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On the notion of order in the stable module category∗

Martin Langer

Abstract
The notion of order in triangulated categories, as introduced by Schwede, is in-

vestigated in the case of the stable category of kG-modules, where k is a field of
characteristic p and G is a finite group. For Tate cohomology classes ζ of even degree,
we obtain bounds on the ζ-order which are amazingly similar to corresponding results
on the p-order in the stable homotopy category.

On our way we introduce a power operation P1 on Tate cohomology which serves
as an obstruction for the ζ-order to be larger than its minimal possible value. Fur-
thermore, it enables us to compute certain higher Massey products explicitly.
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Introduction

Introduction

Let G be a finite group and k be a field of prime characteristic p > 0, and let us denote
by mod-kG the category of finitely generated, right kG-modules. In this category, the
classes of injective and projective modules coincide, and this allows us to form its stable
category mod-kG, whose objects are the same as in mod-kG, and the morphisms are given
by morphisms in mod-kG modulo the subgroup of those morphisms factoring through a
projective module. On mod-kG we have the translation functor Σ which can be defined
as follows: Choose an inclusion i : k ↪→ P of the trivial kG-module k into a projective
module P . For every object X define ΣX to be the cokernel of the (injective) map
i ⊗ idX : X → P ⊗ X. This functor serves as a translation functor of a triangulated
structure on mod-kG (where the exact triangles are ‘up to projectives’ those coming from
short exact sequences in mod-kG).

Let Ω denote the inverse of the shift functor Σ. Then we have

HomkG(ΩnX,Y ) = mod-kG(ΩnX,Y ) ∼= ÊxtnkG(X,Y ),

where Êxt denotes Tate Ext-groups. Suppose we are given a non-zero Tate cohomology
class [ζ] ∈ Ĥn(G) = Êxtn(k, k) represented by an unstable (surjective) map ζ : Ωnk → k.
Denote by Lζ the kernel of the map ζ; then we get an exact triangle

· · · → Lζ → Ωnk → k → Ω−1Lζ =: k/ζ → . . .

On k/ζ, we still have a multiplication by ζ, and the following theorem will be the starting
point of our discussion.

Theorem (Carlson, [2]). If p is odd and n is even, then multiplication by ζ on k/ζ
vanishes; i.e.,

Ωnk ⊗ k/ζ ζ⊗id−−−→ k/ζ

is stably zero.

If p = 2 then this does not need to be true. For instance, one can take G = Z/2×Z/2,
then there is some non-zero [ζ] ∈ Ĥ−2(G) such that multiplication by ζ does not vanish
on k/ζ. But why is the prime 2 special here?

In topology, we have a similar phenomenon. Suppose we are given a triangulated
category C, some objectX ∈ C and a natural numberm. OnX, we have the ‘multiplication
by m’, i.e., m · IdX : X → X; denote by X/m some choice of cone of this map. On this
cone, we also have a multiplication by m. If C is the stable homotopy category, and p is a
prime, then the mod-p Moore spectrum S/p (where S denotes the sphere spectrum) has
a multiplication by p, which is zero if p is odd, but non-zero if p = 2.

Motivated by his proof of the Rigidity Theorem [24], Schwede introduced the notion
of m-order (see [25]), which measures ‘how strongly zero multiplication by m on some
object is’. The m-order m-ord(X) of an object X ∈ C is an element of {0, 1, 2, . . . ,∞},
defined inductively by the following condition: m-ord(X) ≥ k if and only if for all objects
K in C and all morphisms f : K → X there is an extension f̂ : K/m → X such that for
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some (and hence any) cone Cf̂ of f̂ , m-ord(Cf̂ ) ≥ k − 1. Here, extension means that the
following diagram commutes:

. . . // K
m· // K

f

��

// K/m

f̂||z
z

z
z

// . . .

Y

For instance, m-ord(X) ≥ 1 if and only if multiplication by m vanishes on X, which is
what you would expect from a reasonable definition of order. It can be compared with,
say, multiplicities of zeroes of real polynomials.

In topology, we have the following results:

Theorem (Schwede, [24] and [25]). Let p be a prime number and C be a topological
triangulated category, i.e., the full subcategory of the homotopy category of a stable Quillen
model category.

(t1) For any object X of C, the object X/p has p-order at least p− 2.

(t2) In the stable homotopy category SHC, the mod-p Moore spectrum S/p has p-order
exactly p− 2.

(t3) We can also go one step further. If the morphism α1 ∧X : Σ2p−3X → X is divisible
by p, then X/p has p-order at least p − 1. Here α1 : Σ2p−3S → S is a generator of
the p-torsion in the stable homotopy groups of spheres in the (2p− 3)-stem.

To a certain extent, statement (t2) explains the phenomenon described above: multi-
plication by p on S/p vanishes if and only if the p-order of S/p is at least 1, and this is
the case exactly if p ≥ 3.

Let us turn back to the case C = mod-kG and see what we get from the notion of
order. It is certainly not very interesting to consider multiplication by m in our algebraic
situation, so we extend the definition of order to elements in the graded center of C. In
degree n, the graded center of the triangulated category C consists of all natural transfor-
mations ζ from the identity functor to the functor Σn which commute with the functor
Σ up to the sign (−1)n. The notion of order as defined above can be modified to work
for arbitrary elements ζ in the graded center, so we obtain a number ζ-ord(X) for every
object X in C. Now suppose we are given a cohomology class in Ĥn(G), represented by
some unstable map ζ : Ωnk → k, which in turn induces an element in the graded center,
also denoted by ζ:

ΩnX
ζ

//

��

'

X

��

'

Ωnk ⊗X
ζ⊗id
// k ⊗X

This should be thought of as multiplication by the class [ζ]. With all this language at
hand, Carlson’s theorem above reads ζ-ord(k/ζ) ≥ 1 for all primes p ≥ 3. This will be
generalized by the following theorem whose proof is the main objective of this thesis.
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Main Theorem. Suppose that k is a field of prime characteristic p and G is a finite
group.

(a1) Let ζ ∈ Ĥn(G) be a Tate cohomology class of even degree n. For any object X in
mod-kG, the ζ-order of X/ζ is at least p− 2.

(a2) For every prime p and every field k of characteristic p, there exists a group G and
a cohomology class ζ ∈ Ĥ∗(G) of even degree such that the ζ-order of k/ζ is exactly
p− 2.

(a3) Suppose that n > 0. Recall that the Steenrod reduced powers act on group cohomology
H∗(G, k). The first non-trivial Steenrod operation gives an obstruction for the ζ-
order of X/ζ to be at least p − 1. More precisely, if P1ζ ⊗X is divisible by ζ then
ζ-ord(X/ζ) ≥ p− 1.

Here, P1 ζ is the first non-trivial Steenrod power operation, that is,

P1 ζ =

{
Sq1 ζ = Sqn−1 ζ if p = 2,
βP

n
2
−1ζ if p is odd.

The plan of this thesis is as follows. As a first step, we recall several known facts about
the objects we are going to work with. In the second section we prove the lower bound
(a1) of our Main Theorem. In §3 we introduce a new power operation P1 on Tate coho-
mology which extends the Steenrod operation P1 above to negative degrees, at the price
of introducing a certain indeterminacy. Basic properties of the new operation are shown,
and the operation is computed for elementary abelian p-groups. In the fourth section we
show the obstruction statement (a3) of the Main Theorem. In §5 we show that certain
higher Massey products give upper bounds on the order, and we will use the new power
operation to compute such Massey products and thereby find an example for (a2). The
last section is devoted to the question what happens with the statement of (a1) if we allow
ζ to be any element of even degree in the graded center of mod-kG.

Acknowledgements In the first place, I would like to thank my advisor Stefan Schwede
for suggesting the project, for his interest in my problems and my solutions occurring
while finishing this thesis, and for the time he spent discussing the project’s details with
me. I would also like to thank Dave Benson for his interest in the project and for the
mathematical discussions we had during my stay in Aberdeen. I thank the BIGS and
GRK1150 for all the financial support. Lots of thanks go to my fellow students in Bonn,
above all to Matthias for listening to all these weird problems on modular representation
theory.

Finally, I would like to thank my wife Britta for her patience and her love.
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1. Prerequisites

1 Prerequisites

1.1 The stable module category

We begin with a brief introduction to the stable module category; a more detailed ex-
position can be found in [3]. Throughout this thesis, we will work with a fixed finite
group G and a field k of characteristic p > 0. Consider the category mod-kG of finitely
generated right modules over the group algebra kG. On this category, we have a sym-
metric monoidal tensor product X ⊗k Y defined for any two objects X,Y as follows. As a
k-vector space, we take the usual tensor product X ⊗k Y ; the G-module structure is then
given by the rule (x ⊗ y) · g = (x · g) ⊗ (y · g) for group elements g ∈ G. We will always
drop the k from the notation and simply write ⊗ for the tensor product. Taking tensor
products with a fixed module is an exact functor, since this is true for k-vector spaces
and exactness does not depend on the G-module structure. The one-dimensional vector
space k carries the structure of a trivial G-module by setting λ · g = λ for all λ ∈ k and
g ∈ G. This trivial module serves as a unit object for the symmetric monoidal product
⊗ in the sense that there are natural isomorphisms X ⊗ k ∼= k ⊗X ∼= X of kG-modules,
given by x⊗ 1 7→ 1⊗ x 7→ x for all x ∈ X. Whenever X and Y are kG-modules, we can
equip Homk(X,Y ) with a G-module structure by setting (g · f)(x) = f(x · g−1) · g for all
g ∈ G, f ∈ Homk(X,Y ). We will simply write Hom(X,Y ) for this G-module and write
X] = Hom(X, k) where k is the trivial G-module. The algebra kG is self-injective, and
therefore in the category mod-kG the classes of projective and injective modules coincide.
This allows us to form the stable module category mod-kG, defined as follows. The objects
of mod-kG are the same as in mod-kG; for any two objects A,B, the group of morphisms
is given by HomkG(A,B) = HomkG(A,B)/PHom(A,B), where PHom(A,B) denotes the
set of all morphisms A→ B which factor through a projective module. It is easily verified
that the set PHom(A,B) is actually a subgroup of HomkG(A,B) and that the construction
of Hom is compatible with composition, so one indeed obtains a category mod-kG. We
refer to mod-kG and mod-kG as the unstable and stable categories, respectively. There is
a canonical functor from the unstable to the stable category which allows us to consider
unstable maps as morphisms in the stable world. An unstable morphism will be called
stable isomorphism if it maps to an isomorphism under the canonical functor. For in-
stance, the projection X⊕P → X and the inclusion X → X⊕P are stable isomorphisms
for projective modules P . We will sometimes denote stable isomorphisms by ∼=st.

The stable category carries the structure of a triangulated category. We will only sketch
the construction here and leave the technical details to the textbooks. Let us begin with
the shift functor Σ. For every module X, choose a short exact sequence X ↪→ I(X) � ΣX
with an injective module I(X). Any map X → Y can be lifted to a map I(X) → I(Y )
which in turn induces a map ΣX → ΣY , the stable class of which only depends on the
class of the map we started with. This implies that Σ is a functor on the stable category.
In general, Σ will be a self-equivalence of mod-kG, but if we are careful enough when
choosing the I(X) we can achieve that Σ is an automorphism of mod-kG (see, e.g., [7],
§2). We will denote by Ω the inverse functor of Σ.

If Σ′ is a self-equivalence arising from a construction as above, then Σ and Σ′ are
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1.1 The stable module category

isomorphic as functors ([7], Remark on page 13). Let us apply this fact in a particular
case. Whenever P is a projective module in mod-kG and X is an arbitrary kG-module,
then P ⊗ X is also projective (see [11], Theorem 3.2). This implies that the tensor
product on mod-kG descends to a symmetric monoidal tensor product on mod-kG which
we also denote by ⊗. Now the exact sequence k ↪→ I(k) � Σk yields an exact sequence
X ↪→ I(k) ⊗ X � Σk ⊗ X. By the remarks above, the functors Σ and Σk ⊗ − are
isomorphic.

Next we are going to define the exact triangles. Let f : X → Y be a morphism in
mod-kG. Then we obtain a diagram

X
i //

f
��

I(X) //

��

ΣX

Y g
// C

h
// ΣX

where C is the pushout of f and i. The triangles X
f−→ Y

g−→ C
h−→ ΣX in mod-kG arising

this way will be called standard triangles. A triangle in mod-kG is called exact if and only
if it is isomorphic to a standard triangle. Now one has to prove that this structure indeed
satisfies the axioms of a triangulated category; the interested reader may find this in [6],
Theorem 9.4. In fact, the closed symmetric monoidal structure on mod-kG (given by ⊗
and Hom) is compatible with the triangulation in the sense of [10], appendix A.

We claim that short exact sequences A ↪→ B � C in mod-kG induce exact triangles
in mod-kG. We can lift the identity map of A to a commutative diagram as follows:

0 // A
a // B

b //

��

C //

w
��

0

0 // A // I(A) // ΣA // 0

Then, as is shown in Remark 2 in the proof of Theorem 9.4 in [6], we get an exact triangle
A

a−→ B
b−→ C

−w−−→ ΣA in mod-kG. By the rotation axiom, we also get an exact triangle
ΩC Ωw−−→ A

a−→ B
b−→ C.

Now let n be a fixed integer; then all the k-vector spaces HomkG(Ωn+mX,ΩmY ) for
integers m are naturally isomorphic. This defines the Tate cohomology groups

ÊxtnkG(X,Y ) = HomkG(ΩnX,Y ).

For any two morphisms f ∈ HomkG(ΩnX,Y ) and g ∈ HomkG(ΩmY,Z) we get a compo-
sition g ◦ Ωmf ∈ HomkG(Ωn+mX,Z). This describes the composition product

ÊxtmkG(Y, Z)⊗ ÊxtnkG(X,Y )→ Êxtm+n
kG (X,Z).

Let us write Ĥ∗(G,M) = Êxt∗kG(k,M) for short; then Ĥ∗(G, k) is a graded algebra,
which we often denote by Ĥ∗(G). As in the case of ordinary cohomology, Ĥ∗(G) is graded
commutative.
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1. Prerequisites

Note that for positive integers n, Tate cohomology ÊxtnkG(X,Y ) agrees with the usual
Ext-groups ExtnkG(X,Y ). For example, every short exact sequence A ↪→ B � C represents
an element in Ext1

kG(C,A); under the isomorphism Ext1
kG(C,A) ∼= HomkG(ΩC,A) this

element corresponds to the stable map ΩC → A in the exact triangle ΩC → A→ B → C.
Remark 1.1. It is well-known that the group algebra kG is a cocommutative Hopf algebra,
the comultiplication ∆ : kG→ kG⊗ kG and the antipode ε : kG→ kG being the k-linear
maps given by

∆(g) = g ⊗ g, ε(g) = g−1

for all g ∈ G. Let us note that throughout this thesis we can replace the group algebra kG
by an arbitrary (ungraded) finite-dimensional cocommutative Hopf algebra A over k. By a
theorem of Larson and Sweedler [17], A is a Frobenius algebra and we are able to construct
the stable module category mod-A. Cocommutativity provides a symmetric monoidal
tensor product ⊗ and will turn up later again when we discuss Steenrod operations. The
tensor product of a projective module and an arbitrary module still is projective (see the
last paragraph of §3 in [11]), and therefore the tensor product descends to a symmetric
monoidal product on the stable module category with unit object k, the trivial module
which gets its A-module structure via the counit of A.

We should also remark that we can generalize all results to the category Mod-A of arbi-
trary (not necessarily finite dimensional) A-modules and its corresponding stable category
Mod-A.

1.2 The graded center

Suppose that C is a triangulated category with shift functor Σ. The graded center Z(C)
of C consists of all natural transformations idC → Σn which commute with Σ up to the
sign (−1)n; that is, the degree n-part of Z(C) is given by

Zn(C) = {ζ : idC → Σn | Σζ = (−1)nζΣ}.

There is an obvious pairing Zn(C)×Zm(C)→ Zn+m(C) mapping (ϕ,ψ) to the composition
Σmϕ ◦ ψ. We will ignore set theoretical issues and assume that Z∗(C) is a set – this will
be obvious in all the cases we are interested in. Then Z∗(C) is a graded commutative ring
(see, e.g., [18], §2).

Now let C be the stable module category mod-kG. Suppose that we are given a coho-
mology class in Ĥn(G), represented by some map ζ : Ωnk → k. Then multiplication by ζ
induces an element of Zn(C) also denoted by ζ:

ΩnX
ζΩnX //

��

'

X

��

'

Ωnk ⊗X
ζ⊗id
// k ⊗X

Thus, we obtain a morphism of graded rings Ĥ∗(G)→ Z∗(C). If we compose this with
the evaluation at k we get a retraction

Ĥ∗(G)→ Z∗(mod-kG) evk−−→ Ĥ∗(G).
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1.3 The notion of order

The first map is an inclusion of a direct summand, which will not be surjective in general.
For example, take any element g in the center of G. Then the action of g on a given
module is a natural morphism in mod-kG and induces an element in Z0(C). If g is not
the unit element of G then g does not come from Ĥ∗(G) since evk(g) = 1 ∈ Ĥ0(G) but
g 6= 1 ∈ Z0(C) if p divides the order of G.

More generally, let A be a symmetric algebra, i.e., a Frobenius algebra A whose corre-
sponding nondegenerate bilinear form A×A→ k is symmetric (as it is in the case A = kG).
Define Aop to be the opposite algebra of A, and put B = Ae = Aop ⊗k A, the enveloping
algebra of A. Then B is also a symmetric algebra, and we can pass from mod-B, whose ob-
jects are the same as A-A-bimodules, to the stable category mod-B with shift-functor ΣB.
Then the Tate version of Hochschild cohomology is given by ĤH∗(A) = HomB(Ω∗BA,A).
Given an element in ĤHn(A) represented by some map f : Ωn

BA→ A in mod-B, we obtain
a natural transformation in mod-A

ΩnX ∼= Ωn
BX
∼= Ωn

BA⊗A X
f⊗Aid−−−−→ A⊗A X ∼= X,

where the first isomorphism comes from the fact that a projective resolution of B-modules
is a projective resolution of A-modules. We therefore have constructed a map ĤH∗(A)→
Z∗(mod-A). In our case A = kG we have a factorization

Ĥ∗(G)→ ĤH∗(kG)→ Z(mod-kG),

so the second map is more likely to be surjective than the whole composition. In fact, the
central element given above not coming from Ĥ∗(G) comes from ĤH∗(kG). Nevertheless,
the map ĤH∗(kG) → Z∗(mod-kG) is not surjective in general. For example, in the case
that G is a p-group of rank at least 2 and k is algebraically closed Linckelmann and Stancu
[19] proved that Z∗(mod-kG) is infinite-dimensional in all degrees for p = 2 and in odd
degrees for p > 2.

Remark 1.2. The map Ĥ∗(G) → Z∗(mod-kG) is a special case of a more general setting.
Suppose that C is a triangulated category with a symmetric monoidal product ∧ compati-
ble with the triangulated structure. Let us denote by S the unit of the product. Then we
have a canonical map from the graded ring [S, S]∗ of graded self-maps of S to the center
Z∗(C) by mapping ϕ : S → ΣnS to the family of maps

X ∼= X ∧ S idX ∧ϕ−−−−→ X ∧ ΣnS ∼= ΣnX.

In the case of C = mod-kG with product ⊗ and S = k being the trivial kG-module, we get
our map Ĥ∗(G) → Z∗(mod-kG). In the case of the stable homotopy category C = SHC
with smash product ∧ and S being the sphere spectrum we get a map from the stable
homotopy groups of spheres πs−∗ → Z∗(SHC).

1.3 The notion of order

Now we are going to define the notion of order. Let C be a triangulated category with
shift functor Σ, and let ζ ∈ Zn(C) be an element in the graded center of C. For every

9



1. Prerequisites

object K we denote by K/ζ some choice of cone of the map ζΣ−nK : Σ−nK → K, so we
have exact triangles

· · · → Σ−1K/ζ → Σ−nK
ζ−→ K → K/ζ → Σ1−nK → . . .

The ambiguity in choosing these cones will turn out to be irrelevant for our purposes.
Now suppose that f : K → Y is some map in our category C; then we say that a map
g : K/ζ → Y is an extension of f if the following diagram commutes:

. . . // Σ−nK
ζ
// K //

f

��

K/ζ //

g
}}{{{{{{{{

. . .

Y

We are ready to define the main object of this thesis. The following is a straightforward
generalization of a definition made by Schwede in [25].

Definition 1.3. For every object X in the category C we define the ζ-order of X, denoted
ζ-ord(X), inductively by the following two conditions:

(i) For every X we have ζ-ord(X) ∈ {0, 1, 2, . . . } ∪ {∞}.

(ii) For every positive integer j and every object X we have ζ-ord(X) ≥ j if and only if
for every object K and every morphism f : K → X there is some extension g of f
such that for some (and hence any) choice of cone Cg of g we have ζ-ord(Cg) ≥ j−1.

We also define the ζ-order of the category C to be the ζ-order of some zero-object.

Remark 1.4. For every integer m and every object X in C we have multiplication by m
on X, defined by the m-fold sum id + id + · · · + id : X → X. This is natural in X and
commutes with the shift functor Σ, so we get an element m ∈ Z0(C) and the definition
applies. This way we recover the definition of m-order given in [25].

Lemma 1.5 (compare [25]). Let C and ζ be as above. The ζ-order enjoys the following
properties:

(i) The ζ-order is invariant under isomorphisms and shifts.

(ii) An object X of C has ζ-order at least 1 if and only if ζ acts as zero on X.

(iii) The ζ-order of C equals 1 plus the minimum of the ζ-orders of all objects of the form
X/ζ.

(iv) The ζ-order is invariant under equivalences of triangulated categories.

(v) If D ⊂ C is a full triangulated subcategory then we can restrict ζ to D and obtain an
element in Z∗(D). The notions of order in these two categories are related by the
inequality ζ-ordD(X) ≥ ζ-ord C(X) for all objects X of D.

10



1.4 Tensor powers

Proof. Part (i) follows by a straightforward induction on j. At the same time the proof
of the ‘isomorphism’ statement shows that the notion of order does not depend on the
choices of cones in its definition. For (ii) note that if ζ is zero on X then there is some
map h : X/ζ → X for which the composition X → X/ζ

h−→ X is the identity of X. Then
for every morphism f : K → X we have an extension K/ζ

f/ζ−−→ X/ζ
h−→ X, which means

that ζ-ord(X) ≥ 1. Conversely, if the order of X is at least 1, then we can apply the
definition to the identity map f : X → X and obtain some extension g : X/ζ → X. Then
ζ is given by the composite

Σ−nX
ζ−→ X → X/ζ

g−→ X,

but the composition of the first two maps is zero. Part (iii) and (iv) follow directly from
the definition. For (v) it is enough to show that ζ-ordC(X) ≥ j implies ζ-ordD(X) ≥ j
which we show by induction on j, the case j = 0 being an empty statement. Suppose this
is true for j − 1 an assume that ζ-ordC(X) ≥ j. Let f : K → X be any map in D. By
assumption, there is some extension g : K/ζ → X in C such that for some choice of cone
Cg of g we have ζ-ordC(Cg) ≥ j−1. Since C is a full triangulated subcategory, g and Cg lie
in D, and by induction hypothesis ζ-ordD(Cg) ≥ j − 1. This implies ζ-ordD(X) ≥ j.

1.4 Tensor powers

Suppose that X and Y are kG-modules; then we have already defined a kG-module struc-
ture on the tensor product X ⊗ Y , coming from the comultiplication of the Hopf algebra
structure on kG. We can therefore consider the n-fold tensor product X ⊗X ⊗ · · · ⊗X
which we denote by X⊗n. On this module we have an obvious Σn-action, where Σn denotes
the symmetric group on n letters. The fact that the comultiplication ∆ : kG→ kG⊗ kG
is cocommutative shows that Σn acts by homomorphisms of kG-modules. Whenever we
have a module X, we denote by T the map

X⊗p → X⊗p

x1 ⊗ x2 ⊗ · · · ⊗ xp 7→ xp ⊗ x1 ⊗ · · · ⊗ xp−1.

Then T p = id and (1−T )p = 0. We will also write N = (1−T )p−1 = 1+T+T 2+· · ·+T p−1.
All these notions generalize naturally to chain complexes of kG-modules. It should be
noted that the action of Σn then involves a certain sign depending on the degrees of
the elements, which can be deduced from the Koszul sign rule. Let us give the precise
sign here. Whenever X is a chain complex of kG-modules and x ∈ X is a homogeneous
element, then we denote by |x| the degree of x. The action of σ ∈ Σn on a tensor product
x1 ⊗ · · · ⊗ xn of homogeneous elements involves the sign (−1)m with

m =
∑
i<j,

σ(i)>σ(j)

|xi| · |xj |.

For every chain complex X with differential ∂ we denote by X[m] the chain complex with
modules X[m]n = Xn−m and differential (−1)m∂. When X is a kG-module, we can view
X as a chain complex concentrated in degree 0; then X[1] is a chain complex concentrated
in degree 1, and σ ∈ Σn acts on the tensor product X[1]⊗n ∼= X⊗n[n] via its signum (−1)σ.
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1. Prerequisites

1.5 Symmetric and exterior powers

For a kG-module X, the module X⊗n has two famous quotients; on the one hand, the
symmetric power

SnX = X⊗n/
〈
x1 ⊗ · · · ⊗ xn − xσ(1) ⊗ · · · ⊗ xσ(n)

〉
k
,

and on the other hand, the exterior power

ΛnX = X⊗n/ 〈x1 ⊗ · · · ⊗ xn | xi = xj for some i 6= j〉k .

Here we denoted by 〈M〉k the k-vector space generated by the elements of the set M .
As usual, we define X⊗0 = S0X = Λ0X = k, the trivial kG-module. The obvious
multiplication maps

µi,j : SiX ⊗ SjX → Si+jX, µi,j : ΛiX ⊗ ΛjX → Λi+jX

turn S∗X and Λ∗X into graded algebras. There are also comultiplications ∆ : S∗X →
S∗X ⊗ S∗X and ∆ : Λ∗X → Λ∗X ⊗ Λ∗X which make S∗X and Λ∗X into graded Hopf
algebras. For example, the former map is given by

∆i,j : Si+jX −→ SiX ⊗ SjX

x1 · · ·xi+j 7→
∑
σ

xσ(1) · · ·xσ(i) ⊗ xσ(i+1) · · ·xσ(i+j),

where σ runs through all (i, j)-shuffles (see, e.g., [22] §1.3).
For any map f : X → Y let us denote by κfij the map

κfij : ΛiX ⊗ SjY −→ Λi−1X ⊗ Sj+1Y

x1 ∧ · · · ∧ xi ⊗ y1 · · · yj 7→
i∑
t=1

(−1)t−1x1 ∧ · · · ∧ x̂t ∧ · · · ∧ xi ⊗ f(xt)y1 · · · yj .

Notice that this map equals the composition

ΛiX ⊗ SjY ∆⊗id−−−→ Λi−1X ⊗X ⊗ SjY id⊗f⊗id−−−−−→ Λi−1X ⊗ Y ⊗ SjY id⊗µ−−−→ Λi−1X ⊗ S1+jY.

We will often drop the j from the notation and simply write κfi for that map.

Lemma 1.6. Suppose that 0 → X
ι−→ Y

π−→ Z → 0 is an exact sequence of kG-modules,
and let n be a positive integer. Then the sequences

0→ ΛnX
κιn−→ Λn−1X ⊗ S1Y

κιn−1−−−→ . . .
κι2−→ Λ1X ⊗ Sn−1Y

κι1−→ SnY
Snπ−−→ SnZ → 0

and

0→ ΛnX Λnι−−→ ΛnY
κπn−→ Λn−1Y ⊗ S1Z

κπn−1−−−→ . . .
κπ2−→ Λ1Y ⊗ Sn−1Z

κπ1−→ SnZ → 0

are exact.
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1.5 Symmetric and exterior powers

Remark 1.7. For ι = idX : X → X and Z = 0 this is a well-known fact (see, e.g., [22],
Theorem 1.1); one obtains the so-called Koszul complex

0→ ΛnX → Λn−1X ⊗X → Λn−2X ⊗ S2X → . . .

· · · → X ⊗ Sn−1X → SnX → 0. (1.8)

It is always exact, also for infinite dimensional modules X.

Proof. We only need to show a statement about exactness; we can therefore ignore the
G-action and treat all modules as k-vector spaces. In particular, we can assume that
Y = X ⊕ Z and ι and π are the obvious maps. Using the exponential property of the
symmetric algebra functor S∗(X⊕Z) ∼= S∗X⊗S∗Z (see 1.4.(2) in [22]) the first sequence
decomposes into a direct sum of sequences

0→ ΛiX ⊗ Sn−iZ → Λi−1X ⊗ S1X ⊗ Sn−iZ → Λi−2X ⊗ S2X ⊗ Sn−iZ → . . .

· · · → Λ1X ⊗ Si−1X ⊗ Sn−iZ → SiX ⊗ Sn−iZ → 0

which are exact by Remark 1.7, and one additional exact sequence 0→ SnZ
id−→ SnZ → 0.

Exactness of the second sequence is proved similarly.

