
Selberg and Ruelle zeta functions and the
relative analytic torsion on complete

odd-dimensional hyperbolic manifolds of finite
volume

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von
Jonathan Pfaff

aus
Freiburg i.Br.

Bonn, Januar 2012





Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Werner Müller

2. Gutachter: Prof. Dr. Werner Hoffmann

Tag der Promotion: 11. Juli 2012

Erscheinungsjahr: 2012





Abstract

Let X be a complete hyperbolic manifold of finite volume and of odd dimension d. Then
X can be realized as X = Γ\G/K, where G = Spin(d, 1), K = Spin(d) and where Γ is a
discrete, torsion-free subgroup of G. Throughout this thesis we assume that for every Γ-
cuspidal parabolic subgroup P of G with Langlands decomposition P = MPAPNP one has
Γ∩P = Γ∩NP . Firstly, we study Selberg zeta functions on X, prove that these functions
have a meromorphic continuation to the complex plane and describe their singularities.
Secondly, we define the relative or regularized analytic torsion of X associated to the
restriction of a certain representation of G to Γ. We investigate the asymptotic behaviour
of this torsion with respect to special sequences of representations of G. Finally, if X is
3-dimensional, we establish a relation between the regularized analytic torsion and the
behaviour of a twisted Ruelle zeta function at 0. Our work generalizes results of Fried,
Bunke and Olbrich, Bröcker and Wotzke to the non-compact case and results of Müller to
the non-compact and higher-dimensional situation.
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1 Introduction

1.1 Statement of the main results

This thesis deals with two aspects of geometry and spectral theory on complete, odd
dimensional, not necessarily compact hyperbolic manifolds X of finite volume. Firstly, the
Selberg zeta functions, which are dynamical zeta functions defined in terms of the length
spectrum and the geodesic flow on the unit sphere bundle of X and a representation of
a compact group, are studied. Secondly, we treat the analytic torsion of X with respect
to certain representations of its fundamental group. If X is non-compact, this torsion will
be introduced as a relative or regularized torsion. For 3-dimensional X, we will relate the
regularized analytic torsion associated to certain representations of G to the behaviour of
a twisted Ruelle zeta function at 0. This zeta function is a dynamical zeta function which
is defined similarly to the Selberg zeta functions. Since X is a locally symmetric space,
methods from harmonic analysis, in particular the Selberg trace formula turn out to be
our main tool.
Throughout this thesis we let X be a complete hyperbolic manifold of dimension d = 2n+1
and of finite volume. If we let G = Spin(d, 1) and K = Spin(d), then there exists a discrete,
torsion free subgroup Γ ⊂ G such that X = Γ\Hd, where Hd ∼= G/K is the d-dimensional
hyperbolic space. We assume that for every Γ-cuspidal parabolic subgroup P of G with
Langlands decomposition P = MPAPNP one has

Γ ∩ P = Γ ∩NP . (1.1)

The assumption (1.1) is satisfied for example if Γ is neat, i.e. if the group generated by
the eigenvalues of any γ ∈ Γ contains no root of unity different from 1.

1.1.1 Selberg zeta functions

Our first main topic are Selberg zeta functions. To define these functions, we need to
introduce some notation. Let P0 = MAN be the standard parabolic subgroup of G. Let σ
be a finite dimensional unitary representation of M . Then, going back to Selberg, one can
associate a dynamical zeta function Z(s, σ) to the geodesic flow on the unit sphere bundle
SX and the representation σ. This function is defined as follows. Identifying Γ with the
fundamental group of X, we obtain a one-to-one correspondence between C(Γ), the set of
conjugacy classes of Γ, and the set of free homotopy classes of closed curves in X. For
γ ∈ Γ we will denote its conjugacy class by [γ]. Moreover, by f([γ]) we will denote the free
homotopy class of closed paths associated to [γ]. For a conjugacy class [γ] let `(γ) denote
the infimum of the lengths of piecewise smooth loops which belong to f([γ]). Then it turns
out that `(γ) is non-zero if and only if γ is semisimple and that for semisimple γ there
exists a unique closed geodesic c[γ] ∈ f([γ]) of length `(γ). Thus let C(Γ)s denote the set of
semisimple conjugacy classes in Γ. Let a denote the Lie algebra of A and let H1 ∈ a be of
norm one and positive with respect to the choice of N . Then every non-trivial semisimple
element γ of Γ is conjugate to an element of the form mγ exp(`(γ)H1), where mγ ∈ M is
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unique up to conjugation in M . Let N̄ be the nilpotent subgroup opposite to N and let n̄
be its Lie algebra. Then for s ∈ C with Re(s) sufficiently large, the Selberg zeta function
Z(s, σ) is defined as

Z(s, σ) :=
∏

[γ]∈C(Γ)s−[1]
[γ] prime

∞∏
k=0

det
(
Id−σ(mγ)⊗ Sk Ad(mγ exp(`(γ)H1))|n̄e−(s+n)`(γ)

)
. (1.2)

Here, a semisimple conjugacy class [γ] is called prime if the corresponding closed geodesic
c[γ] is prime. Moreover, Sk Ad denotes the k-th symmetric power of the adjoint represen-
tation. The infinite product in (1.2) converges absolutely only for Re(s) >> 0. Our main
result about the Selberg zeta function is the following theorem.

Theorem 1.1. Let X be a complete odd dimensional hyperbolic manifold of finite volume
and assume that its fundamental group satisfies (1.1). Let σ be a finite dimensional unitary
representation of M . Then the Selberg zeta function Z(s, σ) has a meromorphic continu-
ation to C. All its possible singularities (zeroes and poles) and their corresponding orders
can be described in terms of the following data.

• By the discrete spectrum of a graded differential operator A(σ) of Laplace type which
acts on a locally homogeneous vector bundle E(σ) over X.

• By the poles of the scattering matrix C(νσ : σ : s) associated to σ and a certain
representation νσ of K.

• Additionally, the Selberg zeta function has singularities which depend on X only via
p, the number of cusps of X. They are located on the negative integers if the highest
weight of σ is integral and on the negative half integers if the highest weight of σ is
half-integral.

Taking into account that the Selberg zeta function is a dynamical zeta function which
is defined by geometric data of the underlying manifold X, namely its length spectrum,
Theorem 1.1 provides a relation between the geometry of the possibly non-compact hy-
perbolic manifold X and the spectrum of certain differential operators. More precisely,
the singularities in the first two items correspond to spectral parameters of X since poles
of the scattering matrix C(νσ : σ : s) are related to poles of the resolvent of A(σ). The
additional singularities of Z(s, σ) on the negative real line arise from the contribution of
weighted orbital integrals to the geometric side of the trace formula. For a more precise
version of Theorem 1.1 we refer the reader to Theorem 7.4 and Theorem 7.8 below.
Let us now give a brief history of previous results related to Theorem 1.1. If X is compact,
it was shown in [Fr2] that Z(s, σ) has a meromorphic continuation to C. For compact X
Bunke and Olbrich described the singularities of Z(s, σ) as in the first item of Theorem
1.1, see [BO]. If X is of finite volume only and satisfies assumption (1.1), the meromorphic
continuation of Z(s, σ) and a description of its singularities were obtained by Gangolli and
Wallach for the trivial representation of M , [GaWa]. In [GP] Gon and Park generalized
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their methods to the fundamental representations σk of M on Λk(C2n). However it is not
clear whether the methods of Gangolli, Wallach, Gon and Park can be applied to general
σ ∈ M̂ since they use a special type of a Paley-Wiener theorem for differential forms which
prescribes the K-types of a test function in a very specific way.
Our approach to prove Theorem 1.1 combines the methods of Bunke and Olbrich from the
compact case with the invariant Selberg trace formula as it is stated in [Ho2]. We would
like to emphasize that this is only possible because the Fourier transform of the invariant
part associated to the weighted orbital integrals which appears on the geometric side of
the trace formula has been determined by Hoffmann [Ho1].
Let σ be a finite dimensional unitary representation of M . Then there is another dynamical
zeta function R(s, σ) associated to σ and the geodesic flow. Namely, for Re(s) >> 0 put

R(s, σ) :=
∏

[γ]∈C(Γ)s−[1]
[γ] prime

det
(
Id−σ(mγ)e

−s`(γ)
)
.

The infinite product converges absolutely and locally uniformly for Re(s) >> 0 and the
function R(s, σ) is called the Ruelle zeta function associated to σ. One can express the
Ruelle zeta function in a standard way as a weighted product of Selberg zeta functions
with shifted arguments. Thus Theorem 1.1 implies the following corollary.

Corollary 1.2. For every finite dimensional unitary representation σ of M the Ruelle zeta
function R(s, σ) admits a meromorphic continuation to C.

1.1.2 The asymptotic behaviour of the relative analytic torsion

The second topic of this thesis deals with the relative analytic torsion associated to repre-
sentations of the fundamental group Γ which arise as restrictions of representations of G.
Thus let τ be an irreducible finite dimensional representation of G. Restrict τ to Γ and
let Eτ be the associated flat vector-bundle over X. By [MaMu] one can equip Eτ with a
canonical metric, called admissible metric. Let ∆p(τ) be the corresponding Laplacian on
Eτ valued p-forms. If X is not compact, ∆p(τ) has a continuous spectrum and therefore,
the heat operator exp(−t∆p(τ)) is not trace class. So the usual zeta function regularization
can not be used to define the analytic torsion in this case. To overcome this problem, we
use the relative trace which was introduced by Müller in [Mü1].
The relative trace is defined as follows. There exists a u0 > 0 such that for every u > u0, X
has a natural decomposition as X = X(u) t∂X(u) F (u). Here X(u) is a compact manifold
with boundary and F (u) is a disjoint union of finitely many cusps. Moreover, one has
X(u) ⊂ X(u′) for u′ > u and X is the union of all X(u). There exists a naturally defined
auxiliary differential operator Tνp(τ),u which acts on the Eτ -valued p-forms, has purely con-
tinuous spectrum and vanishes on the smooth sections supported in the interior of X(u).
Furthermore, by [Mü1, Theorem 9.1] for every t > 0 the operator e−t∆p(τ) − e−tTνp(τ),u is of
trace class. Now the relative trace of e−t∆p(τ) with respect to the parameter u is defined as

Trrel,u

(
e−t∆p(τ)

)
:= Tr

(
e−t∆p(τ) − e−tTνp(τ),u

)
.
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Another way to regularize the trace in the non-compact case is provided by the b-regularized
trace. To define the latter trace, let Kp(t, x, y) be the integral kernel of e−t∆p(τ). Then
the integral of TrKp(t, x, x) over X(Y ) has an asymptotic expansion in Y as Y →∞ and
following Melrose [Me], the b-regularized trace is defined as the finite part of this expansion.
It coincides with Trrel,u

(
e−t∆p(τ)

)
up to a term which depends on the parameter u and which

will be computed explicitly.
It turns out that Trrel,u

(
e−t∆p(τ)

)
equals the spectral side of the Selberg trace formula

applied to the heat operator exp(−t∆p(τ)) up to a term which depends on u and can be
computed explicitly. Using the Selberg trace formula, it follows that Trrel,u

(
e−t∆p(τ)

)
has

an asymptotic expansion as t → +0. Let θ be the standard Cartan involution of G. If τ
satisfies τ 6= τθ, then Trrel,u

(
e−t∆p(τ)

)
is exponentially decreasing as t → ∞. Thus we can

define the relative zeta function ζp,u(z; τ) of ∆p(τ) by

ζp,u(z; τ) :=
1

Γ(z)

∫ ∞
0

tz−1 Trrel,u(e−t∆p(τ)) dt.

The integral converges absolutely and uniformly on compact subsets of the half-plane
Re(z) > d/2 and admits a meromorphic continuation to C which is regular at z = 0.
In analogy to the compact case, we now define the relative ζ-regularized determinant
detu(∆p(τ)) ∈ R+ by

detu(∆p(τ)) := exp

(
− d

dz

∣∣∣∣
z=0

ζp,u(z, τ)

)
.

Now the analytic torsion TX,u(τ) ∈ R+ with respect to Eτ and the admissible metric is
defined by

TX,u(τ) :=
d∏
p=0

detu(∆p(τ))
p
2

(−1)p+1

. (1.3)

If X is compact, then X has no cusps, the heat operators are trace class and their relative
trace is the same as their trace. Thus in the compact case (1.3) is just the Ray-Singer
analytic torsion of X.
We will study the asymptotic behaviour of the analytic torsion for special sequences of
representations of G. These representations are defined as follows. Fix natural numbers
τ1 ≥ τ2 ≥ · · · ≥ τn+1. For m ∈ N let τ(m) be the finite-dimensional irreducible represen-
tation of G with highest weight (τ1 + m, . . . , τn+1 + m) as in (2.7). By Weyl’s dimension
formula there exists a constant C > 0 such that

dim(τ(m)) = Cm
n(n+1)

2 +O(m
n(n+1)

2
−1), m→∞. (1.4)

Our main result about the asymptotic behaviour of log TX,u(τ(m)) as m → ∞ is the
following theorem.
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Theorem 1.3. Let X = Γ\H2n+1 be a (2n+ 1)-dimensional complete, oriented, hyperbolic
manifold of finite volume. Assume that Γ satisfies (1.1). Let

C(n) := (−1)n+1 π

vol(Sd)
,

where Sd is the d-dimensional Euclidean unit-sphere. Then one has

log TX,u(τ(m)) = −C(n) vol(X)m · dim(τ(m)) +O
(
m

n(n+1)
2 logm

)
,

as m −→∞. Here vol(X) is the hyperbolic volume of X.

We will also study the L2-torsion T
(2)
X (τ). By the homogeneity of X, to define this

torsion as in [Lo], it suffices to assume that X has finite volume. We will show that there
exists a polynomial Pτ (m) of degree n(n+ 1)/2 + 1 such that

log T
(2)
X (τ(m)) = vol(X)Pτ (m). (1.5)

The polynomial Pτ (m) only depends on τ1, . . . , τn+1 and not on X. It is obtained from
certain Plancherel polynomials and can in principle be computed explicitly. Its leading
term will be computed explicitly and we obtain

log T
(2)
X (τ(m)) = −C(n) vol(X)m · dim(τ(m)) +O(m

n(n+1)
2 ), (1.6)

where C(n) is as in Theorem 1.3. Employing Theorem 1.3 we obtain the following theorem.

Theorem 1.4. Let X = Γ\H2n+1 be a (2n+ 1)-dimensional complete, oriented, hyperbolic
manifold of finite volume. Assume that Γ satisfies (1.1). Then we have

log TX,u(τ(m)) = log T
(2)
X (τ(m)) +O(m

n(n+1)
2 logm)

as m→∞.

For compact hyperbolic 3-manifolds, a variant of Theorem 1.3 was proved in [Mü4],
where the log-term in the remainder can be dropped. Our results also imply a generaliza-
tion of the results of Müller to higher dimensional compact hyperbolic manifolds. More
precisely, if X is compact, the remainder term in our estimate can be improved and we
will prove the following theorem.

Theorem 1.5. Let X be a compact hyperbolic manifold of dimension d = 2n + 1. Then,
if Pτ (m) is the polynomial of degree n(n+ 1)/2 + 1 as in (1.5), one has

log TX(τ(m)) = vol(X)Pτ (m) +O(e−cm),

as m→∞, where c > 0. In particular, one has

log TX(τ(m)) = log T
(2)
X (τ(m)) +O(e−cm),

as m→∞.
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Since the representations τ are unimodular, it follows from [Mü3] that for compact X
the analytic torsion TX(τ(m)) equals the Reidemeister torsion τX(τ(m)). The latter is an
invariant which is constructed in a combinatorial way out of a smooth triangulation of X.
Replacing TX(τ(m)) by τX(τ(m)) in Theorem 1.5, it follows that the volume of a compact
odd-dimensional hyperbolic manifold X is determined by the sequence of Reidemeister
torsion invariants τX(τ(m)). Again, for compact hyperbolic 3-manifolds this result was
proved in [Mü4]. On the other hand, it is not known if there is an extension of the equality
of analytic and Reidemeister torsion to the non-compact setting. This is an interesting
problem and Theorem 1.3 could be a first step in this direction.

1.1.3 The twisted Ruelle zeta function at 0 and the regularized analytic tor-
sion in the 3-dimensional case

For a hyperbolic 3-manifold X we also investigate the relation between the regularized
analytic torsion TX(τ) and the behaviour of the twisted Ruelle zeta function Rτ at 0 for
certain representations τ ∈ Ĝ. This zeta function is defined as

Rτ (s) :=
∏

[γ]∈C(Γ)s−[1]
[γ] prime

det
(
Id−τ(γ)e−s`(γ)

)
. (1.7)

The infinite product in (1.7) converges for Re(s) sufficiently large. One can express Rτ as a
finite product of Ruelle zeta functions R(s, σ) with shifted arguments and so by Corollary
1.2 the function Rτ (s) has a meromorphic continuation to C. In the 3-dimensional case,
we can naturally identify G = Spin(3, 1) with SL2(C) . From now on, for m ∈ 1

2
N we let

τ(m) be the representation of G with highest weight me1 +me2. Then τ(m) corresponds to
the 2m-th symmetric power of the standard representation of SL2(C). The representation
τ(m) satisfies τ(m) 6= τ(m)θ and thus the relative analytic torsion TX,u(τ(m)) is defined
as in the previous section. However, for notational convenience we shall now work with
the regularized analytic torsion TX(τ(m)) which is defined in the same way as above and
which coincides with the relative analytic torsion TX,u(τ(m)) up to a term which depends
on u and can be computed explicitly. Our main result for the 3-dimensional case is the
following theorem.

Theorem 1.6. For m ∈ N there exists an explicit constant c(τ(m)) ∈ R+, which depends
on Γ only via p, the number of cusps of X, and which is determined in in (10.37) such that

TX(τ(m))4 = c(τ(m))
C(m : 0)

C(m+ 1 : 0)
lim
s→0

(
Rτ(m)(s)Rτ(m)θ(s)

C(m+ 1 : m− s)
C(m : m+ 1− s)

Γ−2p(s− 1)

)
.

Similarly, there exists an explicit constant c(τ(m + 1/2)) ∈ R+, which depends on Γ only
via p, the number of cusps of X, and which is determined in (10.38) such that

TX(τ(m+ 1/2))4 =c(τ(m+ 1/2))
C(m+ 1/2 : 0)

C(m+ 3/2 : 0)
lim
s→0

(
Rτ(m+1/2)(s)Rτ(m+1/2)θ(s)

C(m+ 3/2 : m+ 1/2− s)
C(m+ 1/2 : m+ 3/2− s)

Γ−2p(s− 1)

)
.
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Here the functions C(k : s) are meromorphic functions of s which are constructed out of
the scattering determinant associated to the representation σ of M with highest weight ke2

and a certain K-type. They are defined in section 10.2.

Let X be a compact odd-dimensional hyperbolic manifold. Then Bröcker and Wotzke
proved that for any τ ∈ Ĝ which satisfies τ 6= τθ the Ruelle zeta function Rτ (s) is regular
at 0 and that

TX(τ)4 = Rτ (0)Rτθ(0), (1.8)

see [Br], [Wo]. Thus Theorem 1.6 is a generalization of their result in dimension 3 to
non-compact hyperbolic 3-manifolds. We have stated and proved Theorem 1.6 only for
the representations τ(m). However, one can obtain a similar result for any τ ∈ Ĝ which
satisfies τ 6= τθ. The result of Bröcker and Wotzke is a generalization of Fried’s Theorem
who first investigated the relation between the Ruelle zeta function and the analytic torsion
associated to a unitary representation of the fundamental group, see [Fr1]. For unitary
representations of Γ, the relation between the behaviour of the Ruelle zeta function at
0 and the regularized analytic torsion was studied by Park, [Pa]. Theorem 1.6 does not
imply that the Ruelle zeta function Rτ(m) is regular at 0.
On closed hyperbolic manifolds, the results of Fried, Bröcker and Wotzke imply a relation
between a spectral invariant, the analytic torsion, and a special value of a geometric zeta
function. In Theorem 1.6 the spectrum of certain operators appears on both sides of the
equation due to the appearance of the C-matrix on the right hand side. However, it turns
out that if we consider the quotient of two analytic torsions TX(τ(m1)) and TX(τ(m2)),
we can eliminate the appearance of the spectrum on one side of the equation. Namely, we
have the following corollary.

Corollary 1.7. Let m ∈ N. Then for m ≥ 3 one has

TX(τ(m))

TX(τ(2))
=

(
c(τ(m))

c(τ(2))

)1/4

exp

(
− 1

π
vol (X)(m(m+ 1)− 6)

) m∏
k=3

|R(k, σk)| .

where the constants c(τ(m)) and c(τ(2)) are as in Theorem 1.6. Similarly, for m ≥ 2 one
has

TX(τ(m+ 1/2))

TX(τ(3/2))
=

(
c(τ(m+ 1/2))

c(τ(3/2))

)1/4

exp

(
− 1

π
vol (X)(m(m+ 2)− 3)

)
·
m∏
k=2

∣∣R(k + 1/2, σk+1/2)
∣∣ .

The Ruelle zeta functions R(s, σk) appearing in the corollary are regular at s = k.
Corollary 1.7 is a generalization of [Mü4, equation(8.7), equation(8.8)]. One easily sees
that | log c(τ(m))| is of order O(m) as m → ∞ and thus Corollary 1.7 and the decay
of the log |R(k, σk)| also imply Theorem 1.3 in the 3-dimensional case with an improved
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remainder term.
Let X be the Borel-Serre compactification of X. Then in their preprint [MePo], Menal-
Ferrer and Porti studied the relation between the Reidemeister torsion τX(τ(m)) of X
associated to the restriction of the representation τ(m) to Γ and Ruelle zeta functions. In
order to define the Reidemeister torsion, one has to take into account that the cohomology
of X with respect to the local system defined by τ(m) is non-trivial, see [MePo]. If we use
[MePo, Theorem 5.8] and make the same assumptions as in this theorem, together with
Corollary 1.7 we can compare the regularized analytic torsion and the Reidemeister torsion
as follows.

Corollary 1.8. Let m ∈ N. Then for m ≥ 3 one has

TX(τ(m))

TX(τ(2))
=

(
c(τ(m))

c(τ(2))

)1/4 |τX(τ(m))|
|τX(τ(2))|

,

where the constants c(τ(m)) and c(τ(2)) are as in Theorem 1.6.

We remark that the quotient of regularized torsions in the last equation are non-trivial
and can even become arbitrarily large by Theorem 1.3.

1.2 Outline of the proof

We shall now sketch the method for the proof of our main results. Let πΓ be the right
regular representation of G on L2(Γ\G). Then there is a decomposition

πΓ = πΓ,d ⊕ πΓ,c.

Here the representation πΓ,d is completely reducible. On the other hand, the representation
πΓ,c is isomorphic to a direct integral over all tempered principal series representations of
G. For a K-finite Schwarz function φ on G, the operator πΓ,d(φ) is trace class and the
invariant trace formula as it is stated in [Ho2] expresses Tr (πΓ,d(φ)) as a sum of invariant
distributions on G applied to φ.
In order to prove the meromorphic continuation of the Selberg zeta function Z(s, σ), we
first study the symmetrized Selberg zeta function S(s, σ), which is given by Z(s, σ) if
σ = w0σ and by Z(s, σ)Z(s, w0σ), if σ 6= w0σ. Here w0 is a fixed representative of the
restricted Weyl group. As in the compact case ([BO]), there is a K-finite function hσt ,
belonging to all Harish-Chandra Schwarz spaces, such that the logarithmic derivative of
S(s, σ) is equal to a certain integral transform of H(hσt ). Here H is a distribution on G
which occurs in the invariant Selberg trace formula. It is built from the semisimple con-
jugacy classes of Γ. Geometrically, the function hσt arises from the graded fibre trace of

the kernel of e−tÃ(σ), where Ã(σ) is a Laplace-type operator which acts on a graded vector
bundle Ẽ(σ) over X̃. Now we apply the invariant trace formula to hσt and compute the
integral transform of all involved summands explicitly. In this way we can show that the
residues of the logarithmic derivative of S(s, σ) are integral. Moreover, we can determine
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its poles and the corresponding residue explicitly.
If σ is not invariant under the Weyl group, we introduce the antisymmetric Selberg zeta
function Sa(s, σ) := Z(s, σ)/Z(s, w0σ). The bundle Ẽ(σ) turns out to be a spinor bundle
and there is a canonical twisted Dirac operator D̃(σ) on Ẽ(σ) such that D̃(σ)2 = Ã(σ).

Now the fibre trace of the kernel of Tr(D̃(σ)e−tD̃(σ)2
) is represented by a K-finite Harish-

Chandra Schwarz function kσt and the logarithmic derivative of Sa(s, σ) equals an integral
transform of H(kσt ), where the distribution H is as above. Using the invariant trace formula
again we obtain a meromorphic continuation of Sa(s, σ) and a complete description of its
singularities. Putting everything together, we can also complete the proof of Theorem 1.1.

Next we describe the proof of our main results concerning torsion asymptotics. In
a first step, we establish a determinant formula which relates the symmetric Selberg zeta
function S(s, σ) to the relative graded determinant detgr,u (A(σ) + s2) of the operator A(σ)
for certain s ∈ C. The logarithm of the latter determinant is obtained via the Laplace-
Mellin transform applied to the spectral side Jspec(h

σ
t ) of the Selberg trace formula up

to an additional summand LMRu(s, σ) which depends on the auxiliary operators on the
cusp and can be computed explicitly. By the non-invariant trace formula, the spectral side
equals the geometric side Jgeo(h

σ
t ). The geometric side is given by a sum of distributions

applied to hσt . One has

Jgeo(h
σ
t ) = I(hσt ) +H(hσt ) + T (hσt ) + I(hσt ) + J(hσt ), (1.9)

where I(hσt ) is the contribution of the identity conjugacy class of Γ and H(hσt ) is as above.
Moreover, T (hσt ), I(hσt ) and J(hσt ) are tempered distributions applied to hσt which are
constructed out of the parabolic conjugacy classes of Γ. To save notation, for a function
f : R+ → C we shall write

LMf(s) :=
d

dz

∣∣∣∣
z=0

(
1

Γ(z)

∫ ∞
0

e−ts
2

f(t)tz−1dt

)
,

if the integral exists for Re(z) >> 0 and admits a meromorphic continuation to z ∈ C
which is regular at 0. We compute the Laplace-Mellin transform of each term on the right
hand side of (1.9) separately. Combining these computations with our computations for
the symmetric Selberg zeta function, for certain s ∈ C we obtain

log detgr,u

(
A(σ) + s2

)
= logS(s, σ)− LMI(s, σ)− LMT (s, σ)− LMI(s, σ)

− LMJ(s, σ)− LMRu(s, σ). (1.10)

Now we come to the analytic torsion. Let τ ∈ Ĝ, τ 6= τθ. Let

Ku(t, τ) :=
2n+1∑
p=0

(−1)ppTrrel,u(e−t∆p(τ)).
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We need to compute the finite part of the Mellin transform of Ku(t, τ) at 0. Let Ẽτ be the

homogeneous vector bundle over X̃ = G/K associated to τ and let ∆̃p(τ) be the Laplacian

on Ẽτ -valued p-forms on X̃. The heat operator e−t∆̃p(τ) is a convolution operator with

kernel H
νp(τ)
t : G→ End(Λpp∗ ⊗ Vτ ). Let h

νp(τ)
t (g) = trH

νp(τ)
t (g), g ∈ G, and put

kτt =
d∑
p=1

(−1)pph
νp(τ)
t . (1.11)

Again it follows from the Selberg trace formula that

Ku(t, τ) = I(kτt ) +H(kτt ) + T (kτt ) + I(kτt ) + J(kτt ) +Ru(t, τ), (1.12)

where Ru(t, τ) is a term which depends only on the auxiliary operators on the cusps an
can be computed explicitly. Using now a theorem of Kostant on Lie algebra cohomology,
we obtain explicitly computable στ,k ∈ M̂ and λτ,k ∈ R+ such that the kernel kτt can be
rewritten as

kτt =
n∑
k=0

(−1)k+1e−tλ
2
τ,kh

στ,k
t , (1.13)

where the functions h
στ,k
t are as above. Let MI(t, τ) be the Mellin transform of I(kτt )

evaluated at 0. Then one has

log T
(2)
X (τ) =

1

2
MI(t, τ).

Let ∆τ (k) = A(στ,k) + λ2
τ,k. We will show that detgr,u(∆τ (k)) is canonically defined. From

(1.13) one can easily deduce the equality

TX,u(τ) =
n∏
k=0

detgr,u(∆τ (k))(−1)k .

Now we let τ = τ(m) and apply (1.10). The term MI(t, τ(m)) can be identified with the
corresponding weighted sum of the LMI(λτ(m),k, στ(m),k) and using the Harish-Chandra
Plancherel-Theorem we deduce equation (1.5) and equation (1.6). Thus in order to prove
our main result we have to show that the weighted sum of all other terms in (1.10) for
σ = στ(m),k, s = λτ(m),k is of lower order. Firstly, the contribution of the Selberg zeta
functions decays exponentially. This proves Theorem 1.5, since all other terms vanish in
the compact case. To estimate the other terms in the non-compact case, we again use Hoff-
mann’s computation of the Fourier transform of the weighted orbital integral as well as
the explicit formulas for the standard Knapp-Stein intertwining operators. This completes
the proof of Theorem 1.3 and of Theorem 1.4.
Let us remark that one can also prove our main result about the asymptotic behaviour
of the analytic torsion without using the Selberg zeta functions. The proof is then nearly
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the same, in particular, the treatment of the identity contribution, which is the leading
term, of the weighted orbital integrals and of the Knapp-Stein intertwining term is unal-
tered. For more details, we refer the reader to [MP2]. However, if one wants to obtain a
remainder estimate for the cocompact case as in Theorem 1.5 without using the Selberg
zeta functions, one has to impose additional arguments. This was done in [MP1].

To prove Theorem 1.6, we combine our previous results with Wotzke’s methods for the
proof of equation (1.8). For the 3-dimensional case, these methods are described in [Mü4].
Firstly, as in [Mü4], [Wo], a Theorem of Kostant on Lie algebra cohomology gives

TX(τ(m))2 =
detgr(A(σm) + (m+ 1)2)

detgr(A(σm+1) +m2)
(1.14)

and

Rτ (m)Rτ(m)θ(s) =
S(s+m+ 1, σm)S(s−m− 1, σm)

S(s+m,σm+1)S(s−m,σm+1)
. (1.15)

To relate the behaviour of Rτ (m)Rτ(m)θ(s) at 0 to TX(τ(m)) we now want to apply our
determinant formula from equation (1.10) to the right hand side of equation (1.15) and
combine the result with equation (1.14). However, in contrast to the situation on a closed
hyperbolic 3-manifold, this is not possible directly since in the non-compact case equation
(1.10) only holds for Re(s) > 0, Re(s2) > 0. Thus we additionally have to apply a
functional equation for those Selberg zeta functions on the right hand side of (1.15) which
have a negative argument for s in a neighbourhood of 0. Via the functional equation, the
C-matrices appear in Theorem 1.6. We will prove a functional equation for the symmetric
Selberg zeta function in section 10.2. In principle, our proof of this functional equation
and thus also a theorem similar to Theorem 1.6 carry over to higher dimensions. However,
the results would be rather complicated.

1.3 Structure of this thesis

This thesis is organized as follows. In section 2 we fix notations and collect some basic
facts about representation theory which are used throughout this thesis. In section 3 we
introduce Ruelle and Selberg zeta functions and establish their convergence in some half
space. Section 4 is devoted to the right regular representation of G on L2(Γ\G). We first
review its decomposition into a discrete and a continuous part. Then we describe some
basic properties of the C-matrix associated to the Eisenstein series which are needed in
our setting. Finally we recall the MaaßSelberg relations which give an explicit formula for
the inner product of truncated Eisenstein series. In section 5 we introduce the relative
trace of locally invariant differential operators which act on locally homogeneous vector
bundles over X. We first introduce these operators and compute the Fourier transform
of the associated heat-kernels on the universal covering. Then we study certain ordinary
differential operators on the cusp which are induced by the locally invariant differential
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operators and compute the local trace of their heat kernels. Finally we define the relative
trace and show that it equals the spectral side of the Selberg trace formula applied to
the heat kernel on the universal covering space of X up to a term which can be computed
explicitly. In section 6 we state the Selberg trace formula in its invariant form and the non-
invariant trace formula for the relative trace of the locally invariant differential operators.
We also study the Fourier transform of the distribution I which appears in the trace
formula. The proof of Theorem 1.1 will be established in section 7. In section 8 we will
study the relative determinant of locally invariant differential operators and prove equation
(1.10). In order to define the relative determinant, one needs a short time asymptotic
expansion of the relative heat trace which will also be established. In section 9 we introduce
the relative analytic torsion as well as the L2-torsion and prove our main results about the
asymptotic behaviour of the analytic torsion. In the final section 10 we apply our results
to the 3-dimensional case and prove Theorem 1.6 and Corollary 1.7.
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2 Preliminaries

In this section we will establish some notation and recall some basic facts about represen-
tations of the involved Lie groups.

2.1

For d ∈ N, d = 2n + 1 we let G := Spin(d, 1). The group G is defined as the universal
covering group of SO0(d, 1), where SO0(d, 1) is the identity component of SO(d, 1). Let
K := Spin(d). Then K is a maximal compact subgroup of G. Put X̃ := G/K. Let

G = NAK

be the standard Iwasawa decomposition of G and let M be the centralizer of A in G. Then
we have M = Spin(d − 1). The Lie algebras of G,K,A,M and N will be denoted by
g, k, a,m and n, respectively. Define the standard Cartan involution θ : g→ g by

θ(Y ) = −Y t, Y ∈ g.

The lift of θ to G will be denoted by the same letter θ. Let

g = k⊕ p

be the Cartan decomposition of g with respect to θ. Let x0 = eK ∈ X̃. Then we have a
canonical isomorphism

Tx0X̃
∼= p. (2.1)

We define a symmetric bilinear form 〈·, ·〉 on g by

〈Y1, Y2〉 :=
1

2(d− 1)
B(Y1, Y2), Y1, Y2 ∈ g. (2.2)

By (2.1) the restriction of 〈·, ·〉 to p defines an inner product on Tx0X̃ and therefore an
invariant metric on X̃. This metric has constant curvature −1 and X̃, equipped with this
metric, is isometric to the hyperbolic space Hd.

2.2

Denote by Ei,j the matrix in g whose entry at the i-th row and j-th column is equal to 1
and all of its other entries are equal to 0. Let

Hi :=

{
E1,2 + E2,1, i = 1;√
−1(E2i−1,2i − E2i,2i−1), i = 2, . . . n+ 1.

(2.3)

Then
a = RH1
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and
b = R

√
−1H2 + · · ·+ R

√
−1Hn+1

is the standard Cartan subalgebra of m. Moreover b is also a Cartan subalgebra of k, and

h := a⊕ b

is a Cartan-subalgebra of g. Define ei ∈ h∗C, i = 1, . . . , n+ 1, by

ei(Hj) = δi,j, 1 ≤ i, j ≤ n+ 1.

Then the sets of roots of (gC, hC), (kC, bC) and (mC, bC) are given by

∆(gC, hC) = {±ei ± ej, 1 ≤ i < j ≤ n+ 1}
∆(kC, bC) = {±ei, 2 ≤ i < j ≤ n+ 1} t {±ei ± ej, 2 ≤ i < j ≤ n+ 1}
∆(mC, bC) = {±ei ± ej, 2 ≤ i < j ≤ n+ 1}

(see [Kn1, Section IV,2]). We fix positive systems of roots by

∆+(gC, hC) := {ei + ej, i 6= j} t {ei − ej, i < j}
∆+(kC, bC) := {ei : 2 ≤ i ≤ n+ 1} t {ei + ej, i 6= j, i, j ≥ 2} t {ei − ej, 2 ≤ i < j}
∆+(mC, bC) := {ei + ej, i 6= j, i, j ≥ 2} t {ei − ej, 2 ≤ i < j}.

We let ∆+(gC, aC) be the set of roots of ∆+(gC, hC) which do not vanish on aC. Then

∆+(gC, aC) = {e1 ± ej : j = 2, . . . , n+ 1}.

For α ∈ ∆+(gC, hC) there exists a unique H ′α ∈ hC such that B(H,H
′
α) = α(H) for all

H ∈ hC. One has α(H
′
α) 6= 0. We let

Hα :=
2

α(H ′α)
H
′

α.

One easily sees that

H±ei±ej = ±Hi ±Hj. (2.4)

For j = 1, . . . , n+ 1 we let

ρj := n+ 1− j.

Then the half-sum of positive roots are given by

ρG :=
1

2

∑
α∈∆+(gC,hC)

α =
n+1∑
j=1

ρjej (2.5)

16



and

ρK :=
1

2

∑
α∈∆+(kC,bC)

α =
n+1∑
j=2

(ρj + 1/2)ej

and

ρM :=
1

2

∑
α∈∆+(mC,bC)

α =
n+1∑
j=2

ρjej. (2.6)

We let WG be the Weyl-group of ∆(gC, hC).

