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Introduction

PART I of this dissertation is concerned with the treatment of double default effects

in credit portfolios within the Basel regulatory framework. In two different contexts, we

propose mathematical models to deal with this issue. The first model constitutes the first

approach to this problem, i.e., there is no benchmark model. For the second model, we

claim that it is superior to the one currently applied. Further, the approach can be used

to tackle double default effects in a large class of credit risk models. This requires some

explanation.

A bank subject to the Basel regulation must hold capital that can absorb possible losses.

The minimum capital requirement, the so-called regulatory capital, should be risk sensi-

tive, i.e., increasing in the default risk of the portfolio. This motivates the application of

sophisticated risk management techniques in order to mitigate risk. Likewise, regulatory

capital being risk sensitive mitigates the incentive to undertake excessive risk-taking. A

major and important change to the First Basel Accord, “Basel I,” is that, under the New

Basel Accord, “Basel II,” minimum capital requirements are much closer related to the

actual risk of the credit portfolio. Unlike under Basel I, computation of regulatory capi-

tal under Basel II is based on a mathematical portfolio credit risk model, which has the

individual default probability of each loan as a crucial input parameter. This parameter

may be inferred from a rating agency, or may be estimated by the regulated entity itself

by means of an internal model which has to be approved by supervisors.

The actual default probability of an exposure is smaller if the exposure is hedged in some

way. This, in fact, happens quite frequently. For example, granting loans and transferring

the risk afterwards is a typical practice for a bank. Such a credit risk transfer can be

facilitated by use of numerous financial instruments. These include ordinary guarantees,

collateral securitization, and credit derivatives such as credit default swaps, to name a

few. Consider the simple case where the bank purchases insurance for a loan. Then, the

insurance protection seller, i.e., the guarantor, will pay for the lost exposure if the obligor

defaults. From the perspective of the regulated bank, the exposure is only lost if both
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the obligor and the guarantor default, thus “double default.” The so-called double default

treatment then specifies to what extent regulatory capital is reduced due to obtaining

credit protection.

Basel II is structured into three parts, called pillars. Pillar 1 specifies minimum capital

requirements for credit risk, market risk, and operational risk. In this dissertation, we

focus on credit risk. When calculating the credit risk component of regulatory capital

under Pillar I, name concentration risk, among other risks, is neglected. The computa-

tion of regulatory capital under Pillar 1 is based on the assumption that all idiosyncratic

risk in the credit portfolio, i.e., risk specific to individual borrowers (“names”), has been

diversified away. More specifically, it is assumed that portfolios are infinitely fine-grained

in the sense that the largest individual exposures account for an infinitely small share of

total portfolio exposure. However, the impact of undiversified idiosyncratic risk on regu-

latory capital can be assessed via a methodology known as granularity adjustment (GA).

The GA is subject to supervisory discretion under Pillar 2 of Basel II, which lays out

principles for the supervisory review process. Pillar 3 is concerned with market discipline

and specifies, among other things, information release and accounting requirements, and

is not particularly relevant to this treatise.

The first chapter of this dissertation is concerned with the treatment of double default

effects within the GA. In fact, this work is the first to propose a method to account for

double default effects within the GA, i.e., there is no benchmark model. In the second

chapter, we discuss the current treatment of double default effects that is employed under

Pillar 1 within the so-called Internal Ratings Based (IRB) approach. We criticize the IRB

treatment of double default effects and propose a novel method that could be used instead.

Although we illustrate the method with reference to the IRB model, it is actually more

general in the sense that it offers an approach to tackle double default effects within any

structural credit risk model.

Before we go into more detail on the contribution to research and practical implications for

banking regulation of Part I of this dissertation, some general remarks on the Basel regu-

latory framework seem appropriate. The introduction so far had the objective to quickly

explain the topic to readers without extensive background in finance. Much more could

be said on the Basel regulatory framework. In particular, far more issues are addressed

than have been mentioned.

The New Basel Accord of 2003, Basel II, was finalized in Basel Committee on Banking

Supervision (2004). The treatment of double default effects within the IRB approach that

2



is a topic of this dissertation is inspired by Heitfield and Barger (2003) and appeared as

an amendment to Basel II in Basel Committee on Banking Supervision (2005). Later on

it was incorporated in a revised version of the Basel II document: Basel Committee on

Banking Supervision (2006). This is the version we generally refer to as Basel II. For a

qualitative introduction to Basel II see, e.g., Chapter 1.3 in McNeil et al. (2005). Lütke-

bohmert (2009) contains a more quantitative discussion of Basel II with a focus on the IRB

model. A very noteworthy, early, and critical assessment of Basel II is given by Daníelsson

et al. (2001).

In response to the financial crisis, a new compendium of reform proposals was published

by the Basel Committee in Basel Committee on Banking Supervision (2009). The changes

to Basel II proposed in that document were finalized a few months ago in Basel Committee

on Banking Supervision (2010), a document that carries “Basel III” in its name. In the

context of this treatise, it is important to understand that Basel III comprises amendments

to Basel II, rather than replacing it. These amendments leave the relevance and topicality

of our contributions unaffected. Further, note that Basel II still is the main body of the

Basel banking regulation framework, which is why we generally refer to Basel II rather

than to Basel III in this treatise. For recent comprehensive summaries of the Basel III

reforms written by practitioners the reader may consult Banh et al. (2011) and Brzenk

et al. (2011) as well as an article by Joel Clark in the January 2011 Issue of Risk, p. 9.

Some interesting opinions of both regulators and bankers on the recent Basel III reforms

can be found on pp. 44 - 49 of that issue.

Mathematical tools may help to improve efficient regulation. However, banking regulation

does not boil down to a mathematical problem. Many important issues are more of a

psychological, economic, legal, or political nature; see, for example, Ackermann (2010)

or Cukierman (2011) for recent discussions of the challenges to banking regulation. The

former German Secretary of Finance, Peer Steinbrück, makes ten recommendations for

new banking regulation rules; see Steinbrück (2010, pp. 226-233). Generally, we feel that

the author suggests that international coordination might pose the most serious obstacle.

When making use of mathematical tools—as we do in this thesis—the tradeoff between

benefit (e.g., rigor, more accurate results) and cost (e.g., increasing complexity and loss of

tractability, which impede implementation) should be carefully weighed out. The recent

changes of Basel III are fairly simple from a mathematical point of view. Nevertheless,

the time schedule conceded to banks for implementation goes beyond 2018. Further, the

United States of America still face problems with the implementation of Basel II. According
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to Daniel Tarullo, a governor at the Federal Reserve Board, banks and supervisors in the

US had devoted substantial resources to the advanced IRB approach to Basel II, but

continue to encounter significant difficulties in developing and validating models; see the

article by Joel Clark in the December 2010 Issue of Risk, p. 20. According to that article,

he further explains: “Although, fortunately, Basel III does not present nearly the degree

of technical challenge posed by the advanced approach of Basel II, there will still be a

good bit of opaqueness in how some of its components are implemented [...].”

The advantages as well as the disadvantages and assumptions of both our proposals in

Chapters One and Two will be discussed in detail. We believe that our proposals constitute

an improvement to the current version of Basel II and can contribute to a more stable

banking system. The recent global financial crisis has drastically demonstrated the crucial

importance of the latter to the real economies all around the world. As indicated in the

previous paragraph, many issues have to be addressed, and every one of it is worth to be

treated thoroughly. In this dissertation, we address the treatment of double default effects.

A main focus in the development of our models has been set on making implementation

not too burdensome. They are parsimonious in the sense that they impose little additional

structure compared to the existing framework. Further, they do not require extensive data

and can be embedded in the current version of Basel II. Therefore, implementation should

not require too much time and effort. In the spirit of the previous discussion, we believe

that this should be seen as a major advantage.

In Chapter One, we propose a treatment of double default effects within the GA for

Basel II. Up to now, no such model has been proposed. More specifically, we provide an

analytic formula for the GA in an extended single-factor CreditRisk+ setting, incorporating

double default effects. It relies on an approximation whose accuracy is verified using

Monte Carlo techniques. The formula is a generalization of the GA derived in Gordy

and Lütkebohmert (2007). The formula is very flexible in the sense that it fits to various

hedging instruments and can accommodate partial hedging. We illustrate why this feature

is particularly important under Basel II modeling. Further, it is useful to account, e.g., for

a tracking error of the hedging instrument. The GA formula also distinguishes between

guarantors that are themselves members of the portfolio and those that are not. The

investigation of these features might be insightful for double default modeling in general,

i.e., not limited to modeling under Basel II. Computation of the GA is fast and simple,

and the GA makes use of inputs required for application of the IRB approach anyway.
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Therefore, it is very well suited for application under Pillar 2 of Basel II.

In Chapter Two, we first discuss the IRB treatment of double default effects as currently

applied under Pillar 1 of Basel II. Under that model, additional correlation is induced

between obligors and guarantors. We criticize this approach because correlation is a

symmetric measure of dependency, while the actual dependence relationship is asymmetric.

Further, the induced correlation is the same for all guarantors and obligors, and it remains

entirely unclear how the correlation parameter should be chosen. The approach further

assumes that every loan is hedged by a different guarantor. Furthermore, every guarantor

is assumed to be external to the portfolio. Therefore, regulatory capital is not sensitive to

excessive contracting of the same guarantor.

To overcome these deficiencies, in Chapter Two we then propose a new approach to account

for double default effects that can be applied in any model of portfolio credit risk and,

in particular, within the IRB approach of Basel II. The model endogenously quantifies

the impact of the guarantee payment on the guarantor’s unconditional default probability.

Within a structural model of portfolio credit risk, the guarantor’s loss due to the guarantee

payment corresponds to a downward jump in its firm value process. Therefore, we call

it an asset drop model. In spite of its simplicity, the new approach does not show any

of the above-mentioned shortcomings. Thus, it better reflects the risk associated with

double defaults. Also this model is easily applicable in terms of data requirements and

computational time, and thus is very well suited for application under Pillar 1 of Basel II.

Whereas the first part of this dissertation is concerned with risk measurement, PART II

is concerned with risk preferences. The reader should not expect the topics of the two

parts of this thesis to overlap much. While the research approach in the first part is rather

pragmatic and applied, that of the second part could be seen as more fundamental. In

Part II of this thesis, we first provide a theoretical analysis of higher-order risk preferences

with reference to statistical moments. These mathematical results are particularly in-

sightful for understanding their relationship to skewness preference and kurtosis aversion.

In contrast, the last work presented in this thesis is of an empirical nature. We propose

an experimental method to test for risk preferences of order three, i.e., prudence, and

present results from a laboratory experiment. This method benefits from the theoretical

insights presented before. None of our results are based on expected utility theory (EUT),

and we claim that they contribute to the better understanding of this relatively young,

unexplored, and promising field of economic research. Both works highlight the relevance
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of higher-order risk preferences for a comprehensive and more refined perception of risk

attitudes, i.e., one that clearly distinguishes risk attitudes from risk aversion as commonly

defined.

The concept of risk aversion plays a key role in analyzing decision making under risk. An

established characterization is that an individual preferring a payoff with certainty over

a risky payoff with the same mean is said to be risk averse (e.g., Gollier (2001, p. 18)).

Alternatively, Rothschild and Stiglitz (1970) state that a risk averse individual dislikes any

mean-preserving spread of the wealth distribution. Within EUT, these two characteriza-

tions coincide and are equivalent to the utility function being concave. Throughout this

treatise, when speaking of EUT, we assume that the von-Neumann-Morgenstern utility

function is sufficiently smooth. Risk aversion then corresponds to the second derivative of

the utility function being negative.

It might come as a surprise that risk aversion, according to any of these definitions, does

not exhaustively capture risk preferences. Indeed, risk aversion is just one piece in the

puzzle that drives economic behavior under risk. For the better understanding of the lat-

ter, risk aversion must be complemented by higher-order risk preferences such as prudence

(third-degree risk aversion) or temperance (fourth-degree risk aversion). Higher-order risk

preferences are the topic of the second part of this dissertation.

Although Kimball (1990) coined the term “prudence,” its implications have been used in

assessing a precautionary demand for saving much earlier by Leland (1968) and Sandmo

(1970). In particular, they show within an EUT setting how a risky future income does

not guarantee that a consumer increases saving unless the individual exhibits prudence. In

the recent years, as will be discussed later, numerous behavioral traits have been shown to

be related to prudence under EUT. Within EUT, prudence and temperance can be defined

as the third and fourth derivative of the utility function, respectively, being positive and

negative.

In a different strand of literature, Menezes et al. (1980) show that the third derivative of

the utility function being positive is equivalent to aversion to increases in downside risk.

An increase in downside risk is a density transformation that leaves mean and variance

of a distribution unchanged, but decreases its third moment. Thus, another definition of

prudence is downside risk aversion. Similarly, temperance can be defined as outer risk

aversion, i.e., aversion to density transformations that increase the fourth moment while

leaving the first three moments unchanged. These definitions are independent of the EUT

paradigm.
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More recently, higher-order risk preferences have been defined by Eeckhoudt and

Schlesinger (2006) as preferences over rather simple lottery pairs which imply proper risk

apportionment. For example, given two equally likely future states, a prudent individual

prefers to have an unavoidable zero-mean risk in the state where her wealth is higher.

Equivalently, she prefers to have the unavoidable items of a sure loss and a zero-mean

risk in different future states rather than in the same state. This new understanding of

risk preferences does also not rely on EUT. Further, it can be generalized to the multi-

attribute case as shown in Eeckhoudt et al. (2007) or Tsetlin and Winkler (2009). Proper

risk apportionment is also related to a preference for combining “good” with “bad;” see

Eeckhoudt et al. (2009). In this dissertation, we exploit this new definition to analyze

higher-order risk preferences theoretically (Chapter Three) as well as to test for them by

means of a laboratory experiment (Chapter Four). These projects will be given some more

detail in the remainder of this introduction.

In Chapter Three, we present a moment characterization of higher-order risk preferences.

That is, we compute all (natural) statistical moments of the proper risk apportionment

lotteries. Our results, which are generalizations of Roger (2011) and Ekern (1980), give

a better understanding of how higher-order risk preferences relate to skewness preference

and kurtosis aversion. In particular, we show how higher-order risk preferences relate to

the strong notions of skewness and kurtosis referring to all odd and even moments, re-

spectively. As moments are well understood, our results should be easily accessible to a

wide audience in economics and finance.

More specifically, we show that prudence implies skewness preference, and this preference

is robust towards variation in kurtosis. We thus speak of the kurtosis robustness feature

of prudence. Further, we show that all higher-order risk preferences of odd order imply

skewness preference—but for different distributions than prudence—and also have a kur-

tosis robustness feature. Similar results are presented for temperance and higher-order

risk preferences of even order that can be related to kurtosis aversion and have a skewness

robustness feature.

We also show that the skewness of the zero-mean risks that have to be apportioned ac-

cording to Eeckhoudt and Schlesinger’s definition of proper risk apportionment are the

source of the lotteries’ statistical generality.

While our results are not based on EUT, an implication within that theory is that all

commonly used utility functions exhibit skewness preference and kurtosis aversion.
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On the empirical side, there is an extensive literature on the measurement of risk aversion

in numerous empirical settings as well as in various experiments. Focusing on experiments,

almost as large as the number of experimental studies is the diversity in procedures. Two

well established methods based on binary lottery choices are the multiple price list (e.g.,

Schubert et al. (1999), Holt and Laury (2002), Barr and Packard (2002)) and random

lottery pairs technique (e.g., Grether and Plott (1979), Hey and Orme (1994)). An alterna-

tive approach comprises a selection task from an ordered set of lotteries (e.g., Binswanger

(1980), Eckel and Grossman (2008)). Another prominent method is the Becker-DeGroot-

Marschak auction where a certainty equivalent is elicited (Becker et al. (1964), Harrison

(1986), Loomes (1988)). The trade-off method proposed in Wakker and Deneffe (1996)

and Abdellaoui (2000) is a chained procedure that aims to elicit certainty equivalents and

probabilities. It is not based on the assumption of a specific preference functional. In

Dohmen et al. (forthcoming), subjects decide between safe and risky options in a variant

of the so-called switch multiple price list technique. Recent theory-free approaches to mea-

sure risk aversion that, respectively, rely on preference for proper risk apportionment and

aversion to mean-preserving spreads are Ebert and Wiesen (2010) and Maier and Rüger

(2010). See also Harrison and Rutström (2008) for a comprehensive overview of different

experimental methods to elicit risk aversion.

In sharp contrast, there are few empirical studies on prudence. Dynan (1993), Carrol

(1994), and Carroll and Kimball (2008) trace prudence indirectly via the precautionary

savings motive.

Laboratory experiments could be used to investigate higher-order risk preferences as well

as the associated theories and behavioral traits in a more controlled environment. Re-

search in this direction has just started. The first attempt was made by Tarazona-Gomez

(2004) who finds weak evidence for prudence. It is based on strong assumptions within

EUT, in particular, a truncation of the utility function. The only other studies testing

for prudence are Deck and Schlesinger (2010) and the one presented in the last chapter of

this dissertation.

In Chapter Four, we introduce a simple experimental method to test for prudence in the

laboratory. To this end, we present a novel graphical representation of compound lotteries

which is easily accessible to subjects and test it for robustness by use of a factorial design.

Prudence is observed on the aggregate and individual level. Although we did not do so

in the experiment, it is straightforward to adapt our method to also test for temperance.

Besides studying experimental methodology, our main focus is on contrasting prudence
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from skewness preference. We find that prudence does not boil down to skewness prefer-

ence. The skewness of the zero-mean risk has a significant influence on subjects’ decisions.

With reference to Chapter Three, we further provide some theoretical explanations for this

result. The observed presence of prudence highlights its empirical relevance and motivates

further research on its experimental measurement in order to close the significant gap to

the respective literature on risk aversion.

This thesis has benefited from numerous comments of various people, including journal

referees and (associate) editors. It has also benefited from proof-reading of various people.

Chapters One and Two have been developed jointly with Eva Lütkebohmert and are based

on Ebert and Lütkebohmert (2011) and Ebert and Lütkebohmert (2009), respectively.

Chapter Four owes to the collaboration with Daniel Wiesen and is based on Ebert and

Wiesen (forthcoming). Chapter Three is single-authored and is based on Ebert (2010).

Following advice from Thomson (1999, p. 180), that chapter and this introduction also

make use of the first person plural. The second part of this introduction borrowed from

Ebert and Wiesen (2010) several times. The note presented in Appendix B on the skewness

of binary lotteries and the use of the latter in experiments is single-authored. Earlier

versions of the results can be found in Ebert (2010) and Ebert and Wiesen (2009).

Each of the next four chapters is self-contained. However, the suggested order is supposed

to ease comprehension.
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Part I

On Double Default Modeling in

the Basel Framework





Chapter 1

Treatment of Double Default

Effects within the Granularity

Adjustment for Basel II

1.1 Introduction

In the portfolio risk factor frameworks that underpin both industry models of credit Value-

at-Risk (VaR) and the Internal Ratings-Based (IRB) risk weights of Basel II, credit risk

in a portfolio arises from two sources: systematic and idiosyncratic. Idiosyncratic risk

represents the effects of risks that are particular to individual borrowers. Under the

Asymptotic Single Risk Factor (ASRF) framework on which the IRB approach is based,

it is assumed that bank portfolios are perfectly fine-grained, in the sense that the largest

individual exposures account for an infinitely small share of total portfolio exposure. In

such a portfolio, idiosyncratic risk is fully diversified away, so economic capital depends

only on systematic risk. Real-world portfolios are not, of course, perfectly fine-grained.

The asymptotic assumption might be approximately valid for some of the largest bank

portfolios, but would clearly be much less satisfactory for the portfolios of smaller or more

specialized institutions. When there are material name concentrations, there will be a

residual of undiversified idiosyncratic risk in the portfolio. The IRB formula omits the

contribution of this residual to the required economic capital.

The impact of undiversified idiosyncratic risk on portfolio VaR can be assessed via a

methodology known as granularity adjustment (GA). It is derived as a first-order asymp-

totic approximation of the effect of diversification in large portfolios. The basic concepts
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and approximate form for the GA were first introduced by Michael Gordy in 2000 for

application in Basel II; see Gordy (2003). It was then substantially refined and put on a

more rigorous foundation by Wilde (2001) and Martin and Wilde (2003) using theoretical

results from Gouriéroux et al. (2000). Recently, Gordy and Lütkebohmert (2007) pro-

posed and evaluated a GA suitable for application under Pillar 2 of Basel II.1 Note also

that recently the GA methodology to quantify the effect of idiosyncratic risk has proved

useful in quite different contexts. Gouriéroux and Monfort (2008) derive GAs for optimal

portfolios, i.e., they quantify the error in efficiency if one uses an optimal portfolio con-

sisting of finitely many assets only in order to proxy the true, perfectly diversified market

portfolio. In Gagliardini and Gouriéroux (2010), the authors define and compute a GA

within a derivative pricing model.

However, none of these methods account for guarantees and general hedging instruments

within a credit portfolio. This work aims at filling this gap, since the exclusion of hedging

instruments represents, of course, a rather severe limitation as it is not at all rare that

credit exposures are hedged in some way. For example, granting loans and transferring

the risk afterwards is a typical practice for a bank. The relevance of hedging instruments

is also acknowledged by the Basel Committee as Basel II (Basel Committee on Banking

Supervision (2006)) discusses extensively credit risk mitigation (CRM) techniques. These

include, e.g., ordinary guarantees, collateral securitization, and credit derivatives such as

credit default swaps. Today, credit derivatives might be the most common guarantee in-

strument. Their market has grown rapidly over the first decade of the century. According

to the International Swaps and Derivatives Association (ISDA) Market Survey2, the no-

tional of outstanding credit default swaps peaked at US$62 trillion as of December 2007.

After the crisis, it still amounted to US$26 trillion as of June 2010; see O’Kane (2008) for

a comparison of several studies on the topic.

It is reasonable that a financial institution should be able to decrease its capital require-

ments if it buys protection for its exposures. This is also important from a regulatory

point of view, because it gives banks the incentive to hedge their credit risk. Therefore, in

2005, the Basel Committee made an amendment to the 2003 New Basel Accord concerning

the treatment of guarantees in the IRB approach; see Basel Committee on Banking Super-

1Two other earlier works on the GA are Emmer and Tasche (2005) and Pykhtin and Dev (2002). See
Lütkebohmert (2009) for more information on the development of the GA and a discussion of the
different methods.

2This data is available at http://www.isda.org/statistics/.
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vision (2005).3 In the New Basel Accord of 2003, banks were allowed to adopt a so-called

substitution approach to hedged exposures. Roughly speaking, under this approach a bank

can compute the risk weighted assets for a hedged position as if the credit exposure was

a direct exposure to the obligor’s guarantor. Therefore, the benefit to the bank in terms

of capital requirements from obtaining the protection may be small or even nonexistent.

Since the 2005 amendment, for each hedged exposure the bank can choose between the

substitution approach and the so-called double default treatment. The latter, inspired by

Heitfield and Barger (2003), takes into account that default of a hedged exposure only

occurs if both the obligor and the guarantor default (“double default”). There are rather

strict requirements on the obligor and the guarantor for application of the double default

treatment. Moreover, the parameters chosen in calculating the double default probability

are quite conservative. We refer to Grundke (2008) for a meta-study on this issue. It has

been shown in Heitfield and Barger (2003) that this double default treatment can lead to

a significant decrease in capital requirements under the Advanced IRB approach.

Since the IRB treatment of double default effects is also based on the assumption of an

infinitely granular portfolio, it seems natural to investigate the impact of guarantees on

possible adjustments for undiversified idiosyncratic risk as represented, for example, by

the GA. In this work, we address this issue and derive a GA that takes double default

effects into account. The GA is derived as a first-order asymptotic approximation for the

effect of diversification in large portfolios within an extended version of the CreditRisk+

model that allows for idiosyncratic recovery risk.4 Note, however, that our methodology

could, in principle, be applied to any model of portfolio credit risk that is based on a

conditional independence framework. We derive an analytic solution for the GA in a

very general setting with several partially hedged positions where the guarantors can also

act as obligors in the portfolio themselves. Moreover, we present some results on the

performance of our new formula. In particular, we study the impact of guarantees and

double default effects on the risk weighted assets of Basel II. Similar to the revised GA

of Gordy and Lütkebohmert (2007), our generalization only requires data inputs which

are already available when calculating IRB capital charges and reserve requirements. The

fact that the GA is analytical allows for a fast computation and avoids the simulation of

rare double default events. Thus, it is very well suited for application under Pillar 2 of

3Meanwhile the amendment has also been incorporated in a revised version of the 2003 Basel accord,
Basel Committee on Banking Supervision (2006). If not noted otherwise, this is the version we refer to
as “Basel II.”

4CreditRisk+ is a widely used industry model developed by Credit Suisse Financial Products (1997).
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Basel II.

In Section 1.2, we start by introducing our basic notations and the CreditRisk+ setting

that we apply. Moreover, in this section we provide a review of the GA methodology

without guarantees. In Section 1.3, we provide some illustrative examples of our main

result and discuss the main difficulties that occur when deriving a GA in the presence

of guarantees. In particular, we discuss the various scenarios and interactions between

obligors and guarantors that can occur in practice. Section 1.4 gives the main result for

an arbitrary number of partially hedged positions in the portfolio and discusses multiple

hedging of a single obligor. Here we also provide a numerical example of the performance

of our novel GA. The accuracy of the analytical approximation provided by our new GA

is studied in Section 1.5 by comparison with simulated GA results. In Section 1.6, we

conclude and discuss our assumptions and results. Appendix A.1 provides proofs of our

results. A comparison study of our model with the treatment of double default effects

within the IRB approach, which will be the topic of the next chapter, can be found in

Ebert and Lütkebohmert (2011).

1.2 Notations and basic GA methodology

Our model presents an extension of the GA introduced in Gordy and Lütkebohmert (2007),

which is based on the single factor CreditRisk+ model allowing for idiosyncratic recovery

risk.5 Note, however, that our general GA can, in principle, be applied to any risk factor

model of portfolio credit risk that is based on a conditional independence framework.

Let X denote the systematic risk factor, which we assume to be unidimensional to achieve

consistency with the ASRF framework of Basel II. Denote the probability density function

of X by h(X). In our specific setting, we assume X to be gamma distributed with mean

1 and variance 1/ξ for some ξ > 0.6 We consider a portfolio consisting of N obligors

indexed by n = 1, 2, . . . , N. Suppose that exposures of each obligor have been aggregated

so that there is a unique position for each obligor in the portfolio. We refer the reader

to Gordy and Lütkebohmert (2007) for a discussion of this assumption. Assume that the

first K ≥ 0 positions are hedged by some guarantors who might or might not be part

5For the implementation of the impact of guarantees in fully fledged CreditRisk+ we refer the reader to
Schmock (2008) who introduces connected groups of obligors.

6For the calibration of the parameter ξ we refer the interested reader to Gordy and Lütkebohmert (2007).
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of the portfolio themselves. The remaining N − K positions are unhedged.7 Denote by

EADn the exposure at default of obligor n and let

sn = EADn /
N∑

i=1

EADi

be its share of total exposure. Applying an actuarial definition of loss as in the CreditRisk+

model, we define the loss rate of obligor n as Un = LGDn · Dn where Dn is a default

indicator equal to 1 if obligor n defaults and 0 otherwise. Here LGDn ∈ [0, 1] denotes the

loss given default rate of obligor n, which is assumed to be random and independent of Dn

with expectation ELGDn and volatility VLGDn . The systematic risk factor X generates

correlation across obligor defaults by shifting the default probabilities. Conditional on

X = x, the default probability of obligor n is

PDn(x) = PDn ·(1 − wn + wn · x) (1.2.1)

where PDn is the unconditional default probability and wn is a factor loading specifying

the extent to which obligor n depends on the systematic factor X.

