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ABSTRACT 

 

The objective of the present study was to investigate whether the short growing season after the 

harvest of potatoes (PO) and faba beans (FB) enables to grow a marketable crop that can at the 

same time reduce soil nitrate concentration. For that reason turnips (Brassica rapa L. ssp. 

rapifera (Metzg.) Sinsk.) grown as field vegetables were investigated in order to determine their 

nitrogen sink capacity, nitrogen export with marketable roots and precrop effect on following 

wheat crop. A 2-years field experiment (1999-2001) was conducted on brown alluvial loamy-

silty to sandy-silty soils of the organically managed experimental farm Wiesengut near Bonn, 

Germany (7 17' E, 50 48' N). The experimental design was a Latin Square with four replications. 

Single plot size was 6 x 12 m. The amount of soil nitrate after harvest of PO and FB reached up 

to 120 and 88 kg NO3
--N ha-1 in the upper 90 cm soil depth respectively. Turnips cv. 'Market 

Express F1' (Me), 'Petrowski' (Pe) and reference crop white mustard cv. 'Zlata' (Wm), were sown 

immediately after harvesting the main crops. Bare fallow (F) was used as a control. In both years 

after PO and FB, 100 days after sowing, Me, Pe and Wm took up 57 - 101, 60 - 120 and 73 - 207 

kg N ha-1 respectively, thus reducing soil nitrate content up to 105 kg NO3
--N ha-1 compared with 

F. DM yield of turnip roots (1.13 - 1.66 t ha-1) represented 40 to 65 % of total DM yield, 

containing between 32 and 60 % (34 - 53 kg N ha-1) of all accumulated nitrogen. Catch crops 

decreased grain yield of following winter wheat between 6 - 17 % compared to F and the total N 

uptake of winter wheat grown after catch crops was reduced up to 29 kg N ha-1. However 

decrease in total DM yield of wheat and corresponding N uptake were not influenced by N 

export of 34 - 53 kg N ha-1 from the field with turnip roots in autumn. When catch crops were 

left on the field over the winter and incorporated in spring at seed bed preparation an increase in 

spring wheat grain yield between 2 - 29 % and increase in total N uptake of 39.6 kg ha-1 

compared to bare fallow were recorded. Export of nitrogen with roots of turnip Pe in spring 

ranging between 22 and 60 kg N ha-1 decreased DM grain yield of spring wheat by 1 - 17 % and 

reduced its total N uptake up to 26 kg ha-1. Generally, the positive precrop effect of catch crops 

on spring wheat was in the following order Wm > Me > Pe. Catch crops significantly influenced 

mineralization-immobilisation processes in the soil. Thus in autumn up to 135 kg ha-1 more 

nitrogen was determined in the plant - soil system when brassica catch crops were grown 

compared to bare soil. These results demonstrate that in a short growing period, after harvest of 

PO and FB, turnips can be successfully grown as field vegetables and as catch crops. Turnips 

produce a notable amount of marketable roots and are able to significantly reduce the soil nitrate 

content. 

 



KURZFASSUNG 

 

Mit der vorliegenden Arbeit wurde untersucht, ob in der kurzen Vegetationszeit nach der Ernte 
von Kartoffeln (PO) und Ackerbohnen (FB) eine marktfähige Nachfrucht produziert und 
gleichzeitig die Bodennitratgehalte reduziert werden können. Dazu wurden Stoppelrüben 
(Brassica rapa L. ssp. rapifera (Metzg.) Sinsk.) als Feldgemüse angebaut und die Stickstoff-
Aufnahmekapazität, der Stickstoff-Export über die marktfähigen Rüben und die Vorfruchteffekte 
zu Weizen in einem zweijährigen Feldexperiment (1999-2001) auf lehmig-schluffigen bis 
sandig-schluffigen Auensedimenten auf der organisch bewirtschafteten Lehr- und 
Forschungsstation Wiesengut in der Nähe von Bonn, Deutschland (7 17' E, 50 48' N) untersucht. 
Die Versuchsparzellen in der Größe von 6 x 12 m wurden als lateinisches Quadrat mit vier 
Wiederholungen angelegt. Der Nitratgehalt im Boden erreichte nach der Ernte in 0 - 90 cm 
Bodentiefe nach PO bis zu 120 kg NO3

--N ha-1 und nach FB bis zu 88 kg NO3
--N ha-1. Als 

Vergleich wurden Stoppelrüben der Sorten 'Market Express F1' (Me), 'Petrowski' (Pe) und 
Weisser Senf der Sorte 'Zlata' (Wm) unmittelbar nach der Ernte der Hauptfrüchte gesät. 
Schwarzbrache (F) diente als Kontrollvariante. In beiden Jahren wurden nach PO und FB in den 
ersten 100 Tagen nach der Saat durch Me 57 - 101 kg N ha-1, durch Pe 60 - 120 kg N ha-1 und 
durch Wm 73 - 207 kg N ha-1aufgenommen, wodurch die Bodennitratgehalte auf 105 kg NO3

--N 
ha-1 im Vergleich zu F reduziert wurden. Die Trockenmassenerträge der Stoppelrübenwurzeln 
(1.13 - 1.66 t ha-1) repräsentierten 40 bis 65 % der gesamten Trockenmasse und enthielten 32 - 
60 % (34 - 53 kg N ha-1) des gesamten aufgenommenen Stickstoffs. Die Zwischenfrüchte 
reduzierten die Kornerträge des nachfolgenden Winterweizens zwischen 6 - 17 % verglichen mit 
F. Die N-Aufnahme von Winterweizen wurde nach den Zwischenfrüchten bis zu 29 kg N ha-1 
reduziert. Allerdings war die Reduktion des Trockenmassenertrages und der entsprechenden N-
Aufnahme nicht durch den N-Export durch die Rüben im Herbst (34 - 53 kg N ha-1) beeinflusst. 
Verblieben die Zwischenfrüchte über Winter auf den Parzellen und wurden im Frühjahr bei der 
Saatbeetbereitung eingearbeitet, wurde eine Erhöhung der Sommerweizenerträge zwischen 2 - 
29 % und ein Anstieg der Gesamtstickstoffaufnahme bis zu 39.6 kg ha-1 verglichen mit der 
Schwarzbrache festgestellt. Der Stickstoffexport im Frühjahr durch Rüben der Sorte Pe (22 - 60 
kg N ha-1) reduzierte den Ertrag von Sommerweizen zwischen 1 - 17 % und die gesamte N-
Aufnahme bis zu 26 kg ha-1. Generell nahm der positive Vorfruchteffekt der Zwischenfrüchte zu 
Sommerweizen in der Reihenfolge Wm > Me > Pe ab. Die Zwischenfrüchte zeigten signifikante 
Einflüsse auf Mineralisations- und Immobilisierungsprozesse im Boden. Dementsprechend war 
nach Brassiceen - Zwischenfrüchten im Vergleich zur Schwarzbrache im Herbst bis zu 135 kg 
ha-1 mehr N im System Pflanze-Boden. Somit können Stoppelrüben in der kurzen 
Wachstumsperiode nach der Ernte von PO und FB erfolgreich als Feldgemüse und 
Zwischenfrüchte angebaut werden. Dabei wird eine bemerkenswerte Menge an markfähigen 
Rüben produziert und gleichzeitig der Bodennitratgehalt im Vergleich zur Schwarzbrache 
signifikant reduziert. 
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1 INTRODUCTION 

 

Sustainable soil fertility in organic agriculture is mainly based on optimal and increased 

production of soil organic matter (SOM) which, after mineralization, supplies growing plants 

with essential nutrients. Cropping systems, which increase soil organic matter content, generally 

lead to greater mineralization of soil N (POWLSON et al. 1989). However, as a consequence of a 

higher proportion of SOM the extended soil nitrogen pool is potentially jeopardised because 

most of the mineralised nitrogen in agricultural soils is quickly transformed into nitrate, which is 

prone to leaching. Long-term applications of organic manure can pose a particularly large risk 

while there is often a lack of synchronisation between mineralization of N in soil and crop 

demand for N (GLENDINING et al. 1990, GOSS et al. 1998).  

 

High concentration of soil nitrate occurs regularly after the harvest of potato and faba beans main 

crops and it is known that post-harvest mineralization of crop residues and soil organic matter 

can have a major effect on the quantity of nitrate at risk of leaching (POWLSON 1993).  

 

After potato harvest, nitrate concentration in the soil rises rapidly as a consequence of often used 

grass-clover precrop, manure application and intensive soil aeration during the harvest 

procedures (NEETESON et al. 1989, REENTS & MÖLLER 1997, HAAS et al. 1998). Soil nitrate 

accumulates already during the growing period of faba beans as a result of a relatively low 

rooting density of pulses, their heterogeneous root distribution and an inefficient uptake of soil-

borne nitrate (KÖPKE 1995, JUSTUS 1996). Harvest residues with a narrow C:N ratio can also 

stimulate rapid mineralization that increases soil nitrate concentration (MAIDL et al. 1991).  

 

After potato and faba beans harvests, winter wheat as following crop does not represent an 

effective nitrogen sink (JUNG et al. 1989, GUIOT et al. 1990, KÖPKE 1996, REENTS et al. 1997). In 

the short growing period between the harvest of the previous crop and the beginning of winter 

period wheat does not develop adequate plant biomass to take up the available soil nitrate. 

Therefore, considerable amount of nitrate can be leached beneath the root zone during the winter 

and hence lost for the farming system. To avoid nitrate accumulation and leaching losses under 

winter wheat alternative crop rotation – growing a catch crop after the harvest of the main crop 

with postponed tillage and sowing date of winter wheat – has been suggested (HEß 1989). 

 

Increased soil nitrate concentration in the late summer and beginning of autumn can be 

successfully controlled with catch crops. They counteract nutrient leaching directly by nutrient 
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uptake and indirectly by decreasing soil water content. Strategies to use brassica catch crops as 

green manure or fodder are well known (BERENDONK 1985, ELERS & HARTMAN 1987, 

MEISINGER et al. 1991, BERENDONK 1992, JUSTUS & KÖPKE 1995, SHEPHERD 1999). However, 

they act merely temporary because the accumulated nitrogen is released in to the soil liquid 

phase after catch crop incorporation and rapid mineralization, and are sub-optimal if the soil 

nitrate pool is steadily increased (KÖPKE 1996).  

 

Information about growing brassica vegetables in arable cropping systems late in the growing 

season, their efficiency in reducing soil nitrate, their nitrogen export and their precrop effect is 

seriously lacking. The objective of the present work was therefore to extend and optimise 

strategies for reducing nitrate leaching after the harvest of the main crop by growing brassicas as 

field vegetables. Understanding the effects of alternative management systems employing 

brassicas as field vegetables on N cycling in soil and associated precrop effect is essential for 

developing economical and environmental management systems that are sustainable in the near 

and distant future. 
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2 LITERATURE SURVEY 

 

2.1 The problem of nitrate leaching 

 

Nitrate leaching is a natural consequence of the soil N cycle, which occurs when the soil reaches 

field capacity (NEETESON et al. 1989). However, due to ecological and economical impacts N 

losses from the field have to be minimised. In well-drained and properly cultivated fields 

leaching represents the main loss of nitrogen (OOMEN 1995). The magnitude of nitrate leaching 

depends on the percolation rate of soil water and its nitrate concentration. Both vary strongly 

depending on climate conditions and location (JUNG et al. 1989, VAN DAM & LEFFELAAR 1998).  

 

Post-harvest mineralization of crop residues and limited crop uptake of N during the growing 

season often result in excessive accumulation of soil nitrate (GUILLARD et al. 1995). After the 

harvest of a main crop in summer a large loss of nitrogen by leaching during winter period is 

therefore expected (SØRENSEN 1992). Studies have shown that high soil NO3
- concentration after 

harvest is positively correlated with NO3
- losses during the autumn to spring period (GUILLARD 

et al. 1995, JUSTES et al. 1999).  

 

Most nitrate leaching in European humid climate occurs during autumn and winter (SHIPLEY et 

al. 1992). Furthermore the extent of leaching of mineralised N in autumn and winter depends on 

the tillage intensity, the time and amount of manure application, mineral uptake by the current 

crop and the applied crop rotation in general (ELTUN 1995, GOSS et al. 1998). Crop rotations that 

supply large amounts of organic matter in the long term lead to an increase in the basal 

mineralization rate of the soil (POWLSON et al. 1987). However, due to a greater potential for 

mineralization in autumn, higher soil organic matter contents are expected to increase the risk of 

N leaching from arable soils (CUTTLE & JARVIS 1995). Most of the mineralised nitrogen in 

agricultural soils is rapidly transformed into nitrate, which is prone to leaching (STANFORD et al. 

1973). 

 

A key factor in reducing nitrate leaching is therefore the reduction of the quantity of nitrate 

present in soil before and during the winter period. Sowing an autumn catch crop represents an 

important management strategy to take up nitrate, which can otherwise be lost by leaching 

(ELERS & HARTMANN 1986, HARRISON et al. 1996).  
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2.2 Residual nitrate after potatoes and faba beans 

 

High content of soil nitrate that usually occur after potato harvest is the consequence of several 

factors: nitrogen rich precrop (grass-clover mixture), organic fertilisers (10-20 t ha-1 manure) and 

intensive soil aeration during the harvest (NEETESON et al. 1989, REENTS et al. 1997, HAAS et al. 

1998). Mineralization of soil organic matter is additionally enhanced by high soil temperature at 

the time of harvest (SØRENSEN 1992). Besides potatoes are rather inefficient users of nitrogen 

(PRINS et al. 1988). They are considered as unable to absorb mineral nitrogen from the soil when 

its concentration drops to a critical level of 0.46 kg N ha-1 cm-1 soil depth, which corresponds to 

a level of 40 kg N ha-1 for a 0 - 90 cm soil profile (DILZ 1991). Nitrogen not taken up by the crop 

can already be leached in summer, or it can accumulate in the soil, and then be leached out of the 

rooting zone in autumn and winter when crop uptake is limited.  

 

Compared with sugar beets, winter rye, spring barley and winter wheat potatoes have been 

shown to leach most nitrate SHEPHERD & LORD (1996). HOFMAN & VAN CLEEMPUT (1992) used 

potato as an example of a crop with a restricted rooting depth and rooting distribution with 

residual N amounts ranging between 60 and more than 100 kg N ha-1. In Germany amounts of 

nitrate in the soil after potato of 97 kg NO3
--N ha-1 were determined (HAAS et al. 1998). In long-

term field trials where biodynamic, organic and conventional managed fields have been 

compared, ALFÖLDI et al. (1992) reported residual nitrogen amounts, in the top 90 cm soil layer, 

up to 235 kg NO3
--N ha-1. In maritime conditions of England amounts between 64 - 132 and 154 

- 284 kg NO3
--N ha-1 (0 - 90 cm) for sandy soil and sandy clay soil were determined respectively 

(WIDDOWSON et al. 1987). Seventeen days after the harvest ALBLAS et al. (1992) found the 

mineral N content of the 0 - 60 cm soil layer to be 40, 73 and 219 kg ha-1 corresponding with a 

fertiliser N supply of 0, 180 and 300 kg ha-1 respectively. REENTS & MÖLLER (1997) determined 

on an organic cropped farm the amount of soil NO3
--N after potatoes above 50 kg ha-1 at the end 

of September. ERREBHI et al. (1998) reported leaching losses from irrigated and fertilised (270 

kg N ha-1) plots up to 260 kg N ha-1. In the worst-case scenario with high mineralization rate and 

surplus of precipitation at a fertilising rate of 300 kg N ha-1 NEETESON et al. (1989) calculated, 

for the Netherlands, potential losses of 288 kg N ha-1 already during the crop growth. They 

estimated that at the precipitation surplus of 300 mm, the maximum permissible nitrate 

concentration for drinking water of 50 mg NO3
- l-1 (EEC 1980) is reached when 34 kg N ha-1 is 

leached. 
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Also during the growing period of faba beans the concentration of accumulated soil nitrate rises 

significantly, due to relatively low rooting density, inhomogeneous root distribution and low 

rooting depth (KÖPKE 1995). After the harvest rapid mineralization of roots and crop residues 

usually occur resulting in an increase of soil nitrate concentration in a soil milieu dominated by 

net N-mineralization (KAHNT 1985, HAUNZ et al. 1988). 

 

MAIDL et al. (1991) reported of 100 - 150 kg N ha-1 in crop residues after faba beans raising the 

autumn soil nitrate content in the top 80 cm to 120 - 140 kg NO3
--N ha-1. HAUNZ et al. (1988) 

determined 140 kg N ha-1 in plant residues after the harvest and soil nitrate content of 119 kg 

NO3
--N ha-1 (0 - 90 cm) in November. These authors presume that considerable amount of 

legume nitrogen was leached in deeper soil layers during the winter because only 39 kg NO3
--N 

ha-1 were found in the soil in the following spring. Yearly average N loss of 58 kg N ha-1 from 

faba bean plots was recorded by JUNG et al. (1989) concluding, that leaching occurs during both, 

summer and winter. JENSEN (1995) found 94 and 9 kg of residual N ha-1 after faba beans harvest 

in straw and roots respectively. Residual N after faba beans of 125 - 225 kg ha-1 was reported by 

KÖPKE (1987).  

 

 

2.3 Succeeding crop – winter wheat 

 

The common practice of sowing winter wheat, as a following crop after potatoes and faba beans, 

was found not to be the most appropriate measure in order to save nitrate from leaching because 

the amount of soil mineralised N after harvest far exceeds the sink capacity of young wheat 

plants (HEß 1989, JUNG et al. 1989, KÖPKE 1996, SHEPHERD & LORD 1996, REENTS et al. 1997, 

FRANCIS et al. 1998). 

 

The time during which winter wheat influences the evolution of mineral nitrogen in the soil can 

be divided into three periods (GUIOT et al. 1990). The first covers the time from the sowing to the 

end of winter, the second stretches from the end of winter to the harvest and the third begins after 

harvest until the establishment of the following crop. In the first period the evolution of nitrate in 

the profile is relatively independent from the grown crop since the uptake of mineral N is small. 

In the studies of  JUNG et al. (1989) winter wheat grown after faba beans took up only 18 kg N 

ha-1 to the end of winter while values between 15 and 30 kg N ha-1 after potatoes were reported 

by RICHTER et al. (1996). Nitrogen uptake of 49.3 and 12.5 kg ha-1 for winter wheat sown in 

September and October respectively were measured by MILFORD et al. (1993). Unfavourable 
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weather conditions during the first growing period can easily prevent winter wheat from making 

effective use of large amounts of N available to produce shoots, dry matter and leaf area. This is 

supported by results of MILFORD et al. (1993) where neither the difference in residual N nor an 

application of fertiliser N in winter affected the yield of the following September-sown wheat, 

since autumn growth and N uptake were restricted by adverse weather. Low uptake of residual N 

by subsequent winter wheat can be generally expected.  

 

After a grass/clover mixture 40 kg N ha-1 were lost under following winter wheat in experiments 

carried out by HEß (1989). Due to a low nitrogen uptake of winter wheat during autumn and 

winter, the amount of mineral nitrogen leached under winter wheat from October until April 

represented approximately 95 % of leaching losses during the whole growing period in the 

lysimeter studies of MOUCHOVA et al. (1996).  

 

 

2.4 Catch crops 

 

Plants used as catch crops belong mainly to three botanical families Brassicaceae, Poaceae and 

Fabaceae. According to their soil nutrient uptake capacity they can be ranked as follows: 

Brassicaceae > Poaceae > Fabaceae (SMUKALSKI et al. 1991). With exception of legumes, they 

are usually grown to absorb nitrogen from the rooting zone during autumn and winter (THORUP-

KRISTENSEN & NIELSEN 1998). Thus, at least in the short term, they can decrease nitrate leaching 

and therefore improve the quality of water leaving the root zone (VANDENDRIESSCHE et al. 1996, 

MARTINEZ & GUIRAUD 1990a). 

 

The practice of growing a catch crop produces a pool of organic N that might otherwise be lost 

below the rooting-depth horizon and allows N to be recycled at a later date (HOYT & MIKKELSEN 

1991). The ability of catch crops to serve as an effective source of nutrients for the following 

crops depends, to a large extent, on climate and growth stage of the catch crop, soil and cropping 

characteristics, as well as tillage management practises (DORAN & SMITH 1991).  

 

Nutrient cycling, particularly N is an important aspect in the management of catch crops. 

Nitrogen release from catch crops depends on microbial immobilisation/mineralization of N (and 

C) as influenced by residue type, placement, degree of incorporation in soil, soil temperature and 

water/aeration regimes (AULAKH et al. 1991).  
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Timing of releasing N from plant residues is of crucial importance for a beneficial precrop effect 

of catch crops since positive precrop effects are mainly determined by available nitrogen (KÖPKE 

1996). If catch crop decomposition and N mineralization are not synchronised with N demand by 

the subsequent crop released nitrate is again endangered to be leached to ground water 

(MEISINGER et al. 1991).  

 

 

2.4.1 Brassica catch crops 

 

The number of possible candidates for catch crops after potatoes and field beans is rather limited 

due to the relatively short growing season and often unfavourable weather conditions. A catch 

crop that establishes quickly and grows vigorously in the autumn is ideal for preventing leaching.  

 

Brassicas are known for their rapid establishment and cool-season growth (MEISINGER et al. 

1991). Their capacity to take up considerable amounts of nitrogen in a very short time is well 

known and has been several times confirmed (KAHNT 1985, MERBACH et al. 1993, THORUP-

KRISTENSEN 1993, KÖPKE 1996). Brassicas have a wide range of adaptability as evidenced by 

their use from Scandinavia to Florida and from semiarid areas of California to the Mediterranean 

climate of France (MEISINGER et al. 1991).  

 

Brasssicas grown as catch crops are mainly used as green manure (white mustard, oil radish) or 

as a forage crop (rape seed, bird rape). Both strategies can contribute, on the long run, to the 

enlargement of the N pool on the farm, which can be a potential burden for the environment. 

Green manure catch crops take up nitrate and they set it free again in the soil liquid phase after 

their incorporation and subsequent mineralization. In this case the nitrogen remains all the time 

on the same field. When catch crops are used as a fodder and fed in the stable, the nitrogen is 

transferred and temporarily stored in the solid phase as farmyard manure. After its incorporation 

in the soil, the nitrogen will be slowly released and again present in the soil solution. Mentioned 

strategies of using catch crops to prevent nitrate losses act therefore suboptimal if the pool of soil 

nitrogen is steadily increased. Thus KÖPKE (1996) suggested using brassica vegetables as catch 

and cash crops as a possible long term solution of nitrate losses. As efficient sinks for nitrogen 

brassica vegetables can reduce soil nitrate pool in the autumn and at the same time they can 

realise an export of nitrogen from the farm when sold. 
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2.4.2 Turnips (Brassica rapa L. ssp. rapifera (Metzg.) Sinsk.) 

 

Turnips are known as a cool-season crop, which is heat tolerant as well as frost resistant. 

Therefore, growth and N accumulation can be expected even late in winter and also - in the case 

that it remains on the field and it is not destroyed by cold - at the beginning of growing period in 

the subsequent spring.  

 

Turnip leaves generally survive temperatures between -6 and -10 ºC, while bulbs will tolerate 

temperatures between -9 to -13 ºC (PENROSE et al. 1996). Growth of turnip remains highly 

productive (2.2 and 6.3 t ha-1 of DM for roots and tops respectively) even when the air 

temperatures exceed 32 ºC (JUNG & SHAFFER 1993). In contrast, the occurrence of drought-

induced dormancy is documented if drought occurred at sowing time resulting in a reduction of 

root yield for 65 % and significant reduction of mean root diameter (JUNG & SHAFFER 1993). 

Once established, turnips are tolerant for dry conditions (PENROSE et al. 1996). 

