Synthesen, Kristallstrukturen und Eigenschaften quaternärer Ortho- und Pyrophosphate der zwei- und dreiwertigen 3d-Übergangsmetalle

Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Diplom Chemiker

Christian Litterscheid

aus Koblenz

Bonn, Mai 2009

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter:	Prof. Dr. R. Glaum
2. Gutachter:	Prof. Dr. J. Beck
Tag der Promotion:	15.09.2009
Erscheinungsjahr:	2009

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert.

1

Inhaltsverzeichnis

ALLGEMEINER TEIL

1	Einleitung	1
1.1	Grundlagen und Methoden	3
1.1.1	Drei- und Vierkomponentensysteme	3
1.1.2	Chemische Transportexperimente	4
1.1.3	Heterogene Katalyse	6
1.1.3.1	Phosphate als Katalysatormaterial in der heterogenen Katalyse	7
1.1.3.2	Formaldehydsynthese	8
1.1.3.3	Verwendung von Formaldehyd	9
1.2	Präparative Arbeitsweisen	10
1.2.1	Anfertigen von Presslingen	10
1.2.2	Herstellung der Kieselglasampullen	11
1.2.3	Multifunktionelle Apparatur	12
1.2.4	Öfen	13
1.2.4.1	Laborkammeröfen	13
1.2.4.2	Elektrische Röhrenöfen	13
1.2.5	Durchführung von Transportexperimenten	15
1.3	Untersuchungsmethoden	16
1.3.1	Röntgenographische Methoden	16
1.3.1.1	Röntgenpulveraufnahmen nach der Guinier-Methode	17
1.3.1.2	Einkristalluntersuchungen	19
1.3.1.3	Auswertung der Intensitätsmessungen	20
1.3.2	Energiedispersive Röntgenfluoreszenzanalyse	23
1.3.3	Spektroskopische Untersuchungsmethoden	24
1.3.3.1	Remissionsspektroskopie	24
1.3.3.2	Einkristall-UV/vis/nir-Spektroskopie	26
1.3.4	Universelle Katalysatorentestapparatur	28
1.4	Ausgangsverbindungen	30

SPEZIELLER TEIL

2	Beiträge zur Kristallchemie ternärer Orthophosphate vom Fe ^{II} 3Fe ^{III} 4(PO4)6-Strukturtyp	35
2.1	Kenntnisstand zu Beginn der Arbeit	35
2.1.1	Beschreibung des Fe ^{II} ₃ Fe ^{III} ₄ (PO ₄) ₆ -Strukturtyps	36
2.1.2	Kristallchemische Einordnung des Fe ^{II} ₃ Fe ^{III} ₄ (PO ₄) ₆ -Strukturtyps	40
2.1.3	Der Lyonsit-Strukturtyp	43
2.1.4	Fehlordnung der Kationen im Fe ^{II} ₃ Fe ^{III} ₄ (PO ₄) ₆ -Strukturtyp	44
2.2	Darstellung und Kristallisation neuer Vertreter des Fe ^{II} ₃ Fe ^{III} ₄ (PO ₄) ₆ -Typs	46
2.2.1	Polynäre Titan(III)-orthophosphate A^{II}_{3} Ti $^{III}_{4}$ (PO ₄) ₆	48
2.2.2	Polynäre Vanadium(III)-orthophosphate $A^{II}_{3}V^{III}_{4}(PO_{4})_{6}$	52
2.2.3	Polynäre Chrom(III)-orthophosphate A^{II}_{3} Cr ^{III} ₄ (PO ₄) ₆	54
2.2.4	Polynäre Eisen(III)-orthophosphate A^{II}_{3} Fe ^{III} ₄ (PO ₄) ₆	56
2.2.5	Polynäre Indium(III)-orthophosphate $A^{II}_{3}In^{III}_{4}(PO_{4})_{6}$	58
2.2.6	Mischkristallreihen $(M_{1-x}Cu_x)_3In_4(PO_4)_6$ (<i>M</i> : Mg, Zn; $0 \le x \le 1$)	60
2.2.7	Überlegungen zur Substitution von Eisen(III) im Fe ^{II} ₃ Fe ^{III} ₄ (PO ₄) ₆ -Strukturtyp	65
2.2.8	Versuche zur Synthese polynärer Phosphate $A^{II}_{3}B^{III}_{4}(PO_4)_6$ mit B^{III} : Ga, Rh	66
2.2.9	Bilanz der Darstellungsversuche	68
2.3	Untersuchung der Einkristallstrukturen	69
2.3.1	Strukturverfeinerung der polynären Titan(III)-orthophosphate <i>A</i> ^{II} ₃ Ti ^{III} ₄ (PO ₄) ₆ (<i>A</i> ^{II} : Cr, Mn, Fe, Zn, Mg)	70
2.3.2	Strukturverfeinerung der polynären Vanadium(III)-orthophosphate $A^{II}_{3}V^{III}_{4}(PO_4)_6$ (A^{II} : Cr, Mn, Fe, Co, Ni, Zn, Mg)	74
2.3.3	Strukturverfeinerung der polynären Chrom (III)-orthophosphate $A^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ (A^{II} : Mn, Fe, Co)	78
2.3.4	Strukturverfeinerung von Magnesium-eisen-orthophosphat	80
2.3.5	Strukturverfeinerung der polynären Indium(III)-phosphate $A^{II}_{3}In^{III}_{4}(PO_{4})_{6}$ (A^{II} : Mn, Fe, Co, Ni, Zn)	83
2.4	Polarisierte UV/vis/nir-Spektren	87
2.4.1	Farbe und UV/vis/nir-Spektren der polynären Titan(III)-phosphate A^{II}_{3} Ti ^{III} ₄ (PO ₄) ₆ (A^{II} : Mg, Cr, Mn, Fe)	88
2.4.2	Farbe und UV/vis/nir-Spektren der polynären Indium(III)-phosphate Co ₃ In ₄ (PO ₄) ₆ und Ni ₃ In ₄ (PO ₄) ₆	90
2.5	Magnetische Messungen	93
2.6	Vergleich der Strukturen und kristallchemische Diskussion	95
2.6.1	Vergleich der Gitterkonstanten	95
2.6.2	Fehlordnung im $\text{Fe}^{II}_{3}\text{Fe}^{III}_{4}(\text{PO}_{4})_{6}$ -Strukturtyp	101

35

3	Kristallchemische Untersuchung quaternärer Pyrophosphate $A^{II}B^{III}{}_{2}(P_{2}O_{7})_{2}, A^{II}{}_{3}B^{III}{}_{2}(P_{2}O_{7})_{3}$ und $A^{II}{}_{5}B^{III}{}_{2}(P_{2}O_{7})_{4}$	107
3.1	Kenntnisstand zu Beginn der Arbeit	107
3.2	Darstellung und Kristallisation	111
3.2.1	Chrom(II)-titan(III)-pyrophosphate	112
3.2.2	Polynäre Vanadium(III)-pyrophosphate $A^{II}V^{III}{}_{2}(P_{2}O_{7})_{2}$ und $A^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ (A^{II} : Cr, Fe, Cu, Pd)	115
3.2.3	Polynäre Chrom(III)-pyrophosphate $A^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ (A^{II} : Mg, Cr, Fe, Cu, Pd)	119
3.2.4	Polynäre Eisen(III)-pyrophosphate $A^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ und $A^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}$ (A^{II} : Mg, Mn, Fe, Co, Ni, Cu, Zn, Pd)	121
3.2.5	Polynäre Indium(III)-pyrophosphate $A^{II}In^{III}_{2}(P_2O_7)_2, A^{II}_{5}In^{III}_{2}(P_2O_7)_4$ (A^{II} : Mg, Zn, Cu, Pd) und "Co ^{II} _{3}In^{III}_{2}(P_2O_7)_3"	124
3.2.6	Bilanz der Darstellungsversuche	129
3.3	Einkristallstrukturanalysen	132
3.3.1	Pyrophosphate $\operatorname{Cu}^{II} M^{III}_{2}(P_2O_7)_2(M^{III}: V, Cr, In)$ und $\operatorname{Pd}^{II} M^{III}_{2}(P_2O_7)_2(M^{III}: Cr, Fe, In)$	132
3.3.2	Die trikline Modifikation von $Cr^{II}Ti^{III}_{2}(P_2O_7)_2$	136
3.3.3	Die hexagonale Modifikation von Cr ^{II} Ti ^{III} ₂ (P ₂ O ₇) ₂	137
3.3.4	Pyrophosphate $A^{II}V^{III}_{2}(P_2O_7)_2$ (A^{II} : Cr, Fe)	140
3.3.5	Pyrophosphate $A^{II}{}_5V^{III}{}_2(P_2O_7)_4$ (A^{II} : Cr, Mn, Fe)	142
3.3.6	$Fe^{II}_{3}V^{III}_{2}(P_{2}O_{7})_{3}$	145
3.4	Diskussion der Ergebnisse	147
3.4.1	Gitterkonstanten	147
3.4.2	<i>trikl</i> Cr ^{II} Ti ^{III} ₂ (P ₂ O ₇) ₂ , Cu ^{II} Cr ^{III} ₂ (P ₂ O ₇) ₂ und Cu ^{II} In ^{III} ₂ (P ₂ O ₇) ₂	149
3.4.3	$hexCr^{II}Ti^{III}_{2}(P_2O_7)_2$	156
3.4.4	Die Pyrophosphate $Cr^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ und $Fe^{II}V^{III}_{2}(P_{2}O_{7})_{2}$	159
3.4.5	$Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$, $Mn^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ und $Fe^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$	161
3.4.6	Die Kristallstruktur von $Fe^{II}_{3}V^{III}_{2}(P_2O_7)_{3}$	167
3.4.7	Zusammenfassende kristallchemische Betrachtungen	170
3.5	UV/vis/nir-Spektren polynärer Übergangsmetallpyrophosphate	176
3.5.1	$Cu^{II}In^{III}{}_{2}(P_{2}O_{7})_{2}, Cu^{II}Cr^{III}{}_{2}(P_{2}O_{7})_{2} und Pd^{II}Cr^{III}{}_{2}(P_{2}O_{7})_{2}$	176
3.5.2	<i>trikl</i> Cr ^{II} Ti ^{III} ₂ (P ₂ O ₇) ₂ und <i>hex</i> Cr ^{II} Ti ^{III} ₂ (P ₂ O ₇) ₂	179

4	Katalysatoren zur selektive Oxidation von Methan zu Formaldehyd	182
4.1	Darstellung der Katalysatoren	182
4.2	Charakterisierung der Katalysatoren	184
4.3	Ergebnisse der katalytischen Tests	187
5	Strukturverfeinerung von monoklinem W ₂ O ₃ (PO ₄) ₂	193
5.1	Kenntnisstand zu Beginn der Arbeit	193
5.2	Darstellung	195
5.3	Strukturverfeinerung	196
5.4	Beschreibung der Kristallstruktur	198
5.5	Diskussion	200
6	Zusammenfassung	201
ANHAN	G	207
Anhang	A Quaternäre Orthophosphate <i>A</i> ¹¹ ₃ <i>B</i> ¹¹¹ ₄ (PO ₄) ₆	207
A.1	Guinierdiagramme	207
A.1.1	A^{II}_{3} Ti ^{III} ₄ (PO ₄) ₆ (A^{II} : Cr, Mn, Fe, Zn, Mg)	207
A.1.2	$A^{II}_{3}V^{III}_{4}(PO_4)_6$ (A^{II} : Cr, Mn, Fe, Co, Ni, Cu, Zn, Mg)	211
A.1.3	$A^{II}_{3}Cr^{III}_{4}(PO_{4})_{6} (A^{II}: Mn, Fe, Co)$	216
A.1.4	A^{II}_{3} Fe ^{III} ₄ (PO ₄) ₆ (A^{II} : Mg, Zn, Mn, Fe, Co, Ni, Cu)	218
A.1.5	A^{II}_{3} In $^{III}_{4}$ (PO ₄) ₆ (A^{II} : Mn, Fe, Co, Ni, Zn, Mg)	223
A.1.6	$(Cu_x M_{1-x})_3 In_4 (PO_4)_6 (M: Mg, Zn)$	226
A.2	Indizierung von Guinieraufnahmen	227
A.2.1	A^{II}_{3} Ti ^{III} ₄ (PO ₄) ₆ (A^{II} : Cr, Mn, Fe, Zn)	227
A.2.2	$A^{II}_{3}V^{III}_{4}(PO_4)_6$ (A^{II} : Cr, Mn, Fe, Co, Ni, Cu, Mg)	231
A.2.3	$A^{II}_{3}Cr^{III}_{4}(PO_{4})_{6} (A^{II}: Mn, Fe)$	237
A.2.4	A^{II}_{3} Fe ^{III} ₄ (PO ₄) ₆ (A^{II} : Mg, Mn, Fe, Ni)	239
A.2.5	$A^{II}_{3} In^{III}_{4} (PO_4)_6 (A^{II}: Mn, Fe)$	244
A.2.6	$(Cu_x M_{1-x})_3 In_4 (PO_4)_6 (M: Mg, Zn)$	246
A.3	Lageparameter, Besetzungsfaktoren und interatomare Abstände	250
A.3.1	A^{II}_{3} Ti $^{III}_{4}$ (PO ₄) ₆ (A^{II} : Mg, Cr, Mn, Fe, Zn)	250
A.3.2	$A^{II}_{3}V^{III}_{4}(PO_4)_6$ (A^{II} : Mg, Cr, Mn, Fe, Co, Ni, Zn)	258
A.3.3	A^{II}_{3} Cr ^{III} ₄ (PO ₄) ₆ (A^{II} : Mn, Fe, Co)	267
A.3.4	Magnesium-eisen-orthophosphat	271
A.3.5	$A^{II}_{3}In_{4}(PO_{4})_{6}$ (A^{II} : Mn, Fe, Co, Ni, Zn)	274

Anhang B Quaternäre Pyrophosphate <i>A^{II}B^{III}</i> ₂ (P ₂ O ₇) ₂		280	
B.1	Guinierdiagramme	280	
B.1.1	$Cu^{II}M^{III}_{2}(P_{2}O_{7})_{2} (M^{III}: V, Cr, Fe, In) und Pd^{II}M^{III}_{2}(P_{2}O_{7})_{2} (M^{III}: Cr, Fe, In)$	280	
B.1.2	$A^{II}V^{III}_{2}(P_{2}O_{7})_{2} (A^{II}: Cr, Fe) und A^{II}Cr^{III}_{2}(P_{2}O_{7})_{2} (A^{II}: Mg, Cr, Fe)$	284	
B.1.3	$Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$	287	
B.1.4	$A^{II}Fe^{III}_{2}(P_{2}O_{7})_{2} (A^{II}: Mg, Fe, Co, Zn)$	288	
B.2	Indizierung von Guinieraufnahmen	290	
B.2.1	$Cu^{II}M^{III}_{2}(P_{2}O_{7})_{2} (M^{III}: V, Cr, In) und Pd^{II}M^{III}_{2}(P_{2}O_{7})_{2} (M^{III}: Cr, Fe, In)$	290	
B.2.2	$A^{II}V^{III}_{2}(P_{2}O_{7})_{2} (A^{II}: Cr, Fe) und A^{II}Cr^{III}_{2}(P_{2}O_{7})_{2} (A^{II}: Mg, Fe)$	296	
B.2.3	$Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$	299	
B.2.4	$A^{II}Fe^{III}_{2}(P_{2}O_{7})_{2} (A^{II}: Mg, Co, Zn)$	301	
B.3B.3.1B.3.2B.3.3	Lageparameter, Besetzungsfaktoren und interatomare Abstände $Cu^{II}M^{III}_{2}(P_2O_7)_2$, $Pd^{II}M^{III}_{2}(P_2O_7)_2$ (M^{III} : V, Cr, Fe, In) und <i>trikl.</i> -Cr ^{II} Ti ^{III} _{2}(P_2O_7)_2 $A^{II}V^{III}_{2}(P_2O_7)_2$ (A^{II} : Cr, Fe) <i>hex.</i> -Cr ^{II} Ti ^{III} _{2}(P_2O_7)_2	304 304 313 316	
Anhang (C Quaternäre Pyrophosphate A ^{II} ₅ B ^{III} ₂ (P ₂ O ₇) ₄ und A ^{II} ₃ B ^{III} ₂ (P ₂ O ₇) ₃	318	
C.1	Guinierdiagramme	318	
C.1.1	$Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$	318	
C.1.2	$Mn^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ und $Fe^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$	319	
C.1.3	$Mn^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}$, $Fe^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}$ und $Zn^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}$	320	
C.1.4	$Fe^{II}_{3}V^{III}_{2}(P_{2}O_{7})_{3}$	322	
C.2	Indizierung von Guinieraufnahmen	323	
C.2.1	$Cr^{II}_5V^{III}_2(P_2O_7)_4$	323	
C.2.2	$Fe^{II}_5V^{III}_2(P_2O_7)_4$	324	
C.2.3	$Mn_5Fe_2(P_2O_7)_4$ und $Zn_5Fe_2(P_2O_7)_4$	325	
C.2.4	$Fe^{II}_3V^{III}_2(P_2O_7)_3$	327	
C.3	Lageparameter, Besetzungsfaktoren und interatomare Abstände	328	
C.3.1	$M_{5}^{II}V_{2}^{III}(P_{2}O_{7})_{4}$ (M^{II} : Cr, Mn, Fe)	328	
C.3.2	Fe $_{3}^{II}V_{2}^{III}(P_{2}O_{7})_{3}$	333	
Anhang I	m-W₂O₃(PO₄)₂	335	
D.1	Guinierdiagramme	335	
D.2	Indizierung von Guinieraufnahmen	336	
D.3	Lageparameter, Besetzungstaktoren und interatomare Abstände	337	

Anhang E Computerprogramme und Eingabedateien		
E.1	Verwendete Computerprogramme	339
E.2	KPLOT	340
E.3	Beispiel für die Verfeinerung einer Mischbesetzung mit Shelxl	342
Anhang F Verzeichnisse		
F.1	Tabellenverzeichnis	343
F.2	Abbildungsverzeichnis	350
F.3	Literaturverzeichnis	357

VII

Abkürzungen, Begriffe und Formelzeichen

Å	Längeneinheit Angström (10 ⁻¹⁰ m)			
BASF AG	Badische Anilin- und Soda-Fabrik – Aktiengesellschaft			
BASF	Batch Scale Factor; Skalenfaktor bei Zwillingsverfeinerungen, der die Volumenverhältnisse der Kristallite angibt.			
BET	Methode zur Bestimmung von Oberflächen (m^2/g) , insbesondere von porösen Festkörpern, mittels Gasadsorption; BET steht dabei für die Namen S. B runauer, P. H. E mmett und E. Teller, welche die Entwickler des Modells waren, auf dem die Methode beruht [268].			
CCD	Charge Coupled Device; elektronischer Sensor, der ein zur eingestrahlten Lichtmenge proportionales Signal ausgibt.			
CIF	Standardisiertes Datenformat zur Beschreibung von Kristallstrukturen (engl.: Crystallographic Information File [287]).			
d. A.	diese Arbeit			
ICSD	Inorganic Crystal Structure Database; Copyright Fachinformationszentrum Karlsruhe (FIZ) in Deutschland und National Institute of Standards and Technology (NIST) in den USA, 2008 [295].			
<i>M</i> 1, <i>M</i> 2,	Metalllagen einer Kristallstruktur			
NS	Normschliff			
ММСТ	Metall-Metall-Charge-Transfer			
MS	Mineralisator			
ORTEP	Oak Ridge Thermal Ellipsoid Plot Program, Computerprogramm zum Zeichnen von Schwingungsellipsoiden, entwickelt von Michael N. Burnett und Carroll K. Johnson in den Oak Ridge National Laboratories [301].			
QBK	Quellenbodenkörper nach Beendigung eines Transportexperiments.			
RG	Raumgruppe			
S	Selektivität			
SBK	Senkenbodenkörper nach Beendigung eines Transportexperiments.			
s.o.f.	Besetzungsfaktor für eine kristallographische Lage (engl.: site occupation factor). Vollbesetzung einer Lage entspricht 100%.			
S.T.Y.	Space Time Yield; Raum-Zeit-Ausbeute			
$T_2 \rightarrow T_1$	Temperaturgradient beim chemischen Transport.			
ТМ	Transportmittel bei chemischen Transportexperimenten.			
TPR	Temperaturprogrammierte Reduktion			
U	Umsatz			

ALLGEMEINER TEIL

1 Einleitung

Erst in den letzten zwanzig Jahren wurden die Phasenbeziehungen in den ternären Systemen 3d-Übergangsmetall / Phosphor / Sauerstoff systematisch untersucht. Exemplarisch seien hier die Untersuchungen in den Systemen M/P/O mit M = Ti [1, 2], V [3, 4], Cr [5], Fe [6] und Cu [7] genannt, bei denen eine Reihe von Phosphaten mit einem 3d-Metall in zwei unterschiedlichen Oxidationsstufen kristallchemisch charakterisiert wurden (Tabelle 1.1).

Tabelle 1.1 Phosphate mit 3d-Metallen in zwei unterschiedlichen Oxidationsstufen.

Ti	V	Cr	Fe	Cu
$Ti_{4}^{III}Ti_{5}^{IV}O_{4}(PO_{4})_{8}[1]$	$V^{II}V^{III}O(PO_4)[8]$	$\operatorname{Cr}^{\mathrm{II}}_{3}\operatorname{Cr}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}[12]$	Fe ^{II} Fe ^{III} O(PO ₄)[14]	Cu ^I Cu ^{II} PO ₄ [19]
$Ti^{III}Ti^{IV}_{3}O_{3}(PO_{4})_{3}[1,2]$	$V^{III}(V^{IV}O)_3(PO_4)_3[9]$	$Cr^{II}_{2}Cr^{III}_{4}(P_{2}O_{7})_{4}[13]$	$\mathrm{Fe}^{\mathrm{II}}_{8}\mathrm{Fe}^{\mathrm{III}}\mathrm{O}_{8}(\mathrm{PO}_{4})$ [15]	
Ti ^{III} ₄ Ti ^{IV} ₂₇ O ₂₄ (PO ₄) ₂₄ [1,2]	$V_{2}^{III}V^{IV}O(P_2O_7)_2[10]$		$\operatorname{Fe}^{II}_{3}\operatorname{Fe}^{III}_{4}(\operatorname{PO}_{4})_{6}[16]$	
	$V^{IV}V^{V}(PO_{4})_{3}[11]$		$Fe^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}[17]$	
			$Fe^{II}{}_{5}Fe^{III}{}_{2}(P_{2}O_{7})_{4}[18]$	

Auch polynäre Phosphate der allgemeinen Zusammensetzungen $A_xM_y(PO_4)_z$ und $A_xM_y(P_2O_7)_z$ mit A = Alkali- oder Erdalkalimetall und M = 3d-Übergangsmetall waren Gegenstand zahlreicher Untersuchungen [20, 21, 22, 23]. In der ICSD [295] werden über 353 quaternäre Alkali-3d-Metall-phosphate und 129 Erdalkali- (inklusive Magnesium) 3d-Metallphosphate genannt. Besonders intensiv wurden in den vergangene Jahren die quaternären Lithium-3dübergangsmetallphosphate (wie z.B.: Li MPO_4 [24], Li₃ $M(PO_4)_3$ [25] und Li MP_2O_7 [26]) als potentielle neue Kathodenmaterialien in Lithium-Ionen-Akkumulatoren untersucht.

Nur wenige Informationen liegen über polynäre Phosphate vor, die mehr als ein Übergangsmetall in den Oxidationsstufen zwei (A^{II}) und drei (B^{III}) enthalten. Erste Untersuchungen zu Vertretern des Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyps [16] wurden von GRUß [27, 28] an den Orthophosphaten $A^{II}_{3}B^{III}_{4}(PO_{4})_{6}$ (A^{II} : Mg, Co, Ni, Cu, Zn; B^{III} : Cr, In) und Zn^{II}₃Fe^{III}₄(PO₄)₆ durchgeführt. Dabei zeigte sich eine systematische Abhängigkeit zwischen der Besetzung der Metalllagen und den Ionenradien der verwendeten Metalle. Hier ergab sich die Fragestellung, inwiefern die Ergebnisse auf alle Verbindungen $A^{II}_{3}B^{III}_{4}(PO_{4})_{6}$ (A^{II} : Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn; B^{III} : Ti, V, Cr, Fe, In) im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp übertragbar sind. Außerdem sollten die kristallchemischen Grenzen des Strukturtyps festgestellt werden.

Systematische Untersuchungen an Pyrophosphaten $A^{II}_{x}B^{III}_{y}(P_2O_7)_{(\frac{1}{2}x+\frac{3}{4}y)}$, die auch als Nachbarphasen bei der Darstellung von $A^{II}_{3}B^{III}_{4}(PO_4)_6$ auftreten können [27], wurden bislang nicht durchgeführt. Cu^{II}Fe^{III}₂(P₂O₇)₂ [29, 30] war zu Beginn der Arbeiten an der vorliegenden

Dissertation das einzige vollständig charakterisierte polynäre Pyrophosphat mit zwei verschiedenen 3d-Metallen in den Oxidationsstufen +II und +III.

Ein wichtiges, häufig vernachlässigtes Kriterium für die thermodynamische Stabilität eines Festkörpers ist die mögliche Koexistenz der beteiligten Ionen auf Grund ihrer Redoxpotentiale. So sind stark reduzierende Kationen wie beispielsweise Ti^{3+} neben oxidierenden Kationen wie Cu^{2+} unter thermodynamischen Gleichgewichtsbedingungen nicht beständig. Am Beispiel der verschiedenen Kationenkombinationen in Orthophosphaten $A^{II}{}_{3}B^{III}{}_{4}(\text{PO}_{4})_{6}$ und Pyrophosphaten $A^{II}B^{III}{}_{2}(\text{P}_{2}\text{O}_{7})_{2}$ sollte geklärt werden, wie sich das Redoxverhalten der verschiedenen Kationen auf die Stabilität der Phosphate auswirkt. Hierbei stellte sich auch die Frage, in wieweit die gut bekannten Redoxverhältnisse aus wässriger Lösung [31] auf den Festkörper übertragen werden können.

Das Redoxverhalten der Phosphate bildet zusammen mit deren (Oberflächen-)Azidität bzw. Basizität auch die grundlegenden Eigenschaften, welche die Eignung von Phosphaten als Katalysatoren für die selektive Oxidation von Kohlenwasserstoffen mit Sauerstoff bestimmen. Diese Eigenschaften werden mit Hilfe der partiellen Oxidation von Methan zu Formaldehyd an quaternären Phosphaten untersucht. Die Ergebnisse dieser katalytischen Tests sollen dem Verständnis und bei der weiteren Suche nach neuen Katalysatorenmaterialien für selektive Oxidation helfen.

Bedingt durch die geringere thermische Stabilität polynärer Phosphate wird häufig eine Zersetzung anstelle von Schmelzen oder auch ein inkongruentes Erstarren der Schmelzen beobachtet. Daher schied die Kristallisation aus der Schmelze für die Gewinnung von Einkristallen aus. Deshalb sollte in der vorliegenden Arbeit die von SCHÄFER vor 50 Jahren eingeführte Methode des chemischen Gasphasentransports [32] zur Reinigung und Kristallisation der polynären Phosphate erprobt werden. Die Anwendung der bereits bei einer Vielzahl von ternären wasserfreien Ortho- und Pyrophosphaten [5] erfolgreich genutzten chemischen Transportexperimente [28, 33] erschien erfolgversprechend.

1.1 Grundlagen und Methoden

1.1.1 Drei- und Vierkomponentensysteme

Mit Hilfe von Phasendiagrammen werden die unter bestimmten Bedingungen (Temperatur und Druck) auftretenden Gleichgewichtsphasen eines Systems graphisch dargestellt. Den Zusammenhang zwischen der im thermodynamischen Gleichgewicht befindlichen maximalen Anzahl von gleichzeitig auftretenden Phasen (P), den Freiheitsgraden (F) und der Anzahl der im System befindlichen Komponenten (K) wird durch die GIBBS'SCHE Phasenregel [34] beschrieben (Gl. 1.1).

$$F = K - P + 2$$
 (Gl. 1.1)

Für quaternäre Systeme, d.h. Systeme, die aus vier Komponenten bestehen (K = 4; hier: Metall-1, Metall-2, Phosphor und Sauerstoff), gilt, dass bei Festlegung von Druck und Temperatur entsprechend der GIBBS'SCHE Phasenregel im thermodynamischen Gleichgewicht maximal vier Phasen gleichzeitig auftreten können.

Durch die Nebenbedingung, dass Metall-1 (*A*), Metall-2 (*B*), Phosphor (*P*) und Sauerstoff (*O*) in ihren Oxidationszahlen festgelegt werden, lässt sich dieses Vierkomponentensystem (quaternäres System) A / B / P / O auf ein Dreikomponentensystem (ternäres System) $AO / BO_{1,5} / PO_{2,5}$ reduzieren.

Für die graphische Darstellung der Phasenbeziehungen von ternären Systemen eignen sich Phasendreiecke. Dabei stellt jede der drei Ecken eine Komponente dar, deren Molenbruch gegen den Uhrzeigersinn an den Kanten des Dreiecks abgelesen wird. Für die Berechnung der Molenbrüche der einzelnen Komponenten einer Phase mit der allgemeinen Zusammensetzung $A_aB_bC_c$ gelten Gleichungen 1.2 bis 1.4.

$$x(A) = \frac{a}{a+b+c} \tag{Gl. 1.2}$$

$$x(B) = \frac{b}{a+b+c} \tag{Gl. 1.3}$$

$$x(C) = \frac{c}{a+b+c} \tag{Gl. 1.4}$$

Es gilt für jeden Punkt im Phasendreieck x(A) + x(B) + x(C) = 1. Thermodynamisch stabile Phasen stellen ausgezeichnete Punkte im Phasendiagramm dar. Verbindungslinien zwischen diesen Punkten geben die Gleichgewichtsbeziehungen der entsprechenden Stoffe wieder.

Bei der Darstellung der Gleichgewichtsverhältnisse werden im allgemeinen nur die kondensierten Phasen berücksichtigt. Jedoch tritt immer als weitere Phase die Gasphase in Erscheinung. Nur bei Annahme sehr kleiner Sättigungs- bzw. Zersetzungsdrücke der kondensierten Phasen kann die Gasphase bei der Betrachtung der Gleichgewichtsbeziehungen der kondensierten Phasen vernachlässigt werden. Wenn sich jedoch nennenswerte Mengen der Einwaage in der Gasphase befinden, sind die Vorraussetzungen für das Aufstellen der Phasenbeziehungen nicht mehr gegeben.

1.1.2 Chemische Transportexperimente

Chemische Transportreaktionen (CTR oder englisch CVT Chemical Vapour Transport) stellen ein wichtiges Hilfsmittel bei der Synthese und thermochemischen Charakterisierung von Feststoffen dar [35]. Der chemische Gasphasentransport beruht auf einer Gleichgewichtsreaktion, bei der eine unter gegebenen Bedingungen für sich allein nicht flüchtige feste (oder flüssige) Phase A (Quellenbodenkörper) in einem Temperaturgradienten bzw. einem Gradienten des chemischen Potentials reversibel mit einer zugesetzten gasförmigen Verbindung B zu einem ebenfalls gasförmigen Produkt C, D, ... reagiert (Gl. 1.5).

$$a A (s, 1) + b B (g) = c C (g) + d D (g) + ...$$
 (Gl. 1.5)

Demgemäß wird die Phase A als Bestandteil des gasförmigen Stoffes C mobil und wird anschließend an einer anderen Stelle, d.h. bei einer anderen Temperatur bzw. einem niedrigeren chemischen Potential, aus der Gasphase (Senkenbodenkörper) zurückgebildet. Zum besseren Verständnis der Vorgänge kann man sich das Volumen der Transportampulle in zwei Subräume (Quellen- und Senkenraum) getrennt vorstellen (Abbildung 1.1). In jedem Subraum werden entsprechend der dort herrschenden Temperatur die zugehörigen Gleichgewichtspartialdrücke eingestellt. Die daraus resultierenden Partialdruckdifferenzen zwischen den Subräumen verursachen die Wanderung des Bodenkörpers (im Temperaturgradienten) von der Quelle zur Senke. Der Stoff B, welcher die Mobilisierung des zu transportierenden festen (flüssigen) Stoffes A ermöglicht, wird als Transportmittel bezeichnet und geht unverändert aus der Reaktion hervor. Chemische Transportmetkionen können in offenen Systemen mit kontinuierlichem Strom des Transportmittels oder in geschlossenen Systemen "Transportampulle", bei denen eine kleine Menge des Transportsmittels ausreichend ist [36], durchgeführt werden. Da es sich um temperaturabhängige Gleichgewichtsreaktionen handelt, hängt die Transportrichtung vom Vorzeichen der Reaktionsenthalpie $\Delta_R H^\circ$ ab. Verläuft die Bildung der Produkte exotherm $\Delta_R H^\circ < 0$), so folgt ein Transport von der kalten zur heißen Zone. Bei einer endothermen Reaktion findet ein Transport von der heißen zur kalten Zone statt.

Abbildung 1.1 Schema zum CVT im Temperaturgradienten $(T_2 > T_1)$.

Chemische Transportvorgänge wurden erstmals von BUNSEN [37] um 1850 beobachtet und richtig gedeutet. Er erkannte, dass Fe_2O_3 aus vulkanischem Gestein in einem Chlorwasserstoffstrom wandert. 1890 erfolgte die erste industrielle Anwendung der Methode des chemischen Transports durch MOND und LANGER [38] zur Reinigung von Nickel. VAN ARKEL und DE BOER erforschten in den dreißiger Jahren des vergangenen Jahrhunderts die Verflüchtigung von Metallen mit Iod und die Zerlegung der Iodide am Glühdraht [39].

Seit den grundlegenden Arbeiten von SCHÄFER [32, 40] sind chemische Transportreaktionen (CTR) eine bewährte, präparative Methode zur Synthese, Reinigung und Kristallisation von Festkörpern [35].

1.1.3 Heterogene Katalyse

Der Begriff Katalyse kommt aus dem Griechischen (κατάλυσις) und bedeutet Auflösung, Abschaffung oder Aufhebung. Unter Katalyse versteht der Chemiker seit Anfang des zwanzigsten Jahrhunderts die Veränderung der Reaktionsgeschwindigkeit einer chemischen Reaktion durch Beteiligung eines Katalysators ohne Veränderung des thermodynamischen Gleichgewichts. Heute kommen über 90% aller Chemieerzeugnisse während der Herstellung mit Katalysatoren in Berührung [41, 42, 43]. Daher ist die Wertschöpfung durch Katalysatoren sehr hoch und von erheblicher volkswirtschaftlicher Bedeutung. Zu den wichtigen großtechnischen Prozessen in der anorganischen Chemie, bei denen die Katalyse eine entscheidene Rolle einnimmt, gehören die Ammoniaksynthese nach dem HABER-BOSCH-Verfahren [44, 45, 46], das Kontaktverfahren [47] bei der Schwefelsäureherstellung und das OSTWALD-Verfahren [48, 49] bei der Salpetersäuredarstellung.

Auch in der organischen Synthesechemie spielen katalytische Prozesse eine entscheidende Rolle. So lassen sich durch das FISCHER-TROPSCH-Verfahren [50] aus CO und H_2 Kohlenwasserstoffe aufbauen und durch katalytisches Cracken langkettige Parafine [51] abbauen.

Bei der Katalyse werden zwei große technische Bereiche unterschieden, zum einen die homogene Katalyse, bei der Katalysator und Reaktionsteilnehmer in derselben Phase vorliegen, zum anderen die heterogene Katalyse, bei der Katalysator und Reaktionsteilnehmer in unterschiedlichen Aggregatzuständen vorliegen. Meistens liegt das Katalysatormaterial in der heterogenen Katalyse als feste Phase, die Reaktionsteilnehmer flüssig oder gasförmig vor. Der große Vorteil der heterogenen gegenüber der homogenen Katalyse liegt in der einfachen Trennung von Produkten und nicht umgesetzten Edukten von dem Katalysatormaterial, was eine günstige Aufarbeitung ermöglicht. Ein weiterer Vorteil ist die Minimierung von Materialverlusten an Katalysatormaterial, was besonders wichtig ist, wenn im Katalysatormaterial teure Metalle, wie zum Beispiel Rhodium, Palladium oder Platin, enthalten sind.

1.1.3.1 Phosphate als Katalysatormaterial in der heterogenen Katalyse

In der heterogenen Katalyse werden meistens Übergangsmetalloxide als Katalysatormaterial für Oxidationen verwendet. Vanadyl(IV)-pyrophosphat $(VO)_2P_2O_7$ ist bis jetzt das einzige Phosphat, das als Katalysatormaterial große wirtschaftliche Bedeutung erlangte. Es wird industriell eingesetzt, um *n*-Butan zu Maleinsäureanhydrid zu oxidieren [52].

Gemischtvalente Eisenpyrophosphate wurden erfolgreich als Katalysatoren zur oxidativen Dehydrogenierung von Isobuttersäure zu Methacrylsäure [53, 54] getestet. Quaternäre Orthophosphate vom $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ -Typ zeigen hohe Aktivitäten bei der oxidativen Dehydrogenierung von Schwefelwasserstoff (CLAUSS PROZESS) [55]. An $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ wurde die oxidative Dehydrogenierung von Cyclohexan zu Cyclohexen [56] beobachtet. Über eine hohe Selektivität bei sehr geringen Umsätzen wird für die Oxidation von Methan mit N₂O oder O₂ mit FePO₄ in der Tiefquarzmodifikation in Gegenwart von H₂ [57] oder Wasserdampf [58] berichtet.

Die Vertreter der großen Familie der mesoporösen, zeolithartigen Aluminiumphosphate ("ALPOs"), die mit Übergangsmetallen dotierten Aluminiumphosphate ("MeAPOs") sowie die Silicoalumophosphate ("SAPOs") zeigen verschiedene katalytische Eigenschaften [59]. So werden "ALPOs" bei der Veresterung von Phthalsäureanhydrid [60] (Phthalsäureester dienen als Weichmacher) verwendet. Das Silicoalumophosphat SAPO-34 wird in der Polymerindustrie für die säurekatalysierte Dehydratisierung von Methanol zu Ethen und Propen benutzt [61]. Kobaltdotierte "CoAPOs" dienen als Katalysatormaterial bei der Synthese von DME (Dimethylether) aus Synthesegas [62] sowie bei der Darstellung von ε -Caprolactam aus Cylohexanon mit Ammoniak und Luftsauerstoff [63].

1.1.3.2 Formaldehydsynthese

Der überwiegende Teil des weltweit produzierten Formaldehyds wird heute aus Methanol gewonnen [64], welches wiederum überwiegend aus Erdgas synthetisiert wird [65]. Im ersten Schritt wird Synthesegas, eine Mischung aus Kohlenmonoxid und Wasserstoff, durch Steamreforming aus Methangas und Wasserdampf dargestellt [66]. In einem zweiten Schritt wird aus dem Synthesegas nach dem Niederdruckverfahren [65, 67] Methanol synthetisiert. Dazu wird das Synthesegasgemisch bei 50 - 100 bar und 220 - 250 °C über einen Kupferoxid-Zinkoxid-Aluminiumoxid-Katalysator geleitet, in dem Cu⁰ / ZnO die aktive Phase bildet und Al₂O₃ als Trägermaterial dient.

In einem dritten Schritt wird Methanol schließlich oxidativ zu Formaldehyd dehydriert. Dabei werden in der Industrie zwei unterschiedliche Verfahren benutzt. Bei dem von der BASF AG um 1905 entwickelten Verfahren [64, 68] wird Methanol oxidativ mit Sauerstoffunterschuss bei 600 - 700 °C an Silberkristall-Katalysatoren dehydriert. Beim konkurrierenden Formox® Verfahren, das in den sechziger Jahren des vorigen Jahrhunderts von der Firma Perstop entwickelt wurde, wird ein Fe₂O₃-MoO₃ Katalysator verwendet. Dieses Verfahren arbeitet mit Luftüberschuss bei Temperaturen um 350 - 450 °C [69]. Bis heute gibt es noch kein wirtschaftliches Verfahren, mit dem sich Methan direkt zu Formaldehyd oxidieren lässt. Die direkte Oxidation von Methan zu Formaldehyd oder die oxidative Kupplung von Methan zu längerkettigen Kohlenwasserstoffen ist von hohem ökonomischen Interesse für eine wirtschaftliche Nutzung von Erdgas [70].

1.1.3.3 Verwendung von Formaldehyd

Formaldehyd, dessen Weltproduktion sich auf ca. 6,5 Mio. t/a beläuft (Stand 2003) [71], ist eine wichtige Grundchemikalie in der organischen Industrie. Ihre Hauptverwendung findet sie in der Produktion von vielen verschiedenen Kunststoffen, wie z.B.: Harnstoff-Formaldehyd-Harze (UF-Harze), Melamin-Formaldehyd-Harze (MF-Harze) und Phenol-Formaldehyd-Harze (PF-Harze). Formaldehyd selber kann zu Polyoxymethylen (POM) polymerisieren [72]. Des Weiteren dient Formaldehyd als Ausgangschemikalie für zahlreiche Synthesen in der organischen Chemie. Dabei wird Formaldehyd oft als funktionalisierter C₁-Synthesebaustein eingesetzt. So wird es in der BLANC-REAKTION zusammen mit HCl zur Chlormethylierung von Aromaten verwendet [73, 74]. In der MANNICH-REAKTION [75] wird es zusammen mit Ammoniak, primären oder sekundären Aminen zur Aminoalkylierung von α -CH-aciden Verbindungen eingesetzt. Die Produkte der Mannich-Reaktion, die Mannichbasen $(\beta$ -Aminocarbonylverbindungen), dienen zur Synthese von Alkaloiden, Pflanzenschutzstoffen sowie zur Darstellung von Farbstoffen und Lacken. Durch elektrophile Addition von Formaldehyd an Alkene (PRINS-REAKTION [76]) in Wasser oder in Gegenwart einer Brønstedsäure lassen sich 1,3-Diole gewinnen, während unter Ausschluss protischer Lösungsmittel eine Dehydrierung zu den entsprechenden Allylalkoholen stattfindet [77, 78]. Bei einem Überschuss an Formaldehyd und niedriger Reaktionstemperatur sind die Produkte Dioxane [76]. Findet die Reaktion in Karbonsäuren als Lösungsmittel statt, werden die entsprechenden Ester gebildet. Über Aldolisierung und anschließende gekreuzte CANNIZZARO-Reaktion liefert Formaldehyd einen wichtigen Zugang zu mehrwertigen Alkoholen [79], die wiederum als bedeutende Edukte zur Darstellung von Lacken, Lösungsmitteln, Weichmachern, Emulgatoren sowie Polyestern dienen.

1.2 Präparative Arbeitsweisen

1.2.1 Anfertigen von Presslingen

Festkörperreaktionen sind oft durch geringe Reaktionsgeschwindigkeiten gekennzeichnet, was meistens durch langsame Diffusionsprozesse in Feststoffen verursacht wird. Mit Hilfe eines Mineralisators können Festkörperreaktionen beschleunigt werden. Dadurch wird eine schnelle reversible Gleichgewichtseinstellung zwischen Gasphase und Bodenkörper erreicht. Die auftretenden Bodenkörper befinden sich im thermodynamischen Gleichgewicht, und alle Substanzen im Reaktionsraum besitzen das gleiche chemische Potential.

Es ist allerdings möglich, dass der Mineralisator zu unerwünschten weiteren Nebenreaktionen führt (z.B. löst Chlor SiO₂ aus der Kieselglasampullenwand). Eine andere Möglichkeit, Festkörperreaktionen zu beschleunigen, besteht darin, die Diffusionswege möglichst stark zu verkürzen. Dieses wird durch Zerkleinern und inniges Vermengen der Reaktanden erreicht. Durch anschließendes Zusammenpressen wird der Kontakt zwischen den Reaktanden maximiert und der Diffusionsweg weiter verkürzt.

Die Anfertigung von Presslingen aus den zu untersuchenden Substanzen erfolgt mittels einer hydraulischen Presse (Hersteller Paul-Otto Weber GmbH Remshalden) und eines geeigneten Presswerkzeugs. In der vorliegenden Arbeit wurden je nach der Substanzmenge entweder kleine Stäbchen (13 × 2 × 2-4 mm; ca. 100-250 mg Substanz) oder kleine Tabletten (Ø13 mm, Höhe 1-2 mm; ca. 300-600 mg Substanz) hergestellt. Dafür wurden die Edukte in einem Achatmörser feinst pulverisiert und dabei innigst miteinander vermischt. Das so erhaltene Pulvergemenge wird vorsichtig mit einem kleinen Trichter in die vorbereitete Pressform gegeben (Abbildung 1.2). Die Pressform wird anschließend in einer größeren Form befestigt, in die hydraulische Presse eingespannt und mit einer Kraft von 20 kN für 15 min bis 20 min gepresst. Danach wird die Presse langsam entspannt und der Pressling vorsichtig aus der Form entnommen. Die so vorbereiteten Proben wurden, wie in Abschnitt 1.2.2 beschrieben, in Kieselglasampullen gegeben. Ein weiterer Vorteil ist, dass der Kontakt der Presslinge mit der Kieselglaswand im Vergleich zu jenem von Pulvern durch die geringere Auflagefläche deutlich verringert wird. Reaktionen mit der Glaswand werden so stark minimiert.

Stäbchen

Tablette

Abbildung 1.2 Skizze der verwendeten Presswerkzeuge.

1.2.2 Herstellung der Kieselglasampullen

In der vorliegenden Arbeit wurden für die chemischen Transportexperimente wie auch zum isothermen Erhitzen Glasampullen verwendet. Diese werden aus Kieselglasrohren (Ø 12 - 18 mm, Wandstärke 0,8 - 1,8 mm, Länge 150 cm, Firma GVB, Aachen) angefertigt. Mit Hilfe eines Glasschneiders werden sie zunächst in drei ca. 50 cm lange Stücke geteilt und anschließend mit einem Knallgasbrenner jeweils in der Mitte halbiert, so dass Halbampullen von 23 - 27 cm Länge entstehen. An das offene Ende wird jeweils ein Schliff (NS 19,5 - lang) zum Anschluss an die Vakuumanlage angesetzt.

Die Ampullen werden mit handelsüblichen Reinigungsmitteln gründlich gesäubert, mit demineralisiertem Wasser und mit Aceton gespült und anschließend im Trockenschrank über Nacht bei 105 °C getrocknet. Da Kieselglas reversibel Wasser aufnehmen kann [80], das die Transportexperimente bzw. die isothermen Temperversuche stört, werden die Halbampullen vor dem Beschicken an der Vakuumanlage (Abbildung 1.3) vier Stunden unter Vakuum (10⁻³ - 10⁻⁴ atm) bei 800 - 900 °C ausgeheizt. Nach dem Abkühlen werden sie mit trockenem Argon als Schutzgas gefüllt. Die so vorbereitete Halbampulle wird mit Hilfe eines Ladestabes, an dem ein Wägeröhrchen befestigt ist, mit den Edukten befüllt. Die Edukte am Ampullenende werden gekühlt (je nach verwendeten Substanzen mit feuchtem Papier oder flüssigem Stickstoff), um das Verdampfen leicht flüchtiger Substanzen zu verhindern.

verjüngt, zu einer Kapillare gezogen und an den Vakuumpumpenstand angeschlossen. Ist gemäß Überprüfung mit einem Ionisator (Spark-Tester, Firma Edwards) ein ausreichendes Vakuum erreicht, wird die Kapillare abgeschmolzen. Dieses Ampullenende wird mit dem Brenner vorsichtig abgerundet. Vor dem Einbringen in den Ofen wird die gesamte Ampulle von außen mit Scheuerpulver und Spülmittel gereinigt und zum Schluss mit entmineralisiertem Wasser gespült, um eine Rekristallisation des Kieselglases beim Glühen zu verhindern.

1.2.3 Multifunktionelle Apparatur

Die zur Herstellung der Kieselglasampullen verwendete Vakuumapparatur ermöglicht außer dem Ausheizen der Ampullen auch die Dehydratisierung wasserhaltiger Verbindungen, das Trocknen von Edukten sowie das Evakuieren bzw. Befüllen der Halbampullen mit trockenem Argon oder anderen Gasen (z. B. Chlorgas oder Sauerstoff). Zum Evakuieren wird eine Ölpumpe (BS5000, Firma: Edwards) verwendet.

Abbildung 1.3 Skizze der multifunktionellen Vakuumapparatur [109].

1.2.4 Öfen

1.2.4.1 Laborkammeröfen

Für das Tempern in offenen Halbampullen, zum Beispiel für Reaktionen unter Freisetzung von Gasen (Ammoniak / Sauerstoff / Stickoxide / Wasser) wurden Laborkammeröfen (Typ: Le16 7PS) der Firma Lenton Furnaces verwendet. Diese verfügen über eine integrierte Temperaturregelung. Die absolute Regelgenauigkeit beträgt einige Grad Celsius. Auch wurden Laborkammeröfen (Typ L5/12) der Firma Nabertherm eingesetzt, die mit integrierter Temperaturregelung (Typ B170) versehen sind. Die absolute Regelgenauigkeit beträgt ± 3 °C. Die maximale Arbeitstemperatur beider Laborkammeröfen beträgt 1100 °C. Bei beiden Fabrikaten ist zu beachten, dass die Temperaturverteilung in der Ofenkammer ungleichmäßig ist.

1.2.4.2 Elektrische Röhrenöfen

Das Ausheizen von Ampullen und alle isothermen Temperexperimente wurden in Einzonen-Rohröfen, alle Transportexperimente in Zweizonenrohröfen durchgeführt.

Einzonenrohröfen bestehen aus einem Keramikrohr (l = 60 cm; $d_{innen} = 4$ cm) aus Pythagorasmasse, auf dem außen eine Heizwicklung aus Kanthaldraht (KanthalA-1: 22% Cr, 5,8% Al, 72,2% Fe) sowie eine Isolierung aufgebracht sind. Bei Zweizonenöfen ("Transportöfen") befinden sich auf dem Ofenrohr zwei voneinander unabhängige Heizwicklungen, so dass die beiden Seiten auf unterschiedliche Temperaturen erhitzt werden können. Die Öfen können für Versuche bis maximal 1100 °C verwendet werden. Im Idealfall sollten sich zwei unterschiedliche Temperaturzonen ausbilden. Zu den Ofenenden fällt die Temperatur stark ab (Abbildung 1.4).

Abbildung 1.4 Skizze des Temperaturverlaufs im Zweizonenofen [281].

Zur Stabilisierung des Temperaturverlaufs im Ofen sowie zur Energieersparnis wurden die Rohrenden mit Keramikstopfen verschlossen. Die Temperaturmessung in den Röhrenöfen erfolgte mit Pt-Pt/Rh-Thermoelementen, die Steuerung der beiden Heizzonen durch digitale Messregler (Temperaturregler 808, 818 und 847) der Firma Eurotherm. Mit dieser Anordnung ließ sich eine Regelgenauigkeit von ± 2 °C erzielen. Die absolute Genauigkeit betrug ca. 10 °C. Zur besseren Reproduzierbarkeit der Ergebnisse von temperatursensitiven Experimenten wurde stets derselbe Ofen verwendet. Dabei wurden die Ampullen nach Möglichkeit immer an der gleichen Stelle im Ofen positioniert.

1.2.5 Durchführung von Transportexperimenten

Die vorbereiteten Ampullen werden zur Durchführung von Transportexperimenten mit einem langen Quarzrohr so in den Zweizonenofen hineingeschoben, dass nur ca. 1/3 der Ampullenlänge in der Temperaturzone der Senkenseite liegt. Dadurch soll eine Abscheidung des transportierten Bodenkörpers auf einer eng begrenzten Strecke erreicht werden.

Vor Beginn eines Transportexperiments wird bei einem sogenannten Klartransport (Reinigungstransport) die Ampulle für eine begrenzte Zeit in einen Temperaturgradienten gebracht, welcher der eigentlichen Transportrichtung entgegengesetzt ist. Durch diese Maßnahme wird eine Reinigung der Senkenseite erreicht, bei der verunreinigende Kristallisationskeime entfernt werden. Auf diese Weise werden bei den Transportexperimenten bessere Ergebnisse erzielt (Entstehung einer geringen Anzahl, dafür größerer Kristalle).

Nach Beendigung des Transportexperiments wird die Ampulle mit der Seite des Ausgangsbodenkörpers (Quelle) zuerst aus dem Ofen geschoben, so dass ein Teil der Gasphase hier kondensiert. Die noch heiße Ampulle wird dann auf ein V-förmig gebogenes Keramikgitter gelegt und die Quellenseite mit fließend kaltem Leitungswasser weiter gekühlt, bis alle aus der Gasphase kondensierbaren Bestandteile auf der Quellenseite niedergeschlagen sind. Es erfolgt eine weitere Abkühlung der gesamten Ampulle mit Leitungswasser auf Raumtemperatur und Abtrocknen mit Einmalhandtüchern. Vor dem Öffnen der Ampulle kann der Inhalt unter dem Mikroskop betrachtet und gegebenenfalls fotografiert werden.

Zum Öffnen wird die Ampulle mit einer Diamantschleifscheibe in der Mitte rundherum angeritzt und in zwei Hälften gebrochen. Liegen die transportierten Kristalle nur lose auf der Ampulleninnenwand (häufig bei Phosphiden), muss dabei mit großer Behutsamkeit vorgegangen werden.

Zur Gewinnung der Kristalle kommen verschiedene Verfahren zur Anwendung. Wenn Iod als Mineralisator/Transportmittel verwendet wurde, werden die Ampullenhälften mit Aceton ausgewaschen. Um Kristalle zu lösen, die fest an den Ampullenwänden haften, werden diese mit 5%iger Flusssäure eine Zeit lang behandelt. Die Flusssäure wird abdekantiert und die Kristalle mit demineralisiertem Wasser in ein PE-Becherglas gespült. Restliche, noch anhaftende Kristalle werden vorsichtig mit einem Spatel in das Becherglas hinein geschabt. Nach wiederholtem Waschen mit demineralisiertem Wasser und abschließendem Spülen mit Aceton werden die Kristalle im Trockenschrank zwei Stunden lang getrocknet und schließlich ausgewogen.

1.3 Untersuchungsmethoden

Bei den in dieser Arbeit verwendeten Substanzen handelt es sich bis auf wenige Ausnahmen um kristalline Verbindungen, die mittels Röntgenbeugung sowohl an pulverförmigen als auch an einkristallinen Proben charakterisiert wurden. Des Weiteren wurden einige ausgewählte Verbindungen mittels Remissionsspektroskopie und Einkristall UV/vis/nir-Spektroskopie charakterisiert. Außerdem wurde von einigen Verbindungen die katalytische Aktivität bei der direkten Oxidation von Methan zu Formaldehyd untersucht.

1.3.1 Röntgenographische Methoden

Die Wellenlänge von Röntgenstrahlung liegt im Bereich der interatomaren Abstände (ca. 0,5 - 10 Å). Bei der Wechselwirkung von Röntgenstrahlen mit kristalliner Materie kommt es zur Beugung der eingestrahlten Röntgenstrahlung an den Elektronenhüllen der dreidimensional, periodisch angeordneten Atome. Aus den hieraus resultierenden Interferenzmustern sind Rückschlüsse über die atomare Anordnung in den Substanzen möglich. Die Beugung von Röntgenlicht an kristalliner Materie folgt der BRAGG'SCHEN Gleichung [81] (Gl. 1.6).

$$n \cdot \lambda = 2 \cdot d_{\rm hkl} \cdot \sin \theta \tag{Gl. 1.6}$$

- *n* Beugungsordnung des Röntgenstrahls
- λ Wellenlänge des Röntgenstrahls
- d Netzebenenabstand
- θ Reflexionswinkel an der Netzebene

1.3.1.1 Röntgenpulveraufnahmen nach der Guinier-Methode

Die Identifizierung und Charakterisierung von pulverförmigen, kristallinen Substanzen erfolgte über *IP*-Guinier-Aufnahmen. Das Prinzip von Pulveraufnahmen beruht darauf, dass in den Proben die Kristallite zufällig orientiert sind, so dass alle möglichen Netzebenen in Reflexionsstellung zu liegen kommen. Beim Bestrahlen dieses Pulver mit monochromatischer Röntgenstrahlung entstehen Beugungskegel, die auf dem Film Beugungslinien erzeugen. Die Erzeugung der monochromatischen Röntgenstrahlung erfolgt durch Beugung von "weißem" Röntgenlicht (Bremsstrahlung und charakteristische Strahlung) an der Netzebenenschar $d_{hkl}(002)$ eines Monochromatorkristalls aus Tiefquarz.

Die Vorteile der Guiniertechnik liegen in vergleichsweise kurzen Belichtungszeiten, hoher Empfindlichkeit und sehr gutem Auflösungsvermögen von nebeneinander liegenden Interferenzen. Die zu untersuchenden Proben müssen wie folgt vorbereitet werden: Die kristalline Substanz wird in einem Achatmörser fein zerrieben, so dass ein mikrokristallines Pulver entsteht. Hierdurch wird eine perfekte Orientierungsstatistik aller Kristallkörnchen erzielt. Für die Aufnahmen wird jeweils ein Probenträger ("Guinierschieber", Abbildung 1.5), bestehend aus einem Messingplättchen, bei dem drei Felder ("Guinierfenster") ausgestanzt wurden, vorbereitet. Die "Guinierfenster" wurden an der Unterseite mit einem röntgenamorphen Klebestreifen (Magic Transparentfilm, Firma: Scotch) versehen, an dem die zu untersuchenden Substanzen anhaften. Die einzelnen Fenster werden mit unterschiedlichen Substanzen gefüllt. Das mittlere Fenster (B) wird mit dem zu untersuchenden Produkt (Pulver) bestrichen, während die beiden äußeren Fenster (A, C) einerseits mit einem Gemenge aus dem Produkt und Standard (α -Quarz) und andererseits mit dem Standard bestrichen werden.

Abbildung 1.5 "Guinierschieber" [281].

Mit Hilfe des Standards wird bei der Filmauswertung eine Korrektur von Fehlern in den Reflexpositionen vorgenommen. Solch ein Fehler kann durch das ungenaue Einlegen des Films in die Filmkassette entstehen sowie durch nicht planes Aufliegen des Films auf der Halteplatte beim Auslesevorgang.

Die in dieser Arbeit angefertigten Pulveraufnahmen wurden mit einer Guinierkamera vom Typ FR-552 der Firma Enraf-Nonius (Delft) aufgenommen. Als Röntgenquelle diente eine Kupferröntgenröhre, die Cu-K α_1 -Strahlung mit einer Wellenlänge von $\lambda = 154,056$ pm erzeugt. Die Belichtungszeit der Filme betrug zwischen 10 bis 15 min bei einer Betriebsspannung der Röntgenröhre von 40 kV und einer die Stromstärke von 25 mA. An Stelle eines herkömmlichen Röntgenfilms wurden sogenannte Imaging-Plates [82] (Image-Plate BAS-MS 2325, Fuji Photo Film Co. Ltd.) als Detektoren verwendet. Diese Messmethode beruht auf einer Phosphoreszenzanregung auf der Imaging-Plate. Nach der Belichtung wurde sie mit einem Scanner (Bio-Imaging-Analyser IPR1800, Firma Fuji Photo Film Co. Ltd.) mittels Lasertechnik ausgelesen und mit den Computerprogrammen BAS-Reader [293] und AIDA [291] in eine xy-Datei umgewandelt. Aus dieser Textdatei wurde mit Hilfe des Programms OriginPro 6.1G [300] ein Guinierdiagramm erstellt. Zum Schluss wurden die Informationen auf der Imaging-Plate durch UV-Licht gelöscht, so dass das Medium für weitere Aufnahmen zur Verfügung stand.

Mit den so erzeugten Diffraktogrammen wurden kristalline Feststoffe auf ihre Zusammensetzung geprüft. Außerdem wurden kristallographisch bereits charakterisierte Stoffe durch den Vergleich von simulierten Strichdiagrammen mit dem aufgenommenen Diffraktogramm identifiziert. Die Strichdiagramme wurden aus den kristallographischen Daten der ICSD-Datenbank [295] mit Hilfe der Computerprogramme LAZY-PULVERIX [298] und GINA [296] erstellt.

1.3.1.2 Einkristalluntersuchungen

Auswahl und Vorbereitung eines Kristalls

Nur Kristalle, die bestimmte Kriterien erfüllen, sind für die röntgenographische Einkristalluntersuchung geeignet. Damit der gesamte Kristall komplett vom Röntgenstrahl erfasst werden kann, muss er kleiner als der verwendete Röntgenstrahldurchmesser (0,8 mm) sein. Um Absorptions- und Extinktionseffekte zu minimieren, sollten die Kristalle nicht größer als ca. 0,3 mm sein. Der ideale Kristall ist isometrisch gewachsen und weist gut ausgebildete Flächen auf. Die Auswahl der Kristalle erfolgte unter einem Binokularmikroskop, das mit einem Polarisationsfilter ausgestattet war, um das Vorhandensein von Aufwachsungen und Verwachsungsgrenzen auszuschließen. Geeignete Kristalle wurden mit Sekundenkleber an die Spitze eines sehr dünnen Kieselglasfadens geklebt, welcher mit Hilfe von Bienenwachs an einem Messingträger befestigt wurde, der zur Montage in einem Goniometerkopf geeignet war.

Einkristallmessungen mit dem Flächendetektor

Im Gegensatz zu der früher verwendeten Zählrohrtechnik des Vierkreisdiffraktometers, wo jeder Reflex einzeln vermessen wurde, können mit einem Flächendetektor viele Reflexe simultan erfasst werden.

Das verwendete κ -CCD-System der Firma Nonius besitzt einen mit Gadoliniumoxidsulfid beschichteten Detektor, der zur Datenerfassung über eine Glasfaseroptik mit einem *CCD*-Chip (*C*harge *C*oupled *D*evice) verbunden ist. Die Technik entspricht jener in Digitalkameras. Damit ist eine sehr schnelle Registrierung der Reflexe möglich, allerdings gibt es Schwierigkeiten beim Vermessen von intensitätsschwachen (sehr kleinen oder schwach beugenden) Kristallen, da der *CCD*-Chip gegenüber dem klassischen Zählrohr ein höheres elektronisches Grundrauschen aufweist.

Absorptionskorrektur

Auf dem Weg durch den Kristall wird die Intensität der Röntgenstrahlung durch verschiedene physikalische Phänomene abgeschwächt. Die Absorptionseffekte steigen mit der vierten Potenz der Ordnungszahl und der dritten Potenz der Wellenlänge der Röntgenstrahlung an. Der lineare Absorptionskoeffizient μ lässt sich aus atomaren Inkrementen und der Dichte berechnen, wodurch sich die Absorption berechnen lässt (Gl. 1.7).

$$\frac{\mathrm{d}I}{I} = \mu \cdot \mathrm{d}x \tag{Gl. 1.7}$$

d*I*/*I* Absorption

 μ linearer Absorptionskoeffizient

x Weg durch den Kristall

Besonders bei stark anisotrop gewachsenen Kristallen (Plättchen und Nadeln) sowie bei Substanzen mit Schweratomen ist eine Absorptionskorrektur des Datensatzes notwendig. Zur Korrektur stehen verschiedene Methoden zur Verfügung. Im Rahmen dieser Arbeit wurde die semiempirische Methode der Absorptionskorrektur mit äquivalenten Reflexen [83] verwendet.

Bei Messsystemen mit Flächendetektor (wie beim verwendeten κ -CCD) werden viele Reflexe unter unterschiedlichen Orientierungen des Kristalls zum Röntgenstrahl mehrfach aufgezeichnet. Hinzu kommen die symmetrieäquivalenten Reflexe, die ebenfalls bei den verschiedenen Orientierungen zum Röntgenstrahl mehrfach gemessen werden. Ein Vergleich der Intensitäten liefert ein Absorptionsprofil.

1.3.1.3 Auswertung der Intensitätsmessungen

Die Verteilung der Atome in einem Kristall lässt sich als periodische Funktion der Elektronendichte beschreiben. Die Elektronendichte an einer bestimmten Stelle in der Elementarzelle lässt sich in Form einer dreidimensionalen Fourierreihe ausdrücken (Gl. 1.8).

$$\rho(x, y, z) = \frac{1}{V} \sum_{h,k,l=-\infty}^{+\infty} F_{hkl} \cdot e^{[-\pi(hx+ky+lz)]}$$
(Gl. 1.8)

- $\rho(x, y, z)$ Elektronendichtefunktion über dem Kristallraum
- *x*, *y*, *z* Koordinaten des Atoms in der Elementarzelle
- V Volumen der Elementarzelle
- *h*, *k*, *l* MILLERSCHE Indizes

Der Anteil der gemessenen Intensität, der sich alleine auf die Struktur zurückführen lässt, wird als Strukturfaktor oder Strukturamplitude F_{hkl} bezeichnet (Gl. 1.9). Die Intensität des gebeugten Röntgenstrahls ist direkt proportional zum Quadrat des Strukturfaktors (Gl. 1.10).

$$F_{hkl} = \sum_{j} f_{j} \cdot e^{[2\pi(hx_{j} + ky_{j} + lz_{j})]} = |F_{hkl}| \cdot e^{i\varphi}$$
(Gl. 1.9)

 F_{hkl} Strukturfaktor f_j Atomformfaktor

$$I \propto \left| F_{hkl} \right|^2 \tag{Gl. 1.10}$$

Da bei den Messungen nur Intensitäten bestimmt werden können, kennt man nur den Betrag des Strukturfaktors, die Phaseninformation geht bei einem Beugungsexperiment verloren. Zur Ableitung der Phasen aus den Beugungsdaten ("Phasenproblem") gibt es die Möglichkeit, ein kristallchemisch abgeleitetes Strukturmodell zu verwenden, die Struktur mit der PATTERSON FUNKTION [84, 85] oder den *Direkten Methoden* [86] zu lösen.

Für Strukturen, die wenige schwere Atome enthalten, ist die Patterson- oder auch Schweratommethode geeignet. Enthält eine Verbindung viele Atome mit ähnlichen Atomformfaktoren, sind die *Direkten Methoden* von Vorteil. Bei diesem Verfahren wird versucht, einen Zusammenhang zwischen den Intensitäten von Reflexgruppen und den Phasen herzustellen. KARLÉ und HAUPTMANN [87] zeigten, dass der normierte Strukturfaktor E_{a+b} einer Netzebenenschar mit hoher Wahrscheinlichkeit sehr groß ist, wenn zwei relativ große Strukturfaktoren E_a und E_b mit gleichem Vorzeichen existieren. Bei entgegengesetztem Vorzeichen der Strukturfaktoren ist der resultierende Strukturfaktor minimal. Bei zentrosymmetrischen Strukturen reduziert sich so das Problem auf die Bestimmung der Vorzeichen. Über Permutationszyklen kann die Phaseninformation mit einer gewissen Wahrscheinlichkeit abgeleitet und so auf mögliche Startlagen zurückgeschlossen werden.

Die Verfeinerung der erhaltenen Atomkoordinaten erfolgte mit dem Programm SHELXL-97 [302] nach der Methode der kleinsten Fehlerquadrate. Ein Maß für die Güte einer Strukturverfeinerung stellt der sogenannte *R*-Wert dar. Das Programm SHELXL-97 [302] berechnet die *R*-Werte entsprechend den nachfolgenden Gleichungen (Gl. 1.11 und 1.12). Ein weiteres Qualitätsmaß für die Strukturverfeinerung ist der "Goof"-Wert ("goodness of fit"), berechnet nach Gleichung 1.14, der Werte möglichst nahe um 1 annehmen sollte.

Neben den reinen Gütefaktoren sind zur Beurteilung der Richtigkeit eines Strukturmodells weitere Faktoren zu berücksichtigen. So müssen für ein schlüssiges Strukturmodell sinnvolle interatomare Abstände, Winkel, plausible isotrope beziehungsweise anisotrope

Temperaturfaktoren, geringe Restelektronendichte und eine niedrige Korrelation zwischen unabhängigen Parametern vorliegen.

$$R_{1} = \frac{\sum \left\| F_{o} \right| - \left| F_{c} \right\|}{\sum \left| F_{o} \right|}$$
(Gl. 1.11)

$$wR_{2} = \sqrt{\frac{\sum w (F_{o}^{2} - F_{c}^{2})^{2}}{\sum w (F_{o}^{2})^{2}}}$$
(Gl. 1.12)

$$w = \frac{1}{\sigma^2 F_o^2 + (a \cdot P)^2 + b \cdot P} \quad \text{mit} \quad P = \frac{1}{3} \left(F_0^2 + 2F_c^2 \right)$$
(Gl. 1.13)

 R_1 R-WertwWichtungsschema wR_2 gewichteter R-Wert F_o beobachteter Strukturfaktor F_c berechneter Strukturfaktor σ Standardabweichunga, bVerfeinerungsparameter des Wichtungsschemas

$$S = \frac{\sum w \left(F_o^2 - F_c^2\right)^2}{n - p}$$
(Gl. 1.14)

S Goof-Wert

n Anzahl der Reflexe

p Gesamtanzahl der verfeinerten Parameter
1.3.2 Energiedispersive Röntgenfluoreszenzanalyse

Die Bestimmung der qualitativen und quantitativen Zusammensetzung von Feststoffen ist mit der energiedispersiven Röntgenfluoreszenzanalyse (EDX) [88] möglich. Zur Messung wurde ein Rasterelektronenmikroskop vom Typ DSM 940 der Firma Zeiss, ausgestattet mit einem EDX Detektor PV 9800 der Firma EDAX, verwendet.

Für die Messung sollten die Kristalle eine glatte Oberfläche aufweisen und die Pulver sollten fein homogenisiert sein. Die zu untersuchenden Proben werden mit einem Elektronenstrahl beschossen, wodurch Elektronen aus den inneren Schalen der Atome herausgeschlagen werden. Die entstandenen Lücken werden durch Elektronen aus höheren Schalen besetzt.

Bei diesen Übergängen kommt es zur Emission von elementspezifischer, charakteristischer Röntgenstrahlung, die von einem EDX-Detektor registriert wird. Ein Vergleich der integralen Intensitäten liefert die chemische Zusammensetzung der untersuchten Probe.

1.3.3 Spektroskopische Untersuchungsmethoden

Bei allen spektroskopischen Methoden wird die Wechselwirkung zwischen elektromagnetischer Strahlung und der Probe gemessen. Mit Hilfe der UV/vis/nir-Absorptionsspektroskopie werden Elektronenübergänge erfasst, die sich durch Absorption elektromagnetischer Wellen im Bereich des UV-Lichts bis hin zum nahen Infrarot (nir) anregen lassen. Da das sichtbare Licht (vis für *vis*ible = sichtbar) innerhalb dieses Bereiches liegt, verursachen die vorgenannten Übergänge die Farbigkeit vieler Übergangsmetall-verbindungen.

Die Messergebnisse der UV/vis/nir-Spektroskopie geben Aufschluss über die farbgebenden Zentren (Chromophore), deren Ligandenfeldaufspaltung und somit auch über die chemische Bindung einer Verbindung.

1.3.3.1 Remissionsspektroskopie

Bei der Pulverremissionsspektroskopie wird die Lichtabsorption diffus streuender Stoffe untersucht. Mit dieser Methode werden die genauen Lagen der Absorptionsbanden einer Verbindung gewonnen und somit ein quantifizierter Ausdruck über die Farbe dieser Verbindung erhalten.

Für die Messungen wurde ein Spektralphotometer (Cary 2400) der Firma Varian in einem Wellenlängenbereich von $200 \le \lambda \le 2000$ nm sowie ein von der Firma OLIS (On-Line Instrument Systems Inc.) modifiziertes Spektralphotometer Cary 17 in einem Wellenlängenbereich von $185 \le \lambda \le 2600$ nm verwendet. Als Lichtquelle dient jeweils eine Halogenbirne, als Monochromator ein Gitter. Das aus dem Monochromator austretende Licht gelangt über ein Spiegelsystem auf die Probe. Das senkrecht zur Probenfläche gestreute Licht trifft auf den Detektor. Je nach Wellenlängenbereich und verwendetem Spektrometer werden unterschiedliche Detektoren, im UV/vis-Bereich Photomultiplier und im IR-Bereich PbS- und InP-Halbleiter, eingesetzt. Der schematische Aufbau einer Messzelle eines Remissionsspektrometers ist in Abbildung 1.6 dargestellt.

Für die Messungen wurden ca. 200 mg der jeweils phasenreinen Proben verwendet. Als Weißstandard diente BaSO₄-Pulver (Reinheit p.A., Firma Merck). Um eine zu starke Absorption bei intensiv farbigen Proben zu verhindern, wurde BaSO₄-Pulver zur Verdünnung benutzt. Der Remissionsgrad wird mit Hilfe der MUNK-KUBELKA-Funktion [89] entsprechend der Gleichung 1.15 berechnet und zur graphischen Darstellung gegen die Wellenlänge beziehungsweise Wellenzahl aufgetragen.

Abbildung 1.6 Schematischer Aufbau einer Messzelle [103]. S = Spiegel, L = Linsensystem, M = Detektor, B = Blendenschieber, RL = gestreutes Licht und P = Probe.

$$F(R_{\infty}) = \frac{(1 - R_{\infty})^2}{2 \cdot R_{\infty}} \quad \text{mit} \quad R_{\infty} = \frac{R_{\text{Pr}}}{R_{\text{St}}} \tag{Gl. 1.15}$$

- $F(R_{\infty})$ Reflexionsgrad
- $R_{\rm Pr}$ Reflexion der Probe
- $R_{\rm St}$ Reflexion des Standards

1.3.3.2 Einkristall-UV/vis/nir-Spektroskopie

Die Messungen wurden durchgeführt mit einem an der Research School of Chemistry (Canberra, Australien) modifizierten CARY 17 Mikroeinkristall UV/vis/nir-Spektralphotometer [90]. Als Lichtquelle wird eine spannungsstabilisierte Halogenbirne verwendet, als Detektor für den UV/vis-Bereich ($12000 - 30000 \text{ cm}^{-1}$) dient ein Photomultiplier und für den nahen Infrarotbereich ($6000 - 16000 \text{ cm}^{-1}$) ein mit flüssigem Stickstoff gekühlter Germaniumhalbleiterdetektor. Ein eingebauter drehbarer Polarisationsfilter ermöglicht Messungen bei horizontaler oder vertikaler Polarisation des eingestrahlten Lichts.

Abbildung 1.7 Schematischer Aufbau des Mikroeinkristall UV/vis/nir-Spektralphotometers [90].

Dieses Spektralphotometer funktioniert nach dem Einstrahlprinzip, daher müssen nacheinander und separat eine Referenzmessung (I_0) und die Probenmessung (I) durchgeführt werden. Das Verhältnis I/I_0 wird als Transmission beziehungsweise spektrales Absorptionsmaß bezeichnet.

Die Extinktion wird mit Hilfe des LAMBERT-BEER'SCHEN Gesetzes [91] entsprechend der Gleichung 1.16 aus der Transmission ermittelt. Zur graphischen Darstellung wird die Extinktion gegen die Wellenlänge beziehungsweise Wellenzahl aufgetragen.

$$E = -\log \frac{I}{I_0} = \varepsilon \cdot c \cdot l \tag{Gl. 1.16}$$

- *I*_o Intensität des eingestrahlten Lichtes (Referenzmessung)
- *I* Intensität des austretenden Lichtes (Probenmessung)
- ε molarer spektraler Absorptionskoeffizient
- *c* Konzentration
- *l* Schichtdicke

1.3.4 Universelle Katalysatorentestapparatur

Die katalytischen Tests fanden in Bratislava (Slowakei) am Department of Organic Technology, Slovak University of Technology, in der Arbeitsgruppe von Prof. M. Hronec statt.

In einem auf 660 °C elektrisch computergesteuert beheizten Durchflussreaktor wurden unter Atmosphärendruck die katalytischen Tests zur partiellen Oxidation von Methan zu Formaldehyd durchgeführt (Abbildung 1.8).

Der aus Kieselglas bestehende Festbettreaktor (c) wird mit 0,5 g bis 1,0 g Katalysatormaterial (Korngröße 0,6 mm bis 1,0 mm) befüllt. Die Flussrate von Methan und OX-Gas (eine Mischung aus 74,25% Sauerstoff, 0,75% Lachgas und 25% Helium) ist variabel und wird durch computergesteuerte Gasdurchflussmesser (a) kontrolliert und protokolliert. Unterhalb des Katalysatorfestbetts wird das Reaktionsgasgemisch durch Einspritzen von kaltem destillierten Wasser (e) (Flussrate 4 mL \cdot h⁻¹) abgeschreckt. Damit werden Folgereaktionen unterbunden. Die flüssigen Reaktionsprodukte werden in einem eisgekühlten 10 mL Spitzkolben (g), in dem 3 mL destilliertes Wasser, versetzt mit etwas Na₂SO₃, vorgelegt werden, aufgefangen.

Vor dem eigentlichen Test wurde der Katalysator eine Stunde lang bei 660 °C und einem Volumenstrom von 22 mL \cdot h⁻¹ mit dem OX-Gas vorbehandelt. Die Zusammensetzung der Reaktanden und des Reaktionsgemisches wurde während eines Zeitraumes von sechs Stunden mit Hilfe von Gaschromatographen (Shimadzu GC 17 und Chrompack CP9001) unter Verwendung von Wärmeleitfähigkeits- und Flammenionisationsdetektoren analysiert. Zur Trennung wurden Porapack T (150 \cdot 3,6 mm), Carbosphere (200 \cdot 3,6 mm) und Porapack QS (180 \cdot 3 mm) als Chromatographiesäulen verwendet. Die Eichung der Chromatographen erfolgte für jede einzelne Komponente mit Hilfe der *absoluten Kalibration*.

Der Methanumsatz wurde aus der Massenbilanz der erhaltenen Produkte und dem eingesetzten Methan errechnet. Die Selektivität wurde für jedes kohlenstoffhaltige Produkt berechnet.

Abbildung 1.8 Schematischer Aufbau (a) und Foto (b) der verwendeten universellen Katalysatorentestapparatur. Computergesteuerter Gasvolumenstrommesser für CH_4 und OX-Gas (1), computergesteuerter Röhrenofen (2) mit Festbettreaktor aus Kieselglas (6), Wassereinspritzung und weitere Kühlung (3), eisgekühltes mit Na₂SO₃-Lösung versetztes Sammelgefäß (4), Temperatursensor (5) im Festbettreaktor, Reaktionsgasaustritt in den Abzug (7).

1.4 Ausgangsverbindungen

Für die Durchführung der Versuche dieser Arbeit wurden die in Tabelle 1.2 aufgeführten käuflichen Chemikalien verwendet. Aus den käuflichen Ausgangsverbindungen wurden die in der Literatur bekannten nasschemisch zugänglichen "volloxidierten"¹⁾ Phosphate (Tabelle 1.3) sowie die Phosphide (Tabelle 1.4) und die "reduzierten"²⁾ Phosphate (Tabelle 1.5) synthetisiert. Diese dienten dann als Edukte für die weitergehenden Synthesen oder wurden für die Untersuchungen zur katalytischen Oxidation von Methan zu Formaldehyd verwendet.

Die "volloxidierten" Phosphate (Tabelle 1.3) wurden in der Regel durch Eindampfen salpetersaurer Metallnitratlösungen mit der entsprechenden Menge Phosphorsäure oder Diammoniumhydrogenphosphat als Phosphatquelle dargestellt. Der Trockenrückstand wurde anschließend bei Temperaturen um 800 °C an Luft geglüht.

Zur Synthese der **Übergangsmetallphosphide** (Tabelle 1.4) wurden Metallpulver, die entsprechenden Mengen Phosphor und Iod (50-200 mg) als Mineralisator in evakuierten Kieselglasampullen eingeschmolzen, eine Vorreaktion mit dem Bunsenbrenner durchgeführt und anschließend eine Woche lang bei 800°C getempert. Das so erhaltene Rohprodukt wurde in eine neue Ampulle überführt und in einem anschließenden chemischen Transport (TM: Iod 50-200 mg; Temperaturgradient siehe (Tabelle 1.4) gereinigt.

Die "reduzierten" Phosphate wurden aus "volloxidierten" Phosphaten mit Metall oder Metallphosphid als Reduktionsmittel in Gegenwart von 20-50 mg Iod als Mineralisator in geschlossenen Kieselglasampullen bei 800 °C für 5-7 Tage erhalten (Tabelle 1.5).

¹⁾ Unter "volloxidiert" werden im weiteren Verbindungen bezeichnet, die weder beim Glühen an Luft noch unter dem Einfluss von erhöhten Chlordrücken in Kieselglasampullen (in nennenswertem Umfang) oxidiert werden.

²⁾ Dementsprechend lassen sich "reduzierte" Verbindungen durch die eben genannten Maßnahmen durch Luftsauerstoff oder Chlorgas oxidieren.

Substanz	Hersteller	Reinheit
Aceton	Merck, Darmstadt	99 %
Ammoniumchlorid	Merck, Darmstadt	99,8 %
Ammoniummetavanadat	Riedel de Haën	rein
Argon	Praxair	99,999 %
Bariumsulfat	Merck, Darmstadt	p.A.
Chrom, Pulver	ChemPur, Karlsruhe	99,99 %
Chrom(VI)-oxid	Acros	99 %
Chrom(III)-nitratnonahydrat	Merck, Darmstadt	p.A.
Diammoniumhydrogenphosphat	Riedel de Haën	99 %
Eisen, Pulver	Riedel de Haën	p.A.
Flusssäure	Merck, Darmstadt	38-40 %, reinst
Gallium, Stücke	Carl Roth, Karlsruhe	99,9 %
Hydrazinhydratlösung	Merck, Darmstadt	80 %, zur Synthese
Indium, Pulver	ChemPur, Karlsruhe	99,99 %
Iod	Acros, Geel	p.A.
Kaliumhydrogensulfat	Merck, Darmstadt	p.A.
Kieselglas	GVB, Aachen	
Kobalt, Pulver	Riedel de Haën	98,5 %
Kupfer, Pulver	Merck, Darmstadt	reinst
Magnesium, Pulver	Fluka	p.A.
Mangan, Pulver	Merck, Darmstadt	99 %
Natriumhydroxid	Merck, Darmstadt	p.A.
Nickel, Pulver	Aldrich	99,99 %
Orthophosphorsäure	Merck, Darmstadt	85-88 %, reinst
Palladium, Pulver	ChemPur, Karlsruhe	99,9 %
Palladiumchlorid	ChemPur, Karlsruhe	p.A.
Phosphor, rot	Knapsack Electronic	Electronic grade 6N
Phosphorige Säure	Fluka	p.A.
Platinchlorid	ChemPur, Karlsruhe	p.A.
Rhodiumiodid	ChemPur, Karlsruhe	p.A.
Salpetersäure	Merck, Darmstadt	65 %, reinst
Salzsäure	Riedel de Haën	37 %, p.A.
Sauerstoff	Praxair	99,9 %
Tiefquarz	Merck, Darmstadt	p.A.
Titan, Pulver	Fluka	>98,5%
Titandioxid (Anatas)	Fluka	99%
Titantetrachlorid	Aldrich	99,995%
Vanadium(V)-oxid	Acros	98%
Vanadium, Pulver	Aldrich	99,5 %
Wasserstoff	Praxair	99,9 %
Wolfram(VI)-oxid	Fluka	99,9%
Zink, Pulver	Grüssing	rein

Tabelle 1.2Verwendete kommerzielle Chemikalien.

Verbindung	Syntheseweg / Synthesebedingungen	Literatur
$Mg_3(PO_4)_2$	aus salpetersaurer Lösung ^{a)}	[92]
TiP ₂ O ₇	Hydrolyse von TiCl ₄ in H ₃ PO ₄ liefert H ₂ TiP ₂ O ₈ ·H ₂ O, dieses wird bei 800 °C-1000 °C zum Entwässern geglüht.	[93, 94]
α -VOPO ₄	Eindampfen einer Lösung von NH_4VO_3 und $(NH_4)_2HPO_4$ und Glühen des Rückstandes	[95, 3]
β -VOPO ₄	Hydrolyse von V_2O_5 in H_3PO_4 liefert $VOPO_4$ ·2 H_2O , dieses wird bei 500 °C entwässert.	[96]
α-CrPO ₄	Fällung von CrPO ₄ ·3,5H ₂ O durch Reduktion phosphorsaurer CrO ₃ - Lösung mit Hydrazinhydratlösung und Verglühen des Niederschlags	[97, 98]
β -CrPO ₄	aus salpetersaurer Lösung ^{a)}	[99 ,100]
$Cr_4(P_2O_7)_3$	aus salpetersaurer Lösung ^{a)}	[101]
Cr(PO ₃) ₃ (<i>C</i> -Typ)	aus salpetersaurer Lösung ^{a)}	[102]
$Mn_3(PO_4)_2$	aus salpetersaurer Lösung ^{a)}	[103]
FePO ₄	aus salpetersaurer Lösung ^{a)}	[104]
$Fe_4(P_2O_7)_3$	aus salpetersaurer Lösung ^{a)}	[105]
Fe(PO ₃) ₃ (<i>C</i> -Typ)	aus salpetersaurer Lösung ^{a)}	[106, 107]
$Co_3(PO_4)_2$	aus salpetersaurer Lösung ^{a)}	[108, 109]
$Ni_3(PO_4)_2$	aus salpetersaurer Lösung ^{a)}	[110, 111]
$Cu_3(PO_4)_2$	aus salpetersaurer Lösung ^{a)}	[112]
$Cu_2P_2O_7$	aus salpetersaurer Lösung ^{a)}	[113, 114]
$Zn_3(PO_4)_2$	aus salpetersaurer Lösung ^{a)}	[115]
$Pd_2P_2O_7$	Eindampfen salpetersaurer Metallnitratlösung, versetzt mit H_3PO_4 und Glühen des Rückstandes bei 800°C	[116, 117]
InPO ₄	aus salpetersaurer Lösung ^{a)}	[101]
$In_4(P_2O_7)_3$	aus salpetersaurer Lösung ^{a)}	[118]

Tabelle 1.3 Darstellung der in dieser Arbeit als Edukte "nasschemisch" verwendeten

 "volloxidierte" Phosphate.

^{a)} Syntheseweg: Eindampfen salpetersaurer Metallnitratlösung versetzt mit H₃PO₄ oder (NH₄)₂HPO₄ als Phosphatquelle und anschließendes Glühen bei 800°C.

Verbindung	Edukte	Temperaturgradient	Literatur
TiP	$Ti + \frac{1}{4}P_4$	$800 \rightarrow 900 \ ^{\circ}C$	[119, 120]
VP	$V + \frac{1}{4} P_4$	$900 \rightarrow 1000 \ ^{\circ}C$	[121, 122]
CrP	$Cr + \frac{1}{4}P_4$	$1050 \rightarrow 950 \ ^{\circ}\mathrm{C}$	[120, 123]
FeP	$Fe + \frac{1}{4}P_4$	$850 \rightarrow 600 \ ^{\circ}\mathrm{C}$	[120, 124]

 Tabelle 1.4
 Darstellung der in dieser Arbeit als Edukte eingesetzten Phosphide.

 Tabelle 1.5
 Darstellung der in dieser Arbeit als Edukte verwendeten "reduzierten" Phosphate.

Verbindung	Syntheseweg	Literatur
TiPO ₄	$4 \operatorname{TiO}_2 + 4 \operatorname{TiP}_2 \operatorname{O}_7 + \operatorname{TiP} \to 9 \operatorname{Ti}^{\mathrm{III}} \operatorname{PO}_4$	[125]
VPO ₄	$4 \text{ VOPO}_4 + \text{VP} \rightarrow 5 \text{ V}^{\text{III}}\text{PO}_4$	[125]
	$VOPO_4 + H_2 \rightarrow VPO_4 + H_2O$	
$V_4(P_2O_7)_3$	$2V_2O_5 + 2 \operatorname{H_3PO_4} + 4 \operatorname{H_3PO_3} \rightarrow V^{\mathrm{III}}_4(P_2O_7)_3 + 9 \operatorname{H_2O}$	[126]
$Cr_2P_2O_7$	$7 \operatorname{Cr}^{\mathrm{III}} \mathrm{PO}_4 + \mathrm{Cr} \mathrm{P} \rightarrow 4 \operatorname{Cr}^{\mathrm{II}}_2 \mathrm{P}_2 \mathrm{O}_7$	[113, 127]
$Cr_7(PO_4)_6$	$6 \operatorname{Cr^{III}PO_4} + \operatorname{Cr^0} \to \operatorname{Cr^{II}_3Cr^{III}_4}(\operatorname{PO_4})_6$	[12]
$Cr_{6}(P_{2}O_{7})_{4}$	$Cr^{III}_{4}(P_2O_7)_3 + Cr^{II}_{2}P_2O_7 \rightarrow Cr^{II}_{2}Cr^{III}_{4}(P_2O_7)_4$	[13]
$Fe_3(PO_4)_2$	$2 \operatorname{Fe}^{\mathrm{III}} \mathrm{PO}_4 + \operatorname{Fe}^0 \to \operatorname{Fe}^{\mathrm{II}}_{3}(\mathrm{PO}_4)_2$	[128]
$Fe_2P_2O_7$	$7 \text{ Fe}^{\text{III}}\text{PO}_4 + \text{FeP} \rightarrow 4 \text{ Fe}^{\text{II}}_2\text{P}_2\text{O}_7$	[113, 129]
$Fe_7(PO_4)_6$	$6 \operatorname{Fe}^{\mathrm{III}}_{\mathrm{III}} \operatorname{PO}_4 + \operatorname{Fe}^0_{\mathrm{III}} \rightarrow \operatorname{Fe}^{\mathrm{III}}_{\mathrm{III}}_{\mathrm{III}} \operatorname{Fe}^{\mathrm{III}}_{\mathrm{III}}_{\mathrm{III}}(\operatorname{PO}_4)_{\mathrm{G}}$	[16]
	$4 \operatorname{Fe}^{\mathrm{III}}\operatorname{PO}_4 + \operatorname{Fe}^{\mathrm{II}}_{3}(\operatorname{PO}_4)_2 \longrightarrow \operatorname{Fe}^{\mathrm{II}}_{3}\operatorname{Fe}^{\mathrm{III}}_{4}(\operatorname{PO}_4)_6$	
$Fe_{3}(P_{2}O_{7})_{2}$	$\operatorname{Fe}^{\operatorname{III}}_{4}(P_2O_7)_3 + \operatorname{Fe}^{\operatorname{II}}_{2}P_2O_7 \rightarrow 2 \operatorname{Fe}^{\operatorname{III}}_{4}\operatorname{Fe}^{\operatorname{III}}_{2}(P_2O_7)_2$	[17]
	$2 \text{ Fe}^{III}_{4}(P_2O_7)_3 + \text{Fe}^{0} \rightarrow 3 \text{ Fe}^{II}\text{Fe}^{III}_{2}(P_2O_7)_2$	
$Fe_7(P_2O_7)_4$	$Fe^{III}_{4}(P_2O_7)_3 + 5 Fe^{II}_{2}P_2O_7 \rightarrow 2 Fe^{II}_{5}Fe^{III}_{2}(P_2O_7)_4$	[130, 18]
	$4 \text{ Fe}^{III}_{4}(P_{2}O_{7})_{3} + 5 \text{ Fe}^{0} \rightarrow 3 \text{ Fe}^{II}_{5}\text{Fe}^{III}_{2}(P_{2}O_{7})_{4}$	

SPEZIELLER TEIL

Beiträge zur Kristallchemie ternärer Orthophosphate vom 2 Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp

2.1 Kenntnisstand zu Beginn der Arbeit

Als erste Verbindung dieses Strukturtyps wurde 1980 $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ [16] beschrieben. Seitdem ist eine große Anzahl isotyper Orthophosphate kristallographisch charakterisiert worden (Tabelle 2.1).

	Ti ³⁺	V ³⁺	Cr ³⁺	Fe ³⁺	In ³⁺
Mg ²⁺	1990 [131]		1997 [132]		1998 [28]
Cr ²⁺			1993 [12]		
Mn ²⁺				1989 [133] ^{a)}	
Fe ²⁺				1980 [16]	
Co ²⁺			1998 [28], 2000 [134]	1987 [135], 1989 [133] ^b	1998 [28]
Ni ²⁺			1998 [28]	1992 [136] ^{c)}	1998 [28]
Cu ²⁺			1997 [132], 2000 [134]	2000 [134], 2000 [137]	
Zn ²⁺		1995 [138]	1997 [132]	1998 [28]	1998 [28]

Tabelle 2.1 Orthophosphate $A^{II}_{3}B^{III}_{4}(PO_4)_6$. Übersicht zum Kenntnisstand zu Beginn der vorliegenden Arbeit.

^{a)} Mittels Neutronenbeugung gefundene Zusammensetzung [133] ist $Mn_{2,06}^{II}Fe_{0,94}^{II}Fe_{14}^{II}(PO_4)_6$. ^{b)} Mittels Neutronenbeugung gefundene Zusammensetzung [133] ist $Co_{2,9}^{II}Fe_{0,1}^{II}Fe_{14}^{III}(PO_4)_6$.

^{c)} Reale Zusammensetzung ist nach [136] Ni^{II}_{2.75}Fe^{II}_{0.25}Fe^{III}₄(PO₄)₆.

Der systematische Name für $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ nach IUPAC ist Tri-eisen(II)-tretra-eisen(III)hexakis(orthophosphat). Zur besseren Lesbarkeit werden in dieser Arbeit die Namen in verkürzter Schreibweise benutzt. Dabei wird immer zuerst das zweiwertige und dann das dreiwertige Kation genannt, z. B. Eisen(II)-eisen(III)-orthophosphat. Das erste in der Literatur beschriebene Mineral mit dieser Struktur ist Howardevansit [139] NaCuFe₂(VO₄)₃ (Na₂Cu^{II}₂Fe^{III}₄(VO₄)₆), das 1988 zusammen mit dem Mineral Lyonsit [140] α-Cu₃Fe₄(VO₄)₆ in Fumarolen im Kratergipfel des Vulkans Izalco in El Salvador entdeckt wurde.

2.1.1 Beschreibung des Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyps

Die Verbindungen des $\text{Fe}^{II}_{3}\text{Fe}^{III}_{4}(\text{PO}_{4})_{6}$ -Strukturtyps kristallisieren triklin in der Raumgruppe $P\bar{1}$ mit einer Formeleinheit pro Elementarzelle. Die Gitterkonstanten sind $a \approx 9,3$ Å, $b \approx 8,0$ Å, $c \approx 6,4$ Å, $a \approx 101$ °, $\beta \approx 109$ °, $\gamma \approx 105$ ° (Tabelle 2.24). In diesem Strukturtyp besetzten die zweiwertigen Kationen A^{II} und die dreiwertigen Kationen B^{III} vier verschiedene kristallographische Lagen M1 bis M4.

Dabei werden zwei von diesen Metalllagen durch zwei A^{II} -Ionen und die anderen von B^{III} -Ionen besetzt. Drei weitere Lagen werden von Phosphor und zwölf von Sauerstoff besetzt. Nur die Lage M2 liegt auf einem Inversionszentrum (Wyckoff-Symbol 1*e*). Alle übrigen Atome befinden sich auf allgemeinen Lagen mit der Punktsymmetrie 1 (Wyckoff-Symbol 2*i*). Bei idealer Verteilung besetzen die B^{III} -Kationen die Lagen M1 und M3 und sind von sechs Sauerstoffatomen in Form leicht verzerrter Oktaeder koordiniert. Dabei sind je zwei der Oktaeder zu Oktaederpaaren [$M1_2O_{10}$] und [$M3_2O_{10}$] über gemeinsame Kanten verknüpft.

Während die axialen Sauerstoffatome in der $[M3_2O_{10}]$ -Einheit durch Phosphatgruppen überbrückt werden und sich die Oktaederspitzen so annähern, sind die axialen Positionen der $[M1_2O_{10}]$ -Doppeloktaederspitzen durch vier Phosphatgruppen koordiniert, die sich gegenseitig abstoßen. Hierdurch entfernen sich die Oktaederspitzen etwas voneinander (Abbildung 2.1).

Abbildung 2.1 ORTEP-Darstellungen [301] der Doppeloktaeder $[M1_2O_{10}]$ (a) und $[M3_2O_{10}]$ (b) in Mn₃Cr₄(PO₄)₆.

Die A^{II} -Kationen befinden sich auf der Lage M2 mit einer gestaucht-oktaedrischen Koordination $[M2O_6]$ (K.Z.(M2) = 2 + 4), wobei die Oktaeder am stärksten gestaucht sind, wenn das A^{II} -Ion Jahn-Teller-aktiv ist, wie Cr^{2+} (d⁴) oder Cu^{2+} (d⁹) (Abbildung 2.2). Die A^{II} -Kationen auf der Lage M4 sind von fünf Sauerstoffatomen in Form einer verzerrten trigonalen Bipyramide umgeben $[M4O_5]$ (Abbildung 2.2). Vier kristallographisch unabhängige Sauerstoffatome sind an zwei (M+P), während die anderen acht an drei Kationen (2M+P) koordiniert sind.

Abbildung 2.2 ORTEP-Darstellungen [301] der Koordinationspolyeder der Lage M2 (a) und M4 (b) für Mn₃Cr₄(PO₄)₆.

Die Polyeder um M1, M3 und M4 bilden durch Kantenverknüpfung Ketten entlang [-1 0 1] (Abbildung 2.3-a). Die Verbindungslinie M1,M1 des Doppeloktaeders $[M1_2O_{10}]$ verläuft entlang der Ketten, während die Verbindungslinie M3,M3 senkrecht zur Kettenrichtung entlang der kristallographischen *b*-Achse ausgerichtet ist (Abbildung 2.3-b).

Die Ketten sind untereinander über die gestauchten Oktaeder $[M2O_6]$ verknüpft (Abbildung 2.4). Diese koordinieren jeweils über eine gemeinsame Ecke eines $[M3O_6]$ -Oktaeders der einen Kette mit einer trigonalen Bipyramide der Nachbarkette. Über die Phosphatgruppen $[P1O_4]$, $[P2O_4]$ und $[P3O_4]$ erfolgt die Komplettierung der Struktur (Abbildung 2.5).

Abbildung 2.3 $A^{II}_{3}B^{III}_{4}(PO_4)_6$. Teilansicht der Kristallstruktur mit Ketten aus Polyedern aus $[M1_2O_{10}]$, $[M4O_5]$ und $[M3_2O_{10}]$. $[M1O_6]$ hellgrün, $[M3O_6]$ grün, $[M4O_5]$ himmelblau. Projektion entlang $[1\ 0\ 1]$ (a) und $[0\ 1\ 0]$ (b).

Abbildung 2.4 $A^{II}_{3}B^{III}_{4}(PO_4)_6$. Teilansicht der Kristallstruktur mit Ketten aus Polyedern $[M1O_6]$, $[M3O_6]$ und $[M4O_5]$ und verbrückendem Oktaeder $[M2O_6]$. $[M1O_6]$ hellgrün, $[M2O_6]$ blau, $[M3O_6]$ grün, $[M4O_5]$ himmelblau. Projektion entlang $[0\ 1\ 0]$.

Abbildung 2.5 $A^{II}_{3}B^{III}_{4}(PO_4)_{6}$. Polyederdarstellung der kompletten Struktur. [*M*1O₆] hellgrün, [*M*2O₆] blau, [*M*3O₆] grün, [*M*4O₅] himmelblau, [PO₄] gelb. Projektion entlang [0 1 0].

2.1.2 Kristallchemische Einordnung des Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyps

Im $\text{Fe}^{II}_{3}\text{Fe}^{III}_{4}(\text{PO}_{4})_{6}$ -Strukturtyp gibt es eine Leerstelle auf der speziellen Wyckofflage 1*h*. Diese Lage, im folgenden *M*5 genannt, kann von einwertigen Kationen zum Ladungsausgleich besetzt werden.

So erfolgt der Ladungsausgleich bei Substitution eines dreiwertigen Kations gegen ein zweiwertiges durch Alkalimetallionen unter Verwendung dieser Lage *M5* wie in NaFe^{II}₄Fe^{III}₃(PO₄)₆ [141], Na_{0,12}Fe₇(PO₄)₆ (Na_{0,12}Fe^{II}_{3,12}Fe^{III}_{3,88}(PO₄)₆) [142] und Na_{0,5}Cu^{II}_{1,333}Fe^{III}_{1,83}Fe^{II}_{0,17}(PO₄)₃ (NaCu^{II}_{2,666}Fe^{II}_{0,334}Fe^{III}_{3,66}(PO₄)₆) [143]. Ebenfalls unter Beteiligung der Lage *M5* können zwei Alkalimetallionen ein zweiwertiges Kation M^{2+} ersetzen wie im Mineral **Howardevansit** NaCuFe₂(VO₄)₃ [139] (Na₂Cu^{II}₂Fe^{III}₄(VO₄)₆) und dessen synthetischen Variationen NaFe₃(VO₄)₃ (Na₂Fe^{III}₂Fe^{III}₄(VO₄)₆) [144] und LiCuFe₂(VO₄)₃ (Li₂Cu²⁺₂Fe³⁺₄(VO₄)₆) [145].

Die Lage *M*5 liegt wie die Lage *M*2 auf einem Inversionszentrum (Wyckoff-Symbol 1*h*) und ist oktaedrisch von Sauerstoff umgeben. Verzerrung des $[M5O_6]$ -Oktaeders von einer (2+4)-Koordination (Stauchung) (z.B.: Na_{0,12}Fe²⁺_{3,12}Fe³⁺_{3,88}(PO₄)₆ [142]) bis hin zu einem gestreckten Oktaeder, (4+2)-Koordination, sind bekannt (NaFe²⁺₄Fe³⁺₃(PO₄)₆ [141]). Bei einigen Vertretern der Howardevansit-Struktur ist das Kation minimal von dieser speziellen Lage auf eine allgemeine Lage (Wyckoff-Symbol 2*i*) verschoben. Dadurch erhöht sich die Koordinationszahl des Polyeders auf sieben (z.B.: Na₂Cu₂Fe₄(VO₄)₆ [139]).

Neben den in Tabelle 2.1 aufgeführten Orthophosphaten sind eine Reihe von Arsenaten (z.B.: $Fe^{2+}{}_{3}Fe^{3+}{}_{4}(AsO_{4})_{6}$ [146]) und **Vanadaten** ($M^{II}{}_{3}Fe^{III}{}_{4}(VO_{4})_{6}$, M^{II} : Mg [147], Mn [148], Co [149], Cu [150], Zn [147, 151]) bekannt, die im $Fe^{II}{}_{3}Fe^{III}{}_{4}(PO_{4})_{6}$ -Strukturtyp kristallisieren.

Des Weiteren lassen sich die dreiwertigen Kationen im $\operatorname{Fe}^{II}{}_{3}\operatorname{Fe}^{III}{}_{4}(\operatorname{PO4})_{6}$ -Strukturtyp teilweise oder auch vollständig durch zweiwertige Kationen substituieren. Der Ladungsausgleich kann durch den Einbau von Protonen erfolgen. Die entsprechende Substitution lässt sich durch die allgemeine Summenformel $M^{II}{}_{3+n}M^{II}M^{III}{}_{4-n}(X^{V}O_{4})_{6-n}(\operatorname{HX}^{V}O_{4})_{n}$ ($n = 0, 1, 2, 3, 4; X^{V} = \operatorname{P}$, As) ausdrücken. Für alle n sind für die Eisenphosphatverbindungen bekannt (n = 0: $\operatorname{Fe}^{II}{}_{3}\operatorname{Fe}^{III}{}_{4}(\operatorname{PO4})_{6}$ [16], n = 1: $\operatorname{Fe}^{II}{}_{4}\operatorname{Fe}^{III}{}_{3}(\operatorname{PO4})_{5}(\operatorname{HPO4})$ [152], n = 2: $\operatorname{Fe}^{II}{}_{5}\operatorname{Fe}^{III}{}_{2}(\operatorname{PO4})_{4}(\operatorname{HPO4})_{2}$ [153], n = 3: $\operatorname{Fe}^{II}{}_{6}\operatorname{Fe}^{III}(\operatorname{PO4})_{3}(\operatorname{HPO4})_{3}$ [154] und n = 4: $\operatorname{Fe}^{II}{}_{7}(\operatorname{PO4})_{2}(\operatorname{HPO4})_{4}$ [155]). Die vollständige Substitution der dreiwertigen Kationen durch zweiwertige findet man auch in den **Hydrogenphosphaten** $\operatorname{Mg7}(\operatorname{PO4})_{2}(\operatorname{HPO4})_{4}$ [156], $\operatorname{Mn7}(\operatorname{PO4})_{2}(\operatorname{HPO4})_{4}$ [157, 158], $\operatorname{Fe}^{II}{}_{7}(\operatorname{PO4})_{2}(\operatorname{HPO4})_{4}$ [155], $\operatorname{Co7}(\operatorname{PO4})_{2}(\operatorname{HPO4})_{4}$ [159] und $\operatorname{Co4}_{32}\operatorname{Mn2}_{68}(\operatorname{PO4})_{2}(\operatorname{HPO4})_{4}$ [160] und einigen Hydrogenarsenaten (Mg7(\operatorname{ASO4})_{2}(\operatorname{HASO4})_{4} [161] und Mn7(\operatorname{ASO4})_{2}(\operatorname{HASO4})_{4} [162]).

Auch einige **quaternäre Molybdate** wie Na₂Mg₅(MoO₄)₆ [163], NaCo_{2,5}(MoO₄)₃ [164] und Na_{0,5}Zn_{2,75}(MoO₄)₃ [165] kristallisieren im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp. Durch den Ladungswechsel von $(X^{V}O_{4})^{3-}$ mit $X^{V} = P$, As, V auf $(Mo^{VI}O_{4})^{2-}$ müssen die 7 Kationen bei den Molybdaten nur 12 statt 18 Ladungen pro Elementarzelle kompensieren, somit kommen bei den Molybdaten statt zwei- und dreiwertiger zur Besetzung der Lage *M*1 bis *M*4 nur noch ein- und zweiwertige Kationen in Frage. Im Unterschied zum Howardevansit-Typ erfolgt bei den genannten Molybdaten der Einbau der Na⁺-Ionen nicht unter Verwendung der Lage *M*5. Ähnlich wie bei den Vanadaten ersetzen in Molybdaten Ag₂ $M^{II}_{2}(MoO_{4})_{3}$ (M^{II} : Mg [166],

Mn [167], Co [167] und Zn [168]) zwei Silberionen ein zweiwertiges Kation unter Beteiligung der Lage *M*5.

Von GICQUEL-MAYER und MAYER wurde die strukturelle Verwandtschaft zwischen ZnMoO₄ und den polynären Molybdaten Na $M_{2,5}^{II}$ (MoO₄)₃ (M^{II} : Mg, Co, Zn) sowie Ag₂Zn₂(MoO₄)₃ beschrieben [164]. Die gleiche strukturelle Verwandtschaft wurde von LAFONTAINE [150] zwischen FeVO₄ [169], das zu ZnMoO₄-Struktur isotyp ist, β -Cu₃Fe₄(VO₄)₆ sowie NaCuFe₂(VO₄)₃ gefunden. Beide Strukturen, die ZnMoO₄-Struktur einerseits und die Howardevansit- sowie Fe^{II}₃Fe^{III}₄(PO₄)₆-Struktur andererseits, werden aus derselben gemeinsamen Basiseinheit, bestehend aus den Lagen *M*1, *M*3 und *M*4, aufgebaut. Der Unterschied zwischen diesen Strukturen besteht im wesentlichen nur in der unterschiedlichen Verknüpfung dieser Basiseinheiten zueinander.

Tabelle 2.2 Vergleich der Gitterkonstanten von FeVO₄, NaCuFe₂(VO₄)₃ und β -Cu₃Fe₄(VO₄)₆.

Verbindung	<i>a /</i> Å	b / Å	<i>c /</i> Å	α/°	β/°	γ/°	$V/\text{\AA}^3$	Lit.
NaCuFe ₂ (VO ₄) ₃ ^{a)}	9,773(1)	8,198(2)	6,651(1)	101,99(1)	103,82(1)	106,74(1)	473,1	[139]
β -Cu ₃ Fe ₄ (VO ₄) ₆ ^{b)}	9,759(5)	8,048(4)	6,600(3)	102,28(2)	103,72(3)	106,08(3)	461,8	[150]
FeVO ₄ ^{c)}	9,763	8,060	6,719	78,40	114,70	104,36	462,5	[169]

^{a)} a' = -b, b' = -a, c' = -c.

^{b)} a' = -c, b' = -b, c' = -a.

c) a' = a + c, b' = b, c' = -a.

 $A^{II}_{3}B^{III}_{4}$ (PO₄)₆-Strukturtyps. Die Grenzen des Abhängigkeit Bekannte des Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyps von der Größe der beteiligten Kationen wird in der Reihe der Phosphate $M^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ (M^{II} : Zn, Cd, Pb, Ba) besonders deutlich. Während Zn₃V₄(PO₄)₆ noch im $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ -Strukturtyp kristallisiert, nimmt $Cd_{3}V_{4}(PO_{4})_{6}$ mit dem etwas größeren Cadmium einen eigenen Strukturtyp an [170]. Ein wesentlicher Unterschied liegt dabei in der Erweiterung der Koordinationssphäre des zweiwertigen Kations. Bei noch größeren zweiwertigen Kationen, wie Pb2+ (Pb1,5V2(PO4)3 [171]) und Ba2+ (Ba3V4(PO4)6 [172]) wird deren Koordinationssphäre noch weiter vergrößert (K.Z.(Pb^{2+}) = 10; K.Z. $(Ba^{2+}) = 12$). Diese Phosphate kristallisieren in der kubischen Langbeinitstruktur. In diesem Zusammenhang erscheint bemerkenswert, dass nur Phosphate M^{II}_{3} Cr^{III}₄(PO₄)₆ mit

vergleichsweise kleinen Kationen (M^{II} : Cr, Mn, Fe, Co, Ni, Cu, Zn, Mg) bekannt sind. Polynäre Chrom(III)-Phosphate der Summenformel $M^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ (M^{II} : Cd, Sr, Ba, ...) mit großen zweiwertigen Kationen sind dagegen unbekannt. GRUß beobachtete, dass ein zum Cd₃V₄(PO₄)₆ isotypes "Cd₃Cr₄(PO₄)₆" nicht existiert und dass stattdessen CdCr₂(P₂O₇)₂ [28] neben weiteren Phasen entsteht. Neuere Untersuchungen von HAMMER [173] zeigen, dass ein zum Ba^{II}₃V^{III}₄(PO₄)₆ isotypes "Ba^{II}₃Cr^{III}₄(PO₄)₆" nicht existiert, stattdessen ein Gemenge aus Ba^{II}₃Cr^{III}₆(PO₄)₈ [173] und Ba₃(PO₄)₂ erhalten wird.

2.1.3 Der Lyonsit-Strukturtyp

Bei Vanadaten $A^{II}_{3}B^{III}_{4}(VO_4)_6$ (A^{II} : Mg, Mn, Co, Cu, Zn; B^{III} : Cr, Fe) konkurriert der trikline Fe^{II}_{3}Fe^{III}_{4}(PO_4)_6-Strukturtyp mit der orthorhombischen Lyonsit-Struktur [140]. Diese wurde lange Zeit als Hochdruckmodifikation des Fe^{II}_{3}Fe^{III}_{4}(PO_4)_6-Strukturtyps aufgefasst [150]. Die Betrachtung wurde durch den Vergleich der Dichten von Lyonsit, α -Cu₃Fe₄(VO₄)₆ ($\delta = 4,22$ g·cm⁻³ [140]) und β -Cu₃Fe₄(VO₄)₆ ($\delta = 3,97$ g·cm⁻³ [150]), das in der Fe^{II}_{3}Fe^{III}_{4}(PO_4)_6-Struktur kristallisiert, unterstützt. Tatsächlich handelt es sich bei " α -Cu₃Fe₄(VO₄)₆" und " β -Cu₃Fe₄(VO₄)₆" um zwei unterschiedliche Verbindungen mit leicht voneinander abweichenden Zusammensetzungen.}

Untersuchungen entlang des quasi-binären Schnitts $Cu_3(VO_4)_2$ - FeVO₄ zeigen zwei von einander getrennte Existenzbereiche für Kupfereisenvanadate der allgemeinen Zusammensetzung $Cu^{II}_{3+1,5x}Fe^{III}_{4-x}(VO_4)_6$ [174]. Für -0,333 $\leq x \leq$ -0,167 kristallisieren sie im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp und im Bereich 0,667 $\leq x \leq$ 0,778 in der Lyonsitstruktur.

Ähnliche Beobachtungen liegen für Kobalt- und Eisenvanadate vor. Vanadate $Co^{II}_{3+1,5x}Fe^{III}_{4-x}(VO_4)_6$ wurden im $Fe^{II}_3Fe^{III}_4(PO_4)_6$ -Strukturtyp (x = 0 [149]) wie auch in der Lyonsitstruktur (x = 0,4 [175], 0,67 [148]) gefunden.

Alle anderen bislang bekannten quaternären Eisenvanadate mit der allgemeinen Summenformel $A^{II}_{3+1,5x}$ Fe^{III}_{4-x}(VO₄)₆ kristallisieren entweder im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp mit x = 0 oder in der Lyonsitstruktur mit $x \ge 0,6$.

Von quaternären Chromvanadaten mit der allgemeinen Summenformel $A^{II}_{3+1,5x}$ Cr^{III}_{4-x}(VO₄)₆ sind bis jetzt nur Verbindungen in der Lyonsitstruktur ($x \ge 0,6$) bekannt. Versuche zur Darstellung von quaternären Chromvanadaten im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp waren erfolglos [174, 176].

Quaternäre Molybdate mit der allgemeinen Summenformel Ag₂ M^{II}_{2} (MoO₄)₃ (M^{II} : Mg [166], Mn [167], Co [167], Zn [168]) kristallisieren mit der Howardevansitstruktur, die entsprechenden Lithiumverbindungen Li₂ M^{II}_{2} (MoO₄)₃ (M^{II} : Mg [177], Mn [178], Fe [179], Co [180], Cu [181], Zn [182]) nehmen hingegen die Lyonsitstruktur an. Im Unterschied zu den quaternären Molybdaten sind von quaternären Wolframaten zwar Vertreter bekannt, die in der Lyonsitstruktur kristallisieren, nicht jedoch solche mit Howardevansitstruktur. Bis jetzt wurde noch kein Orthophosphat gefunden, das in der Lyonsitstruktur kristallisiert.

2.1.4 Fehlordnung der Kationen im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp

Im idealisierten $\text{Fe}^{II}_{3}\text{Fe}^{III}_{4}(\text{PO}_{4})_{6}$ -Sturkturtyp werden die Lagen M2 und M4 von einem beziehungsweise zwei A^{II} -Ionen und die Lagen M1 und M3 von jeweils zwei B^{III} -Ionen besetzt. Neutronenbeugungsexperimente an Co^{II}₃Fe^{III}₄(PO₄)₆ [133] und Mn^{II}₂Fe^{II}Fe^{III}₄(PO₄)₆ [133] sowie die Röntgeneinkristallstrukturanalyse von Mg^{II}₃Ti^{III}₄(PO₄)₆ [131] zeigten jedoch eine deutliche Mischbesetzung der Lagen M2 und M3 durch A^{II} und B^{III} . GRUß hat in seiner Dissertation [28] den Zusammenhang zwischen der Mischbesetzung der Lagen M1 bis M4 und der Größe der beteiligten Kationen an einigen quaternären Chrom- und Indiumorthophosphaten untersucht. Die experimentell aus Röntgeneinkristallstrukturverfeinerungen erhaltenen Besetzungsparameter wurden von ihm mit Betrachtungen zur elektrostatischen Stabilität der fehlgeordneten Verbindungen im Rahmen des MAPLE-Konzepts (Madelung Port of Lattice Energy [183, 184]) verglichen. Nach diesen Untersuchungen hängt der Grad der Fehlbesetzung primär von der Größe des dreiwertigen Kations ab. Je größer das dreiwertige Kation, desto stärker wird die Fehlbesetzung zwischen den Lagen M2 und M3. In zweiter Linie hängt der Grad der Fehlbesetzung von der Größe des zweiwertigen Kations ab. Je kleiner dieses ist, desto größer wird die Fehlordnung zwischen den Lagen M2 und M3. Nur bei der Kombination von vergleichsweise großen In³⁺-Ionen und kleinen Ni²⁺-Ionen in Ni₃In₄(PO₄)₆ [28] erstreckt sich die Fehlordnung zusätzlich auch im signifikanten Umfang über die Lagen M1 und M4.

Trotz der Arbeit von GRUB [132, 28] werden in der neueren Literatur bei Strukturverfeinerungen von Vertretern des $\text{Fe}^{II}_{3}\text{Fe}^{III}_{4}(\text{PO}_{4})_{6}$ -Strukturtyps Fehlordnungsbetrachtungen vernachlässigt (vgl. $\text{Zn}^{II}_{3}\text{V}^{III}_{4}(\text{PO}_{4})_{6}$ [138], "Ni^{II}_{3}\text{Fe}^{III}_{4}(\text{PO}_{4})_{6}" [136] und Phosphate $A^{II}_{3}B^{III}_{4}(\text{PO}_{4})_{6}$ mit A^{II} : Co, Cu; B^{III} : In, Fe, Cr [134]).

Um die vier Besetzungsfaktoren der Lagen M1 bis M4 unterschiedlicher Verbindungen besser miteinander vergleichen zu können, führte GRUß die normierte Fehlordnungskonstante K_d [28] (d für engl. disorder) für den Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp ein. K_d berechnet sich aus dem Quotienten der Summe der "Fremdionen" auf den vier Metalllagen, dividiert durch die Summe der maximal möglichen "Fremdionen" auf diesen Lagen (Gl. 2.1). Als "Fremdionen" sind Atome zu verstehen, die eine Abweichung von der Idealbesetzung bedeuten. In der ideal besetzten Struktur sind die Lagen M1 und M3 zu 100% von dreiwertigen und die Lagen M2und M4 vollständig von zweiwertigen Kationen besetzt.

Die Verfeinerungen von GRUB, wie auch in der vorliegenden Arbeit, gaben deutliche Hinweise auf Fehlordnungen zwischen den zwei- und dreiwertigen Kationen. Eine Unterbesetzung der Lagen im Sinne einer Einführung von Leerstellen, wurde jedoch nie beobachtet. Aus stöchiometrischen Gründen ergibt sich im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp als maximale Summe der Besetzungsfaktoren der Wert 3,5. Kd berechnet sich nach Gleichung 2.1, [Mx] (x = 1, 2, 3, 4) steht dabei für den Besetzungsfaktor der Lage Mx. Deshalb lässt sich die Fehlordnungskonstante K_d sowohl über die Besetzungsfaktoren der zweiwertigen Kationen (Gl. 2.2) wie auch jener der dreiwertigen Kationen (Gl. 2.3) berechnen. In Tabelle sind die Ergebnisse von Strukturverfeinerungen unter Berücksichtigung der 2.3 Kationenfehlordnung zusammengefasst, wie sie zu Beginn der Arbeit an der vorliegenden Dissertation bekannt waren.

$$K_{\rm d} = \frac{[M1^{2+}] + [M2^{3+}] + [M3^{2+}] + [M4^{3+}]}{3.5}$$
(Gl. 2.1)

$$K_{\rm d} = \frac{[M1^{2+}] + (1 - [M2^{2+}]) + [M3^{2+}] + (1 - [M4^{3+}])}{3.5}$$
(Gl. 2.2)

$$K_{\rm d} = \frac{(1 - [M1^{3+}]) + [M2^{3+}] + (1 - [M3^{3+}]) + [M4^{3+}]}{3.5}$$
(Gl. 2.3)

Tabelle 2.3 Stand der Literatur zu Beginn der vorliegenden Arbeit zur Verteilung der dreiwertigen Kationen B^{III} über die Lagen M1 bis M4 im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp.

	Lage M1	Lage M2	Lage M3	Lage M4		
$A^{II}_{3}B^{III}_{4}(PO_4)_6$	B ^{III} [%]	B ^{III} [%]	B ^{III} [%]	B ^{III} [%]	<i>K</i> _d [%]	Lit.
$Mg_3Cr_4(PO_4)_6$	97,3	26,2	89,5	0,0	11,3	[132]
$Cr_3Cr_4(PO_4)_6^{a)}$	100	0	100	0	0	[12]
Ni ₃ Cr ₄ (PO ₄) ₆	100,0	25,4	87,4	0,0	10,8	[28]
$Cu_3Cr_4(PO_4)_6$	100,0	10,8	94,6	0,0	4,6	[132]
$Zn_3Cr_4(PO_4)_6$	99,2	15,0	93,3	0,0	6,4	[132]
$Mn_2Fe_5(PO_4)_6^{b)}$	99,2	0,0	100,0	0,0	0,2	[133]
$\text{Co}_3\text{Fe}_4(\text{PO}_4)_6^{\text{c})}$	100,0	23,6	86,0	7,0	12,9	[133]
$Zn_3Fe_4(PO_4)_6$	92,8	33,4	90,5	0,0	14,3	[28]
Mg ₃ Ti ₄ (PO ₄) ₆	100	66,6	66,6	0	28,6	[131]
$Mg_3In_4(PO_4)_6$	92,0	83,0	54,5	11,9	42,4	[28]
$Co_3In_4(PO_4)_6$	96,1	86,0	56,1	4,8	39,6	[28]
Ni ₃ In ₄ (PO ₄) ₆	94,0	90,9	49,3	11,2	45,4	[28]
$Zn_3In_4(PO_4)_6$	95,9	91,2	56,1	2,4	40,5	[28]

^{a)} Lokalisierte Valenzen auf den Lagen *M*1 bis *M*4 sind aufgrund fehlender MMCT-Übergänge wahrscheinlich.

^{b)} Mittels Neutronenbeugung gefundene Zusammensetzung [133] ist $Mn_{2,06}^{II}Fe_{0,94}^{II}Fe_{114}^{III}(PO_4)_6$. ^{c)} Mittels Neutronenbeugung gefundene Zusammensetzung [133] ist $Co_{2,9}^{II}Fe_{0,1}^{III}Fe_{114}^{III}(PO_4)_6$.

2.2 Darstellung und Kristallisation neuer Vertreter des Fe^{II}₃Fe^{III}₄(PO₄)₆-Typs

In früheren Arbeiten wurden folgende Wege zur Synthese der ternären Orthophosphate beschrieben.

1) Feststoffreaktion aus den binären Phosphaten, zum Teil in geschlossenen Kieselglasampullen unter Zusatz eines Mineralisators.

$$A^{II}_{3}(PO_{4})_{2} + 4 B^{III}PO_{4} \to A^{II}_{3}B^{III}_{4}(PO_{4})_{6}$$
(Gl. 2.4)

2) Bildung aus den binären Phosphaten unter Zusatz des Metalls *A* als Reduktionsmittel in Kieselglasampulle unter Zusatz von Mineralisator.

$$A^{0} + 2 A^{\text{III}} PO_{4} + 4 B^{\text{III}} PO_{4} \rightarrow A^{\text{II}}_{3} B^{\text{III}}_{4} (PO_{4})_{6}$$
 (Gl. 2.5)

3) "Nasschemische" Präparation aus den Nitraten; als Phosphatquelle diente Diammoniumhydrogenphosphat oder Phosphorsäure.

$$3 A^{II}(NO_3)_2 + 4 B^{III}(NO_3)_3 + 6 (NH_4)_2 HPO_4 \rightarrow A^{II}_3 B^{III}_4 (PO_4)_6 + 12 N_2 O^{\uparrow}_1 + 6 NO_2^{\uparrow}_1 + 2,5 O_2^{\uparrow}_1 + 27 H_2 O^{\uparrow}_2$$
(Gl. 2.6)

 $3 A^{II}(NO_3)_2 + 4 B^{III}(NO_3)_3 + 6 H_3PO_4 \rightarrow$

$$A^{II}_{3}B^{III}_{4}(PO_{4})_{6} + 18 \text{ NO}_{2}\uparrow + 4,5 \text{ O}_{2}\uparrow + 9 \text{ H}_{2}O\uparrow$$
(Gl. 2.7)

4) Bildung aus Metall(II)-cyclo(tetrametaphosphat) und Metall(III)-sesquioxid (Kieselglasampulle, Zusatz von Mineralisator).

$$3 A^{II}_{2} P_4 O_{12} + 4 B^{III}_{2} O_3 \to 2 A^{II}_{3} B^{III}_{4} (PO_4)_6$$
(Gl. 2.8)

Für die "volloxidierten" (vgl. Anmerkung in Abschnitt 1.4) quaternären Orthophosphate erwies sich die Darstellungsmethode 3 in der vorliegenden Arbeit als die praktikabelste und wurde überwiegend angewandt. Für die "reduzierten" quaternären Orthophosphate wurde die Methode 1 verwendet. Da für die Synthese von $Cr^{II}_{3}(PO_4)_2$ [185] Temperaturen von über 1150 °C benötigt werden und diese nicht zur Verfügung standen, wurde für die Darstellung von reduzierten Phosphaten, die Cr^{2+} enthalten sollten, nach Methode 2 verfahren. Darstellungsverfahren 4 wurde nicht benutzt. Eine Übersicht zu den in der vorliegenden Arbeit verwendeten Darstellungsmethoden gibt Tabelle 2.4.

Tabelle 2.4 Übersicht über die verwendeten Darstellungsmethoden zur Synthese von Phosphaten $A^{II}_{3}B^{III}_{4}(PO_4)_6$. Trotz der Versuche wurden gemischte Phosphate mit den Kationenkombinationen Co^{II}/Ti^{III}, Ni^{II}/Ti^{III}, Cu^{II}/Ti^{III}, Cr^{II}/Fe^{III}, Cr^{II}/In^{III} und Cu^{II}/In^{III} nicht erhalten.

	Ti ³⁺	V^{3+}	Cr ³⁺	Fe ³⁺	In ³⁺
Mg ²⁺	1	1	3	3	3
Cr ²⁺	2	2	2	-	-
Mn ²⁺	1	1	3	3	3
Fe ²⁺	1	1	1	1, 2	1
Co ²⁺	-	1	3	3	3
Ni ²⁺	-	1	3	3	3
Cu ²⁺	-	1	3	3	-
Zn ²⁺	1	1	3	3	3

Die Reinigung und Kristallisation der quaternären Phosphate $A^{II}_{3}B^{III}_{4}(PO_4)_6$ erfolgte meistens durch chemischen Transport aufgrund endothermer Reaktionen im Temperaturgefälle $T_2 \rightarrow T_1$ ($T_2 > T_1$). Vor dem eigentlichen Transport wurde jeweils ein 12-stündiger Reinigungstransport von $800 \rightarrow 900$ °C durchgeführt, um Verunreinigungen und unerwünschte Kristallisationskeime aus der Senkenseite zu entfernen. Je nach Redoxverhalten des zu transportierenden Phosphats wurde als Transportmittel (Tabelle 2.5) das oxidierende Chlor, das schwach oxidierende Iod, redoxneutraler Chlorwasserstoff oder reduzierende Gemenge Phosphid / Iod verwendet. Bis auf Iod wurden die Transportmittel durch thermische *in situ* Zersetzung von Precursoren gewonnen. Für die Transportexperimente wurden sowohl bereits synthetisiertes quaternäres Orthophosphat als auch die Edukte gemäß Gl. 2.4 und Gl. 2.5 als Ausgangsbodenkörper eingesetzt.

 Tabelle 2.5
 Precursoren zur in situ
 Freisetzung der verschiedenen Transportmittel.

Transportmittel	Redoxverhalten	Precursor	
Cl ₂	stark oxidierend	PtCl ₂ oder PdCl ₂	
I_2	schwach oxidierend	I_2	
HCl	Neutral	$2 \text{ NH}_4\text{Cl} + 3 \text{ PtCl}_2$	
$HCl + H_2$	Reduzierend	NH ₄ Cl	
PI ₃	stark reduzierend	$I_2 + MP$	

2.2.1 Polynäre Titan(III)-orthophosphate A^{II}₃Ti^{III}₄(PO₄)₆

Für die Darstellung von A^{II}_{3} **Ti**^{III}₄(**PO**₄)₆ (A^{II} : Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn) wurde die in Kapitel 2.2 vorgestellte Methode 1 (für A^{II} = Cr Methode 2) verwendet. Dafür wurden zunächst Presslinge angefertigt, bestehend aus 114,3 mg (0,8 mmol) TiPO₄ und 0,20 mmol A^{II}_{3} (PO₄)₂ nach der Vorschrift aus Abschnitt 1.2.1. Zur Darstellung von Cr^{II}₃Ti^{III}₄(PO₄)₆ wurde die Einwaage an Cr^{II}₃(PO₄)₂ durch 10,4 mg (0,20 mmol) Chrom und 58,8 (0,40 mmol) CrPO₄ ersetzt (Methode 2).

Diese Presslinge wurden mit verschiedenen Mineralisatorzusätzen (Tabelle 2.6) eine Wochenlang in evakuierten Kieselglasampullen bei Temperaturen zwischen 800 und 1000 °C getempert.

Auf Versuche zur Darstellung von " $Ti^{II}_{3}Ti^{III}_{4}(PO_4)_6$ " wurde verzichtet, da diese Verbindung innerhalb des gesicherten Phasendreiecks $TiO_2 / TiPO_4 / P_4$ liegt [186] und somit thermodynamisch nicht stabil ist.

	· · ·			
A^{Π}	MS / mg		T / °C	Produkte (nach <i>IP</i> -Guinier-Aufnahmen)
Cr	I_2	70	1000	$Cr_3Ti_4(PO_4)_6$
Mn	I_2 / P	11,3 / 0,8	1000	$Mn_3Ti_4(PO_4)_6$
Fe	NH ₄ Cl	8,2	1000	$Fe_3Ti_4(PO_4)_6$ + Spuren TiPO ₄
Fe	-		900	$Fe_3Ti_4(PO_4)_6$ + Spuren TiPO ₄
Co	I_2	75	1000	$CoTi_2O_2(PO_4)_2 + CoTi_4(PO_4)_6 + Spuren Co_2P_2O_7^{a}$
Co	NH ₄ Cl	9,6	1000	$CoTi_2O_2(PO_4)_2 + CoTi_4(PO_4)_6 + Spuren Co_2P_2O_7^{a}$
Co	-		1000	$CoTi_2O_2(PO_4)_2 + CoTi_4(PO_4)_6 + Co_2P + Spuren Co_2P_2O_7$
Co	-		900	$CoTi_2O_2(PO_4)_2 + CoTi_4(PO_4)_6 + Co_2P + Spuren Co_2P_2O_7$
Ni	I_2	60	1000	$NiTi_2O_2(PO_4)_2^{b)}$
Ni	NH ₄ Cl	9,1	1000	$NiTi_2O_2(PO_4)_2 + TiP_2O_7^{b}$
Ni	-		900	$NiTi_2O_2(PO_4)_2 + \alpha - Ni_2P_2O_7 + TiP_2O_7 + Spuren von Ni_8P_3$
Cu	I_2	7,0	900	$Cu^{I}Ti^{IV}_{2}(PO_{4})_{3} + Cu$
Cu	-		800	$Cu^{I}Ti^{IV}_{2}(PO_{4})_{3} + Cu$
Zn	I_2	60	1000	"ZnTi ₄ (PO ₄) ₆ "
Zn	-		800	$Zn_3Ti_4(PO_4)_6$ + Spuren $Zn_3(PO_4)_2$
Zn	I_2	10	800	$Zn_3Ti_4(PO_4)_6$
Mg	I_2	12	1100	$Mg_3Ti_4(PO_4)_6$

Tabelle 2.6 Repräsentative Ansätze zur Darstellung von Orthophosphaten A^{II}_{3} Ti^{III}₄(PO₄)₆ (A^{II} : Cr, Mn, Fe, Co, Ni, Cu, Zn, Mg).

^{a)} Es waren zusätzlich einige silbern glänzende Kristalle in der Ampulle vorhanden, bei denen es sich sehr wahrscheinlich um Co₂P handelt.

^{b)} Es waren zusätzlich einige gelbe Kristalle auf dem Pressling, bei denen es sich sehr wahrscheinlich um Ni₂P₂O₇ handelt.

Mikrokristalline Proben von $Cr^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$, $Mn^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$, $Fe^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$, $Zn^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ und $Mg^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ wurden nach den Angaben in Tabelle 2.6 erhalten. Das Pulver von $Cr^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ war orange-braun, während die Pulver von $Mn^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$, $Fe^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$, $Zn^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ und $Mg^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ alle etwa denselben olivgrünen Farbton zeigten.

Mikrokristalline Pulver von "Co^{II}₃Ti^{III}₄(PO₄)₆", "Ni^{II}₃Ti^{III}₄(PO₄)₆" und "Cu^{II}₃Ti^{III}₄(PO₄)₆" wurden nicht erhalten. Statt "Cu^{II}₃Ti^{III}₄(PO₄)₆" entstand in allen Experimenten rotes Cu^ITi^{IV}₂(PO₄)₃ [187] (NASICON-Strukturtyp) und elementares Kupfer. Experimente zur Darstellung von "Co^{II}₃Ti^{III}₄(PO₄)₆" führten zur Bildung von CoTi^{IV}₂O₂(PO₄)₂ [2, 188] (Lazulit-Strukturtyp), CoTi^{IV}₄(PO₄)₆ [2, 189] (NASICON-Strukturtyp), Co₂P₂O₇ [113] sowie Co₂P [190]. Anstelle von "Ni^{II}₃Ti^{III}₄(PO₄)₆" wurde nach Ausweis der *IP*-Guinier-Aufnahmen ein Gemenge von NiTi^{IV}₂O₂(PO₄)₂ [2, 188] (Lazulit-Strukturtyp), Ti^{IV}P₂O₇ [94], α-Ni₂P₂O₇ [191] und Spuren von Ni₈P₃ [192] erhalten. "NiTi^{IV}₄(PO₄)₆" mit NASICON-Struktur wurde nicht beobachtet. Diese Beobachtungen lassen sich durch die Redox-Reaktionen (Gl. 2.9 – 2.11) deuten.

$$27 \text{ Co}^{II}_{3}(\text{PO}_{4})_{2} + 108 \text{ Ti}^{III}\text{PO}_{4} \rightarrow \\ 13 \text{ Co}^{II}\text{Ti}^{IV}_{2}\text{O}_{2}(\text{PO}_{4})_{2} + 28 \text{ Co}^{II}\text{Ti}^{IV}_{4}(\text{PO}_{4})_{6} + 8 \text{ Co}^{II}_{2}\text{P}_{2}\text{O}_{7} + 12 \text{ Co}_{2}\text{P} \quad (\text{Gl. 2.9})$$

$$31 \text{ Ni}^{II}{}_{3}(\text{PO}_{4})_{2} + 124 \text{ Ti}^{III}\text{PO}_{4} \rightarrow 45 \text{ Ni}^{II}\text{Ti}^{IV}{}_{2}\text{O}_{2}(\text{PO}_{4})_{2} + 34 \text{ Ti}^{IV}\text{P}_{2}\text{O}_{7} + 8 \text{ Ni}^{II}{}_{2}\text{P}_{2}\text{O}_{7} + 4 \text{ Ni}_{8}\text{P}_{3}$$
(Gl. 2.10)

$$Cu^{II}_{3}(PO_{4})_{2} + 4 Ti^{III}PO_{4} \rightarrow Cu^{0} + 2 Cu^{I}Ti^{IV}_{2}(PO_{4})_{3}$$
 (Gl. 2.11)

Bei der Darstellung von Zn₃Ti^{III}₄(PO₄)₆ spielten die Mengenverhältnisse von Mineralisator zu Bodenkörper eine große Rolle. Bei Verwendung von Iod als Mineralisator wird Zink aus dem Bodenkörper als ZnI₂ herausgelöst und Titan(III) zu Titan(IV) oxidiert. Dies zeigte sich am Verschwinden der charakteristisch violetten Farbe des Mineralisators Iod im Laufe des Temperexperiments. Nach Abschrecken der Ampulle hatte sich auch ein weiß-gelblicher, stark hygroskopischer Belag von ZnI₂ aus der Gasphase an der Ampulleninnenwand abgeschieden. Als Oxidationsprodukt bildete sich ein schwarzes Pulver, dessen *IP*-Guinier-Aufnahme (Abbildung A.6) dem Muster der NASICON-Strukturfamilie [2] ähnelt. Die Verbindung wurde nicht weiter charakterisiert. Versuche von SCHÖNEBORN [2] zur Synthese der volloxidierten Verbindung ZnTi^{IV}₄(PO₄)₆ waren nicht erfolgreich. In Analogie zu $Mn_{1,66}Ti_4(PO_4)_6$ [2, 189] könnte es sich jedoch um eine gemischtvalente Titan(III,IV)verbindung handeln. Dessen Entstehung könnte über Gl. 2.12 und 2.13 erklärt werden.

$$Zn_{3}Ti_{4}^{III}(PO_{4})_{6}(s) + 2 I_{2}(g) \rightarrow ZnTi_{4}^{IV}(PO_{4})_{6}(s) + 2 ZnI_{2}(g)$$
 (Gl. 2.12)

$$3 Zn_{3}Ti^{III}_{4}(PO_{4})_{6}(s) + 4 I_{2}(g) \rightarrow$$

$$3 Zn_{1,67}Ti^{III}_{1,34}Ti^{IV}_{2,66}(PO_{4})_{6}(s) + 4 ZnI_{2}(g)$$
(Gl. 2.13)

In einem Versuch zur Darstellung von " $V^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ " wurde ein Gemenge, bestehend aus 143,1 mg (1,0 mmol) VPO₄, 140,0 mg (1,0 mmol) TiPO₄, und 17,2 mg (0,35 mmol) elementarem Titan mit 35 mg Iod als Transportmittel in eine Kieselglasampulle gegeben, diese evakuiert und anschließend 14 Tage lang im Gradienten 1000 \rightarrow 900 °C getempert. Nach Ende der Versuchsdauer befanden sich im Senkenraum braune Kristalle, deren Beugungsbild jenem von TiPO₄ und VPO₄ sehr ähnelt und bei denen es sich sehr wahrscheinlich um Mischkristalle (Ti_xV_{1-x})PO₄ handelt. Der Quellenbodenkörper besteht nach Ausweis der *IP*-Guinier-Aufnahmen aus VP, schwarzem (Ti_yV_{1-y})₄O₇ sowie Spuren von (Ti_xV_{1-x})PO₄.

Einkristalle von $Cr^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$, $Fe^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ und $Zn^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ wurden in Transportexperimenten in Gegenwart von I_{2} oder Chlorwasserstoff als Transportmittel erhalten (Tabelle 2.7).

Für $Cr^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ und $Fe^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ wurden so innerhalb von 24 h 25-50 mg Kristalle erhalten. Statt des Transports von $Mn^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ wurde immer die Abscheidung von $Mn^{II}_{1+x}Ti^{III}_{4}(PO_{4})_{6}$ (NASICON-Strukturtyp [2, 189]) in der Senke beobachtet. Einkristalle von $Mn^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ wurden durch vierwöchiges Tempern mit PI₃ als Mineralisator (0,8 mg Phosphor und 11,3 mg Iod) bei 1000 °C erhalten, Einkristalle von $Mg^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ durch einwöchiges isothermes Tempern bei 1100 °C mit etwas Iod (12 mg) als Mineralisator.

Tabelle 2.7 Repräsentative Experimente zum chemischen Transport von Orthophosphaten A^{II}_{3} Ti^{III}₄(PO₄)₆ (A^{II} : V, Cr, Mn, Fe, Zn). Mengenangaben Senke: (+) einige mg, (~) einige Kristalle, (-) vereinzelte Kristalle.