We denote the loss variable of a portfolio with K hedged positions and N −K unhedged

positions by LK,N−K.
8 Note that, in the situation without guarantees, we have conditional

independence between obligors in the portfolio and thus can express the portfolio loss as

L0,N =
N∑

n=1

snUn. (1.2.2)

Denote the qth percentile of the distribution of some random variable X by αq(X). For ease

of notation we will sometimes use xq = αq(X) instead. When economic capital is measured

as Value-at-Risk at the qth percentile, we wish to estimate αq(LK,N−K). The IRB formula,

however, delivers the qth percentile of the conditional expected loss αq(E[LK,N−K |X]). The

difference

αq(LK,N−K) − αq(E[LK,N−K |X]) (1.2.3)

is the “exact” adjustment for the effect of undiversified idiosyncratic risk in the portfolio.

This interpretation is justified in a conditional independence setting by the fact that

αq(E[LK,N−K |X]) converges to αq(LK,N−K) as the portfolio becomes more and more fine-

7In the following, quantities with a subindex n refer to the single obligor n, and are defined for arbitrary
n = 1, . . . , N.

8In general, when we use notations with two lower subindices, the first index gives the number of hedged
positions and the second index gives the number of unhedged positions in the considered portfolio.
This will be convenient when we derive the GA for portfolios with K hedged positions.
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grained; see Gordy (2003, Proposition 5) for assumptions and a proof of this result. Such

an exact adjustment cannot be obtained in analytical form, but we can construct a Taylor

series approximation in orders of 1/N. Therefore, we define the conditional expectation

and conditional variance of obligor n’s loss variable by µn(x) = E[Un|x] and σ2
n = V[Un|x]

and, on portfolio level, we define the quantities

µK,N−K(x) = E[LK,N−K|x] (1.2.4)

σ2
K,N−K(x) = V[LK,N−K|x]. (1.2.5)

Based on theoretical results of Gouriéroux et al. (2000), one can show that a first-order

approximation in 1/N of equation (1.2.3), which defines our GA, can be obtained as

GAK,N−K =
−1

2h(xq)

d

dx

(
σ2

K,N−K(x)h(x)

µ′
K,N−K(x)

) ∣∣∣
x=xq

. (1.2.6)

It is derived by applying a second-order Taylor expansion of the portfolio loss around

its conditional mean. This result is independent of the question whether there are some

hedged positions in the portfolio, since only the quantities µK,N−K(x) and σK,N−K(x) are

sensitive to this decision. Gordy and Lütkebohmert (2007) reformulate this result within

a CreditRisk+ framework and derive a simple analytic formula for the GA in the case

without guarantees, which we will briefly review in the remainder of this section.

Assume a portfolio with N unhedged exposures. First, note that due to the conditional

independence framework in the case without hedged positions, the quantities in equations

(1.2.4) and (1.2.5) can be expressed as

µ0,N (x) = E[L0,N |x] =
N∑

n=1

snµn(x) (1.2.7)

σ2
0,N (x) = V[L0,N |x] =

N∑

n=1

s2
nσ

2
n(x). (1.2.8)

By analogy to Gordy and Lütkebohmert (2007), we now reparametrize the inputs of the

GA formula (1.2.6), i.e., the quantities µn(x) and σ2
n(x) for n = 1, . . . , N. Therefore, for

every obligor n let Rn be the expected loss (EL) reserve requirement and let Kn be the

unexpected loss (UL) capital requirement as a share of EADn . In the default-mode setting
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of CreditRisk+, these quantities can be expressed as

Rn = E[Un] = ELGDn · PDn (1.2.9)

Kn = E[Un|xq] − E[Un] = ELGDn · PDn ·wn · (xq − 1). (1.2.10)

Furthermore, let K0,N =
∑N

n=1 snKn denote the required capital per unit exposure for the

portfolio as a whole. Since the conditional default probability in a CreditRisk+ framework

equals PDn(x) = PDn ·(1 − wn + wn · x), we obtain

µn(xq) = Kn + Rn

µ′
n(xq) = Kn/(xq − 1)

µ′′
n(xq) = 0.

(1.2.11)

Moreover, by approximating the Bernoulli-distributed default indicators Dn by Poisson

distributed random variables as in CreditRisk+, it can be shown that

σ2
n(x) = Cnµn(x) + µ2

n(x)
VLGD2

n

ELGD2
n

(1.2.12)

and thus
d

dx
σ2

n(xq) = Cnµ
′
n(xq) + 2µ′

n(xq)µn(xq)
VLGD2

n

ELGD2
n

(1.2.13)

with

Cn =
ELGD2

n + VLGD2
n

ELGDn
.

Noting that

µ′(xq) =
N∑

n=1

snKn/(xq − 1) = K0,N/(xq − 1) and µ′′
0,N (xq) = 0

in the case without hedging, one can reformulate equation (1.2.6) as

GA0,N =
1

2K0,N

(
δσ2

0,N (xq) − (xq − 1)
d

dx
σ2

0,N (xq)

)
(1.2.14)

where

δ = −(xq − 1)
h′(xq)

h(xq)
.

Inserting the CreditRisk+ representations of the terms µ0,N (xq) and σ2
0,N (xq) and their
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derivatives, Gordy and Lütkebohmert (2007) obtain

GA0,N =
1

2K0,N

N∑

n=1

s2
n

[(
δCn(Kn + Rn) + δ(Kn + Rn)2 · VLGD2

n

ELGD2
n

)

−Kn

(
Cn + 2(Kn + Rn) · VLGD2

n

ELGD2
n

)]
.

(1.2.15)

It is the aim of this work to extend this result to the situation with guarantees and to

derive a simple closed-form GA that is able to account for double default effects and which

is consistent with the ASRF model underlying Basel II.

1.3 Some illustrative examples and discussion of the

methodology

In this section, we provide some illustrative examples of the general GA formula given in

Theorem 1. We start by discussing in some detail the main problems that occur in the

presence of guarantees. To start with, it therefore suffices to study the case K = 1, i.e.,

we consider a portfolio consisting of an exposure to obligor 1, which is partially hedged by

a guarantor g1, and N − 1 unhedged positions.9 Note that partial hedging is of particular

importance here since, for the GA computation, exposures to a single obligor first have to

be aggregated.10 Thus, if one exposure to an obligor is hedged and there are also some

unhedged exposures to this obligor, we have to face the problem of partial hedging in the

GA computation. For 0 ≤ λ ≤ 1, denote by (1 − λ) EAD1 the unhedged portion, and by

λEAD1 the hedged portion of the exposure to obligor 1. All derivations in this work will

be given for the case where there is direct exposure to guarantors. That is, guarantors

are themselves obligors in the portfolio. In the current case, we thus let g1 = 2 and let s2

be the exposure share of the guarantor, obligor 2. The situation where there is actually

no direct exposure to the guarantor is then simply obtained as the special case where the

exposure s2 = 0.

In this situation, the loss rates associated with the unhedged exposure to obligor 1, the

direct exposure to the guarantor, and the hedged exposure to obligor 1 can no longer

be treated as conditionally independent. The IRB treatment of double default effects,

9From now on, we will think of ordinary guarantees as the hedging instruments although our results
can be applied to all types of CRM techniques as indicated in the introduction. For example, the
“guarantor” could also be the protection seller within a credit default swap contract.

10For a detailed discussion of this problem we refer to Gordy and Lütkebohmert (2007).
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however, ignores this issue by not specifying the relationships of the guarantors with the

credit portfolio. It is implicitly assumed that there are only perfect full hedges, that guar-

antors are not obligors in the portfolio themselves, and that different obligors are hedged

by different guarantors. To treat the possible interactions appropriately, we construct a

“composite instrument” with loss rate Û1 and exposure share ŝ1 = λs1 consisting of the

hedged portion λEAD1 of the exposure to obligor 1. Note that the loss rate of the un-

hedged portion (1 −λ) EAD1 of the exposure to obligor 1 is given by U1. In the following,

we will use the notation “hat” for a quantity referring to a hedged obligor and its guarantor.

Thus, in general, such a quantity will depend on characteristics of both the hedged obligor

and its guarantor. Note that, when obligor 1 defaults and the guarantor 2 survives, the

latter will pay for the hedged exposure such that the exposure to obligor 1 is only lost in

cases when both obligor 1 and obligor 2 default. Therefore, let Û1 = U1U2. We define the

EL capital requirement for the composite instrument as

R̂1 ≡ E[Û1] = E[U1U2] = E[E[U1U2|X]] = E [E[U1|X] · E[U2|X]]

= ELGD1 ELGD2 ·E[PD1 ·(1 + w1 · (X − 1)) · PD2 ·(1 + w2 · (X − 1))]

= ELGD1 ELGD2 PD1 PD2 ·(1 + w1w2 · V[X])

= R1R2 +
K1K2

(xq − 1)2ξ
,

which follows from the fact that the Bernoulli random variables D1 and D2 are independent

conditional on the systematic risk factor X, which is gamma distributed with mean 1 and

variance 1/ξ. Moreover, the UL capital contribution for the composite instrument is given

by

K̂1 ≡ E[Û1|xq] − E[Û1] = E[U1U2|xq] − E[U1U2]

= ELGD1 PD1 ·(1 + w1(xq − 1)) · ELGD2 PD2 ·(1 + w2(xq − 1)) − R̂1

= K1K2 + K1R2 + R1K2 − K1K2

(xq − 1)2ξ
.

The portfolio loss L1,N−1 in case of a single partial hedge can no longer be expressed by

equation (1.2.2) but is given by

L1,N−1 = L0,N−1 + λs1Û1 + (1 − λ)s1U1

= L0,N−1 + s1U1 (λU2 + (1 − λ)) .

(1.3.1)
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Note that in the definition of L0,N−1 the exposure shares are also defined as

EADn /
∑N

i=1 EADi, i.e., with respect to the portfolio consisting of N positions.

Remark 1 (Recovery Rate Modeling). All derivations in this work are given for arbitrary

choices of the loss given default variables for both the obligor and its guarantor. That

is, double recovery effects can be included in the model. However, there are several good

reasons why double recovery effects should not be reflected within the computation of

regulatory capital. Also, in the Basel II IRB approach, recognition of double recovery

effects is not allowed. Generally, the committee argues that “it is difficult to prescribe

conditions on obligor, protection provider, and form of protection that could give sufficient

certainty on the prospect of double recovery in the event of double default.”11 The bank

is only allowed to use the LGD estimate of the guarantor instead of the estimate for the

obligor. In the computation of the GA, we suggest that recovery from the guarantor should

not be recognized at all whenever he is involved in partial hedging or when he is an obligor

in the portfolio himself.12 In the former case, it is implicitly assumed that the obligor’s

recovery is shared proportionally between the hedged and unhedged portions, although we

could imagine that the unhedged portion has priority. In the latter case, the guarantor’s

recovery as an obligor should be dependent on the recovery payment for the guarantee.

Thus, a conservative treatment, as is usually preferred by the Basel Committee, would be

to completely neglect recovery from the guarantor (except for the direct exposure to the

guarantor). This is achieved by setting LGDgn = 100% for all n in the expressions for

the GA we derive.

Remark 2. We want to point out here that the loss rates in the above definition of the

portfolio loss, equation (1.3.1), are no longer conditionally independent, because the loss

rates (U2 for the guarantor, U1 for the unhedged exposure to obligor 1, and Û1 for the

composite instrument) are conditionally dependent. However, it still makes sense to define

the GA as the percentile difference in equation (1.2.3), as long as the exposures that are

hedged by internal guarantors are sufficiently small as shares of total portfolio exposure.

Otherwise, the asymptotic result underlying the computation of portfolio VaR under the

ASRF model breaks down; see Gordy (2003, p. 209) for further details. This problem

is more severe for the IRB treatment of double default effects because of the additional

correlation assumed in that setting; see Section 1.6 for details.

11See Basel Committee on Banking Supervision (2005, paragraph 206) for more details on the committee’s
reasons and Basel Committee on Banking Supervision (2006, paragraph 285 ff) for details on the
prescribed treatment of recovery rates within the IRB approach. Indeed, proper modeling of double
recovery would itself be a topic for future research.

12We thank an anonymous referee for this observation and the following justification.
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To obtain the GA we must compute the conditional expectation µ1,N−1(x) and the

conditional variance σ2
1,N−1(x) referring to the above definition of loss, equation (1.3.1),

and also derivatives of these expressions. Since, in the current case, no other obligor in

the portfolio is hedged by guarantor 2, all of the N − 2 ordinary obligors are independent

of obligor 2 and the composite instrument conditional on the systematic risk factor X.

Thus, our approach will be to express L1,N−1 as a deviation from L0,N−2, µ1,N−1(x)

as a deviation from µ0,N−2(x), and so on. We then show that these quantities can

also be expressed as deviations from L0,N−1, µ0,N−1(x) and so on. In this way, the GA

computation can partially be traced back to the one in Gordy and Lütkebohmert (2007)

that was sketched in Section 1.2. This is the main idea for the proof of our first result,

which is summarized in the following Proposition. The proof is given in Appendix A.1.

Proposition 1 (The GA formula in the case of a single partial hedge). The GA for the

case where a portion λ of the exposure to obligor 1 is hedged by obligor 2 is given by

G̃A1,N−1 =
K0,N−1

K1,N−1(λ)
GA0,N +

s1λK1K2

(K1,N−1(λ))2
σ2

0,N−1(xq)

+

(
s2

1Ĉ1(λ) + 2s1s2λC2

)

2K1,N−1(λ)

(
δ(K̂1 + R̂1) − (K1(K2 + R2) + K2(K1 + R1))

)

(1.3.2)

where

K1,N−1(λ) := K0,N−1 + s1 (λ (K1(K2 + R2) + K2(K1 + R1)) + (1 − λ)K1)

and

GA0,N := GA0,N−1 +
s2

1(1 − λ)2

2K0,N−1

[
δ

(
C1(K1 + R1) + (K1 + R1)2 VLGD2

1

ELGD2
1

)

−
(

2K1(K1 + R1)
VLGD2

1

ELGD2
1

+ C1K1

)]
.

(1.3.3)

Here GA0,N−1 is the GA formula for the portfolio with N − 1 ordinary obligors, equation

(1.2.15). Furthermore, we used the notation

Ĉ1(λ) := λ2C1C2 + 2λ(1 − λ)C1. (1.3.4)

The notation G̃AK,N−K indicates that we simplified the expression for the GA by neglecting

terms that are of order O( 1
N2 ·PD3 · ELGD3) or even higher. These terms would contribute

little to the GA.13

13For more details on this argument see the proof and Remark 3.
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The second term in equation (1.3.3) is the standard GA contribution of the non-hedged

part (1 −λ)s1 of the exposure to obligor 1 (compare with equation (1.2.15)). Thus, in the

first term of equation (1.3.2) we have summarized the contribution to the GA belonging

to the unhedged part of the portfolio, i.e., to exposures EAD2, . . . ,EADN , and to the

unhedged portion (1 − λ) EAD1 of the exposure to obligor 1. The third term of equation

(1.3.2) depends only on the hedged obligor and its guarantor. It represents the contri-

bution to the GA that is purely due to the hedged exposure to obligor 1. Note that this

term also contains a part that vanishes when there is no direct exposure to the guarantor,

i.e., when s2 = 0, which leads to a reduction of the GA. The second term depends on

all obligors in the portfolio. Hence, there is no additive decomposition of G̃A1,N−1 into

the portfolio components belonging to the N − 1 ordinary obligors and the hedged posi-

tion and its guarantor. Note that, for λ = 1, we have Ĉ1(λ) = C1C2 and GA0,N = GA0,N−1.

Remark 3. Studying equation (1.3.2) in more detail, we will see that double default

effects are second-order effects O(1/N2) in the GA. Therefore, we assume a homogeneous

portfolio where each exposure share equals sn = 1/N and PDs and ELGDs are constant

for all obligors. Assume that the exposure to obligor 1 is fully hedged by obligor 2, i.e.,

λ = 1. Recall that, by the definition of K1,N−1(λ), for such a portfolio we have

K1,N−1(λ) =
N∑

n=2

snKn + s1(K1(K2 + R2) + K2(K1 + R1))

=
N − 1

N
K1 +

1

N
(2K2

1 + 2K1R1).

Thus, for large N the terms

Kn/K1,N−1(λ) = N/(N − 1 + 2(K1 + R1))

are approximately equal to 1. Similarly, one can show that K0,N−1/K1,N−1(λ) is also

approximately equal to 1. Moreover, one can easily show that, for a homogeneous portfolio,

GA0,N−1 is proportional to 1/N. Thus, the first term in equation (1.3.2) is of order 1/N.

Furthermore, for a homogeneous portfolio the quantity

σ2
0,N−1(xq) =

N∑

n=2

s2
nσ

2
n(xq) =

1

N2

N∑

n=2

σ2
n(xq)

is proportional to (N − 1)/N2. Hence, for large N, the second term in equation (1.3.2) is

approximately proportional to 1/N2. Similarly, we obtain that the third term is proportional

to 1/N2. Hence, the main contribution to the portfolio GA comes from the unhedged part of

the portfolio, while double default effects still contribute second-order to the GA. Therefore,
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in terms of the GA, a bank will be rewarded significantly with lower capital requirements

when buying credit protection.

We now extend the previous model by allowing for several hedged positions in the portfolio.

For the analysis it is sufficient to consider only two hedged positions as this illustrates all

possible interactions between obligors and guarantors, and the extension to more than

two hedged positions will be straightforward. Let us first generalize the notations from

the previous situation to the case with several guarantees. Therefore, consider a portfolio

where the exposures to the first K obligors are partially hedged by some guarantors

g1, . . . , gK ∈ {K + 1, . . . , N}.14 Denote the hedged fraction of the loan to obligor n ∈
{1, . . . ,K} by λn ∈ [0, 1] and define the vector λ = (λ1, . . . , λK) ∈ [0, 1]K . We define

composite instruments for all hedged obligors by Ûn = Un · Ugn for n = 1, . . . ,K. The

portfolio loss is then given by

LK,N−K = L0,N−K +
K∑

n=1

sn

(
λnÛn + (1 − λn)Un

)
. (1.3.5)

Moreover, we generalize the definition for the EL and UL capital of the composite instru-

ments for arbitrary n as follows

R̂n = RnRgn +
KnKgn

(xq − 1)2ξ

K̂n = KnKgn + KnRgn + RnKgn − KnKgn

(xq − 1)2ξ
.

Furthermore, we also extend the definition of Ĉ1(λ) to

Ĉn(λn) = λ2
nCnCgn + 2λn(1 − λn)Cn, (1.3.6)

and we generalize the notation K1,N−1(λ) to the case of K partially hedged positions by

setting

KK,N−K(λ) = K0,N−K +
K∑

k=1

sk [λk(Kk(Kgk
+ Rgk

) + Kgk
(Kk + Rk)) + (1 − λk)Kk] .

Finally, we naturally extend the definition of GA0,N to the case with K partially hedged

loans.

In the case of two guarantees, we have to distinguish between two different scenarios.

14We will discuss the case gn ∈ {1, . . . , K} in Remark 4.
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First, it is possible that two different guarantors hedge two different obligors. Therefore,

we consider a portfolio with two partially hedged obligors (1 and 2) and N − 2 ordinary

obligors (3, . . . , N) where g1 6= g2. The portfolio loss is then given by

L2,N−2 = L0,N−2 + s1

(
λ1Û1 + (1 − λ1)U1

)
+ s2

(
λ2Û2 + (1 − λ2)U2

)
. (1.3.7)

Note that, in the above equation, terms referring to the hedged obligor 1 are conditionally

independent from those referring to the hedged obligor 2. This is why we can compute the

conditional mean and conditional variance of the corresponding composite instruments for

the hedged exposure to obligor 1 and obligor 2 separately by applying the same methods

as in the case of a single hedged position; see Appendix A.1 for details.

Another possible scenario with two guarantees is that one guarantor hedges two different

obligors. Similarly to the previous case, we consider a portfolio with two hedged obligors

(1 and 2) and N − 2 ordinary obligors (3, 4, . . . , N). However, the obligors now have the

same guarantor g1 = g2. For ease of notation let g1 = g2 = 3. Then, the portfolio loss is

given by

L2,N−2 = L0,N−3 +
(
s3U3 + s1λ1U1U3 + s2λ2U2U3

)

+
(
s1(1 − λ1)U1 + s2(1 − λ2)U2

)
.

(1.3.8)

Neglecting third- and higher-order terms in EL and UL capital contributions, one can

show that the expressions for µ2,N−2(xq) and σ2
2,N−2(xq) and their derivatives do not

depend on whether both obligors have different guarantors or the same guarantor. Con-

sequently, the formula for the GA also has to be the same as in the case with different

guarantors. It is summarized in the following proposition. For the proof we refer the

reader to Appendix A.1. It can be shown that the GA in the case of the same guar-

antor is larger, but only in third-order terms, which are neglected in our simplified version.

Proposition 2 (The GA formula in the case of two partial hedges). The GA in the case

where a portion λ1 of the exposure to obligor 1 is hedged by guarantor g1 and a portion λ2
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of the exposure to obligor 2 is hedged by guarantor g2 is given by

G̃A2,N−2 =
K0,N−2

K2,N−2(λ)
GA0,N +

s1λ1K1Kg1 + s2λ2K2Kg2

(K2,N−2(λ))2
σ2

0,N−2(xq)

+

(
s2

1Ĉ1(λ) + s1sg1λ1Cg1(λ)
)

2K2,N−2(λ)

(
δ(K̂1 + R̂1) − (K1(Kg1 + Rg1) + Kg1(K1 + R1))

)

+

(
s2

2Ĉ2(λ) + s2sg2λ2Cg2(λ)
)

2K2,N−2(λ)

(
δ(K̂2 + R̂2) − (K2(Kg2 + Rg2) + Kg2(K2 + R2))

)

(1.3.9)

where we again neglected terms that are of order O( 1
N2 · PD3 · ELGD3) or higher.

1.4 GA for a portfolio with several guarantees

In this section, we provide a general formula for the GA of a portfolio with several guar-

antees. Here we not only extend the previous result from 2 to K hedged obligors in the

portfolio,15 but we further allow for different parts of the exposure to the same obligor

to be hedged by several distinct guarantors.16 This generalization is necessary for several

applications. Suppose, for example, there are three loans to obligor 1 (indexed by 1, 2,

and 3) in the portfolio. Loans 1 and 2 are guaranteed by two different guarantors g1,1 and

g1,2, respectively, whereas loan 3 is unhedged.17 For the computation of the GA all three

loans first have to be aggregated into a single loan. Let λ1,1 and λ1,2 denote the fractions

of the first and second loan to obligor 1, respectively, on the aggregated position. The

fraction 1 − λ1,1 − λ1,2 of the aggregated position is the unhedged part. In this section,

we will derive the contribution of such a partially hedged obligor 1 to the GA.

More generally, suppose we have a portfolio with N obligors of which the first K ≤ N are

hedged and the entries of the tuple λn = (λn,1, . . . , λn,jn) are the portions of the exposure

EADn to obligor n (n = 1, . . . ,K), which are hedged by guarantors gn,1, . . . , gn,jn , respec-

tively. Denote by Λ the collection of all tuples λ1, . . . , λK . In this situation, the portfolio

loss can be written as

LK,N−K = L0,N−K +
K∑

n=1

jn∑

i=1

snλn,iUnUgn,i
+ sn


1 −

jn∑

i=1

λn,i


Un.

15From the computations in the previous section, this is essentially straightforward.

16For the case when the same exposure is hedged by more than one guarantor see Remark 4.

17For simplicity, think of full hedges, although the argument works as well for partial hedges.
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To write down the final version of the GA, we generalize the notations of Section 1.3.

First we naturally generalize the notation KK,N−K(λ) to the case of multiple hedges per

obligor, which we then denote by KK,N−K(Λ), and we generalize the notation Ĉn(λn) in

the following way

Ĉn(λn,i) = λ2
n,iCnCgn,i

+ 2λn,i


1 −

jn∑

i=1

λn,i


 Cn.

Similarly, the notation GA0,N is adapted by replacing the terms 1 − λn by the quantities

1 −∑jn

i=1 λn,i.

We can now formulate our main result: a single analytic formula for the GA that applies

to any of the aforementioned hedging situations.18

Theorem 1 (The general GA formula). Consider a portfolio with an arbitrary number of

hedged positions where every hedging instrument may be any type of credit risk mitigation

technique. Exposures to the same obligor may be hedged by different guarantors and for

every exposure only parts may be hedged. Guarantors may or may not be obligors in the

portfolio themselves and they may hedge exposures of more than one obligor. The total

exposure share of the positions that are hedged by guarantors who are part of the portfolio

themselves, however, has to be sufficiently small such that the asymptotic result underlying

the ASRF model still holds. With the notations above, the GA of such a portfolio can be

computed by means of the following analytic formula

G̃AK,N−K =
K0,N−K

KK,N−K(Λ)
GA0,N +

σ2
0,N−K(xq)

(KK,N−K(Λ))2

K∑

n=1

jn∑

i=1

snλn,iKnKgn,i

+
1

2KK,N−K(Λ)

K∑

n=1

jn∑

i=1

(
s2

nĈn,i(λn,i) + 2snsgn,i
λn,iCgn,i

)

·
(
δ(K̂n,i + R̂n,i) − (Kn(Kgn,i

+ Rgn,i
) + Kgn,i

(Kn + Rn))
)
.

(1.4.1)

The notation G̃AK,N−K indicates that we simplified the expression for the GA by ne-

glecting terms that are of order O( 1
N2 · PD3 · ELGD3) or even higher. These terms would

contribute little to the GA.

Remark 4. Note that, from the previous derivations it is obvious that a loan that is

hedged by several guarantors will contribute only third-order terms to the GA. The same

is true when a guarantor itself is hedged. In these cases, we suggest a substitution approach

as applied by Basel Committee on Banking Supervision (2006). That is, whenever there

18By treating the case of multiple hedging of the same exposure as proposed in Remark 4, the formula
indeed applies to all possible hedging combinations.
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are multiple guarantors to a single loan, the risk manager can choose one guarantor whose

characteristics (i.e., PD, ELGD, EL, and UL capital contributions) enter the GA formula.

Before we investigate the accuracy of our analytical GA by comparison with simulation

results in Section 1.5 and discuss our main result in Section 1.6, we provide a numerical

example in order to study the impact of hedging on the GA.

Example 1. Consider an artificial portfolio, P, which is the most concentrated portfolio

that is admissible under the EU large exposure rules.19 For this purpose, we divide a total

exposure of e 6000 into one loan of size e 45, forty-five loans of size e 47, and thirty-two

loans of size e 120.20 We assume a constant PD of 1% and a constant ELGD of 45%. Now

assume that all thirty-two loans of size e 120 are completely hedged by different guarantors

who are not part of the portfolio themselves. For these guarantors we assume a constant

PD of 0.1% and a constant ELGD of 45%. Moreover, we fix the effective maturity for all

obligors and guarantors to M = 1 year.

Our generalized GA formula (1.4.1) leads to an add-on for undiversified idiosyncratic risk

of G̃A32,46 = 0.86% of total exposure, i.e., e 51.60.21 To study the impact of hedging on

economic capital we computed the IRB capital for portfolio P using the IRB treatment of

double defaults.22 Then, the regulatory capital for portfolio P with thirty-two guarantees

equals 4.98% or e 298.80. Hence, our novel GA formula leads to an add-on on regulatory

capital of 17.27%. We now compare this result with the analogous computations when

guarantees are neglected. The GA formula for the portfolio P without hedged exposures

yields a GA of GA = 1.66% of total exposure, i.e., e 99.60. The corresponding regulatory

capital for the portfolio without guarantees is 6.21% of total exposure. Thus, the add-on

on regulatory capital due to the GA for the portfolio without hedged exposures is 26.73%.

Hence, accounting for guarantees within the computation of the GA can significantly reduce

the capital requirement for undiversified idiosyncratic risk. In our example of portfolio P,

the reduction is by approximately 35%. Table 1.1 summarizes the results of our example.

Remark 5. Note that, for a homogeneous portfolio where all exposures have the same

size and PDs and ELGDs are also identical for all obligors, hedging can also have the

19According to the EU rules, banks are not allowed to have an exposure that requires 25% or more of
regulatory capital. Moreover, the sum of all large exposures, i.e., exposures that require at least 10%
of regulatory capital, must not account for more than 8 times the regulatory capital. For more details
see Directive 93/6/EEC of March 15, 1993 on the capital adequacy of investment firms and credit
institutions.