Using the fact that there are natural isomorphisms Λn(X]) ∼= (ΛnX)] for all n, and
Sn(X]) ∼= (SnX)] for n < p (see §1.5 in [22]), we obtain the following dual result:

Corollary 1.9. Suppose that 0→ X
ι−→ Y

π−→ Z → 0 is an exact sequence of kG-modules,
and let n be an integer with n < p. Then the sequence

0→ SnX
Snι−−→ SnY → Λ1Z ⊗ Sn−1Y → · · · → Λn−1Z ⊗ S1Y → ΛnZ → 0

is exact, where the maps ΛiZ ⊗ Sn−iY → Λi+1Z ⊗ Sn−i−1Y are given by

z1 ∧ z2 ∧ · · · ∧ zi ⊗ y1y2 . . . yn−i 7→
n−i∑
j=1

z1 ∧ · · · ∧ zi ∧ π(yj)⊗ y1 . . . ŷj . . . yn−i.

Remark 1.10. Note that in the special case X = 0, Y = Z and π = idY we get a sequence

0→ SnX → X ⊗ Sn−1X → Λ2X ⊗ Sn−2X → . . .

· · · → Λn−1X ⊗X → ΛnX → 0, (1.11)

which we call the de Rham complex. It is exact for n < p but not in general, compare
with Lemma 1.2 of [22].

Another consequence is the following

Corollary 1.12. Suppose that 0→ X
ι−→ Y

π−→ k → 0 is an exact sequence of kG-modules.
Then the map κπn : ΛnY → Λn−1Y ⊗ S1k ∼= Λn−1Y induces a map ΛnY → Λn−1X which
we also denote by κπn, and the sequence

0→ ΛnX Λnι−−→ ΛnY
κπn−→ Λn−1X → 0 (1.13)

is exact.
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Proof. By Lemma 1.6 we have a commutative diagram of exact sequences

0 // ΛnX
Λnι // ΛnY

��

// Λn−1Y // . . . // Y // k //// 0

0 // Λn−1X // Λn−1Y // . . . // Y // k //// 0

showing that the dotted arrow exists and that (1.13) is exact.

Remark 1.14. In the situation of the preceding corollary, consider the graded algebra Λ∗X.
Then Λ1+∗X and Λ1+∗Y are a graded right Λ∗X-modules, and the corollary (and an easy
to verify commutative diagram) show that we have an exact sequence

0→ Λ1+∗X
ι−→ Λ1+∗Y

κ−→ Λ∗X → 0

of graded right Λ∗X-modules.

We end this section with a construction that will be helpful later for checking com-
mutativity of certain diagrams. Suppose that Y is any kG-module, M∗ is a graded right
Λ∗Y -module and N∗ is a graded left S∗Y -comodule; so we have maps

µ : M∗ ⊗ Λ∗Y →M∗, ν : N∗ → S∗Y ⊗N∗.

Then we have maps M i ⊗N j d−→M i+1 ⊗N j−1 given by the composition

M i ⊗N j id⊗ν−−−→M i ⊗ Y ⊗N j−1 µ⊗id−−−→M i+1 ⊗N j−1.

We claim that d2 = 0 as we can read off from the following commutative diagram:

M i ⊗N j //

��
N is a S∗Y -comodule

M i ⊗ Y ⊗N j−1
µ⊗id

//

id⊗ν
��

M i+1 ⊗N j−1

id⊗ν
��

M i ⊗ S2Y ⊗N j−2 //

0
**UUUUUUUUUUUUUUUU M i ⊗ Y ⊗ Y ⊗N j−2

µ⊗id
//

��
M is a Λ∗Y -module

M i+1 ⊗ Y ⊗N j−2

��

M i ⊗ Λ2Y ⊗N j−2 //M i+2 ⊗N j−2

Definition 1.15. We call

. . .
d−→M i−1 ⊗N j+1 d−→M i ⊗N j d−→M i+1 ⊗N j−1 d−→ . . .

the chain complex associated to (M,N).

This is a functorial construction in the sense that maps of graded right Λ∗Y -modules
and maps of graded left S∗Y -comodules induce maps of chain complexes. The same
construction works for N∗⊗M∗ when N is a graded right S∗Y -comodule and M a graded
left Λ∗Y -module.
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1.6 Symmetric and exterior powers in the stable category

Example 1.16. We have already seen instances of such chain complexes: suppose that
π : Y → Z is a map of kG-modules, and let N = S∗Y . Then M = Λ∗Z becomes a
Λ∗Y -module via the map π. The chain complex associated to (Λ∗Z, S∗Y ) is part of the
exact sequence of Corollary 1.9.

We can also swap the roles of S∗ and Λ∗ and consider graded left S∗Y -modules M and
graded right Λ∗Y -comodules; then we also get an associated sequence in a similar way.

Example 1.17. Suppose again that π : Y → Z is a map of kG-modules, and let M = Λ∗Y .
Similar to the example above, N = S∗Z becomes an S∗Y -module via the map π. Since
S∗π : S∗Y → S∗Z is a map of S∗Y -modules, we obtain a morphism of the associated
chain complexes:

. . . ΛjY ⊗ SiZoo Λj+1Y ⊗ Si−1Zoo . . .oo

. . . ΛjY ⊗ SiYoo

id⊗Siπ

OO

Λj+1Y ⊗ Si−1Yoo

id⊗Si−1π

OO

. . .oo

1.6 Symmetric and exterior powers in the stable category

For every kG-module X and i < p, there are natural maps

SiX → X⊗i : x1 · · ·xi 7→
1
i!

∑
σ∈Σi

xσ1 ⊗ · · · ⊗ xσi , (1.18)

ΛiX → X⊗i : x1 ∧ · · · ∧ xi 7→
1
i!

∑
σ∈Σi

(−1)σxσ1 ⊗ · · · ⊗ xσi .

Up to the scalar constants they are the i-fold iterated comultiplications of the graded Hopf
algebra structures on S∗X and Λ∗X. We will refer to these maps as the canonical maps
SiX → X⊗i and ΛiX → X⊗i. The compositions SiX → X⊗i → SiX and ΛiX → X⊗i →
ΛiX with the projections are the identity maps. Therefore, SiX and ΛiX both are direct
summands of X⊗i. In particular, we have shown the following lemma which ensures that
for i < p the functors Si and Λi induce functors on the stable category.

Lemma 1.19. Suppose that i < p. If P is a projective kG-module, then so are SiP and
ΛiP .

Remark 1.20. Note that the conclusion of the lemma fails in general if i ≥ p. For example,
if G is the cyclic group of order p, then dimk kG = p and hence dimk Λp(kG) = 1. One can
check that Λp(kG) ∼= k as kG-modules, which is not projective. Also, Sp(kG) ∼= k⊕(free).

Lemma 1.21. Suppose that i < p and X is any kG-module. Then, in the stable module
category, SiΩX ∼= ΩiΛiX and ΛiΩX ∼= ΩiSiX.

Proof. Consider a short exact sequence 0 → ΩX → P → X → 0 in mod-kG with a
projective module P . By Corollary 1.9 there is an exact sequence

0→ SiΩX → SiP → Λ1X ⊗ Si−1P → · · · → Λi−1X ⊗ S1P → ΛiX → 0.
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But the SjP ’s are projective by Lemma 1.19, so SiΩX is stably isomorphic to ΩiΛiX.
The other isomorphism is shown similarly using Lemma 1.6.

By induction, we conclude that

ΛiΩjX ∼=

{
ΩijSiX if j is odd,
ΩijΛiX if j is even

in the stable category. Since ΩmX = 0 in mod-kG implies that X is projective, we get the
following corollary:

Corollary 1.22. If n is even, then ΛiΩnk is projective for 1 < i < p.

2 The lower bound

From now on, let [ζ] ∈ Ĥn(G) be a non-zero Tate cohomology class of even degree n,
represented by a map ζ : Ωnk → k in mod-kG. Since ζ is non-zero, it must be surjective
and we get an exact sequence 0 → Lζ

ι−→ Ωnk
ζ−→ k → 0. This sequence yields an exact

triangle
Ωk → Lζ → Ωnk → k

We denote by η an unstable representative of the stable map Ωk → Lζ .

Definition 2.1. Let s be a non-negative integer. An s-coherent module X is a sequence
X0, X1, X2, . . . , Xs of modules together with maps

µi,j : ΛiLζ ⊗Xj → Xi+j

for all i ≥ 1 and j ≥ 0 with i+ j ≤ s, satisfying the following conditions:

• (Unitality) For every 1 ≤ i < s, the composite

Ωk ⊗Xi
η⊗id−−−→ Lζ ⊗Xi

µ1,i−−→ X1+i

is a stable isomorphism.

• (Associativity) The square

ΛiLζ ⊗ ΛjLζ ⊗Xm
id⊗µj,m

//

µi,j⊗id

��

ΛiLζ ⊗Xj+m

µi,j+m

��

Λi+jLζ ⊗Xm
µi+j,m

// Xi+j+m

commutes for all 0 ≤ i, j,m with i+ j +m ≤ s.
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• (Exactness) The sequence

0→ SiLζ ⊗X0 → Si−1Lζ ⊗X1 → · · · → S1Lζ ⊗Xi−1 → Xi → 0

is exact for all i ≤ s. Here the map SjLζ ⊗Xm → Sj−1Lζ ⊗Xm+1 is given by the
composition

SjLζ ⊗Xm
∆j−1,1⊗−−−−−→ Sj−1Lζ ⊗ Lζ ⊗Xm

id⊗µ1,m−−−−−→ Sj−1Lζ ⊗Xm+1.

We call X1 the underlying object of X. A map of s-coherent modules f : X → Y
is a family of maps fi : Xi → Yi compatible with the respective structure maps µ in
the obvious sense. Such a map will be called injective (surjective) if each of these fi’s is
injective (surjective).

Remark 2.2. We have chosen a rather lengthy and very explicit way of defining s-coherent
modules in order to stress the similarity to the definition of k-coherent M -modules of
[24], Definition 2.1. Notice that we could equally well have defined s-coherent modules
to be graded left Λ∗Lζ-modules X∗ with Xi = 0 for i outside {0, 1, . . . , s}, satisfying the
unitality and exactness conditions. The sequence of the exactness condition is the chain
complex associated to the right S∗Lζ-comodule S∗Lζ and the left Λ∗Lζ-module X∗ (in
the sense of Definition 1.15).

Example 2.3. For every s < p, there is the tautological s-coherent module, defined as
follows. Put Xi = ΛiLζ , and define µi,j : ΛiLζ ⊗ ΛjLζ → Λi+jLζ to be the natural maps.
Then we have associativity, and exactness holds due to Corollary 1.9. To prove unitality,
note that we have a commutative diagram

0 // Lζ ⊗ ΛiLζ

��

// Ωnk ⊗ ΛiLζ //

��

ΛiLζ // 0

0 // Λ1+iLζ // Λ1+iΩnk // ΛiLζ // 0

where the upper row is obtained by tensoring the exact sequence 0→ Lζ → Ωnk → k → 0
with ΛiLζ ; it is therefore exact. The bottom row is the exact sequence constructed

in Corollary 1.12, and the middle vertical map is the composite Ωnk ⊗ ΛiLζ
id⊗Λiι−−−−→

Ωnk ⊗ ΛiΩnk
·∧·−→ Λi+1Ωnk. Passing to the stable category, we obtain a map of triangles:

Ωk ⊗ ΛiLζ

∼=
��

//

(∗)

Lζ ⊗ ΛiLζ

��

// Ωnk ⊗ ΛiLζ //

��

ΛiLζ

ΩΛiLζ // Λ1+iLζ // Λ1+iΩnk // ΛiLζ

Since 0 < i < p−1, we know (by Corollary 1.22) that Λ1+iΩnk is projective and therefore
isomorphic to 0 in the stable category. Hence, the first map of the bottom row is an
isomorphism. The commutative diagram (∗) then shows the desired unitality condition.
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More generally, if K is any module, we denote by F (K) the tautological s-coherent
module over Lζ ⊗K, given by F (K)j = ΛjLζ ⊗K. The maps and properties are obtained
from the previous example by tensoring everything with K from the right. This is also a
functorial construction in the sense that given any map f : K → L, we get an induced

map F (K)
F (f)−−−→ F (L), which is surjective if f is.

Lemma 2.4. Suppose that f : X → Y is a surjective map of s-coherent modules. Then
the kernel of f is an s-coherent module in the natural way.

Proof. The kernel of f is defined levelwise by Ci = ker fi : Xi → Yi. The multiplication
maps are defined by the following commutative diagram:

ΛiLζ ⊗ Cj //

µi,j

��

ΛiLζ ⊗Xj
id⊗fj

//

µi,j

��

ΛiLζ ⊗ Yj
µi,j

��

Ci+j // Xi+j
fi+j

// Yi+j

Associativity follows immediately from associativity on X and Y . To prove unitality,
consider the following commutative diagram:

Ωk ⊗ Cj //

��

Ωk ⊗Xj //

��

Ωk ⊗ Yj

��

C1+j // X1+j // Y1+j

When we pass to the stable category, the exact rows turn into exact triangles, and the
second and third vertical map turn into isomorphisms. By the five lemma in triangulated
categories, the first map must be an isomorphism as well.

We are left with the exactness condition. Consider the following commutative diagram:

0 // SiLζ ⊗ C0
//

��

Si−1Lζ ⊗ C1
//

��

. . . // Ci //

��

0

0 // SiLζ ⊗X0
//

��

Si−1Lζ ⊗X1
//

��

. . . // Xi
//

��

0

0 // SiLζ ⊗ Y0
// Si−1Lζ ⊗ Y1

// . . . // Yi // 0

Since the maps Ci → Xi are inclusions, we can deduce that the top row is a complex.
Regarding the rows as chain complexes, the vertical maps form a short exact sequence
of chain complexes, thus inducing a long exact sequence in homology. Together with the
hypothesis that the second and the third row have zero homology, we obtain that the top
row is an exact sequence.

Lemma 2.5. If X is an s-coherent module, then the multiplication maps µi,j : ΛiLζ ⊗
Xj → Xi+j are surjective.
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Proof. Let us prove this by induction on i. For i = 1, the map Lζ ⊗ Xj → X1+j is the
same as the last non-trivial map in the exact sequence of the exactness condition; it is
therefore surjective. For the inductive step, consider the following commutative diagram:

Lζ ⊗ ΛiLζ ⊗Xj
// //

��

Lζ ⊗Xi+j

����

Λ1+iLζ ⊗Xj
// X1+i+j

Since the upper-right composition is surjective, so is the lower-left one. This implies that
the bottom map is onto.

If X is an s-coherent module, let X[1] be given by X[1]i = X1+i for i < s. Then X[1]
is an (s− 1)-coherent module in the natural way. The multiplication maps of X induce a
map of (s−1)-coherent modules F (X1)→ X[1] which is surjective by the previous lemma.

Proposition 2.6. If X is an s-coherent module with underlying object X1, then we have
that ζ-ord(X1) ≥ s− 1.

Proof. We do this by induction on s, the case s = 1 being an empty statement. Now
suppose that s ≥ 2. We start with a map K → X1 in the stable category and assume that
it is given by a surjective map f : K → X1 in mod-kG. Consider the composition of maps
of (s− 1)-coherent modules

F (K)
F (f)−−−→ F (X1) −→ X[1].

By Lemma 2.5, the maps are surjective. Therefore, by Lemma 2.4, the kernel C of this
map is an (s− 1)-coherent module. By induction hypothesis,

ζ-ord(C1) ≥ s− 2. (2.7)

Now consider the following commutative diagram in mod-kG:

Ωk ⊗K
η⊗id

//

id⊗f
��

Lζ ⊗K

id⊗f
��

zz

�
�

�
|

y
w

t

Ωk ⊗X1
η⊗id

//

��

Lζ ⊗X1

µ1,1

wwooooooooooooo

X2

By the unitality condition, the map Ωk ⊗ X1 → X2 is a stable isomorphism. Therefore
the dashed arrow stably lifts to a map f̂ : Lζ ⊗ K → Ωk ⊗ X1. This is (up to a shift)
an extension of f ; we will show that some cone Cf̂ of f̂ satisfies ζ-ord(Cf̂ ) ≥ s − 2. It
is enough to show that some cone of the dashed arrow has this property. Note that this
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map (in the unstable category) is surjective (because f and µ1,1 are). Therefore, up to a
shift, the kernel of the composition

Lζ ⊗K
id⊗f−−−→ Lζ ⊗X1

µ1,1−−→ X2

is a possible choice of cone of the dashed arrow. Since this kernel is the underlying object
of C, we get the inductive step from (2.7).

Corollary 2.8. If X is any object in mod-kG, then ζ-ord(X/ζ) ≥ p − 2. In particular,
the ζ-order of mod-kG is at least p− 1.

Proof. Since Lζ ∼= Ω
(
k/ζ
)

in mod-kG, we get ζ-ord(X/ζ) = ζ-ord(Lζ ⊗X). But Lζ ⊗X
is the underlying object of the (p − 1)-coherent module F (X), so we get the result from
Proposition 2.6.

Remark 2.9. It should be noted that, for the proof of Proposition 2.6, the exactness
condition can be dropped from the definition of s-coherent modules. The reason why we
introduced it was that we needed the surjectivity of the composite Lζ⊗K → Lζ⊗X1 → X2,
because then the kernel of this map serves as a fiber in the stable category. We could
equally well have used a functorial mapping cone construction on mod-kG as follows: for
an unstable map f : X → Y define the mapping cone C(f) to be the cokernel of the
injective map

X ∼= X ⊗ k (id⊗i,f)−−−−−→ X ⊗ kG⊕ Y.

Here, i : k → kG denotes the usual inclusion. The construction is very similar to the
mapping cone for maps f : X → Y of simplicial sets, given as C(f) = ∆[1] ∧X ∪1×X Y
where ∆[1] is the standard 1-simplex, pointed by the 0-vertex.

The mapping cone is sufficiently well-behaved for our purposes: we have natural iso-
morphisms C(idZ ⊗f) ∼= Z ⊗ C(f), and for every commutative diagram

X
f
//

��

Y

��

X ′
f ′
// Y ′

we get an induced map C(f) → C(f ′) making the obvious diagrams commute. Using
these facts, it is straightforward to formulate an alternative proof of Proposition 2.6 not
using the exactness condition of s-coherent modules.

Nevertheless, the way we have done it turns out to be useful in the proof of the more
general statement in §4.

Remark 2.10. Let us note that Corollary 2.8 is not true for arbitrary non-zero even-degree
elements ζ of the graded center. We will work out an example in the case p = 3 with
ζ-ord(k/ζ) = 0 in §6.
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3. The power operation

3 The power operation

In this section we define a power operation P1 on the Tate cohomology Ĥ∗(G). The
operation will serve as an obstruction for the ζ-order of k/ζ to be at least p − 1. At the
same time, it enables us to compute certain Massey products explicitly, and we will make
use of this fact later on in order to prove ζ-ord(k/ζ) = p − 2 for certain groups G and
certain classes ζ. Let us gather several interesting properties of P1 in one big theorem.

Theorem 3.1. There is a power operation P1 on Tate cohomology Ĥ∗(G) satisfying the
following properties:

(i) For every Tate cohomology class ζ ∈ Ĥn(G) (with n even if p is odd) the operation
P1(ζ) is a coset of ζp · Ĥ−(2p−3)(G) in Ĥpn−(2p−3)(G).

(ii) The operation is linear in the sense that P1(ζ +ϕ) ⊆ P1(ζ) +P1(ϕ) and P1(c · ζ) =
cp · P1(ζ) for all ζ, ϕ ∈ Ĥn(G) and c ∈ k.

(iii) If p = 2 then for every ordinary cohomology class ζ ∈ Hn(G) we have that the
Steenrod square Sqn−1(ζ) is an element of P1(ζ). If p is odd then for every ordinary
cohomology class ζ ∈ Hn(G) of even degree we get that βP

n
2
−1(ζ) ∈ P1(ζ).

(iv) The operation is natural with respect to injective group homomorphisms i : G ↪→ H:
for every ζ ∈ Ĥ∗(H) (of even degree if p is odd) we get i∗P1(ζ) ⊆ P1(i∗ζ).

(v) For any ζ, ϕ ∈ Ĥ∗(G) the Cartan formula P1(ζϕ) ⊆ P1(ζ)ϕp + ζpP1(ϕ) holds.

Example 3.2. Property (iii) says that our power operation extends the Steenrod operations
Sq1 and P1 that we have on ordinary cohomology to Tate cohomology, at the price of
getting a certain indeterminacy. Let us demonstrate the effect of the indeterminacy for
two examples of groups. Let p be an odd prime. We begin with G = Z/pZ, the cyclic group
of order p. The structure of Ĥ∗(G) is known (see [4], §XII.7) to be Ĥ∗(G) ∼= k[u, v±1]
where u is an exterior class of degree 1 and v is a Laurent polynomial class of degree 2.
For every non-zero ζ of even degree we get that ζp · Ĥ−(2p−3)(G) = Ĥpn−(2p−3)(G), the
indeterminacy is the whole cohomology group, so that P1 does not store any information
at all. As a second example let us study G = Z/pZ × Z/pZ. The structure of Ĥ∗(G) is
known and we will recall it in §3.6. In particular we have that ζϕ = 0 for all classes ζ, ϕ
whose degrees satisfy |ζ| < 0, |ϕ| < 0 or |ζ| < 0, |ζϕ| ≥ 0. This implies that P1(ζ) has zero
indeterminacy for all ζ (except in the case |ζ| = 0).

Example 3.3. Let us do an example of a non-commutative group which can be worked
out completely using Theorem 3.1 only. Let p = 2 and G = Q8, the quaternion group
with 8 elements. The Tate cohomology ring is known (see, e.g., [4], XII.11, and [1],
Lemma IV.2.10) to be

Ĥ∗(G) ∼= k[x, y, s±1]/(x2 + xy + y2, x3)

with degrees |x| = |y| = 1 and |s| = 4. In order to describe P1 we first have a look
at the indeterminacy. The vector space Ĥ−1(G) is generated by xy2s−1, and for every
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3. The power operation

homogeneous z ∈ Ĥ∗(G) we have xy2s−1z2 = 0 unless |z| is divisible by 4. Therefore,
P1(sn) = Ĥ8n−1(G) for all integers n, and in all other degrees P1 does not have any
indeterminacy. We know by part (iii) of the theorem that P1(x) = Sq1(x) = Sq0(x) = x
and P1(y) = y. The Cartan formula implies P1(x2) = 0, P1(y2) = 0, and P1(x2y) = 0,
and finally

P1(snx) = P1(sn)x2︸ ︷︷ ︸
0

+s2nP1(x) = s2nx,

P1(sny) = s2ny,

P1(snx2) = 0,

P1(sny2) = 0,

P1(snx2y) = 0.

The plan of this section is as follows. The first two subsections have a preparative
character. In the first one we introduce a new description of negative Ext-groups via
complexes of projectives, whereas in the second one we prove the existence of a cochain
map between certain cochain complexes. The definition of our power operation and proofs
of the most obvious properties are given in the third subsection. In §3.4 we prove the
Cartan formula, and in §3.5 we show that the new operation contains the first non-trivial
Steenrod operation in positive degrees. In the last two subsections we compute P1 in the
case of elementary abelian p-groups.

3.1 Negative Ext-groups

Let n > 0. It is well-known that ExtnkG(A,B) = HomkG(ΩnA,B) admits a description
via extensions of A by B. We will now give a similar description of Êxt−nkG(A,B) ∼=
HomkG(A,ΩnB). Let us define a category Kn(A,B), whose objects are all the chain
complexes

C : A −→ Pn −→ Pn−1 −→ . . . −→ P1 −→ B

with projective modules P1, P2, . . . , Pn, and a morphism of two such complexes is a com-
mutative diagram as follows:

C

��

A // Pn //

��

Pn−1
//

��

. . . // P1
//

��

B

C ′ A // P ′n
// P ′n−1

// . . . // P ′1
// B

For objects C and C ′, let us write C ≈ C ′ if there is a morphism C → C ′ in Kn(A,B).
Define the relation ∼ on Kn(A,B) to be the equivalence relation generated by ≈, and put
Kn(A,B) = Kn(A,B)/ ∼, the connected components of Kn(A,B). We will sometimes
write KkG

n (A,B) if we want to emphasize that we are working over the algebra kG.
Let us fix a projective resolution of B:

P : 0 −→ ΩnB
i−→ Pn −→ Pn−1 −→ . . . −→ P1 −→ B −→ 0 (3.4)

Theorem 3.5. The map Φ : HomkG(A,ΩnB)→ Kn(A,B) which associates to each map
f : A → ΩnB the complex A

i◦f−−→ Pn → Pn−1 → · · · → P1 → B induces a bijection
HomkG(A,ΩnB) 1:1←→ Kn(A,B).
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3.1 Negative Ext-groups

To prove this, we need the following lemma.

Lemma 3.6. Suppose we are given two finite chain complexes A = (0 → An+1 → · · · →
A0 → 0) and B = (0→ Bn+1 → · · · → B0 → 0), where Ai is projective for i = 1, 2, . . . , n,
and B is exact. Let f, g : A → B be chain maps satisfying f0 = g0 : A0 → B0. Then the
classes of fn+1 and gn+1 in HomkG(An+1, Bn+1) are the same.

Proof. This is a standard fact from homological algebra. We can assume that g = 0.
Then f0 = 0, hence dB f1 = 0. Since A1 is projective and B is exact, there exists some
h1 : A1 → B2 such that dB h1 = f1. Inductively, one can find hj : Aj → Bj+1 satisfying
dB hj + hj−1 dA = fj for all j = 2, 3, . . . , n. But then

dB hn dA = (fn − hn−1 dA) dA = fn dA = dB fn+1,

and since dB : Bn+1 → Bn is injective, we get hn dA = fn+1. Therefore, fn+1 factors
through a projective module (namely An).

Proof of Theorem 3.5: As a first step, we show that Φ induces a map HomkG(A,ΩnB)→
Kn(A,B). Suppose we are given f ′ ∈ HomkG(A,ΩnB) such that f ′ − f factors through
some projective module R:

f ′ − f : A
u // R

w // ΩnB

Then the complexes Φ(f) and Φ(f ′) differ in their first map only; let us denote these by
α, α′ : A→ Pn, respectively. From the commutative diagram

A
α // Pn // Pn−1

// Pn−2
// . . . // B

A
(α u )

// Pn ⊕R

(
id
0

)OO

(
d
0

)
//(

id
d◦w

)
��

Pn−1
// Pn−2

// . . . // B

A
α′ // Pn // Pn−1

// Pn−2
// . . . // B

we get that Φ(f) ∼ Φ(f ′). Therefore, we obtain a map HomkG(A,ΩnB) → Kn(A,B)
which we also denote by Φ.

To construct an inverse for Φ, start with some object C = (A→ Q∗ → B) ∈ Kn(A,B).
Since the Qi’s are projective and (3.4) is exact, we can lift the identity on B to a map of
chain complexes f : C → P :

A //

��

Qn //

��

Qn−1
//

��

. . . // Q1
//

��

B

ΩnB // Pn // Pn−1
// . . . // P1

// B

By Lemma 3.6, the stable class of the resulting map fn+1 : A → ΩnB is independent of
the choice of the lift; let us write Ψ(C) = fn+1 ∈ HomkG(A,B). Suppose we are given a

23



3. The power operation

morphism g : C ′ → C in Kn(A,B). Then f ◦ g is a lift of the identity on B to a map of
chain complexes C ′ → P . Since gn+1 = idA, we have Ψ(C ′) = (f ◦ g)n+1 = fn+1 = Ψ(C).
Therefore, we have constructed a map Ψ : Kn(A,B) → HomkG(A,ΩnB). The proofs of
Ψ ◦ Φ = id and Φ ◦Ψ = id are immediate.

Let us investigate the additive structure more closely.

Lemma 3.7. Suppose that A i−→ Pn → · · · → P1
f−→ B and A

j−→ Qn → · · · → Q1
g−→ B are

two complexes representing classes κ, λ ∈ Êxt−nkG(A,B), respectively. Then the complex

A

(
i
j

)
−−−→ Pn ⊕Qn → Pn−1 ⊕Qn−1 → · · · → P1 ⊕Q1

( f g )−−−→ B

represents the class κ+ λ.

Corollary 3.8. Suppose that A i−→ P∗
f−→ B and A i−→ P∗

g−→ B are complexes representing
classes κ, λ ∈ Êxt−nkG(A,B). Then A

i−→ P∗
f+g−−→ B is a complex representing κ+ λ.

We omit the straightforward proof of the lemma; the corollary is deduced by using the
commutative diagram

A
i // P∗

∆
��

f+g
// B

A

(
i
i

)
// P∗ ⊕ P∗

( f g )
// B

where ∆ is the diagonal map.

Proposition 3.9. Suppose we have a commutative diagram

A //

g

��

Pn //

��

. . . // P1
//

��

B

f

��

0 // D // En // . . . // E1
// C // 0

in mod-kG. Assume further that the Pi’s are projective, so that the upper row represents
some element α ∈ HomkG(A,ΩnB), and assume that the lower row is exact, therefore
representing some element β ∈ HomkG(ΩnC,D). Then the diagram

A
α //

g

��

ΩnB

Ωnf

��

D ΩnC
β
oo

commutes stably.
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3.1 Negative Ext-groups

Proof. Choose projective resolutions ΩnB → Q∗ → B and ΩnC → R∗ → C. By the usual
‘projective to acyclic’-argument, we get a diagram

A //

ᾱ
��

P∗ //

��

B

ΩnB //

Ωnf
��

Q∗ //

��

B
f
��

ΩnC //

β̄
��

R∗ //

��

C

D // E∗ // C

where ᾱ and β̄ are unstable representatives of α and β, respectively. The result follows
from Lemma 3.6.