2.3

Let Z
[

1
2

]j
be the set of all (k1, . . . , kj) ∈ Qj such that either all ki are integers or all ki

are half integers. Then the finite dimensional irreducible representations τ ∈ Ĝ of G are
parametrized by their highest weights

Λ(τ) =k1(τ)e1 + · · ·+ kn+1(τ)en+1, (k1(τ), . . . kn+1(τ)) ∈ Z
[

1

2

]n+1

,

k1(τ) ≥ k2(τ) ≥ · · · ≥ kn(τ) ≥ |kn+1(τ)| .
(2.7)

Furthermore the finite dimensional representations ν ∈ K̂ of K are parametrized by their
highest weights

Λ(ν) =k2(ν)e2 + · · ·+ kn+1(ν)en+1, (k2(ν), . . . kn+1(ν)) ∈ Z
[

1

2

]n
,

k2(ν) ≥ k2(ν) ≥ · · · ≥ kn(ν) ≥ kn+1(ν) ≥ 0.

(2.8)

Finally the finite dimensional irreducible representations σ ∈ M̂ of M are parametrized by
their highest weights

Λ(σ) =k2(σ)e2 + · · ·+ kn+1(σ)en+1, (k2(σ), . . . , kn+1(σ)) ∈ Z
[

1

2

]n
,

k2(σ) ≥ k3(σ) ≥ · · · ≥ kn(σ) ≥ |kn+1(σ)| .
(2.9)

For τ ∈ Ĝ let τθ := τ ◦ θ. Let Λ(τ) denote the highest weight of τ as in (2.7). Then the
highest weight Λ(τθ) of τθ is given by

Λ(τθ) = k1(τ)e1 + · · ·+ kn(τ)en − kn+1(τ)en+1. (2.10)

Moreover, by the Weyl dimension formula [Kn1, Theorem 4.48] we have

dim(τ) =
∏

α∈∆+(gC,hC)

〈Λ(τ) + ρG, α〉
〈ρG, α〉

=
n∏
i=1

n+1∏
j=i+1

(ki(τ) + ρi)
2 − (kj(τ) + ρj)

2

ρ2
i − ρ2

j

.

(2.11)
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Similarly, for σ ∈ M̂ with highest weight Λ(σ) ∈ b∗C as in (2.9) we have

dim(σ) =
∏

α∈∆+(mC,bC)

〈Λ(σ) + ρM , α〉
〈ρM , α〉

=
n∏
i=2

n+1∏
j=i+1

(ki(σ) + ρi)
2 − (kj(σ) + ρj)

2

ρ2
i − ρ2

j

.

(2.12)

Finally, if ν ∈ K̂ is of highest weight Λ(ν) ∈ b∗C as in (2.8) one has

dim(ν) =
∏

α∈∆+(kC,bC)

〈Λ(ν) + ρK , α〉
〈ρK , α〉

=
n+1∏
i=2

(ki(ν) + ρi + 1/2)
n+1∏
j=i+1

(ki(ν) + ρi + 1/2)2 − (kj(ν) + ρj + 1/2)2

(ρi + 1/2)2 − (ρj + 1/2)2
. (2.13)

Let M ′ be the normalizer of A in K and let W (A) = M ′/M be the restricted Weyl-
group. It has order two and it acts on the finite-dimensional representations of M as
follows. Let w0 ∈ W (A) be the non-trivial element and let m0 ∈M ′ be a representative of
w0. Given σ ∈ M̂ , the representation w0σ ∈ M̂ is defined by

w0σ(m) = σ(m0mm
−1
0 ), m ∈M.

Let Λ(σ) = k2(σ)e2 + · · · + kn+1(σ)en+1 be the highest weight of σ as in (2.9). Then the
highest weight Λ(w0σ) of w0σ is given by

Λ(w0σ) = k2(σ)e2 + · · ·+ kn(σ)en − kn+1(σ)en+1. (2.14)

2.4

Next we describe the restrictions of the representations to subgroups. Firstly, for the
groups G and K we have the following proposition.

Proposition 2.1. Let τ ∈ Ĝ be of highest weight k1(τ)e1 + · · ·+ kn+1(τ)en+1 as in (2.7).
Then τ decomposes with multiplicity one into the representations ν ∈ K̂ with highest
weight k2(ν)e2 + · · ·+kn+1(ν)en+1 as in (2.8) such that kj−1(τ) ≥ kj(ν) ≥ |kj(τ)| for every
j ∈ {2, . . . , n + 1} and such that all kj(ν) are integers if all kj(τ) are integers resp. such
that all kj(ν) are half-integers if all kj(τ) are half integers.

Proof. [GW][Theorem 8.1.4]

Secondly, for the groups K and M one has the following proposition.

Proposition 2.2. Let ν ∈ K̂ with highest weight k2(ν)e2 + · · · + kn+1(ν)en+1 as in (2.8).
Then ν decomposes with multiplicity one into representations σ ∈ M̂ with highest weight
k2(σ)e2 + · · ·+ kn+1(σ)en+1 such that kj(ν) ≥ |kj(σ)| for every j ∈ {2, . . . , n+ 1} and such
that all kj(σ) are integers if all kj(ν) are integers resp. such that all kj(σ) are half integers
if all kj(σ) are half integers.
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Proof. [GW][Theorem 8.1.3]

Let κ be the spin-representation of K over the spinor space ∆2n as in [Fri, page 14].
Then κ is the representation with highest weight

Λ(κ) =
1

2
e2 + · · ·+ 1

2
en+1. (2.15)

By Proposition 2.2 there is an M -invariant splitting

∆2n = ∆2n
+ ⊕∆2n

−

such that the restriction of κ to M acts on ∆2n
+ as κ+ and on ∆2n

− as κ−, where κ+ is
the representation with highest weight 1

2
e2 + · · ·+ 1

2
en+1 and κ− is the representation with

highest weight 1
2
e2 + · · ·+ 1

2
en− 1

2
en+1. Let R(K) and R(M) be the representation rings of

K and M . Let ι : M −→ K be the inclusion and let ι∗ : R(K) −→ R(M) be the induced
map. If R(M)W (A) is the subring of W (A)-invariant elements of R(M), then clearly ι∗

maps R(K) into R(M)W (A).

Proposition 2.3. The map ι is an isomorphism from R(K) onto R(M)W (A). Explicitly,
let σ ∈ M̂ be of highest weight Λ(σ) as in (2.9) and assume that kn+1(σ) > 0. Let ν(σ) ∈ K̂
be the representation of highest weight

Λ (ν(σ)) :=
n+1∑
j=2

(kj(σ)− 1/2) ej. (2.16)

Then one has

σ − w0σ =
(
κ+ − κ−

)
⊗ ι∗ν(σ).

Moreover, ν(σ)⊗ κ splits as ν(σ)⊗ κ = ν+(σ)⊕ ν−(σ) such that

σ + w0σ = ι∗ν+(σ)− ι∗ν−(σ).

Here one has

ν±(σ) =
∑

µ∈{0,1}n, c(µ)=±1
Λ(σ)−µ as in (2.8)

(−1)c(µ)ν (Λ(σ)− µ) , (2.17)

where c(µ) := #{1 ∈ µ} and where ν (Λ(σ)− µ) denotes the representation of K with
highest weight Λ(σ)− µ.

Proof. This is proved by Bunke and Olbrich, [BO] , Proposition 1.1.

19



2.5

Measures are normalized as follows. Let ρ := ne1. Every a ∈ A can be written as
a = exp log a, where log a ∈ a is unique. For t ∈ R, we let a(t) := exp (tH1). If g ∈ G, we
define n(g) ∈ N , H(g) ∈ R and κ(g) ∈ K by

g = n(g)a(H(g))κ(g).

Normalize the Haar-measure on K such that K has volume 1. We let

〈X, Y 〉θ := − 1

2(d− 1)
B(X, θ(Y )). (2.18)

We fix an isometric identification of R2n with n with respect to the inner product 〈·, ·〉θ. We
give n the measure induced from the Lebesgue measure under this identification. Moreover,
we identify n and N by the exponential map and we will denote by dn the Haar measure
on N induced from the measure on n under this identification. We normalize the Haar
measure on G by setting∫

G

f(g)dg =

∫
N

∫
R

∫
K

e−2ntf(na(t)k)dkdtdn. (2.19)

Let Γ ⊂ G be a discrete subgroup. We equip Γ\G and X̃ with the induced quotient
measures, where Γ carry the counting measure. Let π : G → Γ\G be the projection. For
f ∈ Cc(G) define f̄ : Γ\G→ C by

f̄(π(g)) :=
∑
γ∈Γ

f(γg).

Then the quotient measure dx on Γ\G is uniquely characterized by the property that for
f ∈ Cc(G) one has ∫

G

f(g)dg =

∫
Γ\G

f̄(x)dx

for f ∈ CC(G). A corresponding equality holds for the quotient measure on X̃. We note
the following lemma.

Lemma 2.4. Let Γ′ ⊂ Γ be a subgroup. Let f : Γ′\G→ R+ be measurable. Let π : Γ′\G→
Γ\G be the projection. Then one has∫

Γ′\G
f(y)dy =

∫
Γ\G

∑
γ∈Γ′\Γ

f(γ′π−1x)dx.

Proof. By [Ra, Lemma 1.1] the map f 7→ f̄ is surjective. This easily implies the proposi-
tion.
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2.6

We parametrize the principal series as follows. Given σ ∈ M̂ with (σ, Vσ) ∈ σ, let Hσ

denote the space of measurable functions f : K → Vσ satisfying

f(mk) = σ(m)f(k), ∀k ∈ K, ∀m ∈M, and

∫
K

‖ f(k) ‖2 dk =‖ f ‖2<∞.

Then for λ ∈ C and f ∈ Hσ let

πσ,λ(g)f(k) := e(iλ+n)H(kg)f(κ(kg)).

Recall that the representations πσ,λ are unitary iff λ ∈ R. Moreover, for λ ∈ R− {0} and

σ ∈ M̂ the representations πσ,λ are irreducible and πσ,λ and πσ′,λ′ , λ, λ
′ ∈ C are equivalent

iff either σ = σ′, λ = λ′ or σ′ = w0σ, λ′ = −λ. The restriction of πσ,λ to K coincides
with the induced representation IndKM(σ). Hence by Frobenius reciprocity [Kn1, p.208] for
every ν ∈ K̂ one has

[πσ,λ : ν] = [ν : σ] . (2.20)

2.7

We establish some facts about infinitesimal characters. Let U(gC) denote the universal
enveloping algebra of gC and let Z(U(gC)) be its center. Let Ω ∈ Z(U(gC)) be the Casimir
element with respect to the Killing form normalized as in (2.2). Let I(hC) be the Weyl-
group invariant elements of the symmetric algebra S(hC) of hC. Let

γ : Z(U(gC)) −→ I(hC) (2.21)

be the Harish-Chandra isomorphism [Kn1, Section VIII,5]. Every Λ ∈ h∗C defines a homo-
morphism

χΛ : Z(U(gC)) −→ C

by

χΛ(Z) := Λ(γ(Z)).

Let τ be an irreducible finite-dimensional representation of G with highest weight Λ(τ). Its
infinitesimal character will also be denoted by τ , i.e. every Z ∈ Z(U(gC)) acts by τ(Z) · Id.
It follows from the definition of γ that

τ(Z) = χΛ(τ)+ρG(Z) = χw(Λ(τ)+ρG)(Z); Z ∈ Z(U(gC)), w ∈ W. (2.22)

Moreover, a standard computation gives

γ(Ω) =
n+1∑
j=1

H2
j −

n+1∑
j=1

ρ2
j , (2.23)
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where the Hj are defined by (2.3). Thus, if the highest weight Λ(τ) of τ is as in (2.7) one
obtains

τ(Ω) =
n+1∑
j=1

(kj(τ) + ρj)
2 −

n+1∑
j=1

ρ2
j (2.24)

Let ΩM be the Casimir operator of m with respect to the restriction of the normalized
killing form on g to m. Then ΩM lies in the center of U(mC). If σ ∈ M̂ , its infinitesimal
character will be denoted by σ too. Then if Λ(σ) is as in (2.9), the same argument as
above gives

σ(ΩM) =
n+1∑
j=2

(kj(σ) + ρj)
2 −

n+1∑
j=2

ρ2
j . (2.25)

Finally let ΩK be the Casimir operator of k with respect to the restriction of the normalized
killing form on g to k. Then ΩK belongs to Z(U(kC)), the center of the universal enveloping
algebra of kC. If ν ∈ K̂, we will denote the infinitesimal character of ν by ν too. If the
highest weight Λ(ν) of ν is as in (2.8), an argument analogous to the one above gives

ν(ΩK) =
n+1∑
j=2

(
kj(ν) + ρj +

1

2

)2

−
n+1∑
j=2

(
ρj +

1

2

)2

. (2.26)

2.8

Now we come to the infinitesimal character of πσ,λ.

Proposition 2.5. Let σ ∈ M̂ with highest weight Λ(σ) ∈ b∗C. Then the infinitesimal
character of πσ,λ equals χΛ(σ)+ρM+iλe1.

Proof. [Kn1], Proposition 8.22.

Corollary 2.6. For σ ∈ M̂ with highest weight Λ(σ) given by (2.9), let

c(σ) :=
n+1∑
j=2

(kj(σ) + ρj)
2 −

n+1∑
j=1

ρ2
j . (2.27)

Then for the Casimir element Ω ∈ Z(gC) one has

πσ,λ(Ω) = −λ2 + c(σ).

Proof. This follows form equation (2.23) and proposition 2.5.
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2.9

Let τ ∈ Ĝ and let Λ(τ) = τ1e1 + · · ·+ τn+1en+1 be its highest weight. For w ∈ W let l(w)
denote its length with respect to the simple roots which define the positive roots above.
Let

W 1 := {w ∈ WG : w−1α > 0 ∀α ∈ ∆(mC, bC)}

Let Vτ be the representation space of τ . For k = 0, . . . , 2n let Hk(n, Vτ ) be the cohomology
of n with coefficients in Vτ . Then Hk(n, Vτ ) is an MA module. In our case, the theorem
of Kostant states:

Proposition 2.7. In the sense of MA-modules one has

Hk(n;Vτ ) ∼=
∑
w∈W 1

l(w)=k

Vτ(w),

where Vτ(w) is the MA module of highest weight w(Λ(τ) + ρG)− ρG.

Proof. See [BW, Theorem III.3].

Corollary 2.8. As MA-modules we have

2n⊕
k=0

(−1)kΛkn∗ ⊗ Vτ =
⊕
w∈W 1

(−1)l(w)Vτ(w).

Proof. This follows from proposition 2.7 and the Poincare principle [Ko, (7.2.3)].

For w ∈ W 1 let στ,w be the representation of M with highest weight

Λ(στ,w) := w(Λ(τ) + ρG)|bC − ρM (2.28)

and let λτ,w ∈ C such that
w(Λ(τ) + ρG)|aC = λτ,we1. (2.29)

For k = 0, . . . n let

λτ,k = τk+1 + n− k (2.30)

and let στ,k be the representation of G with highest weight

Λ(στ,k) := (τ1 + 1)e2 + · · ·+ (τk + 1)ek+1 + τk+2ek+2 + · · ·+ τn+1en+1. (2.31)

Then by the computations in [BW, Chapter VI.3] one has

{(λτ,w, στ,w, l(w)) : w ∈ W 1} = {(λτ,k, στ,k, k) : k = 0, . . . , n}
t {(−λτ,k, w0στ,k, 2n− k) : k = 0, . . . , n}.

(2.32)
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Remark 2.9. Corollary 2.8 was first proved by U. Bröcker[Br] by an elementary but tedious
computation without using the theorem of Kostant. Also the convenient notation στ,k and
λτ,k is due to him.

We will also need the following proposition.

Proposition 2.10. For every w ∈ W 1 one has

τ(Ω) = λ2
τ,w + c(στ,w).

Proof. Using (2.22) and (2.23) one gets

τ(Ω) =χΛ(τ)+ρG(Ω) = χw(Λ(τ)+ρG)(Ω) = χΛ(στ,w)+ρM+λτ (w)e1(Ω) = λ2
τ,w + c(στ,w).

2.10

For σ ∈ M̂ and λ ∈ R let µσ(λ) be the Plancherel measure associated to πσ,λ. Then, since
rk(G) > rk(K), µσ(λ) is a polynomial in λ of degree 2n. Let 〈·, ·〉 be the bilinear form
defined by (2.2). Let Λ(σ) ∈ b∗C be the highest weight of σ as in (2.9). Then by Theorem
13.2 in [Kn1] there exists a constant c(n) ∈ R, c(n) 6= 0 such that one has

µσ(λ) = −c(n)
∏

α∈∆+(gC,hC)

〈iλe1 + Λ(σ) + ρM , α〉
〈ρG, α〉

.

By the computations in [Ol] and our normalization one has

c(n) = (−1)n+1 1

2 vol(Sd)
, (2.33)

where Sd is the d-dimensional Euclidean unit sphere. For z ∈ C let

Pσ(z) = −c(n)
∏

α∈∆+(gC,hC)

〈ze1 + Λ(σ) + ρM , α〉
〈ρG, α〉

. (2.34)

One easily sees that

Pσ(z) = Pw0σ(z) = Pσ(−z). (2.35)

2.11

We let Γ be a discrete, torsion free subgroup of G with vol(Γ\G) <∞. Let X := Γ\G/K.
We equip X with the quotient measure induced from G and with the Riemannian metric

24



induced from X̃. Let P be a fixed set of representatives of Γ-inequivalent cuspidal parabolic
subgroups of G. Then P is finite. Let p := #P. Let

P0 := MAN.

Without loss of generality we will assume that P0 ∈ P. For every P ∈ P, there exists a
kP ∈ K such that P = NPAPMP with NP = kPNk

−1
P , AP = kPAk

−1
P , MP = kPMk−1

P . We
let kP0 = 1. We will assume from now on that for each P ∈ P one has

Γ ∩ P = Γ ∩NP . (2.36)

Since NP is abelian, Γ∩NP\N ∼= T 2n, the flat 2n-torus. For P ∈ P let aP (t) := kPa(t)k−1
P .

If g ∈ G, we define nP (g) ∈ NP , HP (g) ∈ R and κP (g) ∈ K by

g = nP (g)aP (HP (g))κP (g).

Now for each P ∈ P define an identification ιP of (0,∞) with AP by ιP (t) := aP (log(t)).
For Y > 0, let A0

P [Y ] := ιP (Y,∞) and AP [Y ] := ιP [Y,∞). Then there exists a Y0 > 0 and
for every Y ≥ Y0 a compact connected subset C(Y ) of G, C(Y ′) ⊇ C(Y ) for Y ′ ≥ Y such
that in the sense of a disjoint union one has

G = Γ · C(Y ) t
⊔
P∈P

Γ ·NPA
0
P [Y ]K (2.37)

and such that

γ ·NPA
0
P [Y ]K ∩NPA

0
P [Y ]K 6= ∅ ⇔ γ ∈ Γ ∩NP . (2.38)

The measures on NP and AP will be the measures induced from N and A via the con-
jugation with kP . Let f be integrable over Γ\G. Then identifying f with a measurable
function on G it follows from (2.19), (2.37) and (2.38) that for every Y ≥ Y0 one has∫

Γ\G
f(x)dx =

∫
C(Y )

f(g)dg +
∑
P∈P

∫
Γ∩NP \NP

∫ ∞
log Y

∫
K

e−2ntf(nPaP (t)k)dnPdtdk (2.39)

Moreover one clearly has ∫
Γ\G

f(x)dx = lim
Y→∞

∫
C(Y )

f(x)dx. (2.40)

If for Y ≥ Y0 one lets

FP,Y := AP [Y ]× Γ ∩NP\NP
∼= [Y,∞)× Γ ∩NP\NP (2.41)

it follows from (2.37) and (2.38) that there exists a compact manifold X(Y ) with smooth
boundary such that X has a decomposition as

X = X(Y ) ∪
⊔
P∈P

FP,Y (2.42)
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with X(Y ) ∩ FP,Y = ∂X(Y ) = ∂FP,Y and FP,Y ∩ FP ′,Y = ∅ if P 6= P ′. Let gNP be the
metric on ΓNP \NP induced by − 1

4n
Bθ. Then the metric on FP,Y is given by

1

y2
dy2 +

1

y2
gNP . (2.43)

Finally, since NP is abelian, one can canonically identify ΓNP \NP with T 2n and under this
identification gNP induces the standard metric on T 2n.

If P ∈ P, P ′ ∈ P we will say that σP ∈ M̂P and σP ′ ∈ M̂P ′ are associated if for all
mP ′ ∈ MP ′ one has σP ′(mP ′) = σP (kPk

−1
P ′mP ′kP ′k

−1
P ). For σP ∈ M̂P we will denote by σ

the set of all σP ′ ∈ M̂P ′ associated to σP , where P ′ runs through P.

3 Ruelle and Selberg zeta functions

In this section we give a preliminary examination of the Ruelle and Selberg zeta functions.
Let C(Γ) denote the set of conjugacy classes of Γ. Then there is a canonical one-to one
correspondence between C(Γ) and the set of free homotopy classes of closed paths in X.
For γ ∈ Γ we will denote its conjugacy class by [γ]. Moreover, by f([γ]) we will denote the
free homotopy class of closed paths associated to [γ]. Now for [γ] ∈ C(Γ) we let

`(γ) := inf
x∈X̃

d(x, γx), (3.1)

where `(γ) is well defined since the metric on X̃ is Γ-invariant. Then `(γ) is the infimum
over all lengths of the piecewise smooth curves belonging to f([γ]).
We let C(Γ)s be the set of conjugacy classes [γ] such that γ is semisimple. Moreover we
let C(Γ)par be the set of conjugacy classes [γ] such that γ is Γ-conjugate to an element of
Γ ∩NP , P ∈ P. Then by [War1, Lemma 5.3] and (2.36) we have

C(Γ) = C(Γ)s ∪ C(Γ)par, C(Γ)s ∩ C(Γ)par = [1] .

Finally, the semisimple elements of Γ will be denoted by Γs. Now let [γ] ∈ C(Γ)s. By the
G-invariance of the metric d we have

`(γ) = inf
xK∈X̃

d(1, x−1γx). (3.2)

By Proposition 1.4.3.4 in [War2] the set {gγg−1 : g ∈ G} is closed in G. Thus, since Γ
is torsion-free, for the non-trivial semisimple conjugacy classes [γ] we have `(γ) > 0 and
the infimum in (3.1) is attained. We shall now recall its computation. We start with the
following lemma.

Lemma 3.1. Let γ ∈ Γs−{1}. Then there exists a g ∈ G, a mγ ∈M and a t(γ) > 0 such
that g−1γg = mγ exp tγH1. Here tγ is unique and mγ is determined up to conjugacy in M .
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Proof. This follows from [Wal, Lemma 6.6]. The proof given there does not use that Γ is
cocompact.

Now we can compute `(γ) explicitly for every [γ] ∈ C(Γ)s.

Proposition 3.2. Let [γ] ∈ C(Γ)s be non-trivial. Then we have `(γ) = tγ, where tγ is as
in Lemma 3.1. Moreover there exists a unique closed geodesic c[γ] ∈ f([γ]) of length `(γ).
Explicitly, if g ∈ G is such that γ = g exp tγH1mγg

−1 and if π : G → X is the projection,
the curve c[γ] : [0, `(γ)]→ X is given as c[γ](t) := g exp tH1.

Proof. By Lemma 3.1 there exists a g ∈ G such that g exp (tγH1)mγg
−1 = γ. Let π : G→

X̃ be the projection. Define a curve c̃[γ] : R → X̃ by c̃[γ](t) := π(g exp tH1). Then c̃[γ] is

a geodesic and γ translates c̃[γ] as γ · c̃[γ](t) = c̃[γ](tγ + t). Thus, since X̃ is of negative
curvature, we can apply [BON, Proposition 4.2] and conclude that the elements which
minimize (3.1) are exactly the elements c̃[γ](t), t ∈ R. It follows that `(γ) = tγ and that
c[γ] is unique and is of the required form.

We will also need the following definition.

Definition 3.3. A non-trivial semisimple conjugacy class [γ] ∈ C(Γ)s− [1] is called prime
if `(γ) is the smallest period of the geodesic c[γ] , i.e. if c[γ](t+ s) = c[γ](t) for all t implies
that s = k · `(γ) with k ∈ Z. A semisimple non-trivial element γ ∈ Γ is called prime if [γ]
is prime.

If φ : [0, t0] → X is a closed curve and n ∈ N, we will denote by φn the closed curve
from [0, nt0] to X which is given as φn(t) := φ(s(t)), where s(t) ∈ [0, t0] is such that
t = s(t) + kt0, k ∈ N0. One has the following proposition.

Proposition 3.4. Let γ ∈ Γ − {1} be semisimple. Let Z(γ) be the centralizer of γ in Γ.
Then Z(γ) is infinite cyclic. Moreover there exists a semisimple prime element γ0 ∈ Γ

such that Z(γ) is generated by γ0 and such that γ = γ
nΓ(γ)
0 with nΓ(γ) ∈ N. One has

`(γ) = nΓ(γ)`(γ0) and c[γ] = (c[γ0])
nΓ(γ).

Proof. By Lemma 3.1 and Proposition 3.2 we have γ = g exp (`(γ)H1)mγg
−1 for an element

g ∈ G. As in the proof of Lemma 4.1 in [Ga] it now follows easily that there exists a

γ0 = g exp (`(γ0)H1)mγg
−1 ∈ Γ which generates Z(γ) and such that γ = γ

nΓ(γ)
0 for a

nΓ(γ) ∈ N. If one uses Proposition 3.2, the proof is completed.

Apparently the element γ0 from Proposition 3.4 is unique and thus the element nΓ(γ)
is well-defined. Now for the parabolic elements we have the following easy proposition.

Proposition 3.5. Let [γ] ∈ C(Γ)par. Then `(γ) = 0.

Proof. By (2.36) we can assume that there is a P ∈ P such that γ ∈ Γ ∩ NP . Write γ =
expYγ, where Yγ ∈ nP . Then for every t ∈ R the curve c(s) := exp (sYγ)aP (t)K, s ∈ [0, 1]
connects aP (t)K and γaP (t)K and is of length e−t ‖Yγ‖. This proves the proposition.
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Next we turn to a preliminary estimation of the growth of the numbers `(γ), where
[γ] ∈ C(Γ)s. This is crucial in order to ensure the convergence of the infinite products which
define the Ruelle and Selberg zeta functions in some half space. We keep the notations of
section 2.11. Let π : G → G/K be the projection. Using (2.37) one can show that there

exist an u0 > 0, a compact connected set F(u0) ⊂ X̃ and for every P ∈ P a compact
connected subset ωP ⊂ NP such that the set

F := F(u0) t
⊔
P∈P

π(ωPAP [exp(u0)])

satisfies

X̃ = Γ · F ; vol(F) = vol(F̊) <∞; γF̊ ∩ F̊ = ∅, γ ∈ Γ− 1. (3.3)

Here F̊ denotes the interior of F . For u ≥ u0 we put

F(u) := F −
⊔
P∈P

π(ωPAP [expu]). (3.4)

Then F(u) is a compact connected set too. For x ∈ X̃ and r > 0 we let Br(x) be the
metric ball around x of radius r.

Lemma 3.6. Let x0 ∈ F(u0). Then there exists a constant C such that for all u ≥ u0 one
has

F(u) ⊂ Bu+C(x0). (3.5)

Moreover, for all x, y ∈ X̃ and all P ∈ P, x = nP (x)aP (x)K, y = nP (y)aP (y)K one has

d(x, y) ≥ d(aP (x)K, aP (y)K) = |aP (x)− aP (y)| . (3.6)

Proof. Since F(u0) is compact, there exists a constant C1 such that F(u0) ⊂ BC1(x0).
On the other hand let P ∈ P and let y ∈ π(ωPAP [u0]). Write x0 = nP (x0)aP (x0)K,
y = nP (y)aP (y)K. Then one has

d(x0, y) ≤ d(nP (x0)aP (x0)K,nP (x0)aP (y)K) + d(nP (x0)aP (y)K,nP (y)aP (y)K)

= d(aP (x0)K, aP (y)K) + d(1K, aP (y)−1nP (x0)−1nP (y)aP (y)K)

≤ d(1K, aP (x0)K) + d(1K, aP (y)) + d(1K, aP (y)−1nP (x0)−1nP (y)aP (y)K).

Since HP (y) > 0 by assumption and since nP (y) ∈ ωP , there exists a compact subset C of

X̃ such aP (y)−1nP (x0)−1nP (y)aP (y)K ∈ C for every y ∈ π (ωPAP [u0]). Thus there exists
a constant C ′1 such that for every u ≥ u0 and every y ∈ π(ωPAP [u0])−π(ωPAP [u]) one has

d(x0, y) ≤ C ′1 + u.
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This proves (3.5). For every P ∈ P one can canonically identify X̃ with NPAP . Let
gNP denote the metric on NP as above and let gAP denote the restriction of the metric

on X̃ to AP . Then the metric g on NPAP under this identification becomes g(an) =
eHP (a)gNP (n) × gAP (a). Thus the length of every piecewise smooth curve joining x and y
is greater or equal than the length of its projection to AP which is a curve joining aP (x)
and aP (y). This gives (3.6).

Lemma 3.7. Let x ∈ F . Assume that there exists a γ ∈ Γs, γ 6= 1, such that d(x, γx) ≤ R.
Then one has x ∈ F(u0 +R + 1).

Proof. Let x ∈ F and assume that there exists a P ∈ P such that x ∈ π(ωPAP [u0 +R+1]).
Then if one writes γx = nP (γx)aP (γx)K, equation (2.38) and the fact that γ /∈ Γ ∩ NP

give aP (γx) ≤ u0. Thus by (3.6) one has d(x, γx) > R.

Now we can prove the following proposition about the growth of the length spectrum.

Proposition 3.8. There exists a constant C such that for every R > 0 one has

#{[γ] ∈ C(Γ)s : `(γ) ≤ R} ≤ Ce8nR.

Proof. By (3.3) for every [γ0] ∈ C(Γ)s we have

`(γ0) = inf{d(x, γx) : x ∈ F : γ ∈ [γ0]}.

Thus together with Lemma 3.7 we get

#{[γ] ∈ C(Γ)s − [1] : `(γ) ≤ R} = #{γ ∈ Γs − 1: ∃x ∈ F(u0 +R + 1): d(x, γx) ≤ R}.

We fix an x0 ∈ F(u0). We let C be as in (3.5) and we let C1 := C + u0 + 1. Let γ ∈ Γs− 1
and x ∈ F(u0 + R + 1) such that d(x, γx) ≤ R. Let y ∈ γ · F(u0 + R + 1). Then using
(3.5) and the Γ-invariance of d we obtain

d(y, x0) ≤ d(y, γx0) + d(γx0, γx) + d(γx, x) + d(x, x0) ≤ 4(R + C1).

In other words, we have ⋃
{γ∈Γs−1:

∃x∈F(u0+R+1): d(x,γx)≤R}

γ · F(u0 +R + 1) ⊆ B4(R+C1)(x0). (3.7)

By (3.3) the union on the left hand side of (3.7) is disjoint up to a set of measure zero.
Thus if we let C2 := 1/ vol (F(u0 + 1)) it follows that

#{γ ∈ Γs − 1: ∃x ∈ F(u0 +R + 1): d(x, γx) ≤ R} ≤ C2 volB4(R+C1)(x0).

It follows from (2.19) that there exists a constant C3 such that

vol
(
B4(R+C1)(x0)

)
≤ C3e

8nR.

This proves the proposition.
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Remark 3.9. The estimate in Proposition 3.8 can be improved considerably. Namely,
Gangolli and Warner proved that

#{[γ] ∈ C(Γ)s : `(γ) ≤ R} ∼ e2nR

2nR
, (3.8)

as R→∞, see [GaWa, Proposition 5.4]. However, to prove this asymptotic, Gangolli and
Warner already use the Selberg zeta function associated to the trivial representation of
M . In [GaWa] the convergence of the infinite product defining the Selberg zeta function in
some half-space is established by inserting suitable functions into the Selberg trace formula.
Since we want to keep our work independent from [GaWa] and since we want to obtain a
more direct definition and convergence of Ruelle and Selberg zeta functions, we proved the
weaker estimate in Proposition 3.8 in an elementary way.

Now we can define Ruelle and Selberg zeta functions. With the results just obtained,
the geometric meaning and the basic properties of these functions can be established in
the same way as it was done in [BO, p. 96-99] and we shall follow Bunke and Olbrich here.
Let SX be the unit sphere bundle of X. Then since K acts transitively on the unit-
sphere of p by the adjoint representation, there is a natural isomorphism Γ\G/M ∼= SX.
Namely, if π : G→ X is the projection one sends ΓgM ∈ Γ\G/M to the tangential vector
d
dt
|t=0π(g exp tH1) at π(g). This map is well-defined since M and A commute. Let φ be

the geodesic flow on SX. Then φ is given on Γ\G/M as

φ(t,ΓgM) := φt(Γg) := Γg exp−tH1M, t ∈ R, g ∈ G.

Now let σ be a unitary finite dimensional representation of M on Vσ and let V (σ) :=
Γ\(G×σ Vσ). Then V (σ) is a vector bundle over S(X) ∼= Γ\G/M . Moreover the geodesic
flow φ lifts to a flow φσ on V (σ) by

φσ(t, [Γg, v]) := [Γg exp(−tH1), v] .

Again this map is well-defined since M and A commute. Now consider a free homotopy
class of closed paths in X and write the homotopy class as f([γ]), [γ] ∈ C(Γ). Let `(γ)
be as in (3.2). Then by Proposition 3.2 and Proposition 3.5, `(γ) is not zero if and only
if [γ] ∈ C(Γ)s − [1]. Thus let [γ] ∈ C(Γ)s − [1]. Then by Proposition 3.2 there exists a
g ∈ G such that we can write γ = g exp (`(γ)H1)mγg

−1. If π : G → X is the projection,
the restriction of the geodesic

c[γ] : R→ X, c[γ] = π(g exp(tH1)) (3.9)

to [0, `(γ)] belongs to f([γ]) and is of length `(γ). Via the flow φσ, this closed geodesic
defines an endomorphism µσ(c[γ]) on the fibre of V (σ) over ΓgM . One easily sees that

µσ(c[γ]) ([Γg, v]) = [Γg, σ(mγ)v] .

In particular, if we regard µσ(c[γ]) as an endomorphism on Vσ this endomorphism is inde-
pendent of g, the starting point of the closed geodesic. Now we can define the Ruelle zeta
function.
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Definition 3.10. Let s ∈ C with Re(s) > 8n. Let σ be a finite dimensional representation
of M . Then the Ruelle zeta function associated to σ is defined as

R(s, σ) :=
∏

[γ]∈C(Γ)s−[1]
[γ] prime

det
(
Id−µσ(c[γ])e

−s`(γ)
)

=
∏

[γ]∈C(Γ)s−[1]
[γ] prime

det
(
Id−σ(mγ)e

−s`(γ)
)
.

First we have to assure convergence of the infinite product defining R(s, σ).

Proposition 3.11. The infinite product in Definition 3.10 converges absolutely and locally
uniformly for Re(s) > 8n.

Proof. One has

logR(s, σ) =
∑

[γ]∈C(Γ)s−[1]
[γ] prime

Tr log
(
Id−σ(mγ)e

−s`(γ)
)

=−
∑

[γ]∈C(Γ)s−[1]
[γ] prime

∞∑
k=1

Tr
(
σ(mγ)

k
)
e−ks`(γ)

k

=−
∑

[γ]∈C(Γ)s−[1]

Tr (σ(mγ)) e
−s`(γ)

nΓ(γ)
. (3.10)

For every [γ] ∈ C(Γ)s one can estimate |Tr (σ(mγ))| ≤ dim (σ). Thus by Proposition 3.8
the last series converges absolutely and locally uniformly for Re(s) > 8n.

Next we introduce Selberg zeta functions. Let φ be the geodesic flow as above. Then
if TSX is the tangent-bundle of SX one defines a map dφ by

dφ : R× TSX → TSX; dφ(t, Yx) := dφt(x)(Yx), t ∈ R, x ∈ SX, Y ∈ TxSX.

The isomorphism SX ∼= Γ\G/M induces an isomorphism

TSX ∼= Γ\G×Ad (n⊕ a⊕ n).

With respect to this isomorphism the map dφ is given by

dφ(t, [Γg, Y ]) = [Γg exp−tH1,Ad(exp tH1)Y ] , Y ∈ n⊕ a⊕ n, g ∈ G.

Now the spaces n, a and n are invariant under Ad(A) and Ad(exp tH1) acts on these spaces
by e−t · Id respectively Id respectively et · Id. Thus φ has the Anosov property, i.e. there
exists a dφ-invariant splitting

TSX = T sSX ⊕ T 0SX ⊕ T uSX, (3.11)

such that dφ|T 0SX = Id and such that for every Ys ∈ T sSX, Yu ∈ T uSX, one has
‖dφt(Ys)‖ ∼ ce−t, ‖dφt(Yu)‖ ∼ c′et as t→ 0 with c = ‖Ys‖, c′ = ‖Yu‖. Now let [γ] ∈ Cs(Γ)
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and let c[γ] be the associated closed geodesic of length `(γ). Then dφ induces an endomor-
phism P (c[γ]) on Tc[γ](0)SX which according to the splitting in (3.11) decomposes as

P (c[γ]) = P s(c[γ])⊕ Id⊕P u(c[γ]).