20For a detailed derivation of this portfolio from the EU large exposure rules we refer to Düllmann and
Masschelein (2007).

21In our numerical results, we always fix the variance parameter of the systematic risk factor as ξ = 0.125.
Moreover, we computed the variance of LGD as VLGD2

n = 1
4
ELGDn · (1 − ELGDn).

22See Chapter 2 for more details on this approach.
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Table 1.1: Impact of guarantees on GA and IRB capital requirements

Portfolio P GA (in %) IRB capital (in%) add-on for GA (in %)

without guarantees 1.66 6.21 26.73
with guarantees 0.86 4.98 17.27

The GA is computed using equation (1.4.1) both for the portfolio without hedged exposures and the

portfolio with thirty-two guarantees. The regulatory capital is computed using the IRB treatment of

double default effects for the portfolio with guarantees and the standard IRB formula for the portfolio

without guarantees. The add-on for the GA on regulatory capital is defined as the quotient of the GA

and IRB capital.

opposite effect and increase the GA. This is due to the fact that hedging can shift the

exposure distribution of the portfolio to a more concentrated distribution. For such a

homogeneous portfolio, for example, the exposure distribution is uniform and the portfolio

can be considered as almost perfectly diversified for large N. When we assume now that

some of the exposures in the portfolio are guaranteed by some other obligors in the portfolio,

the portfolio becomes more concentrated and thus the GA increases.

1.5 Numerical validation of the analytical GA formula

In this section, we study the performance of our new GA formula. We therefore compare

our analytical GA, equation (1.4.1), for a portfolio with hedged exposures to simulation

results based on VaR computations within the CreditRisk+ model. That is, we compute

αq(L) − αq(E[L|X]) (1.5.1)

numerically by Monte Carlo simulation, where the portfolio loss variable L is modeled as

L =
N∑

n=1

sn LGDn Dn Dgn ,

such that double recovery effects are neglected and where Dgn = 1 if the exposure to

obligor n is unhedged. In CreditRisk+, the default indicator variables Dn are Bernoulli-

distributed with parameter given by the stochastic default probability PDn(X), which

depends on the systematic risk factor X that is gamma distributed with mean 1 and

variance 1/ξ. Moreover, the conditional PDs can be expressed as

PDn(X) = PDn · (1 − wn + wnX) .
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Thus, we need to specify the factor loadings wn in the CreditRisk+ model. In our GA

formula, although it is formulated within a generalized CreditRisk+ setting, we did not

need to specify these factor loadings as we parametrized our final formula with respect

to the IRB model. The latter is derived within a single-factor mark-to-market Vasicek

model that is closest in spirit to KMV Portfolio Manager, the actuarial counterpart of

which is a two-state CreditMetrics approach. Thus, to compare our GA results with the

simulation results, we use a factor transformation relating the gamma distributed factor

X in CreditRisk+ to the standard normally distributed risk factor Y in CreditMetrics. In

the latter model, the systematic risk factor is weighted with the asset correlation ρn for

obligor n, i.e., the conditional default probability is

PDn(Y ) = P({√
ρn · Y +

√
1 − ρn · ǫn ≤ Cn}) (1.5.2)

where ǫn denotes the standard normally distributed idiosyncratic shock and Cn denotes

the default threshold of obligor n, which is given by Φ−1(PDn).

Following the methods used in Gordy (2000), we compare the two models by their fac-

tor distributions and conditional default probabilities, and not in terms of matching the

first moments of the loss distributions. Hence, the problem to be solved is to find a

parametrization such that the conditional default probabilities in CreditRisk+ and Cred-

itMetrics agree. As shown in Gordy (2000), the variance V CreditMetrics
n of the default

probabilities PDn(y) conditional on the systematic risk factor Y = y is given by

V CreditMetrics
n = V[PDn(y)] = Φ2(Cn, Cn, ρn) − PD2

n (1.5.3)

where Φ2(·, ·, ρ) is the bivariate standard normal cumulative distribution function with

correlation ρ. In CreditRisk+, the variance of the default probability is given by

V CreditRisk+

n = V[PDn ·(1 − wn + wnx)] = (PDn ·wn ·
√

1/ξ)2. (1.5.4)

Matching the variances of the default probabilities of both models leads to

Φ2(Cn, Cn, ρn) − PD2
n = (PDn ·wn ·

√
1/ξ)2 (1.5.5)

and thus

wn =

√
ξ · Φ2(Cn, Cn, ρn) − PD2

n

PD2
n

. (1.5.6)
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We used this relation to specify the factor loadings in the computation of the simulated

GA.

For the comparison analysis between the analytical and the simulated GA, we constructed

a sequence of stylized portfolios consisting of 1000 loans.23 The first 100 loans are fully

hedged by external guarantors. The remaining 900 loans are unhedged. All obligors in

the portfolio have a PD of 2%, whereas the guarantors have a PD of 1%. The ELGD for

unhedged exposures as well as for guarantors is assumed to be 45%. For hedged exposures

we follow the IRB treatment of double default effects and set ELGD = 100%. Effective

maturity is set to 1 year. We start with a homogeneous portfolio where all exposures are of

size 1. We then successively increase name concentration risk in the portfolio by increasing

the size of the hedged exposures from 1 to 100 in steps of 10. For these portfolios we

computed the GA by simulating equation (1.5.1) within the above described CreditRisk+

setting. In particular, we compute the factor loadings using relation (1.5.6) and insert for

ρn the asset correlation specified in the IRB approach, which we also use in the analytical

GA computation. The results are summarized in Table 1.2. The simulation study shows

that the analytical GA performs very well for different degrees of exposure concentration.

The GA becomes more accurate as the portfolio becomes more concentrated. For very

homogenous portfolios (where the GA is rather small in absolute terms anyway), the

analytical approximation might slightly overstate the granularity adjustment.

Remark 6 (Simulation of the GA in practice). The simulation of the very rare double

default events and the study of their impact on VaR can be extremely time-consuming,

even for the relatively high default probabilities chosen in the example. To compute the

unconditional VaR of the portfolio loss rate, one has to infer default or survival of any

obligor (and guarantor) from the realization of a Bernoulli random variable. This has to

be done for every realization of the systematic risk factor. It is because of the simple struc-

ture of the considered example portfolio (in particular because there are only two different

exposure sizes) that this process can be simplified. In the example, for every realization of

the systematic risk factor, it suffices to draw two binomial samples instead (for the hedged

and unhedged parts, respectively). For a realistic portfolio, however, simulation might

not be practicable. This problem is critical even without double default and is a primary

motivation for the analytical approximation used in the IRB approach. Likewise, and in

particular with double default, it motivates the analytical approximation of the GA.

23The choice of the portfolios is motivated in Remark 6.
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Table 1.2: Analytical and simulated GA

Size of hedged exposures Analytical GA (in %) Simulated GA (in %)

1 0.11 0.08 (0.02)
10 0.10 0.07 (0.01)
20 0.14 0.10 (0.01)
30 0.17 0.15 (0.02)
40 0.20 0.18 (0.02)
50 0.22 0.19 (0.01))
60 0.24 0.22 (0.02)
70 0.25 0.23 (0.02)
80 0.26 0.23(0.02)
90 0.27 0.25 (0.02)
100 0.28 0.27 (0.02)

Table 1.2 shows analytical and simulated GA results for eleven portfolios of 1000 loans each, where

the first 100 loans are hedged by external guarantors and their exposure sizes increase from 1 to 100.

The remaining 900 loans are unhedged and have a constant exposure of size 1. Borrower PDs are 2%

while guarantors have a PD of 1%. ELGDs are set to 45% for unhedged positions and 100% for hedged

positions. The analytical GA in column 2 is computed using equation (1.4.1). The simulated GA is

computed using equation (1.5.1). The means and standard errors in parentheses that are reported in

column 3 are obtained from ten identical runs with m = 2000000 simulation steps each. Effective

maturity is 1 year and the variance parameter ξ in the gamma distribution is set to 0.125.

1.6 Discussion and conclusion to Chapter 1

In this chapter, we derived a granularity adjustment (GA) that accounts for credit risk

mitigation techniques in a very general setting. The derivation of our main result, The-

orem 1, is rather complex because it considers all possible interactions between obligors

and guarantors that can occur in practice. However, it relies on a simple model of dou-

ble default that allows for an analytical solution. Therefore, simulations of the very rare

double default events can be avoided. Moreover, the GA is parsimonious with respect

to data requirements as its inputs are needed for the computation of Pillar 1 regulatory

capital under the IRB approach anyway. This is a very important quality since the data

inputs can pose the most serious obstacle for practical application. Thus, our general GA

formula is very well suited for application under Pillar 2 of Basel II.

Let us now discuss the underlying assumptions of our main result, formula (1.4.1), in

more detail. Here, we will focus only on the assumptions related to the treatment of

double default effects in the GA. For a discussion of the general assumptions of the GA

methodology we refer the reader to Gordy and Lütkebohmert (2007) and Lütkebohmert

(2009). The latter also contains a comparison with related approaches.
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Our model of double default effects is based on the assumption that the loss rate of the

exposure to an obligor that is hedged by a guarantor is given by the product of the

individual loss rates, which are assumed to be independent conditional on the systematic

risk factor. Thus, we implicitly assume that the obligor’s default (triggering the guarantee

payment) is not an excessive burden to the guarantor. The same problem arises in the IRB

treatment of double default effects. To mitigate it, conditions on obligors and guarantors

can be imposed in order to qualify for their hedging relationship to be accounted for; see

Basel Committee on Banking Supervision (2005) and Grundke (2008) for a discussion of

the conditions).

The IRB treatment of double default effects further assumes some additional correlation

since the obligor and its guarantor are correlated not only through the systematic risk

factor but also through an additional factor. It should be noted, however, that correlation

cannot capture the asymmetry in their relationship, i.e., the guarantor should suffer much

more from the default of the obligor than vice versa. Therefore, we argue that assuming

extra high correlation, as is implied by the dependence on an additional factor in the IRB

approach, is problematic, in particular, when there is direct exposure to the guarantor.

Given the default of the guarantor, this would imply a higher probability of default for the

obligor, which does not seem to be empirically justified. A better approach, in our opinion,

would be to increase the guarantor’s unconditional default probability appropriately as

this also captures the above-mentioned asymmetry. Such an asset drop model will be

developed the next chapter. Within a simple structural model of default, Grundke (2008)

shows that the additional correlation of 0.7 fixed in the IRB treatment of double default

effects approximately corresponds to an increase of 100% in the guarantors unconditional

probability of default.

We further note that, under the ASRF model that underpins Basel II, one must be careful

when introducing additional correlation between obligors in the portfolio. The exposure

shares of obligors that are correlated through more than the common risk factor must

be sufficiently small. This is because, otherwise, the asymptotic result underlying the

computation of portfolio VaR under the ASRF model breaks down; see Gordy (2003,

p. 209) for further details. This might be the case if, for example, several loans in the

portfolio are guaranteed by a large insurance company and, in particular, if there is direct

exposure to that guarantor. This problem is not addressed in Basel Committee on Banking

Supervision (2005).

As our GA formula is parametrized to achieve consistency with the IRB approach, one
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could also argue for computing the GA with double default effects in a two-step approach,

where, in a first step, we compute the GA without considering double default effects (and

obtain the result of Gordy and Lütkebohmert (2007): that is, equation (1.2.15)). In a sec-

ond step, we could then compute the UL capital requirement KDD
n for a hedged obligor n

as in the IRB treatment of double default effects, and insert this parameter instead of Kn

in the GA formula. This two-step procedure, however, essentially ignores any interaction

of the guarantor with the rest of the portfolio. That is, it even ignores the common depen-

dence induced by the systematic risk factor. Hence, roughly speaking, under a two-step

approach the computation of EL and UL for a given portfolio and the computation of the

GA are solved separately (rather than jointly) and then are put together naively. This,

of course, implies a fairly easy derivation, however, with the shortcoming of missing any

mathematical justification.

In contrast to this procedure, the bottom-up approach we used to derive the GA given by

formula (1.4.1) incorporates double default effects right in the beginning. More precisely,

our treatment of double default effects enters the model setup (the portfolio loss distribu-

tion) rather than just the model’s “solution”: the final GA formula. Thus, it avoids the

inconsistencies and disadvantages involved with a two-step procedure. The drawback is

that this fully rigorous derivation is much more complex. In the current case, however,

we saw that the derivation is tractable and even leads to a rather simple (in terms of

parameters) analytical solution that can be implemented easily. This solution correctly

incorporates all the different interactions between obligors and guarantors that can occur.

In the case of our Example 1, the two-step method would lead to a GA of 1.44% of total

exposure, i.e., e 86.40. Thus, the capital reducing effect of the guarantees would be much

lower in this approach than in our rigorous model-based approach.
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Chapter 2

Improved Double Default

Modeling for the Basel Framework

- An Endogenous Asset Drop

Model without Additional

Correlation

2.1 Introduction

In 2005, the Basel Committee made an amendment (Basel Committee on Banking Super-

vision (2005)) to the original New Basel Accord of 2003 (Basel Committee on Banking

Supervision (2003, 2004)) that deals with the treatment of hedged exposures in credit

portfolios.1 In the original New Basel Accord of 2003, within the Internal Ratings Based

(IRB) approach, banks are allowed to adopt a so-called substitution approach to hedged

exposures. Roughly speaking, under this approach a bank can compute the risk weighted

assets for a hedged position as if the credit exposure was a direct exposure to the obligor’s

guarantor. Therefore, the bank may have only a small or even no benefit in terms of

capital requirements from obtaining the protection. Since the 2005 amendment, for each

1Meanwhile the amendment also has been incorporated in a revised version of the 2003 New Basel Accord,
Basel Committee on Banking Supervision (2006). If not noted otherwise, this is the version we refer to
as “Basel II.”
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hedged exposure the bank can choose between the substitution approach and the so-called

double default treatment. The latter, inspired by Heitfield and Barger (2003), takes into

account that default of a hedged exposure only occurs if both the obligor and the guaran-

tor default (“double default”), and thus seems to be more sophisticated and realistic than

the substitution approach.

The recent global financial crisis drastically demonstrated the importance of how to treat

hedged exposures in credit portfolios. However, the literature on the treatment of double

default effects within the computation of economic capital is scarce. This is particularly

true for the literature on the computation of regulatory capital under Basel II. Given that

the former model sets a benchmark for the quantification of minimum capital requirements

for hedged exposures of banks in the European Union, this seems to be unjustified.

There is no doubt that hedging exposures is rather a natural act than a rare exception.

For example, granting loans and transferring the risk afterwards is a typical practice for

a bank. This can be implemented through numerous instruments (referred to as credit

risk mitigation (CRM) techniques in Basel II) such as ordinary guarantees, collateral

securitization, and credit derivatives. The latter comprise, for example, credit default

swaps and bundled credit packages such as credit loan obligations. This is also why CRM

techniques were discussed extensively in Basel II in the first place and why the Basel

Committee chose to improve on the earlier version by introducing the treatment of double

default effects in 2005. After all, through the regulatory treatment of double default

effects, the Basel Committee sets incentives for banks to obtain credit protection. In the

aftermath of the global financial crisis, the Basel Committee is again largely concerned

with making improvements to the treatment of counterparty risk in Basel II in general; see

Basel Committee on Banking Supervision (2009, 2010). However, in these documents and

the related consultative documents, which can be summarized under the term Basel III,

the Basel Committee has not addressed the treatment of double default effects. More

generally, no structural modifications have been made concerning the computation of risk

weighted assets within the IRB approach of Basel II. In this chapter, we motivate and

propose a new methodology to treat double default effects in structural credit risk models.

In particular, we are concerned with the computation of regulatory capital in the IRB

approach of Basel II.2

2As the IRB approach has been part of the Basel II reforms, we speak of our proposed treatment as being
a modification to the IRB approach of Basel II. Of course, our treatment likewise applies to Basel III
as the model underlying the IRB approach has not changed. See also the Introduction to this thesis
for a clarification.
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To motivate our new method, we first review the IRB treatment of double default effects.

While this approach constitutes an important first step in modeling double default under

Basel II, we will show that it also has severe shortcomings. Most importantly, we argue

that imposing additional correlation between obligors and guarantors is unsuitable to

capture their essentially asymmetric relationship appropriately. We also show that this

approach, in general, violates some of the assumptions of the Asymptotic Single Risk

Factor (ASRF) model (see Gordy (2003)), which represents the mathematical basis of

the IRB approach. Furthermore, it is implicitly assumed within the IRB treatment of

double defaults that guarantors are external. That is, it is assumed that there is no direct

exposure to guarantors. It is also assumed that every loan in the portfolio is hedged by a

different guarantor. This leads to underestimation of the associated concentration risk.

The major contribution of this work is a new method to account for double default effects in

the computation of economic capital. It can be used within all structural models of credit

risk and, in particular, in the IRB approach of Basel II. The model does not exhibit any of

the deficiencies we point out for the IRB treatment of double defaults. Instead of modeling

the relationship between an obligor and its guarantor through dependency on an additional

stochastic risk factor, we adjust the guarantor’s default probability appropriately if the

hedged obligor defaults. The model is endogenous as it actually quantifies the increase

of the guarantor’s default probability instead of exogenously imposing a numerical value

as it is done in the IRB treatment of double default effects for the additional correlation

parameters. The idea behind the model is to quantify the size of the downward jump of the

guarantor’s firm value process in case of the obligor’s default which triggers the guarantee

payment. We therefore call this approach an asset drop model. Practical application of

the model is straightforward since it does not require extensive data. Moreover, due to its

simple analytic representation, economic capital can be computed almost instantaneously.

Structural models with (downward) jumps have been considered previously in the litera-

ture, e.g., in the jump diffusion model of Zhou (2001b). Bivariate versions of the latter

were introduced in Zhou (2001a) and Hull and White (2001). These approaches have also

been used to model default dependencies in the counterparty risk literature, in particular

for evaluating the credit value adjustment (CVA) for credit default swaps (CDSs); see,

e.g., Lipton and Sepp (2009), Brigo and Chourdakis (2009), and references therein. In

these models, jumps occur randomly rather than being triggered by a specific event as

in our model. That is, we provide an explanation for the jump time as well as for the

jump size. Moreover, in contrast to our approach, the above-mentioned literature models
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dependencies symmetrically by correlating the asset processes. Most importantly, none of

the papers deals with the computation of regulatory capital.

Parts of the CVA literature (e.g., Pykhtin and Zhu (2007), Gregory (2009), and Pykhtin

(2010)) explicitly focus on the estimation of exposure at default (EAD), i.e., on estimating

the loss in market value when the contract terminates. Similarly, Taplin et al. (2007) and

Valvonis (2008) investigate the credit conversion factor used to account for possible (retail)

overdrafts. This literature can be understood as being complementary to our work, also

in order to consider the price, value, and market risk of a guarantee. Similarly, one could

calculate the refinancing costs that occur if a guarantor defaults and the guarantee should

be reestablished. If a collateral serves as a guarantee, the jump size could be taken as its

expected exposure at default.

Closer to our model is the contagion model of Leung and Kwok (2005). There, upward

jumps in the default intensity of an entity occur whenever another entity defaults. This

allows for an asymmetric dependency structure between obligor and guarantor which has

to be specified exogenously.

While the mentioned literature focuses on the proper pricing of guarantees like CDSs by

evaluating the CVA, our work deals with the impact of guarantees on regulatory capital.

That is, once the guarantee has been obtained (irrespectively of its price, CVA, or current

market value), by how much should credit risk sensitive regulatory capital be reduced?

Although the IRB treatment of double default effects is largely applied in practice, this

question has not been answered so far. To the best of our knowledge, the only paper

that directly addresses the IRB model of double default is Grundke (2008). However, it

is not concerned with the IRB model and the latter’s assumptions, but rather with the

appropriate parameter choices within the model of Heitfield and Barger (2003).

The remainder of the chapter is structured as follows. In Section 2.2, we provide a review

of the IRB treatment of double default effects, and we reveal several severe shortcomings

of the approach. Section 2.3 contains our new asset drop model to account for double

default effects which can be used in structural models of credit risk and, in particular, in

the IRB approach of Basel II. We also implement our method within some examples and

compare the results to the current IRB treatment of double default effects. A discussion

and concluding remarks are given in Section 2.4.
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2.2 Review and discussion of the IRB treatment of double

defaults

Within the IRB approach of Pillar 1 in Basel II, banks may choose between the simple

substitution approach outlined in the Introduction and a double default approach where

risk weighted assets for exposures subject to double default are calculated as follows.3

Assume the exposure to obligor n is hedged by guarantor gn. Within the double default

treatment in the IRB approach, one first computes the unexpected loss (UL) capital

requirement Kn for the hedged obligor n in the same way as the one for an unhedged

exposure4 with LGDn replaced by the loss given default LGDgn of the guarantor. In

the computation of the maturity adjustment, the default probability is chosen as the

minimum of the obligor’s default probability PDn and the guarantor’s default probability

PDgn . Then, the UL capital requirement KDD
n for the hedged exposure is calculated by

multiplying Kn by an adjustment factor depending on the PD of the guarantor, namely

KDD
n = Kn · (0.15 + 160 · PDgn). (2.2.1)

Finally, the risk weighted asset amount for the hedged exposure is computed in the same

way as for unhedged exposures. Note that the multiplier (0.15 + 160 · PDgn) is derived

as a linear approximation to the UL capital requirement for hedged exposures. For the

computation of the latter, i.e., to derive the exact conditional expected loss function for a

hedged exposure, the ASRF framework, which also presents the basis for the computation

of the risk weighted assets in the IRB approach, is used in an extended version. Specifically,

it is assumed that the asset returns rn and rgn of an obligor and its guarantor, respectively,

are no longer conditionally independent given the systematic risk factor X. They also

depend on an additional risk factor Zn,gn which only affects the obligor and its guarantor.

More precisely,

rn =
√
ρnX +

√
1 − ρn

(√
ψn,gnZn,gn +

√
1 − ψn,gnǫn

)
(2.2.2)

where ρn is the asset correlation of obligor n, ψn,gn is a factor specifying the sensitivity

of obligor n to the factor Zn,gn , and ǫn is the idiosyncratic risk factor of obligor n. By

implicitly assuming that all hedges are perfect full hedges, guarantors are themselves not

3See Basel Committee on Banking Supervision (2006), paragraph 284.

4The latter is defined in paragraphs 272 and 273 of Basel Committee on Banking Supervision (2006).
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obligors in the portfolio, and different obligors are hedged by different guarantors, the

joint default probability of the obligor and its guarantor can be computed explicitly as5

P ({default of obligor n} ∩ {default of guarantor gn})

= Φ2

(
Φ−1(PDn),Φ−1(PDgn); ρn,gn

) (2.2.3)

where ρn,gn is the correlation between obligor n and its guarantor gn and Φ2(·, ·; ρ) denotes

the cumulative distribution function of the bivariate standard normal distribution with

correlation ρ. Therefore, the conditional expected loss function for a hedged exposure is

given by

E

[
1l{rn≤cn}1l{rgn ≤cgn } LGDn LGDgn |X

]
= LGDn LGDgn ·

Φ2


Φ−1(PDn) − √

ρnX√
1 − ρn

,
Φ−1(PDgn) − √

ρgnX√
1 − ρgn

;
ρn,gn − √

ρnρgn√
(1 − ρn)(1 − ρgn)




(2.2.4)

for default thresholds cn and cgn for obligor n and its guarantor gn, respectively. One

obtains the IRB risk weight function for a hedged exposure with effective maturity of one

year by inserting Φ−1(0.001) for X, subtracting the expected loss

Φ2(Φ−1(PDn),Φ−1(PDgn); ρn,gn) · LGDn LGDgn , (2.2.5)

and multiplying with 12.5 and 1.06. Since the expected loss should in general be rather

small, in Basel Committee on Banking Supervision (2005) this term is set equal to zero.

Moreover, it is assumed that there are no double recovery effects and thus LGDn = 1.

Within the IRB treatment of double default effects, however, the linear approximation

(2.2.1) of the exact conditional expected loss function (2.2.4) is used which holds for the

parameter values specified before.6

Let us now discuss the assumptions underlying this approach in more detail. First let us

investigate how well correlation in general suits to model the dependency between a guar-

antor and an obligor. Positive correlation implies that default of the obligor makes the

default of the guarantor more likely. This seems very reasonable as the guarantor suffers

from the guarantee payment, and if it is large, it might even drag him into default. Vice

5For more details on the derivation see, e.g., Grundke (2008, pp. 40-41).

6Grundke (2008) explains this approximation in greater detail and illustrates its accuracy. For a com-
prehensive and more detailed overview of the double default treatment we refer to his paper and the
original paper by Heitfield and Barger (2003).
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versa, however, it seems neither theoretically nor empirically justified that the default of

the guarantor implies a similar pain to the hedged obligor.7 Note that the obligor, in gen-

eral, will not even know whether the bank that granted the loan obtained credit protection

at all. And if so, the obligor will not know the name of the guarantor. Essentially, for

the hedged obligor, the pain from the default of the guarantor should not be heavier than

the pain from the default of any other firm in the economy. It will influence the default

probability of the obligor only through shifts in the state of the systematic risk factor. As

correlation necessarily introduces a symmetric dependency between two random variables,

it can never capture the asymmetric relationship that holds between a guarantor and an

obligor.

Before we continue, let us consider a case where modeling the dependency between a

guarantor and an obligor symmetrically could be justified. Suppose, first, there is no

direct exposure to guarantors and, second, every guarantor hedges exactly one position

in the portfolio. In this case, one is interested in the double default, but not specifically

in the default of the guarantor. The unconditional dependence of the guarantor with

the rest of the portfolio is ignored, but this can be compensated perfectly by choosing

the additional correlation sufficiently high. Essentially, in that case the obligor and its

guarantor (that interacts with the obligor and nobody else) constitute a conditionally

independent unit in the portfolio. Then, correlation can be used reasonably to model the

default dependency between the obligor and its guarantor. The default event of obligor 1

can be simply replaced with the less likely double default event.

The IRB treatment of double default effects simply makes no distinction, whether or not

a guarantor is itself an obligor in the portfolio or if it guarantees for several obligors. The

implicit approach undertaken in the IRB model for any hedging constellation is the one

just explained.

If one of the two assumptions above is violated, then application of the IRB treatment of

double default effects is no more rigorous. When applying the IRB treatment of double

defaults, the interactions of each guarantor with the rest of the portfolio are ignored. To

be more precise, if the guarantor itself is in the portfolio, it would be treated as any other

obligor in the portfolio, i.e., conditionally independent from the obligor it guarantees for.

Its expected loss is computed as if it was not involved in a hedging relationship, i.e., with

an unchanged default probability and a correlation parameter as used for obligors rather

7For a discussion of wrong-way risk and the market risk of guarantees see Remark 8 at the end of this
section.
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than for guarantors. If a guarantor hedges several positions, this problem becomes even

more severe. Moreover, this implies that excessive contracting of the same guarantor is

not reflected in the computation of economic capital.

Further, note that the IRB treatment of double default effects is generally unsuited

to deal with the above situations because of the additional correlation assumption. If

the guarantor is itself in the portfolio, its default will significantly increase the default

probability of the obligor, what is an unappreciated consequence as mentioned before. If,

on the other hand, the guarantor hedges more than one obligor, say 3 hedges 1 and 2,

then the default of 1 increases the guarantor’s default probability which itself increases

the default probability of 2. That is, 1 and 2 are no more conditionally independent

because they share the same “contagious” guarantor. In general, this seems to be very

unreasonable as there need not be any business relationship between 1 and 2, or there

even might be a negative relationship between them such that default of 1 should ac-

tually decrease the default probability of obligor 2.8 Thus, we conclude that the IRB

treatment of double default effects can only be used reasonably if every obligor in the port-

folio has a different guarantor and if there is no direct exposure to any of these guarantors.

