of the tropics than of any other zone (Rosenzweig 1995). 

Larger ranges contribute to diversity by supporting large populations, which favor 

speciation through geographical barriers while reducing accidental extinction 

(Rosenzweig 1995; Gaston 2000). The influence of area per se as a determinant of 

diversity has however been doubted. Tokeshi (1999) argues that the area of the tropical 

region is not as large as that of all non-tropical areas combined. Temperate and boreal 

species seem to achieve large population sizes, and if evolutionary time scales are used, 

comparisons should be based on the area of palaeotropical zones rather than on the 

present day configuration of lands and climatic zones. 

The other reason for large number of species in the tropics is the low 

temperature variability in space and time that increases the probability of similar 

habitats (Rosenzweig 1995). Constant and higher temperatures in the tropics also 

contribute to higher species diversity by increasing the rate of metabolism, which 

speeds up the passing of generations and increases the rate of mutation that again leads 

to new species (Tokeshi 1999). Although the influence of site productivity on diversity 

is debatable (MacArthur 1972; Gaston 2000), the higher productivity in the topics than 

in the higher latitudes is often cited as a reason for the higher species richness in the 

tropics (Rosenzweig 1995; Kreft and Jetz 2007). MacArthur (1972) supports this 

assumption by stating that an area with zero production will not support any species and 

that more productive sites are more stable with time. In contrast, Tokeshi (1999) argues 

that site productivity does not have a direct effect on species richness, but should be 

considered as a surrogate for habitat heterogeneity. 

Elevation plays a major role in plant species diversity and floristic formations, 

especially in mountainous areas (Gaston 2000; Kreft and Jetz 2007). Compared to 

species-latitude and species-area relationships, the species-elevation relationship is less 
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studied (Lomolino 2001). Elevation determines species distribution in montane systems 

by influencing area, climate, geographical isolation of montane communities, and 

feedback among zonal communities (Gaston 2000; Kreft and Jetz 2007). Species 

richness in mountainous landscapes, for instance, decreases with increasing elevation 

due to a decrease in land area per bioclimatic belt (Körner 2007). The effect of climate 

on species distribution is similar to its effect along latitudinal gradients, whereas area 

and geographical isolation can be explained by ‘island biogeography’ (Tokeshi 1999). 

According to the theory of island biogeography, the number of species in undisturbed 

islands is influenced by immigration, emigration and extinction (MacArthur and Wilson 

1967). Immigration and emigration are influenced by distance from the main land, 

while extinction is inversely related to area (MacArthur and Wilson 1967). 

The response of plant species distribution to elevation varies among 

ecosystems (Hegazy et al. 1998; Kessler 2000; Lovett et al. 2000; Sánchez-González 

and López-Mata 2005; Grytnes and Beaman 2006). Different life forms may also 

respond to elevation similarly (e.g., Sánchez-González and López-Mata 2005) or 

differently (e.g., Ren et al. 2006). Species richness along elevational gradients also 

depends on the scale of a study: A hump-shaped distribution pattern is commonly found 

when data are taken from a large elevation range, while a monotonic pattern is common 

with small elevation ranges (Nogues-Bravo et al. 2008). Generally, the hump-shaped 

pattern is more common than the monotonic pattern (Rahbek 1995). 

Generally, habitat diversity is a widely accepted determinant of species 

diversity (Rosenzweig 1995; Pausas et al. 2003; Mutke and Barthlott 2005). The theory 

of spatial heterogeneity (Pianka 1966) states that more heterogeneous and complex 

physical environments support more diverse plant and animal communities. Kreft and 

Jetz (2007) indicate potential evapotranspiration, the number of wet days per year, and 

measurements of topographical and habitat heterogeneity are predictors of global 

species richness. Similarly, Linder (2001) found a strong correlation between maximum 

rainfall and species richness in Sub-Saharan tropical Africa. Similarly, species richness 

and endemism decrease with increasing latitude from the southern to the northern 

highlands of Ethiopia, which can be associated with a decline in precipitation (O'Brien 

1993; Linder 2001). 
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Besides environmental drivers of species diversity, anthropogenic disturbance affects 

species diversity through habitat loss and habitat fragmentation (Rudel and Roper 1997; 

Lyaruu et al. 2000; Pimm and Raven 2000; Brooks et al. 2002). Habitat loss is the 

leading cause of species extinction (Pimm and Raven 2000). With the current rate of 

habitat loss, the rate of species extinction is in order of a thousand species per decade 

per million species (Pimm and Raven 2000). Biodiversity loss is more serious than 

other environmental threats because it is irreversible (Mittermeier et al. 1998). Habitat 

fragmentation affects biodiversity by reducing the area of a habitat, which reduces the 

persistence of a species, and through the negative edge effect that increases mortality 

while decreasing reproduction (Farhrig 2003). Forest disturbance also affects species 

diversity by affecting certain species and size classes, and by changing the light 

environment of the understory (Slik 2004; Engelbrecht et al. 2007). According to the 

intermediate disturbance hypothesis (Connell 1978), intermediate disturbance promotes 

species diversity by facilitating regeneration of many species (Denslow 1980; Bongers 

et al. 2009). However, the influence of disturbance on species diversity is still a debate 

among ecologists. Recently, Bongers et al. (2009) showed that diversity in dry forests 

peaks more at a slight level of disturbance than at an intermediate level. 

Identifying diversity hotspots can support conservation planning (Mittermeier 

et al. 1998; Myers et al. 2000). Conservation International (2007), for instance, used the 

world biodiversity hotspots to prioritize biodiversity conservation areas. The hotspot 

concept is based on species richness, endemism and threat (Reid 1998; Myers et al. 

2000). Studies at global scale have documented less overlap among the three criteria 

(Stohlgren et al. 1997; Orme et al. 2005). Nearly half of the world’s vascular plant 

species are endemic to 25 hotspots (Myers et al. 2000), of which 17 are in tropical 

forests each having at least 1500 endemic plant species (Brooks et al. 2002). These 

hotspots once covered 12 % of the land surface, but Brooks et al. (2002) reported that in 

2002 such intact habitats were reduced to less than 1.4 % of the land largely due to 

habitat loss. Tropical moist forest constitutes most (85 %) of the deforested lands 

(Whitemore 1997). Despite the high expectation of extinction due to habitat 

deterioration, Whitmore (1977) observed that a large proportion of plant species were 

persistent in the remaining forests. However, many plant species have a too small 

population sizes to be viable, and this may increase the rate of extinction in the long 



Drivers and measurements of species diversity and vegetation types of Ethiopia: an 
overview 

 

12 

 

term (Whitemore 1997). The human population growth rate in the hotspots is higher 

than the average rates worldwide, suggesting that human-induced habitat loss is still a 

major threat (Cincotta et al. 2000). Mckee et al. (2004) found a strong relationship 

between population growth and number of threatened species. This makes conservation 

of biodiversity in the hotspots especially challenging. 

The advancement in remote sensing and geo-information sciences has 

contributed greatly to the organization of the fragmented knowledge of species 

distribution and the determining factors. Recently, it has become possible to develop 

more accurate biodiversity maps on continental and global scales (Linder 2001; Kier et 

al. 2005; Mutke and Barthlott 2005). The global diversity map of Mutke (2005) 

indicates that the Chocó-Costa Rica region, the tropical eastern Andes, and 

northwestern Amazonia, eastern Brazil, northern Borneo, New Guinea, the South 

African Cape region, southern Mexico, the eastern Himalaya region, western Sumatra, 

Malaysia, and east Madagascar are major global centers of vascular plant diversity. Kier 

et al. (2005) also indicated that the tropical and sub-tropical moist broadleaf forest 

biomes are mega stores of global plant species diversity. 

Recently, 9 new areas were included as part of the world biodiversity hotspots 

(Conservation International 2007). Among these are the Horn of Africa and eastern 

Afromontane hotspots that include large parts of the lowlands and the highlands of 

Ethiopia, respectively. However, Africa has fewer endemic species and is less rich in 

tropical species, which is probably due to the slow rate of geographical speciation 

(Rosenzweig 1995). Large-scale vegetation changes in Africa occurred due to the 

changes in the atmospheric moisture content driven by tropical sea surface temperature 

changes in the mid-Pleistocene (Schefus et al. 2003).  

 

2.2 Plant communities 

A plant community is defined as the collection of plant species growing together in a 

particular location that show a definite association or affinity with each other (Kent and 

Coker 1992). Plant community level study is a useful approach in conservation planning 

(Ferrier et al. 2009). The concept of plant community, for instance, provides useful 

information on the underlying environmental drivers of species distribution, as plants 

that live together have similar environmental requirements for their existence.  
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The principles of plant communities are based on either the continuum or on 

individualistic theories. Clements (1916) in his plant succession theory considered plant 

communities as one big organ (organismic concept) composed of various species, which 

repeats itself with regularity over a given region. In his holistic approach, forests, 

scrubs, and grassland are considered as major groups of vegetation, which can develop 

to climax communities with sufficient time and long-term stability. Gleason (1926) on 

the other hand considered plant species distribution as a continuum. Gleason takes 

environmental factors and tolerance ranges of species as determinants of the existence 

and abundance of a species in a given region. This viewpoint is known as the 

individualistic concept of the plant community. 

Although differences still exist among ecologists on the concepts of plant 

communities, the Gleason’s individualistic theory has been widely used (Callaway 

1997). Plant ecologists who favor vegetation classification follow the approach of 

Clements and group species into communities. Those ecologists who do not believe in 

classification follow the continuum theory and arrange species along environmental 

gradients as continua, using ordination methods (Kent and Coker 1992).  

 

2.2.1 Classification and ordination 

Classification is to group together a set of individuals on the basis of their attributes, 

and is used to define plant communities. Hierarchical or non-hierarchical and the two-

way species indicator analysis (TWINSPAN) are the widely used quantitative 

classification techniques. TWINSPAN operates on species presence-absence data, and 

its use is more limited because it performs poorly with more than one environmental 

gradient (McCune and Grace 2002). Cluster analyses group species using a distance 

matrix. The distance measures used in linking similar groups are categorized as 

Euclidean metrics (absolute and relative distance) or proportion coefficients (e.g., 

Sørrensen and Jacard) (McCune and Grace 2002). 

Ordination simply means arranging items along a single or multiple axis, and 

is often used to seek and describe patterns (McCune and Grace 2002). Ordination 

involves the arrangement of vegetation samples in relation to each other in terms of 

their similarity of species composition (species ordination) and/or their associated 

environmental controls (sample units ordination). In gradient analysis, variations in 
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species composition are related to variation in associated environmental factors, which 

can usually be represented by environmental gradients. Correlation analyses between 

environmental factors and ordination axes scores can be used to identify and describe 

environmental factors that influence species distribution patterns (McCune and Grace 

2002). 

Ordination can be direct or indirect. With direct gradient analysis, sample units 

(e.g., plots) are ordinated based on measured environmental factors in those sample 

units (McCune and Grace 2002). Gradient analyses can be univariate where sample 

units are ordinate along a single environmental factor or multivariate. Species 

distribution along an elevational gradient, for instance, is a univariate gradient. Indirect 

ordination ordinates sample units considering the variation within the vegetation 

independently of the environmental data. Indirect gradient analyses are more widely 

used than direct gradient analyses (Kent and Coker 1992). 

Indirect ordination is performed in ordination methods like principal 

component analysis, Bray-Curtis (polar) ordination, reciprocal averaging, 

correspondence analysis, and detrended correspondence analyses, while non-metric 

multi-dimensional scaling (NMS) and canonical correspondence analysis are rarely used 

(Kent and Coker 1992; McCune and Grace 2002). Each of the above ordination 

techniques has its pros and cons, and the choice of ordination method also depends on 

the type of the data, the sampling effort, and the objectives of a study (Southwood and 

Handerson 2000). Principal component analyses, for instance, require linear 

relationships between variables and normal distribution of variables (McCune and 

Grace 2002), which rarely occurs in vegetation data. McCune and Grace (2002) 

recommend the use of NMS in community ecology because it can be used with non-

normal data and avoids the assumption of linear relationships between variables. 

 

2.2.2 Measures of species diversity 

Whittaker (1972) identifies alpha, beta, and gamma types of species diversity. Alpha 

diversity (species richness) is the number of species per standard size or community. 

Beta diversity is the difference in species diversity between areas or communities. It is 

sometimes called habitat diversity because it represents differences in species 

composition between different areas or environments (Whittaker 1972; Kent and Coker 
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1992). Since communities and habitats are often difficult to delineate, beta-diversity is 

measured among study plots (Mark 2001). The total or gamma diversity of a landscape, 

or geographic area, is a product of the alpha diversity of its communities and the degree 

of beta differentiation among them (Whittaker 1972). The difference between alpha and 

gamma diversity is a matter of scale, which is often subjectively defined (Peet 1974). 

A large number of diversity indices have been used to measure species 

diversity. Magurran (2004) provided an in-depth review of concepts and measurements 

of diversity. Species richness, meaning a count of the number of plant species in a 

quadrat, area or community, is often equated with diversity. However, as Magurran 

states, most methods used in measuring diversity actually consist of two components. 

The first is species richness and the second is the relative abundance (evenness or 

unevenness) of species within a sample or community. 

Whittaker (1972) considers species richness as a strong measure of species 

diversity. However, using species richness per se as a measure of diversity is criticized, 

because species richness is just one component of species diversity (Hurlbert 1971; 

Sanjit and Bhatt 2005). The Shannon index and Simpson’s index of diversity, which 

combine species richness with relative abundance, are widely used in species diversity 

studies (Kent and Coker 1992). The Shannon index expresses the relative evenness or 

equitability of species, while Simpson’s index (Simpson 1949) gives weight to 

dominant species (Whittaker 1972). The diversity indices are biased either on species 

richness or species evenness, which makes it difficult to obtain one robust index of 

diversify measurement (Magurran 2004). The Shannon index is insensitive to rare 

species (Sanjit and Bhatt 2005). Hill (1973) introduces ratios of the Shannon and 

Simpson’s indices. Though the Hill ratios are not widely used in ecological studies, they 

describe community structures well (Peet 1974). They are relatively unaffected by 

species richness and tend to be independent of sample size (Peet 1974), which makes 

them desirable for comparison of diversity among groups. But they are sometimes 

difficult to interpret due to the convergence of the Hill’s numbers to 1 with decreasing 

diversity values (Peet 1974). 
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2.3 Vegetation types of Ethiopia 

Ethiopia has a complex relief and a variety of climates, and thus diverse habitats with 

rich flora and fauna. The vegetation of Ethiopia is diverse and ranges from afro-alpine 

vegetation to desert scrub. The total flora of Ethiopia consists of 6500 - 7000 species of 

which 12 % are considered endemic (Gebre Egziabher 1991; Teketay 2004). However, 

the flora of Ethiopia has not been exhaustively studied (Friis 1992). The recent 

discovery of Acacia fumosa (Thulin 2007), and Asplenium balense (Chaerle and Viane 

2007) as new plant species from Ethiopia is evidence of this. A large proportion of the 

Eastern Afromontane and Horn of Africa biodiversity hotspots lie in Ethiopia, and the 

country is one of the biodiversity centers of the world (Conservation International 

2007). The Ethiopian vegetation is highly influenced by climate, which is associated 

with elevation (Dugdale 1964). South-western Ethiopia receives more precipitation than 

other parts of the country due to the humid air coming from the Congo basin (Dugdale 

1964). This westerly wind, however, cannot penetrate further than 30o E and rarely 

influences the Horn regions because the Ethiopian highlands act as barriers. The flora of 

southern Ethiopia is more similar to that of Kenya and Uganda than the flora of northern 

Ethiopia (Dugdale 1964). The vegetation on the Afromontane belt (900-3200 m) of 

Ethiopia has been under tremendous pressure from human activities and over grazing, 

which has led to the replacement of the evergreen forests by grasslands (Gebre 

Egziabher 1988). 

The vegetation maps of Ethiopia were reviewed by Friis and Demissew 

(2001). The most frequently cited studies on the vegetation of Ethiopia include that of 

Pichi-Sermolli (1957), Breitenbach (1963), White (1983), and Friis (1992). 

The extent and delineation of the vegetation maps of Pichi-Sermolli (1957) 

and  Breitenbach (1963) are very similar, but differ in the descriptions and terminology 

of the mapping units (Friis and Demissew 2001). According to Pichi-Sermolli (1957), 

the vegetation of northern Ethiopia can be broadly classified as montane evergreen 

thicket and savanna. The common species in this vegetation type include Juniperus 

procera, Olea europaea subsp. cuspidata, Acokanthera schimperi, Carissa edulis, and 

species of Euclea, Rhamnus, Rhus and Maythenus (Friis and Demissew 2001). 

Breitenbach (1963) mapped the vegetation of Ethiopia and Eritrea into seven 

basic categories using a physiognomic approach. The seven categories are Lowland 
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steeps, Lowland savannahs, Lowland woodlands, Highland forests, Mountain 

woodlands, Mountain savannahs, and Mountain stepps. The sub-categories are based on 

local rainfall (arid, semi-arid, semi-humid, and humid) and stages of succession, which 

range from pioneer to climax types (Friis and Demissew 2001). According to 

Breitenbach’s vegetation map, the three dominating vegetation types in Ethiopia in a 

decreasing order are Lowland steppes, Lowland woodlands, and Mountain savannahs 

(Friis and Demissew 2001). The vegetation of the study site is mainly Highland forests 

and Mountain savannahs. Highland forests are found between 1600 and 2600 m.a.s.l. 

White (1983) classified the vegetation of Africa into 81 vegetation groups 

using physiognomy and floristic composition. Accordingly, the dominant vegetation 

types in Ethiopia are Forest transitions and mosaics, Woodland, Woodland mosaics and 

transitions, Bushland and thicket, Semi-desert vegetation, Grassland, Edaphic grassland 

mosaics, Altimontane vegetation, Azonal vegetation, and Desert. The vegetation on the 

lower escarpment is classified as bushland and thicket and the vegetation on the Tigrean 

plateau and the upper scarp as forest transition and mosaics. 

Friis (1992) classifies the forests of the Horn of Africa into nine vegetation 

types. He followed the classification and terminologies of White (1983) and added the 

lowland semi-deciduous forest (dry peripheral semi-deciduous Guineo-Congolian 

forest) and the altitudinally transitional forest (transitional rain forest), which were 

identified after White’s vegetation map had been published. According to the 

classification of the forests and forest trees of northeast tropical Africa (Friis 1992), 

Desa’a and Hugumburda forests are broadly categorized as dry single-dominant 

Afromontane forests, which are characterized by dry climate (annual precipitation less 

less than 1000 mm) with Juniperus procera and Olea europaea subsp. cuspidata as 

dominant species. This dry single-dominant Afromontane forest of the escarpment and 

transition between single-dominant Afromontane forest and East African evergreen and 

semi-evergreen bushland that occurs between 1500 and 2400 characterizes the 

escarpments in northern Ethiopia. 

The vegetation map of Ethiopia was later simplified into eight major 

vegetation types by Demissew (1996) as Afroalpine and sub-Afroalpine zone, dry 

evergreen mountain forest and grassland, moist evergreen mountain forest, evergreen 

scrub, Combretum-Terminalia and savanna, Acacia-Comiphora woodland, lowland 
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(semi-) evergreen forest, desert and semi-desert scrubland, and coastal vegetation 

(Demissew et al. 1996). According to Demissew (1996), dry evergreen mountain forest 

and grassland and evergreen scrub characterize the forest remnants in northern Ethiopia. 

Based on the recent classifications of the ecosystems of Ethiopia (IBC 2005), 

Desa’a and the Hugumburda forests belong to the dry evergreen montane forest and 

grassland complex. According to FAO (2001), the eastern and western mountain system 

and tropical shrubland zones cover large parts of Ethiopia (Figure 2.2a). These 

ecological zones support large parts of the country’s forests (Figure 2.2b). 

 

 

Figure 2.2 Ecological zones (a) (Map source: FAO 2001) and the fragmented 
natural high forests (b) (Map source: Ministry of Agriculture 2003) in 
Ethiopia. 

 

The vegetation classification of White and Friis are criticized for lacking 

clarity particularly in distinguishing woodlands from forests (Erik 1994). A large part of 

the forest remnants in northern Ethiopia, particularly Desa’a forest, can be categorized 

as woodland characterized by an open canopy and single-story vegetation structure. 

Nevertheless, the vegetation classification by Friis (1992), which is widely used in 

Ethiopia, is also used in this study. 
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3 STUDY SITES AND GENERAL METHODS 

 

3.1  Study area 

3.1.1 Socio-economic context of Ethiopia 

Ethiopia is an ancient agrarian country located between 3o and 15o N and 33o and 48o E 

covering an area of 1.13 million km2. In 2007, the population of Ethiopia was 74.9 

million and the annual growth rate 2.6 % (Federal Democratic Republic of Ethiopia 

Population Census Commission 2008). This makes Ethiopia the second most populous 

nation in Sub-Saharan Africa. The same report indicates that 84 % of the population 

lives in rural areas and is engaged in subsistence agriculture. The economy of Ethiopia 

is based on traditional subsistence agriculture, which suffers from frequent droughts. 

Food security and natural resource degradation are among the major challenges that 

Ethiopia has faced. A chronology of the droughts and famines in Ethiopia from 253 BC 

to 1992 indicates that Ethiopia has faced more than 17 droughts or famines in the 20th 

century, which were caused by either shortage or poor distribution of rainfall (Webb et 

al. 1992). Despite its poor performance, the agriculture sector still contributes 46.6 % of 

the GDP (NBE 2007) and 76.6 % of the exports, mostly coffee (EEA 2004).  

 

3.1.2 Location  

The study was conducted in Desa’a and Hugumburda Afromontane forest remnants, 

which are among the 58 national forest priority areas in Ethiopia. Desa’a forest is 

located about 80 km northeast of Mekelle, the capital of the Tigray regional state 

(Figure 3.1) covering an area of about 118,600 ha (BoANR and IDC 1997). 