TM / mg	$T_2 \rightarrow T_1 / ^{\circ}\mathrm{C}$	t / d	QBK	SBK
			(nach <i>IP</i> -Guin	ier-Aufnahmen)
I ₂ 35	$1000 \rightarrow 900$	14	$(V_x T i_{1-x})_4 O_7 + V P$	$V_x Ti_{1-x} PO_4$
I ₂ 88	$1000 \rightarrow 900$	0,5	$Cr_3Ti_4(PO_4)_6$	$Cr_{3}Ti_{4}(PO_{4})_{6}(+)$
I ₂ / TiP 22/10	$1050 \rightarrow 975$	3	Cr ₃ Ti ₄ (PO ₄) ₆ , TiPO ₄	Cr ₃ Ti ₄ (PO ₄) ₆ (+), TiPO ₄ (~)
I ₂ 23	$1000 \rightarrow 900$	4	$Mn_{3}Ti_{4}(PO_{4})_{6}Mn_{1+x}Ti_{4}(PO_{4})_{6}$	$Mn_{1+x}Ti_4(PO_4)_6^{c)}(\sim)$
$HCl (+Cl_2)^{a)}$	$1000 \rightarrow 900$	4	$Mn_{3}Ti_{4}(PO_{4})_{6}, Mn_{1+x}Ti_{4}(PO_{4})_{6}$) $TiO_{2-x}^{d}(\sim), Mn_{1+x}Ti_4(PO_4)_6^{c}(-)$
I ₂ 17	$1000 \rightarrow 900$	4	$Fe_3Ti_4(PO_4)_6$	-
HCl ^{b)}	$1000 \rightarrow 900$	4	$Fe_3Ti_4(PO_4)_6$	$Fe_{3}Ti_{4}(PO_{4})_{6}(+)$
HCl ^{b)}	$1000 \rightarrow 900$	2	Zn ₃ Ti ₄ (PO ₄) ₆ , TiPO ₄	Zn ₃ Ti ₄ (PO ₄) ₆ (-)
	$\begin{array}{c c} \textbf{TM / mg} \\ \hline I_2 & 35 \\ I_2 & 88 \\ I_2 / \text{TiP } 22 / 10 \\ I_2 & 23 \\ \text{HCl } (+\text{Cl}_2)^{a)} \\ I_2 & 17 \\ \text{HCl }^{b)} \\ \text{HCl }^{b)} \\ \end{array}$	TM / mg $T_2 \rightarrow T_1 / ^{\circ}C$ I2 35 1000 \rightarrow 900 I2 88 1000 \rightarrow 975 I2 23 1000 \rightarrow 900 HC1 (+Cl_2)^{a)} 1000 \rightarrow 900 I2 17 1000 \rightarrow 900 I2 17 1000 \rightarrow 900 I2 100 900 I2 17 1000 \rightarrow 900 HCl ^{b)} 1000 \rightarrow 900	TM / mg $T_2 \rightarrow T_1 / \circ C$ t / d I2 35 1000 \rightarrow 900 14 I2 88 1000 \rightarrow 900 0,5 I2 / TiP 22/10 1050 \rightarrow 975 3 I2 23 1000 \rightarrow 900 4 HCl (+Cl ₂) ^{a)} 1000 \rightarrow 900 4 I2 17 1000 \rightarrow 900 4 HCl ^{b)} 1000 \rightarrow 900 2	TM / mg $T_2 \rightarrow T_1 / {}^{\circ}C$ t / d QBK I2 35 1000 \rightarrow 900 14 $(V_x Ti_{1-x})_4 O_7 + VP$ I2 88 1000 \rightarrow 900 0,5 $Cr_3 Ti_4 (PO_4)_6$ I2 / TiP 22/10 1050 \rightarrow 975 3 $Cr_3 Ti_4 (PO_4)_6$, TiPO_4 I2 23 1000 \rightarrow 900 4 Mn_3 Ti_4 (PO_4)_6 Mn_{1+x} Ti_4 (PO_4)_6^{\circ 2} HCl (+Cl_2)^{a)} 1000 \rightarrow 900 4 Fe_3 Ti_4 (PO_4)_6 HCl (^b) 1000 \rightarrow 900 4 Fe_3 Ti_4 (PO_4)_6 HCl (^b) 1000 \rightarrow 900 2 Zn_3 Ti_4 (PO_4)_6, TiPO_4

 $^{\rm a)}$ aus 2,5 mg NH_4Cl und 21,1 mg PtCl_2

^{b)} aus 2,6 mg NH₄Cl und 18,2 mg PtCl₂

^{c)} schwarze Kristalle, vgl. [2, 189]

^{d)} Rutil.

2.2.2 Polynäre Vanadium(III)-orthophosphate *A*^{II}₃V^{III}₄(PO₄)₆

Für die Darstellung der mikrokristallinen Vanadium(III)-phosphate $A^{II}_{3}V^{III}_{4}(PO_4)_6$ (A^{II} : Mg, Cr, Mn, Fe, Co, Ni, Cu) wurden wie bei den quaternären Titan(III)-phosphaten zunächst Presslinge nach der Vorschrift aus Abschnitt 1.2.1 angefertigt. Als Edukte wurden 116,7 mg (0,8 mmol) VPO₄ und 0,20 mmol $A^{II}_{3}(PO_4)_2$ eingesetzt. Zur Darstellung von $Cr^{II}_{3}V^{III}_{4}(PO_4)_6$ wurde statt $Cr^{II}_{3}(PO_4)_2$ 10,4 mg (0,20 mmol) Chrom und 58,8 mg (0,40 mmol) CrPO₄ verwendet (Methode 2). Die Presslinge wurden mit 65-75 mg Iod als Mineralisator ein bis zwei Wochen in evakuierten Kieselglasampullen bei 1000 °C getempert (Tabelle 2.8).

Auf Versuche zur Darstellung von $,,V^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ " wurde verzichtet, da die Zusammensetzung im gesichertem Phasendreieck $V_{2}OPO_{4} / VPO_{4} / VP$ liegt [3] und somit bei 900°C thermodynamisch nicht stabil ist. Auf die Darstellung von $Zn^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ als Pulver wurde verzichtet, da diese Verbindung schon in der Literatur [138] beschrieben wird.

Bis auf die Darstellung von $Cu^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ verliefen die Darstellungen der mikrokristallinen Pulver von $A^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ ohne Probleme. Die Synthese von $Cu^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ hängt empfindlich von der Reaktionstemperatur, der Mineralisatormenge und der Temperdauer ab (Tabelle 2.8).

A^{II}	MS / 1	mg	T / °C	t / d	Produkte (nach <i>IP</i> -Guinier-Aufnahmen)
Mg	I ₂	75	1000	10	$Mg_3V_4(PO_4)_6$
Cr	I_2	75	1000	5	$Cr_3V_4(PO_4)_6$
Mn	I_2 / P	75 / 1	1000	7	$Mn_3V_4(PO_4)_6$
Fe	I_2	65	1000	7	$Fe_3V_4(PO_4)_6$
Fe	NH ₄ Cl	8,4	1000	6	$Fe_3V_4(PO_4)_6$
Co	I_2	80	1000	7	$Co_3V_4(PO_4)_6$
Ni	I_2	70	1000	7	Ni ₃ V ₄ (PO ₄) ₆
Cu	I_2	70	1000	7	unbekannte Phase X1 ^{a)}
Cu	I_2	5	800	3	$CuV_2(P_2O_7)_2 + Cu_3V_4(PO_4)_6$
Cu	ohne N	4S	800	7	$Cu_3V_4(PO_4)_6$

Tabelle 2.8 Ausgewählte Ansätze zur Darstellung von $A^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ (A^{II} : Mg, Cr, Mn, Fe, Co, Ni, Cu).

^{a)} Guinierdiagramm der unbekannten Phase X1 befindet sich im Anhang A (Abbildung A.14).

Einkristalle von $Cr^{II}_{3}V^{III}_{4}(PO_{4})_{6}$, $Fe^{II}_{3}V^{III}_{4}(PO_{4})_{6}$, $Co^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ und $Ni^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ wurden in chemischen Transportexperimenten mit dem TM Iod oder Chlorwasserstoff erhalten. Die experimentellen Bedingungen sind in Tabelle 2.9 zusammengefasst. Einkristalle von $Cu^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ wurden nicht erhalten.

Da die Kristallstruktur von $Zn^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ in der Literatur [138] ohne Mischbesetzung beschrieben wird, wurde versucht, Einkristalle von $Zn^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ für die erneute Strukturverfeinerung zu erhalten. Dazu wurde ein Gemenge aus 96,3 mg (0,25 mmol) Zn₃(PO₄)₂ und 145,8 mg (1,00 mmol) VPO₄ sowie 26,7 mg PtCl₂ und 3,6 mg NH₄Cl als Transportmittel in eine Kieselglasampulle gegeben, diese evakuiert und anschließend vier Tage im Temperaturgradienten 1000 \rightarrow 900 °C gehalten. Nach Ende der Versuchsdauer befanden sich im Senkenraum himmelblaue Kristalle von Zn₂V^{IV}O(PO₄)₂ [193], ein gelber Belag sowie einzelne kleine gelbe Kristalle von V^{III}₄P₆Si₂O₂₅ [194] und vereinzelte grüne Kristalle von Zn^{II}₃V^{III}₄(PO₄)₆.

Einkristalle von $Mg^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ wurden durch zehntägiges isothermes Tempern bei 1000 °C mit 70 mg Iod als Mineralisator erhalten.

Tabelle 2.9 Repräsentative Experimente zum chemischen Transport von Orthophosphaten $A^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ (A^{II} : Cr Mn, Fe, Co, Ni, Cu, Zn). Mengenangaben Senke: (+) einige mg, (~) einige Kristalle, (-) vereinzelte Kristalle.

A^{II}	TM / mg		$T_2 \rightarrow T_1 / \circ C t / d$		QBK	SBK		
					(nach <i>IP</i> -Guinier-Aufnahmen)			
Cr	I ₂	10	$1050 \rightarrow 950$	5	$Cr_3V_4(PO_4)_6$	$Cr_{3}V_{4}(PO_{4})_{6}(+)$		
Mn	I_2	20	$1000 \rightarrow 900$	7	$Mn_3V_4(PO_4)_6$	Mn ₃ V ₄ (PO ₄) ₆ (+)		
Fe	HCl ^{a)}		$1000 \rightarrow 900$	4	$Fe_3V_4(PO_4)_6$	$Fe_5V_2(P_2O_7)_4$ (+), $Fe_3V_4(PO_4)_6$ (+)		
Co	$I_2^{(b)}$	45	$1000 \rightarrow 900$	7	Co ₃ V ₄ (PO ₄) ₆	$Co_{3}V_{4}(PO_{4})_{6}(-)$		
Ni	$I_2^{(b)}$	65	$1000 \rightarrow 900$	7	$Ni_3V_4(PO_4)_6$	Ni ₃ V ₄ (PO ₄) ₆ (-)		
Cu	HCl ^{b)}		$800 \rightarrow 700$	7	$CuV_2(P_2O_7)_2$, (VO) ₂ (P ₂ O ₇), V ₄ P ₆ Si ₂ O ₂₅ (~)	V ₄ P ₆ Si ₂ O ₂₅ (~)		
Zn	HCl ^{b)}		$1000 \rightarrow 900$	4	$Zn_{3}V_{4}(PO_{4})_{6}$, $Zn_{2}VO(PO_{4})_{2}$	$Zn_2VO(PO_4)_2(+),$ $Zn_3V_4(PO_4)_6(-), V_4P_6Si_2O_{25}(\sim)$		

^{a)} Zusatz von 35mg PtCl₂ und 5 mgNH₄Cl.

^{b)} Zusatz 2mg VP.

^{c)} Zusatz von 20 mg PtCl₂ und 3 mgNH₄Cl.

2.2.3 Polynäre Chrom(III)-orthophosphate A^{II}₃Cr^{III}₄(PO₄)₆

Quaternäre Chrom(III)-orthophosphate im $\text{Fe}^{II}_{3}\text{Fe}^{III}_{4}(\text{PO}_{4})_{6}$ -Strukturtyp waren das wesentliche Thema der Dissertation von GRUß [28]. Zur Vervollständigung der Serie $A^{II}_{3}\text{Cr}^{III}_{4}(\text{PO}_{4})_{6}$ fehlten noch Untersuchungen zu den Verbindungen $\text{Mn}^{II}_{3}\text{Cr}^{III}_{4}(\text{PO}_{4})_{6}$ und $\text{Fe}^{II}_{3}\text{Cr}^{III}_{4}(\text{PO}_{4})_{6}$.

Mn₃Cr₄(PO₄)₆ wurde nach der folgenden Vorschrift dargestellt: 329,6 mg (6,00 mmol) Manganpulver, gelöst in 30 mL halbkonzentrierter Salpetersäure, und 3204,1 mg (8,00 mmol) wasserhaltiges Chrom(III)-nitratnonahydrat $Cr(NO_3)_3 \cdot 9 H_2O_1$ gelöst in 50 mL demineralisiertem Wasser. wurden zu 1584,4 mg (12.00 mmol)Diammoniumhydrogenphosphat, gelöst in 40 mL demineralisiertem Wasser, gegeben. Die Lösung wurde im Becherglas eingedampft und der braune Trockenrückstand anschließend eine Woche bei 800 °C in einer Kieselglashalbampulle an Luft geglüht. Nach Ausweis der IP-Guinier-Aufnahme (Abbildung A.16) wurde so einphasiges $Mn^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ im $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ -Strukturtyp erhalten.

In einem chemischen Transportexperiment wurden 89,8 mg des $Mn^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ als Ausgangsbodenkörper neben 24,3 mg PtCl₂ und 2,9 mg Ammoniumchlorid eingesetzt. Das Anlegen eines Gradienten von 1000 \rightarrow 900 °C führte innerhalb von 48 h zur Abscheidung von etwa 10 mg $Mn^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ in Form transparenter, dichroitischer braun-grünlicher Kristalle.

Für die Darstellung von $\mathbf{Fe}^{II}_{3}\mathbf{Cr}^{III}_{4}(\mathbf{PO}_{4})_{6}$ wurde ein Pressling aus 178,7 mg (0,50 mmol) Eisen(II)-orthophosphat und 293,9 mg (2,00 mmol) Chrom(III)-orthophosphat nach der Vorschrift aus Abschnitt 1.2.1 angefertigt. Dieser wurde mit 20 mg Iod als Mineralisator zwei Wochen in einer evakuierten Kieselglasampulle bei 1000 °C isotherm getempert. Als Reaktionsprodukt wurde hellbraunes, "guinierreines" (Abbildung A.17) $\mathrm{Fe}^{II}_{3}\mathrm{Cr}^{III}_{4}(\mathrm{PO}_{4})_{6}$ erhalten.

Die Herstellung von geeigneten Einkristallen für eine röntgenographische Untersuchung gelang auch bei $Fe^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ durch chemischen Transport. Bei der Wahl des geeigneten Transportmittels war zu beachten, dass einerseits die Oxidation von Eisen(II), andererseits auch die Reduktion von Chrom(III) zu verhindern ist. Erste Versuche mit Iod als Transportmittel brachten keinen Erfolg. Jedoch ließ sich Fe₃Cr₄(PO₄)₆ mit Chlorwasserstoff als TM (1000 \rightarrow 900 °C; Zusatz von 3,2 mg NH₄Cl und 23,9 mg PtCl₂) transportieren. Nach 72 h wurde die Abscheidung von einigen braunen Kristallen (~2 mg) von Fe₃Cr₄(PO₄)₆ im Senkenbereich beobachtet.

Die Kristallstruktur von $Co_3Cr_4(PO_4)_6$ wird in der Literatur [28, 134] ohne Mischbesetzung beschrieben. Da jedoch vermutet wurde, dass auch in diesem quaternären Chromphosphat die Kationen über mindestens zwei kristallographische Lagen fehlgeordnet sind, wurden zur Überprüfung nochmals Einkristalle von $Co_3Cr_4(PO_4)_6$ dargestellt. Dafür wurde, ähnlich wie bei Mn₃Cr₄(PO₄)₆, 353,6 mg (6,00 mmol) Kobaltpulver in 30 mL halbkonzentrierter Salpetersäure gelöst. Zu dieser Lösung wurden 3204,1 mg (8,00 mmol) wasserhaltiges Chrom(III)-nitratnonahydrat Cr(NO₃)₃ · 9 H₂O, gelöst in 50 mL demineralisiertem Wasser, und 12 mL 1M Orthophosphorsäure gegeben. Die Lösung wurde im Becherglas eingedampft und das dunkelbraune Pulver anschließend eine Woche bei 800 °C in einer Kieselglashalbampulle an Luft geglüht. $Co_3Cr_4(PO_4)_6$ wurde so als olivgrünes, "guinierreines" Pulver erhalten (Abbildung A.18). Einkristalle von $Co_3Cr_4(PO_4)_6$; 1000 \rightarrow 900 °C; Zusatz von 1,1 mg NH₄Cl und 27,3 mg PtCl₂). Nach einer Versuchsdauer von nur 48 h befanden sich im Senkenraum einige Kristalle hinreichender Qualität für eine Einkristallröntgensstrukturanalyse.

Als Vergleichsubstanzen bei der Untersuchung des katalytischen Verhaltens quaternärer Eisen(III)-Phosphate wurde $Cr^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ benötigt, dessen Struktur bereits früher verfeinert worden war [12]. Zu dessen Darstellung wurden 1322,7 mg (9,00 mmol) β -CrPO₄ und 78,0 mg (1,50 mmol) Chrompulver eine Woche isotherm bei 800 °C in Gegenwart von 20 mg Iod in einer evakuierten Kieselglasampulle getempert. Nach Ausweis der IP-Guinier-Aufnahme besteht das so dargestellte Produkt aus $Cr^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ und Spuren an β -Cr^{III}PO₄. Für die katalytischen Tests (Abschnitt 4) wurden auch von weiteren, kristallographisch bereits vollständig charakterisierten Chrom(III)-orthophosphaten $A^{II}_{3}Cr_4(PO_4)_6$ (A^{II} : Mg, Mn, Co, Ni, Cu, Zn) jeweils 5g dargestellt. Dafür wurde wie schon bei den Synthesen von $Mn_3Cr_4(PO_4)_6$ und Co₃Cr₄(PO₄)₆ vorgegangen. Zur Darstellung von Mg₃Cr₄(PO₄)₆, Co₃Cr₄(PO₄)₆, Ni₃Cr₄(PO₄)₆, Cu₃Cr₄(PO₄)₆ und Zn₃Cr₄(PO₄)₆ wurden nun jeweils 18,00 mmol Magnesium- (437,5 mg), Mangan- (988,9 mg), Kobalt- (1060,8 mg), Nickel- (1056,5 mg), Kupfer- (1143,8 mg) oder Zinkpulver (1177,0 mg) in 75 mL halbkonzentrierter Salpetersäure gelöst. Diese Lösungen wurden jeweils mit 9612,2 mg (24,00 mmol) Cr(NO₃)₃ · 9 H₂O, gelöst in 100 mL demineralisiertem Wasser und 36 ml 1M Orthophosphorsäure versetzt, und zur Trockene auf einem Magnetheizrührer eingedampft. Die Trockenrückstände wurden in Kieselglashalbampullen eine Woche bei 800 °C an Luft getempert. Die so dargestellten quaternären Chrom(III)-orthophosphate $A^{II}_{3}Cr^{III}_{4}(PO_4)_6$ waren "guinierrein".

2.2.4 Polynäre Eisen(III)-orthophosphate A^{II}₃Fe^{III}₄(PO₄)₆

Quaternäre Eisen(III)-orthophosphate der $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ -Strukturfamilie waren in der jüngeren Vergangenheit Gegenstand von zahlreichen Publikationen. Erste Untersuchungen zur Kationenfehlordnung im $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ -Strukturtyp erfolgten an $Co_{3}Fe_{4}(PO_{4})_{6}$, $Mn_{2}Fe_{5}(PO_{4})_{6}$ [133] und $Zn_{3}Fe_{4}(PO_{4})_{6}$ [28]. An $Co_{3}Fe_{4}(PO_{4})_{6}$ wurde die thermischer Stabilität und Phasenbreite [135] genau untersucht. Des Weiteren dienten die quaternären Eisen(III)-orthophosphate als Katalysatoren in verschiedenen oxidativen Dehydrogenierungsreaktionen [53-56] (siehe Abschnitt 1.1.3.1).

In $Mn^{II}_{2,06}Fe^{II}_{0,94}Fe^{III}_{4}(PO_{4})_{6}$ [133], $Co^{II}_{2,9}Fe^{II}_{0,1}Fe^{III}_{4,0}(PO_{4})_{6}$ [133], $Ni^{II}_{2,75}Fe^{II}_{0,25}Fe^{III}_{4,00}(PO_{4})_{6}$ [136] und $Cu^{II}_{2,8}Fe^{III}_{0,2}Fe^{III}_{4,0}(PO_{4})_{6}$ [137] liegt Eisen jeweils zwei- und dreiwertig vor. Einzig $Zn^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ [28] wird mit rein dreiwertigem Eisen beschrieben. Zur Darstellung dieser Verbindungen wird in der Literatur, neben den in Abschnitt 2.2 vorgestellten Methoden, auch die Hydrothermalsynthese [195] verwendet. Bei dieser besteht jedoch immer die Möglichkeit eines Einbaus von Protonen in den Bodenkörper. So ist bei dem in der Literatur beschriebenen $Ni_{2,75}Fe_{4,25}(PO_{4})_{6}$ [136] einerseits die schwarze Farbe, andererseits das Zellvolumen mit 413,0 Å³ auffällig. Die Farbe deutet auf das Auftreten von Metall-Metall-Charge-Transfer-Übergängen und damit auf das gemeinsame Vorliegen von Eisen(II) und Eisen(III) hin. Im Einklang mit dieser Vermutung steht das unerwartet große Zellvolumen. Dieses spricht für eine partielle Substitution kleiner Ni²⁺-Ionen durch deutlich größere Fe²⁺-Ionen, möglicherweise auch für die Substitution von Fe³⁺ durch Eisen (II) und Protonen. Das Zellvolumen von $Ni_{2,75}Fe_{4,25}(PO_{4})_{6}$ ist deutlich größer als jenes der entsprechenden Verbindungen mit Kupfer(II) (406,4 Å³), Kobalt(II) (408,4 Å³) oder Eisen(II) (411,4 Å³).

Zur Darstellung von $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ wurden 1357,3 mg (9,00 mmol) $Fe^{III}PO_{4}$ und 83,8 mg (1,50 mmol) Eisenpulver isotherm eine Woche lang bei 800 °C in Gegenwart von 20 mg Iod in einer evakuierten Kieselglasampulle getempert. Das Guinierdiagramm des so erhaltenen Produktes zeigt verschobene Reflexpositionen gegenüber einer Simulation, die aus den von GORBUNOV [16] bestimmten Werten berechnet wurde (Abbildung A.23). Daher wurden aus den *IP*-Guinier-Aufnahmen des Pulvers die Gitterkonstanten neu berechnet (Abbildung A.24), die so erhaltenen Werte stimmen gut mit den von BELIK [196] für $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ angegebenen Werten überein.

Zur Darstellung der Pulver von $Mg_3Fe_4(PO_4)_6$, $Mn_3Fe_4(PO_4)_6$, $Co_3Fe_4(PO_4)_6$, $Ni_3Fe_4(PO_4)_6$, $Cu_3Fe_4(PO_4)_6$, und $Zn_3Fe_4(PO_4)_6$ wurden 18,0 mmol von Magnesium- (437,5 mg), Mangan-

(988,9 mg), Kobalt- (1060,8 mg), Nickel- (1056,5 mg), Kupfer- (1143,8) oder Zinkpulver (392,4 mg) mit 1340,3 mg (24,0 mmol) Eisenpulver in heißer, halbkonzentrierter Salpetersäure gelöst. Diese Lösungen wurden jeweils mit 4754,0 mg (36,0 mmol) Diammoniumhydrogenphosphat, gelöst in 75ml demineralisiertem Wasser, versetzt und zur Trockene auf einem Magnetheizrührer eingedampft. Die Rückstände wurden in Kieselglashalbampullen an Luft eine Woche bei 800 °C getempert.

Bis auf Cu₃Fe₄(PO₄)₆ war in allen so dargestellten Pulvern nach den *IP*-Guinier-Aufnahmen neben den polynären Phosphaten A^{II}_{3} Fe^{III}₄(PO₄)₆ immer Fe^{III}PO₄ entstanden. Isothermes Tempern der einzelnen Proben in evakuierten Kieselglasampullen bei 800 °C in Gegenwart von Chlor ergab schließlich einphasige Produkte A^{II}_{3} Fe^{III}₄(PO₄)₆ (A^{II} : Mg, Mn, Co, Ni, Cu, Zn; Abbildung A.20 bis Abbildung A.21). Offenbar führte das Tempern ohne Mineralisator bei 800°C weder zur vollständigen Umsetzung der Edukte noch zur Rekristallisation der Metall(II)-orthophosphate.

Das mit Chlor getemperte ockerfarbene $Mn_3Fe_4(PO_4)_6$ zeigt nur sehr geringe Abweichungen in den Reflexpositionen (gleiche Reflexintensitäten) gegenüber einer Simulation, berechnet anhand der von LIGHTFOOT und CHEETHAM [133] für dunkelgrünes $Mn_{2,06}^{II}Fe_{0,94}^{II}Fe_{4}^{III}(PO_4)_6$ (Abbildung A.22) angegebenen Daten. Wegen der ähnlichen Ionenradien von Mn^{2+} und Fe²⁺ macht sich der entsprechende Austausch offenbar kaum im Beugungsdiagramm bemerkbar.

Gelb-oranges Ni₃Fe₄(PO₄)₆ zeigt im Guinierdiagramm deutlich verschobene Reflexpositionen gegenüber einer Simulation anhand der Daten von "Ni_{2,75}Fe_{4,25}(PO₄)₆" [136] (Abbildung A.25). Auch ist die Farbe des hier erhaltenen Produktes gelb und nicht schwarz, wie in der Literatur angegeben. Aus den *IP*-Guinier-Aufnahmen des Pulvers wurden die Gitterkonstanten berechnet (Abbildung A.26). Die so erhaltenen Werte entsprechen den Erwartungen und fügen sich in die Reihe der Phosphate A^{II}_{3} Fe^{III}₄(PO₄)₆ gut ein.

Ein Transportexperiment mit $Mg_3Fe_4(PO_4)_6$ als Ausgangsbodenkörper (1000 \rightarrow 900 °C; Zusatz von 2,9 mg NH₄Cl und 30,2 mg PtCl₂) führte innerhalb von zwei Wochen zur Abscheidung von wenigen schwarzen Kristallen "Mg₃Fe₄(PO₄)₆" im Senkenbereich der Ampulle. Deren Charakterisierung erfolgte mittels Einkristallröntgenstrukturanalyse (vergl. Abschnitt 2.3.4).

2.2.5 Polynäre Indium(III)-orthophosphate A^{II}₃In^{III}₄(PO₄)₆

Quaternäre Indium(III)-orthophosphate im $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ -Strukturtyp waren neben den quaternären Chrom(III)-orthophosphaten Gegenstand der Untersuchungen in der Dissertation von GRUß [28]. Zur Vervollständigung der Serie fehlten noch Untersuchungen zu den Verbindungen "Cr^{II}₃In^{III}₄(PO₄)₆", Mn^{II}₃In^{III}₄(PO₄)₆ und Fe^{II}₃In^{III}₄(PO₄)₆.

Für die Darstellung von "**Cr^{II}₃In^{III}₄(PO₄)₆"** wurde ein Pressling aus 10,4 mg (0,20 mmol) Chrompulver, 73,5 mg (0,40 mmol) β -Cr^{III}PO₄ und 167,8 mg (0,80 mmol) In^{III}PO₄ nach der Vorschrift aus Abschnitt 1.2.1 angefertigt. Dieser Pressling wurde ohne Mineralisator zwei Wochen lang in einer evakuierten Kieselglasampulle bei 1000 °C getempert. Nach Ausweis der *IP*-Guinier-Aufnahme haben InPO₄ und β -CrPO₄ unter Bildung von Mischkristallen (Cr^{III}_{1-x}In^{III}_x)PO₄ mit $x \approx 0,66$ [116] reagiert. Als Nebenphasen konnte ein Vertreter der Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturfamilie identifiziert werden, dessen genaue Zusammensetzung nicht bestimmt wurde. Ebenfalls befand sich im Pressling noch nicht umgesetztes Chrom.

Ein zweiter Pressling wurde nach gleicher Vorschrift angefertigt, jedoch mit 5 mg Iod als Mineralisator eine Woche in einer evakuierten Kieselglasampulle bei 1000 °C getempert. An der Ampullenwand waren nach dieser Zeit weiße Kristalle von InPO₄ aufgewachsen. Der überwiegend braune Pressling besteht nach Ausweis der *IP*-Guinier-Aufnahme aus einer Substanz, deren Reflexmuster dem des Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyps entspricht. Weiterhin sind im Pressling einzelne blaugrüne Kristalle enthalten, die nicht weitergehend untersucht wurden. Anhand von 9 Reflexen wurden die Gitterkonstanten der braunen Substanz vorläufig bestimmt. Das aus den Gitterkonstanten berechnete Zellvolumen liegt deutlich über den Werten für reines Cr^{III}₃Cr^{III}₄(PO₄)₆ [12] und deutlich unter jenen der quaternären Indium(III)orthophosphate (Tabelle 2.10). Es scheint daher wahrscheinlich, dass es sich wahrscheinlich bei der braunen Substanz nicht um reines "Cr^{III}₃In^{III}₄(PO₄)₆" handelt. Möglicherweise ist eine Verbindung vom Typ Cr^{II}₃(Cr^{IIII}_{1-x}In^{III}_x)₄(PO₄)₆ entstanden, dessen Zellvolumen noch größer als das der anderen quaternären Indium(III)-Phosphate $A^{III}_{3}In^{III}_{4}(PO_4)_{6}$ sein sollte.

Tabelle 2.10 VergleichderGitterkonstantenvom $Cr^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ [12], $Cr^{II}_{3}(Cr^{III}_{1-x}In^{III}_{x})_{4}(PO_{4})_{6}$ und $Mn^{II}_{3}In^{III}_{4}(PO_{4})_{6}$.(12)

Verbindung	<i>a</i> / Å	b / Å	<i>c</i> / Å	α/°	β / °	γ/°	$V/\text{\AA}^3$
$Cr_3Cr_4(PO_4)_6$	9,318(2)	8,004(2)	6,253(1)	100,982(9)	107,95(1)	107,14(1)	403,2(3)
$Cr_3(Cr_{1-x}In_x)_4(PO_4)_6$	9,385(6)	8,185(5)	6,346(4)	100,76(4)	108,65(5)	105,87(7)	423,7(4)
$Mn_3In_4(PO_4)_6$	9,5319(8)	8,2510(7)	6,4993(6)	100,96(1)	109,726(8)	104,818(8)	443,19(6)
Für die Darstellung von **Mn₃In₄(PO₄)**₆ wurden 329,6 mg (6,00 mmol) Mangan und 918,5 mg (8,00 mmol) Indium in heißer, halbkonzentrierter Salpetersäure gelöst und mit 1584,7 mg Diammoniumhydrogenphosphat, gelöst in 50 mL demineralisiertem Wasser, versetzt. Die Lösung wurde auf einem Magnetheizrührer zur Trockene eingedampft. Der so erhaltene Rückstand wurde eine Woche bei 800 °C in einer Kieselglashalbampulle an Luft getempert. Mn₃In₄(PO₄)₆ wurde so als weißes, "guinierreines" Pulver erhalten (Abbildung A.29). Um Einkristalle für eine strukturelle Untersuchung zu bekommen, wurden 75 mg Mn₃In₄(PO₄)₆ als Ausgangsbodenkörper in einem Transportexperiment eingesetzt (1000 \rightarrow 900 °C; Zusatz von 20 mg NH₄Cl und 10 mg PtCl₂). Innerhalb von 24h führte dies im Senkenbereich zur Abscheidung von 5 - 10 mg nahezu farbloser Kristalle von Mn₃In₄(PO₄)₆.

Für die Darstellung von $Fe_3In_4(PO_4)_6$ wurde ein Pressling aus 89,4 mg (0,25 mmol) Eisen(II)-orthophosphat und 209,8 mg (1,00 mmol) InPO₄ nach der Vorschrift aus Abschnitt 1.2.1 angefertigt. Dieser Pressling wurde mit 15 mg Iod als Mineralisator zwei Wochen lang in einer evakuierten Kieselglasampulle bei 1000 °C getempert. Nach Ausweis der *IP*-Guinier-Aufnahme (Abbildung A.30) entstand weißes phasenreines $Fe_3In_4(PO_4)_6$. Einkristalle zur näheren Untersuchung der Kristallstruktur wurden mittels chemischen Transports erhalten (1000 \rightarrow 900 °C; Zusatz von 20 mg NH₄Cl und 10 mg PtCl₂). Innerhalb von 24 h kam es zur Abscheidung von 5 - 10 mg farbloser Kristalle von Fe₃In₄(PO₄)₆ im Senkenbereich.

Für Vergleichsuntersuchungen wurden nochmals Einkristalle der bereits aus der Dissertation von GRUß [28] bekannten Verbindungen $Co_3In_4(PO_4)_6$, $Ni_3In_4(PO_4)_6$ und $Zn_3In_4(PO_4)_6$ dargestellt. Dazu wurde analog der Präparation des Mangan(II)-indium(III)-orthophosphats Mn_3In_4(PO_4)_6 vorgegangen.

Je 6,00 mmol Kobalt (353,6 mg), Nickel (352,2 mg) und Zink (392,4 mg) wurden mit 918,5 mg (8,00 mmol) Indium in heißer, halbkonzentrierter Salpetersäure gelöst. Diese drei Lösungen wurden jeweils mit 12 mL 1M Orthophosphorsäure versetzt und zur Trockene auf einem Magnetheizrührer eingedampft. Die Rückstände wurden in Kieselglashalbampullen zwei Wochen bei 800 °C getempert.

Die Herstellung von Einkristallen für röntgenographische Untersuchungen gelang durch chemischen Transport. In den Versuchen wurde jeweils 100 mg des pulverförmigen Phosphats als Quellenbodenkörper eingesetzt (1000 \rightarrow 900 °C; Zusatz von 20 mg NH₄Cl und 10 mg PtCl₂). Innerhalb von 24 h führte dies zur Abscheidung von wenigen mg farbiger Kristalle von Co₃In₄(PO₄)₆ bzw. Ni₃In₄(PO₄)₆ im Senkenbereich. Der Transport von Zn₃In₄(PO₄)₆ erfolgte innerhalb von 9 Tagen vollständig.

2.2.6 Mischkristallreihen $(M_{1-x}Cu_x)_3In_4(PO_4)_6$ (*M*: Mg, Zn; $0 \le x \le 1$)

Frühere Untersuchungen zeigten [28], dass in der Reihe der quaternären Indiumorthophosphate kein Kupfer(II)-indium(III)-orthophosphat "Cu^{II}₃In^{III}₄(PO₄)₆" mit Fe^{II}₃Fe^{III}₄(PO₄)₆-Struktur existiert. Bei entsprechenden Syntheseversuchen entstand gemäß Gleichung 2.14 ein Gemenge aus InPO₄ und Cu₃In₂(PO₄)₄ [33], das im eigenen Strukturtyp kristallisiert.

$$,:Cu^{II}_{3}In^{III}_{4}(PO_{4})_{6}^{"} \rightarrow 2 In^{III}PO_{4} + Cu_{3}In_{2}(PO_{4})_{4}$$
(Gl. 2.14)

Durch die Mischkristallreihen $(Mg_{1-x}Cu_x)_3In_4(PO_4)_6$ und $(Zn_{1-x}Cu_x)_3In_4(PO_4)_6$ mit $0 \le x \le 1$ sollte festgestellt werden, wo die kristallchemische Stabilitätsgrenze von quaternären Indiumorthophosphaten des Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyps liegt, wenn ein stark Jahn-Telleraktives Kation wie Cu²⁺ in die Struktur eingebaut wird. Dabei sollte auch geklärt werden, wie viel Cu²⁺ auf welcher Lage sich in der Struktur befindet.

Die Darstellung der Mischkristallreihen $(Mg_{1-x}Cu_x)_3In_4(PO_4)_6$ und $(Zn_{1-x}Cu_x)_3In_4(PO_4)_6$ erfolgte analog der in Kapitel 2.2 vorgestellten Methode 3. Dazu werden die eingewogenen Mengen (Tabelle 2.11) der Metalle mit 1M Phosphorsäure in ein Becherglas gegeben und mit halbkonzentrierter Salpetersäure bis zum vollständigen Lösen der Metalle versetzt. Nach dem Eindampfen der homogen Lösungen werden die Phosphate in offenen Quarzampullen bei 800 °C eine Woche an Luft geglüht und dann jeweils 250 mg des so erhaltenen Produktes mit dem Zusatz von 8 mg PtCl₂ als Mineralisator in geschlossenen Ampullen im Laborkammerofen fünf Tage wiederum bei 800 °C getempert.

In den Mischkristallreihen ($Mg_{1-x}Cu_x$)₃ $In_4(PO_4)_6$ (Abbildung 2.6) und ($Zn_{1-x}Cu_x$)₃ $In_4(PO_4)_6$ (Abbildung 2.7 und Abbildung 2.8) wurde eine eingeschränkte Substituierbarkeit von Mg^{2+} bzw. Zn^{2+} -Ionen gegen Cu^{2+} -Ionen beobachtet. Die auftretenden Phasen zeigen, dass lediglich im Bereich $0 \le x \le 0,33$ die $Fe^{II}_3Fe^{III}_4(PO_4)_6$ -Struktur erhalten bleibt. Mit Kupfergehalten x > 0,33 kollabiert die Struktur unter Bildung von $Cu_3In_2(PO_4)_4$, InPO₄ und der Mischkristalle ($M_{1-x}Cu_x$)₃ $In_4(PO_4)_6$ mit der Grenzzusammensetzung (M: Mg, Zn; x = 0,33).

x	М			Cu		In		1M H ₃	PO ₄
		/ mg	/ mmol	/ mg	/ mmol	/ mg	/ mmol	/ ml	/ mmol
0,33	Mg	48,6	2,0	0,0	1,0	459,3	4,0	6,0	6,0
0,66	Mg	24,3	1,0	19,0	2,3	459,2	4,0	6,0	6,0
0,00	Zn	196,1	3,0	0,0	0,0	460,0	4,0	6,0	6,0
0,10	Zn	176,5	2,7	19,0	0,3	459,3	4,0	6,0	6,0
0,20	Zn	156,9	2,4	38,1	0,6	459,3	4,0	6,0	6,0
0,30	Zn	137,3	2,1	57,4	0,9	459,3	4,0	6,0	6,0
0,33	Zn	130,8	2,0	63,5	1,0	459,3	4,0	6,0	6,0
0,50	Zn	98,1	1,5	95,4	1,5	459,4	4,0	6,0	6,0
0,66	Zn	65,4	1,0	127,1	2,0	459,3	4,0	6,0	6,0
0,75	Zn	49,0	0,75	143,0	2,25	459,3	4,0	6,0	6,0
1,00	Zn	0,0	0,0	190,8	3,0	459,2	4,0	6,0	6,0

Tabelle 2.11 Einwaagen bei den Versuchen zur Darstellung von Mischkristallreihen $(M_{1-x}Cu_x)_3In_4(PO_4)_6$ (*M*: Mg, Zn; $0 \le x \le 1$).

Abbildung 2.6 $(Mg_{1-x}Cu_x)_3In_4(PO_4)_6$ $(x = 0,33; * = Spuren von \alpha-InPO_4$ [101]) (a). Simuliertes Strichdiagramm von $(Mg_{1-x}Cu_x)_3In_4(PO_4)_6$ x = 0,33 mit neu berechneten Gitterkonstanten, den Atomkoordinaten von $Mg_3In_4(PO_4)_6$ und die Lage *M*3 mit 50% Cu besetzt (b). $(Mg_{1-x}Cu_x)_3In_4(PO_4)_6$ (x = 0,66) (c). Simuliertes Strichdiagramm von α -InPO₄ [101] (d). Simuliertes Strichdiagramm von $Cu_3In_2(PO_4)_4$ [33] (e).

Abbildung 2.7 *IP*-Guinier-Aufnahmen der Mischkristallreihe $(Cu_xZn_{1-x})_3In_4(PO_4)_6$ $(0 \le x \le 0.33)$ (a bis e). Simuliertes Strichdiagramm von Zn_3In_4(PO_4)_6 [28] (f).

Abbildung 2.8 *IP*-Guinier-Aufnahmen der Mischkristallreihe $(Cu_xZn_{1-x})_3In_4(PO_4)_6$ (0,33 $\leq x \leq 1,00$) (a bis e). Simuliertes Strichdiagramm von α -InPO₄ [101] (f). Simuliertes Strichdiagramm von Cu₃In₂(PO₄)₄ [33] (g).

2.2.7 Überlegungen zur Substitution von Eisen(III) im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp

Für die Substitution von Eisen(III) im $\text{Fe}^{II}_{3}\text{Fe}^{III}_{4}(\text{PO}_{4})_{6}$ -Strukturtyp stellt sich die Frage nach weiteren kristallchemisch vergleichbaren Kationen. Als grobes Kriterium kann der Radius der M^{3+} -Ionen herangezogen werden. Auch Vergleiche mit anderen Strukturtypen erscheinen aufschlussreich.

Beim Vergleich der ternären Orthophosphate $M^{III}PO_4$ von den dreiwertigen Kationen, die quaternäre Orthophosphate vom Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp bilden, fällt auf, dass von jedem dieser Phosphate eine Modifikation in der Cr^{III}VO₄-Struktur [197, 198] kristallisiert. Gibt es mehrere Modifikationen, muss jene mit der Cr^{III}VO₄-Struktur nicht die thermodynamisch stabilste sein. So handelt es sich bei Fe^{III}PO₄ [199] mit Cr^{III}VO₄-Struktur um eine Hochdruckmodifikation. Unter Normalbedingungen kristallisiert Fe^{III}PO₄ wie auch Ga^{III}PO₄ [200] in Tiefquarzstruktur (α -SiO₂). Bei β -Cr^{III}PO₄ [99] mit Cr^{III}VO₄-Struktur handelt es sich im Vergleich zu α -Cr^{III}PO₄ [98] um eine metastabile Phase.

Von Rh^{III}PO₄ [201] ist bisher eine zur α -Cr^{III}PO₄-Struktur [98] isotype Modifikation bekannt. Der Abstand *d*(Rh-O) ist nur minimal größer ist als *d*(Cr-O) in α -Cr^{III}PO₄. Auch erfüllt Rhodium(III) mit der Bevorzugung für K.Z.(Rh³⁺) = 6 eine weitere Bedingung, erfolgreich in den Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp eingebaut zu werden. Daher erscheint es sinnvoll, Rhodium(III) als weiteren Kandidaten anzusehen, der in die Fe^{II}₃Fe^{III}₄(PO₄)₆-Struktur eingebaut werden kann.

2.2.8 Versuche zur Synthese polynärer Phosphate $A^{II}_{3}B^{III}_{4}(PO_4)_6$ mit B^{III} : Ga, Rh

Zur Synthese von "Co₃Ga₄(PO₄)₆" wurden 88,4 mg (1,50 mmol) Kobaltpulver in 25 mL halbkonzentrierter Salpetersäure sowie 396,2 mg (3,00 mmol) Diammoniumhydrogenphosphat in 30 mL demineralisiertem Wasser gelöst. 139,4 mg (2,00 mmol) Gallium wurde zwei Stunden lang mit 25 mL warmer halbkonzentrierter Salpetersäure behandelt. Das flüssige Metall löste sich sehr langsam auf. Zu dieser Lösung wurden die beiden anderen erhaltenen Lösungen hinzugegeben und auf einem Heizrührer in einem mit einem Uhrglas abgedeckten Becherglas bis zur Trockene eingedampft. Hierbei entstand ein inhomogener Rückstand (unterschiedlich helle violett-blaue Töne). Der Rückstand wurde fein verrieben, das so erhaltene Pulver in eine Kieselglashalbampulle überführt und eine Woche lang bei 800 °C an Luft getempert. Als Produkte entstanden bei der Umsetzung nach *IP*-Guinier-Aufnahme eine Gemenge aus GaPO₄ (α -SiO₂-Typ [200]) und Co₃(PO₄)₂ in Form eines violetten Pulvers.

Um "**Zn**₃**Ga**₄(**PO**₄)₆" und "**Mg**₃**Ga**₄(**PO**₄)₆" darzustellen, wurde analog der Präparation des "Kobalt(II)-gallium(III)-orthophosphat" "Co₃Ga₄(PO₄)₆" vorgegangen. Es entstanden Gemenge der ternären Phospate GaPO₄ und Mg₃(PO₄)₂ bzw. GaPO₄ und Zn₃(PO₄)₂. Diese Experimente bestätigen die Ergebnisse von GRUß [132], dass trotz vergleichbarem Ionenradius der beiden dreiwertigen Metalle eine Substitution von Chrom durch Gallium in den Phosphaten $A^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ nicht möglich ist.

Zur Darstellung des "**Zn₃Rh₄(PO₄)**₆" wurden 161,2 mg (0,33 mmol) Rhodiumtriiodid mit heißer (kochender) konzentrierter Salpetersäure mehrfach behandelt, bis sich alles RhI₃ gelöst hatte. Des Weiteren wurden 16,3 mg (0,25 mmol) Zinkpulver in 20 mL verdünnter Salpetersäure gelöst. Die beiden salpetersauren Lösungen wurden vereinigt, mit 5,0 mL 0,1 M Phosphorsäure versetzt und auf einem Heizrührer bis zu Trockene eingedampft. Der so erhaltene Trockenrückstand wurde fein zerrieben, in eine Kieselglashalbampulle überführt und drei Tage lang bei 650 °C an Luft getempert. Die auf diese Weise entstandene Probe (86 mg) wurde in einem Transportexperiment als Ausgangsbodenkörper eingesetzt (Zusatz von 25,1 mg PtCl₂ und 2,1 mg NH₄Cl; 24h; 900 °C \rightarrow 800 °C). Nach Beendigung des Experiments wurde auf der Quellenseite eine farblose, röntgenamorph erstarrte Schmelze (vermutlich Zn(PO₃)₂) neben Rh₂O₃ und Rh_{0,57}Pt_{0,43} gefunden. Auf der Senkenseite lagen Rh₂O₃ und Rh_{0,57}Pt_{0,43} vor. Das Beugungsbild von Rh_{0,57}Pt_{0,43} entspricht der Simulation mit den Daten dieser Verbindung aus der ICSD [202]. Bei der Darstellung von " $Mg_3Rh_4(PO_4)_6$ " wurde analog der Präparation des "Zink-Rhodium(III)-orthophosphats" " $Zn_3Rh_4(PO_4)_6$ " vorgegangen. Nach nasschemischer Synthese und isothermen Tempern wurden in der Ampulle $Mg_2P_4O_{12}$ sowie schwarze Kristalle von Rh_2O_3 und silberne Kristalle von $Rh_{0.57}Pt_{0.43}$ nachgewiesen.

Bei den Versuchen, Phosphate $A^{II}_{3}Rh^{III}_{4}(PO_{4})_{6}$ (A^{II} : Mg, Zn) darzustellen, kam es jeweils zu Umphosphatierungsreaktionen (Gl. 2.15). Eine Möglichkeit, dieses Verhalten zu interpretieren, liegt im vergleichsweise hohen Aciditätsunterschied zwischen den stark basischen Oxiden $A^{II}O$ und dem amphoteren bis leicht sauren $Rh^{III}_{2}O_{3}$. Die im Vergleich zu $Rh^{III}PO_{4}$ basischen Phosphate $A^{II}_{3}(PO_{4})_{2}$ binden demgemäss $P_{4}O_{10}$ und es entstehen die Metaphosphate $A^{II}(PO_{3})_{2}$ und $Rh_{2}O_{3}$. Das aus dem Mineralisator Platinchlorid entstandene Platinmetall geht mit dem Rhodiumoxid nach Gleichung 2.16 eine Folgereaktion ein.

$$_{,,A}^{II}_{3}\text{Rh}^{III}_{4}(\text{PO}_{4})_{6}^{,\,,} \rightarrow 3 A^{II}_{2}(\text{PO}_{3})_{2} + 2 \text{Rh}_{2}\text{O}_{3} (A^{II}: \text{Mg}, \text{Zn})$$
 (Gl. 2.15)

$$2 \operatorname{Rh}_{2}O_{3} + 3 \operatorname{Pt} \to 7 \operatorname{Rh}_{0,57}\operatorname{Pt}_{0,43} + 3O_{2}$$
 (Gl. 2.16)

2.2.9 Bilanz der Darstellungsversuche

Für Orthophosphate $A^{II}_{3}B^{III}_{4}(PO_{4})_{6}$ (A^{II} : Cr, Mn, Fe, Co, Ni, Cu, Zn, Mg; B^{III} : Ti, V, Cr, Fe, In) existieren von den 40 möglichen Kombinationen 34 Verbindungen, die alle im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp kristallisieren. Die quaternären Titan(III)-orthophosphate "Co^{II}₃Ti^{III}₄(PO₄)₆", "Ni^{II}₃Ti^{III}₄(PO₄)₆" und "Cu^{II}₃Ti^{III}₄(PO₄)₆", die quaternären Indium(III)orthophosphate "Cr^{II}₃In^{III}₄(PO₄)₆" und "Cu^{II}₃In^{III}₄(PO₄)₆" sowie "Cr^{II}₃Fe^{III}₄(PO₄)₆" existieren nicht. Alle anderen Kombinationen sind darstellbar. Bei Cu^{II}₃V^{III}₄(PO₄)₆ handelt es sich um eine Verbindung mit engem thermischen Existenzbereich, die bis jetzt nur als Pulver erhalten werden konnte.

Bei Versuchen zur Darstellung weiterer Vertreter des $\text{Fe}^{II}_{3}\text{Fe}^{III}_{4}(\text{PO}_{4})_{6}$ -Strukturtyps mit $B^{III} =$ Ga und Rh entstanden mit Gallium immer die ternären Orthophosphate GaPO₄ und $A^{II}_{3}(\text{PO}_{4})_{2}$. Mit Rhodium kommt es zu einer Umphosphatierung und es entstehen Metaphosphate $A^{II}(\text{PO}_{3})_{2}$ und Rh₂O₃ gemäß Gleichung 2.15.

Bei der Synthese von volloxidierten quaternären Chrom(III)-orthophosphaten wurden über die nasschemische Syntheseroute (Kapitel 2.2) lockere Pulver als Zwischenprodukte erhalten. Nach dem Glühen dieser Zwischenprodukte an Luft entstanden die phasenreinen Phosphate A^{II}_{3} Cr^{III}₄(PO₄)₆. Die Darstellung von volloxidierten quaternären Eisen(III)-orthophosphaten unterscheidet sich davon deutlich. Als Zwischenprodukt bei deren nasschemischer Synthese (Kapitel 2.2) entstand am Becherglas stets eine fest anhaftende Masse. Beim Glühen dieses Zwischenprodukts bildete sich zunächst ein Gemenge aus Fe^{III}PO₄ und A^{II}_{3} Fe^{III}₄(PO₄)₆. Erst durch langes Tempern oder durch Behandeln mit einem Mineralisator entstanden die "guinierreinen" Phosphate A^{II}_{3} Fe^{III}₄(PO₄)₆.

Durch die Mischkristallreihen $(Mg_{1-x}Cu_x)_3In_4(PO_4)_6$ und $(Zn_{1-x}Cu_x)_3In_4(PO_4)_6$ konnte gezeigt werden, dass sich etwa 1/3 der Magnesium- beziehungsweise der Zinkatome durch Kupfer ersetzen lassen. Bei Kupfergehalten höher als $x \approx 0,33$ kollabiert die Struktur unter Bildung von Cu_3In_2(PO_4)_4, InPO_4 und $(M_xCu_{1-x})_3In_4(PO_4)_6$ mit der Grenzzusammensetzung (*M*: Mg, Zn; x = 0,33).

2.3 Untersuchung der Einkristallstrukturen

Für die Strukturverfeinerungen der Verbindungen $A^{II}_{3}B^{III}_{4}(PO_4)_6$ wurden als Startparameter die Atomkoordinaten von den in der Literatur genannten isotypen Verbindungen, wie zum Beispiel Cr₃Cr₄(PO₄)₆ [12] und Co₃In₄(PO₄)₆ [28], verwendet.

Für die vier Metalllagen M1 - M4 wurden bei den folgenden Strukturverfeinerungen Nebenbedingungen vorgegeben:

- 1. Jede Lage soll vollständig besetzt sein.
- Bei mischbesetzten Lagen wurden mit Hilfe des EXYZ-Befehls (equal X, Y, Z) in der Eingabedatei (*.INS-Datei) für das Programm SHELXL-97 [302] die Atomkoordinaten beider Atomsorten auf dieser Lage gleichgesetzt. Gleichzeitig wurden mittels des EADP-Befehls (equal anisotropic displacement parameter) die anisotropen Auslenkungsparameter beider Atomsorten auf dieser Lage gleichgesetzt.
- Zur Wahrung der Elektroneutralität wurde mittels des SUMP Befehls (Programm SHELXL-97 [302]) die Anzahl der dreiwertigen Kationen auf vier festgelegt. Hierdurch ergibt sich für die Anzahl der zweiwertigen Kationen Z = 3. Der verwendete SUMP-Befehl für eine Mischbesetzung über alle vier Metalllagen lautet: SUMP 3.0 0.001 2.0 2 1.0 3 2.0 4 2.0 5

Zunächst wurden alle Strukturen ohne Mischbesetzung verfeinert. Dabei wurde für die Lagen M1 und M3 vollständige Besetzung mit dreiwertigen Kationen und für die Lagen M2 und M4 mit zweiwertigem Kationen angenommen. Im nächsten Verfeinerungsschritt wurde Mischbesetzung für die Lagen M2 und M3 eingeführt. Schließlich wurden Mischbesetzungen für alle Metalllagen versuchsweise verfeinert. Erwartungsgemäß waren diese Rechnungen nicht immer stabil und häufig nur bei schrittweiser Erweiterung des Modells verfeinerbar. Ein Beispiel für eine SHELXL.INS Eingabedatei [302] mit einer Mischbesetzung über alle vier Metalllagen befindet sich im Anhang E.3.

2.3.1 Strukturverfeinerung der polynären Titan(III)-orthophosphate A^{II}_{3} Ti^{III}₄(PO₄)₆ (A^{II} : Cr, Mn, Fe, Zn, Mg)

Von $Cr^{II}_{3}Ti^{III}_{4}(PO_4)_6$ wurde ein geeigneter Einkristall auf einem Vierkreisdiffraktometer (CAD-4, Fa. Enraf-Nonius) vermessen. Es wurde die "volle Kugel" im Bereich von 2,43 $\leq \theta \leq$ 39,95 ° gemessen. An dem Datensatz wurde eine empirische Absorptionskorrektur anhand von acht Ψ -Scans [203] vorgenommen.

Der Datensatz wurde zunächst ohne Mischbesetzung verfeinert [204]. Eine erneute Verfeinerung unter Berücksichtigung einer Mischbesetzung der Lagen *M*1 bis *M*4 ergab nur eine minimale Verbesserung der Gütefaktoren (*R*₁ von 3,11 auf 3,07, *wR*₂ von 6,8% auf 6,4%) Die maximale Restelektronendichte sank von 0,955 e⁻/Å³ auf 0,910 e⁻/Å³ und der Goof-Wert verschlechterte sich minimal von 1,007 auf 1,023. Der Datensatz wies eine Vollständigkeit von nur 74% bei θ = 39,95 und 85% bei θ = 34,95 auf. Daher erfolgte die Vermessung eines zweiten Kristalls aus demselben Experiment später auf dem *k*-CCD (Firma Nonius). Es wurde die "halbe Kugel" im Bereich 2,43 ≤ θ ≤ 35,04 ° gemessen. Der erhaltenen Datensatz wies eine Datenvollständigkeit von 95% auf und ließ ebenfalls das Strukturmodell mit Mischbesetzung aller Metalllagen verfeinern.

Beim Vergleich der Besetzungsfaktoren der beiden Verfeinerungen fällt eine große Übereinstimmung in den erhaltenen Besetzungsfaktoren auf (Tabelle 2.12). Die Abweichungen in den Besetzungsfaktoren liegen in etwa in dem selben Rahmen wie sie bei der Wiederholungsmessung für $Zn_3In_4(PO_4)_6$ beobachtet wurden (Tabelle 2.20 in Abschnitt 2.3.5).

Verbindung	Lage <i>M</i> 1 Cr ²⁺ [%]	Lage M2 Cr ²⁺ [%]	Lage <i>M</i> 3 Cr ²⁺ [%]	Lage <i>M</i> 4 Cr ²⁺ [%]	
Kristall-1 CAD4	0,8	87,2	9,6	96,0	
Kristall-2 CCD	2,8	82,2	5,7	93,2	

Tabelle 2.12 Vergleich der Chromgehalte auf den Lagen M1 bis M4 bei Cr₃Ti₄(PO₄)₆.

Alle weiteren röntgenographischen Einkristalluntersuchungen der Verbindungen $A^{II}_{3}B^{III}_{4}(PO_4)_6$ wurden ausschließlich mit dem κ -CCD durchgeführt. Es wurde stets die "halbe Kugel" im Bereich bis $\theta_{max} \approx 35^{\circ}$ gemessen.

Der Datensatz von $\mathbf{Mn^{II}_{3}Ti^{III}_{4}(\mathbf{PO}_{4})_{6}}$ weist im Vergleich zu allen anderen Datensätzen der Serie $A^{II}_{3}Ti^{III}_{4}(\mathbf{PO}_{4})_{6}$ mit $R_{int} = 9\%$ einen deutlich schlechteren Wert auf. Die erhaltenen Gütefaktoren der Verfeinerung liegen in dem selben Bereich wie bei den isotypen Verbindungen, jedoch ließen sich nur die Besetzungsfaktoren der Lagen M2 und M3 mischbesetzt verfeinern.

Bei $\mathbf{Fe^{II}_3 Ti^{III}_4 (PO_4)_6}$ ließen sich die Metalllagen *M*2 bis *M*4, bei $\mathbf{Zn_3 Ti^{III}_4 (PO_4)_6}$ alle Metalllagen mischbesetzt verfeinern. Bei dem in der Literatur beschriebenen Mg₃Ti^{III}_4 (PO_4)_6 [132] ist eine Mischbesetzung nur für die Lagen *M*2 und *M*3 angegeben. Die Besetzungsparameter für die Lagen *M*2 und *M*3 werden offenbar auf s.o.f.(Ti) = 2/3 für Titan und s.o.f.(Mg) = 1/3 für Magnesium fixiert. Für die Magnesiumverbindung ist wie beim Zn₃Ti^{III}_4 (PO_4)_6 mit einer Mischbesetzung der Kationen über alle vier Lagen zu rechnen, deshalb wurde eine eigene Neuverfeinerung der Struktur durchgeführt. Diese verlief ohne Probleme. Wie bei Zn₃Ti^{III}_4 (PO_4)_6 ließen sich die Besetzungsfaktoren aller vier Metalllagen verfeinern. Details zur Datensammlung und Auswertung der Verbindungen Cr^{II}₃Ti^{III}_4 (PO_4)_6, Mn^{II}₃Ti^{III}_4 (PO_4)_6, Fe^{II}₃Ti^{III}_4 (PO_4)_6, Zn^{II}_3Ti^{III}_4 (PO_4)_6 und Mg^{II}_3Ti^{III}_4 (PO_4)_6 sind in Tabelle 2.13 zusammengestellt. Die Angaben zu den Lageparametern und Besetzungsfaktoren, anisotropen und isotropen Auslenkungsparametern sowie interatomaren Abständen befinden sich im Anhang A im Abschnitt A.3.1 in Tabelle A.24 bis Tabelle A.37.

Summenformel	$\operatorname{Cr}_{3}\operatorname{Ti}_{4}(\operatorname{PO}_{4})_{6}^{c)}$	$\operatorname{Cr}_{3}\operatorname{Ti}_{4}(\operatorname{PO}_{4})_{6}^{d}$	$Mn_3Ti_4(PO_4)_6^{d}$
Kristallgröße / mm ³	0,16 · 0,18 · 0,07	0,60 · 0,56 · 0,44	0,60 · 0,40 · 0,16
Farbe des Kristalls	orange-braun	orange-braun	blauviolett / grün ^{b)}
Farbe des Pulvers	orange-braun	orange-braun	grün
Kristallsystem	triklin	triklin	triklin
Raumgruppe	<i>P</i> 1 (Nr. 2)	<i>P</i> 1 (Nr. 2)	<i>P</i> 1 (Nr. 2)
Gitterparameter aus	IP-Guinier-Aufnahmen	IP-Guinier-Aufnahmen	IP-Guinier-Aufnahmen
<i>a</i> / Å	9,4139(12)	9,4139(12)	9,3741(10)
<i>b</i> / Å	8,1056(9)	8,1056(9)	8,1593(6)
<i>c</i> / Å	6,3517(8)	6,3517(8)	6,4483(5)
α / \circ	101,247(13)	101,247(13)	101,495(8)
β/\circ	107,537(13)	107,537(13)	108,765(9)
γ/\circ	106,228(12)	106,228(12)	105,562(9)
Zellvolumen / A ³	422,58(9)	422,58(9)	427,25(6)
Z	1	1	1
Molare Masse / $g \cdot mol^{-1}$	917,42	917,42	926,24
ber. Dichte / $g \cdot cm^{-3}$	3,605	3,605	3,600
Absorp. Koeff. μ / mm ⁻¹	4,359	4,359	4,620
<i>F</i> (000)	442	442	445
Temperatur / K	293(2)	293(2)	293(2)
Mo-K α -Strahlung, $\lambda = 0$,	71073 Å, Graphit Monocl	hromator	
Winkelbereich / °	$2,43 \le \theta \le 39,91$	$2,43 \le \theta \le 35,04$	$2,46 \le \theta \le 34,99$
Messbereich	$-13 \le h \le 16$	$-14 \le h \le 15$	$-13 \le h \le 15$
	$-14 \le k \le 11$	$-13 \le k \le 12$	$-12 \le k \le 13$
	$-11 \le l \le 8$	$-10 \le l \le 10$	$-10 \le l \le 6$
Gemessene Reflexe	6312	6295	7524
Unabhängige Reflexe	3882	3523	3568
Interner <i>R</i> -Wert <i>R</i> (int)	0,026	0,036	0,093
Reflexe $F_0 > 2\sigma(F_0)$	2809	3248	3378
Absorptionskorrektur	8 Ψ - Scans [203]	Multiscans [83] in WinGx [304]	Multiscans [83] in WinGx [304]
Extinktionskoeffizient	0.0094(11)	0.072(3)	0.116(3)
Parameter	174	174	172
"Restraints"	1	1	1
Wichtungsschema ^{a)}	a = 0.0353	a = 0.0335	a = 0.0291
wientungssenenna	b = 0.1284	b = 0.2398	b = 0.1943
Restelektronendichte	max + 0.910	$\max +1.057$	max +0.849
/ e·Å ⁻³	min1.031	min0.866	min1.047
Goodness-of-fit ^{a)}	1.025	1.097	1.115
<i>R</i> -Werte $[I > 2 \sigma(I)]^{a}$	$R_1 = 0.031$	$R_1 = 0.029$	$R_1 = 0.025$
	$wR_2 = 0.069$	$wR_2 = 0.075$	$wR_2 = 0.068$
<i>R</i> -Werte (alle Daten) ^{a)}	$R_1 = 0.064$	$R_1 = 0.031$	$R_1 = 0.026$
($wR_2 = 0.076$	$wR_{2} = 0.077$	$wR_2 = 0.070$

Tabelle 2.13 Angaben zu den Strukturverfeinerungen von A^{II}_{3} Ti₄(PO₄)₆ (A^{II} : Cr, Mn, Fe, Zn, Mg).

^{a)} Definitionen siehe Seite 22.

^{b)} Pleochroitisches Verhalten. ^{c)} CAD-4 Diffraktometer (Enraf-Nonius).

 $^{d)}\kappa$ -CCD Diffraktometer (Nonius) ^{e)} Es wurde die "volle Kugel" gemessen.

Fe ₃ Ti ₄ (PO ₄) ₆ ^{d)}	$Zn_{3}Ti_{4}(PO_{4})_{6}^{d}$	Mg ₃ Ti ₄ (PO ₄) ₆ ^{d)}
0,32 · 0,32 · 0,32	0,124 · 0,067 · 0,050	0,450 · 0,33 · 0,237
schwarz	schwarz	schwarz
grün	grün	grün
triklin	triklin	triklin
<i>P</i> 1 (Nr. 2) <i>IP</i> -Guinier-Aufnahmen	<i>P</i> 1 (Nr. 2) <i>IP</i> -Guinier-Aufnahmen	<i>P</i> 1 (Nr. 2) Einkristall
9,3855(11) 8,0212(9) 6,4415(6) 101,007(10)	9,3647(8) 7,8925(9) 6,4152(5) 100,632(11)	9,3401(3) 7,9399(2) 6,3886(2) 100,579(1)
109,095(10) 105,388(11)	109,358(8) 104,688(10)	109,260(2) 104,878(2)
420.80(8)	413.57(7)	413.15(2)
1	1	1
928.97	957.53	834.35
3.666	3.845	3.353
5,026	6,833	2.705
448	460	406
293(2)	293(2)	293(2)
$2,45 \le \theta \le 37,08$	$3,03 \le \theta \le 35,02$	$3,01 \le \theta \le 34,98$
$-15 \le h \le 15$	$-15 \le h \le 15$	$-15 \le h \le 15$
$-11 \le k \le 13$	$-12 \le k \le 12$	$-12 \le k \le 12$
$-10 \le l \le 10$	$-10 \le l \le 10$	$-10 \le l \le 10$
20151 ^{e)}	13566 ^{e)}	14576 ^{e)}
4259	3602	3558
0,059	0,056	0,047
3924	2839	3059
Multiscans [83] in WinGx [304]	analytisch [290] in WinGx [304]	analytisch [290] in WinGx [304]
0,191(3)	0,0128(10)	0,0300(16)
173	174	174
1	1	1
a = 0,0234; b = 0,2249	a = 0,0243; b = 0	a = 0,0209; b = 0,3046
max. +0,864 min -0.650	max. +0,995 min -0.873	$\max_{min} + 0.612$
1 083	1 024	1 111
$R_1 = 0.021$	$R_1 = 0.028$	$R_1 = 0.024$
$wR_2 = 0.056$	$wR_2 = 0.065$	$wR_2 = 0.062$
$R_1 = 0.024$	$R_1 = 0.040$	$R_1 = 0.031$
$wR_2 = 0,057$	$wR_2 = 0,068$	$wR_2 = 0.064$

2.3.2 Strukturverfeinerung der polynären Vanadium(III)-orthophosphate A^{II}₃V^{III}₄(PO₄)₆ (A^{II}: Cr, Mn, Fe, Co, Ni, Zn, Mg)

Als Startparameter für die Strukturverfeinerung von $Mg_3V^{III}_4(PO_4)_6$ wurden die Lageparameter von $Cr^{II}_3Ti^{III}_4(PO_4)_6$ verwendet. Neben *M*2 und *M*3 ließen sich auch die Lagen *M*1 und *M*4 mischbesetzt verfeinern. Letztere jedoch ist nur sehr gering mit Vanadium besetzt, s.o.f.(V4) = 0,002(6) und liegt innerhalb ihrer Standardabweichung bei Null. Diese Lage wurde für die weiteren Berechnungen als vollständig mit Magnesium besetzt angesehen.

Für die Strukturverfeinerung von $\mathbf{Cr}^{II}_{3}\mathbf{V}^{III}_{4}(\mathbf{PO}_{4})_{6}$ wurden wiederum die Lageparameter des isotypen $\mathbf{Cr}^{II}_{3}\mathbf{Ti}^{III}_{4}(\mathbf{PO}_{4})_{6}$ als Startwerte verwendet. Da Vanadium und Chrom sehr ähnliche Atomstreufaktoren besitzen, wurde bei der Strukturverfeinerung auf eine mögliche Mischbesetzung der Lagen *M*1 bis *M*4 verzichtet. Die verfeinerten Atomparameter von $\mathbf{Cr}^{II}_{3}\mathbf{V}^{III}_{4}(\mathbf{PO}_{4})_{6}$ dienten als Ausgangswerte für die Verfeinerung der weiteren polynären Vanadium(III)-phosphate $A^{II}_{3}\mathbf{V}^{III}_{4}(\mathbf{PO}_{4})_{6}$ (A^{II} : Mn, Fe, Co, Ni, Zn).

Bei $Mn^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ ließ sich die Struktur problemlos mit einer Mischbesetzung über die Lagen *M*2 und *M*3 verfeinern. Die Rechnungen liefert s.o.f.(Mn4) = 1,017(8). Daher wurde für die Lage Vollbesetzung angenommen.

Fe^{II}₃V^{III}₄(PO₄)₆ ließ sich ohne Probleme mit einer Mischbesetzung über die Lagen M2, M3 und M4 verfeinern. Jedoch beträgt der Besetzungsfaktor von Vanadium auf der Lage M4 nur s.o.f.(V4) = 0,003(5). Somit liegt dieser Wert innerhalb seiner Standardabweichung bei Null. Daher wurde für die weiteren Betrachtungen von einer Mischbesetzung dieser Lage abgesehen und diese Lage als vollständig mit Fe²⁺ angesehen. Bei Co^{II}₃V^{III}₄(PO₄)₆ und Ni^{II}₃V^{III}₄(PO₄)₆ verlief der Gang der Verfeinerung analog zu Fe^{II}₃V^{III}₄(PO₄)₆.

Für das in der Literatur beschriebene $Zn_3V^{III}_4(PO_4)_6$ [138] ist keine Mischbesetzung der Metalllagen angegeben. Dennoch ist hier, wie bei den meisten anderen quaternären Vanadium(III)-phosphaten des Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyps, mit einer Mischbesetzung der Kationen zumindest über die Lagen *M*2 und *M*3 zu rechnen. Auch deuten die für $Zn_3V^{III}_4(PO_4)_6$ [138] veröffentlichten isotropen *B*-Werte auf eine statistische Fehlordnung von Zink und Vanadium hin. Die Verfeinerung des Strukturmodells von **Zn**₃**V**^{III}₄(**PO**₄)₆ bestätigte die erwartete statistische Fehlordnung von Zn²⁺ und V³⁺ über die Lagen *M*2 und *M*3. Für die Lagen *M*1 und *M*4 ergaben die Rechnungen keinen Hinweis auf eine Fehlordnung.

Details zur Datensammlung und Auswertung der Verbindungen $Cr^{II}_{3}V^{III}_{4}(PO_{4})_{6}$, $Mn^{II}_{3}V^{III}_{4}(PO_{4})_{6}$, $Fe^{II}_{3}V^{III}_{4}(PO_{4})_{6}$, $Co^{II}_{3}V^{III}_{4}(PO_{4})_{6}$, $Ni^{II}_{3}V^{III}_{4}(PO_{4})_{6}$, $Zn^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ und $Mg^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ sind in Tabelle 2.14 zusammengestellt. Die Angaben zu den Lageparametern, anisotropen Auslenkungsparametern sowie interatomaren Abständen befinden sich im Anhang A im Abschnitt A.3.2 in Tabelle A.38 bis Tabelle A.55.

<u> </u>	. ,		
Summenformel	$Mg_3V_4(PO_4)_6$	$Cr_3V_4(PO_4)_6$	$Mn_3V_4(PO_4)_6$
Kristallgröße / mm ³	0,32 · 0,24 · 0,10	0,80 · 0,76 · 0,68	0,44 · 0,40 · 0,40
Farbe des Kristalls	schwarz	braun	grün
Farbe des Pulvers	grün	braun	grün
Kristallsystem	triklin	triklin	triklin
Raumgruppe	<i>P</i> 1 (Nr. 2)	<i>P</i> 1 (Nr. 2)	<i>P</i> 1 (Nr. 2)
Gitterparameter aus	IP-Guinier-Aufnahmen	IP-Guinier-Aufnahmen	IP-Guinier-Aufnahmen
<i>a</i> / Å	9,294(2)	9,340(2)	9,3384(9)
<i>b</i> / Å	7,906(1)	8,058(2)	8,0789(6)
<i>c</i> / Å	6,328(1)	6,3090(1)	6,3730(4)
α / \circ	101,42(2)	101,32(2)	102,147(7)
β/\circ	108,53(2)	108,12(2)	108,145(8)
γ/\circ	105,27(1)	106, /8(2)	106,044(8)
Zellvolumen / A ³	404,6(1)	410,2(2)	415,31(7)
Z	1	1	1
Molare Masse / $g \cdot mol^{-1}$	846,51	929,58	938,41
ber. Dichte / g·cm ⁻³	3,474	3,763	3,752
Absorp. Koeff. μ / mm^{-1}	3,098	4,822	5,080
<i>F</i> (000)	410	446	449
Temperatur / K	293(2)	293(2)	293(2)
Mo-K α -Strahlung, $\lambda = 0$,	71073 Å, Graphit Monocl	hromator, κ-CCD Diffrakt	ometer (Nonius).
Winkelbereich / °	$2,81 \le \theta \le 34,99$	$2,48 \le \theta \le 34,95$	$2,47 \le \theta \le 35,03$
Messbereich	$-14 \le h \le 13$	$-15 \le h \le 14$	$-15 \le h \le 15$
	$-12 \le k \le 12$	$-12 \le k \le 12$	$-13 \le k \le 12$
	$-10 \le l \le 9$	$-10 \le l \le 10$	$-10 \le l \le 10$
Gemessene Reflexe	6570	9408	6350
Unabhängige Reflexe	3395	3429	3485
Interner <i>R</i> -Wert <i>R</i> (int)	0,056	0,065	0,047
Reflexe $F_0 > 2\sigma(F_0)$	2677	2900	3258
Absorptionskorrektur	Multiscans [83] in	Multiscans [83] in	Multiscans [83] in
-	WinGx [304]	WinGx [304]	WinGx [304]
Extinktionskoeffizient	0,124(4)	0,022(2)	0,055(2)
Parameter	173	170	172
"Restraints"	1	-	1
Wichtungsschema ^{a)}	a = 0,0174;	a = 0,0349;	a = 0,0199;
C	b = 0	b = 0,4426	b = 0,1685
Restelektronendichte	max. +0,799;	max. + 0,961;	max. +0,847;
/ e·Å⁻³	min1,048	min1,299	min0,912
Goodness-of-fit ^{a)}	1,013	1,101	1,103
<i>R</i> -Werte $[I > 2 \sigma(I)]^{a}$	$R_1 = 0,031;$	$R_1 = 0,030;$	$R_1 = 0,025;$
	$wR_2 = 0,070$	$wR_2 = 0,074$	$wR_2 = 0,065$
<i>R</i> -Werte (alle Daten) ^{a)}	$R_1 = 0,044;$	$R_1 = 0,042;$	$R_1 = 0,027;$
	$wR_2 = 0.074$	$wR_2 = 0.086$	$wR_2 = 0.066$

Tabelle 2.14 Angaben zu den Strukturverfeinerungen von $A^{II}_{3}V^{III}_{4}(PO_4)_6$ (A^{II} : Mg, Cr, Mn, Fe, Co, Zn).

^{a)} Definitionen siehe Seite 22.
^{b)} Es wurde die "volle Kugel" gemessen.

Fe ₃ V ₄ (PO ₄) ₆	C0 ₃ V ₄ (PO ₄) ₆	Ni ₃ V ₄ (PO ₄) ₆	$Zn_3V_4(PO_4)_6$
0,24 · 0,20 · 0,20	0,20 · 0,20 · 0,16	0,32 · 0,20 · 0,12	0,08 · 0,071 · 0,058
braun	grün	gelb	grün
braun	grün	gelb	grün
triklin	triklin	triklin	triklin
<i>P</i> 1 (Nr. 2)	<i>P</i> 1 (Nr. 2)	<i>P</i> 1 (Nr. 2)	<i>P</i> 1 (Nr. 2)
IP-Guinier-Aufnahmen	IP-Guinier-Aufnahmen	IP-Guinier-Aufnahmen	Einkristall
9,320(2)	9,313(2)	9,2565(8)	9,3206(2)
7,965(1)	7,892(1)	7,8817(7)	7,8631(2)
6,3612(8)	6,346(1)	6,3096(5)	6,3451(1)
101,75(1)	101,55(2)	101,183(9)	101,188(2)
108,41(2) 105.84(2)	108,67(2) 105,26(1)	108,790(8)	108,68/(1) 105,266(1)
103,04(2)	105,20(1)	103,209(9) 400,25(7)	103,200(1)
408,7(2)	403,1(1)	400,55(7)	404,77(2)
l 041-12	1	I 040 71	
941,13	950,39	949,71	909,09
5,825	3,896	5,939	3,978
5,507	5,942	6,432	/,318
452	455	458	464
293(2)	293(2)	293(2)	293(2)
$2.80 \le \theta \le 35.05$	$247 \le \theta \le 325$	$248 < \theta < 3499$	$3.03 < \theta < 34.99$
-14 < h < 15	-14 < h < 13	-14 < h < 14	-15 < h < 15
$-12 \le k \le 12$	$-11 \le k \le 11$	$-12 \le k \le 12$	$-12 \le k \le 12$
$-10 \le l \le 10$	$-9 \le l \le 9$	$-10 \le l \le 9$	$-10 \le l \le 10$
6785	5850	6580	14234 ^{b)}
3459	2910	3375	3533
0,040	0,058	0,050	0,050
2944	2005	2861	2975
Multiscans [83] in	Multiscans [83] in	Multiscans [83] in	analytisch [290] in
WinGx [304]	WinGx [304]	WinGx [304]	WinGx [304]
0,029(1)	-	0,049(2)	0,0213(11)
172	172	172	173
1	1	1	1
a = 0,0216;	a = 0,0102;	a = 0,0210;	a = 0,0278;
$\mathbf{b} = 0$	$\mathbf{b} = 0$	$\mathbf{b} = 0$	b = 0,0625
max. +1,019	max. +1,005;	max. +1,132;	max. +0,804;
min0,959	min0,913	min1,167	min. –0,795
1,049	0,938	0,992	1,025
$R_1 = 0,027;$	$R_1 = 0,037;$	$R_1 = 0,029;$	$R_1 = 0,026;$
$wR_2 = 0,066$	$wR_2 = 0,074$	$wR_2 = 0,065$	$wR_2 = 0,064$
$R_1 = 0,033;$	$R_1 = 0,064;$	$R_1 = 0,035;$	$R_1 = 0,034;$
$wR_2 = 0,068$	$wR_2 = 0,081$	$wR_2 = 0,067$	$wR_2 = 0,066$

2.3.3 Strukturverfeinerung der polynären Chrom (III)-orthophosphate A^{II}₃Cr^{III}₄(PO₄)₆ (A^{II}: Mn, Fe, Co)

Für die Strukturverfeinerung von $Mn^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ wurden die Lageparameter von $Cr^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ [12] als Startwerte verwendet. Die verfeinerten Parameter von $Mn^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ dienten wiederum als Ausgangswerte für die Verfeinerung von $Fe^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ und $Co^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$.

Wie schon bei $Cr^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ wurde auch für $Mn^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ auf die Verfeinerung der Besetzungsfaktoren der Metalllagen verzichtet. Bei der Verfeinerung von $Fe^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ wurde zunächst s.o.f.(Fe2) = 1,04(2) und s.o.f.(Cr3) = 1,02(1) berechnet. In den abschließenden Verfeinerungen wurde deshalb auf die Berücksichtigung einer Mischbesetzung verzichtet.

Für $Co^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$, das ohne Mischbesetzung in der Literatur [28, 134] beschrieben wird, wurden die Besetzungsparameter der Metalllagen *M*2 und *M*3 erfolgreich mischbesetzt verfeinert. Eine Mischbesetzung auf der Lage *M*1 oder *M*4 wurde nicht gefunden.

Details zur Datensammlung und Auswertung der Verbindungen $Mn^{II}_{3}Cr^{III}_{4}(PO_4)_6$, $Fe^{II}_{3}Cr^{III}_{4}(PO_4)_6$ und $Co^{II}_{3}Cr^{III}_{4}(PO_4)_6$ sind in Tabelle 2.15 zusammengestellt. Die Angaben zu den Lageparametern, anisotropen Auslenkungsparametern sowie interatomaren Abständen befinden sich im Anhang A im Abschnitt A.3.3 in Tabelle A.56 bis Tabelle A.63.

Summenformel	$Mn_3Cr_4(PO_4)_6$	$Fe_3Cr_4(PO_4)_6$	$Co_3Cr_4(PO_4)_6$
Kristallgröße / mm ³	0,36 · 0,16 · 0,12	0,20 · 0,20 · 0,16	0,175 · 0,12 · 0,08
Farbe des Kristalls	grün / braun ^{b)}	grün / braun ^{b)}	grün
Farbe des Pulvers	zimtfarben	braun	grau-grün
Kristallsystem	triklin	triklin	triklin
Raumgruppe	<i>P</i> 1 (Nr. 2)	<i>P</i> 1 (Nr. 2)	<i>P</i> 1 (Nr. 2)
Gitterparameter aus	IP-Guinier-Aufnahmen	Einkristall	Einkristall
<i>a</i> / Å	9,2830(7)	9,2700(4)	9,2444(3)
<i>b</i> / Å	8,0356(7)	7,9296(4)	7,8576(3)
<i>c</i> / Å	6,3078(5)	6,2947(3)	6,2852(2)
α / \circ	102,357(9)	101,885(3)	101,821(2)
β/\circ	107,844(8)	108,001(3)	108,231(2)
$\gamma/2$	105,928(7)	105,870(3)	105,281(2)
Zellvolumen / A ³	407,22(7)	401,38(4)	397,20(2)
Z	1	1	1
Molare Masse / $g \cdot mol^{-1}$	942,63	945,35	954,61
ber. Dichte / g·cm ⁻³	3,844	3,911	3,991
Absorp. Koeff. μ / mm^{-1}	5,555	5,987	6,443
<i>F</i> (000)	453	456	459
Temperatur / K	293(2)	293(2)	293(2)
Mo-K α -Strahlung, $\lambda = 0, 7$	71073 Å, Graphit Monoch	romator, κ-CCD Diffrakt	tometer (Nonius).
Winkelbereich / °	$2,79 \le \theta \le 34,99$	$3,00 \le \theta \le 34,97$	$3,03 \le \theta \le 34,98$
Messbereich	$-14 \le h \le 14$	$-14 \le h \le 14$	$-14 \le h \le 14$
	$-12 \le k \le 12$	$-12 \le k \le 12$	$-12 \le k \le 12$
	$-10 \le l \le 9$	$-10 \le l \le 7$	$-10 \le l \le 10$
Gemessene Reflexe	6403	7129	11266
Unabhängige Reflexe	3431	3388	3423
Interner <i>R</i> -Wert <i>R</i> (int)	0,042	0,052	0,070
Reflexe $F_0 > 2\sigma(F_0)$	2734	2680	3070
Absorptionskorrektur	Multiscans [83] in	Multiscans [83] in	analytisch [83] in
-	WinGx [304]	WinGx [304]	WinGx [304]
Extinktionskoeffizient	0,0079(9)	0,064(2)	0,109(3)
Parameter	170	170	172
"Restraints"	-	-	1
Wichtungsschema ^{a)}	a = 0,0156;	a = 0,0220;	a = 0,0264;
0	b = 0	b = 0	b = 0,1232
Restelektronendichte	max. +0,781;	max. +0,833;	max. +0,938;
/ e·Å ⁻³	min0,926	min1,580	min1,496
Goodness-of-fit ^{a)}	1,010	1,036	1,075
<i>R</i> -Werte $[I > 2 \sigma(I)]^{a}$	$R_1 = 0,028;$	$R_1 = 0,032;$	$R_1 = 0,027;$
· / -	$wR_2 = 0,065$	$wR_2 = 0,076$	$wR_2 = 0,069$
<i>R</i> -Werte (alle Daten) ^{a)}	$R_1 = 0,041;$	$R_1 = 0,045;$	$R_1 = 0,031;$
	$wR_2 = 0.069$	$wR_2 = 0,079$	$wR_2 = 0.071$

Tabelle 2.15 Angaben zu den Strukturverfeinerungen von $A^{II}_{3}Cr^{III}_{4}(PO_4)_6$ (A^{II} : Mn, Fe, Co).

^{a)} Definitionen siehe Seite 22. ^{b)} Pleochroitisches Verhalten.

2.3.4 Strukturverfeinerung von Magnesium-eisen-orthophosphat

Als Startparameter für die Strukturverfeinerung von $Mg_3Fe^{III}_4(PO_4)_6$ wurden die Lageparameter von $Zn_3Fe^{III}_4(PO_4)_6$ verwendet. Die Besetzungsparameter der Metalllagen *M*1 bis *M*4 ließen sich mischbesetzt verfeinern.

Die dunkelblaue bis fast schwarze Farbe des Kristalls deutete auf das Vorhandensein von Eisen(II) neben Eisen(III) hin. Daher wurde in einer zweiten Verfeinerung das zuvor durch den SUMP-Befehl festgelegte Verhältnis n(Mg) : n(Fe) = 3 : 4 freigegeben. Die Ergebnisse der beiden Verfeinerungen sind in Tabelle 2.18 einander gegenübergestellt. Die frei verfeinerten Besetzungsparameter ergeben die Zusammensetzung Mg_{2,61}Fe_{4,39}(PO₄)₆. Diese weicht deutlich von der vorgegebenen Zusammensetzung des Reaktionsgemenges ab. Die Verfeinerung bei freiem Zusammensetzungsverhältnis von Eisen und Magnesium führt im Vergleich zur Rechnung mit SUMP-Befehl zu unterschiedlich starker Substitution von Magnesium durch Eisen(II) auf den Metalllagen (Tabelle 2.16).

Tabelle 2.16 Vergleich der Magnesiumgehalte auf den Lagen M1 bis M4 bei Verfeinerungen mit fixiertem Verhältnis n(Mg) : n(Fe) = 3 : 4 ("ideal") und freier Verfeinerung dieses Verhältnisses.

Verbindung	Lage <i>M</i> 1 Mg ²⁺ [%]	Lage <i>M</i> 2 Mg ²⁺ [%]	Lage <i>M</i> 3 Mg ²⁺ [%]	Lage <i>M</i> 4 Mg ²⁺ [%]	
"ideal"	12,0 %	80,2 %	19,9 %	78,0 %	
frei	4,6 %	76,2 %	15,4 %	72,8 %	

Die minimalen Unterschiede zwischen den Gitterkonstanten des Einkristalls und jenen des Pulvers aus der selben Ampulle sprechen für einen geringfügig höheren Gehalt des Einkristalls an Eisen(II) (Tabelle 2.17). Als Referenz dienen Gitterkonstanten, die an einer Probe $Mg_3Fe_4(PO_4)_6$ bestimmt wurde, die an Luft getempert worden war und deren blassgrünliche Farbe auf eine nur geringe Abweichung von der Idealzusammensetzung schließen lies.

Tabelle 2.17 Vergleich der Gitterkonstanten vom Referenz ^(a), Pulver ^(b), Einkristalldaten ^(c) und Fe^{II}₃Fe^{III}₄(PO₄)₆.

Verbindung	a / Å	b / Å	<i>c</i> / Å	α/°	β/°	y/°	$V/\text{\AA}^3$
$Mg_3Fe_4(PO_4)_6^{a)}$	9,257(4)	7,906(2)	6,321(2)	101,21(3)	108,43(4)	104,56(3)	405,5(2)
$Mg_3Fe_4(PO_4)_6^{b)}$	9,263(1)	7,914(1)	6,3234(8)	101,31(1)	108,43(1)	104,64(1)	405,8(1)
$Mg_3Fe_4(PO_4)_6^{c)}$	9,2735(6)	7,9144(6)	6,3296(5)	101,277(3)	108,434(4)	104,649(4)	406,73(5)
$Fe_3Fe_4(PO_4)_6$	9,3138(8)	7,9729(6)	6,3548(5)	101,628(9)	108,301(9)	105,168(7)	411,17(5)

^{a)} $Mg_3Fe_4(PO_4)_6$ an Luft getempert.

^{b)} $Mg_3Fe_4(PO_4)_6$ mit Chlor getempert.

^{c)} Gitterparameter des am κ -CCD -vermessenen Kristalls "Mg₃Fe₄(PO₄)₆".

Details zur Datensammlung und Auswertung der Verbindung $Mg^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ sind in Tabelle 2.18 zusammengestellt. Die Angaben zu den Lageparametern, Besetzungsfaktoren, isotropen und anisotropen Auslenkungsparametern sowie interatomaren Abständen befinden sich im Anhang A im Abschnitt A.3.4 in Tabelle A.64 bis Tabelle A.69.

Summenformel	ideal ^{b)} $n(Mg) : n(Fe)$ frei ^{c)}			
Kristallgröße / mm ³		0,16 · 0,16 · 0,16		
Farbe des Kristalls		schwarz		
Farbe des Pulvers	grau - blau			
Kristallsystem		triklin		
Raumgruppe	<i>P</i> 1 (Nr. 2)			
Gitterparameter aus		Einkristall		
<i>a</i> / Å		9,2735(6)		
b / Å		7,9144(6)		
c / Å		6,3296(5)		
α / \circ		101,277(3) 108,424(4)		
p/		108,434(4) 104,649(4)		
7 Zellvolumen / Å ³		A06 73(5)		
Zenvolumen / A		1		
Z Molare Masse / g·mol ⁻¹	866 15	878.45		
her Dichte / $g \cdot cm^{-3}$	3 544	3 586		
Absorn Koeff μ / mm^{-1}	4 360	4 669		
F(000)	4,009			
Temperatur / K	722	203(2)		
Mo-Ka-Strahlung $\lambda = 0.71$	073 Å Granhi	t Monochromator <i>k</i> -CCD Diffraktometer (Nonius)		
Winkelbereich / $^{\circ}$	075 A, Olupin	$2.46 \le \theta \le 35.01$		
Messhereich		-14 < h < 14		
Wiessbereien		$-12 \le k \le 12$		
		$-6 \le l \le 10$		
Gemessene Reflexe		7414		
Unabhängige Reflexe		3459		
Interner <i>R</i> -Wert <i>R</i> (int)		0,051		
Reflexe $F_0 > 2\sigma(F_0)$		2414		
Absorptionskorrektur		Multiscans [83] in WinGx [304]		
Extinktionskoeffizient	0,0064(9)	0,0073(7)		
Parameter	174	174		
"Restraints"	1	-		
Wichtungsschema ^{a)}	a = 0,0120;	a = 0,0000;		
	b = 0,2050	b = 0,0000		
Restelektronendichte	max. +0,909;	max. +0,925;		
/ e·Å ⁻⁵	min1,018	min0,833		
Goodness-of-fit ^{a)}	1,008	0,925		
<i>R</i> -Werte $[I > 2 \sigma(I)]^{a}$	$R_1 = 0,036;$	$R_1 = 0,033;$		
	$wR_2 = 0,074$	$wR_2 = 0,063$		
<i>K</i> -Werte (alle Daten) "	$R_1 = 0,062;$ $wR_2 = 0.084$	$R_1 = 0.060;$ $wR_2 = 0.069$		

 Tabelle 2.18
 Angaben zu den Strukturverfeinerungen von Magnesium-eisen-phosphat.

^{a)} Definitionen siehe Seite 22.

^{b)} Die "ideale" Zusammensetzung entspricht Mg₃Fe₄(PO₄)₆. ^{c)} Die "reale" Zusammensetzung entspricht Mg_{2,61}Fe_{4,39}(PO₄)₆.

2.3.5 Strukturverfeinerung der polynären Indium(III)-phosphate A^{II}₃In^{III}₄(PO₄)₆ (A^{II}: Mn, Fe, Co, Ni, Zn)

Als Startwerte für die Strukturverfeinerung von $A^{II}_{3}In^{III}_{4}(PO_4)_6$ (A^{II} : Mn, Fe, Co, Ni, Zn) wurden die Lageparameter von Mg^{II}₃Fe^{III}₄(PO₄)₆ verwendet. Bei allen Verbindungen A^{II}₃In^{III}₄(PO₄)₆ (A^{II}: Mn, Fe, Co, Ni, Zn) ließen sich die Besetzungsparameter aller vier Metalllagen mischbesetzt verfeinern. Dabei traten nur Schwierigkeiten bei Zn₃In₄(PO₄)₆ auf. Dessen Gütefaktoren ließen sich in der SHELXL-97 Rechnung nicht unter $wR_2 = 0,108$, Goof 1,189 und eine maximale Restelektronendichte von 4,835 eÅ⁻³ (0.71 Å von M1) bringen. Eine in der fehlerhaften beziehungsweise nicht geeigneten mögliche Ursache liegt Absorptionskorrektur des gemessenen Datensatzes durch Multiscans [83]. Der Absorptionskoeffizient lag bei $\mu = 10,043 \text{ mm}^{-1}$ und der mittlere Kristalldurchmesser bei t_{mid} = 0,40 mm. Somit war das Produkt $\mu \cdot t_{mid}$ = 4,02 deutlich größer als 3. Generell gilt für Kristalle mit $\mu \cdot t_{mid} > 3$, dass nur eine numerische Absorptionskorrektur sinnvolle Ergebnisse liefert. Somit war der gemessene Datensatz von diesem Kristall nicht geeignet für eine Absorptionskorrektur durch Multiscans. Eine numerische Absorptionskorrektur wurde nicht durchgeführt, da die Flächen des Kristalls nicht vermessen wurden. Eine weitere denkbare Ursache liegt in einer Verzwillingung des Kristalls, wie sie von GRUß [28] schon bei $Ni_3In_4(PO_4)_6$ und $Co_3Cr_4(PO_4)_6$ beobachtet wurde.

Beim Vergleich der Besetzungsfaktoren der neuen Messungen mit den alten Daten von GRUß [28] fällt eine große Übereinstimmung in den erhaltenen Besetzungsfaktoren für $Co_3In_4(PO_4)_6$ und Ni₃In₄(PO₄)₆ auf (Tabelle 2.20). Bis auf die Lage *M*2 sind auch die Abweichungen in den Besetzungsfaktoren für Zn₃In₄(PO₄)₆ zwischen den beiden Messungen gering.

Details zur Datensammlung und Auswertung der Verbindungen $Mn^{II}_{3}In^{III}_{4}(PO_4)_{6}$, $Fe^{II}_{3}In^{III}_{4}(PO_4)_{6}$, $Co^{II}_{3}In^{III}_{4}(PO_4)_{6}$, $Ni^{II}_{3}In^{III}_{4}(PO_4)_{6}$ und $Zn^{II}_{3}In^{III}_{4}(PO_4)_{6}$ sind in Tabelle 2.19 zusammengestellt. Die Angaben zu den Lageparametern, anisotropen Auslenkungsparametern sowie interatomaren Abständen befinden sich im Anhang A im Abschnitt A.3.5 in Tabelle A.70 bis Tabelle A.81.

Summenformel	Mn ₃ In ₄ (PO ₄) ₆	Fe ₃ In ₄ (PO ₄) ₆	$Co_3In_4(PO_4)_6$
Kristallgröße / mm ³	0,44 · 0,28 · 0,24	0,36 · 0,36 · 0,32	0,40 · 0,16 · 0,16
Farbe des Kristalls	farblos	farblos	rot / blau ^{b)}
Farbe des Pulvers	weiß	weiß	violett
Kristallsystem	triklin	triklin	triklin
Raumgruppe	<i>P</i> 1 (Nr. 2)	<i>P</i> 1 (Nr. 2)	<i>P</i> 1 (Nr. 2)
Gitterparameter aus	IP-Guinier-Aufnahmen	IP-Guinier-Aufnahmen	Einkristall
<i>a</i> / Å	9,5319(8)	9,500(1)	9,5022(2)
<i>b</i> / Å	8,2510(7)	8,146(1)	8,0829(2)
c / Å	6,4993(6)	6,5021(8)	6,4908(1)
α / \circ	100,96(1)	100,72(1)	100,578(1)
β/\circ	109,725(8)	110,09(1)	110,065(1)
γ /	104,818(8)	104,4/(1)	104,101(1)
Zellvolumen / A	443,19(7)	436,/(1)	434,19(2)
	1	1	1
Molare Masse / g·mol	1193,92	1196,65	1205,89
ber. Dichte / g·cm ⁻³	4,4/3	4,551	4,612
Absorp. Koeff. μ / mm ⁻¹	7,857	8,297	8,704
F(000)	553	556	559
Temperatur / K	293(2)	293(2)	293(2)
Mo-K α -Strahlung, $\lambda = 0,7$	71073 Å, Graphit Monocl	nromator, κ -CCD Diffrakt	tometer (Nonius).
Winkelbereich / °	$2,68 \le \theta \le 35,05$	$2,71 \le \theta \le 35,00$	$2,42 \le \theta \le 35,00$
Messbereich	$-15 \le h \le 15$	$-15 \le h \le 15$	$-15 \le h \le 15$
	$-12 \le k \le 13$	$-13 \le k \le 11$	$-12 \le k \le 12$
	$-9 \le l \le 10$	$-10 \le l \le 9$	$-10 \le l \le 10$
Gemessene Reflexe	7137	7314	19042
Unabhängige Reflexe	3758	3721	3743
Interner <i>R</i> -Wert <i>R</i> (int)	0,053	0,048	0,062
Reflexe $F_0 > 2\sigma(F_0)$	3530	3530	3625
Absorptionskorrektur	Multiscans [83] in WinGx [304]	Multiscans [83] in WinGx [304]	Multiscans [83] in WinGx [304]
Extinktionskoeffizient	0,191(3)	0,134(2)	0,0195(9)
Parameter	174	174	174
"Restraints"	1	1	1
Wichtungsschema ^{a)}	a = 0.0313;	a = 0.0117;	a = 0.0273;
6	b = 0	b = 0,3015	b = 1,1826
Restelektronendichte	max. +2,553;	max. +1,352;	max. + 1,857;
/ e·Å ⁻³	min3,217	min1,020	min1,876
Goodness-of-fit ^{a)}	1,200	1,160	1,177
<i>R</i> -Werte $[I > 2 \sigma(I)]^{a}$	$R_1 = 0,030;$	$R_1 = 0,024;$	$R_1 = 0,029;$
	$wR_2 = 0,073$	$wR_2 = 0,060$	$wR_2 = 0,074$
<i>R</i> -Werte (alle Daten) ^{a)}	$R_1 = 0,032;$	$R_1 = 0,026;$	$R_1 = 0,031;$
	$wR_2 = 0.075$	$wR_2 = 0.061$	$wR_2 = 0.075$

Tabelle 2.19 Angaben zu den Strukturverfeinerungen von $A^{II}_{3}In_4(PO_4)_6$ (A^{II} : Mn, Fe, Co, Ni, Zn).

^{a)} Definitionen siehe Seite 22. ^{b)} Pleochroitisches Verhalten.

Ni ₃ In ₄ (PO ₄) ₆	Zn ₃ In ₄ (PO ₄) ₆
0,40 · 0,16 · 0,16	0,48 · 0,40 · 0,40
orange / rot ^{b)}	farblos
orange	weiß
triklin	triklin
<i>P</i> 1 (Nr. 2)	<i>P</i> 1 (Nr. 2)
Einkristall	Einkristall
9,3959(2)	9,4878(6)
8,1204(2)	8,0446(4)
6,4276(1)	6,4774(5)
100,349(1)	100,333(3)
109,893(1)	110,082(4)
104,426(1)	103,968(3)
427,37(2)	431,55(5)
1	
1205,23	1225,21
4,683	4,714
9,235	10,043
562	568
293(2)	293(2)
$2,45 \le \theta \le 34,99$	$2,42 \le \theta \le 34,97$
$-15 \le h \le 13$	$-12 \le h \le 15$
$-11 \le k \le 13$	$-12 \le k \le 12$
$-10 \le l \le 10$	$-10 \le l \le 10$
10929	6731
3710	3566
0,047	0,050
3544	3444
Multiscans [83] in	Multiscans [83] in
WinGx [304]	WinGx [304]
0,247(3)	0,020(2)
174	174
1	1
a = 0,0109;	a = 0,0557;
b = 0,2590	b = 1,5340
$\max_{i} +1,080;$	max. +4,835;
min1,835	min. –1,512
I,175	1,189
$R_1 = 0.021;$	$R_1 = 0.040;$
$w\kappa_2 = 0.050$	$WK_2 = 0.108$
$K_1 = 0,022;$	$K_1 = 0.042;$ $W_2 = 0.100$
$w\kappa_2 = 0.051$	$WK_2 = 0,109$

•		- ()- (U		
A ¹¹ ₃ In ¹¹¹ ₄ (PO ₄) ₆	Lage <i>M</i> 1 In ¹¹¹ [%]	Lage M2 In ¹¹¹ [%]	Lage <i>M</i> 3 In ¹¹¹ [%]	Lage M4 In ^{III} [%]	<i>K</i> _d [%]
$Mg_3In_4(PO_4)_6[28]$	92,0	83,0	54,5	11,9	42,4
$Mn_3In_4(PO_4)_6[d.A.]$	96,1	54,6	69,6	7,0	27,4
Fe ₃ In ₄ (PO ₄) ₆ [d.A.]	97,3	76,0	59,9	4,8	35,3
Co ₃ In ₄ (PO ₄) ₆ [d.A.]	96,0	86,3	56,5	4,4	39,5
$Co_3In_4(PO_4)_6$ [28]	96,1	86,0	56,1	4,8	39,6
$Ni_3In_4(PO_4)_6[d.A.]$	93,4	91,2	49,4	11,6	45,7
$Ni_{3}In_{4}(PO_{4})_{6}$ [28]	94,0	90,9	49,3	11,2	45,4
$Zn_3In_4(PO_4)_6[d.A.]$	97,1	95,8	55,0	1,7	41,5
$Zn_{3}In_{4}(PO_{4})_{6}$ [28]	95,9	91,2	56,1	2,4	40,5

Tabelle 2.20	Vergleich	der	Besetzungsfaktoren	über	die	Lagen	M1	bis	M4	und	der
Gesamtfehlor	dnungskons	stante	$K_{\rm d}$ in $A^{\rm II}_{3}$ In ₄ (PO ₄) ₆ (A	$A^{II}: \mathbf{M}$	g, M	n, Fe, C	o, Ni	, Zn)			

Die Ergebnisse von GRUß [28] sind kursiv gesetzt.

2.4 Polarisierte UV/vis/nir-Spektren

UV/vis/nir Einkristallmessungen wurden an A^{II}_{3} Ti^{III}₄(PO₄)₆ (A^{II} : Mg, Cr, Mn, Fe) sowie Co₃In₄(PO₄)₆ und Ni₃In₄(PO₄)₆ durchgeführt. Für die Interpretation der Absorptionsspektren dieser Verbindungen, die alle im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp kristallisieren, wird für die Lagen *M*1 bis *M*3 von einer oktaedrischen und bei *M*4 von einer quadratisch-pyramidalen Koordination der farbgebenden Kationen ausgegangen.

Die tatsächlichen Koordinationspolyeder in den Vertretern des $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ -Strukturtyps weisen jedoch erhebliche Verzerrungen auf (Abschnitt 2.1.1), wodurch die Symmetrie der Ligandensphären erniedrigt wird. Dies führt zu weiterer Aufspaltung der Banden in den Absorptionsspektren.

Während die farbgebenden dreiwertigen Ionen sich nur auf unterschiedlich stark verzerrten oktaedrischen Umgebungen befinden, liegen zweiwertige Kationen neben der oktaedrischen auch in trigonal-bipyramidaler Koordination vor. Besonders schwierig ist die Interpretation der Spektren, in denen sowohl das zweiwertige wie auch das dreiwertige Kation zur Farbigkeit beitragen.

Dreiwertiges Titan hat eine d¹-Elektronenkonfiguration. Der Grundterm von Ti³⁺ ist somit ein ²D-Zustand. In regulärer oktaedrischer Umgebung wird für Ti³⁺ nur der Übergang ${}^{2}T_{2g} \rightarrow {}^{2}E_{g}$ erwartet. In verzerrter oktaedrischer Umgebung spaltet der ${}^{2}E_{g}$ -Term auf und man beobachtet eine weitere Bande [205].

Dem gegenüber hat dreiwertiges Indium eine d¹⁰-Elektronenkonfiguration und zeigt keine d-d Elektronenübergänge. Die quaternären Indiumorthophosphate $A^{II}_{3}In^{III}_{4}(PO_4)_6$ bilden somit eine geeignete Matrix zur Untersuchung der spektroskopischen Eigenschaften der farbigen zweiwertigen Ionen wie Co²⁺ und Ni²⁺. In den Phosphaten $A^{II}_{3}In_4(PO_4)_6$ befinden sich die farbgebenden zweiwertigen Kationen im wesentlichen auf den Lagen *M*2, *M*3 und *M*4. Von den drei Lagen zeigt nur das Koordinationspolyeder [*M*4O₅] deutlich Abweichungen von der Zentrosymmetrie; die [*M*2O₆]-Polyeder besitzen die Punktgruppe $\overline{1}$ und die [*M*3O₆]-Gruppen sind annähernd oktaedrisch. Aufgrund der Auswahlregel von LAPORTE [206] sollten die Spektren durch den Chromophor [*M*4O₅] dominiert werden. Tatsächlich lassen sich die beobachteten Absorptionsbanden von Co₃In₄(PO₄)₆ und Ni₃In₄(PO₄)₆ auf dieser Basis vollständig interpretieren.

2.4.1 Farbe und UV/vis/nir-Spektren der polynären Titan(III)-phosphate A^{II}₃Ti^{III}₄(PO₄)₆ (A^{II}: Mg, Cr, Mn, Fe)

Die Absorptionsbanden in den Spektren von $Mg^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ und $Mn^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ werden ausschließlich durch Anregung der Ti^{3+} -Ionen hervorgerufen. In den Spektren von $Cr^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ und $Fe^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ sind zusätzliche Absorptionsbanden zu erkennen, die auf die M^{2+} -Ionen zurückgeführt werden können.

Farbbestimmend in diesen Verbindungen sind die oktaedrisch umgebenen Ti³⁺-Ionen. Deren Absorptionsspektren zeigen für beide Polarisationsrichtungen zwei Banden im sichtbaren Bereich des Lichts, deren Intensitäten sich stark und deren Lage sich kaum in Abhängigkeit der Polarisationsrichtung ändern. Die beobachteten Absorptionsbanden von Ti³⁺ in A^{II}_{3} Ti^{III}₄(PO₄)₆ (A^{II} : Mg, Cr, Mn, Fe) sind in Tabelle 2.21 zusammengefasst.

Die Differenz aus der dritten und der zweiten Absorptionsbande gibt die Aufspaltung des e_g -Niveaus wieder und ist ein Maß für die Verzerrung des jeweilig beobachteten Ti³⁺-Oktaeders. Die Ligandenfeldaufspaltungsenergie Δ lässt sich nach Gl. 2.17 berechnen unter der Annahme, dass $\delta(t_{2g}) \sim \frac{1}{4} \cdot \delta(e_g)$ entspricht [205].

$$\Delta = \tilde{\nu}_{3} - \frac{1}{2} \cdot \delta(\mathbf{e}_{g}) - \frac{1}{3} \cdot \delta(\mathbf{t}_{2g}) = \tilde{\nu}_{3} - \frac{7}{12} \cdot \delta(\mathbf{e}_{g})$$
(Gl. 2.17)

Der grauviolette Farbendruck bei *hpol* entsteht durch die Absorption im grünen Farbbereich bei $\tilde{v}_3 \approx 17700 \text{ cm}^{-1}$. Die grüne Farbe bei *vpol* von $A^{II}_3 \text{Ti}^{III}_4 (\text{PO}_4)_6$ (A^{II} : Mg, Mn, Fe) ist das Resultat der etwa gleichstarken Absorptionsbanden \tilde{v}_2 und \tilde{v}_3 .

 $Cr^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ unterscheidet sich mit seiner orange-braunen Farbe optisch deutlich von den anderen Phosphaten $A^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ (A^{II} : Mg, Mn, Fe, Zn). Für das e_g-Niveau der Ti³⁺-Ionen wird eine deutlich weitere Aufspaltung beobachtet, die auf eine stärkere Verzerrung der Ti³⁺-Oktaeder hindeutet. Diese Verzerrung könnte aus der Kantenverknüpfung der [Ti^{III}O₆]-Oktaeder mit den stark verzerrten [Cr^{II}O₅]-Chromophoren resultieren.

		Mg ₃ Ti ₄ (PO ₄) ₆	Cr ₃ Ti ₄ (PO ₄) ₆	Mn ₃ Ti ₄ (PO ₄) ₆	Fe ₃ Ti ₄ (PO ₄) ₆	Chromo- phor
hpol ^{a)}	\tilde{v}_1 / cm ⁻¹	-	10500	-	9600	$[M^{2+}O_5]$
	$\tilde{\nu}_2$ / cm ⁻¹	14300	13700	14250	14200	$[Ti^{3+}O_6]$
	$\tilde{\nu}_3$ / cm ⁻¹	17700	18500	17800	17700	$[Ti^{3+}O_6]$
	$\delta(e_g)/cm^{-1}$	3400	4800	3550	3500	
	$\Delta / \mathrm{cm}^{-1}$	15720	15700	15730	15660	
	Farbe	violett	orange-braun	violett	violett	
vpol ^{a)}	$\tilde{v}_1 / \mathrm{cm}^{-1}$	-	12000	-	10000	$[M^{2+}O_5]$
_	$\tilde{\nu}_2$ / cm ⁻¹	14100	13450	13950	14050	$[Ti^{3+}O_6]$
	$\tilde{\nu}_3$ / cm ⁻¹	17800	18600	17750	17700	$[Ti^{3+}O_6]$
	$\delta(e_g)/cm^{-1}$	3700	5150	3800	3750	
	$\Delta / \mathrm{cm}^{-1}$	15640	15600	15530	15570	
	Farbe	grün	orange-braun	grau-grün	grün	

Tabelle 2.21 Farben und Energien der beobachteten Absorptionsbanden in den Phosphaten A^{II}_{3} Ti^{III}₄(PO₄)₆ (A^{II} : Mg, Cr, Mn, Fe) in Abhängigkeit von der Polarisationsrichtung.

^{a)} Die Polarisationsrichtungen "hpol" und "vpol" stehen senkrecht zueinander. Deren kristallographische Orientierungen wurden nicht bestimmt.

Abbildung 2.9 Einkristall UV/vis-Spektren von $Mn_{3}^{II}Ti_{4}^{III}(PO_{4})_{6}$, $Mg_{3}^{II}Ti_{4}^{III}(PO_{4})_{6}$, $Fe_{3}^{II}Ti_{4}^{III}(PO_{4})_{6}$ und $Cr_{3}^{II}Ti_{4}^{III}(PO_{4})_{6}$ in Abhängigkeit von der Polarisationsrichtung. Die Polarisationsrichtungen "hpol" (a) und "vpol" (b) stehen senkrecht zueinander. Deren kristallographische Orientierungen wurden nicht bestimmt.

2.4.2 Farbe und UV/vis/nir-Spektren der polynären Indium(III)-phosphate Co₃In₄(PO₄)₆ und Ni₃In₄(PO₄)₆

Die von Co₃In₄(PO₄)₆ erhaltenen violetten Kristalle sind dichroitisch und zeigen in Abhängigkeit von der Polarisationsrichtung eine rote oder blaue Farbe (Abbildung 2.10-a). Durch eine schmale Absorptionsbande im gelben Bereich bei 590 nm (17000 cm⁻¹) erscheint der Kristall in der dazugehörigen Komplementärfarbe blau. Bei genauer Betrachtung dieser Absorptionsbande zeigt sich eine Doppelspitze mit den Maxima bei 16600 cm⁻¹ und 17250 cm⁻¹ sowie drei schwach ausgeprägte Schultern, die sich bei 19250 cm⁻¹, 20000 cm⁻¹ und 20800 cm⁻¹ anschließen. Für die zweite Polarisationsrichtung wird eine Verschiebung der schmalen Absorptionsbande im sichtbaren Bereich nach blaugrün (19250 cm⁻¹ bis 20800 cm⁻¹) beobachtet. Ein weiteres Nebenminimum bei 17250 cm⁻¹ mit einer Schulter bei 16600 cm⁻¹ wird beobachtet. Im nir-Bereich deutet sich am Rand des Messbereiches eine Absorptionsbande unterhalb von 6000 cm⁻¹ an. Zwei weitere Absorptionsbanden befinden sich im IR-Bereich bei 8300 cm⁻¹ und 10050 cm⁻¹. Deren Intensitäten sind stark abhängig von der Polarisationsrichtung. Die beobachteten Absorptionsbanden von Co₃In₄(PO₄)₆ lassen sich allein durch den verzerrten [CoO₅]-Chromophoren auf der Lage M4 interpretieren. Die Banden $\tilde{\nu}_1$ leiten sich vom Übergang ${}^4A_2' \rightarrow {}^4E''$, die Banden $\tilde{\nu}_2$ vom Übergang ${}^4A_2' \rightarrow {}^4E'$, die Banden $\tilde{\nu}_3$ vom Übergang ${}^4A_2 \rightarrow {}^4A_2$ und die Banden bei $\tilde{\nu}_4$ vom dem Übergang ${}^4A_2 \rightarrow$ ${}^{4}E''(P)$ ab (siehe Tabelle 2.22).

Tabelle 2.22Zuordnung der Banden im Absorptionsspektrum von $Co_3In_4(PO_4)_6$.Chromophor [CoO₅] (vgl. [109, 207]).

Bande	Wellenzahl	Übergang (Termsymbole für C _{4v} -Symmetrie)
$\tilde{\mathcal{V}}_{1}$	8300	${}^{4}A_{2} \rightarrow {}^{4}E$
$\tilde{\mathcal{V}}_2$	10050	${}^{4}A_{2} \rightarrow {}^{4}E / {}^{4}B_{1}$
\tilde{V}_3	∫16600) (17250∫	${}^{4}A_{2} \rightarrow {}^{4}E(P)$
${ ilde V}_4$	$ \begin{cases} 19250 \\ 20800 \end{cases} $	${}^{4}A_{2} \rightarrow {}^{4}A(P)$

Abbildung 2.10 Einkristall UV/Vis Spektren von $Co_3In_4(PO_4)_6$ (a) und $Ni_3In_4(PO_4)_6$ (b) in Abhängigkeit von der Polarisationsebene. Die Polarisationsrichtungen "hpol" und "vpol" stehen senkrecht zueinander. Deren kristallographische Orientierungen wurden nicht bestimmt.

Kristalle von Ni₃In₄(PO₄)₆ polarisieren von gelb-orange nach rot (Abbildung 2.10-b). Die Polarisationsrichtungen stehen senkrecht zueinander. Deren kristallographische Orientierungen wurden nicht bestimmt. Für den orange-gelben Farbeindruck in vertikaler Polarisationsrichtung ist eine Absorptionsbande im Bereich bei 21500 cm⁻¹ bis 23500 cm⁻¹ verantwortlich. Diese Bande hat noch eine schwache Schulter bei 18800 cm⁻¹ und eine etwas deutlichere bei 17530 cm⁻¹. Für die zweite Polarisationsrichtung wird ein Nebenminimum bei 18800 cm⁻¹ mit deutlicher Schulter bei 17530 cm⁻¹ beobachtet. Durch die zusätzliche Absorption des grünen Lichts verschiebt sich der Farbeindruck von gelb-orange nach rot. Im nir-Bereich wird für beide Polarisationsrichtungen eine Bande bei 10550 cm⁻¹ mit Schulter bei 11750 cm⁻¹ beobachtet. Am Rand des Messbereiches unterhalb 6000 cm⁻¹ deutet sich eine weitere Absorptionsbande mit Schulter bei 7300 cm⁻¹ an. Ebenfalls im nir-Bereich werden für beide Polarisationsrichtungen bei etwa 13850 cm⁻¹ und 14400 cm⁻¹ zwei sehr scharfe jedoch schwache Banden beobachtet.

Diese Banden \tilde{v}_3 resultieren aus *spin-verbotenen* Elektronenübergängen, die sich aus dem Übergang ${}^{3}A_{2g} \rightarrow {}^{1}E_{g}(D)$ ableiten. Die Bande bei 14400 cm⁻¹ lässt sich einem [NiO₆]- Chromophor und die intensivere, zu niedrigeren Wellenzahlen verschobene Bande bei 13850 cm⁻¹ dem [NiO₅]-Chromophor zuordnen [208].

Die anderen beobachteten Absorptionsbanden lassen sich wie bei Co₃In₄(PO₄)₆ alleine durch den niedersymmetrischen [NiO₅]-Chromophoren der Lage *M*4 interpretieren. Die Banden $\tilde{\nu}_1$ leiten sich vom Übergang ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}(F)$, die Banden $\tilde{\nu}_2$ von den Spalttermen des Übergangs ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F)$ und die Banden bei $\tilde{\nu}_4$ von den Spalttermen des Übergangs ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$ ab.

Ein ähnliches Absorptionsspektrum wie $Ni_3In_4(PO_4)_6$ zeigt SrNiP₂O₇ [21, 208, 209], insbesondere bezüglich der starken Aufspaltung des ${}^3T_{1g}(P)$ -Niveaus und der Richtungsabhängigkeit im Absorptionsverhalten.

Tabelle 2.23Zuordnung der Banden im Absorptionsspektrum von $Ni_3In_4(PO_4)_6$.Chromophor [NiO₅] (vgl. [21, 208, 209, 210, 211).

Bande	Wellenzahl	Übergang (Termsymbole für O _h -Symmetrie)
\tilde{v}_1	6200 7300	${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}(F)$
ν̃ ₂	{10700} {11500}	${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F)$
$ ilde{\mathcal{V}}_3$	$ \begin{cases} 13850 \\ 14400 \end{cases} $	${}^{3}A_{2g} \rightarrow {}^{1}E_{g}(D)$
${ ilde V}_4$		${}^{3}A_{2g} \rightarrow {}^{3}T_{1g} \left(P \right)$

2.5 Magnetische Messungen

Magnetische Messungen wurden mit einem SQUID-Magnetometer an den quaternären Titan(III)-orthophosphaten $Mg^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ und $Mn^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ am Institut der Anorganischen und Analytischen Chemie der Universität Münster durchgeführt. Für die Messungen wurden nur Proben von ausgewählten Kristallen eingesetzt. Die Untersuchungen erfolgten im Temperaturbereich zwischen 3 K und 300 K.

 $Mg^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ ist paramagnetisch. Dessen reziproke Suszeptibilität gehorcht näherungsweise dem *Curie-Weiss-Gesetz*. Das experimentell bestimmte magnetische Moment $\mu_{eff.}(Ti^{3+}) = 1,74 \ \mu_{B}/Ti^{3+}$ (Regressionsgerade zwischen 80 K und 300 K) entspricht in etwa dem theoretischen Wert von $\mu_{s.o.}(Ti^{3+}) = 1,73 \ \mu_{B}/Ti^{3+}$ für den spin-only Fall.

Abbildung 2.11 Magnetische Messung an $Mg_{3}^{II}Ti_{4}^{III}(PO_{4})_{6}$ mit dem SQUID-Magnetometer. Aus der Steigung der Regressionsgeraden ergibt sich ein effektives magnetisches Moment von $\mu_{eff.}(Ti^{3+}) = 1,74\mu_{B}/Ti^{3+}$.

 $\mathbf{Mn}^{II}_{3}\mathbf{Ti}^{III}_{4}(\mathbf{PO}_{4})_{6}$ ist zwischen 10 K und 200 K paramagnetisch. Das magnetische Moment liegt bei $\mu(fu) = 11,1 \ \mu_{B}/\text{Formeleinheit}$. Dieser Wert stimmt gut mit dem theoretischen Wert $\mu_{eff,theo} = \sqrt{3 \cdot (5,9)^{2} + 4 \cdot (1,7)^{2}} = 10,77 \ \mu_{B} / fu$ überein. Unterhalb von 10 K zeigt die Probe antiferromagnetisches Verhalten. Die Unstetigkeit bei T ≈ 245 K wurde noch nicht näher untersucht

Abbildung 2.12 Magnetische Messung an $Mn_{3}^{II}Ti_{4}^{III}(PO_{4})_{6}$ mit dem SQUID-Magnetometer. Aus der Steigung der Regressionsgeraden ergibt sich ein effektives magnetisches Moment von $\mu_{eff.}(Ti^{3+}) = 11, 1\mu_{B}/Ti^{3+}$.
2.6 Vergleich der Strukturen und kristallchemische Diskussion

2.6.1 Vergleich der Gitterkonstanten

Die triklinen Gitterkonstanten der neuen quaternären Orthophosphate $A^{II}_{3}B^{III}_{4}(PO_4)_6$ wurden aus *IP*-Guinier-Aufnahmen ermittelt. Dazu wurden die Reflexlagen der Substanzen wie auch von Tiefquarz im Computerprogramm OriginPro [300] ausgelesen und die Reflexlagen von $A^{II}_{3}B^{III}_{4}(PO_4)_6$ anhand der genau bekannten Reflexlagen des Tiefquarzes mit Hilfe des Computerprogramms SOS1 [303] korrigiert. Anhand der korrigierten Reflexpositionen wurden die Gitterkonstanten mit dem Programm SOS2 [303] verfeinert.

Die Indizierungstabellen befinden sich im Anhang A.2. Die gemessenen Guinierdiagramme und die dazugehörigen Simulationen sind im Anhang A.1 dargestellt. Die *IP*-Guinier-Aufnahmen zeigen sehr gute Übereinstimmungen mit den berechneten Simulationen.

In Tabelle 2.24 befindet sich eine Gegenüberstellung der hier verfeinerten Gitterkonstanten mit den in der Literatur veröffentlichten Werten. Zur besseren Vergleichbarkeit der Zellkonstanten wurden alle triklinen Zellen entsprechend der triklinen Zelle von $Cr_3Cr_4(PO_4)_6$ [12] aufgestellt.

Das Volumen der Elementarzellen der quaternären Orthophosphate im $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ -Strukturtyp reicht von 392,7 Å³ bei Ni₃Cr₄(PO₄)₆ bis hin zu 443,2 Å³ für Mn₃In₄(PO₄)₆. Dabei haben die quaternären Chrom(III)-orthophosphate die kleinsten Elementarzellenvolumina (392,7 – 407,2 Å³), gefolgt von quaternären Vanadium(III)-orthophosphaten (400,4 – 415,3 Å³) und quaternären Eisen(III)-orthophosphaten (401,5 – 417,6 Å³) sowie Titan(III)orthophosphaten (413,6 – 427,3 Å³). Die größten Elementarzellenvolumina zeigen die quaternären Indium(III)-orthophosphate (427,5 – 443,2 Å³).

Innerhalb einer Reihe (gleiches dreiwertiges Kation, unterschiedliche zweiwertige Kationen) weist die Manganverbindung das größte und die entsprechende Nickelverbindung das kleinste Zellvolumen (Abbildung 2.13) auf.

Abbildung 2.13 Volumen der Elementarzelle in Å³ von Orthophosphaten $A^{II}_{3}B^{III}_{4}(PO_4)_6$ in Abhängigkeit der beteiligten Ionen A^{II} und B^{III} . Grün: $A^{II}_{3}Cr^{III}_{4}(PO_4)_6$, orange: $A^{II}_{3}V^{III}_{4}(PO_4)_6$, gelb: $A^{II}_{3}Fe^{III}_{4}(PO_4)_6$, violett: $A^{II}_{3}Ti^{III}_{4}(PO_4)_6$, grau: $A^{II}_{3}In^{III}_{4}(PO_4)_6$, rot: Verbindung $A^{II}_{3}B^{III}_{4}(PO_4)_6$ existiert nicht, weiß: es liegen keine Daten für $A^{II}_{3}B^{III}_{4}(PO_4)_6$ vor.

Bei gleichem A^{II} -Kation sind immer die Elementarzellkonstanten a, b und c der quaternären Chrom(III)-orthophosphate am kleinsten, gefolgt von den etwa gleich großen quaternären Vanadium(III)und Eisen(III)-orthophosphaten und den quaternären Titan(III)orthophosphaten. Die größten Gitterparameter zeigen die entsprechenden Indiumverbindungen. Bei genauer Betrachtung der Achsen a, b und c von guaternären Orthophosphaten des Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyps fällt auf, dass die Längen der a- und c-Achse (Abbildung 2.14 und Abbildung 2.16) im wesentlichen nur vom Ionenradius des B^{III} -Kations abhängen. Bei Anwesenheit von stark Jahn-Teller-aktiven A^{II}-Kationen wie Cr²⁺ und Cu²⁺ wird jedoch die a-Achse deutlich verlängert und die c-Achse deutlich verkürzt, in allen anderen Fällen ist der Einfluss der A^{II}-Kationen auf a- und c-Achse recht schwach und korreliert mit dem Ionenradius $r(A^{II})$. Unter Berücksichtigung, dass die *a*-Achse um ca. den Faktor 1,5 größer ist als die c-Achse, so ist festzustellen, dass die relative Längenänderung der a-Achse etwa im gleichen Bereich liegt.

Abbildung 2.14 Gitterkonstanten *a* in Å in Orthophosphaten $A^{II}_{3}B^{III}_{4}(PO_4)_6$ in Abhängigkeit der beteiligten Ionen A^{II} und B^{III} . Legende siehe Abbildung 2.13.

Abbildung 2.15 Gitterkonstanten *b* in Å in Orthophosphaten $A^{II}_{3}B^{III}_{4}(PO_4)_6$ in Abhängigkeit der beteiligten Ionen A^{II} und B^{III} . Legende siehe Abbildung 2.13.

Abbildung 2.16 Gitterkonstante *c* in Å in $A^{II}_{3}B^{III}_{4}(PO_4)_6$ in Abhängigkeit der beteiligten Ionen A^{II} und B^{III} . Legende siehe Abbildung 2.13.

Die Länge der *b*-Achse (Abbildung 2.15) hängt deutlich von den Ionenradien der A^{II} - und B^{III} -Kationen ab. Der maximale Längenunterschied der *b*-Achse bei gleichem B^{III} -Kation und unterschiedlichen A^{II} -Kationen ist mit bis zu 0,27 Å erheblich größer als in der *a*- und *c*-Achse.

Eine Übersicht über die Gitterkonstanten und Elementarzellenvolumina der quaternären Orthophosphate $A^{II}_{3}B^{III}_{4}(PO_4)_6$ (A^{II} : Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn; B^{III} : Ti, V, Cr, Fe, In) ist in Tabelle 2.24 angegeben. In Tabelle 2.25 befinden sich die Gitterkonstanten der quinquinären Orthophosphate der Mischkristallserien (Zn_{1-x}Cu_x)₃In₄(PO₄)₆ und (Mg_{1-x}Cu_x)₃In₄(PO₄)₆. Zusätzlich sind in Tabelle 2.26 die Gitterkonstanten der ternären Hydrogenorthophosphate mit den allgemeinen Zusammensetzungen $M^{II}_{7}(PO_4)_2(HPO_4)_4$ und $M^{II}_{7-x}M^{III}_{x}(PO_4)_{2+x}(HPO_4)_{4-x}$ angegeben.

Verbindung	<i>a</i> / Å	b / Å	<i>c</i> / Å	α/°	β/°	γ/°	$V/\text{\AA}^3$	Lit.
Mg ₃ Ti ₄ (PO ₄) ₆ ^{a)}	9,3411(14)	7,9616(5)	6,3911(8)	100,672(8)	109,156(12)	104,936(9)	414,4	[131]
$Mg_3Ti_4(PO_4)_6^{e)}$	9,3401(3)	7,9399(2)	6,3886(2)	100,579(1)	109,261(2)	104,878(2)	413,15(2)	[d.A.]
$Cr_3Ti_4(PO_4)_6^{f)}$	9,4139(12)	8,1056(9)	6,3516(7)	101,25(1)	107,54(1)	106,23(1)	422,58(8)	[204]
Mn ₃ Ti ₄ (PO ₄) ₆ ^{f)}	9,3741(10)	8,1593(6)	6,4483(5)	101,495(8)	108,765(9)	105,562(9)	427,25(6)	[d.A.]
$Fe_3Ti_4(PO_4)_6^{f)}$	9,3855(11)	8,0212(9)	6,4415(6)	101,007(10)	109,095(10)	105,388(11)	420,79(7)	[d.A.]
$Zn_{3}Ti_{4}(PO_{4})_{6}^{f)}$	9,3647(8)	7,8925(9)	6,4152(5)	100,632(11)	109,358(8)	104,688(10)	413,58(8)	[d.A.]
$Mg_{3}V_{4}(PO_{4})_{6}^{f)}$	9,2936(19)	7,9064(12)	6,3279(9)	101,41(2)	108,52(2)	105,27(1)	404,63(11)	[d.A.]
$Cr_{3}V_{4}(PO_{4})_{6}^{f)}$	9,3402(25)	8,0581(15)	6,3090(12)	101,32(2)	108,12(2)	106,78(2)	410,17(14)	[d.A.]
$Mn_{3}V_{4}(PO_{4})_{6}^{f)}$	9,3384(9)	8,0789(6)	6,3730(4)	102,147(7)	108,145(8)	106,044(8)	415,31(5)	[d.A.]
$Fe_3V_4(PO_4)_6^{f)}$	9,3201(18)	7,9654(14)	6,3618(8)	101,75(1)	108,41(2)	105,84(2)	408,77(11)	[d.A.]
$Co_{3}V_{4}(PO_{4})_{6}^{f)}$	9,3128(15)	7,8918(10)	6,3455(10)	101,55(2)	108,67(2)	105,26(1)	405,06(9)	[d.A.]
$Ni_3V_4(PO_4)_6^{f)}$	9,2565(8)	7,8817(7)	6,3096(5)	101,183(9)	108,790(8)	105,269(9)	400,35(5)	[d.A.]
$Cu_{3}V_{4}(PO_{4})_{6}^{f)}$	9,2945(8)	7,8851(10)	6,2654(5)	100,891(12)	108,007(7)	105,693(9)	401,35(7)	[d.A.]
Zn ₃ V ₄ (PO ₄) ₆ ^{b)}	9,324(2)	7,869(1)	6,349(2)	101,23(2)	108,66(1)	105,32(1)	405,3(4)	[138]
$Zn_{3}V_{4}(PO_{4})_{6}^{e)}$	9,3206(2)	7,8631(2)	6,3451(1)	101,188(2)	108,687(1)	105,266(1)	404,79(2)	[d.A.]
$Mg_3Cr_4(PO_4)_6$	9,2123(25)	7,8404(20)	6,2654(16)	101,630(13)	108,200(12)	105,150(13)	394,7(2)	[132]
$Cr_3Cr_4(PO_4)_6$	9,3184(19)	8,0044(18)	6,2532(14)	100,982(9)	107,954(11)	107,144(10)	403,2(3)	[12]
$Mn_3Cr_4(PO_4)_6^{(f)}$	9,2830(7)	8,0356(7)	6,3078(5)	102,357(9)	107,844(8)	105,928(7)	407,22(5)	[d.A.]
$Fe_3Cr_4(PO_4)_6^{e}$	9,2700(4)	7,9296(4)	6,2947(3)	101,885(3)	108,001(3)	105,870(3)	401,38(3)	[d.A.]
$Co_3Cr_4(PO_4)_6$	9,2457(9)	7,8591(7)	6,2864(6)	101,822(8)	108,217(9)	105,311(7)	397,36(4)	[28]
$Co_3Cr_4(PO_4)_6^{d}$	9,2350(5)	7,8561(3)	6,2785(3)	101,808(3)	108,173(3)	105,329(3)	396,38	[134]
$Co_3Cr_4(PO_4)_6^{e}$	9,2444(3)	7,8576(3)	6,2852(2)	101,821(2)	108,231(2)	105,281(2)	397,20(3)	[d.A.]
$Ni_3Cr_4(PO_4)_6$	9,1838(13)	7,8403(10)	6,2624(9)	101,560(13)	108,356(12)	105,239(11)	392,69(7)	[28]
$Cu_3Cr_4(PO_4)_6$	9,2718(6)	7,8360(5)	6,2297(4)	100,950(6)	107,238(6)	106,321(5)	396,0(2)	[132]
$Cu_3Cr_4(PO_4)_6^{d}$	9,2645(2)	7,8313(2)	6,2185(1)	100,916(2)	107,202(2)	106,408(2)	394,68	[134]
$Zn_3Cr_4(PO_4)_6$	9,2364(23)	7,8304(19)	6,2741(16)	101,520(13)	108,120(12)	105,330(12)	395,8(2)	[132]
$Mg_3Fe_4(PO_4)_6^{f)}$	9,2634(14)	7,9135(10)	6,3234(8)	101,309(13)	108,425(12)	104,641(14)	405,81(8)	[d.A.]
Mn _{2,06} Fe _{4,94} (PO ₄) ₆ ^{c)}	9,327(2)	8,069(2)	6,365(1)	101,90(1)	108,16(1)	105,25(1)	416,9(2)	[133]
$Mn_3Fe_4(PO_4)_6^{f)}$	9,3221(11)	8,0935(8)	6,3625(6)	102,057(9)	108,113(9)	105,198(9)	417,65(6)	[d.A.]
$Fe_3Fe_4(PO_4)_6^{a)}$	9,358(2)	7,967(2)	6,314(2)	101,15(2)	107,90(2)	105,61(2)	411,41	[16]
$\operatorname{Fe}_{3}\operatorname{Fe}_{4}(\operatorname{PO}_{4})_{6}^{\mathrm{b}g}$	9,4229(5)	7,9651(6)	6,4724(4)	101,741(4)	108,919(4)	104,447(2)	423,02	[212]
$\operatorname{Fe}_{3}\operatorname{Fe}_{4}(\operatorname{PO}_{4})_{6}^{d}$	9,3176(2)	7,9832(1)	6,3576(1)	101,646(2)	108,247(2)	105,175(2)	412,16	[196]
$\operatorname{Fe}_{3}\operatorname{Fe}_{4}(\operatorname{PO}_{4})_{6}^{f)}$	9,3138(8)	7,9729(6)	6,3548(5)	101,628(9)	108,301(9)	105,168(7)	411,17(5)	[d.A.]
$Co_{2,9}Fe_{4,1}(PO_4)_6^{c)}$	9,300(2)	7,915(2)	6,350(1)	101,52(1)	108,47(1)	104,70(1)	408,36	[133]
$\text{Co}_3\text{Fe}_4(\text{PO}_4)_6^{\text{d}}$	9,2885(2)	7,9096(1)	6,3419(1)	101,518(2)	108,487(2)	104,666(2)	407,10	[134]
$Ni_{2,75}Fe_{4,25}(PO_4)_6^{a)}$	9,300(1)	7,951(1)	6,3510(8)	101,12(9)	107,96(9)	104,69(9)	412,97	[136]
$Ni_3Fe_4(PO_4)_6^{(1)}$	9,2058(11)	7,8859(9)	6,3146(6)	101,164(11)	108,563(11)	104,539(11)	401,53(7)	[d.A.]
$Cu_{2,0}Fe_{5,0}(PO_4)_6^{d}$	9,3089(2)	7,9434(2)	6,2654(2)	101,040(2)	107,564(2)	105,643(2)	406,11	[137]
$Cu_{2,4}Fe_{4,6}(PO_4)_6^{d}$	9,3099(2)	7,9231(2)	6,2582(2)	100,980(2)	107,395(2)	105,675(2)	405,23	[137]
$Cu_3Fe_4(PO_4)_6^{d}$	9,3279(2)	7,9298(1)	6,2557(1)	101,011(1)	107,160(1)	105,831(1)	406,38	[134]
$Zn_3Fe_4(PO_4)_6$	9,3068(14)	7,8927(10)	6,3430(8)	101,280(11)	108,360(13)	104,802(11)	407,73(7)	[28]
$Mg_3In_4(PO_4)_6$	9,4660(4)	8,1145(4)	6,4478(3)	100,426(3)	109,825(4)	104,421(4)	431,66(2)	[28]
$Mn_3In_4(PO_4)_6^{(1)}$	9,5319(8)	8,2510(7)	6,4993(6)	100,955(10)	109,726(8)	104,818(8)	443,19(6)	[d.A.]
$\operatorname{Fe_3In_4(PO_4)_6}^{1}$	9,5002(13)	8,1457(10)	6,5021(8)	100,718(12)	110,089(13)	104,469(12)	436,65(9)	[d.A.]
$Co_3In_4(PO_4)_6$	9,4975(20)	8,0793(15)	6,4766(18)	100,588(18)	110,101(18)	104,126(18)	432,61(11)	[28]
$\text{Co}_3\text{In}_4(\text{PO}_4)_6^{\text{e})}$	9,5022(2)	8,0829(2)	6,4908(1)	100,578(1)	110,065(1)	104,101(1)	434,19(2)	[d.A.]
$Ni_3In_4(PO_4)_6$	9,3959(5)	8,1217(4)	6,4281(3)	100,343(4)	109,892(5)	104,426(5)	427,49(3)	[28]
$Ni_3In_4(PO_4)_6^{e}$	9,3959(2)	8,1204(2)	6,4276(1)	100,349(1)	109,893(1)	104,426(1)	427,37(2)	[d.A.]
$Zn_3In_4(PO_4)_6$	9,4945(7)	8,0554(6)	6,4795(4)	100,346(5)	110,060(5)	104,011(6)	432,49(5)	[28]
$Zn_3In_4(PO_4)_6^{e}$	9,4878(6)	8,0446(4)	6,4774(5)	100,333(3)	110,082(4)	103,968(3)	431,55(5)	[d.A.]

Tabelle 2.24Übersicht zu den Gitterkonstanten der quaternären Orthophosphaten im
 $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ -Strukturtyp

Gitterkonstanten wurden transformiert nach: ^{a)} a' = -a+c, b'= -b, c'= a; ^{b)} a' = -c, b'= -b, c'= -a; ^{c)} a' = b, b'=c, c'= a; ^{c)} a' = b, b'=c, c'= a; ^{d)} a' = -b, b'= -a, c'= -c. Gitterkonstanten wurden bestimmt aus ^{e)} Einkristall, ^{f)} *IP*-Guinier-Aufnahmen. ^{g)} Wahrscheinlich handelt es sich bei dieser Verbindung um ein Hydrogenphosphat (vgl. Tabelle 2.26).

Tabelle 2.25 Übersicht zu den Gitterkonstanten der quinquinären Mischkristallserien $(Zn_{1-x}Cu_x)_3In_4(PO_4)_6$ und $(Mg_{1-x}Cu_x)_3In_4(PO_4)_6$.

Verbindung	a / Å	b / Å	<i>c</i> / Å	α / °	β / °	y/°	$V/\text{\AA}^3$	Lit.
$Zn_3In_4(PO_4)_6$	9,4945(7)	8,0554(6)	6,4795(4)	100,346(5)	110,060(5)	104,011(6)	432,49(5)	[28]
Zn _{2,7} Cu _{0,3} In ₄ (PO ₄) ₆	9,4804(6)	8,0585(5)	6,4630(4)	100,323(6)	109,971(6)	104,094(7)	431,05(4)	[d.A.]
Zn2,4Cu0,6In4(PO4)6	9,4781(7)	8,0670(6)	6,4540(4)	100,280(8)	109,950(7)	104,145(8)	430,85(5)	[d.A.]
$Zn_{2,0}Cu_{1,0}In_4(PO_4)_6$	9,4771(8)	8,0819(8)	6,4381(5)	100,177(9)	109,865(8)	104,183(8)	430,97(6)	[d.A.]
$Mg_3In_4(PO_4)_6$	9,4660(4)	8,1145(4)	6,4478(3)	100,426(3)	109,825(4)	104,421(4)	431,66(2)	[28]
Mg _{2,0} Cu _{1,0} In ₄ (PO ₄)	₅ 9,4663(8)	8,1107(6)	6,4119(5)	100,270(7)	109,628(8)	104,581(8)	429,70(5)	[d.A.]

Übersicht zu den Gitterkonstanten der ternären Hydrogenorthophosphaten Tabelle 2.26 $M^{\rm II}_{7}({\rm PO}_{4})_{2}({\rm HPO}_{4})_{4}$ Zusammensetzungen mit allgemeinen und den $M^{II}_{7-x}M^{III}_{x}(PO_4)_{2+x}(HPO_4)_{4-x}$.

Verbindung	a / Å	<i>b</i> / Å	<i>c</i> / Å	α/°	β / °	y/°	$V/\text{\AA}^3$	Lit.
$Mg_7(PO_4)_2(HPO_4)_4^{a)}$	9,438(1)	7,856(1)	6,438(1)	101,28(1)	108,61(1)	104,57(1)	439,99	[156]
$Mn_7(PO_4)_2(HPO_4)_4$	9,792(15)	8,078(6)	6,608(9)	101,41	109,35	104,26	453(1)	[158]
$Fe_7(PO_4)_2(HPO_4)_4^{a}$	9,501(4)	7,956(4)	6,528(3)	101,66(3)	109,17(2)	104,03(4)	430,3(3)	[155]
$Co_7(PO_4)_2(HPO_4)_4$	9,480(2)	7,871(2)	6,466(4),	101,35(3)	109,10(3)	104,29(2)	421,0	[159]
$\frac{\text{Co}_{4,32}\text{Mn}_{2,68}(\text{PO}_4)_2}{(\text{HPO}_4)_4}$	9,580(1)	7,962(1)	6,512(1)	101,389(3)	109,180(1)	104,428(3)	432,6(1)	[160]
$Fe_7(PO_4)_5(HPO_4)_1$	9,531(1)	7,971(1)	6,389(2)	101,59(1)	108,35(1)	105,16(1)	415(4)	[152]
$Fe_7(PO_4)_4(HPO_4)_2$	9,536(4)	7,980(4)	6,562(3)	101,577(6)	109,286(6)	103,874(6)	435,3(7)	[153]
$Fe_7(PO_4)_3(HPO_4)_3^{a)}$	9,511(3)	7,963(2)	6,546(2)	101,52(3)	109,34(3)	103,85(2)	432,6	[154]
$Fe_7(PO_4)_2(HPO_4)_4^{b)}$	9,501(4)	7,956(4)	6,528(3)	101,66(3)	109,17(2)	104,03(4)	430,3(3)	[155]

Zum besseren Vergleich wurden die Gitterkonstanten transformiert nach:

^{a)} a' = b, b' = c, c' = a^{b)} a' = -c, b' = -b, c' = -a.

