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Abstract

The question of how to represent and process uncertainty is of fundamental im-
portance to the scientific process, but also in everyday life. Currently there exist
a lot of different calculi for managing uncertainty, each having its own advantages
and disadvantages. Especially, almost all are defining the domain and structure
of uncertainty values a priori, e.g., one real number, two real numbers, a finite
domain, and so on, but maybe uncertainty is best measured by complex numbers,
matrices or still another mathematical structure. This thesis investigates the no-
tion of uncertainty from a foundational point of view, provides an ontology and
axiomatic core system for uncertainty and derives and not defines the structure of
uncertainty. The main result, the ring theorem, stating that uncertainty values are
elements of the [0,1]-interval of a partially ordered ring, is used to derive a general
decomposition theorem for uncertainty values, splitting them into a numerical in-
terval and an “interaction term”. In order to illustrate the unifying power of these
results, the relationship to Dempster-Shafer theory is discussed and it is shown
that all Dempster-Shafer measures over finite domains can be represented by ring-
valued uncertainty measures. Finally, the historical development of approaches to
modeling uncertainty which have led to the results of this thesis are reviewed.
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1 Introduction

Nothing is more important than to see the sources of invention, which are, in my
opinion, more interesting than the inventions themselves.

Gottfried Wilhelm Leibniz

The starting point of this thesis was the following question: “What are the funda-
mental possibilities and limitations of learning by an effective system?”

An effective learning system is a system which can be fully specified by a program
on a universal Turing machine. In its most general form, this program transforms
a stream of percepts generated by an environment into a stream of actions possibly
changing this environment. Via this senso-motoric loop the system is embedded
into its environment, about which a priori nothing is known. A more specific notion
of learning is defined as the process which translates the stream of percepts into
predictions for future percepts. These predictions can then be used for choosing
actions. The analysis of the “design space” for effective learning systems leads to
three major questions:

1. How should a learning system represent and process uncertainty, or, what is
the proper inductive logic?

2. What set of possible models of the environment should the system consider?

3. How to relate the explanatory power of a model to its complexity?

In the long run, the learning system should be able to detect as many regularities in
its percept stream as possible, while dealing sensibly with the inherent uncertainty
of predictions based on a finite amount of data.

It has turned out that already the first question was enough of a quagmire to
absorb much of the work of several years, so this thesis will focus on this question.
However, there will be a summary of ideas and preliminary results with regard to
the last two questions.

The main contribution of this thesis can be summarized as follows:

A minimalistic axiom system for uncertainty measures (also referred to as con-
fidence theory) is introduced which entails a ring structure for uncertainty val-
ues. Classical probability theory is a special case and other uncertainty calculi,

6



like Dempster-Shafer theory, can be related to and interpreted within this axiom
system, thereby providing a unifying perspective on the multitude of approaches
developed for modeling uncertainty.
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2 Analysis of Uncertainty

The quest for a theory of inductive logic, i.e., a logic defining the relationship
between observations and hypotheses, lies at the heart of the scientific process.
Accordingly, there is a plethora of research aiming at the clarification of this rela-
tionship, which has led to a lot of different calculi for managing uncertainty, each
having its own advantages and disadvantages. Especially, almost all are definining
the domain and structure of uncertainty values a priori, e.g., one real number, two
real numbers, a finite domain, and so on, but maybe uncertainty is best measured
by complex numbers, matrices or still another mathematical structure. This the-
sis introduces an approach which leaves the domain of uncertainty values a priori
undefined (an unstructured set) and derives its algebraic structure from axioms
concerning only general properties of uncertainty measures. This approach to un-
certainty calculi can be denoted as algebraic uncertainty theory and we think that
such a framework is well-suited to investigate the commonalities and differences of
existing uncertainty calculi and to provide a reference system for general results in
this area of research. First results in this direction are published in [ZC11].

The introduced axioms are based on a recent axiomatization for uncertainty mea-
sures given by Arnborg and Sjödin [AS01]. Their axiom system is in the line of
thinking started by R. T. Cox in 1946, and removes one important obstacle to a
widespread acceptance of Cox’s system: the assumption that uncertainty values
should be measured by real numbers, excluding approaches like Dempster-Shafer
theory or other, more complex structured domains of uncertainty values. Their
main result is that, given their axiom system, the domain of uncertainty values has
field structure and the classical axioms of probability theory hold with regard to
the operations of this field. However, in a later part of their analysis, Arnborg and
Sjödin introduce a total order assumption for the domain of uncertainty values,
thus restricting the scope of their result. Here we give a reworked and streamlined
version of their axiom system, most importantly dropping the total order assump-
tion and an axiom concerning disjunction of propositions. Without total order
assumption, in general a domain of uncertainty values exhibits only ring struc-
ture instead of field structure, as there are now domains containing zero divisors.
Furthermore, a weak additional assumption on the order structure of uncertainty
values, i.e. that they are lattice-ordered, implies that the domain of uncertainty
values is totally ordered, giving rise to the following trilemma: the three properties
of partial order, lattice-order, and field structure of a domain of uncertainty values
cannot be satisfied all at the same time.
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2.1 An Ontology of Uncertainty

In the realm of empirical knowledge, uncertainty is unavoidable. A piece of infor-
mation is in general not known to be true or false, but must be annotated by shades
of certainty. But what exactly is the structure of these “shades of certainty”? Are
there ontologically different types of uncertainty, and, after all, how to assess,
process and communicate uncertainty? One early distinction of types of uncer-
tainty was introduced by Frank Knight in his seminal book ”Risk, Uncertainty,
and Profit” [Kni21] on page 19:

“Uncertainty must be taken in a sense radically distinct from the familiar notion of
risk, from which it has never been properly separated.... The essential fact is that
’risk’ means in some cases a quantity susceptible of measurement, while at other
times it is something distinctly not of this character; and there are far-reaching
and crucial differences in the bearings of the phenomena depending on which of the
two is really present and operating.... It will appear that a measurable uncertainty,
or ’risk’ proper, as we shall use the term, is so far different from an unmeasurable
one that it is not in effect an uncertainty at all.”

In today’s language one would describe “risk” as the uncertainty about the occur-
rence of events within a fully specified stochastic model. The “Knightian Uncer-
tainty” is the uncertainty with regard to the correct model, what is today some-
times called model risk, especially in financial mathematics.

In the next paragraph we introduce an ontology of uncertainty, and, even more
general, an ontology of indefiniteness, accompanied by a suitable terminology.

2.2 Indefiniteness

The advance of research in artificial intelligence, knowledge representation and
expert systems has led to a plethora of new approaches to represent and process
information (see section 2.4 for examples). This has led to confusion about the
exact differences and commonalities between the different calculi, and where they
are competing approaches and where they are complementary. One striking exam-
ple is fuzzy logic, which is still regarded as an alternative calculus for processing
uncertain information, where in fact it is a generalization of the notion of an event.
This is clearly stated by Judea Pearl in [Pea00]: “Fuzzyness is orthogonal to prob-
ability theory - it focuses on the ambiguities in describing events, rather than the
uncertainty about the occurrence or non-occurrence of events.” Classical events
are called crisp, in order to express that they are definitely defined: in a specific
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INDEFINITENESS

UNCERTAINTY FUZZYNESS

Event Uncertainty

Model Uncertainty

Severe Uncertainty

Figure 1: Ontology of Indefiniteness

situation the event has occurred or not – there are no “degrees of occurrence”.
The standard approach to represent a set of crisp events is a Boolean algebra. In
this sense, one can say that a crisp event is an element of a Boolean algebra.

We suggest the notion “indefiniteness” for describing all sorts of non-certain, non-
crisp information. This leads to the following ontology of indefiniteness:

2.3 Types of Uncertainty

Here we propose three types of uncertainty, extending the Knightian ontology:

1. Event Uncertainty (quantitatively known unknowns)

2. Model Uncertainty (qualitatively known unknowns)

3. Severe Uncertainty (unknown unknowns)

We want to illustrate these three types of uncertainty – and their principal differ-
ences – with an example taken from Bernoulli processes:

2.3.1 Event Uncertainty:

Consider the coin model with p = 1
2
. The question what will be the next outcome

of an observation can be answered by a definite probability. In this case the prob-
ability is 1

2
, meaning that we are maximally unsure what will happen next, even
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under a specific, complete stochastic model, but other questions can be answered
with more certainty by the coin model. For example, the probability that we will
observe 450 to 550 heads out of 1000 tosses of the coin is greater than 0.998. So,
for this specific question the coin model delivers an answer with near certainty.

2.3.2 Model Uncertainty:

Here we assume that the observations are generated by a Bernoulli process, but
with unknown success probability p. Without introducing a prior distribution
for the model parameter, this implies that we only can infer probability intervals
for events, for example the probability that we will observe between 45 and 55
successes out of 100 experiments is in the interval [0, .71], regardless of the value
of p.

2.3.3 Severe Uncertainty:

This is the “black swan” case, the possibility, that the true model is not even
approximately in the set of considered models. An example would be that the
true process is a deterministic switch between successes and failures, leading to a
probability of 1 for the above example.

The case of severe uncertainty leads to the question of how to describe all possible
models. If one requires that a model has to be an algorithmic object, the answer to
this question is the set of all programs, also called program space. R. Solomonoff
pioneered learning in program space in the 1960s, employing a Bayesian framework
for describing model uncertainty and a prior distribution on programs inspired by
Occam’s razor [Sol64a, Sol64b]. Unfortunately, despite the fact that all models
have to be represented by programs, the learning process devised by Solomonoff
for the whole program space is not computable. The question of how to essentially
retain the generality of Solomonoff’s approach, but render the learning process
computable has spawned a research area of its own, which is today called universal
induction or algorithmic probability [Hut05, Sch09]. In section 9 we sketch how to
use a combined search in program and proof space in order to get naturally defined
effective instances of Solomonoff induction.

2.4 Existing Approaches to Uncertainty

Current approaches to formalize uncertainty can be characterized by a priori defin-
ing the structure of uncertainty values, and then introducing axioms for measures
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on proposition algebras which should be satisfied for all valid uncertainty measures
discussed in this specific approach. Additionally, in most cases at first uncondition-
alized measures are introduced, and only then the problem of conditionalization of
such measures is discussed, often resulting in longstanding problems to construct
the “right” conditionalization rule. For example, [SF02] analyzes seven differ-
ent candidates for conditionalization rules in Dempster-Shafer theory, identifying
pathological examples in each case. In contrast, we derive and not define the struc-
ture of uncertainty and directly axiomatize conditional uncertainty measures, thus
tackling the problem of representing and processing uncertainty in one integrated
approach.

The best known example certainly is probability theory (used as an inference theory
in a Bayesian context [Ber85, BS94]):

• First, the domain of probability values is defined: the [0, 1]-interval of the
real numbers.

• Second, the Kolmogorov axioms define the properties of unconditionalized
probability measures.

• Third, conditionalization is defined by reduction to unconditional probability
measures.

This approach has found many variants and generalizations in the literature on rep-
resenting and processing uncertainty, e.g., Dempster-Shafer theory [Dem67, Sha76],
Possibility theory [DP88, Dub06], Revision theory [Gär92], Ranking theory [Spo99,
Spo09] or non-monotonic logic [Gin87], all exhibiting their own set of advantages
and disadvantages. A survey and discussion of many of the existing approaches is
given in [HSP09]. Relationships of the uncertainty calculus introduced in this the-
sis and existing approaches, like DS-theory or non-monotonic logic, are discussed
in section 7.