Hugumburda forest is near Korem town about 140 km south of Mekelle. Two sites were 

located near the Esot (13o55'N, 39o49' E) and Agoro (13o39' N, 39o47' E) villages in 

Desa’a forest, and one site in Hugumburda forest (12o38' N, 39o32' E). A large part of 

Desa’a forest lies in the Tigray region and a small area in the Afar region, while 

Hugumburda forest is entirely in the Tigray region. The forests are mainly located along 

the western escarpment of the Great Rift Valley facing the Afar depression. The 

climate, soils and vegetation are diverse.  
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Figure 3.1 Location of the study sites. 
 

3.1.3 Geology and soils 

The study area has a diverse geological formation, which plays a major role in soil 

variability. A large part of Desa’a forest is formed on Enticho sandstone and Crystalline 

Basement (Asrat 2002). The dominant soil types are Leptosols, Cambisols, Vertisols, 

Regosols and Arenosols (BoANR and IDC 1997).  
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Hugumburda forest is formed on tertiary basalt, alkali-alluvial basalt and tuff (Worku 

1998). The dominant soils are Leptosols and Regosols (Worku 1998). Large parts of the 

undulating terrains in northern Ethiopia are characterized by shallow soils and frequent 

rock outcrops, while relatively thick soils are found along valley bottoms. 

 

3.1.4 Topography 

Topographically, the study sites are characterized by plane to steep slopes frequently 

dissected by stream incisions. The study area lies in an elevational range between 1000 

and 2760 m above sea level. About 45 % of the area has a slope class greater than 30 % 

(Figure 3.2). 

 

 

Figure 3.2 Slope classes distribution in Desa’a and Hugumburda forests, northern 
Ethiopia. 

 

3.1.5 Climate 

The study area is located in an semi arid agro-ecological zone where the climate is 

influenced by topography and exposure to rain-bearing winds (Nyssen et al. 2005). The 

wet rainfall season is between June and September, while the remaining months are 

more or less dry. 

The rainfall and temperature data for Desa’a forest are based on a 9-year 

record (1999-2007) from Atsbi town. The plateau section of Desa’a forest receives a 

mean annual rainfall of 532 mm (Abegaz 2005). The climate of the study area is 
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influenced by elevation, where the decline in rainfall and increase in temperature from 

the upland plateau to the eastern escarp slopes are sharp (Degefu 1987). 

The nearest meteorological station to Hugumburda forest is in Korem town. 

Based on 25-year climate data (1979-2005) recorded at Korem meteorological station, 

the study area receives a mean annual rainfall of 981 mm and the average annual 

temperature is 16 oC. The mean minimum (6 oC) and mean maximum (22 oC) 

temperatures were recorded in November and June, respectively (Figure 3.3a). The 

mean minimum and mean maximum rainfall were 492 and 1358 mm, in 1984 and 1998, 

respectively (Figure 3.3b). 
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Figure 3.3 (a) Mean monthly rainfall and mean monthly temperature, and (b) 
annual rainfall recorded at Atsbi (Desa’a forest) and at Korem 
meteorological station (Hugumburda forest), northern Ethiopia. 

 
3.1.6 Vegetation 

Based on the classification of the forests and forest trees of northeast tropical Africa 

Friis (Friis 1992), Desa’a and Hugumburda forests are broadly categorized as dry 

single-dominant Afromontane forests, which are characterized by dry climate (annual 

precipitation less than 1000 mm) and with Juniperus procera in the canopy and Olea 

europaea subsp. cuspidata as dominant tree species. The study area provides diverse 

habitats for plants. The mesic Tigray highlands support species like Erica arborea. The 
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dry Afar lowlands with the Acacia woodlands are located at a short distance (ca. 5 km) 

from the highlands.  The diversity of the two forests is largely dominated by herb and 

shrub species (ca. 70 %), while tree species contribute 30 % of the total vascular plant 

species (Figure 3.4). 

 

 

Figure 3.4 Life forms in Desa’a and Hugumburda forests, northern Ethiopia. 
 

Hugumburda forest is the only more or less intact large forest with many 

locally rare tree species from the pre-disturbance period. Afrocarpus falcatus and other 

native tree species, which are rare in other parts of northern Ethiopia, are found in this 

forest. It is more protected, and more enrichment plantation activities have been carried 

out than in Desa’a forest. 

A large part of Desa’a forest has been converted into agricultural land and 

grazing land. The scattered trees and stumps on the farm and grazing land are evidence 

of the shrinking of this forest (Figure 3.5a). According to Gebreegziabher (1999), fire is 

another major threat to the forest, where 1000 and 350 ha forest land was destroyed by 

fire in 1970 and 1998, respectively. Although more attention has been given to the 

anthropogenic cause of forest degradation, forest disturbance due to natural mass tree 

dieback is commonly observed in Desa’a forest (Figure 3.5d).  
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Figure 3.5 Anthropogenic and natural disturbances at Desa’a forest: (a) 
deforestation and forest conversion to agriculture around Agoro village, 
(b) confiscated fuelwood at the check point at Kalesh Emni village, (c) 
settlement at Agoro village, and (d), standing dead trees (snags) near 
Esot village, northern Ethiopia. 

 

3.2 General methods 

3.2.1 Site selection  

This study focuses on the natural forest remnants in the Desa’a and Hugumburda 

forests, northern Ethiopia. Site selection was carried out using visual interpretation of 

the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

image and data from a reconnaissance survey conducted in 2006. In the larger Desa’a 

forest, two sites (Agoro and Esot) were selected. The results of this study are largely 

based on field data collected between June 2007 and May 2008. 
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3.2.2 Sampling design 

Random selected plots are used to examine the role of exclosure on the seedling bank 

(Chapter 7), while systematic sampling was used for determining plant species diversity 

and natural regeneration, plant species diversity patterns along an elevational gradient 

on the western escarpment of the Great Rift Valley, and the effects of mass tree dieback 

on stand structure and diversity (Chapter 4, 5, and 6). Since the study sites are mainly 

on hilly terrain, transects were established along elevation and plots were established at 

100 m elevational intervals along a W-E direction. To adequately cover the two forests, 

transects were established at 1-km intervals. A base map showing transects and plots 

were produced using 1:50,000 scale topographic maps in a GIS environment, and a GPS 

device was used to establish the plots in the field. 

The vegetation data were collected using 10 m × 10 m, 10 m × 20 m, 20 m × 

20 m, 20 m × 40 m, 40 m × 40 m, and 50 m × 50 m nested plots (Figure 3.6), which 

were used to determine species-area relationships (Kent and Coker 1992). Plot areas 

were corrected when these were on slopes steeper than 10 %. All stems with a diameter 

at breast height (DBH) > 5 cm and all diameter classes of the target species (i.e., 

Juniperus procera, Olea europaea subsp. cuspidata, and Afrocarpus falcatus) were 

measured in all nested plots, while stems with DBH < 5 cm were measured in 20 m × 20 

m nested plots. In all cases, data on the seedling were collected using 10 m × 10 m 

nested plots. A total of 286 plots (106 from Agoro; 115 from Esot, and 65 from 

Hugumburda) were studied. 

 

 

Figure 3.6  Layout of a nested plot used in vegetation data collection.  
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3.2.3 Vegetation data 

Abundance, frequency, stand density, and basal area per hectare were determined for all 

trees with a height > 1.5 m and diameter > 2 cm at breast height (DBH), while those 

smaller than these minimum values were counted and included in the abundance and 

frequency data. Species were identified in the field and at the National Herbarium, 

Addis Ababa University; nomenclature follows the Flora of Ethiopia and Eritrea 

(Hedberg and Edwards 1989; Edwards et al. 1995; Hedberg and Edwards 1995; 

Edwards et al. 1997; Edwards et al. 2000; Hedberg et al. 2003). 

 

3.2.4 Environmental data 

The environmental variables used in this study were elevation (taken from a topographic 

map), slope (measured with clinometer), aspect (measured using compass), soil depth 

(measured using pits), distance to the nearest stream, and extent of disturbance 

(subjectively rated as 0 = no disturbance, 1 = slightly disturbed, 2 = moderately 

disturbed, and 3 = highly disturbed) based on grazing intensity, cut stems, and human 

trails). Distance to the nearest stream was measured by overlaying the plots on the 

drainage map in ILWIS 3.3 GIS software.  
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4 PLANT SPECIES DIVERSITY AND NATURAL REGENERATION IN 

AN ISOLATED AFROMONTANE FOREST, NORTHERN ETHIOPIA 

 

4.1 Introduction  

Understanding species distribution patterns along environmental variables is a central 

component of plant ecology  (Rosenzweig 1995). Topographical, climatic, and edaphic 

factors are widely considered as determinants of species distribution and community 

structure (Whittaker et al. 2003; Currie et al. 2004). The effect of environmental 

variables on species diversity depends on the spatial scale (Whittaker et al. 2003; 

Laurance 2004; Nogues-Bravo et al. 2008). Habitat disturbance, for instance, affects 

species diversity at the local scale (species diversity within a plant community), while 

soil, topography, elevation, and drainage are considered as landscape-level determinants 

of species diversity (Whittaker et al. 2003). Forest disturbance also influences species 

diversity through alteration and fragmentation of forests, which is a serious concern in 

the management of tropical forests (Laurance and Bierregaard 1997). Fragmentation 

affects species diversity by reducing areas, which leads to a small number of individuals 

and species (Rosenzweig 1995; Whittaker et al. 2003). 

The Ethiopian highlands constitute large parts of the Afromontane regions of 

Africa, which stretch from Cameroon to eastern Africa (White 1983), where 

biodiversity hotspots exist (Conservation International 2007). However, as in many 

tropical forests, forest disturbance (natural and anthropogenic) has changed the structure 

and floristic composition of forests in northern Ethiopia for centuries (Darbyshire et al. 

2003). Currently, only a few natural forest remnants are left as islands in the landscapes 

dominated by agriculture (Aerts et al. 2006c). 

Hugumburda forest is unique in the sense that it is (1) the only well-protected 

large Afromontane forest remnant in northern Ethiopia, and (2) an isolated forest not 

only because the surrounding area has been cleared, but mainly because it is located in a 

secluded valley next to the parallel rift of Lake Hashenge.  Thus, it is an isolated island 

of forest in a landscape dominated by crop and grazing land. In such isolated areas, 

limited cross-pollination, inbreeding, and genetic drift (Ellstrand and Elam 1993) are 

likely to negatively impact plant populations (Reed and Frankham 2003; Hirayama et al. 

2007). This can to be observed in the population structure of the trees, i.e., a low 
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number of seedlings as well as a smaller number of saplings than of mature individuals. 

In this case, the forest will face extinction, i.e., some tree species are still present, but 

will become locally extinct because of poor or no regeneration. 

The present study investigates (i) plant species diversity and community 

structure in relation to environmental variables, and (ii) composition of the seedling 

bank in relation to the standing vegetation in Hugumburda forest, northern Ethiopia. 

 

4.2 Material and methods  

4.2.1 Study site 

The study was conducted in Hugumburda forest, which is an isolated natural forest 

remnant in Tigray and is listed as a national forest priority area in Ethiopia. The study 

site is located between 12°36' and 12°40' N and 39°31' and 39°34' E (Figure 4.1) and 

elevation ranges between 1860 and 2700 m a.s.l. Topographically, the study area is 

largely characterized by undulating to steep terrain, which is frequently dissected by 

stream incisions. The area is formed on tertiary basalt, alkali-alluvial basalt, and tuff 

(Worku 1998). The dominant soils are Leptosols and Regosols (Worku 1998).  The soils 

are shallow on the slopes, while the valley bottoms have thick alluvial deposits. The 

mean annual rainfall is 981 mm and the mean annual temperature is 16 °C. 
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Figure 4.1  Location of the study site. 

 

4.2.2 Data collection 

Data on the standing vegetation were collected in 65 (50 m × 50 m) nested plots (Figure 

3.6) established at 100-m elevation intervals along W-E parallel transects, which were 

spaced 1 km apart. The seedling bank composition and density were determined in 10 m 

× 10 m plots. All woody plants were identified and counted, and diameter at breast 

height (DBH) was measured for plants with height > 1.5 m and DBH > 2 cm. Species 

were identified in the field and at the National Herbarium, Addis Ababa University. 
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The environmental variables used in this study are elevation (taken from a topographic 

map), slope (measured with a clinometer), soil depth (measured in pits), distance to the 

nearest stream (measured by overlaying the plots on the drainage map in a GIS), and 

extent of disturbance was subjectively ranked based on grazing intensity, cut stems, and 

human trails (0 = no disturbance, 1 = slightly disturbed, 2 = moderately disturbed, and 3 

= highly disturbed).  

 

4.2.3 Data analysis 

Forest structure and diversity  

The importance of a species is determined by calculating the importance value index 

(IVI), which is obtained by summing up relative density, relative dominance and 

relative frequency of a species (Mueller-Dombois and Ellenberg 1974). Density of a 

species is the number of individuals per hectare, frequency is the percentage of plots in 

which a species occurs, and dominance of a species is the sum of the basal area of 

individual stems. 

Hill’s (1973) diversity numbers were derived from the Shannon diversity and 

Simpson’s index of diversity indices which are unaffected by species richness and tend 

to be independent of sample size. N0 (= γ) to determine species richness in plant 

communities, N1 (=exp (H')), and N2 (=D-1) are used to calculate species richness and 

diversity, and E1 (=N1/N0) to calculate species evenness for every plot: γ is total species 

richness; H' is Shannon diversity index; D is Simpson’s index of diversity. Similarity 

between seedling and standing vegetation species composition was determined using 

the Sørensen coefficient of similarity (Krebs 1989). 

Topographic information was derived from a digital elevation model, which 

was generated from a topographic map. Topographic wetness index (TWI) (Eq. 4.1), 

which indicates the spatial distribution of soil moisture and ground water flow, is 

generated from the digital elevation model of the study area by computing the upslope 

contributing area of a grid in relation to the slope gradient (Beven and Kirkby 1979) in a 

GIS environment. The digital elevation model is developed using the topographic map 

(1:50,000 scale). 
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 TWI =݈݊ ቀ ௔

୲ୟ୬ ሺఉሻ
ቁ     (4.1) 

 
where TWI is topographc wetness index, a is upslope contributing area of a grid (flow 

accumulation), and β is slope gradient. 
 

The species-area curve was determined using the number of species recorded 

in the nested plots. The vegetation of moist and dry forests was delineated by overlaying 

the plots that belong to either of the plant communities on the map of the study area in 

GIS. The location map, distance to the nearest stream, topographical wetness index, and 

a map showing the plant communities were developed using ILWIS 3.3 GIS software 

(ITC 2001).  

 

Cluster analysis 

A multivariate hierarchical clustering using the Euclidean distance and Ward’s group 

linkage method, and indicator species analysis were performed to identify plant 

communities (McCune and Grace 2002). The dendrogram was scaled using Wishart’s 

objective function that measures the percent information remaining at each level of 

clustering and pruned at the minimum average P-value of the indicator species (McCune 

and Grace 2002). The indicator value of a species was calculated using Dufrene and 

Legendre’s (1997) method, which considers the abundance of a species in a group and 

its distribution among plots within a group. The statistical significance of the indicator 

values of a species was tested with the Monte Carlo permutation test. The difference in 

the floristic compositions among the plant communities was tested with the 

nonparametric Multi-Response Permutation Procedure (MRPP; Biondini et al. 1985). 

The P-value in MRPP, which is associated with the test statistics (T), evaluates if the 

observed differences among groups are due to chance and the chance-corrected within-

group agreement (A) measures within group homogeneity. When all items within 

groups are identical, A = 1. when A = 0, the heterogeneity within groups equals the 

expectation by chance, while A < 0 when there is less agreement within groups than 

expected by chance (McCune and Grace 2002).  
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Ordination  

Nonmetric multidimensional scaling (NMS) ordination was used to investigate the 

environmental factors that influence the structure of the plant communities. NMS is the 

most effective ordination method for ecological community data (McCune and Grace 

2002) and avoids the assumption of linear relationships among variables (Clarke 1993). 

NMS was run using the Sørensen distance measure, 6 starting dimensions, 50 iterations 

and an instability criterion of 0.00001 (McCune and Mefford 1999). Spearman rank 

correlation was used to determine the bivariate relationships between explanatory 

variables and ordination axes scores.  

Clustering, indicator species analysis, Monte Carlo test, MRPP, and NMS 

analyses were conducted in PC-ORD 5.0 software (McCune and Grace 2002). 

 

Statistical analyses 

Differences in stand structure and environmental variables among plant communities 

were tested using MANOVA, and the post hoc Tukey’s test was used for pair-wise 

multiple comparisons. Nonparametric Kruskal–Wallis ANOVA and pair-wise 

comparison (Siegel and Castellan 1988) were used to test differences between 

communities in diversity measures. All tests of statistical significance were decided at α 

= 0.05 level. The statistical analyses was conducted in SPSS 13.0 for Windows (SPSS 

Inc. 2004).  

 

4.3 Results  

4.3.1 Floristic composition and diversity  

A total of 79 species belonging to 51 families was recorded in the 65 plots (Table 4.1). 

The forest has an overall stem density of 1218 ± 74 stems ha-1 (mean ± SE), a basal area 

of 9.23 ± 1.08 m2 ha-1, species richness of 22 ± 1 species per plot (0.25 ha), evenness of 

0.75 ± 0.01, Shannon diversity of 2.31 ± 0.05, and Simpson index of 0.83 ± 0.01. The 

three most abundant families were Fabaceae (5 species), Asteraceae (4), and 

Anacardiaceae (4). Regarding plant life forms, the forest is composed of 56 % shrub,  

28 % tree, 12 % herb, and 4 % liana species. Cupressus lusitanica, Eucalyptus 

camaldulensis and Acacia saligna are exotic species, while the remaining species are 

native. Juniperus procera, Olea europaea subsp. cuspidata and Cadia purpurea are the 
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three dominant species that contributed 40 % of the total species abundance (Table 4.1). 

The three most frequent species were Carissa edulis, Olea europaea subsp. cuspidata, 

and Juniperus procera, which occurred in 95, 93 and 89 % of the plots, respectively. Of 

all species 21 % were rare species, and were recorded only in three plots. 

 

Table 4.1 Species identified in 65 plots (16.25 ha) in Hugumburda forest, northern 
Ethiopia 

No. Family Species Life 
forma

Density 
(stems ha-1)

Basal area 
(m2 ha-1) 

Frequency 
(%) 

IVI

1 Cupressaceae Juniperus procera 
Hochst. ex Endl. 

t 190.3 4.47 89.39 67.9

2 Oleaceae Olea europaea L. subsp. 
cuspidata (Wall ex G. 
Don.) Cif. 

t 156.4 1.5 93.94 33.3

3 Fabaceae Cadia purpurea Ait. s 147.1 0.44 69.7 19.8
4 Apocynaceae Carissa edulis Vahl s 103.0 0.34 95.45 16.4
5 Celastraceae Maytenus senegalensis 

(Lam.) Exell 
st 95.3 0.19 90.91 13.9

6 Anacardiaceae Rhus natalensis Bernh. ex 
Krauss 

t 93.3 0.11 86.36 12.8

7 Fabaceae Acacia abyssinica Hochst. 
ex Benth. 

t 24.3 0.24 74.24 7.97

8 Pittosporaceae Pittosporum viridiflorum 
Sims 

t 18.3 0.28 66.67 7.55

9 Flacourtiaceae Dovyalis verucosa 
(Hochst.)Warb 

st 36.2 0.02 81.82 6.9

10 Myrsinaceae Myrsine africana L. s 36.3 0.01 66.67 6.11
11 Anacardiaceae Rhus glutinosa A. Rich. t 16.9 0.08 77.27 5.73
12 Sapindaceae  Dodonaea viscosa Jacq. t 27.0 0.04 68.18 5.71
13 Lamiaceae Premna resinosa Schauer s 13.2 0.23 40.91 5.39
14 Rhizophoraceae Cassipourea malosana  

Alston 
t 16.1 0.15 48.48 5.15

15 Cupressaceae Cupressus lusitanica Mill. t 9.9 0.28 13.64 4.47
16 Fabaceae Pterolobium stellatum 

(Forssk.) Brenan 
c 17.5 0.01 59.09 4.27

17 Santalaceae Osyris quadripartita 
Salzm ex Decne. 

s 14.1 0.02 62.12 4.24

18 Rubiaceae  Psydrax schimperiana (A. 
Rich.) Brid.  

st 10.3 0.06 57.58 4.16

19 Sterculiaceae Dombeya torrida (J.F. 
Gmel.) Bamps 

t 8.9 0.01 60.61 3.57

20 Ulmaceae Celtis africana Burm. f t 8.7 0.12 31.82 3.52
21 Rutaceae Teclea simplicifolia 

I.Verd. 
t 12.9 0.01 51.52 3.49

22 Podocarpaceae Afrocarpus falcatus 
(Thunb.) C.N.Page

t 13.6 0.14 18.18 3.43

23 Fabaceae Calpurnia aurea Benth. st 11.5 0.02 46.97 3.3



Plant species diversity and natural regeneration in an isolated Afromontane forest, 
northern Ethiopia 

 

35 

 

Table 4.1 continued 

No. Family Species Life 
forma

Density 
(stems ha-1)

Basal area 
(m2 ha-1) 

Frequency 
(%) 

IVI

        
24 Asparagaceae Asparagus racemosus 

Willd. 
hs 9.5 0.01 51.52 3.2

25 Verbenaceae Clerodendrum myricoides 
R.Br. 

s 10.9 0 46.97 3.09

26 Lamiaceae Becium grandiflorum 
(Lam.) Pic.Serm. 

s 16.5 0 34.85 2.96

27 Ebenaceae Euclea racemosa Murray 
subsp. schimperi (A. DC.) 
F. White  

s 8.1 0.01 46.97 2.94

28 Solanaceae Solanum schimperianum 
Hochst. 

h 15.3 0 36.36 2.91

29 Rubiaceae Canthium setiflorum 
Hiern 

s 9.2 0 43.94 2.78

30 Melianthaceae Bersama abyssinica 
Fresen. 

t 8.6 0.07 21.21 2.45

31 Apocynaceae Acokanthera schimperi 
(A. DC.) Benth. & 
Hook.f. ex Schweinf.

st 5.3 0.05 25.76 2.2

32 Rhamnaceae Sageretia thea (Osbeck) 
M.C. Johnst.  

s 6.3 0.01 31.82 2.09

33 Euphorbiaceae Clutia abyssinica Jaub. & 
Spach. 

s 5.6 0 31.82 1.92

34 Moraceae Ficus palmata Forssk. st 6.0 0 28.79 1.81
35 Cactaceae Opuntia ficus-indica (L.) 

Mill. 
st 6.9 0.01 21.21 1.65

36 Sapindaceae Allophylus abyssinicus 
Radlk. 

t 1.4 0.07 16.67 1.64

37 Oliniaceae Olinia rochetiana A. Juss. st 3.7 0.01 25.76 1.61
38 Crassulaceae Kalanchoe sp. s 9.3 0.02 13.64 1.58
39 Tiliaceae  Grewia ferruginea 

Hochst.  
st 5.8 0.03 18.18 1.58

40 Anacardiaceae Rhus sp.  t 1.9 0.03 16.67 1.23
41 Polygonaceae  Rumex nervosus Vahl h 2.2 0 19.7 1.08
42 Euphorbiaceae Clutia lanceolata Jaub. 

