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Abstract

Let X be a complete hyperbolic manifold of finite volume and of odd dimension d. Then
X can be realized as X = I'\G/K, where G = Spin(d, 1), K = Spin(d) and where I' is a
discrete, torsion-free subgroup of G. Throughout this thesis we assume that for every I'-
cuspidal parabolic subgroup P of G with Langlands decomposition P = MpApNp one has
I'n P =TN Np. Firstly, we study Selberg zeta functions on X, prove that these functions
have a meromorphic continuation to the complex plane and describe their singularities.
Secondly, we define the relative or regularized analytic torsion of X associated to the
restriction of a certain representation of G' to I'. We investigate the asymptotic behaviour
of this torsion with respect to special sequences of representations of G. Finally, if X is
3-dimensional, we establish a relation between the regularized analytic torsion and the
behaviour of a twisted Ruelle zeta function at 0. Our work generalizes results of Fried,
Bunke and Olbrich, Brocker and Wotzke to the non-compact case and results of Miiller to
the non-compact and higher-dimensional situation.
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1 Introduction

1.1 Statement of the main results

This thesis deals with two aspects of geometry and spectral theory on complete, odd
dimensional, not necessarily compact hyperbolic manifolds X of finite volume. Firstly, the
Selberg zeta functions, which are dynamical zeta functions defined in terms of the length
spectrum and the geodesic flow on the unit sphere bundle of X and a representation of
a compact group, are studied. Secondly, we treat the analytic torsion of X with respect
to certain representations of its fundamental group. If X is non-compact, this torsion will
be introduced as a relative or regularized torsion. For 3-dimensional X, we will relate the
regularized analytic torsion associated to certain representations of GG to the behaviour of
a twisted Ruelle zeta function at 0. This zeta function is a dynamical zeta function which
is defined similarly to the Selberg zeta functions. Since X is a locally symmetric space,
methods from harmonic analysis, in particular the Selberg trace formula turn out to be
our main tool.

Throughout this thesis we let X be a complete hyperbolic manifold of dimension d = 2n+1
and of finite volume. If we let G = Spin(d, 1) and K = Spin(d), then there exists a discrete,
torsion free subgroup I' C G such that X = I'\H¢, where H? = G//K is the d-dimensional
hyperbolic space. We assume that for every I'-cuspidal parabolic subgroup P of G with
Langlands decomposition P = MpApNp one has

I'nP=TInNNp. (1.1)

The assumption (1.1)) is satisfied for example if ' is neat, i.e. if the group generated by
the eigenvalues of any v € I' contains no root of unity different from 1.

1.1.1 Selberg zeta functions

Our first main topic are Selberg zeta functions. To define these functions, we need to
introduce some notation. Let Py = M AN be the standard parabolic subgroup of G. Let o
be a finite dimensional unitary representation of M. Then, going back to Selberg, one can
associate a dynamical zeta function Z(s, o) to the geodesic flow on the unit sphere bundle
SX and the representation o. This function is defined as follows. Identifying I' with the
fundamental group of X, we obtain a one-to-one correspondence between C(I'), the set of
conjugacy classes of I'; and the set of free homotopy classes of closed curves in X. For
v € T" we will denote its conjugacy class by [y]. Moreover, by f([y]) we will denote the free
homotopy class of closed paths associated to [y]. For a conjugacy class [y] let £(y) denote
the infimum of the lengths of piecewise smooth loops which belong to f([y]). Then it turns
out that ¢() is non-zero if and only if v is semisimple and that for semisimple ~ there
exists a unique closed geodesic cfy € f([7]) of length £(v). Thus let C(I')s denote the set of
semisimple conjugacy classes in I'. Let a denote the Lie algebra of A and let H; € a be of
norm one and positive with respect to the choice of N. Then every non-trivial semisimple
element vy of I' is conjugate to an element of the form m. exp(¢(v)H,), where m, € M is
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unique up to conjugation in M. Let N be the nilpotent subgroup opposite to N and let
be its Lie algebra. Then for s € C with Re(s) sufficiently large, the Selberg zeta function
Z(s,0) is defined as

Zs,0)i= T] TLdet (1=o(ms) @ $* AdGmy exp(t) o) e ). (1.2
[’7][6}0(1—“)5—[1] k=0
7] prime

Here, a semisimple conjugacy class [v] is called prime if the corresponding closed geodesic
Cly is prime. Moreover, S* Ad denotes the k-th symmetric power of the adjoint represen-
tation. The infinite product in converges absolutely only for Re(s) >> 0. Our main
result about the Selberg zeta function is the following theorem.

Theorem 1.1. Let X be a complete odd dimensional hyperbolic manifold of finite volume
and assume that its fundamental group satisfies . Let o be a finite dimensional unitary
representation of M. Then the Selberg zeta function Z(s,o) has a meromorphic continu-
ation to C. All its possible singularities (zeroes and poles) and their corresponding orders
can be described in terms of the following data.

e By the discrete spectrum of a graded differential operator A(co) of Laplace type which
acts on a locally homogeneous vector bundle (o) over X.

e By the poles of the scattering matriz C(v, : o : s) associated to o and a certain
representation v, of K.

e Additionally, the Selberg zeta function has singularities which depend on X only via
p, the number of cusps of X. They are located on the negative integers if the highest
weight of o is integral and on the negative half integers if the highest weight of o is
half-integral.