If we identify T s
c[γ](0)SX

∼= n respectively T u
c[γ](0)SX

∼= n, it follows that P s(c[γ]) and P u(c[γ])

act as Ad (mγ exp (`(γ)H1)) on these spaces. In particular they can be defined independent
of the starting point of c[γ]. Now we can define the Selberg zeta function.

Definition 3.12. Let s ∈ C with Re(s) > 8n. Let σ be a finite dimensional representation
of M . Then the Selberg zeta function associated to σ is defined as

Z(s, σ) :=
∏

[γ]∈C(Γ)s−[1]
[γ] prime

∞∏
k=0

det
(
Id−µσ(c[γ])⊗ SkP s(c[γ])e

−(s+n)`(γ)
)

=
∏

[γ]∈C(Γ)s−[1]
[γ] prime

∞∏
k=0

det
(
Id−σ(mγ)⊗ Sk Ad(mγ exp(`(γ)H1))|n̄e−(s+n)`(γ)

)

Here Sk denotes the k-th symmetric power of an endomorphism.

Again we have to ensure the convergence of the infinite product involved.

Proposition 3.13. The infinite product in Definition 3.12 converges absolutely and locally
uniformly for Re(s) > 8n.

Proof. Let us set aγ := exp (`(γ)H1). Then we have

logZ(s, σ) =
∑

[γ]∈C(Γ)s−[1]
[γ] prime

∞∑
k=0

Tr log
(
Id−σ(mγ)⊗ Sk(Ad(mγaγ)n̄)e

−(s+n)`(γ)
)

=−
∑

[γ]∈C(Γ)s−[1]
[γ] prime

∞∑
k=0

∞∑
l=1

Tr
((
σ(mγ)⊗ Sk(Ad(mγaγ)|n̄)e−(s+n)`(γ)

)l)
l

=−
∑

[γ]∈C(Γ)s−[1]

∞∑
k=0

Tr
(
σ(mγ)⊗ Sk(Ad(mγaγ)|n̄)e−(s+n)`(γ)

)
nΓ(γ)

=−
∑

[γ]∈C(Γ)s−[1]

Tr (σ(mγ)) e
−(s+n)`(γ)

nΓ(γ)det(Id−Ad(mγaγ)|n̄)
. (3.12)

It is easy to see that

det(Id−Ad(mγaγ)|n̄) ≥
(
1− e−l(γ)

)n
.
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Moreover, if we let
c := min{`(γ), [γ] ∈ C(Γ)s − [1]} (3.13)

it follows from Proposition 3.8 that c > 0. Hence there exists a constant C such that for
all [γ] ∈ C(Γ)s − [1] one has

1

det(Id−Ad(mγaγ)|n̄)
< C. (3.14)

Again for every [γ] ∈ C(Γ)s one has |Tr (σ(mγ))| ≤ dim(σ). The Proposition follows from
Proposition 3.8.

The proof of the preceding proposition also gives information about the asymptotic
behaviour of |logZ(s, σ)| as m→∞.

Proposition 3.14. There exists a constant C such that for every σ ∈ M̂ and every s ∈ C
with Re(s) > 16n one has

|logZ(s, σ)| ≤ C dim(σ)e−Re(s)/2.

Proof. By our assumption on s, by Proposition 3.13, by (3.12) and by (3.14) we can
estimate

|logZ(s, σ)| ≤ C dim(σ)e−Re(s)/2
∑

[γ]∈C(Γ)s−[1]

e−(Re(s)/2+n)`(γ),

where the last series converges by Proposition 3.8.

Finally, as in [BO, Proposition 3.4] the Ruelle zeta function can be expressed as a
weighted product of Selberg zeta functions with shifted arguments. For q = 0, . . . , 2n let
σq be the representation Λq Ad of M on Λqn̄.

Proposition 3.15. Let σ be a finite dimensional representation of M . Then one has

R(s, σ) =
2n∏
q=0

Z(s− n+ q, σ ⊗ σq)(−1)q .

Proof. For every [γ] ∈ C(Γ)s − [1] one has

Tr Λq Ad(mγaγ)|n̄ = e−q`(γ) Tr σq(mγ).

Thus one has

det(Id−Ad(mγaγ)|n̄) =
2n∑
q=0

(−1)q Tr Λq Ad(mγaγ)|n̄ =
2n∑
q=0

(−1)qe−q`(γ) Tr σq(mγ).

Using (3.10) and (3.12) the proposition follows.
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4 The right regular representation of G on L2(Γ\G)

4.1 The decomposition of the right regular representation

Let πΓ be the right-regular representation of G on L2(Γ\G). In this section we describe
some basic properties of πΓ. The main references are [La], [HC1] [War1].
There exists an orthogonal decomposition

L2(Γ\G) = L2
d(Γ\G)⊕ L2

c(Γ\G) (4.1)

of L2(Γ\G) into closed πΓ-invariant subspaces. The restriction of πΓ to L2
d(Γ\G) decom-

poses into the orthogonal direct sum of irreducible unitary representations of G and the
multiplicity of each irreducible unitary representation of G in this decomposition is finite.
On the other hand, by the theory of Eisenstein series, the restriction of πΓ to L2

c(Γ\G) is
isomorphic to the direct integral over all unitary principal-series representations of G. The
definition and some basic properties of the Eisenstein series will now be described briefly.
Let P ∈ P. Let ν ∈ K̂ and σP ∈ M̂P such that [ν : σP ] 6= 0. Then we let EP (σP , ν) be
the set of all continuous functions Φ on G which are left-invariant under NPAP such that
for all x ∈ G the function m 7→ ΦP (mx) belongs to L2(M,σP ), the σP -isotypical compo-
nent of the right regular representation of MP and such that for all x ∈ G the function
k 7→ ΦP (xk) belongs to the ν-isotypical component of the right regular representation of K.
By (4.3) below, EP (σP , ν) is finite dimensional. We define an inner product on EP (σP , ν)
as follows. Any element of EP (σP , ν) can be identified canonically with a function on K.
For Φ,Ψ ∈ EP (σP , ν) we now set

〈Φ,Ψ〉 := vol(Γ ∩NP\NP )

∫
K

Φ(k)Ψ̄(k)dk. (4.2)

Now we define the Hilbert space EP (σP , ν) as

EP (σP ) :=
⊕
ν∈K̂

[ν:σP ]6=0

EP (σP , ν).

For λ ∈ C let πΓ,σP ,λ be the representation of G on EP (σP ) defined by

πΓ,σP ,λ(g)Φ(nPaPk) := e(λ+n)HP (kg)Φ(kg), nP ∈ NP , aP ∈ AP , k ∈ K, Φ ∈ EP (σP , ν).

For σP ∈ M̂P , ν ∈ K̂ put

E(σ, ν) :=
⊕
σP ′∈σ

EP ′(σP ′ , ν); E(σ) :=
⊕
σP ′∈σ

EP ′(σP ′).

Moreover we define a representation πΓ,σ,λ of G on E(σ) by

πΓ,σ,λ :=
⊕
σP∈σ

πΓ,σP ,λ.
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The pair (E(σ),πΓ,σ,λ) can be related to the the principal series as follows. For σ ∈ M̂ let

HomM(Vσ, L
2(M))

denote the set of intertwining operators between σ and the right regular representation.
The dimension of this space equals the degree of σ. For every ν ∈ K̂ let (Hσ)ν be the
ν-isotypical component of the representations πσ,λ. Then for every σP ∈ σ and ν ∈ K̂,
[ν : σ] 6= 0 we define

IP,σ(ν) : HomM(Vσ, L
2(M))⊗ (Hσ)ν → EP (σP , ν)

by

IP,σ(ν)(u⊗ Φ)(g) := u ◦ Φ(mk−1
p κP (g))(m−1) for almost all m ∈M. (4.3)

Then it is easy to see that IP,σ(ν) is an isometry. Thus we can define an isometry

IP,σ : HomM(Vσ, L
2(M))⊗Hσ → EP (σP )

as the direct sum of the IP,σ(ν). Now let

L(σ) :=
⊕
P∈P

HomM(Vσ, L
2(M))

and let

Iσ : L(σ)⊗Hσ −→ E(σ) (4.4)

be the isomorphism which is the direct sum of the IP,σ. Then Iσ is an isomorphism and
an intertwining operator between the representations 1⊗ πσ,λ and πΓ,σ,iλ , where 1 stands
for the trivial representation of G on L(σ).
For ΦP ∈ EP (σP , ν) and λ ∈ C let

ΦP,λ(g) := e(λ+n)(HP (x))ΦP (g). (4.5)

Then for x ∈ Γ\G, x = Γg one defines

E(ΦP : λ : x) :=
∑

γ∈Γ∩NP \Γ

ΦP,λ(γg). (4.6)

On Γ\G×{λ ∈ C : Re(λ) > n} the series (4.6) is absolutely and locally uniformly conver-
gent. As a function of λ, it has a meromorphic continuation to C with only finitely many
poles in the strip 0 < Re(λ) ≤ n which are located on (0, n]. Moreover, it has no poles on
the line Re(λ) = 0.
For Φ = (ΦP )P∈P ∈ E(σ, ν) and x ∈ Γ\G let

E(Φ : λ : x) =
∑
P∈P

E(ΦP : λ : x).
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Let P, P ′ ∈ P and let σP ∈ M̂P , σP ′ ∈ M̂P ′ be associated. For ΦP ∈ EP (σP , ν) and g ∈ G
let

EP ′(ΦP : g : λ) :=
1

vol (Γ ∩NP ′\NP ′)

∫
Γ∩NP ′\NP ′

E(ΦP : ng : λ)dn

be the constant term of E(ΦP : − : λ) along P ′. Then there exists a meromorphic function

CP |P ′(ν : σP : λ) : E(σP , ν) −→ E(wP ′σP ′ , ν),

where wP ′ is the non-trivial element of W (AP ′), such that for P 6= P ′ one has

EP ′(ΦP : g : λ) = (CP |P ′(ν : σP : λ)ΦP )−λ(g) (4.7)

and such that

EP (ΦP : g : λ) = ΦP,λ(g) + (CP |P (ν : σP : λ)ΦP )−λ(g). (4.8)

For Φ = (ΦP )P∈P ∈ E(σ, ν) and P ′ ∈ P one defines

EP ′(Φ : g : λ) :=
∑
P∈P

EP ′(ΦP : g : λ). (4.9)

Next we define

CP |P ′(σP : λ) :=
⊕
ν

CP |P ′(ν : σP : λ).

Moreover we let C(ν : σ : λ) resp. C(σ : λ) be the maps built from the CP ′|P ′′(σP ′ , ν, λ)
resp. the CP ′|P ′′(σP ′ , λ), where σP ′ ∈ σ. Then one has

C(w0σ : λ)C(σ : −λ) = Id; C(σ : λ)∗ = C(w0σ : λ̄), (4.10)

For Φ ∈ E(σ, ν) the Eisenstein series satisfies the functional equation

E(Φ : x : λ) = E(C(ν : σ : λ)Φ : x : −λ). (4.11)

The representations πΓ,σ,λ and πΓ,wσ,−λ are equivalent. Moreover, it follows easily from
(4.11) that if f ∈ C∞c (G) is of left and right K-type ν one has

C(ν : σ : λ)πΓ,σ,λ(f) = πΓ,wσ,−λ(f)C(ν : σ : λ). (4.12)

Hence C(σ : λ) is an intertwining operator between πΓ,σ,λ and πΓ,wσ,−λ. Using the theory
of Eisenstein series, one introduces L2

c(Γ\G) as a closed subspace of L2(Γ\G) which is πΓ

isomorphic to the direct sum ⊕
σ∈M̂

∫ ∞
0

⊕πΓ,σ,iλdλ.
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Here
∫
R⊕πΓ,σ,iλdλ stands for the direct integral over the representations πΓ,σ,iλ.

At the end of this section we remark that the space L2
d(Γ\G) admits a further decomposition

L2
d(Γ\G) = L2

cusp(Γ\G)⊕ L2
res(Γ\G).

The space L2
cusp(Γ\G) is the space spanned by the cusp forms, i.e. the square integrable

functions f , which for all P ∈ P satisfy

f 0
P (x) :=

∫
Γ∩NP \NP

f(nx)dn = 0 for almost all x ∈ G.

One does not know much about L2
cusp(Γ\G) and its size in general. On the other hand,

let Φ ∈ E(σ, ν). Let s0 ∈ (0, n] be a pole of E(Φ : − : −). Then the function x 7→
Res|s=s0E(Φ : s : x) is square integrable on Γ\G and L2

res(Γ\G) is spanned by all these
residues of Eisenstein series.

4.2 Some properties of the C-matrix

Let σ ∈ M̂ . According to [Ho2], the map Iσ from (4.4) can be used to relate the intertwin-
ing operators C(σ : s) to the Knapp-Stein intertwining operators of the principal series
representations associated to P0. One obtains a result similar to the adelic case, where
the C-matrix factorizes into a product of the Knapp-Stein intertwining operator and the
intertwining operators at the finite places.
We first briefly recall the definition of the Knapp-Stein operators. Let N̄ := Θ(N) and let
P̄0 := N̄AK be the parabolic subgroup opposite to P0. Let σ ∈ M̂ . For Φ ∈ Hσ we define
a function Φλ on G by

Φλ(nak) := e(iλ+n)H(a)Φ(k).

This definition differs from (4.5) by the factor i. For Im(λ) < 0 and Φ ∈ (Hσ)K the integral

JP̄0|P0
(σ, λ)(Φ)(k) :=

∫
N̄

Φλ(n̄k)dn̄ =

∫
N

Φλ(w0nw
−1
0 k)dn (4.13)

is convergent and JP̄0|P0
(σ, λ) extends to an intertwining operator JP̄0|P0

(σ, λ) : Hσ −→ Hσ

between πσ,λ and πσ,λ,P̄0
, where πσ,λ,P̄0

denotes the principal series representation associated
to σ, λ and P̄0. Moreover, by [KS], as an operator-valued function JP̄0|P0

(σ, λ) has a
meromorphic continuation to C. If σ 6= w0σ, JP̄0|P0

(σ, λ) has no poles on iR and is invertible
there. If σ = w0σ, JP̄0|P0

(σ, λ) is regular and invertible on R − {0}. Let m0 ∈ M ′ be a
representative for w0 as in section 2.3. Then one defines an operator A(w0) : Hσ → Hw0σ

by A(w0)Φ(k) := Φ(m0k). Then A(w0) intertwines πσ,λ,P̄0
and πw0σ,−λ. Thus the operator

JP0(σ, λ) := A(w0)JP̄0|P0
(σ, λ) (4.14)

is, wherever it is defined, an intertwining operator between πσ,λ and πw0σ,−λ. If ν ∈ K̂ with
[ν : σ] 6= 0 we denote by JP0(ν, σ, λ) the restriction of JP0(σ, λ) to a map from (Hσ)ν to
(Hw0σ)ν , the ν-isotypical components of Hσ resp. Hw0σ. Now the C-matrix is related to
the Knapp-Stein operator as follows.
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Proposition 4.1. There exist a meromorphic Hom(L(σ),L(w0σ))-valued function T(σ, λ)
which is regular on iR− {0} such that in the sense of meromorphic functions one has

C(ν : σ : s)(Iσ(u⊗ Φ)) = Iw0σ (T(σ, s)(u)⊗ JP0(ν, σ,−is)(Φ))

for all u ∈ L(σ) and all Φ ∈ (Hσ)ν.

Proof. The proposition is proved in [Ho2, Theorem 7.1] for the more general setting of a
rank-one lattice and a Hecke operator.

Proposition 4.1 gives the following corollary.

Corollary 4.2. Let f be a K-finite Schwarz-function. Then in the sense of meromorphic
functions one has

Tr

(
πΓ,σ,s(f)C(σ : s)−1 d

ds
C(σ : s)

)
= Tr

(
T(σ, s)−1 d

ds
T(σ, s)

)
Θσ,−is(f)

− idim(σ)pTr

(
πσ,−is(f)JP̄0|P0

(σ,−is)−1 d

dz
JP̄0|P0

(σ,−is)
)
.

Proof. First we remark that since f is K-finite all traces are taken in a finite dimensional
vector space. It follows from (4.14), (4.16) and (4.17) that JP0(ν, σ, λ) is invertible as a
meromorphic function of λ. Thus the same holds for the function T(σ, λ). By Proposition
4.1 and since Iσ is an intertwining operator between 1⊗ πσ,λ and πΓ,σ,iλ, we have

Tr

(
πΓ,σ,s(f)C(σ : s)−1 d

ds
C(σ : s)

)
= Tr

(
1⊗ πσ,−is(f) (T(σ, s)⊗ JP0(σ,−is))−1 d

ds
(T(σ, s)⊗ JP0(σ,−is))

)
.

One has dim (L(σ)) = p dim(σ) and by (4.14) one has

JP0(σ,−is)−1 d

ds
JP0(σ,−is) = JP̄0|P0

(σ,−is)−1 d

ds
JP̄0|P0

(σ,−is). (4.15)

This proves the corollary.

Let ν ∈ K̂ be a K-type of πσ,λ. Since [ν : σ] = 1, it follows from Frobenius reciprocity
and Schur’s Lemma that

JP̄0|P0
(σ, λ)|(Hσ)ν = cν(σ : λ) · Id, (4.16)

where cν(σ : λ) ∈ C. The function λ 7→ cν(σ : λ) can be computed explicitly. If k2(σ)e2 +
· · ·+ kn+1(σ)en+1 is the highest weight of σ and k2(ν)e2 + · · ·+ kn+1(ν)en+1 is the highest
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weight of ν, by Theorem 8.2 in [EKM] one has, taking the different parametrization into
account:

cν(σ : λ) = α(n)

∏n+1
j=2 Γ(iλ− kj(σ)− ρj)

∏n+1
j=2 Γ(iλ+ kj(σ) + ρj)∏n+1

j=2 Γ(iλ− kj(ν)− ρj)
∏n+1

j=2 Γ(iλ+ kj(ν) + ρj + 1)
, (4.17)

where α(n) is a constant depending only on n. Thus, if all kj(σ) are integral one gets

cν(σ : z)−1 d

dz
cν(σ : z) =

n+1∑
j=2

∑
|kj(σ)|<l
≤kj(ν)

i

iz − l − ρj
−

n+1∑
j=2

∑
|kj(σ)|≤l≤kj(ν)

i

iz + l + ρj
. (4.18)

If all kj(σ) are half integral, a similar formula holds. For notational convenience, if ν ∈ K̂
and σ ∈ M̂ with [ν : σ] = 0 we let cν(σ : z) := 0. Since dim (L(σ)) = p dim(σ) it follows
with Proposition 4.1, (4.15) and (4.16) that for every ν ∈ K̂ with [ν : σ] 6= 0 one has

Tr

(
T(σ, iλ)−1 d

ds
T(σ, iλ)

)
=

1

dim(ν)
Tr

(
C(ν : σ : iλ)−1 d

ds
C(ν : σ : iλ)

)
+ ip dim(σ)c(ν : σ : λ)−1 d

dλ
c(ν : σ : λ). (4.19)

Now for σ ∈ M̂ with highest weight k2(σ)e2 + · · ·+ kn+1(σ)en+1 as in (2.9) we let νσ ∈ K̂
be the representation of K with highest weight k2(σ)e2 + · · · + |kn+1(σ)| en+1. Then by
Proposition 2.2 we have [νσ : σ] = 1 and thus using (4.18) and (4.19) we get

Tr

(
T(σ, iλ)−1 d

ds
T(σ, iλ)

)
=

1

dim(ν)
Tr

(
C(νσ : σ : iλ)−1 d

ds
C(νσ : σ : iλ)

)
+

n+1∑
j=2

p dim(σ)

iλ+ |kj(σ)|+ ρj
. (4.20)

Finally we recall the factorization of the C-matrix into an infinite product involving its
zeroes and poles. Let σ ∈ M̂ and ν ∈ K̂ with [ν : σ] 6= 0. The restrictions of the
representations πσ,λ and πw0σ,−λ to K are independent of the parameter λ and are unitarily
equivalent via the map A(w0)−1 : Hw0σ → Hσ. If we tensor A(w0)−1 with an isometry
I ′(σ) : L(w0σ)→ L(σ) and use the isomorphism Iσ we obtain an isometry I(σ) : E(w0σ)→
E(σ) which maps E(w0σ, ν) to E(σ, ν) for every ν ∈ K̂. Moreover by (4.14) and Proposition
4.1 for all u ∈ L(σ) and all Φ ∈ (Hσ)ν we have

I(σ) ◦C(ν : σ : s) ◦ Iσ = Iσ ◦
(
(I ′(σ) ◦T(σ, s))⊗ JP̄0|P0

(ν, σ,−is)
)
.

Thus using (4.16) it follows that the multiplicity of each pole of det (I(σ) ◦C(ν : σ : s)) is
divisible by dim(ν). Let {β} and {η} denote the set of poles of det (I(σ) ◦C(ν : σ : s)) on
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(0, n] respectively {s ∈ C : Re(s) < 0}, counted with multiplicity divided by dim(ν). Then
the set {β} is finite and by [Mü2, Lemma 6.6] the series∑

η

Re(η)

|η|2
(4.21)

converges absolutely. Moreover by [Mü2, Theorem 6.9] one has

1

dim(ν)
Tr

(
C(ν : σ : s)−1 d

ds
C(ν : σ : s)

)
= log q(σ) +

∑
{β}

(
1

s+ β
− 1

s− β

)
+
∑
η

(
1

s+ η
− 1

s− η

)
, (4.22)

where q(σ) ∈ R+ and where the sum converges absolutely.

4.3 The Maaß-Selberg relations

The Maaß-Selberg relations compute the inner product of two truncated Eisenstein series.
They play an important role for the study of the relative trace which will be defined below.
Thus for the sake of completeness we include a proof here. Our proof adapts the proof
of Theorem 12.10 in [Bo] to our situation. Let us first introduce the truncation operator.
Let P ∈ P. Let Y0 be as in section 2.11 and let Y ≥ Y0. For P ∈ P let χP,Y be the

characteristic function of NPA
0
P [Y ]K ⊂ G. Now let σ ∈ M̂ , ν ∈ K̂, [σ : ν] 6= 0. Let

Φ ∈ E(σ : ν). Then for Y ≥ Y0 and x ∈ Γ\G, x = Γg we let

EY (Φ : s : x) := E(Φ : s : x)−
∑
P∈P

∑
γ∈Γ∩NP \Γ

χP,Y (γg)EP (Φ : s : γg),

where EP (Φ : x : s) is as in (4.9). By (2.38) at most one summand in this sum is not zero.
By [HC1] the function EY (Φ : x : s) lies in L2(Γ\G). One easily sees that∫

Γ\G
EY (Φ : s : x)EY (Ψ : s′ : x)dx =

∫
Γ\G

EY (Φ : s : x)E(Ψ : s′ : x)dx, (4.23)

where Φ,Ψ ∈ E(σ : ν). If σ = w0σ, we let

E(σ, ν) := E(σ, ν); E(σ) := E(σ).

If σ 6= w0σ we let

E(σ, ν) := E(σ, ν)⊕ E(wσ, ν); E(σ) := E(σ)⊕ E(wσ),

where the direct sum is a direct sum of Hilbert spaces. Let P ∈ P, σP ∈ M̂P . Assume
that σP 6= wPσP . Then we remark that the inner product on E(σP )⊕ E(wPσP ) ⊂ E(σ) is
still given as in (4.2). We first prove the following lemma.
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Lemma 4.3. Let σ ∈ M̂ , ν ∈ K̂, [ν : σ] 6= 0. Let Φ,Ψ ∈ E(σ : ν). Let s, s′ ∈ C such that
(s + s′)(s − s′) 6= 0. Let 〈·, ·〉 denote the inner product on E(σ, ν). Then in the sense of
meromorphic functions one has∫

Γ\G
EY (x : Φ : s)EY (x : Ψ : s′)dx

=
Y s+s′

s+ s′
〈Φ,Ψ〉+

Y s−s′

s− s′
〈Φ,C(σ : s′)Ψ〉+

Y s′−s

s′ − s
〈C(σ : s)Φ,Ψ〉

−
∑
P∈P

Y −s−s
′

s+ s′
〈C(σ : s)Φ,C(σ : s′)Ψ〉 .

Proof. To save notation, if P, P ′ ∈ P we write CP |P ′(s) for CP |P ′(ν : σ : s). Moreover we
let δP |P ′ = 1 if P = P ′ and δP |P ′ = 0 if P 6= P ′. We assume that Re(s) > Re(s′) > n. This
suffices by meromorphic continuation. Moreover, by bilinearity we can assume that there
exist P1, P2 ∈ P such that Φ ∈ EP1(σP1 , ν), Ψ ∈ EP2(σP2 , ν). By (2.19), for every P ∈ P
we have ∫

Γ∩NP \G
f(x)dx :=

∫
Γ∩NP \NP

∫
R

∫
K

e−2ntf(nPaP (t)k)dn̄Pdtdk. (4.24)

First assume that P 6= P1. Let vP := vol (Γ ∩NP\NP ). Then∫
Γ\G

∑
γ∈Γ∩NP \Γ

χP,Y (γx)EP (Φ : s : γx)E(Ψ : s′ : x)dx

=

∫
Γ∩NP \G

χP,Y (x)EP (Φ : s : x)E(Ψ : s′ : x)dx

=

∫
Γ∩NP \NP

∫
R

∫
K

e−2ntχP,Y (aP (t)k)EP (Φ : s : aP (t)k)E(Ψ : s′ : nPaP (t)k)dkdtdnP

=vP

∫
R

∫
K

e−2ntχP,Y (aP (t)k)EP (Φ : s : aP (t)k)EP (Ψ : s′ : aP (t)k)dkdt

=

∫ ∞
log Y

e−2nte(−s+n)te(−s′+n)tdt
〈
CP1|P (s)Φ, CP2|P (s′)Ψ

〉
+ δP |P2

∫ ∞
log Y

e−2nte(−s+n)te(s′+n)tdt
〈
CP1|P (s)Φ,Ψ

〉
=
Y −s−s

′

s+ s′

〈
CP1|P (s)Φ, CP2|P (s′)Ψ

〉
+ δP |P2

1

s− s′
Y −s+s

′ 〈
CP1|P (s)Φ,Ψ

〉
.

Here the first equality follows from Lemma 2.4, the second equality follows from (4.24) and
the fourth equality follows from (4.7) and (4.8). Using these arguments again, together
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with (4.6) we get∫
Γ\G

(
E(Φ : s : x)−

∑
γ∈Γ∩NP1

\Γ

χP1,Y (γx)EP1(Φ : s : γx)
)
E(Ψ : s′ : x)dx

=

∫
Γ\G

∑
γ∈Γ∩NP1

\Γ

((1− χP1,Y (γx))ΦP1,s(γx)E(Ψ : s′ : x)dx

−
∫

Γ\G

∑
γ∈Γ∩NP1

\Γ

χP1,Y (γx)(CP1|P1(s)Φ)P1,−s(γx)E(Ψ : s′ : x)dx

=δP1|P2

∫ log Y

−∞
e−2nte(s+n)te(s′+n)tdt 〈Φ,Ψ〉+

∫ log Y

−∞
e−2nte(s+n)te(−s′+n)tdt

〈
Φ, CP2|P1(s′)Ψ

〉
−δP1|P2

∫ ∞
log Y

e−2nte(−s+n)te(s′+n)tdt
〈
CP1|P1Φ,Ψ

〉
−
∫ ∞

log Y

e−2nte(−s+n)te(−s′+n)tdt
〈
CP1|P1(s)Φ, CP2|P1(s′)Ψ

〉
=δP1|P2

Y s+s′

s+ s′
〈Φ,Ψ〉+

Y s−s′

s− s′
〈
Φ, CP2|P1(s′)Ψ

〉
+ δP1|P2

Y s′−s

s′ − s
〈
CP1|P1(s)Φ,Ψ

〉
− Y −s−s

′

s+ s′

〈
CP1|P1(s)Φ, CP2|P1(s′)Ψ

〉
.

By (4.23) one has∫
Γ\G

EY (Φ : s : x)EY (Ψ : s′ : x)dx

=

∫
Γ\G

(
E(Φ : s : x)−

∑
γ∈Γ∩NP1

\Γ

χP1,Y (γx)EP1(Φ : s : γx)
)
E(Ψ : s′ : x)dx

−
∑
P∈P
P 6=P1

∫
Γ\G

∑
γ∈Γ∩NP \Γ

χP,Y (γx)EP (Φ : s : γx)E(Ψ : s′ : x)dx.

This proves the proposition.

Passing to the limit in Lemma 4.3, we obtain the Maaß-Selberg relations.

Corollary 4.4. Let λ ∈ R − {0}. Then under the same assumptions as in the preceding
lemma one has∫

Γ\G
EY (Φ : iλ : x)EY (Ψ : iλ : x)dx = 2 〈Φ,Ψ〉 log Y +

Y 2iλ

2iλ
〈Φ,C(σ : iλ)Ψ〉

− Y −2iλ

2iλ
〈C(σ : iλ)Φ,Ψ〉 −

〈
C(σ : −iλ)

d

dz
C(σ : iλ)Φ,Ψ

〉
.
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Proof. Let ε > 0. Then by Lemma 4.3 we have∫
Γ\G

EY (Φ : iλ+ ε : x)EY (Ψ : iλ+ ε : x)dx

=
Y 2ε

2ε
〈Φ,Ψ〉 − Y −2ε

2ε
〈C(σ : iλ+ ε)Φ,C(σ : iλ+ ε)Ψ〉

+
Y 2iλ

2iλ
〈Φ,C(σ : iλ+ ε)Ψ〉 − Y −2iλ

2iλ
〈C(σ : iλ+ ε)Φ,Ψ〉

By (4.10) we have

Y 2ε

2ε
〈Φ,Ψ〉 − Y −2ε

2ε
〈C(σ : iλ+ ε)Φ,C(σ : iλ+ ε)Ψ〉

=
Y 2ε − Y −2ε

2ε
〈Φ,Ψ〉 − Y −2ε

2ε
〈C(σ : −iλ+ ε) (C(σ : iλ+ ε)−C(σ : iλ− ε)) Φ,Ψ〉 .

Letting ε→ 0, the lemma follows.

Corollary 4.5. Let {e1, . . . , eN} be an orthonormal base of E(σ : ν). Denote the corre-
sponding matrix entries by Cj,k(σ : s) . Let a0 > 0. Then the Cj,k(σ : s) are bounded on
the set {s ∈ C : a0 ≥ |Re(s)| ≥ 0, |Im(s)| > 1}.

Proof. By Lemma 4.3 with s = s′ = iλ+ µ, λµ 6= 0 one has∑
k

|Ckj(σ : iλ+ µ)|2 + 2µY 2µ

∫
Γ\G

EY (ej : iλ+ µ : x)EY (ej : iλ+ µ : x)dx

≤ Y 4µ +
2µY 2µ

|λ|
|Cj,j(σ : iλ+ µ)| .

This implies the corollary.

5 The relative trace of Bochner Laplace operators on

locally homogeneous vector bundles

5.1 Bochner Laplace operators

Regard G as a principal K-fibre bundle over X̃. By the invariance of p under Ad(K), the
assignment

T hor
g :=

{
d

dt

∣∣∣∣
t=0

g exp tX : X ∈ p

}
defines a horizontal distribution on G. This connection is called the canonical connection.
Let ν be a finite-dimensional unitary representation of K on (Vν , 〈·, ·〉ν). Let

Ẽν := G×ν Vν
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be the associated homogeneous vector bundle over X̃. Then 〈·, ·〉ν induces a G-invariant

metric B̃ν on Ẽν . Let ∇̃ν be the connection on Ẽν induced by the canonical connection.
Then ∇̃ν is G-invariant. Let

Eν := Γ\(G×ν Vν)

be the associated locally homogeneous bundle over X. Since B̃ν and ∇̃ν are G-invariant,
they push down to a metric Bν and a connection ∇ν on Eν . Let

C∞(G, ν) := {f : G→ Vν : f ∈ C∞, f(gk) = ν(k−1)f(g), ∀g ∈ G, ∀k ∈ K}. (5.1)

Let

C∞(Γ\G, ν) := {f ∈ C∞(G, ν) : f(γg) = f(g) ∀g ∈ G,∀γ ∈ Γ} . (5.2)

Let C∞(X,Eν) denote the space of smooth sections of Eν . Then there is a canonical
isomorphism

A : C∞(X,Eν) ∼= C∞(Γ\G, ν).

There is also a corresponding isometry for the space L2(X,Eν) of L2-sections of Eν . For
every X ∈ g, g ∈ G and every f ∈ C∞(X,Eν) one has

A(∇ν
L(g)∗Xf)(g) =

d

dt
|t=0Af(g exp tX).

Let ∆̃ν = ∇̃ν
∗
∇̃ν be the Bochner-Laplace operator of Ẽν . Since X̃ is complete, ∆̃ν with

domain the smooth compactly supported sections is essentially self-adjoint [Ch]. Its self-

adjoint extension will be denoted by ∆̃ν too. By [Mi1, Proposition 1.1] on C∞(G, ν) one
has

∆̃ν = −Ω + ν(ΩK), (5.3)

where ΩK is as in section 2.8. Let Ãν be the differential operator on Ẽν which acts
as −Ω on C∞c (G, ν). Then it follows from (5.3) that Ãν is bounded from below and

essentially selfadjoint. Its selfadjoint extension will be denoted by Ãν too. Let e−tÃν be
the corresponding heat semigroup on L2(G, ν), where L2(G, ν) is defined analogously to
(5.1). Then the same arguments as in [CY, section1] imply that there exists a function

Kν
t ∈ C∞(G×G,End(Vν)), (5.4)

which is symmetric in theG-variables and for which g′ 7→ Kν
t (g, g′) belongs to L2(G,End(Vν))

for each g ∈ G such that

Kν
t (gk, g′k′) = ν(k−1)Kν

t (g, g′)ν(k′), ∀g, g′ ∈ G, ∀k, k′ ∈ K
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and such that

e−tÃνφ(g) =

∫
G

Kν
t (g, g′)φ(g′)dg′, φ ∈ L2(G, ν).

Since Ω is G-invariant, Kν
t is invariant under the diagonal action of G. Hence there exists

a function

Hν
t : G −→ End(Vν); Hν

t (k−1gk′) = ν(k)−1 ◦Hν
t (g) ◦ ν(k′), ∀k, k′ ∈ K, ∀g ∈ G (5.5)

such that

Kν
t (g, g′) = Hν

t (g−1g′), ∀g, g′ ∈ G. (5.6)

Thus one has

(e−tÃνφ)(g) =

∫
G

Hν
t (g−1g′)φ(g′)dg′, φ ∈ L2(G, ν), g ∈ G. (5.7)

By the arguments of [BM, Proposition 2.4], Hν
t belongs to all Harish-Chandra Schwarz

spaces (Cq(G)⊗ End(Vν)), q > 0.

Now we pass to the quotient X = Γ\X̃. Let ∆ν = ∇ν∗∇ν be the closure of the Bochner-
Laplace operator with domain the smooth compactly supported sections of Eν . Then ∆ν

is selfadjoint and by (5.3) it induces the operator −Ω + ν(ΩK) on C∞(Γ\G, ν). Thus if we
let Aν be the operator −Ω on C∞c (Γ\G, ν), then Aν is bounded from below and essentially
selfadjoint. The closure of Aν will be denoted by Aν too. Let e−tAν be the heat-semigroup
of Aν on L2(Γ\G, ν). Let

Hν(t;x, x′) :=
∑
γ∈Γ

Hν
t (g−1γg′), (5.8)

where x, x′ ∈ Γ\G, x = Γg, x′ = Γg′. By [War1, Chapter 4] this series converges absolutely
and locally uniformly. It follows from (5.7) that

(e−tAνφ)(x) =

∫
Γ\G

Hν(t;x, x′)φ(x′)dx′, φ ∈ L2(Γ\G, ν), x ∈ Γ\G.

Now we let

hνt (g) := trHν
t (g), (5.9)

where tr denotes the trace in EndVν , and define an operator πΓ(hνt ) acting on L2(Γ\G) by

πΓ(hνt )f(x) :=

∫
G

hνt (g)f(xg)dg.

Then πΓ(hνt ) is an integral-operator on L2(Γ\G), whose kernel is given by

hν(t;x, x′) := trHν(t;x, x′). (5.10)
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We shall now compute the Fourier transform of hνt . Let π be a unitary admissible rep-
resentation of G on a Hilbert space Hπ. Let ν̌ be the contragredient representation of ν
and let Pν̌(π) be the projection of Hπ onto Hν̌

π , the ν̌-isotypical component of Hπ. By
assumption Hν̌

π is finite dimensional. By [On, § 4, Proposition 4 and § 7, Proposition 3],
we have ν̌ ∼= ν. Thus together with (5.5) one obtains

π(hνt ) = Pν̌(π)π(hνt )Pν̌(π) = Pν(π)π(hνt )Pν(π). (5.11)

The restriction of π(hνt ) to Hν
π will be denoted by π(hνt ) too. Define a bounded operator

on Hπ ⊗ Vν by

π̃(Hν
t (g)) :=

∫
G

π(g)⊗Hν
t (g)dg. (5.12)

Then relative to the splitting

Hπ ⊗ Vν = (Hπ ⊗ Vν)K ⊕
(

(Hπ ⊗ Vν)K
)⊥

,

π̃(Hν
t ) has the form (

π(Hν
t ) 0

0 0

)
,

where π(Hν
t ) acts on (Hπ ⊗ Vν)K . It follows as in [BM, Corollary 2.2] that

π(Hν
t ) = etπ(Ω) Id, (5.13)

where Id is the identity on (Hπ ⊗ Vν)K . Now let A : Hπ → Hπ be a bounded operator
which is an intertwining operator for π|K . Then A⊗ Id acts on (Hπ ⊗ Vν)K . Denotes this
operator on (Hπ⊗Vν)K by Ã. Then by the same argument as in [BM, Lemma 5.1] one has

Tr (A ◦ π(hνt )) = Tr
(
Ã ◦ π̃(Hν

t )
)
.

