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On the notion of order in the stable module category*

Martin Langer

Abstract

The notion of order in triangulated categories, as introduced by Schwede, is in-
vestigated in the case of the stable category of kG-modules, where k is a field of
characteristic p and G is a finite group. For Tate cohomology classes ¢ of even degree,
we obtain bounds on the (-order which are amazingly similar to corresponding results
on the p-order in the stable homotopy category.

On our way we introduce a power operation P; on Tate cohomology which serves
as an obstruction for the (-order to be larger than its minimal possible value. Fur-
thermore, it enables us to compute certain higher Massey products explicitly.
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Introduction

Introduction

Let G be a finite group and k be a field of prime characteristic p > 0, and let us denote
by mo0-kG the category of finitely generated, right kG-modules. In this category, the
classes of injective and projective modules coincide, and this allows us to form its stable
category mo0-kG, whose objects are the same as in mo0-kG, and the morphisms are given
by morphisms in mod-kG modulo the subgroup of those morphisms factoring through a
projective module. On mod-kG we have the translation functor % which can be defined
as follows: Choose an inclusion i : k — P of the trivial kG-module k into a projective
module P. For every object X define XX to be the cokernel of the (injective) map
it ®idx : X — P ® X. This functor serves as a translation functor of a triangulated
structure on mod-kG (where the exact triangles are ‘up to projectives’ those coming from
short exact sequences in mod-kG).
Let € denote the inverse of the shift functor 3. Then we have

Hom, ("X, Y) = mod-kG(Q"X,Y) = Ext}(X,Y),

where Ext denotes Tate Ext-groups. Suppose we are given a non-zero Tate cohomology
class [(] € H"(G) = Ext™(k, k) represented by an unstable (surjective) map ¢ : Q"k — k.
Denote by L. the kernel of the map (; then we get an exact triangle

= Le— Wk —k— QLo =k/¢— ...

On k/(, we still have a multiplication by ¢, and the following theorem will be the starting
point of our discussion.

Theorem (Carlson, [2]). If p is odd and n is even, then multiplication by ¢ on k/C
vanishes; i.e.,

Ok @ k)¢ 2 k¢

1s stably zero.

If p = 2 then this does not need to be true. For instance, one can take G =Z/2 x Z/2,
then there is some non-zero [¢] € H~2(G) such that multiplication by ¢ does not vanish
on k/C. But why is the prime 2 special here?

In topology, we have a similar phenomenon. Suppose we are given a triangulated
category C, some object X € C and a natural number m. On X, we have the ‘multiplication
by m’, i.e., m-Idx : X — X; denote by X/m some choice of cone of this map. On this
cone, we also have a multiplication by m. If C is the stable homotopy category, and p is a
prime, then the mod-p Moore spectrum S/p (where S denotes the sphere spectrum) has
a multiplication by p, which is zero if p is odd, but non-zero if p = 2.

Motivated by his proof of the Rigidity Theorem [24], Schwede introduced the notion
of m-order (see [25]), which measures ‘how strongly zero multiplication by m on some
object is’. The m-order m-ord(X) of an object X € C is an element of {0,1,2,..., 00},
defined inductively by the following condition: m-ord(X) > k if and only if for all objects
K in C and all morphisms f : K — X there is an extension f : K/m — X such that for
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some (and hence any) cone C 7 of f, m-ord(C f) > k — 1. Here, extension means that the
following diagram commutes:

K"K > K/m
e
f g
}\Lk/f

For instance, m-ord(X) > 1 if and only if multiplication by m vanishes on X, which is
what you would expect from a reasonable definition of order. It can be compared with,
say, multiplicities of zeroes of real polynomials.

In topology, we have the following results:

Theorem (Schwede, [24] and [25]). Let p be a prime number and C be a topological
triangulated category, i.e., the full subcategory of the homotopy category of a stable Quillen
model category.

(t1) For any object X of C, the object X/p has p-order at least p — 2.

(t2) In the stable homotopy category SHC, the mod-p Moore spectrum S/p has p-order
exactly p — 2.

(t3) We can also go one step further. If the morphism ay A X : X?P73X — X is divisible
by p, then X/p has p-order at least p — 1. Here ay : ¥P738 — S is a generator of
the p-torsion in the stable homotopy groups of spheres in the (2p — 3)-stem.

To a certain extent, statement (t2) explains the phenomenon described above: multi-
plication by p on S/p vanishes if and only if the p-order of S/p is at least 1, and this is
the case exactly if p > 3.

Let us turn back to the case C = mod-kG and see what we get from the notion of
order. It is certainly not very interesting to consider multiplication by m in our algebraic
situation, so we extend the definition of order to elements in the graded center of C. In
degree n, the graded center of the triangulated category C consists of all natural transfor-
mations ¢ from the identity functor to the functor X" which commute with the functor
Y up to the sign (—1)". The notion of order as defined above can be modified to work
for arbitrary elements ¢ in the graded center, so we obtain a number (-ord(X) for every
object X in C. Now suppose we are given a cohomology class in H "(G), represented by
some unstable map ¢ : "k — k, which in turn induces an element in the graded center,
also denoted by (:

X — s x

[
PEoX TS ke X
This should be thought of as multiplication by the class [(]. With all this language at

hand, Carlson’s theorem above reads ¢(-ord(k/{) > 1 for all primes p > 3. This will be
generalized by the following theorem whose proof is the main objective of this thesis.
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Main Theorem. Suppose that k is a field of prime characteristic p and G is a finite
group.

(al) Let ¢ € fI”(G) be a Tate cohomology class of even degree n. For any object X in
mod-kG, the (-order of X/C is at least p — 2.

(a2) For every prime p and every field k of characteristic p, there exists a group G and
a cohomology class ¢ € H*(G) of even degree such that the (-order of k/C is exactly
p—2.

(a3) Suppose that n > 0. Recall that the Steenrod reduced powers act on group cohomology
H*(G,k). The first non-trivial Steenrod operation gives an obstruction for the (-
order of X/( to be at least p — 1. More precisely, if P1( ® X is divisible by  then

C-ord(X/¢) >p—1.

Here, P ( is the first non-trivial Steenrod power operation, that is,

b Sy ¢ =Sq" ¢ ifp=2,
16= BpP3-1¢ if p is odd.

The plan of this thesis is as follows. As a first step, we recall several known facts about
the objects we are going to work with. In the second section we prove the lower bound
(al) of our Main Theorem. In §3| we introduce a new power operation P; on Tate coho-
mology which extends the Steenrod operation P; above to negative degrees, at the price
of introducing a certain indeterminacy. Basic properties of the new operation are shown,
and the operation is computed for elementary abelian p-groups. In the fourth section we
show the obstruction statement (a3) of the Main Theorem. In §5| we show that certain
higher Massey products give upper bounds on the order, and we will use the new power
operation to compute such Massey products and thereby find an example for (a2). The
last section is devoted to the question what happens with the statement of (al) if we allow
¢ to be any element of even degree in the graded center of mod-kG.
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theory.
Finally, I would like to thank my wife Britta for her patience and her love.



1. Prerequisites

1 Prerequisites

1.1 The stable module category

We begin with a brief introduction to the stable module category; a more detailed ex-
position can be found in [3]. Throughout this thesis, we will work with a fixed finite
group GG and a field k of characteristic p > 0. Consider the category mod-kG of finitely
generated right modules over the group algebra kG. On this category, we have a sym-
metric monoidal tensor product X ®; Y defined for any two objects X,Y as follows. As a
k-vector space, we take the usual tensor product X ®; Y; the G-module structure is then
given by the rule (x ®y) - g = (z-¢g) ® (y - g) for group elements g € G. We will always
drop the k from the notation and simply write ® for the tensor product. Taking tensor
products with a fixed module is an exact functor, since this is true for k-vector spaces
and exactness does not depend on the G-module structure. The one-dimensional vector
space k carries the structure of a trivial G-module by setting A - g = A for all A € k and
g € G. This trivial module serves as a unit object for the symmetric monoidal product
® in the sense that there are natural isomorphisms X ® £k 2 k£ ® X = X of kG-modules,
given by t® 1 — 1 ®x — x for all z € X. Whenever X and Y are kG-modules, we can
equip Homy(X,Y) with a G-module structure by setting (g - f)(z) = f(z - g~!) - g for all
g € G, f € Homi(X,Y). We will simply write Hom(X,Y) for this G-module and write
X! = Hom(X, k) where k is the trivial G-module. The algebra kG is self-injective, and
therefore in the category mod-kG the classes of projective and injective modules coincide.
This allows us to form the stable module category mod-kG, defined as follows. The objects
of mo0-k£G are the same as in mo0-kG; for any two objects A, B, the group of morphisms
is given by Hom, (A, B) = Homyq(A, B)/PHom(A, B), where PHom(A, B) denotes the
set of all morphisms A — B which factor through a projective module. It is easily verified
that the set PHom(A, B) is actually a subgroup of Hom (A, B) and that the construction
of Hom is compatible with composition, so one indeed obtains a category mod-kG. We
refer to mod-kG and mod-kG as the unstable and stable categories, respectively. There is
a canonical functor from the unstable to the stable category which allows us to consider
unstable maps as morphisms in the stable world. An unstable morphism will be called
stable isomorphism if it maps to an isomorphism under the canonical functor. For in-
stance, the projection X ® P — X and the inclusion X — X @ P are stable isomorphisms
for projective modules P. We will sometimes denote stable isomorphisms by .

The stable category carries the structure of a triangulated category. We will only sketch
the construction here and leave the technical details to the textbooks. Let us begin with
the shift functor X. For every module X, choose a short exact sequence X — I(X) - X
with an injective module I(X). Any map X — Y can be lifted to a map I(X) — I(Y)
which in turn induces a map X — XY, the stable class of which only depends on the
class of the map we started with. This implies that ¥ is a functor on the stable category.
In general, ¥ will be a self-equivalence of mod-£G, but if we are careful enough when
choosing the I(X) we can achieve that ¥ is an automorphism of mod-kG (see, e.g., [7],
§2). We will denote by Q the inverse functor of X.

If ¥ is a self-equivalence arising from a construction as above, then ¥ and X' are
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isomorphic as functors ([7], Remark on page 13). Let us apply this fact in a particular
case. Whenever P is a projective module in mo0d-kG and X is an arbitrary kG-module,
then P ® X is also projective (see [11], Theorem 3.2). This implies that the tensor
product on mod-kG descends to a symmetric monoidal tensor product on mo?d-k£G which
we also denote by ®. Now the exact sequence k — I(k) — Xk yields an exact sequence
X — I(k) ® X - Yk ® X. By the remarks above, the functors ¥ and ¥k @ — are
isomorphic.

Next we are going to define the exact triangles. Let f : X — Y be a morphism in
mod-kG. Then we obtain a diagram

X —— I(X) Y X
A |
Y ——C——3%X

where C is the pushout of f and ¢. The triangles X ER vZoMhsxin mo0-kG arising
this way will be called standard triangles. A triangle in mo0-kG is called exact if and only
if it is isomorphic to a standard triangle. Now one has to prove that this structure indeed
satisfies the axioms of a triangulated category; the interested reader may find this in [6],
Theorem 9.4. In fact, the closed symmetric monoidal structure on mod-kG (given by ®
and Hom) is compatible with the triangulation in the sense of [10], appendix A.

We claim that short exact sequences A — B — C in mod-kG induce exact triangles
in mod-kG. We can lift the identity map of A to a commutative diagram as follows:

0—sA—2 LENG 0

[

0—A—I(A)—XA—0

Then, as is shown in Remark 2 in the proof of Theorem 9.4 in [6], we get an exact triangle
AL BL 0 %A in mod-kG. By the rotation axiom, we also get an exact triangle
oLy RNy ; BLNYG)

Now let n be a fixed integer; then all the k-vector spaces Hom,,(Q"T™X, Q™Y) for
integers m are naturally isomorphic. This defines the Tate cohomology groups

Ext?(X,Y) = Hom, ;(Q"X,Y).

For any two morphisms f € Hom,,(2"X,Y) and g € Hom,;,(2"Y, Z) we get a compo-
sition g o Q™ f € Hom(Q"t™X, Z). This describes the composition product

Ext}5(Y, Z) ® Extio(X,Y) — Ext/™(X, Z).

Let us write H*(G, M) = E/);tZG(k, M) for short; then H*(G,k) is a graded algebra,
which we often denote by H*(G). As in the case of ordinary cohomology, H*(G) is graded
commutative.
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Note that for positive integers n, Tate cohomology E/Jx\tZG(X ,Y) agrees with the usual
Ext-groups Ext}}(X,Y). For example, every short exact sequence A — B —» (' represents
an element in Ext},(C, A); under the isomorphism Exti,(C, A) = Hom,,(Q0C, A) this
element corresponds to the stable map 2C' — A in the exact triangle QC — A — B — C.

Remark 1.1. It is well-known that the group algebra kG is a cocommutative Hopf algebra,
the comultiplication A : kG — kG ® kG and the antipode € : kG — kG being the k-linear
maps given by

Alg)=g®g, elg)=g"

for all g € G. Let us note that throughout this thesis we can replace the group algebra kG
by an arbitrary (ungraded) finite-dimensional cocommutative Hopf algebra A over k. By a
theorem of Larson and Sweedler [I7], A is a Frobenius algebra and we are able to construct
the stable module category mod-A. Cocommutativity provides a symmetric monoidal
tensor product ® and will turn up later again when we discuss Steenrod operations. The
tensor product of a projective module and an arbitrary module still is projective (see the
last paragraph of §3 in [I1]), and therefore the tensor product descends to a symmetric
monoidal product on the stable module category with unit object k, the trivial module
which gets its A-module structure via the counit of A.

We should also remark that we can generalize all results to the category 9t00-A of arbi-

trary (not necessarily finite dimensional) A-modules and its corresponding stable category
Moo-A.

1.2 The graded center

Suppose that C is a triangulated category with shift functor X. The graded center Z(C)
of C consists of all natural transformations ide — X" which commute with 3 up to the
sign (—1)"™; that is, the degree n-part of Z(C) is given by

27(C) = {¢ tide — =" | B¢ = (—1)"¢B}.

There is an obvious pairing Z"(C) x Z™(C) — Z™™(C) mapping (¢, %) to the composition
Y™y o1p. We will ignore set theoretical issues and assume that Z*(C) is a set — this will
be obvious in all the cases we are interested in. Then Z*(C) is a graded commutative ring
(see, e.g., [18], §2).

Now let C be the stable module category mo0-kG. Suppose that we are given a coho-
mology class in H "(@), represented by some map ¢ : 2"k — k. Then multiplication by ¢
induces an element of Z™(C) also denoted by (:

Qnyx o Ly
[
id
Oko X Y re x

Thus, we obtain a morphism of graded rings H *(G) — Z*(C). If we compose this with
the evaluation at k we get a retraction

H*(G) = Z*(mod-kG) =% H*(G).
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The first map is an inclusion of a direct summand, which will not be surjective in general.
For example, take any element g in the center of G. Then the action of g on a given
module is a natural morphism in mod-kG and induces an element in Z°(C). If g is not
the unit element of G then g does not come from H*(G) since evi(g) = 1 € HY(G) but
g# 1€ Z°C) if p divides the order of G.

More generally, let A be a symmetric algebra, i.e., a Frobenius algebra A whose corre-
sponding nondegenerate bilinear form Ax A — k is symmetric (as it is in the case A = kG).
Define A°P to be the opposite algebra of A, and put B = A® = A°? R A, the enveloping
algebra of A. Then B is also a symmetric algebra, and we can pass from mo0-B, whose ob-
jects are the same as A-A-bimodules, to the stable category mod-B with shift-functor Xp.
Then the Tate version of Hochschild cohomology is given by HH*(A) = Homp(QpA, A).
Given an element in HH™(A) represented by some map f : QA — A in mod-B, we obtain
a natural transformation in mo?d-A4

n ~ On ~ On J®4id ~
"X =2QpX=2QRAR X —— AR X =X,
where the first isomorphism comes from the fact that a projective resolution of B-modules
is a projective resolution of A-modules. We therefore have constructed a map HH*(A) —
Z*(mod-A). In our case A = kG we have a factorization

H*(G) — HH*(kG) — Z(mod-kG),

so the second map is more likely to be surjective than the whole composition. In fact, the
central element given above not coming from H *(G) comes from HH *(kG). Nevertheless,
the map f/I?I*(kG) — Z*(mod-kG) is not surjective in general. For example, in the case
that G is a p-group of rank at least 2 and k is algebraically closed Linckelmann and Stancu
[19] proved that Z*(mod-kG) is infinite-dimensional in all degrees for p = 2 and in odd
degrees for p > 2.

Remark 1.2. The map H*(G) — Z*(mod-kG) is a special case of a more general setting.
Suppose that C is a triangulated category with a symmetric monoidal product A compati-
ble with the triangulated structure. Let us denote by S the unit of the product. Then we
have a canonical map from the graded ring [S, S]* of graded self-maps of S to the center
Z*(C) by mapping ¢ : S — ¥"S to the family of maps

X2 XAS N v Ay sny

In the case of C = mo0-kG with product ® and S = k being the trivial kG-module, we get
our map H*(G) — Z*(mod-kG). In the case of the stable homotopy category C = SHC
with smash product A and S being the sphere spectrum we get a map from the stable
homotopy groups of spheres 7%, — Z*(SHC).

1.3 The notion of order

Now we are going to define the notion of order. Let C be a triangulated category with
shift functor ¥, and let ¢ € Z"(C) be an element in the graded center of C. For every
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object K we denote by K/( some choice of cone of the map (s;—ng : X""K — K, so we
have exact triangles

LYK S TR S K S K SR
The ambiguity in choosing these cones will turn out to be irrelevant for our purposes.

Now suppose that f : K — Y is some map in our category C; then we say that a map
g: K/ —Y is an extension of f if the following diagram commutes:

K/¢
LA

Y

We are ready to define the main object of this thesis. The following is a straightforward
generalization of a definition made by Schwede in [25].

Definition 1.3. For every object X in the category C we define the (-order of X, denoted
C-ord(X), inductively by the following two conditions:

(i) For every X we have ¢-ord(X) € {0,1,2,...} U {oo}.

(ii) For every positive integer j and every object X we have (-ord(X) > j if and only if
for every object K and every morphism f : K — X there is some extension g of f
such that for some (and hence any) choice of cone Cy of g we have ¢-ord(Cy) > j—1.

We also define the (-order of the category C to be the (-order of some zero-object.

Remark 1.4. For every integer m and every object X in C we have multiplication by m
on X, defined by the m-fold sum id+id+---+id : X — X. This is natural in X and
commutes with the shift functor ¥, so we get an element m € Z°(C) and the definition
applies. This way we recover the definition of m-order given in [25].

Lemma 1.5 (compare [25]). Let C and ¢ be as above. The (-order enjoys the following
properties:

(i) The C-order is invariant under isomorphisms and shifts.
(ii) An object X of C has C-order at least 1 if and only if ¢ acts as zero on X.

(iii) The C-order of C equals 1 plus the minimum of the (-orders of all objects of the form
X/C.

(iv) The C-order is invariant under equivalences of triangulated categories.

(v) If D C C is a full triangulated subcategory then we can restrict ¢ to D and obtain an
element in Z*(D). The notions of order in these two categories are related by the
inequality C-ordP (X) > ¢-0rd®(X) for all objects X of D.

10



1.4 Tensor powers

Proof. Part (i) follows by a straightforward induction on j. At the same time the proof
of the ‘isomorphism’ statement shows that the notion of order does not depend on the
choices of cones in its definition. For (ii) note that if ¢ is zero on X then there is some
map h : X/¢ — X for which the composition X — X/( " X is the identity of X. Then
for every morphism f : K — X we have an extension K/{ —— X/( — X, which means
that (-ord(X) > 1. Conversely, if the order of X is at least 1, then we can apply the
definition to the identity map f : X — X and obtain some extension g : X/{ — X. Then
¢ is given by the composite

X S X - X/ X,

but the composition of the first two maps is zero. Part (iii) and (iv) follow directly from
the definition. For (v) it is enough to show that ¢-ord®(X) > j implies ¢-ordP(X) > j
which we show by induction on j, the case j = 0 being an empty statement. Suppose this
is true for j — 1 an assume that ¢-ord®(X) > j. Let f : K — X be any map in D. By
assumption, there is some extension g : K/¢ — X in C such that for some choice of cone
Cy of g we have C—ordc(Cg) > j—1. Since C is a full triangulated subcategory, g and C, lie
in D, and by induction hypothesis ¢-ord”(C,) > j — 1. This implies (-ord”(X) > j. O

1.4 Tensor powers

Suppose that X and Y are kG-modules; then we have already defined a kG-module struc-
ture on the tensor product X ® Y, coming from the comultiplication of the Hopf algebra
structure on kG. We can therefore consider the n-fold tensor product X @ X ® --- ® X
which we denote by X®". On this module we have an obvious X,-action, where 3,, denotes
the symmetric group on n letters. The fact that the comultiplication A : kG — kG ® kG
is cocommutative shows that ¥, acts by homomorphisms of kG-modules. Whenever we
have a module X, we denote by T" the map

X®p _, x®p
T1Q0X2Q - RQITp— Tp QT Q- QTp—1.

Then TP = id and (1-T)? = 0. We will also write N = (1-T)?~! = 14+T+T?+- . .+TP~ L,
All these notions generalize naturally to chain complexes of kG-modules. It should be
noted that the action of ¥, then involves a certain sign depending on the degrees of
the elements, which can be deduced from the Koszul sign rule. Let us give the precise
sign here. Whenever X is a chain complex of kG-modules and x € X is a homogeneous
element, then we denote by |z| the degree of x. The action of o € ¥,, on a tensor product
1 ® -+ ® xy, of homogeneous elements involves the sign (—1)™ with
m= 3 il ll
1<J,
o (i)>o(j)

For every chain complex X with differential 0 we denote by X [m] the chain complex with
modules X[m|,, = X,,—,, and differential (—1)"0. When X is a kG-module, we can view
X as a chain complex concentrated in degree 0; then X[1] is a chain complex concentrated
in degree 1, and o € %, acts on the tensor product X[1]®" = X®"[n] via its signum (—1)7.

11
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1.5 Symmetric and exterior powers

For a kG-module X, the module X®" has two famous quotients; on the one hand, the
symmetric power

S”X:X®n/<x1®"'®xn—$a(1)®"'®$a(n)>ka
and on the other hand, the exterior power
A"X =X/ (21 @ @y | 27 = xjfor some i £ j), .

Here we denoted by (M), the k-vector space generated by the elements of the set M.
As usual, we define X®° = §YX = AYX = k, the trivial kG-module. The obvious
multiplication maps

pij i S X ©FX = ST, NX@NX - ATX

turn S*X and A*X into graded algebras. There are also comultiplications A : S*X —
S*X ®8*X and A : A*X — A*X ® A*X which make S*X and A*X into graded Hopf
algebras. For example, the former map is given by

Ay SHX — S XX
RS R Zx i) @ To(it1) " To(its)

where o runs through all (7, j)-shuffles (see, e.g., [22] §1.3).
For any map f: X — Y let us denote by H{j the map

/{ij AX ®SY — ATIX @ 8y
901/\"'/\$i®y1"'yj'—’Z(—l)t_lm/\-~-/\ft/\-~~/\mi®f(xt)y1-~-yj.

