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Zusammenfassung

Robuste Merkmalszuordnung für Bildpaare schwach texturierter Szenen mit deut-
licher Stereobasis

Die Aufgabe von Wide Baseline Stereo Matching Algorithmen besteht darin, korrespon-
dierende Elemente in Paaren überlappender Bilder mit deutlich verschiedenen Kamerapo-
sitionen zu bestimmen. Solche Algorithmen sind ein grundlegender Baustein für zahlreiche
Computer Vision Anwendungen wie Objekterkennung, automatische Kameraorientierung, 3D
Rekonstruktion und Bildregistrierung. Die heute etablierten Verfahren für Wide Baseline Ste-
reo Matching funktionieren in typischen Anwendungsszenarien sehr zuverlässig. Sie setzen
jedoch Eigenschaften der Bilddaten voraus, die nicht immer gegeben sind, wie beispielswei-
se einen hohen Anteil markanter Textur. Für solche Fälle wurden sehr komplexe Verfahren
entwickelt, die jedoch oft nur auf sehr spezifische Probleme anwendbar sind, einen hohen
Implementierungsaufwand erfordern, und sich zudem nur schwer auf neue Matchingprobleme
übertragen lassen.

Die Motivation für diese Arbeit entstand aus der Überzeugung, dass es eine möglichst
allgemein anwendbare Formulierung für robustes Wide Baseline Stereo Matching geben muß,
die sich zur Lösung schwieriger Zuordnungsprobleme eignet und dennoch leicht auf verschie-
denartige Anwendungen angepasst werden kann. Sie sollte leicht implementierbar sein und
eine hohe semantische Interpretierbarkeit aufweisen.

Unser Hauptbeitrag besteht daher in der Entwicklung eines allgemeinen statistischen
Modells für Wide Baseline Stereo Matching, das verschiedene Typen von Bildmerkmalen,
Ähnlichkeitsmaßen und räumlichen Beziehungen nahtlos als Informationsquellen integriert.
Es führt Ideen bestehender Lösungsansätze in einer Bayes’schen Formulierung zusammen, die
eine klare Interpretation als MAP Schätzung eines binären Klassifikationsproblems hat. Das
Modell nimmt letztlich die Form eines globalen Minimierungsproblems an, das mit herkömm-
lichen Optimierungsverfahren gelöst werden kann. Der konkrete Typ der verwendeten Bild-
merkmale, Ähnlichkeitsmaße und räumlichen Beziehungen ist nicht explizit vorgeschrieben.
Ein wichtiger Vorteil unseres Modells gegenüber vergleichbaren Verfahren ist seine Fähigkeit,
Schwachpunkte einer Informationsquelle implizit durch die Stärken anderer Informationsquel-
len zu kompensieren.

In unseren Experimenten konzentrieren wir uns insbesondere auf Bilder schwach texturier-
ter Szenen als ein Beispiel schwieriger Zuordnungsprobleme. Die Anzahl stabiler Bildmerk-
male ist hier typischerweise gering, und die Unterscheidbarkeit der Merkmalsbeschreibungen
schlecht. Anhand des vorgeschlagenen Modells implementieren wir einen konkreten Wide
Baseline Stereo Matching Algorithmus, der besser mit schwacher Textur umgehen kann als
herkömmliche Verfahren. Um die praktische Relevanz zu verdeutlichen, wenden wir den Al-
gorithmus für die automatische Bildorientierung an. Hier besteht die Aufgabe darin, zu einer
Menge überlappender Bilder die relativen 3D Kamerapositionen und Kameraorientierungen
zu bestimmen. Wir zeigen, dass der Algorithmus im Fall schwach texturierter Szenen bes-
sere Ergebnisse als etablierte Verfahren ermöglicht, und dennoch bei Standard-Datensätzen
vergleichbare Ergebnisse liefert.



Summary

Robust Wide-Baseline Stereo Matching for Sparsely Textured Scenes

The task of wide baseline stereo matching algorithms is to identify corresponding elements
in pairs of overlapping images taken from significantly different viewpoints. Such algorithms
are a key ingredient to many computer vision applications, including object recognition,
automatic camera orientation, 3D reconstruction and image registration. Although today’s
methods for wide baseline stereo matching produce reliable results for typical application
scenarios, they assume properties of the image data that are not always granted, for example
a significant amount of distinctive surface texture. For such problems, highly advanced
algorithms have been proposed, which are often very problem specific, difficult to implement
and hard to transfer to new matching problems.

The motivation for our work comes from the belief that we can find a generic formulation
for robust wide baseline image matching that is able to solve difficult matching problems and
at the same time applicable to a variety of applications. It should be easy to implement, and
have good semantic interpretability.

Therefore our key contribution is the development of a generic statistical model for wide
baseline stereo matching, which seamlessly integrates different types of image features, sim-
ilarity measures and spatial feature relationships as information cues. It unifies the ideas
of existing approaches into a Bayesian formulation, which has a clear statistical interpreta-
tion as the MAP estimate of a binary classification problem. The model ultimately takes
the form of a global minimization problem that can be solved with standard optimization
techniques. The particular type of features, measures, and spatial relationships however is
not prescribed. A major advantage of our model over existing approaches is its ability to
compensate weaknesses in one information cue implicitly by exploiting the strength of others.

In our experiments we concentrate on images of sparsely textured scenes as a specifically
difficult matching problem. Here the amount of stable image features is typically rather small,
and the distinctiveness of feature descriptions often low. We use the proposed framework to
implement a wide baseline stereo matching algorithm that can deal better with poor texture
than established methods. For demonstrating the practical relevance, we also apply this
algorithm to a system for automatic image orientation. Here, the task is to reconstruct the
relative 3D positions and orientations of the cameras corresponding to a set of overlapping
images. We show that our implementation leads to more successful results in case of sparsely
textured scenes, while still retaining state of the art performance on standard datasets.
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Chapter 1

Introduction

1.1 Motivation

Wide-baseline stereo matching algorithms search for corresponding elements in pairs of over-
lapping images taken from significantly different viewpoints. To solve this task robustly, it
is common practice to consider only stable image features, and use highly distinctive fea-
ture descriptions for correspondence analysis. Sparsely textured scenes, such as the empty
room with mostly white walls depicted in Figure 1.1, cause two major problems for feature
matching:

1. The amount of stable image features is rather small.

2. The distinctiveness of feature descriptions is low.

In this situation, state of the art methods are often not able to produce enough correspon-
dences for solving a particular computer vision problem. For example, automatic image
orientation systems often fail in such cases (Dickscheid and Förstner, 2009).

Figure 1.1: A pair of overlapping images showing a scene with sparsely textured surfaces, overlaid with a
typical set of local features (Lowe, 2004). The number of features is critically low for applications like image
orientation.

The amount of features can be efficiently increased when using multiple feature detectors
with highly complementary properties (Dickscheid et al., 2010). To compensate for weak fea-
ture descriptions, spatial feature relationships are often used as an additional cue of informa-
tion (Schmid and Mohr, 1997; Pilu and Lorusso, 1997; Tell and Carlsson, 2002; Schellewald
and Schnörr, 2005; Bay et al., 2005; Torresani et al., 2008; Aguilar et al., 2009; Choi and
Kweon, 2009). However, such methods usually provide very specific solutions for particular
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8 CHAPTER 1. INTRODUCTION

types of spatial relationships and feature operators. This makes it difficult to transfer them
to new matching problems. Furthermore, interpretability and semantic correctness of the
mathematical models often get lost in favor of computationally efficient implementations.

1.2 Goal and Achievements of the Thesis

The goal of this work is to provide a generic framework for wide baseline stereo matching that
seamlessly integrates different types of features, descriptors, and spatial feature relationships
as information cues. The key achievement is a sound statistical model for the matching
problem, which unifies the ideas of existing approaches and brings them into a well-defined
Bayesian formulation. The model has a clear statistical interpretation as the MAP estimate
of a binary classification problem and strictly avoids uninterpretable external parameters. It
takes the form of a global optimization problem that can be solved with standard optimization
methods. A major advantage of the framework is its ability to compensate weaknesses in
one information cue implicitly by exploiting the strength of others. To demonstrate its
capabilities, we use the framework to implement a feature matching algorithm that can deal
better with images of sparsely textured scenes than standard methods, while mostly retaining
state of the art performance on regular datasets.

1.3 Applications of the Proposed Method

Applications of wide baseline stereo matching algorithms are numerous. In fact they are a
key ingredient to many computer vision systems, and often the first critical computational
step. For example, they help to recognize and localize known objects in an image (object
recognition), to estimate the 3D geometry of cameras (image orientation) and scene objects
(3D reconstruction), or to properly align and possibly fuse different images of the same
scene (image registration). Although our method is applicable to each of these problems, we
will focus on automatic image orientation, where the task is to reconstruct the relative 3D
positions and orientations of the cameras corresponding to a set of overlapping images. As a
specifically difficult problem, we direct our attention on images of sparsely textured scenes.

1.4 Organization of the Thesis

We start in Chapter 2 by introducing some of the popular feature detectors and descriptors,
and describing a standard approach for wide baseline stereo matching based on similarity
of feature descriptors. The chapter will also cover some important results about the perfor-
mance of these techniques in the case of sparsely textured scenes. The relevance of spatial
relationships between features is motivated in Chapter 3, where we also give an overview on
existing methods for exploiting such relationships.

The core of this work is a framework for robust wide baseline stereo matching that seam-
lessly integrates a broad range of feature detectors and descriptors together with a variety of
spatial relationships. Chapter 4 covers both the derivation of the statistical model and the
optimization algorithm of the framework. It finishes with a particular statistical modelling
of the observation cues that is especially suited for images of sparsely textured scenes.

We will use different datasets with ground-truth feature correspondences for deriving
statistics of descriptor similarities and spatial relationships, and for running the experiments.
For this purpose, we develop a novel scheme for automatic annotation of feature correspon-
dences on real image datasets, which is described in Chapter 5.
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Chapter 6 presents a number of experimental results that characterize the performance
of the proposed framework and relate it to two other popular wide baseline stereo matching
algorithms. We use different sets of detectors, descriptors and information cues on image
datasets with varying properties for the evaluation.

We conclude in Chapter 7 with a summary of our results, and a discussion about possible
extensions and future investigations referring to our work.

1.5 Mathematical Notation

A list of frequently used mathematical symbols is given in Table 1.1 on page 10. It covers
the major part of symbols occurring in this document.

With a few exceptions, we will denote sets by calligraphic uppercase letters, vectors
by bold lowercase letters, and matrices by bold uppercase letters. Elements of a set are
usually represented by the same letter as the set itself, and carry their index as a lower right
subscript. The first element in a set has index 1. For example, the set V of feature matches
is {v1, · · · , vn, · · · , vN}. We will generally represent the number of elements in a set by an
uppercase letter, and the main index variable over the set by the same letter in lowercase.

As we will deal with two or more images at a time, we use upper right apostrophes to
indicate the affiliation of elements to an image. For example, we will often work with two
overlapping images I ′ and I ′′, each representing a set of pixels. The set of features extracted
from I ′′ will consequently be denoted as P ′′. If we use upper right numbers on vectors or
sets, they usually indicate the dimensionality.

Finally, we denote continuous probability density functions by the letter p, and the prob-
ability of a discrete event by P . Estimated entities are sometimes explicitly marked by a hat,
e.g. P̂ (x).
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Symbol Type Meaning

I ′, I ′′, . . . sets input images (sets of pixels)
P ′, P ′′, . . . sets sets of image features extracted from I ′, I ′′, . . .
xi tuple (xi, yi) position of local feature pi in an image, given in pixels
αi angle characteristic orientation of local feature pi in radians
di vector descriptor of local feature pi
pi tuple complete local feature (xi, αi,di)
xi = x(pi) 3-vector homogeneous 2d point representation of pi (cf. Sec. 4.3.4)
Σxx(pi) 3× 3-matrix covariance matrix corresponding to xi (cf. Sec. 4.3.4)
li = l(pi) 3-vector homogeneous 2d line representation of pi (cf. Sec. 4.3.4)
Σll(pi) 3× 3-matrix covariance matrix corresponding to li (cf. Sec. 4.3.4)
d(d′i,d

′′
j ) d ∈ R (metric) dissimilarity of two particular feature descriptors, also de-

noted as sn if vn = (p′i,p
′′
j )

sn sn ∈ R dissimilarity of match vn = (p′i,p
′′
j ), given by d(d′i,d

′′
j )

V V ⊆ P ′ × P ′′ putative feature matches between I ′ and I ′′
N set set of indices {1, · · · , n, · · · , N} over V
Uk set set of all possible k-ary groups of non-redundant putative

matches, Uk ⊆ Vk (cf. Sec. 4.1.2 and Sec. 4.3.8).
vn 2-tuple one (putative) match in V
v N -vector vector v = [vn] of all elements in V
λFn tuple feature type of match vn
λDn tuple descriptor type of match vn
λMn tuple dissimilarity measure used for match vn
λn tuple λn = (λFn , λ

D
n , λ

M
n )

λtype tuple a standard setting (λFn , λ
D
n , λ

M
n ) for match vn referring to

our particular setup. “Type” can be one of Segment, Blob,
AffineRegion or Junction (cf. Section 6.1).

L set label domain for variables vn. We always use L = {0, 1}.
ln ln ∈ L label assigned to match vn. By ln = 1 we denote that “match

n is selected as an inlier”.
l = f(V) vector particular labeling of all putative matches V, configuration of

the corresponding Markov Random Field (cf. Sec. 4.1.2)
Ck set set of cliques of order k in a Markov Random Field
s vector [sn] dissimilarities sn for all n in N
tnm tnm ∈ R inconsistency measure for a spatial relationship between two

matches vn, vm.
tnm tnm ∈ RG vector of multiple inconsistency measures tnm.
T set set of all observed geometric incompatibility measures tnm

related to a complete group of matches
D set D = {s, T } all observed data related to a group of feature matches
θ set set of all potentials of a Markov Random Field

θk set, θk ⊆ θ set of k-ary potentials of a Markov Random Field
θ1
n;ln θ1

n;ln ∈ R coefficient related to the unary potential of variable vn having
label ln

θ2
nm;lnlm θ2

nm;lnlm ∈ R coefficient related to the binary potential of variables vn, vm
having labels ln, lm

Table 1.1: Mathematical symbols and notation.



Chapter 2

Feature Detection and Description
for Wide-Baseline Matching

Wide-baseline feature matching typically starts with a feature detection algorithm, or feature
detector, which determines an initial set of image elements with desirable properties for corre-
spondence analysis. Such elements are called image features. A feature description algorithm
then assigns a distinctive description to each feature, which we call a descriptor. In this chap-
ter, we will briefly describe some popular methods for wide baseline stereo matching which
are solely based on such feature descriptors. The primary goal is to provide an impression for
the variety of available image features and the descriptive power of local image intensities.

2.1 Representation of Features and Descriptors

Feature extraction and description is a mid-level vision process: It will take a set of images
{I ′, I ′′, I ′′′, . . .}, and return sets of features {P ′,P ′′,P ′′′, . . .}, as depicted in Figure 2.1 for a
minimalistic example. Note that we use apostrophes to indicate the affiliation of an element
to a particular image only when necessary. When referring to general elements, we dismiss
the apostrophes for simplicity.

In this work, we assume that each feature pi ∈ P can be represented by a location
xi = (xi, yi) in the image coordinate system, given in pixels, and a characteristic orientation
αi given in radians. We also assume that the shape of the image region associated to image
features can be either represented by an ellipse or a straight line segment. The position xi is
then identified by the ellipse center or the midpoint of a segment. The technical interpretation
of αi can differ according to the particular type of feature: For elliptically shaped features, αi
is usually determined by the most dominant gradient orientation within the elliptical region
(cf. Section 2.3). For line segments, the orientation is taken directly from their direction, and
the 180 degree ambiguity is resolved by choosing the brighter image intensities to be on the
right side, as proposed by Bay et al. (2005).

We will represent local feature descriptors by real-valued vectors di and associate them
directly to the features themselves. A feature can hence be regarded as a set pi = {xi, αi,di}.
Two typical feature description algorithms are presented in Section 2.3.

2.2 Feature Detectors

A broad range of local feature detectors is available today for correspondence analysis under
a wide variety of conditions, especially under scale changes, camera rotation and perspective

11
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p′3

p′2p′1

p′′4
p′′3

p′′2p′′1

Image I′ with features Image I′′with features

P ′ = {p′
1,p

′
2,p

′
3} P ′′ = {p′′

1 ,p
′′
2 ,p

′′
3 ,p

′′
4}

Figure 2.1: Two images I′ and I′′ showing an object from different viewpoints, with sets P ′ and P ′′ of
local features depicted as arrows and ellipses. The feature sets include straight line segments and elliptically
shaped regions. The task is to identify corresponding features. We assume each feature to have an orientation
α ∈ [0, 2π]. Note that |P ′| 6= |P ′′|, and that the ordering of the features in the sets is arbitrary.

distortion. Among those algorithms, one usually distinguishes corner, blob, region and edge
detectors. We will give an incomplete summary of the more prominent detectors here to
illustrate the variability in the methods. A detailed description and categorization has been
worked out by Tuytelaars and Mikolajczyk (2008).

The scale invariant blob detector proposed by Lowe (2004), here denoted as lowe, is
by far the most prominent one. It is based on finding local extrema of the Laplacian of
Gaussians (LoG) of the image, which has the well-known Mexican hat form and therefore
aims at extracting dark and bright blobs on characteristic scales of an image. To gain speed,
the LoG is approximated by Difference of Gaussians (DoG). The Hessian affine detector
(hesaf) introduced by Mikolajczyk and Schmid (2004) is theoretically related to lowe, as it
also relies on the second derivatives of the image function over scale space. However, hesaf
evaluates both the determinant and the trace of the Hessian instead of taking maxima of the
DoG.

The distinction between blobs and regions is not always clear. We will use the term “blob”
for features attached to a particular pixel position, representing dark or bright areas around
the pixel, while “regions” refer to image patches which are explicitly determined by their
boundaries. A very prominent affine region detector is the Maximally Stable Extremal Region
detector (mser) proposed by Matas et al. (2004). It computes a watershed-like segmentation
with varying thresholds, and selects such regions that remain stable over a range of thresholds.
The mser detector is known to have very good matching performance especially on objects
with planar structures, and is widely used especially for object recognition. The direct output
of the algorithm can be any closed boundary of a segmented region, but often an elliptical
approximation of the regions is used. In that case, mser features can be technically used in
the same manner as blob features.

Corner features have been used extensively in photogrammetry and computer vision since
the works of Förstner and Gülch (1987) and Harris and Stephens (1988). Both of these
methods are based on the structure tensor, or second moment matrix, which is computed from
the dyadic products of the image gradients. They are known to provide rotation invariance
and good localization accuracy. The sfop detector proposed by Förstner et al. (2009) is
based on a scale space formulation that directly exploits the structure tensor and the general
spiral feature model of Bigün (1990) to detect complementary scale-invariant features. It
includes corner features as a special case, and generalizes the point detector in (Förstner,
1994). The Harris affine (haraf) detector (Mikolajczyk and Schmid, 2004) computes the
structure tensor on multiple scales to detect 2D extrema within each scale, and then locates
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characteristic scales at these positions in the Laplacian image pyramid, similar to the hesaf
and lowe detectors.

Line feature detectors usually start with a pixelwise detection of strong gradients, e.g. us-
ing the structure tensor, followed by a grouping stage to obtain connected straight or curved
components. The most widely known edge detector is the one of Canny (1986), while more
advanced approaches are that of Bergholm (1987) and the straight line segment detector
included in the framework of Förstner (1994), for example. Lindeberg (1998) proposed a
method for detecting scale-invariant line segments.

2.3 Feature Descriptors

Descriptors for point features. The work on descriptors for point-like features is man-
ifold. A survey and evaluation of many techniques is given in Mikolajczyk and Schmid
(2005). It is not our intention to analyze the performance of different types of point de-
scriptors again. We will therefore rely on the popular SIFT descriptor proposed by Lowe
(2004) for all point-like features throughout our experiments. The SIFT descriptor can be
constructed for scale-invariant features pi with a specific location xi = (xi, yi) in an image,
having a characteristic scale σi. The scale σi identifies the level in a Gaussian scale space
pyramid, and thereby defines both the level of blur and the effective size of a circular window
that is used for computing the descriptor at position xi. Literally all scale-invariant blob and
corner detectors provide such a scale parameter.

The SIFT algorithm starts by assigning a characteristic orientation αi to each feature
pi. This is achieved by searching for dominant peaks in a histogram of gradient orientations
within the circular window. Although the histogram bins impose a quantization of 10 degrees,
the orientation assignment typical has an empirical accuracy of about 2.5 to 4 degrees, which
results from a bilinear interpolation that is applied when filling the bins (Lowe, 2004, Section
5). We will rely on this empirical accuracy later when modelling spatial interactions of
features (Section 4.3). In case that multiple peaks are found in the orientation histogram,
the feature is duplicated, so that each characteristic orientation induces a separate feature.

The final descriptor is constructed as the concatenation of sixteen weighted orientation
histograms, each of which corresponds to a rectangular subregion of the circular patch defined
by σi. While computing the histograms, gradient orientations are transformed according to
the characteristic orientation αi in order to gain rotation invariance. To achieve robustness
against illumination changes, peaks of the histograms are trimmed down to a fixed threshold,
and the final descriptor is scaled to unit length.