Remark 7 (Consistency with the ASRF model). From a theoretical or mathematical

point of view, the introduction of additional correlation within the IRB approach leads

to some problems as a main assumption underlying this framework is violated. Suppose

that a guarantor hedges several obligors or that a guarantor is internal in the sense that

there is also direct exposure to the guarantor. In this case, additional correlation violates

the conditional independence assumption on which the ASRF model is based. Conditional

independence between the obligor loss variables, however, is required because the ASRF

model relies on a law of large numbers. Let us mention here, however, that the violation

of the conditional independence assumption underlying the ASRF model will essentially

occur in any approach that correctly accounts for interactions resulting from double default

effects. In this situation, the asymptotic result used in the approximation of value-at-risk

αq(L) of the portfolio loss by the expected portfolio loss E[L|αq(X)] conditional on the

quantile αq(X) of the systematic risk factor only holds when the hedged exposure shares

and the direct exposure shares to guarantors are sufficiently small.

Finally, let us also mention another deficiency of the IRB treatment of double default

8Similarly to the argument before, also note that 1 and 2 will not know wether there is a guarantor. And
if so, they will not know who it is.
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effects which is highly relevant for practical applications. It concerns the parameter

choice of the conditional correlation parameters. While not questioning the assumption

of imposing additional correlation between an obligor and its guarantor in general, in a

recent and long overdue empirical study, Grundke (2008) investigates the numerical values

of the correlation parameters ρgn = 0.7 and ρn,gn = 0.5 set by the Basel Committee.

To this end, he reviews empirical studies on default correlation and further initiates

new simulation studies, which yield rather different results. While the empirical studies

he considers imply that the parameters are chosen overly conservative, the simulation

experiments “show that the assumed values are not unrealistic for capturing the intended

effects.”9 He also notes that the appropriateness of the parameter choice actually depends,

for example, on the size of the guarantor and the amount guaranteed. Within the IRB

treatment of double default effects, correlation parameters are independent of these

quantities. Implicitly this means, for instance, that a small bank and a large insurance

company would suffer equally from any guarantee payment.

Remark 8 (Wrong-way risk). It might be argued that not the obligor, but the bank whose

regulatory capital we aim to compute will be affected by the guarantor’s default. This

phenomenon, sometimes referred to as wrong-way risk, might be due to a loss in market

value of the defaulted hedging product. For example, if the bank decides to obtain a new

guarantee, this loss in market value had to be realized immediately as replacement costs.

It should be clear, however, that this effect will not justify a symmetric dependency struc-

ture.10 Moreover, we propose not to dilute this effect with the Pillar 1 capital requirements.

Also in the current treatment of double default effects within the IRB approach, the price

or market value of guarantees is not reflected, and this seems well justified. Given the

existence of a guarantee, the bank should benefit from smaller capital requirements (de-

pending on the quality of the guarantee). If there is no guarantee (or of it has defaulted),

it should not. Price, market value, or possible replacement costs of the guarantee should be

reflected on the market risk side. The CVA literature mentioned in the introduction offers

appropriate tools for its risk assessment.

9See Grundke (2008, p. 58).

10Within the model we will propose it is straightforward to incorporate such a reverse feedback effect while
still having some asymmetry. This can be achieved, e.g., by introducing an additional drop in the asset
value of the obligor by the market value of the hedging product.
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2.3 The asset drop technique as an alternative approach

In this section, we will present an alternative method to account for double default ef-

fects in credit portfolios that does not rely on additional correlation between obligor and

guarantor. It does capture their asymmetric relationship, i.e., that the guarantor should

suffer much more from the obligor’s default (triggering the guarantee payment) than vice

versa. Further, our method distinguishes the case where there is direct exposure to the

guarantor from the case where the guarantor is external to the portfolio. Furthermore, we

properly treat the situation where a guarantor hedges several obligors.

Instead of modeling the relationship between guarantor and obligor through dependency

on an additional stochastic risk factor, we adjust the guarantor’s default probability ap-

propriately if the obligor defaults. Our model is endogenous as it actually quantifies the

increase in the guarantor’s default probability instead of exogenously imposing numeri-

cal values as it is done in case of the additional correlation parameters ρn,gn in the IRB

treatment of double default effects. The increase in the guarantor’s default probability in

our new approach depends on the size of the guarantee payment as well as on the size

of the guarantor measured in terms of its asset value. The method is very well suited

for practical applications as it does not pose extensive data requirements. Moreover, due

to the simple analytical representation of economic capital when incorporated in the IRB

model, it can be computed almost instantaneously.

2.3.1 Methodology

Within a structural model of default, the guarantee payment that occurs to the guarantor

corresponds to a downward jump in its firm value process or, equivalently, in the firm’s

asset return. This causes the unconditional default probability to increase by a growth

factor (1 + λn,gn). This qualitative observation can be found in Grundke (2008, p. 53).11

To illustrate the idea of the approach, let us first consider the simple case where obligor 1 is

hedged by a guarantor, g1, which is external to the portfolio. That is, the guarantor is itself

not an obligor in the portfolio. We want to quantify the impact of obligor 1’s default on the

guarantor’s unconditional default probability. In the current situation, the default of the

11In order to assess the conservativeness of the parameter choices for the additional correlation in the
treatment of double default effects in the IRB approach, Grundke shows that the additional correlation
approximately translates into an increase of 100% in the guarantor’s unconditional PD . In principle, one
could use Grundke’s calculation to (numerically) obtain individual additional correlation parameters
from our estimate of λn,gn

.

46



guarantor is only of interest if obligor 1 defaults as well. If solely the guarantor defaults,

there is no loss as there is no direct exposure to the guarantor. Thus, our objective is to

compute the guarantor’s (increased) default probability when the hedged obligor already

has defaulted such that the guarantee payment has been triggered. The loss due to the

guarantee payment may cause the guarantor’s default or may make it more likely. For

simplicity and for consistency with the IRB approach, we illustrate the method within an

extension of the model of Merton (1974). However, in principle, our new approach can

also be applied in more sophisticated structural credit risk models which are, e.g., driven

by Lévy processes.

In the IRB approach, we consider a two-period model with a 1-year horizon where time

t is today and T refers to one year in the future. Our input parameters are the initial

firm value Vg1(t) of the guarantor g1, i.e., the firm’s value at time t, which is taken, e.g.,

from the balance sheet, or inferred from the current stock price, as well as an estimate

of its volatility σg1. We further need the (non-portfolio specific) default probability PDg1

that could be obtained from a rating agency or from an internal model and the risk-free

interest rate r. In Merton’s model, it is assumed that the asset value process of guarantor

g1 follows a geometric Brownian motion of the form

Vg1(T ) = Vg1(t) · e(µg1 − 1
2

σ2
g1

)(T −t)+σg1 WT −t (2.3.1)

where WT −t is a standard Brownian motion and Bg1 is the guarantor’s debt value. Un-

der the risk-neutral measure, one then obtains the unconditional default probability of

guarantor g1 as

PDg1 = P(Vg1(T ) < Bg1) = 1 − Φ

(
ln (Vg1(t)/Bg1) + (r − 1

2σ
2
g1

)(T − t)

σg1

√
T − t

)
. (2.3.2)

From this, one can compute the default threshold Bg1 of guarantor g1 implied by Merton’s

model as

Bg1 = Vg1(t) · exp

(
−Φ−1(1 − PDg1) · σg1

√
Tt +

(
r − 1

2
σ2

g1

)
(t− t)

)
. (2.3.3)

Figure 2.1 illustrates the mechanism of the Merton model.12

Our asset drop model represents an extension of Merton’s model. If obligor 1 defaults, this

12The illustrations in Figures 2.1 and 2.2 have been kindly provided by John O’Keefe who discussed an
earlier version of this work at the Australasian Banking and Finance Conference 2009.
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Figure 2.1: Probability of default in the Merton model

The asset value process Vt follows a geometric Brownian motion such that the log asset-returns

are normally distributed with mean E[ln VT ] at maturity T. If the asset value at maturity falls

below the value of the firm’s liabilities B, the firm will default.

corresponds to a drop in the asset value Vg1 of the guarantor by the nominal Ê1,g1 that g1

guarantees for obligor 1.13 Hence, we model the asset value process of the guarantor g1 as

Vg1(T ) = Vg1(t) · e(µg1 − 1
2

σ2
g1

)(T −t)+σg1 WT −t − Ê1,g1 · 1l{V1(T )≤B1}. (2.3.4)

Thus, our model represents a jump-diffusion model in the sense that the jump time is

determined by the stopping time 1l{V1(T )≤B1}, i.e., by the default time of obligor 1 triggering

the guarantee payment. Moreover, the jump size is deterministic and given by the nominal

Ê1,g1 that g1 guarantees for obligor 1. We refer to this type of model as a Bernoulli mixture

model.14 The guarantor defaults with the increased probability PD′
g1

when the guarantee

13At this point, it can be seen that the model is, in principle, capable to capture also other dependencies
such as business-to-business relationships. For example, if it is known that the guarantor has a direct
claim of E1,g1

to obligor 1, it might be reasonable to continue the computation with the higher asset
drop Ê1,g1

+ E1,g1
. To appropriately treat risky collateral, Ê1,g1

could be taken as expected exposure
at default.

14Note that a classical jump diffusion model as, e.g., in Zhou (2001b) is not suitable to model double
default effects for the following reason. In that model, jumps are driven by a Poisson process with
intensity λ, and the jump amplitude is stochastic as well. The main idea of our double default model
is that we explicitly model the time when the asset value drops, i.e., jumps downward. Therefore, we
consider the default time of the obligor that is hedged. This then leads to a Bernoulli-mixture model
as stated above. Moreover, in our setting, the jump amplitude is deterministic as the amount that is
guaranteed should be known in advance.
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payment has been triggered, i.e., under the risk-neutral measure the increased default

probability of g1 is given by

PD′
g1

= P (Vg1(T ) ≤ Bg1 |V1(T ) ≤ B1)

= P

(
Vg1(t) · e(r− 1

2
σ2

g1
)(T −t)+σg1 WT −t − Ê1,g1

)

= 1 − Φ




ln

(
Vg1 (t)

Bg1 +Ê1,g1

)
+
(
r − 1

2σ
2
g1

)
(T − t)

σg1

√
T − t


 .

(2.3.5)

Similarly, the guarantor defaults with the probability PDg1 if obligor 1 survives, i.e.,

PDg1 = P (Vg1(T ) ≤ Bg1|V1(T ) ≥ B1)

= P

(
Vg1(t) · e(r− 1

2
σ2

g1
)(T −t)+σg1 WT −t

)

= 1 − Φ




ln (Vg1(t)/Bg1) +
(
r − 1

2σ
2
g1

)
(T − t)

σg1

√
T − t


 .

(2.3.6)

Figure 2.2 illustrates the functioning of our new asset drop approach. In particular, it

shows how the guarantor’s PD increases when the guarantee payment has been triggered.

Note that Bg1 is the default threshold of guarantor g1 in case the hedged obligor 1 has not

defaulted. Thus, Bg1 can be computed from the guarantor’s observed rating according to

the classical Merton model by equation (2.3.3). Thus, we can compute the increased PD′
g1

of the guarantor due to the obligor’s default using equations (2.3.3) and (2.3.5). This

then provides an analytic formula for the unconditional default growth rate λ1,g1 , i.e., the

relative increase of the guarantor’s default probability due to the hedged obligor’s default.

It is defined as

λ1,g1 =
PD′

g1
− PDg1

PDg1

(2.3.7)

such that

PD′
g1

= PDg1 · (1 + λ1,g1). (2.3.8)

We now illustrate how this approach can be incorporated in the IRB model for the compu-

tation of economic capital. The probability distribution of the loss variable L1 of obligor

1 is in our setting given by

P(L1 = l) =





PD′
g1

PD1 for l = s1 LGDg1

(1 − PD′
g1

) PD1 +(1 − PD1) for l = 0.
(2.3.9)

In order to respect double recovery effects, LGDg1 could be multiplied by LGD1 . How-
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Figure 2.2: Probability of default in the asset drop model

The asset value process Vt follows a Bernoulli-mixture model of the form (2.3.4) such that

the asset value of the guarantor drops by the guarantee’s nominal Ê1,g1
in case the hedged

obligor defaults. Otherwise, the asset value of the guarantor is log-normally distributed with

mean E[ln VT ] at maturity T. If the hedged obligor has defaulted and if the asset value of the

guarantor at maturity falls below the value of the firm’s liabilities B plus the guarantee’s nominal

Ê1,g1
, the guarantor will default as well. Hence, the default of the hedged obligor leads to an

increase in the guarantor’s default probability.

ever, for several reasons, double recovery is not reflected in the current Basel II frame-

work. Therefore, also in the following we always set LGD1 = 1 such that only re-

covery of the guarantor is accounted for. Then, the expected loss for obligor 1 is

E[L1] = s1 LGDg1 PD1 PD′
g1
, and the expected loss conditional on a realization xq of

the systematic risk factor X is

E[L1|xq] = s1 LGDg1 PD1(xq) PD′
g1

(xq)

where the conditional PDs are computed as in the IRB approach by

PD1(X) = Φ

(
Φ−1(PD1) − √

ρ1X√
1 − ρ1

)

and analogously for PD′
g1
. Hence, the unexpected loss capital requirement K1 for the
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hedged exposure s1 is15

K1 = LGDg1(PD1(xq) PD′
g1

(xq) − PD1 PD′
g1

).

Hence, to compute the IRB capital charges for the hedged exposure to obligor 1, one

simply inserts the double default probability PD′
g1

PD1 instead of PD1 in the formula for

the IRB risk weight functions.

Remark 9 (Convexity of effective guarantor PD). By taking derivatives in equations

(2.3.3) and (2.3.5), it can be shown that PD′
g is convex in the guarantee nominal. This

convexity sets an incentive for banks to contract several distinct guarantors for various

loans. Suppose, for example, there are two identical loans and two guarantors with exactly

the same characteristics. Then, the overall increase in default probability is smaller if

each guarantor is contracted for one of the loans compared to when one guarantor is

chosen to guarantee both loans. Thus, also the bank’s economic capital will be smaller if

it diversifies its guarantor risk. In particular, as will be shown explicitly in Example 2,

excessive contracting of the same guarantor will significantly increase economic capital.

This definitely is an appreciated consequence from a regulatory point of view. However,

the effect is not reflected in the current treatment of double default effects within the IRB

approach. Under that approach, economic capital does not depend on whether a hundred

loans are hedged by one single guarantor, or whether every loan is hedged by one out of a

hundred different guarantors.

Example 2 (Computation of effective PD with the asset drop technique). Consider two

medium-sized banks, g1 and g2, which according to their balance sheets have total asset val-

ues of Vg1(t) = 50 and Vg2(t) = 10 billion Euros, respectively. Both firm value volatilities

are estimated to be σ2
g1

= σ2
g2

= 30%. Assume both to have the same rating which translates

into an unconditional default probability of PDg1 = PDg2 = 0.5%. The market’s risk-free

interest rate is r = 0.02%. Assume a 1-year time horizon. Using formula (2.3.3), we can

compute the implicit default threshold for the larger bank in the Merton model and obtain

Bg1 = 22.517.068 billion Euros. Likewise, for the smaller bank, we obtain Bg2 = 4.502.414

billion Euros. Figure 2.3 shows the effective default probabilities PD′
g1

and PD′
g2

of the

two banks as a function of the expected guarantee payment Ê1,g1 ≡ Ê1,g2. These have been

computed with the asset drop technique according to equation (2.3.5). When the expected

guarantee payment is, e.g., 400 million Euros, then the effective default probability of

the smaller bank would be PD′
g2

= 1.09%, which corresponds to an increase by a factor

(1 + λ1,g2) = 2.19, i.e., λ1,g2 = 1.19. This means that a financial institution which has no

15The Basel II economic capital for the hedged exposure 1 is obtained by multiplying K1 with the scaling
factor 1.06 and the maturity adjustment MA1 where we insert PD1 PD′

g1
instead of PD1 .
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Figure 2.3: Effective PD computed with the asset drop technique

Figure 2.3 shows the effective guarantor default probability PD′

gn

= PDgn
(1 + λn,gn

) for two

banks as a function of the expected guarantee payment Ên,gn
. For a large bank (diamond

line) the graph is moderately increasing, and a guarantee payment of 1600 million Euros would

roughly double its initial default probability. For a smaller bank (square line) the initial default

probability already doubles when it has to make a payment of 275 million Euros. From this

graph we also see the convexity of the relationship. This implies higher capital requirements if

the same guarantor is used for several transactions.

direct exposure to g2 and which buys protection from the latter for its 400 million exposure

to obligor 1 will use this increased default probability when computing its economic capital

due to obligor 1. This is intuitive as g2’s default is only of interest when obligor 1 already

has defaulted. For the larger bank the guarantee payment corresponds to a less significant

loss. Its effective PD would only increase by a factor (1 + λ1,g1) = 1.18 to PD′
g1

= 0.59%.

Note also that the relationship is convex as already mentioned in Remark 9. Also note

from equations (2.3.3) and (2.3.5) that the increase in PD is scale invariant with respect

to the firm size and the loan nominal. Thus, for example, a true global player with 100

times the firm size of the large bank considered here could guarantee 100 times as much

as the large bank while suffering from the same increase in PD .

2.3.2 Generalizations

Let us now consider the more complicated case where there is direct exposure to the

guarantor. Denote the exposure share of obligor 1 by s1 and assume that it is fully hedged

by guarantor g1. Denote the direct exposure share to the guarantor by sg1. In this case,
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we also have to focus on the default of the guarantor itself, i.e., a loss also occurs if the

guarantor defaults and the hedged obligor survives. In this situation, in a sense, there are

two appropriate default probabilities of the guarantor. If obligor 1 already has defaulted,

the default probability of the guarantor is given by PD′
g1
. Otherwise, it is given by PDg1 .

To compute the contribution to economic capital of the hedged obligor and its guarantor

within in the IRB approach, we have to compute the conditional expected loss of both. As

we do not want to reflect double recovery effects (similarly to the treatment in Basel II),

we set LGD1 = 1 for a hedged exposure. The probability distribution of the joint loss

variable L1,g1 of obligor 1 and its guarantor g1 is then

P(L1,g1 = l) =





PD′
g1

PD1 for l = s1 LGDg1

+sg1 LGDg1

PDg1(1 − PD1) for l = sg1 LGDg1

(1 − PD′
g1

) PD1 +(1 − PDg1)(1 − PD1) for l = 0.

(2.3.10)

Note that the increased unconditional default probability PD′
g1

occurs together with PD1,

i.e., with the probability that obligor 1 defaults as in these situations the guarantee pay-

ment is triggered. The first case corresponds to the situation where both the obligor and

the guarantor default, i.e., to the double default case. In the second case, only the guaran-

tor defaults such that only the direct exposure to g1 is lost. The third case comprises the

hedging case, i.e., the obligor defaults and the guarantor succeeds in delivering the guar-

antee payment (although its default probability has increased) and the case where both

the guarantor and the obligor survive. Thus, no loss occurs in this case. The expected

loss can be computed as

E[L1,g1] = PD′
g1

PD1(sg1 LGDg1 +s1 LGDg1)

+ PDg1(1 − PD1)sg1 LGDg1

= sg1 LGDg1

(
PDg1 + PD1 ·(PD′

g1
− PDg1)

)

+s1 LGDg1 PD′
g1

PD1 .

This can be reformulated as

E[L1,g1] = sg1 LGDg1 PDg1(1 + λ1,g1 PD1) + s1 LGDg1 PD′
g1

PD1 . (2.3.11)

The probability that the exposure sg1 in the first term is lost equals the expected default
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probability of the guarantor. The probability that the hedged exposure s1 in the second

term is lost, on the other hand, equals the default probability of the guarantor conditional

on obligor 1’s default. The second term in equation (2.3.11) is the expected loss due to

obligor 1 that only occurs in the situation of double default. This term is the same as in the

case where the guarantor is external. The first term in equation (2.3.11) is the expected

loss due to obligor 2 whose default probability increases if it has to exercise the guarantee

payment. Therefore, the expected loss due to an obligor increases if it is involved in a

hedging activity because its expected PD increases. This fact is ignored in the treatment

of double default effects in the IRB approach since guarantors are implicitly treated as

external.16

The derivation of economic capital for the hedged exposure and its guarantor is obtained

as follows. The conditional expected loss can be obtained as in the model underlying the

IRB treatment of double default effects when there is no additional correlation. Denote

by rn and rgn the log asset return of obligor n and its guarantor gn, respectively. Let the

conditional default probabilities be defined as in the IRB model by

PDn(X) = Φ

(
Φ−1(PDn) − √

ρnX√
1 − ρn

)
(2.3.12)

for n = 1 or g1 and analogously for PD′
g1

(X). Then, in our setting we have

E[L1,g1 |X] = s1 LGDg1 E[1l{r1<c1}1l{rg1 <c′

g1
}|X]

+sg1 LGDg1 E[1l{rg1 <cg1}1l{r1≥c1} + 1l{rg1 <c′

g1
}1l{r1<c1}|X]

= s1 LGDg1 PD1(X) PD′
g1

(X)

+sg1 LGDg1

(
PDg1(X)(1 − PD1(X)) + PD′

g1
(X) PD1(X)

)

(2.3.13)

where we again neglected double recovery effects. Note that the loss variables for s1

and sg1 in the above equation are stochastically dependent conditional on X. Thus,

approximating the value-at-risk αq(L) by the conditional expected portfolio loss as it

is done in the IRB approach only makes sense within a double default treatment when

the hedged exposure shares and the direct exposure shares to guarantors are sufficiently

small; see Remark 7 for more details.

Partial hedging and the case where a guarantor hedges multiple obligors in a portfolio can

16Note, again, that under the IRB approach it would not be reasonable to take into account direct exposure
to a guarantor as the additional correlation would induce an unrealistic dependency between obligor
and guarantor.
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be approached with the same technique just presented, and the results are straightforward.

A detailed treatment of these situations under Pillar 2 of Basel II has been presented in

the previous chapter.

Example 3 (Comparison of EC computed with the IRB treatment of double default

effects and with the asset drop technique). Consider a portfolio with N = 110 obligors.

The first n = 1, . . . , 10 loans in the portfolio are hedged by guarantors 101, . . . , 110 who

also act as obligors in the portfolio. Assume the exposures to equal EADn = 1 for all

n = 1, . . . , 110. The PDs are assumed to be 1% for n = 1, . . . , 100, and 0.1% for the

guarantors n = 101, . . . , 110. As in the IRB approach, let LGDs be 45% for all unhedged

obligors n = 11, . . . , 110. Hedged exposures are assigned an LGD of 100% in order to

neglect double recovery effects, i.e., LGDn = 100% for n = 1, . . . , 10. We assume an

effective maturity of M = 1 year for all obligors and guarantors in the portfolio. Value-at-

risk is computed at the 99.9% percentile level. The IRB treatment of double default effects

yields an economic capital of 5.40% of total exposure.17 This is lower than the value

obtained when neglecting double default effects entirely, which equals 5.79%. Denoting by

xq the qth percentile of the systematic risk factor X, we calculated the IRB capital with

the asset drop technique as

10∑

n=1

sn LGDgn

[
PDn(xq)P̃D

′
gn

(xq)) − PDn PDgn(1 + λn,gn)
]

+
100∑

n=11

sn LGDn (PDn(xq) − PDn)

+
110∑

n=101

sgn LGDgn

[
PDgn(xq) · (1 − PDn(xq)) + PD′

gn
(xq) PDn(xq)

− PDgn(1 + PDn ·λn,gn)
]
.

(2.3.14)

In the above equation, P̃D
′
gn

(xq) denotes the conditional increased default probability for

the guarantor computed via equation (2.3.12) with PD equal to PDgn(1 + λn,gn) and asset

correlation parameter ρ set to 0.7. The latter value is the increased correlation parameter

chosen in the IRB treatment for exposures subject to double default. Although the choice of

this parameter might be questionable, it is used here for reasons of better comparability of

our model with the IRB treatment of double default effects. Figure 2.4 shows the influence

of the parameter λ through the increased default probability PD′
gn

= PDgn(1 + λ) of the

guarantor on the IRB capital computed within the asset drop approach. Here we chose

a constant level of λ for all hedged obligors in the portfolio. With increasing λ the IRB

capital also increases. This is very intuitive because higher values of λ mean that the

17This computation is based on the approximation in equation (2.2.1) as this is the one applied in practice.
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Figure 2.4: Influence of increased guarantor PD on EC

Figure 2.4 shows the influence of the parameter λ through the increased guarantor default

probability PD′

gn

= PDgn
(1 + λn,gn

) on regulatory capital computed within the asset drop

model. λ increases from 0.0 to 5.0 leading to an increase in EC from 5.34% to 5.61% of total

portfolio exposure. For λ = 0.7 (PD′

gn

= 0.17%), the asset drop model leads to the same

EC = 5.40% as the IRB treatment of double defaults.

expected default probabilities of the guarantors increase. This obviously results in higher

capital requirements. For λ = 0.7 (PD′
gn

= 0.17%), our new asset drop method leads to the

same economic capital as the one computed within the IRB treatment of double defaults,

i.e., EC = 5.40% of total portfolio exposure.

2.4 Conclusion to Chapter 2

In this chapter, we pointed out several severe problems of the treatment of double default

effects applied under Pillar 1 in the Basel framework’s IRB approach. Our main criticism is

that this treatment relies on the assumption of additional correlation between obligors and

guarantors. Thus, it fails to model their asymmetric dependence structure appropriately,

i.e., that the guarantor should suffer much more from the obligor’s default triggering the

guarantee payment than vice versa. The particular choice for the additional correlation

parameter is the same for all obligors and guarantors, and it remains entirely unclear

how specific guarantor and obligor characteristics could be reflected in this parameter.
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Further, all guarantors are treated as distinct for different obligors, and are assumed to

be external to the portfolio. Thus, if there is direct exposure to guarantors or if several

obligors have the same guarantor, then additional dependencies and concentrations in the

credit portfolio are ignored. Hence, excessive contracting of the same guarantor is also

not reflected in the computation of economic capital.

To overcome these deficiencies, we proposed a new approach to account for double default

effects that can be applied in any model of portfolio credit risk and, in particular, under

the IRB approach. It is easily applicable in terms of data requirements and computational

time. Specifically, compared to the model of Heitfield and Barger (2003) underlying the

IRB treatment of double defaults, we require in addition the total values of the firms’

assets, which can be directly inferred from the balance sheets; this should not be too

much of a burden for any bank. Moreover, it should be obvious that these quantities

should be reflected in any good model of double default.

In spite of its simplicity, our new approach does not show any of the above-mentioned

shortcomings, and thereby better reflects the risk associated with double defaults. The

model endogenously quantifies the impact of the guarantee payment on the guarantor’s

unconditional default probability. Within a structural model of portfolio credit risk, the

guarantor’s loss due to the guarantee payment corresponds to a downward jump in its

firm value process. The jump size is determined endogenously by the underlying assumed

credit risk model. This new asset drop technique could also be used to model other

dependencies within a conditional independence framework such as, for example, default

contagion effects through business-to-business dependencies.
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Part II

On Higher-Order Risk Preferences





Chapter 3

Moment Characterization of

Higher-Order Risk Preferences

3.1 Introduction

It is well known that risk aversion only partially describes individuals’ risk preferences.

Numerous behavioral traits stem from higher-order risk preferences such as prudence or

temperance. The most prominent one is that prudence is necessary and sufficient for

a precautionary savings motive. That means, the awareness of uncertainty in future

payoffs such as income raises an individual’s optimal saving today. Although the term

“prudence” was coined by Kimball (1990), its relationship to saving behavior was noted

earlier by Leland (1968) and Sandmo (1970). Since then, a large body of literature on the

behavioral implications of higher-order risk preferences has emerged. An overview with a

focus on prudence will be given in the next chapter.