Notice that this map equals the composition

A®id id®feid
—_

ANX @Sy 299 N1 @ X @ Sy ANIX @Y @ §iY 988 Ai-1x g §lHiY,
We will often drop the j from the notation and simply write Hzf for that map.

Lemma 1.6. Suppose that 0 — X =Y 5 Z — 0 is an ezact sequence of kG-modules,
and let n be a positive integer. Then the sequences

0= A"X " An-lx @ Sy Snl R ALy g snly B gy ST gy g
and
0 — A"X AU Any Sn, pgne 1Y®SIZ%...—>A1Y®S” ly 8 eny

are exact.
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1.5 Symmetric and exterior powers

Remark 1.7. For « = idx : X — X and Z = 0 this is a well-known fact (see, e.g., [22],
Theorem 1.1); one obtains the so-called Koszul complex
0= A"X 5 A"IX X 5 A"?PX @ 52X — ...
S X®S"IX - S"X — 0. (1.8)

It is always exact, also for infinite dimensional modules X.

Proof. We only need to show a statement about exactness; we can therefore ignore the
G-action and treat all modules as k-vector spaces. In particular, we can assume that
Y = X & Z and ¢ and 7 are the obvious maps. Using the exponential property of the
symmetric algebra functor S*(X & Z) = S*X ® S*Z (see 1.4.(2) in [22]) the first sequence
decomposes into a direct sum of sequences
0= ANX@S"Z AN XRS'X®S"'Z - N XS X®8S"Z — ...
AN XS X982 - S X982 -0

which are exact by Remark and one additional exact sequence 0 — S"Z 4, gnz 0.
Exactness of the second sequence is proved similarly. O

Using the fact that there are natural isomorphisms A™(X*) = (A"X)* for all n, and
Sn(XH) =2 (8" X)! for n < p (see §1.5 in [22]), we obtain the following dual result:

Corollary 1.9. Suppose that 0 — X =Y 5 Z — 0 is an ezact sequence of kG-modules,
and let n be an integer with n < p. Then the sequence

0 9"X X5 Y S A Z@S"Y - 5 A Z@S'Y - A"Z — 0
is exact, where the maps N'Z @ S"'Y — A1 Z ® S"71Y are given by

n—
zl/\22/\-"/\zi®y1y2...yn_i»—>Zzl/\---/\zz-/\7r(yj)®y1...gj}...yn_i.
j=1

Remark 1.10. Note that in the special case X =0, Y = Z and m = idy we get a sequence

0-9"X > X®S"'X 5 A°X®S"2X — ...
S ATIX @ X - A"X -0, (1.11)

which we call the de Rham complex. 1t is exact for n < p but not in general, compare
with Lemma 1.2 of [22].

Another consequence is the following

Corollary 1.12. Suppose that0 — X =Y 5 k — 0 is an ezact sequence of kG-modules.
Then the map k7 : A"Y — A""'Y @ S'k =2 A"1Y induces a map A"Y — A"~ X which
we also denote by Kk}, and the sequence

Kq,

0— A"X A Any En An-lx g (1.13)

15 exact.
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1. Prerequisites

Proof. By Lemma we have a commutative diagram of exact sequences

0— APX 25 APY — Arly — Y — k=0

0—> A X — Ay — - —Y —k—0
showing that the dotted arrow exists and that (1.13)) is exact. O

Remark 1.14. In the situation of the preceding corollary, consider the graded algebra A*X.
Then A'™*X and A'™*Y are a graded right A* X-modules, and the corollary (and an easy
to verify commutative diagram) show that we have an exact sequence

0— AMT*X S ATY S A*X —0

of graded right A* X-modules.

We end this section with a construction that will be helpful later for checking com-
mutativity of certain diagrams. Suppose that Y is any kG-module, M* is a graded right
A*Y-module and N* is a graded left S*Y-comodule; so we have maps

w:M* @AY - M*, v:N*"—SY®N"
Then we have maps M*® ® N7 4 Mt @ Nt given by the composition
Mig NI 99 \igy @ NI~ HE it g N1
We claim that d? = 0 as we can read off from the following commutative diagram:

M@ NI ——— M? ®Y®Nj—l LM“‘l ®N]—l

l N is a S*Y-comodule lid ®v lid Qv

. . . ., pRid . .
M@S’2Y QN 2— MY QY QNI 2— Mitl g YV @ NJ—2

X) l M is a A*Y-module J{

Mi ® A2Y ® Nj—2 [N Mi+2 ® Nj—2
Definition 1.15. We call
LS MTITONTT S M oN S Mt e NS L
the chain complex associated to (M, N).

This is a functorial construction in the sense that maps of graded right A*Y-modules
and maps of graded left S*Y-comodules induce maps of chain complexes. The same
construction works for N*® M™ when N is a graded right S*Y -comodule and M a graded
left A*Y -module.

14



1.6 Symmetric and exterior powers in the stable category

Ezxample 1.16. We have already seen instances of such chain complexes: suppose that
m:Y — Z is a map of kG-modules, and let N = S*Y. Then M = A*Z becomes a
A*Y-module via the map 7. The chain complex associated to (A*Z, S*Y) is part of the
exact sequence of Corollary

We can also swap the roles of S* and A* and consider graded left S*Y-modules M and
graded right A*Y-comodules; then we also get an associated sequence in a similar way.

Example 1.17. Suppose again that 7 : Y — Z is a map of kG-modules, and let M = A*Y.
Similar to the example above, N = S*Z becomes an S*Y-module via the map 7. Since
S*r . S*Y — S*Z is a map of S*Y-modules, we obtain a morphism of the associated
chain complexes:

"'<7AjY®SZ‘Z%AJA'HY@SZA_IZ(*”'

id ®Si7r1\ Tid ®St—1x

”'%A‘jY®SiY<7Aj+1Y®SZ’_IY%.”

1.6 Symmetric and exterior powers in the stable category

For every kG-module X and 7 < p, there are natural maps

. , 1
S'X — X%, xl---xiHﬁme@---@xgi, (1.18)
oEY;
. 4 1
ANX — X® xl/\--~/\xir—>5 (D)%%, ® -+ @ T4,
'O'EEZ'

Up to the scalar constants they are the i-fold iterated comultiplications of the graded Hopf
algebra structures on S*X and A*X. We will refer to these maps as the canonical maps
S'X — X® and A’X — X®. The compositions S°X — X® — §'X and A'X — X®
A*X with the projections are the identity maps. Therefore, S°’X and A’X both are direct
summands of X®?. In particular, we have shown the following lemma which ensures that
for i < p the functors S and A? induce functors on the stable category.

Lemma 1.19. Suppose that i < p. If P is a projective kG-module, then so are S*P and
AP

Remark 1.20. Note that the conclusion of the lemma fails in general if ¢ > p. For example,
if G is the cyclic group of order p, then dimy kG = p and hence dimy AP(kG) = 1. One can
check that AP(kG) = k as kG-modules, which is not projective. Also, SP(kG) = k& (free).

Lemma 1.21. Suppose that i < p and X is any kG-module. Then, in the stable module
category, S'QX = QA X and AN'QX =2 QIS'X.

Proof. Consider a short exact sequence 0 — QX — P — X — 0 in mo0-kG with a
projective module P. By Corollary there is an exact sequence

0= S0X - S'P S A XS P ... A IXeSP 5 AX = 0.

15



2. The lower bound

But the S7P’s are projective by Lemma so S'QX is stably isomorphic to Q'A*X.
The other isomorphism is shown similarly using Lemma O

By induction, we conclude that

ON9S'X if j is odd,

NQYX =L
QUA'X  if j is even

in the stable category. Since Q™X = 0 in mo0-kG implies that X is projective, we get the
following corollary:

Corollary 1.22. If n is even, then A'Q"k is projective for 1 < i < p.

2 The lower bound

From now on, let [¢] € H"(G) be a non-zero Tate cohomology class of even degree n,
represented by a map ( : 9"k — k in mo0d-kG. Since ( is non-zero, it must be surjective
and we get an exact sequence 0 — L¢ - Q"k = k — 0. This sequence yields an exact
triangle

Ok — Le - Q"k — k

We denote by 1 an unstable representative of the stable map Qk — L.

Definition 2.1. Let s be a non-negative integer. An s-coherent module X is a sequence
Xo, X1, Xo, ..., X, of modules together with maps

Wi gt AZLC & Xj — X2'+j
for alli > 1 and 7 > 0 with i + j < s, satisfying the following conditions:
e (Unitality) For every 1 <1i < s, the composite

ke X; 229 Lew X B x

s a stable isomorphism.

e (Associativity) The square

, : id ®115.m ,
NLe@NLe® Xy — "5 NLe @ Xjim
J/ui’j(@id J{Ni,j«km

AiJerC R Xm Hitam Xi—i-j-‘rm

commutes for all 0 < i, 7, m with i+ j +m < s.

16



2. The lower bound

o (Ezxactness) The sequence
0—>SiL<®X0—>Si_1L<®X1 — e —>S’1LC®X¢,1 —X;—0

is exact for all © < s. Here the map Sng Q@ Xm — Sj_lLC ® X1 1S given by the
composition

id ®,U‘l,m

I G @ Le @ X s SI1Le @ X

! A
SILe® Xy ——15,

We call Xy the underlying object of X. A map of s-coherent modules f : X — Y
is a family of maps f; : X; — Y; compatible with the respective structure maps p in
the obvious sense. Such a map will be called injective (surjective) if each of these f;’s is
injective (surjective).

Remark 2.2. We have chosen a rather lengthy and very explicit way of defining s-coherent
modules in order to stress the similarity to the definition of k-coherent M-modules of
[24], Definition 2.1. Notice that we could equally well have defined s-coherent modules
to be graded left A*Ls-modules X, with X; = 0 for i outside {0, 1,...,s}, satisfying the
unitality and exactness conditions. The sequence of the exactness condition is the chain
complex associated to the right S*L:-comodule S*L; and the left A*Lg—module X, (in
the sense of Definition .

Ezample 2.3. For every s < p, there is the tautological s-coherent module, defined as
follows. Put X; = AiLC, and define y; ; : AiLC ® AjLC — AiHLC to be the natural maps.
Then we have associativity, and exactness holds due to Corollary To prove unitality,
note that we have a commutative diagram

OHLC ®AZL< — Q"k ®A1LC 4)A1L§ —0

| |

0 —— AL ——— A E ——— AL —— 0

where the upper row is obtained by tensoring the exact sequence 0 — Ly — Q"k — k — 0

with AiLC; it is therefore exact. The bottom row is the exact sequence constructed
id®A%L

in Corollary [1.12) and the middle vertical map is the composite Q"k ® AiLC

Ok @ AIQk L5 ATFLQnE, Passing to the stable category, we obtain a map of triangles:

Qk® AZLg E— LC (9 AZLC — "k ® AZLC E—— AZLC

P

QN Ly —— AL 5 AHiQRE —— AL,

Since 0 < i < p— 1, we know (by Corollary [1.22)) that A*Q"k is projective and therefore
isomorphic to 0 in the stable category. Hence, the first map of the bottom row is an
isomorphism. The commutative diagram () then shows the desired unitality condition.
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2. The lower bound

More generally, if K is any module, we denote by F(K) the tautological s-coherent
module over L ® K, given by F(K); = AVL; ® K. The maps and properties are obtained
from the previous example by tensoring everything with K from the right. This is also a

functorial construction in the sense that given any map f : K — L, we get an induced
F(f)

map F(K) ——= F(L), which is surjective if f is.
Lemma 2.4. Suppose that f : X — Y is a surjective map of s-coherent modules. Then
the kernel of f is an s-coherent module in the natural way.

Proof. The kernel of f is defined levelwise by C; = ker f; : X; — Y;. The multiplication
maps are defined by the following commutative diagram:

. . d®f; .
AZLC ® Cj HAZLC ® Xj 4fJ>AZLC (%9 Yj

J/Mi,j J/Ni,j l,ui,j
fitj

Cij —— Xinj — 2 Vi

Associativity follows immediately from associativity on X and Y. To prove unitality,
consider the following commutative diagram:

k0 — QUIX; — QERY)

| l |

Ciyj ——— Xipj ——— Y1y

When we pass to the stable category, the exact rows turn into exact triangles, and the
second and third vertical map turn into isomorphisms. By the five lemma in triangulated
categories, the first map must be an isomorphism as well.

We are left with the exactness condition. Consider the following commutative diagram:

0—SLe®Cy— S 'Le@Cy— -+ — C; — 0

! ! |

0—SLe@Xg— S 'Le@ Xy — - — X; —>0

! | |

0—SL@Yy— S 1Le@Y) — - — Y, —0

Since the maps C; — X; are inclusions, we can deduce that the top row is a complex.
Regarding the rows as chain complexes, the vertical maps form a short exact sequence
of chain complexes, thus inducing a long exact sequence in homology. Together with the
hypothesis that the second and the third row have zero homology, we obtain that the top
row is an exact sequence. O

Lemma 2.5. If X is an s-coherent module, then the multiplication maps ji;; : AiLC ®
Xj — X4, are surjective.

18



2. The lower bound

Proof. Let us prove this by induction on 4. For ¢ = 1, the map L ® X; — X;; is the
same as the last non-trivial map in the exact sequence of the exactness condition; it is
therefore surjective. For the inductive step, consider the following commutative diagram:

L;® AiLC ® X; —» L ® Xiyj

| i

A1+iLg ®X; —— X1 titj

Since the upper-right composition is surjective, so is the lower-left one. This implies that
the bottom map is onto. ]

If X is an s-coherent module, let X[1] be given by X[1]; = X14, for i < s. Then X[1]
is an (s — 1)-coherent module in the natural way. The multiplication maps of X induce a
map of (s —1)-coherent modules F'(X7) — X[1] which is surjective by the previous lemma.

Proposition 2.6. If X is an s-coherent module with underlying object X1, then we have
that C-ord(X;,) > s — 1.

Proof. We do this by induction on s, the case s = 1 being an empty statement. Now
suppose that s > 2. We start with a map K — X in the stable category and assume that
it is given by a surjective map f : K — X1 in mod-kG. Consider the composition of maps
of (s — 1)-coherent modules

FE) 29 poxy) — xq.

By Lemma the maps are surjective. Therefore, by Lemma the kernel C' of this
map is an (s — 1)-coherent module. By induction hypothesis,

¢-ord(Ch) > s — 2. (2.7)

Now consider the following commutative diagram in mo2-kG:

id
CoK L oK

/
id® fl Y J/id ®f
n®id -

v
K
Xo

By the unitality condition, the map Qk ® X; — X5 is a stable isomorphism. Therefore
the dashed arrow stably lifts to a map f : L ® K — Qk ® X;. This is (up to a shift)
an extension of f; we will show that some cone C'; of f satisfies ¢-ord(C f> >s—2. It
is enough to show that some cone of the dashed arrow has this property. Note that this
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2. The lower bound

map (in the unstable category) is surjective (because f and 1 are). Therefore, up to a
shift, the kernel of the composition

LeoK 220 poe x, M x,

is a possible choice of cone of the dashed arrow. Since this kernel is the underlying object
of C, we get the inductive step from ([2.7)). O

Corollary 2.8. If X is any object in mod-kG, then (-ord(X/() > p — 2. In particular,
the (-order of mo0-kG is at least p — 1.

Proof. Since L¢ = Q(k/¢) in mod-kG, we get (-ord(X/¢) = ¢-ord(L¢ ® X). But L ® X
is the underlying object of the (p — 1)-coherent module F'(X), so we get the result from
Proposition 2.6 O

Remark 2.9. It should be noted that, for the proof of Proposition the exactness
condition can be dropped from the definition of s-coherent modules. The reason why we
introduced it was that we needed the surjectivity of the composite L@ K — L;®X; — Xa,
because then the kernel of this map serves as a fiber in the stable category. We could
equally well have used a functorial mapping cone construction on mod-£G as follows: for
an unstable map f : X — Y define the mapping cone C(f) to be the cokernel of the
injective map

(id ®i,f)
_

X=2X®k XQkGaY.

Here, i : kK — kG denotes the usual inclusion. The construction is very similar to the
mapping cone for maps f : X — Y of simplicial sets, given as C(f) = A[1]]A X Ujxx Y
where A[1] is the standard 1-simplex, pointed by the O-vertex.

The mapping cone is sufficiently well-behaved for our purposes: we have natural iso-
morphisms C(idz ® f) 2 Z @ C(f), and for every commutative diagram

XL)Y

| ]

X/ T> Y/
we get an induced map C(f) — C(f’) making the obvious diagrams commute. Using
these facts, it is straightforward to formulate an alternative proof of Proposition [2.6] not
using the exactness condition of s-coherent modules.
Nevertheless, the way we have done it turns out to be useful in the proof of the more
general statement in

Remark 2.10. Let us note that Corollary is not true for arbitrary non-zero even-degree
elements ¢ of the graded center. We will work out an example in the case p = 3 with

¢-ord(k/¢) =01in
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3. The power operation

3 The power operation

In this section we define a power operation P; on the Tate cohomology H *(G). The
operation will serve as an obstruction for the (-order of k/( to be at least p — 1. At the
same time, it enables us to compute certain Massey products explicitly, and we will make
use of this fact later on in order to prove (-ord(k/¢) = p — 2 for certain groups G' and
certain classes (. Let us gather several interesting properties of P; in one big theorem.

Theorem 3.1. There is a power operation Py on Tate cohomology fI*(G) satisfying the
following properties:

(i) For every Tate cohomology class ¢ € ﬁ”A(G) (with n even if p is odd) the operation
P1(C) is a coset of (P - H*(2p*3)(G) in Hp"*@p*?’)(G).

(ii) The operation is linear in the sense that P1(C + ) C Pi(¢) +Pi(p) and Pi(c-() =
c? - Pi(C) for all {,p € H*(G) and c € k.

(iii) If p = 2 then for every ordinary cohomology class ( € H"(G) we have that the
Steenrod square Sq™ () is an element of P1(C). If p is odd then for every ordinary
cohomology class ¢ € H"(G) of even degree we get that fP21(¢) € P1().

(iv) The operation is natural with respect to injective group homomorphisms i : G — H:
for every ¢ € H*(H) (of even degree if p is odd) we get i*P1(¢) C P1(i*C).

(v) For any ¢, € H*(G) the Cartan formula Py (Ce) € P1(C)@P + CPP1(p) holds.

Ezample 3.2. Property (iii) says that our power operation extends the Steenrod operations
Sq; and P; that we have on ordinary cohomology to Tate cohomology, at the price of
getting a certain indeterminacy. Let us demonstrate the effect of the indeterminacy for
two examples of groups. Let p be an odd prime. We begin with G = Z/pZ, the cyclic group
of order p. The structure of H*(G) is known (see [4], §XIL.7) to be H*(G) = k[u,v*!]
where u is an exterior class of degree 1 and v is a Laurent polynomial class of degree 2.
For every non-zero ¢ of even degree we get that (P - fl_(zp_?’)(G) = pr"_(Qp_g)(G), the
indeterminacy is the whole cohomology group, so that P; does not store any information
at all. As a second example let us study G = Z/pZ x Z/pZ. The structure of H*(G) is
known and we will recall it in In particular we have that (¢ = 0 for all classes (, ¢
whose degrees satisfy |¢| < 0, |p| < 0 or [¢] <0, |Cp| > 0. This implies that P;(¢) has zero
indeterminacy for all { (except in the case |¢| = 0).

Ezample 3.3. Let us do an example of a non-commutative group which can be worked
out completely using Theorem only. Let p = 2 and G = g, the quaternion group
with 8 elements. The Tate cohomology ring is known (see, e.g., [}, XII.11, and [IJ,
Lemma IV.2.10) to be

H*(G) = klz,y, s/ (2 + 2y + y2, 2%)

with degrees |z| = |y| = 1 and |s| = 4. In order to describe P; we first have a look
at the indeterminacy. The vector space H~!(G) is generated by zy?s~!, and for every
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3. The power operation

homogeneous z € H*(G) we have zy?s~'22 = 0 unless |z| is divisible by 4. Therefore,
Pi(s") = HY(G) for all integers n, and in all other degrees P, does not have any
indeterminacy. We know by part (iii) of the theorem that P;(z) = Sq;(z) = Sq°(z) = =
and P;(y) = y. The Cartan formula implies P;(2?) = 0, P1(y?) = 0, and Py (z%y) = 0,

and finally

Pi(s"z) = Py(s™)a? +52Py (x) = 52", Pi(s"z?) =0,
0 Pi(s"y?) =0,
Pi(s"y) = s2my, Pi(s"z%y) = 0.

The plan of this section is as follows. The first two subsections have a preparative
character. In the first one we introduce a new description of negative Ext-groups via
complexes of projectives, whereas in the second one we prove the existence of a cochain
map between certain cochain complexes. The definition of our power operation and proofs
of the most obvious properties are given in the third subsection. In we prove the
Cartan formula, and in we show that the new operation contains the first non-trivial
Steenrod operation in positive degrees. In the last two subsections we compute P; in the
case of elementary abelian p-groups.

3.1 Negative Ext-groups

Let n > 0. It is well-known that Extj;(A, B) = Hom,;(Q2"A, B) admits a description
via extensions of A by B. We will now give a similar description of Ext, 5 (A, B) =
Hom,; - (A,Q"B). Let us define a category K,(A, B), whose objects are all the chain
complexes

c. A—P,—P,_1—...— P —B

with projective modules Py, P, ..., P,, and a morphism of two such complexes is a com-
mutative diagram as follows:

C A——P,—— P, > P > B
c’ A—— P, ——P,_| P/ B

For objects C and (', let us write C' &~ C’ if there is a morphism C' — C” in K,,(A, B).
Define the relation ~ on K, (A, B) to be the equivalence relation generated by ~, and put
K,(A,B) = K,(A,B)/ ~, the connected components of K, (A, B). We will sometimes
write K*%(A, B) if we want to emphasize that we are working over the algebra kG.

Let us fix a projective resolution of B:

P 0— Q"B P, — Py —...— P —B—0 (34)

Theorem 3.5. The map ® : Homyg (A, Q"B) — K, (A, B) which associates to each map
f:A— Q"B the complex A R P, — P,1 — -+ —> P — B induces a bijection
Hom, (A4, 0"B) <L K, (A, B).
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3.1 Negative Ext-groups

To prove this, we need the following lemma.

Lemma 3.6. Suppose we are given two finite chain compleres A = (0 — Apy1 — -+ —
Ay —0) and B= (0 — Byy1 — -+ — By — 0), where A; is projective fori=1,2,...,n,
and B is exact. Let f,g: A — B be chain maps satisfying fo = go : Ag — Bg. Then the
classes of fnt1 and gnt1 in Homyo(Ant1, Bnt1) are the same.