2.6.2 Fehlordnung im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp

Die Ergebnisse dieser Arbeit zur Fehlordnung der Kationen A^{II} und B^{III} über die Metalllagen im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp bestätigen die von GRUß aufgestellten Regeln [28]. Es zeigt sich deutlich, dass der Grad der Fehlbesetzung primär von der Größe des dreiwertigen Kations abhängt. Je größer das dreiwertige Kation ist, desto stärker wird die Fehlbesetzung zwischen den Lagen *M*2 (Abbildung 2.18) und *M*3 (Abbildung 2.19).

Erst bei sehr großen dreiwertigen Kationen (In^{3+} und teilweise bei Ti^{3+}) wird zusätzlich eine geringe Fehlbesetzung über die Lagen *M*1 (Abbildung 2.20) und *M*4 (Abbildung 2.21) beobachtet.

Sekundär hängt der Grad der Fehlbesetzung von der Größe des zweiwertigen Kations ab. Je kleiner das zweiwertige Kation ist, desto größer wird die Fehlbesetzung zwischen den Lagen M2 (Abbildung 2.18) und M3 (Abbildung 2.19). Dieses führt bei der Kombination Ni²⁺ / In³⁺ (kleinstes zweiwertiges Kation - größtes dreiwertiges Kation) zur vollständigen Inversion der Besetzung der Lagen M2 und M3. Dabei wird M2 nur noch von B^{III} -Ionen, M3 jeweils zur Hälfte von A^{II} - und B^{III} -Ionen besetzt.

Die normierte Fehlordnung K_d (Abbildung 2.17; vgl. Definition von K_d in Abschnitt 2.1.4) veranschaulicht nochmals den Einfluss der Kationenkombination A^{II} / B^{III} auf den Grad der Fehlordnung der Kationen A^{II} und B^{III} über die Lagen M1 bis M4 in den Verbindungen $A^{II}_{3}B^{III}_{4}(PO_4)_{6}$.

Die Metall-Metall-Abstände d(M1-M1) und d(M3-M3) sind in den Doppeloktaedern $[M1_2O_{10}]$ (Abbildung 2.22) und $[M3_2O_{10}]$ (Abbildung 2.23) bis auf die quaternären Indiumorthophosphate $A^{II}_{3}In^{III}_{4}(PO_4)_6$ näherungsweise unabhängig von der Wahl des zweiwertigen Kations A^{II} . Sie hängen nur vom dreiwertigen Kation B^{III} ab.

Der Abstand d(M3-M3) innerhalb des Doppeloktaeders $[M3_2O_{10}]$ ist im Vergleich zum Abstand d(M1-M1) im Doppeloktaeder $[M1_2O_{10}]$ zwischen 0,09 Å und 0,27 Å kürzer. Dieses ist das Resultat der "klammernden" Phosphatgruppen (Abbildung 2.1) ober- und unterhalb des $[M3_2O_{10}]$ -Doppeloktaeders. Die Lage M1 ist so gut wie nicht mischbesetzt (<6%). Daher hängt der Abstand d(M1-M1) im Doppeloktaeder $M1_2O_{10}$ weitgehend nur von der Wahl des dreiwertigen Kations B^{III} ab. Im Abstand d(M3-M3) innerhalb der Doppeloktaeder $[M3_2O_{10}]$ spiegelt sich die Mischbesetzung der Lage M3 wieder. Je kleiner das beteiligte zweiwertige Kation ist, desto größer ist die Mischbesetzung und umso kleiner der Abstand d(M3-M3). Besonders deutlich wird das beim Abstand d(M3-M3) in den quaternären Indiumorthophosphaten $A^{II}_{3}In^{III}_{4}(PO_{4})_{6}$. Diese Effekte sind bei den quaternären Titan(III)-orthophosphaten $A^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ mit den im Vergleich zu In³⁺ kleineren Ti³⁺-Ionen bereits kaum noch ausgeprägt. Einerseits ist die Mischbesetzung deutlich kleiner als bei den entsprechenden Indiumverbindungen und andererseits ist der relative Größenunterschied zwischen Ti^{3+} und A^{II} viel kleiner als zwischen In^{3+} und den A^{II} .

Abbildung 2.17 Normierte Fehlordnung K_d [%] in $A^{II}_3B^{III}_4(PO_4)_6$. Grün: $A^{II}_3Cr^{III}_4(PO_4)_6$, orange: $A^{II}_3V^{III}_4(PO_4)_6$, gelb: $A^{II}_3Fe^{III}_4(PO_4)_6$, violett: $A^{II}_3Ti^{III}_4(PO_4)_6$, grau: $A^{II}_3In^{III}_4(PO_4)_6$, rot: Verbindung $A^{II}_3B^{III}_4(PO_4)_6$ existiert nicht, weiß: es liegen keine Daten für $A^{II}_3B^{III}_4(PO_4)_6$ vor.

Abbildung 2.18 Mischbesetzung auf der Lage M2 in $A^{II}_{3}B^{III}_{4}(PO_4)_6$. Legende siehe Abbildung 2.17.

Abbildung 2.19 Mischbesetzung auf der Lage M3 in $A^{II}_{3}B^{III}_{4}(PO_4)_6$. Legende siehe Abbildung 2.17.

Abbildung 2.20 Mischbesetzung auf der Lage M1 in $A^{II}_{3}B^{III}_{4}(PO_4)_6$. Legende siehe Abbildung 2.17.

Abbildung 2.21 Mischbesetzung auf der Lage M4 in $A^{II}_{3}B^{III}_{4}(PO_4)_6$. Legende siehe Abbildung 2.17.

Abbildung 2.22 Der Abstand d(M1-M1) in Å in den Doppeloktaedern $[M1_2O_{10}]$ in $A^{II}_{3}B^{III}_{4}(PO_4)_{6}$. Legende siehe Abbildung 2.17.

Abbildung 2.23 Der Abstand d(M3-M3) in Å in den Doppeloktaedern $[M3_2O_{10}]$ in $A^{II}_{3}B^{III}_{4}(PO_4)_{6}$. Legende siehe Abbildung 2.17.

$\overline{A^{II}_{3}B^{III}_{4}(\mathrm{PO}_{4})_{6}}$	Lage <i>M</i> 1 <i>B</i> ¹¹¹ [%]	Lage <i>M</i> 2 <i>B</i> ¹¹¹ [%]	Lage <i>M</i> 3 <i>B</i> ¹¹¹ [%]	Lage <i>M</i> 4 <i>B</i> ¹¹¹ [%]	<i>K</i> _d [%]	Lit.	
$Cr_3Cr_4(PO_4)_6$	100	0	100	0	0,0	[12]	
$Mn_3Cr_4(PO_4)_6$	100,0	0,0	100,0	0,0	0,0	[d.A.]	
$Fe_3Cr_4(PO_4)_6$	100,0	0,0	100,0	0,0	0,0	[d.A.]	
$Co_3Cr_4(PO_4)_6$	100,0	0,0	100,0	0,0	0,0	[28]	
$Co_3Cr_4(PO_4)_6$	100,0	9,4	95,3	0,0	4,0	[d.A.]	
$Ni_3Cr_4(PO_4)_6$	100,0	25,4	87,4	0,0	10,9	[28]	
$Cu_3Cr_4(PO_4)_6$	100,0	10,8	94,6	0,0	4,6	[132]	
$Zn_3Cr_4(PO_4)_6$	99,2	15,0	93,3	0,0	6,4	[132]	
$Mg_3Cr_4(PO_4)_6$	97,3	26,2	89,5	0,0	11,3	[132]	
$Fe_3Fe_4(PO_4)_6$	100	0	100	0	0,0	[16]	
$Mn_2Fe_5(PO_4)_6^{a}$	100	0	100	0	0,0	[133]	
$Co_3Fe_4(PO_4)_6^{b)}$	100	23,6	86,0	7,0	12,7	[133]	
$Ni_3Fe_4(PO_4)_6^{c)}$	100	0	100	0	0,0	[136]	
$Cu_3Fe_4(PO_4)_6$	100	0	100	0	0,0	[137]	
$Zn_3Fe_4(PO_4)_6$	92,8	33,4	90,5	0,0	14,3	[28]	
$Mg_3Fe_4(PO_4)_6$	88,0	19,8	80,1	22,0	21,1	[d.A.]	
$Cr_3V_4(PO_4)_6$	100,0	0,0	100,0	0,0	0,0	[d.A.]	
$Mn_3V_4(PO_4)_6$	100,0	7,0	96,5	0,0	0,0	[d.A.]	
$Fe_3V_4(PO_4)_6$	100,0	9,8	95,1	0,0	4,2	[d.A.]	
$Co_3V_4(PO_4)_6$	100,0	23,0	88,2	0,0	10,1	[d.A.]	
$Ni_3V_4(PO_4)_6$	100,0	47,5	73,8	0,0	22,5	[d.A.]	
$Zn_3V_4(PO_4)_6$	100	0	100	0	0,0	[138]	
$Zn_3V_4(PO_4)_6$	99,4	35,8	82,7	0,0	15,3	[d.A.]	
$Mg_3V_4(PO_4)_6$	95,8	38,1	85,1	0,0	16,3	[d.A.]	
$Cr_3Ti_4(PO_4)_6$	97,2	13,8	94,3	1,6	6,8	[d.A.]	
$Mn_3Ti_4(PO_4)_6$	100,0	13,3	93,4	0,0	5,7	[d.A.]	
Fe ₃ Ti ₄ (PO ₄) ₆	100,0	26,7	84,1	2,3	12,8	[d.A.]	
$Zn_3Ti_4(PO_4)_6$	98,9	70,4	65,0	1,0	30,7	[d.A.]	
$Mg_3Ti_4(PO_4)_6$	100	66,7	66,7	0	28,6	[131]	
$Mg_3Ti_4(PO_4)_6$	98,1	60,4	68,5	3,1	27,7	[d.A.]	
$Mn_3In_4(PO_4)_6$	96,1	54,6	69,6	7,0	27,4	[d.A.]	
$Fe_3In_4(PO_4)_6$	97,3	76,0	59,9	4,8	35,3	[d.A.]	
$Co_3In_4(PO_4)_6$	96,1	86,0	56,1	4,8	39,6	[28]	
$Co_3In_4(PO_4)_6$	96,0	86,3	56,5	4,4	39,5	[d.A.]	
$Ni_3In_4(PO_4)_6$	94,0	90,9	49,3	11,2	45,4	[28]	
$Ni_3In_4(PO_4)_6$	93,4	91,2	49,4	11,6	45,7	[d.A.]	
$Zn_3In_4(PO_4)_6$	95,9	91,2	56,1	2,4	40,5	[28]	
$Zn_3In_4(PO_4)_6$	97,1	95,8	55,0	1,7	41,5	[d.A.]	
$Mg_3In_4(PO_4)_6$	92,0	83.0	54,5	11,9	42,4	[28]	

Tabelle 2.27Übersicht zur Verteilung der dreiwertigen Kationen B^{III} über die Lagen M1 bis M4. Kursiv dargestellt sind in der Literatur genannte Ergebnisse, die im Rahmen dieser Arbeit überprüft und präzisiert wurden.

^{a)} Die mittels Neutronenbeugung gefundene Zusammensetzung [133] ist Mn^{II}_{2,06}Fe^{II}_{0,94}Fe^{III}₄(PO₄)₆. ^{b)} Die mittels Neutronenbeugung gefundene Zusammensetzung [133] ist Co^{II}_{2,9}Fe^{II}_{0,1}Fe^{III}₄(PO₄)₆. ^{c)} Die reale Zusammensetzung ist nach [136] Ni^{II}_{2,75}Fe^{II}_{0,25}Fe^{III}₄(PO₄)₆.

3 Kristallchemische Untersuchung quaternärer Pyrophosphate $A^{II}B^{III}_{2}(P_2O_7)_2, A^{II}_{3}B^{III}_{2}(P_2O_7)_3$ und $A^{II}_{5}B^{III}_{2}(P_2O_7)_4$

3.1 Kenntnisstand zu Beginn der Arbeit

Die ternären Pyrophosphate $A^{II}_{2}P_{2}O_{7}$ (A^{II} : Cr [113, 127], Mn [213], Fe [129], Co [214, 215], Ni [191, 216], Cu [114, 217], Zn [218, 219, 220], Mg [221, 222, 223]) und $B^{III}_{4}(P_{2}O_{7})_{3}$ (B^{III} : V [126], Cr [101], Fe [105], In [118]) der 3d-Übergangsmetalle sind strukturell seit Jahren bekannt. Auch quaternäre Pyrophosphate von Alkali- beziehungsweise Erdalkalimetallen und Übergangsmetallen waren in den letzten 30 Jahren Gegenstand zahlreicher Untersuchungen [20, 21, 22, 23]. Überraschenderweise wurden polynäre Pyrophosphate, die zwei unterschiedliche 3d-Übergangsmetalle enthalten, jedoch kaum untersucht.

Wird die Auswahl der Kationen A^{II} und B^{III} auf 3d-Übergangsmetalle und Magnesium beschränkt, so werden für die Summenformel $A^{II}B^{III}{}_{2}(P_{2}O_{7})_{2}$ in der ICSD [295] nur Fe^{II}Fe^{III} $_{2}(P_{2}O_{7})_{2}$ [17], Cr^{II} $_{2}$ Cr^{III} $_{4}(P_{2}O_{7})_{4}$ [13] und Cu^{II}Fe^{III} $_{2}(P_{2}O_{7})_{2}$ [29, 30] genannt. Jede dieser Verbindungen bildet einen eigenen Strukturtyp aus. In der Literatur wird zusätzlich noch MgCr^{III} $_{2}(P_{2}O_{7})_{2}$ [224] beschrieben, jedoch waren von dieser Verbindung nur die *d*-Werte bekannt.

 $Fe^{II}Fe^{III}_2(P_2O_7)_2$ [17] kristallisiert in der orthorhombischen Raumgruppe *Pnma*. Pyrophosphatgruppen und isolierte [Fe^{III}Fe^{III}Fe^{III}O₁₂]-Einheiten sind die Strukturelemente. In diesen Einheiten nimmt das zentrale Fe^{II}-Ion eine trigonal-prismatische Koordination an und teilt sich gegenüberliegende Dreiecksflächen mit oktaedrisch koordinierten Fe^{III}-Ionen (Abbildung 3.1). Der Abstand *d*(Fe^{II}-Fe^{III}) in den Trimeren beträgt 2,925 Å.

Abbildung 3.1 $\text{Fe}^{II}\text{Fe}^{III}_{2}(P_{2}O_{7})_{2}$ [17]. Blickrichtung entlang [0 0 1] (a) und [0 1 0] (b). Perspektivische Darstellung mit Blickrichtung annähernd entlang [0 0 -1] (c). Rot: [Fe^{III}O₆], orange [Fe^{II}O₆] und gelb [P₂O₇].

 $Cu^{II}Fe^{III}_2(P_2O_7)_2$ [29] kristallisiert in der monoklinen Raumgruppe $P2_1/n$ und enthält ebenfalls wie im Fe^{II}Fe^{III}_2(P_2O_7)_2 durch Pyrophosphatgruppen von einander isolierte [$M3O_{12}$]-Einheiten. Jedoch ist im Unterschied zu Fe^{II}Fe^{III}_2(P_2O_7)_2 in Cu^{II}Fe^{III}_2(P_2O_7)_2 das zentrale Cu^{II}-Ion quadratisch-planar von Sauerstoff koordiniert und mit den beiden oktaedrisch koordinierten Fe^{III}-Ionen trans-kantenverknüpft ($d(Cu^{II}-Fe^{III}) = 3,106$ Å) (Abbildung 3.2).

Abbildung 3.2 $Cu^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ [29]. Blickrichtung entlang [0 -1 0] (a) und perspektivische Darstellung mit Blickrichtung annähernd entlang [0 -1 0] (b). Rot: [Fe^{III}O₆], hellblau: [Cu^{II}O₄] und gelb: [P₂O₇].

 $Cr^{II}_{2}Cr^{III}_{4}(P_{2}O_{7})_{4}$ [13] kristallisiert in der triklinen Raumgruppe $P\bar{1}$ und enthält zwei Arten von trans-kantenverknüpften Oktaedertripeln, $[Cr^{II}_{2}Cr^{III}O_{14}]$ und $[Cr^{III}_{3}O_{14}]$ ($d(Cr^{II}-Cr^{III}) = 3,116$ Å; $d(Cr^{III}-Cr^{III}) = 3,154$ Å). Die Verknüpfung der Oktaedertripel zur Gesamtstruktur erfolgt einerseits direkt über gemeinsame Ecken, andererseits indirekt über Pyrophosphat-gruppen.

Abbildung 3.3 $Cr^{II}_{2}Cr^{III}_{4}(P_2O_7)_4$ [13]. Blickrichtung entlang [0 0 -1] (a) und [1 1 0] (b). Perspektivische Darstellung mit Blickrichtung annähernd entlang [1 0 0] (c). Grün: [Cr^{III}O₆], himmelblau: [Cr^{III}O₆] und gelb: [P₂O₇].

Als gemeinsame Baueinheit treten in alle drei Strukturen $(Fe^{II}Fe^{III}_2(P_2O_7)_2 [17]]$, $Cu^{II}Fe^{III}_2(P_2O_7)_2 [29]$ und $Cr^{II}_2Cr^{III}_4(P_2O_7)_4 [13]$) Polyedertripel auf. Von diesen ist der mittlere Koordinationspolyeder chelatartig von zwei oder drei Pyrophosphatgruppen umgeben (Abbildung 3.4).

Abbildung 3.4 Polyedertripel in $\text{Fe}^{II}\text{Fe}^{III}_{2}(P_{2}O_{7})_{2}$ [17] (a), $\text{Cu}^{II}\text{Fe}^{III}_{2}(P_{2}O_{7})_{2}$ [29] (b) und $\text{Cr}^{II}_{2}\text{Cr}^{III}_{4}(P_{2}O_{7})_{4}$ [13] (c).

Als einziges weiteres quaternäres Pyrophosphat, das gleichzeitig zwei- und dreiwertige 3d-Übergangsmetalle enthält, wird $\text{Fe}^{II}{}_{5}\text{Fe}^{III}{}_{2}(P_{2}O_{7})_{4}$ [130, 18] in der ICSD [295] genannt. $\text{Fe}^{II}{}_{5}\text{Fe}^{III}{}_{2}(P_{2}O_{7})_{4}$ kristallisiert in der orthorhombischen Raumgruppe *C*222₁ und enthält durch Pyrophosphatgruppen voneinander isolierte gewellte Schichten von kantenverknüpften $\text{Fe}^{II}O_{6}$ - und $\text{Fe}^{III}O_{6}$ -Polyedern (Abbildung 3.5).

Abbildung 3.5 $\text{Fe}^{II}_{5}\text{Fe}^{III}_{2}(P_{2}O_{7})_{4}$ [130, 18]. Blick entlang [1 0 0] (a). Isolierte Oktaederschicht, Blickrichtung entlang [0 1 0] (b). Rot: [Fe^{III}O_{6}], orange [Fe^{II}O_{6}] und gelb [P_{2}O_{7}].

Die Fe^{II}₅Fe^{III}₂(P₂O₇)₄-Struktur leitet sich von der Thortveitit-Struktur (Sc₂Si₂O₇ [225, 226, 227]) ab, in der ebenfalls Mn₂P₂O₇ [213] und die Hochtemperaturmodifikationen von $M^{II}_{2}P_{2}O_{7}$ (M^{II} : Mg [222, 223], Ni [216], Cu [114], Zn [219]) kristallisieren. Viele weitere zweiwertige 3d-Übergangsmetall-pyrophosphate $M^{II}_{2}P_{2}O_{7}$ bilden Strukturen aus, die mit der Thortveitit-Struktur eng verwandt sind.

In der Thortveitit-Struktur befinden sich die Metallkationen in Oktaedern aus Sauerstoff, die (gemäß $MO_{6/2}$) über Kanten zu BiI₃-analogen Schichten verknüpft sind. Zwischen diesen Schichten befinden sich die isolierten Pyrophosphat-Anionen (Tetraederdoppel).

In der $\text{Fe}^{II}{}_{5}\text{Fe}^{III}{}_{2}(\text{P}_{2}\text{O}_{7})_{4}$ -Struktur sind 1/8 dieser Oktaeder nicht besetzt. Des Weiteren kommt es zu einer "Umgruppierung" in der Struktur, die mit einer Faltung in den *Metall*-Oktaederschichten einhergeht (vgl. Abschnitt 3.4.5).

Isostrukturell zu $\operatorname{Fe}^{II}{}_{5}\operatorname{Fe}^{III}{}_{2}(P_{2}O_{7})_{4}$ kristallisieren die quaternären Cadmiumpyrophosphate $\operatorname{Cd}_{5}\operatorname{V}^{III}{}_{2}(P_{2}O_{7})_{4}$ [228], $\operatorname{Cd}_{5}\operatorname{Fe}^{III}{}_{2}(P_{2}O_{7})_{4}$ [228] und $\operatorname{Cd}_{2,06}\operatorname{Fe}_{1,44}(P_{2}O_{7})_{2}$ [229], das besser als $\operatorname{Cd}^{II}{}_{4,12}\operatorname{Fe}^{II}{}_{0,88}\operatorname{Fe}^{III}{}_{2}(P_{2}O_{7})_{4}$ bezeichnet wird. Ebenfalls mit der Summenformel $A^{II}{}_{5}B^{III}{}_{2}(P_{2}O_{7})_{4}$ kristallisiert $\operatorname{Cd}_{5}\operatorname{Mo}^{III}{}_{2}(P_{2}O_{7})_{4}$ [230], dessen monokline Struktur (Raumgruppe *C*2/*c*) eng mit jener von $\operatorname{Fe}^{II}{}_{5}\operatorname{Fe}^{III}{}_{2}(P_{2}O_{7})_{4}$ verwandt ist.

Wird die Betrachtung für polynäre Pyrophosphate auf größere zweiwertige Kationen erweitert, so werden für die Summenformel $A^{II}B^{III}_{2}(P_2O_7)_2$ zahlreiche Vertreter in der Literatur genannt, die alle in der Sr^{II}V^{III}₂(P₂O₇)₂ Struktur [231] (triklin, Raumgruppe $P\bar{1}$), kristallisieren (vgl. Tabelle 3.14). In dieser Struktur sind, wie in der Cr^{II}Cr^{III}₂(P₂O₇)₂ Struktur, alle Kationen oktaedrisch durch Sauerstoff umgeben. [$A^{II}O_6$]- und [$B^{III}O_6$]-Oktaeder sind alternierend trans-kantenverknüpft, wodurch endlose Ketten entstehen. Eckenverknüpfungen zwischen [$A^{II}O_6$]-Oktaedern und [$B^{III}O_6$]-Oktaedern verbinden diese Ketten zu Schichten. Die Pyrophosphatgruppen verknüpfen diese Schichten.

Mit noch größeren zweiwertigen Kationen, wie Ba²⁺, wird eine von 6 auf 12 Liganden erweiterte Koordinationssphäre für A^{II} beobachtet (Pyrophosphate Ba $M^{III}_2(P_2O_7)_2$, M^{III} : Ti [232], V [233], Fe [234] und Mo [235]). Von Ba $V^{III}_2(P_2O_7)_2$ ist noch eine weitere Modifikation [236] bekannt, die in der triklinen Raumgruppe $P\bar{1}$ kristallisiert. Die Koordinationssphäre des Bariums beträgt in dieser Struktur K.Z.(Ba²⁺) = 10.

Eine Aufstellung von Pyrophosphaten der allgemeinen Zusammensetzung $A^{II}B^{III}_{2}(P_2O_7)_2$ und $A^{II}_{5}B^{III}_{2}(P_2O_7)_4$ mit ihren Gitterkonstanten gibt Tabelle 3.14 und Tabelle 3.13 an (vgl. Abschnitt 3.4.1).

3.2 Darstellung und Kristallisation

Die Darstellung der quaternäreren Pyrophosphate erfolgte ähnlich den in Kaptitel 2.2 vorgestellten Methoden zur Synthese der quaternäreren Orthophosphate $A^{II}_{3}B^{III}_{4}(PO_{4})_{6}$.

1) Feststoffreaktion der binären Pyrophosphate

$$2 A^{II}_{2}(P_{2}O_{7}) + B^{III}_{4}(P_{2}O_{7})_{3} \to 2 A^{II}B^{III}_{2}(P_{2}O_{7})_{2}$$
(Gl. 3.1)

$$5 A^{II}_{2}(P_{2}O_{7}) + B^{III}_{4}(P_{2}O_{7})_{3} \rightarrow 2 A^{II}_{5}B^{III}_{2}(P_{2}O_{7})_{4}$$
(Gl. 3.2)

2) Feststoffreaktion der binären Pyrophosphate unter Zusatz des Metalls *B* als Reduktionsmittel

$$B^{0} + A^{II}_{2}(P_{2}O_{7}) + 3 B^{IV}P_{2}O_{7} \rightarrow 2 A^{II}B^{III}_{2}(P_{2}O_{7})_{2}$$
(Gl. 3.3)

$$B^{0} + 5 A^{II}_{2}(P_{2}O_{7}) + 3 B^{IV}P_{2}O_{7} \rightarrow 2 A^{II}_{5}B^{III}_{2}(P_{2}O_{7})_{4}$$
(Gl. 3.4)

3) "Nasschemische" Präparation aus den Nitraten mit Diammoniumhydrogenphosphat oder Orthophosphorsäure als Phosphatquelle

$$A^{II}(NO_3)_2 + 2 B^{III}(NO_3)_3 + 4 (NH_4)_2 HPO_4 \rightarrow A^{II}B^{III}_2(P_2O_7)_2 + 18 H_2O\uparrow + 8 N_2O\uparrow$$
(Gl. 3.5)

$$A^{II}(NO_3)_2 + 2 B^{III}(NO_3)_3 + 4 H_3PO_4 \rightarrow A^{II}B^{III}_{2}(P_2O_7)_2 + 6 H_2O\uparrow + 8 NO_2\uparrow + 2 O_2\uparrow$$
(Gl. 3.6)

$$5 A^{II}(NO_3)_2 + 2 B^{III}(NO_3)_3 + 8 (NH_4)_2 HPO_4 \rightarrow A^{II}_5 B^{III}_2 (P_2O_7)_4 + 36 H_2O\uparrow + 16 N_2O\uparrow$$
(Gl. 3.7)

$$5 A^{II}(NO_3)_2 + 2 B^{III}(NO_3)_3 + 8 H_3PO_4 \rightarrow A^{II}_5 B^{III}_2 (P_2O_7)_4 + 12 H_2O\uparrow + 16 NO_2\uparrow + 4 O_2\uparrow$$
(Gl. 3.8)

Für die "volloxidierten" quaternären Pyrophosphate erwies sich die Darstellungsmethode c) als die praktikabelste und wurde überwiegend angewandt. Hingegen wurde für die "reduzierten" quaternären Pyrophosphate die Methode a) verwendet. Da "Ti^{III}₄(P₂O₇)₃" nicht existiert [186], wurde für die Darstellung von quaternären Titan(III)-pyrophosphaten nach Methode 2 verfahren.

3.2.1 Chrom(II)-titan(III)-pyrophosphate

Nachdem es gelungen war $Cr^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ zu synthetisieren und durch chemischen Gasphasentransport zu kristallisieren, wurde nach weiteren Verbindungen im Phasengebiet "CrO" / Ti₂O₃ / P₄O₁₀ gesucht. Als aussichtsreichste Kandidaten wurde nach den beiden quaternären Pyrophosphaten "Cr^{II}Ti^{III}₂(P₂O₇)₂" und "Cr^{II}₅Ti^{III}₂(P₂O₇)₄" sowie in Analogie zu V^{II}V^{III}OPO₄ [8] nach dem Oxidphosphat "Cr^{II}Ti^{III}OPO₄" gesucht.

Für die Darstellung von $Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ wurden gemäß Gleichung 3.3 ein Gemenge bestehend aus 69,5 mg (0,25 mmol) $Cr_{2}P_{2}O_{7}$, 221,8 mg (0,75 mmol) TiP₂O₇ und 12,0 mg (0,25 mmol) Titan mit 50 mg Iod als Mineralisator und Transportmittel in einer evakuierten Kieselglasampulle über Nacht bei 500 °C getempert und dann fünf Tage in einem Temperaturgradienten von 900 °C nach 850 °C transportiert. Auf der Senkenseite bildeten sich einige sehr verwachsene purpurfarbene Kristalle (Abbildung 3.7-a), deren *IP*-Guinier-Aufnahme sehr stark jenem von $Cu^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ [29] ähnelt. In einem weiteren Experiment entstanden statt der purpurfarbenen schwarze Kristalle (Abbildung 3.7-b), deren *IP*-Guinier-Aufnahme jenem von $Fe^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ [17] ähnelt.

Abbildung 3.6 Senkenseite einer Transportampulle mit Kristallen von *trikl*.-Cr^{II}Ti^{III}₂(P₂O₇)₂ (a); Senkenseite einer Transportampulle mit Kristallen von *hex*.-Cr^{II}Ti^{III}₂(P₂O₇)₂ und TiPO₄ (grün) und Cr₂P₂O₇ (himmelblau) (b).

Abbildung 3.7 Kristalle von *trikl*.-Cr^{II}Ti^{III}₂(P₂O₇)₂ (a) und *hex*.-Cr^{II}Ti^{III}₂(P₂O₇)₂ (b).

Nach erfolgreicher Synthese von $Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ wurde versucht " $Cr^{II}_{5}Ti^{III}_{2}(P_{2}O_{7})_{4}$ " darzustellen. Dazu wurden 347,4 mg (1,25 mmol) $Cr_{2}P_{2}O_{7}$, 221,8 mg (0,75 mmol) $TiP_{2}O_{7}$ und 12,0 mg (0,25 mmol) Titanpulver mit 50 mg Iod als Mineralisator in einer evakuierten Kieselglasampulle über Nacht bei 500 °C getempert und dann eine Woche lang in einem Temperaturgradienten von 1000 °C nach 900 °C transportiert. Sowohl im Senken- wie auch Quellenbereich befand sich nach Ausweis der *IP*-Guinier-Aufnahmen ein Gemenge von *hex.*- $Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ und $Cr_{2}P_{2}O_{7}$.

Zur Darstellung von "**Cr^{II}Ti^{III}OPO**₄" wurden 107,1 mg (0,75 mmol) TiPO₄, 38,0 mg (0,25 mmol) Cr₂O₃, 13,0 mg (0,25 mmol) Chrompulver und 2 mg Iod als Mineralisator in einer evakuierten Kieselglasampulle über Nacht bei 500 °C und anschließend fünf Tage lang bei 950 °C getempert. Dabei entstand ein Gemenge aus CrP [120], Cr₃Ti₄(PO₄)₆ und einer schwarze Verbindung, deren Reflexmuster dem Ti₄O₇ [237] sehr ähnelt und bei der es sich wahrscheinlich um (Ti_{1-x}Cr_x)₄O₇ $0 \le x \le 1$ handelt.

Gleichgewichtsexperimente im ternären System "CrO" / Ti_2O_3 / P_4O_{10} wurden bei 900°C durchgeführt. Die Ergebnisse sind graphisch in der Abbildung 3.8 dargestellt. Die Untersuchungen zeigen, dass $Ti^{III}PO_4$ und $Cr^{II}_2P_2O_7$ koexistieren. Eine leichte Farbverschiebung bei TiPO₄ von Grün der reinen Verbindung nach Gelbgrün deutet einen geringfügigen Einbau von Chrom an. Die *IP*-Guinier-Aufnahmen zeigten keinen Unterschied zu jener von reinem TiPO₄. Für den Einbau von Titan in $Cr_2P_2O_7$ wurde kein Hinweis beobachtet. TiPO₄ und $Cr_2P_2O_7$ koexistieren diese beiden Phasen zusammen mit $Cr^{II}_3Ti^{III}_4(PO_4)_6$ und $Cr^{II}Ti^{III}_2(P_2O_7)_2$, wobei die beiden gemischten quaternären Phosphate niemals gleichzeitig auftreten. Eine Verbindung mit der Zusammensetzung " $Cr^{II}_5Ti^{III}_2(P_2O_7)_4$ " analog zu Fe^{II}₅Fe^{III}₂(P₂O₇)₄ [18] existiert unter Gleichgewichtsbedingungen nicht.

3 Kristallchemie quaternärer Pyrophosphate $A^{II}B^{III}_{2}(P_2O_7)_2$, $A^{II}_{3}B^{III}_{2}(P_2O_7)_3$ und $A^{II}_{5}B^{III}_{2}(P_2O_7)_4$

Abbildung 3.8 Phasengebiet "CrO" / TiO_{1,5} / PO_{2,5} bei T = 950°C. In den grau unterlegten Teilbereichen wurden keine Experimente durchgeführt. Offene Kreise: Nominelle Zusammensetzung stellte sich als Phasengemenge heraus. Schwarze Punkte: bekannte Phase im Dreistoffsystem "CrO" / Ti₂O₃ / P₄O₁₀.

3.2.2 Polynäre Vanadium(III)-pyrophosphate $A^{II}V^{III}_2(P_2O_7)_2$ und $A^{II}_5V^{III}_2(P_2O_7)_4$ (A^{II} : Cr, Fe, Cu, Pd)

Im Unterschied zu vielen anderen dreiwertigen 3d-Übergangsmetallen sind von quaternären Metall(II)-Vanadium(III)-pyrophosphaten zahlreiche Vertreter mit der allgemeinen Summenformel $M^{II}V^{III}_2(P_2O_7)_2$ (M^{II} : Sr [231], Cd [244], Hg [245], Pb [245], Ba [233, 236]) gut charakterisiert. Mit Cd₅V^{III}₂(P₂O₇)₄ [228], das isotyp zu Fe^{II}₅Fe^{III}₂(P₂O₇)₄ [18] kristallisiert, ist eine weitere allgemeine Zusammensetzung für Metall(II)-Vanadium(III)-pyrophosphate bekannt. Jedoch wurden bis zu Beginn dieser Arbeit keine quaternären Vanadium(III)pyrophosphate beschrieben, die neben Vanadium(III) ein zweiwertiges 3d-Übergangsmetall enthalten.

Erste Hinweise auf die Existenz von $Fe^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ lieferte ein Transportexperiment, bei dem eigentlich die Synthese und anschließende Reinigung durch chemischen Gasphasentransport von $Fe^{II}{}_{2}P_{2}O_{7}$ erfolgen sollte (TM: 50mg I₂; 1000 \rightarrow 900 °C; Dauer: 72h). Statt, wie sonst üblich, zur Reduktion von FePO₄ zu Fe₂P₂O₇ Eisenphosphid, FeP, als Reduktionsmittel einzusetzen, wurde aus Versehen VP verwendet. Auf der Senke bildeten sich farblose bis zart rosafarbene Kristalle von Fe^{II}{}_{2}P_{2}O_{7} sowie hellgrüne Kristalle, deren Reflexmuster der *IP*-Guinier-Aufnahme jenem von Fe^{II}{}_{5}Fe^{III}{}_{2}(P_{2}O_{7})_{4} [18] entsprach. Im Quellenraum der Ampulle befand sich ein Gemenge bestehend aus Kristallen von Fe^{II}{}_{2}P_{2}O_{7}, Fe^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4} und Fe_xV_{1-x}P (FeP-Strukturtyp [124]) sowie einem braunen Pulver, dessen Reflexmuster jenem von Fe^{II}{}_{3}Fe^{III}{}_{4}(PO_{4})_{6} ähnelte.

Die Zusammensetzung der grünen Kristalle und des braunen Pulvers wurde zusätzlich zu den *IP*-Guinier-Aufnahmen mittels einer Elektronenstrahl-Mikroanalyse (EPMA) mit einem energiedispersiven Röntgenspektrometer (EDX) bestimmt (Tabelle 3.1).

	Fe / at%	V / at%	P / at%	
Grüner Kristall 1 (SBK)	29,03	13,76	57,02	
Grüner Kristall 2 (SBK)	32,59	13,30	54,01	
Ideale Zusammensetzung für $Fe^{II}_{5}V^{III}_{2}(P_2O_7)_4$	33,33	13,33	53,33	
Braunes Pulver (QBK)	21,76	33,74	44,49	
Ideale Zusammensetzung für $\text{Fe}^{\text{II}}_{3}\text{V}^{\text{III}}_{4}(\text{PO}_{4})_{6}$	23,08	30,77	46,15	

Tabelle 3.1 Ergebnis der EPMA-EDX von grünen Kristallen des SBK und des braunen Pulvers des QBK sowie die idealen Zusammensetzungen für $Fe_{5}^{II}V_{2}^{III}(P_{2}O_{7})_{4}$ und $Fe_{3}^{II}V_{4}^{III}(PO_{4})_{6}$.

Mit der Darstellung von $Cr^{II}V^{III}{}_{2}(P_{2}O_{7})_{2}$ wurde versucht, zumindest eine zu einer der beiden Modifikationen von $Cr^{II}Ti^{III}{}_{2}(P_{2}O_{7})_{2}$ isotype Verbindung darzustellen. Da V^{3+} in etwa denselben Ionenradius wie Fe³⁺ aufweist, wurde vermutet, dass Fe^{II} $V^{III}{}_{2}(P_{2}O_{7})_{2}$ eine zu Fe^{II}Fe^{III} $_{2}(P_{2}O_{7})_{2}$ [17] isotype Verbindung bildet und diese einen weiteren seltenen Vertreter darstellt, in dem Fe²⁺ trigonal prismatisch von Sauerstoff koordiniert ist. Auch stellt sich die Frage, in wieweit Fe²⁺ in Fe^{II} $_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ durch Cr^{2+} austauschbar ist.

Zur Darstellung von $A^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ und $A^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ (A^{II} : Cr, Fe) wurden gemäß Gl. 3.1 und Gl. 3.2 zunächst Presslinge nach der Vorschrift aus Abschnitt 1.2.1 bestehend aus $V^{III}_{4}(P_{2}O_{7})_{3}$ und $A^{II}_{2}P_{2}O_{7}$ angefertigt und diese mit Iod als Mineralisator in evakuierten Kieselglasampullen bei 850°C für eine Woche getempert (Tabelle 3.2).

Tabelle 3.2 Ausgewählte Ansätze zur Darstellung von $A^{II}V^{III}_2(P_2O_7)_2$ und $A^{II}_5V^{III}_2(P_2O_7)_4$ (A^{II} : Cr, Fe).

Nominelle Zusammen- setzung	$A^{II}_{2}P_{2}$ / mg	O ₇ / mmol	V ^{III} 4(P / mg	207) / mmol	MS I ₂ / mg	Farbe	Zusammensetzung des Presslings (nach <i>IP</i> -Guinier-Aufnahmen)
$\operatorname{CrV}_2(\operatorname{P}_2\operatorname{O}_7)_2$	69,5	0,25	181,4	0,25	55	braun	CrV ₂ (P ₂ O ₇) ₂ isotyp zu CrCr ₂ (P ₂ O ₇) ₂ [13]
$Cr_5V_2(P_2O_7)_4$	138,6	0,50	73,0	0,10	90	dunkel- grün	$Cr_5V_2(P_2O_7)_4$ strukturell verwandt mit Fe ₅ Fe ₂ (P ₂ O ₇) ₄ [130]
$FeV_2(P_2O_7)_2$	142,9	0,50	362,8	0,50	55	braun	$FeV_2(P_2O_7)_2$ isotyp zu CrCr ₂ (P ₂ O ₇) ₂ [13]
$\operatorname{Fe}_5V_2(P_2O_7)_4$	357,2	1,25	181,4	0,25	56	grün	$Fe_5V_2(P_2O_7)_4$ isotyp zu $Fe_5Fe_2(P_2O_7)_4$ [130]

 $Fe^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ kristallisiert isotyp zu $Fe^{II}{}_{5}Fe^{III}{}_{2}(P_{2}O_{7})_{4}$ [130]. Weder $Fe^{II}V^{III}{}_{2}(P_{2}O_{7})_{2}$ noch $Cr^{II}V^{III}{}_{2}(P_{2}O_{7})_{2}$ nehmen die erwarteten Strukturen an. Stattdessen wurde für beide Verbindungen der $Cr^{II}Cr^{III}{}_{2}(P_{2}O_{7})_{2}$ -Strukturtyp [13] beobachtet.

Die Existenz von $Cr^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ ist bemerkenswert, da bis jetzt weder " $Cr^{II}{}_{5}Cr^{III}{}_{2}(P_{2}O_{7})_{4}$ " [13] noch " $Cr^{II}{}_{5}Ti^{III}{}_{2}(P_{2}O_{7})_{4}$ " (Abschnitt 3.2.1) beobachtet wurde. Die *IP*-Guinier-Aufnahme von $Cr^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ zeigt, dass diese Verbindung nicht isotyp, jedoch strukturell eng verwandt mit $A^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ (A^{II} : Mn, Fe) ist (vgl. Abschnitt 3.4.5).

Einkristalle von $\mathbf{Cr^{II}V^{III}}_{2}(\mathbf{P}_{2}\mathbf{O}_{7})_{2}$, $\mathbf{Cr^{II}}_{5}\mathbf{V^{III}}_{2}(\mathbf{P}_{2}\mathbf{O}_{7})_{4}$, $\mathbf{Fe^{II}V^{III}}_{2}(\mathbf{P}_{2}\mathbf{O}_{7})_{2}$ und $\mathbf{Fe^{II}}_{5}\mathbf{V^{III}}_{2}(\mathbf{P}_{2}\mathbf{O}_{7})_{4}$ wurden zur näheren Untersuchung der strukturellen Eigenschaften in evakuierten Kieselglasampullen in Gegenwart von I₂ als Transportmittel erhalten (Tabelle 3.3). Als Edukte für die Transportexperimente von $A^{II}\mathbf{V^{III}}_{2}(\mathbf{P}_{2}\mathbf{O}_{7})_{2}$ und $A^{II}_{5}\mathbf{V^{III}}_{2}(\mathbf{P}_{2}\mathbf{O}_{7})_{4}$ (A^{II} : Cr, Fe) dienten die Produkte der isothermen Temperexperimente. Zusätzlich wurde bei den Experimenten mit Cr^{2+} jeweils 1-2 mg CrP und bei den Experimenten mit Fe²⁺ jeweils 1-2 mg FeP hinzugegeben.

Tabelle 3.3 Repräsentative Experimente zum chemischen Transport von polynären Vanadium(III)-pyrophosphaten $A^{II}V^{III}_{2}(P_2O_7)_2$ und $A^{II}_{5}V^{III}_{2}(P_2O_7)_4$ (A^{II} : Cr, Fe). Mengenangaben: einige mg (+), einige Kristalle (~), einzelne Kristalle (~).

Edukt	TM	$T_2 \rightarrow T_1$	t	QBK	SBK
	/ mg	/ °C	/ d	(nach II	P-Guinier-Aufnahmen)
$\mathrm{Cr}^{\mathrm{II}}\mathrm{V}^{\mathrm{III}}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{2}$	$I_2 \ 63$	$1050 \rightarrow 950$	7	$CrV_2(P_2O_7)_2$	$CrV_2(P_2O_7)_2(\sim)$
$\mathrm{Fe}^{\mathrm{II}}\mathrm{V}^{\mathrm{III}}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{2}$	I_2 60	$1000 \rightarrow 900$	7	$V_4(P_2O_7)_3,$ FeV ₂ (P ₂ O ₇) ₂ (-)	$Fe_2P_2O_7(+), Fe_5V_2(P_2O_7)_4(+), Fe_3V_2(P_2O_7)_3(\sim), FeV_2(P_2O_7)_2(-)$
$Cr^{II}_{5}V^{III}_{2}(P_2O_7)_4$	$I_2 \hspace{0.1in} 90$	$1050 \rightarrow 950$	3	$Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{2}$	$Cr_{5}^{II}V_{2}^{III}(P_{2}O_{7})_{4}$ (~), $Cr_{2}P_{2}O_{7}$ (-)
$Fe^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$	I_2 50	$1000 \rightarrow 900$	3	$V_4(P_2O_7)_3$	$Fe^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{2}(+), Fe_{2}P_{2}O_{7}(+)$

Der Transport von $A^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ und $A^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{2}$ (A^{II} : Cr, Fe) führte nie zu einphasigen Produkten auf der Senkenseite. In allen Transportexperimenten trat auf der Senkenseite zusätzlich zum gewünschten Produkt mindestens eine weitere Phase auf mit höherem Gehalt an $A^{II}_{2}P_{2}O_{7}$.

Beim Transport von $Fe^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ entstanden auf der Quellenseite getrennt nebeneinander $Fe^{II}_{2}(P_{2}O_{7})_{2}$, $Fe^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$, $Fe^{II}_{3}V^{III}_{2}(P_{2}O_{7})_{3}$ und $Fe^{II}V^{III}_{2}(P_{2}O_{7})_{2}$. Dieses ist ein Anzeichen, dass dieser Transport nicht unter Gleichgewichtsbedingungen stattfand.

Beim Transport von $Cr^{II}{}_5V^{III}{}_2(P_2O_7)_4$ bildeten sich Kristalle, die aus mehreren unterschiedlichen Schichten bestanden. Der Kern ist blau ($Cr_2P_2O_7$), umhüllt von einer grünen Schicht ($Cr_5V_2(P_2O_7)_4$) und einer weiteren braunen Schicht ($CrV_2(P_2O_7)_2$) außen herum.

Die thermodynamische Stabilität der quaternären Vanadium(III)-pyrophosphate auf dem quasi-binärem Schnitt $A^{II}_{2}P_{2}O_{7}$ -V^{III}₄(P₂O₇)₃ (A^{II} : Fe, Cr) ist niedrig. Die inkongruente Löslichkeit des Bodenkörpers in der Gasphase führte zu einer Entmischung der polynären Phosphate im Temperaturgradienten. Da $A^{II}_{2}P_{2}O_{7}$ in der Gasphase besser löslich war als V^{III}₄(P₂O₇)₃, kam es auf der Senkenseite zur Bildung von Phasen mit höheren $A^{II}_{2}P_{2}O_{7}$ Gehalten. Während es bei den polynären Eisen(II)-vanadium(III)-pyrophosphaten zur einer räumlich getrennten Abscheidung der unterschiedlich reichen Fe₂P₂O₇-Phasen nebeneinander kam, entstanden bei Chrom(II)-vanadium(III)-pyrophosphaten "Cr₂P₂O₇-reiche" Kerne, die von "Cr₂P₂O₇-ärmeren" Phasen umwachsen wurden.

Hinweise auf die Existenz von $Cu^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ lieferten Versuche zur Darstellung von $Cu^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ (Abschnitt 2.2.2). Mit der Verbindung "Pd^{II}V^{III}₂(P₂O₇)₂" würde die Grenze für die Beständigkeit von V³⁺ neben stark oxidierenden Kationen wie Cu²⁺ [d.A.] und Hg²⁺ [245] in oxidischer Umgebung weiter verschoben.

Zur Darstellung von $Cu^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ wurde ein Pressling, bestehend aus 362,8 mg (0,50 mmol) V₄(P₂O₇)₃ und 150,5 mg (0,50 mmol) Cu₂P₂O₇, angefertigt. Dieser wurde eine Woche lang bei 900°C in einer evakuierten Kieselglasampulle getempert. Das Reflexmuster der *IP*-Guinier-Aufnahme vom gelb-hellbraunen Pressling entspricht dem des CuCr₂(P₂O₇)₂. Einkristalle von CuV₂(P₂O₇)₂ wurden in einem chemischen Transportexperiment erhalten

(Ausgangsbodenkörper ca. 80 mg des $CuV_2(P_2O_7)_2$ - Presslings; Temperaturgradient: 900 \rightarrow 800 °C; Zusatz von 2,7 mg NH₄Cl und 19,9 mg PtCl₂). Nach einer Versuchsdauer von nur 72 h befanden sich einige genügend große gelbe Kristalle im Senkenraum, welche für eine Einkristallröntgensstrukturanalyse geeignet waren.

Zur Darstellung von "**Pd^{II}V^{III}₂(P₂O₇)₂**" wurden 96,7 mg (0,25 mmol) Pd₂P₂O₇ mit 181,4 mg (0,25 mmol) V₄(P₂O₇)₃ innig vermischt. Mit 13,5 mg Palladiumchlorid als Mineralisator wurde dieses Gemenge eine Woche lang bei 800 °C in einer evakuierten Kieselglasampulle getempert. Bei dem so erhaltenen himmelblauen Produkt handelt es sich nach Ausweis der *IP*-Guinier-Aufnahme um ein Gemenge aus α -Vanadyl(IV)-metaphosphat und Palladiummetall (Gl. 3.9).

$$,Pd^{II}V^{III}_{2}(P_{2}O_{7})_{2}^{"} \to Pd^{0} + 2 V^{IV}O(PO_{3})_{2}$$
(Gl. 3.9)

3.2.3 Polynäre Chrom(III)-pyrophosphate A^{II}Cr^{III}₂(P₂O₇)₂ (A^{II}: Mg, Cr, Fe, Cu, Pd)

Obwohl $Mg^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ schon 1973 von V. M. Ust'yantsev und M.G. Tretnikova [224] beschrieben wurde und somit das älteste beschriebene Pyrophosphat mit der allgemeinen Summenformel $A^{II}B^{III}_{2}(P_{2}O_{7})_{2}$ ist, waren von dieser Verbindung bis zu Beginn der vorliegenden Arbeit nur die *d*-Werte bekannt. Für Fe^{II}Cr^{III}_{2}(P_{2}O_{7})_{2} stellt sich die Frage, ob es in der Cr^{II}_{2}Cr^{III}_{4}(P_{2}O_{7})_{4}-Struktur [13] oder der Fe^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}-Struktur [17] kristallisiert.

Zur Darstellung von $MgCr_2(P_2O_7)_2$ wurden 72,9 mg (3,00 mmol) Magnesiumpulver in verdünnter Salpetersäure gelöst. Zu dieser Lösung wurden 2403,1 mg (6,00 mmol) $Cr(NO_3)_3 \cdot 9 H_2O$ und 1584,7 mg (12,00 mmol) Diammoniumhydrogenphosphat, jeweils gelöst in 50 mL demineralisiertem Wasser, gegeben. Diese so erhaltene Lösung wurde auf einem Magnetrührer eingekocht. Der Trockenrückstand wurde eine Woche bei 800 °C an Luft getempert. Anschließend wurde das rosa Pulver eine Woche in einer evakuierten Kieselglasampulle in Gegenwart von Chlor bei 800°C erhitzt. Ein altrosafarbenes Pulver wurde erhalten. Anhand von 20 Reflexen (Abbildung B.11) wurden die Gitterkonstanten von $Mg_2Cr_4(P_2O_7)_4$, das wie auch $Zn_2Cr_4(P_2O_7)_4$ [27] isotyp zu $Cr_2^{II}Cr_4^{III}(P_2O_7)_4$ [13] kristallisiert, bestimmt (Tabelle B.9).

Pulver von $Cr^{II}_2Cr^{III}_4(P_2O_7)_4$ [13] wurde für Vergleichsmessungen der katalytischen Eigenschaften (vgl. Abschnitt 4) nach der folgenden Vorschrift dargestellt: 1459,6 mg (2,00 mmol) Chrom(III)-pyrophosphat und 52,0 mg (1,00 mmol) Chrompulver wurden eine Woche lang in einer evakuierten Kieselglasampulle in Gegenwart von 10 mg Iod bei 800 °C getempert. Das so erhaltene grünliche Produkt war nach Ausweis der *IP*-Guinier-Aufnahme phasenreines $Cr^{II}_2Cr^{III}_4(P_2O_7)_4$ (Abbildung B.12).

Zur Darstellung von Fe^{II}Cr^{III}₂(P₂O₇)₂ wurde ein Pressling bestehend aus 365,0 mg (0,50 mmol) Chrom(III)-pyrophosphat und 143,0 mg (0,50 mmol) Eisen(II)-pyrophosphat drei Tage in einer evakuierten Kieselglasampulle in Gegenwart von 50 mg Iod bei 900 °C getempert. Das so erhaltene hellbraune Produkt war nach Ausweis der *IP*-Guinier-Aufnahme phasenreines Fe^{II}Cr^{III}₂(P₂O₇)₂ (Abbildung B.13), welches isotyp zu Cr^{II}₂Cr^{III}₄(P₂O₇)₄ [13] kristallisiert. Die Gitterkonstanten von Fe^{II}Cr^{III}₂(P₂O₇)₂ wurden anhand von 18 Reflexen bestimmt (Tabelle B.10).

Ebenfalls für Vergleichszwecke wurde das bis dahin unbekannte $Cu^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ dargestellt. Dazu wurden 190,6 mg (3,00 mmol) Kupferpulver in heißer halbkonzentrierter Salpetersäure gelöst. Zu dieser Lösung wurden 2403,1 mg (6,00 mmol) $Cr(NO_{3})_{3} \cdot 9 H_{2}O$ und 1584,7 mg (12,00 mmol) Diammoniumhydrogenphosphat, jeweils gelöst in 50 mL demineralisiertem Wasser, gegeben. Diese so erhaltene Lösung wurde auf einem Magnetrührer eingekocht und der Trockenrückstand eine Woche bei 800 °C an Luft getempert.

Das Guinierdiagramm des maigrünen Produktes zeigt eine große Ähnlichkeit zu jenem von $Cu^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ [29]. Die Einkristallstrukturanalyse (vgl. Abschnitt 3.3.1) zeigt jedoch Unterschiede zwischen den beiden Strukturtypen. Zur Gewinnung von Einkristallen für die strukturelle Untersuchung wurden 80 mg mikrokristallines $Cu^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ als Ausgangsbodenkörper in einem Transportexperiment eingesetzt (1000 \rightarrow 900 °C; Zusatz von 20 mg PtCl₂). Innerhalb von einer Woche führte dies zur Abscheidung von einigen (~2 mg) intensiv grünen Kristallen von CuCr₂(P₂O₇)₂ sowie einigen (~1 mg) sehr blass türkisfarbenen Kristallen von Cu₂P₂O₇ [114] im Senkenbereich. Der Quellenbereich bestand nach Ausweis der *IP*-Guinier-Aufnahmen aus Cu^{II}Cr^{III}₂(P₂O₇)₂.

Für die Darstellung von $Pd^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ wurde ein Pressling aus 77,4 mg (0,20 mmol) Pd₂P₂O₇ und 146,0 mg (0,20 mmol) Cr₄(P₂O₇)₃ angefertigt. Dieser wurde mit 22,4 mg (0,08 mmol) PtCl₂ in einer evakuierten Kieselglasampulle über Nacht bei 750 °C getempert und dann eine Woche in einem Temperaturgradienten von 850 °C nach 800 °C transportiert. Auf der Senkenseite bildeten sich einige wenige sehr kleine verwachsene gelbgrünliche Kristalle von Pd^{II}Cr^{III}₂(P₂O₇)₂ sowie einige Platinmetallkristalle. Die Quellenseite besteht aus phasenreinem gelbgrünlichem Pd^{II}Cr^{III}₂(P₂O₇)₂. Das Reflexmuster der *IP*-Guinier-Aufnahme vom gelbgrünlichen Pressling entspricht jenem von Cu^{II}Cr^{III}₂(P₂O₇)₂.

3.2.4 Polynäre Eisen(III)-pyrophosphate $A^{II}Fe^{III}_2(P_2O_7)_2$ und $A^{II}_5Fe^{III}_2(P_2O_7)_4$ (A^{II} : Mg, Mn, Fe, Co, Ni, Cu, Zn, Pd)

Von quaternären 3d-Metall(II)-eisen(III)-pyrophosphaten wurden in der ICSD [295] bis zu Beginn dieser Arbeit nur Cu^{II}Fe^{III}₂(P₂O₇)₂ [29], Fe^{II}Fe^{III}₂(P₂O₇)₂ [17] und Fe^{II}₅Fe^{III}₂(P₂O₇)₄ [130, 18] genannt.

Bei der Betrachtung möglicher quaternärer Eisenpyrophosphate mit der allgemeinen Zusammensetzung $A^{II}Fe^{III}{}_{2}(P_{2}O_{7})_{2}$ (A^{II} : Mg, Mn, Co, Ni, Cu, Zn, Pd), stellt sich die Frage, in wieweit quadratisch koordinierte Cu²⁺-Ionen in Cu^{II}Fe^{III}{}_{2}(P_{2}O_{7})_{2} [29] oder trigonalprismatisch koordinierte Fe²⁺-Ionen in Fe^{II}Fe^{III}{}_{2}(P_{2}O_{7})_{2} [17] durch die im Titel dieses Abschnitts genannten zweiwertigen Metalle austauschbar sind.

Die quaternären Eisen(III)-pyrophosphate sind von besonderem Interesse als neuartige Katalysatormaterialien für die selektive Oxidation von Methan. Durch die Variation des zweiwertigen Kations kann die Redoxaktivität und die Lewis-Azidität der polynären Eisen(III)-pyrophosphate in weiteren Grenzen verändert werden.

Zur Darstellung von " $\mathcal{A}^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ " (\mathcal{A}^{II} : Mg, Mn, Co, Ni, Cu, Zn) wurden jeweils 2,5 mmol von Magnesium- (60,8 mg), Mangan- (137,3 mg), Kobalt- (147,3 mg), Nickel- (146,7 mg), Kupfer- (158,9) und Zinkpulver (163,5 mg) mit 279,2 mg (5,0 mmol) Eisenpulver in heißer, halbkonzentrierter Salpetersäure gelöst. Diese sechs Lösungen wurden einzeln mit 1320,6 mg (10,0 mmol) Diammoniumhydrogenphosphat, gelöst in 25 mL demineralisiertem Wasser, versetzt und zur Trockene auf einem Magnetheizrührer eingedampft. Für die Darstellung von $Pd^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ wurden jeweils 319,3 mg (3,00 mmol) Palladiumpulver in heißer konzentrierter Salpetersäure gelöst. Die Lösungen wurden vereinigt, mit 12 mL 1 M Orthophosphorsäure versetzt und auf einem Magnetheizrührer zur Trockene eingedampft.

Die Trockenrückstände wurden in Kieselglashalbampullen eine Woche lang bei 800 °C getempert. Die Zusammensetzungen und Farben der erhaltenen Produkte sind in Tabelle 3.4 zusammengefasst. Die verschiedenen blauen Farbtöne deuten auf das Vorliegen von MMCT $(Fe^{2+} \rightarrow Fe^{3+})$ neben den typischen d-d Elektronenübergängen der A^{2+} -Ionen hin. Offenbar führten die Synthesebedingungen zu einer geringfügigen Reduktion von Eisen(III) zu Eisen(II).

Zur Darstellung von $\text{Fe}^{II}\text{Fe}^{III}_{2}(P_2O_7)_2$ [17] für die katalytischen Tests wurden 931,5 mg (1,25 mmol) Eisen(III)-pyrophosphat und 357,0 mg (1,25 mmol) Eisen(II)-pyrophosphat isotherm

eine Woche lang bei 800 °C in Gegenwart von 17 mg Iod in einer evakuierten Kieselglasampulle getempert. Das so erhaltene Produkt war phasenrein (Abbildung B.17). Während Kupfer mit $Cu^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ und Palladium mit $Pd^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ in eigenen Strukturtypen kristallisieren, bilden weder Mangan noch Nickel eine Verbindung mit der

allgemeinen Zusammensetzung $A^{II}Fe^{III}_{2}(P_2O_7)_2$.

Tabelle 3.4 Farbe und Zusammensetzung der Produkte $,A^{II}Fe^{III}{}_{2}(P_{2}O_{7})_{2}$ " (A^{II} : Mg, Mn, Co, Ni, Cu, Zn, Pd).

$A^{\rm II}$	Farbe	Zusammensetzung (nach IP-Guinier-Aufnahme)
Mg	blau	$Mg^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ isotyp zu $Fe^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ [17]
Mn	gelb-ocker	$Fe^{III}_{4}(P_2O_7)_3 + Mn^{II}_5Fe^{III}_2(P_2O_7)_4$
Co	blau-violett	$Co^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ isotyp zu $Fe^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ [17]
Ni	gelb-grün	$Fe^{III}_{4}(P_2O_7)_3 + Ni_2P_2O_7$
Cu	himmelblau	$Cu^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ [29]
Zn	blau	$Zn^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ isotyp zu $Fe^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ [17]
Pd	gelb	$Pd^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ isotyp zu $Cu^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ [d.A.]

Ein Transportexperiment mit $Pd^{II}Fe^{III}_2(P_2O_7)_2$ als Ausgangsbodenkörper (850 \rightarrow 775 °C; Zusatz von 20 mg PdCl₂) führte innerhalb von einer Woche zur Abscheidung von wenigen (~2 mg) zitronengelben Kristallen von Pd^{II}Fe^{III}₂(P₂O₇)₂ im Senkenbereich der Ampulle. Deren Charakterisierung erfolgte mittels Einkristallröntgenstrukturanalyse (vergl. Abschnitt 3.3.1).

Zur Darstellung der Pyrophosphate $,A^{II}{}_{5}Fe^{III}{}_{2}(P_{2}O_{7})_{4}$ " (A^{II} : Mg, Mn, Co, Ni, Cu, Zn) wurde analog zu der Darstellung der Verbindungen $A^{II}Fe^{III}{}_{2}(P_{2}O_{7})_{2}$ vorgegangen. Es wurden jeweils 5,0 mmol von Magnesium- (121,5 mg), Mangan- (274,7 mg), Kobalt- (294,7 mg), Nickel-(293,5 mg), Kupfer- (317,7 mg) und Zinkpulver (327,0 mg) mit 111,7 mg (2,0 mmol) Eisenpulver in heißer, halbkonzentrierter Salpetersäure gelöst. Diese sechs Lösungen wurden einzeln mit 1056,5 mg (8,0 mmol) Diammoniumhydrogenphosphat, gelöst in 25 mL demineralisiertem Wasser, versetzt und zur Trockene auf einem Magnetheizrührer eingedampft. Die Rückstände wurden in Kieselglashalbampullen eine Woche bei 800 °C an Luft getempert. Die Farben und Zusammensetzungen der erhaltenen Produkte sind in Tabelle 3.5 zusammengefasst.

Für die katalytischen Tests wurde ebenfalls $Fe^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}$ [130] dargestellt. Dazu wurden 1490,4 mg (2,00 mmol) Eisen(III)-pyrophosphat und 142,8 mg (2,50 mmol) Eisenpulver isotherm eine Woche lang bei 900 °C in Gegenwart von 100 mg Iod in einer evakuierten Kieselglasampulle getempert. Das so dargestellte Produkt war phasenrein (Abbildung C.6).

Mit Mangan und Zink entstehen zu $\text{Fe}^{II}{}_{5}\text{Fe}^{III}{}_{2}(P_{2}O_{7})_{4}$ isotype Verbindungen (Abbildung C.5, Abbildung C.7). Von Nickel wurden keine quaternären Nickel(II)-eisen(III)-pyrophosphate gefunden. Bei Magnesium, Kobalt und Kupfer entstanden jeweils die Diphosphate $A^{II}\text{Fe}^{III}{}_{2}(P_{2}O_{7})_{2}$ neben $A^{II}{}_{2}P_{2}O_{7}$.

Tabelle 3.5 Farbe und Zusammensetzung der Produkte $,,A^{II}{}_{5}Fe^{III}{}_{2}(P_{2}O_{7})_{4}$ " (A^{II} : Mg, Mn, Co, Ni, Cu, Zn).

A^{II}	Farbe	Zusammensetzung (nach IP-Guinier-Aufnahmen)
Mg	blau	$Mg_2P_2O_7 + MgFe^{III}_2(P_2O_7)_2$
Mn	ocker	$Mn_5Fe_2(P_2O_7)_4$ isotyp zu $Fe_5^{II}Fe_2(P_2O_7)_4$ [130]
Co	violett	$\mathrm{Co}_{2}\mathrm{P}_{2}\mathrm{O}_{7} + \mathrm{CoFe}^{\mathrm{III}}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{2}$
Ni	gelb	$Fe^{III}_{4}(P_2O_7)_3 + Ni_2P_2O_7$
Cu	helles himmelblau	$Cu_2P_2O_7 + Cu^{II}Fe^{III}_2(P_2O_7)_2$ [29]
Zn	grau	$Zn_5Fe_2(P_2O_7)_4$ isotyp zu $Fe_{5}^{II}Fe_{2}^{III}(P_2O_7)_4$ [130]

3.2.5 Polynäre Indium(III)-pyrophosphate $A^{II}In^{III}{}_{2}(P_{2}O_{7})_{2}$, $A^{II}{}_{5}In^{III}{}_{2}(P_{2}O_{7})_{4}$ (A^{II} : Mg, Zn, Cu, Pd) und "Co^{II}{}_{3}In^{III}{}_{2}(P_{2}O_{7})_{3}"

Im Unterschied zu den zahlreichen quaternären Metall(I)-indium(III)-pyrophosphaten werden in der Literatur keine quaternären Metall(II)-Indium(III)-pyrophosphate genannt. Hinweise auf die Existenz eines Magnesium-indium-pyrophosphats fand GRUß [28] bei einem Transportexperiment zur Darstellung von Mg₃In₄(PO₄)₆. Neben dem Hauptprodukt Mg₃In₄(PO₄)₆ wurde im Guinierdiagramm ein Reflexmuster beobachtet, das jenem von Cr^{II}₂Cr^{III}₄(P₂O₇)₄ [13] ähnelte.

Daher wurden erste Versuche zur Synthese polynärer Metall(II)-indium(III)-pyrophosphate mit Magnesium und Zink als zweiwertiges Kationen unternommen. Die Experimente wurden schließlich auf die zweiwertigen Kationen Kupfer, Palladium und Kobalt ausgeweitet.

Zur Darstellung von " $A^{II}In^{III}_{2}(P_2O_7)_2$ " (A^{II} : Mg, Cu, Zn) wurden jeweils 2,0 mmol Magnesium- (48,6 mg), Kupfer- (127,1 mg) und Zinkpulver (130,8 mg) mit 459,3 mg (4,0 mmol) Indiumpulver in heißer, halbkonzentrierter Salpetersäure gelöst. Diese drei Lösungen wurden einzeln mit 1056,5 mg (8,0 mmol) Diammoniumhydrogenphosphat, gelöst in 50 mL demineralisiertem Wasser, versetzt und zur Trockene auf einem Magnetheizrührer eingedampft. Für die Darstellung von Pd^{II}In^{III}₂(P₂O₇)₂ wurden jeweils 133,0 mg (1,25 mmol) Palladiumpulver in heißer konzentrierter Salpetersäure und 335,1 mg (2,5 mmol) Indiumpulver in heißer halbkonzentrierter Salpetersäure gelöst. Die Lösungen wurden vereinigt, mit 5 mL 1 M Orthophosphorsäure versetzt und auf einem Magnetheizrührer zur Trockene eingedampft. Analog wurde zu der Darstellung der polynären Indium-pyrophosphate $\mathcal{A}^{II}_{5}In^{III}_{2}(P_{2}O_{7})_{4}$ " (\mathcal{A}^{II} : Mg, Zn) und $\mathcal{C}_{03}In_{2}(P_{2}O_{7})_{3}$ " vorgegangen. Es wurden jeweils Magnesium- (60,8 mg, 2,5 mmol), Zink- (163,5 mg, 2,5 mmol) und Kobaltpulver (88,4 mg, 1,5 mmol) mit Indiumpulver (114,8 mg, 1,0 mmol) unter Rühren in heißer, halbkonzentrierter Salpetersäure gelöst. Diese drei Lösungen wurden einzeln mit 528,2 mg (4,0 mmol) Diammoniumhydrogenphosphat beziehungsweise bei der Darstellung von "Co₃In₂(P₂O₇)₃" 396,2 mg (3,0 mmol) Diammoniumhydrogenphosphat, gelöst in 50 mL demineralisiertem Wasser, versetzt und zur Trockene auf einem Magnetheizrührer eingedampft. Die erhaltenen Trockenrückstände wurden fein zerrieben und in Kieselglashalbampullen eine Woche bei 800 °C an Luft getempert. Nach *IP*-Guinier-Aufnahmen wurden nur für Pd^{II}In^{III}₂(P₂O₇)₂ und $Cu^{II}In^{III}_{2}(P_2O_7)_2$ einphasige quaternäre Indium-pyrophosphate erhalten. Alle anderen erhaltenen Produkte stellten sich als Phasengemenge heraus, deren Zusammensetzungen und Farben sind in Tabelle 3.6 zusammengefasst.

Nominelle	Farbe	Zusammensetzung
Zusammensetzung		(nach IP-Guinier-Aufnahmen)
$MgIn_2(P_2O_7)_2$	weiß	$In_4(P_2O_7)_3 + Mg_2P_4O_{12} + Mg_3In_4(PO_4)_6$
$CuIn_2(P_2O_7)_2$	himmelblau	$CuIn_2(P_2O_7)_2$ isotyp zu $CuFe_2(P_2O_7)_2$ [29]
$ZnIn_2(P_2O_7)_2$	weiß	$In_4(P_2O_7)_3 + Mg_2P_4O_{12} + Mg_3In_4(PO_4)_6$
$PdIn_2(P_2O_7)_2$	gelb	$PdIn_2(P_2O_7)_2$ isotyp zu $CuCr_2(P_2O_7)_2$ [d.A.]
$Co_3In_2(P_2O_7)_3$	blass lilafarben	$Co_2P_4O_{12} + Co_3In_4(PO_4)_6$
$Mg_5In_2(P_2O_7)_4$	weiß	$Mg_2P_2O_7 + Mg_2P_4O_{12} + Mg_3In_4(PO_4)_6$
$Zn_5In_2(P_2O_7)_4$	weiß	$Zn_2P_2O_7 + Zn(PO_3)_2 + Zn_3In_4(PO_4)_6$

Tabelle 3.6 Farbe und Zusammensetzung der Produkte " \mathcal{A}^{II} In^{III}₂(P₂O₇)₂" (\mathcal{A}^{II} : Mg, Cu, Zn, Pd), Co₃In₂(P₂O₇)₃ und " \mathcal{A}^{II}_{5} In^{III}₂(P₂O₇)₄" (\mathcal{A}^{II} : Mg, Zn).

Statt " $A^{II}In_2(P_2O_7)_2$ " (A^{II} : Mg, Zn) wurden Phasengemenge aus In₄(P₂O₇)₃, $A^{II}(PO_3)_2$ (A^{II} : Mg [238], Zn [239]) und $A^{II}_3In^{III}_4(PO_4)_6$ [28] erhalten (Gl. 3.1). Verbindungen mit der nominellen Zusammensetzung " $A^{II}_5In_2(P_2O_7)_4$ " (A^{II} : Mg, Zn) bestanden aus einem Gemenge von $A^{II}_2P_2O_7$ (A^{II} : Mg [221], Zn [218]), $A^{II}(PO_3)_2$ und $A^{II}_3In^{III}_4(PO_4)_6$ (Gl. 3.2). "Co₃In₂(P₂O₇)₃" wurde als ein Phasengemenge von Co₂P₄O₁₂ [240] und Co^{II}₃In^{III}₄(PO₄)₆ identifiziert (Gl. 3.3).

$$12 , \mathcal{A}^{II} In^{III}{}_{2}(P_{2}O_{7})_{2}^{"} \to 6 \mathcal{A}^{II}(PO_{3})_{2} + 2 \mathcal{A}^{II}{}_{3} In^{III}{}_{4}(PO_{4})_{6} + 4 In^{III}{}_{4}(P_{2}O_{7})_{3}$$
(Gl. 3.1)

$$4_{,,}A^{II}{}_{5}In^{III}{}_{2}(P_{2}O_{7})_{4}^{,,} \rightarrow 6_{A}A^{II}(PO_{3})_{2} + 2_{A}A^{II}{}_{3}In^{III}{}_{4}(PO_{4})_{6} + 4_{A}A^{II}{}_{2}P_{2}O_{7}$$
(Gl. 3.2)

$$4 , Co_{3}In^{III}{}_{2}(P_{2}O_{7})_{3} \rightarrow 3 Co^{II}{}_{2}P_{4}O_{12} + 2 Co^{II}{}_{3}In^{III}{}_{4}(PO_{4})_{6}$$
(Gl. 3.3)

Pd^{II}In^{III}₂(P₂O₇)₂ kristallisiert isotyp zu Cu^{II}Cr^{III}₂(P₂O₇)₂ (vergl. Abschnitt 3.3.1). Mit Cu^{II}In^{III}₂(P₂O₇)₂, das isotyp zu Cu^{II}Fe^{III}₂(P₂O₇)₂ [29] kristallisiert, wurde neben Cu₃In₂(PO₄)₂ [33] und CuInOPO₄ [241] das dritte quaternäre Phosphat im Phasendreieck Cu^{II}O / In^{III}O_{1,5} / PO_{2,5} gefunden (Abbildung 3.9). Die im Rahmen dieser Arbeit gefundenen Gleichgewichtsbeziehungen in den Systemen $A^{II}O$ / InO_{1,5} / PO_{2,5} (A^{II} : Mg, Zn) sind im Phasendiagramm (Abbildung 3.10), unter Berücksichtigung der Ergebnisse von GRUß [28], abgebildet. Diese unterscheiden sich deutlich von dem oben genannten System Cu^{II}O / In^{III}O_{1,5} / PO_{2,5}. Im System $A^{II}O$ / InO_{1,5} / PO_{2,5} (A^{II} : Mg, Zn) existiert kein quaternäres Pyrophosphat, das polynäre Orthophosphat hat eine andere Zusammensetzung, Untersuchungen zu Oxidphosphaten liegen nicht vor.

3 Kristallchemie quaternärer Pyrophosphate $A^{II}B^{III}_{2}(P_2O_7)_2$, $A^{II}_{3}B^{III}_{2}(P_2O_7)_3$ und $A^{II}_{5}B^{III}_{2}(P_2O_7)_4$

Abbildung 3.9 Phasendiagramm des Systems $Cu^{II}O / InO_{1,5} / PO_{2,5}$ bei T = 800°C. In diesem System wurden keine Gleichgewichtsuntersuchungen durchgeführt. Offene Kreise: Nominelle Zusammensetzung stellte sich als Phasengemenge heraus. Schwarze Punkte: bekannte Phase.

Abbildung 3.10 Phasendiagramm des Systems $A^{II}O / InO_{1,5} / PO_{2,5}$ (A^{II} : Mg, Zn) bei T = 800°C. In den grau unterlegten Bereichen wurden keine Untersuchungen durchgeführt. Legende siehe Abbildung 3.9.

Zur Gewinnung von Einkristallen für die strukturelle Untersuchung wurden 100 mg $Cu^{II}In^{III}_{2}(P_{2}O_{7})_{2}$ als Ausgangsbodenkörper in einem Transportexperiment eingesetzt (1000 \rightarrow 900 °C; Zusatz von 50 mg PtCl₂). Innerhalb einer Woche führte dies zur Abscheidung von (~20 mg) blass himmelblauen Kristallen von Cu^{II}In^{III}₂(P₂O₇)₂ sowie Kristallen von Platin im Senkenbereich. Erwähnenswert ist eine schwache aber deutliche Rotfärbung des Kieselglases. Dieses wurde ebenfalls schon beim Transport von Cu^{II}Cr^{III}₂(P₂O₇)₂ beobachtet. Verursacht wird diese Färbung vermutlich durch Kupfer(I)-oxid, das im Kieselglas gelöst ist.

Einkristalle von $Pd^{II}In^{III}_{2}(P_{2}O_{7})_{2}$ wurden ebenfalls durch ein Transportexperiment (850 \rightarrow 750 °C; Zusatz von 17 mg PdCl₂) erhalten. Dabei dienten 120 mg mikrokristallines $Pd^{II}In^{III}_{2}(P_{2}O_{7})_{2}$ als Ausgangsbodenkörper. Auf der Senkenseite bildeten sich innerhalb einer Woche einige kleine zitronengelbliche Kristalle von Pd^{II}In^{III}_{2}(P_{2}O_{7})_{2}.

3.2.6 Bilanz der Darstellungsversuche

Im Gegensatz zu den gemischten quaternären Orthophosphaten der 3d-Übergangsmetalle, die bis auf Cu^{II}₃In^{III}₂(PO₄)₄ [33] alle im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp kristallisieren (Zusammensetzung $A^{II}_{3}(PO_{4})_{2}$: 4 $B^{III}PO_{4}$), treten quaternäre Pyrophosphate mit unterschiedlichen Zusammensetzungsverhältnissen $n(A^{II}P_{2}O_{7})$: $n(B^{III}_{4}(P_{2}O_{7})_{3})$ auf. Bislang wurden die Zusammensetzungen $A^{II}B^{III}_{2}(P_{2}O_{7})_{2}$ (1:2), $A^{II}_{3}B^{III}_{2}(P_{2}O_{7})_{3}$ (3:2) und $A^{II}_{5}B^{III}_{2}(P_{2}O_{7})_{4}$ (5:2) beobachtet.

Eine Übersicht über die im Rahmen dieser Arbeit dargestellten quaternären Pyrophosphate der 3d-Übergangsmetalle mit den nominellen Zusammensetzungen " $\mathcal{A}^{II}\mathcal{B}^{III}_{2}(P_{2}O_{7})_{2}$ ", " $\mathcal{A}^{II}_{3}\mathcal{B}^{III}_{2}(P_{2}O_{7})_{3}$ " und " $\mathcal{A}^{II}_{5}\mathcal{B}^{III}_{2}(P_{2}O_{7})_{4}$ " und deren mittels *IP*-Guinier-Aufnahmen bestimmten Phasen bzw. Phasengemengen gibt Tabelle 3.7 an.

Für die Darstellung der "volloxidierten" quaternären Pyrophosphate eignete sich, wie für die Darstellung der "volloxidierten" ternären Phosphate (Abschnitt 1.4) und der "volloxidierten" quaternären Orthophosphate (Abschnitt 2.2), die "nasschemische" Syntheseroute mit anschließendem Glühen des so erhaltenen Trockenrückstandes. Bemerkenswerterweise wurden die quaternären Eisen(III)-pyrophosphate $A^{II}Fe^{III}{}_2(P_2O_7)_2$ (A^{II} : Mg, Co, Zn) beim Glühen an Luft bei 800 °C offenbar geringfügig anreduziert (erkennbar an blauen Farbtönen, die auf das Vorliegen von MMCT (Fe²⁺ \rightarrow Fe³⁺) hindeuten). Die Synthese von "reduzierten" Phosphaten erfolgte in evakuierten, geschlossenen Kieselglasampullen.

Die Gewinnung von Einkristallen für die röntgenographischen Untersuchungen erfolgte erfolgreich mittels des chemischen Gasphasentransports [32]. Einkristalle von $CuM^{III}_2(P_2O_7)_2$ (*M*: V, Cr, In) und $PdM^{III}_2(P_2O_7)_2$ (*M*: Cr, Fe, In) wurden in endothermen Transportexperimenten in Gegenwart von Chlor bzw. bei $CuV_2(P_2O_7)_2$ von Chlorwasserstoff als Transportmittel erhalten. Für die "reduzierten" Phosphate $A^{II}V^{III}_2(P_2O_7)_2$, $A^{II}_5V^{III}_2(P_2O_7)_2$ (*A*: Cr, Fe) und Cr^{II}Ti^{III}_2(P_2O_7)_2 wurde Iod als Transportmittel verwendet.

	Ti ³⁺	\mathbf{V}^{3+}	Cr ³⁺	Fe ³⁺	In ³⁺
Cr^{2^+}	$\begin{array}{l} CrTi_2(P_2O_7)_2 \ ^{a)} \\ \text{keine Experimente} \ ^{b)} \\ Cr_2P_2O_7, \ CrTi_2(P_2O_7)_2 \end{array}$	$CrV_2(P_2O_7)_2$ keine Experimente $Cr_5V_2(P_2O_7)_4$	CrCr ₂ (P ₂ O ₇) ₂ [13] keine Experimente ^{c)} keine Experimente ^{c)}	keine Experimente ^{d)} keine Experimente ^{d)} keine Experimente ^{d)}	keine Experimente keine Experimente keine Experimente
Mn ²⁺	keine Experimente keine Experimente keine Experimente	keine Experimente keine Experimente Mn ₅ V ₂ (P ₂ O ₇) ₄	keine Experimente keine Experimente keine Experimente	$\begin{array}{l} Mn_5Fe_2(P_2O_7)_4, Fe_4(P_2O_7)_3 \\ \text{keine Experimente}^{b)} \\ Mn_5Fe_2(P_2O_7)_4 \end{array}$	keine Experimente keine Experimente keine Experimente
Fe ²⁺	keine Experimente keine Experimente keine Experimente	$\begin{array}{l} FeV_2(P_2O_7)_2\\ Fe_3V_2(P_2O_7)_3\\ Fe_5V_2(P_2O_7)_4 \end{array}$	FeCr ₂ (P ₂ O ₇) ₂ keine Experimente keine Experimente	$\begin{array}{l} FeFe_2(P_2O_7)_2[17]\\ FeFe_2(P_2O_7)_2,Fe_5Fe_2(P_2O_7)_4\\ Fe_5Fe_2(P_2O_7)_4[130] \end{array}$	keine Experimente keine Experimente keine Experimente
C0 ²⁺	keine Experimente keine Experimente keine Experimente	keine Experimente keine Experimente keine Experimente	keine Experimente keine Experimente keine Experimente	$\begin{array}{l} \text{CoFe}_2(P_2O_7)_2 \\ \text{keine Experimente}^{b)} \\ \text{Co}_2P_2O_7, \text{CoFe}_2(P_2O_7)_2 \end{array}$	keine Experimente Co ₃ In ₄ (PO ₄) ₆ , Co ₂ P ₄ O ₁₂ keine Experimente
Ni ²⁺	keine Experimente keine Experimente keine Experimente	keine Experimente keine Experimente keine Experimente	keine Experimente keine Experimente keine Experimente	Ni ₂ P ₂ O ₇ , Fe ₄ (P ₂ O ₇) ₃ keine Experimente ^{b)} Ni ₂ P ₂ O ₇ , Fe ₄ (P ₂ O ₇) ₃	keine Experimente keine Experimente keine Experimente
Cu ²⁺	keine Experimente ^{d)} keine Experimente ^{d)} keine Experimente ^{d)}	CuV ₂ (P ₂ O ₇) ₂ keine Experimente keine Experimente	CuCr ₂ (P ₂ O ₇) ₂ keine Experimente keine Experimente	$CuFe_2(P_2O_7)_2$ [29] keine Experimente ^{b)} $Cu_2P_2O_7$, $CuFe_2(P_2O_7)_2$	Culn ₂ (P ₂ O ₇) ₂ keine Experimente keine Experimente
Pd ²⁺	keine Experimente ^{d)} keine Experimente ^{d)} keine Experimente ^{d)}	Pd ⁰ , V ^{IV} O(PO ₃) ₂ keine Experimente keine Experimente	PdCr ₂ (P ₂ O ₇) ₂ keine Experimente keine Experimente	PdFe ₂ (P ₂ O ₇) ₂ keine Experimente keine Experimente	PdIn ₂ (P ₂ O ₇) ₂ keine Experimente keine Experimente
Zn ²⁺	keine Experimente keine Experimente keine Experimente	keine Experimente keine Experimente keine Experimente	ZnCr ₂ (P ₂ O ₇) ₂ [27] keine Experimente keine Experimente	$\begin{array}{l} ZnFe_2(P_2O_7)_2\\ keine \ Experimente\\ Zn_5Fe_2(P_2O_7)_4 \end{array}$	$\begin{array}{l} In_4(P_2O_7)_3, Zn_3 In_4(PO_4)_6, Zn(PO_3)_2 \\ keine \ Experimente \ ^b) \\ Zn_2P_2O_7, Zn_3 In_4(PO_4)_6, Zn(PO_3)_2 \end{array}$
${\rm Mg}^{2^+}$	keine Experimente keine Experimente keine Experimente	keine Experimente keine Experimente keine Experimente	MgCr ₂ (P ₂ O ₇) ₂ keine Experimente keine Experimente	$\begin{array}{l} MgFe_2(P_2O_7)_2 \\ keine \ Experimente \ ^b) \\ Mg_2P_2O_7, MgFe_2(P_2O_7)_2 \end{array}$	$\begin{array}{l} In_4(P_2O_7)_3, Mg_3 In_4(PO_4)_6, Mg_2P_4O_{12}\\ keine \ Experimente \ ^b)\\ Mg_2P_2O_7, Mg_3 In_4(PO_4)_6, Mg_2P_4O_{12} \end{array}$

Tabelle 3.7 Übersicht zu quaternären Pyrophosphaten der 3d-Übergangsmetalle. Angegeben sind die mittels *IP*-Guinier-Aufnahmen ermittelten Phasen bzw. Phasengemenge der nominellen Zusammensetzungen $A^{II}B^{III}_{2}(P_2O_7)_2$ (Zeile 1), $A^{II}_{3}B^{III}_{2}(P_2O_7)_3$ (Zeile 2) und $A^{II}_{5}B^{III}_{2}(P_2O_7)_4$ (Zeile 3).
- ^{a)} CrTi₂(P₂O₇)₂ ist dimorph. Im Rahmen der vorliegenden Arbeit wurde eine trikline und eine hexagonale Modifikation charakterisiert (vergl. Abschnitt 3.3.2 und 3.3.3).
- ^{b)} Anhand der ermittelten Phasen für die nominellen Zusammensetzungen $A^{II}B^{III}_{2}(P_2O_7)_2$ und $A^{II}_{5}B^{III}_{2}(P_2O_7)_4$ konnte die Existenz der Phase $A^{II}_{3}B^{III}_{2}(P_2O_7)_3$ ausgeschlossen werden.
- ^{c)} $Cr^{II}_{2}P_{2}O_{7}$ befindet sich mit $Cr^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ im Gleichgewicht [13], daher konnte die Existenz der Phasen $Cr^{II}_{3}Cr^{III}_{2}(P_{2}O_{7})_{3}$ und $Cr^{II}_{5}Cr^{III}_{2}(P_{2}O_{7})_{4}$ ausgeschlossen werden.
- ^{d)} Anhand der Redoxpotentiale Cr²⁺/Cr³⁺ // Fe³⁺/Fe²⁺, Ti³⁺/Ti⁴⁺ // Cu²⁺/Cu⁺ sowie Ti³⁺/Ti⁴⁺ // Pd²⁺/Pd⁰ wurde die Existenz polynärer Chrom(II)-eisen(III)-, Kupfer(II)-titan(III) sowie Palladium(II)-titan(III)-pyrophosphate ausgeschlossen.

3.3 Einkristallstrukturanalysen

3.3.1 Pyrophosphate $Cu^{II}M^{III}{}_{2}(P_{2}O_{7})_{2}$ (M^{III} : V, Cr, In) und $Pd^{II}M^{III}{}_{2}(P_{2}O_{7})_{2}$ (M^{III} : Cr, Fe, In)

Von $Cu^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ wurde ein geeigneter Einkristall an einem Vierkreisdiffraktometer (CAD-4, Fa. Enraf-Nonius) vermessen. Es wurde die "halbe Kugel" im Bereich $2,63 \le \theta \le 29,98$ ° gemessen. Den systematischen Auslöschungen zu Folge kommt nur die zentrische Raumgruppe $P2_{1}/n$ in Frage. Die Strukturlösung erfolgte mit dem Programm SHELXS-97 [302]. Über die *Direkten Methoden* [86] konnten die Startpunktlagen für Kupfer, Chrom, Phosphor und einige Sauerstoffatome ermittelt werden. Nach Lokalisierung der noch fehlenden Sauerstoffatome aus sukzessiven Δ -Fourier-Synthesen wurde die Struktur unter Berücksichtigung anisotroper Auslenkungsparameter mit dem Programm SHELXL-97 [302] verfeinert.

An dem Datensatz wurde eine empirische Absorptionskorrektur anhand von acht Ψ -Scans [203] vorgenommen. Bei der anschließenden Verfeinerung mit dem korrigierten Datensatz erwiesen sich einige Auslenkungsparameter von Atomen für physikalisch nicht möglich ("non positive definite").

Daher wurde neben Einkristallen von $Cu^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ und $Cu^{II}In^{III}_{2}(P_{2}O_{7})_{2}$ ein weiterer Einkristall von $Cu^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ erneut auf einem κ -CCD (Firma Nonius) im Bereich $2,65 \le \theta \le 35,00^{\circ}$ ("halbe Kugel") vermessen. Für die anschließende Verfeinerung wurden als Startmodell die zuvor erhaltenen Atomparameter verwendet. Diese erneute Verfeinerung an dem mit Multiscans [83] absorptions-korrigierten Datensatz verlief problemlos.

Für die Strukturverfeinerung von $Cu^{II}V^{III}_2(P_2O_7)_2$ dienten die Lageparameter des zuvor verfeinerten, isotypen $Cu^{II}Cr^{III}_2(P_2O_7)_2$ als Startparameter. Die Verfeinerung unter Berücksichtigung anisotroper Auslenkungsparameter mit dem Programm SHELXL-97 [302] verlief ohne Probleme.

Als Startparameter für die Strukturverfeinerung von $Cu^{II}In^{III}_{2}(P_{2}O_{7})_{2}$ wurden die Lageparameter des isotypen $Cu^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ [29] verwendet. Die Verfeinerung unter Berücksichtigung anisotroper Auslenkungsparameter mit dem Programm SHELXL-97 [302] verlief ebenfalls ohne Probleme.

Einkristalle von $Pd^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$, $Pd^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ und $Pd^{II}In^{III}_{2}(P_{2}O_{7})_{2}$ wurden auf einem κ -CCD (Firma Nonius) bis $\theta \leq 35,00^{\circ}$ (,,halbe Kugel") vermessen. Für die anschließenden Strukturverfeinerungen der isotypen Verbindungen wurden die Lageparameter des zuvor verfeinerten, isotypen Cu^{II}Cr^{III}_{2}(P_{2}O_{7})_{2} verwendet. Die Verfeinerungen von $Pd^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ und $Pd^{II}In^{III}_{2}(P_{2}O_{7})_{2}$ verliefen ohne Probleme.

Die wenigen durch Transportexperimente erhaltenen sehr kleinen Kristalle von $Pd^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ wiesen starke Verwachsungen auf. Selbst eine Reihe von Kristallen, die unter dem Polarisationsmikroskop für gut befunden wurden, waren nicht zur Datensammlung geeignet. Ein Kristallfragment mit den Abmessungen $0,06 \cdot 0,03 \cdot 0,013$ mm erlaubte schließlich die Datensammlung mit dem κ -CCD im Bereich $3,33 \le \theta \le 34,96^{\circ}$. Allerdings wies der so erhaltene Datensatz erhebliche Mängel auf. Der interne *R*-Wert $R_{int} = 0,134$ ist recht hoch. Von 2320 symmetrieunabhängigen Reflexen wurden nur 1835 beobachtet. Das entspricht einer Datenvollständigkeit von 79,1%. Daher wurde der Datensatz mit dem OMIT-Befehl "OMIT -2 63" auf den Bereich $3,33 \le \theta \le 31,50$ beschnitten und so eine Datenvollständigkeit von 96,1% erhalten. Mit dem so beschnittenen Datensatz ließ sich das Strukturmodell ohne Probleme verfeinern. Die Gütefaktoren sind deutlich schlechter als bei Pd^{II}Fe^{III}₂(P₂O₇)₂ und Pd^{II}In^{III}₂(P₂O₇)₂. Jedoch ist das erhaltene Strukturmodell in sich schlüssig. Abstände, Winkel und anisotrope Auslenkungsparameter entsprechen den erwarteten Werten.

Weitere Einzelheiten zu den kristallographischen Daten, den Messungen und den Strukturverfeinerungen sind in der Tabelle 3.8 aufgeführt. Lageparameter, anisotrope Auslenkungsparameter und interatomare Abstände geben die Tabelle B.16 bis Tabelle B.33 wieder.

Summenformel	$CuV_2(P_2O_7)_2$	$CuCr_2(P_2O_7)_2$	$CuIn_2(P_2O_7)_2$
Kristallgröße / mm ³	0,28 · 0,16 · 0,04	0,32 · 0,20 · 0,18	0,40 · 0,40 · 0,32
Farbe des Kristalls	gelb	grün	himmelblau
Farbe des Pulvers	gelb	grün	himmelblau
Kristallsystem	monoklin	monoklin	monoklin
Raumgruppe	$P2_1/n$ (Nr. 14)	$P2_1/n$ (Nr. 14)	$P2_1/n$ (Nr. 14)
Gitterparameter aus	IP-Guinier-Aufnahmen	IP-Guinier-Aufnahmen	IP-Guinier-Aufnahmen
<i>a</i> / Å	8,3465(8)	8,3016(8)	6,7674(8)
b / Å	5,1758(5)	5,1059(4)	5,2659(5)
c / Å	12,7497(13)	12,6729(11)	15,9786(17)
α / \circ	90	90	90
$\beta/2$	106,346(9)	106,568(8)	90,904(11)
7	50 528 52(0)	51/ 87(8)	560 35(11)
Zenvolumen / A	220,32(9)	2	209,33(11) 2
Z Molaro Masso / simol ⁻¹	2 512 20	2	2 641.06
her Dichte / gem ⁻³	2 225	2 2 2 5	2 720
Abasen Vasff u / mm ⁻¹	5,225	5,525 4,820	5,759
Absorp. Koeff. μ / mm	4,418	4,830	0,311 509
F(000)	494	498	598 202(2)
Temperatur / K	293(2)	293(2)	293(2)
Mo-K α -Strahlung, $\lambda = 0, \lambda$	10/3 A, Graphit Monoch	romator, κ -CCD Diffrakt	cometer (Nonius).
Winkelbereich / °	$2,62 \le \theta \le 35,12$	$2,63 \le \theta \le 35,00$	$2,55 \le \theta \le 35,00$
Messbereich	$-13 \le h \le 13$	$-8 \le h \le 13$	$-10 \le h \le 9$
	$-1 \le k \le 8$ 20 < 1 < 14	$-8 \le k \le 1$	$-8 \le k \le 8$ 25 < 1 < 25
Comorgano Doflava	$-20 \ge l \ge 14$	$-20 \ge l \ge 10$	$-23 \ge l \ge 23$
Unabhängiga Daflava	5059 2275	2211	2422
Unabhangige Kellexe	2275	2211	2452
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	0,037	0,041	0,044
Kellexe $F_0 > 2\sigma(F_0)$	1031 Multissons [92] in	2024 Multiscons [92] in	2240 Multiacona [82] in
Absorptionskorrektur	WinGx [304]	WinGx [304]	WinGx [304]
Extinktionskoeffizient	0,010(1)	0,220(5)	0,055(2)
Parameter	98	98	98
"Restraints"	-	-	-
Wichtungsschema ^{a)}	a = 0.0117;	a = 0.0300;	a = 0.0452;
e	b = 0	b = 0,1328	b = 0
Restelektronendichte	max. +0,938;	max. +0,763;	max. +1,499;
/ e·Å ⁻³	min1,116	min1,379	min1,588
Goodness-of-fit ^{a)}	0,953	1,102	1,203
<i>R</i> -Werte $[I > 2 \sigma(I)]^{a}$	$R_1 = 0,035;$	$R_1 = 0,025;$	$R_1 = 0,023;$
	$wR_2 = 0,069$	$wR_2 = 0,067$	$wR_2 = 0,084$
<i>R</i> -Werte (alle Daten) ^{a)}	$R_1 = 0,058;$	$R_1 = 0,029;$	$R_1 = 0,029;$
	$wR_2 = 0.075$	$wR_2 = 0.068$	$wR_2 = 0.086$

Tabelle 3.8 Angaben zu den Strukturverfeinerungen der Pyrophosphate $Cu^{II}M^{III}_{2}(P_2O_7)_2$ (M^{III} : V, Cr, In) und Pd^{II} $M^{III}_{2}(P_2O_7)_2$ (M^{III} : Cr, Fe, In).

^{a)} Definitionen siehe Seite 22.

PdCr ₂ (P ₂ O ₇) ₂	$PdFe_2(P_2O_7)_2$	PdIn ₂ (P ₂ O ₇) ₂
0,06 · 0,03 · 0,013	0,24 · 0,16 · 0,12	0,10 · 0,10 · 0,06
gelb-grün	gelb	gelb
gelb-grün	gelb	gelb
monoklin	monoklin	monoklin
$P2_1/n$ (Nr. 14)	$P2_1/n$ (Nr. 14)	$P2_{1}/n$ (Nr. 14)
IP-Guinier-Aufnahmen	IP-Guinier-Aufnahmen	IP-Guinier-Aufnahmen
8,3859(7)	8,4904(7)	8,7455(6)
5,1363(5)	5,1852(5)	5,2759(4)
12,7806(14)	12,8816(12)	13,1460(12)
90	90	90
106,856(8)	107,104(9)	106,689(7)
90	90	90
526,84(9)	542,02(9)	581,01(8)
2	2	2
558,28	565,98	683,92
3,519	3,468	3,909
4,409	4,957	6,098
532	540	632
293(2)	293(2)	293(2)
$3,33 \le \theta \le 31,50$	$3,31 \le \theta \le 34,99$	$3,24 \le \theta \le 34,96$
$-12 \le h \le 12$	$-13 \le h \le 13$	$-10 \le h \le 14$
$-7 \le k \le 6$	$-7 \le k \le 8$	$-7 \le k \le 8$
$-18 \le l \le 18$	$-20 \le l \le 20$	$-21 \le l \le 11$
4808	13674	7070
1693	2386	2508
0,134	0,070	0,063
933	2031	1725
Multiscans [83] in	Multiscans [83] in	Multiscans [83] in
WinGx [304]	WinGx [304]	WinGx [304]
-	0,030(1)	0,0348(7)
97	98	98
-	-	-
a = 0,0468;	a = 0,0283;	a = 0;
$\mathbf{b} = 0$	$\mathbf{b} = 0$	$\mathbf{b} = 0$
max. +1,936;	max. +1,616;	max. +2,381;
min. –1,986	min1,173	min1,933
0,958	1,063	0,828
$R_1 = 0,062;$	$R_1 = 0,029;$	$R_1 = 0,033;$
$wR_2 = 0,126$	$wR_2 = 0,061$	$wR_2 = 0,056$
$R_1 = 0,129;$	$R_1 = 0,036;$	$R_1 = 0,061;$
$wR_2 = 0,149$	$wR_2 = 0,063$	$wR_2 = 0,063$

3.3.2 Die trikline Modifikation von Cr^{II}Ti^{III}₂(P₂O₇)₂

Die durch Transportexperimente erhaltenen Kristalle der triklinen Modifikation von $Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ (purpurfarbene Kristalle) wiesen starke Verwachsungen auf. Mehrere Kristalle, die unter dem Polarisationsmikroskop für gut befunden wurden, erwiesen sich als ungeeignet zum Vermessen mit dem Diffraktometer.

Ein Kristallfragment ließ sich endlich mit dem IPDS-2T (Firma Stoe) im Bereich $3,31 \le \theta \le 35,00^{\circ}$ erfolgreich vermessen.

Die Strukturlösung erfolgte mit dem Programm SHELXS-97 [302] in der Raumgruppe $P\overline{1}$. Über die *Direkten Methoden* [86] konnten alle Atomlagen für Chrom, Titan, Phosphor und Sauerstoffatome ermittelt werden. Anschließend wurde die Struktur unter Berücksichtigung anisotroper Auslenkungsparameter mit dem Programm SHELXL-97 [302] verfeinert.

Bis auf die maximale Restelektronendichte, die mit 2,036 e/Å³ (0,77 Å TI1) recht hoch ist, ist das erhaltene Strukturmodell in sich schlüssig. Abstände, Winkel und anisotrope Auslenkungsparameter entsprechen den erwarteten Werten.

Weitere Einzelheiten zu den kristallographischen Daten, den Messungen und den Strukturverfeinerungen sind zusammen mit der hexagonalen Modifikation von $Cr^{II}Ti^{III}_{2}(P_2O_7)_2$ in der Tabelle 3.9 aufgeführt. Lageparameter, anisotrope Auslenkungsparameter geben die Tabelle B.28 und B.29 wieder. Die interatomaren Abstände sind in Tabelle B.32 und B.33 aufgeführt.

3.3.3 Die hexagonale Modifikation von Cr^{II}Ti^{III}₂(P₂O₇)₂

Ein Einkristall der hexagonalen Modifikation von $\mathbf{Cr^{II}Ti^{III}}_{2}(\mathbf{P_2O_7})_{2}$ (schwarze Kristalle) wurde am Vierkreisdiffraktometer (CAD-4, Fa. Enraf-Nonius) im Bereich 2,62 $\leq \theta \leq$ 34,98 ° ("volle Kugel") vermessen. Die gefundene primitive Zelle weist eine hexagonale Metrik mit a = 8,986(2) Å und c = 12,318(5) Å auf.

Die Strukturlösung erfolgte mit dem Programm SHELXS-97 [302] in der Raumgruppe $P6_3/m$. Über *Direkten Methoden* [86] konnten so die Startpunktlagen für Titan-, Phosphor- sowie einige Chrom- und einige Sauerstoffatome ermittelt werden. Nach Lokalisierung der noch fehlenden Sauerstoff- und Chromatome aus sukzessiven Δ -Fourier-Synthesen wurde die Struktur unter Berücksichtigung anisotroper Auslenkungsparameter mit dem Programm SHELXL-97 [302] verfeinert. Dabei zeigten zwei Sauerstofflagen ungewöhnliche anisotrope Auslenkungsparameter. Für diese beiden Lagen schlug SHELXL-97 [302] jeweils Splitpositionen vor. Unter Berücksichtigung dieser Splitpositionen wurde die abschließende Verfeinerung an einem anhand von acht Ψ -Scans [203] empirisch absorptionskorrigierten Datensatz durchgeführt.

Um die gefundenen Ergebnisse zu bestätigen und gegebenenfalls zu verbessern, wurde ein weiterer Einkristall der hexagonalen Modifikation von $\mathbf{Cr^{II}Ti^{III}}_{2}(\mathbf{P_{2}O_{7}})_{2}$ auf einem IPDS-2T Diffraktometer (Firma Stoe) im Bereich $2,24 \le \theta \le 34,99^{\circ}$ "halbe Kugel" erneut vermessen. Dabei stellte sich heraus, dass die zuvor mit dem Vierkreisdiffraktometer bestimmte und gemessene Zelle um den Faktor drei zu klein war. Mittels der Matrix (2 1 0 -1 1 0 0 0 1) lässt sich die alte Zelle in die neue hexagonale Zelle (a = 15,603(2) Å, c = 12,322(2) Å) transformieren.

Eine Untersuchung des Datensatzes auf systematisch ausgelöste Reflexe weist auf die gleiche Raumgruppe $P6_3/m$ (Nr. 176) wie für die kleinere Zelle hin. Die Strukturlösung erfolgte wiederum mit dem Programm SHELXS-97 [302]. Über die *Direkten Methoden* [86] konnten die Startpunktlagen für Titan-, Phosphor- und einige Chrom- und einige Sauerstoffatome ermittelt werden. Nach Lokalisierung der noch fehlenden Sauerstoff- und Chromatome aus sukzessiven Δ -Fourier-Synthesen wurde die Struktur unter Berücksichtigung anisotroper Auslenkungsparameter mit dem Programm SHELXL-97 [302] verfeinert. Mit dem Befehl TWIN -1 0 0 0 -1 0 0 0 1 in der SHELXL-97 Eingabedatei [302] wurde eine Verzwillingung des Kristalls berücksichtigt. Details zur Datensammlung und Auswertung der hexagonalen Modifikation von $Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ befinden sich zusammen mit den Details zur Datensammlung und Auswertung der triklinen Modifikation von $Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ in Tabelle 3.9. Lageparameter, anisotrope Auslenkungsparameter und interatomare Abstände geben im Anhang B die Tabelle B.40 bis Tabelle B.44 wieder.

Summenformel	Cr ^{II} Ti ^{III} ₂ (P ₂ O ₇) ₂ -triklin	Cr ^{II} Ti ^{III} ₂ (P ₂ O ₇) ₂ -hexagonal
Kristallgröße / mm ³	0,40 · 0,32 · 0,12	0,35 · 0,30 · 0,15
Farbe des Kristalls	purpurfarben	schwarz
Farbe des Pulvers	pink	flieder
Kristallsystem	triklin	hexagonal
Raumgruppe	<i>P</i> 1 (Nr. 2)	<i>P</i> 6 ₃ /m (Nr. 176)
Gitterparameter aus	Einkristall	Einkristall
a / Å	5,2201(3)	15,6010(9)
b/Å	6,5934(3)	15,6010(9)
<i>c</i> / A	8,5726(4)	12,3217(8)
α / \circ	69,208(2)	90
$\beta/2$	8/,5/0(3)	90
γ / Zellvolumen / λ^3	07,000(2) 275 20(2)	120 2507 2(3)
Z	1	9
Molare Masse / g·mol ⁻¹	495,68	495.68
ber. Dichte / g·cm ⁻³	2,989	2.852
Absorp. Koeff. μ / mm^{-1}	3,048	2,909
F(000)	240	2160
Temperatur / K	293(2)	293(2)
Mo-K α -Strahlung, $\lambda = 0.7107$	²³ Å, Graphit Monochromator, IF	PDS-2T Diffraktometer (Stoe).
Winkelbereich / °	$3,31 \le \theta \le 34,98$	$2,24 \le \theta \le 34,99$
Messbereich	$-8 \le h \le 8$	$-18 \le h \le 24$
	$-10 \le k \le 10$	$-25 \le k \le 16$
	$-13 \le l \le 13$	$-19 \le l \le 10$
Gemessene Reflexe	8899	17833
Unabhängige Reflexe	2407	3945
Interner <i>R</i> -Wert <i>R</i> (int)	0,044	0,095
Reflexe $F_0 > 2\sigma(F_0)$	2134	1879
Absorptionskorrektur	Multiscans [83] in WinGx [304]	Multiscans [83] in WinGx [304]
Extinktionskoeffizient	-	-
Parameter	97	167
"Restraints"	-	-
Wichtungsschema ^{a)}	a = 0,0696;	a = 0,0405;
	b = 1,1024	b = 0,0
Restelektronendichte	max. 2,036;	max. 1,063;
/ e·A ⁻³	min1,215	min1,063
Goodness-of-fit ^a	1,067	0,785
<i>R</i> -Werte $[I > 2 \sigma(I)]^{a}$	$R_1 = 0,046;$ $wR_2 = 0,129$	$R_1 = 0.051;$ $wR_2 = 0.095$
<i>R</i> -Werte (alle Daten) ^{a)}	$R_1 = 0,052;$	$R_1 = 0,118;$
D (C D 3)	$wR_2 = 0,132$	$wR_2 = 0,109$
BASF "	-	0,506

Tabelle 3.9 Angaben zu den Strukturverfeinerungen der triklinen und der hexagonalen Modifikation von $Cr^{II}Ti^{III}_{2}(P_2O_7)_2$.

^{a)} Definitionen siehe Seite 22.

3.3.4 Pyrophosphate $A^{II}V^{III}{}_{2}(P_{2}O_{7})_{2}$ (A^{II} : Cr, Fe)

Einkristalle von $\mathbf{Cr}^{II}\mathbf{V}^{III}_{2}(\mathbf{P}_{2}\mathbf{O}_{7})_{2}$ und $\mathbf{Fe}^{II}\mathbf{V}^{III}_{2}(\mathbf{P}_{2}\mathbf{O}_{7})_{2}$ wurden auf einem κ -CCD (Firma Nonius) bis $\theta \leq 30,00^{\circ}$ ("halbe Kugel") vermessen. Für die Strukturverfeinerung von $\mathbf{Cr}^{II}\mathbf{V}^{III}_{2}(\mathbf{P}_{2}\mathbf{O}_{7})_{2}$ wurden die Lageparameter des isotypen $\mathbf{Cr}^{II}_{2}\mathbf{Cr}^{III}_{4}(\mathbf{P}_{2}\mathbf{O}_{7})_{4}$ [13] verwendet. Die Strukturverfeinerung verlief ohne Probleme. Eine mögliche Mischbesetzung für die Metalllagen wurde nicht in Betracht gezogen, da die Atomstreufaktoren von Vanadium und Chrom sehr ähnlich und somit röntgenographisch nicht unterscheidbar sind. Des Weiteren sprechen auch geometrische Faktoren gegen eine Mischbesetzung, denn alle Vanadiumatome befinden sich mit dieser Strukturbeschreibung auf regulären unverzerrten Oktaederplätzen und die \mathbf{Cr}^{II} -Atome befinden sich im Zentrum von stark gestreckten Oktaedern.

Die Lageparameter von $Cr^{II}_{2}Cr^{III}_{4}(P_{2}O_{7})_{4}$ [13] dienten als Startwerte für die Verfeinerung von $Fe^{II}V^{III}_{2}(P_{2}O_{7})_{2}$. Unter Berücksichtigung einer Verzwillingung des Kristalls (Zwillingsmatrix: -1 0 0 0 -1 0 0 0 1) erfolgte die Verfeinerung. Für die beiden Zwillingsindividuen ergibt sich dabei ein Volumenverhältnis von 31:5.

Eine Verfeinerung unter Berücksichtigung einer Mischbesetzung auf den Metalllagen ergab, dass keine Mischbesetzung auf den Lagen M1 und M2 vorliegt. Die Lage M3 ist zu 95% mit Vanadium und zu 5% mit Eisen und die Lage M4 mit 5% Vanadium und 95% Eisen besetzt. Die Gütefaktoren der Verfeinerung von Fe^{II}V^{III}₂(P₂O₇)₂ werden durch die Mischbesetzung nur geringfügig verbessert.

Details zur Datensammlung und Auswertung der Verbindungen $Cr^{II}V^{III}_2(P_2O_7)_2$ und $Fe^{II}V^{III}_2(P_2O_7)_2$ sind in Tabelle 3.10 zusammengestellt. Die Angaben zu den Lageparametern und Besetzungsfaktoren, anisotropen Auslenkungsparametern und interatomaren Abständen befinden sich im Anhang B in Tabelle B.34 bis Tabelle B.39.

Summenformel	$Cr^{II}V^{III}_{2}(P_2O_7)_2$	Fe ^{II} V ^{III} ₂ (P ₂ O ₇) ₂		
		ohne Mischbesetzung	mit Mischbesetzung	
Kristallgröße / mm ³	0,33 · 0,23 · 0,20	0,29 · 0	,17 · 0,09	
Farbe des Kristalls	braun	ora	ange	
Farbe des Pulvers	braun	orang	e-braun	
Kristallsystem	triklin	tri	klin	
Raumgruppe	<i>P</i> 1 (Nr. 2)	<i>P</i> 1 (Nr. 2)	
Gitterparameter aus	IP-Guinier-Aufnahmen	Ein	kristall	
<i>a</i> / Å	4,7376(5)	4,76	558(1)	
b / Å	12,771(2)	12,7	523(4)	
c / Å	7,8952(8)	7,82	202(3)	
α / \circ	89,434(9)	89,6	51(2)	
p/	92,210(8) 90,558(10)	90,2	71(2)	
γ / Zellvolumen / λ^3	<i>477 20(0)</i>	90,1 175	26(3)	
Zenvolumen / A	477,29(9) 2	473	20(3)	
Z Molaro Masso / g.mol ⁻¹	2	50	2 5 61	
hor Dichts / gran-3	2 401	30	522	
Abserve $V = 2^{-1}$	2,491	5,	202	
Adsorp. Koeff. μ / mm	5,805	4,	202	
F(000)	484	4	·88	
Temperatur / K	293(2)	29	3(2)	
Mo-K α -Stranlung, $\lambda = 0, \lambda$	10/3 A, Graphit Monoc	chromator, κ -CCD Diffral	ctometer (Nonius).	
Winkelbereich / °	$2,91 \le \theta \le 30,03$	1,60 ≤ 0	9≤30,07	
Messbereich	$-6 \le h \le 6$	-6 ≤ 17 <	$h \leq 6$	
	$-1.5 \le k \le 1.8$ $-1.1 \le l \le 1.1$	-1/≤ _11<	$K \ge 1/$ 1 < 10	
Gemessene Refleve	9/17	12	711 ^{b)}	
Unabhängige Refleve	2736	27	738	
Interner R_{-} Wert $R(int)$	0.043	2	045	
Reflexe $E_0 > 2\sigma(E_0)$	2/130	0, 24	576	
Absorptionskorrektur	Multiscone [83] in	analytico	bh [200] in	
Absolptionskonektur	WinGx [304]	WinG	x [304]	
Extinktionskoeffizient	0,0204(12)	0,0078(9)	0,0080(9)	
Parameter	194	195	197	
"Restraints"	-	-	1	
Wichtungsschema ^{a)}	a = 0,0259; b = 0.4640	a = 0.0272; b = 0.8867	a = 0.0270; b = 0.8558	
Dastalaltran an diahta	0 = 0,4040	0 = 0,0007	0 = 0.8338	
$/ e \cdot Å^{-3}$	min. $-0,834$	min. $-0,787$	$max. \pm 0,811,$ min. $-0,776$	
Goodness-of-fit ^{a)}	1,073	1,127	1,131	
<i>R</i> -Werte $[I > 2 \sigma(I)]^{a}$	$R_1 = 0,026;$	$R_1 = 0,029;$	$R_1 = 0,029;$	
L - (/)	$wR_2 = 0,064$	$wR_2 = 0,071$	$wR_2 = 0,070$	
<i>R</i> -Werte (alle Daten) ^{a)}	$R_1 = 0,030;$	$R_1 = 0,032;$	$R_1 = 0,032;$	
	$wR_2 = 0,065$	$wR_2 = 0,073$	$wR_2 = 0,073$	
BASF	-	0,138	0,139	

Tabelle 3.10 Angaben zu den Strukturverfeinerungen der Pyrophosphate $A^{II}V^{III}_{2}(P_2O_7)_2$ (A^{II} : Cr, Fe).

^{a)} Definitionen siehe Seite 22.
^{b)} Es wurde die "volle Kugel" gemessen.

3.3.5 Pyrophosphate $A^{II}{}_5V^{III}{}_2(P_2O_7)_4$ (A^{II} : Cr, Mn, Fe)

Von $\mathbf{Fe^{II}}_{5}\mathbf{V^{III}}_{2}(\mathbf{P_{2}O_{7}})_{4}$ wurde ein geeigneter Einkristall an einem Vierkreisdiffraktometer (CAD-4, Fa. Enraf-Nonius) vermessen. Es wurde die "volle Kugel" im Bereich $3,19 \le \theta \le 24,94$ ° erfasst. An dem Datensatz wurde eine empirische Absorptionskorrektur anhand von acht Ψ -Scans [203] vorgenommen. Für die anschließende Strukturverfeinerung in der Raumgruppe *C*222₁ (Nr. 20) wurden die Lageparameter des isotypen Fe^{II}₅Fe^{III}₂(P₂O₇)₄ [18] verwendet.

Ein Flackparameter [242] von 0,99(2) wies auf die falsche absolute Struktur hin. Die Verfeinerung mit der invertierten Struktur verlief anschließend ohne Probleme. Eine razemische Verzwillingung konnte ausgeschlossen werden.

Da das Verhältnis der gemessenen unabhängigen Reflexe zu bestimmten Parametern mit 1716:200 deutlich unter 10:1 liegt, wurde ein weiterer Einkristall auf einem κ -CCD der Firma Nonius im Bereich $3,19 \le \theta \le 30,02^\circ$ ("volle Kugel") untersucht. Für die anschließende Verfeinerung dienten die zuvor erhaltenen Lageparameter als Startmodell. Auch dieser Kristall wies die gleiche absolute Struktur auf und zeigte ebenfalls keine Anzeichen für eine razemische Verzwillingung.

Eine erneute Verfeinerung unter Berücksichtigung einer möglichen Mischbesetzung von Eisen und Vanadium auf den Metalllagen M1 - M5 ergab, dass M1 und M3 ausschließlich mit Eisen besetzt sind. Jedoch weisen die Lagen M2, M4 und M5 eine deutliche Mischbesetzung durch beide Metalle auf.

Der am κ -CCD der Firma Nonius im Bereich 3,16 $\leq \theta \leq$ 32,02° ("halbe Kugel") gemessene Einkristall **Mn^{II}**₅**V**^{III}₂(**P**₂**O**₇)₄ stammte aus dem Ansatz von Mn^{II}₃**V**^{III}₄(PO₄)₆. Für die Strukturverfeinerung von Mn^{II}₅**V**^{III}₂(**P**₂**O**₇)₄ wurden die Lageparameter des zuvor verfeinerten isotypen Fe^{II}₅**V**^{III}₂(**P**₂**O**₇)₄ verwendet. Die Strukturverfeinerung verlief ohne Probleme. Mn^{II}₅**V**^{III}₂(**P**₂**O**₇)₄ hat die gleiche absolute Struktur wie Fe^{II}₅**V**^{III}₂(**P**₂**O**₇)₄ und zeigt ebenfalls keinerlei Anzeichen für eine razemische Verzwillingung. Wie schon bei Fe^{II}₅**V**^{III}₂(**P**₂**O**₇)₄ lassen sich durch eine Mischbesetzung von Mangan und Vanadium über die Metalllagen *M*2, *M*4 und *M*5 die Gütefaktoren der Verfeinerung geringfügig verbessern.

Die wenigen durch Transportexperimente erhaltenen Kristalle von $\mathbf{Cr^{II}}_{5}\mathbf{V^{III}}_{2}(\mathbf{P}_{2}\mathbf{O}_{7})_{4}$ weisen starke Verwachsungen auf. Die meisten unter dem Polarisationsmikroskop begutachteten Kristalle waren zur Datensammlung ungeeignet. Ein auf dem κ -CCD (Firma Nonius) vermessener Kristall von $\mathbf{Cr^{II}}_{5}\mathbf{V^{III}}_{2}(\mathbf{P}_{2}\mathbf{O}_{7})_{4}$ wies eine Wachstumsverzwillingung auf. Die

beiden Zwillingsindividuen ließen sich getrennt prozessieren und in einer HKLF5 Datei zusammenfassen.

Die gefundene monokline *C*-zentrierte Zelle von $Cr^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ ist in etwa halb so groß wie die orthorhombisch *C*-zentrierten Zellen von $Mn^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ und $Fe^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$. Die E-Statistik [243] weist auf eine azentrische Raumgruppe hin. Die beobachteten Auslösungsbedingungen deuten auf die Laueklasse 2/*m* hin. Daher wurde für die Strukturlösung und anschließende Verfeinerung die azentrische Raumgruppe *C*2 (Nr. 5) gewählt. Mittels der *Direkten Methoden* [86] konnten mit dem Programm SHELXS-97 [302] die Startpunktlagen für Chrom, Vanadium, Phosphor und einige Sauerstoffatome ermittelt werden. Nach Lokalisierung der noch fehlenden Sauerstoffatome aus sukzessiven Δ -Fourier-Synthesen wurde die Struktur unter Berücksichtigung anisotroper Auslenkungsparameter SHELXL-97 [302] verfeinert. Für die beiden Zwillingsindividuen ergab sich ein Volumenverhältnis von etwa 2:1.

Die erhaltenen Gütefaktoren sind im Vergleich zu $Mn_{5}^{II}V_{2}^{III}(P_{2}O_{7})_{4}$ und $Fe_{5}^{III}V_{2}^{III}(P_{2}O_{7})_{4}$ deutlich höher, so beträgt der R_{1} -Wert 6,07% und der wR_{2} -Wert sogar nur 16,1%. Auch sind die Standardabweichungen der anisotropen Auslenkungsparameter einiger Sauerstoffatome recht groß. Jedoch entsprechen die interatomaren Abstände und Winkel den erwarteten Werten. Ein Flackparameter [242] von 0,17(2) deutet auf eine zusätzliche razemische Verzwillingung hin. Eine neu erstellte HKLF5 Datei, die diese razemische Verzwillingung berücksichtigt, ergab für die nun vier möglichen Individuen ein Volumenverhältnis von 32 : 20 : 4 : 17. Jedoch weisen zwei Sauerstoffatome negative anisotrope Auslenkungsparameter auf, was physikalisch nicht sinnvoll ist. Daher wurde für die weiteren Betrachtungen die razemische Verzwillingung nicht berücksichtigt.

Eine mögliche Mischbesetzung für die Metalllagen wurde wie schon bei $Cr^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ (Abschnitt 3.3.4) nicht in Betracht gezogen, da die Atomstreufaktoren von Vanadium und Chrom sehr ähnlich und somit röntgenographisch nicht unterscheidbar sind. Des Weiteren sprechen wieder geometrische Faktoren gegen eine Mischbesetzung. Das Vanadiumatom befindet bei mit diesem Strukturmodell auf einem regulären unverzerrten Oktaederplatz, während alle Cr^{II} -Ionen im Zentrum von stark gestreckten Oktaedern liegen.

Details zur Datensammlung und Auswertung der Verbindungen $A^{II}{}_5V^{III}{}_2(P_2O_7)_4$ (A^{II} : Cr, Mn, Fe) sind in Tabelle 3.11 zusammengestellt. Die Angaben zu den Lageparametern und Besetzungsfaktoren, anisotropen Auslenkungsparametern sowie interatomaren Abständen befinden sich im Anhang C in Tabelle C.6 bis Tabelle C.13.

Summenformel	$Cr_5V_2(P_2O_7)_4$	$Mn_5V_2(P_2O_7)_4$	Fe ₅ V ₂ (P ₂ O ₇) ₄
Kristallgröße / mm ³	0,20 · 0,20 · 0,18	0,80 · 0,48 · 0,32	0,30 · 0,20 · 0,15
Farbe des Kristalls	grün	dunkelgrün	hellgrün
Farbe des Pulvers	grün	-	hellgrün
Kristallsystem	monoklin	orthorhomisch	orthorhomisch
Raumgruppe	C2 (Nr. 5)	<i>C</i> 222 ₁ (Nr. 20)	<i>C</i> 222 ₁ (Nr. 20)
Gitterparameter aus	Einkristall	Einkristall	IP-Guinier-Aufnahmen
<i>a</i> / Å	9,7099(5)	8,5384(1)	8,4454(8)
b / Å	8,3675(4)	9,8155(1)	9,7274(10)
c / Å	12,9390(7)	23,7864(3)	23,751(3)
α / \circ	90	90	90
$\beta/2$	10/,/50(1)	90	90
7 Zellvolumen / Å ³	90 1001 22(9)	90	90
Z	2	4	4
Molare Masse / $g \cdot mol^{-1}$	1057.64	1072.34	1076.89
ber. Dichte / $g \cdot cm^{-3}$	3,508	3,573	3,666
Absorp. Koeff. μ / mm^{-1}	4,293	4,753	5,338
F(000)	1020	2060	2080
Temperatur / K	293(2)	293(2)	293(2)
Mo-K α -Strahlung, $\lambda = 0,7$	1073 Å, Graphit Monoc	hromator, κ -CCD Diffrak	tometer (Nonius).
Winkelbereich / °	$3,28 \le \theta \le 30,04$	$3,16 \le \theta \le 32,02$	$3,19 \le \theta \le 30,02$
Messbereich	$-13 \le h \le 13$	$-12 \le h \le 12$	$-11 \le h \le 11$
	$-11 \le k \le 11$	$-14 \le k \le 13$	$-13 \le k \le 13$
	$-18 \le l \le 18$	$-35 \le l \le 35$	$-33 \le l \le 33$
Gemessene Reflexe	21959	25060	33079 ^{b)}
Unabhängige Reflexe	1550	3452	2848
Interner <i>R</i> -Wert <i>R</i> (int)		0,0555	0,0529
Reflexe $F_0 > 2\sigma(F_0)$		3304	2669
Absorptionskorrektur	Multiscans [83] in WinGx [304]	Multiscans [83] in WinGx [304]	Analytisch [290] in WinGx [304]
Extinktionskoeffizient	0,0088(8)	0,0129(3)	0,0029(1)
Parameter	198	200	200
"Restraints"	1	1	1
Wichtungsschema ^{a)}	a = 0,1129; b = 10,2620	a = 0,0267; b = 0,2832	a = 0,0317; b = 0,6908
Restelektronendichte / e·Å ⁻³	max. +1,105; min1,157	max. +0,354; min0,488	max. +0,540; min0,671
Goodness-of-fit ^{a)}	1,053	1,067	1,106
<i>R</i> -Werte $[I > 2 \sigma(I)]^{a}$	$R_1 = 0,060;$	$R_1 = 0,018;$	$R_1 = 0,0226;$
	$wR_2 = 0,159$	$wR_2 = 0,045$	$wR_2 = 0,0553$
<i>R</i> -Werte (alle Daten) ^{a)}	$R_1 = 0,0607;$	$R_1 = 0,019;$	$R_1 = 0,0254;$
	$wR_2 = 0,161$	$wR_2 = 0,046$	$wR_2 = 0,0563$
Flack-Parameter	0,17(2)	-0,004(8)	0,00(1)

Tabelle 3.11 Angaben zu den Strukturverfeinerungen der Pyrophosphate $A^{II}_{5}V^{III}_{2}(P_2O_7)_4$ (A^{II} : Cr, Mn, Fe).

^{a)} Definitionen siehe Seite 22. ^{b)} Es wurde die "volle Kugel" gemessen.

3.3.6 Fe^{II}₃V^{III}₂(P₂O₇)₃

Zu $\text{Fe}^{II}_{3}\text{V}^{III}_{2}(\text{P}_{2}\text{O}_{7})_{3}$ ist bis jetzt keine isotype Verbindung bekannt. Die Gitterkonstanten wurden nach der in Abschnitt 2.2.9 beschriebenen Vorgehensweise aus *IP*-Guinier-Aufnahmen (Abbildung C.8) anhand von 35 Reflexen bestimmt (Tabelle C.5).

Der am κ -CCD der Firma Nonius im Bereich 3,21 $\leq \theta \leq$ 30,02° ("volle Kugel") gemessene Einkristall **Fe^{II}₃V^{III}₂(P₂O₇)₃** stammte aus dem Ansatz zur Darstellung von Fe^{II}V^{III}₂(P₂O₇)₂. Die gefundene orthorhombische *C*-zentrierte Zelle weist etwa 75% des Volumens der Zelle von Fe^{II}₅V^{III}₂(P₂O₇)₄ auf. Die E-Statistik des Datensatzes weist auf eine azentrische Raumgruppe hin. Die Auslöschungsbedingungen in Kombination mit der E-Statistik lassen wie für Fe^{II}₅V^{III}₂(P₂O₇)₄ auf die Raumgruppe C222₁ (Nr. 20) schließen. Die Startpunktlagen für Eisen-, Vanadium-, Phosphor- und einiger Sauerstoffatome wurden über *Direkten Methoden* [86] mit dem Programm SHELXS-97 [302] ermittelt. Nach Lokalisierung der noch fehlenden Sauerstoffatome aus sukzessiven Δ -Fourier-Synthesen wurde die Struktur unter Berücksichtigung anisotroper Auslenkungsparameter mit SHELXL-97 [302] verfeinert. Ein Flackparameter [242] von 0,01(3) deutet auf die richtige absolute Struktur hin. Anzeichen für eine razemische Verzwillingung lagen nicht vor. Eine erneute Verfeinerung unter Berücksichtigung einer Mischbesetzung für Eisen und Vanadium bestätigte diese auf den Lagen *M*1 bis *M*3 (siehe Tabelle C.14).

Details zur Datensammlung und Auswertung der Verbindung $Fe^{II}_{3}V^{III}_{2}(P_2O_7)_3$ sind in Tabelle 3.12 zusammengestellt. Die Angaben zu den Lageparametern und Besetzungsfaktoren, anisotropen Auslenkungsparametern sowie interatomaren Abständen befinden sich in Tabelle C.14 bis Tabelle C.17.

Summenformel	Fe ₃ V ₂ (P ₂ O ₇) ₃
Kristallgröße / mm ³	0,15 · 0,07 · 0,06
Farbe des Kristalls	braun-grün
Farbe des Pulvers	dunkel grün
Kristallsystem	orthorhomisch
Raumgruppe	<i>C</i> 222 ₁ (Nr. 20)
Gitterparameter aus	Einkristall
<i>a</i> / Å	8,3801(2)
$b / \text{\AA}$	9,7420(2)
	17,7447(5)
α / \circ	90
p/ $y/^{\circ}$	90
Zellvolumen / $Å^3$	1448.66(6)
Z	2
Molare Masse / g·mol ⁻¹	1582,5
ber. Dichte / $g \cdot cm^{-3}$	3,628
Absorp. Koeff. μ / mm ⁻¹	4,974
<i>F</i> (000)	1528
Temperatur / K	293(2)
Mo-K α -Strahlung, $\lambda = 0,71073$ Å, C	Graphit Monochromator, κ-CCD Diffraktometer (Nonius).
Winkelbereich / °	$3,21 \le \theta \le 30,02$
Messbereich	$-11 \le h \le 11$
	$-13 \le k \le 13$
	$-24 \le l \le 24$
Gemessene Reflexe	19032
Unabhängige Reflexe	2109
Interner <i>R</i> -Wert <i>R</i> (int)	0,053
Reflexe $F_0 > 2\sigma(F_0)$	1893
Absorptionskorrektur	Analytisch [290] in WinGx [304]
Extinktionskoeffizient	0,00010(2)
Parameter	150
"Restraints"	1
Wichtungsschema ^{a)}	a = 0.0317;
	b = 0.6908
Restelectronendicite $/e^{-3}$	$\max_{i} +0,785;$ $\min_{i} -0.928$
Goodness-of-fit ^{a)}	1 094
<i>R</i> -Werte $[I > 2 \sigma(L)]^{a}$	$R_1 = 0.035$
	$wR_2 = 0.087$
<i>R</i> -Werte (alle Daten) ^{a)}	$R_1 = 0.041;$
	$wR_2 = 0,090$
Flack-Parameter	0,01(3)

Tabelle 3.12 Angaben zu der Strukturverfeinerung von $Fe^{II}_{3}V^{III}_{2}(P_2O_7)_3$.

^{a)} Definitionen siehe Seite 22.

3.4 Diskussion der Ergebnisse

3.4.1 Gitterkonstanten

Die Gitterkonstanten der neuen quaternären Pyrophosphate $A^{II}B^{III}_{2}(P_2O_7)_2$, $A^{II}_{3}B^{III}_{2}(P_2O_7)_3$ und $A^{II}_{5}B^{III}_{2}(P_2O_7)_4$ wurden, wenn möglich, aus *IP*-Guinier-Aufnahmen ermittelt. Dazu wurde nach der in Abschnitt 2.6.1 beschriebenen Methode vorgegangen. Die gemessenen Guinierdiagramme und die dazugehörigen Simulationen $A^{II}B^{III}_{2}(P_2O_7)_2$ befinden sich im Anhang B, von $A^{II}_{3}B^{III}_{2}(P_2O_7)_3$ und von $A^{II}_{5}B^{III}_{2}(P_2O_7)_4$ im Anhang C.

In Tabelle 3.13 befindet sich eine Gegenüberstellung der Gitterkonstanten von $A^{II}_5 B^{III}_2 (P_2 O_7)_4$ und $A^{II}_3 B^{III}_2 (P_2 O_7)_3$ mit den in der Literatur veröffentlichten Werten. Zusätzlich sind noch weitere Pyrophosphate mit der allgemeinen Summenformel $A^{II}_5 B^{III}_2 (P_2 O_7)_4$ mit in die Tabelle aufgenommen worden.

Eine Gegenüberstellung der verfeinerten Gitterkonstanten von $A^{II}B^{III}{}_2(P_2O_7)_2$ mit den in der Literatur veröffentlichten Werten ist Tabelle 3.14 zu entnehmen. Zusätzlich sind noch weitere Pyrophosphate der allgemeinen Summenformel $A^{II}B^{III}{}_2(P_2O_7)_2$ mit in die Tabelle aufgenommen worden. Zur besseren Vergleichbarkeit der Zellparameter isotyper Verbindungen wurden diese in einheitliche Aufstellungen transformiert.

Tabelle 3.13 Zusammenstellung von Pyrophosphaten mit der allgemeinen Summenformel $A^{II}_{3}B^{III}_{2}(P_2O_7)_3$ und $A^{II}_{5}B^{III}_{2}(P_2O_7)_4$. Isotype Verbindungen sind jeweils blockweise zusammengefasst.

Verbindung	<i>a</i> / Å	b / Å	c / Å	α/°	β / °	γ/°	$V/ m \AA^3$	Lit.
Fe ₃ V ₂ (P ₂ O ₇) ₃ -S	trukturtyp (R	.G. <i>C</i> 222 ₁)						
$Fe_3V_2(P_2O_7)_3$	8,3812(6)	9,7358(8)	17,726(2)	90	90	90	1446,4(2)	[d.A.]
$Fe_5Fe_2(P_2O_7)_4-S$	Strukturtyp (I	R.G. <i>C</i> 222 ₁)						
$Mn_5V_2(P_2O_7)_4$	8,5384(1)	9,8155(1)	23,7864(3)	90	90	90	1993,51(4)	[d.A.]
$Fe_5V_2(P_2O_7)_4$	8,4454(8)	9,727(1)	23,752(3)	90	90	90	1951,2(4)	[d.A.]
$Cd_5V_2(P_2O_7)_4$	8,7659(5)	9,9267(9)	24,045(2)	90	90	90	2094,5(6)	[228]
$Mn_5Fe_2(P_2O_7)_4$	8,5409(4)	9,7998(5)	23,750(2)	90	90	90	1987,9(2)	[d.A.]
$Fe_5Fe_2(P_2O_7)_4$	8,451(1)	9,691(1)	23,626(5)	90	90	90	1934,9(9)	[130]
$Fe_5Fe_2(P_2O_7)_4$	8,4327(7)	9,695(1)	23,663(2)	90	90	90	1934	[18]
$Zn_5Fe_2(P_2O_7)_4$	8,2986(7)	9,650(2)	23,984(3)	90	90	90	1920,7(4)	[d.A.]
$Cd_{5}Fe_{2}(P_{2}O_{7})_{4}^{a)}$	8,702(1)	9,889(1)	23,968(3)	90	90	90	2062,5(3)	[229]
$Cd_5Fe_2(P_2O_7)_4$	8,715(6)	9,917(7)	23,999(1)	90	90	90	2075(2)	[228]
$Cd_5Mo_2(P_2O_7)_4$	-Strukturtyp	(R.G. <i>C</i> 2/ <i>c</i>)						
$Cd_5Mo_2(P_2O_7)_4$	8,8977(1)	9,9956(1)	24,2120(2)	90	97,816(1)	90	2133,35(7)	[230]
$Cr_5V_2(P_2O_7)_4-S$	trukturtyp (R	R.G. <i>C</i> 2)						
$Cr_5V_2(P_2O_7)_4$	9,7083(7)	8,3638(6)	12,893(1)	90	107,769(8)	90	996,9(1)	[d.A.]

 $^{a)}$ reale Zusammensetzung ist nach [229] $Cd_{4,12}Fe^{II}_{0,88}Fe^{III}_{2}(P_2O_7)_4.$

-(-))	- 51		0 5			e		
Verbindung	<i>a</i> / Å	b / Å	<i>c</i> / Å	a / °	β / °	γ/°	$V/\text{\AA}^3$	Lit.
FeFe ₂ (P ₂ O ₇) ₂ -S	Strukturtyp	(R.G. Pnma	y)					
$MgFe_2(P_2O_7)_2$	8,9057(6)	12,216(1)	10,1289(8)	90	90	90	1102,0(2)	[d.A.]
$FeFe_2(P_2O_7)_2$	8,9500(7)	12,235(2)	10,174(1)	90	90	90	1114,09	[17]
$CoFe_2(P_2O_7)_2$	8,9085(8)	12,255(1)	10,1436(9)	90	90	90	1107,4(2)	[d.A.]
$ZnFe_2(P_2O_7)_2$	8,9166(5)	12,2551(8)	10,149(1)	90	90	90	1109,0(2)	[d.A.]
hexCrTi ₂ (P ₂	O7)2-Struktu	ırtyp (R.G	P6 ₃ /m)					
h-CrTi ₂ (P ₂ O ₇) ₂	15,607(1)	15,607(1)	12,343(1)	90	90	120	2603,8(4)	[d.A.]
$CuFe_2(P_2O_7)_2$ -	Strukturtyp	o (R.G. <i>P2</i> ₁ / <i>i</i>	1)					
$CuFe_2(P_2O_7)_2$	6,589(1)	5,163(1)	15,633(3)	90	91,99(3)	90	531,52(8)	[29]
$CuFe_2(P_2O_7)_2$	6,5921(3)	5,1606(2)	15,6397(6)	90	91,983(3)	90	531,73(12)	[30]
$CuIn_2(P_2O_7)_2$	6,7674(8)	5,2659(5)	15,979(2)	90	90,90(1)	90	569,3(1)	[d.A.]
$CuCr_2(P_2O_7)_2$ -	Strukturty	o (R.G. <i>P</i> 2 ₁ //	n)					
$CuV_2(P_2O_7)_2$	8,3765(8)	5,1758(5)	12,750(1)	90	106,346(9)	90	530,41(9)	[d.A.]
$CuCr_2(P_2O_7)_2$	8,3016(8)	5,1059(4)	12,673(1)	90	106,568(8)	90	514,86(7)	[d.A.]
$PdCr_2(P_2O_7)_2$	8,3859(7)	5,1363(5)	12,781(1)	90	106,856(8)	90	526,84(8)	[d.A.]
$PdFe_2(P_2O_7)_2$	8,4899(8)	5.1852(6)	12.882(1)	90	107.103(9)	90	542.00(9)	[d.A.]
$PdIn_2(P_2O_7)_2$	8,7455(6)	5,2759(4)	13,146(1)	90	106,689(7)	90	581,01(7)	[d.A.]
trikl-CrTi ₂ (P ₂	O ₇)2-Strukt	urtyn (R.G.	$\overline{P(1)}$					
$CrTi_2(P_2O_7)_2$	5,2201(3)	6,5934(3)	8,5726(4)	69,208(2)	87,570(3)	87,088(2)	275,39(2)	[d.A.]
$CrCr_2(P_2O_2)_2$ -	Strukturtyr	$(\mathbf{R},\mathbf{G},\mathbf{P}^{-1})$						
$CrV_{2}(P_{2}O_{2})_{2}$	4 7376(5)	$12\ 771(2)$	7 8952(8)	89 433(9)	92 210(8)	90 56(1)	477 31(9)	[A b]
$EeV_2(P_2O_7)_2$	4,7570(5)	12,771(2) 12,7523(4)	7,8202(3)	89 651(2)	90,236(2)	90,30(1)	474 78(6)	
$M_{\alpha}Cr(P,\Omega)$	4,7053(1)	12,7525(4) 12,661(2)	7,0202(3)	89,031(2)	90,250(2)	90,171(2) 90,10(2)	474,76(0)	
$CrCr_{-}(P_{-}O_{-})_{-}$	4,7007(9)	12,001(2) 12,667(3)	7,700(3)	89,45(2)	92,02(2)	90,17(2) 90,37(2)	457,1(2)	[u.A.]
$\operatorname{ElCr}_2(\Gamma_2 O_7)_2$	4,7120(0)	12,007(3)	7,843(2)	89,03(2) 80.44(7)	92,02(2)	90,37(2) 80.02(7)	407,9(2)	
$\operatorname{TeCl}_2(\operatorname{P}_2\operatorname{O}_7)_2$ $\operatorname{TeCl}_2(\operatorname{P}_2\operatorname{O}_7)_2$	4,730(3)	12,030(0) 12,66(4)	7,778(7)	89,44(7)	91,01(3) 91,1(2)	99,93(7)	400,1(0)	[u.A.]
$L H C I_2 (I_2 O_7)_2$	4,739(8)	12,00(4)	7,75(5)	89,5(5)	91,1(2)	90,2(3)	403,5	[27]
$SrV_2(P_2O_7)_2-Si$	trukturtyp ($(\mathbf{R.G.} P^{1})$	7 7 (1 1 (0)	00 41(1)	07 77(1)	72 1 ((1)	0.47 57(1.4)	[0.4.4]
$CdV_2(P_2O_7)_2$	4,/833(6)	6,9698(8)	7,7644(8)	89,41(1)	8/,//(1)	/3,16(1)	247,57(14)	[244]
$SrV_2(P_2O_7)_2$	4,8006(7)	7,117(1)	7,8569(8)	89,92(1)	87,62(1)	73,43(1)	257,05(6)	[231]
$HgV_2(P_2O_7)_2^{(0)}$	4,848(1)	6,892(1)	8,077(2)	92,65(1)	86,74(1)	73,77(1)	258(1)	[245]
$PbV_2(P_2O_7)_2^{(0)}$	4,804(1)	7,113(1)	7,898(2)	89,78(1)	87,38(1)	73,90(2)	259,0(9)	[245]
$CdCr_2(P_2O_7)_2^{a}$	4,7502(3)	6,9065(5)	7,7144(4)	90,348(6)	88,496(6)	72,823(6)	241,69(3)	[28]
$SrFe_2(P_2O_7)_2$	4,795(1)	7,108(1)	7,830(2)	89,83(3)	87,59(3)	73,11(3)	255,13(9)	[246]
$PbFe_2(P_2O_7)_2$	4,785(2)	7,097(2)	7,851(3)	89,71(2)	87,53(3)	73,54(2)	255,44(2)	[234]
BaTi ₂ (P ₂ O ₇) ₂ -5	Strukturtyp	(R.G. <i>C</i> 2/ <i>c</i>)						
$BaTi_2(P_2O_7)_2$	10,680(3)	10,564(4)	9,834(4)	90	102,88(3)	90	1081,6(6)	[232]
$BaV_2(P_2O_7)_2$	10,6213(8)	10,4685(7)	9,7063(13)	90	103,074(9)	90	1051,3	[233]
$BaFe_2(P_2O_7)_2$	10,586(2)	10,463(2)	9,685(2)	90	103,16(3)	90	1044,55(4)	[234]
$BaMo_2(P_2O_7)_2$	10,8135(8)	10,6407(7)	9,8210(6)	90	103,629(7)	90	1098(2)	[235]
β-BaTi ₂ (P ₂ O ₇)	2-Strukturty	yp (R.G. <i>P</i> ¹))					
β -BaV ₂ (P ₂ O ₇) ₂	6,269(1)	7,864(3)	6,1592(9)	101,34(2)	105,84(1)	96,51(2)	281,9(1)	[236]

Tabelle 3.14 Zusammenstellung von Pyrophosphaten mit der allgemeinen Summenformel $A^{II}B^{III}_{2}(P_2O_7)_2$. Isotype Verbindungen sind jeweils blockweise zusammengefasst.