Together with (5.13) we obtain

Tr (A ◦ π(hνt )) = etπ(Ω) · Tr Ã. (5.14)

Using this equation we obtain the following proposition.

Proposition 5.1. For σ ∈ M̂ and λ ∈ R let Θσ,λ be the global character of πσ,λ. Then
one has

Θσ,λ(h
ν
t ) = et(c(σ)−λ2); Tr (πΓ,σ,iλ(h

ν
t )) = p dim(σ)et(c(σ)−λ2)

for [ν : σ] 6= 0 and Θσ,λ(h
ν
t ) = Tr (πΓ,σ,iλ(h

ν
t )) = 0 otherwise. Here c(σ) is as in (2.27).

Proof. Let π ∈ Ĝ and let Θπ be its global character. Taking A = Id in (5.14), one obtains

Θπ(hνt ) = etπ(Ω) · dim(Hπ ⊗ Vν)K = etπ(Ω) · [π : ν̌] = etπ(Ω) · [π : ν] ,

where we used ν ∼= ν̌. By Proposition 2.2 for all ν ∈ K̂ and all σ ∈ M̂ we have [ν : σ] ≤ 1.
Thus the proposition follows from (2.20), Corollary 2.6 and the intertwining property of
the map Iσ.
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5.2 The Bochner Laplace operator on the cusp

Let P ∈ P, let Y0 be as in section 2.11 and let u ∈ R+ with u ≥ Y0. Then the decomposition
(2.37) gives a natural inclusion IP,u of L2

(
[u,∞), y−ddy;Vν

)
into the space L2(Γ\G, ν).

Namely, let φ ∈ L2
(
[u,∞), y−ddy;Vν

)
and let χP,u be as in section 4.3. Then define a

function IP,uφ in L2(Γ\G, ν) by

IP,uφ(x) =
1√

vol(Γ ∩NP\NP )

∑
γ∈Γ∩NP \Γ

χP,u(γg)ν(κP (γg))−1φ(eHP (γg)),

where x ∈ Γ\G, x = Γg. By (2.38) and (2.39) the assignment φ 7→ IP,uφ embeds the space
L2
(
[u,∞), y−ddy;Vν

)
isometrically into L2(Γ\G, ν). For f ∈ L2(Γ\G, ν) and y ∈ Γ\G,

y = Γg let

fP,u(y) :=
1

vol(Γ ∩NP\NP )

∑
γ∈Γ∩NP \Γ

χP,u(γg)

∫
Γ∩NP \NP

f(nPγg)dnP . (5.15)

Then f 7→ fP,u is the orthogonal projection of L2(Γ\G, ν) onto IP,u
(
L2
(
[u,∞), y−d;Vν

))
.

Since Ω is G-invariant, one has ΩfP,u(y) = (Ωf)P,u(y) for every f ∈ C∞(Γ\G, ν). Thus
−Ω induces in a canonical way a differential operator Tν on C∞([u,∞) ;Vν). The operator
Tν can be computed explicitly. Let ΩM be as in section 2.8 and define an endomorphism
L(ν) of Vν by L(ν) := −ν|M(ΩM), where ν|M denotes the restriction of ν to M .

Lemma 5.2. One has Tν = −y2 d2

dy2 + (d− 2)y d
dy

+ L(ν).

Proof. For α ∈ ∆+(gC, hC) let gαC be the corresponding root space. Then one can choose
Xα in gαC, X−α ∈ g−αC such that B(Xα, X−α) = 1, [Xα, X−α] = Hα, where Hα is as in
section 2.2. By (2.4) one has ∑

α∈∆+(gC,aC)

Hα = 2nH1.

Thus by the definition of Ω and ΩM one has

Ω =
n+1∑
i=1

H2
i +

∑
α∈∆+(gC,hC)

(XαX−α +X−αXα)

=H2
1 +

∑
α∈∆+(gC,aC)

(Hα + 2X−αXα) +
n+1∑
i=2

H2
i +

∑
α∈∆+(mC,bC)

(XαX−α +X−αXα)

=H2
1 + 2nH1 + ΩM mod U(gC)nC.

Now the element H1 induces the differential operator −y d
dy

on (0,∞) under ιP . Since

ΩM is invariant under the anti-involution of U(mC) induced by Y 7→ −Y , Y ∈ mC, the
proposition follows.
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Consider the differential operator

Tν := −y2 d
2

dy2
+ (d− 2)y

d

dy
+ L(ν)

acting on C∞c ([u,∞) ;Vν) ⊂ L2
(
[u,∞) , y−ddy;Vν

)
. Its selfadjoint extension with repsect

to the Neumannn boundary condition at u will be denoted by Tν too. First consider the
operator L(ν).

Lemma 5.3. For σ ∈ M̂ let Pσ denote the projection from Vν to the σ-isotypical subspace
of ν|M . Then one has

L(ν) =
∑
σ∈M̂

[ν:σ] 6=0

−
(
c(σ) +

(d− 1)2

4

)
Pσ,

where c(σ) is as in (2.27).

Proof. By (2.25) and (2.27) one has

c(σ) = σ(ΩM)− (d− 1)2

4
.

This implies the lemma.

Now consider the differential operator

T0 := −y2 d
2

dy2
+ (d− 2)y

d

dy
(5.16)

acting on C∞c ([u,∞)) ⊂ L2(
(
[b,∞) ; y−d

)
. The self-adjoint extension of T0 with respect to

the Neumann boundary condition at u will be denoted by T0 too. The spectral reslution
of T0 is described in [Mü1, Chapter IV]. For s ∈ C− (d− 1) let

c(s) :=
s

s− d+ 1
u2s−d+1 (5.17)

Then c(s) satisfies

c(s)c(d− 1− s) = 1. (5.18)

Let

η(y, s) := ys + c(s)yd−1−s.

Then η(y, s) is a generalized eigenfunction of T0 satisfying the Neumann boundary condi-
tion. For φ ∈ C∞c ([u,∞]) let

Jφ(λ) :=

∫ ∞
u

φ(y)η

(
y,
d− 1

2
+ iλ

)
y−ddy. (5.19)
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Then J can be extended to an isometry from L2
(
[u,∞) , y−ddy

)
onto L2(R+; dλ

2π
). The

adjoint operator of J is given by

J∗ψ(y) =
1

2π

∫ ∞
0

ψ(λ)η

(
y,
d− 1

2
+ iλ

)
dλ. (5.20)

For φ in the domain of T0 one has

JT0φ(λ) =

(
(d− 1)2

4
+ λ2

)
Jφ(λ). (5.21)

We start with the following lemma.

Lemma 5.4. One has

1

2π

∫ ∞
0

e−tλ
2

∫ Y

u

η

(
y,
d− 1

2
+ iλ

)
η

(
y,
d− 1

2
+ iλ

)
y−ddydλ

=
log Y − log u√

4πt
− 1

2π

∫ ∞
0

e−tλ
2 d− 1

(d−1)2

4
+ λ2

dλ− 1

4
+ o(1),

as Y →∞.

Proof. The proof is analogous to the classical proof of the Maaß-Selberg relations. Assume
first that (s− s′)(s+ s′ − (d− 1)) 6= 0. Let F Y

P be as in (2.41) and let ∆ = − div grad be
the Laplacian on F Y

P with respect to the metric y−2dy2 + y−2gP . Then one has ∆f = T0f
for f ∈ C∞([u,∞)). We have s′(d− 1− s′)− s(d− 1− s) = (s− s′)(s+ s′− (d− 1)). Thus
applying Greens’s formula and the boundary condition of η(y, s) and η(y, s′) at y = u one
gets ∫ Y

u

η(y, s)η(y, s′)
dy

yd

=
1

(s− s′)(s+ s′ − (d− 1))

∫ Y

u

(
η(y, s)∆η(y, s′)−∆η(y, s)η(y, s′)

) dy
yd

=
1

(s− s′)(s+ s′ − (d− 1))

1

Y d−2

(
η(Y, s′)

d

dy

∣∣
y=Y

η(y, s)− η(Y, s)
d

dy

∣∣
y=Y

η(y, s′)

)
=

Y s+s′−(d−1)

s+ s′ − (d− 1)
+
c(s)c(s′)Y d−1−s−s′

d− 1− s− s′
+
c(s′)Y s−s′

s− s′
+
c(s)Y s′−s

s′ − s
.

Now one proceeds as in the proof of corollary 4.4. Thus if one lets s and s′ tend to d−1
2

+ iλ
in the last equation and uses (5.18) one gets∫ Y

b

η

(
y,
d− 1

2
+ iλ

)
η

(
y,
d− 1

2
+ iλ

)
dy

yd

=2 log Y −
c′
(
d−1

2
+ iλ

)
c(d−1

2
+ iλ)

+
c(d−1

2
− iλ)Y 2iλ

2iλ
+
c(d−1

2
+ iλ)Y −2iλ

−2iλ
.
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By (5.17) one has

c′
(
d−1

2
+ iλ

)
c(d−1

2
+ iλ)

=
d− 1

(d−1)2

4
+ λ2

+ 2 log u.

Finally one has∫ ∞
0

e−tλ
2

(
c(d−1

2
− iλ)Y 2iλ

2iλ
+
c(d−1

2
+ iλ)Y −2iλ

−2iλ

)
dλ

=

∫ ∞
0

e−tλ
2

c(
d− 1

2
− iλ)

Y 2iλ − Y −2iλ

2iλ
dλ+

∫ ∞
0

e−tλ
2

Y −2iλ c(
d−1

2
− iλ)− c(d−1

2
+ iλ)

2iλ
dλ.

The second term tends to zero for Y →∞ by the Riemann Lebesgue Lemma. Using that

φ(0) = lim
µ→∞

2

π

∫ ∞
0

φ(t)
sin(µt)

t
dt (5.22)

for every φ ∈ S(R) and using the explicit form of c(s) the lemma is proved.

Now we can study the heat semigroup e−tTν of Tν on L2([u,∞) , y−ddy).

Corollary 5.5. Let Φν(t, y, y
′) be the integral kernel of e−tTν and let φνt (y) := tr Φν(t, y, y).

Then one has∫ Y

u

φνt (y)y−ddy =
∑
σ∈M̂

[ν:σ] 6=0

etc(σ) dim(σ)

(
log Y − log u√

4πt
− 1

4
− 1

2π

∫ ∞
0

e−tλ
2 (d− 1)

(d−1)2

4
+ λ2

dλ

)

+ o(1),

as Y →∞.

Proof. By Lemma 5.3 and by (5.19), (5.20), (5.21) one has

Φν(t, y, y
′) =

1

2π

∑
σ∈M̂

[ν:σ] 6=0

etc(σ)

∫ ∞
0

e−tλ
2

η

(
y,
d− 1

2
+ iλ

)
η

(
y′,

d− 1

2
+ iλ

)
dλ · Pσ.

The corollary follows from Lemma 5.4.

5.3 The relative trace

The decomposition (4.1) induces a decomposition of L2(Γ\G, ν) ∼= (L2(Γ\G, ν)⊗ Vν)K as

L2(Γ\G, ν) = L2
d(Γ\G, ν)⊕ L2

c(Γ\G, ν).
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This decomposition is invariant under Aν in the sense of unbounded operators. Let Adν
denote the restriction of Aν to L2

d(Γ\G, ν) in the sense of unbounded operators. Since πΓ,d

decomposes discretely into a direct sum of irreducible unitary representations of G, there
exists a subset J ⊂ N, a sequence λj, j ∈ J of real numbers and an orthonormal base φj,
j ∈ J of L2

d(Γ\G, ν) such that Aνφj = λjφj for every j ∈ J . The set J may be finite. For
λ ∈ [0,∞) let

N(λ) := #{j ∈ J : λj ≤ λ}.

By Theorem I.1 in [Do1] and Theorem 9.1 in [Do2], there exists a constant C such that

N(λ) ≤ C(1 + λ)
d
2 . (5.23)

Hence the sum ∑
j

e−tλj

converges, the operator e−tA
d
ν is of trace class and one has

Tr
(
e−tA

d
ν

)
=
∑
j

e−tλj . (5.24)

Let hνt be as in (5.9). Then relative to the decomposititon in (4.1), πΓ(hνt ) splits as

πΓ(hνt ) = πΓ,d(h
ν
t )⊕ πΓ,c(h

ν
t ). (5.25)

According to this decomposition, the function hν(t;x, x′) from (5.10) decomposes as

hν(t;x, x′) = hνd(t;x, x
′) + hνc (t;x, x

′), (5.26)

where hνd(t;x, x
′) resp. hνc (t;x, x

′) are smooth and denote the kernels of πΓ,d(h
ν
t ) resp.

πΓ,c(h
ν
t ) on L2

d(Γ\G) resp. on L2
c(Γ\G). Moreover, the function hνd(t;x, x) is absolutely

integrable, the operator πΓ,d(h
ν
t ) is of trace class and one has

Tr(e−tA
d
ν ) = Tr(πΓ,d(h

ν
t )) =

∫
Γ\G

hνd(t;x, x)dx. (5.27)

The kernel hνc (t;x, x
′) can be computed using the explicit realization of πΓ,c. Namely, for

each σ ∈ M̂ with [ν : σ] 6= 0 let {e(σ)1, . . . , e(σ)n} be an orthonormal base of E(ν : σ).
Then by [War1, Theorem 4.7], equation (5.11) and Frobenius reciprocity one has

hνc (t;x, x
′)

=
1

4π

∑
σ∈M̂

[ν:σ] 6=0

∑
k,l

∫
R
〈πΓ,σ,iλ(h

ν
t )e(σ)l, e(σ)k〉E(e(σ)k : iλ : x)E(e(σ)l : iλ : x′)dλ. (5.28)
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Next we want to compare the heat semigroup of Aν with the heat semigroup of an auxiliary
operator Tν,u. This operator is defined as follows. Let Y0 be as in section 2.11 and let
u ≥ Y0. For every P ∈ P let T Pν,u be the operator Tν defined in section 5.2 regarded as an
operator on D(T Pν,u) ⊂ L2(Γ\G, ν) via the embedding IP,u from section 5.2. Then we put

Tν,u :=
⊕
P∈P

T Pν,u.

By [Mü1, Theorem 9.1] for every t > 0 the difference e−tAν − e−tTν,u is of trace class. Thus
we can define the relative trace Trrel,u(e−tAν ) with respect to the parameter u by

Trrel,u(e−tAν ) := Tr
(
e−tAν − e−tTν,u

)
.

We now compute the relative trace using Corollary 4.4, Corollary 5.5 and equation (5.28).
First we prove the following lemma.

Lemma 5.6. Let C(Y ) be as in equation (2.37). Then one has∫
C(Y )

hνc (t;x, x)dx =
∑

σ∈M̂ ;σ=w0σ
[ν:σ] 6=0

Tr (πΓ,σ,0(hνt )C(ν : σ : 0))

4
+
∑
σ∈M̂

[ν:σ]6=0

(
petc(σ) log Y dim(σ)√

4πt

− 1

4π

∫
R

Tr

(
πΓ,σ,iλ(h

ν
t )C(ν : σ : −iλ)

d

dz
C(ν : σ : iλ)

)
dλ

)
+ o(1),

as Y →∞.

Proof. The argument on page 82 in [War1] can be extended to hνt ∈ C(G) and thus the
integral∫

R

∫
Γ\G

∣∣∣∣∣∑
k,l

〈πΓ,σ,iλ(h
ν
t )e(σ)l, e(σ)k〉EY (e(σ)k : iλ : x)EY (e(σ)l : iλ : x)

∣∣∣∣∣ dxdλ (5.29)

is finite. Hence, if one defines

hνc (t;x;Y ) :=
1

4π

∑
k,l

∫
R
〈πΓ,σ,iλ(h

ν
t )e(σ)l, e(σ)k〉EY (e(σ)k : iλ : x)EY (e(σ)l : iλ : x)dλ,

then hνc (t;x;Y ) is absolutely integrable over Γ\G. Moreover, by the definition of the
trunctation operator one has hνc (t;x;Y ) = hνc (t;x, x) on C(Y ). Thus one has∫

C(Y )

hνc (t, x, x)dx =

∫
Γ\G

hνc (t;x;Y )dx+ o(1),
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as Y →∞. Now by the finiteness of the integral in (5.29), integrating hνc (t;x;Y ) over Γ\G
one can interchange the order of integration. Applying Corollary 4.4 and (4.10) one gets∫

C(Y )

hνc (t, x, x)dx =
∑
σ∈M̂

[ν:σ] 6=0

(
log Y

2π

∫
R

TrπΓ,σ,iλ(h
ν
t )dλ

− 1

4π

∫
R

Tr

(
πΓ,σ,iλ(h

ν
t )C(σ : −iλ)

d

dz
C(σ : iλ)

)
dλ

− 1

4π

∑
k,l

∫
R
Y −2iλ 〈πΓ,σ,iλ(h

ν
t )el, ek〉

〈C(σ : iλ)e(σ)k, e(σ)l〉 − 〈C(σ : −iλ)e(σ)k, e(σ)l〉
2iλ

dλ

+
1

4π

∑
k,l

∫
R

Y 2iλ − Y −2iλ

2iλ
〈πΓ,σ,iλ(h

ν
t )e(σ)l, e(σ)k〉 〈C(σ : −iλ)e(σ)k, e(σ)l〉 dλ

)
+ o(1),

as Y →∞. By [War2, Theorem E2], for every σ, k and l the function

λ 7→ 〈πΓ,σ,iλ(h
ν
t )e(σ)l, e(σ)k〉

belongs to S(R). Thus using Corollary 4.5 and the Riemann-Lebesgue Lemma it follows
that the integral in the third line of the last equation tends to zero as Y tends to ∞.
Moreover it follows together with (5.22) that the integral in the fourth line tends to

Tr (πΓ,σ,0(hνt )C(ν : σ : 0))

as Y →∞. Using Proposition 5.1, the lemma follows.

Now we obtain an explicit formula for the relative trace.

Proposition 5.7. The relative trace is given as

Trrel,u(e−tAν ) = Tr (πΓ,d(h
ν
t )) +

∑
σ∈M̂ ;σ=w0σ

[ν:σ] 6=0

Tr (πΓ,σ,0(hνt )C(ν : σ : 0))

4

−
∑
σ∈M̂

[ν:σ] 6=0

1

4π

∫
R

Tr

(
πΓ,σ,iλ(h

ν
t )C(ν : σ : −iλ)

d

dz
C(ν : σ : iλ)

)
dλ

+
∑
σ∈M̂

[ν:σ] 6=0

etc(σ)p dim(σ)

(
log u√

4πt
+

1

4
+

1

2π

∫ ∞
0

e−tλ
2 (d− 1)

(d−1)2

4
+ λ2

dλ

)
.

Proof. Let Φν,u(t;x, y) be the integral kernel of e−tTν,u and let φν,u(t;x) := Tr Φν,u(t;x, x).
By [Mü1, Theorem 9.1] one has

Trrel,u(e−tAν ) =

∫
Γ\G

(hν(t;x, x)− φν,u(t;x)) dx,
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where the right hand side is absolutely integrable. Thus using (5.26), (5.27) and (2.40) we
obtain

Trrel,u(e−tAν ) = Tr (πΓ,d(h
ν
t )) +

∫
Γ\G

(hνc (t;x, x)− φν,u(t;x)) dx

= Tr (πΓ,d(h
ν
t )) + lim

Y→∞

∫
C(Y )

(hνc (t;x, x)− φν,u(t;x)) dx.

Using Corollary 5.5 and Lemma 5.6 the proposition follows.

Remark 5.8. For σ ∈ M̂ , [ν : σ] 6= 0 let C̃(ν : σ : z) := (C(ν : σ : z)⊗ Id) |(E(σ)⊗Vν)K .
Using the intertwining properties of Iσ and C(σ : λ), equation (5.14) and corollary 2.6 one
gets

Tr (πΓ,σ,0(hνt )C(ν : σ : 0)) = etc(σ) Tr C̃(ν : σ : 0). (5.30)

Moreover, the restriction of the representations πΓ,σ,iλ to K is independent of the parameter
λ. Thus the operator

C(ν : σ : −iλ)
d

dz
C(ν : σ : iλ)

is again an intertwining operator for the restriction of πΓ,σ,iλ to K and one also has

Tr

(
πΓ,σ,iλ(h

ν
t )C(ν : σ : −iλ)

d

dz
C(ν : σ : iλ)

)
=e−t(λ

2−c(σ)) Tr

(
C̃(ν : σ : −iλ)

d

dz
C̃(ν : σ : iλ)

)
.

Remark 5.9. By equation (5.27) and Lemma 5.6, the integral of hν(t;x, x) over C(Y ) has
an asymptotic expansion in Y as Y → ∞. Then one can take the constant term in this
expansion as a definition of the regularized trace Trreg(e−tAν ) of e−tAν . Thus one has

Trreg(e−tAν ) = Tr (πΓ,d(h
ν
t )) +

∑
σ∈M̂ ;σ=w0σ

[ν:σ]6=0

Tr (πΓ,σ,0(hνt )C(ν : σ : 0))

4

−
∑
σ∈M̂

[ν:σ] 6=0

1

4π

∫
R

Tr

(
πΓ,σ,iλ(h

ν
t )C(ν : σ : −iλ)

d

dz
C(ν : σ : iλ)

)
dλ.

This regularization of the trace is similar to the b-trace of Melrose [Me] and was also used
by Park [Pa] for certain ν ∈ K̂. Moreover the difference between the relative and the
regularized trace of e−tAν is given by the last line in the equation of Proposition 5.7.
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6 The trace formula

6.1 Statement of the trace formula

Let α be a K-finite Schwarz function. Define an operator πΓ(α) on L2(Γ\G) by

πΓ(α)f(x) :=

∫
G

α(g)f(gx)dg.

Then relative to the decompostition (4.1) one has a splitting

πΓ(α) = πΓ,d(α)⊕ πΓ,c(α).

It easily follows from (5.23) that the operator πΓ,d(α) is of trace class. In this section we
recall the Selberg trace formula for Tr (πΓ,d(α)). In this way we also obtain a formula for
the relative trace Trrel,u(e−tAν ) defined in the previous section.
First we introduce the distributions involved. Let

I(α) := vol(Γ\G)α(1).

By [HC2, Theorem 3], the Plancherel theorem can be applied to α. Four groups of real
rank one which do not possess a compact Cartan subgroup it is stated in [Kn1, Theorem
13.2]. Thus if Pσ(z) is as in section 2.10 one obtains

I(α) = vol(X)
∑
σ∈M̂

∫
R
Pσ(iλ)Θσ,λ(α)dλ, (6.1)

where the sum is finite since α is K-finite.
Next let C(Γ)s be the set of semisimple conjugacy classes of Γ as in section 3. Then define

H(α) :=

∫
Γ\G

∑
γ∈Γs−1

α(x−1γx)dx.

By [War1, Lemma 8.1] the integral converges absolutely. Its Fourier transform can be
computed as follows. For [γ] ∈ C(Γ)s − [1] let mγ ∈ M and `(γ) ∈ R+ be as in Lemma
3.1 and Proposition 3.2. Let aγ := exp `(γ)H1. Moreover let γ0 be as in Proposition 3.4.
Then one puts

L(γ, σ) :=
Tr(σ)(mγ)

det (Id−Ad(mγaγ)|n̄)
e−n`(γ). (6.2)

Then proceeding as in [Wal, Chapter 6] and using [Ga, equation 4.6] one obtains

H(α) =
∑
σ∈M̂

∑
[γ]∈C(Γ)s−[1]

l(γ0)

2π
L(γ, σ)

∫ ∞
−∞

Θσ,λ(α)e−i`(γ)λdλ, (6.3)

55



where the sum is finite since α is K-finite.
Next let P ∈ P. Let {e1, . . . , e2n} be an orthonormal base of nP , let L = Ze1 + · · ·+ Ze2n

and let A : nP → nP such that expA(L) = Γ ∩NP . Let T := A∗A. Then the Epstein-zeta
function ζT (s) is defined by

ζT (s) :=
∑
z∈L

(zτTz)−s. (6.4)

By [Ter, Chapter 1.4, Theorem 1] this series converges absolutely fo Re(s) > n and ζT has
a meromorphic continuation to C with a simple pole at s = n. Let RT be the residue of
ζT at s = n. Then by [Ter, Chapter 1.4, Theorem 1] one has

RT =
πn

Γ(n)
√

detT
=

vol (S2n−1)

2 vol (Γ ∩NP\NP )
. (6.5)

Now for every η ∈ Γ ∩ NP − {1} let Xη := log η. Let ‖·‖ be the norm induced on nP by
the restriction of − 1

4n
B(·, θ·) to nP . Then for Re(s) > 0 the Epstein zeta function ζP is

defined by

ζP (s) :=
∑

η∈Γ∩NP−{1}

‖Xη‖−2n(1+s). (6.6)

It follows that ζP has a meromorphic continuation to C with a simple pole at 0. Let CP (Γ)
be the constant term of ζP at s = 0 and let RP (Γ) be the residue of ζP at s = 0. Then by
(6.5) one has

C ′P (Γ) :=
RP (Γ)2n vol(Γ ∩NP\NP )

vol(S2n−1)
= 1. (6.7)

Now let

TP (α) :=

∫
K

∫
NP

α(knPk
−1)dkdnP =

∫
K

∫
N

α(knk−1)dn;

T (α) :=
∑
P∈P

CP (Γ)
vol(Γ ∩NP\NP )

vol(S2n−1)
TP (α);

T ′P (α) :=

∫
K

∫
NP

α(knPk
−1)log ‖log nP‖dnPdk.

Then T and TP ′ are tempered distributions. Let

C(Γ) :=
∑
P∈P

CP (Γ)
vol(Γ ∩NP\NP )

vol(S2n−1)
. (6.8)

The distributions T is invariant. Applying the Fourier inversion formula and the Peter-
Weyl-Theorem to equation 10.21 in [Kn1], one obtains the Fourier transform of T as:

T (α) =
∑
σ∈M̂

dim(σ)

2π
C(Γ)

∫
R

Θσ,λ(α)dλ, (6.9)
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see [Wal, Lemma 6.3]. The distributions T ′P are not invariant. However, they can be made
invariant using the standard Knapp-Stein intertwining operators as follows. Let ε > 0 be
such that 0 is the only possible pole of the operators JP̄0|P0

(σ, z), JP̄0|P0
(σ, z)−1, T (σ, z),

T (σ, z)−1 on {z ∈ C : |z| < 2ε} for all σ ∈ M̂ which satisfy [ν : σ] 6= 0, ν a K-type of α.
Let Hε be the half-circle from −ε to ε in the lower half-plane, oriented counter-clockwise.
Let Dε be the path which is the union of (−∞,−ε], Hε and [ε,∞). Let

Jσ(α) :=
p dimσ

4πi

∫
Dε

Tr

(
JP̄0|P0

(σ, z)−1 d

dz
JP̄0|P0

(σ, z)πσ,z(α)

)
dz.

The change of contour is only neccessary if JP̄0|P0
(σ, s) has a pole at 0, i.e. if σ = w0σ. Let

J(α) := −
∑
σ∈M̂

Jσ(α). (6.10)

Then by equation (4.16), equation (5.5) and Proposition 5.1 one has

J(hνt ) = − p

4πi

∑
σ∈M̂

[ν : σ] dim(σ)

∫
Dε

e−t(z
2−c(σ))cν(σ : z)−1 d

dz
cν(σ : z)dz. (6.11)

Now we define a distribution I by

I(α) :=
∑
P∈P

T ′P (α)− J(α). (6.12)

Then I is an invariant distribution. This can be seen as follows. Using the formula for
JM(m,α) on p. 92 of [Ho1], we get JMP

(1, α) = T ′P (α). Next using the formula for the
invariant distribution IP (m,α) on p. 93 of [Ho1] and formula (8) of [Ho1], it follows that

IP (1, α) = T ′P (α) +
∑
σ∈M̂0

dim(σ)

4πi

∫
Dε

Tr

(
JP̄0|P0

(σ, z)−1 d

dz
JP̄0|P0

(σ, z)πσ,z(α)

)
dz.

Summing over P ∈ P, we get ∑
P∈P

IP (1, α) = I(α)− J(α),

which proves our claim.
For σ ∈ M̂ let

Sσ(α) :=
1

4π

∫
Dε

Tr

(
T (σ, iz)−1 d

ds
T (σ, iz)

)
Θσ,z(α)dz,

where T (σ, iz) is as in Proposition 4.1 and let

S(α) :=
∑
σ∈M̂

Sσ(α), (6.13)
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where the sum is finite since α is K-finite. By Corollary 4.2 we then have∑
σ∈M̂

1

4π

∫
R

Tr

(
πΓ,σ,iλ(α)C(σ : −iλ)

d

dz
C(σ : iλ)

)
dλ = S(α)− J(α). (6.14)

For σ ∈ M̂ let

Rσ(α) :=

{
−1

4
Tr (C(σ : 0)πΓ,σ,0(α)) , σ = w0σ

0, σ 6= w0σ.

Then Rσ(α) can be transformed further as follows. We use the notations of section 4.1 and
section 4.2. Let σ ∈ M̂ with σ = w0σ. Let JP̄0|P0

(σ, λ) be as in (4.13). Then JP̄0|P0
(σ, λ)

might have a pole at λ = 0. However, if the meromorphic function rP̄0|P0
(σ : λ) is as in

[Ho2, page 113-114], the operator

RP0(σ : λ) = A(w0)rP̄0|P0
(σ : λ)−1JP̄0|P0

(σ : λ)

is defined and invertible for λ ∈ R, and one has

RP0(σ : 0)∗ = RP0(σ : 0); RP0(σ : 0)−1 = RP0(σ : 0). (6.15)

By [KS, Proposition 49, Proposition 53] the representation πσ,0 is irreducible. Moreover,
RP0(σ : 0) satisfies RP0(σ : 0) ◦ πσ,0 = πσ,0 ◦ RP0(σ : 0). Thus by [Kn1, Corollary 8.13],
RP0(σ : 0) is a scalar operator. Togehter with (6.15) it follows that (RP0(σ : 0))2 = ± Id.
Now define a meromorphic Hom(L(σ),L(σ))-valued function S(σ : s) by

S(σ : s) := rP̄0|P0
(σ : s)T(σ : s),

where T(σ : s) is as in Proposition 4.1. Then, since C(σ : 0) is defined and invertible, it
follows from Proposition 4.1 that S(σ : s) is defined at s = 0 and that

I−1
σ C(σ : 0)Iσ = S(σ : 0)⊗RP0(σ : 0),

where Iσ is as in (4.4). Using (4.10) and (6.15) it follows that

S(σ : 0)∗ = S(σ : 0); S(σ : 0)−1 = S(σ : 0).

Hence S(σ : 0) is diagonalizable with eigenvalues ±1. Putting everything together, it
follows that there exist natural numbers c1(σ), c2(σ) with c1(σ) + c2(σ) = p dim(σ) such
that one has

Rσ(α) =
c1(σ)− c2(σ)

4
Θσ,0(α) (6.16)

for every K-finite Schwarz function α. Now one defines

R(α) :=
∑
σ∈M̂

Rσ(α). (6.17)
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This sum is finite since α is K-finite.
Finally, we let

Ru(t, ν) :=
∑
σ∈M̂

[ν:σ] 6=0

etc(σ)p dim(σ)

(
log u√

4πt
+

1

4
+

1

2π

∫ ∞
0

e−tλ
2 (d− 1)

(d−1)2

4
+ λ2

dλ

)
. (6.18)

Then by Proposition 5.7, Ru(t, ν) enters in the formula for Trrel(e
−Aν ). However, Rν

t,u only
depends on the parameter u and on the number p of cusps of X. Now we can state the
trace formula and the relative trace formula.

Theorem 6.1. Let α be a K-finite Schwarz function. Then one has

Tr (πΓ,d(α)) = I(α) +H(α) + T (α) + I(α) +R(α) + S(α). (6.19)

Let ν ∈ K̂ and let Aν be the differential operator from section 5.1. Then one has

Trrel,u(e−tAν ) = I(hνt ) +H(hνt ) + T (hνt ) + I(hνt ) + J(hνt ) +Ru(t, ν). (6.20)

Proof. Equation (6.19) is a special case of the invariant trace formula stated in [Ho2,
Theorem 6.4]. It follows if one combines [War1, Theorem 8.4], the Theorem on page 299
in [OW], (6.7) and (6.14). Here one has to take into account that our normalizations are
different from those of [OW]. Equation (6.20) follows from Proposition 5.7, equation (6.14)
and equation (6.19).

6.2 The Fourier transform of the distribution I
The Fourier transform of the distribution I was computed in [Ho1]. We will state his
result and draw some consequences of it. For σ ∈ M̂ with highest weight k2(σ)e2 + · · · +
kn+1(σ)en+1 and λ ∈ R define λσ ∈ (h)∗C by

λσ := iλe1 +
n+1∑
j=2

(kj(σ) + ρj)ej.

Let S(bC) be the symmetric algebra of bC. Define Π ∈ S(bC) by

Π :=
∏

α∈∆+(mC,bC)

Hα. (6.21)

Let ξ ∈ b∗C, ξ = ξ2e2 + · · ·+ ξn+1en+1. Then it follows from (2.4) that

Π(ξ) =
∏

2≤i<j≤n+1

(ξi − ξj)(ξi + ξj). (6.22)
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If τ is any permutation of {2, . . . , n+ 1} and

ξτ := ξ2eτ(2) + · · ·+ ξn+1eτ(n+1)

it follows from (6.22) that

Π(ξτ ) = ±Π(ξ). (6.23)

The restriction of the Killing form to hC defines a non-degenerate symmetric bilinear form.
We will identify h∗C with hC via this form and denote the induced symmetric bilinear form
on h∗C by 〈·, ·〉. Then for α ∈ ∆+(gC, hC) we denote by sα : h∗C → h∗C the reflection

sα(x) = x− 2 〈x,α〉〈α,α〉α. Now the Fourier transform of I is computed as follows.

Theorem 6.2. For every K-finite α ∈ C2(G) one has

I(α) =
p

4π

∑
σ∈M̂

∫
R

Ω(σ̌,−λ)Θσ,λ(α)dλ,

where

Ω(σ, λ) := −2 dim(σ)γ − 1

2

∑
α∈∆+(gC,aC)

Π(sαλσ)

Π(ρM)
(ψ(1 + λσ(Hα)) + ψ(1− λσ(Hα)) .

Here ψ denotes the digamma function and γ denotes the Euler-Mascheroni constant. More-
over σ̌ denotes the contragredient representation of σ and Π is as in (6.21).

Proof. This follows from [Ho1, Theorem 5], [Ho1, Theorem 6], [Ho1, Corollary on page
96].

For later purposes, we shall now transform the functions Ω(λ, σ) a little bit further.
We start with the following elementary lemma.

Lemma 6.3. One has ∑
α∈∆+(gC,aC)

Π(sαλσ)

Π(ρM)
= 2 dim σ.

Proof. This is proved in [Ho1, page 95] but can also be seen as follows. Write Λ(σ)+ρM =
ξ2e2 + · · ·+ ξn+1en+1. Then if α = e1 ± ej, one has

sα(λσ) = ∓ξje1 + ξ2e2 + · · ·+ ξj−1ej−1 ∓ iλej + ξj+1ej+1 + · · ·+ ξn+1en+1. (6.24)

Using (2.14) and (6.22) it follows that

Π(se1+ej(λσ)) = Π(se1−ej(λσ)); Π(se1+ej(λσ)) = Π(se1+ej(λw0σ)). (6.25)
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Thus by (2.12) and (6.22) for α = e1 ± ej one gets

Π(sα(λσ))

Π(ρM)
=

(−1)j

Π(ρM)

∏
2≤k<l≤n+1

k,l 6=j

(ξ2
k − ξ2

l )
n+1∏
p=2
p6=j

(
−λ2 − ξ2

p

)

=
1

Π(ρM)

∏
2≤k<l≤n+1

(ξ2
k − ξ2

l )
n+1∏
p=2
p6=j

−λ2 − ξ2
p

ξ2
j − ξ2

p

= dim(σ)
n+1∏
p=2
p 6=j

−λ2 − ξ2
p

ξ2
j − ξ2

p

. (6.26)

Now the expression

n+1∑
j=2

n+1∏
p=2
p6=j

s− ξ2
p

ξ2
j − ξ2

p

is a polynomial in s of degree n−1 which is equal to 1 at the n different points ξ2
2 , . . . , ξ

2
n+1.

Thus one has

n+1∑
j=2

n+1∏
p=2
p6=j

−λ2 − ξ2
p

ξ2
j − ξ2

p

= 1

for every λ. This proves the lemma.