These predictions are derived from models based on expected utility theory (EUT). Under

EUT, assuming differentiability of a utility function u (as we do throughout this treatise),

risk aversion, prudence, and temperance are equivalent to u′′ < 0, u′′′ > 0 and u(4) < 0,

respectively. More generally, Ekern (1980) defines a decision maker as being nth-degree

risk averse if and only if sgn(u(n)) = (−1)n+1. Prudence, for example, is also widely

assumed because it is necessary (but not sufficient) for decreasing absolute risk aversion. In

this spirit, nth-degree risk aversion for some order n often serves as a necessary condition

for numerous stronger preference specifications such as proper risk aversion (Pratt and

Zeckhauser (1987)) and standard risk aversion (Kimball (1993)). It is important to note

that “all the commonly used utility functions” exhibit nth-degree risk aversion for all n;
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see Brockett and Golden (1987). Thus, it is interesting to study this property that has

been labeled mixed risk aversion by Caballé and Pomansky (1996).

We study nth-degree risk aversion and mixed risk aversion by using a novel approach

based on the proper risk apportionment model of Eeckhoudt and Schlesinger (2006). They

give another definition of nth-degree risk aversion as a preference over lotteries and show

equivalence to Ekern’s definition. The lottery preferences can be interpreted as the de-

sire to disaggregate unavoidable risks and losses, i.e., to apportion them properly across

different states of nature. These lotteries allow for studying risk attitudes outside EUT.

Furthermore, one can exploit the simplicity of defining risk preferences via proper risk

apportionment for both theoretical and empirical purposes.1 Also, the remarkable equiv-

alence between the lottery preferences and nth-degree risk aversion motivates the study

of their statistical properties.

In this chapter, we compute all moments of the proper risk apportionment lotteries of

all orders. Thus, we actually present a characterization of the lotteries and, implicitly,

of higher-order risk preferences. This is because the sequence of moments uniquely de-

termines the distribution of a bounded random variable.2 The characterization provides

insights into the statistical structure of the proper risk apportionment model and why a

preference over relatively simple lotteries can imply nth-degree risk aversion. Most inter-

estingly, it provides a better understanding of the relationships between higher-order risk

preferences, skewness preference, and kurtosis aversion. Since the notions of skewness and

kurtosis refer to moments, these results should be accessible to a wide audience. Here it

should be noted that preference implications based on a finite number of moments are

generally flawed; see Brockett and Kahane (1992) and Brockett and Garven (1998). We,

however, relate higher-order risk preferences to the strong notions of skewness and kurtosis

referring to all odd and even moments, respectively. While none of our results is based

on EUT, within EUT our results imply that all of the commonly used utility functions

exhibit both skewness preference and kurtosis aversion. This is good news for economic

1For example, the lotteries are used by Gollier (2010) to investigate ecological discounting, by Maier
and Rüger (2009) to investigate reference-dependent risk preferences of higher orders, and by Jindapon
(2010) to define probability premia of higher order. The recent application of the lotteries in economic
experiments will be discussed in the next chapter. Generally, we will save up some motivating examples
for prudence as well as more details for that chapter.

2This is known as the solution to the Hausdorff moment problem in the probability literature; see Haus-
dorff (1921). The assumption of boundedness is unproblematic from an economic point of view as there
is not an infinite amount of money. Thus, the assumption is standard in the literature on decision mak-
ing under risk. A stronger assumption often made is that distributions are defined on a compactum,
which implies boundedness.
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modeling as it is consistent with the stylized fact that investors are skewness seeking and

kurtosis averse.3

Our results build upon the recent work of Roger (2011), who made an important con-

tribution in achieving the characterization. He computed all moments of the proper risk

apportionment lotteries for the special case where the risks that have to be apportioned

are symmetric. However, we will show that the asymmetry (or skewness) of these risks

is just the origin of the proper risk apportionment model’s statistical generality. We also

generalize the early results of Ekern (1980), who considered differences in moments up to

order n for nth-degree risk aversion. Further, Ekern’s results, unlike ours, are limited to

random variables with a compact support. Ekern (1980), in turn, is a generalization of

Menezes et al. (1980) who showed that prudence is equivalent to downside risk aversion.

A downside risk increase is a mean-variance preserving density transformation shifting

variation from the right to the left of the distribution, thereby decreasing its third mo-

ment. This is in analogy to the mean-preserving spread of Rothschild and Stiglitz (1970)

disliked by a risk averse individual. For more on prudence and skewness see also Chiu

(2005, 2010). Menezes and Wang (2005) illustrated that an individual dislikes increases

in outer risk which leave the first three moments of a distribution unchanged and increase

the fourth moment, if and only if she is temperate. Edginess (5th-degree risk aversion) has

been considered by Lajeri-Chaherli (2004) and will also be related to skewness preference

in this chapter.

More specifically, the results of this chapter are presented as follows. In Section 3.2, we

review the proper risk apportionment model of Eeckhoudt and Schlesinger, and discuss

skewness and kurtosis and how they relate to all odd and even moments, respectively. In

particular, we illustrate how skewness and kurtosis manifest in discrete (lottery) distribu-

tions.

In Section 3.3, we explicitly compute all moments of the prudence and temperance lotter-

ies. We show that distributions preferred by a prudent decision maker must have larger

skewness as defined by larger odd moments of any order, but they may or may not have

larger kurtosis as defined by larger even moments of any order. We refer to this as the

3There is a substantial amount of evidence for skewness preference; see, e.g., Boyer et al. (2010) and
the many references therein. There are less fully fledged research papers on kurtosis aversion. Some
evidence for kurtosis aversion is presented in Dittmar (2002), and results in Guiso et al. (1996) are
consistent with temperate behavior; see Deck and Schlesinger (2010) for a brief discussion. In the
experiment of Deck and Schlesinger, intemperance was observed, while in Ebert and Wiesen (2010) we
observed temperance.
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kurtosis robustness feature of prudence. We show that whether the prudent lottery choice

has the smaller or larger kurtosis solely depends on the skewness of the risk that has to be

apportioned. This helps to explain an experimental result presented in the next chapter,

i.e., that significantly more prudent decisions are made when a left-skewed risk has to be

apportioned. In this situation, someone who is skewness seeking might choose imprudently

because he dislikes the larger kurtosis associated with the prudent lottery choice. Likewise,

though not as clear-cut, we show that temperance implies a preference for distributions

with smaller kurtosis as defined by smaller even moments and which is robust towards

variation in the odd moments. This is referred to as the skewness robustness feature of

temperance.

In Section 3.4, we generalize these results and investigate all moments of the proper risk

apportionment lotteries of all orders. We show that all higher-order risk preferences of odd

and even order (not only prudence and temperance), respectively, are related to skewness

preference and kurtosis aversion in a complementary way. That is, there are distributions

that only differ in their skewness and preference between them is determined by prudence.

However, there are also distributions that only differ in their skewness, but preference

between them is not determined by prudence, but, for example, by edginess. This should

raise more interest in these concepts which are generally regarded as rather abstract. In

both Sections 3.3 and 3.4, we will discuss how our results relate to those of Roger (2011)

and which of his results are specific to the symmetry of the zero-mean risks.

In Section 3.5, we conclude and discuss implications of our results for EUT. All proofs are

given in Appendix A.2.

3.2 Proper risk apportionment, skewness, kurtosis, and

moments

We first define the lotteries of Eeckhoudt and Schlesinger (2006) and explain the impor-

tance of proper risk apportionment. Let X be Bernoulli-distributed with parameter p.

Throughout this chapter, let p = 0.5. Let k > 0 such that the amount −k can be in-

terpreted as a sure reduction in wealth. For all n ∈ N, let ǫn be a zero-mean risk (i.e.,

E[ǫn] = 0) with finite moments. The lotteries for monotonicity and risk aversion, respec-

tively, are given by A1 = −k, B1 = 0 and A2 = ǫ1, B2 = 0. For the first two so-called
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higher-order risk preferences, prudence and temperance, the lotteries are

A3 = X · 0 + (1 −X) (ǫ1 − k) = XB1 + (1 −X)(A1 + ǫ1)

B3 = X(−k) + (1 −X)ǫ1 = XA1 + (1 −X)(B1 + ǫ1)

and

A4 = X · 0 + (1 −X)(ǫ1 + ǫ2) = XB2 + (1 −X)(A2 + ǫ2)

B4 = Xǫ1 + (1 −X)ǫ2 = XA2 + (1 −X)(B2 + ǫ2).

Examples of these lotteries are shown in Figure 3.1 where outcomes have been aggregated.

Therefore, the lotteries appear as multinomial rather than compound. For higher orders,

Figure 3.1: Examples of a prudence and a temperance lottery pair with symmetric (S)
zero-mean risks

Prudence lottery pair

BS
3

3
1

4

13

4

AS
3

2
3

4

01

4

Temperance lottery pair

BS
4

3
1

2

11

2

AS
4

41

8

2

6

8

0
1

8

The prudence lotteries depicted in this figure are constructed with initial wealth
x = 2, fixed loss −k = −1, and the zero-mean risk ǫ yields 1 or −1 with equal
probability. For the temperance lotteries, initial wealth is x = 2 and the zero-
mean risks ǫ1 and ǫ2 both yield 1 or −1 with equal probability. Outcomes have
been aggregated.

proper risk apportionment of order n is defined iteratively by continuing the previously

illustrated nesting process, i.e.,

An = XBn−2 + (1 −X)
(
An−2 + ǫxn/2y

)

Bn = XAn−2 + (1 −X)
(
Bn−2 + ǫxn/2y

)
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where xn/2y is the largest integer smaller than or equal to n/2. An agent exhibits proper

risk apportionment of order n if she prefers Bn over An for all wealth levels x, for all

sure losses −k and, in particular, for all zero-mean risks ǫ. A prudent decision maker,

for example, will prefer to disaggregate the sure loss −k and the zero-mean risk ǫ. That

is, she prefers to have the two unavoidable items in different rather than in the same of

two equally likely states of nature. In other words, she disaggregates the two “harms” of

a sure loss and a zero-mean risk.4 A financial economist might speak of a preference for

diversification. An equivalent interpretation is that the additional risk is preferred when

wealth is higher. These numerous interpretations already illustrate the implicit generality

of the preference. Moreover, preference between the proper risk apportionment lotteries

has strong implications within EUT.

Theorem 2 (Eeckhoudt and Schlesinger, 2006). Within EUT with differentiable utility

function u, proper risk apportionment of order n is equivalent to the condition sgn(u(n)) =

(−1)n+1.

Thus, the lottery preference of B1 over A1 is equivalent to an increasing utility function

within the differentiable EUT. This is very intuitive because preference of B1 over A1

for all −k simply corresponds to preferring more to less (no matter how much more).

Likewise, the lottery preference of B2 over A2 is equivalent to a concave utility function

within the differentiable EUT, i.e., to risk aversion. Also this is intuitive as preference for

the expected value of a prospect over the prospect itself is a well-established and theory-

free definition of risk aversion; see, e.g., Wakker (2010, p. 52). While none of the results

in this chapter are based on EUT, the above theorem tells us how to interpret them under

the assumption of EUT.

Next we review the qualitative definitions of skewness and kurtosis, respectively. For the

purpose of this chapter, it will be particularly insightful to discuss how skewness and

kurtosis are reflected in discrete (lottery) distributions. This will be done with reference

to Figure 3.1.

Generally, a distribution is right-skewed if it has a longer right tail and that tail has less

probability mass than the left tail. This is true for lottery BS
3 in Figure 3.1 because the

low outcome 1 has a small distance to the mean of 1.5, whereas the high outcome 3 has a

large distance to the mean. In general, any binary lottery is right-skewed if and only if the

4This interpretation from Eeckhoudt and Schlesinger (2006) requires the decision maker to be risk averse
such that a zero-mean risk indeed constitutes a harm.
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higher outcome occurs with the smaller probability.5 Thus, lottery AS
3 in Figure 3.1 (which

also has mean 1.5) is left-skewed. The particular lottery pair (AS
3 , B

S
3 ) has been introduced

in Mao (1970) and motivated the definition of downside risk aversion in Menezes et al.

(1980). A downside risk averse decision maker will prefer BS
3 over AS

3 . She rather opts for

the smaller outcome 1 most of the time such that she is safe with respect to the worst

outcome 0 that can occur when taking AS
3 instead. Choice BS

3 also implies a small chance

of winning the high prize (outcome 3).

Now we consider the lotteries BS
4 and AS

4 in Figure 3.1 to discuss kurtosis. Generally, large

kurtosis of a distribution implies peakedness and fat tails. Peakedness means that there

is a high probability (a “peak” in the frequency distribution) of outcomes close to the

mean. Fat tails mean that there is a chance of extreme outcomes (compared to the mean)

to occur, i.e., such outcomes have a heavy probability mass.6 This is true for lottery A4

which has a probability peak of 6/8 at its mean, which is 2. Lottery BS
4 , in contrast, has

no probability mass at its mean (which is also 2), and its outcomes are also less extreme

compared to those of lottery BS
4 . Thus, lottery AS

4 has a larger kurtosis than lottery BS
4 .

Now we discuss statistical moments and how they relate to skewness and kurtosis. We

denote the pth (non-standardized) central moment of a random variable Z by

Mp(Z) = E[(Z − E[Z])p].

When speaking of moments, we always refer to (non-standardized) central moments. It is

important to note that in this chapter skewness and kurtosis do not refer to the third and

fourth moment, respectively. If not noted otherwise, they refer to the qualitative features

discussed above. One reason is that the third and fourth moment, respectively, might fail

to indicate that a distribution is more skewed or leptokurtic than another one.7 On the

other hand, all higher odd and even moments share reasonable properties of a skewness

and kurtosis measure, respectively; see van Zwet (1964). In general, the link between any

finite number of moments and preference is flawed. For example, for any utility function u

with u′ > 0 and u′′ < 0, there exist random variables X and Y such that X has the higher

mean and the lower variance, but u prefers Y to X; see Brockett and Kahane (1992) and

5A formal proof of this result and more explanations to skewness in binary lotteries are presented in
Appendix B. In particular, the skewness of lottery AS

3 is discussed with reference to its probability
mass function, which is plotted in Figure B.1.

6Using the normal distribution as a benchmark for absolute values, however, can be misleading; see
Kaplansky (1945).

7We give such an example for the third moment in Figure 3.3.
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Brockett and Garven (1998) for explicit examples. Therefore, a more reliable requirement

for a distribution to be more skewed is that all odd moments are at least as large as the

corresponding moments of the distribution in comparison. Likewise, for a distribution to

be more leptokurtic, all its even moments are required to be larger. The results in our

discussion of higher-order risk preferences, skewness preference and kurtosis aversion can

be based on these strong notions of skewness and kurtosis.8

3.3 Moment characterizations of prudence and temperance

In this section, we present the statistical characterizations of prudence and temperance

in terms of moments. The following Propositions 3 to 6 generalize Propositions 1 to 4 in

Roger (2011) to arbitrary zero-mean risks. Propositions 3 to 6 are also generalizations

of results in Ekern (1980) in that they consider all moments rather than only moments

1, 2, . . . , n where n is the considered degree of risk aversion. Further, Ekern’s results are

limited to random variables with a compact support, whereas our results hold for random

variables with arbitrary support.

We start with Proposition 3 which presents a statistical characterization of prudence in

terms of moments.

Proposition 3 (All moments of the prudence lotteries). For p ∈ N, we have

(1) Mp (A3) =





(
k
2

)p
+ 1

2

∑p
j=2
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j

)
E
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ǫj1

] (
−k
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)p−j
, p even

1
2

∑p
j=2

(p
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] (
−k
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(2) Mp (B3) =
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(3) Mp (B3) − Mp (A3) =
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j odd
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ǫj1

] (
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, p even
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)
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ǫj1

] (
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2
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, p odd.

Further, the difference Mp (B3) −Mp (A3) is strictly positive for all p odd. For all p even,

it can be positive, negative, or zero.

From Menezes et al. (1980), we already knew that the prudence lotteries have equal mean

8For more on moments and other measures of skewness see, e.g., MacGillivray (1986).
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and variance and that B3 has a larger third moment. These results are recovered from

part (3) in Proposition 3 by considering p = 1, 2, 3. Firstly, let us discuss the implication

from part (3) stating that all odd moments for the prudent lottery choice B3 are strictly

larger than those of the corresponding imprudent lottery A3. This shows that the prudent

lottery choice B3 is indeed more skewed to the right (not only in an approximate third-order

sense), for all possible zero-mean risks. Secondly, part (3) implies that the even moments

may not be identical as proven for symmetric zero-mean risks ǫ1 in Roger (2011). Roger’s

result is obtained as a special case from part (3), as symmetry of a random variable implies

all its odd moments to be zero. Proposition 3 shows that in that case, and only in that

case, lotteries A3 and B3 have equal kurtosis. This can also be seen qualitatively from our

sample lottery pair in Figure 3.1. Both lotteries AS
3 and BS

3 have a 3/4-probability peak

at an outcome close to the mean (distance of 0.5) which are 2 and 1, respectively. The

“extreme” outcomes of lotteries AS
3 and BS

3 are 0 and 3, respectively. Both have a distance

of 1.5 from the mean and occur with equal probability. Thus, indeed, lotteries AS
3 and BS

3

are equally peaked and heavy-tailed.

In the general case, the even moments of the prudent choice can be larger or smaller

than those of the imprudent choice. They are larger (smaller) if and only if the zero-

mean risks to be apportioned are right-skewed (left-skewed).9 An example is given in

Figure 3.2. Both BL
3 and BR

3 are, respectively, more skewed to the right than AL
3 and

AR
3 . However, whereas BR

3 has a larger kurtosis than AR
3 , B

L
3 has a smaller kurtosis than

AL
3 . Qualitatively, lottery BR

3 has a 7/8 probability peak at 1 which is close to the mean

of 1.5. It also has a very extreme outcome 5. Lottery AR
3 , in contrast, has only a 4/8

probability peak at the outcome 2 which is close to the mean. Both remaining outcomes,

0 and 4, are less extreme than 5 as their distance to the mean of 1.5 is smaller. This is

in accordance with the result on moments proven in Proposition 3. Analogous arguments

apply to lottery pair (AL
3 , B

L
3 ) where the zero-mean risk is left-skewed and thus AL

3 has

the larger kurtosis.

Therefore, prudence must be understood as a preference for large skewness (i.e., large odd

moments of all orders) that is robust towards variation in kurtosis (i.e., differences in even

moments of all orders). We refer to this as the kurtosis robustness feature of prudence.

That is, prudence not only determines preference between distributions that purely differ

9Throughout Part II of this thesis, when referring to “skewness,” the reader should carefully pay attention
to wether we refer to the proper risk apportionment lotteries An and Bn themselves or to the zero-mean
risks (the ǫ’s) that have to be apportioned and that are part of the proper risk apportionment lotteries.
With kurtosis we will always refer to the proper risk apportionment lotteries, because the kurtosis of
the zero-mean risks turns out to be not particularly interesting.
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in their skewness. Prudence implies preference for distributions with larger skewness,

independently of whether they have the larger or smaller kurtosis.

Thus, the restriction to symmetric zero-mean risks in the proper risk apportionment model

of Eeckhoudt and Schlesinger (2006) is rather severe from a statistical point of view. It

reduces prudence to “pure” skewness seeking (distributions with larger odd moments are

preferred) and neglects the kurtosis robustness feature. Empirical support for the kurtosis

robustness feature will be presented in the next chapter where we will conclude that also

empirically there is more to prudence than skewness seeking. A prudent decision is made

more frequently when the zero-mean risk is left-skewed, i.e., the even moments are larger

for the imprudent choice. Next we present a characterization of temperance in terms of

moments.

Figure 3.2: Examples of prudence lottery pairs with skewed zero-mean risks

Prudence lottery pair with right-skewed (R) zero-mean risk

BR
3

5
1

8

17

8

AR
3

41

8

2

4

8

0
3

8

Prudence lottery pair with left-skewed (L) zero-mean risk

BL
3

33

8

1

4

8

−1
1

8

AL
3

2
7

8

−21

8

In this figure, the prudence lotteries with the right-skewed zero-mean risk are
constructed with initial wealth x = 2, loss −k = −1, and the zero-mean risk
ǫ1 yields 3 with probability 1/4 and −1 with probability 3/4. For the prudence
lotteries with the left-skewed zero-mean risk, initial wealth is x = 2, the loss
is −k = −1, and the zero-mean risk ǫ1 yields −3 with probability 1/4 and 1
with probability 3/4. Outcomes have been aggregated.
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Proposition 4 (All moments of the temperance lotteries). For p ∈ N, we have

(1) Mp (A4) =
1

2

p∑

j=0
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p

j

)
E

[
ǫj1

]
E

[
ǫp−j
1

]

(2) Mp (B4) =
1

2
(E [ǫp2] + E [ǫp1])

(3) Mp (B4) − Mp (A4) = −1

2
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p

j
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ǫj1

]
E
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ǫp−j
2

]

 .

Further, for p > 4 odd the difference Mp (B3) −Mp (A3) can be positive, negative, or zero.

Roger (2011) further shows that in the case of symmetric zero-mean risks Mp (An) =

Mp (Bn) = 0 ∀ p odd. For illustrative purposes, consider the case of p = 5 and n = 4.

Using part (3) of Lemma 1, we have

M5 (B4) − M5 (A4) = −1

2
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5

j
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ǫj1
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ǫ32
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3
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E
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ǫ31

]
E

[
ǫ22

]
+ 0

)
,

which can be positive, negative, or zero, depending on the third moments of the zero-mean

risks. The proof in the appendix essentially generalizes this example to all odd moments.

We interpret the last statement of Proposition 4 as the skewness robustness feature of

temperance. Roger also shows that Mp (B4) − Mp (A4) < 0 holds for all p > n even. This

we cannot prove in the general case. To see the reason why, in part (3) of Lemma 1 set

p = 6 and n = 4, i.e.,

M6 (B4) −M6 (A4) =
1

2




5∑
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This expression might become positive if the middle term is negative. This could happen

if and only if the two zero-mean risks are adversely skewed. However, we could conjecture

that for all random variables ǫ1 and ǫ2 this is not possible. Using part (3) of Proposi-

tion 4, the conjecture can be validated or dismissed for any risks specifically considered.

Evidently, it is true if both zero-mean risks are symmetric or skewed in the same direction.

For prudence we obtained the clear statement that proper risk apportionment implies pref-

erence for large odd moments of all orders that is robust towards variation in the even

moments. Analogously, we find some evidence that temperance is a preference for small
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even moments (kurtosis aversion) that is robust towards variation in the odd moments

(skewness robustness).

3.4 Higher-order generalizations

In this section, we generalize the results from the previous section to risk apportionment

of orders higher than 4. Lemma 1 presents recursive formulae that can be used to compute

any moment of a proper risk apportionment lottery of any order and thus completes our

moment characterization of higher-order risk preferences.

Lemma 1. For n ≥ 3 (even or odd), we have the following recursive formulae

(1) Mp(An) =
1

2


Mp(Bn−2) + Mp(An−2) +

p∑
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p

j

)
E
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ǫj
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(3) Mp (Bn) − Mp (An) =
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(
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j

)
E
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ǫj
xn/2y

]
(Mp−j(Bn−2) − Mp−j(An−2))


 .

We now investigate how our Proposition 4 (which applies to temperance lotteries with

arbitrary zero-mean risks) and Roger’s Proposition 3 (which applies to all proper risk

apportionment lotteries of even order, but with symmetric zero-mean risks) generalize to

higher even orders.

Proposition 5. Let n ≥ 4.

(1) Mp (An) − Mp (Bn) = 0, for 1 ≤ p < n

(2) Mp (An) >Mp (Bn) , for p = n.

Further, for p > n odd the difference Mp (B3) −Mp (A3) can be positive, negative, or zero.

Parts (1) and (2) generalize results in Ekern (1980), whose proofs relied on an iterated

integral technique, to random variables with arbitrary support. According to the last

statement, all higher-order risk preferences of even order have a skewness robustness

feature, i.e., the preferred lottery may or may not have larger odd moments of any order.

As Roger shows for symmetric zero-mean risks, we also conjecture (as we did in the case

of temperance) that in the general case Mp (An) > Mp (Bn) for p ≥ n even is true. For
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any lotteries specifically considered this can be checked by using the equation in part (3)

of Lemma 1. The next proposition generalizes Roger’s Proposition 4.

Proposition 6. n ≥ 3 odd.

(1) Mp (An) = Mp (Bn) for p < n

(2) Mp (Bn) − Mp (An) > 0 for p = n.

Further, for p > n even the difference Mp (B3)−Mp (A3) can be positive, negative, or zero.

The last statement shows that all higher-order risk preferences of odd order have a kurtosis

robustness feature. Parts (1) and (2) generalize results of Ekern (1980) to random variables

with arbitrary support. Under the symmetry assumption, for n ≥ 3 odd Roger (2011)

further obtained

(1a) Mp(An) = Mp(Bn) = 0 ∀ p < n odd,

(2′) Mp(An) = −Mp(Bn) < 0 ∀ p ≥ n odd,

(3) Mp(An) = Mp(Bn) ∀ p > n even.

While (1a) trivially holds for prudence, in general only the first equality is true. The

following is a counterexample for the second inequality. For n = 5 and p = 3, the recursive

formula derived in part (3) of Lemma 1 gives

M3(A5) =
1

2


M3(B3) + M3(A3) +

3∑

j=2

(
3

j

)
E[ǫj2]M3−j(A3)


 .

From Proposition 3, M3(B3) = 1
2

((3
2

)
E[ǫ21]k

2 + E[ǫ31]
)
,M3(A3) = 1

2

((3
2

)
E[ǫ21]

(
−k

2

)
+ E[ǫ31]

)
,

and M1(A3) = 0 such that

M3(A5) = 2E[ǫ31]

which can be negative, positive, or zero, depending on the asymmetry of the zero-mean

risks.

A counterexample for (3) is given by the fourth moment of the prudence lotteries, i.e.,

n = 3 and p = 4, as discussed subsequent to Proposition 3.

The equality in (2’) is not true, and a counterexample is given by the third moment of

the prudence lotteries; see parts (1) and (2) of Proposition 3. Also, in the general case

of arbitrary zero-mean risks, we cannot prove the inequality Mp(Bn) − Mp(An) > 0 for p

odd, which is redundant from (2’). To see the reason why, take n = 5 and p = 7 in part (3)
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of Lemma 1 and impute the expressions for the moments of the prudence lotteries stated

in Proposition 3. We get

M7(B5) − M7(A5) =
1

2
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The second sum of the above expression can be computed as
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which might be negative such that the whole expression might be negative. However, we

again conjecture that this is not possible.

In the remainder of this section, we use our results to present some motivation for higher-

order risk preferences of order higher than 4. To this means, consider the edginess lottery

pair depicted in Figure 3.3. Clearly, BS
5 is skewed to the right as it has a long and lean

Figure 3.3: Example of an edginess lottery pair with symmetric (S) zero-mean risks

BS
5

41

16

2

10

16

0
5

16

AS
5

35

16

1

10

16

−1
1

16

The lotteries in Figure 3.3 are constructed with initial wealth x = 2,
fixed loss −k = −1, and the zero-mean risks ǫ1 and ǫ2 both yield
1 or −1 with equal probability. Thus, the nested prudence lotteries
used in the construction are AS

3 and BS
3 displayed in Figure 3.1.

All outcomes have been aggregated.

right tail due to outcome 4 being far right of the mean of 1.5 and occurring with small

probability 1/16. The left tail is shorter and heavier as outcome 0 is closer to the mean

and occurs with probability 5/16. Analogous arguments imply that AS
5 is left-skewed. As

all zero-mean risks used in the construction of (AS
5 , B

S
5 ) are symmetric, all even moments

of the two lotteries are equal, i.e., they have the same kurtosis. From Roger (2011), BS
5

has larger odd moments of order 5 and higher which, indeed, indicates that it is more
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skewed to the right. However, the third moments of the lotteries are the same.

The previous example shows two important points. Firstly, it illustrates why the third

moment of a distribution can fail as a measure of skewness. Secondly, prudence does not

exhaustively describe skewness preference. The right-skewed lottery BS
5 is preferred to

the left-skewed lottery AS
5 if and only if the decision maker exhibits edginess. This illus-

trates that higher-order risk preferences of any order are important in modeling skewness

preference. Analogous arguments show that all higher-order risk preferences of even order

imply kurtosis aversion in a complementary way.

