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Introduction

This thesis consists of five chapters which are linked in several ways: All chapters

contribute to auction theory. Yet their applications vary and cover topics such as

contests, industrial organization, behavioral game theory, and health economics.

From a theoretical point of view, the first three chapters form an entity as they deal

with the structure of mixed strategy equilibria in asymmetric auction-type games.

Chapters 4 and 5 are concerned with costly information release in standard auctions.

Another link can be seen between Chapters 1, 2, and 4: They cover, respectively,

all-pay, first-price, and second-price auctions in which bidders participate with asym-

metric probabilities. Nevertheless the theoretical overlap between the three chapters

is small - and the questions analyzed and the applications considered differ strongly.

Hence this thesis can be seen as an example of how broadly applicable auction theory

is.

The first chapter analyzes asymmetric all-pay auctions with two types. All-pay

auctions are frequently used models of R&D, contests, lobbying, rent-seeking, and

many other situations of competition. So far, the complete information case is well

understood, and the same is true for the symmetric incomplete information case. Yet

the asymmetric incomplete information case still poses difficulties and is generally

quite complex to study. Chapter 1 provides a thorough analysis of a simple yet truly

asymmetric all-pay auction model. For the two bidder case, the asymmetries can

lie in the bidders’ respective high and low types as well as in the type-probabilities.

With n bidders, we study asymmetries in probabilities of participation. For both

settings we characterize the explicit form of the unique equilibrium.

We believe these results are not only a theoretical contribution, but are also useful

1



for various applications: So far, applications where asymmetries should be involved

typically assume complete information on the bidders’ side as this assumption makes

those models tractable. Yet it seems rather unrealistic for most real-world situations

that the bidders are that well informed about each other. Likewise, for many appli-

cations, it seems too restrictive to assume that the bidders know each other so little

that they hold a symmetric common prior about each others’ strengths. Hence only

a very partial picture can be obtained without models that allow for a coexistence

of asymmetry and informational uncertainty.

To give a flavor of the applications we have in mind, we thoroughly analyze two

settings to answer questions which were so far difficult to study: First, we consider

a game of information release, where a bidder can release information about his

valuation to the other bidder. We find that whenever the release of strictly inter-

mediate amounts of information is possible, a bidder wants to provide additional

information to his competitor. This result stands in contrast to the results found

in Kovenock, Morath and Münster (2009), where the bidders can only reveal their

valuations completely or not at all. In their setting, revelation is not attractive for

the bidders. Our analysis shows that this result indeed hinges on the assumption of

all-or-no information.

The second application we analyze in more detail is competition between contests:

There are two all-pay contests differing in the prizes for the winning bidder. Bidders

decide which contest to attend. We find that the fractions of bidders active in

the respective contests do not depend on the prize size if there are many bidders.

Furthermore, for any fixed number of bidders, adding a second contest leads to a

loss in revenues for the seller compared to holding a single contest if the prize of the

second contest is small.

We then move on to a setting with three contests - a global contest where all bidders

can participate and two local ones. The bidders are heterogeneous: Each bidder can

only participate in “his” local contest. Every bidder decides between taking part

in the global contest or in his local contest. A concrete example for such a setting
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would be a general interest journal and two field journals: Only part of the bidders

can submit to each field journal, but all bidders can submit to the general interest

journal. We characterize the limit distribution of bidders across contests when there

are many bidders. This distribution only hinges on the relation between the group

sizes, not on the prize differences.

As a third application, we briefly discuss the following two-stage model: In the

first stage contestants costlessly choose their probabilities of having low effort costs

in the all-pay contest which takes place in the second stage. Contestants opt for

surprisingly low probabilities of having low costs in order to avoid strong competition

in the contest stage. All these results can be obtained because the theoretical part

of the chapter provides a tractable model of incomplete information asymmetric

all-pay auctions.

Chapter 2 deals with a market model in which the consumers are unfamiliar with

the market and rely on word of mouth to get an impression about the qualities

of the different firms. The firms know the market well and know the distributions

from which the qualities of their competitors are drawn. They engage in price

competition.

Assuming that consumers pick the cheapest firm among all firms about which they

heard a positive story, we find that stronger competition may lower welfare. In

the equilibrium where higher quality firms set higher prices, welfare even goes to

zero in the number of firms. Welfare may first increase in the number of firms,

but typically starts to decrease substantially as soon as a small threshold-number

of firms is exceeded.

We furthermore characterize all equilibria of the game. As a by-product, we prove

equilibrium uniqueness of the special case when firms hold complete information

about each others’ qualities. This setting was analyzed by Ireland (1993) and McAfee

(1994) in the context of advertising. Both pointed out the question of equilibrium

uniqueness as an open problem.1

1For such advertising models, the natural definition of welfare is very different. Notably, in the
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The inspiration to interpret this game in terms of boundedly rational consumers

and rational firms comes from Spiegler (2006a) who mostly focuses on the sym-

metric complete information case. In his model, competition can be detrimental to

consumer surplus, but only up to a critical number of firms. With more firms than

the critical number, competition leads to higher consumer surplus. Hence our effect

that strong competition leads to very negative results concerning consumer surplus

and welfare is novel: It arises due to the incomplete knowledge of the firms about

the quality realizations of each other.

That people rely on anecdotes has been shown by a broad literature.2 Even if sta-

tistical evidence is provided, untrained persons typically prefer to trust in anecdotal

evidence, like personal stories they hear from their family, friends or colleagues. In

the medical literature, it is even discussed whether statistical information about the

success of different therapies should be enriched by personal stories to make patients

pay more attention to the statistical results.3 One reason why anecdotal evidence is

that compelling is seen in its dichotomy:4 A personal story would typically result in

something like “this therapy was bad” or “that pill was good”. Statistical evidence

is much more differentiated and hence much more difficult to grasp. Our model

captures the dichotomic nature of anecdotes.

Applied to the US health market, our model gives an explanation for the recent

surprising result that the Veterans Health Administration (VHA) outperforms the

other insurance systems prevalent in the US with regard to a large variety of factors:5

Unlike most other systems in the US, the VHA is non-competitive. VHA patients

typically stay inside the institution for the rest of their lives. Other patients, like

those of Health Maintenance Organizations (HMOs), usually switch their medical

plans on a regular basis. Hence competition plays an important role for these in-

surers. Comparing health plans with regard to quality is tedious: A patient would

interpretation of advertising, competition does not have any detrimental welfare effects.
2Kahneman and Tversky (1973) is seminal.
3See Enkin and Jadad (1998).
4Compare Fagerlin et al. (2005).
5Compare Brooks (2008) and Longman (2010).
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have to study coverage of myriads of different health problems in detail. In contrast,

prices are easy to grasp and serve very likely as an important decision-tool in prac-

tice. In such a setting, if consumers take coverage of a small sample of conditions as

representative for an insurance plan’s quality or if they rely on word of mouth when

choosing their health plans, our model predicts that patients often end up with low

quality health plans.

Chapter 3 is joint work with Philipp Weinschenk. We extend the classical Bertrand

Game by assuming that firms compete over a heterogeneous base of consumers:

Part of the consumers get a rebate at one of the firms, while the remaining group

receives a rebate at the other firm. Rebates and group-sizes can be asymmetric.

We provide an explicit characterization of the mixed pricing strategies firms employ

in equilibrium. The supports of these strategies are made up by two parts: one

“aggressive” subinterval where a firm plays prices that could be attractive for the

home-base consumers of the other firm as well and one “defensive” part where the

firm plays high prices that are only potentially attractive for its own home-base of

customers who receive the rebate at the firm. Furthermore, we show that firms have

a general incentive to make the consumer base heterogeneous: With rebates, firms

earn positive payoffs, in contrast to the standard Bertrand result that firms earn no

payoffs in equilibrium. Viewed as an auction, this game is a two-bidder complete

information first-price auction where the bidders can control their bids only up to

some binary, asymmetric noise.

Chapters 4 and 5 deal with the same question in two different settings: A seller wants

to sell an object to bidders who initially only know the distribution from which

their valuation is independently drawn. At costs that increase with the amount

of transmitted information, the seller can make the bidders learn their valuations

better. Yet by providing information, the seller does not learn how the information

affects the valuation realizations - he only knows that releasing more information

makes bidders know their valuations better.

We study the question whether the seller should concentrate his informational efforts

on few bidders or whether he should divide his efforts among many bidders to
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maximize his revenues. The main difference between the chapters lies in how the

process of information transmission is modeled.

In Chapter 4, we assume that the seller controls the probabilities with which the

bidders learn their valuations in a second-price auction. Bidders who do not learn

their valuation realizations either bid their ex-ante estimate or do not take part in

the auction. The first case is thought to capture the situation of information release,

whereas the second case applies to the situation of advertising an auction.

Our first main result is that if costs are quasi-concave in the information transmis-

sion probabilities, under mild conditions the revenue or welfare-maximizing seller

concentrates a total amount of informational efforts on as few bidders as possible.

Hence he maximally unlevels the playing field.

One mild but crucial condition for the optimality of asymmetric allocations is that

f/(1 − F )2 is increasing. F denotes the distribution from which the bidders’ valu-

ations vi are drawn and f is its density. The condition ensures that the sequence

of expected second order statistics E[v2:n] is strictly concave in n. It reminds of the

increasing failure rate condition from reliability theory.6

Furthermore, we show that the revenue-maximizing seller invests more into advertis-

ing than socially optimal if the distribution of the bidders’ valuations has increasing

failure rate. Under a decreasing failure rate, the opposite is observed. Both, the

revenue- and the welfare-optimal levels of advertising, are larger the more dispersed

the distribution of valuations is in terms of the excess wealth order.

Chapter 5 deals with the same question as Chapter 4 in a different setting. The

bidders’ valuations are given by sums of independent identically distributed random

variables, so-called information packages. The seller decides how many information

packages to reveal to each bidder at a cost which depends on the total number of

information packages released. We mostly focus on the case of two bidders in the

6See, e.g., Barlow and Proschan (1981).
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situation where the seller can sell his information and can thus extract all surplus

through individual entry fees. Essentially, we show that giving the same number

of packages to both bidders is dominated by any other choice of dividing the same

number of packages. The main results of the chapter hinge on the following little-

known, elementary but non-trivial inequality:7 For two independent, identically

distributed random variables X and Y it holds that

E[|X + Y |] ≥ E[|X − Y |].

The inequality becomes an equality iff the distribution of X and Y is symmetric

around its mean.

7See Jagers, Kallenberg and Kroese (1995).
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Chapter 1

Asymmetric All-Pay Auctions

with Two Types

We characterize the equilibria of asymmetric all-pay auctions with incomplete in-

formation. The bidders’ types are independently drawn from different two-point

probability distributions: Types as well as probabilities differ among bidders. The

realized types are private information.

We characterize the unique equilibrium of the two bidder case. For the n bidder case,

we consider the restriction in which bidders participate in the auction with different

probabilities. Our explicit formula for the unique equilibrium payoffs transfers to

auctions with multiple prizes and to asymmetric cost functions which fulfill a local

symmetry condition.

We apply our results to models of information disclosure in contests, endogenous

choice of type-probabilities, and competing contests. With information disclosure,

bidders always want to disclose some information.

1.1 Introduction

We analyze asymmetric all-pay auctions where each bidder has one of two possible

types, characterized by either low or high costs of exerting effort. Bidders know

their own type, but they only know the probabilities of types for the other bidders.

The asymmetry between the bidders may lie in the respective effort costs of the two

9



types as well as in the type-probabilities. We are going to characterize the equilibria

of this auction.

All-pay auctions are frequently used models of contests and related situations of

competition.1 Complete information all-pay auctions are by now well-understood.2

The same is true for symmetric all-pay auctions with incomplete information.3 One

case which has posed relative difficulties so far is the asymmetric case with incom-

plete information. In this case, bidders are aware of some differences in valuations

or costs between each other but do not possess complete information. For the case

of continuously distributed valuations, Amann and Leininger (1996) analyze the two

bidder case. They show existence and uniqueness of the equilibrium and characterize

some properties of the equilibrium, e.g., one participant bidding zero with positive

probability. Parreiras and Rubinchik (2010) generalize the setting of Amann and

Leininger to n bidders with asymmetric risk-attitudes. They characterize classes of

examples where the equilibrium has properties that have been found in experimental

studies, such as non-decreasing densities of bids and complete drop-out of some bid-

ders. Konrad and Kovenock (2010) also consider two-bidder all-pay auctions where

marginal costs are drawn from different distribution functions. Yet in their model

all private information is revealed before the auction takes place. Thus the bidding

behavior is covered by the complete information case.

We complement these works by considering asymmetric incomplete information all-

pay auctions in which each bidder has one of two possible types. The assumption

of two types allows us to analyze the incomplete information case while retaining

some of the tractability and some techniques from the complete information setting.

We provide a complete analysis of the two bidder case in which the bidders’ types

are drawn from different two-point distributions. Additionally we characterize the

unique equilibrium of the n bidder case where bidders participate in the auction with

asymmetric probabilities. We show that payoff-uniqueness transfers to auctions with

1Konrad (2009) provides an overview with many references.
2See for instance Hillman and Samet (1987), Hillman and Riley (1989), Baye, Kovenock and de

Vries (1996), Clark and Riis (1998), and Siegel (2009, 2010).
3See for example Moldovanu and Sela (2006).
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multiple prizes and to auctions with asymmetric cost functions which fulfill a local

symmetry condition. This local condition follows the spirit of Siegel (2009): Adapt-

ing Siegel’s terminology, we require that bidders are identical in “reach” given they

are active. Yet note that in our setting, equilibrium considerations are necessary to

determine the reach of each bidder as it depends on the other bidders’ participation

probabilities in a non-trivial way.

Our results for the two-bidder case also complement those of Maskin and Riley

(1985) who characterize equilibria of first- and second-price winner-pay auctions

for the two-bidder case with asymmetric two-point distributions. The n bidder

auction we analyze in Section 1.4 can be interpreted as a contest with stochastic

participation. There has been some recent research about contests with stochastic

numbers of participants.4 Yet to our knowledge our study is the first to provide a

discussion of an asymmetric model of this type.

The two-types approach is a bit restrictive, but it has some clear advantages: The

equilibria we find are completely explicit. This gives us a simple tool for studying

comparative statics of the equilibrium with regard to the parameters of the distri-

bution. The general two-point distributions we consider in the two-bidder case are

rich enough to capture many different types of asymmetries. This is also reflected

in the rich structure of the equilibrium.

In the final part of the chapter we consider another way to exploit our results which

goes beyond studying the effects of asymmetries: We discuss situations where our

explicit results admit an easy analysis of asymmetric all-pay auctions with incom-

plete information nested in richer settings. Concretely, we consider three models

where asymmetries occur endogenously as the result of a preliminary stage of the

game: We first study contests where bidders have the opportunity to release some

information about their type. We find that in our two-types setting it is always

profitable to release information. This stands in stark contrast to recent negative

results about information-sharing in contests by Kovenock, Morath and Münster

4See Münster (2006), Myerson and Wärneryd (2006), and Lim and Matros (2009).
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(2009) who focus on the case where contestants can either reveal all information or

none. As a second application, we consider an all-pay auction where bidders freely

choose their probability of being of strong type in a preliminary stage. A concrete

example could be competing lobbyists who control chances of having good access

to the decision-maker. We show that - at first sight surprisingly - bidders prefer

to set not too high access probabilities. As a third application, we adapt our re-

sults about contests with random participations to a model of competing contests:

Bidders simultaneously choose how much effort to exert and in which out of two

contests to participate. We show that adding a second, competing contest with a

smaller prize to an existing contest always reduces aggregate efforts with two or

three bidders. With more than three bidders an additional contest with a small

prize is detrimental while sufficiently large prizes lead to an increase in aggregate

efforts. Finally, we characterize the distribution of large numbers of bidders across

contests in a generalized setting: Bidders belong to one of two groups and can either

submit to a group-intern contest or to a contest which is open to all bidders. (An

example could be researchers deciding between submitting to a field journal or to

a general-interest journal.) We find that the asymptotic distribution depends only

on proportions between group sizes but not on asymmetries in prize money across

contests.

Our road-map is as follows: In Section 1.2, we introduce the model and state some

elementary observations. Section 1.3 characterizes the unique equilibrium of the two

bidder case. Section 1.4 provides the equilibrium of the n bidder case under the re-

striction that bidders only differ in their type-probabilities pi and have prohibitively

high costs as weak types. In Section 1.5, we study three applications of our analy-

sis, information disclosure in contests, endogenous choice of type-probabilities, and

competing contests with different prizes. Section 1.6 concludes.

1.2 The Model

There is an object for sale in an all-pay auction with n bidders, who each have a

valuation of 1 for the object. With probability pi ∈ (0, 1), bidder i is of strong type

12



and has low marginal costs of exerting effort, ci.
5 With the counter probability, he

is of weak type and has high marginal costs of Ci. We assume ci < Ci ≤ ∞. The

probability distributions are common knowledge. Each bidder knows his own type

but not the type-realizations of his opponents. The bidder who exerts the highest

effort e wins the object. Ties are broken arbitrarily. The symmetric two bidder case

of this model has been analyzed in Konrad (2004). Münster (2009) studies the case

ci = c and Ci =∞.

Standard arguments show that any equilibrium of this game must be in mixed

strategies and that there are no atoms except possibly in zero just as in the com-

plete information auction. Thus each bidder’s strategy can be represented by two

distribution functions which are atomless (with zero as possible exception): Bidder

i utilizes F c
i if he has low marginal costs ci and FC

i if he has high marginal costs Ci.

For fixed i, the supports of F c
i and FC

i must be disjoint (except possibly for boundary

points and zero): Let Pi(e) denote bidder i’s probability of winning via an effort

of e (given the other bidders’ strategies). Postulate for convenience that Pi(e) is

differentiable. Note that Pi(e) does not depend on i’s type. Thus bidder i maximizes

either

Pi(e)− cie or Pi(e)− Cie.

At no e both maxima can be attained (except in zero when the first summands are

zero), as the respective first order conditions are P ′i (e) = ci and P ′i (e) = Ci.

Taking this argument one step further, we see that the strong type’s payoff from

exerting effort in the weak type’s interval must be increasing in effort: The weak

type earns constant expected payoffs on his interval. Since the strong type has lower

marginal costs, increasing the effort must then be profitable for the strong type on

these effort levels. Likewise, the weak type’s payoff must be decreasing in effort on

the strong type’s interval. This implies that the strong type of a bidder must play

strictly higher effort levels than the weak type in equilibrium.

5We assume that the fixed costs equal zero.
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1.3 The Two Bidder Case

In this section we analyze the case of two bidders, n = 2. We also assume Ci < ∞

for both i.6

Depending on the values of the parameters c1, C1, p1 and c2, C2 and p2 we have to

distinguish six different cases defined by the following conditions:

p1c1 > p2c2, (A1)

p1c1 > p2c2 + (1− p2)C2, (A2)

p1c1 + (1− p1)C1 > p2c2 + (1− p2)C2. (A3)

Before we come to the intuition for these conditions, let us start with some general

properties of the equilibrium. Most of these follow from arguments known from the

complete information case:7

• In equilibrium, bidders do not leave gaps in their equilibrium supports.

• No bidder sets an atom on strictly positive effort-levels.

Thus bidders will play strictly mixed strategies if they choose strictly positive effort-

levels. Furthermore we know from Section 1.2:

• At a given effort level, a bidder competes either against the strong type of the

other bidder, or against the weak type. At no effort level, a bidder competes

against both types of the other bidder. The strong type of a bidder plays

higher effort-levels than the weak type.

6The slightly simpler case in which one or both Ci are infinitely large is omitted to keep the

exposition more focused.
7See e.g. Siegel (2009).
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• No bidder will exert effort levels higher than the highest effort level of the

other bidder.

• Both bidders (at least their weak types) have to mix down to effort level zero.

Thus a bidder i mixes in equilibrium on a gapless support. His strong type will

mix up to e and down to some lower boundary, say ei. His weak type plays all the

effort-levels between ei and zero. For further details, see the proof of Proposition

1.1 in the Appendix.

Let us first consider the effort interval on which the strong types of both bidders

compete against each other. Which strong type has to play the more concentrated

strategy, i.e. has to mix with a higher density? If (A1) is fulfilled,

p1c1 > p2c2, (A1)

it must be the strong type of bidder 1 (which we call “strong 1” from now on).

Let us see why: Consider the strong type of bidder 2, strong 2. Increasing his effort

slightly by ε inside the equilibrium support must not affect his payoffs. An effort

increase can only pay out if strong 1 is active, which happens with probability p1.

(Winning over weak 1, the weak type of bidder 1, is certain.) Hence it has to hold:

p1(F c
1 (e2 + ε)− F c

1 (e2)) = c2ε, (1.1)

where the left hand side denotes the expected additional gain by increasing the

effort by ε. The right hand side denotes the additional cost. Taking ε to zero we

also obtain the density strong 1 has to play on the interval where strong 2 is active.

It must be given by f c1 = c2
p1

. Yet then, p1
c2

denotes the length of the interval strong

1 would have to mix on if he always played against strong 2.

Let us compare the lengths of the intervals strong 1 and strong 2 would have to play

on if they always played against the strong type of the other bidder:
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p1

c2

>
p2

c1

. (A1’)

If (A1’) holds, as both strong types mix up to the same upper boundary e (whose

value we still have to determine), strong 1 has to mix down to lower effort levels

than strong 2. So we see that strong 2 indeed always competes against the strong

type of his competitor, in contrast to strong 1, who is left with some probability

mass he has to “spend” elsewhere. Note that (A1’) and (A1) are equivalent.

Let us for the rest of the section without loss of generality assume that (A1) is

fulfilled. Hence we know that strong 1 has to mix over a larger interval than strong

2. We know he cannot mix over higher effort levels than strong 2. Hence he has to

mix down to lower effort levels than strong 2. Will he even mix down to effort level

zero? This depends on (A2):

p1c1 > p2c2 + (1− p2)C2, (A2)

If (A2) holds, strong 1 even has to mix over a larger interval than both strong 2

and weak 2 together. Note that (A2) resembles (A1) very much: The left hand side

is identical in both conditions, as in both situations it is always the strong type of

bidder 1 who is active. The left hand side of (A2) is analogous to the left hand side

of (A1) if we reinterpret bidder 2 as a bidder 2′ who is always of strong type (p=1),

but who has costs of p2c2 + (1− p2)C2. Then (A2) reads:

p1c1 > 1 · (p2c2 + (1− p2)C2), (A2’)

Note that such a reinterpretation is valid here because bidder 2 always competes

against strong 1, and never against weak 1 under (A2). Let us consider the corre-

sponding picture of the shape of the equilibrium:

Strong 1 has to mix over such a long interval that there is no room for weak 1 to

mix over any positive effort levels. Hence weak 1 has to put all his probability-mass

on zero.
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Figure 1.1: Supports of the bidders’ strategies if (A1) and (A2) hold, strong types

in black, weak types in blue.

Our third condition, Condition (A3),

p1c1 + (1− p1)C1 > p2c2 + (1− p2)C2, (A3)

is relevant only if (A2) is not fulfilled, i.e. in the case where the weak types of both

bidders exert positive efforts with some probability. Then it depends on (A3) which

of the weak types puts an atom on zero. If (A3) is fulfilled, weak 1 has to play the

atom in zero (and consequently earn zero profits):

Figure 1.2: Supports of the bidders’ strategies if (A1) holds, (A2) does not hold,

but (A3) holds. Strong types in black, weak types in blue.

Conversely, if (A3) is violated, the weak type of bidder 2 puts an atom on zero and

makes no profits.

Proposition 1.1 formally characterizes the unique equilibria for the three cases in

which (A1) holds. The cases in which (A1) does not hold can of course be extracted

from Proposition 1.1 by exchanging the roles of the indices 1 and 2. As one can see

from the proposition, it is quite lengthy to state the equilibria explicitly. Yet note
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Figure 1.3: Supports of the bidders’ strategies if (A1) holds, but (A2) and (A3) do

not hold. Strong types in black, weak types in blue.

that the bidders just mix uniformly over the intervals specified before, with densities

such that the opponent’s active type would not gain or lose from marginally changing

his effort level.

Proposition 1.1. Consider the two bidder case and assume that (A1) holds. Then

we have to distinguish three cases:

1. Assume (A2) holds. Define boundaries e1, e2, and e by e1 = 0,

e2 =
(1− p2)C2

c1C2

=
1− p2

c1

, e = e2 +
p2c2

c1c2

=
1

c1

.

In the unique equilibrium, weak 1 places an atom of size 1 on 0. Strong 1

mixes over (e1, e2] with constant density C2

p1
and over (e2, e] with density c2

p1
.

Additionally, strong 1 places an atom of size

p1c1 − p2c2 − (1− p2)C2

p1c1

on e1. Weak 2 mixes over (e1, e2] with density c1
(1−p2)

. Strong 2 mixes over

(e2, e] with density c1
p2

.

2. Assume (A2) does not hold but (A3) does. Define boundaries e1, e2, and e by

e1 =
p2c2 + (1− p2)C2 − p1c1

C1C2

, e2 = e1 +
p1c1 − p2c2

c1C2

, e = e2 +
p2c2

c1c2

.

Then the unique equilibrium is given by the following strategies: Weak 1 mixes

over (0, e1] with density C2

1−p1 and places an atom of size

p1c1 + (1− p1)C1 − p2c2 − (1− p2)C2

(1− p1)C1

on 0. Strong 1 mixes over (e1, e2] with density C2

p1
and over (e2, e] with density

c2
p1

. Weak 2 mixes over (0, e1] with density C1

1−p2 and over (e1, e2] with density
c1

1−p2 . Strong 2 mixes over (e2, e] with density c1
p2

.
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3. Assume (A2) and (A3) both do not hold. Define boundaries e1, e2, and e by

e1 =
(1− p1)C1

C1C2

, e2 = e1 +
p1c1 − p2c2

c1C2

, e = e2 +
p2c2

c1c2

.

Then the unique equilibrium is given by the following strategies: Weak 1 mixes

over (0, e1] with density C2

1−p1 . Strong 1 mixes over (e1, e2] with density C2

p1
and

over (e2, e] with density c2
p1

. Weak 2 mixes over (0, e1] with density C1

1−p2 and

over (e1, e2] with density c1
1−p2 . Additionally, weak 2 places an atom of size

p2c2 + (1− p2)C2 − p1c1 − (1− p1)C1

(1− p2)C2

on 0. Strong 2 mixes over (e2, e] with density c1
p2

.

From Proposition 1.1 it is easy to calculate the expected equilibrium payoffs:

Corollary 1.1. In the setting of Proposition 1.1, the payoff of strong i equals 1−cie.
The payoff of weak i equals A−i, where A−i is the probability that i’s opponent exerts

an effort of zero.

Just like bidders in a complete information all-pay auction, the strong types earn

the same expected payoffs if c1 = c2. Yet the same is not true for weak type bidders.

Even if C1 = C2 their expected payoffs will generally differ: Due to the atom, one

of them earns a positive expected payoff while the other obtains zero payoff.

To gain some more intuition, and since we work with this case in the first two

applications of Section 1.5, we finish our analysis of the two bidder case with a closer

look at the situation where asymmetries lie only in the probabilities, i.e. c1 = c2 = c

and C1 = C2 = C. Then, assumption (A1), i.e. p1 > p2, immediately implies that

(A2) and (A3) must be violated. Hence we are then always in the third case of

Proposition 1.1. Then we get the following simplified formulas for the payoffs:

Corollary 1.2. Assume that in the setting of Proposition 1.1 it holds that c1 = c2 =

c and C1 = C2 = C. Then the atom of the opponent is given by

A−i = (pi −min(p1, p2))(1− c

C
).

The upper bound of supports e is given by

e =
min(p1, p2)

c
+

1−min(p1, p2)

C
.
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Accordingly, the expected payoff of weak i is given by

πwi = (pi −min(p1, p2))
(

1− c

C

)
.

The expected payoff of strong i

πsi = (1−min(p1, p2))
(

1− c

C

)
.

Note that the corollary is written in a way that it holds regardless of whether (A1)

is fulfilled or not.

1.4 All-Pay Auctions with Random Participation

We now turn to the case of n bidders who have a valuation of 1 for winning. We

restrict attention to the case where bidders differ only in their probabilities pi of

being strong, i.e. ci = c and Ci = C, and where weak types have infinitely high

marginal effort costs C =∞. The most natural interpretation of these prohibitively

high marginal costs is that weak types are not aware of the auction taking place or

are unable to show up at the auction.8 Hence we analyze an all-pay auction with

asymmetric random participation. When exerting their efforts, bidders are uncertain

who else will exert an effort. We assume without loss of generality that bidders are

ranked according to their participation probabilities (i.e. their probabilities of being

of strong type), p1 ≥ . . . ≥ pn.9

We assume that if a weak type and a strong type exert the same effort then the

strong type wins (and other ties are broken with equal probability). If we think of

pi as a participation probability, this requirement is quite natural: A bidder who is

8A reader who is bothered about the idea of infinite costs can - without any changes in what

follows - assume that all types have marginal costs c, that strong types have a valuation of 1 and

weak types have a valuation of 0. The present formulation is chosen for reasons of consistency with

the previous section.
9Recall that we assumed pi ∈ (0, 1). The analysis of this section still goes through if 1 = p1 > p2.

With 1 = p1 = p2, the game essentially degenerates to a complete information all-pay auction.

Bidders with pi = 0 can be viewed as non-existent.
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not present rather submits no bid at all than a zero bid.10

Each strong type bidder i earns a strictly positive maxmin payoff (after deletion of

strictly dominated strategies) of
∏

j 6=i(1 − pj) and thus a strictly positive payoff in

every equilibrium. All strong types must obtain the same payoffs in equilibrium:

Assume strong j obtains a payoff of πj and the highest effort level in the support

of his strategy is ej. Then by exerting an effort level slightly above ej any other

strong type bidder i can attain a payoff slightly below πj. Taking these observations

together it follows that all strong types must earn a payoff of at least
∏

j 6=1(1− pj),

which is the maxmin payoff of the strong type of the ex-ante “most present” bidder

1. Furthermore, the union of the bidders’ supports must go down to zero and at

most one bidder puts an atom on zero. Thus at least one bidder does not earn more

than his maxmin payoff. Hence we see that equilibrium payoffs of strong types must

equal
∏

j 6=1(1− pj) for all bidders (while weak types obtain, of course, zero payoffs).

We collect this result of payoff-uniqueness together with a characterization of the

sum of efforts in the following lemma:

Lemma 1.1. In any equilibrium, all strong types expect a payoff of

πsi =
∏
j 6=1

(1− pj)

while weak types expect a payoff of 0. Denote by S the (ex-ante) expected sum of the

bidders’ efforts. Then we have

S =
1

c

[(
1−

n∏
j=1

(1− pj)

)
−
∏
i 6=1

(1− pi)
n∑
k=1

pk

]
. (1.2)

The formula for S simply follows from the observation that the expected value of

prizes awarded to strong types11 minus the expected sum of efforts must equal the

sum of the bidders’ ex-ante expected payoffs:(
1−

n∏
j=1

(1− pj)

)
− c S =

n∑
k=1

pk
∏
i 6=1

(1− pi)

10Proposition 1.3 below discusses the connection between tie-breaking rules and equilibrium

existence in our model in detail.
11Note that weak types never exert effort in equilibrium. Furthermore, a weak type never gets

the prize when a strong type is present in the auction. Thus prizes awarded to weak types can be

treated as zero for these considerations.
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An equilibrium of this auction is explicitly characterized in the following proposition:

Proposition 1.2. Define an increasing sequence ei of boundaries by e1 = e2 = 0,

ek =
1

c

[
(1− pk)k−1

n∏
l=k+1

(1− pl)−
n∏
l=2

(1− pl)

]
for k = 3, . . . , n, and en+1 = 1

c
[1−

∏n
l=2(1− pl)]. Then it is a Nash equilibrium

that weak i exerts effort level zero and strong i mixes according to the distribution

function Fi. The support of Fi is the interval Si = [ei, en+1]. Fi is defined piecewise

as follows: For e ∈ [ek, ek+1] ⊆ Si, 2 ≤ k ≤ n,

Fi(e) =
1

pi

(
k−1

√
ce+

∏n
l=2(1− pl)∏n

l=k+1(1− pl)
− (1− pi)

)
.

Note that F1(0) = 1 − p2
p1

such that bidder 1 sets an atom on zero unless p1 = p2.

Figure 1.4 shows how the supports of the bidders’ strategies typically look like.

Figure 1.4: Supports of the bidders’ strategies for n = 5

Our next result shows that the equilibrium of Proposition 1.2 is unique and charac-

terizes the connection between tie-breaking rules and equilibrium existence.

Proposition 1.3. For any set of tie-breaking rules, the vector of strategies in Propo-

sition 1.2 is the unique equilibrium candidate: If it is not an equilibrium, no equi-

librium exists. If it is an equilibrium, it is the unique equilibrium. If p1 = p2 so that

there is no atom on zero, equilibrium exists for any tie-breaking rule. If p1 > p2,

there is equilibrium existence if and only if the tie-breaking rule meets the following

requirement: If bidder 1 is of strong type and all other bidders are of weak type and

all bidders exert zero efforts, bidder 1 wins for sure.

22



Roughly, this tie-breaking in favor of strong types is needed to ensure that payoffs

are sufficiently continuous at zero. The equilibrium uniqueness sets our model apart

from related models such as the complete information all-pay auction or Varian’s

(1980) model of sales where a multiplicity of equilibria may arise in the case of more

than two bidders: For example, multiple equilibria arise in the symmetric case.

The reason for this multiplicity is that several bidders can choose to stay out of

competition.12 This is in contrast to our game: In our setting, with some probability,

each pair of bidders turns out to be the only bidders present in the auction. Hence

two bidders never both put positive mass on zero in equilibrium. For this reason the

equilibrium uniqueness of the complete information all-pay auction with two bidders

transfers to our n bidder auction. To phrase the same observation differently, the

model of this section differs from the complete-information all-pay auction in that

in equilibrium not only the two ex-ante strongest bidders actively participate but

all (strong type) bidders do.

In the two-bidder case, there is another interesting connection between our game

and the standard complete information all-pay auction: One can easily see that

the strategies chosen by the strong types of bidders 1 and 2 are exactly the same

strategies as those of two bidders with valuations p1 and p2 and marginal costs

c in a complete information all-pay auction. The fact that bidders in our game

employ these strategies only with probabilities pi neatly illustrates the fact that

expected efforts are lower in our model due to the bidders’ informational rents. The

same equivalence does not translate to the case of more than two bidders since in

our model all bidders make positive bids with positive probability. This stands in

contrast to the complete information all-pay auction.

Note that bidders with low participation probability exert high levels of effort if they

take part in the auction. The reason is the following: Bidders who rarely participate

earn expected payoffs that are considerably higher than their maxmin-payoffs. This

would not be possible if they exerted low effort levels: Bidders exerting low efforts

win the auction if they are essentially the only ones who are participating. Yet

12See Baye, Kovenock and de Vries (1992, 1996).
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bidders with low p are seldom the only ones participating. This is why they can

earn higher profits out of high effort levels, at which competition among several

bidders typically decides which bidder wins.

Additionally, the bidder who is most often participating in the auction, bidder 1,

does not very often choose high effort levels, but puts considerable mass on low

effort levels. This is necessary in equilibrium due to the following argument: At

least two bidders have to mix down to zero in equilibrium.13 Yet no bidder except

bidder 1 would be willing to exert zero effort if bidder 1 did not play an atom in

zero. Consider bidder 2: If bidder 1 played no atom, bidder 2 would only earn his

maxmin-payoff from playing zero. This would be less than what he can earn in

equilibrium. Hence bidder 1 has to be a soft competitor to his rivals in equilibrium.

If we put the two last observations together, we can conclude that bidders who

are rarely participating in the auction have to win over-proportionally often: If

they take part in the auction, they play high effort levels at which bidders who

participate more often compete comparatively softly. The following corollary sums

up this result:14

Corollary 1.3. Assume pi > pj. Denote by Pi the probability that bidder i wins the

auction. Then Pi > Pj, but Pi <
pi
pj
Pj.

Like in the complete information all-pay auction, it is straightforward to generalize

our results of this section (except formula (1.2) for the expected effort sum) to the

case where all strong-type bidders share the same non-linear cost function. We close

this section by revisiting our result of payoff-uniqueness of Lemma 1.1. This result

easily generalizes to richer settings: We focus on multiple prizes and asymmetric

cost functions which fulfill a local symmetry condition.

13This follows by standard arguments.
14To make the above heuristic arguments precise observe that with pj < pi the equilibrium

strategy of strong i can be seen as a mixture between strong j’s strategy and a strategy over

strictly lower effort levels.
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Consider the above model but assume that the seller awards k < n prizes of size

1. Each bidder receives at most one prize. The following result is an extension

of Clark and Riis’ (1998) characterization of equilibrium payoffs to the asymmetric

incomplete information case. Strong i’s maxmin-payoff is given by the probability

that at most k − 1 of his opponents are strong-types. Denote this probability by

λi(k) and denote by Ωi = {1, . . . , n} \ {i} the set of i’s opponents. Then we can

write λi(k) as

λi(k) =
∑

A⊆Ωi,|A|≤k−1

∏
j∈A

pj
∏

l∈Ωi\A

(1− pl).

Clearly, λ is largest for the “most present” bidder 1. It is then easy to verify that

the argument behind Lemma 1.1 still goes through in this setting. This yields the

following result:

Corollary 1.4. In the model with k identical prizes, in any equilibrium, all strong

types expect a payoff of

πsi = λ1(k)

while weak types expect a payoff of zero.

It is straightforward to extend this result also to multiple non-identical prizes similar

to the results of Barut and Kovenock (1998) for the complete information case. A

formula for the expected effort sum analogous to (1.2) can also be given.

The second extension of our payoff-uniqueness result is similar to Siegel’s (2009)

extension of classical results about the complete information case: For our proof of

payoff-uniqueness, we only need symmetry in costs for two special effort-levels - for

effort-level zero, and for the effort-level that turns out to be the upper boundary

of the equilibrium supports. This yields a generalization of Lemma 1.1 where cost

functions do not have to be linear, identical, nor even ranked - they just have to

coincide at these two significant points:

Corollary 1.5. Consider the basic model of this section but assume that strong i’s

costs are given by a continuous, increasing function ci. Assume ci(0) = 0 for all i.

Furthermore assume that

c−1
i

(
1−

∏
k 6=1

(1− pk)

)
= c−1

j

(
1−

∏
k 6=1

(1− pk)

)
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for all i and j. Then, in any equilibrium, all strong types expect a payoff of

πsi =
∏
k 6=1

(1− pk)

while weak types expect a payoff of zero.