Remark 3.10. Suppose we have an exact sequence A ↪→ Pn → · · · → P1 � B with
projective modules P1, . . . , Pn. Then we can view this as an extension representing some
stable isomorphism ΩnB → A; but we can also consider this as an element of Kn(A,B),
representing some stable isomorphism A → ΩnB; by the previous proposition, the two
maps are stable inverses of each other.

We have a composition product Kn(B,C) × Km(A,B) → Kn+m(A,C) similar to the
Yoneda splice: given E : A→ P∗ → B and E′ : B → Q∗ → C we define E′ ◦ E to be the
complex

E′ ◦ E : A // P∗ //

##GGG Q∗ // C.

B

;;vvv

This product is compatible with the equivalence relation ∼ and therefore induces a product

Kn(B,C)×Km(A,B)→ Kn+m(A,C).

Lemma 3.11. The composition products on K∗ and Êxt−∗kG coincide under the bijection
of Theorem 3.5.

Proof. Let us start with complexes A → P∗ → B and B → Q∗ → C representing stable
maps α : A → ΩmB and β : B → ΩnC, respectively. Choose projective resolutions
ΩnC → R∗ → C and Ωn+mC → T∗ → ΩnC. Then we can lift the identity map on C to
commutative diagrams as follows:

A //

γ̄

��

P∗ ////

��

B

β̄

��

B //

β̄

��

Q∗

��

// C

Ωn+mC // T∗ // ΩnC ΩnC // R∗ // C

Here, β̄ and γ̄ are unstable representatives of β and some γ. Note that the extension
Ωn+mC → T∗ → ΩnC represents the identity map id ∈ HomkG(ΩmΩnC,Ωn+mC). By
Proposition 3.9, the left diagram shows that γ = βα. After splicing the two diagrams the
result follows from Lemma 3.6.
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3. The power operation

There is also a way of composing an element x ∈ Êxt−nkG(A,B) given as a complex
A → P∗ → B with an element of y ∈ ÊxtmkG(B,C) (with m > 0) given as an extension
C ↪→M∗ � B:

Lemma 3.12. Suppose m < n. The identity map of B can be lifted to a diagram

A // Pn // . . . // Pm+1

��

// Pm //

��

. . . // P1
//

��

B

C //Mm
// . . . //M1

// B

and for any such lifting, the complex A // Pn // . . . // Pm+1
// C represents the com-

position y · x ∈ Êxtm−nkG (A,C).

Proof. Existence of the lifting is common homological algebra. For the second statement
choose a projective resolution Ωn−mC → R∗ → C; then we have the following commutative
diagram:

A //

γ̄

��

Pn //

��

. . . // Pm+1

##GGGGG
//

��

Pm //

��

. . . // P1
//

��

B

C

!!DDDDD

Ωn−mC // Rn−m // . . . // R1

;;wwwww
//Mm

// . . . //M1
// B

The complex in question represents the stable class of the map γ̄. The bottom row
represents y ∈ HomkG(ΩnB,Ωn−mC), the upper row represents x ∈ HomkG(A,ΩnB).
The result follows from Proposition 3.9.

Remark 3.13. We can also compose an element x ∈ Êxt0
kG(A,B) = HomkG(A,B) given

by an unstable map f : A → B with an element y ∈ Êxt−nkG(B,C) given by a com-
plex B

i−→ P∗
π−→ C; the composition y · x ∈ Êxt−nkG(A,C) is then given by the complex

A
i◦f−−→ P∗

π−→ C. Similarly, for any z ∈ Êxt0
kG(C,D) represented by some unstable map

g : C → D, the complex B
i−→ P∗

g◦π−−→ D represents the product z · y ∈ Êxt−nkG(B,D). In
fact, these statements are special cases of the following Proposition.

Proposition 3.14. Suppose that we have a commutative diagram

A //

f

��

Pn //

��

. . . // P1
//

��

B

g

��

A′ // Qn // . . . // Q1
// B′

with projective modules Pi, Qi for i = 1, 2, . . . , n. Then the rows represent maps x : A →
ΩnB and y : A′ → ΩnB′, respectively, and y ◦ f = Ωn(g) ◦ x in mod-kG.
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3.1 Negative Ext-groups

Proof. Choose a projective resolution ΩnB′ → R∗ → B′. By usual homological algebra,
we get a diagram

A //

f ′
��

P∗ //

��

B
g
��

A′ //

y
��

Q∗ //

��

B′

ΩnB′ // R∗ // B′

and then the result follows from Proposition 3.9.

Remark 3.15. There is a similar statement for extensions. Suppose that we have a diagram
as in Proposition 3.14, but this time with exact rows and the Pi’s and Qi’s are not
necessarily projective. Then the rows represent maps x : ΩnB → A and y : ΩnB′ → A′,
and f ◦ x = y ◦ Ωn(g) in mod-kG.

We end this part by mentioning that the bijection of Theorem 3.5 is natural with
respect to injective group homomorphisms. Suppose that H is another group and i :
H ↪→ G is an injective group homomorphism. Then the functor i∗ : mod-kG → mod-kH
is exact and maps projective kG-modules to projective kH-modules. This implies that
i∗(Ωn

GX) ∼= Ωn
H(i∗X) in mod-kH for every kG-module X. Also, we get induced maps

KkG
n (A,B) → KkH

n (i∗A, i∗B) and HomkG(A,ΩnB) → HomkH(i∗A,Ωn(i∗B)). Naturality
of the map Φ then shows the following lemma.

Lemma 3.16. The diagram

KkG
n (A,B) 1:1 //

��

HomkG(A,ΩnB)oo

��

KkH
n (i∗A, i∗B)

1:1
// HomkH(i∗A,Ωn(i∗B))oo

commutes.

Example 3.17. Suppose that p divides the order of the group G. Then it is known that
Ĥ−1(G) ∼= HomkG(k,Ωk) is isomorphic to k. Under the bijection of Theorem 3.5, a
canonical generator of that vector space is given by the complex

k

∑
g∈G g

// kG
ε // k

where ε is the augmentation of kG. The previous lemma shows that this complex is
invariant under every group automorphism of G.

Remark 3.18. The previous lemma generalizes to those morphisms C → C ′ of Hopf
algebras for which C ′ becomes a projective C-module. In the case when C = kH and
C ′ = kG are group algebras and the morphism comes from a morphism f : H → G of
groups, it is a nice exercise to show that kG is projective as a kH-module if and only if p
does not divide the order of the kernel of f .
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3. The power operation

3.2 A map of cochain complexes

Let X be any kG-module. Consider the complex

S : X⊗p
1−T−−−→ X⊗p

N−→ X⊗p
1−T−−−→ X⊗p

N−→ . . .
N−→ X⊗p

1−T−−−→ X⊗p (3.19)

consisting of 2p − 2 objects and 2p − 3 morphisms, which we refer to as the Steenrod
complex . On the other hand, we can splice the complexes (1.11) and (1.8) to obtain the
de Rham-Koszul complex

RK : X ⊗ Sp−1X . . . Λp−1X ⊗X Λp−1X ⊗X . . . X ⊗ Sp−1X

ΛpX

// // // // //

$$

::

also consisting of 2p − 2 objects and 2p − 3 morphisms. We consider both complexes S
and RK as cochain complexes.

Proposition 3.20. There is a natural map of cochain complexes β : S → RK such that

(i) the last map β2p−2 : X⊗p → X ⊗ Sp−1X is given by x1 ⊗ x2 ⊗ · · · ⊗ xp 7→ x1 ⊗
x2x3 · · ·xp, and

(ii) the first map β1 : X⊗p → X ⊗ Sp−1X is given by β1 = −β2p−2.

Proof. The statement is obvious for p = 2, so let us assume p ≥ 3 from now on. Because
of naturality, we can forget the G-module structures and consider this as a statement on
k-vector spaces X. Let us recall some standard notions. Suppose that X,Y are k-vector
spaces, and let H be a group acting on X from the right and on Y from the left. Then
we have the usual definitions

X ⊗H Y = X ⊗ Y/ 〈(x · h)⊗ y − x⊗ (h · y) | x ∈ X, y ∈ Y, h ∈ H〉k ,
X/H = X/ 〈x · h− x | x ∈ X,h ∈ H〉k ∼= X ⊗H k,

where k denotes the trivial H-module. Whenever X is a right H-module and H1 ⊂ H is
a subgroup, then X is a right H1-module and there is a natural map X/H1 → X/H. For
every vector space X, the symmetric group Σn acts on X⊗n from the right by permuting
the factors. The cyclic subgroup Cn = Z/nZ ⊂ Σn acts by cyclic permutation of the
factors, and we define the cyclic product to be the quotient Cn(X) = X⊗n/Cn. Then we
have a natural map Cn(X) = X⊗n/Cn → X⊗n/Σn = Sn(X).

All these notions generalize naturally to (co)chain complexes C, where one has to note
that the action of Σn on C⊗n involves signs depending on the degrees of the permuted
elements. For instance, if C = X[1] is the chain complex with X concentrated in degree 1,
then Sn(C) = (ΛnX)[n] (here we use that p is odd), and Cn(C) = (Cn(X))[n], so there
is also a natural map Cn(X)→ ΛnX.

We will use the following result of Swan. Let m be any integer, and define M to be the
cochain complex over k generated by two elements x, y of degrees m+1 and m, respectively,
subject to the condition ∂y = x. That is, M is isomorphic to · · · → 0→ k

id−→ k → 0→ . . . .
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3.2 A map of cochain complexes

Proposition 3.21 (Swan [27], Lemma 22.2 and Remark 22.1). Let X be the kCp-cochain
complex given by the sequence

0→ k
N−→ kCp

1−T−−−→ kCp
N−→ . . .

1−T−−−→ kCp
ε−→ k → 0,

where T is a generator of Cp and N = 1 + T + · · ·+ T p−1, and the k’s are in degrees mp
and mp + p. Then there is a Cp-equivariant homotopy equivalence ψ : X → M⊗p such
that ψmp+p(1) = x⊗p and ψmp(1) = c · y⊗p with the constant c = (−1)m·

p−1
2

(p−1
2

)
!.

It follows from the proposition’s proof that we can impose one of the following two
extra conditions on ψ: either ψmp+p−1(1) = y ⊗ x⊗(p−1) or ψmp+1(1) = c · x⊗ y⊗(p−1).

Now let X be any k-vector space. Since ψ : X →M⊗p is Cp-equivariant, we can form
the composite

X ⊗Cp X⊗p
ψ⊗Cp id
−−−−−→M⊗p ⊗Cp X⊗p →M⊗p ⊗Σp X

⊗p ∼= (M ⊗X)⊗p/Σp
∼= Sp(M ⊗X).

If we now put m = 0, then this composite yields a map of cochain complexes

CpX
N //

��

X⊗p
1−T

//

��

X⊗p
N //

��

. . . 1−T
// X⊗p //

��

CpX

��

ΛpX // Λp−1X ⊗X // Λp−2X ⊗ S2X // . . . // X ⊗ Sp−1X // SpX

(3.22)

where we can assume that X⊗p → X ⊗ Sp−1X is the map β2p−2. On the other hand we
can put m = 1 to get

CpX
N //

��

X⊗p
1−T

//

��

X⊗p
N //

��

. . . 1−T
// X⊗p //

��

CpX

��

SpX // X ⊗ Sp−1X // Λ2X ⊗ Sp−2X // . . . // Λp−1X ⊗X // ΛpX

(3.23)

with the map X⊗p → X ⊗ Sp−1X being equal to β1. By splicing the two complexes
(3.22) and (3.23) after multiplying with suitable non-zero constants we obtain a proof of
Proposition 3.20.

Remark 3.24. To determine the constant c in Proposition 3.21 it seems to be necessary to
write down a suitable cochain map ψ explicitly. This is not done in Swan [27], and we will
also not do it here. In an earlier proof of Proposition 3.20, the author of this thesis con-
structed the cochain map β explicitly, thereby showing that the multiplicative constants
are indeed as given. However, the proof is rather lengthy and not very enlightening, which
is why we omit it here. For the main results of this thesis it is actually enough to know
that β1 is a non-zero multiple of β2p−2, which follows from Swan’s proof. Then, certain
diagrams will only commute up to non-zero scalars, but this is enough for our purposes.

29



3. The power operation

3.3 Definitions and basic properties

Now we give the definition of the power operation we are interested in. Let n be an integer.
We assume that n is even if p is odd. Let [ζ] ∈ Ĥn(G) be a Tate cohomology class; as a
first step, we will define a subset Di([ζ]) of Ĥpn−i(G) for all positive integers i = 1, 2, . . .

To do so, choose an unstable map ζ : Ωnk → k representing the class [ζ], and consider
all commutative diagrams of the form

(Ωnk)⊗p // P1

��

// P2

��

// . . . // Pi

��

// k

(Ωnk)⊗p
1−T
// (Ωnk)⊗p

N
// (Ωnk)⊗p

1−T
// . . .

(∗)
// (Ωnk)⊗p

ζ⊗p
// k

(3.25)

in which the upper row is a complex with projective modules Pj . It therefore defines an
element of Êxt−ikG

(
(Ωnk)⊗p, k

) ∼= Ĥpn−i(G). The set of all elements obtained this way is
denoted by Di(ζ). Note that the map (∗) in the diagram is either N or 1− T , depending
on the parity of i.

Lemma 3.26. The set Di(ζ) defined above does not depend on the chosen representative
ζ for the cohomology class [ζ]. We can therefore write Di([ζ]) = Di(ζ).

Proof. If we assume that Ωnk arises from a minimal resolution · · · → Pn → . . . , then we
know that PHomkG(Ωnk, k) = 0. To see this, note that every morphism Ωnk → k which
factors through a projective module also factors as Ωnk ↪→ Pn−1 → k. Since we have
chosen a minimal resolution, the differential of the complex HomkG(P∗, k) vanishes and
therefore the composition Pn → Pn−1 → k is zero. From the surjectivity of Pn → Ωnk we
then get that our original map must be zero. Therefore, PHomkG(Ωnk, k) = 0 and there
is no ambiguity in choosing ζ.

Now suppose we have another version of Ωnk and call it Ω̃nk, and let ζ̃ : Ω̃nk → k be
a map representing the same cohomology class as ζ. Then we have that Ω̃nk ∼= Ωnk ⊕ R
for some projective module R. We have retraction maps Ωnk

ι−→ Ω̃nk
r−→ Ωnk and we know

that ζ̃ι = ζ. We want to show that the sets Di(ζ) and Di(ζ̃) agree under the isomorphisms

Êxt−ikG((Ωnk)⊗p, k)
(r⊗p)∗

// Êxt−ikG((Ω̃nk)⊗p, k)
(ι⊗p)∗
oo .

Let us suppress these isomorphisms from the notation and simply prove Di(ζ̃) = Di(ζ).
Note that (Ω̃nk)⊗p ∼= (Ωnk)⊗p ⊕ S for some projective module S, and under this

isomorphism, the map T decomposes as the direct sum of the map T on (Ωnk)⊗p and
some map on S. This implies that there is an isomorphism of complexes

(Ω̃nk)⊗p //

��

(Ω̃nk)⊗p //

��

. . . // (Ω̃nk)⊗p
ζ̃⊗p

//

��

k

(Ωnk)⊗p ⊕ S // (Ωnk)⊗p ⊕ S // . . . // (Ωnk)⊗p ⊕ S
(ζ⊗p,α)

// k
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3.3 Definitions and basic properties

where the lower row (without the last map) is a direct sum of two complexes.
Now suppose we have a diagram

(Ω̃nk)⊗p
d0 //

��

P1
d1 //

(f1,g1)
��

. . .
di−1

// Pi
di //

(fi,gi)
��

k

(Ωnk)⊗p ⊕ S // (Ωnk)⊗p ⊕ S // . . . // (Ωnk)⊗p ⊕ S // k

defining some element in Di(ζ̃). Then we obtain a diagram

(Ωnk)⊗p
d0◦ι⊗p //

��

P1
d1 //

f1
��

. . .
di−1

// Pi
di−αgi //

fi
��

k

(Ωnk)⊗p // (Ωnk)⊗p // . . . // (Ωnk)⊗p
ζ
// k

defining some element in Di(ζ). By Corollary 3.8 the difference of that element and the
element we started with is the cohomology class represented by the upper row of the
diagram

(Ωnk)⊗p //

0
��

P1
//

g1
��

. . . // Pi
αgi //

gi
��

k

S // S // . . . // S α
// k

and since the left-most vertical map is zero, we get that this difference vanishes by Pro-
position 3.14.

Conversely, let us start with some diagram

(Ωnk)⊗p // P1
//

f1
��

. . . // Pi
g
//

fi
��

k

(Ωnk)⊗p // (Ωnk)⊗p // . . . // (Ωnk)⊗p
ζ
// k

defining some element of Di(ζ); then we obtain a diagram

(Ω̃nk)⊗p ∼= (Ωnk)⊗p ⊕ S // P1 ⊕ S //

f1⊕id
��

. . . // Pi ⊕ S
(g,α)
//

fi⊕id
��

k

(Ω̃nk)⊗p ∼= (Ωnk)⊗p ⊕ S // (Ωnk)⊗p ⊕ S // . . . // (Ωnk)⊗p ⊕ S // k

defining an element in Di(ζ̃) which is the same as we started with because of the following
commutative diagram:

(Ωnk)⊗p

ι⊗p
��

// P1
//

��

. . . // Pi
g
//

��

k

(Ω̃nk)⊗p ∼= (Ωnk)⊗p ⊕ S // P1 ⊕ S // . . . // Pi ⊕ S
(g,α)

// k
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3. The power operation

We could have equally well started with a slightly modified definition:

Lemma 3.27. Every class in Di(ζ) comes from a diagram of the form (3.25) in which
the sequence 0→ (Ωnk)⊗p → P1 → · · · → Pi is exact.

Proof. Choose an injective resolution (Ωnk)⊗p ↪→ Q1 → · · · → Qi. Given any diagram of
the form (3.25), we can lift the identity map on (Ωnk)⊗p to a map of complexes Q∗ → P∗
(because the Pj ’s are injective modules and the resolution is an exact sequence). Finally
define Qi → k to be the composite Qi → Pi → k.

An immediate consequence is the following lower bound on the indeterminacy of Di(ζ).

Corollary 3.28. If a ∈ Di(ζ), then a+ ζp · Ĥ−i(G) ⊆ Di(ζ).

Proof. We assume that a is given by a diagram

(Ωnk)⊗p // P1
//

��

. . .
di−1

// Pi
fi
��

g
// k

(Ωnk)⊗p // (Ωnk)⊗p // . . . // (Ωnk)⊗p
ζ⊗p
// k

in which the upper row is as in Lemma 3.27. Then the cokernel of di−1 is a choice of
Σi(Ωnk)⊗p. If we are given some class b ∈ Ĥ−i(G) represented by some unstable map
h : coker di−1 → (Ωnk)⊗p we can form the composition w : Pi → coker di−1

h−→ (Ωnk)⊗p.
Replace fi by fi + w and g by g + ζ⊗p ◦ w, then we obtain a new diagram showing that
a+ ζpb ∈ Di(ζ).

Let us fix some non-zero map ζ : Ωnk → k. Let A1 → A2 → · · · → A2p−2 be
the de Rham-Koszul complex introduced in §3.2, so that Aj = A2p−1−j = Λj(Ωnk) ⊗
Sp−j(Ωnk) for all j = 1, 2, . . . , p − 1. Furthermore, let K be the kernel of the surjective
map ζ⊗p : (Ωnk)⊗p → k. Then we get an exact triangle

Ωk → K → (Ωnk)⊗p → k.

Let us denote the stable map Ωk → K by υ. We also get a map λ : A2p−3 → K from the
commutative diagram in mod-kG

A2p−3 //

λ
��
�
�

A2p−2 = Ωnk ⊗ Sp−1(Ωnk) //

��

Sp(Ωnk)
Spζ
��

K // (Ωnk)⊗p
ζ⊗p

// k

in which the middle vertical map is the tensor product of the identity with the canoncial
inclusion (1.18).

Lemma 3.29. If i < 2p− 3 then the composition (Ωnk)⊗p a−→ Ωik
Ωi−1υ−−−−→ Ωi−1K vanishes

for every a ∈ Di(ζ). For i = 2p − 3, the composition equals the composition of the
canonical map (Ωnk)⊗p → Ωnk ⊗ Sp−1(Ωnk) = A1, multiplied by a minus sign, with the
class represented by the complex A1 → A2 → · · · → A2p−3

λ−→ K.
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3.3 Definitions and basic properties

Corollary 3.30. Suppose that i ≤ 2p− 3, and let us assume that Di(ζ) 6= ∅. Then Di(ζ)
is a coset of ζp · Ĥ−i(G) in Ĥpn−i(G), and 0 ∈ Di(ζ) unless i = 2p− 3.

Proof of the Corollary. From the lemma we know that the composition

(Ωnk)⊗p a−→ Ωik
Ωi−1υ−−−−→ ΩiK

does not depend on the choice of a ∈ Di(ζ). Therefore, if we are given a, a′ ∈ Di(ζ),
then a− a′ vanishes when postcomposed with Ωi−1υ. Thus, a− a′ factors as (Ωnk)⊗p →
Ωi(Ωnk)⊗p

ζ⊗p−−→ Ωik, which proves a− a′ ∈ ζp · Ĥ−i(G). Together with Corollary 3.28 we

get the first part. If i < 2p − 3 then the composite (Ωnk)⊗p a−→ Ωik
Ωi−1υ−−−−→ ΩiK vanishes

for a ∈ Di(ζ); thus a is divisible by ζp which implies 0 ∈ Di(ζ).

We will show in Proposition 3.47 that Di(ζ) is non-empty for all positive integers i.

Proof of Lemma 3.29. Let a ∈ Di(ζ) be defined by the first two rows of the following
diagram:

(Ωnk)⊗p // P1
//

��

. . . // Pi−1
//

��

Pi //

��

k

(Ωnk)⊗p //

γ
��

(Ωnk)⊗p //

��

. . . // (Ωnk)⊗p //

��

(Ωnk)⊗p //

β
��

k

A2p−2−i // A2p−1−i // . . . // A2p−3 //

λ
��

A2p−2

��

(∗)

K // (Ωnk)⊗p // k

(3.31)

The connection between the second and the third row is given by the cochain map con-
structed in Proposition 3.20. In particular, β is the canonical map, and if i = 2p− 3 then
also −γ is the canonical map. The diagram (∗) commutes due to the computation

u⊗ u1 ⊗ · · · ⊗ up−1 7→ u⊗ u1u2 . . . up−1 7→
1

(p− 1)!

∑
σ∈Σp−1

u⊗ uσ1 ⊗ · · · ⊗ uσp−1

7→ ζ(u)ζ(u1) . . . ζ(up−1).

Therefore, the diagram (3.31) commutes. Since the bottom row represents υ, Lemma 3.12

says that the composition (Ωnk)⊗p a−→ Ωik
Ωi−1υ−−−−→ Ωi−1K is represented by the complex

(Ωnk)⊗p → P1 → · · · → Pi−1 → K,

which in turn by Proposition 3.14 is the same as the composition of γ with the class in
Êxt−i+1

kG (A2p−2−i,K) represented by the complex

A2p−2−i → A2p−1−i → · · · → A2p−3 → K.

If i < 2p− 3 the latter class vanishes because A2p−2−i is projective.
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3. The power operation

We conclude this section with the proof of two nice properties of the Di’s.

Lemma 3.32. For all ζ and all c ∈ k we have that Di(c · ζ) = cp · Di(ζ). Let us
assume that Di+1(ξ) 6= ∅ for some ξ. Then the operation Di is additive in the sense that
Di(ζ + ϕ) ⊆ Di(ζ) +Di(ϕ) for all ζ, ϕ of the same degree.

Proof. Note that the statements given fit with the indeterminacy of the Dj ’s. The first
statement is an immediate consequence of the definition. We will prove the second state-
ment for odd numbers i only; the proof for even numbers i is similar. Take any diagram
of the form

(Ωnk)⊗p // P1
//

��

. . . // Pi //

��

Pi+1

��

(Ωnk)⊗p // (Ωnk)⊗p // . . . // (Ωnk)⊗p // (Ωnk)⊗p

which exists due to our assumption. It is enough to show that the upper row of the
diagram

(Ωnk)⊗p // P1
//

��

. . . // Pi //

��

k

(Ωnk)⊗p // (Ωnk)⊗p // . . .
1−T
// (Ωnk)⊗p

λ
// k

represents the zero map, where λ = (ζ + ϕ)⊗p − ζ⊗p − ϕ⊗p. We claim that λ factors
as (Ωnk)⊗p N−→ (Ωnk)⊗p → k. To see this, note that λ is the sum over all p-fold tensor
products of ζ’s and ϕ’s except ζ⊗p and ϕ⊗p, and the Z/pZ-action (by cyclic permutation)
on these tensor products is free. Therefore, we get a diagram as follows:

(Ωnk)⊗p // P1
//

��

. . . // Pi //

��

''NNNNNNNNN k

Pi+1

;;vvvvvvv

��

(Ωnk)⊗p // (Ωnk)⊗p // . . .
1−T
// (Ωnk)⊗p

λ
//

N ''NNNNNN k

(Ωnk)⊗p

;;wwwwwww

But now the upper row represents the composition of a map Σi(Ωnk)⊗p → Pi+1 with a
map Pi+1 → k, which is stably trivial since Pi+1 is projective.

Lemma 3.33. Suppose that i ≤ 2p − 3. The Di’s are natural in the following sense:
whenever we are given an injective group homomorphism f : H → G and a cohomology
class [ζ] ∈ Ĥn(G), we have f∗Di([ζ]) ⊆ Di(f∗[ζ]) as subsets of Ĥpn−i(H).

Proof. The functor f∗ : mod-kG → mod-kH is exact and maps projective modules to
projective modules (here we use the injectivity of f). Also, it maps the trivial G-module
k to the trivial H-module k. This implies that f∗(Ωn

Gk) ∼= Ωn
Hk in mod-kH. Now we start

with a diagram of the form (3.25) defining some element a in Di(ζ) and apply the functor
f∗. Then we obtain a diagram showing that f∗a ∈ Di(f∗ζ).
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3.4 The Cartan formula

Remark 3.34. For the general case of a Hopf algebra, see Remark 3.18 which applies
verbatim to the previous lemma.

Let us finally define our power operation.

Definition 3.35. For all Tate cohomology classes ζ (of even degree if p is odd) we put
P1(ζ) = −D2p−3(ζ).

For us the minus sign occurring in the definition is mainly motivated by the minus sign
in the statement of Lemma 3.29. It is the same sign that shows up in any construction of
the Steenrod operations, compare with (5.2) in [21].

3.4 The Cartan formula

Put D0(ζ) = ζp (as a set with exactly one element). We are now going to prove the Cartan
formula in the following form.

Proposition 3.36. Let s be a positive integer with s ≤ 2p− 3, and let ζ, ϕ be cohomology
classes (of even degree if p is odd). Then

Ds(ζ · ϕ) ⊆
∑
i+j=s
i,j≥0

Di(ζ) · Dj(ϕ).

We start with some auxiliary constructions and lemmas. As before let Cp be the cyclic
group of order p, and let A be the algebra k(Cp × Cp) with augmentation ε : A → k and
augmentation ideal I = ker ε.

Let g be a generator of Cp, then we have a well-known exact sequence of free kCp-
modules

kCp
1−g−−→ kCp

(1−g)p−1

−−−−−−→ kCp
1−g−−→ kCp

(1−g)p−1

−−−−−−→ . . .

which we consider as a cochain complex with the first kCp sitting in degree 0. When we
tensor two such complexes we obtain an exact sequence A of free kCp⊗kCp = A-modules

A : A→ A⊕2 → A⊕3 → A⊕4 → . . .

where the i-th summand of A⊕s comes from the tensor product of the two kCp’s sitting
in degree s− i and i− 1, respectively. Let us denote the generators of the two factors of
Cp × Cp by g and h; then we also have a cochain complex

B : A
1−g⊗h−−−−→ A

(1−g⊗h)p−1

−−−−−−−−→ A
1−g⊗h−−−−→ A

(1−g⊗h)p−1

−−−−−−−−→ . . . ,

which is actually exact, but we do not need this.

Lemma 3.37. There is a map of cochain complexes of A-modules γ : A → B lifting the
identity of A in degree 0 with the following property: when considered as a matrix, in
degree s the map γs : A⊕(s+1) → A is of the form

•
(
1 1 + I 1 . . . 1 1 + I

)
if s is odd,
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3. The power operation

•
(
1 1 + I 1 . . . 1 + I 1

)
if s is even and p = 2,

•
(
1 I 1 . . . I 1

)
if s is even and p is odd.

Proof. We use the identification A = k(Cp × Cp) = k[x, y]/(xp, yp) given by x = 1 − g
and y = 1 − h. The augmentation ideal I is the ideal generated by x and y, and 1 − gh
corresponds to w = x + y − xy. Let us define z = (1 − x)y; then w = x + z. The upper
row in the diagram

A

(
x
y

)
// A2

(
xp−1

−y x
yp−1

)
//

(
1

1−x
)

��

A3

x
y xp−1

−yp−1 x
y


//

(
1

1−x
1

)
��

A4 1
1−x

1
1−x


��

// . . .