3 Formalizing Uncertainty

First we have to discuss a subtle issue of terminology. Above we have used the no-
tion “uncertainty values” to denote generalized truth values. Unfortunately, there
is the following problem when using this term in a formalized context: no uncer-
tainty about a proposition can be identified with sure knowledge, but maximal
uncertainty about a proposition is not certainty with regard to the negation of the
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proposition. The domains of truth values we want to axiomatize contain a great-
est and a least element, where the greatest element should represent certainty and
the least element impossibility, i.e. certainty of the negated proposition. For this
reason, we adopt the notion “confidence measure” instead of uncertainty measure
in the following definitions and axioms.

3.1 The Algebra of Truth Bearers

Before delving into the structure of uncertainty, we have to define the objects and
their relations which are capable to take on truth values, the truth bearers. In a
context of crisp events, i.e., after the fact it is unambiguously decidable if the event
has occurred or not, the algebra of truth bearers is normally considered to be a
Boolean algebra, but when truth bearers are not crisp, then another proposition
algebra has to be considered, i.e., a fuzzy logic where the law of complementation
is not valid: x ∨ ¬x 6= 1, or quantum logic. The propositional algebra in quan-
tum logic is “formally indistinguishable from the calculus of linear subspaces of
a Hilbert space with respect to set products, linear sums and orthogonal comple-
ments” corresponding to the roles of and, or and not in a Boolean algebra. These
linear subspaces form orthomodular lattices which in general do not satisfy the
distributivity laws, see [PR08], page 128ff.

A generalization containing both fuzzy and quantum logic would be bounded lat-
tices having an antitone involution. There seems to be no established term for this
class of lattices, but they were already the topic of investigations, see for example
[Cha03], page 578. We propose to call them proto-complemented lattices.

It would be an interesting question whether proto-complemented lattices still admit
structural implications like the ring theorem (see section 4 on structure theorems
for uncertainty) as is the case for Boolean algebras, or if for these generalized
proposition algebras a generalization of the structure of uncertainty is necessary,
too. However, in this thesis we focus on Boolean algebras as the structure of
propositions. The investigation of uncertainty measures for non-Boolean proposi-
tion algebras is open to future research.

3.2 Uncertainty: the Boolean Case

A conditional confidence measure for a Boolean Algebra U and a domain of con-
fidence values C is a mapping Γ : U × U \ {⊥} → C. Let A,B ∈ U, then the
expression Γ(A|B) reads: “the confidence value of A given B (wrt. Γ)”. The
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domain of confidence values is partially ordered and has a greatest (>>) and a
least (⊥⊥) element. A confidence space is a triple (U,Γ, C). One of the follow-
ing axioms (Extensibility) for confidence measures deals with relations between
confidence spaces defined over different Boolean algebras. Thus it is necessary
to introduce a set of confidence spaces all sharing the same domain of confidence
values. Such a set of confidence spaces we will call a confidence universe, and the
following axiom system is concerned with such confidence universes, and not single
confidence spaces. This seemingly technical shift in perspective is essential for the
formalization of natural properties like extensibility, which plays a crucial role as
an intuitive axiom complementing Cox’s assumptions (see section 6).

We now state seven axioms, which can be grouped in three “connective axioms”
and four “infrastructure axioms”, where the connective axioms concern properties
of the logical connectives and the infrastructure axioms deal with basic properties
of the order relations, the combinability of confidence spaces and a closure property.

3.3 Axioms for Uncertainty Measures

In the following, we use Γ(A) as an abbreviation for Γ(A|>).

(Not) For all (U1,Γ1, C) and (U2,Γ2, C):

If Γ1(A1) = Γ2(A2), then Γ1(Ā1) = Γ2(Ā2).

The axiom Not expresses that the information in the confidence value of a state-
ment A is sufficient to determine the confidence value of Ā. This is justified by the
requirement that every piece of information which is relevant for the confidence
value of A is relevant for the confidence value of Ā and vice versa.

(And1) For all (U1,Γ1, C) and (U2,Γ2, C):

If Γ1(A1|B1) = Γ2(A2|B2) and Γ1(B1) = Γ2(B2), then Γ1(A1B1) = Γ2(A2B2).

The axiom And1 states that the information in the confidence values of the partial
propositions determine the confidence value of the conjunction. Otherwise the
confidence value of the conjunction would contain information which is not reflected
in the partial propositions, although this information would be clearly relevant for
at least one of them.

(And2) For all (U1,Γ1, C) and (U2,Γ2, C):
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Figure 2: Ordered confidence values v and w with corresponding propositions in a
suitably chosen confidence space (U,Γ, C).

If Γ1(A1B1) = Γ2(A2B2) and Γ1(B1) = Γ2(B2) 6= ⊥⊥, then Γ1(A1|B1) = Γ2(A2|B2).

The axiom And2 ensures that all the information contained in a conditional con-
fidence value Γ(A|B) will be preserved in the confidence value of the conjunction
Γ(AB) when combined with the confidence Γ(B) (unless Γ(B) = ⊥⊥, in which case
the value of Γ(A|B) is irrelevant). Otherwise relevant information about the partial
propositions would not be contained in the confidence value of the conjunction.

(Order1) For all (U,Γ, C) and all A,B ∈ U: If A ≤ B, then Γ(A) ≤ Γ(B).

(Order2) For all confidence values v, w ∈ C with v ≤ w there is a confidence
space (U,Γ, C) with A,B ∈ U and A ≤ B, Γ(A) = v, Γ(B) = w.

These two axioms connect the natural ordering of the Boolean algebra (A ≤ B iff
A ∧ B = A) with the ordering on the confidence domain, where Order1 specifies
the forward direction and Order2 specifies the backward direction (figure 2).

(Extensibility) For all (U1,Γ1, C) and (U2,Γ2, C) there is a confidence space
(U3,Γ3, C), so that U3

∼= U1 ⊗U2, and for all A1, B1 ∈ U1, A2, B2 ∈ U2:

Γ3(A1 ⊗>2 |B1 ⊗B2) = Γ1(A1|B1) and Γ3(>1 ⊗ A2 |B1 ⊗B2) = Γ2(A2|B2).
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This axiom requires the extensibility of domains of discourse, i.e., two indepen-
dently defined confidence spaces shall be embeddable into one frame of reference.

(Background) For all (U,Γ1, C) and all C ∈ U there is a confidence space
(U,Γ2, C), so that for all A,B ∈ U:

Γ1(A|BC) = Γ2(A|B) .

This closedness under conditioning assures that for every conditional confidence
measure Γ1 which is specialized by conditioning on some “background knowledge”
C, there is a conditional confidence measure Γ2 yielding the same valuations with-
out explicitly mentioning C.

For the justification of the axioms it is important to interpret the expression Γ(A|B)
as: “all that can be said about the confidence of A given B (wrt. Γ).” Given this
interpretation, the common justification of the connective axioms is that a violation
of these axioms will necessarily lead to a loss of relevant information. Note that
the axioms use only equations and inequalities between confidence values, because
there are no algebraic operations defined on the domain of confidence values yet.

In order to designate this and similar axiom systems, we propose a nomenclature
based on the connnective axioms. Extensionality of negation, conjunction, and
disjunction is denoted as axiom N, C1, and D1, respectively. The reconstructibility
of the confidence value of an argument of a conjunction or a disjunction, given the
compositional confidence value and the confidence value of the other argument,
is denoted as axiom C2 and D2, respectively. Using this terminology, the above
introduced axiom system can be referenced as NC12.

4 Structure Theorems for Uncertainty

Here we will investigate implications of the axiom system NC12 for the algebraic
and order-theoretic structure of domains of confidence values. But before we can
state and prove the two main results, the ring theorem and the total order theorem,
we have to do some preparatory work by showing basic properties of confidence
measures and algebraic constructions from group and ring theory.
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4.1 Basic Properties of Confidence Measures

In the following we will state and prove basic properties of confidence measures of
general interest, which could be useful in the context of other axiomatizations, too.
Generally, the following lemmas are proved by transfering properties of Boolean
algebras to the confidence domain, but such a transfer is not always possible, and
the subtle parts of the proofs consist of establishing and proving the conditions
enabling a transfer of properties from Boolean algebras.

First we prove a lemma stating that for every pair of confidence values there is
a confidence measure and two independent events so that the confidence measure
assigns the given confidence values to the independent events.

Lemma (independence lemma) For all v, w ∈ C there is a confidence space (U,Γ)
with two independent events A,B ∈ U, so that:

Γ(A|B) = Γ(A) = v, Γ(B|A) = Γ(B) = w

Proof: According to Order2, there are confidence spaces (U1,Γ1), (U2,Γ2) and
events A ∈ U1 and B ∈ U2 with Γ1(A) = v and Γ2(B) = w. Then axiom
Extensibility guarantees the existence of a confidence space (U1 ⊗U2,Γ3) with:

Γ3(A|B) = Γ3(A) = Γ1(A) = v

and

Γ3(B|A) = Γ3(B) = Γ2(B) = w.

For the definition of functions S and F see section 4.3 on proper confidence struc-
tures. In the following lemmas, the variables are assumed to take on all values in
C, i.e., these variables are implicitly universally quantified.

1. S(S(x)) = x

2. x < y ⇒ S(x) > S(y)

3. F (x, y) ≤ x, F (x, y) ≤ y
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4. S(F (x, y)) ≥ S(x) ≥ F (S(x), y)

5. S(⊥⊥) = >>, S(>>) = ⊥⊥

6. Γ(>|·) = >>,Γ(⊥|·) = ⊥⊥

Proofs:

1. Let (U,Γ, C) be a confidence space with Γ(A) = x (exists according to Order2).
Then y := Γ(¬A) = S(Γ(A)) = S(x) and S(y) = Γ(¬(¬A)) = Γ(A) = x. Thus
S(y) = S(S(x)) = x.

2. First we prove the weaker statement x ≤ y ⇒ S(x) ≥ S(y). Let (U,Γ, C) be a
confidence space with Γ(A) = x,Γ(B) = y, and A ≤ B. Then ¬B ≤ ¬A (property
of Boolean algebras). Order1 then implies: Γ(¬B) ≤ Γ(¬A), and by axiom Not
we have S(Γ(B)) ≤ S(Γ(A)) and thus S(y) ≤ S(x).

The strictness can be proved by invoking lemma 1. Assume there are x, y with
x < y and S(x) = S(y). Then S would not be an injective function, contradicting
lemma 1, which states that S is an invertible function.

3. Let (U,Γ, C) be a confidence space with Γ(A) = x,Γ(B) = y, Γ(A|B) =
Γ(A) and Γ(B|A) = Γ(B) (exists according to independence). Then F (x, y) =
F (Γ(A),Γ(B)) = F (Γ(A|B),Γ(B)) = Γ(AB). Now AB ≤ A and AB ≤ B, thus
applying Order1 yields the result.

4. This can be derived by combining lemma 1 and lemma 3.

5. S is a surjective function. This can be seen by the following argument: Let x
be an arbitrary confidence value, then there is a confidence space (U,Γ, C) with
Γ(A) = x. Then S(Γ(¬A)) = Γ(¬(¬A)) = Γ(A) = x. Together with lemma 1 this
yields that S is a bijective function. Hence, S is a bijective and antitone (lemma
2) function, and such a function satisfies the stated property.