 

Rooting depth of turnips up to 150 cm were reported by BUCHNER (1987). BURNS (1980) 

determined an effective rooting depth of turnips to be up to 94 cm and a critical root length 

(minimum length of root required for normal growth expressed as a percentage of the total root 

length) of 3.0 to 4.6 %. 

 

In a serial of comparative experiments with Brassica species, GUILLARD & ALLINSON (1988) 

reported that species with edible roots produced the highest yields of dry matter with turnip root 

yields greater than either swede (Brassica napus L.) or Brassica hybrid Tyfon [Brassica rapa L. 

X Brassica pekinensis (Lour.) Rupr.]. In fertilisation experiments N uptake of turnips without N 

fertilisation was 30.6 and 26.4 kg N ha-1 and when 538 kg fertiliser N ha-1 was added turnips 

took up 210.0 and 53.3 kg N ha-1 with leaves and roots respectively (GREENWOOD et al. 1980). 
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3 HYPOTHESIS 

 

The objective of the present work was to extend and optimise strategies for reducing nitrate 

leaching after the harvest of the main crop (potatoes and faba beans) by growing brassicas as 

field vegetables.  

 

The present study investigated whether the short growing season after the harvest of the main 

crop allows to grow a marketable product that can reduce high soil nitrate concentration and thus 

enables nitrogen export from the farm when sold. For that reason turnips (Brassica rapa L. ssp. 

rapifera (Metzg.) Sinsk.), as the member of Brassicaceae family, grown as a field vegetable 

were investigated in order to determine its nitrogen sink capacity, nitrogen export with its 

marketable roots and precrop effect on following wheat crop. 

 

To answer these questions following hypothesis were tested: 

 

1 – Compared with bare soil nitrogen uptake of turnips reduces soil nitrate concentration 

significantly. 

 

2 – Nitrogen sink capacity of turnips corresponds with the nitrogen sink capacity of white 

mustard commonly used as a catch crop. 

 

3 – In a short growing season after the harvest of potatoes and faba beans turnips can accumulate 

considerable amounts of dry matter in marketable roots.  

 

4 – Positive precrop effect of potatoes and faba beans on yields of following winter or spring 

wheat, respectively, is not reduced by growing turnip vegetables and subsequent nitrogen 

export from the field with marketable roots. 
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4 MATERIALS AND METHODS 

 

4.1 Materials 

 

4.1.1 Experimental site 

 

Field experiments were established on the experimental station Wiesengut (7 17' eastern 

longitude, 50 48' northern latitude) that belongs to the Institute for Organic Agriculture at 

Rheinische Friedrich-Wilhelms-Universität Bonn, Germany. The experimental farm Wiesengut 

is characterised by brown alluvial sandy soils (loamy-silty to sandy-silty) and is located in the 

Sieg river valley, 65 m above sea level.  

 
Table 1: Soil properties of the experimental fields (0 – 30 cm soil depth). 
 
  

1999 
 

2000 

Soil property Potatoes Faba beans Potatoes Faba beans 

pH 5.9 5.9 6.0 6.0 

SOM (%) 1.65 1.87 1.76 1.70 

Ct (%) 0.96 1.09 1.02 0.99 

Nt (%) 0.11 0.12 0.11 0.11 

P mg/100g soil 12.32 6.39 13.09 10.11 

K mg/100g soil 22.26 17.17 26.10 21.53 

 

Experiments were established on soils that had been in arable crops for many years and since 

1987 under organic crop rotation: 1-winter rye with undersown grass / red clover-ley, 2-grass / 

red clover-ley, 3-potatoes, 4-winter / spring wheat (in case of spring wheat catch crop mustard or 

oil radish), 5-faba beans (catch crop mustard, oil-radish or winter vetch), 6-spring wheat. 

 

 

4.1.2 Climatic conditions 

 

Average annual precipitation of the experimental site is 768 mm with maximum rainfall between 

80 and 90 mm month-1 in June, July and August and rather dry (50 to 60 mm month-1) autumn 

and spring. Total precipitation in 1999 was approximately normal, though distribution was 

uneven. Summer rainfall in 2000 was considerably higher than the 30-year-average (Table 2). 

Therefore no irrigation of experimental plots was necessary as was the case in the first year.  
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Table 2: Monthly precipitation, deviations from 30 years average (Dev.), and cumulative 

precipitation totals (Cum.) for 3 years determined at Köln-Wahn*. 

 
 Precipitation (mm)
 1999 2000 2001 
Month Monthly Dev. Cum. Monthly Dev. Cum. Monthly Dev. Cum.
Jan. 81 +25 81 58 +2 58 65 +9 65 
Feb. 72 +26 153 87 +41 145 88 +42 153 
Mar. 51 0 204 71 +20 216 75 +24 228 
Apr. 75 +25 279 44 -6 260 87 +37 315 
May 62 -5 341 34 -33 294 36 -31 351 
June 77 -4 418 64 -17 358 87 +6 438 
July 57 -32 475 205 +116 563 48 -41 486 
Aug. 87 -1 562 103 +15 666 41 -47 527 
Sept. 56 -3 618 122 +63 788 141 +82 668 
Oct. 70 +18 688 55 +3 843 51 -1 719 
Nov. 32 -32 720 29 -35 872 118 +54 837 
Dec. 43 -22 763 66 +1 938 51 -14 888 
* weather station is located 9 km northwest from experimental site 'Wiesengut' 

 

Average annual air temperature of the experimental site is 9.5°C. Temperatures between 

November and March usually do not exceed 5°C. In both experimental years mean monthly 

temperatures were above the reported average values. In 2000 first frost occurred almost one 

month later than in 1999 (Figure. 1). 
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Figure 1: Mean monthly temperatures of the first (1999 – 2000) and the second (2000 – 2001) 

experimental year. 
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4.1.3 Field experiments 

 

Over growing periods 1999/2000 and 2000/2001 turnips cv. "Petrowski" (Pe) and cv. "Market 

Express F1" (Me) were grown to evaluate their nitrogen sink capacity, marketable yields and 

their precrop effect on the following winter- and spring wheats. Commonly used catch crop 

white mustard (Sinapis alba L.) cv. "Zlata (Wm) was used as a reference crop and bare fallow 

(F) as a control treatment.  

 

In each season two field experiments were established after the harvest of potatoes and faba 

beans, respectively. The experimental design was a Latin Square with four replications. Single 

plot size was 6 x 12 m. To evaluate the precrop effect of experimental treatments on following 

winter and spring wheat plots were divided into winter wheat (WW) and spring wheat (SW) 

subplots of 3 x 12 m size. 

 

After the harvest of potatoes and faba beans (August 6 - 16) soil was ploughed (20 cm) and the 

seedbed prepared with a rotary harrow. Turnips and mustard were sown within two weeks after 

the harvest of the main crop. Seeding rates were 4 and 20 kg ha-1 with a row spacing of 30 and 

10 cm for turnips and mustard respectively. Subsequently the experimental site was rolled with a 

continental Cambridge roller. At 10 cm height turnip plants were thinned to achieve a plant 

density of 30 to 40 plants m-2. Turnip and fallow treatments were kept without weeds by shallow 

hoeing. Due to a drought at the beginning of growing season of catch crops in 1999 both 

experiments (all treatments) were irrigated twice with 15 - 20 mm.  

 

At the time of the autumn harvest, on subplots prepared for following WW, turnip roots were 

exported from the field while turnip leaves remained on the soil surface of corresponding WW 

subplots. At the same time mustard treatments were mulched and residues were left on the plots. 

The soil was then prepared for the sowing of winter wheat (plough, rotary harrow). Winter wheat 

cv. "Pegassos" was sown at 450 germinative seeds m-2 in rows 17 cm apart. At the time of 

autumn turnip harvest crops and soil on SW subplots remained untreated; i.e. catch crops 

remained on the field over the winter.  

 

At the time of the spring harvest of turnips, on subplots designed for SW at the end of March, 

only turnip Pe was harvested while turnip Me and Wm in both years did not survive the winter. 

Pe roots were removed from the field while leaves remained on corresponding SW subplots. 

Plant residues of Me and Wm were left on the field. Because they were almost completely 
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decayed the assessment of DM and Nt in plant residues was not possible. Sowing of spring wheat 

on SW subplots was accomplished as soon as possible after Pe harvest according to weather 

conditions. Spring wheat cv. "Tasos" was sown at 440 germinative seeds m-2 in rows 17 cm apart 

and rolled with continental Cambridge roller. Because winter wheat after faba beans in the first 

experimental year failed due to bird damage, WW subplots were resown with spring wheat. In 

the second year all crops, after sowing, were covered with mesh to protect from birds feeding on 

the germinating plants. 

 

Weeds in winter and spring wheat were controlled with inter row hoeing and harrow combing 

when necessary. Dates of the operations and associated agronomic practices are shown in table 1 

of the appendix. 

 

 

4.2 Methods 

 

4.2.1 Plant material sampling and analysis 

 

All plant samples were dried at 105°C to constant weight and ground to pass a 0.2 mm mesh. 

The exceptions were turnip root samples for ascorbic acid determination (fresh samples) as well 

as samples for the determination of glucosinolate (GSL) and nitrate in turnip roots. For the last 

two fresh samples were quickly frozen in liquid N and stored at -18°C. The frozen samples were 

then subject to freeze-drying. 

 

To assess dry matter yield, N uptake and mineral composition of turnips samples were taken by 

bulking material from 2 times 4 m2 rectangles from each subplot. Turnips were separated into 

leaf and root fraction. Each fraction was separately analysed on total nitrogen (Nt), total carbon 

(Ct) and total sulphur (St) using GC-Element analyser (Carlo-Erba Company, FALBE & REGITZ 

1990). Additionally, ascorbic acid (BOEHRINGER MANNHEIM 1995), phosphorus (P) and 

potassium (K) (VDLUFA 1991), GSL content (palladium test, THIES 1982) were determined in 

turnip roots. GSL of both turnip cultivars were identified by using HPLC (BIO-DATA GmbH, 

Germany).  

 

Shoot biomass of mustard was determined by taking two randomly located 1 m2 quadrate from 

each WW subplot. N uptake in shoots of turnips and mustard was assessed by bulking two times 
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1 m central rows and two times 0.5 m2 quadrate samples per plot respectively. N uptake in shoots 

of wheat was estimated by harvesting of 0.5 m2 quadrate area from each plot.  

 

To get an indication of the chlorophyll concentration in wheat leaves, light absorption at 650 nm 

and at 940 nm wavelength was measured for WW and SW after potatoes in the first year and 

after potatoes and faba beans in the second year by using SPAD-502 (Minolta Inc., Japan). 

Absorption values determined with this instrument has been shown to correlate strongly with the 

chlorophyll concentration of measured tissue and can therefore be used to estimate different 

green coloration of wheat leaves (FRITZ 2000). Ten measurements of flag leaf (EC 59) or upper 

two leaves (EC 45) per plot were accomplished for WW and SW respectively. 

 

Immediately before wheat harvest, total shoot samples were taken by bulking two 1 m rows from 

each plot for determination of straw yield and N uptake. Finally, wheat was harvested by 

combine harvester and grain was weighed from a known area. Grain sub-samples were analysed 

for dry matter and nitrogen concentration. 

 

 

4.2.2 Soil sampling and analysis 

 

To determine the quantity and distribution of soil nitrate, soil samples were taken during the 

growing season of turnips, white mustard and succeeding winter and spring wheat (Table 2 in 

Appendix). Five soil cores per subplot (WW and SW) were taken, using a Pürckhauer soil probe 

(φ25 mm), to a depth of 90 cm in 30 cm increments and bulked on a depth basis. Additional five 

cores were taken from each subplot from the layer 0 - 30 cm to increase the accuracy of 

measurements in the top soil layer. A sub-sample was then taken from the bulked and 

homogenised sample and placed into an ice cooler for transfer to the laboratory. Soil samples 

were frozen at -18ºC until NO3
- extraction occurred, and were thawed shortly at room 

temperature just before analysis.  

 

Nitrate was determined in duplicate by extracting the soil in 1% K2SO4 (50 g of field-moist fresh 

soil / 200 ml K2SO4). Filtered extracts were analysed for concentration of NO3
--N using a 

colorimetric procedure at 540 nm on a continuous-flow-analyser (SKALAR ANALYTICAL 1993, 

VDLUFA 1980). Soil moisture was monitored gravimetrically by 105ºC oven-drying to a 

constant weight.  
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4.3 Statistical analysis 

 

Analysis of variance was carried out using SAS – statistical program version 6.12 for a latin 

square design with four replicates. The difference between means of various treatments was 

determined using Tukey’s honestly significant difference (HSD) value at 5 % probability. In 

subsequent tables and figures significant differences are marked with different small letters.  
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5 RESULTS AND DISCUSSION 

 

5.1 Soil nitrate dynamics, DM production and N uptake of catch crops after harvest of the 

main crop 

 

5.1.1 Precrop potatoes 

 

First year 1999 

In the first experimental year (1999) two weeks after potato harvest soil NO3
--N ranged between 

21.7 and 25.4 kg ha-1 in the top 90 cm soil layer with 60 % of the soil nitrate in the upper 30 cm 

(Figure 2, Aug 28). This low content of soil NO3
--N was due to the low precipitation in July and 

August (Table 2) and the well-established potato main crop. 
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Figure 2: Soil nitrate after potato harvest 1999 and N uptake of catch crops. F: fallow, Wm: 

white mustard, turnips Me: Market Express F1 and Pe: Petrowski; (Tukey; α=0.05). 

 

Three months later (100 DAS) the distribution and the amount of soil nitrate were affected by 

catch crop sinks (Figure 2, Dec 3). In comparison to the fallow treatment with 79.7 kg NO3
--N 

ha-1 in the top 90 cm soil layer (47.0 kg NO3
--N ha-1 present in the layer between 30 and 60 cm) 

catch crops significantly reduced the content of soil nitrate. The reduction of soil nitrate under 
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Wm, Me and Pe was, compared with fallow treatment, 72.9, 62.6 and 68.3 kg NO3
--N ha-1 

respectively and thus corresponded well with nitrogen uptake of catch crops (Table 3).  

 

100 DAS shoot DM production of Wm, Me and Pe was 3.45, 1.76 and 1.83 t ha-1 respectively 

(Table 3). Turnips accumulated more than 63 % of DM in their roots, which amounts 1.13 and 

1.16 t ha-1 for Me and Pe, respectively. Nt concentration in DM of turnip roots was 3.01 % for 

both cultivars. Both turnip cultivars accumulated 59 % of total N uptake in their roots, i.e. 33.8 

and 35.9 kg N ha-1 for Me and Pe respectively. Nt concentration in DM of leaves was 2.13, 3.73 

and 3.63 % for Wm, Me and Pe respectively. Although Nt concentration in DM of Wm was 

significantly lower compared with turnips, as a consequence of significantly higher DM 

production, its N uptake was higher (73.2 kg ha-1).  

 

The amount of nitrogen in plant - soil system (kg N ha-1 in plant tissue + kg NO3
--N ha-1 in soil) 

of all four treatments was similar; 79.7, 80.0, 74.2 and 71.7 kg ha-1 under F, Wm, Me and Pe 

respectively (Figure 2 and Table 3 in Appendix). These results indicate that the N sink of Wm 

and both turnips was adequate and well synchronised with N supply by organic matter 

mineralization.  

 

Table 3: Dry matter yield, Nt concentration in DM and N uptake of catch crops after potato 

harvest 1999 (Nov 25, 100 DAS). 

 
   

DM yield (t ha-1)   

Nt conc. (%)   

N (kg N ha-1) 
 

Catch crop  
 

Root 
 

Leaf ∑  
 

Root 
 

Leaf  
 

Root 
 

Leaf ∑
            

W. mustard  - 3.45b 3.45b  - 2.13a  - 73.2b 73.2   

M. Exp. F1  1.13 0.63a 1.76a  3.01 3.73b  33.8 23.3a 57.1  

Petrowski  1.16 0.67a 1.83a  3.01 3.63b  35.9 24.4a 60.3 

Values within a column are significantly different (Tukey; α=0.05) if followed by different letters. 
 

Second year 2000 

In the second experimental year (2000) the amount of soil nitrate after the potato harvest was 

higher for 100 kg NO3
--N ha-1than in the first year (compare figures 2 and 3). Under F, Me and 

Pe treatments 120 kg NO3
--N ha-1 and under Wm treatment 98.9 kg NO3

--N ha-1 were recorded in 

top 90 cm soil layer (Figure 3, Sep 14). The amount of nitrate-N under Wm was lower mainly in 

the upper soil layers 0 - 60 cm which indicates the possibility that already in the first three weeks 

after sowing Wm was representing an efficient nitrogen sink, taking up more than 20 kg N ha-1. 
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At the next soil sampling (Oct 17) the amount of soil nitrate on F plots remained on the same 

level (121.0 kg NO3
--N ha-1). Substantial amount of nitrate was present in the deeper soil layers 

(65.6 kg NO3
--N ha-1 in 30 - 60 cm and 39.0 kg NO3

--N ha-1 in 60 - 90 cm; Figure 3). Compared 

to the fallow treatment the amount of soil nitrate was significantly reduced by growing catch 

crops. Figure 3 (Oct 17) illustrates also that Wm decreased soil nitrate-N content significantly 

more than both turnips. Soil nitrate-N contents of 15.9, 66.6 and 43.7 kg ha-1 were recorded 

under Wm, Me and Pe, respectively (Figure 3, Oct 17). Turnip Pe decreased the amount of soil 

nitrate significantly compared to turnip Me. 
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Figure 3: Soil nitrate after potato harvest 2000 and N uptake of catch crops. F: fallow, Wm: 

white mustard, turnips Me: Market Express F1 and Pe: Petrowski; (Tukey; α=0.05). 

 

During the first 56 DAS (Oct 17) nitrogen uptake of Wm (108.0 kg ha-1) was significantly higher 

compared with uptake of Me (75.1 kg ha-1) but not significantly higher compared with Pe (88.4 

kg ha-1; Figure 3 and Table 4). Comparing the amount of soil nitrate N on F plots (121.0 kg ha-1) 
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with the total N in plant-soil systems on Wm plots (123.9 kg ha-1) it can be seen that in the 56 

DAS N uptake of Wm was well synchronised with N supply by organic matter mineralization. 

(Figure 3 and Table 3 in Appendix).  

 

Table 4: Dry matter yield, Nt concentration in DM and N uptake of catch crops after potato 

harvest 2000. Growth analysis sampling (Oct 20, 56 DAS). 

 
   

DM yield (t ha-1)   

Nt conc. (%)   

N (kg N ha-1) 
 

Catch crop  
 

Root 
 

Leaf ∑  
 

Root 
 

Leaf  
 

Root 
 

Leaf ∑
            

W. mustard  - 2.47c 2.47b    - 4.38a  - 108.0c   108.0b   

M. Exp. F1  0.73b 0.95a 1.68a    4.09a 4.76b  29.9b 45.2a 75.1a  

Petrowski  0.40a 1.42b 1.82ab  4.46b 5.01b  17.6a 70.8b 88.4ab

Values within a column are significantly different (Tukey; α=0.05) if followed by different letters. 
 

In 56 DAS turnips produced 1.68 and 1.82 t ha-1 of DM (Table 4) and were thus already on the 

same level as in the first year at final harvest (Table 3). The distribution of DM accumulation in 

turnips Me and Pe was quite the reverse. Me accumulated significantly more DM in roots on the 

other hand Pe accumulated significantly more DM in leaves. With Shoot DM production of Wm 

(2.47 t ha-1) was significantly higher than total DM production of Me but did not differ 

significantly from total DM production of Pe (Table 4). High DM production as well as high Nt 

concentration in plant tissues of catch crops were responsible for high N uptakes. 56 DAS total N 

uptake of 108.0, 75.1 and 88.4 kg N ha-1 was recorded for Wm, Me and Pe respectively. The 

distribution of accumulated N in turnips followed the pattern of DM distribution. Thus turnip Me 

accumulated significantly higher amount of N in their roots and turnip Pe accumulated 

significantly more N in their leaves (Table 4). 

 

At soil sampling on Nov 27 (Figure 3) the amount of soil nitrate-N under fallow treatment was 

93.5 kg ha-1 with 89 % located below 30 cm soil depth. The amount of soil nitrate-N on catch 

crop plots was significantly lower. The lowest quantity of 21.3 kg NO3
--N ha-1 was measured 

under Wm which was significantly less than 42.3 and 36.9 kg NO3
--N ha-1 found under turnips 

Me and Pe respectively (Figure 3).  

 

At final harvest of catch crops in the second year (2000) significant differences in DM 

accumulation and N uptake for all three catch crops were determined. Total DM yield of 4.96, 

2.62 and 2.98 t ha-1 with corresponding N uptake of 207.3, 101.0 and 119.5 kg ha-1 were 
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recorded for Wm, Me and Pe respectively  (Table 5). Turnips accumulated 52.5 and 45.0 kg N 

ha-1 in roots, i.e. 52 and 38 % of all accumulated N for Me and Pe respectively. There was no 

significant difference in Nt concentration in DM of turnip roots. However, Nt concentration in 

DM of Pe and Wm leaves was significantly higher than Nt concentration in leaves of turnip Me.  

 

Table 5: Dry matter yield, Nt concentration in DM and N uptake of catch crops after potato 

harvest 2000 (Nov 21, 90 DAS). 

 
   

DM yield (t ha-1)   

Nt conc. (%)   

N (kg N ha-1) 
 

Catch crop  
 

Root 
 

Leaf ∑  
 

Root 
 

Leaf  
 

Root 
 

Leaf ∑
            

W. mustard  - 4.96c 4.96c  - 4.18b  - 207.3c  207.3c

M. Exp. F1  1.38 1.24a 2.62a  3.76 3.95a  52.5b 48.5a 101.0a

Petrowski  1.18 1.80b 2.98b  3.88 4.12b  45.0a 74.5b 119.5b

Values within a column are significantly different (Tukey; α=0.05) if followed by different letters. 
 

At final harvest of catch crops in the second year (2000) plant-soil system on F plots contained 

93.5 kg NO3
--N ha-1 (soil nitrate-N only). This was significantly less than on catch crop plots 

(Table 3 in appendix). On Wm plots plant-soil system contained 228.6 kg N ha-1 (21.3 kg NO3
--

N ha-1 in soil + 207.3 kg N ha-1 in plant tissue). This was significantly more than under both 

turnips where 143.3 kg N ha-1 (42.3 kg NO3
--N ha-1 in soil + 101.0 kg N ha-1 in plant tissue) and 

156,4 kg N ha-1 (36.9 kg NO3
--N ha-1 in soil + 119.5 kg N ha-1 in plant tissue) were determined 

on Me and Pe plots respectively (Figure 3 and Table 3 in appendix). 

 

 

5.1.2 Precrop faba beans 

 

First year 1999 

On Aug 28 - 10 days after faba bean harvest - soil nitrate content in the top 90 cm soil layer 

ranged between 30.7 and 36.3 kg NO3
--N ha-1 (Figure 4). Over 75 % of soil nitrate was present in 

the soil layer 0 - 30 cm.  

 

On Dec 3 soil nitrate content under all four treatments varied between 4.1 to 105.5, 4.1 to 60.6, 

12.6 to 23.8 and 9.7 to 64.7 kg NO3
--N ha-1 under F, Wm, Me and Pe respectively. However 

figure 4 shows that the average amount of soil nitrate was to a large extent decreased by growing 

catch crops compared with F treatment where 52.1 kg NO3
--N ha-1 were measured.  
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In 100 DAS Wm, Me and Pe took up 74.2, 77.3 and 74.0 kg N ha-1 with average nitrate content 

in the soil of 21.1, 18.1 and 26.9 kg NO3
--N ha-1 under Wm, Me and Pe respectively. The plant-

soil systems of catch crop treatments exhibited similar amounts of N, i.e. 95.3, 95,4 and 100.9 kg 

N ha-1 on Wm, Me and Pe plots (Figure 4 and Table 3 in Appendix). The plant-soil system on F 

plots contained only 52.1 kg N ha-1 which was significantly less than on Wm plots but not 

significantly less than on turnip plots (Table 3 in Appendix). 
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Figure 4: Soil nitrate after faba bean harvest 1999 and N uptake of catch crops. F: fallow, Wm: 

white mustard, turnips Me: Market Express F1 and Pe: Petrowski; (Tukey; α=0.05). 