^{a)} Zum besseren Vergleich wurden die Gitterkonstanten nach a' = -a, b' = c, c' = b transformiert. ^{b)} Zum besseren Vergleich wurden die Gitterkonstanten nach a' = a, b' = -b, c' = -c transformiert.

3.4.2 *trikl.*-Cr^{II}Ti^{III}₂(P₂O₇)₂, Cu^{II}Cr^{III}₂(P₂O₇)₂ und Cu^{II}In^{III}₂(P₂O₇)₂

Bis jetzt ist keine zur triklinen Modifikation von $Cr^{II}Ti^{III}_{2}(P_2O_7)_2$ isotype Verbindung bekannt. Jedoch kristallisieren Na₂CaP₂O₇ [247] sowie das Mineral Parakeldyshite Na₂Zr(Si₂O₇) [248, 249, 250] in eng verwandten Strukturen. Auch das Digermanat Na₂Zr(Ge₂O₇) [251] gehört zu dieser Familie (Tabelle 3.15).

In den Gerüststrukturen liegen Oktaeder $[MO_6]$ (*M*: Ti³⁺, Zr⁴⁺, Ca²⁺) neben $[X_2O_7]$ -Baugruppen vor (*X*: Si⁴⁺, Ge⁴⁺, P⁵⁺) (Abbildung 3.11). Der Ladungsausgleich der anionischen Gerüste erfolgt über Na⁺- beziehungsweise Cr²⁺-Ionen. Letztere sind quadratisch-planar koordiniert, für Na⁺ werden K.Z.(Na⁺) = 5 bis 8 beobachtet.

Tabelle 3.15 Gitterkonstanten von *trikl*.- $Cr^{II}Ti^{III}_{2}(P_2O_7)_2$ im Vergleich mit Na₂CaP₂O₇ und Vertretern des Minerals Parakeldyshit.

Verbindung	a / Å	b / Å	<i>c</i> / Å	α/°	β/°	γ/°	$V/\text{\AA}^3$	Lit.
$\overline{tCrTi_2(P_2O_7)}$	25,2201(3)	6,5934(3)	8,5726(4)	69,208(2)	87,570(3)	87,088(2)	275,39(2)	[d.A.]
$Na_2Ca(P_2O_7)$	5,361(3)	7,029(3)	8,743(4)	69,40(2)	89,02(3)	88,78(4)	308,5(3)	[247]
$Na_2Zr(Si_2O_7)^a$) 5,42(2)	6,66(3)	8,83(4)	72,33	87,25	85,75	302,7	[249]
$Na_2Zr(Si_2O_7)$	5,419(1)	6,607(2)	8,806(2)	71,50(2)	87,15(3)	85,63(2)	298,0(3)	[248]
$Na_2Zr(Si_2O_7)^a$) 5,426(1)	6,617(2)	8,813(1)	71,45(3)	87,26(3)	85,68(3)	299,0	[250]
$Na_2Zr(Ge_2O_7)$	5,630(1)	6,677(2)	9,108(5)	70,60(4)	88,85(4)	87,04(2)	322,5	[251]

^{a)} Zum besseren Vergleich wurden die Gitterkonstanten nach a' = c, b' = -a, c' = -b transformiert.

Abbildung 3.11 Schematische Darstellung von Na₂ZrSi₂O₇ (a), Na₂CaP₂O₇ (b) und *trikl*.-CrTi₂(P₂O₇)₂ (c). Sicht jeweils entlang [-1 0 0]. Zum besseren Vergleich wurde der Ursprung der Na₂ZrSi₂O₇-Struktur um [0,5 0,5 0] verschoben und anschließend die Zelle nach a' = c, b' = -a, c' = -b transformiert. Bei der Na₂CaP₂O₇-Struktur wurde der Ursprung um [0 0 0,5] verschoben.

Eng verwandt mit der Kristallstruktur von *trikl.*-CrTi₂(P₂O₇)₂ sind die Strukturen der monoklinen Pyrophosphate $A^{II}B^{III}_{2}(P_2O_7)_2$ (A^{II} : Cu, Pd; B^{III} : V, Cr, Fe, In; zu "Pd^{II}V^{III}₂(P₂O₇)₂" vergl. Abschnitt 3.2.2). Diese kristallisieren in zwei unterschiedlichen Strukturen (Tabelle 3.16). Die metrischen Zusammenhänge werden ebenfalls in Tabelle 3.16 verdeutlicht.

Tabelle 3.16 Vergleich der Gitterkonstanten und transformierten Gitterkonstanten von

trikl.-CrTi₂(P₂O₇)₂ mit jenen von CuV₂(P₂O₇)₂ und CuFe₂(P₂O₇)₂.

Verbindung	RG	<i>a</i> / Å	b / Å	<i>c</i> / Å	α / °	β/°	γ/°	$V/\text{\AA}^3$
t-CrTi ₂ (P ₂ O ₇) ₂	$P\bar{1}$	5,220	6,593	8,573	69,21	87,57	87,09	275,4
$CuFe_2(P_2O_7)_2$	$P2_{1}/n$	6,589	5,163	15,633	90	91,99	90	531,5
$CuV_2(P_2O_7)_2$	$P2_{1}/n$	8,376	5,176	12,750	90	106,35	90	530,4
t-CrTi ₂ (P ₂ O ₇) ₂ ^{a)}	$P\bar{1}$	6,593	5,220	8,573	92,43	110,79	87,09	275,4
$CuFe_2(P_2O_7)_2^{b)}$	$P2_{1}/c$	6,589	5,163	16,754	90	111,16	90	531,5
$CuV_2(P_2O_7)_2^{c)}$	$P2_{1}/a$	13,128	5,176	8,347	90	111,25	90	530,4

^{a)} Zelle transformiert nach (0 1 0; 1 0 0; 0 0 -1)

^{b)} Zelle transformiert nach (-1 0 0; 0 -1 0; 1 0 1)

^{c)} Zelle transformiert nach (-1 0 -1; 0 1 0; 1 0 0)

Abbildung 3.12 Kristallstrukturen von *trikl.*-Cr^{II}Ti^{III}₂(P₂O₇)₂ (a), Cu^{II}Fe^{III}₂(P₂O₇)₂ (b) und Cu^{II}V^{III}₂(P₂O₇)₂ (c) Projektion auf (ac)-Ebene. Fett eingezeichnet ist die transformierte Zelle, gestrichelt die Lage der ursprünglichen Zelle.

Die Ähnlichkeit der Strukturen von *trikl.*-CrTi₂(P₂O₇)₂, CuCr₂(P₂O₇)₂ und CuFe₂(P₂O₇)₂ ist in Abbildung 3.12 gut zu erkennen. Die Unterschiede sind dagegen weniger offensichtlich. Diese ergeben sich bei nahezu identischer Anordnung von $[B^{III}O_6]$ -Oktaedern und $[P_2O_7]$ -Gruppen in den drei Strukturen nur durch den Einbau der M^{2+} -Kationen an verschiedenen Stellen des Netzwerks. Die Schicht B im Cu^{II}Fe^{III}₂(P₂O₇)₂-Strukturtyp (Abbildung 3.13) und Cu^{II}Cr^{III}₂(P₂O₇)₂-Strukturtyp (Abbildung 3.14) entsprechen jeweils der Schicht A, wobei die M^{II} -Ionen um 1/2 entlang der *b*-Achse verschoben werden und die Struktur anschließend relaxiert.

Abbildung 3.13 Vergleich der Lage der $M^{II}M^{III}_{2}(P_2O_7)_2$ -Schichten in *trikl.*-Cr^{II}Ti^{III}_2(P_2O_7)_2 (a), Cu^{II}Fe^{III}_2(P_2O_7)_2 (b), in Projektion auf (ac)-Ebene. *trikl.*-Cr^{II}Ti^{III}_2(P_2O_7)_2 (c), Cu^{II}Fe^{III}_2(P_2O_7)_2 (d), in Projektion auf (bc)-Ebene.

Abbildung 3.14 Vergleich der Lage der $M^{II}M^{III}_{2}(P_2O_7)_2$ -Schichten in *trikl.*-Cr^{II}Ti^{III}_{2}(P_2O_7)_2 (a), Cu^{II}Cr^{III}_{2}(P_2O_7)_2 (b), in Projektion auf (ac)-Ebene. *trikl.*-Cr^{II}Ti^{III}_{2}(P_2O_7)_2 (c), Cu^{II}Cr^{III}_{2}(P_2O_7)_2 (d), in Projektion auf (ab)-Ebene.

Alle drei Strukturtypen (*trikl*.-Cr^{II}Ti^{III}₂(P₂O₇)₂, Cu^{II}Cr^{III}₂(P₂O₇)₂ und Cu^{II}Fe^{III}₂(P₂O₇)₂[29]) bestehen aus $A^{II}B^{III}_{2}O_{12}$ -Einheiten, die durch Pyrophosphatgruppen verknüpft werden. In den $A^{II}B^{III}_{2}O_{12}$ -Einheiten befindet sich das zentrale A^{II} -Ion (Cu^{II}, Pd^{II} und Cr^{II}) auf einem Inversionszentrum und ist quadratisch-planar von Sauerstoff koordiniert. Die beiden oktaedrisch koordinierten B^{III} -Ionen sind an dieses [$A^{II}O_4$]-Quadrat trans-kantenverknüpft. Der Abstand $d(A^{II}-B^{III})$ in den [$B^{III}A^{II}B^{III}O_{12}$]-Polyedertripeln liegt zwischen 3,005 Å in CuCr₂(P₂O₇)₂ und 3,276 Å in PdIn₂(P₂O₇)₂. Dabei ist der Abstand $d(Pd^{II}-M^{III})$ immer um 0,06 Å größer als der entsprechende Abstand $d(Cu^{II}-M^{III})$.

Die $[A^{II}B^{III}_{2}O_{12}]$ -Einheiten in den verschiedenen Strukturen unterscheiden sich durch die Verkippung der Äquatorebenen der $[B^{III}O_{6}]$ -Oktaeder gegen die Ebene der $[A^{II}O_{4}]$ -Quadrate (Abbildung 3.15). In *trikl.*-Cr^{II}Ti^{III}₂(P₂O₇)₂ liegt nur eine geringe Verkippung vor ($\varphi = 3,2^{\circ}$). Leicht verkippt sind die Polyeder in den isotypen Verbindungen CuFe₂(P₂O₇)₂ ($\varphi = 6,9^{\circ}$) und CuIn₂(P₂O₇)₂ ($\varphi = 9,1^{\circ}$). Die Polyedertripel in den Verbindungen isotyp zu CuCr₂(P₂O₇)₂ sind mit $\varphi = 20\pm 2^{\circ}$ deutlich gegeneinander verkippt.

Die Pyrophosphateinheiten unterscheiden sich in den drei verwandten Strukturtypen kaum voneinander. Sie haben eine gestaffelte Konformation und der Brückenwinkel beträgt \angle (P,O,P) = 130±1° (Abbildung 3.16).

Abbildung 3.15 ORTEP-Darstellungen [301] der Polyedertripel $[A^{II}B^{III}A^{II}O_{12}]$. Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%. CuV₂(P₂O₇)₂ (a), CuCr₂(P₂O₇)₂ (b), PdCr₂(P₂O₇)₂ (c), CuFe₂(P₂O₇)₂ [29] (d), PdFe₂(P₂O₇)₂ (e), CuIn₂(P₂O₇)₂ (f), PdIn₂(P₂O₇)₂ (g), *trikl.*-CrTi₂(P₂O₇)₂ (h). Für die zum Vergleich aufgeführte Struktur von CuFe₂(P₂O₇)₂ sind in der Literatur nur isotrope Auslenkungsparameter angegeben.

Abbildung 3.16 ORTEP-Darstellungen [301] der Pyrophosphatgruppen [P₂O₇] in $A^{II}B^{III}_2(P_2O_7)_2$. Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%. CuV₂(P₂O₇)₂ (a), CuCr₂(P₂O₇)₂ (b), PdCr₂(P₂O₇)₂ (c), CuFe₂(P₂O₇)₂ [29] (d), PdFe₂(P₂O₇)₂ (e), CuIn₂(P₂O₇)₂ (f), PdIn₂(P₂O₇)₂ (g), *trikl.*-CrTi₂(P₂O₇)₂ (h). Für die zum Vergleich aufgeführte Struktur von CuFe₂(P₂O₇)₂ sind in der Literatur nur isotrope Auslenkungsparameter angegeben.

3.4.3 *hex.*-Cr^{II}Ti^{III}₂(P₂O₇)₂

Zu hexagonalem $Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ ist bis jetzt keine isotype Verbindung bekannt. Jedoch ist der Fe^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}-Strukturtyp [17] und InP₃SiO₁₁ (In₂[Si₂O(P₂O₇)_{6/2}) [101] strukturell eng verwandt mit jenem von *hex.*-Cr^{II}Ti^{III}₂(P₂O₇)₂.

Die Struktur besteht aus einer hexagonalen dichtesten Packung von $[P_2O_7]$ -Einheiten ($\overrightarrow{POP} \parallel 6_3$) mit Ti³⁺-Ionen in allen Oktaederlücken (Abbildung 3.17 a und b). Durch die längere Ausdehnung der $[P_2O_7]$ -Gruppen $\parallel 6_3$ ergeben sich zwischen den Oktaederlücken im Unterschied zur NiAs-Typ trigonal-prismatische Lücken. Eine Seitenfläche dieser Prismen wird durch Cr²⁺ zentriert. Hierdurch ergibt sich der Unterschied zur Fe^{II}Fe^{III}₂(P₂O₇)₂-Struktur (R.G. *Pnma*), in der das zweiwertige Kation im Zentrum des trigonalen Prismas liegt.

Abbildung 3.17 Kristallstruktur von *hex.*- $Cr^{II}Ti^{III}_{2}(P_2O_7)_2$. Projektion entlang [0 0 1] (a). Perspektivische Darstellung mit Projektion entlang [2 1 0] (b).

Das zweiwertige Chrom befindet sich in der hexagonalen Modifikation von $CrTi_2(P_2O_7)_2$ auf einer der drei rechteckigen Prismenoberflächen, wodurch sich für das Chrom eine Koordination K.Z. $(Cr^{2+}) = 4 + 2$ ergibt. Das dreiwertige Titan ist oktaedrisch von Sauerstoff umgeben (Abbildung 3.18).

Die drei kristallographisch unterschiedlichen Pyrophosphatgruppen in der hexagonalen Modifikation von $CrTi_2(P_2O_7)_2$ haben alle eine ekliptische Konformation. Die Brückenwinkel der Pyrophosphatgruppen betragen $\angle(P1,O1,P1) = 133,2^\circ$, $\angle(P2,O2,P2) = 143,3^\circ$ und $\angle(P3,O3,P3) = 144,2^\circ$ (Abbildung 3.19).

Abbildung 3.18 ORTEP-Darstellungen [301] der $Cr^{II}Ti^{III}_2O_{12}$ -Einheiten in *hex.*-CrTi₂(P₂O₇)₂. Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%. Die Schwerpunkte der Polyedertripel liegen bei 0 0 1/4 (a), 1/3 2/3 1/4 (b) und 2/3 0 1/4 (c).

Abbildung 3.19 ORTEP-Darstellungen [301] der Pyrophosphatgruppen [P_2O_7] in *hex.*-CrTi₂(P_2O_7)₂. Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%.

Die Verteilung der Chromatome, insbesondere Cr1, der Abstand d(Cr1-O11) und die anisotropen Auslenkungsparameter des Sauerstoffatoms O11 und der Brückensauerstoffatome der Pyrophosphate O1, O2 O3, deuten auf Mängel dessen aktuelle Strukturmodell von *hex*.-CrTi₂(P₂O₇)₂ hin. Mit eine Ursache für diese Ergebnis könnte eine übersehene Überstruktur oder ein Fehler bei der Raumgruppenbestimmung sein.

Die trikline Modifikation von Cr^{II}Ti^{III}₂(P₂O₇)₂ zeigt mit 2,989 g/cm³ eine um 4,8% geringfügig höhere Dichte als die hexagonale Modifikation mit 2,852 g/cm³. Nach der

Ostwald-Volmer Regel [252] entsteht bei Kristallisation aus übersättigter Lösung bzw. bei niedrigeren Temperaturen zunächst die metastabile Form mit der niedrigeren Dichte. Bei den Versuchen zu $Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ traten je nach Experiment die eine oder andere Modifikation auf.

Eine zunächst vermutete Korrelation zwischen Kristallisationstemperatur und Modifikation konnte durch weitere Experimente nicht bestätigt werden. Bei den Wiederholungsexperimenten trat nur noch die hexagonale Modifikation von $Cr^{II}Ti^{III}_{2}(P_2O_7)_2$ auf.

Interessanterweise weist bei $CrTi_2(P_2O_7)_2$ die Modifikation mit der höheren Dichte eine etwas niedrigere Koordinationszahl des Chroms von 4 im Vergleich zu 4+2 bei der Modifikation mit der geringeren Dichte auf. Alle anderen Atome besitzen in beiden Strukturen die gleichen Koordinationspolyeder.

3.4.4 Die Pyrophosphate Cr^{II}V^{III}₂(P₂O₇)₂ und Fe^{II}V^{III}₂(P₂O₇)₂

Charakteristisch für die Kristallstrukturen von $Cr^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ und $Fe^{II}V^{III}_{2}(P_{2}O_{7})_{2}$, die isotyp zu $Cr^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ [13] kristallisieren, sind zwei Arten von Oktaedertripeln, die jeweils durch Transkantenverknüpfung gebildet werden (Abbildung 3.22). Beide Oktaedertripelarten sind entlang der Flächendiagonalen [1 1 0] ausgerichtet. Während die Zentralatome des einen Oktaedertripels mit den Metalllagen *M*2 und *M*3 nur *M*³⁺-Ionen enthalten, liegt in der zweiten Gruppierung, bestehend aus zwei *M*²⁺-Atomen auf der Lage *M*4 und in der Mitte des Tripels, ein *M*³⁺ auf der Lage *M*1 als Zentralatom vor. Die Verknüpfung der Oktaedertripel über gemeinsame Ecken führt zur Bildung von Schichten (Abbildung 3.20), die parallel zur Ebene (1 1 0) liegen. Durch Pyrophosphatgruppen erfolgt einerseits die Verknüpfung der parallelen Schichten miteinander zur Bildung der Gesamtstruktur, andererseits resultiert eine weitere indirekte Verknüpfung innerhalb der Schichten. Wie die Oktaedertripel, so sind die Verbindungsachsen der beiden Phosphoratome in den Pyrophosphatgruppen nach [1 1 0] ausgerichtet.

Die beiden kristallographisch unterschiedlichen Pyrophosphatgruppen in $A^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ (A^{II} : Cr, Fe) haben ekliptische Konformation. Die Brückenwinkel betragen in Cr^{II}V^{III}_{2}(P_{2}O_{7})_{2} \angle (P,O,P) =137,4° und \angle (P,O,P) = 139,9° sowie \angle (P,O,P) = 137,8° und \angle (P,O,P) = 135,7° in Fe^{II}V^{III}_{2}(P_{2}O_{7})_{2} (Abbildung 3.21). Während alle M^{III} -Lagen (M1, M2 und M3) regulär oktaedrisch von Sauerstoff umgeben sind, ist die oktaedrische Koordination der Lage M4stark gestreckt. Im Vergleich zur entsprechenden Chrom(II)-verbindung werden die etwas kürzeren Abstände d(Fe4-O8) und d(Fe4-O13) im gestrecktem [$M4O_{6}$]-Oktaeder durch die etwas längeren Abstände d(V3-O8) und d(V3-O13) kompensiert (Abbildung 3.22).

Abbildung 3.20 Perspektivische Darstellung einer $[A^{II}B^{III}{}_2O_{12}]_{\infty}$ -Schicht im $Cr^{II}Cr^{III}{}_2(P_2O_7)_2$ -Strukturtyp.

Abbildung 3.21 ORTEP-Darstellungen [301] der $[P_2O_7]$ -Gruppen. $Cr^{II}V^{III}_2(P_2O_7)_2$ (a) und (b). Fe^{II}V^{III}_2(P_2O_7)_2 (c) und (d). Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%.

Abbildung 3.22 ORTEP-Darstellungen [301] der Oktaedertripel $[V3^{III}V2^{III}V3^{III}O_{10}]$ (a), $[Cr4^{II}V1^{III}Cr4^{II}O_{10}]$ (b) in $Cr^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ und $[V3^{III}V2^{III}V3^{III}O_{10}]$ (c), $[Fe4^{II}V1^{III}Fe4^{II}O_{10}]$ (d) in $Fe^{II}V^{III}_{2}(P_{2}O_{7})_{2}$. Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%.

3.4.5 $Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$, $Mn^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ und $Fe^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$

Die Strukturen der Pyrophosphate $Cr^{II}_5 V^{III}_2 (P_2O_7)_4$ und $A^{II}_5 V^{III}_2 (P_2O_7)_4$ (A^{II} : Mn, Fe) gehören der Thortveitit-Strukturfamilie an. Dieses zeigt schon ein Vergleich der Guinierdiagramme mit jenen von Mn₂P₂O₇ [213] (Abbildung C.1 - C.7), das in der Thortveitit-Struktur kristallisiert.

Die $Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ -Struktur leitet sich direkt von der Thortveitit-Struktur [225, 226, 227] ab. Formal wird jedes achte Scandiumatom durch eine Leerstelle ausgetauscht. Die verbleibenden sieben Scandiumpositionen werden durch fünf Chrom- und zwei Vanadiumatome ersetzt (Abbildung 3.23). Die Disilicatgruppen werden durch Diphosphatgruppen ersetzt, wobei ein Viertel der Phosphatgruppen ein geringfügig anderes Verknüpfungsmuster mit der Kationenpolyederschicht aufweisen (Abbildung 3.24).

Abbildung 3.23 Kationenpolyederschicht in Sc₂Si₂O₇ [225] (a) und $Cr^{II}_5V^{III}_2(P_2O_7)_4$ (b). Die weißen Oktaeder in Sc₂Si₂O₇ werden in der $Cr^{II}_5V^{III}_2(P_2O_7)_4$ -Struktur durch Leerstellen ersetzt.

Abbildung 3.24 Die $[X_2O_7]$ -Gruppen in Sc₂Si₂O₇ (a) und Cr^{II}₅V^{III}₂(P₂O₇)₄ (b). Orange markiert sind die $[XO_4]$ -Einheiten, die unterschiedliches Verknüpfungsmuster zeigen.

Die Projektion der $Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ -Struktur entlang der b-Achse zeigt parallele Schichten, bestehend aus kantenverknüpften [$Cr^{II}O_{6}$] und [$V^{III}O_{6}$]-Oktaedern, verbunden durch Pyrophosphatgruppen (Abbildung 3.25).

Abbildung 3.25 Projektion der $Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ -Struktur entlang [0 1 0]. a) Schicht von $[Cr^{II}_{5}V^{III}_{2}O_{24}]_{\infty}$, b) Schicht von $[P_{2}O_{7}]$ -Gruppen.

Bei $Cr^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ sind die Oktaeder [*M*1O₆], [*M*2O₆], [*M*3O₆] und [*M*5O₆] miteinander kantenverknüpft unter Ausbildung von ebenen Sechserringen (Abbildung 3.26). Diese Ringe sind wiederum miteinander kantenverknüpft zu endlosen Ketten, deren Kettenglieder sich alle in einer Ebene befinden, die parallel zur Flächendiagonalen [1 0 1] liegen. Durch die Oktaeder [*M*4O₆] werden die Ketten miteinander zu einer Schicht verbunden.

Abbildung 3.26 Die $[Cr^{II}{}_5V^{III}{}_2O_{24}]_{\infty}$ -Schicht in $Cr^{II}{}_5V^{III}{}_2(P_2O_7)_4$. Projektion entlang $[0\ 1\ 0]$ (a), Projektion entlang $[1\ 0\ 0]$ (b).

Die Strukturen von $Mn^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ und $Fe^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ sind isotyp zur Struktur von $Fe^{II}{}_{5}Fe^{II}{}_{2}(P_{2}O_{7})_{4}$ [18] und sind eng verwandt mit der zuvor beschriebenen Struktur von $Cr^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$. Die Projektion entlang der *a*-Achse (Abbildung 3.27) zeigt gefaltete Schichten entlang der *c*-Achse. Diese bestehen aus kantenverknüpften [$A^{II}O_{6}$]-Oktaedern (A^{II} : Mn, Fe) und [$V^{III}O_{6}$]-Oktaedern, verbunden durch Ebenen, in welchen sich die Pyrophosphatgruppen befinden.

Abbildung 3.27 Projektion von $A^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ (A^{II} : Mn, Fe) entlang [1 0 0]. Schicht von $[A^{II}{}_{5}V^{III}{}_{2}O_{24}]_{\infty}$ (I) und Schicht von $[P_{2}O_{7}]$ -Gruppen (II). Die $[A^{II}{}_{5}V^{III}{}_{2}O_{24}]_{\infty}$ -Schicht in $A^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ (A^{II} : Mn, Fe). Projektion entlang [1 0 0] (b), Projektion entlang [0 1 0] (c).

Wie bei $\operatorname{Cr}^{II}{}_{5}\operatorname{V}^{III}{}_{2}(\operatorname{P}_{2}\operatorname{O}_{7})_{4}$ sind auch bei den Pyrophosphaten $A^{II}{}_{5}\operatorname{V}^{III}{}_{2}(\operatorname{P}_{2}\operatorname{O}_{7})_{4}$ (A^{II} : Mn, Fe) die Oktaeder [$M1O_{6}$], [$M2O_{6}$], [$M3O_{6}$] und [$M5O_{6}$] miteinander kantenverknüpft unter Ausbildung von ebenen Sechserringen (Abbildung 3.27-c). Diese Ringe sind wiederum miteinander kantenverknüpft zu endlosen Ketten, deren Kettenglieder sich alle in einer Ebene befinden, die alternierend parallel zur Flächendiagonalen [011] und [0-11] liegen. Durch die [$M4O_{6}$]-Oktaeder werden die Ketten miteinander zu einem gefalteten "zweidimensionalen" Netzwerk verknüpft.

Während in $A^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ (A^{II} : Mn, Fe) die Schicht in der *bc*-Ebene liegt, bestehend aus den Metall-Sauerstoff Polyedern, wechseln Streifen der Ebene ihre Orientierungen alternierend von (0 0 1) nach (0 –1 1) (Abbildung 3.28-a). In der Cr^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}-Struktur sind die Schichten nicht gefaltet und liegen in der (-1 0 1) Ebene (Abbildung 3.28-d).

Abbildung 3.28 Vergleich der $[A^{II}{}_{5}V^{III}{}_{2}O_{24}]_{\infty}$ -Schichten und der Ausrichtung der Ketten, gebildet aus den Polyedern $[M1O_6]$, $[M2O_6]$, $[M3O_6]$ und $[M5O_6]$ innerhalb der $A^{II}{}_{5}V^{III}{}_{2}(P_2O_7)_{4}$ -Strukturen. $A^{II} = Mn$, Fe (a) und (b). $A^{II} = Cr$ (c) und (d).

Zur Vereinfachung der Strukturbeschreibungen werden in beiden Strukturen $(A^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4})$ Struktur mit $A^{II} = Mn$, Fe und $Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ -Struktur) alle Metallatome mit oktaedrischer Koordination beschrieben. Hierdurch ergibt sich auch eine bessere Vergleichbarkeit mit der Thortveitit-Struktur. Tatsächlich ergeben sich für die verschiedenen $[MO_{6}]$ -Koordinationspolyeder zum Teil beträchtliche Verzerrungen (Abbildung 3.29). Bis auf die Lage M4 sind die Umgebungen um die Metalllagen in beiden Strukturtypen gleich. Bedingt durch die Faltung beziehungsweise deren Fehlen in der $[A^{II}_{5}V^{III}_{2}O_{24}]_{\infty}$ -Schicht in den beiden $A^{II}_{5}B^{III}_{2}(P_2O_7)_4$ -Strukturtypen tauschen zwei Sauerstoffatome ihre Positionen im $[M4O_6]$ -Oktaeder und zwei Sauerstoffatome im $[P4O_4]$ -Tetraeder der $[P1P4O_7]$ -Pyrophosphatgruppe (Abbildung 3.30). Die Lage M2, die ausschließlich mit Vanadium(III) besetzt ist, weist eine reguläre oktaedrische Umgebung auf. Die Metalllagen $[M1O_6]$, $[M3O_6]$ $[M4O_6]$ und $[M5O_6]$ zeigen erhebliche Verzerrungen gegenüber einer ideal oktaedrischen Koordination auf. Bei Betrachtung der Abstände um M3 sollte statt von einer gestreckt-oktaedrischen Koordination besser von einer pyramidalen Koordination beziehungsweise von einer Koordination K.Z.(M3) = 5 + 1 gesprochen werden (Abbildung 3.29).

	$Fe^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$	$Mn_{5}^{11}V_{2}^{111}(P_{2}O_{7})_{4}$	$Cr^{II}_{5}V^{III}_{2}(P_2O_7)_4$
[<i>M</i> 1O ₆]	$\begin{array}{c} 011\\ 2.397\\ \hline 03\\ 9\\ 2.092\\ 2.092\\ \hline 09\\ 2.092\\ \hline 09\\ 2.022\\ \hline 09\\ 03\\ \hline 09\\ \hline 09\\ 03\\ \hline 09\\ \hline 009\\ $	$\begin{array}{c} 011\\ 2.368\\ 03\\ 2.071\\ 09\\ 2.134\\ 2.071\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03$	011 2.722 03 03 09 2.048 09 1.982 03
[<i>M</i> 2O ₆]	2.397 b 011 012 2.007 014 2.007 012 2.007 012 2.007 012 2.007 012 2.007 012 2.007 012 2.007 012 1.949 06 01 01 01 01 01 01 01 01 01 01	2.368 b 011 012 2.010 014 2.007 M2 1.963 001 2.120 01 014 012 2.010 012 2.010 012 2.010 012 2.010 012 0.1	2.722 011 2.043 012 2.043 014 2.025 2.047 01 1.952 006 2.077 01 01
[<i>M</i> 3O ₆]	b = 08 03 2.855 02 = 2.108 011 2.072 c = 2.108 2.213 01 c = 2.108 2.110 07 2.100 07 2.100 07 2.100 07	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{c} 03 \\ 03 \\ 03 \\ 02 \\ 2.094 \\ 011 \\ 02 \\ 02 \\ 02 \\ 02 \\ 04 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01$
[<i>M</i> 4O ₆]	$\begin{array}{c} 07 \\ 2.210 \\ 04 \\ 04 \\ 2.134 \\ 04 \\ 2.134 \\ 05 \\ 1.994 \\ 05 \\ 2.210 \\ 07 \\ 07 \\ 07 \\ 07 \\ 07 \\ 07 \\ 07 \\ $	$\begin{array}{c} 07 \\ 2.250 \\ 04 \\ 04 \\ 2.162 \\ 04 \\ 2.162 \\ 2.250 \\ 07 \end{array} \\ 05 \\ 05 \\ 05 \\ 05 \\ 05 \\ 05 \\ 07 \\ 07$	$\begin{array}{c} 07 \\ 2.374 \\ 04 \\ 05 \\ 05 \\ 1.988 \\ 2.050 \\ 04 \\ 2.374 \\ 07 \\ a \end{array} \\ \begin{array}{c} 07 \\ 1.988 \\ 2.050 \\ 04 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 05 \\ 05 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 07 \\ 1.988 \\ 0.5 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 05 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 05 \\ 05 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 05 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 05 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 05 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 05 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 05 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 05 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 05 \\ 05 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 05 \\ 05 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 05 \\ 05 \\ 05 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 05 \\ 05 \\ 05 \\ 04 \\ 07 \\ a \end{array} \\ \begin{array}{c} 05 \\ 05 \\ 05 \\ 04 \\ 07 \\ 07 \\ 07 \\ 07 \\ 07 \\ 07 \\ 07$
[<i>M</i> 5O ₆]	$\begin{array}{c} 014 \\ 2.292 \\ 012 \\ 0.2.172 \\ 0.2.172 \\ 0.14$	$012 \\ 09 \\ 2.202 \\ 09 \\ 2.159 \\ 2.202 \\ 012 \\ 2.330 \\ 014 $	$\begin{array}{c} 014 \\ 2.466 \\ 012 \\ 09 \\ 2.114 \\ 2.466 \\ 2.114 \\ 09 \\ 2.163 \\ 012 \\ 2.466 \\ a \end{array}$

Abbildung 3.29 ORTEP-Darstellungen [301] der $[MO_6]$ -Polyeder in $A^{II}_5 V^{III}_2 (P_2O_7)_4$ (A^{II} : Fe, Mn, Cr). Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%.

In beiden $A^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ -Strukturen weisen die beiden kristallographisch unabhängigen Pyrophosphatgruppen unterschiedliche Konformationen auf. Während [P1P4O₇] gestaffelt ist, zeigt die zweite Pyrophosphatgruppe [P2P3O₇] eine ekliptische Konformation auf (Abbildung 3.30). Die Brückenwinkel in den Pyrophosphatgruppen \angle (P1,O10,P4) und \angle (P2,O13,P3) liegen bei 136° ± 2° (Tabelle C.13).

Abbildung 3.30 ORTEP-Darstellungen [301] der Pyrophosphatgruppen [P₂O₇] in $A^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$. Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%. Fe^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4} (a) und (b), $Mn^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ (c) und (d), $Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ (e) und (f).
3.4.6 Die Kristallstruktur von Fe^{II}₃V^{III}₂(P₂O₇)₃

Die Kristallstruktur von $Fe^{II}_{3}V^{III}_{2}(P_{2}O_{7})_{3}$ gehört der Thortveitit-Familie an. Wie $Fe^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ (Abschnitt 3.4.5) zeigt die Projektion der Struktur entlang der *a*-Achse (Abbildung 3.31) Schichten entlang der *c*-Achse, bestehend aus kantenverknüpften $Fe^{II}O_{6}$ und $V^{III}O_{6}$ Oktaedern, verbunden durch Schichten von separaten Pyrophosphatgruppen.

Das dreidimensionale Netzwerk wird durch wechselseitige Stapelung von Oktaederschichten und Tetraederschichten entlang der *b*-Achse gebildet. Die Oktaeder $M1O_6$ und $M2O_6$ sind miteinander kantenverknüpft zu Zick-Zack-Ketten, die parallel zu [1 0 0] verlaufen. Durch die $M3O_6$ -Oktaeder werden diese Ketten zu gewellten Schichten, die parallel zur *B*-Ebene liegen, miteinander verknüpft.

Abbildung 3.31 Die Struktur von $Fe^{II}_{3}V^{III}_{2}(P_{2}O_{7})_{3}$ (a). Projektion entlang [1 0 0]. Schicht von $[Fe^{II}_{3}V^{III}_{2}O_{18}]_{\infty}$ (I), Schicht von $[P_{2}O_{7}]$ -Gruppen (II). Die $[Fe^{II}_{3}V^{III}_{2}O_{18}]_{\infty}$ -Schicht in $Fe^{II}_{3}V^{III}_{2}(P_{2}O_{7})_{3}$, Projektion entlang [1 0 0] (b), Projektion entlang [0 1 0] (c).

Die Struktur von $Fe^{II}_{3}V^{III}_{2}(P_{2}O_{7})_{3}$ lässt sich aus der $Fe^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ durch formales Herauslösen von zwei [MO_{6}]-Oktaedern und zwei [PO_{4}]-Tetraedern aus benachbarten Pyrophosphatgruppen und anschließender Rekombination der verbleibenden Struktureinheiten herleiten (Abbildung 3.32 und 3.33).

Abbildung 3.32 Fe₅V₂(P₂O₇)₄ Blick entlang [1 0 0] (a), Markieren der zu löschenden Polyeder (b), Rekombination (c), Fe₃V₂(P₂O₇)₃ als Resultat der Rekombination (d).

Abbildung 3.33 Kationenpolyederschicht in Fe₅V₂(P₂O₇)₄, Blick entlang [0 1 0] (a), Markieren der zu löschenden Polyeder (b), Rekombination (c), Kationenpolyederschicht in Fe₃V₂(P₂O₇)₃ als Resultat der Rekombination (d).

Wie bei $\operatorname{Fe}^{II}{}_{5}\operatorname{V}^{III}{}_{2}(\operatorname{P}{}_{2}\operatorname{O}{}_{7})_{4}$ wird auch für $\operatorname{Fe}^{II}{}_{3}\operatorname{V}^{III}{}_{2}(\operatorname{P}{}_{2}\operatorname{O}{}_{7})_{3}$ eine Fehlordnung von Vanadium und Eisen auf den Metalllagen beobachtet. Die Lage *M*1 ist zu 44 % Fe^{2+} und 56% V^{3+} , die Lage *M*2 zu 74 % Fe^{2+} und 26 % V^{3+} sowie die Lage *M*3 zu 64 % Fe^{2+} und 36 % V^{3+} besetzt. Während die Polyeder [*M*1O₆] und [*M*3O₆] näherungsweise eine ideal oktaedrische Form haben, weist der Polyeder [*M*2O₆] mit dem höchsten Eisengehalt erhebliche Verzerrungen auf (Abbildung 3.34). Bei Betrachtung der Abstände um *M*2 sollte statt von einer oktaedrischen Koordination besser von einer pyramidalen Koordination beziehungsweise von einer Koordination K.*Z*.(*M*2) = 5 + 1 gesprochen werden.

Wie in $\text{Fe}^{II}_{5}\text{V}^{II}_{2}(\text{P}_{2}\text{O}_{7})_{4}$ gibt es in $\text{Fe}^{II}_{3}\text{V}^{III}_{2}(\text{P}_{2}\text{O}_{7})_{3}$ zwei kristallographisch unterschiedliche Pyrophosphatgruppen, die unterschiedliche Konformationen besitzen. Während die [P2₂O₇]-Einheit eine gestaffelte Konformation aufweist (\angle (P2,O10,P2) = 128,2°), hat die zweite Pyrophosphatgruppe [P1P3O₇] eine ekliptische Konformation (\angle (P1,O11,P3) = 132,0°) (Abbildung 3.35).

Abbildung 3.34 ORTEP-Darstellungen [301] der drei kristallographisch unterschiedlichen [MO₆]-Oktaeder in Fe^{II}₃V^{III}₂(P₂O₇)₃. a) [M1O₆] b) [M2O₆] c) [M3O₆]. Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%.

Abbildung 3.35 ORTEP-Darstellungen [301] der zwei kristallographisch unterschiedlichen $[P_2O_7]$ -Gruppen in Fe^{II}₃V^{III}₂(P₂O₇)₃. [P1P3O₇] (a) [P2₂O₇] (b). Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%.

3.4.7 Zusammenfassende kristallchemische Betrachtungen

Im Rahmen dieser Arbeit wurden quaternäre Pyrophosphate der 3d-Übergangsmetalle untersucht, die auf dem quasi-binären Schnitt $A^{II}_{2}P_2O_7 - B^{III}_4(P_2O_7)_3$ liegen (A^{II} : Cr, Mn, Fe, Co, Cu, (Pd), Zn, Mg; B^{III} : Ti, V, Cr, Fe, In). Neben den fünf in der Literatur genannten polynären Pyrophosphaten konnten 21 neue Vertreter synthetisiert und kristallographisch charakterisiert werden. Die bislang erhaltenen polynären Diphosphate weisen drei verschiedene Verhältnisse $n(A^{2+})$: $n(B^{3+})$ auf. Dabei wurden vier Strukturfamilien gefunden, die in neun Strukturtypen untergliedert werden können (Tabelle 3.17).

Mögliche Kombinationen von A^{II} und B^{III} werden neben geometrischen Faktoren wie den Größenverhältnissen und den Ionen und deren bevorzugten Koordinationspolyedern der beteiligten Ionen auch durch das Redoxverhalten der Ionen eingeschränkt. So wurde statt Pd^{II}V^{III}₂(P₂O₇)₂, welches isotyp zu der entsprechenden Palladium(II)-eisen(III)-verbindung Pd^{II}Fe^{III}₂(P₂O₇)₂ sein sollte, ein Gemenge aus elementarem Palladium und V^{IV}O(PO₃)₂. erhalten.

Von 14 polynären Pyrophosphaten wurde eine Einkristallstrukturanalyse durchgeführt, von sieben weiteren isotypen Verbindungen wurden die Gitterparameter bestimmt.

Interessant ist die strukturelle Vielfalt der quaternären Pyrophosphate. Während bei den quaternären Orthophosphaten der 3d-Übergangsmetalle (vergl. Kapitel 2) nur die Strukturtypen $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ [16] und $Cu^{II}_{3}In^{III}_{2}(PO_{4})_{4}$ [33] beobachtet werden, können die 26 bislang bekannten polynären Pyrophosphate der 3d-Übergangsmetalle in neun Strukturtypen zusammengefasst werden (Tabelle 3.17).

Die Strukturen der $A^{II}_{2}P_{2}O_{7}$ -reichen quaternären Pyrophosphate $A^{II}_{5}B^{III}_{2}(P_{2}O_{7})_{4}$ und Fe^{II}₃V^{III}₂(P₂O₇)₃ leiten sich von der Thortveitit-Struktur [225 - 227] ab (siehe Abschnitt 3.4.5 und 3.4.6). Die an $B^{III}_{4}(P_{2}O_{7})_{3}$ -reichen, quaternären Pyrophosphate $A^{II}B^{III}_{2}(P_{2}O_{7})_{2}$ können in drei Strukturfamilien zusammengefasst werden. Diese Familien leiten sich vom NaCl-Strukturtyp oder auf zwei unterschiedliche Arten vom NiAs-Strukturtyp ab.

Struktur- familie	Strukturtyp	R.G.	Im Rahmen der vorliegend Gitterparameter- bestimmung	len Arbeit durchgeführt: Einkristall- strukturanalyse
NiAs ^{a)}	CrCr ₂ (P ₂ O ₇) ₂ [13]	ΡĪ	$CrV_{2}(P_{2}O_{7})_{2}, \\FeV_{2}(P_{2}O_{7})_{2}, \\MgCr_{2}(P_{2}O_{7})_{2}, \\FeCr_{2}(P_{2}O_{7})_{2}$	$CrV_2(P_2O_7)_2,$ $FeV_2(P_2O_7)_2$
NiAs ^{b)}	h-CrTi ₂ (P ₂ O ₇) ₂	$P6_3/m$	<i>hex.</i> -CrTi ₂ (P_2O_7) ₂	<i>hex.</i> -CrTi ₂ (P_2O_7) ₂
	FeFe ₂ (P ₂ O ₇) ₂ [17]	Pnma	$\begin{array}{l} MgFe_{2}(P_{2}O_{7})_{2},\\ CoFe_{2}(P_{2}O_{7})_{2},\\ ZnFe_{2}(P_{2}O_{7})_{2} \end{array}$	
NaCl ^{c)}	t-CrTi ₂ (P ₂ O ₇) ₂	ΡĪ	triklCrTi ₂ (P ₂ O ₇) ₂	triklCrTi ₂ (P ₂ O ₇) ₂
	CuFe ₂ (P ₂ O ₇) ₂ [29]	$P2_{1}/n$	$CuIn_2(P_2O_7)_2$	$CuIn_2(P_2O_7)_2$
	CuCr ₂ (P ₂ O ₇) ₂	<i>P</i> 2 ₁ / <i>n</i>	$\begin{array}{l} CuV_2(P_2O_7)_2,\\ CuCr_2(P_2O_7)_2,\\ PdCr_2(P_2O_7)_2,\\ PdFe_2(P_2O_7)_2,\\ PdIn_2(P_2O_7)_2 \end{array}$	$\begin{array}{l} CuV_2(P_2O_7)_2,\\ CuCr_2(P_2O_7)_2,\\ PdCr_2(P_2O_7)_2,\\ PdFe_2(P_2O_7)_2,\\ PdIn_2(P_2O_7)_2 \end{array}$
Thortveitit	Fe ₅ Fe ₂ (P ₂ O ₇) ₄ [130]	C222 ₁	$\begin{array}{l} Fe_5V_2(P_2O_7)_4,\\ Mn_5Fe_2(P_2O_7)_4,\\ Zn_5Fe_2(P_2O_7)_4 \end{array}$	$ \begin{array}{l} Mn_5V_2(P_2O_7)_4, \\ Fe_5V_2(P_2O_7)_4 \end{array} $
	$Cr_5V_2(P_2O_7)_4$	<i>C</i> 2	$Cr_5V_2(P_2O_7)_4$	$Cr_5V_2(P_2O_7)_4$
	$Fe_3V_2(P_2O_7)_3$	C222 ₁	$Fe_3V_2(P_2O_7)_3$	$Fe_{3}V_{2}(P_{2}O_{7})_{3}$

Tabelle 3.17 Übersicht zu den im Rahmen der vorliegenden Arbeit charakterisierten polynären Pyrophosphaten. Strukturtypen einer Strukturfamilie sind jeweils zusammengefasst.

^{a)} Anstelle der As-Atome treten [PO₄]-Gruppen.

^{b)} Anstelle der As-Atome treten "zylindrische" [P₂O₇]-Gruppen, die senkrecht zu den hexagonal dichtesten Packungsschichten ausgerichtet sind.

^{c)} Anstelle der Cl-Atome treten "zylindrische" [P₂O₇]-Gruppen, die senkrecht zu den kubisch dichtesten Packungsschichten ausgerichtet sind.

Die $\mathbf{Cr^{II}}\mathbf{Cr^{III}}_{2}(\mathbf{P}_{2}\mathbf{O}_{7})_{2}$ -Struktur [13] (vgl. Abschnitt 3.4.4) leitet sich von der NiAs-Struktur [253] ab. Die Phosphoratome bilden eine hexagonal-dichteste Packung, bei der 3/4 der Oktaederlücken durch die Kationen A^{II} und B^{III} besetzt werden (Abbildung 3.36). Die Phosphoratome einer Diphosphatgruppe liegen immer innerhalb einer dichtest-gepackten Ebene.

Abbildung 3.36 Vergleich zwischen der NiAs-Struktur (a und b) und der $CrCr_2(P_2O_7)_2$ -Struktur (c und d). Gelb: Positionen der As- bzw. P-Atome, hellgrau: Lage der Kationen, dunkelgrau: Lage der Leerstellen. Sicht entlang [0 0 -1] (a und c) und [-1 0 0] (b und d). Zur besseren Vergleichbarkeit der Strukturen wurde die Zelle von $CrCr_2(P_2O_7)_2$ mit der Matrix [1 0 0 -3 1 0 0 0 1] transformiert.

Die $\mathbf{Fe^{II}Fe^{III}}_{2}(\mathbf{P_{2}O_{7}})_{2}$ - [17] und *h*-Cr^{II}Ti^{III}₂(P₂O₇)₂-Struktur (Abschnitt 3.4.3) leiten sich ebenfalls von der NiAs-Struktur [253] ab. Die anionische Teilstruktur bildet eine verzerrte hexagonale dichteste Packung. Anstelle der Kugeln treten "zylindrische" [P₂O₇]-Gruppen, die parallel zur *c*-Achse der hexagonalen Zelle ausgerichtet sind. Die Stapelfolge der P-Atome ist *AABB*. Sämtliche Oktaederlücken der "Stäbchenpackung" werden durch M^{3+} -Kationen besetzt (Abbildung 3.37). Die M^{2+} -Kationen besetzen innerhalb der [P₂O₇]-Schichten die Hälfte der prismatisch durch P koordinierten Lücken. Im Unterschied zur FeFe₂(P₂O₇)₂-Struktur befinden sich in der CrTi₂(P₂O₇)₂-Struktur die M^{2+} -Kationen nicht im Zentrum des Prismas, sondern zentrieren eine Seitenfläche (vergl. Abschnitt 3.4.3).

Abbildung 3.37 Vergleich zwischen der NiAs-Struktur (a und b), $FeFe_2(P_2O_7)_2$ -Struktur (c und d) und *h*-CrTi₂(P₂O₇)₂-Struktur (e und f). Gelb: Positionen der As bzw. P Atome, grau: Lage der Ni- bzw. M^{3+} -Kationen.

Die sehr eng miteinander verwandten Strukturen der Pyrophosphate *t*-Cr^{II}Ti^{III}₂(P₂O₇)₂, Cu^{II}Cr^{III}₂(P₂O₇)₂ und Cu^{II}Fe^{III}₂(P₂O₇)₂ (vergl. Abschnitt 3.4.2) leiten sich von der NaCl-Struktur [254] ab. Die anionische Teilstruktur bildet eine verzerrte kubisch-dichteste Packung. Anstelle der Kugeln treten "zylindrische" [P₂O₇]-Gruppen, die parallel zu einer der Raumdiagonalen der kubischen Zelle ausgerichtet sind. Die Stapelfolge der P-Atome ist *AABBCC*. Sämtliche Oktaederlücken der "Stäbchenpackung" werden durch M^{3+} -Kationen besetzt (Abbildung 3.38). Die M^{2+} -Kationen befinden sich innerhalb der [P₂O₇]-Schichten und sind quadratisch durch P koordiniert. Die Unterschiede zwischen den drei Strukturtypen *t*-Cr^{II}Ti^{III}₂(P₂O₇)₂, Cu^{II}Cr^{III}₂(P₂O₇)₂ und Cu^{II}Fe^{III}₂(P₂O₇)₂ ergeben sich aus der Position der M^{2+} -Kationen (Abbildung 3.39).

Abbildung 3.38 Perspektivische Darstellung der NaCl- (a), t-CrTi₂(P₂O₇)₂- (b), CuCr₂(P₂O₇)₂- (c) und CuFe₂(P₂O₇)₂-Struktur (d). Gelb: Positionen der Cl-Atome bzw. Schwerpunkte der [P₂O₇]-Gruppen. Die schwarze Linie kennzeichnet die Ausrichtung der [P₂O₇]-Gruppen, hellgrau: Lage der Na⁺- bzw. M^{3+} -Kationen. Zur besseren Vergleichbarkeit der Strukturen von t-CrTi₂(P₂O₇)₂, CuCr₂(P₂O₇)₂ und CuFe₂(P₂O₇)₂ wurden die transformierten Zellen aus Abschnitt 3.3.1 verwendet. Blickrichtung entlang [0 0 1].

Abbildung 3.39 Lage der M^{2+} -Ionen in den kubischen dichtest angeordneten [P₂O₇]-Gruppen in der *t*-CrTi₂(P₂O₇)₂- (a), CuFe₂(P₂O₇)₂- (b) und CuCr₂(P₂O₇)₂-Struktur (c). Himmelblau: Position von M^{2+} in der Schicht A (hellgrau), mittelblau: Position von M^{2+} in der Schicht B (grau) und dunkelblau: Position von M^{2+} in der Schicht C (schwarz). Blickrichtung jeweils entlang der monoklinen Achse bzw. "pseudo-monoklinen" Achse von $AB_2(P_2O_7)_2$ und entlang der P-P-Achse in den [P₂O₇]-Gruppen.

3.5 UV/vis/nir-Spektren polynärer Übergangsmetallpyrophosphate

3.5.1 $Cu^{II}In^{III}_{2}(P_{2}O_{7})_{2}, Cu^{II}Cr^{III}_{2}(P_{2}O_{7})_{2} und Pd^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$

Zweiwertiges Kupfer hat eine d⁹-Elektronenkonfiguration. Der Grundterm von Cu²⁺ ist ²D. In ideal oktaedrischer Umgebung erwartet man für Cu²⁺ nur den Übergang ${}^{2}E_{2g} \rightarrow {}^{2}T_{g}$. In den Pyrophosphaten Cu^{II} $M^{III}_{2}(P_{2}O_{7})_{2}$ (M^{III} : V, Cr, Fe, In) liegt für das Cu²⁺-Ion jedoch statt einer oktaedrischen Umgebung eine quadratische planare Koordination vor und es kommt zur weiteren Aufspaltung der Terme.

Dreiwertiges Chrom hat eine d³-Elektronenkonfiguration. Der Grundterm von Cr³⁺ ist ⁴F, der erste angeregte Folgeterm ⁴P. In regulärer oktaedrischer Umgebung (O_h-Symmetrie) erwartet man für Cr³⁺ die drei spinerlaubten Übergänge von ⁴A_{2g} \rightarrow ⁴T_{2g}, ⁴A_{2g} \rightarrow ⁴T_{1g} (F) und ⁴A_{2g} \rightarrow ⁴T_{1g} (P), wobei der erste Übergang oft von den eigentlich spinverbotenen Übergängen ⁴A_{2g} \rightarrow ²E_g und ⁴A_{2g} \rightarrow ²T_{2g} überlagert wird [255, 256].

Die durch chemischen Transport unter Zusatz von Cl_2 erhaltenen Kristalle von $CuIn_2(P_2O_7)_2$ sind himmelblau (Abschnitt 3.2.5). Farbbestimmend ist nur das Cu^{2+} -Ion. In³⁺ mit d¹⁰-Elektronenkonfiguration hat keinen Einfluss auf die Farbe der Verbindung. Das für $CuIn_2(P_2O_7)_2$ beobachte Absorptionsspektrum zeigt große Übereinstimmung zu dem beobachteten Spektrum des [$Cu^{II}O_4$]-Chromophoren in CaCuSi₄O₁₀ (Ägyptisch Blau) [257].

Man beobachtet eine Absorptionsbande bei $\tilde{v}_1 = 14340 \text{ cm}^{-1}$, die auf jeder Seite eine Schulter hat (12860 cm⁻¹ und 16680 cm⁻¹). Die molaren Extinktionskoeffizienten der Elektronenübergänge des zentrosymmetrischen Kupferchromophors sind relativ niedrig. Durch die schwache Absorption von orangem Licht erscheint die Verbindung blass himmelblau (Komplementärfarbe zu Orange).

Sowohl die Kristalle als auch das Pulver von $\operatorname{CuCr}_2(\operatorname{P_2O}_7)_2$ sind maigrün. Im Pulverremissionsspektrum werden drei starke Absorptionsbanden beobachtet. Die erste Absorptionsbande (${}^{2}A_{2g} \rightarrow {}^{4}T_{2g}$) entspricht der Ligandenfeldaufspaltung Δ und hat ihren Schwerpunkt bei $\tilde{\nu}_1 = 14190 \text{ cm}^{-1}$. Sie zeigt ein Minimum bei 14660 cm⁻¹ und eine Schulter bei 15440 cm⁻¹. Diese entsprechen den spinverbotenen Übergängen ${}^{4}A_{2g} \rightarrow {}^{2}E_{g}$ und ${}^{4}A_{2g} \rightarrow {}^{2}T_2$ des Chroms. Auch die Übergänge des quadratisch-planar koordinierten Cu²⁺ liegen in diesem Absorptionsbereich, wie das Absorptionsspektrum von CuIn₂(P₂O₇)₂ zeigt. Die zweite Absorptionsbande von CuCr₂(P₂O₇)₂ (${}^{4}A_{2g} \rightarrow {}^{4}T_{1g}$) befindet sich bei $\tilde{\nu}_2 = 21330 \text{ cm}^{-1}$ und die dritte (${}^{4}A_{2g} \rightarrow {}^{4}T_{2g}$) liegt bei $\tilde{\nu}_3 = 28570 \text{ cm}^{-1}$. Mit $\tilde{\nu}_1$ und $\tilde{\nu}_2$ liefert die Auswertung gemäß TANABE und SUGANO [258, 259, 260] für diese Verbindung einen Racah-Parameter [261] $B = 724 \text{ cm}^{-1}$ und ein nephelauxetisches Verhältnis $\beta = 0,78$. 176

Abbildung 3.40 UV/vis/nir-Spektren von $CuIn_2(P_2O_7)_2$ (Pulverremissionsspektrum) (a), $CuCr_2(P_2O_7)_2$ (Pulverremissionsspektrum) (b) und $PdCr_2(P_2O_7)_2$ (Einkristallabsorptionsspektrum) (c).

Die von $\mathbf{Pd^{II}Cr^{III}}_{2}(\mathbf{P}_{2}\mathbf{O}_{7})_{2}$ erhaltenen Kristalle weisen eine für Chrom(III)-verbindungen untypische gelbe Farbe auf. Die erste Absorptionsbande (${}^{2}A_{2g} \rightarrow {}^{4}T_{2g}$) bei $\tilde{v}_{1} = 14450 \text{ cm}^{-1}$ entspricht der Ligandenfeldaufspaltung Δ des [$Cr^{III}O_{6}$]-Chromophors. Überlagert wird dieser Übergang wie auch bei $Cu^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ durch die beiden spinverbotenen Übergänge (${}^{4}A_{2g} \rightarrow {}^{2}E_{g}$) bei 14100 cm⁻¹ und (${}^{4}A_{2g} \rightarrow {}^{2}T_{2}$) bei 15000 cm⁻¹. Der zweite Übergang (${}^{2}A_{2g} \rightarrow {}^{4}T_{1g}(F)$) liegt bei $\tilde{v}_{2} = 22250 \text{ cm}^{-1}$. Der dritte Übergang \tilde{v}_{3} (${}^{2}A_{2g} \rightarrow {}^{4}T_{2g}(P)$) wird durch Charge-Transfer-Übergänge überlagert. Aus dem TANABE-SUGANO Diagramm für d³-Ionen in oktaedrischer Umgebung [260] ergibt sich ein Racah-Parameter $B = 920 \text{ cm}^{-1}$ und ein nephelauxetisches Verhältnis $\beta = 0.98$. Für die Palladiumverbindung Pd^{II}Cr^{III}_{2}(P_{2}O_{7})_{2} wurde ein deutlich größerer Wert für das nephelauxetische Verhältnis als für die isotype Kupferverbindung gefunden (Tabelle 3.18).

Tabelle 3.18 Aus den UV-vis Spektren von $M^{II}Cr^{III}_2(P_2O_7)_2$ (M^{II} : Cu, Pd) ermittelte Daten.

	$Pd^{II}Cr^{III}_{2}(P_2O_7)_2$	$Cu^{II}Cr^{III}_2(P_2O_7)_2$	
$B_0 / \text{ cm}^{-1}$	933	933	
$\Delta (\tilde{\nu}_1) / \mathrm{cm}^{-1}$	14450	14540	
$E_2 \left(\tilde{\nu}_2 \right) / \mathrm{cm}^{-1}$	22250	21330	
B / cm^{-1}	920	724	
$\beta = B/B_0$	0,98	0,78	

3.5.2 trikl.- $Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ und hex.- $Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$

Bei den Transportexperimenten zu $Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ wurden je nach Experiment schwarze Kristalle (hexagonale Modifikation), deren Pulver fliederfarben ist und intensiv purpurfarbene Kristalle (trikline Modifikation, pinkfarbenes Pulver) erhalten. Von den "schwarzen" Kristallen von *hex.*- $Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ wurde ein Pulverremissionsspektrum und von den purpurfarbenen Kristallen der triklinen Modifikation von $Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ ein Einkristallabsorptionsspektrum gemessen.

In beiden Strukturen ist Ti³⁺ oktaedrisch von Sauerstoff umgeben. Im Unterschied zur üblichen Koordination von Cr^{2+} liegt in *trikl.*- $Cr^{II}Ti^{III}_2(P_2O_7)_2$ eine quadratisch-planare Anordnung vor, wobei das Chromatom von vier Sauerstoffatomen in einem Abstand von $d(Cr^{II}-O) = 2,01$ Å umgeben ist.

In *hex.*-CrTi₂(P₂O₇)₂ liegt ebenfalls für Cr²⁺ eine ungewöhnliche Koordination vor. Das Chromatom ist quadratisch von Sauerstoff umgeben, zusätzlich wird das Quadrat von zwei weiteren Sauerstoffatomen überkappt (vergl. Abschnitt 3.4.3).

Abbildung 3.41 UV/vis/nir-Spektren von *hex.*-CrTi₂(P_2O_7)₂ (Pulverremissionsspektrum) (a) und *trikl.*-CrTi₂(P_2O_7)₂ (Einkristallabsorptionsspektrum) (b).

Wie bei $Cr^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ wird bei beiden Modifikationen von $Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ die Interpretation der Absorptionsspektren durch die Überlagerung der Elektronenübergänge der beiden Chromophore $[Ti^{III}O_{6}]$ und $[Cr^{II}O_{x}]$ erschwert.

Während der $[Cu^{II}O_4]$ -Chromophor in $Cu^{II}In^{III}_2(P_2O_7)_2$ und in $Ca^{II}Cu^{II}Si_4O_{10}$ [257] ein sehr ähnliches Absorptionsverhalten zeigt, lassen sich die Chromophoren $[Cr^{II}O_4]$ in *trikl.*- $Cr^{II}Ti^{III}_2(P_2O_7)_2$ bzw. $[Cr^{II}O_4O_2]$ in *hex.*- $Cr^{II}Ti^{III}_2(P_2O_7)_2$ nicht mit den $[Cr^{II}O_4]$ -Chromophoren in $A^{II}Cr^{II}Si_4O_{10}$ (A^{II} : Ca [262, 263], Sr [264], Ba [264]) vergleichen. Es zeigen sich ebenfalls keine Übereinstimmungen zwischen den Cr^{II} -Chromophoren in den beiden Modifikationen von $Cr^{II}Ti^{III}_2(P_2O_7)_2$ und den $[Cr^{II}O_4]$ -Chromophoren in den Spektren der Chrom(II)-disilicate $Cr^{II}_3Si_2O_7 \cdot {}^{I_4}MX$ (MX = NaCl, NaBr, KCl, KBr) [262, 265]. Die Elektronenübergänge in α -Cr^{II}₂P₂O₇ ($\tilde{\nu}_1 = 13500 \text{ cm}^{-1}$) [262] und Cr^{II}₃Ti^{III}₄(PO₄)₆ ($\tilde{\nu}_1 = 12000 \text{ cm}^{-1}$) liegen bei deutlich niedrigeren Wellenzahlen als bei Chrom(II) in quadratischplanarer Koordination ($\tilde{\nu}_1 \approx 15000 \text{ cm}^{-1}$ [262-265]). Hier ergibt sich kein Widerspruch zwischen den beobachteten Spektren und den Chromophoren. Eine Zuordnung der einzelnen Banden zu den verschiedenen Chromophoren ist zur Zeit noch nicht möglich.

Tabelle 3.19 Beobachtete Banden in den Absorptionsspektren der Elektronenübergänge der beiden Chromophore $[Ti^{III}O_6]$ und $[Cr^{II}O_x]$ von *trikl.*- und *hex.*-CrTi₂(P₂O₇)₂.

Bande	Wellenzahl / cm ⁻¹		Zuordnung
	<i>hex.</i> -CrTi ₂ (P_2O_7) ₂	triklCrTi ₂ (P ₂ O ₇) ₂	-
$\tilde{\nu}_1$	13600	13800	
$\tilde{\mathcal{V}}_2$	18250	16800	
$\tilde{\mathcal{V}}_3$	19100	19100 19250	spin-verbotene Übergänge an Cr ²⁺

4 Katalysatoren zur selektive Oxidation von Methan zu Formaldehyd

Der Stand der Technik bei der Darstellung von Formaldehyd aus Methan in einem mehrstufigen Prozess über Synthesegas und Methanol ist in Abschnitt 1.1.3.2 zusammengefasst. Im Rahmen der Suche nach Katalysatoren für die Direktoxidation von Methan zu Formaldehyd wurden die quaternären Eisenphosphate mit den allgemeinen Summenformeln $A^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$, $A^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ und $A^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}$ untersucht. Als Vergleichsubstanzen wurden quaternäre Metall(II)-Chrom(III)-orthophosphate $A^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ und einige Metall(II)-Chrom(III)-pyrophosphate $A^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ sowie die ternären Eisenphosphate Fe^{III}PO₄, Fe^{III}_{4}(P_{2}O_{7})_{3}, Fe^{III}(PO_{3})_{3}, Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}, Fe^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}, Fe^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}, Fe^{III}_{3}(PO_{4})_{2} und Fe^{II}_{2}P_{2}O_{7} getestet. Von primärem Interesse war dabei herauszufinden, wie durch die Wahl des zweiwertigen Kations in den quaternären Eisen(III)-phosphaten die katalytischen Eigenschaften (Umsatz, Selektivität, entstehende Neben-produkte) beeinflusst werden.

Die experimentellen Bedingungen für die katalytischen Testmessungen sind in Abschnitt 1.3.4 beschrieben. Die Durchführung der Tests erfolgte im Rahmen des Concorde-Projekts (*Co-o*rdination of *N*anostructured *C*atalytic *O*xides *R*esearch and *D*evelopment in *E*urope [266]) an der STU (Slovenská technická univerzita v Bratislave) im Arbeitskreis von Prof. M. Hronec in Bratislava (Slowakei).

4.1 Darstellung der Katalysatoren

Zur Darstellung der Katalysatoren $A^{II}_{3}B^{III}_{4}(PO_4)_6$, $A^{II}B^{III}_{2}(P_2O_7)_2$ und $A^{II}_5Fe^{III}_2(P_2O_7)_4$ wurden fünf unterschiedliche Synthesemethoden (A-E) verwendet. Die "volloxidierten" Phosphate wurden nach den Methoden A-D dargestellt. Diese unterscheiden sich in der Wahl der Phosphatquelle und Temperbedingungen. Bei allen vier Methoden wurden wässrige Lösungen von stöchiometrischen Mengen Fe(NO₃)₃ oder Cr(NO₃)₃ und des zweiwertigen Metalls, gelöst in 30%iger Salpetersäure, und Orthophosphorsäure oder (NH₄)₂HPO₄ miteinander vermischt (vergl. Abschnitt 2.2.3, 2.2.4 und 3.2.4). Die Lösungen wurden dann auf einem Heizrührer zur Trockene eingedampft und der so erhaltene Rückstand an Luft getempert (vergl. Tabelle 4.1).

Darstellungs- methode	verwendete Phosphatquelle	T _{max} / °C	Dauer / d	Bemerkungen
A	H ₃ PO ₄	800	160	
В	(NH ₄) ₂ HPO ₄	800	160	
C	(NH ₄) ₂ HPO ₄	800	160	Anschließendes Tempern in geschlossenen Kieselglas- ampullen unter Chloratmosphäre für 5d bei 800 °C.
D	H ₃ PO ₄	500	72	

Tabelle 4.1VerwendeteSynthesebedingungenzurDarstellungder"volloxidierten"Katalysatoren.

Die Darstellung der "reduzierten" Phosphate wird im folgenden als Methode E bezeichnet. $Cr^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ (Abschnitt 2.2.3), $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ (Abschnitt 2.2.4) und $Fe^{II}_{3}(PO_{4})_{2}$ (Abschnitt 1.4) wurden phasenrein durch Reduktion von $B^{III}PO_{4}$ (B^{III} : Cr, Fe) mit elementarem Eisen bzw. Chrom in Gegenwart von 20-50 mg Iod als Mineralisator in geschlossenen Kieselglasampullen bei 800 °C für 5-7 Tage erhalten. Die "reduzierten" Pyrophosphate $Cr^{II}_{2}Cr^{III}_{4}(P_{2}O_{7})_{4}$ (Abschnitt 3.2.3), $Fe^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ (Abschnitt 3.2.4) und $Fe^{II}_{5}Fe^{II}_{2}(P_{2}O_{7})_{4}$ (Abschnitt 3.2.4) wurden phasenrein aus stöchiometrischen Mengen von $M^{III}_{4}(P_{2}O_{7})_{3}$ und $M^{II}_{2}P_{2}O_{7}$ (M: Cr, Fe) in Gegenwart von 20-50 mg Iod als Mineralisator in geschlossenen Kieselglasampullen bei 800 °C für 5-7 Tage erhalten.

Die Kalzinierungstemperatur hatte großen Einfluss auf die beobachtete katalytische Aktivität und Kristallstruktur der quaternären Eisen(III)-orthophosphate vor und nach der Oxidation von Methan.

Katalysatoren, die durch Glühen an Luft bei 500 °C dargestellt wurden, wiesen nach den katalytischen Reaktionen bei rund 660 °C andere Phasenzusammensetzungen als vor den Tests auf. Anstelle von Ni₃Fe₄(PO₄)₆ wurde (Ni_xFe_{1-x})(PO₄)_{1-1/3x} als Reaktionsprodukt beobachtet. Zwei kristalline Phasen, $(Cu_rFe_{1-r})(PO_4)_{1-1/3r}$ und $Cu_3Fe_4(PO_4)_6$, entstanden bei Cu₃Fe₄(PO₄)₆. Interessanterweise wird CoFeO(PO₄) [267] sowie eine weitere amorphe Phase während der katalytischen Testreaktion zu Co₃Fe₄(PO₄)₆ umgewandelt. Das für Vergleichszwecke unter den gleichen Bedingungen dargestellte Ni₃Cr₄(PO₄)₆ war vor und nach den katalytischen Tests amorph. Die Reflexmuster der IP-Guinier-Aufnahmen von $(Ni_{x}Fe_{1-x})(PO_{4})_{1-1/3x}$ und $(Cu_xFe_{1-x})(PO_4)_{1-1/3x}$ zeigen große Ähnlichkeiten zum Beugungsdiagramm von β -CrPO₄ [99]. Die an Luft bei 800 °C getemperten Proben Mn₃Fe₄(PO₄)₆ und Cu₃Fe₄(PO₄)₆ waren vor und nach den katalytischen Tests nach IP-Guinier-Aufnahmen phasenrein, während die Proben Mg₃Fe₄(PO₄)₆, Co₃Fe₄(PO₄)₆, Ni₃Fe₄(PO₄)₆ und Zn₃Fe₄(PO₄)₆ zusätzlich Fe^{III}PO₄ in unterschiedlichen Mengen und vermutlich eine weitere Metall(II)-reiche amorphe Nachbarphase enthielten. Nach den

katalytischen Tests nahm der Fe^{III}PO₄-Anteil in den Proben ab, der Gehalt der Proben an M^{II}_{3} Fe^{III}₄(PO₄)₆ und deren Kristallinität nahm zu. Die **mit Chlor** bei **800** °C getemperten quaternären Eisen(III)-orthophosphate sowie die an Luft bei 800 °C getemperten quaternären Chrom(III)-orthophosphate waren vor und nach den katalytischen Tests phasenrein. Bei den ternären Orthophosphaten **Fe^{III}₃Fe^{III}₄(PO₄)₆ und Cr^{II}₃Cr^{III}₄(PO₄)₆** wurde nach den Tests neben $M^{II}_{3}M^{III}_{4}(PO_{4})_{6}$ zusätzlich $M^{III}PO_{4}$ (M^{III} : Fe, Cr) beobachtet.

4.2 Charakterisierung der Katalysatoren

Die chemische Zusammensetzung und die Kristallstrukturen der verwendeten Katalysatoren wurden vor und nach den katalytischen Tests jeweils mit *IP*-Guinier-Aufnahmen bestimmt. Die spezifische Oberfläche wurde mit einem Micromeritics Pulse Chemisorb 2700 Analysator unter Verwendung der BET-Methode [268] durch Adsorption von Stickstoff an den Proben bei 77 K gemessen. Vor der Messung wurden die Proben bei 550 °C drei Stunden lang im Heliumstrom ausgeheizt. Dabei ergaben sich die für Pulver typischen Oberflächen von 1,6 - $3,2 \text{ m}^2 \cdot \text{g}^{-1}$ für die Orthophosphate und von 2,4 - 5,7 m $^2 \cdot \text{g}^{-1}$ für die Pyrophosphate.

Für die TPR-Messungen (Temperatur-programmierte Reduktion) wurden jeweils 50 mg Katalysatormaterial im Wasserstoffstrom (Flussrate 25 mL \cdot min⁻¹) in einer konventionellen Apparatur verwendet, ausgestattet mit einem Wärmeleitfähigkeitsdetektor. Die Proben wurden von 30 °C bis 800 °C aufgeheizt (Heizrate von 10° \cdot min⁻¹), bis die Reduktion der Proben vollständig war. Die Probenvorbereitung wurde auf gleiche Weise unter Stickstoffatmosphäre für zwei Stunden durchgeführt.

Nominale Präparations-		Produkt (nach IP-Guinier-Aufnahmen)				
Zusammensetzung	methode ^{a)}	wie dargestellt	nach katalytischen Tests			
$Mg^{II}_{3}Fe^{III}_{4}(PO_4)_6$	А	$Mg_{3}^{II}Fe_{4}^{III}(PO_{4})_{6} + Fe_{4}^{III}PO_{4}$	$Mg_{3}^{II}Fe_{4}^{III}(PO_{4})_{6} (+ Fe_{4}^{III}PO_{4})$			
$Mg_{3}^{II}Fe_{4}^{III}(PO_{4})_{6}$	В	$Mg_{3}^{II}Fe_{4}^{III}(PO_{4})_{6} + Fe_{4}^{III}PO_{4}$	$Mg_{3}^{II}Fe_{4}^{III}(PO_{4})_{6} + Fe_{4}^{III}PO_{4}$			
$Mg^{II}_{3}Fe^{III}_{4}(PO_4)_{6}$	С	$Mg^{II}_{3}Fe^{III}_{4}(PO_4)_{6}$	$Mg^{II}_{3}Fe^{III}_{4}(PO_4)_6$			
$\mathrm{Mn}^{\mathrm{II}}{}_{3}\mathrm{Fe}^{\mathrm{III}}{}_{4}(\mathrm{PO}_{4})_{6}$	В	$Mn^{II}_{3}Fe^{III}_{4}(PO_4)_{6}$	$Mn^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$			
$\mathrm{Mn}^{\mathrm{II}}{}_{3}\mathrm{Fe}^{\mathrm{III}}{}_{4}(\mathrm{PO}_{4})_{6}$	С	$\mathrm{Mn}^{\mathrm{II}}_{3}\mathrm{Fe}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}$	$\mathrm{Mn}^{\mathrm{II}}{}_{3}\mathrm{Fe}^{\mathrm{III}}{}_{4}(\mathrm{PO}_{4})_{6}$			
$\mathrm{Fe}^{\mathrm{II}}_{3}\mathrm{Fe}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}$	Е	$\mathrm{Fe}^{\mathrm{II}}_{3}\mathrm{Fe}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}$	$\mathrm{Fe}_{3}\mathrm{Fe}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}$ (+ $\mathrm{Fe}^{\mathrm{III}}\mathrm{PO}_{4}$)			
$\mathrm{Co}^{\mathrm{II}}_{3}\mathrm{Fe}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}$	А	$Fe^{III}PO_4 + Co_3Fe^{III}_4(PO_4)_6$	$\mathrm{Fe}^{\mathrm{III}}\mathrm{PO}_4 + \mathrm{Co}_3\mathrm{Fe}^{\mathrm{III}}_4(\mathrm{PO}_4)_6$			
$\mathrm{Co}^{\mathrm{II}}_{3}\mathrm{Fe}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}$	В	$\mathrm{Co}^{\mathrm{III}}_{3}\mathrm{Fe}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}+\mathrm{Fe}^{\mathrm{III}}\mathrm{PO}_{4}$	$\mathrm{Co}^{\mathrm{II}}_{3}\mathrm{Fe}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}+\mathrm{Fe}^{\mathrm{III}}\mathrm{PO}_{4}$			
$\mathrm{Co}^{\mathrm{II}}_{3}\mathrm{Fe}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}$	С	$\mathrm{Co}^{\mathrm{II}}_{3}\mathrm{Fe}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}$	$\mathrm{Co}^{\mathrm{II}}{}_{3}\mathrm{Fe}^{\mathrm{III}}{}_{4}(\mathrm{PO}_{4})_{6}$			
$\mathrm{Ni}^{\mathrm{II}}_{3}\mathrm{Fe}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}$	А	$Ni^{II}_{3}Fe^{III}_{4}(PO_4)_6 + Fe^{III}PO_4 + Ni^{II}_{7}Fe^{III}OPO_4 + \alpha - Ni^{II}_{2}P_2O_7$	$Ni^{II}_{3}Fe^{III}_{4}(PO_{4})_{6} + Fe^{III}PO_{4} + Ni^{II}Fe^{III}OPO_{4} + \alpha - Ni^{II}_{2}P_{2}O_{7}$			
$Ni^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$	В	$Fe^{III}PO_4 + Ni_3Fe^{III}_4(PO_4)_6$	$\mathrm{Fe}^{\mathrm{III}}\mathrm{PO}_4 + \mathrm{Ni}^{\mathrm{II}}_{3}\mathrm{Fe}^{\mathrm{III}}_{4}(\mathrm{PO}_4)_{6}$			
Ni ^{II} ₃ Fe ^{III} ₄ (PO ₄) ₆	С	$Ni^{II}_{3}Fe^{III}_{4}(PO_4)_{6}$	$Ni^{II}_{3}Fe^{III}_{4}(PO_4)_6$			
$Ni^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$	D	amorph	$(Ni_{x}^{II}Fe_{1-x}^{III})(PO_{4})_{1-x/3})^{b)}$			
$Cu^{II}_{3}Fe^{III}_{4}(PO_4)_{6}$	А	$Cu^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$	$Cu^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$			
$Cu^{II}_{3}Fe^{III}_{4}(PO_4)_6$	D	amorph	$Cu^{II}_{3}Fe^{III}_{4}(PO_{4})_{6} + (Cu^{II}_{x}Fe^{III}_{1-x})(PO_{4})_{1-x/3}^{b)}$			
$Zn_{3}^{II}Fe_{4}^{III}(PO_{4})_{6}$	А	$Zn_{3}^{II}Fe_{4}^{III}(PO_{4})_{6}$ (+ Fe_{4}^{III}PO_{4})	$Zn^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ (+ $Fe^{III}PO_{4}$)			
$Zn^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$	В	$Zn_{3}^{II}Fe_{4}^{III}(PO_{4})_{6}$ (+ Fe_{1}^{III}PO_{4})	$Zn^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ (+ Fe ^{III} PO ₄)			
$Zn^{II}_{3}Fe^{III}_{4}(PO_4)_6$	С	$Zn^{II}_{3}Fe^{III}_{4}(PO_4)_6$	$Zn^{II}_{3}Fe^{III}_{4}(PO_4)_6$			
$Mg_{3}^{II}Cr_{4}^{III}(PO_{4})_{6}$	А	$Mg^{II}_{3}Cr^{III}_{4}(PO_4)_6$	$Mg^{II}_{3}Cr^{III}_{4}(PO_4)_6$			
$Cr^{II}_{3}Cr^{III}_{4}(PO_4)_6$	Е	$Cr^{II}_{3}Cr^{III}_{4}(PO_4)_6 (+\beta - Cr^{III}PO_4)$	$Cr^{II}_{3}Cr^{III}_{4}(PO_4)_6 (+\beta - Cr^{III}PO_4)$			
$Mn^{II}_{3}Cr^{III}_{4}(PO_4)_{6}$	В	$Mn_{3}^{II}Cr_{4}^{III}(PO_{4})_{6}$	$Mn^{II}_{3}Cr^{III}_{4}(PO_4)_{6}$			
$Mn^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$	С	$Mn_{3}^{II}Cr_{4}^{III}(PO_{4})_{6}$	$Mn^{II}_{3}Cr^{III}_{4}(PO_4)_{6}$			
$\mathrm{Co}_{3}^{\mathrm{II}}\mathrm{Cr}_{4}^{\mathrm{III}}\mathrm{PO}_{4}_{6}$	В	$\mathrm{Co}^{\mathrm{II}}_{3}\mathrm{Cr}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}$	$\mathrm{Co}^{\mathrm{II}}_{3}\mathrm{Cr}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}$			
$Ni^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$	А	$Ni^{II}_{3}Cr^{III}_{4}(PO_4)_{6}$	$Ni^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$			
$Ni^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$	D	amorph	amorph			
$Cu^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$	В	$Cu^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$	$Cu^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$			
$Zn^{II}_{3}Cr^{III}_{4}(PO_4)_6$	В	$Zn_{3}^{II}Cr_{4}^{III}(PO_{4})_{6}$	$Zn^{II}_{3}Cr^{III}_{4}(PO_4)_6$			

Tabelle 4.2 Zusammensetzung der frisch hergestellten und verwendeten Katalysatoren $,,\mathcal{A}^{II}_{3}\mathcal{B}^{III}_{4}(PO_{4})_{6}^{"}$.

^{a)} Vergl. Abschnitt 4.1.
 ^{b)} *IP*-Guinier-Aufnahme zeigt große Ähnlichkeit mit dem Beugungsdiagramm von β-CrPO₄ [99].

Nominale	Präparations-	Produkt (nach <i>IP</i> -0	Guinier-Aufnahmen)
Zusammensetzung	methode ^{a)}	wie dargestellt	nach katalytischen Tests
Mg ^{II} Fe ^{III} ₂ (P ₂ O ₇) ₂	В	$Mg^{II}Fe^{III}_{2}(P_2O_7)_2$	$Mg^{II}Fe^{III}{}_2(P_2O_7)_2$
Mn ^{II} Fe ^{III} ₂ (P ₂ O ₇) ₂	В	$Mn^{II}{}_{5}Fe^{III}{}_{2}(P_{2}O_{7})_{4} + Fe^{III}{}_{4}(P_{2}O_{7})_{3}$	$Mn^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4} + Fe^{III}_{4}(P_{2}O_{7})_{3}$
$\mathrm{Fe}^{\mathrm{II}}\mathrm{Fe}^{\mathrm{III}}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{2}$	В	$\mathrm{Fe}^{\mathrm{II}}\mathrm{Fe}^{\mathrm{III}}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{2}$	$\mathrm{Fe^{II}Fe^{III}}_{2}(\mathrm{P_{2}O_{7}})_{2} + \mathrm{Fe^{III}PO_{4}}$
$\mathrm{Co}^{\mathrm{II}}\mathrm{Fe}^{\mathrm{III}}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{2}$	В	$\mathrm{Co}^{\mathrm{II}}\mathrm{Fe}^{\mathrm{III}}{}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{2}$	$\mathrm{Co}^{\mathrm{II}}\mathrm{Fe}^{\mathrm{III}}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{2}$
$Ni^{II}Fe^{III}_2(P_2O_7)_2$	В	$Ni^{II}_{2}P_{2}O_{7} + Fe^{III}_{4}(P_{2}O_{7})_{3}$	$Ni^{II}_{2}P_{2}O_{7} + Fe^{III}_{4}(P_{2}O_{7})_{3}$
$Cu^{II}Fe^{III}_{2}(P_2O_7)_2$	В	$Cu^{II}Fe^{III}_{2}(P_2O_7)_2$	$Cu^{II}Fe^{III}_{2}(P_2O_7)_2$
$Zn^{II}Fe^{III}_2(P_2O_7)_2$	В	$Zn^{II}Fe^{III}_{2}(P_2O_7)_2$	$Zn^{II}Fe^{III}_{2}(P_2O_7)_2$
$Pd^{II}Fe^{III}_2(P_2O_7)_2$	А	$Pd^{II}Fe^{III}{}_2(P_2O_7)_2$	$Pd^{II}Fe^{III}_2(P_2O_7)_2 + Pd + Fe(PO_3)_3$
$Mg^{II}_{5}Fe^{III}_{2}(P_2O_7)_4$	В	$Mg^{II}_{2}P_{2}O_{7} + Mg^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$	$Mg^{II}_{2}P_{2}O_{7} + Mg^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$
$Mn^{II}{}_{5}Fe^{III}{}_{2}(P_{2}O_{7})_{4}$	В	$Mn^{II}{}_{5}Fe^{III}{}_{2}(P_{2}O_{7})_{4}$	$Mn^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}$
$\mathrm{Fe}^{\mathrm{II}}{}_{5}\mathrm{Fe}^{\mathrm{III}}{}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{4}$	В	$Fe^{II}{}_{5}Fe^{III}{}_{2}(P_{2}O_{7})_{4}$	$\mathrm{Fe^{II}}_{5}\mathrm{Fe^{III}}_{2}(\mathrm{P_{2}O_{7}})_{4}+\mathrm{Fe^{III}PO_{4}}$
$\mathrm{Co}^{\mathrm{II}}{}_{5}\mathrm{Fe}^{\mathrm{III}}{}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{4}$	В	$\mathrm{Co}^{\mathrm{II}}_{2}\mathrm{P}_{2}\mathrm{O}_{7} + \mathrm{Co}^{\mathrm{II}}\mathrm{Fe}^{\mathrm{III}}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{2}$	$Co^{II}_{2}P_{2}O_{7} + Co^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$
$Ni^{II}_{5}Fe^{III}_{2}(P_2O_7)_4$	В	α -Ni ^{II} ₂ P ₂ O ₇ ^{b)}	α -Ni ^{II} ₂ P ₂ O ₇ ^{b)}
$\mathrm{Cu}^{\mathrm{II}}{}_{5}\mathrm{Fe}^{\mathrm{III}}{}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{4}$	В	$Cu_{2}^{II}P_{2}O_{7} + Cu_{7}^{II}Fe_{2}^{III}(P_{2}O_{7})_{2}$	$Cu^{II}_{2}P_{2}O_{7} + Cu^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$
$Zn^{II}{}_5Fe^{III}{}_2(P_2O_7)_4$	В	$Zn^{II}{}_{5}Fe^{III}{}_{2}(P_{2}O_{7})_{4}$	$Zn^{II}{}_5Fe^{III}{}_2(P_2O_7)_4$
$Cr^{II}Cr^{III}_{2}(P_2O_7)_2$	Е	$Cr^{II}Cr^{III}_{2}(P_2O_7)_2$	$Cr^{II}Cr^{III}_{2}(P_2O_7)_2 + CrPO_4$
$Cu^{II}Cr^{III}_2(P_2O_7)_2$	В	$Cu^{II}Cr^{III}_{2}(P_2O_7)_2$	$Cu^{II}Cr^{III}_{2}(P_2O_7)_2$

Tabelle 4.3 Zusammensetzung der frisch hergestellten und verwendeten Katalysatoren $,\mathcal{A}^{II}B^{III}_{2}(P_{2}O_{7})_{2}$ " und $,\mathcal{A}^{II}_{5}B^{III}_{2}(P_{2}O_{7})_{4}$ ".

^{a)} Vergl. Abschnitt 4.1.
 ^{b)} Das Material enthält einen amorphen Anteil. Material hergestellt nach Methode C besteht aus einem Gemenge Fe^{III}₄(P₂O₇)₃ und α-Ni₂P₂O₇ (siehe 3.2.4).

Tabelle 4.4 Phasenzusammensetzung	der	frisch	hergestellten	und	verwendeten
Eisenphosphat-Katalysatoren.					

Nominale	Präparations-	Produkt (nach IP-	Guinier-Aufnahmen)
Zusammensetzung	methode ^{a)}	wie dargestellt	nach katalytischen Tests
Fe ^{III} PO ₄	А	Fe ^{III} PO ₄	Fe ^{III} PO ₄
$\mathrm{Fe}^{\mathrm{II}}_{3}\mathrm{Fe}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6}$	Е	$\mathrm{Fe}^{\mathrm{II}}{}_{3}\mathrm{Fe}^{\mathrm{III}}{}_{4}(\mathrm{PO}_{4})_{6}$	$\operatorname{Fe_3Fe^{III}}_4(\operatorname{PO}_4)_6$ (+ $\operatorname{Fe^{III}PO_4}$)
$\mathrm{Fe}^{\mathrm{II}}\mathrm{Fe}^{\mathrm{III}}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{2}$	Е	$\mathrm{Fe}^{\mathrm{II}}\mathrm{Fe}^{\mathrm{III}}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{2}$	$\mathrm{Fe^{II}Fe^{III}}_{2}(\mathrm{P_{2}O_{7}})_{2} + \mathrm{Fe^{III}PO_{4}}$
$\mathrm{Fe}^{\mathrm{II}}{}_{5}\mathrm{Fe}^{\mathrm{III}}{}_{2}(\mathrm{P}_{2}\mathrm{O}_{7})_{4}$	Е	$Fe^{II}{}_5Fe^{III}{}_2(P_2O_7)_4$	$\mathrm{Fe^{II}}_{5}\mathrm{Fe^{III}}_{2}(\mathrm{P_{2}O_{7}})_{4}+\mathrm{Fe^{III}PO_{4}}$
$\mathrm{Fe}^{\mathrm{II}}_{3}(\mathrm{PO}_{4})_{2}$	Е	$\mathrm{Fe}^{\mathrm{II}}_{3}(\mathrm{PO}_{4})_{2}$	$\mathrm{Fe}^{\mathrm{II}}{}_{3}\mathrm{Fe}^{\mathrm{III}}{}_{4}(\mathrm{PO}_{4})_{6}$
$\mathrm{Fe}^{\mathrm{II}}_{2}\mathrm{P}_{2}\mathrm{O}_{7}$	E	$\mathrm{Fe}^{\mathrm{II}}{}_{2}\mathrm{P}_{2}\mathrm{O}_{7}$	$\mathrm{Fe}^{\mathrm{II}}_{3}\mathrm{Fe}^{\mathrm{III}}_{4}(\mathrm{PO}_{4})_{6} + \mathrm{Fe}^{\mathrm{III}}\mathrm{PO}_{4}$

^{a)} Vergl. Abschnitt 4.1.

4.3 Ergebnisse der katalytischen Tests

Als Katalysatorenmaterial wurden quaternäre Ortho- und Pyrophosphate getestet, die Fe³⁺ und ein zweiwertiges Kation M^{2+} (M^{2+} = Mg, Mn, Fe, Co, Ni, Cu, Pd, Zn) enthalten. In den Tabellen 4.1 bis 4.3 sind die chemische Zusammensetzung und die kristallinen Phasen in den verwendeten Katalysatoren vor und nach den katalytischen Tests zusammengefasst.

Bei der Darstellung der polynären Orthophosphate M^{II}_{3} Fe^{III}₄(PO₄)₆ wurden je nach Darstellungsmethode unterschiedliche Produkte erhalten. Beim Tempern an Luft bei 500°C wurden statt Ni₃Fe₄(PO₄)₆ und Cu₃Fe₄(PO₄)₆ amorphe Produkte erhalten. Anstelle von Co^{II}₃Fe^{III}₄(PO₄)₆ wurde Co^{II}Fe^{III}O(PO₄) [267] beobachtet. Beim Kalzinieren an Luft bei 800 °C wurden statt M^{II}_{3} Fe^{III}₄(PO₄)₆ Phasengemenge aus Fe^{III}PO₄ und M^{II}_{3} Fe^{III}₄(PO₄)₆ erhalten. Erst bei Verwendung eines Mineralisators waren phasenreine quaternäre Eisen(III)orthophosphate zugänglich (vergl. Abschnitt 2.2.4).

Nur die polynären Eisen(III)-pyrophosphate $Mg^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$, $Fe^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$, $Co^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$, $Cu^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$, $Zn^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$, $Pd^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$, $Mn^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}$, $Fe^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}$ und $Zn^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}$ konnten phasenrein dargestellt werden. Bei allen anderen quaternären Eisen(III)-pyrophosphaten mit den nominellen Zusammensetzungen $,M^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ " bzw. $,M^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}$ " wurden, mit Ausnahme von $,Ni^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}$ ", zwei Nachbarphasen erhalten (Tabelle 4.3). Bei $,Ni^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}$ " wurde in der *IP*-Guinier-Aufnahme nur Ni_{2}P_{2}O_{7} beobachtet und es enthielt vermutlich zusätzlich amorphes Eisen(III)-pyrophosphat. Nach dem Tempern des so erhaltenen Produktes mit Chlor wies das Diffraktogramm Ni_{2}P_{2}O_{7} und Fe_{4}(P_{2}O_{7})_{3} auf.

Katalytische Aktivität der Orthophosphate

Die Ergebnisse der katalytischen Tests an den Orthophosphaten $A^{II}_{3}B^{III}_{4}(PO_4)_6$ (A^{II} : Mg, Cr, Mn, Fe, Co, Cu, Zn; B^{III} : Fe, Cr) sind in den Tabellen 4.4 und 4.5 zusammengefasst. Die katalytische Aktivität der an Luft bei 500 °C, bei 800 °C sowie die mit Chlor getemperten polynären Eisen(III)-orthophosphate $A^{II}_{3}Fe^{III}_{4}(PO_4)_6$ waren auffallend unterschiedlich.

Bei den bei 500°C dargestellten Katalysatoren (Methode D) wurden Umsätze $U(CH_4) = 10 \%$ - 19% erreicht, bei Selektivität $S(CO_x) = 97 \%$ - 98 % und Selektivität $S(CH_2O) = 3 \%$. Der Umsatz von Methan sank bei den polynären Eisen(III)-orthophosphatkatalysatoren in der Reihenfolge Ni > Co > Cu. Da die Selektivitäten bezogen auf Formaldehyd sehr niedrig waren, wurde auf weitere Untersuchungen an niedrig getempertem Katalysatorenmaterial verzichtet. Bei den bei 800 °C an Luft dargestellten Katalysatoren (Methode A und B) wurden Umsätze $U(CH_4) = 0.5 \% - 6.6 \%$ des eingesetzten Methans erreicht, bei extrem schwankenden Selektivitäten $S(CH_2O) = 1 \% - 64 \%$ und $S(CO_x) = 35 \% - 99 \%$. Auffallend ist der hohe Umsatz $U(CH_4) = 6.6\%$ von Methan am Katalysator Cu₃Fe₄(PO₄)₆, jedoch entsteht dabei als Reaktionsprodukt praktisch nur CO₂.

Die mit Chlorgas getemperten Katalysatoren (Methode C) zeigten im Vergleich zu den an Luft getemperten Proben noch niedrigere Umsätze von Methan $U(CH_4) = 0,2 \% - 2,7 \%$. In Bezug auf die Selektivitäten der Reaktionsprodukte zeigte sich ein uneinheitliches Bild. Auffallend war die sehr hohe Selektivität Formaldehyd $S(CH_2O) = 82\%$ am Zn₃Fe₄(PO₄)₆-Katalysator bei jedoch extrem niedrigem Umsatz $U(CH_4)=0,2 \%$.

Ebenso wird beim Fe₃Fe₄(PO₄)₆-Katalysator eine hohe Selektivität für die Bildung von Formaldehyd $S(CH_2O) = 26$ % bei geringen Umsätzen $U(CH_4) = 1,6$ % im Vergleich zu den übrigen M_3 Fe₄(PO₄)₆-Katalysatoren beobachtet.

Die polynären Chrom(III)-orthophosphate zeigten in Abhängigkeit von ihrer Darstellungsmethode stark schwankende Umsätze $U(CH_4) = 2 \% - 33 \%$ bei niedrigen Selektivitäten für Formaldehyd $S(CH_2O) = 0,3 \% - 20 \%$. Als Reaktionsprodukt entstand überwiegend CO_x .

Katalytische Aktivität der Pyrophosphate

Die Ergebnisse der katalytischen Tests an den Pyrophosphaten mit den nominellen Zusammensetzungen " $A^{II}Fe^{III}_2(P_2O_7)_2$ " (A^{II} : Mg, Mn, Fe, Co, Ni, Cu, Zn, Pd) und " $A^{II}_5Fe^{III}_2(P_2O_7)_4$ " (A^{II} : Mg, Mn, Fe, Co, Ni, Cu, Zn) sind in den Tabellen 4.7 und 4.8 zusammengefasst.

Die Umsätze von Methan bewegen sich mit Ausnahme von "Cu₅Fe₂(P₂O₇)₄" und PdFe₂(P₂O₇)₂ im Rahmen von $U(CH_4) = 0,3 \% - 2,9 \%$ bei Selektivitäten zu Formaldehyd von $S(CH_2O) = 13 \% - 46 \%$. Bei "Cu₅Fe₂(P₂O₇)₄" und PdFe₂(P₂O₇)₂ lagen die Selektivitäten zur Bildung von Formaldehyd deutlich niedriger. Bemerkenswert war, dass bei Pd^{II}Fe^{III}₂(P₂O₇)₂ im Unterschied zu allen anderen getesteten Katalysatoren trotz extrem niedriger Umsätze $U(CH_4) < 0,3 \%$ nur eine niedrige Selektivität für die Bildung von Formaldehyd $S(CH_2O) < 6 \%$ beobachtet wurde. Des Weiteren erwies sich Pd^{II}Fe^{III}₂(P₂O₇)₂ als nicht redox-stabil gegenüber der Methan / OX-Gas Mischung und wurde unter Reduktion zu Pd⁰, Fe^{III}₄(P₂O₇)₃ und Fe^{III}(PO₃)₃ zersetzt.

Die beiden polynären Chrom(III)-pyrophosphate zeigten unterschiedliches Verhalten. Während $Cr^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ eine ähnliche katalytische Aktivität wie $Pd^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ aufwies, wurden an $Cu^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ die höchsten Umsätze $U(CH_{4}) > 37\%$ bei der Oxidation von Methan bei jedoch vergleichsweise niedriger Selektivität zu Formaldehyd $S(CH_{2}O) < 2\%$ gemessen.

Katalytische Aktivität der ternären Eisenphosphate

Die Ergebnisse der katalytischen Tests an den ternären Eisenphosphaten sind in Tabelle 4.9 zusammengefasst. Die Eisen(II)-phosphate $Fe^{II}_{3}(PO_{4})_{2}$, $Fe^{II}_{2}P_{2}O_{7}$ zeigten mittlere Methanumsätze von $U(CH_{4}) = 3\% - 5\%$ bei niedriger Selektivität für die Bildung von Formaldehyd und einer Bildung von mehr als 98 % CO₂. Bei den ternären Eisenphosphaten, die dreiwertiges Eisen enthielten, wurden hohe Selektivitäten $S(CH_{2}O) = 25\% - 45\%$ bei niedrigen Umsätzen $U(CH_{4}) = 0,8\% - 1,7\%$ gemessen. Die gemischtvalenten Eisen(II)eisen(III)-phosphate liegen im oberen Bereich der jeweiligen Metall(II)-eisen(III)-phosphate.

Zusammenfassung der Ergebnisse

Bei den katalytischen Tests zur Oxidation von Methan zu Formaldehyd zeigte sich, dass im Katalysatormaterial ein oxidierend wirkendes Ion wie Fe³⁺ oder Cu²⁺ vorhanden sein muss. So wiesen die reinen Eisen(II)-phosphate Fe^{II}₃(PO₄)₂, Fe^{II}₂P₂O₇ sowie die polynären Chromphosphate A^{II}_{3} Cr^{III}₄(PO₄)₆ (A^{II} : Mg, Cr, Mn, Co, Ni, Zn) und Cr^{II}Cr^{III}₂(P₂O₇)₂ keine katalytische Aktivität auf.

Die Wahl des zweiwertigen Metalls in den quaternären Metall(II)-eisen(III)-phosphaten hat einen großen Einfluss auf den Umsatz von Methan sowie auf die Selektivität bei der Bildung der Oxidationsprodukte. Katalysatoren, die Zink enthielten, zeigten jeweils die höchsten Selektivitäten für die oxidative C-C Kopplung. Die polynären Eisen(III)-pyrophosphate wiesen bei der Oxidation von Methan zu Formaldehyd im Vergleich zu den polynären Eisen(III)-orthophosphaten und Fe^{III}PO₄ höhere Selektivitäten bei gleichzeitig geringeren Umsätzen auf.

Die Darstellungsmethode der Katalysatoren hatte ebenfalls einen großen Einfluss auf die katalytischen Aktivitäten. Die bei 500°C getemperten Materialien zeigten im Vergleich zu den bei 800°C getemperten Proben deutlich höhere Umsätze bei gleichzeitig schlechteren Selektivitäten bezogen auf die Bildung von Formaldehyd. Durch Tempern mit Chlor als Mineralisator wurde die Kristallinität der Katalysatoren erhöht, dabei sanken die Umsätze bei den meisten Proben und die Selektivitäten bezogen auf Formaldehyd stiegen an.

Mit Ausnahme von $Pd^{II}Fe^{III}_2(P_2O_7)_2$ und $Cr^{II}Cr^{III}_2(P_2O_7)_2$ galt für die getesteten polynären Phosphate, je niedriger der Umsatz an Methan war, desto größer wurde die Selektivität von Formaldehyd.

Aussichtsreiche Kandidaten für weitere Untersuchungen sind die Pyrophosphate $CuFe_2(P_2O_7)_2$ und "Mg₅Fe₂(P₂O₇)₄", da diese hohe Selektivitäten zur Bildung von Formaldehyd aufwiesen bei gleichzeitig niedriger Tendenz zur Bildung von CO₂. Eine Messung mit Fe^{III}₄(P₂O₇)₃ als Katalysator und Referenzsubstanz für die polynären Eisen(III)-pyrophosphate steht noch aus.

Bei den katalytischen Tests für die direkte Oxidation von Methangas zu Formaldehyd fand sich kein Material mit hohen Selektivitäten und gleichzeitig möglichst hohen Umsätzen, welches somit eine Alternative zu dem in der Industrie verwendeten mehrstufigen Verfahren bietet.

Dennoch zeigten sich Ansätze für weitere Forschungen an polynären Eisen(III)-phosphaten als Katalysatormaterial für die Partialoxidationen von Methan. So zeigten $CuFe_2(P_2O_7)_2$ $(U(CH_4) = 2,9\%; S(CH_2O) = 28,6\%)$ und "Mg₅Fe₂(P₂O₇)₄" $(U(CH_4) = 1,9\%; S(CH_2O) =$ 27,7%) recht hohe Selektivitäten bezogen auf Formaldehyd auf. Auch ist es denkbar, diese Materialen für Partialoxidationsprozesse an anderen organischen Verbindungen zu testen.

Tabelle 4.5 Zusammenhang zwischen den katalytischen Eigenschaften in der Gasphasenoxidation von Methan von polynären Phosphaten $A^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ und ihrer Darstellungsmethode. Für alle katalytischen Test gelten folgende Reaktionsbedingungen: $P(CH_{4}) = 65 \text{ kPa}, P(O_{2}) = 26 \text{ kPa}, P(N_{2}O) = 1,3 \text{ kPa}, W = 0,5 \text{ g}, F = 3,6 \text{ L}\cdot\text{h}^{-1}, T = 660 \text{ °C}.$ Die Messdaten beziehen sich nach 6 Stunden unter den Testgasstrom.

A ^{II} -Fe ^{III}	Präparations- methode	- U(CH ₄) / %	S(CH ₂ O) / %	S(CO) / %	S(CO ₂) / %	<i>S</i> (C ₂ H ₆ +C ₂ H ₄) / %) STY ^{a)}
Mn	В	0,78	34,3	3,7	60,7	0,3	17
	С	1,37	24,9	3,4	71,3	0,4	21
Mg	А	5,29	8,0	31,7	60,2	0,1	27
	В	3,26	18,1	48,6	32,8	0,2	37
	С	1,54	35,0	0,3	64,3	0,4	34
Zn	А	0,53	63,9	0,1	34,5	1,5	21
	В	1,20	48,4	19,6	31,1	0,7	36
	С	0,22	83,2	9,4	4,3	2,8	11
Ni	А	1,56	20,1	3,0	75,9	1,0	20
	В	5,20	11,1	37,9	50,9	0,1	36
	С	1,48	30,5	18,4	51,0	0,1	28
	D	19,73	3,3	80,4	16,3	Spuren	41
Co	А	2,62	14,1	23,4	62,4	0,1	23
	В	2,48	21,9	32,8	45,1	0,2	34
	С	2,70	9,4	1,1	89,3	0,2	16
	D	16,52	3,1	51,9	44,9	Spuren	32
Cu	А	6,64	1,3	Spuren	98,7	Spuren	5
	D	10,02	3,0	3,0	94,0	0,1	19
Fe	Е	1,62	25,9	48,9	25,3	Spuren	27

^{a)} STY / g CH₂O kgcat⁻¹h⁻¹.

Tabelle 4.6 Katalytische Eigenschaften von polynären Phosphaten $A^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ in Abhängigkeit ihrer Darstellungsmethode.

A ^{II} -Cr ^{III}	^I Präparati	ons-U(CH ₄)	S(CH ₂ O)	S(CO)	S(CO ₂)	$S(C_2H_6+C_2H_4)$	
	methode	/ %	/ %	/ %	/ %	/ %	
Mg	А	3,7	4,4	54,1	41,4	0,1	
Cr	E	24,1	0,3	60,7	39,0	0,0	
Mn	В	1,9	3,9	5,6	90,2	0,3	
	С	12,0	0,6	98,3	Spuren	1,1	
Co	В	4,1	2,2	2,8	93,0	0,0	
Ni	А	3,0	0,5	29,9	69,1	0,5	
Ni	D	32,7	0,3	75,6	24,1	Spuren	
Cu	В	2,7	20,2	43,0	36,8	0,0	
Zn	В	1,8	10,4	12,5	77,0	0,1	

^{a)} STY / g CH₂O kgcat⁻¹h⁻¹.

	5	\mathcal{O}	-	1 2	1		1)2
A ^{II} - B ^{III}	Präparations methode	- U(CH ₄) / %	S(CH ₂ O) / %	S(CO) / %	<i>S</i> (CO ₂) / %	<i>S</i> (C ₂ H ₆ +C / %	² ₂ H ₄) STY ^{a)}
Mg-Fe	В	2,6	21,0	26,7	51,2	1,1	29
Mn-Fe	В	1,9	31,3	62,9	3,6	2,2	27
Fe-Fe	Е	1,0	45,3	53,7	0,0	Spuren	26
Co-Fe	В	0,9	38,2	14,6	45,1	2,0	20
Ni-Fe	В	2,8	16,5	66,5	15,9	1,1	26
Cu-Fe	В	0,9	45,0	31,4	23,0	0,6	23
Cu-Fe ^{b)}	В	2,9	28,6	70,2	1,2	Spuren	51
Zn-Fe	В	0,5	46,5	15,2	32,7	5,5	13
Pd-Fe	А	0,3	5,9	0,0	94,1	0,0	1
Cr-Cr	Е	0,9	4,8	2,3	93,0	0,0	2
Cu-Cr	А	37,9	2,1	40,5	57,4	< 0,1	52

Tabelle 4.7 Katalytische Eigenschaften von polynären Phosphaten " $A^{II}B^{III}_{2}(P_2O_7)_2$ ".

 \overline{a} STY / g CH₂O kgcat⁻¹h⁻¹.

^{b)} Bei der Darstellung nur 30h statt 120h an Luft bei 800 °C getempert.

Tabelle 4.8 Katalytische Eigenschaften von polynären Phosphaten " $A^{II}_{5}B^{III}_{2}(P_2O_7)_4$ ".

A ^{II} -Fe ^{III}	Präparatio methode	ons U(CH ₄) / %	S(CH ₂ O) / %	S(CO) / %	S(CO ₂) / %	<i>S</i> (C ₂ H ₆ +C / %	C ₂ H ₄) STY ^{a)}
Mg-Fe	В	1,9	27,7	62,4	8,1	1,8	30
Mn-Fe	В	0,5 ^{a)}	70,5 ^{a)}	2,3 ^{a)}	26,2 ^{a)}	0,9 ^{a)}	18 ^{a)}
Fe-Fe	Е	0,8	42,0	21,6	34,3	2,1	17
Co-Fe	В	1,9	17,8	0,0	81,4	0,8	18
Ni-Fe	В	2,9	20,5	30,0	47,9	1,5	32
Cu-Fe	В	6,0	8,0	19,1	71,1	1,8	30
Zn-Fe	В	0,4	30,4	0,0	66,2	3,4	5

^{a)} STY / g CH₂O kgcat⁻¹h⁻¹.

 Tabelle 4.9
 Katalytische Eigenschaften von Eisen-Phosphaten.

Pr	äparation ethode	us- U(CH ₄) /%	S(CH ₂ O) / %	S(CO) / %	S(CO ₂) / %	<i>S</i> (C ₂ H ₆ +C / %	₂ H ₄) STY ^{a)}
Fe ^{III} PO ₄	В	1,68	24,9	28,0	47,1	Spuren	26
Fe ^{II} ₃ Fe ^{III} ₄ (PO ₄) ₆ E	1,62	25,9	48,9	25,3	Spuren	27
Fe ^{II} Fe ^{III} ₂ (P ₂ O ₇) ₂ E	1,0	45,3	53,7	0,0	Spuren	26
Fe ^{II} ₅ Fe ^{III} ₂ (P ₂ O	7)4 E	0,8	42,0	21,6	34,3	2,1	17
$\mathrm{Fe}^{\mathrm{II}}_{3}(\mathrm{PO}_{4})_{2}$	Е	4,95	0,3	Spuren	99,5	0,2	1
$\mathrm{Fe}^{\mathrm{II}}{}_{2}\mathrm{P}_{2}\mathrm{O}_{7}$	Е	3,1	1,6	0,0	97,9	0,5	2

^{a)} STY / g CH₂O kgcat⁻¹h⁻¹.

5 Strukturverfeinerung von monoklinem W₂O₃(PO₄)₂

5.1 Kenntnisstand zu Beginn der Arbeit

Wolfram ist bekannt für die Bildung von zahlreichen wasserfreien Phosphaten. So sind im ternären Phasengebiet W / P / O neben den sieben Phosphaten m-W₂O₃(PO₄)₂ [269, 270, 271], o-W₂O₃(PO₄)₂ [272], m-WO(P₂O₇) [273], o-WO(P₂O₇) [272], WOPO₄ [274], W₂O₃(P₂O₇) [275] und WP₂O₇ [276, 277] eine große Anzahl von gemischtvalenten W^{IV}-W^V Oxidphosphaten mit der allgemeinen Summenformel (WO₃)_{2m}(PO₂)₄ mit 2 ≤ m ≤ 14 [278] bekannt. Die Phasenbeziehungen in diesem ternären System waren Gegenstand mehrerer Untersuchungen [279, 280, 281].

Bereits in der dieser Arbeit vorangegangenen Diplomarbeit [281] wurde unter anderem der gekoppelte Transport von WOPO₄ [274] mit WP [282] untersucht. Für die Synthese von WOPO₄ gemäß Gl. 5.1 wurde $W_2O_3(PO_4)_2$ benötigt.

$$5 W_2 O_3 (PO_4)_2 + WP \rightarrow 11 WOPO_4$$
 (Gl. 5.1)

Neben der monoklinen Modifikation von $(W_2O_3)(PO_4)_2$ ist auch eine orthorhombische Modifikation [272] bekannt, die isotyp zu $(W_2O_3)(AsO_4)_2$ [283] kristallisiert. Ebenfalls orthorhombisch mit ähnlichen Gitterkonstanten wie $o-W_2O_3(PO_4)_2$, jedoch mit eigenem Strukturtyp, kristallisiert Re₂O₃(PO₄)₂ [284].

Eine Gegenüberstellung der in der Literatur genannten Verbindungen mit der allgemeinen Zusammensetzung $M^{VI}P_2O_{11}$ mit $M^{VI} = W$, Mo, Re befindet sich in Tabelle 5.1.

Verbindung	RG	a / Å	<i>b</i> / Å	c/Å	ß/°	$V/\text{\AA}^3$	Lit.
$\frac{m-W_2O_3(PO_4)_2^{a}}{m-W_2O_3(PO_4)_2^{a}}$	$P2_1/m$	7,76(1)	12,48(2)	7,83(1)	91,9(1)	758	[270]
$m-W_2O_3(PO_4)_2^{a)}$	$P2_1$	7,754(7)	12,50(1)	7,822(4)	91,05(5)	758	[271]
m-W ₂ O ₃ (PO ₄) ₂	$P2_{1}/m$	7,7751(4)	12,5057(6)	7,7903(5)	92,221(5)	756,91(7)	[d.A.]
$MoWO_3(PO_4)_2$	$P2_{1}/m$	7,827(1)	12,538(1)	7,833(1)	92,36(1)	768,1(1)	[285]
$o-W_2O_3(PO_4)_2$	Pnma	16,662(2)	5,147(2)	6,612(4)	90	777,6(2)	[272]
$Re_2O_3(PO_4)_2^{b)}$	Pnma	15,271(1)	6,2986(6)	7,79654(5)	90	749,9(1)	[284]
$(MoO_2)_2P_2O_7$	Pnma	12,58(1)	6,338(5)	10,38(1)	90	828	[286]

Tabelle 5.1 Vergleich der Gitterkonstanten von $M^{VI}_{2}P_{2}O_{11}$ mit $M^{VI} = W$, Mo, Re.

Zur besseren Vergleichbarkeit wurden die Gitterkonstanten transformiert nach:

^{a)}a' = -c; b' = -b; c' = -c.

^{b)}a' = c; b' = a; c' = b, dabei ändert sich die Raumgruppe von *Pmcn* nach *Pnma*.

 $W_2O_3(PO_4)_2$ wies bei den eigenen Darstellungsversuchen in der monoklinen Modifikation immer ein etwas anderes Reflexmuster in den *IP*-Guinier-Aufnahmen auf als die simulierten Beugungsbilder, die aus den von KIERKEGAARD publizierten Daten [270, 271] berechnet wurden (Abbildung 5.1).

Abbildung 5.1 Gemessenes Guinierdiagramm von m-W₂O₃(PO₄)₂ (a). Simuliertes Strichdiagramm mit den Daten von [271] (b) und von [270] (c).

Monoklines $(W_2O_3)(PO_4)_2$ wurde von diesen Autoren zunächst in der zentrosymmetrischen Raumgruppe $P2_1/m$ (Nr. 11) [270], später dann mit einer modifizierten Struktur und ohne die Spiegelebene in der azentrischen Raumgruppe $P2_1$ (Nr. 4) [271] beschrieben. Für beide Verfeierungen sind die Gütefaktoren schlecht, so ist für die erste Verfeinerung ein *R*-Wert von 17% und für das korrigierte Strukturmodell ein *R*-Wert von 11,9% angegeben.

Auch existiert ein Molybdänwolframtrioxidbisphosphat (WMoO₃)(PO₄)₂, dessen genaue Zusammensetzung mit (Mo_{1,04}W_{0,96}O₃)(PO₄)₂ angegeben wird [285]. Dessen Struktur ist eng verwandt mit jener von W₂O₃(PO₄)₂. Sie wurde in $P2_1$ /m bei statistischer Verteilung von 194 Molybdän und Wolfram zu R = 2,7% verfeinert. Es ist strukturell eng verwandt mit der korrigierten monoklinen Modifikation von $(W_2O_3)(PO_4)_2$ [271]. Die Mängel des Strukturmodells gaben Anlass zu den eigenen Untersuchungen an der monoklinen Modifikation von $(W_2O_3)(PO_4)_2$.

5.2 Darstellung

Zur Darstellung von $(W_2O_3)(PO_4)_2$ wurden 528,2 mg (4,00 mmol) $(NH_4)_2HPO_4$ in 100 mL H_2O in einem Becherglas gelöst und anschließend die äquimolare Menge WO₃ (927,3 mg, 4,00 mmol) hinzugegeben. Nach dessen vollständiger Lösung beim Erwärmen wurde bei 250 °C bis zur Trockene eingedampft. Der Trockenrückstand wurde in einem Achatmörser verrieben, in eine offene Kieselglasampulle überführt und anschließend 2 Tage bei 400 °C an Luft getempert. Man erhielt ein röntgenamorphes grau-bläuliches Pulver. Beim längeren Tempern bei 600 °C verschwand die bläuliche Färbung und man erhielt schließlich graues, guinierreines $W_2O_3(PO_4)_2$ in der orthorhombischen Modifikation.

Durch ein Transportexperiment mit 280 mg $o-W_2O_3(PO_4)_2$ als Ausgangsbodenkörper (1000 \rightarrow 900 °C; Zusatz von 9,3 mg NH₄Cl; $V \approx 20$ cm³; Dauer: 7 d) konnten Einkristalle der monoklinen Modifikation von $W_2O_3(PO_4)_2$ erhalten werden. Nach Beendigung des Experiments lagen auf der Quellenbodenseite $m-W_2O_3(PO_4)_2$ und Spuren von WO₃ als Gleichgewichtsbodenkörper vor. In der Senke hatte sich $m-W_2O_3(PO_4)_2$ in farblosen wie auch in leicht bläulichen Kristallen abgeschieden.

Die Gitterkonstanten der monoklinen Modifikation wurden aus *IP*-Guinier-Aufnahmen anhand von 42 Reflexen mit dem Programmpaket SOS [303] verfeinert (s. Anhang D.2).

5.3 Strukturverfeinerung

Nach Prüfung unter einem Polarisationsmikroskop wurden die Intensitätsdaten eines Kristalls von m-(W₂O₃)(PO₄)₂ mit dem κ -CCD im Bereich 2,62 $\leq \theta \leq$ 30,01 ° ("volle Kugel") aufgezeichnet.

Durch die systematische Abwesenheit der Reflexe k = 2n + 1 für 0k0 im gemessenen Datensatz kommen die beiden monoklinen Raumgruppen $P2_1$ und $P2_1/m$ in Frage, wobei der Reflex 0 3 0 mit sehr schwacher Intensität gegen die Auslöschungsbedingung für eine 2_1 Schraubenachse entlang der *b*-Achse verstößt. Auffallend schwach sind die Reflexe k = 2n. für 0k0.

Zunächst wurde eine Verfeinerung in der Raumgruppe $P2_1$ (Nr. 4) mit dem Programm SHELXL-97 [302] durchgeführt. Als Startparameter dienten die Werte von KIERKEGAARD und ÅSBRINK [271] für m-W₂O₃(PO₄)₂. Im Anhang E.2 ist beschrieben, wie man mit Hilfe des Programms KPLOT [297] aus einer CIF-Datei [287] eine SHELXL Eingabedatei erstellt. Da Kierkegaard für m-W₂O₃(PO₄)₂ eine andere Aufstellung der monoklinen Zelle gewählt hat, müssen die Atomkoordinaten nach (00-1 0-10 -100) transformiert werden. SHELXL-97 [302] schlägt die für Verfeinerung in $P2_1$ eine razemische Verzwillingung vor. Die Verfeinerung mit dem TWIN-Befehl liefert einen BASF von 0,513. Die erhaltenen Gütefaktoren sind deutlich besser als die Literaturwerte, jedoch sind noch immer mehrere anisotrope Auslenkungsparameter von verschiedenen Atomen negativ, was physikalisch nicht sinnvoll ist. Der sehr nahe bei 1/2 liegende BASF ist ein starkes Indiz für das Vorhandensein einer Spiegelebene. Eine Symmetrieanalyse des Strukturmodells mit Hilfe des Programms Platon [288] bestätigt diese Spiegelebene und schlägt die zentrosymmetrische Raumgruppe $P2_1/m$ vor. Das Fehlen eines messbaren piezo-elektrischen Effekts [269] sowie die Infrarotund Ramanuntersuchungen [289] weisen ebenfalls auf eine zentrosymmetrische Raumgruppe für monoklines $(W_2O_3)(PO_4)_2$ hin.

Für die Verfeinerung in der zentrosymmetrischen Raumgruppe $P2_1/m$ (Nr. 11) wurden als Startlagen schließlich die Atomkoordinaten von (WMoO₃)(PO₄)₂ [285] verwendet. Die Verfeinerung verlief ohne Probleme. Angaben zum verwendeten Kristall, zur Datensammlung und zur Strukturverfeinerung von m-(W₂O₃)(PO₄)₂ sind in Tabelle 5.2 zusammengestellt. Lageparameter und anisotrope Auslenkungsparameter sind in Tabelle D.2 und D.3 angegeben. In Tabelle D.4 sind die interatomaren Abstände / Å in den [WO₆] und [PO₄] Polyedern aufgelistet. Die Abbildung 5.2 und 5.3 zeigen die ORTEP-Darstellungen [301] dieser Polyeder.

Summenformel	W ₂ P ₂ O ₁₁				
Kristallgröße / mm ³	0,30 · 0,07 · 0,07				
Farbe des Kristalls	farblos				
Farbe des Pulvers	weiß				
Kristallsystem	monoklin				
Raumgruppe	$P2_{1}/m$ (Nr. 11)				
Gitterparameter aus	IP-Guinier-Aufnahmen				
a / Å	7,7751(4)				
b / A	12,5054(6)				
c/A	7,7903(5)				
β / β	92,221(5)				
Zellvolumen / A ³	756,89(7)				
	4				
Molare Masse / $g \cdot mol^2$	605,64				
Ber. Dichte / g·cm ³	5,315				
Absorp. Koeff. / mm ⁻¹	30,851				
<i>F</i> (000)	1064				
Temperatur / K	293(2)				
Mo-K α -Strahlung, $\lambda = 0,71073$ A, Grap	bhit Monochromator, κ -CCD Diffraktometer (Nonius).				
Winkelbereich / °	$2,62 \le \theta \le 30,01$				
Messbereich	$-10 \le h \le 10$				
	$-14 \le k \le 17$				
	$-10 \le l \le 9$				
Gemessene Reflexe	15981				
Unabhangige Reflexe	2283				
Interner <i>R</i> -Wert $R(int)$	0,058				
Reflexe $F_0 > 2\sigma(F_0)$					
Absorptionskorrektur	analytisch [290] in WinGx [304]				
Extinktionskoeffizient	0,0022(1)				
Parameter	155				
" Restraints "	-				
Wichtungsschema ^a	a = 0.0202				
\mathbf{D} (1.1.) 1^{1} (2^{-3}	b = /,4166				
Restelektronendichte / e·A	$\max = 2,427$				
Goodpoor of fit ^{a)}	1 160				
B Wasta $[L > 2 - (D]^{a}]$	1,109				
Λ -welle $[1 > 2 \text{ o}(1)]$	$R_1 = 0.027$ $wR_2 = 0.066$				
$R_{\rm W}$ erte (alle Daten) ^{a)}	$R_{2} = 0.034$				
	$R_1 = 0.054$ $wR_2 = 0.069$				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

Tabelle 5.2 Angaben zum verwendeten Kristall, zur Datensammlung und zur Strukturverfeinerung von m-W₂O₃(PO₄)₂.

^{a)} Definitionen siehe Seite 22.

5.4 Beschreibung der Kristallstruktur

Die Struktur von monoklinem $(W_2O_3)(PO_4)_2$ wird aus $[WO_6]$ -Oktaedern und $[PO_4]$ -Tetraedern aufgebaut. Jedes Wolframatom ist in Kontakt mit vier [PO₄]-Gruppen. Des Weiteren ist jedes Wolframatom mit einem Sauerstoffatom, welches nur an dieses gebunden ist und mit einem Sauerstoffatom verbunden, welches zwei Wolframatome verbrückt. Dadurch entstehen [W₂O₁₁]-Doppeloktaeder. Der Abstand den terminalen zu Sauerstoffatomen ist sehr kurz, $d(W-O_t) = 1,68$ Å, was auf $(W=O)^{4+}$ Gruppen hindeutet. Die zu den terminalen Sauerstoffatomen gegenüberliegenden Sauerstoffatome sind hingegen deutlich weiter entfernt, d(W-O) = 2,16 Å, (Abbildung 5.2). Während im Doppeloktaeder $[W1_2O_{11}]$ der Brückenwinkel $\angle(W1_1O2_1W1) = 180^\circ$ beträgt, liegt der Brückenwinkel \angle (W2,O10,W3) im [W2W3O₁₁] Doppeloktaeder bei 152,7(4) °.

Abbildung 5.2 ORTEP-Darstellungen [301] der Polyeder [W1O₆], [W2O₆] und [W3O₆]. Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%.

Abbildung 5.3 ORTEP-Darstellungen [301] der Polyeder [P1O₄], [P2O₄] und [P3O₄]. Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%.

Die Gesamtstruktur von m-W₂O₃(PO₄)₂ lässt sich als Stapelung von Polyederbändern A (beziehungsweise A') und der Polyederschicht B (beziehungsweise B') entlang der *b*-Achse beschreiben.

Bänder A bestehen aus isolierten parallelen Polyederketten von $[W_2P_2O_{11}]_{\infty}$ entlang der *c*-Achse [0 0 1] (Abbildung 5.4-a), die nicht miteinander verbunden sind. Die einzelnen Kettenglieder bestehen aus $[W1_2O_{10}]$ -Doppeloktaedern, die jeweils über zwei $[P1O_4]$ -Phosphatgruppen miteinander zu einer Kette verbunden werden. Die Bänder A' entstehen als Resultat der 2₁ Schraubenachse und entsprechen den Bändern A gedreht um 180 ° um die *b*-Achse.

Ebene B besteht aus einem zweidimensionalen Netzwerk, das durch [W2W3O₁₀]-Doppeloktaeder gebildet wird, die durch die Phosphatgruppen [P2O₄] und [P3O₄] verbunden werden (Abbildung 5.4-b). Diese Schicht B lässt sich durch [W2W3P2O₁₀]_{∞}-Ketten beschreiben, die parallel zur *c*-Achse verlaufen und die entlang der *a*-Achse durch [P3O₄] Tetraeder miteinander verbunden werden. Die Ebene B' entsteht als Resultat der 2₁ Schraubenachse und entspricht der Ebene B gedreht um 180 ° um die *b*-Achse.

Die dreidimensionale Struktur lässt sich als Stapelfolge von diesen Bändern und Schichten entlag der *b*-Achse beschreiben. Die Stapelabfolge entspricht der Sequenz ABA'B' (Abbildung 5.5), wobei die Phosphattetraeder der einen Schicht mit den Wolframatoktaedern der nächsten Schicht verknüpft sind. Die strukturellen Unterschiede zwischen den beiden Modifikationen von $(W_2O_3)(PO_4)_2$, sind in [272] beschrieben.

Abbildung 5.4 Bänder A bei y = 0, bestehend aus $[W_2P_2O_{15}]_{\infty}$ -Ketten entlang $[0 \ 0 \ 1]$. Blick entlang $[0 \ 1 \ 0]$ (a). Die Schicht B bei y = 1/4, bestehend aus $[W_2P_2O_{15}]_{\infty}$. Blick entlang $[0 \ 1 \ 0]$ (b).

Abbildung 5.5 Schichtenabfolge in m-W₂O₃(PO₄)₂. Blick entlang [0 0 1].

5.5 Diskussion

Beim Vergleich der Ergebnisse dieser Verfeinerung von m-W₂O₃(PO₄)₂ mit der zuvor publizierten Struktur für m-W₂O₃(PO₄)₂ [269] und der anschließend korrigierten Struktur [271] wird das korrigierte Strukturmotiv [271] bestätigt. Im Unterschied zu den Literaturangaben kristallisiert m-W₂O₃(PO₄)₂ jedoch in der zentrosymmetrischen Raumgruppe $P2_1/m$ und nicht $P2_1$. Die in der Literatur beschriebenen physikalischen Eigenschaften, wie das Fehlen eines messbaren piezoelektrischen Effekts [269] sowie Infrarot- und Ramanspektren [289] stehen damit im Einklang. In der überholten azentrischen Strukturbeschreibung [271] sind die Phosphatgruppen extrem verzerrt. In der neuen Strukturbeschreibung sind die [PO₄]-Tetraeder hingegen nur gering verzerrt. Sowohl die Abstände d(P-O) mit 1,490 Å bis 1,559 Å wie auch die Winkel \angle (O,P,O) mit 105,1 ° bis 113,6 ° entsprechen den Erwartungswerten typischen Werten für geringfügig verzerrte Phosphatgruppen. Die gleichen Werte werden für die Verzerrungen der [PO₄]-Tetraeder in der isotypen Verbindung WMoO₃(PO₄)₂ [285] beobachtet.

Die [WO₆]-Oktaeder in der alten Strukturbeschreibung sind etwas stärker verzerrt als in der neuen Beschreibung. Die Abstände und Winkel liegen in beiden Beschreibungen etwa im selben Bereich.

Die monokline Modifikation ($\rho_{rontg.}(m-W_2O_3(PO_4)_2) = 5,315 \text{ g}\cdot\text{cm}^{-3}$) weist eine um 2,7% höhere Dichte auf als die orthorhombische Modifikation ($\rho_{rontg.}(o-W_2O_3(PO_4)_2) = 5,173 \text{ g}\cdot\text{cm}^{-3}$ [272]). Dieser Unterschied und die Beobachtung, dass in chemischen Transportexperimenten unter gleichgewichtsnahen Bedingungen immer der monokline Strukturtyp erhalten wurde, sprechen für die höhere thermodynamische Stabilität der monoklinen Modifikation.

6 Zusammenfassung

In der vorliegenden Arbeit wurden Untersuchungen an quaternären Phosphaten der 3d-Übergangsmetalle durchgeführt. Im ersten Teil lag der Schwerpunkt auf der Synthese und Charakterisierung von quaternären Orthophosphaten $A^{II}_{3}B^{III}_{4}(PO_4)_6$ des Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyps. Im zweiten Teil wurden die Untersuchungen auf quaternäre Pyrophosphate ausgedehnt. Anhand der Ergebnisse zahlreicher Kristallstrukturanalysen erfolgte eine kristallchemische Systematisierung der polynären Pyrophosphate auf dem quasi-binären Schnitt $A^{II}_{2}P_2O_7 - B^{III}_{4}(P_2O_7)_3$. Der dritte Teil der vorliegenden Arbeit beschäftigte sich mit den katalytischen Eigenschaften quaternärer Ortho- und Pyrophosphate des dreiwertigen Eisens bei der partiellen Oxidation von Methan zu Formaldehyd.

Aufbauend auf den Ergebnissen von GRUß wurden die noch fehlenden, zu $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ isotypen, quaternären Orthophosphate $A^{II}_{3}B^{III}_{4}(PO_{4})_{6}$ (A^{II} : Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn; B^{III} : Ti, V, Cr, Fe, In) dargestellt. Dabei stellte sich heraus, dass einige Vertreter (z.B.: ,,Cr^{II}₃Fe^{III}₄(PO_4)₆", ,,Cu^{II}₃Ti^{III}₄(PO_4)₆") der quaternären Orthophosphate aufgrund des Redoxverhaltens der beteiligten Ionen nicht existieren. Mittels chemischen Gasphasentransportes konnten Einkristalle der fehlenden Vertreter des Fe^{II}₃Fe^{III}₄(PO_4)₆-Strukturtyps gewonnen und deren Kristallstrukturen in der Raugruppe $P\overline{1}$ verfeinert werden (Tabelle 6.1).

Tabelle 6.1 Zusammenstellung der polynären Orthophosphate $A^{II}_{3}B^{III}_{4}(PO_4)_6$. Fett: erstmals dargestellt und unter Berücksichtigung der Kationenfehlordnung verfeinert. Kursiv: Verbindung bereits bekannt, jedoch erstmalig Verfeinerung mit Kationenfehlordnung.

	Ti ³⁺	V^{3+}	Cr ³⁺	Fe ³⁺	In ³⁺
Mg^{2+}	$Mg_3Ti_4(PO_4)_6$	Mg ₃ V ₄ (PO ₄) ₆	$Mg_3Cr_4(PO_4)_6$	Mg ₃ Fe ₄ (PO ₄) ₆	$Mg_3In_4(PO_4)_6$
Cr^{2+}	Cr ₃ Ti ₄ (PO ₄) ₆	$Cr_3V_4(PO_4)_6$	$Cr_3Cr_4(PO_4)_6$	- ^{e)}	- ^{f)}
Mn ²⁺	Mn ₃ Ti ₄ (PO ₄) ₆	$Mn_3V_4(PO_4)_6$	Mn ₃ Cr ₄ (PO ₄) ₆	$Mn_3Fe_4(PO_4)_6$	Mn ₃ In ₄ (PO ₄) ₆
Fe ²⁺	Fe ₃ Ti ₄ (PO ₄) ₆	Fe ₃ V ₄ (PO ₄) ₆	Fe ₃ Cr ₄ (PO ₄) ₆	$Fe_3Fe_4(PO_4)_6$	Fe ₃ In ₄ (PO ₄) ₆
Co^{2+}	- ^{a)}	C0 ₃ V ₄ (PO ₄) ₆	$Co_3Cr_4(PO_4)_6$	$Co_3Fe_4(PO_4)_6$	$Co_3In_4(PO_4)_6$
Ni ²⁺	- ^{b)}	Ni ₃ V ₄ (PO ₄) ₆	Ni ₃ Cr ₄ (PO ₄) ₆	$Ni_3Fe_4(PO_4)_6$	Ni ₃ In ₄ (PO ₄) ₆
Cu^{2+}	- ^{c)}	$Cu_3V_4(PO_4)_6^{d}$	$Cu_3Cr_4(PO_4)_6$	$Cu_3Fe_4(PO_4)_6$	- ^{g)}
Zn ²⁺	Zn ₃ Ti ₄ (PO ₄) ₆	$Zn_3V_4(PO_4)_6$	$Zn_3Cr_4(PO_4)_6$	$Zn_3Fe_4(PO_4)_6$	$Zn_3In_4(PO_4)_6$

^{a)} Phasengemenge aus Co^{II}Ti^{IV}₂O₂(PO₄)₂, Co^{II}Ti^{IV}₄(PO₄)₆, Co^{II}₂P₂O₇ und Co₂P. ^{b)} Phasengemenge aus Ni^{III}Ti^{IV}₂O₂(PO₄)₂, Ti^{IV}P₂O₇, Ni^{II}₂P₂O₇ und Ni₈P₃. ^{c)} Phasengemenge aus Cu⁰ und Cu^ITi₂(PO₄)₃. ^{d)} Es wurden nur die Gitterkonstanten bestimmt. ^{e)} Aufgrund der Redoxpotentiale Cr²⁺/Cr³⁺ // Fe³⁺/Fe²⁺ wurden keine Versuche zu "Cr^{II}₃Fe^{III}₄(PO₄)₆" durchgeführt. ^{f)} Phasengemenge aus Cr^{II}₃(In^{III}_{1-x}Cr^{III}_x)₄(PO₄)₆ und InPO₄. ^{g)} Die Mischkristallreihen (Cu_xM_{1-x})₃In₄(PO₄)₆ (*M*: Mg, Zn) zeigten, für $x \le 0,33$ bildet sich der Fe^{II}₃Fe^{III}₄(PO₄)₆-Struckturtyp, bei x > 0,33 zerfällt "(Cu_xM_{1-x})₃In₄(PO₄)₆" in InPO₄, Cu₃In₂(PO₄)₄ und CuM₂In₄(PO₄)₆.

Abbildung 6.1 ORTEP-Darstellungen des Oktaeders $[M2O_6]$ (a) und des Doppeloktaeders $[M3_2O_{10}]$ (b) in Mn₃Cr₄(PO₄)₆.

Die Ergebnisse der Einkristallstrukturverfeinerungen von quaternären Orthophosphaten des $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ -Strukturtyps zeigen unterschiedliche Fehlordnungen der zwei- und dreiwertigen Kationen über die vier kristallographischen Lagen *M*1 bis *M*4. Bei kleinen dreiwertigen und großen zweiwertigen Kationen sind die Lagen *M*1 und *M*3 mit dreiwertigen Kationen und die verbleibenden Lagen *M*2 und *M*4 mit zweiwertigen Kationen besetzt. Bei größeren dreiwertigen Kationen kommt es zu einer Mischbesetzung der Lagen *M*2 und *M*3. Dabei zeigt sich deutlich, dass der Grad der Fehlbesetzung in erster Linie von der Größe des dreiwertigen Kations abhängt. Offenbar führt die elektrostatische Abstoßung zwischen den M^{3+} -Ionen im Doppeloktaeder [*M*3₂O₁₀] in diesen Fällen zur Fehlordnung. Je größer das dreiwertige Kation ist, desto stärker wird die Fehlbesetzung zwischen den Lagen *M*2 und *M*3. Bei sehr großen dreiwertigen Kationen (In³⁺ und teilweise bei Ti³⁺) wird zusätzlich eine geringe Fehlbesetzung über die Lagen *M*1 und *M*4 beobachtet. In zweiter Linie hängt der Grad der Fehlbesetzung der Lagen *M*2 und *M*3 von der Größe des zweiwertigen Kations ab. Je kleiner das zweiwertige Kation ist, desto größer wird die Fehlbesetzung zwischen den Lagen *M*2 und *M*3.

Die gefundenen Fehlordnungen der Kationen A^{II} und B^{III} über die Metalllagen in den polynären Orthophosphaten $A^{II}_{3}B^{III}_{4}(PO_{4})_{6}$ fügen sich nahtlos in die von GRUß gefundenen Ergebnisse für die quaternären Chrom- und Indiumphosphate im Fe^{II}₃Fe^{III}₄(PO₄)₆-Strukturtyp ein. Bei diesen wurde erstmals beobachtet, dass die Minimierung der repulsiven
Wechselwirkungen im Doppeloktaeder $[M3_2O_{10}]$ die treibende Kraft für die Fehlordnung der Lagen M2 und M3 ist.

Zur Erweiterung des Phasenbestands in den Systemen $A^{II} / B^{III} / P / O(A^{II}: Mg, Cr-Zn; B^{III}: Ti, V, Cr, Fe, In) erfolgten Untersuchungen zur Synthese neuer polynärer Pyrophosphate mit den Zusammensetzungen <math>A^{II}B^{III}_2(P_2O_7)_2$, $A^{II}_3B^{III}_2(P_2O_7)_3$ und $A^{II}_5B^{III}_2(P_2O_7)_4$. Dabei wurden 21 Verbindungen erstmalig hergestellt. Von 14 der dargestellten Verbindungen wurden die Strukturen anhand von Einkristalldaten verfeinert. Von 20 Verbindungen erfolgte eine Bestimmung der Gitterparameter aus *IP*-Guinier-Aufnahmen.

Schwerpunkte waren polynäre Chrom(II)-pyrophosphate (B^{III} : Ti, V), polynäre Metall(II)eisen(III)-pyrophosphate (A^{II} : Mg, Mn-Zn, Pd) sowie die polynären Pyrophosphate $A^{II}B^{III}_{2}(P_2O_7)_2$ (A^{II} : Cu, Pd; B^{III} : V, Cr, Fe, In).

Die Untersuchungen zu den Verbindungen $A^{II}B^{III}_{2}(P_{2}O_{7})_{2}$ (A^{II} : Mg, Cr-Zn; B^{III} : Ti, V, Cr, Fe, In) (Tabelle 6.2), führten neben den bekannten Strukturtypen von FeFe₂(P₂O₇)₂, CrCr₂(P₂O₇)₂ und CuFe₂(P₂O₇)₂ zu den neuen Strukturtypen *hex*.-CrTi₂(P₂O₇)₂, *trikl*.-CrTi₂(P₂O₇)₂ und CuCr₂(P₂O₇)₂. Dabei zeigte sich eine enge Verwandtschaft zwischen der *trikl*.-CrTi₂(P₂O₇)₂-, der CuCr₂(P₂O₇)₂- und der CuFe₂(P₂O₇)₂-Struktur. Ebenfalls wurde eine enge Verwandtschaft zwischen der *hex*.-CrTi₂(P₂O₇)₂- und der FeFe₂(P₂O₇)-Struktur gefunden. Die komplexen Strukturen der drei Strukturfamilien für Verbindungen $A^{II}B^{III}_{2}(P_{2}O_{7})_{2}$ lassen sich von der NaCl-Struktur beziehungsweise auf zwei unterschiedliche Arten von der NiAs-Struktur ableiten.