6. Assume there is Γ(⊥|A) > ⊥⊥. There is a Γ′ with Γ′(⊥′) = ⊥⊥ (by Order1 and
Order2). Applying Extensibility yields: Γ′′(⊥ ⊗ >′|A ⊗ >′) = Γ(⊥|A) > ⊥⊥ and
Γ′′(> ⊗ ⊥′|A ⊗ >′) = Γ′(⊥′) = ⊥⊥. But ⊥ ⊗ >′ = > ⊗ ⊥′ = ⊥′′. Thus we have a
contradiction, proving the lemma.

4.2 Extensions of Partially Ordered Structures

Here we establish two extendability results for partially ordered structures, which
hold in general and not only in the context of NC12.
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Group Theorem: Let (M,+, 0,≤) be a partially ordered, cancellative, commu-
tative monoid. Then M can be extended into a partially ordered, commutative
group.

Proof: This will be done by a classical algebraic construction, much like the
construction of Z from N. Define G = M ×M/ ∼, where ∼ is an equivalence
relation defined by:

(a, b) ∼ (c, d)⇔ a+ d = c+ b

Reflexivity and symmetry of this relation follow straightforward from the defini-
tion, but for transitivity we need associativity, commutativity, and the cancellation
property of +. Assume the relations:

(a, b) ∼ (c, d) and (c, d) ∼ (e, f)

According to the definition, this implies the equations:

a+ d = c+ b and c+ f = e+ d

These equations can be transformed to:

(a+ d) + f = (c+ b) + f and (c+ f) + b = (e+ d) + b

Now, using associativity and commutativity of +, it follows that

(c+ b) + f = (c+ f) + b

and therefore

(a+ d) + f = (e+ d) + b

Again, using associativity and commutativity, the last equation can be rewritten
into:

(a+ f) + d = (e+ b) + d
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Using the cancellation property to get rid of d yields:

a+ f = e+ b

which is equivalent to (a, b) ∼ (e, f), thus establishing transitivity of ∼.

Next we define an operation on G, denoted by ’+G’, which will be the extension
of + to a group:

(a, b) +G (c, d) = (a+ c, b+ d)

We now show that ∼ is a congruence relation, i.e., compatible with the algebraic
operation ’+G’:

(a, b) +G (c, d) = (a′, b′) +G (c′, d′), if (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′)

The operation ’+G’ is commutative, so it suffices to analyze the case where c = c′

and d = d′.

(a, b) ∼ (a′, b′) ⇒ a+ b′ = a′ + b ⇒ (a+ b′) + c = (a′ + b) + c

⇒ ((a+ b′) + c) + d = ((a′ + b) + c) + d

⇒ (a+ c) + (b′ + d) = (a′ + c) + (b+ d)

The last equation is derived by using the associativity and commutativity of +.
This equation is by definition equivalent to:

(a+ c, b+ d) ∼ (a′ + c, b′ + d)

which in turn implies according to the definition of +N :

(a, b) +G (c, d) ∼ (a′, b′) +G (c, d)
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The last equation states that the replacement of an argument of ’+G’ (the extension
of +) by an equivalent one yields an equivalent result, i.e., ’∼’ is a congruence
relation with regard to ’+G’.

After we have established that +G is a well-defined operation on G, we have to
prove that it has the group properties, i.e., associativity, existence of neutral ele-
ment, and the existence of inverse elements. Associativity of +G directly reduces
to the associativity of +:

((a, b) +G (c, d)) +G (e, f) = (a+ c+ e, b+ d+ f) = (a, b) +G ((c, d) +G (e, f))

and (0, 0) is a neutral element. Finally, (b, a) is an inverse of (a, b):

(a, b) +G (b, a) = (a+ b, b+ a) ∼ (0, 0)

Commutativity of +G follows directly from the commutativity of +, much like
associativity. We have now established that (G,+G, [0, 0]) forms a commutative
group. This closes the algebraic part of the group theorem. It remains to extend the
partial order of the monoid and prove the compatibility with the group operation
+G. We extend the partial order ≤ of M to a partial order ≤G on G by the
following definition:

[a, b] ≤G [c, d] ⇔ a+ d ≤ c+ b

That this is a well-defined relation can be seen in the same way as we have shown
the well-definedness of +G: just replace = by ≤ in the derivation, and it follows
that the relation ≤G does not depend on the specific element [a, b] representing
the equivalence class. Now that we know that ≤G is a well-defined relation on
G, we have to prove that it is a partial order, i.e., reflexive, transitive, and anti-
symmetric. Reflexivity and transitivity are analoguously shown to the reflexivity
and transitivity of ∼. It remains to establish the anti-symmetry:

[a, b] ≤G [c, d] and [c, d] ≤G [a, b] ⇒ [a, b] = [c, d]

This can be seen by translating the propositions about G back to propositions
about M :
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[a, b] ≤G [c, d] ⇒ a+ d ≤ c+ b, [c, d] ≤G [a, b] ⇒ c+ b ≤ a+ d

Because ≤ is a partial order on M it is an anti-symmetric relation, leading to:

a+ d = c+ b,

which is equivalent to [a, b] ∼ [c, d]. Hence ≤G is anti-symmetric, too.

Finally, we have to show that the partial order ≤G is compatible with the group
operation +G:

[a, b] ≤G [c, d] ⇒ [a, b] + [e, f ] ≤G [c, d] + [e, f ]

We prove this by translating the left-hand side into a proposition about M , then
transforming this proposition according to the properties of M , and finally trans-
late back to right-hand side proposition about G:

a+d ≤ c+b ⇒ a+d+e+f ≤ c+b+e+f ⇒ (a+e)+(d+f) ≤ (c+e)+(b+f)

⇒ [a+ e, b+ f ] ≤G [c+ e, d+ f ] ⇒ [a, b] + [e, f ] ≤G [c, d] + [e, f ]

This establishes the compatibility of the partial order ≤G with the group operation
+G, and thus finishes the proof of the group theorem.

The next extension result concerns the extension of semi-rings, i.e. rings where the
addition operation is only a monoid, into a ring, i.e., where the addition operation
is a group.

Semi-Ring Theorem: Let (R,+, ·, 0, 1,≤) be a partially ordered, sum-cancellative,
commutative semi-ring, which satisfies the following compatibility condition: if
a ≥ b, then there is a c with a = b + c. Then R can be extended into a partially
ordered, commutative ring.

Proof: The algebraic part of this theorem is a well-known construction of a ring
from a semiring, see, for example, theorem 8.7 in [HW96]. It remains to extend
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the partial order and prove its compatibility with the original partial order of the
semiring. The extended partial order is defined as follows:

[a, b] ≤R [c, d] ⇔ a+ d ≤ c+ b

The compatibility with addition can be established analoguously to the proof of
the compatibility of the extended partial order in the group theorem, i.e.:

a+d ≤ c+b ⇒ a+d+e+f ≤ c+b+e+f ⇒ (a+e)+(d+f) ≤ (c+e)+(b+f)

⇒ [a+ e, b+ f ] ≤R [c+ e, d+ f ] ⇒ [a, b] + [e, f ] ≤R [c, d] + [e, f ]

It remains to show the compatibility of the partial order with multiplication, i.e.:

[a, b] ≤R [c, d] and [e, f] ≥R [0, 0] ⇒ [e, f] · [a, b] ≤R [e, f] · [c, d]

Whenever [e, f ] ≥R [0, 0], there is a e′ ≥ 0 with [e, f ] ∼ [e′, 0]. This is ensured
by the compatibility condition. Because ∼ is a congruence relation with regard to
multiplication, we get:

[e, f ] · [a, b] = [e′, 0] · [a, b]

and

[e, f ] · [c, d] = [e′, 0] · [c, d]

Now starting from [a, b] ≤R [c, d], we get:

[a, b] ≤R [c, d] ⇒ a+ d ≤ c+ b ⇒ e′ · (a+ d) ≤ e′ · (c+ b)

⇒ e′ · a+ e′ · d ≤ e′ · c+ e′ · b ⇒ [e′ · a, e′ · b] ≤R [e′ · c, e′ · d]

⇒ [e′, 0] · [a, b] ≤R [e′, 0] · [c, d]

Thus we have compatibility of the extended partial order on the ring with the
extended multiplication, which completes the proof of the semiring theorem.
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4.3 Proper Confidence Structures

The proof of the ring theorem will be divided into two parts. First we introduce
an intermediate structure which we will call proper confidence structure, or PCS
for short. We then show that every model of NC12 is a PCS. A PCS is a natural
interface between lower and higher structural properties of confidence measures,
which can be useful in future investigations of alternative axiom systems.

Definition: A proper confidence space is a seven-tuple (C, F,G, S,≤,⊥⊥,>>),
where C is a partially ordered set with smallest value ⊥⊥ and largest value >>,
F : C × C → C, S : C → C, E = {(x, y) ∈ C × C|x ≤ S(y)} and G : E → C.
Moreover, F and G are symmetric and associative, F distributes over G, F and G
are increasing in their arguments and S is decreasing. Additionally, G(x,⊥⊥) = x,
F (⊥⊥, x) = ⊥⊥, F (x,>>) = x, S(S(x)) = x, and S(⊥⊥) = >>.

Theorem: All models of NC12 are proper confidence structures.

Proof: The proof consists of the following steps:

1. Existence of Functions F and S

2. F is associative, commutative and cancellative.

3. F can be extended to a group

4. Definition of Function G via F, S, representing disjunction.

5. Well-definedness of G.

6. F is distributive over G.

The first step is to show that axioms Not and And1 imply the existence of func-
tions S : C → C and F : C × C → C, where S relates the confidence value of a
proposition to the confidence value of its negation, and F transforms the confidence
value of two propositions to the confidence value of their conjunction.

Lemma There is a function S on the set C of confidence values, so that for all
confidence spaces (U,Γ) and all A,B ∈ U:

Γ(Ā|B) = S(Γ(A|B))

Proof: Let v ∈ C be a confidence value, so that there is a confidence space (U1,Γ1)
and A1 ∈ U1 with Γ1(A1) = v. Then define:
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S(v) = Γ1(Ā1)

This function is well-defined, because whenever there is another confidence space
(U2,Γ2) having v as value of the confidence measure Γ2, say Γ2(A2|B2) = v, then
axiom Not assures that Γ2(Ā2|B2) = Γ1(Ā1). That is, the value of S does not
depend on the specific choice of confidence space having v as a value. Additionally,
S is a total function by axiom Order2, which enforces that for every v ∈ C there
is at least one confidence space taking v as a value.

The analog will be proved for conjunction by introducing a binary function F on
C. Note that a proposition B and a conditional propostion A|B are related by F .

Lemma There is a binary function F on the set C of confidence values, so that
for all confidence spaces (U,Γ) and all A,B,C ∈ U:

Γ(AB|C) = F (Γ(A|BC),Γ(B|C))

Proof: According to the independence lemma, there is for all v, w ∈ C a confidence
space (U1,Γ1) with Γ1(A1|B1) = Γ1(A1) = v and Γ1(B1) = w. Define F as follows:

F (v, w) = Γ1(A1B1)

The well-definedness is implied by axiom And1, the value of F (v, w) does not
depend on the confidence space and events having v and w as confidence values.
The totality of F is given by the independence lemma, which works for all pairs
v, w ∈ C.

Lemma The function F is associative.