3.5 Conclusion to Chapter 3

This chapter builds upon and extends recent results from Roger (2011) in order to present

a characterization of higher-order risk preferences in terms of statistical moments. This

characterization provides a better understanding of how higher-order risk preferences are

related to skewness preference and kurtosis aversion. Further, moments are well under-

stood such that our results should be easily accessible to a wide audience in economics

and finance.

Prudence is shown to imply a preference for larger odd moments (skewness seeking) that

is robust towards variation in the even moments (kurtosis robustness). In particular,

prudence does not only determine preference between distributions that purely differ in

their skewness. Generally, it is the asymmetry of the zero-mean risks in Eeckhoudt and

Schlesinger’s proper risk apportionment model that drives the lotteries’ statistical proper-

ties. Restriction to symmetric zero-mean risks reduces prudence and all higher-order risk

preferences of odd order to “pure” skewness seeking. Thus, our theoretical results are in

line with experimental evidence presented in the next chapter, where we show empirically

that there is more to prudence than skewness seeking. Analogous results in the present

chapter relate temperance to preference for small even moments (kurtosis aversion) that

is robust towards variation in the odd moments (skewness robustness).

Moreover, we show that not only prudence and temperance, but all higher-order risk pref-

erences of odd and even order, respectively, are related to skewness preference and kurtosis

aversion in a complementary way. This highlights the importance of these concepts which

are generally viewed as rather abstract and thus have not received that much attention in

the literature yet.

Although not based on EUT, our results have implications for EUT. All of the commonly

75



used utility functions exhibit nth-degree risk aversion for all orders, i.e., mixed risk aver-

sion. Thus, according to the results of this chapter, all commonly used utility functions

exhibit both skewness preference and kurtosis aversion with reference to all odd and even

moments, respectively.

Another way to look at this is to ask the following question: What are necessary con-

ditions for a preference functional to imply skewness preference and kurtosis aversion?

Then, we have answered this question for the EUT preference functional and the notions

of skewness and kurtosis being moments. The question is important for realistic modeling

of economic behavior because it is a stylized fact that investors are skewness seeking and

kurtosis averse. Further research could investigate this question for different preference

functionals as well as for different measures of skewness and kurtosis.

76



Chapter 4

Testing for Prudence and

Skewness Seeking

4.1 Introduction

Risk aversion is just one piece in the puzzle when describing individuals’ risk preferences.

An example is the following lottery pair defined by Mao (1970). Lottery MA pays zero with

a probability of p = 1
4 and 2000 with the counterprobability of 3

4 . Lottery MB pays 1000

with a probability of 3
4 and 3000 with a probability of 1

4 . Statistically, these lotteries have

the same mean and variance, but MB is more skewed to the right. While MA may seem

“riskier,” the preference of MB over MA is not implied by risk aversion but by prudence.

This follows from Menezes et al. (1980) who show that MA can be obtained from MB by

an increase in downside risk. Such a density transformation leaves mean and variance of a

distribution unchanged, but decreases its skewness. They also show that, under expected

utility theory (EUT), aversion to increases in downside risk is equivalent to the third

derivative of the utility function being positive, i.e., u′′′ > 0.1 This is the EUT-based

definition of prudence given later by Kimball (1990), which will be discussed below. The

results of Menezes et al. further imply that prudence, unlike risk aversion, relates to

measures of skewness, in particular to the third central moment and to semi-variance; see

also Chiu (2005). In the previous chapter, we related prudence to all odd moments, each

of which shares reasonable properties of a skewness measure; see van Zwet (1964). Note

that all of these results are independent of EUT. Thus, prudence plays a key role when

considering preference towards downside and right-skewed risks.

1Again, we assume sufficiently smooth von Neumann-Morgenstern utility functions when referring to
EUT.
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Such risks occur frequently in everyday life. For example, insurance contracts often address

downside risks similar to MA, where probability p might be much smaller than the 1
4

assumed in our example. Similarly, on the gain side, MB corresponds to the risk of a

typical lottery ticket. The payoff structures of numerous assets exhibit downside risk. For

example, the payoff distribution of a (defaultable) bond resembles MA. Also, numerous risk

measures such as value-at-risk, which are employed frequently in the financial industry,

address downside risk. In his seminal study, Mao reports an unambiguous preference

among surveyed business executives for investments of type MB over MA.

In a different, EUT-based strand of the literature, it was discovered that prudence plays

a decisive role in analyzing precautionary demand for saving. Although the term “pru-

dence” was coined by Kimball (1990), its relationship to saving behavior was noted earlier

by Leland (1968) and Sandmo (1970). These authors showed that the awareness of uncer-

tainty in future payoffs will raise an individual’s optimal saving today, if and only if the

individual is prudent. The term “prudence” is meant to suggest the propensity to prepare

and forearm oneself in the face of uncertainty, in contrast to “risk aversion,” which is

how much one dislikes uncertainty and would turn away from uncertainty if possible; see

Kimball (1990, p. 54).

Meanwhile numerous other implications of prudence on economic behavior have been

described within EUT. The broad range of areas within economics and finance where pru-

dence finds application is indicated by the following non-exhaustive list. Eeckhoudt and

Gollier (2005) analyze the impact of prudence on prevention, i.e., the action undertaken to

reduce the probability of an adverse effect to occur. Similarly, Courbagé and Rey (2006)

note that prudence is an important factor in preventive care decisions within a medical

decision making context. Esö and White (2004) show that there can be precautionary

bidding in auctions when the value of the object is uncertain and when bidders are pru-

dent. Likewise, White (2008) analyzes prudence in bargaining. Treich (forthcoming) shows

that prudence can decrease rent-seeking efforts in a symmetric contest model. Fagart and

Sinclair-Desgagné (2007) investigate prudence in a principal-agent model with applications

to monitoring and optimal auditing. Within a standard macroeconomic consumption and

labor model, Eeckhoudt and Schlesinger (2008) analyze the impact of prudence on policy

decisions such as changes in the interest rate. Other examples are insurance demand (e.g.,

Fei and Schlesinger (2008)) or life-cycle investment behavior (e.g., Gomes and Michaelides

(2005)). Even in environmental economics prudence plays an important role; Gollier

(2010) finds an ecological prudence effect when discounting future environmental impacts.
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Prudence is also necessary (but not sufficient) for decreasing absolute risk aversion, proper

risk aversion, and standard risk aversion. According to Brockett and Golden (1987), all

of the commonly used utility functions exhibit prudence. This is true, in particular, for

power and exponential utility, but also for the interesting parametrizations of hyperbolic

absolute risk aversion and expo-power utility. Therefore, implicitly, prudence is assumed

widely in the economics and finance literature.

While preference of MB over MA is necessary but not sufficient for prudence, Eeckhoudt

and Schlesinger (2006) presented a more general lottery preference which is equivalent

to prudence. Given two equally likely future states, a prudent individual prefers to have

an unavoidable zero-mean risk in the state where her wealth is higher. Equivalently, she

prefers to have the unavoidable harms of a sure loss and a zero-mean risk in different

future states rather than in the same state. More generally, Eeckhoudt and Schlesinger

define “proper risk apportionment” of all orders (where prudence corresponds to order

3). This new understanding of risk preferences does not rely on EUT. Further, it can be

generalized to the multi-attribute case as shown in Eeckhoudt et al. (2007) or Tsetlin and

Winkler (2009).

Despite the substantial amount of theoretical work on prudence, there is little empirical,

i.e., experimental research. Some empirical papers trace prudence via the precautionary

savings motive relying on Kimball’s EUT-based model (e.g., Dynan (1993), Carrol (1994),

and Carroll and Kimball (2008)).

To test the theories and behavioral traits based on prudence in a more controlled envi-

ronment, we need a valid methodology to test individuals for prudence in the laboratory.

The first attempt in this direction was made by Tarazona-Gomez (2004), who finds weak

evidence for the existence of prudence. Her experiment relies on a certainty equivalent

approach involving tabulated trinomial lotteries. It is based on strong assumptions and

approximations within EUT. The only other and much more elegant approach to test for

prudence is Deck and Schlesinger (2010). Using six pairs of Eeckhoudt and Schlesinger’s

lotteries, they find some evidence for prudence.

The contribution of this chapter is as follows. Firstly, we propose a method to test for pru-

dence in a laboratory setting. To facilitate the presentation of Eeckhoudt and Schlesinger’s

prudence lotteries in a way easily accessible for experimental subjects, we propose a novel

graphical representation of compound lotteries in experiments. In particular, it allows for

a rather general implementation of the zero-mean risks in the prudence lotteries. This fea-
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ture is necessary, because prudence is not only a preference for high skewness—just as risk

aversion is not only a preference for a low variance, but this preference is robust towards

different levels of kurtosis. As was shown in the previous chapter, it is the skewness of

the zero-mean risk that drives the statistical properties, in particular the kurtosis, of the

prudence lotteries. This distinguishes them from the simpler lotteries of Mao and from

the ones of Deck and Schlesinger who considered symmetric risks only. We illustrate this

in the theory part of this chapter. More specifically, we analyze the prudence and Mao

lotteries in terms of their statistical moments. As a left-skewed zero-mean risk constitutes

more harm to a prudent individual, one could conjecture a greater tendency to “apportion

the risks properly.” Indeed, in the experiment we observe significantly more prudent deci-

sions when the risks to be apportioned are left-skewed. On the aggregate, 65% of choices

are prudent, which is close to Deck and Schlesinger’s finding of 61%.

Secondly, we show that lotteries as used in Mao’s survey purely differ in their skewness and

employ them for the first time in an incentivized experiment. That is, we compare skew-

ness seeking, i.e., a preference for MB over MA with prudence, i.e., a preference for proper

risk apportionment. Theoretically, prudence implies skewness seeking, but not the other

way around. Skewness seeking can be motivated by the assumption of third-order moment

preferences, where individuals’ decisions between two prospects only depend on the first

few statistical moments of these prospects.2 When studying prudence, only prospects with

equal mean and variance will be compared, such that third-order moment preferences are

equivalent to a preference for or against a high third central moment and refer to “the”

skewness of the prospect. That is, in this setting prudence is equivalent to skewness seek-

ing. In the experiment, skewness seeking is more widely observed than prudence. There

is also a significant positive correlation between the two and, consistent with theory, most

individuals we diagnose as prudent prefer MB over MA. However, prudence does not

boil down to skewness seeking which also leads us to reject the assumption of third-order

moment preferences.

The chapter proceeds as follows. Section 4.2 analyzes the lotteries underlying the exper-

iment and motivates the parameter choices. In Section 4.3, the research questions are

stated. Section 4.4 describes the experimental design and procedure. In Section 4.5, re-

2Although moment preferences, in general, are incompatible with EUT (e.g., Brockett and Kahane
(1992)), they are widely assumed in economic and financial modeling due to their simplicity and
tractability. For example, they underlie a large number of classical and also modern portfolio choice
models, such as Kraus and Litzenberger (1976) or Briec et al. (2007). The experiment of Tarazona-
Gomez (2004) relies on moment preferences. In particular, she assumes a utility function which is
truncated at third order.
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sults from the experiment are provided, and Section 4.6 concludes. Appendix A.3 contains

proofs and experimental instructions.

4.2 Prudence and skewness seeking

In this section, we first define the lotteries of Mao (1970) and Eeckhoudt and Schlesinger

(2006) employed in the experiment. Then, we analyze and interpret their statistical prop-

erties and show how they relate to skewness seeking and prudence.

4.2.1 Mao’s lotteries and Eeckhoudt and Schlesinger’s prudence lotteries

Let us start with the definition of binary lotteries in general.

Definition 1. Let x1, x0 ∈ R, with x1 > x0. X is a Bernoulli-distributed random variable

with parameter p ∈ (0, 1). A binary lottery denoted by L = L(p, x1, x0) is defined as the

random variable

L = X · x1 + (1 −X) · x0.

In recognition of Mao (1970), we define the following class of lottery pairs as well as

skewness preference as referred to in the experiment.3 An example of a Mao lottery pair

is given in Figure 4.1.

Definition 2. Let p ∈ (1
2 , 1). Two binary lotteries MA = L(p, x1, x0) and MB = L(1 −

p, y1, y0) constitute a Mao pair if they have equal means and variances. An individual is

said to be skewness seeking if, for any given Mao pair, she prefers MB over MA.

Intuitively, MA has its high payoff associated with the high probability, whereas MB has

its high payoff associated with the small probability, and vice versa. This is just how

negative and positive skewness, respectively, manifest in a binary lottery. This is shown

formally in Appendix B. Further, in the next subsection we show that the lotteries of a

Mao pair essentially only differ in their skewness. Now we define the prudence lotteries of

Eeckhoudt and Schlesinger (2006) and give an example in Figure 4.2.

3Definition 2 specifies a class of lotteries that characterizes the risks analyzed in Mao’s survey. Evidently,
the definition of skewness preference given here is not intended to be general. It is suitable in the
context of the experiment presented in this chapter.
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Figure 4.1: Example of a Mao pair (MA,MB)

MA

0
3
4

-801
4

MB

-40
3
4

401
4

The lotteries above correspond to the Mao pair displayed to subjects in
question MAO1 of the experiment. A skewness seeking individual prefers
lottery MB (with a positive skewness) over lottery MA (with a negative
skewness); see Proposition 8.

Definition 3 (Eeckhoudt-Schlesinger Prudence). Let X be a Bernoulli-distributed ran-

dom variable with parameter p = 1
2 and let k > 0. Let ǫ be a non-degenerate random

variable independent of X with E[ǫ] = 0. The lotteries

A3 = X · (0) + (1 −X) · (−k + ǫ) and B3 = X · (−k) + (1 −X) · ǫ

as a pair are called (Eeckhoudt-Schlesinger) prudence lottery pair or an ES pair. An

individual is called prudent if she prefers B3 over A3 for all values of k, for all random

variables ǫ, and for all wealth levels x.

Figure 4.2: Example of an ES pair (A3, B3)

A3

−40

1
2

13.3
9

10

−1201
10

01
2

B3

0

1
2

13.3
9

10

−1201
10

−401
2

The lotteries above correspond to the ES pair displayed to subjects in question ES1 of the
experiment. In the example, ǫ is left-skewed implying that lottery A3 has a larger kurtosis than
lottery B3; see Proposition 9.

For the prudent option B3, the additional zero-mean risk ǫ (i.e., the second lottery) occurs

in the good state of the 50/50 gamble (i.e., in the state without the sure reduction in

wealth, −k), whereas for the imprudent option A3 the zero-mean risk occurs in the bad

state. Intuitively, a prudent choice implies proper risk apportionment across states of

nature. Eeckhoudt and Schlesinger show that this preference is equivalent to prudence

within EUT, i.e., u′′′ > 0. Menezes et al. (1980) define an increase in downside risk and

show that, under EUT, u′′′ > 0 is equivalent to downside risk aversion. They further

reinterpret the results of Mao’s survey and show that the lottery MB has less downside
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risk than the corresponding lottery MA. Thus, we can state

Proposition 7 (Menezes, Geiss, and Tressler, 1980). Let (MA,MB) denote a pair of Mao

lotteries. Prudence is sufficient (but not necessary) for preferring MB over MA.

4.2.2 Prudence, moments, and skewness seeking

The following two propositions, respectively, will allow to investigate the statistical

features of the Mao and ES (prudence) lotteries in greater detail. These will motivate the

particular choices of the lottery pairs we implement in the experiment. It will be most

convenient to first plainly state both propositions and to discuss the results afterwards by

comparison. For experimental calibration reasons, unlike in the previous chapter, in this

chapter “moments” refer to standardized central moments.4 Therefore, the nth moment

(n ∈ N and n ≥ 3) of a random variable Z is given by M
S
n(Z) := E[(Z−E[Z])n]/ (V(Z))n/2 .

With ν(Z) := M
S
3 (Z) and κ(Z) := M

S
4 (Z) we denote the third and fourth moment, re-

spectively.

Proposition 8. Consider an arbitrary Mao pair given by MA and MB as in Definition 2.

Then,

(a) ν(MB) − ν(MA) > 0 and κ(MB) − κ(MA) = 0.

(b) More generally, MS
n(MB)−M

S
n(MA) > 0 for all n odd, and M

S
n(MB)−M

S
n(MA) = 0

for all n even.

The following proposition gives the corresponding result for the ES lotteries.

Proposition 9. Consider an arbitrary ES lottery pair in Definition 3. A3 and B3 have

equal expectation and variance and thus V(A3) = V(B3) =: σ2 is well-defined. Then,

(a) ν(B3) − ν(A3) = 3kE[ǫ2]
2σ3 > 0, and κ(B3) − κ(A3) = 2kE[ǫ3]

σ4 can be positive, negative,

or zero.

(b) More generally, MS
n(B3)−M

S
n(A3) > 0 for all n odd. For n even, MS

n(B3)−M
S
n(A3)

can be positive, negative, or zero.

4In the discussion of the Mao lotteries, standardization does not matter, because the two lotteries of a
pair do not differ in their variance. The same is true for the prudence lotteries. However, while in
the proofs to the previous chapter it would have been cumbersome to standardize, in this chapter,
standardization is convenient. This is because the moments of the particular lotteries employed in the
experiment are actually calculated and tabulated. They would be extremely large if not standardized.
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To interpret these results, note that the third and fourth moments, respectively, are some-

times referred to as “the” skewness and “the” kurtosis. However, there are numerous

measures for these properties; see MacGillivray (1986) for an overview. Parts (b) of the

above propositions imply the following. While thinking in third- and fourth-order terms

will provide the reader with the correct intuition, our arguments actually apply to the

very strong notions of skewness and kurtosis that refer to all odd and even moments,

respectively.

Comparing Propositions 8 and 9, we see that both prudence (i.e., a preference for B3

over A3) and a preference for MB over MA imply higher skewness to be beneficial to the

individual. The Mao lotteries essentially purely differ in their skewness. Prudence further

requires that the lottery with the higher skewness is preferred no matter whether it has

a smaller or larger kurtosis. That is, prudence implies a preference for skewness, but it

also requires this preference to be robust towards variations in kurtosis. This was put on

a more rigorous basis in the previous chapter and referred to as the “kurtosis robustness

feature of prudence.”

What is the origin of this additional statistical freedom of the ES lotteries compared to

the Mao lotteries? From Proposition 9, part (a), we see that the prudent choice has

the smaller kurtosis if and only if the zero-mean risk that has to be apportioned is left-

skewed.5 The zero-mean risks of the ES lotteries employed in the experiment of Deck and

Schlesinger (2010) are symmetric. This constantly implies the same kurtosis for the two

ES lotteries. Moreover, from Roger (2011) or our Proposition 9, the signs of all moments

of ES lotteries with symmetric ǫ’s coincide with those we derived in Proposition 8 for the

Mao lotteries. Thus, from a statistical point of view, prudence lotteries with symmetric

zero-mean risks are much closer to the Mao lotteries testing for skewness seeking than

to the general proper risk apportionment lotteries of Eeckhoudt and Schlesinger (2006).

Preference between the former lotteries is solely determined by skewness preference and

does not reflect the kurtosis robustness feature of prudence.

In the work presented in this chapter, we not only avoid this restriction, but also evaluate

it. This requires a comprehensive experimental presentation of the compound ES lotteries

as the skewed risks to be apportioned cannot be presented as a fair coin toss to subjects.

In the experiment, subjects will also decide over Mao lotteries to test them for skewness

seeking, which theoretically is necessary, but not sufficient to imply prudence.

5This is meant in the sense that E[ǫ3] < 0. Also this argument applies to the stronger notions of skewness
referring to all odd moments; see Chapter 3 for details.
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4.3 Research questions

In this chapter, we propose a method to test for prudence, employ it in an experiment,

and test it for robustness. A main focus is on whether prudence boils down to skewness

seeking or if, on the other hand, we find evidence for the kurtosis robustness feature

of prudence. Therefore, we also employ the Mao lotteries in the experiment to test for

skewness seeking directly.

Research Question 1. What is the relationship between prudence and skewness seeking?

If preferences over ES and Mao pairs are equivalent, then skewness seeking seems to

characterize prudence sufficiently well. On the other hand, if there are skewness seeking

individuals that do not exhibit prudence, then prudence is a stronger property, not only

in theory, but also in practice. In particular, it is not sufficient then to use binary lotteries

to test for prudence because such lotteries can not reflect the kurtosis robustness feature

of prudence.6

Eeckhoudt and Schlesinger’s definition of prudence (Definition 3) is very broad in scope.

That is, the lottery preference must hold for any random variable ǫ, any loss −k, any

wealth level x and, of course, is robust towards framing of the decision task. In particular,

the fact that the zero-mean risks are arbitrary adds a large amount of stochastic freedom

to these lotteries. As explained in Section 4.2, the skewness of the zero-mean risks

determines whether the prudent or imprudent lottery choice has the smaller or larger

kurtosis. We will test in a systematic way which of these features do significantly influence

subjects’ decisions.

Concerning the robustness towards framing, we test whether it makes a difference if the

task is to add the zero-mean risk ǫ or the fixed amount −k to a state of the 50/50 gamble,

given that the other item (−k or ǫ, respectively) is already present in one state. This

relates to the intuition of Eeckhoudt and Schlesinger’s definition of prudence as “proper

risk apportionment.” Further, Definition 3 of prudence could be adapted such that the

loss −k is replaced by a fixed gain in wealth k. The prudent choice then is the one where

k and ǫ appear in the same state (a prudent individual prefers the unavoidable additional

risk when wealth is higher). Further in-depth explanations are provided in Section 4.4.

In short, we state the following research questions.7

6This is an immediate consequence of Theorem 3 in Appendix B.

7Research Questions 2 to 4 have been addressed to some degree in Deck and Schlesinger (2010). We will
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Research Question 2. Are individuals’ decisions on ES pairs independent of whether

the fixed amount k corresponds to a gain or a loss?

Research Question 3. Are individuals’ decisions on ES pairs influenced by the wealth

level x?

Research Question 4. Are individuals’ decisions on ES pairs influenced by different

framing of the decision task—whether they are asked to add the zero-mean risk ǫ or the

fixed amount k to a state of the 50/50 gamble?

Research Question 5. Are individuals’ decisions on ES pairs influenced by the skewness

of the zero-mean risk ǫ and, therewith, the kurtosis of the prudence lotteries?

4.4 Experimental design and procedure

The computerized experiment was programmed in z-Tree (Fischbacher (2007)). In total,

each subject makes 34 individual binary lottery choices. The lottery outcomes are disclosed

in “Taler,” our experimental currency. One Taler is worth e 0.15 (about $0.2). Decisions

are incentivized by a random-choice payment technique. That means, one out of 34

decisions is randomly drawn to determine solely a subject’s payoff.8 The lottery chosen

by the individual in the randomly determined decision is actually played out at the end

of the experiment.

The experiment consisted of three stages. In stage ES, we tested subjects for prudence

using 16 ES lottery pairs. Subjects decided on 8 Mao pairs in stage MAO to test them

for skewness preference. The remaining 10 questions were used to test for risk aversion.

We will not elaborate on the method as well as the data analysis of the third stage in the

following. A questionnaire comprising demographic questions followed the experiment.

The experimental instructions handed out to subjects are given in Appendix A.3.2. We

compare results in Section 4.5.

8It has become increasingly common in economic experiments to elicit a series of choices from participants
and then to pay for only one selected at random; see Baltussen et al. (2010) for a fine overview.
The random choice payment technique enables the researcher to observe a large number of individual
decisions for a given research budget. However, the important question arises whether subjects behave
as if each of these choices involves the stated payoffs. This issue has been analyzed, among various other
setups, in experiments with pairwise lottery choice problems similar to our experiment. For example,
Starmer and Sugden (1991) found clear evidence that under random payment subjects isolate choices
as if paid for each task. Similar evidence was reported by Beattie and Loomes (1997) and Cubitt et al.
(1998). In a lottery experiment with a multiple price list format, Laury (2005) reports no significant
difference in choices between paying for 1 or all 10 decision.
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now describe the experimental stages in more detail.

4.4.1 Prudence test embedded in a factorial design: stage ES

In stage ES, we test whether individuals are prudent according to Definition 3. To this end

subjects are asked to make preference choices over the 16 ES pairs ES1,ES2, . . . , ES16.

We introduce a new ballot box representation to display the compound lotteries of the

ES pairs. Figure 4.3 shows, as an example, how question ES1 (that has already been

illustrated more formally in Figure 4.2) appears on subjects’ decision screens. It must be

understood as follows: Option A and Option B are displayed in the left and right panel

of Figure 4.3, respectively. For both options, the 50/50 gamble is depicted as a ballot

box that contains two balls labeled “Up” and “Down.” The displays of both Option A

and Option B themselves are spatially separated, each into an upper panel containing the

“Up-ball” and into a lower panel containing the “Down-ball.” Now consider Option A. If

the draw from the first ballot box is “Up,” then the subject loses 40 Taler, and a second

lottery (the zero-mean risk ǫ) follows. The zero-mean risk ǫ is also displayed in a ballot

box format with 10 balls in total. Balls implying a loss (here: −120 Taler) are colored

in yellow on subjects’ decision screens, and balls implying a gain (here: 13.3 Taler) are

colored in white. In situation “Down,” no second lottery follows and no loss occurs. For

Option B, if the draw from the first ballot box is “Up,” no loss occurs and a second lottery

follows (the same ǫ as depicted in Option A). If the draw is “Down,” a loss of 40 Taler

occurs. The order of subjects’ 16 decision screens is randomized for each subject, and

also the position of the prudent option being either left or right on the screen has been

randomized.

This ballot box representation interlinks decisions on the computer screen with the lottery

play at the end of the experiment; see Figure 4.4. Further, it visualizes asymmetric zero-

mean risks and all probabilities in an intuitive way.

To test Research Questions 2 to 5, we employ a completely randomized factorial design.9

The factors are as follows: sign of k (Factor A), wealth level x (Factor B), framing (Fac-

tor C), and composition of ǫ (Factor D); see columns 6 to 9 in Table 4.1 for a complete

design layout. Along the illustration in Figure 4.3, we now explain how the factors of the

factorial design translate into subjects’ decision screens.

9For a detailed description of the factorial design technique see, e.g., Montgomery (2005).
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Figure 4.3: Example of the lottery display in stage ES (Question ES1)
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Figure 4.4: Sample of ballot boxes

This photograph shows an example of the ballot boxes used to determine subjects’ payoffs at the end
of the experiment from a decision made in stage ES, e.g., ES1 (compare to screenshot in Figure 4.3).

When Factor A is at its low level (k1 = 40), the outcomes of the 50/50 gamble are 0 Taler

and −40 Taler. That is, the fixed amount added corresponds to a loss. Hence, in the

example, the imprudent choice is Option A, as the additional zero-mean risk occurs in the

bad state. At the alternative level (k2 = −40) of Factor A the amount 40 Taler is added,

which corresponds to a gain and is displayed as a green bill on subjects’ screens. With

Factor A we test for an experimental framing effect (Research Question 2) and whether

individuals really exhibit the intuition of proper risk apportionment. For example, if a

subject consistently prefers the option where ǫ is added to outcome 0 Taler (independent

of the sign of k), we could conjecture that this is due to framing and conclude that 0 is a

so-called focal point.

Factor B tests for a wealth effect according to Research Question 3 and comprises the

levels x1 = 160 or x2 = 80 Taler. This test is limited in that wealth levels are presented

as endowments to subjects that they receive in order to accommodate possible negative

lottery outcomes. The wealth level on subjects’ screens is indicated in the upper left

corner. In Figure 4.3, it is set to 160 Taler.

Next we consider Factor C. In the example, the decision between the imprudent Option A

89



and the prudent Option B is whether in the up-state or in the down-state a fixed loss

of 40 Taler is preferred given that the additional risk will be in the up-state. That is,

the question on the decision screen is “Where do you prefer to add a fixed amount of

−40 Taler? To situation “Up” or “Down” of the first risky event?” At the other level

of Factor C, subjects are asked to which situation—either 0 or −k—of the 50/50 gamble

to add another risky event (ǫ). Thus, the two levels of Factor C are “add k” (a sure

reduction or increase in wealth) or “add ǫ” (a zero-mean risk). Factor C directly relates

to the intuition behind Eeckhoudt and Schlesinger’s prudence definition of proper risk

apportionment. It purely checks for a framing issue as the lotteries across levels of Factor C

are identical in distribution.