Proof. This is a standard fact from homological algebra. We can assume that g = 0.
Then fy = 0, hence dp f1 = 0. Since A; is projective and B is exact, there exists some
hi: A1 — B such that dg hq = f1. Inductively, one can find h; : A; — B satisfying
dphj+hj_1dg = f; for all j =2,3,...,n. But then

dphnda = (fn—hn-1da)da = frnda =dp fot1,

and since dp : Bp41 — B, is injective, we get h,da = fn+1. Therefore, f,11 factors
through a projective module (namely A,,). O

Proof of Theorem[3.5: As a first step, we show that ® induces a map Hom(A, Q"B) —
K, (A, B). Suppose we are given f' € Homgg(A, Q" B) such that f' — f factors through
some projective module R:

fr=r: A—=R—>Q"B
Then the complexes ®(f) and ®(f’) differ in their first map only; let us denote these by

a,a’ : A — P,, respectively. From the commutative diagram

A « \Pn > Ph_1 )Pn_Q*)...*)B

Loy @

-—P,.R—F, 1—P, 9——---——B

L L

n—14>Pn—24>"'4>B
we get that ®(f) ~ ®(f’). Therefore, we obtain a map Hom;(A,Q"B) — K,(A, B)
which we also denote by &
To construct an inverse for @, start with some object C = (A — Q. — B) € K,,(A, B).
Since the Q);’s are projective and is exact, we can lift the identity on B to a map of
chain complexes f: C' — P:

zj Qn Qn—-1 > Q1 > B
O"B—— P, —— P, P > B

By Lemma the stable class of the resulting map fn,+1 : A — Q"B is independent of
the choice of the lift; let us write ¥(C) = f,+1 € Hom, (A, B). Suppose we are given a
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3. The power operation

morphism g : C" — C in K, (A, B). Then f o g is a lift of the identity on B to a map of
chain complexes C’ — P. Since g,+1 = ida, we have U(C') = (f 0 g)nt1 = fur1 = Y(CO).
Therefore, we have constructed a map ¥ : K,,(A4, B) — Hom;~(A4,Q"B). The proofs of
VUod =id and ® o ¥ = id are immediate. O

Let us investigate the additive structure more closely.

Lemma 3.7. Suppose thatAi>Pn—>---/—\>P1 LB andALQn—> cee— Q1 9 B are
two complezes representing classes k, A € Ext, (A, B), respectively. Then the complex
i

)

(fg)

P,oQ,—FP10Qp1— - —P0oQ1 —= B

represents the class kK + A.

Corollary 3.8. Suppose that A N P* LB and A5 P* 9 B are complexes representing
classes k, A € Exth(A B). Then A% P, 9. B s a complex representing k + A.

We omit the straightforward proof of the lemma; the corollary is deduced by using the
commutative diagram

f+g

B

AHP @P Y9l g

where A is the diagonal map.

Proposition 3.9. Suppose we have a commutative diagram

D
—— T
%

QA¢—

0 \
in mo0-kG. Assume further that the P;’s are projective, so that the upper row represents

some element o € Homy(A,Q"B), and assume that the lower row is exact, therefore
representing some element 3 € Hom,,(Q2"C, D). Then the diagram

A—5Q"B

[

commutes stably.
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3.1 Negative Ext-groups

Proof. Choose projective resolutions Q"B — Q. — B and Q"C' — R, — C. By the usual
‘projective to acyclic’-argument, we get a diagram

A— P.—B

ol 1|

O"B—Q«— B

odl L

i L

D—FE.—C

where @ and (3 are unstable representatives of & and (3, respectively. The result follows

from Lemma 3.6 O
Remark 3.10. Suppose we have an exact sequence A — P, — --- — P; —» B with
projective modules P, ..., P,. Then we can view this as an extension representing some

stable isomorphism Q"B — A; but we can also consider this as an element of IC,,(A, B),
representing some stable isomorphism A — Q"B; by the previous proposition, the two
maps are stable inverses of each other.

We have a composition product K,,(B,C) x K, (A, B) — Kptm(A, C) similar to the
Yoneda splice: given E: A — P, — B and E' : B — Q. — C we define E' o E to be the
complex

E'oE: A—P——Q.—C.
N A

This product is compatible with the equivalence relation ~ and therefore induces a product
K,(B,C) x Kn,(A,B) — Kp1m(A,C).

Lemma 3.11. The composition products on K, and E/l;t,;é coincide under the bijection

of Theorem [3.5

Proof. Let us start with complexes A — P, — B and B — Q, — C representing stable
maps @ : A — Q"B and 8 : B — Q"C, respectively. Choose projective resolutions
0"C — R, — C and Q""™C — T, — Q"C. Then we can lift the identity map on C to
commutative diagrams as follows:

A P, > B B Q- C
I N i
ontmo —— T, —— Q(C o ——R,.——C

Here, 5 and 7 are unstable representatives of 3 and some 7. Note that the extension
QutmC — T, — Q"C represents the identity map id € Homy,(Q™Q"C,Q"t™C). By
Proposition the left diagram shows that v = Ba. After splicing the two diagrams the
result follows from Lemma [3.6 O
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3. The power operation

There is also a way of composing an element = € Exth (A, B) given as a complex
A — P, — B with an element of y € Ext w(B,C) (with m > 0) given as an extension
C— M, B:

Lemma 3.12. Suppose m < n. The identity map of B can be lifted to a diagram

A an \ m+1 >Pm S .. \Pl B
C me 7t >M1 B

and for any such lz'ftz'ng, the complex A — P, —> -+ —> Ppy1 — C' represents the com-
position y - x € Ex (A Q).

Proof. Existence of the lifting is common homological algebra. For the second statement
choose a projective resolution Q"~"C — R, — C'; then we have the following commutative
diagram:

A > P, oo—>Ppyy——P,—---—P—B

N
c
AN

Qr-mo—Ry—pm — - — Ry > My —---— M) — B

The complex in question represents the stable class of the map 4. The bottom row
represents y € Hom, ("B, Q" "C), the upper row represents v € Hom;~(A4,Q"B).
The result follows from Proposition O

Remark 3.13. We can also compose an element z € Ext{ »q(A, B) = Homy (A, B) given
by an unstable map f : A — B with an element y € Exth(B (') given by a com-
plex B5 P* L, C; the composition y - z z € Exth (A,C) is then given by the complex
A o, P, 5 C. Similarly, for any z € Exth(C D) represented by some unstable map

g:C — D, the complex B - P, L5 D represents the product z -y € Exth(B D). In
fact, these statements are special cases of the following Proposition.

Proposition 3.14. Suppose that we have a commutative diagram

A > P, e > Py > B
I I
Al N Qn S .. Ql B’
with projective modules P;, Q; for i =1,2,...,n. Then the rows represent maps r : A —

Q"B andy: A" — Q"B’, respectively, and yo f = Q"(g) oz in mod-kG.
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3.1 Negative Ext-groups

Proof. Choose a projective resolution Q"B" — R, — B’. By usual homological algebra,
we get a diagram

A > Py B
AL
A’ Q« B’

U T

"B’ — R. —— B/
and then the result follows from Proposition [3.9} O

Remark 3.15. There is a similar statement for extensions. Suppose that we have a diagram
as in Proposition but this time with exact rows and the P;’s and @Q;’s are not
necessarily projective. Then the rows represent maps z : Q"B — A and y : Q"B — A/,
and fox =yoN"(g) in mod-kG.

We end this part by mentioning that the bijection of Theorem [3.5] is natural with
respect to injective group homomorphisms. Suppose that H is another group and i :
H — @ is an injective group homomorphism. Then the functor i* : mod-kG — mod-kH
is exact and maps projective kG-modules to projective kH-modules. This implies that
P (QEX) = QF(*X) in mod-kH for every kG-module X. Also, we get induced maps
KFG(A, B) — KFI(i*A,i*B) and Hom, (A, Q"B) — Hom, ; (i*A, Q"(i*B)). Naturality
of the map ® then shows the following lemma.

Lemma 3.16. The diagram

KkG(A, B) «+—— Homy (A, Q" B)

l |

KA (i A,i* B) 457 Homy. (A, Q°(i* B)
commutes.

Ezxample 3.17. Suppose that p divides the order of the group G. Then it is known that
H~YG) = Homy(k,Qk) is isomorphic to k. Under the bijection of Theorem a
canonical generator of that vector space is given by the complex

p 2 G

> k

where € is the augmentation of kG. The previous lemma shows that this complex is
invariant under every group automorphism of G.

Remark 3.18. The previous lemma generalizes to those morphisms C' — C’ of Hopf
algebras for which C’ becomes a projective C-module. In the case when C' = kH and
C'" = kG are group algebras and the morphism comes from a morphism f : H — G of
groups, it is a nice exercise to show that kG is projective as a kH-module if and only if p
does not divide the order of the kernel of f.
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3. The power operation

3.2 A map of cochain complexes

Let X be any kG-module. Consider the complex
S: xor 12T, xop N, yop 151, yep N, - N, yop 17T, yep (3.19)

consisting of 2p — 2 objects and 2p — 3 morphisms, which we refer to as the Steenrod
complex. On the other hand, we can splice the complexes ([L.11)) and (1.8 to obtain the

de Rham-Koszul complex
RE: X@SPlX—= - =2A1X @ X—=A X @ X=X oS 1X
APX

also consisting of 2p — 2 objects and 2p — 3 morphisms. We consider both complexes S
and RK as cochain complexes.

Proposition 3.20. There is a natural map of cochain complexes 3 : S — RK such that

(i) the last map Bop—2 : X®P — X ® SP=LX s given by 1 ® 29 @ -+ ® Tp — T1 @
T3 - Tp, and

(ii) the first map B : X®P — X @ SP™LX is given by 31 = —Pap—2.

Proof. The statement is obvious for p = 2, so let us assume p > 3 from now on. Because
of naturality, we can forget the G-module structures and consider this as a statement on
k-vector spaces X. Let us recall some standard notions. Suppose that X,Y are k-vector
spaces, and let H be a group acting on X from the right and on Y from the left. Then
we have the usual definitions

XopY=XY/{((z-h)@y—z®(h-y) |zeX,yeY,he H),,
X/H=X/(x-h—z|zeX heH), = X®yk,

where k denotes the trivial H-module. Whenever X is a right H-module and H; C H is
a subgroup, then X is a right Hi-module and there is a natural map X/H; — X/H. For
every vector space X, the symmetric group 3,, acts on X®” from the right by permuting
the factors. The cyclic subgroup C,, = Z/nZ C ¥, acts by cyclic permutation of the
factors, and we define the cyclic product to be the quotient C"(X) = X®"/C,,. Then we
have a natural map C"(X) = X®"/C,, — X®"/%, = S"(X).

All these notions generalize naturally to (co)chain complexes C, where one has to note
that the action of ¥, on C®" involves signs depending on the degrees of the permuted
elements. For instance, if C'= X[1] is the chain complex with X concentrated in degree 1,
then S™(C) = (A"X)[n] (here we use that p is odd), and C"(C) = (C™(X))[n], so there
is also a natural map C™(X) — A"X.

We will use the following result of Swan. Let m be any integer, and define M to be the
cochain complex over k generated by two elements x, y of degrees m~+1 and m, respectively,

subject to the condition 0y = x. That is, M is isomorphicto--- — 0 — k LNy SN BN
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3.2 A map of cochain complexes

Proposition 3.21 (Swan [27], Lemma 22.2 and Remark 22.1). Let X' be the kC),-cochain
complex given by the sequence

0—kSke, o ko, & 2L ke, Sk — 0,

where T is a generator of Cp, and N =1+T +--- + TP~ and the k’s are in degrees mp
and mp + p. Then there is a Cp-equivariant homotopy equivalence b : X — M®P such
-1

that Yimpip(1) = 2% and Yp(1) = c - y®P with the constant ¢ = (—1)™"% (B3

It follows from the proposition’s proof that we can impose one of the following two
extra conditions on v: either 1y 1(1) = y @ 2P~ or ¢hpi1(1) = ¢z @ y2 @1,

Now let X be any k-vector space. Since 1) : X — M®P is Cp-equivariant, we can form
the composite

PR, id
X®Cp X ®p Cp M®p®cp X®p_>M®p®Zp X®p§(M®X)®p/Zp§Sp(M®X).
If we now put m = 0, then this composite yields a map of cochain complexes

crx L X ®p =T X ®p N . .. =T X ®p s CPX

T e

APX 2 AP IX @ X 2 AP 22X @82X == X @8 1X = SPX

where we can assume that X®? — X ® SP~1X is the map B2p—2. On the other hand we
can put m =1 to get

10/5'¢ L) X®p =T X®p N S =T, X ®p s OPX

T T e

SPX > X@SPIX =2 A2X @ S8P2X = > AP 1X @ X > APX

with the map X® — X ® SP7!X being equal to 3;. By splicing the two complexes
(3.22) and (3.23) after multiplying with suitable non-zero constants we obtain a proof of
Proposition [3.20] O

Remark 3.24. To determine the constant ¢ in Proposition [3.:21]it seems to be necessary to
write down a suitable cochain map v explicitly. This is not done in Swan [27], and we will
also not do it here. In an earlier proof of Proposition [3.20] the author of this thesis con-
structed the cochain map ( explicitly, thereby showing that the multiplicative constants
are indeed as given. However, the proof is rather lengthy and not very enlightening, which
is why we omit it here. For the main results of this thesis it is actually enough to know
that 31 is a non-zero multiple of (2,_o, which follows from Swan’s proof. Then, certain
diagrams will only commute up to non-zero scalars, but this is enough for our purposes.
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3. The power operation

3.3 Definitions and basic properties

Now we give the definition of the power operation we are interested in. Let n be an integer.
We assume that n is even if p is odd. Let [¢] € H "(G) be a Tate cohomology class; as a
first step, we will define a subset D;([¢]) of HP" (@) for all positive integers i = 1,2, ...

To do so, choose an unstable map ¢ : Q"k — k representing the class [(], and consider
all commutative diagrams of the form

an P1 >P2 > >P¢

| ] l

(Qk)EP ———> (Ak)SP —— (k)P ——> - = (Qk)®P o k

(3.25)

in which the upper row is a complex with projective modules P;. It therefore defines an
element of Exth((Q”k:)®p k) = HP"(G). The set of all elements obtained this way is
denoted by D;((). Note that the map (x) in the diagram is either N or 1 — T, depending
on the parity of .

Lemma 3.26. The set D;(C) defined above does not depend on the chosen representative
¢ for the cohomology class [(]. We can therefore write D;([¢]) = D;(().

Proof. If we assume that 2"k arises from a minimal resolution --- — P, — ..., then we
know that PHomyg(Q"k, k) = 0. To see this, note that every morphism Q"% — k which
factors through a projective module also factors as "k — P,_1 — k. Since we have
chosen a minimal resolution, the differential of the complex Homyg(Px, k) vanishes and
therefore the composition P, — P,_1 — k is zero. From the surjectivity of P,, — Q"k we
then get that our original map must be zero. Therefore, PHomyq(2"k, k) = 0 and there
is no ambiguity in choosing (. s .

Now suppose we have another version of 2"k and call it Q*k, and let 5 Ok — k be
a map representing the same cohomology class as (. Then we have that Qk = Q"k @ R
for some projective module R. We have retraction maps Q"k — Q"k 5 Q"k and we know
that (¢ = ¢. We want to show that the sets D;(¢) and D;() agree under the isomorphisms

ot —i n 7-®P)* = T—i —~
Exty o ((Q"K)7, k) 5(L@_p)?EX%G((Q’%)@p, k) -

Let us suppress these isomorphisms from the notation and simply prove Dl(f ) =D;(Q).

Note that (ﬁk)‘gp ~ (Q"k)®P @ S for some projective module S, and under this
isomorphism, the map T decomposes as the direct sum of the map 7' on (2"k)®P and
some map on S. This implies that there is an isomorphism of complexes

F®p
(an)®p R (an)®p —_— e — (an)®p C—) k

) ) | |
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3.3 Definitions and basic properties

where the lower row (without the last map) is a direct sum of two complexes.
Now suppose we have a diagram

do d1 di— 1 di

(Qrk)®P Py > Py

l (flvgl)l (fivgi)l

(QE)PP S — (k)P B S — - — (k)P B S — k

> k
|

defining some element in D;(¢). Then we obtain a diagram

dooL®p dy di—1 d;—ag;

Q)P » Py P k

i fll fil
(an)é@p SN (an)®P R (an)®17 T> k

defining some element in D;({). By Corollary the difference of that element and the
element we started with is the cohomology class represented by the upper row of the
diagram

(Qk)®P s P, P, LN
O\L gll gil H

«

and since the left-most vertical map is zero, we get that this difference vanishes by Pro-

position [3.14]

Conversely, let us start with some diagram

(k)P —— P —— - - Pk

H nl &

(Q"E)SP — (Qk)EP — - - - — (k)P ok

defining some element of D;((); then we obtain a diagram

H i @idl fiéeidl

((AZT%)@)P%(Q"k:)®P@S—>P1@S—>~--—>Pi@SMk
(QE)EP = (k)PP @ § — (K)P @ S — -+ — (k)P & S — k

defining an element in D;(¢) which is the same as we started with because of the following
commutative diagram:

g

(an)®P N P1 c. PZ 5 ke
N lb®p l l H
(an)@’%(Q"k:)@'@S%Pl@S%---%P,@ka O
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3. The power operation

We could have equally well started with a slightly modified definition:

Lemma 3.27. Every class in D;(¢) comes from a diagram of the form (3.25|) in which
the sequence 0 — (Q"k)®P — Py — -+ — P, is ezact.

Proof. Choose an injective resolution (Q"k)®? < Q1 — --- — Q;. Given any diagram of
the form , we can lift the identity map on (Q"k)®P to a map of complexes Q. — Pk
(because the P;’s are injective modules and the resolution is an exact sequence). Finally
define @; — k to be the composite Q; — P; — k. 0

An immediate consequence is the following lower bound on the indeterminacy of D;(().
Corollary 3.28. If a € D;(¢), then a+ ¢? - HT/(G) C Di(C).
Proof. We assume that a is given by a diagram

d;
(Qnk)®P s Py oo —— 3 P, >k

[ ! sl

(QE)®P — (QE)OP — - — (Q")PP @k

in which the upper row is as in Lemma Then the cokernel of d;_; is a choice of
YHQ"k)®P. If we are given some class b € H~(G) represented by some unstable map
h : cokerd;_; — (2"k)®P we can form the composition w : P; — cokerd;_; - (Q"k)EP.
Replace f; by f; + w and g by g + (®P o w, then we obtain a new diagram showing that
a+ CPb € D;(Q). O]

Let us fix some non-zero map ¢ : 2"k — k. Let Ay — Ay — -+ — Ay, o be
the de Rham-Koszul complex introduced in so that A; = Agp_1-; = AI(Q"k) @
SP=i(Qnk) for all j = 1,2,...,p — 1. Furthermore, let K be the kernel of the surjective
map (%7 : (Q"k)®P — k. Then we get an exact triangle

Ok — K — (Q"k)*P — k.

Let us denote the stable map 2k — K by v. We also get a map A : Ayp_3 — K from the
commutative diagram in mod-kG

Agp3 — Agpo = Q"k ® SPTHQ k) — SP(Q"k)

N I
K— 5 (QUk)®P ¢ 'k

in which the middle vertical map is the tensor product of the identity with the canoncial

inclusion (|1.18)).

Lemma 3.29. Ifi < 2p— 3 then the composition (Q2"k)*P % Qik DT, QiSTK vanishes
for every a € D;(C). For i = 2p — 3, the composition equals the composition of the
canonical map (Q"k)®P — Q"k @ SP~1(Q"k) = Ay, multiplied by a minus sign, with the
class represented by the complex Ay — Ay — -+ — Agp_3 MK
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3.3 Definitions and basic properties

Corollary 3.30. Suppose that i < 2p — 3, and let us assume that Di(¢) # 0. Then D;(¢)
is a coset of (P - H=H(G) in HP""I(Q), and 0 € D;(¢) unless i = 2p — 3.

Proof of the Corollary. From the lemma we know that the composition
Q)% % ip 2 ik
does not depend on the choice of a € D;((). Therefore, if we are given a,a’ € D;((),
then a — a’ vanishes when postcomposed with Q*~'v. Thus, a — o’ factors as (Q"k)®P —
A o .
QY QnE)®P &, 'k, which proves a — a’ € (P - H™*(G). Together with Corollary |3.28| we

get the first part. If i < 2p — 3 then the composite (Q7k)®P L Q'k o, Q'K vanishes
for a € D;(¢); thus a is divisible by ¢? which implies 0 € D;((). O

We will show in Proposition that D;(¢) is non-empty for all positive integers i.

Proof of Lemma([3.29. Let a € D;(¢) be defined by the first two rows of the following
diagram:

(Q"k)®P > Py e P g k

H l | l

(QE)®P — (QPE)EP — -+« — (QPK)EP — (Q")ZP —s

dl 1 1 a (3.31)

Agp o j—Asp i —> - —— Agp 3 —— Aoy o (%)

N |

K —— (Q"k)*P — &

The connection between the second and the third row is given by the cochain map con-
structed in Proposition In particular, G is the canonical map, and if i = 2p — 3 then
also —v is the canonical map. The diagram (%) commutes due to the computation

1
U®U1®"'®Up71*—’U®U1U2---Up—1HW Z URQUsy @ QUg,
'UEEP,1

= C(u)C(ur) - ((up-1)-

Therefore, the diagram (3.31)) commutes. Since the bottom row represents v, Lemma

. i—1 .
says that the composition (2"k)®P a0k 250 iFlK s represented by the complex

(an)®p—>P1—>"'—> i—1 — K,

which in turn by Proposition [3.14] is the same as the composition of v with the class in
Ext,;éH(Agp,g,i, K) represented by the complex

Agp o i — Agp 1 — - — Ay 3 — K.

If 7 < 2p — 3 the latter class vanishes because As,_o_; is projective. O
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3. The power operation

We conclude this section with the proof of two nice properties of the D;’s.

Lemma 3.32. For all ¢ and all ¢ € k we have that Di(c - () = P - D;(¢). Let us
assume that Di11(&) # O for some §. Then the operation D; is additive in the sense that

Di(C+ ) CDi(C) + Di(p) for all {,p of the same degree.

Proof. Note that the statements given fit with the indeterminacy of the D;’s. The first
statement is an immediate consequence of the definition. We will prove the second state-
ment for odd numbers ¢ only; the proof for even numbers ¢ is similar. Take any diagram
of the form

(Q"k)®P > Py o > Py > Pit1

H | | l

(Qk)®P — (k)P — - — (Q"k)EP — (Q"k)®P

which exists due to our assumption. It is enough to show that the upper row of the
diagram
(Q"k)®P P e > Py

D L

(k)P — (QR)EP — -+ — (k)P —> &

represents the zero map, where A = (¢ + )% — (®P — p®P. We claim that A factors

as (Q"k)®P RN (Q"k)®P — k. To see this, note that X is the sum over all p-fold tensor
products of ¢’s and ¢’s except (¥P and %P, and the Z/pZ-action (by cyclic permutation)
on these tensor products is free. Therefore, we get a diagram as follows:

(QP )P P
\ /
Pity
(Q"k)EP — (QR)®P — -+ — (A"k)®
TN
an; ®p

But now the upper row represents the composition of a map X¢(Q"k)®P — P, with a
map Pjy1 — k, which is stably trivial since P41 is projective. 0

Lemma 3.33. Suppose that i < 2p — 3. The D;’s are natural in the following sense:
whenever we are given an injective group homomorphism f : H — G and a cohomology

class [¢C] € H™(G), we have f*D;([¢]) C Di(f*[C]) as subsets of HP"(H).

Proof. The functor f* : mo0-kG — mo0-kH is exact and maps projective modules to
projective modules (here we use the injectivity of f). Also, it maps the trivial G-module
k to the trivial H-module k. This implies that f*(Q¢k) = Q' k in mod-kH. Now we start
with a diagram of the form defining some element a in D;(¢) and apply the functor
f*. Then we obtain a diagram showing that f*a € D;(f*(). O
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3.4 The Cartan formula

Remark 3.34. For the general case of a Hopf algebra, see Remark which applies
verbatim to the previous lemma.