Taking into account that the Selberg zeta function is a dynamical zeta function which
is defined by geometric data of the underlying manifold X, namely its length spectrum,
Theorem provides a relation between the geometry of the possibly non-compact hy-
perbolic manifold X and the spectrum of certain differential operators. More precisely,
the singularities in the first two items correspond to spectral parameters of X since poles
of the scattering matrix C(v, : o : s) are related to poles of the resolvent of A(c). The
additional singularities of Z(s,o) on the negative real line arise from the contribution of
weighted orbital integrals to the geometric side of the trace formula. For a more precise
version of Theorem [L.1] we refer the reader to Theorem [7.4] and Theorem [7.§ below.

Let us now give a brief history of previous results related to Theorem If X is compact,
it was shown in [Fr2] that Z(s, o) has a meromorphic continuation to C. For compact X
Bunke and Olbrich described the singularities of Z(s,0) as in the first item of Theorem
, see [BOJ. If X is of finite volume only and satisfies assumption , the meromorphic
continuation of Z(s, o) and a description of its singularities were obtained by Gangolli and
Wallach for the trivial representation of M, [GaWa]. In [GP] Gon and Park generalized
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their methods to the fundamental representations oy, of M on A*(C?"). However it is not
clear whether the methods of Gangolli, Wallach, Gon and Park can be applied to general
o € M since they use a special type of a Paley-Wiener theorem for differential forms which
prescribes the K-types of a test function in a very specific way.

Our approach to prove Theorem combines the methods of Bunke and Olbrich from the
compact case with the invariant Selberg trace formula as it is stated in [Ho2]. We would
like to emphasize that this is only possible because the Fourier transform of the invariant
part associated to the weighted orbital integrals which appears on the geometric side of
the trace formula has been determined by Hoffmann [Hol].

Let o be a finite dimensional unitary representation of M. Then there is another dynamical
zeta function R(s, o) associated to o and the geodesic flow. Namely, for Re(s) >> 0 put

R(s,0) := H det (Id —o(my)e ).
[YJeC(T)s—[1]
[7] prime
The infinite product converges absolutely and locally uniformly for Re(s) >> 0 and the
function R(s,o) is called the Ruelle zeta function associated to o. One can express the

Ruelle zeta function in a standard way as a weighted product of Selberg zeta functions
with shifted arguments. Thus Theorem implies the following corollary.

Corollary 1.2. For every finite dimensional unitary representation o of M the Ruelle zeta
function R(s,o) admits a meromorphic continuation to C.

1.1.2 The asymptotic behaviour of the relative analytic torsion

The second topic of this thesis deals with the relative analytic torsion associated to repre-
sentations of the fundamental group I' which arise as restrictions of representations of G.
Thus let 7 be an irreducible finite dimensional representation of G. Restrict 7 to I' and
let E. be the associated flat vector-bundle over X. By [MaMu| one can equip E, with a
canonical metric, called admissible metric. Let A,(7) be the corresponding Laplacian on
E. valued p-forms. If X is not compact, A,(7) has a continuous spectrum and therefore,
the heat operator exp(—tA,(7)) is not trace class. So the usual zeta function regularization
can not be used to define the analytic torsion in this case. To overcome this problem, we
use the relative trace which was introduced by Miiller in [Miil].

The relative trace is defined as follows. There exists a ug > 0 such that for every u > ug, X
has a natural decomposition as X = X (u) Upx () F'(u). Here X (u) is a compact manifold
with boundary and F'(u) is a disjoint union of finitely many cusps. Moreover, one has
X(u) € X() for v/ > w and X is the union of all X (u). There exists a naturally defined
auxiliary differential operator T, (;), which acts on the £ -valued p-forms, has purely con-
tinuous spectrum and vanishes on the smooth sections supported in the interior of X (u).
Furthermore, by [Miill, Theorem 9.1] for every ¢t > 0 the operator e *2»(") — ¢=p() g of
trace class. Now the relative trace of e **»(") with respect to the parameter u is defined as

Trrel,u (eitAp(T)) = TIr (eitAp(T) — eitT’/p(T)vu) .



Another way to regularize the trace in the non-compact case is provided by the b-regularized
trace. To define the latter trace, let K,(t,x,y) be the integral kernel of e~**#("). Then
the integral of Tr K, (¢, z,z) over X(Y) has an asymptotic expansion in Y as ¥ — oo and
following Melrose [Me], the b-regularized trace is defined as the finite part of this expansion.
It coincides with Trye (e‘tAP(T)) up to a term which depends on the parameter u and which
will be computed explicitly.