Descriptors for straight line segments. The work on distinctive descriptions for line
features is less comprehensive than that for point- and region-like features. Meltzer and
Soatto (2008) recently proposed a sophisticated descriptor suited for scale-invariant lines
with mostly general shape, which preserves scale-invariance by exploiting similar concepts as
the SIFT descriptors. They obtain impressive matching results especially suitable for object
recognition. Bay et al. (2005) have proposed a descriptor for oriented straight line segments
based on color histograms, which is very fast to compute but significantly less distinctive
than the descriptor of Meltzer and Soatto (2008) or the SIFT descriptors for point features.
We will use the descriptor of Bay et al. (2005) in our experiments, so we will give a brief
description here.

Given a straight line segment, color intensity profiles are extracted at a distance of three
pixels to the left and right from the line, and collected in two separate histograms, one for each



14 CHAPTER 2. FEATURE DETECTION AND DESCRIPTION

Value

Saturation

Hue

Figure 2.2: Conical representation of the HSV color space quantization used for building color histogram in
Bay et al. (2005). It uses 18 subdivisions for Hue, three for Saturation, three for Value, and four additional
bins for greyvalues in the center of the cone.

Figure 2.3: Plot of the coefficients in the 166 × 166 weight matrix A for computing weighted Euclidean
distances of color histograms, as proposed for measuring the similarity of straight line segment descriptors by
Bay et al. (2005). The matrix gives the weight of the difference between bin j in color profile h2 and bin i in
color profile h1, which corresponds to the Euclidean distance of the two colors in the conical representation
of the quantized HSV color space shown in Figure 2.2. Bright values denote high weights, dark values low
weights, as indicated by the color bar on the right.
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of the sides. The two histograms are denoted as h1 and h2, respectively. The histograms are
based on a strong quantization of the HSV color space, as shown in Figure 2.3, and contain 166
bins each. The histogram values are normalized by the length of the line segment, restricting
them to the range (0, 1). The distance between two histograms

d1,2 = (h1 − h2)TA(h1 − h2) (2.1)

has the structure of a Mahalanobis distance. The coefficients of the weight matrix A are
derived from the Euclidean distance of color bins in the quantized HSV conic (Bay et al.,
2005, Eq. 3). The matrix A is therefore constant. Its structure, arising from a particular
vectorization of the HSV cone, is shown in Figure 2.3.

The final descriptor of an oriented straight line segment is composed of the two histograms
for the left and right side and represented by a matrix with 2× 166 coefficients. The dissim-
ilarity of two descriptors is defined as the square root of the mean of the distance d1,2 for
both sides, i.e. the corresponding histograms left and right of the two segments.

2.4 Feature Matching based on Descriptor Dissimilarity

Although we will advocate the use of spatial relationships (Section 3.1), the similarity of
descriptors is often the most important cue of information. It can be highly effective to
simply assign to each feature in the first image its nearest neighbor in the second image,
expressed in terms of descriptor dissimilarity. We denote descriptor dissimilarity of two
features pi and pj as sij = d(di,dj), where di is the descriptor for feature pi, and d is a
suitable distance measure.

In practice, it may happen that a feature pi in one image may not have a valid corre-
spondence in the other image at all. To avoid selecting mismatches, Lowe (2004) proposed to
compare the descriptor dissimilarity for its nearest and second nearest neighbor. A correspon-
dence is only established if the dissimilarity to the nearest neighbor is significantly smaller
than the dissimilarity to the second nearest neighbor. This test has shown to be much more
reliable than putting a general threshold on the descriptor distance (Lowe, 2004, Sec. 7.1),
and has become a de-facto standard for finding wide baseline stereo correspondences. We
will denote it as BestMatch-2 in the following.

The above method only makes a decision about selecting the nearest neighbor or not.
It hereby ignores that the second, third, or in general k-th nearest neighbor may also be
the true match if the descriptors are not sufficiently distinctive. In order to capture such
correspondences, the approach can be generalized as follows:

1. Given two overlapping images I ′, I ′′ with associated sets of features P ′,P ′′, determine
the larger of the two feature sets. Let us assume here that |P ′| > |P ′′|.

2. For every feature p′i ∈ P ′, determine its k+ 1 nearest neighbors in P ′′ w.r.t. descriptor
dissimilarity.

3. Assuming that the k-th and k + 1-th nearest neighbors are p′′l and p′′m, respectively,
check whether sil < Tsim. A typical value for T is 0.7. If this condition is satisfied,
select all k-th nearest neighbors as candidates. Otherwise do not match p′i.

Depending on the value of k, we denote this procedure as BestMatch-k. In the special case
of BestMatch-1, the nearest neighbor is always chosen.

We have performed an empirical investigation on the role of the best matching rank k for
the combinations of detectors and descriptors described in Section 6.1.1. Figure 2.4 shows the
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Figure 2.4: Receiver operating characteristic (ROC) statistics per feature type for the selection of putative
matches using the BestMatch-k method described in Section 2.4. For increasing values of k ≤ 11, we
plot the true positive rate against the true negative rate when applying the BestMatch-k method. The
true positive rate expresses the percentage of correctly selected correspondences among all possible correct
correspondences. Accordingly, the true negative rate expresses the percentage of all correspondences that
have been correctly discarded among the total number of possible invalid pairs. Hence, a true negative rate
of 0.5 is obtained if the data contained 200 possible invalid assignments, 100 of which have been mistakingly
selected as correspondences. Good values of k, indicated by the large crosses, were identified by constructing
a line with gradient equal to one through each sample, and searching for the line which is nearest to (0, 1). If
multiple samples are on the best line, given a tolerance of 0.01, we prefer the one corresponding to the smaller
k. The experimental setup used for these plots is described in Section 6.1.

receiver operation characteristic (ROC) coordinates for a large number of putative feature
correspondences of a training dataset, using different values for k.1

For the chosen junction detector, we see that selecting the nearest neighbor based on the
BestMatch-2 method will usually give us over 90 % of the inliers at a true negative rate
between 70 and 80 %, which is a very good result. The best possible value would be (0, 1),
which is the upper left corner of the diagram. Switching to an affine region detector, here
represented by the mser detector of Matas et al. (2004), we see that the characteristic is
different. The best ROC value is achieved when using BestMatch-3. Note that this does
not necessarily indicate a weakness of the mser detector itself, as we do not exploit its full
power in our experimental setup (cf. Section 6.1.1). Our intention is to show that the best
value of k depends on the particular detector and descriptor combination.

The result for the line segments is worst. Here the best ROC value is achieved using

1The annotation procedure used for obtaining the training datasets is explained in Chapter 5. The images
of the training dataset are shown on page 88.
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k = 4. This is not surprising, as we use the descriptors proposed by Bay et al. (2005),
which are described in Section 2.3. These descriptors have lower distinctiveness than the
SIFT descriptors used for the other features. In fact, the value k = 4 for the line segments
coincides with the decision of Bay et al. (2005) to initially select the three best matches when
using these descriptors.

To conclude, the BestMatch-k method is an effective way of selecting correspondences,
but its reliability depends on the type of applied feature, descriptor, and similarity measure.
We will use this method for selecting an initial set of putative correspondences for our method.
While this principle is also applied by other authors, e.g. Bay et al. (2005) or Choi and
Kweon (2009), we will use different k per feature type, hereby directly taking the empirical
results of Figure 2.4 into account. Furthermore, we will not use a threshold T , in order to
avoid unnecessary heuristics. In fact, we assume that a “soft” selection based on descriptor
dissimilarity effectively reduces the size of the set of putative matches, but does not eliminate
a significant number of true positives.

2.5 Relevance of Complementary Features

As stated before, sparsely textured scenes inhibit two major problems for wide baseline stereo
matching: A low amount of detected features, and a possibly reduced distinctiveness of the
descriptors.

An obvious and intuitive solution to the first problem is to use multiple feature detectors,
which leads directly to a larger number of detected features. However, such a combined
feature set may be highly redundant if the detectors have similar characteristics. In general,
the amount of image information covered by the features will not increase proportional to the
amount of features, except in case of highly complementary detectors. This idea has been the
basis for the work in Dickscheid et al. (2010), where we developed a scheme for evaluating
the completeness of a feature detector w.r.t. the image information covered by the features.
The scheme ultimately allows to find sets of feature detectors with high complementarity.

The basic idea is to define a reference representation for the information contained in an
image. Motivated by the coding scheme used in JPEG, this reference is built from an entropy
density pH computed over overlapping local image patches. This density is evaluated over
different scales, i.e. different patch sizes.

The information covered by a particular set of features is also represented as a density pc,
based on a normalized sum of anisotropic Gaussians representing each feature. As features
may appear on different scales, pc is implicitly evaluated over scales, in a similar manner as
the reference pH . Based on these two densities, the completeness of a particular feature set
w.r.t. an image is then defined by the Hellinger distance of pc and pH .

The basic workflow for comparing the completeness of two feature sets is illustrated in
Figure 2.5. Smallest distances are obtained for complementary sets of multiple detectors. The
work in Dickscheid et al. (2010) has shown empirically that the use of three or four detectors,
including a blob and junction detector together with either an edge or a region detector,
yields significantly higher completeness than using one or two detectors only. Furthermore,
the use of theoretically related detectors, like the lowe and hesaf detectors (Lowe, 2004;
Mikolajczyk and Schmid, 2004), hardly increases the completeness at all compared to using
only one of them.

The findings concerning completeness and complementarity of feature detectors refer to
the amount of image information which is covered by the features. The question remains if
increased coverage of image information does ultimately produce better results for a given
application. Indeed, the empirical complementarity measures in Dickscheid et al. (2010) can
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P1 ⊂ P2

P2

pc1

pc2

pH

d1 =
d (pc1 , pH)

d2 =
d (pc2 , pH)

d1 � d2

Figure 2.5: Principle for comparing the completeness of two different sets P1, P2 of local features w.r.t. a
particular image proposed by Dickscheid et al. (2010). Incompleteness is defined by the Hellinger distance d
of a feature coding density pc, which is derived from each particular set of features, to an entropy distribution
pH . In the case depicted here we have P1 ⊂ P2, so we expect lower completeness for P1, resulting in a higher
distance.

be mostly verified when compared to the results of an image orientation procedure that uses
different detector combinations as an input (Dickscheid and Förstner, 2009).

The investigations in Dickscheid et al. (2010) have been a strong motivation for the
wide baseline stereo matching framework presented in the next chapters. The framework
allows for easy integration of feature detectors with different characteristics, and defines a
straightforward procedure for “calibrating” the framework for a particular set of detectors. In
our experiments, we will demonstrate how weaknesses of some detectors can be compensated
seamlessly by exploiting the strengths of others.

2.6 Summary

In this chapter we presented some of the most popular feature detectors, and mentioned
the problem of finding reasonable combinations of detectors. Here the complementarity of
features plays an important role. We also described two methods for extracting distinctive
descriptions of features, one suited for features with elliptical shape and one for straight
line segments. An important observation is that the distinctiveness of such descriptors can
differ enormously. The feature matching problem can be solved based on descriptors using
the BestMatch-2 algorithm, but its reliability depends strongly on the type of feature and
descriptor. We will therefore motivate the use of spatial relationships as an additional cue of
information in the next chapter.



Chapter 3

Exploiting Spatial Feature
Relationships

The BestMatch-k approach presented in Section 2.4 exploits the similarity of feature de-
scriptors for finding correspondences, but ignores the spatial arrangement of the features. In
this chapter, we will demonstrate that the consistency of spatial feature relationships across
views can provide an important additional cue of information. We will also give an overview
of existing methods that exploit such relationships, some of which have been a strong inspi-
ration for our own approach.

3.1 Relevance of Spatial Feature Relationships

To motivate the importance of spatial relationships, let us consider the example in Figure 2.1
again, but this time ignore the image content:

p′3

p′2p′1

p′′4
p′′3

p′′2p′′1

Spatial arrangement of P ′ Spatial arrangement of P ′′

For a human observer, it is still possible to find the correct matching. A typical reasoning
might be as follows: First of all, we have a feeling that the relative placement of the line
segments is consistent across the views: They are located right of each other in both images.
As the length of p′3 and p′′1 is almost identical, and the distances between (p′1,p

′
2) and be-

tween (p′′4,p
′′
3) are similar, one might argue at first that P ′ is roughly rotated by 180 degrees

w.r.t. P ′′. On the other hand, the orientation of p′′3 is almost orthogonal to p′′4, while p′1
and p′2 have a rather similar orientation, which contradicts the 180 degree rotation. In the
end, we feel that the inconsistency in orientation constitutes a stronger violation of spatial
arrangement than the inconsistency in distance. We therefore decide that (p′1,p

′
2) on the left

correspond to (p′′1,p
′′
2) on the right.

For such reasoning, a few simple geometric relationships between pairs of features are
observed in one view, and then verified in the other. Specifically, the following properties
were useful:

19
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Figure 3.1: Typical limitation of the “sidedness” test: Even moderate 3D structure in the scene can cause
the test to fail for valid features matches. Here, the upper left corner of the room changes its relative sidedness
w.r.t. the border of the table stand after a typical viewpoint change of the camera. Obviously, such geometric
relationships in the image domain should not be modelled as hard constraints.

1. Sidedness. If a feature is clearly located left or right of another feature in one view, we
expect the same spatial relation for their correct correspondences in another view.

2. Angle. If two features have a similar orientation in one view, the angle spanned by
their orientations is small. Then we also expect the angle spanned by the corresponding
features in another view to be small. The same reasoning applies if the angle is large.

3. Proximity. If two features are located close to each other in one view, we also expect
their correspondences in another view to be close. Here, we intuitively relate closeness
to the overall image size.

Among these relationships, only the sidedness was strictly satisfied by the final assignment.
The other two relationships were not exactly consistent across views. Instead we used our
experience to grant a certain tolerance on the consistency, and put emphasis on the most
stable relationship according to our prior experience.

It is important to note that none of the geometric relationships discussed above is generally
preserved between feature groups. Figure 3.1 gives an example where even the sidedness
between two correct matches is violated for a rather simple scene. However, the value of
spatial feature relationships is obvious, especially when using many different observations
and applying a soft reasoning that takes prior experience into account.

3.2 Existing Methods

Ullman (1979) identified the three criteria similarity, proximity and exclusion as a key to
establishing a good visual mapping. In this section, we will present a number of existing
techniques for wide baseline stereo matching, which consider both similarity of feature cor-
respondences and geometric relationships. Most of these will indeed model geometric consis-
tency using a measure of proximity, and employ Ullman’s criterion of exclusion by enforcing
unique feature correspondences between two views. In our own approach, we will relax the
exclusion criterion for reasons explained in Section 4.3.8, and besides proximity use angle and
sidedness between pairs of features as spatial relationships.
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For the following summary of existing approaches, we need some formalization of the
problem. We will denote an initial set of putative feature matches between two images I ′
and I ′′ as V = {v1, · · · , vN }. Each element is a pair of features vn = (p′i,p

′′
j ) , where p′i ∈ P ′

and p′′j ∈ P ′′, and P ′,P ′′ are the sets of detected features. Thus, V can be seen as the set
of edges in a bipartite Graph with nodes P ′ and P ′′, as illustrated in Figure 4.2 (page 31).
A feature itself is represented as described in Section 2.1. We will also use the set of indices
N = {1, · · · , n, · · · , N} over V, and work with pairs of correspondences defined by sets of
index pairs C2 ⊆ N 2 = N ×N . Accordingly, a set of triplet indices would be denoted as C3,
and so on. The set N itself could be considered as C1. Note that we usually assume exactly
Ck = N k. In case that Ck ⊂ N k, it will be clear from the context.

The descriptor dissimilarity of a putative feature correspondence vn is computed using
some distance measure d over the descriptors, and denoted as sn = sij = d(d′i,d

′′
j ). Descriptor

dissimilarities for all elements of V are collected in the vector s = [sn], n ∈ N . For pairs of
correspondences (vn, vm) ∈ C2, we will observe measures of geometric inconsistency which
we denote as tnm, sometimes further distinguished by an upper right subscript denoting a
particular type of spatial relationship. These are collected in sets T for each image pair.

Wide baseline stereo matching algorithms have to select a subset of V, so we define a
labelling state ln ∈ {0, 1} referring to each correspondence vn. By ln = 1 we denote the event
that correspondence vn is selected, and by ln = 0 the event that it is discarded.

3.2.1 Methods Relying on Local Proximity

Most of the earlier works on feature matching with geometric relationships exploit the consis-
tency of spatial relationships between features only within a region of local proximity. This is
due to the fact that the instability induced by occlusions and partial visibility of objects in-
creases for distant features. Local proximity is usually defined by a maximum spatial distance
or by selecting a fixed number of closest neighbors. For example, Schmid and Mohr (1997)
rely on the consistency of angles in a cyclic ordering of neighboring features as illustrated in
Figure 3.2. These constraints are collected into a voting framework, which also incorporates
information about similarity of features. The authors do not discuss the problem of relative
weighting of the different cues of information.

Figure 3.2: Semilocal spatial relationships used in
Schmid and Mohr (1997). Crosses denote point fea-
tures, straight lines denote local feature neighbor-
hoods, and dashed lines denote putative correspon-
dences between the two views. The angles α1/2 in-
duced by a cyclic ordering of the nearest neighbor
features in each view are assumed to be preserved
across images. Image taken from Schmid and Mohr
(1997).

Tell and Carlsson (2002) propose an algorithm that directly incorporates pairwise spatial
relationships into the feature descriptor. It uses scale invariant descriptions based on color
intensities along straight lines connecting pairs of corner features, as shown in Figure 3.3. For
each feature, a description is computed with its K closest neighbors. The main idea is that
the cyclic ordering of connecting lines emitted by a feature is robust under affine transfor-
mations in planar scenes. Therefore a feature signature can be constructed by concatenating
all descriptions referring to one feature according to the cyclic ordering. Such a signature
incorporates both appearance and geometric relationship within a region of local proximity.
As the local feature neighborhood of a feature can differ across views, the matching algorithm
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Figure 3.3: Illustration of corner feature descriptors used by Tell and Carlsson (2002): For each corner
feature, color profile descriptors are computed along the connecting lines to other corner features in the view.
The cyclically ordered concatenation of descriptors yields a signature which incorporates both appearance and
geometric relationship to other features. The figure shows the connecting lines emitted by one corner feature
in each view.

must take different lengths of signatures into account, corresponding to missing descriptions
within the signature. Tell and Carlsson (2002) therefore interpret each particular descrip-
tion within the complete signature as a letter in a cyclically ordered string, and apply a
technique called cyclic string matching for wide baseline stereo. For example, the strings
“ABCDAABB” and “CDAB” have “ABCD” as their longest common cyclical substring. If
cyclic invariance would not used, the longest common substrings would be “AB” and “CD”,
The complexity of the string matching algorithm is O(m2 logm) for strings of length m, but
is in practice reduced by applying a preselection of profiles based on their similarity.

Pilu and Lorusso (1997) propose an approach for wide baseline stereo matching which
provides a global solution, covering proximity, exclusion and similarity simultaneously. The
basic idea dates back to Scott and Longuet-Higgins (1991). It exploits the properties of
a Singular Value Decomposition (SVD) for selecting unique correspondences between the
sets of features P ′ and P ′′ in images I ′ and I ′′, respectively. To achieve this, a proximity
matrix G ∈ R|P ′|×|P ′′| is constructed, where each matrix element Gij refers to a possible
feature correspondence vn = (p′i,p

′′
j ). In other words, the matrix defines the complete set

V = P ′ × P ′′ of possible feature correspondences. Each element has the particular form

Gij = Gn = exp

(
−(Cij − 1)2

2γ2
−
|x′i − x′′j |2

2σ2

)
(3.1)

The term Cij ∈ (−1, 1) is the normalized cross correlation between rectangular image patches
of fixed size, centered around each feature location An extension where the cross correlation
measure is replaced by SIFT descriptor dissimilarity has been proposed later by Delponte
et al. (2006). When computing the Euclidean distance of the two features in the second
fraction of (3.1), the two feature locations are treated as if they refer to the same image
coordinate system. Both σ and γ are interpreted as Gaussian variances, smoothly restricting
the influence of distant feature pairs, and thereby effectively realizing an evaluation of fea-
ture pairs within a region of local proximity. For obtaining a solution, the SVD G = USVT

is computed. Then all nonzero values in S are replaced by 1, yielding a new diagonal matrix
S∗ for calculating an updated proximity matrix P = US∗VT. This transformation effectively
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maximizes trPTG, and is shown to amplify matrix elements referring to nearby correspon-
dences with high similarity. Because the final correspondences are selected as those elements
in P which simultaneously constitute a maximum in the respective row and column, Ullman’s
exclusion criterion is explicitly fulfilled.

The notion of proximity implemented by Pilu and Lorusso (1997) makes sense for image
pairs with small baseline, small affine distortions, and especially negligible rotations between
the images. As soon as perspective distortions become significant, the weight of the distance
measure needs to be decreased, which effectively shifts the algorithm’s behavior towards
a correlation-based matching. Most importantly, the structure provided by the proximity
matrix is not suitable for evaluating geometric properties of groups of matches, which is one
of our primary goals.

Other than the approaches presented above, we will not restrict to regions of local prox-
imity for evaluating geometric relationships. To compensate for the problems caused by
geometric distortions between distant features, we will treat all geometric consistency mea-
sures as statistically uncertain entities.