A (
x
z

) // A2 (
xp−1

−z x
zp−1

) // A3 (x
z xp−1

−zp−1 x
z

) // A4 // . . .

equals A, and the diagram commutes because of the identities xp−1(1 − x) = xp−1 and
(1 − x)zp−1 = (1 − x)pyp−1 = yp−1. Let us put u = xp−2 − xp−3z + − · · · − zp−2 ∈ I for
p ≥ 3 and u = 1 if p = 2. Then the diagram

A

(
x
z

)
// A2

(
xp−1

−z x
zp−1

)
//

( 1 1 )

��

A3

(x
z xp−1

−zp−1 x
z

)
//

( 1 u 1 )

��

A4 //

( 1 1 1 1 )

��

. . .

A w
// A

wp−1
// A w

// A // . . .

commutes because of the equalities

wp−1 = xp−1 − zu = xu+ zp−1,

uw = xp−1 − zp−1.

If we put the two diagrams together we get the desired cochain map, which in degree s is
given by the matrix ( 1 1−x ... 1 1−x ) if s is odd and by the matrix ( 1 (1−x)u 1 ... (1−x)u 1 ) if
s is even.

Suppose we are given cochain complexes X → P1 → P2 → · · · → Pi+j and Y → Q1 →
Q2 → · · · → Qi+j with projective modules Ps and Qs, and X and Y are sitting in degree 0.
The tensor product of these two complexes is a complex X ⊗ Y → R1 → R2 → . . . with
projective modules Rs. Let α : Pi → X ′ and β : Qj → Y ′ be maps such that the
sequences X → P1 → · · · → Pi → X ′ and Y → Q1 → · · · → Qj → Y ′ are complexes, thus
representing some classes a ∈ Êxt−ikG(X,X ′) and b ∈ Êxt−jkG(Y, Y ′), respectively.
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3.4 The Cartan formula

Lemma 3.38. In the situation above, the sequence X⊗Y → R1 → · · · → Ri+j → X ′⊗Y ′,
in which the last map is the composite Ri+j � Pi ⊗ Qj

α⊗β−−−→ X ′ ⊗ Y ′, is a complex and
represents a⊗ b ∈ Êxt−(i+j)

kG (X ⊗ Y,X ′ ⊗ Y ′).

Proof. We know that a⊗ b = (a⊗ idY ′)(idX ⊗b) is represented by the complex

X ⊗ Y // X ⊗Q1
// . . . // X ⊗Qj //

$$IIII P1 ⊗ Y ′ // . . . // Pi ⊗ Y ′ // X ′ ⊗ Y ′.

X ⊗ Y ′
::uuuu

On the other hand we have a commutative diagram

X ⊗ Y // R1
//

��

. . . // Rj

��

// Rj+1 //

��

. . . // Ri+j //

��

X ′ ⊗ Y ′

X ⊗ Y // X ⊗Q1
// . . . // X ⊗Qj // P1 ⊗ Y ′ // . . . // Pi ⊗ Y ′ // X ′ ⊗ Y ′

given by the projection maps Rs → X ⊗Qs for all s = 1, 2, . . . , j and by the compositions
Rs+j → Ps⊗Qj → Ps⊗ Y ′ for s = 1, 2, . . . , i. The diagram also shows that its upper row
is indeed a complex.

Proof of Proposition 3.36. The statement is trivial unless s = 2p− 3, so we restrict atten-
tion to that case. Let ζ : Ωnk → k and ϕ : Ωmk → k be given; then we will be interested
in the complex

(Ωnk ⊗ Ωmk)⊗p 1−T−−−→ (Ωnk ⊗ Ωmk)⊗p
(1−T )p−1

−−−−−−→ (Ωnk ⊗ Ωmk)⊗p 1−T−−−→ . . . ,

which is isomorphic to the complex

(Ωnk)⊗p ⊗ (Ωmk)⊗p 1−T⊗T−−−−−→ (Ωnk)⊗p ⊗ (Ωmk)⊗p
(1−T⊗T )p−1

−−−−−−−−→ . . .

via the obvious permutation maps. Let us put X = (Ωnk)⊗p and Y = (Ωmk)⊗p. Then Cp
acts on X and Y via the endomorphism T given by cyclic permutation. Let commutative
diagrams

X // P1
//

f1
��

. . . // Ps
fs
��

Y // Q1
//

g1
��

. . . // Qs
gs
��

X
1−T
// X

N
// . . .

1−T
// X Y

1−T
// Y

N
// . . .

1−T
// Y

be given. Let us denote the cochain complexes in the bottom row by X and Y, respectively.
We write X ⊗ Y → R1 → · · · → Rs → . . . for the tensor product (X → P∗)⊗ (Y → Q∗).

Then we obtain a cochain map (X ⊗ Y → R∗)
f⊗g−−→ X ⊗ Y. Furthermore we have that

X ⊗ Y ∼= X ⊗Cp A⊗Cp Y. (3.39)

This is easy to see, but the right hand side needs some explanation. The objects of A
are free k(Cp × Cp)-modules. On these we have a left Cp action given by the inclusion
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3. The power operation

Cp → Cp ×Cp of the first factor, and we have a right action given by the inclusion of the
second factor, and the actions commute. On X and Y we have the Cp-actions given by
the endomorphism T . When we endow the modules of A with the trivial G-action, (3.39)
is an isomorphism of cochain complexes of kG-modules. Now Lemma 3.37 tells us that
there is a certain map of cochain complexes

X ⊗Cp γ ⊗Cp Y : X ⊗Cp A⊗Cp Y → X ⊗Cp B ⊗Cp Y,

where the latter complex is isomorphic to

X ⊗ Y 1−T⊗T−−−−−→ X ⊗ Y (1−T⊗T )p−1

−−−−−−−−→ X ⊗ Y 1−T⊗T−−−−−→ . . .

Putting things together we get the following diagram:

X ⊗ Y // R1
//

��

. . . // Rs

��

// k

X ⊗ Y // X ⊗ Y // . . . // X ⊗ Y
ζ⊗p⊗ϕ⊗p

// k

In order to say which map is represented by the complex in the upper row, we need to
investigate the map Rs → k. Take a direct summand Pi ⊗Qj of Rs (with i+ j = s) and
consider the composite Pi⊗Qj ↪→ Rs → X⊗Y . The description of γ in Lemma 3.37 says
that this map is given as a composite

Pi ⊗Qj
fi⊗gj−−−→ X ⊗ Y

id +X⊗Cpθ⊗CpY−−−−−−−−−−−→ X ⊗ Y

where θ : A → A is some map having its image in the augmentation ideal I of A. In
particular, the composition

X ⊗ Y
X⊗Cpθ⊗CpY−−−−−−−−→ X ⊗ Y ζ⊗p⊗ϕ⊗p−−−−−−→ k

vanishes and the map Pi ⊗Qj → k equals (ζ⊗p ◦ fi)⊗ (ϕ⊗p ◦ gj). Therefore, if we replace
the last map of

X ⊗ Y → R1 → · · · → Rs → k

by its restriction to the direct summand Pi ⊗ Qj , Lemma 3.38 tells us that we obtain
a complex representing some element of Di(ζ) ⊗ Dj(ϕ). Furthermore, if we replace the
last map Rs → k by its restriction to the direct summand X ⊗Qs, the resulting complex
represents some element of ζ⊗p⊗Ds(ϕ), and similarly for Ps⊗Y . Now the Cartan formula
follows from Corollary 3.8.

3.5 Comparison with Steenrod operations

We are now going to show that our power operation extends certain Steenrod operations in
the following sense: for every ζ ∈ Hn(G) of positive degree n we have that Sqn−1 ζ ∈ P1(ζ)
if p = 2 and βP

n
2
−1ζ ∈ P1(ζ) if p is odd and n is even. To do so, let us recall the definition
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of Steenrod operations on H∗(G). There are several ways of constructing these operations
which lead to the same result. One can use the isomorphism H∗(G) ∼= H∗(BG; k) where
BG denotes the classifying space of G, and then work in the topological setting where we
have Steenrod operations on the cohomology of a space. On the other hand, we can use
the fact that kG is a cocommutative Hopf algebra, and there is a general construction of
Steenrod operations on the cohomology of cocommutative Hopf algebras (see [21], §11).
In either case, one usually constructs operations Di : Hn(G) → Hpn−i(G) for all non-
negative integers i, then proves that some of these operations vanish, and finally defines
the Steenrod operations P∗ and βP∗ to be the non-vanishing ones. Let us go through this
process more precisely; we will take the topological path, even though in the case of a
cocommutative Hopf algebra the purely algebraic way is more appropriate.

Consider the simplicial set EG which can be obtained by forming the nerve of the
category whose objects are the elements of G, and there is exactly one morphism for every
ordered pair of objects. Then EG is a contractible simplicial set with a free G-action.
We denote by P∗ the corresponding chain complex over k, i.e., Pn is the k-vector space
over the set (EG)n of n-simplices, and we have the differential ∂ =

∑
i ∂i : Pn → Pn−1.

The right G-action on EG gives a right G-action on Pn turning this into a kG-module.
Naturality of the construction shows that ∂ is a kG-module map. The Pn’s are in fact
free kG-modules, and k ←− P∗ is a projective resolution of the trivial kG-module k. In
what follows, we choose Ωnk to be the cokernel of the map ∂ : Pn+1 → Pn, and write
pn : Pn → Ωnk for the obvious map. Then pn extends to a map π : P∗ → (Ωnk)[n] of
chain complexes.

We also have a complex Q∗ of kG-modules defined by Qn = P⊗pn , the differential given
by
∑

i(∂i)
⊗p. The diagonal of EG induces a map D : Pn → Qn of kG-chain complexes.

Furthermore, we have the Alexander-Whitney map ξ : Q∗ → (P⊗p)∗. Putting things
together, we get a composition like this:

P∗
D // (P∗)⊗p

ξ
// (P⊗p)∗

π⊗p // (Ωnk)[n]⊗p = (Ωnk)⊗p[pn]

Restricting these chain maps to degree pn, we obtain the following diagram:

Ppn
π⊗p ξ D

$$JJJJJJJJJ

ppn

��

Ωpnk // (Ωnk)⊗p
(3.40)

The lower row is a stable isomorphism; in what follows, we will always mean this map
whenever we write Ωpnk ∼= (Ωnk)⊗p.

Recall that T : (P⊗p)∗ → (P⊗p)∗ is the chain map given by

T (a1 ⊗ a2 ⊗ · · · ⊗ ap) = ± ap ⊗ a1 ⊗ · · · ⊗ ap−1, (3.41)

with the usual sign convention; in particular, the sign is + if the degrees of all the ai’s
are the same. Let us write ∆0 = ξ D. From the general theory we know that (1 − T )∆0

is null-homotopic (in fact, naturally) via some homotopy ∆1, i.e.,

(1− T )∆0 = ∆1∂ + ∂∆1.
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3. The power operation

Proceeding inductively, we find (natural) maps ∆i of degree i satisfying

(1− T )∆i = ∆i+1∂ + ∂∆i+1 if i is even, (3.42)

(1 + T + · · ·+ T p−1)∆i = ∆i+1∂ − ∂∆i+1 if i is odd. (3.43)

Naturality of the ∆i’s implies that they are kG-linear. We assume that these ∆i are
chosen as in the construction of Steenrod operations in [21], §7 (or, for the case of a
general cocommutative Hopf algebra, §11 in the same paper). From now on, we assume
that p · n is even.

Lemma 3.44. Define αi = π⊗p∆i : Ppn−i → (Ωnk)⊗p. Then α is a cochain map:

Ppn //

α0

��

Ppn−1 //

α1

��

Ppn−2 //

α2

��

Ppn−3 //

α3

��

. . .

(Ωnk)⊗p
1−T
// (Ωnk)⊗p N // (Ωnk)⊗p

1−T
// (Ωnk)⊗p N // . . .

Proof. Note that the following diagram commutes:

(P⊗p)pn
T //

π⊗p

��

(P⊗p)pn

π⊗p

��

(Ωnk)⊗p T // (Ωnk)⊗p

To see this, start with some element a = a1⊗ · · · ⊗ ap in (P⊗p)pn. If it does not belong to
(Pn)⊗p ⊂ (P⊗p)pn, both a and Ta will be mapped to zero under π⊗p. If a lies in (Pn)⊗p,
the sign occurring in (3.41) is +, because the degrees of all the aj ’s are equal.

Using (3.42), we obtain

(1− T )αi = (1− T )π⊗p∆i = π⊗p(1− T )∆i

= π⊗p∆i+1∂ + π⊗p∂︸ ︷︷ ︸
0

∆i+1 = αi+1∂

for i even. A similar argument using (3.43) for odd i completes the proof of the lemma.

Let [ζ] ∈ Hn(G) be given by a map ζ : Ωnk → k, and let i be any positive integer.
Define λ to be the composition Ppn−i

αi−→ (Ωnk)⊗p
ζ⊗p−−→ k. Then

λ∂ = ζ⊗p αi∂ =


ζ⊗p (1− T )︸ ︷︷ ︸

0

αi−1 = 0 if i is odd,

ζ⊗pN︸ ︷︷ ︸
0

αi−1 = 0 if i is even.

Therefore, λ induces a map Ωpn−ik → k which represents Di([ζ]), where Di is defined as
in [21] (proof of Theorem 11.8, together with Definitions 2.2).
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Lemma 3.45. Viewed as an element in HomkG(Ωpnk,Ωik), the upper row of the commu-
tative diagram

(Ωnk)⊗p Ωpnk
� � //

∼=stoo Ppn−1 //

��

Ppn−2 //

��

. . . // Ppn−i
λ //

��

k

(Ωnk)⊗p // (Ωnk)⊗p // (Ωnk)⊗p // . . . // (Ωnk)⊗p
ζ⊗p
// k

represents ΩiDi([ζ]). In particular, Di([ζ]) ∈ Di(ζ).

Proof. Commutativity of the diagram follows from the diagram (3.40), Lemma 3.44, and
the definition of λ. The upper row is the composition of the complex

Ωpnk
� � // Ppn−1 // Ppn−2 // . . . // Ppn−i // // Ωpn−ik

representing the identity in HomkG(Ωpnk,ΩiΩpn−ik) with Di([ζ]) : Ωpn−ik → k. The
result follows from Remark 3.13.

Corollary 3.46. We have that P1(ζ) ∈ P1(ζ).

Proof. Checking the signs in the formulas (1) and (2) of §5 in [21], we get that indeed
P1(ζ) = −D2p−3(ζ).

Proposition 3.47. For all non-negative integers i and all Tate cohomology classes ζ (of
even degree if p is odd) the set Di(ζ) is non-empty.

Proof. We have already done this for ordinary cohomology classes ζ, and now we need
to extend this result to negative degrees. To do so, we have to extend our projective
resolution P∗ and the maps ∆i to the negative range. Recall that ∆i was defined as a
map (not a chain map in general) P∗ → (P⊗p)[−i]∗.

The first step is easy: we simply extend P∗ to a complete projective resolution of
k. To define ∆i, it turns out that we need to modify the notion of tensor product for
our purposes. The usual tensor product of two chain complexes X∗ and Y∗ is defined by
(X ⊗Y )n =

⊕
i+j=nXi⊗Yj with a certain differential, but this is not what we want. For

every complex X, let us write X+ and X− for the truncated complexes

X+
n =

{
Xn if n ≥ 0,
0 otherwise,

X−n =

{
Xn if n < 0,
0 otherwise,

with the obvious differentials. Now we introduce a new product � for two given chain
complexes X and X ′ as follows. Define K to be the kernel of the differential X−1 → X−2;
then we obtain a complex X− ← K with K sitting in degree 0, and we also get an
augmented complex K ← X+. Similarly, we get the complexes X ′− ← K ′ and K ′ ← X ′+.
We can now form the tensor product of complexes (X− ← K) ⊗ (X ′− ← K ′) and the
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3. The power operation

tensor product of augmented complexes K ⊗K ′ ← X+ ⊗X ′+. Connecting these two at
their common object K ⊗K ′ we obtain a new complex which we denote by X �X ′:

· · · ← X−1 ⊗K ′ ⊕K ⊗X−1 ← X0 ⊗X ′0 ← X1 ⊗X ′0 ⊕X0 ⊗X ′1 ← . . .

One should bear in mind that the elements of K and K ′ are considered to be of degree 0;
then the degree of an element of the form a ⊗ b equals |a| + |b|. The operation � is a
symmetric monoidal product on the category of (unbounded) chain complexes. If X and
Y are complete projective resolutions of the modules K and L, respectively, then by the
Künneth theorem X � Y is a complete projective resolution of K ⊗ L. Furthermore, it
is an extension of the usual tensor product of non-negatively graded chain complexes in
the sense that (X � Y )+ = X+ ⊗ Y +. Also notice that (Xn)⊗p is a direct summand of
(X�p)pn for every integer n.

We can extend T to a chain map (P�p)∗ → (P�p)∗ by putting T (a1⊗ a2⊗ · · · ⊗ ap) =
±ap ⊗ a1 ⊗ · · · ⊗ ap−1 with the same sign rule as in §1.4. For every non-negative integer
i, let us extend the maps ∆i : P+

∗ → ((P+)⊗p)∗+i to maps ∆i : P∗ → (P�p)∗+i satisfying
the following properties:

0 = ∆0∂ − ∂∆0,

(1− T )∆i = ∆i+1∂ + ∂∆i+1 if i is even,

(1 + T + · · ·+ T p−1)∆i = ∆i+1∂ − ∂∆i+1 if i is odd.

For i = 0, we need to extend a chain transformation ∆0 which is defined on a large (in fact,
infinite) range to the whole projective resolutions. It is a standard fact from homological
algebra that this is possible. To do the inductive step, note that the term on the left-
hand side is already defined everywhere and is a chain transformation P → (P�p)[−i].
Furthermore, ∆i+1 is a partially defined null-homotopy for that chain map, and again
usual homological algebra tells us that we can find a suitable extension of ∆i+1 to the
whole projective resolution. Let pn : Pn → Ωnk be the obvious map for every integer n.
For any fixed integer n, this map extends to a chain map π : P∗ → (Ωnk)[n]. We obtain
a commutative diagram

Ppn
π�p∆0

$$JJJJJJJJJ

ppn

��

Ωpnk // (Ωnk)⊗p

in which the vertical arrow is a stable isomorphism which we refer to as ‘the’ isomorphism
Ωpnk ∼= (Ωnk)⊗p. If we put αi = π�p∆i : Ppn−i → (Ωnk)⊗p we get a cochain map α:

Ppn //

α0

��

Ppn−1 //

α1

��

Ppn−2 //

α2

��

Ppn−3 //

α3

��

. . .

(Ωnk)⊗p
1−T
// (Ωnk)⊗p N // (Ωnk)⊗p

1−T
// (Ωnk)⊗p N // . . .
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3.6 The power operation for G = Z/pZ× Z/pZ

The proof of this fact is exactly the same as the one of Lemma 3.44. For every ζ : Ωnk → k
we get a commutative diagram

(Ωnk)⊗p Ωpnk
� � //

∼=stoo Ppn−1 //

��

Ppn−2 //

��

. . . // Ppn−i //

��

k

(Ωnk)⊗p // (Ωnk)⊗p // (Ωnk)⊗p // . . . // (Ωnk)⊗p
ζ⊗p
// k

proving that Di(ζ) 6= ∅.

Proof of Theorem 3.1. This is essentially a table of contents for the previous results. Part
(i) follows from Proposition 3.47 and Corollary 3.30. Part (ii) is Lemma 3.32, Part (iii)
follows from Corollary 3.46, Part (iv) is Lemma 3.33. The Cartan formula (v) is shown in
Proposition 3.36.

3.6 The power operation for G = Z/pZ× Z/pZ

In this section we will describe the power operation P1 on the Tate cohomology of the
group G = Z/pZ × Z/pZ. Let us start with the case p = 2. It is well-known that the
ordinary cohomology ring H∗(G) is the graded algebra generated by two elements u1, u2

of degree 1. Recall from Example 3.17 that Ĥ−1(G) ∼= k has a certain canonical generator
which is invariant under automorphisms of G. Now we use Tate duality (see, e.g., §4 of
[28]) saying that the natural bilinear form

Ĥ−1−n(G)⊗ Ĥn(G)→ Ĥ−1(G) ∼= k

given by multiplication in the Tate cohomology is non-degenerate and therefore induces an
isomorphism (Ĥ−1−n(G))∗ ∼= Ĥn(G). For a fixed non-negative degree n, the monomials
ui1u

j
2 of degree n form a k-linear basis of Ĥn(G), and we denote the dual basis (which is

a basis of Ĥ−1−n(G)) by ϕi,j . From [16], Proposition 4.21, we know that Ĥ∗(G) is the
graded commutative algebra generated by the elements u1, u2, ϕi,j (with i, j ≥ 0) subject
to the relations

ϕi,ju1 =

{
ϕi−1,j if i > 0,
0 otherwise,

ϕi,ju2 =

{
ϕi,j−1 if j > 0,
0 otherwise,

ϕi,jϕi′,j′ = 0.

Now let p be an odd prime; then the ordinary cohomology ring H∗(G) is the graded
commutative algebra generated by two exterior classes u1, u2 of degree 1 and two poly-
nomial classes v1, v2 of degree 2. For a fixed non-negative degree n, we can consider all
monomials of the form va1v

b
2u
c
1u
d
2 of degree n with a, b, c, d ≥ 0 and c, d ≤ 1; these form a

basis of Ĥn(G), and we denote the dual basis elements by ϕ2a+c,2b+d. Again from [16], Pro-
position 4.21, we get that Ĥ∗(G) is the graded algebra generated by elements u1, u2, v1, v2
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3. The power operation

and ϕi,j for all i, j ≥ 0, of degrees |u1| = |u2| = 1, |v1| = |v2| = 2 and |ϕi,j | = −1− (i+ j),
subject to the relations

ϕi,ju1 =

{
ϕi−1,j if i is odd,
0 otherwise,

ϕi,ju2 =

{
(−1)iϕi,j−1 if j is odd,
0 otherwise,

ϕi,jv1 =

{
ϕi−2,j if i ≥ 2,
0 otherwise,

ϕi,jv2 =

{
ϕi,j−2 if j ≥ 2,
0 otherwise,

ϕi,jϕi′,j′ = 0.

(in fact, [16] obtains different signs due to a slightly different chosen basis in negative
degrees). As an immediate consequence of the multiplicative structure of Ĥ∗(G) we get
the following:

Lemma 3.48. Outside degree 0, the operation P1 on Ĥ∗(G) has zero indeterminacy.

We therefore obtain a map P1 : Ĥn(G) → Ĥpn−(2p−3)(G) for every non-zero integer
n (with n even unless p = 2), and our main objective will be to describe this map for all
negative values of n. The following proposition does the first step.

Proposition 3.49. Let p be an odd prime. Then there is some constant t ∈ k with
P1(ϕ1,0) = t · ϕ2p−1,2p−3 and P1(ϕ0,1) = −t · ϕ2p−3,2p−1.

Proof. The result will follow from the naturality of P1 with respect to automorphisms
of G, as established in Lemma 3.33. Suppose we are given an automorphism ψ of G
which we think of as a matrix

(
a b
c d

)
in the general linear group GL2(Fp). We have a

natural isomorphism H1(G) ∼= Homgroups(G, k) ∼= k2 which implies that ψ∗ is given on
H1(G) ∼= k{u1, u2} by the transposed matrix, i.e.,

ψ∗(u1) = au1 + cu2, ψ∗(u2) = bu1 + du2.

Furthermore, we know that the Bockstein homomorphism β is natural and maps ui to
vi; hence ψ∗(v1) = av1 + cv2 and ψ∗(v2) = bv1 + dv2. This determines the morphism ψ∗

of graded algebras uniquely on ordinary cohomology H∗(G). Together with naturality
of Tate duality we get that ψ∗ is determined on Tate cohomology Ĥ∗(G). Now we will
exploit this fact for several morphisms ψ.

Let us begin with a diagonal matrix
(
a 0
0 b

)
with a, b ∈ F∗p. The action on Ĥ1(G) ∼=

k{u1, u2} is given by the same matrix, and therefore the action on Ĥ−2(G) ∼= k{ϕ1,0, ϕ0,1}
is given by its transpose, which is again the same matrix, so that ψ∗(ϕ1,0) = aϕ1,0 and
similarly for ϕ0,1. We are interested in the action of ψ∗ on P1(ϕ0,1) which lives in degree
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−4p + 3, so let us determine ψ∗ on the dual space H4p−4(G). The latter space has the
basis elements vi1v

j
2 with i + j = 2p− 2 and vi1v

j
2u1u2 with i + j = 2p− 3. The action of

ψ∗ is given by the formula

vi1v
j
2 7→ aibjvi1v

j
2,

vi1v
j
2u1u2 7→ ai+1bj+1vi1v

j
2u1u2,

which is a diagonal matrix. Therefore, the action of ψ∗ on Ĥ−4p+3(G) is given by

ϕ2i,2j 7→ aibjϕ2i,2j ,

ϕ2i+1,2j+1 7→ ai+1bj+1ϕ2i+1,2j+1.

On the other hand we know that P1 is a natural construction, i.e.,

ψ∗P1(ϕ1,0) = P1(ψ∗(ϕ1,0)) = P1(aϕ1,0) = apP1(ϕ1,0) = aP1(ϕ1,0).

Hence P1(ϕ1,0) is a linear combination of ϕ2i,2j ’s with aibj = a for all a, b ∈ F∗p and
ϕ2i+1,2j+1’s with ai+1bj+1 = a for all a, b ∈ F∗p. Since F∗p is the cyclic group of order p− 1,
we get from aibj = a that j is divisible by p− 1; from i+ j = 2p− 2 we get that i is also
divisible by p − 1, but then aibj = 1 6= a in general. From ai+1bj+1 = a we can deduce
that j + 1 is divisible by p− 1, so that j ∈ {p− 2, 2p− 3}. We have therefore shown that

P1(ϕ1,0) = s · ϕ1,4p−5 + t · ϕ2p−1,2p−3 (3.50)

for some constants s, t ∈ k.
The next matrix we consider is ( 1 1

0 1 ); again, denote by ψ the corresponding auto-
morphism of G. Using the same arguments as before we get:

u1 7→ u1 + u2 v1 7→ v1 + v2 ϕ1,0 7→ ϕ1,0

u2 7→ u2 v2 7→ v2 ϕ0,1 7→ ϕ1,0 + ϕ0,1

Therefore, ψ acts on H4p−4(G) via

vi1v
j
2 7→

i∑
m=0

(
i

m

)
vm1 v

i+j−m
2 , vi1v

j
2u1u2 7→

i∑
m=0

(
i

m

)
vm1 v

i+j−m
2 u1u2.

Passing to the dual space Ĥ−4p+3(G) we get

ϕ2i+1,2j+1 7→
2p−3∑
m=i

(
m

i

)
ϕ2m+1,2(i+j−m)+1.

We know that P1(ϕ1,0) must be ψ∗-invariant. The element ϕ2p−1,2p−3 is ψ∗-invariant
because

ψ∗(ϕ2p−1,2p−3) =
2p−3∑
m=p−1

(
m

p− 1

)
ϕ2m+1,4p−5−2m
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and
(
m
p−1

)
is non-zero (mod p) if and only if m ≡ −1 (mod p), which is only true for

m = p − 1. On the other hand, ϕ1,4p−5 is not ψ∗-invariant because ψ∗(ϕ1,4p−5) =∑2p−3
m=0 ϕ2m+1,4p−5−2m. Hence s = 0 in (3.50).
As a last step we use the automorphism ψ given by the matrix ( 0 1

1 0 ) to find P1(ϕ0,1).
We know that ψ acts as follows:

u1 ↔ u2 v1 ↔ v2 ϕ1,0 ↔ ϕ0,1

The action on H4p−4(G) is then given by vi1v
j
2 7→ vj1v

i
2 and vi1v

j
2u1u2 7→ vi2v

j
1u2u1 =

−vj1vi2u1u2. From this we deduce that ψ acts on Ĥ−4p+3(G) via ϕ2i,2j 7→ ϕ2j,2i and
ϕ2i+1,2j+1 7→ −ϕ2j+1,2i+1. Together with P1(ϕ1,0) = t · ϕ2p−1,2p−3 we finally obtain
P1(ϕ0,1) = −t · ϕ2p−3,2p−1.

In the case p = 2 we can also determine P1(ϕ0,0) using similar methods.

Proposition 3.51. If p = 2 then P1(ϕ0,0) = t · ϕ1,1 for some constant t ∈ k.

Proof. As before, start with some matrix ( a bc d ) in GL2(F2). Written as a matrix with
respect to the monomial basis u2

1, u1u2, u
2
2, the action on H2(G) is given by the first of

the following two matrices:a2 ac c2

0 ad+ bc 0
b2 bd d2

 a2 0 b2

ac 1 bd
c2 0 d2

 (3.52)

Note that ad+bc = ad−bc = 1. Therefore, with respect to the basis ϕ2,0, ϕ1,1, ϕ0,2 we get
that ψ∗ acts as the right hand matrix of (3.52) on Ĥ−3(G). Note that ϕ0,0 is ψ∗-invariant
for every ψ. Therefore, P1(ϕ0,0) must be ψ∗-invariant for all ψ. Using these facts for the
matrix ( 0 1

1 1 ) one gets that P1(ϕ0,0) = t · ϕ1,1 for some constant t.