Since an explicit characterization of the equilibrium strategies does not seem possi-

ble for the situations considered in Corollaries 1.4 and 1.5, a word on equilibrium

existence in these generalized models is in order. Note that weak types will never

bid anything other than zero and can thus be ignored. Now, the key observation is

that the auctions are essentially equivalent to auctions in which bidders are always

strong types and where each bidder submits one simultaneous bid in (finitely) many

all-pay auctions: There is one auction for every subset of bidders. To this model of

simultaneous all-pay auctions one can easily apply classical existence results such as

Simon and Zame (1990).15

1.5 Applications

In the following, we consider three applications of our analysis. The first is about

information-sharing in contests. The second considers all-pay auctions where the

bidders choose their type-probabilities in a preliminary stage. The third applies our

results to a model of competing complete-information all-pay auctions.

1.5.1 Disclosure

In this section we apply the analysis of Section 1.3 to the study of incomplete in-

formation contests where bidders have the opportunity to share some information

about their type. We do not intend to give an exhaustive analysis of this problem.

Instead our aim is two-fold: First, we want to contribute to a more complete un-

derstanding of information-sharing in contests. Second, we want to show how easily

this problem can be studied applying the results from Section 1.3.

15In particular, the existence proof in Siegel (2009, p. 89) which is based on Simon and Zame’s

result translates to this setting with minor changes.
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In a recent paper, Kovenock, Morath and Münster (2009), KMM in the following,

analyze an independent private values16 all-pay auction with two bidders where bid-

ders are ex-ante uninformed about their valuations. Bidders decide ex-ante whether

they would like to share information they learn about their valuations. Depending

on the bidders’ sharing decision17, the bidders play either a complete information

all-pay auction or an incomplete information all-pay auction.

As KMM, we consider two different decision frameworks for information-sharing:

1. Industry-wide agreements: Both bidders simultaneously cast a vote for or

against sharing information. If both bidders vote for sharing, valuations are

revealed and a complete information all-pay auction takes place in the final

stage. Otherwise, an incomplete information all-pay auction takes place.

2. Independent commitments: The bidders independently make an ex-ante

commitment about sharing information or not. Depending on the bidders’

decisions, either both valuations, or only one, or none become common knowl-

edge before the auction takes place.

For the case of industry-wide agreements, KMM show that the complete and in-

complete information auctions yield the same payoffs to the bidders, implying that

any choice of actions is a Nash equilibrium.18 The loss in informational rents from

disclosing is exactly off-set by the economic rents arising from the bidders’ different

strengths becoming common knowledge. For the case of independent commitments,

KMM show that sharing information is strictly dominated.

16The second part of their paper considers common value auctions. These will not be discussed

here.
17For the sakes of comparability and brevity, we also focus on ex-ante decisions here. Yet all our

results of this section (as well as most of theirs) carry over to the situation where bidders decide

after they have learned their valuations.
18To see this, recall that in a complete information all-pay auction the stronger bidder earns the

difference in valuations while the other bidder earns zero payoffs. To see that the same is true for

the incomplete information case, note that these payoffs are identical to those of an incomplete

information second price auction. Thus by revenue equivalence these are also the payoffs in the

incomplete information all-pay auction.
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In KMM the bidders can only choose between disclosing all their private informa-

tion or none. Generally, all-pay auctions where bidders can reveal parts of their

private information are technically challenging: They require the analysis of asym-

metric all-pay auctions with incomplete information. In Section 1.3, we derived the

equilibrium of a simple class of asymmetric all-pay auctions with incomplete infor-

mation. This gives us a natural starting-point for a tractable model with partial

release of information.

In our framework, where partial disclosure is possible, we obtain essentially the

opposite of the results of KMM. We find that the trade-off between gaining economic

rents and losing informational rents is not as simple as one might think: For any

partial release of information, the gain in the economic rents strictly dominates the

loss in the informational rents.

We consider the following model: There are two bidders, both with a valuation of 1

for the object for sale in an all-pay auction.19 Bidder i’s marginal costs for exerting

effort are c with probability pi and C with probability 1− pi where 0 < c < C <∞.

The probabilities pi are independent random variables drawn from a distribution

F on [0, 1] with E[pi] = µ.20 Ex-ante, the bidders only know F , c, and C. They

know neither their realization of pi nor the realization of their costs of bidding. The

timing is as follows:

1. The bidders decide whether to share information later in the game, at stage

3. The decision game is either modeled as an industry-wide agreement or as

individual commitments as described above.

2. The bidders learn their realization of pi. Each bidder hence gets a more con-

crete estimate of his type.

3. Depending on the decision at stage 1, the realizations of the pi become common

knowledge or remain private information.

19For reasons of consistency, we focus on this case. Our results also hold when bidders are

heterogeneous in valuations instead of effort costs.
20As will become apparent below, we could as well assume that p1 and p2 are independent with

E[p1] = E[p2].
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4. The bidders learn the realization of their types and the all-pay auction takes

place.

For the case where both bidders share their pi, Corollary 1.2 provides the payoffs of

the all-pay auction. It is easy to see that when bidder i does not share his realization

of pi, it is an equilibrium that both bidders still play the equilibrium of Corollary

1.2 but with µ in place of pi.
21

The following corollary - which is an immediate consequence of Corollary 1.2 -

states the bidders’ ex-ante expected payoffs for the different decisions about sharing

information.

Corollary 1.6. Define θ = 1 − c
C

. The ex-ante expected payoffs from the all-pay

auction for the different disclosure decisions are as follows:

1. If both bidders decide to reveal their pi, the ex-ante expected payoff of bidder 1

is

π1(1r, 2r) = E[p1(1−min(p1, p2)) + (1− p1)(p1 −min(p1, p2))]θ.

2. If bidder 1 decides to reveal but bidder 2 not, the ex-ante expected payoff of

bidder 1 is

π1(1r, 2n) = E[p1(1−min(p1, µ)) + (1− p1)(p1 −min(p1, µ))]θ.

3. If bidder 1 does not reveal but bidder 2 does, the ex-ante expected payoff of

bidder 1 is

π1(1n, 2r) = E[p1(1−min(µ, p2)) + (1− p1)(µ−min(µ, p2))]θ.

4. If both bidders decide not to reveal, the ex-ante expected payoff of bidder 1 is

π1(1n, 2n) = E[p1(1−min(µ, µ)) + (1− p1)(µ−min(µ, µ))]θ = µ(1− µ)θ.

21There are further equilibria where the bidders utilize their realizations of pi as a randomizing

device. These equilibria are however all payoff-equivalent to the one in Corollary 1.2. The reason

for the payoff-equivalence is that - as during the auction the bidders know their own types - the

private information about the pi is useless unless it is shared.
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Let us now consider the bidders’ disclosure decisions in the industry-wide agreements

regime. Since each bidder can veto against information-sharing, it is always a weak

Nash equilibrium that both bidders vote against disclosure. In the model of KMM,

payoffs are the same regardless of disclosure decisions. Thus in their setting any

vector of strategies is a weak Nash equilibrium. In our model we obtain instead:

Corollary 1.7. Consider industry-wide agreements on sharing information. As-

sume that neither pi = µ a.s. nor pi ∈ {0, 1} a.s.. Then π1(1r, 2r) > π1(1n, 2n).

Thus in the only strict Nash equilibrium both bidders vote for information-sharing.

This equilibrium is also strictly payoff-dominant.

In the corollary we had to exclude two cases: If pi is deterministic, disclosure trans-

ports no information. If pi is always in {0, 1}, disclosure is fully revealing such that

we are essentially in the setting of KMM. The corollary follows immediately from

observing that (except in the two excluded cases)

π1(1r, 2r) > E[p1(1− p2)]θ = µ(1− µ)θ = π1(1n, 2n).

Let us now turn to the game with individual commitments to share information.

Under this regime, KMM show that in their setting committing to reveal information

is a strictly dominated action. Accordingly, the unique Nash equilibrium is that both

bidders do not disclose. This is in contrast to our model with partial revelation:

Corollary 1.8. Consider individual commitments on sharing information. Assume

that neither pi = µ a.s. nor pi ∈ {0, 1} a.s.. Then it holds that π1(1r, 2n) >

π2(1n, 2n). Thus, given that the opponent does not reveal, it is a strictly dominant

action for a bidder to reveal. Hence it is not a Nash equilibrium that both bidders

withhold their private information.

The corollary follows immediately from the observation that

π1(1r, 2n) > E[p1(1−min(p1, µ))]θ > E[p1(1− µ)]θ = π1(1n, 2n).

It depends on the distribution F whether a bidder prefers to reveal or not, given

that his opponent reveals. Yet in any case, some bidder will reveal at least with
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some probability in equilibrium.22

Taking our results and those of KMM together shows that it will be difficult to settle

the issue of information-sharing in contests without a model that has both a suffi-

ciently rich type-space and a sufficiently rich model of information revelation. This

is a challenging direction for further research. In the situation with industry-wide

agreements, the result of KMM looks essentially like a boundary case of our result.

We hence conjecture that the result of Corollary 1.7 is quite robust. The situation

with individual commitments to share information is more complex. KMM rightly

point out that the two-types case is an extreme case concerning individual sharing

decisions: With two types, bidders are indifferent between completely revealing and

not revealing regardless of the opponent’s behavior. This does not carry over to

a state space with more than two types. Yet we have seen that partial sharing

is a strictly dominant action. It seems highly intuitive that this strict dominance

will not disappear instantly, e.g., whenever a third (possibly very unlikely) type is

introduced. We thus conjecture that it will depend sensitively on the distribution

of types and other model parameters whether bidders want to share information or

not.

Based on the results of Section 1.4, one can obtain parallel results for the n bidder

case.

1.5.2 Endogenous Choice of Type-Probabilities

We now allow the bidders to choose their probabilities pi themselves. A motivation

comes from lobbying: For an interest group, it is much easier to take influence if it

can get close to the decision-maker. This is e.g. why many interest groups in Europe

have some representation in Brussels, close to the EU decision-makers. The better

an interest group is represented in Brussels, the more likely it gets in direct contact

to the decision-makers. In the following, we analyze the game where each interest

22For example, if F is the uniform distribution on [0, 1], there are three Nash Equilibria: two

equilibria where one bidder reveals for sure while the other does not, and a symmetric mixed

equilibrium.
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group first decides on how much representation it wants to have in Brussels. Then

it decides on how much effort it wants to spend into direct lobbying activity.23

We hence consider the following simple two-stage auction model: There are two

bidders who incur marginal costs of exerting effort c or C with 0 < c < C < ∞.

Both have a valuation of 1 for winning the (final) auction stage. In stage one, both

bidders simultaneously choose their type-probabilities pi ∈ [0, 1]. Then the marginal

costs of exerting effort of bidder i realize as c with probability pi and as C with the

counter-probability. The bidders privately observe their types before the second

stage takes place, where both bidders compete in an all-pay auction.

Since Corollary 1.2 uniquely determines the bidders’ equilibrium payoffs from the

auction stage, one can identify the SPNE of our game by finding the Nash equilibria

of the reduced one-stage game in which the bidders choose their pi. By Corollary

1.2, the payoff of bidder 1 from the auction for fixed p1 and p2 is given by

π1(p1, p2) = (p1(1−min(p1, p2)) + (1− p1)(p1 −min(p1, p2)))θ

where as in the previous section θ = 1− c
C

.

Our main result is that - somewhat counter-intuitively - bidders do not choose pi as

large as they can: It is not an equilibrium that both bidders set their probabilities to

1. We find a multiplicity of equilibria, each leading, loosely speaking, to an average

probability of 3
4

to become a good type.

Lemma 1.2. Let {i, j} = {1, 2}. Nash equilibria of the probability setting game are

given by:

• Bidder i sets pi = 1 and bidder j sets pj = 1
2
.

• Bidder i sets pi = 3
4

and bidder j plays either pj = 1
2

or pj = 1 with equal

probability.

• Both bidders mix uniformly over the interval [1
2
, 1].

23Lobbying has been one of the oldest and most prominent applications of all-pay auctions. See,

e.g., Hillman and Samet (1987), Hillman and Riley (1989) and Che and Gale (1998).
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In the proof of this lemma we analyze a slightly more general problem which can be

easily adapted, e.g., to the case in which the bidders have marginal costs of 1 and

either valuation V or v.24 Bidders accept the risk of becoming a weak type to soften

competition in the auction.25

Coordination on a specific equilibrium is simple if we impose a time-structure and

assume that one bidder decides first (as the incumbent) and the other second (as

the entrant). In this case, the incumbent chooses 1 and the entrant 1
2
.

1.5.3 Competing Contests

The Basic Model

As a third and last application we analyze a situation of multiple competing contests:

Assume there are n ≥ 2 bidders who can exert effort in one (and only one) of two

all-pay auctions, A and B. The bidders’ marginal costs of exerting effort equal 1.

Winning contest A leads to a utility of VA and winning contest B leads to a utility

of VB. Bidders decide simultaneously in which contest they want to participate and

how much effort they want to exert. For X ∈ {A,B}, we denote by piX bidder i’s

probability of choosing contest X and by H i
X the effort setting strategy of bidder i

conditional on participating in X.

Once again, it is not our main objective here to carry out an exhaustive analysis of

the model. Rather, we want to show that our results of, in this case, Section 1.4

contribute with minor modifications also to the literature on competing contests.

In the following we characterize the symmetric equilibrium of the model. We then

show that, with few bidders, a single all-pay auction may yield higher aggregate

efforts than the same auction together with an additional, second all-pay auction

with a smaller prize. As by-products, we show how bidders’ participation strategies

24Note that while asymmetries in valuations and asymmetries in costs are equivalent at the

interim-stage (when effort is exerted), they are not equivalent (but close to each other) at the

ex-ante stage. See footnote 3 in the Appendix for details.
25A similar behavior is seen in models of advertising, compare Ireland (1993) and McAfee (1994).

In these models, a Bertrand pricing game is played in the second stage instead of an all-pay auction.
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determine their strategies in all equilibria, and that regardless of VA and VB the

number of participants in each contest converges to n/2. Our results are easy to

extend to more than two competing auctions, as will become clear below. In Section

1.5.3 we take a brief look at a generalized model where bidders are inhomogeneous

with respect to the contests they can participate in: One (“global”) contest is open

to all bidders. Two further (“local”) contests are each restricted to bidders from

one out of two disjoint groups. We characterize the distribution of bidders across

the three contests in the case of many bidders and show that it is independent of

prize asymmetries.

Competing contests are a highly natural setting. Many of the participants in real-

life contests choose their contest out of a number of alternatives: Researchers pick

the journal to which they submit their article out of several journals. Firms make

choices in which R&D contest they want to participate. Architects decide for which

project they want to create a proposal. Nevertheless, these systems of contests

have received relatively little attention in the literature so far: Amegashie and Wu

(2006) consider a setting which differs from ours in two respects. They allow for

asymmetries in the bidders’ commonly known valuations, and they assume that

the bidders observe their opponents’ choices of contest before they choose their

effort-levels. Due to the latter assumption, Amegashie and Wu only have to deal

with complete information all-pay auctions at the contest stage. In contrast, in our

model, mixed strategies concerning the choice of contest may create informational

asymmetries (and thus informational rents) at the contest stage. Recently, large

simultaneous contests, so-called crowd-sourcing contests, have been discussed in the

computer science literature.26 From this literature, DiPalatino and Vojnovic (2009)

is closest to us, with the main difference that they assume incomplete information

about the bidders’ valuations. Yet the focus of their study is quite different: While

we are mostly interested in the comparative statics of the equilibrium in the number

of bidders n, their analysis focuses on a large systems limit. As we will see, there are

26The term “crowd-sourcing” goes back to Howe (2006). For theoretical results see Archak and

Sundarajan (2009), Chilton and Horton (2010), DiPalatino and Vojnovic (2009), and the references

therein. For a broader perspective on the theoretical literature, see Jain and Parkes (2009).
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considerable qualitative differences between, e.g., n = 2, n = 4 and n = 6. Hence

considering moderate numbers of bidders is an interesting task.

To see how our model of competing contests is related to the model of Section 1.4

look briefly at the case VA = VB. Assume that all opponents of bidder i mix with

equal probability between participating in contests A and B. Furthermore assume

that all of i’s opponents use the strategies stated in Proposition 1.2 for the case

p1 = . . . = pn = 1
2
.27 Then trivially bidder i faces the same situation in the two

contests: There are n − 1 opponents each of whom is present with probability 1
2
.

Hence bidder i has to choose between two instances of the game analyzed in Section

1.4. Thus bidder i does not want to deviate from playing the same strategy as his

opponents and we have found a Nash equilibrium. Carrying this logic a bit further

and making use of the equilibrium uniqueness we proved for Section 1.4, we can

easily conclude the following necessary conditions for Nash equilibria:

Corollary 1.9. Assume that a vector of strategies (piA, H
i
A, H

i
B)i forms a Nash equi-

librium.

(i) For X ∈ {A,B}, denote by IX ⊆ {1, . . . , n} the set of potential particiants in

X, i.e. the set of bidders with piX > 0.

a) If IX = {i}, bidder i exerts an effort of zero and earns a payoff of VX

from participating in X.

b) If |IX | ≥ 2 and if piX = 1 for at most one bidder i, the strategies H i
X are

given by the equilibrium of Proposition 1.2 for the case of |IX | bidders

and participation probabilities (piX)i∈IX . Accordingly, equilibrium payoffs

follow from Lemma 1.1.

c) If |IX | ≥ 2 and if piX = 1 for two or more bidders, contest X is es-

sentially a standard symmetric complete information all-pay auction with

zero payoffs and the well-known non-uniqueness of equilibrium.28

27As noted above it is straightforward to generalize the results of Section 1.4 to a prize which

does not equal 1. Since we are mostly concerned with the equilibrium payoffs here (which are

simply multiplied by the value of the prize), we abstract from this technicality and adapt the

according results from Section 1.4 to the prizes V .
28See Baye, Kovenock and de Vries (1996).
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(ii) All bidders earn identical payoffs in equilibrium. Expected equilibrium payoffs

also coincide for any contest that is played with positive probability in equilib-

rium.

Thus we find that the piA uniquely determine the equilibrium payoffs and that these

equilibrium payoffs can be calculated immediately from Lemma 1.1. Part (ii) follows

from the fact that if bidder i makes a payoff π in contest X then any other bidder

can make a payoff arbitrarily close to π by exerting an effort marginally above the

support of H i
X .

Before we derive a symmetric mixed strategy equilibrium for the case VA ≥ VB, let

us note that there are also asymmetric equilibria involving coordination. For n = 2

and VA ≥ VB, an equilibrium is characterized by p1
A = 1 and p2

A = 1 − VB
VA

. Both

bidders expect a payoff of VB. In the case of VA = VB this equilibrium simplifies to

each bidder exerting zero effort in one of the contests. For n = 3, an equilibrium is

characterized by p1
A = 1, p2

A = 0 and p3
A = VA/(VA + VB). This yields equilibrium

payoffs of VAVB/(VA + VB). For n ≥ 4, Nash equilibria are given by at least two

bidders playing a complete information all-pay auction in contest A and at least two

bidders playing a complete information all-pay auction in contest B with certainty.

In this equilibrium all bidders earn zero payoffs. In neither of these cases the payoffs

of the asymmetric equilibrium coincide with those of the symmetric mixed strategy

equilibrium we determine now.

Denote by pA and pB the participation probabilities in a symmetric mixed strategy

equilibrium. By Part (ii) of Corollary 1.9 expected payoffs must be identical in

contests A and B. Hence we get by Lemma 1.1 that

VA(1− pA)n−1 = VB(1− pB)n−1

which implies (since pA = 1− pB) that

VA
VB

=

(
pA
pB

)n−1

.

As pA = 1− pB, this yields that in the symmetric equilibrium

pA(VA, VB, n) =
VA

1
n−1

VA
1

n−1 + VB
1

n−1

and pB(VA, VB, n) =
VB

1
n−1

VA
1

n−1 + VB
1

n−1

.
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We thus see that with two bidders pA and pB stand in the same proportions as VA

and VB. As n increases, pA and pB quickly converge monotonically to 1
2
. Obviously,

this implies that the expected numbers of participants in the respective contests are

close to n
2

for large n. Note as well that pX only depends on the ratio of VA and VB.

For the remainder of this section we are concerned with the aggregate efforts in

the symmetric equilibrium. Like in Section 1.4 we can calculate the expected sum

SX of efforts exerted in contest X as the difference between the expected value

of prizes awarded minus the sum of the bidders’ expected payoffs from contest X.

Accordingly,

SA(VA, VB, n) = VA(1− (1− pA)n)− nVApA(1− pA)n−1

and

SB(VA, VB, n) = VB(1− (1− pB)n)− nVBpB(1− pB)n−1,

where pA and pB depend, of course, on VA, VB, and n. Define the overall expected

sum of payoffs as

S(VA, VB, n) = SA(VA, VB, n) + SB(VA, VB, n).

In the following we analyze the function S(VA, VB, n). For the sake of brevity we rely

for the most part on numerical instead of analytical results (which are, of course,

straightforward to derive). As a preliminary step, we address the question of how

to optimally split up a fixed sum of prize money over the two contests in order

to maximize S. Figure 1.5 depicts S(V, 1 − V, n) as a function of V for different

numbers of bidders n. The dotted line corresponds to the overall prize money of 1.

Not surprisingly, regardless of n it is optimal to concentrate all prize money in one

contest and worst to install two prizes of equal size. For n = 2 aggregate effort more

than doubles if one contest with prize 1 is played instead of two contests with prizes

of 1
2

each. For n > 7 there is little quantitative difference between the different

ways of splitting up the prize - there are enough bidders to guarantee almost full

dissipation of rents in both contests. The most interesting observation to make from
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the figure is that for small values of n even a slight move out of the corners leads to

a substantial loss in aggregate effort.

Figure 1.5: Aggregate effort when VA = V and VB = 1 − V as a function of V for

(bottom to top) n = 2, . . . , 8.

Let us now consider aggregate efforts when one contest offers a prize of 1 and a

second contest offers a prize of VB ≤ 1. How does the size of VB affect aggregate

efforts? Clearly, there are two effects at work: First, more prize money makes

exerting efforts more attractive. Yet second, as we already saw in the situation

of Figure 1.5, introducing a second contest may be detrimental to competitiveness

and may hence lead to lower aggregate effort. Our main result is that the second

effect is stronger than one might initially think. This can be seen from Figure 1.6:

The dotted lines correspond to the two benchmarks, i.e., to the total prize money

1 + VB and to the aggregate efforts of 1 for VB = 0. With two or three bidders, any

prize VB ≤ 1 leads to lower aggregate efforts than VB = 0. For intermediate n it

sensitively depends on the value of VB whether the presence of the second contest

is detrimental to aggregate efforts or not. A small prize VB is detrimental while a

larger prize increases aggregate efforts. For larger n (starting with, roughly, n = 7),

aggregate efforts are close to 1 + VB, i.e., aggregate efforts are almost as large as for

a single prize of value 1 + VB.
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Figure 1.6: Aggregate effort when VA = 1 and VB = V as a function of V for (bottom

to top) n = 2, . . . , 8.

Clearly, with few bidders, introducing a second contest mostly leads to less compe-

tition in the first contest and hence to lower aggregate effort. In fact, even for large

n, introducing a second contest is detrimental if VB is sufficiently small: The reason

is that a contest over a very low prize is not very attractive. Hence bidders are

not willing to compete over the prize. The second contest then basically works as

an outside option for each bidder. To give some analytic hint at this phenomenon,

consider the derivatives of SA(1, VB, n) and SB(1, VB, n) at VB = 0. It can be shown

that for all n

d

dVB
SA(1, VB, n)

∣∣∣∣
VB=0

= −∞ and
d

dVB
SB(1, VB, n)

∣∣∣∣
VB=0

= 0.

This observation implies that increasing VB away from zero leads to a substantial

drop in SA which is not backed up by a corresponding increase in SB. Hence we

conclude that the detrimental effect of small prizes exists for all values of n even

though it is hardly noticeable quantitatively for n > 7.

Global and Local Contests

The analysis of the preceding section is only a small part of what can be shown about

models of competing contests using our techniques. To substantiate this claim we
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take a brief look at the following related model: There are n = n1 + n2 bidders,

n1 ≥ 2 of them in group 1, the remaining n2 ≥ 2 of them in group 2. There are

three contests, a global one with prize G > 0 and two local ones with prizes L1 > 0

and L2 > 0. As in the above model, bidders simultaneously decide in which contest

to participate and how much effort to exert. The only difference is that bidders

from group i can only compete for Li but not for L−i. The contest for the global

prize G is open to both groups. For instance, the two groups can be thought of as

researchers from two different fields that can either submit to the general interest

journal or to the their respective field journal.

We focus on equilibria where all bidders in group i follow the same (typically mixed)

strategy. For i = {1, 2}, denote by pi the probability with which a bidder in group

i exerts effort in the local contest for Li. With 1 − pi, the bidder participates in

the global contest. It is straightforward to see that the arguments behind Corollary

1.9 still apply here: The probabilities pi determine the equilibrium payoffs and

the strategies of effort exertion. Expected equilibrium payoffs in all three contests

must be identical. Thus an equilibrium is characterized by the following system of

equations:

L1(1− p1)n1−1 = Gp1
n1−1p2

n2−1 max(p1, p2) (1.3)

and

L1(1− p1)n1−1 = L2(1− p2)n2−1. (1.4)

The factor max(p1, p2) in the first equation stems from the payoff formula from

Lemma 1.1. Solving (1.3)-(1.4) for p1 and p2 pins down an equilibrium of the game.

While an explicit solution is difficult, a numerical solution is easy to obtain: Using

(1.4) we can eliminate p2 from (1.3). This leaves us with the problem of finding

the values of p1 which solve (1.3).29 We will not go into the details of this analysis

here. Instead, we focus on analyzing the limits of p1 and p2 as n gets large. This

is equivalent to an analysis of how a large number of bidders is distributed over

the three contests. We identify non-trivial limits p1 and p2. It turns out that these

depend on the ratio of the group sizes but not on the values of the three prizes. This

29It is also straightforward to show that such a solution exists.
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sets into perspective our previous result that in the main model of this section both

contests attracted an equal number of bidders when many bidders were present.

We assume that n1− 1 = α(n− 2) and accordingly n2− 1 = (1−α)(n− 2).30 Thus,

for large n, α is the proportion of group 1 bidders in the population. Inserting the

definition of α into equations (1.3) and (1.4) and rearranging yields, respectively,(
L1

Gmax(p1, p2)

) 1
n−2

=
p1
αp2

1−α

(1− p1)α
(1.5)

and (
L2

L1

) 1
n−2

=
(1− p1)α

(1− p2)1−α . (1.6)

Now taking n to infinity yields the following system of equations for the limits p1

and p2 of p1(n) and p2(n):

1 =
p1
αp2

1−α

(1− p1)α
(1.7)

and

1 =
(1− p1)α

(1− p2)1−α . (1.8)

We will not go into a detailed analysis of the difference between pi(n) and pi here.

Considering the left hand sides of equations (1.5)-(1.6) suggests however that we

have a quicker convergence - and thus a smaller approximation error for a fixed n -

when the three prizes do not differ too much.

Through (1.8) one can eliminate p2 from (1.7). Then it is straightforward to calculate

p1 from (1.7) for fixed values of α. The resulting Figure 1.7 depicts p1 as a function

of α. If group 2 does not exist, i.e. for α = 1, bidders in group 1 mix between

the global and the local contest with equal probability. This replicates our result of

convergence to the uniform distribution in the basic two-contest model of Section

1.5.3. If group 1 is comparatively small, i.e. for small α, the bidders from group 1

participate in the local contest with very high probability. In the symmetric case

30In our model, this assumption is analytically more convenient but essentially equivalent to

assuming n1 = α n. A reader who is concerned with the ni not being integers can choose α ∈ Q
and let n tend to infinity along a suitable subsequence of N.
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Figure 1.7: Limit proportion of group 1 bidders choosing the local contest, p1, as a

function of the limit fraction of group 1 bidders, α.

α = 1
2
, we obtain the explicit solution

p1

(
1

2

)
= p2

(
1

2

)
=

√
5− 1

2
≈ 0.618.

Thus in this case about 61.8% of the contestants participate in their local contests.

Notably, the masses of the bidders in the global contest and of the bidders in the

local contests stand in the celebrated Golden Ratio, i.e.,

p1

(
1
2

)
n(

1− p1

(
1
2

))
n

=
1 +
√

5

2
.

Observe that since prize asymmetries have vanished in the limit over n, it holds that

p1(α) = p2(1− α).

Figure 1.8 depicts the limit distribution of bidders across contests as a function of α.

The bidders in group 2 are depicted above the dotted line, the bidders in group 1 are

below. The group members who participate in the global contest are shown around

the dotted line (in the shaded area), while participants in the two local contests are,

respectively, below and above that region. The overall participation in the global

contest is remarkably stable: It varies between 0.5 (if only one group is present) and

roughly 0.38 (for equal group sizes). Moreover, if the larger group is less than five
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Figure 1.8: Limit distribution of bidders across contests as a function of α.

times larger than the smaller group, i.e. α ∈ [0.2, 0.8], the proportion of bidders in

the global contest varies even considerably less (between 0.38 and 0.41). Closer to

the corners, we observe a remarkable stickiness: As long as α smaller than 0.2 or

larger than 0.8, the proportions pi are almost constant. The smaller group stays in

its local contest almost exclusively while the larger group is split up in nearly equal

proportions between its local contest and the global contest. When α becomes larger

than, roughly, 0.2 (or smaller than 0.8), there is a sudden change in behavior: Both

groups start to participate substantially in the global contest.

1.6 Conclusion

We have analyzed an asymmetric all-pay auction with incomplete information about

the different bidders’ types and their different type-probabilities. The assumption

of two different types enabled us to carry out an explicit analysis of equilibrium in

an asymmetric auction setting when information is incomplete.

With the help of our results, one can study asymmetries in all areas in which all-

pay auctions are popular models, such as lobbying, rent-seeking, R&D activities, or
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sport contests.31 Our results may also serve as an easy-to-use tool for the analysis

of richer models. For instance, we considered models with multiple stages, where

asymmetries often arise naturally in the course of the game.

31For an overview, see Konrad (2009).
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Chapter 2

Welfare in Markets where

Consumers Rely on Word of

Mouth

We analyze a market model with rational firms knowing the distributions from which

their opponents’ qualities are drawn. Firms engage in price competition. Following

Spiegler (2006a) we assume that consumers only see the firms’ prices and rely on

word of mouth in order to judge the firms’ different qualities.

We prove equilibrium uniqueness for the special case of complete information on the

firms’ side. With the help of this result, we characterize all equilibria of the general

incomplete information model. Different equilibria generate identical payoffs for the

firms, but different welfare results. In the monotone pricing equilibrium, welfare

converges to zero in the number of firms.

2.1 Introduction

There are plenty of markets in which consumers are not fully aware of the different

qualities of specialists and rely on word of mouth. Whereas consumers are unfamiliar

with the market, specialists know the market well: They know how good they

are, they have a good idea about their competitors’ qualities, and they know how

consumers search for them. Specialists act rationally.
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Consumers who come into an unfamiliar market see the prices charged by the firms,

but not the different firms’ qualities. They rely on word of mouth to get a rough

idea about the qualities. If several firms seem to offer a good quality, consumers

focus on the prices as the ultimate selection device. Even though high quality

firms get recommended more often, they may have to compete in prices against

much lower quality firms if those get recommended as well. Anticipating this, firms

play a very different pricing game than in a traditional market model with rational

consumers. Competition is not necessarily beneficial in this market - as soon as

some firms compete against each other, welfare may decrease substantially. This is

the situation explored in this chapter.

In the following, we mostly stick to markets for health care and health insurance

as leading examples. The “healers” in our model can hence be seen as specialized

therapists or as providers of health care insurance. Yet our analysis applies to any

market with which consumers are not familiar, such that they rely on anecdotal

evidence to judge the qualities of different firms, e.g. markets for car repair or

markets for financial advice. In these markets, prices are salient and easy to grasp,

but quality is not.

A large body of experimental research shows that anecdotes serve as a compelling

and convenient tool for transporting information and influencing behavior.1 In the

medical literature, there is broad evidence that patients rely on anecdotal reason-

ing.2 Even if statistical information on different forms of therapy is available (which

often is not the case, e.g., for surgical treatments)3, patients tend to prefer to rely

on personal stories. Fagerlin et al. (2005) point out identification and emotional

feelings as driving factors behind this. Patients may find it much easier to identify

with a “natural person” than with the “statistically average person”.4 Additionally,

1See, e.g., Kahneman and Tversky (1973), Borgida and Nisbett (1977).
2Compare, e.g., Fagerlin et al. (2005) and the references therein and Enkin and Jadad (1998).
3Compare Gattellari et al. (2001) and McCulloch et al. (2002). McCulloch et al. (2002) state

that “treatments in general surgery are half as likely to be based on RCT [Randomised Control

Trials] evidence as treatments in internal medicine” (p. 1448).
4Compare also Jenni and Loewenstein (1997).
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in situations of uncertainty, people are often driven by emotions, and anecdotes

transport more emotions than statistical results.5

Fagerlin et al. (2005) see another compelling characteristic about anecdotes in that

“anecdotal information often provides a clear dichotomy − either an individual was

cured or not” (p. 399). This kind of information may be much easier to grasp

for a lay person than some statistical percentage of getting cured, and hence be

much more easy to relate to. Indeed, most people have difficulties in understanding

percentages and basic statistical concepts. For example, the importance of sample

size is typically not recognized by untrained subjects. This has been shown in general

studies as well as in medical contexts like cancer treatment or cancer screening.6

We assume that patients rely on word of mouth regarding quality in an otherwise

standard market model: Patients only think about attending a healer if they heard

some good story about him, and avoid those healers on which they heard something

negative. When patients heard some favorable report about several healers, they opt

for the recommended healer with the lowest price. The way we model the patients’

behavior is known as the S(1)-rule (where S(1) stands for “sampling once”) and

goes back to Osborne and Rubinstein (1998). It has been applied as well by Spiegler

(2006a, 2006b), Rubinstein and Spiegler (2008) and Szech (2010). Of these papers,

Spiegler (2006a) is closest to the present study as we discuss below. Szech (2010)

complements our welfare analysis by shedding light on the case where healers choose

their qualities themselves, see the discussion in Section 2.5.

Besides S(1), other related approaches for modeling boundedly rational consumer

behavior are Ellison and Fudenberg’s (1995) “word-of-mouth learning” and Ra-

bin’s (2002) “law of small numbers”. Further related models from the literature

on bounded rationality are reviewed in Spiegler (2006a). More broadly, this chapter

contributes to the literature on interactions between rational firms and boundedly

5Compare Loewenstein et al. (2001) and Finucane et al. (2000).
6Compare among others Tversky and Kahneman (1971), Hamill et al. (1980), Garfield and

Ahlgren (1988), Yamagishi (1997), Schwartz et al. (1997), Weinstein (1999), Lipkus et al. (2001),

Weinstein et al. (2004).
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rational consumers as surveyed by Ellison (2006).

We generalize the model of Spiegler (2006a). He analyzes a market of quacks who

all have the same qualities and do not succeed better than some costless outside

option the patients could choose instead. In our model, healers have true healing

powers, but may differ strongly in their healing qualities. Additionally, we assume

that the healers do not know the qualities of their competitors perfectly: Healers

only know the distributions from which the qualities of their competitors are drawn.

Spiegler shows different types of market failure, e.g. that patients’ surplus may fall

in the number of quacks for a low overall number of quacks in the market. Yet

this negative effect of competition disappears if the number of quacks gets larger.

Harsh competition among many quacks drives the prices down. As the quacks

offer identical (low) qualities, patients fare better as competition becomes strong.

In contrast, in our model, patients’ surplus typically increases for low numbers of

healers, but starts to decrease substantially when too many healers are active and

even goes to zero when healers employ monotone pricing strategies. This negative

effect of competition is in stark contrast to the predictions made by standard market

models.

While our way of modeling anecdotal reasoning follows Spiegler, the logic behind

our results is novel: Through the introduction of incomplete information we obtain

pure equilibria which differ markedly from the mixed equilibria analyzed in Spiegler

(2006a) and Szech (2010). Even a tiny amount of uncertainty in the quality real-

izations allows for pure price strategies where better healers charge higher prices.

In this monotone equilibrium, patients who cannot properly distinguish between

qualities are naturally driven to low quality healers: Patients pick the healer with

the lowest price among all recommended healers. Thus they end up with the worst

healer among the recommended ones if prices are monotone in quality.

Let us at this point turn briefly to the political debate about the performance of

the US health insurance systems: In light of our results, it is not surprising that

recent research revealed that the Veterans Health Administration (VHA) often offers
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better quality treatments than competitive health insurers in the US:7 In contrast

to most other medical insurers in the US, like Health Maintenance Organizations

(HMOs), the VHA does not stand in competition to other insurers. The patients of

the VHA typically stick with the institution for the rest of their lives. In contrast,

the customers of most other US insurance systems typically switch their health plans

on a regular basis. Hence competition plays a big role for most US health plans,

but not for the VHA.

Our model gives an intuition for why competition can be detrimental to welfare in

the health insurance market: For patients, seeing prices of medical plans is easy.

Comparing myriads of different care plans for various health problems is difficult.

When choosing their insurance, patients may therefore screen the different medical

plans only with regard to coverage of a small sample of conditions. Alternatively,

they may rely on recommendations by other insured and their limited experiences.

Our analysis shows that in such a market, the choice among many insurers may lead

to patients ending up with medical plans of low quality.

That in the complex insurance market consumers may indeed focus on prices too

much is underpinned by the recent decision in Germany to legally cut back the price

competition among social health insurers to a minimum. The idea behind was to

force people to put their attention away from price differences to quality differences.8

Our model also contributes to explaining why many therapies that lack evidence of

7See Brooks (2008) and Longman (2010). Based on 294 indicators of quality, Asch et al. (2004)

find that the VHA scores higher than all other sectors of American health care. Patients inside

the VHA receive significantly better adjusted overall quality, better chronic disease treatment and

preventive care.
8Compare the following statement by the German Federal Ministry of Health (2009), translated:

“The uniform insurance fee ends the unfair competition for the cheapest fee. Instead it opens a fair

competition for the best service and additional benefits to the insured.” Clearly, such “fairness”

considerations would be pointless with perfectly rational patients.

49



therapeutical advantage compared to simpler therapies9 or placebos10 survive in the

health market. Even if a doctor has the best intentions, if his therapeutical method

does not help patients in the best possible way, patients should better go elsewhere.