3.2.2 Methods Enforcing Global Geometric Consistency

Aguilar et al. (2009) have recently proposed an algorithm for iteratively removing outliers
from an initial set of correspondences called Graph Transformation Matching (GTM). An
initial set V0 of putative correspondences is established using descriptor dissimilarities, which
does not contain any redundant matches (cf. Section 4.3.8). This set is filtered by explicitly
forcing consistency of the local neighborhood structure of groups of matches. The principle
idea is to build one graph for each of the two images, which contains matched features as
nodes. The vertices in the graph connect to each feature its K nearest neighbors within a
fixed radius of local proximity. The GTM algorithm starts by identifying the feature match
vn which causes most inconsistencies in this neighborhood graph across the two views. Then
the two graphs are updated using the new set V1 = {V0 \ vn}. This two-step process is
iterated until the two graphs are strictly isomorphic, hereby explicitly enforcing consistency
of the local neighborhood structures. The detection of graph inconsistencies in each iteration
is computed efficiently based on the corresponding adjacency matrices.

The GTM algorithm is very effective for eliminating outliers, but has a worst case com-
plexity of O(N3logN) in the number of initial correspondences. It focusses on extracting
sets of correspondences with an outlier rate near zero, at the cost of possibly discarding a
significant number of correct correspondences. Therefore it is not suitable for processing
images of sparsely textured scenes. However, the graph-based model for spatial relationships
is strongly related to Relational Matching (Shapiro and Haralick, 1987), which we will use as
a basis for deriving our own model in Section 4.1.1.

The idea of starting with an initial matching based on descriptor similarity and then re-
moving outliers until a level of full geometric consistency is reached has also been applied by
Bay et al. (2005). Their approach is based on a weak descriptor-based matching of straight
line segments, using the descriptors that we described in Section 2.3. In particular, an initial
“softmatching” stage selects for each line segment in one view the three best correspondences
in the second view, hereby at first allowing for a high amount of redundant matches. Indepen-
dently, affine region feature correspondences are computed using classical descriptor-based
matching with low redundancy. The iterative filtering stage relies on the sidedness constraint
between both line segments and affine regions, and implements two tests:

1. For all triples of putative correspondences, the location of one feature w.r.t. to the line
connecting the locations of the two other features is checked in the left and right image,



24 CHAPTER 3. EXPLOITING SPATIAL FEATURE RELATIONSHIPS

Figure 3.4: Illustration of the sidedness test
between triples of putative correspondences in
Bay et al. (2005): The location of one feature
(m1

1/2) w.r.t. to the line l1/2 connecting the lo-
cations of the two other features is assumed to
be identical in both images if all three corre-
spondences are correct. Image from Bay et al.
(2005).

as shown in Figure 3.4. The test considers whether the feature is located left or right.
This relation is assumed to be preserved between the images if all three correspondences
are correct.

2. For pairs containing at least one line segment correspondence, the location of one feature
w.r.t. to the line (cf. Figure 4.20 left) is checked in both images. The principle is
otherwise identical to the case for three correspondences. We will discuss this pairwise
test in more detail in Section 4.3.5.

The evaluation of triplets (1.) in principle has cubic complexity in the number of putative
correspondences, but an efficient O(N2 logN) implementation is described in Ferrari (2004,
p. 207f). As the pairwise filter (2.) can only exploit pairs containing at least one line
segment, it is by far less powerful than the triplet test, which in turn increases the algorithm’s
complexity. After computing the sidedness tests over all possible groups of matches, Bay
et al. (2005) iteratively determine the correspondence that is involved in the highest number
of violations, and deselect it, in the same spirit as the GTM algorithm.

After achieving a level of high geometric consistency, the authors explicitly re-introduce
previously unmatched or spuriously filtered correspondences into the final set of correspon-
dences as long as they are geometrically consistent. This “boosting” stage is the most sig-
nificant difference from the GTM approach, and makes it especially suitable for sparsely
textured scenes, as it focusses not only on low outlier rates, but also on delivering a high
amount of matches. This principle was a strong inspiration for our own method. However,
the explicit treatment of line segment features opposed to the affine regions makes it difficult
to use the procedure on arbitrary sets of combined feature types, and it is not clear how other
relationships than the sidedness can be integrated smoothly into the setup. Furthermore, the
two iteration stages lead to possibly high computation times and make a clear interpretation
of the results difficult.

The filtering and boosting stage in Bay et al. (2005) do not take the descriptor similarity
of individual softmatches into account, leading to a sequential and independent treatment of
similarity and geometry. As we claim that a violation against a “strong” softmatch should
have a higher impact than one against a “weak” softmatch, we are interested in a joint
problem formulation which integrates arbitrary descriptor dissimilarities with consistency
measures for different spatial relationships. Instead of an iterative solution, we aim at a
global one.

3.2.3 Methods Based on Energy Minimization

Recently, a number of approaches that incorporate spatial relationships into a global opti-
mization framework have appeared. Such methods are very similar in spirit to our approach,
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Figure 3.5: Local transformations induced by a pair of affine region feature correspondences. Each corre-
spondence vn defines a 2D affine transformation fn, denoted by the dashed arrows. Each affine transformation
maps an ellipse in one image to the corresponding ellipse in the other image. For correct feature correspon-
dences which refer to the same flat surface in 3D, the transformations are expected to be similar. Image from
Choi and Kweon (2009).

as they account for outliers in terms of geometric consistency implicitly by solving a global
optimization problem.

Schellewald and Schnörr (2005) use a graph matching approach based on local features
for recognizing rigid objects in images, which is formulated as a Quadratic Integer Program.
Their approach considers all possible bipartite matchings between the feature sets P ′ and
P ′′ of two images, where image I ′ shows the object itself, and I ′′ shows a scene containing
an instance of this object. The set V of putative matches is exactly P ′ × P ′′. The binary
indicator vector x = {0, 1}N = [ln], n ∈ N represents all possible labelings corresponding to
a bipartite matching. The objective function of the Quadratic Integer Program is

min
x
sTx+ αxTQx . (3.2)

The first part of the sum simply models the costs for selecting correspondences referring to the
feature dissimilarities s. The second part of the sum models the costs induced by violating the
relational structure of the object, based on consistency of pairwise neighborhood relationships
within P ′ and P ′′. The parameter α fixes the relative influence between consistency of the
relational structure and the similarity of descriptors. The model of geometric consistency is
similar to that used in the GTM algorithm discussed above: The matrix Q is derived from the
adjacency matrices corresponding to P ′ and P ′′, respectively. For each pair of features in P ′
which is matched to P ′′, Q will induce a cost of exactly 2 if the corresponding entries in the
two adjacency matrices are different. As the objective function (3.2) models only costs for
matched features, a trivial minimum is achieved by matching none of the features. Therefore,
the Quadratic Program uses linear constraints to restrict the feasible set to solutions where
every element of P ′ is matched uniquely to an element of P ′′. As the solution is in general NP
hard, the problem is relaxed to a semidefinite program which provides a good approximation
of the original problem. The approach of Schellewald and Schnörr (2005) differs from ours in
that it considers only neighborhood relationships, and models these as hard constraints. It is
also very specific to object recognition, as it assumes that the features of the first image can
be found in the second image, and that their neighborhood structure is consistently measured
in the second image. However, the formulation as a standard optimization problem is very
elegant.

Choi and Kweon (2009) propose a wide baseline stereo algorithm for affine region features,
which selects an initial set V of putative correspondences based on Euclidean distances of
SIFT descriptors. They use the local affine transformation Hn that is directly induced by
the two affine regions related to each correspondence vn, as illustrated in Figure 3.5. In
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particular, Hn is a 2 × 2 matrix representing the 2D affine transformation that maps the
ellipses corresponding to the regions onto each other, and can be determined directly by the
ellipse parameters. The authors exploit the fact that the transformations Hn and Hm of two
correspondences vn and vm are very similar if the features refer to the same smooth and
approximately planar surface in 3D. The backprojection error of the features related to vm
under the transformation Hn (and vice versa) will be small then. To obtain a good matching,
an energy function of the form

E(ln, lm; s, T ) =
∑
n∈N

snln +
∑

(n,m)∈C2

tnmlnlm (3.3)

is minimized, where the first part of the sum models descriptor dissimilarities, and the second
part models geometric consistency of the local affine transformations, with tnm being based
on the sum of backprojection errors induced by the affine transformations Hn, Hm, H−1

n and
H−1
m . The descriptor-based part can be considered as a sum over unary energies, as it refers

to groups of single matches, and the geometry-related part as a sum over binary energies, as
it refers to pairs of putative matches.

Although the method of Choi and Kweon (2009) is very elegant, it has a number of
drawbacks. First of all, the unary energies are a linear function of the descriptor dissimilarities
sn. This is not a realistic model, as we will show by empirical distributions of dissimilarities
in Section 4.3.3. Second, the relative weighting between the unary and binary energies has
no clear semantics, so it is necessary to determine a balancing parameter. The fact that
both sn and tnm are normalized is not sufficient. Third, the model will not work for features
with circular shape and straight line segments. It also tends to eliminate possibly correct
correspondences of features that do not sit on the same 3D plane as other features. We want
to find a formulation that avoids discarding correct matches as far as possible.

Torresani et al. (2008) proposed an approach that is most similar to our work. They start
with a set V of putative matches which contains all possible assignments between P ′ and P ′′,
in principle following a graph matching approach. The final correspondences are found by
minimizing a complex energy function, which consists of four components that we will briefly
discuss.

1. The first energy component, denoted as Eapp, covers similarity of feature detectors, or
“appearance”. It is identical to the sum over unary potentials in (3.3).

2. For explicitly imposing a penalty for unmatched features, the fraction of unmatched
features in the smaller feature set is used as a cost. It can be written as a sum over
unary energies, denoted as Eoccl.

3. The component Egeom is a sum over binary potentials. It models the consistency
of pairwise spatial relationships within a region of local proximity, referring to the
orientation and length of the connecting line between two feature locations, which is
compared across the two views. The principle is illustrated in Figure 3.6.

4. The energy component Ecoh constitutes a classical smoothness term. It is the sum of
neighboring correspondences vn, vm having different labellings, i.e. ln 6= lm.

These four components can be rewritten so that the final energy takes a very similar form
as (3.3), and minimization of the final energy function gives the desired solution. The en-
ergy contains four balancing variables λapp, λoccl, λgeom and λcoh for weighting the different
potentials, which have to be determined explicitly.
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I ′ I ′′

p′k

p′i

l′ik

p′′l

p′′j
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Figure 3.6: Model for the consistency of spatial relationships between two correspondences vn = (p′
i,p

′′
j )

and vm = (p′
k,p

′′
l ) used in Torresani et al. (2008). The idea is to test how well the line l′ik, which connects the

feature locations in image I′, matches the line l′′jl connecting the corresponding locations in image I′′. The
lines are compared in terms of length and direction, which assumes negligible scale and rotation differences
between the views. The shape of the features, here denoted by the ellipses, is not used for the test.

The smoothness term Ecoh shows that the approach of Torresani et al. (2008) is meant for
object recognition and tracking of moving objects. In general wide baseline stereo matching,
there is no reason to assume nearby features having the same labels. Also, the model Egeom

for the binary spatial relationships assumes locally negligible differences in scale and rotation,
which is not a typical assumption for wide baseline stereo matching. The most important
difference to our approach is that Torresani et al. (2008) model all potentials as positive
costs, which are mostly linear in the observations. This is a rather crude approximation of
the true relationship between observations and labels, as we will show in Section 4.3. As a
simple example, observe that referring to Eapp, selecting a match with a very small descriptor
dissimilarity induces a higher cost than not selecting it. This is not intuitive, because small
dissimilarities indicate inliers. This semantic defect is common to most of the approaches
discussed above. Torresani et al. (2008) compensate for this problem by introducing Eoccl,
a linear function that explicitly enforces the selection of some inliers. Our approach will not
require an artificial term for selecting correspondences, as it uses a more realistic model which
implicitly leads to a selection of good correspondences.
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Chapter 4

A Generic Framework for Robust
Wide-Baseline Stereo Matching

As motivated in Section 3.1, spatial relationships are a valuable cue of information for wide
baseline stereo matching. In this chapter we will develop a generic framework that integrates
both information about spatial relationships and information about similarity of feature de-
scriptors. We will start by modeling the matching problem for a minimal feature configuration
in a deterministic manner, and then introduce a statistical viewpoint. Then we will care-
fully extend the minimal model towards the general problem, and introduce some reasonable
assumptions to make it computationally tractable. We will also describe how the problem
can be solved efficiently, and develop a particular instance of the model with specific choices
for descriptor dissimilarities and spatial relationships, which are suited well for processing
images of sparsely textured scenes.

One important goal is to find a framework that not only leads to a filtering of bad
correspondences, but also provokes the selection of geometrically consistent matches despite
possibly low descriptor similarity. While Bay et al. (2005) have implemented an explicit
boosting stage for producing such effects (cf. Section 3.2.2), we will achieve it as a natural
behavior of a statistically motivated, more realistic problem formulation.

We suggested in Section 2.4 to use the rank of descriptor similarity as an initial filter for
reducing the amount of putative correspondences from |P ′||P ′′| to about k|P ′|, with k � 10,
where P ′ and P ′′ are again the sets of features detected in images I ′ and I ′′, respectively.
We will use a different value of k per feature type, hereby taking the empirical observations
in Figure 2.4 into account. Besides this, we will not apply a threshold on the ratio between
the k and k + 1 best assignments, as in the classical BestMatch-2 approach, following
our intention to avoid thresholds wherever possible. Clearly, such preselection of putative
matches is a heuristic filtering step, however motivated from our empirical observations on
training data in Figure 2.4. In principle, the framework can also deal without a preselection,
and start with the full set V = P ′ ×P ′′. This would lead to significantly higher computation
times.

The complete proposed workflow for wide baseline stereo matching of a pair of images is
sketched in Figure 4.1, together with two other classical approaches. The illustration shows
that the preselection of putative matches (Section 2.4) is directly related to the Softmatching
step proposed in Bay et al. (2005). Our approach can be interpreted as a binary classification
of the putative correspondences into inliers and outliers. The dataflow implemented by our
method is very similar to other approaches relying on energy minimization methods (Schelle-
wald and Schnörr, 2005; Torresani et al., 2008; Choi and Kweon, 2009). Other than these

29
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Descriptor-Based Matching (Lowe, 2004)

Feature De-
tection &

Description

Descriptor-
Based

Matching
Application
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Figure 4.1: Comparison of the basic dataflow for wide baseline stereo matching of a pair of images for three
different approaches. Top: Standard descriptor-based matching, as in Lowe (2004). Middle: Approach of Bay
et al. (2005). Bottom: Proposed approach.

however, it combines the descriptor-based classification and the two geometrically inspired,
iterative filter and boosting steps proposed by Bay et al. (2005) in a well-defined Bayesian
treatment.

4.1 Statistical Model for the Matching Problem

In the following sections, we will derive a model for the wide baseline stereo matching problem
that is similar in spirit to the ones of Choi and Kweon (2009) and Torresani et al. (2008)
discussed in Section 3.2. We will also end up with an energy function that has a very similar
form. The particular energy components and the derivation of the model differ significantly
however, as we will rely on a Bayesian derivation. Before defining the statistical model, we
revisit the problem of modeling spatial relationships for matching problems to get a deeper
understanding of the underlying principles.

4.1.1 Representation as a Relational Matching Problem

Descriptor-based approaches for wide baseline stereo matching, as described in Section 2.4,
consider each feature individually. Recall the simple matching problem with three and four
features in Figure 2.1 on page 12. The standard descriptor-based algorithm would consider
an initial set V ⊆ P ′×P ′′ of putative correspondences, which is the set of all edges connecting
features of the same type between I ′ and I ′′. By observing six corresponding dissimilarities
s = [s1, s2, s3, s4, s5, s6] of feature descriptors, it would select a subset of V as the solution.

Figure 4.2 illustrates the matching problem in Figure 2.1 as seen by such an algorithm: It is
a bipartite graph G = (P ′,P ′′, E), where edges in E represent correspondences, connecting one
vertex in P ′ with one vertex in P ′′. The set of putative matches contains only six candidates
V = {v1, v2, v3, v4, v5, v6}, because under the assumption that good correspondences refer
to features of the same type, pairs of line segments and blob features are not considered.
The correct matching is denoted by thick edges. Representing the problem in this form
visually classifies it as an inexact graph matching problem. However, our goal is to take
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P ′
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Figure 4.2: Descriptor-based matching of the features depicted in Figure 2.1, illustrated as a graph matching
problem. The bipartite graph G = (P ′,P ′′, E) contains the features as nodes. The edges E are given by the
set of putative matches V = {v1, . . . , v6}, connecting features of the same type. The algorithm has to select
a good subset of V, ideally the one denoted by the thick lines. The decision is made based on dissimilarities
s = [s1, · · · , s6] of feature descriptors.

f
P ′ P ′′

p′1
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p′′1

p′′2

p′′3

p′′4

v1
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Figure 4.3: Relational matching representation of the problem depicted in Figure 2.1. The directed edges
(arrows) connect elements within P ′ or P ′′, and denote the binary relationship “is located right of”. They
are collected in the binary relation sets R′

2 and R′′
2 . The tuples (P ′,R′

2) and (P ′′,R′′
2 ) each define a relational

description. The correct matching {v1, v3, v6} defines a mapping of a subset of P ′ to a subset of P ′′, which
induces a relational homomorphism: The composition R′

2 ◦ f is really observed on P ′′, because R′
2 ◦ f ⊆ R′′

2 .
In other words: If we transfer the relationships in P ′ to P ′′ by the mapping f , they are identical to the already
existing relationships in P ′′ between the mapped elements, as denoted by the thick arrows.
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spatial relationships of groups of features into account (Section 3.1), so we need a problem
representation that allows us to express structural relationships between the nodes in P ′ and
P ′′. Shapiro and Haralick (1987) introduced the concept of relational descriptions for finding
objects in images, which provides such a representation. They describe an object by the set
of its parts A, and represent its structure by a set {R2,R3, . . .} of binary, ternary, and in
general k-ary relations between these parts. For example, R2 ⊆ A × A is the set of binary
relationships of object parts, which may contain the relationship “is part of” or “is connected
to”.

We can transfer the wide baseline matching problem to Shapiro and Haralick’s represen-
tation by considering images as objects, and image features as object parts. For example, we
may consider the two example images I ′ and I ′′ in Figure 4.2 as objects with sets of parts
P ′ and P ′′, respectively. We can then extend the representation in Figure 4.2 by a set of
binary relations R2 defined over the features in P ′ and P ′′, for the moment using the spatial
relationship “is right of” as an example (cf. Section 3.1). This yields a set of directed edges
within the elements of P ′ and P ′′, respectively, as illustrated in Figure 4.3.

Each possible matching of features between I ′ and I ′′ is a mapping f : P ′ → P ′′, and
induces a composition

R′2 ◦ f = {(p′′i ,p′′j , · · · ) ∈ R′′2 | ∃(p′m,p′n, · · · ) ∈ R′2 (4.1)

with f(p′m) = p′′i , f(p′n) = p′′j , · · · }

for each set R′2 of binary relationships between the features in P ′. In other words, the
composition of binary relations induced by f is the set of binary relations over P ′′ produced
by “transferring” R′2 according to the feature matching. Such a composition is defined for
general sets of k-ary relations over P ′′. Observe again the example in Figure 4.3: If we
transfer the relations R′2 in P ′ to P ′′ along the edges {v1, v3, v6}, they constitute a subset of
the already existing relations R′′2 in P ′′, i.e. R′2 ◦ f ⊆ R′′2. The correspondences represented
by the edges are therefore likely to be correct. A mapping f which satisfies R′k ◦ f ⊆ R′′k
is called a relational homomorphism. In the special case where R′k ◦ f = R′′k, we call f a
relational isomorphism. Then it represents a perfect symmetric match from P ′ to P ′′.

In wide baseline stereo problems, we will hardly observe a relational isomorphism or
homomorphism between the feature sets when using typical geometric relationships. It is
thus reasonable to quantify the “error” induced by a set of correspondences. Shapiro and
Haralick (1987) define a structural error Ens (f) that measures both the number of n-tuples
in R′k which are not mapped to R′′k by f , and the number of n-tuples in R′′k which are not
mapped to R′k by f−1:

Ens (f) = |R′k ◦ f −R′′k|+ |R′′k ◦ f−1 −R′k| (4.2)

A simple way to measure the quality of a matching is then to compute the sum of structural
errors over all orders of relationships, which is the relational distance

E(f) =
∑
n

Ens (f) . (4.3)

By searching a mapping between P ′ and P ′′ with minimal relational distance E(f) according
to a set of spatial relations, it is possible to search geometrically consistent matchings of
features in an image pair.1 This is similar to the methods which enforce geometric consistency

1Shapiro and Haralick (1987) use a backtracking search to accomplish this, which has exponential com-
plexity in the number of features. In principle it builds a balanced tree, where each level contains the set
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V v1 v2 v3 v4 v5 v6

s1 s2 s3 s4 s5 s6 Figure 4.4: Graph representing the information
used by a descriptor-based matching approach.
Given a set of putative matches V, the algorithm ob-
serves a descriptor dissimilarity sn for each of them,
and tries to select a good subset of V as a solution.
Following the notation in Bishop (2006), observed
values are represented by shaded nodes.

that we presented in Section 3.2.2. Shapiro and Haralick (1987) also present a way to add
real-valued attributes to the relations, leading to an extension of the structural distance that
incorporates distance measures over attributes of the involved relations.