Let us finally define our power operation.

Definition 3.35. For all Tate cohomology classes ¢ (of even degree if p is odd) we put
P1(¢) = —D2p-3(C).

For us the minus sign occurring in the definition is mainly motivated by the minus sign
in the statement of Lemma [3.:29] It is the same sign that shows up in any construction of
the Steenrod operations, compare with (5.2) in [21].

3.4 The Cartan formula

Put Dy(¢) = (P (as a set with exactly one element). We are now going to prove the Cartan
formula in the following form.

Proposition 3.36. Let s be a positive integer with s < 2p— 3, and let (, p be cohomology
classes (of even degree if p is odd). Then

Dy((-9) € Y Dil¢) - D).
i+j=s
1,520
We start with some auxiliary constructions and lemmas. As before let C), be the cyclic
group of order p, and let A be the algebra k(C), x C,) with augmentation ¢ : A — k and
augmentation ideal I = kere.
Let g be a generator of C), then we have a well-known exact sequence of free kC)-

modules
(1—g)P~1 (1—g)P~1

kC, =2 kC, kC, =2 kC,

which we consider as a cochain complex with the first kC), sitting in degree 0. When we
tensor two such complexes we obtain an exact sequence A of free kC), ® kC},, = A-modules

A A ADZ 4D _, pA®t

where the i-th summand of A®® comes from the tensor product of the two kC)’s sitting
in degree s — ¢ and i — 1, respectively. Let us denote the generators of the two factors of
Cp x Cp by g and h; then we also have a cochain complex

B:A L=gh (1—g@h)P~1 PRI (1—g®h)P~1 o

which is actually exact, but we do not need this.

Lemma 3.37. There is a map of cochain complexes of A-modules v : A — B lifting the
identity of A in degree 0 with the following property: when considered as a matrix, in
degree s the map s : A2GTY . A is of the form

e (1 1+71 1 ... 1 1+1)ifsis odd,
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3. The power operation

e (1 1+1 1 ... 1+1I 1)ifsisevenandp=2,
0(1 I 1 ... I 1) if s is even and p is odd.

Proof. We use the identification A = k(Cp x Cp) = k[z,y]/(2P,yP) given by z =1 — ¢
and y = 1 — h. The augmentation ideal I is the ideal generated by x and y, and 1 — gh
corresponds to w = x + y — xy. Let us define z = (1 — z)y; then w = = + z. The upper
row in the diagram

T

xP~1 y P!
-y 93_1 —yP~ 1 g

A A2 v A3 Y A4 S
1
Cod () ()
A fA2 A3 ~ fA4 S e

-1
xP 1
P
( -z ) <z mp71 >
p—1 —z T
z z

equals A, and the diagram commutes because of the identities 2P~1(1 — ) = 2P~! and
(1—-2)2P"t =1 —2)PyP~t =yP~L Let usput u = aP~2 — 2P 324 —... —2P~2 c [ for
p>3and u =1 if p=2. Then the diagram

N
&3
N
w
b
IS

commutes because of the equalities

wP™! = 2Pl — u = pu + 2P

ww = P~ — P71

If we put the two diagrams together we get the desired cochain map, which in degree s is
given by the matrix (1 1-z .. 11-2) if s is odd and by the matrix (1 (1-z)u1.. (1-z)u 1) if
s is even. 0

Suppose we are given cochain complexes X — P| — P, — --- — P jand Y — Q1 —
Q2 — -+ — Qi4; with projective modules Ps and @5, and X and Y are sitting in degree 0.
The tensor product of these two complexes is a complex X ® Y — R; — Ry — ... with
projective modules Rs;. Let o : P, — X’ and  : Q; — Y’ be maps such that the
sequences X - P — -+ - P — X' andY — Q1 — --- — Q; — Y’ are complexes, thus
representing some classes a € ]ﬁ;é(X ,X')and b € E}?c,;é(Y, Y’), respectively.
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3.4 The Cartan formula

Lemma 3.38. In the situation above, the sequence X @Y — Ry — --- — Riy; — X'®Y,
in which the last map is the composite R;y; — P; @ Q; o8P, x ®Y’, is a complex and

represents a @ b € E}?c,;éiﬂ) (XY, X' Y.
Proof. We know that a ® b = (a ® idy~)(idx ®b) is represented by the complex

XY —=2X®Q1+ +X0Q ——PeY > >PY >X' VY.

~
XY

On the other hand we have a commutative diagram

X®Y Ry R; Rjt1 Riij— X' @Y’

| | |

XY —=>X®Q — = X®Q —-P Y — - —PeY —-X'Y

given by the projection maps Ry — X ® Qs for all s =1,2,...,4j and by the compositions
Reyj — Ps®@Q; — P;@Y' for s =1,2,...,i. The diagram also shows that its upper row
is indeed a complex. O

Proof of Proposition[3.36 The statement is trivial unless s = 2p — 3, so we restrict atten-
tion to that case. Let ( : Q"k — k and ¢ : Q™k — k be given; then we will be interested
in the complex

_7)p-1 _
Q" © Q)2 2L @k o orkyer LT grp o rgyer 21
which is isomorphic to the complex

o -1

(Qnk)EP @ (k)P IZTEL, (gniger g (e LTI

via the obvious permutation maps. Let us put X = (Q"k)®P and Y = (Q™k)®P. Then C,
acts on X and Y via the endomorphism T given by cyclic permutation. Let commutative
diagrams

X—P —>--—P, Y — Q1 — - —— Qs
H fll fsl H | 9|
XTpX—xr 17X YoV —F 17V

be given. Let us denote the cochain complexes in the bottom row by X and ), respectively.

We write X ® Y — Ry — --+ — Ry — ... for the tensor product (X — Py) @ (Y — Qx).

Then we obtain a cochain map (X @ Y — Ry) & X ® Y. Furthermore we have that

X2Y=X®c, Adc, Y. (3.39)

This is easy to see, but the right hand side needs some explanation. The objects of A
are free k(Cp x Cp)-modules. On these we have a left €}, action given by the inclusion
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3. The power operation

Cp — Cp x C, of the first factor, and we have a right action given by the inclusion of the
second factor, and the actions commute. On X and Y we have the Cj-actions given by
the endomorphism 7. When we endow the modules of A with the trivial G-action,
is an isomorphism of cochain complexes of kG-modules. Now Lemma [3.37 tells us that
there is a certain map of cochain complexes

X ®c,7®c,Y : X ®c, A®c, Y = X ®c, B&c, Y,
where the latter complex is isomorphic to

1-TQT (1-TeT)r—!
_—

Xy ¢ x oy 1-TeT,

X®Y

Putting things together we get the following diagram:

X®Y Rl >0 RS k’

H | | H

X®Y*>X®Y4>-"*>X®Y<®I;4>k

®(P®P
In order to say which map is represented by the complex in the upper row, we need to
investigate the map R, — k. Take a direct summand P; ® @; of Ry (with i + j = s) and
consider the composite P; ® Q; — Ry — X ®Y. The description of v in Lemma says
that this map is given as a composite

.0 id+X®c, 08¢, Y
P7/®Q]f(8i)X®Y1 Cp CP

XY

where § : A — A is some map having its image in the augmentation ideal I of A. In
particular, the composition

X®Cp9®cpy <®P®¢®P
_ -

X®Y XY k

vanishes and the map P; ® Q; — k equals ((®? o f;) ® (¢®P o g;). Therefore, if we replace
the last map of
XY >R —--—>Rs— k

by its restriction to the direct summand P; ® @;, Lemma tells us that we obtain
a complex representing some element of D;(¢) ® D;j(¢). Furthermore, if we replace the
last map Rs — k by its restriction to the direct summand X ® @, the resulting complex
represents some element of (¥ @ D (), and similarly for Ps®Y. Now the Cartan formula
follows from Corollary O

3.5 Comparison with Steenrod operations

We are now going to show that our power operation extends certain Steenrod operations in
the following sense: for every ¢ € H™(G) of positive degree n we have that Sq" ! ¢ € P1(¢)
ifp=2and gP21¢ € P1(C) if p is odd and n is even. To do so, let us recall the definition
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3.5 Comparison with Steenrod operations

of Steenrod operations on H*(G). There are several ways of constructing these operations
which lead to the same result. One can use the isomorphism H*(G) = H*(BG; k) where
BG denotes the classifying space of GG, and then work in the topological setting where we
have Steenrod operations on the cohomology of a space. On the other hand, we can use
the fact that kG is a cocommutative Hopf algebra, and there is a general construction of
Steenrod operations on the cohomology of cocommutative Hopf algebras (see [21], §11).
In either case, one usually constructs operations D; : H"(G) — HP"%(G) for all non-
negative integers ¢, then proves that some of these operations vanish, and finally defines
the Steenrod operations P* and GP* to be the non-vanishing ones. Let us go through this
process more precisely; we will take the topological path, even though in the case of a
cocommutative Hopf algebra the purely algebraic way is more appropriate.

Consider the simplicial set FG which can be obtained by forming the nerve of the
category whose objects are the elements of G, and there is exactly one morphism for every
ordered pair of objects. Then EG is a contractible simplicial set with a free G-action.
We denote by P, the corresponding chain complex over k, i.e., P, is the k-vector space
over the set (EG), of n-simplices, and we have the differential 0 = )", 0; : P, — P,_1.
The right G-action on EG gives a right G-action on P, turning this into a kG-module.
Naturality of the construction shows that 0 is a kG-module map. The P,’s are in fact
free kG-modules, and k «— P, is a projective resolution of the trivial kG-module k. In
what follows, we choose 2"k to be the cokernel of the map 0 : P41 — P,, and write
pn : Py — Q"k for the obvious map. Then p, extends to a map 7 : P, — (2"k)[n] of
chain complexes.

We also have a complex @, of kG-modules defined by Q,, = P57, the differential given
by >°,(9;)®P. The diagonal of EG induces a map D : P, — @ of kG-chain complexes.
Furthermore, we have the Alexander-Whitney map ¢ : Q. — (P®P),. Putting things
together, we get a composition like this:

p, P, (P,)®P LN (P®P), o, (k) [n]®P = (Q"k)2P[pn]

Restricting these chain maps to degree pn, we obtain the following diagram:
Fpn,
ppnl %‘D (3.40)
QP —— (Q7k)®P

The lower row is a stable isomorphism; in what follows, we will always mean this map
whenever we write QP"k = (Q"k)%P.
Recall that T : (P®P), — (P®P), is the chain map given by

T(a1®a2®--~®ap):iap®a1®---®ap_1, (3.41)

with the usual sign convention; in particular, the sign is 4 if the degrees of all the a;’s
are the same. Let us write Ag = £ D. From the general theory we know that (1 —7)Aq
is null-homotopic (in fact, naturally) via some homotopy Ay, i.e.,

(1—T)Ag = A0 + DA,
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3. The power operation

Proceeding inductively, we find (natural) maps A; of degree i satisfying

(1-T)A; = Ajy10 + 0041 if ¢ is even, (3.42)

(1+T+--+TPHA; = A1 — 0A 44 if 7 is odd. (3.43)

Naturality of the A;’s implies that they are kG-linear. We assume that these A; are
chosen as in the construction of Steenrod operations in [21], §7 (or, for the case of a

general cocommutative Hopf algebra, §11 in the same paper). From now on, we assume
that p - n is even.

Lemma 3.44. Define o = m%PA; : Py — (Q"k)®P. Then « is a cochain map:

Ppn —_— Ppn—l Ppn—2 Ppn—?)

f T

1-T 1-T

Q)& = (Qnk)®P s (Qrk)er N

(Qn k)@’p — 5.
Proof. Note that the following diagram commutes:

(P%P)pn - (P%P)pn,

lwébp l,r@p

(Quk)er L (k)

To see this, start with some element a = a1 ® - - - ® ap in (P®P),,. If it does not belong to
(P,)%P C (P®P),y,, both a and T'a will be mapped to zero under 7®?. If a lies in (P,)%?,
the sign occurring in (3.41)) is 4+, because the degrees of all the a;’s are equal.

Using (3.42)), we obtain

(1-T)a; = (1 —T)7*PA; = 7®P(1 — T) A,
= 1%PA;10 + 7PO A1 = ;10
0

for ¢ even. A similar argument using (3.43)) for odd i completes the proof of the lemma. [J
Let [(] € H"(G) be given by a map ¢ : Q"k —>®l§), and let 7 be any positive integer.
Define A to be the composition Py, _; % (Q"k)®P ", k. Then
C*P(1—=T)a;—1 =0 ifiisodd,
—_——

/\8:C®pai6: 0 o
C®PNa;_1 =0 if 7 is even.
S~

0

Therefore, \ induces a map QP ‘k — k which represents D;([¢]), where D; is defined as
in [21] (proof of Theorem 11.8, together with Definitions 2.2).
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3.5 Comparison with Steenrod operations

Lemma 3.45. Viewed as an element in Hom,(QP"k, Q%k), the upper row of the commu-
tative diagram

(an)@)p é Qpnk(—> Ppn—l e Ppn—2 — Ppn—i L> k

[ l | Lo

(k)P —————— (QE)P — (QE)EP — -+ — (Qk)®P @k

represents Q'D;([C]). In particular, D;([¢]) € D;(¢).

Proof. Commutativity of the diagram follows from the diagram (3.40), Lemma and
the definition of A. The upper row is the composition of the complex

Qpnk‘(—> Ppn—l E— Ppn—Q 7 Ppn—i ” Qpn_ik;

representing the identity in Homy.(QP"k, QIQP" k) with D;([¢]) : QP"k — k. The
result follows from Remark [3.13 ]

Corollary 3.46. We have that P1(¢) € P1(().

Proof. Checking the signs in the formulas (1) and (2) of §5 in [21], we get that indeed
P1(¢) = =Dap-3(C)- 0

Proposition 3.47. For all non-negative integers i and all Tate cohomology classes ¢ (of
even degree if p is odd) the set D;(() is non-empty.

Proof. We have already done this for ordinary cohomology classes (, and now we need
to extend this result to negative degrees. To do so, we have to extend our projective
resolution P, and the maps A; to the negative range. Recall that A; was defined as a
map (not a chain map in general) P, — (P®P)[—i],.

The first step is easy: we simply extend P, to a complete projective resolution of
k. To define A;, it turns out that we need to modify the notion of tensor product for
our purposes. The usual tensor product of two chain complexes X, and Y, is defined by
(X®Y)n =B, -, Xi ®Y; with a certain differential, but this is not what we want. For
every complex X, let us write X and X~ for the truncated complexes

X{f _ X, ifn> (?,
0 otherwise,

X = X, ifn< (?,
0 otherwise,

with the obvious differentials. Now we introduce a new product X for two given chain
complexes X and X’ as follows. Define K to be the kernel of the differential X_; — X_o;
then we obtain a complex X~ « K with K sitting in degree 0, and we also get an
augmented complex K «+ X . Similarly, we get the complexes X'~ « K’ and K’ «— X'*.
We can now form the tensor product of complexes (X~ «— K) ® (X'~ « K’) and the
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3. The power operation

tensor product of augmented complexes K ® K’ «+ X ® X'*. Connecting these two at
their common object K ® K’ we obtain a new complex which we denote by X X X

e X 1K OK®X 1 XX X10X,0 Xo® X| «— ...

One should bear in mind that the elements of K and K’ are considered to be of degree 0;
then the degree of an element of the form a ® b equals |a| + |b]. The operation X is a
symmetric monoidal product on the category of (unbounded) chain complexes. If X and
Y are complete projective resolutions of the modules K and L, respectively, then by the
Kiinneth theorem X K'Y is a complete projective resolution of K ® L. Furthermore, it
is an extension of the usual tensor product of non-negatively graded chain complexes in
the sense that (X K Y)T = X+ ®@ YT. Also notice that (X,,)®? is a direct summand of
(X®P),,, for every integer n.

We can extend T to a chain map (P%P), — (P®P), by putting T(a1 ® a2 @ - -- @ a,) =
+a, ® a1 @ - -+ @ ap—1 with the same sign rule as in For every non-negative integer
i, let us extend the maps A; : P — ((PT)®P),4; to maps A; : P, — (P™P),; satisfying
the following properties:

0 = Agd — DA,
(1 — T)AZ = Ai+18 + 8Ai+1 if 4 is even,
(A+TH- +TPHA; = Aj110 — 0A; 14 if i is odd.

For i = 0, we need to extend a chain transformation Ag which is defined on a large (in fact,
infinite) range to the whole projective resolutions. It is a standard fact from homological
algebra that this is possible. To do the inductive step, note that the term on the left-
hand side is already defined everywhere and is a chain transformation P — (P™P)[—q].
Furthermore, A;y1 is a partially defined null-homotopy for that chain map, and again
usual homological algebra tells us that we can find a suitable extension of A;1; to the
whole projective resolution. Let p, : P, — Q"k be the obvious map for every integer n.
For any fixed integer n, this map extends to a chain map 7 : P, — (2"k)[n]. We obtain
a commutative diagram

Bon

Xp A
ppnl \‘0

QP —— (27k) =P

in which the vertical arrow is a stable isomorphism which we refer to as ‘the’ isomorphism
QPPE 2 (Q"E)®P. Tf we put oy = mPA; : Py — (k)P we get a cochain map a:

Ppn—>Ppn—1 Ppn—2 /Ppn—3 P

f T

Qk)er 5 (rik)yer N (Qrgyer 5 (riyer N
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3.6 The power operation for G = Z/pZ x Z/pZ

The proof of this fact is exactly the same as the one of Lemma(3.44] For every ¢ : Q"k — k
we get a commutative diagram

(an)®p é QP E——s Ppn—l — Ppn—2 — Ppn—i —k

[ | | Lo

(Qk)EP 5 (QE)EP — (Qh)EP — - — (QK)EP — |
<®P

proving that D;(¢) # 0. O

Proof of Theorem [3.1. This is essentially a table of contents for the previous results. Part
(i) follows from Proposition and Corollary Part (ii) is Lemma [3.32] Part (iii)
follows from Corollary Part (iv) is Lemma The Cartan formula (v) is shown in

Proposition [3.36] O

3.6 The power operation for G = Z/pZ x 7./ pZ

In this section we will describe the power operation P; on the Tate cohomology of the
group G = Z/pZ x Z/pZ. Let us start with the case p = 2. It is well-known that the
ordinary cohomology ring H*(G) is the graded algebra generated by two elements uy, ug
of degree 1. Recall from Example that H~'(G) 2 k has a certain canonical generator
which is invariant under automorphisms of G. Now we use Tate duality (see, e.g., §4 of
[28]) saying that the natural bilinear form

H'(@)® H(G) - HYG) = k

given by multiplication in the Tate cohomology is non-degenerate and therefore induces an
isomorphism (H~1="(@))* = H™(G). For a fixed non-negative degree n, the monomials
wiu of degree n form a k-linear basis of H"(G), and we denote the dual basis (which is
a basis of H='="(G)) by ;. From [I6], Proposition 4.21, we know that H*(G) is the
graded commutative algebra generated by the elements wuq,ug, ;; (with ¢,j > 0) subject
to the relations

pi—1,; ifi>0,
Wi, U1 =

0 otherwise,
oy = { PRI if j >0,
I 0 otherwise,
vijpirj = 0.

Now let p be an odd prime; then the ordinary cohomology ring H*(G) is the graded
commutative algebra generated by two exterior classes ui,us of degree 1 and two poly-
nomial classes v, v9 of degree 2. For a fixed non-negative degree n, we can consider all
monomials of the form vi‘vgu‘fug of degree n with a,b,¢c,d > 0 and ¢,d < 1; these form a
basis of H™(G), and we denote the dual basis elements by ¢oq 4 c.2p+4. Again from [I6], Pro-

position 4.21, we get that H* (G) is the graded algebra generated by elements uy, ua, v1, va
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3. The power operation

and (; ; for all 7,7 > 0, of degrees |u1| = |ua| =1, |v1] = |v2| =2 and |p; ;| = —1 — (i +J),
subject to the relations

i U1 = pi—1,; if 4 is odd,
W 0 otherwise,
0 s — (=)' j—1 if j is odd,
v 0 otherwise,
i U1 = pi—o,; ifi>2,
W 0 otherwise,
s 0 otherwise,
wijpig =0

(in fact, [16] obtains different signs due to a slightly different chosen basis in negative
degrees). As an immediate consequence of the multiplicative structure of H*(G) we get
the following:

Lemma 3.48. Outside degree 0, the operation Pi on JEI*(G) has zero indeterminacy.

We therefore obtain a map Py : H"(G) — HP"~(r=3)(@) for every non-zero integer
n (with n even unless p = 2), and our main objective will be to describe this map for all
negative values of n. The following proposition does the first step.

Proposition 3.49. Let p be an odd prime. Then there is some constant t € k with
Pi(p1,0) =t pap-1,2p-3 and P1(po,1) = —t - 02p-32p-1-

Proof. The result will follow from the naturality of P; with respect to automorphisms
of GG, as established in Lemma Suppose we are given an automorphism ¢ of G
which we think of as a matrix (‘é Z) in the general linear group GL2(F,). We have a
natural isomorphism H'(G) = Homgoups(G, k) = k? which implies that ¢* is given on

HY(G) = k{uy,us} by the transposed matrix, i.e.,
P (ur) = auy + cua,  YP*(ug) = buy + dus.

Furthermore, we know that the Bockstein homomorphism 3 is natural and maps u; to
v;; hence ¥*(v1) = avy + cve and ¢¥*(ve) = bu; + dve. This determines the morphism *
of graded algebras uniquely on ordinary cohomology H*(G). Together with naturality
of Tate duality we get that 1* is determined on Tate cohomology H *(G). Now we will
exploit this fact for several morphisms .

Let us begin with a diagonal matrix (8 g) with a,b € F;. The action on fIl(G) &
k{u1,uz} is given by the same matrix, and therefore the action on H=2(G) 2 k{10, 0.1}
is given by its transpose, which is again the same matrix, so that ¢*(¢1,0) = ap19 and
similarly for ¢g 1. We are interested in the action of ¢* on Pi(pg,1) which lives in degree
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3.6 The power operation for G = Z/pZ x Z/pZ

—4p + 3, so let us determine 1™ on the dual space H 4=4(@). The latter space has the
basis elements vivj with i + j = 2p — 2 and vivjujus with i + j = 2p — 3. The action of
¥* is given by the formula

viv% — aiijivg,

vivdugug — a tipitlyt vzulug,

which is a diagonal matrix. Therefore, the action of 1* on H —4r+3(Q) is given by

iy
2,25 > A"V 205,

1741
©2i41,2j+1 — @V T 2112511

On the other hand we know that P; is a natural construction, i.e.,

P*P1(e1,0) = P1(¥"(p1,0)) = Pilapio) = a?Pi(e1,0) = aPi(e1)).