To maximize overall well-being (welfare), only the best therapies should survive in

the market. Our model shows that even strong competition over patients who rely

on word of mouth does not drive out therapists of poor quality.

From a theoretical point of view, Ireland (1993) and McAfee (1994) analyze a closely

related game with a different interpretation, namely advertising, in mind: Competi-

tion over consumers is modeled as in our study, yet firms know each others’ qualities

(or rather advertising intensities in their specification) for sure. We add to the analy-

sis of these two papers the equilibrium uniqueness in the pricing stage. The question

of equilibrium uniqueness had been pointed out by both authors as an open problem.

The uniqueness result stands in an interesting contrast to the multiplicity of equi-

libria in related models of price dispersion such as Varian’s model of sales (1980) or

the complete information all-pay auction.11 Equilibrium uniqueness in the complete

information case is a crucial step for characterizing all equilibria of our general game

with incomplete information.

Finally, let us point out that the natural definition of welfare is fundamentally

different for the market models studied by McAfee and Ireland, as there are no

differences in the firms’ service-qualities, but only in the firms’ advertising activities.

Thus, in these models, welfare increases in the number of firms.

The chapter is structured as follows: Section 2.2 presents the model and describes in

detail the behavioral S(1) rule our patients follow. In Section 2.3, we characterize all

equilibria of the model where each healer’s quality may be drawn from a different

9For example, arthroscopic surgery, one of the most often performed surgeries with the aim of

lowering pain in arthritic knees, was only recently questioned by Kirkley et al. (2008), who doubt

the efficacy of this therapy. Kallmes et al. (2009) find that vertebroplasty, a commonly performed

spinal surgery to treat osteoporotic compression fractures, leads to no improvements in pain and

pain-related disability.
10Compare Fontanarosa et al. (1998).
11See Baye, Kovenock and de Vries (1992, 1996).
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distribution function. As a by-product, we show equilibrium uniqueness for the

pricing game of Ireland (1993) and McAfee (1994). In Section 2.4, we assume that

the healers’ qualities are independently drawn from the same distribution F . We

characterize the equilibrium in monotone price setting strategies. We show that

as the number of healers gets large, overall welfare goes to zero. As an example,

we assume qualities to be uniformly distributed: Welfare starts to decrease (and

decreases substantially) in the number of healers as soon as there are more than

three healers in the market. Section 2.5 discusses the robustness of our results.

Section 2.6 concludes.

2.2 The Model

We consider a market with n rational healers and a continuum of mass 1 of boundedly

rational patients. The quality αi of healer i is drawn from a distribution function Fi.

The Fi are commonly known by all healers, but not by the patients. The supports of

all Fi are assumed to be subsets of [0, 1]. Furthermore, we assume that the expected

quality αi of each healer i satisfies 0 < αi < 1. Without loss of generality, healers are

sorted by expected qualities, i.e., αi ≤ αj for i < j. Let E[·] denote the expectation

with respect to the αi. Initially, the patients are ill. They have a utility of 0 from

staying ill, and a utility of 1 from getting cured. A healer with quality α cures each

of his patients with probability α independently of each other.

The timing is as follows:

1. Each healer learns his personal quality realization αi. This information is

private.

2. The healers set their prices Pi simultaneously.

3. The patients decide whether to attend a healer and if so, which one.

4. Patients who consult healer i get cured with probability αi.
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In Step 3, patients decide according to the behavioral rule S(1) as introduced by

Osborne and Rubinstein (1998), and as utilized in Spiegler (2006a). This rule works

as follows:

• Each patient independently receives a signal on each healer.

• With probability αi, a patient receives a positive signal Si = 1 on healer i (“a

recommendation”).

• With probability 1− αi, a patient receives a negative signal Si = 0 on healer

i (“no recommendation”).

• A patient attends the healer with the highest Si−Pi, unless maxi Si−Pi < 0.

In that case the patient stays out of the market and expects a utility of 0 at

a price of 0.

The last point implicitly contains a tie-breaking rule: If a patient has to choose

between consulting a recommended healer at a price of one or staying at home, the

patient opts for the healer. It can be shown that no equilibrium exists if we depart

from this assumption. All other ties can be broken arbitrarily.

Note that patients rely far too much on the signal they get - they over-infer from

their sample. The idea behind the S(1) rule is to capture reliance on anecdotal

evidence in a simple way: Each patient independently asks some “former” client

of each healer.12 A client of healer i got cured with probability αi. Thus, with

probability αi, he recommends healer i to the patient. The patient perfectly trusts

this report - he either thinks the healer can cure him for sure or not at all.

Note that if a patient consults healer i his utility is 1 − Pi with probability αi and

−Pi otherwise. The S(1) rule is supposed to capture the idea that patients are not

familiar with how the market works in detail. In particular patients are not aware

of the healers’ qualities αi: Patients act as if some healers were always successful

and others never.

12Of course, this dynamic motivation is only for intuition, as we are in a static model here.
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Finally, an alternative interpretation of the S(1) rule is as follows: Assume the

healer is a health insurer and the quality of the insurer is given by the proportion of

medical problems covered by his insurance plan. Patients just sample each insurer

with regard to one random medical condition. Hence with probability αi they receive

the positive signal that the condition considered is covered by the insurance plan.

They then think this plan is a good one, in contrast to the plans on which they

received a signal of non-coverage. The medical condition the patient faces in the

future is independently drawn by nature.

2.3 Characterization of All Equilibria

In this section, we determine all equilibria of the model. For the analysis, it is

helpful to consider the model with deterministic qualities α1, ..., αn as well. This is

the special case of our model where the healers hold complete information about each

others’ qualities. This model has been analyzed by Ireland (1993) and McAfee (1994)

in the context of advertising. We add the uniqueness to their characterization of

equilibrium. This result is a crucial step towards the characterization of all equilibria

of the incomplete information game.

To put the equilibria we find into perspective, note that if the healers know each

others’ qualities perfectly, and if qualities are strictly between 0 and 1, standard

arguments yield that there cannot be an equilibrium in pure strategies: Each healer

has the possibility to earn a positive expected payoff, as with some probability

he is the only recommended healer in the market.13 Hence each healer chooses

a price strictly higher than zero. Thus pure pricing strategies cannot constitute

an equilibrium, as there would always be a healer who would like to attract more

patients by deviating to a slightly lower price. This is why in the game with complete

information about qualities, the equilibrium must be in mixed strategies. The unique

mixed equilibrium of this game is given by Proposition 2.1.

13Recall that patients never attend healers that are not recommended, as they expect a negative

utility of 0− Pi from attending them.
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Proposition 2.1. Define a sequence of prices p0, . . . , pn by

pi =
(1− αi+1) · . . . · (1− αn−1)

(1− αi)n−i−1

for 1 ≤ i ≤ n− 2,

p0 =
n−1∏
i=1

(1− αi)

and pn−1 = pn = 1. Then the unique Nash equilibrium of the complete information

game with qualities α1, ..., αn is the following: Each healer i mixes over the interval

[p0, pi] using the distribution function Hi defined as

Hi(p) =
1

αi

(
1− n−j

√
(1− αj) · . . . · (1− αn−1)

p

)
(2.1)

for p ∈ [pj−1, pj] ⊂ [p0, pi] with 1 ≤ j ≤ n − 1. On [0, p0], define Hi = 0 and, on

[pi, 1], Hi = 1. Hn places an atom of size 1− αn−1

αn
on 1.

The question of uniqueness of equilibrium in the complete information game with

qualities α1, ..., αn had been pointed out as an open problem by Ireland (1993) and

McAfee (1994).14 Spiegler (2006a) proves uniqueness of equilibrium for the special

cases where all healers offer the same quality and where all but one healers offer the

same low quality and one healer a higher quality.

In the complete information game with qualities α1, ..., αn, the payoff of healer i

from playing some price p while the other healers use the mixed strategies Hj is

given by

πi(p) = pαi
∏
j 6=i

(1− αjHj(p)). (2.2)

The intuition is as follows: In order to attract a patient and earn p, healer i has to

be recommended (which happens with probability αi) and has to be the cheapest

healer among those who are recommended. (The probability that a competitor j is

not both recommended and cheaper than p is 1 − αjHj(p).) We insert the explicit

formulas for the distribution functions Hj from Proposition 2.1 into (2.2). Then we

can calculate that the expected equilibrium payoff of healer i is given by

πi(p) = αi
∏
j 6=n

(1− αj) for all p ∈ [p0, pi].

14It is straightforward to generalize our uniqueness result to the more general demand functions

considered in McAfee (1994).
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From this we can deduce that the distribution functions Hi also form a Nash equi-

librium in the incomplete information game:

Proposition 2.2. The distribution functions Hi defined in (2.1) form a Nash equi-

librium in the incomplete information game with qualities α1, ..., αn. In this equilib-

rium, the payoff of healer i is given by

πi = αi
∏
j 6=n

(1− αj).

Note that the equilibrium strategies of the healers do not depend on the realizations

of their qualities αi. Thus the healers do not make use of their private information.

The intuition is as follows: Once he got recommended to a patient, it does not matter

anymore for a healer how good or bad his quality actually is. For his competitors,

the exact quality of the healer plays no role either, as they do not know it: The

competitors can base their strategies only on the healer’s expected quality. Yet most

healers (that is to say all healers i 6= n if αn > αn−1) do incorporate their expected

quality αi into their equilibrium strategies.

The next proposition establishes that the expected healers’ payoffs are the same in

all equilibria of the incomplete information game. Furthermore, all the equilibria are

interchangeable15: Any two equilibria A and A′ can be combined to form another

equilibrium A′′ by assigning to the healers their respective strategies from A or A′

in an arbitrary way. This is the extent to which the equilibrium uniqueness from

the complete information game with qualities α1, ..., αn carries over.

Proposition 2.3. A profile of strategies ((Gα1
1 )α1 , . . . , (G

αn
n )αn) is a Nash equilib-

rium if and only if:

E[αiG
αi
i (p)] = αiHi(p) for all i (2.3)

and all Gαi
i have their support in [p0, pi].

Furthermore, the healers expect the same payoffs in all equilibria.

Obviously, there are infinitely many equilibria since each healer i can make his

15See Osborne and Rubinstein (1994), p. 23.
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strategy dependent on αi in an arbitrary way as long as (2.3) is satisfied. Notably,

if the noise in the αi is rich enough, pure price strategies are possible in equilibrium.

Proposition 2.4. Assume that the distribution functions Fi have continuous and

strictly positive densities fi on [0, 1]. Furthermore, assume that αn = αn−1. Then

there is a unique pure strategy equilibrium with strictly increasing price setting func-

tions P̄i(αi). Moreover,

P̄i(αi) = H−1
i

(∫ αi
0
βfi(β)dβ

αi

)
.

The randomness in the quality realizations allows the healers to remain unpre-

dictable competitors even if they choose a pure pricing strategy. Note that Proposi-

tion 2.4 does not demand for much noise in the sense of a large variance. The main

requirement in Proposition 2.4 is that the qualities are drawn from atomless distri-

butions. (An atom would force the healers to mix over prices in equilibrium.) For

the sake of brevity, we exclude the case of αn > αn−1. In that case all our arguments

still go through but, because of the atom in Hn, P̄n reaches the value 1 already for

some αn < 1 and then stays constant. Intuition clearly favors the monotone price

equilibrium over the other equilibria: It is natural to assume that a healer with a

higher quality charges a higher price. The same selection criterion among equilibria

is applied in the standard literature on auctions.

2.4 Welfare

In this section we focus on the symmetric case where the qualities of all healers i are

independently drawn from the same distribution Fi = F . We assume that F has a

continuous and strictly positive density f . Denote by α the mean of F . Hence α

is also the expected quality of a randomly drawn healer. We study welfare in the

monotone strategy equilibrium and show that it deteriorates an n gets large. At the

end, we compare our welfare results to those of the standard model where patients

act rationally, but hold only incomplete information about the healers’ qualities.

By the results of the previous section we have the following monotone pricing equi-

librium:
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Proposition 2.5. There is a unique equilibrium in monotonically increasing price

strategies. In this equilibrium, each healer i uses the price setting function

P̄ (αi) =

(
1− α

1−
∫ αi

0
βf(β)dβ

)n−1

.

The expected equilibrium payoff of healer i is given by

πi = αi(1− α)n−1.

Conditional on his quality realization, each healer plays a pure pricing strategy.

Looking at the payoffs, we see that each healer i earns in expectation only his ex-

pected maxmin payoff − the payoff he can earn for sure no matter what prices his

competitors choose: With an expected probability of (1−α)n−1, all his competitors

are not recommended. With a probability of αi, healer i is recommended. Hence

with an expected probability of αi(1− α)n−1, healer i is the only one who is recom-

mended. Thus by charging a price of 1, healer i can secure an expected payoff of πi

to himself.

Denote by θn the healers’ aggregate payoffs in a market with n healers:

θn =
∑
i

E[πi] = nα(1− α)n−1. (2.4)

As one easily sees from (2.4), the healers’ aggregate payoffs may initially increase in

n if α is not too large but eventually converge to zero as n increases. The intuition is

as follows: With few healers and low qualities, competition is soft. Only few patients

are attracted by several healers, and many patients do not get recommended to any

healer at all. A new healer entering the market may attract most of his patients from

the group of patients that would otherwise stay at home. Thus the new healer does

not strengthen competition much. Yet if more and more healers enter the market,

even with low qualities, more and more patients get recommended to several healers.

Then price competition gets more and more severe, driving the healers’ payoffs down.

We have found that in expectation the healers’ payoffs go to zero as n gets large. But

does that mean that the patients are better off the more healers enter the market?
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At least, in the limit, patients do not have to pay anything for the healers’ services.

Yet it turns out that also patients fare badly: Recall that a patient always consults

the cheapest healer who is recommended to him because he thinks all recommended

healers are of the same high quality and just differ in prices. Yet as the healers apply

monotone price-setting strategies, by picking the cheapest the patient also picks the

worst of all recommended healers. Since the distribution function of qualities F has

support on the whole interval [0, 1], as many healers enter the market there is - with

high probability - also a considerable amount of very low quality healers, some of

which get recommended. Making this reasoning precise, one can see that as n gets

large, overall welfare converges to zero: No patient gets cured in the limit.

Proposition 2.6. Denote by γn the expected social welfare, i.e. the expected pro-

portion of patients cured, in the monotone equilibrium with n healers. Then

γn = n

∫ 1

0

α2

(
1−

∫ α

0

βf(β)dβ

)n−1

f(α)dα (2.5)

and

lim
n→∞

γn = 0.

Like the healers’ payoff θn, welfare γn is an expected value taken over the qualities αi.

The intuition behind formula (2.5) is the following: Consider the expected quality

of the treatment chosen by a patient: A quality α is chosen if a) the healer offering

that quality is recommended and b) all his competitors are either not recommended

or are charging a higher price. The probability of a) is α. The probability of b)

is
(
1−

∫ α
0
βf(β)dβ

)n−1
as charging a higher price is equivalent to offering a higher

quality in the monotone equilibrium.

Welfare may already decrease for a quite low number of healers. This is relevant as it

seems much more natural to think of a patient receiving an anecdote on each healer

if the market is not too large. However, as pointed out in Spiegler (2006a), n can

also be interpreted as the number of healers a patient gets a report on in a market

with very many healers. Then n would be a measure of patients’ awareness.16 The

following example demonstrates that the effects at work are not only limit results

16We discuss this further in Section 2.5.
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but already play an important role already for moderate numbers of healers. Figure

2.1 depicts welfare for the special case that qualities are uniformly distributed on

[0, 1], i.e. F (α) = α:

Figure 2.1: Expected social welfare γn for αi ∼ U [0, 1]

Figure 2.1 shows that welfare is maximized for n = 3 healers. With three or four

healers, the average quality a patient receives is slightly larger than the quality of the

average healer α = 1/2, as better healers are more often recommended. Afterwards,

less and less patients get cured, as most patients get recommended to several healers

and then, led by price-comparison, end up with a low quality healer.

Figure 2.2 depicts the sum of the n healers’ expected payoffs θn. θn is maximized

with one or two healers where it equals 1/2. Afterwards θn decreases quickly.

Figure 2.3 depicts patients’ aggregate surplus which is the difference between overall

welfare γn and healers’ surplus θn. The healers’ surplus θn decreases considerably

faster than the proportion of patients cured γn. Hence the patients’ surplus is largest
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Figure 2.2: Expected healers’ aggregate surplus θn for E[αi] = 1
2

at an intermediate market size of n = 8. As n gets larger, the patients’ surplus

decreases, driven by the decreasing average quality received γn. Note that with one

or two healers the patients’ surplus is negative: In monopoly, the healer attracts all

patients to whom he is recommended. He then charges a price of 1 for a treatment

of expected quality α = 1
2
. In duopoly, patients are more often recommended to the

healer with the higher quality (who offers in expectation a healing probability of 2
3
).

Yet, as competition is weak, prices are still quite high. Patients’ surplus increases,

but remains negative.

From Proposition 2.3 it is clear that for the healers’ expected payoffs it does not

matter which equilibrium they play. The patients’ health, however, varies across

equilibria. We close this section by considering welfare in the equilibrium from

Proposition 2.2 where all healers play the same mixed strategy H (independent

of their quality realization). In this equilibrium, welfare converges to some value

strictly above α. The intuition is as follows: If all healers play the same price
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Figure 2.3: Expected patients’ aggregate surplus γn − θn for E[αi] = 1
2

strategy, they all have the same probability that they are the cheapest and thus

attended by the patients - given that they are recommended. But since better

healers are recommended more often a patient will get an above average treatment

in expectation when there are sufficiently many healers.

Remark 2.1. Consider the symmetric case where all αi are drawn from the same

distribution F . Consider the mixed equilibrium where all healers i apply the same

price strategy H as defined in Proposition 2.1. Let γ̃n denote the expected welfare in

this equilibrium. Then

γ̃n =
E[α2]

E[α]
(1− (1− E[α])n) (2.6)

where α has distribution F .

By Jensen’s inequality the limit for n to infinity, E[α2]/E[α], is strictly greater than

E[α] = α (unless F is deterministic). The second factor in (2.6), 1 − (1 − E[α])n,

is the probability that a patient gets at least one recommendation and turns to the
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market for healers. The first factor of (2.6), E[α2]
E[α]

, is the expected quality a patient

receives given he does not stay at home. This factor does not depend on the number

of healers n as prices do not reveal anything about healers’ qualities. Yet it depends

on the variance of F :
E[α2]

E[α]
=
V ar[α]

E[α]
+ E[α].

A higher variance is beneficial, as it increases the average quality of a recommended

set of healers.

Note that γ̃n describes also the proportion of patients cured in a standard market

model with rational, incompletely informed patients. In such a model, prices can-

not transmit any information so that there must be pooling over the prices in the

equilibrium of the pricing game: It is rational for patients to use the word of mouth

as a selection device, i.e. to update in a Bayesian way the initial beliefs about the

healers’ qualities. But it would be irrational to take the prices into account. Hence

we obtain the same welfare result γ̃n.

Finally, note that γ̃n also describes the proportion of patients cured in a situation

where patients utilize anecdotal reasoning but where a fixed price is exogenously

prescribed to the healers.

2.5 Discussion

In this section we discuss several directions for extensions and show robustness of

our results.

Awareness of patients:

Throughout the analysis, we assumed that n is the number of healers in the market.

Yet as we outlined before17, we can reinterpret n as the number of healers a patient

samples, hence as a measure of patients’ awareness. Especially in a large market,

patients might only sample a fraction of all healers − and sampling intensity may

17Compare also Spiegler (2006a).
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be heterogeneous among the patients. We can incorporate this heterogeneity into

our model by taking n as an integer-valued random variable. Our results prove to

be robust to this extension: For simplicity, focus on the symmetric case Fi = F . Let

us define

ρ = E[(1− α)n−1],

where the expectation is taken over n. With the same argument as in Section 2.3,

healer i’s expected equilibrium payoff is then given by

πi = αiρ.

There exists again a symmetric mixed strategy equilibrium H which does not depend

on the realizations of the αi. The support of H is the interval [ρ, 1] and H is given

implicitly as the solution of

ρ = pE[(1− αH(p))n−1].

From this mixed strategy equilibrium it is straightforward to construct a monotone

strategy equilibrium the same way as for deterministic n. Hence again, too much

competition turns out to be detrimental to welfare.18

Several anecdotes:

Another plausible variation of our model would be a model where patients gather

several anecdotes on each healer. For example, this might be modeled in a way that

more anecdotes are gathered about more popular healers. While the equilibria of

such generalized models usually preclude an explicit solution, it is mostly straight-

forward to see that the main arguments of our analysis carry over: As long as each

healer has a certain chance of being perceived as the very best healer by some pa-

tients, healers will be unwilling to engage in harsh price competition leading to the

type of pricing behavior studied in the previous sections.19

18As an aside, from applying Jensen’s inequality we see that ρ > (1 − α)E[n]. The healers’

equilibrium payoff is thus higher than in the model with a deterministic number of E[n] healers.

In this sense, the heterogeneity in n is beneficial for the healers.
19See also the discussions in Spiegler (2006a) and Szech (2010).
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Note that with one anecdote per healer, patients face a clear dichotomy: Healers

get subdivided into good and bad. This simplicity has been pointed out by Fagerlin

et al. (2005) as one of the factors that make anecdotes so attractive to rely on.

Endogenous qualities:

One assumption of our model which may seem rather strong is that the healers’

qualities are exogenous random variables. It is plausible that while healers may not

be able to fully control their qualities, they can influence them at least to some

extent. With the application to advertising in mind, Ireland (1993) and McAfee

(1994) analyze extended games where the healers choose their qualities themselves

before pricing takes place. They focus on the case of complete information about

qualities. Szech (2010) adds the welfare analysis under the S(1) interpretation.20

It is straightforward to combine the analysis of endogenous qualities for the complete

information case with our incomplete information model: Recall that ex ante, a

healer’s expected payoff only depends on his expected quality (and not on any

further properties of the distribution function). Thus the analysis of the complete

information case transfers immediately to a model where healers choose between

several distributions from which their quality is drawn (in the sense of, e.g., choosing

between different specializations): When choosing between different distribution

functions, healers only take into account the expected quality.

From the analysis of the complete information case it is known that healers typically

choose much lower than socially optimal qualities, to make competition softer and

hence raise revenues.21 Also, if the best possible qualities are not too low, there will

20Welfare results differ markedly from welfare in the advertising interpretation. Under the

interpretation of advertising, firms differ only in advertising activities, but not in service qualities.

αi describes solely the probability with which a consumer gets aware of firm i. Hence any consumer

ending up at a firm receives the same gross utility.
21See Ireland (1993) and McAfee (1994) for the explicit form of the pure quality-setting equilibria,

respectively, with and without costs of quality-setting. Szech (2010) adds a more detailed analysis

of mixed strategy equilibria and shows that welfare decreases for larger numbers of healers under

the interpretation of anecdotal reasoning.
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be much difference in the qualities offered by the best and the worst healers. Hence

endogenous quality choice creates the situations of varying qualities to which our

bad welfare results apply.

2.6 Conclusion

“It is unwise to pay too much, but it’s worse to pay too little. When you pay too

little, you sometimes lose everything because the thing you bought was incapable

of doing the thing you bought it to do.” This recommendation is attributed to the

social thinker John Ruskin (1819-1900). Indeed, in markets where qualities are not

easy to grasp, competition among firms may lead to consumers ending up with poor

qualities, as they focused too much on price differences. Our model shows that even

if patients try to get an idea about the qualities in a market, they likely end up with

a bad quality.

The assumption that consumers rely on word of mouth captures empirical findings

from the psychological and economic literature. Recently, also medical research

puts a lot of attention to the phenomenon that lay people tend to prefer to rely

on anecdotes even if statistical evidence is available and presented in an appealing,

easy-to-grasp way. This fact has even led to recommendations of incorporating

personal stories into evidence-based results, such that patients may be more willing

to adhere to statistical recommendations.22

Assuming that consumers apply anecdotal reasoning, our model generates very dif-

ferent predictions than those made by standard market models. Stronger competi-

tion turns out to be detrimental to welfare. Recent surprising results from the US

medical system support this conclusion, showing that the non-competing Veterans

Health Administration often provides higher quality services than the competitive

health systems prevalent in the US.

22Compare e.g. Glenton et al. (2006).
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Generally, we believe that more research is needed to explore the interplay between

perfectly rational firms and boundedly rational consumers following behavioral, pos-

sibly market-specific rules instead of perfectly rational thinking.
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Chapter 3

Rebates in a Bertrand Game

We study a price competition game in which customers are heterogeneous in the

rebates they get from either of two firms. We characterize the transition between

competitive pricing (without rebates), mixed strategy equilibrium (for intermediate

rebates) and monopoly pricing (for larger rebates).

In the mixed equilibrium, a firm’s support consists of two parts: (i) aggressive prices

that can steal away customers from the other firm; (ii) defensive prices that can only

attract customers who get the rebate. Both firms earn positive expected profits.

We show that counter-intuitively, for intermediate rebates, market segmentation de-

creases in rebates.

3.1 Introduction

The presumably simplest and in this sense most fundamental model on rebates is

not yet fully analyzed. Klemperer (1987a, Section 2) studies the situation where

two firms with equal and constant marginal costs compete in prices. He frames the

example as one of the airline industry where rebates are given. Each customer has to

pay the full price at one firm if he buys there, but only the reduced price if he buys

from the other firm. Klemperer shows that in equilibrium each customer buys from

the firm where he can get the rebate and the reduced price equals the monopoly

price. Therefore, firms yield monopoly profits in their segments.

Despite its simplicity the model is not yet fully analyzed: unless rebates are suf-
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ficiently high, an equilibrium in pure strategies fails to exist. This is one of the

reasons why the literature, starting with Klemperer (1987a), has attached further

components to the model to guarantee existence of pure strategy equilibria.1,2

We analyze the “innocent” model without any restriction on the size of the rebates.

We show that when customers differ in the rebates they can get, both firms earn

positive expected profits. The intuition is as follows: first, a firm which offers a

rebate will not charge a price near or below marginal costs, because a very low price

would at least attract customers who get a rebate and pay a negative net price.

Due to the low price, the loss from this customer group cannot be compensated by

customers who do not get a rebate from this firm. Second, given that the former

firm charges only prices well above marginal costs, the other firm can set a price so

that it yields a profit. Third, because the other firm earns in expectation a profit, it

must charge prices well above marginal costs, too. This also enables the former firm

to earn a profit. Note that when all customers get the same rebate at the same firm

or when no rebates are set, the well-known Bertrand paradox arises: both firms set

net prices equal to marginal costs and earn zero profits.

In the main part of our analysis, we focus on unit-demand. The equilibrium is

characterized by three different regimes: first, when rebates are small, the Nash

equilibrium is in mixed strategies without mass points. Second, for intermediate

levels of rebates the equilibrium is still in mixed strategies but there is a mass point

at the upper end of the support. Third, when rebates are high, the equilibrium is

in pure strategies, just as in Klemperer (1987a). In the first two regimes firms mix

between two types of strategies: an aggressive one and a defensive one. Either a

firm charges low prices, attracts all customers of its home base for sure and with

some probability attracts the other customers as well. Or a firm charges high prices,

thus risking to lose the customers of its home base, but earns a high payoff if it

1Klemperer (1995, footnote 7): “Pure-strategy equilibrium can be restored either by incorporat-

ing some real (functional) differentiation between products (Klemperer (1987b)), or by modelling

switching costs as continuously distributed on a range including zero (...) (Klemperer (1987a)).”

Banerjee and Summers (1987) consider a sequential price setting to circumvent mixed strategies.

Also Caminal and Matutes (1990) analyze a setting with real differentiation.
2Mixed strategy equilibria often arise in oligopoly pricing models. For example, in Padilla’s

(1992) dynamic setting with myopic customers; in Deneckere, Kovenock, and Lee (1992) who

analyze a game with loyal customer and without rebates; in Allen and Hellwig’s (1986, 1989, 1993)

Bertrand-Edgeworth models, where capacity-constrained firms choose prices.
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still attracts them. For the case where firms mix without atoms we show that the

probabilities of attacking and defending stand in the celebrated golden ratio.

Furthermore, we show that – counter-intuitively at first sight – market segmentation

may decrease in rebates. This happens when rebates reach an intermediate level

where the customers’ limited willingness to pay starts to affect the firms’ pricing

behavior. From this level of rebates on, firms have to concentrate some mass of

their pricing strategy into an atom at the upper end of their price interval. At that

price, the firm can only attract its home-base if the other firm does not attack. Yet

as the other firm still attacks with some (though diminishing) probability, market

segmentation has to decrease. Then, for larger rebates, the attack probability of the

other firm gets so low that market segmentation increases again and converges to

full segmentation of the market.

We also study the normative aspects of our model. As discussed above, rebates

increase firms’ profits when customers differ in the rebates they can get. We show

that under more general demand functions, rebates also lead to lower customer and

total welfare results. Note that customers face a coordination problem: customers

are collectively worse off when there are rebate systems, but individually they are

better off when they participate in a system than when they do not.

In our analysis we take the rebates customers get as given and concentrate on the

price setting behavior of the firms. This can be justified for the following reasons.

First, this approach may be a good description of the short run behavior of firms

where the rebate system is established and cannot be overturned. Second, in some

lines of industries, like the airline industry, several firms have a common rebate

system. Then a firm can hardly change rebates when it decides about its prices.

Third, note that we obtain the result that with rebates and when customers differ in

the rebates they can get, firms earn positive profits instead of zero profits. Therefore,

even though we do not model how firms set rebates, we predict that firms have an

incentives to offer rebates and set them in a way that customers are heterogeneous

in the aforementioned sense.

Bester and Petrakis (1996) study the effects of coupons/rebates on price setting in

a one period model where firms can target certain customers. In equilibrium, each

firm sends coupons to customers who live in the “other city”. Therefore, unlike in
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our model, coupons reduce the firms’ profits. For similar models, see Shaffer and

Zhang (2000) and Chen (1997). Note that despite some similarities our model is

not a reinterpreted model of spatial competition: in our model, firms care which

customers buy from them because customers pay different net prices.

The chapter proceeds as follows. In Section 3.2, we introduce the model. In Section

3.3, we solve the equilibrium explicitly for the case of unit-demand. In Section 3.4,

we characterize the equilibrium for a large variety of demand functions. In Section

3.5 we study the welfare effects and explore the customers’ coordination problem.

In Section 3.7, we offer a concluding discussion. The proofs are relegated to the

appendix.

3.2 The Model

We analyze a market with two firms and a continuum of customers. The customers

are of one of two types: a mass m1 of customers gets a fixed rebate r1 ≥ 0 at firm

1 and no rebate at firm 2. We call this group of customers the “home base” of firm

1. A mass m2 of customers gets no rebate at firm 1 and a fixed rebate r2 ≥ 0 at

firm 2. Each customer wants to buy exactly one object, for which his valuation is

p. Both firms produce these objects at costs which are normalized to zero. Firms

engage in price competition: customers buy from the firm where they have to pay

the lower net price (i.e., price minus rebate), provided that this net price is below

the valuation. In Section 3.4, we will extend our analysis to much more general

demand functions and to situations where not all customers get rebates.

Let us start with an intuition why in this game the Bertrand Paradox breaks down,

i.e., why firms must earn positive profits. When a firm offers a rebate, it has to

charge gross prices well above zero to yield no loss. This enables the other firm to

earn a positive profit. Hence, the other firm also charges in equilibrium prices well

above zero which in turn allows the former firm to earn a positive profit, too.

Klemperer (1987a) obtains essentially the following partial result:

Proposition 3.1. Suppose m1 > 0 and m2 > 0. Then, if r1 and r2 are sufficiently

large, each firm earns monopoly profits in its market segment.
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In the next sections, we explore what happens if the rebates are not that high, such

that the above pure strategy equilibrium does not exist.

3.3 Characterization of Equilibria

In the following, we see that if rebates are moderate, a mixed strategy equilibrium

arises. Section 3.3.1 characterizes the mixed strategy equilibrium for the case where

the rebates are small enough to ensure that p does not interfere with the firms’

pricing strategies: in this case, each firm i mixes over strictly positive prices that

are strictly lower than p + ri. Section 3.3.2 gives a complete characterization of

the transition between pure and mixed strategy equilibrium for the symmetric case

ri = rj and mi = mj.

3.3.1 Atomless Pricing for Moderate Rebates

Denote by Fi the distribution function underlying the mixed price-setting strategy

of firm i, and let πi be firm i’s equilibrium payoff. Then in equilibrium it must hold

that for all p ∈ suppFi

πi = mi(p− ri)(1− Fj(p− ri)) +mjp(1− Fj(p+ rj)). (3.1)

The equilibrium distributions we identify are characterized as follows: firms mix

between two types of strategies – an aggressive one and a defensive one. Either a

firm charges low prices, attracts all customers of its home base for sure and with

some probability attracts the other customers as well. Or a firm charges high prices,

thus risking to lose the customers of its home base, but earns a high payoff if it still

attracts them. Formally, Fi can be written as qiAi + (1− qi)Di where Ai and Di are

distribution functions and qi ∈ [0, 1]. We call qi ∈ [0, 1] the “attack probability”, as

only a firm playing the aggressive strategy may steal away customers of the other

firm’s home base: Ai (the aggressive strategy) and Di (the defensive strategy) have

distinct supports [ai, ai] and [di, di] with ai ≤ di.

Figure 3.1 schematically depicts the supports of the two firms’ strategies in an ex-

ample with ri > rj. Given this decomposition of the firms’ strategies, (3.1) becomes

for small p, that is, for p ∈ [ai, ai],

πi = mi(p− ri) +mjp(1− qj)(1−Dj(p+ rj)) (3.2)
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Figure 3.1: The boundaries of the strategy supports.

and for larger p, that is, for p ∈ [di, di],

πi = mi(p− ri)(1− qjAj(p− ri)). (3.3)

Our first main result explicitly gives an equilibrium for the case in which the maximal

willingness to pay, p, is sufficiently large not to interfere with the firms’ pricing

strategies.

Proposition 3.2. Assume that p is sufficiently large, i.e., p > max{d1 +r1, d2 +r2}
where dj is defined below. Then an equilibrium is given as follows: equilibrium attack

probabilities qj and equilibrium payoffs πj are

qj =
m2
i +mimj +m2

j − ψ(mi,mj)(m
2
i −mimj +m2

j)

2m2
j

(3.4)

and

πj =
(ψ(mi,mj) + 1)mimj − (ψ(mi,mj)− 1)m2

j

2mi

ri +
(ψ(mi,mj)− 1)mj

2
rj,

where

ψ(mi,mj) =

√
m2
i + 3mimj +m2

j

m2
i −mimj +m2

j

.

The equilibrium strategies are compositions of the defensive strategy

Dj(p) = 1− πi −mi(p− ri − rj)
mj(p− rj)(1− qj)

(3.5)
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and the aggressive strategy

Aj(p) =
1

qj

(
1− πi

mip

)
, (3.6)

with supports given by

dj =
πi +mi(ri + rj) + rjmj(1− qj)

mi +mj(1− qj)
, dj =

πi
mi

+ ri + rj

and

aj =
πi
mi

, aj =
πi

mi(1− qj)
.

Furthermore, supports of the equilibrium strategies are connected, i.e., dj = aj. The

defensive strategy of firm i is a downward shift by rj of the defensive strategy of firm

j, i.e., Dj(p+ rj) = Ai(p).

Note that one can immediately calculate these functions Dj and Aj using (3.2) and

(3.3). The fact that the aggressive strategy of player i is identical, up to a shift by

rj, to the defensive strategy of player j, has the following consequence: given that

firm i attacks and firm j defends, there is a probability of 1/2 that all customers end

up at firm i. With the counter-probability, all customers buy at their home firm.

While the dependence of the equilibrium on the group sizes mi and mj is a bit more

complex, the dependence on the rebates is very simple: the attack probabilities

qj are independent of the rebates. The equilibrium payoffs are linearly increasing

in both rebates. The function ψ which determines equilibrium payoffs and attack

probabilities is a symmetric function which only depends on the ratio of mi and

mj. It takes its maximum value of
√

5 for mi = mj and decreases to the value 1 as

mi/mj goes to 0 or ∞.

To see how asymmetries in the attack probabilities are linked to asymmetries in

group sizes observe from (3.4) that the following relation holds:

qim
2
i = qjm

2
j .

Intuitively, a firm who gives rebates only to few customers is more inclined to set

small prices targeting customers who get a rebate from the other firm.

To illustrate the proposition, consider the case mi = mj = 1. Then the equilibrium

is given by

qi = q =
3−
√

5

2
≈ 0.382 and πi = rj + (1− q)ri.
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Note that this implies that the probabilities of attacking and defending stand in the

celebrated golden ratio, i.e.,
1− q
q

=
1 +
√

5

2
.

To get some intuition for the equilibrium – and also for the occurrence of the golden

ratio – let us consider the special case ri = rj = r. Let us assume that in equilibrium

both players mix with some atomless strategy over an interval of length 2r, i.e.,

[a, a+ 2r]. Let q be the equilibrium attack probability, i.e., the probability mass in

the lower half [a, a+ r].

We demonstrate now how these assumptions uniquely determine equilibrium values

of a and q and equilibrium payoffs. Let us compare the firms’ expected payoffs from

playing prices a, a+ r and a+ 2r which in equilibrium must be identical. Note first

that by playing a price of a + r, a firm attracts all customers from its home base,

but no customers from the opponent’s home base. Thus

π(a+ r) = a+ r − r = a.

Compare to this playing a price of a. Then our firm still attracts its home base with

certainty but payments from the home base decrease by r. Yet unlike before, our

firm receives a from the customers in the other firm’s home base as well, provided

that the other firm plays a price above a+ r which happens with probability 1− q.
Thus from π(a+r) = π(a) we can conclude that advantages and disadvantages from

switching from a+ r to a must cancel out in equilibrium, i.e.,

r = (1− q)a. (3.7)

Now consider the payoff from playing a price of a+2r. In this case our firm attracts

its home base only if the other firm plays a price above a + r which happens with

probability 1− q. We hence get

π(a+ 2r) = (1− q)(a+ 2r − r) = (1− q)(a+ r).

As π(a+ 2r) and π(a+ r) must be identical in equilibrium, we get

a = (1− q)(a+ r). (3.8)

Now let us compare (3.7) and (3.8). From these two equations we see that the ratio

between r and a is the same as the ratio between a and a + r. This is exactly the
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defining property of the golden ratio, implying that

a

r
=

1 +
√

5

2

and thus by (3.7)

q =
3−
√

5

2
.