As discussed in Section 3.1, we intend to model geometric consistency as soft constraints.
This would require us to generalize the concept for relational matching explained above.
More importantly, we aim at a statistical formulation of the problem. In the next section,
we will therefore build on the ideas of relational matching, but transfer them to a different
representation for the wide baseline stereo problem, which carefully integrates a preselection of
putative matches into the framework, and allows to model descriptor similarity and geometric
consistency in a Bayesian treatment.

4.1.2 Representation as a Binary Labeling problem

Let us recall that the classical descriptor-based matching approach observes only dissimilar-
ities of feature descriptors. For each putative match vn = (p′i,p

′′
j ), the dissimilarity sn ∈ R

measures a distance d(d′i,d
′′
j ) of the associated feature descriptors d′i and d′′j . We may collect

all dissimilarities corresponding to V = {v1, · · · , vN} in the vector s = [s1, . . . , sN ].

The descriptor-based matching approach in fact operates on the level of putative matches:
Finding a good matching means to select a good subset of V, given s. In that sense, the
simple graphical representation in Figure 4.4 contains all required information, despite being
simpler than the graph in Figure 4.2, which does not show the observations. Selecting a
subset means to assign a label from the set L = {0, 1} to each element in V. This way each
vertex vn becomes a binary random variable defined on the set L of labels, with a labeling
function f : {1, . . . , n, . . . , N} → L assigning a particular label ln to each variable vn. If
ln = 1, we say that “match n is selected”, otherwise “match n is discarded”.2 We will simply
use the notation ln for denoting the particular labeling event vn = ln. We call a labeling
l = f(V) of all variables a configuration.

Are we able to transfer the ideas of relational matching into this concept? Consider
a minimal example with two putative matches vn = (p′i,p

′′
j ) and vm = (p′k,p

′′
l ), having

descriptor dissimilarities sn, sm, as shown in Figure 4.5. By taking the spatial relationship
“is left of” into account, we get the relational matching graph depicted in Figure 4.6.

Obviously, the spatial relationships between features cannot be included directly in a
model having the putative matches as its basic elements, as in Figure 4.4. However, according
to the discussion in Section 3.1, the observations only have to reflect consistency of groups

of features P ′′ as child nodes per parent. The number of child nodes on the first level is then |P ′′|, and the

number of leaves of the tree is |P ′′||P
′|. If violations of spatial relationships are not allowed however, a subset

of the branches can be ruled out on intermediate levels of the tree. Depending on the number of constraints,
this may reduce the complexity noticeably. By consequently interpreting consistency of spatial relationships as
hard constraints, the problem may also be solved with modern constraint satisfaction methods, which exploit
constraints for reducing the search space more effectively than simple backtracking algorithms, cf. (Rossi et al.,
2006).

2Observe that fn only denotes the index of the label in the set L. As the index and the label are identical
in our case however, we will not make use of this distinction.
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Figure 4.5: Minimal example of two images
with two features each, having different feature
type. Assuming that the line segments corre-
spond to each other, as indicated by the dashed
lines, the elliptical regions will most likely not
correspond, because the geometric relationship
“is left of” would is violated. I ′

p′k

p′i

I ′′

p′′l

p′′j

Figure 4.6: Relational matching
graph for the minimal matching prob-
lem in Figure 4.5.
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of putative matches w.r.t. geometric relationships, not the relationships themselves. Having
putative matches as basic elements is therefore a sufficient model.

We can extend the representation introduced in Figure 4.4 to incorporate the geometric
inconsistencies between two putative matches. Both variants are illustrated for the minimal
example in Figure 4.7.

vn vm

sn sm

vn

sn tnm sm

vm

Figure 4.7: Graphical representations for the minimal matching problem depicted in Figure 4.5. Left:
Model for descriptor-based matching, assuming independence between the variables, and using only descriptor
dissimilarities sn, sm as observations. Right: Proposed model, including the pairwise dependency (vn, vm) ∈
V × V between the variables, and observing a geometric inconsistency tnm.

We denote an observed inconsistency measure between two putative matches (vn, vm) ∈
V × V, as tnm ∈ R. Note that this is effectively a function of four variables, reading

tnm = tnm(vn, vm) = tnm
(
(p′i,p

′′
j ), (p

′
k,p
′′
l )
)
. (4.4)

Furthermore, we must distinguish different types of geometric relationships, as motivated
in Section 3.1. More precisely, we will have G different observations for each pair (vn, vm),
referring to different types of geometric relationships, leading to a vector of observations
tnm = [t1nm, · · · , t

g
nm, · · · , tGnm]. This leads us to the extended graph shown in Figure 4.8.

Usually we can only observe inconsistency measures for non-redundant – or “unique” –
groups of matches. This property will be discussed in more detail in Section 4.3.8. Let us
assume for now that we have a function fu that gives us sets U of non-redundant groups of
matches. For example, fu(V × V) = U2 gives us the set of non-redundant pairs of matches.
Note the use of the lower subscript on U to denote the order of the groups. We can then
collect all observed data in the set D = {s, T2}, where s = [sn], vn ∈ V, and

T2 = {tnm | (vn, vm) ∈ U2} . (4.5)

Using this binary labeling representation, we will now describe the problem from a statistical
viewpoint.
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Figure 4.8: Extension of the graphical representation in Figure 4.7 right, which illustrates that we obtain G
different kinds of observations related to geometric inconsistency of a pair of putative matches, collected in
a vector tnm = [t1nm, · · · , tGnm]. Left: Direct refinement of the graph in Figure 4.7 (right). Right: Compact
representation of the same model, using the graphical notation of a plate (Bishop, 2006, p. 363).

4.1.3 Statistical Derivation of the Local Problem Structure

Independence Assumptions. The representation in Figure 4.7 left reflects the fact that
the label of each site vn is assigned independently of other labels by the descriptor based
matching approach. Assuming that the descriptor dissimilarities sn, sm are both small, this
approach would clearly select both matches as inliers. However, we are able to observe incon-
sistencies tnm of binary geometric relationships, in this case a violation of the relationship “is
left of”. We must therefore expect that one of the putative matches is an outlier, even though
the descriptors are similar! In other words, as we are able to observe the inconsistency, it
would be naive to make independent decisions on the two putative matches.

In a statistical treatment, we would say that the random variable vn is conditionally de-
pendent on vm, given a labeling l = f(V). More precisely, it also depends on the observations
sn and tnm. We have already modeled this information by the edges of the graph in Fig-
ure 4.8. Interpreted this way, the graph becomes an undirected probabilistic graphical model.
The graph also models the following conditional independence assumptions:

1. All observations are mutually conditionally independent:

p(sn, sm, tnm | l) = p(sn | l)p(sm | l)p(tnm | l)

= p(sn | l)p(sm | l)
G∏
g=1

p(tgnm | l) (4.6)

2. The label of one putative match does not depend on descriptor dissimilarities of other
putative matches:

p(ln, sm) = P (ln)p(sm) , n 6= m (4.7)

Although these assumptions constitute a simplification of the real problem, we have two
reasons for choosing them as a model for the local problem structure. First, we claim that
it is a meaningful model and still provides enough simplicity to build a fairly fast algorithm
from it. This has to be verified by the results that we present later. Second, we will see that
the model nicely supports our practical setup, as its statistical dependencies can be estimated
particularly well from data.
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Maximum a Posteriori Estimate of the Model. The core idea of the approach pre-
sented here is to build an algorithm that gives use the maximum a posteriori estimate (MAP)
of the variables in this local model, given the observed data. In particular, we want to max-
imize

p(ln, lm, sn, sm, tnm) (4.8)

= p(tnm | ln, lm, sn, sm) p(sm | ln, lm, sn) p(sn | ln, lm)P (lm, ln) (4.9)
.
= p(tnm | ln, lm) p(sm | lm) p(sn | ln)P (lm, ln) (4.10)

=

 G∏
g=1

p(tgnm | ln, lm)

 p(sm | lm) p(sn | ln)P (lm, ln) (4.11)

for the local structure.3 Note again the use of ln as a shorthand notation for the event
vn = ln here. The factorization in (4.9) results straightforward from repeated application of
the product rule of probability. The simplification (4.10) exploits the conditional indepen-
dence assumptions (4.6) and (4.7), using p(a | b, c) = p(a | b) in case that a is conditionally
independent on c. The expansion of tnm in (4.11) also uses the assumption that all observa-
tions are mutually independent.

We will use this local statistical model for two putative matches to build a minimization
function that solves the binary labeling problem over arbitrary numbers of putative matches
(Section 4.2). We will see later that we can approximate the likelihood distribution com-
ponents in (4.11) quite well by simple parametric distribution functions, the parameters of
which we infer from training data (Section 4.3). For the joint prior P (ln, lm), we will assume
a uniform distribution that does not contradict the statistics of annotated data. Further-
more, we will use possibly different likelihoods and priors for each feature type, descriptor
dissimilarity type, and type of geometric relationship.

Relation to Markov Random Field Theory. The density function (4.11) has a strong
relationship to the theory of Markov Random Fields (MRF), seen as the joint probability of
the variables in the graphical model in Figure 4.7 (right). An MRF is generally defined by
a set of random variables, represented as nodes, and a set of links between pairs of nodes,
each of which denotes conditional dependence between the involved variables (Bishop, 2006,
Sec. 8.3). We can therefore interpret both models in Figure 4.7 and the model in Figure 4.8
as an MRF.

One of the most important results of MRF theory is that the joint probability of a
configuration of the field (or graph) can be factorized into a product of potential functions θ
over the maximum cliques of the graph.4 A clique is a set of mutually dependent variables.

3The equivalence of maximizing (4.8) and computing the MAP can be seen from the Bayes rule, which
gives us the following equation for the posterior distribution:

P (ln, lm | sn, sm, tnm) =
p(sn, sm, tnm | ln, lm)P (ln, lm)

p(sn, sm, tnm)
(4.12)

=
p(sn, sm, tnm, ln, lm)

p(sn, sm, tnm)
(4.13)

As the entities sn, sm and tnm are observed, the denominator in (4.13) becomes a constant, and can therefore
be neglected. The posterior probability density is then equivalent to the joint probability density, which
explains that maximizing (4.10) is equivalent to computing the MAP.

4The theoretical justification for this result is given by the Hammersley-Clifford Theorem (Hammersley
and Clifford, 1971), which identifies the joint distribution of an MRF as a Gibbs distribution. We will not
explain this equivalence here and refer to the textbooks by Bishop (2006) and Li (2009).
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Referring to the graph, this means that the variables in a clique constitute a fully connected
subgraph. We denote the set of cliques of two variables by C2, the set of cliques with three
variables as C3, and in general the set of cliques with k variables by Ck. A maximum clique
is the special case of a clique where “it is not possible to include any other nodes from the
graph in the set without it ceasing to be a clique” (Bishop, 2006, p. 385).

The graph in Figure 4.7 (right) obviously consists of two binary and G ternary maximum
cliques. This enables us to write the joint probability for all variables as

p(ln, lm, sn, sm, tnm) =
1

Z
θ(ln, sn) θ(lm, sm)

G∏
g=1

θ(ln, lm, t
g
nm) (4.14)

where the partition function Z is a normalization term which ensures that the result is a
valid density. The potential functions θ are usually required to be strictly positive, but need
not have a particular interpretation as probability densities.

If our local statistical model is consistent with MRF theory, then (4.14) must be consistent
with (4.11) referring to the graph. This can be verified easily if we use the definition

a︷ ︸︸ ︷
p(sn | ln)

b︷ ︸︸ ︷
p(sm | lm)

1∏
g=G

c︷ ︸︸ ︷
P (lm, ln)

G
p(tgnm | ln, lm) (4.15)

.
=

1

Z
θ(ln, sn)︸ ︷︷ ︸

a′

θ(lm, sm)︸ ︷︷ ︸
b′

1∏
g=G

θ(ln, lm, t
g
nm)︸ ︷︷ ︸

c′

(4.16)

and the fact that Z = 1, as in our case the complete term is a valid probability distribution
which integrates to one.

4.1.4 Statistical Derivation of the Global Problem Structure

As we have seen in the previous section, we can interpret the local statistical structure for
pairs of putative matches (Figure 4.7 right) as a Markov Random Field, which gives us a
direct justification for interpreting the local energy potentials (4.14) as the joint probability
of its variables. If we model these potentials from the likelihoods, given the observed data,
the normalization term cancels out, and we get the compact form (4.11) for deriving a MAP
estimate for the local structure containing a pair of putative matches. Now we want to
investigate the global problem structure when using a larger set of putative matches, under
similar conditional independence assumptions. In particular, we want to derive the joint
probability of a model that follows directly from Figure 4.8, but uses more than two putative
matches. We will also discuss if the resulting MAP estimate is consistent with MRF theory,
given the independence assumptions.

To understand the problem structure for larger sets of putative matches, we extend the
graph in Figure 4.8 to three matches, using the same conditional independence assumptions
(Figure 4.9). It essentially contains three copies of the smaller graph for two matches. An
important difference is that the mutual conditional dependence of the three variables v1, v2

and v3 leads to the formation of the clique (v1, v2, v3) ∈ C3. Exploiting the independence
assumptions in the same manner as for the previous example, the joint probability of the
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Figure 4.9: Graphical representation for
a matching problem with three putative
matches, extending the minimal model in
Figure 4.7 right. The clique (v1, v2, v3) ∈ C3
is constituted by the pairwise conditional de-
pendencies of the variables.

v1v2

v3

s1s2

s3

tg12

tg23 tg13

G

G G

graph reads

p(l1, l2, l3, s1, s2, s3, t12, t13, t23) (4.17)

= p(t23 | l1, · · · , t13) p(t13 | l1, · · · , t12) p(t12 | l1, · · · , s3). (4.18)

. p(s3 | l1, · · · , s2) p(s2 | l1, · · · , s1) p(s1 | l1, · · · , l3)P (l3, l2, l1)

= p(t23 | l2, l3) p(t13 | l1, l3) p(t12 | l1, l2). (4.19)

. p(s3 | l3) p(s2 | l2) p(s1 | l1)P (l3, l2, l1)

= P (l3, l2, l1)

[∏
n∈N

p(sn | ln)

] ∏
(n,m)∈U2

p(tnm | ln, lm) (4.20)

= P (l3, l2, l1)

[∏
n∈N

p(sn | ln)

] ∏
(n,m)∈U2

G∏
g=1

p(tgnm | ln, lm) (4.21)

Here we use the set N = {1, · · · , n, · · · , N} of indices over the set V, and the set U2 of non-
redundant pairs of matches (cf. Section 4.1.2). Note that usually |U2| < |V × V| referring to
Eq. (4.5).

For a general problem with |V| = N putative matches, we will obtain a graph having N
binary cliques of the form (vn, sn) and G|U2| ternary cliques of the form (vn, vm, t

g
nm). In

case that no redundant matches are contained in V, hence U2 = V × V, one obtains exactly
one higher order clique of order N . The joint probability of the variables then reads

p(l1, · · · , lN , s, T2) = p(l1, · · · , lN , s1, · · · , sN , t12, · · · , t(N−1)N )

= P (lN , · · · , l1)︸ ︷︷ ︸
a

[∏
n∈N

p(sn | ln)

] ∏
(n,m)∈U2

p(tnm | ln, lm) . (4.22)

However, the amount of redundant matches is significant in practice, which leads to
|U2| � |V × V|. This causes the formation of multiple higher order cliques with sizes larger
than three, but significantly smaller than N , depending on the particular situation. These
higher order cliques arise only between nodes vn, due to our independence assumption among
the observations. Therefore, they only have an impact on the factor a in (4.22), changing
its structure according to the standard rules of conditional independence. This is a serious
problem in practice, as it makes the evaluation of a very difficult: It requires us to find
an unknown number of maximum cliques with unknown size for each particular matching
problem that we want to solve.
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Figure 4.10: Two stochastic models corresponding to the three-node problem depicted in Figure 4.9. Left:
General statistical model, right: restricted statistical model arising from the model assumption (4.24). The
illustration uses factor graphs (Bishop, 2006, Sec. 8.4.3), where cliques are explicitly represented as rectangular
nodes.

To make the formulation tractable for practical problems, we model the probabilities of
higher order cliques by factors of pairwise cliques, assuming that the inclusion of higher order
cliques would not change the results too much:

P (l1, · · · , lN )
.
=

1

Z ′

∏
(n,m)∈U2

θ(ln, lm) . (4.23)

Again, we want to identify these potentials with the pairwise probabilities. This time however
we cannot guarantee that the factorization leads to properly normalized probabilities, so the
normalization term does not cancel out. We therefore choose the following model for the
joint probability of higher order cliques:

P (l1, · · · , lN )
.
=

1

Z ′

∏
(n,m)∈U2

P (ln, lm) . (4.24)

It leads to a significant simplification of the model. Most importantly, we assume that (4.24)
holds irrespective of the particular conditional dependencies among the vn, which makes it
independent of the size and number of the unknown higher order cliques. As we will see in
Section 4.2, we do not require specific knowledge about the partition function Z ′, as it does
not affect the final solution.

Just as for the previous independence assumptions, we will verify in our experiments that
the model in (4.22) still leads to meaningful results when applying the assumption (4.24). It
then reads

p(l1, · · · , lN , s, T2) =
1

Z ′

[∏
n∈N

p(sn | ln)

] ∏
(n,m)∈U2

p(tnm | ln, lm)P (ln, lm) . (4.25)

Note that the factors in the righthand side product actually represent the probability density
p(tnm). However, we will keep the above form, as it is the representation that we use for
getting at a solution.
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Figure 4.11: Stochastic model corresponding to the matching problem in Figure 2.1 on page 12, illustrated as
a factor graph (Bishop, 2006, Sec. 8.4.3). For better readability, the G geometric inconsistency measures tnm
are drawn as a single node although they should represent a plate as in Figure 4.9. Observe that the maximum
clique size between putative matches vn in the graph is three, as in Figure 4.9, although six putative matches
can theoretically lead to the formation of a 6-clique. This is due to the significant amount of redundant
matches in V (cf. Figure 4.2), which causes the number of unique pairs of putative matches to be significantly
smaller than the number of all possible pairs, i.e. |U2| � |V × V|.

By going from (4.22) to (4.25), we make an explicit model assumption. This leads to a
restricted stochastic model which still corresponds to the original graphical model. To get a
better understanding of the model assumption, observe the graphs in Figure 4.10. Here we
illustrate the stochastic model arising from the assumption (4.24) together with the general
statistical model in the form of factor graphs (Bishop, 2006, Sec. 8.4.3). These graphs make
obvious that the model assumption effectively drops out the higher order cliques between
putative matches vn (i.e. the clique (v1, v2, v3) in Figure 4.10 left) in favor of a change of the
pairwise potential functions (rightmost factor of Eq. 4.25).

With increasing number of putative matches, the corresponding graphs become difficult to
illustrate. For the introductory wide baseline problem with six putative matches (Figure 2.1),
we obtain the graphical representation depicted in Figure 4.11. Here we really have |U2| �
|V ×V|, as can be seen from the partially missing links among nodes vn. Note how the graph
consists of many substructures containing two putative matches vn, vm with observations
sn, sm, tnm, each of which corresponds to the local model in Figure 4.8.

Relation to MRF Theory. As for the local model with two putative matches, the MAP
estimate for a fully connected graph with three putative matches is consistent with MRF
theory. This can again be seen by defining the factorization of the joint probability in (4.21)
as a partition into cliquewise potentials according to Figure 4.9:

p(ln, lm, lo, sn, sm, so, tnm, tno, tmo)

= P (lo, lm, ln)

[∏
n∈N

p(sn | ln)

] ∏
(n,m)∈U2

p(tnm | ln, lm) (4.26)

.
=

1

Z
θ(ln, lm, lo)

[∏
n∈N

θ(ln, sn)

] ∏
(n,m)∈U2

θ(ln, lm, tnm) . (4.27)
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For the general fully connected graph, we can apply the same reasoning to obtain

p(l1, · · · , lN , s1, · · · , sN , t12, · · · , t(N−1)N , )

= P (l1, · · · , lN )

[∏
n∈N

p(sn | ln)

] ∏
(n,m)∈U2

p(tnm | ln, lm) (4.28)

.
=

1

Z
θ(l1, · · · , lN )

[∏
n∈N

θ(ln, sn)

] ∏
(n,m)∈U2

θ(ln, lm, tnm) . (4.29)

As we obtain a proper probability density, we can omit the normalization term 1/Z.

Introducing the model assumption (4.24) is also admissible in MRF theory, because the
Hammersley-Clifford-Theorem allows us to model the potentials of maximum cliques over
arbitrary sub-cliques. In other words, in (4.29) we are free to choose

θ(l1, · · · , lN )
.
=

1

Z ′

∏
(n,m)∈U2

θ(ln, lm)
.
=

1

Z ′

∏
(n,m)∈U2

P (ln, lm) . (4.30)

This applies also to partially connected graphs, where the left hand side of (4.30) splits into
a subdivided set of potentials of lower orders.

4.2 Finding a Solution

By maximizing the density function (4.25) we realize a MAP estimate of the involved vari-
ables. The density can also be written as

p(l1, · · · , lN , s, T2) (4.31)

= exp

log
1

Z ′
+
∑
n∈N

log p(sn | ln) +
∑

(n,m)
∈U2

[logP (ln, lm) + log p(tnm | ln, lm)]

 .