Hence Pi(p1,0) is a linear combination of ¢9;2;’s with a'tV = a for all a,b € IF; and
©9i+1,92j+1's with @711 = ¢ for all a,b € 5. Since [ is the cyclic group of order p — 1,
we get from o't = a that j is divisible by p — 1; from ¢ + j = 2p — 2 we get that ¢ is also
divisible by p — 1, but then a’b’ = 1 # a in general. From a’t'0/*! = @ we can deduce
that j + 1 is divisible by p — 1, so that j € {p — 2,2p — 3}. We have therefore shown that

Pi(p1,0) =5 @rap—5 +t - 0ap_12p-3 (3.50)

for some constants s,t € k.
The next matrix we consider is ((1) %)7 again, denote by ¢ the corresponding auto-
morphism of G. Using the same arguments as before we get:

Uy — Ul + ug V1 — U1+ U2 ©1,0 = 91,0
Ug — U2 V2 — V2 ©0,1 F— ©1,0 + ¥o,1

Therefore, 1 acts on H**~4(G) via

7 .
_ c 2
v1v2»—> E ( >v1 véﬂ " vivdugug — E ( >v1 v;ﬂ U2,
m=0

Passing to the dual space H™%13(G) we get

2p—3
P2i+1,2j+1 Z ( )902m+1 2(i+j—m)+1-

m=t

We know that Pj(¢1,0) must be ¢p*-invariant. The element (g, 12,—3 is ¢*-invariant
because

2p—3
* m
dj (302p—1,2p—3) = Z <p . 1> P2m+1,4p—5—2m

m=p—1
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3. The power operation

and (pTl) is non-zero (mod p) if and only if m = —1 (mod p), which is only true for
m = p — 1. On the other hand, ¢14,—5 is not ¢*-invariant because ¥*(p14p—5) =
2p—3 .
275:0 ©2m+1,4p—5—-2m- Hence s =0 in "
As a last step we use the automorphism 1 given by the matrix (9 }) to find P1(p0,1).
We know that v acts as follows:

Uy <= U2 V1 <= V2 ©1,0 < $0,1

The action on H*~4(@) is then given by vivj Av{vg and viviujuy — vhvlugu; =
—v{vbujug. From this we deduce that ¢ acts on H PT3(GQ) via @o;9; — p2j2; and
©2i41,2j41 + —@2j+12i+1. Together with Pi(p10) = t - p2p-12,-3 we finally obtain

P1(po,1) = —t - P2p-3,2p-1. O
In the case p = 2 we can also determine P (g ) using similar methods.
Proposition 3.51. If p =2 then Pi(vo,0) =t - @11 for some constant t € k.

Proof. As before, start with some matrix (¢%) in GLa(F2). Written as a matrix with
respect to the monomial basis u?, ujug, u2, the action on H?(G) is given by the first of
the following two matrices:

a? ac 2 a? 0 b2
0 ad+bc 0 ac 1 bd (3.52)
b2 bd d? 2 0 &2

Note that ad+bc = ad — bc = 1. Therefore, with respect to the basis @20, 1,1, 0,2 We get
that ¢* acts as the right hand matrix of on I:I*?’(G). Note that ¢g ¢ is ¢*-invariant
for every 1. Therefore, Pi(yo,0) must be ¢p*-invariant for all 1. Using these facts for the
matrix (§1) one gets that P1(po,0) =t - ¢1,1 for some constant ¢. O

Together with the Cartan formula we are able to determine the power operation com-
pletely, up to the scalar constant. For this we need a technical lemma.

Lemma 3.53. Let x,y € ﬁ”(G) be elements of negative degree n. If p = 2 then assume
that n < —4, xu? = yu? and zu3 = yu, and if p is odd then assume that n < —dp,
zvl = yol and zvh = yol. Then it follows that x = y.
Proof. We may assume that y = 0. Let us start with p = 2. Then zu? = 0 implies
T € (Po,—n—1,91,—n—2); and ru? = 0 implies = € (P-n—21,9-n-1,0) Since n < —4 we
get x = 0.

Now let p be an odd prime. Then

170117 =0 implies T € <900,7n717 P1,—n—25- - - a@2p71,7n72p>k and
ng =0 implies T € <Q07n72p,2p717 P—n—2p+1,2p—25 - - -5 prnfl,0>k .
From n < —4p we can deduce that x = 0. O
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Proposition 3.54. If p = 2 then there is some constant t € k such that Pi(p; ;) =
t-p2it1,2j+1 for alli,j > 0. If p is odd, then there is some constant t € k such that

P1(p2i+1,2j) =t Papi+2p—1,2pj+2p-3,

P1(p2i2j+1) = —t - Papit2p—3,2pj+2p—1-

Proof. Let us start with p = 2 and proceed by induction on ¢+ j, the case ¢ = j = 0 being
covered by Proposition The Cartan formula Theorem (3.1} (v) yields

t-poi—12j41 ifi>1,
Pr(eij)ui + ©7; Pi(ur) = Pilpijui) = { T .
N 0 otherwise,
0
t-poip1,25-1 if j=>1,
Pi(pij)us + ©7; Pi(uz) = Pipijuz) = { B .
N 0 otherwise.
0

Therefore, ¢ - 9i4+12j+1 and Pi(g; ;) satisfy the conditions of Lemma and hence are
equal.

The case of an odd prime p runs similarly. Let us prove the first equation only. Again
we use induction on ¢ + j with ¢ = j = 0 being already done. Using the Cartan formula
we get

P1(p2i+1,2)07 + ©hiy 1 25P1(v1) = Pr(p2it1,2501)
——

0 _ )t Pop(im1)2p-1,2pj42p-3 i 2T,
0 otherwise,
731(@2i+1,2j)vg + ¢§i+1,2j731(v2) = P1(2i+1,202)
H,—/ . .
0 _ )t Popivap-12p(j-1)42p-3 1521,
0 otherwise.

As before, t - Yopitop—1,2pj+2p—3 and Pi(p2i41,25) satisfy the conditions of Lemma m
and we are done. ]

Remark 3.55. The previous proposition shows that the formulae for P; given for odd
primes p are actually also true for p = 2.

It remains to find the constants ¢ in Proposition [3.54
Proposition 3.56. The constants in Proposition |3.54] equal t = 1.

Proof. Let us denote by g and h generators of the two cyclic factors of the group G. Recall
that, as an augmented algebra, kG = k[z,y|/(«P,y?) = L, where z =1 —gand y =1 — h.
The action of = on a tensor product of kG-modules is given by the formula

(a®b) -z =(ax)®b+a® (br) — (ax) ® (bx), (3.57)
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3. The power operation

and similarly for y. Let us define Q' for small values of |i| via the following (partially
given) complete resolution:

T — —

(y)l/Lpr Lyp—1 L/\(xy) Iz

—1 k Qk 0%k

We consider Q& as the submodule of L generated by = and y, Q2 'k as the quotient
L/xP~1yP~1L and the leftmost L? has the basis eg, e2. We also view Q~2k as the quotient
L?/(we1 +yes) L. With these notions, the map Q7 'k — L? sends the class [1] to xej +yes.
The cohomology class u; is represented by the L-linear map 2k — k that sends z to 1
and y to 0. Similarly us can be described by mapping  to 0 and y to 1. This implies

that 1 ¢ is represented by the map Q7 'k — Qk sending [1] € L/2P~1yP~ L = Q7 1k to =.
This map lifts to a diagram

Q

[1]—ze1+ye2

Q 1k L2 —— Q2
[1]»—>xl (1 O)l l[el}t—d,[ez]t—@
Qk L >k

in which the rightmost vertical map represents ¢ and will be denoted by ¢. Now we
are interested in Py (y). Define the module M = Q72k/([es] - L), that is, we divide out the
submodule generated by [es]. Then ¢ factors uniquely as Q 2k — M — k, and we denote
the latter map by ¢. Starting with some element of —P;(¢) = Dap_3(p) we obtain the
following commutative diagram:

(Q2k)®p Py o Py 3 ——k
H | L
(Q72k)P — (Q72E)SP — - - —> (Q72k)%P pe (3.58)

l | |

P — P —% oo — ®p —»
M 1-T M N 1-T M por k

Let us denote the bottom row by M. In the following, whenever we write C}, we implicitly
mean the second of the two factors of G, which is generated by the element h. Then we
can consider the kG-modules as kC),-modules. As such M is free of rank 1, generated by
the class of [e;], and we will often omit this class and simply write 1 for that generator of
M. We can construct another complex

0—k—M—ANM— - — AP'M — APM — 0, (3.59)

where the maps are given by m — Zf;(l) m A h". Let K be the cokernel of the first map
k — M, and let us splice the complex with the Koszul complex associated to the map

@ : M — k (see LemmalL.6)

)
P

@ -
0— APM 2 APIN o S A2 2 M S k0, (3.60)
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3.6 The power operation for G = Z/pZ x Z/pZ

Then we get a complex
0—-K—>AM— - > AP M S APV — o0 5 A°M — M — k— 0,

which we denote by £. Finally, we write o for the composition M®? 5 M — K, where
the former map is given by

i {ig, ... ,ipr = {0,...,p—1} (mod p),

. (3.61)
0 otherwise.

T:hi1®hi2®---®hipH{

Lemma 3.62. The complex L is exact, and the identity map of k lifts to a map of cochain
complezes M — L such that the first map equals —o : M®P — K.

Proof. We take a closer look at the de Rham-complex SPM — M ® SP~'M — A’M ®
SP=2M — ... — APM — 0. Let us denote by Xj’: the k-linear subspace of A'M ® SP~*M
generated by all elements of the form hy Aho A--- Ah; @ hiy1 ... h, where hy € C), for all
s =1,2,...,p and the set {hi, ha,..., hp} has size j. Then X} is in fact a kG-module,
and we have A'M @ SP~'M = EB?:O X; as kG-modules. Furthermore, the differential of
the de Rham-complex respects this decomposition, i.e., we have a direct sum of complexes
0— XJQ — X]l — XJZ — s > Xf — 0. In the case 7 = p we get the complex (3.59)
which is therefore exact, except possibly at the two leftmost entries, where exactness is
easily checked (in fact, non-exactness of the de Rham complex completely takes place in
the (j = 1)-part of the decomposition above). The Koszul complex is also exact by
the second sequence of Lemma because the dimension of M as a k-vector space equals
p, so that APT1M = 0. Altogether we obtain that £ is exact. Furthermore, we have a
map of cochain complexes from the de Rham-Koszul complex RK of M to L, where the
first p — 1 maps A'M ® SP~*M — A*M are projections onto direct summands, and the
last p — 1 maps A'M ® SP~'M — A'M equal id @SP~%p. Together with Proposition
we get the claim. ]

The exact sequence L represents an element vy of Exti}g?’(k,K ), and Lemma m
combined with diagram (3.58) and Proposition says that the product of any element
of Pi(¢) with ~ stably equals the composition

YP1(@) = a: (Q7%k)®P — M®P 5 K. (3.63)

As a next step, we want to describe v as a map 2?3k — K more explicitly. Observe
that we have a commutative diagram

L2p72 — L2p73 . L3 N L2 L k
| | |l ] o)
M > M > M M > M k

Y yP—1 yr—1" Y
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3. The power operation

where the upper row is a continuation of our partially chosen projective resolution, given
by matrices of the form

Ty aP~l —y

=1 _yp—1 z yP
z Y P~ —y
and

—1

xpfl _ypfl
€z Yy

Pl —y

x yP !

Let us define Q'k by this projective resolution. The vertical maps are given by projection
onto the last factor L7 — L followed by the canonical projection map L — L/zL = M.
Furthermore, there is a map of cochain complexes

v 1-h M(l—h)”*l_“(l—h)p*lM 1-h

N

M®P 7 M®p M®p

N

where each vertical arrow is the kC)-linear map given by sending 1 € M to 1 ® w1
P2 ®---® h € M®P; this is in fact a kG-linear map. Together with diagram (3.64]) and
Lemma [3.62] we obtain a diagram as follows:

L2p—24>L2p—34>...4>L24>L4>k

Ll Lol

K—ANM— - —AN2M—M—k
The leftmost vertical map factors as L?~2 —» Q% 3k — K where the second map repre-
sents v € ExtipG_?’(k, K). We have therefore shown:

Lemma 3.66. Consider Q*’73k as a quotient of L*=2, and denote the basis elements
of the latter by fi, fa,..., fop—2. Then v : Q*’73k — K is represented by the following
unstable map:
[f2p72] = *0(1 ® hp_l X hp—2 @ h)’
£ 0 for j# 2 —2.

At the end of our proof we are going to use the identity
p—1,
¥Y2p-1,2p—3 V1 U1 = $P0,2p-3,

so let us now construct unstable representatives of vzf_lul and (o 2,—3. Let us define
b=le1] - yP~! € (Q72k)%P.

Lemma 3.67. The class vf_lul € H*(G) is represented by the map Q~ 'k — (Q~2k)®P
which sends [1] € L/zP~ P~ 1L = Q~ 'k to [e1] ® b2P~1) € Q=2k. Furthermore, the class
©0.2p—3 is represented by the map ¢ : Q~ 'k — Q273K which sends [1] € L/xP~1yP~ L to
[fop—2] € P73k,
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3.6 The power operation for G = Z/pZ x Z/pZ

Proof. We know that vy is represented by the following chain map:

Pl —y 0
0 =z yr!
P

e g L?
(ypolm l(y“O) J((loo)
L2+ L

G e

In particular, the map sending 1 € k to b € Q~2k represents v;. Secondly, u; is represented
by the chain map

L P mp_lyp_l L < (1‘ y) L2 Z
(6% ap=2yp=1 J(l 0)
L2 L? (i) L« = <

and therefore the map which sends [1] € L/xP~'yP~'L = Q7 1k to [e1] € Q 2k repre-
sents u1. By forming a suitable tensor product of these two maps we see that vlf_lul is
represented by the map Q~ 1k @ k2F-1D — (Q72k)®P as stated.

For the second part it is enough to show that (vg_ng) - = o0 and m - pm = 0 for
any other monomial m of degree 2p — 3. This follows immediately from the observation
that the compositions L?’~2 — Q2 =3k — k (where the second map runs through all
monomials of degree 2p — 3) are exactly the projection maps onto the single factors L
followed by the augmentation L — k, and vg_2uQ corresponds to projection onto the last
factor. O

Lemma 3.68. The diagram

©0,2p—3

Qg —— Q23

vf_ lull l"/

(Q72k)%P —— K
commutes, and both compositions are stably non-trivial.

Proof. By Lemmas and the upper-right composition sends [1] € Q7'k to
—0(l1®hP~'®---@h) € K. For the other composition note that the quotient map
QO 2k — M sends b to the norm element N = E?;é h? € M. By Lemma the
lower-left composition sends [1] € Q7% to o(1 ® N®®=1). By definition of o, it is

therefore enough to show that
(1@ '®- - @h)=7(1® N*PD) e M,

where 7 was constructed in (3.61]). But both sides equal —1 = (p — 1)! € M.
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3. The power operation

If the compositions were stably trivial, they would factor over the inclusion Q= 'k — L2.
In particular, the image w of [1] € Q7'k would lie in K - I, where I = (z,y); is the
augmentation ideal of L. But K is isomorphic to k[y]/y?~! (with trivial z-action) and w
is a generator of K, sow & K - I. O

We are ready to complete the proof of Proposition We know that

Yo2p-3=avy lu by Lemma [3.68]
= Pi(p) o} by (3:63),
=17 ¢02p-3 by Proposition [3.54]

and all these maps in Hom, (27 'k, K) are non-trivial by Lemma m This implies that
t=1. O

3.7 Further examples

Let us also consider another family of examples. We take G = (Z/pZ)", the direct product
of r cyclic factors with r > 3. Then it will turn out that PP; vanishes on elements of negative
degree. Let us briefly recall the multiplicative structure of the graded commutative algebra
H*(G), see also Proposition 4.12 in [16]. For p = 2 it is generated by elements w1, ..., u,
of degree 1 and elements ¢, of degree —1 — || for all multi-indices aw € N" subject to the
relations

Papp =0,
Pa—e; if o > 07
U =
ot 0 otherwise.
Here ¢; denotes the multi-index (0,...,0,1,0,...,0) with 1 sitting in the i-th position. For
odd primes p we know that H*(G) is generated by exterior classes u1,...,u, of degree 1,
polynomial classes vy, ..., v, of degree 2, and elements ¢, of degree —1 — |«| for all multi-

indices a € N", subject to the relations

varp =0,

+ta—e if o is odd,
u; =
patli 0 otherwise,

i@a—?ei if Q; > 27
V; =
Pali 0 otherwise.

Let us write w® for the monomial v{* - - v uf - - ué" with a; = 2¢; + ¢; and ¢; € {0, 1}.
When « runs through all multi-indices with fixed norm |a, we obtain a k-linear basis of
H1®(@), and we assume that its dual basis is the set of ¢,’s in H~14=1(G).

Proposition 3.69. For G = (Z/pZ)" with r > 3 the power operation P; vanishes on
classes of negative degree.
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Proof. Let us do the proof for odd primes p, as it is the much more difficult one. As in
Lemma [3.48| one sees that P; does not have any indeterminacy. Using the same method
as in the proof of Proposition we see that it is enough to show that P;(¢,) = 0 for
all ¢, of even degree with v; € {0,1} for all . Suppose that two of the indices, say v; and
2, equal zero. Then we have

P (‘Pv) = 731(907—1—61—1—62 : U1U2)
_ P _
- Pl(gp"{+€1+€2> ' (u1u2)p + @7+51+52 ',Pl (’U,1U2) - 0
0 0

It is therefore enough to consider the case v = (1,1,1,...,1,1) for r odd and v =
(1,1,1,...,1,0) for r even. Let us write s = r for r odd and s = r — 1 for r even;
then s > 3 is odd, v; = 1 for all i < s, and v; = 0 for i > s. The degree of ¢, equals
—s — 1. For the proof of Pi(y,) = 0 we will now use the naturality condition on P; with
respect to several automorphisms of G.

Let ¥ be the automorphism of G represented by a diagonal matrix with entries
ai,az,...,a; € Fy. As in the proof of Proposition we get that ¥*(u;) = azuy,
*(v;) = a;v;, and therefore ¥* (w®) = a“T*w®, where a = 2¢ + e for some multi-indices ¢
B1
.

and e with e; € {0,1} for all i. Here we use the notation a® = a;* ... a?. By duality we

obtain ¥*(ps) = a“w®. From the naturality of P; we get that

*(Pi(pa)) = P11 (0a)) = P10 pa) = a“ P (pa).

Therefore, P () is a k-linear combination of ¢,’s with a7 = a®*¢ for all a = (ay, . .., a,).
This can only be true if ¢; + ¢;, =1 (mod p — 1) which implies that

a;=lora;=2o0ra; >2p—1,foralli=1,2,... s. (3.70)

Now we take another automorphism as follows: choose indices n,m < s with n # m and
let 1 be defined by

" (Um) = Un + U, Y (u;) = u; for all i £ m.
Then ¢* acts on ordinary cohomology H*(G) according to the formula

Sem (Cm)(wafzj(ﬁm*ﬁn) 4 wa*(2j+1)(€m*€")) if ay, is odd

v J=01j .
P (w®) = and ay, is even,
> (C;”)wa_Qj(em_e") otherwise.

for a = 2¢ 4 e. By duality we get

ijo (C%ﬂ_j)(@a+2j(em7€n) + soaJr(ng)(em,en)) if ay, is even
VP (pa) = ‘ and ay, is odd,
ijo (ij—i_])SOOH»Qj(emfen) otherwise.

Here we used the convention that ¢z = 0 if 3; < 0 for some 7. Since ¢, is v-invariant,
we know that Pi(py) is in the kernel of ¢* —id. Let us write A = Pi(¢,) = >, fa * Pa
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3. The power operation

with f, € k, and let § be some multi-index with £, = 4 such that |pg| = |A|. How
often does ¢g occur in (1* —id)A? The formulae above imply that it occurs with factor
(%)fﬁ_g(em_gn) + @)fﬁ—z;(em—en)- By the second summand vanishes, because the
m-th entry of the multi-index equals 0. Since (¢* —id)A = 0 we get that f3_s(,,—c,) = 0
Note that the m-th entry of the multi-index equals 2, and every multi-index « of the right
degree with «a,,, = 2 is of that form for a suitable n. Hence A is a linear combination of
Vo 's satisfying

a;=lora; >2p—1,foralli=1,2,...,s. (3.71)

Now let 3 be some multi-index with 3,, = 3 such that |pg| = |A|. As before we see that
¢ occurs in (U* —id)A with factor

(Y o en—eny + () Fs—a(em—en + () fo—s(en—cny it Bn is even,
(})f572(6m76n) otherwise.

In the first case, the first and the last summand vanish due to (3.71)). Therefore we get
JB—2(cm—en) = 0 in both cases. The m-th entry of the multi-index equals 1 and every
multi-index « of the right degree with «,, = 1 is of that form. Together with we
obtain that A is a linear combination of ¢, ’s satisfying a; > 2p—1foralli =1,2,...,s. In
particular, the degree satisfies || < —s(2p—1)—1. But we know that A = P;(¢,) lives in
degree (—s—1)p—(2p—3) = —(s+3)p+3. So we deduce that —(s+3)p+3 < —s(2p—1)—1,
which is equivalent to (s — 3)(p — 1) < —1, a contradiction.

This completes the proof for odd primes p. For p = 2 one only needs to check that
Pi(¥0,0,..0) = 0. We know that g, 0 is invariant under all automorphisms . By
applying this fact to permutations of the r factors we get that

Pi(po0,.0) =a- Z P2¢; + b+ Z Peite;
i

1<j

for some a,b € k. Then using an automorphism of the form

()

one easily deduces that a = b = 0. O

Remark 3.72. The following diagram might be conceptually helpful. It gathers information
about the action of power operations on Tate cohomology classes of negative degree for
elementary abelian p-groups.

| Z/pZ | (Z/p2)** | (Z/pZ)° | (Z/pZ)** | ...
Po non-trivial trivial trivial trivial e
P1 || undetermined | non-trivial trivial trivial

One might expect that this diagram can be extended downwards by defining higher order
power operations, but we do not have any evidence for this.
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4. An obstruction for higher order

4 An obstruction for higher order

We are now able to prove that our power operation serves as an obstruction for the order to
be one larger. Recall that for every kG-module M we have a graded algebra E/)X\t* a(M, M)
(which is not graded commutative in general) and there is a natural morphism of graded
algebras H*(G) — Exth(M M) given by tensoring with M. We can view Exth(M M)

as an H*(G)-module via that map.

Theorem 4.1. Let ( € I:I”(G) be a Tate cohomology class, of even degree if p is odd.
Assume for some (hence any) element a of P1(() that its image in Exty (M, M) is divisible
by ¢, that is, a @ M € (- Ext} (M, M). Then ¢-ord(M/¢) > p—1.

Corollary 4.2. Let ( € I:I”(G) be a Tate cohomology class, of even degree if p is odd.
Assume further that some (hence any) element of P1(() is divisible by C, that is, P1(() is
contained in ( - I;T*(G) Then C-ord(M /() > p— 1 for every kG-module M, and therefore
C-ord(mod-kG) > p.

By Corollary we also have the following consequence.

Corollary 4.3. Suppose that ¢ € H"(G) is an ordinary cohomology class, of even degree
if p is odd. Assume further that the Steemrod power BP%AC (resp. Sq" ¢ if p=2) is
divisible by C, i.e., it is an element of ( - H*(G). Then (-ord(M/{) > p — 1 for every
kG-module M .

In what follows, we will work with the same notation as in §2] that is, the cohomology
class [(] is represented by a surjective unstable map ¢ : Q"k — k, we have a short exact

sequence 0 — L S Ok I k — 0 and an unstable map n : Qk — L¢ such that the
triangle Qk 4, L 50k Sk is exact.