It turns out that Try, (e_tAP(T)) equals the spectral side of the Selberg trace formula
applied to the heat operator exp(—tA,(7)) up to a term which depends on u and can be
computed explicitly. Using the Selberg trace formula, it follows that Trye (e*mp(f)) has
an asymptotic expansion as t — 40. Let 6 be the standard Cartan involution of G. If 7
satisfies 7 # 7y, then Tryq (e‘tAP(T)) is exponentially decreasing as ¢ — oo. Thus we can
define the relative zeta function ¢, .(z;7) of Ay(7) by

Conli7) = / £1 Ty o (=20 0)) .
0

I'(z2)

The integral converges absolutely and uniformly on compact subsets of the half-plane
Re(z) > d/2 and admits a meromorphic continuation to C which is regular at z = 0.
In analogy to the compact case, we now define the relative (-regularized determinant

det,(Ap(7)) € RT by

d

dety(A,(T)) :==exp (—%

Now the analytic torsion Tx,(7) € RT with respect to E, and the admissible metric is
defined by

Ta(r) = [ [ detu(A, (7)) 50" (1.3)

If X is compact, then X has no cusps, the heat operators are trace class and their relative
trace is the same as their trace. Thus in the compact case is just the Ray-Singer
analytic torsion of X.

We will study the asymptotic behaviour of the analytic torsion for special sequences of
representations of G. These representations are defined as follows. Fix natural numbers
Ty > Tg >+ > Tpy1. For m € N let 7(m) be the finite-dimensional irreducible represen-
tation of G with highest weight (73 + m, ..., 7,41 + m) as in (2.7). By Weyl’s dimension
formula there exists a constant C' > 0 such that

n(n+1)

dim(r(m)) = Cm" 5 + O(m™ 1), m — oo. (1.4)

Our main result about the asymptotic behaviour of logTy ,(7(m)) as m — oo is the
following theorem.



Theorem 1.3. Let X = I'\H*"™ be a (2n + 1)-dimensional complete, oriented, hyperbolic
manifold of finite volume. Assume that I satisfies (1.1)). Let

™

Cm) = (1) e

where S is the d-dimensional Fuclidean unit-sphere. Then one has

n(n+1)

log Tx w(7(m)) = —C(n) vol(X)m - dim(7(m)) + O (m 2 log m) ,

as m —» oco. Here vol(X) is the hyperbolic volume of X.

We will also study the L2-torsion T)(? ) (7). By the homogeneity of X, to define this
torsion as in [La], it suffices to assume that X has finite volume. We will show that there
exists a polynomial P,(m) of degree n(n + 1)/2 + 1 such that

log T8 (7(m)) = vol(X)P.(m). (1.5)
The polynomial P,(m) only depends on 7i,...,7,,1 and not on X. It is obtained from

certain Plancherel polynomials and can in principle be computed explicitly. Its leading
term will be computed explicitly and we obtain

(n41)

log T8 (7(m)) = —C(n) vol(X)m - dim(7(m)) + O(m™ 7 ), (1.6)
where C(n) is as in Theorem[1.3] Employing Theorem|[L.3|we obtain the following theorem.

Theorem 1.4. Let X = T\H*"™ be a (2n + 1)-dimensional complete, oriented, hyperbolic
manifold of finite volume. Assume that T satisfies (L.1)). Then we have

n(n+1)

log T'x w(7(m)) = log T)(?)(T(m)) +O(m 2 logm)

as m — Q.

For compact hyperbolic 3-manifolds, a variant of Theorem was proved in [Mud],
where the log-term in the remainder can be dropped. Our results also imply a generaliza-
tion of the results of Miiller to higher dimensional compact hyperbolic manifolds. More
precisely, if X is compact, the remainder term in our estimate can be improved and we
will prove the following theorem.

Theorem 1.5. Let X be a compact hyperbolic manifold of dimension d = 2n + 1. Then,
if Py(m) is the polynomial of degree n(n +1)/2+ 1 as in (L.5), one has

log Tx (7(m)) = vol(X) P, (m) + O(e™™),
as m — 0o, where ¢ > 0. In particular, one has
log Tx (1(m)) = log T (7(m)) + O(e™™),

as m — Q.



Since the representations 7 are unimodular, it follows from [Mii3] that for compact X
the analytic torsion T'x(7(m)) equals the Reidemeister torsion 7x(7(m)). The latter is an
invariant which is constructed in a combinatorial way out of a smooth triangulation of X.
Replacing T'x(7(m)) by 7x(7(m)) in Theorem it follows that the volume of a compact
odd-dimensional hyperbolic manifold X is determined by the sequence of Reidemeister
torsion invariants 7x(7(m)). Again, for compact hyperbolic 3-manifolds this result was
proved in [Mii4]. On the other hand, it is not known if there is an extension of the equality
of analytic and Reidemeister torsion to the non-compact setting. This is an interesting
problem and Theorem could be a first step in this direction.

1.1.3 The twisted Ruelle zeta function at 0 and the regularized analytic tor-
sion in the 3-dimensional case

For a hyperbolic 3-manifold X we also investigate the relation between the regularized
analytic torsion Tx(7) and the behaviour of the twisted Ruelle zeta function R, at 0 for
certain representations 7 € G. This zeta function is defined as

R.(s) := H det (Id —7(7)e ). (1.7)
[veCT)s—1]
(7] prime

The infinite product in converges for Re(s) sufficiently large. One can express R, as a
finite product of Ruelle zeta functions R(s, o) with shifted arguments and so by Corollary
the function R.(s) has a meromorphic continuation to C. In the 3-dimensional case,
we can naturally identify G = Spin(3,1) with SLy(C) . From now on, for m € %N we let
7(m) be the representation of G with highest weight me; +mey. Then 7(m) corresponds to
the 2m-th symmetric power of the standard representation of SLy(C). The representation
7(m) satisfies 7(m) # 7(m)y and thus the relative analytic torsion T'x ,(7(m)) is defined
as in the previous section. However, for notational convenience we shall now work with
the regularized analytic torsion Tx(7(m)) which is defined in the same way as above and
which coincides with the relative analytic torsion T'x ,(7(m)) up to a term which depends
on u and can be computed explicitly. Our main result for the 3-dimensional case is the
following theorem.