& Spach 

. 

s 3.1 0 16.67 1.01

43 Ranunculaceae Clematis sinensis Lour. sc 1.8 0 18.18 1
44 Myrtaceae  Eucalyptus camaldulensis 

Dehnh. 
t 0.3 0.07 1.52 0.85

45 Moraceae Ficus thonningii Blume st 0.3 0.04 7.58 0.81
46 Aloaceae Aloe camperi Schweinf. h 1.7 0 13.64 0.76
47 Flacourtiaceae Dovyalis abyssinica (A. 

Rich.) Warb. 
st 1.4 0 12.12 0.68

48 Verbenaceae  Lantana viburnoides 
(Forssk.) Vahl 

s 1.2 0 12.12 0.66
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Table 4.1 continued 

No. Family Species Life 
forma

Density 
(stems ha-1)

Basal area 
(m2 ha-1) 

Frequency 
(%) 

IVI

        
49 Vitaceae  Cissus quadrangularis L. h 1.2 0.01 7.58 0.55
50 Rosaceae Rosa abyssinica R.Br s 0.7 0 10.61 0.55
51 Solanaceae Solanum incanum L. h 0.9 0 9.09 0.49
52 Berberidaceae Berberis holstii Engl. st 0.6 0 9.09 0.46
53 Lamiaceae Leucas abyssinica Briq. h 2.5 0 3.03 0.34
54 Malvaceae Pavonia urens Cav. hs 0.7 0 6.06 0.34
55 Sapotaceae  Spiniluma oxyacantha 

(Baill.) Aubrev. 
t 0.6 0 6.06 0.33

56 Oleaceae Olea capensis L. subsp.  
macrocarpa  (C.H. 
Wright) I. Verd. 

t 0.4 0 4.55 0.28

57 Ericaceae  Erica arborea L.  st 0.5 0 4.55 0.26
58 Oleaceae Jasminum abyssinicum 

R.Br.  
sc 0.4 0 4.55 0.24

59 Phytolaccaceae Phytolacca dodecandra 
L'Hér. 

S 0.4 0 4.55 0.24

64 Asteraceae Echinops giganteus Hort. 
Ex Dc. 

sh 0.2 0 4.55 0.22

61 Celastraceae Gymnosporia 
senegalensis (Lam.) Loes.

s 0.7 0 3.03 0.2

62 Tiliaceae Grweia sp. st 0.6 0 3.03 0.18
63 Malvaceae Abutilon longicuspe 

Hochst. ex A.Rich.
s 0.3 0 3.03 0.16

64 Fabaceae  Acacia etbaica Schweinf. t 0.6 0 1.52 0.15
65 Clusiaceae Hypericum quartinianum 

A. Rich.  
h 0.1 0 3.03 0.15

66 Anacardiaceae Rhus vulgaris Meikle st 0.1 0 3.03 0.15
67 Fabaceae  Hochst. & Steud. s 0.1 0 3.03 0.15
68 Rosaceae Hagenia abyssinica 

J.F.Gmel. 
t 0.1 0 1.52 0.13

69 Sapindaceae Pappea capensis Eckl. & 
Zeyh. 

t 0.1 0 1.52 0.11

70 Amaranthaceae Alternanthera nodiflora 
R.Br. 

h 0.1 0 1.52 0.1

71 Asteraceae Psiadia punctulata Vatke s 0.2 0 1.52 0.08
72 Leguminosae Acacia saligna (Labill.) 

H. L. Wendl. 
t 0.1 0 1.52 0.08

73 Asteraceae  Laggera tomentosa (Sch. 
Bip. ex A. Rich.) Oliv. & 
Hiern  

s 0.1 0 1.52 0.08

74 Leguminosae Colutea abyssinica Kunth 
& C.D.Bouche 

s 0.1 0 1.52 0.07

75 Euphorbiaceae Euphorbia tirucalli 
Forssk. 

st 0.1 0 1.52 0.07
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Table 4.1 continued 

No. Family Species Life 
forma

Density 
(stems ha-1)

Basal area 
(m2 ha-1) 

Frequency 
(%) 

IVI

        
76 Euphorbiaceae Ricinus communis L. st 0.1 0 1.52 0.07
77 Asteraceae Vernonia amygdalina 

Delile 
st 0.1 0 1.52 0.07

78 Asteraceae Vernonia auriculifera 
Hiern. 

st 0.1 0 1.52 0.07

79 Rhamnaceae  Ziziphus spina-christi 
Willd. 

st 0.1 0 1.52 0.07

Total     1235.9 9.23 2177.27 300
 a indicate plant life forms: climber (c), herb (h), shrub (s), tree (t), herb or shrub (hs), shrub or climber 

(sc), and shrub or tree (st) 
 

4.3.2 Species-area relationship 

A significant relationship was found between species richness and area, which is 

explained by a power function of the form: S = cAz, where S is number of species, A is 

area and c and z are constants (Figure 4.2). The number of species recorded in the 

minimum (100 m2) and maximum (2500 m2) plot area were 8 and 22, respectively. The 

number of species increased steadily with increasing area and did not approach an 

asymptote level within the plot size ranges. 

 

 
 
Figure 4.2  Species-area relationship at Hugumburda forest, northern Ethiopia. 
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4.3.3 Plant communities 

The hierarchical cluster and indicator species analyses identified three plant 

communities: Juniperus procera―Maytenus senegalensis, Pterolobium 

stellatum―Celtis africana, and Cadia purpurea―Opuntia ficus-indica, which were 

represented by 70, 64, and 48 species, respectively (Table 4.2). The MRPP test indicates 

that the three plant communities significantly differ in their species composition (T = -

2.87, P < 0.001), and the similarity among plots in their species composition within a 

community (homogeneity within groups, A) is 0.12. 

 

Table 4.2 Summary statistics for the indicator species of the three plant communities in 
Hugumburda forest, northern Ethiopia 

  Species Indicator Valuea 
(%) 

P 

    C1 C2 C3   
Cluster 1 
(39 plots) 

Juniperus procera―Maytenus senegalensis   
community (C1) 

 Juniperus procera[t] 71 17 5 < 0.001 
 Maytenus senegalensis[st] 65 22 6 < 0.001 
 Dodonaea viscosa[s] 61 7 6 < 0.001 
 Acacia abyssinica[t] 57 5 17 0.002 
 Pittosporum viridiflorum[t] 54 18 2 0.012 
 Osyris quadripartita[st] 52 10 4 0.003 
 Dovyalis verucosa[st] 50 27 6 0.004 
 Olea europaea subsp. cuspidata[t] 50 15 28 0.041 
 Myrsine africana[st] 46 33 0 0.042 
 Clutia abyssinica[s] 33 5 0 0.044 
Cluster 2 
(13 plots) 

Pterolobium stellatum―Celtis africana community 
(C2) 

    
 

 Pterolobium stellatum[sc] 15 61 3 < 0.001 
 Celtis africana[t] 3 60 1 < 0.001 
 Rhus natalensis [st] 19 59 14 0.002 
 Bersama abyssinica[t] 2 52 0 < 0.001 
 Ficus palmate[s] 0 49 1 < 0.001 
 Allophylus abyssinicus[t] 2 39 0 < 0.001 
 Ficus thonningii[t] 0 38 0 < 0.001 
 Afrocarpus falcatus[t] 1 36 0 0.007 
 Rosa abyssinica[s] 1 28 0 0.012 
Cluster 3 
(13 plots) 

Cadia purpurea―Opuntia ficus-indica community 
(C3) 

    

 Cadia purpurea [s] 5 6 84 < 0.001 
 Opuntia ficus-indica [s] 0 7 61 < 0.001 
 Solanum schimperianum[s] 2 3 56 0.002 
 Clerodendrum myricoides[s] 11 5 46 0.009 
 Canthium setiflorum [s] 11 3 40 0.023 
 Euclea racemosa subsp. schimperi[s] 8 11 40 0.027 
a Only indicator species with significant values (P < 0.05) are shown in a decreasing order of their 

indicator values. Indicator values range from 0 (no indication) to 100 % (perfect indication). 
Superscripts indicate species life forms: shrub (s), tree (t), shrub or climber (sc), and shrub or tree (st) 
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The three plant communities significantly differed in their tree species density and basal 

area, but not in their shrub, herb, overall stem densities, and basal area (Table 4.3). The 

Pterolobium stellatum―Celtis africana community is more species diverse than the 

other communities, while the Cadia purpurea―Opuntia ficus-indica community has 

the least species diversity. 

 

Table 4.3 Comparison of vegetation structure and diversity (mean  SE) among plant 
communities in Hugumburda forest, northern Ethiopia 

*   indicates significant differences between groups according to Tukey’s HSD test 
**  indicates significant differences between groups according to nonparametric Kruskal–Wallis multiple 

comparison. 
 

The plant communities significantly differ in all measured environmental 

variables (Table 4.4). 

Attribute J. procera―   

M. senegalensis 

community 

(n = 39) 

P.stellatum―

C. africana 

community 

(n = 13) 

C. purpurea― 

O. ficus-indica 

community 

(n = 13) 

 

MANOVA*    F P

Tree density (stem ha-1) 731 (64)a 519 (102)ab 287 (66)b 7.56 0.001

Shrub density  (stem ha-1) 574 (67) a 430 (41) a 760 (87) a 2.74 0.073

Herb density  (stem ha-1) 28 (4) a 23 (11) a 72 (35) a 2.92 0.061

Overall stem density 

(stem ha-1) 
1333 (102) a 972 (132) a 1119 (137) a 2.09 0.132

Seedling density  

(seedling ha-1) 
11489 (2143) a 17192 (3089) a 2169 (3089) b 6.09 0.004

Basal area (m2 ha-1) 11.1 (1.5) a 7.7 (2.0) a 5.0 (1.6) a 3.1 0.050

     

Kruskal–Wallis ANOVA**    2 P

Hill’s N0 (total species 

richness) 
70 64 45 ─ ─

Species richness (average 

per plot) 
22a 25a 17b 17.45 < 0.001

Hill’s N1 11.12 (0.60) a 14.54(0.93) b 6.81(0.80) c 17.39 < 0.001

Hill’s N2 8.14 (0.60) a 11.26 (0.98) b 4.53 (0.61) c 26.26 < 0.001

Hill’s E1 1.43 (0.03) ab 1.34 (0.54) a 1.54 (0.05) b 25.21 < 0.001
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Table 4.4  Comparison of environmental variables (mean  SE) among the plant 
communities in Hugumburda forest, northern Ethiopia 

Attribute J. procera―M. 
senegalensis 
community 

(n = 39) 

P.stellatum―C
. africana 

community 
(n = 13) 

C. purpurea―O. 
ficus-indica 
community 

(n = 13) 

F P 

Distance to the 
nearest stream (m) 

333 (48)a 54 (44)b 275 (199)ab 5.60    0.006 

Elevation (m a.s.l.) 2387 (22)a 2147 (38)b 2197 (55)b 16.52 < 0.001
Level of 
disturbance 

Moderate Moderate High   

Slope (%) 35 (4)a 18 (4)b 34 (3)ab   3.27  0.045
Soil depth (cm) 73 (4) a 138 (10)b 42 (6)c 43.6 < 0.001
Wetness index 12.04 (0.34) a   15.4 (0.66) b 11.65(0.67) a 12.64 < 0.001 
Letters in superscript indicate significant differences between groups according to Tukey’s HSD test 

 

4.3.4 Ordination 

For the NMS ordination, the greatest reduction in stress with the fewest number of 

dimensions was achieved with a three-dimensional solution (McCune and Mefford 

1999). The proportion of variance (coefficient of determination R2 for the correlation 

between ordination distances and Sørensen distance in the original 40-dimensional 

space) represented by the three axes were 0.475, 0.225, and 0.183, respectively 

(cumulative R2 = 0.88). The biplot of the first two NMS axes indicates the partitioning 

of the three plant communities along the measured environmental gradients (Figure 

4.3). 
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Figure 4.3 Nonmetric multidimensional scaling (NMS) ordination of the 65 plots 
in Hugumburda forest, northern Ethiopia. 

 

Species distribution along the NMS axes responds to all the environmental 

variables. Distance to nearest stream, elevation, and slope are negatively correlated to 

NMS axis 2. Soil depth is positively correlated to NMS axis 2 (Table 4.5). This axis 

partitions the Pterolobium stellatum―Celtis africana community from the other two 

communities.  

 
Table 4.5  Spearman rank correlation (rs) between NMS axes scores and environmental 

variables in Hugumburda forest, northern Ethiopia 

Attribute 
 

NMS axis 1 NMS axis 2 

rs P rs P 

Distance to nearest stream (m) -0.043 0.731 -0.475 < 0.001 

Elevation (m) -0.503 <0.001 -0.567 < 0.001 

Level of disturbance 0.531 <0.001 -0.127 0.313 

Slope (%) 0.096 0.446 -0.472 < 0.001 

Soil depth (m) -0.339 0.006 0.580 < 0.001 

Wetness index -0.063 0.619 0.634 < 0.001 

NMS Axis 1

N
M

S
 A

xi
s 

2

Plant communities

J. procera-M. senegalensis
P. stellatum-C. africana
C. purpurea-O. ficus-indica 



Plant species diversity and natural regeneration in an isolated Afromontane forest, 
northern Ethiopia 

 

42 

 

The Pterolobium stellatum―Celtis africana community dominantly found at the lower 

elevation, which is characterized by a gentle slope, deep soil, and is closer to streams 

with higher soil moisture, while the other communities dominantly occur on gently to 

steep slopes at middle and upper elevations with medium to shallow soil depths (Figure 

4.4). The level of disturbance is significantly correlated to NMS axis 1, which partitions 

the Cadia purpurea―Opuntia ficus-indica community from the other communities. The 

NMS axis 3 is correlated to disturbance only. 
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Figure 4.4 Map showing the digital elevation model, topographical wetness index, 
and vegetation types in Hugumburda forest, northern Ethiopia. 

 
 
4.3.5 Natural regeneration and diameter class distribution 

A total of 39 seedling species belonging to 30 families was recorded. The overall 

seedling density ranges from 100 to 46,400 seedlings per ha (mean ± SE: 9182 ± 1820). 

Like in the standing vegetation, Fabaceae (represented by four species) is the dominant 

family in the seedling bank. Anacardiaceae, Apocynaceae, Lamiaceae, Rhizophoraceae, 
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Rubiaceae and Sapindaceae are each represented by two species and the remaining 23 

families by one species (Table 4.6). The three most abundant species represented in the 

seedling bank are Pterolobium stellatum (27 % of the total individuals), Celtis africana 

(14 %), and Myrsine africana (8 %). The seedling bank is dominated by shrub species 

(53 %), followed by tree (37 %), and herb species (10 %). The similarity between the 

seedling bank and standing vegetation species composition is modest (Sørensen 

coefficient of similarity = 0.59). Only 49 % of the species in the standing vegetation are 

represented in the seedling bank.  

 

Table 4.6 Species identified in the seedling bank in Hugumburda forest, northern 
Ethiopia 

No. Family Species Life 
form* 

Density 
(seedling ha-1) 

Frequency 
(%) 

1 Fabaceae Pterolobium stellatum (Forssk.) 
Brenan 

sc 2391 35 

2 Ulmaceae Celtis africana Burm. f  t 1189 21 
3 Myrsinaceae Myrsine africana L. s 712 26 
4 Celastraceae Maytenus senegalensis (Lam.) Exell sh 706 55 
5 Cupressaceae Juniperus procera Hochst. ex Endl. t 606 32 
6 Rutaceae Teclea simplicifolia I.Verd. t 436 30 
7 Sapindaceae Allophylus abyssinicus Radlk. t 424 17 
8 Oleaceae Olea europaea L. subsp. cuspidata 

(Wall ex G. Don.) Cif. 
t 318 55 

9 Fabaceae Cadia purpurea Ait. s 300 21 
10 Fabaceae Calpurnia aurea Benth. st 248 23 
11 Sapindaceae  Dodonaea viscosa Jacq. s 224 41 
12 Flacourtiaceae Dovyalis verucosa (Hochst.)Warb st 209 41 
13 Melianthaceae Bersama abyssinica Fresen. t 121 15 
14 Rubiaceae  Psydrax schimperiana (A. Rich.) 

Bridson  
st 112 14 

15 Anacardiaceae Rhus natalensis Bernh. ex Krauss t 95 33 
16 Sterculiaceae Dombeya torrida (J.F. Gmel.) Bamps t 91 14 
17 Ebenaceae Euclea racemosa Murray subsp. 

schimperi (A. DC.) F. White  
s 91 21 

18 Rhizophoraceae Cassipourea malosana Alston t 83 23 
19 Apocynaceae Carissa edulis Vahl s 68 23 
20 Amaranthaceae Alternanthera nodiflora R.Br. h 38 2 
21 Euphorbiaceae Clutia abyssinica Jaub. & Spach s 36 11 
22 Fabaceae Acacia abyssinica Hochst. ex Benth. t 30 8 
23 Apocynaceae Acokanthera schimperi (A.DC.) Benth. 

& Hook.f. ex Schweinf. 
st 20 3 

24 Cactaceae Opuntia ficus-indica (L.) Mill. st 20 3 
25 Podocarpaceae Afrocarpus falcatus (Thunb.) C.N.Page t 17 9 
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Table 4.6 continued 

No. Family Species Life 
form* 

Density 
(seedling ha-1) 

Frequency 
(%) 

26 Malvaceae Pavonia urens Cav. hs 17 3 
27 Pittosporaceae Pittosporum viridiflorum Sims t 17 9 
28 Santalaceae Osyris quadripartita Salzm ex Decne. s 15 9 
29 Lamiaceae Becium grandiflorum (Lam.) Pic.Serm. s 14 2 
30 Rhamnaceae Sageretia thea (Osbeck) M.C.Johnst. s 14 5 
31 Euphorbiaceae Clutia lanceolata Jaub. & Spach s 12 3 

32 Verbenaceae Clerodendrum myricoides R.Br. s 11 3 
33 Solanaceae Solanum incanum L. h 11 3 
34 Asparagaceae Asparagus racemosus Willd. hs 9 8 
35 Crassulaceae Kalanchoe sp. s 8 2 
36 Rubiaceae Canthium setiflorum Hiern s 5 5 
37 Anacardiaceae Rhus glutinosa Hochst. ex A.Rich. t 5 5 
38 Solanaceae Solanum schimperianum Hochst. h 5 3 
39 Sapotaceae  Spiniluma oxyacantha (Baill.) Aubrev. st 3 3 

a indicate plant life forms: climber (c), herb (h), shrub (s), tree (t), herb or shrub (hs), shrub or climber 
(sc), and shrub or tree (st). 

 

The Pterolobium stellatum―Celtis africana community has the highest seedling density 

(Table 4.3) and seedling species richness (F = 7.63, P = 0.001) compared to the other 

communities, while the Cadia purpurea―Opuntia ficus-indica community has the 

lowest seedling density and richness. Seedling density is significantly increased with 

increasing basal area (Figure 4.5) suggesting that removal of canopy trees influences the 

natural regeneration. 
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Figure 4.5 Relationship between basal area and seedling density in Hugumburda 
forest, northern Ethiopia. 

 

Although Juniperus procera and Olea europaea subsp. cuspidata are the most 

dominant species in the standing vegetation, they are poorly represented in the seedling 

bank. The diameter distribution of the key native tree species also shows a truncated 

inverse-J shape (Figure 4.6) indicating that the forest is facing local extinction. 

 

 

Figure 4.6 Diameter class distribution of the three native tree species in 
Hugumburda forest, northern Ethiopia. Sd = seedling. 
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4.4 Discussion 

4.4.1 Floristic composition and diversity 

Comparison of species richness in tropical and subtropical dry forests is difficult due to 

the inherent heterogeneity of the forests (Murphy and Lugo 1986). However, to give a 

general picture of the species richness of Hugumburda forest, the results of the present 

study are compared with results from other forests in Ethiopia. Accordingly, 

Hugumburda forest is less species rich, especially in tree species, than many other 

Afromontane forests, e.g., Wof-Washa (Teketay 1997), Jibat (Bekele 1994), Harenna 

and Berhane-Kontir (Senbeta and Denich 2006), peninsula of Zegie (Alelign et al. 

2007), and Yayu (Gole et al. 2008). However, Hugumburda forest is more species rich 

than small Afromontane forest fragments in Tigray (Aerts et al. 2006c), which may be 

due to its larger area (Hill and Curran 2003), the relatively higher rainfall (Linder 2001), 

and lower extent of degradation (Dos-Santos et al. 2007) at Hugumburda forest. 

Compared to Desa’a forest (Aynekulu et al. 2009), which is another natural forest 

remnant in Tigray, Hugumburda forest has a higher species density (number of species 

per unit area). This could be partly due to higher rainfall and less disturbance.  

The species-area relationship provides useful information for planning 

biodiversity conservation (Ney-Nifle and Mangel 2000; Veech 2000). For instance, it 

can be used to identify patterns of species diversity (Condit et al. 1996; He and 

Legendre 2002) and to estimate rate of species extinction due to habitat loss (Pimm and 

Raven 2000). It varies with the diameter classes used (Condit et al. 1996), species 

resources requirement, competition, and species pool (Tjørve 2003). The species-area 

relationship at Hugumburda forest is well explained by a power function that is 

common in many forests (Tjørve 2003). The species-area curve, however, does not 

show an asymptotic behaviour due to the presence of many rare species, and species 

with narrow habitat ranges (Condit et al. 1996). The increasing trend in the number of 

species with increasing area suggests that a reduction in forest area may cause species 

loss (Ney-Nifle and Mangel 2000). 