4.1 A commutative square

As a first step in the proof of Theorem we will show that there is a commutative
diagram in mo0-kG

(an)@)p P—1<> 023 ﬂ) Q21074LC

zﬂ zWQP%p_l (4.4)

Ok @ SP1Qk — P T2APQRk o P TAPT L
Kp

for every element P;¢ € P;1(¢). The upper row vanishes if and only if P;( is divisible by (.
In a second step we will prove that vanishing of the bottom row implies (-ord(X/¢) > p—1.

Let us define the maps in . The vertical map on the left-hand side is the canonical
morphism (Q"k)®P — Q"k ® SP~10"k, we will show in Remark that this map is a
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stable isomorphism. For the other vertical map note that by Corollary the modules
A{(Q"k) are projective for i = 2,3,...,p — 1, and by Corollary the sequence

0— A Le — M) =5 MV Q) 225 55 A2(Q7) 25 Lo — 0 (4.5)
is exact for every j = 1,2,...,p — 1. It therefore represents a stable isomorphism w; in

Homy,; (A7 L¢, Y1 L;) whose inverse is given by the same complex viewed as an extension
(see Remark [3.10). Note that wy is simply the identity map of L¢. Let us also consider
the complex

Ok @ SPIO"k — A2Q"k ® SP2Q0k — - = APk @ Q" k — APQTE;

again we use that the modules A'Q"k are projective for i = 2,3,...,p — 1, so we get a
class v in Homy(Q"k @ SP~1Q"k, QP~2APQ" k).

Remark 4.6. Before we start proving that the diagram commutes, let us consider the case
p = 2 and draw some analogies to the topological world. The diagram takes the following

form:

P
ke Ok — s ok — 1 L

Ok @ Ok —2 A20nk —2 Le

This enables us to prove Theorem in the case when X = k by considering the commu-
tative diagram on the left-hand side:

Ok @ Lo —2 = Lc S/2—2 5 5/2
\ A A2Q7k ’ Ui pinch incl
P
M"ERQOAWE ——— k > ———— 8
Sa; ¢ n=Sq,(2)

Note the similarity to the topological situation on the right-hand side, where 17 denotes
the Hopf map (compare §5 in [23]).

Proposition 4.7. The diagram (4.4) commutes in mod-kG.

Proof. We postpone the case p = 2 to the end of the proof and assume p > 3. As in
Lemma denote by K the kernel of the surjective map (%7 : (2"k)®P — k. Then we
get the dashed arrows making the following diagram commute in mod-kG:

A2Q"k @ SP2Q"k — Q"k ® SPT1Q "k — SPQ"k

: L I

<4

K > (k)P ——— (4.8)
|

P lid ®¢®P-1) H

L . Q"k c k
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On the other hand the diagram

A2k @ SP2QnE — Qk @ SP1Q
52®SP*2§\L lid ®sP—1¢
L¢ Ok

L

commutes because both compositions are given by
TIANT2 QT3 ... Tp — (C(5U1)$2 - C(xz)l‘l)C(x?)) - Clzp).

From the two diagrams we learn that p\ = ko ® SP~2(. Therefore, the leftmost square in
the diagram

K4 Kp—1

Lo+ p2np+—2 —— A3Qnk AP-LQPE <2 APQPE

Tid ®SP—2¢ Tid ®SP—3¢ Tid ®C

L¢ % A2Q"k @ SP2Q0k <— A3Q"k @ SP3Q k< - <— APTIQE @ Q"k <— APQ"k

commutes. When we apply Example to the map ¢ : Q"k — k we get that the
remaining squares commute The upper row (and therefore also the lower row) represents

the composition APQ"™k TP, AP- 1L — QP~ QLC due to Remark |3
We can now splice the lower row of the previous diagram with the complex representing
~ and obtain a complex

Q" @ SPTIQ"k — A2Q"k @ SPTEQ Mk — - — A2Q"k © SPTQ"k — L, (4.9)
representing the composition
Ok @ SPlark L p2ararg 2t gpe2pp-ip, P grea
On the other hand, the complex (4.9) represents the composition
Q' @ Sk = (ke DS sy SN, g DT, qod

in mo0-£G by Lemma [3.29] so we will be done as soon as we show powv =n. But 5 and v
are represented by the bottom and middle row of , respectively. By Remark the
diagram shows pv = 7.

We are left with the slightly different case p = 2. We get the dashed arrows making
the following diagram commute in mo?-kG:

Ok @ Ok onk @ Ok ——— 20

\ | [

+ ¢®2

K— (Q"k)®2 ——— (4.10)
pi lid ®C H
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As before we get pv = 7 in the stable category. Recall that v : Q"k ® Q"k — A2Q"k is
the canonical projection map; therefore, the diagram

Ko OW\L lid ®C¢

Li ———— Q"%

commutes. Together with (4.10) we get that pA = kay. By Lemma A =wvo P( for
every element P;( € P;((). Gathering all the results, we have

NP1 = pvPi( = p\ = Ka7. O

Remark 4.11. Let us prove that the canonical map (Q"k)®7 — S7Q"k is a stable iso-
morphism for j < p. To do so, it is enough to check that the map Q"k® S/~ 1Q"k — SIQ"k
is a stable isomorphism; but this map sits in an exact sequence

0— AQ"k — ANk @0k — - — Q"k® 710"k — STQ"k — 0

in which all the A’Q"™k are projective for i =2,..., 5.

4.2 Completion of the proof

Now we are ready to complete the proof of Theorem [£.1] We need a new kind of objects
which store more information than s-coherent modules do.

Definition 4.12. An (s,t)-coherent module consists of
e an s-coherent module X,
e a graded left S*L¢-comodule Y, which vanishes outside degrees 0,1,...,t, and
e a morphism o : X — F(Y;) of s-coherent modules
such that the sequence
0—X;, AL @Y > AL @Y — - = AL @Yy — 0 (4.13)

is exact for alli =0,1,...,s, the maps being the same as in the chain complex associated
to (A*Lc, Kk)

We call X; the underlying object of the (s,t)-coherent module.

Lemma 4.14. Suppose that (X,Y) is an (s,t)-coherent module. Then the stable iso-

morphisms Qk @ X; neid, Le® X; — X144 and

Ok ANL @Yy 22N L@ NLe® Yy — AL @ Y
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4.2 Completion of the proof

induce isomorphisms of the groups E}RZG(A”I‘/L( ® Yo, X;) for alli =1,2,...,s. Up to
these isomorphisms, the exact sequences

0= X; ALY, - AT Le@Y — - > AT L@ Yy — 0

represent the same element for all i = 1,2,...,s. In particular, the coherent module
induces an element in Ext} (A" L ® Yy, X1) = Homy, o (Q'A™ L¢, X7).

Proof. We have a commutative diagram as follows:

0—QhRX, > QkANL QY — - — QAL @Yy —0

n®idl 1 |neid

OHLC®X14>Lc®A1Lc®Y24>%LC®AZ+th®YE)4>O

| @ 1 (®) !

0 X1+Z‘ > A1+iL< X Y;g —_— s —> A1+i+tL< X Yo —0

Here (a) commutes because o : X — F(Y;) is a map of s-coherent modules, and (b)
commutes because it is the map of complexes associated to the map of A*L-modules
Le @ ALy — A1+*L< and the S*L¢-comodule Y. O

Definition 4.15. We denote by ®(X,Y) the stable map Q'A"™™ L. @Yy — X1 constructed
in Lemma[{.1].

The next lemma allows us to construct coherent modules inductively.

Lemma 4.16. Suppose that (X,Y) is an (s,t)-coherent module with t < p — 1, and let
¢ : K — X1 be any map of kG-modules. Let us write v for the S*L¢-coaction map of Y.
Then there exists a unique graded left S*L¢-comodule Z with coaction map V' satisfying
the following conditions:

(i) Zy =Yy forallu=0,1,2,...,t, Zy11 = K, and Z,, = 0 foru outside {0, 1,...,t+1},
(ii) 1/;7u =y for all0 <r <r+u<t, and
(iii) I/h : Zip1 — Le ® Zy agrees with the composition K 2 x4 Le®Ys.

Proof. The first step is to define the remaining coaction maps 1/;7t +1_- Consider the
following diagram:

Zi11 > LC ® Zy AZLC ® L1

J, J |

0—S"Le®Ziy1—r —Le @ S L¢ @ Zy1—p —> A2Le ® ST 2L¢ @ Zyy1—r

The upper composition is zero because the sequence (4.13]) is a complex (for i = 1). Now
one has to show that the square on the right hand side commutes — either by an easy
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4. An obstruction for higher order

verification, or by using the fact that v : Y, — S*L; ® Y;11_, is a map of comodules
and passing to suitable associated chain complexes. Since the bottom row is exact by
Corollary we get the existence of the dashed arrow which we call v}, .. To check
that the maps v/ define a comodule structure on Z,, consider the diagram

Z1tij+l i » ST L ® Zjy
(c) /
Le® Zipjp1 ——— Le ® SiLg ® Zjt
Vi+i+j,l (c) \L (a) \L
Le® Si+jL< Q41— Le® SiLC X SjLC ® Z;
s () o

Sl+i+jL< ® Z; > Sl+iL4 &® SjLC ® Z;

for ¢,7,0 > 0 with ¢ + j + 1 = t. We claim that the exterior square commutes. The square
(a) commutes because Y is a comodule, (b) commutes because S*L¢ is a coalgebra, and
the squares (¢) commute by definition of /. Injectivity of the map * proves the claim. [

Proposition 4.17. Let X be the underlying object of some (s,t)-coherent module (X,Y")
witht <p—1, and let f : K — X1 be a surjective map. Then the kernel of the composition

Leo K 220 noe x; 2 x,

is the underlying object of some (s — 1,t + 1)-coherent module.

Proof. Let (X,Y,0) be an (s, t)-coherent module and denote by v : Y, — S*L; ® Y, the
structure map of Y;. We want to define an (s — 1,¢ + 1)-coherent module (C, Z, ¢’) with
V' Z, — S*L¢ ® Z, being the structure map of Z,. As in the proof of Proposition
define C' to be the kernel of the composite

F()
—

F(K) F(X1) — X]1].

Then C is an (s — 1)-coherent module by Lemma Furthermore, define the S*L-
comodule Z, to be the one defined in Lemma out of Yy and p = f : K — X;. The
inclusion of C' into F'(K) then defines the injective map o’ : C' — F(Z;41). Now we have
defined all the data - it remains to show that

0= Ciy 225 N L ® Ziyy — NLe®@Z — - — AV L@ Zy — 0 (4.18)

is an exact sequence for all ¢ = 1,...s. By definition, the sequence

ol .
0—C;_1 Z—;AZ_ILC ® Ziy1 X;—0

m %I

AiilLC (9] X1
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4.2 Completion of the proof

is exact. The Yoneda splice of this with (4.13]) gives an exact sequence, which agrees with
(4.18) due to the following commutative diagram:

i ®id
AL ® Zis 2B pi- 1Le®Le ® Zy 5 NiLe ® Zy

S e

AZ 1LC®X1#>X D

Suppose that (X,Y) is an (s,t)-coherent module with ¢ < p — 1. By applying
Lemma.16/to Y and the identity map ¢ = id : X; — X, we can view (Yp, Y1,...,Y;, X71)
as an S*L¢-comodule.

Definition 4.19. We denote by \(X,Y) : X; — SOk ® Yy the composition of the
coaction map X, — StHLC ® Yy and the canonical inclusion St+1L< — SO E tensored
with YO-

By Remark the exact sequence 0 — Ly — Q"k — k — 0 induces a map of graded
right A*L¢-modules & : A — A*L¢; we therefore get a morphism of the associated
chain complexes:

Mk X1 = A20"kY;, > Ak Y 1 — - = A2HO"E @Y

l@id | | | (420)

0 X, Le@Y, ——= NL®Y,y— - — AL @Yy —0

On the other hand, the coaction map is a map of comodules Y; — S* L ®Yy and therefore
induces a morphism of the associated chain complexes:

Ok @ STL @Yy — A2k @ STLe @Yy — - — A2HQ"E @ Y

[ |

anj®X14)1\2@”]{@}@4%”*)[\2—”@”/{@)/0

(4.21)

Lemma 4.22. Suppose that X is the underlying object of some (1, p—2)-coherent module
(X,Y). Then Cx, : "k ® X1 — X stably factors as the composition

id ®A(X,Y)
_—

0"k ® X, Ok @ SP1O0"k ® YO

P2 ®id B(X,Y)

heid PN @ Yy — o XL (4.23)

29 2P @ Yy
Proof. As in (4.20]) we get a diagram as follows:

Ok @ X) — A2k R Y, 5 — Ak @Y, 53— - — APQk @Y,

T

0 > X4 »Le®Yp 2o —— AL @Yy, 3— - > AP IL @Yy —0
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5. Toda brackets

The exact lower row represents the element ¢ = ®(X,Y) in E/)_x\tigg([\p*l[/g ® Yo, X71).
Since the modules A*Q"k are projective for ¢ = 2,...,p—1, the upper row represents some
element ¢ € E/)x\t,;gH(Q”k ® X1, APQ"k®Y)). Commutativity of the diagram tells us that
Cx, = @rpY by Proposition Using diagram and the inclusions SiLC C S' 0"k,
we get a diagram

Ok @ SPIO"k @ Yy — A2Q"k @ SP2Q0"k @ Yo — - — APQ"E @ Y)

T)\:id ®A(X,Y) T

Wk X ——— N2k QY g —— - — APQE ® Y]

where the upper row represents v ® idy, and the lower row represents ¢. Hence, 1) = yA.
Therefore, (x, = prpy) = @rpYA. O

Proposition 4.24. Let X be the underlying object of some (s,t)-coherent module (X,Y")
with s +t = p — 1. If the composition

-2
QP~ %k,

Ok ® SPTIQE L QP IAPQE 0 QPT2APTIL,
is stably zero when we tensor it with Yy, then (-ord(X1) > s.

Proof. We do this by induction on s, starting with s = 1. By Lemma [4.22] and our
assumptions, (x, = 0 or equivalently (-ord(X;) > 1 = s. The inductive step is done
exactly the same way as in the proof of Proposition by using Proposition Notice
that the object Yy does not change during the induction. O

Proof of Theorem[{.1 Notice that L ® M is the underlying object of some (p — 1,0)-
coherent module as follows: the (p — 1)-coherent module is X = F(M), and Yy = M. The
morphism o : X — F(M) is simply the identity map, and the sequence (4.13) reduces to
O—>Xii>AiL<®M—>O.

Our assumptions together with Proposition tensored by M imply that the con-
ditions of Propositionare satisfied, so we get (-ord(M /() = (-ord(M®L¢) > p—1. O

5 Toda brackets

So far we only have considered lower bounds on the order. In this section, we will introduce
techniques which enable us to prove upper bounds on the order. The main ingredient will
be (2p—1)-fold Massey products. As a first step, we will recall the definition of these higher
products and then show the connection to Toda brackets, an analog which can be defined in
any triangulated category. In a second step we show that certain Toda brackets can be used
to build up a criterion for the (-order to be bounded from above. More explicitly, we show
that if certain (2s — 1)-fold Toda brackets of the form (¢, a1,(, ..., as, () do not contain
zero, then (-ord(k/() < s—1. We will then try to find examples of such Toda brackets, and
to do so, we will have to compute single elements of them, which is usually a difficult task.
In our case we can use the relation ajas...ap—1P1(¢) C (¢, a1,¢, ..., ap—1,(), which we
will prove in the third subsection using a connection between Toda brackets and coherent
modules. Finally we are able to give our explicit example in the fourth part of this section.
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5.1 Toda brackets and Massey products

5.1 Toda brackets and Massey products

We are now going to prove that Massey products in H *(@) agree with certain Toda
brackets in mod-kG.

Proposition 5.1. Suppose we are given cohomology classes ai,as, ... ,a, € fI*(G) We
will also view these elements as stable morphisms Q%lk — k. The Massey product
(a1,a9,...,a,) and the Toda bracket (a1, as,...,a,) associated to the sequence of maps
Ok & Q7 2l Y (where the Q°k are suitable shifts of k) define the same subset
of Flail+-+lan|=(n—2) (G)

Let us recall the definitions first. Fix a complete projective resolution P of the trivial
kG-module k, and let 0 be the differential of P. Denote by A = Homj,(Px, Ps) the
endomorphism dga associated to P. More explicitly, A is the differential graded algebra
whose degree n-part is given by

A™ = T Homya(Poyj, Py),
JEZ
and the differential is df = 9f — (—1)"f0. Then degree n-cocycles in A are chain trans-
formations P — P[n|, and two of those differ by a coboundary if and only if the chain
transformations are homotopic. Therefore, H*A = H*(G).

An n-fold defining system is a collection {b;;} of elements of A for all pairs (7, j) with
1<i<j<nand (i,7) # (1,n) satisfying

j-1
(—1)%=1dbs; = Z birbri1,j

r=i

for all 1 <1i < j <n with (¢,7) # (1,n), where g; = 1+ Zi:1(|brr| —1). In particular,
the b;;’s are cocycles. Every defining system gives rise to a cocycle

n—1
Cc= E bl,rbr—i-l,n-
r=1

For fixed cocycles b1y, ..., by, the set of cohomology classes represented by all cocycles
arising from defining systems will be denoted by (b11, ..., byn,) and is called n-fold Massey
product. It is well-known that this set only depends on the cohomology classes repre-
sented by bi1,...,bnn, and we will also write (b11,...,bnn) = (c1,...,cn) Where ¢; is the
cohomology class represented by b;;.

Remark 5.2. It is worth noting that there are several different definitions of Massey pro-
ducts in the literature (see [12], [13], [20]), which differ by certain signs. A quick check
of signs asserts that our definition leads to (—1)™ times the set given in [12]. We have
chosen this one because, as we will prove now, it agrees with the definition via certain
Toda brackets which does not involve any choice of signs. Also it has the nice property
that the two-fold Massey product is just the usual product (which in the other definitions
is not always the case).
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5. Toda brackets

Remark 5.3. We also use a slightly different language than previous definitions of Massey
products. Usually one says that a Massey product is defined if there is a defining system
for it, and then the product is the set of cocycles associated to its defining systems. In the
following, we will adopt the notion from Toda brackets and simply say that every Massey
product is defined but might be the empty set.

For the definition of Toda brackets we take the definition of filtered objects from [26],

Definition A.1. Let us work in a triangulated category 7 with shift functor [1]. Suppose
A

n— An— . .
that X,,_1 SN Xn_o oz 22, X1 is a sequence of n — 2 composable maps in 7.
An (n — 1)-filtered object X € {\a,..., A1} is a sequence of maps * = FpX -5 [} X 5

R F,_1X = X together with choices of exact triangles

Pj+1

FX 4 B X 25 X500 = BX(

such that p;[1]od; = X\j11[j]. The maps X; = F1X — F,, 1 X and Fj,_1 X — X,,_1[n—2]
are denoted by ox and o'y, respectively. The filtered object can be visualized as follows:

* = F()X 4 FlX FQX ce > n_QX B — Fn—lX

KO\ / K0\ / KO\ / / r\o\ /

X1 —o0— Xg[l] ¢—0— X3[2] ¢0— - "¢—o0 Xnp—1[n —2]

Here X —o0—Y denotes a map of degree 1, that is, a map X — Y[1]. Also, the diagram
is commutative-exact in the following sense:

Definition 5.4. A diagram is called commutative-exact if every triangle with exactly one
map —o— of degree one is an exact triangle, and all other triangles in the diagram are
commutative.

To be more precise, the first condition means that every triangle of the form

X——y

N

e\ \/b
A

represents an exact triangle X % Y Lz5x [1].

In the definition of a filtered object, suppose that the given set of composable maps
An—1,- .-, Az lives in a strictly full triangulated subcategory S. Then every (n — 1)-filtered
object X and its filtrations Fp X, F1 X, ..., F,_1X also lie in §. Recall that § is a strictly
full subcategory if it is a full subcategory and for every isomorphism B = B’ in 7 for
which B belongs to S we also have that B’ belongs to S.

Definition 5.5 ([26], Definition A.2). Suppose that X, 2 X Doty 2, Xo
is a sequence of n composable maps in a triangulated category T. We say that a map
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5.1 Toda brackets and Massey products

v € T(Xy,[n — 2], Xo) belongs to the n-fold Toda bracket (A\1,...,\,) if and only if there
is an (n — 1)-filtered object X € {Aa,..., A\n—1} and a commutative diagram

X1
N
ox
Xpn—2] — 2 X ——Xo (5.6)
An[n—2 la’x
Xn_l[n - 2]

such that v = YoVn-

Let us note here that everything takes place in S if the n maps we started with belong
to S§. It also follows from the definition that Toda brackets are compatible with exact
equivalences of triangulated categories.

We will apply this to the case when 7 = mo0-kG and S is the strictly full triangulated
subcategory generated by the trivial kG-module k. There is an equivalence of triangulated
categories (see, e.g., [14], proof of Proposition 7.13 and Example 7.16)

7+ Kao(inj—kG) = mod-kG (5.7)

where K,.(inj—kG) denotes the homotopy category of (unbounded) acyclic chain com-
plexes of (finitely generated) injective kG-modules. Let M be the strictly full triangulated
subcategory generated by P in K,.(inj—kG). Since Z(P) = k we get that M agrees to S
under the equivalence Z, so we are going to describe M more explicitly.

Consider the set C of all chain complexes which arise from the following construction.
Choose a non-negative integer r and integers ni,nsg,...,n,; then consider the complex
(n1,na,...,n.,, D) whose modules are the same as in P[ni| ® P[na] & --- @& P[n,], but the
differential is given by a matrix of the form

(—1)"16 all ai12 aiz ... air

(—1)”28 a2 a3 ... CL277‘

D — (_1)71,38 ass e ag,r
(=1)"

Here 0 is the differential of P, so that (—1)"0 is the differential of P[n;]. The a;;’s are
elements of the endomorphism dga A, and we assume that they are of suitable degrees and
satisfy certain relations so that D? = 0. We will sometimes write [D] for this complex.

Lemma 5.8. The elements of C belong to M, and every object in M is isomorphic (in M)
to an element of C.

Proof. Recall that one possibility of constructing the mapping cone of a map of chain
complexes f : D — E is given as follows: take the same modules as in E @ DJ[1], but
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5. Toda brackets

with differential <8E _£D>. If we have two objects (n1,...,n,,D) and (mq,...,ms, F)
in C then a morphism [D] — [E] is a matrix F' with entries in A satisfying EF = FD.
Therefore, its mapping cone (ml, ceo,mg,ny + 1,000 0, 4 1, ( _%)) is again an object
in C.

Let us prove by induction on r that (ni,...,n,, D) € C belongs to M. For r = 0 this
says that the trivial complex is in M; for r = 1 we need to show that shifts of P lie in M,
which is true by construction. Suppose r > 2, then we know that the object in question is
the mapping cone of a morphism between two objects of C with smaller r. By induction
hypothesis, this morphism belongs to M, and so does its cone.

Now consider the strictly full subcategory N of M consisting of all objects which are
isomorphic to objects in C. Then N is closed under shifts and mapping cones (because
the set C is), and P is contained in N. This proves the second statement. O

The following simple fact is a useful tool for lifting homotopy-commutative diagrams
to strictly-commuting ones.

Lemma 5.9. Suppose that h : P — @Q is a chain map between acyclic complexes of
injective modules, and that R is also an acyclic complex of injectives.