With Factor D we test if prudence is invariant under variation of the ǫ’s (Research Ques-

tion 5) or equivalently, for the kurtosis robustness feature of prudence. According to

Proposition 9, the prudent lottery choice B3 has always the higher skewness compared

to the imprudent choice A3. It has the smaller kurtosis, i.e., MS
n(B3) − M

S
n(A3) < 0 for

all n ≥ 4 even, if and only if ǫ is left-skewed. Thus, when varying the zero-mean risks,

it is natural to vary their skewness systematically as this is the significant driver of the

statistical differences between the ES lotteries. As shown in Appendix B, the skewness of a

binary lottery depends only on its probability parameter. In our example, ǫ is left-skewed

such that the prudent lottery choice has the smaller kurtosis. If ǫ in the example had the

signs of the outcomes switched, it would be right-skewed, and the prudent option had the

higher kurtosis. As ǫ has a mean of zero, skewness has the following interpretation. A

left-skewed ǫ yields a small gain with high probability and a large loss with a small prob-

ability. Further, as we display ǫ as a ballot box containing 10 balls, skewness translates

one-to-one to the number of draws implying losses or gains, respectively. Indeed, in the

example, ǫ implies a loss of 120 Taler with a 10% chance and a gain of 13.3 Taler with a

90% chance.

We denote the levels of Factor D by “κ(B3) − κ(A3) > 0” (positive kurtosis difference)

and “κ(B3) − κ(A3) < 0” (negative kurtosis difference). However, any of the mentioned

equivalent interpretations (kurtosis difference, skewness of the zero-mean risk, composition

of the ballot box) is captured by Factor D. These practical interpretations of kurtosis dif-

ference support our theoretical argument that restricting to symmetric ǫ’s is a somewhat

severe limitation for a procedure that aims to test for prudence.

To sum up, by specifying the four factors above, we manipulate the requirements in
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Table 4.1: ES pairs with their underlying factors and their statistical properties

ǫ Factors Statistical properties

E[A3] V(A3) ν(B3) κ(B3)

ES pair p z1 1 − p z0 A B C D = E[B3] = V(B3) −ν(A3) −κ(A3)

ES1 0.90 13.33 0.10 −120.00 40 160 add −k κ(B3) − κ(A3) < 0 −20.00 1,200.00 2.30 −9.48
ES2 0.10 120.00 0.90 −13.33 40 160 add −k κ(B3) − κ(A3) > 0 −20.00 1,200.00 2.30 9.48
ES3 0.80 12.00 0.20 −48.00 40 160 add ǫ κ(B3) − κ(A3) < 0 −20.00 688.00 1.92 −3.50
ES4 0.20 48.00 0.80 −12.00 40 160 add ǫ κ(B3) − κ(A3) > 0 −20.00 688.00 1.92 3.50
ES5 0.70 12.00 0.30 −28.00 40 80 add −k κ(B3) − κ(A3) < 0 −20.00 568.00 1.48 −1.33
ES6 0.30 28.00 0.70 −12.00 40 80 add −k κ(B3) − κ(A3) > 0 −20.00 568.00 1.48 1.33
ES7 0.60 8.00 0.40 −12.00 40 80 add ǫ κ(B3) − κ(A3) < 0 −20.00 448.00 0.60 −0.15
ES8 0.40 12.00 0.60 −8.00 40 80 add ǫ κ(B3) − κ(A3) > 0 −20.00 448.00 0.60 0.15
ES9 0.90 13.33 0.10 −120.00 −40 160 add −k κ(B3) − κ(A3) > 0 20.00 1,200.00 2.30 9.48
ES10 0.10 120.00 0.90 −13.33 −40 160 add −k κ(B3) − κ(A3) < 0 20.00 1,200.00 2.30 −9.48
ES11 0.80 12.00 0.20 −48.00 −40 160 add ǫ κ(B3) − κ(A3) > 0 20.00 688.00 1.92 3.50
ES12 0.20 48.00 0.80 −12.00 −40 160 add ǫ κ(B3) − κ(A3) < 0 20.00 688.00 1.92 −3.50
ES13 0.70 12.00 0.30 −28.00 −40 80 add −k κ(B3) − κ(A3) > 0 20.00 568.00 1.48 1.33
ES14 0.30 28.00 0.70 −12.00 −40 80 add −k κ(B3) − κ(A3) < 0 20.00 568.00 1.48 −1.33
ES15 0.60 8.00 0.40 −12.00 −40 80 add ǫ κ(B3) − κ(A3) > 0 20.00 448.00 0.60 0.15
ES16 0.40 12.00 0.60 −8.00 −40 80 add ǫ κ(B3) − κ(A3) < 0 20.00 448.00 0.60 −0.15

This table describes the prudence lottery pairs ES1,ES2, . . .ES16 in stage ES. ǫ is the binary zero-mean risk with its up-state z1, its
down-state z0, and the respective probabilities p and 1 − p shown in columns 2 to 5. The explicit arrangement of factors A, B, C, and D
is given in columns 6 to 9. The remaining columns provide information on moments of the ES lotteries.
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Eeckhoudt and Schlesinger’s definition of prudence and for framing issues. We can test

which factors have a severe impact on individuals’ decisions such that they should be

accounted for when testing for prudence. A complete overview of the 16 ES pairs, their

statistical properties, and the arrangement of factors is provided in Table 4.1.

4.4.2 Skewness seeking test: stage MAO

In this stage, we test subjects for skewness seeking in order to answer Research Ques-

tion 1. Therefore, we construct 8 different Mao pairs for which subjects have to state

their preference. These are shown in Table 4.2 and are matched with the lotteries from

stage ES according to their first three moments. For the third moment only differences

can be matched. For the details of this calibration procedure see Appendix B. There are

only 8 such pairs, because the lotteries of a Mao pair cannot differ in their kurtosis; see

Proposition 8. Thus, lottery pair MAO1 is matched to lottery pairs ES1 and ES2, lottery

pair MAO2 is matched to ES3 and ES4, and so on. As the Mao lotteries imply negative

outcomes, subjects are endowed with a certain amount of money equal to the wealth level

x in the matched ES pairs.10

For the Mao lotteries we choose a graphical representation similar to the one proposed

by Camerer (1989). An example of a decision screen can be found in the instructions to

stage II in Appendix A.3.

4.4.3 Procedural details

The experiment was conducted at the BonnEconLab. Overall 72 students of University of

Bonn from various fields participated in 9 experimental sessions in December 2008, Jan-

uary, and February 2009. The stage order was varied systematically across sessions. Each

session lasted for about 90 minutes. Subjects earned on average e 18.50 (about $24.7).

The procedure of the experiment was as follows: firstly, experimenters extensively intro-

duced the decision task and the entire procedure of the experiment to subjects. Secondly,

before each experimental stage started, subjects were asked to answer control questions

testing their understanding of the decision task. In particular, they were familiarized with

the illustration of lotteries and their outcomes as well as probabilities. Only when subjects

10Analogous to stage ES, the order of subjects’ decision screens is randomly permutated in stage MAO,
and also the position of the lottery with the higher skewness (left or right on the decision screen) is
randomized.
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Table 4.2: Mao pairs and their statistical properties

MA MB Statistical properties

E[MA] V(MA) ν(MB)
Mao pair p x1 1 − p x0 p y1 1 − p y0 = E[MB ] = V(MB) = −ν(MA)

MAO1 0.75 0.00 0.25 −80.00 0.75 −40.00 0.25 40.00 −20.00 1200.00 1.15
MAO2 0.72 −3.48 0.28 −61.64 0.72 −36.52 0.28 21.64 −20.00 688.00 0.96
MAO3 0.67 −3.44 0.33 −54.30 0.67 −36.56 0.33 14.30 −20.00 568.00 0.74
MAO4 0.58 −1.81 0.42 −44.62 0.58 −38.19 0.42 4.62 −20.00 448.00 0.30
MAO5 0.75 40.00 0.25 −40.00 0.75 0.00 0.25 80.00 20.00 1200.00 1.15
MAO6 0.72 36.52 0.28 −21.64 0.72 3.48 0.28 61.64 20.00 688.00 0.96
MAO7 0.67 36.56 0.33 −14.30 0.67 3.44 0.33 54.30 20.00 568.00 0.74
MAO8 0.58 38.19 0.42 −4.62 0.58 1.81 0.42 44.62 20.00 448.00 0.30

This table shows the eight Mao pairs, i.e., MAO1,MAO2, . . . ,MAO8, employed in stage MAO. These are matched to the ES pairs in
terms of moments as explained in Appendix B. The final three columns provide information on moments of the Mao lotteries.
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had answered these questions correctly, they were allowed to proceed to the decision stages

of the experiment. Then, thirdly, subjects made the decisions in the experimental stages.

Afterwards, subjects answered a questionnaire for which they received e 4.00 ($5.3) in

addition to their earnings from the experiment (comparable to a show-up fee). Finally,

each subject’s payoff was determined by a random-choice payment technique. To this end,

for each subject one ball was chosen out of a set of balls numbered between 1 and 34 from

a ballot box referring to a lottery pair from the experiment. The subject’s lottery choice in

this randomly drawn lottery pair was then actually played out. In both stages MAO and

ES, the outcome was allocated to the subjects’ wealth level in that decision, i.e., subjects

could charge the coupon they obtained in the beginning. The ES lotteries were played out

using ballot boxes resembling the lotteries displayed on subjects’ decision screens; see the

photograph in Figure 4.4. The binary lotteries in stage MAO and the risk aversion stage

were played out using a ballot box with 100 balls numbered from 1 to 100. If, e.g., the

up-state had a likelihood of 90%, a draw of the balls numbered 1, 2, . . . , 90 implied the

corresponding up-payoff.

4.5 Experimental results

4.5.1 Preliminary analysis

There is evidence for both prudence and skewness seeking at an aggregate level.11

Figure 4.5 plots the relative frequencies of subjects’ prudent choices. Overall, 65.10%

of subjects’ responses are prudent. This fraction is slightly higher than the 61% of pru-

dent choices reported by Deck and Schlesinger (2010). In our sample, on average 10.42

out of 16 choices are prudent with a standard deviation of 3.65. The median (mode) of

prudent choices is 11 (13). The observed behavior in stage ES differs significantly from ar-

bitrary behavior. Formally, we can reject the null hypothesis that the median of subjects’

prudent choices is equal to 8 as it would be for arbitrary choices (p = 0.0000, two-sided

one-sample Wilcoxon signed-rank test).12

11To rule out possible stage order effects, we compare responses from sessions with stage order MAO-ES
with responses from sessions with stage order ES-MAO. The null hypothesis that both samples are
drawn from the same distribution cannot be rejected (for ES-responses: p = 0.413 and for MAO-
responses: p = 1.000, two-sided two-sample Kolmogorov-Smirnov test).

12In the following, all statistical tests are two-sided if not indicated differently. Under the null hypothesis,
the Wilcoxon signed-rank procedure assumes that the sample (of frequencies per individual) is randomly
taken from a population with a symmetric (but not necessarily normal) frequency distribution. As an
alternative, a two-sided one-sample sign-test with the same null and alternative hypothesis (but without
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Figure 4.5: Distribution of the number of prudent choices by subjects
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In stage MAO, 77.08% of all choices imply skewness seeking. Figure 4.6 illustrates the rel-

Figure 4.6: Distribution of the number of skewness seeking choices by subjects
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ative frequencies of subjects’ skewness seeking choices. Each subject has been, on average,

skewness seeking in 6.16 out of 8 questions with a standard deviation of 2.01. The median

(mode) of skewness seeking choices is 7 (8). Also, this behavior differs significantly from

arbitrary choices (p = 0.0000.)

The age of the 72 participants is, on average, 24.25 years; the youngest individual is 19,

the oldest is 42 years of age. 41 are female and 31 are male. According to Mann-Whitney

U-tests, neither age nor gender have a significant influence on the number of prudent

answers observed in our experiment; see Ebert and Wiesen (2009) for details.

the symmetry assumption), would also lead us to reject the null (p = 0.0004).
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4.5.2 Within subject analysis

Our preliminary analysis suggests substantial evidence for prudence and skewness seek-

ing. This subsection is concerned with their relationship at an individual level (Research

Question 1). For starters, we observe a significant positive correlation (which is a symmet-

ric measure of association) of ρ = 0.2844 between prudent and skewness seeking choices

(p = 0.0155, Spearman rank correlation test).

We now show that the actual relationship is asymmetric. To this end, we categorize

subjects’ responses in stages ES and MAO according to the frequency of prudent and

skewness seeking choices, respectively. These categorizations are somewhat arbitrary.

However, the qualitative conclusions stay the same when changing the categorizations

by plus or minus one. Subjects who answered 12 or more (4 or less) out of 16 questions

prudently are said to be prudent (imprudent). Those subjects who answered 5 to 11 ques-

tions prudently are classified as indifferent. Similarly, subjects are classified as skewness

seeking (not skewness seeking) if they have answered 7 or 8 (0 or 1) out of 8 questions in

favor of the lottery with the positive (negative) skewness. When 2 to 6 questions implied

skewness seeking, subjects are allotted to the category indifferent.

Table 4.3 cross-tabulates the absolute frequencies of subjects according to the categories.

Table 4.3: Contingency table on categories

Not skewness seeking Indifferent Skewness seeking Total

Imprudent 0 3 3 6

Indifferent 2 13 17 32

Prudent 1 10 23 34

Total 3 26 43 72

Let us first analyze prudence and skewness seeking separately. 34 (47.22%) of all 72

subjects are prudent, whereas only 6 (8.33%) are imprudent. Note again that this gives

a very different picture compared to looking at the aggregate responses only. Deck and

Schlesinger (2010) report that very few subjects always decided imprudently (2%) and

only 14% were always prudent in their six decision tasks. Skewness seeking is more

widely observed than prudence, as 43 (59.72%) of all subjects exhibit it, whereas only

3 (4.17%) do not.13 This complies with our arguments made in Section 4.2 as it shows

that, empirically, skewness seeking is a weaker preference than prudence. The difference

in prudent and skewness seeking observations immediately indicates that Mao lotteries

13Tarazona-Gomez (2004) finds 63% of the subjects to be “prudent” under the assumption of third-order
moment preferences.
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are not suitable to test for prudence.

The conditional frequency f(skewness seeking |prudent) that a prudent individual exhibits

skewness seeking is 67.65%, whereas f(not skewness seeking |prudent) is only 2.94%.14

The chance for a prudent individual to be skewness seeking is thus about 23 times higher

than not being skewness seeking. The analysis of the reverse statement does not provide

such a clear-cut picture. The conditional frequency f(prudent |skewness seeking) is given

by 53.49% whereas f(imprudent |skewness seeking) equals 6.98%. Thus, the chance of

being prudent given that the individual is skewness seeking is about 8 times higher than

for an individual that is not skewness seeking. This result, however, is not very reliable as

there are only 3 subjects who were not skewness seeking. In short, we see that knowing

about an individual’s preference towards the Mao lotteries gives some information about

whether the individual is prudent. The result also hints in the “right” direction as being

skewness seeking increases the probability of being prudent.

Result 1. Most prudent individuals are skewness seeking, whereas skewness seeking indi-

viduals may not be prudent.

Result 1 shows that skewness seeking is not sufficient to make conclusions whether an

individual is prudent. Thus, there seems to be more to prudence than skewness seeking.

Result 1 can also be interpreted as a robustness check for our method to test for prudence.

Most subjects it diagnoses as prudent, consistently with theory, are skewness seeking.

4.5.3 Influences on prudent behavior

We now investigate what types of ES questions are more likely to be answered prudently.

In general, we find that the particular choice of the prudence lottery pair has a strong

impact on the 72 subjects’ decisions. Relative frequencies range from 50.00% to 75.00%

with a standard deviation of 8.11.% from the reported mean of 65.10%. In order to

determine what particular elements in the definition of prudence cause these differences,

we investigate Factors A, B, C, and D according to Research Questions 2 to 5.

As formulated in Research Question 2, we are interested whether the fixed amount k

being a gain or a loss (Factor A) influences subjects’ decisions. When k is a loss, 66.32%

of responses are prudent, whereas slightly less responses are prudent (63.89%) when k is

14If we exclude subjects who were indifferent at least at one stage, these numbers become 95.6% and 4.2%,
respectively.
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a gain. Test statistics of a Wilcoxon signed-rank test and a Fisher-Pitman permutation

test for paired replicates in Table 4.4 show that this difference is insignificant (p = 0.5253

and p = 0.5008, respectively).

Result 2. Subjects’ decisions are robust towards different outcomes of the 50/50 gamble,

i.e., whether the fixed amount k is a gain or a loss. Implicitly, 0 as a focal point did not

influence behavior.

Considering Factor B, 64.76% of choices are prudent if the wealth level x is high (x1 = 160),

and 65.45% of choices are prudent if x is low (x2 = 80). This indicates an insignificant

difference; see the test results in Table 4.4.

Result 3. Subjects’ decisions are robust towards different wealth levels.

Research Question 4 asks whether a framing of the decision task (Factor C) influences

subjects’ decisions. The level of Factor C influences prudent choices substantially, as

67.36% of the choices are prudent if the level is “add ǫ” and 62.85% if the level is “add

−k.” Test statistics show that differences are weakly significant.

Result 4. Framing of the decision task influences subjects’ decisions. Weakly significant

more subjects answer questions prudently if the zero-mean risk (ǫ) has to be added to the

50/50 gamble compared to the fixed amount (k).

In essence, Result 4 shows that the decision task involving subjects’ conscious consideration

about another risky event leads to more prudent choices, whereas when asked to add a fixed

amount subjects make slightly more imprudent choices. When looking at the interaction

of Factors A and C, weakly significantly more choices are prudent whenever i) the fixed

amount is a loss (k1 = 40) and subjects are asked to “add ǫ” and ii) the fixed amount is a

gain (k2 = −40) and they are asked to “add −k” (p = 0.0690).

In short, our analysis of factors A, B, and C suggests that subjects’ decisions are neither

influenced by the fixed amount being a gain or a loss nor by the wealth level. These results

are in line with behavioral patterns reported by Deck and Schlesinger (2010). They also

find that the relative size of the zero-mean risk is not influential. In contrast to their

findings, our behavioral data evidence that framing of the decision task weakly influences

subjects’ choices.
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Table 4.4: Analysis of prudent choices for different factor levels

Factor Level Relative frequency p-value (Fisher-Pitman

of prudent choices permutation test)

A k1 = 40 0.6632 0.5008

k2 = −40 0.6389

B x1 = 160 0.6476 0.8362

x2 = 80 0.6545

C add −k 0.6285 0.0677

add ǫ 0.6736

D κ(B3) − κ(A3) < 0 0.6858 0.0121

κ(B3) − κ(A3) > 0 0.6163

Factor D considered in Research Question 5 is most significant; see Table 4.4. At its low

level (negative kurtosis difference), 68.58% of subjects’ choices are prudent. If Factor D

is at its high level (positive kurtosis difference), 61.63% of the choices are prudent. For

questions ES9 (largest positive kurtosis difference in the experiment) and ES10 (largest

negative kurtosis difference, other factors like in ES9), 50.00% and 75.00% of answers

are prudent, respectively. Note again that for the prudence lotteries a negative kurtosis

difference is equivalent to ǫ being left-skewed, i.e., the ballot box displayed on subjects’

screens contains more white balls (implying a small gain) than yellow balls (implying a

high loss).

Result 5. The particular choice of the zero-mean risk ǫ strongly influences subjects’ de-

cisions. Significantly more subjects decide prudently if ǫ is left-skewed.

One intuition supporting Result 5 is that a prudent individual may consider a negatively

skewed zero-mean risk as a “bigger” harm. Hence, there is a greater tendency for ap-

portioning the harms of the sure loss and the zero-mean risk properly. In Section 4.2,

we showed that ǫ being left-skewed implies a smaller kurtosis for the prudent than for

the imprudent choice. An interpretation is that in this case the prudent choice implies

a smaller likelihood of extreme events to occur. A prudent individual, however, would

seek the higher skewness of the prudent lottery choice irrespectively of its kurtosis. She

must not deviate from her preference if the additional risk is not too harmful to her. This

was shown in Proposition 9 and was referred to as the kurtosis robustness feature of pru-

dence in Chapter 3. Thus, Result 5 is a major finding of our experiment as it confirms
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its relevance empirically. It emphasizes the importance to use several lotteries to test for

prudence in order to reflect the statistical diversity which is implicit in Eeckhoudt and

Schlesinger’s definition of prudence. As the kurtosis of the prudence lotteries matters, the

significance of Factor D also shows that there is more to prudence than skewness seeking.

4.6 Conclusion to Chapter 4

Currently, the share between theoretical and empirical literature on prudence is very un-

balanced. Numerous behavioral implications of prudence have been pointed out, but there

is very little empirical, i.e., experimental, research on prudence to support the relevance

and validity of these theories. To get there, in this last chapter of this thesis we propose,

implement, and check for robustness a method testing for prudence in a laboratory set-

ting.

We construct a set of 16 lottery pairs to test for prudence (Eeckhoudt and Schlesinger

(2006)) that not only reflect skewness seeking, but also the kurtosis robustness feature of

prudence. As shown in Chapter 3, the latter is also a characteristic feature of prudence.

Its origin lies in the skewness of the zero-mean risks and we show how to implement such

risks in the experiment. To this end, we propose a new ballot box representation of com-

pound lotteries for application in experiments. It is very easy to understand and translates

naturally from subjects’ decision screens to the real-world draw of the lotteries.

In the experiment, indeed, the choice of the zero-mean risk significantly affects subjects’

decisions. Thus, we find that prudence does not boil down to skewness seeking. This is

also evidenced by testing for skewness seeking directly using the lotteries of Mao (1970)

which, as we show, only differ in their skewness. Consistently with theory, most subjects

we diagnose as prudent are skewness seeking, but not vice versa.

Prudence is observed on the aggregate as well as at the individual level. 65% of responses

are prudent and we classify 47% of individuals as prudent and 8% as imprudent. The

number of prudent responses varies substantially from 50% to 75% for different prudence

lottery pairs. This should be taken into account when testing for prudence.

Given the observed presence of prudence, further experimental research could focus on the

empirical validation of prudent behavior. For example, the probably most famous predic-

tion that prudent people exhibit larger precautionary saving has received little attention

yet. Moreover, the method proposed in this chapter could be easily adapted to test for

temperance and associated theories.
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In our opinion, many more experiments should be conducted in order to validate, consol-

idate, and improve experimental methodology to measure higher-order risk preferences.

As indicated in the introduction to this thesis, the robust measurement of risk aversion

has been a major topic in economic research for decades. And the problem is far from

being solved.

Note that our experiment that aims to test for prudence as well as that of Deck and

Schlesinger (2010) test for the direction of preference, i.e., they are based on “yes-or-no

questions.” In Ebert and Wiesen (2010), we propose a method to measure the intensity

of higher-order risk preferences and employ it in an experiment. That is, we measure

compensating risk premia (see, e.g., Kimball (1990) or Pope and Chavas (1985)) that in-

dividuals demand for making the “risky” choice. This is not only done for prudence, but

also for risk aversion and temperance. Further, we propose consistent framing of methods

to measure these traits jointly. This methodology builds upon and extends the one pre-

sented in this last chapter of this treatise. We hope that it can serve as an attachment

to other experiments on economic behavior in order to investigate the relationship to risk

attitudes in a refined way, i.e., in a way that clearly distinguishes risk attitudes from risk

aversion.
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Appendix A

Appendices to Chapters 1, 3, and

4

A.1 Appendix to Chapter 1

Proof of Proposition 1. In the situation of a single partial hedge, the portfolio loss L1,N−1

is given by equation (1.3.1). The conditional expectation of the loss ratio of the composite

instrument Û1 is given by

µ̂1(x) = E[Û1|x] = ELGD1 ELGD2 PD1(x) PD2(x) = µ1(x)µ2(x). (A.1.1)

Equation (1.3.1) and equation (A.1.1) imply that the conditional mean of the portfolio

loss is

µ1,N−1(x) = µ0,N−1(x) + λs1µ̂1(x) + (1 − λ)s1µ1(x). (A.1.2)

Taking the derivative yields

µ′
1,N−1(x) = µ′

0,N−1(x) + λs1
(
µ′

1(x)µ2(x) + µ1(x)µ′
2(x)

)
+ (1 − λ)s1µ

′
1(x)

and for the second derivative we obtain

µ′′
1,N−1(x) = 2λs1µ

′
1(x)µ′

2(x)

since the second derivative of µn(x) vanishes for any n = 1, . . . , N. Using the CreditRisk+

notation of Section 1.3, the conditional expectation of the portfolio loss ratio and its
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derivatives can be expressed as

µ1,N−1(xq) = µ0,N−1(xq) + s1λ(K̂1 + R̂1) + s1(1 − λ)(K1 + R1)

µ′
1,N−1(xq) =

K1,N−1(λ)

xq − 1

µ′′
1,N−1(xq) =

2s1λ

(xq − 1)2
K1K2

(A.1.3)

where K1,N−1(λ) is defined in Proposition 1. Hence, it remains to compute the conditional

variance of the portfolio loss and its derivative. For the conditional variance of the portfolio

loss ratio, we obtain

V[s2U2 + λs1Û1 + (1 − λ)s1U1|x]

= V[s2U2 + (1 − λ)s1U1|x] + V[λs1Û1|x] + 2 Cov[s2U2 + (1 − λ)s1U1, λs1Û1|x]

(A.1.4)

and the last term can be written as

2s1s2λCov[U2, U1U2|x] + 2s2
1λ(1 − λ) Cov[U1, U1U2|x].

Since U1 and U2 are conditionally independent one can show that

Cov[U2, U1U2|x] = µ1(x)σ2
2(x) and Cov[U1, U1U2|x] = µ2(x)σ2

1(x). (A.1.5)

Recall that, for independent random variables Y1 and Y2, the following relation holds

V[Y1Y2] = V[Y1]V[Y2] + V[Y1]E[Y2]2 + V[Y2]E[Y1]2. (A.1.6)

Using these results, equation (A.1.4) can be written as

V[s2U2 + s1λU1U2 + s1(1 − λ)U1|x]

= s2σ
2
2(x) + s2

1(1 − λ)2σ2
1(x) + s2

1λ
2
(
σ2

1(x)σ2
2(x) + σ2

1(x)µ2
2(x) + σ2

2(x)µ2
1(x)

)

+2s1s2λµ1(x)σ2
2(x) + 2s2

1λ(1 − λ)µ2(x)σ2
1(x)
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and therefore the conditional variance of the portfolio loss ratio is

σ2
1,N−1(x) = σ2

0,N−1(x) + s2
1(1 − λ)2σ2

1(x)

+2s1s2λµ1(x)σ2
2(x) + 2s2

1λ(1 − λ)µ2(x)σ2
1(x)

+s2
1λ

2
(
σ2

1(x)σ2
2(x) + σ2

1(x)µ2
2(x) + σ2

2(x)µ2
1(x)

)
.