3.3.2 From Bertrand to Monopoly

So far we have analyzed the cases of sufficiently large and of sufficiently small re-

bates, giving rise to, respectively, a pure strategy equilibrium in p + r or a mixed

strategy equilibrium. For the symmetric case, we now round out the analysis by

characterizing the equilibrium also for intermediate values of r. This equilibrium is

composed of an atom in p + r and mixing below this price. A gap arises between

the supports of the aggressive and the defensive strategies. The transition between

the different types of equilibria is continuous in r:

Proposition 3.3. Assume mi = mj = 1, p = 1 and r1 = r2 = r.

(i) For r ≤ r∗ := 3−
√

5
2

, Proposition 3.2 characterizes an equilibrium with q = 3−
√

5
2

and π = (2− q)r.

(ii) If r∗ ≤ r ≤ 1, an equilibrium is given as follows: both firms play the aggressive

strategy A(p) with probability qA, the defensive strategy D(p) with probability qD and

a price of 1 + r with the remaining probability. The probabilities qA and qD and the

equilibrium payoffs π are given by

qA = 1−
√
r, qD = 1− r and π =

√
r.

The distribution functions A and D are given by

A(p) =
1

qA

(
1− 1− qA

p

)
and D(p) =

1

qD

(
1− qA − 1− qA − p+ 2r

p− r

)
.

The supports of A and D are defined through

aj =
√
r, aj = 1,

and

dj =
√
r + r, dj = 1 + r.

(iii) If r ≥ 1, a pure strategy equilibrium arises where both firms set a price of 1 + r.

Each firm earns an equilibrium payoff of 1.
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It is straightforward to generalize Proposition 3.3 to mi = mj 6= 1 and p 6= 1.

Furthermore, it is easy to verify that Cases (i) and (ii) coincide for r = 3−
√

5
2

.

Likewise, for r = 1, the equilibrium of Case (ii) degenerates to an atom in 1+ r = 2.

Figure 3.2: The strategy supports d ≥ d ≥ a ≥ a as functions of r.

Figures 3.2 and 3.3 illustrate Proposition 3.3. The upper quadrangle in Figure 3.2

pictures the support of the firms’ defensive strategy in dependence on r. The upper

bound corresponds to d, the lower bound to d. The lower quadrangle depicts the

support of the aggressive strategy, where the upper and lower bound correspond to

a and a, respectively. Up to r∗ ≈ 0.382, the curves are the same as in the case of

unrestricted willingness to pay. Yet once the curve d reaches the value 1 + r∗, the

limited willingness to pay of the customers kicks in: from there on, d increases less,

and stays always equal to 1 + r, the maximal willingness to pay of the home base

customers. Firms put an atom on d from the kink onwards. The distance between

a and d is always r, as is the distance between a and d. That is, r is the maximal

markup a firm can charge from its home base. The pricing strategies converge to

the case of a segmented market with monopolistic prices as r approaches 1.

Figure 3.3 shows the distribution functions of the firms’ pricing strategies for differ-

ent values of r (r = 0, 0.2, 0.4, . . . , 1). We see the interpolation between competitive

pricing (r = 0), where firms set prices of 0, and full segmentation (for r = 1), where
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both firms set a price of 1 + r = 2 with certainty. For r > r∗, the pricing strategies

have a gap between the aggressive and the defensive prices, corresponding to the

constant part in the distribution functions. The mass of the atom corresponds to

the size of the jump in the distribution functions. For r = 0.2 < r∗, the kink in the

curve marks the boundary between aggressive and defensive pricing.

Figure 3.3: The pricing strategy F (p) for r = 0, 0.2, 0.4, . . ., 1.

The firms’ profits increase linearly in r for r low and sub-linearly for intermediate

r. When r ≥ 1, profits stay constant in r. Intuitively, once the market is fully

segmented, firms cannot earn more than monopoly profits, hence they do not gain

from higher rebates.

Figure 3.4 shows the segmentation probability, i.e., the probability that all customers

buy where they get the rebate, as a function of r. Note first that even arbitrarily

small rebates are sufficient to generate a high segmentation probability. Interest-

ingly, the probability that the market is segmented is not monotonically increasing

in r. Rather, the segmentation probability is constant until r = r∗, then decreases

for some interval until it increases again, reaching the value 1 for r ≥ 1. To get an

intuition for this behavior, note first that the probability of no segmentation is the

same as the probability of a successful attack. Now in Cases (i) and (ii) of Propo-

sition 3.3 we can argue as in the proof of Proposition 3.2 that A(p) = D(p + r).

77



Therefore, given that one firm attacks and the other defends, the probability of a

successful attack is 1/2. Observe also that playing an atom in d can be interpreted as

deciding not to defend but to rely on the cases where the opponent does not attack.

We thus get the following: for r < r∗, the segmentation probability is independent

of r, as it only depends on q which is independent of r. For r ≥ r∗, the firms set

an atom in d, which implies that the probability of success of an attack increases.

This effect drives the segmentation probability down. Yet as r further approaches

1, the fact that attacks become increasingly rare takes over and the segmentation

probability approaches 1.

Figure 3.4: The probability of market segmentation as a function of r.

3.4 The Generalized Model

We generalize the model by introducing a mass m0 of customers who do not get a

rebate from any of the firms. We also allow for a more general demand function. A

customer’s demand depends on the lowest net price which he has to pay at either

of the firms and is denoted by X(·). We impose the following assumptions on X: it

is positive at least for small positive net prices and continuous and non-increasing

in the net price. We also assume that the monopoly profits are bounded.3 We next

3This rules out equilibria à la Baye and Morgan (1999). They show (in a model without

rebates) that when the monopoly profits are unbounded “any positive (but finite) payoff vector

can be achieved in a symmetric mixed-strategy Nash equilibrium” (p. 59).
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distinguish two cases: in the first, all customers are homogeneous in the sense that

all have the same rebate opportunities; in the second, customers are heterogeneous,

i.e., they have different rebate opportunities.

3.4.1 Homogeneous Customers

Assume customers are homogeneous, i.e., mi > 0 for exactly one i ∈ {0, 1, 2}. Then

there is perfect competition in net prices and hence the Bertrand paradox arises:

two firms are sufficient to yield the competitive outcome.

Proposition 3.4. Suppose that customers are homogeneous, then both firms earn

zero profits.

Next we show that this is no longer true when customers are heterogeneous.

3.4.2 Heterogeneous Customers

Assume customers are heterogeneous, i.e., mi = 0 for at most one i ∈ {0, 1, 2}. This

implies that customers differ in the net prices they face. The next lemma states that

in equilibrium no firm will charge a negative price. Loosely speaking, the reason is

that a negative price leads to losses once something is sold. For a firm which offers

a rebate we get a stronger condition.

Lemma 3.1. In any Nash equilibrium, no firm charges negative prices. A firm

which offers a rebate charges prices well above zero.

We next show that the Bertrand paradox does no longer arise.

Proposition 3.5. In any Nash equilibrium, both firms earn positive expected profits.

That is, when customers are heterogeneous, competition is relaxed and firms earn

positive expected profits. This also holds when only one firm offers a rebate. Gener-

ally, rebates make switching less attractive for customers. This segments the market

and allows firms to earn profits. In contrast, without rebates or with rebates which

can be used by all customers the market does not get segmented and firms yield

zero profits; see Proposition 3.4.
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When only one firm offers a rebate, its position in the price competition seems to be

weak: when it attracts customers, it has to charge a sufficiently positive gross price

to make no loss. In contrast, the competitor also makes no loss when it charges a

price of zero. So why should a firm offer a rebate to some customers? The reason

is that the competitor knows about the “weakness” of the rebate offering firm and

therefore sets a positive price in equilibrium. But given this, the rebate offering firm

can target the potential rebate receiving customers and yield a positive expected

profit.

So far we have derived characteristics of any Nash equilibrium. Yet we were silent

about equilibrium existence. Before we turn to this, we make an assumption which

guarantees that playing very high prices is dominated.

Assumption 3.1. The demand function is elastic above a threshold price. Techni-

cally, X(p) is such that there exists a p̂ so that εx,p := − X′(p)
X(p)/p

> 1 ∀p > p̂.

Sufficient conditions for Assumption 3.1 to hold are that for some price the demand

function is elastic (εx,p > 1) and that the demand is log concave (this implies, see

Hermalin (2009), that εx,p is increasing in p).

Lemma 3.2. Under Assumption 3.1 playing prices above p̂ + rj is dominated for

firm j in any Nash equilibrium.

With the help of Lemma 3.2 we can establish the existence of a Nash equilibrium.

Proposition 3.6. Under Assumption 3.1, for any tie-breaking rule a Nash equilib-

rium exists.

There is an alternative assumption to Assumption 3.1 which yields Lemma 3.2 and

also Proposition 3.6. There is a choke price: X(p) = 0 ∀p ≥ p̃. Then prices above

p̃+ ri are dominated for firm i.

Klemperer (1987a, Section 2) shows for an example that firms yield monopoly profits

in their market segment. This result holds more generally.4

4Existence of a monopoly price is assumed in Proposition 3.7. One can easily show that As-

sumption 3.1 is sufficient for existence.

80



Proposition 3.7. Suppose m0 = 0, m1,m2 > 0, and there exists a monopoly price

pM . When the rebates r1 and r2 are sufficiently large, both firms earn monopoly

profits in their market segment in equilibrium. An equilibrium in pure strategies

supports this outcome. The same is true when there exists a choke price p̃ and

m0,m1,m2 > 0.

Intuitively, when the rebates are high no firm wants to attack the customers in the

other firm’s home base. The reason is that such an attack would require setting a

gross price which is low compared to the rebate the customers in the own home base

get. Therefore, attacking would lead to a loss. This gives both firms the freedom

to set gross prices such that customers pay net prices equal to the monopoly price.

Thus the home base of firm i buys at firm i and both firms yield monopoly profits

in their market segment.

When there is a choke price which is low compared to the respective rebates, even the

existence of customers who do not get rebates does not affect this result: firms still

target only their home bases, because the high rebates make lower prices unattrac-

tive. Hence customers without rebate opportunities end up buying no product.

3.5 Welfare and Customers’ Coordination Prob-

lem

Without rebates or with homogeneous customers total welfare is maximized because

net prices equal marginal costs. With rebates and heterogeneous customers at least

some customers buy for positive net prices. Hence, given a standard downward

sloping demand function, total welfare is no longer maximized.5 Note that firms are

in expectation better off (see Propositions 3.4 vs. 3.5). Taken together, this implies

that rebates deteriorate the customer welfare.

Customers face a coordination problem. They would collectively be better off when

there are no rebates. This type of coordination is, however, not credible when there

are many customers who cannot write contracts on whether or not they participate

5For the case in which there is constant demand, total welfare is constant for all prices for which

customers buy. Nonetheless, rebates deteriorate the customer welfare.
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in rebate systems. First note that when a customer has no mass, then he does not

change the firms’ pricing policies by participating or not participating in a rebate

system. When he participates, he has the option to use the rebate and is therefore

weakly better off than we he does not participate. There are cases where he is

strictly better off. Therefore, the customer is in expectation strictly better off when

he participates in a rebate program.

3.6 Endogenous Rebates

Up to now we have concentrated on the price setting of the firms when the rebates

are given. This approach may be a good description of the short run behavior of

firms where the rebate system is established and cannot be overturned. Additionally,

in some lines of industries, like the airline industry, several firms have a common

rebate system. Then a firm can hardly change rebates when it decides about its

prices.

Next, we endogenize the rebates. We hold the analysis brief and non-technical. This

should allow the reader to gain some intuition which does not rely on some specific

– and to some extent arbitrary – modelling of the rebate setting stage.

Suppose that firms first set rebates simultaneously before they compete in prices.

From Proposition 3.4 the following result is immediate.

Proposition 3.8. That both firms set no rebate is not a subgame perfect Nash equi-

librium. It is also not subgame perfect that both firms offer rebates to all customers.

When both firms set no rebate then both firms will earn zero profits. This cannot be

optimal because by offering a rebate to some customers a firm can yield a positive

expected profit; see Proposition 3.5. The same arguments apply when firms offer

rebates to all customers.

The equilibrium of the rebate setting stage may be in pure or mixed strategies.

When it is in pure strategies, then firms offer rebates to a subset of customers which

implies that both firms will earn positive expected profits. When the equilibrium is

in mixed strategies, firms will still earn positive expected profits. The reason is that
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a firm may use the pure strategy and offer a rebate to a subset of customers which

guarantees the firm a positive expected profit.

We close with a simple example. Suppose a mass of 1/3 of the customers participate

in the rebate program of each firm, while the remaining 1/3 does not participate in

any program. Technically, m0 = m1 = m2 = 1/3. Suppose that the customer’s choke

price is 1. For concreteness assume that each firm can choose one of the following

rebates: {0, r, r̄}, where 0 < r < 1 and r̄ > 3. When both firms choose the high

rebate, both firms earn monopoly profits in their market segment in equilibrium;

cf. Proposition 3.7. Each firm’s profit is then 1/3. To see that this cannot be an

equilibrium observe that a firm which chooses a rebate of zero earns 2/3, given that

the other firms will choose the high rebate. The reason therefore is that the other

firm would yield a loss when it offers a gross price which is lower than 1. Therefore,

the firms will not choose rebates which are very high and yield to the monopolization

of their market segments. This is due to the customers which do not participate in

the rebate program. It is too tempting to sell to those customers. Additionally, it

can be no equilibrium that both firms offer zero rebates; cf. Proposition 3.8.

3.7 Concluding Discussion

We showed that in a Bertrand game rebates lead to a segmentation of the market

when customers are heterogeneous in the rebates they can get. This segmenta-

tion has the effect that both firms earn positive expected profits. We close with a

discussion.

Entry.— Rebates lead to positive profits for firms when customers are heteroge-

neous. Therefore, when entry costs are positive, rebates may lead to entry into a

market into which otherwise there would be no entry. In this sense, rebates may

increase competition in a market.6

Heterogeneous Demand.— Note that the results obtained in Section 3.4 also hold

when customer types have different demand functions: all proofs can be modified so

that the demand function is type-dependent as long as the demand functions fulfill

the assumptions we made.

6An argument along these lines is already made, for example, by Beggs and Klemperer (1992).

For a model on entry deterrence in case of switching costs, see Klemperer (1987c).
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Discrimination.— We assumed that firms cannot price discriminate. Technically,

each firm has to offer a single gross price to all customers. Suppose now that firms

can perfectly price discriminate. Then firms know what rebates a customer can

get and are able to offer customer-specific gross prices. Then each customer can

be thought of as an own, separate market. Because there is competition in prices,

both firms will in equilibrium earn zero profits on each market. More specifically, in

equilibrium both firms offer each customer a gross price so that the net price equals

the marginal production costs. Therefore, for the effectiveness of rebates it is crucial

that firms cannot discriminate perfectly.

More Than Two Firms.— Suppose there are N > 2 firms. When customers are

homogeneous or at least two firms set no rebates the Bertrand paradox arises: it is

an equilibrium that all firms set prices equal to their rebate and all firms yield zero

profits. Otherwise, the logic of Proposition 3.5 applies and all firms earn positive

expected profits in equilibrium.

Customers Who Can Get Rebates From Both Firms.— Suppose there is a mass

m3 of customers who can get rebates from both firms. Suppose m0,m1,m2,m3 > 0.

This case arises, e.g., when customers randomly receive rebate coupons: some might

receive coupons from both firms, some from one firm, and others from no firm.

Then both firms must still earn positive expected profits in equilibrium. The line

of argument is as before: first, both firms will only charge prices well above zero.

Second, this gives both firms the opportunity to earn a positive profit by charging

gross prices which are higher than their rebates.
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Chapter 4

Second-Price Auctions with

Information Release

This chapter studies the optimal release of advertising and information in indepen-

dent private values second-price auctions.

We develop mild but sharp conditions under which the seller decides to allocate

his costly advertising or informational efforts among the potential bidders as con-

centrated as possible. The seller overinvests in advertising if the valuations of the

bidders are drawn from a distribution with increasing failure rate. He underinvests

if the distribution has decreasing failure rate. The overall level of advertising is

higher under distributions that are more dispersed in terms of the excess wealth order.

4.1 Introduction

“The outcome of an auction never depends on the number of participating bidders.”

This (translated) citation from Matthias Kurth, head of the federal agency in charge

of the German Spectrum Auction 2010, makes one stumble at first sight. What he

probably wanted to say is that in some situations it may well make sense to include

less bidders into an auction than would be possible.1

Three explanations are typically given for this:2 First, it may be costly for bid-

1Compare Financial Times Deutschland, 9 April 2010.
2Compare Milgrom (2004), Chapter 6.
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ders to participate in an auction. Then bidders may shy away from taking part in

the auction, fearing that so many other bidders may participate that entering the

auction does not pay out. Second, if bidders enter one after another and entry is

again costly, if some bidders already decided to enter, even high type bidders may

prefer not to enter the auction. A third reason comes from practical considerations:

Confidentiality of information transmitted between seller and bidder may become

more insecure the more bidders get involved. Hence only a small number of bidders

may get invited to participate. This chapter provides another reason why sellers

decide to include only a selection of bidders into a second-price auction, why they

try to eliminate all randomness in the number of participating bidders, and why

they equip those bidders involved with as much information as possible.

Our argument for concentrated advertising and concentrated information release in

second-price auctions works without entry-costs, without ex-ante asymmetric bid-

ders, and it works for welfare maximization as well as for maximizing the seller’s rev-

enues. We assume that initially, the bidders are not informed (or not well-informed)

about the auction taking place. In the first model we analyze, the bidders need to

receive advertising from the seller to become aware of the second-price auction. Ad-

vertising efforts are costly for the seller. We find that the seller generally gives out

advertising as concentrated as possible, informing essentially each potential bidder

completely or not at all. For many situations, like technically demanding procure-

ment auctions or auctions of fine art or jewelry, it is realistic to assume that bidders

may not be aware of the auction unless they receive an invitation from the seller.

Also, it is typically observed that advertising or invitations to the bidding process

are given out to a small, selected group of bidders: In military procurement auc-

tions, the number of invited bidders often does not exceed the number of two, even

if there may be other firms meeting high research and quality standards.

Our study derives a mild (but sharp) condition, fulfilled by many distribution func-

tions F from which the private valuations of the bidders may be drawn, under which

the seller’s gross payoffs, i.e. the second order statistics of valuations, are essentially

concave in the number of participating bidders. Under concavity, the seller wants

to concentrate advertising in order to eliminate the randomness in the number of

active bidders. By this, he maximizes his expected revenue.

The condition we derive for the concavity of payoffs makes use of techniques from
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reliability theory.3 We find that if

f(x)

(1− F (x))2

is an increasing function of x, the sequence of expected second order statistics is

concave in the number of participating bidders. In the words of reliability theory,

this condition says that the instantaneous probability that an object A fails, given

that two objects A and B have lasted until now, must be increasing. The link to

second order statistics is hence not surprising.

As a second related model, we consider a private values second-price auction where

the bidders are aware of the auction, but need further information from the seller

to infer their valuations. Uninformed bidders just bid their best ex-ante estimate

of their valuation. In this setting as well, the seller concentrates costly information

on as few bidders as possible under mild conditions. The concentration results also

carry over to auctions with reserve prices.

We compare the optimal overall level of advertising under the objective of maximiz-

ing the seller’s revenues to the social optimum. If the bidders’ valuations are drawn

from a distribution with increasing failure rate (IFR), the seller overinvests in ad-

vertising. The reason behind is that under IFR, the difference between the first and

second order statistic decreases in the number of participating bidders. Hence in

this case, a larger number of participants is more desirable for a revenue-maximizing

seller than for a welfare-maximizer: The selling price is more responsive to adver-

tising than the valuation of the winning bidder. Conversely, the seller underinvests

in advertising if the distribution function has a decreasing failure rate (DFR).

Furthermore, we demonstrate that the excess wealth order4 serves as an appropri-

ate tool to compare the levels of advertising given out under different distribution

functions: If F is more dispersed than G in the excess wealth order, the seller gives

out more advertising under F than under G. The excess wealth order focuses on the

dispersion at the upper subintervals of the distribution supports. An in this sense

more dispersed function offers a higher probability that adding another bidder in-

3See, e.g., Barlow and Proschan (1981). For previous applications of reliability theory to the

auction literature, see Li (2005) and Moldovanu, Sela and Shi (2008) and the references in these.
4For an introduction to stochastic orders, see Shaked and Shantikumar (2007).
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creases the winning bid. Thus advertising pays out more if the distribution function

is more dispersed.

4.1.1 Related Literature

There is a considerable literature on auction models in which it is the bidders who

decide to acquire more information on the object for sale before they make their

bids. Compare the survey by Bergemann and Välimäki (2006).

Less attention has been spent on cases where it is the seller who controls the flow

of information. Yet it is intuitive that it is often the seller who has much better

access to information on the object for sale. Probably he cannot foresee how exactly

further information will affect the bidders’ valuations, but he can anticipate that in

expectation releasing information has an impact.

Two related papers are Bergemann and Pesendorfer (2007) and Esö and Szentes

(2007). Both assume that the seller releases information at no costs. In Esö and

Szentes (2007), the seller can sell information via up-front fees and thus always

releases all information. In Bergemann and Pesendorfer, the seller cannot sell the

information. Hence, when giving out information, he faces a trade-off between

potentially higher bids from better informed bidders and potential losses from giving

up the insurance that less informed bidders never bid extremely low (as they stick

to a rough estimate of their valuation). Considering a wide class of information

structures, Bergemann and Pesendorfer show that the information structure in the

revenue-maximizing mechanism treats bidders asymmetrically. Hagedorn (2009)

further explores the optimality of asymmetric over symmetric information structures

in the same setting.

The assumption that releasing information is costless for the seller fits well to situa-

tions where the seller possesses the information anyway and where he can costlessly

pass it on to the bidders. If the seller has to acquire the information for the bidders,

or if he has to explain to the bidders in detail what they want to know, costs come

into play. This motivates us to assume that providing information is costly.

Ganuza and Penalva (2010) and Hoffmann and Inderst (2009) consider models of

costly information release as well. Yet in their models, the seller cannot give different
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amounts of information to different bidders - which is the central feature of our

model: Ganuza and Penalva (2010) explicitly rule out asymmetric allocations of

information, while Hoffmann and Inderst (2009) focus on the one bidder case.

The idea of modeling the release of information via transmission probabilities goes

back to Lewis and Sappington (1994) and Johnson and Myatt (2006). The same

approach has also been taken by Hoffmann and Inderst (2009). In line with the

literature, we assume that the seller is truthful: For example, one could assume that

he does not know the bidders’ specific needs well enough to be able to misrepresent

information in a favorable way. Esö and Szentes (2007) and Hoffmann and Inderst

(2009) assume that the bidders hold some preliminary information about their valu-

ations. In Section 4.3.2 we show how to apply our results to a simple setting where

preliminary information is included.

Compared to the rich mechanism-design problem studied in Bergemann and Pe-

sendorfer (2007), our model of information transmission probabilities is rather sim-

ple. Obviously, one advantage of our approach is that we obtain an explicit charac-

terization of the optimal information structure in a setting which is otherwise fairly

general: In our setting we cannot only show that (as in the setting of Bergemann

and Pesendorfer) symmetric information structures are non-optimal - we even obtain

optimality of the most asymmetric structures.

Yet this is not the sole advantage of the simplicity of our model: Consider e.g. the

seller of a house. It does not seem overly realistic that such a seller is able to let

bidder 1 learn whether his valuation for the house is above or below 50, 000 $ (and

nothing else) and bidder 2 whether his valuation is above or below 200, 000 $. But

this is only a small fraction of the power the seller in the setting of Bergemann and

Pesendorfer is assumed to possess. Considering such examples it becomes natural

to think about the decision problem of a seller whose power does not go beyond an

imperfect control of the amount of information transmitted to each bidder.

A natural question at this point is why we do not use a model of information trans-

mission based on stochastic orders as is done e.g. in Ganuza and Penalva (2010).

While an extension of our analysis along these lines would certainly be interesting,

note that the theory of stochastic orders is not well-suited to the allocative questions

we study: Our analysis requires comparisons such as the one between the costs of
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dividing a fixed amount of information among two bidders instead of concentrating

the same amount on only one bidder. For this purpose an ordinal ranking on the

space of information structures is not sufficient - we need a meaningful cardinal

ranking of the information structures. Hence we believe the model of information

transmission probabilities is a natural framework for addressing the questions we

ask.

Our results on advertising are also related to the literature that studies auctions

where bidders face entry costs. Seminal references are McAfee and McMillan (1987)

and Levin and Smith (1994), see also the survey of Bergemann and Välimäki (2006).

Typically, in these models it is assumed that bidders learn their valuations only

after entry. In Levin and Smith (1994), bidders mix over their entry decision. This

implies that bidders are indifferent between entering and not entering and that thus

the seller’s revenue coincides with social welfare. In other models such as McAfee

and McMillan (1987) and Lu (2008), the seller can extract all surplus via individual

entry fees. This also implies that - unlike in our models - welfare- and revenue-

maximizing incentives coincide. The most closely related result in this literature is

found in Lu (2008) who shows that welfare is maximal if the variance in bidders’

entry is minimal. The same argument is made in Theorem 6.6 of Milgrom (2004)

whose interpretation is closer to ours.

Our analysis of advertising extends the latter result in several directions. Most

importantly, we prove a similar result for the case where the seller can only extract

the second highest of the bidders’ valuations. Technically, this is considerably more

demanding, and as discussed above, some mild additional assumptions have to be

made so that maximally asymmetric participation (or learning) probabilities are

optimal. Additionally, we allow for cost functions that depend on the participation

probabilities in a more general way than in Milgrom (2004) and Lu (2008) where

linear cost functions are assumed.

The fact that the seller’s objective does not coincide with welfare maximization

raises the question of over- or underprovision of advertising. The microeconomic

literature5 distinguishes two types of advertising: Roughly, persuasive advertising

changes the consumers’ tastes about a product, whereas informative advertising

5See, e.g., Bagwell (2001) and Tirole (1994).
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makes consumers know the product better. Clearly, we are concerned with infor-

mative advertising here. In a classical paper, Shapiro (1980) demonstrates that a

standard monopolist who cannot price-discriminate and who can sell as many ob-

jects as he wants typically underprovides informative advertising. The reason is that

he cannot extract the whole surplus from the consumers, hence he does not fully

internalize the gains from advertising and then selling to more consumers. In our

advertising setting, the product of the seller is scarce. Underprovision of advertising

then occurs whenever the expected selling price in the auction reacts too little to ad-

vertising. Yet our analysis also shows that for many distribution functions, the seller

actually overprovides advertising as the selling price reacts stronger to advertising

than the winning bidder’s valuation and thus welfare.

Our results also shed additional light on the well-known result of Bulow and Klem-

perer (1996) that for a revenue-maximizing seller adding one more bidder to an

auction without reserve price dominates introducing any reserve price. Hence if it is

equally costly to mobilize one more bidder or to learn the distribution of the bidders’

valuations well enough to set an optimal reserve, the former should be preferred.

At this point our results on advertising an auction come into play, providing mild

conditions under which mobilizing one more bidder dominates mobilizing e.g. two

bidders with probability 1/2. The result of Bulow and Klemperer suggests that

negotiation with one or more bidders does not pay out if the full set of potentially

interested bidders is not explored. Our study adds how this set of bidders should

be explored optimally.

More generally, by studying auction models with endogenous numbers of bidders, we

follow the advice of Klemperer (2004): According to him, with regard to practical

auction design, endogenizing the participation of bidders is one of two key issues

needing further exploration.6

The road-map is as follows: Section 4.2 introduces and analyzes advertising of auc-

tions. Section 4.3 addresses auctions with information release. In Section 4.4, we

provide a discussion of our modeling approach, notably the assumptions made on

the cost functions. Section 4.5 concludes. The Appendix is structured as follows:

Appendix D.1 provides all results on order statistics. Appendix D.2 develops the

6The other issue is collusion. Compare Klemperer (2004), Chapter 4.
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concentration results in an abstract decision framework that covers both, revenue-

and welfare-maximization, for all auction models considered. All results (including

those of Appendices D.1 and D.2) are proved in Appendix D.3.

4.2 Advertising

There is one object for sale for which the seller has zero valuation. There are n

potential, risk-neutral bidders i with independent, private valuations vi drawn from

a distribution F with finite expected value µ. Denote by vj:k the jth-largest out

of k independent F -distributed random variables. F is assumed to be common

knowledge and admits a density f which is positive.

Initially all or most of the potential bidders are unaware of the second-price auction

taking place. An unaware bidder i independently learns about the auction with

probability γi. γi is set by the seller, and it is thought of as the intensity of advertising

the seller concentrates on bidder i. Only bidders who got aware of the auction can

submit a bid. We assume that the bidders taking part adhere to the dominant

strategy equilibrium of bidding the best estimates they have of their valuations.

Setting a vector γ = (γ1, ..., γn) of advertising intensities costs the seller c(γ). c is

an increasing, symmetric, continuous, and quasi-concave function. The seller wants

to maximize his revenues.

Denote by pk the seller’s expected payoff conditional on k of the bidders becoming

aware of the auction. As in a standard second-price auction at least two bidders must

be present to allow for a payoff above zero to the seller. Hence it holds p0 = p1 = 0

and for k ≥ 2

pk = E[v2:k].

To sum up, the seller faces the following maximization problem:

max
γ∈[0,1]n

π(γ)− c(γ)

where π(γ) is the expected net surplus given a vector of advertising intensities γ

π(γ) =
n∑
j=0

αk(γ)pk,
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and αk(γ) is the probability that exactly k of the bidders participate in the auction:

αk(γ) =
∑

A⊆{1,...,n},|A|=k

∏
j∈A

γj
∏
l∈Ac

(1− γl).

4.2.1 Optimality of Concentrated Advertising

We show in the following that under mild assumptions the seller chooses the γi as

asymmetrically as possible, setting all but one γi either to zero or to one. Let us call

such allocations maximally asymmetric allocations of advertising effort. Appendix

D.2 proves in detail the intuitive result that maximally asymmetric allocations are

favored provided that the payoff sequence pk is essentially concave. The underlying

principle that drives this result is Jensen’s inequality. What requires more elaborated

techniques is to ensure the concavity of the payoff sequence, hence the concavity of

sequences of expected second order statistics and related quantities. Appendix D.1

is devoted to this.

Generally, sequences of second order statistics do not have to be concave. There is

one crucial, mild but sharp condition that ensures their concavity, and hence leads

to concentration of information by the seller. We call this the IFTR condition, where

IFTR stands for Increasing Failure-out-of-Two Rate as is discussed below.

Definition 4.1. The distribution F on [0,∞) with density f has an Increasing

Failure-out-of-Two Rate (IFTR) iff

f(x)

(1− F (x))2

is strictly increasing in x > 0.

In addition, we need the following slightly stronger assumption for part of our fol-

lowing results:

Definition 4.2. The distribution F on [0,∞) with density f has an Unbounded

Increasing Failure-out-of-Two Rate (UIFTR) iff F is IFTR and

lim
x→∞

f(x)

(1− F (x))2
=∞.

Before we provide a discussion of these properties, let us state the proposition, which

shows that the seller typically concentrates a given total amount of advertising efforts

on as few bidders as possible:
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Proposition 4.1. (i) Assume F is IFTR. If γ∗ is revenue-maximizing among all

allocations γ for which c(γ) = κ and if at least one bidder i participates in the

auction for sure, γ∗ must be maximally asymmetric.

(ii) Assume F is UIFTR. Then there is an n∗ such that for n > n∗ there is a κ∗ with

c(0, . . . , 0) < κ∗ < c(1, . . . , 1) such that, for all κ ≥ κ∗, if γ∗ is revenue-maximizing

among all allocations γ for which c(γ) = κ, then γ∗ must be maximally asymmetric.

The first part of the proposition shows that the seller allocates advertising maximally

asymmetrically if at least one bidder is known to be present in the auction anyway.

The second part states that the seller opts for maximally asymmetric allocations as

well if all bidders are initially unaware of the auction and the total advertising he

wants to allocate is sufficiently large.

For example, if F is the uniform distribution, the seller chooses to concentrate as

soon as the total amount of advertising is enough to inform two bidders completely.

Under the exponential distribution, he opts for maximally asymmetric allocations if

the total advertising is enough to inform three bidders completely.

In the language of reliability theory, the expression f/(1 − F )2 from the IFTR

condition can be interpreted as the instantaneous probability that a component A

fails, given that components A and B have lasted until now. That there is a relation

to second order statistics is hence not surprising. More rigorously, for the concavity

of the payoff sequence it is necessary that the increments in the expected second

order statistics, E[v2:k+1 − v2:k], are decreasing. In the Appendix, we show that

E[v2:k+1 − v2:k] = E

[
(1− F (v1:k))

2

f(v1:k)

]
.

Hence, if f/(1−F )2 is increasing, the payoff increments are decreasing in the number

of participating bidders.

The IFTR Condition reminds of the well-known increasing failure rate condition

(IFR) that f/(1 − F ) is increasing, but it is considerably weaker: Clearly, any

distribution function that is IFR is also IFTR, as 1 − F is decreasing for sure.

As many distribution functions are IFR, even more are IFTR, and hence lead to

a strictly concave sequence of expected second order statistics. (A more detailed
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discussion of this and examples for distribution functions that are IFTR but not

IFR can be found in the Appendix.)

To wrap up, IFTR guarantees the strict concavity of the payoffs p1, p2, . . . starting

with one participating bidder. Thus, if at least one bidder is known to take part

in the auction anyway, or if the seller wants to give out a sufficiently large total

amount of information, he chooses a maximally asymmetric allocation.

The second part of Proposition 4.1 is based on the slightly stronger UIFTR condi-

tion, which requires additionally that

f(x)

(1− F (x))2

goes to infinity in x. This ensures that E[v2:k+1− v2:k] goes to zero as the number of

participating bidders k gets large. This requirement is very mild,7 yet necessary in

order to prove that the non-concavity of the payoff sequence around zero (remember

p0 = p1 = 0) plays a negligible role when the seller allocates larger amounts of

information.

4.2.2 Comparisons to Welfare Maximization

This section explores the relation between revenue-maximizing and welfare-

maximizing advertising. A first result shows that also under welfare maximization,

advertising should be allocated maximally asymmetrically. We then compare the

total amounts of advertising under the two objectives. It depends crucially on the

distribution of valuations whether advertising is over- or underprovided: If F is IFR,

the revenue-maximizing seller advertises more than in the social optimum. If F is

DFR, the opposite is the case.

In our setting, social welfare is the expected valuation of the winning bidder minus

advertising costs. Observe that the welfare maximizing allocation solves a similar

maximization problem as in the subsection before with the sequence q0 = 0 and

qk = E[v1:k]

7Yet it is an additional requirement which is stronger than IFTR and weaker than IFR, as we

show in the Appendix.
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in place of (pk).

As Proposition D.1 in Appendix D.1 shows, such sequences of first order statistics

are always strictly concave. Hence concentrating information is welfare-optimal:

Proposition 4.2. If γw is socially optimal among all allocations γ for which c(γ) =

κ, γw must be maximally asymmetric.

We now turn to the comparison between the welfare- and the revenue-maximizing

levels of advertising. For this purpose, we assume that the costs only depend on the

sum of advertising efforts spent on each bidder:

Proposition 4.3. Assume F is IFTR and assume that the costs are given by

c(γ) = C
(∑n

i=1
γi

)
for an increasing, convex and continuously differentiable function C. Assume that

one bidder is known to be aware of the auction anyway. Then, if F is IFR, a

revenue-maximizing seller implements a weakly higher advertising level than is so-

cially optimal. Conversely, if F is DFR, a revenue-maximizing seller implements a

weakly lower advertising level than is socially optimal.

The exponential distributions are the only distributions which are both IFR and

DFR. Thus under exponentially distributed valuations the socially optimal and the

revenue-maximizing level of advertising coincide. Recall that the level of advertising

is linked to the expected number of bidders in the auction. Accordingly under IFR,

the expected number of bidders entering the auction is higher under the revenue

maximizing allocation than under the socially optimal allocation. The opposite is

true under DFR.

The driving factor behind this result is that under IFR the difference between welfare

and seller’s payoff (qk − pk)k is decreasing in k while it is increasing under DFR.

Thus under IFR choosing a high advertising level is more attractive for a revenue-

maximizer than it is socially. Under DFR the opposite is the case. Observe that

these results do not hinge on the fact that E[v1:k] > E[v2:k]: The choice of allocations

would not change if either (pk)k or (qk)k was shifted by some constant.
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4.2.3 Dispersion of Valuations

Next we show that both the socially optimal and the revenue maximizing levels of

advertising are higher under a more dispersed distribution of valuations. For this

purpose we make use of a result by Li and Shaked (2004) on the comparison of

spacings of order statistics between probability distributions ordered in the excess

wealth order which is defined as follows:8

Definition 4.3. The distribution function F is more dispersed in the excess wealth

order than the distribution function G, F ≥EW G, if for all p ∈ (0, 1)∫ ∞
F−1(p)

1− F (x)dx ≥
∫ ∞
G−1(p)

1−G(x)dx.

The excess wealth order has a strong connection to the Lorenz curve in public

economics. The Lorenz curve shows the distribution of wealth across a population

and indicates the concentration of wealth among segments of the society. Likewise,

the excess wealth order compares between two distributions how much the high

valuations are concentrated.

Let us compare the optimal allocation of advertising when bidders have valuations

vi ∼ F to the optimal allocation under valuations wi ∼ G. Denote as usual by F2:2

the distribution of the minimum of two F -distributed random variables.

Proposition 4.4. Assume F and G are IFTR, and assume that the cost function

is given by

c(γ) = C
(∑n

i=1
γi

)
for an increasing, convex and continuously differentiable function C. Assume that

one bidder is known to be aware of the auction.

(i) If F ≥EW G the socially optimal advertising level under F is higher than the

socially optimal advertising level under G.

(ii) If F2:2 ≥EW G2:2 the revenue-maximizing advertising level under F is higher

than the revenue-maximizing advertising level under G.

8Throughout we slightly deviate from the notational convention in the theory of stochastic

orders and write stochastic orders as relations between distribution functions, not between random

variables.
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Note that these results do not hinge on the number of bidders. The excess wealth

order considers all possible restrictions of the underlying distribution function to

all values above a threshold. If in this sense a distribution exhibits more disper-

sion than another one, it pays out more to include more bidders into the auction:

The probability to end up with bidders with high valuations is more responsive to

advertising if the dispersion is higher.