Beim $CrCr_2(P_2O_7)_2$ -Strukturtyp (NiAs-Familie) bilden die Phosphattetraeder eine hexagonal dichteste Kugelpackung, bei welchen die Hälfte der Oktaederlücken mit den Kationen B^{III} und ein Viertel mit A^{II} besetzt sind. Ein Viertel der Lücken bleiben unbesetzt. Die Phosphoratome einer [P₂O₇]-Gruppe liegen immer innerhalb einer dichtest gepackten Ebene.

Die weiteren hier untersuchten $A^{II}B^{III}_2(P_2O_7)_2$ -Strukturen leiten sich ebenfalls von dichtesten Kugelpackungen ab. Anstelle der Kugeln treten zylindrische [P₂O₇]-Gruppen, die senkrecht zu den dichtesten Packungsschichten ausgerichtet sind. Sämtliche Oktaederlücken dieser "Zylinderpackungen" werden durch M^{3+} -Kationen besetzt.

Bei kubischer Anordnung der $[P_2O_7]$ -Einheiten sind die M^{2+} -Kationen innerhalb dieser $[P_2O_7]$ -Schichten quadratisch durch zwei chelatisierende $[P_2O_7]$ -Gruppen koordiniert. Abhängig von den M^{2+} -Positionen innerhalb der dichtest gepackten Ebenen bilden sich der *t*-CrTi₂(P₂O₇)₂-, CuCr₂(P₂O₇)₂- oder CuFe₂(P₂O₇)₂-Strukturtyp aus.

Bei hexagonaler Anordnung der [P₂O₇]-Einheiten besetzen die M^{2+} -Kationen die Hälfte der durch drei Pyrophosphatgruppen gebildeten trigonal-prismatischen Lücken. Beim FeFe₂(P₂O₇)₂-Strukturtyp befinden sich die M^{2+} -Kationen im Zentrum dieser Prismen, beim CrTi₂(P₂O₇)₂-Strukturtyp zentrieren die M^{2+} -Kationen eine Seitenfläche des Prismas.

Tabelle 6.2 Zusammenstellung der Pyrophosphate $A^{II}B^{III}{}_{2}(P_2O_7)_2$. Einkristallstrukturen der fett gesetzten Verbindungen wurden im Rahmen dieser Arbeit verfeinert. Von den unterstrichenen Verbindungen wurden die Gitterparameter bestimmt.

	Ti ³⁺	V ³⁺	Cr ³⁺	Fe ³⁺	In ³⁺
Mg^{2+}			$MgCr_2(P_2O_7)_2^{(g)}$	$MgFe_2(P_2O_7)_2^{h}$	- ^{a)}
Cr^{2+}	$CrTi_2(P_2O_7)_2^{e) f}$	$CrV_2(P_2O_7)_2^{(g)}$	$CrCr_2(P_2O_7)_2^{g)}$		
Mn^{2^+}				- ^{b)}	
Fe ²⁺		FeV₂(P₂O₇) ^{g)}	$\underline{FeCr_2(P_2O_7)_2}^{g)}$	$FeFe_2(P_2O_7)_2^{h}$	
Co^{2^+}				$\underline{\text{CoFe}_2(P_2O_7)_2}^{\text{h}}$	
Ni ²⁺				- ^{c)}	
Cu^{2^+}		$CuV_2(P_2O_7)_2^{(j)}$	$CuCr_2(P_2O_7)_2^{(j)}$	CuFe ₂ (P ₂ O ₇) ₂ ⁱ⁾	$CuIn_2(P_2O_7)_2^{(i)}$
Pd^{2+}		- ^{d)}	$PdCr_2(P_2O_7)_2^{(j)}$	PdFe₂(P₂O₇)₂ ^{j)}	$PdIn_2(P_2O_7)_2^{(j)}$
Zn^{2+}			$ZnCr_2(P_2O_7)_2^{g)}$	$\underline{ZnFe_2(P_2O_7)_2}^{h)}$	- ^{a)}

^{a)} , $\mathcal{A}^{II} In^{III}_{2}(P_{2}O_{7})_{2}^{"}$ (\mathcal{A}^{II} : Mg, Zn) besteht aus Phasengemengen In₄(P₂O₇)₃, $\mathcal{A}^{II}_{3} In_{4}(PO_{4})_{6}$ und $\mathcal{A}^{II}(PO_{3})_{2}$. ^{b)} Phasengemenge Fe₄(P₂O₇)₃ und Mn₅Fe₂(P₂O₇)₄. ^{c)} Phasengemenge Fe₄(P₂O₇)₃ und Ni₂P₂O₇. ^{d)} Phasengemenge Pd⁰ und V^{IV}O(PO_{3})₂. ^{e)} hex.-Cr^{II}Ti^{III}₂(P₂O₇)₂-Strukturtyp. ^{f)} tikl.-Cr^{II}Ti^{III}₂(P₂O₇)₂-Strukturtyp. ^{g)} Cr^{II}Cr^{III}₂(P₂O₇)₂-Strukturtyp. ^{II} tikl.-Cr^{II}Ti^{III}₂(P₂O₇)₂-Strukturtyp. ^{g)} Cr^{II}Cr^{III}₂(P₂O₇)₂-Strukturtyp.

Bei der Suche nach weiteren polynären Pyrophosphaten mit der Summenformel $A^{II}_{5}B^{III}_{2}(P_{2}O_{7})_{4}$ wurden die Pyrophosphate $A^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ (A^{II} : Cr, Mn, Fe) synthetisiert und deren Strukturen anhand von Einkristalldaten gelöst und verfeinert. Dabei zeigte sich, dass die Pyrophosphate $A^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ (A^{II} : Mn, Fe) isotyp zu Fe^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4} sind und Cr^{II}₅V^{III}_{2}(P_{2}O_{7})_{4} eng verwandt mit der Fe^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}-Struktur ist. Ebenfalls konnte bei diesen Untersuchungen das neue, im eigenen Strukturtyp kristallisierende Pyrophosphat Fe^{II}_{3}V^{III}_{2}(P_{2}O_{7})_{3} dargestellt und dessen Struktur aus Einkristalldaten bestimmt und verfeinert werden. Einphasige pulverförmige Proben konnten von $A^{II}_{5}Fe^{III}_{2}(P_{2}O_{7})_{4}$ (A^{II} : Mn, Zn) erstmalig dargestellt werden. Die Gitterkonstanten der neuen Phasen wurden aus *IP*-Guinier-Aufnahmen bestimmt. Die drei Strukturtypen Fe^{II}₅Fe^{III}_{2}(P_{2}O_{7})_{4}, Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4} und Fe^{II}_{3}V^{III}_{2}(P_{2}O_{7})_{3} leiten sich vom Thortveitit-Strukturtyp ab.

Für die partielle Oxidation von Methan zu Formaldehyd wurden die polynären Orthophosphate und Pyrophosphate des dreiwertigen Eisens sowie polynären Chrom(III)orthophosphate als Katalysatormaterial getestet.

Dabei erwiesen sich alle getesteten polynären Chromphosphate bis auf Cu₃Cr₄(PO₄)₆ und CuCr₂(P₂O₇)₂ als katalytisch inaktiv. Im Unterschied dazu zeigten alle polynären Eisen(III)phosphate katalytische Aktivität. Die polynären Eisen(III)-orthophosphate lieferten ähnliche Werte wie FePO₄. Deutlich bessere Ergebnisse als FePO₄ konnten für einige polynäre Eisen(III)-pyrophosphate erzielt werden. Bei den katalytischen Tests für die direkte Oxidation von Methan zu Formaldehyd fand sich kein Material mit hohen Selektivitäten und gleichzeitig hohen Umsätzen. Aussichtsreiche Kandidaten für weitere Untersuchungen sind die Pyrophosphate CuFe₂(P₂O₇)₂ sowie "Mg₅Fe₂(P₂O₇)₄", das aus einem Phasengemenge MgFe₂(P₂O₇)₂ und Mg₂P₂O₇ besteht. Diese Materialien wiesen eine hohe Selektivität zur Bildung von Formaldehyd bei gleichzeitig niedriger Tendenz zur Bildung von CO₂ auf.

Des Weiteren konnte im Rahmen der vorliegenden Arbeit das Strukturmodell für m-W₂O₃(PO₄)₂ aus Einkristalluntersuchungen verbessert werden. Die Kristalle von m-W₂O₃(PO₄)₂ entstanden bereits während der vorangegangenen Diplomarbeit.

ANHANG

Anhang A Quaternäre Orthophosphate $A^{II}_{3}B^{III}_{4}(PO_4)_6$

A.1 Guinierdiagramme

A.1.1 A^{II}_{3} Ti^{III}₄(PO₄)₆ (A^{II} : Cr, Mn, Fe, Zn, Mg)

Abbildung A.1 *IP*-Guinier-Aufnahme von $Mg_3Ti_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.2 *IP*-Guinier-Aufnahme von $Cr_3Ti_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.3 *IP*-Guinier-Aufnahme von $Mn_3Ti_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.4 *IP*-Guinier-Aufnahme von $Fe_3Ti_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.5 *IP*-Guinier-Aufnahme von $Zn_3Ti_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.6 *IP*-Guinier-Aufnahme der unbekannten Phase bei der Synthese von $Zn_3Ti_4(PO_4)_6$ mit viel I_2 als Mineralisator, deren Reflexmuster eine große Ähnlichkeit mit der NASICON-Familie aufweist.

A.1.2 $A^{II}_{3}V^{III}_{4}(PO_4)_6$ (A^{II} : Cr, Mn, Fe, Co, Ni, Cu, Zn, Mg)

Abbildung A.7 *IP*-Guinier-Aufnahme von $Mg_3V_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.8 *IP*-Guinier-Aufnahme von $Cr_3V_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.9 *IP*-Guinier-Aufnahme von $Mn_3V_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.10 *IP*-Guinier-Aufnahme von $Fe_3V_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.11 *IP*-Guinier-Aufnahme von $\text{Co}_3\text{V}_4(\text{PO}_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.12 *IP*-Guinier-Aufnahme von $Ni_3V_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.13 *IP*-Guinier-Aufnahme von $Cu_3V_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.14 *IP*-Guinier-Aufnahme der unbekannten Phase X1 bei der Synthese von $Cu_3V_4(PO_4)_6$ (vergl. Experiment in Tabelle 2.8).

Abbildung A.15 *IP*-Guinier-Aufnahme von $Zn_3V_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

A.1.3 A^{II}₃Cr^{III}₄(PO₄)₆ (A^{II}: Mn, Fe, Co)

Abbildung A.16 *IP*-Guinier-Aufnahme von $Mn_3Cr_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.17 *IP*-Guinier-Aufnahme von $Fe_3Cr_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.18 *IP*-Guinier-Aufnahme von $Co_3Cr_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

A.1.4 A^{II}_{3} Fe^{III}₄(PO₄)₆ (A^{II} : Mg, Zn, Mn, Fe, Co, Ni, Cu)

Abbildung A.19 *IP*-Guinier-Aufnahme von Mg₃Fe₄(PO₄)₆ getempert an Luft bei 800 °C (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b) und berechnetes Guinierdiagramm von FePO₄ [104] (c).

Abbildung A.20 *IP*-Guinier-Aufnahme von $Mg_3Fe_4(PO_4)_6$ getempert mit Chlor (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.21 *IP*-Guinier-Aufnahme von $Zn_3Fe_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage von [28] (b).

Abbildung A.22 *IP*-Guinier-Aufnahme von $Mn_3Fe_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterkonstanten und den Lageparametern von $Mn_2Fe_5(PO_4)_6$ [133] (b).

Abbildung A.23 *IP*-Guinier-Aufnahme von $Fe_3Fe_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage von [16] (b).

Abbildung A.24 *IP*-Guinier-Aufnahme von $Fe_3Fe_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterkonstanten und den Lageparametern von [16] (b).

Abbildung A.25 *IP*-Guinier-Aufnahme von $Ni_3Fe_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage der Gitterkonstanten und Lageparametern von [136] (b).

Abbildung A.26 *IP*-Guinier-Aufnahme von $Ni_3Fe_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterkonstanten und den Lageparametern von [136] (b).

Abbildung A.27 *IP*-Guinier-Aufnahme von $Co_3Fe_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage von $Co_{2,9}Fe_{4,1}(PO_4)_6$ [133] (b).

Abbildung A.28 *IP*-Guinier-Aufnahme von $Cu_3Fe_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage von [134] (b).

A.1.5 $A^{II}_{3}In^{III}_{4}(PO_{4})_{6}$ (A^{II} : Mn, Fe, Co, Ni, Zn, Mg)

Abbildung A.29 *IP*-Guinier-Aufnahme von $Mn_3In_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.30 *IP*-Guinier-Aufnahme von $Fe_3In_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.31 *IP*-Guinier-Aufnahme von $Co_3In_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.32 *IP*-Guinier-Aufnahme von $Ni_3In_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung A.33 *IP*-Guinier-Aufnahme von $Zn_3In_4(PO_4)_6$ (Substanz enthält Spuren von α -InPO₄ [101]) (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

A.1.6 $(Cu_x M_{1-x})_3 In_4 (PO_4)_6 (M: Mg, Zn)$

Abbildung A.34 *IP*-Guinier-Aufnahme von $CuMg_2In_4(PO_4)_6$ (Substanz enthält Spuren von InPO₄ [101] und $Cu_3In_2(PO_4)_4$) [33]) (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparameter und den Lageparametern von $Mg_3In_4(PO_4)_6$ [28] mit 50% Cu auf der Lage *M*3 (b).

Abbildung A.35 *IP*-Guinier-Aufnahme von $CuZn_2In_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparameter und den Lageparametern von $Zn_3In_4(PO_4)_6$ mit 50% Cu auf der Lage *M*3 (b).

A.2 Indizierung von Guinieraufnahmen

A.2.1 A^{II}_{3} Ti^{III}₄(PO₄)₆ (A^{II} : Cr, Mn, Fe, Zn)

Tabelle A.1 $\operatorname{Cr}_{3}^{II}\operatorname{Ti}_{4}^{III}(\operatorname{PO}_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.2) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
0	1	0	23.861	23,849	0.01	7,411	183	140
1	-1	0	25.524	25,462	0.06	6.930	152	115
1	0	-1	29,982	29,919	0,07	5,904	31	31
0	0	1	30,698	30,680	0,02	5,767	163	141
0	1	-1	32,657	32,672	0,02	5,423	27	29
1	1	-1	37,310	37,286	0,03	4,752	167	143
1	-1	-1	39,467	39,448	0,03	4,495	31	20
1	-1	1	40,569	40,498	0,11	4,374	156	173
2	0	0	42,430	42,409	0,03	4,184	63	42
0	1	1	44,422	44,380	0,07	3,998	54	40
1	-2	0	44,864	44,830	0,06	3,960	23	12
2	-1	-1	45,304	45,270	0,06	3,922	32	24
0	2	0	47,985	47,920	0,11	3,705	90	79
1	-2	1	50,635	50,630	0,01	3,514	29	31
2	-2	0	51,373	51,300	0,14	3,465	51	51
2	-1	1	56,130	56,128	0,00	3,176	189	174
1	0	-2	57,306	57,317	0,02	3,112	316	279
1	2	0	59,319	59,306	0,03	3,009	1000	1000
3	-1	0	59,678	59,675	0,00	2,991	813	683
2	0	-2	60,492	60,485	0,02	2,952	104	92
2	-2	1	60,866	60,834	0,07	2,934	119	104
2	0	1	61,501	61,494	0,02	2,905	116	88
2	1	-2	63,911	63,931	0,05	2,798	198	163
0	2	-2	66,002	65,979	0,06	2,/11	85	81
2	-1	-2	66,543	66,528	0,04	2,690	143	260
3	-2	-1	07,732	07,720	0,01	2,044	1/0	122
2 1	-3	0	09,039	09,004	0,01	2,575	240	191
1	-2	2	71,570	72,650	0,03	2,313	80 20	33
1	5	2	72,004	72,039	0,01	2,470	59 70	33 87
3	-1	1	75,121	75,120	0,02	2,455	26	13
2	-1 2	-2	75,657	75,703	0.12	2,374	20 57	44
2 4	-2	-2	82 260	82 248	0.03	2,370	59	69
1	3	0	83 313	83 316	0.01	2,192	135	98
2	1	-3	87 194	87 235	0.13	2,100	120	127
1	2	-3	90 292	90 227	0.20	2,006	63	80
4	-3	0	91,054	91 074	0.06	1 990	95	72
2	2	1	93,720	93.686	0.11	1.937	79	25
3	1	-3	94,095	94,075	0,06	1,929	42	13
3	-4	0	96,179	96,138	0,13	1,890	38	36
3	-1	-3	96,969	96,935	0,11	1,875	15	14
0	4	0	98,252	98,260	0,03	1,852	50	41
4	1	0	98,620	98,589	0,10	1,846	100	67
0	4	-2	99,339	99,386	0,16	1,833	27	12
3	-4	1	99,773	99,745	0,10	1,826	37	29
2	-4	-1	101,739	101,707	0,11	1,793	47	41
1	4	-2	104,524	104,506	0,06	1,748	69	76
1	-4	-1	105,112	105,124	0,04	1,739	25	5
2	-3	3	114,527	114,532	0,02	1,607	172	160
5	-2	1	115,486	115,488	0,01	1,595	86	77
1	1	-4	117,473	117,468	0,02	1,570	202	138
6	-3	-1	123,964	123,954	0,04	1,495	93	105
4	0	-4	125,809	125,804	0,02	1,476	85	33
3	4	-2	127,777	127,733	0,17	1,455	43	50
4	3	-3	129,979	129,970	0.03	1,433	29	18

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	$I_{\rm obs}$
0	1	0	23,690	23,705	0,01	7,465	111	102
1	-1	0	25,589	25,608	0,02	6,913	203	202
0	0	1	30,534	30,575	0,05	5,798	135	123
0	1	-1	32,281	32,308	0,03	5,486	32	27
1	1	-1	36,687	36,673	0,02	4,832	191	157
1	-1	-1	39,103	39,136	0,05	4,536	48	53
1	-1	1	40,755	40,788	0,05	4,354	202	244
2	0	0	42,855	42,820	0,06	4,143	70	64
1	0	1	43,810	43,841	0,05	4,054	24	19
0	1	1	44,285	44,261	0,04	4,011	34	16
0	2	0	47,638	47,653	0,03	3,732	77	26
1	-2	1	50,502	50,485	0,03	3,524	38	37
2	-2	0	51,504	51,506	0,00	3,456	39	31
1	1	1	57,768	57,728	0,09	3,088	38	43
0	1	-2	58,645	58,658	0,03	3,043	284	352
1	2	0	59,069	59,088	0,04	3,021	1000	1000
2	0	-2	59,493	59,508	0,03	3,000	118	139
3	-1	0	60,367	60,358	0,02	2,958	746	710
2	-2	1	61,261	61,248	0,03	2,916	153	129
2	0	1	62,185	62,178	0,01	2,873	134	115
2	1	-2	62,749	62,758	0,02	2,848	202	203
0	2	-2	65,226	65,218	0,02	2,743	116	122
3	-2	-1	67,590	67,597	0,02	2,650	158	162
2	-3	0	69,489	69,497	0,02	2,579	221	245
1	-2	2	71,164	71,166	0,00	2,520	46	30
0	3	0	72,128	72,126	0,01	2,488	77	74
2	2	-2	74,359	74,365	0,02	2,416	60	45
3	1	-2	75,086	75,084	0,01	2,393	76	66
3	-1	1	76,111	76,144	0,09	2,362	16	20
1	3	0	82,845	82,848	0,01	2,178	69	125
4	0	-2	84,642	84,646	0,01	2,133	37	74
2	1	-3	85,597	85,615	0,05	2,111	125	133
2	0	-3	86,054	86,035	0,06	2,100	64	38
1	2	-3	88,824	88,832	0,02	2,038	72	85
2	3	-1	89,164	89,171	0,02	2,030	80	89
2	2	1	94,022	94,025	0,01	1,931	90	99
3	-4	0	96,064	96,051	0,04	1,892	41	76
0	4	0	97,506	97,519	0,04	1,866	63	51
4	1	0	99,329	99,316	0,04	1,834	128	84
1	4	-2	103,006	102,990	0,06	1,772	72	49
1	-2	-3	111,431	111,432	0,00	1,648	64	63
2	-3	3	114,521	114,525	0,01	1,607	188	153
1	1	-4	115,961	115,951	0,04	1,589	191	151

Tabelle A.2 $Mn^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.3) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.

h	k	l	$4 heta_{ m calc}$	$4\theta_{\rm obs}$	Δ	<i>d</i> -Wert	$I_{\rm calc}^{a)}$	Iobs
0	1	0	24 011	23.956	0.05	7 365	87	81
1	-1	Ő	25.875	25,818	0.06	6.836	217	212
1	0	-1	29 452	29 471	0.02	6 010	50	67
0	Õ	1	30,540	30 482	0.07	5 797	131	131
1	1	-1	36.937	36.926	0.01	4,800	197	197
1	-1	-1	39,198	39 167	0.05	4 525	46	48
1	-1	1	41.038	40,988	0.08	4.324	223	238
2	0	-1	41.500	41,448	0.08	4.277	12	3
2	Õ	0	42,802	42,769	0.05	4 148	70	58
1	Ő	1	43.823	43,829	0.01	4.052	29	12
0	1	1	44.397	44,379	0.03	4.001	39	44
1	-2	0	45.345	45.309	0.06	3.918	38	24
0	2	0	48.290	48,269	0.04	3.682	74	71
1	-2	1	51.260	51,239	0.04	3.472	45	41
2	-2	0	52.088	52,119	0.06	3.418	46	38
1	0	-2	56,490	56.478	0.03	3,156	305	290
2	-1	1	56.987	56.987	0.00	3,129	175	141
1	1	1	57.857	57.877	0.04	3.083	40	21
0	1	-2	58.899	58,857	0.09	3.030	299	281
1	2	0	59.586	59,566	0.04	2,996	1000	1000
3	-1	0	60.426	60.456	0.07	2,955	738	653
2	-2	1	61.893	61.865	0.06	2,887	138	141
2	0	1	62,181	62,195	0.03	2.874	139	90
2	1	-2	62,883	62,884	0,00	2,842	206	179
$\frac{1}{2}$	-1	-2	65.656	65.662	0.01	2,725	211	218
1	-1	-2	65.952	65,912	0.09	2,713	137	247
3	-2	-1	67,882	67,900	0.05	2,639	162	140
1	-1	2	68.236	68.240	0.01	2.625	70	93
2	-3	0	70.519	70.518	0.00	2.543	195	160
1	-2	2	71.832	71,797	0.09	2,498	44	39
3	1	-2	75.132	75,133	0.00	2.392	79	71
3	-1	1	76.241	76.221	0.05	2.358	13	87
3	-2	-2	83.010	83.042	0.09	2,173	46	42
2	1	-3	85.727	85.747	0.06	2,108	136	142
1	2	-3	89.397	89.381	0.05	2.025	68	60
2	3	-1	90.055	90.059	0.01	2.011	81	38
4	-3	0	92,416	92,425	0.03	1.962	91	100
2	-1	-3	93.337	93.353	0.05	1.944	24	11
2	2	1	94.300	94.281	0.06	1,925	94	77
3	-4	0	97.461	97,444	0.06	1.867	49	50
4	1	0	99.304	99,300	0.01	1.834	126	105
2	-4	-1	102.311	102.302	0.03	1,784	41	34
1	4	-2	104.587	104.587	0.00	1.747	76	45
4	-4	1	113.607	113.582	0.09	1.619	51	56
2	-3	3	115,569	115,556	0,05	1,594	183	121
1	1	-4	116,148	116,144	0.01	1.586	189	126
5	-2	1	117.481	117,500	0.07	1.570	83	54
4	0	-4	123,355	123,330	0.09	1.502	84	63
6	-3	-1	125,010	125,015	0.02	1.484	96	38
1	-5	3	135,100	135,137	0,15	1,385	51	36
0	1	4	139,579	139,598	0,08	1,346	111	19

Tabelle A.3 Fe^{II}₃Ti^{III}₄(PO₄)₆. Indizierung einer Guinieraufnahme (Abbildung A.4) mit beobachteten und berechneten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	d-Wert	I _{calc} ^{a)}	$I_{\rm obs}$
0	1	0	24,238	24,297	0,05	7,296	55	58
1	-1	0	26,281	26,325	0,04	6,731	304	300
1	0	-1	29,521	29,541	0,02	5,996	91	104
0	0	1	30,608	30,640	0,04	5,784	82	86
1	1	-1	37,126	37,154	0,04	4,775	207	215
1	-1	-1	39,407	39,382	0,04	4,501	51	49
1	-1	1	41,460	41,460	0,00	4,281	269	282
2	0	0	42,728	42,779	0,08	4,155	92	95
1	0	1	43,836	43,838	0,00	4,051	51	59
0	1	1	44,450	44,427	0,04	3,996	44	45
1	-2	0	46,079	46,116	0,06	3,857	33	33
0	2	0	48,753	48,744	0,02	3,648	68	72
1	-2	1	52,149	52,122	0,05	3,414	64	55
1	0	-2	56,654	56,649	0,01	3,147	302	347
2	-1	1	57,348	57,329	0,04	3,110	202	220
0	1	-2	59,325	59,358	0,07	3,009	264	409
1	2	0	59,751	59,738	0,03	2,988	1000	1000
3	-1	0	60,702	60,717	0,03	2,942	719	803
2	0	1	62,139	62,107	0,07	2,876	142	138
2	-2	1	62,787	62,786	0,00	2,847	124	171
2	1	-2	63,089	63,086	0,01	2,833	189	194
2	-1	-2	65,892	65,875	0,04	2,716	246	298
0	2	-2	66,730	66,725	0,01	2,683	119	122
1	2	-2	67,654	67,635	0,05	2,647	22	37
3	-2	-1	68,559	68,584	0,06	2,613	180	197
l	-3	0	69,412	69,434	0,05	2,582	28	0
3	0	-2	69,554	69,564	0,03	2,577	31	118
0	3	-1	71,104	71,124	0,05	2,523	28	12
2	-3	0	71,731	71,713	0,05	2,501	175	148
1	-2	2	/2,/24	/2,/33	0,03	2,468	30	26
1	0	2	/3,415	73,403	0,03	2,446	100	119
0	3	0	/3,851	/3,833	0,05	2,432	110	112
3	1	-2	/5,191	75,233	0,11	2,390	98	155
4	0	-1	/9,609	/9,632	0,06	2,262	27	20
5	-3	0	80,303	80,512	0,03	2,243	31	42
5	-2	-2	83,334	83,332	0,00	2,100	40	25
4	-2	0	84,155	84,102	0,02	2,145	/5	105
2 1	1	-5	80,101 00,156	80,1 <i>32</i> 00,172	0,15	2,099	139	191
1	2	-5	90,130	90,172	0,03	2,009	75 77	93
2	3	-1	90,428	90,432	0,01	2,003	20	93 25
3	1	-3	92,002	92,713	0,10	1,938	29	33 71
4	-3	1	95,090	95,095	0,01	1,937	112	121
2	1	0	08 050	08 08/	0,08	1,929	140	121
1	1 4	-2	105 846	105 856	0,08	1,040	86	100
5	0	-2	110 427	110,459	0.11	1,720	29	33
5	0	-3	113,819	113,800	0.07	1,002	31	16
3	3	-3	115,019	115,000	0.14	1,591	42	36
1	1	-4	116 717	116 722	0.02	1 579	181	127
2	-3	3	117.026	117.022	0.02	1,576	182	128
5	-2	1	118,189	118,163	0.10	1.561	93	54
4	3	-2	122.668	122,656	0.04	1 510	90	19
6	õ	-2	123.232	123.207	0.10	1.503	70	24
4	Õ	-4	123.673	123.667	0.02	1.499	86	6
5	2	-2	124.025	124,017	0.03	1.495	5	ě 4
6	-3	-1	126.155	126,169	0.06	1.472	99	71
3	-1	3	130,751	130,743	0.03	1,426	89	25
6	-2	-3	134,479	134,477	0,01	1,391	65	49

Tabelle A.4 $\mathbf{Zn}_{3}^{II}\mathbf{Ti}_{4}^{III}(\mathbf{PO}_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.5) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.

A.2.2 $A^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ (A^{II} : Cr, Mn, Fe, Co, Ni, Cu, Mg)

Tabelle A.5 Cr ^{II} ₃ V ^{III} ₄ (PO ₄) ₆ .	Indizierung	einer	Guinieraufnahme	(Abbildung	A.8)	mit
beobachteten und berechneten	4θ -Werten. Δ	$= \sin^2$	$\theta_{\rm calc}$ - $\sin^2 \theta_{\rm obs} \cdot 100$	0.		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	d-Wert	I _{calc} ^{a)}	$I_{\rm obs}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1	0	24,148	24,136	0,01	7,323	185	125
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-1	0	25,610	25,652	0,04	6,907	161	95
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	0	1	31,109	31,139	0,03	5,692	154	101
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1	-1	32,865	32,894	0,04	5,389	33	25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	-1	37,584	37,562	0,03	4,718	205	162
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-1	-1	39,745	39,717	0,04	4,463	40	25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-1	1	41,036	41,073	0,06	4,324	205	163
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	-1	42,197	42,170	0,04	4,207	20	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	43,163	43,138	0,04	4,114	49	34
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	1	44,359	44,364	0,01	4,004	39	23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	1	45,156	45,162	0,01	3,934	51	61
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2	0	48,569	48,543	0,05	3,662	72	60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-2	1	50,923	50,946	0,04	3,495	23	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-2	0	51,547	51,534	0,02	3,453	25	23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-1	1	56,976	56,979	0,01	3,130	160	99
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	-2	57,752	57,786	0,07	3,089	317	245
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	1	58,801	58,803	0,00	3,035	49	39
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	-2	59.734	59,721	0.03	2,989	292	239
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	0	60.364	60.319	0.10	2,958	1000	1000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	-2	60,740	60,738	0,00	2,940	104	82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	1	62,793	62.802	0.02	2.846	126	65
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	-2	64.248	64.197	0.12	2,784	207	117
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2	-2	66.431	66.351	0.19	2.694	94	56
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-1	-2	66.890	66.949	0.14	2.677	151	86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-1	-2	67.282	67.328	0.11	2.661	136	79
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	-2	-1	67.893	67.916	0.06	2.638	207	170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-1	2	68.875	68.843	0.08	2.602	60	44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-3	0	69.937	69,940	0.01	2.563	254	170
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	-2	70.857	70.867	0.03	2.531	31	18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	-2	2	72.012	71.963	0.13	2,492	59	36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	3	0	73.566	73,568	0.00	2.441	49	36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	2	74,445	74,455	0.03	2,413	78	49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	-2	76.229	76.230	0.00	2.359	47	41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	-2	76,709	76,688	0.06	2.344	72	51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	-3	0	78,177	78,173	0.01	2.302	44	33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	-1	Ő	81.674	81.632	0.12	2.207	30	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	-2	Õ	82.937	82,978	0.12	2,175	57	41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-1	2	83.294	83,316	0.07	2,166	17	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0	-2	85,917	85,938	0.06	2,103	34	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	-3	87.664	87.662	0.01	2.063	120	115
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	-3	87,998	88.001	0.01	2.056	82	66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	-3	90.865	90,871	0.02	1.994	67	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	-3	94.547	94,508	0.13	1.921	48	33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	1	95.836	95.843	0.02	1.896	95	70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	4	0	99.510	99,470	0.13	1.831	53	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-4	-1	102.541	102,509	0.11	1.780	43	19
1 4 -2 105,426 105,508 0,28 1,735 64 39	1	-3	-2	104,312	104,323	0,04	1,752	26	19
	1	4	-2	105,426	105,508	0,28	1,735	64	39

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	$I_{\rm obs}$
0	1	0	24,083	24,122	0,04	7,343	163	75
1	-1	0	25,686	25,691	0,00	6,887	190	119
1	0	-1	29,897	29,866	0,03	5,921	21	10
0	0	1	30.912	30,925	0.01	5.728	140	99
Õ	1	-1	32,460	32,493	0.04	5.456	36	36
1	1	-1	37.096	37,108	0.02	4,779	209	155
1	-1	-1	39.812	39.815	0.00	4.456	52	47
1	-1	1	40 767	40 784	0.03	4 353	222	234
2	0	0	43 042	43 031	0.02	4 125	45	27
- 1	Ő	1	44 162	44 170	0.01	4 022	32	23
2	-1	-1	45 520	45 518	0.00	3,903	32	25
0	2	0	48 437	48 435	0,00	3 671	68	33
1	-2	1	50 594	50 592	0,00	3 517	28	23
2	-2	0	51 702	51 731	0.05	3 443	20	10
2	-2	1	56 774	56 815	0,05	3 141	145	138
1	-1	_2	57 336	57 364	0,05	3 111	3/6	310
0	1	-2	59,090	59,092	0,00	3 020	256	258
1	2	-2	59,090	50,071	0,00	2 072	1000	1000
1	2 1	0	60.376	60.361	0,01	2,972	725	400
3	-1	0	61 166	61 160	0,03	2,937	123	490
2	-2	1	62 565	62 559	0,01	2,920	107	112
2	0	1	62,303	62,338	0,02	2,830	142	132
2	1	-2	65,462	05,487	0,01	2,810	207	150
0	2	-2	65,594	05,004	0,02	2,728	118	90
2	-l	-2	66,804	66,793	0,03	2,680	1/2	89
1	-1	-2	6/,143	6/,1/2	0,07	2,667	128	124
3	-2	-1	68,197	68,181	0,04	2,627	192	179
2	-3	0	/0,081	70,089	0,02	2,558	236	170
1	-2	2	/1,320	/1,31/	0,01	2,515	49	27
1	0	2	74,043	74,064	0,05	2,426	90	59
2	2	-2	/5,212	/5,202	0,02	2,389	56	64
3	1	-2	75,932	75,921	0,03	2,367	80	65
3	-3	0	78,418	78,418	0,00	2,295	43	32
4	-1	0	81,635	81,634	0,00	2,208	25	14
4	-2	0	83,089	83,062	0,08	2,171	58	48
1	3	0	84,315	84,331	0,05	2,141	79	48
2	1	-3	86,658	86,658	0,00	2,086	125	162
2	0	-3	87,343	87,337	0,02	2,070	71	61
1	2	-3	89,628	89,624	0,01	2,020	78	50
2	3	-1	90,493	90,503	0,03	2,002	79	48
3	1	-3	93,509	93,509	0,00	1,941	40	41
2	2	1	95,508	95,496	0,04	1,902	94	90
3	-4	0	96,778	96,765	0,04	1,879	32	32
0	4	0	99,225	99,221	0,01	1,835	55	24
1	4	-2	104,207	104,205	0,01	1,753	70	37
5	-2	-2	106,259	106,282	0,08	1,722	35	47
4	-4	1	112,190	112,194	0,01	1,638	44	28
1	-2	-3	113,641	113,632	0,03	1,618	68	92
2	-3	3	114,688	114,690	0,01	1,605	190	124
1	1	-4	117,364	117,357	0,03	1,571	196	139
6	-3	-1	125,046	125,046	0,00	1,484	100	31

Tabelle A.6 $Mn^{II}_{3}V^{III}_{4}(PO_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.9) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.

			4.0	10		1 3 3 7	7 a)	7
h	k	l	$4\theta_{\rm calc}$	$4\theta_{\rm obs}$	Δ	<i>d</i> -Wert	I _{calc} "	I _{obs}
0	1	0	24,335	24,288	0,04	7,267	135	140
1	-1	0	25,958	25,959	0,00	6,815	200	115
1	0	-1	29,901	29,894	0,01	5,920	29	31
0	0	1	30,935	30,901	0,04	5,723	137	141
0	1	-1	32,751	32,731	0,02	5,408	29	29
1	1	-1	37,330	37,327	0,00	4,749	218	143
1	-1	-1	39,910	39,921	0,02	4,445	49	20
1	-1	1	41,054	41,077	0,03	4,323	240	173
2	0	0	43,104	43,136	0,05	4,119	45	42
1	0	1	44,221	44,221	0,00	4,016	35	40
0	1	1	45,203	45,196	0,01	3,930	49	12
2	-1	-1	45,629	45,668	0,07	3,894	27	24
0	2	0	48,951	48,942	0,02	3,633	71	79
1	-2	1	51.255	51.271	0.03	3,473	32	31
2	-2	0	52,257	52,254	0.01	3,407	27	51
2	-1	1	57.046	57.051	0.01	3,126	174	174
1	0	-2	57.353	57.372	0.04	3.110	322	279
1	1	1	58 737	58 746	0.02	3 038	42	1000
0	1	-2	59 338	59 347	0.02	3,008	268	683
1	2	ō	60 492	60 521	0.06	2,952	1000	92
2	-2	1	61 784	61 804	0.04	2,892	168	104
2	0	1	62 661	62 676	0.03	2,852	149	88
2	1	-2	63 670	63 658	0.03	2,802	213	163
2	-1	-2	66 833	66 835	0,00	2,000	174	81
1	-1	-2	67,176	67 166	0,00	2,075	1/4	260
3	-1	-2	68 561	68 569	0,02	2,005	102	122
2	-2	-1	70.969	70 072	0,02	2,013	214	122
2	-3	0	70,909	70,972	0,01	2,327	214 50	191
1	-2	2	71,932	71,944	0,05	2,494	56	22
2	2 1	-2	75,700	76,000	0,03	2,374	79	33 87
3	1	-2	70,100	70,099	0,00	2,302	/0 59	02
4	-2	0	85,570	85,552 86,867	0,03	2,139	122	15
2	1	-3	00,047	00,002 07 201	0,04	2,062	132	44
2	0	-3	87,502 00,155	0/,301	0,00	2,070	73	09
1	2	-5	90,155	90,180	0,08	2,009	/4	98
2	3	-1	91,250	91,279	0,09	1,980	80	127
4	-3	0	92,596	92,568	0,09	1,959	118	80
3	1	-3	93,680	93,667	0,04	1,937	42	12
2	2	1	95,788	95,774	0,05	1,897	97	25
3	-4	0	98,009	98,021	0,04	1,85/	36	13
4	-3	1	101,949	101,933	0,05	1,790	38	36
2	-4	-1	103,832	103,809	0,08	1,759	41	14
l	-3	-2	104,873	104,857	0,06	1,743	35	41
I	4	-2	105,506	105,495	0,04	1,733	72	67
5	-2	-2	106,512	106,512	0,00	1,718	35	12
4	-4	l	113,525	113,531	0,02	1,620	44	29
1	-2	-3	113,769	113,780	0,04	1,617	70	41
2	-3	3	115,677	115,674	0,01	1,592	185	76
3	3	-3	116,442	116,421	0,08	1,583	40	5
1	1	-4	117,599	117,586	0,05	1,569	197	160
1	-5	0	120,941	120,952	0,05	1,529	82	77
4	0	-4	125,435	125,432	0,01	1,480	89	138
6	-3	-1	125.715	125.730	0,06	1.477	100	105

Tabelle A.7 Fe^{II}₃V^{III}₄(PO₄)₆. Indizierung einer Guinieraufnahme (Abbildung A.10) mit beobachteten und berechneten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	1	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	I _{obs}
0	1	0	24,445	24,521	0,07	7,235	116	90
1	-1	0	26,221	26,294	0,07	6,747	212	186
1	0	-1	29,930	29,960	0,03	5,914	36	28
0	0	1	30,995	31,056	0,07	5,712	136	124
0	1	-1	32,989	32,999	0,01	5,369	27	29
1	1	-1	37,376	37,383	0,01	4,744	210	193
1	-1	1	41,351	41,390	0,06	4,292	275	279
2	0	0	43,018	43,044	0,04	4,127	48	38
1	0	1	44,245	44,261	0.03	4,014	38	50
0	2	0	49,173	49,206	0,06	3,617	67	72
1	0	-2	57,468	57,434	0,07	3,104	335	402
1	1	1	58,655	58,631	0,05	3,042	42	38
0	1	-2	59,628	59,629	0,00	2,994	262	302
1	2	0	60.484	60.477	0.02	2,952	1000	1000
3	-1	0	60,763	60,776	0.03	2,939	697	651
2	-2	1	62.388	62,422	0.08	2.864	178	188
2	0	1	62.634	62,672	0.08	2.853	150	150
2	1	-2	63.710	63,729	0.04	2,806	192	179
0	2	-2	66.688	66.733	0.11	2.684	112	137
2	-1	-2	66.987	66.982	0.01	2.673	197	206
3	-2	-1	68,992	68,968	0.06	2,597	194	215
3	0	-2	70.432	70,406	0.07	2,546	31	44
0	3	-1	71,170	71.164	0.01	2.520	25	24
2	-3	0	71 725	71 713	0.03	2,501	188	162
1	-2	2	72,529	72,512	0.04	2,475	35	29
1	0	2	74 224	74 249	0.07	2,420	95	92
0	3 3	0	74 500	74 459	0.11	2 411	73	72
2	2	-2	75 796	75 856	0.16	2,372	63	86
1	2	- 1	78 940	78 902	0.11	2,281	1	9
3	-3	0	80 113	80 080	0.09	2,249	41	42
4	-1	Ő	81 981	81 987	0.02	2 199	31	24
4	-2	Õ	84 048	84 075	0.08	2,148	66	102
1	3	Ő	85 121	85 114	0.02	2,122	67	22
2	1	-3	87.034	87.061	0.08	2 077	139	153
1	2	-3	90,590	90,568	0.07	2,000	78	96
2	3	-1	91 266	91 247	0.06	1 986	80	72
0	2	2	92,355	92 347	0.03	1 964	29	40
4	-3	0	93 439	93 436	0.01	1 942	113	121
3	1	-3	93 739	93 695	0.14	1,936	38	43
4	-2	1	96,966	96 913	0.17	1 876	46	39
3	-4	0	99,101	99 072	0.10	1 838	40	32
4	1	Ő	100,008	100.042	0.11	1,822	122	109
0	4	õ	100.813	100,851	0.13	1.808	.54	26
1	4	-2	106 100	106,100	0.00	1 724	74	54
5	-2	-2	106.862	106,900	0.13	1.713	41	51
2	-3	3	116 672	116.681	0.03	1 580	187	162
1	1	-4	117 995	117 991	0.02	1,564	191	200
3	-5	0	121 738	121,763	0,10	1 520	52	-00
4	3	-2	123 943	123.925	0.07	1 496	85	65
4	õ	-4	125.570	125.576	0.02	1,478	87	73
6	-3	-1	126 438	126 426	0.05	1 469	100	69

Tabelle A.8 Co^{II}₃**V**^{III}₄(**PO**₄)₆. Indizierung einer Guinieraufnahme (Abbildung A.11) mit beobachteten und berechneten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h	k	l	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	I _{obs}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	0	24 427	24.333	0.09	7 240	119	124
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-1	Ő	26 310	26,284	0.03	6 724	214	252
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	-1	30,076	30,006	0.08	5 886	41	48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	Ő	1	31 129	31,066	0.07	5 688	142	149
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ő	ı 1	-1	33 216	33 227	0.01	5 333	20	23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	-1	37 583	37 548	0.05	4 718	201	241
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-1	-1	40 049	39 999	0.08	4 4 3 0	41	43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	43 280	43 239	0.07	4 103	52	67
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1	Ő	1	44 464	44 449	0.02	3 995	45	37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	ı 1	1	45 231	45 169	0.10	3,928	55	54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-2	0	46 186	46 189	0.01	3 848	53	45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2	Ő	49 137	49 109	0.05	3 620	65	63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-2	1	52 122	52 109	0.02	3 416	44	37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-1	1	57 737	57 738	0.00	3 090	193	584
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1	58 750	58 718	0.07	3,037	50	49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-2	-1	59,530	59 517	0.03	2,999	30	57
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	-2	60,039	60 027	0.03	2,974	306	461
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	0	60,503	60,537	0.07	2,951	1000	1000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	-1	0	61 182	61 167	0.03	2,931	689	822
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	-2	64 111	64 086	0.06	2,789	195	235
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2	-2	67 157	67 174	0.04	2,705	99	331
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	-2	-1	69 177	69 203	0.07	2,000	193	245
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-3	0	71 829	71 872	0.11	2,391	182	195
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	° 2	74 577	74 540	0.10	2,190	75	141
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	-2	76 463	76 439	0.06	2,407	79	112
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	-1	-2	82 561	82 574	0.04	2,332	44	56
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-1	_2	84.038	84.053	0.04	2,105	17	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 4	-2	-2	85 931	85 961	0,04	2,148	30	51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	-2	87 584	87.610	0.08	2,105	139	240
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{2}{2}$	0	-3	87,932	87,010	0,08	2,005	67	142
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{2}{2}$	0	-5	90 721	90 697	0,05	2,037	44	25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1	0	-3	90,721	90,097	0,08	1,997	71	25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	_3	-5	03 018	03 033	0,05	1,000	0/1	81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-5	3	04 331	04 333	0,05	1,935	/ 1	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	-5	95 712	95 731	0.06	1,925	97	125
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	1	07 712	07 710	0,00	1,857	34	56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	-2	1	97,712	97,719	0,02	1,802	18	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	-1	1	90,302	90,390	0,05	1,047	18	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-4	1	104 452	104 431	0,03	1,054	40	52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1	-4	-1 _2	104,432	104,431	0,07	1,730	36	36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-3	-2	105,024	105,050	0,02	1,741	30 77	69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4	-2	111 050	111 960	0,02	1,718	20	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	0	_2	112 475	112 469	0,00	1,041	11	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	-2	112,475	112,409	0,02	1,034	71	105
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-2	-3	115,028	114,037	0,03	1,015	52	105
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	-4	1	117,490	117,474	0,09	1,595	196	192
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	∠ 1	-3 1	-1	118 726	118 720	0,03	1,500	100	105
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-5	-4	121 765	110,729	0,05	1,333	190	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-5	0	121,703	121,774	0,04	1,520	55	116
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	-3	1	121,073	121,034	0,00	1,519	55 67	64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	-5	1	122,390	122,403	0,05	1,010	07	70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+	5	-2	124,322	124,317	0,01	1,409	03 61	/0 70
3 -1 3 132454 132454 0.00 1.402 77 98	6	_2	-2 _1	123,203	123,270	0,05	1,401	07	12
	3	-5 _1	-1 3	132 454	132 454	0,00	1,402	77	107

Tabelle A.9 Ni^{II}₃V^{III}₄(PO₄)₆. Indizierung einer Guinieraufnahme (Abbildung A.12) mit beobachteten und berechneten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	l	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
0	1	0	24,405	24,342	0,06	7,247	98	63
1	-1	0	26,183	26,201	0,02	6,756	188	121
1	0	-1	30,316	30,311	0,01	5,839	53	24
0	0	1	31,129	31,110	0,02	5,688	149	93
1	1	-1	37,897	37,889	0,01	4,679	250	168
1	-1	-1	40,092	40,089	0,01	4,425	39	27
1	-1	1	41,460	41,448	0,02	4,281	220	144
2	0	0	42,927	42,918	0,01	4,136	68	35
1	0	1	44,125	44,148	0,04	4,025	55	33
0	1	1	45,085	45,078	0,01	3,940	85	47
1	-2	0	46,098	46,098	0,00	3,855	41	49
0	2	0	49,092	49,107	0,03	3,623	120	47
2	-1	1	57,203	57,185	0,04	3,118	228	107
1	0	-2	58,050	58,075	0,05	3,073	298	227
1	2	0	60,369	60,405	0,08	2,958	1000	1000
3	-1	0	60,646	60,655	0,02	2,945	886	472
2	0	-2	61,180	61,165	0,03	2,920	123	148
2	0	1	62,360	62,384	0,06	2,866	130	115
2	1	-2	64,735	64,764	0,07	2,763	215	154
3	-2	-1	69,038	69,043	0,01	2,596	203	138
2	-3	0	71,621	71,582	0,10	2,505	227	133
1	0	2	74,208	74,242	0,09	2,420	87	89
0	3	0	74,375	74,372	0,01	2,415	45	89
3	1	-2	77,031	76,991	0,11	2,335	88	61
4	-1	0	81,814	81,810	0,01	2,204	41	57
4	-2	0	83,895	83,890	0,02	2,151	63	47
2	1	-3	88,411	88,419	0,02	2,047	135	149
4	-3	0	93,285	93,288	0,01	1,945	95	67
2	2	1	95,071	95,068	0,01	1,911	87	65
4	1	0	99,781	99,767	0,05	1,826	125	73
1	4	-2	107,080	107,085	0,02	1,710	76	26
5	-2	-2	107,327	107,335	0,03	1,706	49	21
2	-3	3	117,356	117,373	0,06	1,572	162	116
1	1	-4	119,364	119,353	0,04	1,548	237	122
4	3	-2	124,986	124,991	0,02	1,484	89	46
6	-3	-1	126,428	126,421	0,03	1,469	111	44
4	0	-4	127,368	127,361	0,03	1,460	101	52
2	3	-4	130,796	130,790	0,02	1,425	67	47
3	-1	3	131,388	131,380	0,03	1,420	51	18
6	-1	-3	132.675	132.690	0.06	1.407	55	14

Tabelle A.10 $Cu^{II}_{3}V^{III}_{4}(PO_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.13) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.

A.2.3 $A^{II}_{3}Cr^{III}_{4}(PO_{4})_{6} (A^{II}: Mn, Fe)$

Tabelle A.11 Mn ^{II} ₃ Cr ^{III} ₄ (PO ₄) ₆ . Indizierung einer Guinieraufnahme (Abbildung A.16) mi	t
beobachteten und berechneten 4θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000.$	

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
0	1	0	24,208	24,116	0,08	7,305	193	157
1	-1	0	25,847	25,769	0,08	6,844	175	124
0	0	1	31,191	31,160	0,04	5,677	123	110
0	1	-1	32,690	32,683	0,01	5,418	37	41
1	1	-1	37,346	37,301	0,06	4,747	208	181
1	-1	-1	40,239	40,185	0,08	4,409	50	38
1	-1	1	40,982	40,997	0,02	4,330	242	231
1	0	1	44,397	44,431	0,06	4,001	38	24
0	1	1	45,465	45,452	0,02	3,908	50	75
0	2	0	48,691	48,665	0,05	3,652	70	71
1	-2	1	50,860	50,867	0,01	3,499	21	21
2	-2	0	52,031	52,058	0,05	3,422	17	13
2	-1	1	57,008	57.011	0.01	3.128	127	104
1	0	-2	57,980	57,992	0.03	3.077	362	354
0	1	-2	59,600	59,592	0.02	2,995	228	210
1	2	0	60.314	60.313	0.00	2,960	1000	1000
3	-1	Õ	60.641	60.613	0.06	2,945	694	636
2	0	-2	61.007	61.033	0.06	2,928	106	131
2	-2	1	61 455	61 463	0.02	2,907	206	177
2	0	1	62.812	62.813	0.00	2,845	129	103
2	1	-2	64 064	64 083	0.04	2,791	183	191
0	2	-2	66,069	66 073	0.01	2,709	118	106
2	-1	-2	67 600	67 603	0.01	2,649	161	185
3	-2	-1	68 815	68 823	0.02	2,604	196	230
0	3	-1	70 029	70,013	0.04	$\frac{2}{560}$	21	24
2	-3	0	70,547	70 563	0.04	2,500	223	190
3	0	-2	71,140	71,152	0.03	2,512	34	17
1	-2	2	71,775	71 792	0.04	2,500	46	40
0	3	0	73 755	73 781	0.07	2,300	40	43
1	0	2	74 563	74 581	0.05	2,100	89	78
2	2	-2	75 733	75 740	0.02	2 373	55	50
3	1	-2	76,537	76 530	0.02	2 349	79	73
4	-1	0	81,973	81,986	0.04	$\frac{2}{2}200$	20	23
1	-3	2	82 694	82 705	0.03	2,200	19	19
4	-2	0	83,520	83 504	0.05	2,161	57	54
2	1	-3	87 591	87 610	0.06	2,065	119	113
2	0	-3	88 381	88 369	0.04	2,047	68	60
3	2	-2	89 145	89 148	0.01	2,031	16	10
1	2	-3	90 442	90,436	0.02	2,003	78	88
2	3	-1	90,872	90,875	0.01	1 994	78	63
4	-3	0	92,335	92,343	0.03	1 964	116	76
2	2	1	95,937	95,937	0,00	1 894	91	87
4	-3	1	101 515	101 517	0.01	1 797	40	31
1	4	-2	104 775	104 760	0.05	1 745	67	42
5	-2	-2	107.298	107.304	0.02	1,706	31	42
5	0	0	111 688	111.693	0.02	1 644	38	23
2	-3	3	115.420	115.423	0.01	1.596	177	118
3	3	-3	116.496	116.500	0.02	1.582	40	33
5	-2	1	117 523	117,518	0.02	1 570	51	36
1	1	-4	118.635	118.614	0.08	1.556	190	141
2	4	0	125.406	125,403	0.01	1.480	83	50
6	-3	-1	125,973	125,961	0,05	1,474	101	30

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	$I_{\rm obs}$
0	1	0	24,394	24,381	0,01	7,250	163	69
1	-1	0	26,057	26,029	0,03	6,789	177	99
0	0	1	31,148	31,153	0,01	5,685	123	133
1	1	-1	37,592	37,576	0,02	4,717	219	151
1	-1	-1	40,216	40,193	0,03	4,412	48	35
1	-1	1	41,206	41,252	0,07	4,307	259	203
0	2	0	49,070	49,034	0,07	3,625	72	90
2	-1	1	57,181	57,157	0,05	3,119	151	116
1	0	-2	57,913	57,917	0,01	3,080	341	240
0	1	-2	59,785	59,775	0,02	2,986	236	193
1	2	0	60,604	60,625	0,05	2,947	1000	1000
2	-2	1	61,967	61,984	0,04	2,883	187	119
2	0	1	62,775	62,743	0,07	2,847	139	90
2	1	-2	64,274	64,302	0,07	2,782	188	123
3	-2	-1	69,020	69,049	0,07	2,596	196	163
2	-3	0	71,231	71,238	0,02	2,518	207	137
1	-2	2	72,304	72,297	0,02	2,482	48	87
2	2	-2	76,247	76,285	0,10	2,358	52	18
3	1	-2	76,739	76,705	0,09	2,343	78	40
3	-3	0	79,592	79,573	0,05	2,263	39	33
4	-2	0	83,866	83,851	0,04	2,152	57	44
2	1	-3	87,758	87,730	0,09	2,061	125	67
4	-3	0	92,960	92,948	0,04	1,952	123	100
2	-3	3	116,248	116,235	0,05	1,585	174	81
1	1	-4	118,720	118,735	0,06	1,555	194	94
5	-3	1	120,904	120,925	0,08	1,530	101	98

Tabelle A.12 $\operatorname{Fe}^{II}_{3}\operatorname{Cr}^{III}_{4}(\operatorname{PO}_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.17) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.
A.2.4 A^{II}_{3} Fe^{III}₄(PO₄)₆ (A^{II} : Mg, Mn, Fe, Ni)

h	k	l	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	d-Wert	I _{calc} ^{a)}	Iobs
0	1	0	24,212	24,129	0,08	7,304	327	232
1	-1	0	26,383	26,288	0,09	6,705	144	89
0	0	1	30,937	30,896	0,05	5,723	136	87
0	1	-1	33,145	33,015	0,16	5,344	68	59
1	1	-1	37,402	37,412	0,01	4,740	122	176
2	0	0	42,940	42,868	0,12	4,135	39	83
1	-2	0	46,120	46,125	0,01	3,853	59	95
0	2	0	48,700	48,702	0,00	3,652	110	91
1	0	-2	57,592	57,581	0,02	3,097	442	452
1	2	0	59,708	59,698	0,02	2,990	1000	1000
3	-1	0	61,090	61,095	0,01	2,924	681	511
2	0	1	62,302	62,274	0,06	2,868	99	62
2	-2	1	62,813	62,823	0,02	2,845	227	169
2	1	-2	63,992	63,971	0,05	2,794	175	127
2	-1	-2	67,143	67,135	0,02	2,667	161	214
3	-2	-1	69,446	69,461	0,04	2,581	119	77
2	-3	0	71,875	71,867	0,02	2,496	145	109
1	3	0	84,041	84,081	0,12	2,148	101	57
2	1	-3	87,482	87,493	0,03	2,067	137	113
2	3	-1	90,440	90,415	0,08	2,003	90	66
4	1	0	99,308	99,321	0,04	1,834	114	46
1	-2	-3	113,207	113,198	0,03	1,624	66	51
1	1	-4	118,339	118,350	0,04	1,560	199	127

Tabelle A.13 $Mg^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ bei 800°C an Luft getempert. Indizierung einer Guinieraufnahme (Abbildung A.19) mit beobachteten und berechneten 4 θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000.$

Tabelle A.14 Mg₃Fe₄(PO₄)₆ mit Chlor getempert. Indizierung einer Guinieraufnahme (Abbildung A.20) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^2\theta_{calc} - \sin^2\theta_{obs}| \cdot 1000.$

h	k	l	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
0	1	0	24,220	24,088	0,12	7,302	328	266
1	-1	0	26,342	26,261	0,08	6,716	145	89
1	0	-1	30,085	29,961	0,14	5,884	15	29
0	0	1	30,947	30,856	0,11	5,721	137	106
0	1	-1	33,097	33,067	0,04	5,352	68	61
2	0	-1	42,180	42,166	0,02	4,208	15	25
2	0	0	42,940	42,889	0,08	4,135	39	39
1	0	1	44,032	43,943	0,15	4,033	27	40
2	-1	-1	46,067	46,030	0,06	3,857	42	82
1	-2	0	46,081	46,030	0,09	3,856	60	82
0	2	0	48,716	48,618	0,18	3,651	111	89
2	1	-1	51,353	51,336	0,03	3,466	42	54
1	0	-2	57,596	57,619	0,05	3,097	443	417
1	1	1	58,039	58,000	0,08	3,074	57	60
1	-2	-1	59,279	59,232	0,10	3,011	13	7
1	2	0	59,765	59,783	0,04	2,987	1000	1000
3	-1	0	61,029	61,005	0,05	2,927	682	549
2	0	1	62,324	62,367	0,10	2,867	100	37
2	-2	1	62,695	62,667	0,06	2,851	228	181
2	1	-2	63,956	63,989	0,07	2,796	176	146
3	0	0	64,898	64,899	0,00	2,756	31	30
2	-1	-2	67,160	67,151	0,02	2,666	161	219
1	2	-2	68,000	67,992	0,02	2,634	46	43
Fortsetzu	ng der Tab	elle A.14.						

Anhang A Quaternäre Orthophosphate

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
1	-1	2	68,983	69,022	0,10	2,598	34	17
3	-2	-1	69,388	69,442	0,14	2,583	119	77
3	0	-2	70,855	70,923	0,17	2,531	44	41
2	-3	0	71,789	71,813	0,06	2,499	146	115
1	-2	2	72,798	72,783	0,04	2,466	38	30
0	3	0	73,793	73,753	0,11	2,434	69	87
1	0	2	73,928	73,923	0,01	2,429	60	87
2	2	-2	75,805	75,832	0,07	2,371	69	67
3	1	-2	76,212	76,252	0,11	2,359	42	47
3	-1	1	76,679	76,721	0,11	2,345	23	23
4	-1	-1	77,964	78,031	0,18	2,308	14	17
3	-3	0	80,498	80,568	0,20	2,238	34	32
4	-1	0	82,236	82,216	0,06	2,193	40	24
1	3	0	84,112	84,114	0,00	2,146	102	59
4	-2	0	84,575	84,633	0,17	2,135	62	28
4	-1	-2	86,422	86,400	0,07	2,091	41	36
2	1	-3	87,435	87,458	0,07	2,068	137	138
2	0	-3	87,831	87,837	0,02	2,059	73	92
2	0	2	89,804	89,783	0,06	2,016	25	12
2	3	-1	90,469	90,501	0,10	2,002	91	51
1	2	-3	90,939	91,010	0,22	1,993	57	28
0	2	2	91,515	91,559	0,14	1,981	52	35
4	-3	0	94,048	94,052	0,01	1,930	115	148
2	2	1	94,413	94,431	0,06	1,923	108	148
0	0	3	95,279	95,269	0,03	1,907	34	33
4	-2	1	97,343	97,342	0,00	1,869	33	11
3	-1	-3	97,705	97,681	0,08	1,862	27	17
4	-1	1	97,875	97,891	0,05	1,859	19	17
4	1	0	99,368	99,405	0,12	1,833	115	91
0	4	0	99,826	99,834	0,03	1,825	65	22
0	4	-2	101,072	101,050	0,08	1,804	29	22
3	2	-3	102,592	102,584	0,03	1,779	24	14
1	4	-2	105,726	105,731	0,02	1,730	58	36
5	-2	-2	107,655	107,633	0,08	1,701	49	41
4	-3	-2	107,848	107,882	0,12	1,698	13	41
0	3	2	112,954	112,957	0,01	1,628	37	8
1	-2	-3	113,330	113,355	0,09	1,623	67	47
4	-4	1	115,468	115,463	0,02	1,595	44	14
5	0	-3	115,989	116,010	0,08	1,588	28	15
2	-3	3	117,117	117,104	0,05	1,574	174	94
1	1	-4	118,299	118,287	0,05	1,560	199	153
1	-5	0	120,951	120,981	0,12	1,529	68	37
5	-3	1	122,133	122,114	0,07	1,516	99	47
2	4	0	124,165	124,091	0,29	1,493	71	60
4	0	-4	126,289	126,236	0,20	1,471	88	61
6	-3	-1	127 411	127 368	0.17	1 459	99	47

h	k	l	$4 heta_{ m calc}$	$4\theta_{\rm obs}$	Δ	<i>d</i> -Wert	$I_{\rm calc}{}^{\rm a)}$	Iobs
0	1	0	23.870	23.803	0.06	7.408	325	123
1	-1	Ő	25,820	25,711	0.11	6.851	215	137
0	0	1	30.869	30.809	0.07	5.736	210	123
Ő	1	-1	32,521	32,465	0.07	5 446	42	23
1	1	-1	36 942	36 889	0.07	4 799	199	189
1	-1	1	40 889	40 881	0.01	4 340	303	246
2	0	0	42,819	42,827	0.01	4 146	31	26
1	Ő	1	43 947	43 930	0.03	4 041	60	45
0	1	1	44 772	44 742	0.05	3 968	86	16
2	-1	-1	45 715	45 674	0.07	3 887	25	13
0	2	0	48 005	48 010	0.01	3 704	163	90
1	-2	1	50.775	50.767	0.02	3.505	33	29
2	-2	0	51 975	51,950	0.05	3 425	34	35
2	-1	1	56 831	56 830	0,00	3 138	144	108
1	0	-2	57 399	57 431	0.07	3 107	323	414
1	1	- 1	58,036	58 022	0.03	3 074	80	36
1	2	0	59.293	59.295	0.00	3.010	1000	1000
3	-1	Ő	60 486	60 477	0.02	2,952	766	722
2	-2	1	61 472	61 499	0.06	2,902	278	168
2	0	1	62 198	62,220	0.05	2,873	126	102
2	1	-2	63 444	63 452	0.02	2,875	259	208
0	2	-2	65 721	65 695	0.06	2,010	104	100
1	-1	-2	67.025	67,007	0.04	2,723	164	317
3	-2	-1	68 543	68 539	0.01	2,671	193	215
2	-2	-1	70 233	70 211	0.05	2,014	121	170
3	0	-2	70,233	70,532	0,05	2,555	69	19
1	-2	2	71,560	71,543	0.04	2,542	51	61
0	-2	0	72 694	72 684	0,04	2,507	26	45
1	0	2	72,074	73,785	0.04	2,40)	20 71	89
2	2	_2	74 890	74 896	0,04	2,404	86	69
3	1	_2	75,737	75,777	0.11	2,373	68	80
3	-1	-2	76,090	76,117	0.07	2,373	20	16
1	3	0	83,266	83 272	0.02	2,505	142	115
3	-2	-2	84 399	84 423	0,02	2,107	90	44
2	-2	-2	86 791	86 793	0,07	2,155	126	120
2	0	-3	87 496	87 514	0.05	2,005	132	87
2 4	-3	-5	92 340	97 344	0,05	1 964	197	105
3	-5	-3	93 566	93 584	0.06	1,940	47	30
2	2	1	94 300	94 334	0.11	1,910	90	30 77
2	-1	-3	95,105	95 094	0.04	1,929	14	56
0	4	0	98 295	98 313	0.06	1,910	123	50 60
4	1	0	99.218	99 232	0,00	1,836	142	91
1	4	-2	103 610	103 640	0,05	1,050	50	73
1	-2	-3	113 158	113,160	0.01	1,705	115	57
2	-3	3	115 101	115,098	0.01	1,600	197	186
2	3	1	116 377	116 366	0.04	1 584	41	14
1	1	-4	117 530	117 514	0.04	1 569	214	184
4	3	-2	122,266	122.246	0.08	1 514	77	44
2	4	0	123,102	123,085	0.06	1 505	50	61
6	0	-2	124 366	124 353	0.05	1 491	46	54
3	-1	3	130,532	130,530	0,01	1,428	71	55

Tabelle A.15 $Mn^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.22) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.

h	k	l	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
0	1	0	24.171	24,198	0.02	7.317	147	127
1	-1	0	26.071	26.106	0.03	6.785	181	185
1	0	-1	29,954	29,913	0.05	5,910	16	19
0	0	1	30.864	30.882	0.02	5,736	152	140
0	1	-1	32.810	32,830	0.02	5,398	27	38
1	1	-1	37.227	37.265	0.05	4,762	207	230
1	-1	-1	39.883	39,893	0.01	4,448	32	46
1	-1	1	41.118	41.111	0.01	4.316	233	308
2	0	0	42.862	42,850	0.02	4,142	38	36
1	Õ	1	43.967	43,949	0.03	4.039	59	59
0	1	1	44,880	44,878	0.00	3,958	58	44
1	-2	0	45.731	45.767	0.06	3.885	47	55
0	2	0	48.616	48.604	0.02	3.658	101	91
1	-2	1	51.419	51,431	0.02	3.462	30	39
2	-2	0	52,488	52,450	0.07	3.392	52	49
1	2	-1	55,489	55,487	0.01	3.212	9	13
2	-1	1	57.013	57.015	0.01	3.128	176	176
1	0	-2	57.378	57.355	0.05	3.109	319	363
1	1	1	58,159	58,164	0.01	3.068	50	44
0	1	-2	59.400	59,383	0.04	3.005	301	309
1	2	0	59.844	59.852	0.02	2,983	1000	1000
3	-1	Õ	60.621	60.611	0.02	2,946	754	764
2	-2	1	62.007	62.020	0.03	2.882	113	199
2	1	-2	63.661	63.658	0.01	2.808	200	204
0	2	-2	66.319	66.325	0.02	2,699	83	111
1	-1	-2	67.029	67.004	0.06	2.671	150	255
1	2	-2	67,545	67 544	0,00	2,651	31	37
3	-2	-1	68.845	68.862	0.04	2.603	181	178
3	0	-2	70 541	70,551	0.02	2,542	34	56
2	-3	0	71.129	71,140	0.03	2,522	198	222
1	-2	2	72,104	72.079	0.06	2.489	74	56
1	0	2	73.785	73.767	0.05	2,434	65	119
2	2	-2	75,484	75,495	0.03	2.381	64	69
3	1	-2	75,956	75,965	0.02	2.367	74	87
4	-1	0	81.777	81,798	0.06	2.205	41	30
1	3	0	84,160	84,185	0.07	2,145	100	92
3	-2	-2	84,566	84,585	0.06	2,135	42	47
4	0	-2	85.525	85.524	0.00	2.112	30	21
3	2	-1	86.098	86,103	0.02	2.099	31	17
2	1	-3	86.964	86.952	0.04	2.079	125	129
2	0	-3	87,462	87,462	0,00	2,068	83	76
4	-3	0	93,039	93,045	0.02	1,950	97	90
3	1	-3	93,750	93,765	0,05	1,936	37	29
2	2	1	94,673	94,693	0,06	1,918	92	94
0	0	3	95,011	95,033	0,07	1,912	36	62
3	-4	0	98.318	98,289	0.10	1.851	53	37
4	1	0	99.435	99,428	0.02	1,832	117	130
2	-4	-1	103,610	103,613	0,01	1,763	46	41
1	4	-2	105,117	105,131	0,05	1,739	69	45
2	-3	3	115,948	115,958	0,04	1,589	168	127
1	1	-4	117,669	117,656	0,05	1,568	207	192
4	3	-2	123,204	123,189	0,06	1,504	72	89
2	4	0	124,344	124,328	0,06	1,491	68	89
6	-3	-1	126 241	126 235	0.02	1 471	103	58

Tabelle A.16 $\operatorname{Fe}^{II}{}_{3}\operatorname{Fe}^{III}{}_{4}(\operatorname{PO}_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.24) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.

	-						- a)	-
h	k	<u>l</u>	$4 heta_{ m calc}$	$4 heta_{obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	I _{obs}
0	1	0	24,273	24,268	0,00	7,286	130	93
1	-1	0	26,486	26,507	0,02	6,679	190	142
1	0	-1	30,137	30,067	0,08	5,874	26	13
0	0	1	30,989	30,997	0.01	5,713	139	100
Ő	1	-1	33,210	33,197	0.02	5 334	26	30
1	1	-1	37 498	37,506	0.01	4 728	194	156
1	-1	-1	40.032	40,056	0.04	4 432	35	46
2	0	_1	10,052	10,030	0.04	1,192	32	20
2	0	-1	42,502	42,550	0,04	4,171	32	20
2 1	0	0	43,213	43,220	0,02	4,109	55	55
1	0	1	44,109	44,203	0,03	4,019	55	47
0	1	1	44,870	44,873	0,01	3,939	57	50
1	-2	0	40,242	40,235	0,01	5,845	58 05	28
0	2	0	48,823	48,815	0,02	3,643	95	88
l	-2	1	52,261	52,244	0,03	3,407	40	34
l	2	-1	55,852	55,833	0,04	3,192	9	12
1	0	-2	57,646	57,703	0,12	3,094	305	349
1	1	1	58,170	58,163	0,02	3,067	50	11
1	2	0	59,917	59,942	0,06	2,980	1000	1000
2	0	-2	60,810	60,832	0,05	2,937	112	124
3	-1	0	61,474	61,462	0,03	2,906	727	642
2	0	1	62,626	62,652	0,06	2,854	119	104
2	-2	1	63,094	63,122	0,06	2,833	122	97
2	1	-2	64,128	64,131	0,01	2,789	187	175
3	0	0	65,316	65,321	0,01	2,739	16	12
1	-1	-2	67,163	67,181	0,04	2,666	148	310
2	-1	-2	67,229	67,181	0,12	2,663	169	310
1	-1	2	69.235	69.250	0.04	2,588	63	62
3	-2	-1	69.691	69,680	0.03	2.572	178	154
3	0	-2	71 084	71,090	0,01	2,523	37	44
0	3 3	-1	71 125	71 090	0.09	2,522	36	44
° 2	-3	0	72 097	72 089	0.02	2,322	171	128
2	2	-2	76,050	76,068	0.05	2,109	65	41
3	1	_2	76,493	76,000	0,00	2,301	73	47
3	1	-2	70,495	70,490	0,01	2,331	10	16
3	-1	1	20.047	20 076	0,05	2,330	20	10
4	0	-1	80,947	80,970	0,08	2,220	29	51
5	-5	0	80,933	80,970	0,00	2,220	50	31
4	-1	0	82,839	82,840	0,02	2,178	44	45
1	3	0	84,313	84,323	0,04	2,141	91	03
4	-2	0	85,195	85,165	0,09	2,120	/1	/5
2	1	-3	87,597	87,624	0,08	2,065	127	101
2	0	-3	87,924	87,964	0,12	2,057	76	65
3	-3	1	88,433	88,464	0,09	2,046	29	15
2	0	2	90,138	90,153	0,05	2,009	47	20
1	2	-3	91,174	91,183	0,03	1,988	75	40
4	-3	0	94,677	94,691	0,05	1,918	92	108
2	2	1	94,677	94,691	0,05	1,918	94	108
0	0	3	95,416	95,411	0,02	1,904	38	28
4	1	0	99,923	99,899	0,08	1,823	125	124
2	-4	-1	104,320	104,337	0,06	1,752	45	47
1	4	-2	106,095	106,076	0,07	1,724	69	70
5	-2	-2	108,168	108,145	0,08	1,694	52	96
1	-2	-3	113,373	113,353	0,08	1,622	81	100
2	-3	3	117,712	117,701	0,04	1,567	178	187
1	1	-4	118,494	118,470	0,09	1.558	197	188

Tabelle A.17 Ni^{II}₃Fe^{III}₄(PO₄)₆. Indizierung einer Guinieraufnahme (Abbildung A.26) mit beobachteten und berechneten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

A.2.5 $A^{II}_{3}In^{III}_{4}(PO_{4})_{6} (A^{II}: Mn, Fe)$

Tabelle A.18 Mn₃In₄(PO₄)₆. Indizierung einer Guinieraufnahme (Abbildung A.29) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	I _{obs}
0	1	0	23,268	23,208	0,05	7,599	157	101
1	-1	0	25,391	25,366	0,02	6,966	56	33
0	0	1	30,374	30,313	0,07	5,828	178	153
0	1	-1	32,191	32,132	0,07	5,501	57	39
1	1	-1	36,061	36,031	0,04	4,915	298	258
1	-1	-1	38,519	38,480	0,06	4,604	36	27
1	-1	1	40,820	40,810	0,01	4,347	478	585
1	-2	0	44,130	44,111	0,03	4,025	152	146
0	2	0	46,780	46,781	0,00	3,799	32	35
1	-2	1	50,435	50,423	0,02	3,528	51	43
2	-2	0	51,101	51,103	0,00	3,483	111	117
1	0	-2	56,009	55,987	0,04	3,183	298	319
2	-1	1	56,679	56,647	0,07	3,146	80	75
1	2	0	57,816	57,828	0,03	3,085	1000	1000
0	1	-2	58,546	58,559	0,03	3,048	232	329
3	-1	0	59,714	59,700	0,03	2,990	638	679
3	0	0	63,730	63,725	0,01	2,806	52	54
2	-1	-2	64,736	64,736	0,00	2,763	256	284
3	-2	-1	66,617	66,609	0,02	2,687	260	283
0	3	-1	68,010	67,991	0,05	2,634	101	166
2	-3	0	68,790	68,772	0,04	2,605	261	278
3	1	-2	73,524	73,520	0,01	2,442	128	125
2	1	1	74,453	74,451	0,00	2,413	35	32
3	-1	1	75,706	75,684	0,06	2,374	24	30
4	0	-1	78,234	78,229	0,02	2,300	97	94
4	-2	0	82,364	82,378	0,04	2,190	74	70
3	2	-1	83,386	83,400	0,04	2,164	82	81
2	3	-1	87,176	87,179	0,01	2,074	81	82
2	0	2	88,776	88,793	0,05	2,039	72	86
4	-3	0	90,943	90,949	0,02	1,993	98	113
2	2	1	92,317	92,313	0,01	1,964	103	106
0	0	3	93,421	93,416	0,02	1,943	65	67
0	4	0	95,666	95,672	0,02	1,900	67	104
4	-1	1	96,553	96,555	0,01	1,883	48	35
4	1	0	97,374	97,367	0,02	1,868	144	110
2	-4	-1	99,461	99,464	0,01	1,831	87	82
5	-2	-2	103,429	103,437	0,03	1,766	101	79
2	-3	3	114,739	114,748	0,03	1,604	179	108
1	1	-4	115,330	115,331	0,00	1,597	159	119

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
0	1	0	23,494	23,486	0,01	7,526	96	95
1	-1	0	25,689	25,688	0,00	6,886	36	29
0	0	1	30,382	30,353	0,03	5,827	232	293
0	1	-1	32,404	32,384	0,02	5,466	53	71
1	1	-1	36,188	36,197	0,01	4,898	317	376
1	-1	-1	38,615	38,648	0,05	4,593	47	61
2	0	-1	40,752	40,789	0,06	4,354	235	435
1	-1	1	41,118	41,069	0,07	4,316	471	538
1	0	1	43,654	43,650	0,01	4,068	130	187
1	-2	0	44,688	44,670	0,03	3,975	181	184
1	-2	1	51,043	51,060	0,03	3,487	75	75
2	-2	0	51,708	51,740	0,06	3,443	101	114
1	0	-2	55,948	55,929	0,04	3,186	259	360
2	-1	1	57,044	57,068	0,05	3,126	93	163
1	2	0	58,189	58,168	0,05	3,066	1000	1000
0	1	-2	58,703	58,718	0,03	3,040	229	442
3	-1	0	60,075	60,077	0,00	2,972	629	843
0	0	2	61,315	61,296	0,04	2,913	52	71
2	1	-2	61,762	61,806	0,10	2,893	138	406
2	-2	1	61,921	61,946	0,06	2,885	69	406
2	-1	-2	64,731	64,744	0,03	2,763	257	305
1	-1	-2	65,158	65,193	0,08	2,746	98	120
3	-2	-1	67,063	67,052	0,03	2,670	263	311
0	3	-1	68,809	68,790	0,05	2,604	103	89
2	-3	0	69,683	69,679	0,01	2,572	243	243
1	-2	2	71,799	71,787	0,03	2,499	90	112
3	1	-2	73,554	73,595	0,11	2,441	131	163
4	0	-1	78,396	78,428	0,09	2,296	100	136
3	-2	-2	81,758	81,773	0,04	2,205	69	119
1	-3	2	82,743	82,741	0,00	2,180	45	52
4	-2	0	83,034	83,041	0,02	2,173	66	75
3	2	-1	83,688	83,670	0,05	2,157	89	68
2	3	-1	87,761	87,772	0,03	2,061	81	85
1	2	-3	88,543	88,531	0,04	2,044	89	102
2	0	2	89,001	88,990	0,04	2,034	77	82
2	3	-2	90,460	90,427	0,10	2,003	26	20
2	2	1	92,640	92,672	0,10	1,958	93	92
0	0	3	93,447	93,470	0,07	1,942	66	73
0	4	0	96,653	96,673	0,07	1,881	76	68
4	-1	1	97,072	97,082	0,03	1,874	46	52
4	1	0	97,661	97,631	0,10	1,863	140	118
1	-3	-2	101,018	101,032	0,05	1,805	66	78
4	-3	1	102,027	102,000	0,09	1,788	30	58
5	-2	-2	103,790	103,775	0,05	1,760	104	170
1	-2	-3	110,068	110,027	0,15	1,667	82	80
2	-3	3	115,660	115,679	0,07	1,593	173	256

Tabelle A.19 $\operatorname{Fe}^{II}_{3}\operatorname{In}^{III}_{4}(\operatorname{PO}_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.30) mit beobachteten und berechneten 4 θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.

A.2.6 $(Cu_x M_{1-x})_3 In_4 (PO_4)_6 (M: Mg, Zn)$

Tabelle A.20 CuMg₂In₄(PO₄)₆. Indizierung einer Guinieraufnahme (Abbildung A.34) mit beobachteten und berechneten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
0	1	0	23,528	23,574	0,04	7,516	145	56
1	0	-1	29,417	29,443	0,03	6,017	36	10
0	0	1	30,618	30,671	0,06	5,782	288	346
0	1	-1	32,824	32,867	0,05	5,396	106	47
1	1	-1	36,636	36,671	0,05	4,839	317	326
1	-1	-1	38,833	38,867	0,05	4,567	34	46
1	-1	1	41,373	41,363	0,01	4,290	530	494
1	-2	0	44,832	44,828	0,01	3,962	248	262
0	2	0	47,309	47,324	0,03	3,758	22	35
1	-2	1	51,446	51,468	0,04	3,460	51	66
2	-2	0	51,883	51,848	0,07	3,431	149	130
1	2	-1	54,401	54,384	0,03	3,275	66	66
1	0	-2	56,637	56,621	0,03	3,148	256	249
2	-1	1	57,161	57,171	0,02	3,120	64	144
1	2	0	58,178	58,149	0,06	3,067	1000	1000
0	1	-2	59,419	59,408	0,02	3,004	259	382
3	-1	0	60,127	60,137	0,02	2,969	623	6/4
2	0	1	61,/88	61,785	0,01	2,891	123	184
2	-2	1	62,223	62,244	0,05	2,872	81	58
2	1	-2	62,675	62,674	0,00	2,852	123	110
3	0	0	63,892	63,903	0,02	2,799	0/	60 254
2	-1	-2	05,550	05,551	0,00	2,738	208	254
1	-1	-2	67,020 67,281	67 260	0,03	2,121	245	218
5	-2	-1	69 766	68 757	0,03	2,038	243	518
1	-1	2 1	60 287	60 307	0,02	2,000	102	126
2	_3	-1	69,287	69,946	0,03	2,567	220	221
1	-3	2	72 509	72 523	0,04	2,504	82	84
3	-2	-2	74 421	74 431	0.03	2,475	119	140
3	-1	1	76 169	76 160	0.02	2,111	39	67
3	-2	-2	82 345	82 334	0.03	2,300	94	85
4	-2	0	83,186	83 184	0.01	2,150	54	34
3	2	-1	83.973	83,983	0.03	2,150	93	79
2	1	-3	85,970	85,972	0.00	2,102	115	200
3	-3	1	86,826	86,821	0,02	2,082	54	82
2	3	-1	88,119	88,110	0.03	2,053	97	86
2	0	2	89,109	89,099	0,03	2,031	68	69
1	2	-3	89,919	89,909	0,03	2,014	71	59
4	-3	0	92,196	92,197	0,00	1,967	120	184
2	-1	-3	93,113	93,117	0,01	1,949	20	72
0	0	3	94,211	94,226	0,05	1,927	57	44
0	4	0	96,800	96,805	0,02	1,879	89	119
4	1	0	97,527	97,524	0,01	1,865	139	96
0	4	-2	99,226	99,213	0,04	1,835	54	23
1	-3	-2	101,197	101,202	0,02	1,802	76	65
5	-2	-2	104,499	104,501	0,01	1,749	110	86
1	-2	-3	110,604	110,599	0,02	1,659	83	56

	-	-						_
h	k	l	$4 heta_{ m calc}$	$4\theta_{\rm obs}$	Δ	<i>d</i> -Wert	$I_{\rm calc}^{a}$	Iobs
0	1	0	23,626	23,609	0,01	7,485	54	44
1	-1	0	25,947	25,941	0.01	6.818	50	34
0	0	1	30,435	30,434	0.00	5.817	206	216
0	1	-1	32.747	32,766	0.02	5.409	39	36
1	1	-1	36.451	36.449	0.00	4.863	335	319
1	-1	-1	38,773	38.78	0.01	4.574	55	53
2	0	-1	40.886	40.852	0.05	4.340	234	241
-	-1	1	41 375	41 362	0.02	4 289	521	478
1	-2	0	45 156	45 174	0.03	3,934	182	185
0	2	Ő	47 507	47 466	0.07	3 742	28	25
Ő	2	-1	48 547	48 566	0.04	3 663	12	23
1	-2	1	51 659	51 658	0.00	3 446	91	104
2	-2	0	52 233	52 208	0.05	3 409	72	80
1	-2	-1	54 363	54,200	0,05	3 777	35	47
1	0	-1	56 100	56 101	0.02	3,277	230	284
1	1	-2	56 882	56 861	0,02	3,172	239	204 47
1	1	1	57.18	57 161	0,04	3,133	111	47
2 1	-1	1	58 222	58 102	0,04	3,119	1000	90
1	2	0	50,222	58,192	0,00	3,004	120	1000
2	0	-2	50,007	50,802	0,02	3,032	100	105
0	1	-2	59,097	59,072	0,05	3,020	188	222
3	-l 1	0	60,193	60,1/3	0,04	2,966	031	122
2	1	-2	62,185	62,164	0,05	2,873	130	93
2	-1	-2	65,026	65,035	0,02	2,751	279	328
l	-1	-2	65,297	65,295	0,00	2,740	103	113
0	2	-2	66,188	66,186	0,01	2,704	71	66
l	2	-2	66,701	66,696	0,01	2,684	72	/9
3	-2	-1	67,556	67,556	0,00	2,651	278	264
0	3	-1	69,552	69,577	0,06	2,577	113	112
2	-3	0	70,459	70,457	0,00	2,545	225	205
0	3	0	71,927	71,898	0,07	2,495	42	38
1	-2	2	72,451	72,448	0,01	2,477	77	79
3	1	-2	73,886	73,889	0,01	2,431	142	223
2	1	1	74,308	74,309	0,00	2,417	36	35
3	-1	1	76,173	76,180	0,02	2,360	23	33
4	0	-1	78,395	78,380	0,04	2,296	111	107
1	3	0	81,885	81,892	0,02	2,202	29	28
3	-2	-2	82,236	82,232	0,01	2,193	65	70
3	2	-1	83,698	83,672	0,08	2,156	93	105
2	3	-1	88,063	88,083	0,06	2,054	81	83
2	0	2	88,816	88,834	0,06	2,038	73	67
1	2	-3	89,375	89,394	0,06	2,026	93	95
2	2	1	92,271	92,274	0,01	1,965	97	114
4	-3	0	92,713	92,695	0,06	1,957	101	95
0	0	3	93,619	93,625	0,02	1,939	78	58
4	1	0	97,266	97,266	0,00	1,870	152	222
0	4	-2	99,461	99,466	0,02	1,831	47	55
1	-3	-2	101,210	101,206	0,01	1,802	73	146
3	-4	1	102,159	102,176	0,06	1,786	37	26
1	4	-2	103,501	103,497	0,02	1,765	47	42
5	-2	-2	104,375	104,377	0,00	1,751	101	92
1	-2	-3	110.165	110,177	0.04	1.665	74	50
5	0	-3	112.041	112.048	0.02	1.640	42	34
1	1	-4	116.034	116.018	0.06	1.588	162	106
2	-3	3	116 664	116.658	0.02	1 580	169	122
5	-2	1	117 502	117,508	0.02	1 570	82	33
1	-5	0	117 889	117 888	0,00	1 565	72	24
6	0	-2	121 180	121 188	0.03	1,505	98	64

Tabelle A.21 Cu_{0,3}Zn_{2,7}In₄(PO₄)₆. Indizierung einer Guinieraufnahme (Abbildung 2.7-b) mit beobachteten und berechneten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	l	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
0	1	0	23,602	23,581	0,02	7,492	54	39
1	-1	0	25,924	25,91	0,01	6,823	50	33
0	0	1	30,468	30,48	0,01	5,811	205	279
0	1	-1	32,772	32,81	0,05	5,404	39	37
1	1	-1	36,478	36,49	0,02	4,859	333	358
1	-1	-1	38,771	38,779	0.01	4,574	55	49
2	0	-1	40.917	40.889	0.04	4.337	233	259
1	-1	1	41.398	41.399	0.00	4.287	519	425
1	0	1	43,595	43,599	0.01	4.073	130	206
1	-2	0	45,101	45.079	0.04	3,939	182	209
1	-2	1	51 649	51 638	0.02	3 446	91	93
2	-2	0	52,188	52,198	0.02	3.412	72	79
1	2	-1	54,359	54,398	0.08	3.278	35	43
1	0	-2	56 271	56 297	0.05	3 168	238	251
1	1	1	56 889	56 897	0.02	3 135	46	79
2	-1	1	57 203	57 187	0.03	3 118	111	122
1	2	0	58 188	58 197	0.02	3 066	1000	1000
2	0	-2	58 925	58 927	0,00	3 029	130	211
0	1	-2	59 171	59 177	0.01	3 016	187	305
3	-1	$\tilde{0}$	60 196	60 197	0.00	2,966	630	595
2	0	1	61 683	61 677	0.01	2,896	144	191
2	1	-2	62,260	62,267	0.01	2,870	136	162
3	0	0	63 790	63 796	0.01	2,803	36	49
2	-1	-2	65,065	65,066	0.00	2,009	278	303
1	2	-2	66 756	66 796	0.10	2,682	71	78
3	-2	-1	67 524	67 516	0.02	2,652	278	261
1	-1	2	68 598	68 616	0.04	2,002	70	140
0	3	-1	69 507	69 505	0.00	2,012	113	96
2	-3	0	70 378	70 395	0.04	2,548	226	233
0	3	Ő	71,851	71,835	0.04	2,310	42	38
1	-2	2	72,500	72,515	0.04	2,476	77	75
3	1	-2	73 958	73 985	0.07	2,428	142	225
3	-1	1	76.200	76,194	0.02	2.359	23	33
4	0	-1	78,429	78,434	0.01	2.295	110	124
3	2	-1	83,712	83.733	0.06	2,156	93	145
2	1	-3	85.365	85.372	0.02	2,116	124	165
3	-3	1	87.272	87.282	0.03	2.072	43	42
2	3	-1	88.040	88.042	0.01	2.055	81	73
2	0	2	88,877	88,892	0.05	2.036	72	78
1	2	-3	89,487	89,482	0.02	2.023	93	119
2	2	1	92.262	92.271	0.03	1,966	97	117
4	-3	0	92.657	92,661	0.01	1.958	101	116
0	0	3	93,726	93,721	0,02	1,937	77	97
4	1	0	97,289	97,270	0,06	1,870	152	218
0	4	-2	99,439	99,429	0,03	1,832	47	59
2	-4	-1	101,076	101,079	0,01	1,804	95	158
1	-3	-2	101,165	101,169	0,01	1,802	73	158
3	-4	1	102,086	102,099	0,04	1,787	37	30
1	4	-2	103,484	103,448	0,12	1,765	47	69
5	-2	-2	104,385	104,378	0,02	1,751	101	93
3	3	-3	113,562	113,586	0,09	1,620	39	54
1	1	-4	116,206	116,185	0,08	1,586	161	127
2	-3	3	116,743	116,735	0,03	1,579	168	136
5	-2	1	117,522	117,544	0,08	1,570	82	63
6	0	-2	121,251	121,223	0,10	1,526	98	100
4	0	-4	122,276	122,283	0,03	1,514	90	92
3	-1	3	130,378	130,37	0,03	1,429	105	58
3	-5	2	132,145	132,14	0,02	1,412	48	54

Tabelle A.22 Cu_{0,6}Zn_{2,4}In₄(PO₄)₆. Indizierung einer Guinieraufnahme (Abbildung 2.7-c) mit beobachteten und berechneten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	d-Wert	$I_{\rm calc}^{\ a)}$	I _{obs}
0	1	0	23,546	23,608	0,06	7,510	55	44
1	-1	0	25,892	25,931	0,04	6,832	50	30
0	0	1	30,507	30,527	0,02	5,803	204	220
0	1	-1	32,823	32,840	0,02	5,396	39	34
1	1	-1	36,524	36,520	0,00	4,853	331	304
1	-1	-1	38,760	38,775	0,02	4,576	55	50
2	0	-1	40,970	40,959	0,02	4,331	231	289
1	-1	1	41,425	41,418	0,01	4,284	516	475
1	-2	0	45,010	45,011	0,00	3,947	182	177
0	2	0	47,345	47,336	0,02	3,755	28	29
1	-2	1	51,643	51,599	0,09	3,447	91	98
2	-2	0	52,122	52,108	0,03	3,416	72	81
1	2	-1	54,336	54,304	0,06	3,279	35	38
1	0	-2	56,389	56,381	0,02	3,162	235	220
1	1	1	56,817	56,801	0,03	3,139	46	78
2	-1	1	57.204	57.180	0.05	3.118	110	120
1	2	0	58.063	58.029	0.07	3.073	1000	1000
0	-	-2	59 293	59 298	0.01	3 010	186	233
3	-1	0	60,170	60 147	0.05	2,967	628	671
2	0	1	61 650	61 625	0,06	2,898	144	164
2	1	-2	62 402	62 384	0.04	2 864	134	165
3	0	õ	63 751	63 733	0.04	2,801	36	48
2	-1	-2	65 134	65 132	0.00	2,003	276	267
0	2	-2	66 345	66 321	0.06	2,717	71	100
1	2	-2	66 864	66 870	0.02	2,070	71	63
3	-2	-1	67 484	67,460	0.06	2,670	277	285
1	-2	-1 2	68 681	68 659	0.05	2,004	70	205 97
0	-1	-1	69 427	69.439	0,03	2,007	113	99
2	-3	-1	70 251	70 248	0.01	2,562	226	203
2	-5	_2	70,231	70,248	0.02	2,552	220	203 54
1	-1	-2	72 585	72 577	0,02	2,501	21 77	73
3	-2	_2	72,585	74,057	0,02	2,475	1/1	102
3	_1	-2	74,000	76,166	0,00	2,425	23	27
3	-1	1	78 112	70,100	0,05	2,500	110	116
	_2	-1	81.096	81.086	0,07	2,295	33	110
1	-2	-2	81,635	81,636	0,05	2,222	30	+5 24
1	2	2	81,035	81,030	0,00	2,208	50 65	2 4 66
3	-2	-2	82,239	82,247	0,02	2,193	66	66
	-2	1	83,500	83,577	0.06	2,104	00	116
2	2 1	-1	85,057	85,608	0,00	2,137	123	168
2	1	-5	87.031	87,008	0,03	2,111	82	74
2	9	-1	88 871	88 870	0,02	2,037	82 72	63
1	2	23	80,071	80,679	0,02	2,037	02	70
і Л	_3	-5	07 571	97 567	0,07	2,019	101	06
4	-5	0	92,371	92,502	0,05	1,939	77	90 64
0	1	0	07 100	07 176	0,00	1,754	152	176
4	1	0	97,190	97,170	0,04	1,0/1	132	170
0	4	-2	101 082	99,429 101.072	0,04	1,052	4/20	43
5	-4 2	1	101,905	101,972	0,04	1,709	20 100	22
5 7	-2	-2	104,419	104,390	0,08	1,730	24	02 6
∠ 5	5	-3	104,932	104,937	0,05	1,742	∠ 4 วว	15
5 1	0	0	100,943	100,933	0,04	1,083	22 72	15
1	-2	-3	110,194	110,200	0,04	1,005	/ 5	38 29
5 2	0	-5	112,349	112,300	0,04	1,030	42 20	20 0
5	5	-3	113,/10	113,/33	0,06	1,01/	39 40	0
4	-4	1	114,342	114,334	0,05	1,609	49	30
1		-4	110,488	110,009	0,08	1,582	160	94
5	-2	1	11/,4/2	11/,491	0,07	1,5/0	82	90 110
0	-3	-1	124,322	124,339	0.07	1,489	100	110

Tabelle A.23 CuZn₂In₄(PO₄)₆. Indizierung einer Guinieraufnahme (Abbildung 2.7-e und Abbildung A.35) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^2\theta_{calc} - \sin^2\theta_{obs}| \cdot 1000$.

A.3 Lageparameter, Besetzungsfaktoren und interatomare Abstände

A.3.1 A^{II}_{3} Ti^{III}₄(PO₄)₆ (A^{II} : Mg, Cr, Mn, Fe, Zn)

Atom	x	У	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
Mg1	0,02401(3)	0,22134(4)	0,05211(4)	0,019(3)	0,0065(1)
Ti1	0,02401(3)	0,22134(4)	0,05211(4)	0,981(3)	0,0065(1)
Mg2	1/2	1/2	0	0,396(5)	0,0073(2)
Ti2	1/2	1/2	0	0,604(5)	0,0073(2)
Mg3	0,62302(4)	0,95988(4)	0,39684(5)	0,315(3)	0,0065(1)
Ti3	0,62302(4)	0,95988(4)	0,39684(5)	0,685(3)	0,0065(1)
Mg4	0,78632(6)	0,31083(7)	0,28431(9)	0,969(3)	0,0094(2)
Ti4	0,78632(6)	0,31083(7)	0,28431(9)	0,031(3)	0,0094(2)
P1	0,86902(4)	0,72464(5)	0,39155(6)	1	0,0061(1)
P2	0,72720(4)	0,35717(5)	0,77038(6)	1	0,0055(1)
P3	0,33300(4)	0,08525(5)	0,08201(6)	1	0,0054(1)
01	0,4194(1)	0,0387(2)	0,3037(2)	1	0,0076(2)
O2	0,2741(1)	0,7561(2)	0,4541(2)	1	0,0079(2)
O3	0,6656(1)	0,0437(2)	0,1289(2)	1	0,0078(2)
O4	0,9911(1)	0,7127(2)	0,6171(2)	1	0,0100(2)
05	0,1658(1)	0,6856(2)	0,0173(2)	1	0,0083(2)
O6	0,2065(1)	0,4432(2)	0,2086(2)	1	0,0108(2)
07	0,8457(1)	0,9581(2)	0,9444(2)	1	0,0080(2)
08	0,4139(1)	0,2799(2)	0,0945(2)	1	0,0109(2)
09	0,4448(1)	0,6888(2)	0,2300(2)	1	0,0085(2)
O10	0,7927(1)	0,8627(2)	0,4559(2)	1	0,0116(2)
011	0,9608(1)	0,7747(2)	0,2443(2)	1	0,0120(2)
012	0,7317(1)	0,5363(2)	0,2620(2)	1	0,0093(2)

Tabelle A.24 Atomlagen und isotrope Auslenkungsparameter für Mg₃Ti^{III}₄(PO₄)₆.

^{a)} $U_{eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

	· · · · · · · · · · · · · · · · · · ·	0	- I	05 4(-	70		
Atom	<i>U</i> ₁₁	U_{22}	U_{33}	<i>U</i> ₁₂	<i>U</i> ₁₃	U_{23}	
Mg1	0,0064(1)	0,0055(1)	0,0072(1)	0,00158(9)	0,00292(9)	0,00139(9)	
Til	0,0064(1)	0,0055(1)	0,0072(1)	0,00158(9)	0,00292(9)	0,00139(9)	
Mg2	0,0073(2)	0,0065(2)	0,0086(2)	0,0022(2)	0,0034(2)	0,0027(2)	
Ti2	0,0073(2)	0,0065(2)	0,0086(2)	0,0022(2)	0,0034(2)	0,0027(2)	
Mg3	0,0071(2)	0,0063(2)	0,0071(2)	0,0029(1)	0,0033(1)	0,0022(1)	
Ti3	0,0071(2)	0,0063(2)	0,0071(2)	0,0029(1)	0,0033(1)	0,0022(1)	
Mg4	0,0111(3)	0,0083(3)	0,0098(3)	0,0037(2)	0,0051(2)	0,0026(2)	
Ti4	0,0111(3)	0,0083(3)	0,0098(3)	0,0037(2)	0,0051(2)	0,0026(2)	
P1	0,0062(2)	0,0062(2)	0,0057(2)	0,0022(1)	0,0021(1)	0,0016(1)	
P2	0,0054(2)	0,0051(2)	0,0059(2)	0,0014(1)	0,0024(1)	0,0012(1)	
P3	0,0053(2)	0,0049(2)	0,0059(2)	0,0012(1)	0,0024(1)	0,0016(1)	
01	0,0077(4)	0,0094(5)	0,0064(4)	0,0035(4)	0,0028(3)	0,0027(4)	
02	0,0090(4)	0,0075(5)	0,0069(4)	0,0021(4)	0,0038(4)	0,0013(4)	
03	0,0094(4)	0,0079(5)	0,0066(4)	0,0028(4)	0,0042(4)	0,0014(4)	
04	0,0083(4)	0,0150(5)	0,0080(5)	0,0054(4)	0,0030(4)	0,0050(4)	
05	0,0084(4)	0,0104(5)	0,0073(4)	0,0045(4)	0,0033(4)	0,0034(4)	
06	0,0113(5)	0,0068(5)	0,0122(5)	0,0009(4)	0,0043(4)	0,0022(4)	
07	0,0063(4)	0,0073(5)	0,0105(5)	0,0022(4)	0,0037(4)	0,0025(4)	
08	0,0120(5)	0,0073(5)	0,0130(5)	0,0015(4)	0,0057(4)	0,0033(4)	
09	0,0066(4)	0,0079(5)	0,0105(5)	0,0021(4)	0,0041(4)	0,0010(4)	
O10	0,0111(5)	0,0094(5)	0,0134(5)	0,0054(4)	0,0037(4)	0,0006(4)	
011	0,0112(5)	0,0158(6)	0,0091(5)	0,0021(4)	0,0056(4)	0,0044(4)	
012	0,0088(4)	0,0071(5)	0,0097(5)	0,0016(4)	0,0023(4)	0,0013(4)	

Tabelle A.25 Anisotrope Auslenkungsparameter für $Mg_3Ti^{III}_4(PO_4)_6$ / Ų.

Atom	x	у	z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
Cr1	0,02013(4)	0,20986(5)	0,04001(7)	0,008(2)	0,0048(1)
Ti1	0,02013(4)	0,20986(5)	0,04001(7)	0,992(2)	0,0048(1)
Cr2	1/2	1/2	0	0,87(2)	0,0065(1)
Ti2	1/2	1/2	0	0,13(2)	0,0065(1)
Cr3	0,61902(4)	0,95937(5)	0,38835(6)	0,10(1)	0,0051(1)
Ti3	0,61902(4)	0,95937(5)	0,38835(6)	0,90(1)	0,0051(1)
Cr4	0,77260(5)	0,30766(5)	0,26355(7)	0,96(1)	0,0097(1)
Ti4	0,77260(5)	0,30766(5)	0,26355(7)	0,04(1)	0,0097(1)
P1	0,87441(7)	0,74026(7)	0,40516(9)	1	0,0055(1)
P2	0,73228(6)	0,35797(7)	0,77353(9)	1	0,0049(1)
Р3	0,33820(6)	0,09752(7)	0,09824(9)	1	0,0043(1)
01	0,4224(4)	0,0425(2)	0,3100(3)	1	0,0070(3)
O2	0,2711(2)	0,7567(2)	0,4566(3)	1	0,0086(3)
O3	0,6625(2)	0,0295(2)	0,1188(3)	1	0,0072(3)
O4	0,9946(2)	0,7610(2)	0,6443(3)	1	0,0103(3)
O5	0,1650(2)	0,6891(2)	0,0211(3)	1	0,0075(3)
O6	0,1993(2)	0,4456(2)	0,2005(3)	1	0,0112(3)
O7	0,8378(2)	0,9456(2)	0,9228(3)	1	0,0072(3)
08	0,4242(2)	0,2894(2)	0,1203(3)	1	0,0102(3)
09	0,4386(2)	0,6941(2)	0,2235(3)	1	0,0094(3)
O10	0,7801(2)	0,8630(2)	0,4372(3)	1	0,0105(3)
O11	0,9688(2)	0,7947(2)	0,2570(3)	1	0,0107(3)
012	0,7524(2)	0,5479(2)	0,2872(3)	1	0,0130(3)

Tabelle A.26 Atomlagen und isotrope Auslenkungsparameter für Cr^{II}₃Ti^{III}₄(PO₄)₆ (CAD4).

^{a)} $U_{eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle A.27	Anisotrope Auslen	kungsparameter	für Cr ^{II} ₃ Ti ^{II}	^I ₄ (PO ₄) ₆ ((CAD4) / .	Å ² .
--------------	-------------------	----------------	--	---	------------	------------------

Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Crl	0,0057(1)	0,0042(2)	0,0051(2)	0,0017(1)	0,0027(1)	0,0020(1)
Til	0,0057(1)	0,0042(2)	0,0051(2)	0,0017(1)	0,0027(1)	0,0020(1)
Cr2	0,0081(2)	0,0036(2)	0,0096(2)	0,0019(2)	0,0052(2)	0,0034(2)
Ti2	0,0081(2)	0,0036(2)	0,0096(2)	0,0019(2)	0,0052(2)	0,0034(2)
Cr3	0,0068(1)	0,0041(2)	0,0054(2)	0,0021(1)	0,0033(1)	0,0019(1)
Ti3	0,0068(1)	0,0041(2)	0,0054(2)	0,0021(1)	0,0033(1)	0,0019(1)
Cr4	0,0188(2)	0,0061(2)	0,0093(2)	0,0060(1)	0,0098(1)	0,0042(1)
Ti4	0,0188(2)	0,0061(2)	0,0093(2)	0,0060(1)	0,0098(1)	0,0042(1)
P1	0,0075(2)	0,0044(2)	0,0053(2)	0,0021(2)	0,0031(2)	0,0021(2)
P2	0,0056(2)	0,0044(2)	0,0050(2)	0,0011(2)	0,0027(2)	0,0019(2)
P3	0,0056(2)	0,0033(2)	0,0048(2)	0,0016(2)	0,0027(2)	0,0019(2)
01	0,0066(6)	0,0095(7)	0,0063(7)	0,0036(5)	0,0028(5)	0,0037(6)
02	0,0097(6)	0,0090(7)	0,0070(7)	0,0027(5)	0,0041(5)	0,0018(6)
03	0,0096(6)	0,0059(7)	0,0066(7)	0,0025(5)	0,0044(5)	0,0015(5)
04	0,0104(7)	0,0168(8)	0,0074(7)	0,0075(6)	0,0041(6)	0,0063(6)
05	0,0089(6)	0,0089(7)	0,0066(7)	0,0044(5)	0,0033(5)	0,0041(6)
06	0,0121(7)	0,0049(7)	0,0127(8)	-0,0002(5)	0,0028(6)	0,0025(6)
07	0,0068(6)	0,0061(7)	0,0101(7)	0,0021(5)	0,0049(5)	0,0031(5)
08	0,0136(7)	0,0054(7)	0,0121(8)	0,0012(5)	0,0069(6)	0,0034(6)
09	0,0064(6)	0,0107(7)	0,0111(7)	0,0021(5)	0,0046(5)	0,0026(6)
O10	0,0113(7)	0,0101(7)	0,0129(8)	0,0076(6)	0,0049(6)	0,0039(6)
011	0,0118(7)	0,0150(8)	0,0079(7)	0,0038(6)	0,0065(6)	0,0061(6)
012	0,0181(8)	0,0054(7)	0,0147(8)	0,0020(6)	0,0080(7)	0,0018(6)

Atom	x	У	z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
Crl	0,01984(3)	0,20973(4)	0,03978(5)	0,028(9)	0,0086(1)
Ti1	0,01984(3)	0,20973(4)	0,03978(5)	0,972(9)	0,0086(1)
Cr2	1/2	1/2	0	0,86(2)	0,0100(1)
Ti2	1/2	1/2	0	0,14(2)	0,0100(1)
Cr3	0,61942(3)	0,95922(4)	0,38851(5)	0,06(1)	0,0086(1)
Ti3	0,61942(3)	0,95922(4)	0,38851(5)	0,94(1)	0,0086(1)
Cr4	0,77178(4)	0,30735(4)	0,26291(5)	0,98(1)	0,0130(1)
Ti4	0,77178(4)	0,30735(4)	0,26291(5)	0,02(1)	0,0130(1)
P1	0,87476(5)	0,74018(6)	0,40537(7)	1	0,0091(1)
P2	0,73203(5)	0,35830(5)	0,77344(7)	1	0,0084(1)
P3	0,33836(5)	0,09733(5)	0,09833(7)	1	0,0079(1)
01	0,4223(2)	0,0421(2)	0,3099(2)	1	0,0101(2)
02	0,2720(2)	0,7570(2)	0,4569(2)	1	0,0118(2)
O3	0,6624(2)	0,0302(2)	0,1184(2)	1	0,0105(2)
O4	0,9950(2)	0,7616(2)	0,6446(2)	1	0,0142(2)
O5	0,1657(2)	0,6893(2)	0,0210(2)	1	0,0110(2)
O6	0,1994(2)	0,4452(2)	0,1998(2)	1	0,0149(2)
07	0,8375(2)	0,9453(2)	0,9222(2)	1	0,0102(2)
08	0,4248(2)	0,2898(2)	0,1210(2)	1	0,0140(2)
09	0,4390(2)	0,6934(2)	0,2233(2)	1	0,0125(2)
O10	0,7805(2)	0,8630(2)	0,4374(2)	1	0,0141(2)
O11	0,9691(2)	0,7942(2)	0,2568(2)	1	0,0142(2)
012	0,7530(2)	0,5478(2)	0,2879(2)	1	0,0163(2)

Tabelle A.28 Atomlagen und isotrope Auslenkungsparameter für Cr^{II}₃Ti^{III}₄(PO₄)₆ (CCD).

^{a)} $U_{\text{eq}} = (1/3) \Sigma_{\text{i}} \Sigma_{\text{j}} U_{\text{ij}} a_{\text{i}}^* a_{\text{j}}^* a_{\text{i}} a_{\text{j}}$

Tabelle A.29	Anisotrope	Auslenkungsp	arameter fü	r Cr ^{II}	₃ Ti ^{III}	$_{4}(PO_{4})_{6}$	(CCD)	/ Å ²	<u>?</u> -
--------------	------------	--------------	-------------	--------------------	--------------------------------	--------------------	-------	------------------	---------------

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Crl	0,0083(1)	0,0091(1)	0,0081(1)	0,00291(9)	0,00273(9)	0,00320(9)
Til	0,0083(1)	0,0091(1)	0,0081(1)	0,00291(9)	0,00273(9)	0,00320(9)
Cr2	0,0107(2)	0,0084(2)	0,0117(2)	0,0032(1)	0,0047(1)	0,0043(1)
Ti2	0,0107(2)	0,0084(2)	0,0117(2)	0,0032(1)	0,0047(1)	0,0043(1)
Cr3	0,0095(1)	0,0086(1)	0,0079(1)	0,00342(9)	0,0032(1)	0,00292(9)
Ti3	0,0095(1)	0,0086(1)	0,0079(1)	0,00342(9)	0,0032(1)	0,00292(9)
Cr4	0,0206(2)	0,0107(1)	0,0116(1)	0,0068(1)	0,0092(1)	0,00506(9)
Ti4	0,0206(2)	0,0107(1)	0,0116(1)	0,0068(1)	0,0092(1)	0,00506(9)
P1	0,0100(2)	0,0091(2)	0,0082(2)	0,0033(1)	0,0030(1)	0,0032(1)
P2	0,0081(2)	0,0087(2)	0,0076(2)	0,0023(1)	0,0024(1)	0,0027(1)
P3	0,0080(2)	0,0078(2)	0,0076(2)	0,0024(1)	0,0026(1)	0,0030(1)
01	0,0097(5)	0,0126(5)	0,0084(5)	0,0045(4)	0,0027(4)	0,0044(4)
O2	0,0129(5)	0,0133(5)	0,0094(5)	0,0047(4)	0,0048(4)	0,0031(4)
03	0,0126(5)	0,0100(5)	0,0090(5)	0,0039(4)	0,0045(4)	0,0026(4)
04	0,0132(5)	0,0217(6)	0,0108(5)	0,0085(5)	0,0047(4)	0,0083(5)
05	0,0116(5)	0,0135(5)	0,0091(5)	0,0057(4)	0,0034(4)	0,0051(4)
06	0,0152(6)	0,0107(5)	0,0150(6)	0,0021(4)	0,0027(5)	0,0046(4)
07	0,0084(5)	0,0103(5)	0,0115(5)	0,0032(4)	0,0033(4)	0,0035(4)
08	0,0161(6)	0,0100(5)	0,0154(6)	0,0025(4)	0,0067(5)	0,0047(4)
09	0,0098(5)	0,0144(5)	0,0128(5)	0,0038(4)	0,0047(4)	0,0035(4)
O10	0,0137(5)	0,0140(5)	0,0151(6)	0,0080(4)	0,0039(4)	0,0040(4)
011	0,0141(5)	0,0194(6)	0,0102(5)	0,0054(5)	0,0056(4)	0,0060(4)
012	0,0200(6)	0,0090(5)	0,0176(6)	0,0024(4)	0,0074(5)	0,0028(4)

Atom	x	у	z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
Ti1	0,02819(3)	0,21923(3)	0,04982(4)	1	0,0070(1)
Mn2	1/2	1/2	0	0,867(9)	0,0094(1)
Ti2	1/2	1/2	0	0,133(9)	0,0094(1)
Mn3	0,62082(3)	0,95980(3)	0,39130(4)	0,066(5)	0,0070(1)
Ti3	0,62082(3)	0,95980(3)	0,39130(4)	0,934(5)	0,0070(1)
Mn4	0,78577(3)	0,31641(3)	0,28482(4)	1	0,0110(1)
P1	0,86874(4)	0,73271(5)	0,39388(6)	1	0,0070(1)
P2	0,73249(4)	0,35234(5)	0,77477(6)	1	0,0064(1)
P3	0,33409(4)	0,08783(5)	0,08992(6)	1	0,0065(1)
01	0,4185(1)	0,0369(1)	0,3052(2)	1	0,0089(2)
O2	0,2716(1)	0,7626(1)	0,4503(2)	1	0,0095(2)
O3	0,6643(1)	0,0372(1)	0,1232(2)	1	0,0094(2)
O4	0,9883(1)	0,7323(2)	0,6243(2)	1	0,0118(2)
O5	0,1574(1)	0,6859(2)	0,0180(2)	1	0,0098(2)
O6	0,2018(1)	0,4521(2)	0,2051(2)	1	0,0121(2)
O7	0,8451(1)	0,9579(1)	0,9371(2)	1	0,0094(2)
08	0,4166(1)	0,2792(2)	0,1139(2)	1	0,0141(2)
O9	0,4383(1)	0,6985(1)	0,2249(2)	1	0,0106(2)
O10	0,7852(1)	0,8631(2)	0,4477(2)	1	0,0136(2)
011	0,9611(1)	0,7857(2)	0,2501(2)	1	0,0133(2)
012	0,7363(1)	0,5452(1)	0,2668(2)	1	0,0116(2)

Tabelle A.30 Atomlagen und isotrope Auslenkungsparameter für $Mn_3Ti^{III}_4(PO_4)_6$.

 $\overline{}^{\mathrm{a})} U_{\mathrm{eq}} = (1/3) \Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} U_{\mathrm{ij}} a_{\mathrm{i}}^{*} a_{\mathrm{j}}^{*} a_{\mathrm{i}} a_{\mathrm{j}}^{*}$

Tabelle A.31 Anisotrope Auslenkungsparameter für $Mn_3Ti^{III}_4(PO_4)_6$ / Å².

Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	U_{12}	<i>U</i> ₁₃	U_{23}
Til	0,0070(1)	0,0069(1)	0,0069(1)	0,00248(8)	0,00256(8)	0,00214(8)
Mn2	0,0082(1)	0,0081(1)	0,0111(1)	0,00269(9)	0,0027(1)	0,0034(1)
Ti2	0,0082(1)	0,0081(1)	0,0111(1)	0,00269(9)	0,0027(1)	0,0034(1)
Mn3	0,0074(1)	0,0074(1)	0,0067(1)	0,00312(8)	0,00293(8)	0,00216(8)
Ti3	0,0074(1)	0,0074(1)	0,0067(1)	0,00312(8)	0,00293(8)	0,00216(8)
Mn4	0,0153(1)	0,0095(1)	0,0110(1)	0,00520(8)	0,00708(8)	0,00432(8)
P1	0,0069(1)	0,0080(2)	0,0060(1)	0,0031(1)	0,0020(1)	0,0023(1)
P2	0,0061(1)	0,0067(2)	0,0060(1)	0,0020(1)	0,0021(1)	0,0018(1)
Р3	0,0062(1)	0,0071(2)	0,0062(1)	0,0023(1)	0,0024(1)	0,0022(1)
01	0,0084(4)	0,0126(5)	0,0065(4)	0,0044(3)	0,0028(3)	0,0042(3)
O2	0,0104(4)	0,0098(4)	0,0072(4)	0,0027(3)	0,0034(3)	0,0018(3)
O3	0,0103(4)	0,0101(4)	0,0076(4)	0,0035(3)	0,0039(3)	0,0021(3)
O4	0,0095(4)	0,0182(5)	0,0080(4)	0,0056(3)	0,0021(3)	0,0062(4)
05	0,0097(4)	0,0134(5)	0,0072(4)	0,0060(3)	0,0027(3)	0,0042(3)
O6	0,0125(4)	0,0085(4)	0,0130(4)	0,0015(3)	0,0040(3)	0,0036(4)
07	0,0078(4)	0,0102(4)	0,0110(4)	0,0040(3)	0,0038(3)	0,0035(3)
08	0,0162(4)	0,0084(4)	0,0174(5)	0,0020(3)	0,0079(4)	0,0049(4)
09	0,0074(4)	0,0113(4)	0,0120(4)	0,0024(3)	0,0044(3)	0,0022(3)
O10	0,0133(4)	0,0127(5)	0,0143(5)	0,0072(4)	0,0041(4)	0,0022(4)
011	0,0126(4)	0,0181(5)	0,0094(4)	0,0035(4)	0,0055(3)	0,0053(4)
012	0,0106(4)	0,0086(4)	0,0118(4)	0,0022(3)	0,0018(3)	0,0017(3)

Atom	x	у	z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
Til	0,02528(2)	0,22035(3)	0,04810(3)	1	0,0069(1)
Fe2	1/2	1/2	0	0,733(6)	0,0083(1)
Ti2	1/2	1/2	0	0,267(6)	0,0083(1)
Fe3	0,62143(2)	0,95964(3)	0,39456(3)	0,159(4)	0,0069(1)
Ti3	0,62143(2)	0,95964(3)	0,39456(3)	0,841(4)	0,0069(1)
Fe4	0,78647(2)	0,31474(2)	0,28243(3)	0,977(4)	0,0091(1)
Ti4	0,78647(2)	0,31474(2)	0,28243(3)	0,023(4)	0,0091(1)
P1	0,87091(3)	0,72994(4)	0,39631(5)	1	0,0066(1)
P2	0,72956(3)	0,35502(4)	0,77168(5)	1	0,0063(1)
P3	0,33336(3)	0,08795(4)	0,08498(5)	1	0,0060(1)
O1	0,4191(1)	0,0394(1)	0,3028(1)	1	0,0088(1)
02	0,2740(1)	0,7600(1)	0,4523(1)	1	0,0093(1)
O3	0,6660(1)	0,0400(1)	0,1268(1)	1	0,0088(1)
O4	0,9924(1)	0,7282(1)	0,6258(1)	1	0,0112(2)
O5	0,1599(1)	0,6846(1)	0,0195(1)	1	0,0095(1)
O6	0,2041(1)	0,4461(1)	0,2076(2)	1	0,0116(2)
07	0,8454(1)	0,9568(1)	0,9405(2)	1	0,0087(1)
08	0,4146(1)	0,2817(1)	0,1022(2)	1	0,0121(2)
09	0,4412(1)	0,6928(1)	0,2280(2)	1	0,0102(1)
O10	0,7888(1)	0,8623(1)	0,4524(2)	1	0,0126(2)
O11	0,9616(1)	0,7803(1)	0,2493(2)	1	0,0129(2)
012	0,7370(1)	0,5396(1)	0,2698(2)	1	0,0110(2)

Tabelle A.32 Atomlagen und isotrope Auslenkungsparameter für $Fe^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$.

 $^{a)} U_{eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle A.33 Anisotrope Auslenkungsparameter für $Fe^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ / Å².

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U_{12}	<i>U</i> ₁₃	U ₂₃
Ti1	0.00674(8)	0.00660(8)	0.00725(8)	0.00231(6)	0.00286(6)	0.00205(6)
Fe2	0.0081(1)	0.0074(1)	0.0096(1)	0.00255(8)	0.00345(8)	0.00347(8)
Ti2	0.0081(1)	0.0074(1)	0.0096(1)	0.00255(8)	0.00345(8)	0.00347(8)
Fe3	0.00762(8)	0.00729(9)	0.00687(8)	0.00331(6)	0.00337(6)	0.00243(6)
Ti3	0.00762(8)	0.00729(9)	0.00687(8)	0.00331(6)	0.00337(6)	0.00243(6)
Fe4	0.01134(8)	0.00803(8)	0.00993(8)	0.00413(6)	0.00553(6)	0.00352(6)
Ti4	0.01134(8)	0.00803(8)	0.00993(8)	0.00413(6)	0.00553(6)	0.00352(6)
P1	0.0067(1)	0.0074(1)	0.0059(1)	0.00292(9)	0.00222(8)	0.00223(9)
P2	0.0059(1)	0.0064(1)	0.0061(1)	0.00171(9)	0.00230(8)	0.00175(9)
P3	0.0059(1)	0.0065(1)	0.0060(1)	0.00207(9)	0.00255(8)	0.00226(9)
01	0.0082(3)	0.0120(4)	0.0067(3)	0.0040(3)	0.0029(2)	0.0039(3)
02	0.0105(3)	0.0096(3)	0.0071(3)	0.0026(3)	0.0043(3)	0.0014(3)
03	0,0102(3)	0.0088(3)	0.0074(3)	0.0020(3)	0.0043(3)	0.0017(3)
04	0.0092(3)	0.0179(4)	0.0079(3)	0.0050(3)	0.0026(3)	0.0063(3)
05	0.0092(3)	0.0174(4)	0.0077(3)	0.0051(3)	0.0029(3)	0.0043(3)
06	0,0004(3)	0,0124(4) 0,0079(4)	0,0077(3)	0,0001(3)	0,0029(3)	0,0043(3)
07	0,0110(4)	0,0075(4)	0,0102(3)	0.0034(3)	0,0041(3)	0,0032(3)
08	0,0003(3)	0,0090(3)	0,0105(3)	0,0034(3)	0,0033(3)	0,0034(3)
00	0,0143(4) 0,0072(2)	0,0073(3)	0,0134(4) 0.0115(2)	0,0019(3)	0,0079(3)	0,0043(3)
09	0,0073(3)	0,0117(4)	0,0113(3)	0,0024(3)	0,0040(3)	0,0028(3)
010	0,0124(4)	0,0110(4)	0,0130(4)	0,0072(3)	0,0038(3)	0,001/(3)
011	0,0125(4)	0,0182(4)	0,0091(3)	0,0039(3)	0,0059(3)	0,0056(3)
012	0,0110(3)	0,0075(3)	0,0116(3)	0,0019(3)	0,0027(3)	0,0014(3)

Atom	x	У	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA^{2\ a)}}$
Zn1	0,02339(4)	0,22219(5)	0,05021(6)	0,011(2)	0,0070(1)
Ti1	0,02339(4)	0,22219(5)	0,05021(6)	0,989(2)	0,0070(1)
Zn2	1/2	1/2	0	0,296(4)	0,0091(1)
Ti2	1/2	1/2	0	0,704(4)	0,0091(1)
Zn3	0,62175(4)	0,95685(4)	0,39510(5)	0,350(2)	0,0081(1)
Ti3	0,62175(4)	0,95685(4)	0,39510(5)	0,650(2)	0,0081(1)
Zn4	0,78890(3)	0,31367(3)	0,29150(4)	0,990(2)	0,0098(1)
Ti4	0,78890(3)	0,31367(3)	0,29150(4)	0,010(2)	0,0098(1)
P1	0,86955(6)	0,72441(7)	0,39314(8)	1	0,0068(1)
P2	0,72728(6)	0,35888(7)	0,77047(8)	1	0,0062(1)
P3	0,33160(6)	0,08430(7)	0,07952(8)	1	0,0060(1)
01	0,4189(2)	0,0406(2)	0,3024(2)	1	0,0082(3)
O2	0,2762(2)	0,7577(2)	0,4531(2)	1	0,0087(3)
O3	0,6645(2)	0,0443(2)	0,1291(2)	1	0,0088(3)
O4	0,9903(2)	0,7126(2)	0,6192(2)	1	0,0109(3)
O5	0,1642(2)	0,6835(2)	0,0193(2)	1	0,0090(3)
O6	0,2079(2)	0,4417(2)	0,2113(2)	1	0,0109(3)
07	0,8470(2)	0,9596(2)	0,9476(2)	1	0,0085(3)
08	0,4101(2)	0,2805(2)	0,0893(2)	1	0,0108(3)
O9	0,4440(2)	0,6864(2)	0,2288(2)	1	0,0088(3)
O10	0,7941(2)	0,8634(2)	0,4564(2)	1	0,0126(3)
O11	0,9599(2)	0,7703(2)	0,2451(2)	1	0,0121(3)
012	0,7309(2)	0,5353(2)	0,2649(2)	1	0,0095(3)

Tabelle A.34 Atomlagen und isotrope Auslenkungsparameter für $Zn_3Ti^{III}_4(PO_4)_6$.

^{a)} $U_{\text{eq}} = (1/3) \Sigma_{\text{i}} \Sigma_{\text{j}} U_{\text{ij}} a_{\text{i}}^* a_{\text{j}}^* a_{\text{i}} \cdot a_{\text{j}}$

Tabelle A.35 Anisotrope Auslenkungsparameter für $Zn_3Ti^{III}_4(PO_4)_6$ / Å	λ^2 .
--	---------------

Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	<i>U</i> ₁₂	U_{13}	U ₂₃
Zn1	0,0068(2)	0,0065(2)	0,0075(2)	0,0018(1)	0,0028(1)	0,0019(1)
Til	0,0068(2)	0,0065(2)	0,0075(2)	0,0018(1)	0,0028(1)	0,0019(1)
Zn2	0,0085(2)	0,0081(2)	0,0106(2)	0,0022(2)	0,0037(2)	0,0038(2)
Ti2	0,0085(2)	0,0081(2)	0,0106(2)	0,0022(2)	0,0037(2)	0,0038(2)
Zn3	0,0084(2)	0,0088(2)	0,0086(2)	0,0037(1)	0,0038(1)	0,0035(1)
Ti3	0,0084(2)	0,0088(2)	0,0086(2)	0,0037(1)	0,0038(1)	0,0035(1)
Zn4	0,0105(1)	0,0086(1)	0,0111(1)	0,00370(9)	0,00465(9)	0,00303(9)
Ti4	0,0105(1)	0,0086(1)	0,0111(1)	0,00370(9)	0,00465(9)	0,00303(9)
P1	0,0066(2)	0,0074(2)	0,0060(2)	0,0024(2)	0,0019(2)	0,0022(2)
P2	0,0056(2)	0,0067(2)	0,0056(2)	0,0016(2)	0,0019(2)	0,0014(2)
Р3	0,0057(2)	0,0061(2)	0,0062(2)	0,0019(2)	0,0024(2)	0,0022(2)
01	0,0070(6)	0,0114(7)	0,0063(6)	0,0029(5)	0,0026(5)	0,0031(5)
O2	0,0095(7)	0,0085(7)	0,0083(6)	0,0024(5)	0,0048(5)	0,0017(5)
O3	0,0101(7)	0,0088(7)	0,0071(6)	0,0027(5)	0,0040(5)	0,0013(5)
O4	0,0084(7)	0,0167(8)	0,0076(6)	0,0048(6)	0,0024(5)	0,0047(6)
05	0,0080(6)	0,0115(7)	0,0082(6)	0,0045(5)	0,0029(5)	0,0035(5)
06	0,0105(7)	0,0074(7)	0,0120(6)	0,0005(5)	0,0033(5)	0,0024(5)
O7	0,0069(6)	0,0075(7)	0,0112(6)	0,0022(5)	0,0037(5)	0,0027(5)
08	0,0119(7)	0,0084(7)	0,0120(7)	0,0017(6)	0,0057(6)	0,0037(6)
09	0,0072(6)	0,0093(7)	0,0098(6)	0,0023(5)	0,0041(5)	0,0017(5)
O10	0,0131(7)	0,0105(7)	0,0140(7)	0,0066(6)	0,0047(6)	0,0011(6)
011	0,0100(7)	0,0174(8)	0,0079(6)	0,0024(6)	0,0037(5)	0,0040(6)
012	0,0081(6)	0,0083(7)	0,0093(6)	0,0014(5)	0,0016(5)	0,0017(5)

		Mg ₃ Ti ₄ (PO ₄) ₆	Cr ₃ Ti ₄ (PO ₄) ₆	Mn ₃ Ti ₄ (PO ₄) ₆	Fe ₃ Ti ₄ (PO ₄) ₆	Zn ₃ Ti ₄ (PO ₄) ₆
$[M1O_{6}]$	<i>M</i> 1-O6	1,922(1)	1,985(1)	1,948(1)	1,924(1)	1,921(2)
	<i>M</i> 1 - O11	1,951(1)	1,912(1)	1,961(1)	1,958(1)	1,962(1)
	<i>M</i> 1-O5	2,039(1)	2,094(1)	2,046(1)	2,032(1)	2,026(2)
	<i>M</i> 1-O7	2,097(1)	2,076(1)	2,101(1)	2,096(1)	2,101(2)
	<i>M</i> 1-O7	2,131(1)	2,155(1)	2,153(1)	2,140(1)	2,121(2)
	<i>M</i> 1-O4	2,142(1)	2,025(1)	2,123(1)	2,131(1)	2,142(1)
$[M2O_6]$	M2-08	2,013(1)	2,040(1)	2,131(1)	2,045(1)	1,996(1)
	M2-08	2,013(1)	2,040(1)	2,131(1)	2,045(1)	1,996(1)
	M2-09	2,182(1)	2,219(1)	2,273(1)	2,230(1)	2,168(2)
	M2-09	2,182(1)	2,219(1)	2,273(1)	2,230(1)	2,168(2)
	<i>M</i> 2-O12	2,164(1)	2,398(2)	2,205(1)	2,226(1)	2,173(1)
	<i>M</i> 2-O12	2,164(1)	2,398(2)	2,205(1)	2,226(1)	2,173(1)
$[M3O_6]$	M3-O10	1,895(1)	1,864(1)	1,880(1)	1,896(1)	1,895(2)
	<i>M</i> 3-O3	2,065(1)	2,028(1)	2,075(1)	2,079(1)	2,073(1)
	M3-O1	2,077(1)	2,069(1)	2,099(1)	2,103(1)	2,095(1)
	<i>M</i> 3-O2	2,100(1)	2,121(1)	2,093(1)	2,084(1)	2,103(2)
	M3-O1	2,089(1)	2,101(1)	2,101(1)	2,104(1)	2,106(2)
	<i>M</i> 3-O9	2,165(1)	2,151(1)	2,139(1)	2,147(1)	2,156(2)
$[M4O_5]$	<i>M</i> 4-O12	2,000(1)	1,985(1)	2,057(1)	1,988(1)	1,979(2)
	<i>M</i> 4-O3	2,004(1)	2,070(1)	2,114(1)	2,057(1)	2,021(2)
	<i>M</i> 4-O4	2,032(1)	2,348(1)	2,176(1)	2,105(1)	2,030(2)
	<i>M</i> 4-O2	2,047(1)	2,072(1)	2,113(1)	2,109(1)	2,050(1)
	<i>M</i> 4-O5	2,121(1)	2,061(1)	2,181(1)	2,163(1)	2,182(1)

Tabelle A.36 Interatomare Abstände / Å in den Polyedern [$M1O_6$], [$M2O_6$], [$M3O_6$] und [$M4O_5$] in $A^{II}_{3}Ti^{III}_{4}(PO_4)_6$ (A^{II} : Mg, Cr, Mn, Fe, Zn).

Tabelle A.37 Interatomare Abstände / Å in den Polyedern [P1O₄], [P2O₄] und [P3O₄] in A^{II}_{3} Ti^{III}₄(PO₄)₆ (A^{II} : Mg, Cr, Mn, Fe, Zn).

		Mg ₃ Ti ₄ (PO ₄) ₆	Cr ₃ Ti ₄ (PO ₄) ₆	Mn ₃ Ti ₄ (PO ₄) ₆	Fe ₃ Ti ₄ (PO ₄) ₆	Zn ₃ Ti ₄ (PO ₄) ₆
[P1O ₄]	P1-O11	1,507(1)	1,523(1)	1,507(1)	1,508(1)	1,501(2)
	P1-O10	1,520(1)	1,528(1)	1,530(1)	1,524(1)	1,512(2)
	P1-O4	1,552(1)	1,540(1)	1,548(1)	1,549(1)	1,552(2)
	P1-O12	1,558(1)	1,531(1)	1,543(1)	1,553(1)	1,564(2)
[P2O ₄]	P2-O6	1,509(1)	1,495(1)	1,511(1)	1,512(1)	1,504(2)
	P2-O2	1,541(1)	1,558(1)	1,546(1)	1,542(1)	1,540(2)
	P2-O9	1,552(1)	1,554(1)	1,543(1)	1,546(1)	1,554(1)
	P2-O5	1,550(1)	1,558(1)	1,549(1)	1,553(1)	1,547(1)
[P3O ₄]	P3-O8	1,510(1)	1,500(1)	1,496(1)	1,503(1)	1,516(2)
	P3-O3	1,541(1)	1,549(1)	1,547(1)	1,545(1)	1,540(2)
	P3-O1	1,544(1)	1,556(1)	1,557(1)	1,550(1)	1,543(1)
	P3-O7	1,559(1)	1,552(1)	1,562(1)	1,565(1)	1,561(2)

A.3.2 *A*^{II}₃V^{III}₄(PO₄)₆ (*A*^{II}: Mg, Cr, Mn, Fe, Co, Ni, Zn)

Atom	x	У	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
Mg1	0,02207(4)	0,21531(4)	0,04676(6)	0,042(3)	0,0052(1)
V1	0,02207(4)	0,21531(4)	0,04676(6)	0,958(3)	0,0052(1)
Mg2	1/2	1/2	0	0,619(4)	0,0071(2)
V2	1/2	1/2	0	0,381(4)	0,0071(2)
Mg3	0,61632(4)	0,96232(5)	0,38928(6)	0,149(3)	0,0052(1)
V3	0,61632(4)	0,96232(5)	0,38928(6)	0,851(3)	0,0052(1)
Mg4	0,78756(8)	0,3113(1)	0,2810(1)	1	0,0077(1)
P1	0,86774(5)	0,73147(7)	0,39382(8)	1	0,0061(1)
P2	0,73098(5)	0,35673(7)	0,77324(9)	1	0,0055(1)
P3	0,33410(5)	0,08978(7)	0,08890(8)	1	0,0056(1)
01	0,4187(2)	0,0394(2)	0,3098(2)	1	0,0072(3)
O2	0,2724(2)	0,7616(2)	0,4569(2)	1	0,0076(3)
O3	0,6641(2)	0,0421(2)	0,1248(2)	1	0,0075(3)
O4	0,9920(2)	0,7296(2)	0,6260(2)	1	0,0095(3)
O5	0,1597(2)	0,6820(2)	0,0141(2)	1	0,0081(3)
O6	0,2065(2)	0,4433(2)	0,2100(2)	1	0,0103(3)
O7	0,8467(2)	0,9580(2)	0,9381(2)	1	0,0079(3)
08	0,4171(2)	0,2847(2)	0,1087(3)	1	0,0111(3)
O9	0,4428(2)	0,6975(2)	0,2266(2)	1	0,0090(3)
O10	0,7877(2)	0,8686(2)	0,4514(3)	1	0,0110(3)
011	0,9626(2)	0,7796(2)	0,2442(2)	1	0,0109(3)
012	0,7347(2)	0,5382(2)	0,2671(2)	1	0,0095(3)

Tabelle A.38 Atomlagen und isotrope Auslenkungsparameter für Mg^{II}₃V^{III}₄(PO₄)₆.

 $\overline{}^{a)} U_{eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle A.39 Anisotrope Auslenkungsparameter für $Mg^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ / Å².

Atom	U_{11}	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Mg1	0,0054(2)	0,0049(2)	0,0052(2)	0,0015(1)	0,0023(1)	0,0017(1)
V1	0,0054(2)	0,0049(2)	0,0052(2)	0,0015(1)	0,0023(1)	0,0017(1)
Mg2	0,0071(3)	0,0059(3)	0,0089(3)	0,0020(2)	0,0033(2)	0,0031(3)
V2	0,0071(3)	0,0059(3)	0,0089(3)	0,0020(2)	0,0033(2)	0,0031(3)
Mg3	0,0053(2)	0,0053(2)	0,0053(2)	0,0020(1)	0,0021(1)	0,0018(1)
V3	0,0053(2)	0,0053(2)	0,0053(2)	0,0020(1)	0,0021(1)	0,0018(1)
Mg4	0,0094(3)	0,0073(3)	0,0078(3)	0,0034(2)	0,0044(2)	0,0030(3)
P1	0,0063(2)	0,0064(2)	0,0057(2)	0,0025(2)	0,0024(2)	0,0021(2)
P2	0,0053(2)	0,0056(2)	0,0056(2)	0,0017(2)	0,0024(2)	0,0016(2)
P3	0,0053(2)	0,0060(2)	0,0063(2)	0,0021(2)	0,0027(2)	0,0024(2)
01	0,0083(6)	0,0091(7)	0,0062(6)	0,0046(5)	0,0032(5)	0,0034(5)
02	0,0078(6)	0,0090(7)	0,0058(6)	0,0022(5)	0,0032(5)	0,0019(5)
03	0,0089(6)	0,0078(7)	0,0058(6)	0,0023(5)	0,0034(5)	0,0018(5)
04	0,0082(6)	0,0137(7)	0,0084(6)	0,0051(5)	0,0032(5)	0,0055(6)
05	0,0085(6)	0,0108(7)	0,0074(6)	0,0054(5)	0,0034(5)	0,0047(5)
06	0,0106(6)	0,0075(7)	0,0116(7)	0,0018(5)	0,0036(5)	0,0035(5)
07	0,0063(6)	0,0075(7)	0,0098(6)	0,0017(5)	0,0032(5)	0,0032(5)
08	0,0126(7)	0,0063(7)	0,0149(7)	0,0019(5)	0,0070(6)	0,0033(6)
09	0,0069(6)	0,0089(7)	0,0107(6)	0,0019(5)	0,0040(5)	0,0019(5)
O10	0,0101(6)	0,0092(7)	0,0129(7)	0,0054(5)	0,0028(5)	0,0018(6)
011	0,0107(6)	0,0139(7)	0,0082(6)	0,0023(5)	0,0050(5)	0,0043(6)
012	0,0093(6)	0,0061(6)	0,0108(6)	0,0014(5)	0,0028(5)	0,0011(5)

Atom	x	у	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2~ m a)}$
V1	0,02355(4)	0,21133(5)	0,04527(6)	1	0,0109(1)
Cr2	1/2	1/2	0	1	0,0135(1)
V3	0,61356(4)	0,96290(5)	0,38493(6)	1	0,0110(1)
Cr4	0,78464(5)	0,31609(5)	0,27258(7)	1	0,0174(1)
P1	0,86668(7)	0,74166(7)	0,3984(1)	1	0,0111(1)
P2	0,73524(7)	0,35430(7)	0,7741(1)	1	0,0112(1)
P3	0,33487(6)	0,09561(7)	0,0974(1)	1	0,0109(1)
O1	0,4193(2)	0,0409(2)	0,3126(3)	1	0,0128(3)
O2	0,2669(2)	0,7607(2)	0,4567(3)	1	0,0138(3)
03	0,6631(2)	0,0308(2)	0,1187(3)	1	0,0133(3)
O4	0,9898(2)	0,7546(2)	0,6377(3)	1	0,0142(3)
05	0,1541(2)	0,6821(2)	0,0130(3)	1	0,0135(3)
O6	0,2031(2)	0,4471(2)	0,2055(3)	1	0,0149(3)
O7	0,8450(2)	0,9541(2)	0,9269(3)	1	0,0133(3)
08	0,4191(2)	0,2908(2)	0,1249(3)	1	0,0165(3)
09	0,4376(2)	0,7081(2)	0,2251(3)	1	0,0141(3)
O10	0,7774(2)	0,8674(2)	0,4402(3)	1	0,0172(3)
O11	0,9626(2)	0,7910(2)	0,2504(3)	1	0,0164(3)
012	0,7377(2)	0,5461(2)	0,2740(3)	1	0,0154(3)

Tabelle A.40 Atomlagen und isotrope Auslenkungsparameter für $Cr^{II}_{3}V^{III}_{4}(PO_{4})_{6}$.

^{a)} $U_{eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle A.41 Anisotrope Auslenkungsparameter für $Cr^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ / Å².

Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	U_{12}	<i>U</i> ₁₃	U_{23}
V1	0,0116(2)	0,0108(1)	0,0108(2)	0,0040(1)	0,00532(1)	0,0037(1)
Cr2	0,0142(2)	0,0128(2)	0,0146(2)	0,0048(2)	0,00631(2)	0,0056(2)
V3	0,0115(2)	0,0111(1)	0,0112(2)	0,0044(1)	0,00521(1)	0,0035(1)
Cr4	0,0289(2)	0,0146(2)	0,0163(2)	0,0106(1)	0,01453(2)	0,0076(1)
P1	0,0123(2)	0,0117(2)	0,0105(2)	0,0048(2)	0,00514(2)	0,0042(2)
P2	0,0116(2)	0,0108(2)	0,0111(2)	0,0035(2)	0,00517(2)	0,0032(2)
P3	0,0112(2)	0,0110(2)	0,0108(2)	0,0040(2)	0,00480(2)	0,0035(2)
01	0,0128(6)	0,0159(6)	0,0108(7)	0,0065(5)	0,0047(5)	0,0044(5)
O2	0,0156(7)	0,0137(6)	0,0119(7)	0,0044(5)	0,0067(6)	0,0029(5)
O3	0,0166(7)	0,0135(6)	0,0110(7)	0,0058(5)	0,0067(6)	0,0044(5)
O4	0,0144(7)	0,0180(7)	0,0114(7)	0,0068(6)	0,0055(6)	0,0051(6)
O5	0,0155(7)	0,0165(7)	0,0109(7)	0,0080(5)	0,0054(6)	0,0059(5)
O6	0,0165(7)	0,0115(6)	0,0157(7)	0,0036(5)	0,0061(6)	0,0045(5)
07	0,0115(6)	0,0130(6)	0,0157(7)	0,0047(5)	0,0062(5)	0,0038(5)
O8	0,0179(7)	0,0118(6)	0,0197(8)	0,0038(5)	0,0090(6)	0,0048(6)
09	0,0128(6)	0,0145(6)	0,0145(7)	0,0034(5)	0,0065(6)	0,0038(5)
O10	0,0160(7)	0,0163(7)	0,0201(8)	0,0092(6)	0,0068(6)	0,0027(6)
011	0,0168(7)	0,0196(7)	0,0136(7)	0,0054(6)	0,0080(6)	0,0055(6)
012	0,0155(7)	0,0127(6)	0,0160(7)	0,0039(5)	0,0055(6)	0,0033(5)

Atom	x	у	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
V1	0,02536(3)	0,21323(3)	0,04497(4)	1	0,0069(1)
Mn2	1/2	1/2	0	0,93(1)	0,0099(1)
V2	1/2	1/2	0	0,07(1)	0,0099(1)
Mn3	0,61296(3)	0,96162(3)	0,38561(4)	0,035(6)	0,0070(1)
V3	0,61296(3)	0,96162(3)	0,38561(4)	0,965(6)	0,0070(1)
Mn4	0,78970(3)	0,31764(3)	0,28631(4)	1	0,0110(1)
P1	0,86641(4)	0,73981(5)	0,39630(7)	1	0,0070(1)
P2	0,73643(4)	0,35251(5)	0,77844(7)	1	0,0067(1)
Р3	0,33477(4)	0,09203(5)	0,09550(7)	1	0,0066(1)
01	0,4183(1)	0,0392(2)	0,3104(2)	1	0,0085(2)
O2	0,2694(1)	0,7681(2)	0,4516(2)	1	0,0088(2)
O3	0,6615(1)	0,0339(2)	0,1199(2)	1	0,0092(2)
O4	0,9880(1)	0,7453(2)	0,6310(2)	1	0,0102(2)
05	0,1511(1)	0,6815(2)	0,0134(2)	1	0,0097(2)
O6	0,2031(1)	0,4501(2)	0,2070(2)	1	0,0111(2)
07	0,8457(1)	0,9574(2)	0,9323(2)	1	0,0085(2)
08	0,4183(2)	0,2863(2)	0,1258(2)	1	0,0128(2)
09	0,4358(1)	0,7059(2)	0,2193(2)	1	0,0096(2)
O10	0,7794(1)	0,8680(2)	0,4460(2)	1	0,0121(2)
011	0,9608(1)	0,7902(2)	0,2493(2)	1	0,0121(2)
012	0,7374(1)	0,5465(1)	0,2696(2)	1	0,0112(2)

Tabelle A.42 Atomlagen und isotrope Auslenkungsparameter für $Mn_3V^{III}_4(PO_4)_6$.

^{a)} $U_{eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle A.43	Anisotrope Auslenkungsp	arameter für Mn ₃ V ^{III} ₄ (P	$O_4)_6 / Å^2$.
Tabelle A.45	Anisotrope Austenkungsp	Darameter für $Vin_3 v = 4(P)$	$U_{4})_{6}/$

Atom	<i>U</i> ₁₁	<i>U</i> ₂₂	U ₃₃	U_{12}	U_{13}	U ₂₃
V1	0,0068(1)	0,0065(1)	0,0070(1)	0,00190(8)	0,00285(8)	0,00212(8)
Mn2	0,0092(2)	0,0083(2)	0,0117(2)	0,0026(1)	0,0038(1)	0,0038(1)
V2	0,0092(2)	0,0083(2)	0,0117(2)	0,0026(1)	0,0038(1)	0,0038(1)
Mn3	0,0065(1)	0,0069(1)	0,0071(1)	0,00204(8)	0,00255(9)	0,00199(8)
V3	0,0065(1)	0,0069(1)	0,0071(1)	0,00204(8)	0,00255(9)	0,00199(8)
Mn4	0,0151(1)	0,0091(1)	0,0111(1)	0,00434(9)	0,00731(9)	0,00432(8)
P1	0,0067(2)	0,0074(2)	0,0068(2)	0,0024(1)	0,0025(1)	0,0023(1)
P2	0,0063(2)	0,0064(2)	0,0066(2)	0,0015(1)	0,0025(1)	0,0018(1)
P3	0,0063(2)	0,0066(2)	0,0067(2)	0,0017(1)	0,0026(1)	0,0024(1)
01	0,0086(4)	0,0112(5)	0,0070(4)	0,0044(4)	0,0034(4)	0,0037(4)
O2	0,0097(4)	0,0080(4)	0,0080(4)	0,0019(4)	0,0044(4)	0,0015(4)
O3	0,0101(5)	0,0091(5)	0,0081(5)	0,0028(4)	0,0042(4)	0,0023(4)
O4	0,0097(5)	0,0134(5)	0,0076(4)	0,0045(4)	0,0030(4)	0,0041(4)
05	0,0100(5)	0,0121(5)	0,0082(4)	0,0052(4)	0,0033(4)	0,0045(4)
O6	0,0113(5)	0,0076(5)	0,0121(5)	0,0015(4)	0,0032(4)	0,0032(4)
07	0,0070(4)	0,0087(4)	0,0103(5)	0,0028(4)	0,0037(4)	0,0035(4)
08	0,0141(5)	0,0086(5)	0,0154(5)	0,0018(4)	0,0069(4)	0,0048(4)
09	0,0076(4)	0,0088(5)	0,0113(5)	0,0018(4)	0,0044(4)	0,0019(4)
O10	0,0107(5)	0,0112(5)	0,0142(5)	0,0062(4)	0,0039(4)	0,0022(4)
O11	0,0114(5)	0,0156(5)	0,0095(5)	0,0030(4)	0,0057(4)	0,0047(4)
012	0,0104(5)	0,0075(5)	0,0119(5)	0,0012(4)	0,0023(4)	0,0020(4)

Atom	x	у	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
V1	0,02383(4)	0,21429(4)	0,04353(5)	1	0,0060(1)
Fe2	1/2	1/2	0	0,902(8)	0,0087(1)
V2	1/2	1/2	0	0,098(8)	0,0087(1)
Fe3	0,61412(4)	0,96043(4)	0,38780(5)	0,049(4)	0,0062(1)
V3	0,61412(4)	0,96043(4)	0,38780(5)	0,951(4)	0,0062(1)
Fe4	0,79148(3)	0,31572(3)	0,28324(4)	1	0,0091(1)
P1	0,86875(6)	0,73660(6)	0,39872(7)	1	0,0066(1)
P2	0,73419(6)	0,35397(6)	0,77523(7)	1	0,0061(1)
P3	0,33440(6)	0,09266(6)	0,09171(7)	1	0,0059(1)
O1	0,4192(2)	0,0406(2)	0,3088(2)	1	0,0081(2)
O2	0,2707(2)	0,7666(2)	0,4540(2)	1	0,0087(2)
O3	0,6630(2)	0,0360(2)	0,1232(2)	1	0,0082(2)
O4	0,9928(2)	0,7438(2)	0,6340(2)	1	0,0094(2)
05	0,1530(2)	0,6808(2)	0,0152(2)	1	0,0093(2)
O6	0,2048(2)	0,4467(2)	0,2098(2)	1	0,0104(3)
O7	0,8448(2)	0,9555(2)	0,9338(2)	1	0,0083(2)
08	0,4177(2)	0,2890(2)	0,1154(2)	1	0,0116(3)
09	0,4381(2)	0,7029(2)	0,2238(2)	1	0,0090(2)
O10	0,7820(2)	0,8660(2)	0,4489(2)	1	0,0116(3)
O11	0,9615(2)	0,7865(2)	0,2500(2)	1	0,0114(3)
012	0,7399(2)	0,5404(2)	0,2749(2)	1	0,0107(3)

Tabelle A.44 Atomlagen und isotrope Auslenkungsparameter für $\text{Fe}^{II}_{3} V^{III}_{4} (PO_4)_6$.

 $\overline{}^{\mathrm{a})} U_{\mathrm{eq}} = (1/3) \Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} U_{\mathrm{ij}} a_{\mathrm{i}}^{*} a_{\mathrm{j}}^{*} a_{\mathrm{i}} a_{\mathrm{j}}$

Tabelle A.45 Anisotrope Auslenkungsparameter für $Fe^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ / Å².

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
V1	0,0066(1)	0,0058(1)	0,0057(1)	0,0026(1)	0,0025(1)	0,0016(1)
Fe2	0,0091(2)	0,0072(2)	0,0104(2)	0,0032(1)	0,0039(1)	0,0035(1)
V2	0,0091(2)	0,0072(2)	0,0104(2)	0,0032(1)	0,0039(1)	0,0035(1)
Fe3	0,0064(2)	0,0063(1)	0,0059(1)	0,0028(1)	0,0021(1)	0,0016(1)
V3	0,0064(2)	0,0063(1)	0,0059(1)	0,0028(1)	0,0021(1)	0,0016(1)
Fe4	0,0119(1)	0,0078(1)	0,0097(1)	0,0047(1)	0,0054(1)	0,00331(9)
P1	0,0068(2)	0,0071(2)	0,0058(2)	0,0033(2)	0,0020(2)	0,0018(2)
P2	0,0063(2)	0,0061(2)	0,0056(2)	0,0022(2)	0,0020(2)	0,0015(1)
P3	0,0062(2)	0,0062(2)	0,0056(2)	0,0027(2)	0,0023(2)	0,0020(1)
01	0,0086(6)	0,0101(5)	0,0067(5)	0,0049(5)	0,0027(4)	0,0031(4)
O2	0,0103(6)	0,0083(5)	0,0073(5)	0,0028(5)	0,0042(5)	0,0016(4)
03	0,0092(6)	0,0086(5)	0,0068(5)	0,0030(5)	0,0035(5)	0,0020(4)
04	0,0095(6)	0,0129(6)	0,0073(5)	0,0059(5)	0,0030(5)	0,0045(5)
05	0,0101(6)	0,0117(6)	0,0073(5)	0,0061(5)	0,0027(5)	0,0036(4)
06	0,0105(7)	0,0071(5)	0,0116(6)	0,0020(5)	0,0028(5)	0,0034(5)
07	0,0075(6)	0,0080(5)	0,0095(5)	0,0034(5)	0,0032(4)	0,0024(4)
08	0,0134(7)	0,0086(5)	0,0132(6)	0,0031(5)	0,0059(5)	0,0042(5)
09	0,0074(6)	0,0091(5)	0,0098(5)	0,0026(5)	0,0038(5)	0,0017(4)
O10	0,0104(7)	0,0106(6)	0,0131(6)	0,0063(5)	0,0027(5)	0,0019(5)
011	0,0109(7)	0,0150(6)	0,0079(5)	0,0031(5)	0,0044(5)	0,0036(5)
012	0,0102(6)	0,0074(5)	0,0113(6)	0,0020(5)	0,0023(5)	0,0012(5)

Atom	x	у	z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
V1	0,02188(6)	0,21548(8)	0,04568(9)	1	0,0093(1)
Co2	1/2	1/2	0	0,76(1)	0,0126(2)
V2	1/2	1/2	0	0,23(1)	0,0126(2)
Co3	0,61521(6)	0,96146(8)	0,38852(9)	0,118(5)	0,0099(2)
V3	0,61521(6)	0,96146(8)	0,38852(9)	0,882(5)	0,0099(2)
Co4	0,79194(6)	0,31386(7)	0,29093(8)	1	0,0121(1)
P1	0,8673(1)	0,7319(1)	0,3933(2)	1	0,0096(2)
P2	0,7315(1)	0,3580(1)	0,7765(2)	1	0,0090(2)
P3	0,3334(1)	0,0902(1)	0,0885(2)	1	0,0095(2)
01	0,4187(3)	0,0400(4)	0,3089(4)	1	0,0107(5)
O2	0,2726(3)	0,7627(3)	0,4522(4)	1	0,0123(5)
O3	0,6635(3)	0,0416(4)	0,1245(4)	1	0,0119(5)
O4	0,9902(3)	0,7312(4)	0,6275(4)	1	0,0125(5)
O5	0,1581(3)	0,6798(3)	0,0131(4)	1	0,0112(5)
O6	0,2071(3)	0,4425(3)	0,2098(4)	1	0,0131(5)
O7	0,8464(3)	0,9573(3)	0,9382(4)	1	0,0116(5)
08	0,4146(3)	0,2852(3)	0,1065(4)	1	0,0148(6)
O9	0,4423(3)	0,6983(4)	0,2246(4)	1	0,0123(5)
O10	0,7870(3)	0,8687(4)	0,4495(4)	1	0,0151(6)
O11	0,9628(3)	0,7793(4)	0,2451(4)	1	0,0153(6)
012	0,7334(3)	0,5394(3)	0,2661(4)	1	0,0128(5)

Tabelle A.46 Atomlagen und isotrope Auslenkungsparameter für $Co_3 V^{III}_4 (PO_4)_6$.

 $\overline{}^{\mathrm{a})} U_{\mathrm{eq}} = (1/3) \Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} U_{\mathrm{ij}} a_{\mathrm{i}}^{*} a_{\mathrm{j}}^{*} a_{\mathrm{i}} a_{\mathrm{j}}^{*}$

Tabelle A.47 Anisotrope Auslenkungsparameter für $Co_3 V^{III}_4 (PO_4)_6$ / Å².

Atom	U_{11}	U_{22}	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
V1	0,0097(3)	0,0072(3)	0,0107(3)	0,0005(2)	0,0050(2)	0,0036(2)
Co2	0,0121(4)	0,0100(4)	0,0154(4)	0,0007(3)	0,0066(3)	0,0058(3)
V2	0,0121(4)	0,0100(4)	0,0154(4)	0,0007(3)	0,0066(3)	0,0058(3)
Co3	0,0096(3)	0,0087(3)	0,0110(3)	0,0012(2)	0,0047(2)	0,0039(2)
V3	0,0096(3)	0,0087(3)	0,0110(3)	0,0012(2)	0,0047(2)	0,0039(2)
Co4	0,0133(2)	0,0097(2)	0,0144(2)	0,0022(2)	0,0073(2)	0,0054(2)
P1	0,0102(4)	0,0082(4)	0,0101(4)	0,0010(3)	0,0050(3)	0,0036(3)
P2	0,0081(4)	0,0089(4)	0,0096(4)	0,0008(3)	0,0042(3)	0,0037(3)
Р3	0,0088(4)	0,0088(4)	0,0111(4)	0,0009(3)	0,0051(3)	0,0041(3)
01	0,009(1)	0,013(1)	0,011(1)	0,0031(9)	0,0039(9)	0,005(1)
02	0,013(1)	0,012(1)	0,011(1)	0,001(1)	0,0060(9)	0,003(1)
03	0,012(1)	0,012(1)	0,010(1)	0,000(1)	0,0059(9)	0,004(1)
04	0,012(1)	0,018(1)	0,012(1)	0,007(1)	0,0076(9)	0,009(1)
05	0,012(1)	0,013(1)	0,010(1)	0,004(1)	0,0050(9)	0,006(1)
06	0,013(1)	0,009(1)	0,015(1)	-0,000(1)	0,005(1)	0,006(1)
07	0,010(1)	0,009(1)	0,016(1)	0,001(1)	0,0060(9)	0,004(1)
08	0,016(1)	0,010(1)	0,019(1)	0,000(1)	0,009(1)	0,006(1)
09	0,012(1)	0,011(1)	0,015(1)	0,002(1)	0,007(1)	0,006(1)
O10	0,014(1)	0,010(1)	0,019(1)	0,004(1)	0,005(1)	0,002(1)
011	0,014(1)	0,018(2)	0,014(1)	0,001(1)	0,007(1)	0,006(1)
012	0,014(1)	0,007(1)	0,016(1)	0,001(1)	0,007(1)	0,005(1)

Atom	x	у	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{ m 2\ a)}$
V1	0,01981(4)	0,21499(4)	0,04603(6)	1	0,0060(1)
V2	1/2	1/2	0	0,525(5)	0,0078(1)
Ni2	1/2	1/2	0	0,475(5)	0,0078(1)
V3	0,61766(3)	0,96304(4)	0,39126(5)	0,738(3)	0,0065(1)
Ni3	0,61766(3)	0,96304(4)	0,39126(5)	0,262(3)	0,0065(1)
Ni4	0,78550(3)	0,31057(3)	0,27666(5)	1	0,0090(1)
P1	0,87014(6)	0,73299(6)	0,39527(9)	1	0,0062(1)
P2	0,72883(5)	0,36138(6)	0,77173(9)	1	0,0058(1)
P3	0,33422(5)	0,09002(6)	0,08773(9)	1	0,0058(1)
O1	0,4182(2)	0,0386(2)	0,3079(3)	1	0,0080(2)
O2	0,2741(2)	0,7580(2)	0,4569(3)	1	0,0084(2)
O3	0,6640(2)	0,0408(2)	0,1265(3)	1	0,0083(2)
O4	0,9947(2)	0,7305(2)	0,6290(3)	1	0,0102(3)
O5	0,1621(2)	0,6788(2)	0,0134(3)	1	0,0090(3)
O6	0,2088(2)	0,4389(2)	0,2113(3)	1	0,0104(3)
07	0,8466(2)	0,9561(2)	0,9399(3)	1	0,0078(2)
08	0,4188(2)	0,2861(2)	0,1065(3)	1	0,0114(3)
09	0,4459(2)	0,6915(2)	0,2266(3)	1	0,0090(3)
O10	0,7939(2)	0,8735(2)	0,4537(3)	1	0,0123(3)
O11	0,9645(2)	0,7736(2)	0,2431(3)	1	0,0119(3)
O12	0,7313(2)	0,5414(2)	0,2685(3)	1	0,0101(3)

Tabelle A.48 Atomlagen und isotrope Auslenkungsparameter für $Ni_3V^{III}_4(PO_4)_6$.

 $\overline{}^{\mathrm{a})} U_{\mathrm{eq}} = (1/3) \Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} U_{\mathrm{ij}} a_{\mathrm{i}}^{*} a_{\mathrm{j}}^{*} a_{\mathrm{i}} a_{\mathrm{j}}$

Tabelle A.49 Anisotrope Auslenkungsparameter für $Ni_3V^{III}_4(PO_4)_6$ / Ų.

Atom	U_{11}	U ₂₂	U_{33}	U_{12}	<i>U</i> ₁₃	U_{23}
V1	0,0067(1)	0,0062(1)	0,0064(2)	0,0028(1)	0,0033(1)	0,0022(1)
V2	0,0084(2)	0,0071(2)	0,0094(2)	0,0032(1)	0,0043(2)	0,0036(1)
Ni2	0,0084(2)	0,0071(2)	0,0094(2)	0,0032(1)	0,0043(2)	0,0036(1)
V3	0,0074(1)	0,0075(1)	0,0066(2)	0,0039(1)	0,0035(1)	0,0029(1)
Ni3	0,0074(1)	0,0075(1)	0,0066(2)	0,0039(1)	0,0035(1)	0,0029(1)
Ni4	0,0125(1)	0,0083(1)	0,0095(1)	0,0054(9)	0,0065(1)	0,0039(9)
P1	0,0069(2)	0,0069(2)	0,0060(2)	0,0034(2)	0,0029(2)	0,0024(2)
P2	0,0063(2)	0,0064(2)	0,0057(2)	0,0029(2)	0,0029(2)	0,0022(2)
P3	0,0060(2)	0,0064(2)	0,0061(2)	0,0028(2)	0,0029(2)	0,0028(2)
01	0,0082(6)	0,0119(6)	0,0065(7)	0,0053(5)	0,0039(5)	0,0041(5)
02	0,0100(6)	0,0089(6)	0,0071(7)	0,0033(5)	0,0043(5)	0,0023(5)
03	0,0102(6)	0,0082(6)	0,0073(7)	0,0032(5)	0,0047(5)	0,0019(5)
04	0,0099(6)	0,0156(6)	0,0077(7)	0,0072(5)	0,0034(5)	0,0055(5)
05	0,0097(6)	0,0129(6)	0,0074(7)	0,0064(5)	0,0040(5)	0,0053(5)
06	0,0104(6)	0,0089(6)	0,0111(7)	0,0020(5)	0,0039(5)	0,0040(5)
07	0,0069(6)	0,0073(5)	0,0102(7)	0,0028(4)	0,0040(5)	0,0032(5)
08	0,0134(6)	0,0075(6)	0,0145(8)	0,0028(5)	0,0072(6)	0,0039(5)
09	0,0073(6)	0,0103(6)	0,0104(7)	0,0029(5)	0,0045(5)	0,0037(5)
O10	0,0117(6)	0,0114(6)	0,0129(8)	0,0066(5)	0,0032(6)	0,0012(5)
011	0,0121(6)	0,0164(7)	0,0094(7)	0,0043(5)	0,0065(6)	0,0060(6)
012	0,0104(6)	0,0082(6)	0,0112(7)	0,0028(5)	0,0043(5)	0,0026(5)

Atom	x	У	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA^{2\ a)}}$
Zn1	0,02162(4)	0,21556(4)	0,04534(5)	0,006(2)	0,0060(1)
V1	0,02162(4)	0,21556(4)	0,04534(5)	0,994(2)	0,0060(1)
Zn2	1/2	1/2	0	0,642(4)	0,0101(1)
V2	1/2	1/2	0	0,358(4)	0,0101(1)
Zn3	0,61637(3)	0,96032(4)	0,38910(5)	0,173(2)	0,0069(1)
V3	0,61637(3)	0,96032(4)	0,38910(5)	0,827(2)	0,0069(1)
Zn4	0,79021(3)	0,31490(3)	0,28641(4)	1	0,0092(1)
P1	0,86865(5)	0,73152(6)	0,39495(8)	1	0,0061(1)
P2	0,73112(5)	0,35907(6)	0,77382(8)	1	0,0057(1)
P3	0,33333(5)	0,08959(6)	0,08673(8)	1	0,0055(1)
O1	0,4184(2)	0,0411(2)	0,3087(2)	1	0,0079(2)
O2	0,2728(2)	0,7615(2)	0,4548(2)	1	0,0088(2)
O3	0,6627(2)	0,0421(2)	0,1245(2)	1	0,0074(2)
O4	0,9916(2)	0,7303(2)	0,6278(2)	1	0,0100(3)
O5	0,1583(2)	0,6795(2)	0,0150(2)	1	0,0082(2)
O6	0,2080(2)	0,4412(2)	0,2126(2)	1	0,0102(3)
O7	0,8464(2)	0,9577(2)	0,9402(2)	1	0,0076(2)
O8	0,4142(2)	0,2859(2)	0,1027(2)	1	0,0106(3)
O9	0,4421(2)	0,6950(2)	0,2250(2)	1	0,0093(2)
O10	0,7895(2)	0,8695(2)	0,4512(2)	1	0,0122(3)
O11	0,9624(2)	0,7759(2)	0,2447(2)	1	0,0116(3)
O12	0,7331(2)	0,5378(2)	0,2691(2)	1	0,0098(2)

Tabelle A.50 Atomlagen und isotrope Auslenkungsparameter für $Zn_3V^{III}_4(PO_4)_6$.

^{a)} $U_{eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Atom	<i>U</i> ₁₁	<i>U</i> ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Znl	0,0062(1)	0,0060(2)	0,0061(2)	0,0020(1)	0,0027(1)	0,0020(1)
V1	0,0062(1)	0,0060(2)	0,0061(2)	0,0020(1)	0,0027(1)	0,0020(1)
Zn2	0,0102(2)	0,0081(2)	0,0132(2)	0,0030(1)	0,0054(1)	0,0051(1)
V2	0,0102(2)	0,0081(2)	0,0132(2)	0,0030(1)	0,0054(1)	0,0051(1)
Zn3	0,0071(1)	0,0072(2)	0,0066(1)	0,0025(1)	0,0027(1)	0,0025(1)
V3	0,0071(1)	0,0072(2)	0,0066(1)	0,0025(1)	0,0027(1)	0,0025(1)
Zn4	0,0110(1)	0,0079(1)	0,0102(1)	0,00395(9)	0,00520(9)	0,00341(8)
P1	0,0062(2)	0,0065(2)	0,0058(2)	0,0026(2)	0,0021(2)	0,0022(2)
P2	0,0051(2)	0,0062(2)	0,0053(2)	0,0017(2)	0,0020(2)	0,0015(2)
P3	0,0053(2)	0,0061(2)	0,0056(2)	0,0021(2)	0,0023(2)	0,0023(2)
01	0,0078(6)	0,0108(6)	0,0058(6)	0,0044(5)	0,0025(5)	0,0031(5)
02	0,0088(6)	0,0093(6)	0,0073(6)	0,0022(5)	0,0035(5)	0,0015(5)
03	0,0090(6)	0,0071(6)	0,0053(6)	0,0021(5)	0,0029(5)	0,0007(5)
04	0,0083(6)	0,0161(7)	0,0069(6)	0,0058(5)	0,0023(5)	0,0052(5)
05	0,0086(6)	0,0114(6)	0,0058(6)	0,0055(5)	0,0021(5)	0,0038(5)
06	0,0103(6)	0,0079(6)	0,0099(6)	0,0010(5)	0,0022(5)	0,0030(5)
07	0,0067(6)	0,0066(6)	0,0098(6)	0,0023(5)	0,0039(5)	0,0023(5)
08	0,0125(6)	0,0064(6)	0,0134(6)	0,0019(5)	0,0067(5)	0,0036(5)
09	0,0064(6)	0,0110(6)	0,0098(6)	0,0019(5)	0,0036(5)	0,0023(5)
O10	0,0129(6)	0,0096(6)	0,0123(6)	0,0062(5)	0,0030(5)	-0,0001(5)
011	0,0103(6)	0,0156(7)	0,0077(6)	0,0017(5)	0,0039(5)	0,0041(5)
012	0,0099(6)	0,0065(6)	0,0105(6)	0,0009(5)	0,0035(5)	0,0011(5)

Tabelle A.51 Anisotrope Auslenkungsparameter für $Zn_3V^{III}_{4}(PO_4)_6$ / Å².

		Mg ₃ V ₄ (PO ₄) ₆	Cr ₃ V ₄ (PO ₄) ₆	Mn ₃ V ₄ (PO ₄) ₆	Fe ₃ V ₄ (PO ₄) ₆	C0 ₃ V ₄ (PO ₄) ₆
$[M10_{6}]$	<i>M</i> 1-O6	1,940(2)	1,948(2)	1,961(1)	1,939(1)	1,935(2)
	<i>M</i> 1-O11	1,899(1)	1,907(2)	1,915(1)	1,914(1)	1,903(2)
	<i>M</i> 1-O5	2,024(2)	2,048(2)	2,025(1)	2,011(1)	2,021(3)
	<i>M</i> 1-O7	2,057(2)	2,054(2)	2,065(1)	2,055(1)	2,057(3)
	<i>M</i> 1-O7	2,063(1)	2,063(2)	2,076(1)	2,079(1)	2,065(2)
	<i>M</i> 1-O4	2,083(2)	2,013(2)	2,070(1)	2,072(1)	2,077(2)
$[M2O_6]$	M2-08	2,018(1)	2,047(2)	2,107(1)	2,026(2)	2,014(3)
	M2-08	2,018(1)	2,047(2)	2,107(1)	2,026(2)	2,014(3)
	<i>M</i> 2-O9	2,193(2)	2,305(2)	2,274(1)	2,250(1)	2,193(2)
	<i>M</i> 2-O9	2,193(2)	2,305(2)	2,274(1)	2,250(1)	2,193(2)
	<i>M</i> 2-O12	2,194(1)	2,223(2)	2,214(1)	2,251(1)	2,181(2)
	<i>M</i> 2-O12	2,194(1)	2,223(2)	2,214(1)	2,251(1)	2,181(2)
$[M3O_6]$	M3-O10	1,892(2)	1,873(2)	1,880(1)	1,882(1)	1,892(3)
	<i>M</i> 3-O3	2,034(1)	2,008(2)	2,040(1)	2,037(1)	2,041(2)
	M3-O1	2,031(2)	2,030(2)	2,034(1)	2,037(1)	2,029(2)
	<i>M</i> 3-O2	2,028(2)	2,050(2)	2,015(1)	2,011(1)	2,024(3)
	<i>M</i> 3-O1	2,033(1)	2,037(2)	2,049(1)	2,050(1)	2,045(2)
	<i>M</i> 3- O9	2,087(2)	2,035(2)	2,056(1)	2,049(1)	2,071(2)
$[M4O_5]$	<i>M</i> 4-O12	1,992(2)	2,023(2)	2,054(1)	1,982(1)	2,015(3)
	<i>M</i> 4-O3	1,996(2)	2,109(2)	2,117(1)	2,070(1)	2,023(3)
	<i>M</i> 4-O4	2,075(2)	2,272(2)	2,204(1)	2,121(1)	2,072(2)
	<i>M</i> 4-O2	2,047(2)	2,070(2)	2,103(1)	2,100(1)	2,053(2)
	<i>M</i> 4-O5	2,082(2)	2,055(2)	2,148(1)	2,123(1)	2,131(2)

Tabelle A.52 Interatomare Abstände / Å in den Polyedern [$M1O_6$], [$M2O_6$], [$M3O_6$] und [$M4O_5$] in $A^{II}_{3}V^{III}_{4}(PO_4)_6$ (A^{II} : Mg, Cr, Mn, Fe, Co).

Tabelle A.53 Interatomare Abstände / Å in den Polyedern [P1O₄], [P2O₄] und [P3O₄] in $A^{II}_{3}V^{III}_{4}(PO_4)_6$ (A^{II} : Mg, Cr, Mn, Fe, Co).

		Mg ₃ V ₄ (PO ₄) ₆	Cr ₃ V ₄ (PO ₄) ₆	Mn ₃ V ₄ (PO ₄) ₆	Fe ₃ V ₄ (PO ₄) ₆	C0 ₃ V ₄ (PO ₄) ₆
[P1O ₄]	P1-O11	1,522(2)	1,514(2)	1,516(1)	1,511(2)	1,514(3)
	P1-O10	1,517(2)	1,520(2)	1,523(1)	1,517(1)	1,522(2)
	P1-O4	1,559(1)	1,550(2)	1,554(1)	1,554(1)	1,561(3)
	P1-O12	1,548(2)	1,543(2)	1,538(1)	1,543(1)	1,543(2)
[P2O ₄]	P2-O6	1,503(2)	1,500(2)	1,503(1)	1,505(1)	1,501(3)
	P2-O2	1,553(2)	1,556(2)	1,556(1)	1,554(1)	1,551(2)
	P2-O9	1,559(1)	1,548(2)	1,552(1)	1,547(2)	1,559(2)
	P2-O5	1,548(1)	1,556(2)	1,545(1)	1,544(1)	1,539(3)
[P3O ₄]	P3-O8	1,491(1)	1,489(2)	1,487(1)	1,496(1)	1,489(3)
	P3-O3	1,543(2)	1,543(2)	1,543(1)	1,544(1)	1,545(2)
	P3-O1	1,554(1)	1,560(2)	1,559(1)	1,558(1)	1,556(3)
	P3-O7	1,566(1)	1,560(2)	1,563(1)	1,554(2)	1,560(2)

		Ni ₃ V ₄ (PO ₄) ₆	Zn ₃ V ₄ (PO ₄) ₆
[<i>M</i> 1O ₆]	M1-O6	1,936(1)	1,938(1)
	M1-O11	1,894(2)	1,906(1)
	M1-O5	2,033(1)	2,020(1)
	M1-O7	2,052(1)	2,058(1)
	M1-O7	2,059(1)	2,063(1)
	M1-O4	2,067(2)	2,085(1)
[<i>M</i> 2O ₆]	M2-O8 M2-O8 M2-O9 M2-O9 M2-O12 M2-O12	$1,989(1) \\1,989(1) \\2,144(1) \\2,144(1) \\2,154(1) \\2,154(1) \\2,154(1)$	1,987(1) 1,987(1) 2,182(1) 2,182(1) 2,193(1) 2,193(1)
[<i>M</i> 3O ₆]	M3-O10	1,901(1)	1,892(1)
	M3-O3	2,018(1)	2,038(1)
	M3-O1	2,028(1)	2,047(1)
	M3-O2	2,040(1)	2,036(1)
	M3-O1	2,032(1)	2,051(1)
	M3-O9	2,114(1)	2,089(1)
[<i>M</i> 4O ₅]	M4-O12	2,017(1)	1,974(1)
	M4-O3	1,989(1)	2,023(1)
	M4-O4	2,060(1)	2,075(1)
	M4-O2	2,053(1)	2,054(1)
	M4-O5	2,050(1)	2,121(1)

Tabelle A.54 Interatomare Abstände / Å in den Polyedern [$M1O_6$], [$M2O_6$], [$M3O_6$] und [$M4O_5$] in $A^{II}_{3}V^{III}_{4}(PO_4)_6$ (A^{II} : Ni, Zn).

Tabelle A.55 Interatomare Abstände / Å in den Polyedern [P1O₄], [P2O₄] und [P3O₄] in $A^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ (A^{II} : Ni, Zn).

		Ni ₃ V ₄ (PO ₄) ₆	$Zn_3V_4(PO_4)_6$	
[P104]	P1-011	1.516(1)	1.516(1)	
L - 7J	P1-O10	1,510(1)	1,514(1)	
	P1-O4	1,559(2)	1,557(1)	
	P1-O12	1,555(1)	1,556(1)	
[P2O ₄]	P2-O6	1,496(1)	1,498(1)	
	P2-O2	1,550(2)	1,555(1)	
	P2-09	1,565(1)	1,560(1)	
	P2-O5	1,553(1)	1,545(1)	
[P3O ₄]	P3-O8	1,499(1)	1,496(1)	
	P3-O3	1,540(2)	1,544(1)	
	P3-O1	1,545(1)	1,552(1)	
	P3-O7	1,559(1)	1,562(1)	

A.3.3 A^{II}_{3} Cr^{III}₄(PO₄)₆ (A^{II} : Mn, Fe, Co)

Atom	x	У	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2~ m a)}$
Cr1	0,02579(4)	0,21329(5)	0,04820(5)	1	0,0061(1)
Mn2	1/2	1/2	0	1	0,0091(1)
Cr3	0,60772(4)	0,95877(4)	0,37906(5)	1	0,0061(1)
Mn4	0,79218(5)	0,31816(5)	0,29147(5)	1	0,0102(1)
P1	0,86659(7)	0,74333(8)	0,39490(8)	1	0,0066(1)
P2	0,73891(7)	0,35009(7)	0,78014(8)	1	0,0061(1)
P3	0,33538(7)	0,09740(8)	0,10157(8)	1	0,0062(1)
O1	0,4189(2)	0,0414(2)	0,3175(2)	1	0,0072(3)
02	0,2673(2)	0,7718(2)	0,4519(2)	1	0,0086(3)
O3	0,6577(2)	0,0276(2)	0,1168(2)	1	0,0085(3)
O4	0,9889(2)	0,7497(2)	0,6330(2)	1	0,0094(3)
O5	0,1487(2)	0,6873(2)	0,0116(2)	1	0,0087(3)
O6	0,1981(2)	0,4525(2)	0,2034(2)	1	0,0099(3)
07	0,8459(2)	0,9522(2)	0,9260(2)	1	0,0080(3)
08	0,4208(2)	0,2928(2)	0,1382(2)	1	0,0117(3)
09	0,4341(2)	0,7065(2)	0,2158(2)	1	0,0088(3)
O10	0,7777(2)	0,8699(2)	0,4440(2)	1	0,0113(3)
O11	0,9641(2)	0,7974(2)	0,2519(2)	1	0,0112(3)
012	0,7400(2)	0,5473(2)	0,2686(2)	1	0,0111(3)

Tabelle A.56 Atomlagen und isotrope Auslenkungsparameter für Mn₃Cr^{III}₄(PO₄)₆.

 $\overline{}^{a)} U_{eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle A.57 Anisotrope Auslenkungsparameter für $Mn_3Cr^{III}_4(PO_4)_6$ / Å².

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Cr1	0,0070(2)	0,0064(2)	0,0061(1)	0,0030(1)	0,0032(1)	0,0026(1)
Mn2	0,0097(2)	0,0079(2)	0,0111(2)	0,0034(2)	0,0050(2)	0,0041(2)
Cr3	0,0068(2)	0,0063(2)	0,0059(1)	0,0026(1)	0,0030(1)	0,0024(1)
Mn4	0,0147(2)	0,0090(2)	0,0101(2)	0,0050(1)	0,0074(1)	0,0046(1)
P1	0,0078(3)	0,0073(2)	0,0064(2)	0,0037(2)	0,0036(2)	0,0030(2)
P2	0,0066(3)	0,0063(2)	0,0059(2)	0,0025(2)	0,0030(2)	0,0024(2)
P3	0,0068(3)	0,0069(2)	0,0062(2)	0,0029(2)	0,0031(2)	0,0029(2)
01	0,0086(8)	0,0091(7)	0,0067(6)	0,0051(6)	0,0038(5)	0,0040(5)
O2	0,0112(8)	0,0073(7)	0,0078(6)	0,0028(6)	0,0050(6)	0,0020(5)
O3	0,0108(8)	0,0093(7)	0,0071(6)	0,0039(6)	0,0047(6)	0,0036(5)
O4	0,0095(8)	0,0123(7)	0,0078(6)	0,0050(6)	0,0033(6)	0,0045(5)
O5	0,0103(8)	0,0111(7)	0,0073(6)	0,0059(6)	0,0041(6)	0,0043(5)
O6	0,0108(8)	0,0063(7)	0,0106(6)	0,0023(6)	0,0024(6)	0,0029(5)
07	0,0078(8)	0,0076(7)	0,0098(6)	0,0030(6)	0,0044(5)	0,0036(5)
08	0,0126(8)	0,0098(7)	0,0134(7)	0,0028(7)	0,0065(6)	0,0049(6)
O9	0,0089(8)	0,0068(7)	0,0107(6)	0,0025(6)	0,0048(6)	0,0019(5)
O10	0,0103(8)	0,0122(8)	0,0125(7)	0,0068(7)	0,0040(6)	0,0030(6)
011	0,0109(8)	0,0157(8)	0,0075(6)	0,0039(7)	0,0046(6)	0,0045(6)
012	0,0116(8)	0,0081(7)	0,0114(7)	0,0024(6)	0,0028(6)	0,0031(5)

Atom	x	У	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
Cr1	0,02403(4)	0,21342(5)	0,04675(7)	1	0,0060(1)
Fe2	1/2	1/2	0	1	0,0085(1)
Cr3	0,60857(4)	0,95787(5)	0,38072(7)	1	0,0059(1)
Fe4	0,79414(4)	0,31665(5)	0,28863(6)	1	0,0086(1)
P1	0,86847(7)	0,74089(8)	0,3978(1)	1	0,0061(1)
P2	0,73720(7)	0,35148(8)	0,7773(1)	1	0,0056(1)
P3	0,33555(7)	0,09836(8)	0,0988(1)	1	0,0055(1)
01	0,4195(2)	0,0428(2)	0,3159(3)	1	0,0066(3)
O2	0,2680(2)	0,7698(2)	0,4540(3)	1	0,0073(3)
03	0,6596(2)	0,0293(2)	0,1199(3)	1	0,0076(3)
O4	0,9933(2)	0,7510(2)	0,6365(3)	1	0,0081(3)
O5	0,1507(2)	0,6866(2)	0,0125(3)	1	0,0085(3)
O6	0,1992(2)	0,4487(2)	0,2048(3)	1	0,0095(3)
07	0,8450(2)	0,9505(2)	0,9266(3)	1	0,0076(3)
08	0,4205(2)	0,2957(2)	0,1300(3)	1	0,0101(3)
09	0,4370(2)	0,7033(2)	0,2206(3)	1	0,0076(3)
O10	0,7786(2)	0,8674(2)	0,4469(3)	1	0,0110(4)
O11	0,9637(2)	0,7950(2)	0,2516(3)	1	0,0106(4)
012	0,7426(2)	0,5407(2)	0,2740(3)	1	0,0097(3)

Tabelle A.58 Atomlagen und isotrope Auslenkungsparameter für Fe^{II}₃Cr^{III}₄(PO₄)₆.

 $\overline{}^{a)} U_{eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle A.59 Anisotrope Auslenkungsparameter für $\text{Fe}^{II}_{3}\text{Cr}^{III}_{4}(\text{PO}_{4})_{6}$ / Å².

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Cr1	0,0064(2)	0,0057(2)	0,0071(2)	0,0027(1)	0,0035(2)	0,0026(1)
Fe2	0,0094(2)	0,0069(2)	0,0112(2)	0,0031(2)	0,0053(2)	0,0045(2)
Cr3	0,0064(2)	0,0057(2)	0,0067(2)	0,0025(1)	0,0034(2)	0,0024(1)
Fe4	0,0115(2)	0,0074(2)	0,0103(2)	0,0044(1)	0,0065(1)	0,0044(1)
P1	0,0067(3)	0,0062(3)	0,0069(3)	0,0030(2)	0,0036(2)	0,0028(2)
P2	0,0060(3)	0,0055(2)	0,0063(3)	0,0023(2)	0,0031(2)	0,0021(2)
Р3	0,0056(3)	0,0058(2)	0,0066(3)	0,0025(2)	0,0033(2)	0,0028(2)
01	0,0067(7)	0,0090(7)	0,0070(8)	0,0044(6)	0,0039(6)	0,0042(6)
O2	0,0089(8)	0,0060(7)	0,0076(8)	0,0022(6)	0,0042(7)	0,0024(6)
O3	0,0091(8)	0,0075(7)	0,0081(8)	0,0031(6)	0,0051(7)	0,0033(6)
O4	0,0069(8)	0,0119(8)	0,0066(8)	0,0046(6)	0,0022(7)	0,0044(7)
O5	0,0091(8)	0,0114(8)	0,0079(8)	0,0054(6)	0,0044(7)	0,0049(7)
O6	0,0102(8)	0,0068(7)	0,0114(8)	0,0023(6)	0,0037(7)	0,0046(7)
O7	0,0066(7)	0,0073(7)	0,0108(8)	0,0037(6)	0,0040(7)	0,0042(6)
08	0,0103(8)	0,0076(7)	0,0125(9)	0,0017(6)	0,0047(7)	0,0050(7)
O9	0,0066(7)	0,0069(7)	0,0096(8)	0,0019(6)	0,0044(7)	0,0023(6)
O10	0,0096(8)	0,0107(8)	0,0131(9)	0,0057(7)	0,0039(7)	0,0024(7)
011	0,0103(8)	0,0139(8)	0,0086(8)	0,0036(7)	0,0052(7)	0,0045(7)
O12	0,0087(8)	0,0079(7)	0,0097(8)	0,0018(6)	0,0014(7)	0,0023(7)

Atom	x	у	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{ m 2\ a)}$
Cr1	0,02264(3)	0,21517(4)	0,04902(4)	1	0,0049(1)
Co2	1/2	1/2	0	0,906(9)	0,0076(1)
Cr2	1/2	1/2	0	0,094(9)	0,0076(1)
Co3	0,60996(3)	0,95880(4)	0,38161(4)	0,047(4)	0,0049(1)
Cr3	0,60996(3)	0,95880(4)	0,38161(4)	0,953(4)	0,0049(1)
Co4	0,79391(3)	0,31362(3)	0,29478(4)	1	0,0075(1)
P1	0,86755(5)	0,73619(6)	0,39198(7)	1	0,0054(1)
P2	0,73445(5)	0,35473(6)	0,77899(7)	1	0,0049(1)
P3	0,33429(5)	0,09621(6)	0,09576(7)	1	0,0049(1)
O1	0,4190(1)	0,0423(2)	0,3160(2)	1	0,0065(2)
O2	0,2700(2)	0,7670(2)	0,4525(2)	1	0,0075(2)
O3	0,6600(2)	0,0349(2)	0,1210(2)	1	0,0074(2)
O4	0,9918(2)	0,7397(2)	0,6301(2)	1	0,0087(2)
O5	0,1543(2)	0,6846(2)	0,0095(2)	1	0,0079(2)
O6	0,2023(2)	0,4452(2)	0,2064(2)	1	0,0094(2)
07	0,8460(1)	0,9517(2)	0,9291(2)	1	0,0068(2)
08	0,4185(2)	0,2927(2)	0,1215(2)	1	0,0105(2)
09	0,4407(2)	0,6993(2)	0,2208(2)	1	0,0078(2)
O10	0,7841(2)	0,8707(2)	0,4475(2)	1	0,0105(2)
O11	0,9654(2)	0,7876(2)	0,2480(2)	1	0,0104(2)
012	0,7371(2)	0,5386(2)	0,2670(2)	1	0,0098(2)

Tabelle A.60 Atomlagen und isotrope Auslenkungsparameter für $Co_3Cr^{III}_4(PO_4)_6$.

 $\overline{}^{\mathrm{a})} U_{\mathrm{eq}} = (1/3) \Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} U_{\mathrm{ij}} a_{\mathrm{i}}^{*} a_{\mathrm{j}}^{*} a_{\mathrm{i}} a_{\mathrm{j}}^{*}$

Tabelle A.61 Anisotrope Auslenkungsparameter für $Co_3 Cr^{III}_4 (PO_4)_6$ / Å².

Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U_{23}
Crl	0,0047(1)	0,0050(1)	0,0051(1)	0,00173(9)	0,00191(9)	0,00197(9)
Co2	0,0078(2)	0,0063(2)	0,0098(2)	0,0022(1)	0,0042(1)	0,0036(1)
Cr2	0,0078(2)	0,0063(2)	0,0098(2)	0,0022(1)	0,0042(1)	0,0036(1)
Co3	0,0050(1)	0,0052(1)	0,0050(1)	0,00196(9)	0,0022(1)	0,00195(9)
Cr3	0,0050(1)	0,0052(1)	0,0050(1)	0,00196(9)	0,0022(1)	0,00195(9)
Co4	0,0089(1)	0,0072(1)	0,0079(1)	0,00311(9)	0,00434(9)	0,00338(9)
P1	0,0055(2)	0,0060(2)	0,0052(2)	0,0024(2)	0,0020(1)	0,0022(1)
P2	0,0044(2)	0,0052(2)	0,0048(2)	0,0012(1)	0,0017(1)	0,0016(1)
P3	0,0044(2)	0,0054(2)	0,0051(2)	0,0015(1)	0,0019(1)	0,0022(1)
01	0,0062(5)	0,0097(5)	0,0054(5)	0,0039(4)	0,0024(4)	0,0039(4)
O2	0,0079(5)	0,0073(5)	0,0065(5)	0,0012(4)	0,0034(4)	0,0016(4)
03	0,0078(5)	0,0077(5)	0,0064(5)	0,0019(4)	0,0031(4)	0,0021(4)
O4	0,0078(5)	0,0143(6)	0,0063(5)	0,0054(5)	0,0030(4)	0,0052(5)
05	0,0072(5)	0,0115(6)	0,0068(5)	0,0052(5)	0,0027(4)	0,0044(4)
O6	0,0084(5)	0,0062(5)	0,0104(5)	0,0000(4)	0,0016(5)	0,0030(4)
07	0,0049(5)	0,0064(5)	0,0089(5)	0,0018(4)	0,0026(4)	0,0024(4)
O8	0,0115(6)	0,0072(5)	0,0133(6)	0,0017(5)	0,0059(5)	0,0047(5)
O9	0,0055(5)	0,0075(5)	0,0094(5)	0,0009(4)	0,0034(4)	0,0019(4)
O10	0,0090(5)	0,0102(6)	0,0118(6)	0,0059(5)	0,0025(5)	0,0018(5)
011	0,0091(5)	0,0154(6)	0,0062(5)	0,0023(5)	0,0034(5)	0,0043(5)
012	0,0098(5)	0,0063(5)	0,0103(5)	0,0007(4)	0,0029(5)	0,0012(4)

Tabelle A.62 Interatomare	Abstände / Å in	den	Polyedern	$[M10_6],$	$[M2O_6],$	$[M3O_6]$	und
$[M4O_5]$ in $A^{II}_{3}Cr^{III}_{4}(PO_4)_6$ (A	4 ^{II} : Mn, Fe, Co).		5	L •3/		,	

		Mn ₃ Cr ₄ (PO ₄) ₆	5 Fe ₃ Cr ₄ (PO ₄) ₆	C0 ₃ Cr ₄ (PO ₄) ₆
[<i>M</i> 1O ₆]	M1-O6	1,939(2)	1,920(2)	1,914(1)
	M1-O11	1,909(1)	1,905(2)	1,901(1)
	M1-O5	1,967(1)	1,961(2)	1,963(1)
	M1-O7	2,014(1)	2,005(2)	2,006(1)
	M1-O7	2,093(2)	2,087(2)	2,080(1)
	M1-O4	2,021(1)	2,018(2)	2,028(1)
[<i>M</i> 2O ₆]	M2-08 M2-09 M2-09 M2-012 M2-012	2,101(2) 2,101(2) 2,254(1) 2,254(1) 2,219(2) 2,219(2)	2,026(2) 2,026(2) 2,228(2) 2,228(2) 2,261(2) 2,261(2)	2,007(1) 2,007(1) 2,172(1) 2,203(1) 2,203(1)
[<i>M</i> 3O ₆]	M3-O10	1,875(1)	1,872(2)	1,879(1)
	M3-O3	1,995(2)	1,989(2)	1,996(1)
	M3-O1	1,999(1)	2,002(2)	1,996(1)
	M3-O2	2,011(2)	2,010(2)	2,014(1)
	M3-O1	2,004(1)	2,006(2)	2,002(1)
	M3-O9	2,016(2)	2,009(2)	2,028(1)
[<i>M</i> 4O ₅]	M4-O12	2,051(2)	1,974(2)	1,998(1)
	M4-O3	2,163(2)	2,123(2)	2,066(1)
	M4-O4	2,186(2)	2,121(2)	2,063(1)
	M4-O2	2,069(2)	2,060(2)	2,019(1)
	M4-O5	2,139(1)	2,108(2)	2,113(1)

Tabelle A.63 Interatomare Abstände / Å in den Polyedern [P1O₄], [P2O₄] und [P3O₄] in $A^{II}_{3}Cr^{III}_{4}(PO_4)_6$ (A^{II} : Mn, Fe, Co).

		Mn ₃ Cr ₄ (PO ₄) ₆	Fe ₃ Cr ₄ (PO ₄) ₆	Co ₃ Cr ₄ (PO ₄) ₆
[P1O ₄]	P1-O11	1,508(2)	1,505(2)	1,506(1)
,	P1-O10	1,514(2)	1,512(2)	1,511(1)
	P1-O4	1,561(1)	1,558(2)	1,565(1)
	P1-O12	1,540(2)	1,551(2)	1,550(1)
[P2O ₄]	P2-O6	1,501(2)	1,498(2)	1,498(1)
	P2-O2	1,552(1)	1,550(2)	1,551(1)
	P2-O9	1,555(2)	1,558(2)	1,562(1)
	P2-O5	1,551(1)	1,551(2)	1,550(1)
[P3O ₄]	P3-O8	1,482(2)	1,487(2)	1,484(1)
	P3-O3	1,552(1)	1,553(2)	1,555(1)
	P3-O1	1,570(1)	1,564(2)	1,564(1)
	P3-O7	1,564(2)	1,559(2)	1,558(1)

A.3.4 Magnesium-eisen-orthophosphat

1 1	0		(U)	. , ,	
Atom	x	У	ζ	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{ m 2~a)}$
Mg1	0,02793(5)	0,22307(5)	0,04583(7)	0,120(2)	0,0056(1)
Fel	0,02793(5)	0,22307(5)	0,04583(7)	0,880(2)	0,0056(1)
Mg2	1/2	1/2	0	0,802(4)	0,0090(3)
Fe2	1/2	1/2	0	0,198(4)	0,0090(3)
Mg3	0,61555(5)	0,95228(6)	0,38476(8)	0,199(2)	0,0062(1)
Fe3	0,61555(5)	0,95228(6)	0,38476(8)	0,801(2)	0,0062(1)
Mg4	0,78564(8)	0,30805(1)	0,28087(1)	0,780(2)	0,0077(2)
Fe4	0,78564(8)	0,30805(1)	0,28087(1)	0,220(2)	0,0077(2)
P1	0,86979(8)	0,72725(1)	0,39595(1)	1	0,0088(2)
P2	0,72953(8)	0,35157(1)	0,76962(1)	1	0,0083(2)
P3	0,33315(8)	0,09254(9)	0,09067(1)	1	0,0078(1)
01	0,4168(2)	0,0386(3)	0,3111(3)	1	0,0099(4)
O2	0,2744(2)	0,7651(3)	0,4598(3)	1	0,0109(4)
O3	0,6622(2)	0,0378(3)	0,1249(3)	1	0,0105(4)
O4	0,9933(2)	0,7270(3)	0,6293(4)	1	0,0128(4)
05	0,1621(2)	0,6918(3)	0,0187(3)	1	0,0108(4)
O6	0,2052(2)	0,4486(3)	0,2086(4)	1	0,0128(4)
O7	0,8464(2)	0,9506(3)	0,9366(4)	1	0,0098(4)
O8	0,4174(2)	0,2860(3)	0,1088(4)	1	0,0141(4)
O9	0,4431(2)	0,6969(3)	0,2272(4)	1	0,0113(4)
O10	0,7881(2)	0,8657(3)	0,4499(4)	1	0,0137(4)
011	0,9644(2)	0,7762(3)	0,2469(4)	1	0,0135(4)
012	0,7377(2)	0,5361(3)	0,2706(4)	1	0,0128(4)

Tabelle A.64 Atomlagen und isotrope Auslenkungsparameter für Magnesium-eisenorthophosphat Mg₃Fe₄(PO₄)₆ (festgelegtes Verhältnis n(Mg) : n(Fe) = 3 : 4).

^{a)} $U_{eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle A.65 Anisotrope Auslenkungsparameter für Magnesium-eisen-orthophosphat Mg₃Fe₄(PO₄)₆ (festgelegtes Verhältnis $n(Mg) : n(Fe) = 3 : 4) / Å^2$.

Atom	U_{11}	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U_{23}
Mg1	0,0057(2)	0,0057(2)	0,0058(2)	0,0021(2)	0,0024(2)	0,0021(2)
Fe1	0,0057(2)	0,0057(2)	0,0058(2)	0,0021(2)	0,0024(2)	0,0021(2)
Mg2	0,0102(5)	0,0082(5)	0,0106(6)	0,0032(4)	0,0053(4)	0,0046(4)
Fe2	0,0102(5)	0,0082(5)	0,0106(6)	0,0032(4)	0,0053(4)	0,0046(4)
Mg3	0,0064(2)	0,0068(2)	0,0061(2)	0,0027(2)	0,0026(2)	0,0024(2)
Fe3	0,0064(2)	0,0068(2)	0,0061(2)	0,0027(2)	0,0026(2)	0,0024(2)
Mg4	0,0092(4)	0,0070(3)	0,0075(4)	0,0021(3)	0,0043(3)	0,0025(3)
Fe4	0,0092(4)	0,0070(3)	0,0075(4)	0,0021(3)	0,0043(3)	0,0025(3)
P1	0,0091(3)	0,0095(3)	0,0082(3)	0,0035(3)	0,0034(3)	0,0028(3)
P2	0,0083(3)	0,0091(3)	0,0077(3)	0,0030(3)	0,0034(3)	0,0026(3)
Р3	0,0078(3)	0,0086(3)	0,0079(3)	0,0032(3)	0,0033(3)	0,0032(3)
01	0,0094(9)	0,0132(9)	0,0077(1)	0,0039(7)	0,0034(8)	0,0041(8)
O2	0,0124(9)	0,0114(9)	0,0085(1)	0,0033(8)	0,0047(8)	0,0017(8)
O3	0,0107(9)	0,0117(9)	0,0081(1)	0,0037(8)	0,0033(8)	0,0016(8)
O4	0,0108(9)	0,020(1)	0,0101(1)	0,0063(8)	0,0043(8)	0,0076(8)
O5	0,0113(9)	0,0130(9)	0,0084(1)	0,0053(8)	0,0030(8)	0,0040(8)
O6	0,013(1)	0,0098(9)	0,0136(1)	0,0028(8)	0,0033(8)	0,0040(8)
07	0,0086(9)	0,0102(9)	0,011(1)	0,0040(7)	0,0031(8)	0,0037(8)
08	0,015(1)	0,0112(9)	0,0154(1)	0,0036(8)	0,0057(9)	0,0040(8)
O9	0,0089(9)	0,0121(9)	0,0125(1)	0,0030(8)	0,0050(8)	0,0021(8)
O10	0,0124(9)	0,014(1)	0,0154(1)	0,0074(8)	0,0046(8)	0,0035(8)
011	0,0124(9)	0,018(1)	0,0114(1)	0,0034(8)	0,0061(8)	0,0067(8)
012	0,0118(9)	0,0112(9)	0,0117(1)	0,0007(8)	0,0035(8)	0,0016(8)

Atom	x	У	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
Mg1	0,02796(4)	0,22309(4)	0,04583(6)	0,046(3)	0,0068(1)
Fe1	0,02796(4)	0,22309(4)	0,04583(6)	0,954(3)	0,0068(1)
Mg2	1/2	1/2	0	0,762(3)	0,0102(3)
Fe2	1/2	1/2	0	0,238(3)	0,0102(3)
Mg3	0,61562(4)	0,95234(5)	0,38483(7)	0,154(2)	0,0066(1)
Fe3	0,61562(4)	0,95234(5)	0,38483(7)	0,846(2)	0,0066(1)
Mg4	0,78572(7)	0,30812(8)	0,2809(1)	0,728(2)	0,0094(2)
Fe4	0,78572(7)	0,30812(8)	0,2809(1)	0,272(2)	0,0094(2)
P1	0,86989(7)	0,72739(8)	0,3960(1)	1	0,0078(1)
P2	0,72966(7)	0,35165(8)	0,7697(1)	1	0,0073(1)
P3	0,33312(7)	0,09248(8)	0,0907(1)	1	0,0069(1)
01	0,4166(2)	0,0389(2)	0,3108(3)	1	0,0086(3)
O2	0,2741(2)	0,7651(2)	0,4594(3)	1	0,0095(3)
O3	0,6625(2)	0,0379(2)	0,1249(3)	1	0,0091(3)
O4	0,9932(2)	0,7274(2)	0,6294(3)	1	0,0113(4)
O5	0,1618(2)	0,6912(2)	0,0187(3)	1	0,0093(3)
O6	0,2051(2)	0,4487(2)	0,2089(3)	1	0,0111(4)
O7	0,8466(2)	0,9508(2)	0,9366(3)	1	0,0084(3)
O8	0,4170(2)	0,2857(2)	0,1083(3)	1	0,0129(4)
O9	0,4430(2)	0,6970(2)	0,2271(3)	1	0,0100(3)
O10	0,7885(2)	0,8653(2)	0,4499(3)	1	0,0123(4)
011	0,9642(2)	0,7759(2)	0,2471(3)	1	0,0120(4)
O12	0,7379(2)	0,5364(2)	0,2707(3)	1	0,0114(4)

Tabelle A.66 Atomlagen und isotrope Auslenkungsparameter für Magnesium-eisenorthophosphat $Mg_{2,61}Fe_{4,39}(PO_4)_6$ (freies Verhältnis n(Mg) : n(Fe)).

 $\overline{U_{eq}} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle A.67 AnisotropeAuslenkungsparameterfür $Mg_{2,61}Fe_{4,39}(PO_4)_6$ (freies Verhältnis $n(Mg) : n(Fe)) / Å^2$.

Magnesium-eisen-orthophosphat

• ,:						
Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Mg1	0,0069(2)	0,0069(2)	0,0071(2)	0,0025(1)	0,0029(1)	0,0025(1)
Fe1	0,0069(2)	0,0069(2)	0,0071(2)	0,0025(1)	0,0029(1)	0,0025(1)
Mg2	0,0117(5)	0,0092(5)	0,0116(5)	0,0038(3)	0,0058(4)	0,0050(4)
Fe2	0,0117(5)	0,0092(5)	0,0116(5)	0,0038(3)	0,0058(4)	0,0050(4)
Mg3	0,0069(2)	0,0071(2)	0,0065(2)	0,0030(1)	0,0028(2)	0,0025(1)
Fe3	0,0069(2)	0,0071(2)	0,0065(2)	0,0030(1)	0,0028(2)	0,0025(1)
Mg4	0,0110(3)	0,0085(3)	0,0092(3)	0,0026(2)	0,0050(2)	0,0029(2)
Fe4	0,0110(3)	0,0085(3)	0,0092(3)	0,0026(2)	0,0050(2)	0,0029(2)
P1	0,0080(3)	0,0084(3)	0,0074(3)	0,0030(2)	0,0030(2)	0,0026(2)
P2	0,0073(3)	0,0081(3)	0,0069(3)	0,0026(2)	0,0030(2)	0,0023(2)
P3	0,0067(3)	0,0075(3)	0,0070(3)	0,0028(2)	0,0029(2)	0,0029(2)
01	0,0080(7)	0,0120(8)	0,0063(8)	0,0034(6)	0,0029(6)	0,0038(7)
O2	0,0106(8)	0,0099(8)	0,0074(8)	0,0028(6)	0,0040(7)	0,0018(7)
O3	0,0091(7)	0,0101(8)	0,0072(8)	0,0027(6)	0,0028(7)	0,0017(7)
O4	0,0089(7)	0,0185(9)	0,0080(9)	0,0055(7)	0,0031(7)	0,0066(7)
05	0,0091(8)	0,0118(8)	0,0069(8)	0,0042(6)	0,0020(7)	0,0035(7)
06	0,0110(8)	0,0083(8)	0,0116(9)	0,0021(6)	0,0023(7)	0,0031(7)
07	0,0073(7)	0,0084(8)	0,0096(9)	0,0034(6)	0,0026(7)	0,0032(7)
08	0,0135(8)	0,0102(8)	0,014(1)	0,0030(7)	0,0054(7)	0,0033(7)
09	0,0078(8)	0,0108(8)	0,0110(9)	0,0027(6)	0,0044(7)	0,0018(7)
O10	0,0108(8)	0,0126(8)	0,0143(9)	0,0066(7)	0,0040(7)	0,0034(7)
011	0,0104(8)	0,0162(9)	0,0099(9)	0,0024(7)	0,0050(7)	0,0061(7)
O12	0,0102(8)	0,0098(8)	0,0099(9)	-0,0003(6)	0,0024(7)	0,0008(7)

		ideal ^{a)}	$n(Mg) : n(Fe) \text{ frei}^{(b)}$	
[<i>M</i> 1O ₆]	M1-O6 M1-O11 M1-O5 M1-O7 M1-O7 M1-O4	1,916(2) 1,876(2) 1,993(2) 2,010(2) 2,191(2) 2,095(2)	1,917(2) 1,880(2) 1,995(2) 2,012(2) 2,191(2) 2,097(2)	
[<i>M</i> 2O ₆]	M2-O8 M2-O8 M2-O9 M2-O9 M2-O12 M2-O12	2,015(2) 2,015(2) 2,188(2) 2,188(2) 2,229(2) 2,229(2)	2,017(2) 2,017(2) 2,191(2) 2,191(2) 2,232(2) 2,232(2)	
[<i>M</i> 3O ₆]	M3-O10 M3-O3 M3-O1 M3-O2 M3-O1 M3-O9	1,856(2) 2,021(2) 2,028(2) 2,088(2) 2,072(2) 2,049(2)	1,861(2) 2,023(2) 2,031(2) 2,088(2) 2,077(2) 2,051(2)	
[<i>M</i> 4O ₅]	M4-O12 M4-O3 M4-O4 M4-O2 M4-O5	1,972(2) 2,019(2) 2,051(2) 2,030(2) 2,098(2)	1,974(2) 2,020(2) 2,055(2) 2,033(2) 2,102(2)	

Tabelle A.68 Interatomare Abstände / Å in den Polyedern $[M1O_6]$, $[M2O_6]$, $[M3O_6]$ und $[M4O_5]$ in Magnesium-eisen-orthophosphat.

^{a)} Die "ideale" Zusammensetzung entspricht Mg₃Fe₄(PO₄)₆.

^{b)} Die "reale" Zusammensetzung entspricht $Mg_{2,61}Fe_{4,39}(PO_4)_6$.

Tabelle A.69 Interatomare Abstände / Å in den Polyedern $[P1O_4]$, $[P2O_4]$ und $[P3O_4]$ in Magnesium-eisen-orthophosphat.

		ideal ^{a)}	n(Mg): n(Fe) frei ^{b)}	
[P1O ₄]	P1-O11	1,517(2)	1,514(2)	
	P1-O10	1,524(2)	1,521(2)	
	P1-O4	1,556(2)	1,556(2)	
	P1-O12	1,548(2)	1,547(2)	
[P2O ₄]	P2-O6	1,505(2)	1,504(2)	
	P2-O2	1,543(2)	1,545(2)	
	P2-O9	1,555(2)	1,557(2)	
	P2-O5	1,556(2)	1,556(2)	
[P3O ₄]	P3-O8	1,495(2)	1,494(2)	
	P3-O3	1,559(2)	1,560(2)	
	P3-O1	1,563(2)	1,561(2)	
	P3-O7	1,557(2)	1,559(2)	

^{a)} Die "ideale" Zusammensetzung entspricht Mg₃Fe₄(PO₄)₆.

^{b)} Die "reale" Zusammensetzung entspricht Mg_{2,61}Fe_{4,39}(PO₄)₆.

A.3.5 A^{II}_{3} In₄(PO₄)₆ (A^{II} : Mn, Fe, Co, Ni, Zn)

Atom	x	У	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2~ m a)}$
Mn1	0,02737(2)	0,22502(2)	0,05153(3)	0,039(2)	0,0097(1)
In1	0,02737(2)	0,22502(2)	0,05153(3)	0,961(2)	0,0097(1)
Mn2	1/2	1/2	0	0,454(3)	0,0105(1)
In2	1/2	1/2	0	0,546(3)	0,0105(1)
Mn3	0,62196(2)	0,95338(2)	0,39181(3)	0,304(2)	0,0105(1)
In3	0,62196(2)	0,95338(2)	0,39181(3)	0,696(2)	0,0105(1)
Mn4	0,78416(4)	0,32150(4)	0,29439(6)	0,930(2)	0,0137(1)
In4	0,78416(4)	0,32150(4)	0,29439(6)	0,070(2)	0,0137(1)
P1	0,87180(7)	0,72575(7)	0,3970(1)	1	0,0095(1)
P2	0,72455(7)	0,35759(7)	0,7716(1)	1	0,0087(1)
Р3	0,33016(7)	0,08134(7)	0,0781(1)	1	0,0085(1)
01	0,4126(2)	0,0348(2)	0,2961(3)	1	0,0115(3)
O2	0,2795(2)	0,7574(2)	0,4479(3)	1	0,0119(3)
O3	0,6705(2)	0,0475(2)	0,1294(3)	1	0,0118(3)
O4	0,9859(2)	0,7012(2)	0,6155(3)	1	0,0144(3)
O5	0,1657(2)	0,6766(2)	0,0172(3)	1	0,0123(3)
O6	0,2240(2)	0,4528(2)	0,2197(3)	1	0,0158(3)
O7	0,8458(2)	0,9581(2)	0,9522(3)	1	0,0115(3)
O8	0,4118(2)	0,2667(2)	0,0904(3)	1	0,0165(3)
O9	0,4441(2)	0,6912(2)	0,2255(3)	1	0,0121(3)
O10	0,8090(2)	0,8663(2)	0,4725(3)	1	0,0191(4)
O11	0,9668(2)	0,7690(3)	0,2598(3)	1	0,0179(4)
012	0,7308(2)	0,5475(2)	0,2649(3)	1	0,0133(3)

Tabelle A.70 Atomlagen und isotrope Auslenkungsparameter für Mn₃In₄(PO₄)₆.

 $\overline{U_{eq}} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle A.71 Anisotrope Auslenkungsparameter für $Mn_3In_4(PO_4)_6$ / Ų.

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Mn1	0,01026(9)	0,00880(9)	0,01020(9)	0,00334(6)	0,00456(6)	0,00277(6)
Inl	0,01026(9)	0,00880(9)	0,01020(9)	0,00334(6)	0,00456(6)	0,00277(6)
Mn2	0,0101(2)	0,0095(1)	0,0118(2)	0,0035(1)	0,0041(1)	0,0035(1)
In2	0,0101(2)	0,0095(1)	0,0118(2)	0,0035(1)	0,0041(1)	0,0035(1)
Mn3	0,0115(1)	0,0098(1)	0,0110(1)	0,00380(7)	0,00514(8)	0,00332(7)
In3	0,0115(1)	0,0098(1)	0,0110(1)	0,00380(7)	0,00514(8)	0,00332(7)
Mn4	0,0183(2)	0,0118(2)	0,0150(2)	0,0066(1)	0,0095(1)	0,0055(1)
In4	0,0183(2)	0,0118(2)	0,0150(2)	0,0066(1)	0,0095(1)	0,0055(1)
P1	0,0099(2)	0,0097(2)	0,0092(2)	0,0038(2)	0,0037(2)	0,00297(2)
P2	0,0090(2)	0,0084(2)	0,0086(2)	0,0027(2)	0,0039(2)	0,00243(2)
P3	0,0090(2)	0,0079(2)	0,0090(2)	0,0027(2)	0,0040(2)	0,00283(2)
01	0,0106(7)	0,0142(7)	0,0098(7)	0,0052(6)	0,0035(6)	0,0036(6)
O2	0,0139(7)	0,0109(7)	0,0101(7)	0,0032(6)	0,0056(6)	0,0017(5)
O3	0,0149(7)	0,0104(7)	0,0109(7)	0,0041(6)	0,0066(6)	0,0027(5)
O4	0,0121(7)	0,0222(8)	0,0111(7)	0,0077(6)	0,0042(6)	0,0079(6)
O5	0,0126(7)	0,0155(7)	0,0097(7)	0,0073(6)	0,0037(6)	0,0040(6)
O6	0,0156(8)	0,0110(7)	0,0176(8)	0,0016(6)	0,0053(7)	0,0048(6)
07	0,0093(6)	0,0106(6)	0,0154(7)	0,0040(5)	0,0052(6)	0,0044(6)
O8	0,0202(8)	0,0115(7)	0,0195(8)	0,0035(6)	0,0099(7)	0,0074(6)
09	0,0100(7)	0,0103(7)	0,0153(7)	0,0022(5)	0,0060(6)	0,0024(6)
O10	0,0154(8)	0,0140(8)	0,0234(9)	0,0073(6)	0,0044(7)	-0,0007(7)
011	0,0162(8)	0,0240(9)	0,0134(8)	0,0039(7)	0,0071(7)	0,0074(7)
O12	0,0112(7)	0,0111(7)	0,0141(7)	0,0026(5)	0,0024(6)	0,0032(6)
Atom	x	у	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)	
------	------------	------------	------------	----------	---------------------------------	
Fe1	0,02535(2)	0,22574(2)	0,04936(2)	0,027(2)	0,0105(1)	
Inl	0,02535(2)	0,22574(2)	0,04936(2)	0,973(2)	0,0105(1)	
Fe2	1/2	1/2	0	0,240(3)	0,0109(1)	
In2	1/2	1/2	0	0,760(3)	0,0109(1)	
Fe3	0,62405(2)	0,95627(3)	0,39684(3)	0,401(2)	0,0113(1)	
In3	0,62405(2)	0,95627(3)	0,39684(3)	0,599(2)	0,0113(1)	
Fe4	0,78204(4)	0,31821(4)	0,28783(6)	0,952(2)	0,0135(1)	
In4	0,78204(4)	0,31821(4)	0,28783(6)	0,048(2)	0,0135(1)	
P1	0,87372(7)	0,72482(7)	0,40034(9)	1	0,0100(1)	
P2	0,72156(7)	0,36018(7)	0,76711(9)	1	0,0094(1)	
P3	0,33060(7)	0,07990(7)	0,07604(9)	1	0,0092(1)	
O1	0,4140(2)	0,0326(2)	0,2946(3)	1	0,0123(3)	
02	0,2810(2)	0,7542(2)	0,4511(3)	1	0,0124(3)	
O3	0,6716(2)	0,0498(2)	0,1327(3)	1	0,0119(3)	
O4	0,9910(2)	0,7015(2)	0,6206(3)	1	0,0131(3)	
O5	0,1674(2)	0,6745(2)	0,0192(3)	1	0,0129(3)	
O6	0,2272(2)	0,4475(2)	0,2227(3)	1	0,0148(3)	
07	0,8457(2)	0,9579(2)	0,9534(3)	1	0,0127(3)	
08	0,4134(2)	0,2670(2)	0,0883(3)	1	0,0164(3)	
09	0,4482(2)	0,6885(2)	0,2310(3)	1	0,0121(3)	
O10	0,8074(2)	0,8638(2)	0,4733(3)	1	0,0190(3)	
O11	0,9666(2)	0,7686(3)	0,2605(3)	1	0,0175(3)	
012	0,7329(2)	0,5426(2)	0,2683(3)	1	0,0129(3)	

Tabelle A.72 Atomlagen und isotrope Auslenkungsparameter für $Fe^{II}_{3}In^{III}_{4}(PO_{4})_{6}$.

^{a)} $U_{\text{eq}} = (1/3) \Sigma_{\text{i}} \Sigma_{\text{j}} U_{\text{ij}} a_{\text{i}}^* a_{\text{j}}^* a_{\text{i}} a_{\text{j}}$

Tabelle A.73 Anisotrope Auslenkungsparameter für $\text{Fe}^{II}_{3} \text{In}^{III}_{4} (P)$	$O_4)_6 / Å^2.$
--	-----------------

Atom	U ₁₁	U ₂₂	U ₃₃	U_{12}	<i>U</i> ₁₃	U_{23}
Fe1	0,01012(8)	0,01054(8)	0,01135(8)	0,0036(6)	0,00484(6)	0,00350(5)
In1	0,01012(8)	0,01054(8)	0,01135(8)	0,0036(6)	0,00484(6)	0,00350(5)
Fe2	0,0099(1)	0,0109(1)	0,0124(1)	0,0039(8)	0,00444(9)	0,00451(8)
In2	0,0099(1)	0,0109(1)	0,0124(1)	0,0039(8)	0,00444(9)	0,00451(8)
Fe3	0,0118(1)	0,0120(1)	0,0118(1)	0,0050(7)	0,00559(7)	0,00463(7)
In3	0,0118(1)	0,0120(1)	0,0118(1)	0,0050(7)	0,00559(7)	0,00463(7)
Fe4	0,0159(2)	0,0121(2)	0,0153(2)	0,0061(1)	0,0083(1)	0,0053(1)
In4	0,0159(2)	0,0121(2)	0,0153(2)	0,0061(1)	0,0083(1)	0,0053(1)
P1	0,0094(2)	0,0107(2)	0,0101(2)	0,0038(2)	0,0038(2)	0,0033(2)
P2	0,0091(2)	0,0093(2)	0,0099(2)	0,0030(2)	0,0040(2)	0,0028(2)
P3	0,0090(2)	0,0093(2)	0,0098(2)	0,0031(2)	0,0041(2)	0,0033(2)
01	0,0120(7)	0,0152(7)	0,0110(6)	0,0059(6)	0,0048(5)	0,0051(5)
O2	0,0137(7)	0,0114(7)	0,0118(6)	0,0032(6)	0,0063(6)	0,0019(5)
O3	0,0127(7)	0,0127(7)	0,0108(6)	0,0043(6)	0,0058(5)	0,0027(5)
O4	0,0110(7)	0,0190(8)	0,0100(6)	0,0065(6)	0,0035(5)	0,0055(5)
05	0,0119(7)	0,0165(7)	0,0112(6)	0,0068(6)	0,0041(5)	0,0048(6)
O6	0,0144(7)	0,0108(7)	0,0166(7)	0,0022(6)	0,0048(6)	0,0041(6)
07	0,0105(7)	0,0122(7)	0,0167(7)	0,0042(6)	0,0066(6)	0,0048(6)
08	0,0182(8)	0,0114(7)	0,0214(8)	0,0032(6)	0,0104(7)	0,0072(6)
09	0,0099(7)	0,0111(7)	0,0154(7)	0,0031(5)	0,0062(6)	0,0032(5)
O10	0,0149(8)	0,0153(8)	0,0250(9)	0,0080(7)	0,0065(7)	0,0016(6)
O11	0,0169(8)	0,0241(9)	0,0133(7)	0,0054(7)	0,0081(6)	0,0076(6)
012	0,0110(7)	0,0122(7)	0,0135(7)	0,0033(6)	0,0032(5)	0,0038(5)

Atom	x	У	z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
Col	0,02541(2)	0,22687(2)	0,05091(3)	0,040(2)	0,0088(1)
In1	0,02541(2)	0,22687(2)	0,05091(3)	0,960(2)	0,0088(1)
Co2	1/2	1/2	0	0,137(4)	0,0093(1)
In2	1/2	1/2	0	0,863(4)	0,0093(1)
Co3	0,62234(3)	0,95589(3)	0,39475(4)	0,435(2)	0,0097(1)
In3	0,62234(3)	0,95589(3)	0,39475(4)	0,565(2)	0,0097(1)
Co4	0,78680(5)	0,31544(5)	0,29653(7)	0,956(3)	0,0115(1)
In4	0,78680(5)	0,31544(5)	0,29653(7)	0,044(3)	0,0115(1)
P1	0,87115(8)	0,72083(9)	0,3972(1)	1	0,0087(1)
P2	0,72098(8)	0,36057(9)	0,7668(1)	1	0,0078(1)
P3	0,32947(8)	0,07817(9)	0,0750(1)	1	0,0078(1)
O1	0,4133(2)	0,0328(3)	0,2960(3)	1	0,0102(3)
02	0,2799(2)	0,7540(3)	0,4523(3)	1	0,0103(3)
O3	0,6705(2)	0,0522(3)	0,1329(3)	1	0,0109(3)
O4	0,9886(2)	0,6952(3)	0,6176(3)	1	0,0119(3)
O5	0,1697(2)	0,6758(3)	0,0187(4)	1	0,0118(3)
O6	0,2287(3)	0,4460(3)	0,2237(4)	1	0,0129(3)
07	0,8464(2)	0,9592(3)	0,9549(4)	1	0,0107(3)
08	0,4100(3)	0,2660(3)	0,0834(4)	1	0,0151(4)
09	0,4493(2)	0,6888(3)	0,2334(4)	1	0,0105(3)
O10	0,8057(3)	0,8617(3)	0,4720(4)	1	0,0173(4)
O11	0,9651(3)	0,7652(3)	0,2593(4)	1	0,0165(4)
012	0,7311(2)	0,5380(3)	0,2649(4)	1	0,0110(3)

Tabelle A.74 Atomlagen und isotrope Auslenkungsparameter für Co₃In₄(PO₄)₆.

^{a)} $U_{\text{eq}} = (1/3) \Sigma_{\text{i}} \Sigma_{\text{j}} U_{\text{ij}} a_{\text{i}}^* a_{\text{j}}^* a_{\text{i}} a_{\text{j}}$

Tabelle A.75 Anisotrope Auslenkungsparameter für $Co_3In_4(PO_4)_6$ / Å ²

Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	U_{12}	<i>U</i> ₁₃	U_{23}
Col	0,00975(9)	0,0077(1)	0,0097(1)	0,00345(6)	0,00445(7)	0,00236(6)
Inl	0,00975(9)	0,0077(1)	0,0097(1)	0,00345(6)	0,00445(7)	0,00236(6)
Co2	0,0098(1)	0,0080(1)	0,0110(1)	0,00361(9)	0,00429(9)	0,00332(9)
In2	0,0098(1)	0,0080(1)	0,0110(1)	0,00361(9)	0,00429(9)	0,00332(9)
Co3	0,0108(1)	0,0092(1)	0,0103(1)	0,00430(8)	0,00479(8)	0,00336(8)
In3	0,0108(1)	0,0092(1)	0,0103(1)	0,00430(8)	0,00479(8)	0,00336(8)
Co4	0,0143(2)	0,0094(2)	0,0132(2)	0,0052(1)	0,0070(1)	0,0039(1)
In4	0,0143(2)	0,0094(2)	0,0132(2)	0,0052(1)	0,0070(1)	0,0039(1)
P1	0,0091(2)	0,0086(3)	0,0082(2)	0,0035(2)	0,0030(2)	0,0022(2)
P2	0,0088(2)	0,0067(2)	0,0082(2)	0,0028(2)	0,0036(2)	0,0017(2)
P3	0,0087(2)	0,0065(2)	0,0089(3)	0,0031(2)	0,0039(2)	0,0026(2)
01	0,0104(7)	0,0118(8)	0,0093(7)	0,0048(6)	0,0040(6)	0,0039(6)
02	0,0124(8)	0,0088(8)	0,0097(7)	0,0030(6)	0,0058(6)	0,0014(6)
O3	0,0133(8)	0,0106(8)	0,0092(7)	0,0042(6)	0,0057(6)	0,0016(6)
O4	0,0104(8)	0,0164(9)	0,0100(8)	0,0062(7)	0,0037(6)	0,0051(7)
05	0,0112(8)	0,0144(8)	0,0106(8)	0,0070(7)	0,0038(6)	0,0032(7)
06	0,0143(8)	0,0070(8)	0,0156(9)	0,0014(6)	0,0055(7)	0,0038(7)
07	0,0102(7)	0,0089(8)	0,0148(8)	0,0043(6)	0,0059(7)	0,0041(7)
08	0,0192(9)	0,0082(8)	0,0209(1)	0,0038(7)	0,0109(8)	0,0069(7)
09	0,0102(7)	0,0081(7)	0,0134(8)	0,0027(6)	0,0062(6)	0,0016(6)
O10	0,0161(9)	0,0134(9)	0,0209(1)	0,0079(7)	0,0063(8)	0,0005(8)
011	0,0154(9)	0,0214(1)	0,0126(9)	0,0033(8)	0,0073(7)	0,0058(8)
012	0,0104(7)	0,0091(8)	0,0121(8)	0,0031(6)	0,0030(6)	0,0027(6)

Atom	x	у	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
Nil	0,02450(1)	0,22538(2)	0,05410(2)	0,066(2)	0,0080(1)
In1	0,02450(1)	0,22538(2)	0,05410(2)	0,934(2)	0,0080(1)
Ni2	1/2	1/2	0	0,088(3)	0,0086(1)
In2	1/2	1/2	0	0,912(3)	0,0086(1)
Ni3	0,62599(2)	0,95705(2)	0,40049(3)	0,506(2)	0,0085(1)
In3	0,62599(2)	0,95705(2)	0,40049(3)	0,494(2)	0,0085(1)
Ni4	0,77431(3)	0,30825(3)	0,27457(4)	0,884(2)	0,0112(1)
In4	0,77431(3)	0,30825(3)	0,27457(4)	0,116(2)	0,0112(1)
P1	0,87632(5)	0,72328(6)	0,40033(8)	1	0,0080(1)
P2	0,71840(5)	0,35963(6)	0,76061(8)	1	0,0068(1)
P3	0,33295(5)	0,08165(6)	0,07947(8)	1	0,0067(1)
O1	0,4150(2)	0,0300(2)	0,2979(2)	1	0,0089(2)
O2	0,2801(2)	0,7527(2)	0,4580(2)	1	0,0094(2)
O3	0,6689(2)	0,0442(2)	0,1340(2)	1	0,0098(2)
O4	0,9970(2)	0,7009(2)	0,6219(2)	1	0,0118(2)
O5	0,1756(2)	0,6804(2)	0,0217(2)	1	0,0100(2)
O6	0,2281(2)	0,4469(2)	0,2228(2)	1	0,0122(2)
07	0,8443(2)	0,9555(2)	0,9507(2)	1	0,0098(2)
08	0,4203(2)	0,2694(2)	0,0976(3)	1	0,0144(3)
09	0,4541(2)	0,6890(2)	0,2396(2)	1	0,0091(2)
O10	0,8085(2)	0,8618(2)	0,4743(3)	1	0,0172(3)
O11	0,9694(2)	0,7672(2)	0,2575(2)	1	0,0159(3)
O12	0,7349(2)	0,5408(2)	0,2698(2)	1	0,0100(2)

 $\label{eq:tabelle} \textbf{Tabelle A.76} \ \ Atomlagen \ und \ isotrope \ Auslenkungsparameter \ f"ur \ Ni_3In_4(PO_4)_6.$

^{a)} $U_{\text{eq}} = (1/3)\Sigma_{\text{i}}\Sigma_{\text{j}}U_{\text{ij}}a_{\text{i}}^{*}a_{\text{j}}^{*}a_{\text{i}}\cdot a_{\text{j}}$

Tabelle A.77	Anisotrope A	Auslenkungsparame	ter für l	Ni ₃ In ₄ (PO ₄) ₆ / Å	2.
--------------	--------------	-------------------	-----------	--	--------------------	----

Atom	I		<u> </u>	<u> </u>	I	I
Nil	0.00929(7)	0.00807(7)	0.00929(7)	0.00220(5)	0.00284(5)	0.00220(5)
INII In 1	0,00828(7)	0,00807(7)	0,00838(7)	0,00329(3)	0,00384(3)	0,00230(3)
IIII NEO	0,00828(7)	0,00807(7)	0,00838(7)	0,00329(5)	0,00384(5)	0,00230(5)
N12	0,00854(9)	0,00772(9)	0,0104(1)	0,00338(6)	0,00405(6)	0,00340(6)
In2	0,00854(9)	0,00772(9)	0,0104(1)	0,00338(6)	0,00405(6)	0,00340(6)
Ni3	0,00938(9)	0,00915(9)	0,00833(9)	0,00405(6)	0,00435(6)	0,00301(6)
In3	0,00938(9)	0,00915(9)	0,00833(9)	0,00405(6)	0,00435(6)	0,00301(6)
Ni4	0,0151(1)	0,0096(1)	0,0108(1)	0,00522(8)	0,00616(9)	0,00363(8)
In4	0,0151(1)	0,0096(1)	0,0108(1)	0,00522(8)	0,00616(9)	0,00363(8)
P1	0,0077(2)	0,0089(2)	0,0068(2)	0,0025(1)	0,0024(1)	0,0022(1)
P2	0,0071(2)	0,0067(2)	0,0068(2)	0,0026(1)	0,0030(1)	0,0017(1)
P3	0,0075(2)	0,0062(2)	0,0071(2)	0,0027(1)	0,0033(1)	0,0023(1)
01	0,0089(5)	0,0106(5)	0,0082(5)	0,0041(4)	0,0033(4)	0,0040(4)
02	0,0107(5)	0,0088(5)	0,0083(5)	0,0022(4)	0,0049(4)	0,0010(4)
03	0,0125(6)	0,0100(5)	0,0082(5)	0,0045(5)	0,0056(4)	0,0020(4)
04	0,0102(5)	0,0178(6)	0,0083(5)	0,0059(5)	0,0032(4)	0,0052(5)
05	0,0107(5)	0,0130(6)	0,0082(5)	0,0065(5)	0,0037(4)	0,0040(5)
06	0,0134(6)	0,0080(5)	0,0140(6)	0,0023(5)	0,0048(5)	0,0033(5)
07	0,0075(5)	0,0097(5)	0,0146(6)	0,0047(4)	0,0057(4)	0,0044(5)
08	0,0201(7)	0,0079(5)	0,0182(6)	0,0035(5)	0,0110(5)	0,0057(5)
09	0,0078(5)	0,0088(5)	0,0108(5)	0,0028(4)	0,0049(4)	0,0011(4)
O10	0,0146(6)	0,0126(6)	0,0217(7)	0,0068(5)	0,0056(6)	-0,0009(5)
011	0,0136(6)	0,0250(7)	0,0100(6)	0,0041(6)	0,0063(5)	0,0073(5)
012	0,0091(5)	0.0082(5)	0.0103(5)	0.0027(4)	0.0019(4)	0.0014(4)

Atom	x	У	Z.	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
In1	0,02594(3)	0,22760(3)	0,05187(4)	0,971(4)	0,0123(1)
Zn1	0,02594(3)	0,22760(3)	0,05187(4)	0,029(4)	0,0123(1)
In2	1/2	1/2	0	0,958(7)	0,0131(1)
Zn2	1/2	1/2	0	0,042(7)	0,0131(1)
In3	0,62278(4)	0,95464(4)	0,39516(6)	0,550(4)	0,0133(1)
Zn3	0,62278(4)	0,95464(4)	0,39516(6)	0,450(4)	0,0133(1)
In4	0,78698(6)	0,31545(6)	0,29594(9)	0,017(6)	0,0156(2)
Zn4	0,78698(6)	0,31545(6)	0,29594(9)	0,983(6)	0,0156(2)
P1	0,8718(1)	0,7190(1)	0,3979(2)	1	0,0119(2)
P2	0,7209(1)	0,3610(1)	0,7637(2)	1	0,0111(2)
Р3	0,3289(1)	0,0767(1)	0,0735(2)	1	0,0110(2)
O1	0,4128(3)	0,0320(4)	0,2961(5)	1	0,0138(5)
02	0,2812(3)	0,7535(4)	0,4545(5)	1	0,0135(5)
O3	0,6698(3)	0,0531(4)	0,1327(5)	1	0,0138(5)
O4	0,9899(3)	0,6941(4)	0,6175(5)	1	0,0143(5)
05	0,1693(3)	0,6750(4)	0,0223(5)	1	0,0149(5)
O6	0,2297(4)	0,4455(4)	0,2270(5)	1	0,0164(5)
O7	0,8469(3)	0,9606(4)	0,9563(5)	1	0,0136(5)
08	0,4080(4)	0,2650(4)	0,0810(6)	1	0,0183(5)
09	0,4493(3)	0,6873(4)	0,2335(5)	1	0,0141(5)
O10	0,8053(4)	0,8596(4)	0,4726(6)	1	0,0212(6)
O11	0,9642(4)	0,7632(5)	0,2582(6)	1	0,0196(6)
012	0,7316(3)	0,5352(4)	0,2676(5)	1	0,0143(5)

Tabelle A.78 Atomlagen und isotrope Auslenkungsparameter für Zn₃In₄(PO₄)₆.

^{a)} $U_{\text{eq}} = (1/3) \Sigma_{\text{i}} \Sigma_{\text{j}} U_{\text{ij}} a_{\text{i}}^* a_{\text{j}}^* a_{\text{i}} a_{\text{j}}$

Atom	U_{11}	U_{22}	U ₃₃	U_{12}	<i>U</i> ₁₃	U_{23}
In1	0,0121(1)	0,0126(1)	0,0122(1)	0,00368(9)	0,00530(9)	0,00310(9)
Znl	0,0121(1)	0,0126(1)	0,0122(1)	0,00368(9)	0,00530(9)	0,00310(9)
In2	0,0125(2)	0,0126(2)	0,0138(2)	0,0039(1)	0,0052(1)	0,0040(1)
Zn2	0,0125(2)	0,0126(2)	0,0138(2)	0,0039(1)	0,0052(1)	0,0040(1)
In3	0,0138(2)	0,0138(2)	0,0129(2)	0,0048(1)	0,0057(1)	0,0042(1)
Zn3	0,0138(2)	0,0138(2)	0,0129(2)	0,0048(1)	0,0057(1)	0,0042(1)
In4	0,0161(3)	0,0141(3)	0,0169(3)	0,0053(2)	0,0071(2)	0,0041(2)
Zn4	0,0161(3)	0,0141(3)	0,0169(3)	0,0053(2)	0,0071(2)	0,0041(2)
P1	0,0113(4)	0,0127(4)	0,0105(4)	0,0035(3)	0,0037(3)	0,0024(3)
P2	0,0111(4)	0,0113(4)	0,0105(4)	0,0034(3)	0,0043(3)	0,0025(3)
Р3	0,0110(3)	0,0111(4)	0,0106(4)	0,0031(3)	0,0044(3)	0,0031(3)
01	0,0126(1)	0,0169(1)	0,0122(1)	0,0045(9)	0,0050(9)	0,0053(9)
02	0,0154(1)	0,0139(1)	0,0109(1)	0,0031(9)	0,0063(9)	0,0031(9)
03	0,0165(1)	0,0136(1)	0,0106(1)	0,0039(9)	0,0056(9)	0,0027(9)
04	0,0124(1)	0,0201(1)	0,0101(1)	0,0058(9)	0,0035(9)	0,0051(9)
05	0,0144(1)	0,0185(1)	0,0118(1)	0,0074(1)	0,0045(9)	0,0036(1)
06	0,0162(1)	0,0123(1)	0,0185(1)	0,0022(9)	0,0065(1)	0,0039(1)
07	0,0119(1)	0,0131(1)	0,0159(1)	0,0034(9)	0,0060(9)	0,0043(9)
08	0,0195(1)	0,0122(1)	0,0228(1)	0,0028(1)	0,0093(1)	0,0063(1)
09	0,0119(1)	0,0140(1)	0,0173(1)	0,0039(9)	0,0078(9)	0,0030(9)
O10	0,0168(1)	0,0185(1)	0,0253(2)	0,0083(1)	0,0062(1)	0,0009(1)
011	0,0181(1)	0,0249(2)	0,0154(1)	0,0035(1)	0,0083(1)	0,0067(1)
012	0,0134(1)	0,0124(1)	0,0140(1)	0,0029(9)	0,0037(9)	0,0025(9)

		Mn ₃ In ₄ (PO ₄) ₆	Fe ₃ In ₄ (PO ₄) ₆	Co ₃ In ₄ (PO ₄) ₆	Ni ₃ In ₄ (PO ₄) ₆	Zn ₃ In ₄ (PO ₄) ₆
[<i>M</i> 1O ₆]	M1-O6	2,067(2)	2,059(2)	2,060(2)	2,0601(1)	2,059(3)
	M1-O11	2,052(2)	2,051(2)	2,058(2)	2,0346(2)	2,056(3)
	M1-O5	2,143(2)	2,128(2)	2,127(2)	2,1409(1)	2,122(3)
	M1-O7	2,165(2)	2,159(2)	2,156(2)	2,1424(1)	2,156(3)
	M1-O7	2,240(2)	2,228(2)	2,224(2)	2,2301(1)	2,219(3)
	M1-O4	2,189(2)	2,187(2)	2,188(2)	2,1529(1)	2,188(3)
[<i>M</i> 2O ₆]	M2-O8 M2-O9 M2-O9 M2-O12 M2-O12	2,166(2) 2,166(2) 2,236(2) 2,236(2) 2,169(2) 2,169(2)	2,135(2) 2,135(2) 2,210(2) 2,210(2) 2,191(2) 2,191(2)	2,123(2) 2,123(2) 2,206(2) 2,206(2) 2,182(2) 2,182(2)	2,1224(1) 2,1224(1) 2,2012(1) 2,2012(1) 2,1934(1) 2,1934(1)	2,117(3) 2,117(3) 2,196(3) 2,196(3) 2,196(3) 2,196(3)
[<i>M</i> 3O ₆]	M3-O10	2,034(2)	2,012(2)	2,013(2)	2,0004(2)	2,004(3)
	M3-O3	2,140(2)	2,140(2)	2,133(2)	2,0879(1)	2,133(3)
	M3-O1	2,151(2)	2,147(2)	2,137(2)	2,0913(1)	2,128(3)
	M3-O2	2,216(2)	2,194(2)	2,190(2)	2,1930(1)	2,198(3)
	M3-O1	2,197(2)	2,162(2)	2,149(2)	2,1337(1)	2,152(3)
	M3-O9	2,173(2)	2,186(2)	2,172(2)	2,1722(1)	2,175(3)
[<i>M</i> 4O ₅]	M4-O12	2,080(2)	2,012(2)	2,021(2)	2,0169(1)	1,983(3)
	M4-O3	2,116(2)	2,051(2)	2,024(2)	2,0081(1)	2,017(3)
	M4-O4	2,137(2)	2,088(2)	2,040(2)	2,0471(1)	2,020(3)
	M4-O2	2,121(2)	2,117(2)	2,061(2)	2,0591(1)	2,051(3)
	M4-O5	2,234(2)	2,215(2)	2,232(2)	2,1235(1)	2,249(3)

Tabelle A.80 Interatomare Abstände / Å in den Polyedern $[M1O_6]$, $[M2O_6]$, $[M3O_6]$ und $[M4O_5]$ in $A^{II}_{3}In^{III}_{4}(PO_4)_6$ (A^{II} : Mn, Fe, Co, Ni, Zn).

Tabelle A.81 Interatomare Abstände / Å in den Polyedern [P1O₄], [P2O₄] und [P3O₄] in $A^{II}_{3}In^{III}_{4}(PO_4)_6$ (A^{II} : Mn, Fe, Co, Ni, Zn).

		Mn ₃ In ₄ (PO ₄) ₆	Fe ₃ In ₄ (PO ₄) ₆	Co ₃ In ₄ (PO ₄) ₆	Ni ₃ In ₄ (PO ₄) ₆	Zn ₃ In ₄ (PO ₄) ₆
[P1O ₄]	P1-O11	1,498(2)	1,499(2)	1,496(2)	1,497(2)	1,491(3)
	P1-O10	1,510(2)	1,506(2)	1,506(2)	1,507(2)	1,507(3)
	P1-O4	1,556(2)	1,562(2)	1,569(2)	1,563(1)	1,561(3)
	P1-O12	1,561(2)	1,573(2)	1,576(2)	1,575(1)	1,581(3)
[P2O ₄]	P2-O6	1,499(2)	1,501(2)	1,503(2)	1,497(1)	1,497(3)
	P2-O2	1,538(2)	1,535(2)	1,544(2)	1,538(1)	1,533(3)
	P2-O9	1,562(2)	1,567(2)	1,569(2)	1,570(1)	1,574(3)
	P2-O5	1,545(2)	1,553(2)	1,553(2)	1,559(1)	1,545(3)
[P3O ₄]	P3-O8	1,501(2)	1,504(2)	1,506(2)	1,503(2)	1,504(3)
	P3-O3	1,547(2)	1,548(2)	1,552(2)	1,549(1)	1,547(3)
	P3-O1	1,544(2)	1,542(2)	1,542(2)	1,542(1)	1,542(3)
	P3-O7	1,559(2)	1,561(2)	1,560(2)	1,553(1)	1,557(3)

Anhang B Quaternäre Pyrophosphate $A^{II}B^{III}_{2}(P_2O_7)_2$

B.1 Guinierdiagramme

B.1.1 Cu^{II}*M*^{III}₂(P₂O₇)₂ (*M*^{III}: V, Cr, Fe, In) und Pd^{II}*M*^{III}₂(P₂O₇)₂ (*M*^{III}: Cr, Fe, In)

Abbildung B.1 *IP*-Guinier-Aufnahme von $CuV_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung B.2 *IP*-Guinier-Aufnahme von $CuCr_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung B.3 *IP*-Guinier-Aufnahme von $CuFe_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage von [29] (b).

Abbildung B.4 *IP*-Guinier-Aufnahme von $CuIn_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung B.5 *IP*-Guinier-Aufnahme von $PdCr_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung B.6 *IP*-Guinier-Aufnahme von $PdFe_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung B.7 *IP*-Guinier-Aufnahme von $PdIn_2(P_2O_7)_2$ (Reflexe der nicht identifizierten Verunreinigung mit * gekennzeichnet) (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

B.1.2 *A*^{II}V^{III}₂(P₂O₇)₂ (*A*^{II}: Cr, Fe) und *A*^{II}Cr^{III}₂(P₂O₇)₂ (*A*^{II}: Mg, Cr, Fe)

Abbildung B.8 *IP*-Guinier-Aufnahme von $Cr^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung B.9 *IP*-Guinier-Aufnahme von $Fe^{II}V^{III}_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung B.10 *IP*-Guinier-Aufnahme von $Mg^{II}Cr^{III}_{2}(P_2O_7)_2$ (a). Simuliertes Guinierdiagramm anhand der *d*-Werte und Intensitäten von [224] (b).

Abbildung B.11 *IP*-Guinier-Aufnahme von $Mg^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparametern und den Lageparameter von $Cr^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ [13] (b).

Abbildung B.12 *IP*-Guinier-Aufnahme von $Cr^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ (a). Berechnetes Guinierdiagramm auf Grundlage von $Cr^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ [13] (b).

Abbildung B.13 *IP*-Guinier-Aufnahme von $Fe^{II}Cr^{III}_{2}(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparametern und den Lageparameter von $Cr^{II}Cr^{III}_{2}(P_2O_7)_2$ [13] (b).

B.1.3 $Cr^{II}Ti^{III}_{2}(P_2O_7)_2$

Abbildung B.14 *IP*-Guinier-Aufnahme von *trik*.-Cr^{II}Ti^{III}₂(P_2O_7)₂ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung B.15 *IP*-Guinier-Aufnahme von hex.-Cr^{II}Ti^{III}₂(P₂O₇)₂ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

B.1.4 *A*¹¹Fe¹¹¹₂(P₂O₇)₂ (*A*¹¹: Mg, Fe, Co, Zn)

Abbildung B.16 *IP*-Guinier-Aufnahme von MgFe₂(P_2O_7)₂ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparametern und den Lageparameter von FeFe₂(P_2O_7)₂ [17] (b).

Abbildung B.17 *IP*-Guinier-Aufnahme von $FeFe_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage von $FeFe_2(P_2O_7)_2$ [17] (b).

Abbildung B.18 *IP*-Guinier-Aufnahme von $CoFe_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparametern und den Lageparameter von FeFe₂(P₂O₇)₂ [17] (b).

Abbildung B.19 *IP*-Guinier-Aufnahme von $ZnFe_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparametern und den Lageparameter von FeFe₂(P₂O₇)₂ [17] (b).

B.2 Indizierung von Guinieraufnahmen

B.2.1 $Cu^{II}M^{III}_{2}(P_2O_7)_2$ (M^{III} : V, Cr, In) und Pd^{II} $M^{III}_{2}(P_2O_7)_2$ (M^{III} : Cr, Fe, In)

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
1	0	-1	22.668	22,660	0.01	7.800	191	127
0	0	2	28,935	28,971	0.04	6.117	165	126
1	0	1	29,559	29,561	0,00	5,988	59	30
0	1	1	37.197	37.212	0.02	4.766	73	78
1	1	0	40,781	40,769	0,02	4,351	73	123
1	1	-1	41.153	41.148	0.01	4.312	67	62
0	1	2	44,965	44,945	0.03	3.951	1000	1000
2	0	-2	45.561	45,505	0.10	3,900	270	471
1	1	-2	46.377	46.394	0.03	3.832	137	128
1	1	2	53,737	53,709	0.06	3.315	57	40
1	0	3	54.276	54,299	0.05	3.283	22	27
2	1	-1	54,780	54,769	0.02	3.253	57	29
1	1	-3	55,159	55.098	0.12	3.231	73	68
0	1	3	55,655	55 658	0.01	3,203	64	101
2	1	-2	57.268	57.217	0.11	3,114	13	10
0	0	4	58.344	58,317	0.06	3.058	28	25
2	1	1	61.203	61,196	0.02	2.918	46	61
2	0	-4	62,694	62.675	0.04	2.851	79	66
$\overline{2}$	1	-3	63.218	63.205	0.03	2.828	68	67
3	0	-1	64,193	64,195	0.00	2,786	243	175
1	1	3	64.524	64.535	0.02	2,772	211	139
1	1	-4	66 211	66 214	0.01	2,703	39	47
0	1	4	68,035	68 054	0.05	2,633	44	30
Õ	2	0	69 264	69 284	0.05	2,587	64	140
1	0	-5	70.348	70.384	0.09	2.549	13	18
2	1	-4	71,860	71 884	0.06	2,497	74	63
0	2	2	75 421	75 394	0.07	2,383	17	40
1	2	1	75 678	75 674	0.01	2,375	55	118
3	1	-3	77 444	77 454	0.03	2,323	27	22
1	2	-3	82,214	82 195	0,06	2,193	26	23
1	0	5	82,908	82,915	0.02	2,176	-0 79	90
2	2	-2	83 714	83 695	0.05	2,156	30	20
4	0	-2	86 433	86 406	0.08	2,091	101	20 78
3	1	2	88 229	88 206	0.07	2,051	27	27
1	2	3	89.085	89,097	0.04	2,032	102	67
1	1	5	90 310	90 317	0.02	2,006	34	38
1	1	-6	92,311	92,358	0.15	1 965	48	55
4	0	-4	93,060	93 079	0.06	1 950	55	87
4	1	0	97.118	97.141	0.08	1.873	59	20
3	2	-5	111 720	111 743	0,09	1,644	27	23
1	0	7	113.863	113.836	0.10	1,616	48	41
0	2	6	114 982	114 977	0.02	1 601	86	57
1	3	3	121.153	121,175	0.08	1.527	39	35
5	1	-5	124 169	124 139	0.12	1 493	42	19
1	2	-7	124 767	124,749	0.07	1 487	47	38
2	3	-4	125.821	125.831	0.04	1.476	38	24
4	2	2	127 420	127.363	0.22	1 459	60	23
5	$\frac{1}{2}$	-3	133.568	133,593	0.10	1.399	57	15
5	0	3	136,862	136,899	0,15	1,369	39	11

Tabelle B.1 CuV₂(P₂O₇)₂. Indizierung einer Guinieraufnahme (Abbildung B.1) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^2\theta_{calc} - \sin^2\theta_{obs}| \cdot 1000$.

			4.0				1 a)	
h	k	l	$4\theta_{\rm calc}$	$4\theta_{\rm obs}$	Δ	<i>d</i> -Wert	I _{calc} "	I _{obs}
1	0	-1	22,831	22,870	0,03	7,744	196	144
0	0	2	29,145	29,172	0,03	6,073	177	129
1	0	1	29,872	29,891	0,02	5,926	78	49
0	1	1	37,673	37,711	0,05	4,707	72	54
1	0	-3	43,167	43,165	0,00	4,113	13	11
0	1	2	45,466	45,492	0,04	3,908	1000	1000
2	0	-2	45,892	45,912	0,03	3,872	283	241
1	1	-2	46,851	46,881	0,05	3,794	127	105
1	1	2	54,361	54,373	0,02	3,278	57	40
1	0	3	54,786	54,792	0,01	3,253	16	10
2	1	-1	55,379	55,432	0,11	3,218	55	49
1	1	-3	55,652	55,682	0,06	3,203	74	56
0	1	3	56,205	56,191	0,03	3,172	65	42
2	1	-2	57,826	57,839	0,03	3,085	16	12
0	0	4	58,774	58,769	0,01	3,036	24	29
2	1	1	61,932	61,946	0,03	2,885	44	23
2	0	-4	63,059	63,045	0,03	2,835	82	58
2	1	-3	63,762	63,714	0,11	2,804	67	58
3	0	-1	64,809	64,813	0,01	2,760	246	230
1	1	3	65,220	65,233	0,03	2,743	211	186
1	1	-4	66,753	66,761	0,02	2,682	41	29
0	1	4	68,659	68,679	0,05	2,610	46	34
0	2	0	70,242	70,268	0,07	2,553	65	52
2	1	-4	72,420	72,386	0,09	2,478	78	55
1	2	-1	74,091	74,115	0,06	2,424	43	33
0	2	2	76,416	76,443	0,07	2,353	17	7
1	2	1	76,715	76,743	0,08	2,344	63	48
3	1	1	81,641	81,669	0,08	2,208	53	60
0	1	5	82,223	82,239	0,04	2,193	13	18
1	2	-3	83,196	83,178	0,05	2,169	22	9
1	0	5	83,648	83,658	0,03	2,158	77	90
4	0	-2	87,232	87,235	0,01	2,073	103	81
3	1	2	89,264	89,264	0,00	2,028	32	27
1	2	3	90,209	90,193	0,05	2,008	102	72
0	2	4	92,856	92,862	0,02	1,954	101	45
1	1	-6	93,019	93,032	0,04	1,950	50	110
4	0	-4	93,767	93,751	0,05	1,936	55	34
4	1	0	98,219	98,239	0,07	1,853	56	51
0	3	2	112,138	112,152	0,05	1,638	86	57
3	2	-5	112,822	112,831	0,04	1,629	27	18
1	0	7	114,881	114,901	0,07	1,602	45	59
4	1	-6	115,565	115,580	0,06	1,594	37	41
0	2	6	116,202	116,180	0,08	1,586	85	58
1	3	3	122,859	122,858	0,00	1,508	39	32
5	1	-5	125,235	125,237	0,01	1,482	39	41
1	2	-7	125,981	125,957	0,09	1,474	46	24
2	3	-4	127,443	127,427	0,06	1,459	38	41
4	2	2	129,079	129,036	0,17	1,442	58	36

Tabelle B.2 CuCr₂(P₂O₇)₂. Indizierung einer Guinieraufnahme (Abbildung B.2) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	$I_{\rm obs}$
0	0	2	22,133	22,217	0,07	7,988	119	100
1	0	-1	28,242	28,335	0,10	6,266	111	140
1	0	1	28,566	28,624	0,06	6,195	270	245
0	1	1	35,438	35,462	0,03	5,001	51	47
0	1	2	40,360	40,399	0,06	4,396	32	33
1	0	-3	42,094	42,094	0,00	4,217	91	73
1	1	0	42,725	42,763	0,06	4,155	39	31
1	1	-1	44,059	44,030	0,05	4,031	1000	1000
0	0	4	44,475	44,459	0,03	3,994	373	307
0	1	3	47,483	47,503	0,03	3,744	24	14
1	1	-2	48,043	48,002	0,07	3,701	80	64
1	1	-3	54,129	54,142	0,03	3,291	28	22
1	1	3	54,650	54,641	0,02	3,261	93	66
0	1	4	56,028	56,039	0,02	3,182	19	9
1	0	5	62,229	62,213	0,04	2,871	219	184
2	1	0	62,801	62,763	0,09	2,846	275	219
2	1	1	63,966	63,942	0,06	2,795	28	29
0	1	5	65,510	65,481	0,07	2,731	14	15
2	1	-2	66,489	66,531	0,10	2,692	41	35
2	1	2	67,067	67,081	0,03	2,670	30	24
0	2	0	68,041	68,010	0,07	2,633	94	80
2	0	-4	68,878	68,860	0,04	2,601	14	10
1	1	-5	70,467	70,420	0,12	2,545	154	122
1	1	5	71,152	71,140	0,03	2,521	8	9
0	2	2	71,761	71,780	0,05	2,500	20	34
1	2	1	74,135	74,110	0,06	2,423	129	113
2	1	-4	77,123	77,111	0,03	2,332	63	53
2	1	4	78,137	78,132	0,01	2,303	113	98
3	0	-1	80,515	80,503	0,03	2,238	104	98
0	2	4	82,044	82,025	0,05	2,198	90	99
1	0	7	83,875	83,896	0,06	2,152	59	52
2	0	-6	85,699	85,708	0,03	2,108	26	22
0	1	7	86,323	86,349	0,08	2,094	17	8
2	2	0	87,034	87,070	0,11	2,077	52	45
3	1	-1	87,832	87,831	0,00	2,059	44	46
2	2	-2	89,861	89,864	0,01	2,015	137	111
1	2	5	93,533	93,510	0,07	1,940	43	55
2	1	6	93,994	93,981	0,04	1,931	56	48
3	1	3	94,468	94,482	0,05	1,922	19	12
0	1	8	97,447	97,458	0,04	1,867	11	8
1	3	-1	108.441	108.456	0.05	1.690	86	96

Tabelle B.3 CuIn₂(P₂O₇)₂. Indizierung einer Guinieraufnahme (Abbildung B.4) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	1	4 <i>θ</i> ,	4 <i>θ</i> ,	٨	d-Wert	L a)	L
1	<i>n</i>	1	22.575	22 (20	0.05	7 922		202
1	0	-1	22,575	22,030	0,05	7,832	202	393
0	0	2	28,942	28,909	0,05	0,113	202	202
0	1	1	37,443	41.001	0,09	4,733	231	203
1	1	-3	41,024	41,091	0,10	4,520	200 61	190
1	1	-3	42,740	42,789	0,07	4,155	1000	1000
1	1	-2	45,174	45,190	0,04	3,933	267	234
1	1	2	54 038	54 077	0,01	3 297	157	140
1	0	23	54 462	54 456	0,00	3 272	55	56
2	1	-1	54 898	54 926	0.06	3 246	138	133
0	1	-1 3	55 831	55 805	0,00	3 193	150	133
0	0	4	58 358	58 393	0,05	3,057	57	55
2	1	1	61 505	61 520	0,07	2 904	112	86
2	0	-4	62 372	62 370	0,00	2,901	136	109
2	1	-3	63 137	63 129	0.02	2,805	139	107
3	0	-1	64 162	64 189	0.06	2,001	350	321
1	1	3	64 830	64 828	0,00	2,759	218	184
1	1	-4	66 195	66 177	0.04	2,704	95	71
0	1	4	68 187	68 206	0.05	2,627	41	33
2	1	-4	71 708	71 714	0.02	2,502	83	67
1	2	-1	73 598	73 643	0.12	2,440	90	81
1	2	1	76 239	76 202	0.10	2,358	117	96
2	1	3	79,670	79 631	0 11	2,261	32	26
3	1	1	81 026	81 071	0.13	2,224	54	37
0	1	5	81.644	81,661	0.05	2,208	39	31
1	2	-3	82.591	82,571	0.06	2,184	54	41
1	0	5	83,122	83,101	0.06	2,171	112	97
2	2	-2	84.074	84,080	0.02	2,147	65	54
4	0	-2	86.294	86.280	0.04	2.094	136	127
3	1	2	88,642	88,650	0.03	2,042	67	42
1	2	3	89,652	89,620	0,10	2,020	143	105
0	2	4	92,234	92,210	0,08	1,966	168	188
4	0	-4	92,659	92,640	0,06	1,958	85	67
4	1	-3	95,401	95,401	0,00	1,904	36	31
4	1	0	97,359	97,361	0,01	1,868	48	37
0	3	2	111,408	111,467	0,21	1,648	89	69
1	0	7	114,104	114,118	0,05	1,612	66	63
0	2	6	115,371	115,369	0,01	1,596	116	74
5	0	-5	117,815	117,821	0,02	1,566	40	16
5	1	-4	118,969	118,972	0,01	1,552	26	19
1	3	3	122,059	122,024	0,13	1,517	41	28
1	2	-7	124,954	124,947	0,03	1,485	72	35
2	3	-4	126,424	126,429	0,02	1,469	36	37
4	2	2	128,108	128,070	0,15	1,452	82	44
5	2	-3	133,680	133,676	0,01	1,398	76	55
5	0	3	137,441	137,451	0,04	1,364	48	27
3	2	5	138,920	138,933	0,05	1,352	42	6

Tabelle B.4 PdCr₂(P₂O₇)₂. Indizierung einer Guinieraufnahme (Abbildung B.5) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	l	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	d-Wert	I _{calc} ^{a)}	Iobs
1	0	-1	22,291	22,266	0,02	7,931	467	346
0	0	2	28,752	28,753	0,00	6,156	346	261
0	1	1	37,103	37,142	0,05	4,778	208	190
1	1	0	40,614	40,616	0,00	4,369	202	182
1	0	-3	42,348	42,387	0,06	4,192	55	47
0	1	2	44,797	44,769	0,05	3,965	1000	1000
1	1	-2	45,999	46,031	0,05	3,863	233	205
2	1	-1	54,270	54,258	0,02	3,283	137	140
1	1	-3	54,666	54,678	0,02	3,260	64	48
0	1	3	55,395	55,399	0,01	3,218	150	109
0	0	4	57,969	57,981	0,03	3,078	46	48
2	1	1	60,918	60,913	0,01	2,932	102	77
2	0	-4	61,689	61,673	0,03	2,896	114	71
2	1	-3	62,425	62,434	0,02	2,863	135	100
3	0	-1	63,368	63,395	0,06	2,821	355	283
1	1	3	64,347	64,385	0,09	2,779	220	230
1	1	-4	65,605	65,616	0,03	2,727	83	69
0	1	4	67,675	67,687	0,03	2,646	35	51
1	0	-5	69,588	69,599	0,03	2,576	39	15
2	1	-4	70,938	70,970	0,08	2,528	91	78
1	2	-1	72,856	72,891	0,09	2,464	87	97
1	2	1	75,511	75,522	0,03	2,380	109	91
3	1	-3	76,352	76,373	0,06	2,355	33	24
3	1	1	80,202	80,225	0,06	2,246	67	47
1	2	-3	81,783	81,795	0,04	2,205	48	26
1	0	5	82,585	82,556	0,08	2,184	115	117
2	2	-2	83,161	83,186	0,07	2,170	67	64
4	0	-2	85,171	85,187	0,05	2,121	123	87
3	1	2	87,814	87,818	0,01	2,060	57	38
1	2	3	88,871	88,879	0,02	2,037	129	104
1	1	5	89,982	90,009	0,08	2,013	27	20
4	1	-3	94,166	94,151	0,05	1,928	32	29
4	1	0	96,242	96,271	0,10	1,889	43	43
3	1	4	108,448	108,474	0,09	1,690	20	27
1	0	7	113,333	113,335	0,01	1,623	60	22
0	2	6	114,407	114,395	0,04	1,609	105	62
3	2	3	116,263	116,235	0,10	1,585	36	13
1	3	3	120,875	120,876	0,00	1,530	39	15
1	2	-7	123,830	123,806	0,10	1,497	73	27
4	2	2	126,774	126,756	0,07	1,466	77	30
5	2	-3	131,926	131,915	0,04	1,414	80	19
5	2	-1	132,832	132,815	0,07	1,406	40	23

Tabelle B.5 PdFe₂(P₂O₇)₂. Indizierung einer Guinieraufnahme (Abbildung B.6) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	l	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
1	0	-1	21,733	21,825	0,08	8,134	265	175
0	0	2	28,108	28,191	0,09	6,296	228	188
1	0	1	28,539	28,610	0,08	6,201	139	131
0	1	1	36,431	36,475	0,06	4,866	101	75
1	1	0	39,741	39,765	0,04	4,464	94	99
1	1	-1	40,084	40,144	0,09	4,426	39	40
0	1	2	43,922	43,943	0,03	4,043	1000	1000
1	1	-2	45,128	45,140	0,02	3,937	112	98
1	1	2	52,309	52,303	0,01	3,404	91	93
2	1	0	54,320	54,329	0,02	3,280	83	130
2	1	1	59,238	59,249	0,02	3,013	47	41
2	0	-4	60,390	60,397	0,02	2,957	46	30
3	0	-1	61,430	61,465	0,08	2,908	309	233
1	1	3	62,760	62,783	0,05	2,848	248	221
1	1	-4	64,318	64,301	0,04	2,781	37	28
0	1	4	66,217	66,248	0,07	2,703	44	43
2	1	2	66,985	67,007	0,05	2,673	30	40
0	2	0	67,908	67,935	0,07	2,638	69	68
2	1	-4	69,491	69,503	0,03	2,579	153	137
1	2	-1	71,504	71,491	0,03	2,509	35	32
1	2	1	74,000	73,988	0,03	2,427	160	151
3	1	-3	74,502	74,497	0,01	2,411	79	106
1	1	-5	76,432	76,436	0,01	2,353	60	45
3	1	1	77,785	77,794	0,03	2,313	102	100
2	2	-2	81,466	81,471	0,02	2,213	122	84
4	0	-2	82,609	82,611	0,01	2,183	80	82
2	0	-6	84,453	84,430	0,07	2,138	38	29
1	2	3	86,922	86,899	0,07	2,080	85	99
1	1	5	87,713	87,738	0,08	2,062	42	35
4	0	-4	89,025	89,048	0,07	2,033	90	78
0	2	4	89,570	89,588	0,05	2,021	175	165
4	1	0	93,240	93,237	0,01	1,946	50	74
3	1	3	94,360	94,337	0,07	1,924	23	16
0	3	2	108,194	108,182	0,04	1,693	95	106
3	2	3	113,017	113,016	0,00	1,627	45	28
1	1	7	116,184	116,190	0,02	1,586	25	20
1	3	3	118,312	118,312	0,00	1,560	47	21
5	1	-5	118,794	118,783	0,04	1,554	53	32
1	2	-7	121,172	121,156	0,06	1,527	61	27
2	3	-4	122,543	122,548	0,02	1,511	55	44
4	2	2	122,978	122,979	0,00	1,506	63	52
5	0	3	131 211	131 202	0.03	1 421	45	12

Tabelle B.6 PdIn₂(P₂O₇)₂. Indizierung einer Guinieraufnahme (Abbildung B.7) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^2\theta_{calc} - \sin^2\theta_{obs}| \cdot 1000$.

B.2.2 $A^{II}V^{III}{}_{2}(P_{2}O_{7})_{2}$ (A^{II} : Cr, Fe) und $A^{II}Cr^{III}{}_{2}(P_{2}O_{7})_{2}$ (A^{II} : Mg, Fe)

Tabelle B.7 $\mathbf{Cr^{II}V^{III}}_{2}(\mathbf{P_{2}O_{7}})_{2}$. Indizierung einer Guinieraufnahme (Abbildung B.8) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	I _{obs}
0	1	-1	26,473	26,499	0,03	6,683	407	460
1	1	0	40,096	40,108	0,02	4,425	139	135
1	0	-1	42,996	42,990	0,01	4,129	180	183
1	0	1	44,500	44,551	0,08	3,992	232	240
1	-1	-1	45,040	45,061	0,03	3,944	273	257
1	-1	1	46.611	46,592	0.03	3.813	226	239
0	3	1	47.269	47.312	0.07	3.761	64	58
0	3	-1	47.652	47,692	0.07	3.731	39	17
1	-2	-1	51,021	51,032	0,02	3,488	159	140
1	-2	1	52,539	52,552	0,03	3,389	115	227
0	4	0	55,845	55,811	0,07	3,192	111	166
1	3	0	56,604	56,621	0,04	3,150	232	284
1	0	-2	57,750	57,720	0,06	3,089	44	40
1	-1	-2	59,265	59,239	0,05	3,012	1000	1000
0	4	1	60,141	60,089	0,11	2,969	263	278
0	4	-1	60,550	60,559	0,02	2,949	317	692
1	-1	2	61,694	61,658	0,08	2,896	750	1000
1	4	-1	71,487	71,505	0,05	2,509	35	16
0	4	2	71,982	72,014	0,08	2,493	133	110
0	4	-2	72,678	72,683	0,01	2,470	84	67
1	-1	-3	78,108	78,053	0,15	2,304	44	58
1	-5	0	79,832	79,829	0,01	2,256	227	152
1	-1	3	80,976	80,966	0,03	2,226	69	75
2	2	0	81,489	81,515	0,07	2,212	170	214
1	4	-2	81,776	81,774	0,01	2,205	42	40
2	-2	1	85,189	85,275	0,25	2,120	85	94
1	3	-3	88,847	88,864	0,05	2,037	50	60
2	3	-1	90,234	90,260	0,08	2,007	109	120
0	0	4	91,954	91,945	0,03	1,972	111	170
2	2	-2	92,701	92,662	0,12	1,957	57	44
1	-5	2	93,750	93,759	0,03	1,936	44	29
1	-6	1	96,719	96,748	0,10	1,880	60	41
1	7	0	107,978	108,011	0,12	1,697	196	130
1	3	4	110,734	110,709	0,09	1,657	82	47
2	3	-3	111,672	111,634	0,14	1,645	23	18
2	-3	3	115,089	115,127	0,14	1,600	18	54
2	-2	-4	123,039	123,004	0,13	1,506	78	67
2	2	-4	123,888	123,888	0,00	1,496	48	31
2	-6	-2	124,337	124,306	0,12	1,491	101	66
0	8	-2	125,938	125,907	0,12	1,474	59	59
3	1	-2	126,124	126,115	0,03	1,472	127	12
1	-5	4	126,812	126,831	0,08	1,465	49	41
2	-6	2	127,545	127,507	0,15	1,458	138	38
2	6	2	127,984	128,014	0,11	1,453	67	74
2	-2	4	128,536	128,511	0,10	1,448	107	100
3	1	2	129,750	129,733	0,07	1,436	109	74
2	7	-1	131,493	131,462	0,13	1,419	35	49
1	4	-5	137,769	137,809	0,16	1,361	67	11
3	-2	-3	139,232	139,279	0,19	1,349	49	24
0	5	5	139,386	139,448	0,25	1,348	31	31

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
0	0	1	22,634	22,592	0,04	7,812	9	8
0	1	-1	26,468	26,522	0,05	6,684	375	311
0	1	1	26,649	26,692	0,04	6,639	381	313
0	2	0	27,750	27,712	0,04	6,377	72	65
1	1	0	39,791	39,770	0,03	4,458	212	130
1	0	1	43,575	43,579	0,01	4,075	182	138
1	0	-1	43,742	43,699	0,07	4,060	192	142
1	-1	1	45,683	45,658	0,04	3,889	256	248
1	-1	-1	45,949	45,908	0,07	3,867	241	244
0	3	-1	47,461	47,437	0,04	3,746	76	63
0	3	1	47,770	47,807	0,07	3,722	66	58
1	-2	1	51,682	51,665	0,03	3,444	199	142
1	-2	-1	52,014	51,985	0,05	3,423	140	97
0	4	0	55,918	55,893	0,05	3,188	157	156
1	3	0	56,304	56,322	0,04	3,167	348	248
1	0	2	58,965	58,980	0,03	3,027	48	42
1	-1	2	60,530	60,519	0,02	2,950	1000	1000
1	-1	-2	60,940	60,929	0,02	2,931	927	910
0	1	-3	70,179	70,191	0,03	2,555	79	52
0	1	3	70,395	70,401	0,02	2,547	53	70
0	4	-2	72,400	72,429	0,07	2,479	149	66
1	-5	0	80,005	80,001	0,01	2,251	276	160
2	2	0	80,849	80,840	0,03	2,229	228	123
2	-2	1	83,896	83,926	0,09	2,151	95	64
2	-2	-1	84,205	84,206	0,00	2,144	124	65
2	3	1	90,327	90,318	0,03	2,005	96	132
1	-5	2	92,646	92,645	0,00	1,958	102	113
0	0	4	92,913	92,894	0,06	1,953	152	121
1	-5	-2	93,388	93,404	0,05	1,943	72	129
2	2	-2	93,823	93,823	0,00	1,935	83	87
1	-6	1	96,202	96,199	0,01	1,890	65	20
1	7	0	107,772	107,771	0,00	1,700	252	102
1	3	-4	110,263	110,266	0,01	1,664	98	105
2	-6	2	125,822	125,816	0,02	1,476	131	122
2	-2	4	125,894	125,895	0,01	1,475	91	122
3	1	-2	127.418	127.422	0.02	1.459	145	203

Tabelle B.8 Fe^{II}V^{III}₂(P₂O₇)₂. Indizierung einer Guinieraufnahme (Abbildung B.9) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^2\theta_{calc} - \sin^2\theta_{obs}| \cdot 1000$.

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	d-Wert	I _{calc} ^{a)}	$I_{\rm obs}$
0	0	1	22,948	22,925	0,02	7,705	349	209
0	1	-1	26,998	26,945	0,05	6,553	531	491
0	2	1	36,066	36,025	0,06	4,914	179	128
1	1	0	40,267	40,232	0,05	4,406	57	68
1	0	-1	43,933	43,918	0,02	4,042	242	172
1	0	1	44,520	44,509	0,02	3,990	302	179
1	-1	-1	46,040	46,041	0,00	3,860	162	132
1	1	-1	46,255	46,251	0,01	3,842	64	118
1	-1	1	46,740	46,712	0,05	3,803	487	309
0	3	1	47,843	47,853	0,02	3,716	118	30
0	3	-1	48,244	48,234	0,02	3,686	69	40
1	-2	-1	52,070	52,058	0,02	3,419	196	182
1	3	0	56,857	56,842	0,03	3,136	224	273
1	-1	-2	61,003	60,995	0,02	2,928	1000	914
1	3	-1	61,439	61,435	0,01	2,908	530	1000
1	-1	2	62,080	62,095	0,03	2,878	803	599
2	2	0	81,849	81,863	0,04	2,203	173	218
1	4	-2	83,242	83,252	0,03	2,168	70	48
1	-5	-2	93,314	93,321	0,02	1,945	106	35
1	7	0	108,706	108,704	0,01	1,686	217	148

Tabelle B.9 MgCr^{III}₂(P₂O₇)₂. Indizierung einer Guinieraufnahme (Abbildung B.11) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^2\theta_{calc} - \sin^2\theta_{obs}| \cdot 1000$.

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. Der stärkste nicht beobachtete Reflex im untersuchten Winkelbereich besitzt eine relative Intensität von unter 16.

Tabelle B.10 $\operatorname{Fe}^{II}\operatorname{Cr}^{III}_{2}(\operatorname{P}_{2}\operatorname{O}_{7})_{2}$. Indizierung einer Guinieraufnahme (Abbildung B.13) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.

h	k	l	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
0	0	1	22,735	22,826	0,08	7,777	40	29
0	1	1	26,587	26,463	0,12	6,654	368	419
0	1	-1	26,822	26,813	0,01	6,596	452	364
0	2	1	35,948	36,008	0,08	4,930	36	26
1	1	0	39,981	40,013	0,05	4,437	148	192
1	0	-1	43,695	43,737	0,07	4,064	199	202
1	0	1	44,113	44,087	0,04	4,026	270	183
1	-1	-1	45,870	45,869	0,00	3,874	255	223
1	-1	1	46,408	46,420	0,02	3,830	234	227
0	3	1	47,771	47,831	0,11	3,722	61	49
0	3	-1	48,172	48,211	0,07	3,691	37	31
1	-2	-1	51,976	51,954	0,04	3,425	178	224
1	3	0	56,588	56,607	0,04	3,151	276	416
1	-1	-2	60,686	60,669	0,04	2,943	1000	1000
1	-1	2	61,515	61,509	0,01	2,904	828	813
1	7	0	108,519	108,507	0,04	1,689	195	145

B.2.3 $Cr^{II}Ti^{III}_{2}(P_2O_7)_2$

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	d-Wert	I _{calc} ^{a)}	Iobs
0	0	1	22,061	22,102	0,03	8,014	198	258
0	1	0	28,726	28,756	0,03	6,161	123	129
0	1	1	29,415	29,346	0,08	6,017	73	120
1	0	0	33,989	34,008	0,02	5,212	36	42
1	0	1	40,097	40,098	0,00	4,425	143	153
1	1	0	43,791	43,786	0,01	4,055	236	350
0	0	2	44,330	44,376	0,08	4,007	325	564
1	-1	0	45,473	45,426	0,08	3,907	1000	1000
1	-1	-1	46,370	46,405	0,06	3,833	61	64
1	1	-1	54,032	54,059	0,05	3,297	149	212
1	0	-2	56,873	56,896	0,05	3,136	56	82
0	2	0	57,915	57,905	0,02	3,080	18	23
0	1	-2	61,161	61,161	0,00	2,920	67	85
1	2	1	62,726	62,729	0,01	2,849	268	662
1	2	2	66,989	66,992	0,01	2,673	68	71
2	0	0	68,756	68,779	0,06	2,606	70	71
1	1	-2	70,439	70,416	0,06	2,546	85	116
1	0	3	74,747	74,777	0,08	2,404	52	60
2	-1	-1	76,761	76,793	0,09	2,343	37	43
1	2	-1	76,940	76,963	0,06	2,338	16	23
1	-2	-3	81,664	81,701	0,11	2,208	60	72
0	3	1	82,625	82,629	0,01	2,183	89	92
0	1	4	84,364	84,394	0,09	2,140	115	128
2	2	1	86,227	86,259	0,10	2,096	35	65
1	3	1	88,326	88,334	0,02	2,049	58	61
2	2	0	89,293	89,301	0,02	2,027	30	44
0	0	4	90,437	90,397	0,12	2,003	54	50
2	-2	-1	90,900	90,876	0,08	1,993	36	23
2	-2	0	92,872	92,880	0,02	1,953	118	97
1	2	4	93,813	93,817	0,01	1,935	20	25
1	0	4	96,341	96,349	0,02	1,887	34	29
1	-2	-4	97,447	97,445	0,01	1,867	34	34
1	3	4	106,609	106,592	0,06	1,717	19	15
0	1	5	107,443	107,438	0,02	1,704	30	17
3	1	1	108,079	108,066	0,05	1,695	21	39
3	1	0	108,521	108,534	0,05	1,689	51	35
1	2	-3	111,308	111,283	0,09	1,650	35	32
2	3	0	111,784	111,781	0,01	1,643	72	34
0	4	1	113,362	113,384	0,08	1,622	38	29
3	-2	-1	123,141	123,119	0,08	1,504	33	23
1	4	0	124,270	124,254	0,06	1,492	15	28
0	3	-3	132,876	132,890	0,05	1,406	20	12
2	4	3	133,578	133,566	0,05	1,399	24	12

Tabelle B.11 *trikl.*-Cr^{II}Ti^{III}₂(P₂O₇)₂. Indizierung einer Guinieraufnahme (Abbildung B.14) mit beobachteten und berechneten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
1	1	1	26,824	26,702	0,12	6,596	171	172
0	0	2	28,679	28,568	0,12	6,171	89	72
2	0	1	29,864	29,842	0,03	5,927	44	30
3	0	0	39,375	39,316	0,09	4,505	163	172
3	0	1	41,944	41,941	0,00	4,232	1000	1000
2	2	1	47,795	47,750	0,08	3,720	71	73
3	0	2	48,881	48,852	0,05	3,638	183	203
2	0	3	50,643	50,633	0,02	3,514	6	10
3	1	2	55,642	55,587	0,11	3,204	6	8
3	0	3	58,745	58,767	0,05	3,038	225	216
3	2	1	59,360	59,347	0,03	3,007	3	5
4	1	0	60,553	60,517	0,08	2,949	17	19
4	1	1	62,300	62,317	0,04	2,868	6	15
3	3	0	68,897	68,923	0,06	2,601	235	174
3	0	4	70,443	70,441	0,00	2,545	331	322
3	3	2	74,976	75,005	0,08	2,397	12	17
4	1	4	84,709	84,725	0,05	2,132	16	18
6	0	2	85,381	85,393	0,03	2,116	29	37
2	2	5	86,671	86,709	0,11	2,086	24	27
5	2	2	88,625	88,604	0,06	2,042	5	6
6	0	3	91,773	91,774	0,00	1,975	40	38
3	2	5	94,018	94,046	0,09	1,931	5	6
4	1	5	96,037	96,078	0,14	1,893	26	50
6	0	4	100,183	100,222	0,13	1,819	196	178
7	1	1	103,076	103,030	0,16	1,771	5	14
6	3	0	107,571	107,538	0,11	1,702	16	28
6	3	1	108,673	108,682	0,03	1,686	21	72
6	3	2	111,936	111,915	0,07	1,641	55	126
5	2	5	112,994	113,009	0,06	1,627	7	12
3	3	6	114,053	114,103	0,18	1,613	27	24
6	3	3	117,239	117,265	0,09	1,573	32	46
6	0	6	121,871	121,935	0,24	1,519	26	21
9	0	0	123,424	123,445	0,08	1,501	27	39
6	3	4	124,425	124,419	0,02	1,490	32	63
9	0	2	127,441	127,398	0,17	1,459	19	22
6	3	5	133,331	133,364	0,13	1,401	24	45
5	2	7	137,178	137,144	0,14	1,367	9	13
1	1	9	139,069	139,039	0,12	1,350	18	15
3	3	8	141,927	141,904	0,09	1,327	93	66
6	3	6	143,830	143,778	0,22	1,311	5	21
6	6	0	145,261	145,245	0,07	1,300	94	41
6	6	2	148,983	149,020	0,16	1,272	36	16

Tabelle B.12 *hex.*-Cr^{II}Ti^{III}₂(P₂O₇)₂. Indizierung einer Guinieraufnahme (Abbildung B.15) mit beobachteten und berechneten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

B.2.4 $A^{II}Fe^{III}{}_{2}(P_{2}O_{7})_{2}$ (A^{II} : Mg, Co, Zn)

h	k	l	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
0	1	1	22,677	22,598	0,07	7,797	101	76
0	2	0	28,978	28,964	0,02	6,108	348	250
1	1	1	30,178	30,145	0,04	5,866	88	79
2	0	0	39,845	39,803	0,06	4,452	70	84
1	0	2	40,306	40,313	0,01	4,402	192	203
2	1	0	42,438	42,415	0,04	4,183	503	543
1	1	2	42,873	42,855	0,03	4,141	1000	1000
2	1	1	45,961	45,948	0,02	3,866	77	74
2	2	0	49,443	49,471	0,05	3,598	191	199
1	2	2	49,820	49,812	0,01	3,571	331	306
0	1	3	54,765	54,766	0,00	3,254	33	33
1	0	3	56,487	56,458	0,06	3,157	10	13
1	1	3	58,383	58,410	0,06	3,056	16	60
2	3	0	59,408	59,380	0,06	3,005	85	116
1	3	2	59,726	59,721	0,01	2,989	225	228
2	2	2	60,896	60,902	0,01	2,933	2	10
3	1	1	64,477	64,465	0,03	2,774	16	23
3	0	2	70,013	70,020	0,02	2,561	305	294
0	0	4	70,836	70,841	0,01	2,532	128	134
2	4	0	71,231	71,242	0,03	2,518	207	250
1	4	2	71,502	71,522	0,05	2,509	304	301
2	0	4	81,932	81,922	0,03	2,201	2	10
1	4	3	82,170	82,172	0,01	2,195	14	16
1	5	2	84,536	84,515	0,06	2,136	34	48
2	5	1	86,257	86,286	0,09	2,095	21	28
3	4	1	86,801	86,797	0,01	2,083	14	12
2	2	4	87,345	87,358	0,04	2,070	37	36
2	4	3	89,717	89,700	0,05	2,018	12	20
3	4	2	92,443	92,433	0,03	1,962	32	30
0	4	4	93,098	93,123	0,08	1,949	4	6
2	3	4	93,758	93,754	0,01	1,936	21	26
1	5	3	93,972	93,964	0,03	1,932	36	37
1	2	5	96,775	96,757	0,06	1,879	10	11
3	5	1	98,159	98,159	0,00	1,854	37	48
2	5	3	100,820	100,821	0,01	1,808	39	29
4	4	0	101,396	101,382	0,05	1,799	117	113
2	4	4	102,211	102,223	0,04	1,785	264	254
5	0	2	109,140	109,130	0,03	1,680	22	14
5	1	2	110,254	110,282	0,10	1,664	42	30

Tabelle B.13 MgFe^{III}₂(P₂O₇)₂. Indizierung einer Guinieraufnahme (Abbildung B.16) mit beobachteten und berechneten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
0	1	1	22,628	22,655	0,02	7,814	276	220
0	2	0	28,886	28,906	0,02	6,127	186	173
1	1	1	30,137	30,134	0,00	5,874	276	242
2	0	0	39,832	39,852	0,03	4,454	144	172
1	0	2	40,258	40,282	0,04	4,407	358	386
2	1	0	42,410	42,440	0,05	4,186	517	606
1	1	2	42,812	42,819	0,01	4,147	1000	1000
2	1	1	45,925	45,906	0,03	3,869	165	141
0	3	1	46,915	46,885	0,05	3,789	20	20
2	2	0	49,378	49,373	0,01	3,602	101	112
1	2	2	49,726	49,713	0,02	3,578	167	162
0	1	3	54,677	54,709	0,06	3,259	71	72
1	0	3	56,411	56,388	0,05	3,161	11	14
1	1	3	58,298	58,297	0,00	3,061	46	91
2	3	0	59,295	59,276	0,04	3,010	83	102
1	3	2	59,590	59,586	0,01	2,996	231	214
2	2	2	60,812	60,775	0,08	2,937	3	6
3	1	1	64,441	64,433	0,02	2,775	47	43
2	0	3	66,476	66,472	0,01	2,693	21	13
2	1	3	68,110	68,112	0,00	2,630	21	13
3	0	2	69,969	69,981	0,03	2,562	397	361
0	0	4	70,730	70,741	0,03	2,535	170	193
2	4	0	71,067	71,081	0,03	2,524	283	296
1	4	2	71,318	71,291	0,07	2,515	436	434
1	4	3	81,978	81,959	0,05	2,200	14	15
1	5	2	84,300	84,319	0,05	2,142	36	39
2	5	1	86,037	86,019	0,05	2,100	39	40
3	4	1	86,648	86,659	0,03	2,086	14	5
2	2	4	87,217	87,209	0,02	2,073	13	8
4	2	1	88,280	88,269	0,03	2,050	10	12
2	4	3	89,533	89,539	0,02	2,022	13	13
3	4	2	92,282	92,290	0,03	1,965	64	50
0	4	4	92,888	92,880	0,03	1,953	13	15
1	5	3	93,729	93,730	0,00	1,937	54	56
3	5	1	97,952	97,961	0,03	1,858	58	52
4	4	0	101,255	101,263	0,02	1,801	150	130
2	4	4	102.009	102.023	0.05	1 789	333	277

Tabelle B.14 CoFe^{III}₂(P₂O₇)₂. Indizierung einer Guinieraufnahme (Abbildung B.18) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

				•				
h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	$I_{\rm obs}$
0	1	1	22,621	22,714	0,08	7,816	276	261
0	2	0	28,885	28,949	0,07	6,127	185	132
1	1	1	30,120	30,222	0,12	5,877	276	224
1	0	2	40,235	40,236	0,00	4,410	358	380
1	1	2	42,789	42,782	0,01	4,149	1000	1000
2	1	1	45,890	45,879	0,02	3,872	165	100
2	2	0	49,348	49,367	0,04	3,605	101	89
1	2	2	49,706	49,698	0,02	3,579	166	125
1	3	1	51,036	51,051	0,03	3,487	18	26
0	1	3	54,652	54,670	0,04	3,260	71	80
1	1	3	58,268	58,279	0,02	3,062	46	19
1	3	2	59,573	59,592	0,04	2,996	231	245
3	1	1	64,387	64,384	0,01	2,778	47	33
3	0	2	69,912	69,917	0,01	2,564	397	376
1	4	2	71,302	71,300	0,01	2,516	435	477
1	5	2	84,286	84,292	0,02	2,142	36	37
2	5	1	86,015	86,027	0,03	2,101	39	34
0	5	3	91,340	91,310	0,09	1,984	36	34
3	4	2	92,235	92,222	0,04	1,966	64	51
1	5	3	93,707	93,706	0,00	1,937	54	47
3	5	1	97,912	97,916	0,02	1,859	58	29
4	4	0	101,190	101,185	0,02	1,802	150	94
2	4	4	101,966	101,987	0,07	1,789	333	237
5	1	1	105,188	105,215	0,09	1,738	16	12
4	1	4	110,644	110,648	0,02	1,659	30	17
4	5	1	112,968	112,974	0,02	1,627	38	51
4	3	4	119,236	119,220	0,06	1,549	25	11
0	8	0	120,745	120,744	0,00	1,531	70	43
6	0	0	124,876	124,865	0,04	1,486	39	29
5	4	2	125,949	125,958	0,03	1,474	117	26
4	4	4	126,454	126,429	0,10	1,469	99	47
1	4	6	127,294	127,301	0,03	1,460	110	63

Tabelle B.15 ZnFe^{III}₂(P₂O₇)₂. Indizierung einer Guinieraufnahme (Abbildung B.19) mit beobachteten und berechneten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

B.3 Lageparameter, Besetzungsfaktoren und interatomare Abstände

B.3.1 $Cu^{II}M^{III}{}_{2}(P_{2}O_{7})_{2}, Pd^{II}M^{III}{}_{2}(P_{2}O_{7})_{2}$ (M^{III} : V, Cr, Fe, In) und *trikl.*-Cr^{II}Ti^{III}{}_{2}(P_{2}O_{7})_{2}

Tabelle B.16	Atomlagen un	d isotrope	Auslenkungsparamete	er für Cu ^{ll} V	$^{\text{III}}_{2}(P_{2}O_{7})_{2}.$
--------------	--------------	------------	---------------------	---------------------------	--------------------------------------

Atom	Lage	x	У	z	$U_{ m eq}$ / ${ m \AA}^2$ a)
Cul	2 <i>a</i>	0	0	0	0,0103(1)
V1	4e	0,66235(5)	0,25097(7)	0,89735(3)	0,0065(1)
P1	4e	0,72172(8)	0,7249(1)	0,06448(5)	0,0065(1)
P2	4 <i>e</i>	0,04031(8)	0,7301(1)	0,22685(5)	0,0069(1)
O1	4e	0,7729(2)	0,9383(3)	0,9950(1)	0,0086(3)
O2	4e	0,8430(2)	0,7640(3)	0,1851(1)	0,0089(3)
O3	4 <i>e</i>	0,1005(2)	0,7763(3)	0,1233(1)	0,0089(3)
O4	4e	0,7593(2)	0,4606(3)	0,0276(2)	0,0112(4)
05	4e	0,1015(2)	0,9294(3)	0,3119(2)	0,0124(4)
O6	4 <i>e</i>	0,0783(2)	0,4572(3)	0,2654(1)	0,0109(4)
07	4 <i>e</i>	0,5496(2)	0,7707(3)	0,0700(2)	0,0125(4)

 $\overline{U_{\text{eq}} = (1/3)\Sigma_{\text{i}}\Sigma_{\text{j}}U_{\text{ij}}a_{\text{i}}^{*}a_{\text{j}}^{*}a_{\text{i}}\cdot a_{\text{j}}}$

Tabelle B.17 Anisotrope Auslenkungsparameter für $Cu^{II}V^{III}_{2}(P_{2}O_{7})_{2} / Å^{2}$.