Together with the Cartan formula we are able to determine the power operation com-
pletely, up to the scalar constant. For this we need a technical lemma.

Lemma 3.53. Let x, y ∈ Ĥn(G) be elements of negative degree n. If p = 2 then assume
that n ≤ −4, xu2

1 = yu2
1 and xu2

2 = yu2
2, and if p is odd then assume that n ≤ −4p,

xvp1 = yvp1 and xvp2 = yvp2. Then it follows that x = y.

Proof. We may assume that y = 0. Let us start with p = 2. Then xu2
1 = 0 implies

x ∈ 〈ϕ0,−n−1, ϕ1,−n−2〉k and xu2
2 = 0 implies x ∈ 〈ϕ−n−2,1, ϕ−n−1,0〉k. Since n ≤ −4 we

get x = 0.
Now let p be an odd prime. Then

xvp1 = 0 implies x ∈ 〈ϕ0,−n−1, ϕ1,−n−2, . . . , ϕ2p−1,−n−2p〉k and
xvp2 = 0 implies x ∈ 〈ϕ−n−2p,2p−1, ϕ−n−2p+1,2p−2, . . . , ϕ−n−1,0〉k .

From n ≤ −4p we can deduce that x = 0.
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Proposition 3.54. If p = 2 then there is some constant t ∈ k such that P1(ϕi,j) =
t · ϕ2i+1,2j+1 for all i, j ≥ 0. If p is odd, then there is some constant t ∈ k such that

P1(ϕ2i+1,2j) = t · ϕ2pi+2p−1,2pj+2p−3,

P1(ϕ2i,2j+1) = −t · ϕ2pi+2p−3,2pj+2p−1.

Proof. Let us start with p = 2 and proceed by induction on i+ j, the case i = j = 0 being
covered by Proposition 3.49. The Cartan formula Theorem 3.1.(v) yields

P1(ϕi,j)u2
1 + ϕ2

i,j︸︷︷︸
0

P1(u1) = P1(ϕi,ju1) =

{
t · ϕ2i−1,2j+1 if i ≥ 1,
0 otherwise,

P1(ϕi,j)u2
2 + ϕ2

i,j︸︷︷︸
0

P1(u2) = P1(ϕi,ju2) =

{
t · ϕ2i+1,2j−1 if j ≥ 1,
0 otherwise.

Therefore, t · ϕ2i+1,2j+1 and P1(ϕi,j) satisfy the conditions of Lemma 3.53 and hence are
equal.

The case of an odd prime p runs similarly. Let us prove the first equation only. Again
we use induction on i + j with i = j = 0 being already done. Using the Cartan formula
we get

P1(ϕ2i+1,2j)v
p
1 + ϕp2i+1,2j︸ ︷︷ ︸

0

P1(v1) = P1(ϕ2i+1,2jv1)

=

{
t · ϕ2p(i−1)+2p−1,2pj+2p−3 if i ≥ 1,
0 otherwise,

P1(ϕ2i+1,2j)v
p
2 + ϕp2i+1,2j︸ ︷︷ ︸

0

P1(v2) = P1(ϕ2i+1,2jv2)

=

{
t · ϕ2pi+2p−1,2p(j−1)+2p−3 if j ≥ 1,
0 otherwise.

As before, t · ϕ2pi+2p−1,2pj+2p−3 and P1(ϕ2i+1,2j) satisfy the conditions of Lemma 3.53,
and we are done.

Remark 3.55. The previous proposition shows that the formulae for P1 given for odd
primes p are actually also true for p = 2.

It remains to find the constants t in Proposition 3.54.

Proposition 3.56. The constants in Proposition 3.54 equal t = 1.

Proof. Let us denote by g and h generators of the two cyclic factors of the group G. Recall
that, as an augmented algebra, kG = k[x, y]/(xp, yp) = L, where x = 1− g and y = 1− h.
The action of x on a tensor product of kG-modules is given by the formula

(a⊗ b) · x = (ax)⊗ b+ a⊗ (bx)− (ax)⊗ (bx), (3.57)
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3. The power operation

and similarly for y. Let us define Ωik for small values of |i| via the following (partially
given) complete resolution:

. . . L2oo

{{wwwww
L

(
x
y

)
oo

||yyyyyy L
xp−1yp−1
oo

�������
L2

(x y )
oo

}}{{{{{
. . .oo

Ω−2k

ccGGGGGGG

Ω−1k

ccGGGGG

k

^^<<<<<

Ωk

``AAAAA

Ω2k

bbEEEEE

We consider Ωk as the submodule of L generated by x and y, Ω−1k as the quotient
L/xp−1yp−1L, and the leftmost L2 has the basis e1, e2. We also view Ω−2k as the quotient
L2/(xe1 +ye2)L. With these notions, the map Ω−1k → L2 sends the class [1] to xe1 +ye2.
The cohomology class u1 is represented by the L-linear map Ωk → k that sends x to 1
and y to 0. Similarly u2 can be described by mapping x to 0 and y to 1. This implies
that ϕ1,0 is represented by the map Ω−1k → Ωk sending [1] ∈ L/xp−1yp−1L = Ω−1k to x.
This map lifts to a diagram

Ω−1k
[1]7→xe1+ye2

//

[1] 7→x
��

L2

( 1 0 )

��

// Ω−2k

[e1] 7→1,[e2] 7→0

��

Ωk // L // k

in which the rightmost vertical map represents ϕ1,0 and will be denoted by ϕ. Now we
are interested in P1(ϕ). Define the module M = Ω−2k/([e2] ·L), that is, we divide out the
submodule generated by [e2]. Then ϕ factors uniquely as Ω−2k →M → k, and we denote
the latter map by ϕ̃. Starting with some element of −P1(ϕ) = D2p−3(ϕ) we obtain the
following commutative diagram:

(Ω−2k)⊗p // P1
//

��

. . . // P2p−3 //

��

k

(Ω−2k)⊗p //

��

(Ω−2k)⊗p //

��

. . . // (Ω−2k)⊗p
ϕ⊗p
//

��

k

M⊗p
1−T

//M⊗p
N
// . . .

1−T
//M⊗p

ϕ̃⊗p
// k

(3.58)

Let us denote the bottom row byM. In the following, whenever we write Cp we implicitly
mean the second of the two factors of G, which is generated by the element h. Then we
can consider the kG-modules as kCp-modules. As such M is free of rank 1, generated by
the class of [e1], and we will often omit this class and simply write 1 for that generator of
M . We can construct another complex

0→ k →M → Λ2M → · · · → Λp−1M → ΛpM → 0, (3.59)

where the maps are given by m 7→
∑p−1

r=0 m ∧ hr. Let K be the cokernel of the first map
k → M , and let us splice the complex with the Koszul complex associated to the map
ϕ̃ : M → k (see Lemma 1.6)

0→ ΛpM
κϕ̃p−→ Λp−1M → · · · → Λ2M

κϕ̃2−→M
ϕ̃−→ k → 0. (3.60)
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Then we get a complex

0→ K → Λ2M → · · · → Λp−1M → Λp−1M → · · · → Λ2M →M → k → 0,

which we denote by L. Finally, we write σ for the composition M⊗p
τ−→ M → K, where

the former map is given by

τ : hi1 ⊗ hi2 ⊗ · · · ⊗ hip 7→

{
hi1 if {i1, . . . , ip} = {0, . . . , p− 1} (mod p),
0 otherwise.

(3.61)

Lemma 3.62. The complex L is exact, and the identity map of k lifts to a map of cochain
complexes M→ L such that the first map equals −σ : M⊗p → K.

Proof. We take a closer look at the de Rham-complex SpM → M ⊗ Sp−1M → Λ2M ⊗
Sp−2M → · · · → ΛpM → 0. Let us denote by Xi

j the k-linear subspace of ΛiM ⊗ Sp−iM
generated by all elements of the form h1 ∧ h2 ∧ · · · ∧ hi ⊗ hi+1 . . . hp where hs ∈ Cp for all
s = 1, 2, . . . , p and the set {h1, h2, . . . , hp} has size j. Then Xi

j is in fact a kG-module,
and we have ΛiM ⊗ Sp−iM ∼=

⊕p
j=0X

i
j as kG-modules. Furthermore, the differential of

the de Rham-complex respects this decomposition, i.e., we have a direct sum of complexes
0 → X0

j → X1
j → X2

j → · · · → Xp
j → 0. In the case j = p we get the complex (3.59)

which is therefore exact, except possibly at the two leftmost entries, where exactness is
easily checked (in fact, non-exactness of the de Rham complex completely takes place in
the (j = 1)-part of the decomposition above). The Koszul complex (3.60) is also exact by
the second sequence of Lemma 1.6, because the dimension of M as a k-vector space equals
p, so that Λp+1M = 0. Altogether we obtain that L is exact. Furthermore, we have a
map of cochain complexes from the de Rham-Koszul complex RK of M to L, where the
first p − 1 maps ΛiM ⊗ Sp−iM → ΛiM are projections onto direct summands, and the
last p− 1 maps ΛiM ⊗ Sp−iM → ΛiM equal id⊗Sp−iϕ̃. Together with Proposition 3.20
we get the claim.

The exact sequence L represents an element γ of Ext2p−3
kG (k,K), and Lemma 3.62

combined with diagram (3.58) and Proposition 3.9 says that the product of any element
of P1(ϕ) with γ stably equals the composition

γP1(ϕ) = α : (Ω−2k)⊗p →M⊗p
σ−→ K. (3.63)

As a next step, we want to describe γ as a map Ω2p−3k → K more explicitly. Observe
that we have a commutative diagram

L2p−2

��

// L2p−3

��

// . . . // L3 //

��

L2 //

��

L //

��

k

M y
//M

yp−1
// . . . //M

yp−1
//M y

// //M // k

(3.64)
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3. The power operation

where the upper row is a continuation of our partially chosen projective resolution, given
by matrices of the form

x y
xp−1 −yp−1

x y

. . .
xp−1 −yp−1

x y

 and


xp−1 −y

x yp−1

xp−1 −y
. . .

xp−1 −y
x yp−1

 .

Let us define Ωik by this projective resolution. The vertical maps are given by projection
onto the last factor Lj → L followed by the canonical projection map L→ L/xL ∼= M .

Furthermore, there is a map of cochain complexes

M

��

1−h
//M

��

(1−h)p−1

// . . .
(1−h)p−1

//M
1−h

//

��

M //

��

k

M⊗p
1−T
//M⊗p

N
// . . .

N
//M⊗p

1−T
//M⊗p

ϕ̃⊗p
// k

(3.65)

where each vertical arrow is the kCp-linear map given by sending 1 ∈ M to 1 ⊗ hp−1 ⊗
hp−2 ⊗ · · · ⊗ h ∈M⊗p; this is in fact a kG-linear map. Together with diagram (3.64) and
Lemma 3.62 we obtain a diagram as follows:

L2p−2 //

��

L2p−3

��

// . . . // L2 //

��

L //

��

k

K // Λ2M // . . . // Λ2M //M // k

The leftmost vertical map factors as L2p−2 � Ω2p−3k → K where the second map repre-
sents γ ∈ Ext2p−3

kG (k,K). We have therefore shown:

Lemma 3.66. Consider Ω2p−3k as a quotient of L2p−2, and denote the basis elements
of the latter by f1, f2, . . . , f2p−2. Then γ : Ω2p−3k → K is represented by the following
unstable map:

[f2p−2] 7→ −σ(1⊗ hp−1 ⊗ hp−2 ⊗ · · · ⊗ h),
[fj ] 7→ 0 for j 6= 2p− 2.

At the end of our proof we are going to use the identity

ϕ2p−1,2p−3 · vp−1
1 u1 = ϕ0,2p−3,

so let us now construct unstable representatives of vp−1
1 u1 and ϕ0,2p−3. Let us define

b = [e1] · yp−1 ∈ (Ω−2k)⊗p.

Lemma 3.67. The class vp−1
1 u1 ∈ Ĥ∗(G) is represented by the map Ω−1k → (Ω−2k)⊗p

which sends [1] ∈ L/xp−1yp−1L = Ω−1k to [e1]⊗ b⊗(p−1) ∈ Ω−2k. Furthermore, the class
ϕ0,2p−3 is represented by the map φ : Ω−1k → Ω2p−3k which sends [1] ∈ L/xp−1yp−1L to
[f2p−2] ∈ Ω2p−3k.
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Proof. We know that v1 is represented by the following chain map:

. . . Loo (
yp−1

0

)
��

L2
(x y )

oo

( yp−1 0 )

��

L3

(
xp−1 −y 0

0 x yp−1

)
oo

( 1 0 0 )

��

. . .oo

. . . L2oo L(
x
y

)oo L
xp−1yp−1

oo . . .oo

In particular, the map sending 1 ∈ k to b ∈ Ω−2k represents v1. Secondly, u1 is represented
by the chain map

. . . Loo

( 1
0 )
��

L

xp−2yp−1

��

xp−1yp−1
oo L2

(x y )
oo

( 1 0 )

��

. . .oo

. . . L2oo L(
x
y

)oo L
xp−1yp−1
oo . . .oo

and therefore the map which sends [1] ∈ L/xp−1yp−1L ∼= Ω−1k to [e1] ∈ Ω−2k repre-
sents u1. By forming a suitable tensor product of these two maps we see that vp−1

1 u1 is
represented by the map Ω−1k ⊗ k⊗(p−1) → (Ω−2k)⊗p as stated.

For the second part it is enough to show that (vp−2
2 u2) · φ = ϕ0,0 and m · φm = 0 for

any other monomial m of degree 2p − 3. This follows immediately from the observation
that the compositions L2p−2 → Ω2p−3k → k (where the second map runs through all
monomials of degree 2p − 3) are exactly the projection maps onto the single factors L
followed by the augmentation L→ k, and vp−2

2 u2 corresponds to projection onto the last
factor.

Lemma 3.68. The diagram

Ω−1k
ϕ0,2p−3

//

vp−1
1 u1

��

Ω2p−3k

γ

��

(Ω−2k)⊗p α
// K

commutes, and both compositions are stably non-trivial.

Proof. By Lemmas 3.66 and 3.67, the upper-right composition sends [1] ∈ Ω−1k to
−σ(1⊗ hp−1 ⊗ · · · ⊗ h) ∈ K. For the other composition note that the quotient map
Ω−2k → M sends b to the norm element N =

∑p−1
j=0 h

j ∈ M . By Lemma 3.67, the
lower-left composition sends [1] ∈ Ω−1k to σ(1 ⊗ N⊗(p−1)). By definition of σ, it is
therefore enough to show that

−τ(1⊗ hp−1 ⊗ · · · ⊗ h) = τ(1⊗N⊗(p−1)) ∈M,

where τ was constructed in (3.61). But both sides equal −1 = (p− 1)! ∈M .
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3. The power operation

If the compositions were stably trivial, they would factor over the inclusion Ω−1k → L2.
In particular, the image w of [1] ∈ Ω−1k would lie in K · I, where I = 〈x, y〉L is the
augmentation ideal of L. But K is isomorphic to k[y]/yp−1 (with trivial x-action) and w
is a generator of K, so w 6∈ K · I.

We are ready to complete the proof of Proposition 3.56. We know that

γ ϕ0,2p−3 = α vp−1
1 u1 by Lemma 3.68,

= γ P1(ϕ) vp−1
1 u1 by (3.63),

= t · γ ϕ0,2p−3 by Proposition 3.54,

and all these maps in HomkG(Ω−1k,K) are non-trivial by Lemma 3.68. This implies that
t = 1.

3.7 Further examples

Let us also consider another family of examples. We take G = (Z/pZ)r, the direct product
of r cyclic factors with r ≥ 3. Then it will turn out that P1 vanishes on elements of negative
degree. Let us briefly recall the multiplicative structure of the graded commutative algebra
Ĥ∗(G), see also Proposition 4.12 in [16]. For p = 2 it is generated by elements u1, . . . , ur
of degree 1 and elements ϕα of degree −1− |α| for all multi-indices α ∈ Nr subject to the
relations

ϕαϕβ = 0,

ϕαui =

{
ϕα−εi if αi > 0,
0 otherwise.

Here εi denotes the multi-index (0, . . . , 0, 1, 0, . . . , 0) with 1 sitting in the i-th position. For
odd primes p we know that Ĥ∗(G) is generated by exterior classes u1, . . . , ur of degree 1,
polynomial classes v1, . . . , vr of degree 2, and elements ϕα of degree −1−|α| for all multi-
indices α ∈ Nr, subject to the relations

ϕαϕβ = 0,

ϕαui =

{
±ϕα−εi if αi is odd,
0 otherwise,

ϕαvi =

{
±ϕα−2εi if αi ≥ 2,
0 otherwise.

Let us write wα for the monomial vc11 · · · vcrr u
e1
1 · · ·uerr with αi = 2ci + ei and ei ∈ {0, 1}.

When α runs through all multi-indices with fixed norm |α|, we obtain a k-linear basis of
H |α|(G), and we assume that its dual basis is the set of ϕα’s in Ĥ−|α|−1(G).

Proposition 3.69. For G = (Z/pZ)r with r ≥ 3 the power operation P1 vanishes on
classes of negative degree.
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Proof. Let us do the proof for odd primes p, as it is the much more difficult one. As in
Lemma 3.48 one sees that P1 does not have any indeterminacy. Using the same method
as in the proof of Proposition 3.54 we see that it is enough to show that P1(ϕγ) = 0 for
all ϕγ of even degree with γi ∈ {0, 1} for all i. Suppose that two of the indices, say γ1 and
γ2, equal zero. Then we have

±P1(ϕγ) = P1(ϕγ+ε1+ε2 · u1u2)
= P1(ϕγ+ε1+ε2) · (u1u2)p︸ ︷︷ ︸

0

+ϕpγ+ε1+ε2︸ ︷︷ ︸
0

·P1(u1u2) = 0.

It is therefore enough to consider the case γ = (1, 1, 1, . . . , 1, 1) for r odd and γ =
(1, 1, 1, . . . , 1, 0) for r even. Let us write s = r for r odd and s = r − 1 for r even;
then s ≥ 3 is odd, γi = 1 for all i ≤ s, and γi = 0 for i > s. The degree of ϕγ equals
−s− 1. For the proof of P1(ϕγ) = 0 we will now use the naturality condition on P1 with
respect to several automorphisms of G.

Let ψ be the automorphism of G represented by a diagonal matrix with entries
a1, a2, . . . , ar ∈ F∗p. As in the proof of Proposition 3.49 we get that ψ∗(ui) = aiui,
ψ∗(vi) = aivi, and therefore ψ∗(wα) = ac+ewα, where α = 2c+ e for some multi-indices c
and e with ei ∈ {0, 1} for all i. Here we use the notation aβ = aβ1

1 . . . aβrr . By duality we
obtain ψ∗(ϕα) = ac+ewα. From the naturality of P1 we get that

ψ∗(P1(ϕα)) = P1(ψ∗(ϕα)) = P1(ac+eϕα) = ac+eP1(ϕα).

Therefore, P1(ϕγ) is a k-linear combination of ϕα’s with aγ = ac+e for all a = (a1, . . . , ar).
This can only be true if ci + ei ≡ 1 (mod p− 1) which implies that

αi = 1 or αi = 2 or αi ≥ 2p− 1, for all i = 1, 2, . . . , s. (3.70)

Now we take another automorphism as follows: choose indices n,m ≤ s with n 6= m and
let ψ be defined by

ψ∗(um) = un + um, ψ∗(ui) = ui for all i 6= m.

Then ψ∗ acts on ordinary cohomology H∗(G) according to the formula

ψ∗(wα) =


∑cm

j=0

(
cm
j

)
(wα−2j(εm−εn) + wα−(2j+1)(εm−εn)) if αm is odd

and αn is even,∑cm
j=0

(
cm
j

)
wα−2j(εm−εn) otherwise.

for α = 2c+ e. By duality we get

ψ∗(ϕα) =


∑

j≥0

(
cm+j
j

)
(ϕα+2j(εm−εn) + ϕα+(2j+1)(εm−εn)) if αm is even

and αn is odd,∑
j≥0

(
cm+j
j

)
ϕα+2j(εm−εn) otherwise.

Here we used the convention that ϕβ = 0 if βi < 0 for some i. Since ϕγ is ψ-invariant,
we know that P1(ϕγ) is in the kernel of ψ∗ − id. Let us write A = P1(ϕγ) =

∑
α fα · ϕα
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with fα ∈ k, and let β be some multi-index with βm = 4 such that |ϕβ| = |A|. How
often does ϕβ occur in (ψ∗ − id)A? The formulae above imply that it occurs with factor(

2
1

)
fβ−2(εm−εn) +

(
2
2

)
fβ−4(εm−εn). By (3.70) the second summand vanishes, because the

m-th entry of the multi-index equals 0. Since (ψ∗− id)A = 0 we get that fβ−2(εm−εn) = 0.
Note that the m-th entry of the multi-index equals 2, and every multi-index α of the right
degree with αm = 2 is of that form for a suitable n. Hence A is a linear combination of
ϕα’s satisfying

αi = 1 or αi ≥ 2p− 1, for all i = 1, 2, . . . , s. (3.71)

Now let β be some multi-index with βm = 3 such that |ϕβ| = |A|. As before we see that
ϕβ occurs in (Ψ∗ − id)A with factor{(

1
0

)
fβ−(εm−εn) +

(
1
1

)
fβ−2(εm−εn) +

(
1
1

)
fβ−3(εm−εn) if βn is even,(

1
1

)
fβ−2(εm−εn) otherwise.

In the first case, the first and the last summand vanish due to (3.71). Therefore we get
fβ−2(εm−εn) = 0 in both cases. The m-th entry of the multi-index equals 1 and every
multi-index α of the right degree with αm = 1 is of that form. Together with (3.71) we
obtain that A is a linear combination of ϕα’s satisfying αi ≥ 2p−1 for all i = 1, 2, . . . , s. In
particular, the degree satisfies |ϕα| ≤ −s(2p−1)−1. But we know that A = P1(ϕγ) lives in
degree (−s−1)p−(2p−3) = −(s+3)p+3. So we deduce that −(s+3)p+3 ≤ −s(2p−1)−1,
which is equivalent to (s− 3)(p− 1) ≤ −1, a contradiction.

This completes the proof for odd primes p. For p = 2 one only needs to check that
P1(ϕ0,0,...,0) = 0. We know that ϕ0,0,...,0 is invariant under all automorphisms ψ. By
applying this fact to permutations of the r factors we get that

P1(ϕ0,0,...,0) = a ·
∑
i

ϕ2εi + b ·
∑
i<j

ϕεi+εj

for some a, b ∈ k. Then using an automorphism of the form( 1 1
1

. . .
1

)

one easily deduces that a = b = 0.

Remark 3.72. The following diagram might be conceptually helpful. It gathers information
about the action of power operations on Tate cohomology classes of negative degree for
elementary abelian p-groups.

Z/pZ (Z/pZ)×2 (Z/pZ)×3 (Z/pZ)×4 . . .
P0 non-trivial trivial trivial trivial . . .
P1 undetermined non-trivial trivial trivial . . .

One might expect that this diagram can be extended downwards by defining higher order
power operations, but we do not have any evidence for this.
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4. An obstruction for higher order

4 An obstruction for higher order

We are now able to prove that our power operation serves as an obstruction for the order to
be one larger. Recall that for every kG-module M we have a graded algebra Êxt∗kG(M,M)
(which is not graded commutative in general) and there is a natural morphism of graded
algebras Ĥ∗(G)→ Êxt∗kG(M,M) given by tensoring with M . We can view Êxt∗kG(M,M)
as an Ĥ∗(G)-module via that map.

Theorem 4.1. Let ζ ∈ Ĥn(G) be a Tate cohomology class, of even degree if p is odd.
Assume for some (hence any) element a of P1(ζ) that its image in Êxt∗kG(M,M) is divisible
by ζ, that is, a⊗M ∈ ζ · Êxt∗kG(M,M). Then ζ-ord(M/ζ) ≥ p− 1.

Corollary 4.2. Let ζ ∈ Ĥn(G) be a Tate cohomology class, of even degree if p is odd.
Assume further that some (hence any) element of P1(ζ) is divisible by ζ, that is, P1(ζ) is
contained in ζ · Ĥ∗(G). Then ζ-ord(M/ζ) ≥ p− 1 for every kG-module M , and therefore
ζ-ord(mod-kG) ≥ p.

By Corollary 3.46 we also have the following consequence.

Corollary 4.3. Suppose that ζ ∈ Hn(G) is an ordinary cohomology class, of even degree
if p is odd. Assume further that the Steenrod power βP

n
2
−1ζ (resp. Sqn−1 ζ if p = 2) is

divisible by ζ, i.e., it is an element of ζ · H∗(G). Then ζ-ord(M/ζ) ≥ p − 1 for every
kG-module M .

In what follows, we will work with the same notation as in §2, that is, the cohomology
class [ζ] is represented by a surjective unstable map ζ : Ωnk → k, we have a short exact

sequence 0 → Lζ
ι−→ Ωnk

ζ−→ k → 0 and an unstable map η : Ωk → Lζ such that the

triangle Ωk
η−→ Lζ

ι−→ Ωnk
ζ−→ k is exact.

4.1 A commutative square

As a first step in the proof of Theorem 4.1, we will show that there is a commutative
diagram in mod-kG

(Ωnk)⊗p
P1ζ //

��

'

Ω2p−3k
Ω2p−4η

// Ω2p−4Lζ

'

Ωnk ⊗ Sp−1Ωnk γ
// Ωp−2ΛpΩnk

Ωp−2κp

// Ωp−2Λp−1Lζ

Ωp−2ωp−1

OO

(4.4)

for every element P1ζ ∈ P1(ζ). The upper row vanishes if and only if P1ζ is divisible by ζ.
In a second step we will prove that vanishing of the bottom row implies ζ-ord(X/ζ) ≥ p−1.

Let us define the maps in (4.4). The vertical map on the left-hand side is the canonical
morphism (Ωnk)⊗p → Ωnk ⊗ Sp−1Ωnk, we will show in Remark 4.11 that this map is a
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4. An obstruction for higher order

stable isomorphism. For the other vertical map note that by Corollary 1.22 the modules
Λi(Ωnk) are projective for i = 2, 3, . . . , p− 1, and by Corollary 1.12 the sequence

0 −→ ΛjLζ ↪→ Λj(Ωnk)
κj−→ Λj−1(Ωnk)

κj−1−−−→ . . .
κ3−→ Λ2(Ωnk) κ2−→ Lζ −→ 0 (4.5)

is exact for every j = 1, 2, . . . , p − 1. It therefore represents a stable isomorphism ωj in
HomkG(ΛjLζ ,Ωj−1Lζ) whose inverse is given by the same complex viewed as an extension
(see Remark 3.10). Note that ω1 is simply the identity map of Lζ . Let us also consider
the complex

Ωnk ⊗ Sp−1Ωnk // Λ2Ωnk ⊗ Sp−2Ωnk // . . . // Λp−1Ωnk ⊗ Ωnk // ΛpΩnk;

again we use that the modules ΛiΩnk are projective for i = 2, 3, . . . , p − 1, so we get a
class γ in HomkG(Ωnk ⊗ Sp−1Ωnk,Ωp−2ΛpΩnk).

Remark 4.6. Before we start proving that the diagram commutes, let us consider the case
p = 2 and draw some analogies to the topological world. The diagram takes the following
form:

Ωnk ⊗ Ωnk
P1ζ // Ωk

η
// Lζ

Ωnk ⊗ Ωnk
·∧· // Λ2Ωnk

κ2 // Lζ

This enables us to prove Theorem 4.1 in the case when X = k by considering the commu-
tative diagram on the left-hand side:

Ωnk ⊗ Lζ

��

ζ⊗id
// Lζ S/2

pinch

��

2· // S/2

Λ2Ωnk
κ2

::uuuuu

Ωnk ⊗ Ωnk
Sq1 ζ

//

·∧· 66mmmmmm
k

η

OO

ΣS
η=Sq1(2)

// S

incl

OO

Note the similarity to the topological situation on the right-hand side, where η denotes
the Hopf map (compare §5 in [23]).

Proposition 4.7. The diagram (4.4) commutes in mod-kG.

Proof. We postpone the case p = 2 to the end of the proof and assume p ≥ 3. As in
Lemma 3.29 denote by K the kernel of the surjective map ζ⊗p : (Ωnk)⊗p → k. Then we
get the dashed arrows making the following diagram commute in mod-kG:

Λ2Ωnk ⊗ Sp−2Ωnk //

λ
��
�
� Ωnk ⊗ Sp−1Ωnk //

��

SpΩnk

Spζ
��

K //

ρ
��
�
� (Ωnk)⊗p

ζ⊗p
//

id⊗ζ⊗(p−1)

��

k

Lζ ι
// Ωnk

ζ
// k

(4.8)
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On the other hand the diagram

Λ2Ωnk ⊗ Sp−2Ωnk //

κ2⊗Sp−2ζ
��

Ωnk ⊗ Sp−1Ωnk

id⊗Sp−1ζ
��

Lζ ι
// Ωnk

commutes because both compositions are given by

x1 ∧ x2 ⊗ x3 . . . xp 7→
(
ζ(x1)x2 − ζ(x2)x1

)
ζ(x3) . . . ζ(xp).