For j = 2, . . . , n+ 1 and λ ∈ C let

Pj(σ, λ) :=
Π(se1+ejλσ)

Π(ρM)
. (6.27)

Then if σ is of highest weight k2(σ)e2 + · · ·+ kn+1(σ)en+1 as in (2.9) it follows from (6.26)
that

Pj(σ, λ) = dim(σ)
n+1∏
p=2
p 6=j

−λ2 − (kp(σ) + ρp)
2

(kj(σ) + ρj)2 − (kp(σ)− ρp)2
. (6.28)

In particular Pj(σ, λ) is an even polynomial in λ of degree 2n− 2.

Proposition 6.4. Let σ ∈ M̂ be of highest weight k2(σ)e2 + · · ·+ kn+1(σ)en+1. Then one
has

Ω(λ, σ) = Ω(λ,w0σ) = Ω(λ, σ̌); Ω(λ, σ) = Ω(−λ, σ). (6.29)
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Moreover one can write

Ω(λ, σ) = Ω1(λ, σ) + Ω2(λ, σ),

where Ω1(λ, σ) and Ω2(λ, σ) are defined as follows. If all kj(σ) are non-negative integers,
let m0 := m0(σ) := kn+1(σ). Then one puts

Ω1(λ, σ) := − dim (σ)

(
2γ + ψ(1 + iλ) + ψ(1− iλ) +

∑
1≤l<m0

2l

l2 + λ2

)
and

Ω2(λ, σ) := −
n+1∑
j=2

Pj(σ, λ)

 ∑
m0≤l

<kj(σ)+ρj

2l

l2 + λ2
+

(kj(σ) + ρj)

(kj(σ) + ρj)
2 + λ2

 .

If all kj(σ) are positive half integers let m0 := m0(σ) := kn+1(σ)− 1/2. Then one puts

Ω1(λ, σ) := − dim (σ)

(
2γ + ψ

(
1

2
+ iλ

)
+ ψ

(
1

2
− iλ

)
+

∑
0≤l<m0

2 (l + 1/2)

(l + 1/2)2 + λ2

)
and

Ω2(λ, σ) := −
n+1∑
j=2

Pj(σ, λ)

 ∑
m0≤l

<kj(σ)+ρj−1/2

2 (l + 1/2)

(l + 1/2)2 + λ2
+

(kj(σ) + ρj)

(kj(σ) + ρj)
2 + λ2

 .

Finally, if kn+1(σ) < 0 one puts Ω1(σ, λ) = Ω1(w0σ, λ), Ω2(σ, λ) = Ω2(w0σ, λ).

Proof. Let j ∈ {2, . . . , n+ 1}. We have

λσ(He1±ej) = iλ± (kj(σ) + ρj) . (6.30)

Now recall that ρn+1 = 0 and that the highest weight of w0σ is given by k2(σ)e2 + · · · +
kn(σ)en − kn+1(σ)en+1. Moreover recall that for M = Spin(n) one has σ̌ ∼= σ if n is odd
and σ̌ ∼= w0σ if n is even. Thus (6.25) and (6.30) imply (6.29). We can assume that
kn+1(σ) ≥ 0. Assume first that all kj(σ) are integers. Then using ψ(z + 1) = 1

z
+ ψ(z) ,

(6.25) and (6.30) we obtain

Π(se1+ejλσ)

Π(ρM)

(
ψ(1 + λσ(He1+ej)) + ψ(1− λσ(He1+ej))

)
+

Π(se1−ejλσ)

Π(ρM)

(
ψ(1 + λσ(He1−ej)) + ψ(1− λσ(He1−ej))

)
=2

Π(se1+ejλσ)

Π(ρM)

(
ψ(1 + iλ) + ψ(1− iλ) +

∑
1≤l<m0

2l

l2 + λ2

+
∑

m0≤l<kj(σ)+ρj

2l

l2 + λ2
+

(kj(σ) + ρj)

(kj(σ) + ρj)
2 + λ2

)
.
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Using Lemma 6.3 and (6.25) the proposition follows. If all kj(σ) are half integers, one
proceeds similarly.

The following considerations will be needed in order to show that the residues of the
logarithmic derivative of the symmetrized Selberg zeta function are integral.

Lemma 6.5. Let σ ∈ M̂ with highest weight k2(σ)e2 + · · · + kn+1(σ)en+1 as in (2.9).
Assume that all kj(σ) are integers with kn+1(σ) ≥ 0. For every j ∈ {2, . . . , n + 1} and
every l ∈ N with kn+1(σ) ≤ l ≤ kj(σ) + ρj let

ξj,l(σ) :=
∑

2≤i<j

(ki(σ) + ρi)ei + lej +
∑

j<i≤n+1

(ki(σ) + ρi)ei.

Then
Π(ξj,l(σ))

Π(ρM )
is an integer.

Assume that all kj(σ) are half-integers with kn+1(σ) > 0. For every j ∈ {2, . . . , n+ 1} and
for every l ∈ N with kn+1(σ)− 1/2 ≤ l ≤ kj(σ) + ρj − 1/2 let

ξj,l(σ) :=
∑

2≤i<j

(ki(σ) + ρi)ei + (l + 1/2)ej +
∑

j<i≤n+1

(ki(σ) + ρi)ei.

Then
Π(ξj,l(σ))

Π(ρM )
is an integer.

Proof. Suppose first that kn+1(σ) = l. If j < n + 1, one has Π(ξj,l) = 0 by (6.22). If
j = n+ 1, one has

Π (ξj,l(σ))

Π(ρM)
= dim(σ)

by the Weyl dimension formula (2.12).
Now suppose that l > kn+1(σ). Then there exists a minimal ν ∈ {2, . . . , n} such that
l−ρν ≥ kν+1(σ). We have ν ≥ j. If ν > 2 we have l−ρν−1 < kν(σ). Moreover, if for ν > 2
we have l − ρν−1 = kν(σ)− 1, we have l = kν(σ) + ρν and so in this case we have

Π (ξj,l(σ))

Π(ρM)
= dim(σ)

for ν = j and Π (ξj,l(σ)) = 0 for ν > j by (2.12) and (6.22). Thus it remains to consider
the case that for ν > 2 one has kν(σ)− 1 ≥ l − ρν−1 + 1 = l − ρν . Then we define Λ′ ∈ b∗C
by

Λ′ : =
∑

2≤i<j

ki(σ)ei +
∑
j<i≤ν

(ki(σ)− 1) ei−1 + (l − ρν)eν +
∑

ν<i≤n+1

ki(σ)ei.

It follows from (2.9) that Λ′ is the highest weight Λ(σ′) of a representation σ′ of M . By
the Weyl dimension formula (2.12) and by (6.23) one has

dim(σ′) =
Π(Λ(σ′) + ρM)

Π(ρ)
= ±Π (ξj,l(σ))

Π(ρM)
.

If all ki(σ) are half integers, one proceeds in the same way.
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The preceding lemma gives the following corollary.

Corollary 6.6. Let σ ∈ M̂ with highest weight k2(σ)e2 + · · · + kn+1(σ)en+1 as in (2.9).
Assume that all kj(σ) are integers. For every 2 ≤ j ≤ n + 1 and every l with |kn+1(σ)| ≤
l ≤ |kj(σ)|+ ρj let

cj,l(σ) := Pj(σ, il)

Then cj,l(σ) is an integer.
Assume that all kj(σ) are non-zero half integers. For every 2 ≤ j ≤ n+ 1 and every l with
|kn+1(σ)| − 1/2 ≤ l ≤ |kj(σ)|+ ρj − 1/2 let

cj,l(σ) := Pj (σ, i(l + 1/2)) .

Then cj,l(σ) is an integer.

Proof. By (6.26) we can assumme that kn+1(σ) ≥ 0. The corollary follows from equation
(6.24) and Lemma 6.5.

All in all, we have obtained the following proposition.

Proposition 6.7. Let σ ∈ M̂ with highest weight k2(σ)e2 + · · ·+kn+1(σ)en+1. Assume that
all kj(σ) are integers. Let m0 := |kn+1(σ)|. Then there exists an even polynomial Q(σ, λ)
of degree ≤ 2n − 4 and for every j = 2, . . . , n + 1, every l with m0 ≤ l < |kj(σ)| + ρj − 1
there exist integers cj,l(σ) such that

Ω(σ, λ) =− dim(σ)

(
2γ + ψ(1 + iλ) + ψ(1− iλ) +

∑
1≤l<m0

2l

λ2 + l2

)

−
n+1∑
j=2

∑
m0≤l<
|kj(σ)|+ρj

cj,l(σ)

(
1

l + iλ
+

1

l − iλ

)

−
n+1∑
j=2

dim(σ)

2

(
1

|kj(σ)|+ ρj + iλ
+

1

|kj(σ)|+ ρj − iλ

)
−Q(σ, λ).

Assume that all kj(σ) are non-zero half integers. Let m0 := |kn+1(σ)| − 1/2. Then there
exists an even polynomial Q(σ, λ) of degree ≤ 2n− 4 and for every j = 2, . . . , n+ 1, every
l with m0 ≤ l < |kj(σ)|+ ρj − 1/2 there exist integers cj,l(σ) such that

Ω(σ, λ) =− dim(σ)

(
2γ + ψ

(
1

2
+ iλ

)
+ ψ

(
1

2
− iλ

)
+

∑
0≤l<m0

2(l + 1/2)

(l + 1/2)2 + λ2

)

−
n+1∑
j=2

∑
m0≤l<

|kj(σ)|+ρj−1/2

cj,l(σ)

(
1

l + 1/2 + iλ
+

1

l + 1/2− iλ

)

−
n+1∑
j=2

dim(σ)

2

(
1

|kj(σ)|+ ρj + iλ
+

1

|kj(σ)|+ ρj − iλ

)
−Q(σ, λ).
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For every σ ∈ M̂ one has Q(σ, λ) = Q(w0σ, λ).

Proof. Assume that all kj(σ) are integers. For every j = 2, . . . , n + 1, Pj(σ, λ) is an even
polynomial. Thus for every l with m0 ≤ l ≤ |kj(σ)|+ ρj we can write

Pj(σ, λ)2l

l2 + λ2
= Qj,l(σ, λ) + cj,l(σ)

2l

l2 + λ2
,

where

Qj,l(σ, λ) :=
Pj(σ, λ)− Pj(σ, il)

l + iλ
+
Pj(σ, λ)− Pj(σ, il)

l − iλ
(6.31)

is an even polynomial and where

cj,l(σ) := Pj(σ, il) (6.32)

is integral by corollary 6.6. Using (2.14) and (6.28) it follows that

Qj,l(σ, λ) = Qj,l(w0σ, λ).

Using (6.28) it follows that

Pj (σ, i(|kj(σ)|+ ρj)) = dim(σ).

Thus if one lets

Q(σ, λ) :=
n+1∑
j=2

∑
m0≤l

<|kj(σ)|+ρj

Qj,l(σ, λ) +
1

2

∑
l=|kj(σ)|+ρj

2≤j≤n+1

Qj,l(σ, λ), (6.33)

the proposition follows from Proposition 6.4. If all kj(σ) are half-integers one proceeds in
the same way.

7 The Selberg zeta function

7.1 The symmetric Selberg zeta function

Let σ ∈ M̂ . For Re(s) > 8n we define the symmetric Selberg zeta function by

S(s, σ) :=

{
Z(s, σ)Z(s, w0σ), σ 6= w0σ;

Z(s, σ), σ = w0σ,

where Z(s, σ) is the Selberg zeta function defined in Definition 3.12. In this section we
want to prove that S(s, σ) has a meromorphic continuation to C.
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By Proposition 2.17 there exist unique integers mν(σ) ∈ {−1, 0, 1} which are zero except
for finitely many ν ∈ K̂ such that for σ = w0σ one has

σ =
∑
ν∈K̂

mν(σ)ι∗ν (7.1)

and such that for σ 6= w0σ one has

σ + w0σ =
∑
ν∈K̂

mν(σ)ι∗ν. (7.2)

Let E(σ) be the bundle

E(σ) :=
⊕
ν

mν(σ)6=0

Eν . (7.3)

Then E(σ) has a grading

E(σ) = E+(σ)⊕ E−(σ) (7.4)

defined by the sign of mν(σ). For every ν ∈ K̂ let Aν be the operator on C∞(X,Eν)
induced by −Ω. Let A(σ) be the operator acting on C∞(X,E(σ)) defined by

A(σ) :=
⊕
ν

mν(σ) 6=0

Aν + c(σ),

where c(σ) is as in (2.27). Let

Ẽ(σ) :=
⊕
ν

mν(σ)6=0

Ẽν , (7.5)

where Ẽν is as in section 5.1. Then Ẽ(σ) has again a grading defined by the sign of mν(σ).
Let Ã(σ) be the lift of A(σ) to Ẽ(σ). Let

hσt (g) := e−tc(σ)
∑
ν

mν(σ)6=0

mν(σ)hνt (g), (7.6)

where hνt is as in (5.9). Then by (7.2) and Proposition 5.1, for a principal series represen-
tation πσ′,λ, σ

′ ∈ M̂ , λ ∈ R we have

Θσ′,λ(h
σ
t ) = e−tλ

2

for σ′ ∈ {σ,w0σ}; Θσ′,λ(h
σ
t ) = 0, otherwise. (7.7)

The following generalized resolvent formula is due to Bunke and Olbrich.
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Proposition 7.1. Let s1, . . . , sN be complex numbers with s2
i 6= s2

i′ for i 6= i′. Then for
every z ∈ C− {−s2

1, . . . ,−s2
N} one has

N∑
i=1

1

s2
i + z

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

=
N∏
i=1

1

s2
i + z

.

Proof. This is proved by Bunke and Olbrich, [BO, Lemma 3.5].

We will also need the following lemma.

Lemma 7.2. Let s1, . . . , sN be complex numbers with s2
i 6= s2

i′ for i 6= i′. Then one has

N∑
i=1

e−ts
2
i

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

= O(tN−1),

as t→ 0.

Proof. One has

N∑
i=1

e−ts
2
i

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

=

N−2∑
k=0

(−t)k

k!

N∑
i=1

s2k
i

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

+ f(t)

 ,

where f(t) depends on s1, . . . , sN and satisfies

f(t) = O(tN−1), t→ 0.

By [BO, Lemma 3.6], correcting some misprints, for every 0 ≤ k ≤ N − 2 one has

N∑
i=1

s2k
i

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

= 0.

This proves the proposition.

By (5.3) and the definition of A(σ) there exists a λ0(σ) ∈ R such that A(σ) ≥ λ0(σ).
Let λ0 < λ1 < . . . be the eigenvalues of A(σ), which might be either a finite or an infinte
sequence. For each λk let E(λk) be the eigenspace of A(σ) with eigenvalue λk. Let

ms(λk, σ) = dimgrE(λk). (7.8)

For λ > 0 let

N(λ) :=
∑
λk≤λ

|ms(λk, σ)|
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be the counting function of the eigenvalues of A(σ). Then by Theorem I.1 in [Do1] and
Theorem 9.1 in [Do2], there exists a constant C such that

|N(λ)| ≤ C(1 + λ)
d
2 . (7.9)

Now let N ∈ N with N > d/2 and choose distinct points s1, . . . , sN , such that Re(si) > 8n
and such that Re(s2

i ) > max{0,−λ0(σ)} for all i. Then by (7.9), the sum

∑
k

ms(λk, σ)
N∏
i=1

1

λk + s2
i

converges absolutely. Let

A(σ)d :=
⊕
ν∈K̂

mν(σ)6=0

Adν + c(σ),

where Adν is as in section 5.1. Then by Propostition 7.1 we have

∑
k

N∏
i=1

ms(λk, σ)
1

λk + s2
i

=

∫ ∞
0

N∑
i=1

Trs e
−t(A(σ)d+s2i )

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt, (7.10)

where the super-trace is taken with respect to the grading defined in (7.4). We compute
the right hand side of (7.10) using the invariant trace formula stated in equation (6.19) of
Theorem 6.1. To save notation we let

ε(σ) = 1, if σ = w0σ; ε(σ) = 2, if σ 6= w0σ. (7.11)

We begin with the identity contribution. By (2.35), (6.1) and (7.7) one has

I(hσt ) = ε(σ) vol(X)

∫
R
e−tλ

2

Pσ(
√
−1λ)dλ.

We now assure that the identity contribution can be integrated individually.

Lemma 7.3. The integral∫ ∞
0

∫
R

N∑
i=1

Pσ(
√
−1λ)e−t(λ

2+s2i )

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dλdt (7.12)

converges absolutely.
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Proof. There exists an ε > 0 such that for t→∞ one has∫
R

∣∣∣∣ N∑
i=1

Pσ(
√
−1λ)e−t(λ

2+s2i )

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

∣∣∣∣dλ = O(e−tε).

On the other hand, by a change of variables one has∫
R

∣∣∣∣Pσ(
√
−1λ)e−tλ

2

∣∣∣∣dλ = O(t−d/2),

as t→ +0. Thus togther with Lemma 7.2 it follows that there exists an ε > 0 such that∫
R

∣∣∣∣ N∑
i=1

Pσ(
√
−1λ)e−t(λ

2+s2i )

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

∣∣∣∣dλ = O(t−1+ε),

as t→ +0. This proves the Lemma.

Now by Lemma 7.3 we can interchange the order of integration in (7.12) and thus using
Proposition 7.1 one gets∫ ∞

0

∫
R

N∑
i=1

Pσ(
√
−1λ)e−t(λ

2+s2i )

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dλdt =

∫
R
Pσ(
√
−1λ)

N∏
i=1

1

λ2 + s2
i

dλ.

Thus, since Pσ(z) is an even polynomial, one computes∫ ∞
0

N∑
i=1

I(hσt )e−ts
2
i

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt = ε(σ)πvol(X)
N∑
i=1

Pσ(si)
1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

. (7.13)

Next we come to the hyperbolic contribution. For γ ∈ C(Γ)s let

Lsym(γ, σ) := L(γ, σ) if σ = w0σ; Lsym(γ, σ) = L(γ, σ) + L(γ, w0σ) if σ 6= w0σ. (7.14)

Here L(γ, σ) is as in (6.2). Then using (6.3) we obtain∫ ∞
0

N∑
i=1

H(hσt )e−ts
2
i

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt =
N∑
i=1

∑
[γ]∈C(Γ)s−[1]

`(γ0)Lsym(γ, σ)e−sil(γ) 1

2si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

.

Since Re(si) > 8n for every i, the sum on the right hand side converges absolutely by (3.14)
and Proposition 3.8 and thus the integral exists. By [GW, section 3.2.5] if n is even we
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have σ̌ = σ and if n is odd we have σ̌ = w0σ for every σ ∈ M̂ . Thus, using (3.12) and the
definition of L(γ, σ) in (6.2), we obtain∫ ∞

0

N∑
i=1

H(hσt )e−ts
2
i

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt =
N∑
i=1

d

ds

∣∣∣∣
s=si

logS(s, σ)
1

2si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

. (7.15)

We now compute the contribution of the distribution I. It will be shown in section 8.1
that I(hσt ) = O(t−

d−1
2 ), as t → +0. Thus, since I(hσt ) is bounded for t → ∞, it follows

together with Lemma 7.2 that the integral∫ ∞
0

N∑
i=1

I(hσt )e−ts
2
i

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt

converges absolutely. We keep the notations of Proposition 6.7. If all kj(σ) are integers let

I1(σ; s1, . . . , sN) =− ε(σ)
dim(σ)p

2

N∑
i=1

·

(
ψ(1 + si) +

∑
1≤l<m0

1

l + si

)
1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

− pε(σ)

2

n+1∑
j=2

∑
m0≤l

<|kj(σ)|+ρj

cj,l(σ)
N∑
i=1

1

l + si

1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

and if all kj(σ) are half-integers we let

I1(σ; s1, . . . , sN) =− ε(σ)
dim(σ)p

2

N∑
i=1

(
ψ

(
1

2
+ si

)
+

∑
0≤l<m0

1

l + 1/2 + si

)
1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

− pε(σ)

2

n+1∑
j=2

∑
m0≤l

<|kj(σ)|+ρj−1/2

cj,l(σ)
N∑
i=1

1

l + 1/2 + si

1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

.

For σ 6= w0σ we let

I2(σ; s1, . . . , sN) = −ε(σ)
dim(σ)p

4

n+1∑
j=2

N∑
i=1

1

|kj(σ)|+ ρj + si

1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

and for σ = w0σ we let

I2(σ; s1, . . . , sN) = −ε(σ)
dim(σ)p

4

n∑
j=2

N∑
i=1

1

|kj(σ)|+ ρj + si

1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

.
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Finally, we let

I3(σ; s1, . . . , sN)

:=− ε(σ)
p

4

N∑
i=1

Q(σ, isi)
1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

− ε(σ)
dim(σ)γp

2

N∑
i=1

1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

.

Then using Theorem 6.2, Proposition 6.7, equation (7.7) and Proposition 7.1 we compute:∫ ∞
0

N∑
i=1

I(hσt )e−ts
2
i

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt

=I1(σ; s1, . . . , sN) + I2(σ; s1, . . . , sN) + I3(σ; s1, . . . , sN). (7.16)

Here the order of integration in the occuring integrals can be interchanged using Lemma
7.2 and the results of section 8.1 again. Next we treat the contribution of the distribution
S defined in (6.13). For σ ∈ M̂ let νσ ∈ K̂ be as in section 4.2. Moreover let {β(σ)},
{β(w0σ)}, and {η(σ)}, {η(w0σ)} denote the poles of det (I(σ) ◦C(νσ : σ : s)) resp. of
det (I(wσ) ◦C(νσ : w0σ : s)) on (0, n] and on {s ∈ C : Re(s) < 0}, counted with multi-
plicity divided by dim(νσ) as in section 4.2. By the absolute convergence of the series in
(4.21), by (4.20), (4.22) and (7.7) the integral∫ ∞

0

N∑
i=1

S(hσt )e−ts
2
i

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt
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converges absolutely and one has∫ ∞
0

N∑
i=1

S(hσt )e−ts
2
i

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt

=
ε(σ)

8

∑
{η(σ)}

N∑
i=1

(
1

η(σ)− si
+

1

η̄(σ)− si

)
1

si

N∏
i′=1
i 6=i′

1

s2
i′ − s2

i

+
ε(σ)

4

∑
{β(σ)}

N∑
i=1

1

si + β(σ)

1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

+
ε(σ)

8

∑
{η(w0σ)}

N∑
i=1

(
1

η(w0σ)− si
+

1

η̄(w0σ)− si

)
1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

+
ε(σ)

4

∑
{β(w0σ)}

N∑
i=1

1

si + β(w0σ)

1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

+
ε(σ)

8

N∑
i=1

(log q(σ) + log q(w0σ))
1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

+
ε(σ)

4

n+1∑
j=2

N∑
i=1

p dim(σ)

|kj(σ)|+ ρj + si

1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

.

The residual contribution is nonzero only if σ = w0σ and using (6.16) it follows that in
this case we have∫ ∞

0

N∑
i=1

R(hσt )e−ts
2
i

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt =
c1(σ)− c2(σ)

4

N∑
i=1

1

s2
i

·
N∏
i′=1

1

s2
i′ − s2

i

,

where the existence of the integral is obvious. Finally, we treat the contribution of the
distribution T . Using (6.9) and (7.7) we obtain∫ ∞

0

N∑
i=1

T (hσt )e−ts
2
i

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt =
ε(σ) dim(σ)

2
C(Γ)

N∑
i=1

1

si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

, (7.17)

where the existence of the integral is obvious again. Put

cΓ(σ) := ε(σ) (dim(σ)C(Γ)− dim(σ)γp) .
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If all kj(σ) are integers, we let

Ξ(s, σ) := exp

(
2πvol(X)ε(σ)

∫ s

0

Pσ(r)dr − ε(σ)
p

2

∫ s

0

Q(σ, ir)dr + scΓ(σ)

)
· (Γ(1 + s))−pε(σ) dim(σ) · S(s, σ).

If all kj(σ) are half integers, we let

Ξ(s, σ) := exp

(
2πvol(X)ε(σ)

∫ s

0

Pσ(r)dr − ε(σ)
p

2

∫ s

0

Q(σ, ir)dr + scΓ(σ)

)
·
(

Γ

(
1

2
+ s

))−pε(σ) dim(σ)

· S(s, σ).

Let λk be an eigenvalue of A(σ) such that λk 6= 0. Then let

t±k = ±i
√
λk. (7.18)

Here for λk < 0 we choose the square root
√
λk which has positive imaginary part. We now

come to the main result of this section. We say that a meromorphic function f : C → C
has a singularity of order k ∈ Z at s0 ∈ C if the limit

lim
s→s0

(s− s0)−kf(s)

exists and is not zero.

Theorem 7.4. Let σ ∈ M̂ . Then the symmetric Selberg zeta function has a meromorphic
continuation to C. Its singularities associated to spectral parameters are located as follows.

1. At the points t±k of order ms(λk, σ), where ms(λk, σ) is as in (7.8) and the t±k are as
in (7.18).

2. At the point s = 0 of order 2ms(0, σ) if σ 6= w0σ and of order 2ms(0, σ) − c1(σ) if
σ = w0σ. Here c1(σ) is as in (6.16).

3. At the points −β(σ) of order −ε(σ)m(β(σ)). Here β(σ) are the poles of
det (I(σ) ◦C(νσ : σ : s)) on (0, n] and m(β(σ)) is the corresponding multiplicity di-
vided by dim(νσ).

4. At the points η(σ) of order ε(σ)m(η(σ))/2. Here η(σ) are the poles of
det (I(σ) ◦C(νσ : σ : s)) with negative real part and m(η(σ)) is the corresponding
multiplicity divided by dim(νσ).

5. At the points η(w0σ) of order ε(σ)m(η(w0σ))/2. Here η(w0σ) are the poles of
det (I(w0σ) ◦C(νσ : w0σ : s)) with negative real part and m(η(w0σ)) is the corre-
sponding multiplicity divided by dim(νσ).
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Here ε(σ) is as in (7.11). If σ = w0σ, the orders of the singularities at η(σ) in item 4 and
item 5 have to be added so that they are indeed integral.
Moreover, the symmetric Selberg zeta function has singularities which depend on Γ only
via p, the number of cusps of Γ. If all kj(σ) are integers, they are located at the negative
integers and if all kj(σ) are half integers, they are located at the negative half integers.
Explicitly, if all kj(σ) are integers, they are given as follows.

1. At the points −l, l ∈ N, l ≥ m0 of order −pε(σ) dim(σ).

2. At the points −l, l ∈ N, m0 ≤ l < |kj(σ)|+ ρj, j = 2, . . . , n+ 1 of order pε(σ)cj,l(σ).

Here m0 and the cj,l(σ) are as in Proposition 6.7. If all kj(σ) are half integers, they are
given in the same way if N is replaced by 1

2
N− N.

The above enumeration exhausts all possible singularities of non-zero order of S(s, σ). Here
we use the convention that the orders of overlapping singularities in the enumeration add
up.

Proof. Assume first that all kj(σ) are integers. We let s1 =: s and fix s2, . . . , sN . Let

K(σ, s) = 0, if σ 6= w0σ; K(σ, s) = −c1(σ)

s
, if σ = w0σ.

By (4.10), η is a pole of det (I(σ) ◦C(νσ : σ : s)) if and only if η̄ is a pole of
det (I(w0σ) ◦C(νσ : w0σ : s)) and their orders are equal. Thus if we multiply both sides
of (7.10) by

2s
N∏
i′=2

(
s2
i′ − s2

)
and use that for σ = w0σ we have

kn+1(σ) = 0; c1(σ) + c2(σ) = p dim(σ),

we obtain using Propositon 7.1 and the above computations:

Ξ′(s, σ)

Ξ(s, σ)
=2s

∑
k

ms(λk, σ)

(
1

s2 + λk
+ C(λk; s, s2, . . . , sN)

)

+
∑

1≤l<m0

pε(σ) dim(σ)
1

l + s
+

n+1∑
j=2

∑
m0≤l<
|kj(σ)|+ρj

pε(σ)cj,l(σ) · 1

l + s
+K(σ, s)

+
∑
η(σ)

(
ε(σ)

2(s− η(σ))
+

ε(σ)

2(s− η̄(σ))

)
−
∑
β(σ)

ε(σ)

s+ β(σ)
− ε(σ) log q(σ)

4

− ε(σ) log q(w0σ)

4
+ sC(σ; s, s2, . . . , sN). (7.19)
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Here C(λk; s, s2, . . . , sN) and C(σ; s, s2, . . . , sN) are polynomials in s which are of degree at
most 2(N − 2) and which depend on the parameters. All infinite series involved converge
absolutely and locally uniformly by the above arguments. Hence the logarithmic derivative
of Ξ has a meromorphic continuation to C. For λk 6= 0, one has

2s

s2 + λk
=

1

s− t+k
+

1

s− t−k
.

The cj,l(σ) are integral by Corollary 6.6. Finally, for σ = w0σ , c1(σ) is integral by
construction. Hence the residues of the logarithmic derivatives of Ξ are integral. If all
kj(σ) are half integers, we proceed in the same way. This proves the theorem.

7.2 The twisted Dirac Operator on X̃

In this section we introduce certain twisted Dirac operators on X̃ and compute the Fourier
transform of the corresponding heat-kernel. We keep the notations of section 2.4 Let Cl(p)
be the Clifford-algebra of p with respect to the normalized Killing form, which defines a
scalar product on p. We regard K as a multiplicative subgroup of Cl(p) in such a way that
the action of K on p ⊂ Cl(p) by conjugation coincides with the action Ad of K on p, i.e.
we fix a homogeneous spin-structure. Let Cl(X̃) := G×Ad Cl(p) be the Clifford bundle of
X̃, where Ad denotes the extension of Ad to a representation of K on Cl(p). Let ∆2n be
the Spinor space as in [Fri, page 14] and let S̃ = G×κ ∆2n be the spinor bundle of X̃. Let

c : Cl(p)⊗∆2n −→ ∆2n, X ⊗ v 7→ c(X)v (7.20)

denote the Clifford multiplication. Let H1 be as in (2.3). Since M centralizes a, c(H1) maps
the spaces ∆2n

± into themselves. Since κ± are irreducible representations of M , c(H1) acts
diagonally on ∆2n

± . It follows from the explicit construction of the Clifford multiplication
[Fri, page 13-14] that c(H1) can not act diagonally on ∆2n. Thus, since c(H1)2 = − Id,
there is an ε ∈ {±1} such that ε c(H1) acts on the spaces ∆2n

± with eigenvalues ∓i.
Let ν ∈ K̂ be an irreducible unitary representation of K on Vν and let Ẽν be the homo-
geneous vector-bundle as in section 5.1. Let D̃ν be the twisted Dirac operator on Ẽν ⊗ S̃
multiplied by ε. Let C∞(G, κ⊗ν) be as in (5.1). We identify the smooth sections of Ẽν⊗ S̃
with C∞(G, ν ⊗ κ) as in section 5.1. Then, if X1, . . . , X2n+1 is an orthonormal base of p,
on C∞(G, ν ⊗ κ) ∼= (C∞(G)⊗ Vν ⊗∆)K one has

D̃νf(g) = ε
2n+1∑
i=1

R(Xi)⊗ Id⊗ c(Xi).

By [Ch], D̃ν and D̃2
ν with domain C∞c (G, ν ⊗ κ) ⊂ L2(G, ν ⊗ κ) are essentially selfadjoint.

Their closures will be denoted by D̃ν and D̃2
ν too. We next recall the Parthasarathy formula

for D̃2
ν . In [AS], it was assumed that rk(G) = rk(K). However, one can proceed exactly as

in [AS, page 53-54] to obtain [AS, equation (A 9)], i.e.

D̃2
ν = −R(Ω) + (ν(ΩK)− κ(ΩK)) Id . (7.21)
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Now we want to study the operators D̃νe
−tD̃2

ν . First consider the heat semigroup e−tD̃
2
ν .

Let c(ν) := ν(ΩK) − κ(ΩK). Then it follows from (5.7) and (7.21) that on L2(G, ν ⊗ κ)
one has

e−tD̃
2
νφ(g) = e−tc(ν)

∫
G

Hν⊗κ
t (g−1g′)φ(g′)dg′,

where Hν⊗κ
t is as in (5.5). Since Hν⊗κ

t belongs to all Harish-Chandra Schwarz spaces

(Cq(G)⊗ End (Vν ⊗∆2n))
K

, q > 0 and since these spaces are stable under the differential

action of U(gC), it follows that D̃νe
−tD̃2

ν acts on L2(G, ν ⊗ κ) as an integral operator with
smooth kernel

Kν
t ∈

(
Cq(G)⊗ End

(
Vν ⊗∆2n

))K
,

where Kν
t is given as

Kν
t (g) := εe−tc(ν)

2n+1∑
i=1

Id⊗ c(Xi) ◦
d

dt

∣∣∣∣
t=0

Hν⊗κ
t (exp−tXig).

Define a K-finite Schwarz function kνt by

kνt := TrKν
t , (7.22)

where Tr denotes the trace in End (Vν ⊗∆2n).
The Fourier transform of kνt was computed by Moscovici and Stanton in [MS]. We shall
recall some details of their argument. Let π be an admissible unitary representation of
G on Hπ. Let H∞π be the set of smooth vectors of Hπ. Define a bounded operator on
Hπ ⊗ Vν ⊗∆2n by

π̃(Kν
t ) :=

∫
G

π(g)⊗Kν
t (g)dg. (7.23)

Then arguing as in [BM, Lemma 5.1] one obtains

Tr π(kνt ) = Tr (π̃(Kν
t )) .

To compute Tr (π̃(Kν
t )), let Xi be an orthonormal base of p. Define and operator

D̃ν(π) :
(
H∞π ⊗ Vν ⊗∆2n

)K → (
H∞π ⊗ Vν ⊗∆2n

)K
by

D̃ν(π) := ε

2n+1∑
i=1

π(Xi)⊗ Id⊗ c(Xi).
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It is easliy verified that D̃ν(π) is independent of the choice of the orthonormal base. More-

over, if k ∈ K, v ∈ (H∞π ⊗ Vν ⊗∆2n)
K

, one has

(π ⊗ ν ⊗ κ) (k)D̃ν(π)v = ε
2n+1∑
i=1

π(Ad(k)Xi)⊗ Id⊗c(Ad(k)Xi) = D̃ν(π)v,

since the Ad(k)Xi also form an orthonormal base of p. Hence D̃ν(π) does indeed map

(H∞π ⊗ Vν ⊗∆2n)
K

to itself. Now a change of variables in (7.23) gives

π̃(Kν
t ) = e−tc(ν)D̃ν(π) ◦ π̃(Hν⊗κ

t ),

where π̃(Hν⊗κ
t ) is as in (5.12). As in section 5.1 , relative to the splitting

Hπ ⊗∆2n ⊗ Vν = (Hπ ⊗∆2n ⊗ Vν)K ⊕
(
(Hπ ⊗∆2n ⊗ Vν)K

)⊥
,

π̃(Hν⊗κ
t ) has the form (

π(Hν⊗κ
t ) 0
0 0

)
,

where π(Hν⊗κ
t ) acts on (Hπ ⊗ Vν ⊗∆2n)

K
by etπ(Ω) Id. One has (Hπ ⊗ Vν ⊗∆2n)

K
=

(H∞π ⊗ Vν ⊗∆2n)
K

. Hence one gets

Tr (π(kνt )) = et(π(Ω)−c(ν)) Tr D̃ν(π). (7.24)

It remains to compute Tr D̃ν(π). For a principal series representation π = πσ,λ, this was
carried out in [MS, Chapter 3].

Proposition 7.5. Let σ ∈ M̂ , λ ∈ R. Then one has

Tr D̃ν(πσ,λ) = λ
(

dim
(
Vσ ⊗ Vν ⊗∆2n

+

)M − dim
(
Vσ ⊗ Vν ⊗∆2n

−
)M)

.

Proof. This follows from [MS, Proposition 3.6], where an i has to be added by the argu-
ments of Chapter 3 in [MS].

Now let σ ∈ M̂ and assume that σ 6= w0σ, kn+1(σ) > 0. Let ν(σ) ∈ K̂ be of highest
weight (2.16). Let Ẽ(σ) be the vector bundle over X̃ as in (7.5). Then by Proposition 2.3
one has Ẽ(σ) = Ẽν(σ) ⊗ S̃. Let D̃(σ) := D̃ν(σ). By (2.15), (2.16) and (2.26) on gets

c(ν(σ)) =ν(σ) (ΩK)− κ(ΩK) =
n+1∑
j=2

(kj(σ) + ρj)
2 −

n+1∑
j=2

(ρj + 1)2

=
n+1∑
j=2

(kj(σ) + ρj)
2 −

n+1∑
j=1

(ρj)
2 = c(σ), (7.25)
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where c(σ) is as in (2.27). Thus by (7.21) one has

Ã(σ) = D̃(σ)2, (7.26)

where Ã(σ) is as in section 7.1. Moreover, let

kσt := k
ν(σ)
t , (7.27)

where k
ν(σ)
t is as in (7.22). Then one obtains the folllowing corollary.