Both parts of the proposition hold also under the stronger assumption that F ≥disp G

where ≥disp denotes the more frequently used dispersive order, see the discussion in

Section D.1 of the Appendix. In there, we also show that F2:2 ≥EW G2:2 implies

F ≥EW G.

4.2.4 Reserve Prices

Let us now allow for an arbitrary but fixed reserve price r > 0. As usual, if no bid

above the reserve is submitted, the object for sale remains with the seller. If only one

bidder submits a bid above r then this bidder wins the auction and pays r. Hence

obviously bidders who got informed about the auction are only payoff-relevant to

the seller if their valuation is larger than r. Thus we obtain the modified payoff

sequence p0 = 0,

p1 = E[r 1v{1:1}≥r]

and for k ≥ 2

pk = E[r 1{v1:k≥r∧ v2:k≤r} + v2:k 1{v2:k>r}].

This sequence is generally not concave. Yet by Proposition D.3 in the Appendix

there exists a k∗ such that under IFTR the sequence pk is strictly concave for k > k∗.

The intuition is straightforward: If many bidders take part in the auction, the reserve

price has comparatively little influence on the seller’s revenues. Hence for larger

k, the payoff sequence (pk) essentially behaves like in the setting without reserve.

Likewise, under UIFTR, the increments of (pk) again go to zero as k becomes large.

This allows us to conclude that advertising is provided in a maximally asymmetric

way if k∗ bidders are known to be present or if a sufficiently large level of advertising

is chosen.

Proposition 4.5. (i) Assume F is IFTR. If γ∗ is revenue-maximizing among all

allocations γ for which c(γ) = κ and if at least k∗ bidders participate in the auction

with certainty, then γ∗ must be maximally asymmetric.
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(ii) Assume F is UIFTR. Then there is an n∗ > k∗ such that for n > n∗ there is

a κ∗ with c(0, . . . , 0) < κ∗ < c(1, . . . , 1) such that, for all κ ≥ κ∗, if γ∗ is revenue-

maximizing among all allocations γ for which c(γ) = κ, then γ∗ must be maximally

asymmetric.

With a reserve price, the welfare sequence qk is given by q0 = 0 and

qk = E[v1:k1{v1:k≥r}].

This is again a strictly concave sequence, and hence welfare-optimal allocations must

be maximally asymmetric as well. This result is easily obtained by showing that (qk)

is a sequence of standard first order statistics from a different distribution function

constructed out of F .9

Finally recall that as shown by Myerson (1981) under mild regularity conditions,

the optimal reserve price in a second-price auction is independent of the number

of bidders. Since bid-strategies are unaffected by the uncertainty in the number

of bidders, this implies that the same choice of reserve price is optimal also in our

auction with stochastic participation.

4.3 Information Release

This section analyzes a related model about the release of information. Assume now

that all bidders are aware of the auction. The distribution function F is common

knowledge. With probability γi bidder i learns his valuation. Informed bidders bid

their valuation while uninformed bidders bid their best estimate µ. As a motivation,

think of a complex product bidders need special information on to understand their

personal value as they have to figure out how well the object suits to their specific

needs. As before, the seller chooses the probabilities γ = (γi) at costs c(γ) where c

is increasing, quasi-concave, continuous and symmetric. In this setting, we interpret

γi as an amount of information transmitted to bidder i. We assume that the seller

cannot sell information by demanding a fee from a bidder before delivering the

information.10

9See Proposition D.1 in the Appendix. Note, however, that this trick is not possible for dealing

with the payoff-sequence (pk).
10Assuming such up-front fees only simplifies the analysis, see the discussion in Section 4.4.1.
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4.3.1 Concentration of Information

In order to avoid technicalities associated with informing the final bidders we as-

sume that there are infinitely many uninformed bidders. Thus there are always two

uninformed bidders left who bid µ so that the selling price never falls below µ.11

Under information release, the payoff sequence (pk) is given by p0 = p1 = µ and

pk = E[max(µ, v2:k)]

for k ≥ 2. Note that this sequence is not covered by the advertising with reserve

price analysis. Yet again, for larger numbers of bidders, the payoff sequence behaves

like E[v2:k]. Hence we obtain similar results as in the case of advertising with a

reserve:

Proposition 4.6. (i) Assume F is IFTR. If γ∗ is revenue-maximizing among all

allocations γ for which c(γ) = κ and if at least k∗ bidders know their valuations with

certainty, γ∗ must be maximally asymmetric.

(ii) Assume F is UIFTR. Then there is a κ∗ with c(0, . . . , 0) < κ∗ < c(1, . . . , 1) such

that, for all κ > κ∗, if γ∗ is revenue-maximizing among all allocations γ for which

c(γ) = κ, then γ∗ must be maximally asymmetric.

The welfare sequence (qk) in this model turns out to be globally strictly concave.12

(qk) is given by q0 = µ, and for 1 ≤ k,

qk = E[max(µ, v1:k)].

Thus in the welfare-optimal allocations, information is always maximally concen-

trated.

It is straightforward to include reserve prices into the model: A reserve price r ≤ µ

is without bite while a reserve price r > µ drives all uninformed bidders out of the

auction leading to a situation covered by the advertising model with reserve price

from Section 4.2.4.

11For most natural distributions and sufficiently large but finite n this effect from informing the

final two bidders becomes negligible anyway, since E[max(µ, v2:n)] is arbitrarily close to E[v2:n].
12See Proposition D.1 in the Appendix.
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4.3.2 Preliminary Information

We now briefly consider a setting where bidders possess preliminary private in-

formation about their respective valuations. We focus on a simple model and on

showing maximal asymmetry of the welfare maximizing allocation. By this we want

to demonstrate two things: That our results are robust and that similar techniques

may be applied to numerous further problems.

Preliminary information is also considered in Esö and Szentes (2007) and in Hoff-

mann and Inderst (2009). In these papers, however, the focus is on extraction of

surplus results which are non-trivial because the preliminary information of the bid-

ders makes it comparatively complicated to construct the optimal mechanism. We

abstract from this mechanism design problem and ask how a given amount of in-

formation should be allocated in order to maximize the (interim)-valuation of the

winning bidder in a second-price auction. Since the model is comparatively complex

we resort to a concrete distributional assumption.

Assume there are n bidders. Assume that the valuation of bidder i is given by vi+wi

where vi and wi are independent exponentially distributed random variables. Bidder

i knows vi but learns wi only with probability γi. A bidder who does not learn wi

bids vi + E[wi] = vi + µ. In this model the welfare sequence is given by

qk = E[max(v1 + w1, . . . , vk + wk, vk+1 + µ, . . . , vn + µ)].

In Lemma D.2 in the Appendix it is shown that the sequence (qk) is strictly concave.

Hence, to maximize welfare information should be maximally concentrated.

4.4 Discussion

In this section we discuss and relax some of the assumptions we made. We first

consider the popular assumption that the seller can sell his information by raising

ex-ante fees. Then we relax the assumptions on the cost function.
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4.4.1 Selling Information

Consider the model of information release from Section 4.3. A popular assumption

in the related literature is that the seller can sell his information by demanding an

individual fee from each bidder for the delivery of information. This assumption is

found e.g. in Esö and Szentes (2007) and in Hoffmann and Inderst (2009), and also

in many papers from the literature on auctions with endogenous, costly entry (such

as Levin and Smith (1994)). Such fees have the effect that the seller can extract

the whole ex-ante expected surplus from the bidders. (Among the related papers

which do not make this assumption are, e.g., Bergemann and Pesendorfer (2007)

and Ganuza and Penalva (2010).) Thus with up-front fees the seller’s maximization

problem coincides with the problem of welfare maximization.

A similar up-front fee could be introduced into our advertising model as well. Yet

this would be slightly inconsistent with the interpretation of advertising: Then

bidders who are unaware of the auction would be willing to pay the seller to make

them aware of the auction. The bidders would even know the auction well enough

to pay exactly their expected payoff.

4.4.2 More General Cost Functions

In this section we discuss and relax the assumptions we made on the cost function:

continuity, strict monotonicity, symmetry and quasi-concavity.

Continuity and strict monotonicity. As can be seen in the proofs, the assump-

tions of continuity and strict monotonicity are made for convenience only. These

two assumptions ensure that in every iso-cost set there is a maximally asymmetric

allocation. Without these assumptions, similar results could be derived at the cost

of a more complex notation.

Symmetry. Clearly, asymmetries in costs give a second, independent reason for

asymmetries in the γi. An extension to asymmetric quasi-concave cost functions is

straightforward. It is easy to show that the seller still prefers maximally asymmetric

allocations. Additionally he prefers to give information (or advertising) to those

bidders who are comparatively cheap to inform.
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Quasi-concavity. We have seen that the first three of our assumptions are mostly

technical and easy to relax. Yet the assumption of quasi-concavity requires a more

thorough discussion. From a technical point of view, the quasi-concave cost func-

tions we considered so far have the following property: Among all allocations which

lead to the same expected number of informed bidders, the maximally asymmetric

allocations maximize gross revenue and minimize costs. This implies that maximal

asymmetry is a necessary condition for revenue optimality. If we depart from quasi-

concavity, the ranking of allocations induced by the gross revenues still plays a role

- favoring maximally asymmetric allocations - but further effects come into play as

well.

Quasi-concave cost functions describe e.g. situations where costs depend only on

total informational effort or settings where informing a bidder more deeply becomes

cheaper if the bidder already received some information (possibly due to learning

effects). Quasi-concavity does not cover situations in which giving more information

to a single bidder gets costlier and costlier, or situations where the seller can cheaply

pass on information already given to one bidder to further bidders. Clearly, such

departures from quasi-concavity induce a tendency to spread information instead of

concentrating it. Generally, an analysis of such cases sensitively depends on how

large the effects from the concavity of the payoff sequence pk are. The interplay

between the cost function and the underlying payoff sequence is then crucial. The

following example shows that the effects of pk and hence gross revenues πk typically

remain important and lead to some concentration:

Let us first consider the extreme case in which costs only depend on maxi γi,

c(γ) = C(max
i
γi).

Such a cost function would e.g. fit to the situation where the seller collects all

information and publishes it on the internet: Gathering or writing down informa-

tion is costly, but there are no further costs from delivering information to different

numbers of (potential) bidders. Clearly, in this very special case, there is no con-

centration of information: The seller chooses an amount γmax ∈ [0, 1] of information

and sets γi = γmax for all bidders. Yet as soon as we move away from this extreme

case and allow for costs of delivering information to different bidders, e.g.

c(γ) = C

(
max
i
γi,
∑
i

γi

)
,
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our concentration results come into play: We conclude from Proposition D.5 in

Appendix D.2 that for fixed choices of γmax ∈ [0, 1] and s ∈ [γmax, nγmax] (where

as before s =
∑

i γi) the seller allocates information as asymmetrically as possible.

Hence he gives γmax to as many bidders as possible and the remaining information

to one further bidder: The seller optimally chooses some γmax ∈ (0, 1) and s ∈
(γmax, nγmax) and then sets γi = γmax for i = 1, . . . ,m where m = bs/γmaxc, γm+1 =

s−mγmax, and γi = 0 for i > m+ 1.

We thus see that the relevance of our results extends to settings beyond those ex-

plicitly included in our previous analysis.

4.5 Concluding Remarks

Our analysis shows that under mild conditions, for revenue or welfare maximization

it is optimal to concentrate information on as few bidders as possible in a variety of

second-price auctions: Few bidders knowing their valuations for sure typically lead

to higher outcomes than a larger number of bidders who learn their valuations only

with some probability.

There are numerous possibilities for extensions of our model which we want to

outline:

• More general cost functions could be studied in more detail (especially costs

that are convex in the amount of information given to a bidder). We expect

that in that case the effects we studied remain important as our analysis of the

seller’s gross payoff would not be affected. Yet different effects will interfere

as demonstrated in the final example of Section 4.4.2.

• It would be interesting to replace the second-price auction by other formats

like the first-price or the all-pay auction. We believe that the effects we have

identified still play a major role. The analysis of such auction types would be

complicated by the fact that these formats are not interim-efficient, unlike the

second-price auction. Intuitively, bidders with a different probability of getting

informed would shade bids differently. Hence in some cases an informed bidder

could win even though another informed bidder had a higher valuation.
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• Furthermore, it could be interesting (but challenging) to generalize the analysis

of Section 4.3.2 where bidders hold preliminary information to more general

distribution functions and to revenue-maximization.

• Another challenging generalization would be to study optimal information al-

locations in more general models of costly information transmission. Notably,

it would be interesting to find a way to transform the concepts of stochas-

tic orders considered in Ganuza and Penalva (2010) into meaningful cardinal

rankings of information structures that suit the allocative questions we study.

• Finally, it would be interesting to analyze the optimal release of information

in auction environments with interdependent valuations.
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Chapter 5

Optimal Disclosure of Costly

Information Packages in Auctions

In many countries, legislation requires takeover and public procurement auctions to

equip bidders with equal amounts of information. We discuss such level playing field

requirements in an independent, private values, second price auction with entry fees.

Informing the bidders is costly for the seller. We find that marginal gross revenues

do not generally behave monotonically in total information release. In the two bidder

case, essentially, any asymmetric allocation of information dominates the symmetric

information allocation. Even the bidder who gets less information is willing to pay

a higher entry fee for asymmetric information allocations than for the symmetric

one. His entry fee coincides with that of the better informed bidder. Losses from

allocating an amount of information non-optimally can be substantial.

5.1 Introduction

Different firms compete in a takeover auction. They are all interested in the target,

but not for the same reasons: Bidder A is interested in the client list of the target.

Bidder B is more focused on possible synergies to reduce production costs. Firm C

is in need of the target’s know-how. Most likely, it is not easy to get information

on any of these aspects. Should the target be willing to open its books, show the

client list, give the bidders access to its production processes? It is reasonable to

assume that informing the bidders causes the target firm some costs - at least,

revealing information takes costly time. Furthermore it is likely that every bidder

107



asks specific questions and has to be monitored while searching through the target.

This leads to the main question: How much information should be given to the

different bidders in order to maximize the auction’s revenue if revealing information

is costly?

Closely connected are the following questions: How much revenue loss is generated

by the often established rule that bidders have to be informed symmetrically - as is,

for instance, stated in the British Takeover Code?1 Given that there is only some

capacity left for informing the bidders, should it be devoted to some selected bidders

- and to which? Or should it be shared equally among them?

To consider questions of this type we need a model that allows for giving out different

amounts of information to different bidders. In most parts of the chapter, we will

consider the following setting: Each aspect a bidder is interested in about the target

is wrapped in an information package. The seller (e.g. the target itself) possesses all

these information packages. Yet giving out packages is costly, and so the seller will

usually not give out all packages. In case a bidder does not get one of his desired

information packages, he sticks to his commonly known prior about this aspect of

the target. The seller does not know what the information in the packages means to

the bidders. He only takes into account that giving out more packages means that

bidders will be better informed in the auction (so that they bid higher with some

probability).

We find that with two bidders, allocating packages symmetrically is dominated by

most asymmetric, “unfair” allocations. For example, concentrating all packages on

one bidder generates a higher payoff than splitting up the same amount of informa-

tion equally. For the n bidder case, such a general statement cannot be made. Yet

we will also give examples where the restriction to symmetric information allocations

leads to substantial reductions of the seller’s revenue for the n bidder case.

With two bidders, both bidders are willing to pay the same maximum fee for the

release of more packages - no matter how asymmetrically these packages will be

allocated. Thus a bidder who is still uninformed is willing to pay a higher fee for

1Compare Rule 20.2 of the Takeover Code. For another example see the EU Directive

2004/18/EC which regulates public procurement, article 29. For further discussion, see Cram-

ton and Schwartz (1991).
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additional information given to the other bidder than for receiving this amount of

information himself.

With n bidders, in the special case that informing is a zero-one decision (meaning

that each bidder only needs one package to get fully informed), we find that there

are decreasing returns to information. Hence intermediate cost levels imply that the

seller will treat bidders very differently - some will be informed perfectly, others not

at all. If bidders need several packages to get fully informed, the seller’s returns to

giving out information do not necessarily behave monotonically.

As the seller can charge entry fees, maximizing his expected revenue means also

that he maximizes social welfare: All expected surplus on the side of the buyers is

extracted by the seller via entry fees.2 All in all, our results show that there are

many situations where an “unfair” information policy is the optimal one.

This study is related to some recent works on information acquisition and mecha-

nism design. In particular, there are some other papers dealing with independent

private values auctions where the seller chooses the degree to which he informs the

bidders: Bergemann and Pesendorfer (2007) consider the case of no entry fees and

no information costs. Esö and Szentes (2007) allow for entry fees, but rule out

information costs. Ganuza and Penalva (2010) rule out entry fees, but allow for

information costs. Thus our study addresses the fourth and still open case where

entry fees can be charged and information costs are present. To describe the related

papers in more detail, Esö and Szentes show an extraction-of-surplus result which

is more general than ours as it allows for preliminary information on the side of the

bidders. As informing the bidders is not costly to their seller, he will give out all the

information he has. This is in contrast to our framework, where the seller has to face

the trade-off between additional rents due to information revelation and additional

costs. Hoffmann and Inderst (2009) generalize the results of Esö and Szentes (2007)

to a setting where giving out information is costly. Their analysis is restricted to the

case where there is only one bidder. In Ganuza and Penalva, the seller is restricted

to inform the bidders symmetrically. Thus, our main question of how to allocate

information optimally cannot be addressed in their framework. Ganuza and Penalva

concentrate on a second price auction - without entry fees this is generally not a

2Hence, if entry fees were ruled out, our analysis would still identify the allocations that maxi-

mize total surplus. This may be interesting for public procurements without entry fees.
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revenue-maximizing mechanism. Bergemann and Pesendorfer (2007) find that the

seller will inform agents asymmetrically. But their seller - due to the lack of entry

fees - cannot extract all informational rents and thus solves a different optimization

problem.

Another related paper is Crémer, Spiegel and Zheng (2007) where the seller faces

costs for sequentially inviting bidders to an interdependent value auction. There

are no entry fees and no bids from uninformed bidders. Hence, the optimization

problem considered differs from ours as well.

There is also a literature on auction environments with costly information acquisition

by the bidders. This includes Persico (2000), Bergemann and Välimäki (2002),

Compte and Jehiel (2005), Bergemann, Shi and Välimäki (2008), Shi (2007) and

Crémer, Spiegel and Zheng (2009). Crémer, Spiegel and Zheng (2009) is closest to

our study: They also consider a revenue-maximizing seller who can charge entry

fees in an independent private value model and prove a full-extraction of expected

surplus result.

Vagstad (2007) is in the middle between the two groups of papers. In there, the

seller can costlessly inform either all or no bidders before entry. Then bidders decide

whether they (costly) enter the auction. If the seller does not inform the bidders

initially, bidders learn their valuations after entering.

All papers which assume that better information can be acquired at a higher cost

face the problem of how to model better, more costly information. The simplest ap-

proach, taken by Compte and Jehiel (2005), by Vagstad (2007), by Crémer, Spiegel

and Zheng (2007, 2009), by Bergemann, Shi and Välimäki (2008) - and also here

in Section 5.3 - is to assume that each bidder either stays completely uninformed

or learns his valuation perfectly. The other papers utilize more sophisticated mod-

els to allow for partial releases of information: Persico (2000) and Bergemann and

Välimäki (2002) order the cost of informative signals according to the signal’s effec-

tiveness (also known as accuracy), a concept which goes back to Lehmann (1988).

Ganuza and Penalva (2010) and Shi (2007) introduce some interesting new classes of

orders for ranking the informativeness of signals based on different stochastic orders.

The information package model of our Section 5.4 takes an intermediate approach,

allowing for a partial release of information but staying comparably simple and
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thus tractable: Each bidder’s valuation is assumed to be the sum of m iid random

variables (m packages of information). The seller decides how many packages he

wants to reveal to each bidder at costs which depend on the total number of packages

released. As discussed at the end of Section 5.4, this approach allows us not only

to have an ordinal ranking (as in stochastic order approaches), but also to have a

cardinal measure of how much information the bidders get.

In the literature on takeover bidding, there are several papers which study informa-

tion acquisition, mostly in the context of two bidder auctions with sequential bidding

(see for instance Giammarino and Heinkel (1986), Fishman (1988), and Hirshleifer

and Png (1989)). In these papers, however, it is not the seller but the bidders

who decide about information acquisition and pay for it. Furthermore, these papers

concentrate on the situation where information acquisition is a zero-one decision

between full information and no information. Thus they do not address the types

of asymmetries we discuss here.

Somewhat complementary to our study, Dasgupta and Tsui (2003) find that for

takeovers with two bidders a selling procedure which treats bidders asymmetrically

may dominate symmetric selling mechanisms. The model of Dasgupta and Tsui

differs considerably from the one in this study as they consider a common value

environment without information acquisition. Their asymmetry result holds only if

bidders are sufficiently asymmetric ex-ante. In contrast our result that an asym-

metric treatment of bidders may be optimal holds for ex-ante symmetric bidders.

The chapter is organized as follows: Section 5.2 introduces the model. We also ana-

lyze how much entry fees the bidders are maximally willing to pay depending on how

much information is given out. In Section 5.3, we discuss how many bidders should

be informed under the restriction that informing a bidder is a zero-one decision.

Section 5.4 - the main part which is also technically the most interesting section

of this chapter - focuses on the two bidder case where information is spread over

several packages. Section 5.5 briefly discusses the case of more than two bidders.

Section 5.6 concludes. All proofs, including the calculations behind the examples,

are in the Appendix.
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5.2 The Model

A seller sells one indivisible object for which his valuation is zero via a second

price auction. There are n risk-neutral bidders with independent (but not necessar-

ily identically distributed) valuations X1, . . . , Xn with expected values µ1, . . . , µn.3

The bidders do not know their valuations initially. The seller offers against entry

fees to give to each bidder i a certain amount of information (represented by a σ-

algebra Fi) such that each bidder can calculate an estimate X̃i = E[Xi|Fi] of his

valuation. Each bidder only receives information on his own type, but not on the

other bidders’ valuations. Let X̃(1) and X̃(2) be the two highest order statistics

among these estimates.

The precise timing of the model is as follows: First, the seller announces individual

entry fees to each bidder. He commits to giving out an information structure (de-

scribing which bidder will get how much information) and commits also to excluding

all bidders that refuse to pay. Second, the bidders decide if they want to pay their

fee. Third, the bidders who have paid get their information. Fourth, all bidders

who have paid participate in the second price auction. Without loss of generality,

ties in the auction are broken with equal probability.

Throughout the chapter, we will assume that the bidders stick to their weakly domi-

nant strategy of bidding the best estimate they have of their valuations. We assume

that giving information to the bidders is costly to the seller. We will, however, not

specify this assumption before the next sections when we further restrict the Fi. In

Proposition 5.1 the entry fees are calculated that the seller can maximally charge

such that bidders still participate.

Proposition 5.1. If the seller offers to release the information sets (F1, . . . ,Fn),

each bidder i is willing to pay an entry fee of

ei = E[(Xi − X̃(2))1{i wins}] = E[(X̃(1) − X̃(2))1{i wins}].

This leads to an gross expected revenue for the seller of E[X̃(1)].

3For convenience, it is assumed throughout this chapter that all random variables are not almost

surely constant. Without this assumption, all arguments will still go through but some strict

inequalities will hold only weakly. We also assume that all random variables are L1 integrable, i.e.

E[| · |] <∞.
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Thus the seller can extract all surplus from releasing more information, and this is

an optimal selling mechanism in this framework.

With only two bidders, both bidders’ entry fees coincide if they have the same prior

estimates of their valuations µ1 = µ2:

Proposition 5.2. Consider the setting of the previous proposition but with n = 2.

Assume µ1 ≥ µ2. Then bidder 1 pays

e1 =
1

2
E[|X̃1 − X̃2|] +

1

2
(µ1 − µ2)

and bidder 2 pays

e2 =
1

2
E[|X̃1 − X̃2|]−

1

2
(µ1 − µ2).

Thus we see that the difference in entry fees between the two bidders always equals

the difference in priors µ1− µ2. This does not change, even if one bidder gets much

more information than his competitor. The reason is that more information can

raise a bidder’s valuation - but it can lower it as well, thus reducing competition in

favor of the other bidder. With two bidders, good news to the first bidder translate

one to one into bad news to the second bidder. With more than two bidders, such

a simple relation does not hold anymore.

5.3 Indivisible Information

In this section we consider the case where informing a bidder is a zero-one decision:

At a cost of c the seller can inform a bidder completely (and thus make the bidder

learn his valuation perfectly). If the seller decides not to do so, the bidder only

knows his prior µi. We first consider the case where all n bidders’ valuations are

drawn independently from the same distribution function. We consider this special

setting because it is rather tractable, also with more than two bidders. We find that

there are decreasing returns to information: The higher the level of c, the lower the

number of agents who get informed by the seller. In the following let X l:k denote

the lth largest of the random variables X1,...,Xk.

Proposition 5.3. Assume all bidders’ valuations Xi are iid, with distribution func-

tion F and mean µ. If the seller decides to inform k < n bidders, his expected gross

revenue is

E[max(X1:k, µ)].

113



If the seller decides to inform n bidders, his expected gross revenue is

E[X1:n].

Additionally,

1) a bidder who will not be informed is only willing to pay a positive entry fee if he

will be the only uninformed bidder in the auction.

2) A bidder who will not get informed pays a weakly lower entry fee than a bidder

who will get informed.

3) The increase in the seller’s expected revenue from informing one more bidder gets

strictly smaller with every informed bidder.

Note that - because of E[X1:n] < E[max(X1:n, µ)] - informing the last bidder comes

along with a slightly smaller increase in total surplus than if there were additional

uninformed bidders left. Informing the last bidder means that there is no bidder

left who will bid µ for sure. Thus there is some loss in expected revenue compared

to a situation with one or more additional, uninformed bidders.

Let us have a look at a simple example with two bidders, illustrating part 3 of

Proposition 5.3:

Example 5.1. Consider the case of two bidders whose valuations X1 and X2 are

distributed uniformly on [0, 1]. Thus an uninformed bidder bids E[X1] = E[X2] = 1
2
.

If the seller gives out no package, his expected net revenue is 1
2
. If the seller gives

out one package, his expected net revenue is E[max(X1,
1
2
)] − c = 5

8
− c (which is

is the expectation of the highest estimated valuation minus the costs). If the seller

gives out two packages, his expected net revenue is E[max(X1, X2)]− 2c = 2
3
− 2c.

Thus the seller will inform no bidder if c > 1
8
, one bidder if 1

24
< c < 1

8
and both

bidders if c < 1
24

.

We see that there is a wide range of cost levels where the seller decides to inform

only one bidder. From Proposition 5.2, we know that both bidders pay the same

entry fee, no matter whether they get different amounts of information. With more
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than two bidders, this does not hold: If bidder 1 gets a package, but bidders 2 and

3 do not, bidders 2 and 3 will not be willing to pay any entry fee. This is because,

even if bidder 1 learns that his valuation is very low, bidders 2 and 3 will still bid

their priors µ. Thus they do not expect to make any revenues in the auction and

are not willing to pay any entry fees.

5.4 Divisible Information with Two Bidders

In Section 5.3, the seller was forced to treat the n bidders asymmetrically in case

he wanted to release less than n packages. In this section we will consider a more

general model where the seller may inform bidders asymmetrically although he could

spread the same number of information packages evenly as well. We will focus on

the two bidder case and illustrate what changes with more bidders.

We now assume two bidders that have valuations X1 + . . .+Xm and Y1 + . . .+ Ym

where X1, . . . , Xm, Y1, . . . , Ym, the packages of information, are iid random variables

with distribution function F and mean µ. Each package represents an independent

privately-valued aspect of the object for sale. Again, the revenue-maximizing seller

decides how many packages each bidder should get. The seller has a cost of c per

revealed package.

From Propositions 5.1 and 5.2 we know that if for some k, j ≤ m the seller reveals

X1, . . . , Xk and Y1, . . . , Yj, his expected gross revenue is

E[max(X1 + . . .+Xk + (m− k)µ, Y1 + . . .+ Yj + (m− j)µ)] (5.1)

and each bidder pays an entry fee of

e1 = e2 =
1

2
E[|X1 + . . .+Xk − Y1 − . . .− Yj + (j − k)µ|]. (5.2)

Then Proposition 5.4 shows that the seller prefers to give a fixed number of packages

to one bidder, leaving the other bidder uninformed. Splitting up the packages evenly

among the two bidders would give him lower revenues:

Proposition 5.4. 1) Assume 2k ≤ m packages are to be allocated by the seller. If

the distribution of the packages is asymmetric around the mean, it is strictly more
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profitable to concentrate the 2k packages of information at one bidder than to split

them equally between the two bidders.

2) Assume j ≤ 2m packages are to be allocated by the seller. If the distribution of

packages is symmetric around the mean, the seller’s revenue does not depend on how

the packages are allocated.

Note that the proposition implies that a bidder may pay a higher fee for an additional

package given to the other bidder than for receiving this information package himself.

The proof of Proposition 5.4 relies on the fact that for iid random variables X and

Y

E[|X + Y |] ≥ E[|X − Y |] (5.3)

with equality if and only if the distribution of X and Y is symmetric around the

mean. This result is found for instance in Jagers, Kallenberg and Kroese (1995).

That such a formula is useful for the proof is already plausible from (5.2), the formula

for the entry fees: Shifting packages from bidder 1 to bidder 2 means turning plus

signs into minus signs in the formula. Note that in the two bidder case, maximizing

the difference between the higher and lower order statistic (which is twice the entry

fee) is equivalent to maximizing the higher order statistic.

Exploiting (5.3) a little more, we can generalize part 1 of Proposition 5.4 as follows:

Proposition 5.5. Assume 2k < 2m packages are to be allocated and distributions

are asymmetric. Then any split-up of the type (2l, 2h) where l > h and l + h = k is

better than (k, k).

To illustrate the proposition, consider the following example: Assume the seller

wants to give out six packages in total. Then he should not give three packages to

each bidder, but rather give four or six packages to one bidder. The proposition

does, however, not make a statement about giving five packages to one bidder and

one package to the other bidder. Despite this obstacle (which does not seem to be

easy to remove except in the case where each package can be rewritten as a sum of

two iid random variables4) Proposition 5.5 says that splitting up information evenly

is, essentially, the least profitable decision the seller can take.

4This is possible for instance for infinitely divisible probability distributions like the exponential

distribution.
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Two things drive the result: First, concentrating packages at one bidder may lead to

a very high interim valuation of that bidder (e.g. if all packages he receives contain

good news). Such a high interim valuation can never occur if the seller instead splits

the total amount of packages evenly among the bidders. Second, giving all packages

to one bidder makes sure that the other bidder, who receives no package, has an

interim valuation of mµ. Thus the first order statistic of the interim valuations,

which our seller wants to maximize, cannot get smaller than mµ. This insurance

effect also has some power if a bidder receives not none, but few packages, and gets

less important the more bidders take part in the auction (as it gets unlikely that

the first order statistic becomes small anyway). Yet with few bidders, the insurance

aspect of leaving bidders completely or nearly uninformed plays a crucial role.

We have seen that splitting up information equally is definitely not optimal. But

which information policy is best? Is concentrating all information at one bidder

best? The answer can depend sensitively on the distribution F as we can see in the

following example:

Example 5.2. Consider the question of how to allocate six packages of information

optimally among two bidders whose valuations consist of six packages each. Assume

that the packages take only two values, 0 and 1
6

+b, and have mean µ = 1
6
. Via b, we

vary the asymmetry of the probability distribution of the packages. An uninformed

bidder’s expected valuation is 6 · 1
6

= 1. Denote by πij the seller’s expected gross

revenue from giving i packages to one bidder and j packages to the other bidder.

In Figure 5.1, we see π60, π51, π42 and π33 drawn as functions of b. Recalling

Propositions 5.4 and 5.5 it is not surprising that π33(b) is strictly dominated by the

other curves (except for the symmetric case b = 1
6

where all four curves coincide).

Beyond these facts, however, the seller’s optimization problem is rather complex:

The set of values of b for which concentrating all information at one bidder is optimal

consists of five disjoint intervals. Every asymmetric allocation is strictly optimal for

some values of b. Hence it depends sensitively on b whether allocations (4, 2), (5, 1),

or (6, 0) are best.

Figure 5.2 depicts max(π60, π51, π42)/π33, the relation between revenues from allocat-

ing six packages optimally and from allocating them equally. As b increases, the loss

soon reaches a substantial amount. (As b gets large allocating information optimally

generates over 30 percent more revenue than allocating information equally.)
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Figure 5.1: Payoffs from Different Allocations in Example 5.2

Thus we see that the optimal allocation depends quite sensitively on the probability

distribution of the packages.

So far we have only discussed how to allocate a given number of packages optimally.

Now we look at how many packages in total the seller should release. The following

lemma shows that for some cost levels the seller will decide to release some, but not

all information. (This justifies the approach we have taken in this section so far:

The lemma assures that it is worthwhile to think about how an intermediate, fixed

amount of packages should be split up among the bidders. Considerations of this

type were pointless if the seller always decided to give out all the packages he has.)

We see that the first package that is given out is the most profitable one:

Lemma 5.1. The first package of information given out leads to a strictly higher

increase in the seller’s revenue than any additional package.

The question arises of how much additional expected revenue can be made by giving

out a second, a third, a fourth package. Is there a result like Proposition 5.3, such

that the second package leads to a higher revenue increase than the third, the third

package to a higher increase than the fourth, and so on? The following examples

show that this depends on the probability distribution F :

Example 5.3. Assume that each bidder’s valuation consists of two packages, i.e.

m = 2.
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Figure 5.2: Maximal Loss in Example 5.2

1) Assume packages are distributed uniformly on [0, 1]. Then the release of each

further package leads to a smaller increase in the seller’s expected revenue than the

package released before. So we find concavity of expected gross revenue in the number

of released packages.

2) Assume each package takes the values 0 and 1 with equal probability. Then the

release of the second or the fourth package does not influence the seller’s expected

gross revenue. Thus, depending on the level of costs, the seller will give out no, one,

or three packages of information. Notably, the seller will only inform the second

bidder perfectly if c = 0.

3) Assume packages are distributed exponentially with parameter 1. Then the first

package leads to a higher increase in revenue than the second which again leads to

a higher increase than the fourth package. The third package, however, leads to a

smaller increase in revenue than the fourth. Thus, depending on the costs, the seller

will release no, one, two, or four information packages: If the second bidder gets

informed at all, he gets fully informed.

The latter two examples have shown that the sequence of the seller’s expected gross

revenues if he releases a total of l packages is generally not concave in l.5 But

5Such nonconcavities, in a different context, are the main focus of Radner and Stiglitz (1984),

see also Chade and Schlee (2002).
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the following lemma shows that the sequence cannot be too far from being concave

either, namely, that it is increasing and bounded from above by a concave function:

Lemma 5.2. Let the bidders’ valuations consist of m independent, identically dis-

tributed packages, each package with mean µ and standard deviation σ.6 The seller’s

expected gross revenue if he releases a total of l ≤ 2m packages is weakly increasing

in l and bounded from above by mµ+ σ
2

√
l.

Setting the upper bound on expected payoffs from the lemma in relation to the

payoff mµ from giving out no information at all also gives us a rough upper bound

on the maximal losses from allocating information suboptimally.

Finally in this section we want to discuss two assumptions we made - firstly, that

packages are identically distributed, and secondly, that there is no preliminary in-

formation on the side of the bidders.

To discuss the first assumption let us consider the situation where packages are not

identically distributed. The proofs of our results about how to allocate information

do not go through in that setting as we cannot rely on inequality (5.3). It is also

intuitive that the results themselves do not carry over in general: Assume X1 and

Y1 had a much larger variance than the remaining packages. Then the seller should

release X1 and Y1 first, even though this would be an equal split-up of information,

in order to create as much variability in the interim valuations as possible.

The following proposition underlines in the case of only one package how the seller’s

allocation problem depends on the variability of the packages:

Proposition 5.6. Consider the case m = 1, i.e., bidders have valuations X1 and Y1.

Assume that X1 and Y1 are independent and have means µX and µY . The condition

for informing bidder 1 being strictly more profitable in expectation than informing

bidder 2 is

E[|X1 − µX |] > E[|Y1 − µY |].

In the special case where µX = µY = µ this condition becomes

E[|X1 − µ|] > E[|Y1 − µ|],

6As we need a finite standard deviation for this lemma, we have to assume here (and only here)

that the random variables are L2 and not just L1.
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i.e., the bidder with the higher mean absolute deviation should be informed.7 This

condition is also equivalent to

E[(X1 − µ)+] > E[(Y1 − µ)+]. (5.4)

As the uninformed bidder’s valuation is certain and guarantees µ, the seller compares

in (5.4) a call-option on the valuation of bidder 1 to a call-option on the valuation

of bidder 2 (both with strike µ).

Our model of identically distributed, equally costly packages may look rather limited

at first sight. This may be especially true if one identifies our information packages

with concrete properties of the object for sale. Our packages should be taken as

an abstract division of a large amount of information into small pieces which are

only loosely related to concrete aspects of the object.8 The package units allow us

to have an exact measure of how much information a bidder gets, and to compare

the information amounts different bidders get not only in an ordinal, but also in a

cardinal ranking. This is an advantage compared to approached based on stochastic

orderings as in Persico (2000) and Ganuza and Penalva (2010): Stochastic orders

can express that one bidder is better informed than another. Yet they cannot say

what it means that, e.g., bidder 1 gets twice as much information as bidder 2. Our

package model is a natural and relatively tractable way to achieve this goal.

Generally, the analysis of a model with non-identically distributed packages would

be complicated by the same factor that made obtaining “clean” solutions difficult in

the identically distributed model: Expected values of absolute values of sums and

differences of random variables are much more difficult to handle than, for example,

variances of sums and differences of random variables. Note however that the bounds

of Lemma 5.2 immediately translate to any non-identically distributed, independent

packages (with the sum of package variances instead of mσ2). Furthermore, via

continuity arguments it should be possible to extend our analysis to the case of

packages which are almost identically distributed.

7Note that a random variable X having a larger absolute deviation than Y is not equivalent

to X having a larger variance than Y . In many natural examples the two properties however go

together.
8One could, e.g., assume that X1 + . . .+Xl stands for one aspect of the object, and Xl+1 + . . .+

Xm for another one. Alternatively, one could interpret the packages as hours the seller spends on

informing the different bidder.
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To illustrate this point consider the case of two bidders with valuations with X1 +X2

and Y1+Y2. The Xi and Yi are independent, X1 and Y1 are exponentially distributed

with parameter 1 and X2 and Y2 are distributed exponentially with parameter λ.