From the two diagrams we learn that ρλ = κ2 ⊗ Sp−2ζ. Therefore, the leftmost square in
the diagram

Lζ Λ2Ωnk
κ2oo Λ3Ωnk

κ3oo . . .κ4oo Λp−1Ωnk
κp−1
oo ΛpΩnk

κp
oo

Lζ Λ2Ωnk ⊗ Sp−2Ωnk
ρλ
oo

id⊗Sp−2ζ

OO

Λ3Ωnk ⊗ Sp−3Ωnkoo

id⊗Sp−3ζ

OO

. . .oo Λp−1Ωnk ⊗ Ωnkoo

id⊗ζ

OO

ΛpΩnkoo

commutes. When we apply Example 1.17 to the map ζ : Ωnk → k we get that the
remaining squares commute. The upper row (and therefore also the lower row) represents
the composition ΛpΩnk

κp−→ Λp−1Lζ
ωp−1−−−→ Ωp−2Lζ due to Remark 3.13.

We can now splice the lower row of the previous diagram with the complex representing
γ and obtain a complex

Ωnk ⊗ Sp−1Ωnk → Λ2Ωnk ⊗ Sp−2Ωnk → · · · → Λ2Ωnk ⊗ Sp−2Ωnk → Lζ , (4.9)

representing the composition

Ωnk ⊗ Sp−1Ωnk
γ−→ Ωp−2ΛpΩnk

Ωp−2κp−−−−−→ Ωp−2Λp−1Lζ
Ωp−2ωp−1−−−−−−→ Ω2p−4Lζ .

On the other hand, the complex (4.9) represents the composition

Ωnk ⊗ Sp−1Ωnk ∼= (Ωnk)⊗p
P1ζ−−→ Ω2p−3k

Ω2p−4υ−−−−→ Ω2p−4K
Ω2p−4ρ−−−−→ Ω2p−4Lζ

in mod-kG by Lemma 3.29, so we will be done as soon as we show ρ ◦ υ = η. But η and υ
are represented by the bottom and middle row of (4.8), respectively. By Remark 3.15 the
diagram shows ρυ = η.

We are left with the slightly different case p = 2. We get the dashed arrows making
the following diagram commute in mod-kG:

Ωnk ⊗ Ωnk
1+T
//

λ
��
�
� Ωnk ⊗ Ωnk // S2Ωnk

S2ζ
��

K //

ρ
��
�
� (Ωnk)⊗2 ζ⊗2

//

id⊗ζ
��

k

Lζ ι
// Ωnk

ζ
// k

(4.10)
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4. An obstruction for higher order

As before we get ρυ = η in the stable category. Recall that γ : Ωnk ⊗ Ωnk → Λ2Ωnk is
the canonical projection map; therefore, the diagram

Ωnk ⊗ Ωnk
1+T
//

κ2◦γ
��

Ωnk ⊗ Ωnk

id⊗ζ
��

Lζ ι
// Ωnk

commutes. Together with (4.10) we get that ρλ = κ2γ. By Lemma 3.29, λ = υ ◦ P1ζ for
every element P1ζ ∈ P1(ζ). Gathering all the results, we have

ηP1ζ = ρυP1ζ = ρλ = κ2γ.

Remark 4.11. Let us prove that the canonical map (Ωnk)⊗j → SjΩnk is a stable iso-
morphism for j < p. To do so, it is enough to check that the map Ωnk⊗Sj−1Ωnk → SjΩnk
is a stable isomorphism; but this map sits in an exact sequence

0→ ΛjΩnk → Λj−1Ωnk ⊗ Ωnk → · · · → Ωnk ⊗ Sj−1Ωnk → SjΩnk → 0

in which all the ΛiΩnk are projective for i = 2, . . . , j.

4.2 Completion of the proof

Now we are ready to complete the proof of Theorem 4.1. We need a new kind of objects
which store more information than s-coherent modules do.

Definition 4.12. An (s, t)-coherent module consists of

• an s-coherent module X,

• a graded left S∗Lζ-comodule Y∗ which vanishes outside degrees 0, 1, . . . , t, and

• a morphism σ : X → F (Yt) of s-coherent modules

such that the sequence

0→ Xi
σi−→ ΛiLζ ⊗ Yt → Λi+1Lζ ⊗ Yt−1 → · · · → Λi+tLζ ⊗ Y0 → 0 (4.13)

is exact for all i = 0, 1, . . . , s, the maps being the same as in the chain complex associated
to (Λ∗Lζ , Y∗).

We call X1 the underlying object of the (s, t)-coherent module.

Lemma 4.14. Suppose that (X,Y ) is an (s, t)-coherent module. Then the stable iso-

morphisms Ωk ⊗Xi
η⊗id−−−→ Lζ ⊗Xi → X1+i and

Ωk ⊗ ΛiLζ ⊗ Y0
η⊗id−−−→ Lζ ⊗ ΛiLζ ⊗ Y0 → Λ1+iLζ ⊗ Y0
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4.2 Completion of the proof

induce isomorphisms of the groups ÊxttkG(Λi+tLζ ⊗ Y0, Xi) for all i = 1, 2, . . . , s. Up to
these isomorphisms, the exact sequences

0→ Xi
σi−→ ΛiLζ ⊗ Yt → Λi+1Lζ ⊗ Yt−1 → · · · → Λi+tLζ ⊗ Y0 → 0

represent the same element for all i = 1, 2, . . . , s. In particular, the coherent module
induces an element in ÊxttkG(Λt+1Lζ ⊗ Y0, X1) ∼= HomkG(ΩtΛt+1Lζ , X1).

Proof. We have a commutative diagram as follows:

0 // Ωk ⊗Xi
//

η⊗id
��

Ωk ⊗ ΛiLζ ⊗ Yt //

��

. . . // Ωk ⊗ Λi+tLζ ⊗ Y0
//

η⊗id
��

0

0 // Lζ ⊗Xi //

��

Lζ ⊗ ΛiLζ ⊗ Yt //

��

. . . // Lζ ⊗ Λi+tLζ ⊗ Y0
//

��

0

0 // X1+i
//

(a)

Λ1+iLζ ⊗ Yt //

(b)

. . . // Λ1+i+tLζ ⊗ Y0
// 0

Here (a) commutes because σ : X → F (Yt) is a map of s-coherent modules, and (b)
commutes because it is the map of complexes associated to the map of Λ∗Lζ-modules
Lζ ⊗ Λ∗Lζ → Λ1+∗Lζ and the S∗Lζ-comodule Y∗.

Definition 4.15. We denote by Φ(X,Y ) the stable map ΩtΛt+1Lζ⊗Y0 → X1 constructed
in Lemma 4.14.

The next lemma allows us to construct coherent modules inductively.

Lemma 4.16. Suppose that (X,Y ) is an (s, t)-coherent module with t < p − 1, and let
ϕ : K → X1 be any map of kG-modules. Let us write ν for the S∗Lζ-coaction map of Y .
Then there exists a unique graded left S∗Lζ-comodule Z with coaction map ν ′ satisfying
the following conditions:

(i) Zu = Yu for all u = 0, 1, 2, . . . , t, Zt+1 = K, and Zu = 0 for u outside {0, 1, . . . , t+1},

(ii) ν ′r,u = νr,u for all 0 ≤ r ≤ r + u ≤ t, and

(iii) ν ′1,t : Zt+1 → Lζ ⊗ Zt agrees with the composition K
ϕ−→ X1

σ1−→ Lζ ⊗ Yt.

Proof. The first step is to define the remaining coaction maps ν ′r,t+1−r. Consider the
following diagram:

Zt+1

ν′1,t
//

��
�
�
�

Lζ ⊗ Zt //

��

Λ2Lζ ⊗ Zt−1

��

0 // SrLζ ⊗ Zt+1−r // Lζ ⊗ Sr−1Lζ ⊗ Zt+1−r // Λ2Lζ ⊗ Sr−2Lζ ⊗ Zt+1−r

The upper composition is zero because the sequence (4.13) is a complex (for i = 1). Now
one has to show that the square on the right hand side commutes — either by an easy
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4. An obstruction for higher order

verification, or by using the fact that ν : Y∗ → S∗Lζ ⊗ Yt+1−r is a map of comodules
and passing to suitable associated chain complexes. Since the bottom row is exact by
Corollary 1.9, we get the existence of the dashed arrow which we call ν ′r,t+1−r. To check
that the maps ν ′ define a comodule structure on Z∗, consider the diagram

S1+i+jLζ ⊗ Zl

Lζ ⊗ Si+jLζ ⊗ Zl Lζ ⊗ SiLζ ⊗ SjLζ ⊗ Zl

Lζ ⊗ Zi+j+l Lζ ⊗ SiLζ ⊗ Zj+l

Z1+i+j+l S1+iLζ ⊗ Zj+l

S1+iLζ ⊗ SjLζ ⊗ Zl
��

ooooo
77

��

//

��
//

//

��

OOOOOO
'' kkkkkk

uu

//

(b)

(a)

(c)

(c)ν′1+i+j,l

ν′1+i,j+l

∗ SS
iiSS

for i, j, l ≥ 0 with i+ j + l = t. We claim that the exterior square commutes. The square
(a) commutes because Y∗ is a comodule, (b) commutes because S∗Lζ is a coalgebra, and
the squares (c) commute by definition of ν ′. Injectivity of the map ∗ proves the claim.

Proposition 4.17. Let X1 be the underlying object of some (s, t)-coherent module (X,Y )
with t < p−1, and let f : K → X1 be a surjective map. Then the kernel of the composition

Lζ ⊗K
id⊗f−−−→ Lζ ⊗X1

µ1,1−−→ X2

is the underlying object of some (s− 1, t+ 1)-coherent module.

Proof. Let (X,Y, σ) be an (s, t)-coherent module and denote by ν : Y∗ → S∗Lζ ⊗ Y∗ the
structure map of Y∗. We want to define an (s− 1, t+ 1)-coherent module (C,Z, σ′) with
ν ′ : Z∗ → S∗Lζ ⊗ Z∗ being the structure map of Z∗. As in the proof of Proposition 2.6,
define C to be the kernel of the composite

F (K)
F (f)−−−→ F (X1)→ X[1].

Then C is an (s − 1)-coherent module by Lemma 2.4. Furthermore, define the S∗Lζ-
comodule Z∗ to be the one defined in Lemma 4.16 out of Y∗ and ϕ = f : K → X1. The
inclusion of C into F (K) then defines the injective map σ′ : C → F (Zt+1). Now we have
defined all the data - it remains to show that

0→ Ci−1

σ′i−1−−−→ Λi−1Lζ ⊗ Zt+1 → ΛiLζ ⊗ Zt → · · · → Λi+tLζ ⊗ Z0 → 0 (4.18)

is an exact sequence for all i = 1, . . . s. By definition, the sequence

0 // Ci−1

σ′i−1
// Λi−1Lζ ⊗ Zt+1

//

id⊗f ''OOOOOOOOOOO
Xi

// 0

Λi−1Lζ ⊗X1

µi−1,1

;;wwwwwwwww
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4.2 Completion of the proof

is exact. The Yoneda splice of this with (4.13) gives an exact sequence, which agrees with
(4.18) due to the following commutative diagram:

Λi−1Lζ ⊗ Zt+1

id⊗ν′1,t
//

id⊗f ))SSSSSSSSSSSSSSS
Λi−1Lζ ⊗ Lζ ⊗ Zt

µi−1,1⊗id
// ΛiLζ ⊗ Zt

Λi−1Lζ ⊗X1 µi−1,1

//

id⊗σ1

OO

Xi

σi

OO

Suppose that (X,Y ) is an (s, t)-coherent module with t < p − 1. By applying
Lemma 4.16 to Y∗ and the identity map ϕ = id : X1 → X1, we can view (Y0, Y1, . . . , Yt, X1)
as an S∗Lζ-comodule.

Definition 4.19. We denote by λ(X,Y ) : X1 → St+1Ωnk ⊗ Y0 the composition of the
coaction map X1 → St+1Lζ ⊗Y0 and the canonical inclusion St+1Lζ ↪→ St+1Ωnk tensored
with Y0.

By Remark 1.14 the exact sequence 0→ Lζ → Ωnk → k → 0 induces a map of graded
right Λ∗Lζ-modules κ : Λ∗+1Ωnk → Λ∗Lζ ; we therefore get a morphism of the associated
chain complexes:

Ωnk ⊗X1
//

ζ⊗id

��

Λ2Ωnk ⊗ Yt //

��

Λ3Ωnk ⊗ Yt−1
//

��

. . . // Λ2+tΩnk ⊗ Y0

��

0 // X1
// Lζ ⊗ Yt // Λ2Lζ ⊗ Yt−1

// . . . // Λ1+tLζ ⊗ Y0
// 0

(4.20)

On the other hand, the coaction map is a map of comodules Y∗
ν−→ S∗Lζ⊗Y0 and therefore

induces a morphism of the associated chain complexes:

Ωnk ⊗ St+1Lζ ⊗ Y0
// Λ2Ωnk ⊗ StLζ ⊗ Y0

// . . . // Λ2+tΩnk ⊗ Y0

Ωnk ⊗X1
//

OO

Λ2Ωnk ⊗ Yt //

OO

. . . // Λ2+tΩnk ⊗ Y0

(4.21)

Lemma 4.22. Suppose that X1 is the underlying object of some (1, p−2)-coherent module
(X,Y ). Then ζX1 : Ωnk ⊗X1 → X1 stably factors as the composition

Ωnk ⊗X1
id⊗λ(X,Y )−−−−−−−→ Ωnk ⊗ Sp−1Ωnk ⊗ Y0

γ⊗id−−−→ Ωp−2ΛpΩnk ⊗ Y0
Ωp−2κp⊗id−−−−−−−→ Ωp−2Λp−1Lζ ⊗ Y0

Φ(X,Y )−−−−−→ X1. (4.23)

Proof. As in (4.20) we get a diagram as follows:

Ωnk ⊗X1
//

ζ⊗id

��

Λ2Ωnk ⊗ Yp−2
//

��

Λ3Ωnk ⊗ Yp−3
//

��

. . . // ΛpΩnk ⊗ Y0

κp⊗id

��

0 // X1
// Lζ ⊗ Yp−2 // Λ2Lζ ⊗ Yp−3

// . . . // Λp−1Lζ ⊗ Y0
// 0

61



5. Toda brackets

The exact lower row represents the element ϕ = Φ(X,Y ) in Êxtp−2
kG (Λp−1Lζ ⊗ Y0, X1).

Since the modules ΛiΩnk are projective for i = 2, . . . , p−1, the upper row represents some
element ψ ∈ Êxt−p+2

kG (Ωnk⊗X1,ΛpΩnk⊗Y0). Commutativity of the diagram tells us that
ζX1 = ϕκpψ by Proposition 3.9. Using diagram (4.21) and the inclusions SiLζ ⊂ SiΩnk,
we get a diagram

Ωnk ⊗ Sp−1Ωnk ⊗ Y0
// Λ2Ωnk ⊗ Sp−2Ωnk ⊗ Y0

// . . . // ΛpΩnk ⊗ Y0

Ωnk ⊗X1
//

λ=id⊗λ(X,Y )

OO

Λ2Ωnk ⊗ Yp−2
//

OO

. . . // ΛpΩnk ⊗ Y0

where the upper row represents γ ⊗ idY0 and the lower row represents ψ. Hence, ψ = γλ.
Therefore, ζX1 = ϕκpψ = ϕκpγλ.

Proposition 4.24. Let X1 be the underlying object of some (s, t)-coherent module (X,Y )
with s+ t = p− 1. If the composition

Ωnk ⊗ Sp−1Ωnk
γ−→ Ωp−2ΛpΩnk

Ωp−2κp−−−−−→ Ωp−2Λp−1Lζ

is stably zero when we tensor it with Y0, then ζ-ord(X1) ≥ s.
Proof. We do this by induction on s, starting with s = 1. By Lemma 4.22 and our
assumptions, ζX1 = 0 or equivalently ζ-ord(X1) ≥ 1 = s. The inductive step is done
exactly the same way as in the proof of Proposition 2.6 by using Proposition 4.17. Notice
that the object Y0 does not change during the induction.

Proof of Theorem 4.1. Notice that Lζ ⊗M is the underlying object of some (p − 1, 0)-
coherent module as follows: the (p− 1)-coherent module is X = F (M), and Y0 = M . The
morphism σ : X → F (M) is simply the identity map, and the sequence (4.13) reduces to
0→ Xi

σi−→ ΛiLζ ⊗M → 0.
Our assumptions together with Proposition 4.7 tensored by M imply that the con-

ditions of Proposition 4.24 are satisfied, so we get ζ-ord(M/ζ) = ζ-ord(M⊗Lζ) ≥ p−1.

5 Toda brackets

So far we only have considered lower bounds on the order. In this section, we will introduce
techniques which enable us to prove upper bounds on the order. The main ingredient will
be (2p−1)-fold Massey products. As a first step, we will recall the definition of these higher
products and then show the connection to Toda brackets, an analog which can be defined in
any triangulated category. In a second step we show that certain Toda brackets can be used
to build up a criterion for the ζ-order to be bounded from above. More explicitly, we show
that if certain (2s − 1)-fold Toda brackets of the form 〈ζ, α1, ζ, . . . , αs, ζ〉 do not contain
zero, then ζ-ord(k/ζ) ≤ s−1. We will then try to find examples of such Toda brackets, and
to do so, we will have to compute single elements of them, which is usually a difficult task.
In our case we can use the relation α1α2 . . . αp−1P1(ζ) ⊆ 〈ζ, α1, ζ, . . . , αp−1, ζ〉, which we
will prove in the third subsection using a connection between Toda brackets and coherent
modules. Finally we are able to give our explicit example in the fourth part of this section.
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5.1 Toda brackets and Massey products

5.1 Toda brackets and Massey products

We are now going to prove that Massey products in Ĥ∗(G) agree with certain Toda
brackets in mod-kG.

Proposition 5.1. Suppose we are given cohomology classes a1, a2, . . . , an ∈ Ĥ∗(G). We
will also view these elements as stable morphisms Ω|aj |k → k. The Massey product
〈a1, a2, . . . , an〉 and the Toda bracket 〈a1, a2, . . . , an〉 associated to the sequence of maps
Ω?k

an−→ Ω?k
an−1−−−→ . . .

a1−→ k (where the Ω?k are suitable shifts of k) define the same subset
of Ĥ |a1|+···+|an|−(n−2)(G).

Let us recall the definitions first. Fix a complete projective resolution P of the trivial
kG-module k, and let ∂ be the differential of P . Denote by A = Hom∗kG(P∗, P∗) the
endomorphism dga associated to P . More explicitly, A is the differential graded algebra
whose degree n-part is given by

A(n) =
∏
j∈Z

HomkG(Pn+j , Pj),

and the differential is df = ∂f − (−1)nf∂. Then degree n-cocycles in A are chain trans-
formations P → P [n], and two of those differ by a coboundary if and only if the chain
transformations are homotopic. Therefore, H∗A ∼= Ĥ∗(G).

An n-fold defining system is a collection {bij} of elements of A for all pairs (i, j) with
1 ≤ i ≤ j ≤ n and (i, j) 6= (1, n) satisfying

(−1)gi−1dbij =
j−1∑
r=i

bi,rbr+1,j

for all 1 ≤ i ≤ j ≤ n with (i, j) 6= (1, n), where gj = 1 +
∑j

r=1(|brr| − 1). In particular,
the bii’s are cocycles. Every defining system gives rise to a cocycle

c =
n−1∑
r=1

b1,rbr+1,n.

For fixed cocycles b11, . . . , bnn, the set of cohomology classes represented by all cocycles
arising from defining systems will be denoted by 〈b11, . . . , bnn〉 and is called n-fold Massey
product . It is well-known that this set only depends on the cohomology classes repre-
sented by b11, . . . , bnn, and we will also write 〈b11, . . . , bnn〉 = 〈c1, . . . , cn〉 where ci is the
cohomology class represented by bii.

Remark 5.2. It is worth noting that there are several different definitions of Massey pro-
ducts in the literature (see [12], [13], [20]), which differ by certain signs. A quick check
of signs asserts that our definition leads to (−1)n times the set given in [12]. We have
chosen this one because, as we will prove now, it agrees with the definition via certain
Toda brackets which does not involve any choice of signs. Also it has the nice property
that the two-fold Massey product is just the usual product (which in the other definitions
is not always the case).
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5. Toda brackets

Remark 5.3. We also use a slightly different language than previous definitions of Massey
products. Usually one says that a Massey product is defined if there is a defining system
for it, and then the product is the set of cocycles associated to its defining systems. In the
following, we will adopt the notion from Toda brackets and simply say that every Massey
product is defined but might be the empty set.

For the definition of Toda brackets we take the definition of filtered objects from [26],
Definition A.1. Let us work in a triangulated category T with shift functor [1]. Suppose

that Xn−1
λn−1−−−→ Xn−2

λn−2−−−→ . . .
λ2−→ X1 is a sequence of n − 2 composable maps in T .

An (n− 1)-filtered object X ∈ {λ2, . . . , λn−1} is a sequence of maps ∗ = F0X
i0−→ F1X

i1−→
. . .

in−1−−−→ Fn−1X = X together with choices of exact triangles

FjX
ij−→ Fj+1X

pj+1−−−→ Xj+1[j]
dj−→ FjX[1]

such that pj [1] ◦ dj = λj+1[j]. The maps X1
∼= F1X → Fn−1X and Fn−1X → Xn−1[n− 2]

are denoted by σX and σ′X , respectively. The filtered object can be visualized as follows:

∗ = F0X // F1X //

�������
F2X //

�������
. . . //

�������� Fn−2X //

��������
Fn−1X

xxrrrrrr

X1

oCC

aaCC

X2[1]

o??
__??

ooo X3[2]

o??
__??

ooo . . .ooo Xn−1[n− 2]

oLLL
ffLLL

ooo

Here X o //Y denotes a map of degree 1, that is, a map X → Y [1]. Also, the diagram
is commutative-exact in the following sense:

Definition 5.4. A diagram is called commutative-exact if every triangle with exactly one
map o // of degree one is an exact triangle, and all other triangles in the diagram are
commutative.

To be more precise, the first condition means that every triangle of the form

X
a // Y

b������

Z
c
o==
^^==

represents an exact triangle X a−→ Y
b−→ Z

c−→ X[1].
In the definition of a filtered object, suppose that the given set of composable maps

λn−1, . . . , λ2 lives in a strictly full triangulated subcategory S. Then every (n−1)-filtered
object X and its filtrations F0X,F1X, . . . , Fn−1X also lie in S. Recall that S is a strictly
full subcategory if it is a full subcategory and for every isomorphism B ∼= B′ in T for
which B belongs to S we also have that B′ belongs to S.

Definition 5.5 ([26], Definition A.2). Suppose that Xn
λn−→ Xn−1

λn−1−−−→ . . .
λ1−→ X0

is a sequence of n composable maps in a triangulated category T . We say that a map
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5.1 Toda brackets and Massey products

γ ∈ T (Xn[n− 2], X0) belongs to the n-fold Toda bracket 〈λ1, . . . , λn〉 if and only if there
is an (n− 1)-filtered object X ∈ {λ2, . . . , λn−1} and a commutative diagram

X1

λ1

%%KKKKKKKKKKK

σX

��

Xn[n− 2]
γn //

λn[n−2] ''OOOOOOOOOOO X γ0

//

σ′X
��

X0

Xn−1[n− 2]

(5.6)

such that γ = γ0γn.

Let us note here that everything takes place in S if the n maps we started with belong
to S. It also follows from the definition that Toda brackets are compatible with exact
equivalences of triangulated categories.

We will apply this to the case when T = mod-kG and S is the strictly full triangulated
subcategory generated by the trivial kG-module k. There is an equivalence of triangulated
categories (see, e.g., [14], proof of Proposition 7.13 and Example 7.16)

Z : Kac(inj−kG)
∼=−→ mod-kG (5.7)

where Kac(inj−kG) denotes the homotopy category of (unbounded) acyclic chain com-
plexes of (finitely generated) injective kG-modules. LetM be the strictly full triangulated
subcategory generated by P in Kac(inj−kG). Since Z(P ) ∼= k we get that M agrees to S
under the equivalence Z, so we are going to describe M more explicitly.

Consider the set C of all chain complexes which arise from the following construction.
Choose a non-negative integer r and integers n1, n2, . . . , nr; then consider the complex
(n1, n2, . . . , nr, D) whose modules are the same as in P [n1]⊕ P [n2]⊕ · · · ⊕ P [nr], but the
differential is given by a matrix of the form

D =


(−1)n1∂ a11 a12 a13 . . . a1,r

(−1)n2∂ a22 a23 . . . a2,r

(−1)n3∂ a33 . . . a3,r

. . . . . .
...

(−1)nr∂

 .

Here ∂ is the differential of P , so that (−1)ni∂ is the differential of P [ni]. The aij ’s are
elements of the endomorphism dga A, and we assume that they are of suitable degrees and
satisfy certain relations so that D2 = 0. We will sometimes write [D] for this complex.

Lemma 5.8. The elements of C belong toM, and every object inM is isomorphic (inM)
to an element of C.

Proof. Recall that one possibility of constructing the mapping cone of a map of chain
complexes f : D → E is given as follows: take the same modules as in E ⊕ D[1], but
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5. Toda brackets

with differential
(
∂E f
−∂D

)
. If we have two objects (n1, . . . , nr, D) and (m1, . . . ,ms, E)

in C then a morphism [D] → [E] is a matrix F with entries in A satisfying EF = FD.
Therefore, its mapping cone

(
m1, . . . ,ms, n1 + 1, . . . , nr + 1,

(
E F
−D
))

is again an object
in C.

Let us prove by induction on r that (n1, . . . , nr, D) ∈ C belongs to M. For r = 0 this
says that the trivial complex is inM; for r = 1 we need to show that shifts of P lie inM,
which is true by construction. Suppose r ≥ 2, then we know that the object in question is
the mapping cone of a morphism between two objects of C with smaller r. By induction
hypothesis, this morphism belongs to M, and so does its cone.

Now consider the strictly full subcategory N of M consisting of all objects which are
isomorphic to objects in C. Then N is closed under shifts and mapping cones (because
the set C is), and P is contained in N . This proves the second statement.

The following simple fact is a useful tool for lifting homotopy-commutative diagrams
to strictly-commuting ones.

Lemma 5.9. Suppose that h : P → Q is a chain map between acyclic complexes of
injective modules, and that R is also an acyclic complex of injectives.

(i) Assume further that g : P → R is a chain map and f : Q→ R is a morphism such
that fh = g in Kac(inj−kG). If h is levelwise an inclusion then there is a lift of f
to a chain map f̂ such that f̂h = g as chain maps, not only in Kac(inj−kG).

(ii) Assume that g : R → Q is a chain map and f : R → P is a morphism such that
hf = g in Kac(inj−kG). If h is levelwise a surjection then there is a lift of f to a
chain map f̂ such that hf̂ = g as chain maps, not only in Kac(inj−kG).

(i) P
h //

g
��

Q

f���
�

�
(ii) P

h // Q

R R

g

OO

f

__>
>

>
>

Proof. Let us prove (i) only. We know that fh = g up to some homotopy H : P → R[−1],
that is, fh− g = ∂RH +H∂P . Since h is levelwise an inclusion of a direct summand, we
can lift H to a map H ′ : Q → R[−1] satisfying H = H ′h. Then f̂ = f − ∂RH ′ − H ′∂Q
satisfies f̂h = g.

Proposition 5.10. Suppose we are given a sequence of composable maps

P [−m1] = X1
a2←− X2

a3←− X3 ← . . .
an−1←−−− Xn−1

in Kac(inj−kG), where each ai is a cocycle in A of degree mi, m1 is some integer, and
the Xi’s are suitable shifts of the complex P . Let us write gi = 1 +

∑i
j=1(mi − 1). Then

every (n− 1)-filtered object in {a2, . . . , an−1} is isomorphic to an (n− 1)-filtered object of
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5.1 Toda brackets and Massey products

the following form:

FjX = (−g1,−g2, . . . ,−gj ,


(−1)g1∂ a22 a23 ... a2,j

(−1)g2∂ a33 ... a3,j

... ...
...

(−1)gj−1∂ aj,j
(−1)gj ∂

)

and ij : FjX → Fj+1X is the inclusion into the first summands, pj+1 : Fj+1X →
Xj+1[j] is the projection onto the last summand, dj : Xj+1[j] → FjX[1] is the map
−
(
a2,j+1 a3,j+1 . . . aj+1,j+1

)T , and ajj = −aj for all j.

Here we used the notation MT for the transpose of the matrix M .

Proof. As a first step we show that the given object is indeed an (n − 1)-filtered object,

i.e., Xj+1[j− 1]
−dj [−1]
−−−−−→ FjX

ij−→ Fj+1X
pj+1−−−→ Xj+1[j] is an exact triangle and pj [1] ◦ dj =

−aj+1,j+1 = aj+1. The latter actually holds strictly (not only up to homotopy), and the
former follows from the fact that Fj+1X is the mapping cone (as constructed in the proof
of Lemma 5.8) of −dj [−1], with ij and pj+1 being the associated maps.