Theorem 1.6. For m € N there exists an explicit constant c¢(T(m)) € RY, which depends
on I' only via p, the number of cusps of X, and which is determined in in (10.37)) such that

Ty (r(m))* = c(r(m)) Cc(m 0 iy (RT(m)(s)RT(m)e(s)C(m LM S) oy 1)) .

(m+1:0) s=0 Cim:m+1—ys)
Similarly, there exists an explicit constant ¢(t(m + 1/2)) € R, which depends on T only
via p, the number of cusps of X, and which is determined in (10.38)) such that
Clm+1/2:0) .
Clm 1372 0) B\ Brmir/n($) Brimi1/20(5)
Cim+3/2:m+1/2— S)F_2p<s Y
Cim+1/2:m+3/2—s)

Tx(r(m +1/2))" =c(r(m + 1/2))




Here the functions C(k : s) are meromorphic functions of s which are constructed out of
the scattering determinant associated to the representation o of M with highest weight ke
and a certain K-type. They are defined in section[10.3.

Let X be a compact odd-dimensional hyperbolic manifold. Then Brocker and Wotzke
proved that for any 7 € G which satisfies 7 # 7y the Ruelle zeta function R.(s) is regular
at 0 and that

Tx(7)* = R-(0)R,,(0), (1.8)

see [Br], [Wo]. Thus Theorem is a generalization of their result in dimension 3 to
non-compact hyperbolic 3-manifolds. We have stated and proved Theorem only for
the representations 7(m). However, one can obtain a similar result for any 7 € G which
satisfies 7 # 7y. The result of Brocker and Wotzke is a generalization of Fried’s Theorem
who first investigated the relation between the Ruelle zeta function and the analytic torsion
associated to a unitary representation of the fundamental group, see [Erl]. For unitary
representations of I') the relation between the behaviour of the Ruelle zeta function at
0 and the regularized analytic torsion was studied by Park, [Pa]. Theorem does not
imply that the Ruelle zeta function R, is regular at 0.

On closed hyperbolic manifolds, the results of Fried, Brocker and Wotzke imply a relation
between a spectral invariant, the analytic torsion, and a special value of a geometric zeta
function. In Theorem the spectrum of certain operators appears on both sides of the
equation due to the appearance of the C-matrix on the right hand side. However, it turns
out that if we consider the quotient of two analytic torsions Tx(7(m;)) and Tx(7(mz)),
we can eliminate the appearance of the spectrum on one side of the equation. Namely, we
have the following corollary.

Corollary 1.7. Let m € N. Then for m > 3 one has

Tx(r(m)) _ (erm)\"" (1 o) TT R o
no@y (o) o (-remm 6>>E‘R(k’ I

where the constants ¢(t(m)) and c¢(7(2)) are as in Theorem[1.6 Similarly, for m > 2 one
has

Tx(r(m +1/2)) _ (C(T(m +1/2))
Tx(7(3/2)) c(7(3/2))

H |R(k+1/2,041172)] -
k=2

)1/4 exp (_% vol (X)(m(m +2) = 3))

The Ruelle zeta functions R(s, o) appearing in the corollary are regular at s = k.
Corollary is a generalization of [Mii4l, equation(8.7), equation(8.8)]. One easily sees
that |logc(7(m))| is of order O(m) as m — oo and thus Corollary and the decay
of the log |R(k,oy)| also imply Theorem in the 3-dimensional case with an improved
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remainder term.

Let X be the Borel-Serre compactification of X. Then in their preprint [MePo], Menal-
Ferrer and Porti studied the relation between the Reidemeister torsion 7y (7(m)) of X
associated to the restriction of the representation 7(m) to I' and Ruelle zeta functions. In
order to define the Reidemeister torsion, one has to take into account that the cohomology
of X with respect to the local system defined by 7(m) is non-trivial, see [MePg]. If we use
[MePo, Theorem 5.8] and make the same assumptions as in this theorem, together with
Corollary we can compare the regularized analytic torsion and the Reidemeister torsion
as follows.

Corollary 1.8. Let m € N. Then for m > 3 one has

Tx(r(m)) _ (c(r(m)))l“ [ (r(m))|
x(r(2)) ~ \ (=) ) IxGE@)

where the constants ¢(t(m)) and c(7(2)) are as in Theorem[1.4,

We remark that the quotient of regularized torsions in the last equation are non-trivial
and can even become arbitrarily large by Theorem [I.3]

1.2 Outline of the proof

We shall now sketch the method for the proof of our main results. Let np be the right
regular representation of G on L?(I'\G). Then there is a decomposition

Tr = Tr,d D Trc.

Here the representation 7 4 is completely reducible. On the other hand, the representation
7, 1s isomorphic to a direct integral over all tempered principal series representations of
G. For a K-finite Schwarz function ¢ on G, the operator mr4(¢) is trace class and the
invariant trace formula as it is stated in [Ho2] expresses Tr (7 4(¢)) as a sum of invariant
distributions on G applied to ¢.