Assume the seller wants to release two packages in total. An elementary calculation

shows that for 0.97 < λ < 1.04 it is optimal to inform one bidder fully. Hence we see

that the optimality of concentrating information is robust around the value λ = 1

(at which all packages are iid).

A second assumption of our analysis which may seem rather strong is that bidders do

not have preliminary private information. While the effects present in our analysis

should still play a role in such a setting, the seller’s allocation problem would typi-

cally be dominated by other concerns: He should sell information to bidders which

value it highly while still keeping the auction competitive enough. The bidders’ will-

ingness to pay for information depends crucially on their private information. This

leads to a quite complex mechanism design problem of which a solution is beyond

the scope of our study. So far, two important special cases of the problem have

been considered in the literature: Esö and Szentes (2007) study the problem in the

case that releasing information is costless (so that the seller always gives out all

information). Hoffmann and Inderst (2009) study the one-bidder-case with costs of

information. In both cases, the question of how to split up intermediate amounts of

information among the bidders does not arise at all. Still, even for these “simple”

cases the optimal mechanisms are intricate. Thus finding the revenue maximiz-

ing mechanism in a model that allows for preliminary information and for unequal

split-ups of information would be very interesting but also highly challenging.

Nevertheless, our analysis can solve the following non-trivial problem with prelim-

inary information: An efficiency maximizing auctioneer decides about giving out

costly information before the auction takes place. He cannot charge fees for in-

formation provision (as in Bergemann and Pesendorfer (2007) and in Ganuza and

Penalva (2010)). There are two bidders with valuations X1 +X2 and Y1 + Y2 where

the Xi and Yi are independent and identically distributed with an asymmetric distri-

bution. Initially, bidder 1 privately knows X1 while bidder 2 is uninformed. Assume

the seller wants to reveal one package in total. Then from Proposition 5.4 we can

deduce the following: Revealing X2, i.e., informing bidder 1 fully, strictly dominates

revealing Y1. Hence we can immediately see with the techniques we developed so

far that the auctioneer will want to unlevel the playing field further in a situation
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where he could level it as well.

Another case which is covered by our analysis is, of course, the one where bidders’

valuations have some common value component which is commonly known and

where only the information which makes the difference between the bidders is in the

hand of the seller.

5.5 Divisible Information with More than Two

Bidders

So far we have focused on the two bidder case and found that a fixed amount of

information will generally be allocated unequally among the bidders. To get a more

complete picture we now have a brief look at examples with more than two bidders.

The first example shows that we cannot hope for an equally general asymmetry

result as in the two bidder case. It is a three bidder version of Example 5.2.

Example 5.4. Consider the problem of how to allocate six packages of information

among three bidders. Assume that the probability distribution of the packages is the

same as in Example 5.2. Let πijk(b) denote the expected gross revenue from allocating

i, j and k packages to the three bidders. Figure 5.3 compares the allocations πijk.

Figure 5.3: Payoffs from Different Allocations in Example 5.4
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We see that π222(b) is no longer the universal worst choice for all b, but it is still

far from optimal. The optimal information policy still depends sensitively on b.

In Figure 5.3 the curves no longer coincide for the symmetric case b = 1
6
. To see why,

we compare the three bidder case with the two bidder case: With two bidders, for

any symmetric probability distribution, revenues were independent of the package

allocation, e.g. π20(1
6
) = π11(1

6
). From this we can conclude that introducing a third,

uninformed bidder must change the picture: π20(b) = π200(b) and π11(b) < π110(b) as

two uninformed bidders are not more useful to the seller than one uninformed bidder.

This implies π200(1
6
) < π110(1

6
). Hence with a symmetric probability distribution F

and more than two bidders a fixed amount of information should rather be spread

equally among two bidders than concentrated at one bidder. Thus there is no reason

to expect the curves in Figure 5.3 to coincide at 1
6
.

We close our look at the case of more than two bidders with the following observation:

In contrast to the two bidder case and to our previous example, it can sometimes be

strictly optimal to choose a symmetric allocation of packages when there are more

bidders.

Example 5.5. Assume the seller wants to allocate three packages of information

among at least three bidders. If the packages are distributed uniformly on [0, 1] or

exponentially with parameter 1 it is strictly most profitable for the seller to give the

three packages to three different bidders.

5.6 Conclusion

We have studied an independent, private values, second price auction with entry fees

in which the seller can split up total amounts of information differently among the

bidders. We have found that if giving out information is costly, the seller will often

decide not to provide all the information he has. Clearly, forcing the seller to choose

a “fair” allocation in a setting like ours must be disadvantageous for the seller (or

harmless at its best). We find that the disadvantage can be huge: In the two bidder

case, choosing a “fair” allocation of information is essentially the worst decision the

seller can make. Any other split-up of packages (at least into even numbers) would

lead to higher revenues. Furthermore, we have seen that the restriction to “fair”

allocations can lower the seller’s revenues (and overall welfare) substantially.
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Several examples in the chapter have shown that the optimal information policy

may depend sensitively on the probability distribution of the information packages.

Allocating information the best way is thus a procedure that demands careful ex-

amination of the setting. To find a good information policy, there is no simple rule

of thumb that can replace a thorough investigation of how bidders may incorporate

additional information.

We want to point out that the difficulties we find in our simple model indicate

that a more general analysis must be highly complex. For instance, we have seen

that the optimal split-up of information depends very sensitively on how the bidders’

valuations are distributed. We saw as well that returns to giving out information are

not monotonically decreasing. It remains a challenge to find a more tractable model

that still allows for an easy and quite natural cardinal ranking of informativeness. All

classes of models with release of information that contain our model of independent

information packages will suffer from non-monotonicity and sensitivity with regard

to distributional assumptions.
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[41] Esö, Peter and Balasz Szentes. Optimal Information Disclosure in Auctions.

Review of Economic Studies, 74: 705-731, 2007.

[42] Fagerlin, Angela, Catherine Wang and Peter A. Ubel. Reducing the influence

of anecdotal reasoning on people’s health care decisions: is a picture worth a

thousand statistics? Medical Decision Making, 25(4): 398-405, 2005.

[43] Faigle, Ulrich, Walter Kern and Georg Still. Algorithmic Principles of Mathe-

matical Programming. Kluwer, Dordrecht, 2002.

[44] Feller, William. An Introduction to Probability Theory and Its Applications.

Volume II. 2nd edition, Wiley, New York, 1971.

130



[45] Fishman, Michael. A Theory of Preemptive Takeover Bidding. RAND Journal

of Economics, 19(1): 88-101, 1988.

[46] Finucane, Melissa L., Ali Alhakami, Paul Slovic and Stephen M. Johnson. The

affect heuristic in judgments of risks and benefits. Journal of Behavioral Deci-

sion Making, 13: 1-17, 2000.

[47] Fontanarosa, Phil B. and George D. Lundberg. Alternative Medicine Meets

Science. Journal of the American Medical Association, 280: 1618-1619, 1998.
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Appendices

A Proofs of Chapter 1

Proof of Proposition 1.1

The proof is structured as follows: We collect observations about the shape of the

equilibrium until we can calculate a unique equilibrium candidate. It is then easy

to verify that this candidate is indeed an equilibrium.

The observations made in the main text together with the usual arguments for

complete information all-pay auctions yield that

• the strategies’ supports must go down to zero for some types,

• at most one bidder sets an atom on effort-level zero,

• no bidder mixes over intervals on which his opponent is inactive,

• bidders’ supports do not have gaps, in particular, there is no gap between the

strategies of strong i and weak i,

• the supports of strong i and weak i are distinct except that possibly both set

an atom in zero, where strong i mixes over higher effort levels than weak i,

• if on an interval I strong i and weak j are active, strong i mixes with density

Cj/pi and weak j mixes with density ci/(1− pj). Generally a type’s density is

always the quotient of the opponent type’s costs and his own type probability.

Thus we know that the supports form an interval [0, e] for some e > 0. We also know

that there are points e1 and e2 in this interval such that weak i mixes over [0, ei]

and strong i mixes over [ei, e]. Additionally, the weak type of one of the bidders
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may place an atom on zero. Finally, we explicitly know the densities chosen by the

different types against different opponents.

We can thus sequentially calculate an equilibrium candidate: Fix some value of e.

Let the strong types of both bidders mix down from e until one of them, say i, has

used up all his probability mass. We call this point (known only in reference to e) ei.

At this point, the weak type of bidder i comes in. Repeat this procedure downwards

to the point e0 where both types of one bidder have used up all their probability

mass. The opponent must put his remaining probability mass on an atom in e0

since both bidders’ have to mix over the same support. Note that for any e, this

procedure necessarily produces unique values e0, e1 and e2. Now recall that e0 must

equal zero in equilibrium. This uniquely determines the values of e1, e2 and e. We

thus have found a unique equilibrium candidate. It is tedious but straightforward

to verify that this sequential procedure leads to the equilibrium candidate stated in

the proposition and that it is indeed an equilibrium. �

Proof of Proposition 1.2

It is easy to verify that the equilibrium is well-defined, i.e., that the ei form an

increasing sequence, that the Fi are continuous at the concatenation points and

increasing from zero to one. Note that strong i’s expected payoff πi(e) from playing

e while his strong-type opponents utilize the strategies Fk is given by

πi(e) =
∏
k 6=i

(pkFk(e) + (1− pk))− ce. (A.1)

It is easy to verify by inserting the definition of Fk from the proposition into (A.1)

that πi(e) is constant over [ei, en+1] and equals
∏n

j=2(1−pj).1 It is also obvious that

no bidder wishes to deviate to effort levels above en+1.

The following argument shows that no bidder i wishes to deviate to effort levels in

the interval [0, ei]: Consider πi(e) outside the support of bidder i, i.e. on the interval

[ek, ek+1] with i ≥ k + 1. Using the fact that only the k bidders with the largest pl

1Equation (A.1) is also the key ingredient for finding the Fk: We know (see the main text)

that the equilibrium payoffs of the strong types equal
∏n
j=2(1− pj). Thus the right hand sides of

(A.1) are known and must be identical for all i who are active at e. This allows us to identify an

equilibrium candidate.
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are active here, (A.1) becomes

πi(e) =
∏

j>k,j 6=i

(1− pj)
k∏
l=1

(plFl(e) + (1− pl))− ce. (A.2)

Inserting the definitions of the Fl, this becomes

πi(b) =
∏

j>k,j 6=i

(1− pj)
(∏n

l=2(1− pl) + ce∏n
l=k+1(1− pl)

) k
k−1

− ce. (A.3)

A few algebraic manipulations turn (A.3) into

πi(e) = (
n∏
l=2

(1− pl) + ce)

( ∏n
l=2(1− pl) + ce

(1− pi)k−1
∏n

l=k+1(1− pl)

) 1
k−1

− ce

and then into

πi(e) =
n∏
l=2

(1− pl) + (
n∏
l=2

(1− pl) + ce)

(
k−1

√ ∏n
l=2(1− pl) + ce

(1− pi)k−1
∏n

l=k+1(1− pl)
− 1

)
.

Note that the first summand on the right hand side is bidder i’s payoff on the support

of his strategy Fi. Thus, in order to show that bidder i does not want to deviate, we

have to consider the sign of the remainder of the expression. To see that the sign is

negative, we have to show that the fraction

ρ(e) =

∏n
l=2(1− pl) + ce

(1− pi)k−1
∏n

l=k+1(1− pl)

under the (k+ 1)th-root is smaller than 1. Since ρ(e) is increasing in e it is sufficient

to verify that ρ(e) ≤ 1 for the largest e in the interval, e = ek+1. Inserting the

definition of ek+1 gives us

ρ(ek+1) =
(1− pk+1)k−1

(1− pi)k−1
≤ 1.

Thus bidder i cannot gain from deviating to effort levels in [0, ei]. �

Proof of Proposition 1.3

Recall from Lemma 1.1 that all strong types must earn
∏

j 6=1(1− pj) in equilibrium

and define π =
∏

j 6=1(1−pj). The main part of this proof consists of showing that the

vector of strategies given in Proposition 1.2 is the only equilibrium candidate. Once

this has been established, the results about equilibrium existence and tie-breaking

follow easily: Tie-breaking only concerns bidder 1 who places an atom on zero.
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Clearly, bidder 1 only earns π from playing zero if tie-breaking against low-types

is in his favor at zero. If bidder 1 does not earn π in zero, the only equilibrium

candidate is not an equilibrium so that no equilibrium exists.2 The case where

p1 = p2 is special because then no bidder places an atom on zero so that almost

surely ties do not occur in equilibrium.

Let us first recall a number of observations which are similar to the complete in-

formation case: Any equilibrium must be in mixed strategies. Some strong types

must mix down to zero. There are no atoms with the exception that at most one

bidder places an atom on zero. As a consequence, the distribution functions of all

bidders’ equilibrium strategies must be continuous for positive efforts. The union

of all bidders’ supports cannot have gaps. Likewise, there are no intervals on which

only one bidder is active. Now the key part of the proof lies in showing the following

two steps:

Step 1: Consider any equilibrium and denote by Hi bidder i’s equilibrium strategy.

Denote by A the set of bidders who is actively mixing on an interval of effort-levels

I. Assume that I and A are such that bidders in A are active on the whole interval

I. Then there exists a constant D which is independent of i and e such that Hi is

given by

Hi(e) =
1

pi

[
|A|−1

√
π + ce

D
− (1− pi)

]
for all e ∈ I.

Step 2: Consider e∗ > 0, ε > 0 and i such that bidder i is active on (e∗− ε, e∗] but

inactive on (e∗, e∗+ ε). Then for sufficiently small ε none of the bidders is active on

(e∗, e∗ + ε).

Note that the expression for Hi in Step 1 is well-defined because |A| ≥ 1 implies

|A| ≥ 2. Before proving these steps, let us see how to conclude the proof from

here on. Since there are no gaps, Step 2 implies that all bidders must mix up to

the same highest effort level. Recalling payoff-uniqueness we know that this highest

effort level must then be e = 1
c
(1 − π). Furthermore, Step 2 implies that each

2Note that our payoff-uniqueness result was independent of tie-breaking. In particular, bidder

1 must earn at least π in any equilibrium because from a bid marginally above zero he can secure

a payoff arbitrarily close to π regardless of his opponents’ behavior.
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bidder’s support must be a gapless interval. Armed with these insights we can start

to explicitly calculate an equilibrium candidate: We know all bidders are active on

an interval below e. Step 1 specifies the distribution functions on this interval up

to a constant D. We can calculate D for this interval from the identity Hi(1) = 1.

Moving downwards from e we get to a point where some of the Hi become zero.

All other bidders must remain active and their Hi must be continuous. Iterating

this construction until all but one Hi becomes zero allows us to calculate a unique

equilibrium candidate. It is straightforward to see that this unique candidate is

indeed the vector of strategies given in Proposition 1.2.

Proof of Step 1

For i ∈ A consider the payoff π(e) from making an effort e ∈ I,

πi(e) =
∏

j∈A\{i}

(pjHj(e) + (1− pj))
∏
k∈Ac

(pkHk(e) + (1− pk))− ce. (A.4)

Note that by assumption the product over Ac is for e ∈ I a constant which is

independent of e and i. Denote this constant by D. Recall that by payoff-uniqueness

we also have πi(e) = π. Hence (A.4) becomes

ce+ π

D
=

∏
j∈A\{i}

(pjHj(e) + (1− pj))

for all i ∈ A. But since the left hand side of this identity is independent of i so must

be the right hand side. This implies that all factors on the right hand side must be

identical - the product is the same regardless of which bidder i is taken out. We can

thus conclude that
ce+ π

D
= (piHi(e) + (1− pi))|A|−1

for all i ∈ A. Solving for Hi shows Step 1.

Proof of Step 2

Choose ε small enough such that there is a fixed set of active bidders on I =

(e∗, e∗ + ε) and we can apply Step 1. Consider bidder i’s payoff from deviating into

the interval I,

πi(e) =
∏
j∈A

(pjHj(e) + (1− pj))
∏

k∈Ac\{i}

(pkHjK(e) + (1− pk))− ce. (A.5)

Again, the second product is independent of e. Inserting the expression for Hi from

Step 2 into the first product and collecting the constant D and the second product
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in a new constant E yields

πi(e) = (ce+ π)
|A|
|A|−1E − ce.

After some algebraic manipulations this becomes

πi(e) = π + (ce+ π)(E |A|−1
√
ce+ π − 1).

Now since we assumed that πi(e
∗) = π we know that E must be such that the second

factor in the second summand equals zero for e = e∗. But this implies that πi(e)

is increasing for e > e∗ contradicting our assumption of being in equilibrium. This

proves Step 2. �

Proof of Lemma 1.2

In the following we consider the more general game where bidders choose probabil-

ities p1 and p2 in order to maximize their payoffs given by

π1(p1, p2) = (p1(1−min(p1, p2))α + (1− p1)(max(0, p1 − p2))β

where α ≥ β > 0. The game in the lemma is obviously the special case α = β = θ

of this game. This more general formulation is more adaptable to generalizations.3

One can easily verify that (independently of α and β) the first two types of equi-

libria stated in the lemma are indeed equilibria. We thus focus on the symmetric

mixed strategy equilibrium. In order to identify an equilibrium candidate we take

the following approach: Note that setting pi to a value smaller than 1
2

is strictly

dominated by setting pi to 1
2
. Assume thus that both bidders mix with a density f

over [1
2
, 1].4 The payoff of bidder 1 from choosing p1 while his opponent mixes with

density f can be written as

π1(p1) = αp1

[∫ p1

1
2

(1− p2)f(p2)dp2 +

∫ 1

p1

(1− p1)f(p2)dp2

]
+β(1−p1)

∫ p1

1
2

(p1−p2)f(p2)dp2.

Denote by F (p) the cumulative density function associated with f . Simple algebraic

manipulations lead to

π1(p) = αp1

[
(1− p1) + p1F (p1)−

∫ p1

1
2

p2f(p2)dp2

]
+β(1−p1)

[
p1F (p1)−

∫ p1

1
2

p2f(p2)dp2

]
3Notably, the case where the marginal costs of exerting effort are 1 and bidders have either

valuation V or v where V > v > 0 is covered. In that case it can be deduced from Corollary 1.2

that α = V − v and β = 1− v
V .

4In fact, this assumption does not turn out to be perfectly true: Except when α = β, both

bidders set an atom in 1. The point of this calculation is to demonstrate how to quickly identify an

equilibrium candidate. With a more flexible notation, this slight inconsistency could be removed.
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Defining

G(p1) = p1F (p1)−
∫ p1

1
2

p2f(p2)dp2

and simplifying yields

π1(p) = αp1(1− p1) +G(p)(αp1 + β(1− p1)).

By integration by parts we obtain

G(p1) =

∫ p1

1
2

F (p2)dp2

which implies that G(1
2
) = 0. It also implies that F (p) = G′(p). Now recall that

in a symmetric mixed equilibrium we must have that π1(p) is constant in p, i.e.

π′1(p) = 0. This gives us the ordinary differential equation

0 = α(1− 2p1) +G′(p1)(αp1 + β(1− p1)) +G(p)(α− β).

A solution to this differential equation under the boundary condition G(1
2
) = 0 is

given by

G(p) =
α(1− 2p)2

4(αp+ (1− β)p)
.

This leads to an equilibrium candidate of

F (p) =
α(2p− 1)(α + 3β + 2(α− β)p)

4(αp+ (1− β)p)2
.

It follows that F (1
2
) = 0 and F (1) = 3α+β

4α
< 1. Thus, in order to obtain a distri-

bution function on [1
2
, 1] as desired, we have to assume an atom in 1 (except when

α = β). In the case α = β we obtain F (p) = 2p− 1, implying that F is the uniform

distribution on [1
2
, 1]. One can easily calculate that F is indeed an equilibrium. �

B Proofs of Chapter 2

Proof of Proposition 2.1

In McAfee (1994) it is shown that the vector of strategies in Proposition 2.1 is indeed

an equilibrium. McAfee (1994) also shows payoff uniqueness, i.e., for all i, healer i’s

equilibrium payoff is given by

πi = αiC where C :=
n−1∏
j=1

(1− αi) > 0. (B.1)
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Observe that the first equality states that all healers’ expected equilibrium payoffs

conditional on being recommended must be identical.

We hence take these results as given and show how to obtain equilibrium uniqueness

from this point on. We start with a number of preliminary observations:

• In any equilibrium healers do not place atoms on prices except for possible

atoms on 0 or 1: If healer i sets an atom in p ∈ (0, 1), other healers play-

ing prices right above p would want to shift their probability mass to prices

marginally below p in order to substantially increase their winning probability

(while only marginally decreasing prices). If no other healer played prices right

above p, healer i could profitably shift the atom upwards.

• In addition, at most one healer sets an atom on 1 in equilibrium: If two or

more healers played an atom in 1, this would result in a positive probability

of ties. Thus at least one healer could profitably deviate by shifting his atom

marginally downwards.

• The union of the healers’ strategy supports must go up to 1: Playing higher

prices is dominated. If the union of supports went only up to a lower price

pH < 1, any healer mixing up to pH could profitably deviate to playing 1.

• Due to the positive equilibrium payoffs, the union of strategy supports must

be bounded away from 0. Denote by pL > 0 the infimum of the union of

equilibrium supports.

• The union of supports must be an interval [pL, 1], i.e. there cannot be any

gaps in the union of supports: If there was an interval [p, p] ⊂ [pL, 1] where no

healer was active, a healer who would be playing prices right below p could

deviate by shifting probability mass from a small interval below p to p, yielding

a substantially better price at a marginally lower probability of winning.

• Furthermore, there cannot be a subset [p, p] ⊂ [pL, 1] where only one healer is

active: Such a healer could profitably deviate by concentrating all probability

mass of the interval in an atom at p. He would then receive a higher price at

the same probability of winning.

Armed with these insights we turn to the first major step of the proof:
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1) In any equilibrium, the strategy support of each healer must go down to the same

pL > 0. Furthermore, in any equilibrium, pL = C.

Proof of 1): Consider two healers i and j with supports Si and Sj. Assume piL < pjL

where pkL = inf Sk for k = i, j. Then, with positive probability, healer i plays a price

from [piL, p
j
L]. Healer j’s payoff from playing pjL must equal his equilibrium payoff

αjC > 0. Yet this implies that healer i can earn more than his equilibrium payoff

of αiC by playing pjL: Since - unlike healer j - healer i does not compete against

healer i (himself) as a possibly cheaper competitor when playing pjL, his expected

payoff conditional on being recommended must be higher than that of j. This is a

contradiction to (B.1). Hence the support of every healer must go down to the same

lowest price pL.

To see that pL = C, note that for all j, healer j’s payoff from playing pL must

be αjpL: The other healers charge higher prices with probability 1. Thus healer

j attracts all the patients to whom he is recommended and receives pL from all of

them. This leads to a payoff of αjpL, which is only consistent with (B.1) if pL = C.

The next step further characterizes the functional form of the healers’ equilibrium

distribution functions:

2) Let D ⊂ {1, . . . , n} denote the set of healers who are active on some interval

I = (p, p) in some arbitrary but fixed equilibrium. Assume all healers j ∈ D are

active at any p ∈ I and let m = #D. (Note that from our preliminary observations

it follows that m 6= 1.) Then for all j ∈ D any equilibrium distribution function

Hj(p) must satisfy for all p ∈ I

Hj(p) =
1

αj

(
1− m−1

√
L

p

)
(B.2)

where the constant L > 0 is independent of p and j. Moreover,

L =
C∏

i∈DC (1− αiHi(p))
.

Proof of 2): Note that for all j ∈ D and all p ∈ I the expected payoff of healer j

from playing p must equal the equilibrium payoff of αjC. Using (2.2) and the fact
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that distribution functions of inactive healers are constant over I, this condition

reads

αjC = pαj

[∏
i∈DC

(1− αiHi(p))

] ∏
k∈D\{j}

(1− αkHk(p))

 .
Rearranging and using the definition of L yields for all p ∈ I and j ∈ D∏

k∈D\{j}

(1− αkHk(p)) =
L

p
. (B.3)

Now consider (B.3) for two different healers i, j ∈ D. Taking the quotient of (B.3)

for i and (B.3) for j yields that for all p ∈ I

1 =
1− αjHj(p)

1− αiHi(p)

which implies that there is a function h(p) such that h(p) = αkHk(p) for all k ∈ D.

Substituting h(p) for αkHk(p) on the left hand side of (B.3) and then solving for h

yields

h(p) = 1− m−1

√
L

p

and thus

Hj(p) =
1

αj

(
1− m−1

√
L

p

)
as required.

The last main step shows that no healer has a gap inside his equilibrium price

interval, i.e. no healer is inactive over some range of prices (above pL) while putting

positive probability mass on prices above that range:

3) For all j the support of healer j’s strategy is of the form [pL, p
j
H ] for some pL <

pjH ≤ 1.

Proof of 3): Assume that some price p > pL is in the support of the strategy of

healer j but j is inactive on some interval directly below p. Choose p < p such that

for all p ∈ I = (p, p) the set of healers who are active at p is identical. (This is

possible since there are no atoms and thus the Hi are continuous.) Denote the set

of healers active on I by D. Using (2.2) as in Step 2) we can write the payoff of

healer j from playing some p ∈ I ∪ {p} as

πj(p) = αjp

 ∏
i∈DC\{j}

(1− αiHi(p))

[∏
k∈D

(1− αkHk(p))

]
.
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Defining the constant factor from the other inactive healers as

K :=

 ∏
i∈DC\{j}

(1− αiHi(p))


and making use of (B.2) from the last step, we can express πj(p) as

πj(p) = αjpK

(
m−1

√
L

p

)m

= αjKL
m
m−1 m−1

√
1

p

where the constant L is defined as in Step 2. Note that this implies that πj(p) is

strictly decreasing in p over I ∪{p}. By assumption, healer j is active at p and thus

must earn his equilibrium payoff there:

πj(p) = αjC.

Yet since πj(p) is decreasing, this implies that for p ∈ I

πj(p) > αjC

such that healer j can profitably deviate - which is a contradiction.

To conclude the proof, we still have to show that the vector of strategies defined

in the proposition is actually the only candidate for an equilibrium. We have seen

that all supports start at pL = C and since healers do not set atoms or leave gaps in

their supports, all healers remain active up to the price p1 where the first healer(s)

j have used up their probability mass, i.e. where Hj(p1) = 1. Note that on any

interval [pL, p] where all healers are active, all distribution functions are uniquely

determined by Step 2. Likewise, p1 and the set of healers with Hj(p1) = 1 are

uniquely pinned down by this. Above p1, all healers who still have probability mass

to spend must remain active. By Step 2, distribution functions above p1 are again

uniquely determined, pinning down in turn the price p2 > p1 where the next supports

end. Continuing this procedure sequentially until p = 1 or until all or all but one

distribution functions equal 1 determines a unique candidate for an equilibrium. It

is easy to calculate that this unique candidate is actually the vector of strategies

stated in the proposition, and that this unique candidate is indeed an equilibrium.

�

Proof of Proposition 2.2
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The payoff of healer i from playing p while the other healers play Hj is given by

πi(p) = pαiE

[∏
j 6=i

(1− αjHj(p))

]
= pαi

∏
j 6=i

(1− αjHj(p)) (B.4)

by the independence of the αj. This differs from (2.2) only by a factor of αi/αi

which is independent from p. Thus Hi(p) must be a best response for healer i

in the incomplete information game with qualities α1, ..., αn as well. (Otherwise

the Hi would not form a Nash equilibrium in the complete information game with

α1, ..., αn.) �

Proof of Proposition 2.3

“⇐” follows almost immediately: If a strategy profile satisfies (2.3), the expected

payoff of healer i from playing p while the other healers play G
αj
j is the same as in

the equilibrium studied in Proposition 2.2:5

πi(p) = pαi
∏
j 6=i

(1− E[αjG
αj
j (p)]) = pαi

∏
j 6=i

(1− αjHj(p)). (B.5)

Hence it does not make any difference for healer i whether his competitors play Hj

or G
αj
j . Healer i then does not have an incentive to deviate from Gαi

i because this

strategy has support in [p0, pi], the support of Hi. Thus all healers playing Gαi
i is

an equilibrium.

For “⇒”, we first verify that if the G
αj
j are equilibrium strategies, we do not have to

worry about atoms. This is needed to justify the expression (B.6) for the expected

payoffs below. Note first that it is inconsistent with equilibrium behavior for a

healer j to play a price p̃ < 1 with positive probability in expectation over αj:
6 If

other healers had probability mass on prices marginally above p̃, they would shift

this mass downwards. If no other healers had probability mass on prices marginally

above p̃, healer j could earn more by shifting his probability mass from p̃ upwards.

Additionally, at most one healer j plays a price of 1 with positive probability in

expectation over αj: If several healers did so, at least one of them would have an

incentive to shift probability mass downwards to escape tie-breaking.

5Note that (2.3) implies that for all p < 1 in expectation over αj the probability that healer j

plays p is zero. We thus do not have to worry about atoms.
6Note that we do not rule out in the following that for fixed αj the distribution function G

αj

j

contains atoms. We only show that there are no atoms the other healers can anticipate, i.e., atoms

in E[Gαj

j ].
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Since there are no atoms (except possibly one in 1) we can write the payoff of healer

i from playing p while the other healers play G
αj
j as

πi(p) = pαi
∏
j 6=i

(1− E[αjG
αj
j (p)]). (B.6)

Define for each healer i a distribution function

H̃i(p) =
1

αi
E [αiG

αi
i (p)] .

It must hold that H̃i(p) = Hi(p): Clearly, with a similar reasoning as before, if all

healers playing Gαi
i is an equilibrium, all healers playing H̃i(p) must be an equilib-

rium as well, as the expected payoffs from playing any price p are identical in both

situations:

pαi
∏
j 6=i

(1− αjH̃j(p)) = pαi
∏
j 6=i

(1− E[αjG
αj
j (p)]). (B.7)

Note that H̃i(p) does not depend on healer i’s private information. From comparing

the left hand side of (B.7) with (2.2) we see that all healers playing H̃i(p) is also an

equilibrium of the complete information game with qualities α1, ..., αn since payoffs

differ only by a constant factor between the two games. From Proposition 2.1 we

know that (H1, . . . , Hn) is the unique equilibrium of the complete information game.

This yields H̃i = Hi which by the definition of H̃i implies (2.3).

Finally, we have to show that the support of Gαi
i lies in [p0, pi] for all values of αi.

7

Note that it does not make any difference for healer i whether his competitors play

(G
αj
j )αj or Hj. But playing prices outside [p0, pi] against competitors who play Hj

is strictly dominated. (This is an easy calculation similar to Step 2 in the proof of

Proposition 2.1). Thus, if Gαi
i is a best response to (G

αj
j )αj , its support must be

included in [p0, pi].

That healers’ expected payoffs are the same in all equilibria is a direct consequence

of our result that (2.3) must hold in all equilibria. �

Proof of Proposition 2.4

We first start with a definition: Define the function Ki(αi) as

Ki(αi) =

∫ αi

0

βfi(β)dβ.

7Note that (2.3) implies already that this holds for Fi-almost all values of αi.
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Note that Ki is strictly increasing since the integrand is positive for αi > 0. Fur-

thermore, Ki(0) = 0 and Ki(1) = αi.

Among others, we have to show that there exists a family (Gαi
i )αi which satisfies the

sufficient conditions for a Nash equilibrium from Proposition 2.3 and which consists

only of distributions Gαi
i (p) that put all mass on one price. For this purpose, note

that a price setting function P̄i(αi) translates into a family of distribution functions

via

Gαi
i (p) = 1{p≥P̄i(αi)}.

Thus, for a price setting function, (2.3) becomes∫ 1

0

αi1{p≥P̄i(αi)}f(αi)dαi = αiHi(p). (B.8)

Now, to prove the proposition, we have to show that there exists a unique equilibrium

in strictly increasing price setting functions. Define a strictly increasing price setting

function via

P̄i(αi) = H−1
i

(
Ki(αi)

αi

)
.

H−1
i denotes the inverse of the restriction of Hi to [p0, pi]. Thus H−1

i is a bijection

from [0, 1] to [p0, pi]. To see that P̄i is a well-defined bijection from [0, 1] to [p0, pi]

note also that Ki(αi)/αi is a bijection from [0, 1] to [0, 1]. That P̄i is strictly increas-

ing follows because Ki and Hi are strictly increasing. Considering the inverse of P̄i,

we see that P̄i satisfies (2.3):

P̄−1
i (p) = K−1

i (αiHi(p))

⇔ Ki(P̄
−1
i (p)) = αiHi(p)

⇔
∫ P̄−1

i (p)

0

αifi(αi)dαi = αiHi(p). (B.9)

As P̄i is strictly increasing, the final equality is equivalent to (B.8) and thus to (2.3).

Since P̄i only takes values in [p0, pi], we have hence shown (making use of Proposition

2.3) that the functions P̄i form a Nash equilibrium. Furthermore, from (B.9) it is

evident that P̄i(αi) is the unique monotonically increasing equilibrium price setting

function. �

Proof of Proposition 2.5

This proposition is an immediate corollary of results derived in Section 2.3 applied

to the symmetric case Fi = F . In Proposition 2.3 we show that the healers’ expected
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payoffs are identical in all equilibria. In Proposition 2.2 we prove that there is an

equilibrium where the expected payoff of healer i is given by

πi = αi(1− α)n−1.

Proposition 2.4 shows that there is a unique monotonically increasing strategy equi-

librium, given by the price setting function

P̄ (αi) = H−1

(∫ αi
0
βf(β)dβ

α

)
where H is defined in Proposition 2.1 as

H(p) =
1

α

(
1− 1− α

n−1
√
p

)
with support [(1− α)n−1, 1]. To verify that this is the price setting function stated

in Proposition 2.5 we just have to calculate that

H−1(k) =

(
1− α
1− αk

)n−1

.

Inserting k =
∫ α

0
βf(β)dβ/α yields the desired result. �

Proof of Proposition 2.6

Denote by αi:n the ith lowest of the values α1,...,αn. In the following, we make use

of three well-known facts:

First, the density of αi:n is given by8

fi:n(α) = n

(
n− 1

i− 1

)
F (α)i−1(1− F (α))n−if(α).

Second, recall the Binomial Theorem: For all a, b > 0 and m ∈ N
m∑
i=0

(
m

i

)
aibm−i = (a+ b)m. (B.10)

Finally, we make use of the fact that

E[1− α̃|α̃ < α] =

∫ α

0

(1− β)
f(β)

F (α)
dβ = 1− 1

F (α)

∫ α

0

βf(β)dβ. (B.11)

We now calculate γn in order to verify (2.5). Recall that each patient consults the

worst healer who is recommended to him. Hence the probability that a patient

8Compare for instance David (1970).
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consults healer i equals the probability that i is recommended and that all healers

worse than i are not recommended. Thus

γn = E

[
n∑
i=1

α2
i:n

i−1∏
j=1

(1− αj:n)

]
.

Note that this calculation takes into account that if no healer is recommended, the

patient receives a quality of zero. Observe that conditional on αi:n taking some

value α,
∏i−1

j=1(1−αj:n) has the same distribution as a product of i− 1 independent

random variables:

γn =

∫ 1

0

n∑
i=1

α2E

[
i−1∏
j=1

(1− α̃j)

∣∣∣∣∣ α̃1, . . . , α̃i−1 < α

]
fi:n(α)dα

=

∫ 1

0

n∑
i=1

α2E[1− α̃|α̃ < α]i−1fi:n(α)dα (B.12)

where the α̃j and α̃ are independent and distributed according to F . Plugging the

definition of fi:n into (B.12) and rearranging yields

γn = n

∫ 1

0

α2

[
n∑
i=1

(
n− 1

i− 1

)
(F (α)E[1− α̃|α̃ < α])i−1 (1− F (α))n−i

]
f(α)dα.

After shifting the summation index and inserting (B.11), this becomes

γn = n

∫ 1

0

α2

[
n−1∑
i=0

(
n− 1

i

)(
F (α)−

∫ α

0

βf(β)dβ

)i
(1− F (α))(n−1)−i

]
f(α)dα.

Applying (B.10), we obtain

γn = n

∫ 1

0

α2

[
1−

∫ α

0

βf(β)dβ

]n−1

f(α)dα

as we wanted to show.

We still have to prove that

lim
n→∞

γn = 0.

Consider the random variable Γn which is the quality of the treatment one fixed

patient receives in equilibrium. Note that there are two levels of randomness in Γn,

the randomness in the αi and the randomness in the recommendations the patient

gets. Clearly

E[Γn] = γn.
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We first show that Γn converges to zero in probability, i.e., for every δ > 0

lim
n→∞

Prob (Γn < δ) = 1.

Fix δ > 0. The idea is that for any k we can choose n large enough such that

with high probability at least k healers have qualities in ( δ
2
, δ). Each of these is

recommended with a probability larger than δ
2
. Hence if k is large enough it is very

likely that one of them is recommended. Precisely, we have to show that for every

ε > 0 there is some n(ε) such that

Prob (Γn < δ) ≥ 1− ε

for all n > n(ε). Denote by the random variable Dn
δ the number of healers whose

qualities lie in the interval ( δ
2
, δ). Denote by Rn

δ the number of healers with qualities

in the interval ( δ
2
, δ) who are recommended.

For any k ≤ n

Prob (Γn < δ) ≥ Prob (Rn
δ ≥ 1)

≥ Prob (Dn
δ ≥ k) Prob (Rn

δ ≥ 1 |Dn
δ ≥ k)

≥ Prob (Dn
δ ≥ k)

(
1− (1− δ

2
)k
)
. (B.13)

Choose k(ε) large enough such that(
1− (1− δ

2
)k(ε)

)
>
√

1− ε.

Then choose n(ε) (= ñ(ε, k(ε))) large enough such that

Prob
(
D
n(ε)
δ ≥ k(ε)

)
>
√

1− ε.

This is possible because we have assumed f > 0 which implies that, independently,

each healer has with positive probability a quality in ( δ
2
, δ). Then by (B.13)

Prob (Γn < δ) >
√

1− ε2 = 1− ε

for all n > n(ε). Thus we have shown that Γn converges to zero in probability. Since

Γn is bounded, this implies that Γn converges to zero in mean (see, for instance,

Grimmett and Stirzaker (1992)):

lim
n→∞

γn = lim
n→∞

E[Γn] = 0.
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�

Proof of Remark 2.1

Let
∑

A denote
∑

A⊂{1,...,n}, A 6=∅ and let #A denote the number of healers in A.

Since price setting does not depend on the realizations of the αi, all recommended

healers have the same chance of offering the lowest price. Thus the expected quality

a patient receives is the expectation of the average quality of the recommended

healers:

γ̃n = E

[∑
A

∑
i∈A αi

#A
Prob[A is the set of recommended healers]

]
.