Proof: Let x, y, z ∈ C and (U,Γ) a confidence space with A,B,C ∈ U and
Γ(A|BC) = Γ(A) = x, Γ(B|C) = Γ(B) = y and Γ(C) = z. Such a confidence
measure always exists according to the independence lemma. Then it follows:

F (F (x, y), z) = F (F (Γ(A),Γ(B)),Γ(C)) = F (F (Γ(A|BC),Γ(B|C)),Γ(C)) =

F (Γ(AB|C),Γ(C)) = Γ(ABC) = F (Γ(A|BC),Γ(BC)) =
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F (Γ(A), F (Γ(B|C),Γ(C))) = F (Γ(A), F (Γ(B),Γ(C))) = F (x, F (y, z))

Lemma The function F is commutative.

Proof: Let x, y ∈ C and (U,Γ) a confidence space with A,B ∈ U and Γ(A|B) =
Γ(A) = x and Γ(B) = y. Again the independence lemma guarantees the existence
of such a confidence measure. Then it follows:

F (x, y) = F (Γ(A|B),Γ(B)) = Γ(AB) = Γ(BA) =

F (Γ(B|A),Γ(A)) = F (Γ(B),Γ(A)) = F (x, y).

Lemma The function F is cancellative.

Proof: Let x, y, a ∈ C and (U,Γ) a confidence space with A,B,C,D ∈ U and
Γ(A|C) = Γ(A) = x, Γ(B|D) = Γ(B) = y, and Γ(C) = Γ(D) = a, again using the
independence lemma. Now:

F (x, a) = Γ(AC) and F (y, a) = Γ(BD).

Thus, F (x, a) = F (y, a) implies Γ(AC) = Γ(BD). Invoking And2, we get Γ(A|C) =
Γ(B|D), i.e. x = y.

We now have established that (C\{⊥⊥}, F,>>,≤) is a partially ordered, cancellative,
commutative monoid, so we can invoke the group theorem to extend C into a
partially ordered group. The analogy to the classical structures is the extension of
the (0, 1]-interval of Q with multiplication as the single operation to all positive
rational numbers. We now introduce a new operation which will turn out to be
the analogue of addition on Q.

We now define a partial function G on {(x, y)|x, y ∈ C, x ≤ S(y), which later can
be seen to be connected to disjunctions of propositions. Using S, F , and F−1, the
function G is defined as follows:

G(x, y) = S(F (S(F (x, F−1(S(y)))), S(y)))

In order to illustrate this definition, we note that G essentially has to solve the
problem to represent addition with the functions x∗y, 1−x, and 1/x. Using these
functions, G becomes:
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1− (1− x
1−y )(1− y)

which reduces to addition.

First we have to show that this is a well-defined function. For this, we must
show that on the domain of G the expression F (x, F−1(S(y))) is in C, because the
S-function is still only defined on C, and not on the group extension of C.

Lemma: ∀x, y ∈ C : x ≤ S(y) ⇒ F (x, F−1(S(y))) ∈ C.

Proof: With Order2 and x ≤ S(y) it follows that there is a confidence space
(U,Γ, C with A,B ∈ U, A ≤ B, Γ(A) = x, and Γ(B) = S(y). Now, because of
A ≤ B, it holds that Γ(AB) = Γ(A) = x. Let Γ(A|B) = z, which is uniquely
determined according to And2. Then we have:

x = F (z, S(y))⇔ z = F (x, F−1(S(y)))

z is in the range of a confidence measure (z = Γ(A|B)), thus z ∈ C, which proves
the lemma.

Lemma: F distributes over G: F (x,G(y, z)) = G(F (x, y), F (x, z)), ∀ y ≤ S(z).

Proof: Let (U,Γ1, C) be a confidence space with Γ1(B) = y, Γ1(C
′) = S(z), and

B ≤ C ′ (exists according to Order2). Let C = ¬C ′, then BC = ⊥. Further, let
(U,Γ2, C) be a confidence space with Γ2(A) = x and (U,Γ3, C) a confidence space
with Γ3(A|B) = Γ3(A) = x, Γ3(A|C) = Γ3(A), and Γ3(A|B ∨ C) = Γ3(A) (exists
according to Extensibility). Then we get the following chain of equations:

F (x,G(y, z)) = F (Γ3(A), G(Γ3(B),Γ3(C))) = F (Γ3(A),Γ3(B ∨ C))

= F (Γ3(A|B ∨ C),Γ3(B ∨ C)) = Γ3(A(B ∨ C))

= Γ3(AB ∨ AC) = G(Γ3(AB),Γ3(AC))

The last equation holds because of BC = ⊥, i.e., ABAC = ⊥, too.

G(F (Γ3(A|B),Γ3(B)), F (Γ3(A|C),Γ3(C)))
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= G(F (Γ3(A),Γ3(B)), F (Γ3(A),Γ3(C)))

= G(F (x, y), F (x, z))

We now have established the algebraic properties of a proper confidence structure.
It remains to show that the order properties of a PCS are satisfied, too.

Lemma: F is increasing in its arguments if the other argument is not ⊥⊥.

Proof: First we show that F is non-decreasing. Let x, y, z ∈ C and y ≤ z. Order2
implies the existence of confidence spaces (U1,Γ1, C), (U2,Γ2, C) with A,B ∈ U1,
A ≤ B, Γ1(A) = y,Γ1(B) = z and C ∈ U with Γ2(C) = x. By combining both
confidence spaces using the extensibility axiom into a confidence space (U3,Γ3, C)
we can conclude as follows:

F (x, y) = F (Γ3(C),Γ3(A)) = F (Γ3(C|A),Γ3(A)) = Γ(CA) ≤ Γ(CB) =

= F (Γ3(C|B),Γ3(B)) = F (Γ3(C),Γ3(B)) = F (x, z)

The step Γ(CA) ≤ Γ(CB) uses axiom Order1, which is possible because A ≤ B
implies CA ≤ CB. The strictness now follows from axiom And2 for all x 6= ⊥⊥.

Lemma: G is increasing.

Proof: Let x, y, z ∈ C with x ≤ S(y), x ≤ S(y), and y ≤ z. Again, using axioms
Order2 and Extensibility, there is a confidence space (U,Γ, C) with CA = ⊥, CB =
⊥, A ≤ B. It follows:

G(x, y) = G(Γ(C),Γ(A)) = Γ(C ∨ A) ≤ Γ(C ∨B) = G(Γ(C),Γ(B)) = G(x, z)

Strictness then follows from the strictness of S and F .

Lemma: S is decreasing.

Proof: See basic property 2.

This completes the proof of the PCS property.
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4.4 Ring Theorem

All models of the axiom system NC12 can be endowed with a ring structure1, and
the confidence measures satisfy the analogons of the Kolmogorov axioms wrt. the
ring operations. This is stated precisely in the following theorem:

Ring Theorem: The domain of confidence values C of a confidence universe
satisfying the axiom system NC12 can be embedded into a partially ordered com-
mutative ring (Ĉ, 0, 1,⊕,�,≤). Let ·̂ : C → Ĉ be the embedding map, then the
following holds:

⊥̂⊥ = 0 , >̂> = 1 , ∀v, w ∈ C : v ≤ w ⇔ v̂ ≤ ŵ .

Furthermore, all confidence measures Γ of the confidence universe satisfy:

Γ̂(>) = 1 , (1)

Γ̂(A ∨B) = Γ̂(A)⊕ Γ̂(B) , if AB = ⊥ , (2)

Γ̂(A ∧B) = Γ̂(A|B)� Γ̂(B) . (3)

The proof of the ring theorem will be conducted along the following lines:

1. G can be extended into a total function.

2. The extended G is cancellative.

3. F , G and ≤ build a partially ordered, cancellative, commutative semiring.

4. Application of the the semi-ring theorem leads to a partially ordered, com-
mutative ring.

4.4.1 Extension of G into a total function

We start by showing some basic properties of G with regard to its domain of
definition (in order to increase readability we replace G by an infix + and F by an
infix ·):

1possibly containing zero divisors, see section 6.3.

29



Lemma R1: If a1 + a2 is defined and a1 ≥ b1, a2 ≥ b2, then b1 + b2 is defined.

Proof: b1 ≤ a1 ≤ S(a2) ≤ S(b2), where for the last inequality we used basic
property 2.

Lemma R2: If e 6= 0, 1 and f = e · S(e), then f · a+ f · b is defined.

Proof: f = e · S(e) ≤ S(e) ≤ S(e · S(e)) = S(f). Here we used basic properties 2
and 3 of F and S. Thus f + f is defined. With basic property 3 we get f · a ≤ f
and f · b ≤ f . Hence lemma R1 is applicable, proving that f · a+ f · b is defined.

Lemma R3: For every sequence (ai)
n
1 there is a non-zero cn depending only on n

such that cn · a1 + cn · a2 + ...+ cn · an is defined.

Proof: For any non-trivial confidence value e, choose c = e · S(e) and cn = cld(n).
Use lemma R2 inductively on half sequences.

Currently, G is only a partial function. Lemma R3 can now be used to extend G
into a total function by multiplying a pair of confidence values, which are not in
the domain E of G by a “small” value, shifting the pair of values into the domain
of G. After the application of G to the transformed pair of confidence values, the
result is multiplied by the inverse of the “small” value, giving the final result. Note
that in the extended structure C1 there are multiplicative inverses for all elements,
because by construction C1 is a group wrt. F .

Definition: G will be extended to C1 by the following defintion: (a, b) + (c, d) =
(f ·a ·d+f ·c ·b, f ·b ·d), choosing f according to lemma R3 so that the expressions
are defined.

The definition is analogue to the definition of the sum of two rational numbers,
with the only difference that both numerator and denominator are multiplied by f
in order to assure the well-definedness of the sum in the numerator. But the final
result will not depend on the specific f , because it cancels out.
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4.4.2 Cancellation property of G

We now show that the extended G has the cancellation property, which ensures
that we can define additive inverses:

Lemma R4 (cancellation property of G): For all x, y, z ∈ C1 with y ≤ S(x) and
z ≤ S(x) it holds:

y + x = z + x ⇒ y = z and x+ y = x+ z ⇒ y = z

Proof: First we show the cancellation property of G on C whenever both sides
of the equation are defined. The cancellation property of the partial G can be
reduced to the corresponding properties of S and F (assuming x 6= >>). We start
with proving right cancellation:

y + x = z + x

⇔ (by defintion of G)

S(F (S(F (y, F−1(S(x)))), S(x))) = S(F (S(F (z, F−1(S(x)))), S(x)))

⇔ (by injectivity of S)

F (S(F (y, F−1(S(x)))), S(x)) = F (S(F (z, F−1(S(x)))), S(x))

⇔ (by cancellation property of F , S(x) 6= ⊥⊥)

S(F (y, F−1(S(x)))) = S(F (z, F−1(S(x))))

⇔ F (y, F−1(S(x)) = F (z, F−1(S(x))

⇔ y = z

The case x = >> enforces both y, z to be ⊥⊥ by the inequalities y ≤ S(x) and
z ≤ S(x), thus yielding the cancellation property in this case, too.

Left cancellations then follows from the symmetry of G.

Let us now analyse the equation (y1, y2) + (x1, x2) = (z1, z2) + (x1, x2) on C1.
According to the definition this is equivalent to

(f · y1 · x2 + f · x1 · y2, f · y2 · x2) = (f · z1 · x2 + f · x1 · z2, f · z2 · x2)

(f · y1 · x2 + f · x1 · y2) · (f · z2 · x2)) = (f · z1 · x2 + f · x1 · z2) · (f · y2 · x2)
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f 2 · x22 · y1 · z2 + f 2 · x1 · x2 · y2 · z2 = f 2 · x22 · y2 · z1 + f 2 · x1 · x2 · y2 · z2

Using the cancellation property of ’+’ and ’·’, we get:

y1 · z2 = z1 · y2 , which is equivalent to (y1, y2) = (z1, z2) .