(i) Assume further that g : P — R is a chain map and f : Q — R is a morphism such
that fh = g in Igac(inj—kG).A If h is levelwise an inclusion then there is a lift of f
to a chain map f such that fh = g as chain maps, not only in Ky (inj—kG).

(ii) Assume that g : R — Q is a chain map and f : R — P is a morphism such that
hf =g in I{ac(inj—kG). If b is levelwise a surjection then there is a lift of f to a
chain map f such that hf = g as chain maps, not only in Ky.(inj—kGQG).

(i) | RNy (i) PK%Q
gl/f f\\Tg
R R

Proof. Let us prove (i) only. We know that fh = g up to some homotopy H : P — R[—1],
that is, fh — g = OrH + HOp. Since h is levelwise an inclusion of a direct summand, we
can lift H to a map H' : Q — R[—1] satisfying H = H'h. Then f = f — pH’' — H'dg
satisfies fh =g. O

Proposition 5.10. Suppose we are given a sequence of composable maps

Pl-my] = X1 <2 Xy & Xy — . 20X,
in Kac(inj—kG), where each a; is a cocycle in A of degree m;, my is some integer, and
the X;’s are suitable shifts of the complex P. Let us write g; = 1 + Z;Zl(mi —1). Then

every (n — 1)-filtered object in {asg, ... ,an—1} is isomorphic to an (n — 1)-filtered object of
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5.1 Toda brackets and Massey products

the following form:

(—1)916 a2 a23 az,j
(—1)928 ass as,j
F]X:(_glv_927a_gj7 )
(=1)%-19  a;;
(-1)%

and i; : F;X — F;11X s the inclusion into the first summands, pjy1 @ Fjp X —
Xi+1lj] is the projection onto the last summand, d; : Xj1]j] — F;X[1] is the map

T .
— (a2,j+1 a37j+1 e aj+17j+1) y and ajj = —aj fO?“ all].

Here we used the notation M7 for the transpose of the matrix M.

Proof. As a first step we show that the given object is indeed an (n — 1)-filtered object,

—dil—1 i .
ie., Xjnlj—1] i F;X “, FinX ECAEN Xj+1]j] is an exact triangle and p;[1]od; =

—aj41,j+1 = aj+1. The latter actually holds strictly (not only up to homotopy), and the
former follows from the fact that Fj;1X is the mapping cone (as constructed in the proof
of Lemma of —d;[—1], with 4; and p;41 being the associated maps.

Now we argue by induction and consider a diagram

in which we assume that the boxed region is already of the form we want it to be. Since
F; 1 X — Xj_1[j — 2] is levelwise a surjection, we can assume by Lemma that the
map d;_1 : X;[j — 1] — F;_1X is chosen in such a way that the triangle (%) commutes
strictly. Then d;_; is of the form — (agj agj ... aj’j)T with a;; = —a;. Now let F; X
be constructed as in the statement of the proposition; then the triangles

. _dj[_l] / .
X5 —2] FiaX — FjX — X;[j — 1]
and
. —d;[-1] .
Xl —2| FjaX — FjX — X[ — 1]
are both exact and hence isomorphic. O

Proof of Proposition[5.1 Due to the equivalence we can work with Toda brackets
in M instead of mod-kG, so we have a sequence of composable maps P = X <= X; <=

Soot X, <™ X, with a; € A and the X;’s are suitable shifts of P. Let us start
with an (n — 1)-filtered object X and maps ~,,7o such that 79y, defines an element of
the Toda bracket as in Definition 5.5l We can assume that X is of the form described in

Proposition where my is the degree of a;. Then ox : P[—m;] — X is the inclusion
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5. Toda brackets

of the first summand, and o’ : X — P[—g,—1] is the projection onto the last summand.
Using Lemma we can assume that the diagram of chain complexes and chain maps

X1

N
ox

Xln =2 —"— X ———— X,
an[n—2 JKUX

Xn_l[n - 2]
commutes strictly, which means that -, is of the form — (agvn co. Gp—1n amn)T with
Unn = —ap, and g is of the form — (a11 ay ... alyn,l) with a11 = —a;. The fact

that 49 and =, are chain maps can be expressed by saying that

(=1)900 a1 a2 a1z .. Q-1 0 2
(=1)910  az2 a3 ...  a2p—1 —az,n 00 ... —c
(—1)920 a3z ... azm-1  —a3zn

(-1)930 ... a4,n—1 —a4,n — 0 0

) : : 0 0

(_1)én—13 _a'n’n 0

(~1)9m9

where ¢ is some cocycle representing the map v = 797,. By putting b;; = —a;; (and in
particular b;; = —a; = a;) we have therefore found a defining system whose associated

cocycle is the element of the Toda bracket we started with. Going backwards through the
arguments we get that every defining system yields an element of the Toda bracket. [

In view of Proposition [5.1] we will often not distinguish between Massey products and
its corresponding Toda brackets. Still, one has to be careful with the signs: whenever
we write a Toda bracket (a1, ..., a,) with a; € H*(G), we always mean the Toda bracket
associated to the sequence of composable maps

Q1 Ny o X P N Ny o X SN 7

where the last object is k (not some shift of k).

Definition 5.11. We say that a Toda bracket (A, Aa, ..., \,) is strictly defined if for
each pair 1 <1i < j <n with (i,7) # (1,n) we have (X;,...,\;) = {0}.

Corollary 5.12. Let ¢y, cs, ..., ¢, € H*(G). The Toda bracket (cy, ..., cn) in mod-kG is
strictly defined if and only if the corresponding Massey product is (in the sense of May,

[20]).

Strictly defined Toda brackets (and Massey products) are much easier to deal with
than arbitrary ones, mainly because every partially defined filtered object (and defining
system) can be extended to a completely defined one. We will use this fact in the following
version later.
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5.1 Toda brackets and Massey products

An .
Lemma 5.13. Suppose that X, An, X == M, Xy is a sequence of composable

maps such that the Toda bracket (A1,...,\,) is strictly defined. Then for every (n — 1)-
filtered object X € {Xg,..., A\n_1} there are maps vn, Yo such that A,[n — 2] = o'y, and
A1 = Y0x, that is, the diagram (5.6) commutes.

Proof. Let us show the existence of ~, only. For every pair 0 < ¢ < j < n choose exact
triangles F; X — F;X — F;/F;X. Notice that the exact triangles F; X — Fj11 X —
Xjt1lj] induce exact triangles Fj/F;X — Fji1/F;X — Xji1[j]. Now we claim that
for every i = 0,1,...,n — 2 there is a map §; : X,[n — 2] — F,—1/F;X such that the
composition X, [n — 2] A, n-1/FiX — Xp_1[n — 2] equals A\y[n —2]. Fori =n —2
we know that the second map in the latter composition is an isomorphism. Assume we
have constructed (3; and let us construct B;—;. We have an (n — 1 — i)-filtered object
* = E/EX — FH_l/FzX — s n—l/EX which lies in {Ai+2, PN ,)\n_l}, up to shifts.
There is a commutative diagram

Fiy1/FiX = Xiq1]i]

Aig[i]
B; l \

Xo[n = 2] —2 Fy 1 JFi X ——— Fy/F X[1] 2 Xi]

=

nln_]

where the map 7 is the composite Fn_l/EX — F;X[1] — F;/F;—1X][1]. Since 7; is an

element of the Toda bracket (\;;1, .. o > = {0} we know that 73; = 0, which means
that (; can be factorized as X, [n — 2] P, n—1/Fi—1X — F,_1/F;X. This completes
the inductive step, and putting v, = By we get the result. O

We end this section with two technical lemmas. In the first one we basically recall the
octahedral axiom in the form we will use it later, and we draw an immediate conclusion.

Lemma 5.14. Suppose we are given the left-hand side diagram

— O\b

—O—>B—‘;F E[—l]ﬂ

A\ /v AN / -1 j
\ / pl1] 2 B

in a triangulated category T, without the dashed arrows, and assume further that it is
commutative-exact. Then the dashed arrows exist in such a way that the diagram is still
commutative-exact and y[1ly = ve and ua = ax. Furthermore, E[—1] is a weak pullback
in the right-hand side diagram.
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5. Toda brackets

Proof. The first statement is the octahedral axiom. For the second statement let T LNy
and T' % D[—1] be any two maps with YA = v[—1]ok. Then A = ay\ = aov[-1]ok = 0,

so that \ factors as T % E[—1] 37U, 4 for some map e. Then v[—1]o (¢[-1]oe— k) =
z[—1]
—_

yoy[—1]oe—~\ = 0. Therefore, c[~1] o e — & factors as T~ C[—1] D[—1]. Define
f=e—u[-1]7: T — E[-1]. Then ¢[—1]f = k and y[—1]f = A, as desired. O
Lemma 5.15. Suppose that X, An, Xn1 Anot, N X1 is a sequence of n — 1

composable maps in a triangulated category T, and let X € {Aa, ..., Ap—1} be an (n —1)-

filtered object. Assume that the composition X, [n — 3] 2oln8, Xn—1[n — 3] Gnz, n—2X

can also be written as a composite X, [n — 3] 2, X1 2 X — Fy, 2X. Then (—=1)""1¢ is
an element of the (n — 1)-fold Toda bracket (Ao, ..., \p).

Proof. Choose exact triangles F; X [—1] o, G;X SR X - FXforallj=1,...,n—-1.
For all j =1,2,...,n — 2 we obtain a diagram

T GiaX YT

(the signs coming from shifting of triangles), and the octahedral axiom assures that the

dashed maps exist and form an exact triangle. Also, p;[1] o d; = ﬁj[l] i[]di[—-1] =
pj o dj[—1] = X\j41[j — 1]. Therefore * =2 G X 4, Go X — i, T2, Gp_1X is an
(n — 2)-filtered object in {As,..., \,—1}. Its associated maps are 6’y = p,—1 : G,1 X —

Xp-1[n —3] and 6x = (=1)"" 1Zn 2. 52]52*1 : Xo — G_1X. Our goal is to choose maps
Yn,7v1 such that the diagram

Xo

5 A2
L@

Xn[n 1X—>X1

(b
An[n—3

X 171*
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5.2 Toda brackets and order

commutes and y1y, = (=1)""1¢. We choose v; = (—1)""'pjw,_1, then (a) commutes
due to the relations w; = wj+1%j and Agpa = p1 o di[—1] 0 P2 = prws.
Let us write i : F1.X — F,,_2X. By Lemma/5.14) and our assumptions, we have a weak
pullback diagram
Xnn — 3]

—1
- —P1 ]
=~ ~
Tn ~ Y

Gp1X & Fi X

An[n—3] lﬁ B J{z

anl[n — 3] ﬁ anzX

which implies the existence of the dashed arrow 7,. Then (b) commutes by definition,
and 19, = (—1)""'¢ is an element of the Toda bracket. O

5.2 Toda brackets and order

From now on, we fix a Tate cohomology class ¢ of even degree n.

Lemma 5.16. Suppose that t < p—1 and a,..., a1 € H*(G) are Tate cohomology
classes of even degree such that the (2t 4+ 3)-fold Toda bracket ((,a1,C,...,C, y1,C) is
strictly defined. Then there is a (2t + 2)-filtered object x = FoZ — F1\Z — -+ — Fo o7

in {C,a1,(,...,a, C}, associated to the maps k = Zy & Zo &L Zg— L & Zoryo (where
the Z;’s are suitable shifts of k), with the following properties:

(i) C-ord(Fa42Z) > C-ord(k/C) —t.

(ii) If we write Zoiyg = Qlat+1|ZQt+2, then the map ouy1 @ Zopr3 — Zoryo factors as

Qi1 241 @iy
Zopyg —— QP Fy 07 —— Zoy 4.

Proof. Recall that we have the following exact triangle:
Ok -1 Lo =5 Q- &

We prove the proposition by induction on ¢, beginning with ¢ = 0. Define the filtered
object to be as follows:

Then Fy49Z = L¢[1] = k/¢ so that (i) holds. The map a; exists due to (a; = 0.
Now let us assume the statement is true for ¢ — 1 and prove it for ¢t. By induction we
know that there is a map o[2t] : Zopy1[2t] — Fa:Z[1]. Since

C-ord(FyZ) > C-ord(k/C) —t+1>1
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5. Toda brackets

by induction hypothesis and Corollary we know that there exists some extension
F:k/C® Zy+1[2t] — Foi Z[1] of —ay[2t] in such a way that there is an exact triangle

F
FQtZ — F2t+2Z — l{i/C ® Zzt+1[2t] — FQtZ[l]

with some object Fy o7 satisfying (-ord(Fary2) > (-ord(k/¢) —t. We get the following
diagram without the dashed and dotted arrows:

FyZ" -~ 3 Fopq1 Z oo >FMZ

N - (5.17)

Zati1] 275 Z2t+2 [2t +

m ¢[1]

k/C & ZQt+1 2t

If we choose Fy 117 to be some choice of cone of a;[2t], we get the dashed arrows and the
octahedral axiom guarantees the existence of the dotted arrows such that the resulting
diagram is commutative-exact. We have therefore extended our (2t)-filtered object to a
(2t + 2)-filtered object, and (i) is also satisfied.

Now put Zorys = Q‘at+1‘22t+2. For the existence of ayy1, let us choose exact triangles
F\Z — F,Z — F;/1Z = Ry Z[1] for all i = 1,2,...,2t + 2. Then the (2t + 1)-filtered
object x = F\/FWZ — Fy/FAZ — -+ — Fyio/F1Z is (up to shifts) an element of
{a1,¢(,...,,(}. By Lemma there is a map w yielding a commutative diagram as
follows:

Zo[1]

|

th+3[2t+ 2y F2t+2/F1Z*>F12[ ] Zl[l]

T2¢+2
m l

Zogia[2t + 1]
Then 74w lies in the Toda bracket (¢, aq,...,(, azr1) = {0}. Therefore, Q?*lw lifts
to a map Qyyq : Zorrs — Q¥ Y07, proving (ii). O

Corollary 5.18. Suppose that s < p — 1, and let ay,...,as € FI*(G) be Tate co-
homology classes of even degree in such a way that the (2s + 1)-fold Massey product
(C,a1,C,...,C as,C) is strictly defined. If C-ord(k/C) > s, then 0 is an element of the
Massey product.

Proof. We put t = s — 1 in Lemma [5.16] and get a 2s-filtered object
*:F()Z /FlZ FQZ 7 /FQSZ

\ / ’i / ’”\ / "o @s[2s]

Zl%HZQ[ ]eH-- HFZQS[ZS—H%‘WZ%H[ J
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5.3 Toda brackets and coherent modules

together with a map @ (the dotted arrow) making the diagram commutative-exact, and
we know that (-ord(FysZ) > 1. By choosing a cone Fygy1Z of as[2s — 1] we can view the
diagram as a (2s + 1)-filtered object. Put Zssio = Q2" Zss11; then the diagram

Z25+2 S — 1] L) Z25+1[ S — 1]

Q"as[2s— 1]J J{as[ls—l}
¢

QnFQSZ _—> F2SZ

commutes. Since (-ord(FsZ) > 1, the bottom vertical map vanishes. Hence as¢ = 0,
and therefore 0 € ((,a1,(,...,as,¢) due to Lemma O

5.3 Toda brackets and coherent modules

Proposition 5.19. Suppose thatt < p—1 and aq,...,0q41 € ﬁ*(G) are Tate cohomology
classes of even degree such that the (2t + 3)-fold Toda bracket (¢, a1,(,...,(, ay1,C) is
strictly defined. Then there is a (p — 1 — t,t)-coherent module (X,Y) with Yy =k and a
(2t 4 2)-filtered object x = FoZ — FA\Z — -+ — Fyi0Z in {(,a1,(, ..., C}, associated

to the maps k = Z4 & Ty &L Zg— . & Zoryo (where the Z;’s are suitable shifts of k),
with the following properties in mod-kG':

(1) Fa42Z is isomorphic to X1[2t 4+ 1].

(ii) The map oz : k — FayoZ equals the composition

_ Q-t-1, -1
L n[1] Lell] Wit QtAt+1L<[2t+ 1] O(X,Y)[2t+1]

X1[2t + 1],

where w1 and ®(X,Y) are constructed in ([4.5) and Definition[{.15, respectively.
(iii) The composition

SRRy DPY/A —W : Zotyo = Qloa|++loe|+(E+1)n —>(_1)t0‘1""“ Qt+ng

equals ta+1F2t+2Z X — AXY)

in Definition [{.19.

(iv) Let us write Zoirg = Qletil Zo, 0. The map ouqq : Zorys — Zayo factors as a

t+1 QZtJrl /
composite Zoy13 —— X1 = Q2 Ey o7 -2 Zot42.

Stk = (k)20 where AN(X,Y) is defined

(v) By (iii) and (iv), the composition

A(X,Y)

Zoys “5 X S1HQE) & (k)P0

equals (—1)tonay ... apyy : Zopyg = QloaltHlosal+tlng _ qli+hng,
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5. Toda brackets

We will draw a picture visualizing the situation in Remark after the proof.

Proof. We do this by induction on ¢, beginning with ¢ = 0. We have to define a (p — 1,0)-
coherent module, and we take X, = A*L¢ = F(k), with o : X — F(Y}) being the identity
map. Define the filtered object to be the following:

Then Xi[1] = L¢[1] = Fyy0Z so that (i) holds. The map oz : k — L¢[1] equals —n[1]
which proves (ii), because ®(X,Y)[1] € Homy(L¢[1], X1[1]) and wy ! : L¢[1] — L¢[1] are
the identity maps. The map A(X,Y) : X1 = L — Q"k equals ¢, which proves (iii). The
map & exists due to (o = 0, thus proving (iv).

Now let us assume the statement is true for ¢ — 1 and prove it for ¢t. By induction we
know that there is a map a; : Zoyr1 — X1, and we let —f be a surjective lift of that stable
map to the unstable world. As in Proposition [4.17] we get from f and the (p — ¢,¢ — 1)-
coherent module (X,Y) a (p— 1 —t, t)-coherent module (X', Y") whose underlying object
X7 is the kernel of the composition

id
F L<®th+1 ﬂ LC®X1 — Xo.

We get the following diagram in mod-kG (without the dashed and dotted arrows):

w
Xo|—1] = X\ [2] - = % - — - —— 3@t T X
S L)
\ K ' 5.20
Zort1]— %07 Z2t+2 (5:20)
—U[M /
Lg ® Zoty1

We define C' to be some fiber of — f and obtain the dashed arrows. The octahedral axiom
then tells us that the dotted arrows exist in such a way that the diagram is commutative-
exact. Apply the shift functor [2¢ + 1] to the diagram, and at the same time multiply
the *-marked arrows by (—1). This assures that the previously exact triangles are still
exact. Then we can concatenate the result with the (2¢)-filtered object we already have
and obtain a (2t + 2)-filtered object with Fy1Z = C[2t 4+ 1] and Fyi0Z = X{[2t + 1]
which proves (i). To prove (ii), notice that the exact sequence

0— X/ = ALY - ALY, | - = AL —0
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5.3 Toda brackets and coherent modules

is the Yoneda splice of the exact sequences
0— X1 =AY L@Y g — = AL — 0

and 4
0—X; > ANL oY — X141 — 0,

as in the proof of Proposition [L.17} Via the isomorphism
Ext!(X144, X]) 2 Homy(Xa[-1], X7)

the latter represents the map p of ([5.20), and (ii) follows.
In order to prove (iii), we set up two commutative diagrams. The first one uses the
induction hypothesis on (v) as follows:

Q2ttlg/ (-Dtaq-on

X| ————25 Zoppo ——— Qk @ SIQ"k = (Qk) @D

J (a) l% v) }d RA(X,Y) (5.21)

n n
L<®Z2t+1 WQ k®22t+1 —)id@)f Q k@Xl
The square (a) equals the triangle (f) in (5.20)), so the diagram commutes. The second
diagram takes the following form:

X{ AX'YT) Sl—i—t(an) = , (an)®(1+t)

l ) l H (5.22)

L¢ @ Zara STy Le® Xy s Q"k ® SHO"k) — (k) 20+

Here, (b) commutes by the definition of the comodule structure on Y’. Putting the
diagrams and together, we get a proof of (iii).

The existence of ;41 in (iv) follows exactly as in the proof of Lemma The
statement (v) is an immediate consequence of (iii) and (iv), so we are done. O

Remark 5.23. The statement of the previous proposition might become clearer by con-
sidering the following diagrammatic picture. In the topological world of the stable homo-
topy category SHC, our trivial kG-module k corresponds to the sphere spectrum .S, which
can be viewed as a stable O-cell. So let us consider k as a 0-cell, then X"k is an n-cell, Q"k
is a —n-cell, and L¢ has one —1-cell and one —n-cell. We draw pictures of these objects
as follows:

—1 —1
e — S e

-n -n
®e ———— o

Qk

n LC . an
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5. Toda brackets

We draw a dot e for every cell, and indicate its dimension on top of it. Note that this does
not mean that L, decomposes as a direct sum of 2k and Q"k, the two cells are ‘linked’
by the map ¢ in an appropriate sense, but we do not include this information into the
figure. Now we draw a picture visualizing the situation of Proposition [5.19]in the special
case t = 2 as follows:

0z

1l B(X,Y
N il

o — e -
et
ol Fy
—2n—Jaq|+3 Fs
N J Fs
[ ]
—3n—|a1|— \Oc2| \oe;|+5 —3n |oc1\ |oa|+5 —3n \al\ |2 |+5 —3‘1—5—5

Zos|2t + 1] =X 20+ 1 Zor[ 20+ 1] T (k) [2¢ 4 1]

Q41 102

w

AMX,Y)

Proposition 5.24. Suppose that o1,...,q,-1 € I:I*(G) are Tate cohomology classes of
even degree such that the (2p — 1)-fold Massey product (C,a1,C,...,ap—1,C) is strictly
defined. Then —aq ...ap—1P1(¢) C ((,a1,(, ..., 0p-1,().

Remark 5.25. Notice that the sign occurring in the statement depends on the choice of
the definition of Massey products.

Proof of Proposition[5.24 We put t = p — 2 in Proposition [5.19 and see what we get.
There is a (1,p — 2)- coherent module (X,Y) and a (2p — 2)- ﬁltered object

*:F()Z s W FZ > \FQP_QZ

\ / "\ / ’K / v 08p-1[20-7]

7 +—o— Z2[1 (—o— cee 40— Z2p 2[2]) 3] 2p— l[2p 2]

Qp— 1[2 2]

together with a map @1 (the dotted arrow) making the diagram commutative-exact, and
we know that Fh, oZ = X1[2p — 3|, and 0z : k = Z; — Fyp_2Z equals the composition
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5.3 Toda brackets and coherent modules

_ Q- (-1, 1 -
L (1] L([l] p—1 Qp—2Ap71LC[2p _ 3] M X, [2p — 3]. By deﬁning

F5,_1Z to be some choice of fibre of a,—1[2p — 2] we can also consider the diagram above
as a (2p — 1)-filtered object.

Consider the composite 0" Z,_; s, Zop—1 21, QQP*3F2p_2Z >~ X,. By naturality of
¢, this equals

Qrap_1

QnZ2p_1 QnQ2p73F2p_QZ ~0O"X, £> X;.