 

In the first experimental year the DM production of Wm after faba beans was 3.37 t ha-1. This 

was significantly higher than the DM production of Me and Pe with 2.26 and 2.39 t ha-1 

respectively (Table 6). Both turnip cultivars accumulated over 54 % of DM in roots 

corresponding to 1.32 and 1.31 t ha-1. Nt concentration in DM of Me and Pe roots was 3.15 and 

2.77 % resulting in storage of 49 % of total N uptake in the roots (corresponding with 41.6 and 

36.3 kg N ha-1 for Me and Pe, respectively). Nt concentration in DM of Wm leaves (2.20 %) was 

significantly lower than Nt concentration in turnip leaves yet the total N uptake of all three catch 

crops did not differ considerably which was a consequence of the significantly higher DM 

production of Wm. 
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Table 6: Dry matter yield, Nt concentration in DM and N uptake of catch crops after faba bean 

harvest 1999 (Nov 25, 100 DAS). 

 
   

DM yield (t ha-1)   

Nt conc. (%)   

N (kg N ha-1) 
 

Catch crop  
 

Root 
 

Leaf ∑  
 

Root 
 

Leaf  
 

Root 
 

Leaf ∑
            

W. mustard  - 3.37b 3.37b  - 2.20a  - 74.2b 74.2 

M. Exp. F1  1.32 0.94a 2,26a  3.15 3.79b  41.6 35.7a 77.3 

Petrowski  1.31 1.08a 2.39a  2.77 3.50b  36.3 37.7a 74.0 

Values within a column are significantly different (Tukey; α=0.05) if followed by different letters. 
 

Second year 2000 

In the second experimental year, 20 DAS (Figure 5, Sep 14) of catch crops, the amount of soil 

nitrate-N in 0 - 90 cm soil layer was 74.6, 66.0, 76.2 and 74.4 kg ha-1 on F, Wm, Me and Pe plots 

(Figure 5, Sep 14). Under Wm the amount of soil nitrate in top 30 cm was already lowered for 10 

kg NO3
--N ha-1 indicating an N uptake of young Wm plants.  

 

At the next soil sampling 53 DAS (Figure 5, Oct 17) the amount of soil nitrate on F plots did not 

considerably differ from the amount measured on Sep 14. However, over 80 % of the nitrate was 

present in the soil layer 30 - 60 cm. The amount of soil nitrate under catch crops was 

significantly reduced compared to fallow treatment. The amounts of 6.2, 36.5 and 26.9 kg NO3
--

N ha-1 were recorded on Wm, Me and Pe plots respectively. The amount of soil nitrate under 

Wm was significantly lower than under both turnip cultivars and turnip Pe reduced soil nitrate 

significantly more than cultivar Me. 

 

At growth analysis sampling on Oct 20 (56 DAS) DM production of Wm was 2.17 t ha-1, which 

was significantly higher than the one of turnip Me with 1.47 t ha-1. At this time turnip Pe 

produced 1.79 t ha-1 of DM (Table 7). The distribution of DM accumulation in both turnips was 

quite inverse: turnip Me accumulated significantly more DM in roots, whereas turnip Pe 

accumulated more DM in leaves. Nt concentration in root DM was 3.91 and 4.04 % for Me and 

Pe respectively. Nt concentration in DM of turnip leaves was higher compared with roots 

reaching 4.20 and 4.46 % for Me and Pe respectively. Both concentrations were significantly 

higher as in shoot DM of Wm that reached only 3.52 %.  
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Figure 5: Soil nitrate after faba bean harvest 2000 and N uptake of catch crops. F: fallow, Wm: 

white mustard, turnips Me: Market Express F1 and Pe: Petrowski; (Tukey; α=0.05).  

 

Until Oct 20 Wm, Me and Pe took up 76.3, 60.0 and 78.4 kg N ha-1 (Table 7). The N uptake of 

turnip Me was significantly lower than N uptake of Wm and Pe. The distribution of accumulated 

N in turnips correlated with the pattern of DM accumulation: significantly more N was stored in 

Me than in Pe roots, whereas Pe leaves contained significantly more N as Me leaves. Because 

leaves of turnip Pe accumulated more DM with higher Nt concentration than Me, total 

accumulation of N (root + leaf) in turnip Pe was significantly higher than the total N 

accumulation of Me. 

 

At growth analysis sampling on Oct 20 (56 DAS) plant-soil system of catch crops contained: 

Wm 82.5 kg N ha-1 (76.3 kg N ha-1 in plant tissue + 6.2 kg NO3
--N ha-1 in soil), Me 96.5 kg N ha-

1 (60.0 kg N ha-1 in plant tissue + 36.5 kg NO3
--N ha-1 in soil) and Pe 105.3 kg N ha-1 (78.4 kg N 

ha-1 in plant tissue + 26.9 kg NO3
--N ha-1 in soil). The amount of N in plant-soil system on turnip 
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plots was significantly higher than the amount of soil nitrate-N on F plots, which was 73.0 kg 

NO3
--N ha-1 (Figure 5 and Table 3 in Appendix). 

 

Table 7: Dry matter yield, Nt concentration in DM and N uptake of catch crops after faba bean 

harvest 2000. Growth analysis sampling (Oct 20, 56 DAS). 

 
   

DM yield (t ha-1)   

Nt conc. (%)   

N (kg N ha-1) 
 

Catch crop  
 

Root 
 

Leaf ∑  
 

Root 
 

Leaf  
 

Root 
 

Leaf ∑
            

W. mustard  - 2.17c 2.17b   - 3.52a  - 76.3c 76.3b

M. Exp. F1  0.65b 0.82a 1.47a    3.91 4.20b  25.4b 34.6a 60.0a

Petrowski  0.38a 1.41b 1.79ab  4.04 4.46b  15.4a 63.0b 78.4b

Values within a column are significantly different (Tukey; α=0.05) if followed by different letters. 
 

Between Oct 17 and the following soil sampling on Nov 27 (Figure 5) the soil nitrate under F 

treatment raised to 88.1 kg NO3
--N ha-1. During the same period the amount of soil nitrate under 

catch crops decreased. Consequently under Me and Pe significantly lower amounts of 21.6 and 

10.4 kg NO3
--N ha-1 respectively were measured. With only 5.0 kg NO3

--N ha-1 soil nitrate 

content under Wm was significantly lower than under both turnips. 
 

At the final harvest on Nov 21 (Table 8) a catch crop DM accumulation of 3.75, 3.10 and 3.61 t 

ha-1 with corresponding total N uptake of 126.4, 93.2 and 116.4 kg N ha-1 for Wm, Me and Pe 

respectively was recorded. The significantly lowest DM accumulation and total N uptake were 

found for turnip Me. Similar as on Oct 20 also at final harvest both turnips differed significantly 

in respect to the distribution of accumulated DM and N (Table 8).  
 

Table 8: Dry matter yield, Nt concentration in DM and N uptake of catch crops after faba bean 

harvest 2000 (Nov 21, 90 DAS). 

 
   

DM yield (t ha-1)   

Nt conc. (%)   

N (kg N ha-1) 
 

Catch crop  
 

Root 
 

Leaf ∑  
 

Root 
 

Leaf  
 

Root 
 

Leaf ∑
            

W. mustard  - 3.75c 3.75b  - 3.37a  - 126.4c 126.4b 

M. Exp. F1  1.66b 1.44a 3.10a  2.52 3.73b  40.5b  52.7a  93.2a

Petrowski  1.52a 2.09b 3.61b  2.46 3.81b  36.8a  79.6b 116.4b 

Values within a column are significantly different (Tukey; α=0.05) if followed by different letters. 
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At the end of the growing season of catch crops the plant-soil systems contained 88.1 kg NO3
--N 

ha-1 on fallow, 131.4 kg N ha-1 on Wm treatment (5.0 kg NO3
--N ha-1 in soil + 126.4 kg N ha-1 in 

plant tissue), 114.8 kg N ha-1 on Me treatment (21.6 kg NO3
--N ha-1 in soil + 93.2 kg N ha-1 in 

plant tissue) and 126.8 kg N ha-1 on Pe treatment (10.4 kg NO3
--N ha-1 in soil + 116.4 kg N ha-1 

in plant tissue). Plant soil systems on Wm and Pe plots were thus containing significantly more 

N than on Me plots and Me plots contained significantly more N than fallowed plots (Table 3 in 

Appendix). 

 

 

5.1.3 Discussion 

 

Soil nitrate dynamics 

After the harvest of the main crop, potatoes and faba beans, in summer the amount of soil nitrate 

varied strongly among the two years studied. Soil nitrate ranged between  20 - 130 kg NO3
--N 

ha-1 after potato and 30 - 80 kg NO3
--N ha-1 after faba bean harvest (Figures 2 and 3). This was in 

agreement with previous reports on soil nitrate by WIDDOWSON et al. (1987), HOFMAN & VAN 

CLEEMPUT (1992), ALFÖLDI et al. (1992), ALBLAS et al. (1992) and REENTS & MÖLLER (1997) 

after potatoes and KÖPKE (1987), HAUNZ et al. (1988), MAIDL et al. (1991) and JENSEN (1995) 

after faba beans.  

 

High variation in post harvest soil nitrate content in both experimental years was mainly caused 

by the heterogeneity of experimental fields, higher summer precipitation in the second 

experimental year and a 50 % lower potato and faba bean yield in the second year. This resulted 

in a considerable accumulation of nitrate in the soil already during the growing season of both 

main crops.  

 

Present data show that in both years Wm and both turnips significantly reduced the amount of 

soil nitrate compared to bare fallow. This way nitrate accumulation in deeper soil layers or even 

leaching under the rooting zone was diminished. Under fallow the amount of soil nitrate 

increased and a large amount of it was already present in deeper soil layers at the beginning of 

winter discharge (Figures 2,3,4 and 5). 

 

In the autumn of the first experimental year (1999) there were no significant differences in 

depletion of soil nitrate between Wm and both turnips. On the other hand in the second 

experimental year (2000) significant differences between all three catch crops were observed. 
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When soil nitrate-N content was exceeding 120 kg ha-1 after potatoes (Figure 3) and 60 kg ha-1 

after faba beans (Figure 5), white mustard depleted soil nitrate significantly better than both 

turnips.  

 

Soil nitrate status under Wm and both turnip cultivars on Oct 17, 2000 (Figures 3 and 5) indicate 

that Wm, with its rapid growth, considerably depleted the soil layer 60 - 90 cm already during 

the first 56 DAS. This was not observed with turnips. It can thus be supposed that the root 

system of Wm reached deeper soil layers fast, resulting in high soil nitrate depletion. This 

observation corresponds with reports of THORUP-KRISTENSEN (1993) who found fodder radish 

roots at depth of 112 cm only 49 days after sowing and is consistent with findings of BURNS 

(1980), that roots of more closely-spaced plants tend to explore deeper regions of the soil in 

search of water or nutrients in response to competition from their neighbour plants. 

 

Low nitrate content in upper soil layers (0 - 30 and 30 - 60 cm) and higher amounts of soil nitrate 

in 60 - 90 cm soil layer under turnips at the time of harvest, indicate that the root system of 

turnips at plant density between 30 to 40 plants m-2 successfully depleted soil nitrate from the 

upper soil layer but was rather inefficient (compared to Wm) when nitrate was already present 

under 60 cm.  

 

 

DM production and N uptake 

Dry matter yield of turnips recorded in this study (1.76 - 3.61 t ha-1) was low, compared with 

some literature data. This was a consequence of a late sowing and low plant density, which is 

required when turnips are grown as vegetables. Other studies reported the DM production of 

turnips, grown as fodder with a higher plant density, to be between 5 to 10 t ha-1 (GREENWOOD et 

al. 1980, BERENDONK 1992, REID et al. 1994). Nevertheless also lower values between 1 and 5 t 

ha-1 were reported (JUNG et al. 1979, PERCIVAL et al. 1986, YOUNG 1998). See Appendix table 4 

for detailed literature survey.  

 

Although DM yields were rather low, total N uptake of turnips in this study was due to a high Nt 

concentration in DM high ranging between 57.1 and 119.5 kg N ha-1. N uptake between 102.1 

and 107.4 kg ha-1 for unfertilised turnips was reported by YOUNG (1998) which is in consistence 

with N uptake of turnips observed in the present study in the second year (Table 5 and 8). A 

higher N uptake of 142 - 205 kg N ha-1was calculated by BERENDONK (1992) and GUILLARD & 

ALLINSON (1989) (182 - 193 kg N ha-1) when turnips were fertilized with 100 and 140 kg N ha-1 
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respectively. The extent of N uptake by turnips in this experiment was dominated mainly by the 

short growing season (100 days), lower plant density (30 to 40 plants m-2) and available soil N 

and did not depend on the degree of success in crop establishment often reported as a factor 

limiting N uptake of catch crops (RICHARDS et al. 1996, SHEPHERD 1999). 

 

Nt concentration in DM of turnip roots (2.46 to 3.88 %) and leaves (3.50 to 4.12 %) were on the 

upper range reported previously by RAO & HORN (1986), JUNG et al. (1986), GUILLARD & 

ALLINSON (1989) and PEARSON & THOMSON (1996) for field grown turnips (see Appendix table 

12). In comparison with Nt concentration in DM reported for some other brassica vegetables 

(chinese cabbage 4.2 %, savoy cabbage 3.8 %, curly kale 4.1 % and kohlrabi 4.1 % (ALT & 

WIEMANN 1990), collard 3.82 - 5.61 % (DANGLER & WOOD 1993)) nitrogen concentration of 

turnips in this study nevertheless ranged within expected values.  

 

White mustard DM yields of 3.37 - 4.96 t ha-1 found in this research correspond to 4.36 and 4 t 

ha-1 reported by YOUNG (1998) and ALLISON et al. (1998) and ranged between 2.2 and 5.4 t ha-1 

reported for Germany by ELERS & HARTMANN (1987) and BERENDONK (1987) with N uptake of 

66 and 83 kg N ha-1 respectively. N uptake of white mustard after potatoes in the second year 

exceeded 200 kg ha-1. This high N uptake was a result of an extended time of root activity late in 

the autumn, which was a consequence of high soil nitrate content (Figure 3) and favourable 

weather conditions. In the second year, with high N uptake, white mustard - in contrast to first 

year- did not set any flowers. Because flowering is generally accompanied by reduced root 

activity and the beginning of senescence of non-reproductive plant parts (THORUP-KRISTENSEN 

1994) this support the explanation that root activity of white mustard in the second year was 

considerably prolonged. NINANE et al. (1996) reported N uptake of white mustard up to 204 kg 

ha-1 when fertilised with 80 kg N ha-1. N uptake over 200 kg ha-1 in shoots was also reported by 

JACKSON et al. (1993). 

 

There were substantial differences between both turnip cultivars evaluated in this research. 

Turnips Me showed rapid DM and N accumulation in roots (Tables 4 and 7) whereas turnips Pe 

took advantage of the favourable growing conditions primarily to produce large leaf biomass 

accumulating therewith-higher amounts of total N in a short period of time. This feature was 

more transparent when growing conditions were favourable as was the case in the second 

experimental year of this study. Higher N export from the field was achieved with turnips Me 

since it accumulated higher amounts of N in harvested roots. 
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Differences in DM accumulation, corresponding N uptake, growth pattern and winter hardiness 

between both turnip cultivars used in this study showed that the selection of a cultivar is of great 

importance when explicit aims like reduction of soil nitrate, N export or production of 

marketable roots have to be achieved.  

 

 

Plant - soil system 

On Dec 3 in the first experimental year the plant - soil system after potatoes contained 79.7, 80.0, 

74.2 and 71.7 kg N ha-1 under F, Wm, Me and Pe respectively (Table 3 in Appendix). These 

results demonstrate that the N uptake of white mustard and both turnips was well synchronised 

with N supply by organic matter mineralization.  

 

After faba beans, the plant - soil system on Dec 3 in the first year contained 52.1, 95.3, 95.4 and 

100.9 kg N ha-1 under F, Wm, Me and Pe respectively (Table 2 in Appendix). These large 

differences in N content of plant - soil system measured between F and catch crop treatments 

was a result of a high variability in soil nitrate on F plots that ranged between 4.1 and 105.5 kg 

NO3
--N ha-1. These data shows that on some F plots the amount of nitrate N was on the same 

level as plant - soil system on plots with catch crops while on other F plots nitrate N content was 

negligible. Whether these low nitrate contents on some F plots were a consequence of low 

mineralization of organic matter or a consequence of leaching below 90 cm is beyond this 

research. 

 

In the second experimental year at final turnip harvest on Nov 27 the plant - soil system after 

potatoes contained 93.5, 228.6, 143.3 and 156.4 kg NO3
--N ha-1 under F, Wm, Me and Pe 

respectively (Table 2 in Appendix). However, minor differences of about 20 kg N ha-1 are rather 

common in plant soil systems and can be attributed to immobilisation or denitrification processes 

(MARTINEZ & GUIRAUD 1990). Considerable differences of up to 135 kg N ha-1 between 

treatments in the present study (see above) indicate a substantial impact of the management 

regimes on the soil nitrogen transformations.  

 

An assumption that these high difference in N content of plant - soil systems under different 

treatments could originate just from leaching is not very plausible. Under this assumption the 

amounts of 135.1, 85.3 and 72.2 kg NO3
--N ha-1 under F, Me and Pe plots respectively had to be 

leached below 90 cm to be in a balance with a plant - soil system on Wm plots. The amount of 

precipitation during this time was 150 mm. If it is assumed that also the precipitation surplus was 
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150 mm, which is not possible because the soil was far from being saturated, the rough 

calculation for F plots shows that each mm of water should be responsible for 0.9 kg of leached 

N ha-1, which means with other words that average concentration of N in leached water should 

be over 90 mg N l-1. This is not in agreement with reported concentrations of nitrate in leached 

water under field conditions which usually range between 18 - 42 mg N l-1 (MARTINEZ & 

GUIRAUD 1990), 50 - 70 mg N l-1 (MACDUFF et al. 1990), 22.3 mg N l-1 (SHEPHERD & LORD 

1996) and can under controlled conditions extraordinarily reach 136 mg N l-1 (VAN DAM & 

LEFFELAAR 1998).  

 

Another option suggests that on F plots less N was mineralised from organic matter due to a lack 

of plant roots, which could stimulate mineralization of organic matter (JINGGUO & BAKKEN 

1989, CORTEZ & CHERQUI 1991). CLARHOLM (1985) found that the plant growth profoundly 

influenced N transformations. In the presence of root-derived carbon, much more N was 

mineralised from the organic matter and immobilised mainly in plant biomass. HELAL & 

SAUERBECK (1986) also demonstrated that growing roots are a significant C-source for the 

microorganisms and render an additional fraction of soil-C available to microbial utilisation. 

Furthermore low molecular organic substances are able to stimulate soil microorganisms, thus 

intensifying the break down of soil organic matter (SCHELLER & VOGTMANN 1995).  

 

Bacterial activities leading to N mineralization are often depressed because of a lack of suitable 

energy source, which is supplied by plant roots in the vegetated soil (CLARHOLM 1985). HAIDER 

et al. (1987) reported that at the termination of their pot experiment about 500 mg N from the 

soil organic matter in planted soil and only 150 mg N of that without plants was mineralised and 

concluded that the mineralization of organic N seems to be greatly enhanced by the presence of 

plants. According to HART et al. (1979) also continuous removal of soil nitrate depletes the 

equilibrium level of the soil inorganic N pool and may stimulate greater release of N from 

organic matter. Without root uptake, high amounts of inorganic N in the soil can be build up, 

possibly retarding further mineralization (CLARHOLM 1985).  

 

Alternatively these large differences in N content of plant - soil systems (see above) may also be 

explained by the mineralised N being immediately immobilised by the microbial biomass 

(RECOUS & MARY 1990). Mineralised N was hence not entering the soil solution as nitrate at all 

and was thus not recorded by soil nitrate analysis. However this extreme variation in N content 

of plant - soil system recorded in the second year was most probably a combined effect of 

leaching, enhanced mineralization under catch crops as well as microbial immobilisation. 
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5.1.4 Resume 

I  Heterogeneity of experimental fields, high summer precipitation and lower potato and faba 

bean yields in the second experimental year caused high variations in post-harvest soil-nitrate 

content during the experiment (20 - 130 kg NO3
--N ha-1 after potato and 30 - 80 kg NO3

--N 

ha-1 after faba bean harvest). 

 

II In both years white mustard and turnips significantly reduced soil nitrate compared to bare 

fallow. At lower soil nitrate content after the harvest (less than 60 NO3
--N ha-1) turnips 

reduced soil nitrate as good as white mustard. At higher soil nitrate content the reduction 

under turnips was lower compared to white mustard. 

 

III As a consequence of a late sowing date and low plant density, which is required when turnips 

are grown as vegetables, dry matter yield of turnips was low (1.76 - 3.61 t ha-1). However the 

total N uptake of turnips was high due to a high N content in DM (57.1 and 119.5 kg N ha-1).  

 

IV Variations of up to 135 kg N ha-1 in N content of plant - soil systems under different 

treatments recorded in the second experimental year indicate a substantial impact of the 

management regimes on the soil nitrogen transformations. These large differences in N 

content of plant - soil systems were most probably a combined effect of leaching, enhanced 

mineralization under catch crops as well as microbial immobilisation.  
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5.2 Soil nitrate after winter and N uptake of following winter wheat 

 

5.2.1 Precrop potatoes 

 

First year 2000 

Catch crop treatments and winter wheat sowing in autumn 1999 did not significantly influence 

soil nitrate content in following spring (2000). On March 21, 2000 amounts of soil nitrate ranged 

between 19.1 and 26.8 kg NO3
--N ha-1 (Figure 6). The amount of soil nitrate under fallow 

treatment decreased over the winter from 79.7 (Dec 3, 1999, Figure 2) to 26.8 kg NO3
--N ha-1 

(Mar 21, 2000, Figure 6). After Me the amount of soil nitrate remained unchanged. An increase 

of 16.9 and 7.7 kg NO3
--N ha-1 was measured after Wm and Pe respectively.  
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Figure 6: Effect of catch crop treatments on soil nitrate after winter and N uptake of winter 

wheat (2000). In 1999 precrop potato. F: fallow, Wm: white mustard, turnips Me: 

Market Express F1 and Pe: Petrowski; (Tukey; α=0.05).  

 

At the next soil sampling date on May 5 between 7.0 and 11.1 kg NO3
--N ha-1 were found in the 

soil under winter wheat. After winter wheat harvest the amount of soil nitrate under all four 

treatments was lower than 9.4 kg NO3
--N ha-1 (Figure 6, Aug 14).  
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N uptake of winter wheat in 2000 was 107.1, 80.3, 78.5 and 78.2 kg N ha-1 after F, Wm, Me and 

Pe treatments respectively. Thus N uptake of winter wheat after fallow was significantly higher 

than after catch crops. 

 

Second year 2001 

In the second experimental year catch crops grown in autumn 2000 significantly influenced soil 

nitrate content in following February (2001). As a result 71.0, 36.4, 42.1 and 34.3 kg NO3
--N ha-1 

were recorded under F, Wm, Me and Pe respectively (Figure 7).  