4.4.3 Semiring property of G and F

A semiring is similar to a ring, but without the requirement that each element
must have an additive inverse. We have already shown that F and G are monoids
on C1. It remains to show that F distributes over G on C1.

Lemma R5: For all x, y, z ∈ C1 it holds: (x+ y) · z = x · z + y · z.

Proof: Let us (u1, u2) set equal to the right side of the equation of the lemma.
Then we have:

(u1, u2) = (x1 · z1, x2 · z2) + (y1 · z1, y2 · z2)

u1 · x2 · y2 · z2 = u2 · x1 · z1 · y2 + u2 · y1 · z1 · x2

u1 · x2 · y2 · z2 = u2 · z1 · (x1 · y2 + y1 · x2)

If we set (u1, u2) equal to the left side of the equation of the lemma, we get:

(u1 · z2, u2 · z1) = (x1 · y2 + y1 · x2, x2 · y2)

u1 · x2 · y2 · z2 = u2 · z1 · (x1 · y2 + y1 · x2)

This establishes distributivity on C1.
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4.4.4 Extension of G and F into a ring

We now can finish the proof of the ring theorem by invoking the semi-ring theorem.
(C1,+, ·,⊥⊥,>>,≤) is a partially ordered, sum-cancellative, commutative semi-ring
and Order2 implies the compatibility condition. According to the semi-ring the-
orem we can extend such a semi-ring into a partially ordered, commutative ring.
This finishes the proof of the ring theorem.

The ring theorem can be seen as a generalization of the Kolmogorov axioms of
probability theory, as it restates these axioms, only the algebraic operations over
the reals are replaced with the corresponding ring operations. Thus it follows im-
mediately that classical probability theory is a model of the axiom system NC12.
But there are more general models of NC12, containing uncomparable or infinitesi-
mal elements. Hence the ring theorem characterizes not probability theory alone as
the algebra of uncertainty, but a set of more general models containing probability
theory as a special case. This leads to the interesting question whether there is a
universally embedding confidence ring, i.e., a confidence ring containing all other
confidence rings as substructures. If such a universally embedding confidence ring
exists, then the [0,1]-interval of this ring would be the most general domain of
uncertainty values, and could be, at least for theoretical considerations, regarded
as the “default model” of the axiom system NC12. In fact, in the case of totally
ordered fields such a universally embedding structure exists and is called the field
of surreal numbers No. It was introduced by J. Conway and D. Knuth in the 1970s
[Con76, Knu74, Gon86]. However, the question of the existence of a universally
embedding confidence ring is open to future research.

4.5 Probability theory as a model of NC12

Here we discuss in detail that classical probability theory, i.e. the theory that uses
the real [0,1]-interval as valuation domain and the Kolmogorov axioms in order
to define the properties of probability measures, is a model of the axiom system
NC12:

Not

If P1(A) = P2(B) = α, then by additivity we have P1(Ā) = 1− α = P2(B̄).
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And1

If for two probability measures we have P1(A1|B1) = P2(A2|B2), i.e., these values
are defined and thus P1(B1) = P2(B2) 6= 0, then by applying the definition of
conditional probability we get P1(A1B1) = P2(A2B2).

And2

If for two probability measures we have P1(A1B1) = P2(A2B2), and P1(B1) =
P2(B2) 6= 0, then by applying the defintion of conditional probability we get
P1(A1|B1) = P2(A2|B2).

Order1

Whenever A ≥ B, we have that A \ B ∪ B = A. Then additivity implies P (A) =
P (A \B ∪B) = P (A \B) + P (B) ≥ P (B).

Order2

Take as Boolean algebra the algebra with three elementary events A1, A2, A3 (which
is a σ-algebra, too), and define for arbitrary α, β ∈ [0, 1] with α ≥ β:

P (A1) = β, P (A2) = α− β, P (A3) = 1− α.

This defines a probability measure having the events A := A1∪A2 ≥ B := A1 and
P (A) = α, P (B) = β.

Extensibility

This axiom can be interpreted as the product measure theorem of probability
theory: for each pair of probability spaces (Ω1,A1, P1) and (Ω2,A2, P2) there is a
product space (Ω1 × Ω2,A1 ⊗A2, P1 ⊗ P2) with:

(P1 ⊗ P2)(A1 × A2) = P1(A1) · P2(A2),

for all A1 ∈ A1, A2 ∈ A2. This product space satisfies the conditions of the
Extensibility axiom.

Background

It is a basic property of conditional probability measures to satisfy the Kolmogorov
axioms when interpreted as unconditional probability measures, i.e., the uncondi-
tional measure P1 defined as P1(·) = P0(·|A) satisfies the Kolmogorov axioms.
Thus the Background axiom is valid in probability theory.
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Hence all seven axioms of NC12 are valid in probability theory, so probability theory
is a model of NC12. This also implies that Bayesian inference is an admissible
uncertainty calculus, it just does not use the full generality, like uncomparable or
infinitesimal elements, allowed by NC12.

4.6 Total Order Theorem

An interesting consequence of the ring theorem arises when we constrain the partial
order on the confidence domain to have the lattice property (i.e., for each pair of
elements there exist join and meet):

Total Order Theorem: If the axiom system NC12 is extended by the requirement
that the partial order of the confidence values should have the lattice property, then
the confidence values are totally ordered.

Proof: We first show some general properties of lattice-ordered commutative
groups:

(LOG1) −(x ∧ y) = (−x ∨ −y)

Let z = x ∧ y, i.e., z ≤ x and z ≤ y. Thus −z ≥ −x and −z ≥ −y. So −z is an
upper bound of −x and −y, i.e., −z ≥ −x ∨ −y. Assume that there is a smaller
upper bound u of −x and −y, i.e., −z > u ≥ −x ∨ −y. Then z < −u < x ∧ y, in
contradiction to the greatest lower bound property of z. This proves that there is
no smaller upper bound for −x and −y, i.e., −z = −x ∨ −y.

(LOG2) −(x ∨ y) = (−x ∧ −y)

This is the dual property and can be proven in the same way by reversing the
inequalities.

(LOG3) (x ∧ y) + z = (x+ z) ∧ (y + z)

Let u = x∧y, i.e., u ≤ x and u ≤ y. It follows that u+z ≤ x+z and u+z ≤ y+z.
So u + z ≤ (x + z) ∧ (y + z). Assuming that there is a v greater than u + z, but
still a lower bound for x + z and y + z would imply that v − z is a greater lower
bound of x and y than u. This contradiction proves the proposition.

(LOG4) (x ∨ y) + z = (x+ z) ∨ (y + z)

This is the dual property and can be proven in the same way by reversing the
inequalities.

(LOG5) x+ y = (x ∧ y) + (x ∨ y)
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This proposition can be proved using LOG1 and LOG4:

x+ y = x+ y+ (x∧ y)− (x∧ y) = x+ y+ (x∧ y) + (−x∨−y) = (x∧ y) + (x∨ y)

The first step is adding a zero, the second step applies LOG1, and in the last step,
beside applying LOG4, the commutativity of ∧ is used.

Using these properties, one can show that for a lattice-ordered ring we have

(x− (x ∧ y) · (y − (x ∧ y)) = 0

This can be shown by the following sequence of equations:

(x− (x ∧ y) · (y − (x ∧ y)) = x · y − x · (x ∧ y)− y · (x ∧ y) + (x ∧ y)2 =

x · y − (x+ y) · (x ∧ y) + (x ∧ y)2 = x · y − ((x ∧ y) + (x ∨ y)) · (x ∧ y) + (x ∧ y)2

x · y − (x ∨ y) · (x ∧ y) = x · y − x · y = 0

The equality of (x ∨ y) · (x ∧ y) and x · y follows from LOG5 by noting that
the (0, 1]-interval of a confidence ring is part of a subgroup of the multiplicative
structure of the confidence ring, shown in the proof of the ring theorem. Hence,
the product together with ∧ and ∨ forms a lattice-ordered group, and therefore
LOG5 is applicable.

Now assume that x, y are from the (0, 1]-interval of our confidence ring and are
not comparable, i.e. x 6≤ y and y 6≤ x. Then the factors in the above equation
are non-zero, but their product is zero, i.e., they are zero-divisors. But according
to And2, there cannot be zero-divisors in the (0, 1)-interval. This contradiction
proves that the assumption that x and y are not comparable is false, hence the
order is total.

This is surprising insofar that lattice order in general is far from total order, but in
the context of the above axioms, this weak order property has a strong implication.
This result can be summarized as a trilemma: the three properties of partial order,
lattice-order, and field structure of the domain of confidence values cannot be
satisfied all at the same time. In future investigations one has to decide which of
these three properties is most dispensable.
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5 Uncertainty Decomposition

If a confidence ring (c-ring, for short) contains a greatest totally ordered subfield,
we will call this substructure the “backbone” of the c-ring, and will say it has
the backbone property (BBP). The elements of such a backbone can be seen as
numerical entities, because they are all totally ordered superfields of Q.

Although it is an open question if all c-rings have the BBP, there is an important
class of c-rings, the subdirect sums of totally ordered fields, which satisfy BBP.
Therefore the discussion of c-rings with BBP covers at least an important part of
all models of NC12.

Given the three properties of a c-ring defined below it can be shown that every
element of the [0, 1]-interval can be decomposed into a numerical part and an
“interaction” part:

c = b+ r · a

where c is an arbitrary element of the [0, 1]-interval, b and r are elements of the
backbone and a is a “pure interaction element” of the [0, 1]-interval, that is, the
only bounds by backbone elements are 0 from below and 1 from above.

In order to specify the conditions which entail such a decomposition, we need the
following definitions:

Definition: Let C be a c-ring with backbone B. A cut of B is a pair (B1, B2) of
subsets of B with:

1. B1 ∩B2 = ∅

2. B1 ∪B2 = B

3. ∀x ∈ B1, y ∈ B2 : x < y

Definition: A c-ring C having the BBP is auto-complete, if every self-generated
cut, i.e., a cut induced by an element of C, has a cut number, i.e., an element of
B which generates the given cut.

Definition: A c-ring C is order-continuous, if for all U ⊂ C and x ∈ C the
following holds:

If U ≤ x, then Ū ≤ x,
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where Ū is the closure of U wrt. the topology induced by all ε-balls, ε any backbone
element greater than 0. In this context, the backbone can be seen as the range of
a generalized metric, which then is used to induce a topology in the usual way.

The three properties of a c-ring:

• BBP

• auto-completeness

• order-continuity

then entail the decomposition of a general uncertainty value.

This decomposition result can be interpreted in the following way: a general un-
certainty value can be decomposed into a numerical interval ([b, b + r]) and an
interaction component a. If one neglects the interaction information, this implies
that uncertainty in general can be represented by a numerical interval. This can
be used as an argument to propose the use of numerical intervals in the commu-
nication of uncertainty. Especially public discussions about forecasts and risks
could benefit from a sensible use of intervals, which communicate the estimated
reliability of forecasts in an intuitive manner and thus would be very helpful in the
decision making process.

Figure 3 shows how a general element c of the [0, 1]-interval can be thought to be
bounded by elements c∗ and c∗ from the backbone from below and from above.