Maximizing (4.31) is equivalent to minimizing the energy function

E(l1, · · · , lN , s, T2) (4.32)

= −
∑
n∈N

log p(sn | ln)−
∑

(n,m)
∈U2

(logP (ln, lm) + log p(tnm | ln, lm)) ,

where we omit the summand (− log 1/Z ′) of the partition function, as it does not affect the
solution.

Remember that (l1, · · · , lN ) denotes a particular labeling of all variables in V. We can
write it explicitly as a configuration f(V) of the variables, using the labeling function f :
V → L. In order to find a good solution for the wide baseline stereo problem, given an initial
set V of putative matches and observations D = {s, T2}, we finally search for a configuration
with minimum energy (4.32). In other words, we look for an optimal solution

f∗(V) = argmin
f(V)

E(f(V), s, T2) . (4.33)
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The energy (4.32) is essentially a sum over functions of unary and binary cliques C1, C2 of
the variables V. Expressing these unary and binary potentials in the form θ1

n;ln and θ2
nm;lnlm ,

respectively, we can write the energy as

Q(f(V), s, T2;θ) =
∑
n∈N

θ1
n;ln +

∑
(n,m)
∈U2

θ2
nm;lnlm (4.34)

with

θ1
n;ln = − log p(sn | ln) (4.35)

θ2
nm;lnlm = − log p(ln, lm)− log p(tnm | ln, lm) (4.36)

Minimization functions of the form (4.34) occur very frequently in computer vision problems.
They can be considered as the energy of a general discrete pairwise MRF, meaning that the
variables of the corresponding MRF take on discrete values and that the maximum clique
size is two.

4.2.1 Solving the Discrete Minimization Problem

The commonness of the minimization problem (4.34) is particularly useful, as it has lead
to the development of many algorithms for solving such problems. If defined on a general
discrete set of labels, the problem is known to be NP hard. Solutions can be obtained using
general-purpose solvers like Simulated Annealing, which have exponential time complexity
and very slow practical runtimes (Kolmogorov and Zabih, 2004). More efficient minimization
algorithms are available for restricted subclasses of the problem. In vision research, much of
this work is in the context of pixel-labeling tasks, where Iterative Conditional Modes (ICM),
Loopy Belief Propagation (LPB) and Graph Cut algorithms are very popular, amongst others.
Despite assuming restricted sets of labels, these algorithms usually require the neighborhood
function, which defines the pairwise cliques C2, to have a special - usually regular - structure.
This is difficult to ensure in our case, where C2

.
= U2 (Section 4.1.2). Furthermore, most

efficient discrete algorithms impose restrictions on the form of the pairwise clique potentials.
For example, for some problems with binary labels, the global optimum can be computed in
polynomial time with small constants using the swap-move graph cut algorithm, if the binary
potentials satisfy the submodularity constraint

θ2
nm;00 + θ2

nm;11 ≤ θ2
nm;01 + θ2

nm;10 , (4.37)

which states that equal labels are preferred over different labels for neighboring sites, hereby
encouraging smooth solutions. This constraint is not satisfied by our model.

It is not the focus of this work to classify discrete minimization methods exhaustively,
and we refer the reader to the recent study of Szeliski et al. (2008). We also want to mention
that some recent work focusses on relaxing the widely accepted restrictions referring to some
minimization algorithms, e.g. the current work of Kolmogorov and Rother (2007).

4.2.2 Solution by Linear Programming Relaxation

It is our intention to provide a mostly generic framework, so we do not want to restrict
the potentials further than being density functions. A popular technique for obtaining a
very close approximate solution to (4.34) is to relax the combinatorial problem, allowing the
variables to take real values in a restricted range, and thereby convert the original problem
such that it can be solved using convex optimization methods.



4.2. FINDING A SOLUTION 43

1

1

1−1

1

−1

Figure 4.12: Feasible set for the relaxed
problem of assigning a binary label to a site,
shown in red. It is a simplex in R2. Left:
Variable bounds are [0, 1], so the sum of vari-
ables over all labels is 1. Right: bounds are
[−1, 1], so the sum is 0.

In particular, we will use the LP-S Linear Programming Relaxation which goes back to
Schlesinger (1976). It has been shown by Kumar et al. (2009) to be a closer approximation
to the original problem than a number of other popular relaxation methods. We will describe
the basics of the LP-S relaxation in the following, but refer to the literature for more detailed
explanations (Kumar et al., 2009; Li, 2009; Wainwright and Jordan, 2008).

Instead of solving the combinatorial problem with discrete labels, the labeling state for
each site vn is modelled as a real-valued vector xn = [xn;i] with i ∈ L, which expands to
xn = [xn;0, xn;1] for a problem with binary labels. In other words, we represent each labeling
state by an individual variable. Similar to the set of putative matches V = {vn, · · · , vN}, this
relaxation gives us a set of 2N relaxed variables

X = {x1, · · · ,xn, · · · ,xN} (4.38)

= {x1;0, x1;1, · · · , xn;0, xn;1, · · · , xN ;0, xN ;1} (4.39)

= {x1, · · · , xq, · · · , xQ} , (4.40)

using the new index range Q = {1, · · · , q, · · · , Q}, Q = 2N , where each index q is directly
related to a putative correspondence vn with label ln via q

.
= 2n+ ln − 1.

The variables xq are restricted to the range [0, 1], and the sum of the two elements in each
xn has to equal one. This reduces the feasible set of solutions for each labeling event to a
simplex in the space R2, which is the straight line segment from (1, 0) to (0, 1), as illustrated
in Figure 4.12 left. Naturally, the relaxation can also be formulated using other ranges: Using
the range [−1, 1] instead, one obtains the equivalent simplex shown in Figure 4.12 right, where
the sum of elements in xn must equal zero.

Given that a solution for the relaxed variables has been determined, it must be converted
back into a set of binary decisions. This requires a disambiguation of the real values into the
space consisting of the corner points of the simplex. It is generally not sufficient to perform a
rounding to integers or maximum selection – the quality of the approximation to the original
problem depends on a proper rounding scheme. We apply the scheme described in Ravikumar
and Lafferty (2006), which is also used in the experiments of Kumar et al. (2009).

How does the energy (4.34) transfer to the new set X of unknown variables? Obviously
each variable vn in (4.34) is only considered with one particular label ln, while the set of
relaxed variables X expands over both possible labelings. However, we can easily rewrite
(4.34) in the equivalent form

Q(f(V), s, T2;θ) =
∑
n∈N

∑
u∈L

x+
n;uθ

1
n;u +

∑
(n,m)
∈U2

∑
u∈L

∑
v∈L

x+
n;ux

+
n;vθ

2
nm;uv , (4.41)

using the set L = {0, 1} and discrete variables

x+
n;u

.
=

{
1, if u = ln
0, otherwise

. (4.42)



44 CHAPTER 4. A FRAMEWORK FOR WIDE-BASELINE MATCHING

The variables x+
n;u select explicitly those potentials that refer to the particular label ln defined

by f(V). Observe how the sums in (4.41) are now taken over both labels for each variable,
although the energy is exactly identical to (4.34).

Obviously, the set of discrete variables {x+
1;0, x

+
1;1, · · · , x

+
n;0, x

+
n;1, · · · , x

+
N ;0, x

+
N ;1} in (4.41)

is then directly related to the set X of relaxed variables. The energy for the relaxed variables
therefore simply reads

Q(X , s, T2; θ) =
∑
q∈Q

xqθ
1
q +

∑
(q,r)∈UL2

xqxrθ
2
q;r , (4.43)

where the sums over labels {0, 1} are already captured by the index range {1, · · · , Q}. Here
we use the set

UL2 = {(2n+ i− 1, 2m+ j − 1) | (n,m) ∈ U2, i, j ∈ {0, 1}} , (4.44)

which collects those index pairs of the relaxed variables that refer to pairs of non-redundant
putative matches.

We may now collect the variables X in a vector x = [x1, · · · , xQ]T, and the unary poten-

tials in a vector r =
[
θ1

1, . . . ,θ
1
Q

]T
. In a similar manner, the Q×Q matrix

R =

 R1;1 · · · R1;Q
...

. . .
...

RQ;1 · · · RQ;Q

 (4.45)

with coefficients

Rq;r =

{
θ2
q;r , if (q, r) ∈ UL2 ,

0 , otherwise
(4.46)

captures the binary potentials.5 This enables us to rewrite (4.43) in the form

Q(X , s, T2; θ) = rTx+ xTRx , (4.47)

which leads to the quadratic programming (QP) problem

minimize rTx+ xTRx (4.48)

subject to
∑

i∈{0,1}

x2n+i = 1, ∀n ∈ N (4.49)

x ∈ [0, 1]Q . (4.50)

Referring to Ravikumar and Lafferty (2006), minimization of this QP is equivalent to maxi-
mizing (4.33), which is the desired MAP estimate.

To arrive at a linear programming (LP) formulation, one exploits the fact that the right
part xTRx in (4.48) is a scalar, so it equals its own trace when seen as a 1 × 1 matrix.
Therefore we can write xTRx = tr(RxxT), now using the outer instead of the inner product,
and the fact that tr(AB) = tr(BA). Replacing the nonconvex term xxT by a general matrix
X, at first neglecting its outer product structure, we obtain the linear objective (4.51), where
• denotes the entrywise matrix product, or Hadamard product, i.e. (A • B)ij = AijBij . The

5Note that the 2× 2 submatrices on the main diagonal of R usually contain only zero entries, as they refer
to binary potentials of a putative match with itself. Kumar et al. (2009) proposed a different formalization
of R, which keeps the binary potentials on the main diagonal, and subtracts them explicitly from the unary
potentials. This makes R positive semidefinite.
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missing outer product structure of X is then compensated by introducing additional linear
constraints (4.53) and (4.54), resulting in the final LP formulation

minimize rTx+ R • X (4.51)

subject to
∑

i∈{0,1}
x2n+i = 1, ∀n ∈ N (4.52)∑

j∈{0,1}
Xni;mj − xni = 0, ∀(n,m) ∈ U2; ∀i ∈ {0, 1} (4.53)

Xq;r −Xr;q = 0, ∀q, r ∈ Q (4.54)

x ∈ [0, 1]Q (4.55)

X ∈ [0, 1]Q×Q (4.56)

Here, the constraints (4.54) enforce symmetry of X, therefore often denoted as symmetry
constraints.

The role of the constraints (4.53) is less obvious, but of great importance for obtaining a
tight relaxation, so we will describe it in more detail. First, one has to restrict the weights
distributed within each particular row of X in order to prevent a possible overemphasis of
single variables. In fact, the LP relaxation described in Li (2009) restricts the sum of weights
over complete rows of X (Li, 2009, Eq. 9.54). This allows very sparse solutions for X, with
high weights for a small number of row coefficients and zero weights for others, which often
leads to poor solutions. The constraints (4.53) are much stronger: Here the row weights are
restricted separately for each pair (n,m) of variables in the original problem. More precisely,
given a particular label i for the variable n, which corresponds to one row in X, we require
the sum of each two row coefficients Xni;mj , j ∈ {0, 1}, to be equal to the weight xni. This
constraint is related to marginalization of the conditional probabilities within pairwise cliques
of the original problem, i.e. the probability of variable vn having label i must respect

P (vn = i) =
∏

j∈{0,1}

P (vn = i | vm = j) (4.57)

for each pairwise clique it is involved in, given that the maximum effective clique order of
the original MRF is two. Consequently, one usually refers to (4.53) as the marginalization
constraints.

The problem in Eqs. (4.51)-(4.56) is the so-called LP-S relaxation described in Chekuri
et al. (2001), which goes back to the work of Schlesinger (1976).

4.2.3 Complexity Considerations

We use the LP formulation (4.51)-(4.56) followed by the rounding scheme described in Raviku-
mar and Lafferty (2006) to obtain a good approximation of the MAP estimate in (4.32). The
minimization can be done using standard linear programming solvers, which are available
in many variants due to the broad range of applications where linear programs occur. For
example, the original use of LP’s was designed for optimization of flow in transportation
networks.

Most freely available LP solvers provide an efficient implementation of George Dantzig’s
simplex algorithm. In principle, this algorithm traverses the edges of the high-dimensional
polytope representing the feasible region of the LP, until it arrives at the corner point with
minimal energy. In contrast to classical least squares estimation techniques, the exact com-
plexity of solving a particular linear program with the simplex algorithm cannot be given
(Boyd and Vandenberghe, 2004, 1.2.2). It can be shown that the worst-case complexity of
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Table 4.1: CPU times for matching
lowe features on images 1 and 2 of
the Graffiti sequence using the pro-
posed method on an Intel Core 2 Duo
CPU with 2.4 GHz speed. The times
are given for different sizes N of the
initial set of putative matches. Note
that the values also include the time
for extracting features and descrip-
tors, and for evaluating the dissimi-
larity measures and spatial relation-
ships. For minimizing the LP prob-
lem we used Mosek (http://www.
mosek.com), which implements an in-
terior point method.
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the simplex algorithm is exponential in the number of extremal points, but the practical
complexity for most problems is polynomial with very good convergence properties.

The more recent interior point or barrier methods instead have both polynomial average
complexity and polynomial worst-case complexity with small exponents.6 In contrast to
the simplex methods, they iteratively construct strictly feasible points in the interior of
the polytope which converge towards the optimal value. We use the commercial Mosek
package7 for solving our problem, which provides an efficient implementation of the interior
point algorithm for solving linear programs with up to thousands of variables. For sets V of
putative correspondences with N = |V| < 500, we usually obtain the solution in less than a
few seconds on a standard 2.4 GHz CPU. For sparsely textured scenes, N is typically smaller
than 200, leading to negligible computation times for obtaining the optimal solution.

To give a feeling on the performance of the complete matching algorithm, including feature
detection and description as well as evaluation of spatial relationships, CPU times for a real
matching problem with increasing problem sizes are shown in Table 4.1.

4.3 Data-Driven Modeling of Energy Potentials

The proposed minimization function (4.32) consists of three basic elements:

1. The likelihood p(sn | ln) describes how likely it is to observe a particular descriptor
dissimilarity, given the label of the match.

2. The likelihood p(tgnm | ln, lm) describes how likely it is to observe a geometric inconsis-
tency measure of type g, given one of four possible labelings of the corresponding pair
of matches.

3. The probability P (ln, lm) indicates how likely it is at all to observe a particular labeling
of a pair of matches.

In this section, we will derive particular models for these likelihoods and priors that are suited
well for robust wide baseline stereo matching of images with sparse texture. Note that the
use of these particular models is not prescribed by our framework. They should be considered
as one possible implementation of the proposed method.

6For example, the algorithm of Karmarkar (1984) has worst-case complexity which is polynomial in the
number of variables with an exponent of 3.5.

7http://www.mosek.com

http://www.mosek.com
http://www.mosek.com
http://www.mosek.com


4.3. MODELING OF ENERGY POTENTIALS 47

λn = λSegment

P̂
(l
n
|λ

n
)

0

0.2

0.4

0.6

0.8

1.0

0 1
ln

λn = λBlob

P̂
(l
n
|λ

n
)

0

0.2

0.4

0.6

0.8

1.0

0 1
ln

λn = λAffine

P̂
(l
n
|λ

n
)

0

0.2

0.4

0.6

0.8

1.0

0 1
ln

λn = λJunction

P̂
(l
n
|λ

n
)

0

0.2

0.4

0.6

0.8

1.0

0 1
ln

Figure 4.13: Relative frequency of good (ln = 1) and bad (ln = 0) putative matches observed on the training

data, which can be seen as an estimate for the prior P̂ (ln | λn) for the different feature types.

We will derive parametric functions for approximating the likelihoods, using as training
data the observations measured from 24 pairs of images from different datasets, shown on page
88. Ground truth labellings for the data are obtained using the automatic annotation setup
described in Chapter 5. The setup of detectors, descriptors and dissimilarities is identical to
that used for the final experiments. It is described in Section 6.1.1.

Note that we generally apply the preselection of putative matches as described in Section
2.4 before inferring empirical distributions from the data.

4.3.1 Dependence of Energy Potentials on the Feature Type

We will derive the likelihoods and priors separately for each type of feature, dissimilarity
measure, and spatial relationship occurring in our setup. Therefore the energy potentials do
not necessarily have all the same characteristics. For example, the dissimilarity measure for
straight line segments that we use in our experiments is significantly weaker than that for
blobs and junctions. Consequently the likelihood p(sn | ln) has a significantly different shape
depending on whether vn is a line segment or a junction feature, for example.

As a consequence, the likelihood distributions depend formally on the type of feature,
type of descriptor, and type of dissimilarity measure associated with a putative match, which
we may denote by λF , λD and λM , respectively. If we use a tuple λn = (λFn , λ

D
n , λ

M
n ) for

identifying the exact type of a putative match vn, the probabilities must therefore actually
read pn(sn | ln,λn) and pnm(tnm | ln, lm,λn,λm).

In our particular setup, a feature type λF is always combined with the same descriptor
type λD and dissimilarity measure λM , so that each λn = (λFn , λ

D
n , λ

M
n ) is uniquely determined

by λFn . Therefore we define the four symbols λSegment, λBlob, λAffine and λJunction as a
shorthand notation for the particular settings related to line segments, blob features, affine
region features and junction features, as described in Section 6.1.1 on page 69.

4.3.2 Prior Probabilities

As described in Section 2.4, we use different maximum ranks of descriptor dissimilarity per
feature type for selecting an initial set of putative matches. This should naturally lead to
different prior probabilities for different feature types.

Observe the relative frequency of good and bad putative matches for each feature type
in Figure 4.13. The relative amount of inliers for the line segments, where the k = 3 best
correspondences per feature were chosen, is less than 30%. This is very reasonable, as we
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have to expect 66% outliers caused by the preselection, and some more caused by the typical
shortcomings of descriptor-based assignment. The same holds for the other feature types
as well. For the junction and blob features, only the best match has been selected, leading
to amounts of outliers significantly below 20%, even below 10% for the junctions. The
preselection for affine blob features selected the two best matches, so that the amount of
outliers here is between 30 and 40%.

The prior P̂ (ln | λn) is not used explicitly in the minimization function (4.32). Instead,
an estimate P̂ (ln, lm | λn,λm) for the prior probability of a labelling of pairs of putative
matches vn, vm with feature types λn,λm is required. As we have to distinguish all possible
combinations of feature types, we obtain 16 different plots.

The estimated prior probabilities for pairs of matches, where the first match is a line
segment, are shown in Figure 4.14. Again, we see the strong influence of the different pres-
election criteria per feature type on the prior: For pairs containing one line segment match
and one match of another type, it is most likely that the line segment match is an outlier.

If we consider the situation for blob feature matches combined with other feature types
(Figure 4.15), the effect is very different. In particular, except for a combination with line
segments, the most frequently observed event is that of having two inliers. The effect for
junction matches (Figure 4.17) and affine blobs (Figure 4.16) is very similar.

4.3.3 Dissimilarity of Feature Descriptors

For determining the dissimilarity of line segment descriptors, we use the color profile distance
measure proposed by Bay et al. (2005), as described in Section 2.3.

We normalize the distance measure by its theoretical maximum value, which is determined
as follows. The theoretical maximum length of the difference vectors (h1 − h2) (cf. Section
2.3) is

√
2, because the histograms are unit vectors. For the value of the distance d1,2 in

Eq. (2.1) we therefore have

d1,2 = (h1 − h2)TA(h1 − h2) < (h1 − h2)T(h1 − h2) ≤ 2 , (4.58)

using the fact that 0 ≤ Aij ≤ 1 for all elements Aij of A. As the dissimilarity of two descriptors
is the square root of the mean of the two distances corresponding to the left and right sides
of the segment, the final dissimilarity measure has an upper bound of

√
(2 + 2)/2 =

√
2.

The dissimilarity of SIFT descriptors is simply defined as the Euclidean distance of two
descriptor vectors. Again, we normalize by the maximum theoretical value. As the descrip-
tors are vectors of length 128, with coefficients in the range (0, 255), the largest possible
Euclidean distance is the length of the diagonal axis in the corresponding hypercube, which
is
√

128 · 2552 = 2885. The values observed in practice will be significantly smaller, so we
only expect to see normalized dissimilarities significantly below 0.5.