 

The difference between the amount of soil nitrate-N measured on Nov 27, 2000 (Figure 3) and 

on Feb 14, 2001 (Figure 7) shows that it decreased by 22.5 kg NO3
--N ha-1 under F, increased by 

15.1 kg NO3
--N ha-1 after Wm and remained approximately at the same level after both turnip 

cultivars. 
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Figure 7: Effect of catch crop treatments on soil nitrate after winter and N uptake of winter 

wheat (2001). In 2000 precrop potato. F: fallow, Wm: white mustard, turnips Me: 

Market Express F1 and Pe: Petrowski; (Tukey; α=0.05).  
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Five weeks later on Mar 20 a decrease of soil nitrate-N between 10.1 and 20.9 kg ha-1 was 

recorded on all plots (Figure 7). With exception of F plots where 60.9 kg NO3
--N ha-1 were 

recorded the amount of soil nitrate was on the same level as in 2000 (see Figure 6).  

 

Between March 20 and May 9 winter wheat functioned as an efficient nitrogen sink taking up 

34.8 to 41.4 kg N ha-1. Soil nitrate on all plots was thus reduced - ranging between 5.9 and 12.1 

kg ha-1. From May 9 until the end of the experimental observations the amount of soil nitrate did 

not differ significantly according to the different treatments in previous autumn (Figure 7). 

 

Vigorous growth and N uptake of winter wheat during May and at the beginning of June 2001 

depleted the soil nitrate. On June 13 less than 1 kg NO3
--N ha-1 was found in the soil. Total N 

uptake of winter wheat was at that time 110.8, 81.6, 84.2 and 82.2 kg ha-1 after F, Wm, Me and 

Pe respectively. Though the variation in N uptake of winter wheat was high no significant 

differences among treatments existed. 

 

After the harvest of winter wheat the amount of soil nitrate on Aug 6, 2001 was low on all plots - 

ranging between 12.2 and 18.2 kg NO3
--N ha-1 (Figure 7). Total shoot N uptake of winter wheat 

at harvest was 136.6, 114.2, 114.0 and 112.4 kg N ha-1 after F, Wm, Me and Pe treatments 

respectively. Thus N uptake of winter wheat after fallow was significantly higher than after catch 

crops. 

 

 

5.2.2 Precrop faba beans 

 

First year 2000 

After faba beans in 1999 catch crop treatments and winter wheat sowing in autumn did not 

significantly influence soil nitrate content in following spring (2000). On March 21 (2000) 

amounts of soil nitrate ranged between 32.7 and 40.8 kg NO3
--N ha-1 (Figure 8). The amount of 

soil nitrate under fallow treatment decreased over the winter from 52.1 (Dec 3, 1999, Figure 4) to 

38.3 kg NO3
--N ha-1 (Mar 21, 2000, Figure 8). On Wm, Me and Pe plots soil nitrate-N amounts 

of 34.1, 40.8 and 32.7 kg NO3
--N ha-1 were recorded respectively (Figure 8). Thus soil nitrate in 

catch crop plots increased between 5.8 and 22.7 kg NO3
--N ha-1 over the winter.  

 

At the following sampling on May 5, 2000 soil nitrate on all plots ranged between 7.0 and 11.1 

kg NO3
--N ha-1 (Figure 8). This reduction in soil nitrate between March 21 and May 5 indicate N 
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losses by leaching or immobilisation in the soil because on winter wheat plots there was no 

growing crop, which could represent such an effective nitrogen sink (*winter wheat failed during 

the winter and plots were re-sown with spring wheat in April).  
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Figure 8: Effect of catch crop treatments on soil nitrate after winter and N uptake of spring 

wheat (2000) *winter wheat re-sown to spring wheat. In 1999 precrop faba beans. F: 

fallow, Wm: white mustard, turnips Me: Market Express F1 and Pe: Petrowski; 

(Tukey; α=0.05).  

 

After the wheat harvest, the amount of soil nitrate on all plots was lower than 10 kg NO3
--N ha-1 

showing no differences according to different catch crop treatment in the previous autumn. The 

N uptake of re-sown spring wheat was the highest on F plots (72.4 kg N ha-1) followed by the N 

uptake of 67.7, 63.5 and 65.7 kg N ha-1 on Wm, Me and Pe plots respectively.  

 

Second year 2001 

In the second experimental year catch crops grown in autumn 2000 significantly influenced soil 

nitrate content in following February 14 (2001). As a result 41.9, 19.4, 19.4 and 26.0 kg NO3
--N 

ha-1 were recorded under F, Wm, Me and Pe respectively (Figure 9).  
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On Mar 20 (Figure 9) the soil nitrate content on F, Wm, Me and Pe plots plots was reduced 

compared to Feb 14 resulting in 33.3, 14.8, 13.8 and 13.3 kg NO3
--N ha-1 respectively. Soil 

nitrate content on F plots was thus significantly higher as on plots previously grown with catch 

crops. On F plots 70 % of nitrate was present in the 60 - 90 cm soil layer. 
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Figure 9: Effect of catch crop treatments on soil nitrate after winter and N uptake of winter 

wheat (2001). In 2000 precrop faba beans. F: fallow, Wm: white mustard, turnips 

Me: Market Express F1 and Pe: Petrowski; (Tukey; α=0.05).  

 

In May winter wheat tillers contained between 24.8 and 36.0 kg N ha-1 (Figure 9). The soil 

nitrate content measured on May 9, 2001 ranged on all plots between 10.6 and 14.0 kg NO3
--N 

ha-1 without any significant differences. Thus, between Mar 20 and May 9 winter wheat 

functioned as an efficient nitrogen sink. On June 13 between 1.4 and 2.4 kg NO3
--N ha-1 were 

measured in the 0 - 90 cm soil layer (Figure 9). At this time between 54.0 and 74.9 kg N ha-1 

were found in ears and stems of winter wheat.  

 

After the harvest of winter wheat, the amount of soil nitrate did not significantly differ according 

to different catch crop treatments in previous year and ranged between 9.7 and 12.3 kg NO3
--N 

ha-1 (Figure 9, Aug 6). Different catch crop treatments did not significantly influence N uptake of 
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winter wheat. Though N uptake was the highest on F plots (95.8 kg N ha-1) followed by N 

uptakes of 85.2, 84.1 and 83.3 kg N ha-1 on F, Wm, Me and Pe plots respectively.  

 

 

5.2.3 Discussion 

 

Soil nitrate dynamics after winter (winter wheat treatment) 

When catch crop plant residues (white mustard and turnip leaves) were incorporated in autumn, 

and winter wheat was sown subsequently, the amount of soil nitrate in following March did not 

significantly differ according to incorporation of various catch crop residues with different 

amounts of residue N. Even the difference of 158 kg N ha-1 between incorporated residues of 

Wm and Me, after potatoes in the second year (Table 5), did not show any significant effect on 

the amount of soil nitrate in following spring. This suggests that incorporated biomass of Wm, 

Me and Pe retained a substantial part of the accumulated nitrogen in their tissues.  

 

These findings differ from reports of MEISINGER et al. 1991, JENSEN 1992, and WAGGER et al. 

1998 who found nitrogen from catch crops incorporated in autumn to be rapidly mineralised and 

leached out of the rooting zone already before spring. However in present experiments some 

factors could have suppressed rapid mineralization of catch crop residues: at the time of 

incorporation in late autumn, catch crops were still alive therefore availability for microbial 

attack could be under question since brassicas can contain high concentrations of secondary 

metabolites that can effectively depress soil micro-organisms and thus decomposition of 

incorporated plant material. Additionally, mineralization during the winter is substantially 

decreased by low temperatures (STANFORD et al. 1973) and soil moisture that reduce oxygen 

diffusion in the soil thus reducing oxygen supply of micro-organisms (THORUP-KRISTENSEN 

1995). Present results are nevertheless consistent with findings of FRANZLUEBBERS et al. (1996) 

who found canola (Brassica campestris L.) residues to contain more N when incorporated than 

when surface placed.  

 

Nitrogen export from the field of 33.8 - 52.5 kg ha-1 with turnip roots in the previous autumn did 

not significantly affect the amount of soil nitrate in the following spring because it was identical 

after both turnip cultivars and Wm where all plant biomass stayed on the field. This indicates 

that soil nitrate in spring was to a certain extent independent from the amount of N incorporated 

with catch crop residues in autumn.  

 



 37

The amount of soil nitrate in following March was reduced when the field was fallowed during 

the autumn. The reduction could either be due to a leaching of nitrate into the soil layer beneath 

90 cm, the transfer of nitrogen into the soil organic nitrogen pool of microbial biomass or 

denitrification. However, both later processes presumably did not influence the N circle 

significantly, because due to the adverse weather condition during winter period denitrification 

and microbial N fixation should be negligible (THORUP-KRISTENSEN 1994).  

 

In the first experimental year (1999 - 2000) the amount of soil nitrate after fallow and catch crop 

treatments in spring did not differ significantly (Figures 6 and 8). In contrast the soil nitrate 

content in the second experimental spring (2001) was significantly higher after fallow treatment 

than on the plots with incorporated catch crop residues (Figures 7 and 9). Presumably, this was a 

consequence of high soil nitrate content on fallow plots at the beginning of previous winter and 

only minor leaching leaving a considerable amount of nitrate within the 60 - 90 cm soil layer.  

 

Between the end of March and the beginning of May in both years and after both precrops the 

reduction in soil nitrate was observed (Figures 6, 7, 8 and 9). Therefore it can be concluded, that 

winter wheat in that time already functioned as an effective N-sink. At the beginning of May 

24.8 to 41.4 kg N ha-1 were thus determined in winter wheat shoots (Figures 7 and 9). However 

the reduction of soil nitrate between Mar 21 and May 5 in the first year after faba beans (Figure 

8) indicate a reduction of soil nitrate which was not connected with N uptake of growing winter 

wheat. On winter wheat plots after faba beans there was no growing crop, which could represent 

a nitrogen sink (after faba beans in the first year winter wheat failed during the winter and plots 

were re-sown with spring wheat in April). This decrease of soil nitrate between March and May 

do not consist with a course of mineralisation during a year in typical agricultural soils under the 

climatic conditions of North West Europe (POWLSON 1993). However JENSEN (1992) found that 

the incorporation of catch crops in late autumn can significantly reduce the inorganic N content 

of the top soil in spring compared to soil with no catch crop incorporated. This is presumably 

because the incorporation of the catch crop increases the microbial biomass, which immobilises 

inorganic N during the decomposition of the incorporated plant material in spring (MARTINEZ & 

GUIRAUD 1990).  
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5.2.4 Resume 

I  When catch crop plant residues (white mustard and turnip leaves) were incorporated in autumn 

and winter wheat was sown subsequently, the amount of soil nitrate in following spring 

remained approximately on the same level as in previous autumn. On the other hand soil 

nitrate content on fallow treatments was reduced.  

 

II The incorporation of various catch crop residues with different amounts of residue N in 

autumn did not show any significant effect on the amount of soil nitrate in following spring. 

This suggests that incorporated biomass of Wm, Me and Pe retained a substantial part of the 

accumulated nitrogen in their tissues.  

 

III Nitrogen export from the field of 33.8 - 52.5 kg ha-1 with turnip roots in the previous autumn 

did not significantly affect the amount of soil nitrate in the following spring. This indicates 

that soil nitrate in spring was to a certain extent independent from the amount of N 

incorporated with catch crop residues in autumn.  

 

IV Between the end of March and the beginning of May a reduction in soil nitrate under winter 

wheat was recorded. However the reduction cannot only be attributed to N uptake of growing 

winter wheat because the same tendency was observed also on the plots where winter wheat 

was lacking.  
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5.3 Soil nitrate dynamics after winter and N uptake of following spring wheat 

 

5.3.1 Precrop potatoes 

 

First year 2000 

When experimental plots remained undisturbed over the winter the amount of soil nitrate on 

fallow plots decreased from 79.7 (Dec 3, 1999, Figure 2) to 9.9 kg NO3
--N ha-1 (Mar 21, 2000, 

Figure 10). The amount of soil-N under Wm increased during the winter from 6.8 (Dec 3, 1999, 

Figure 2) to 31.9 kg NO3
--N ha-1 (Mar 21, 2000, Figure 10) and was thus significantly higher 

than after fallow and both turnip treatments (Figure 10). 
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Figure 10: Effect of catch crop treatments on soil nitrate after winter and N uptake of spring 

wheat (2000). In 1999 precrop potato. F: fallow, Wm: white mustard, turnips Me: 

Market Express F1 and Pe: Petrowski; (Tukey; α=0.05).  

 

Turnip Me and Wm were destroyed by frost during the winter therefore on Mar 21 only the 

amount of N stored in plant tissue of turnip Pe was assessed (Figure 10). In roots and leaves 22.2 

and 14.9 kg N ha-1 were stored respectively (Figure 10 and Table 7 in Appendix).  
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Until the following soil sampling on May 5, 2000 soil nitrate-N content under April-sown spring 

wheat increased for 22.8, 16.1, 26.8 and 35.3 kg NO3
--N ha-1 after F, Wm, Me and Pe 

respectively and ranged between 32.7 and 48.0 kg ha-1 (Figure 10). Although 22.2 kg N ha-1 

were removed from Pe plots by harvest of roots soil-N increase on these plots was the highest.  

 

The amount of residual soil nitrate on Aug 14, 2000 (Figure 10), after the harvest of spring 

wheat, ranged between 14.8 and 18.0 kg NO3
--N ha-1 showing no considerable differences 

according to different catch crop management in previous year. 

 

Total N uptake of spring wheat was 63.3, 75.3, 65.0 and 58.6 kg N ha-1 on F, Wm, Me and Pe 

treatments respectively (Figure 10). N uptake of spring wheat after Wm was thus significantly 

higher than N uptake after turnip Pe but not significantly higher from N uptake on F and Me 

plots.  

 

 

Second year 2001 

In the second year soil nitrate-N on F plots decreased during the winter from 93.5 (Nov 27, 2000, 

Figure 3) to 44.4 kg ha-1 (Feb 14, 2001, Figure 11). On the other hand the amount of soil nitrate-

N on Wm plots increased during the winter from 21.3 to 70.3 kg ha-1 and was thus significantly 

higher than under both turnip cultivars. The amount of soil NO3
--N on turnip plots remained on 

the same level as before winter thus ranging between 32.7 and 34.3 kg ha-1. 

 

On the March 20 (Figure 11) soil nitrate content on Wm plots was 75.6 kg NO3
--N ha-1 thus 

significantly higher than on all other plots where the content of soil nitrate ranged between 24.0 

(F) and 36.6 (Pe) kg NO3
--N ha-1.  

 

As in the first experimental year Wm and turnip Me were destroyed by frost during the winter. 

Thus, figure 11 shows only data for N stored in turnip Pe at the time of spring harvest (Mar 28, 

2001). Total amount of N stored in turnip Pe was 81.6 kg N ha-1. Compared with 119.5 kg N ha-1 

stored in turnip Pe before winter (Nov 27, 2000, Figure 3).  

 

On May 9 (Figure 11), soil nitrate content on all plots remained more or less on the same level as 

on March 20, with slight increase (4.3 to 10.7 kg NO3
--N ha-1) on Wm, Me and Pe plots. 

 



 41

Between May 9 and June 13 spring wheat functioned as an efficient nitrogen sink taking up 59.7, 

86.8, 64.8 and 77.5 kg N ha-1 on F, Wm, Me and Pe plots. As a result no nitrate was found in the 

soil on June 13 (Figure 11). 
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Figure 11: Effect of catch crop treatments on soil nitrate after winter and N uptake of spring 

wheat (2001). In 2000 precrop potato. F: fallow, Wm: white mustard, turnips Me: 

Market Express F1 and Pe: Petrowski; (Tukey; α=0.05).  

 

At the time of grain harvest of spring wheat soil nitrate on all plots ranged between 12.1 and 6.9 

kg NO3
--N ha-1 (Figure 11). Total N uptake of spring wheat was 99.3, 138.9, 124.8 and 113.2 on 

F, Wm, Me and Pe treatments respectively. N uptake of spring wheat grown on Wm plots was 

thus significantly higher than on F and Pe plots but not significantly higher than N uptake of 

spring wheat on Me plots. There was no significant difference in N uptake of spring wheat 

grown on turnip plots (Me and Pe) however N uptake of spring wheat on Me plots was 

significantly higher than N uptake on F plots.  
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5.3.2 Precrop faba beans 

 

First year 

When soil was not tilled in previous autumn and catch crops were left on the field during the 

winter the amount of soil nitrate on fallow plots decreased from 52.1 (Dec 3, 1999, Figure 4) to 

17.0 kg NO3
--N ha-1 (Mar 21, 2000, Figure 12). The amount of soil-N under Wm increased 

during the winter from 21.1 (Dec 3, 1999, Figure 4) to 31.5 kg NO3
--N ha-1 (Mar 21, 2000, 

Figure 12). Under Me the amount of soil nitrate remained approximately on the same level 

whereas on Pe plots a decrease of 21.1 kg NO3
--N ha-1 was recorded. 
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Figure 12: Effect of catch crop treatments on soil nitrate after winter and N uptake of spring 

wheat (2000). In 1999 precrop faba beans. F: fallow, Wm: white mustard, turnips 

Me: Market Express F1 and Pe: Petrowski; (Tukey; α=0.05).  

 

Wm and Me after faba beans were destroyed by frost during the winter. Thus figure 12 contains 

only the amount of stored N in turnip Pe. It shows that 30.9 and 29.5 kg N ha-1 were stored in 

roots and leaves respectively.  

 

At the soil sampling on May 5 soil nitrate under April-sown spring wheat increased on all plots 

and ranged between 32.7 and 48.0 kg NO3
--N ha-1. These results indicate that nitrogen sink 
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capacity of spring wheat at this time did not follow the mineralization of catch crop residues and 

soil organic matter. As a consequence between 50 and 70 % of soil nitrate were present in the 

upper 0 - 30 cm soil layer (Figure 12). 

 

The highest total N uptake of spring wheat at final harvest was recorded on Wm plots 97.5 kg N 

ha-1 followed by N uptakes of 94.4, 81.9 and 79.4 kg N ha-1 on Me, F and Pe plots. Anyway 

these differences were not significant (Figure 12). 

 

Soil nitrate content measured after the spring wheat harvest (Aug 14) was low ranging between 

9.6 and 13.8 kg NO3
--N ha-1. However on Wm plots soil nitrate content was about 4 kg NO3

--N 

ha-1 higher than on F and Me plots. 

 

 

Second year 

During the winter in the second year (2001) the amount of soil nitrate decreased on F plots, 

increased on Wm plots and remained approximately on the same level under both turnips. 

Consequently the amount of soil nitrate on F and Wm plots recorded on Feb 14 was 41.6 and 

38.4 kg NO3
--N ha-1 respectively thus significantly higher than under both turnips where 19.6 

and 18.9 kg NO3
--N ha-1 for Me and Pe were recorded respectively (Figure 13). 

 

On Mar 20 a further reduction of soil nitrate for 19.4 kg NO3
--N ha-1 was observed on F plots. 

Thus, the amount of soil nitrate on F, Me and Pe plots was on the same level ranging between 

20.4 and 22.8 kg NO3
--N ha-1. The amount of soil nitrate on Wm plots was 45.3 kg NO3

--N ha-1 

thus significantly higher compared with other treatments.  

 

Turnip Pe was not destroyed by frost as both other catch crops, thus on Mar 28, 2001 22.5 and 

47.3 kg N ha-1 were assessed in leaves and roots respectively (Figure 13 and Table 7 in 

Appendix).  

 

On May 9 an increase in soil nitrate was observed on all plots (Figure 13). On Wm plots the 

amount of soil nitrate reached 63.9 kg NO3
--N ha-1 which was significantly higher than on F, Me 

and Pe plots with 33.3, 41.6 and 41.3 kg NO3
--N ha-1 respectively. These data indicate that N 

uptake of spring wheat sown on April 3, 2001 was not able to follow a rapid mineralization of 

plant residues and soil organic matter. Because nitrate content under both turnips at this time was 

equal it would seem that N export of 47.3 kg N ha-1 from the field with spring harvest of Pe roots 
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did not substantially influence the amount of soil nitrate available to the first following crop - 

spring wheat. 
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Figure 13: Effect of catch crop treatments on soil nitrate after winter and N uptake of spring 

wheat (2001). In 2000 precrop faba beans. F: fallow, Wm: white mustard, turnips 

Me: Market Express F1 and Pe: Petrowski; (Tukey; α=0.05).  

 

Between May 9 and June 13 (Figure 13) spring wheat functioned as an effective nitrogen sink 

thus less than 2.0 kg NO3
--N ha-1 was found in the soil layer 0 - 90 cm. At growth analysis 

sampling on June 12, 2001 spring wheat tillers contained 44.8, 68.0, 52.5 and 49.4 kg N ha-1 on 

F, Wm, Me and Pe plots respectively. N uptake of 68.0 kg N ha-1 on Wm plots was significantly 

higher compared to the other treatments. In this aspect N uptake of spring wheat corresponded 

well to the soil nitrate content determined on May 9, 2001.  

 

After spring wheat harvest the amount of soil nitrate recorded on Aug 6 ranged between 6.7 and 

8.6 kg NO3
--N ha-1 without significant differences between different treatments in previous 

autumn (Figure 13). The significantly highest N uptake of spring wheat was found on Wm plots 

(128.3 kg N ha -1) followed by the N uptake on turnip plots (102.0 kg N ha-1) and F plots (89.3 

kg N ha-1).  
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5.3.3 Discussion 

 

Soil nitrate dynamics after winter (spring wheat treatment) 

When catch crops were left on the field over the winter and the soil remained untilled, the type of 

a catch crop significantly influenced the amount of soil nitrate in the following spring. Under 

both turnips, the soil nitrate status in spring did no differ considerably and remained 

approximately on the same level as before winter. Although the biomass of cv. Me was nearly 

decayed during both winters and up to 81.6 kg N ha-1 were stored in plant tissue of cv. Pe, this 

did not have a significant impact on the amount of soil nitrate in spring.  

 

On contrary under Wm the amount of soil nitrate increased during the winter and was thus in 

spring significantly higher compared with soil nitrate content under both turnips. It can be thus 

supposed that the plant tissue of Wm left on the field was a subject of a rapid decomposition 

already during the winter thus releasing a substantial amount of nitrogen into the soil nitrate 

pool. However according to C:N ratio which was lower in turnip leaves compared with leaves of 

white mustard (Table 9 in Appendix) faster mineralization of turnips would be expected. It is 

namely generally accepted that residues with a high C:N ratio decompose more slowly 

(REINERTSEN et al. 1984, WAGGER 1989, VIGIL & KISSEL 1991, QUEMADA & CABRERA 1995). In 

the case of our study the persistency of a catch crop against frost had probably dominated the 

mineralization processes during the winter and spring thus non-persistent white mustard decayed 

faster than winter hardy turnips. Similar results were obtained by BERGER & KRETSCHMER 

(1991) who reported a loss of over 90 kg N ha-1 from Wm biomass left on the field and a 

corresponding increase in soil nitrate during and after the winter. Present data are also consistent 

with results of THORUP-KRISTENSEN (1994) who found soil mineral nitrogen content under Wm 

in spring of more than 80 kg ha-1 and more than 100 kg ha-1 under fodder radish, whereas the 

mineral nitrogen under persistent catch crops (winter rape) in spring was less than 40 kg ha-1.  

 

When the soil remained untilled the amount of soil nitrate under the fallow treatment decreased 

during the winter. Compared with plots that were tilled and sown with winter wheat in the 

autumn the amount of soil nitrate on untilled fallow plots was up to 36.9 kg NO3
--N ha-1 lower. 

Higher soil nitrate content under winter wheat could be attributed to the additional N 

mineralization caused by a secondary tillage needed to create a seed bed for this crop (FRANCIS 

et al. 1998). By ploughing the soil organic matter is exposed to oxygen and thus the 

decomposition is stimulated resulting in an increased nitrogen release (GOSS et al. 1988).  
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Further on in the growing season no considerable differences in soil nitrate content in spring 

were found between both turnip cultivars and fallow treatment. These results suggest that plant 

residues of turnips did not largely contribute to mineralisation - immobilisation processes early 

in spring. Also the N export from the field between 22.2 and 59.6 kg ha-1 in the spring (Figures 

10, 11, 12 and 13), with turnip roots of cv. Petrowski, did not largely affect the amount of soil 

nitrate. On the other hand Wm residues were subject to substantial decomposition. Thus the 

amount of soil nitrate at the beginning of May (up to 80 kg NO3
--N ha-1) was significantly higher 

compared to other treatments (F, Me and Pe in both years after both precrops) where 23.9 to 45.9 

kg NO3
--N ha-1 were recorded.  