Now we argue by induction and consider a diagram

∗ = F0X // F1X //

�������
F2X //

�������
. . . //

��������
Fj−1X //

~~~~~~~~~
(∗)

F ′jX

||yyyyy

X1

oAAA

``AAA

X2[1]

o==

^^==

ooo X3[2]

o==

^^===

ooo . . .ooo Xj [j − 1]
oJJ

ddJJJ

ooo

�� _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ���
�

�

�
�

��� _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ��
in which we assume that the boxed region is already of the form we want it to be. Since
Fj−1X → Xj−1[j − 2] is levelwise a surjection, we can assume by Lemma 5.9 that the
map dj−1 : Xj [j − 1] → Fj−1X is chosen in such a way that the triangle (∗) commutes
strictly. Then dj−1 is of the form −

(
a2j a3j . . . aj,j

)T with aj,j = −aj . Now let FjX
be constructed as in the statement of the proposition; then the triangles

Xj [j − 2]
−dj [−1]
−−−−−→ Fj−1X → F ′jX → Xj [j − 1]

and

Xj [j − 2]
−dj [−1]
−−−−−→ Fj−1X → FjX → Xj [j − 1]

are both exact and hence isomorphic.

Proof of Proposition 5.1. Due to the equivalence (5.7) we can work with Toda brackets
in M instead of mod-kG, so we have a sequence of composable maps P = X0

a1←− X1
a2←−

. . .
an−1←−−− Xn−1

an←− Xn with ai ∈ A and the Xi’s are suitable shifts of P . Let us start
with an (n − 1)-filtered object X and maps γn, γ0 such that γ0γn defines an element of
the Toda bracket as in Definition 5.5. We can assume that X is of the form described in
Proposition 5.10, where m1 is the degree of a1. Then σX : P [−m1] → X is the inclusion
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5. Toda brackets

of the first summand, and σ′X : X → P [−gn−1] is the projection onto the last summand.
Using Lemma 5.9 we can assume that the diagram of chain complexes and chain maps

X1

a1

%%KKKKKKKKKKK

σX

��

Xn[n− 2]
γn //

an[n−2] ''OOOOOOOOOOO X γ0

//

σ′X
��

X0

Xn−1[n− 2]

commutes strictly, which means that γn is of the form −
(
a2,n . . . an−1,n an,n

)T with
ann = −an, and γ0 is of the form −

(
a11 a12 . . . a1,n−1

)
with a11 = −a1. The fact

that γ0 and γn are chain maps can be expressed by saying that
(−1)g0∂ a11 a12 a13 ... a1,n−1 0

(−1)g1∂ a22 a23 ... a2,n−1 −a2,n

(−1)g2∂ a33 ... a3,n−1 −a3,n

(−1)g3∂ ... a4,n−1 −a4,n

. . .
...

...
(−1)gn−1∂ −an,n

(−1)gn∂


2

=


0 0 . . . −c

0
. . . 0
0 0

0

 ,

where c is some cocycle representing the map γ = γ0γn. By putting bij = −aij (and in
particular bii = −aii = ai) we have therefore found a defining system whose associated
cocycle is the element of the Toda bracket we started with. Going backwards through the
arguments we get that every defining system yields an element of the Toda bracket.

In view of Proposition 5.1 we will often not distinguish between Massey products and
its corresponding Toda brackets. Still, one has to be careful with the signs: whenever
we write a Toda bracket 〈a1, . . . , an〉 with ai ∈ Ĥ∗(G), we always mean the Toda bracket
associated to the sequence of composable maps

Ω?k
an−→ Ω?k

an−1−−−→ . . .
a2−→ Ω?k

a1−→ k,

where the last object is k (not some shift of k).

Definition 5.11. We say that a Toda bracket 〈λ1, λ2, . . . , λn〉 is strictly defined if for
each pair 1 ≤ i < j ≤ n with (i, j) 6= (1, n) we have 〈λi, . . . , λj〉 = {0}.

Corollary 5.12. Let c1, c2, . . . , cn ∈ Ĥ∗(G). The Toda bracket 〈c1, . . . , cn〉 in mod-kG is
strictly defined if and only if the corresponding Massey product is (in the sense of May,
[20]).

Strictly defined Toda brackets (and Massey products) are much easier to deal with
than arbitrary ones, mainly because every partially defined filtered object (and defining
system) can be extended to a completely defined one. We will use this fact in the following
version later.
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5.1 Toda brackets and Massey products

Lemma 5.13. Suppose that Xn
λn−→ Xn−1

λn−1−−−→ . . .
λ1−→ X0 is a sequence of composable

maps such that the Toda bracket 〈λ1, . . . , λn〉 is strictly defined. Then for every (n − 1)-
filtered object X ∈ {λ2, . . . , λn−1} there are maps γn, γ0 such that λn[n − 2] = σ′Xγn and
λ1 = γ0σX , that is, the diagram (5.6) commutes.

Proof. Let us show the existence of γn only. For every pair 0 ≤ i < j < n choose exact
triangles FiX → FjX → Fj/FiX. Notice that the exact triangles FjX → Fj+1X →
Xj+1[j] induce exact triangles Fj/FiX → Fj+1/FiX → Xj+1[j]. Now we claim that
for every i = 0, 1, . . . , n − 2 there is a map βi : Xn[n − 2] → Fn−1/FiX such that the

composition Xn[n − 2]
βi−→ Fn−1/FiX → Xn−1[n − 2] equals λn[n − 2]. For i = n − 2

we know that the second map in the latter composition is an isomorphism. Assume we
have constructed βi and let us construct βi−1. We have an (n − 1 − i)-filtered object
∗ = Fi/FiX → Fi+1/FiX → · · · → Fn−1/FiX which lies in {λi+2, . . . , λn−1}, up to shifts.
There is a commutative diagram

Fi+1/FiX ∼= Xi+1[i]
λi+1[i]

**UUUUUUUUUUUUUU

��

Xn[n− 2]
βi //

λn[n−2] ((RRRRRRRRRRR
Fn−1/FiX

��

τ
// Fi/Fi−1X[1] ∼= Xi[i]

Xn−1[n− 2]

where the map τ is the composite Fn−1/FiX → FiX[1] → Fi/Fi−1X[1]. Since τβi is an
element of the Toda bracket 〈λi+1, . . . , λn〉 = {0} we know that τβi = 0, which means

that βi can be factorized as Xn[n − 2]
βi−1−−−→ Fn−1/Fi−1X → Fn−1/FiX. This completes

the inductive step, and putting γn = β0 we get the result.

We end this section with two technical lemmas. In the first one we basically recall the
octahedral axiom in the form we will use it later, and we draw an immediate conclusion.

Lemma 5.14. Suppose we are given the left-hand side diagram

D

bo
k g c

((
[ W S

v
o // B x

//

α
��������

F

o���
w
�����

a

qq

"

�
�

�
x

mf

C

z

[[77777

u
��

777777 A
β

oo

γ

[[66666

E

o��� y

CC���
c

MM

XQ
G

7
+

#
�

E[−1]
y[−1]

//

c[−1]

��

A

γ

��

D[−1]
v[−1]

// B

in a triangulated category T , without the dashed arrows, and assume further that it is
commutative-exact. Then the dashed arrows exist in such a way that the diagram is still
commutative-exact and γ[1]y = vc and uα = ax. Furthermore, E[−1] is a weak pullback
in the right-hand side diagram.
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5. Toda brackets

Proof. The first statement is the octahedral axiom. For the second statement let T λ−→ A
and T κ−→ D[−1] be any two maps with γλ = v[−1]◦κ. Then βλ = αγλ = α◦v[−1]◦κ = 0,

so that λ factors as T e−→ E[−1]
y[−1]−−−→ A for some map e. Then v[−1] ◦ (c[−1] ◦ e − κ) =

γ ◦ y[−1] ◦ e− γλ = 0. Therefore, c[−1] ◦ e− κ factors as T τ−→ C[−1]
z[−1]−−−→ D[−1]. Define

f = e− u[−1]τ : T → E[−1]. Then c[−1]f = κ and y[−1]f = λ, as desired.

Lemma 5.15. Suppose that Xn
λn−→ Xn−1

λn−1−−−→ . . .
λ2−→ X1 is a sequence of n − 1

composable maps in a triangulated category T , and let X ∈ {λ2, . . . , λn−1} be an (n− 1)-

filtered object. Assume that the composition Xn[n− 3]
λn[n−3]−−−−−→ Xn−1[n− 3]

dn−2−−−→ Fn−2X

can also be written as a composite Xn[n− 3]
φ−→ X1

∼= F1X → Fn−2X. Then (−1)n−1φ is
an element of the (n− 1)-fold Toda bracket 〈λ2, . . . , λn〉.

Proof. Choose exact triangles FjX[−1]
πj−→ GjX

wj−→ F1X → FjX for all j = 1, . . . , n− 1.
For all j = 1, 2, . . . , n− 2 we obtain a diagram

Xj+1[j − 1]

d̃j
o

i g e d b a _

))

] \ Z Y W U T−dj [−1]
o // FjX[−1]

−πj
//

ij [−1]

~~||||||||||||
GjX

o�����

wj

�������

−ĩj

rr

�
�

�
�

�



�
�

z
uplif

Fj+1X[−1]

pj+1[−1]

bbEEEEEEEEEEEEE

πj+1

  BBBBBBBBBBBB
F1X[−1]oo

__????????????

Gj+1X

o������

−wj+1

??������
p̃j+1

RR

ZWTQ
M

I
C

=
8

3
/

,
)

'

(the signs coming from shifting of triangles), and the octahedral axiom assures that the
dashed maps exist and form an exact triangle. Also, p̃j [1] ◦ d̃j = p̃j [1]πj [1]dj [−1] =

pj ◦ dj [−1] = λj+1[j − 1]. Therefore ∗ ∼= G1X
−ĩ1−−→ G2X

−ĩ2−−→ . . .
−ĩn−2−−−−→ Gn−1X is an

(n − 2)-filtered object in {λ3, . . . , λn−1}. Its associated maps are σ̃′X = p̃n−1 : Gn−1X →
Xn−1[n− 3] and σ̃X = (−1)n−1ĩn−2 . . . ĩ2p̃

−1
2 : X2 → Gn−1X. Our goal is to choose maps

γn, γ1 such that the diagram

X2

σ̃X
��

λ2

%%KKKKKKKKKKK

Xn[n− 3]
γn //

λn[n−3] ''OOOOOOOOOOO
Gn−1X

(a)

(b)
γ1

//

σ̃′X
��

X1

Xn−1[n− 3]
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5.2 Toda brackets and order

commutes and γ1γn = (−1)n−1φ. We choose γ1 = (−1)n−1p1wn−1, then (a) commutes
due to the relations wj = wj+1ĩj and λ2p̃2 = p1 ◦ d1[−1] ◦ p̃2 = p1w2.

Let us write i : F1X → Fn−2X. By Lemma 5.14 and our assumptions, we have a weak
pullback diagram

Xn[n− 3]

λn[n−3]

%%

−p−1
1 φ

**
γn ((RRRRRR

Gn−1X
−wn−1

//

p̃n−1
��

F1X

i
��

Xn−1[n− 3]
−dn−2

// Fn−2X

which implies the existence of the dashed arrow γn. Then (b) commutes by definition,
and γ1γn = (−1)n−1φ is an element of the Toda bracket.

5.2 Toda brackets and order

From now on, we fix a Tate cohomology class ζ of even degree n.

Lemma 5.16. Suppose that t < p − 1 and α1, . . . , αt+1 ∈ Ĥ∗(G) are Tate cohomology
classes of even degree such that the (2t + 3)-fold Toda bracket 〈ζ, α1, ζ, . . . , ζ, αt+1, ζ〉 is
strictly defined. Then there is a (2t + 2)-filtered object ∗ = F0Z → F1Z → · · · → F2t+2Z

in {ζ, α1, ζ, . . . , αt, ζ}, associated to the maps k = Z1
ζ←− Z2

α1←− Z3 ← . . .
ζ←− Z2t+2 (where

the Zi’s are suitable shifts of k), with the following properties:

(i) ζ-ord(F2t+2Z) ≥ ζ-ord(k/ζ)− t.

(ii) If we write Z2t+3 = Ω|αt+1|Z2t+2, then the map αt+1 : Z2t+3 → Z2t+2 factors as

Z2t+3
α̂t+1−−−→ Ω2t+1F2t+2Z

Ω2t+1σ′Z−−−−−→ Z2t+2.

Proof. Recall that we have the following exact triangle:

Ωk
η−→ Lζ

ι−→ Ωnk
ζ−→ k

We prove the proposition by induction on t, beginning with t = 0. Define the filtered
object to be as follows:

∗ // k
−η[1]

//

�����
�����

Lζ [1]

ι[1]zztttttt

k

o99

\\99

Ωnk[1]o
ζ[1]

oo

oEEE
ζ[1]

bbEEE

Then F2t+2Z = Lζ [1] = k/ζ so that (i) holds. The map α̂1 exists due to ζα1 = 0.
Now let us assume the statement is true for t− 1 and prove it for t. By induction we

know that there is a map α̂t[2t] : Z2t+1[2t]→ F2tZ[1]. Since

ζ-ord(F2tZ) ≥ ζ-ord(k/ζ)− t+ 1 ≥ 1
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5. Toda brackets

by induction hypothesis and Corollary 2.8, we know that there exists some extension
F : k/ζ ⊗ Z2t+1[2t]→ F2tZ[1] of −α̂t[2t] in such a way that there is an exact triangle

F2tZ → F2t+2Z → k/ζ ⊗ Z2t+1[2t] F−→ F2tZ[1]

with some object F2t+2Z satisfying ζ-ord(F2t+2) ≥ ζ-ord(k/ζ) − t. We get the following
diagram without the dashed and dotted arrows:

F2tZ
**

//________ F2t+1Z //

zzu
u

u
u

u
u

F2t+2Z

||yyyyyyyyyy

qq

Z2t+1[2t]

α̂t[2t]
o<<<<

^^<<<<

−η[1]⊗id
$$IIIIIIIIIII

Z2t+2[2t+ 1]o
ζ

oo

o

ee

k/ζ ⊗ Z2t+1[2t]

ι[1]

99ssssssssssssF

o

QQ

(5.17)

If we choose F2t+1Z to be some choice of cone of α̂t[2t], we get the dashed arrows and the
octahedral axiom guarantees the existence of the dotted arrows such that the resulting
diagram is commutative-exact. We have therefore extended our (2t)-filtered object to a
(2t+ 2)-filtered object, and (i) is also satisfied.

Now put Z2t+3 = Ω|αt+1|Z2t+2. For the existence of α̂t+1, let us choose exact triangles
F1Z → FiZ → Fi/F1Z

πi−→ F1Z[1] for all i = 1, 2, . . . , 2t + 2. Then the (2t + 1)-filtered
object ∗ = F1/F1Z → F2/F1Z → · · · → F2t+2/F1Z is (up to shifts) an element of
{α1, ζ, . . . , αt, ζ}. By Lemma 5.13 there is a map ω yielding a commutative diagram as
follows:

Z2[1]
ζ

))RRRRRRRRRRRR

��

Z2t+3[2t+ 1]

αt+1 ((QQQQQQQQQQQ
ω // F2t+2/F1Z π2t+2

//

��

F1Z[1] ∼= Z1[1]

Z2t+2[2t+ 1]

Then π2t+2 ω lies in the Toda bracket 〈ζ, α1, . . . , ζ, αt+1〉 = {0}. Therefore, Ω2t+1ω lifts
to a map α̂t+1 : Z2t+3 → Ω2t+1F2t+2Z, proving (ii).

Corollary 5.18. Suppose that s ≤ p − 1, and let α1, . . . , αs ∈ Ĥ∗(G) be Tate co-
homology classes of even degree in such a way that the (2s + 1)-fold Massey product
〈ζ, α1, ζ, . . . , ζ, αs, ζ〉 is strictly defined. If ζ-ord(k/ζ) ≥ s, then 0 is an element of the
Massey product.

Proof. We put t = s− 1 in Lemma 5.16 and get a 2s-filtered object

∗ = F0Z // F1Z //

�������
F2Z //

�������
. . . // F2sZ

zzuuuuuu

Z1

oBB
``BB

Z2[1]
o>>
^^>>

ooo . . .
o888

\\888

ooo Z2s[2s− 1]ooo Z2s+1[2s]

α̂s[2s]o
cc

αs[2s]
ooo
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5.3 Toda brackets and coherent modules

together with a map α̂s (the dotted arrow) making the diagram commutative-exact, and
we know that ζ-ord(F2sZ) ≥ 1. By choosing a cone F2s+1Z of α̂s[2s− 1] we can view the
diagram as a (2s+ 1)-filtered object. Put Z2s+2 = ΩnZ2s+1; then the diagram

Z2s+2[2s− 1]
ζ
//

Ωnα̂s[2s−1]

��

Z2s+1[2s− 1]

α̂s[2s−1]

��

ΩnF2sZ
ζ

// F2sZ

commutes. Since ζ-ord(F2sZ) ≥ 1, the bottom vertical map vanishes. Hence α̂sζ = 0,
and therefore 0 ∈ 〈ζ, α1, ζ, . . . , αs, ζ〉 due to Lemma 5.15.

5.3 Toda brackets and coherent modules

Proposition 5.19. Suppose that t < p−1 and α1, . . . , αt+1 ∈ Ĥ∗(G) are Tate cohomology
classes of even degree such that the (2t + 3)-fold Toda bracket 〈ζ, α1, ζ, . . . , ζ, αt+1, ζ〉 is
strictly defined. Then there is a (p − 1 − t, t)-coherent module (X,Y ) with Y0 = k and a
(2t+ 2)-filtered object ∗ = F0Z → F1Z → · · · → F2t+2Z in {ζ, α1, ζ, . . . , αt, ζ}, associated

to the maps k = Z1
ζ←− Z2

α1←− Z3 ← . . .
ζ←− Z2t+2 (where the Zi’s are suitable shifts of k),

with the following properties in mod-kG:

(i) F2t+2Z is isomorphic to X1[2t+ 1].

(ii) The map σZ : k → F2t+2Z equals the composition

k
−η[1]−−−→ Lζ [1]

Ω−t−1ω−1
t+1−−−−−−−→ ΩtΛt+1Lζ [2t+ 1]

Φ(X,Y )[2t+1]−−−−−−−−→ X1[2t+ 1],

where ωt+1 and Φ(X,Y ) are constructed in (4.5) and Definition 4.15, respectively.

(iii) The composition

Ω2t+1F2t+2Z
Ω2t+1σ′Z−−−−−→ Z2t+2 = Ω|α1|+···+|αt|+(t+1)nk

(−1)tα1...αt−−−−−−−→ Ω(t+1)nk

equals Ω2t+1F2t+2Z ∼= X1
λ(X,Y )−−−−→ S1+tΩnk ∼= (Ωnk)⊗(1+t), where λ(X,Y ) is defined

in Definition 4.19.

(iv) Let us write Z2t+3 = Ω|αt+1|Z2t+2. The map αt+1 : Z2t+3 → Z2t+2 factors as a

composite Z2t+3
α̂t+1−−−→ X1

∼= Ω2t+1F2t+2Z
Ω2t+1σ′Z−−−−−→ Z2t+2.

(v) By (iii) and (iv), the composition

Z2t+3
α̂t+1−−−→ X1

λ(X,Y )−−−−→ S1+t(Ωnk) ∼= (Ωnk)⊗(1+t)

equals (−1)tα1α2 . . . αt+1 : Z2t+3 = Ω|α1|+···+|αt+1|+(t+1)nk → Ω(t+1)nk.
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5. Toda brackets

We will draw a picture visualizing the situation in Remark 5.23, after the proof.

Proof. We do this by induction on t, beginning with t = 0. We have to define a (p− 1, 0)-
coherent module, and we take X∗ = Λ∗Lζ = F (k), with σ : X → F (Y0) being the identity
map. Define the filtered object to be the following:

∗ // k
−η[1]

//

�����
�����

Lζ [1]

ι[1]zztttttt

k

o99

\\99

Ωnk[1]o
ζ[1]

oo

oEEEζ[1]
bbEEE

Then X1[1] = Lζ [1] = F2t+2Z so that (i) holds. The map σZ : k → Lζ [1] equals −η[1]
which proves (ii), because Φ(X,Y )[1] ∈ HomkG(Lζ [1], X1[1]) and ω−1

1 : Lζ [1]→ Lζ [1] are
the identity maps. The map λ(X,Y ) : X1 = Lζ → Ωnk equals ι, which proves (iii). The
map α̂1 exists due to ζα1 = 0, thus proving (iv).

Now let us assume the statement is true for t− 1 and prove it for t. By induction we
know that there is a map α̂t : Z2t+1 → X1, and we let −f be a surjective lift of that stable
map to the unstable world. As in Proposition 4.17 we get from f and the (p − t, t − 1)-
coherent module (X,Y ) a (p− 1− t, t)-coherent module (X ′, Y ′) whose underlying object
X ′1 is the kernel of the composition

F : Lζ ⊗ Z2t+1
id⊗f−−−→ Lζ ⊗X1 → X2.

We get the following diagram in mod-kG (without the dashed and dotted arrows):

X2[−1] ∼= X1[−2]

µ

((∗ //_________ C
∗ //

||y
y

y
y

y
y

X ′1

����������

∗

rr

Z2t+1[−1]

−f [−1]
oKKKKK

eeKKKKKK

−η[1]⊗id
""FFFFFFFFFF

Z2t+2

(\)

o
ζ

oo

o

``

Lζ ⊗ Z2t+1

ι
∗

>>~~~~~~~~~F

o

SS

(5.20)

We define C to be some fiber of −f and obtain the dashed arrows. The octahedral axiom
then tells us that the dotted arrows exist in such a way that the diagram is commutative-
exact. Apply the shift functor [2t + 1] to the diagram, and at the same time multiply
the ∗-marked arrows by (−1). This assures that the previously exact triangles are still
exact. Then we can concatenate the result with the (2t)-filtered object we already have
and obtain a (2t + 2)-filtered object with F2t+1Z = C[2t + 1] and F2t+2Z = X ′1[2t + 1]
which proves (i). To prove (ii), notice that the exact sequence

0→ X ′i → ΛiLζ ⊗ Y ′t → Λi+1Lζ ⊗ Y ′t−1 → · · · → Λi+tLζ → 0
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5.3 Toda brackets and coherent modules

is the Yoneda splice of the exact sequences

0→ X1+i → Λ1+iLζ ⊗ Yt−1 → · · · → Λi+tLζ → 0

and
0→ X ′i → ΛiLζ ⊗ Y ′t → X1+i → 0,

as in the proof of Proposition 4.17. Via the isomorphism

Ext1(X1+i, X
′
i) ∼= HomkG(X2[−1], X ′1)

the latter represents the map µ of (5.20), and (ii) follows.
In order to prove (iii), we set up two commutative diagrams. The first one uses the

induction hypothesis on (v) as follows:

X ′1
Ω2t+1σ′Z //

��

(a)

Z2t+2

(v)∼=
��

(−1)tα1···αt
// Ωnk ⊗ StΩnk ∼= (Ωnk)⊗(t+1)

Lζ ⊗ Z2t+1
ι⊗id
// Ωnk ⊗ Z2t+1

id⊗f
// Ωnk ⊗X1

id⊗λ(X,Y )

OO

(5.21)

The square (a) equals the triangle (\) in (5.20), so the diagram commutes. The second
diagram takes the following form:

X ′1
λ(X′,Y ′)

//

��
(b)

S1+t(Ωnk)
∼= //

��

(Ωnk)⊗(1+t)

Lζ ⊗ Z2t+1
1⊗f
// Lζ ⊗X1

ι⊗λ(X,Y )
// Ωnk ⊗ St(Ωnk) ∼=

// (Ωnk)⊗(1+t)

(5.22)

Here, (b) commutes by the definition of the comodule structure on Y ′. Putting the
diagrams (5.21) and (5.22) together, we get a proof of (iii).

The existence of α̂t+1 in (iv) follows exactly as in the proof of Lemma 5.16. The
statement (v) is an immediate consequence of (iii) and (iv), so we are done.

Remark 5.23. The statement of the previous proposition might become clearer by con-
sidering the following diagrammatic picture. In the topological world of the stable homo-
topy category SHC, our trivial kG-module k corresponds to the sphere spectrum S, which
can be viewed as a stable 0-cell. So let us consider k as a 0-cell, then Σnk is an n-cell, Ωnk
is a −n-cell, and Lζ has one −1-cell and one −n-cell. We draw pictures of these objects
as follows:

•−1 •−1

•−n •−n

Ωk Lζ Ωnk//
η

//
ι

//

//
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5. Toda brackets

We draw a dot • for every cell, and indicate its dimension on top of it. Note that this does
not mean that Lζ decomposes as a direct sum of Ωk and Ωnk, the two cells are ‘linked’
by the map ζ in an appropriate sense, but we do not include this information into the
figure. Now we draw a picture visualizing the situation of Proposition 5.19 in the special
case t = 2 as follows:

GF

@A BC
GF

BC

EDGF

@A BCGF
BC

ED
•0

/. -,() *+ F1

•−n+1

76 54

01 23 F2

•
−n−|α1|+2

?> =<

89 :;
F3

•
−2n−|α1|+3

?> =<

89 :;
F4

•
−2n−|α1|−|α2|+4

F5

•
−3n−|α1|−|α2|+5

F6

•0

•−n+1

•0

k Lζ [1] X1[2t+ 1]//
−η[1]

//
Φ(X,Y )

___ // ______ //

______ //

σZ

**

•
−3n−|α1|−|α2|−|α3|+5 ________ //

Z2t+3[2t+ 1] X1[2t+ 1]//
α̂t+1

•
−3n−|α1|−|α2|+5

•−3n+5

Z2t+2[2t+ 1] (Ωnk)⊗(1+t)[2t+ 1]

_______ // _________ //

//
σ′Z

//
α1α2

λ(X,Y )

22

Proposition 5.24. Suppose that α1, . . . , αp−1 ∈ Ĥ∗(G) are Tate cohomology classes of
even degree such that the (2p − 1)-fold Massey product 〈ζ, α1, ζ, . . . , αp−1, ζ〉 is strictly
defined. Then −α1 . . . αp−1P1(ζ) ⊆ 〈ζ, α1, ζ, . . . , αp−1, ζ〉.

Remark 5.25. Notice that the sign occurring in the statement depends on the choice of
the definition of Massey products.

Proof of Proposition 5.24. We put t = p − 2 in Proposition 5.19 and see what we get.
There is a (1, p− 2)-coherent module (X,Y ) and a (2p− 2)-filtered object

∗ = F0Z // F1Z //

�������
F2Z //

�������
. . . // F2p−2Z

xxqqqqqqq

Z1

oAA

``AA

Z2[1]

o==
^^==

ooo . . .
o777

[[777

ooo Z2p−2[2p− 3]ooo Z2p−1[2p− 2]

α̂p−1[2p−2]o
ff

αp−1[2p−2]
ooo

together with a map α̂p−1 (the dotted arrow) making the diagram commutative-exact, and
we know that F2p−2Z ∼= X1[2p − 3], and σZ : k = Z1 → F2p−2Z equals the composition
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5.3 Toda brackets and coherent modules

k
−η[1]−−−→ Lζ [1]

Ω−(p−1)ω−1
p−1−−−−−−−−→ Ωp−2Λp−1Lζ [2p − 3]

Φ(X,Y )[2p−3]−−−−−−−−−→ X1[2p − 3]. By defining
F2p−1Z to be some choice of fibre of α̂p−1[2p− 2] we can also consider the diagram above
as a (2p− 1)-filtered object.

Consider the composite ΩnZ2p−1
ζ−→ Z2p−1

α̂p−1−−−→ Ω2p−3F2p−2Z ∼= X1. By naturality of
ζ, this equals

ΩnZ2p−1
Ωnα̂p−1−−−−−→ ΩnΩ2p−3F2p−2Z ∼= ΩnX1

ζ−→ X1.

Let us choose any element P1 ∈ P1(ζ) and consider the following diagram:

ΩnZ2p−1
Ωnα̂p−1

//

(−1)p−2α1...αp−1

��

Ωnk ⊗X1

id⊗λ(X,Y )

zzuuuuuuuuuuuuuuuu

ζ⊗id

��

(b)

(Ωnk)⊗p

P1

��

(a)

Ωnk ⊗ Sp−1Ωnk
∼=oo

γ
��

Ωp−2ΛpΩnk

Ωp−2κp
��

(c)

Ω2p−4Lζ
Ωp−2ω−1

p−1
//

??

Ω2p−4η
~~~~~~~

Ωp−2Λp−1Lζ
Φ(X,Y )

((RRRRRRRRRRRR

Ω2p−3k −Ω2p−3σZ

//

(d)

X1

(5.26)

Here, (d) and (a) commute due to Proposition 5.19 (ii) and (v), (b) commutes because of
Lemma 4.22, and (c) is Proposition 4.7.

Now we put Z2p = ΩnZ2p−1. Then we are in the situation of Lemma 5.15 (where the

n in that statement corresponds to 2p in our case), the composable maps being Z2p
ζ−→

Z2p−1
αp−1−−−→ . . .

ζ−→ Z1 = k. The filtered object is ∗ = F0Z → F1Z → . . . F2p−2Z →
F2p−1Z, and the map Z1

∼= F1Z → F2p−2Z equals our σZ . Furthermore, (5.26) tells us
that the diagram

Z2p[2p− 3]
ζ
//

α1...αp−1P1

��

Z2p−1[2p− 3]

α̂p−1[2p−3]
��

Z1 = k σZ
// F2p−2Z

commutes, and by Lemma 5.15 we get that −α1 . . . αp−1P1 ∈ 〈ζ, α1, . . . , αp−1, ζ〉.