In order to prove the meromorphic continuation of the Selberg zeta function Z(s, o), we
first study the symmetrized Selberg zeta function S(s,o), which is given by Z(s, o) if
o = woo and by Z(s,0)Z(s,wy0), if ¢ # weo. Here wy is a fixed representative of the
restricted Weyl group. As in the compact case ([BOJ), there is a K-finite function h{,
belonging to all Harish-Chandra Schwarz spaces, such that the logarithmic derivative of
S(s,0) is equal to a certain integral transform of H(hY). Here H is a distribution on G
which occurs in the invariant Selberg trace formula. It is built from the semisimple con-
jugacy classes of I'. Geometrically, the function A7 arises from the graded fibre trace of
the kernel of e *4(@) where fl(a) is a Laplace-type operator which acts on a graded vector
bundle E(c) over X. Now we apply the invariant trace formula to hy and compute the
integral transform of all involved summands explicitly. In this way we can show that the
residues of the logarithmic derivative of S(s, o) are integral. Moreover, we can determine
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its poles and the corresponding residue explicitly.

If o is not invariant under the Weyl group, we introduce the antisymmetric Selberg zeta
function S,(s, o) := Z(s,0)/Z(s,weo). The bundle E(s) turns out to be a spinor bundle
and there is a canonical twisted Dirac operator D(c) on E(o) such that D(0)? = A(0).
Now the fibre trace of the kernel of Tr(D(c)e *2(@)*) is represented by a K-finite Harish-
Chandra Schwarz function kY and the logarithmic derivative of S, (s, o) equals an integral
transform of H(k{), where the distribution H is as above. Using the invariant trace formula
again we obtain a meromorphic continuation of S,(s, ) and a complete description of its
singularities. Putting everything together, we can also complete the proof of Theorem

Next we describe the proof of our main results concerning torsion asymptotics. In
a first step, we establish a determinant formula which relates the symmetric Selberg zeta
function S(s, o) to the relative graded determinant dety, , (A(c) + s?) of the operator A(c)
for certain s € C. The logarithm of the latter determinant is obtained via the Laplace-
Mellin transform applied to the spectral side Jg,e.(h7) of the Selberg trace formula up
to an additional summand LM R, (s, o) which depends on the auxiliary operators on the
cusp and can be computed explicitly. By the non-invariant trace formula, the spectral side
equals the geometric side Jye,(hy). The geometric side is given by a sum of distributions
applied to h{. One has

Joeo(N7) = I(h7) + H(h7) + T(h7) + Z(h7) + J(h7), (1.9)

where I(h{) is the contribution of the identity conjugacy class of I" and H(h{) is as above.
Moreover, T'(h7), Z(hy) and J(h]) are tempered distributions applied to h{ which are
constructed out of the parabolic conjugacy classes of I'. To save notation, for a function

f Rt — C we shall write
<L /OO €t82f(t)t21dt)
=0 \I'(2) Jo ’

if the integral exists for Re(z) >> 0 and admits a meromorphic continuation to z € C
which is regular at 0. We compute the Laplace-Mellin transform of each term on the right
hand side of separately. Combining these computations with our computations for
the symmetric Selberg zeta function, for certain s € C we obtain

d

LMf(s) =+

log detg, y (A(0) + %) =log S(s,0) — LMI(s,0) — LMT(s,0) — LMI(s,0)
— LMJ(s,0) — LMR,(s,0). (1.10)

Now we come to the analytic torsion. Let 7 € G, T # 19. Let

2n+1

Ky(t,7) =Y (=1)"p Tryeue ).

p=0
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We need to compute the finite part of the Mellin transform of K, (t,7) at 0. Let E, be the
homogeneous vector bundle over X = G/ K associated to 7 and let A,(7) be the Laplacian
on E.-valued p-forms on X. The heat operator e **»(") is a convolution operator with

kernel H*: G — End(APp* @ V,). Let 2?7 (g) = tr H*'(g), g € G, and put

d
K=Y (=1)rph. (1.11)

p=1

Again it follows from the Selberg trace formula that
Ku(t,7) = I(k) + H(K]) + T(k]) + Z(k]) + J(kT) + Ru(t, 7), (1.12)

where R,(t,7) is a term which depends only on the auxiliary operators on the cusps an
can be computed explicitly. Using now a theorem of Kostant on Lie algebra cohomology,
we obtain explicitly computable o, € M and Arr € RT such that the kernel k] can be
rewritten as

k=) (—1)k e nny (1.13)
k=0

where the functions h;™* are as above. Let MI(t,7) be the Mellin transform of I(k])
evaluated at 0. Then one has

1
log T8 (1) = GMI(L,7).