Corollary 7.6. Let σ ∈ M̂ , kn+1(σ) > 0. Then for λ ∈ R one has

Θσ,λ(k
σ
t ) = (−1)nλe−tλ

2

; Θw0σ,λ(k
σ
t ) = (−1)n+1λe−tλ

2

.

Moreover, if σ′ ∈ M̂ , σ′ /∈ {σ,w0σ}, for every λ ∈ R one has

Θσ′,λ(k
σ
t ) = 0.

Proof. Let σ̌ be the contragredient representation of σ. By [GW, section 3.2.5] if n is even
one has σ̌ = σ and if n is odd one has σ̌ = w0σ. Hence by Propostition 2.3, for σ′ ∈ M̂
one has

dim
(
Vσ′ ⊗ Vν(σ) ⊗∆2n

+

)M − dim
(
Vσ′ ⊗ Vν(σ) ⊗∆2n

−
)M

= (−1)n [σ − w0σ : σ′] .

The corollary follows from Corollary 2.6, equation (7.24), Proposition 7.5 and equation
(7.25).

7.3 The antisymmetric Selberg zeta function

Let σ ∈ M̂ with kn+1(σ) > 0. Let E(σ) = Γ\Ẽ(σ) be the locally homogeneous vector
bundle over X as in section 7.1. Let D̃(σ) be as in the previous section. Then D̃(σ) pushes
down to an operator D(σ) on the smooth sections of E(σ). By (7.26) one has

D(σ)2 = A(σ), (7.28)

where A(σ) is the operator from section 7.1. The operator D(σ) has a well defined re-
striction to L2

d(Γ\G, ν(σ) ⊗ κ) in the sense of unbounded operators. This restriction will
be denoted by D(σ)d. The space L2

d(Γ\G, ν(σ) ⊗ κ) is an orthogonal direct sum of finite
dimensional eigenspaces of D(σ)2

d. On these spaces D(σ)d acts as a symmetric operator,
and thus L2

d(Γ\G, ν(σ)⊗ κ) is also the orthogonal direct sum of eigenspaces of D(σ)d. Let
{µ}k be the sequence of eigenvalues of D(σ)d with µk = µk′ iff k = k′. This sequence might
be finite or infinite. Let E(µk) be the eigenspace of D(σ) corresponding to the eigenvalue
µk and let d(µk, σ) := dim(E(µk)). For λ > 0 let

N(λ) :=
∑
|µk|≤λ

d(µk, σ).
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Then by [Do1, Theorem I.1] and [Do2, Theorem 9.1] there exists a constant C > 0 such
that

N(λ) ≤ C(1 + λ)2n+1. (7.29)

It follows that the sum ∑
k

d(µk, σ) |µk| e−tµ
2
k

is convergent. Hence the operator D(σ)d e
−tD(σ)2

d is of trace class. Moreover, one has

Tr
(
D(σ)d e

−tD(σ)2
d

)
= Tr (πΓ,d(k

σ
t )) , (7.30)

where kσt is as in (7.27). Let N ∈ N, N > n+ 1. We choose distinct points s1, . . . , sN such
that Re(si) > 8n, Re(s2

i ) > 0 for all i. Then by (7.29), the sum∑
k

d(µk, σ)µk

N∏
i=1

1

µ2
k + s2

i

converges absolutely. By Proposition 7.1 we have

2i
∑
k

d(µk, σ)µk

N∏
i=1

1

µ2
k + s2

i

= 2i

∫ ∞
0

N∑
i=1

e−ts
2
i Tr

(
D(σ)d e

−tD(σ)2
d

) N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt. (7.31)

We compute the right hand side of (7.31) using (7.30) and the invariant trace formula in
equation (6.19) of Theorem 6.1. By (2.35) we have Pσ(λ) = Pw0σ(λ). By Proposition 6.4
we have Ω(σ, λ) = Ω(w0σ, λ). Thus, applying (6.1), (6.9), Theorem 6.2 and Corollary 7.6
we obtain

I(kσt ) = T (kσt ) = I(kσt ) = 0. (7.32)

Using equation (6.3) and Corollary 7.6, we get

2i

∫ ∞
0

N∑
i=1

e−ts
2
iH(kσt )

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt

= (−1)n
N∑
i=1

∑
[γ]∈C(Γ)s−[1]

l(γ0)(L(γ, σ)− L(γ, w0σ))e−l(γ)si

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

.

Here, since Re(s) > 8n, the sum on the right hand side converges absolutely by Proposition
3.8 and equation (3.14) and thus the integral converges absolutely. For Re(s) > 8n we
define the anti-symmetric Selberg-zeta function by

Sa(s, σ) :=
Z(s, σ)

Z(s, w0σ)
.
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Again, by [GW, section 3.2.5] if n is even we have Tr(σ) = Tr(σ) and if n is odd we have
Tr(σ) = Tr(w0σ) for every σ ∈ M̂ . Thus using (3.12) and the definition of L(γ, σ) in (6.2)
it follows that

2i

∫ ∞
0

N∑
i=1

e−ts
2
iH(kσt )

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt =
N∑
i=1

d

ds

∣∣∣∣
s=si

logSa(s, σ)
N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

. (7.33)

Using equation (6.16) and Corollary 7.6 one obtains

R(kσt ) = 0. (7.34)

Now we come to the contribution of the distribution S. Let {η(σ)} resp. {η(w0σ)} be
the poles of det (I(σ) ◦C(ν(σ) : σ : s)) resp. det (I(w0σ) ◦C(ν(σ) : w0σ : s)) on {s ∈
C : Re(s) < 0} counted with multiplicity divided by dim(ν(σ)). By (4.10), the poles
of det (I(σ) ◦C(ν(σ) : σ : s)) and det (I(w0σ) ◦C(ν(σ) : w0σ : s)) on (0, n] coincide. Thus
using (4.22), (4.20) and Corollary 7.6, one obtains

2i

∫ ∞
0

N∑
i=1

e−ts
2
iS(kσt )

N∏
i′=1
i 6=i′

1

s2
i′ − s2

i

dt

=
(−1)n

2

∑
η(σ)

N∑
i=1

(
1

si − η̄(σ)
− 1

si − η(σ)

) N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

+
(−1)n+1

2

∑
η(w0σ)

N∑
i=1

(
1

si − η̄(w0σ)
− 1

si − η(w0σ)

) N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

. (7.35)

Let σ ∈ M̂ with kn+1(σ) < 0. Then we define the twisted Dirac operator D(σ) as D(σ) :=
−D(w0σ), where D(w0σ) is as in section 7.2. We can now prove our main result about the
antisymmetric Selberg zeta function.

Theorem 7.7. Let σ ∈ M̂ . Then the antisymmetric Selberg zeta function Sa(s, σ) has a
meromorphic continuation to C and its singularities are located as follows.

1. At the points ±iµk of order d(±µk, σ)−d(∓µk, σ), where µk is a non-zero eigenvalue
of the twisted Dirac operator D(σ) and d(±µk, σ) is the dimension of the eigenspace
corresponding to ±µk.

2. At the points η(σ) of order (−1)nm(η(σ)). Here η(σ) are the poles of
det (I(σ) ◦C(νσ : σ : s)) with negative real part and m(η(σ)) is the corresponding
multiplicity divided by dim(νσ).

3. At the points η(w0σ) of order (−1)n+1m(η(w0σ)). Here η(w0σ) are the poles of
det (I(w0σ) ◦C(νσ : w0σ : s)) with negative real part and m(η(w0σ)) is the corre-
sponding multiplicity divided by dim(νσ).
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The above enumeration exhausts all possible singularities of non-zero order of Sa(s, σ) if
at overlapping singularities the orders are added up.

Proof. Clearly we can assume that kn+1(σ) > 0. We let s1 =: s, Re(s) > 8n, Re(s2) > 0
and fix distinct s2, . . . , sN with Re(si) > 8n, Re(s2

i ) > 0. Then we multiply both sides of
(7.31) by

N∏
i′=2

(
s2
i′ − s2

)
and apply Proposition 7.1 to the left hand side and equation (6.19) of Theorem 6.1 to the
right hand side. Using (7.32), (7.33), (7.34) and (7.35) we obtain

S ′a(s, σ)

Sa(s, σ)
=
∑
k

(
d(µk, σ)

s− iµk
− d(µk, σ)

s+ iµk
+ C(µk; s, s2, . . . , sN)

)
+

(−1)n

2

∑
η(σ)

(
1

η̄(σ)− s
+

1

s− η(σ)
+ C(η(σ); s, s2, . . . , sN)

)

+
(−1)n+1

2

∑
η(w0σ)

(
1

η̄(w0σ)− s
+

1

s− η(w0σ)
+ C(η(w0σ); s, s2, . . . , sN)

)
.

Here C(µk; s, s2, . . . , sN), C(η(σ); s, s2, . . . , sN), C(η(w0σ); s, s2, . . . , sN) are polynomials in
s of degree at most 2(N − 2). All involved series converge absolutely and locally uniformly
by the above arguments. Now we use that by (4.10), η(σ) is a pole of det (I(σ) ◦C(νσ : σ : s))
if and only if η̄(σ) is a pole of det (I(w0σ) ◦C(νσ : w0σ : s)) and that the orders of the poles
are equal. Thus we obtain

S ′a(s, σ)

Sa(s, σ)
=
∑
k

(
d(µk, σ)

s− iµk
− d(µk, σ)

s+ iµk
+ C(µk; s, s2, . . . , sN)

)
+ (−1)n

∑
η(σ)

(
1

s− η(σ)
+ C ′(η(σ); s, s2, . . . , sN)

)

+ (−1)n+1
∑
η(w0σ)

(
1

s− η(w0σ)
+ C ′(η(w0σ); s, s2, . . . , sN)

)
. (7.36)

This proves the theorem.

We can now complete our proof of the meromorphic continuation of the Selberg zeta
function Z(s, σ) and describe its singularities.

Theorem 7.8. Let σ ∈ M̂ . Then the Selberg zeta function Z(s, σ) has a meromorphic
continuation to C. If σ = w0σ, the singularities of the Selberg zeta function Z(s, σ) are as
in Theorem 7.4.
Assume that σ 6= w0σ. Then the singularities of the Selberg zeta function Z(s, σ) associated
to spectral parameters are located as follows.
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1. At the points ±iµk of order 1
2

(ms(µ
2
k, σ) + d(±µk, σ)− d(∓µk, σ)), where µk is a non-

zero eigenvalue of the twisted Dirac operator D(σ), d(µk, σ) is the dimension of the
corresponding eigenspace and ms(µ

2
k, σ) is as in (7.8).

2. At the point s = 0 of order ms(0, σ).

3. At the points −β(σ) of order −m(β(σ)). Here β(σ) are the poles of
det (I(σ) ◦C(νσ : σ : s)) on (0, n] and m(β(σ)) is the corresponding multiplicity di-
vided by dim(νσ).

4. If n is even at the points η(σ) of order m(η(σ)). Here η(σ) are the poles of
det (I(σ) ◦C(νσ : σ : s)) with negative real part and m(η(σ)) is the corresponding
multiplicity divided by dim(νσ).

5. If n is odd at the points η(w0σ) of order m(η(w0σ)). Here η(w0σ) are the poles of
det (I(w0σ) ◦C(νσ : w0σ : s)) with negative real part and m(η(w0σ)) is the corre-
sponding multiplicity divided by dim(νσ).

Moreover, the Selberg zeta function Z(s, σ) has singularities which depend on Γ only via p,
the number of cusps of Γ. If all kj(σ) are integers, they are located at the negative integers
and if all kj(σ) are half integers, they are located at the negative half integers.
Explicitly, if all kj(σ) are integers, they are given as follows.

1. At the points −l, l ∈ N, l ≥ m0 of order −p dim(σ).

2. At the points −l, l ∈ N, m0 ≤ l < |kj(σ)|+ ρj, j = 2, . . . , n+ 1 of order pcj,l(σ).

Here m0 and the cj,l(σ) are as in Proposition 6.4. If all kj(σ) are half integers, they can
be described in the same way if N is replaced by 1

2
N− N.

The above enumeration exhausts all possible singularities of non-zero order of Z(s, σ) if at
overlapping singularities the orders are added up.

Proof. If σ = w0σ, the Theorem follows from Theorem 7.4. Thus we can assume that
σ 6= w0σ. We have

Z ′(s, σ)

Z(s, σ)
=

1

2

(
S ′(s, σ)

S(s, σ)
+
S ′a(s, σ)

Sa(s, σ)

)
.

If we combine Theorem 7.4 and Theorem 7.7, it follows that the logarithmic derivative
of Z(s, σ) has a meromorphic continuation to C. It remains to show that its residues
are integral. By (7.28), the eigenvalues λk of A(σ) are given by the µ2

k. For every k let
E(±µk) be the eigenspaces of D(σ) corresponding to the eigenvalue ±µk and let E(µ2

k)
be the eigenspace of A(σ) corresponding to the eigenvalue µ2

k. Then one has E(µ2
k) =

E(µk)⊕E(−µk). Recall that ms(µ
2
k, σ) = dimgr E(µ2

k). Thus ms(µ
2
k, σ)+d(µk, σ)−d(−µk, σ)

is even. Since σ 6= w0σ by assumption, we have ε(σ) = 2 and thus the theorem follows.

We conclude this section with the following corollary.
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Corollary 7.9. For every σ ∈ M̂ the Ruelle zeta function R(s, σ) has a meromorphic
contination to C.

Proof. This follows immediately from Proposition 3.15 and Theorem 7.8.

8 The relative determinant and the Selberg zeta func-

tion

8.1 The asymptotic expansion of the relative trace and the def-
inition of the relative determinant

Let ν be a finite-dimensional unitary representation of K and let Eν be the associated
locally homogeneous bundle over X defined in section 5.1. Let Aν be the differential
operator which acts on Eν and is induced by −Ω. In this section we want to introduce the
relative determinant of Aν + s for certain s ∈ C. As on compact manifolds, in order to
do so we need an asymptotic expansion of the relative trace of e−tAν as t→ +0. To begin
with, we prove some elementary lemmas.

Lemma 8.1. Let c ∈ R and let φ1(t) :=
∫
R e
−tλ2 1

λ2+c2
dλ. Then there exist aj ∈ C such

that

φ1(t) ∼
∞∑
j=0

ajt
j
2

as t→ +0.

Proof. We have

φ1(t) =etc
2

∫
R

e−t(λ
2+c2)

λ2 + c2
dλ.

One has

d

dt

∫
R

e−t(λ
2+c2)

λ2 + c2
dλ = −

√
π√
t
.

Thus one has ∫
R

e−t(λ
2+c2)

λ2 + c2
dλ = C − 2

√
πt.

Writing etc
2

as a power series, the proposition follows.
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Lemma 8.2. Let φ2(t) :=
∫
R e
−tλ2

ψ(1 + iλ)dλ. Then there exist complex coefficients aj,
bj, cj such that

φ2(t) ∼
∞∑
j=0

ajt
j−1/2 +

∞∑
j=0

bjt
j−1/2 log t+

∞∑
j=0

cjt
j,

as t→ +0.

Proof. The asymptotic behaviour of the Laplace transform at 0 of functions which admit
suitable asymptotic expansions at infinitiy has been treated in [HL].
Recall that

ψ(z + 1) = log z +
1

2z
−

N∑
k=1

B2k

2k
· 1

z2k
+RN(z), N ∈ N. (8.1)

Here Bi are the Bernoulli-numbers and

RN(z) = O(z−2N−2), z →∞

uniformly on sectors −π + δ < arg(z) < π − δ. Consider

φ+
2 (t) :=

∫ ∞
0

e−tλ
2

ψ(1 + iλ)dλ.

Let χ be the characteristic function of [1,∞). Define a function

g(λ) := ψ(1 + iλ)− log iλ− χ(λ)

2iλ

and define a function

h(λ) :=
g(
√
λ)

2
√
λ
.

Then by (8.1) there is an asymptotic expansion

h(λ) ∼
∞∑
k=1

akλ
−k−1/2, λ→∞. (8.2)

First define

ψ+
2 (t) :=

∫ ∞
0

e−tλ
2

g(λ)dλ =

∫ ∞
0

e−tλh(λ)dλ.

Then by (8.2) and [HL, Corollary 5.2] one obtains

ψ+
2 (t) ∼

∞∑
k=0

a′kt
k+1/2 +

∞∑
k=0

c′kt
k
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for complex a′k, c
′
k. Next we have∫ ∞
0

e−tλ
2

log λ dλ = t−1/2

∫ ∞
0

e−λ
2

log λdλ−
√
π

4
t−1/2 log t.

Finally we have ∫ ∞
1

e−tλ
2

λ−1dλ =

∫ 1

√
t

e−λ
2

λ−1dλ+

∫ ∞
1

e−λ
2

λ−1dλ

=

∫ 1

√
t

∞∑
k=0

(−1)k
λ2k−1

k!
dλ+ C

=− log
√
t+

∞∑
k=1

(−1)k+1 tk

k!2k
+ C ′.

Putting everything together, we obtain the desired asymptotic expansion for φ+
2 . For the

integral over (−∞, 0] we proceed similarly.
Alternatively, one can also proceed as in [Koy, page 156-157, page 165-166]. The methods
of [HL] and [Koy] are closely related.

Lemma 8.3. Let P (z) :=
∑N

j=0 ajz
2j be an even polynomial. Then there exist a′j ∈ C such

that ∫
R
e−tλ

2

P (λ)dλ =
N∑
j=0

a′jt
−j− 1

2 .

Proof. This follows from a change of variables.

Proposition 8.4. There exist coefficients aj, bj, cj such that one has

Trrel,u(e−tAν ) ∼
∞∑
j=0

ajt
j− d

2 +
∞∑
j=0

bjt
j− 1

2 log t+
∞∑
j=0

cjt
j

as t→ +0.

Proof. Assume that all kj(ν) are integers. We write Trrel,u(e−tAν ) as in equation (6.20)
of Theorem 6.1 and derive an asymptotic expansion of each summand separately. We
can always ignore additional factors of the form e−tc, c > 0 by expanding this term in a
power series. The term I(hνt ) has the desired asymptotic expansion by Proposition 5.1,
equation (6.1) and Lemma 8.3 . Second, by Proposition 3.8, (3.14), (6.3) and Proposition
5.1 we have H(hνt ) = O(e−

c
t ) for a constant c > 0. By Proposition 5.1 and equation (6.9)

the term T (hνt ) has an asymptotic expansion starting with t−
1
2 . For every σ ∈ M̂ with

[ν : σ] 6= 0 we write Ω(λ, σ) as in Proposition 6.7. Then by Theorem 6.2, Propostion 5.1
Proposition 6.7, Lemma 8.1, Lemma 8.2 and Lemma 8.3 it follows that the term I(hνt )
has the claimed asymptotic expansion in t. The term J(hνt ) has the claimed asymptotic
expanion by Proposition 5.1, equation (4.18), equation (6.11) and Lemma 8.1. Finally,
the term Ru(t, ν) has the claimed asymptotic expansion by Lemma 8.1. If all kj(ν) are
half-integers, one can proceed in the same way.
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Now we introduce the relative zeta function associated to Aν . By (5.3), there exists a
smallest eigenvalue λν ∈ R of Adν . Now we define b(ν) ∈ R by

b(ν) := max
{
{c(σ) : σ ∈ M̂ : [ν : σ] 6= 0} t {−λν}

}
, (8.3)

where the constants c(σ) are as in (2.27).

Proposition 8.5. Let s ∈ C with Re(s) > b(ν). Then for Re(z) > d
2

the integral

ξν,u(s, z) :=

∫ ∞
0

tz−1 Trrel,u(e−t(Aν+s))dt (8.4)

converges and ξν,u is holomorphic on {(s, z) ∈ C× C : Re(s) > b(ν) : Re(z) > d
2
} . More-

over, ξν,u(s, z) has a continuation to a holomorphic function on {(s, z) ∈ C× C : Re(s) >
b(ν) : z 6= −j, z 6= d/2 − j, j ∈ N0}. For every s ∈ C with Re(s) > b(ν) the function
z 7→ ξν,u(s, z) has an at most simple pole at z = 0 with

Res
∣∣
z=0

ξν,u(s, z) = c0, (8.5)

where c0 is the constant from Proposition 8.4.

Proof. By (5.24), Proposition 5.7 and Remark 5.8, there exists a constant C such that one
can estimate ∣∣Trrel,u e

−t(Aν+s)
∣∣ ≤ Ce−t(Re(s)−b(ν)). (8.6)

Thus the integral ∫ ∞
1

tz−1 Trrel,u e
−t(Aν+s)

converges absolutely for all {(z, s) ∈ C × C : Re(s) > b(ν)} and is holomorphic there.
Moreover, by Proposition 8.4 one has Trrel,u e

−t(Aν+s) = O(t−d/2) for t → +0, locally
uniformly in s and thus the integral in (8.4) converges on the prescribed domain and is
holomorphic in z and s. Secondly, expanding e−ts in a power series, Proposition 8.4 gives
an asymptotic expansion

Trrel,u e
−t(Aν+s) ∼

∞∑
j=0

aj(s)t
j− d

2 +
∞∑
j=0

bj(s)t
j− 1

2 log t+
∞∑
j=0

cj(s)t
j

as t → +0 which holds locally uniformly in s. Here the coefficients aj(s), bj(s) and cj(s)
depend holomorphically on s and one has c0(s) = c0 for every s since d is odd. Thus
the meromorphic continuation and equation (8.5) follow from standard methods which are
described for example in [Gi].

Now we can define the relative determinant proceeding as on a compact manifold. By
Proposition 8.5, for s ∈ C with Re(s) > b(ν) the function ξν,u(s, z)/Γ(z) is regular at z = 0.
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Definition 8.6. Let s ∈ C with Re(s) > b(ν). Then we define the relative determinant of
Aν + s with respect to the parameter u by

detu(Aν + s) := exp

(
− ∂

∂z

∣∣
z=0

ξν,u(s, z)

Γ(z)

)
.

Remark 8.7. Let us now put the constant b(ν) in a more natural context. Let Acν denote
the restriction of Aν to L2

c(Γ\G, ν) in the sense of unbounded operators. Using the theory
of Eisenstein series and Corollary 2.6, one can establish in a standard way a unitary
equivalence between Acν and the direct sum of the operators of multiplication by −c(σ)+λ2

acting on L2 ([0,∞),E(σ, ν); dλ). Here the direct sum is over all σ ∈ M̂ such that [ν : σ] 6=
0, E(σ, ν) is as in section 4.1 and dλ is the Lebesgue measure. Thus −b(ν) is just the
infimum of the spectrum of Aν . This explains the estimate in (8.6). However, since we
did not explicitly establish the spectral representation of Acν , we chose the more artificial
definition in (8.3) for b(ν) here.

8.2 The relative graded determinant of the auxiliary operators

In this section we study the relative graded determinant of the operators A(σ0) + s from
section 7.1. Let σ0 ∈ M̂ and assume that all kj(σ0) are integral. For ν ∈ K̂ let mν(σ0) be
as in (7.1) resp. (7.2). Then we define b(σ0) ∈ R by

b(σ0) := max{b(ν)− c(σ0) : ν ∈ K̂ : mν(σ0) 6= 0}, (8.7)

where c(σ0) is as in (2.27) and where b(ν) is as in (8.3). Let s ∈ C with Re(s) > b(σ0). It
follows from Proposition 8.5 that for every ν ∈ K̂ with mν(σ0) 6= 0 the relative determinant
detu (Aν + c(σ0) + s) ∈ R+ is defined. Thus we can define the relative graded determinant
detgr,u(A(σ0) + s) ∈ R+ of A(σ0) + s with respect to the parameter u by

detgr,u(A(σ0) + s) :=
∏
ν∈K̂

mν(σ0)6=0

(detu(Aν + c(σ0) + s))mν(σ0) .

We now examine the function s 7→ detu(A(σ0) + s2), Re(s) > 0, Re(s2) > b(σ0). More
precisely, we use the relative trace formula from Theorem 6.1 and study the Mellin trans-
form of each summand on the right hand side of (6.20) separately. We first establish some
auxiliary results for the computation of the involved Mellin transforms.

Lemma 8.8. Let s ∈ C with Re(s) > 0, Re(s2) > 0, let z ∈ C, Re(z) > 0 and let
j ∈ [0,∞). Define

ξ(s, z) :=
1

π

∫ ∞
0

tz−1e−ts
2

∫
Dε

e−tζ
2

iζ + j
dζdt,
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where Dε is a contour as in section 6.1. Then for every s ∈ C with Re(s) > 0, Re(s2) > 0
the function ξ(s, z) has a meromorophic continuation to z ∈ C with a simple pole at z = 0.
Moreover, one has

∂

∂z

∣∣∣∣
z=0

ξ(s, z)

Γ(z)
= −2 log (s+ j).

Proof. If j = 0, one has

ξ(s, z) = s−2zΓ(z)

and the proposition follows. Assume that j > 0. Then one has

ξ(s, z) =
j

π

∫ ∞
0

tz−1e−ts
2

∫
R

e−tλ
2

λ2 + j2
dλdt.

Thus the existence of the integral and the meromorphic continuation follow from Lemma
8.1 and standard methods. Let

φ(s, z) :=
j

π

∫ ∞
0

tz−1

∫
R

e−t(λ
2+s2)

λ2 + j2
dλdt− j

π

∫ ∞
0

tz−1

∫
R

e−t(λ
2+j2)

λ2 + j2
dλdt.

Then, since e−ts
2 − e−tj

2
= O(t), t → 0, it follows from Lemma 8.1 that the integral

converges for Re(z) > −1 and is holomorphic in s ∈ C, Re(s) > 0, Re(s2) > 0. One has

∂

∂s
φ(s, 0) = −2js

π

∫ ∞
0

∫
R

e−t(λ
2+s2)

λ2 + j2
dλdt =

−2

s+ j
.

Since φ(j, 0) = 0, one has

φ(s, 0) = −2 log (s+ j) + 2 log 2j. (8.8)

On the other hand for Re(z) > 0 one has

ξ(j, z) =
j

πz

∫ ∞
0

(
d

dt
tz
)∫

R

e−t(λ
2+j2)

λ2 + j2
dλdt =

j−2z

√
π z

Γ

(
z +

1

2

)
.

Hence for z → 0 one has

ξ(j, z) =
1

z
− 2 log j +

Γ′(1
2
)

√
π

+O(z) =
1

z
− 2 log j + ψ

(
1

2

)
+O(z).

Together with (8.8) this gives for z → 0:

ξ(s, z) =
1

z
− 2 log j + ψ

(
1

2

)
− 2 log (s+ j) + 2 log 2j +O(z)

=
1

z
− 2 log (s+ j)− γ +O(z),
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where we used ψ(1
2
) = −2 log 2− γ. Since for z → 0 one has

1

Γ(z)
= z + γz2 +O(z3), (8.9)

the proposition follows.

Lemma 8.9. Let s ∈ C with Re(s) > 0, Re(s2) > 0, let z ∈ C, Re(z) > 1/2. Define

ξ̃(s, z) :=
1

π

∫ ∞
0

tz−1e−ts
2

∫
R
e−tλ

2

ψ (1 + iλ) dλdt.

Then for every s ∈ C with Re(s) > 0, Re(s2) > 0 the function ξ̃(s, z) has a meromorophic
continuation to z ∈ C with an at most simple poles in z = 0. Moreover there exists a
constant C ′(ψ) such that

∂

∂z

∣∣∣∣
z=0

ξ(s, z)

Γ(z)
= −2 log Γ (1 + s) + C ′(ψ).

Proof. The convergence of the integral and the statement about the meromorphic con-
tinuation follow from Lemma 8.2 and standard methods. Fix s0 ∈ (0,∞). Then, since
e−ts

2 − e−ts20 = O(t) as t→ +0, it follows from Lemma 8.2 that the integral

φ̃(s, z) :=

∫ ∞
0

tz−1

∫
R

(
e−t(λ

2+s2) − e−t(λ2+s20)
)
ψ (1 + iλ) dλdt

converges for Re(z) > −1
2

and is holomorphic in s ∈ C, Re(s) > 0, Re(s2) > 0. One has

∂

∂s
φ̃(s, 0) = −2s

∫
R

ψ (1 + iλ)

λ2 + s2
dλ = −2πψ(1 + s).

This proves the lemma.

Proposition 8.10. Let P be an even polynomial of degree 2N . Let s ∈ C, Re(s) > 0,
Re(s2) > 0. For Re(z) > N + 1

2
the integral

E(s, z) :=

∫ ∞
0

tz−1e−ts
2

∫
R
e−tλ

2

P (iλ)dλdt

converges absolutely. Moreover, for every s ∈ C, Re(s) > 0, Re(s2) > 0 the function
z 7→ E(z, s) has a meromorphic continuation to C. Moreover E(s, z) is regular at z = 0
and one has

E(s, 0) = −2π

∫ s

0

P (λ)dλ.

Proof. If s ∈ R+, the lemma is proved in [Fr1], Lemma 2 and Lemma 3. The general case
follows from analytic continuation.
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Now fix σ0 ∈ M̂ . For notational convenice we assume that all kj(σ0), defined as in (2.9)
are integers. We treat the contribution of each summand on the right hand side of (6.20)
to the relative graded determinant of A(σ0) + s2 separately. In the sequel, we shall write
LM to indicate that the Laplace-Mellin transform of a function is taken, allthoug we take
the Laplace-transform in s2 rather than in s.
First, the idenditiy contriubtion is easily treated.

Proposition 8.11. Let s ∈ C, Re(s) > 0, Re(s2) > 0. For Re(z) > d/2, the integral

LMI(s, z, σ0) :=

∫ ∞
0

tz−1e−ts
2

I(hσ0
t )dt

converges absolutely. Moreover, LMI(s, z, σ0) has a meromorphic continuation to z ∈ C
and is regular at z = 0. Let

LMI(s, σ0) := LMI(s, z, σ0)
∣∣
z=0

.

Then one has

LMI(s, σ0) = −2π vol(X)ε(σ0)

∫ s

0

Pσ0(r)dr.

Proof. This follows from equation (2.35), equation (6.1), equation (7.7) and Proposition
8.10.

We now prove an estimate for the hyperbolic contribution to the relative graded deter-
minant of A(σ0).

Proposition 8.12. Let s ∈ R, s > n. For every z ∈ C the integral

LMH(s, z, σ0) :=

∫ ∞
0

tz−1e−ts
2

H(hσ0
t )dt

converges absolutely and LMH(s, z, σ0) is an entire function of z. Let

LMH(s, σ0) := LMH(s, z, σ0)
∣∣
z=0

.

Then there exists a constant C depending on σ0 such that for every s with s >
√

2n one
has

|LMH(s, σ0)| ≤ Cs−2. (8.10)

Proof. By (6.3) and (7.7) we have

LMH(s, z, σ0) =

∫ ∞
0

tz−1e−ts
2

∑
[γ]∈C(Γ)s−[1]

`(γ0)Lsym(γ;σ0)
e−`(γ)2/4t

(4πt)
1
2

dt. (8.11)

90



Let

f(t) :=
∑

[γ]∈C(Γ)s−[1]

`(γ0)Lsym(γ;σ0)
e−`(γ)2/4t

(4πt)
1
2

.

We have

|f(t)| ≤ 2 dim(σ0)
∑

[γ]∈C(Γ)s−[1]

`(γ0)L(γ; 1)
e−`(γ)2/4t

(4πt)
1
2

,

where 1 stands for the trivial representation of M . Now let ∆0 be the Laplace operator
acting on C∞(X). Then by (5.3), ∆0 is induced by −Ω. Let ∆d

0 be as in section 5.1. By
(2.27), Proposition 5.1, equation (6.19) in Theorem 6.1, Theorem 6.2 and the formulas
stated in section 6.1, we have

e−tn
2

∑
[γ]∈C(Γ)s−[1]

`(γ0)L(γ; 1)
e−`(γ)2/4t

(4πt)
1
2

= Tr
(
e−t∆

d
0

)
+ e−tn

2 c2(1)− c1(1)

4

−
∫
Dε

e−t(z
2+n2)

(
vol(X)P1(iz) + Ω(1, z) +

1

2π
C(Γ) +

1

4π
Tr

(
T (1, iz)−1 d

ds
T (1, iz)

))
dz.

Here Dε is the contour from section 6.1. The right hand side of this equation is bounded
for t ≥ 1. Thus there exists a constant C0 such that

|f(t)| ≤ C0e
tn2

, t ≥ 1. (8.12)

For s > n and z ∈ C put

G0(s, z;σ0) :=

∫ ∞
1

tz−1e−ts
2

f(t) dt.

Then it follows from (8.12) that G0(s, z;σ0) is an entire function of z and that for s >
√

2n
we can estimate

|G0(s, 0;σ0)| ≤
∫ ∞

1

t−1e−ts
2 |f(t)| dt ≤ C1e

− s
2

4 , s >
√

2n. (8.13)

Next we consider the integral from 0 to 1. Using (3.14) it follows that there exists a
constant C2 such that for every [γ] ∈ C(Γ)s − [1] one has

`(γ0)|Lsym(γ;σ0)| ≤ 2 dim(σ0)`(γ)e−n`(γ)

det(Id−Ad(mγaγ)|n̄)
≤ C2. (8.14)

Let c be as in (3.13). Then c > 0 by Proposition 3.8. Using (8.14) and Proposition 3.8, it
follows that there exists C3 > 0 such that

|f(t)| ≤ C3e
−
√
c/t, 0 < t ≤ 1. (8.15)
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For s > 0 and z ∈ C put

G1(s, z;σ0) =

∫ 1

0

tz−1e−ts
2

f(t) dt.

By (8.15), G1(s, z;σ0) is an entire function of z and its value at zero can be estimated as
follows

|G1(s, 0;σ0)| ≤
∫ 1

0

t−1e−ts
2|f(t)| dt ≤ C4

∫ 1

0

e−ts
2

e−
√
c

2t dt. (8.16)

To estimate the integral on the right hand side, we integrate by parts which gives∫ 1

0

e−ts
2

e−
√
c

2t dt = − 1

s2
e−s

2

e−
√
c

2 +

√
c

2s2

∫ 1

0

t−2e−ts
2

e−
√
c

2t dt. (8.17)

Thus there exists a constant C5 such that

|G1(s, 0;σ0)| ≤ C5s
−2, s > 0. (8.18)

Together with (8.13) the Proposition follows.

Next we treat the contribution of the distribution I.

Proposition 8.13. Let s ∈ C, Re(s) > 0, Re(s2) > 0. For z ∈ C, Re(z) > d/2 the integral

LMI(s, z, σ0) :=

∫ ∞
0

tz−1e−ts
2I(hσ0

t )dt

converges absolutely. Moreover, the function z 7→ LMI(s, z, σ0) has a meromorphic con-
tinuation to z ∈ C with an at most simple pole at z = 0. Let C(ψ) := −C ′(ψ)/2, where
C ′(ψ) is as in Lemma 8.9. Let

LMI(s, σ0) :=
∂

∂z

∣∣∣∣
z=0

LMI(s, z, σ0)

Γ(z)
.

Then one has

LMI(s, σ0) =pε(σ0)

(
dim(σ0)

∑
1≤l<m0

log (s+ l) +
n+1∑
j=2

∑
m0≤l<|kj(σ0)|+ρj

cj,l(σ0) log (s+ l)

)

+pε(σ0) dim(σ0)

(
log Γ(1 + s) + C(ψ) + sγ +

1

2

n+1∑
j=2

|kj(σ)|+ρj>0

log (s+ |kj(σ0)|+ ρj)

)

+
pε(σ0)

2

∫ s

0

Q(σ0, ir)dr.

Here the notations are as in Proposition 6.7.
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Proof. This follows from Theorem 6.2, Proposition 6.7, equation (7.7), Lemma 8.8, Lemma
8.9 and Lemma 8.10.

For the distribution T we have the following proposition.

Proposition 8.14. Let s ∈ C, Re(s2) > 0, Re(s) > 0. For Re(z) > 1/2 the integral

LMT (s, z, σ0) :=

∫ ∞
0

tz−1e−ts
2

T (hσ0
t )dt

conveges absolutely. Moreover, the function z 7→ LMT (s, z, σ0) has a meromorphic con-
tinuation to C which is regular at 0. Let

LMT (s, σ0) := LMT (s, z, σ0)
∣∣
z=0

.

Then one has

LMT (s, σ0) = −C(Γ)ε(σ0) dim(σ0)s,

where C(Γ) is as in (6.8).

Proof. By (6.9) and (7.7) one has

LMT (s, z, σ0) = ε(σ0) dim(σ0)
C(Γ)

2
√
π
s−2z+1Γ

(
z − 1

2

)
.

This gives the proposition.

Now we come to the contribution of the non-invariant distribution J . By (7.6) and
(6.11) we have

J(hσ0
t ) =e−tc(σ0)

∑
ν∈K̂

mν(σ0)J(hνt )

=− pe−tc(σ0)

4πi

∑
σ∈M̂

dim(σ)
∑
ν∈K̂

mν(σ0) [ν : σ]

×
∫
Dε

cν(σ : z)−1 d

dz
cν(σ : z)e−t(z

2−c(σ))dz

(8.19)

To study the right hand side, we will need the following lemma.