The stand basal area at Hugumburda forest (9.23 m2 ha-1) is far less than that 

of other tropical and subtropical dry forests (17-40 m2 ha-1) (Murphy and Lugo 1986), 

which is evidence for the over-exploitation of the forest especially of tree species. The 
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stem density at Hugumburda (1218 stems ha-1) forest is slightly higher than at Desa’a 

forest (741 stems ha-1). 

 

4.4.2 Plant communities 

The plant communities in the study site can be broadly classified as dry and moist forest 

types (Figure 4.4). More specifically, the Juniperus procera―Maytenus senegalensis 

community is a dry single-dominant Afromontane forest with Juniperus procera and 

Olea europaea subsp. cuspidata as dominant species (Friis 1992). Other characterizing 

species are Acokanthera schimperi, Euclea racemosa subsp. schimperi, Grewia 

ferruginea, and Rhus natalensis (Friis 1992). These species also widely occurred in the 

Juniperus procera―Maytenus senegalensis community. The Pterolobium 

stellatum―Celtis africana forest community belongs to the undifferentiated 

Afromontane forests, which are moist forests. This forest type is commonly found in the 

plateaus of Shoa, Wello, Sidamo, Bale, and Hararghe with elevational ranging between 

1500 and 2700 m, mean annual rainfall between 700 and 1100 mm, and average annual 

temperature between 14 and 20 °C (Friis 1992). Eelevation, temperature, and rainfall 

ranges of Hugumburda forest are similar. Afrocarpus falcatus, Allophylus abyssinicus, 

Celtis africana, and Bersama abyssinica are some of the common species in the 

undifferentiated Afromontane forests (Friis 1992), which are also indicator species of 

the Pterolobium stellatum―Celtis africana community (Table 4.2). This plant 

community is rich in tree species (60 % of the indicator species), which partly represent 

the pre-disturbance forests in northern Ethiopia  (Darbyshire et al. 2003). 

The Cadia purpurea―Opuntia ficus-indica plant community can be classified 

as degraded shrub vegetation. All the indicator species are shrub species. In the 

degraded parts of Desa’a forest, Cadia purpurea occurs in association with 

Tarchonanthus camphoratus (see Chapter 5). The non-occurrence of Tarchonanthus 

camphoratus at Hugumburda forest may be due to the fact that Hugumburda forest is 

too moist. Thus, the expansion of Cadia purpurea in Hugumburda forest can be 

considered as an indictor of disturbance of the Juniper-Olea-dominated forests (Figure 

4.7c). 
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Figure 4.7 Plant communities at Hugumburda forest, (a) Juniperus 
procera―Maytenus senegalensis, (b) Pterolobium stellatum―Celtis 
africana, (c) Cadia purpurea―Opuntia ficus-indica, part of the 
Cupressus lusitanica plantation at the western edge of the forest (d) in 
Hugumburda forest, northern Ethiopia.  

 
4.4.3 Ordination 

The NMS ordination bi-plot (Figure 4.3) shows the association of species in three 

distinctive plant communities along the environmental gradients.  The NMS axis 2 is 

significantly negatively correlated to elevation, slope, soil depth, and distance to the 

nearest stream, while positively correlated to topographical wetness index (Table 4.5). 

Generally, the NMS axis 2 interpreted as a moisture gradient that separates the dry 

(Juniperus procera―Maytenus senegalensis community) from the moist forest 

(Pterolobium stellatum―Celtis africana community). Elevation and slope are important 

environmental variables partitioning forest communities in Afromontane forests in 

Ethiopia (Woldu and Ingvar 1991; Bekele 1994; Aerts et al. 2006c; Gole et al. 2008). 

They do not have a direct effect on species distribution, but indirectly influence other 

environmental factors (e.g., edaphic and micro-climatic) (Bolstad et al. 1998). The 
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gentle slope at the lower elevation contributes to the formation of deep soils with a 

better moisture holding capacity (Hodgson 1978), and here the Pterolobium 

stellatum―Celtis africana community occurs (Table 4.4). The positive correlation 

between wetness index and NMS axis 2 indicates the occurrence of the Pterolobium 

stellatum―Celtis africana community in moister parts of the forest.  Aerts et al. 

(2006c) also found a moist vegetation type along drainage lines in Tigray, which makes 

the riverine habitats important islands of moist forests in the dry-forest dominated 

landscapes of northern Ethiopia.  

The steep slopes surrounding the stream lines may also create a humid micro-

climate by protecting the area from the dry warm air coming from the lowlands and the 

cold western highlands. Thus, the higher plant diversity in the Pterolobium 

stellatum―Celtis africana community may be due to higher site productivity created by 

such mild climate and deep and moist soils (Flombaum and Sala 2008) compared to the 

surrounding slopes where the other communities occur. Thus, the higher level of energy 

is one explanation for the higher species-richness in this community. A higher energy 

level stimulates greater biomass that enables more individuals and species to coexist 

(Gaston 2000).   

Juniperus procera―Maytenus senegalensis and Cadia purpurea―Opuntia 

ficus-indica communities are largely found on the steep slopes, but significantly vary in 

their species composition. The two communities are clearly separated along the NMS 

axis 1, which is associated with disturbance. This suggests that the Cadia 

purpurea―Opuntia ficus-indica communities may not be an old vegetation type, but a 

recent succession that gradually replaced the Juniper-Olea-dominated forest following 

forest disturbance.  The negative significant correlation between NMS axis 1 and basal 

area also suggests the influence of disturbance on community composition. 

The low level of diversity in the Juniperus procera―Maytenus senegalensis 

and Cadia purpurea―Opuntia ficus-indica communities (Table 4.3) are due to the 

abundance and dominance of J. procera and C. purpurea in the two plant communities, 

respectively. The Cadia purpurea―Opuntia ficus-indica community has a lower 

species richness and diversity than the Juniperus procera―Maytenus senegalensis 

community, which could be due to the higher disturbance in the Cadia 

purpurea―Opuntia ficus-indica community. Disturbance affects species composition 
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and diversity by affecting certain species and size classes, and by changing the light 

environment of the understory (Slik 2004; Engelbrecht et al. 2007). The higher species 

diversity at the Pterolobium stellatum―Celtis africana community also correlates with 

the topographic wetness index. The higher species richness in the wetter site can be due 

to the increase in pH with increasing moisture that stimulates plant diversity (Zinko et 

al. 2006). The riverine systems are regulated by water and nutrient inputs from the 

upper slopes, which make them important areas of high species diversity, especially in 

dry environments.  

 

4.4.4 Natural regeneration 

A seedling bank is crucial for old forests because it provides individuals that will 

eventually influence the composition of future plant communities (Swine 1996). 

However, most of the seedlings of the native trees species like Juniperus procera, Olea 

europaea subsp. cuspidata, Rhus natalensis, Allophylus abyssinicus, Bersama 

abyssinica, Afrocarpus falcatus, and Teclea simplicifolia are poorly represented in the 

seedling bank, while some other native species, namely Erica arborea and Hagenia 

abyssinica do not occur at all. Similar studies in other dry forest remnants of northern 

Ethiopia also report poor regeneration of native tree species (Aerts et al. 2006c; 

Aynekulu et al. 2009), suggesting that some species are experiencing local extinction. 

Seedling density is highest in the Pterolobium stellatum―Celtis africana 

community (Table 4.2). This may be due to moister soils (Benítez-malvido and 

Martínez-ramos 2003) and less disturbance (Farwig et al. 2008). Pterolobium stellatum 

has the highest seedling abundance, which might be due to the canopy gaps created in 

the forest that encourage the spread of the species (Schnitzer et al. 2000). Although such 

climber species are important in the overall species diversity, they suppress the 

recruitment of other species (Schnitzer et al. 2000).  

In dry tropical forests, tree canopies are favorable for germination and early 

establishment of seedling (Teketay 1997; Vieira and Scariot 2006; Wassie et al. 2009b). 

Basal area can be used as a surrogate for canopy cover. The positive correlation 

between seedling density and basal area (Figure 4.5) thus suggests that a reduction in 

canopy cover in dry environments may lead to soil desiccation, which hampers 

regeneration and seedling establishment of native tree species. Hence, a further increase 
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in canopy gaps in Hugumburda forest may favor the spread of pioneer shrub and herb 

species like Cadia purpurea, which may gradually replace the tree-dominated landscape 

with encroaching shrubs and herbs. 

 

4.5 Implications for conservation 

Three plant communities belonging to dry and moist forests were identified in 

Hugumburda forest. This indicates that topographical position (e.g., elevation, distance 

to the drainage line) and disturbance are important determinants of species distribution 

and community structure. These factors are important and need to be considered in the 

design of biodiversity conservation programs. The Pterolobium stellatum―Celtis 

africana community is more diverse and contains species (e.g., Afrocarpus falcatus, 

Allophylus abyssinicus, Bersama abyssinica, and Celtis africana) that are locally 

threatened in northern Ethiopia. Furthermore, this community is found in a narrower 

habitat range (e.g., elevation, slope, soil depth) than the other communities, which 

makes the rare tree species vulnerable to location extinction. In northern Ethiopia, such 

a relatively large habitat, rich in diversity and at the same time with rare species is very 

uncommon. Hugumburda forest at a landscape scale and the Pterolobium 

stellatum―Celtis africana community at a local scale are thus important species-rich 

areas for biodiversity conservation that need conservation priority. 

Soil moisture is a major limiting factor for the regeneration of dry forest 

species. Thus, maintaining a high canopy cover may create a better soil moisture 

environment for a successful regeneration and seedling establishment. The removal of 

the canopy species also affects the regeneration of native species while favoring the 

spread of colonizing shrub and herb species. Poor representation of most of the native 

tree species in the seedling and sapling stages also suggests that the forest is 

experiencing extinction. Thus, to conserve such rare and isolated forests, it is important 

to (1) conserve the standing canopy species, and (2) complement the natural 

regeneration with enrichment planting. 
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5 PLANT SPECIES DIVERSITY PATTERN ALONG AN 

ELEVATIONAL GRADIENT ON THE WESTERN ESCARPMENT OF 

THE GREAT RIFT VALLEY, NORTHERN ETHIOPIA 

 
5.1 Introduction  

Understanding plant species distribution pattern along environmental gradients is 

crucial for the understanding of ecological processes and managing ecosystems (Naveh 

and Whittaker 1979; Woldu et al. 1989; Noss 1999; Lovett et al. 2000). The concept of 

identifying biodiversity-rich areas along environmental gradients has been used, for 

instance, as a criterion for biodiversity conservation priority setting (Myers 1988; 

Mittermeier et al. 1998; Breshears et al. 2005). Elevation is a complex environmental 

factor influencing the distribution patterns of plant species (Perrott and Hamilton 1981; 

Hegazy et al. 1998; Lovett et al. 2000; Sánchez-González and López-Mata 2005; Zhao 

and Fang 2006). Accordingly, elevation plays a major role in plant species diversity and 

floristic formations in Ethiopia (Woldu et al. 1989). Friis (1992) uses elevation as one 

major criterion for mapping the forests and forest trees of north-eastern tropical Africa.  

The elevational pattern of species diversity is  a function of ecological and 

evolutionary processes (Lomolino 2001). Elevation determines species distribution in 

montane systems by influencing area, climate, geographical isolation of montane 

communities, and feedback among zonal communities (Lomolino 2001). Larger ranges 

contribute to diversity by supporting large populations, which enhances speciation while 

reducing accidental extinction (Rosenzweig 1995). Climate is related to productivity in 

which diversity commonly peaks at the intermediate level of productivity (Kassen et al. 

2000; Lomolino 2001). Elevation has been widely used as a predictor of regional 

species richness and diversity (Kreft and Jetz 2007) due to its influence on moisture and 

temperature (Gutierrez et al. 1998; Lovett et al. 2000; Eilu et al. 2004; Sánchez-

González and López-Mata 2005). High-elevation habitats are more isolated from other 

similar habitats, which increases the rate of extinction. Species diversity peaks at the 

transition zone between two habitats and the respective plant communities (Lomolino 

2001). 

Studies have shown that response of plant species distribution to elevation 

varies among ecosystems (Hegazy et al. 1998; Kessler 2000; Lovett et al. 2000; 

Sánchez-González and López-Mata 2005; Grytnes and Beaman 2006). Furthermore, 
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different life forms may respond similarly (e.g., Sánchez-González and López-Mata 

2005) or differently (e.g., Ren et al. 2006) to elevation. The response of species richness 

to elevation is also affected by the scale of the study, a hump-shaped pattern is 

commonly found when data is taken from an entire elevation range (Nogues-Bravo et al. 

2008). With decreasing scale, a monotonic pattern is common. Generally, the hump-

shaped species distribution pattern is more common than the monotonic decline with 

increasing elevation (Rahbek 1995). Besides the environmental factors, anthropogenic 

disturbance affect species diversity. According to the intermediate disturbance 

hypothesis (Connell 1978), intermediate disturbance promotes species diversity by 

facilitating regeneration of many species (Denslow 1980; Bongers et al. 2009). 

However, it is often difficult to determine the influence of the existing environmental 

factors and forest history on species assemblage (Mutke and Barthlott 2005). 

The study site covers large parts of Desa’a forest. Desa’a forest is an important 

habitat for Dracaena ombet, which is listed on the IUCN endangered plant species list 

(World Conservation Monitoring Centre 1998), and locally rare tree species like Erica 

arborea. Desa’a forest is also an important bird habitat. It is the only habitat in Ethiopia 

for Emberiza cineracea (Bird Life International 2008), which is a migratory bird listed 

on the IUCN Red List as a Near Threatened species (IUCN 2009). According to 

Conservation International’s (2007) lists of global biodiversity hotspots, the study site is 

located in the Eastern Afromontane hotspot (Tigray highlands) and the arid Horn of 

Africa hotspot (Afar lowlands). 

Despite the high conservation value, the natural forest remnants in northern 

Ethiopia are poorly studied (Friis 1992; Aerts et al. 2006c), and information necessary 

for effective biodiversity conservation is meager (Aerts et al. 2006c). Therefore, the 

present study examines patterns of alpha and beta diversity, and community 

composition along an elevational gradient.  

 

5.2 Material and methods  

5.2.1 Study site 

The study was conducted in the western escarpment of the Great Rift Valley that 

stretches from the highlands of Tigray to the lowlands of the Afar region in northern 

Ethiopia (Figure 5.1). Two transects were taken along the mesic Tigraean plateau to the 
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xeric Afar lowlands. The first transect stretches from Agoro village (Tigray highland, 

2400 m a.s.l.; 13°40' N, 39°46') to Shaigubi village (Afar low land, 1000 m a.s.l.; 13°40' 

N, 39°52' E), and the second trensect from Esot village on the Tigrean plateau (2760 m 

a.s.l., 13°56' N, 39°48' E) to Koneba town of the Afar region at its lower end (1400 m 

a.s.l.; 13°56' N, 39°51' E). Both transects cross Desa’a forest, which is one of the 58 

national forest priority areas in Ethiopia. Unlike mountainous landscapes, the upper 

limit of the study area is a  plateau, where land area per bioclimatic belt has no impact 

on vegetation distribution (Körner 2007). 

Based on the classification of the forests and forest trees of northeast tropical 

Africa (Friis 1992), Desa’a forest is categorized as a dry single-dominant Afromontane 

forest, which is characterized by a dry climate (annual precipitation less than 1000 mm) 

with Juniperus procera and Olea europaea subsp. cuspidata as dominant species. A 

large part of the study area is formed on shale, limestone, and sandstone of the Tertiary 

and Mesozoic era (TFAP 1996). The diverse geological formations have led to soil 

variability, and the dominating soil types in the study region are Leptosols, Cambisols, 

Vertisols, Regosols and Arenosols (TFAP 1996). The study area receives a mean annual 

rainfall of 532 mm (Abegaz 2005). The climate of the study area is influenced by 

elevation in which the decline in rainfall and the increase in temperature from the 

upland plateau to the eastern slopes are sharp (Degefu 1987).  

. 
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Figure 5.1 Location of the two studied transects on the western escarpment of the 

Great Rift Valley, northern Ethiopia.  
 

5.2.2 Data collection 

Data on the diversity of vascular plant species were collected from July to November 

2007 in 29 plots (50 m × 50 m) established at 100-m elevation intervals, i.e., 14 plots in 

transect 1 and 15 plots in transect 2. However, species outside the 29 plots were also 

recorded to give a more complete list of species occurring in the study area. The 

sampling points were identified using 1:50000 topographic maps (EMA 1998), and the 
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transect layout and coordinates of the plots were identified using ILWIS GIS software 

(ITC 2001). Plots were identified in the field using a GPS device. 

All individual plants were enumerated, and stand density and basal area per 

hectare for all trees with a height > 1.5 m and diameter > 2 cm at breast height (DBH) 

were calculated for each sampling plot. Species were identified in the field and at the 

National Herbarium, Addis Ababa University. 

 

5.2.3 Data analyses 

Species diversity 

Species diversity (-diversity) is determined using the Shannon diversity index. In this 

study, Whittaker’s (1972) -diversity (βw) is used as a general indicator of species 

turnover (Eq. 5.1) and pair-wise comparisons of species turnover among plant 

elevational gradients and communities were determined using the Wilson and Shmida’s 

(1984) -diversity (Eq. 5.2).  

1w

Sc
β

s
       (5.1) 

 

where βw isWhittaker’s  -diversity, Sc is the total number of species in the composite 
sample (i.e. gamma diversity), and s is the average number of species found in 
the plots.  

 

βT = 
2

b c

a b c


 

     (5.2) 

 

where βT  is Wilson and Shmida’s beta diversity, a is total number of species that occur 
in both communities, b is the total number of species in the second community 
but not in the focal one, and c is the number of species in the focal community 
but not in the second one. 
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Cluster analysis and ordination 

Plant communities along the elevational gradient were identified using the multivariate 

hierarchical clustering and Nonmetric Multidimensional Scaling (NMS) (see section 4.2.3). 

 

5.3 Results  

5.3.1 Species composition and diversity along the elevational gradient  

A total of 130 species belonging to 59 families was recorded (Table 5.1). Of these, 26 % 

are tree species, 55 % shrub species, 16 % are herb species and 3 % liana species. The 5 

most species-rich families are Fabaceae (15 species), Lamiaceae (7 species), 

Euphorbiaceae, Solanaceae, and Tiliaceae (6 species each), while 33 families (56 %) are 

represented by one species. No species is distributed over the entire elevation range. The 

dominant tree, shrub and herb species with wider elevational ranges are Olea europaea 

subsp. cuspidata (1400―2760 m), Cadia purpurea (1100―2500 m) and Aloe camperi 

(1200―2760 m), respectively. The three most abundant species in the study area are Cadia 

purpurea (13 %), Juniperus procera (11 %) and Olea europaea subsp. cuspidata (7 %), 

which in total constitute 29 % of the total abundance.  