Let A-(k) = A(o-x) + A2, We will show that detg, (A7 (k)) is canonically defined. From
(1.13)) one can easily deduce the equality

Txu(r) = [ detgra(Ar (k)"
k=0

Now we let 7 = 7(m) and apply (1.10). The term MI(¢,7(m)) can be identified with the
corresponding weighted sum of the LMI (A ) ks 0r(m) ) and using the Harish-Chandra
Plancherel-Theorem we deduce equation and equation . Thus in order to prove
our main result we have to show that the weighted sum of all other terms in for
O = Or(m)ks S = Ar(m)k is of lower order. Firstly, the contribution of the Selberg zeta
functions decays exponentially. This proves Theorem [I.5] since all other terms vanish in
the compact case. To estimate the other terms in the non-compact case, we again use Hoff-
mann’s computation of the Fourier transform of the weighted orbital integral as well as
the explicit formulas for the standard Knapp-Stein intertwining operators. This completes
the proof of Theorem and of Theorem

Let us remark that one can also prove our main result about the asymptotic behaviour
of the analytic torsion without using the Selberg zeta functions. The proof is then nearly

12



the same, in particular, the treatment of the identity contribution, which is the leading
term, of the weighted orbital integrals and of the Knapp-Stein intertwining term is unal-
tered. For more details, we refer the reader to [MP2]. However, if one wants to obtain a
remainder estimate for the cocompact case as in Theorem without using the Selberg
zeta functions, one has to impose additional arguments. This was done in [MPI].

To prove Theorem [1.6], we combine our previous results with Wotzke’s methods for the
proof of equation (1.8]). For the 3-dimensional case, these methods are described in [Mu4].
Firstly, as in [Mii4], [Wo|, a Theorem of Kostant on Lie algebra cohomology gives

T(r(m)? = S o) (114

and

S(s+m+1,0,)S(s —m—1,0,)

R7<m>RT(m)9 (S) = S(S + m, 0'm+1)S(3 —m, Um+1)

(1.15)

To relate the behaviour of R;(m)R.(m),(s) at 0 to Tx(7(m)) we now want to apply our
determinant formula from equation to the right hand side of equation and
combine the result with equation ({1.14]). However, in contrast to the situation on a closed
hyperbolic 3-manifold, this is not possible directly since in the non-compact case equation
(1.10) only holds for Re(s) > 0, Re(s*) > 0. Thus we additionally have to apply a
functional equation for those Selberg zeta functions on the right hand side of which
have a negative argument for s in a neighbourhood of 0. Via the functional equation, the
C-matrices appear in Theorem [I.6] We will prove a functional equation for the symmetric
Selberg zeta function in section In principle, our proof of this functional equation
and thus also a theorem similar to Theorem carry over to higher dimensions. However,
the results would be rather complicated.

1.3 Structure of this thesis

This thesis is organized as follows. In section [2] we fix notations and collect some basic
facts about representation theory which are used throughout this thesis. In section |3 we
introduce Ruelle and Selberg zeta functions and establish their convergence in some half
space. Section 4l is devoted to the right regular representation of G on L*(T'\G). We first
review its decomposition into a discrete and a continuous part. Then we describe some
basic properties of the C-matrix associated to the Eisenstein series which are needed in
our setting. Finally we recall the Maa3Selberg relations which give an explicit formula for
the inner product of truncated Eisenstein series. In section [5| we introduce the relative
trace of locally invariant differential operators which act on locally homogeneous vector
bundles over X. We first introduce these operators and compute the Fourier transform
of the associated heat-kernels on the universal covering. Then we study certain ordinary
differential operators on the cusp which are induced by the locally invariant differential
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operators and compute the local trace of their heat kernels. Finally we define the relative
trace and show that it equals the spectral side of the Selberg trace formula applied to
the heat kernel on the universal covering space of X up to a term which can be computed
explicitly. In section [6] we state the Selberg trace formula in its invariant form and the non-
invariant trace formula for the relative trace of the locally invariant differential operators.
We also study the Fourier transform of the distribution Z which appears in the trace
formula. The proof of Theorem [I.1] will be established in section [} In section [§ we will
study the relative determinant of locally invariant differential operators and prove equation
(1.10). In order to define the relative determinant, one needs a short time asymptotic
expansion of the relative heat trace which will also be established. In section [J]we introduce
the relative analytic torsion as well as the L?-torsion and prove our main results about the
asymptotic behaviour of the analytic torsion. In the final section [10| we apply our results
to the 3-dimensional case and prove Theorem [I.6] and Corollary [I.7]
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2 Preliminaries

In this section we will establish some notation and recall some basic facts about represen-
tations of the involved Lie groups.

2.1

For d € N, d = 2n+ 1 we let G := Spin(d, 1). The group G is defined as the universal
covering group of SOg(d, 1), where SOq(d, 1) is the identity component of SO(d,1). Let
K :=Spin(d). Then K is a maximal compact subgroup of G. Put X := G/K. Let

G =NAK

be the standard Iwasawa decomposition of G and let M be the centralizer of A in G. Then
we have M = Spin(d — 1). The Lie algebras of G, K, A, M and N will be denoted by
g, % a,m and n, respectively. Define the standard Cartan involution 6 : g — g by

0Y)=-Y" Yeg.
The lift of 6 to G will be denoted by the same letter 6. Let
g=top

be the Cartan decomposition of g with respect to 6. Let zy = eKX € X. Then we have a
canonical isomorphism

T, X =p. (2.1)
We define a symmetric bilinear form (-, -) on g by
1
Y1,Y) = ——B(Y}, Y Y1, Yo . 2.2
<17 2> 2(d—1) (17 2)7 1, 269 ( )

By (2.1) the restriction of (-,-) to p defines an inner product on T@X and therefore an
invariant metric on X. This metric has constant curvature —1 and X, equipped with this
metric, is isometric to the hyperbolic space H¢.