 

These results demonstrate that a nitrogen supply of spring wheat grown after Wm which decayed 

over the winter was to some extent better than after fallow and turnips. Indeed yield and N 

uptake of spring wheat, at the final harvest, after Wm were, in general, higher than after turnips 

and fallow. Because yield and N uptake of spring wheat after turnip Me were, in general, higher 

than after bare soil, it can be assumed that some additional N was released from turnip Me 

residues later in the growing season.  

 

5.3.4 Resume 

I When catch crops were left on the field over the winter the type of a catch crop influenced the 

amount of soil nitrate in the following spring. After turnips soil nitrate status in spring 

remained approximately on the same level as before winter. After Wm the amount of soil 

nitrate during the winter increased and after fallow soil nitrate content decreased. 

 

II Incorporation of turnip plant residues and N export from the field with turnip roots in spring 

did not largely affect the soil nitrate content. On the other hand Wm residues were subject to a 

substantial decomposition. As a consequence the amount of soil nitrate after seed bed 

preparation on Wm plots increased and was thus significantly higher than after turnips or 

fallow.  

 

III When catch crops were left intact on the field over the winter and were incorporated in spring 

at seed bed preparation increased N uptake of spring wheat was recorded in comparison with 

fallow treatment. The positive effect of catch crops on N uptake was in the following order 

Wm > Me > Pe ≥ F. Export of nitrogen with roots of turnip Pe in spring decreased N uptake 

of spring wheat. 
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5.4 Catch crop effects on following winter wheat 

 

5.4.1 First experimental year 1999 / 2000 

 

Precrop potatoes 

In the first experimental year 1999 - 2000 DM yield of winter wheat grain and straw after 

potatoes did not show significant differences according to different catch crop treatments in 

previous autumn (Table 9). However grain and straw DM yields tended to be the highest on F 

plots followed by Wm, Me and Pe plots.  

 

Nevertheless, previous cultivation had significantly influenced Nt concentration in DM and the 

corresponding N uptake of the following winter wheat. When grown after fallow Nt 

concentration in DM of grain and straw was significantly higher than after catch crop treatments.  

 
Table 9: Yield parameters and N uptake of winter wheat following potatoes and different catch 

crop treatments. Harvest time August 1, 2000. 

 
   

Treatment Fallow  W. mustard  M. Express  Petrowski 
         

GRAIN        
    DM yield (t ha-1) 4.80  4.16  4.00  3.97 

    Ears (m-2) 330b  305ab  297ab  288a

    Nt (% DM) 1.78b  1.62a  1.61a  1.63a

    Nupt. (kg ha-1) 85.3b  67.0ab  64.5a  64.8a

STRAW        
    DM yield (t ha-1) 4.39  3.68  3.64  3.51 

    Nt (% DM) 0.50b  0.36a  0.39a  0.38a

    Nupt. (kg ha-1) 21.9b  13.3a  14.0a  13.4a

TOTAL        
    N upt. (kg ha-1) 107.1b  80.3a  78.5a  78.2a

Values within a row are significantly different (Tukey; α=0.05) if followed by different letters. 

 

As a consequence of a higher DM yield and higher Nt concentration in DM, winter wheat grown 

on previously fallowed plots had taken up significantly more N than after catch crops (Table 9, 

Figure 6). N uptake of grain and straw after fallow was 85.3 and 21.9 kg ha-1 respectively.  
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Precrop faba beans 

Winter wheat sown after faba beans in the first year established so poorly (bird damage) that it 

was resown to spring wheat. Table 10 shows therefore spring wheat replacing failed winter 

wheat.  

 

It can be seen that spring wheat developed low but very identical DM yields of grain and straw 

after all treatments. Nevertheless Nt concentration in grain DM of spring wheat grown after 

fallow was with 2.12 % significantly higher as in grain DM of spring wheat grown after catch 

crops. The highest Nt concentration in DM of straw was also found on F plots. With 0.65 % it 

was significantly higher as Nt concentration in DM of straw from Pe plots.  

 

Table 10: Yield parameters and N uptake of winter wheat re-sown to spring wheat following 

faba beans and different catch crop treatments. Harvest time August 10, 2000. 

 
   

Treatment Fallow  W. mustard  M. Express  Petrowski 
         

GRAIN        
    DM yield (t ha-1) 2.96  3.00  2.99  3.02 

    Ears (m-2) 422  417  407  395 

    Nt (% DM) 2.12b  1.97a  1.90a  1.87a

    Nupt. (kg ha-1) 62.8  59.0  56.7  56.4 

STRAW        
    DM yield (t ha-1) 2.06  2.03  2.11  2.16 

    Nt (% DM) 0.65b  0.56ab  0.61ab  0.55a

    Nupt. (kg ha-1) 9.6  8.7  6.8  9.3 

TOTAL        
    N upt. (kg ha-1) 72.4  67.7  63.5  65.7 

Values within a row are significantly different (Tukey; α=0.05) if followed by different letters. 
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5.4.2 Second experimental year 2000 / 2001 

 

Precrop potatoes: first growth analysis sampling 

At the first growth analysis sampling of winter wheat (May 11, 2001) no significant differences 

in DM yield, Nt concentration in DM and N uptake were determined. However the same 

tendency was observed at all three parameters with the highest values recorded on Wm plots 

followed by Pe, F, and Me plots (Table 11). 

 

Table 11: Shoot dry matter yield and N uptake of winter wheat following potatoes and different 

catch crop treatments. First growth analysis sampling on May 11, 2001. 

 
   

Treatment Fallow  W. mustard  M. Express  Petrowski 
         

SHOOT        
    DM yield (t ha-1) 1.79  1.91  1.72  1.86 

    Nt (% DM) 2.03  2.16  2.02  2.08 

    Nupt. (kg ha-1) 36.1  41.4  34.8  38.7 

Values within a row are significantly different (Tukey; α=0.05) if followed by different letters. 

 

 

Precrop faba beans: first growth analysis sampling 

After faba beans DM yield of winter wheat at the first growth analysis sampling was not 

significantly influenced by different catch crop treatments in previous autumn. Nevertheless DM 

yield showed the same tendency as after potatoes with the highest yield of 1.69 t ha-1 on Wm 

plots followed by 1.59, 1.42 and 1.37 t ha-1 of DM on Pe, F and Me plots (Table 12).  

 

Table 12: Shoot dry matter yield and N uptake of winter wheat following faba beans and 

different catch crop treatments. First growth analysis sampling on May 11, 2001. 

 
   

Treatment Fallow  W. mustard  M. Express  Petrowski 
         

SHOOT        
    DM yield (t ha-1) 1.42  1.69  1.37  1.59 

    Nt (% DM) 2.07b  2.11b  1.81a  1.84a

    Nupt. (kg ha-1) 29.5ab  36.0b  24.8a  29.4ab

Values within a row are significantly different (Tukey; α=0.05) if followed by different letters. 
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Nt concentration in wheat DM on Wm and F plots was significantly higher than those after both 

turnips (Table 12). Consequently N uptake of winter wheat on Wm plots was significantly higher 

than after turnip Me but not significantly higher as N uptake of winter wheat on F and Pe plots..  

 

 

Precrop potatoes: second growth analysis sampling 

On June 7 DM yield, Nt in DM and corresponding N uptake of winter wheat grown after 

potatoes showed no significant differences according to different catch crop treatments (Table 

13). However DM yield, Nt in DM and corresponding N uptake of winter wheat tended to be the 

highest on F plots. The most evident difference was observed by total N uptake where winter 

wheat grown on F plots took up almost 30 kg ha-1 more than on plots previously grown with 

catch crops. 

 

Table 13: Yield parameters and N uptake of winter wheat following potatoes and different catch 

crop treatments. Second growth analysis sampling on June 7, 2001. 

 
   

Treatment Fallow  W. mustard  M. Express  Petrowski 
         

EAR        
    DM yield (t ha-1) 1.24  1.11  1.08  1.14 

    Nt (% DM) 1.59  1.52  1.54  1.54 

    Nupt. (kg ha-1) 20.1  16.8  16.7  17.6 

STEM        
    DM yield (t ha-1) 6.52  5.96  5.46  5.71 

    Nt (% DM) 1.33  1.08  1.22  1.14 

    Nupt. (kg ha-1) 90.8  64.8  67.5  64.6 

TOTAL        
    N upt. (kg ha-1) 110.8  81.6  84.2  82.2 

Values within a row are significantly different (Tukey; α=0.05) if followed by different letters. 
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Precrop faba beans: second growth analysis sampling 

On June 7 DM yield of winter wheat after faba beans was significantly higher on Wm plots as on 

turnip plots but not significantly higher as on F plots (Table 14). The same tendency was 

observed by N uptake. Accordingly N uptake of winter wheat grown on F and Wm plots was 

higher as on turnip plots.  

 

Table 14: Yield parameters and N uptake of winter wheat following faba beans and different 

catch crop treatments. Second growth analysis sampling on June 7, 2001. 

 
   

Treatment Fallow  W. mustard  M. Express  Petrowski 
         

EAR        
    DM yield (t ha-1) 0.99bc  1.04c  0.81a  0.84b

    Nt (% DM) 1.53  1.52  1.47  1.49 

    Nupt. (kg ha-1) 15.1bc  15.8c  12.0a  12.6ab

STEM        
    DM yield (t ha-1) 5.00ab  5.87b  4.20a  4.51a

    Nt (% DM) 1.22  0.99  0.99  1.04 

    Nupt. (kg ha-1) 59.7b  58.7ab  42.1a  47.2ab

TOTAL        

    N upt. (kg ha-1) 74.9b  74.5b  54.0a  59.7ab

Values within a row are significantly different (Tukey; α=0.05) if followed by different letters. 

 

 

Final harvest 

At final harvest of winter wheat after potatoes and faba beans no significant differences in any of 

evaluated parameters were recorded between Wm, Me and Pe plots. On the contrary winter 

wheat grown on F plots after both precrops gave higher DM yields, higher Nt concentration in 

DM and higher N uptake. After potatoes these differences were mainly statistically significant 

whereas after faba beans none of the differences reached statistical significance (Table 15 and 

16). 

 

Final harvest (precrop potatoes) 

After potatoes bare fallow significantly increased grain, straw and total N uptake of winter wheat 

compared with catch crop treatments. Thus total N uptake of winter wheat of 136.6 kg ha-1 was 

recorded on F plots. This was 22.4 - 24.2 kg N ha-1 more than on catch crop plots (Table 15). 
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Though 0.48 t ha-1 higher than on catch crop plots, DM yield on F plots (6.47 t ha-1) failed to be 

statistically significant. Nt concentration in DM of grain and straw on F plots was significantly 

higher compared with Wm plots but not significantly higher compared with turnip plots (Table 

15). 

 

Table 15: Yield parameters and N uptake of winter wheat following potatoes and different catch 

crop treatments. Final harvest July 26, 2001. 

 
.   

Treatment Fallow  W. mustard  M. Express  Petrowski 
         

GRAIN        
    DM yield (t ha-1) 6.47  5.99  5.74  5.85 

    Ears (m-2) 486  449  427  443 

    Nt (% DM) 1.68b  1.53a  1.59ab  1.60ab

    Nupt. (kg ha-1) 109.1b  93.1a  92.5a  91.8a

STRAW        
    DM yield (t ha-1) 6.43b  6.69c  5.88a  5.99a

    Nt (% DM) 0.42b  0.31a  0.34ab  0.34ab

    Nupt. (kg ha-1) 27.4b  21.1a  21.5a  20.6a

TOTAL        
    N upt. (kg ha-1) 136.6b  114.2a  114.0a  112.4a

Values within a row are significantly different (Tukey; α=0.05) if followed by different letters. 

 

 

Final harvest (precrop faba beans) 

After faba beans the highest grain DM yield of winter wheat (5.03 t ha-1) was recorded on F plots 

(Table 16). Due to the highest DM yield and a Nt concentration in grain DM of 1.52 %, also the 

highest N uptake with winter wheat grain of 77.5 kg ha-1 was recorded on F plots.  

 

Total N uptake of winter wheat after faba beans was 95.8, 85.2, 84.1 and 83.3 kg ha-1 on F, Wm, 

Me and Pe plots respectively. Thus N uptake on F plots was 10.6, 11.7 and 12.5 kg ha-1 higher 

than on Wm, Me and Pe plots respectively.  
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Table 16: Yield parameters and N uptake of winter wheat following faba beans and different 

catch crop treatments. Final harvest July 26, 2001. 

 
   

Treatment Fallow  W. mustard  M. Express  Petrowski 
         

GRAIN        
    DM yield (t ha-1) 5.03  4.73  4.55  4.58 

    Ears (m-2) 454  401  416  440 

    Nt (% DM) 1.52  1.44  1.49  1.49 

    Nupt. (kg ha-1) 77.5  69.0  68.2  67.6 

STRAW        
    DM yield (t ha-1) 5.10  5.15  4.85  4.85 

    Nt (% DM) 0.36  0.31  0.35  0.34 

    Nupt. (kg ha-1) 18.3  16.2  15.9  15.7 

TOTAL        
    N upt. (kg ha-1) 95.8  85.2  84.1  83.3 

Values within a row are significantly different (Tukey; α=0.05) if followed by different letters. 

 

 

5.4.3 Discussion 

 

Catch crop effects on following winter wheat 

In both experimental years there was a consistent evidence for a negative effect of catch crop 

growth and their incorporation on DM yield, Nt concentration in DM and total N uptake of a 

subsequent winter wheat crop. In both years winter wheat DM yield and total N uptake (grain 

and straw) at final harvest were the highest when soil was fallowed and no catch crop residues 

were incorporated at the time of sowing in autumn. However there were no significant 

differences between catch crops 

 

In the field the first differentiation between winter wheat on F plots and winter wheat on plots 

previously cropped with catch crops were in both years visible at the end of May and the 

beginning of June and were expressed with a darker green colour of winter wheat grown on F 

plots (Table 10 in Appendix). This is in agreement with results of growth analysis sampling 

accomplished in the second year when winter wheat on F plots in May was not yet developing as 

good as on Wm plots (Tables 11 and 12) and showed its superior growth not before second 

sampling at the beginning of June (Tables 13 and 14).  
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From the present results, it can thus be concluded that winter wheat on F plots was at the end of 

April or beginning of May supplied with more nitrogen compared to catch crop plots. A rapid 

uptake of nitrogen can be achieved at this stage of crop maturity (EC 30 - EC 59) because its root 

system is fully developed, leaf area is big and allows larger transpiration stream (BARRACLOUGH 

1986). The N uptake is faster than the DM production, therefore the concentration of nitrogen in 

plant tissue increases resulting in a darker green colour of wheat leaves (Table 10 in Appendix).  

 

From figures 7 and 9, showing soil nitrate status in the second experimental year, it can be seen 

that under F plots in the spring (Feb 14 and Mar 20, 2001) there were substantial amounts of 

nitrate (20 to 40 kg NO3
--N ha-1 more than under catch crop plots) in the 60 - 90 cm soil layer 

and that this nitrate was not any more present at soil sampling on May 9. Evidently winter wheat 

roots in April reached and took up efficiently the nitrate from the 60 - 90 cm soil layer. This 

corresponds to results of BARRACLOUGH (1986) who found winter wheat roots reaching a 100 

cm depth at the end of April.  

 

Catch crops in present study decreased grain yield of following winter wheat between 6 - 17 % 

compared to F and the total N uptake of winter wheat grown after catch crops was reduced up to 

28.9 kg ha-1. Similar results were reported by MARTINEZ & GUIRAUD (1990) who found maize 

and wheat yields to be 10 - 13 % lower on plots where the ryegrass had been used as a catch 

crop. The highest average grain yield of winter wheat after the cultivated fallow was also 

reported by MCEWEN et al. (1989) and OPITZ VON BOBERFELD & JASPER (1994) concluding that 

the main effect was due to N-supply since yields after catch crops could be compensated by 

mineral N-fertilisation. The reduction in winter wheat yield and N uptake were also reported in 

other studies (MARTINEZ & GUIRAUD 1990, JENSEN 1992) and were attributed either to extensive 

net N immobilisation during the decomposition of catch crop residues or to pre-emptive 

competition (THORUP-KRISTENSEN 1993) both resulting in a temporary N deficiency in the 

following winter wheat crop.  

 

However decrease in total DM yield and corresponding N uptake of winter wheat were not 

influenced by N export of 33.8 - 52.5 kg N ha-1 from the field with turnip roots in autumn 

because there were no significant differences after all three catch crops. 

 

Plant density at final harvest in both years after potatoes and faba beans (Tables 9, 15 and 16) 

suggest that lower DM yield of winter wheat on catch crop plots (Wm, Me and Pe) was to a 

certain extent caused by less ears per m2. These results correspond well with findings of 
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OLESZEK (1987), BIALY et al. (1990) and VAUGHN & BOYDSTON (1997), who reported 

substantial reduction of wheat germination caused by allelochemicals released from decaying 

brassica green manure. They all explain toxic effects with the presence of glucosinolates and 

their toxic hydrolytic break-down products. KUTACEK (1964) demonstrated that extracts of 

various brassica vegetables inhibited the growth of wheat. A similar effect was observed with 

isolated 3-indolylmethyl glucosinolate. After the catch crop incorporation it is likely that some 

toxic (allelophatic) substances appear and their break-down products are released from the 

decaying plant material influencing soil micro-organisms and growing plants (BROWN et al. 

1991, SHEPHERD 1999, PETERSEN 1999).  

 

5.4.4 Resume 

I   A decrease in grain DM yield of winter wheat between 6 - 17 % were recorded when Wm, Me 

and Pe catch crops were grown between potato – winter wheat or faba bean – winter wheat 

cropping sequence.  

 

II Compared to bare fallow catch crops reduced grain and straw Nt concentration in DM and 

corresponding N uptake of following winter wheat. 

 

III There were no differences between catch crops according to the yield of following winter 

wheat. N export from the field with turnip roots and incorporation of various residues with 

different amounts of residue N in autumn did not affect DM yield, Nt concentration in DM 

and corresponding N uptake of winter wheat. This indicates that nitrogen taken up by catch 

crops did not have a significant role in nitrogen nutrition of subsequent winter wheat crop. 
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5.5 Catch crop effects on following spring wheat 

 

5.5.1 First experimental year 1999 / 2000 

 

Precrop potatoes 

In the first experimental year 1999 - 2000 spring wheat after potatoes did not show significant 

differences according to different catch crop treatment in previous autumn (Table 17). The 

exception was just the total N uptake on Wm plots which was significantly higher compared to 

Pe plots. 

 

Though differences were not significant there was a clear tendency by all observed parameters. 

The highest values for DM yield, Nt concentration in DM and N uptake were always determined 

for spring wheat on Wm plots followed usually by spring wheat grown on Me, F and Pe plots 

(Table 17). 

 

Grain DM yield ranged between 1.78 and 2.07 t ha-1 with Nt concentration in DM of 2.02 - 2.20 

%. Straw DM yield was between 3.37 t ha-1 on Pe and 3.84 t ha-1 on Wm plots with Nt 

concentration in DM between 0.64 and 0.77 % (Table 17). The highest total N uptake of spring 

wheat (75.3 kg N ha-1) was determined on Wm plots.  

 

Table 17: Yield parameters and N uptake of spring wheat following potatoes and different catch 

crop treatments. Harvest time August 10, 2000. 

 
   

Treatment Fallow  W. mustard  M. Express  Petrowski 
         

GRAIN        
    DM yield (t ha-1) 1.78  2.07  2.00  1.81 

    Ears (m-2) 303  317  313  368 

    Nt (% DM) 2.11  2.20  2.02  2.06 

    Nupt. (kg ha-1) 37.3  45.5  40.3  37.1 

STRAW        
    DM yield (t ha-1) 3.65  3.84  3.84  3.37 

    Nt (% DM) 0.71  0.77  0.65  0.64 

    Nupt. (kg ha-1) 26.0  29.8  24.7  21.5 

TOTAL        
    N upt. (kg ha-1) 63.3ab  75.3b  65.0ab  58.6a

Values within a row are significantly different (Tukey; α=0.05) if followed by different letters. 
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Precrop faba beans 

In the first year after faba beans spring wheat grown on Wm, Me and Pe plots showed no 

significant differences in any of evaluated parameters (Table 18). However the lowest values for 

DM yield, Nt concentration in DM and N uptake were determined on Pe plots. On the other hand 

spring wheat grown on F plots had significantly lower grain and straw DM yield compared with 

spring wheat on Me plots.  

 

Grain and straw DM yields of spring wheat with corresponding N uptake on Wm and Me plots 

were higher then on F and Pe plots. Consequently total N uptake of spring wheat was 97.5 and 

94.4 kg ha-1 on Wm and Me plots and 81.9 and 79.4 kg ha-1 on F and Pe plots respectively (Table 

18).  

 

Table 18: Yield parameters and N uptake of spring wheat following faba beans and different 

catch crop treatments. Harvest time August 10, 2000. 

 
   

Treatment Fallow  W. mustard  M. Express  Petrowski 
         

GRAIN        
    DM yield (t ha-1) 2.65a  3.26ab  3.41b  2.83ab

    Ears (m-2) 401  407  373  347 

    Nt (% DM) 2.01  2.02  1.88  1.89 

    Nupt. (kg ha-1) 53.4  66.0  64.0  53.3 

STRAW        
    DM yield (t ha-1) 4.39a  5.37ab  5.60b  4.89ab

    Nt (% DM) 0.65b  0.59ab  0.54a  0.53a

    Nupt. (kg ha-1) 28.6  31.5  30.4  26.1 

TOTAL        
    N upt. (kg ha-1) 81.9  97.5  94.4  79.4 

Values within a row are significantly different (Tukey; α=0.05) if followed by different letters. 
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5.5.2 Second experimental year 2000 / 2001 

 

At growth analysis sampling on June 12 in the second experimental year spring wheat DM yield, 

Nt in DM and corresponding N uptake were the highest after Wm (Tables 19 and 20).  

 

Table 19: Shoot dry matter yield and N uptake of spring wheat following potatoes and different 

catch crop treatments. Growth analysis sampling on June 12, 2001. 

 
   

Treatment Fallow  W. mustard  M. Express  Petrowski 
         

SHOOT        
    DM yield (t ha-1) 3.10  3.70  3.25  3.67 

    Nt (% DM) 1.94  2.34  2.00  2.11 

    Nupt. (kg ha-1) 59.7  86.8  64.8  77.5 

Values within a row are significantly different (Tukey; α=0.05) if followed by different letters. 

 

After potatoes spring wheat showed no significant differences according to different catch crop 

treatments in previous autumn. Anyway there was an obvious tendency by all observed 

parameters. The highest DM yield, Nt concentration in DM and N uptake were recorded by 

spring wheat grown on Wm plots, followed by spring wheat on Pe, Me and F plots (Table 19).  

 

Table 20: Shoot dry matter yield and N uptake of spring wheat following faba beans and 

different catch crop treatments. Growth analysis sampling on June 12, 2001. 

 
   

Treatment Fallow  W. mustard  M. Express  Petrowski 
         

SHOOT        
    DM yield (t ha-1) 2.53a  3.16b  2.89ab  2.70a

    Nt (% DM) 1.77a  2.14b  1.82ab  1.82a

    Nupt. (kg ha-1) 44.8a  68.0b  52.5a  49.4a

Values within a row are significantly different (Tukey; α=0.05) if followed by different letters. 