Uncertainty Decomposition Theorem: If a confidence ring has the BBP, is
auto-complete and order-continuous, then all non-backbone elements c of the [0, 1]-
interval can be uniquely represented as:

c = b+ r · a

where b and r are elements of the backbone and a is an interaction element.

Proof: Let C∗ be the lower induced cut and C∗ be the upper induced cut generated
by c, i.e.:

C∗ = (C∗,1, C∗,2) = ({b ∈ B[0,1]|b < c}, B[0,1]\C∗,1)

and
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Figure 3: Decomposition of a general uncertainty element.

C∗ = (C∗1 , C
∗
2) = (B[0,1]\C∗2 , {b ∈ B[0,1]|b > c})

The auto-completeness of the confidence ring then ensures that these cuts can be
generated by elements of the backbone. Let the corresponding cut numbers be
denoted c∗ and c∗.

First we will show that c∗ > c∗. The cut numbers lie in the closures of the
cut sets, because otherwise there would be an ε-environment of a cut number
containing no element of the cut sets. But such a “hole” between the cut sets
would violate property 2 of a cut. Order-continuity then results in the following
chain of inequalities:

c∗ ≤ c ≤ c∗

This immediately yields c∗ ≥ c∗. If c∗ = c∗, then also c = c∗, i.e. c would be a
backbone element, contrary to the assumption in the theorem.

Now let us define a new element of the confidence ring:

a = (c− c∗)/(c∗ − c∗)
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The backbone is a field, and thus the difference c∗−c∗ is again in the backbone and
has an inverse, because the above shown inequality c∗ > c∗ implies that c∗−c∗ 6= 0.
That is, a is well-defined.

Next we will show that a is an interaction element. Let us assume that there is a
backbone element d > 0 and a ≥ d. Then:

(c− c∗)/(c∗ − c∗) ≥ d

c ≥ c∗ + d · (c∗ − c∗)

If this inequality would be valid, then c∗ would not be the lower cut number of c.
Analogously one can show that only 1 is an upper bound from the [0, 1]-backbone
interval for a. Hence a is an interaction element.

Now define b = c∗ and r = c∗ − c∗, and the existence of a decomposition follows.

In order to show that the decomposition is unique, we first derive that the lower cut
number b = c∗ is unique. For this, let us assume that there are two decompositions
of c:

c = b1 + r1 · a1

and

c = b2 + r2 · a2.

By definition, b1 has the property:

b ≤ c, b ∈ B[0,1] ⇒ b ≤ b1

The same holds for b2. Thus b2 ≤ b1 and b1 ≤ b2. Hence b1 = b2.

The same argument works for the upper cut number c∗, which implies that r =
c∗ − c∗ is unique, too. We now have the equation:

b+ r · a1 = b+ r · a2.
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By subtracting b and dividing by r (remember, that r > 0 and all non-zero elements
of the backbone are invertible), we finally get:

a1 = a2,

which establishes the uniqueness of the decomposition.

6 The Lineage of NC12

The above approach of axiomatizing uncertainty measures extends a line of think-
ing started by R. T. Cox in 1946 2. In [Cox46], based on axioms which should
hold for all uncertainty measures, Cox derived a theorem stating that uncertainty
measures are essentially probability measures, although his axioms are very differ-
ent from the axioms of probability theory. A recent exposition of his result can be
found in [Jay03].

The application of probability theory to the problem of inductive logic is known as
Bayesian inference. Despite its intuitive appeal and many successful applications, it
was never considered as a solution to the problem of induction because of technical
and philosophical problems. In fact, the 20th century witnessed a strong rejection
of probability theory as a theory for induction. Probability theory was developed to
describe the randomness of observable events, not the plausibility of unobservable
hypotheses. The randomness of events can be seen as an objective property of a
physical system, whereas the plausibility of hypotheses is intrinsically subjective,
depending on the knowledge of an “observer”.

The approach used by Cox was one of the first attempts to justify the use of prob-
abilities as a representation of uncertainty by directly axiomatizing the intuition
on uncertainty measures and then deriving that uncertainty measures have the
same mathematical structure as probability measures. This was a surprising re-
sult, given the fact that Cox’s axioms look totally different from the Kolmogorov
axioms of probability theory. But despite its new and far reaching conclusions,
Cox’s theorem was not widely acknowledged. This can be attributed to at least
two factors: first, it became clear that Cox’s derivation of his theorem was not

2Glenn Shafer made me aware that a similar approach was already introduced by Sergei Bern-
stein in 1917, see [SV06] and [Ber17].
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complete. The assumptions he made were not sufficient to reach the conclusion in
its full generality. This was noted by several authors, and J. Halpern showed in
detail where Cox’s proof failed by constructing a counterexample in [Hal99]. It was
not before 1994 that J.B. Paris completed Cox’s proof by introducing a new axiom
[Par94]. This axiom closes the holes in Cox’s proof, but is very technical in nature.
Thus it is not acceptable as an axiom which should hold for all reasonable uncer-
tainty measures. This leads to the second factor contributing to the slow adoption
of Cox’s result: there is at least one axiom which is too strong to be considered as a
general property of uncertainty measures, yet is inherently necessary for the proof
approach adopted by Cox. This axiom is the assumption that uncertainty can be
measured by one real number. This is a strong structural assumption, implying
that the uncertainty values are totally ordered. This prevents, for example, the
applicability of Cox’s theorem to calculi like Dempster-Shafer theory, which uses
two real numbers for the representation of uncertainty.

Additionally, Cox assumes differentiability of functions representing logical con-
nectives. Taken together, these assumptions prevented the applicability of Cox’s
theorem to calculi like Dempster-Shafer theory, which uses two real numbers for
the representation of uncertainty, or fuzzy logic, which uses non-differentiable op-
erations as logical connectives.

The remaining question after the result of J. B. Paris is the following: are there
extensions or modifications of the Cox axioms, which are justifiable as general
properties of uncertainty measures and which imply a result essentially similar to
Cox’s theorem? One important step in this direction was taken by S. Arnborg and
G. Sjödin. They replaced the axiom introduced by J.B. Paris by a more intuitive
statement which they called “Refinability axiom”. Furthermore, they dropped
the requirement that uncertainty values are real numbers. By this step, they
transformed the Cox approach to a genuine algebraic approach, constructing the
structure of the domain of uncertainty values and not assuming it. But in order to
get the result they wanted, they introduced a total of 16 axioms (when one counts
every discernible requirement they formulate as a separate axiom, as we do for our
core system), with different degrees of foundational justifiability. Additionally, at
a crucial step in their proof they introduce a total order assumption for the domain
of uncertainty values, thus restricting the range of their result in a fundamental
way.

This was the situation when we entered the development, seeing that Arnborg and
Sjödin made a crucial step in the amelioration of the original Cox’s approach, but
still leaving some major issues open, which have blocked the general applicability of
their result. Accordingly, our goal was the following: to devise an axiom system as
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minimal as possible, with as weak and as general properties as possible, especially
to drop the total order assumption, but still be able to derive a Cox-style result.

In the next section we discuss in detail the evolution of axiom systems which have
led to the introduction of NC12.

6.1 The Axiom System of Cox

1. C ⊆ R (i.e., confidence values are real numbers)

2. There is a function F : Γ(AB|C) = F (Γ(A|BC),Γ(B|C)).

3. There is a function S: Γ(¬A|B) = S(Γ(A|B)).

4. F , S are twice differentiable.

Cox shows that conditional confidence measures satisfying these axioms are rescal-
able to probability measures, but his axioms are insufficient to show the full result.
This can be seen by analyzing an important method in the proof of Cox, a method
one can call “transfer principle” and which is used to transport structure from the
Boolean algebra of propositions to the domain of confidence values (in Cox’s case
the real numbers). But this principle can only be applied if for a given relation on
the confidence domain there are a confidence measure and preimages of confidence
values which satisfy certain constraints. An example is the Associativity equation
for F , which can be reduced to the associativity of the conjunction operator of
the Boolean algebra, but only if one finds enough independent propositions (see
the proof of the associativity of F ). Here Cox just assumes that such constrained
triples always exist, but that is not ensured by his axioms and indeed one can
construct counterexamples, where associativity for F fails. This was first done by
J. Halpern in [Hal99]. In order to facilitate the understanding of the innovations
which address the problem of missing preimages in the axiom system of Paris, of
Arnborg-Sjödin, and NC12, we will now have a closer look at the counterexample
constructed by Halpern.

6.1.1 The counterexample of Halpern

Halpern states a theorem which says that there are structures satisfying the axioms
of Cox, but F fails to be associative. He proves this by constructing a counterex-
ample, thus showing that Cox’s result can not be fixed without a modification of
the axiom system.
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Theorem: There is a function Bel0, a finite domain W , and functions S, F , and
G satisfying Cox’s axioms such that

1. Bel0(V |U) ∈ [0, 1] for U 6= ∅

2. S(x) = 1− x

3. G(x, y) = x+ y

4. F is infinitely differentiable, nondecreasing in each argument in [0, 1]2, and
strictly increasing in each argument in (0, 1]2. Moreover, F is commutative,
F (x, 0) = F (0, x) = 0, and F (x, 1) = F (1, x) = x.

However, there is no one-to-one function g : [0, 1]→ [0, 1] satisfying g(Bel0(V |U)) ·
g(Bel0(U)) = g(Bel0(V U)), if U 6= ∅.

The proof uses a domain with 12 elements, and defines a confidence measure by
setting specific values to the elementary events of the finite domain W in a way that
the conditions of the theorem are satisfied. However, F is not associative, and the
reason is that the finite domain W does not provide enough independent elements
in order to apply the transfer principle to all triples of confidence elements, i.e., the
triple of confidence values which violates the associativity of F has no preimage of
elements in W satisfying the independence constraint. In this specific sense one
can say that the world W is just too small.

In fact, the following axiom systems try to fix this problem by ensuring that there
are “large enough” domains (Paris, Arnborg-Sjödin) or by introducing a “multi-
world” framework (NC12), which ensures that there are always enough preimages
for constrained triples of confidence values. Principles ensuring such a richness of
domains of interest are known as “plenitude principles”, occuring also in different
areas of philosophy, especially in the context of ontological considerations.

The plenitude principle used by J. Paris is his axiom 5, which directly states that
there always will be preimages of confidence triples satisfying certain constraints.
This leads to a necessarily infinite, even uncountable, proposition algebra, which
is not appealing from a computer science point of view.

Arnborg and Sjödin address this problem by their “Refinability axiom”, which in
a sense states that proposition algebras can be extended in a certain way, making
the world “larger”.
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In NC12 the plenitude principle is embodied in the Extensibility axiom, which
states that one can always combine smaller worlds into larger ones. The indepen-
dence lemma as a direct consequence of the Extensibility axiom then ensures the
existence of enough preimages for constrained triples.

So one can see that the core of closing the hole in Cox’s proof is to provide a rich
enough universe (or “multiverse”) of propositions which enables the application
of the transfer principle in all relevant cases. The only difference of the following
axiom systems in this regard is the degree of “naturalness” or “justifiability” of
the introduced plenitude principles.

6.2 The Axiom System of Paris

In [Par94] an axiom system is introduced which is based on Cox’s approach, but
makes the implicit assumptions of Cox’s proof explicit.

1. C = [0, 1]R ([0,1]-interval of the real numbers)

2. If A ≤ B (i.e., AB = A), then Γ(B|A) = 1 and Γ(¬B|A) = 0

3. Γ(AB|C) = F (Γ(A|BC),Γ(B|C)) for some continuous function
F which is strictly increasing (in both arguments) on (0, 1]2.