Lemma 8.15. Let σ0 ∈ M̂ . For σ ∈ M̂ let

f(z, σ) :=
∑
ν∈K̂

mν(σ0) [ν : σ] cν(σ : z)−1 d

dz
cν(σ : z). (8.20)

Let m0 := |kn+1(σ0)|. Then one has

f(z, σ) =
∑
ν∈K̂

mν(σ0) [ν : σ]
n+1∑
j=2

 ∑
m0≤l≤kj(ν)
l>|kj(σ)|

i

iz − l − ρj
+

∑
m0≤l≤kj(ν)
l≥|kj(σ)|

i

−iz − l − ρj

 .
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Proof. If kn+1(σ0) = 0, the Lemma follows directly from (4.18). Thus we may assume
that kn+1(σ0) 6= 0. Then by Proposition 2.3 for every ν ∈ K̂ with mν(σ0) 6= 0 and every
j = 2, . . . , n+ 1 one has

m0 − 1 ≤ kj(ν).

Thus using (4.18) one can write

f(z, σ) =
∑
ν∈K̂

mν(σ0) [ν : σ]
n+1∑
j=2

 ∑
m0≤l≤kj(ν)
l>|kj(σ)|

i

iz − l − ρj
+

∑
m0≤l≤kj(ν)
l≥|kj(σ)|

i

−iz − l − ρj



+
∑
ν∈K̂

mν(σ0) [ν : σ]
n+1∑
j=2

 m0−1∑
l=0

l>|kj(σ)|

i

iz − l − ρj
+

m0−1∑
l=0

l≥|kj(σ)|

i

−iz − l − ρj

 . (8.21)

Now if σ = σ0 or σ = w0σ0 the sum in the second row of (8.21) is zero. On the other hand,
assume that σ 6= σ0, σ 6= w0σ0. Then, since R(M) is the free abelian group generated by
the representations σ ∈ M̂ , one has∑

ν∈K̂

mν(σ0) [ν : σ] = 0.

Thus in this case the sum in the second row of (8.21) is zero too. This proves the propo-
sition.

We also have the following lemma.

Lemma 8.16. Let σ0 ∈ M̂ . Then for every σ ∈ M̂ such that [ν : σ]mν(σ0) 6= 0 one has
c(σ0)− c(σ) ≥ 0.

Proof. This follows from Propostion 2.2, equation (2.17) and equation (2.27).

Now we can compute the contribution of the distribution J .

Proposition 8.17. Let s ∈ C, Re(s) > 0, Re(s2) > 0. For Re(z) > 0 the integral

LMJ(s, z, σ0) :=

∫ ∞
0

tz−1e−ts
2

J(hσ0
t )dt

converges absolutely. Moreover, the function z 7→ LMJ(s, z, σ0) has a meromorphic con-
tinuation to C with only simple poles. Let

LMJ(s, σ0) :=
∂

∂z

∣∣∣∣
z=0

LMJ(s, z, σ0)

Γ(z)
.
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Then if m0 is as in Lemma 8.15 one has

LMJ(s, σ0)

=− p
∑
σ∈M̂

∑
ν∈K̂

mν(σ0) [ν : σ] dim(σ)
n+1∑
j=2

∑
m0≤l≤kj(ν)
l>|kj(σ)|

log
(√

s2 + c(σ0)− c(σ) + l + ρj

)

− p

2

∑
σ∈M̂

∑
ν∈K̂

mν(σ0) [ν : σ] dim(σ)
n+1∑
j=2

|kj(σ)|≥m0

log
(√

s2 + c(σ0)− c(σ) + |kj(σ)|+ ρj

)
.

Proof. By Lemma 8.16, for every σ ∈ M̂ such that [ν : σ]mν(σ0) 6= 0 we have c(σ0)−c(σ) ≥
0. Thus the proposition follows from Lemma 8.8, equation (8.19) and Lemma 8.15.

Finally we treat the contribution of the auxiliary operators on the cusp to the relative
graded determinant. Therefore we let

Ru(t, σ0) :=
∑
ν∈K̂

mν(σ0)e−tc(σ0)Ru(t, ν), (8.22)

where Ru(t, ν) is as in (6.18). Then we have the following lemma.

Lemma 8.18. One has

Ru(t, σ0) = ε(σ0)p dim(σ0)

(
log u√

4πt
+

1

4
+

1

2π

∫ ∞
0

e−tλ
2 d− 1

(d−1)2

4
+ λ2

)
.

Proof. By (6.18) one has

Ru(t, σ0) =
∑
σ∈M̂

∑
ν∈K̂

mν(σ0) [ν : σ] e−t(c(σ0)−c(σ))p dim(σ)

(
log u√

4πt
+

1

4

+
1

2π

∫ ∞
0

e−tλ
2 d− 1

(d−1)2

4
+ λ2

dλ

)
.

As in the proof of Lemma 8.15, if σ 6= σ0, σ 6= w0σ0, we have∑
ν∈K̂

mν(σ0) [ν : σ] = 0.

On the other hand, the same argument implies that for σ = σ0, σ = w0σ0 we have∑
ν∈K̂

mν(σ0) [ν : σ] = 1.

This proves the lemma.
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Proposition 8.19. Let s ∈ C, Re(s) > 0, Re(s2) > 0. For z ∈ C, Re(z) > 0 the integral

LMRu(s, z, σ0) :=

∫ ∞
0

tz−1e−ts
2

Ru(t, σ0)dt

converges absolutely. Moreover, the function z 7→ LMRu(s, z, σ0) has a meromorphic
continuation to C with only simple poles. Let

LMRu(s, σ0) :=
∂

∂z

∣∣∣∣
z=0

LMRu(s, z, σ0)

Γ(z)
.

Then one has

LMRu(s, σ0) = −p dim(σ0)ε(σ0)

(
s log u+ log

(
s+ (d− 1)/2

)
+

log s

2

)
.

Proof. This follows from Lemma 8.8 and Lemma 8.18.

We summarize our computations in the following proposition.

Proposition 8.20. Let s ∈ R, s > max{b(σ0), n}. Then one has

detgr,u(A(σ0) + s2) = exp

(
− LMI(s, σ0)− LMH(s, σ0)− LMT (s, σ0)

− LMI(s, σ0)− LMJ(s, σ0)− LMRu(s, σ0)

)
,

where the summands on the right hand side of this equation are defined as in the previous
propositions.

Proof. This follows immediately from equation (6.20) and from the previous propositions.

8.3 The determinant formula for the symmetric Selberg zeta
function

In this section we want to relate the symmetric Selberg Zeta function S(s, σ0), σ0 ∈ M̂ ,
to the relative graded determinant detgr,u(A(σ0) + s2), where detgr,u(A(σ0) + s2) is as in
section 8.2. To do so, we will generalize the methods of Bunke and Olbrich ([BO, Chapter
3.3.3.]) to the non compact setting and combine them with our previous computations.
Let us assume that all kj(σ0) are integral.
Let b(σ0) be as in (8.7). For s ∈ C, Re(s) > b(σ0) and z ∈ C let

ξA(σ0),u(s, z) :=
∑
ν∈K̂

mν(σ0)6=0

mν(σ0)ξν,u(s+ c(σ0), z),

where ξν,u is as in (8.4). Then, by definition, for s ∈ C with Re(s2) > b(σ0) one has

log
(
detgr,u(A(σ0) + s2)

)
= − ∂

∂z

∣∣∣∣
z=0

ξA(σ0),u(s2, z)

Γ(z)
.
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Lemma 8.21. Let N ∈ N. Let s1, . . . , sN be N distinct complex numbers. Then one has

N∑
i=1

e−ts
2
i Trs

rel,u e
−tA(σ0)

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

= O(tN−1−d/2)

as t→ +0.

Proof. By Proposition 8.4 one has

Trs
rel,u

(
e−tA(σ0)

)
= O(t−d/2), t→ +0.

Thus together with Lemma 7.2, the Lemma follows.

Lemma 8.22. Let N ∈ N with N > d/2. Let s1, . . . , sN be N distinct complex numbers
with Re(s2

i ) > b(σ0) for all i. Then one has∫ ∞
0

N∑
i=1

e−ts
2
i Trs

rel,u e
−tA(σ0)

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt =
N∑
i=1

d

ds

∣∣∣∣
s=s2i

log detgr,u (A(σ0) + s)
N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

.

Proof. By the definition of b(σ0) and by (8.6) there exists a c > 0 such that

N∑
i=1

e−ts
2
i Trs

rel,u e
−tA(σ0)

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

= O(e−ct),

as t→∞. Together with Lemma 8.21 it follows that for Re(z) > −1/2 the integral∫ ∞
0

tz
N∑
i=1

e−ts
2
i Trs

rel,u e
−tA(σ0)

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt

converges absoluetly. It follows from the definition of ξA(σ0),u(s, z) and from meromorphic
continuation that

ξA(σ0),u(s, z + 1) = − ∂

∂s
ξA(σ0),u(s, z). (8.23)

Finally, by (8.5) there exists a constant α(σ0) such that for all s with Re(s) > b(σ0) one
has

Res
∣∣
z=0

ξA(σ0),u(s, z) = α(σ0)

and so by (8.9) for all such s one has

log detgr,u(A(σ0) + s) = − lim
z→0

(
ξA(σ0),u(s, z)− α(σ0)

z
+ γα(σ0)

)
. (8.24)

97



Thus we can write∫ ∞
0

N∑
i=1

Trs
rel,u e

−t(A(σ0)+s2i )

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt

= lim
z→0

∫ ∞
0

tz
N∑
i=1

Trs
rel,u e

−t(A(σ0)+s2i )

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt

= lim
z→0

N∑
i=1

ξA(σ0),u(s2
i , z + 1)

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

=− lim
z→0

N∑
i=1

∂

∂s

∣∣∣∣
s=s2i

ξA(σ0),u(s, z)
N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

(+)

=− lim
z→0

N∑
i=1

∂

∂s

∣∣∣∣
s=s2i

(
ξA(σ0),u(s, z)− α(σ0)

z
+ γα(σ0)

) N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

(++)

=
N∑
i=1

d

ds

∣∣∣∣
s=s2i

detgr (A(σ0) + s)
N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

. (+++)

Here (+) follows from(8.23). In (++) limit and differentiation can be interchanged since
the way in which one continues ξA(σ0),u(s, z) meromorphically easily implies that there
exists a neighbourhood U of 0 such that the function

(s, z) 7→ ξA(σ0),u(s, z)− α(σ0)

z
+ γα(σ0)

is holomorphic on {(s, z) ∈ C2 : Re(s) > b(σ0) : z ∈ U}. Thus (+ + +) follows from (8.24).
This proves the lemma.

Now we can prove a determinant formula for the Selberg zeta function.

Proposition 8.23. Let s ∈ C, Re(s) > 0, Re(s2) > max{0, b(σ0)}. Then we have

S(s, σ0) =detgr,u

(
A(σ0) + s2

)
exp
(
LMI(s, σ0) + LMT (s, σ0) + LMI(s, σ0)

+ LMJ(s, σ0) + LMRu(s, σ0)
)
,

where the notations are as in section 8.2.

Proof. Let N ∈ N with N > d/2. Let s1, . . . , sN be N distinct complex numbers with

98



Re(s2
i ) > b(σ0). Then by (6.20) we have∫ ∞
0

N∑
i=1

e−ts
2
i Trs

rel,u e
−tA(σ0)

N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt (8.25)

=

∫ ∞
0

N∑
i=1

e−ts
2
i (I(hσ0

t ) +H(hσ0
t ) + I(hσ0

t ) + T (hσ0
t ) + J(hσ0

t ) +Ru(t, σ0))
N∏
i′=1
i′ 6=i

1

s2
i′ − s2

i

dt,

where the integral exists by the arguments in the proof of Lemma 8.22. Using equation
(8.19), Lemma 8.15 and Lemma 8.16, for every s ∈ C with Re(s2) > 0 we get∫ ∞

0

e−ts
2

J(hσ0
t )dt = (8.26)

p
∑
σ∈M̂

∑
ν∈K̂

mν(σ0)
n+1∑
j=2

∑
m0≤l≤kj(ν)
l>|kj(σ)|

[ν : σ] dim(σ)

2
√
s2 + c(σ0)− c(σ)

(√
s2 + c(σ0)− c(σ) + l + ρj

)+

p

2

∑
σ∈M̂

∑
ν∈K̂

mν(σ0)
n+1∑
j=2

|kj(σ)|≥m0

[ν : σ] dim(σ)

2
√
s2 + c(σ0)− c(σ)

(√
s2 + c(σ0)− c(σ) + |kj(σ0)|+ ρj

) .
Using Lemma 8.18, for every s ∈ C with Re(s2) > 0 we obtain∫ ∞

0

e−ts
2

Ru(t, σ0)dt = pε(σ0) dim(σ0)

(
log u

2s
+

1

4s2
+

1

2s(s+ d−1
2

)

)
. (8.27)

We fix distinct complex numbers s2, . . . , sN with Re(si) > 8n and Re(s2
i ) > max{b(σ0), 8n}.

Then we let s1 =: s vary under the restriction that s ∈ R, s > max{b(σ0), 8n} and
s /∈ {s2, . . . , sN}. If we multiply both sides of (8.25) by

2s
N∏
i′=2

(s2
i′ − s2)

and use Lemma 8.22, equation (7.13), equation (7.15), equation (7.16), equation (7.17),
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equation (8.26) and equation (8.27) it follows that

d

ds
logS(s, σ0)

=
d

ds
log detgr,u

(
A(σ) + s2

)
− 2πε(σ0) vol (X)Pσ0(s)

− p
∑
σ∈M̂

∑
ν∈K̂

mν(σ0) [ν : σ] dim(σ)
n+1∑
j=2

∑
m0≤l≤kj(ν)
l>|kj(σ)|

d

ds
log
(√

s2 + c(σ0)− c(σ) + l + ρj

)

− p

2

∑
σ∈M̂

∑
ν∈K̂

mν(σ0) [ν : σ] dim(σ)
n+1∑
j=2

|kj(σ)|≥m0

d

ds
log
(√

s2 + c(σ0)− c(σ) + |kj(σ)|+ ρj

)

+ pε(σ0)
n+1∑
j=2

∑
m0≤l<
|kj(σ0)|+ρj

cj,l(σ0)

l + s
+

n+1∑
j=2

|kj(σ)|+ρj>0

p dim(σ0)ε(σ0)

2(|kj(σ0)|+ ρj + s)

+ pε(σ0) dim(σ0)

(
ψ(1 + s) +

∑
1≤l<m0

1

l + s

)
+ ε(σ0)

p

2
Q(σ0, is) + ε(σ0) dim(σ0)γp

− ε(σ0) dim(σ0)C(Γ)− pε(σ0) dim(σ0)

(
log u+

1

2s
+

1

s+ d−1
2

)
+ p(s),
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where p(s) is a polynomial in s depending on s2, . . . , sN . Thus we get

logS(s, σ0) = log detgr,u

(
A(σ0) + s2

)
− 2πε(σ0) vol(X)

∫ s

0

Pσ0(r)dr

− p
∑
σ∈M̂

∑
ν∈K̂

mν(σ0) [ν : σ] dim(σ)
n+1∑
j=2

∑
m0≤l≤kj(ν)
l>|kj(σ)|

log
(√

s2 + c(σ0)− c(σ) + l + ρj

)

− p

2

∑
σ∈M̂

∑
ν∈K̂

mν(σ0) [ν : σ] dim(σ)
n+1∑
j=2

|kj(σ)|≥m0

log
(√

s2 + c(σ0)− c(σ) + |kj(σ)|+ ρj

)

+ pε(σ0)
n+1∑
j=2

∑
m0≤l<
|kj(σ0)|+ρj

cj,l(σ0) log (l + s)

+
n+1∑
j=2

|kj(σ0)|+ρj>0

pε(σ0) dim(σ0)

2
log (|kj(σ0)|+ ρj + s) +

pε(σ0)

2

∫ s

0

Q(σ0, ir)dr

+ pε(σ0) dim(σ0)

(
log Γ(1 + s) +

∑
1≤l<m0

log (l + s) + sγ

)
− sε(σ0) dim(σ0)C(Γ)

− pε(σ0) dim(σ0)

(
s log u+

log s

2
+ log

(
s+

d− 1

2

))
+ P (s),

where P (s) is again a polynomial in s depending on s2, . . . , sN . In the last equation we ex-
press log detgr,u (A(σ0) + s2) using Proposition 8.20. Then by Proposition 8.11, Proposition
8.13, Proposition 8.14 Proposition 8.17 and Proposition 8.19 we obtain

logS(s, σ0) = −LMH(s, σ0) + P (s)− pε(σ0) dim(σ0)C(ψ),

where LMH(s;σ0) is as in Proposition 8.12 and C(ψ) is as in Proposition 8.13. Now we
let s → ∞. Then, since S(s, σ0) tends to zero by Lemma 3.14 and since LMH(s;σ0)
tends to zero by Proposition 8.12, it follows that the polynomial P (s) is constant, P (s) =
pε(σ0) dim(σ0)C(ψ). Thus we have

logS(s, σ0) = −LMH(s, σ0).

If we now apply Proposition 8.20 again, the proposition is proved for s ∈ R with s >
max{b(σ0), 8n}. This set is contained in the connected set {s ∈ C : Re(s) > 0: Re(s2) >
max{b(σ0), 0}} and both sides of the equation in the proposition are meromorphic on this
set by the results obtained previously. This proves the proposition.

Remark 8.24. If all kj(σ0) are half-integral, one can proceed in a similar way and obtain a
similiar formula as in Proposition 8.23.
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Let us finally note the following proposition which defines the region in which Propo-
sition 8.23 can be applied more precisely.

Proposition 8.25. Let σ0 ∈ M̂ and assume that σ0 satisfies σ0 6= w0σ0. Then one has
b(σ0) = 0.

Proof. Let A(σ0) be as in section 7.1 and let λ(σ0) ∈ R be the smallest eigenavlue of
A(σ0)d. Then one has

b(σ0) = max{c(σ)− c(σ0) : mν(σ0) [ν : σ] 6= 0} t {−λ(σ0)}.

By Lemma 8.16 we have c(σ0)− c(σ) ≥ 0 for every σ ∈ M̂ with mν(σ0) [ν : σ] 6= 0, ν ∈ K̂.
Moreover the twisted Dirac operator D(σ0) can be defined as in section 7.2 and by (7.26)
we have A(σ0) = D(σ0)2. Thus we have A(σ0)d ≥ 0. This proves the Lemma.

9 The relative analytic torsion

9.1 Definition and basic properties

Let τ be an irreducible finite dimensional representation of G on Vτ . Let E ′τ be the flat
vector bundle associated to the restriction of τ to Γ. Then E ′τ is canonically isomorphic to
the locally homogeneous vector bundle Eτ associated to τ |K . By [MaMu], there exists an
inner product 〈·, ·〉 on Vτ such that

1. 〈τ(Y )u, v〉 = −〈u, τ(Y )v〉 for all Y ∈ k, u, v ∈ Vτ

2. 〈τ(Y )u, v〉 = 〈u, τ(Y )v〉 for all Y ∈ p, u, v ∈ Vτ .

Such an inner product is called admissible. It is unique up to scaling. Fix an admissible
inner product. Since τ |K is unitary with respect to this inner product, it induces a metric
on Eτ which will be called admissible too. Let Λp(Eτ ) be the bundle of Eτ valued p-forms
on X. Let

νp(τ) := Λp Ad∗⊗τ : K → GL(Λpp∗ ⊗ Vτ ). (9.1)

Then one has canonically

Λp(Eτ ) ∼= Γ\(G×νp(τ) Λpp∗ ⊗ Vτ ). (9.2)

If Λp(X,Eτ ) are the smooth Eτ -valued p-forms on X, the isomorphism (9.2) induces an
isomorphism

Λp(X,Eτ ) ∼= C∞(Γ\G, νp(τ)), (9.3)

102



where the latter space is as in (5.2). A corresponding isomorphism also holds for the L2-
spaces. Let ∆p(τ) be the Hodge-Laplacian on Λp(X,Eτ ) with respect to the admissible
inner product. By [MaMu, equation (6.9)], on C∞(Γ\G, νp(τ)) one has

∆p(τ) = −Ω + τ(Ω) Id . (9.4)

In order to define the analytic torsion TX,u(τ) for certain τ ∈ Ĝ, we need to show that for
every p = 0, . . . , d the determinant detu(∆p(τ)) can be defined as in section 8.1. Thus we
have to study the numbers b(νp(τ)) − τ(Ω), where b(νp(τ)) is as in (8.3). We begin with
the following lemma.

Lemma 9.1. Let τ be an irreducible finite dimensional representation of G with highest
weight τ1e1 + · · ·+ τn+1en+1 as in (2.7). Then

τ(Ω)− c(σ) ≥ τ 2
n+1

for all σ ∈ M̂ with [νp(τ) : σ] 6= 0. Moreover assume that σ ∈ M̂ is such that [νp(τ) : σ] 6= 0
and such that σ = w0σ. Then one has

τ(Ω)− c(σ) ≥ (τn + 1)2 + τ 2
n+1 ≥ 1 + τ 2

n+1.

Proof. For p = 0, ..., d let
νp := Λp Ad∗ : K → GL(Λpp∗).

Recall that νp(τ) = νp ⊗ τ |K . Let ν ∈ K̂ with [νp(τ) : ν] 6= 0. Then by [Kn2, Proposition

9.72] there exists a ν ′ ∈ K̂ with [τ : ν ′] 6= 0 of highest weight Λ(ν ′) ∈ b∗C and a µ ∈ b∗C
which is a weight of νp such that the highest weight Λ(ν) of ν is given by µ+ Λ(ν ′). Now

let ν ′ ∈ K̂ be such that [τ : ν ′] 6= 0. Let Λ(ν ′) be the highest weight of ν ′ as in (2.8). Then
by Proposition 2.1 we have

τj−1 ≥ kj(ν
′), j = 2, . . . , n+ 1.

Moreover, every weight µ ∈ b∗C of νp is given as

µ = ±ej1 ± · · · ± ejp , 2 ≤ j1 < · · · < jp ≤ n+ 1.

Thus, if ν ∈ K̂ is such that [νp(τ) : ν] 6= 0, the highest weight Λ(ν) of ν, given as in (2.8),
satisfies

τj−1 + 1 ≥ kj(ν), j ∈ {2, . . . , n+ 1}.

Let σ ∈ M̂ be such that [νp(τ) : σ] 6= 0. Using Proposition 2.2 one obtains

τj−1 + 1 ≥ |kj(σ)|
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for every j ∈ {2, . . . , n + 1}, where the kj(σ) are as in (2.9). Furthermore note that by
(2.5) we have ρj−1 = ρj + 1. Using (2.24), (2.27) and ρn+1 = 0, we get

c(σ) =
n+1∑
j=2

(kj(σ) + ρj)
2 −

n+1∑
j=1

ρ2
j ≤

n+1∑
j=2

(τj−1 + ρj−1)2 −
n+1∑
j=1

ρ2
j = τ(Ω)− τ 2

n+1.

Now assume that σ additionally satisfies σ = w0σ. This is equivalent to kn+1(σ) = 0 by
(2.14). Thus since ρn+1 = 0, ρn = 1 we get

c(σ) =
n∑
j=2

(kj(σ) + ρj)
2 −

n+1∑
j=1

ρ2
j ≤

n∑
j=2

(τj−1 + ρj−1)2 −
n+1∑
j=1

ρ2
j = τ(Ω)− (τn + 1)2 − τ 2

n+1.

Finally by (2.7) we have τn ≥ 0. This proves the lemma.

Now we study the point spectrum of the operators ∆p(τ).

Lemma 9.2. Let τ ∈ Ĝ and assume that τ 6= τθ. For p ∈ {0, . . . , d} let λ0 be an eigenvalue
of ∆p(τ). Then one has λ0 ≥ 1/4.

Proof. If τ 6= τθ one has |τn+1| ≥ 1/2. Let Ĝun be the unitary dual of G. Recall that if
λ0 is an eigenvalue of ∆p(τ), there exists a π ∈ Ĝun with [π : ν̌p(τ)] = [π : νp(τ)] 6= 0 such
that

λ0 = −π(Ω) + τ(Ω).

Here we use that every ν ∈ K̂ is self-contragredient. Since rk(G) > rk(K), it follows from
[Kn1, Theorem 8.54] and [Tr, Corollary 6.2] that Ĝun consist of the unitary principal-series
representations πσ,λ, σ ∈ M̂ , λ ∈ R and the complementary series representations πcσ,λ,

σ ∈ M̂ , λ ∈ R. First consider a unitary principal series representation πσ,λ. Then by
Frobenius reciprocity [Kn1, page 208], [πσ,λ : νp(τ)] is non zero iff [νp(τ) : σ] is non zero.
Thus together with Corollary 2.6 and Lemma 9.1, for every λ ∈ R one has

−πσ,λ(Ω) + τ(Ω) = −c(σ) + λ2 + τ(Ω) ≥ 1/4.

Next consider a complementary series representation πcσ,λ. Again it follows from Frobenius
reciprocity that [πσ,λ : νp(τ)] is non zero iff [νp(τ) : σ] is non zero. Moreover by [KS,
Proposition 49, Propostion 53], if πcσ,λ belongs to the complementary series one has σ = w0σ
and 0 < λ < 1. Recall that by Corollary 2.6 one has

πcσ,λ(Ω) = c(σ) + λ2.

Thus together with Lemma 9.1 one gets

−πcσ,λ(Ω) + τ(Ω) = −λ2 − c(σ) + τ(Ω) ≥ −λ2 + 1 + τ 2
n+1 ≥ 1/4.

This proves the lemma.
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Now we obtain the following corollary.

Corollary 9.3. Let τ ∈ Ĝ and assume that τ 6= τθ. Then one has b(νp(τ))− τ(Ω) ≤ −1/4
for every p = 0, . . . , d, where b(νp(τ)) is as in (8.3).

Proof. The condition τ 6= τθ is equivalent to τ 2
n+1 ≥ 1/4. Thus the corollary follows

immediately from (9.4), Lemma 9.1 and Lemma 9.2.

Now let τ ∈ Ĝ and assume that τ 6= τθ. Then by equation (9.4) and Corollary 9.3 the
relative determinants detu(∆p(τ)) ∈ R+ of the operators ∆p(τ), p = 0, . . . , d are defined as
in section 8.1. In analogy to the compact case we now define the relative analytic torsion
TX,u(τ) ∈ R+ associated to the the bundle Eτ and the admissible metric by

TX,u(τ) :=
d∏
p=0

detu(∆p(τ))
p(−1)p+1

2 .

Let

Ku(t, τ) :=
d∑
p=0

(−1)ppTrrel,u(e−t∆p(τ)).

Then by the definition of the analytic torsion one has

log TX,u(τ) =
1

2

d

dz

∣∣∣∣
z=0

(
1

Γ(z)

∫ ∞
0

tz−1Ku(t, τ)dt

)
, (9.5)

where by Proposition 8.5 the right hand side is defined near z = 0 by analytic continuation
of the Mellin transform. For every p = 0, . . . , d let νp(τ) be the representation defined by

(9.1) and let h
νp(τ)
t be as in (5.9). Put

kτt := e−tτ(Ω)

d∑
p=0

(−1)pph
νp(τ)
t . (9.6)

Moreover, if Ru(t, νp(τ)) is as in (6.18), put

Ru(t, τ) := e−tτ(Ω)

d∑
p=0

(−1)ppRu(t, νp(τ)).

Then by equation (6.20) in Theorem 6.1 we have

Ku(t, τ) = I(kτt ) +H(kτt ) + T (kτt ) + I(kτt ) + J(kτt ) +Ru(t, τ). (9.7)

Next we want to express TX,u(τ) using the relative graded determinants of certain auxiliary
differential operators. These operators are defined as follows. For k = 0, . . . , n let λτ,k ∈ R
be as in (2.30) and let στ,k be the representation of M with highest weight (2.31). Let
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E(στ(m),k) be the graded vector bundle over X as in section 7.1. We define a differential
operator ∆τ (k) acting on the graded bundle E(στ,k) by

∆τ (k) := A(στ,k) + λ2
τ,k, (9.8)

where A(στ,k) is as in section 7.1. We now want to assure that the relative graded deter-
minant detgr,u(∆τ (k)) is defined for τ 6= τθ.

Lemma 9.4. Let τ ∈ Ĝ and assume that τ 6= τθ. For k = 0, . . . , n let b(στ,k) be as in
(8.7). Then b(στ,k) = 0.

Proof. Since τ 6= τθ we have στ(m),k 6= w0στ(m),k by (2.10), (2.14) and (2.31). Thus the
lemma follows from Proposition 8.25.

Now let τ ∈ Ĝ, τ 6= τθ. Then by (2.10) and (2.30) one has λ2
τ,k ≥ 1/4. Thus by Lemma

9.4, the relative graded determinant detgr,u(∆τ (k)) = detgr,u(A(στ,k)+λ2
τ,k) ∈ R+ is defined

for every k = 0, . . . , n as in section 8.2. Furthermore, the following proposition holds.

Proposition 9.5. Let τ ∈ Ĝ, τ 6= τθ. For k = 0, . . . , n let h
στ,k
t be as in (7.6). Then one

has

kτt =
n∑
k=0

(−1)k+1e−tλ
2
τ,kh

στ,k
t . (9.9)

Proof. It is easy to see that as M -modules p and a ⊕ n are equivalent. Thus in the sense
of M -modules one has

d∑
p=0

(−1)ppΛpp∗ =
d∑
p=0

(−1)pp
(
Λpn∗ + Λp−1n∗

)
=

d−1∑
p=0

(−1)p+1Λpn∗. (9.10)

Let i∗ : R(K)→ R(M)W (A) be the restriction map. Then it follows from (9.10), Corollary
2.8 and (2.32) that we have

d∑
p=0

(−1)pp i∗(νp(τ)) =
n∑
k=0

(−1)k+1(στ,k + w0στ,k). (9.11)

Since τ 6= τθ we have στ,k 6= w0στ,k for all k by (2.10), (2.14) and (2.31). Thus as in (7.2)
we can write

στ,k + w0στ,k =
∑
ν∈K̂

mν(στ,k)i
∗(ν).

Moreover, the restriction map i∗ is injective. Therefore in R(K) the following equality
holds:

d∑
p=0

(−1)ppνp(τ) =
n∑
k=0

(−1)k+1
∑
ν∈K̂

mν(στ,k)ν.
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Since R(K) is a free abelian group generated by the representations ν ∈ K̂, it follows that
for every ν ∈ K̂ one has

d∑
p=0

(−1)pp [νp(τ) : ν] =
n∑
k=0

(−1)k+1mν(στ,k). (9.12)

Moreover let us remark that if ν, ν1, ν2 are finite dimensional unitary representations of K
with ν = ν1 ⊕ ν2 one has

hνt = hν1
t + hν2

t . (9.13)

Thus one computes

kτt =
d∑
p=0

(−1)ppe−tτ(Ω)h
νp(τ)
t =

d∑
p=0

(−1)pp
∑
ν∈K̂

[νp(τ) : ν] e−tτ(Ω)hνt

=
∑
ν∈K̂

d∑
p=0

(−1)pp [νp(τ) : ν] e−tτ(Ω)hνt

=
∑
ν∈K̂

n∑
k=0

(−1)k+1mν(στ,k)e
−t(τ(Ω))hνt (+)

=
n∑
k=0

(−1)k+1
∑
ν∈K̂

mν(στ,k)e
−t(τ(Ω))hνt

=
n∑
k=0

(−1)k+1
∑
ν∈K̂

mν(στ,k)e
−t(λ2

τ,k+c(στ,k))hνt (++)

=
n∑
k=0

(−1)k+1e−tλ
2
τ,kh

στ,k
t . (+++)

Here the second equality in the first line follows from (9.13), (+) is (9.12), (++) follows
from Proposition 2.10 and (+ + +) follows from (7.6).

Corollary 9.6. Let τ ∈ Ĝ, τ 6= τθ. Then one has

TX,u(τ)2 =
n∏
k=0

detgr,u (∆τ (k))(−1)k .

Proof. If ν, ν1, ν2 are finite dimensional unitary representations of K with ν = ν1 ⊕ ν2 one
has Ru(t, ν) = Ru(t, ν1) +Ru(t, ν2). Thus using (9.12) and Proposition 2.10 one gets

Ru(t, τ) = e−tτ(Ω)

n∑
k=0

(−1)k+1
∑
ν∈K̂

mν(στ,k)Ru(t, ν) =
n∑
k=0

(−1)k+1e−tλ
2
τ,kRu(t, στ,k),

where Ru(t, στ,k) is as in (8.22). Applying Proposition 8.20, equation (9.5), equation (9.7),
and Proposition 9.5, the corollary follows.
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9.2 L2-torsion

In this section we briefly discuss the L2-torsion T
(2)
X (τ). Although X is not compact, the

L2-torsion can be defined as in the compact case [Lo]. Let τ ∈ Ĝ be of highest weight

τ1e1 + · · · + τn+1en+1 and assume that τn+1 6= 0. Let ∆̃p(τ) be the Laplace operator on

Ẽτ -valued p-forms on X̃. Let νp(τ) be as in (9.1) and let C∞(G, νp(τ)) be as in (5.1). By

(9.4), on C∞(G, νp(τ) the kernel of e−t∆̃p(τ) is given by e−tτ(Ω)H
νp(τ)
t where H

νp(τ)
t is as in

(5.5). Then the Γ-trace of e−t∆̃p(τ) (see [Lo] for its definition) is given by

TrΓ

(
e−t∆̃p(τ)

)
= vol(X)e−tτ(Ω)h

νp(τ)
t (1), (9.14)

where h
νp(τ)
t (1) is as in (5.9). Using the Plancherel theorem and Proposition 5.1, we get

TrΓ

(
e−t∆̃p(τ)

)
= vol(X)

∑
σ∈M̂

[νp(τ):σ]6=0

e−t(τ(Ω)−c(σ))

∫
R
e−tλ

2

Pσ(iλ) dλ. (9.15)

Here Pσ(z) is as in (2.34). Since Pσ(z) is an even polynomial of degree d−1 it follows from
Lemma 8.3 that we have an asymptotic expansion

TrΓ

(
e−t∆̃p(τ)

)
∼

∞∑
j=0

ajt
j−d/2, t→ 0.

Since we are assuming that the highest weight of τ satisfies τn+1 6= 0, it follows from Lemma
9.1 and (9.15) that there exists c > 0 such that

TrΓ

(
e−t∆̃p(τ)

)
= O

(
e−ct

)
,

as t→∞. Therefore the Mellin transform∫ ∞
0

TrΓ

(
e−t∆̃p(τ)

)
tz−1 dt

converges absolutely and uniformly on compact subsets of Re(z) > d/2 and admits a

meromorphic extension to C. Thus we can define the L2-torsion T
(2)
X (τ) ∈ R+ by

log T
(2)
X (τ) =

1

2

d

dz

∣∣∣∣
z=0

(
1

Γ(z)

d∑
p=1

(−1)pp

∫
R

TrΓ

(
e−t∆̃p(τ)

)
tz−1 dt

)
. (9.16)

Now recall that the contribution of the identity I(kτt ) to the right hand side of (9.7) is
given by

I(t, τ) := vol(X)kτt (1).

Let

MI(z, τ) :=

∫ ∞
0

I(t, τ)tz−1 dt
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be the Mellin transform. Using (9.6) and the considerations above, it follows that the
integral converges for Re(z) > d/2 and has a meromorphic extension to C which is regular
at z = 0. Let MI(τ) be its value at z = 0. Then by (9.6), (9.14), and (9.16) we have

log T
(2)
X (τ) =

1

2
MI(τ). (9.17)

For k = 0, . . . , n let the λτ,k be as in (2.30) and let στ,k ∈ M̂ be of highest weight Λ(στ,k)
as in (2.31). Then, since τn+1 6= 0, one has λτ,k 6= 0 for every k = 0, . . . , n. Thus for
every k, LMI(s;στ,k) is defined at s = |λτ,k|, where LMI(s;στ,k) is as in Proposition 8.11.
Moreover, by equation (9.17) and Proposition 9.5 we have

log T
(2)
X (τ) =

1

2
MI(τ) =

1

2

n∑
k=0

(−1)k+1LMI(s;στ,k)|s=|λτ,k|. (9.18)

9.3 The asymptotic behaviour of the relative analytic torsion

We fix natural numbers τ1, . . . , τn+1 with τ1 ≥ τ2 ≥ · · · ≥ τn+1 and for m ∈ N we let τ(m)
be the representation of G with highest weight (m + τ1)e1 + · · · + (m + τn+1)en+1. Then
the relative analytic torsion TX,u(τ(m)) is defined as in section 9.1. We want to study the
asymptotic behaviour of log TX,u(τ(m)) as m→∞.

To begin with, let λτ(m),k ∈ R and στ(m),k ∈ M̂ with highest weight Λ(στ(m),k) be as in
(2.30) resp. (2.31). One has

λτ(m),k = m+ τk+1 + n− k. (9.19)

Thus, since τk > 0 for every k by assumption, it follows that

λτ(m),k > 0, k = 0, . . . , n. (9.20)

Moreover, one has

Λ(στ(m),k) =(m+ τ1 + 1)e2 + · · ·+ (m+ τk + 1)ek+1

+ (m+ τk+2)ek+2 + · · ·+ (m+ τn+1)en+1.
(9.21)

Using the notations of section 8.2, Proposition 8.23, Lemma 9.4 and Corollary 9.6 give

log TX,u(τ(m))

=
1

2

n∑
k=0

(−1)k+1

(
− logS(s, στ(m),k) + LMI(s, στ(m),k) + LMT (s, στ(m),k)

+ LMI(s, στ(m),k) + LMJ(s, στ(m),k) + LMRu(s, στ(m),k)

)∣∣∣∣
s=λτ(m),k

. (9.22)

We will treat each summand on the right hand side of (9.22) separately.
We first treat the identity contribution. We want to apply Proposition 8.10 to the right

hand side of (9.18). Thus we have to examine the Plancherel polynomial further.