 
Table 5.1 List of species and their occurrence along the elevational gradients in the 

western escarpment of the Great Rift Valley, northern Ethiopia 
Species/Elevation (m a.s.l.) LF

* 10
00

 
11

00
 

12
00

 
13

00
 

14
00

 
15

00
 

16
00

 
17

00
 

18
00

 
19

00
 

20
00

 
21

00
 

22
00

 
23

00
 

24
00

 
25

00
 

26
00

 
27

00
 

27
60

 

                     
Abutilon longicuspe Hochst. ex A.Rich. s          x x x x x      
Acacia abyssinica Hochst. ex Benth. t x   x x x x  x     x x x     
Acacia asak (Forssk.) Wild. t  x   x               
Acacia etbaica Schweinf. t    x x x x x x   x   x      
Acacia mellifera Benth. t x x x x x               
Acacia orfota Schweinf. t x                   
Acacia polyacantha Willd.  t x x                  
Acacia senegal Willd. t  x                  
Acacia tortilis  Hayne t   x                 
Acokanthera schimperi (A.DC.) Benth. 
& Hook.f. ex Schweinf. 

st    x x x x x x x x x x x x x    

Adenia sp. st     x   x            
Aerva lanata (L.) Juss. ex Schult. h      x              
Aloe camperi Schweinf. h   x x x x x x x x x  x    x  x

Alternanthera nodiflora R.Br. h                x x   
Asparagus racemosus Willd. hs          x x x x x  x    
Balanites rotundifolius Blatt. t x x x  x x              
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Table 5.1 continued 
Species/Elevation (m a.s.l.) LF

* 10
00

 
11

00
 

12
00

 
13

00
 

14
00

 
15

00
 

16
00

 
17

00
 

18
00

 
19

00
 

20
00

 
21

00
 

22
00

 
23

00
 

24
00

 
25

00
 

26
00

 
27

00
 

27
60

 

                     
Barbeya oleoides Schweinf. t                x    
Becium grandiflorum (Lam.) Pic.Serm. s          x x x x x   x   
Berchemia discolor Hemsl. st x                   
Boscia salicifolia Oliv. t        x  x          
Cadia purpurea Ait. s  x  x x x x x x x x x x x  x    
Calpurnia aurea Benth. st       x x x x x x x x x x    
Canthium oligocarpum Hiern st    x x x   x x x x x x x x  x x
Canthium setiflorum Hiern s          x x x x x      
Capparis cartilaginea Decne. s  x                  
Caralluma acutangula N.E.Br. h    x x               
Carissa edulis Vahl s        x x  x x x x x x    
Clematis sinensis Lour. sc        x    x x x      
Clerodendrum myricoides R.Br. s         x x x x x x x x    
Clutia abyssinica Jaub. & Spach s x x  x x x x x x x x x        
Clutia lanceolata Jaub. & Spach 

  

s            x  x x x x x x

Combretum molle R.Br. ex G. Don st      x x x x     x      
Commicarpus plumbagineus Standl.  s       x  x x          
Cordia monoica Roxb.  st     x   x            
Cordia sinensis Lam. st      x x x x           
Dichrostachys cinerea (L.) Wight & 
Arn. 

st  x     x x x x          

Diospyros mespiliformis Hochst. ex 
A.DC 

t       x x x x x x        

Dobera glabra Juss. ex Poir. t x x x                 
Dodonaea viscosa Jacq. s         x x  x x  x x x   
Dombeya torrida (J.F. Gmel.) Bamps t      x  x x x x x x  x x    
Dovyalis abyssinica (A.Rich.) Warb. st               x x x  x
Dovyalis verrucosa Warb. st               x x x   
Dracaena ombet Kotschy & Peyr. t     x x x x x           
Ekebergia capensis Sparrm.  t        x  x x x  x      
Euclea racemosa Murray subsp. 
schimperi (A. DC.) F. White  

s     x    x x x x x x x x    

Erica arborea L.  st                   x
Euphorbia polyacantha Boiss. s     x               
Ficus palmata Forssk. st          x x x        
Ficus thonningii Blume st           x     x x   
Ficus vasta Forssk. t        x            
Grewia ferruginea Hochst.  st    x x  x x x x x x        
Grewia schweinfurthii Burret st    x x               
Grewia tenax (Forssk.) Fiori s     x x  x x   x        
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Table 5.1 continued 
Species/Elevation (m a.s.l.) LF

* 10
00

 
11

00
 

12
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00
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00
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00
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Heliotropium cinerascens Steud. ex DC. s    x  x x x  x x         
Indigofera caerulea Roxb. s  x  x x               
Jasminum abyssinicum R.Br. sc          x  x x x      
Juniperus procera Hochst. ex Endl. t         x x x x x x x x x x x
Laggera tomentosa Sch. Bip. ex Hochst. s         x x x x   x x x x  
Lantana viburnoides Vahl s           x    x     
Lavandula dentata L. h                   x
Lawsonia inermis L. st  x                  
Leucas abyssinica Briq. h        x x x x x x x  x    
Lycium shawii Roem. & Schult. s    x x x x x            
Maerua sp. sh      x              
Maytenus senegalensis (Lam.) Exell st         x x x x x x x x x  x
Mimusops laurifolia (Forssk.) Friis t  x x x x               
Myrsine africana L.  s                x    
Nuxia congesta R.Br. sh                x x x x
Olea capensis L. subsp. macrocarpa 
(C.H. Wright) I. Verd. 

t                x x x x

Olea europaea L. subsp. cuspidata 
(Wall. ex G. Don) Cif. 

t     x x   x x x x x x x x x x x

Osyris quadripartita Salzm. ex Decne. s          x x x  x x x x   
Otostegia fruticosa Schweinf. ex Penz. sh          x  x  x x x    
Pappea capensis Eckl. & Zeyh. t  x    x x x x x          
Pittosporum viridiflorum Sims t           x x x  x     
Plectranthus ornatus Codd h             x    x x x
Premna resinosa Schauer s x x   x x x x x  x         
Psiadia punctulata Vatke h        x x x x x x  x     
Psydrax schimperiana (A. Rich.) 
Bridson  

st        x x x x x x x x x    

Pterolobium stellatum (Forssk.) Brenan sc        x  x x x x       
Pyrostria phyllanthoidea (Baill.) 
Bridson 

s       x  x           

Rhus natalensis Bernh. ex Krauss t     x x x x x x x x x x x x    
Rhus sp.  t               x x  x x
Ricinus communis L. st       x x  x x         
Rumex nervosus Vahl h        x x x x x     x   
Sageretia thea (Osbeck) M.C.Johnst. s           x         
Salvadora persica L. st x  x x  x  x            
Sansevieria ehrenbergii Schweinf. ex 
Baker 

h         x           

Sarcostemma viminale Wall. Ex Decene. c    x x  x  x x x x        
Solanum adoense Hochst. ex A. Braun h          x x         
Solanum schimperianum Hochst. h       x  x x x x x x x x x x  
Spiniluma oxyacantha (Baill.) Aubrev. st           x x x x x     
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Table 5.1 continued 
Species/Elevation (m a.s.l.) LF

* 10
00
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00
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Sterculia africana (Lour.) Fiori t    x  x              
Tarchonanthus camphoratus L. sh      x   x x x x x x x x    
Tephrosia interrupta Hochst. & Steud. s    x    x x           
Withania somnifera (L.) Dunal  s       x x  x  x        
Ziziphus mucronata Willd. st x x  x    x            
Ziziphus spina-christi Willd. st       x             

Species identified outside the plots                     
Abutilon pannosum (G.Forst.) Schltdl. hs              x x x    
Aeonium leucoblepharum Webb ex A. 
Rich. 

s              x      

Agave americana L. h                x    
Bersama abyssinica Fresen. t               x x    
Capparis tomentosa Lam. st  x                  
Cassia occidentalis L. h      x              
Cassipourea malosana Alston t               x     
Commelina sp. s           x         
Commiphora sp. t   x                 
Cyathula cylindrica Moq. h           x  x  x  x   
Cynanchum gerrardii (Harv.) Liede c              x  x    
Discopodium penninervium Hochst. st                 x   
Echinops giganteus A.Rich. sh             x  x x    
Euphorbia abyssinica J.F. Gmel. t              x x x    
Euphorbia tirucalli Forssk.. st      x x      x       
Ferula communis Heuff.  h               x x    
Grewia kakothamnos K.Schum. s     x   x x x x   x      
Grewia bicolor Juss. st      x  x  x          
Grewia mollis Juss. st      x x  x           
Gymnosporia senegalensis Loes. s             x x x   x  
Indigofera arrecta Hochst. ex A.Rich. s                x    
Meriandra bengalensis (Roxb.) Benth.  s               x x x   
Opuntia ficus-indica (L.) Mill. st          x x x x x x x x   
Otostegia integrifolia Benth.  s                  x  
Phytolacca dodecandra L'Hér. s         x x x x   x     
Rhamnus staddo A.Rich.  st                x    
Rhus retinorrhoea Steud. ex Oliv. t              x x x x   
Rosa abyssinica R.Br. s                 x x  
Sansevieria forskaliana 
(Schult.f.)Hepper & J.R.I.Wood 

h         x x x x x       

Sida schimperiana Hochst. ex A.Rich. s              x      
Solanum incanum L. h    x x  x x x x x x x x x x    
Vernonia amygdalina Delile st              x          

* LF = Life form: climber (c), herb (h), shrub (s), tree (t), herb or shrub (hs), shrub or climber (sc), and shrub 
or tree (st)
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The mean stem density is 548 stems ha-1 and basal area is 10.73 m2 ha-1. Stem density 

and basal area increase with increasing elevation (Figure 5.2). 

 

   

 
Figure 5.2 Patterns of stem density (a) and basal area (b) along elevational 

gradient on the western escarpment of the Great Rift Valley, northern 
Ethiopia. 

 

The minimum species richness (7 species per plot) was recorded at the lower 

elevation (1200 m), whilst the highest (42 species per plot) was recorded at the upper 

mid elevation (1900 m). The Shannon diversity index ranges from 0.80 to 3.08 (average 

= 2.32) at 2760 and 2100 m, respectively. Species evenness is highest at the lower 

elevation (1000–1300 m a.s.l), while values are lowest at high elevations (> 2600 m 

a.s.l.). 

Total species richness and diversity follow a hump-shaped distribution pattern 

along the elevational gradient, which is best explained by second-order polynomial 

models (Figure 5.3). 

 

 

 



Plant species diversity pattern along an elevational gradient on the western escarpment 
of the Great Rift Valley, northern Ethiopia 

 

63 

 

 
 
Figure 5.3 Patterns of species richness (a) and diversity (b) along an elevational 

gradient in the western escarpment of the Great Rift Valley, northern 
Ethiopia. 

 

5.3.2 Species turnover along an elevational gradient 

The Whittaker’s (βw= 2.7) and the mean Wilson and Shmida’s (βT =0.6) -diversity 

values indicate medium species turnover along the elevational gradient (Wilson and 

Shmida 1984). Wilson and Shmida’s -diversity ranges from 0.18 to 1.0, which 

indicates the highest and lowest species turnover, respectively (Table 5.2). The lowest  

diversity is between extreme elevation pairs (e.g., between 1000 and 2760 m a.s.l.) 

where a 100 % species replacement was recorded.  
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Table 5.2  Beta diversity of vascular plants among sample sites taken along the elevational gradient on the western escarpment of the Great 

Rift Valley, northern Ethiopia 
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2760 0.28 0.42 0.60 0.63 0.69 0.66 0.80 0.81 0.80 0.79 0.96 0.94 0.82 0.82 0.86 0.89 1.00 1.00 
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The values of -diversity indicate that none of the elevational zones have all identical 

species composition. The lowest -diversity (w = 0.18) is between 1900 and 2100 m 

where α-diversity is maximum. This suggests that the maximum species richness 

found at mid elevation is partly due to low species turnover. Similarly, the highest 

diversity of plant families is between 1900 and 2100 (Figure 5.4). The highest -

diversity at the lower elevation indicates poor floristic similarities between adjacent 

sites, which contribute to poor species richness. 

 

 

 

Figure 5.4 Trends in α- and β-diversities along an elevational gradient on the 
western escarpment of the Great Rift Valley, northern Ethiopia. Species 
turnover between adjacent elevations is based on the Wilson and 
Shmida’s β-diversity. 

 

5.3.3 Plant communities 

The cluster and indicator species analyses yield four plant communities (Figure 5.5). 

The MRPP test indicates a significant difference in the floristic compositions among the 

four plant communities (T = -8.97, P < 0.001). The homogeneity within-groups 

(Chance-corrected within-group agreement, A) is 0.25. In community ecology, values 
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for A are commonly below 0.1, while values exceeding 0.3 are considered as fairly high 

(McCune and Grace 2002).  

 

 
 
Figure 5.5 Dendrogram of the hierarchical cluster analysis of sampling points 

taken along an elevational gradient on the western escarpment of the 
Great Rift Valley, northern Ethiopia. By cutting the dendrogram at the 
53 % information remaining level, four distinctive plant communities 
along the 1760 m elevation gradient were identified (C1: 2760, 2700, 
2600, 2500, 2400; C2: 2300, 2200, 2100, 2000, 1900; C3: 1800, 1700, 
1600, 1500, 1400; C4: 1300, 1200, 1200, 1100). 

 

The Juniperus procera―Clutia lanceolata community (C1) is found on 

Tigrean plateau, the Abutilon longicuspe―Calpurnia aurea plant community (C2) and 

the Dracaena ombet―Acacia etbaica plant community (C3) are found on escarpment, 

and the Acacia mellifera―Dobera glabra is found on the low plains of the Afar area 

(Figure 5.6).  
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Figure 5.6 Vegetation profile along elevational gradient on the western 
escarpment of the Great Rift Valley, northern Ethiopia. 

 

The Juniperus procera―Clutia lanceolata plant community (C1) contains 42 

species and 9 species have significant indicator values (P < 0.05) (Table 5.3). Juniperus 

procera is the dominant canopy tree species (Figure 5.7a), while Clutia lanceolata 

dominates the understory. Cadia purpurea and Juniperus procera constitute 51 % of the 

total abundance in the community. The Juniperus procera―Clutia lanceolata 

community contains 29 families. Lamiaceae and Fabaceae are the dominant families 

represented by 5 and 3 species, respectively. Seven families were represented by 2 

species and the remaining 20 species are represented by one species. 
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Figure 5.7 Pictures showing the four plant communities: Juniperus 
procera―Clutia lanceolata (a), Abutilon longicuspe―Calpurnia aurea 
(b), Dracaena ombet―Acacia etbaica (c), and Acacia 
mellifera―Dobera glabra (d) identified on the western escarpment of 
the Great Rift Valley, northern Ethiopia. 

 

The Abutilon longicuspe―Calpurnia aurea plant community (C2) is 

represented by 56 species belonging to 32 families. The dominant tree species in this 

plant community is Olea europaea subsp. cuspidata, which is one of the dominant 

species in the dry Afromontane forests of Ethiopia. The plant community includes many 

shrub and herb species. Cadia purpurea and Tarchonanthus camphoratus are abundant 

shrubs colonizing many of the degraded sites (Figure 5.7b). Fabaceae and Lamiaceae 

are represented by 6 and 5 species, respectively. Three families are represented by 3, 

and 9 families by 2 species, while the remaining 18 families are represented by one 

species.  
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The Dracaena ombet―Acacia etbaica plant community (C3) is represented by 

64 species belonging to 35 families. Except for a few scattered Acacia etbaica trees, this 

plant community is dominated by shrub and herb species (Figure 5.7c). Dracaena 

ombet is listed on the IUCN endangered species list (World Conservation Monitoring 

Centre 1998). The species is confined to a small area along the escarpment on shallow 

soils and has been widely used for fibre and beehive production as well as for household 

utensils. The Fabaceae is the dominant family represented by 10 species. Six and 8 

families are represented by 3 and 2 species, respectively, while the remaining 20 species 

are represented by one species. 

The Acacia mellifera―Dobera glabra plant community is represented by 31 

species belonging to 18 families. This plant community has indicator species like 

Dobera glabra, which is an evergreen tree on the low lying Afar plains, and Mimusops 

laurifolia which is commonly found along major drainage lines. Floristically, the plant 

community is dominated by Acacia mellifera, which constitutes 31 % of the total 

species abundance (Figure 5.7d). Fabaceae is the dominant family represented by 12 

species (39 %). Salvadoraceae and Tiliaceae are represented by 2 species while the 

remaining 15 families are represented by one species. 

The Dracaena ombet―Acacia etbaica plant community is more species rich 

than the other communities. However, the Abutilon longicuspe―Calpurnia aurea 

community has a higher Shannon index value, which is due to a higher evenness of 

species composition. Although there is little difference in species richness between the 

Juniperus procera―Clutia lanceolata and the Acacia mellifera―Dobera glabra 

communities, the latter is more species rich. 

The species turnover rates between C1―C2, C2―C3, and C3―C4 is 0.50, 

0.35, and 0.47, respectively. This indicates that the species turnover between Abutilon 

longicuspe―Calpurnia aurea and Dracaena ombet―Acacia etbaica is lower than 

between any other pair of the plant communities. 
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Table 5.3  Summary statistics for the indicator species of the four plant communities on 
the western escarpment of the Great Rift Valley, northern Ethiopia.  

Species Indicator Value (%)    P 
  C1 C2 C3 C4   
Juniperus procera―Clutia lanceolata 
community (C1) (2400-2760 m) 

     

Juniperus procera 82 18 0 0 0.002
Clutia lanceolata 81 8 0 0 0.002
Dovyalis abyssinica 80 0 0 0 0.004
Nuxia congesta 80 0 0 0 0.005
Olea capensis subsp. macrocarpa 80 0 0 0 0.005
Rhus sp.  80 0 0 0 0.004
Dovyalis verrucosa 60 0 0 0 0.040
Meriandra bengalensis 60 0 0 0 0.040
Rhus retinorrhoea 56 1 0 0 0.031 

Abutilon longicuspe―Calpurnia aurea 
community (C2) (1900-2300 m) 

  

Abutilon longicuspe 0 100 0 0 < 
0.001

Calpurnia aurea 0 97 2 0 < 
0.001

Canthium setiflorum 1 97 0 0 < 
0.001

Asparagus racemosus 5 88 0 0 < 
0.001

Tarchonanthus camphoratus  1 87 5 0 < 
0.001

Becium grandiflorum 3 84 0 0 0.001
Clerodendrum mxricoides 0 82 3 0 0.001
Jasminum abyssinicum  0 80 0 0 0.004
Pterolobium stellatum 0 78 1 0 0.006
Leucas abyssinica  0 77 9 0 0.002
Ekebergia capensis  0 77 1 0 0.004
Solanum schimperianum  16 77 1 0 0.008
Euclea racemosa subsp. schimperi  2 73 8 0 0.001
Psydrax schimperiana 10 72 1 0 0.007
Cadia purpurea  0 71 27 1 0.002
Canthium oligocarpum  16 71 4 1 0.007
Psiadia punctulata  1 66 6 0 0.011
Olea europaea subsp. cuspidata  33 64 2 0 0.019
Solanum incanum 7 63 14 0 0.005
Sansevieria forskaliana 0 63 4 0 0.018
Opuntia ficus-indica 0 60 0 0 0.037
Dombeya torrida 3 57 12 0 0.026
Acokanthera schimperi 0 54 37 2 0.028
Spiniluma oxyacantha 7 54 0 0 0.029 

Dracaena ombet―Acacia etbaica community (C3) 
(1400-1800 m) 

  

Dracaena ombet  0 0 100 0 < 0.001
Acacia etbaica  0 1 97 0 < 0.001
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Table 5.3 continued   
Species Indicator Value (%)    P 
  C1 C2 C3 C4   

Premna resinosa 0 0 82 8 0.002
Cordia sinensis  0 0 80 0 0.006
Lycium shawii  0 0 75 2 0.012
Aloe camperi 1 11 71 4 0.020
Grewia tenax  0 2 71 0 0.009
Combretum molle  0 3 69 0 0.012
Pappea capensis 0 2 65 3 0.009
Grewia ferruginea 0 8 62 2 0.024
Grewia mollis 0 0 60 0 0.035
Clutia abyssinica  0 15 59 13 0.007 

Acacia mellifera―Dobera glabra community (C4) 
(1000-1300 m) 

  

Acacia mellifera 0 0 0 98 < 0.001
Dobera glabra 0 0 0 75 0.003
Ziziphus mucronata 0 0 3 65 0.017
Mimusops laurifolia 0 0 4 58 0.016
Acacia polyacantha 0 0 0 50 0.034

 

Ordination 

In the NMS ordination, the greatest reduction in ‘stress’ (McCune and Mefford 1999) is 

achieved with a three-dimensional solution. The proportion of variance (coefficient of 

determination R2) for the correlation between ordination distances and Sørensen 

distance in the original 40-dimensional space represented by the two axes is 0.545 and 

0.231, respectively (cumulative R2 = 0.776). The NMS axis 1 is strongly correlated with 

elevation (Spearman rank correlation = 0.98, P < 0.001), which clearly partitions the 

four plant communities (Figure 5.8). 
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Figure 5.8 Nonmetric multidimensional scaling (NMS) ordination bi-plot showing 
the composition of plant communities along elevational gradient on the 
western escarpment of the Great Rift Valley, northern Ethiopia. 
Numbers indicate elevations labeled into the four groups derived by 
cluster and indicator species analyses. 

 

NMS axis 1 exhibited positive linear relationship with elevation (Figure 5.9) 

suggesting that the distribution pattern of plants on the western escarpment in northern 

Ethiopia is strongly associated with elevation. 
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Figure 5.9 Relationship between elevation and NMS axis 1, on the western 
escarpment of the Great Rift Valley, northern Ethiopia. 

 

5.4 Discussion  

5.4.1 Species composition and diversity along an elevational gradient 

The vegetation cover in the study site is dominated by shrub and herb species. One 

reason for the observed low tree species diversity is selective logging of some useful 

tree species (Gebreegziabher 1999). Erica arborea, for instance, used to be logged for 

its good fuelwood value, and currently it is one of the rare tree species in the highlands 

of Tigray. Many Acacia species in the lowlands have been also extensively logged for 

fuelwood and charcoal production. Such anthropogenic induced changes in the 

abundance and spatial distribution of species affect diversity (Hillebrand et al. 2008). 

Furthermore, the widening of canopy gaps that arises from deforestation and livestock 

pressure in the study area has hampered the regeneration and recruitment of shade-

loving tree species (Aynekulu et al. 2009), which has led to a high diversity of pioneer 

species (Runkle 1982; Bongers et al. 2009). 

The hump-shaped pattern of species diversity along the elevational gradient is 

partly evidence for a wider range of elevational gradient covered in the study 

(Mittelbach et al. 2001; Nogues-Bravo et al. 2008). As reviewed by Mittelbach et al. 

(2001), the hump-shaped distribution of species richness along an elevational gradient is 

the most frequent pattern (41-45 %). Elevation influences species distribution through 

its influence on precipitation and temperature (Lovett et al. 2000; Whittaker et al. 2001; 

Sánchez-González and López-Mata 2005; Zhao and Fang 2006). Such relationship 
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between diversity and climate is often associated with productivity (Whittaker et al. 

2003). The decrease in species richness at higher elevations may be due to the decrease 

in temperature, which may reduce productivity (Rahbek 1995). Soil moisture is also 

another limiting factor in species richness and diversity in dry forests (Engelbrecht et al. 

2007). Hence, the higher diversity of plants recorded at the mid elevation is likely due 

to the optimum climatic conditions that allow many species to coexist (Oommen and 

Shanker 2005; Hemp 2006). Besides environmental variables, the distribution of a 

species across different habitats also depends on species requirements, tolerances, and 

their efficiency in utilizing environmental resources (Dansereau 1951). The lower 

Shannon index at higher elevation was due to the higher abundance of Juniperus 

procera, which reduces the evenness of species distribution.  

Due to the variation in the environmental conditions and forest disturbance 

history, it is difficult to compare species response to elevation among sites (Nogues-

Bravo et al. 2008). The heterogeneity in sampling techniques used in such ecological 

studies also makes it  difficult to compare studies (Rahbek 1995). The species richness 

along an elevational gradient in the study area is in agreement with that of the forest and 

forest trees of northeast tropical Africa, where Friis (1992) observed the highest 

diversity of species and families between 1523 and 2135 m a.s.l. The species richness 

and diversity along an elevational gradient in the study area also shows a similar pattern 

to those studies in Lokapel Turkana, Kenya (Mwaura and Kaburu 2009), Shennongjia 

Mountain, China (Zhao and Fang 2006), Guandi Mountain, China (Jun-feng and Yun-

xiang 2006), and western Himalaya (Oommen and Shanker 2005). 

  

5.4.2 Species turnover along an elevational gradient 

The values of  diversity indicate that none of the elevational zones are identical in their 

species composition. The highest species turnover was recorded between the extreme 

elevational zones. This is logical that the elevation below 1300 m and above 2000 m are 

found in a different ecological zones that leads to maximum (w=1) variation in their 

species compositions. The lower  diversity (w = 0.18) was recorded between 1900 

and 2100m where α diversity is maximum. This suggests, the maximum species 

richness found between 1900-2100, is partly due to high species turnover between these 

adjacent elevations. Similarly, the highest diversity of plant families was recorded 
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between 1900―2100 (Table 1). The highest  diversity at the lower elevation indicates 

poor floristic similarities between adjacent sites which contribute for poor species 

richness. Contrarily, the  diversity at the higher elevations is high, but the dominance 

of few species is a reason for the low species richness. 