2.2

Denote by E; ; the matrix in g whose entry at the i-th row and j-th column is equal to 1
and all of its other entries are equal to 0. Let

(2.3)

B+ Eap, =1
' V—1(F2i-12 — Ei2i-1), i=2,...n+ 1

Then
a—= RHl
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and
b=Rv—-1Hy+ ---+Rv—-1H,

is the standard Cartan subalgebra of m. Moreover b is also a Cartan subalgebra of €, and
h:=adb
is a Cartan-subalgebra of g. Define e; € b, e =1,...,n+ 1, by
ei(H;) =0;5, 1 <i,j<n+1
Then the sets of roots of (gc, he), (bc, be) and (mg, be) are given by

A(ge, be) = {Fe; +ej, 1 <i<j<n+1}
Alte,be) = {te;, 2<i<j<n+1}U{keLe;, 2<i<j<n+1}
A(mg,be) ={xe; te;, 2<i<j<n+1}

(see [Knll, Section 1V,2]). We fix positive systems of roots by

A+(9Cab@) = {6i+ej7 Z#]}u{61—6]72<‘]}
AT (te,be):={e;:2<i<n+1}U{ei+ej, i #J, 4,7 >2U{e;—ej, 2<i<j}
A+(m(CabC) = {ei+€j7 Z#]a Z?] ZQ}U{ei_eja 2§Z<j}

We let AT (gc, ac) be the set of roots of AT (gc, hc) which do not vanish on ac. Then
A*(gc,ac) ={e1te;: j=2,....,n+1}.

For o € A*(gc, be) there exists a unique H', € b such that B(H, H.) = a(H) for all
H € be. One has a(H,,) # 0. We let

2
Hor= o™
One easily sees that
Hicoye, = +tH; + H;. (2.4)
Forj=1,...,n4+1 we let
pji=n+1-—7.

Then the half-sum of positive roots are given by

n+1
1

>, a= Z_;Pjej (2.5)

a€AT(gc;be)

PG =
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and

n+1
1
=5 D a=D (i +1/2e
OLGAJ'_(E(C,b(C) j:2
and
n+1

oM = % Z a= jz:;pjej. (2.6)

aEAT (mC7bC)

We let W be the Weyl-group of A(gc, be).

2.3
Let Z [%}j be the set of all (ky,...,k;) € Q7 such that either all k; are integers or all k;

are half integers. Then the finite dimensional irreducible representations 7 € G of G are
parametrized by their highest weights

A(T) =ki(T)er + -+ kpa(T)ensr,  (ki(7), .. knia(7)) €Z {1} 7

2
ki(T) = ka(7) 2 - 2 ka(7) 2 k(7))

Furthermore the finite dimensional representations v € K of K are parametrized by their
highest weights

(2.7)

AW) =ko(v)es + -+ kn1(V)enir,  (ka(v),... kyi(v)) €Z {%1 ”7

(2.8)
ko(v) > ko(v) > -+ > kn(v) > knia(v) > 0.

Finally the finite dimensional irreducible representations o € M of M are parametrized by
their highest weights

A(0) =ka(0)en + -+ Kor (0)man, (kg(o),...,knﬂ(a))ez{ﬂ ,
ko(0) > k3(o) = - = ky(0) = |kpia(0)] -

For 7 € G let 7y := 700. Let A(7) denote the highest weight of 7 as in (2.7)). Then the
highest weight A(7y) of 7y is given by

A(mg) = ki(T)er + -+ + kn(T)en — kny1(7)ens1 (2.10)
Moreover, by the Weyl dimension formula [Knl, Theorem 4.48] we have

dlm(T) _ H <A(T) + pa; a>

a€AT(gc,he) (pa, Oz)

(2.9)

(2.11)

:ﬁﬁ +Pz —(k’j(T)ﬂij)%

— 9
i=1 j=i+1 p]
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Similarly, for ¢ € M with highest weight A(o) € b§ as in (2.9) we have

dlm(a) _ H <A<U) + PM, Oé)

a€A* (mg,be) (pars )
n n+l 2 (212)
_H H o)+ pi)’ — (k;(0) + p))
> )
=2 j=i+1 p o pj

Finally, if v € K is of highest weight A(v) € by as in (2.8]) one has

dlm(lj) _ H <A(V) + PK; Oé>

aEAT (Ec,b@) <pK’ a>

_"“ T (k) + pi +1/2)° = (ki(v) + p; + 1/2)°
Herwpere =m0

Let M’ be the normalizer of A in K and let W(A) = M'/M be the restricted Weyl-
group. It has order two and it acts on the finite-dimensional representations of M as

follows. Let wy € W(A) be the non-trivial element and let mg € M’ be a representative of
wy. Given o € M the representation wyo € M is defined by

woo(m) = o(memmg'), m € M.

Let A(o) = ka(0)ea + -+« + kny1(0)ens1 be the highest weight of o as in (2.9)). Then the
highest weight A(wgo) of wyo is given by

A woo) = ka(o)eg + -+ + kn(0)en — kni1(0)ent. (2.14)

24

Next we describe the restrictions of the representations to subgroups. Firstly, for the
groups G and K we have the following proposition.