Atom	U_{11}	<i>U</i> ₂₂	U_{33}	U_{12}	U_{13}	U ₂₃
Cu1	0,0060(2)	0,0135(2)	0,0115(2)	0,0008(2)	0,0026(2)	0,0056(2)
V1	0,0060(2)	0,0072(2)	0,0067(2)	0,0001(1)	0,0022(2)	-0,0002(1)
P1	0,0053(3)	0,0079(3)	0,0064(3)	-0,0003(2)	0,0020(2)	0,0004(2)
P2	0,0067(3)	0,0078(3)	0,0060(3)	-0,0003(2)	0,0017(2)	0,0005(2)
01	0,0057(8)	0,0105(8)	0,0098(9)	0,0006(6)	0,0026(7)	0,0026(6)
O2	0,0066(8)	0,0139(9)	0,0058(8)	0,0002(6)	0,0014(6)	-0,0014(6)
O3	0,0067(8)	0,0121(8)	0,0078(8)	0,0014(6)	0,0018(7)	0,0035(6)
O4	0,0138(9)	0,0096(8)	0,0092(9)	0,0001(7)	0,0015(7)	-0,0004(6)
O5	0,0141(9)	0,0116(8)	0,0104(9)	-0,0025(7)	0,0018(7)	-0,0032(7)
O6	0,0122(8)	0,0093(8)	0,0108(9)	0,0011(6)	0,0024(7)	0,0024(6)
07	0,0071(8)	0,0185(9)	0,0125(1)	0,0008(7)	0,0039(7)	0,0026(7)

Atom	Lage	x	У	Z	$U_{ m eq}$ / ${ m \AA}^2$ a)
Cu1	2 <i>a</i>	0	0	0	0,0087(1)
Cr1	4 <i>e</i>	0,66449(3)	0,25190(4)	0,89777(2)	0,0051(1)
P1	4 <i>e</i>	0,71920(5)	0,72564(7)	0,06416(3)	0,0054(1)
P2	4 <i>e</i>	0,04067(5)	0,73010(7)	0,22792(3)	0,0054(1)
O1	4 <i>e</i>	0,7689(1)	0,9421(2)	0,99279(9)	0,0077(2)
O2	4 <i>e</i>	0,8421(2)	0,7741(2)	0,18505(9)	0,0081(2)
O3	4 <i>e</i>	0,1018(2)	0,7756(2)	0,12382(9)	0,0082(2)
O4	4 <i>e</i>	0,7632(2)	0,4591(2)	0,03003(9)	0,0091(2)
O5	4 <i>e</i>	0,1060(2)	0,9298(2)	0,31521(9)	0,0111(2)
O6	4 <i>e</i>	0,0765(2)	0,4525(2)	0,26477(9)	0,0093(2)
07	4 <i>e</i>	0,5451(2)	0,7700(2)	0,0682(1)	0,0112(2)

Tabelle B.18 Atomlagen und isotrope Auslenkungsparameter für Cu^{II}Cr^{III}2(P2O7)2.

 $\overline{}^{\mathrm{a})} U_{\mathrm{eq}} = (1/3) \Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} U_{\mathrm{ij}} a_{\mathrm{i}}^{*} a_{\mathrm{j}}^{*} a_{\mathrm{i}} a_{\mathrm{j}}^{*}$

Tabelle B.19 Anisotrope Auslenkungsparameter für $Cu^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ / Å².

	-	•	-				
Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U_{12}	U_{13}	U_{23}	
Cu1	0,0050(1)	0,0113(1)	0,0095(1)	0,00055(9)	0,00132(9)	0,00507(8)	
Crl	0,0046(1)	0,0048(1)	0,0054(1)	0,00022(7)	0,00086(9)	0,00011(7)	
P1	0,0045(2)	0,0055(2)	0,0059(2)	-0,0002(1)	0,0009(1)	0,0002(1)	
P2	0,0054(2)	0,0053(2)	0,0051(2)	-0,0004(1)	0,0006(1)	0,0001(1)	
01	0,0062(5)	0,0076(5)	0,0093(4)	0,0003(4)	0,0021(4)	0,0032(4)	
02	0,0053(5)	0,0116(5)	0,0066(4)	0,0005(4)	0,0007(4)	-0,0008(3)	
03	0,0066(5)	0,0107(5)	0,0076(4)	0,0013(4)	0,0027(4)	0,0034(4)	
04	0,0106(5)	0,0063(5)	0,0085(4)	0,0007(4)	-0,0001(4)	-0,0010(3)	
05	0,0125(5)	0,0088(5)	0,0100(5)	-0,0021(4)	-0,0001(4)	-0,0035(4)	
06	0,0118(5)	0,0065(5)	0,0083(4)	0,0010(4)	0,0011(4)	0,0017(4)	
07	0,0057(5)	0,0144(6)	0,0144(5)	0,0002(4)	0,0042(4)	0,0021(4)	

Atom	Lage	x	У	z	$U_{ m eq}$ / ${ m \AA}^2$ a)
Pd1	2 <i>a</i>	0	0	0	0,0125(2)
Cr1	4 <i>e</i>	0,6609(2)	0,2560(3)	0,8961(1)	0,0100(3)
P1	4e	0,7173(3)	0,7272(5)	0,0634(2)	0,0110(5)
P2	4 <i>e</i>	0,0416(3)	0,7264(5)	0,2274(2)	0,0103(5)
01	4 <i>e</i>	0,7603(7)	0,948(1)	0,992(5)	0,012(1)
O2	4e	0,8444(7)	0,772(1)	0,182(5)	0,011(1)
O3	4 <i>e</i>	0,1057(7)	0,762(1)	0,125(5)	0,013(1)
O4	4 <i>e</i>	0,7570(7)	0,464(1)	0,027(5)	0,015(1)
O5	4e	0,1039(7)	0,929(1)	0,312(5)	0,015(2)
O6	4 <i>e</i>	0,0753(7)	0,452(1)	0,266(5)	0,015(1)
07	4 <i>e</i>	0,5451(7)	0,772(1)	0,072(5)	0,015(1)

Tabelle B.20 Atomlagen und isotrope Auslenkungsparameter für Pd^{II}Cr^{III}₂(P₂O₇)₂.

^{a)} $U_{\text{eq}} = (1/3)\Sigma_{\text{i}}\Sigma_{\text{j}}U_{\text{ij}}a_{\text{i}}^{*}a_{\text{j}}^{*}a_{\text{i}}\cdot a_{\text{j}}$

Tabelle B.21 Anisotrope Auslenkungsparameter für $Pd^{II}Cr^{III}_{2}(P_2O_7)_2 / Å^2$.

	1	U	01				
Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U_{23}	
Pd1	0,0138(4)	0,0087(5)	0,0145(5)	0,0009(4)	0,0034(3)	0,0035(4)	
Cr1	0,0121(6)	0,0062(7)	0,0114(7)	-0,0003(5)	0,0029(5)	0,0001(6)	
P1	0,012(1)	0,007(1)	0,013(1)	0,0006(8)	0,0033(9)	-0,0010(9)	
P2	0,011(1)	0,008(1)	0,011(1)	0,0002(9)	0,0006(8)	0,0012(9)	
01	0,014(3)	0,012(4)	0,011(3)	0,002(2)	0,005(2)	0,001(2)	
02	0,013(3)	0,013(4)	0,007(3)	0,000(2)	0,002(2)	0,000(3)	
03	0,013(3)	0,010(3)	0,013(3)	-0,001(3)	-0,002(2)	0,001(3)	
04	0,015(3)	0,014(4)	0,012(3)	0,002(3)	0,001(2)	-0,004(3)	
05	0,015(3)	0,014(4)	0,011(3)	0,002(2)	-0,003(3)	0,002(3)	
06	0,019(3)	0,008(4)	0,017(3)	0,003(2)	0,005(3)	0,004(3)	
07	0,013(3)	0,016(4)	0,013(3)	-0,001(3)	-0,001(3)	0,000(3)	

Atom	Lage	x	У	Z	$U_{ m eq}$ / ${ m \AA}^2$ a)
Pd1	2 <i>a</i>	0	0	0	0,0072(1)
Fe1	4e	0,65258(4)	0,26138(5)	0,89419(2)	0,0067(1)
P1	4e	0,72034(6)	0,72981(9)	0,06355(4)	0,0064(1)
P2	4e	0,04214(7)	0,72690(9)	0,22457(4)	0,0063(1)
01	4e	0,7635(2)	0,9472(3)	0,9934(1)	0,0091(3)
O2	4e	0,8475(2)	0,7677(3)	0,1813(1)	0,0098(3)
O3	4e	0,1049(2)	0,7612(2)	0,1231(1)	0,0091(3)
O4	4e	0,7528(2)	0,4665(2)	0,0253(1)	0,0113(3)
O5	4e	0,1034(2)	0,9311(3)	0,3081(1)	0,0128(3)
O6	4e	0,0789(2)	0,4567(3)	0,2663(1)	0,0115(3)
07	4 <i>e</i>	0,5530(2)	0,7769(3)	0,0739(1)	0,0132(3)

Tabelle B.22 Atomlagen und isotrope Auslenkungsparameter für Pd^{II}Fe^{III}₂(P₂O₇)₂.

^{a)} $U_{\text{eq}} = (1/3) \Sigma_{\text{i}} \Sigma_{\text{j}} U_{\text{ij}} a_{\text{i}}^* a_{\text{j}}^* a_{\text{i}} a_{\text{j}}$

Tabelle B.23 Anisotrope Auslenkungsparameter für $Pd^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ / $Å^{2}$.

Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	U_{12}	U_{13}	U ₂₃
Pd1	0,0057(1)	0,0083(1)	0,0079(1)	0,00057(6)	0,00221(7)	0,00288(7)
Fe1	0,0067(1)	0,0065(1)	0,0070(1)	0,00008(9)	0,0025(1)	-0,00022(9)
P1	0,0056(2)	0,0066(2)	0,0071(2)	-0,0005(2)	0,0020(2)	0,0000(2)
P2	0,0067(2)	0,0064(2)	0,0058(2)	-0,0002(2)	0,0017(2)	0,0003(2)
01	0,0064(6)	0,0102(6)	0,0111(7)	0,0003(5)	0,0035(5)	0,0033(5)
02	0,0079(7)	0,0131(6)	0,0081(6)	0,0002(5)	0,0018(5)	-0,0012(5)
03	0,0081(6)	0,0118(6)	0,0079(6)	0,0010(5)	0,0032(5)	0,0039(5)
04	0,0141(7)	0,0079(6)	0,0098(6)	0,0009(5)	0,0005(5)	-0,0011(5)
05	0,0141(7)	0,0099(6)	0,0126(7)	-0,0020(5)	0,0012(6)	-0,0035(5)
06	0,0143(7)	0,0084(6)	0,0114(7)	0,0009(5)	0,0030(6)	0,0023(5)
07	0,0079(7)	0,0173(7)	0,0158(7)	0,0000(5)	0,0056(6)	0,0021(5)

Atom	Lage	x	У	z	$U_{ m eq}$ / ${ m \AA}^2$ a)
Pd1	2 <i>a</i>	0	0	0	0,0096(1)
In1	4e	0,65027(3)	0,25850(5)	0,89215(2)	0,0085(1)
P1	4e	0,7260(1)	0,7338(2)	0,06506(8)	0,0084(2)
P2	4 <i>e</i>	0,0386(1)	0,7208(2)	0,22090(8)	0,0085(2)
01	4e	0,7722(3)	0,9427(5)	0,9945(2)	0,0115(6)
O2	4e	0,8513(3)	0,7710(5)	0,1792(2)	0,0110(6)
O3	4 <i>e</i>	0,1018(3)	0,7735(5)	0,1233(2)	0,0122(6)
O4	4 <i>e</i>	0,7520(3)	0,4715(5)	0,0291(2)	0,0153(6)
O5	4e	0,1014(3)	0,9005(6)	0,3100(2)	0,0167(6)
O6	4 <i>e</i>	0,0695(3)	0,4471(5)	0,2514(2)	0,0128(6)
07	4 <i>e</i>	0,5656(3)	0,7934(6)	0,0756(2)	0,0178(7)

Tabelle B.24 Atomlagen und isotrope Auslenkungsparameter für $Pd^{II}In^{III}_{2}(P_2O_7)_2$.

^{a)} $U_{\text{eq}} = (1/3)\Sigma_{\text{i}}\Sigma_{\text{j}}U_{\text{ij}}a_{\text{i}}^{*}a_{\text{j}}^{*}a_{\text{i}}\cdot a_{\text{j}}$

Tabelle B.25 Anisotrope Auslenkungsparameter für $Pd^{II}In^{III}{}_{2}(P_{2}O_{7})_{2}$ / Å².

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Pd1	0,0069(2)	0,0111(2)	0,0102(2)	0,0003(2)	0,0017(1)	0,0034(2)
In1	0,0072(1)	0,0087(1)	0,0090(1)	0,0003(1)	0,0014(1)	-0,0001(1)
P1	0,0072(4)	0,0085(5)	0,0086(5)	-0,0003(4)	0,0011(4)	0,0010(4)
P2	0,0077(4)	0,0088(5)	0,0078(5)	-0,0002(4)	0,0004(4)	0,0006(4)
01	0,0073(1)	0,0148(2)	0,0130(1)	0,0024(1)	0,0039(1)	0,0030(1)
O2	0,0066(1)	0,0157(2)	0,0098(1)	0,0008(1)	0,0009(1)	-0,0018(1)
O3	0,0092(1)	0,0159(2)	0,0107(1)	-0,0013(1)	0,0015(1)	0,0051(1)
O4	0,0213(1)	0,0097(2)	0,0104(1)	0,0003(1)	-0,0026(1)	-0,0002(1)
05	0,0168(1)	0,0161(2)	0,0133(2)	-0,0011(1)	-0,0017(1)	-0,0055(1)
O6	0,0162(1)	0,0097(1)	0,0124(1)	0,0005(1)	0,0040(1)	0,0012(1)
07	0,0097(1)	0,0240(2)	0,0209(2)	0,0040(1)	0,0063(1)	0,0061(1)

Atom	Lage	x	у	Z	$U_{ m eq}$ / ${ m \AA}^2$ a)
Cul	2 <i>a</i>	0	0	0	0,0126(1)
In1	4 <i>e</i>	0,3399(2)	0,2380(3)	0,1191(1)	0,0098(1)
P1	4 <i>e</i>	0,3490(1)	0,2852(1)	-0,09485(4)	0,0099(1)
P2	4 <i>e</i>	-0,0460(1)	0,25655(9)	0,83397(4)	0,0098(1)
01	4 <i>e</i>	0,2431(3)	0,1922(4)	-0,0152(1)	0,0139(3)
O2	4 <i>e</i>	0,1889(3)	0,2764(3)	0,8311(1)	0,0137(3)
O3	4 <i>e</i>	-0,0802(3)	0,0099(3)	0,8854(1)	0,0120(3)
O4	4 <i>e</i>	0,8802(3)	0,4818(4)	0,8815(1)	0,0180(4)
O5	4 <i>e</i>	0,8797(4)	0,2199(4)	0,7473(1)	0,0183(4)
O6	4 <i>e</i>	0,5127(3)	0,1122(3)	0,8804(1)	0,0170(3)
07	4 <i>e</i>	0,4115(3)	0,5579(3)	-0,0844(1)	0,0148(3)

Tabelle B.26 Atomlagen und isotrope Auslenkungsparameter für Cu^{II}In^{III}₂(P₂O₇)₂.

 $\overline{}^{\mathrm{a})} U_{\mathrm{eq}} = (1/3) \Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} U_{\mathrm{ij}} a_{\mathrm{i}}^{*} a_{\mathrm{j}}^{*} a_{\mathrm{i}} a_{\mathrm{j}}^{*}$

Tabelle B.27 Anisotrope Auslenkungsparameter für $Cu^{II}In^{III}_{2}(P_2O_7)_2$ / Å².

	-	-	-		·		
Atom	<i>U</i> ₁₁	U_{22}	U_{33}	U_{12}	<i>U</i> ₁₃	U ₂₃	
Cul	0,0126(2)	0,0146(2)	0,0105(2)	-0,0044(1)	-0,0011(1)	0,0024(1)	
Inl	0,0101(1)	0,0095(1)	0,0097(1)	-0,00057(4)	0,00004(7)	-0,00027(4)	
P1	0,0092(3)	0,0094(3)	0,0110(3)	-0,0007(2)	0,0013(2)	0,0010(2)	
P2	0,0103(3)	0,0099(3)	0,0090(3)	-0,0009(2)	-0,0003(2)	0,0010(2)	
01	0,0144(8)	0,0155(8)	0,0118(7)	-0,0058(7)	0,0004(6)	0,0022(6)	
02	0,0097(8)	0,0190(9)	0,0124(8)	-0,0027(6)	-0,0013(6)	0,0011(5)	
03	0,0120(7)	0,0125(8)	0,0114(7)	-0,0029(5)	-0,0022(5)	0,0028(5)	
04	0,0178(9)	0,0138(8)	0,0223(8)	0,0054(6)	-0,0032(7)	-0,0043(7)	
05	0,0212(1)	0,0241(1)	0,0096(8)	-0,0042(7)	-0,0034(7)	0,0019(6)	
06	0,0135(8)	0,0131(8)	0,0245(8)	0,0030(6)	0,0026(7)	0,0007(6)	
07	0,0150(7)	0,0115(7)	0,0179(7)	-0,0031(6)	0,0023(6)	-0,0012(6)	

Atom	Lage	x	У	Z	$U_{ m eq}$ / ${ m \AA}^2$ ^{a)}
Cr1	1 <i>a</i>	0	0	0	0,0134(2)
Ti1	2 <i>i</i>	0,23588(9)	0,21311(7)	0,23340(6)	0,0077(1)
P1	2 <i>i</i>	0,2936(1)	0,4444(1)	0,81772(8)	0,0082(1)
P2	2 <i>i</i>	0,7507(1)	0,8720(1)	0,34395(8)	0,0081(1)
01	2 <i>i</i>	0,7704(4)	0,7540(3)	0,0244(3)	0,0116(3)
O2	2 <i>i</i>	0,7203(4)	0,6357(3)	0,3370(3)	0,0129(4)
O3	2i	0,0037(4)	0,9503(3)	0,2454(3)	0,0111(3)
O4	2i	0,0893(4)	0,6213(4)	0,7919(3)	0,0155(4)
O5	2 <i>i</i>	0,7629(5)	0,8476(4)	0,5217(3)	0,0159(4)
O6	2i	0,5310(4)	0,0132(4)	0,2482(3)	0,0147(4)
07	2 <i>i</i>	0,4398(4)	0,4837(4)	0,1791(3)	0,0132(4)

Tabelle B.28 Atomlagen und isotrope Auslenkungsparameter für Cr^{II}Ti^{III}₂(P₂O₇)₂-violett.

^{a)} $U_{\text{eq}} = (1/3)\Sigma_{\text{i}}\Sigma_{\text{j}}U_{\text{ij}}a_{\text{i}}^{*}a_{\text{j}}^{*}a_{\text{i}}\cdot a_{\text{j}}$

Tabelle B.29 Anisotrope Auslenkungsparameter für $Cr^{II}Ti^{III}_{2}(P_2O_7)_2$ -violett / Å².

	-	-	-		· ·	
Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Crl	0,0183(3)	0,0139(3)	0,0086(3)	-0,0084(2)	0,0025(2)	-0,0041(2)
Til	0,0081(2)	0,0079(2)	0,0069(2)	-0,0010(1)	-0,0001(1)	-0,0023(1)
P1	0,0092(3)	0,0073(3)	0,0077(3)	-0,0018(2)	0,0005(2)	-0,0022(2)
P2	0,0097(3)	0,0083(3)	0,0060(3)	-0,0012(2)	0,0006(2)	-0,0023(2)
01	0,0160(9)	0,0107(8)	0,0070(8)	-0,0053(6)	0,0014(6)	-0,0015(6)
02	0,021(1)	0,0101(8)	0,0081(8)	-0,0038(7)	0,0007(7)	-0,0035(7)
03	0,0109(8)	0,0130(8)	0,0092(8)	-0,0037(6)	0,0016(6)	-0,0033(7)
04	0,0124(9)	0,0126(9)	0,021(1)	0,0027(7)	0,0000(7)	-0,0060(8)
05	0,021(1)	0,019(10)	0,0082(8)	-0,0037(8)	0,0009(7)	-0,0065(8)
06	0,0127(9)	0,0158(9)	0,0157(9)	0,0035(7)	-0,0020(7)	-0,0058(8)
07	0,0109(8)	0,0144(9)	0,0141(9)	-0,0048(7)	0,0010(7)	-0,0042(7)
		$CuV_2(P_2O_7)_2$	$CuCr_2(P_2O_7)_2$	$PdCr_2(P_2O_7)_2$	$PdFe_2(P_2O_7)_2$	$PdIn_2(P_2O_7)_2$
----------------	-----------------------------	-------------------	--------------------	--------------------	--------------------	--------------------
$[A^{II}O_4]$	A^{II} -O1	1,905(2)	1,917(1)	2,000(5)	2,003(2)	1,996(2)
	A^{II} -O1	1,905(2)	1,917(1)	2,000(5)	2,003(2)	1,996(2)
	A^{II} -O3	1,942(2)	1,932(1)	2,001(6)	2,002(1)	2,005(3)
	A^{II} -O3	1,942(2)	1,932(1)	2,001(6)	2,002(1)	2,005(3)
$[B^{III}O_6]$	$B^{\rm III}$ -O7	1,931(2)	1,911(1)	1,895(6)	1,917(2)	2,068(3)
	$B^{\rm III}$ -O5	1,968(2)	1,919(1)	1,926(7)	1,917(2)	2,079(3)
	$B^{\rm III}$ -O4	1,958(2)	1,954(1)	1,951(6)	1,965(2)	2,086(3)
	$B^{\rm III}$ -O6	1,954(2)	1,940(1)	1,936(6)	1,943(2)	2,092(3)
	$B^{\rm III}$ -O1	2,091(2)	2,027(1)	2,027(6)	2,114(1)	2,213(3)
	<i>B</i> ^{III} -O3	2,073(2)	2,040(1)	2,053(6)	2,139(2)	2,241(3)
	$d(A^{II}-B^{III})$	3,0440(5)	3,0054(4)	3,064(1)	3,1671(4)	3,2764(4)

Tabelle B.30 Interatomare Abstände / Å in den Polyedern $[A^{II}O_4]$ und $[B^{III}O_6]$ in $A^{II}B^{III}{}_2(P_2O_7)_2$ (A^{II} : Cu, Pd; B^{III} : V, Cr, Fe, In).

Tabelle B.31 Interatomare Abstände / Å in den Polyedern [P1O₄] und [P2O₄] in $A^{II}B^{III}{}_{2}(P_{2}O_{7})_{2}$ (A^{II} : Cu, Pd; B^{III} : V, Cr, Fe, In).

		$CuV_2(P_2O_7)_2$	$CuCr_2(P_2O_7)_2$	$PdCr_2(P_2O_7)_2$	$PdFe_2(P_2O_7)_2$	$PdIn_2(P_2O_7)_2$
[P1O ₄]	P1-07	1,477(2)	1,478(1)	1,497(6)	1,486(2)	1,482(3)
	P1-O6	1,500(2)	1,496(1)	1,492(6)	1,500(1)	1,500(3)
	P1-O1	1,549(2)	1,557(1)	1,562(6)	1,554(2)	1,567(3)
	P1-O2	1,598(2)	1,599(1)	1,595(6)	1,594(2)	1,595(3)
[P2O ₄]	P2-O5	1,479(2)	1,488(1)	1,480(7)	1,490(2)	1,484(3)
	P2-O4	1,508(2)	1,504(1)	1,498(7)	1,504(1)	1,502(3)
	P2-O3	1,558(2)	1,560(1)	1,565(6)	1,560(2)	1,561(3)
	P2-O2	1,591(2)	1,597(1)	1,604(6)	1,596(2)	1,593(3)
∠(P1,	O2,P2)	128,6(1) °	128,22(7) °	131,2(4) °	131,2(1) °	131,6(2) °

Tabelle B.32 Interatomare Abstände / Å in den Polyedern $[A^{II}1O_4]$ und $[B^{III}1O_6]$ in Cu^{II}In^{III}₂(P₂O₇)₂ und *trikl*.-Cr^{II}Ti^{III}₂(P₂O₇)₂. Als Vergleichssubstanz ist Cu^{II}Fe^{III}₂(P₂O₇)₂ [29] mit angegeben.

		$CuFe_2(P_2O_7)_2$	$CuIn_2(P_2O_7)_2$	triklCrTi ₂ (P ₂ O ₇) ₂
$[A^{II}O_4]$	A^{II} -O1	1,934(3)	1,950(2)	2,012(2)
	A^{II} -O1	1,934(3)	1,950(2)	2,012(2)
	A^{II} -O3	1,920(3)	1,903(2)	2,012(2)
	A^{II} -O3	1,920(3)	1,903(2)	2,012(2)
$[B^{III}O_6]$	$B^{\rm III}$ -O7	1,926(3)	2,079(2)	2,023(2)
	$B^{\rm III}$ -O5	1,916(3)	2,073(2)	1,993(2)
	$B^{\rm III}$ -O4	2,077(3)	2,097(2)	1,948(2)
	$B^{\rm III}$ -O6	1,964(3)	2,097(2)	1,954(2)
	$B^{\rm III}$ -O1	2,146(3)	2,248(2)	2,145(2)
	<i>B</i> ^{III} -O3	2,077(3)	2,190(2)	2,135(2)
	$d(A^{II}-B^{III})$	3,105(1)	3,2170(4)	3,1424(5)

Tabelle B.33 Interatomare Abstände / Å in den Polyedern [P1O₄] und [P2O₄] in $Cu^{II}In^{III}_{2}(P_{2}O_{7})_{2}$ und *trikl.*-Cr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}. Als Vergleichssubstanz ist $Cu^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ [29] mit angegeben.

		$CuFe_2(P_2O_7)_2$	$CuIn_2(P_2O_7)_2$	triklCrTi ₂ (P ₂ O ₇) ₂
[P1O ₄]	P1-07	1,510(3)	1,506(2)	1,497(2)
	P1-O6	1,487(3)	1,492(2)	1,511(2)
	P1-O1	1,549(3)	1,550(2)	1,550(2)
	P1-O2	1,529(3)	1,592(2)	1,598(2)
[P2O ₄]	P2-O5	1,487(3)	1,479(2)	1,478(2)
	P2-O4	1,487(3)	1,498(2)	1,502(2)
	P2-O3	1,555(3)	1,556(2)	1,546(2)
	P2-O2	1,596(3)	1,595(2)	1,596(2)
∠(P	1O2P2)	130,2 °	130,4(1) °	131,1(1) °

B.3.2 $A^{II}V^{III}_{2}(P_2O_7)_2 (A^{II}: Cr, Fe)$

Atom	Lage	x	у	z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^2$ a)
V1	1 <i>c</i>	0	1/2	0	1	0,0042(1)
V2	1f	1/2	0	1/2	1	0,0046(1)
V3	2i	0,71857(7)	0,23761(3)	0,51061(4)	1	0,0052(1)
Crl	2 <i>i</i>	0,23200(7)	0,73171(3)	-0,00936(4)	1	0,0086(1)
P1	2 <i>i</i>	0,7571(1)	0,84414(4)	0,23610(6)	1	0,0057(1)
P2	2 <i>i</i>	0,4976(1)	0,56113(4)	0,25298(6)	1	0,0054(1)
P3	2 <i>i</i>	-0,0262(1)	0,06216(4)	0,24817(6)	1	0,0056(1)
P4	2 <i>i</i>	0,2380(1)	0,34905(4)	0,29266(7)	1	0,0061(1)
01	2 <i>i</i>	0,9422(3)	0,1440(1)	0,1161(2)	1	0,0104(3)
02	2i	0,1839(3)	0,0391(1)	0,8247(2)	1	0,0083(3)
03	2 <i>i</i>	0,3500(3)	0,4636(1)	0,3391(2)	1	0,0090(3)
04	2 <i>i</i>	0,3181(3)	0,5844(1)	0,0884(2)	1	0,0078(3)
05	2 <i>i</i>	0,5892(3)	0,8592(1)	0,4010(2)	1	0,0072(3)
06	2 <i>i</i>	0,2081(3)	0,4668(1)	0,7929(2)	1	0,0099(3)
07	2 <i>i</i>	0,8938(3)	0,6390(1)	0,8881(2)	1	0,0083(3)
08	2 <i>i</i>	0,9611(3)	0,2077(1)	0,7209(2)	1	0,0089(3)
09	2 <i>i</i>	0,8124(3)	0,0912(1)	0,4100(2)	1	0,0082(3)
O10	2 <i>i</i>	0,7266(3)	0,9674(1)	0,7037(2)	1	0,0094(3)
011	2 <i>i</i>	0,5257(3)	0,3519(1)	0,6250(2)	1	0,0088(3)
012	2 <i>i</i>	0,9782(3)	0,6800(1)	0,5812(2)	1	0,0115(3)
013	2 <i>i</i>	0,4896(3)	0,2761(1)	0,2974(2)	1	0,0101(3)
014	2 <i>i</i>	0,4127(3)	0,2071(1)	0,9014(2)	1	0,0104(3)

Tabelle B.34 Atomlagen und isotrope Auslenkungsparameter für $Cr^{II}V^{III}_{2}(P_{2}O_{7})_{2}$.

^{a)} $U_{eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle B.35 Anisotrope Auslenkungsparameter für $Cr^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ / Å².

Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	U_{12}	U_{13}	U_{23}
V1	0,0039(2)	0,0037(2)	0,0050(2)	-0,0001(2)	-0,0006(2)	0,0003(2)
V2	0,0043(2)	0,0037(2)	0,0059(2)	0,0000(2)	0,0001(2)	-0,0001(2)
V3	0,0047(2)	0,0049(2)	0,0061(2)	0,0004(1)	0,0003(1)	0,0002(1)
Cr1	0,0089(2)	0,0052(2)	0,0114(2)	-0,0006(1)	-0,0044(1)	0,0014(1)
P1	0,0052(2)	0,0055(3)	0,0064(2)	0,0003(2)	0,0002(2)	-0,0005(2)
P2	0,0052(2)	0,0048(3)	0,0062(2)	0,0005(2)	-0,0006(2)	-0,0000(2)
P3	0,0054(2)	0,0051(3)	0,0064(2)	0,0005(2)	0,0001(2)	0,0001(2)
P4	0,0056(2)	0,0054(3)	0,0073(2)	-0,0004(2)	-0,0007(2)	0,0011(2)
01	0,0116(7)	0,0088(8)	0,0109(7)	0,0018(6)	0,0003(6)	0,0023(6)
O2	0,0103(7)	0,0062(7)	0,0082(7)	-0,0014(5)	-0,0009(5)	0,0007(5)
O3	0,0117(7)	0,0070(7)	0,0080(7)	-0,0022(5)	-0,0012(5)	0,0008(6)
O4	0,0075(7)	0,0067(7)	0,0090(7)	-0,0013(5)	-0,0025(5)	0,0016(5)
O5	0,0069(7)	0,0066(7)	0,0083(7)	0,0002(5)	0,0016(5)	-0,0007(5)
O6	0,0065(7)	0,0141(8)	0,0093(7)	0,0022(6)	0,0001(5)	-0,0008(6)
07	0,0086(7)	0,0068(7)	0,0093(7)	0,0005(5)	-0,0017(5)	0,0006(5)
08	0,0062(7)	0,0106(8)	0,0099(7)	0,0031(5)	-0,0002(5)	0,0006(6)
O9	0,0080(7)	0,0069(7)	0,0100(7)	0,0000(5)	0,0017(5)	-0,0009(6)
O10	0,0061(7)	0,0124(8)	0,0096(7)	0,0024(6)	-0,0010(5)	0,0010(6)
O11	0,0101(7)	0,0065(7)	0,0097(7)	0,0022(5)	-0,0001(5)	-0,0023(6)
O12	0,0093(7)	0,0142(8)	0,0108(7)	-0,0033(6)	0,0009(6)	0,0031(6)
O13	0,0097(7)	0,0102(8)	0,0104(7)	0,0038(6)	-0,0024(6)	-0,0014(6)
O14	0,0094(7)	0,0113(8)	0,0104(7)	-0,0028(6)	-0,0007(6)	-0,0023(6)

Atom	Lage	x	у	z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^2$ a)
V1	1 <i>c</i>	0	1/2	0	1	0,0061(1)
V2	1f	1/2	0	1/2	1	0,0062(1)
V3	2i	0,72730(9)	0,23952(3)	0,50795(6)	0,95(1)	0,0068(1)
Fe3	2i	0,72730(9)	0,23952(3)	0,50795(6)	0,05(1)	0,0068(1)
V4	2i	0,25413(9)	0,74028(3)	-0,01216(6)	0,05(1)	0,0123(1)
Fe4	2i	0,25413(9)	0,74028(3)	-0,01216(6)	0,95(1)	0,0123(1)
P1	2i	0,7687(2)	0,84348(5)	0,2352(1)	1	0,0069(2)
P2	2i	0,4858(2)	0,56135(5)	0,25321(9)	1	0,0062(1)
P3	2i	-0,0149(1)	0,06203(5)	0,24797(9)	1	0,0067(1)
P4	2i	0,2500(2)	0,34802(6)	0,2829(1)	1	0,0072(2)
01	2i	0,9578(4)	0,1453(2)	0,1170(3)	1	0,0114(4)
02	2i	0,1711(4)	0,0385(2)	0,8244(3)	1	0,0096(4)
03	2i	0,3350(4)	0,4637(2)	0,3404(3)	1	0,0103(4)
04	2i	0,3149(4)	0,5871(2)	0,0900(3)	1	0,0091(4)
05	2i	0,5991(4)	0,8581(2)	0,4038(3)	1	0,0081(4)
06	2i	0,2174(4)	0,4676(2)	0,7908(3)	1	0,0102(4)
07	2i	0,8896(4)	0,6381(2)	0,8922(3)	1	0,0099(4)
08	2i	0,9505(4)	0,2089(2)	0,7311(3)	1	0,0111(4)
09	2i	0,8183(4)	0,0915(2)	0,4126(3)	1	0,0082(4)
O10	2i	0,7185(4)	0,9678(2)	0,7061(3)	1	0,0100(4)
011	2i	0,5388(4)	0,3531(2)	0,6179(3)	1	0,0096(4)
012	2i	0,9494(4)	0,6923(2)	0,5833(3)	1	0,0117(4)
013	2i	0,5171(4)	0,2821(2)	0,2768(3)	1	0,0111(4)
O14	2i	0,4002(4)	0,2065(2)	0.9010(3)	1	0,0127(4)

Tabelle B.36 Atomlagen und isotrope Auslenkungsparameter für $Fe^{II}V^{III}_{2}(P_2O_7)_2$.

 $\overline{}^{\mathrm{a})} U_{\mathrm{eq}} = (1/3) \Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} U_{\mathrm{ij}} a_{\mathrm{i}}^{*} a_{\mathrm{j}}^{*} a_{\mathrm{i}} a_{\mathrm{j}}^{*}$

Tabelle B.37	Anisotrope Auslenkungsparameter	: für Fe ^{II} V ^{III} ₂ (P ₂ O ₇) ₂ / Å ² .
--------------	---------------------------------	---

Atom	U ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	<i>U</i> ₂₃
V1	0,0060(3)	0,0061(3)	0,0061(3)	-0,0016(2)	0,0001(2)	-0,0004(2)
V2	0,0062(3)	0,0057(3)	0,0067(3)	-0,0015(2)	0,0003(2)	-0,0005(2)
V3	0,0067(2)	0,0064(2)	0,0075(2)	-0,0009(2)	0,0011(2)	-0,0007(2)
Fe3	0,0067(2)	0,0064(2)	0,0075(2)	-0,0009(2)	0,0011(2)	-0,0007(2)
V4	0,0127(2)	0,0092(2)	0,0150(2)	-0,0014(2)	-0,0062(2)	0,0021(2)
Fe4	0,0127(2)	0,0092(2)	0,0150(2)	-0,0014(2)	-0,0062(2)	0,0021(2)
P1	0,0062(3)	0,0069(3)	0,0076(3)	-0,0014(2)	0,0006(3)	-0,0012(3)
P2	0,0061(3)	0,0067(3)	0,0058(3)	-0,0011(2)	-0,0003(3)	-0,0003(3)
P3	0,0064(3)	0,0068(3)	0,0068(3)	-0,0013(2)	0,0005(3)	-0,0004(3)
P4	0,0064(3)	0,0070(3)	0,0081(3)	-0,0013(2)	-0,0005(3)	0,0005(3)
01	0,013(1)	0,0099(9)	0,011(1)	0,0001(7)	0,0017(8)	0,0022(8)
O2	0,0110(9)	0,0085(9)	0,009(1)	-0,0034(7)	-0,0005(8)	-0,0014(8)
O3	0,0121(9)	0,0093(9)	0,010(1)	-0,0038(7)	0,0008(8)	0,0012(8)
O4	0,0083(9)	0,0099(9)	0,009(1)	-0,0032(7)	-0,0027(8)	0,0005(8)
05	0,0081(9)	0,0075(9)	0,0088(9)	-0,0008(7)	0,0017(7)	-0,0019(7)
O6	0,0074(9)	0,015(1)	0,009(1)	0,0015(7)	0,0012(7)	-0,0017(8)
07	0,013(1)	0,0079(9)	0,009(1)	-0,0002(7)	-0,0004(8)	-0,0002(8)
08	0,0074(9)	0,013(1)	0,013(1)	0,0027(7)	0,0024(8)	0,0002(8)
09	0,0084(9)	0,0079(9)	0,0083(9)	-0,0020(7)	0,0025(7)	-0,0016(7)
O10	0,0070(9)	0,013(1)	0,011(1)	0,0008(7)	-0,0002(8)	0,0010(8)
011	0,0108(9)	0,0088(9)	0,009(1)	-0,0002(7)	-0,0005(8)	-0,0029(8)
012	0,0103(9)	0,014(1)	0,011(1)	-0,0039(8)	-0,0003(8)	0,0032(8)
O13	0,0081(9)	0,012(1)	0,013(1)	0,0016(7)	-0,0015(8)	-0,0022(8)
014	0,0114(9)	0,015(1)	0,012(1)	-0,0053(8)	0,0004(8)	-0,0050(8)

	$CrV_2(P_2O_7)_2$	FeV ₂ (P ₂ O ₇) ₂		$CrV_2(P_2O_7)_2$	FeV ₂ (P ₂ O ₇) ₂
[M1O ₆]			[<i>M</i> 2O ₆]		
<i>M</i> 1-O6	1,994(2)	1,987(2)	<i>M</i> 2-O10	1,943(2)	1,957(2)
<i>M</i> 1-O6	1,994(2)	1,987(2)	<i>M</i> 2-O10	1,943(2)	1,957(2)
<i>M</i> 1-O7	2,034(2)	1,993(2)	M2-09	2,021(2)	2,022(2)
<i>M</i> 1-O7	2,034(2)	1,993(2)	M2-09	2,021(2)	2,022(2)
<i>M</i> 1-O4	1,956(1)	2,018(2)	M2-O5	2,024(1)	2,030(2)
<i>M</i> 1-O4	1,956(1)	2,018(2)	<i>M</i> 2-O5	2,024(1)	2,030(2)
[M3O ₆]			$[M4O_6]$		
M3-011	1,975(1)	1,917(2)	M4-O14	2,012(2)	1,980(2)
<i>M</i> 3-O12	1,933(2)	1,906(2)	<i>M</i> 4-O1	1,965(2)	1,951(2)
<i>M</i> 3-O9	2,098(2)	2,081(2)	<i>M</i> 4-O13	2,677(2)	2,362(2)
M3-O5	2,042(2)	2,105(2)	<i>M</i> 4-O4	2,065(2)	2,126(2)
<i>M</i> 3-08	2,018(2)	2,075(2)	<i>M</i> 4-O7	2,124(2)	2,294(2)
<i>M</i> 3-O13	2,026(2)	2,131(2)	<i>M</i> 4-O8	2,615(2)	2,498(2)

Tabelle B.38 Interatomare Abstände / Å in den Polyedern $[M1O_6]$ bis $[M4O_6]$ in $Cr^{II}V^{III}_{2}(P_2O_7)_2$ und $Fe^{II}V^{III}_{2}(P_2O_7)_2$.

	$CrV_2(P_2O_7)_2$	FeV ₂ (P ₂ O ₇) ₂		$CrV_2(P_2O_7)_2$	FeV ₂ (P ₂ O ₇) ₂
[P1O ₄]			[P2O ₄]		
P1-O14	1,480(2)	1,478(2)	P2-O11	1,486(2)	1,495(2)
P1-O8	1,521(2)	1,519(2)	P2-O6	1,502(2)	1,505(2)
P1-O5	1,566(2)	1,562(2)	P2-O4	1,553(2)	1,546(2)
P1-O2	1,589(2)	1,598(2)	P2-O3	1,583(2)	1,588(2)
[P3O ₄]			[P4O ₄]		
P3-O1	1,474(2)	1,477(2)	P4-012	1,497(2)	1,503(2)
P3-O10	1,506(2)	1,506(2)	P4-O13	1,519(2)	1,529(2)
P3-O9	1,564(2)	1,564(2)	P4-O7	1,543(2)	1,530(2)
P3-O2	1,589(2)	1,587(2)	P4-O3	1,594(2)	1,596(2)
∠(P1,O2,P3) ∠(P2,O3,P4)	137,4(1) ° 139,9(1) °	137,8(2) ° 135,7(1) °			

B.3.3 *hex.*- $Cr^{II}Ti^{III}_{2}(P_2O_7)_2$

Atom	Lage	x	у	Z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
Til	2 <i>b</i>	0	0	0	1	0,0127(4)
Ti2	4f	2/3	1/3	0,9897(1)	1	0,0107(3)
Ti3	12 <i>i</i>	0,66878(6)	0,00411(6)	0,48434(5)	1	0,0115(1)
Cr1	6 <i>h</i>	0,9545(7)	0,977(1)	1/4	1/6	0,046(3)
Cr2	6h	0,3564(3)	0,7122(3)	1/4	1/3	0,0214(8)
Cr3A	6h	0,6942(1)	0,0592(1)	1/4	0,758(3)	0,0170(4)
Cr3B	6h	0,6144(4)	0,9762(5)	1/4	0,242(3)	0,031(2)
P1	12 <i>i</i>	0,5602(1)	0,77825(9)	0,36920(8)	1	0,0129(2)
P2	12 <i>i</i>	0,89663(9)	0,11739(9)	0,37062(9)	1	0,0133(2)
Р3	12 <i>i</i>	0,54596(9)	0,1132(1)	0,37226(8)	1	0,0121(2)
01	6h	0,5864(4)	0,7575(4)	1/4	1	0,022(1)
02	6 <i>h</i>	0,9296(4)	0,1473(4)	1/4	1	0,050(2)
03	6h	0,5298(4)	0,1330(4)	1/4	1	0,029(1)
04	12 <i>i</i>	0,6028(2)	0,8892(2)	0,1210(3)	1	0,0201(7)
05	12 <i>i</i>	0,6110(2)	0,0652(3)	0,1306(2)	1	0,0175(7)
06	12 <i>i</i>	0,7836(2)	0,0620(3)	0,1313(2)	1	0,0177(7)
07	12 <i>i</i>	0,7307(3)	0,9408(3)	0,5655(3)	1	0,0313(8)
08	12 <i>i</i>	0,7377(3)	0,1318(2)	0,9442(2)	1	0,0205(7)
09	12 <i>i</i>	0,5527(2)	0,9546(3)	0,5814(3)	1	0,032(1)
O10	12 <i>i</i>	0,5983(3)	0,2129(3)	0,0748(4)	1	0,034(1)
011	12 <i>i</i>	0,9339(3)	0,0491(3)	0,0976(5)	1	0,047(1)
012	12 <i>i</i>	0,4476(3)	0,7221(2)	0,1248(3)	1	0,0196(8)

Tabelle B.40 Atomlagen und isotrope Auslenkungsparameter für *hex.*-Cr^{II}Ti^{III}₂(P₂O₇)₂.

^{a)} $U_{eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle B.41	Anisotrope A	uslenkungspa	arameter für	<i>hex.</i> -Cr ¹	Ti ^{III} 2	$(P_2O_7)_2$ /	Ų.
--------------	--------------	--------------	--------------	------------------------------	---------------------	----------------	----

Atom	U_{11}	<i>U</i> ₂₂	U_{33}	<i>U</i> ₁₂	<i>U</i> ₁₃	U_{23}
Til	0,0117(7)	0,0117(7)	0,015(1)	0	0	0,0059(3)
Ti2	0,0115(5)	0,0115(5)	0,0091(5)	0	0	0,0057(2)
Ti3	0,0127(4)	0,0126(4)	0,0081(2)	0,0005(3)	0,0001(3)	0,0056(4)
Crl	0,053(7)	0,07(1)	0,042(5)	0	0	0,052(9)
Cr2	0,028(3)	0,035(2)	0,010(1)	0	0	0,023(2)
Cr3A	0,0133(8)	0,036(1)	0,0044(5)	0	0	0,0141(8)
Cr3B	0,057(4)	0,029(4)	0,016(2)	0	0	0,028(3)
P1	0,0172(7)	0,0167(6)	0,0075(4)	-0,0002(5)	-0,0005(5)	0,0105(5)
P2	0,0157(6)	0,0157(6)	0,0074(4)	0,0000(5)	0,0005(4)	0,0069(6)
P3	0,0142(6)	0,0155(7)	0,0071(4)	-0,0010(4)	0,0002(4)	0,0078(5)
01	0,037(3)	0,032(3)	0,007(2)	0	0	0,024(2)
02	0,025(3)	0,053(4)	0,013(2)	0	0	-0,024(3)
03	0,044(3)	0,059(4)	0,011(2)	0	0	0,047(3)
04	0,024(2)	0,016(2)	0,017(2)	-0,001(1)	0,006(2)	0,008(2)
05	0,021(2)	0,027(2)	0,010(1)	-0,003(1)	-0,003(1)	0,016(2)
06	0,015(2)	0,027(2)	0,009(1)	0,002(2)	0,002(1)	0,009(2)
07	0,038(2)	0,032(2)	0,029(2)	0,004(2)	-0,010(2)	0,021(2)
08	0,026(2)	0,024(2)	0,009(1)	0,003(1)	-0,003(1)	0,010(2)
09	0,026(2)	0,046(3)	0,028(2)	0,012(2)	0,013(2)	0,021(2)
O10	0,043(3)	0,024(2)	0,035(2)	0,017(2)	0,016(2)	0,017(2)
011	0,027(2)	0,031(3)	0,092(4)	0,004(3)	0,018(3)	0,022(2)
012	0,013(2)	0,021(2)	0,021(2)	-0,002(2)	0,001(1)	0,005(2)

[Ti10 ₆]		[Ti2O ₆]		[Ti3O ₆]	
T:1 011	1.072(5)	T:2 O10	1.040(4)	T:2 09	1.029(2)
	1,972(5)	112-010	1,940(4)	113-08	1,938(3)
T11-O11	1,972(5)	T12-O10	1,940(4)	Т13-07	1,965(3)
Ti1-O11	1,972(5)	Ti2-O10	1,940(4)	Ti3-O9	1,977(4)
Ti1-011	1,972(5)	Ti2-O12	2,091(4)	Ti3-O4	2,028(3)
Ti1-011	1,972(5)	Ti2-O12	2,091(4)	Ti3-O6	2,106(3)
Ti1-011	1,972(5)	Ti2-O12	2,091(4)	Ti3-O5	2,142(3)

Tabelle B.42 Interatomare Abstände / Å in den Oktaedern [Ti1O₆], [Ti2O₆] und [Ti3O₆] in
hex.-Cr^{II}Ti^{III}₂(P₂O₇)₂.

Tabelle B.43 Interatomare Abstände / Å in den Polyedern [Cr1O₆], [Cr2O₆], [Cr3AO₆] und [Cr3BO₆] in *hex.*-Cr^{II}Ti^{III}₂(P₂O₇)₂.

[Cr10 ₆]		[C2O ₆]		[Cr3AO ₆]		[Cr3BO ₆]	
Cr1-011	2,292(8)	Cr2-O12	2,044(4)	Cr3A-O5	1,995(3)	Cr3B-O4	2,039(5)
Cr1-011	2,292(8)	Cr2-O12	2,044(4)	Cr3A-O5	1,995(3)	Cr3B-O4	2,039(5)
Cr1-011	2,35(1)	Cr2-O12	2,051(4)	Cr3A-O6	2,006(3)	Cr3B-O5	2,042(5)
Cr1-011	2,35(1)	Cr2-O12	2,051(4)	Cr3A-O6	2,006(3)	Cr3B-O5	2,042(5)
Cr1-011	2,87(1)	Cr2-O12	2,654(5)	Cr3A-O4	2,795(4)	Cr3B-O6	2,714(5)
Cr1-O11	2,87(1)	Cr2-O12	2,654(5)	Cr3A-O4	2,795(4)	Cr3B-O6	2,714(5)

Tabelle B.44 Interatomare Abstände / Å der Polyeder [P1O₄], [P2O₄] und [P3O₄] sowie die Brückenwinkel \angle (P,O,P) / ° in *hex.*-Cr^{II}Ti^{III}₂(P₂O₇)₂.

[P1O ₄]		[P2O ₄]		[P3O ₄]	
P1-O8	1,489(3)	P2-O7	1,480(3)	P3-O9	1,478(4)
P1-O4	1,517(3)	P2-O11	1,499(4)	P3-O10	1,497(4)
P1-O12	1,523(4)	P2-O6	1,528(3)	P3-O5	1,534(3)
P1-O1	1,600(2)	P2-O2	1,566(2)	P3-O3	1,583(2)
∠(P1,O1,P1)	133,2(3)	∠(P2,O2,P2)	143,3(4)	∠(P3,O3,P3)	144,2(3)

Anhang C Quaternäre Pyrophosphate $A^{II}{}_5B^{III}{}_2(P_2O_7)_4$ und $A^{II}{}_3B^{III}{}_2(P_2O_7)_3$

C.1 Guinierdiagramme

Abbildung C.1 Berechnetes Guinierdiagramm auf Grundlage von $Mn_2P_2O_7$ [213] als Stellvertreter für Pyrophosphate die im Thortveitit-Strukturtyp kristallisieren.

C.1.1 $Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$

Abbildung C.2 *IP*-Guinier-Aufnahme von $Cr_5V_2(P_2O_7)_4$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

C.1.2 $Mn_{5}^{II}V_{2}^{III}(P_{2}O_{7})_{4}$ und $Fe_{5}^{II}V_{2}^{III}(P_{2}O_{7})_{4}$

Einige wenige Einkristalle von $Mn_5V_2(P_2O_7)_4$ entstanden als Nebenphase bei der Synthese von $Mn_3V_4(PO_4)_6$. Für eine Guinieraufnahme war nicht genügend $Mn_5V_2(P_2O_7)_4$ entstanden.

Abbildung C.3 Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur von $Mn_5V_2(P_2O_7)_4$.

Abbildung C.4 *IP*-Guinier-Aufnahme von $Fe_5V_2(P_2O_7)_4$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

C.1.3 $Mn^{II}{}_{5}Fe^{III}{}_{2}(P_{2}O_{7})_{4}$, $Fe^{II}{}_{5}Fe^{III}{}_{2}(P_{2}O_{7})_{4}$ und $Zn^{II}{}_{5}Fe^{III}{}_{2}(P_{2}O_{7})_{4}$

Abbildung C.5 *IP*-Guinier-Aufnahme von $Mn_5Fe_2(P_2O_7)_4$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparametern und den Lageparameter von $Fe_5Fe_2(P_2O_7)_4$ [18] (b).

Abbildung C.6 *IP*-Guinier-Aufnahme von $Fe_5Fe_2(P_2O_7)_4$ (a). Berechnetes Guinierdiagramm auf Grundlage von [18] (b).

Abbildung C.7 *IP*-Guinier-Aufnahme von $Zn_5Fe_2(P_2O_7)_4$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparametern und den Lageparameter von $Fe_5Fe_2(P_2O_7)_4$ [18] (b).

C.1.4 $Fe^{II}_{3}V^{III}_{2}(P_2O_7)_{3}$

Bei $Fe^{II}_{3}V^{III}_{2}(P_{2}O_{7})_{2}$ handelt es sich um das erste in der Literatur beschriebene Pyrophosphat mit der allgemeinen Zusammensetzung $A^{II}_{3}B^{III}_{2}(P_{2}O_{7})_{3}$.

Abbildung C.8 *IP*-Guinier-Aufnahme von $Fe_3V_2(P_2O_7)_3$, (* = zusätzliche Reflexe von $Fe_5V_2(P_2O_7)_4$) (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

C.2 Indizierung von Guinieraufnahmen

C.2.1 $Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$

				1 04		0001		
h	k	l	$4 heta_{ m calc}$	$4\theta_{\rm obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
1	1	0	28,535	28,485	0,05	6,202	170	105
1	1	-1	29,221	29,164	0,06	6,057	34	13
1	1	1	34,545	34,532	0,02	5,129	153	200
1	1	-2	36,232	36,191	0,06	4,892	57	21
2	0	-1	36,624	36,600	0,03	4,840	59	27
2	0	0	38,368	38,390	0,03	4,622	47	60
0	2	1	44,880	44,897	0,03	3,958	53	60
1	1	-3	46,887	46,846	0,07	3,791	208	148
2	2	-1	56,350	56,282	0,14	3,164	269	413
1	1	3	56,915	56,882	0,07	3,133	48	18
2	2	0	57,526	57,512	0,03	3,101	195	244
0	0	4	58,133	58,102	0,07	3,069	1000	1000
2	2	-2	58,930	58,952	0,05	3,028	794	795
3	1	-1	59,231	59,241	0,02	3,013	545	547
3	1	-2	60,260	60,291	0,07	2,963	25	29
2	2	1	62,262	62,291	0,06	2,870	226	221
2	2	-3	64,858	64,830	0,07	2,758	77	106
1	3	0	67,090	67,079	0,03	2,669	24	13
2	2	2	69,908	69,919	0,03	2,564	134	182
1	3	1	69,990	69,999	0,02	2,561	153	194
1	1	4	70,291	70,288	0,01	2,551	49	41
3	1	-4	72,059	72,028	0,08	2,490	56	95
4	0	0	77,867	77,867	0,00	2,311	35	30
2	2	3	79,741	79,737	0,01	2,259	47	33
2	2	-5	83,916	83,916	0,00	2,151	58	21
3	3	-1	85,611	85,606	0,02	2,110	265	388
3	1	3	86,256	86,246	0,03	2,095	89	109
1	1	-6	87,218	87,216	0,01	2,073	50	22
4	2	0	89,526	89,505	0,06	2,022	113	89
2	2	-6	95,895	95,905	0,03	1,895	171	81
3	3	-5	103,176	103,185	0,03	1,770	61	31
2	2	5	103,946	103,935	0,04	1,757	72	46
3	3	3	107,099	107,115	0,06	1,709	102	58
6	0	-2	113,909	113,885	0,09	1,615	110	130
5	3	-3	116,646	116,646	0,00	1,580	231	325
3	5	-1	124,934	124,937	0,01	1,485	52	82
6	0	2	133,820	133,839	0,07	1,397	39	35
0	6	0	134,172	134,169	0,01	1,394	55	56
5	3	-7	140 504	140 520	0.07	1 338	144	22

Tabelle C.1 $\operatorname{Cr}^{II}{}_{5}\operatorname{V}^{III}{}_{2}(\operatorname{P}_{2}\operatorname{O}_{7})_{4}$. Indizierung einer Guinieraufnahme (Abbildung C.2) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. Der stärkste nicht beobachtete Reflex im untersuchten Winkelbereich besitzt eine relative Intensität unter 25.

C.2.2 $Fe^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$

				_ ~ °C				
h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	d-Wert	I _{calc} ^{a)}	$I_{\rm obs}$
1	1	1	28,737	28,752	0,02	6,159	182	213
0	0	4	29,813	29,810	0,00	5,937	58	34
1	1	2	31,519	31,536	0,02	5,618	29	30
1	1	3	35,689	35,667	0,03	4,966	267	233
0	2	0	36,449	36,486	0,05	4,863	38	27
0	2	1	37,212	37,244	0,04	4,764	137	142
1	1	4	40,837	40,847	0,02	4,345	16	52
2	0	1	42,707	42,693	0,02	4,157	9	17
2	0	2	44,651	44,640	0,02	3,978	50	61
1	1	5	46,660	46,676	0,03	3,809	103	80
0	2	4	47,251	47,265	0,02	3,762	29	20
2	2	0	55,916	55,940	0,05	3,188	132	158
2	2	1	56,428	56,469	0,09	3,160	118	124
2	2	2	57,939	57,956	0,04	3,079	962	1000
1	3	0	58,966	59,005	0,08	3,027	372	470
1	3	1	59,454	59,474	0,04	3,002	293	367
0	0	8	60,147	60,153	0,01	2,968	1000	425
2	2	3	60,380	60,403	0,05	2,957	464	506
1	3	2	60,897	60,912	0,03	2,933	51	30
1	3	3	63,234	63,198	0,08	2,827	31	35
2	2	4	63,655	63,658	0,01	2,809	152	168
1	1	8	66,516	66,483	0,08	2,691	75	63
2	2	5	67,657	67,672	0,04	2,647	130	113
3	1	2	67,942	67,921	0,05	2,636	82	86
3	1	3	70,070	70,088	0,05	2,559	115	95
2	2	6	72,281	72,275	0,02	2,483	151	103
1	3	6	74,731	74,732	0,00	2,404	39	57
3	1	5	76,531	76,550	0,05	2,350	34	29
3	3	1	85,334	85,350	0,05	2,117	199	257
2	4	2	87,163	87,168	0,02	2,074	34	82
1	1	11	88,498	88,517	0,06	2,045	152	133
2	4	3	88,897	88,896	0,00	2,036	176	196
4	0	4	91,120	91,094	0,08	1,989	32	58
2	2	10	95,409	95,410	0,00	1,904	195	115
4	0	6	97,690	97,698	0,03	1,862	48	50
4	2	4	98,916	98,927	0,04	1,841	32	39
3	3	8	105,860	105,862	0,01	1,728	68	39
3	3	9	110,912	110,889	0,08	1,655	108	46
3	5	2	116,212	116,186	0,09	1,586	167	206

Tabelle C.2 $\operatorname{Fe}^{II}{}_{5}\operatorname{V}^{III}{}_{2}(\operatorname{P}_{2}\operatorname{O}_{7})_{4}$. Indizierung einer Guinieraufnahme (Abbildung C.4) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.

 ^{a)} Intensität normiert auf 1000 für den stärksten Reflex. Der stärkste nicht beobachtete Reflex im untersuchten Winkelbereich besitzt eine relative Intensität von 80.

C.2.3 Mn₅Fe₂(P₂O₇)₄ und Zn₅Fe₂(P₂O₇)₄

				•		•		
h	k	l	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	d-Wert	I _{calc} ^{a)}	Iobs
0	0	2	14,876	14,891	0,01	11,875	235	148
1	1	1	28,480	28,468	0,01	6,214	143	152
0	0	4	29,815	29,817	0,00	5,937	73	51
1	1	2	31,285	31,256	0,03	5,660	19	31
1	1	3	35,481	35,482	0,00	4,995	291	284
0	2	0	36,177	36,202	0,03	4,899	36	24
0	2	1	36,946	36,971	0,04	4,798	147	111
2	0	2	44,203	44,207	0,01	4,018	49	48
0	0	6	44,883	44,876	0,01	3,958	33	31
1	1	5	46,501	46,485	0,03	3,822	110	94
2	2	0	55.371	55,371	0.00	3.219	133	153
2	2	1	55.887	55,901	0.03	3,190	92	109
2	2	2	57.412	57,400	0.02	3,107	1000	1000
1	3	0	58.491	58,520	0.06	3.051	374	387
1	3	1	58,983	59.010	0.06	3.026	284	285
2	2	3	59.873	59,899	0.06	2,982	473	665
0	0	8	60.151	60.159	0.02	2,968	979	785
2	2	4	63,172	63 198	0.06	2,830	126	124
0	2	7	64 118	64 098	0,05	2,789	13	18
1	1	8	66 404	66 418	0.03	2,696	69	35
2	2	5	67 200	67 217	0.04	2,665	138	209
3	1	3	69 366	69 377	0.03	2,584	116	105
2	2	6	71,851	71 837	0.04	2 497	157	147
3	1	4	72,278	72,297	0.05	2,483	64	63
1	3	6	74 348	74 336	0.03	2 416	37	32
3	1	Š	75 880	75 896	0.04	2,110	31	35
0	4	4	79,534	79,536	0,01	2,369	62	60
3	3	0	84 127	84 126	0.00	2,201	149	168
3	3	1	84 486	84 496	0,00	2,110	186	261
3	3	2	85 556	85 556	0,00	2,137	28	33
2	4	2	86 423	86 437	0.04	2,112	33	27
$\frac{2}{2}$	4	23	88 169	88 177	0,04	2,051	185	215
2 4	0	<u>у</u>	90,166	90,157	0,02	2,052	35	215
1	3	0	90,802	90,197	0,03	1 995	51	37
2	2	10	95,069	95.058	0,02	1,993	203	135
2	2	3	95,652	95,648	0,05	1,911	16	22
4	0	6	96 788	96 789	0,01	1,900	55	16
2	2	11	101 756	101 760	0,00	1,079	80	107
23	23	8	101,750	105 151	0.02	1,733	71	73
5	5	0	100,145	109,151	0,03	1,739	50	15 45
5	1	1	112 551	112 565	0.02	1,070	65	+ <i>J</i> 55
5	1	4	112,331	112,505	0,03	1,033	60	55 71
2	1 5		117,052	117,020	0,05	1,019	102	/ 1 5 /
2	5	1	114,277	114,230	0,08	1,010	105	54 110
3	3	2	113,130	113,100	0,11	1,399	10/	110

Tabelle C.3 $Mn_{5}^{II}Fe_{2}^{III}(P_{2}O_{7})_{4}$. Indizierung einer Guinieraufnahme (Abbildung C.5) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.

 ^{a)} Intensität normiert auf 1000 für den stärksten Reflex. Der stärkste nicht beobachtete Reflex im untersuchten Winkelbereich besitzt eine relative Intensität unter 25.

h	k	l	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	I _{calc} ^{a)}	Iobs
0	0	2	14,731	14,536	0,11	11,992	247	93
1	1	1	29,083	29,020	0,07	6,086	187	154
1	1	2	31,785	31,733	0,06	5,571	41	21
1	1	3	35,849	35,866	0,02	4,944	281	218
0	2	0	36,743	36,716	0,04	4,825	36	37
0	2	1	37,485	37,516	0,04	4,730	150	101
2	2	0	56,688	56,714	0,05	3,146	119	121
2	2	1	57,184	57,183	0,00	3,119	110	103
2	2	2	58,649	58,699	0,11	3,043	901	677
0	0	8	59,550	59,536	0,03	2,998	1000	1000
1	3	1	59,998	60,015	0,04	2,976	283	200
2	2	3	61,018	61,062	0,10	2,927	450	243
1	3	3	63,679	63,683	0,01	2,808	36	23
2	2	4	64,203	64,231	0,07	2,785	131	122
1	1	8	66,139	66,124	0,03	2,706	71	51
2	2	5	68,101	68,126	0,06	2,630	141	61
3	1	2	69,039	69,082	0,11	2,596	86	47
3	1	3	71,098	71,143	0,12	2,523	130	54
2	2	6	72,615	72,617	0,01	2,472	159	75
3	1	4	73,896	73,930	0,09	2,430	74	36
0	2	9	77,121	77,124	0,01	2,332	26	33
1	3	7	79,826	79,819	0,02	2,256	23	8
2	2	8	83,149	83,139	0,03	2,170	30	18
0	2	10	84,066	84,064	0,01	2,147	77	45
3	3	0	86,185	86,220	0,10	2,097	153	131
3	3	1	86,530	86,557	0,08	2,089	184	155
1	1	11	87,819	87,809	0,03	2,060	153	112
2	2	9	89,036	89,031	0,02	2,033	53	31
2	4	3	89,750	89,746	0,01	2,018	192	118
4	0	4	92,532	92,535	0,01	1,960	33	13
2	2	10	95,272	95,304	0,10	1,907	191	115
4	0	6	98,909	98,905	0,01	1,841	51	17
3	3	8	106,513	106,497	0,06	1,718	82	22
5	1	1	112,656	112,616	0,14	1,631	59	62
5	1	2	113,506	113,497	0,03	1,620	44	33
3	5	2	117 585	117 554	0.12	1 560	150	116

Tabelle C.4 $Zn^{II}{}_{5}Fe^{III}{}_{2}(P_{2}O_{7})_{4}$. Indizierung einer Guinieraufnahme (Abbildung C.7) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^{2}\theta_{calc} - \sin^{2}\theta_{obs}| \cdot 1000$.

 3
 5
 2
 117,585
 117,554
 0,12
 1,569
 150
 116

 a)
 Intensität normiert auf 1000 für den stärksten Reflex. Der stärkste nicht beobachtete Reflex im untersuchten Winkelbereich besitzt eine relative Intensität unter 10.
 Intensität normiert auf 1000 für den stärksten Reflex. Der stärkste nicht beobachtete Reflex im untersuchten Winkelbereich besitzt eine relative Intensität unter 10.

C.2.4 $Fe^{II}_{3}V^{III}_{2}(P_{2}O_{7})_{3}$

				1				
h	k	l	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	d-Wert	I _{calc} ^{a)}	Iobs
0	0	2	19,942	19,892	0,04	8,863	337	214
1	1	0	27,861	27,861	0,00	6,351	236	167
1	1	1	29,605	29,643	0,04	5,979	13	70
1	1	2	34,320	34,387	0,09	5,162	395	287
0	2	0	36,417	36,379	0,05	4,867	140	90
0	0	4	40,038	40,063	0,04	4,431	42	27
1	1	3	41,023	40,993	0,04	4,326	89	72
2	0	2	46,923	46,968	0,08	3,788	54	30
1	1	4	48,942	48,960	0,03	3,634	150	180
2	2	0	56,144	56,114	0,06	3,175	119	186
2	2	1	57,057	57,095	0,08	3,126	561	628
1	3	0	58,980	58,996	0,03	3,026	317	248
2	2	2	59,718	59,757	0,08	2,989	1000	1000
0	0	6	60,450	60,477	0,06	2,954	810	919
1	3	2	62,406	62,388	0,04	2,864	36	46
2	2	3	63,930	63,959	0,07	2,797	33	208
1	1	6	66,842	66,830	0,03	2,678	174	122
2	2	4	69,442	69,461	0,05	2,581	181	164
1	3	4	71,804	71,792	0,03	2,499	63	61
3	1	3	73,459	73,483	0,06	2,444	125	73
2	2	5	76,011	76,023	0,03	2,365	99	93
0	4	3	80,059	80,044	0,04	2,250	70	69
3	3	0	85,334	85,335	0,00	2,117	198	225
1	1	8	86,410	86,395	0,04	2,092	183	147
2	4	2	88,381	88,386	0,02	2,047	167	244
4	0	4	95,973	95,966	0,02	1,894	84	66
3	3	6	106,352	106,335	0,06	1,721	102	86
5	1	1	111,695	111,714	0,07	1,644	46	17
3	3	7	113,229	113,233	0,01	1,624	94	122
3	5	1	115,823	115,862	0,14	1,591	161	197
3	5	2	117,349	117,332	0,06	1,572	78	95
2	2	10	119,373	119,371	0,01	1,547	69	42
2	6	1	122,892	122,880	0,05	1,507	33	24
3	1	10	125,506	125,508	0,01	1,479	75	96
6	0	1	134,327	134,303	0,10	1,392	88	33

Tabelle C.5 $\operatorname{Fe}^{II}_{3} V^{III}_{2}(P_2 O_7)_3$. Indizierung einer Guinieraufnahme (Abbildung C.8) mit beobachteten und berechneten 4θ -Werten. $\Delta = |\sin^2 \theta_{\text{calc}} - \sin^2 \theta_{\text{obs}}| \cdot 1000$.

 ^{a)} Intensität normiert auf 1000 für den stärksten Reflex. Der stärkste nicht beobachtete Reflex im untersuchten Winkelbereich besitzt eine relative Intensität von 38.

C.3 Lageparameter, Besetzungsfaktoren und interatomare Abstände

C.3.1 $M^{II}{}_{5}V^{III}{}_{2}(P_{2}O_{7})_{4}$ (M^{II} : Cr, Mn, Fe)

Atom	Lage	x	у	z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{ m 2\ a)}$
Cr1	2b	0	0,81628(8)	1/2	1	0,0119(1)
V2	2c	0,75842(4)	0,33038(5)	0,26294(3)	1	0,0049(1)
Cr3	2c	0,74213(4)	0,71136(5)	0,22525(4)	1	0,0081(1)
Cr4	4a	1/2	0,90618(8)	0	1	0,0084(1)
Cr5	4b	0	0,1956(1)	1/2	1	0,0219(2)
P1	4c	0,45114(6)	0,52525(8)	0,24088(5)	1	0,0053(1)
P2	4c	0,70649(7)	0,99434(9)	0,50235(6)	1	0,0075(1)
Р3	4c	0,55057(7)	0,00774(9)	0,26782(6)	1	0,0067(1)
P4	4c	0,24225(7)	0,16992(8)	0,96108(5)	1	0,0070(1)
01	4c	0,6135(2)	0,5181(2)	0,2469(2)	1	0,0078(4)
O3	4c	0,6559(2)	0,1543(3)	0,5267(2)	1	0,0198(5)
O2	4c	0,8884(2)	0,5203(2)	0,2563(2)	1	0,0069(4)
O4	4c	0,6602(2)	0,7368(3)	0,0343(2)	1	0,0118(4)
05	4c	0,3698(2)	0,0764(2)	0,0234(2)	1	0,0107(4)
06	4c	0,6174(2)	0,1675(3)	0,2694(2)	1	0,0148(4)
07	4c	0,5822(2)	0,8854(2)	0,1921(2)	1	0,0138(4)
08	4c	0,2742(2)	0,2984(2)	0,8884(2)	1	0,0116(4)
O9	4c	0,8633(2)	0,0008(2)	0,5045(2)	1	0,0100(4)
O10	4c	0,1345(2)	0,0404(3)	0,8831(2)	1	0,0150(4)
O11	4c	0,9009(2)	0,8742(2)	0,2828(2)	1	0,0116(4)
O12	4c	0,8255(2)	0,3602(2)	0,4275(2)	1	0,0102(4)
O13	4c	0,6169(2)	0,9300(3)	0,3858(2)	1	0,0180(5)
O14	4 <i>c</i>	0,9242(2)	0,1722(3)	0,3006(2)	1	0,0096(4)

Tabelle C.6 Atomlagen und isotrope Auslenkungsparameter für $Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$.

 $\overline{}^{\mathrm{a})} U_{\mathrm{eq}} = (1/3) \Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} U_{\mathrm{ij}} a_{\mathrm{i}}^{*} a_{\mathrm{j}}^{*} a_{\mathrm{i}} a_{\mathrm{j}}^{*}$

Tabelle C.7	Anisotrope Auslenkungsparameter für	r Cr ^{II} ₅ V	$^{\rm III}_2({\rm P_2O_7})_4 /{\rm \AA^2}.$
-------------	-------------------------------------	-----------------------------------	--

Atom	U_{11}	U ₂₂	U ₃₃	U_{12}	<i>U</i> ₁₃	U_{23}
Cr1	0,0056(3)	0,0047(3)	0,0279(4)	0	0,0090(2)	0
V2	0,0031(2)	0,0039(2)	0,0086(2)	0,0002(2)	0,0030(2)	-0,0007(2)
Cr3	0,0040(2)	0,0049(2)	0,0157(2)	0,0007(2)	0,0032(2)	0,0004(2)
Cr4	0,0054(2)	0,0082(3)	0,0126(3)	0	0,0043(2)	0
Cr5	0,0114(3)	0,0125(3)	0,0399(4)	0	0,0050(3)	0
P1	0,0025(3)	0,0051(3)	0,0083(3)	-0,0005(3)	0,0018(2)	-0,0011(2)
P2	0,0041(2)	0,0059(3)	0,0137(3)	0,0002(2)	0,0044(2)	0,0026(3)
Р3	0,0038(3)	0,0045(3)	0,0128(3)	0,0008(3)	0,0041(2)	0,0013(3)
P4	0,0063(3)	0,0067(3)	0,0083(3)	0,0008(2)	0,0024(2)	-0,0003(2)
01	0,0054(8)	0,0054(9)	0,013(1)	-0,0006(8)	0,0040(7)	-0,0001(8)
O3	0,012(1)	0,007(1)	0,046(2)	0,0052(8)	0,018(1)	0,0044(9)
O2	0,0021(7)	0,0052(9)	0,0132(9)	0,0031(8)	0,0022(7)	0,0020(8)
O4	0,0123(9)	0,012(1)	0,0134(9)	0,0054(8)	0,0077(7)	0,0013(7)
O5	0,0070(8)	0,014(1)	0,0108(9)	0,0030(7)	0,0021(7)	0,0006(7)
O6	0,0137(9)	0,0079(9)	0,024(1)	-0,0033(8)	0,0078(9)	-0,0007(8)
O7	0,0086(9)	0,008(1)	0,029(1)	0,0023(8)	0,0129(9)	-0,0003(9)
08	0,0139(9)	0,0096(9)	0,0108(9)	-0,0026(7)	0,0029(7)	0,0012(7)
O9	0,0055(8)	0,0073(9)	0,018(1)	0,0018(9)	0,0047(7)	-0,0019(9)
O10	0,018(1)	0,012(1)	0,014(1)	-0,0065(8)	0,0033(8)	0,0001(8)
011	0,0108(9)	0,006(1)	0,020(1)	-0,0042(7)	0,0070(8)	-0,0013(8)
012	0,0144(9)	0,0041(9)	0,0145(9)	0,0007(7)	0,0079(7)	-0,0001(7)
013	0,013(1)	0,015(1)	0,017(1)	-0,0029(8)	-0,0071(8)	0,0049(8)
014	0,0057(8)	0,011(1)	0,0119(9)	0,0022(7)	0,0031(7)	0,0003(7)

Atom	Lage	x	у	z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
Mn1	4a	0,92548(4)	0	0	1	0,0152(1)
Mn2	4c	0,42963(3)	0,15022(3)	0,87757(1)	0,159(7)	0,0104(1)
V2	4c	0,42963(3)	0,15022(3)	0,87757(1)	0,841(7)	0,0104(1)
Mn3	4c	0,81558(3)	0,14443(3)	0,86348(1)	1	0,0140(1)
Mn4	4b	1/2	0,78141(4)	3/4	0,75(1)	0,0129(1)
V4	4b	1/2	0,78141(4)	3/4	0,25(1)	0,0129(1)
Mn5	4a	0,30779(4)	0	0	0,94(1)	0,0137(1)
V5	4a	0,30779(4)	0	0	0,06(1)	0,0137(1)
P1	8 <i>c</i>	0,62281(5)	0,44750(4)	0,87507(2)	1	0,0098(1)
P2	8 <i>c</i>	0,10471(5)	0,29525(4)	0,00451(2)	1	0,0102(1)
Р3	8 <i>c</i>	0,61351(5)	0,85894(4)	0,88175(2)	1	0,0101(1)
P4	8 <i>c</i>	0,75944(5)	0,54024(4)	0,76790(2)	1	0,0111(1)
01	8 <i>c</i>	0,8830(2)	0,7913(1)	0,62808(5)	1	0,0133(2)
O2	8 <i>c</i>	0,8839(1)	0,5134(1)	0,62734(5)	1	0,0126(2)
O3	8 <i>c</i>	0,2564(2)	0,6415(1)	0,97793(6)	1	0,0195(3)
O4	8 <i>c</i>	0,6721(2)	0,6303(1)	0,72638(6)	1	0,0164(2)
O5	8 <i>c</i>	0,6828(2)	0,9115(1)	0,75770(6)	1	0,0207(3)
O6	8 <i>c</i>	0,7731(1)	0,7962(1)	0,88252(6)	1	0,0170(3)
O7	8 <i>c</i>	0,5047(2)	0,7889(1)	0,65547(6)	1	0,0158(2)
O8	8 <i>c</i>	0,8841(2)	0,6177(1)	0,80026(6)	1	0,0169(2)
09	8 <i>c</i>	0,8854(1)	0,8582(1)	0,50331(5)	1	0,0125(2)
O10	8 <i>c</i>	0,6228(1)	0,5025(1)	0,81253(5)	1	0,0148(2)
011	8 <i>c</i>	0,5208(1)	0,5099(1)	0,59760(5)	1	0,0131(2)
O12	8 <i>c</i>	0,9649(1)	0,6508(1)	0,96112(5)	1	0,0123(2)
O13	8 <i>c</i>	0,5455(2)	0,8448(1)	0,94434(6)	1	0,0199(3)
O14	8 <i>c</i>	0,7250(1)	0,9958(1)	0,59721(5)	1	0,0132(2)

Tabelle C.8 Atomlagen und isotrope Auslenkungsparameter für $Mn_{5}^{II}V_{2}^{III}(P_{2}O_{7})_{4}$.

 $^{a)} U_{eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle C.9	Anisotrope Auslenkungs	sparameter für Mn ^{II} 5V	$V^{\rm III}_{2}(P_2O_7)_4 / Å^2$.
-------------	------------------------	------------------------------------	-------------------------------------

Atom	<i>U</i> ₁₁	U_{22}	U ₃₃	U_{12}	<i>U</i> ₁₃	U ₂₃
Mn1	0,0108(2)	0,0115(2)	0,0232(2)	0	0	0,0025(2)
Mn2	0,0099(1)	0,0107(1)	0,0107(1)	0,00032(9)	-0,00032(9)	-0,0005(1)
V2	0,0099(1)	0,0107(1)	0,0107(1)	0,00032(9)	-0,00032(9)	-0,0005(1)
Mn3	0,0115(1)	0,0131(1)	0,0176(1)	-0,0010(1)	-0,00050(9)	0,0016(1)
Mn4	0,0133(2)	0,0124(2)	0,0129(2)	0	-0,0002(1)	0
V4	0,0133(2)	0,0124(2)	0,0129(2)	0	-0,0002(1)	0
Mn5	0,0119(2)	0,0128(2)	0,0165(2)	0	0	0,0019(1)
V5	0,0119(2)	0,0128(2)	0,0165(2)	0	0	0,0019(1)
P1	0,0098(2)	0,0094(2)	0,0103(2)	-0,0001(1)	0,0001(2)	0,0003(1)
P2	0,0100(2)	0,0089(2)	0,0117(2)	0,0002(1)	0,0013(2)	0,0005(2)
Р3	0,0105(2)	0,0092(2)	0,0106(2)	-0,0001(2)	0,0000(1)	0,0005(2)
P4	0,0123(2)	0,0112(2)	0,0097(2)	0,0016(2)	-0,0005(2)	0,0007(2)
01	0,0151(5)	0,0100(5)	0,0147(6)	0,0004(4)	0,0011(5)	0,0005(4)
O2	0,0148(5)	0,0103(5)	0,0125(6)	0,0006(4)	0,0003(5)	-0,0004(4)
03	0,0123(5)	0,0153(6)	0,0310(8)	0,0029(5)	-0,0020(5)	-0,0028(5)
O4	0,0188(6)	0,0162(6)	0,0142(6)	0,0010(5)	-0,0027(5)	0,0053(5)
05	0,0251(7)	0,0163(6)	0,0209(7)	-0,0046(5)	0,0048(6)	0,0025(5)
O6	0,0134(5)	0,0158(6)	0,0216(7)	0,0036(5)	0,0003(5)	-0,0002(5)
07	0,0149(5)	0,0136(5)	0,0191(6)	0,0033(5)	-0,0020(5)	0,0006(5)
08	0,0154(5)	0,0221(6)	0,0132(6)	-0,0045(5)	0,0001(5)	-0,0006(5)
O9	0,0126(5)	0,0098(5)	0,0153(5)	-0,0003(4)	-0,0002(5)	0,0004(5)
O10	0,0139(5)	0,0185(5)	0,0121(6)	-0,0006(5)	-0,0002(4)	0,0020(5)
011	0,0120(5)	0,0137(5)	0,0135(5)	-0,0020(4)	0,0007(4)	-0,0001(5)
012	0,0117(5)	0,0140(5)	0,0114(5)	-0,0016(4)	-0,0014(4)	-0,0014(5)
013	0,0203(6)	0,0241(6)	0,0153(6)	0,0060(5)	0,0044(5)	0,0086(6)
014	0,0117(5)	0,0151(5)	0,0127(5)	0,0017(5)	-0,0017(4)	0,0001(5)

Atom	Lage	x	У	z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{2}$ a)
Fel	4a	0,92223(6)	0	0	1	0,0166(1)
Fe2	4c	0,43064(5)	0,14895(4)	0,87830(2)	0,2069	0,0082(1)
V2	4c	0,43064(5)	0,14895(4)	0,87830(2)	0,7931	0,0082(1)
Fe3	4c	0,81578(5)	0,14289(4)	0,86213(2)	1	0,0121(1)
Fe4	4b	1/2	0,78179(6)	3/4	0,737	0,0106(2)
V4	4b	1/2	0,78179(6)	3/4	0,263	0,0106(2)
Fe5	4a	0,30389(6)	0	0	0,849	0,0121(2)
V5	4a	0,30389(6)	0	0	0,151	0,0121(2)
P1	8 <i>c</i>	0,62148(8)	0,44737(7)	0,87501(3)	1	0,0072(1)
P2	8 <i>c</i>	0,10242(7)	0,29452(6)	0,00334(3)	1	0,0078(1)
P3	8c	0,61182(7)	0,85786(7)	0,88093(3)	1	0,0072(1)
P4	8 <i>c</i>	0,76146(8)	0,54084(7)	0,76774(3)	1	0,0082(1)
O1	8 <i>c</i>	0,8823(2)	0,7898(2)	0,62785(8)	1	0,0105(4)
O2	8c	0,8824(2)	0,5137(2)	0,62709(8)	1	0,0092(4)
03	8 <i>c</i>	0,2563(2)	0,6421(2)	0,98045(9)	1	0,0184(4)
O4	8c	0,6727(2)	0,6325(2)	0,72635(8)	1	0,0115(4)
O5	8 <i>c</i>	0,6810(2)	0,9118(2)	0,75855(9)	1	0,0159(4)
O6	8 <i>c</i>	0,7720(2)	0,7943(2)	0,88179(9)	1	0,0140(4)
07	8 <i>c</i>	0,5075(2)	0,7888(2)	0,65704(8)	1	0,0118(4)
08	8c	0,8875(2)	0,6181(2)	0,80027(8)	1	0,0129(4)
09	8 <i>c</i>	0,8896(2)	0,8604(2)	0,50306(8)	1	0,0099(3)
O10	8 <i>c</i>	0,6236(2)	0,5018(2)	0,81222(8)	1	0,0124(4)
011	8 <i>c</i>	0,5254(2)	0,5110(2)	0,59910(8)	1	0,0103(4)
012	8 <i>c</i>	0,9629(2)	0,6490(2)	0,96203(8)	1	0,0093(3)
O13	8 <i>c</i>	0,5410(2)	0,8415(2)	0,94310(8)	1	0,0161(4)
014	8c	0,7274(2)	0.0032(2)	0,40416(8)	1	0.0101(3)

Tabelle C.10 Atomlagen und isotrope Auslenkungsparameter für $Fe^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$.

 $^{a)}U_{eq} = (1/3)\Sigma_i\Sigma_jU_{ij}a_i^*a_j^*a_i\cdot a_j$

Tabelle C.11	Anisotrope	Auslenkungspar	rameter für	Fe ^{II} ₅ V ^{II}	$^{11}_{2}(P_2O_7)_4$ /	Å ² .
--------------	------------	----------------	-------------	---	-------------------------	------------------

Atom	U_{11}	U_{22}	U_{33}	U_{12}	<i>U</i> ₁₃	U_{23}
Fe1	0,0071(2)	0,0091(3)	0,0336(4)	0	0	0,0038(2)
Fe2	0,0073(2)	0,0078(2)	0,0097(2)	0,0004(2)	-0,0002(2)	-0,0003(2)
V2	0,0073(2)	0,0078(2)	0,0097(2)	0,0004(2)	-0,0002(2)	-0,0003(2)
Fe3	0,0085(2)	0,0113(2)	0,0164(2)	-0,0012(2)	-0,0009(2)	0,0023(2)
Fe4	0,0099(3)	0,0099(3)	0,0120(3)	0	-0,0006(2)	0
V4	0,0099(3)	0,0099(3)	0,0120(3)	0	-0,0006(2)	0
Fe5	0,0089(3)	0,0112(3)	0,0163(3)	0	0	0,0031(2)
V5	0,0089(3)	0,0112(3)	0,0163(3)	0	0	0,0031(2)
P1	0,0063(3)	0,0063(3)	0,0090(3)	-0,0004(2)	-0,0003(3)	0,0002(2)
P2	0,0068(3)	0,0066(3)	0,0100(3)	0,0000(2)	0,0009(3)	0,0001(2)
P3	0,0066(3)	0,0059(3)	0,0090(3)	-0,0002(2)	0,0002(2)	0,0006(2)
P4	0,0090(3)	0,0079(3)	0,0076(3)	0,0014(2)	-0,0004(2)	0,0004(2)
01	0,0104(8)	0,0062(8)	0,0148(1)	0,0016(7)	0,0006(8)	0,0007(7)
O2	0,0091(8)	0,0069(8)	0,0115(9)	-0,0002(7)	0,0005(8)	-0,0009(7)
O3	0,0074(9)	0,0157(1)	0,0321(1)	0,0032(8)	-0,0016(8)	-0,0044(9)
O4	0,0129(9)	0,0103(9)	0,0114(9)	0,0021(8)	-0,0025(7)	0,0037(7)
O5	0,0192(1)	0,0117(9)	0,0168(1)	-0,0053(8)	0,0033(9)	0,0025(7)
O6	0,0104(9)	0,0114(9)	0,0203(1)	0,0020(7)	0,0000(8)	0,0001(8)
07	0,0109(9)	0,0105(9)	0,0138(1)	0,0042(8)	-0,0009(7)	0,0016(7)
08	0,0124(9)	0,0173(9)	0,0091(9)	-0,0035(7)	0,0001(7)	-0,0003(7)
09	0,0109(8)	0,0066(8)	0,0121(9)	-0,0004(7)	0,0009(8)	0,0001(7)
O10	0,0110(8)	0,0142(9)	0,0122(9)	-0,0015(8)	-0,0013(7)	0,0022(7)
011	0,0092(8)	0,0089(8)	0,0128(9)	-0,0016(7)	0,0013(7)	0,0008(7)
O12	0,0083(8)	0,0109(8)	0,0086(8)	-0,0014(7)	-0,0024(7)	-0,0012(7)
013	0,0164(1)	0,0196(9)	0,0124(9)	0,0050(8)	0,0043(8)	0,0072(8)
O14	0,0078(8)	0,0097(8)	0,0128(9)	-0,0022(7)	0,0011(7)	-0,0005(7)

		$Cr^{II}{}_5V^{III}{}_2(P_2O_7)_4$	$Mn^{11}_{5}V^{111}_{2}(P_2O_7)_4$	Fe ^{II} ₅ V ^{III} ₂ (P ₂ O ₇) ₄
[<i>M</i> 1O ₆]	<i>M</i> 1-O3	1,982(2)	2,071(1)	2,022(2)
	<i>M</i> 1-O3	1,982(2)	2,071(1)	2,022(2)
	<i>M</i> 1-O9	2,048(2)	2,134(1)	2,091(2)
	<i>M</i> 1-O9	2,048(2)	2,134(1)	2,091(2)
	<i>M</i> 1 - O11	2,722(2)	2,368(1)	2,397(2)
	<i>M</i> 1-O11	2,722(2)	2,368(1)	2,397(2)
$[M2O_6]$	M2-08	1,904(2)	1,907(1)	1,912(2)
	M2-O6	1,952(2)	1,963(1)	1,949(2)
	<i>M</i> 2-O12	2,044(2)	2,010(1)	2,007(2)
	M2-O2	2,047(2)	2,086(1)	2,059(2)
	<i>M</i> 2-O14	2,026(2)	2,097(1)	2,085(2)
	<i>M</i> 2-O1	2,077(2)	2,120(1)	2,097(2)
[M3O ₆]	<i>M</i> 3-O11	2,022(2)	2,134(1)	2,072(2)
	<i>M</i> 3- O4	2,363(2)	2,145(1)	2,106(2)
	<i>M</i> 3-O2	2,094(2)	2,145(1)	2,108(2)
	<i>M</i> 3-O7	2,076(2)	2,138(1)	2,110(2)
	M3-O1	2,114(2)	2,235(1)	2,213(2)
	<i>M</i> 3- <i>O</i> 3	3,094(2)	2,769(1)	2,855(2)
$[M4O_6]$	<i>M</i> 4-O5	1,988(2)	2,025(1)	1,994(2)
	<i>M</i> 4-O5	1,988(2)	2,025(1)	1,994(2)
	<i>M</i> 4-O4	2,050(2)	2,162(1)	2,134(2)
	<i>M</i> 4-O4	2,050(2)	2,162(1)	2,134(2)
	<i>M</i> 4-O7	2,374(2)	2,250(1)	2,210(2)
	<i>M</i> 4-O7	2,374(2)	2,250(1)	2,210(2)
$[M5O_6]$	<i>M</i> 5-O9	2,114(2)	2,159(1)	2,126(2)
	M5-09	2,114(2)	2,159(1)	2,126(2)
	<i>M</i> 5-O12	2,163(2)	2,202(1)	2,172(2)
	<i>M</i> 5-O12	2,163(2)	2,202(1)	2,172(2)
	<i>M</i> 5-O14	2,465(2)	2,330(1)	2,292(2)
	<i>M</i> 5-O14	2,465(2)	2,330(1)	2,292(2)

Tabelle C.12 Interatomare Abstände / Å in den Polyedern [$M1O_6$], [$M2O_6$], [$M3O_6$], [$M4O_6$] und [$M5O_6$] in $A^{II}{}_5V^{III}{}_2(P_2O_7)_4$ (A^{II} : Cr, Mn, Fe).

Anhang C Quaternäre Pyrophosphate $A^{II}_{5}B^{III}_{2}(P_2O_7)_4$ und $A^{II}_{3}B^{III}_{2}(P_2O_7)_3$

		$Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$	$Mn_{5}^{II}V_{2}^{III}(P_{2}O_{7})_{4}$	Fe ^{II} ₅ V ^{III} ₂ (P ₂ O ₇) ₄
[P1O ₄]	P1-O11	1,514(2)	1,517(1)	1,517(2)
	P1-O14	1,517(2)	1,533(1)	1,530(2)
	P1-O1	1,555(2)	1,536(1)	1,534(2)
	P1-O10	1,571(2)	1,582(1)	1,583(2)
[P2O ₄]	P2-O3	1,492(2)	1,496(1)	1,489(2)
	P2-O9	1,516(2)	1,509(1)	1,509(2)
	P2-O12	1,533(2)	1,540(1)	1,538(2)
	P2-O13	1,588(2)	1,594(1)	1,589(2)
[P3O ₄]	P3-O6	1,483(2)	1,496(1)	1,488(2)
	P3-O7	1,512(2)	1,508(1)	1,510(2)
	P3-O2	1,540(2)	1,532(1)	1,529(2)
	P3-O13	1,603(2)	1,604(1)	1,601(2)
[P4O ₄]	P4-O5	1,479(2)	1,487(1)	1,484(2)
	P4-O8	1,521(2)	1,518(1)	1,515(2)
	P4-O4	1,519(2)	1,521(1)	1,524(2)
	P4-O10	1,626(2)	1,620(1)	1,617(2)
∠(P1,O	10,P4)	136,7(2) °	133,95(8) °	134,6(1) °
∠(P2,O	13,P3)	135,4(2) °	138,14(9) °	137,5(1) °

Tabelle C.13 Interatomare Abstände / Å in den Polyedern [P1O₄], [P2O₄], [P3O₄] und [P4O₄] in $A^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ (A^{II} : Cr, Mn, Fe).

C.3.2 $Fe^{II}_{3}V^{III}_{2}(P_2O_7)_3$

Atom	Lage	x	у	z	s.o.f.	$U_{ m eq}$ / ${ m \AA}^{ m 2\ a)}$
Fe1	8 <i>c</i>	-0,06041(8)	-0,82135(8)	-0,07429(4)	0,44(1)	0,0103(2)
V1	8 <i>c</i>	-0,06041(8)	-0,82135(8)	-0,07429(4)	0,56(1)	0,0103(2)
Fe2	8 <i>c</i>	0,32165(8)	-0,81774(8)	-0,09734(4)	0,74(2)	0,0158(2)
V2	8 <i>c</i>	0,32165(8)	-0,81774(8)	-0,09734(4)	0,26(2)	0,0158(2)
Fe3	4b	1/2	-0,9559(1)	3/4	0,64(3)	0,0124(3)
V3	4b	1/2	-0,9559(1)	3/4	0,36(3)	0,0124(3)
P1	8 <i>c</i>	0,1331(1)	-0,8811(1)	0,07976(7)	1	0,0074(2)
P2	8 <i>c</i>	0,6166(1)	-0,0286(1)	-0,07930(7)	1	0,0064(2)
P3	8 <i>c</i>	0,2641(1)	-0,7834(1)	0,22280(7)	1	0,0081(2)
01	8 <i>c</i>	0,1262(4)	-0,9630(3)	-0,0850(2)	1	0,0112(7)
02	8 <i>c</i>	-0,0158(4)	-0,8197(3)	0,0415(2)	1	0,0099(6)
O3	8 <i>c</i>	-0,2221(4)	-0,9659(3)	-0,0774(2)	1	0,0121(6)
04	8 <i>c</i>	-0,1068(4)	-0,7917(3)	-0,1807(2)	1	0,0123(7)
05	8 <i>c</i>	0,1239(3)	-0,6843(3)	-0,0859(2)	1	0,0087(6)
06	8 <i>c</i>	-0,2156(4)	-0,6696(4)	-0,0426(2)	1	0,0113(7)
07	8 <i>c</i>	0,3287(4)	-0,8071(4)	-0,2221(2)	1	0,0122(7)
08	8 <i>c</i>	0,4985(4)	-0,9615(3)	-0,1330(2)	1	0,0103(6)
09	8 <i>c</i>	0,3210(4)	-0,0874(3)	-0,2583(2)	1	0,0137(7)
O10	4a	0,5335(5)	0	0	1	0,011(1)
011	8 <i>c</i>	0,1257(4)	-0,8239(3)	0,1631(18)	1	0,0127(7)

Tabelle C.14 Atomlagen und isotrope Auslenkungsparameter für $Fe^{II}_{3}V^{III}_{2}(P_2O_7)_3$

^{a)} $U_{\text{eq}} = (1/3) \Sigma_{\text{i}} \Sigma_{\text{j}} U_{\text{ij}} a_{\text{i}}^* a_{\text{j}}^* a_{\text{i}} a_{\text{j}}$

Tabelle C.15 Anisotrope Auslenkungsparameter für $Fe^{II}_{3}V^{III}_{2}(P_2O_7)_4$ / Å².

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U_{12}	<i>U</i> ₁₃	U_{23}
Fe1	0,0105(3)	0,0086(3)	0,0118(3)	-0,0007(3)	0,0002(3)	-0,0002(3)
V1	0,0105(3)	0,0086(3)	0,0118(3)	-0,0007(3)	0,0002(3)	-0,0002(3)
Fe2	0,0116(4)	0,0137(4)	0,0220(4)	0,0012(3)	0,0002(3)	-0,0037(3)
V2	0,0116(4)	0,0137(4)	0,0220(4)	0,0012(3)	0,0002(3)	-0,0037(3)
Fe3	0,0135(5)	0,0124(5)	0,0113(5)	0	-0,0010(4)	0
V3	0,0135(5)	0,0124(5)	0,0113(5)	0	-0,0010(4)	0
P1	0,0074(5)	0,0050(5)	0,0097(5)	0,0002(4)	-0,0008(4)	0,0003(4)
P2	0,0067(5)	0,0052(5)	0,0072(5)	-0,0004(4)	-0,0004(4)	-0,0009(4)
Р3	0,0093(5)	0,0072(5)	0,0079(5)	0,0011(4)	0,0010(4)	-0,0007(4)
01	0,011(2)	0,004(1)	0,018(2)	0,001(1)	-0,001(1)	-0,002(1)
O2	0,008(1)	0,010(1)	0,012(1)	0,001(1)	-0,001(1)	-0,001(1)
O3	0,008(2)	0,013(2)	0,016(2)	-0,003(1)	0,001(1)	-0,000(2)
O4	0,010(2)	0,017(2)	0,011(2)	0,004(1)	0,000 (1)	0,001(1)
O5	0,009(1)	0,006(1)	0,012(2)	0,002(1)	0,002(1)	0,000(1)
06	0,008(2)	0,010(2)	0,016(2)	0,002(1)	0,000(1)	-0,004(1)
O7	0,013(2)	0,009(2)	0,015(2)	0,002(1)	-0,004(1)	0,004(1)
08	0,012(2)	0,012(2)	0,007(1)	0,005(1)	-0,001(1)	0,001(1)
09	0,016(2)	0,012(2)	0,013(2)	-0,004(1)	0,002(2)	0,002(1)
O10	0,007(2)	0,015(2)	0,011(2)	0	0	-0,004(2)
011	0,011(2)	0,013(2)	0,014(2)	0,000(2)	-0,001(1)	-0,001(1)

[M1O ₆]		[M2O ₆]		[M3O ₆]	
<i>M</i> 1-O4	1,950(3)	M2-O5	2,116(3)	М3-О9	1,978(3)
<i>M</i> 1-O3	1,955(3)	M2-O8	2,135(3)	<i>M</i> 3-O9	1,978(3)
<i>M</i> 1-O6	2,048(3)	<i>M</i> 2-O2	2,152(3)	<i>M</i> 3-O8	2,077(3)
<i>M</i> 1-O5	2,051(3)	<i>M</i> 2-O1	2,175(3)	<i>M</i> 3-O8	2,077(3)
<i>M</i> 1-O2	2,089(3)	<i>M</i> 2-O7	2,216(3)	М3-О7	2,099(3)
<i>M</i> 1 - O1	2,094(3)	<i>M</i> 2-O6	2,506(3)	М3-О7	2,099(3)

Tabelle C.16 Interatomare Abstände / Å in den Polyedern $[M1O_6]$, $[M2O_6]$ und $[M3O_6]$ in Fe^{II}₃V^{III}₂(P₂O₇)₃.

Tabelle C.17 Interatomare Abstände / Å in den Polyedern [P1O₄], [P2O₄] und [P3O₄] in $Fe^{II}_{3}V^{III}_{2}(P_2O_7)_{3}$.

[P1O ₄]		[P2O ₄]		[P3O ₄]	
P1-O6	1,511(3)	P2-O3	1,483(3)	P3-O9	1,486(3)
P1-O1	1,523(3)	P2-O8	1,521(3)	P3-O4	1,504(3)
P1-O2	1,540(3)	P2-O5	1,523(3)	P3-O7	1,529(3)
P1-O11	1,583(3)	P2-O10	1,595(2)	P3-O11	1,619(3)
	∠(P1,O11,P3) 132,0)(2) °			
	∠(P2,O10,P2) 128,2	2(3) °			

Anhang D *m*-W₂O₃(PO₄)₂

D.1 Guinierdiagramme

Abbildung D.1 *IP*-Guinier-Aufnahme von m-W₂O₃(PO₄)₂ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).

Abbildung D.2 *IP*-Guinier-Aufnahme von o-W₂O₃(PO₄)₂ (a). Berechnetes Guinierdiagramm auf Grundlage von [272] (b).

D.2 Indizierung von Guinieraufnahmen

Tabelle D.1	$m - W_2 O_3 (PO_4)_{2}$	Indizierung	einer	Guinieraufnahme	(Abbildung	D.1)	mit
beobachteten	und berechneten 4	θ -Werten. Δ	$=$ $ sin^2 $	$\theta_{\rm calc}$ - $\sin^2 \theta_{\rm obs} \cdot 1000$).		

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	<i>d</i> -Wert	$I_{\rm calc}{}^{\rm a)}$	$I_{\rm obs}$
0	0	1	22,714	22,640	0,06	7,784	28	20
1	0	-1	31,573	31,549	0,03	5,608	73	45
1	0	1	32,830	32,822	0,01	5,395	62	42
1	1	-1	34,626	34,595	0,04	5,117	49	33
1	2	0	36,392	36,389	0,00	4,871	1000	1000
1	2	-1	42,524	42,491	0,05	4,175	872	683
1	2	1	43,475	43,493	0,03	4,085	671	553
0	0	2	45,656	45,697	0,07	3,892	578	600
2	0	-1	50,400	50,386	0,03	3,531	651	682
2	0	1	52,013	51,989	0,05	3,423	608	657
2	2	0	53,997	53,983	0,03	3,299	43	46
0	4	0	57,051	57,078	0,06	3,126	922	972
1	2	-2	57,979	57,970	0,02	3,077	79	63
1	2	2	59,401	59,412	0,02	3,005	313	262
0	3	2	62,835	62,848	0,03	2,844	38	35
2	2	-2	70,075	70,100	0,06	2,558	295	198
2	2	2	72,468	72,474	0,02	2,477	164	124
3	2	0	75,117	75,108	0,02	2,392	221	269
2	4	-1	76,848	76,841	0,02	2,340	225	271
2	4	1	77,963	77,993	0,08	2,308	214	261
2	0	-3	82,078	82,099	0,06	2,197	51	43
2	0	3	85,215	85,234	0,06	2,120	103	70
3	2	-2	87,307	87,317	0,03	2,071	140	89
1	6	0	89,984	89,990	0,02	2,013	154	191
3	2	2	90,296	90,321	0,08	2,006	196	153
1	6	-1	92,876	92,894	0,06	1,953	191	162
1	6	1	93,356	93,375	0,06	1,944	161	195
1	0	-4	95,383	95,388	0,02	1,905	107	68
3	0	-3	97,319	97,320	0,00	1,869	139	137
2	4	3	104,152	104,139	0,05	1,754	72	35
4	0	2	106,977	106,982	0,02	1,711	77	45
2	2	-4	107,702	107,703	0,00	1,701	159	87
3	4	-3	114,750	114,731	0,07	1,604	141	104
1	6	3	116,474	116,473	0,00	1,582	34	31
0	8	0	118,083	118,085	0,01	1,563	153	105
4	2	-3	120,378	120,377	0,00	1,536	121	73
0	2	5	122,614	122,599	0,06	1,510	162	106
4	4	2	123,465	123,470	0,02	1,501	78	24
5	2	-1	124,421	124,441	0,08	1,491	124	18
5	2	1	126,382	126,353	0,11	1,470	165	58
2	8	-1	130,426	130,417	0,04	1,429	100	80
2	8	1	131,192	131,178	0,06	1,422	95	70

a) Intensität normiert auf 1000 für den stärksten Reflex. Der stärkste nicht beobachtete Reflex im untersuchten Winkelbereich besitzt eine relative Intensität von <10.

D.3 Lageparameter, Besetzungsfaktoren und interatomare Abstände

Atom	Lage	x	у	z	$U_{ m eq}$ / ${ m \AA}^2$ a)
W1	4f	0,15398(3)	0,49688(2)	0,69155(3)	0,0062(1)
W2	2e	0,35817(4)	1/4	0,20268(4)	0,0071(1)
W3	2 <i>e</i>	0,36480(4)	3/4	0,19187(4)	0,0061(1)
P1	4f	0,2530(2)	0,49550(1)	0,1168(2)	0,0063(3)
P2	2 <i>e</i>	0,2489(3)	3/4	0,6051(3)	0,0073(4)
P3	2 <i>e</i>	0,0719(3)	1/4	0,8478(3)	0,0068(4)
01	4f	0,3342(6)	0,4738(4)	0,5850(7)	0,017(1)
02	2c	0	1/2	1/2	0,010(1)
03	4f	0,1698(6)	0,6526(4)	0,6889(6)	0,0121(9)
04	4f	0,2656(6)	0,5042(3)	0,9208(6)	0,0106(9)
05	4f	0,1042(6)	0,3489(4)	0,7360(6)	0,0124(9)
06	4f	-0,0745(6)	0,5278(4)	0,8310(6)	0,0128(9)
07	2e	0,2069(8)	1/4	-0,0034(8)	0,011(1)
08	4f	0,3744(6)	0,4018(4)	0,1739(6)	0,0123(9)
09	2e	0,2057(9)	1/4	0,3500(9)	0,019(2)
O10	2 <i>e</i>	0,5603(8)	1/4	0,0191(9)	0,011(1)
011	2 <i>e</i>	0,5537(8)	1/4	0,3559(9)	0,011(1)
012	2 <i>e</i>	0,1045(8)	3/4	0,0836(9)	0,012(1)
013	4f	0,3311(6)	0,5943(4)	0,2019(6)	0,013(9)
014	2e	0,2211(8)	3/4	0,4133(8)	0,011(1)
015	2 <i>e</i>	0,5525(8)	3/4	0,3085(9)	0,014(1)

Tabelle D.2 Atomlagen und isotrope Auslenkungsparameter für m-(W₂O₃)(PO₄)₂.

Tabelle D.3	Anisotrope Auslenkungsparameter für m -(W ₂ O ₃)(PO ₄) ₂ / Å ²
-------------	---

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U_{23}
W1	0,00637(1)	0,00549(2)	0,00666(2)	-0,00050(8)	0,00060(9)	0,00072(8)
W2	0,00654(2)	0,00631(2)	0,00851(2)	0	-0,0003(1)	0
W3	0,00542(2)	0,00562(2)	0,00744(2)	0	0,0009(1)	0
P1	0,0054(7)	0,0057(8)	0,0077(7)	0,0002(5)	0,0007(5)	-0,0008(5)
P2	0,0077(1)	0,0064(1)	0,0079(1)	0	0,0011(8)	0
P3	0,0051(1)	0,0057(1)	0,0095(1)	0	-0,0001(8)	0
01	0,015(2)	0,022(3)	0,015(2)	0,004(2)	0,004(2)	0,003(2)
O2	0,018(3)	0,006(3)	0,006(3)	-0,001(2)	-0,007(3)	0,002(2)
O3	0,016(2)	0,006(2)	0,014(2)	-0,003(2)	0,001(2)	-0,001(2)
O4	0,013(2)	0,009(2)	0,010(2)	-0,003(2)	-0,001(2)	0,003(2)
O5	0,014(2)	0,008(2)	0,015(2)	-0,001(2)	-0,000(2)	0,003(2)
O6	0,006(2)	0,018(2)	0,014(2)	0,003(2)	0,002(2)	0,004(2)
O7	0,012(3)	0,011(3)	0,009(3)	0	-0,005(2)	0
08	0,012(2)	0,009(2)	0,016(2)	0,003(2)	-0,004(2)	-0,002(2)
O9	0,014(3)	0,023(4)	0,019(4)	0	0,008(3)	0
O10	0,006(3)	0,009(3)	0,018(3)	0	0,000(2)	0
011	0,005(3)	0,012(3)	0,016(3)	0	-0,001(2)	0
O12	0,006(3)	0,016(3)	0,014(3)	0	0,001(2)	0
O13	0,018(2)	0,007(2)	0,013(2)	-0,001(2)	-0,005(2)	-0,000(2)
O14	0,008(3)	0,015(3)	0,011(3)	0	0,001(2)	0
015	0,011(3)	0,010(3)	0,018(3)	0	-0,005(3)	0

	3, 2, 3, 2, 2		· /		
[W1O ₆]		$[W2O_6]$		[W3O ₆]	
W1-O1	1,681(5)	W2-O9	1,682(7)	W3-O15	1,689(7)
W1-O2	1,877(3)	W2-O11	1,896(6)	W3-O10	1,765(7)
W1-O5	1,925(5)	W2-O8	1,916(5)	W3-O13	1,967(5)
W1-O3	1,952(5)	W2-O8	1,916(5)	W3-O13	1,967(5)
W1-O4	1,957(5)	W2-O7	1,953(6)	W3-O14	2,091(6)
W1-O6	2,153(5)	W2-O10	2,166(7)	W3-O12	2,162(6)
[P1O ₄]		[P2O ₄]		[P3O ₄]	
P1-O6	1,490(5)	P2-O14	1,502(7)	P3-O12	1,491(6)
P1-O13	1,517(5)	P2-O3	1,523(5)	P3-O5	1,539(5)
P1-O4	1,538(5)	P2-O3	1,523(5)	P3-O5	1,539(5)
P1-O8	1,559(5)	P2-O11	1,553(7)	P3-O7	1,533(7)

Tabelle D.4 Interatomare Abstände / Å in den Polyedern $[W1O_6]$, $[W2O_6]$ und $[W3O_6]$, sowie $[P1O_4]$, $[P2O_4]$ und $[P3O_4]$ in m-W₂O₃(PO₄)₂.

Anhang E Computerprogramme und Eingabedateien

E.1 Verwendete Computerprogramme

Alle durchgeführten Berechnungen wurden an institutseigenen Personalcomputern durchgeführt. In der vorliegenden Arbeit wurden die in Tabelle E.1 aufgeführten Programme verwendet.

Programm	Lit.	Beschreibung
AIDA V2.2	[291]	Konvertieren der Image-Plate-Scanner Bilddaten in xy-Text- daten.
Atoms V6.0	[292]	Darstellung von Kristallstrukturen (Polyederdarstellung).
BAS-Reader V2.26	[293]	Softwareoberfläche des Image-Plate-Scanners.
Corel DRAW V9 und V12	[294]	Vektorgrafikprogramm zum Zeichnen der verwendeten Geräte.
FINDIT-V1.4.6	[295]	Benutzeroberfläche für die Einkristallstrukturdatenbank.
GINA	[296]	Umwandeln der LAZY-PULVERIX-Dateien in Maßstabsgetreue Zeichnungen (HP-Plotter-Files) der Beugungsdiagramme.
KPLOT V9.5.8	[297]	Zeichnen und Analysieren von Kristallstrukturen (Abschnitt E.2 KPLOT).
LAZY PULVERIX	[298]	Berechnung von Guinier – Röntgendiffraktogrammen.
Microsoft EXCEL 2000	[299]	Tabellenkalkulationsprogramm (Auswertung und Darstellung der Gitterkonstanten und Besetzungsfaktoren).
Microsoft WORD 2000	[299]	Textverarbeitungsprogramm.
ORIGIN PRO 6.1G	[300]	Graphische Darstellung von Messwerten (Guinieraufnahmen, magnetische Messungen, Remissions- und Absorptionsspektren.
ORTEP	[301]	Erstellen von Schwingungsellipsoiden.
SHELXL-97	[302]	Verfeinerung von Kristallstrukturen.
SHELXS-97	[302]	Lösen von Kristallstrukturen mit Hilfe der <i>direkten Methoden</i> [86].
SOS1	[303]	Korrektur der 4 θ -Werte von Pulveraufnahmen anhand von α -Quarz.
SOS2	[303]	Berechnung von Gitterkonstanten nach der Methode der kleinsten Fehlerquadrate.
WinGX - Version 1.64.05	[304]	Programmoberfläche für die Programme SHELXL-97 [302] und SHELXS-97 [302].

Tabelle E.1Verwendete Computerprogramme.

E.2 KPLOT

Das Programm KPLOT [297] (geschrieben von Dr. R. Hundt, Institut für Anorganische Chemie, Universität Bonn) wurde entwickelt, um Kristallstrukturen zu zeichnen und zu analysieren. Die erste Version wurde 1979 veröffentlicht und seitdem wird das Programm kontinuierlich fortentwickelt.

Mit Hilfe dieses Programms lassen sich einfach die Gitterkonstanten zweier Zellen vergleichen (Tabelle E.2), die Atomkoordinaten einer SHELXL Eingabedatei [302] normalisieren sowie nicht standardisierte in reguläre Aufstellungen umformen (Tabelle E.3). Eine weitere sehr nützliche Funktion ist die Berechnung von Atomkoordinaten einer direkten Untergruppe (Tabelle E.4). Auch ist es möglich eine SHELXL Eingabedatei aus einem CIF-Datei [287] zu erstellen (Tabelle E.5). LAZY-PULXERIX Eingabedateien [298] lassen sich ebenfalls erzeugen (Tabelle E.6), jedoch ist die dafür notwendige Funktion nur in der Dosund Linux-Version von KPLOT implementiert, in der Windows-Version wird der Befehl ignoriert [305].

Tabelle E.2Vergleich zweier Zellen.

KI	PLOT – Befehl	Beschreibung und Bemerkungen		
1.	DZA <i>a b c α β γ</i> (Bravistyp) {ENTER}	Definiert die Zelle A (ist diese Zelle nicht primitiv, so muss man den Bravistyp der Zelle angeben).		
2.	DZB <i>a b c α β γ</i> (Bravistyp) {ENTER}	Definiert die Zelle B (ist diese Zelle nicht primitiv, so muss man den Bravistyp der Zelle angeben).		
3.	VZAB {ENTER}	Vergleicht die Zelle A mit der Zelle B und gibt die Transformationsmatrix an, wenn eine Überführung der Zellen möglich ist.		

 Tabelle E.3
 Normalisierung der Raumgruppe und Atomkoordinaten.

KI	PLOT – Befehl	Beschreibung und Bemerkungen
1.	LCIF Dateiname {ENTER} oder SXL Dateiname {ENTER}	Liest die Gitterkonstanten und Atomkoordinaten einer CIF- oder SHELXL-Datei ein.
2.	SFND 3 {ENTER} FOR007.dat {ENTER}	Führt eine Symmetrieanalyse durch. Die Ergebnisse dieser Analyse werden in der Datei <i>FOR007.dat</i> gespeichert, die für den KPLOT - Befehl RGS benötigt wird.
3.	RGS 1 {ENTER}	Sucht passende Raumgruppe und erstellt das Skript <i>RGS.OUT.</i>
4.	GET RGS.OUT {ENTER}	Wendet das Skript <i>RGS.OUT</i> auf die Daten an, dabei werden automatisch die Zelle und Atomkoordinaten normalisiert.
5.	GSXJ 3 {ENTER} <i>FileName</i> {ENTER}	Speichert die neu berechnete Zelle und Atomkoordinaten in einer SHELXL Eingabedatei.

KF	PLOT – Befehl	Beschreibung und Bemerkungen
1.	LCIF Dateiname {ENTER} oder SXL Dateiname {ENTER}	Liest die Gitterkonstanten und Atomkoordinaten einer CIF- oder SHELXL-Datei ein.
2.	SFND 3 {ENTER} FOR007.dat {ENTER}	Führt eine Symmetrieanalyse durch. Die Ergebnisse dieser Analyse werden in der Datei <i>FOR007.dat</i> gespeichert, die für viele weitere KPLOT - Befehle benötigt wird.
3.	RG Raumgruppe {ENTER}	Setzt die Raumgruppe fest.
4.	TUG Untergruppe {ENTER}	Berechnet die neuen Atomkoordinaten in der Untergruppe (mit TUG 0 erhält man eine Liste der möglichen Unter- gruppen).
5.	GSXJ 3 {ENTER} Dateiname {ENTER}	Speichert die neuberechneten Atomkoordinaten in einer SHELXL-Eingabedatei. Die Atome müssen anschließend in dieser Datei mit einem Texteditor neu nummeriert werden.

Tabelle E.4Transformation in eine Untergruppe.

 Tabelle E.5
 Erstellen einer SHELXL Eingabedatei aus einer CIF-Datei.

KI	PLOT – Befehl	Beschreibung und Bemerkungen
1.	LCIF Dateiname {ENTER}	Liest die Gitterkonstanten und Atomkoordinaten einer CIF- Datei ein.
2.	GSXJ 3 {ENTER} Dateiname {ENTER}	Speichert die Atomkoordinaten in einer SHELXL- Eingabedatei, bei mischbesetzten Lagen müssen die Besetzungsparameter manuell angepasst werden.

Tabelle E.6	Erstellen einer LAZY-PULVERIX Eingabedatei.
-------------	---

KPLOT – Befehl	Beschreibung und Bemerkungen
1. LCIF Dateiname { oder SXL Dateiname { RG NR {ENTER}	 ENTER } Liest die Gitterkonstanten und Atomkoordinaten einer CIF- oder SHELXL-Datei ein. Bei einer SHELXL-Datei muss manuell die Raumgruppe festgelegt werden, oder die Befehle 2-4 aus Tabelle E.3 ausgeführt werden.
<pre>2. LZIN {ENTER} Dateiname {ENTER}</pre>	Erstellt eine LAZY-PULXERIX Eingabedatei. Wenn die Zelle in einer nicht standardisierten Raumgruppe aufgestellt ist, müssen vorher die Befehle 2-4 aus Tabelle E.3 ausgeführt werden.

Tabelle E.7	Weitere nützliche KPLOT-Befehle
I abene La	Wentere nutzhene iti EOT Defenite

KPLOT – Befehl	Beschreibung und Bemerkungen
TZ Matrix {ENTER}	Transformiert die Zelle (und alle Atomkoordinaten) mit der gegebenen Matrix.
TZUR Vektor {ENTER}	Verschiebt den Ursprung der Zelle um den gegebenen Vektor.
RG NR {ENTER}	Legt manuell die Raumgruppe fest.

E.3 Beispiel für die Verfeinerung einer Mischbesetzung mit Shelxl

Ausschnitt aus einer Shelxl-Eingabedatei [302], in der eine Mischbesetzung der Metalllagen M1 - M4 berücksichtigt wird, unter der Annahme das jede Lage vollständig besetzt ist.

```
REM ## Koppelung der Lagen M1 - M4
                                                         ##
REM ## EXYZ koppelt die Atomkoordinaten
                                                          ##
REM ##
     EADP koppelt die anisotrope Auslenkungsparameter
                                                          ##
EXYZ IN1 MN1
EXYZ IN2 MN2
    IN3 MN3
EXYZ
    IN4 MN4
EXYZ
EADP
    TN1 MN1
EADP
    TN2 MN2
EADP
    IN3 MN3
EADP
    IN4 MN4
REM ## Koppelung der Besetzungsfaktoren:
REM
REM Besetzungsfaktoren für die Lagen
              M1: M2: M3: M4:
0.04213 0.45647 0.30721 0.93241
REM
             м1:
      * *****
FVAR
REM 3 Mn-Atome sollen auf die Lagen M1-M4 verteilt werden.
REM Dabei ist die Zähligkeit der Lagen zu berücksichtigen !
REM Lage M2 ist 1-zählig / M1, M3 und M4 sind 2-zählig
SUMP 3.0 0.001 2.0 2 1.0 3 2.0 4 2.0 5
REM ## Liste der Atomkoordinaten
REM LAGE M1:
       0.027368
                0.225020
                          0.051526
                                   21.00000
                                            0.01024
                                                    0.00879 =
MN1
    2
      0.01019 0.00277 0.00455 0.00334
IN1
    1
        0.027368
                0.225020
                         0.051526
                                  -21.00000
                                            0.01024
                                                    0.00879 =
      0.01019
              0.00277
                     0.00455
                              0.00334
REM LAGE M2:
        0.500000
                 0.500000
                          0.000000
                                   30.50000
                                            0.01012
                                                    0.00947 =
MN2
    2
      0.01182
              0.00345
                      0.00408
                               0.00350
        0.500000 0.500000 0.000000 -30.50000
IN2
    1
                                            0.01012
                                                    0.00947 =
      0.01182
              0.00345
                      0.00408
                               0.00350
REM LAGE M3:
       0.621959
                 0.953378
                          0.391809
                                   41.00000
                                            0.01147
                                                    0.00977 =
MN3
    2
              0.00331 0
                     0.00513 0.
378 0.391809
      0.01093
                              0.00380
        0.621959
                                  -41.00000
                                            0.01147
                                                    0.00977 =
IN3
    1
      0.01093 0.00331 0.00513
                             0.00380
REM LAGE M4:
       0.784160
                 0.321501
                          0.294389
                                   51.00000
                                            0.01822
                                                    0.01177 =
MN4
    2
              0.00545
                      0.00946
      0.01495
                               0.00654
        0.784160
                0.321501
                         0.294389
                                  -51.00000
IN4
    1
                                            0.01822
                                                    0.01177 =
      0.01495
              0.00545
                      0.00946
                              0.00654
REM Lage P1-P3:
. . .
REM Lage 01-012:
. . .
HKLF
      4
END
```

. . .