 

5.4.3 Plant communities 

Based on the hierarchical clustering, we found four distinctive plant communities along 

the elevational gradient. The indicator species that characterize the plant communities 

are in agreement with the species used in the classification of the forests of northeast 

tropical Africa (Friis 1992). Accordingly, the plant communities identified in this study 

belong to the dry single-dominant Afromontane forest, which is a transition between the 

dry single-dominant Afromontane forest and East African evergreen and semi-

evergreen bushland. The Juniperus procera―Clutia lanceolata community is found on 

Tigrean plateau (Figure 5.6). The indicator species of this plant community belong to 

the dry single-dominant Afromontane forests, which are commonly found in the 

northwest and southeast Ethiopian Highlands (Friis 1992).  

The Abutilon longicuspe―Calpurnia aurea and Dracaena ombet―Acacia 

etbaica communities are categorized under the dry single-dominant Afromontane forest 

of the escarpments, and transition area between the dry single-dominant Afromontane 

forest of the Tigrean plateau and the East African evergreen and semi-evergreen 

bushland and thicket of the Afar lowlands (Friis 1992). The lower species turnover in 

the two communities (Figure 5.4) contributes to the higher floristic similarities. The two 

plant communities are mainly found on sloping terrain characterized by shallow soils 

and frequent rock outcrops. This forest type includes a range of physiognomic types, 

from typical forest to evergreen scrub with dispersed trees. Many of the plant species 

recorded in the two plant communities are also recorded on steep terrains of Eritrea, 

Djibouti and Somalia (Friis 1992). Besides anthropogenic reasons, the vegetation on the 

escapement is affected by mass tree dieback (see Chapter 6). Such disturbance might 

create a favorable environment for the regeneration of many species that increase the 

species richness in this part of the landscape (Denslow 1980; Bongers et al. 2009). The 

dominance of Cadia purpurea and Tarchonanthus camphoratus in the Abutilon 
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longicuspe―Calpurnia aurea plant community is evidence of the severe forest 

degradation in the escarpment.  

The Acacia mellifera―Dobera glabra community is dominated by the 

Fabaceae family and is located at the foot slope of the lower dry Afar lowlands, where 

the alluvial deposits have led to a thicker soil layer and thus higher soil moisture than on 

the upper slopes where Abutilon longicuspe―Calpurnia aurea and Dracaena 

ombet―Acacia etbaica communities are located. Based on Friis (1992), the Acacia 

mellifera―Dobera glabra community belongs to the East African evergreen and semi-

evergreen bushland and thicket.  

  

5.5 Implications for conservation 

In developing regions like northern Ethiopia, the conflict between agriculture and 

forestry makes conserving large forests for their biodiversity values difficult (Margules 

et al. 2007). Therefore, it is important to prioritize biodiversity conservation sites. Thus, 

information on diversity of species along environmental gradients plays a key role in 

conservation planning (Naveh and Whittaker 1979). A large part of the forest remnants 

are found on the escarpment of the Great Rift Valley, which is less suitable for 

agricultural activities. This may be an opportunity to obtain more land for biodiversity 

conservation. Since the concept of biodiversity conservation prioritization is based on 

species richness, endemism and threat of extinction, further investigations on the degree 

of overlap among these criteria are recommended (Reid 1998). Conserving a large 

number of species may provide the opportunity to conserve species that are rare and 

whose ecosystem regulatory role may not be yet known (Huston and Gilbert 1996). 

Thus, besides the species-rich zones, conservation programs should also consider plant 

communities that may not be species rich, but may include endemic and threatened 

species. This is typically for northern Ethiopia, where church forests and other small 

forest fragments play a meaningful role in conserving plant diversity. To conserve a 

large number of species and plant communities, it is worth establishing a biodiversity 

conservation corridor along elevational gradient that includes the four plant 

communities. Such conservation approach may provide the opportunity to conserve 

species like Dracaena ombet, which is listed on the Red List of the IUCN as an 
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endangered species and is found in the Dracaena ombet―Acacia etbaica community 

that needs conservation priority. 

In this study, we covered the spatial diversity of plant species and 

communities. Since the vegetation in the study area has been continuously changing 

(Darbyshire et al. 2003), it is important to study the species composition and 

distribution patterns over time (Magurran 2007). Recently, the over-exploitation of 

canopy tree species like J. procera and O. europaea subsp. cuspidata has led to the 

gradual replacing of the tree dominated landscapes with pioneer shrub species (e.g., 

Cadia purpurea, Tarconanthus camphoratus). Such a loss of or change in habitat may 

also affect the diversity of fauna, epiphytes, and other associated species, which have 

rarely been studied. Similar to the dry Afromontane forest at Mafai, Tanzania, mosses 

are commonly found hanging on big trees. these are important for keeping the 

microclimate cooler during the dry seasons by trapping and maintaining moisture from 

the atmosphere (Lyaruu et al. 2000). A further deterioration of the remaining forests 

will seriously affect the socio-economic and environmental conditions of the region. 

Thus, it is important to define conservation priorities and take urgent action to protect 

these habitats. Recently, conservation of biodiversity in the dryland ecosystems has 

received more attention (CBD 1992), and conserving these last natural forest remnants 

will address local, national, and international conservation goals. 
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6 EFFECTS OF MASS TREE DIEBACK ON STAND STRUCTURE AND 

DIVERSITY IN A DRY AFROMONTANE FOREST, NORTHERN 

ETHIOPIA  

 

6.1 Introduction  

Dead standing trees (hereafter snags) of the two keystone species Juniperus procera 

(Cuperessaceae) and Olea europaea subsp. cuspidata (Oleaceae) were frequently 

observed in a dry Afromontane forest remnant in northern Ethiopia (Desa’a forest). The 

local people noticed that mass tree dieback occurred in the study area in the late 1980s. 

Changes in forest composition and structure may result from periodic, abrupt, and 

catastrophic environmental impacts (e.g.,  White 1979) depending on local situation of 

the forest, including environmental heterogeneity, regeneration success, and 

competition (e.g., Chen et al. 2004). Forest dynamics range from those that are the 

result of individual tree senescence and fall, and those that are the result of large 

disturbances such as windstorms (White 1979). Human disturbance (e.g., Feoli et al. 

2002; Darbyshire et al. 2003) and climate change (e.g., Dale et al. 2000; Hansen and 

Dale 2001; Lingua et al. 2008) are the major driving forces that shape forest 

ecosystems. Studies in other areas indicate that mass tree dieback affects species 

composition and diversity by affecting certain species and size classes, and by changing 

the light environment of the understory (Slik 2004; Engelbrecht et al. 2007). 

The occurrence of large number of snags in the dry Afromontane forest is a 

notable sign of natural forest degradation. However, snags are important ecological 

components of forest ecosystems (Franklin et al. 1987). Snags also an important source 

of nutrients (Kueppers et al. 2004), serve as habitats for a wide range of plant and 

animal species (Ohmann et al. 1994; Harmon et al. 2000) and as carbon storages 

(Kueppers et al. 2004). In steep terrains like in the study area, snags play important 

roles in soil and water conservation (Russell et al. 2006). On the other hand, increased 

snag density makes the forest more vulnerable to fire hazards and forest managers need 

to pay more attention to sites with high snag densities (Agee and Skinner 2005; Holden 

et al. 2006). Snags also contribute to the structural diversity of stands (Hennon and 

McClellan 2003). However, snags have been removed from the studied forest for 

fuelwood, which is partly due to lack of knowledge on the roles of snags in ecological 

processes. It is therefore important to provide information to forest managers on the 
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roles of snags in the ecological process so that they define a standard number of snags 

to be retained in the forest (Ganey 1999; Marage and Lemperiere 2005). 

Understanding the extent of tree dieback and spatial patterns of snags is 

therefore useful in managing forests (Craig and Friedland 1991; Gitlin et al. 2006). In 

particular, understanding the spatial distribution of snags in forests provides useful 

information to plan assisted regeneration and to investigate the role of snags in 

maintaining habitats for wildlife, soil protection, and other ecosystem services. 

However, the status of snags in the tropics has been less studied (Grove 2001). 

Although a few studies exist on the ecology of dry Afromontane forest remnants in 

northern Ethiopia (e.g., Aerts et al. 2006c; Aynekulu et al. 2009), they are largely 

focused on anthropogenic-related disturbance and did not take tree dieback into 

consideration. 

With a rapid development of remote sensing, it is possible to address a number 

of ecological questions using remotely sensed data. Vegetation indices, for instance, 

have been widely used to examine the biological and abiotic components of forest 

ecosystems at different scales (Huete et al. 2002). ASTER imagery has a 16-days revisit 

time with 15-m spatial resolution in the visible and near infrared bands and has been 

used in many ecological studies (Clark et al. 2004; Muukkonen and Heiskanen 2005; 

Buhe et al. 2007; Rivero et al. 2007; García et al. 2008; Yüksel et al. 2008). It is 

therefore hypothesized that the normalized difference vegetation index (NDVI) from 

ASTER imagery can estimate the extent of mass tree dieback of J. procera and O. 

europaea subsp. cuspidata. 

Thus, the objectives of this study are to investigate (i) the extent and spatial 

patterns of mass tree dieback of J. procera and O. europaea subsp. cuspidata, (ii) the 

applicability of NDVI of ASTER imagery in quantifying the extent of mass tree 

dieback, and (iii) the influence of mass tree dieback of the two species on the overall 

stand structure and species diversity in a dry Afromontane forest in northern Ethiopia.  

 

6.2 Material and methods  

6.2.1 Study site  

The study was conducted in the Desa’a Forest (13o53' - 13o56' N and 39o48' - 39o51' E), 

which is located on the western escarpment of the Great Rift Valley in northern Ethiopia 
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(Figure 6.1). The study area lies between the Tigrean plateau (2720 m a.s.l.) and the 

Afar lowlands (1400 m a.s.l.). Based on the forest classification of northeast tropical 

Africa (Friis 1992), Desa’a forest is classified as dry single-dominant Afromontane 

forest with J. procera in the canopy and O. europaea subsp. cuspidata in the understory 

as dominant species. These are drought-tolerant species (Cuneo and Leishman 2006; 

Breshears et al. 2009) widely grown from Arabia to the southern Africa. Desa’a forest is 

a national forest priority area, but illegal logging and free grazing are commonly 

practiced. 

The plateau section of the study site receives a mean annual rainfall of 532 

mm (Abegaz 2005). The climate of the study area is influenced by its elevation in which 

the decline in rainfall and increase in temperature from the upland plateau to the eastern 

slopes are sharp (Degefu 1987). The geology is characterized by Enticho sandstone and 

crystalline basement (Asrat 2002). A large part of the study site is characterized by 

shallow soils and frequent rock outcrops.  
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Figure 6.1 Location of the study area indicating the 57 sampling plots on a contour 
background map. 

  

6.2.2 Data collection  

Five transects were established perpendicular to the main slope (W-E) in Desa’a forest 

in 2008. Vegetation data were collected using 57 plots measuring 50 m × 50 m laid out 

at 100-m elevation intervals in transects (Figure 6.1). Percentages of snags of O. 

europaea subsp. cuspidata were determined in an additional 18 plots along two 

transects established in a north-south direction in the mid elevation (1800 – 2400 m) of 

the landscape (Figure 6.5). The percentage of snags for each plot was determined by 

counting the number of live stems and snags. In each plot, all individual woody plants 

were enumerated, and stand density and basal area per hectare for all trees including 

snags with a height > 1.5 m and diameter > 2 cm at breast height (DBH) were 

determined. Elevation, aspect, and slope were also measured for each plot. In this study, 

only J. procera and O. europaea subsp. cuspidata are used because they are the 
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dominant tree species where the effect of mass tree dieback is clearly observed in the 

field. A topographic map of the study site was used to set the sampling design and 

collect the coordinates of the plots. A GPS device was used to establish the plots in the 

field. 

 

6.2.3 Data analyses 

The extent and spatial pattern of mass tree dieback along elevation and aspect are 

analysed in terms of the percentage of snags of the two species, which is calculated as a 

ratio between the number of dead stems to the total dead and live stems per plot. The 

effect of mass tree dieback on the population structures of J. procera and O. europaea 

subsp. cuspidata is summarized using diameter class distributions. In order to quantify 

the changes in stand structure, stand density, diameter distribution, and basal area with 

and without snags of the two species are compared. Hill’s diversity numbers (Hill 1973) 

are used to measure species diversity (see section 4.2.3).  

An NDVI map is generated from ASTER imagery, which was taken in the dry 

season of 2006. The NDVI is calculated based on the visible and near infrared bands 

(Tucker 1979). To match the pixel and plot sizes, the NDVI map was re-sampled to a 

50-m pixel value using the nearest-neighbour resampling method (Lillesand and Kiefer 

2000). Image processing and mapping are undertaken using the Integrated Land and 

Water Information System (ILWIS 3.3) remote sensing and GIS software (ITC 2001). 

Since most of the data do not follow normal distribution, the non-parametric 

Kruskal–Wallis ANOVA is used to compare differences in stand structure and species 

diversity. Linear regression is used to determine the relationship between elevation and 

percentages of snags of the two species. All tests of statistical significance are decided 

at α = 0.05 level. Statistical analyses are performed in SPSS 13.0 for Windows (SPSS 

Inc. 2004). 

 

6.3 Results  

6.3.1 Extent and spatial patterns of tree dieback 

The total mean (± SE) live stems and snag densities (J. procera and O. europaea subsp. 

cuspidata) are 147 ± 28 and 147 ± 23 stems ha-1, respectively. The percentage of snags, 

which is the ratio of the dead stems to the sum of live and dead stems per plot, of O. 
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europaea subsp. cuspidata (60.2  5.4 %) is slightly higher compared to J. procera 

(56.8  7.15 %), but not significantly (2 = 0.006, P = 0.941).  

The snag densities of both species are significantly reduced above 2500 m 

(Figure 6.2). A large abundance of live J. procera and O. europaea subsp. cuspidata 

stems occur above 2600 and 2400 m, respectively. 

   

 

Figure 6.2 Mean densities of live stems and snags of Juniperus procera, Olea 
europaea subsp. cuspidata, and total (pooled data of the two species) 
along an elevational gradient in a dry Afromontane forest, northern 
Ethiopia. 

 

Elevation (m) 
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The percentage of snags of both species is significantly related to elevation and the 

overall percentage of snags ranges from 0 % at higher elevations to 100 % at lower 

elevations (Figure 6.3; Figure 6.4). 

 

 

Figure 6.3 Percentage of snags of Juniperus procera and Olea europaea subsp. 
cuspidata along an elevation gradient in a dry Afromontane forest, 
northern Ethiopia. 

 

The percentage of snags of O. europaea subsp. cuspidata in the plots located 

on the south-eastern aspects (83  6 %) is significantly higher (2 = 7.87, P = 0.005) 

than those located on the north-eastern (47.3   8.4 %). However, snag percentage is not 

significantly related to slope. 

 

Elevation (m) 
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Figure 6.4 Dry Afromontane forest with a) high density of snags at lower 
elevations, b) no tree die-off at higher elevations (> 2500 m) in a dry 
Afromontane forest, northern Ethiopia. 

  

6.3.2 Estimation of mass tree die-off using NDVI  

The False Colour Composite and the NDVI maps give a visual impression of the 

alternating pattern of high and low extent of tree die-off across the landscape (Figure 

6.5). The percentage of snags per plot ranges from 16 to 100 % and the NDVI values 

range from -0.08 to 0.18.  
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Figure 6.5 False Colour Composite (left) and NDVI map of ASTER imagery 
(right) showing low () and high () extent of tree die-off (perentage 
snags per plot) along a micro-topography in a dry Afromontane forest, 
northern Ethiopia. 

 

The extent of tree die-off of O. europaea subsp. cuspidata in the plots located 

on the south-eastern exposure is significantly higher (P = 0.004) than those located on 

the north eastern aspect, indicating that micro-topography plays a role in tree mortality. 

The NDVI of Aster imagery is also found to be good for estimating the tree mortality 

pattern (Figure 6.6). 
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Figure 6.6 Relationship between mass tree dieback (per cent snag per plot) and 
NDVI along micro-topography in a dry Afromontane forest, northern 
Ethiopia. 

 

6.3.3 Mass tree dieback, stand structure and species diversity 

Stand structure  

The mass dieback of the two key species significantly reduced the stem density stand 

and basal area of live stems in the forest by 30 and 44 %, respectively (Table 6.1). The 

diameter and height distribution of the two species are also significantly affected by 

mass tree dieback of the two species (Figure 6.7). The diameter distributions of both 

species have a truncated inverse-J shape indicating a serious regeneration problem of 

these keystone species in the study area. 
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Figure 6.7 Diameter and height distribution of J. procera and O. europaea subsp. 
cuspidata with snags (pre-tree dieback) and without snags (post-tree 
dieback) in a dry Afromontane forest, northern Ethiopia. 

 

The mean diameter of snags of J. procera (18 cm) is significantly higher (2 = 

98.23, P = < 0.001) than that of the live stems (13 cm). Similarly, the mean diameter of 

snags of O. europaea subsp. cuspidata (18 cm) trees is not much higher (2 = 6.68, P = 

0.01) than the mean diameter of live stems (17 cm). However, this comparison does not 

consider the diameter growth of the live stems after the tree death incidence. The 

percentage of snags is high for large diameter classes (> 40 cm) for J. procera (Figure 

6.8). Although no clear trend can be observed in the percentage of snags in the different 

Diameter class (cm) 

Height class (cm) 
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diameter class of O. europaea subsp. cuspidata, higher values can be observed for 

larger trees (40-50cm). 

 

 

Figure 6.8 Percentage of snags according to stem diameter class in a dry 
Afromontane forest, northern Ethiopia. 

 

Species diversity 

A total of 9632 stems belonging to 83 species and 42 families were recorded in the 57 

plots. Fabaceae, Lamiaceae, and Asteraceae are the 3 dominant families represented by 

7, 6 and 5 species, respectively. Juniperus procera and O. europaea subsp. cuspidata 

are the two dominant species with relative abundance of 18 and 20 %, respectively. The 

mass tree dieback the two species did not influence richness, evenness, and species 

diversity (Table 6.1). 
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Table 6.1  Stand structure and species diversity in a dry Afromontane forest, northern 
Ethiopia. Stand condition refers (mean  SE) values with and without snags 
of Juniperus procera and Olea europaea subsp. cuspidata in a dry 
Afromontane forest, northern Ethiopia 

Attribute Plots Stand condition 2 P 

(n) With snag Without snag  
Stem density (stems ha-1)   

J. procera 31 222 (31) 133 (33) 9.22 0.006

O. europaea 49 154 (15) 63 (10) 11,07  0.001

Stand (all species) 57 792 (47) 553 (30) 16.01 < 0.001

Basal area (m2 ha-1)   

J. procera 31 6.03 (0.92) 2.90 (0.75) 11.20 0.001

O. europaea 49 5.93 (0.58) 2.55 (0.47)  23.29 < 0.001

Stand (all species) 57 10.41(1.01) 5.79 (0.68)  15.80 < 0.001

Species richness (average per plot) 57 14 (1) 14 (1) 0.08 0.772

Hill’s N0 (total species richness) 57 83 83 - -

Hill’s N1 57 7.63 (0.43) 7.75 (0.42) 0.06 0.812

Hill’s N2 57 6.08 (0.4) 6.17 (0.4) 0.07 0.79

Hill’s E1 57 0.54 (0.02) 0.55 (0.01) 0.56 0.448

 

6.4 Discussion 

6.4.1 Extent and spatial patterns of tree dieback 

The extent of mass tree dieback is high for both species in the study area. The mass tree 

dieback has significantly affected the abundance and spatial distribution of these 

dominant species. Canopy tree mortality can determine to a large extent the spatial and 

temporal scales of forest dynamics (Szwagrzyk and Szewczyk 2001). The effects of 

forest disturbance on stand structure and diversity is more severe in dry than in mesic 

tropical forests (Nepstad et al. 2007; Bongers et al. 2009). Changes in stand structure 

and diversity affect forest-climate interactions by changing canopy structure (Laurance 

2004) and reducing the abundance of associated species like epiphytes, which play 

important roles in ecosystem functioning (Holscher et al. 2004).  

The similar decreasing trend in the percentage of snags for both species along 

an elevation gradient indicates the non-randomness of tree death in the study area. This 

also suggests that trees at the lower and middle elevation, which are exposed to lower 

moisture and higher temperature conditions, were more affected. Studies have shown 

that extent of drought-driven tree death increases following moisture stress gradients 
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(Hanson and Weltzin 2000; Suarez et al. 2004). Lower elevations have warm 

temperatures where a slight increase in temperatures or a short drought can cause mass 

death of trees (Adams et al. 2009). A study on the density of snags in a tropical dry 

forest in western Mexico also shows a high percentage of snags at the driest site (Segura 

et al. 2003). A study in northern Arizona reports a decline in tree mortality with 

increasing elevation (Gitlin et al. 2006). Thus, lower abundance of live trees at lower 

elevations (Figure 6.3) implies that the distribution of the two species may be shifted 

500 m to higher elevation from the lower extremes in the study area. 

The percentage of snags of O. europaea subsp. cuspidata is slightly higher 

than that of J. procera. This is partly because O. europaea subsp. cuspidata is largely 

found at lower elevations compared to J. procera (Figure 6.3). Tree dieback is more 

pronounced in large trees, particularly in the case of J. procera (Figure 6.8). Similar 

findings were reported for the Amazon forest (Nepstad et al. 2007), northern Arizona 

(Mueller et al. 2005), and Indonesia (Slik 2004), where large trees were more affected 

by drought-triggered mortality. Since large trees use more water per unit time than 

smaller trees (Meizner 2003), the higher death rate of larger trees following elevated 

temperatures is probably due to the higher vulnerability of larger trees to xylem 

cavitations especially during extreme drought conditions (Brodribb and Cochard 2009). 