Proposition 2.1. Let 7 € G be of highest weight ki(7)er + - - - + kpi1(T)ens1 as in (2.7).
Then T decomposes with multiplicity one into the representations v € K with highest
weight ko (v)ea+ - - - + kpy1(V)ens1 as in such that k;j_1(7) > k;(v) > |k;(7)| for every
J€A{2,...,n+ 1} and such that all kj(v) are integers if all k;(T) are integers resp. such
that all k;(v) are half-integers if all k;(T) are half integers.

Proof. |[GW][Theorem 8.1.4] O
Secondly, for the groups K and M one has the following proposition.

Proposition 2.2. Let v € K with highest weight ky(v)es + - -+ + kpy1(1)ensr as in (2.8).
Then v decomposes with multiplicity one into representations o € M with highest weight
ko(o)ea+ -+ -+ kpy1(0)ensr such that k;(v) > |kj(o)| for every j € {2,...,n+1} and such
that all kj(o) are integers if all kj(v) are integers resp. such that all k;(o) are half integers
if all kj(o) are half integers.
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Proof. [GW][Theorem 8.1.3] O

Let k be the spin-representation of K over the spinor space A?" as in [Fri, page 14].
Then k is the representation with highest weight

1 1
A(k) = €2 + - SCnt1- (2.15)

By Proposition [2.2] there is an M-invariant splitting

such that the restriction of x to M acts on A2" as k™ and on A?" as k=, where " is
the representation with highest weight %62 +- 4t %enﬂ and k™ is the representation with
highest weight 1es+ - -+ 1e, — 2eni1. Let R(K) and R(M) be the representation rings of
K and M. Let ¢ : M — K be the inclusion and let * : R(K) — R(M) be the induced
map. If R(M)" is the subring of W (A)-invariant elements of R(M), then clearly ¢*
maps R(K) into R(M)VA.

Proposition 2.3. The map ¢ is an isomorphism from R(K) onto R(M)WA), Eaplicitly,
let o € M be of highest weight A(o) as in (2.9) and assume that k,1(0) > 0. Letv(o) € K
be the representation of highest weight

n+1
Aw(0) = (ki(o) —1/2)e;. (2.16)
=2
Then one has
o —woo = (kt — k") ® V(o).
Moreover, v(0) ® k splits as v(c) @ k = v (o) @ v~ (o) such that
o+ woo = v (o) — v (o).

Here one has

Aa)= S ()W (M) — ). (2.17)
He{0,1}7, c() =1
A(o)—p as in

where c¢(p) = #{1 € u} and where v (A(c) — p) denotes the representation of K with
highest weight A(o) — p.

Proof. This is proved by Bunke and Olbrich, [BO] , Proposition 1.1. ]
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2.5

Measures are normalized as follows. Let p := ne;. Every a € A can be written as
a = exploga, where loga € a is unique. For t € R, we let a(t) := exp (tHy). If g € G, we
define n(g) € N, H(g) € R and x(g) € K by

g =n(g)a(H(g))x(g)-
Normalize the Haar-measure on K such that K has volume 1. We let

1

(X,Y), = —m

B(X,0(Y)). (2.18)

We fix an isometric identification of R*" with n with respect to the inner product (-, -),. We
give n the measure induced from the Lebesgue measure under this identification. Moreover,
we identify n and N by the exponential map and we will denote by dn the Haar measure
on N induced from the measure on n under this identification. We normalize the Haar
measure on GG by setting

/Gf(g)dg:/N/R/KeQ"tf(na(t)k)dkdtdn. (2.19)

Let I' C G be a discrete subgroup. We equip I'\G and X with the induced quotient
measures, where I' carry the counting measure. Let 7 : G — I'\G be the projection. For

f € C.(GQ) define f:T'\G — C by

fx(9) = f(r9).

vyel

Then the quotient measure dx on I'\G is uniquely characterized by the property that for
f € C.(G) one has

/G f(g)dg = / s

for f € Co(G). A corresponding equality holds for the quotient measure on X. We note
the following lemma.

Lemma 2.4. Let I" C T be a subgroup. Let f : T"\G — R" be measurable. Let 7 : T"\G —
I'\G be the projection. Then one has

[ = / 2 S

~eIV\T'

Proof. By [Ral, Lemma 1.1] the map f + f is surjective. This easily implies the proposi-
tion. .
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2.6

We parametrize the principal series as follows. Given o € M with (0,V,) € o, let H°
denote the space of measurable functions f: K — V, satisfying

f(mk) = o(m) f(k), Vkc K,¥me M, and /K | () |2 dk =] £ [2< oo.

Then for A € C and f € H? let
Ton(9)f (k) := AHED f(15(kg)).

Recall that the representations 7, ) are unitary iff A € R. Moreover, for A € R — {0} and
o € M the representations 7, , are irreducible and 7, ) and 7, », A\, X" € C are equivalent
iff either 0 = o/, A = X or ¢/ = wpo, N = —A. The restriction of 7, to K coincides
with the induced representation Ind?; (). Hence by Frobenius reciprocity [Knll p.208] for
every v € K one has

[T 1 v] =[v:0]. (2.20)

2.7

We establi