Now take a look at the normalized histogram on top of Figure 4.18. It shows the dis-
similarities of good (ln = 1) and bad (ln = 0) blob feature correspondences, referring to
Euclidean distances of SIFT descriptors. Due to the normalization, the histogram shapes
can be reasonably approximated by a Beta distribution

Beta(sn|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
sa−1
n (1− sn)b−1 , (4.59)

which is defined by two parameters (a,b), and based on the gamma function

Γ(a) =

∫ ∞
0

ua−1e−udu . (4.60)
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Figure 4.14: Empirical fraction of pairs of putative matches, where the first match refers to straight line
segments (λn = λSegment) for different labelings ln, lm as observed on the training data. We use these as

priors P̂ (ln, lm | λn,λm) for the different feature types.
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Figure 4.15: Empirical fraction of pairs of putative matches, where the first match refers to blob features
(λn = λBlob) for different labelings ln, lm, as observed on the training data.
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Figure 4.16: Empirical fraction of pairs of putative matches, where the first match refers to affine regions
(λn = λAffine) for different labelings ln, lm, as observed on the training data.
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Figure 4.17: Empirical fraction of pairs of putative matches, where the first match refers to junction features
(λn = λJunction) for different labelings ln, lm, as observed on the training data.
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Figure 4.18: Top: Normalized histograms of dissimilarities sn for good (ln = 1) and bad (ln = 0) blob
feature correspondences. Middle: Beta distributions estimated from the histogram, used as a parametric
approximation p̂ (sn | ln,λn) of the likelihood function. Bottom: Bounded negative log likelihood derived
from p̂ (sn | ln,λn), which we use for the energy potentials. The observations refer to the training dataset
shown on page 88. Note that the theoretical range of the observations is (0, 1), and that the Beta distribution
is defined over the range [0, 1]. Here we only plot the relevant range; the densities are practically zero above
sn ' 0.125.
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We estimate the parameters (a, b) from the training data separately for the inlier and outlier
distributions to obtain estimates for the class conditional likelihood functions p̂ (sn | fn =
0,λn) and p̂ (sn | fn = 1,λn), as shown in the middle of Figure 4.18 for the blob features.
We will refer to the Beta distribution parameters corresponding to the event (vn = 1), as
(a1, b1), and use (a0, b0) for the event (vn = 0). Note that such two distributions often have
two intersection points in the interval [0, 1].8

The negative log likelihood − log p̂ (sn | ln,λn) that we actually use in the energy function
(4.32) is shown in the bottom plot of Figure 4.18. Note that we introduce a bound on the
log likelihood by using

− log[ε+ (1− ε)p̂ (sn | ln,λn)] (4.61)

with a small threshold ε = 0.001. In practice, the bound only affects values sn very close to the
limits of the domain [0, 1]. Imposing this bound has a similar effect as adding or subtracting
a value in the order of machine accuracy to observations near 0 and 1, respectively. Such
observations occur very rarely in practice.

The estimates for normalized dissimilarities of line segment matches, as described in
Sections 2.3 and 4.3.3, are shown in Figure 4.19. We use a beta distribution as well here, but
the approximation is less accurate as for other feature types: For the good correspondences
(ln = 1), the shape of the Beta distribution differs from the histogram. This is the only
severe deviation of a parametric approximation from the histograms in our setup. To keep the
framework simple, we refrain from choosing a more complicated model, but emphasize that
it would be interesting to investigate the effect of closer approximations onto the matching
results.

4.3.4 Construction of uncertain points and lines from image features

For deriving spatial relationships between features, we assume that we can always construct
the normalized 2D homogeneous point

xi =

 xi
yi
1

 (4.62)

with covariance matrix Σxx representing the position of an image feature pi. For point-like
features, we can fall back to

Σxx = σ2
x

 1 0 0
0 1 0
0 0 0

 , (4.63)

where σx corresponds to the expected localization accuracy in pixel, e.g. σx ' 0.3. Some
detectors however, especially those based on the structure tensor, often provide a direct
estimate for Σxx with full correlation information. For line segments, we will use the midpoint
for constructing xi, which usually has a strong localization error along the line, and a small
error perpendicular to it. Here the covariance matrix of the line and its midpoint can be
computed using classical error propagation, for example starting from start-/endpoints with
known localization accuracy, as described in Meidow et al. (2009).

In a similar manner, we assume that an uncertain 2D homogeneous line

li = ±

 cosαi
sinαi
−d

 (4.64)

8These Beta distributions express the conditional probability densities p(sn | ln,λn) for the observations
given labels ln ∈ 0, 1. Such unary compatibility functions are often referred to as the evidence for ln.
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Figure 4.19: Top: Normalized histograms of dissimilarities sn for good (ln = 1) and bad (ln = 0) line
segment correspondences. Middle: Beta distributions estimated from the histogram, used as a parametric
approximation p̂ (sn | ln,λn) of the likelihood function. Bottom: Bounded negative log likelihood derived
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is defined over the range [0, 1]. Here we only plot the relevant range; the densities are practically zero above
sn ' 0.27.
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with covariance matrix Σll can be constructed from each feature pi. For point-like features,
we use the centroid representation of straight line segments (Meidow et al., 2009, 3.1.2),
where the centroid is the image location of the original point feature, and the direction is
identified with the dominant gradient orientation within the local patch, as stored in the
SIFT descriptor. According to Lowe (2004, Sec. 5), we must hence expect the direction
of lines constructed from point-like features to have a standard deviation of about three
degrees. For straight line segments, the uncertain homogeneous line is converted from other
representations as described in Meidow et al. (2009). If not otherwise available, a reasonable
estimate for the covariance matrix can be obtained by assuming the covariance matrices of the
start-/endpoints to have the structure (4.63) and performing error propagation accordingly.

Operator notation. Using the conversions described above, we define explicit operators

x(pi) and l(pi) , (4.65)

which return the uncertain homogeneous 2D point or line representation for a feature pi. In
the same manner we use

Σxx(pi) and Σll(pi) (4.66)

for constructing the corresponding covariance matrices.

4.3.5 Consistency of Pairwise Sidedness

The information whether a feature is located left or right of another feature referring to its
orientation is known to be a stable cue of information for architectural scenes with mostly
planar substructure and low amount of occlusions (Bay et al., 2005). Given two putative
matches vn = (p′i,p

′′
j ) and vm = (p′k,p

′′
l ), the idea is to check in image I ′ whether the

position (xk, yk)
′ of p′k is left or right of p′i according to its orientation α′i. The sidedness

should be consistent with that in image I ′′, using p′′j and p′′l accordingly. The sidedness
relation is quite stable if no 3D occlusions are present in the scene, if the projective mapping
is straight line preserving, and if the surfaces are rather flat. Nevertheless we emphasize again
that all spatial relationships discussed here have limited validity (cf. Figure 3.1). This is why
we will treat them in a Bayesian manner instead of using them as hard constraints.

Figure 4.20: Illustration of possible representations for the sidedness relation between two oriented features.
The brightly shaded area denotes the region where a location in the image is considered “left of” the line
segment, the darker shaded area the region “right of”. Left: Simple relation as used in Bay et al. (2005).
This test applies a fixed threshold of a few pixels for taking collinear features into account (white region).
It hereby neglects the uncertainty of the feature’s orientation, which is usually significant for point features
and “short” line segments. Right: Relation based on a statistical test for the incidence of an uncertain 2D
point with an uncertain 2D line. The collinearity region where the test is skipped (white) is bounded by a
hyperbolic shape, taking the uncertainty of the feature’s orientation into account. Note that both illustrations
are slightly exaggerated w.r.t. the confidence regions to illustrate the effect.
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To evaluate the sidedness of two features in one image, we apply the conversion operators
(4.65) and (4.66) to measure the signed distance

d′ = d(p′i,p
′
k) = x(p′i)

Tl(p′k) (4.67)

in image I ′ via the scalar product, which is normally distributed with variance

σ′dd = xT(p′i)Σll(p
′
k)x(p′i) + lT(p′k)Σxx(p′i)l(p

′
k) . (4.68)

In a similar manner, we obtain (d′′, σ′′dd) for corresponding features (p′′j ,p
′′
l ) in I ′′.

For avoiding unstable tests, one has to distinguish the case when two features are collinear
in at least one of the views. A common way to achieve this is to introduce a minimum distance
Td of a few pixels. If min(d′, d′′) < Td, the test is not evaluated for this pair of correspondences.
This realization of the sidedness test is illustrated in the top row of Figure 4.20, but it is not
sufficient for our problem for two reasons:

1. It assumes negligible error σα referring to the feature’s orientation. For point features
however, where the orientation is computed from histograms of gradient orientations,
it is known that on average σα ∼ 4◦ (Lowe, 2004). For short line segments, significant
errors may also occur.

2. By using a fixed threshold σ(xi,yi) of a few pixels, the significantly varying localization
accuracies of different feature types, detection scales, and texture properties are ignored.
This is not acceptable for our purpose, as we want to combine feature types with very
different properties.

Instead we want to derive a test which properly takes the accuracy of a feature’s orientation
and image position localization into account. We therefore define collinearity of p′i and p′k by
the positive outcome of the statistical test that x(p′i) is incident with l(p′k). For the features
in I ′, this is the case if

|d′|√
σ′d

< Φ−1(S) , (4.69)

where Φ is the normal cdf and the parameter S defines the acceptance region and is usually
set to a probability near 1, e.g. S = 0.99.

We end up with the following scheme for determining whether the sidedness between
two putative feature matches vn = (p′i,p

′′
j ) and vm = (p′k,p

′′
l ) is inconsistent across the two

images:

1. We compute the signed distances (d′, σ′d) and (d′′, σ′′d), where d′ = d(p′i,p
′
k) and d′′ =

d(p′′j ,p
′′
l ).

2. If the incidence relation (4.69) is fulfilled in one of the views, the test is skipped for this
pair of correspondences.9

3. Otherwise, we return the test result

tsnm = ts(vn, vm) = ts(p′i,p
′′
j ,p
′
k,p
′′
l ) =

{
1, if sign(d′) 6= sign(d′′)
0, otherwise

. (4.70)

The sidedness measurements that we hereby obtain are binary observations tsnm ∈ {0, 1}.
9It is also possible to include incidence as another form of sidedness, and let the test pass in case that the

features in both views are collinear. We have not implemented this variant.
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Figure 4.21: Left: Normalized histograms of discrete observations tsnm between blob and affine blob feature
correspondences (λn = λBlob,λm = λAffine), referring to inconsistency of pairwise sidedness. We obtain
estimates for each of the events (ln = 0, lm = 0), (ln = 1, lm = 0), (ln = 0, lm = 1) and (ln = 1, lm = 1). Right:
Negative log likelihood derived from the histograms, which we use for the energy potentials. The observations
refer to the training dataset shown on page 88.
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Figure 4.22: Illustration of the setup for computing the pairwise orientation difference tαnm = min(|α′
nm −

α′′
nm|, 2π − |α′

nm − α′′
nm|) for two matches vn = (p′

i,p
′′
j ) and vm = (p′

k,p
′′
l ).

The histogram for the observations on the training dataset, referring to pairs containing
a blob and affine region feature correspondence, is shown on top of Figure 4.21. We see that
observing consistent sidedness motivates to select both matches as an inlier, as P̂ (tsnm = 0 |
ln, lm,λn,λm) ' 1 for ln = 1 and lm = 1. This is remarkable, as it shows that the statistical
model in fact generates effects similar to the explicit boosting stage proposed by Bay et al.
(2005): Strong feature types (here: blobs) will “boost” correspondences of weak feature types
(here: affine regions). In our setup, this effect is strongest for pairs of a straight line and a
blob feature correspondence.

4.3.6 Consistency of Angles between Oriented Features

Besides sidedness, we also evaluate the angle between two oriented features in one view, and
compare it to the angle between their corresponding features in another view. We assume
that the difference between these two angles is rather small for valid pairs of correspondences,
so that large differences indicate outliers.

The principle is illustrated in Figure 4.22: For two putative matches vn = (p′i,p
′′
j ) and

vm = (p′k,p
′′
l ), we compute the enclosing angle α′nm ∈ (0, 2π) between the features p′i,p

′
k

involved in image I ′ based on their arbitrarily scaled direction vectors

l(p′i) = l′i = |l′i|
[

cos(α′i)
sin(α′i)

]
and l(p′k) = l′k = |l′k|

[
cos(α′k)
sin(α′k)

]
, (4.71)

using the numerically robust two-parameter form of the Arcustangens

α′nm = α′(vn, vm) = atan2
(
l′i2, l

′
i1

)
− atan2

(
l′k2, l

′
k1

)
mod 2π . (4.72)
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The angle α′′nm spanned by the two features in image I ′′ is computed accordingly. The
directions l(pi) are constructed in a similar way as the homogeneous representations l(pi)
described in Section 4.3.4.

The difference of the angles spanned in the two images is then given by

tαnm = tα(vn, vm) (4.73)

= min(|α′nm − α′′nm|, 2π − |α′nm − α′′nm|), tαnm ∈ (0, π) .

It is obvious that we can neither expect angles between pairs of correct matches to be
always equal, nor angles between outliers to be always largely different. When investigating
the empirical distribution of the consistency measures tα on our training dataset, we see that
they carry valuable information for our problem though. The distribution for pairs of blob
and junction feature matches is shown in the top row of Figure 4.23.

The distribution indicates that for small inconsistencies tα between feature correspon-
dences of this type, it is most likely that both matches are inliers, referring to this observation
only. With increasing inconsistency, it becomes more probable that the blob correspondence
is an outlier, until for very high inconsistencies the labeling (0, 0) is motivated, which means
that both correspondences are likely to be outliers. This corresponds strongly to our initial
assumptions. Similar observations can be made for other combinations of feature types, and
again we see stronger feature types motivating the selection of weaker ones when the angular
consistency is high.

In order to take the uncertainty of feature orientations into account, (4.73) should actually
use a proper test statistic, so that the consistency becomes

tα0
nm = tα0(vn, vm) = min(|α0(vn, vm)|, 2π − |α0(vn, vm)|) ,

using the normalized test statistic

α0(vn, vm) =
α′nm − α′′nm√
σ2
αnm

′ + σ2
αnm

′′
. (4.74)

The variances of the angles would then be computed from the covariance matrices Σ ′li ,Σ
′
lj
, . . .

of the uncertain direction vectors by error propagation. Given that the vectors are already
spherically normalized, we obtain

σ2
αnm

′
= JTi Σ ′ljJi + JTj Σ ′liJj (4.75)

for the angle α′nm, using the Jacobians

Ji/j =
[
−sinφi/j , cosφi/j , 0

]T
. (4.76)

Note that although we use the simple version (4.73) in our implementation, more accurate
results can be expected when applying (4.74) instead.

4.3.7 Consistency of Pairwise Spatial Distance

If two features are located close to each other in one view, we also expect their correspondences
in another view to be close. This simple reasoning based on proximity was already suggested
by Ullman (1979). We choose to measure the distance between two feature locations, and
compare it to the distance of the two corresponding features in the second image. For line
segments, we measure the distance based on its midpoint. Note that it is not reasonable to
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Figure 4.23: Top: Normalized histograms of observations tαnm between blob and junction feature correspon-
dences (λn = λBlob,λm = λJunction), denoting inconsistency of angles between pairs of oriented features. We
obtain four distributions, referring to the events (ln = 0, lm = 0), (ln = 1, lm = 0), (ln = 0, lm = 1) and
(ln = 1, lm = 1). Middle: Beta distributions estimated from the histogram, used as an estimate for the likeli-
hood p(tαnm | ln, lm,λn,λm). Bottom: Bounded negative log likelihood derived from p̂ (tαnm | ln, lm,λn,λm),
which we use for the energy potentials. The observations refer to the training dataset shown on page 88. Note
that the theoretical range of the observations is (0, 1), and that the Beta distribution is defined over the range
[0, 1]. Here we only plot the range of values that we observed on the training dataset.
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Figure 4.24: Top: Normalized histograms of observations tdnm between blob and junction feature corre-
spondences (λn = λBlob,λm = λJunction), denoting inconsistency of spatial distance between pairs of ori-
ented features. We obtain four distributions, referring to the events (ln = 0, lm = 0), (ln = 1, lm = 0),
(ln = 0, lm = 1) and (ln = 1, lm = 1). Middle: Beta distributions estimated from the histogram, used as
an estimate for the likelihood p(tdnm | ln, lm,λn,λm). Bottom: Bounded negative log likelihood derived from
p̂ (tdnm | ln, lm,λn,λm), which we use for the energy potentials. The observations refer to the training dataset
shown on page 88. Note that the theoretical range of the observations is (0, 1), and that the Beta distribution
is defined over the range [0, 1]. Here we only plot the range of values that we observed on the training dataset.
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use the distance in pixels for this purpose, as we have to take images with different resolutions
into account. Therefore we normalize the distances by the length of the image diagonal.

The inconsistency of pairwise spatial distance for two correspondences vn, vm is defined
as

tdnm = td(vn, vm) = td(p′i,p
′′
j ,p
′
k,p
′′
l ) (4.77)

=
|x(p′i)− x(p′k)|√

(N ′x)2 + (N ′y)
2
−
|x(p′′j )− x(p′′l )|√

(N ′′x )2 + (N ′′y )2
,

using again the operator in Eq. (4.65), and the vertical and horizontal dimensions N ′x, N ′y
of an image I ′ in pixels. The empirical distribution and estimated likelihood functions,
again based on a Beta distribution, are shown in Figure 4.24 for pairs of line segment and
junction feature correspondences. The effects are very similar to those described for the tα

observations.
Just as for the angular consistencies tα, one may gain an additional benefit when replacing

the Euclidean distances with the proper test statistic, i.e. by normalizing the distances with
their standard deviations, which we did not realize for our experiments.

4.3.8 Dealing with Redundant Correspondences

With redundant correspondences we denote feature matches that refer to the same feature
in one view. For example, the correspondences v1 and v5 shown in Figure 4.2 (page 31)
both refer to feature p′1 in P ′. Due to the preselection scheme described in Section 2.4, such
situations occur frequently within the set V of putative matches. Redundant correspondences
are explicitly suppressed in most algorithms for wide baseline stereo matching, in the spirit
of Ullman’s exclusion criterion (Ullman, 1979). The suppression is usually referred to as
“enforcing the uniqueness constraint”. For example, Torresani et al. (2008) exclude redundant
correspondences explicitly from the feasible set of the optimization problem.

By contrast, we accept redundant correspondences even in the final result, for reasons that
we explain in the following. First of all, even the correct solution may contain redundant
correspondences. A line segment detector, for example, usually has an internal threshold for
merging neighboring pixels with a similar edge response into segments. Depending on the
image noise, the merge process can easily lead to different results in two overlapping images,
as shown in Figure 4.25. If the same line segment has been merged completely in one view,
but only partially in the other, it will therefore be involved in two or more correct matches.

Figure 4.25: Line segments detected in two views of an indoor scene. Observe how the same line in 3D
(white arrows) is represented by two line segments in the left, and six segments in the right view.

For point-like features, correct redundant correspondences can be caused by multiple
characteristic orientations or scales, leading to multiple features with identical position in
the image (cf. Sec. 2.3).
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Figure 4.26: Relative frequency of labels (ln, lm) for redundant pairs of matches (Section 4.3.8). Only pairs
of matches having the same feature type can be redundant. We see that for junction features, a redundant
pair with both matches being inliers is very rare, other than for blob features. A possible explanation for
this observation is that duplicate features with multiple dominant orientations (Lowe, 2004) arise more often
for blobs. It is important to note that none of the geometric compatibility measures can be computed for a
redundant pair. Therefore we use these priors as a replacement for the binary potentials when encountering
a redundant pair.

The second reason for not explicitly suppressing redundant matches is the natural lim-
itation of the matching process. We cannot make an ultimately correct decision about the
matching problem on the basis of 2D information. We only want to generate a set of corre-
spondences that constitutes a good input for the subsequent application, naturally including
a certain amount of outliers. In our case, the correspondences are used for estimating camera
geometries. There, a robust RANSAC scheme for estimating the pairwise epipolar geometries
is often applied, which can deal well with an outlier amount of 40%. Instead of suppressing
many otherwise promising correspondences in order to fulfill the uniqueness constraint, we
intentionally accept a certain amount of redundant correspondences.

Redundant feature matches cannot be processed in the same way as other correspon-
dences, because the spatial relationships in one view refer to one and the same feature and
are therefore not meaningful.

To compensate for the missing observations referring to geometric consistency for such
pairs, we estimate the priors P̂ (ln, lm | λn,λm) separately for redundant pairs of matches,
as we expect them to have a different distribution than non-redundant pairs. The relative
frequencies of labelings for pairs of redundant correspondences in our training dataset are
shown in Figure 4.26. Note that redundant pairs appear only for groups of matches referring
to the same feature type, in contrast to the general prior probabilities described in Section
4.3.2. The plot shows that the relative frequency of redundant groups with labeling (ln =
0, lm = 0) – denoting that both involved candidates are outliers – is significantly higher for
blobs and affine blobs than for junction features. This is an interesting observation that might
need further investigation. A possible explanation would be that the dominant orientation,
which is taken from the SIFT descriptors, tends to be more stable in case of junction features
compared to blobs, as junction patches typically contain more edge-like structures.
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4.4 Summary

In this chapter we developed a generic approach to wide baseline stereo matching. We put a
special focus on its statistical interpretation as the MAP estimate of a binary classification
problem. The statistical model leads to an energy function that can be approximated very
well by a linear program using the LP-S relaxation of Schlesinger (1976).

We also derived a number of reasonable energy potentials from training data, which we
will use for our particular implementation of the framework. They exploit three types of
pairwise spatial relationships: The sidedness of one feature w.r.t. another feature, the angle
spanned by two features, and the spatial distance between them. These potentials are directly
derived from the likelihood functions of the observed entities, given the labels of the involved
matches.



Chapter 5

Automatic Annotation of Feature
Correspondences

The proposed framework for wide baseline stereo matching requires estimates of the likelihood
distributions for all kinds of observations, given the labeling of involved candidate correspon-
dences. Estimating these distributions requires labelled training data over a larger number
of image datasets, where each image pair produces hundreds of putative feature matches. In
this chapter, we will therefore present a novel setup that can do the annotation automatically,
instead of labeling all matches manually. We will also use this annotation setup to support
our final experimental evaluations.

Our evaluation scheme is based on the following simple idea: If the projection matrices
of the cameras are known, we can compute a forward intersection for each putative feature
match, yielding a point or line in the 3D space of the scene. Assuming that the 3D structure
of the scene is known, we measure whether this 3D point or line sits on the surface of the
scene in order to decide wether the match is correct or not. This requires us to gather a
reference surface model of the scene, which we will obtain by laser scanner measurements for
most datasets. The approach will apply uncertain projective geometry wherever possible to
obtain statistically justified annotations.