Although there is a clear trend in the percentage of snags along an elevation 

gradient, some variations along the aspects were observed. Accordingly, percentages of 

snags are higher in the plots found in the south-eastern aspects. Similarly, mortality of 

pine and juniper trees is higher on the southern than on the northern aspect in mid-

elevation woodlands in Arizona (Gitlin et al. 2006). This can be due to the exposition of 

south-eastern plots to thermal wind, while plots in north-eastern aspects are protected by 

micro-topography. Slopes with a south-eastern aspect also receive a higher heat load 

during the day than slopes oriented to the north-east (McCune and Keon 2002).  

The high mortality of larger trees, particularly in the middle and lower 

elevations of O. europaea subsp. cuspidata, leads to a high variation in the level of 

greenness, which makes NDVI very suitable for estimating tree mortality patterns. The 

same applies to ASTER imagery with its relatively high spatial resolution (15 m). Other 

studies have also documented the applicability of such remotely sensed data in similar 

ecological studies. Levin et al. (2007) find NDVI of ASTER imagery useful for 
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predicting plant cover and species richness in dry environments in Israel. The Moderate 

Resolution Imaging Spectroradiometer (MODIS) satellite imagery for estimating insect-

triggered tree mortality in a pine plantation in Australia based on NDVI (Verbesselt et 

al. 2009).  

 

6.4.2 Mass tree dieback, stand structure and species diversity 

Stand density, basal area and diameter distribution are significantly affected by the mass 

tree dieback of J. procera and O. europaea subsp. cuspidata, which indicates the 

dominance of the two species in the stand. The wider gap created in the diameter 

distribution (Figure 6.7) due to tree dieback suggests that the stand structure did not 

recover after the incidence. The return to the pre-disturbance status is less likely due to 

the slow growth and poor regeneration of the species (Aynekulu et al. 2009; Wassie et 

al. 2009a). The increase in canopy gaps caused by mass tree dieback might have 

increased the soil temperature and reduces soil moisture availability, which are major 

limiting factors for the regeneration of many dry Afromontane tree species (Teketay 

1997). Moreover, mass tree dieback may also reduce the availability of nursing trees for 

a successful establishment of seedlings (Mueller et al. 2005; Aerts et al. 2007). Mass 

tree dieback (74 % snags) strongly affects the reproductive range (10 - 40 cm) of 

Juniperus procera (Couralet et al. 2005), which may influence the maintenance of a 

viable plant population.  

The openness of the canopies due to tree dieback also changes the understory 

light conditions and encourages the establishment of pioneer species (Slik 2004). 

Accordingly, dry Afromontane forests in northern Ethiopia, which were dominated by 

J. procera and O. europaea subsp. cuspidata prior to disturbance, have been gradually 

replaced by encroaching light-demanding shrubs and herbs such as Cadia purpurea and 

Tarchonanthus camphoratus (Gebreegziabher 1999; Feoli et al. 2002). Thus, mass tree 

dieback in the dry Afromontane forests in the study area may further lead to a gradual 

replacement of the high canopy trees by pioneer shrub and herb species. 

Despite the massive decline in the abundance of the two dominant species, 

overall species evenness and diversity are not affected. This is because of the 

dominance of J. procera and O. europaea subsp. cuspidata in the community even after 

the tree dieback. A review of studies from 1985 to 1996 concludes that disturbance and 
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diversity have no strong relationship (Mackey and Currie 2001). Unlike in moist 

tropical forests, disturbance in dry forests does not create diverse habitats that 

encourage tree species diversity (Denslow 1980; Engelbrecht et al. 2007). Spatial and 

temporal variations in gap disturbance regimes may not explain variations in species 

richness (Engelbrecht et al. 2007). Since data on species richness before the mass tree 

dieback incidence are not available, there is no evidence on whether some species have 

disappeared from the community or whether others are new. This implies that species 

richness may not be a good indicator of community disturbance due to mass tree 

dieback in this study. 

Even if no significant difference in species diversity can be observed, a 

reduction in the abundance of the two dominant tree species might reduce the net 

primary productivity of the forests that affects the energy flow and nutrient recycling. 

Wittebolle et al. (2009) also indicate that the original species evenness plays a key role 

in stabilizing ecosystem productivity. Moreover, the poor evenness of species 

distribution in the study site due to the dominance of J. procera and O. europaea subsp. 

cuspidata also makes the study area poor in species diversity, which may make it less 

resistant to environmental stress (Wittebolle et al. 2009). 

 

6.5 Conclusions and management implications 

The results indicate that mass tree dieback was not a random process, but significantly 

related to elevation and aspect. The lower elevation and south-eastern aspects are more 

affected by mass tree dieback. This implies that the distribution of the two species may 

shift to a higher elevation from the lower extremes. The tree dieback of the two 

dominant tree species has significantly reduced the stand density and basal area, but has 

had no effect on species diversity. The population structure of the two species is 

affected by the mass tree dieback, and both species have smaller seedling and sapling 

populations than mature individuals. Besides mass tree dieback, continued pressure on 

the J. procera and O. europaea subsp. cuspidata trees for their economic value is a 

major concern in the tree-scarce landscapes in northern Ethiopia. Thus, it is important to 

reduce further anthropogenic pressure on the forest to restore the population of the two 

species. It is also important to increase their seedling population through assisted 
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restoration measures. Sites with high snag density should also be carefully managed to 

reduce potential fire incidents. 

Climate-driven mortality is difficult to predict, and the frequency of extreme 

climatic conditions that greatly affect semi-arid habitats is expected to increase (IPCC 

2007), and may cause a further decreases in the habitat range of canopy species. Thus, 

further degradation of the few natural forest remnants in northern Ethiopia might lead to 

a change in plant community composition in the long run. Forest managers therefore 

need to plan for potential climate change. 
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7 REGENERATION RESPONSE OF NATIVE TREE SPECIES TO 

EXCLOSURE IN A DRY AFROMONTANE FOREST, NORTHERN 

ETHIOPIA 

 

7.1 Introduction  

In many tropical forests, excessive deforestation has hampered natural regeneration and 

seedling establishment and affected the diversity and structure of plant communities 

(Denslow 1980; Runkle 1982; Denslow 1987; Bussmann 2001). Similarly, forests in 

Ethiopia have been affected by climatic and anthropogenic factors for centuries (Friis 

1992; Machado et al. 1998; Tekle and Hedlund 2000; Zeleke and Hurni 2001; Dessie 

and Kleman 2007). Historically, soil erosion as a result of vegetation clearing in the 

highlands of Tigray, for instance, took place in the Middle Holocene (Bard et al. 2000; 

Darbyshire et al. 2003). 

The vascular plants of the Afromontane forests of Ethiopia maintain their 

population through natural regeneration (Teketay 1997; Mamo et al. 2006). However, 

large-scale degradation of natural forest in Ethiopia has created a major challenge with 

respect to the regeneration of key native tree species (Wassie et al. 2009a), while 

favoring shrub and herb species. For instance, Desa’a Afromontane forest, which was 

dominated by Juniperus procera and Olea europaea prior to disturbance, has been 

gradually replaced by encroaching light-demanding shrubs such as Cadia purpurea and 

Tarchonanthus camphoratus. 

Natural regeneration is a site-specific ecological process, and it is usually 

difficult to characterize the factors that control regeneration processes (Schupp 1988; 

Khurana and Singh 2001). Protecting areas from livestock intervention i.e., a practice 

termed exclosure, is an assisted natural regeneration strategy to restore degraded forests 

(Parrotta et al. 1997; Shono et al. 2007). Many degraded sites have been managed as 

exclosures in northern Ethiopia, and attempts have been made to document the 

regeneration and ecology of the plants in these exclosures. Studies have indicated that 

vegetation recovery is quick in the younger stages (Mengistu et al. 2005; Abebe et al. 

2006). However, exclosures that are older than 8 years do not show significant increases 

in species diversity and biomass production (Asefa et al. 2003; Yayneshet et al. 2009). 
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Some studies on vegetation restoration in Ethiopia have suggested that the presence of 

matured trees as seed sources (Tekle and Hedlund 2000), plantation forests (Senbeta 

and Teketay 2001; Yirdaw 2001; Lemenih et al. 2004), and minimization of livestock 

pressure (Aerts et al. 2007) create favorable conditions for the regeneration of native 

species. Although some studies exist on the regeneration and ecology of J. procera and 

O. europaea in the northern Ethiopian highlands (Aerts et al. 2006c; Wassie et al. 

2009a) little is known about regeneration in the relatively larger dry Afromontane forest 

remnants in northern Ethiopia. Thus, the aim of this study is to investigate the response 

of natural regeneration of J. procera and O. europaea to a 3-year exclosure in 

comparison to an open forest management system in a dry Afromontane forest in 

northern Ethiopia. 

 

7.2 Material and methods 

7.2.1 Study site 

The study was conducted in Desa’a forest, which is one of the dry Afromontane forest 

remnants in northern Ethiopia (Friis 1992). The site is located at 13°56' N, 39°49' E at 

an elevation of 2700 m above sea level (Figure 7.1). The study is located on the Tigrean 

Plateau, which lies immediately above the escarpment of north western Great Rift 

Valley.  A large part of the site is located on shale, limestone, and sandstone of the 

Tertiary and Mesozoic era (TFAP 1996). Based on the diverse geological formations, 

the soils are variable; the dominating soil types in the study region are Leptosols, 

Cambisols, Vertisols, Regosols, and Arenosols (TFAP 1996). 
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Figure 7.1 Location of the study sites and the distribution of plots in the open 

forest (circle) and exclosure (squares) in a dry Afromontane forest, 
northern Ethiopia. 

 

7.2.2 Study species  

The forests of eastern and north-eastern Africa are categorized into 9 major floristic 

groups (see Friis 1992). Accordingly, Desa’a forest is categorized as a dry single-

dominated Afromontane forest, which is characterized by a dry climate (annual 

precipitation less than 1000 mm) and with J. procera and O.europaea subsp. cuspidata 

as dominant species. Juniperus procera is commonly fround from Arabia to Zimbabwe 

(Hall 1981). Due to heavy pressure on this species, the Food and Agriculture 

Organization (FAO) has listed it as a threatened species that requires in-situ 

conservation priority beginning 1985–1989 (FAO 1975). James Bruce first documented 

J. procera as a common forest tree species in the highlands of northern Ethiopia during 

his expedition to trace the origin of the Blue Nile (1768–1773) (Bruce 1790 cited in 
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Friis 1992). Juniperus procera has a slow germination rate (Yirdaw and Leinonen 2002) 

and low germination capacity, which are mainly attributed to seed dormancy (Tigabu et 

al. 2007). 

The genus Olea has 33 species, and Olea europaea subsp. cuspidata is one of 

the subspecies that was previously named Olea africana. The species is commonly 

called the African olive and is widely distributed from Arabia to southern Africa. 

Although it is a useful tree species in its natural habitat, it is categorized as an invasive 

plant in countries like Australia (Cuneo and Leishman 2006) and Hawaii (Santos et al. 

1992). Olea europaea subsp. cuspidata is a common species in the highlands of 

Ethiopia.  

 

7.2.3 Sampling design  

The exclosure and an adjacent open forest, which is not protected from livestock, were 

mapped using a global positioning system (GPS) device. Later, the GPS data were 

transferred to a geographic information system (GIS) environment for further mapping. 

The exclosure and open forest areas cover 33 and 43 ha, respectively. Data on the 

floristic and structural compositions of the standing vegetation were collected in 32 

randomly selected plots (20 m × 20 m), and nested plots (10 m × 10 m) were used to 

investigate the seedling bank in the exclosure and the adjacent open forest. Emphasis 

was placed on the two target species, i.e., J. procera and O. europaea subsp. cuspidata. 

 

7.2.4 Data analysis 

The importance of a species is determined using the importance value index (IVI) (see 

section 4.2.3). Species diversity is determined using the Shannon diversity index and 

Simpson’s Index of diversity given by (Magurran 2004). The generalized linear model 

(GLM) with quasi-Poisson distribution (with log link) is used to determine the effect of 

management on seedling abundance of J. procera and O. europaea subsp. cuspidata in 

R software version 2.7.0 (R Development Core Team 2008). The family quasi-Poisson 

distribution is used because there were over-dispersions when Poisson distribution was 

run (Crawley 2007). For a better visualization and consideration of spatial correlations 

(Webster and Oliver 2001), the spatial distribution of seedling density (number of 
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seedlings per plot) is mapped using the ordinary kriging interpolation method with the 

Integrated Land and Water Information System (ILWIS 3.3) GIS software (ITC 2001). 

 

7.3 Results 

7.3.1 Floristic composition  

In total, 17 vascular plant species (with measured DBH) belonging to 12 families were 

recorded in the exclosure and the open forest; J. procera is the dominant species with 

the highest relative importance value (Table 7.1). Juniperus procea, Olea europaea  

subsp. cuspidata, Solanum schimperianum, and Maytenus senegalensis are the most 

common species found in more than 75 % of the plots, while Erica arborea is among 

the rare species, recorded only in one plot.  
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Table 7.1 List of standing and seedling species recorded in the exclosure and open forest in a dry Afromontane forest, northern Ethiopia 

Family Species 
Abundance 

 
Frequency 

 
Dominance 

  
IV (%) 

 
    Exclosure Open Exclosure Open Exclosure Open Exclosure Open 
Overstory species 
            
Cupressaceae Juniperus procera Hochst. ex Endl. 642 814 100 100 9.53 11.35 161.01 170.54 

Oleaceae Olea europaea L. subsp. cuspidata (Wall ex G. 
Don.) 

57 42 94 81 2.19 2.46 41.71 39.01 

Solanaceae Solanum schimperianum Hochst. 120 268 88 100 0.03 0.06 29.36 45.64 

Celasteraceae Maytinus senegalensis (Lam.) Exell. 35 22 88 63 0.13 0.08 21.64 16.5 

Sapindaceae Dondonaea viscosa Jacq. 84 5 19 13 0.12 0.03 13.04 3.43 

Anacardiaceae Ruth species 13 11 25 31 0.35 0.33 8.99 10.3 

Euphorbiaceae  Clutia lanceolataJaub. & Spach  10 16 19 31 0 0 4.66 8.4 

Apocynaceae Carissa edulis Vahl 14 0 13 0 0.04 0 4.16 0 

Fabaceae  Acacia etbaica Schweinf. 1 0 6 0 0 0 1.32 0 

Rhizophoraceae Cassipourea malosana Alston 1 3 6 13 0 0 1.32 3.07 

Moraceae Ficus palmata Forssk. 1 0 6 0 0 0 1.32 0 

Rubiaceae Canthium setiflorum Hiern 1 0 6 0 0 0 1.32 0 

Solanaceae Solanum adoense Hochst. ex A. Braun  1 0 6 0 0 0 1.32 0 

Rubiaceae Canthium oligocarpum Heirn 2 1 5 8 0.01 .02 0.61 0.42 

Ericaceae  Erica arborea L.  1 0 0 0 0.01 0 0.5 0 

Fabaceae Cadia purpurea Ait. 3 1 3 4 0.02 0.03 0.4 0.6 

Sapindaceae Pappea capensis Eckl. & Zey 2 0 1 0 0.01 0 0.31 0 
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Table 7.1 continued 

Family Species 
Abundance 

 
Frequency 

 
Dominance 

  
IV (%) 

 
    Exclosure Open Exclosure Open Exclosure Open Exclosure Open 
Seedling species 
         
Oleaceae Olea europaea L. subsp. cuspidata 498 232 100 100     
Cupressaceae Juniperus procera Hochst. ex Endl 25 44 63 75     
Celastraceae Maytinus senegalensis (Lam.) Exell. 33 54 63 69     
Solanaceae Solanum schimperianum Hochst. 12 0 19 0     
Moraceae Opuntia ficus-indica (L.) Mill. 1 2 6 6     
Rhamnaceae Sageretia thea (Osbeck) M.C.Johnst. 2 0 6 0     
Sapindaceae Dondonaea viscosa Jacq. 11 0 13 0     
Flacourtiaceae Dovyalis abyssinica (A.Rich.) Warb. 1 0 6 0     
Lamiaceae Plectranthus ornatus Codd. 1 0 6 0     
Apocynaceae Carissa edulis Vahl 1 0 6 0         
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Species richness and diversity of woody plants are higher in the exclosure than in the 

open forest (Table 7.2). The stem density of J. procera is higher in the open forest than 

in the exclosure, while the density of O. europaea is higher in the exclosure than in the 

open forest. The average density of all woody plants in the open forest is higher than in 

the exclosure. The mean basal area in the open forest is slightly higher than in the 

exclosure.  

 
Table 7.2  Summary of vegetation attributes (Mean ± SE) of all woody species and 

densities of Juniperus procera and Olea europaea in an exclosure and an 
open management system in a dry Afromontane forest, northern Ethiopia 

Attribute Management 

Open Exclosure 
(n = 16) (n = 16) 

Stem density (stems ha-1) 
J. procera 1272 ± 170 947 ± 252 
O. europaea 67 ± 22 87 ± 19 
Stand (all species) 1853 ± 75 1499 ± 264 

Stand basal area (m2 ha-1)  21.1 19.4 
Species richness 9 14 
Shannon Diversity Index (H') 1.08 1.42 
Simpson's Index of Diversity (1-D)  0.56 0.63 
 

7.3.2 Structure 

The diameter distribution of J. procera indicates that the number of individuals in the 

lower diameter class, including seedlings, is very low (Figure 7.2). The highest numbers 

of J. procera individuals are found in the diameter class of 2- 6.9 cm declining with 

increasing diameter. Although the number of individuals in the open forest is somewhat 

higher than in the exclosure, the population structure in both sites follows a similar 

trend. The seedling population of O. europaea is much higher than in the subsequent 

higher diameter classes. Although the number of individuals is low, more O. europaea 

saplings were recorded in the excloure than in the open forest.  
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Figure 7.2 Diameter (DBH) class distribution of Juniperus procera and Olea 

europaea subsp. cuspidata in an exclosure and open forest in northern 
Ethiopia. 

 

7.3.3 Natural regeneration 

A total of 10 species of vascular plants was recorded in the seedling bank. Like in the 

standing vegetation, O. europaea, J. procera and M. senegalensis seedlings are the most 

dominant species and are observed in more than 65 % of the plots (Table 7.1). The 

seedling density of O. europaea is significantly higher in the exclosure than in the open 

forest. The seedling density of J. procera is slightly higher in the open forest than in the 

exclosure, but this is not statistically significant (Table 7.3).  

 

Table 7.3  Seedling density (Mean ± SE.) of Juniperus procera and Olea europaea in an 
exclosure and open forest in northern Ethiopia 

Species  Management F P 
 Open Exclosure 

J. procera  275 ± 156 156 ± 104 2.1 0.16 

O. europaea  1450 ± 929 3113 ± 1852 7.29 0.01 

 

The spatial distribution of J. procera and O. europaea seedling densities in the 

exclosure and open forest (Figure 7.3) indicates that protecting the forest has a different 

effect on the seedling abundance of the two species.  

Diameter class (cm) 
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Figure 7.3 Kriged maps showing spatial distribution of seedling density of 
Juniperus procera and Olea europaea in the exclosure and in the open-
access forest in northern Ethiopia. Numbers in the legend indicate the 
number of seedlings per plot (10 m × 10 m). 

 
7.4 Discussion 

The results show higher species diversity and seedling abundance in the exclosure than 

in the open forest, suggesting that protection of the forest contributes positively to the 

restoration of Desa’a forest. Similar findings have been reported for other protected 

areas in northern Ethiopia (e.g., Mengistu et al. 2005; Yayneshet et al. 2009). Although 

J. procera and O. europaea are the dominant species in Desa’a forest, they respond 

differently to exclosure in terms of regeneration. The seedling abundance of O. 

europaea is significantly higher in the exclosure than in the open forest (Figure 7.3). 

However, there is no evidence of any direct effects of exclosure on the abundance of J. 

procera, calling for further investigation of other influencing factors. The population 

structure of J. procera (Figure 7.2) also indicates that this species is less represented in 

the lower-diameter classes, in which higher regeneration and recruitment are needed to 

attain a viable population of the species. 

Although J. procera is the most dominant species in the standing vegetation 

and has higher availability of seeds in the study area, seedling abundance in both 
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exclosure and open forest is very low. This is also in agreement with the findings of 

Wassie et al. (2009a) who found lower regeneration of J. procera in church forests in 

northern Ethiopia. Although not statistically significant, regeneration of J. procera is 

higher at the open forest than at the exclosure (Table 7.3). This is in agreement with the 

findings of Mamo et al. (2006), who found poor regeneration of  J. procera under field 

conditions, suggesting a need for additional manipulation. Although some studies have 

indicated that light may not be a major limiting factor for the germination of J. procera 

(Sharew et al. 1997; Wassie et al. 2009a), the dense grass and herb cover in the 

exclosure might prevent optimum radiation reaching the forest floor (Yirdaw and 

Leinonen 2002; Teketay 2005) and thus influence germination (Cabin et al. 2002). 

Seed dormancy, which varies depending on the provenance of J. procera in 

Ethiopia (Tigabu et al. 2007), might also influence germination. The thick, less 

decomposable litter of J. procera (Prescott et al. 2000) in the exclosure also prevents 

seeds from contacting the soil. This might slow down the breaking of seed dormancy, 

which would ultimately hamper germination (Rotundo and Aguiar 2005; Cierjacks et al. 

2008). The thick litter in the exclosure might also have influenced emergence of newly 

germinated seedlings (Yirdaw and Leinonen 2002; Teketay 2005). Sharew et al. (1997) 

found that land preparation by raking and burning increased the germination capacity of 

this species. Hence, the relatively higher abundance of J. procera seedlings in the open 

forest than in the exclosure suggests that other factors such as absence of excessive 

shade, less litter, low livestock preference, and the breaking of seed dormancy through 

livestock trampling (Cierjacks et al. 2008) may determine regeneration. 

The seedling abundance of O. europaea is higher in the exclosure than in the 

open forest (Table 7.3), indicating that this species is negatively influenced by livestock 

browsing and other microsite characteristics such as shade. Studies indicate that the 

establishment and recruitment of O. europaea are better under shaded and protected 

conditions (Fetene and Feleke 2001; Bekele 2005; Aerts et al. 2006c; Aerts et al. 2008). 