Anhang F Verzeichnisse

F.1 Tabellenverzeichnis

Tabelle 1.1	Phosphate mit 3d-Metallen in zwei unterschiedlichen Oxidationsstufen.	1
Tabelle 1.2	Verwendete kommerzielle Chemikalien.	31
Tabelle 1.3	Darstellung der in dieser Arbeit als Edukte "nasschemisch" verwendeten "volloxidierte" Phosphate.	32
Tabelle 1.4	Darstellung der in dieser Arbeit als Edukte eingesetzten Phosphide.	33
Tabelle 1.5	Darstellung der in dieser Arbeit als Edukte verwendeten "reduzierten" Phosphate.	33
Tabelle 2.1	Orthophosphate $A^{II}_{3}B^{III}_{4}(PO_4)_6$. Übersicht zum Kenntnisstand zu Beginn der vorliegenden Arbeit.	35
Tabelle 2.2	Vergleich der Gitterkonstanten von FeVO ₄ , NaCuFe ₂ (VO ₄) ₃ und β -Cu ₃ Fe ₄ (VO ₄) ₆ .	41
Tabelle 2.3	Stand der Literatur zu Beginn der vorliegenden Arbeit zur Verteilung der dreiwertigen Kationen B^{III} über die Lagen $M1$ bis $M4$ im Fe ^{II} ₃ Fe ^{III} ₄ (PO ₄) ₆ -Strukturtyp.	45
Tabelle 2.4	Übersicht über die verwendeten Darstellungsmethoden zur Synthese von Phosphaten $A^{II}_{3}B^{III}_{4}(PO_{4})_{6}$. Trotz der Versuche wurden gemischte Phosphate mit den Kationenkombinationen Co ^{II} /Ti ^{III} , Ni ^{II} /Ti ^{III} , Cu ^{II} /Ti ^{III} , Cr ^{II} /Fe ^{III} , Cr ^{II} /In ^{III} und Cu ^{II} /In ^{III} nicht erhalten.	47
Tabelle 2.5	Precursoren zur in situ Freisetzung der verschiedenen Transportmittel.	47
Tabelle 2.6	Repräsentative Ansätze zur Darstellung von Orthophosphaten A_{3}^{II} Ti ^{III} ₄ (PO ₄) ₆ (A^{II} : Cr, Mn, Fe, Co, Ni, Cu, Zn, Mg).	48
Tabelle 2.7	Repräsentative Experimente zum chemischen Transport von Orthophosphaten $A^{II}_{3}Ti^{III}_{4}(PO_4)_6$ (A^{II} : V, Cr, Mn, Fe, Zn). Mengenangaben Senke: (+) einige mg, (~) einige Kristalle, (-) vereinzelte Kristalle.	51
Tabelle 2.8	Ausgewählte Ansätze zur Darstellung von $A^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ (A^{II} : Mg, Cr, Mn, Fe, Co, Ni, Cu).	52
Tabelle 2.9	Repräsentative Experimente zum chemischen Transport von Orthophosphaten $A^{II}_{3}V^{III}_{4}(PO_{4})_{6}$ (A^{II} : Cr Mn, Fe, Co, Ni, Cu, Zn). Mengenangaben Senke: (+) einige mg, (~) einige Kristalle, (-) vereinzelte Kristalle.	53
Tabelle 2.10	Vergleich der Gitterkonstanten vom $Cr^{II}_{3}Cr^{III}_{4}(PO_4)_6$ [12], $Cr^{II}_{3}(Cr^{III}_{1-x}In^{III}_{x})_4(PO_4)_6$ und $Mn^{II}_{3}In^{III}_{4}(PO_4)_6$.	58
Tabelle 2.11	Einwaagen bei den Versuchen zur Darstellung von Mischkristallreihen $(M_{1-x}Cu_x)_3In_4(PO_4)_6$ (<i>M</i> : Mg, Zn; $0 \le x \le 1$).	61
Tabelle 2.12	Vergleich der Chromgehalte auf den Lagen $M1$ bis $M4$ bei $Cr_3Ti_4(PO_4)_6$.	70
Tabelle 2.13	Angaben zu den Strukturverfeinerungen von A^{II}_{3} Ti ₄ (PO ₄) ₆ (A^{II} : Cr, Mn, Fe, Zn, Mg).	72
Tabelle 2.14	Angaben zu den Strukturverfeinerungen von $A_{3}^{II}V_{4}^{III}(PO_{4})_{6}$ (A_{3}^{II} : Mg, Cr, Mn, Fe, Co, Zn).	76
Tabelle 2.15	Angaben zu den Strukturverfeinerungen von A^{II}_{3} Cr ^{III} ₄ (PO ₄) ₆ (A^{II} : Mn, Fe, Co).	79
Tabelle 2.16	Vergleich der Magnesiumgehalte auf den Lagen $M1$ bis $M4$ bei Verfeinerungen mit fixiertem Verhältnis $n(Mg): n(Fe) = 3:4$ ("ideal") und freier Verfeinerung dieses	0.0
Tabelle 2.17	Verhaltnisses. Vergleich der Gitterkonstanten vom Referenz ^(a) , Pulver ^(b) , Einkristalldaten ^(c) und $E_{\alpha}^{\mu} E_{\alpha}^{\mu}$ (PO)	80
Taballa 2.18	$re_{3}re_{4}(rO_{4})_{6}$.	80
Tabelle 2.18	Angaben zu den Strukturverfeinerungen von A^{II} . In (PO.), $(A^{II}$: Mn Ee Co. Ni. Zn)	02 84
Tabelle 2.17	Vergleich der Besetzungsfaktoren über die Lagen $M1$ bis $M4$ und der Gesamtfehlordnungs	0-
	konstante K_d in A^{II}_{3} In ₄ (PO ₄) ₆ (A^{II} : Mg, Mn, Fe, Co, Ni, Zn).	86
Tabelle 2.21	Farben und Energien der beobachteten Absorptionsbanden in den Phosphaten $A_{3}^{II}Ti_{4}^{III}(PO_{4})_{6}$ (A^{II} : Mg, Cr, Mn, Fe) in Abhängigkeit von der Polarisationsrichtung.	89
Tabelle 2.22	Zuordnung der Banden im Absorptionsspektrum von $Co_3In_4(PO_4)_6$. Chromophor [CoO ₅] (vgl. [109, 207]).	90
Tabelle 2.23	Zuordnung der Banden im Absorptionsspektrum von $Ni_3In_4(PO_4)_6$. Chromophor [NiO ₅] (vgl. [21, 208, 209, 210, 211]).	92

Tabelle 2.24	Übersicht zu den Gitterkonstanten der quaternären Orthophosphaten im $Fe^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$ -Strukturtyp	99
Tabelle 2.25	Übersicht zu den Gitterkonstanten der quinquinären Mischkristallserien $(Zn_{1-x}Cu_x)_3In_4(PO_4)_6$ und $(Mg_{1-x}Cu_x)_3In_4(PO_4)_6$.	100
Tabelle 2.26	Übersicht zu den Gitterkonstanten der ternären Hydrogenorthophosphaten mit den allgemeinen Zusammensetzungen $M^{II}_{7}(PO_4)_2(HPO_4)_4$ und $M^{II}_{7-x}M^{III}_{x}(PO_4)_{2+x}(HPO_4)_{4-x}$.	100
Tabelle 2.27	Übersicht zur Verteilung der dreiwertigen Kationen B^{III} über die Lagen $M1$ bis $M4$. Kursiv dargestellt sind in der Literatur genannte Ergebnisse, die im Rahmen dieser Arbeit überprüft und präzisiert wurden.	106
Tabelle 3.1	Ergebnis der EPMA-EDX von grünen Kristallen des SBK und des braunen Pulvers des QBK sowie die idealen Zusammensetzungen für $Fe^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ und $Fe^{II}_{3}V^{III}_{4}(PO_{4})_{6}$.	115
Tabelle 3.2	Ausgewählte Ansätze zur Darstellung von $A^{II}V^{III}_{2}(P_2O_7)_2$ und $A^{II}_{5}V^{III}_{2}(P_2O_7)_4$ (A^{II} : Cr, Fe).	116
Tabelle 3.3	Repräsentative Experimente zum chemischen Transport von polynären Vanadium(III)- pyrophosphaten $A^{II}V^{III}_{2}(P_2O_7)_2$ und $A^{II}_{5}V^{III}_{2}(P_2O_7)_4$ (A^{II} : Cr, Fe). Mengenangaben: einige mg (+), einige Kristalle (~), einzelne Kristalle (~).	; 117
Tabelle 3.4	Farbe und Zusammensetzung der Produkte	
	$\mathcal{A}^{II}Fe^{III}{}_{2}(P_{2}O_{7})_{2}^{\prime\prime}$ (\mathcal{A}^{II} : Mg, Mn, Co, Ni, Cu, Zn, Pd).	122
Tabelle 3.5	Farbe und Zusammensetzung der Produkte $A^{II} Fa^{III} (\mathbf{P} \mathbf{Q}) = (A^{II} \mathbf{M} \mathbf{q} \mathbf{M} \mathbf{n} \mathbf{Q} \mathbf{q})$	122
Tabelle 3.6	$_{,,A}$ 5rc $_{2}(r_{2}O_{7})_{4}$ (A . Mg, Mill, CO, NI, Cu, Zil).	123
Tabelle 5.0	$A^{II}In^{III}_{2}(P_{2}O_{7})_{2}^{"}(A^{II}: Mg, Cu, Zn, Pd), Co_{3}In_{2}(P_{2}O_{7})_{3} und , A^{II}_{3}In^{III}_{2}(P_{2}O_{7})_{4}^{"}(A^{II}: Mg, Zn).$	125
Tabelle 3.7	Übersicht zu quaternären Pyrophosphaten der 3d-Übergangsmetalle. Angegeben sind die mittels <i>IP</i> -Guinier-Aufnahmen ermittelten Phasen bzw. Phasengemenge der nominellen Zusammensetzungen $A^{II}B^{III}_{2}(P_{2}O_{7})_{2}$ (Zeile 1), $A^{II}_{3}B^{III}_{2}(P_{2}O_{7})_{3}$ (Zeile 2) und $A^{II}_{5}B^{III}_{2}(P_{2}O_{7})_{4}$ (Zeile 3)	130
Tabelle 3.8	Angaben zu den Strukturverfeinerungen der Pyrophosphate $Cu^{II}M^{III}_{2}(P_{2}O_{7})_{2}$ (M^{III}_{2} , V, Cr, In) und $Pd^{II}M^{III}_{2}(P_{2}O_{7})_{2}$ (M^{III}_{2} , Cr, Fe, In).	134
Tabelle 3.9	Angaben zu den Strukturverfeinerungen der triklinen und der hexagonalen Modifikation von $Cr^{II}Ti^{III}_{2}(P_2O_7)_2$.	139
Tabelle 3.10	Angaben zu den Strukturverfeinerungen der Pyrophosphate $A^{II}V^{III}_{2}(P_2O_7)_2$ (A^{II} : Cr, Fe).	141
Tabelle 3.11	Angaben zu den Strukturverfeinerungen der Pyrophosphate $A^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ (A^{II} : Cr, Mn, Fe).	144
Tabelle 3.12	Angaben zu der Strukturverfeinerung von $Fe^{II}_{3}V^{III}_{2}(P_2O_7)_3$.	146
Tabelle 3.13	Zusammenstellung von Pyrophosphaten mit der allgemeinen Summenformel $A^{II}_{3}B^{III}_{2}(P_2O_7)_3$ und $A^{II}_{5}B^{III}_{2}(P_2O_7)_4$. Isotype Verbindungen sind jeweils blockweise zusammengefasst.	147
Tabelle 3.14	Zusammenstellung von Pyrophosphaten mit der allgemeinen Summenformel $A^{II}B^{III}_{2}(P_2O_7)_2$. Isotype Verbindungen sind jeweils blockweise zusammengefasst.	148
Tabelle 3.15	Gitterkonstanten von <i>trikl</i> Cr ^{II} Ti ^{III} ₂ (P ₂ O ₇) ₂ im Vergleich mit Na ₂ CaP ₂ O ₇ und Vertretern des Minerals Parakeldyshit.	149
Tabelle 3.16	Vergleich der Gitterkonstanten und transformierten Gitterkonstanten von <i>trikl.</i> -CrTi ₂ (P ₂ O ₇) ₂ mit jenen von CuV ₂ (P ₂ O ₇) ₂ und CuFe ₂ (P ₂ O ₇) ₂ .	150
Tabelle 3.17	Übersicht zu den im Rahmen der vorliegenden Arbeit charakterisierten polynären Pyrophosphaten. Strukturtypen einer Strukturfamilie sind jeweils zusammengefasst.	171
Tabelle 3.18	Aus den UV-vis Spektren von $M^{II}Cr^{III}_{2}(P_2O_7)_2$ (M^{II} : Cu, Pd) ermittelte Daten.	178
Tabelle 3.19	Beobachtete Banden in den Absorptionsspektren der Elektronenübergänge der beiden Chromophore [Ti ^{III} O ₆] und [Cr ^{II} O _x] von <i>trikl.</i> - und <i>hex.</i> -CrTi ₂ (P ₂ O ₇) ₂ .	181

Tabelle 4.1	Verwendete Synthesebedingungen zur Darstellung der "volloxidierten" Katalysatoren.	183
Tabelle 4.2	Zusammensetzung der frisch hergestellten und verwendeten Katalysatoren " $\mathcal{A}^{II}_{3}\mathcal{B}^{III}_{4}(PO_{4})_{6}$ ".	185
Tabelle 4.3	Zusammensetzung der frisch hergestellten und verwendeten Katalysatoren " $A^{II}B^{III}_{2}(P_2O_7)_2$ " und " $A^{II}_{5}B^{III}_{2}(P_2O_7)_4$ ".	186
Tabelle 4.4	Phasenzusammensetzung der frisch hergestellten	
	und verwendeten Eisenphosphat-Katalysatoren.	186
Tabelle 4.5	Zusammenhang zwischen den katalytischen Eigenschaften in der Gasphasenoxidation vom Methan von polynären Phosphaten A^{II}_{3} Fe ^{III} ₄ (PO ₄) ₆ und ihrer Darstellungsmethode. Für alle katalytischen Test gelten folgende Reaktionsbedingungen: $P(CH_4) = 65$ kPa, $P(O_2) = 26$ kPa, $P(N_2O) = 1,3$ kPa, $W = 0,5$ g, $F = 3,6$ L·h ⁻¹ , $T = 660$ °C. Die Messdaten beziehen sich nach 6 Stunden unter den Testgasstrom.	1 5 1 191
Tabelle 4.6	Katalytische Eigenschaften von polynären Phosphaten $A^{II}_{3}Cr^{III}_{4}(PO_4)_6$ in Abhängigkeit ihrer Darstellungsmethode.	191
Tabelle 4.7	Katalytische Eigenschaften von polynären Phosphaten $\mathcal{A}^{II}B^{III}(P_2O_7)_2^{**}$.	192
Tabelle 4.8	Katalytische Eigenschaften von polynären Phosphaten $\mathcal{A}^{II}_{S}\mathcal{B}^{III}_{2}(P_{2}O_{7})_{4}^{**}$.	192
Tabelle 4.9	Katalytische Eigenschaften von Eisen-Phosphaten.	192
Tabelle 5-1	Vergleich der Gitterkonstanten von M^{VI} , PoO,, mit $M^{VI} = W$ Mo Re	193
Tabelle 5.2	Angaben zum verwendeten Kristall zur Datensammlung und zur Strukturverfeinerung von	175
1 400110 5.2	m-W ₂ O ₃ (PO ₄) ₂ .	197
Tabelle 6.1	Zusammenstellung der polynären Orthophosphate $A^{II}_{3}B^{III}_{4}(PO_4)_6$. Fett: erstmals dargestellt und unter Berücksichtigung der Kationenfehlordnung verfeinert. Kursiv: Verbindung bereits bekannt, jedoch erstmalig Verfeinerung mit Kationenfehlordnung.	t 9 201
Tabelle 6.2	Zusammenstellung der Pyrophosphate $A^{II}B^{III}_{2}(P_2O_7)_2$. Einkristallstrukturen der fett gesetzten Verbindungen wurden im Rahmen dieser Arbeit verfeinert. Von den unterstrichenen Verbindungen wurden die Gitterparameter bestimmt.	204
Tabelle A.1	$Cr^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.2) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^{2}\theta_{calc} - \sin^{2}\theta_{obs} \cdot 1000$.	227
Tabelle A.2	$Mn^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.3) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^{2}\theta_{calc} - \sin^{2}\theta_{obs} \cdot 1000$.	228
Tabelle A.3	$\text{Fe}^{\text{II}}_{3}\text{Ti}^{\text{III}}_{4}(\text{PO}_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.4) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^{2}\theta_{\text{calc}} - \sin^{2}\theta_{\text{obs}} \cdot 1000$.	229
Tabelle A.4	$Zn_{3}^{II}Ti_{4}^{III}(PO_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.5) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^{2}\theta_{calc} - \sin^{2}\theta_{obs} \cdot 1000$.	230
Tabelle A.5	$Cr^{II}_{3}V^{III}_{4}(PO_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.8) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^{2}\theta_{calc} - \sin^{2}\theta_{obs} \cdot 1000$.	231
Tabelle A.6	$Mn_{3}^{II}V_{4}^{III}(PO_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.9) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^{2}\theta_{calc} - \sin^{2}\theta_{obc} \cdot 1000$.	232
Tabelle A.7	$\operatorname{Fe}^{II}_{3} \operatorname{V}^{III}_{4}(\operatorname{PO}_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.10) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^{2}\theta_{calc} - \sin^{2}\theta_{obs} \cdot 1000$.	233
Tabelle A.8	$\operatorname{Co}^{II}_{3} \operatorname{V}^{III}_{4}(\operatorname{PO}_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.11) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^{2}\theta_{calc} - \sin^{2}\theta_{obs} \cdot 1000$.	234
Tabelle A.9	$Ni_{3}^{III}V^{III}(PO_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.12) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^{2}\theta_{calc} - \sin^{2}\theta_{obs} \cdot 1000$.	235
Tabelle A.10	$Cu^{II}_{3}V^{III}_{4}(PO_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.13) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^{2}\theta_{calc} - \sin^{2}\theta_{obs} \cdot 1000$.	236
Tabelle A.11	$Mn^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.16) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^{2}\theta_{calc} - \sin^{2}\theta_{obs} \cdot 1000$.	237
Tabelle A.12	Fe ^{II} ₃ Cr ^{III} ₄ (PO ₄) ₆ . Indizierung einer Guinieraufnahme (Abbildung A.17) mit beobachteten und berechneten 4 θ -Werten. $\Delta = \sin^2\theta_{calc} - \sin^2\theta_{obs} \cdot 1000$.	238
Tabelle A.13	$Mg^{\mu}_{3}Fe^{\mu}_{4}(PO_{4})_{6}$ bei 800°C an Luft getempert. Indizierung einer Guinieraufnahme (Abbildung A.19) mit beobachteten und berechneten 4 θ -Werten. $\Delta = \sin^{2}\theta_{calc} - \sin^{2}\theta_{obs} \cdot 1000.$	239
Tabelle A.14	Mg ₃ Fe ₄ (PO ₄) ₆ mit Chlor getempert. Indizierung einer Guinieraufnahme (Abbildung A.20)	
	mit beobachteten und berechneten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000.$	239 345

Tabelle A.15	$Mn^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.22) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^{2}\theta_{calc} - \sin^{2}\theta_{obs} \cdot 1000$.	241
Tabelle A.16	$\text{Fe}^{\text{II}}_{3}\text{Fe}^{\text{III}}_{4}(\text{PO}_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.24) mit beobachteten und berechneten 4θ -Werten, $\Delta = \sin^{2}\theta_{\text{colo}} - \sin^{2}\theta_{\text{colo}} \cdot 1000$.	242
Tabelle A.17	$Ni^{II}_{3}Fe^{III}_{4}(PO_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.26)	
	mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000.$	243
Tabelle A.18	Mn ₃ In ₄ (PO ₄) ₆ . Indizierung einer Guinieraufnahme (Abbildung A.29) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000$.	244
Tabelle A.19	$\text{Fe}^{\text{II}}_{3}\text{In}^{\text{III}}_{4}(\text{PO}_{4})_{6}$. Indizierung einer Guinieraufnahme (Abbildung A.30) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^{2}\theta_{\text{calc}} - \sin^{2}\theta_{\text{obs}} \cdot 1000$.	245
Tabelle A.20	CuMg ₂ In ₄ (PO ₄) ₆ . Indizierung einer Guinieraufnahme (Abbildung A.34) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000$.	246
Tabelle A.21	$Cu_{0,3}Zn_{2,7}In_4(PO_4)_6$. Indizierung einer Guinieraufnahme (Abbildung 2.7-b) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^2\theta_{calc} - \sin^2\theta_{obs} \cdot 1000$.	247
Tabelle A.22	$Cu_{0,6}Zn_{2,4}In_4(PO_4)_6$. Indizierung einer Guinieraufnahme (Abbildung 2.7-c) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^2\theta_{calc} - \sin^2\theta_{obs} \cdot 1000$.	248
Tabelle A.23	CuZn ₂ In ₄ (PO ₄) ₆ . Indizierung einer Guinieraufnahme (Abbildung 2.7-e und Abbildung A.3 mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^2\theta_{calc} - \sin^2\theta_{obs} \cdot 1000$.	35) 249
Tabelle A.24	Atomlagen und isotrope Auslenkungsparameter für Mg ₃ Ti ^{III} ₄ (PO ₄) ₆ .	250
Tabelle A.25	Anisotrope Auslenkungsparameter für $Mg_3Ti^{III}_4(PO_4)_6 / Å^2$.	251
Tabelle A.26	Atomlagen und isotrope Auslenkungsparameter für $Cr^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ (CAD4).	252
Tabelle A.27	Anisotrope Auslenkungsparameter für $Cr^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}(CAD4) / Å^{2}$.	252
Tabelle A.28	Atomlagen und isotrope Auslenkungsparameter für $Cr^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}$ (CCD).	253
Tabelle A.29	Anisotrope Auslenkungsparameter für $Cr^{II}_{3}Ti^{III}_{4}(PO_{4})_{6}(CCD) / Å^{2}$.	253
Tabelle A.30	Atomlagen und isotrope Auslenkungsparameter für $Mn_3Ti^{III}_4(PO_4)_6$.	254
Tabelle A.31	Anisotrope Auslenkungsparameter für Mn ₃ Ti ^{III} ₄ (PO ₄) ₆ / Å ² .	254
Tabelle A.32	Atomlagen und isotrope Auslenkungsparameter für $Fe^{II}_{a}Ti^{III}_{a}(PO_{4})_{c}$	255
Tabelle A.33	Anisotrope Auslenkungsparameter für Fe ^{II} ₃ Ti ^{III} ₄ (PO ₄) ₆ / Å ² .	255
Tabelle A.34	Atomlagen und isotrope Auslenkungsparameter für $Zn_3Ti^{III}_4(PO_4)_6$.	256
Tabelle A.35	Anisotrope Auslenkungsparameter für Zn ₃ Ti ^{III} ₄ (PO ₄) ₆ / Å ² .	256
Tabelle A.36	Interatomare Abstände / Å in den Polyedern $[M10_6]$, $[M20_6]$, $[M30_6]$ und $[M40_5]$ in A^{II}_{3} Ti ^{III} ₄ (PO ₄) ₆ (A^{II} : Mg, Cr, Mn, Fe, Zn).	257
Tabelle A.37	Interatomare Abstände / Å in den Polyedern [P1O ₄], [P2O ₄] und [P3O ₄] in A^{II}_{3} Ti ^{III} ₄ (PO ₄) ₆ (A^{II} : Mg, Cr, Mn, Fe, Zn).	257
Tabelle A.38	Atomlagen und isotrope Auslenkungsparameter für $Mg^{II}_{3}V^{III}_{4}(PO_{4})_{6}$.	258
Tabelle A.39	Anisotrope Auslenkungsparameter für $Mg^{II}_{3}V^{III}_{4}(PO_{4})_{6}/Å^{2}$.	258
Tabelle A.40	Atomlagen und isotrope Auslenkungsparameter für $Cr^{II}_{3}V^{III}_{4}(PO_{4})_{6}$.	259
Tabelle A.41	Anisotrope Auslenkungsparameter für $Cr^{II}_{3}V^{III}_{4}(PO_{4})_{6}/Å^{2}$.	259
Tabelle A.42	Atomlagen und isotrope Auslenkungsparameter für $Mn_3V^{III}_4(PO_4)_6$.	260
Tabelle A.43	Anisotrope Auslenkungsparameter für $Mn_3 V^{III}_4 (PO_4)_6 / Å^2$.	260
Tabelle A.44	Atomlagen und isotrope Auslenkungsparameter für $\text{Fe}^{II}_{3} \text{V}^{III}_{4} (\text{PO}_{4})_{6}$.	261
Tabelle A.45	Anisotrope Auslenkungsparameter für Fe ^{II} ₃ V ^{III} ₄ (PO ₄) ₆ / Å ² .	261
Tabelle A.46	Atomlagen und isotrope Auslenkungsparameter für $\text{Co}_3 \text{V}^{\text{III}}_4(\text{PO}_4)_6$.	262
Tabelle A.47	Anisotrope Auslenkungsparameter für $\text{Co}_3 \text{V}^{\text{III}}_4(\text{PO}_4)_6 / \text{Å}^2$.	262
Tabelle A.48	Atomlagen und isotrope Auslenkungsparameter für $Ni_{3}V^{III}_{4}(PO_{4})_{6}$.	263
Tabelle A.49	Anisotrope Auslenkungsparameter für Ni ₃ V ^{III} ₄ (PO ₄) ₆ / Å ² .	263
Tabelle A.50	Atomlagen und isotrope Auslenkungsparameter für $Zn_3V^{III}_{4}(PO_4)_6$.	264
Tabelle A.51	Anisotrope Auslenkungsparameter für $Zn_3V^{III}_4(PO_4)_6 / Å^2$.	264
Tabelle A.52	Interatomare Abstände / Å in den Polyedern $[M10_6]$, $[M20_6]$, $[M30_6]$ und $[M40_5]$ in $A^{II}_{3}V^{III}_{4}(PO_4)_6$ (A^{II} : Mg, Cr, Mn, Fe, Co).	265
Tabelle A.53	Interatomare Abstände / Å in den Polyedern [P1O ₄], [P2O ₄] und [P3O ₄] in $A^{II}_{3}V^{III}_{4}$ (PO ₄) ₆ (A^{II} : Mg, Cr, Mn, Fe, Co).	265
Tabelle A.54	Interatomare Abstände / Å in den Polyedern $[M1O_6]$, $[M2O_6]$, $[M3O_6]$ und $[M4O_5]$ in $A^{II}_{3}V^{III}_{4}(PO_4)_6$ (A^{II} : Ni, Zn).	266
Interatomare Abstände / Å in den Polyedern [P1O ₄], [P2O ₄] und [P3O ₄] in $A^{II}_{3}V^{III}_{4}$ (PO ₄) ₆ (A^{II} : Ni, Zn).	266	
---	--	
Atomlagen und isotrope Auslenkungsparameter für $Mn_3Cr^{III}_4(PO_4)_6$.	267	
Anisotrope Auslenkungsparameter für Mn ₃ Cr ^{III} ₄ (PO ₄) ₆ / Å ² .	267	
Atomlagen und isotrope Auslenkungsparameter für $Fe^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$.	268	
Anisotrope Auslenkungsparameter für Fe ^{II} ₃ Cr ^{III} ₄ (PO ₄) ₆ / Å ² .	268	
Atomlagen und isotrope Auslenkungsparameter für $\text{Co}_3 \text{Cr}^{\text{III}_4}(\text{PO}_4)_6$.	269	
Anisotrope Auslenkungsparameter für $\text{Co}_3 \text{Cr}^{\text{III}_4}(\text{PO}_4)_6 / \text{Å}^2$.	269	
Interatomare Abstände / Å in den Polyedern $[M1O_6]$, $[M2O_6]$, $[M3O_6]$ und $[M4O_5]$ in $A^{II}_{3}Cr^{III}_{4}(PO_4)_6$ (A^{II} : Mn, Fe, Co).	270	
Interatomare Abstände / Å in den Polyedern [P1O ₄], [P2O ₄] und [P3O ₄] in $A^{II}_{3}Cr^{III}_{4}(PO_{4})_{6}$ (A^{II} : Mn, Fe, Co).	270	
Atomlagen und isotrope Auslenkungsparameter für Magnesium-eisen-orthophospha $Mg_3Fe_4(PO_4)_6$ (festgelegtes Verhältnis $n(Mg) : n(Fe) = 3 : 4$).	at 271	
Anisotrope Auslenkungsparameter für Magnesium-eisen-orthophospha Mg ₃ Fe ₄ (PO ₄) ₆ (festgelegtes Verhältnis $n(Mg) : n(Fe) = 3 : 4) / Å^2$.	at 271	
Atomlagen und isotrope Auslenkungsparameter für Magnesium-eisen-orthophospha $Mg_{2,61}Fe_{4,39}(PO_4)_6$ (freies Verhältnis $n(Mg) : n(Fe)$).	at 272	
Anisotrope Auslenkungsparameter für Magnesium-eisen-orthophospha Mg _{2,61} Fe _{4,39} (PO ₄) ₆ (freies Verhältnis $n(Mg) : n(Fe)) / Å^2$.	at 272	
Interatomare Abstände / Å in den Polyedern $[M1O_6]$, $[M2O_6]$, $[M3O_6]$ und $[M4O_5]$ in Magnesium-eisen-orthophosphat.	273	
Interatomare Abstände / Å in den Polyedern [P1O ₄], [P2O ₄] und [P3O ₄] in Magnesium-eisen-orthophosphat.	273	
Atomlagen und isotrope Auslenkungsparameter für Mn ₃ In ₄ (PO ₄) ₆ .	274	
Anisotrope Auslenkungsparameter für $Mn_3In_4(PO_4)_6 / \text{Å}^2$.	274	
Atomlagen und isotrope Auslenkungsparameter für $\text{Fe}^{II}_{3} \text{In}^{III}_{4} (\text{PO}_{4})_{6}$.	275	
Anisotrope Auslenkungsparameter für $\text{Fe}^{II}_{3}\text{In}^{III}_{4}(\text{PO}_{4})_{6}$ / Å ² .	275	
Atomlagen und isotrope Auslenkungsparameter für Co ₃ In ₄ (PO ₄) ₆ .	276	
Anisotrope Auslenkungsparameter für Co ₃ In ₄ (PO ₄) ₆ / Å ² .	276	
Atomlagen und isotrope Auslenkungsparameter für Ni ₃ In ₄ (PO ₄) ₆ .	277	
Anisotrope Auslenkungsparameter für Ni ₃ In ₄ (PO ₄) ₆ / Å ² .	277	
Atomlagen und isotrope Auslenkungsparameter für Zn ₃ In ₄ (PO ₄) ₆ .	278	
Anisotrope Auslenkungsparameter für $Zn_3In_4(PO_4)_6$ / Å ² .	278	
Interatomare Abstände / Å in den Polyedern $[M1O_6]$, $[M2O_6]$, $[M3O_6]$ und $[M4O_5]$ in $A^{II}_{3}In^{III}_{4}(PO_4)_6$ (A^{II} : Mn, Fe, Co, Ni, Zn).	279	
Interatomare Abstände / Å in den Polyedern [P1O ₄], [P2O ₄] und [P3O ₄] in $A^{II}_{3}In^{III}_{4}(PO_{4})_{6}$ (A^{II} : Mn, Fe, Co, Ni, Zn).	279	
CuV ₂ (P ₂ O ₇) ₂ . Indizierung einer Guinieraufnahme (Abbildung B.1) mit beobachteten und berechneten 4θ -Werten $\Delta = \sin^2 \theta _{1/2} - \sin^2 \theta _{1/2} + 1000$	290	
CuCr ₂ (P ₂ O ₇) ₂ . Indizierung einer Guinieraufnahme (Abbildung B.2) mit beobachteten und berechneten 4θ -Werten, $\Delta = \sin^2\theta_{calc} - \sin^2\theta_{obs} \cdot 1000$.	291	
CuIn ₂ (P ₂ O ₇) ₂ . Indizierung einer Guinieraufnahme (Abbildung B.4) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^2\theta_{calc} - \sin^2\theta_{obs} \cdot 1000$.	292	
PdCr ₂ (P ₂ O ₇) ₂ . Indizierung einer Guinieraufnahme (Abbildung B.5) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000$.	293	
PdFe ₂ (P ₂ O ₇) ₂ . Indizierung einer Guinieraufnahme (Abbildung B.6) mit beobachteten und berechneten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000$.	294	
PdIn ₂ (P ₂ O ₇) ₂ . Indizierung einer Guinieraufnahme (Abbildung B.7) mit beobachteten und berechneten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000$.	295	
$Cr^{II}V^{III}_{2}(P_{2}O_{7})_{2}$. Indizierung einer Guinieraufnahme (Abbildung B.8) mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^{2}\theta_{calc} - \sin^{2}\theta_{obs} \cdot 1000$.	296	
Fe ^{II} V ^{III} ₂ (P ₂ O ₇) ₂ . Indizierung einer Guinieraufnahme (Abbildung B.9) mit beobachteten und berechneten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000$.	297	
	Interatomare Abstande / Å in den Polyedern [P1O ₄], [P2O ₄] und [P3O ₄] in $A^{H_3}V^{H_4}(PO_4)_6(A^{H_1}; Ni, Zn).$ Atomlagen und isotrope Auslenkungsparameter für Mn ₃ Cr ^{III} ₄ (PO ₄) ₆ , A^{A_1} Atomlagen und isotrope Auslenkungsparameter für Fe ^H ₃ Cr ^{III} ₄ (PO ₄) ₆ , A^{A_1} . Atomlagen und isotrope Auslenkungsparameter für Fe ^H ₃ Cr ^{III} ₄ (PO ₄) ₆ , A^{A_1} . Atomlagen und isotrope Auslenkungsparameter für Co ₅ Cr ^{III} ₄ (PO ₄) ₆ , A^{A_2} . Atomlagen und isotrope Auslenkungsparameter für Co ₅ Cr ^{III} ₄ (PO ₄) ₆ , A^{A_2} . Atomlagen und isotrope Auslenkungsparameter für Co ₅ Cr ^{III} ₄ (PO ₄) ₆ , A^{A_2} . Interatomare Abstande / Å in den Polyedern [P1O ₄], [P2O ₄] und [P3O ₄] und [M4O ₅] in A^{H_5} Cr ^{III} ₄ (PO ₄) ₆ , (d ^{A1} : Mn, Fe, Co). Atomlagen und isotrope Auslenkungsparameter für Magnesium-eisen-orthophosphe Mg ₅ Fe ₄ (PO ₄) ₆ , (festgelegtes Verhältnis n(Mg) : n(Fe) = 3 : 4). Anisotrope Auslenkungsparameter für Magnesium-eisen-orthophosphe Mg ₂ A ₆ Fe ₄ :9(PO ₄) ₆ , (freise Verhältnis n(Mg) : n(Fe) = 3 : 4). Anisotrope Auslenkungsparameter für Magnesium-eisen-orthophosphe Mg ₂ A ₆ Fe ₄ :9(PO ₄) ₆ , (freise Verhältnis n(Mg) : n(Fe)) · A ² . Interatomare Abstande / Å in den Polyedern [M1O ₆], [M2O ₆], [M3O ₆] und [M4O ₅] in Magnesium-eisen-orthophosphat. Interatomare Abstande / Å in den Polyedern [M1O ₆], [M2O ₆], [M3O ₆] und [M4O ₅] in Magnesium-eisen-orthophosphat. Anisotrope Auslenkungsparameter für Mn ₃ In ₄ (PO ₄) ₆ . Anisotrope Auslenkungsparameter für Co ₃ In ₄ (PO ₄) ₆ . Anisotrope Auslenkungsparameter für Co ₃ In ₄ (PO ₄) ₆ . Anisotrope Auslenkungsparameter für Co ₃ In ₄ (PO ₄) ₆ . Anisotrope Auslenkungsparameter für Co ₃ In ₄ (PO ₄) ₆ . Anisotrope Auslenkungsparameter für Co ₃ In ₄ (PO ₄) ₆ . Anisotrope Auslenkungsparameter für Co ₃ In ₄ (PO ₄) ₆ . Anisotrope Auslenkungsparameter für Co ₃ In ₄ (PO ₄) ₆ . Anisotrope Auslenkungsparameter für Co ₃ In ₄ (PO ₄) ₆ . Anisotrope Auslenkungsparameter für Co ₃ In ₄ (PO ₄) ₆ . Anisotrope Auslenkungsp	

Tabelle B.9	MgCr ^{III} ₂ (P ₂ O ₇) ₂ . Indizierung einer Guinieraufnahme (Abbildung B.11) mit beschechteten und berechteten 40 Worten $A = \sin^2 \theta - \sin^2 \theta - \sin^2 \theta $ 1000	200
T-1-11- D 10	In the beddenteten und betechneten 40- werten. $\Delta = \sin \theta_{calc} - \sin \theta_{obs} + 1000$.	290
Tabelle B.10	Fe Cl $_2(P_2O_7)_2$. Indizierung einer Gumeraumanme (Abbildung B.15) mit beobachteten und berechneten AA -Werten $A = \sin^2 A = \sin^2 A = 1000$	298
Tabelle B 11	$trikl_{c}$ (P ₀). Indizierung einer Guinieraufnahme (Abhildung B 14)	270
Tabelle D.TT	mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000$.	299
Tabelle B.12	<i>hex.</i> -Cr ^{II} Ti ^{III} ₂ (P ₂ O ₇) ₂ . Indizierung einer Guinieraufnahme (Abbildung B.15)	
	mit beobachteten und berechneten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000$.	300
Tabelle B.13	MgFe ^{III} ₂ (P ₂ O ₇) ₂ . Indizierung einer Guinieraufnahme (Abbildung B.16)	
	mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000.$	301
Tabelle B.14	$CoFe^{III}_{2}(P_2O_7)_2$. Indizierung einer Guinieraufnahme (Abbildung B.18)	
	mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^2\theta_{calc} - \sin^2\theta_{obs} \cdot 1000.$	302
Tabelle B.15	$ZnFe^{in}_{2}(P_2O_7)_2$. Indizierung einer Guinieraufnahme (Abbildung B.19) mit bashashtatan und barashtatan 40 Warton $A = 1 \sin^2 \theta = \sin^2 \theta = 1000$	202
Taballa D 16	A templagen und isotrope Auslenlaungenerometer für $\Omega_{\text{calc}} - \sin \theta_{\text{obs}} > 1000$.	204
Tabelle B.10	Atomiagen und isotrope Austenkungsparameter für Cu $V_2(P_2O_7)_2$.	304 204
Tabelle D.17	Anisotrope Austenkungsparameter für Cu $V_2(P_2O_7)_2$ / A . Atomlogen und isotrope Austenkungsparameter für Cu ^{II} Cu ^{III} (D , O .)	205
Tabelle D.18	Atomiagen und isotrope Austenkungsparameter für $Cu^{II}Cu^{III}$ (D O) $/\delta^2$	205
Tabelle D.19	Anisotrope Austenkungsparameter für Ct Ct $_2(P_2O_7)_2$ / A . Atomlogen und isotrope Austenkungsparameter für $Dd^{II}Cr^{III}$ (D O)	206
Tabelle D.20	Atomiagen und isotrope Austenkungsparameter für $Pd^{II}(r_{2}U_{1})$.	206
Tabelle D.21	Anisotrope Austenkungsparameter für Pd Cl $_2(P_2O_7)_2$ / A . Atomlagen und isotrope Austenkungsparameter für $Dd^{II}Ee^{III}$ (D O)	207
Tabelle D.22	Atomagen und isotrope Ausienkungsparameter für $Pd^{II}E_{2}$ ($P_{2}O_{7}$)2.	207
Tabelle D.23	Anisotrope Austerikungsparameter für $Pd^{II} = 2(F_2O_7)/2$ A.	209
Tabelle D.24	Atomagen und isotrope Ausienkungsparameter für Pd^{II} (P, O) / Å ²	200
Tabelle B.23	Anisotrope Austenkungsparameter für $\Gamma_{1}^{(I)}(\mathbf{P}, \mathbf{O})$	300
Tabelle D.20	Atomagen und isotrope Ausienkungsparameter für $Cu^{II}n^{III}$ ($\mathbf{P}, \mathbf{O}, \mathbf{V}, \mathbf{A}^2$	200
Tabelle D.27	Anisotrope Austenkungsparameter für Cu III $_2(F_2O_7)_2$ / A. Atomlagen und isotrope Austenkungsparameter für Cr ^{II} Ti ^{III} (P.O.) violett	210
Tabelle B.20	Atomagen und isotrope Ausienkungsparameter für $Cr^{[I]}Ti^{[I]}(\mathbf{P}, \mathbf{O})$, violett / λ^2	310
Tabelle B.29	Interatomara Abetände / Å in den Polyedern $\begin{bmatrix} 4^{II}O \end{bmatrix}$ und $\begin{bmatrix} R^{III}O \end{bmatrix}$ in	510
Tabelle D.50	$A^{II}B^{III}_{2}(P_2O_7)_2 (A^{II}: Cu, Pd; B^{III}: V, Cr, Fe, In).$	311
Tabelle B.31	Interatomare Abstände / Å in den Polyedern [P1O ₄] und [P2O ₄] in	
	$A^{H}B^{HH}{}_{2}(P_{2}O_{7})_{2}$ (A^{H} : Cu, Pd; B^{HH} : V, Cr, Fe, In).	311
Tabelle B.32	Interatomare Abstände / A in den Polyedern $[A^{m}1O_4]$ und $[B^{m}1O_6]$ in	210
Taballa D 22	Cu In $_2(P_2O_7)_2$ und D^2R^2 Cr II $_2(P_2O_7)_2$.	312
Tabelle B.33	Interatomare Abstance / A in den Polyedern $[P1O_4]$ und $[P2O_4]$ in $Cu^{II}In^{III} (P_2O_3)_{a}$ und <i>trikl</i> $-Cr^{II}Ti^{III} (P_2O_3)_{a}$	312
Tabelle B 34	Atomlagen und isotrope Auslenkungsparameter für $Cr^{II}V^{III}$ (P ₂ O ₇)	313
Tabelle B 35	Anisotrope Auslenkungsparameter für $Cr^{II}V^{III}_{2}(P_{2}O_{7})_{2}/Å^{2}$	313
Tabelle B 36	Atomlagen und isotrope Auslenkungsparameter für $Fe^{II}V^{III}(P_2O_7)_2$	314
Tabelle B 37	Anisotrope Auslenkungsparameter für Fe ^{II} V ^{III} ₂ (P ₂ O ₇) ₂ / Å ²	314
Tabelle B 38	Interatomare Abstände / Å in den Polvedern $[M10_{\ell}]$ bis $[M40_{\ell}]$ in	511
	$Cr^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ und $Fe^{II}V^{III}_{2}(P_{2}O_{7})_{2}$.	315
Tabelle B.39	Interatomare Abstände / Å in den Polyedern [P1O ₄] bis [P4O ₄] in	
	$Cr^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ und $Fe^{II}V^{III}_{2}(P_{2}O_{7})_{2}$.	315
Tabelle B.40	Atomlagen und isotrope Auslenkungsparameter für hexCr ^{II} Ti ^{III} ₂ (P ₂ O ₇) ₂ .	316
Tabelle B.41	Anisotrope Auslenkungsparameter für <i>hex.</i> -Cr ^{II} Ti ^{III} ₂ (P ₂ O ₇) ₂ / Å ² .	316
Tabelle B.42	Interatomare Abstände / Å in den Oktaedern [Ti1O ₆], [Ti2O ₆] und [Ti3O ₆] in <i>hex.</i> -Cr ^{II} Ti ^{III} ₂ (P ₂ O ₇) ₂ .	317
Tabelle B.43	Interatomare Abstände / Å in den Polyedern [Cr1O ₆], [Cr2O ₆], [Cr3AO ₆] und [Cr3BO ₆] in har $Cr^{II}T_{iII}$ (B.O.)	217
Tabelle B 44	Interatomare Abstände / Å der Polveder [P10.] [P20.] und [P30.]	517
	sowie die Brückenwinkel \angle (P.O.P) / ° in <i>hex</i> Cr ^{II} Ti ^{III} ₂ (P ₂ O ₂) ₂ .	317
Tabelle C.1	$Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$. Indizierung einer Guinieraufnahme (Abbildung C.2)	
	mit beobachteten und berechneten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000.$	323

Tabelle C.2	$\text{Fe}_{5}^{\text{II}}\text{V}_{2}^{\text{III}}(\text{P}_{2}\text{O}_{7})_{4}$. Indizierung einer Guinieraufnahme (Abbildung C.4) mit beobachteten und berechneten 4θ -Werten $\Lambda = \sin^{2}\theta_{\text{rel}} - \sin^{2}\theta_{\text{rel}} \cdot 1000$	324
Tabelle C.3	$Mn_{5}^{II}Fe_{2}^{III}(P_{2}O_{7})_{4}$. Indizierung einer Guinieraufnahme (Abbildung C.5) mit bashashtatan und barashtatan 40 Wartan $A = \sin^{2}\theta_{1} + \sin^{2}\theta_{1} $	225
Taballa C 4	In the beobachteten und betechneten 46- weiten $\Delta = \sin \sigma_{calc} - \sin \sigma_{obs} ^2$ 1000. $Zn^{II} Ea^{III} (\mathbf{P}, \mathbf{Q}, \mathbf{Q})$ Indiziarung einer Guiniaraufnahme (Abbildung C.7)	525
Tabelle C.4	mit beobachteten und berechneten 4θ -Werten, $\Delta = \sin^2 \theta_{ebc} - \sin^2 \theta_{obc} \cdot 1000$.	326
Tabelle C.5	$Fe^{II}_{3}V^{III}_{2}(P_{2}O_{7})_{3}$. Indizierung einer Guinieraufnahme (Abbildung C.8)	
	mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000.$	327
Tabelle C.6	Atomlagen und isotrope Auslenkungsparameter für $Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$.	328
Tabelle C.7	Anisotrope Auslenkungsparameter für $Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4} / Å^{2}$.	328
Tabelle C.8	Atomlagen und isotrope Auslenkungsparameter für Mn ^{II} ₅ V ^{III} ₂ (P ₂ O ₇) ₄ .	329
Tabelle C.9	Anisotrope Auslenkungsparameter für $Mn^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4} / Å^{2}$.	329
Tabelle C.10	Atomlagen und isotrope Auslenkungsparameter für $Fe^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$.	330
Tabelle C.11	Anisotrope Auslenkungsparameter für $\text{Fe}^{\text{II}}_{5}\text{V}^{\text{III}}_{2}(\text{P}_{2}\text{O}_{7})_{4}$ / Å ² .	330
Tabelle C.12	Interatomare Abstände / Å in den Polyedern [$M1O_6$], [$M2O_6$], [$M3O_6$], [$M4O_6$] [$M5O_6$] in in $A^{II}_5 V^{III}_2 (P_2O_7)_4 (A^{II}: Cr, Mn, Fe)$.	und 331
Tabelle C.13	Interatomare Abstände / Å in den Polyedern [P1O ₄], [P2O ₄], [P3O ₄] und [P4O ₄] in $A^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ (A^{II} : Cr, Mn, Fe).	332
Tabelle C.14	Atomlagen und isotrope Auslenkungsparameter für $Fe^{II}_{3}V^{III}_{2}(P_{2}O_{7})_{3}$	333
Tabelle C.15	Anisotrope Auslenkungsparameter für $\text{Fe}^{II}_{3} \text{V}^{III}_{2} (\text{P}_{2}\text{O}_{7})_{4} / \text{Å}^{2}$.	333
Tabelle C.16	Interatomare Abstände / Å in den Polyedern $[M1O_6]$, $[M2O_6]$ und $[M3O_6]$ in Fe ^{II} ₃ V ^{III} ₂ (P ₂ O ₇) ₃ .	334
Tabelle C.17	Interatomare Abstände / Å in den Polyedern [P1O ₄], [P2O ₄] und [P3O ₄] in	
	$Fe^{II}_{3}V^{III}_{2}(P_{2}O_{7})_{3}.$	334
Tabelle D.1	m-W ₂ O ₃ (PO ₄) ₂ . Indizierung einer Guinieraufnahme (Abbildung D.1)	
	mit beobachteten und berechneten 4θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000.$	336
Tabelle D.2	Atomlagen und isotrope Auslenkungsparameter für m -(W ₂ O ₃)(PO ₄) ₂ .	337
Tabelle D.3	Anisotrope Auslenkungsparameter für m -(W ₂ O ₃)(PO ₄) ₂ / Å ² .	337
Tabelle D.4	Interatomare Abstände / Å in den Polyedern [W1O ₆], [W2O ₆] und [W3O ₆]	220
	source $[P1O_4], [P2O_4] \text{ und } [P3O_4] \text{ in } m \cdot w_2O_3(PO_4)_2.$	338
Tabelle E.1	Verwendete Computerprogramme.	339
Tabelle E.2	Vergleich zweier Zellen.	340
Tabelle E.3	Normalisierung der Raumgruppe und Atomkoordinaten.	340
Tabelle E.4	Transformation in eine Untergruppe.	341
Tabelle E.5	Erstellen einer SHELXL Eingabedatei aus einer CIF-Datei.	341
Tabelle E.6	Erstellen einer LAZY-PULVERIX Eingabedatei.	341
Tabelle E.7	Weitere nützliche KPLOT-Befehle	341

F.2 Abbildungsverzeichnis

Abbildung 1.1	Schema zum CVT im Temperaturgradienten $(T_2 > T_1)$.	5
Abbildung 1.2	Skizze der verwendeten Presswerkzeuge.	11
Abbildung 1.3	Skizze der multifunktionellen Vakuumapparatur [109].	12
Abbildung 1.4	Skizze des Temperaturverlaufs im Zweizonenofen [281].	13
Abbildung 1.5	"Guinierschieber" [281].	17
Abbildung 1.6	Schematischer Aufbau einer Messzelle [103]. S = Spiegel, L = Linsensystem, M = Detektor, B = Blendenschieber, RL = gestreutes Licht und P = Probe.	25
Abbildung 1.7	Schematischer Aufbau des Mikroeinkristall UV/vis/nir-Spektralphotometers [90].	26
Abbildung 1.8	Schematischer Aufbau (a) und Foto (b) der verwendeten universellen Katalysatorentestapparatur. Computergesteuerter Gasvolumenstrommesser für CH_4 und OX-Gas (1), computergesteuerter Röhrenofen (2) mit Festbettreaktor aus Kieselglas (6), Wassereinspritzung und weitere Kühlung (3), eisgekühltes mit Na ₂ SO ₃ -Lösung versetztes Sammelgefäß (4), Temperatursensor (5) im Festbettreaktor, Reaktionsgasaustritt in den Abzug (7).	29
Abbildung 2.1	ORTEP-Darstellungen [301] der Doppeloktaeder $[M1_2O_{10}]$ (a) und $[M3_2O_{10}]$ (b) in Mn ₃ Cr ₄ (PO ₄) ₆ .	36
Abbildung 2.2	ORTEP-Darstellungen [301] der Koordinationspolyeder der Lage $M2$ (a) und $M4$ (b) für $Mn_3Cr_4(PO_4)_6$.	37
Abbildung 2.3	$A^{II}_{3}B^{III}_{4}(PO_{4})_{6}$. Teilansicht der Kristallstruktur mit Ketten aus Polyedern aus $[M1_{2}O_{10}]$, $[M4O_{5}]$ und $[M3_{2}O_{10}]$. $[M1O_{6}]$ hellgrün, $[M3O_{6}]$ grün, $[M4O_{5}]$ himmelblau. Projektion entlang $[1\ 0\ 1]$ (a) und $[0\ 1\ 0]$ (b).	38
Abbildung 2.4	$A^{II}_{3}B^{III}_{4}(PO_4)_6$. Teilansicht der Kristallstruktur mit Ketten aus Polyedern $[M1O_6]$, $[M3O_6]$ und $[M4O_5]$ und verbrückendem Oktaeder $[M2O_6]$. $[M1O_6]$ hellgrün, $[M2O_6]$ blau, $[M3O_6]$ grün, $[M4O_5]$ himmelblau. Projektion entlang $[0\ 1\ 0]$.	39
Abbildung 2.5	$A^{II}_{3}B^{III}_{4}(PO_4)_6$. Polyederdarstellung der kompletten Struktur. [<i>M</i> 1O ₆] hellgrün, [<i>M</i> 2O ₆] blau, [<i>M</i> 3O ₆] grün, [<i>M</i> 4O ₅] himmelblau, [PO ₄] gelb. Projektion entlang [0 1 0].	39
Abbildung 2.6	$(Mg_{1-x}Cu_x)_3In_4(PO_4)_6$ ($x = 0,33$; * = Spuren von α -InPO ₄ [101]) (a). Simuliertes Strichdiagramm von $(Mg_{1-x}Cu_x)_3In_4(PO_4)_6$ $x = 0,33$ mit neu berechneten Gitterkonstanten, den Atomkoordinaten von $Mg_3In_4(PO_4)_6$ und die Lage <i>M</i> 3 mit 50% Cu besetzt (b). $(Mg_{1-x}Cu_x)_3In_4(PO_4)_6$ ($x = 0,66$) (c). Simuliertes Strichdiagramm von α -InPO ₄ [101] (d). Simuliertes Strichdiagramm von Cu ₃ In ₂ (PO ₄) ₄ [33] (e).	62
Abbildung 2.7	<i>IP</i> -Guinier-Aufnahmen der Mischkristallreihe (Cu_xZn_{1-x}) ₃ In ₄ (PO ₄) ₆ ($0 \le x \le 0,33$) (a bis e). Simuliertes Strichdiagramm von Zn ₃ In ₄ (PO ₄) ₆ [28] (f).	63
Abbildung 2.8	<i>IP</i> -Guinier-Aufnahmen der Mischkristallreihe $(Cu_xZn_{1-x})_3In_4(PO_4)_6$ $(0,33 \le x \le 1,00)$ (a bis e). Simuliertes Strichdiagramm von α -InPO ₄ [101] (f). Simuliertes Strichdiagramm von $Cu_3In_2(PO_4)_4$ [33] (g).	64
Abbildung 2.9	Einkristall UV/vis-Spektren von $Mn_{3}^{I_{3}}Ti_{4}^{II_{4}}(PO_{4})_{6}$, $Mg_{3}^{I_{3}}Ti_{4}^{II_{4}}(PO_{4})_{6}$, $Fe_{3}^{I_{3}}Ti_{4}^{II_{4}}(PO_{4})_{6}$ und $Cr_{3}^{I_{3}}Ti_{4}^{II_{4}}(PO_{4})_{6}$ in Abhängigkeit von der Polarisationsrichtung. Die Polarisationsrichtungen "hpol" (a) und "vpol" (b) stehen senkrecht zueinander. Deren kristallographische Orientierungen wurden nicht bestimmt	89
Abbildung 2.10	Einkristall UV/Vis Spektren von $Co_3In_4(PO_4)_6$ (a) und $Ni_3In_4(PO_4)_6$ (b) in Abhängigkeit von der Polarisationsebene. Die Polarisationsrichtungen "hpol" und "vpol" stehen senkrecht zueinander. Deren kristallographische Orientierungen wurden nicht bestimmt.	91
Abbildung 2.11	Magnetische Messung an $Mg^{II}_{3}Ti^{III}_{4}(PO_4)_6$ mit dem SQUID-Magnetometer. Aus der Steigung der Regressionsgeraden ergibt sich ein effektives magnetisches Moment von $\mu_{eff}(Ti^{3+}) = 1.74\mu_{B}/Ti^{3+}$.	93
Abbildung 2.12	Magnetische Messung an $Mn_{3}^{II}Ti_{4}^{III}(PO_{4})_{6}$ mit dem SQUID-Magnetometer. Aus der Steigung der Regressionsgeraden ergibt sich ein effektives magnetisches Moment von $\mu_{eff.}(Ti^{3+}) = 11, 1\mu_{B}/Ti^{3+}$.	94
Abbildung 2.13	Volumen der Elementarzelle in Å ³ von Orthophosphaten $A^{II}_{3}B^{III}_{4}(PO_4)_6$ in Abhängigkeit der beteiligten Ionen A^{II} und $B^{III}_{}$ Grün: $A^{II}_{3}Cr^{III}_{4}(PO_4)_6$, orange: $A^{II}_{3}V^{III}_{4}(PO_4)_6$, gelb: $A^{II}_{3}Fe^{III}_{4}(PO_4)_6$, violett: $A^{II}_{3}Ti^{III}_{4}(PO_4)_6$, grau: $A^{II}_{3}In^{III}_{4}(PO_4)_6$, rot: Verbindung $A^{II}_{3}B^{III}_{4}(PO_4)_6$ existiert nicht, weiß: es liegen keine Daten für $A^{II}_{3}B^{III}_{4}(PO_4)_6$ vor.	96

Abbildung 2.14	Gitterkonstanten <i>a</i> in Å in Orthophosphaten $A^{II}_{3}B^{III}_{4}(PO_4)_6$ in Abhängigkeit der beteiligten Ionen A^{II} und B^{III} . Legende siehe Abbildung 2.13. 97
Abbildung 2.15	Gitterkonstanten <i>b</i> in Å in Orthophosphaten $A^{II}_{3}B^{III}_{4}(PO_4)_6$ in Abhängigkeit der beteiligten Ionen A^{II} und B^{III} . Legende siehe Abbildung 2.13. 97
Abbildung 2.16	Gitterkonstante <i>c</i> in Å in $A^{II}_{3}B^{III}_{4}(PO_4)_6$ in Abhängigkeit der beteiligten Ionen A^{II} und B^{III} . Legende siehe Abbildung 2.13. 98
Abbildung 2.17	Normierte Fehlordnung K_d [%] in $A^{II}_{3}B^{III}_{4}(PO_4)_6$. Grün: $A^{II}_{3}Cr^{III}_{4}(PO_4)_6$, orange: $A^{II}_{3}V^{III}_{4}(PO_4)_6$, gelb: $A^{II}_{3}Fe^{III}_{4}(PO_4)_6$, violett: $A^{II}_{3}Ti^{III}_{4}(PO_4)_6$, grau: $A^{II}_{3}In^{III}_{4}(PO_4)_6$, rot: Verbindung $A^{II}_{3}B^{III}_{4}(PO_4)_6$ existiert nicht, weiß: es liegen keine Daten für $A^{II}_{3}B^{III}_{4}(PO_4)_6$ vor. 102
Abbildung 2.18	Mischbesetzung auf der Lage $M2$ in $A_{3}^{II}B_{4}^{II}(PO_{4})_{6}$. Legende siehe Abbildung 2.17. 103
Abbildung 2.19	Mischbesetzung auf der Lage $M3$ in $A^{II}_{3}B^{III}_{4}$ (PO ₄) ₆ . Legende siehe Abbildung 2.17. 103
Abbildung 2.20	Mischbesetzung auf der Lage $M1$ in $A^{II}_{3}B^{III}_{4}$ (PO ₄) ₆ . Legende siehe Abbildung 2.17. 104
Abbildung 2.21	Mischbesetzung auf der Lage $M4$ in $A^{II}_{3}B^{III}_{4}$ (PO ₄) ₆ . Legende siehe Abbildung 2.17. 104
Abbildung 2.22	Der Abstand $d(M1-M1)$ in Å in den Doppeloktaedern $[M1_2O_{10}]$ in $A^{II}_{3}B^{III}_{4}(PO_4)_6$. Legende siehe Abbildung 2.17. 105
Abbildung 2.23	Der Abstand $d(M3-M3)$ in Å in den Doppeloktaedern $[M3_2O_{10}]$ in $A^{II}_{3}B^{III}_{4}(PO_4)_6$. Legende siehe Abbildung 2.17. 105
Abbildung 3.1	$ \begin{array}{l} Fe^{II}Fe^{III}{}_{2}(P_{2}O_{7})_{2} \ [17]. \ Blickrichtung \ entlang \ [0 \ 0 \ 1] \ (a) \ und \ [0 \ 1 \ 0] \ (b). \\ Perspektivische Darstellung mit Blickrichtung annähernd \ entlang \ [0 \ 0 \ -1] \ (c). \\ Rot: \ [Fe^{III}O_{6}], \ orange \ [Fe^{II}O_{6}] \ und \ gelb \ [P_{2}O_{7}]. \end{array} $
Abbildung 3.2	$Cu^{II}Fe^{III}{}_{2}(P_{2}O_{7})_{2}$ [29]. Blickrichtung entlang [0 -1 0] (a) und perspektivische Darstellung mit Blickrichtung annähernd entlang [0 -1 0] (b). Rot: [Fe ^{III} O ₄], hellblau: [Cu ^{II} O ₄] und gelb: [P ₂ O ₇]. 108
Abbildung 3.3	$\operatorname{Cr}^{II}_{2}\operatorname{Cr}^{III}_{4}(P_{2}O_{7})_{4}$ [13]. Blickrichtung entlang [0 0 -1] (a) und [1 1 0] (b). Perspektivische Darstellung mit Blickrichtung annähernd entlang [1 0 0] (c). Grün: [$\operatorname{Cr}^{III}O_{6}$], himmelblau: [$\operatorname{Cr}^{II}O_{6}$] und gelb: [$P_{2}O_{7}$]. 108
Abbildung 3.4	Polyedertripel in $Fe^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ [17] (a), $Cu^{II}Fe^{III}_{2}(P_{2}O_{7})_{2}$ [29] (b) und $Cr^{III}_{2}Cr^{III}_{4}(P_{2}O_{7})_{4}$ [13] (c). 109
Abbildung 3.5	$Fe^{II}_{5}Fe^{III}_{2}(P_2O_7)_4$ [130, 18]. Blick entlang [1 0 0] (a). Isolierte Oktaederschicht, Blickrichtung entlang [0 1 0] (b). Rot: [$Fe^{III}O_6$], orange [$Fe^{II}O_6$] und gelb [P_2O_7]. 109
Abbildung 3.6	Senkenseite einer Transportampulle mit Kristallen von $triklCr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ (a); Senkenseite einer Transportampulle mit Kristallen von $hexCr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ und TiPO ₄ (grün) und Cr ₂ P ₂ O ₇ (himmelblau) (b). 112
Abbildung 3.7	Kristalle von <i>trikl.</i> -Cr ^{II} Ti ^{III} ₂ (P ₂ O ₇) ₂ (a) und <i>hex.</i> -Cr ^{II} Ti ^{III} ₂ (P ₂ O ₇) ₂ (b). 112
Abbildung 3.8	Phasengebiet ",CrO" / TiO _{1,5} / PO _{2,5} bei T = 950°C. In den grau unterlegten Teilbereichen wurden keine Experimente durchgeführt. Offene Kreise: Nominelle Zusammensetzung stellte sich als Phasengemenge heraus. Schwarze Punkte: bekannte Phase im Dreistoffsystem ",CrO" / Ti ₂ O ₃ / P ₄ O ₁₀ . 114
Abbildung 3.9	Phasendiagramm des Systems Cu ^{II} O / InO _{1,5} / PO _{2,5} bei T = 800°C. In diesem System wurden keine Gleichgewichtsuntersuchungen durchgeführt. Offene Kreise: Nominelle Zusammensetzung stellte sich als Phasengemenge heraus. Schwarze Punkte: bekannte Phase. 126
Abbildung 3.10	Phasendiagramm des Systems $A^{II}O / InO_{1,5} / PO_{2,5} (A^{II}: Mg, Zn)$ bei T = 800°C. In den grau unterlegten Bereichen wurden keine Untersuchungen durchgeführt. Legende siehe Abbildung 3.9. 126
Abbildung 3.11	Schematische Darstellung von Na ₂ ZrSi ₂ O ₇ (a), Na ₂ CaP ₂ O ₇ (b) und <i>trikl</i> CrTi ₂ (P ₂ O ₇) ₂ (c). Sicht jeweils entlang [-1 0 0]. Zum besseren Vergleich wurde der Ursprung der Na ₂ ZrSi ₂ O ₇ - Struktur um [0,5 0,5 0] verschoben und anschließend die Zelle nach $a' = c$, $b' = -a$, $c' = -b$ transformiert. Bei der Na ₂ CaP ₂ O ₇ -Struktur wurde der Ursprung um [0 0 0,5] verschoben. 149
Abbildung 3.12	Kristallstrukturen von <i>trikl.</i> -Cr ^{III} Ti ^{III} ₂ (P ₂ O ₇) ₂ (a), Cu ^{II} Fe ^{III} ₂ (P ₂ O ₇) ₂ (b) und Cu ^{II} V ^{III} ₂ (P ₂ O ₇) ₂ (c) Projektion auf (ac)-Ebene. Fett eingezeichnet ist die transformierte Zelle, gestrichelt die Lage der ursprünglichen Zelle. 150
Abbildung 3.13	Vergleich der Lage der $M^{II}M^{III}_{2}(P_{2}O_{7})_{2}$ -Schichten in <i>trikl.</i> -Cr ^{III} Ti ^{III} _{2}(P_{2}O_{7})_{2} (a), Cu ^{II} Fe ^{III} _{2}(P_{2}O_{7})_{2} (b), in Projektion auf (ac)-Ebene. <i>trikl.</i> -Cr ^{III} Ti ^{III} _{2}(P_{2}O_{7})_{2} (c), Cu ^{II} Fe ^{III} _{2}(P_{2}O_{7})_{2} (d), in Projektion auf (bc)-Ebene. 151

Abbildung 3.14	Vergleich der Lage der $M^{II}M^{III}_{2}(P_{2}O_{7})_{2}$ -Schichten in $triklCr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ (a), $Cu^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ (b), in Projektion auf (ac)-Ebene. $triklCr^{II}Ti^{III}_{2}(P_{2}O_{7})_{2}$ (c), $Cu^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ (d), in Projektion auf (ab)-Ebene. 152
Abbildung 3.15	ORTEP-Darstellungen [301] der Polyedertripel $[A^{II}B^{III}A^{II}O_{12}]$.
	Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%. $CuV_2(P_2O_7)_2$ (a), $CuCr_2(P_2O_7)_2$ (b), $PdCr_2(P_2O_7)_2$ (c), $CuFe_2(P_2O_7)_2$ [29] (d), $PdFe_2(P_2O_7)_2$ (e), $CuIn_2(P_2O_7)_2$ (f), $PdIn_2(P_2O_7)_2$ (g), <i>trikl</i> CrTi ₂ (P ₂ O ₇) ₂ (h). Für die zum Vergleich aufgeführte Struktur von $CuFe_2(P_2O_7)_2$ sind in der Literatur nur isotrope
All: 1.1	Austenkungsparameter angegeben. 154
Addildung 3.16	Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%. $CuV_2(P_2O_7)_2$ (a), $CuCr_2(P_2O_7)_2$ (b), $PdCr_2(P_2O_7)_2$ (c), $CuFe_2(P_2O_7)_2$ [29] (d), $PdFe_2(P_2O_7)_2$ (e), $CuIn_2(P_2O_7)_2$ (f), $PdIn_2(P_2O_7)_2$ (g), <i>trikl</i> $CrTi_2(P_2O_7)_2$ (h). Für die zum Vergleich aufgeführte Struktur von $CuFe_2(P_2O_7)_2$ sind in der Literatur nur isotrope Auslenkungsparameter angegeben. 155
Abbildung 3.17	Kristallstruktur von $hexCr^{II}Ti^{III}_{2}(P_2O_7)_2$. Projektion entlang $[0\ 0\ 1]$ (a). Perspektivische Darstellung mit Projektion entlang $[2\ 1\ 0]$ (b). 156
Abbildung 3.18	ORTEP-Darstellungen [301] der Cr ^{II} Ti ^{III} ₂ O ₁₂ -Einheiten in <i>hex.</i> -CrTi ₂ (P ₂ O ₇) ₂ . Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%. Die Schwerpunkte der Polyedertripel liegen bei 0 0 1/4 (a), 1/3 2/3 1/4 (b) und 2/3 0 1/4 (c). 157
Abbildung 3.19	ORTEP-Darstellungen [301] der Pyrophosphatgruppen [P ₂ O ₇] in <i>hex.</i> -CrTi ₂ (P ₂ O ₇) ₂ . Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%. 157
Abbildung 3.20	Perspektivische Darstellung einer $[A^{II}B^{III}_{2}O_{12}]_{\infty}$ -Schicht im $Cr^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ -Strukturtyp. 159
Abbildung 3.21	ORTEP-Darstellungen [301] der $[P_2O_7]$ -Gruppen. $Cr^{II}V^{III}_2(P_2O_7)_2$ (a) und (b).
	$Fe^{tt}V^{tt}_{2}(P_{2}O_{7})_{2}$ (c) und (d). Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%. 160
Abbildung 3.22	$\begin{array}{l} \text{ORTEP-Darstellungen [301] der Oktaedertripel [V3^{III}V2^{III}V3^{III}O_{10}] (a), [Cr4^{II}V1^{III}Cr4^{II}O_{10}] (b) in Cr^{II}V^{III}_{2}(P_{2}O_{7})_{2} und [V3^{III}V2^{III}V3^{III}O_{10}] (c), [Fe4^{II}V1^{III}Fe4^{II}O_{10}] (d) in Fe^{II}V^{III}_{2}(P_{2}O_{7})_{2}. \\ \text{Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50\%.} \\ \end{array}$
Abbildung 3.23	Kationenpolyederschicht in Sc ₂ Si ₂ O ₇ [225] (a) und $Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ (b). Die weißen Oktaeder in Sc ₂ Si ₂ O ₇ werden in der $Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$ -Struktur durch Leerstellen ersetzt. 161
Abbildung 3.24	Die $[X_2O_7]$ -Gruppen in Sc ₂ Si ₂ O ₇ (a) und Cr ^{II} ₅ V ^{III} ₂ (P ₂ O ₇) ₄ (b). Orange markiert sind die $[XO_4]$ -Einheiten, die unterschiedliches Verknüpfungsmuster zeigen. 161
Abbildung 3.25	Projektion der $\operatorname{Cr}^{I_5} \operatorname{V}^{II_2}(P_2 O_7)_4$ -Struktur entlang [0 1 0]. a) Schicht von $[\operatorname{Cr}^{I_5} \operatorname{V}^{II_2} O_{24}]_{\infty}$, b) Schicht von $[P_2 O_7]$ -Gruppen. 162
Abbildung 3.26	Die $[Cr^{II}_{5}V^{III}_{2}O_{24}]_{\infty}$ -Schicht in $Cr^{II}_{5}V^{III}_{2}(P_{2}O_{7})_{4}$. Projektion entlang $[0\ 1\ 0]$ (a), Projektion entlang $[1\ 0\ 0]$ (b). 162
Abbildung 3.27	Projektion von $A^{II}_5 V^{III}_2(P_2O_7)_4$ (A^{II} : Mn, Fe) entlang [1 0 0]. Schicht von $[A^{II}_5 V^{III}_2O_{24}]_{\infty}$ (I) und Schicht von $[P_2O_7]$ -Gruppen (II). Die $[A^{II}_5 V^{III}_2O_{24}]_{\infty}$ -Schicht in $A^{II}_5 V^{III}_2(P_2O_7)_4$ (A^{II} : Mn, Fe). Projektion entlang [1 0 0] (b), Projektion entlang [0 1 0] (c). 163
Abbildung 3.28	Vergleich der $[A^{II}_5 V^{III}_2 O_{24}]_{\infty}$ -Schichten und der Ausrichtung der Ketten, gebildet aus den Polyedern $[M1O_6]$, $[M2O_6]$, $[M3O_6]$ und $[M5O_6]$ innerhalb der $A^{II}_5 V^{III}_2 (P_2O_7)_4$ -Strukturen. $A^{II} = Mn$, Fe (a) und (b). $A^{II} = Cr$ (c) und (d). 164
Abbildung 3.29	ORTEP-Darstellungen [301] der $[MO_6]$ -Polyeder in $A^{II}_5 V^{III}_2 (P_2O_7)_4 (A^{II}$: Fe, Mn, Cr). Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%. 165
Abbildung 3.30	ORTEP-Darstellungen [301] der Pyrophosphatgruppen $[P_2O_7]$ in $A^{II}_5 V^{III}_2 (P_2O_7)_4$. Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%. Fe ^{II} _5 V^{III}_2 (P_2O_7)_4 (a) und (b), Mn^{II}_5 V^{III}_2 (P_2O_7)_4 (c) und (d), Cr^{II}_5 V^{III}_2 (P_2O_7)_4 (e) und (f). 166
Abbildung 3.31	Die Struktur von $\operatorname{Fe}_{3}^{III} V^{III}_{2}(P_{2}O_{7})_{3}$ (a). Projektion entlang [1 0 0]. Schicht von $[\operatorname{Fe}_{3}^{II} V^{III}_{2}O_{18}]_{\infty}$ (I), Schicht von $[P_{2}O_{7}]$ -Gruppen (II). Die $[\operatorname{Fe}_{3}^{II} V^{III}_{2}O_{18}]_{\infty}$ -Schicht in $\operatorname{Fe}_{3}^{II} V^{III}_{2}(P_{2}O_{7})_{3}$, Projektion entlang [1 0 0] (b), Projektion entlang [0 1 0] (c). 167
Abbildung 3.32	$Fe_5V_2(P_2O_7)_4$ Blick entlang $[1\ 0\ 0]$ (a), Markieren der zu löschenden Polyeder (b), Rekombination (c), $Fe_3V_2(P_2O_7)_3$ als Resultat der Rekombination (d). 168
Abbildung 3.33	Kationenpolyederschicht in $Fe_5V_2(P_2O_7)_4$, Blick entlang [0 1 0] (a), Markieren der zu löschenden Polyeder (b), Rekombination (c), Kationenpolyederschicht in $Fe_3V_2(P_2O_7)_3$ als Resultat der Rekombination (d). 168

- Abbildung 3.34 ORTEP-Darstellungen [301] der drei kristallographisch unterschiedlichen [MO₆]-Oktaeder in Fe^{II}₃V^{III}₂(P₂O₇)₃. a) [*M*1O₆] b) [*M*2O₆] c) [*M*3O₆]. Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%. 169
- Abbildung 3.35 ORTEP-Darstellungen [301] der zwei kristallographisch unterschiedlichen [P₂O₇]-Gruppen in Fe^{II}₃V^{III}₂(P₂O₇)₃. [P1P3O₇] (a) [P2₂O₇] (b). Die Aufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%. 169
- Abbildung 3.36 Vergleich zwischen der NiAs-Struktur (a und b) und der CrCr2(P2O7)2-Struktur (c und d).Gelb: Positionen der As- bzw. P-Atome, hellgrau: Lage der Kationen, dunkelgrau: Lage der
Leerstellen. Sicht entlang [0 0 -1] (a und c) und [-1 0 0] (b und d). Zur besseren
Vergleichbarkeit der Strukturen wurde die Zelle von CrCr2(P2O7)2 mit der Matrix [1 0 0 -
3 1 0 0 0 1] transformiert.
- Abbildung 3.37 Vergleich zwischen der NiAs-Struktur (a und b), FeFe₂(P₂O₇)₂-Struktur (c und d) und *h*-CrTi₂(P₂O₇)₂-Struktur (e und f). Gelb: Positionen der As bzw. P Atome, grau: Lage der Nibzw. *M*³⁺-Kationen. 173
- Abbildung 3.38 Perspektivische Darstellung der NaCl- (a), t-CrTi₂(P₂O₇)₂- (b), CuCr₂(P₂O₇)₂- (c) und CuFe₂(P₂O₇)₂-Struktur (d). Gelb: Positionen der Cl-Atome bzw. Schwerpunkte der [P₂O₇]-Gruppen. Die schwarze Linie kennzeichnet die Ausrichtung der [P₂O₇]-Gruppen, hellgrau: Lage der Na⁺- bzw. M^{3+} -Kationen. Zur besseren Vergleichbarkeit der Strukturen von t-CrTi₂(P₂O₇)₂, CuCr₂(P₂O₇)₂ und CuFe₂(P₂O₇)₂ wurden die transformierten Zellen aus Abschnitt 3.3.1 verwendet. Blickrichtung entlang [0 0 1].
- Abbildung 3.39 Lage der M^{2+} -Ionen in den kubischen dichtest angeordneten [P₂O₇]-Gruppen in der *t*-CrTi₂(P₂O₇)₂- (a), CuFe₂(P₂O₇)₂- (b) und CuCr₂(P₂O₇)₂-Struktur (c). Blickrichtung senkrecht zu den kubischen Schichten entlang der [P₂O₇]-Gruppen. Dunkelblau: Position von M^{2+} in der Schicht A (schwarz), mittelblau: Position von M^{2+} in der Schicht B (grau) und himmelblau: Position von M^{2+} in der Schicht C (hellgrau). 175
- Abbildung 3.40 UV/vis/nir-Spektren von CuIn₂(P₂O₇)₂ (Pulverremissionsspektrum) (a), CuCr₂(P₂O₇)₂ (Pulverremissionsspektrum) (b) und PdCr₂(P₂O₇)₂ (Einkristallabsorptionsspektrum) (c). 177
- Abbildung 3.41 UV/vis/nir-Spektren von *hex.*-CrTi₂(P_2O_7)₂ (Pulverremissionsspektrum) (a) und *trikl.*-CrTi₂(P_2O_7)₂ (Einkristallabsorptionsspektrum) (b). 180
- Abbildung 5.1 Gemessenes Guinierdiagramm von *m*-W₂O₃(PO₄)₂ (a). Simuliertes Strichdiagramm mit den Daten von [271] (b) und von [270] (c). 194
- Abbildung 5.2ORTEP-Darstellungen [301] der Polyeder [W1O6], [W2O6] und [W3O6].DieAufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%.198
- Abbildung 5.3ORTEP-Darstellungen [301]der Polyeder [P1O4], [P2O4]und [P3O4].DieAufenthaltswahrscheinlichkeit der Schwingungsellipsoide beträgt 50%.198
- Abbildung 5.4Bänder A bei y = 0, bestehend aus $[W_2P_2O_{15}]_{\infty}$ -Ketten entlang $[0\ 0\ 1]$. Blick entlang $[0\ 1\ 0]$
(a). Die Schicht B bei y =1/4, bestehend aus $[W_2P_2O_{15}]_{\infty}$. Blick entlang $[0\ 1\ 0]$ (b).199Abbildung 5.5Schichtenabfolge in m-W₂O₃(PO₄)₂. Blick entlang $[0\ 0\ 1]$.200
- Abbildung 6.1 ORTEP-Darstellungen des Oktaeders $[M2O_6]$ (a) und des Doppeloktaeders $[M3_2O_{10}]$ (b) in Mn₃Cr₄(PO₄)₆. 202
- Abbildung A.1 IP-Guinier-Aufnahme von Mg₃Ti₄(PO₄)₆ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).
 207
 Abbildung A.2 IP-Guinier-Aufnahme von Cr₃Ti₄(PO₄)₆ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).
 208
- Abbildung A.3 *IP*-Guinier-Aufnahme von Mn₃Ti₄(PO₄)₆ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b). 208
- Abbildung A.4 *IP*-Guinier-Aufnahme von Fe₃Ti₄(PO₄)₆ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b). 209
- Abbildung A.5 *IP*-Guinier-Aufnahme von Zn₃Ti₄(PO₄)₆ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b). 209
- Abbildung A.6 *IP*-Guinier-Aufnahme der unbekannten Phase bei der Synthese von Zn₃Ti₄(PO₄)₆ mit viel I₂ als Mineralisator, deren Reflexmuster eine große Ähnlichkeit mit der NASICON-Familie aufweist. 210
- Abbildung A.7 *IP*-Guinier-Aufnahme von $Mg_3V_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b). 211

353

Abbildung A.8	<i>IP</i> -Guinier-Aufnahme von $Cr_3V_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	211
Abbildung A.9	<i>IP</i> -Guinier-Aufnahme von $Mn_3V_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	212
Abbildung A.10	<i>IP</i> -Guinier-Aufnahme von $Fe_3V_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	212
Abbildung A.11	<i>IP</i> -Guinier-Aufnahme von $Co_3V_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	213
Abbildung A.12	<i>IP</i> -Guinier-Aufnahme von Ni ₃ V ₄ (PO ₄) ₆ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	213
Abbildung A.13	<i>IP</i> -Guinier-Aufnahme von $Cu_3V_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	214
Abbildung A.14	<i>IP</i> -Guinier-Aufnahme der unbekannten Phase X1 bei der Synthese von $Cu_3V_4(PO_4)_6$ (vergl. Experiment in Tabelle 2.8).	214
Abbildung A.15	<i>IP</i> -Guinier-Aufnahme von $Zn_3V_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	215
Abbildung A.16	<i>IP</i> -Guinier-Aufnahme von Mn ₃ Cr ₄ (PO ₄) ₆ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	216
Abbildung A.17	IP-Guinier-Aufnahme von Fe ₃ Cr ₄ (PO ₄) ₆ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	216
Abbildung A.18	<i>IP</i> -Guinier-Aufnahme von $Co_3Cr_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	217
Abbildung A.19	<i>IP</i> -Guinier-Aufnahme von $Mg_3Fe_4(PO_4)_6$ getempert an Luft bei 800 °C (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b) und berechnetes Guinierdiagramm von FePO ₄ [104] (c).	218
Abbildung A.20	IP-Guinier-Aufnahme von Mg ₃ Fe ₄ (PO ₄) ₆ getempert mit Chlor (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	218
Abbildung A.21	<i>IP</i> -Guinier-Aufnahme von $Zn_3Fe_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage von [28] (b).	219
Abbildung A.22	<i>IP</i> -Guinier-Aufnahme von $Mn_3Fe_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterkonstanten und den Lageparametern von $Mn_2Fe_5(PO_4)_6$ [133] (b).	219
Abbildung A.23	<i>IP</i> -Guinier-Aufnahme von $Fe_3Fe_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage von [16] (b).	220
Abbildung A.24	<i>IP</i> -Guinier-Aufnahme von $Fe_3Fe_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterkonstanten und den Lageparametern von [16] (b).	220
Abbildung A.25	<i>IP</i> -Guinier-Aufnahme von Ni ₃ Fe ₄ (PO ₄) ₆ (a). Berechnetes Guinierdiagramm auf Grundlage von [136] (b).	221
Abbildung A.26	<i>IP</i> -Guinier-Aufnahme von Ni ₃ Fe ₄ (PO ₄) ₆ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterkonstanten und den Lageparametern von [136] (b).	221
Abbildung A.27	T <i>IP</i> -Guinier-Aufnahme von Co ₃ Fe ₄ (PO ₄) ₆ (a). Berechnetes Guinierdiagramm auf Grundlage von Co _{2.9} Fe _{4.1} (PO ₄) ₆ [133] (b).	222
Abbildung A.28	<i>IP</i> -Guinier-Aufnahme von $Cu_3Fe_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage von [134] (b).	222
Abbildung A.29	<i>IP</i> -Guinier-Aufnahme von $Mn_3In_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	223
Abbildung A.30	<i>IP</i> -Guinier-Aufnahme von $Fe_3In_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	223
Abbildung A.31	<i>IP</i> -Guinier-Aufnahme von $Co_3In_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	224
Abbildung A.32	<i>IP</i> -Guinier-Aufnahme von Ni ₃ In ₄ (PO ₄) ₆ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	224
Abbildung A.33	<i>IP</i> -Guinier-Aufnahme von $Zn_3In_4(PO_4)_6$ (Substanz enthält Spuren von α -InPO ₄ [101]) (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	225

Abbildung A.34	<i>IP</i> -Guinier-Aufnahme von CuMg ₂ In ₄ (PO ₄) ₆ (Substanz enthält Spuren von InPO ₄ [101] und Cu ₃ In ₂ (PO ₄) ₄) [33]) (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparameter und den Lageparametern von Mg ₃ In ₄ (PO ₄) ₆ [28] mit 50% Cu auf der Lage <i>M</i> 3 (b).	226
Abbildung A.35	<i>IP</i> -Guinier-Aufnahme von $CuZn_2In_4(PO_4)_6$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparameter und den Lageparametern von Zn ₃ In ₄ (PO ₄) ₆ mit 50% Cu auf der Lage <i>M</i> 3 (b).	226
Abbildung B.1	<i>IP</i> -Guinier-Aufnahme von $CuV_2(P_2O_7)_2(a)$. Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	280
Abbildung B.2	<i>IP</i> -Guinier-Aufnahme von $CuCr_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	280
Abbildung B.3	<i>IP</i> -Guinier-Aufnahme von $CuFe_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage von [29] (b).	281
Abbildung B.4	<i>IP</i> -Guinier-Aufnahme von CuIn ₂ (P ₂ O ₇) ₂ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	281
Abbildung B.5	<i>IP</i> -Guinier-Aufnahme von $PdCr_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	282
Abbildung B.6	<i>IP</i> -Guinier-Aufnahme von $PdFe_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	282
Abbildung B.7	<i>IP</i> -Guinier-Aufnahme von $PdIn_2(P_2O_7)_2$ (Reflexe der nicht identifizierten Verunreinigung mit * gekennzeichnet) (a).	- - -
Abbildung B.8	<i>IP</i> -Guinier-Aufnahme von $Cr^{II}V^{III}_{2}(P_{2}O_{7})_{2}$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	205
Abbildung B.9	<i>IP</i> -Guinier-Aufnahme von $Fe^{II}V^{III}_{2}(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	284
Abbildung B.10	<i>IP</i> -Guinier-Aufnahme von $Mg^{II}Cr^{III}_2(P_2O_7)_2$ (a). Simuliertes Guinierdiagramm anhand der <i>d</i> -Werte und Intensitäten von [224] (b).	285
Abbildung B.11	<i>IP</i> -Guinier-Aufnahme von $Mg^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparametern und den Lageparameter von $Cr^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ [13] (b).	285
Abbildung B.12	<i>IP</i> -Guinier-Aufnahme von $Cr^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ (a). Berechnetes Guinierdiagramm auf Grundlage von $Cr^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ [13] (b).	286
Abbildung B.13	<i>IP</i> -Guinier-Aufnahme von $Fe^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparametern und den Lageparameter von $Cr^{II}Cr^{III}_{2}(P_{2}O_{7})_{2}$ [13] (b).	286
Abbildung B.14	<i>IP</i> -Guinier-Aufnahme von <i>trikl</i> Cr ^{II} Ti ^{III} ₂ (P_2O_7) ₂ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	287
Abbildung B.15	<i>IP</i> -Guinier-Aufnahme von <i>hex</i> Cr ^{II} Ti ^{III} ₂ (P_2O_7) ₂ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	287
Abbildung B.16	<i>IP</i> -Guinier-Aufnahme von MgFe ₂ (P_2O_7) ₂ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparametern und den Lageparameter von FeFe ₂ (P_2O_7) ₂ [17] (b).	288
Abbildung B.17	<i>IP</i> -Guinier-Aufnahme von $FeFe_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage von [17] (b).	288
Abbildung B.18	<i>IP</i> -Guinier-Aufnahme von $CoFe_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparametern und den Lageparameter von $FeFe_2(P_2O_7)_2$ [17] (b).	289
Abbildung B.19	<i>IP</i> -Guinier-Aufnahme von $ZnFe_2(P_2O_7)_2$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparametern und den Lageparameter von $FeFe_2(P_2O_7)_2$ [17] (b).	289

Abbildung C.1	Berechnetes Guinierdiagramm auf Grundlage von Mn ₂ P ₂ O ₇ [213] als Stellvertreter für Pyrophosphate die im Thortveitit-Strukturtyp kristallisieren.	318
Abbildung C.2	<i>IP</i> -Guinier-Aufnahme von $Cr_5V_2(P_2O_7)_4$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	318
Abbildung C.3	Simulation von $Mn_5V_2(P_2O_7)_4$. Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur.	319
Abbildung C.4	<i>IP</i> -Guinier-Aufnahme von $Fe_5V_2(P_2O_7)_4$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	319
Abbildung C.5	<i>IP</i> -Guinier-Aufnahme von $Mn_5Fe_2(P_2O_7)_4$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparametern und den Lageparameter von Fe ₅ Fe ₂ (P ₂ O ₇) ₄ [18] (b).	320
Abbildung C.6	<i>IP</i> -Guinier-Aufnahme von $Fe_5Fe_2(P_2O_7)_4$ (a). Berechnetes Guinierdiagramm auf Grundlage von [18] (b).	320
Abbildung C.7	<i>IP</i> -Guinier-Aufnahme von $Zn_5Fe_2(P_2O_7)_4$ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Gitterparametern und den Lageparameter von $Fe_5Fe_2(P_2O_7)_4$ [18] (b).	321
Abbildung C.8	<i>IP</i> -Guinier-Aufnahme von Fe ₃ V ₂ (P ₂ O ₇) ₃ , (* = zusätzliche Reflexe von Fe ₅ V ₂ (P ₂ O ₇) ₄) (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	322
Abbildung D.1	<i>IP</i> -Guinier-Aufnahme von m -W ₂ O ₃ (PO ₄) ₂ (a). Berechnetes Guinierdiagramm auf Grundlage in dieser Arbeit verfeinerten Struktur (b).	335
Abbildung D.2	<i>IP</i> -Guinier-Aufnahme von o -W ₂ O ₃ (PO ₄) ₂ (a). Berechnetes Guinierdiagramm auf Grundlage von [272] (b).	335

F.3 Literaturverzeichnis

- F. Reinauer. "Untersuchungen im Dreistoffsystem Ti / P / O, mit einem Seitenblick auf Titan(III)-silicophosphate", Dissertation, Universität Gießen, 1998.
- [2] M. Schöneborn. "Gruppentheoretische Behandlung kristallchemischer und kristallographischer Probleme. Synthese und Kristallstrukturen polynärer Phosphate und Silicophosphate des Titans", Dissertation, Universität Bonn, 2008.
- [3] U. Kaiser. "Darstellung und Kristallisation von wasserfreien Germanium- und Vanadiumphosphaten", Dissertation, Universität Gießen, **1996**.
- [4] T. Droß. "Neue Vanadiumphosphate und das Redox-Verhalten von Phosphaten des Vanadiums und Urans - Phasengleichgewichte, Sauerstoffkoexistenzdrücke und kristallographische Untersuchungen", Dissertation, Universität Bonn, 2004.
- [5] R. Glaum. "Neue Untersuchungen an wasserfreien Phosphaten der Übergangsmetalle", Habilitationsschrift, Universität Gießen, **1999**.
- [6] C. Gleitzer. "Anhydrous Iron Phosphates and Oxophosphates", *Eur. J. Solid State Inorg. Chem.* **1991**, *28*, 77.
- [7] D. Özalp. "Darstellung und chemischer Transport von Phosphiden und Phosphaten des Kupfers", Dissertation, Universität Gießen, 1993.
- [8] R. Glaum, R. Gruehn. "Synthese, Kristallstruktur und magnetisches Verhalten von V₂PO₅", *Z. Kristallogr.* 1989, 186, 91.
- [9] E. Benser, R. Glaum, T. Droß, H. Hibst. "V(III)V(IV)₃O₃(PO₄)₃: A novel vanadium phosphate for selective oxidation of light hydrocarbons", *Chem. Mat.* 2007, *19*, 4341.
- [10] J. W. Johnson, D. C. Johnston, H. E. jr. King, T. R. Halbert, J. F. Brody, D. P. Goshorn. "Structure and magnetic properties of V₂(VO)(P₂O₇)₂. A mixed-valence vanadium(III,III,IV)-pyrophosphate", *Inorg. Chem.* **1988**, *27*, 1646.
- S.-C. Yin, H. Grondey, P. Strobel, M. Anne, L. F. Nazar. "Electrochemical property: structure relationships in monoclinic Li_{3-y}V₂(PO₄)₃", *J. Am. Chem. Soc.* 2003, *125*, 10402.

- [12] R. Glaum. "Thermal relations of water-free phosphate. VIII. Preparation and crystal structure of chromium phosphate Cr₇(PO₄)₆. The first mixed chromium(II) and chromium(III) phosphate", Z. Kristallogr. 1993, 205, 69.
- [13] R. Glaum. "Darstellung und Kristallstruktur von Cr₆(P₂O₇)₄. Ein gemischtvalentes Pyrophosphat mit zwei- und dreiwertigem Chrom", Z. Anorg. Allg. Chem. 1992, 616, 46.
- [14] M. Ijjaali, B. Malaman, C. Gleitzer, J. K. Warner, J. A. Hriljac, A. K. Cheetham. "Stability, structure refinement, and magnetic properties of beta-Fe₂(PO₄)O", *J. Solid State Chem.* **1990**, *86*, 195.
- [15] G. Venturini, A. Courtois, J. Steinmetz, R. Gerardin, C. Gleitzer. "Preparation et etude d'un oxyphosphate de fer a valence mixte Fe₉(PO₄)O₈", *J. Solid State Chem.* 1984, *53*, 1.
- [16] Yu. A. Gorbunov, B. A. Maksimov, Yu. K. Kabalov, A. N. Ivashchenko, O. K. Mel'nikov, N.V. Belov. "The crystal structure of Fe₃Fe₄(PO₄)₆", *Doklady Akad. Nauk SSSR*. **1980**, *254*, 873.
- [17] M. Ijjaali, G. Venturini, R. Gerardin, B. Malaman, C. Gleitzer. "Synthesis, structure and physical properties of a mixed-valence iron diphosphate Fe₃(P₂O₇)₂: first example of trigonal prismatic Fe²⁺ with O²⁻ ligands", *Eur. J. Solid State Inorg. Chem.* **1991**, *28*, 983.
- [18] B. Malaman, M. Ijjaali, R. Gerardin, G. Venturini, C. Gleitzer. "Fe₇(P₂O₇)₄. a mixed-valence iron diphosphate, the missing link between Fe₂P₂O₇ and Fe₃(P₂O₇)₂", *Eur. J. Solid State Inorg. Chem.* **1992**, *29*, 1269.
- [19] K. M. S. Etheredge, S.-J. Hwu. "Synthesis, structure, and magnetic properties of a new mixed-valence copper(I/II) phosphate, Cu₂PO₄", *Inorg. Chem.* 1995, 34, 5013.
- [20] K. Maaß, R. Glaum, R. Gruehn. "Die Systeme $A_2P_2O_7 / Cr_2P_2O_7$ (A = Mg, Ca, Sr, Ba) Darstellung und Charakterisierung neuer Diphosphate des zweiwertigen Chroms", Z. anorg. allg. Chem. 2001, 627, 2081.
- [21] B. Elbali, A. Boukhari, J. Aride, K. Maa
 ß, R. Glaum. "Syntheses, crystal structure and colour of SrNiP₂O₇ and SrNi₃(P₂O₇)₂", *Solid State Sci.* 2001, *3*, 669.

- [22] F. Sanz, C. Parada, J. M. Rojo, C. Ruíz-Valero. "Synthesis, Structural Characterization, Magnetic Properties, and Ionic Conductivity of $Na_4M^{II}_3(PO_4)_2(P_2O_7)$ ($M^{II} = Mn, Co, Ni$)", *Chem. Mater.* **2001**, *13*, 1334.
- [23] F. Erragh, A. Boukhari, F. Abraham, B. Elouadi. "Study of the Crystal Structures of Sodium Magnesium and Sodium Nickel Diphosphates", J. Solid State Chem. 2000, 152, 323.
- [24] C. A. J. Fisher, V. M. H. Prieto, M. S. Islam. "Lithium Battery Materials LiMPO₄ (M = Mn, Fe, Co and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior", *Chem. Mater.* 2008, 20, 5907.
- [25] C. Masquelier1, A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. "New Cathode Materials for Rechargeable Lithium Batteries: The 3-D Framework Structures Li₃Fe₂(XO₄)₃ (X = P, As)", J. Solid State Chem. **1998**, 135, 228.
- [26] C. Wurm, M. Morcrette, G. Rousse, L. Dupont, C. Masquelier. "Lithium Insertion/Extraction into/from $LiMX_2O_7$ Compositions (M = Fe, V; X = P, As) Prepared via a Solution Method", *Chem. Mater.* 2002, 14, 2701.
- [27] M. Gruß. "Zur Substitution von Chrom(II) in wasserfreien Phosphaten", Diplomarbeit, Universität Gießen, 1995.
- [28] M. Gruß. "Beiträge zur Kristallchemie von Phosphaten des $Fe^{2+}{}_{3}Fe^{3+}{}_{4}(PO_{4})_{6}$ -Strukturtyps und verwandten Verbindungen", Dissertation, Universität Gießen, **1998**.
- [29] A. Boutfessi, A. Boukhari, E. M. Holt. "Copper(II)diiron(III)pyrophosphate", Acta Crystallogr. 1996, C52, 1597.
- [30] N. El Khayati, J. Rodriguez-Carvajal, T. Bouree, F.;Roisnel, R. Cherkaoui, A. Boutfessi, A. Boukhari. "Magnetic structure and exchange interactions in CuFe₂(P₂O₇)₂", *Solid State Sci.* 2002, *4*, 1273.
- [31] D. R. Lide. "Handbook of Chemistry and Physics, 89 Edition", Chemical Rubber Company press, 2008.
- [32] H. Schäfer. "Chemische Transportreaktionen", Verlag Chemie, Weinheim, 1962.
- [33] M. Gruβ, R. Glaum. "Darstellung, Kristallstruktur und Eigenschaften des Kupfer(II)-Indium(III)-Orthophosphats Cu₃In₂(PO₄)₄", Z. Anorg. Allg. Chem. 2001, 627, 1377.

- [34] J. W. Gibbs. "Elementary principles in statistical mechanics", Charles-Scribner's Sons, New York, 1902.
- [35] R. Gruehn, R. Glaum. "Neues zum chemischen Transport als Methode zur Präparation und thermochemischen Untersuchung von Festkörpern", *Angew. Chem.* 2000, *112*, 706.
- [36] M. Binnewies. "Chemische Transportreaktionen", *Chemie in unserer Zeit*, **1998**, 32, 15-21.
- [37] R. Bunsen. "Vulkanische Exhalation", J. Prakt. Chem. 1852, 56, 53.
- [38] L. Mond, C. Langer, F. Quincke. "Action of Carbon Monoxide on Nickel", J. Chem. Soc. 1890, 749.
- [39] A. E. Van Arkel, J. H. De Boer. "Darstellung von reinem Titanium-, Zirkonium-, Hafnium und Thoriummetall", Z. Anorg. Allg. Chem. 1925, 148, 345.
- [40] H. Schäfer. "Erläuterungen und ausgewählte Praktikumsaufgaben zum Chemischen Transport", Universität Münster, 1989.
- [41] K. M. Thomas, W. J. Thomas. "Principles and Practice of Herterogeneous Catalysis", Wiley-VCH, Weinheim, 1996.
- [42] G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp. "Handbook of Heterogeneous Catalysis, 2. Edition", *Wiley-VCH, Weinheim*, **2008**.
- [43] E. Gallei, E. Schwab. "Development of technical catalysts", *Catal. Today*, 1999, 51, 535.
- [44] F. Haber (BASF AG). DRP. Patent 235421, **1908**.
- [45] F. Haber (BASF AG). DRP. Patent 238450, **1909**.
- [46] A. Mittasch. "Geschichte der Ammoniaksynthese", Verlag Chemie, Weinheim, 1951.
- [47] BASF AG. DRP. Patent 291792, **1913**.
- [48] F. Kuhlmann. "Abhandlung über die Salpeterbildung. Neue Erzeugung von Salpetersäure und Ammoniak", Ann. Pharma. 1839, 29, 272.
- [49] W. Ostwald. Engl. Patent 698, **1902**.

- [50] F. Fischer, H. Tropsch. "Verfahren zur Gewinnung mehrgliedriger Paraffinkohlenwasserstoffe aus Kohlenoxyden und Wasserstoff auf katalytischem Wege", DRP Patent 484337, 1925.
- [51] J. M. Maselli, A. W. Peters. "Preparation and Properties of Fluid Cracking Catalysts for Residual Oil Conversion", *Catal. Rev.* 1984, 26, 525.
- [52] J. Vedrine, J. Millet, J. Volta. "Role of Surface Atomic Arrangements of well defined Phosphates in Partila Oxidation and Oxidative Dehydrogenation Reactions", *Faraday Discuss. Chem. Soc.* 1989, 87, 207.
- [53] C. Virely, M. Forissier, J. M. M. Millet, J. C. Vedrine, D. Huchette. "Kinetic study of isobutyric acid oxydehydrogenation on various iron-phosphorus-oxygen catalysts: proposal for the reaction mechanism", *J. Mol. Catal.* **1992**, *71*, 199.
- [54] P. Bonnet, J. M. M. Millet. "Catalytic Properties of Iron Phosphate-Based Catalysts Containing Fe₂(PO₃OH)P₂O₇ and α - or β -Fe₃(P₂O₇)₂ in the Oxidative Dehydrogenation of Isobutyric Acid", *J. Catal.* **1996**, *161*, 198.
- [55] E. Laperdrixa, G. Costenti, N. Nguyenb, F. Studerb, J. C. Lavalleya. "Study of H₂S selective oxidation on new model catalysts Influence of composition", *Catal. Today*, 2000, *61*, 149.
- [56] M. Panizza, C. Resini, G. Busca, E. F. López, V. S. Escribano. "A Study of the Oxidative Dehydrogenation of Cyclohexane Over Oxide Catalysts", *Catal. Lett.* 2003, 89, 199.
- [57] K. Otsuka, Y. Wang. "Direct conversion of methane into oxygenates", *Applied Catal.* 2001, *A222*, 145.
- [58] R. L. McCormick, G. O. Alptekin, D. L. Williamson, T. R. Ohno. "Methane partial oxidation by silica-supported iron phosphate catalysts. Influence of iron phosphate content on selectivity and catalyst structure", *Topics Catal.* 2000, *10*, 115.
- [59] M. Hartmann, L. Kevan. "Transition-Metal Ions in Aluminophosphate and Silicoaluminophosphate Molecular Sieves: Location, Interaction with Adsorbates and Catalytic Properties", *Chem. Rev.* **1999**, *99*, 635.
- [60] Z. H. Zhao. "Studies on esterification reaction over aluminophosphate and silicoaluminophosphate molecular sieves", *J. Mol. Catal. A.* **2001**, *168*, 147.

- [61] L. Smith, A. K. Cheetham, L. Marchese, J. M. Thomas, P. A. Wright, J. Chen, E. Gianotti. "A quantitative description of the active sites in the dehydrated acid catalyst HSAPO-34 for the conversion of methanol to olefins", *Catal. Lett.* **1996**, *41*, 13.
- [62] X. D. Peng, G. E. Parris, B. A. Toseland, P. J. Battavio (Air Products and Chemicals, Inc). "Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process", U.S. Patent 5 753 716, 1998.
- [63] J. M. Thomas, R. Raja. "Design of a "green" one-step catalytic production of ε-caprolactam (precursor of nylon-6)", *Proc. Natl Acad. Sci.* 2005, 102, 13732.
- [64] M. Qian. M.A. Liauw, G. Emig. "Formaldehyde synthesis from methanol over silver catalysts", *Appl. Catal. A*, 2003, 238, 211.
- [65] K. C. Waugh. "Methanol Synthesis", Catal. Today, 1992, 15, 51.
- [66] K. Aasberg-Petersen, J.-H. Bak Hansen, T. S. Christensen, I. Dybkjaer, P. Seier Christensen, C. Stub Nielsen, S. E. L. Winter Madsen, J. R. Rostrup-Nielse. "Technologies for large-scale gas conversion", *Appl. Catal. A*, 2001, 221, 379.
- [67] D. H. Bolton. "Methanol production by the ICI [Imperial Chemical Industry, Ltd.] low-pressure process", *Chemie Ing. Techn.* **1969**, *41*, 129.
- [68] H. Sperber. "Herstellung von Formaldehyd aus Methanol in der BASF", *Chemie Ing. Techn.* 1969, 41, 962.
- [69] O. Grendler, G. Reuss, W. Disteldorf. "Ullmann's Encyclopedia of Industrial Chemistry Vol A-11", *Wiley-VCH*, Weinheim, **1988**, 619.
- [70] B. K. Hodnett. "Heterogeneous Catalytic Oxidation: Fundamental and Technological Aspects of the Selective and Total Oxidation of Organic Compounds", *John Wiley & Sons, Chichester*, 2000.
- [71] H.-J. Arpe. "Industrielle Organische Chemie, Bedeutende Vor- und Zwischenprodukte", 6.-Auflage, Wiley-VCH, 2007.
- [72] K. Weissermel, E. Fischer, K. Gutweiler, H. D. Hermann, H. Cherdron. "Polymerisation von Trioxan", *Angew. Chem.* **1967**, *79*, 512.
- [73] G. L. Blanc. "Preparation of aromatic chloromethylenic derivatives", *Bull. Soc. Chim. France*, **1923**, *33*, 313.

- [74] R. C. Fuson, C. H. McKeever. "Chloromethylation of aromatic compounds", Org. React. 1942, 1, 63.
- [75] C. Mannich. "Synthese von β -Ketonbasen", Arch. Pharm. 1917, 255, 261.
- [76] H. J. Prins. "Condensation of formaldehyde with some unsaturated compounds", *Chem. Weekb.* 1919, 16, 1072.
- [77] H. Griengl, W. Sieber. "Stereochemie und Mechanismus der Prins-Reaktion bei ausgeprägter Ladungsdelokalisierung im intermediären Carbeniumion", *Monatsh. Chem.* 1973, 104, 1008.
- [78] H. Griengl, W. Sieber. "Kinetik der Umsetzung von Formaldehyd mit 2,6-Dimethyl-4propenylphenol in alkalischem Medium", *Monatsh. Chem.* **1973**, *104*, 1027.
- [79] M. Apel, B. Tollens. "Über mittels Formaldehyd aus Aldehyden und Ketonen synthetisch gewonnene mehrwertige Alkohole", *Chem. Ber*. **1894**, *27*, 1087.
- [80] G. Schmidt, R. Gruehn. "Zum Absorptions- und Desorptionsverhalten von Quarzglas gegenüber Wasser", J. Cryst. Growth, 1982, 57, 585.
- [81] W. H. Bragg, W. L. Bragg. "The Reflection of X-rays by Crystals", Proc. Royal Soc. (London), 1913, A88, 428.
- [82] Y. Amemiya, J. Miyahara. "Imaging Plate Iluminates Many Fields", *Nature*, **1988**, *336*, 89.
- [83] R. H. Blessing. "An empirical correction for absorption anisotropy", *Acta Crystallogr*. 1995, *A51*, 33.
- [84] A. L. Patterson. "A Fourier Series Method for the Determination of the Components of Interatomic Distances in Crystals", *Phys. Rev.* 1934, 46, 372.
- [85] A. L. Patterson. "A direct method for the determination of the components of interatomic distances in crystals", Z. Kristallogr. 1935, A90, 517.
- [86] H. Hauptman. "Direkte Methoden und anomale Dispersion (Nobel-Vortrag)", Angew. Chem. 2006, 98, 600.
- [87] J. Karlé, H. Hauptman. "An Unified Algebraic Approach to the Phase Problem", Acta Crystallogr. 1952, 10, 267.
- [88] Programmbeschreibung "EDAX-Analysensystem", Fa. Philips, 1986.

- [89] P. Kubelka, F. Munk. "Ein Beitrag zur Optik der Farbanstriche", Z. Techn. Phys. 1931, 12, 593.
- [90] E. Krausz. "A single-beam approach to the absorption spectroscopy of microcrystals", *Aust. J. Chem.* **1993**, *46*, 1041.
- [91] A. Beer. "Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten", *Ann. Phys. Chem.*, **1852**, *86*, 78.
- [92] A. G. Nord, P. Kierkegaard. "The Crystal Structure of Mg₃(PO₄)₂", *Acta Chem. Scand.* 1968, 22, 1466.
- [93] A. Winkler, E. Thilo. ,,Über eine Reihe saurer Verbindungen $HX^VP_2O_8$ und $H_2X^{IV}P_2O_8$ mit Schichtstruktur, $X^V =$ As und Sb; $X^{IV} =$ Si, Ge, Sn, Pb, Ti und Zr", Z. *Anorg. Allg. Chem.* **1966**, *346*, 92.
- [94] S. T. Norberg, G. Svensson, J. Albertsson. "A TiP₂O₇ superstructure", *Acta Crystallogr.* **2001**, *C57*, 225.
- [95] B. Jordan, C. Calvo. "Crystal structure of α-VPO₅", Can. J. Chem. 1973, 51, 2621.
- [96] R. Gopal, C. Calvo. "Crystal structure of β -VPO₅", J. Solid State Chem. 1972, 5, 432.
- [97] G. Brauer. "Handbuch der Präparativen Anorganischen Chemie", Ferd. Enke Verlag, Stuttgart, Bd. 3. 1981, 1508. > L. Malatesta, A. Sacco, S. Ghielmi. *Gazz. chim. ital.* 1952, 82, 516.
- [98] R. Glaum, R. Gruehn, M. Möller. "Darstellung und Struktur von alpha-CrPO₄", Z. Anorg. Allg. Chem. 1986, 543, 111.
- [99] N, Kinomura, F. Muto, M. Koizumi. "Preparation of transition metal orthophosphates, MPO₄, and their magnetic properties", J. Solid State Chem. 1982, 45, 252.
- [100] J. P. Attfield, P. D. Battle, A. K. Cheetham. "The spiral magnetic structure of betachromium(III) orthophosphate", J. Solid State Chem. 1985, 57, 357.
- [101] H. Thauern. "Phosphate des ein- und zweiwertigen Indiums und Einbau von Chrom(III) und Mangan(III) in Indium(III)-phosphate", Dissertation, Universität Bonn, 2006.
- [102] M. Gruß, R. Glaum. "Refinement of the superstructure of C-type chromium(III)tris(metaphosphate), Cr(PO₃)₃", Acta Crystallogr. 1996, C52, 2647.

- [103] M. Gerk. "Charakterisierung der magnetischen und elektronischen Eigenschaften von Phosphaten M₂P₂O₇ und MP₂O₇", Dissertation, Universität Gießen, 1996.
- [104] H. N. Ng, C. Calvo. "Refinement of the crystal structure of the low-quartz modification of ferric phosphate", *Can. J. Chem.* 1975, 53, 2064.
- [105] L. K. Elbouaanani, B. Malaman, R. Gerardin. "Crystal structure refinement and magnetic properties of Fe₄(P₂O₇)₃ studied by neutron diffraction and Mößbauer techniques", *J. Solid State Chem.* 2002, 163, 412.
- [106] M. Weil. "Synthese und Charakterisierung von P₄O₁₀-reichen Phosphaten des zweiwertigen Kupfers, Eisens und Chroms", Diplomarbeit, Universität Gießen, 1996.
- [107] L. K. Elbouaanani, B. Malaman, R. Gerardin. "Structure refinement and magnetic properties of C-Fe(PO₃)₃ studied by neutron diffraction and Mößbauer techniques", J. Solid State Chem. 1999, 148, 455.
- [108] A. G. Nord. "Note on the crystal structure of Co₃(PO₄)₂", *Acta Chem. Scand.* 1974, *A28*, 150.
- [109] A. Schmidt. "*Phosphide und Phosphate des Cobalts. Kristallisation, Thermodynamik, Strukturen und Farben*", Dissertation, Universität Gießen, **2002**.
- [110] C. Calvo, R. Faggiani. "Structure of nickel orthophosphate", *Can. J. Chem.* 1975, 53, 1516.
- [111] M. Blum. "Untersuchung der Gleichgewichtsbeziehungen im System Ni / P / O und chemischen Transport der Phosphate und Phosphide des Nickels", Diplomarbeit, Universität Gießen, 1997.
- [112] G. L. Shoemaker, J. B. Anderson, E. Kostiner. "Copper(II)phosphate", Acta Crystallogr. 1977, B33, 2969.
- [113] R. Glaum, M. Walter-Peter, D. Özalp, R. Gruehn. "Zum chemischen Transport von Pyrophosphaten $M_2P_2O_7$ (M = Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd) - Die erstmalige Darstellung von Chrom(II)-pyrophosphat", Z. Anorg. Allg. Chem. **1991**, 601, 145.
- [114] B. E. Robertson, V. Calvo. "The crystal structure and phase transformation of alpha-Cu₂P₂O₇", *Acta Crystallogr.* 1967, *22*, 665.
- [115] C. Calvo. "The crystal structure of alpha-Zn₃(PO₄)₂", *Can. J. Chem.* **1965**, *43*, 436.

- [116] H. Görzel. "Chemische Transportexperimente und thermochemische Betrachtungen in den Systemen M / P / O / Cl (M = Rh, Pd)", Dissertation, Universität Gießen, **1997**.
- [117] K. Panagiotidis, R. Glaum, J. Schmedt auf der Guenne, W. Hoffbauer, H. Goerzel. "Synthese, Kristallstruktur und spektroskopische Charakterisierung von Palladium(II)diphosphat Pd₂P₂O₇", Z. Anorg. Allg. Chem. 2005, 631, 2371.
- [118] H. Thauern, R. Glaum. "In₂P₂O₇. ein Indium(I)-diphosphato-indat(III) und In₄(P₂O₇)₃ Darstellung, Kristallisation und Kristallstrukturen", Z. Anorg. Allg. Chem. 2003, 629, 479.
- [119] N. Schönberg. "An X-ray investigation of transition metal phosphides", Acta Chem. Scand. 1954, 8, 226.
- [120] R. Glaum, R. Gruehn. "Zum chemischen Transport von Monophosphiden MP (M = Ti, V, Cr, Mn, Fe)", Z. Kristallogr. 1987, 178, 70.
- [121] K. Selte, A. Kjekshus, A. F. Andresen. "Structural and magnetic properties of VP and VAs", Acta Chem. Scand. 1972, 26, 4057.
- [122] R. Glaum, R. Gruehn. "Zum chemischen Transport von Vanadiummonophosphid", Z. Anorg. Allg. Chem. 1989, 568, 73.
- [123] R. Glaum, R. Gruehn. "Zum chemischen Transport von Chrom- und Manganmonophosphid mit Iod", Z. Anorg. Allg. Chem. 1989, 573, 24.
- [124] S. Rundqvist. "Phosphides of the B31 (MnP) structure type", Acta Chem. Scand. 1962, 16, 287.
- [125] R. Glaum, R. Gruehn. "Einkristallstrukturverfeinerung der Metall(III)-orthophosphate TiPO₄ und VPO₄", Z. Kristallogr. 1992, 198, 41.
- K. K. Palkina, S. I. Maksimova, N. T. Chibiskova, K. Schlesinger, G. Ladwig.
 "Doppeloktaeder-Cluster (V₂O₉) in der Kristallstruktur von Vanadium(III) Diphosphat, V₄(P₂O₇)₃", Z. Anorg. Allg. Chem. 1985. 529. 89.
- [127] L. Palatinus, M. Dusek, R. Glaum, B. El Bali. "The incommensurately and commensurately modulated crystal structures of chromium(II) diphosphate", *Acta Crystallogr.* 2006, *B62*, 556.
- [128] E. Kostiner, J. R. Rea. "Crystal structure of ferrous phosphate, Fe₃(PO₄)₂", *Inorg. Chem.* 1974, 13, 2876.

- [129] J. T. Hoggins, J. S. Swinnea, H. Steinfink. "Crystal structure of Fe₂P₂O₇", J. Solid State Chem. 1983, 47, 278.
- [130] E. A. Genkina, B. A. Maksimov, O. V. Zvereva, Yu. M. Mininzon, I. S. Lyubutin, S. V. Luchko, V. V. Yakovlev. "Synthesis, crystal structure and properties of a new iron phosphate Fe³⁺₂Fe²⁺₅(P₂O₇)₄", *Kristallografiya*, **1992**, *37*, 1169.
- [131] A. Benmoussa, M. M. Borel, A. Grandin, A. Leclaire, B. Raveau. "A new phosphate of trivalent titanium: magnesium titanium phosphate (Mg₃Ti₄P₆O₂₄)", *J. Solid State Chem.* **1990**, *84*, 299.
- [132] M. Gruß, R. Glaum. "Preparation and single crystal structure refinement of mixed orthophosphates M_3 Cr₄(PO₄)₆ (M = Mg, Zn, Cu). Copper(II) in compressed octahedral coordination", *Z. Kristallogr.* **1997**, *212*, 510.
- [133] P. Lightfoot, A. K. Cheetham. "Neutron diffraction study of the cation distributions in the iron double phosphate systems $Fe_{7-x}M_x(PO_4)_6$ (M = manganese or cobalt)", J. *Chem. Soc. Dalton Trans.* **1989**, *9*, 1765.
- [134] A. A. Belik, K. V. Pokholok, A. P. Malakho, S. S. Khasanov, B. I. Lazoryak. "Synthesis and structure of phosphates $M_3R_4(PO_4)_6$ (M = Cu, Co; R = Fe, Cr, Ga, In) and their interaction with hydrogen", *Žh. Neorg. Khim.* **2000**, *45*, 1633.
- [135] M. R. de Guire, T. R. S. Prasanna, G. Kalonji, R. C. O'Handley. "Phase Equilibria in the Iron Oxide - Cobalt Oxide - Phosphorus Oxide System", J. Am. Ceram. Soc. 1987, 70, 831.
- [136] A. El Kira, R. Gerardin, B. Malaman, C. Gleitzer. "Five-coordinated Ni²⁺ in nickel iron phosphate Ni₃Fe₄(PO₄)₆", *Eur. J. Solid State Inorg. Chem.* **1992**, *29*, 1119.
- [137] A. A. Belik, A. P. Malakho, K. V. Pokholok, B. I. Lazoryak, S. S. Khasanov. "New Mixed-Valent Iron (II/III) Phosphates, Cu_{3-x}Fe_{4+x}(PO₄)₆", *J. Solid State Chem.* 2000, 150, 159.
- [138] S. Boudin, A. Grandin, A. Leclaire, M. M. Borel, B. Raveau. "The original structure of Zn₃V₄(PO₄)₆ involving bioctahedral V₂O₁₀ units and ZnO₅ trigonal bipyramids", *J. Solid State Chem.* **1995**, *115*, 140.

- [139] J. M. Hughes, J. W. Drexler, C. F. Campana, M. L. Malinconico. "Howardevansite NaCu²⁺Fe³⁺₂(VO₄)³⁻₃, a new fumarolic sublimate from Izalco volcano, El Salvador: Descriptive mineralogy and crystal structure", *Amer. Miner.*, **1988**, *73*, 181.
- [140] J. M. Hughes, S. J. Starkey, M. L. Malinconico, L. L. Malinconico. "Lyonsite, Cu₃Fe₄(VO₄)₆, a new fumarolic sublimate from Izalco volcano, EI Salvador: Descriptive mineralogy and crystal structure", *Amer. Miner.*, **1987**, 72, 1000.
- [141] E. L. Belokoneva, E. A. Ruchkina, O. V. Dimitrova. "Synthesis and Crystal Structure of New Phosphate NaFe²⁺₄Fe³⁺₃[PO₄]₆", *Crystallography Reports*, **2003**, *48*, 49.
- [142] G. J. Redhammer, G. Roth, G. Tippelt, M. Bernroider, W. Lottermoser, G. Amthauer. "The mixed-valence iron compound Na_{0.1}Fe₇(PO₄)₆: crystal structure and ⁽⁵⁷⁾Fe Mossbauer spectroscopy between 80 and 295 K", *J. Solid State Chem.* 2004, 177, 1607.
- [143] M. Hidouri, B. Lajmi, A. Wattiaux, L. Fournes, B. Darriet, M. B. Amara. "Crystal structure, magnetic susceptibility and Mößbauer spectroscopy of the mixed-valence iron phosphate Na_{1/2}Cu_{4/3}Fe₂(PO₄)₃", *J. Solid State Chem.* **2006**, *179*, 1808.
- [144] A. A. Belik. "Synthesis and crystal structure of LiCuFe₂(VO₄)₃ by Rietveld method", *Mat. Res. Bull.* **1999**, *34*, 1973.
- [145] F. D. Martin, H. Müller-Buschbaum. "Eine synthetische Spezies zum Mineral Howardevansit mit Eisen anstelle von Kupfer: NaFe₃V₃O₁₂", Z. Naturforsch. 1995, B50, 51.
- [146] M. Weil. "Fe^{II}₃Fe^{III}₄(AsO₄)₆. the first arsenate adopting the Fe₇(PO₄)₆ structure type", *Acta Crystallogr.* **2004**, *E60*, i139.
- [147] M. Kurzawa, A. Blonska-Tabero. "The synthesis and selected properties of new compounds: Mg₃Fe₄(VO₄)₆ and Zn₃Fe₄(VO₄)₆", *Mat. Res. Bull.* 2002, *37*, 849.
- [148] X. Wang, A. Vander Griend, C. L. Stern, K. R. Poeppelmeier. "Site-specific vanadates Co₄Fe_{3,33}(VO₄)₆ and Mn₃Fe₄(VO₄)₆", *Inorg. Chem.* **2000**, *39*. 136.
- [149] M. Kurzawa, A. Blonska-Tabero. "Synthesis and selected properties of Co₃Fe₄V₆O₂₄", *J. Therm. Anal. Calor.* 2004, 77, 17.
- [150] M. A. Lafontaine, J. M. Greneche, Y. Laligant, G. Ferey. "β–Cu₃Fe₄(VO₄)₆: structural study and relationships; physical properties", J. Solid State Chem. 1994, 108, 1.

- [151] N. Guskos, A. Bezkrovnyi, J. Typek, N. Yu. Ryabova, A. Blonska-Tabero, M. Kurzawa, M. Maryniak. "Neutron diffraction study of Zn₃Fe₄(VO₄)₆", *J. Alloys Compd.* 2005, 391, 20.
- [152] I. Vencato, L. F. Moreira, E. Mattievich, Y. P. Mascarenhas. "The crystal structure of synthetic Fe²⁺₄Fe³⁺₃(PO₃OH)(PO₄)₅", *J. Braz. Chem. Soc.* **1994**, *5*, 43.
- [153] K. Abu-Shandi, H. Winkler, M. Gerdan, F. Emmerling, B. Wu, C. Janiak. "Mixedvalence phosphato-hydrogenphosphato-iron network compounds ${}^{1}_{\infty}\{[C_4N_2H_{11,6}]_{1,5}[Fe^{II}Fe^{III}(PO_4)(H_{0,8}PO_4)_2]\cdot H_2O\}$ and ${}^{3}_{\infty}[Fe^{II}_{5}Fe^{III}_{2}(PO_4)_2(H_{0,5}PO_4)_4]$: structure elucidation with the help of Mößbauer spectroscopy and a caveat on X-ray diffraction", *Dalton Trans.* **2003**, *14*, 2815.
- [154] P. Lightfoot, A. K. Cheetham. "Hydrothermal Synthesis and Crystal Structures of Two New Transition Metal Phosphates: M₇(PO₃OH)_{4-x}(PO₄)_{2+x} (Mn, Fe)", Abstr. IIIrd Eur. Conf. Solid State Chem. Regensburg Germany. Vol. II, 1986, 410.
- [155] B. C. Zhou, Y. W. Yao, R. J. Wang. "Heptairon bis(phosphate) tetrakis(hydrogenphosphate)", *Acta Crystallogr.* 2002, *C58*, i109.
- [156] H. Assaaoudi, Z. Fang, I. S. Butler, D. H. Ryan, J. A. Kozinski. "Characterization of a new magnesium hydrogen orthophosphate salt, Mg_{3,5}H₂(PO₄)₃, synthesized in supercritical water", *Solid State Sci.* 2007, *9*, 385.
- [157] Y. Cudennec, A. Riou, Y. Gerault. "Divalent manganese phosphates. Synthesis and crystal study of a manganese phosphate hydrogen phosphate: Mn₇(HPO₄)₄(PO₄)₂", Comptes Rendus de l'Academie des Sciences, Serie II: Mecanique, Physique, Chimie, Sciences de la Terre et de l'Univers. **1986**, *302*, 1149.
- [158] A. Riou, Y. Cudennec, Y. Gerault. "Phosphate hydrogenophosphate de manganese", Acta Crystallogr. 1987, C43, 821.
- [159] P. Lightfoot, A. K. Cheetham. "The synthesis and structure of heptacobalt tetrakis(hydrogenphosphate) bis(phosphate)", *Acta Crystallogr.* **1988**, *C44*, 1331.
- [160] M. Boudraa, H. Merazig, S. Bouacida, P. Benard-Rocherulle, T. Roisnel. "The solid solution Co_{4,32}Mn_{2,68}(HPO₄)₄(PO₄)₂", *Acta Crystallogr.* 2007, *E63*, i168.
- [161] U. Kolitsch, P. Bartu. "Mg₇(AsO₄)₂(HAsO₄)₄: a new magnesium arsenate with a very strong hydrogen bond", *Acta Crystallogr.* 2004, *C60*, i94.

- [162] J. M. Rojo, A. Larranaga, J. L. Mesa, M. K. Urtiaga, J. L. Pizarro, M. I. Arriortua, T. Rojo. "Hydrothermal synthesis and spectroscopic and magnetic behavior of the $Mn_7(HOXO_3)_4(XO_4)_2$ (X = As, P) compounds. Crystal structure of $Mn_7(HOAsO_3)_4(AsO_4)_2$ ", J. Solid State Chem. 2002, 165, 171.
- [163] R. F. Klevtsova, V. G. Kim, P. N. Klevtsov. "n X-ray structural investigation of double molybdates Na₂R₅(MoO₄)₆, where R = Mg, Co, Zn", *Kristallografiya*, **1980**, 25, 1148.
- [164] C. Gicquel-Mayer, M. Mayer. "Comparaison structurale de molybdates mixtes de métaux (I) et (II) relations avec le molybdate ZnMoO₄ triclinque", *Rev. Chim. Minér.* 1983, 20, 88.
- [165] C. Gicquel-Mayer, M. Mayer. "Etude structurale du molybdate double Na_{0,5}Zn_{2,75}(MoO₄)₃", *Rev. Chim. Minér.* **1982**, *19*, 91.
- [166] G. D. Tsyrenova, S. F. Solodovnikov, E. G. Khaikina, E. T. Khobrakova. "Phase formation in the (Ag₂O) - (MgO) - (MoO₃) system and the crystal structure of the new double molybdate Ag₂Mg₂(MoO₄)₃", *Žh. Neorg. Khim.* **2001**, *46*, 2066.
- [167] G. D. Tsyrenova, S. F. Solodovnikov, E. G. Khaikina, E. T. Khobrakova, Zh. G. Bazarova, Z. A. Solodovnikova. "Phase formation in the systems Ag₂MoO₄ MO MoO₃ (M = Ca, Sr, Ba, Pb, Cd, Ni, Co, Mn) and crystal structures of Ag₂M₂(MoO₄)₃ (M = Co, Mn)", J. Solid State Chem. 2004, 177, 2158.
- [168] C. Gicquel-Mayer, M. Mayer, G. Perez. "Etude Structurale du Molybdate Double d'Argent et de Zinc Ag₂Zn₂Mo₃O₁₂", *Acta Crystallogr.* **1981**, *B37*, 1035.
- [169] B. Robertson, E. Kostiner. "Crystal structure and Mößbauer effect investigation of FeVO₄", J. Solid State Chem. 1972, 4, 29.
- [170] S. Boudin, A. Grandin, M. M. Borel, A. Leclaire, B. Raveau. "A trivalent vanadium monophosphate with a tunnel structure: Cd₃V₄(PO₄)₆", *J. Solid State Chem.* 1994, *110*, 43.
- [171] R. V. Shpanchenko, O. A. Lapshina, E. V. Antipov, J. Hadermann, E. E. Kaul, C. Geibel. "New lead vanadium phosphate with langbeinite-type structure: Pb_{1,5}V₂(PO₄)₃", *Mat. Res. Bull.* 2005, 40, 1569.

- [172] T. Droß, R. Glaum. "The langbeinite-type barium vanadium(III) orthophosphate, Ba₃V₄(PO₄)₆", *Acta Crystallogr.* 2004, *E60*, i58.
- [173] E. Hammer, geplante Dissertation, Universität Bonn.
- [174] A. A. Belik, A. P. Malakho, K. V. Pokholok, B. I. Lazoryak. "Phase formation in $Cu_{3+1,5x}R_{4-x}(VO_4)_6$ (R = Fe and Cr) systems: crystal structure of $Cu_{2,5}Fe_{4,333}(VO_4)_6$, $Cu_4Fe_{3,333}(VO_4)_6$ and $Cu_{4,05}Cr_{3,3}(VO_4)_6$ ", *J. Solid State Chem.* **2001**, *156*, 339.
- [175] A.A. Belik, F. Izumi, T. Ikeda, A. Nisawa, T. Kamiyama, K. Oikawa. "Synchrotron Xray and TOF neutron powder diffraction study of a lyonsite-type oxide Co_{3,6}Fe_{3,6}(VO₄)₆", *Solid State Sci.* 2002, *4*, 515.
- [176] K. R. Poeppelmeier. Persönliche Mitteilungen auf der European Conference of Solid State Chemistry XI, Caen, 2007.
- [177] L. Sebastian, Y. Piffard, A. K. Shukla, F. Taulelle, J. Gopalakrishnan. "Synthesis, structure and lithium-ion conductivity of Li_{2-2x}Mg_{2+x}(MoO₄)₃ and Li₃M(MoO₄)₃ (M(III) = Cr, Fe)", J. Mat. Chem. 2003, 13, 1797.
- [178] S. F. Solodovnikov, Z. A. Solodovnikova, R. F. Klevtsova, L. A. Glinskaya, P. V. Klevtsov, E. S. Zolotova. "Synthesis, characterization and X-ray structure study of double molybdate of lithium and manganese(II)", *Ž. Struturnoi Chim.* 1994, 35 (Issue-No. from 1981), 136.
- [179] R. F. Klevtsova, S. A. Magarill. "Crystal structure of lithium iron molybdates Li₃Fe(MoO₄)₃ and Li₂Fe₂(MoO₄)₃", *Kristallografiya*, **1970**, *15*, 710.
- [180] M. Wiesmann, H. Svoboda, H. Weitzel, H. Fuess. "The Structure of Lithiumcobaltmolybdate Li₂Co₂(MoO₄)₃", Z. Kristallogr. 1995, 210, 525.
- [181] M. Wiesmann, M. Geselle, H. Weitzel, H. Fuess. "Crystal structure of lithium copper molybdate, Li₂Cu₂(MoO₄)₃", Z. Kristallogr. 1994, 209, 615.
- [182] Xue Li-Ping, Chen Da-Gui, Lin Zhang, Lv Pei-Wen, Huang Feng, Liang Jingkui.
 "Subsolidus phase relation in the system ZnO Li₂O MoO₃", *J. Alloys Compd.* 2007, 430, 67.
- [183] R. Hübenthal. "MAPLE-4: Programm zur Berechnung des Madelunganteils der Gitterenergie", Gießen, 1993.
- [184] R. Hoppe. "On the Madelung Part of Lattice Energy", Z. Naturforsch. 1995, 50a, 555.

- [185] R. Glaum, A. Schmidt. "Tri-chromium(II)-bis-phosphate Cr₃(PO₄)₂ A transition metal(II)-orthophosphate with a new structure type", *Z. Anorg. Allg. Chem.* 1997, 623, 1672.
- [186] R. Glaum, R. Gruehn. "Zum chemischen Transport von Phosphaten des drei- und vierwertigen Titans", Z. Anorg. Allg. Chem. 1990, 580, 78.
- [187] E. M. McCarron, J. C. Calabrese, M. A. Subramanian. "Synthesis and crystal structure refinement of CuTi₂(PO₄)₃", *Mat. Res. Bull.* **1987**, *22*, 1421.
- [188] M. Schöneborn, R. Glaum. "Crystal Growth, Single-Crystal Structure Refinement and Unusual Ligand-Field Splittings of Lazulite-Type Oxidephosphates $MTi_2O_2(PO_4)_2$ $(M = Fe^{II}, Co^{II}, Ni^{II})$ ", Z. Anorg. Allg. Chem. **2007**, 633, 2568.
- [189] M. Schöneborn, R. Glaum. "Refinement of the Superstructure of FeTi₄(PO₄)₆ An Example of a Highly Ordered Member of the NASICON Structure Family", Z. Anorg. Allg. Chem. 2008, 634, 1843.
- [190] H. Nowotny. "Die Kristallstruktur von Co₂P", Z. Anorg. Allg. Chem. 1947, 254, 31.
- [191] K. Lukaszewicz. "Crystal structure of alpha-Ni₂P₂O₇", *Bull. Pol. Acad. Sci., Chem.* 1967, 15, 47.
- [192] O. N. Il'nitskaya, L. G. Aksel'rud, S. I. Mikhalenko, Yu. B. Kuz'ma. "Crystal structure of alpha-Ni₈P₃", *Kristallografiya*, **1987**, *32*, 50.
- [193] K.-H. Lii, H.-J. Tsai. "Synthesis and crystal structure of Zn₂VO(PO₄)₂, a vanadyl(IV) orthophosphate containing a dimer of edge-sharing ZnO₅ square pyramids", *J. Solid State Chem.* **1991**, *90*, 291.
- [194] R. Glaum. "Darstellung und Kristallisation von Phosphiden und wasserfreien Phosphaten der Übergangsmetalle mittels chemischer Transportreaktionen – thermochemische, röntgenkristallographische und magnetochemische Untersuchungen", Dissertation, Universität Gießen, 1990.
- [195] A. Rabenau. "Die Rolle der Hydrothermalsynthese in der präparativen Chemie", Angew. Chem. 1985, 97, 1017.
- [196] A. A. Belik, A. P. Malakho, K. V. Pokholok, B. I. Lazoryak. "X-ray diffraction studies, Mößbauer spectroscopy, and thermal stability of Fe₇(PO₄)₆", *Žh. Neorg. Khim.* 1999, 44, 1535.

- [197] K. Brandt. "X-ray analysis of CrVO₄ and isomorphous compounds", Ark. Kemi Mineral. Geol. 1943, A17, 1.
- [198] E. J. Baran. "Review: Materials belonging to the CrVO₄ structure type: preparation, crystal chemistry and physicochemical properties", *J. Mater. Sci.* 1998, 33, 2479.
- [199] J. Muller, J. C. Joubert. "Synthèse sous Haute Pression d'oxygene d'une Forme Dense Ordonnée De FeVO₄ et Mise en Evidence d'une Variété Allotropique de Structure CrVO₄", J. Solid State Chem. 1975, 14, 8.
- [200] A. Goiffon, G. Bayle, R. Astier, J. C. Jumas, M. Maurin, E. Philippot. "Cristallichimie des phases GaPO₄, AlAsO₄ et GaAsO₄. Etude comparee des structures de type quartz alpha", *Rev. Chimie Miner.* **1983**, *20*, 338.
- [201] P. Rittner, R. Glaum. "Kristallzüchtung und Einkristallstrukturverfeinerungen der Rhodium(III)-phosphate RhPO₄ und Rh₃P₃O₉", Z. Kristallogr. 1994, 209, 162.
- [202] L. J. Cabri, J. H. G. Laflamme. "Rhodium, platinum, and gold alloys from the Stillwater Complex", *Can. Mineral.* 1974, 12, 399.
- [203] A. C. T. North, D. C. Phillips, F. S. Mathews. "A semi-empirical method of absorption correction", *Acta Crystallogr.* 1968, A24, 351.
- [204] C. Litterscheid, R. Glaum. "Mixed chromium(II) titanium(III) phosphates: crystal growth, structures and electronic absorption spectra", *Phos. Res. Bull.* **2005**, *19*, 54.
- [205] R. Glaum, M. A. Hitchman. "On the Bonding Behaviour of Oxygen UV/Vis and EPR Spectroscopic Investigations of Phosphates and Phosphate-Silicates of Ti³⁺", Aus. J. Chem. 1996, 49, 1221.
- [206] O. Laporte, W. F. Meggers. "Some Rules of Spectral Structure", J. Opt. Soc. Am. 1925, 11, 459.
- [207] M. Gerloch, J. Kohl, J. Lewis, W. Urland. "Single-Crystal Polarized Spectrum and Paramagnetic Anisotropy of Fivecoordinate, Square Pyramidal Cobalt(II) Complexes", J. Chem. Soc. 1970, A1970, 3283.
- [208] M. Funke "Synthese und spektroskopische Charakterisierung von Gläsern $(NaPO_3)_{x-1}(NiO)_x$ und kristalline Approximanten", geplante Dissertation, Universität Bonn.

- [209] K. Maaß. "Neues von quaternären Phosphaten der zweiwertigen 3d-Übergangsmetalle - Darstellung, Kristallstrukturen und spektroskopische Charakterisierung von quaternären Chrom(II)-phosphaten und isotypen Verbindungen mit einer ausführlichen Behandlung der Farbe von Nickel(II)-oxoverbindungen", Dissertation, Universität Gießen, 2002.
- [210] J. S. Knyrim, J. Friedrichs, S. Neumair, F. Rößner, Y. Floredo, S. Jakob, D. Johrendt, R. Glaum, H. Huppertz. "High-pressure syntheses and characterization of the transition metal borates β -MB₄O₇ ($M = Mn^{2+}$, Ni²⁺, Cu²⁺)", Solid State Sci. **2008**, 10, 168.
- [211] M. Gerloch, J. Kohl, J. Lewis, W. Urland. "Single-Crystal Polarized Spectrum and Paramagnetic Anisotropy of Fivecoordinate, Square Pyramidal Nickel(II) Complexes", J. Chem. Soc. A, 1970, 3269.
- [212] L. Duan, F. Liu, E. Wang, Y. Li, C. Hu, L. Xu. "Hydrothermal synthesis and properties of open-framework mixed-valence iron phosphates Fe(III)₂Fe(II)_{1.5}(PO₄)₃ with threedimensional structure", *Chin. J. Chem.* 2004, 22, 55.
- [213] T. Stefanidis, A. G. Nord. "Structural Studies of Thortveitite-Like Dimanganese Diphosphate, Mn₂P₂O₇", *Acta Crystallogr.* 1984, *C40*, 1995.
- [214] N. Krishnamachari, C. Calvo. "The crystal structure of cobalt diphosphate", Acta Crystallogr. 1972, B28, 2883.
- [215] A. A. El Belghiti, A. Boukhari. ,β-Dicobalt pyrophosphate", Acta Crystallogr. 1994, C50, 482.
- [216] A. Pietraszko, K. Lukaszewicz. "Crystal structure of β -Ni₂P₂O₇ determined on a Weissenberg goniometer with a high-temperature attachment", *Bull. Pol. Acad. Sci., Chem.* **1968**, *16*, 183.
- [217] K. Pogorzelec-Glaser, A. Pietraszko, B. Hilczer, M. Polomska. "Structure and phase transitions in Cu₂P₂O₇", *Phase Transition*, **2006**, *79*, 535.
- [218] B. E. Robertson, C. Calvo. "Crystal structure of α -Zn₂P₂O₇", J. Solid State Chem. **1970**, *1*, 120.
- [219] C. Calvo. "The crystal structure and phase transition of β -Zn₂P₂O₇", *Can. .J. Chem.* **1965**, *43*, 1147.

- [220] O. V. Karimova, O. V. Yakubovich, V. S. Urusov. "Crystal chemical function of zinc in the structures of phosphates", *Vestnik Moskovskogo Universiteta, Geologiya*, 1997, 526, 35.
- [221] C. Calvo. , The crystal structure of α -Mg₂P₂O₇", Acta Crystallogr. **1967**, 23, 289.
- [222] K. Lukaszewicz. "Crystal structure of β -Mg₂P₂O₇", *Roczniki Chemii*, **1961**, *35*, 31.
- [223] C. Calvo. "Refinement of the crystal structure of β -Mg₂P₂O₇", *Can. J. Chem.* **1965**, 43, 1139.
- [224] V. M. Ust'yantsev, M. G. Tretnikova. "Subsolidus phase diagram of the magnesium oxide-aluminum oxide-chromium(III) oxide-phosphorus pentoxide system", *Izv. Akad. Nauk SSSR, Ser. Khim. Neorg. Mater.* 1973, 9, 1652.
- [225] B. Gossner, F. Mussgnug. "Thortveitite", Centr. Min. Abt. 1929, No. I.
- [226] W. H. Zachariasen. "The structure of thortveitite (Sc₂Si₂O₇)", Z. Kristallogr. **1930**, 73, 1.
- [227] D. W. J. Cruickshank, H. Lynton, G. A. Barclay. "A reinvestigation of the crystal structure of thortveitite Sc₂Si₂O₇", *Acta Crystallogr.* **1962**, *15*, 491.
- [228] S. Boudin, A. Grandin, Ph. Labbe, D. Grebille, N. Nguyen, A. Ducouret, B. Raveau. "Cationic distribution in two new trivalent transition metal diphosphates $Cd_5M^{III}_2(P_2O_7)_4$ (M = V, Fe)", J. Solid State Chem. **1996**, 121, 291.
- [229] A. A. El Beghitti, A. Boukhari, E. M. Holt. "Cadmium iron(III) iron(II) diphosphate", Acta Crystallogr. 1994, C50, 1648.
- [230] A. Leclaire, B. Raveau. "A new Mo(III) cadmium diphosphate Cd₅Mo₂(P₂O₇)₄", *Solid State Sci.* 2006, *8*, 332.
- [231] S. J. Hwu, E. D. Willis. "A layered framework characterized by two independent tunnels: the single crystal structure of strontium vanadium(III) pyrophosphate, SrV₂(P₂O₇)₂", *J. Solid State Chem.* **1991**, *93*, 69.
- [232] S. Wang, S. J. Hwu. "A new barium titanium(III) pyrophosphate: BaTi₂(P₂O₇)₂", J. Solid State Chem. 1991, 90, 31.
- [233] L. Benhamada, A. Grandin, M. M. Borel, A. Leclaire, B. Raveau. "Structure of barium vanadium(III) diphosphate", *Acta Crystallogr.* 1991, *C47*, 2437.

- [234] A. Boutfessi, A. Boukhari, E. M. Holt. "Lead(II) diiron(III) pyrophosphate and barium diiron(III) pyrophosphate", *Acta Crystallogr.* 1996, *C52*, 1594.
- [235] A. Leclaire, J. Chardon, M. M. Borel, A. Grandin, B. Raveau. "A new molybdenum(III) phosphate: $BaMo_2P_4O_{14}$ isotypic with $BaM_2P_4O_{14}$ (M = Ti(III), V(III))", Z. Anorg. Allg. Chem. **1992**, 617, 127.
- [236] S. J. Hwu, R. I. Carroll, D. L. Serra. "beta-BaV₂(P₂O₇)₂: a new polymorph of barium vanadium(III) pyrophosphate characterized by intersecting tunnels", *J. Solid State Chem.* 1994, 110, 290.
- [237] M. Marezio, D. B. McWhan, P. D. Dernier, J. P. Remeika. "Structural aspect of the metal-insulator transition in Ti₄O₇", *J. Solid State Chem.* **1973**, *6*, 213.
- [238] A. G. Nord, K. B. Lindberg. "The crystal structure of magnesium tetrametaphosphate, Mg₂P₄O₁₂", *Acta Chem. Scand.* 1975, *A29*, 1.
- [239] M. T. Averbuch-Pouchot, A. Durif, M. Bagieu-Beucher. "Structure d'un polyphosphate de zinc, Zn(PO₃)₂", *Acta Crystallogr.* 1983, *C39*, 25.
- [240] A. Olbertz, D. Stachel, I. Svoboda, H. Fuess. "Redetermination of the crystal structure of nickel cyclotetraphosphate, Ni₂P₄O₁₂ and of cobalt cyclotetraphosphate, Co₂P₄O₁₂", *Z. Kristallogr. NCS*, **1998**, *213*, 241.
- [241] H. M. Schwunck, P. Moser, W. Jung. "Das Kupfer(II)-indium-oxidphosphat CuInOPO₄ mit α-(Fe₂OPO₄)-Struktur, dargestellt durch die Oxidation einer Cu / In / P
 Legierung in Sauerstoffstrom", Z. Anorg. Allg. Chem. 1999, 625, 407.
- [242] H. D. Flack. "On Enantiomorph-Polarity Estimation", Acta Crystallogr. 1983, A39, 876.
- [243] R. E. Marsh. "Some thoughts on choosing the correct space group", *Acta Crystallogr*. 1995, *B51*, 897.
- [244] S. Boudin, A. Grandin, A. Leclaire, M. M. Borel, B. Raveau. ,,CdV₂(P₂O₇)₂", Acta Crystallogr. 1994, C50, 840.
- [245] S. Boudin, A. Grandin, A. Leclaire, M. M. Borel, B. Raveau. "Two new diphosphates with SrV₂(P₂O₇)₂ structure: mercury and lead phases", *J. Mater. Chem.* 1994, *4*, 1889.
- [246] A. Boutfessi, A. Boukhari, E. M. Holt. "Strontium diiron(III) pyrophosphate", Acta Crystallogr. 1995, C51, 346.

- [247] J. Bennazha, A. Boukhari, E. M. Holt. "Synthesis and crystal structure of Na₂CaP₂O₇", *Solid State Sci.* **1999**, *1*, 373.
- [248] G. Raade, M. H. Mladeck. "Parakeldyshite from Norway", Can. Mineral. 1977, 15, 102.
- [249] A. A. Voronkov, N. G. Shumyatskaya, Yu. A. Pyatenko. "Crystal structure of a new natural modification of Na₂Zr(Si₂O₇)", *Žh. Neorg. Khim.* 1981, 11, 932.
- [250] I. V. Pekov, N. V. Zubkova, D. Yu. Pushcharovsky, U. Kolitsch, E. Tillmanns. "Refined crystal structure of parakeldyshite and the genetic crystal chemistry of zirconium minerals with [Si₂O₇] diorthogroups", *Crystallogr. Reports.* 2007, 52, 1066.
- [251] V. V. Ilyukhin, A. A. Voronkov, L. N. Dem'yanets, N. V. Belov. "The crystal structure of Na₂ZrGe₂O₇", *Dokl. Akad Nauk SSSR*. **1982**, *263*, 877.
- [252] W. Ostwald. "Die chemische Literatur", VDM Verlag Dr. Müller, Saarbrücken, 2007.
- [253] N. Alsen. "Röntgenographische Untersuchungen der Kristallstrukturen von Magnetkies, Breithauptit, Pentlandit, Millerit und verwandten Verbindungen", Geologiska Foereningens i Stockholm Foerhandlingar, 1925, 47, 19.
- [254] W. H. Bragg, W. L. Bragg. "Structure of some crystals", Proc. Roy. Soc. Lond. Math. Phys. Sci. 1913, 88, 428.
- [255] M. Voda, J. Garcia Sole, F. Jaque. "Fano antiresonances in the optical-absorption spectra of Cr³⁺⁻doped La₃Ga_{5.5}Nb_{0.5}O₁₄ and La₃Ga_{5.5}Ta_{0.5}O₁₄ crystals", *Phys. Rev.* 1994, *B 46*, 3577.
- [256] U. Fano. "Effects of configuration interaction on intensities and phase shifts", *Phys. Rev.* 1961, *124*, 1866.
- [257] A. Ludi, R. G. Noli. , Die Lichtabsorption von CaCuSi₄O₁₀; Cu²⁺ in planar quadratischer Koordination", *Naturwissenschaften*, **1967**, *54*, 88.
- [258] Y. Tanabe, S. Sugano. "On the Absorption Spectra of Complex Ions. I", J. Phys. Soc. Jpn. 1954, 9, 753.
- [259] Y. Tanabe, S. Sugano. "On the Absorption Spectra of Complex Ions. II", J. Phys. Soc. Jpn. 1954, 9, 766.

- [260] B. N. Figgis, M. A. Hitchman. "Ligand Field Theory and Ist Applications", WILEY-VCH New York, 2000.
- [261] G. Racah. "Theory of Complex Spectra II", Physic. Rev. 1942, 62, 438.
- [262] A. Schmidt. "Fortschritte in der Festkörperchemie des zweiwertigen Chroms / Darstellung, Kristallstrukturen und magnetische Eigenschaften neuer Chrom(II)oxoverbindungen", Dissertation, Universität Gießen, 1998.
- [263] H. L. Belsky, G. R. Rossman, C. T. Prewitt, T. Gasparik. "Crystal structure and optical spectroscopy (300 to 2200 nm) of CaCrSi₄O₁₀", *Amer. Miner.*, **1984**, *69*, 771.
- [264] R. Miletich, D. R. Allan, R. J. Angel. "The synthetic Cr²⁺ silicates BaCrSi₄O₁₀ and SrCrSi₄O₁₀: The missing links in the gillespite-type ABSi₄O₁₀ series", Amer. Miner.. 1997, 82, 697.
- [265] A. Schmidt, R. Glaum. ,, $Cr_3Si_2O_7 \cdot \frac{1}{4} MX$ (MX = NaCl, NaBr, KCl, KBr) A Cage-Structure Built From [$Cr^{2+}O_4$] and [Si_2O_7] units", *Inorg. Chem.* **1997**, *36*, 4883.
- [266] Newsbrief, *Applied Catal.* **2004**, *A270*, N2.
- [267] N. El Khayati, R. Cherkaoui El Moursli, J. Rodriguez-Carvajal, G. Andre, N. Blanchard, F. Bouree, G. Collin, T. Roisnel. "Crystal and magnetic structures of the oxyphosphates *M*FePO₅ (*M* = Fe, Co, Ni, Cu). Analysis of the magnetic ground state in terms of superexchange interactions", *Eur. phys. J.* 2001, *B22*, 429.
- [268] S. Brunauer, P. H. Emmett, E. Teller. "Adsorption of Gases in Multimolecular Layers", J. Am. Chem. Soc. 1938, 60, 309.
- [269] I. Schulz. "Über einige neue Phosphorsäureverbindungen des 6-wertigen Wolframs und Molybdäns", Z. Allg. Anorg. Chem. 1955, 281, 99.
- [270] P. Kierkegaard. "On the Crystal Structure of $W_2O_3(PO_4)_2$ ", *Acta Chem. Scand.* 1960, 14, 657.
- [271] P. Kierkegaard, S. Åsbrink. "The crystal structure of W₂O₃(PO₄)₂", *Acta Chem. Scand.* 1964, *18*, 2329.
- [272] M. Hanawa, H. Imoto. "Structures of two new polymorphic forms of hexavalent tungsten oxide phosphates", J. Solid State Chem. 1999, 144, 325.

- [273] P. Kierkegaard. "The Crystal Structure of WOP₂O₇", *Acta Chem. Scand.* 1958, *12*, 1715.
- [274] S.-L. Wang, C.-C. Wang, K. H. Lii. "Crystal Structure of WPO₅, the Second Member of the Monophosphate Tungsten Bronze Series (WO₃)_{2m}(PO₂)₄", *J. Solid State Chem.* 1989, 82, 298.
- [275] A. Leclaire, J. Chardon, B. Raveau. "Stabilization of a W(V) diphosphate, W₂O₃P₂O₇, with an empty tunnel structure", *J. Solid State Chem.* 2000, 155, 112.
- [276] H. Mathis. "Präparative Untersuchungen im Dreistoffsystem W/P/O und Untersuchungen zum Transportverhalten von MoP₂ und β-WP₂", Diplomarbeit, Universität Gießen, 1990.
- [277] V. V. Lisnyak, N. V. Stus', N. S. Slobodyanik, N. M. Belyavina, V. Ya. Markiv. "Crystal structure of a novel cubic pyrophosphate WP₂O₇", *J. Alloys Compd.* 2000, 309, 83.
- [278] P. Roussel, P. Labbe, D. Groult. "Symmetry and twins in the monophosphate tungsten bronze series (PO₂)₄(WO₃)_{2m} (2 ≤ m ≤ 14)", *Acta Crystallogr.* 2000, *B56*, 377.
- [279] H. Mathis, R. Glaum, R. Gruehn. "Reduction of WO₃ by Phosphorus", Acta Chem. Scand. 1991, 45, 781
- [280] H. Mathis, R. Glaum. Posterbeitrag zur Jahrestagung der Fachgruppe Festkörperchemie der GDCh in Bonn. **1994**.
- [281] C. Litterscheid. "Gekoppelte Chemische Transportreaktionen / Experimentelle Untersuchungen der Systeme WPO₅ / WP, WP₂O₇ / WP und Cr₂P₂O₇ / CrP", Diplomarbeit, Universität Bonn, 2003.
- [282] J. Martin, R. Gruehn. "Zum chemischen Transport von Monophosphiden MP (M = Zr, Hf, Nb, Ta, Mo, W) und Diphosphiden MP_2 (M = Ti, Zr, Hf)", Z. Kristallogr. **1988**, 182, 180.
- [283] M. Westerlund-Sundbäck. "The crystal structure of W₂O₃(AsO₄)₂", *Acta Chem. Scand.* 1971, 25, 1429.
- [284] S. M. Islam, R.Glaum. "Rhenium(VI) Oxidephosphate: Chemical Vapour Transport, Crystal Structure, Spectroscopic Characterisation and Magnetic Behaviour", Z. Allg. Anorg. Chem. 2009, 635, 1008.

- [285] A. Leclaire, M. M. Borel, J. Chardon, B. Raveau. "The molybdenotungsten monophosphate (MoWO₃)(PO₄)₂ : an original three-dimensional framework built up of " MPO_8 " chains (M = Mo, W)", J. Solid State Chem. **1997**, 128, 191.
- [286] P. Kierkegaard. "On the crystal structure of (MoO₂)₂P₂O₇", Arkiv för Kemi, **1962**, 19, 1.
- [287] S. R. Hall, F. H. Allen, I.D. Brown. "The Crystallographic Information File (CIF): A New Standard Archive File for Crystallography", *Acta Crystallogr.* 1991, A47, 655.
- [288] A.L. Spek. "Single-crystal structure validation with the program PLATON", *J. Appl. Cryst.* 2003, *36*, 7.
- [289] C. Y. Kim, R. A. Condrate. "The vibrational spectra of crystalline tungsten oxide phosphate (W₂O₃(PO₄)₂) and related tungsten phosphate glasses", *J. Phys. Chem. Solid.* 1984, 45, 1213.
- [290] Fa. STOE & Cie, X-RED 1,07, Data Reduction for STADI4 and IPDS, Darmstadt, 1996.
- [291] Programm: "AIDA, Advanced Image Data Analyser (AIDA), Version 2.2", Raytest-Isotopenmeßgeräte GmbH, 1999.
- [292] E. Dowty, ATOMS for Windows, V6.2, Shape Software, Kingsport, 2005.
- [293] Programm: "BASReader for Windows for all BAS systems, Version 2,26 Beta", Raytest-Isotopenmeßgeräte GmbH, 1999.
- [294] CorelDraw 12, Corel Corporation (1988-2003).
- [295] ICSD-Datenbank: Find-It Version 1.4.6 Gmelin-Institut, FIZ Karlsruhe, 2009.
- [296] R. Hübenthal. "Gina, Version 2.6", Justus-Liebig-Universität Gießen, 1992.
- [297] R. Hundt, KPLOT Version 9.0, Universität Bonn 2005.
- [298] K. Yvon, W. Jeitschko, E. Parté. "Lazy-Pulverix A Computer Program for Calculating X-Ray and Neutrondiffraction Powder Patterns", J. Appl. Crystallogr. 1977, 10, 73.
- [299] Microsoft Office 2000, Microsoft Corporation (1983-1999).
- [300] Programm: "Origin® 6.1G, Version 6,1057", OriginLab Corporation, 2000.

- [301] C. K. Johson. "ORTEP", Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA, 1965.
- [302] G. M. Sheldrick. "A short history of SHELX", Acta Crystallogr. 2008, A64, 112.
- [303] G. Meyer, J. Soose. "SOS-Programme zur Auswertung von Guinier-Aufnahmen", Universität Gießen, 1980.
- [304] L. J. Farrugia. "WinGX suite for smallmolecule single-crystal crystallography", J. Appl. Cryst. 1999, 32, 837.
- [305] R. Hundt. Persönliche Mitteilungen. Bonn. 2009.