Before we describe the approach in detail, we summarize some important evaluation
schemes proposed by other authors, and refine the notion of “inliers” and “outliers” in our
setup.

5.1 Related Work

The most frequently applied evaluation scheme for feature detection and matching is that of
Mikolajczyk et al. (2005). It is designed for the class of affine invariant features and assumes
that the local patches can be represented by an ellipse, which holds for the point features
that we use in this work. The basic idea is to use image datasets where the point transfer
between two images can be represented by a 2D homography (Hartley and Zisserman, 2004,
Ch. 13). This is mainly the case if the scene consists of one single planar surface, if the
baseline of the two views is zero, or if the scene objects are infinitely far away. The authors
provide a number of datasets together with carefully estimated homographies, which exhibit
affine distortions, rotations, scale differences, and blur, amongst others. However, despite the
fact that no datasets with sparse texture are provided, this method does not cover scenes
with multi-planar or complex 3D structure. Furthermore, the homographies do not provide

63
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a transfer for the line segments, which makes the approach insufficient for our purpose.1

Nevertheless we will present experimental results for some of these datasets (Graffiti and
Boat, cf. Section 6.2), using point features only.

A more advanced evaluation method has been proposed by Moreels and Perona (2006),
who rely on the geometry of three views, leading to trifocal tensors for the feature transfer
(Hartley and Zisserman, 2004, Ch. 15). This establishes a transfer for 2D lines as well: While
the 3D planes through corresponding lines in two views do always intersect in a 3D line,
the planes from three corresponding views do only intersect in a 3D line if the geometry is
consistent. Furthermore, the approach of Moreels and Perona (2006) does not restrict the
structure of the scene, so it would in principle be suitable for our approach. However, a
match can only be evaluated if the correct observation of the corresponding feature in a third
view exists and is known. As we are interested in difficult datasets with very low texture and
possibly low overlap, this would impose a strong restriction on our setup.

More recently, Strecha et al. (2008) have proposed a setup that uses ground truth data
from LIDAR measurements for evaluating automatic image orientation and image-based sur-
face reconstruction methods. A dense ground-truth sampling of the scene surfaces as well as
ground-truth projection matrices of the cameras are obtained from the LIDAR measurements,
and estimates of projection matrices and surfaces are benchmarked against this reference.

In the spirit of Strecha et al. (2008), and motivated by the shortcomings of the evaluation
methods for feature correspondences discussed above, we will develop a new automatic evalu-
ation approach for point and line feature correspondences, which uses reference measurements
of the scene surfaces and is particularly well suited for our problem.

5.2 Definition of an Outlier

Several definitions of a bad correspondence, or outlier, are common referring to image feature
correspondences. The two most typical ones are the following.

1. In the context of image orientation, an outlier usually refers to a correspondence which
is not in agreement with the image geometry, up to an expected accuracy. This doesn’t
necessarily imply that both features in the image show the same object area: So-called
“virtual correspondences” may have a valid physical geometry, but point to a non-
existing or occluded object in the scene.2

2. In the context of object recognition, one usually requires corresponding features to
represent the same visual property of an object. The accuracy or geometric consistency
is not a primary concern. For example, for identifying a person’s face in two different
images, it is important that the correspondence reflects the same face part in both
images, e.g. the left eye. It is neither required that the exact location of the feature is
highly accurate, nor that the correspondence satisfies the geometry of the camera pair.

Similar to 1., we define outliers as feature correspondences that are not in agreement with
the geometry of the image pair, or do not represent an element of a “real” surface in the
scene. This enables us to use reference measurements of the real scene surfaces as a basis for
testing. At the same time we must accept that possibly correct correspondences referring to

1Note that the start- and endpoints of line segments can not be used for the evaluation, as they are not
stable across images.

2For example, the intersection point of two line segments referring to the same plane in 3D is a valid
correspondence in terms of camera geometry, but may point to different scene content in the image plane.
This happens especially if the intersection point sits outside of the physical 3D plane.
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virtual points are classified as outliers. Such a situation may occur on specular surfaces, for
example, as depicted in Figure 5.1.

Figure 5.1: Image pair overlaid with matched image features, where crosses denote junction features, circles
denote blobs, and lines denote straight line segments. The color of the features encodes the result of the
proposed automatic annotation procedure: White features belong to correspondences classified as correct, and
grey features to correspondences classified as outliers. Observe the junction feature correspondences produced
by optical reflections on the floor, which are possibly consistent with the two-view geometry, but do not
correspond to the physical surface. Such “virtual correspondences” are classified as outliers by our evaluation
scheme.

5.3 Evaluation Scheme

The idea is to use dense 3D point measurements as a model of the true surfaces with suf-
ficiently superior precision, similar as in Strecha et al. (2008). In particular, we will use a
terrestrial laser scanner to obtain measurements for indoor scenes, and some artificial 3D
models with images rendered using raytracing techniques. Furthermore, we employ some of
the datasets of Strecha et al. (2008), where surface measurements taken by LIDAR devices
are provided.

We make the following assumptions for a feasible dataset:

1. A dense, accurate and mostly outlier-free 3D point cloud is available, which is not
necessarily textured, but represents the physical surface with a precision superior to
that of a typical image-based reconstruction algorithm.

2. A set of overlapping images is available, which depicts exactly the same scene surfaces
as modelled in the point cloud. This implies that image points showing an object that
is not contained in the reference surface dataset will be classified as outliers.

3. A smaller number of control points is available, i.e. some of the 3D points in the surface
measurements have known observations in several overlapping images. These control
points are needed as a starting point for registering the different coordinate systems.

4. A good photogrammetric model is available, i.e. an estimate of the relative orientation
of the images together with a larger number of several hundreds of corresponding 3D
points. We will use these points to refine the registration of the coordinate systems.

For all of the elements above, we assume to have a reasonable estimate of their accuracy,
provided by a covariance matrix. Example results of the annotation scheme are shown in
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Figure 5.2: Example image pair from the fountain-P11 dataset, showing a set of feature correspondences
that have been automatically annotated using the procedure described in Section 5.3. As in Figure 5.1, white
features are classified as correct, and grey features are classified as outliers.

Figure 5.1 using a terrestrial laser scanner in an indoor scene, and in Figure 5.2 using LIDAR-
measurements in an outdoor scene.

5.3.1 Semi-Automatic Registration of Projection Matrices

We first transform the projection matrices of the cameras into the coordinate system of the
surface measurements, based on the control points. The procedure works in two steps:

1. An approximate solution for the similarity transformation of the cameras into the new
system is computed, using the control points, and yielding approximate values for ro-
tation R̂, translation t̂ and scaling ŝ.

2. The estimated parameters are refined based on the full 3D point cloud and the forward-
intersected 3D points of the photogrammetric model. We choose to implement the
refinement by an Iterative Closest Point (ICP) algorithm (Zhang, 1994), which has
given sufficiently accurate results in our experiments.

The final parameters are used to transform the projection matrices of the images into the co-
ordinate system of the reference surface measurements. Additionally, the results are visually
inspected for each dataset.

We would possibly obtain more accurate estimates when computing a spatial resection
for each camera, based on control points and using full covariance information. However,
this would require a sufficient set of visible control points to be measured for each image.
Considering that a point is visible in three images on average, the number of required control
points would increase strongly with the number of images of a dataset. Our procedure instead
works well with about ten manually measured control points per dataset, each of which is
observed in three or four images, mostly independent of the number of images in the dataset.

5.3.2 Annotation of point feature correspondences

We start by storing the reference measurements of the surface into an efficient K-D tree
structure for fast nearest neighbour queries.

Given a point feature correspondence, which provides two corresponding points in an
image pair, we obtain the estimated 3D point X̂ by forward intersection based on the trans-
formed projection matrices. The forward intersection is computed as a least squares estimate,
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using uncertain projective geometry and applying the full covariance information of the pro-
jection matrices.3 Besides the 3D coordinates, this provides us with an estimate ΣXX of each
point’s covariance matrix.

We then search for samples of the reference surface which are statistically incident with
X̂. To realize this, we determine the maximum eigenvalue λmax of the covariance matrix
ΣXX as an estimate of the standard deviation in direction of the largest error in X̂. We then
determine the subset

X = {X | |(X̂ −X)|2 < λmax}

of reference surface measurements, and test whether at least one element in X is statistically
incident with X̂. The incidence test is again performed using uncertain statistical reasoning,
with the original covariance matrix ΣXX . The accuracy of the surface measurements, if not
otherwise available, is estimated based on the average distances of measurements in a local
neighborhood.

It may seem confusing that we use the set X instead of simply taking the nearest neighbor
from the K-D tree for the incidence test. To understand this course of action, observe the
situation depicted in Figure 5.3. A typical error ellipse of the forward intersected point has
a lengthy shape. Just as in the illustration, the nearest point on the surface is often not
statistically incident with the forward intersection, but other points on the surface are.

In the special case where the intersection angle for the forward intersection is very small
(below 0.5◦), the test is skipped, and the correspondence is interpreted as an outlier.

5.3.3 Annotation of line segment correspondences

For a line segment correspondence, we perform four tests. For each start- or endpoint, we
forward intersect the corresponding 3D line with the 3D plane corresponding to the line
segment in the other view. Again we perform the construction using uncertain projective
geometry, with the full covariance matrices provided by the edge line segment detector.
We thereby obtain an estimate of the 3D point X̂ corresponding to the respective start- or
endpoint. Other than for the point features however, this forward intersection is always valid.

With each of the four 3D points that we obtain from these forward intersections, we
perform a statistical incidence test with the surface measurements, as described for point
feature correspondences above. If any of these tests fails, the line segment match is classified
as an outlier.

3The estimates and statistical tests are computed using the sugr library for statistically uncertain geometric
reasoning (Heuel, 2004), available at http://www.ipb.uni-bonn.de/sugr/.

http://www.ipb.uni-bonn.de/sugr/
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Figure 5.3: Top: A point feature correspondence related to an artificial image pair, showing the “Stanford
Bunny”. Bottom: Reference surface measurements (red dots) in the local surface area of the correspondence,

estimated 3D point X̂ (blue cross where the lines intersect), and the nearest point on the reference surface

(black cross). The error ellipse of X̂, here illustrated in grey, is typically lengthy, with a larger error in the
direction of the intersecting lines. Therefore, the nearest point on the surface is often not statistically incident
with X̂, but another point within a radius corresponding to the maximum error according to the ellipse. The
3D model of the bunny is taken from the Stanford 3D scanning repository at http://graphics.stanford.

edu/data/3Dscanrep/.

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/


Chapter 6

Experimental Results

In this chapter, we will show that the framework for wide baseline stereo matching developed
in Chapter 4 (MapMatch) allows for significantly better matching results on sparsely tex-
tured scenes than the standard best-matching approach (BestMatch-2), which only takes
descriptor dissimilarities into account. We also want to make sure that our results are at least
comparable to the results obtained with the method of Bay et al. (2005), which is specifically
designed for sparsely textured scenes. Moreover, we investigate the performance of the algo-
rithm on regular datasets to show that the training of energy potentials for rather specific
image datasets does not lead to poor results on standard data.

We will consider a matching result better than another one if it contains more correct
feature correspondences at an acceptable outlier rate. As our focus is on image orientation
problems, we consider outlier rates as acceptable if they are significantly below 50%, relying
on our experience that robust estimators in image orientation systems can deal well with
such data. For example, if one matching algorithm returns 20 correct correspondences with
no outliers, and another one returns 50 correct correspondences with 15 outliers, we consider
the latter one to be better.

Besides the pure matching results, we want to investigate the effects when using different
wide baseline methods as a module for a particular image orientation system. We expect
our method to allow for a higher number of successfully oriented cameras than standard
descriptor-based matching when working with very sparsely textured scenes. For standard
scenes, we expect at least comparable results when using our method.

After describing the experimental setup, we start by showing some illustrative examples
to demonstrate the behavior of the proposed wide baseline stereo matching algorithm.

6.1 Experimental Setup

6.1.1 Detectors and Descriptors

The selection of detectors and descriptors for our experiments is based on three criteria:

1. We want to use standard algorithms that have been used for wide baseline stereo match-
ing and automatic image orientation before by other authors.

2. The detectors should have high complementarity, referring to the investigations in
Dickscheid et al. (2010).

3. There should be some variability concerning the strengths of the detectors and descrip-
tors, in the sense that the setup contains descriptors with high and low distinctiveness,
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and that the robustness of the features w.r.t. variations in scale, rotation, and perspec-
tive is different.

Therefore we choose the following feature detectors:

1. The lowe detector (Lowe, 2004) stands for the class of classical blob detectors, based
on the Laplacian. It is known to have very good scale and rotation invariance. We use
the original implementation kindly provided by the author, however using the original
image resolution instead of the double image resolution for building the pyramid. We
use SIFT descriptors for the lowe features, also computed using the original software
provided by D. Lowe. The orientation of the lowe features is taken from the dominant
gradient orientation that is assigned to the descriptor.

2. The fop0 detector extracts interest points based on the structure tensor from the
framework of Förstner (1994), and chooses the subset of junction points. These features
are not scale invariant, and therefore more sensitive to affine distortions. We use the
original implementation of the author, with a manually determined but fixed estimate
of 0.015% for the standard deviation of the image noise. The fop0 points are also
matched using SIFT descriptors, computed on a fixed scale of s = 4, which corresponds
to an effective window size of 3s = 12[pel].1 Again, the descriptor provides us an
orientation for the features.

3. The mser detector of Matas et al. (2004) stands for the class of affine invariant regions.
We use the widely used implementation provided by Mikolajczyk et al. (2005). For
assigning SIFT descriptors to the mser features, we use a circular region that covers
the same area as the elliptical representation of the affine invariant feature, placed at
the same image location. Therefore we cannot exploit the full expressive power of the
mser features, and the results must not be understood as a representative evaluation
of the MSER algorithm. The orientation for mser features comes is also taken from
the SIFT descriptors, as the ellipse orientations are only defined up to a 180 degree
ambiguity.

4. The edge detector from the framework of Förstner (1994) provides a typical straight
line segment detector. We use color-histogram based descriptors as proposed by Bay
et al. (2005) for the segments (Section 2.3), which are significantly less distinctive than
the SIFT descriptors for the other detectors. We use our own implementation for the
descriptors, which has been carefully compared to the implementation of the authors
and leads to very similar results. The edge features are only rotation invariant, so they
will suffer from strong scale and affine distortions. The orientation of the line segments
follows from the line direction. To overcome the 180 degree ambiguity inherent to the
direction, we analyze the image intensities of the neighboring pixels on both sides of
each segment, and define the side with the brighter pixels to be the left side w.r.t. to
the segment. This method is also used by Bay et al. (2005).

We want to emphasize again that our experiments must not be understood as a comparison
of detectors, but as a comparison of wide baseline matching methods. By keeping the set
of detectors and descriptors together with their parameter settings fixed, all methods shown
here have to cope with the same strengths and shortcomings of the features.

1Note that the scale parameter s refers to the value σ as used in Lowe (2004).
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Dataset Class Boat Graffiti Blank-12 Blank-22 Dragon

Annotation manual homo- homo- manual manual surface-
graphy graphy based

Texture sparse strong strong very very sparse
sparse sparse

3D structure multi- quasi- planar multi- multi- complex
planar planar planar

Distortion affine rotation strong affine affine affine
and scale affine

Overlap ∼ 60% ∼ 100% ∼ 100% ∼ 90% ∼ 90% ∼ 100%

# Images 8 6 6 12 22 6

Resolution 752× 500 213× 170 213× 170 1203× 800 752× 500 800× 600

Example

See page 92 91 91 89 90 93

Table 6.1: Properties of the datasets used for our experiments.

6.1.2 Matching Algorithms and Training Data

We show results for three different wide baseline stereo matching algorithms. The simplest
and most common one is a classical descriptor-based best matching approach (BestMatch-
2) with a 70% threshold, as described in Section 2.4.

Furthermore, we use a reimplementation of the method proposed by Bay et al. (2005),
which will be denoted as TopoMatch in the following. It includes both the three-point- and
the point-line topological filtering stages described in Section 3.2.2, and the boosting step.
Although we reimplemented the method carefully, we cannot claim that the results apply
directly to the original implementation of the authors.

Our own method developed in Chapter 4 is denoted as MapMatch in the following. The
parameters for the potential functions have been trained on the set of image pairs shown on
page 88, and remain constant over all experiments. The training images are not part of any
dataset used for the experiments, except for the Class dataset.

6.1.3 Image Datasets

We show results based on five different datasets. The properties of the datasets are summa-
rized in Table 6.1. Note that some of the images in Class are part of the training dataset
(page 88), while the other datasets are not related to the training data. The Class, Blank-
12 and Blank-22 datasets used a fisheye lens, and have been corrected for radial distortion.

The Boat and Graffiti datasets are taken from Mikolajczyk et al. (2005), but have
been reduced to a significantly lower resolution to decrease the amount of features. This has
been necessary because the complexity of the TopoMatch and MapMatch methods is too
high for processing high resolution images with strong texture. As we did not want to put a
restriction on the number of features into the algorithms, we decided that downsampling the
images was the easiest and most natural way of reducing the amount of features.
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6.2 Results for Pairwise Feature Matching

For investigating the success of a method referring directly to the extracted feature corre-
spondences, we report the number of good correspondences (inliers) and the percentage of
outliers for each matched image pair. As stated before, we consider better algorithms to have
higher numbers of inliers at an outlier rate that does not exceed 40%. Although we report the
statistics separately for each feature types, the matching has been performed on all feature
types simultaneously.

6.2.1 Sparsely textured datasets

Referring to the datasets with sparse texture, our approach MapMatch shows mostly su-
perior matching results. First of all, consider the image pair of the Class dataset depicted
in Figure 6.1. It provides a visual impression of the matching results on such scenes for the
different methods. We see that the BestMatch-2 approach, relying only on descriptors, can-
not compensate the weakness of the line segment descriptors, which results in many outliers
among the line segment correspondences. Using the topological filter in the TopoMatch
method removes many outliers, but does not lead to a higher number of point feature corre-
spondences. The MapMatch approach (bottom) achieves both effects quite well. Figure 6.2
shows detailed results for more image pairs of the Class dataset. We see that our approach
yields a constantly higher number of inliers. In case of the straight line segments, the outlier
rates are also smallest for our approach. For other feature types however, it tends to have
higher outlier rates than the other methods. The subset of mser feature correspondences
has outlier rates exceeding the 50% border for MapMatch.

For the Blank-12 dataset (Figure 6.3), one obtains similar observations. The number of
inliers is significantly higher for MapMatch over all considered image pairs and feature types,
while the outlier rates are acceptable, sometimes even better than for the other two methods.
In particular, MapMatch would allow to compute the epipolar geometry of the third pair 6/9
quite robustly, with a total of 36 correct point matches (ignoring the line segments), while
TopoMatch with 6 point matches is clearly at the borderline, and BestMatch-2 with
21 point matches significantly weaker. The TopoMatch implementation does not yield
significantly more inliers than BestMatch-2, but has lower outlier rates. This is intuitive,
considering that it removes matches with inconsistent spatial relationships.

6.2.2 Strongly textured datasets

The results for the Boat dataset (Table 6.4) show that our approach yields comparable
results to the classical BestMatch-2. Note that here the image pairs are sorted by increasing
scale and rotation difference between the images. For strong distortions, MapMatch yields
more inliers than the BestMatch-2 approach, at the cost of a slightly higher outlier rate.
Nevertheless it has a tendency to extract too many outliers at times, as can be seen in case
of the affine region features for image pairs 1/4 in Table 6.4, and in case of the blobs for
pair 1/6. The TopoMatch approach yields very similar results to BestMatch-2, with a
tendency to extract even less matches. Note that although the line segments were used for
matching in all of our experiments, they are not listed for the Graffiti and Boat dataset,
as the homography-based annotation cannot evaluate them automatically.



6.2. FEATURE MATCHING RESULTS 73

All Extracted Features

BestMatch-2

TopoMatch

MapMatch

Figure 6.1: Visual matching results for an image pair of the Class dataset for the three methods described in
Section 6.1.2. Features depicted in white are correctly matched, features in grey are outliers. We see that the
simple BestMatch-2 approach gives quite many inliers, especially among the line segments which have the
weakest descriptors. Using a topological filter and boost stage (TopoMatch) removes a significant number
of the outliers. The results for our approach (MapMatch) contain more inliers, and at the same time the
lowest outlier rate. Detailed results more image pairs of the dataset are listed in Table 6.2.
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Figure 6.2: Matching results for all neighboring image pairs of the Class dataset (Section A.6 on page 92),
computed with the three wide baseline stereo matching algorithms described in Section 6.1.2. Shown are the
number of correct correspondences and the percentage of outliers for each feature type. The annotation has
been done manually. We see that our approach (MapMatch) most often yields higher numbers of inliers then
the others at slightly higher but acceptable outlier rates. For the mser features however, it tends to select too
many matches here, yielding too large outlier rates.
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Figure 6.3: Results for three image pairs with increasing baseline taken from the Blank-12 dataset (Section
A.2 on page 89). The number of inliers is significantly higher for MapMatch, while the outlier rates are still
good, sometimes also better than for the other two methods. In particular, MapMatch would allow to compute
the epipolar geometry of the third pair 6/9 quite robustly, with a total of 36 correct point matches (ignoring
the line segments), while TopoMatch with 6 point matches is clearly at the borderline, and BestMatch-2
with 21 point matches significantly weaker.