109



Lemma 9.7. The Plancherel polynomial Pστ(m),k
(t) is given by

Pστ(m),k
(t) = −c(n)(−1)k dim(τ(m))

n∏
j=0
j 6=k

t2 − λ2
τ(m),j

λ2
τ(m),k − λ2

τ(m),j

.

where c(n) is the constant occurring in the description of the Plancherel polynomial in
equation (2.34).

Proof. This is proved in Bröcker’s thesis [Br, p. 60]. For convenience, we recall the proof.
To save notation, put

λi := λτ(m),i, i = 0, . . . , n.

By (2.31) we have

Λ(στ(m),k) + ρM =
k+1∑
i=2

(τi−1 +m+ 2 + n− i)ei +
n+1∑
i=k+2

(τi +m+ n+ 1− i)ei

=
k+1∑
i=2

λi−2ei +
n+1∑
i=k+2

λi−1ei.

Hence by (2.34) and (2.11) we have

Pστ(m),k
(t) =− c(n)

n∏
j=1

n+1∏
q=j+1

〈
te1 +

∑k+1
i=2 λi−2ei +

∑n+1
i=k+2 λi−1ei, ej + eq

〉
〈∑n+1

l=1 ρlel, ej + eq
〉

·
n∏
j=1

n+1∏
q=j+1

〈
te1 +

∑k+1
i=2 λi−2ei +

∑n+1
i=k+2 λi−1ei, ej − eq

〉
〈∑n+1

l=1 ρlel, ej − eq
〉

=− c(n)
∏

0≤i≤n
i 6=k

(
t2 − λ2

i

) ∏
0≤j<i≤n
i,j 6=k

(
λ2
j − λ2

i

) ∏
1≤j<i≤n+1

(ρ2
j − ρ2

i )
−1

=− c(n)(−1)k
∏

0≤j<i≤n

λ2
j − λ2

i

ρ2
j+1 − ρ2

i+1

n∏
j=0
j 6=k

t2 − λ2
j

λ2
k − λ2

j

=− c(n)(−1)k dim(τ(m))
n∏
j=0
j 6=k

t2 − λ2
j

λ2
k − λ2

j

.

(9.23)

Lemma 9.8. For every sequence s0, . . . , sn, si 6= sj for i 6= j, one has

n∑
k=0

n∏
j=0
j 6=k

t− sj
sk − sj

= 1.
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Proof. The expression is a polynomial in t of order n and is equal to 1 at the n+ 1 points
s0, . . . , sn.

Corollary 9.9. One has

n∑
k=0

(−1)kPστ(m),k
(t) = −c(n) dim(τ(m)).

Proof. This follows from Lemma 9.7 and Lemma 9.8.

Proposition 9.10. Let c(n) be the constant from (2.34). Then one has

n∑
k=0

(−1)k
∫ λτ(m),k

0

Pστ(m),k
(t)dt = −c(n)m dim(τ(m)) +O(m

n(n+1)
2 ),

as m→∞.

Proof. By (2.30) we have λτ(m),0 > λτ(m),1 > · · · > λτ(m),n. By Lemma 9.7 and Corollary
9.9, we have

n∑
k=0

(−1)k
∫ λτ(m),k

0

Pστ(m),k
(t)dt =

∫ λτ(m),n

0

n∑
k=0

(−1)kPστ(m),k
(t)dt

− c(n) dim(τ(m))
n−1∑
k=0

∫ λτ(m),k

λτ(m),n

n∏
j=0
j 6=k

t2 − λ2
τ(m),j

λ2
τ(m),k − λ2

τ(m),j

dt

= −c(n)λτ(m),n dim τ(m)

− c(n) dim τ(m)
n−1∑
k=0

∫ λτ(m),k

λτ(m),n

n∏
j=0
j 6=k

t2 − λ2
τ(m),j

λ2
τ(m),k − λ2

τ(m),j

dt.

(9.24)

Now recall that by (2.30) we have

λτ(m),k = τk+1 +m+ n− k. (9.25)

It follows easily from (2.11) that there exists a constant C > 0 such that

dim τ(m) = Cm
n(n+1)

2 +O(m
n(n+1)

2
−1), m −→∞. (9.26)

Together with (9.26) it follows that the first term on the right hand side of (9.24) equals

−c(n)m dim τ(m) +O(m
n(n+1)

2 ). Furthermore we have∫ λτ(m),k

λτ(m),n

n∏
j=0
j 6=k

t2 − λ2
τ(m),j

λ2
τ(m),k − λ2

τ(m),j

dt =

∫ τk+1+n−k

τn+1

n∏
j=0
j 6=k

(t+m)2 − λ2
τ(m),j

λ2
τ(m),k − λ2

τ(m),j

dt. (9.27)
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Using (9.25), a direct computation shows that the integrand on right hand side is bounded
as m→∞. Hence we get

n−1∑
k=0

∫ λτ(m),k

λτ(m),n

n∏
j=0
j 6=k

t2 − λ2
τ(m),j

λ2
τ(m),k − λ2

τ(m),j

= O(1), as m→∞. (9.28)

Using (9.26), we can estimate the second term on the right hand side of (9.24) byO(m
n(n+1)

2 ).
This concludes the proof.

We can summarize the asymptotic behaviour of the identity contribution respectively
the L2-torsion in the following proposition.

Proposition 9.11. There exists a polynomial Pτ (m), whose coefficients depend only on τ ,
such that

log T
(2)
X (τ(m)) =

1

2
MI(τ(m)) = vol(X)Pτ (m).

Moreover, if c(n) 6= 0 is the constant from (2.34), one has

Pτ (m) = −2πc(n)m dim(τ(m)) +O(m
n(n+1)

2 ),

as m→∞.

Proof. By (9.21) we have ε(στ(m),k) = 2 for every k. Thus by Proposition 8.11 and equation
(9.18) one has

log T
(2)
X (τ(m)) =

1

2
MI(τ(m)) = 2π vol(X)

n∑
k=0

(−1)k
∫ λτ(m),k

0

Pστ(m),k
(t) dt.

By (9.19) and by the explicit form of the Plancherel polynomials given in the first equation
of (9.23) it follows that

Pτ (m) := 2π
n∑
k=0

(−1)k
∫ λτ(m),k

0

Pστ(m),k
(t) dt

is a polynomial in m whose coefficients depend only on τ . The proposition follows from
Proposition 9.10.

Applying (2.33) it follows that equations (1.5) and (1.6) are proved and in order to
prove Theorem 1.3, Theorem 1.4 and Theorem 1.5, we have to study the asymptotic be-
haviour of the summands in (9.22) which are different from the identity contribution.
Concerning the contribution of the Selberg zeta functions, we have the following proposi-
tion.
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Proposition 9.12. Let k ∈ {0, . . . , n}. Then there exists a constant C such that∣∣∣logS(s, στ(m),k)
∣∣
s=λτ(m),k

∣∣∣ ≤ Ce−m/2

for all m ≥ 16n.

Proof. First by (9.19) we have λτ(m),k > 16n if m > 16n and thus S(s, στ(m),k) is regular
at s = λτ(m),k. Moreover by (2.12) and (9.21) there exists a constant C > 0 such that

dim(στ(m),k) ≤ Cm
n(n−1)

2 (9.29)

for every m. If we use Proposition 3.14 and (9.19), the proposition follows.

Now if X is compact, the distributions T , I, J and the contribution of the auxiliary
operator on the cusp vanish by definition. Thus it follows from equation (9.22) that for
compact X we have

log TX(τ(m)) =
1

2
MI(τ(m)) +

1

2

n∑
k=0

(−1)k logS(s, στ(m),k)
∣∣
s=λτ(m),k

.

Employing Propostion 9.11 and Proposition 9.12, Theorem 1.5 is proved.

We continue with the investigation of the asymptotic behaviour of the summands oc-
curing on the right hand side of (9.22). The contribution of the distribution T can be
estimated as follows.

Proposition 9.13. For k = 0, . . . , n let LMT (στ(m),k, s) be as in Proposition 8.14. Let

MT (τ(m)) :=
n∑
k=0

(−1)k+1LMT (s, στ(m),k)|s=λτ(m),k
.

Then there exists a constant C such that fore every m one has

|MT (τ(m))| ≤ Cm
n(n+1)

2 .

Proof. This follows immediately from Proposition 8.14, (9.19) and (9.29).

Next we treat the contribution of the distribution I to the relative analytic torsion.
Therefore we let

MI(τ(m)) :=
n∑
k=0

(−1)k+1LMI(s, στ(m),k)|s=λτ(m),k
,

where LMI(s, στ(m),k) is as in Proposition 8.13. By (9.20) each LMI(s, στ(m),k) is defined
at s = λτ(m),k. In order to estimate MI(τ(m)) as m → ∞, we start with the following
three lemmas.
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Lemma 9.14. There exists a constant C such that for every m one has

n∑
k=0

(−1)k+1 dim(στ(m),k)
(
log Γ(kn+1(στ(m),k) + λτ(m),k) + γλτ(m),k + C(ψ)

)
≤ Cm

n(n+1)
2 ,

where C(ψ) is as in Proposition 8.13.

Proof. By (2.32) and Corollary 2.8 one has

2
n∑
k=0

(−1)k+1 dimστ(m),k = − dim(τ)
2n∑
p=0

(−1)p dim Λpn∗ = 0.

Thus the sum in the Lemma equals

n∑
k=0

(−1)k+1 dim(στ(m),k)

(
log

Γ(kn+1(στ(m),k) + λτ(m),k)

Γ(2m)
+ γλτ(m),k

)
.

It follows from (9.19) and (9.21) that there exists a constant C which is independent of m
such that

log
Γ(kn+1(στ(m),k) + λτ(m),k)

Γ(2m)
≤ C logm.

Using (9.19) and (9.29) the proposition is proved.

Lemma 9.15. Let k ∈ {0, . . . , n} and let j ∈ {2, . . . , n+ 1}. Then there exists a constant
C such that for every m one has

∣∣Pj(στ(m),k, λ)
∣∣ ≤ Cm

(n−1)(n−2)
2

2(n−1)∑
i=0

(1 + |λ|)im2(n−1)−i (9.30)

and such that ∣∣∣∣ ddλPj(στ(m),k, λ)

∣∣∣∣ ≤ Cm
(n−1)(n−2)

2

2(n−1)−1∑
i=0

(1 + |λ|)im2(n−1)−i (9.31)

for all λ ∈ C. Here the polynomial Pj(στ(m),k, z) is as in (6.27).

Proof. This follows easily from (6.28), (9.21) and (9.29).

Lemma 9.16. Let k ∈ {0, . . . , n} and let j ∈ {2, . . . , n+ 1}. As in (6.31), for l ∈ N with
kn+1(στ(m),k) ≤ l ≤ kj(στ(m),k) + ρj define an even polynomial Qj,l(s, στ(m),k) by

Qj,l(στ(m),k, iλ) =
Pj(στ(m),k, iλ)− Pj(στ(m),k, il)

l − λ
+
Pj(στ(m),k, iλ)− Pj(στ(m),k, il)

l + λ
,

where the even polynomial Pj(στ(m),k, s) is defined as in (6.27). Then there exists a constant
C such that for every m one has∣∣∣∣∫ λτ(m),k

0

Qj,l(στ(m),k, iλ)dλ

∣∣∣∣ ≤ Cm
n(n+1)

2 .
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Proof. Using the fact that Pj(z, σ) is an even polynomial, equation (9.19) and equation
(9.31) give the estimate∣∣∣∣∫ λτ(m),k

0

Qj,l(στ(m),k, iλ)dλ

∣∣∣∣ ≤ 2λτ(m),k max
|ξ|≤l+λτ(m),k

∣∣∣∣∣ ddλ
∣∣∣∣
λ=ξ

Pj(σ, iλ)

∣∣∣∣∣ ≤ Cm
n(n+1)

2 .

Now we can estimate MI(τ(m)) as m→∞.

Proposition 9.17. There exists a constant C such that for every m one has

MI(τ(m)) ≤ Cm
n(n+1)

2 .

Proof. Let k ∈ {0, . . . , n}. By (9.21) we have ε(στ(m),k) = 2. Moreover, by Proposition
8.13, (6.31), (6.32) and (6.33) one obtains

LMI(λτ(m),k, στ(m),k) = 2p dim(στ(m),k)
(
log Γ(kn+1(στ(m),k) + λτ(m),k) + γλτ(m),k + C(ψ)

)
+ p

n+1∑
j=2

∑
kn+1(στ(m),k)≤l
<kj(στ(m),k)+ρj

(
2Pj(στ(m),k, il) log

(
l + λτ(m),k

)
+

∫ λτ(m),k

0

Qj,l(στ(m),k, iλ)dλ

)

+ p
n+1∑
j=2

l=kj(στ(m),k)+ρj

(
dim(στ(m),k) log

(
l + λτ(m),k

)
+

1

2

∫ λτ(m),k

0

Qj,l(στ(m),k, iλ)dλ

)
.

By (9.21) for every j ∈ {2, . . . , n + 1} one has m ≤ kj(στ(m),k) + ρj ≤ m + τ1 + n and by
(9.19) we have λτ(m),k ≤ m+ τ1 + n. Thus if we apply Lemma 9.14, Lemma 9.15, Lemma
9.16 and the estimate (9.29), the proposition is proved.

Now we treat the asymptotics of the contribution of the non-invariant distribution J
to log TX(τ(m)). Define

MJ(τ(m)) :=
n∑
k=0

(−1)k+1LMJ(s, στ(m),k)|s=λτ(m),k
,

where LMJ(s;στ(m),k) is as in Proposition 8.17. By (9.20), each LMJ(s;στ(m),k) is defined
at s = λτ(m),k. Moreover, the asymptotic behaviour of MJ(τ(m)) can be estimated using
the following proposition.

Proposition 9.18. Let k ∈ {0, . . . , n}. Then there exists a constant C such that for every
m > 1 one has ∣∣∣LMJ(s, στ(m),k)|s=λτ(m),k

∣∣∣ ≤ Cm
n(n+1)

2 logm.
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Proof. By (9.21) we have m ≤ kn+1(στ(m),k). Moreover, by (2.17) and (9.21), if ν ∈ K̂ is
such that mν(στ(m),k) 6= 0, one has

kj(ν) ≤ m+ τ1 + 1

for every j ∈ {2, . . . , n+ 1}. Thus applying Proposition 8.17 we can estimate∣∣LMJ(λτ(m),k, στ(m),k)
∣∣ ≤ p

∑
ν∈K̂

∣∣mν(στ(m),k)
∣∣ ∑
σ∈M̂

[ν : σ] dim(σ)

·
n+1∑
j=2

m+τ1+1∑
l=m

∣∣∣log
(√

λ2
τ(m),k + c(στ(m),k)− c(σ) + l + ρj

)∣∣∣ .
Let ν ∈ K̂ such that mν(στ(m),k) 6= 0. Let σ ∈ M̂ such that [ν : σ] 6= 0. Then by Lemma
8.16 and (9.19) we have

m ≤
√
λ2
τ(m),k + c(στ(m),k)− c(σ) ≤

√
λ2
τ(m),k + c(στ(m),k).

Hence by (2.27), (9.19) and (9.21) there exists a constant C1 which is independent of ν
and σ such that for every m we can estimate

m ≤
√
λ2
τ(m),k + c(στ(m),k)− c(σ) ≤ C1m

Thus there exists a constant C2 which is independent of ν and σ such that for every m > 1
we can estimate

n+1∑
j=2

m+τ1+1∑
l=m

∣∣∣log
(√

λ2
τ(m),k + c(στ(m),k)− c(σ) + l + ρj

)∣∣∣ ≤ C2 logm.

All in all, it follows that there exists a constant C3 such that for every m > 1 we can
estimate ∣∣LMJ(λτ(m),k, στ(m),k)

∣∣ ≤C3 logm
∑
ν∈K̂

∣∣mν(στ(m),k)
∣∣ ∑
σ∈M̂

[ν : σ] dim(σ)

=C3 logm
∑
ν∈K̂

∣∣mν(στ(m),k)
∣∣ dim(ν).

Now by (2.17) the number of ν ∈ K̂ with mν(στ(m),k) 6= 0 is bounded by 2n and one has∣∣mν(στ(m),k)
∣∣ ≤ 1 for every ν ∈ K̂. Moreover, by (2.17), (9.21) and (2.13) there exists a

constant C4 which is independent of m such that for each ν ∈ K̂ with mν(στ(m),k) 6= 0 one
has

dim(ν) ≤ C4m
n(n+1)

2 .

This proves the proposition.
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To complete our investigation of the asymptotic behaviour of log TX,u(τ(m)) as m→∞,
we have to deal with the contribution of the auxiliary differential operators on the cusp
which depends on the parameter u. Thus let

MRu(τ(m)) :=
n∑
k=0

(−1)k+1LMRu(s, στ(m),k)

∣∣∣∣
s=λτ(m),k

,

where LMRu(s, στ(m),k) is as in Proposition 8.19. By (9.20), LMRu(s, στ(m),k) is defined
at s = λτ(m),k. Moreover, if we combine Proposition 8.19, equation (9.19) and equation
(9.29) , it follows that there exists a constant C > 0 such that for every m one has

MRu(τ(m)) ≤ Cm
n(n+1)

2 . (9.32)

Now Theorem 1.3 and Theorem 1.4 follow if one combines equation (9.22), equation
(9.18), Proposition 9.11, Proposition 9.12 Proposition 9.13, Proposition 9.17, Proposition
9.18 and equation (9.32)

10 The Ruelle zeta function and the relative analytic

torsion in the 3-dimensional case

10.1 Preliminaries

In this section we treat the case of a hyperbolic 3-manifold in more detail. Our goal is
to relate the relative analytic torsion TX(τ) to the behaviour of a certain twisted Ruelle
zeta function Rτ at 0 for certain representations τ ∈ Ĝ which satisfy τ 6= τθ. This is an
extension of results obtained by Bröcker and Wotzke to the non-compact case.
Let us first introduce some notation. From now on, we will let G = Spin(3, 1). Then
there is a canonical isomorphism G ∼= SL2(C). This isomorphism induces an isomorphism
K ∼= SU(2), M ∼= SO(2). For l ∈ 1

2
N we let νl be the representation of K with highest

weight le2. Similarly, for k ∈ 1
2
Z we let σk be the representation of M with highest weight

ke2. Then σk is one-dimensional. Our parametrization is different from the parametrization
of [Mü4] but consistent with the notation used before. Proposition 2.3 has the following
explicit form.

Lemma 10.1. For σ ∈ M̂ , σ 6= w0σ, and ν ∈ K̂ let mν(σ) be as in (7.2). Then if σ = σk,
with k ∈ 1

2
N, k > 1/2, we have mν(σ) = 1 for ν = νk, mν(σ) = −1 for ν = νk−1 and

mν(σ) = 0 otherwise.

Proof. This follows from Proposition 2.3 but is also proved directly in [Mü4, equation
(4.2)].

Some of the results obtained previously can be made more explicit in the 3-dimensional
case, so let us restate them. Firstly, Theorem 6.2 and Proposition 6.7 simplify as follows.
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Proposition 10.2. Let Ω(σk, λ) be as in Theorem 6.2. Then for k ∈ N0 we have

Ω(σk, λ) =− 2γ − ψ(1 + iλ)− ψ(1− iλ)

−
∑

1≤l<k

2l

λ2 + l2
− k

λ2 + k2
.

and

Ω(σk+1/2, λ) =− 2γ − ψ
(

1

2
+ iλ

)
− ψ

(
1

2
− iλ

)
−
∑

0≤l<k

2(l + 1/2)

λ2 + (l + 1/2)2
− k + 1/2

λ2 + (k + 1/2)2
.

Proof. This follows easily from Theorem 6.2 and Proposition 6.7.

Secondly, the contribution of the Knapp-Stein intertwining operators to the relative
determinant of the auxiliary operators can be computed explicitly as follows.

Proposition 10.3. For σ ∈ M̂ let LMJ(s, σ) be as in Proposition 8.17. Then for k ∈ N
one has

LMJ(s, σk) = −2p
k−1∑
j=1

log
(√

s2 + k2 − j2 + k
)
− p log

(√
s2 + k2 + k

)
− p log (s+ k)

and

LMJ(s, σk+1/2) =− 2p
k−1∑
j=0

log
(√

s2 + (k + 1/2)2 − (j + 1/2)2 + k + 1/2
)

− p log (s+ k + 1/2).

Proof. The first equation follows from equation (2.27), Proposition 8.17 and Lemma 10.1.
The second equation follows from equation (2.27), equation (4.17), Lemma 8.8, and Lemma
10.1.

We can now formulate the determinant formula for the symmetric Selberg zeta function.
For convenience, from now on we shall work with regularized determinants and regular-
ized torsions defined according to Remark 5.9 rather than with the corresponding relative
objects. Then it follows easily from the construction that all the results obtained before
continue to hold for the regularized objects if one drops the terms which depend on the
parameter u.
For our purposes it suffices to study the case where σ is not invariant under the restricted
Weyl group, i.e. σ is non-trivial.
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Proposition 10.4. Let s ∈ C, Re(s) > 0, Re(s2) > 0. Let k ∈ 1
2
N. Let p be the number

of cusps of X and let cΓ := 2 (C(Γ)− γp), where C(Γ) is as in (6.8). Then there exists a
constant c 6= 0 depending only on the parity of 2k such that

S(s, σk) =ecp detgr

(
A(σ) + s2

)
exp

(
−4π vol(X)

∫ s

0

Pσk(r)dr

)
Γ2p(s+ k)

· (s+ k)p exp (LMJ(s, σk)− scΓ).

Proof. By Proposition 8.25 we have b(σk) = 0 . Thus for k ∈ N, the proposition follows
from Proposition 8.23 and Proposition 10.2. For k ∈ 1

2
N− N, we can replace the function

ψ(1 + iλ) in Lemma 8.9 by ψ(1/2 + iλ) and obtain an analogous statement. Then together
with Proposition 10.2 and the arguments of section 8.2 and section 8.3, the determinant
formula follows also for k ∈ 1

2
N− N.

Let τ ∈ Ĝ be a finite dimensional irreducible representation of G. Then we define the
twisted Ruelle zeta function Rτ (s) by

Rτ (s) :=
∏

[γ]∈C(Γ)s−[1]
[γ] prime

det
(
Id−τ(γ)e−s`(γ)

)
. (10.33)

Arguing as in [Mü4, section 3] and employing Proposition 3.8, it follows that the infinite
product in (10.33) converges for Re(s) sufficiently large. As in [Mü4, equation (3.14)], the
function Rτ can be expressed as a product of Ruelle zeta functions R(s, σ) with shifted
arguments. Thus by Corollary 7.9 the function Rτ (s) has a meromorphic continuation to
C. Moreover, using Kostants theorem, for τ 6= τθ one can express the symmetrized Ruelle
zeta function in terms of symmetrized Selberg zeta functions as

Rτ (s)Rτθ(s) =
∏
w∈W 1

S(s− λτ,w, στ,w)(−1)l(w)

, (10.34)

where the notations are as in section 2.9. This identity is, up to a sign, one of the key results
obtained by Wotzke in his thesis, see [Wo, Satz 6.1]. For the 3-dimensional case, equation
(10.34) is proved in [Mü4, Proposition 3.5]. The proof doesn’t use the cocompactness of Γ.
From now on, for m ∈ 1

2
N we let τ(m) denote the representation of G with highest weight

me1 + me2. Then, if we identify G ∼= SL2(C), τ(m) is the 2m-th symmetric power of
the standard representation of SL2(C). Thus, τ(m) corresponds to the representation
τ2m,0 = τ2m of [Mü4]. It follows from (10.34), (2.32), (9.19) and (9.21) that

Rτ(m)(s)Rτ(m)θ(s) =
S(s+m+ 1, σm)S(s−m− 1, σm)

S(s+m,σm+1)S(s−m,σm+1)
. (10.35)

Moreover, together with Corollary 9.6 it follows that

TX(τ(m))2 =
detgr(A(σm) + (m+ 1)2)

detgr(A(σm+1) +m2)
. (10.36)
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10.2 The functional equation of the symmetric Ruelle and Sel-
berg zeta functions

Let σ ∈ M̂ . Using (7.19), we want to prove a functional equation for the symmetrized
Selberg zeta function S(s, σ).
Let us first symmetrize the scattering matrices. For σ ∈ M̂ , σ 6= w0σ and ν ∈ K̂ we let
E(σ, ν) := E(σ, ν)⊕ E(w0σ, ν) and for s ∈ C we let

C(σ : ν : s) : E(σ, ν)→ E(σ, ν)

be equal to

C(σ : ν : s) := C(σ : ν : s)⊕C(w0σ : ν : s).

For σ ∈ M̂ we let νσ be as in section 4.2. Then, if σ = σk we have νσ = ν|k|. By the

arguments of section 4.2,
(
det C(σ : ν : s)

) 1
dim(ν) is canonically defined. To save notation,

for k ∈ 1
2
N we shall write (

det C(σk : νk : s)
) 1

dim(ν) =: C(k : s).

Then C(k : s) is a meromorphic function of s which has no zeroes and poles for s ∈ iR.
By (4.10) it satisfies C(k : s)C(k : −s) = 1.
We have the following functional equation for the symmetrized Selberg zeta function.

Proposition 10.5. Let k ∈ 1
2
N and let cΓ be as in Proposition 10.4. Then the symmetric

Selberg zeta function S(s, σk) satisfies the functional equation

S(−s, σk) =S(s, σk) exp

(
8π vol(X)

∫ s

0

Pσk(r)dr + 2cΓs

)
(Γ(−s+ k))2p

(Γ(s+ k))2p C(k : s)C(k : 0)−1.

Proof. Let

Ξ(s, σk) := exp

(
4πvol(X)

∫ s

0

Pσk(r)dr + scΓ

)
(Γ (s+ k))−2p · S(s, σk).

It follows from (7.19), Proposition 10.2, (4.10) and (4.22) that

Ξ′(s, σk)

Ξ(s, σk)
+

Ξ′(−s, σk)
Ξ(−s, σk)

= − d

ds
log C(k : s).

Hence the logarithmic derivative of

Ξ(s, σ)

Ξ(−s, σ)
C(k : s)

is zero and so this function is constant. Now the order of the singularity of the function
Ξ(s, σk) at 0 is the same as the order of the singularity of S(s, σ) at 0. This order is even
by Theorem 7.4. Since Pσk(r) is an even polynomial, the proposition follows.

120



Let σ ∈ M̂ , σ 6= w0σ. Then we define the symmetrized Ruelle zeta function Rsym(s, σ)
by

Rsym(s, σ) = R(s, σ)R(s, w0σ).

It satisfies the following functional equation.

Proposition 10.6. Let k ∈ 1
2
N. Then the symmetrized Ruelle zeta function Rsym(s, σk)

satisfies the functional equation

Rsym(−s, σk) =Rsym(s, σk) exp

(
− 8

π
vol(X)s

)
C(k : s− 1)C(k : s+ 1)

C(k + 1 : s)C(k − 1 : s)

· C(k + 1 : 0)C(k − 1 : 0)

C(k : 0)2
.

Proof. By Proposition 3.15 for every k ∈ 1
2
Z we have

Rsym(s, σk) =
S(s+ 1, σk)S(s− 1, σk)

S(s, σk+1)S(s, σk−1)
.

Moreover, using (2.33) and (2.34) we obtain∫ s+1

0

Pσk(r)dr +

∫ s−1

0

Pσk(r)dr −
∫ s

0

Pσk+1
(r)dr −

∫ s

0

Pσk−1
(r)dr = − s

π2
.

Thus the proposition follows from Proposition 10.5.

To prove Corollary 1.7, we will also need the following proposition.

Proposition 10.7. Let m ∈ N, m ≥ 3. Then

Rτ(m)(s)Rτ(m)θ(s) =Rτ(2)(s)Rτ(2)θ(s)
C(m : m+ 1− s)
C(m+ 1 : m− s)

C(3 : 2− s)
C(2 : 3− s)

C(m+ 1 : 0)

C(m : 0)

C(2 : 0)

C(3 : 0)

·
m∏
k=3

Rsym(k − s, σk)Rsym(k + s, σk) exp

(
− 8

π
vol (X)(k − s)

)
.

Similarly, for m ∈ N m ≥ 2 one has

Rτ(m+1/2)(s)Rτ(m+1/2)θ(s) =Rτ(3/2)(s)Rτ(3/2)θ(s) ·
C(m+ 1/2 : m+ 3/2− s)
C(m+ 3/2 : m+ 1/2− s)

C(5/2 : 3/2− s)
C(3/2 : 5/2− s)

· C(m+ 3/2 : 0)

C(m+ 1/2 : 0)

C(3/2 : 0)

C(5/2 : 0)

·
m∏
k=2

Rsym(k + 1/2 + s, σk+1/2)Rsym(k + 1/2− s, σk+1/2)

·
m∏
k=2

exp

(
− 8

π
vol (X)(k + 1/2− s)

)
.
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Proof. Let m ∈ N, m ≥ 3. Applying [Mü4, equation (3.14)], we can symmetrize [Mü4,
equation (8.2)] and obtain

Rτ(m)(s)Rτ(m)θ(s) = Rτ(2)(s)Rτ(2)θ
(s)

m∏
k=3

Rsym(s+ k, σk)Rsym(s− k, σk).

Similarly, for m ∈ N, m ≥ 2, symmetrizing [Mü4, equation (8.3)] we have

Rτ(m+1/2)(s)Rτ(m+1/2)θ(s)

=Rτ(3/2)(s)Rτ(3/2)θ
(s)

m∏
k=2

Rsym(s+ k + 1/2, σk+1/2)Rsym(s− k − 1/2, σk+1/2).

Applying Proposition 10.6, the proposition follows.

10.3 Proof of the main results in the 3-dimensional case

In order to relate the behaviour of Rτ (m)Rτ(m)θ at 0 to the relative analytic torsion
TX(τ(m)), we want to apply the determinant formula for the symmetric Selberg zeta func-
tion from Proposition 10.4 to the right hand side of (10.35) and combine it with equation
(10.36).
However, in contrast to a compact hyperbolic manifold, this is not possible directly since
the determinant formula for the Selberg zeta function is valid only for s ∈ C with Re(s) > 0,
Re(s2) > 0. Thus we first have to apply the functional equation for the symmetric Selberg
zeta function from Proposition 10.5. We obtain the following proposition.

Proposition 10.8. One has

Rτ(m)(s)Rτ(m)θ(s) =e2cΓ
S(−s+m+ 1, σm)S(s+m+ 1, σm)C(m+ 1 : 0)

S(−s+m,σm+1)S(s+m,σm+1)C(m : 0)

·
C(m : m+ 1− s)Γ2p(s− 1) exp

(
8π vol(X)

∫ −s+m+1

0
Pσm(r)dr

)
C(m+ 1 : m− s)Γ2p(s+ 1) exp

(
8π vol(X)

∫ −s+m
0

Pσm+1(r)dr
) .

Proof. By (10.35) one has

Rτ(m)(s)Rτ(m)θ(s) =
S(s−m− 1, σm)S(s+m+ 1, σm)

S(s−m,σm+1)S(s+m,σm+1)

Now by proposition 10.5 we have

S(s−m− 1, σm)

S(s−m,σm+1)
=e2cΓ

S(−s+m+ 1, σm) exp
(

8π vol(X)
∫ −s+m+1

0
Pσm(r)dr

)
S(−s+m,σm+1) exp

(
8π vol(X)

∫ −s+m
0

Pσm+1(r)dr
)

· C(m+ 1 : 0)C(m : m+ 1− s)Γ2p(s− 1)

C(m : 0)C(m+ 1 : m− s)Γ2p(s+ 1)
.

This proves the proposition.

122



Now we can prove Theorem 1.6 and state it more precisely.

Theorem 10.9. For m ∈ N we define a constant c(τ(m)) by

c(τ(m)) :=( ∏m−1
j=1

√
(m+ 1)2 +m2 − j2 +m∏m

j=1

√
(m+ 1)2 +m2 − j2 +m+ 1

)4p( √
(m+ 1)2 +m2 +m√

(m+ 1)2 +m2 +m+ 1

)2p

. (10.37)

Similarly, for m ∈ N we define a constant c(τ(m+ 1/2)) by

c(τ(m+ 1/2)) :=

(∏m−1
j=0

√
(m+ 3/2)2 + (m+ 1/2)2 − (j + 1/2)2 +m+ 1/2∏m

j=0

√
(m+ 3/2)2 + (m+ 1/2)2 − (j + 1/2)2 +m+ 3/2

)4p

.

(10.38)

Then one has

TX(τ(m))4 = c(τ(m))
C(m : 0)

C(m+ 1 : 0)
lim
s→0

(
Rτ(m)(s)Rτ(m)θ(s)

C(m+ 1 : m− s)
C(m : m+ 1− s)

Γ−2p(s− 1)

)
and

TX(τ(m+ 1/2))4 =c(τ(m+ 1/2))
C(m+ 1/2 : 0)

C(m+ 3/2 : 0)
· lim
s→0

(
Rτ(m+1/2)(s)Rτ(m+1/2)θ(s)

C(m+ 3/2 : m+ 1/2− s)
C(m+ 1/2 : m+ 3/2− s)

Γ−2p(s− 1)

)
.

Proof. Let m ∈ N. To save notation, let us first introduce two auxiliary functions. Let

Pτ(m)(s) := exp

(
−4π vol(X)

∫ s+m+1

0

Pσm(r)dr + 4π vol(X)

∫ −s+m+1

0

Pσm(r)dr

− 4π vol(X)

∫ −s+m
0

Pσm+1(r)dr + 4π vol(X)

∫ s+m

0

Pσm+1(r)dr

)
.

Moreover, let

Jτ(m)(s) := exp

(
LMJ(−s+m,σm+1) + LMJ(s+m,σm+1)

− LMJ(−s+m+ 1, σm)− LMJ(s+m+ 1, σm)

)
.
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Then by Proposition 10.8, Proposition 10.4 and equation (10.36) one has

C(m : 0)

C(m+ 1 : 0)
lim
s→0

(
Rτ(m)(s)Rτ(m)θ(s)

C(m+ 1 : m− s)Γ2p(s+ 1)

C(m : m+ 1− s)Γ2p(s− 1)
Jτ(m)(s)

)
= lim

s→0

(
e2cΓ

S(s+m+ 1, σm)S(−s+m+ 1, σm)

S(s+m,σm+1)S(−s+m,σm+1)
Jτ(m)(s)

)
· lim
s→0

exp

(
8π vol(X)

∫ −s+m+1

0

Pσm(r)dr − 8π vol(X)

∫ −s+m
0

Pσm+1(r)dr

)
= lim

s→0

detgr (A(σm) + (s+m+ 1)2) detgr (A(σm) + (−s+m+ 1)2)

detgr (A(σm+1) + (s+m)2) detgr (A(σm+1) + (−s+m)2)
Pτ(m)(s)

=
det2

gr (A(σm) + (m+ 1)2)

det2
gr (A(σm+1) +m2)

=TX(τ(m))4.

Here the determinant-functions are holomorphic for s in a neighbourhood of 0 by Propo-
sition 8.25. The function Pτ(m)(s) is an entire function of s and one has Pτ(m)(0) = 1.
Furthermore, by Proposition 10.3 the function Jτ(m)(s) is entire for s in a neighbourhood
of zero and one has Jτ(m)(0) = c(τ(m)). For τ(m + 1/2) we argue in the same way. This
proves the theorem.

Let us finally turn to the proof of Corollary 1.7. Let m ∈ N, m ≥ 3. By (3.8) and
(3.10) the infinite product defining the Ruelle zeta functions R(s, σk) converges absolutely
for s ∈ C with Re(s) > 2. By Theorem 10.9 and Proposition 10.7 we have

TX(τ(m))4 =c(τ(m))
C(m : 0)

C(m+ 1 : 0)
lim
s→0

(
Rτ(m)(s)Rτ(m)θ(s)

C(m+ 1 : m− s)
C(m : m+ 1− s)

Γ−2p(s− 1)

)
=c(τ(m))

C(2 : 0)

C(3 : 0)
lim
s→0

(
Rτ(2)(s)Rτ(2)θ(s)

C(3 : 2− s)
C(2 : 3− s)

Γ−2p(s− 1)

)
m∏
k=3

exp

(
− 8

π
vol(X)k

)
Rsym(k, σk)

2

=
c(τ(m))

c(τ(2)
TX(τ(2))4 exp

(
− 4

π
vol(X)(m(m+ 1)− 6)

) m∏
k=3

Rsym(k, σk)
2.

Now one has σ = w0σ and so by the definition of the Ruelle zeta function and by mero-
morphic continuation one gets

R(s̄, w0σ) = R(s, σ).

Thus one has

Rsym(k, σk) = |R(k, σk)|2 .

This proves the first equation in Corollary 1.7. The second equation is obtained in the
same way.
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