In contrast, Tesfaye et al. (2002) found that O. europaea is a light-demanding species in 

the Harena forest in the south-eastern highlands of Ethiopia, which is wetter than the 

study site. This indicates that the establishment of  O. europaea requires shade in drier 

environments that reduces moisture loss during the dry season (Holmgren et al. 1997). 
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In line with this, Aerts et al. (2006b) also found successful regeneration of O. europaea 

under Euclea shrubs, which create a better moisture regime through thick humus and 

organic matter accumulation (Descheemaeker et al. 2006) in protected sites in northern 

Ethiopia. Rey et al. (2000) also found that regeneration of O. europaea is much 

influenced by the availability of moisture. Although mature individuals trees of this 

species are tolerant to browsing (Dansereau 1951; Dale et al. 2000; Tesfaye et al. 2002; 

Darbyshire et al. 2003; DeLong et al. 2008), seedlings are sensitive to herbivory 

(Tesfaye et al. 2002). Thus, protection of O. europaea seedlings from herbivory in the 

exclosure contributed to a higher abundance of seedlings than in the open forest. Like 

the findings of Aerts et al. (2008), coppicing shoots of O. europaea subsp. cuspidata are 

commonly observed in the exclosures and  can be used to restore Desa’a forest. 

Similar to findings elsewhere (Richter et al. 2001; Cabin et al. 2002), the 

exclosure in Desa’a forest favors grass and herbaceous species (Figure 7.4), which may 

lead to a gradual shift of the forestland to wooded grassland. Hence, it is important to 

reduce the grass cover to enhance the regeneration of tree species (Cabin et al. 2002). It 

is well documented that livestock is an important agent of regeneration (e.g., Cierjacks 

et al. 2008). However, in degraded environments where there is overgrazing, the impact 

of livestock with respect to enhancing regeneration is limited. Instead, livestock 

contribute negatively to the establishment of seedlings through intensive browsing 

(Wassie et al. 2009b). In such degraded environments, species such as O. europaea are 

frequently browsed in the absence of other feed sources, particularly during the long dry 

season, which does not allow the species to develop a viable population (Gunderson 

2000). 
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Figure 7.4 Exclosure (a) and open forest (b) in a dry Afromontane forest, northern 

Ethiopia. 
 
 
7.5 Implications for conservation and management 

The results of many studies concluded that there is a strong need to give priority to 

conservation of the existing natural forest remnants in northern Ethiopia before they 

lose their ecological resilience (Nyssen et al. 2004; Aerts et al. 2006c). In this regard, 

this study reveals that protecting the degraded natural forest contributes positively to the 

natural regeneration of O. europaea but not to J. procera in Desa’a forest. The findings 

of this study, therefore, provide scientific knowledge to support a change from the 

traditional pattern of exploitation to a targeted management of the species. However, 

management options or factors seem to influence the natural regeneration of J. procera 

other than protecting this species from livestock. It may also be worthwhile to consider 

other management options such as enrichment planting and reducing litter accumulation 

and dense grass cover, especially in the exclosure, as suggested by Yirdaw and 

Leinonen (2002), in order to maintain a viable population of J. procera. Based on the 

findings of this study, it is concluded that restoration of the degraded dry Afromontane 

forest remnants in northern Ethiopia through exclosures requires a better understanding 

of the ecological requirements of the different species involved. Since the objective of 

forest restoration is to improve the status of native tree species, experience from the 

exclosures in other areas should be carefully applied when attempting to restore 

degraded dry forest remnants in northern Ethiopia. This study is based on a 3-year 

protection period, and thus the results should be interpreted cautiously and extrapolated 

to other forests with care. 



Forest diversity in fragmented landscapes in northern Ethiopia: synthesis, implications 
for conservation, and further studies 

 

108 

 

8 FOREST DIVERSITY IN FRAGMENTED LANDSCAPES IN 

NORTHERN ETHIOPIA: SYNTHESIS, IMPLICATIONS FOR 

CONSERVATION, AND FURTHER STUDIES 

 

Deforestation and forest degradation in northern Ethiopia has a long history. Following 

the early settlements in northern Ethiopia, the extent of deforestation and forest 

degradation in northern Ethiopia is more severe than in other parts of the country. The 

forests have suffered from anthropogenic and natural disturbance. The forest remnants 

in northern Ethiopia are part of the eastern Afromontane and Horn of Africa 

biodiversity hotspots that need conservation priorities. Recently, conservation of 

biodiversity in the dryland ecosystems has received greater attention. One of the 

national biodiversity strategies of Ethiopia is conserving forest ecosystems (IBC 2005). 

This study gives detailed analyses of species diversity, composition of plant 

communities, natural regeneration, and forest structure in relation to selected 

environmental factors in Desa’a and Hugumburda forests, which are large natural forest 

remnants in northern Ethiopia. The findings can provide decision support in the design 

of such a conservation strategy. 

 

Species diversity and assemblage 

Species diversity in the study forests is lower than in many of the natural forests in 

southern Ethiopia. Floristically, the studied forests are largely (ca. 70 %) composed of 

shrub and herb species. This indicates that the forest remnants in northern Ethiopia, 

particularly Desa’a forest, are experiencing a retrogressive succession in which tree 

species are gradually replaced by shrub and herb species.  

Topographic position, which is associated to moisture availability, and forest 

disturbance explain the species distribution patterns and partitioned plant communities 

(Chapter 4, 5). The Pterolobium stellatum―Celtis africana plant community, which is 

found in Hugumburda forest (Chapter 4) is categorized under a moist forest type while 

all other plant communities belong to dry Afromontane forests with J. procera and O. 

europaea subsp. cuspidata as dominant species. This indicates that the riverine plant 

communalities are islands of moist forest in the dry lands of northern Ethiopia that need 

conservation priority.  
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Natural regeneration 

The results indicate that the standing vegetation is only partly represented in the 

seedling bank, and many of the rare tree species show poor or no regeneration (Chapter 

4, 6). A smaller number of saplings than mature species suggests that locally some tree 

species are experiencing extinction. 

The natural regeneration at the exclosure in Desa’a forest did not significantly 

contribute to the natural regeneration of native tree species. This implies that closing of 

the degraded forests to livestock intervention may not guarantee a successful 

regeneration of tree species in the degraded dry forests especially for J. procera. Thus, 

it is important to complement protected forests with enrichment planting and other 

assisted regeneration measures like reducing litter accumulation and dense-grass cover 

while managing exclosures. Since moisture is a limiting factor for regeneration in dry 

forests (Chapter 4), it is also important to reduce soil desiccation by maintaining 

adequate canopy cover. 

 

Effects of mass tree dieback on forest structure 

The results indicate that mass tree dieback of J. procera and O. europaea subsp. 

cuspidata has significantly reduced the living stand density and basal area of Desa’a 

forest (Chapter 6). Mass tree dieback is significantly reduced with increasing elevation, 

which reduces the elevational range of the key tree species (J. procera and O. europaea) 

by nearly 500 m to the higher elevations. This may also cause a shift in the forest-shrub 

land ecotone to higher elevation. Besides continued pressure on the J. procera and O. 

europaea trees for their economic value, mass tree dieback of these species is thus a 

major concern in the tree-scarce landscapes in northern Ethiopia. Forest disturbance has 

favored the expansion of herbs and pioneer shrub species e.g., Cadia purpurea and 

Tarchonanthus camphoratus (Chapter 4 & 5), which may change the once forest-

dominated landscape of the escarpment of the western Rift Valley into a shrub-herb 

dominated degraded vegetation landscape. Therefore, it is important to reduce further 

anthropogenic pressure on the remnant forests to restore the population of the tree 

species. 
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The ecological importance of snags is less understood and has been overlooked. 

However, studies show that snags are part of the ecological process in the forest 

ecosystem that should not be over exploited. To prevent loss of nutrients, soils and 

water, habitats for birds, etc., in the forest ecosystems it is important to leave the snags 

in the forest. But, places with high snag density should be also carefully managed to 

reduce potential fire incidents. Climate-driven mortality is difficult to predict, and the 

frequency of extreme climatic conditions that greatly affect semi-arid habitats is 

expected to increase (IPCC 2007). Thus, forest managers need to plan for potential tree 

dieback. 

 

Conservation strategy 

It is important to follow the ecosystem strategy of biodiversity conservation that 

integrates land, water and living resources. The ecosystem approach of biodiversity 

conservation provides an opportunity to conserve large numbers of species that are rare 

and whose ecosystem regulating role might not be yet known. Thus, besides the species-

rich zones, conservation programs should also consider plant communities that are not 

species rich but contain endemic and threatened species. In the study area, to conserve a 

large number of species and plant communities, it is worth establishing a biodiversity 

conservation corridor along the Tigrean-Afar ecological zones.  

However, with the current socio-economic context in northern Ethiopia, it may 

be difficult to implement some of the recommendations stated above. The expansion of 

agricultural lands in Tigray has reached its limits, and there is a serious shortage of 

grazing land, which increases the pressure on the forests and thus makes conservation of 

forests for their biodiversity values difficult. Thus, it is important to prioritize 

conservation sites. The Pterolobium stellatum―Celtis africana community identified at 

Hugumburda forest, for instance, contains many rare species experiencing extinction 

and needs conservation priority. Dracaena ombet, which is found in the Dracaena 

ombet―Acacia etbaica community in Desa’a forest, is listed under the Red List of the 

IUCN as an endangered species that needs conservation priority. However, a sustainable 

forest development in the region can be realised when the pressure on the forests from 

further expansion of agriculture and high demand for biomass energy is reduced. 

Therefore, it is indispensible to have a strategy for a sustainable rural development that 

increases the productivity of the agriculture sector. Shortage of wood has also been a 
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serious problem in the rural and urban areas, and broader rural-urban solutions like 

establishing fuelwood plantations to reduce the pressure on the remnant forests are 

necessary. 

Income from forest-related economic activities accounts for the second largest 

share in the average total household income in Tigray. Thus, it is important to develop 

the forestry sector to improve the rural livelihoods in northern Ethiopia. It is also 

important to strengthen the forest institutions from national to local levels, so that 

appropriate policies can be designed and their implementation monitored. There are 

many successful community-based soil and water conservation and vegetation 

restoration programs in Tigray. It is important to also implement community-based 

forest development programs to develop the existing forest remnants. 

In conclusion, the results of the present study clearly show that forest 

disturbance due to human and natural causes has significantly affected the dry 

Afromontane forests in northern Ethiopia, which need urgent conservation attention. 

Thus, the findings can provide important information for researchers, conservationists, 

policy makers, and other stakeholders for conservation of the remnant forests. The study 

also addresses the lack of information on the vegetation ecology of the two large forest 

remnants in northern Ethiopia, which is one of the major limitations for students and 

researchers. 

 

Further research 

 The present study is based on few selected environmental factors that determine 

species distribution patterns in which further investigations on the influence of soil 

physical and chemical properties on species distribution is needed. 

 No empirical evidence on the time and cause for the mass tree dieback exists, 

which needs further investigations.  

 Natural regeneration of tree species in the fragmented forests, even in protected 

forests from livestock is poor. Thus, further research on the regeneration ecology of 

key native tree species is recommended. One major limiting factor for poor sapling 

population that affects the population structure of many native tree species is lack 

of recruitment of both natural regenerated and planted seedlings that needs further 

investigations.
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10 APPENDIX 

Appendix 10.1 List of species recorded at Desa’a and Hugumburda forests in northern 
Ethiopia. Abbrevations in the parantheses indicate speices life form, 
where [C] is climber, [H] is Herb, [S] is shrub, and [T] is tree. Number 
indicates the site where the spcies is recorded, where 1 is Desa’a and 2 is 
Hugumburda forest 

Agavaceae  

Agave americana L., [H]1 

 

Aloaceae 

Aloe camperi Schweinf., [H] 1,2 

 

Amaranthaceae 

Aerva lanata (L.) Juss. ex Schult., [H] 1 

Alternanthera nodiflora R.Br., [H] 1,2 

Cyathula cylindrica Moq., [H] 1 

 

Anacardiaceae 

Rhus glutinosa Hochst. ex A.Rich., [T] 2 

Rhus natalensis Bernh. ex Krauss, [T] 2 

Rhus retinorrhoea Steud. ex Oliv., [T] 1 

Rhus sp., [ST] 1,2 

Rhus vulgaris Meikle, [ST] 2 

 

Apiaceae 

Ferula communis Heuff., [H] 1 

 

Apocynaceae 

Acokanthera schimperi (A.DC.) Benth. 

& Hook.f. ex Schweinf., [ST] 1,2 

Carissa edulis Vahl, [S] 1,2 

 

Asciepiadaceae 

Caralluma acutangula N. E. Br., [H] 1 

Cynanchum gerrardii (Harv.) Liede, 

[C]1  

Sarcostemma viminale Wall. Ex 

Decene., [C] 1 

 

Asparagaceae 

Asparagus racemosus Willd., [HS] 1,2 

 

Asteraceae 

Echinops giganteus A.Rich., [H] 1,2 

Laggera tomentosa Sch. Bip. ex Hochst. 

[S] 1,2 

Psiadia punctulata Vatke, [S] 1,2 

Vernonia amygdalina Delile, [ST] 1,2 

Vernonia auriculifera Hiern, [ST] 1,2 

Tarchonanthus camphoratus L., [HS] 1 

 

Balanitaceae 

Balanites rotundifolius Blatt. [H] 1 

 

Barbeyaceae 

Barbeya oleoides Schweinf., [T] 1 

 

Berberidaceae 

Berberis holstii Engl., [ST] 2 

 

Boraginaceae 

Cordia monoica Roxb., [ST] 1 
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Cordia sinensis Lam., [ST] 1 

Heliotropium cinerascens Steud. ex 

DC., [S] 1 

 

Cactaceae 

Opuntia ficus-indica (L.) Mill., [ST] 1,2 

 

Caesalpiniaceae 

Cassia occidentalis L., [H] 1 

 

Capparaceae  

Boscia salicifolia Oliv., [S] 1 

Capparis tomentosa Lam., [ST] 1 

 

Capparidaceae 

Capparis cartilaginea Decne., [S] 1 

Maerua sp., [HS] 2 

 

Celasteraceae 

Maytenus senegalensis (Lam.) Exell., 

[ST] 1,2 

 

Clusiaceae 

Gymnosporia senegalensis Loes., [S] 1,2 

Hypericum quartinianum A. Rich., [H] 2 

 

Combretaceae 

Combretum molle G.Don, [ST] 1 

 

Commelinaceae 

Commelina sp., [S] 1 

 

Crassulaceae 

Aeonium leucoblepharum Webb ex A. 

Rich. [S] 1 

Kalanchoe sp., [S]2  

 

Cupressaceae 

Cupressus lusitanica Mill., [T] 2 

Juniperus procera Hochst. ex Endl., [T] 
1,2 

 

Dracaenacease 

Dracaena ombet Kotschy & Peyr., [T] 1 

Sansevieria ehrenbergii Schweinf. ex 

Baker,  [H] 1 

Sansevieria forskaliana (Schult.f.) 

Hepper & J.R.I.Wood, [H] 1 

 

Ebenaceae 

Diospyros mespiliformis Hochst. ex 

A.DC ., [T] 1 

Euclea racemosa Murray subsp. 

schimperi (A. DC.) F. White, [S] 1,2 

 

Ericaceae  

Erica arborea L.; [ST] 1,2 

 

Euphorbiaceae 

Clutia abyssinica Jaub. & Spach, [S] 1,2 

Clutia lanceolata Jaub. & Spach., [S] 1 

Euphorbia abyssinica J.F. Gmel., [T] 1 

Euphorbia polyacantha Boiss., [S] 1 

Euphorbia tirucalli Forssk.., [ST] 1,2 
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Ricinus communis L., [ST] 1 

 

Fabaceae 

Acacia abyssinica Hochst. ex Benth., 

[T] 1,2 

Acacia asak (Forssk.) Wild., [T] 1 

Acacia etbaica Schweinf., [T] 1,2 

Acacia mellifera Benth. [T] 1 

Acacia orfota Schweinf., [T] 1 

Acacia polyacantha Willd., [T] 1 

Acacia saligna (Labill.) H. L. Wendl.; 

[T] 2 

Acacia senegal Willd., [T] 1 

Acacia tortilis Hayne, [T] 1 

Cadia purpurea Ait. [S] 1,2 

Calpurnia aurea Benth., [ST] 1,2 

Colutea abyssinica Kunth & 

C.D.Bouche, [S] 2 

Dichrostachys cinerea (L.) Wight & 

Arn., [TS] 1 

Indigofera caerulea Roxb., [S] 1 

Indigofera arrecta Hochst. Ex A. Rich., 

[S] 1 

Nuxia congesta R.Br., [HS] 2 

Pterolobium stellatum (Forssk.) Brenan, 

[CS] 1,2 

Tephrosia interrupta Hochst. & Steud.., 

[S] 1,2 

 

Flacourtiaceae 

Dovyalis abyssinica (A.Rich.) Warb., 

[ST] 1,2 

Dovyalis verrucosa Warb., [ST] 1,2 

Lamiaceae 

Becium grandiflorum (Lam.) Pic.Serm., 

[S] 1,2 

Clerodendrum myricoides R.Br. [S] 1,2 

Lavandula dentata L., [H] 1 

Leucas abyssinica Briq., [H] 1,2 

Meriandra bengalensis (Roxb.) Benth., 

[S] 1 

Otostegia fruticosa Schweinf. ex Penz., 

[HS] 1 

Otostegia integrifolia Benth., [H] 1 

Plectranthus ornatus Codd., [H] 1 

Premna resinosa Schauer, [S] 1,2 

 

Lythraceae  

Lawsonia inermis L., [ST] 1 

 

Malvaceae 

Abutilon longicuspe Hochst. ex A.Rich., 

[S] 1,2 

Abutilon pannosum (G.Forst.) Schltdl., 

[HS] 1 

Pavonia urens Cav., [HS] 2 

Sida schimperiana Hochst. ex A.Rich., 

[S] 

 

Meliaceae  

Ekebergia capensis Sparrm., [T] 2 

 

Melianthaceae 

Bersama abyssinica Fresen., [T] 1,2 
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Moraceae 

Ficus palmata Forssk., [ST] 1,2 

Ficus thonningii Blume, [ST] 1,2 

Ficus vasta Forssk., [T] 1 

 

Myrsinaceae 

Myrsine africana L., [S] 1,2 

 

Myrtaceae  

Eucalyptus camaldulensis Dehnh., [T] 

1,2 

 

Nyctaginaceae 

Commicarpus plumbagineus Standl., 

[S] 1 

 

Oleaceae 

Jasminum abyssinicum R.Br. [CS] 1,2 

Olea capensis L. subsp. macrocarpa 

(C.H. Wright) I. Verd., [T] 1,2 

Olea europaea L. subsp. cuspidata 

(Wall. ex G. Don) Cif., [T] 1,2 

 

Oliniaceae 

Olinia rochetiana A. Juss., [ST] 2 

 

Passifloraceae 

Adenia sp., [ST] 1 

 

Phytolaccaceae 

Phytolacca dodecandra L'Hér., [S] 2 

 

Pittosporaceae  

Pittosporum viridiflorum Sims, [T] 1,2 

 

Podocarpaceae 

Afrocarpus falcatus (Thunb.) C.N.Page, 

[T] 1 

 

Polygonaceae  

Rumex nervosus Vahl, [H] 1,2 

 

Ranunculaceae 

Clematis sinensis Lour. [SC] 1,2 

 

Rhamnaceae 

Berchemia discolor Hemsl., [ST] 

Rhamnus staddo A.Rich., [ST] 

Sageretia thea (Osbeck) M.C.Johnst., 

[S] 1,2 

Ziziphus mucronata Willd., [ST] 1 

Ziziphus spina-christi Willd., [ST] 1,2 

 

Rhizophoraceae 

Cassipourea malosana Alston, [T] 2 

 

Rosaceae 

Hagenia abyssinica J.F.Gmel., [T] 2 

Rosa abyssinica R.Br., [S] 1,2 

 

Rubiaceae 

Canthium oligocarpum Heirn, [S] 1,2 

Canthium setiflorum Hiern, [S] 1 
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Pyrostria phyllanthoidea (Baill.) 

Bridson, [S] 2 

Psydrax schimperiana (A. Rich.) 

Bridson, [ST] 1,2 

 

Rutaceae 

Teclea simplicifolia I.Verd., [T] 2 

 

Salvadoraceae 

Dobera glabra Juss. ex Poir., [T] 1 

Salvadora persica L., [ST] 2 

 

Santalaceae 

Osyris quadripartita Salzm. Ex Decne., 

[S] 1,2 

 

Sapindaceae 

Allophylus abyssinicus Radlk. [T] 2 

Dodonaea viscosa Jacq., [S] 1,2 

Pappea capensis Eckl. & Zeyh., [T] 1,2 

 

Sapotaceae  

Mimusops laurifolia (Forssk.) Friis, [T] 

1 

Spiniluma oxyacantha (Baill.) Aubrev., 

[ST] 1,2 

 

Solanaceae 

Discopodium penninervium Hochst., 

[ST] 1 

Lycium shawii Roem. & Schult., [H] 1 

 

Solanaceae 

Solanum adoense Hochst. ex A. Braun, 

[H] 1 

Solanum incanum L., [H] 1,2 

Solanum schimperianum Hochst., [H] 1,2 

Withania somnifera (L.) Dunal, [S] 2 

 

Sterculiaceae 

Dombeya torrida (J.F. Gmel.) Bamps, 

[T] 1,2 

Sterculia africana (Lour.) Fiori, [T] 1 

 

Tiliaceae 

Grewia bicolor Juss., [ST] 1 

Grewia kakothamnos K.Schum., [S] 1 

Grewia ferruginea Hochst., [ST] 1,2 

Grewia mollis Juss., [ST] 1 

Grewia schweinfurthii Burret , [ST] 1 

Grweia sp., [ST] 2 

Grewia tenax (Forssk.) Fiori, [S] 

 

Ulmaceae 

Celtis africana Burm. f., [T] 2 

Lantana viburnoides Vahl, [S] 1,2 

 

Verbenaceae 

Clerodendrum myricoides R.Br. [S] 1,2 

Vitaceae  

Cissus quadrangularis L., [H] 2 
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