Obviously it holds that

Prob[A is the set of recommended healers] =
∏
j∈A

αj
∏
k∈Ac

(1− αk).

Hence

γ̃n = E

∑
A

1

#A

∑
i∈A

α2
i

∏
j∈A\{i}

αj
∏
k∈Ac

(1− αk)

 .
By the independence of the αi, this implies

γ̃n =
∑
A

E[α2]E[α]#A−1(1− E[α])n−#A

where α is a random variable with distribution F . Since {1, . . . , n} has
(
n
k

)
subsets

with k elements we can rewrite this to

γ̃n =
E[α2]

E[α]

n∑
k=1

(
n

k

)
E[α]k(1− E[α])n−k.

By the binomial theorem (B.10) this is the same as

γ̃n =
E[α2]

E[α]
(1− (1− E[α])n).

Hence we are done. �

C Proofs of Chapter 3

Proof of Proposition 3.1

Special case of Proposition 3.7. �
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Proof of Proposition 3.2

In order to identify an equilibrium candidate we first assume that the equilibrium

is indeed given by a function Fj that can be decomposed into an aggressive and

a defensive strategy as sketched in the main text, i.e., Fj = qjAj + (1 − qj)Dj.

Furthermore we postulate that the support of Dj corresponds to the support of Ai

shifted upwards by rj so that both distributions cover the same range of net prices

for the customers in the home base of firm j. This is expressed by the system of

equations

ai + rj = dj (C.1)

aj + ri = di (C.2)

ai + rj = dj (C.3)

aj + ri = di. (C.4)

Solving (3.2) and (3.3) for Dj and Aj and shifting the argument we get the following

expressions for Dj and Aj

Dj(p) = 1− πi −mi(p− ri − rj)
mj(p− rj)(1− qj)

(C.5)

and

Aj(p) =
1

qj

(
1− πi

mip

)
. (C.6)

From these functions it is easy to calculate aj, aj, dj and dj as the prices where Aj

and Dj take the values 0 and 1. This yields

aj =
πi
mi

, aj =
πi

mi(1− qj)
and

dj =
πi +mi(ri + rj) + rjmj(1− qj)

mi +mj(1− qj)
, dj =

πi
mi

+ ri + rj.

What remains to be done in order to pin down our equilibrium candidate is elimi-

nating πi, πj and qi and qj using the system of equations (C.1)-(C.4). Inserting the

expressions for aj, aj, dj and dj the system becomes

πj
mj(1− qi)

=
πi
mi

+ ri (C.7)

πi
mi(1− qj)

=
πj
mj

+ rj (C.8)

πj
mj

+ rj =
πi +mi(ri + rj) + rjmj(1− qj)

mi +mj(1− qj)
(C.9)

πi
mi

+ ri =
πj +mj(ri + rj) + rimi(1− qi)

mj +mi(1− qi)
. (C.10)
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Solving this system for πi, πj and qi and qj yields the equilibrium candidate given

in the statement of the proposition.9 We still need to check that this is well-defined

and that it is indeed an equilibrium. It is easy to see that Ai and Di are indeed

distribution functions, i.e., that they are monotonically increasing. (Then it follows

by construction that they have the correct supports.) In order to check that qi is

indeed a probability, note that qi(mi,mj) only depends on the ratio mi/mj (and not

on ri and rj). Thus it is sufficient to show that the univariate function qi(mi, 1) only

takes values in the interval [0, 1]. This is omitted here. To see that the supports

of the defensive and aggressive strategies are adjacent, note that putting (C.8) and

(C.9) together immediately yields

aj =
πi

mi(1− qj)
=
πi +mi(ri + rj) + rjmj(1− qj)

mi +mj(1− qj)
= dj.

By construction, firm j earns an expected payoff of πj from playing a price in

[aj, dj]. Thus in order to show that we have indeed a Nash equilibrium it remains

to be shown that prices below ai or above di are weakly dominated. Clearly, we can

restrict attention to prices which are close enough to the supports of the equilibrium

strategies to keep the two firms in competition: if firm i sets a price above dj + ri it

yields zero profits because all customers attend firm j and likewise there is a lower

bound below which lowering the price even further will never lead to additional

customers. Thus consider firm i playing a price p (not too far) below ai while firm

j plays its equilibrium strategy. It is easy to see that this leads to a payoff of

πi(p) = mi(p− ri) +mjp(1− qjAj(p+ rj)) (C.11)

for firm i. Now observe that by multiplying (3.3) with mj/mi and shifting the

argument p we can conclude that for some constant C1 (which does not depend on

p)

mj(p+ rj)(1− qjAj(p+ rj)) = C1.

This allows us to rewrite (C.11) to

πi(p) = C1 +mi(p− ri)− rj(1− qjAj(p+ rj)).

Thus πi(p) is an increasing function which implies that playing ai dominates playing

prices below it. We now turn to deviations to prices above di. Playing such a price

9There are three more solutions which do not correspond to equilibria. The reader who is

inclined to verify that this is indeed a solution is strongly advised to utilize a computer algebra

system such as Wolfram Mathematica.
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yields a payoff of

πi(p) = mi(p− ri)(1− qj)Dj(p− ri)). (C.12)

From (3.2) we can conclude that for some constant C2

m2
i

mj

p+mi(p− ri − rj)(1− qj)(1−Dj(p− ri)) = C2.

This yields

πi(p) = C2 −
m2
i

mj

p+mirj(1− qj)(1−Dj(p− ri)).

Thus πi(p) is a decreasing function. This implies that playing di dominates playing

higher prices.

To conclude the proof of the proposition, we have to show that Ai(p) = Dj(p+ rj).

Note that by construction both Ai(p) and Dj(p + rj) are probability distributions

on [ai, ai]. Furthermore, by (C.5), Dj(p+ rj) is given by

Dj(p+ rj) = 1− πi −mi(p− ri)
mjp(1− qj)

for p ∈ [ai, ai].

Observe that both Dj(p+ rj) and Ai(p) are of the following form:

G(p) = α− β

p
for p ∈ [ai, ai],

G(ai) = 0 and G(ai) = 1 where α and β are coefficients that do not depend on p.

Then the boundary constraints G(ai) = 0 and G(ai) = 1 uniquely determine the

values of the coefficients α and β. Thus Dj(p+ rj) and Ai(p) must be identical. �

Proof of Proposition 3.3

Case (i) is an immediate corollary of Proposition 3.2. The transition value r∗ is

calculated as the value of r for which d = 1 + r. Likewise, it is easy to verify that

the pure strategy equilibrium of Case (iii) is indeed an equilibrium. We can thus

focus on Case (ii). An equilibrium candidate is constructed in a similar way as in

the proof of Proposition 3.2: we still assume the existence of an aggressive and a

defensive strategy whose respective supports differ by a shift by r. But in addition

we make the restriction that d = 1+r and allow for an atom of size q0 = 1−qA−qD

in 1 + r. Here, qA and qD denote the probabilities of attacking and defending.10

10For convenience we drop the indices i and j throughout the proof. The analogous system of

equations with possibly asymmetric payoffs and probabilities has the same symmetric equilibrium

as its only solution which is a Nash equilibrium.
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Analogously to (3.2) and (3.3) we now get

π = 1− qA (C.13)

for p = 1 + r,

π = (p− r)(1− qAA(p− r)) (C.14)

for p ∈ [d, d),

π = p− r + p(1− qA − qdD(p+ r)) (C.15)

and for p ∈ [a, a]. Solving (C.14) and (C.15) for A and D and using (C.13) to

eliminate π we get

D(p) =
1

qD

(
1− qA − 1− qA − p+ 2r

p− r

)
and

A(p) =
1

qA

(
1− 1− qA

p

)
.

Calculating the values where these functions become 0 or 1 yields the boundaries

a = 1, a = 1− qA,

d =
r(1− qA − qD) + 1− qA + 2r

2− qA − qD
, d =

1− qA + 3r − rqA

2− qA
.

Solving the system of equations a + r = d and a + r = d yields the equilibrium

values of qA, qD and (through (C.13)) of π. It is straightforward to verify that these

strategies are well-defined and that they interpolate between the strategies of Cases

(i) and (iii). By construction, all prices in the support of the equilibrium strategy

lead to the same payoff (given that the opponent plays his equilibrium strategy).

Thus, to complete the proof it remains to be shown that prices outside the supports

of A and D are dominated. Clearly, deviating to prices above d leads to zero demand

and is thus dominated. Playing prices between a and d attracts the same customers

as playing a price of d and is thus dominated. Likewise, deviating to a price slightly

(i.e., less than d− a) below a is dominated since it does not attract more customers

than playing a price of a. That deviating to even lower prices is dominated can be

seen with an argument parallel to the one in the proof of Proposition 3.2. Likewise,

the same argument as in the proof of Proposition 3.2 can be applied to show that

D(p+ r) = A(p). �

Proof of Lemma 3.1

First we prove that no firm charges negative prices in equilibrium.
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Step (i). When only one firm charges possibly negative prices, this firm yields a loss

when it plays such a negative price since at least the customer which get no rebate

from the other firm buy from this firm. This cannot be optimal since zero profits

can always be guaranteed.

Step (ii). When two firms possibly charge negative prices, customers will buy for

sure when at least one firm indeed charges a negative price. Hence, at least one

firm will sell a positive amount with positive probability when it charges a negative

price. This firm’s expected profit from charging this price is therefore negative. This

cannot be optimal since zero profits can always be guaranteed.

Next, we prove that a firm which offers a rebate charges prices well above zero.

Suppose firm 1 offers a rebate r1 > 0. From before we know that firm 2 will not

charge negative prices. Hence, when firm 1 charges prices ∈ [0, r1) at least the

customers in its home base buy from it. Firm 1’s expected profit increases when it

gets more likely that also other customers buy from it. Suppose that also the other

customers buy with probability 1. Then

π1(p1) = (p1 − r1)m1X(p1 − r1) + p1m2X(p1).

We denote the total mass of customers by

m := m0 +m1 +m2.

As X is non-increasing and m¬1 = m−m1, we have

π1(p1) ≤ (p1 − r1)m1X(p1 − r1) + p1(m−m1)X(p1 − r1)

= ((p1 − r1)m1 + p1(m−m1))X(p1 − r1)

for all p1 ≥ 0. Hence, for all p1 ∈ (−∞, r1m1/m) we must have π1(p1) < 0. These

prices are clearly dominated. �

Proof of Proposition 3.5

Suppose firm 1 offers a rebate. From Lemma 3.1 we know that then p1 ≥ r1m1/m,

where m := m0 +m1 +m2.

Case 1: firm 2 offers no rebates. Firm 2 can set p2 ↗ r1m1/m. Then all customers

who do not get a rebate from firm 1 will buy from firm 2, when they buy. When

161



they buy, firm 2 yields a nontrivial profit. When they do not buy for this price,

firm 2 can lower the price so that it sells a positive amount and yields a nontrivial

positive profit.

Case 2: firm 2 offers a rebate. When firm 2 sets the price p2 ↗ r1m1/m+ r2 it gets

all customers in its home base, when they buy at all.

For both cases we have shown that there exists a lower bound on firm 2’s expected

profit which is well above zero. Call this lower bound π2. Next we have to prove

that also firm 1 earns an expected profit well above zero. Since for p2 near zero

firm 2’s expected profit is below π2, firm 2 must charge prices well above zero in

equilibrium. This enables firm 1 to yield a nontrivial positive profit. The arguments

correspond to the ones of Case 2 above. �

Proof of Lemma 3.2

First, note that when εx,p > 1 then the revenue R(p) = pX(p) is decreasing in p.

Hence, conditional on the customers from firm i’s home base buying from firm j,

firm j’s profit from this customer segment is decreasing in the net price when the

net price exceeds p̂. Moreover, the probability that customers from firm i’s home

base buy from firm j is weakly decreasing in pj for every price setting strategy of

firm i. We next have to distinguish two cases. Suppose that firm j sets a price

p̌ > p̂+ rj.

Case 1: the expected profit of firm j is positive for p̌. The price p̌ is dominated by

the price p̂+ rj because then (i) the profit from selling to each customer segment is

positive for p̌ and for p̂ + rj, (ii) from the arguments before we know that setting

p̂ + rj instead of p̌ leads to a weakly higher probability that customers buy and to

higher revenues and profits, conditional that customers buy from firm j.

Case 2: the expected profit of firm j is non-positive for p̌. From Proposition 3.5 we

know that there are prices so that that the firm yields a positive expected profit.

Hence, playing gross prices exceeding p̂+ rj is dominated. �

Proof of Proposition 3.6

Denote our game by G. Recall that we assumed monopoly payoffs and thus

162



monopoly prices to be bounded. Denote by G′ the modified game in which firms

pricing strategies are restricted to lie in [0, uj] where uj = p̂ + max{ri, rj}. From

Lemmas 3.1 and 3.2 we know that playing prices outside [0, uj] is strictly dominated

in G. Thus any Nash equilibrium of G′ is also a Nash equilibrium of G. Define the

set S∗ by

S∗ = [0, u1]× [0, u2] \ {(s1, s2|s1 + r1 = s2 or s2 + r2 = s1)}.

S∗ lies dense in the set of actions [0, u1]× [0, u2]. Furthermore, payoffs are bounded

and continuous in S∗. Thus by Simon and Zame (1990, p. 864), there exists a

tie-breaking rule in G′ for which a Nash equilibrium exists. Now observe that tie-

breaking occurs in any equilibrium with probability 0: suppose that tie-breaking

occurs with positive probability. This can only be due to both firms setting atoms

in a way that a tie occurs (i.e., at distance r1 or r2). By Proposition 3.5, the supports

of both players’ equilibrium strategies must be bounded away from 0. Hence at least

one firm has an incentive to slightly shift its atom downwards. Thus we can conclude

that G′ has a Nash equilibrium for any tie-breaking rule. This Nash equilibrium is

also a Nash equilibrium of G. �

Proof of Proposition 3.7

We first show that the prices pi = pM +ri and pj = pM +rj form a Nash equilibrium

for sufficiently large ri and rj. Since these strategies imply that each firm earns

monopoly profits from its market segment, a deviation can only be profitable if it

attracts additional customers from the other firm’s segment. Thus it is sufficient

to consider deviations to prices p ∈ [0, pM ]. Suppose that ri is sufficiently large so

that pM − ri < 0. Then firm i′s profit from deviating to a price p ∈ [0, pM ] can be

bounded from above as follows:

mi (p− ri)X(p− ri) +mj pX(p) < mi (pM − ri)X(pM) +mj p
MX(pM),

since X(pM) ≤ X(p− ri) and since pX(p) ≤ pMX(pM). If ri is sufficiently large the

upper bound becomes negative so that deviations cannot be profitable.

So far we have shown that for sufficiently high rebates there exists an equilibrium

where both firms earn monopoly profits in their market segment. Now we show

that this has to be true in any equilibrium. From Lemma 3.1 we know that no firm

will charge negative prices. From before we know that for sufficiently high rebates

a firm yields a loss if it charges a price p ∈ [0, pM ]. Therefore, p1, p2 > pM in any
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equilibrium. Hence, by charging a price of pM + ri firm i can guarantee a profit of

at least mip
MX(pM). Therefore, in equilibrium the expected profit of firm i must

be at least mip
MX(pM). This hold for both firms. Therefore, in an equilibrium the

sum of both firms expected profits is at least (m1 +m2)pMX(pM). By the definition

of the monopoly profit the maximum sum of profits is (m1 +m2)pMX(pM). All this

is compatible only if firm 1 earns an expected profit of m1p
MX(pM) and firm 2 of

m2p
MX(pM). That is, there can only be equilibria in which firms yield expected

profits equal to the monopoly profits in their market segment.

Next, we prove the final part of the proposition which considers the case where

m0,m1,m2 > 0 and where a choke price exists. The proof is similar as the part

before and is therefore only sketched. First, when rebates are sufficiently high a

firm yields a loss when it charges a price below the choke price. Second, therefore

in equilibrium the prices are above the choke price. Third, this implies that in

equilibrium customers without rebate opportunities do not buy. Fourth, therefore

customers without rebate opportunities can be ignored and the proof for the case

m0 = 0 applies. �

D Appendix to Chapter 4

D.1 Concavity Results for First and Second Order Statistics

In this appendix we develop a number of conditions that guarantee the strict concav-

ity of sequences of expected first and second order statistics and related expressions.

Throughout denote by Xk:n the kth order statistic, i.e., the kth largest of n non-

negative, independent, identically distributed random variables Xi with distribution

function F . Unless otherwise noted, we assume that E[Xi] <∞. Due to

E[Xk:n] < nE[X1]

the last condition immediately implies that E[Xk:n] <∞ for all k. Assume through-

out this section that F has a density f . For notational convenience, we assume ad-

ditionally that F has full support on [0,∞). Yet the generalization to distributions

with an interval support poses no difficulties.
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First Order Statistics

Our first results deal with first order statistics (and hence with welfare maximiza-

tion):

Proposition D.1. (i) The sequence E[X1:n] is strictly concave in n.

(ii) For any c with F (c) ∈ (0, 1) the sequence

E[max(X1:n, c)]

is strictly concave in n.

(iii) For any c with F (c) ∈ (0, 1) the sequence

E[X1:n1{X1:n>c}]

is strictly concave in n.

Part (i) is an elementary result which is proved mainly for expository reasons here.

Note that Part (ii) of the proposition is an immediate consequence of Part (i) since

by

E[max(X1:n, c)] = E[max
i

max(Xi, c)]

the expressions E[max(X1:n, c)] are first order statistics of the distribution G where

G differs from F in concentrating the mass F puts on [0, c] in an atom on c. Likewise,

Part (iii) is an immediate consequence of Part (i) since the sequence

E[X1:n1{X1:n>c}]

is a sequence of first order statistics from a distribution which differs from F in

concentrating all mass that F puts on [0, c] on an atom in 0. Hence we found

that sequences of expected first order statistics are easy to handle: Given that the

underlying distribution has finite mean, the sequence is concave.

IFTR, UIFTR and Second Order Statistics

For second order statistics matters are more complex. We show that the IFTR

condition we introduced and discussed in Section 4.2.1 is a mild but sharp condition
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for concavity of second order statistics. Recall that F is IFTR (Increasing Failure-

out-of-Two Rate) iff the rate
f(x)

(1− F (x))2

is increasing in x. If in addition this rate grows unboundedly we say that F is

UIFTR. The UIFTR property is needed to guarantee that in addition to concavity

the increments of the sequence of second order statistics go to zero.

To put the IFTR property into perspective, let us briefly recall a well-known result

from reliability theory, see e.g. Barlow and Proschan (1981): Consider the expected

difference between the first two order statistics E[X1:n−X2:n]. For a distribution F

with positive density f , it holds that

E[X1:n −X2:n] = E

[
1− F (X1:n)

f(X1:n)

]
. (D.1)

As the sequence X1:n is stochastically increasing, the monotonicity behavior of the

failure rate f/(1 − F ) is crucial: If the failure rate is increasing (i.e., if F is IFR),

E[X1:n −X2:n] is decreasing. Conversely, if F is DFR, E[X1:n −X2:n] is increasing.

Our main interest is in the monotonicity behavior of E[X2:n+1−X2:n] and our central

observation is that a similar approach is possible. As noted above, it holds that

E[X2:n+1 −X2:n] = E

[
(1− F (X1:n))2

f(X1:n)

]
.

From this it is easy to see that assuming IFTR guarantees the concavity of the se-

quence E[X2:n]. Note finally that since 1/(1−F ) is increasing, IFTR is considerably

weaker than IFR.

In particular, all distributions which are IFR (such as the exponential and the uni-

form distribution) are also IFTR and UIFTR. Moreover, UIFTR is strictly stronger

than IFTR, but strictly weaker than IFR: The distribution

F (x) = 1− e2−2
√

1+x

is DFR but satisfies UIFTR (and hence also IFTR). The distribution

F (x) =
x− log(1 + x)

1 + x− log(1 + x)

is DFR and satisfies IFTR, but not UIFTR as

f(x)

(1− F (x))2
= 1− 1

1 + x

is increasing, but bounded.
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Proposition D.2. If F is IFTR, the sequence E[X2:n] is strictly concave in n ≥ 2.

If furthermore F is UIFTR, then E[X2:n+1]−E[X2:n] converges to zero as n becomes

large.

Conversely, if f/(1 − F )2 is (weakly) decreasing, the sequence E[X2:n] is (weakly)

convex in n. For example, for the distribution F (x) = 1 − 1/(1 + x), for which

f/(1 − F )2 = 1, it holds that E[X2:n] = n − 1. For the distributions F (x) =

1 − 1/(1 + x)ρ with ρ ∈ (1
2
, 1), the sequence of second order statistics is strictly

convex (and E[X2:n] < ∞ for all n). At first sight, this seems to contradict the

result that the first order statistics form a strictly concave sequence, since E[X1:n]

and E[X2:n] converge to the same limit as n → ∞ and as E[X2:n] < E[X1:n]:

Would the second order statistics not have to get ahead of the first order statistics

from some point on? The solution to this apparent contradiction is that in these

examples E[X1:n] = ∞ for all n: If f/(1 − F )2 is weakly increasing, the second

order statistics are weakly convex, implying that from some n on E[X1:n] must be

infinite. From this we can conclude, however, that E[X1] =∞ (otherwise all order

statistics would be finite). Thus E[X1:n] =∞ for all n since E[X1:n] > E[X1] for all

n. This demonstrates the well-known but puzzling fact that for some distributions

E[X2:n] <∞ for all n > 1 while E[X] =∞.

Next we give a result along the lines of the later parts of Proposition D.1 for second

order statistics. It turns out that we generally do not get global concavity under

IFTR. Yet the sequences are concave from a threshold on.

Proposition D.3. (i) If F is IFTR, for all c with c > 0 there is a finite n0 ∈ N
such that the sequence

qn = E[max(c,X2:n)]

is strictly convex in n ≥ 2 until n0 and strictly concave from then on.

(ii) If F is IFTR, for any c > 0 there is a finite n0 ∈ N such that the sequence

qn = E[X2:n1{X2:n>c}] is strictly concave in n for n ≥ n0.

(iii) If F is IFTR, for any c > 0 there is a finite n0 ∈ N such that the sequence

qn = E[c 1{X1:k≥c∧X2:k≤c} +X2:k 1{X2:k>c}] is strictly concave in n for n ≥ n0.

(iv) For the sequences qk considered in (i), (ii) and (iii), the increments qn+1 − qn
converge to zero as n goes to infinity provided that F is UIFTR.
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Of course, the constant n0 depends both on F and on c. Since the sequence

E[max(c,X2:n)] is first convex and then concave, n0 is the point where the dis-

crete second derivative of the sequence becomes negative. From the proof one sees

that the discrete second derivative is given by

E[(max(c,X2:n+1)−max(c,X2:n))− (max(c,X2:n)−max(c,X2:n−1))]

=

∫ ∞
c

n

(
F (x)− n− 1

n

)
(1− F (x))2F (x)n−2dx (D.2)

which is straightforward to calculate for concrete choices of F , c and n. A similar

criterion can be given for the latter part of the proposition.11 For many natural

distributions and moderate values of c, the sequences are concave from the start or

from a moderate value n0 on. Under c = E[X], for the exponential distribution, the

smallest n where (D.2) becomes negative is n = 3, for the uniform distribution, it

is n = 2.

The proof of Proposition D.3 relies on the following lemma:

Lemma D.1. Let Xn:n be the lowest order statistic of the independent random

variables Xi with distribution F , density f and support [0,∞). Then for any c > 0

the sequence

E[Xn:n1{Xn:n<c}]

is either decreasing, or increasing until some n0 and decreasing onwards.

For our auction where bidders hold preliminary information, we also need the fol-

lowing more specialized result:

Lemma D.2. Let X1, . . . , Xm, Y1, . . . , Ym be independent exponentially distributed

random variables. Then the sequence

pn = E[max(X1 + Y1, . . . , Xn + Yn, Xn+1 + 1, . . . , Xm + 1)]

is strictly concave in n (for 1 ≤ n ≤ m).

Dispersion

In order to study how allocations vary when moving from one distribution function

to another, more dispersed one we rely on results from the theory of stochastic

11In the proof, the sequence is decomposed into a sum of two sequences which are first convex

and then concave. If both sequences are concave for n > n0, their sum is also concave for n > n0.
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orders. Recall the definition of the excess wealth order discussed already in Section

4.2.3: The distribution function F is more dispersed in the excess wealth order than

the distribution function G if for all p ∈ (0, 1)∫ ∞
F−1(p)

1− F (x)dx ≥
∫ ∞
G−1(p)

1−G(x)dx.

For this we write F ≥EW G. The excess wealth order is also known as right spread

order. It is weaker than the well-known dispersive order, i.e., F ≥disp G implies

F ≥EW G.12

The following result is very much based on Proposition 3.4 of Li and Shaked (2004).

We only transfer it from spacings E[Xj+1:k−Xj:k] of order statistics to the increments

E[Xj:k+1−Xj:k] that interest us. Furthermore, we add the observation that F2:2 ≥EW

G2:2 implies F ≥EW G where as before F2:2 denotes the distribution of the minimum

of two F -distributed random variables.

Proposition D.4. Consider two distribution functions F and G with densities f

and g on R+. Denote by (Xi) and (Yi) collections of independent random variables

distributed, respectively, according to F and G.

(i) Assume F ≥EW G. Then for all k ≥ 1

E[X1:k+1 −X1:k] ≥ E[Y1:k+1 − Y1:k].

(ii) Assume F2:2 ≥EW G2:2. Then for all k ≥ 2

E[X2:k+1 −X2:k] ≥ E[Y2:k+1 − Y2:k].

(iii) F2:2 ≥EW G2:2 implies F ≥EW G.

It is also easy to show that F ≥disp G implies F2:2 ≥EW G2:2. One word on the

related literature seems in order. Paul and Gutierrez (2004) claim results based

on the star-order that would be well-suited for our purposes if they were correct:

As pointed out by Xu and Li (2008), the relevant Theorems 3 and 4 of Paul and

Gutierrez (2004), reproduced in Theorem 4.B.19 of Shaked and Shantikumar (2007)

are incorrect except for the case of first order statistics. Yet for first order statistics,

the results are weaker than the result for the excess wealth order from Shaked and

Li (2004) we apply here. A weaker alternative is Theorem 3.B.31 of Shaked and

Shantikumar (2007) which relies on the dispersive order.

12See Shaked and Shantikumar (2007), p.166.
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D.2 The Decision Problem

In this section we analyze the general decision problem which covers all the situations

of welfare and revenue maximization in the models we discussed. Denote by the

random variable K the number of bidders who are active in the respective auction

and know their valuation realization. Denote by pk the decision-maker’s revenue

conditional on K taking the value k. Note that this revenue either stands for welfare

or for the seller’s profits in the auction models. We call (pk)k the payoff sequence.

The decision-maker controls the probabilities γi. Setting a vector γ leads to costs of

c(γ) for the decision-maker where c is an increasing cost function.

The general optimization problem is hence given by

max
γ∈[0,1]n

π(γ)− c(γ)

where π(γ) is the expected value of pK given probabilities γ,

π(γ) = E[pK ] =
n∑
j=0

αk(γ)pk,

and αk(γ) is the probability that K takes the value k,

αk(γ) = Prob[K = k] =
∑

A⊆{1,...,n},|A|=k

∏
j∈A

γj
∏
l∈Ac

(1− γl).

Observe that, with an increasing payoff sequence pk, π is increasing in all γi.

Globally Concave Payoff Sequences

Let us for now assume that c is a quasi-concave, increasing, symmetric, continuous

function and that the payoff sequence (pk)k is strictly concave. The latter assumption

is relaxed in Section D.2.

Let us first deal with the expected revenue π and focus on the optimal choice of γi and

γj, while keeping the other γl fixed. We show that under the constraint γi + γj =

δ the expected gross revenue is maximized by the most asymmetric allocation of

probabilities:
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Proposition D.5. Assume that the sequence (pk)k is strictly concave. Fix γ3,...,

γn ∈ [0, 1] and δ ∈ (0, 2). Then the maximization problem

max
γ1,γ2∈[0,1]

π(γ1, . . . , γn) such that γ1 + γ2 = δ

is strictly solved by

{γ∗1 , γ∗2} = {bδc, δ − bδc}.

b·c denotes the Gaussian floor function, which maps δ to the largest integer weakly

smaller than δ, hence either to 0 or to 1 in our case. Thus the decision-maker splits

δ > 1 such that one γi is set to 1 while he splits δ < 1 such that one γi is set to

0. The intuition behind is as follows: Due to the concavity of the sequence (pk)k

the decision-maker prefers earning pk for sure over earning pk−1 or pk+1 with equal

probability. More accurately, keeping the sum of the γi fixed is equivalent to keeping

E[K] fixed. By Jensen’s inequality,

E[pK ] ≤ pE[K].

The inequality gets tighter when the randomness in K is reduced. Thus the decision-

maker optimally chooses the γi such that the randomness is minimized. This same

intuition also underlies our following results. We show that the decision-maker

optimally sets at most one γi to an intermediate value inside (0, 1).

Obviously, we can separate the decision-maker’s problem of maximizing net revenue

into first choosing the optimal allocation for each iso-cost set and then choosing the

optimal iso-cost set. As we are mostly interested in the structure of the optimal

allocation we will most of the time focus on the first of these two problems: We

analyze how the decision-maker optimally sets the γi given that he wants to spend

a fixed level of total costs.

Let us first introduce some more definitions: Define as Hs the feasible allocations

for which the γi sum up to s, i.e.,

Hs =

{
γ ∈ [0, 1]n

∣∣∣∣∣
n∑
i=1

γi = s

}
.

Note that Hs can also be characterized as the set of allocations γ which lead to

E[K] = s. Define as Ks those allocations in Hs where all but one γi are either zero

or one,

Ks = {γ ∈ Hs |γi ∈ (0, 1) and γj ∈ (0, 1)⇒ i = j } .
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We call Ks the maximally asymmetric allocations in Hs. Observe that for

γ ∈ Ks the gross revenue π takes the following simple form:

π(γ) = (s− bsc) pbsc+1 + (1− (s− bsc))pbsc for γ ∈ Ks. (D.3)

From Proposition D.5 we obtain the following corollary:

Corollary D.1. Assume that the sequence (pk)k is strictly concave. The maximally

asymmetric allocations Ks maximize gross revenue within Hs, i.e., for s ∈ (0, n)

γ∗ ∈ arg max
γ∈Hs

π(γ) ⇔ γ∗ ∈ Ks.

Our next result shows that a similar characterization of maximizers is possible for

the net revenue under quasi-concave costs. Define, for an increasing cost function

c, c as the minimal and c as the maximal costs arising from choosing a feasible

allocation, i.e.,

c = c(0, . . . , 0) and c = c(1, . . . , 1).

Define also the iso-cost curve cκ corresponding to a cost level of κ:

cκ = {γ ∈ [0, 1]n|c(γ) = κ}.

We obtain the following result:

Proposition D.6. Assume that the payoff sequence (pk)k is strictly concave. As-

sume that the cost function c : [0, 1]n → R+ is quasi-concave, strictly increasing,

continuous and symmetric. Then for any κ ∈ [c, c] there exists an s ∈ [0, n] such

that

γ∗ ∈ arg max
γ∈cκ

π(γ)− c(γ) ⇔ γ∗ ∈ Ks.

The assumption of quasi-concavity is fulfilled, e.g., by cost functions of the form

c(γ) = C

(
n∑
i=1

γi

)

where C : R+ → R+ is an increasing, continuous function.

Next we provide a simple criterion for comparing optimal allocations between two

payoff sequences. For this we impose a more rigid assumption on the cost function,
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i.e. that it is a strictly convex transformation of a linear cost function. We presume

the existence of an interior solution, i.e. that the decision-maker optimally gives out

γ ∈ Ks for some s ∈ (0, n). An interior solution comes out naturally when costs are

neither prohibitively high nor so low that the decision-maker optimally gives out all

information. From (D.3) it is easy to see that a sufficient condition for an interior

solution is given by C ′(0) < p1 − p0 and C ′(n) > pn − pn−1.

Proposition D.7. Consider two payoff sequences (pk)k and (qk)k. Assume that the

costs are given by

c(γ) = C
(∑n

i=1
γi

)
for a strictly increasing, strictly convex and continuously differentiable function C

with

C ′(0) < min(p1 − p0, q1 − q0) and C ′(n) > max(pn − pn−1, qn − qn−1).

Denote by πp and πq the decision-maker’s respective gross revenue under the se-

quences (pk)k and (qk)k. Then the decision-maker’s problem of maximizing, respec-

tively, πp(γ) − c(γ) and πq − c(γ) is solved by γp ∈ Ksp and γq ∈ Ksq which are

unique up to a relabeling of bidders with sp, sq ∈ (0, n). Moreover, if (pk − qk)k is

strictly increasing in k, then sp > sq.

Thus the proposition provides a clear condition under which one payoff sequence

leads to more release of advertising or information than another. Note that (pk−qk)k
being increasing in k is equivalent to (pk)k having larger increments than (qk)k since

pk − qk ≥ pk−1 − qk−1

is equivalent to

pk − pk−1 ≥ qk − qk−1.

Concavity from a Threshold on

So far we assumed that the payoff sequence (pk) is strictly concave. Yet we also

need results for cases where the sequence (pk) is concave only from some threshold

k∗ on. We hence introduce the following assumption:
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Assumption D.1. Assume (pk) is weakly increasing and there is a k∗ such that the

shifted sequence p̂j = pk∗+j is strictly concave for j ≥ 0.

Our first observation is useful but mathematically rather trivial: Assume that

γ1, ..., γl are fixed to take the value 1. The decision-maker only decides how to

optimally set γl+1, ..., γn. This corresponds to a shift in the sequence (pk) which

may remove the non-concavity:

Corollary D.2. Under Assumption D.1, assume that γ1 = · · · = γl = 1 for some l ≥
k∗ and that the seller sets γ̂ = (γl+1, . . . , γn) according to an increasing, continuous,

symmetric, and quasi-concave cost-function c(γ̂). Then for any κ ∈ [c, c] there exists

an s ∈ [0, n− l] such that

γ̂∗ ∈ arg max
γ̂∈cκ

π(γ̂)− c(γ̂) ⇔ γ̂∗ ∈ Ks

where the definitions of Ks and cκ are modified accordingly to account only for bidders

l + 1 to n.

Our next results show that, quite intuitively, under concavity from a threshold on,

sufficiently large sums of efforts s should be allocated maximally asymmetrically.

Corollary D.3 provides an explicit criterion for when an amount s is sufficiently

large.

Corollary D.3. Under Assumption D.1, assume there exists a weakly concave se-

quence (qk)k which weakly dominates (pk)k and which coincides with (pk)k for k ≥ l∗

for some n > l∗ > 0. Denote by πp and πq the expected gross payoff with respect to

the sequences (pk)k and (qk)k. Denote by κ∗ ∈ (c, c) the smallest level of costs for

which the allocation involves setting a sum of efforts greater than l∗, i.e.,

κ∗ = inf

{
κ ∈ [c, c]

∣∣∣∣∣
[
arg max

γ∈cκ
πq(γ)− c(γ)

]
∈ Ks for some s ≥ l∗

}
.

Then for any κ ∈ [κ∗, c], there exists an s ∈ [l∗, n] such that

γ∗ ∈ arg max
γ∈cκ

π(γ)− c(γ) ⇔ γ∗ ∈ Ks.

Note that from Proposition D.6 and from the monotonicity of c it follows that κ∗

is a well-defined cost-level inside the interval (c, c). Lemma D.3 shows that the

criterion from Corollary D.3 for an effort sum s to be sufficiently large is widely

applicable: A sequence (qk)k as postulated in the corollary is constructible provided

a mild additional condition holds and provided n is sufficiently large.
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Lemma D.3. Let (pk)k be an (infinite) sequence in R which is weakly increasing and

for which there is a k∗ such that the shifted sequence p̂j = pk∗+j is strictly concave

for j ≥ 0. Assume in addition that the increments of (pk)k go to zero as k becomes

large, i.e.,

lim
k→∞

pk+1 − pk = 0.

Then there exists a number l∗ and a weakly concave sequence (qk)k for which qk ≥ pk

for all k ≥ 0 and for which qj = pj for all j ≥ l∗.

D.3 Proofs

Proof of Proposition 4.1

By Proposition D.2 in Appendix D.1, the sequence p1, p2, . . . is strictly concave under

IFTR. Thus by Corollary D.2 in Appendix D.2 maximally asymmetric allocations

are optimal if at least one bidder is present anyway. This proves (i). Under UIFTR,

by Proposition D.2 the increments of (pk) converge to zero. Thus by Lemma D.3

it is possible to construct a concave sequence which is weakly greater than (pk)

and coincides with (pk) from some point on. Thus we can apply Corollary D.3 and

conclude that sufficiently large amounts of advertising should be allocated maximally

asymmetrically. This proves (ii). �

Proof of Proposition 4.2

By Proposition D.1, the sequence q0, q1, . . . is strictly concave. Thus by Proposition

D.6 maximally asymmetric allocations are optimal. �

Proof of Proposition 4.3

Recall from (D.1) that E[v1:k − v2:k] is monotonically decreasing under IFR and

monotonically increasing under DFR. Thus one can apply Proposition D.7 and con-

clude that under IFR the welfare-optimal allocation under qk = E[v1:k] involves less

informational effort than the revenue-optimal allocation under pk = E[v2:k]. Under

DFR, the opposite is true. �

Proof of Proposition 4.4

By Proposition D.4 the increments of both (pk) and (qk) are larger for F than for G

under the given assumptions on F and G. Thus Proposition D.7 (applied separately

to revenue- and to welfare-maximization) shows that a higher advertising level is

chosen under F than under G. �
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Proof of Proposition 4.5

By Proposition D.3 (iii) in Appendix D.1, the sequence (pk) is strictly concave

from some k∗ on under IFTR. Thus by Corollary D.2 in Appendix D.2 maximally

asymmetric allocations are optimal if at least k∗ bidders are present. Under UIFTR,

by Proposition D.3 (iv) the increments of (pk) converge to zero. Thus by Lemma

D.3 it is possible to construct a concave sequence which is weakly greater than (pk)

and which coincides with (pk) from some point on. Hence we can apply Corollary

D.3 and conclude that sufficiently large amounts of advertising should be allocated

maximally asymmetrically. �

Proof of Proposition 4.6

The proof is the same as that of Proposition 4.5, except that in the first step we

apply Proposition D.3 (i) instead of D.3 (iii). �

Proof of Proposition D.1

Recall13 that X1:n has distribution function F1:n(x) = F (x)n and that we can thus

write

E[X1:n] =

∫ ∞
0

1− F (x)ndx. (D.4)

In order to prove Part (i), we have to show that the sequence d(n) defined by

d(n) = E[X1:n+1]− E[X1:n]

is strictly decreasing in n. By (D.4) we can conclude that

d(n) =

∫ ∞
0

F (x)n(1− F (x))dx.