Let us choose any element P; € P;(¢) and consider the following diagram:

Q"a,_
Q" Zap 1 v > Ok © X4
idMX,Y
(~1)P2a1..ap1 () BAXY)
(an)@)p (; Ok ® Sp—lan
lv (b) ¢®id (5.26)
(¢) QP—2APQO"
Py S lm—%p
QQP_4LC4PA) Qp_QAp_lLC
B(X,Y)
ﬁ””“‘ﬁ (@ \
QprSk X1

—QQP*BO'Z

Here, (d) and (a) commute due to Proposition (ii) and (v), (b) commutes because of

Lemma and (c) is Proposition [4.7]
Now we put Zy, = Q"Zy,_;. Then we are in the situation of Lemma (where the

n in that statement corresponds to 2p in our case), the composable maps being Z, AN
ap—1

Zop1 2= 5 7 = k. The filtered object is * = FoZ — F\Z — ... FopoZ —
F5, 17, and the map Z; = F1Z — Fy, 27 equals our oz. Furthermore, (5.26) tells us
that the diagram

Zop|2p — 3] —5 Zop_1[2p — 3]

almapilpll lap_l[Qp—ﬂ

Zl = k O'—Z> F2p_2Z
commutes, and by Lemma we get that —ay ...ap—1P1 € ((,a1,...,0p-1,(). O

Remark 5.27. In the case p = 2 we get the result aP1(¢) C (¢, a, ¢), whenever the Massey
product is defined. In the case of ordinary cohomology, this is a well-known fact. It is an
immediate consequence of a formula relating the U;- and the U-product in the singular
cochain complex of a topological space; see [§]. For G = Z/27Z x Z/27Z the formula enables
us to compute all Massey products of the form (¢, «,(), and it is consistent with the
computation of all Massey products done in [I5], §5.
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5. Toda brackets

5.4 Example for equality

Now we can prove that Corollary is a strong inequality in the sense that for every
prime p and every field of characteristic p, there is a group G and a Tate cohomology class
¢ of even degree such that (-ord(k/¢) = p — 2. Consider the group

Affi={z—ar+b:acF,beF,} =F,xF,

of affine linear transformations of IF,,. The group operation is composition of such maps.
This group has the normal subgroup of translations

T'={x—ax+b:belF},

and the quotient Aff; /7" is isomorphic to F,. Furthermore, 7" is the p-Sylow subgroup of
Affy.

Our example will be the group G = Aff; x Aff;. By the considerations above, G has
the normal p-Sylow subgroup N = T x T. It is well-known that (see [4], Theorem 10.1
in Chapter XII) the inclusion i : N — G induces an isomorphism H*(G) — H*(N)¢/N
from the Tate cohomology of G to the fixed points in Tate cohomology of N under the
action of G/N. We will often suppress this isomorphism from notation. Let us now try
to describe the Tate cohomology of G. To do so, we use the description of the Tate
cohomology of N given in §3.6] Recall that for a fixed non-negative degree n we have the
monomial basis of H"(N) given by elements v{'v$2u$u$? with 2a; + 2az + €1 + €2 = n
and €1,e2 < 1. Using Tate duality, we denoted the dual basis by ©24,+e; 2a046,- Let
us write D : H"(N) — H~'""(N) for the k-linear map which sends each basis element
vt vg?uitug® to its dual paq, 4e; 2a0+e,- Also, let us write ¢ = 2p — 2.

Lemma 5.28. Suppose that p > 3. The ordinary group cohomology of G is given by
H*(G) = kb1, b, e1, €], the graded commutative algebra generated by two exterior classes
e1,e2 of degree ¢ — 1 and two polynomial classes by, by of degree q. The elements are
given by e; = vf_2ui and b; = Uf_l. The structure of the Tate cohomology of G is
obtained from the ordinary cohomology by using the fact that D restricts to an isomorphism

D: HY(G) — H'""(Q).

Proof. The computation of H*(Aff}) is well-known, and H*(G) is deduced from this using
the Kiinneth theorem. For the last statement it is enough to observe that the elements
of G/N = F, x [F; act as diagonal matrices with respect to our chosen basis: the element
(c1,¢2) acts as

(C1, 62) . Uiu U%Zuilu? — C%a1+61 C§a2+62’u?111(212u?’u§2.
Therefore, the elements of G/N act as the same diagonal matrices on the dual space
H~1="(N) with respect to the dual basis ». O

Remark 5.29. In the case p = 2 the classes u; and uy (and therefore also e; and es)
are polynomial classes with u? = v;. With this tiny difference in mind, the following goes
through even in the case p = 2, because we will never use the fact that the u;’s are exterior

classes.

78



5.4 Example for equality

As an immediate consequence of the preceeding lemma we can describe the structure
of H*(G) more explicitly in the range we will be interested in.

Corollary 5.30. The following table describes the k-vector spaces ﬁ’(G) in the range
29+ 1<:< 29— 2:

deg|| —2¢g+1 | —q—1| —¢ [ -1]0] ¢=1 ] ¢ || 2¢-2
basis || o599 V2p—20 | P2p—3,0 000 | 1 vfdm v?fl P22 0,
PR ap—2 | Po.2p—3 ’0120_2162 v’;‘l Lo T

For all other values of i in the given range we have E[’(G) =0.

Theorem 5.31. Let ¢ = wa, 30 € H9(G) and o = vszl € HYG). Then we have the
(2p — 1)-fold Massey product (¢, o, C,...,a,() = —pap_32p—3 without indeterminacy. In
particular, -ord(k/¢) = p — 2 by Corollaries and .

One step in the proof is easy: we can compute —a?~'P;((), which is one element
of the Massey product due to Proposition We know P1(¢) = wop2_2p—1,9,—3 from
Propositions and and hence

-1 _ p?—2p+1 .
P P(C) = vy Pop2—2p—1,2p—3 = P2p—3,2p—3-

The statement about the indeterminacy is slightly more complicated. Let us recall some
facts we will frequently use in the proof.

Lemma 5.32 (May, [20]). Suppose that the Massey product (ay, ..., a,) is strictly defined.

(i) Foreveryi=1,2,...,n—1 and every z; € H*(G) of degree |a;|+|a;s1|—1 the Massey
product (ai,...,a;—1,Ti,Qi+2,...,ayn) is strictly defined ([20], Proposition 2.4.(i)).

(ii) If every Massey product as in (i) consists only of the zero element, then (ai,...,ay)
has no indeterminacy ([20], Proposition 2.4.(ii)).

(iii) If ag - (a1,...,an) contains 0, then so does (apai,...,an) (follows from part (ii) of
Corollary 3.2 in [20]).

Also, for arbitrary elements a1, ..., an:

(iV) If <CL1, ey Q15040441 Q5425 - - - ,an> = {O} and <a1, cee sy Ay Qj41A542, B34-35 - - - ,an> 18
defined, then the latter contains 0 (this follows from Corollary 3.4. (i) in [20]).

Remark 5.33. Notice that May uses a different sign convention, so we formulated the facts
in a sign-independent form we need later.

Let us now take a look at the sequences of the degrees of elements coming up in the
Massey products we are interested in. Define S to be the smallest set of integer sequences
of finite length with the following properties: the sequence (—q,q, —q, ..., q, —q) of length
2p — 1 belongs to S, and whenever a sequence (dy,...,d,) of length n > 3 lies in S then
so does (dy,...,di—1,d; + dit1 — 1,di42,...,d,) for every i = 1,...,n — 1. This notion is
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5. Toda brackets

clearly motivated by Part (i) of Lemma For example, in the case p = 3 the set S
will consist of the following elements:

(_4747_4347_4)

7 N

(7177474774) (74’7174774) (7474771774) (7474774’71)

P S el N
(—6,4,—4) (-1,-1,—-4) (-1,-4,-1) (—4,2,—4) (—4,-1,—-1) (—4,4,—6)
\( )/

—3,—4) (—6,—1) (—1,-6) (—4,—3
The occurring numbers are

qq9—2,q—4,...,2,-1,-3,...,—g+1,—q,—q—2,...,—2q + 2. (5.34)
Let us describe without proof some of the sequences in S more explicitly.

Lemma 5.35. A sequence (dy,...,d,) with2 <n <2p—1 and d; € {q,—1,—q} for alli
belongs to S if and only if it is of the form

(_17 —q, _17 q, _17 —-q,...,—¢q, _1)

where each —1 stands for an arbitrary long (possibly empty) sequence of (—1)’s, and the
total number of (=1)’s is 2p — 1 — n.

We call a Massey product (ai,...,a,) in ﬁ*(G) admissible if the sequence of the
degrees of its elements (|ai|,...,|ay|) belongs to S and for every i = 1,...,n, a; = ¢ if
la;| = —q and a; = a if |a;| = q.

Lemma 5.36. FEvery admissible Massey product is strictly defined.

Proof. By Lemma m(l) it is sufficient to show that the Massey product (ai,...,az—1)
with

o if 7 is even

{g if 7 is odd,
a; =

is strictly defined. The two-fold products (a;,a;11) = a;a;+1 vanish due to the multi-
plicative relations in H*(Z/pZ x Z/pZ). Now we can assume that p > 3. The three-fold
products (¢, a, () and (a,(,a) are strictly defined and have no indeterminacy, and by
Corollary they contain zero.

Suppose we have some product (a;,...,a;) of length n > 4. If n is even, then the
product is of degree —n + 2 with 4 < n < 2p — 2 = ¢; but then I:I_"“(G) = 0 by
Corollary[5.30 If n is odd, then the degree of the product is £¢—n+2 with 5 < n < 2p—3,
but then H=—"2(G) = 0. O

Proposition 5.37. Suppose that (ay,az,...,a,) is an admissible Massey product. Then
it does not have any indeterminacy. If n < 2p — 1, then (a1,...,a,) = {0}.
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6. A counterexample

Proof. Let n be the smallest number for which any of the two statement fails. Suppose the
first statement fails for that n. Then n > 3 and by minimality of n we know that all pro-

ducts of the form (a1, ...,ai—1,%;, ait2, ..., a,) with z; of degree |a;| + |a;+1| — 1 equal {0},
because they are admissible (note here that z; is not of degree +¢). By Lemma (ii)
we know that (ai,...,a,) does not have any indeterminacy.

We can therefore assume that for the minimal n the second statement fails, whereas
the first one is true. Suppose that a = (aq,...,a,) is admissible; we need to show that
0 € a. If there is some index ¢ with |a;| & {q,—1, —¢} then we can deduce from the list
and the table in Corollary that H1%(G) = 0 and therefore a; = 0. Since g is
strictly defined, it must contain 0 in this case. We can therefore assume that all Massey
products a of length n with a # {0} satisfy a; € {q,—1,—q} for all i. For every such
Massey product there is a smallest index ¢ with |a;| = —1; denote that index by d(a). Let
us take one such product with minimal d(a) = .

Case 1: ¢ > 1 and |a;—1| = —¢. Then a,_; = (. By Tate duality we know that there
is some b € H 9=1(@) with a; = b¢. Then, by the description in Lemma the Massey
product (ai,...,a;—2,a;-1b,(,ait1,...,ay,) is admissible, and it equals {0} by minimality
of d(a). By Lemma [5.32](iii) a contains 0.

Case 2: i > 1 and |a;—1| = ¢. Then a;,—; = a. Again by Tate duality there is some
element b € ﬁ_q_l(G) with a; = ba. The product (ai,...,a;—2,a;-1b, @, ait1,...,a,) is
admissible and equals {0}. As before we can deduce that a contains 0.

Case 3: i = 1. Then we know by Lemmathat the product (¢, v, a9, as, ..., a,) is
admissible and hence strictly defined. In particular, (o, as,...,a,) = {0}. By Tate duality

we can write a; = bar for some class b € H ¢ 1(G). Then b- (o, ay,...,a,) contains 0,
and by Lemma [5.32] (iii) we get that 0 € a. O

6 A counterexample

We shall now show that the lower bound of our Main Theorem (as given in Corollary
is no longer true in general if we allow ¢ to be an arbitrary element of even degree in
the graded center of mod-kG. Let p = 3 and G = Z/pZ x Z/pZ. Let k be a field of
characteristic 3; then kG =2 A = k[z,y]/(z3,y%), and from now on we will work with A
instead of kG. Since A is commutative, the enveloping algebra of A is simply given by
A¢ = A® A, which we also denote by B. Define the elements T = 1 ® z — 2 ® 1 and
y=1®y—-—y®1lin B.

Lemma 6.1. The beginning of a projective resolution of A as a right B-module is given
by

(z9) (# ;@Mz)

AEB B®? B® — .
where € is the multiplication of A. In particular, we can choose Q2BA to be the submodule
of B2 generated by the three elements (%2 ), (_y-) and (gog)

T
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6. A counterexample

Proof. Consider the algebra L = k[2]/(z%) and let 2 = 1® 2 — 2 ® 1 € L°. Simple
combinatorial arguments show that
€ z z2 z z2
L—L°—L[°«— L°< L%~ ...,
with € being the multiplication of L, is a free resolution of L by Lf-modules. Tensoring
two such complexes and using the Kiinneth theorem, we get the desired result. O

If M is any A-module, we can apply the functor M ®4 — to the projective resolution
of the proposition and obtain a projective resolution of M. In particular, when we put
M = k the trivial A-module, we get the resolution

RGN A9

Let this resolution define the modules 27k for n > 0. For a better understanding, let us
draw pictures of these modules as follows: We take a suitable basis of the module as a k-
vector space (drawn as e) and draw vertical and horizontal lines to indicate multiplication
by x and y, respectively:

=

Y

This picture represents Qk = (z,y) 4, C A. Whenever there is no horizontal line from a e
to the right, we mean that the corresponding element vanishes under multiplication by x
(and similarly downwards for y). Note that there are A-modules not representable in this
form, but all the modules we are interested in will be. Let us draw two more examples:

k as a trivial module: e

02k, considered as a submodule of A%2:

Now let ¢ : Q%k — k be the following map:
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6. A counterexample

That is, (,yx) — 1 € k and all other drawn k-basis elements map to 0. Let L¢ be the
kernel of £, which can be drawn like this:

by
by—s
b27.7.‘

by—e—e
It is the A-submodule of A®? spanned by the four vectors b; = (_Oyz), by = (_yjy),
by = (jgz ) and by = (%2 ) The map & induces an element — ® £ of degree 2 in the graded
center Z(mod-A).

Let us turn back to the projective resolution of A as a B-module given in Lemma 6.1
Note that the elements  und 3 belong to the augmentation ideal; we therefore have
constructed the beginning of a minimal resolution, and applying the functor Homp(—, A)
to the resolution yields a complex A 9 4920 483 0 in particular @Q(A) = A3,
More explicitly, in order to specify a B-linear map ¢ : QQBA — A we can freely choose the

values of ¢ under the three generators (%2), (_gi) and ( gog). Let us put

©:NZA - A
(%) =,
(%) o

—X

(goz ) — 0.
This map induces an element — ® 4 ¢ of degree 2 in the graded center Z(mod-A).
Proposition 6.2. The element ( = ¢ + & € Z?(mod-A) satisfies C-ord(k/¢) = 0.

Proof. Since z acts trivially on k, we get that ¢ = 0, so (x = &. Hence k/¢ = k/& =
Q !L¢. It is enough to show that ¢ Le 7 0. Since £ comes from a Tate cohomology class,
we know that £, = 0 by Corollary so it remains to prove that ¢, # 0.

For this we need two easy but powerful lemmas. Suppose that M is a right A-module
and m € M. We say that m is divisible by x if there is some element m’ € M with
m = m’ - x, and similarly for y. Define I to be the ideal of A generated by the elements
z2, vy and y?.

Lemma 6.3. Let F be a free A-module. Suppose that m € F has the property that m - x
1s divisible by y and m -y is divisible by x. Thenm € F -1 C F.

Proof. One can assume that F' is free of rank 1. The set of elements m with m - = being
divisible by v is the ideal generated by 22 and y; the set of elements m with m - y being
divisible by z is the ideal generated by = and 32. The intersection of these two ideals is
1. O

Lemma 6.4. Suppose that f : M — N is a map of right A-modules which factors through
a projective module. Assume further that m € M is such that m - x is divisible by y and
m -y is divisible by x. Then f(m)€ N-1 C N.
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6. A counterexample

Proof. Because A is the group algebra of a 3-group, all projective modules are free. Write

f as a composition M % F I N with a free module F. Then g(m) satisfies the conditions
of Lemma [6.3} therefore g(m) € F - I and hence f(m) = h(g(m)) € N - I. O

We want to apply this to ¢ acting on Lg, i.e., the map
Lg ®AQQBA — Lg R4 A LE'

Let e1,e3 € B¥? be given by e; = () and e2 = (). Define the elements f; = b;_1 @ e —
b ®ez € Le @4y B®2 for i = 1,...,5 (where by convention by = 0 and b5 = 0). When we
apply the differential d : L ®4 B®? L¢ ®4 B to f; we get

dfi =bi1@T—b;®7
=b1®(1®z)—bi—12®(101) -1y +by® (1®1)
=b10(1lz)—b(1Ry);

here we used b;_1x = b;y.

Now consider b; = fi112? + fivoxy + firsy? (where f; = 0 for ¢ > 5). From the
computation above we get db; = 0, so b € L¢ ®4 Q%A, and we have byy = bz and
bha = bhy. Therefore, bl satisfies the conditions of Lemma and it remains to show
that the image of b, does not lie inside Lg¢ - I. A rather lengthy computation shows that

by=b1® (L )y+bs® (L) +bz® (%) +be ().
Therefore, under ¢, b, is mapped to by - © € Lg which is not inside Lg - I. O

Remark 6.5. The last step of the proof might become clearer if we draw the map ¢,
using the diagrams introduced above. It turns out that, up to a stable isomorphism in
the source, the map ¢ : L¢ ®4 QQBA — L¢ can be viewed as follows:

e—eo
| T~ _
o—e—e - \.
| T~ =~
o—o—o T - _ ° e
| T~ _ ~ <
o—0o—e - °2e—eo
| ] ~ <
T—o—o °o2e—e
e—0o—o

The point marked o satisfies the conditions of Lemmal[6.4] thus showing that the indicated
map is non-trivial in the stable category.

Remark 6.6. The element ( of the graded center comes from the Hochschild cohomology
of A 2 kG. Since G is abelian, we know that HH*(G) =2 H*(G) ® A (see [9], or [5] for
a more general result). Using the description of H*G given in the element ¢ comes
from ujug + vy - x € HH*(G).
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Zusammenfassung

Einfiihrung

Motiviert durch seinen Beweis des Starrheitssatzes hat Schwede den Begriff der Ordnung in
triangulierten Kategorien eingefiihrt. Sei dazu C eine triangulierte Kategorie mit Translations-
Funktor ¥. Das graduierte Zentrum von C ist der graduierte Ring, dessen Elemente im Grad n
gegeben sind durch diejenigen natiirlichen Transformationen vom Identitatsfunktor zu %", wel-
che mit X bis auf ein Vorzeichen kommutieren. Gegeben solch ein Element (, bezeichne man
mit X /¢ einen Kegel iiber der Abbildung (x. Die (-Ordnung eines Objektes X von C wird in-
duktiv definiert: Die Ordnung ¢-ord(X) ist ein Element von {0,1,2,...,00}, und ¢-ord(X) > k
fiir positives k£ gilt genau dann, wenn fiir jeden Morphismus f : K — X eine Erweiterung
f : K/¢ — X existiert so, dass die Komposition K — K/( ENS'e gleich f ist, und fiir einen
(und daher alle) Kegel C; iiber f gilt C—ord(Cf) > k — 1. Die (-Ordnung misst gewissermafien,
,wie sehr ¢ auf X Null ist. Beispielsweise gilt (-ord(X) > 1 genau dann, wenn (x = 0. Fir
jede natiirliche Zahl m ist die Multiplikation mit m, X 25 X, ein Element im Zentrum vom
Grad 0. Insbesondere wurde hiermit also die m-Ordnung eines Objektes definiert.

Fiir den Fall von sogenannten topologischen triangulierten Kategorien hat Schwede folgendes
bewiesen:

(t1) Sei C eine topologische triangulierte Kategorie und p eine Primzahl. Fiir jedes Objekt
X € C ist die p-Ordnung von X/p mindestens gleich p — 2.

(t2) In der stabilen Homotopiekategorie SHC ist die p-Ordnung des mod-p-Moore Spektrums
S/p genau gleich p — 2.

(t3) Falls fiir ein Objekt X € C die Abbildung oy A X : ¥?P73X — X durch p teilbar ist, so
ist die p-Ordnung von X/p mindestens gleich p — 1.

Die Aufgabe war nun, den Begriff der Ordnung im Fall der stabilen Modulkategorie C = mo0-kG
zu untersuchen, wobei k ein Korper der Charakteristik p > 0 und G eine endliche Gruppe ist.

Hat man eine Tate Kohomologie-Klasse [(] € E}Rn(k,k) = H"(G,k) von geradem Grad n
gegeben, so wird diese von einer Abbildung ¢ : Q"k — k in mod-kG reprisentiert, welche
wiederum ein Element des Zentrums induziert, welches auch mit ¢ bezeichnet wird:

X 20k X N re x> X.

Es war bereits bekannt (Carlson 1987), dass fiir ungerades p dieses ¢ auf L, = ker(, also
auf Q(k/() verschwindet. Dies entspricht der Aussage (-ord(k/¢) > 1. Fiir p = 2 ist dies im
allgemeinen falsch.

Resultate

In der vorliegenden Arbeit werden folgende Ergebnisse beweisen, die als Analoga zu (t1) bis
(t3) angesehen werden konnen:

(al) Fiir jedes Objekt X € mod-kG gilt (-ord(X/¢) > p — 2.
Dies verallgemeinert Carlsons Resultat.

(a2) Fiir jede Primzahl p und jeden Korper k gibt es eine endliche Gruppe G und eine Ko-
homologieklasse [(] € H*(G) von geradem Grad mit ¢-ord(k/¢) =p — 2.



Bekanntlich ist die gewohnliche Gruppenkohomologie H*(G) die Kohomologie des klassifi-
zierenden Raumes BG. Auf dieser hat man Steenrod Operationen. Wir definieren fiir Ko-
homologieklassen ¢ vom Grad n (mit geradem n falls p ungerade ist):

Sq ¢ =Sq" ¢ falls p =2,
Plc - n_q
BP27°C falls p > 3.

Dann gilt:
(a3) Sei X ein kG-Modul. Falls P;¢ ® X durch (¢ teilbar ist, dann gilt ¢-ord(k/¢) > p — 1.

Es stellt sich heraus, dass (a2) der schwierigste der drei Punkte ist. Fiir dessen Nachweis wird
zunichst die Steenrod Operation P; auf die Tate Kohomologie erweitert; die neue Operation,
genannt Py, bildet dann eine Kohomologieklasse ¢ vom Grad n nicht mehr auf ein einzelnes
Element, sondern auf eine Nebenklasse von ¢? - H*(G) in H?"~(2r=3)(@) ab. Die Konstruk-
tion dieser neuen Operation, der Nachweis elementarer Eigenschaften (Natiirlichkeit, Cartan-
Formel) sowie die konkrete Berechnung der Operation im Fall der Gruppen Z/pZ x Z/pZ sind
zentraler Bestandteil dieser Arbeit. Abschliefend wird iiber (2p—1)-fache Massey Produkte der
Form (¢, 01,¢,...,¢, ap_1,() ein Zusammenhang zum Ordnungsbegriff hergestellt, wodurch ein
Beispiel fiir (a2) gefunden werden kann.
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