 

At growth analysis sampling on June 12, 2001 after faba beans DM accumulation, Nt 

concentration in DM and N uptake of spring wheat were significantly influlenced by different 

treatments in previous autumn (Table 20). The highest values of DM accumulation, Nt 

concentration in DM and N uptake were determined after Wm. They were significantly higher as 

after F and Pe. N uptake of spring wheat after Wm was significantly higher also from N uptake 

after Me. 
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Further in the growing season, spring wheat on Wm plots showed vigorous growth, thus at the 

final harvest it was superior in all recorded parameters (Tables 21 and 22). The only exceptions 

were Nt concentration in straw and corresponding N uptake after potatoes, which were higher on 

F and Me, plots.  

 

At final harvest in the second year (2001) spring wheat grown after potatoes showed in general 

the same tendency as in the first year (Table 21). The highest DM yield, Nt concentration in DM 

and N uptake were determined on Wm plots followed by spring wheat on Me and Pe plots. With 

exception of grain N uptake and total N uptake which were significantly lower on Pe plots 

compared with Wm plots all other differences between Wm, Me and Pe were not statistically 

significant.  

 

The lowest grain DM yield, corresponding N uptake and total N uptake were determined on F 

plots. Compared with spring wheat on Wm and Me plots these differences were statistically 

significant (Table 21). 

 

Table 21: Yield parameters and N uptake of spring wheat following potatoes and different catch 

crop treatments. Harvest time August 2, 2001.  

 
   

Treatment Fallow  W. mustard  M. Express  Petrowski 
         

GRAIN        
    DM yield (t ha-1) 3.98a  5.36b  4.94ab  4.57ab

    Ears (m-2) 429  508  475  500 

    Nt (% DM) 1.92  2.00  1.87  1.90 

    Nupt. (kg ha-1) 74.0a  107.9c  92.8bc  88.1ab

STRAW        
    DM yield (t ha-1) 4.61  6.17  5.89  5.46 

    Nt (% DM) 0.55b  0.52ab  0.50ab  0.44a

    Nupt. (kg ha-1) 25.3  31.0  32.1  25.1 

TOTAL        
    N upt. (kg ha-1) 99.3a  138.9c  124.8bc  113.2ab

Values within a row are significantly different (Tukey; α=0.05) if followed by different letters. 

 

Catch crop cultivation in previous autumn significantly influenced growth of spring wheat also 

after faba beans (Table 22). DM yield and N uptake of spring wheat were generally significantly 
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higher on catch crop plots compared with spring wheat on F plots. There were no differences in 

spring wheat growth on both turnip plots. On the other hand spring wheat grown on Wm plots 

gave significantly higher DM yields and took up significantly more N as spring wheat on Me, Pe 

and F plots (Table 22).  

 

Table 22: Yield parameters and N uptake of spring wheat following faba beans and different 

catch crop treatments. Harvest time August 2, 2001.  

 
   

Treatment Fallow  W. mustard  M. Express  Petrowski 
         

GRAIN        
    DM yield (t ha-1) 3.85a  5.45c  4.55b  4.49b

    Ears (m-2) 531  509  477  476 

    Nt (% DM) 1.81  1.85  1.73  1.73 

    Nupt. (kg ha-1) 70.1a  99.8c  80.3b  78.9b

STRAW        
    DM yield (t ha-1) 4.25a  5.99c  4.92b  4.92b

    Nt (% DM) 0.45  0.46  0.40  0.43 

    Nupt. (kg ha-1) 19.2  28.6  21.7  23.3 

TOTAL        
    N upt. (kg ha-1) 89.3a  128.3b  102.0a  102.2a

Values within a row are significantly different (Tukey; α=0.05) if followed by different letters. 

 

 

5.5.3 Discussion  

 

Catch crop effects on following spring wheat 

An increase in DM yield and N uptake compared to fallowed soil was observed when catch 

crops were left intact on the field over the winter and incorporated in spring at seed bed 

preparation for spring wheat. At spring incorporation of catch crops N transformation processes 

were significantly affected also by the type of a catch crop. Compared with fallow treatment, the 

positive precrop effect of catch crops ranked as follows: Wm > Me > Pe ≥ F.  

 

The export of nitrogen with roots of turnip Pe in spring between 22.2 and 59.6 kg ha-1 decreased 

DM grain yield between 1 - 17 % in comparison with grain yield of spring wheat after Wm and 

Me and the total N uptake of spring wheat was decreased up to 26.1 kg ha-1. This indicates that 

when incorporated in spring catch crops influenced the nitrogen supply of subsequent spring 
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wheat and that N export of 22 kg ha-1 with roots of turnip Pe generally caused a significant 

reduction in total N uptake of succeeding spring wheat compared with N uptake on Wm plots 

(Figures 10, 11, 12 and 13). 

 

Differences between spring wheat DM yield grown after fallow or after catch crops in the 

present study coincide well with results reported by JUSTUS & KÖPKE (1995) who reported 

spring cereals following faba beans, undersown with brassicas or brassicas used as catch crops, 

to yield up to 1 t ha-1 more than without catch crops. Similar results were reported also by 

THORUP-KRISTENSEN (1994) who found the total DM yield of spring barley following brassica 

catch crops even 2.1 to 4.3 t ha-1 higher than after bare soil. However catch crops caused 

significant yield reduction in the following spring-sown cereal crop in experiments of FRANCIS et 

al. (1998) who attributed this reduction to extensive N immobilisation during the decomposition 

of catch crop residues resulting in temporary N deficiency in the following cereal crop. Reduced 

grain yield and total N uptake of spring wheat after white mustard compared to spring wheat 

after fallow was reported also by REENTS et al. (1997).  

 

The effect of catch crops compared to fallowed soil on the nitrogen uptake of succeeding spring 

wheat in this research varied from -4.7 to 39.6 kg N ha-1. It was mainly related to the amount of 

assimilated N in the previous autumn, to a winter hardiness of the catch crop, its management 

(root export) and the extent of soil nitrogen pool in spring. 

 

5.5.4 Resume 

I  An increase in DM yield and N uptake compared to fallowed soil was observed when catch 

crops were left intact on the field over the winter and incorporated in spring at seed bed 

preparation. 

 

II Compared with fallow treatment, the positive precrop effect of catch crops ranked as follows: 

Wm > Me > Pe ≥ F. 

 

III Nitrogen export from the field with roots had a negative influence on growth of following 

spring wheat. 
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5.6 Chemical composition and alimentary value of turnips 

 

5.6.1 Dry matter content 

 

Within all trials the DM content of turnip leaves varied from 6.6 to 9.5 % for Me and between 

7.5 and 12.0 % for Pe. DM content of Pe leaves was in both years after both precrops higher 

compared with Me (Table24). 

 

Table 23: Root and leaf DM content of turnips. 

 
      

Year                       1999                                         2000                  

Previous crop  Potatoes  Faba beans Potatoes  Faba beans 
    

   

 
 

DM (%)  

Market Express F1 Root   3.6   3.7 3.7   4.8 

 Leaf   9.5   8.1 6.6   9.0 

Petrowski Root   8.1   8.3 6.4   8.4 

 Leaf 12.0 10.4 7.5 10.5 

White mustard Shoot 21.6 15.9 11.6 12.3 

 

The DM content of roots ranged from 3.6 to 4.8 % for Me and from 6.4 to 8.4 % for Pe. In both 

years, after both precrops, DM content of leaves of cultivar Pe was higher than the one of Me. 

Within the same year and precrop treatment the proportion in root DM concentration and leaf 

DM content of both cultivars remained constant. 

 

The DM content in shoots of Wm was always higher than in turnip leaves. In the first year the 

difference in Wm DM content after potatoes and faba beans was nearly 6 %. However in the 

second year DM content was approximately the same after both precrops.  

 

 

5.6.2 Mineral content  

 

Mineral content in DM of turnip roots ranged in both years for P between 0.404 - 0.637 %, for K 

between 2.157 - 5.920 %, for S between 0.560 - 0.845 %, for Mg between 0.143 - 0.265 % and 

for Ca between 0.608 - 2.329 %. These results correspond with the previously reported data (see 

Tab. 11 in Appendix).  
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Table 24: Mineral content of turnip roots (DM basis). 

 
   

Year                     1999                                        2000                    

Previous crop Potatoes Faba beans Potatoes Faba beans 

Cultivar Me Pe Me Pe Me Pe Me Pe 
    

   

Mineral  

 

% DM  

P 0.524 0.416 0.485 0.416 0.637 0.510 0.424 0.404 

K 4.434 2.157 5.133 2.557 5.920 3.566 4.216 2.608 

S 0.772 0.845 0.633 0.641 0.560 0.757 0.584 0.599 

Mg 0.264 0.245 0.196 0.181 0.265 0.211 0.167 0.143 

Ca 1.568 2.329 1.333 1.460 1.033 0.814 0.684 0.608 

 

According to Table 24 the content of P in DM of turnip roots showed no characteristic tendency 

with respect to precrop or cultivar. However, K content in DM of Me roots was 1.608 to 2.576 % 

higher than K content in DM of Pe roots. In contrast, S content was always higher in Pe roots. 

Mg and Ca contents were more influenced by the precrop as by the cultivar because they were, 

in both years, for both cultivars considerably higher after potatoes. 

 

 

5.6.3 Nitrate concentration 

 

According to Table 25, the nitrate concentration in fresh turnip roots of cv. Me in the year 1999 

was 157 and 234 mg kg-1 FM after potatoes and faba beans respectively. The nitrate 

concentration in Pe roots was lower compared to the concentration in Me roots and was 

amounting 143 mg kg-1 FM after both precrops.  

 

In second experimental year (2000) the nitrate concentration in fresh turnip roots was 

substantially higher than in the first year (1999). Nitrate in Me roots was for 138 and 74 mg kg-1 

FM higher than in the first year after potatoes and faba beans respectively. In Pe roots the nitrate 

concentration after potatoes and faba beans increased for 217 and 99 mg kg-1 FM respectively 

compared to the first year. The highest nitrate concentration in turnip roots (360 mg kg-1 FM) 

was determined in Pe roots after potatoes in the second year. 
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Table 25: Nitrate concentration in fresh turnip roots. 
 
   

Year                     1999                                        2000                    

Previous crop Potatoes Faba beans Potatoes Faba beans 
   
 

 

mg kg-1 FM  

Market Express F1 157 234 295 308 

Petrowski 143 143 360 242 

 

In Table 26 nitrate concentrations in turnip roots are defined as the proportion of NO3
-- N in DM. 

These data show that NO3
-- N concentration in DM of roots in both years after both precrops was 

higher for Me. 

 

Table 26: Proportion of NO3
-- N in DM of turnip roots. 

 
   

Year                     1999                                        2000                    

Previous crop Potatoes Faba beans Potatoes Faba beans 
   
 

 

% DM  

Market Express F1 0.099 0.143 0.180 0.145 

Petrowski 0.040 0.039 0.127 0.065 

 

 

5.6.4 Ascorbic acid 

 

As shown in Table 27 fresh roots of cv. Pe in both years contained more ascorbic acid than roots 

of cv. Me. Ascorbic acid concentration in fresh roots of turnip cultivar Pe in the first year was 

35.7 mg 100-1 g-1 FM and was thus twice as high as the amount of ascorbic acid present in Me 

roots.  

 

Table 27: Ascorbic acid concentration in turnip roots (fresh weight). 

 
   

Year                     1999                                        2000                    

Previous crop Potatoes Faba beans Potatoes Faba beans 
   
 

 

mg 100-1g-1 FM  

Market Express F1 - 17.3 22.2 22.6 

Petrowski - 35.7 27.2 28.1 
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In the second year this difference was smaller since ascorbic acid concentration in Me roots was 

22.2 and 22.6 mg 100-1 g-1 FM after potatoes and faba beans respectively thus only for 5.0 and 

5.5 mg 100-1 g-1 FM lower than in Pe roots. 

 

 

5.6.5 Glucosinolates (GSLs) in turnip roots 

 

In both years higher concentration of total GSLs were found in Pe roots than in Me roots. It 

ranged between 11.4 and 15.2 µmol g-1 (Table 28). The concentration of total GSLs in Me roots 

ranged between 7.9 and 10.9 µmol g-1.  

 

Major GSLs in turnip roots in this research were progoitrin, gluconapin and glucobrassicin. A 

considerable difference between total GSL concentration and GSL profile of both turnip 

cultivars was found.  

 

Table 28: Total glucosinolate concentration of turnip roots (DM basis). 

 
   

Year                     1999                                        2000                    

Previous crop Potatoes Faba beans Potatoes Faba beans 
   
 

 

µmol g-1
 

Market Express F1 10.9 7.9 8.4 9.1 

Petrowski 15.2 12.6 12.5 11.4 

 

Detailed glucosinolate composition is summarised in Table 29. It is evident that the content of 

cv. Me was very low i.e. < 0.1 µmol g-1 in both progoitrin and gluconapoleiferin. In contrast cv. 

Pe showed high progoitrin (2.5 - 3.6 µmol g-1) and a moderate gluconapoleiferin (0.2 - 0.4 µmol 

g-1) concentrations.  

 

In roots of cv. Me gluconapin and glucobrassicin concentrations in both years ranged between 

1.4 - 2.2 µmol g-1 and 1.1 - 2.2 µmol g-1 respectively. Thus they were prevalent GSLs in roots of 

cv. Me. Gluconapin and glucobrassicin were present in high concentration also in roots of cv. Pe. 

Gluconapin concentration in Pe roots ranged between 1.8 and 4.9 µmol g-1. Concentration of 

glucobrassicin in Pe roots was lower, ranging between 0.8 and 1.1 µmol g-1. The concentration 

of 4-Hydroxy-glucobrassicin and glucobrassicanapin in both turnip roots varied between 0.1 and 
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0.7 µmol g-1. The concentration of both GSLs was for 0.1 to 0.3 µmol g-1 higher in Pe roots than 

in Me roots.  

 

Table 29: Individual glucosinolate profile (DM basis) of turnip roots Market Express F1 (Me) 

 and Petrowski (Pe). 

 
   

Year                     1999                                        2000                    

Previous crop Potatoes Faba beans Potatoes Faba beans 

Cultivar Me Pe Me Pe Me Pe Me Pe 
   
 

 

µmol g-1
 

Progoitrin 
2-hydroxy-3-butenyl 

 

< 0.1   
 

2.5 
 

< 0.1    
 

3.2 
 

< 0.1    
 

3.6 
 

< 0.1    
 

2.5 
Gluconapoleiferin 

2-hydroxy-4-pentenyl 

  

< 0.1    
 

0.4 
 

< 0.1    
 

0.2 
 

< 0.1    
 

0.3 
 

0.1 
 

0.2 

Gluconapin 
3-butenyl 

 

2.2 
 

1.8 
 

1.7 
 

1.8 
 

2.2 
 

4.9 
 

1.4 
 

2.2 
4-Hydroxy- 
glucobrassicin 
4-hydroxy-3-indolylmethyl 

 
 

0.2 
 
 

0.5 
 
 

0.2 
 
 

0.3 
 
 

0.5 
 
 

0.7 
 
 

0.3 
 
 

0.5 

Glucobrassicin 
3-indolylmethyl 

 

2.2 
 

0.8 
 

1.2 
 

0.7 
 

1.5 
 

1.1 
 

1.1 
 

1.1 
Glucobrassicanapin 

4-pentenyl 

 

0.4 
 

0.6 
 

0.1 
 

0.3 
 

0.3 
 

0.6 
 

0.1 
 

0.4 
         

 

 

5.6.6 Discussion  

 

Turnips as vegetables 

As a member of botanical family Brassicaceae turnips can contain large quantities of 

glucosinolates (MULLIN et al. 1980). They are important in view of food quality and human 

health since upon hydrolysis toxic substances are released (CARLSON et al. 1981).  

 

The results for total glucosinolate (GSL) concentration in turnip roots reported in this study fall 

within the range reported earlier (CARLSON et al. 1981, CARLSON et al. 1987, SHATTUCK et al. 

1991). However turnip Me was very low in both progoitrin and gluconapoleiferin, which are 

major GSLs found in most turnips (FENWICK et al. 1983, SHATTUCK et al. 1991). This is a typical 

characteristic of cultivars, grown for human consumption, originating from Japan (CARLSON et 

al. 1981, CHONG et al. 1982). 
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Over all experiments in present study, glucosinolate concentration was higher in roots of turnip 

Pe than in Me. The characteristic pungent odour and biting taste of turnip roots, which is 

associated with the breakdown products of glucosinolates (FENWICK et al. 1983), was also more 

dominant in turnip Pe than in Me. This corresponds with DM and sulphur concentration and the 

total amount of glucosinolates, which are precursors of flavour and odour (MULLIN et al. 1980, 

FENWICK et al. 1983, PINTO et al. 1998).  

 

Total GSL concentration and the profile of GSLs in roots of both cultivars were relatively stable 

showing no particular difference between both years. These results lead to the conclusion that 

glucosinolate concentrations are much less affected by N supply than, for example, DM yield. 

Similar results were obtained also by GUSTINE & JUNG (1985) who found no change in GSL 

concentration at fertiliser N rate of 132 kg ha-1, though DM yield was threefold higher. 

 

Another antinutritive factor of turnips could be an excessive accumulation of nitrate since 

brassica species are frequently mentioned as NO3
--N accumulators (MAYNARD et al. 1976, 

GUILLARD & ALLINSON 1989a). It is known that the consumption of vegetables with high nitrate 

can be potentially dangerous to consumer’s health (WOLFF & WASSERMAN 1972), which is due 

to the potential for nitrate reduction to nitrite and its adverse effect on human health. Therefore, 

the European Commission's Scientific Committee for Food considered the implications for 

human health of nitrate in food in 1995 and set an Acceptable Daily Intake (ADI) for the nitrate 

ion of 3.65 mg/kg body weight (equivalent to 219 mg/day for a 60 kg person) (EEC 1995). In 

addition maximum nitrate values of 3000 mg NO3
- kg-1 fresh weight for spinach, radish, little 

radish and red beet and 4500 mg NO3
- kg-1 for lettuce were determined (EEC 1999).  

 

In present research the nitrate concentration in fresh turnip roots ranged between 143 and 360 mg 

kg-1. In the second experimental year considerably higher nitrate concentration in turnip roots 

was found. This was a consequence of higher soil nitrate N content that closely correlates with 

the nitrogen supply of crops (GRIFFITH & JOHNSTON 1961 and MAYNARD et al. 1976). With 

consideration of results of GUILLARD & ALLINSON (1988, 1989a), who found turnip root 

concentrations between 64 to 6440 mg NO3
- kg-1 in fresh tissue at fertiliser N rate of 0 and 168 

kg ha-1 respectively, it can be concluded that turnips grown without fertiliser N do not store 

higher amounts of nitrate in their root.  

 

Although turnips in this research were grown late in autumn at lower temperatures and decreased 

light intensity that could encourage higher NO3
- accumulation (MAYNARD et al. 1976) this was 



 68

not observed. The critical concentration for Nt of 2.9 % in the whole crop given by GUILLARD et 

al. (1995) as a value upon which nitrate concentration in turnips raise rapidly was exceeded in 

both experimental years. Nevertheless no hazardous nitrate concentration in turnip roots was 

found in present research. These results support the general belief that nitrate concentration in 

organically grown vegetables is usually much lower than conventional ones (SAMWEL 1995). 

 

The ascorbic acid values for fresh turnip roots found in the present study were consistent with 

the concentration 25 mg 100-1g-1 reported by SHATTUCK et al. (1991). In comparison with 

potatoes grown on the same experimental site (NEUHOFF 2000), turnips showed up to 5 fold 

higher content of vitamin C. Compared with concentration of ascorbic acid in other brassica 

vegetables given by BAYERISCHE LANDESANSTALT FÜR ERNÄHRUNG (2001) ranging between 12 

(white cabbage – Brassica oleracea convar. capitata var. alba) and 64 mg 100-1g-1 (kohlrabi – 

Brassica oleracea var. gongylodes) both turnip cultivars can be ranked in the middle of the 

group together with little radish – Raphanus sativus var. radicula (29 mg 100-1g-1). 

 

From the above results it can be concluded that the possible antinutritive factors, i.e. nitrate and 

glucosinolate concentration, in turnip roots did not reach values which could be potentially 

dangerous for consumers health. Moreover concentrations of glucosinolates found in turnip roots 

have according to UHL et al. (2001) even beneficial effects on human health. With low nitrate 

concentrations, organically grown turnip roots could even have a status of dietetic food (less than 

250 mg NO3
- kg-1). High vitamin C concentration in comparison with other vegetables and 

concentration of sugars in DM of about 50 % (SHATTUCK et al. 1991) could give turnips an 

important place in human nutrition. Also concentrations of P, K, S, Mg and Ca in turnip roots do 

not compromise their nutritive qualities. 

 

5.6.7 Resume 

I In present research the concentration of possible antinutritive factors, i.e. nitrate and 

glucosinolate in turnip roots did not reach values which could be potentially dangerous for 

consumer’s health.  

 

II High vitamin C concentration in comparison with other vegetables could give turnips an 

important place in human nutrition.  

 

III Concentrations of P, K, S, Mg and Ca in turnip roots do not compromise their nutritive 

qualities. 
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6 DISCUSSION AND CONCLUSIONS 

 

Hypothesis 1: Compared with bare soil nitrogen uptake of turnips reduces soil nitrate 

concentration significantly. 

Post-harvest management treatments imposed in this study affected the amount of soil nitrate in 

both years. Turnips, sown after the harvest of the main crop potatoes and faba beans, 

significantly decreased soil nitrate concentration compared with leaving the land fallow. As a 

result, the accumulation of nitrate in deeper soil layers or even leaching below 90 cm soil depth 

was diminished. Under fallow treatment, the amount of soil nitrate increased and a large amount 

of it was already present in deeper soil layers at the beginning of winter discharge. Thus the 

first hypothesis was confirmed.  

 

Hypothesis 2: Nitrogen sink capacity of turnips corresponds with the nitrogen sink capacity of 

 white mustard commonly used as a catch crop. 

In the first experimental year (1999) the amount of soil nitrate ranged between 21.7 and 25.4 kg 

NO3
--N ha-1 after potatoes and between 30.7 and 36.3 kg NO3

--N ha-1 after faba beans. One 

hundred days after sowing nitrogen sink potential of turnips was ranking between 57.1 and 77.3 

kg N ha-1 showing no significant differences to the one of white mustard (73.2 - 74.2 kg N ha-1). 

Consequently the average reduction of soil nitrate under all three catch crops showed no 

significant differences  

 

At the higher soil nitrate content (over 120 kg NO3
--N ha-1 after potatoes and over 66.0 kg NO3

--

N ha-1 after faba beans) measured in the second experimental year (2000) turnips took up less N 

compared to the white mustard. N sink potential of catch crops was ranked as follows: Wm > Pe 

> Me ≥. The differences in N sink potential between catch crops were at higher soil nitrate 

content after potatoes significant. As a consequence turnips reduced soil nitrate significantly 

slower and less efficient as white mustard.  

 

It can thus be expected that the nitrogen sink capacity of turnips, grown as vegetables, will be 

equal to the one of white mustard as long as soil nitrate content do not exceed 60 kg NO3
--N ha-1. 

The soil nitrate content under turnips will be thus reduced as well as under white mustard. On the 

other hand at soil nitrate contents higher than 60 kg NO3
--N ha-1 lower N uptake of turnips 

compared to the one of white mustard can be expected. As a consequence the reduction of soil 

nitrate under turnips, grown as vegetables, is expected to be significantly lower compared to the 

one under white mustard. The second hypothesis was thus only partly confirmed.  
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Hypothesis 3: In a short growing season after the harvest of potatoes and faba beans turnips 

 can accumulate considerable amounts of dry matter in marketable roots. 

In 100 days turnips grown as vegetables produced between 1.76 and 2.98 t ha-1 of dry matter 

with corresponding N uptake of 57.1 and 119.5 kg ha-1 after potatoes and between 2.26 and 3.61 

t ha-1 of dry matter with corresponding N uptake of 74.0 and 116.4 kg ha-1 after faba beans.  