4. Γ(¬A|B) = S(Γ(A|B)) for some decreasing function S.

5. For any 0 ≤ α, β, γ ≤ 1 and ε > 0 there are A1, A2, A3, A4 with
A1A2A3 consistent such that each of

|Γ(A4|A1A2A3)− α|, |Γ(A3|A1A2)− β|, |Γ(A2|A1)− γ|

is less than ε.

This last axiom, along with the additional properties of F and S, fills the hole in
the proof of Cox, but is hardly intuitive.

Paris-Cox Theorem

Given these axioms, there is a continuous, strictly increasing, surjective function
g : [0, 1]→ [0, 1] such that Γ̂ = g ◦ Γ satisfies

Γ̂(>|·) = 1

Γ̂(A ∨B|C) = Γ̂(A|C) + Γ̂(B|C) if AB = ⊥

Γ̂(AB|C) = Γ̂(A|BC) · Γ̂(B|C)
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6.3 The Axiom System of Arnborg and Sjödin

Arnborg and Sjödin replace the fifth axiom of Paris by a more intuitive “Refin-
ability axiom”, which consists of three statements:

1. For every confidence space (U,Γ, C), it must be possible to introduce a new
subcase B of a non-false proposition A with confidence value v given to
Γ(B|A).

2. If two new subcases B and B′ of a proposition A are defined, they can
be specified to be independent, i.e., Γ(B|B′A) = Γ(B|A) and Γ(B′|BA) =
Γ(B′|A).

3. For two confidence values v, w such that v < S(w), it should be possible
to define two new subcases C,C ′ of any non-false proposition A such that
v = Γ(C|A), w = Γ(C ′|A) and Γ(CC ′|A) = ⊥⊥.

Arnborg and Sjödin introduce functions F and S like Cox, but additionally a
partial function G (only defined for confidence values v, w with v ≤ S(w)) such
that:

Γ(A ∨B|C) = G(Γ(A|C),Γ(B − A|C)).

Furthermore, in a later part of their paper, they introduce a total order assumption
for the domain of confidence values. Their other axioms are very similar to the
axioms of Paris, but they take the important step to drop the real value assumption
and derive the algebraic structure of the domain of confidence values from their
axioms.

Their main result is the following: given their axioms, the domain of confidence val-
ues can be embedded in a totally ordered field, where multiplication and addition
are extensions of F and G. Analyzing their proof, we find that the construction
of a field from a ring will fail if one does not assume a total order on C. In lemma
13 of [AS01] they state that the ring they have constructed is a totally ordered
integral domain, i.e. a ring without zero divisors (an example of zero divisors in a
function ring is depicted in figure 4). Then they use a theorem from S. MacLane
and G. Birkhoff in [MB67] which states that every totally ordered integral domain
can be embedded in a totally ordered field. But this will not work in the case of
partial order because without the total order assumption one cannot prove that
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Figure 4: Zero divisors in a function ring: f 6≡ 0, g 6≡ 0, f · g ≡ 0.

the constructed ring will not contain zero divisors. So, lemma 13 of [AS01] can-
not be transferred to the partial order case, which blocks the application of the
MacLane-Birkhoff theorem. This is an interesting example of the interplay between
order properties and algebraic properties: a total order assumption has strong al-
gebraic implications, while partial order has not. Accordingly, order properties
and algebraic properties cannot, as one might have hoped, be treated separately.

7 Relations to existing Uncertainty Calculi

Today, there exist many approaches for dealing with uncertainty, for example
lower probabilities, which have only partially ordered uncertainty values or non-
monotonic logic, which can be interpreted as using infinitesimal probabilities. In
the following, we try to analyze these calculi in the light of our results.

7.1 Lower Probabilities

The problem of dealing with “imprecise” probabilities has led to the development of
calculi known under the common name “lower probabilities”. The main distinction
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from the probability calculus is that the uncertainty of a proposition is judged by
two numbers instead of one. Accordingly, there are two functions mapping the
elements of a proposition algebra to [0, 1], the lower probability P∗ and the upper
probability P ∗. The most general notion of a lower probability is defined wrt. a
set of probability distributions P (see, for example, [Hal03]):

P ∗(A) = sup
P∈P

P (A) and P∗(A) = inf
P∈P

P (A) .

One can show that lower and upper probabilities satisfy the following inequalities
if A and B are disjoint:

P∗(A ∪B) ≥ P∗(A) + P∗(B) and P ∗(A ∪B) ≤ P ∗(A) + P ∗(B) .

These properties are called super-additivity and sub-additivity, respectively. Fur-
thermore, lower and upper probability are connected via the following relations:

P∗(A) ≤ P ∗(A) and P ∗(A) = 1− P∗(Ā) .

The inequality says that lower and upper probabilities can be seen as defining an
interval, thus making lower and upper probabilities an uncertainty calculus having
a partially ordered domain of uncertainty values. The equation implies that from
both uncertainty values, upper and lower probability, of a proposition one can
derive the upper and lower probabilities of its negation. Hence lower and upper
probabilities together satisfy axiom Not.

An application of our results to the analysis of lower probabilities is now the fol-
lowing: even if the domain of uncertainty values is only partially ordered, which
is possible according to NC12, there exists a function G which relates the uncer-
tainty value of a disjunction of disjoint propositions and the uncertainty values of
the single propositions by an equation, and not only by an inequality. If no such
function G exists for an uncertainty calculus, it must violate at least one of the
axioms Not, And1, or And2 (we assume that the infrastructure axioms are satis-
fied). Now, because lower probabilities satisfy axiom Not, they must violate And1

or And2. This implies that there cannot be any definition of conditioning for lower
probabilities which satisfies And1 and And2. Seeing And1 and And2 as essential
conditions for not losing relevant information, this may explain why the definition
of conditioning for lower probabilities has turned out to be such a hard problem,
which is still the topic of ongoing research.
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This conclusion is also valid for Dempster-Shafer theory, which can be seen as lower
and upper probabilities satisfying additional constraints. Accordingly, there are
several proposals for conditioning in DS-theory, each having its own advantages
and disadvantages. By the above analysis, this is not a transitory state until the
“right” conditioning rule has been found, but a fundamental obstacle which cannot
be resolved within the frame of DS-theory.

7.2 Dempster-Shafer Theory

In 1967 A. P. Dempster introduced a generalization of probability theory, which
was later extended by G. Shafer [Dem67, Sha76]. An essential difference to prob-
ability theory is that uncertainty is now represented by two functions, which are
called “belief ” and “plausibility” (it can be argued that “possibility” instead of
“plausibility” is a better name for the second function, but the use of “plausibil-
ity” is established today).

One way to define belief functions is by introducing a “mass function” or “basic
belief assignment”. Let U be a finite Boolean algebra (which is called a “frame of
discernment” by Shafer), then a mass function is defined as a mapping m from U
to the real [0,1]-interval satisfying the following conditions:

1. m(⊥) = 0

2.
∑

A∈U = 1

So the “belief masses” have to sum up to 1, as in probability theory, but now the
masses can be distributed over all elements (except the bottom element) of the
Boolean algebra, whereas in probability theory the masses have to be assigned only
to the atoms of the Boolean algebra.

The intuition behind this is the following: a mass assigned to a non-atomic element
of the Boolean algebra represents ignorance with regard to the distribution of this
mass to the atoms lying below the non-atomic element. Consequently, the mass
function which assigns 1 to the top element of the Boolean algebra and 0 to all other
elements represents maximal ignorance and is called the vacuous mass function.

The mass function can now be used to define a belief function Bel:

Bel(A) =
∑
B≤A

m(B)
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So to obtain the total belief committed to A, one adds to the mass of A all the
masses assigned to propositions which lie below A.

Belief functions are super-additive, in contrast to probability functions, which are
additive:

Bel(A ∨B) ≥ Bel(A) +Bel(B), if A ∧B = ⊥

We will now investigate the relationship of DS-theory to confidence theory. A basic
question in this context is the following:

Can all belief functions be represented by confidence measures?

A confidence measure represents a belief function if it is decomposable in the sense
introduced in chapter 5, the backbone field is R and the function which assigns
to all propositions the lower bound of the numerical interval resulting from the
decomposition coincides with the given belief function.

Using this definition of representation, the answer to the above question is yes, at
least in the case of finite proposition algebras. In order to prove this, the following
notion will play a central role:

Definition: An interference family of order n is a set of n (multivariate) real-
valued functions f1, .., fn with the following properties:

1. The range of
∑

i∈I fi is [0,1], where I is any nonempty, proper subset of the
index set {1, .., n}.

2.
∑n

i=1 fi = 1

That is, only if we add all n functions the range collapses to the point set {1}, all
other sums where at least one function is missing have still the full range [0,1]. Such
families can now be used to construct a confidence function representing a given
belief function Bel. Below we will construct interference families for all orders.

As a c-ring we choose the function ring over the real [0,1]-interval with countably
many variables, the constant 1-function is the top confidence value and the constant
0-function is the bottom confidence value. The order is defined as follows:

f ≤ g ⇔ f(x) < g(x) for all x or f ≡ g

We will now construct a confidence function over this c-ring which represents the
given belief function Bel.
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Let the order of a proposition be the number of atoms it subsumes. In a first step
we assign to an arbitrary element A of the (finite) Boolean algebra U of order
j an interference family FA of order j. Next we note that confidence measures
are additive, thus it suffices to define the confidence value for all atoms. So let
Ai be an atom and F(Ai) the filter generated by the atom Ai, i.e., the set of all
propositions which subsume Ai as an atom. For every element A of F(Ai) we pick
an element of the interference family we have assigned to A. Let us denote this
interference function by f

(Ai)
A .

We now define a confidence measure ΓBel on the Boolean algebra U by defining
its values on the atoms of U:

ΓBel(Ai) =
∑

A∈F(Ai)

mBel(A) · f (Ai)
A

where mBel is the mass function corresponding to the given belief function Bel
(see, e.g., [Sha76], theorem 2.2, p. 39).

This construction ensures that the lower bounds of the intervals defined by ΓBel are
exactly the sums of the masses for which the interference families have collapsed,
and this happens for those propositions which are subsumed by a given proposition,
i.e.:

ΓBel,∗(A) =
∑
B≤A

mBel(B)

From the definition of a belief function it follows that ΓBel,∗ equals the given belief
function Bel, hence ΓBel is a representation of Bel.

7.2.1 Interference Families

Finally, we have to show that there are interference families of all orders. This is
established by the following theorem:

Theorem: Let {α1, .., αk} be a set of k variables ranging over [0,1]. Then the
functions (1 ≤ j ≤ 2k)

(k)f (j) = f1 · f2 · .. · fk,

where fi = αi or fi = 1− αi, constitute an interference family of order n = 2k.
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Proof: By induction.

k=1: It is straightforward to check that the function set {α1, 1 − α1} is an inter-
ference family of order 2.

k+1 step: The functions (k+1)f (j) can be written as:

(k+1)f (j) = αk+1 ·
∑
j1∈I1

(k)f (j1) + (1− αk+1) ·
∑
j2∈I2

(k)f (j2)

If both, I1 and I2, are complete index sets, i.e. I1 = I2 = {1, .., 2k}, then, according
to induction assumption, both sums collapse to 1, leaving αk+1 + (1− αk+1) = 1.
Thus the collapse property is valid for k + 1, too.