Since the integrand is strictly decreasing in n over the support of F (and constant

outside the support) and since we assumed that F is non-degenerate, d(n) is strictly

decreasing in n. This proves Part (i). How to conclude Parts (ii) and (iii) from Part

(i) is indicated in the text below the statement of the proposition. �

Proof of Proposition D.2

Note that X2:n has distribution function

F2:n(x) = F (x)n−1(F (x) + n(1− F (x))) = nF (x)n−1 − (n− 1)F (x)n.

13The formulae for the distribution functions and densities of order statistics used in this and

the following proofs can be found, e.g., in David (1970).
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Analogously to the proof of Proposition D.1, we write

E[X2:n] =

∫ ∞
0

1− F2:n(x)dx =

∫ ∞
0

1− nF (x)n−1 + (n− 1)F (x)ndx

and define

d(n) = E[X2:n+1 −X2:n] =

∫ ∞
0

nF (x)n−1 − 2nF (x)n + nF (x)n+1dx

=

∫ ∞
0

nF (x)n−1(1− F (x))2dx.

To show that E[X2:n] is strictly concave, we have to prove that d(n) is strictly

decreasing or, equivalently, that dd(n) given by

dd(n) = d(n)− d(n− 1) =

∫ ∞
0

n(1− F (x))2F (x)n−2

(
F (x)− n− 1

n

)
dx

is negative.

To make use of our assumption that f/(1 − F )2 is strictly increasing we first need

to make a number of observations: Recall that X1:n has density nF (x)n−1f(x) and

that since this is a probability density it holds that

1 =

∫ ∞
0

nF (x)n−1f(x)dx.

Subtracting from this identity the same identity with n− 1 instead of n one obtains

0 =

∫ ∞
0

nF (x)n−1f(x)− (n− 1)F (x)n−2f(x)dx

=

∫ ∞
0

nF (x)n−2

(
F (x)− n− 1

n

)
f(x)dx. (D.5)

Now note that the integrand in our expression for dd(n) is negative for x < F−1(n−1
n

)

and positive for x > F−1(n−1
n

). Thus, if for some strictly increasing, positive function

h(x) it holds that∫ ∞
0

nF (x)n−2

(
F (x)− n− 1

n

)
(1− F (x))2h(x)dx ≤ 0, (D.6)

this implies dd(n) < 0. Now set h(x) = f(x)/(1−F (x))2 and observe that with this

choice of h the left hand side of (D.6) equals the right hand side of (D.5) and thus

equals 0. Hence we have shown that, under our assumptions, dd(n) < 0. That d(n)

converges to zero in n provided that f(x)/(1−F (x))2 goes to infinity as x gets large

follows as the special case c = 0 from Part (iv) of Proposition D.3. �
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Proof of Proposition D.3

(i) Note first that

E[max(c,X2:n)] = c+ E[max(0, X2:n − c)]

= c+

∫ ∞
c

(x− c)f2:n(x)dx = c+

∫ ∞
c

1− F2:n(x)dx,

where f2:n and F2:n denote the density and the distribution function of X2:n. The

last equality holds as for any distribution function G with density g on [0,∞), for

all c ≥ 0: ∫ ∞
c

(x− c)g(x)dx =

∫ ∞
c

1−G(x)dx. (D.7)

For c = 0 this identity is well-known. In order to verify it for c > 0, note that both

sides of the equation have the same (bounded) derivative G(c) − 1 with respect to

c.

Thus it holds that (completely analogous to the corresponding quantities in the

proof of Proposition D.2)

d(n) = E[max(c,X2:n+1)]− E[max(c,X2:n)] =

∫ ∞
c

nF (x)n−1(1− F (x))2dx

and

dd(n) = d(n)− d(n− 1) =

∫ ∞
c

n(1− F (x))2F (x)n−2

(
F (x)− n− 1

n

)
dx.

To complete the proof we have to show that, under the assumptions made, d(n) is

either decreasing for all n or that there is an n0 such that d(n) is increasing until

n0 and decreasing from there on.

Define h(x) = (1−F (x))2

f(x)
. Note that by the definition of f1:n one can rewrite d(n) to

d(n) =

∫ ∞
c

h(x)f1:n(x)dx = E
[
h(X1:n)1{X1:n>c}

]
.

Now define the random variables Yi = h(Xi) and the constant a = h(c). Since h is

strictly decreasing by assumption, one can conclude that Yn:n = h(X1:n). Thus

d(n) = E
[
Yn:n1{Yn:n<a}

]
.

Now apply Lemma D.1 to d(n) and conclude that d(n) is either decreasing, or it

switches once from being increasing to being decreasing.
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(ii) We show that the increments d̃ of the sequence E
[
X2:n1{X2:n>c}

]
can be written

as the sum of the sequence d from (i) and an easy to analyze sequence as follows:

E
[
X2:n1{X2:n>c}

]
= E

[
(X2:n − c)1{X2:n>c}

]
+ cE

[
1{X2:n>c}

]
(D.8)

= E
[
(X2:n − c)1{X2:n>c}

]
+ c (1− F2:n(c)).

Hence by the proof of (i) and by the definition of F2:n,

d̃(n) = E
[
X2:n+11{X2:n+1>c}

]
− E

[
X2:n1{X2:n>c}

]
= d(n) + c (F2:n(c)− F2:n+1(c)).

Since d(n) is decreasing in n for large enough n, it is sufficient to show that (F2:n(c)−
F2:n+1(c)) is decreasing for sufficiently large n as well. Indeed,

F2:n(c)− F2:n+1(c) = nF (c)n−1(1− F (c))2

is decreasing in n for sufficiently large n. Hence we are done.

(iii) Note that with (D.8) one can rewrite our sequence of interest as follows:

E[X2:n 1{X2:n>c} + c 1{X1:n≥c∧X2:n≤c}]

= E
[
(X2:n − c)1{X2:n>c}

]
+ cE

[
1{X2:n>c}

]
+ cE

[
1{X1:n≥c∧X2:n≤c}

]
= E

[
(X2:n − c)1{X2:n>c}

]
+ cE

[
1{X1:n≥c}

]
. (D.9)

That the first summand becomes concave for sufficiently large n was shown in (i).

Thus we only have to consider the second summand

cE
[
1{X1:n≥c}

]
= c(1− F (c)n).

As this is a strictly concave sequence, we are done.

(iv) Consider the sequence d(n) from Part (i) of the proof:

d(n) = E
[
Yn:n1{Yn:n<a}

]
≤ E [Yn:n] .

By assumption Yi = h(Xi) where h = (1 − F )2/f . Under our assumption that

f/(1 − F )2 goes to infinity, the Yi are continuously distributed random variables

whose support goes down to zero. Thus the expected lowest order statistic E [Yn:n]

must converge to zero as n gets large. This proves our claim for the sequence from

Part (i). Looking at the proofs from (ii) and (iii) the results for those sequences

follow easily (because the increments can be decomposed into d(n) from (i) and a

term which always converges to zero). �
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Proof of Lemma D.1

We have to show that the sequence

E[Xn:n1{Xn:n<c}]

is decreasing for sufficiently large n and that it switches from increasing to decreasing

at most once. Recall that the distribution function of Xn:n is given by

Fn:n(x) = 1− (1− F (x))n.

Note furthermore that

E[Xn:n1{Xn:n<c}] =

∫ c

0

xfn:n(x)dx

=

∫ c

0

Fn:n(c)− Fn:n(x)dx

=

∫ c

0

(1− F (x))n − (1− F (c))ndx

where the middle step can easily be checked using integration by parts. Define the

increment d(n) by

d(n) = E[Xn+1:n+11{Xn+1:n+1<c}]− E[Xn:n1{Xn:n<c}]

=

∫ c

0

F (c)(1− F (c))n − F (x)(1− F (x))ndx.

We first show that d(n) switches signs at most once: Assume that

0 ≥ d(n) =

∫ c

0

F (c)(1− F (c))n − F (x)(1− F (x))ndx. (D.10)

Note that (D.10) implies∫ c

0

F (c)(1− F (c))n+1 − F (x)(1− F (x))n(1− F (c)) dx ≤ 0. (D.11)

Since x ≤ c, 1 − F (c) ≤ 1 − F (x). Thus the integral in (D.11) is made only more

negative by substituting the factor 1− F (c) in the second term of the integrand by

1− F (x). Yet this is equivalent to

d(n+ 1) =

∫ c

0

F (c)(1− F (c))n+1 − F (x)(1− F (x))n+1dx ≤ 0. (D.12)

Hence we have seen than d(n) ≤ 0 implies d(n + 1) ≤ 0. Completely analogously

one can show that d(n + 1) ≥ 0 implies d(n) ≥ 0. Hence d(n) switches its sign at

most once and if it does, then from positive to negative.
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To show that the sequence E[Xn:n1{Xn:n<c}] is decreasing from some n0 on one has

to prove that d(n) becomes negative for sufficiently large n. As a preliminary ob-

servation, note that for any positive real numbers x1, x2, y1 and y2 with 0 < y1 < y2

there exists an n0 such that

x1y
n
1 − x2y

n
2 < 0 for n > n0. (D.13)

This holds because (D.13) is equivalent to

x1

x2

(
y1

y2

)n
< 1,

which holds for sufficiently large n since the left hand side converges to 0.

Now note that one can bound d(n) by

d(n) = cF (c)(1− F (c))n −
∫ c

0

F (x)(1− F (x))ndx

< cF (c)(1− F (c))n −
∫ c

2

c
3

F (x)(1− F (x))ndx

< cF (c)(1− F (c))n − c

6
F
( c

3

)(
1− F

( c
2

))n
. (D.14)

Applying (D.13) to the final expression in (D.14) one can conclude that d(n) < 0

for n sufficiently large. This completes the proof. �

Proof of Lemma D.2

We have to show that the sequence

pn = E[max(X1 + Y1, . . . , Xn + Yn, Xn+1 + 1, . . . , Xm + 1)]

is strictly concave. Denote by G(x) the distribution function of Xi + 1 and by H(x)

the distribution function of Xi + Yi. Note that by the properties of the exponential

distribution (see, e.g., Feller (1971)) it holds that

G(x) = (1− e−x+1)1{x≥1} and H(x) = 1− (1 + x)e−x.

Note furthermore that max(X1 + Y1, . . . , Xn + Yn, Xn+1 + 1, . . . , Xm + 1) has distri-

bution function HnGm−n and thus

pn =

∫ ∞
0

1−H(x)nG(x)m−ndx.
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To prove the lemma we have to show that the second increment of pn

dd(n) = pn+1 − 2pn + pn−1

is negative for 1 ≤ n ≤ m− 1. Note that, for 0 ≤ n ≤ m− 1,

pn = 1 +

∫ ∞
1

1−H(x)nG(x)m−ndx.

Thus it is straightforward to calculate, using the definitions of G and H, that for

1 ≤ n ≤ m− 2

dd(n) =

∫ ∞
1

−(1− e1−x)
n−k

(1− e+ x)2 (1− e−x(1 + x))
k

(ex − e) (ex − 1− x)
dx.

Since the integrand is negative for any x > 0, it follows that dd(n) < 0 for 1 ≤ n ≤
m − 2. We now turn to d(m − 1). Plugging in the definitions of H and G, it is

straightforward to calculate (taking into account that G ≡ 0 on [0, 1]) that

dd(m− 1) =

∫ 1

0

−e−nx(ex − 1− x)ndx+

∫ ∞
1

−e−nx(ex − 1− x)n−2(1− e+ x)2dx.

Since both integrands are negative, we conclude that dd(m − 1) < 0. Thus the

sequence p1, . . . , pm is strictly concave. �

Proof of Proposition D.4

Proposition 3.4 of Li and Shaked (2004) yields that under the assumptions of (i),

for k ≥ 2,

E[X1:k −X2:k] ≥ E[Y1:k − Y2:k]

and that under the assumptions of (ii), for k ≥ 3,

E[X2:k −X3:k] ≥ E[Y2:k − Y3:k].

Applying the recurrence relations

kE[X1:k −X1:k−1] = E[X1:k −X2:k]

and
k

2
E[X2:k −X2:k−1] = E[X2:k −X3:k]

(which follow easily from the relations given on p. 45 of David (1970), or by direct

calculation) immediately allows to conclude (i) and (ii). We thus turn to (iii). As
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shown in the proof of Proposition 3.4 of Li and Shaked (2004),14 F2:2 ≥EW G2:2 is

equivalent to ∫ 1

p

(1− u)2d[F−1(u)−G−1(u)] ≥ 0

for all p ∈ (0, 1). By Lemma 7.1(a) of Chapter 4 of Barlow and Proschan (1981),

this implies ∫ 1

p

(1− u)d[F−1(u)−G−1(u)] ≥ 0

for all p ∈ (0, 1). This is however equivalent to F ≥EW G as shown by Li and Shaked

in the proof of their Proposition 3.4. �

Proof of Proposition D.5

For j = 0, . . . , n−2 denote by βj the probability that exactly j bidders out of bidders

3, ..., n know their valuation and take part in the auction. Let (p̂m)m=0,1,2 be the

expected gross revenue given that exactly m of bidders 1 and 2 know their valuation

and take part in the auction. Since pk is the expected gross revenue conditional on

that k bidders out of bidders 1, ..., n know their valuation and take part, we can

express p̂m as

p̂m =
n−2∑
j=0

βjpj+m.

Since the sequence (pk) is strictly concave, the sequence (p̂m) of weighted averages

is also strictly concave. Via (p̂m) we can express the expected gross revenue as an

expectation over the number of bidders among 1 and 2 who know their valuation

and take part:

max
γ1

γ1(δ − γ1)p̂2 + [γ1(1− (δ − γ1)) + (1− γ1)(δ − γ1)]p̂1 + (1− γ1)(1− (δ − γ1))p̂0

s.t. γ1 ∈ [0, 1], δ − γ1 ∈ [0, 1].

For notational convenience we do not reiterate the constraints on γ1 in the following.

The optimization problem is not changed if we subtract p̂0 and divide by p̂2 − p̂0.

This (and simplifying) yields

max
γ1

γ1δ − γ2
1 + [δ − 2δγ1 + 2γ2

1 ]
p̂1 − p̂0

p̂2 − p̂0

The strict concavity guarantees that 2(p̂1 − p̂0) > p̂2 − p̂0. Hence we can define a

positive constant ε via

ε =
p̂1 − p̂0

p̂2 − p̂0

− 1

2
> 0.

14Note that Li and Shaked denote our “Xk:n” by “X(n−k)”.
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After inserting 1
2
+ε for (p̂1− p̂0)/(p̂2− p̂0) and simplifying, the optimization problem

becomes

max
γ1
−2ε γ1(δ − γ1) +

δ

2
+ εδ.

Hence the objective function has a unique minimum at the even split-up γ1 = δ
2

and

is symmetric around it. It is thus strictly optimal to choose γ1 as far away from δ
2

as possible. Since we have to ensure γ1 ∈ [0, 1] and δ − γ1 ∈ [0, 1] this yields

{γ∗1 , γ∗2} = {bδc, δ − bδc}.

�

Proof of Corollary D.1

Note that by Proposition D.5, any γ with, for i 6= j, 0 < γi, γj < 1 can be strictly

improved either by setting γi = 0 or γi = 1 and adjusting γj accordingly. Thus

only allocations where at most one intermediate γi ∈ (0, 1) is chosen are candidates

for optimal allocations. Since all such allocations are identical up to relabeling of

bidders, and since all other allocations are strictly dominated, the corollary follows.

�

Proof of Proposition D.6

Define the function s : [0, 1]n → R by

s(γ) =
n∑
i=1

γi

Note that trivially for any γ ∈ [0, 1]n it holds that γ ∈ Hs(γ).

We have to show the following: Assume that for some fixed κ there is a γ0 with

c(γ0) = κ. Then γ0 maximizes revenues among all γ with c(γ) = κ if and only if

γ ∈ Ks(γ).

As a preliminary observation, note that, by the assumption that c is continuous and

strictly increasing, it holds that for any κ ∈ [c, c] there is as an s ∈ [0, n] and a

γ ∈ Ks such that c(γ) = κ. Note furthermore that for γ ∈ Ks and γ′ ∈ Ks′ with

s < s′ it holds that c(γ) < c(γ′) and π(γ) < π(γ′).

The main step of the proof is to show that if γ0 ∈ Hs(γ0) \ Ks(γ0) then for any

γ1 ∈ Ks(γ0) it holds that c(γ1) < c(γ0) and π(γ1) > π(γ0). Note first that by
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symmetry all configurations in Ks(γ0) lead to the same costs and gross payoffs for

the seller. Furthermore π(γ1) > π(γ0) follows from Corollary D.1. In order to prove

that the configurations in Ks(γ0) lead to lower costs than the configurations in Hs(γ0)

we show that any element of Hs(γ0) can be written as a convex combination of the

elements of Ks(γ0): Note that Ks(γ0) is finite and denote its cardinality by m. Denote

by γ1, . . . , γm the elements of Ks(γ0). Then there exist coefficients ρ1, . . . , ρm with

ρi ∈ [0, 1] and
∑

i ρi = 1 such that

γ0 =
m∑
i=1

ρiγ
i. (D.15)

We first show how to complete the proof given that (D.15) holds. At the end we

prove (D.15). By the definition of quasi-concavity and by symmetry (D.15) implies

c(γ0) ≥ min
i
c(γi)

and thus c(γ0) ≥ c(γ1) for any γ1 ∈ Ks(γ0).

Hence, if γ0 ∈ Hs(γ0) \ Ks(γ0), for any γ1 ∈ Ks(γ0) it holds that c(γ1) ≤ c(γ0) and

π(γ1) > π(γ0). By our preliminary observations, there exists a γ2 with γ2 ∈ Ks(γ2)

and c(γ2) = c(γ0). Furthermore, since c(γ2) = c(γ0) ≥ c(γ1) it holds that s(γ2) ≥
s(γ1) and thus π(γ2) ≥ π(γ1) > π(γ0). Hence an allocation γ can only be optimal

within its cost-level if γ ∈ Ks(γ). The rest of the desired equivalence follows from

symmetry and strict monotonicity.

To conclude the proof we have to show that representation (D.15) is valid, i.e., that

for all s ∈ [0, n] any γ ∈ Hs can be expressed as a convex combination of the elements

of Ks. To prove this we make use of the following result15 from the theory of convex

sets: Any element of a convex polytope P can be written as a convex combination

of the extremal points of P . All we have to show is that Hs is a convex polytope

and that the set of extremal points of Hs is contained in Ks.
16 Obviously, Hs is

a convex polytope, i.e., a bounded subset of Rn which is defined through linear,

weak inequality constraints: Note that the constraints γi ∈ [0, 1] can be rewritten as

γi ≥ 0 and γi ≤ 1, and
∑

i γi = s as
∑

i γi ≥ s and
∑

i γi ≤ s. All these constraints

are linear. For the boundedness, note that Hs ⊂ [0, 1]n.

15See, e.g., section 3.5. of Faigle, Kern and Still (2002).
16While this is not necessary for our purposes, it can be shown that actually Ks is the set of

extremal points of Hs.
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The set of extremal points of Hs is defined by

Ext(Hs) = {γ ∈ Hs|γ = ργ1 + (1− ρ)γ2 for γ1, γ2 ∈ Hs, ρ ∈ (0, 1)⇒ γ1 = γ2 = γ},

i.e., Ext(Hγ) is the set of points in Hγ which cannot be written as a non-trivial

convex combination of two distinct points in Hγ. For our proof, it is sufficient to

show that Ext(Hγ) ⊆ Kγ.

We prove this by showing that any γ0 ∈ Hs \Ks does not lie in Ext(Hs). Consider

γ0 ∈ Hs \ Ks. Note that γ0 has at least two entries γj0 and γk0 , j 6= k which lie

in (0, 1). We have to construct γ1, γ2 ∈ Hs such that there is a ρ ∈ (0, 1) with

γ0 = ργ1 + (1 − ρ)γ2. First, set all components except j and k equal in the three

vectors: γl1 = γl2 = γl0 for l 6∈ {j, k}. Furthermore set

(γj1, γ
k
1 ) = (γj0 + ε, γk1 − ε) and (γj2, γ

k
2 ) = (γj0 − ε, γk1 + ε).

Note that we can choose ε > 0 small enough such that γj1, γk1 , γj2, γk2 all lie in (0, 1).

Observe furthermore that, since the entries of γ0 sum up to s, so do the entries of

γ1 and of γ2. Finally note that

γ0 =
1

2
γ1 +

1

2
γ2

which proves that γ0 6∈ Ext(Hs) and thus Ext(Hs) ⊆ Ks.

�

Proof of Proposition D.7

Since we know about the optimality of maximally asymmetric allocations from

Proposition D.6, we can treat the decision-maker’s problem as one of maximiz-

ing, respectively, πp(s)− C(s) and πq(s)− C(s) where s denotes the sum of the γi.

By the representation (D.3) of πp(s) and πq(s), the slope of πp(s) is larger than the

slope of πq(s) if pk − qk is increasing in k. Thus if pk − qk is increasing, the optimal

choice of s under (pk)k is larger than the optimal choice of s under (qk)k. �

Proof of Corollary D.3

Consider first the modified setting where the decision-maker’s payoff sequence is

given by (qk)k. For the moment assume in addition that (qk)k is strictly concave. In

that case we can apply Proposition D.6 and conclude that an amount s of information

with s > l∗ (or equivalently C(s) > κ∗) is split as asymmetrically as possible. Note
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that thus the decision-maker’s optimal payoff does not depend on the numerical

values q0, . . . , ql∗−1. Notably, if we substitute q0, . . . , ql∗−1 by the smaller values

p0, . . . , pl∗−1, the revenues out of some previously suboptimal allocations may get

even lower, but the payoffs from allocating s as asymmetrically as possible do not

change. Thus, maximally concentrating remains optimal.

Finally, note that weak concavity of q0, . . . , ql∗−1 is sufficient for this argument: Even

if the sequence (qk)k is linear for small k, due to the strict concavity for k ≥ l∗ the

decision-maker splits s > l∗ maximally asymmetrically. �

Proof of Lemma D.3

For a weakly increasing sequence (pk)k which is strictly concave from some value k∗

on we construct a weakly concave sequence (qk)k which dominates (pk)k and which

coincides with (pk)k from some l∗ ≥ k∗ on. Our construction which is described

now is also depicted in Figure D.1. The big red dots stand for the original sequence

(pk)k. The small blue dots show the values q0, ..., ql∗−1 which extend pl∗ , pl∗+1, ... to

a concave sequence.

Figure D.1: Constructing a Concave Dominating Sequence
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Denote by h : R → R the linear function interpolating the points (0, p∗k) and (k∗ +

1, pk∗+1), i.e.,

h(x) = p∗k + (pk∗+1 − pk∗)
x

k∗ + 1
.

Note that by strict concavity and weak monotonicity, pk∗+1 − pk∗ > 0. Now define

l∗ as the first integer after k∗ where h dominates the sequence pk:

l∗ = min{l > k∗|h(l) > pl}.

Observe that the fact that the slope of h is constant while the increments of (pk)k go

to zero as k gets large guarantee that l∗ <∞. Now define a second linear function

g which interpolates the points (l∗ − 1, pl∗−1) and (l∗, pl∗):

g(x) = pl∗−1 + (pl∗ − pl∗−1)(x− (l∗ − 1)).

By the definition of l∗, h(l∗) > g(l∗) = pl∗ and pl∗−1 = g(l∗ − 1) ≥ h(l∗ − 1). Since

g and h are linear, this implies that h′(x) > g′(x) for all x. Furthermore, g and h

intersect somewhere in [l∗ − 1, l∗]. These observations imply that for all i < k∗

g(i) > h(0) = pk∗ ≥ pi.

Furthermore by the local concavity of (pk) it follows that, for k∗ ≤ i < l∗, g(i) ≥ pi.

We can now define the sequence (qk) by

qk =

{
g(k) for k ≤ l∗ − 1

pk for k ≥ l∗.

By construction, this sequence coincides with (pk) for large k and dominates (weakly)

(pk) for all k. Furthermore, (qk) is weakly concave (as it follows a tangent to the

concave sequence pk on one side of l∗ and the sequence (pk) itself on the other side

of l∗). �

E Proofs of Chapter 5

Proof of Proposition 5.1

Define 1{i} = 1{i wins}. To prove the formula for the entry fees, we only have to show

that

E[(X̃(1) − X̃(2))1{i}]
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is the expected revenue of bidder i from the informed auction. Define F = σ(
⋃
iFi),

i.e., F is the smallest σ-algebra containing all the Fi. Then we have, using indepen-

dence of the Fi, F -measurability of 1{i} and the law of iterated expectations:

E[X̃(1)1{i}] = E[E[Xi|Fi]1{i}] = E[E[Xi|F ]1{i}]

= E[E[Xi1{i}|F ]] = E[Xi1{i}].

We thus have

E[(X̃(1) − X̃(2))1{i}] = E[(Xi − X̃(2))1{i}] = ei

which is the expected revenue of bidder i that the seller can extract as an entry fee.

We further have to show that the seller’s expected revenue equals

E[X̃(1)].

As
∑

i 1{i} = 1 the agents’ entry fees add up to

E[X̃(1) − X̃(2)].

Adding to this the expected selling price in the second price auction, which is

E[X̃(2)], we are done. �

Proof of Proposition 5.2

The formula for the entry fees is proved by showing that the difference between the

fees equals |E[X1] − E[X2]| and their sum equals E[|X̃1 − X̃2|]. The two agents’

entry fees as calculated in the previous proposition are

e1 = E[(X̃1 − X̃2)1{1 wins}] and e2 = E[(X̃2 − X̃1)1{2 wins}].

The difference in entry fees, e1 − e2, equals

E[(X̃1 − X̃2)1{1 wins}]− E[(X̃2 − X̃1)1{2 wins}]

= E[(X̃1 − X̃2)1{1 wins}] + E[(X̃1 − X̃2)1{2 wins}]

= E[X1]− E[X2].

Their sum, e1 + e2, equals

E[(X̃1 − X̃2)1{1 wins}] + E[(X̃2 − X̃1)1{2 wins}]

= E[(|X̃1 − X̃2|)1{1 wins}] + E[(|X̃1 − X̃2|)1{2 wins}]

= E[|X̃1 − X̃2|].
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�

Proof of Proposition 5.3

The expressions for the expected revenue, and the fact that an uninformed bidder

only pays a positive entry fee if he is the only uninformed bidder follow immediately

from Proposition 5.1. To see that an uninformed bidder’s entry fee will never exceed

the entry fee of an informed bidder note that for the difference between the fees we

have (in the only non-trivial case where all but one bidders get informed):

E[max(X1 −max(µ,X2, . . . , Xn−1), 0)]− E[max(µ−max(X1, . . . , Xn−1), 0)]

= E[max(X1, X2, . . . , Xn−1)]− E[max(µ,X2, . . . , Xn−1)] ≥ 0,

where the final inequality follows from Jensen’s inequality applied to the expectation

with respect to X1. For the concavity result we need to show that for all 0 ≤ k ≤
n− 3:

E[max(X1:k+1, µ)]− E[max(X1:k, µ)] > E[max(X1:k+2, µ)]− E[max(X1:k+1, µ)],

(E.1)

where we define X1:0 = 0, and

E[max(X1:n−1, µ)]− E[max(X1:n−2, µ)] > E[X1:n]− E[max(X1:n−1, µ)]. (E.2)

We will prove (E.1) and (E.2) by showing that (E.1) holds for k ≥ 0. (E.2) follows

then immediately as the right hand side is even smaller than that of (E.1). Define

X̄i = max(Xi, µ). Let F̄ denote the distribution function of X̄i. Now note that

E[max(X1:n, µ)] = E[X̄1:n]. Thus we can rewrite (E.1) to

E[X̄1:k+1]− E[X̄1:k] > E[X̄1:k+2]− E[X̄1:k+1]. (E.3)

To show (E.3) note that, as X̄1:k has distribution function F̄ k, we have

E[X̄1:k] =

∫ ∞
0

1− F̄ (x)k − F̄ (−x)kdx

which implies

E[X̄1:k+1]− E[X̄1:k] =

∫ ∞
−∞

F̄ (x)k(1− F̄ (x))dx.

Remembering that we assumed the random variables Xi and thus also X̄i to be not

a.s. constant, we get that 0 < F̄ < 1 on a set of positive measure. Thus the integral
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is strictly decreasing in k and (E.3) is proved. �

Proof of Proposition 5.4

In this and the following proofs we will make use of the fact that for k, j ≤ m the

seller’s expected revenue from revealing X1, . . . , Xk and Y1, . . . , Yj can be rewritten

as

E[max(X1 + . . .+Xk + (m− k)µ, Y1 + . . .+ Yj + (m− j)µ)]

= mµ+ E[max((X1 − µ) + . . .+ (Xk − µ), (Y1 − µ) + . . .+ (Yj − µ))]

= mµ+
1

2
E[|(X1 − µ) + . . .+ (Xk − µ)− (Y1 − µ)− . . .− (Yj − µ)|]. (E.4)

In order to compare the seller’s expected revenue from different choices of k and j we

can concentrate on the second summand in the last expression. As this expression

only depends on the random variables Xi − µ and Yi − µ, we can set µ = 0 without

loss of generality. To prove that giving all packages to one bidder weakly dominates

the equal split-up we just have to show that for independent, identically distributed,

mean zero random variables Xi and Yi

E[|X1 + . . .+Xk +Xk+1 + . . .+X2k|] ≥ E[|X1 + . . .+Xk − Y1 − . . .− Yk|] (E.5)

with equality exactly in the symmetric distribution case. Recall the inequality from

Jagers, Kallenberg and Kroese (1995): For X and Y iid

E[|X + Y |] ≥ E[|X − Y |]

(with equality exactly in the symmetric case). Setting X = X1 + . . . + Xk and

Y = Y1 + . . .+ Yk this becomes

E[|X1 + . . .+Xk + Y1 + . . .+ Yk|] ≥ E[|X1 + . . .+Xk − Y1 − . . .− Yk|].

By the iid assumption we can substitute Y1, . . . , Yk on the left hand side by

Xk+1, . . . , X2k and get (E.5). (Note that a sum of iid random variables is symmetric

around its mean if and only if the summands are symmetric around their means.)

�

Proof of Proposition 5.5

In order to circumvent an unnecessarily complicated notation for a simple variation

of the proof of Proposition 5.4 we will just show that six packages should rather
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be split up into four and two than into three and three. All the other inequalities

covered by Proposition 5.5 follow from analogous arguments. By (E.4) we only have

to show that for iid mean-zero random variables Xi and Yi

E[|X1 +X2 +X3 +X4 − Y1 − Y2|] ≥ E[|X1 +X2 +X3 − Y1 − Y2 − Y2|]. (E.6)

We start again with

E[|X + Y |] ≥ E[|X − Y |].

Setting X = X1 +X2 −X3 and Y = X4 +X5 −X6 this becomes

E[|X1 +X2 +X4 +X5 −X3 −X6|] ≥ E[|X1 +X2 +X6 −X3 −X4 −X5|].

Using the iid assumption we can rename summands on both sides of the inequality

and obtain (E.6). To see that the distribution of X1 + X2 − X3 is asymmetric if

and only if the distribution of the Xi is asymmetric, note that X1 +X2 −X3 is the

sum of the (possibly asymmetric) random variable X1 and the always symmetric

random variable X2 −X3.

The other inequalities covered by the proposition follow with parallel arguments,

setting X = X1 +X2 +X3 −X4, then X = X1 +X2 +X3 −X4 −X5, etc. �

Proof of Lemma 5.1

Consider 0 ≤ k, j ≤ m with k+ j ≥ 2 and k ≥ 1. As adding another package always

costs c we only have to consider by how much a package raises the seller’s expected

gross revenue. It is sufficient to compare the increase in revenue from revealing the

kth package to bidder 1 given that bidder 2 gets j packages with the revenue increase

from revealing the first package to bidder 1 given that bidder 2 gets no package. So

by (E.4) we have to show that for iid mean-zero random variables X1,...,Xk and

Y1,...,Yj

E[|X1 + . . .+Xk − Y1 − . . .− Yj| − |X1 + . . .+Xk−1 − Y1 − . . .− Yj|] < E[|X1|].

That this inequality holds weakly is an immediate consequence of the triangle

inequality where we use that E[|X1|] = E[|Xk|]. Noting that (since we have

assumed the Xi and Yi to be not a.s. constant) equality would contradict the in-

dependence of the Xi and Yi it follows that we have a strict inequality and are done.�
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Proof of Example 5.3

Again we only need to consider gross revenues as every additional package costs

c. By (E.4) we know that for the first two (symmetric) examples it is sufficient to

compare the increments of the sequence 0, E[|X1|], E[|X1 +X2|], E[|X1 +X2 +X3|],
E[|X1+X2+X3+X4|] for independent random variables Xi distributed according to

the distributions from the examples but shifted to have mean zero. For the uniform

distribution on [−1
2
, 1

2
] we get

E[|X1|] =
1

4
, E[|X1 +X2|] =

1

3
,

E[|X1 +X2 +X3|] =
13

32
and E[|X1 +X2 +X3 +X4|] =

7

15
.

For the distribution that takes −1
2

and 1
2

with equal probability we get

E[|X1|] =
1

2
, E[|X1 +X2|] =

1

2
,

E[|X1 +X2 +X3|] =
3

4
and E[|X1 +X2 +X3 +X4|] =

3

4
.

For the third example where - because of the asymmetry - the order in which pack-

ages are allocated matters, we have to compare the increments of the sequence 0,

E[|X1|], E[|X1 + X2|], E[|X1 + X2 −X3|], E[|X1 + X2 −X3 −X4|] to see how the

different packages affect the seller’s revenue. Here the Xi are independent and dis-

tributed according to the exponential distribution shifted by its mean 1 to the left.

We find

E[|X1|] = 2e−1, E[|X1 +X2|] = 8e−2,

E[|X1 +X2 −X3|] =
7

2
e−1 and E[|X1 +X2 −X3 −X4|] =

3

2
.

Calculating these expectations is tedious but straightforward. Besides the formulas

for the distribution functions of sums of uniformly and exponentially distributed

random variables from Feller (1971), the following result from Jagers, Kallenberg

and Kroese (1995) proved to be useful in the third example: Let X and Y be

independent random variables with distribution functions F and G then

E[|X − Y |] =

∫ ∞
−∞

F (x)(1−G(x))dx+

∫ ∞
−∞

G(x)(1− F (x))dx.

�

Proof of Lemma 5.2

Denote by Xi and Yi the packages of information of the two agents normalized so
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that they have mean zero. By (E.4) we have to prove that the sequence of the seller’s

gross revenues

Pl := mµ+ max
0≤k≤l

1

2
E[|(X1 − µ) + . . .+ (Xk − µ)− (Y1 − µ)− . . .− (Yl−k − µ)|]

is bounded by mµ + σ
2

√
l and weakly increasing in l. Note that it is sufficient to

prove this for µ = 0. The upper bound on the sequence (Pl)l follows with Jensen’s

inequality:

E[|X1 + . . .+Xk − Y1 − . . .− Yl−k|] = E[
√

(X1 + . . .+Xk − Y1 − . . .− Yl−k)2]

≤
√

Var(X1 + . . .+Xk − Y1 − . . .− Yl−k)

=
√
lVar(X1) =

√
lσ.

To see that the sequence (Pl)l is weakly increasing we show that the optimal split-up

of l + 1 packages is at least as good as the optimal split-up of l packages. Choose a

k with 0 ≤ k ≤ l which maximizes

E[|X1 + . . .+Xk − Y1 − . . .− Yl−k|],

and set A = X1 + . . . + Xk − Y1 − . . . − Yl−k. Note that the function g : R → R
given by

g(z) ≡ E[|A+ z|]

is convex and thus by Jensen’s inequality

g(0) = g(E[Xk+1]) ≤ E[g(Xk+1)].

But this is the same as

E[|X1 + . . .+Xk − Y1 − . . .− Yl−k|] ≤ E[|X1 + . . .+Xk+1 − Y1 − . . .− Yl−k|].

So we have found a split-up of l + 1 packages that leads to a weakly higher gross

revenue than the optimal split-up of l packages. Thus also the optimal split-up of

l + 1 packages leads to a weakly higher gross revenue than the optimal split-up of l

packages. �

Proof of Proposition 5.6

The condition for informing bidder 1 being strictly more attractive than informing

bidder 2 is

E[max(X1, µY )] > E[max(µX , Y1)]
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which (using the identity max(u, v) = 1
2
(u+ v+ |u− v|)) is seen to be equivalent to

E[|X1 − µY |] > E[|Y1 − µX |].

�

Proof of Example 5.5

Denote the packages of the first three bidders by Xi, Yi and Zi, respectively. We

have to show that for both distributions all three packages should be given to three

different bidders no matter whether the number of bidders is exactly 3 or greater.

Thus we have to show that

E[max(X1 +X2 +X3, 3µ)] < E[max(X1 + 2µ, Y1 + 2µ, Z1 + 2µ)]

E[max(X1 +X2 + µ, Y1 + 2µ, 3µ)] < E[max(X1 + 2µ, Y1 + 2µ, Z1 + 2µ)]

for exactly three bidders and

E[max(X1 +X2 +X3, 3µ)] < E[max(X1 + 2µ, Y1 + 2µ, Z1 + 2µ, 3µ)]

E[max(X1 +X2 + µ, Y1 + 2µ, 3µ)] < E[max(X1 + 2µ, Y1 + 2µ, Z1 + 2µ, 3µ)]

for more than three bidders. Obviously, the first two inequalities imply the second

two, and the first two are true because for the exponential distribution (where µ = 1)

we have

E[max(X1 +X2 +X3, 3µ)] = 3 +
27

2
e−3,

E[max(X1 +X2 + µ, Y1 + 2µ, 3µ)] = 3 + e−1 + 4e−2 − 7

4
e−3,

E[max(X1 + 2µ, Y1 + 2µ, Z1 + 2µ)] =
23

6
,

and for the uniform distribution (where µ = 1
2
) we have

E[max(X1 +X2 +X3, 3µ)] =
109

64
,

E[max(X1 +X2 + µ, Y1 + 2µ, 3µ)] =
671

384
,

E[max(X1 + 2µ, Y1 + 2µ, Z1 + 2µ)] =
7

4
.

�
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