 

Turnip roots of cv. Market Express represented 53 to 65 % (1.13 - 1.66 t ha-1) of total dry matter 

thus containing between 43 and 60 % (33.8 - 52.5 kg N ha-1) of all accumulated nitrogen. Roots 

of cv. Petrowski contained 40 to 63 % (1.16 - 1.52 t ha-1) of total dry matter containing between 

32 and 53 % (35.9 - 45.0 kg N ha-1) of accumulated nitrogen.  

 

It should also be emphasised that besides nitrogen export which was the main subject of this 

research, also the export of P, K, S, Mg and Ca with turnip roots that can reach up to 10.5, 98.3, 

15.0, 4.4 and 38.7 kg ha-1 respectively should be considered in the whole farm mineral balance if 

turnips are to become a regular constituent of crop rotation. 

 

It was shown in the present study that organically grown turnips are an effective scavenger of 

soil nitrate and exhibit a good potential for DM production and N uptake late in autumn. The 

third hypothesis was thus confirmed. 

 

Hypothesis 4: Positive precrop effect of potatoes and faba beans on yields of following winter or 

spring wheat respectively is not reduced by growing turnip vegetables and 

subsequent nitrogen export from the field with marketable roots. 

 

Winter wheat 

Present study showed that a 6 - 17 % decrease in grain DM yield of winter wheat can be 

expected when brassica catch crops are grown between potato – winter wheat or faba bean – 

winter wheat cropping sequence and the reduction of total N uptake of winter wheat can reach 

28.9 kg ha-1. However decrease in DM yield and corresponding N uptake were not higher when 

33.8 - 52.5 kg N ha-1 were exported in autumn with turnip roots. This indicates that nitrogen 

taken up by catch crops did not have a significant role in nitrogen nutrition of subsequent winter 

wheat crop. This corresponds with findings of MERBACH et al. (1996) who reported that maize 

used efficiently only 30 % of nitrogen originating from mulched bird rape covering that way 

11% of its needs. These authors also found that 65 % of catch crop N were still present in the soil 
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at the time of maize harvest. NINANE et al. (1996) reported N recovery from mustard to be 25 to 

39 % by succeeding sugar beet and at the time of sugar beet harvest between 43 to 61 % of 

mustard N was still present in soil. About 20 % of the catch crop N incorporated was recovered 

in the first following crop in studies of JENSEN (1992).  

 

All these examples indicate a relatively low efficiency of N utilisation from catch crop residues 

by the succeeding crop. This way it could be suggested that in the present study the value of 

catch crops incorporated in autumn appears to be long term maintenance of soil N status rather 

than the short term supply of available N for winter wheat growth.  

 

Spring wheat 

Increase in DM yield and N uptake compared to fallowed soil was recorded when catch crops 

were left intact on the field over the winter and incorporated in spring at seed bed preparation for 

spring wheat. Total N uptake of spring wheat was up to 39.6 kg ha-1 higher after spring 

incorporation of catch crop residues than after fallowed soil. Compared with fallow treatment, 

the positive precrop effect of catch crops was in the following order Wm > Me > Pe ≥ F. Export 

of nitrogen with roots of turnip Pe in spring (between 22.2 and 59.6 kg ha-1) decreased DM yield 

of spring wheat and corresponding N uptake up to 26.1 kg ha-1. This indicates that nitrogen 

release from catch crop residues incorporated in spring had a direct positive influence on DM 

yield and N uptake of succeeding spring wheat.  

 

In the present study catch crop growth and residue incorporation in autumn reduced yield of 

following winter wheat compared with fallow treatment. On the other hand catch crops 

incorporated in spring had a positive precrop effect on following spring wheat compared with 

fallow. Nitrogen export from the field with marketable roots in the autumn did not influence 

succeeding winter wheat whereas nitrogen export with turnip roots in spring had a negative 

influence on growth of following spring wheat. The fourth hypothesis was thus partly 

confirmed. 
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Recommendations and relevance for the practical farming  

 

Integrating turnips in arable crop rotation provides a good opportunity for farmers to generate 

additional income after the harvest of the main crop and at the same time to maintain the practice 

of growing a catch crop to reduce soil nitrate before winter leaching period. An export over 50 

kg N ha-1 can be achieved when turnip roots are sold. Therewith the soil nitrogen pool and 

consequently the risk of leaching are diminished. For management systems which steadily 

increase the amount of soil organic matter (long term application of organic manure, crop 

rotation with high amounts of harvest residues) this is of great importance. 

 

The present results show that a reduction of the winter wheat yield can be expected when turnips 

are included in potato – winter wheat or faba bean – winter wheat cropping sequence. The 

reduction of the winter wheat yield (6.0 t ha-1) for 15 % (0.9 t ha-1) corresponds to an income loss 

of 207 €/ha (see table 14 in Appendix). On the other hand the additional income achievable with 

the sale of turnip roots can exceed 10.000 €/ha (see table 15 in Appendix). The reduction of the 

winter wheat yield is therefore negligible from the economical point of view. To cover the 

production costs of turnips per hectare and to compensate the reduction of winter wheat yield not 

more than 5.3 t of fresh turnip roots must be sold at a price of 0.6 €/kg (see table 13, 14 and 15 in 

Appendix). 

 

When grown for human consumption the selection of the turnip cultivar plays an important role. 

In present research two different cultivars were used: Market Express F1, a hybrid cultivar with a 

white root and very mild taste, and cultivar Petrowsky which is known for its yellow root with a 

strong taste. Though both cultivars produced approximately the same amount of root DM (1.13 – 

1.66 t ha-1) FM yields were essentially different due to their different DM content. Cultivar 

Market Express F1 yielded between 31.4 and 37.3 t ha-1 which is twice as much as cv. Petrowsky 

with 14.3 to 18.4 t ha-1 of FM. Thus higher income from turnip roots of cultivar Market Express 

F1 can be expected.  

 

Because turnips are not well known as vegetables larger amount of roots might be difficult to 

sell. Therefore it is noteworthy that first marketable turnip roots can be harvested and sold 

already 8 weeks after sowing with a possibility to prolong harvest over winter months thus 

supplying the market for a longer period with smaller amounts of roots. Following this practice 

turnip cultivar should be carefully selected because roots of some cultivars do not endure 

temperatures below 0°C and decay soon after first frost. To reach high yields of roots late in the 
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growing season the length of the growing period is crucial. Therefore turnips have to be sown as 

soon as possible after the harvest of the main crop.  

 

Because the market acceptance for turnip roots might be problematic some alternative brassica 

vegetables were considered to be integrated into field crop rotation. Savoy cabbage, curly kale 

and kohlrabi showed a high nitrogen sink potential (151, 154 and 62 kg N ha-1) thus significantly 

reducing the concentration of soil nitrate before winter compared to the fallow treatment.  

 

When turnips stay on the field over the winter they function well as a catch crop and can be 

incorporated in the following spring at seed bed preparation for the succeeding crop. In that case 

turnips conserve ground water even better than white mustard because soil nitrate concentration 

in spring after turnips is significantly lower than after white mustard. Thus spring soil nitrate 

which is often jeopardised to be leached in lower soil layers before used by the following crop 

can be successfully preserved.  

 

If the sole purpose of growing a catch crop is the reduction of soil nitrate before winter leaching 

period white mustard is preferred over turnips grown as vegetables because at higher soil nitrate 

content (over 60 NO3
--N ha-1) the reduction under turnips is significantly lower than under white 

mustard. Whether turnips grown at the same plant density as white mustard would reduce soil 

nitrate with the same efficiency needs further consideration.  
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7 SUMMARY 

 

Cropping systems, which increase soil organic matter content, generally lead to greater 

mineralization of soil N. The extended soil nitrogen pool as a consequence of a higher proportion 

of soil organic matter is potentially jeopardised since most of the mineralised nitrogen in 

agricultural soils is quickly transformed into nitrate, which is prone to leaching. High 

concentrations of soil nitrate after the harvest of potatoes and faba beans can be successfully 

controlled with brassica underseeds or catch crops. These strategies act merely temporarily 

because the nitrogen taken up by plants comes back in the soil liquid phase after its incorporation 

and mineralization. Since there is often a lack of synchronisation between mineralization of N in 

soil and crop demand for N extended soil N pool can be a potential burden for the environment.  

 

The objective of the present work was to extend and optimise suggested strategies for reducing 

nitrate leaching after the harvest of the main crop by growing turnips as field vegetables.  

 

Field experiments 

Field experiments were conducted on the organic experimental farm Wiesengut over growing 

periods 1999/2000 and 2000/2001. Turnips cv. "Petrowski" (Pe) and cv. "Market Express F1" 

(Me) were grown to evaluate their nitrogen sink capacity, marketable yields and their precrop 

effect on the following winter- and spring wheat. Commonly used catch crop white mustard 

(Sinapis alba L.) cv. "Zlata (Wm) was used as a reference crop and fallow (F) as a control 

treatment. The experimental design was a Latin Square with four replications. Single plot size 

was 6 x 12 m. To evaluate the precrop effect of experimental treatments on following winter and 

spring wheat plots were divided into two subplots 3 x 12 m. Turnips and mustard were sown at 

the end of August, shortly after the harvest of potato and faba beans. Seeding rates were 4 and 20 

kg ha-1 with a row - row spacing of 30 and 10 cm for turnips and mustard respectively. At 10 cm 

height turnip plants were thinned to achieve a plant density of 30 to 40 plants m-2. At the time of 

the autumn harvest (100 days after sowing - DAS), turnip roots were exported from the field 

while turnip leaves were left on the plots. At the same time mustard treatments were mulched 

and plant rests left on the plots. Directly after harvest winter wheat cv. "Pegassos" was sown at 

450 germinative seeds m-2 in rows 17 cm apart. Spring wheat cv. "Tasos" was sown at 440 

germinative seeds m-2 in rows 17 cm apart - as soon as possible after harvest of turnip roots of 

cv. Pe in March. 
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Results 

After a potato and faba beans harvest the amount of soil nitrate ranged between 20 and 130 kg 

NO3
--N ha-1. High variations in both years were mainly caused by heterogeneity of experimental 

fields, higher summer precipitation in the second experimental year and a 50 % lower potato and 

faba bean yield in the second year causing substantial accumulation of nitrate in the soil already 

during the growing season of both main crops.  

 

Organically grown turnips and Wm, sown after a potato and faba bean harvest, functioned late in 

the autumn as an effective nitrate scavenger, reducing soil NO3
--N, before winter discharge, in 

upper 90 cm soil layer up to 80 and 100 kg N ha-1 respectively, compared to fallowed soil. 

 

The production of DM biomass for turnip cultivar Me ranged between 1.76 - 3.10 t ha-1 

corresponding to N uptake of 57.1 - 101.0 kg ha-1. For Pe the total DM yield was between 1.83 - 

3.61 t ha-1 with N uptake of 60.3 - 119.5 kg ha-1 whereas Wm yielded 3.37 - 4.96 t DM ha-1 with 

corresponding N uptake of 73.2 - 207.3 kg ha-1. Marketable roots of turnips were representing 40 

to 65 % of total dry matter containing between 32 and 60 % of all accumulated nitrogen. With 

marketable roots an export of 33.8 – 52.5 kg N ha-1 in autumn was achieved.  

 

When catch crop plant residues (white mustard and turnip leaves) were incorporated in autumn, 

and winter wheat was sown the amount of soil nitrate in following March was not increased 

more than for 20 kg NO3
--N ha-1 thus ranging between 15.3 and 40.8 kg ha-1 in 90 cm soil layer. 

This indicates that incorporated biomass of Wm, Me and Pe retained a substantial part of the 

accumulated nitrogen in their tissues. On the other hand, when catch crops were left intact on the 

field over the winter, soil nitrate-N in spring under Wm ranged between 31.5 and 75.6 kg ha-1. 

This indicates that Wm left on the field was a subject of a rapid decomposition already during 

winter, releasing a substantial amount of accumulated nitrogen into the soil solution. Under 

turnips, the soil nitrate-N status remained approximately on the same level as before winter 

ranging between 5.8 and 36.6 kg ha-1. 

 

Overall there was a consistent evidence for a negative effect of catch crop growth and their 

incorporation on DM yield, Nt concentration in DM and total N uptake of a subsequent winter 

wheat crop. When soil was fallowed, total (grain and straw) DM yield of winter wheat ranged 

between 9.2 and 12.9 t ha-1 with corresponding N uptake between 95.8 and 136.6 kg N ha-1. 

After catch crops total DM yield of winter wheat was lower, ranging between 7.5 and 12.7 t ha-1 

with N uptake between 78.2 and 114.2 kg N ha-1.  
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On the contrary when incorporated in spring catch crops increased the DM yield and 

corresponding N uptake of spring wheat compared with fallow treatment. The positive precrop 

effect of catch crops was in the following order Wm > Me > Pe ≥ F. Precrop effect of turnip Pe 

was presumably dominated by N export between 22.2 and 59.6 kg N ha-1 in spring with its roots, 

thus reducing the amount of available nitrogen for wheat growth compared with Me and Wm. 

After fallow total DM yield of spring wheat ranged among 5.4 and 8.6 t ha-1 with N uptake 

between 63.3 and 99.3 kg N ha-1. After catch crops total DM yield of spring wheat was higher, 

ranging between 5.2 and 11.5 t ha-1 with corresponding N uptake between 58.6 and 138.9 kg N 

ha-1.  

 

Discussion and conclusions 

In the first experimental year at harvest time of turnips nitrogen uptake of white mustard and 

both turnips was well synchronised with N supply by organic matter mineralization because the 

amount of N in plant - soil system was the same under catch crops and bare soil. High variation 

in the N content of the plant - soil system in the second year indicate that beside leaching process 

and microbial immobilisation, soil N transformations can be profoundly influenced by growing 

catch crops. Due to a presence of plant roots, which can stimulate mineralization of organic 

matter and continuously deplete the equilibrium level of the soil inorganic N pool, under catch 

crops more N was released from organic matter than under bare soil. However this variation in N 

content of plant - soil system recorded in the second experimental year was most probably an 

outcome of leaching, enhanced mineralization under catch crops as well as microbial 

immobilisation. 

 

Besides influencing soil nitrate dynamics, another important factor in growing catch crops is 

their effect on subsequent crop. Reduced N uptake of winter wheat, growing after catch crops, 

should mainly be attributed to extensive N immobilisation by catch crops that crucially 

influenced nitrogen availability during the following growing season. At the time of 

incorporation in late autumn, catch crops were still alive therefore availability for microbial 

attack could be under question since brassicas can contain high concentrations of secondary 

metabolites that can effectively depress soil microorganisms and thus decomposition of 

incorporated plant material. Additionally, mineralization during the winter is substantially 

decreased by low temperatures and soil moisture that reduce oxygen diffusion in the soil thus 

reducing oxygen supply of microorganisms. Decrease in DM yield and corresponding N uptake 

of winter wheat were not higher when nitrogen was exported in autumn with turnip roots. This 
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indicates that nitrogen taken up by catch crops possibly did not have a significant role in nitrogen 

nutrition of subsequent winter wheat crop. This way it could be suggested that in a present study 

the value of catch crops incorporated in autumn appears to be long-term maintenance of soil N 

status rather than the short-term supply of available N for winter wheat growth. 

 

Expected reduction of a winter wheat yield is however economicially negligible compared to the 

income achieved with turnip roots which can be 20 times higher as the loss with winter wheat 

yield. When sold, an export higher than 50 kg N ha-1 can be achieved via turnip roots. This way 

the soil nitrogen pool and consequently the risk of leaching are diminished. For management 

systems which steadily increase the amount of soil organic matter (long term application of 

organic manure, crop rotation with high amounts of harvest residues) this is of a great 

importance.  

 

When turnips stay on the field over the winter they function well as a catch crop and can be 

incorporated in the following spring at seed bed preparation for the succeeding crop. In that case 

turnips conserve ground water even better than white mustard because soil nitrate concentration 

in spring after turnips is expected to be significantly lower than after white mustard. Thus spring 

soil nitrate which is often jeopardised to be leached in lower soil layers before used by the 

following crop can be successfully preserved. However, minor but not significant decrease in 

grain yield of succeeding spring wheat is to be expected after turnips compared with white 

mustard.  

 

Turnips sown as vegetables can be successfully integrated into arable crop rotations due to their 

multiple functions, which are the decrease of soil nitrate before winter, the long term reduction 

of soil nitrogen pool by N export and the generation of additional income for the farmer. 
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8 ZUSAMMENFASSUNG 

 

Ackerbau-Systeme, die den Gehalt an organischer Substanz im Boden erhöhen, führen in der 

Regel zu einer erhöhten Mineralisation von Boden N. Die erhöhte Menge des Bodenstickstoffs 

als Konsequenz des höheren Anteils von organischer Substanz im Boden ist potentiell jedoch 

gefährdet, da ein Großteil des mineralisierten Stickstoffs im landwirtschaftlichen Böden schnell 

in Nitrat transformiert wird, das wiederum einer Auswaschung unterliegt. Hohe Konzentrationen 

von Bodennitrat nach der Ernte von Kartoffeln und Ackerbohnen können mit Brassicaceen 

Zwischenfrüchten und Untersaaten erfolgreich kontrolliert werden. Diese Strategien wirken 

jedoch nur temporär, da der von den Pflanzen aufgenommene Stickstoff nach seiner 

Inkorporation und Mineralisation wieder in die flüssige Bodenphase eintritt. Da es oftmals an 

einer Synchronisation zwischen der Mineralisation von N im Boden und dem Stickstoffbedarf 

der Pflanzen fehlt, kann die erhöhte Stickstoffmenge der Flüssigphase ein Problem für die 

Umwelt darstellen.  

 

Es war daher das Ziel der vorliegenden Arbeit, die vorgeschlagenen Strategien zur Reduktion der 

Nitratauswaschung zu optimieren, indem nach der Ernte der Hauptfrucht Stoppelrüben als 

Feldgemüse angebaut werden. 

 

Feldversuche 

Es wurden Feldversuche auf dem Versuchsbetrieb für Organischen Landbau Wiesengut in der 

Vegetationsperiode 1999/2000 und 2000/2001 durchgeführt. Die Stoppelrüben cv "Petrowski" 

(Pe) und "Market Express F1" (Me) wurden angebaut, um ihre Kapazität als Stickstoffsenke 

sowie ihr Potential an marktfähigen Erträgen und ihre Vorfruchtwirkung auf nachfolgenden 

Winter- bzw. Sommerweizen zu evaluieren. Als Referenzfrucht wurden die üblicherweise 

eingesetzten Zwischenfrüchte Weißer Senf (Sinapis alba L.) cv. "Zlata" (Wm) eingesetzt. 

Schwarzbrache (F) diente als Kontrolle. Die Versuchsanlage wurde als Lateinisches Quadrat mit 

vier Wiederholungen konzipiert. Die Größe der einzelnen Versuchsparzellen betrug 6 x 12 m. 

Um die Vorfruchtwirkung der Behandlungen auf den nachfolgenden Winter- bzw. 

Sommerweizen zu evaluieren, wurden die Versuchsparzellen in zwei Unterflächen von jeweils 3 

x 12 m unterteilt. Die Stoppelrüben und der Senf wurden Ende August kurz nach der Ernte von 

Kartoffeln und Ackerbohnen gesät. Die Aussaatdichte betrug 4 bzw. 20 Kilogramm je Hektar bei 

einem Reihenabstand von 30 bzw. 10 cm für Stoppelrüben bzw. Senf. Bei einer Höhe von 10 cm 

wurden die Stoppelrüben auf eine Pflanzendichte von 30 bis 40 Pflanzen m-2 ausgedünnt. Zur 

Zeit der Herbsternte (hundert Tage nach der Aussaat) wurden die Wurzeln der Stoppelrüben vom 
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Feld exportiert, während das Blattmaterial auf den Flächen verblieb. Zur selben Zeit wurden die 

Senfpflanzen gemulcht. Die Pflanzenreste verblieben auf der Fläche. Unmittelbar nach der Ernte 

wurde der Winterweizen "Pegassos" mit 450 keimfähigen Samen m-2 in 17 cm Reihenabstand 

ausgesät. Der Sommerweizen "Tasos" wurde mit 440 keimfähigen Samen m-2 in 17 cm 

Reihenabstand ausgesät, sobald dies nach der Ernte der Stoppelrübenwurzeln der cv. Pe im März 

möglich war. 

 

Ergebnisse 

Nach der Kartoffel- und Ackerbohnen-Ernte betrug der Gehalt an Bodennitrat zwischen 20 und 

130 kg NO3
--N ha-1. Die großen Abweichungen zwischen den Versuchsjahren waren 

überwiegend auf die Heterogenität der Versuchsflächen, den hohen Niederschlag im Sommer 

während des zweiten Versuchsjahres und auf die um etwa 50 % geringeren Kartoffel- und 

Ackerbohnen-Erträgen im zweiten Jahr zurückzuführen. Dies führte zu einer erhöhten 

Akkumulation von Nitrat im Boden bereits während der Wachstumsphase der beiden 

Hauptfrüchte. 

 

Stoppelrüben und Senf, die nach der Kartoffel- und Ackerbohnen-Ernte gesät wurden, fungierten 

später im Herbst als effektive Nitratsenke und verminderten den Bodennitrat-Stickstoff vor den 

Winterverlusten im oberen 90 cm-Bodenbereich um 80 bzw. 100 kg N ha-1, im Vergleich zur 

Brache. 

 

Die Produktion von TM der Stoppelrüben cv. Me betrug zwischen 1,76 und 3,61 t ha-1, 

entsprechend einer N-Aufnahme von 57,1 bis 101,0 kg ha-1. Für Pe betrug der Gesamt TM 

Ertrag zwischen 1,83 und 3,61 t ha-1 mit einer N-Aufnahme von 60,3 bis 119,5 kg ha-1. Der Senf 

produzierte 3,37 bis 4,96 t ha-1 Sproßmasse entsprechend einer N-Aufnahme von 73,2 bis 207,3 

kg ha-1. Die marktfähigen Wurzeln der Stoppelrüben hatten dabei einen Anteil von 40 bis 65 % 

der Gesamttrockenmasse und enthielten 35 bis 60 % des gesamten akkumulierten Stickstoffs. 

Mit den marktfähigen Wurzeln wurden 33,8 bis 52,5 kg N ha-1 im Herbst exportiert. 

 

Wurden die Pflanzenreste der Zwischenfrüchte (Senf oder Stoppelrübenblätter) im Herbst 

eingearbeitet und Winterweizen gesät, erhöhte sich der Bodennitratgehalt im darauffolgenden 

März um nicht mehr als 20 Kilogramm NO3
--N ha-1. Die Bodennitratmengen betrugen in den 

oberen 90 cm des Bodens zwischen 15,3 und 40,8 kg N ha-1. Dieser Sachverhalt weist darauf 

hin, dass die eingearbeitete Biomasse von Wm, Me und Pe einen wesentlichen Teil des 

akkumulierten Stickstoffs in ihrem Gewebe zurückhielten. Wenn jedoch die Zwischenfrüchte 
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unversehrt über den Winter auf dem Feld verblieben, betrug der Nitrat-N im Frühjahr unter Wm 

zwischen 31,5 und 75,6 kg ha-1. Dies Ergebnis zeigt an, dass die auf dem Feld zurückgelassene 

Biomasse von Wm während des Winters Gegenstand einer schnellen Zersetzung war, die zu 

einer Freisetzung einer wesentlichen Menge des akkumulierten Stickstoffs in die Bodenlösung 

führte. Unter den Stoppelrüben blieb der Bodennitrat-N dagegen im wesentlichen auf demselben 

Niveau wie im vorherigen Winter mit Werten zwischen 5,8 und 36,6 kg ha-1. 