If at least one index set is incomplete, the corresponding sum function has the
full range [0,1], by induction assumption. If I1 is incomplete, we set αk+1 to 1 in
order to see that (k+1)f (j) has full range, too. If I2 is incomplete, then we choose
αk+1 = 0. If both, I1 and I2, are incomplete, then both choices, αk+1 = 0 and
αk+1 = 1 show that (k+1)f (j) has still full range. Hence the first property of an
interference family is valid for k + 1.

If n is not a power of two, then we take the interference family with the least k so

that n < 2k. Set gj = (k)f (j) for all j < n and gn =
∑2k

j=n
(k)f (j). Thus there is an

interference family for all orders.

7.3 Non-monotonic Logic

A non-monotonic logic extends classical logic with a framework of “belief revision”,
i.e. conclusions derived at one point can be retracted at a later point. Non-
monotonic logic can be seen as defining a hierarchy of “default assumptions”,
which are assumed valid until observed evidence directly contradicts them. If this
happens, a revision process is executed, which incorporates the new evidence and
eliminates contradictions while trying to preserve as much as possible from the
old knowledge state. Now, as for example Lehman and Magidor have observed in
[LM92], one can formalize default expressions of the type “if A then typically B”
as “the probability of B given A is very high”, where “very high” is equated to
1− ε, for infinitesimal ε. This can be modeled by a generalized probability algebra
using the [0, 1]-interval of hyperreal numbers as a domain of uncertainty values.
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8 Conclusions

Despite many attempts, there is still no consensus on basic questions concerning
uncertainty and the foundations of inductive logic. In [AS01], Arnborg and Sjödin
note that reaching a consensus is not only a foundational issue but is also important
outside the ivory tower: designers of complex systems struggle with difficult com-
patibility problems when they plan to integrate system components which happen
to use different ways to describe uncertainty [Zad97, Wal96].

This thesis tries to contribute to the debate on uncertainty by discerning ontolog-
ically different types of uncertainty and introducing an axiomatic core system for
uncertainty measures with the explicit aim not to prejudice structural properties
of the domain of uncertainty values, but to derive them from basic assumptions.

The main result characterizes uncertainty values as elements of the [0,1]-interval of
a partially ordered ring, including the Kolmogorov axioms of probability theory as
special case, but allowing uncertainty domains having uncomparable or infinitesi-
mal elements as well.
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9 Effective Learning Systems

In the previous part we have analyzed the problem of representing and processing
uncertainty with regard to a given set of models. This was the first question posed
in the introduction. Now we shortly want to discuss the second question of the
introduction:

What set of possible models of the environment should the learning system con-
sider?

To answer this question, it is necessary to explore the notion of “all possible mod-
els” from a mathematical and computational point of view, and discuss the ques-
tion of effective learnability in the context of such generic model spaces. The last
sentence intentionally uses the plural form of model space, because we will see that
the notion of “all possible models” cannot be defined in an absolute sense, but only
with regard to a reference proof system. This dependence can be used to establish
a relationship between the time complexity of the percept-generating environment
and the logical complexity of the algorithmic learning system, thus shedding new
light on the undecidability of a general approach to algorithmic learning developed
by R. J. Solomonoff in the 1960s [Sol64a, Sol64b, LV08].

In order to focus on the analysis of the model space, we now will use the framework
of Bayesian inference to handle uncertainty. Although this does not make use of the
full generality of the uncertainty calculus developed in the first part of this thesis,
Bayesian inference is a model of the axiom system NC12 - as we have already noted
in the discussion of the ring theorem - and therefore justified by this axiom system
as an adequate calculus to represent and process uncertainty.

9.1 Algorithmic Ontology: Programs as Generators

Ontology is a part of philosophy which tries to define what exists, or, more specif-
ically, what possibly could exist. In the realm of mathematics, this question leads
to the set existence problem, which is (partially) answered by various set theories,
most commonly by using the axiom system ZFC, Zermelo-Fraenkel set theory
with the axiom of choice. But in the realm of computer science, existence has to
be effective existence, i.e. the domain of interest and its operations must have
effective representations.

For this reason the objects we consider are programs executed by a fixed universal
Turing machine U having a one-way read-only input tape, some work tapes, and
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a one-way write-only output tape (such Turing machines are called monotone),
which will be the reference machine for all that follows. The choice of the spe-
cific universal Turing machine has as effect only a constant factor on the space
complexity and at most a logarithmic factor on the time complexity of a program
[AB09]. These effects are small enough to be neglected in the following founda-
tional considerations, but in the context of alternative models of computation, like
cellular automata on infinite grids, the choice of the reference machine may be-
come an important issue. The program strings are chosen to be prefix-free, i.e. no
program string is the prefix of another program string. This is advantageous from
a coding point of view (enabling, for example, the application of Kraft’s inequality∑

p 2−length(p) ≤ 1), and does not restrict universality [LV08].

A program p (represented as finite binary string) is a generator of a possible world,
if it outputs an infinite stream of bits when executed by U . Unfortunately, it is not
decidable whether a given program p has this well-definedness property. This is
the reason why the general approach to induction introduced by R. J. Solomonoff
is incomputable: the inference process uses the whole set of programs (program
space) as possible generators, even the programs which are not well-defined in the
above sense.

This results in the following dilemma: either one restricts the model space to a
decidable set of well-defined programs, which leads to an effective inference process
but ignores possibly meaningful programs, or one keeps all well-defined programs,
but at the price of necessarily keeping ill-defined programs as well, risking the
incomputability of the inference process. However, in the following we propose
an approach which tries to mitigate this dilemma by reducing the question of
learnability to the question of provability.

9.2 Learning Systems

The following discussion is based on [ZC12]. Here we give only an introduction
into the basic notions and results, and put them into perspective.

First the notion of a probabilistic learning system is introduced, which takes a finite
string of observed bits (the percept string) as input and produces a probabilistic
prediction for the next bit as output:

Definition: A probabilistic learning system is a function

Λ : {0, 1}∗ × {0, 1} → [0, 1]Q, with Λ(x, 0) + Λ(x, 1) = 1 for all x ∈ {0, 1}∗.
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Λ is an effective probabilistic learning system if Λ is a total recursive function. Ra-
tional numbers are used as probability values, because real numbers cannot be used
directly in a context of computability questions, but have to be dealt with by effec-
tive approximations [Wei00]. This would increase the complexity of the definitions
significantly, and is not necessary for a first understanding of the fundamental re-
lationship between learnability and provability. Also only deterministic generators
leading to one definite observable bit sequence are treated, but a generalization to
real valued probabilities and probabilistic generators should be possible.

Next the prediction horizon of Λ is extended by feeding it with its own predictions.
This leads to a learning system Λ(k) which makes probabilistic predictions for the
next k bits (xy is the concatenation of string x and y):

Λ(1) = Λ,

Λ(k+1)(x, y1) = Λ(k)(x, y) · Λ(xy, 1), x ∈ {0, 1}∗, y ∈ {0, 1}k,

Λ(k+1)(x, y0) = Λ(k)(x, y) · Λ(xy, 0).

Finally, the learnability of an infinite bit sequence s is defined (si:j is the subse-
quence of s starting with bit i and ending with bit j):

Definition: An infinite bit sequence s is learnable in the limit by the probabilistic
learning system Λ, if for all ε > 0 there is an n0 so that for all n ≥ n0 and all
k ≥ 1:

Λ(k)(s1:n, sn+1:n+k) > 1− ε.

Based on this notion of learnability, a proof-driven learning system is introduced
in [ZC12]. The basic idea is to take a background theory Σ from the foundations
of mathematics, like the ones investigated in reverse mathematics [Sim09], and to
use the provably total recursive functions wrt. Σ to construct a fast growing guard
function to schedule the learning process and to ensure that the learning system
is effective. The resulting learning system is denoted by Λ(Σ).

The generator-predictor theorem, a theorem characterizing the learnable bit se-
quences of proof-driven learning systems, states that an infinite sequence of bits
is learnable if the axiom system proves the totality of a recursive function which
dominates the time function of the bit sequence generating process:

Generator-Predictor Theorem: Let Σ be an admissible logic frame and s an
infinite bit sequence. s is learnable by the effective probabilistic learning system
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Λ(Σ), if Σ proves the totality of a recursive dominator of a generator function Gp

for at least one program p ∈ [s],

where Gp is the generator function of the program p, i.e., the function counting
the number of executed steps in order to generate the first n bits, and [s] denotes
the set of all programs generating the bit sequence s.

This result establishes a tight connection between learnability and provability,
thus reducing the question of what can be effectively learned to the foundational
questions of mathematics with regard to set existence axioms. Results of reverse
mathematics are used to illustrate the implications of the generator-predictor the-
orem by connecting a hierarchy of axiom systems with increasing logical strength
to fast growing functions.

For example, if ΣPA = (FOL, PA) (First order logic Peano Arithmetic), then
every program with a generator function which is dominated by a provably total
recursive function wrt. PA can be learned by Λ(ΣPA). As the Ackermann-function
is provably total in PA, this is already a pretty large set, and PA allows totality
proofs of functions which grow much faster than the Ackermann-function.

9.3 Synchronous Learning Framework

A closer look on real world incremental learning situations, where both, the envi-
ronment and the learning system, are not suspended while the other one is perform-
ing its transitions resp. computations, leads to the following notion of synchrony
of a bit sequence s:

Definition: s is synchronous if lim sup
n→∞

Gp(n)

n
<∞ for at least one p ∈ [s].

Synchrony entails that the time scales of the learning system and the environment
are coupled, that they cannot ultimately drift apart. As long as one assumes not a
malicious environment, synchrony seems to be a natural property. Such a setting
for learning could be called a synchronous learning framework, in contrast to the
above considered learning frameworks, which could be classified as asynchronous.

In order to learn in the case of synchrony, it suffices to prove that n2 is total,
because n2 is a dominator of every generator function satisfying the synchrony
condition. Thus, a much weaker background theory than, e.g. Peano Arithmetic
would suffice for an effective learning system to learn all synchronously generated
bit sequences. In fact, because RCA0 – the weakest of the five standard axiom
systems considered in reverse mathematics – proves the totality of all primitive
recursive functions, Λ(RCA0) is a perfect learning system in a synchronous world.
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Figure 5: Clockification: using an internal clock transforms all computable bit
sequences into synchronous bit sequences.

9.4 Conclusions

The generator-predictor theorem establishes a natural perspective on the effective
core of Solomonoff induction by shedding new light on the cause of the incom-
putability of the non-relativized Solomonoff induction, instead of directly intro-
ducing specific resource constraints in order to achieve computability, like this is
done, for example, in [Hut05] for the AIξ learning system. This shifts the ques-
tions related to learnability to questions related to provability, and therefore into
the realm of the foundations of mathematics.

The problem of universal induction in the synchronous learning framework, how-
ever, is intrinsically effective, and the focus of future research in a synchronous
framework can be on efficiency questions. In fact, the source of incomputabil-
ity in the asynchronous learning framework can be traced back to the fact that
the learning system does not know how much time the generator process has “in-
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vested” in order to produce the next bit. An extension of a bit sequence s by
inserting “clock signals” (coding a clock signal by “00” and output bits by “10”
and “11”) marking the passing of time would transform every sequence s into a
synchronous one, thus eliminating the incomputability of Solomonoff induction.
So the synchronous learning framework seems to be perfectly suited for studying
the problem of universal induction from a computational point of view.
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