Remark 5.27. In the case p = 2 we get the result αP1(ζ) ⊆ 〈ζ, α, ζ〉, whenever the Massey
product is defined. In the case of ordinary cohomology, this is a well-known fact. It is an
immediate consequence of a formula relating the ∪1- and the ∪-product in the singular
cochain complex of a topological space; see [8]. For G = Z/2Z×Z/2Z the formula enables
us to compute all Massey products of the form 〈ζ, α, ζ〉, and it is consistent with the
computation of all Massey products done in [15], §5.
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5. Toda brackets

5.4 Example for equality

Now we can prove that Corollary 2.8 is a strong inequality in the sense that for every
prime p and every field of characteristic p, there is a group G and a Tate cohomology class
ζ of even degree such that ζ-ord(k/ζ) = p− 2. Consider the group

Aff1 = {x 7→ ax+ b : a ∈ F∗p, b ∈ Fp} ∼= Fp o F∗p

of affine linear transformations of Fp. The group operation is composition of such maps.
This group has the normal subgroup of translations

T = {x 7→ x+ b : b ∈ Fp},

and the quotient Aff1/T is isomorphic to F∗p. Furthermore, T is the p-Sylow subgroup of
Aff1.

Our example will be the group G = Aff1×Aff1. By the considerations above, G has
the normal p-Sylow subgroup N = T × T . It is well-known that (see [4], Theorem 10.1
in Chapter XII) the inclusion i : N → G induces an isomorphism Ĥ∗(G) → Ĥ∗(N)G/N

from the Tate cohomology of G to the fixed points in Tate cohomology of N under the
action of G/N . We will often suppress this isomorphism from notation. Let us now try
to describe the Tate cohomology of G. To do so, we use the description of the Tate
cohomology of N given in §3.6. Recall that for a fixed non-negative degree n we have the
monomial basis of Ĥn(N) given by elements va1

1 va2
2 uε11 u

ε2
2 with 2a1 + 2a2 + ε1 + ε2 = n

and ε1, ε2 ≤ 1. Using Tate duality, we denoted the dual basis by ϕ2a1+ε1,2a2+ε2 . Let
us write D : Ĥn(N) → Ĥ−1−n(N) for the k-linear map which sends each basis element
va1

1 va2
2 uε11 u

ε2
2 to its dual ϕ2a1+ε1,2a2+ε2 . Also, let us write q = 2p− 2.

Lemma 5.28. Suppose that p ≥ 3. The ordinary group cohomology of G is given by
H∗(G) = k[b1, b2, e1, e2], the graded commutative algebra generated by two exterior classes
e1, e2 of degree q − 1 and two polynomial classes b1, b2 of degree q. The elements are
given by ei = vp−2

i ui and bi = vp−1
i . The structure of the Tate cohomology of G is

obtained from the ordinary cohomology by using the fact that D restricts to an isomorphism
D : Ĥn(G)→ Ĥ−1−n(G).

Proof. The computation of H∗(Aff1) is well-known, and H∗(G) is deduced from this using
the Künneth theorem. For the last statement it is enough to observe that the elements
of G/N ∼= F∗p × F∗p act as diagonal matrices with respect to our chosen basis: the element
(c1, c2) acts as

(c1, c2) · va1
1 va2

2 uε11 u
ε2
2 = c2a1+ε1

1 c2a2+ε2
2 va1

1 va2
2 uε11 u

ε2
2 .

Therefore, the elements of G/N act as the same diagonal matrices on the dual space
Ĥ−1−n(N) with respect to the dual basis ϕ?.

Remark 5.29. In the case p = 2 the classes u1 and u2 (and therefore also e1 and e2)
are polynomial classes with u2

i = vi. With this tiny difference in mind, the following goes
through even in the case p = 2, because we will never use the fact that the ui’s are exterior
classes.
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5.4 Example for equality

As an immediate consequence of the preceeding lemma we can describe the structure
of Ĥ∗(G) more explicitly in the range we will be interested in.

Corollary 5.30. The following table describes the k-vector spaces Ĥ i(G) in the range
−2q + 1 ≤ i ≤ 2q − 2:

deg −2q + 1 −q − 1 −q −1 0 q − 1 q 2q − 2

basis ϕ2p−3,2p−3
ϕ2p−2,0 ϕ2p−3,0 ϕ00 1

vp−2
1 u1 vp−1

1 vp−2
1 vp−2

2 u1u2
ϕ0,2p−2 ϕ0,2p−3 vp−2

2 u2 vp−1
2

For all other values of i in the given range we have Ĥ i(G) = 0.

Theorem 5.31. Let ζ = ϕ2p−3,0 ∈ Ĥ−q(G) and α = vp−1
1 ∈ Ĥq(G). Then we have the

(2p − 1)-fold Massey product 〈ζ, α, ζ, . . . , α, ζ〉 = −ϕ2p−3,2p−3 without indeterminacy. In
particular, ζ-ord(k/ζ) = p− 2 by Corollaries 2.8 and 5.18.

One step in the proof is easy: we can compute −αp−1P1(ζ), which is one element
of the Massey product due to Proposition 5.24. We know P1(ζ) = ϕ2p2−2p−1,2p−3 from
Propositions 3.54 and 3.56, and hence

αp−1P1(ζ) = vp
2−2p+1

1 ϕ2p2−2p−1,2p−3 = ϕ2p−3,2p−3.

The statement about the indeterminacy is slightly more complicated. Let us recall some
facts we will frequently use in the proof.

Lemma 5.32 (May, [20]). Suppose that the Massey product 〈a1, . . . , an〉 is strictly defined.

(i) For every i = 1, 2, . . . , n−1 and every xi ∈ Ĥ∗(G) of degree |ai|+|ai+1|−1 the Massey
product 〈a1, . . . , ai−1, xi, ai+2, . . . , an〉 is strictly defined ([20], Proposition 2.4.(i)).

(ii) If every Massey product as in (i) consists only of the zero element, then 〈a1, . . . , an〉
has no indeterminacy ([20], Proposition 2.4.(ii)).

(iii) If a0 · 〈a1, . . . , an〉 contains 0, then so does 〈a0a1, . . . , an〉 (follows from part (ii) of
Corollary 3.2 in [20]).

Also, for arbitrary elements a1, . . . , an:

(iv) If 〈a1, . . . , ai−1, aiai+1, ai+2, . . . , an〉 = {0} and 〈a1, . . . , ai, ai+1ai+2, ai+3, . . . , an〉 is
defined, then the latter contains 0 (this follows from Corollary 3.4.(iii) in [20]).

Remark 5.33. Notice that May uses a different sign convention, so we formulated the facts
in a sign-independent form we need later.

Let us now take a look at the sequences of the degrees of elements coming up in the
Massey products we are interested in. Define S to be the smallest set of integer sequences
of finite length with the following properties: the sequence (−q, q,−q, . . . , q,−q) of length
2p− 1 belongs to S, and whenever a sequence (d1, . . . , dn) of length n ≥ 3 lies in S then
so does (d1, . . . , di−1, di + di+1 − 1, di+2, . . . , dn) for every i = 1, . . . , n− 1. This notion is
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5. Toda brackets

clearly motivated by Part (i) of Lemma 5.32. For example, in the case p = 3 the set S
will consist of the following elements:

(−4,4,−4,4,−4)

ggggggggggg
vvvvv

DDDDD
VVVVVVVVVVV

(−1,−4,4,−4)

ooooooo
PPPPPPP (−4,−1,4,−4)

gggggggggggggg
PPPPPPP

XXXXXXXXXXXXXXX (−4,4,−1,−4)

fffffffffffffff

WWWWWWWWWWWWWW (−4,4,−4,−1)

fffffffffffffff
OOOOOOO

(−6,4,−4)

OOOOOOO

WWWWWWWWWWWWWWWW (−1,−1,−4)

XXXXXXXXXXXXXXXXX (−1,−4,−1)

PPPPPPP (−4,2,−4)

ffffffffffffffffff
PPPPPPP (−4,−1,−1)

fffffffffffffffff (−4,4,−6)

gggggggggggggggg

ooooooo

(−3,−4) (−6,−1) (−1,−6) (−4,−3)

The occurring numbers are

q, q − 2, q − 4, . . . , 2,−1,−3, . . . ,−q + 1,−q,−q − 2, . . . ,−2q + 2. (5.34)

Let us describe without proof some of the sequences in S more explicitly.

Lemma 5.35. A sequence (d1, . . . , dn) with 2 ≤ n ≤ 2p− 1 and di ∈ {q,−1,−q} for all i
belongs to S if and only if it is of the form

(−1,−q,−1, q,−1,−q, . . . ,−q,−1)

where each −1 stands for an arbitrary long (possibly empty) sequence of (−1)’s, and the
total number of (−1)’s is 2p− 1− n.

We call a Massey product 〈a1, . . . , an〉 in Ĥ∗(G) admissible if the sequence of the
degrees of its elements (|a1|, . . . , |an|) belongs to S and for every i = 1, . . . , n, ai = ζ if
|ai| = −q and ai = α if |ai| = q.

Lemma 5.36. Every admissible Massey product is strictly defined.

Proof. By Lemma 5.32.(i) it is sufficient to show that the Massey product 〈a1, . . . , a2p−1〉
with

ai =

{
ζ if i is odd,
α if i is even

is strictly defined. The two-fold products 〈ai, ai+1〉 = aiai+1 vanish due to the multi-
plicative relations in Ĥ∗(Z/pZ × Z/pZ). Now we can assume that p ≥ 3. The three-fold
products 〈ζ, α, ζ〉 and 〈α, ζ, α〉 are strictly defined and have no indeterminacy, and by
Corollary 5.18 they contain zero.

Suppose we have some product 〈ai, . . . , aj〉 of length n ≥ 4. If n is even, then the
product is of degree −n + 2 with 4 ≤ n ≤ 2p − 2 = q; but then Ĥ−n+2(G) = 0 by
Corollary 5.30. If n is odd, then the degree of the product is ±q−n+2 with 5 ≤ n ≤ 2p−3,
but then Ĥ±q−n+2(G) = 0.

Proposition 5.37. Suppose that 〈a1, a2, . . . , an〉 is an admissible Massey product. Then
it does not have any indeterminacy. If n < 2p− 1, then 〈a1, . . . , an〉 = {0}.
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6. A counterexample

Proof. Let n be the smallest number for which any of the two statement fails. Suppose the
first statement fails for that n. Then n ≥ 3 and by minimality of n we know that all pro-
ducts of the form 〈a1, . . . , ai−1, xi, ai+2, . . . , an〉 with xi of degree |ai|+ |ai+1| − 1 equal {0},
because they are admissible (note here that xi is not of degree ±q). By Lemma 5.32.(ii)
we know that 〈a1, . . . , an〉 does not have any indeterminacy.

We can therefore assume that for the minimal n the second statement fails, whereas
the first one is true. Suppose that a = 〈a1, . . . , an〉 is admissible; we need to show that
0 ∈ a. If there is some index i with |ai| 6∈ {q,−1,−q} then we can deduce from the list
(5.34) and the table in Corollary 5.30 that Ĥ |ai|(G) = 0 and therefore ai = 0. Since a is
strictly defined, it must contain 0 in this case. We can therefore assume that all Massey
products a of length n with a 6= {0} satisfy ai ∈ {q,−1,−q} for all i. For every such
Massey product there is a smallest index i with |ai| = −1; denote that index by d(a). Let
us take one such product with minimal d(a) = i.

Case 1: i > 1 and |ai−1| = −q. Then ai−1 = ζ. By Tate duality we know that there
is some b ∈ Ĥq−1(G) with ai = bζ. Then, by the description in Lemma 5.35, the Massey
product 〈a1, . . . , ai−2, ai−1b, ζ, ai+1, . . . , an〉 is admissible, and it equals {0} by minimality
of d(a). By Lemma 5.32.(iii) a contains 0.

Case 2: i > 1 and |ai−1| = q. Then ai−1 = α. Again by Tate duality there is some
element b ∈ Ĥ−q−1(G) with ai = bα. The product 〈a1, . . . , ai−2, ai−1b, α, ai+1, . . . , an〉 is
admissible and equals {0}. As before we can deduce that a contains 0.

Case 3: i = 1. Then we know by Lemma 5.35 that the product 〈ζ, α, a2, a3, . . . , an〉 is
admissible and hence strictly defined. In particular, 〈α, a2, . . . , an〉 = {0}. By Tate duality
we can write a1 = bα for some class b ∈ Ĥ−q−1(G). Then b · 〈α, a2, . . . , an〉 contains 0,
and by Lemma 5.32.(iii) we get that 0 ∈ a.

6 A counterexample

We shall now show that the lower bound of our Main Theorem (as given in Corollary 2.8)
is no longer true in general if we allow ζ to be an arbitrary element of even degree in
the graded center of mod-kG. Let p = 3 and G = Z/pZ × Z/pZ. Let k be a field of
characteristic 3; then kG ∼= A = k[x, y]/(x3, y3), and from now on we will work with A
instead of kG. Since A is commutative, the enveloping algebra of A is simply given by
Ae = A ⊗ A, which we also denote by B. Define the elements x̄ = 1 ⊗ x − x ⊗ 1 and
ȳ = 1⊗ y − y ⊗ 1 in B.

Lemma 6.1. The beginning of a projective resolution of A as a right B-module is given
by

A
ε←− B ( x̄ ȳ )←−−− B⊕2

(
x̄2 ȳ
−x̄ ȳ2

)
←−−−−−−−− B⊕3 ← . . .

where ε is the multiplication of A. In particular, we can choose Ω2
BA to be the submodule

of B⊕2 generated by the three elements
(
x̄2

0

)
,
(
ȳ
−x̄
)

and
( 0
ȳ2

)
.
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6. A counterexample

Proof. Consider the algebra L = k[z]/(z3) and let z̄ = 1 ⊗ z − z ⊗ 1 ∈ Le. Simple
combinatorial arguments show that

L
ε←− Le z̄←− Le z̄2

←− Le z̄←− Le z̄2

←− . . . ,

with ε being the multiplication of L, is a free resolution of L by Le-modules. Tensoring
two such complexes and using the Künneth theorem, we get the desired result.

If M is any A-module, we can apply the functor M ⊗A − to the projective resolution
of the proposition and obtain a projective resolution of M . In particular, when we put
M = k the trivial A-module, we get the resolution

k
ε←− A (x y )←−−− A⊕2

(
x2 y
−x y2

)
←−−−−−−−− A⊕3 ← . . .

Let this resolution define the modules Ωnk for n ≥ 0. For a better understanding, let us
draw pictures of these modules as follows: We take a suitable basis of the module as a k-
vector space (drawn as •) and draw vertical and horizontal lines to indicate multiplication
by x and y, respectively:

• x //

y
��

•

• • •

• • •

This picture represents Ωk = 〈x, y〉A ⊂ A. Whenever there is no horizontal line from a •
to the right, we mean that the corresponding element vanishes under multiplication by x
(and similarly downwards for y). Note that there are A-modules not representable in this
form, but all the modules we are interested in will be. Let us draw two more examples:

k as a trivial module: •

Ω2k, considered as a submodule of A⊕2:

(
x2

0

)
( y
−x
)
• •

• • •(
0
−y2

)
• •

Now let ξ : Ω2k → k be the following map:

•
•

++WWWWW • •
• • • •

• • •
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6. A counterexample

That is,
( y
−x
)
7→ 1 ∈ k and all other drawn k-basis elements map to 0. Let Lξ be the

kernel of ξ, which can be drawn like this:

b4

b3 •

b2 • •

b1 • •

It is the A-submodule of A⊕2 spanned by the four vectors b1 =
( 0
−y2

)
, b2 =

(
y2

−xy
)
,

b3 =
( xy
−x2

)
and b4 =

(
x2

0

)
. The map ξ induces an element −⊗ ξ of degree 2 in the graded

center Z(mod-A).
Let us turn back to the projective resolution of A as a B-module given in Lemma 6.1.

Note that the elements x̄ und ȳ belong to the augmentation ideal; we therefore have
constructed the beginning of a minimal resolution, and applying the functor HomB(−, A)
to the resolution yields a complex A 0−→ A⊕2 0−→ A⊕3 0−→ . . . ; in particular ĤH2(A) ∼= A⊕3.
More explicitly, in order to specify a B-linear map ϕ : Ω2

BA→ A we can freely choose the
values of ϕ under the three generators

(
x̄2

0

)
,
(
ȳ
−x̄
)

and
( 0
ȳ2

)
. Let us put

ϕ : Ω2
BA→ A(
x̄2

0

)
7→ x,(

ȳ
−x̄
)
7→ 0,( 0

ȳ2

)
7→ 0.

This map induces an element −⊗A ϕ of degree 2 in the graded center Z(mod-A).

Proposition 6.2. The element ζ = ϕ+ ξ ∈ Z2(mod-A) satisfies ζ-ord(k/ζ) = 0.

Proof. Since x acts trivially on k, we get that ϕk = 0, so ζk = ξk. Hence k/ζ ∼= k/ξ ∼=
Ω−1Lξ. It is enough to show that ζLξ 6= 0. Since ξ comes from a Tate cohomology class,
we know that ξLξ = 0 by Corollary 2.8, so it remains to prove that ϕLξ 6= 0.

For this we need two easy but powerful lemmas. Suppose that M is a right A-module
and m ∈ M . We say that m is divisible by x if there is some element m′ ∈ M with
m = m′ · x, and similarly for y. Define I to be the ideal of A generated by the elements
x2, xy and y2.

Lemma 6.3. Let F be a free A-module. Suppose that m ∈ F has the property that m · x
is divisible by y and m · y is divisible by x. Then m ∈ F · I ⊂ F .

Proof. One can assume that F is free of rank 1. The set of elements m with m · x being
divisible by y is the ideal generated by x2 and y; the set of elements m with m · y being
divisible by x is the ideal generated by x and y2. The intersection of these two ideals is
I.

Lemma 6.4. Suppose that f : M → N is a map of right A-modules which factors through
a projective module. Assume further that m ∈ M is such that m · x is divisible by y and
m · y is divisible by x. Then f(m) ∈ N · I ⊂ N .
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6. A counterexample

Proof. Because A is the group algebra of a 3-group, all projective modules are free. Write
f as a composition M

g−→ F
h−→ N with a free module F . Then g(m) satisfies the conditions

of Lemma 6.3; therefore g(m) ∈ F · I and hence f(m) = h(g(m)) ∈ N · I.

We want to apply this to ϕ acting on Lξ, i.e., the map

Lξ ⊗A Ω2
BA→ Lξ ⊗A A ∼= Lξ.

Let e1, e2 ∈ B⊕2 be given by e1 = ( 1
0 ) and e2 = ( 0

1 ). Define the elements fi = bi−1 ⊗ e1 −
bi ⊗ e2 ∈ Lξ ⊗A B⊕2 for i = 1, . . . , 5 (where by convention b0 = 0 and b5 = 0). When we
apply the differential d : Lξ ⊗A B⊕2 → Lξ ⊗A B to fi we get

dfi = bi−1 ⊗ x̄− bi ⊗ ȳ
= bi−1 ⊗ (1⊗ x)− bi−1x⊗ (1⊗ 1)− bi ⊗ (1⊗ y) + biy ⊗ (1⊗ 1)
= bi−1 ⊗ (1⊗ x)− bi ⊗ (1⊗ y);

here we used bi−1x = biy.
Now consider b′i = fi+1x

2 + fi+2xy + fi+3y
2 (where fi = 0 for i > 5). From the

computation above we get db′i = 0, so b′i ∈ Lξ ⊗A Ω2
BA, and we have b′2y = b′1x and

b′2x = b′3y. Therefore, b′2 satisfies the conditions of Lemma 6.4, and it remains to show
that the image of b′2 does not lie inside Lξ · I. A rather lengthy computation shows that

b′2 = b4 ⊗
(
ȳ
−x̄
)
y + b3 ⊗

(
ȳ
−x̄
)
x+ b3x⊗

(
ȳ
−x̄
)

+ b2 ⊗
(
x̄2

0

)
.

Therefore, under ϕ, b′2 is mapped to b2 · x ∈ Lξ which is not inside Lξ · I.

Remark 6.5. The last step of the proof might become clearer if we draw the map ϕLξ
using the diagrams introduced above. It turns out that, up to a stable isomorphism in
the source, the map ϕ : Lξ ⊗A Ω2

BA→ Lξ can be viewed as follows:

•
•

**UUUUUUUUU •
◦

**UUUUUUUUU • • •
•

**UUUUUUUUU • • • •
• • • • • •

• • • • • •
• • •

The point marked ◦ satisfies the conditions of Lemma 6.4, thus showing that the indicated
map is non-trivial in the stable category.

Remark 6.6. The element ζ of the graded center comes from the Hochschild cohomology
of A ∼= kG. Since G is abelian, we know that HH∗(G) ∼= H∗(G) ⊗ A (see [9], or [5] for
a more general result). Using the description of H∗G given in §3.6, the element ζ comes
from u1u2 + v1 · x ∈ HH∗(G).
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Greek letters

γ in §4 and §5 a certain map Ωnk ⊗ Sp−1Ωnk → Ωp−2ΛpΩnk, page 56

∆ may refer to

comultiplication maps of the coalgebras S∗X and Λ∗X, page 12

maps ∆i arising in the construction of Steenrod powers, page 39

ζ may refer to

an element in the graded center of a triangulated category, page 9

an unstable map Ωnk → k, page 16

η an unstable representative of the stable map Ωk → Lζ , page 16

ι the inclusion Lζ → Ωnk, page 16

κfi the i-th map in the Koszul complex associated to the map f , page 12

ΛnX the exterior power of a module X, page 12

λ(X,Y ) a certain map associated to a coherent module (X,Y ), page 61

µ multiplication maps of the algebras S∗X and Λ∗X, page 12

Σ shift functor in mod-kG, page 6

Σn the symmetric group on n letters, page 11

σX , σ
′
X maps associated to a filtered object X, page 64

Φ(X,Y ) a certain map associated to a coherent module (X,Y ), page 59

Ω inverse of the shift functor of mod-kG, page 6

ωj a certain stable isomorphism ΛjLζ → Ωj−1Lζ , page 56

Other expressions

Di certain predecessor of the power operation, page 30

Êxt Tate cohomology groups, page 7

F (K) the tautological coherent module over Lζ ⊗K, page 18

G a fixed finite group, page 6

ĤH∗ Tate version of Hochschild cohomology, page 9

Hom morphisms in the stable category, page 6

Ĥ∗(G) Tate cohomology algebra, page 7

k may refer to

the ground field, of characteristic p, page 6

the trivial kG-module k, unit of ⊗, page 6
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Kac(inj−kG) the homotopy category of unbounded acyclic chain complexes of injective
kG-modules, page 65

Lζ the kernel of ζ : Ωnk → k, page 16

mod-kG the category of finitely generated, right kG-modules, page 6

mod-kG the stable module category, page 6

N may refer to

the sum of cyclic permutations, page 11

the normal p-Sylow subgroup of Aff1×Aff1, page 78

ord the order of an object, page 10

p a prime, the characteristic of the ground field k, page 6

PHom morphisms which factor through a projective, page 6

P1 power operation on Tate cohomology, Definition 3.35, properties on page 21

RK de Rham-Koszul complex, page 28

S Steenrod complex, page 28

SnX the symmetric power of a module X, page 12

T may refer to

the cyclic permutation map on an object of the form X⊗p, page 11

the normal cyclic subgroup of translations inside Aff1, page 78

Z(C) graded center of a triangulated category C, page 8

Further symbols

o // a map of degree 1, page 64

〈X〉k the k-vector space generated by a set X, page 12
∼=st stable isomorphism, page 6

〈a1, . . . , an〉 a Massey product (page 63) or a Toda bracket (page 64)

X/ζ some cone of the map ζ on X, page 10

X] the dual of X, page 6

[m] may refer to

shift of a cochain complex, page 11

shifted coherent module, page 19

m-fold iterate of the shift functor in a triangulated category, page 64

(−1)σ signum of the permutation σ, page 11

⊗ = ⊗k the tensor product of modules, page 6

X⊗n the n-fold tensor product of X with itself, page 11
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Zusammenfassung

Einführung

Motiviert durch seinen Beweis des Starrheitssatzes hat Schwede den Begri� der Ordnung in
triangulierten Kategorien eingeführt. Sei dazu C eine triangulierte Kategorie mit Translations-
Funktor Σ. Das graduierte Zentrum von C ist der graduierte Ring, dessen Elemente im Grad n
gegeben sind durch diejenigen natürlichen Transformationen vom Identitätsfunktor zu Σn, wel-
che mit Σ bis auf ein Vorzeichen kommutieren. Gegeben solch ein Element ζ, bezeichne man
mit X/ζ einen Kegel über der Abbildung ζX . Die ζ-Ordnung eines Objektes X von C wird in-
duktiv de�niert: Die Ordnung ζ-ord(X) ist ein Element von {0, 1, 2, . . . ,∞}, und ζ-ord(X) ≥ k
für positives k gilt genau dann, wenn für jeden Morphismus f : K → X eine Erweiterung

f̂ : K/ζ → X existiert so, dass die Komposition K → K/ζ
f̂−→ X gleich f ist, und für einen

(und daher alle) Kegel Cf̂ über f̂ gilt ζ-ord(Cf̂ ) ≥ k− 1. Die ζ-Ordnung misst gewissermaÿen,

�wie sehr� ζ auf X Null ist. Beispielsweise gilt ζ-ord(X) ≥ 1 genau dann, wenn ζX = 0. Für
jede natürliche Zahl m ist die Multiplikation mit m, X

m·→ X, ein Element im Zentrum vom
Grad 0. Insbesondere wurde hiermit also die m-Ordnung eines Objektes de�niert.
Für den Fall von sogenannten topologischen triangulierten Kategorien hat Schwede folgendes
bewiesen:

(t1) Sei C eine topologische triangulierte Kategorie und p eine Primzahl. Für jedes Objekt
X ∈ C ist die p-Ordnung von X/p mindestens gleich p− 2.

(t2) In der stabilen Homotopiekategorie SHC ist die p-Ordnung des mod-p-Moore Spektrums
S/p genau gleich p− 2.

(t3) Falls für ein Objekt X ∈ C die Abbildung α1 ∧X : Σ2p−3X → X durch p teilbar ist, so
ist die p-Ordnung von X/p mindestens gleich p− 1.

Die Aufgabe war nun, den Begri� der Ordnung im Fall der stabilen Modulkategorie C = mod-kG
zu untersuchen, wobei k ein Körper der Charakteristik p > 0 und G eine endliche Gruppe ist.

Hat man eine Tate Kohomologie-Klasse [ζ] ∈ Êxt
n
(k, k) = Ĥn(G, k) von geradem Grad n

gegeben, so wird diese von einer Abbildung ζ : Ωnk → k in mod-kG repräsentiert, welche
wiederum ein Element des Zentrums induziert, welches auch mit ζ bezeichnet wird:

ζ : ΩnX ∼= Ωnk ⊗X ζ⊗X−−−→ k ⊗X ∼= X.

Es war bereits bekannt (Carlson 1987), dass für ungerades p dieses ζ auf Lζ = ker ζ, also
auf Ω(k/ζ) verschwindet. Dies entspricht der Aussage ζ-ord(k/ζ) ≥ 1. Für p = 2 ist dies im
allgemeinen falsch.

Resultate

In der vorliegenden Arbeit werden folgende Ergebnisse beweisen, die als Analoga zu (t1) bis
(t3) angesehen werden können:

(a1) Für jedes Objekt X ∈ mod-kG gilt ζ-ord(X/ζ) ≥ p− 2.

Dies verallgemeinert Carlsons Resultat.

(a2) Für jede Primzahl p und jeden Körper k gibt es eine endliche Gruppe G und eine Ko-
homologieklasse [ζ] ∈ Ĥ∗(G) von geradem Grad mit ζ-ord(k/ζ) = p− 2.



Bekanntlich ist die gewöhnliche Gruppenkohomologie H∗(G) die Kohomologie des klassi�-
zierenden Raumes BG. Auf dieser hat man Steenrod Operationen. Wir de�nieren für Ko-
homologieklassen ζ vom Grad n (mit geradem n falls p ungerade ist):

P1ζ =

{
Sq1ζ = Sqn−1ζ falls p = 2,
βP

n
2−1ζ falls p ≥ 3.

Dann gilt:

(a3) Sei X ein kG-Modul. Falls P1ζ ⊗X durch ζ teilbar ist, dann gilt ζ-ord(k/ζ) ≥ p− 1.

Es stellt sich heraus, dass (a2) der schwierigste der drei Punkte ist. Für dessen Nachweis wird
zunächst die Steenrod Operation P1 auf die Tate Kohomologie erweitert; die neue Operation,
genannt P1, bildet dann eine Kohomologieklasse ζ vom Grad n nicht mehr auf ein einzelnes
Element, sondern auf eine Nebenklasse von ζp · Ĥ∗(G) in Ĥpn−(2p−3)(G) ab. Die Konstruk-
tion dieser neuen Operation, der Nachweis elementarer Eigenschaften (Natürlichkeit, Cartan-
Formel) sowie die konkrete Berechnung der Operation im Fall der Gruppen Z/pZ×Z/pZ sind
zentraler Bestandteil dieser Arbeit. Abschlieÿend wird über (2p−1)-fache Massey Produkte der
Form 〈ζ, α1, ζ, . . . , ζ, αp−1, ζ〉 ein Zusammenhang zum Ordnungsbegri� hergestellt, wodurch ein
Beispiel für (a2) gefunden werden kann.
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