 

Insgesamt wurde deutlich, dass der Anbau von Zwischenfrüchten und ihre Einarbeitung in den 

Boden negative Effekte auf den TM Ertrag, die Gesamtstickstoffkonzentration in der TM und die 

Gesamt N-Aufnahme des nachfolgenden Winterweizens hatte. Wurde der Boden hingegen als 

Brache liegengelassen, ergab sich ein GesamtTM Ertrag (Korn und Stroh) des Winterweizens 

von 9,2 und 12,9 t ha-1, was einer N-Aufnahme von 95,8 bis 136,6 kg N ha-1 entsprach. Nach der 

Zwischenfrucht betrug der GesamtTM Ertrag des Winterweizens lediglich 7,5 bis 12,7 t ha-1 mit 

einer Stickstoffaufnahme zwischen 78,2 und 114,2 kg N ha-1. 

 

Im Gegensatz dazu führt die Einarbeitung der Zwischenfrüchte im Frühjahr zu einem erhöhten 

TM Ertrag und entsprechend erhöhter N-Aufnahme des Sommerweizens im Vergleich zur 

Brache. Dieser positive Vorfruchteffekt der Zwischenfrüchte war für Wm am höchsten mit einer 

abnehmenden Tendenz für Me, Pe und F. Der Vorfruchteffekt der Stoppelrübe Pe war 

vermutlich dominiert durch den Stickstoffexport durch die Wurzeln im Frühjahr mit Werten 

zwischen 22,2 und 59,6 kg N ha-1, was im Vergleich zu Me und Wm zu einer Verminderung des 

verfügbaren Stickstoffs für das Weizenwachstum führte. Nach der Brache betrug der Gesamt TM 

Ertrag des Sommerweizens zwischen 5,4 und 8,6 t ha-1 mit einer N-Aufnahme zwischen 63,3 und 

99,3 kg N ha-1. Nach der Zwischenfrucht lag der Gesamt TM Ertrag des Sommerweizens höher 

mit Werten zwischen 5,2 und 11,5 t ha-1, was einer N-Aufnahme zwischen 58,6 und 138,9 kg N 

ha-1 entspricht. 

 

Diskussion und Schlußfolgerungen 

Im ersten Versuchsjahr war zum Zeitpunkt der Ernte der Stoppelrüben die N-Aufnahme des 

Senfs und beider Stoppelrübensorten gut mit der N-Zufuhr durch die Mineralisierung der 

organischen Substanz synchronisiert. Die Mengen von Stickstoff im Pflanze-Boden-System und 

auf der Brache waren gleich hoch. Der große Unterschied im Stickstoffgehalt im Pflanze-Boden-

System im zweiten Versuchsjahr zeigt, dass neben Auswaschungsprozessen und mikrobieller 

Immobilisierung die N-Transformation erheblich durch das Wachstum von Zwischenfrüchten 

beeinflusst werden kann. Aufgrund der Gegenwart von Pflanzenwurzeln, die Mineralisation der 



 81

organischen Substanz stimulieren und kontinuierlich das Gleichgewicht im inorganischen N-

Pool des Bodens vermeiden, wurde unter den Zwischenfrüchten mehr Stickstoff aus der 

organischen Substanz freigesetzt als in der Brache. Dennoch scheint der Unterschied im 

Stickstoffgehalt des Pflanze-Boden-Systems im zweiten Versuchsjahr vordringlich eine Folge 

der Auswaschung, der verstärkten Mineralisation unter Zwischenfrüchten sowie der mikrobiellen 

Immobilisation gewesen zu sein. 

 

Neben der Beeinflussung der Bodennitrat-Dynamik besteht ein wesentlicher Grund für die 

Verwendung von Zwischenfrüchten in ihrem Effekt auf die nachfolgende Hauptfrucht. Die im 

Vergleich zur Schwarzbrache verminderte N-Aufnahme des Winterweizens nach den 

Zwischenfrüchten ist vermutlich überwiegend auf die umfangreiche N-Immobilisierung durch 

die Zwischenfrüchte zurückzuführen. Sie kann die Stickstoffverfügbarkeit während der 

nachfolgenden Wachstumsphase wesentlich beeinflussen. Da zum Zeitpunkt der Einarbeitung im 

späten Herbst die Zwischenfrüchte jedoch noch nicht abgestorben waren, ist deren Verfügbarkeit 

für den mikrobiellen Abbau jedoch zweifelhaft, da Brassicaceen eine hohe Konzentration 

sekundärer Pflanzenstoffe beinhalten, die das Wachstum von Boden-Mikroorganismen effektiv 

unterdrücken und daher die Zersetzung des eingearbeiteten Pflanzenmaterials erschweren 

können. Zudem kann die Mineralisation während des Winters vor allem durch die niedrigeren 

Temperaturen, die geringere Bodenfeuchtigkeit und eine reduzierte Sauerstoffdiffusion im 

Boden vermindert sein. Die Reduzierung des TM Ertrags und der N-Aufnahme war nicht größer, 

wenn Stickstoff im Herbst durch die Stoppelrübenwurzeln vom Feld exportiert wurde. Dieser 

Sachverhalt weist darauf hin, dass der von den Zwischenfrüchten aufgenommene Stickstoff 

keine signifikante Rolle für die Stickstoffversorgung des nachfolgenden Winterweizens hatte. 

Ausgehend von diesen Ergebnissen scheint somit der Wert der im Herbst eingearbeiteten 

Zwischenfrüchte eher in dem langfristigen Erhalt des Bodenstickstoff-Status zu liegen, als in der 

kurzfristigen Versorgung des Winterweizens mit verfügbarem Stickstoff. 

 

Die voraussichtliche Verminderung des Ertrages an Winterweizen ist jedoch unter 

wirtschaftlichen Gesichtspunkten vernachlässigbar im Vergleich zu den möglichen Einnahmen, 

die mit dem Verkauf der Rüben erreicht werden können. Sie können den Verlust durch den 

verminderten Winterweizenertrag um das bis zu 20-fache übersteigen. Mit dem Verkauf der 

Rüben kann gleichzeitig ein Stickstoffexport von mehr als 50 kg ha-1 verbunden sein. Damit 

kann der Stickstoff-Pool im Boden und somit auch das Risiko der Auswaschung vermindert 

werden. Für Anbausysteme, die zu einer kontinuierlichen Erhöhung der Menge organischer 
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Substanz im Boden führen (andauernde Verwendung von organischem Dünger, Fruchfolgen mit 

hohen Mengen von Ernterückständen) kann dies von großer Bedeutung sein.  

 

Sollten die Rüben auf dem Feld verbleiben, dienen sie als effektive Zwischenfrucht während des 

Winters und können im darauffolgenden Frühjahr bei der Saatbeetbereitung für die Folgefrucht 

eingearbeitet werden. In diesem Fall schützen Stoppelrüben das Grundwasser besser als Senf, da 

der Bodennitratgehalt im Frühjahr nach den Stoppelrüben im Vergleich zum Senf signifikant 

niedriger ist. Somit kann das Bodennitrat, das anderenfalls gefährdet ist, im Frühjahr noch vor 

seiner Nutzung durch die nachfolgende Frucht in tiefere Bodenschichten ausgewaschen zu 

werden, erhalten werden. In diesen Fällen muß jedoch ein geringer – wenn auch nicht 

signifikanter – Verlust im Kornertrag des nachfolgenden Sommerweizens im Vergleich zum 

Anbau nach Senf erwartet werden.  

 

Stoppelrüben, die als Feldgemüse angebaut werden, können aufgrund ihrer vielfältigen 

Funktionen, nämlich die Verminderung des Bodennitrats vor dem Winter, die dauerhafte 

Reduktion des Stickstoffpools im Boden duch N-Export sowie die Generierung zusätzlichen 

Einkommens für den Landwirten, erfolgreich in eine Feldfruchtfolge integriert werden.  



 83

9 ACKNOWLEDGEMENTS 

 

The author wishes to thank Mr. C. Dahn, Mr. M. Harrichausen, Mrs. H. Leese, Mr. H. Riebeling, 

Mr. J. Siebigteroth, Mr. F. Täufer and Mr. D. Zedow for excellent technical assistance, Dr. H. 

Zaller and Dr. D. Neuhoff for useful criticism and Prof. Dr. U. Köpke for his tolerant 

mentorship. 

 

The gratitude for financial support goes to EDEN-Stiftung Bad Soden/Ts. which generously 

supported the present research. 

 



 84

10 APPENDIX 

 

Table 1: Treatments and associated agronomic practices. 

 

                          Season                                 

Treatment 1999 - 2000 2000 - 2001 

Harvest of preceding crop  Aug 13 Potatoes 

Aug 6 Faba beans 

Aug 16 Potatoes 

Aug 10 Faba beans 

Ploughing Aug 16  Aug 17  

Seed bed preparation Aug 18  Aug 25  

Sowing of turnips and mustard Aug 18  Aug 25  

Hoeing 

 

Sep 7 

Sep 20 

Sep 12 

- 

Thinning Sep 7-10. Sep 19-21 

Irrigating 

 

Sep 10 

Sep 15 

- 

- 

Growth analysis sampling of turnips and mustard - Oct 20 

Turnip harvest of WW subplots Nov 25 Nov 21 

Ploughing and seedbed preparation Dec 3 Dec 1 

Sowing of WW Dec 3 Dec 1 

Turnip harvest of SW subplots Mar 23 Mar 28 

Ploughing of SW subplots Mar 24 Mar 30 

Seedbed preparation Apr 7 Apr 3 

Sowing of SW Apr 7 Apr 3 

Inter row hoeing and harrow combing of WW Apr 11 Apr 5 

Harrow combing of WW Apr 28 Apr 25 

Inter row hoeing and harrow combing of SW May 20 May 22 

Measurement of wheat leaf chlorophyll conc. May 31 Jun 15 

Growth analysis sampling of WW and SW - May 11 (WW) 

Jun 7 (WW) 

Jun 12 (SW) 

WW harvest Aug 1 Jul 26 

SW harvest Aug 10 Aug 2 
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Table 2: Soil sampling dates in growing seasons 1999 – 2000 and 2000 – 2001. 
 
 

Season 
 

Soil sampling date 
         

1999 - 2000 Aug 28 Dec 3 Mar 21 May 5 Aug 14 - - - 

2000 - 2001 Sep 14 Oct 17 Nov 27 Feb 14 Mar 20 May 9 June 13 Aug 6 

 
 
 
Table 3: Total N (kg ha-1) in plant - soil system (kg NO3

--N ha-1 in soil + kg N ha-1 in plant 
tissue). 

 
  

Dec 3, 1999   

Oct 17, 2000   

Nov 27, 2000 
Potatoes F. beans  Potatoes F. beans  Potatoes F. beans 

        

 

 

Treatment 
        

Fallow 79.7 52.1a  121.0 73.0a  93.5a 88.1a

W. mustard 80.0 95.3ab  123.9 82.5ab  228.6c 131.4c

M. Exp. F1 74.3 95.4ab  141.7 96.4b  143.3b 114.8b

Petrowski 71.5 100.8b  132.2 105.3b  156.3b 126.8c

Values within a column are significantly different (Tukey; α=0.05) if followed by different letters. 
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Table 4: Turnip DM yields (t ha-1). 

 
     

Cultivar Root Leaf Root + Leaf Author 
     

Appin  4.0 – 5.4 5.3 – 7.4 PERCIVAL et al. (1986) 
          1.6          5.1          6.7 PENROSE et al. (1996) 
 1.6 – 4.6   SHELDRICK & LAVENDER (1981) 
Barkant  3.2 – 5.9 6.7 – 10.5 PERCIVAL et al. (1986) 

          6.4          7.1  PEARSON & THOMSON (1996) 
Civasto  4.1 – 5.2 6.3 – 9.5 PERCIVAL et al. (1986) 
Forage Star 3.5 – 4.2 3.7 – 6.6 7.6 – 10.5 REID et al. (1994) 

 0.6 – 3.9 3.6 – 6.2 4.4 – 10.1 JUNG & SHAFFER (1993) 
Green Globe          3.5          5.4          8.9 REID et al. (1994) 

  3.3 – 4.0 7.1 – 8.7 PERCIVAL et al. (1986) 
 0.4 – 2.9 2.7 – 5.7 3.5 – 8.6 JUNG & SHAFFER (1993) 

M6  2.5 – 3.3 6.2 – 6.7 PERCIVAL et al. (1986) 
Manga  2.5 – 4.1 5.7 – 8.8 PERCIVAL et al. (1986) 
Ponda  3.8 – 5.1 6.3 – 9.0 PERCIVAL et al. (1986) 
 2.1 – 3.9   SHELDRICK & LAVENDER (1981) 
Purple Top          3.6          2.3          5.9 PENROSE et al. (1996) 

 1.2 – 4.7 2.0 – 4.0 3.2 – 7.6 JUNG & SHAFFER (1993) 
            7.6 RAO & HORN (1986) 

Rondo          5.5          3.4          8.9 PENROSE et al. (1996) 
 0.5 – 3.0 2.1 – 5.3 2.8 – 8.0 JUNG & SHAFFER (1993) 

Vobra  3.2 – 3.9 5.8 – 7.0 PERCIVAL et al. (1986) 
Weixian 4.9 – 6.7   WANG &WANG, (1994) 
Wintergreen          2.5          4.2          6.7 PENROSE et al. (1996) 
York Globe  0.5 – 2.5 1.1 – 5.0 PERCIVAL et al. (1986) 
Aver. of 21 cv.   4.5 – 6.5 BERENDONK (1992) 
Aver. of 4 cv.   2.0 – 2.8 YOUNG (1998) 

?   3.1 – 10.2 JUNG et al. (1979) 
?   8.6 – 9.7 GREENWOOD et al. (1980) 
? 1.9 – 4.3 2.2 – 4.7 4.1 – 9.0 GUILLARD & ALLINSON (1988) 

     

 
 
 
Table 5: Ascorbic acid concentration in turnip roots (mg/100g fresh tissue).  
 
   

Cultivar Root Author 
   

Purple Top White Globe 22.7 – 25.3 SHATTUCK et al. (1991) 
 7.9 – 13.5 SINGH & SHARMA (1993) 
 6.9 – 13.2 BHAT (1996) 
Weixian 29.9 WANG &WANG (1994) 
   
Seven Top  102.3 – 202.2 (leaf) SHEETS et al. (1955) 
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Table 6: Concentration of DM in turnips (%). 
 

 

Root Leaf  Author 
8.3 – 12.9 11.4 – 13.1 PENROSE et al. (1996) 
5.0 – 11.1   7.4 – 16.3 PEARSON & THOMSON (1996)  
 11.6 – 12.7  VIEIRA et al. (1998) 
   8.4 – 13.8 SHEETS et al. (1955) 
6.5 –  8.8   9.1 – 17.2 GUILLARD & ALLINSON (1988) 
   

 

 

Table 7: Dry matter yield, Nt concentration in DM and N accumulation of turnip cultivar 

Petrowski after potatoes and faba beans in spring 2000 (Mar 23) and 2001 (Mar 28) 

 
   

DM yield (t ha-1) 
 

Nt conc. (%) 
 

N (kg N ha-1) 
Year Precrop 

 

Root 
 

Leaf ∑
 

Root 
 

Leaf 
 

Root 
 

Leaf ∑
            

2000 Potatoes 1.10 0.43 1.53 2.03 3.56 22.2 14.9 37.1 

 Faba beans 1.49 0.76 2.25 2.08 3.88 30.9 29.5 60.4 

2001 Potatoes 1.65 0.46 2.11 3.61 4.81 59.6 22.2 81.6 

 Faba beans 1.45 0.50 1.95 3.26 4.56 47.3 22.5 69.8 

 

 

Table 8: Leaf : root ratio of turnips. 
 
       

Year   1999 2000 
 

Harvest time  
 

Nov 25 
 

Oct 20 
 

Nov 21 

Previous crop  Potatoes Faba beans Potatoes Faba beans Potatoes Faba beans
           

M. Expres F1 0.23 0.44 1.28 1.28 0.45 0.46 

Petrowski 0.51 0.88 3.58 3.74 1.35 1.17 

Values within a column are significantly different (Tukey; α=0.05) if followed by different letters. 
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Table 9: C : N ratio of turnip leaves and white mustard shoot biomass. 
 
       

Year   1999 2000 
 

Harvest time  
 

Nov 25 
 

Oct 20 
 

Nov 21 

Previous crop  Potatoes Faba beans Potatoes Faba beans Potatoes Faba beans
           

M. Expres F1 11.4 10.8 7.7 8.5 9.3 11.2 

Petrowski 11.6 11.5 7.6 8.5 8.9 11.1 

W. mustard 21.4 20.0 9.0 11.4 10.0 12.6 

Values within a column are significantly different (Tukey; α=0.05) if followed by different letters. 
 

 

Table 10: Relative chlorophyll concentration of the upper winter wheat leaf (EC 59); (F-fallow, 

Wm-white mustard, turnips Me-Market Express F1 and Pe-Petrowski). 

 
     

Previous crop Potatoes Faba beans 
           

Treatment F Wm Me Pe F Wm Me Pe 
     

May 31, 2000  41.4 37.5 37.1 37.5 - - - - 

June 15, 2001  41.7 37.3 38.7 37.8 38.9 34.6 35.0 35.2 

 

 

Table 11: Relative chlorophyll concentration of the upper two spring wheat leaves (EC 45); (F-

fallow, Wm-white mustard, turnips Me-Market Express F1 and Pe-Petrowski). 

 
     

Previous crop … Potatoes Faba beans 
           

Treatment … F Wm Me Pe F Wm Me Pe 
     

May 31, 2000  41.9 41.8 42.3 41.4 - - - - 

June 15, 2001  41.5 46.1 44.2 44.2 41.6 45.0 42.4 42.5 
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Table 12: Root and leaf concentration of minerals in turnips (% of DM).  
 
    

Element Root Leaf Author 
    

                N  6.13 – 7.08 SHEETS et al. (1955) 
  3.52 – 4.44 DEL VALLE & HARMON (1970) 
 2.30 – 3.40  SHELDRICK & LAVENDER (1981) 
 3.04 – 3.14 3.34 – 3.70 RAO & HORN (1986) 
 1.78 – 2.83 2.75 – 4.38 JUNG et al. (1986) 
 1.55 – 2.66 2.53 – 3.54 GUILLARD & ALLINSON (1989) 
             3.15 BERENDONK (1992) whole plant 
  3.14 – 5.43 SIMONE ET AL. (1993) 
 1.25 – 1.79 1.82 – 3.39 PENROSE et al. (1996) 
 0.87 – 2.24 2.02 – 4.27 PEARSON & THOMSON (1996) 
  3.03 – 3.48 YOUNG (1998) whole plant 
 3.04 – 3.14 1.40 – 6.30 VIEIRA et al. (1998) 
    

                P  0.60 – 0.80 SHEETS et al. (1955) 
  0.41 – 0.44 FRANCOIS (1984) 
             0.47 BOHNENKEMPER (1987) 
 0.35 – 0.59 0.30 – 0.61 GUILLARD & ALLINSON (1989) 
  0.31 – 0.45 WIEDENHOEFT & BARTON (1994) 
            0.46  WANG &WANG (1994) 
 0.46 – 0.53 0.37 – 0.40 REID et al. (1994) 
 0.18 – 0.24 0.18 – 0.22 PENROSE et al. (1996) 
    

                K  4.46 – 5.43 FRANCOIS (1984) 
             3.89 BOHNENKEMPER (1987) 
 3.05 – 4.08 2.94 – 4.52 GUILLARD & ALLINSON (1989) 
 3.08 – 3.47 4.53 – 4.89 REID et al. (1994) 
 2.31 – 3.12 2.69 – 3.68 PENROSE et al. (1996) 
    

                Ca  2.53 – 3.55 SHEETS et al. (1955) 
  3.26 – 3.93 FRANCOIS (1984) 
             1.36 BOHNENKEMPER (1987) 
 0.46 – 0.81 2.09 – 2.66 GUILLARD & ALLINSON (1989) 
 0.58 – 0.71 2.40 – 2.64 REID et al. (1994) 
            0.25  WANG &WANG (1994) 
  2.48 – 4.09 WIEDENHOEFT & BARTON (1994) 
 0.38 – 0.76 1.37 – 2.69 PENROSE et al. (1996) 
    

                Mg  0.19 – 0.25 FRANCOIS (1984) 
             0.16 BOHNENKEMPER (1987) 
 0.16 – 0.22 0.52 – 0.73 GUILLARD & ALLINSON (1989) 
  0.28 – 0.48 WIEDENHOEFT & BARTON (1994) 
 0.16 – 0.17 0.31 – 0.38 REID et al. (1994) 
 0.38 – 0.76 0.39 – 0.48 PENROSE et al. (1996) 
    

                S 0.53 – 0.54 0.56 – 0.57 REID et al. (1994) 
    

                Na  0.22 – 1.16 FRANCOIS (1984) 
             0.26 BOHNENKEMPER (1987) 
    

                Cl  3.09 – 6.11 FRANCOIS (1984) 
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Table 13: Turnip production costs per ha (adapted from KTBL Betriebsplanung Landwirtschaft 2004/2005) 
 

Time requirement Fuel Other 
materials Interests Depreciation Insurance Repair 

costs 
Labour 

costs Total 
Treatment 

Labour Machine l/ha €/ha €/ha €/ha €/ha €/ha €/ha €/ha 

Ploughing / 1.05 m, 45 kw 
Turn over plough, mounted 2.83 2.83 23.8 13.55 4,95 12.95 0.73 23.03 42.51 97.72 

Harrowing / 3.0 m,45 kw 
Seedbed combination, mounted 0.8 0.8 6.3 3.56 1.99 5.06 0.21 7.40 12.01 30.23 

Precision sowing / 6 rows, 3.0 m,  
37 kw  1.18 1.18 4.4 2.48 3.72 13.91 0.23 13.72 17.76 51.82 

Inter row hoeing / 6 rows, 3.0 m,  
45 kw  1.36 1.36 5.2 2.98 2.52 7.01 0.35 8.78 20.34 

 
41.98 

Inter row hoeing / 6 rows, 3.0 m,  
45 kw  1.36 1.36 5.2 2.98 2.52 7.01 0.35 8.78 20.34 41.98 

Manual harvest 70.0 70.0       1050.00 1050.00 

Transport of harvested roots /  
tipping trailer 8 t, 45 kw 2.41 2.41 5.69 3.25 12.76 29.71 1.92 23.99 36.22 107.85 

Processing and packing / classifying, washing 
table, 10 kg cases  80.0   12.50 12.50 36.00  3.20 1200.00 1264.20 

Special costs (Seeds)     285.00      285.00 

Total costs €/ha    326.30 40.96 111.65 3.79 88.90 2399.18 2970.78 
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Table 14: Income reduction of winter wheat growing after catch crops.  
 

Yield Income 
Winter wheat 

t/ha Relative % €/t Total € 

After fallow 6.0 100 230 1380 

After catch crops 5.1 85 230 1173 

Income reduction (€/ha)    207 

 
 
Table 15: Profit calculation for turnip roots. 

 

 Root yield (t/ha) 

 5 10 15 20 25 30 

Waste roots (%) 25 25 25 25 25 25 

Marketable roots (t) 3.75 7.5 11.3 15.0 18.8 22.5 

Price (€/t)  600 600 600 600 600 600 

Income with roots (€/ha) 2250 4500 6780 9000 11280 13500 

Turnip Production costs 
(€/ha) - 2971 - 2971 - 2971 - 2971 - 2971 - 2971 

Income reduction of 
winter wheat (€/ha) - 207 - 207 - 207 - 207 - 207 - 207 

Profit (€/ha) - 928 1322 3602 5822 8102 10322 
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Figure 1: Effect of catch crop treatments and soil tillage on soil nitrate after winter. In 1999 

precrop faba beans. F: fallow, Wm: white mustard, turnips Me: Market Express F1 

and Pe: Petrowski; WW winter wheat management (winter wheat failed and was re-

sown with spring wheat), SW spring wheat management. 
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