#
G

o
o
d

mser

20

40

60

80
lowe fop0

BestMatch-2
TopoMatch
MapMatch

1/2 1/3 1/4 1/5 1/6

%
B

a
d

Image Pair

0

0.5

1

1/2 1/3 1/4 1/5 1/6

Image Pair

1/2 1/3 1/4 1/5 1/6

Image Pair

Figure 6.4: Matching results for all image pairs containing the first image of the Boat dataset (Section A.5
on page 91), computed with the three wide baseline stereo matching algorithms described in Section 6.1.2.
The annotation has been done based on plane homographies, which works only for point features. The image
scale and rotation difference per image pairs increases significantly from left to right.
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Figure 6.5: Results for overlapping image pairs for the Dragon dataset (Section A.7 on page 93). The
matching of edge features seems to be particularly difficult here for all three methods. The MapMatch
approach solves it significantly better, though still not satisfyingly. For the other feature types, the MapMatch
approach shows consistently better results in terms of higher number of inliers at comparable and satisfying
outlier rates. Observe especially the affine blobs, where MapMatch extracts between 7 and 10 times more
inliers, at a only slightly higher outlier rate.
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6.2.3 Results for straight line segments

The straight line features play a special role, as the matching of lines is in general more
difficult due to the uncertainty of the location of the start-/endpoints, and in particular more
difficult due to the weak descriptors used here. On the investigated datasets, the MapMatch
approach shows better results than both other methods referring to the line segments. At
the same time, the TopoMatch method shows often better results for matching lines than
BestMatch-2. We can therefore conclude that the spatial relationships seem to play indeed
an important role for matching features with weak descriptors.

6.3 Impact onto a System for Automatic Image Orientation

We have seen in the previous section that the proposed approach MapMatch often extracts a
significantly higher number of inliers than the classical best matching approach BestMatch-
2 and our implementation of the topological filter and boost approach TopoMatch. We will
now investigate the effect of using different wide baseline matching methods onto a system for
automatic image orientation. We base the experiment on the system aurelo for automatic
relative orientation, which we will explained next.

6.3.1 The System aurelo for Automatic Image Orientation

In the following we will briefly describe the image orientation system aurelo (Läbe and
Förstner, 2006) that we use for evaluating our matching algorithm. Note that besides au-
relo, a variety of other automated systems for solving the relative orientation problem have
been proposed (Pollefeys et al., 2000; Roth, 2004; Mayer, 2005; Vergauwen and Gool, 2006;
Snavely et al., 2006; Strecha et al., 2008).

The task in automatic image orientation is to derive the relative 3D motion between
cameras from a set of overlapping images (Figure 6.6).

Given a set of overlapping images. . .

. . . estimate the relative positions and orientations of the cameras in 3D.

Figure 6.6: The problem of automatic image orientation, illustrated by three overlapping images of a cube.
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The procedure starts by computing a set of point feature correspondences for each pair
of images in the dataset. It implements the BestMatch-2 algorithm (cf. Section 2.4),
applied on lowe features with SIFT descriptors (Lowe, 2004). However, like most other
image orientation methods, it can use any wide baseline stereo matching algorithm that
delivers point feature correspondences for pairs of images. The intrinsic camera parameters
are assumed to be known aurelo. The relative orientation of each image pair is computed
using the 5-point algorithm (Nister, 2004) embedded into a RANSAC scheme (Fischler and
Bolles, 1981; Hartley and Zisserman, 2004). This produces robust approximate values for
the pairwise epipolar geometries, and also acts as a filter on the feature correspondences,
resulting in smaller sets of correspondences with usually significantly reduced outlier rates.
Based on the filtered sets of pairwise feature correspondences, multiview correspondences are
derived by simple propagation of the feature indices in the views.

Pairwise camera geometries are then connected in an iterative manner, prioritized by
a measure of quality that is based on the number of satisfied coplanarity constraints.2 A
number of threefold correspondences, i.e. multiview feature matches spanning at least three
views, are required to determine the scale between two pairwise camera geometries. aurelo
will only select one set of connected camera orientations. In case that no further pairwise
camera geometry estimates can be connected, the procedure stops.

Triplets of camera orientations are used for further elimination of invalid pairwise geome-
tries. In particular, the product of the rotation matrices referring to three connected views
must be approximately equal to an identity matrix, and the three involved stereo baselines
have to be coplanar.

After determining 3D object points from the final multiview feature correspondences by
forward intersection, the whole block undergoes a nonlinear global optimization using the
sparse bundle adjustment software developed by Lourakis and Argyros (2009).

6.3.2 Evaluation Strategy using aurelo

We use the three different algorithms for wide baseline stereo matching described in Section
6.1.2 and the feature detectors listed in Section 6.1.1 for generating the input data for aurelo.
Note that we use the edge detector although the actual input to aurelo consists of point
feature correspondences only. This is because the line segments have an influence on the
matching results when using spatial relationships, which also affects the final point feature
correspondences.

For each dataset, we compute feature correspondences for pairs of images, and provide
them as an input to aurelo. We reduced some of the default thresholds in aurelo to
compensate for the small expected amount of correspondences due to the sparse texture.
In particular, we reduced the minimum number of point feature correspondences required
for estimating a pairwise camera geometry from 100 to 30, and the minimum amount of
three-fold point observations for connecting two pairwise geometries to three. As aurelo
contains a random component, namely a RANSAC scheme for computing robust estimates
of the pairwise epipolar geometries, we repeat each experiment 20 times.

We report the following indicator values:

1. The average percentage P o of images that have been successfully included in the final
estimate.

2The coplanarity constraint basically states that the stereo baseline and the two rays going through corre-
sponding image locations in the left and right view sit on the same plane in 3D space.
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Method P o σ̂x′ N I σφ No

Detectors fop0,lowe,mser,edge

BestMatch-2 11.0 0.72 139 0.55 3.12
TopoMatch 11.0 0.69 152 0.43 3.08
MapMatch 12.9 0.78 158 0.60 3.15

Detectors sfop0,lowe,mser,edge

BestMatch-2 22.0 0.60 412 0.31 3.46
TopoMatch 22.0 0.63 443 0.29 3.47
MapMatch 22.0 0.64 421 0.31 3.56

Detectors sfop0,edge

BestMatch-2 12.0 0.65 151 0.23 3.56
TopoMatch 12.0 0.64 152 0.22 3.53
MapMatch 18.0 0.68 221 0.25 3.85

Table 6.2: Indicator values for repeated aurelo estimates of the image orientation for the Blank-22 dataset
(Page 90), using varying sets of detectors.

2. The average standard deviation of observations σ̂x′ as estimated by the bundle adjust-
ment, reflecting the accuracy of observations.

3. The average number N I of 3D object points observed in an image, indicating the
stability of the estimated orientation for each particular image.

4. The average number No of independent observations of the 3D object points in over-
lapping images, indicating stability of the estimated camera poses.

5. The average standard deviation σφ of the camera orientation in degrees, referring to the
bundle adjustment. This is an approximate value, directly computed from the variances
σ2
q of the rotation quaternions q = [q0, q1, q2, q3]T estimated by the bundle adjustment,

using

σφ =
180

π

√
σ2
q0 + σ2

q1 + σ2
q2 + σ2

q3 [degree] (6.1)

This value indicates the accuracy of the camera orientations.

6.3.3 Results

Blank-22 dataset. The Blank-22 dataset is particularly difficult due to the very sparse
surface texture and strong affine distortions caused by the high viewing angle of the lens. If
we run aurelo using the four feature detectors described in Section 6.1.1, none of the wide
baseline methods allows a successful orientation of all cameras. The results are shown in
the upper third of Table 6.2. The MapMatch approach is most successful, as it allowed for
estimating 12 or 13 of the images, while the results for both BestMatch-2 and TopoMatch
do not exceed 11 images.

The particularly bad results show the difficulty in processing such datasets. As mentioned
in the introduction, many factors are important in such a case, above all good complemen-
tary combinations of robust detectors, and a good matching algorithm. While the applied
detectors are highly complementary, the robustness is not perfect, due to fop0 not being
scale invariant, and mser having restricted performance here (cf. Section 6.1.1). Therefore
we tried these datasets by replacing the fop0 features with scale-invariant junction features
from the recently proposed sfop detector (Förstner et al., 2009), denoted as sfop0. The
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Method P o σ̂x′ N I σφ No

Resolution 1203× 800

BestMatch-2 12.0 0.68 202 0.20 3.57
TopoMatch 12.0 0.63 270 0.30 3.05
MapMatch 12.0 0.66 229 0.19 3.31

Resolution 752× 500

BestMatch-2 9.0 0.52 109 0.29 3.41
TopoMatch 4.5 0.55 68 0.52 3.28
MapMatch 12.0 0.67 122 0.59 3.28

Table 6.3: Indicator values for repeated aurelo estimates of the image orientation for the Blank-12 dataset
(Page 89), using two different image resolutions.

results are shown in the center part of Table 6.2. We see that the effect is enormous: All
three methods yield a full orientation of the dataset now.

For further investigating the behavior, we computed twenty estimates with sets of sfop0
and the edge features only. The results are shown in the bottom part of 6.2. Again, the
estimated camera orientations were incomplete for all methods, but MapMatch allowed the
estimation of 18 cameras on average, while the two other methods yielded 12 cameras only.
Here, MapMatch shows also the highest number N I of object points and the highest average
number No. At the same time, the average standard deviation of observations σ̂x′ is slightly
highest for MapMatch, which might be an indicator that the additionally reconstructed
cameras were supported by weaker observations.

Blank-12 dataset. Compared to the Blank-22 dataset, the Blank-12 dataset contains
even less textured surfaces, as the window of the indoor scene is not shown. The only
distinguished objects are a little magazine on the floor and a door. Besides this, some tiny
structures, as for example a power jack, are visible, however at very fine scales due to the
wide aperture of the camera. Using the default set, which includes the fop0 instead of sfop0
detector, none of the methods lead to a successful orientation. Therefore we used the sfop0,
lowe, mser and edge detector for this experiment to get a more robust set of features. On
an image resolution of 1203× 800, all three methods were able to estimate a complete image
orientation, as shown in the upper half of Table 6.3. The number of object points N I is here
significantly highest for the TopoMatch method, while the average estimated accuracy of
camera rotation σφ is best for MapMatch, and almost equally good for BestMatch-2.
The average number of independent observations No is highest for BestMatch-2.

Reducing the resolution by a factor of almost two, the situation becomes more difficult,
as shown in the lower half of Table 6.3. Here, the MapMatch approach seems to be most
promising, as it allowed for the estimation of all twelve cameras over all repeated estimates,
while both other methods yielded less complete estimates. However, the accuracy of the
complete estimates achieved by MapMatch is worse than for the partial reconstructions of
the other two approaches, as the average estimated standard deviation of the observations
and camera rotations indicate.

Dragon dataset. The Dragon dataset (page 93) contains images rendered using raytrac-
ing software from a 3D model of a real object. The dataset has extremely sparse texture,
but significant 3D structure resulting in rich object shadings. The results for repeated image
orientation estimates, using different sets of detectors, are shown in Table 6.4. This dataset
is obviously much easier to process than the other ones, as all three wide baseline stereo
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Method P o σ̂x′ N I σφ No

Detectors lowe, sfop0, mser, edge

BestMatch-2 7.0 0.71 430 0.14 2.96
TopoMatch 7.0 0.66 447 0.16 2.79
MapMatch 7.0 0.73 423 0.14 3.01

Detectors lowe, fop0, mser, edge

BestMatch-2 7.0 0.74 523 0.14 2.94
TopoMatch 7.0 0.69 535 0.21 2.72
MapMatch 7.0 0.78 510 0.27 2.94

Detectors lowe, edge

BestMatch-2 6.3 0.64 314 0.24 3.10
TopoMatch 7.0 0.69 375 0.17 2.88
MapMatch 7.0 0.77 378 0.14 3.16

Table 6.4: Indicator values for repeated aurelo estimates of the image orientation for the Dragon dataset
(Page 93), using different detector combinations.

matching algorithms yield successful estimates for all seven images in most cases. Only when
reducing the set of detectors to no more than the lowe and edge detectors, the descriptor-
based approach BestMatch-2 looses stability and occasionally gives only six successfully
oriented cameras. Both other methods, which use spatial relationships for the matching
process, can benefit from the line segments and remain stable.

6.4 Summary

By visual inspection of matching results for a challenging image pair (Figure 6.1), we have
demonstrated that our new method is able to extract more inliers at lower outlier rates
compared to two other established methods. When considering a larger number of matching
experiments, the method still produces more inliers on average at mostly acceptable outlier
rates, which holds especially for sparsely textured scenes.

We have also investigated the impact of these matching results onto the problem of auto-
matic image orientation. Under difficult conditions, namely very sparse texture, weak detec-
tors, or small image overlap, our method often showed favorable results over several indicator
values, especially concerning the number of successfully oriented cameras. We demonstrated
again that using very strong detectors is also effective; in such cases standard matching algo-
rithms often succeed just as well. Then, the proposed approach usually produced comparable
results to established methods.

With the current parameters for the potential functions, our method tends to produce
rather high outlier rates among the weaker feature types when using combinations of different
detectors, as in case of the mser features on the Class dataset. This behavior is probably
related to the preselection of putative matches, which in our implementation shifts from the
single best to the two or three best candidates in case of weak feature types (cf. Section 2.4).
An investigation into more sophisticated preselection criteria might possibly overcome this
problem.
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Chapter 7

Conclusion and Outlook

We have proposed a statistically motivated, generic framework for wide baseline stereo match-
ing. Given an initial set of putative feature correspondences, we perform a binary classifi-
cation into good and bad correspondences. In a Bayesian treatment, the classification takes
the statistics of descriptor similarities and geometric consistency of pairs of putative corre-
spondences into account, which we infer from annotated datasets. The framework can handle
different types of features, descriptors, and dissimilarity measures, and model arbitrary binary
spatial relationships. The solution is obtained by solving an ordinary linear program, and
represents a high-quality approximation of the global optimum of the original classification
problem.

The strengths of our approach are the following:

1. It is highly generic in the sense that it can be easily extended to other detectors and
descriptors with different properties concerning robustness and distinctiveness. It will
exploit the strenghts of its operators by design.

2. The solution has a clear statistical interpretation as a binary MAP classification of
putative matches into inliers and outliers, given the observations and independence
structure described in Section 4.1.4. Therefore both the problem formulation and the
result have clear semantics.

3. It requires only a minimal number of parameters to be specified, once that the likeli-
hood distributions are determined from training data. In particular, we only define a
maximum number of putative matches to restrict the complexity. This number is not
critical, as today’s linear programming solvers can easily handle several hundreds of
putative matches, and the focus is on scenes with sparse feature sets.

Implementation of the approach is straightforward: First, the parameters of the potential
functions are estimated offline from training data. As the potentials can be approximated
quite well by particularly simple functions, parameter fitting can be accomplished without
effort using any of numerous available standard software packages. Then, given a particular
set of putative feature correspondences, the values of the potential functions are collected
for each pair of correspondences, and formatted as an ordinary linear program according to
Eqs. (4.51)-(4.56). The solution is obtained using standard software for convex optimization.
It can be computed in polynomial time, and gives a high-quality, stable approximation of the
global optimum of the MAP estimate.

For this work, we have chosen to use Euclidean distances of SIFT descriptors, weighted
distances of color histograms, and pairwise consistency of orientation angles, spatial distances,
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and sidedness as observations. The choice is neither restricted to these properties, nor does
our approach rely on any of them. Although we obtained good matching results in our
experiments, we suggest to try out other relationships in order to obtain possibly better
results.

We have shown in our experiments that the proposed approach MapMatch is superior
to a purely descriptor-based method in terms of the number of extracted inliers at acceptable
outlier rates. In particular, it is capable of producing good sets of correspondences for fea-
tures with rather weak descriptors by exploiting spatial relationships. Especially for difficult
datasets with very sparse texture, low image overlap, or low image resolution, we obtained a
higher number of inliers at acceptable outlier rates with our method.

When combining weak and strong feature types, our framework produces effects similar
to the explicit topological boosting proposed by Bay et al. (2005): Feature correspondences
with rather bad descriptor similarity are explicitely motivated by consistent geometric rela-
tionships. A unique property of our approach is that this effect arises naturally from the
statistics of the observed data, instead of being forced.

We do not claim that the proposed approach yields generally better results than that of
Bay et al. (2005), although it outperformed our own implementation of Bay’s framework on
most datasets. It must be expected that the original implementation of Bay’s method yields
different, probably better results on some datasets. The original motivation for our approach
was not to outperform the procedure of Bay et al. (2005), but to give a statistically motivated
and more intuitive formulation, that is also applicable to a broader range of setups.

We want to emphasize that the choice of detectors is crucial for the final success. Even
more, we think that the most important aspect for handling sparsely textured scenes is the
choice of a highly complementary set of robust detectors (Dickscheid et al., 2010).

When using the image orientation system aurelo in our experiments, we have seen
that the quality of a matching algorithm cannot fully compensate the choice of a weak
detector. However, the proposed approach can deal significantly better with weak detectors
and descriptors than other approaches that we investigated.

Preselecting putative matches based on descriptor similarity is the most heuristic part
of our approach. The ROC statistic for different values of k in the BestMatch-k method
(Figure 2.4) indicates that preselecting only the nearest neighbors ignores some of the true
positives. Probably the use of more sophisticated criteria for making a preselection would lead
to better matching results. One suggestion is to learn the best preselection from annotated
data. An investigation of different preselection criteria would be interesting.

To the best of our knowledge, an empirical analysis of the BestMatch-k method over
different feature detectors and values k, as presented in Section 2.4, has not been carried out
elsewhere. Repeating this experiment with a more general setup of detectors and descriptors
might provide valuable results for feature matching applications.

We have seen that simple descriptor-based matching is faster than our approach and still
effective in case that many features are available. Therefore we propose to fall back to this
standard method when the amount of detected features is high, and use our method only if
the amount is low. The same certainly holds for the selection of feature detectors: In scenes
with strong texture, it is usually sufficient to use a single good detector, as for example lowe,
mser or sfop0. Such a decision however requires a preprocessing step which analyzes the
texture properties of an image, and then selects the detectors and methods accordingly.

In case of sparsely textured scenes, the localization accuracy of features plays an important
role for image orientation, because the overall number of features is very low. We therefore
recommend to take localization accuracy into account when deciding on the set of detectors.
Some authors have focussed on this aspect recently (Haja et al., 2008; Zeisl et al., 2009;
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Remondino, 2006). In scenes with strong texture, on the other hand, bad localization accuracy
is often compensated by the high redundancy of observations.

It would be interesting to investigate in how far the real-valued solution of the relaxed LP
problem – before applying the rounding scheme – can be used in subsequent processing steps.
It is probably a good indicator for the quality of matches, and could be used to trigger priority-
driven algorithms, for example a quality-driven sample selection in a RANSAC scheme. In a
similar manner, the energy of the LP solution might be of interest, as it potentially indicates
the quality of the complete image-to-image matching. For example, considering the energy
relative to the number of involved variables may be a reasonable indicator for image overlap.

One may obtain better matching results when choosing better approximations of the
empirical likelihood distributions that lead to the energy potentials. In particular, one could
replace the Beta and Binomial distributions used here by more complex distributions, or even
introduce mixture models for the likelihood. This would potentially improve the results, but
at the same time lead to more complex implementations. It may also be interesting to put a
weighting on the different likelihood functions, reflecting the ability of each type of observation
to separate good from bad matches. We performed some experiments by estimating Fisher’s
discriminant score for each likelihood distribution, and use it as a weighting factor. At the
time of writing however, we did not obtain improved results from such weightings.

Altogether, the proposed method offers a highly generic yet intuitive framework for im-
plementing robust feature matching algorithms. It provides a clear distinction between data-
dependent elements, namely the energy potentials, and algorithmic parts, and is therefore
easily applicable to different matching problems. Implementation of the algorithmic parts can
be mostly covered by existing standard software packages. By choosing appropriate train-
ing datasets for the energy potentials, it is possible to implement both multi-purpose and
highly specialized matching algorithms. While we have used the framework to implement a
rather general algorithm, and focussed our experiments on standard datasets and man-made
scenes with poor texture, it would be interesting to analyze the behavior of more special-
ized implementations, for example in the context of medical image registration and object
recognition.
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A.1 Image Pairs Used for Annotation

Image pairs used for learning the potential functions. The images show indoor and outdoor
architectural scenes with both sparse and significant texture. The outdoor images are taken
from the fountain-P11 and Herz-Jesu-P8 datasets (Strecha et al., 2008).
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A.2 Images of the Blank-12 Dataset
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A.3 Images of the Blank-22 Dataset
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A.4 Images of the Graffiti Dataset
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This dataset is taken from Mikolajczyk et al. (2005).

A.5 Images of the Boat Dataset
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This dataset is taken from Mikolajczyk et al. (2005).
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A.6 Images of the Class Dataset
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A.7 Images of the Dragon Dataset
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7

The 3D model of the dragon used for rendering these images is taken from the Stanford 3D
Scanning Repository at http://graphics.stanford.edu/data/3Dscanrep/. It was first
presented by Curless and Levoy (1996). Note that the brightness of the images has been
increased to 150% for this figure.

http://graphics.stanford.edu/data/3Dscanrep/
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