(A.1.7)

Evaluating at xq and inserting equations (1.2.11) and (1.2.12) gives an expression in Kn

and Rn. These quantities are typically quite small so that products of these contribute

little to the GA.1 As double default effects will be second-order effects, i.e., of order

O(1/N2) as discussed in Remark 3, throughout this chapter we will neglect third- and

higher-order terms in Kn and Rn. For this argument, note that, due to relations (1.2.11)

and (1.2.12), the terms µn(xq) and σ2
n(xq) and their derivatives are all of order 1 in Kn

and Rn. Moreover, if an expression for the conditional variance of the loss ratio involves

a product of three or more of these terms, it will also yield products of three or more

of these terms in the derivative. Finally, when computing the GA using formula (1.2.6),

third- and higher-order terms in Kn and Rn can never turn into more significant lower

order terms. This is obvious from derivations that follow. Therefore, in the following we

will always compute the expressions for the conditional variance of the portfolio loss and

its derivative without third- and higher-order terms in Kn and Rn since these terms are

of order O(1/N2 · PD3 · ELGD3) or even higher, and thus would yield negligible terms

anyway. Thus, with these simplifications, we obtain

σ2
1,N−1(xq) ≈ σ2

0,N−1(xq) + s2
1(1 − λ)2

(
C1(K1 + R1) + (K1 + R1)2 VLGD2

1

ELGD2
1

)

+2s1s2λC2(K̂1 + R̂1) + s2
1

[
λ2C1C2 + 2λ(1 − λ)C1

]
(K̂1 + R̂1)

d
dxσ

2
1,N−1(xq) ≈ d

dx
σ2

0,N−1(xq) +
s2

1(1 − λ)2

xq − 1

(
C1K1 + 2K1(K1 + R1)

VLGD2
1

ELGD2
1

)

+
2s1s2λC2

xq − 1
(K1(K2 + R2) + K2(K1 + R1))

+
s2

1

[
λ2C1C2 + 2λ(1 − λ)C1

]

xq − 1
(K1(K2 + R2) + K2(K1 + R1)) .

We define the variance of the unhedged part of the portfolio as

σ̄2
0,N (xq) := σ2

0,N−1(xq) + s2
1(1 − λ)2

[
C1(K1 + R1) + (K1 + R1)2 VLGD2

1

ELGD2
1

]
. (A.1.8)

1Kn and Rn are essentially products of PDn ∈ [0, 1] and ELGDn ∈ [0, 1].
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Applying further the notation of Ĉ1(λ) in Proposition 1, we can reformulate the conditional

variance of the portfolio loss and its derivative at xq as

σ2
1,N−1(xq) ≈ σ̄2

0,N (xq) + s2
1Ĉ1(λ)(K̂1 + R̂1) + 2s1s2λC2(K̂1 + R̂1)

d

dx
σ2

1,N−1(xq)≈ d

dx
σ̄2

0,N (xq) +
s2

1Ĉ1(λ) + 2s1s2λC2

xq − 1
(K1(K2 + R2) + K2(K1 + R1)) .

(A.1.9)

We now use these representations to compute the GA in the case of one hedged posi-

tion. Therefore, first note that the formula for the “full” GA, equation (1.2.6), can be

reformulated as

GA1,N−1 =
1

2K1,N−1(λ)

(
δσ2

1,N−1(xq) − (xq − 1)
d

dx
σ2

1,N−1(xq)

+(xq − 1)
σ2

1,N−1(xq)µ′′
1,N−1(xq)

µ′
1,N−1(xq)

)
.

(A.1.10)

Rearranging and using the simplified expressions for the conditional variance and its

derivative, equation (A.1.9), this becomes

G̃A1,N−1 =
1

2K1,N−1(λ)

(
δσ̄2

0,N (xq) − (xq − 1)
d

dx
σ̄2

0,N (xq)

)

+

(
s2

1Ĉ1(λ) + 2s1s2λC2

)

2K1,N−1(λ)

(
δ(K̂1 + R̂1) − (K1(K2 + R2) + K2(K1 + R1))

)

+
1

2K1,N−1(λ)

(
(xq − 1)

σ2
1,N−1(xq)µ′′

1,N−1(xq)

µ′
1,N−1(xq)

)
.

(A.1.11)

Unlike in the case without hedging, the last summand of equation (A.1.11) does not vanish

since

µ′′
1,N−1(xq) = 2λs1µ

′
1(xq)µ′

2(xq) = 2λs1K1K2/(xq − 1)2

is in general not zero. We have

σ2
1,N−1(xq)µ′′

1,N−1(xq)

µ′
1,N−1(xq)

=
2λs1K1K2

K1,N−1(λ)(xq − 1)

(
σ̄2

0,N (xq) + s2
1Ĉ1(λ)(K̂1 + R̂1) + 2s1s2λC2(K̂1 + R̂1)

)
.

The last two summands are very small and can be neglected.2 Using this result, inserting

the GA formula for the portfolio with N−1 ordinary obligors, equation (1.2.15), and using

2The expression Kn/K1,N−1 should be reasonably close to 1 so that the neglected terms are of order
O(1/N3).
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the notation GA0,N , we obtain from equation (A.1.11) the GA formula of Proposition 1.

�

Proof of Proposition 2. We start with the situation where two different guarantors hedge

two different obligors. Therefore, we consider a portfolio with two partially hedged obligors

(1 and 2) and N − 2 ordinary obligors (3, . . . , N) where g1 6= g2. The portfolio loss is then

given by equation (1.3.7). Similarly to equation (A.1.3) we obtain for the conditional

expectation of the portfolio loss and its derivatives

µ2,N−2(xq) = µ0,N−2(xq) + s1λ1(K̂1 + R̂1) + s1(1 − λ1)(K1 + R1)

+s2λ2(K̂2 + R̂2) + s2(1 − λ2)(K2 + R2)

µ′
2,N−2(xq) =

K2,N−2(λ)

xq − 1

µ′′
2,N−2(xq) =

2

(xq − 1)2
(s1λ1K1Kg1 + s2λ2K2Kg2) .

(A.1.12)

Note that, in the equation for the portfolio loss, terms referring to the hedged obligor 1

are conditionally independent to those referring to the hedged obligor 2. This is why we

can compute the contributions to the variance of the portfolio loss separately for obligor 1

and obligor 2. Each component is obtained as in the proof of Proposition 1. Thus, for the

conditional variance of the portfolio loss ratio and its derivative, we obtain the natural

extensions of equation (A.1.9), namely

σ2
2,N−2(xq) ≈ σ̄2

0,N (xq) + s2
1Ĉ1(λ1)(K̂1 + R̂1) + 2s1sg1λ1Cg1(K̂1 + R̂1)

+s2
2Ĉ2(λ2)(K̂2 + R̂2) + 2s2sg12λ2Cg2(K̂2 + R̂2)

d

dx
σ2

2,N−2(xq) ≈ d

dx
σ̄2

0,N (xq)

+
s2

1Ĉ1(λ1) + 2s1sg1λ1Cg1

xq − 1
(K1(Kg1 + Rg1) + Kg1(K1 + R1))

+
s2

2Ĉ2(λ2) + 2s2sg2λ2Cg2

xq − 1
(K2(Kg2 + Rg2) + Kg2(K2 + R2)).

Here we naturally extended the definition (A.1.8) of σ̄2
0,N (x) to the case with two guaran-

tees. Thus, in case of two partially hedged positions, the equivalent to equation (1.3.2) is

given by equation (1.3.9), the result of Proposition 2.

Now consider the case where one guarantor hedges two different obligors. Similarly to the

previous case, we consider a portfolio with two hedged obligors (1 and 2) andN−2 ordinary
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obligors (3, 4, . . . , N). However, the obligors now have the same guarantor g1 = g2 = 3.

Then, the portfolio loss is given by equation (1.3.8). It is obvious that the conditional

expectation of the portfolio loss and its derivatives are also given by equation (A.1.12),

where terms referring to the composite instrument of course have to be adjusted to the

current situation. The conditional variance of the portfolio loss can be written as

V[L2,N−2|x]

= V[L0,N−3|x] + V[s1(1 − λ1)U1 + s2(1 − λ2)U2|x]

+V [sg1Ug1 + s1λ1U1Ug1 + s2λ2U2Ug1 |x]

+2 Cov
[
sg1Ug1 + s1λ1U1Ug1 + s2λ2U2Ug1 , s1(1 − λ1)U1 + s2(1 − λ2)U2|x

]
.

(A.1.13)

We can compute the individual terms further using the same technique as in the case of

a single partial hedge. Applying formula (A.1.5) then reduces the covariance term to

2 Cov [sg1Ug1 + s1λ1U1Ug1 + s2λ2U2Ug1, s1(1 − λ1)U1 + s2(1 − λ2)U2|x]

= 2s2
1λ1(1 − λ1)σ2

1(x)µg1(x) + 2s2
2λ2(1 − λ2)σ2

2(x)µg1(x),

and the second variance term equals

V[s1(1 − λ1)U1 + s2(1 − λ2)U2|x] = s2
1(1 − λ1)2σ2

1(x) + s2
2(1 − λ2)2σ2

2(x).

The third variance term in equation (A.1.13) can be computed using formula (A.1.6).

Again, neglecting higher-order terms in capital contributions, one can show that

V[Ug1 (sg1 + s1λ1U1 + s2λ2U2) |xq]

= σ2
g1

(xq)
(
λ2

1s
2
1σ

2
1(xq) + λ2

2s
2
2σ

2
2(xq) + 2sg1λ1s1µ1(xq) + 2sg1λ2s2µ1(xq) + s2

g1

)
.

Then, the conditional variance of the portfolio loss can be expressed as

σ2
2,N−2(xq) = σ̄2

0,N (xq)

+µg1(xq)µ1(xq)
(
λ2

1s
2
1C1Cg1 + 2sg1λ1s1Cg1 + 2s2

1λ1(1 − λ1)C1

)

+µg1(xq)µ2(xq)
(
λ2

2s
2
2Cg1C2 + 2sg1λ2s2Cg1 + 2s2

2λ2(1 − λ2)C2

)
.

Inserting the definition (1.3.6) for Ĉn(λn) and for the EL and UL capital R̂n and K̂n,
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respectively, we obtain

σ2
2,N−2(xq) = σ̄2

0,N (xq) + s2
1Ĉ1(λ1)(K̂1 + R̂1) + 2sg1s1λ1Cg1(K̂1 + R̂1)

+s2
2Ĉ2(λ2)(K̂2 + R̂2) + 2sg1s2λ2Cg1(K̂2 + R̂2)

(A.1.14)

which coincides with the expression for σ2
2,N−2(xq) in the previous case. That is, if

higher-order terms in EL and UL capital contributions are neglected, the expressions for

µ2,N−2(xq) and σ2
2,N−2(xq) and their derivatives do not depend on whether both obligors

have different guarantors or the same guarantor. Obviously, the formula for the GA also

has to be the same as in the case with different guarantors. Thus, it is given by equation

(1.3.9). �

Proof of Theorem 1. The generalization to the case of several guarantees uses the same

techniques as the proof of Proposition 2 since no further interactions will appear. We omit

the proof here because the computations become rather tedious and do not provide any

additional insight. �

A.2 Appendix to Chapter 3

The following lemma is proven in Roger (2011) and will be used several times in our proofs.

Lemma 2 (Roger’s Lemma). Let X be Bernoulli-distributed with parameter 0.5 and be

independent from Y1 and Y2. Then:

E [(XY1 + (1 −X)Y2)p] =
1

2
(E [Y p

1 ] + E [Y p
2 ]) .

We also will make frequent use of the following lemma.

Lemma 3. There exists a binary zero-mean risk with all odd moments of order three and

higher being positive (negative, zero), referred to as a right-skewed (left-skewed, symmetric)

zero-mean risk.

Proof of Lemma 3. The result is an immediate consequence of Theorems 3 and 4 proven

in Appendix B. �
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Proof of Proposition 3. We first define auxiliary lotteries

Â3 := A3 +
k

2
= X · k

2
+ (1 −X)

(
−k

2
+ ǫ1

)

B̂3 := B3 +
k

2
= X

(
−k

2

)
+ (1 −X)

(
ǫ1 +

k

2

)
.

These lotteries can be understood as the prudence lotteries shifted such that they have

mean zero. Because the operator Mp(·) is translation invariant we have

Mp(A3) = Mp(Â3) = E[Âp
3], (A.2.1)

which analogously holds for B3. Thus, it suffices to focus on the computation of the non-

central moments E[Âp
3] and E[B̂p

3 ]. In the second equality below, we apply Roger’s Lemma

and obtain

Mp (A3) = E

[{
X · k

2
+ (1 −X)

(
ǫ1 − k

2

)}p]

=
1

2
E

[(
ǫ1 +

(
−k

2

))p]
+

1

2

(
k

2

)p

=
1

2
E




p∑

j=0

(
p

j

)
ǫj1

(
−k

2

)p−j

+

1

2

(
k

2

)p

=
1

2

p∑

j=2

(
p

j

)(
−k

2

)p−j

E

[
ǫj1

]
+

1

2

((
−k

2

)p

+

(
k

2

)p)
, (A.2.2)

where we used that the summand for j = 1 is zero since E[ǫ1] = 0. This argument will be

used several times in the proofs of this appendix. Similarly, for B3 we get

Mp (B3) =
1

2

p∑

j=2

(
p

j

)(
k

2

)p−j

E

[
ǫj1

]
+

1

2

((
−k

2

)p

+

(
k

2

)p)
. (A.2.3)

To prove (1) and (2), if p is odd we have

Mp (A3) =
1

2

p∑

j=2

(
p

j

)
E

[
ǫj1

] (
−k

2

)p−j

+
1

2

(
−
(
k

2

)p

+

(
k

2

)p)

=
1

2

p∑

j=2

(
p

j

)
E

[
ǫj1

] (
−k

2

)p−j

and analogously

Mp (B3) =
1

2

p∑

j=2

(
p

j

)
E

[
ǫj1

](k
2

)p−j

.
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If p is even

Mp (A3) =
1

2

p∑

j=2

(
p

j

)
E

[
ǫj1

](
−k

2

)p−j

+
1

2

((
k

2

)p

+

(
k

2

)p)

=

(
k

2

)p

+
1

2

p∑

j=2

(
p

j

)
E

[
ǫj1

](
−k

2

)p−j

and analogously

Mp (B3) =

(
k

2

)p

+
1

2

p∑

j=2

(
p

j

)
E

[
ǫj1

](k
2

)p−j

.

Proof of part (3). For odd p, using the expressions proven in (1) and (2), the difference

can be computed as

Mp (B3) − Mp (A3) =
1

2

p∑

j=2

(
p

j

)
E

[
ǫj1

] ((
k

2

)p−j

−
(

−k

2

)p−j
)

︸ ︷︷ ︸

=





2
(

k
2

)p−j
, p− j odd ⇔ j even

0 , o.w.

=
p∑

j=2, j even

(
p

j

)
E

[
ǫj1

](k
2

)p−j

.

Similarly, for even p we obtain

Mp (B3) − Mp (A3) =
1

2

p∑

j=2

(
p

j

)
E

[
ǫj1

] ((
k

2

)p−j

−
(

−k

2

)p−j
)

︸ ︷︷ ︸

=





2
(

k
2

)p−j
, p− j odd ⇔ j odd

0 , o.w.

=
p∑

j=2, j odd

(
p

j

)
E

[
ǫj1

](k
2

)p−j

.

Summarizing these results proves part (3). For the claims on the sign of Mp (B3)−Mp (A3) ,

consider the cases where ǫ1 is one of the three risks that exist according to Lemma 3. For

these three risks, respectively, all summands in the expression of part (3) are throughout

positive, negative, and zero. Thus, for p even, the whole expression in part (3) can be

positive, negative, or zero. For p odd, all summands in the expressions must be strictly

positive because, by definition, Mj(ǫ
j) > 0 for j even. �

111



Proof of Proposition 4. By application of Roger’s Lemma, we have

Mp (A4) = E [(1 −X)p (ǫ1 + ǫ2)p] =
1

2
E [(ǫ1 + ǫ2)p]

=
1

2

p∑

j=0

(
p

j

)
E

[
ǫj1

]
E

[
ǫp−j
2

]

and

Mp (B4) =
1

2
(E [ǫp2] + E [ǫp1]) .

Claim (3) follows immediately by substraction. For the last statement, consider the prod-

ucts E

[
ǫj1

]
· E
[
ǫp−j
2

]
and risks as in Lemma 3. Obviously, if both zero-mean risks are

right-skewed, then all these products are positive such that Mp (B4) − Mp (A4) < 0. If

both zero-mean risks are symmetric, we have that the difference is zero (as shown by

Roger). Finally, as p is odd, p− j is odd if and only if j is even. Thus, if both zero-mean

risks are left-skewed, we have that Mp (B4) − Mp (A4) > 0. �

Proof of Lemma 1. First, let n be even. By Roger’s Lemma, we have

Mp (An) = E [Ap
n] = E

[(
XBn−2 + (1 −X)

(
An−2 + ǫxn/2y

))p]

=
1

2

(
E
[
Bp

n−2

]
+ E

[(
An−2 + ǫxn/2y

)p])

=
1

2


E

[
Bp

n−2

]
+ E

[
Ap

n−2

]
+

p∑

j=2

(
p

j

)
E

[
ǫj
xn/2y

]
E

[
Ap−j

n−2

]



=
1

2


E

[
Bp

n−2

]
+ E

[
Ap

n−2

]
+

p∑

j=2

(
p

j

)
E

[
ǫj
xn/2y

]
Mp−j(An−2)


 (A.2.4)

and similarly

Mp (Bn) =
1

2

(
E
[
Ap

n−2

]
+ E

[(
Bn−2 + ǫxn/2y

)p])

=
1

2


E

[
Bp

n−2

]
+ E

[
Ap

n−2

]
+

p∑

j=2

(
p

j

)
E

[
ǫj
xn/2y

]
Mp−j(Bn−2)


 . (A.2.5)

Thus, we get

Mp (Bn) − Mp (An) =
1

2




p∑

j=2

(
p

j

)[
ǫj
xn/2y

]
(Mp−j(Bn−2) − Mp−j(An−2))


 ,

which is part (3) of Lemma 1. Now assume n is odd. Like in the proof of Proposition 3,
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define Â3 = A3 + k
2 and B̂3 = B3 + k

2 . For n ≥ 5, we naturally extend this definition, i.e.,

let

Ân = XB̂n−2 + (1 −X)
(
ǫxn/2y + Ân−2

)

B̂n = XÂn−2 + (1 −X)
(
ǫxn/2y + B̂n−2

)
.

Then, like in the proof of Proposition 3, we have

Mp (An) = Mp

(
Ân

)
= E

[
Âp

n

]
=

1

2

(
E

[
B̂p

n−2

]
+ E

[(
ǫxn/2y + Ân−2

)p])

=
1

2


E

[
B̂p

n−2

]
+

p∑

j=0

(
p

j

)
E

[
ǫj
xn/2y

]
E

[
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and analogously

Mp (Bn) =
1

2


Mp(An−2) + Mp(Bn−2) +

p∑

j=2

(
p

j

)
E

[
ǫj
xn/2y

]
Mp−j(Bn−2)


 . (A.2.7)

Equations (A.2.6) and (A.2.7), respectively, are identical to equations (A.2.4) and (A.2.5).

Thus, the subtraction of equation (A.2.6) from equation (A.2.7) also yields the equation

in part (3) of Lemma 1. �

Proof of Proposition 5. We prove part (1) by induction. For n = 4, we show that for

p = 1, 2, 3 the summands in the equation of Proposition 4, part (3), are zero. Indeed,

the only effective summand is for p = 3 which is zero because E[ǫ3−2
2 ] = 0. Now assume

the claim is true for n − 2 where n is even. Let p < n. For j = 2, 3, ..., n, we have

p−j < n−j ≤ n−2 and thus Mp−j(Bn−2)−Mp−j(An−2) = 0 by the induction assumption.

Then, the claim follows from repeated application of part (3) of Lemma 1. Also part (2)

is proven by induction. For n = 4, the claim can easily be inferred from Proposition 4,

part (3). Now assume the claim is true for n − 2 where n is even. Part (3) of Lemma 1

for p = n is

Mn(Bn) − Mn(An) =
1

2




n∑

j=2

(
n

j

)
E[ǫj

xn/2y] (Mn−j(Bn−2) − Mn−j(An−2))


 . (A.2.8)
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For j = 2, we have Mn−2(Bn−2) − Mn−2(An−2) > 0 by the induction assumption, further

E[ǫ2
xn/2y] > 0, and thus this summand is strictly positive. For j > 2, all summands are

zero by part (1) of this proposition, and the claim follows. To prove the last statement,

suppose that ǫ1, ǫ2, . . . , ǫxn/2y−1 are symmetric. Then, from Roger (2011), Proposition 3,

we have that Mk (Bn−2)−Mk (An−2) is strictly positive for k ≥ n even and zero otherwise.

We want to show that for p > n odd Mp (Bn)−Mp (An) can be positive, negative, or zero.

In order to do this, we consider the summands in the equation of part (3) of Lemma 1

and start with those summands for which j is even. As p is odd, p − j is odd and thus

Mp−j (Bn−2) − Mp−j (An−2) is zero always. If j is odd, then p − j is even and thus

Mp−j (Bn−2) − Mp−j (An−2) is zero if p− j < n− 2 and strictly positive otherwise. Now,

if ǫxn/2y is symmetric, i.e., E[ǫj
xn/2y] = 0 for all j odd, all summands are zero and we have

(as proven by Roger) that Mp (Bn) − Mp (An) = 0. If ǫxn/2y is right-skewed and binary

(see Lemma 3), then all summands are positive and, as p > n, at least one summand is

strictly positive, such that Mp (Bn) − Mp (An) > 0. Similarly, if ǫxn/2y is left-skewed and

binary, we obtain that Mp (Bn) − Mp (An) < 0. �

Proof of Proposition 6. By induction. For prudence, i.e., n = 3, both claims (1) and (2)

could be verified using part (3) of Proposition 3. However, the results are also given in

Crainich and Eeckhoudt (2008). Suppose the claim is true for n−2 where n is odd. For part

(1), the induction assumption is that p < n−2 implies that Mp (Bn−2)−Mp (An−2) = 0. If

p < n, then for j = 2, 3, . . . , p we have p−j < n−j ≤ n−2. Thus, Mp (Bn−2)−Mp (An−2) =

0 for j = 2, 3, . . . , p such that each summand on the right hand side of the equation in part

(3) of Lemma 1 is zero. This proves part (1) of the proposition. For part (2), the induction

assumption is Mn−2 (Bn−2)−Mn−2 (An−2) > 0 for n odd. Consider equation (A.2.8) which

likewise holds for n odd. Similarly to the proof of Proposition 5, the summand for j = 2

is strictly positive by the induction assumption and all other summands are zero by part

(1) of this proposition, and the claim follows. To prove the last statement, suppose that

ǫ1, ǫ2, . . . , ǫxn/2y−1 are symmetric. Then, from Roger (2011), Proposition 4, we have that

Mk (Bn−2) − Mk (An−2) is strictly positive for k ≥ n odd and zero otherwise. We want

to show that for p > n even Mp (Bn) − Mp (An) can be positive, negative, or zero. In

order to do this, we consider the summands in the equation in part (3) of Lemma 1

and start with those summands for which j is even. As p is even, p − j is even and

thus Mp−j (Bn−2) − Mp−j (An−2) is zero always. If j is odd, then p − j is odd and thus

Mp−j (Bn−2) − Mp−j (An−2) is zero if p− j < n− 2 and strictly positive otherwise. Now,

if ǫxn/2y is symmetric, all summands are zero and we have (as proven by Roger) that
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Mp (Bn) − Mp (An) = 0. If ǫxn/2y is right-skewed and binary (see Lemma 3), then all

summands are positive and, as p > n, at least one summand is strictly positive such

that Mp (Bn) − Mp (An) > 0. Similarly, if ǫxn/2y is left-skewed and binary, we obtain that

Mp (Bn) − Mp (An) < 0. �

A.3 Appendix to Chapter 4

A.3.1 Proofs to Section 4.2

Proof of Proposition 8. We prove part (b) which is a generalization of part (a). Denote

the lotteries by MA = L(pX , x1, x0) and MB = L(pY , y1, y0). For a random variable Z and

n ∈ N, the nth non-standardized central moment is defined as Mn(Z) := E[(Z − E[Z])n],

and it is well known that the Mn(·)-operator is homogeneous of degree n and translation

invariant. By definition pX = 1−pY , which implies that X is equal to 1−Y in distribution.

Therefore, Mn(X) = (−1)n
Mn(Y ) which for n = 2 implies that V(X) = V(Y ). Note that

we can write MA = X ·x1+(1−X)·x0 = (x1−x0)X+x0 and thus V(MA) = (x1−x0)2
V(X).

Analogously, we have V(MB) = (y1 − y0)2
V(Y ). Since the Mao lotteries have equal

variances we obtain (x1 − x0)2 = (y1 − y0)2 and, because of the unique representation of

binary lotteries (see Definition 1), this is equivalent to x1 −x0 = y1 − y0. Using once more

homogeneity and translation invariance of the Mn(·)-operator and plugging in yields

Mn(MA) = (x1 − x0)n
Mn(X) = ((y1 − y0))n(−1)n

Mn(Y ) = (−1)n
Mn(MB). (A.3.1)

Because the Mao lotteries have equal variances we also have that M
S
n(MA) =

(−1)n
M

S
n(MB). The claim for the even moments follows immediately. It is easy to check

that MB must have a positive third moment (see also equation B.1.3 in the proof of The-

orem 3) and thus the claim for all odd moments also follows from the previous equation.

�

Proof of Proposition 9. The proposition is a restatement of Proposition 3 in Chapter 3 in

terms of standardized central moments. Because lotteries A3 and B3 have equal variances

(see Proposition 3), the claim follows immediately. �
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A.3.2 Instructions

[Starting from the next page, this appendix contains instructions handed out to partic-

ipants in the experiment presented in Chapter 4. They are translated from German for

sessions with order ES-MAO-RA. RA refers to the risk aversion stage that we did not

further elaborate on.]
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Thank you very much for participating in this decision experiment!

General Information

In the following experiment, you will make a couple of decisions. Following the instruc-

tions and depending on your decisions, you can earn money. It is therefore very important

that you read the instructions carefully.

You will make your decisions anonymously on your computer screen in your cubicle. Dur-

ing the experiment, you are not allowed to talk to the other participants. Whenever you

have a question, please raise your hand. The experimenter will answer your question in

private in your cubicle. If you disregard these rules, you can be excluded from the exper-

iment. Then, you receive no payment.

During the experiment, all amounts are stated in Taler, the experimental currency. At the

end of the experiment, your achieved earnings will be converted into Euro at an exchange

rate of 1 Taler = e 0.15 and paid to you in cash.

Structure of the Experiment and Your Decisions

In total, you will make 34 decisions throughout the experiment. In each decision, you

will decide upon which of two different risky events—either Option A or Option

B—you prefer.

An example of Option A could be as follows: With 50% chance you will lose 10 Taler or

with 50% chance you will receive 20 Taler. Option B could be: With 20% chance you will

receive 0 Taler and with 80% chance you will receive 10 Taler.

The experiment consists of three stages that will be explained in detail in the following. To

determine your payoff in the experiment, one of your decisions will be randomly chosen.

This takes place after you have completed all your decisions. To this end, the experimenter

picks one of 34 balls, marked with numbers from 1 to 34, out of a ballot box. Each number

occurs only once in the ballot box, whereby the draw of a particular number is equally

likely. The outcome of the risky event that you have opted for at the randomly chosen

decision will afterwards be determined by another random draw. This procedure will be

explained extensively when the stages of the experiment are described.

Keep in mind that only one of your 34 decisions determines your payoff in

the experiment. Therefore, each of your single decisions can determine your

entire payoff in the experiment.

You make your decisions at the computer screen in the computer lab. For each decision,
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you have a maximum of 3 minutes. After the experiment, the decision relevant for every

participant’s payoff and the outcome of the risky event will be determined by random

draws for each participant in the seminar room. To this end, the experimenter will call

upon participants one by one.

Note that some risky events comprise negative outcomes. For these questions you receive

coupons indicating an endowment (in Taler). You can charge the coupons when the

outcome of the risky event is determined.

Stage I

In the first stage of the experiment, you make 16 decisions. On each of the 16 sequent

decision screens you decide which of the two risky events—either Option A or Option

B—you prefer. In this stage, risky events (may) comprise two random draws.

For each decision, one random draw is given. This draw is as follows: With 50% chance

the situation “Up” occurs, or with 50% chance the situation “Down” occurs.

For your decisions, you receive an endowment in Taler, because outcomes of risky events

in this stage can also comprise losses. Accordingly, your payoff in this stage consists of

two components:

Endowment and Outcome of the Chosen Risky Event

How is the outcome of the (chosen) risky event determined in Stage I? For the first random

draw there are two balls in a ballot box—one marked with “Up” and the other with

“Down.” The draw of a particular ball is equally likely. To determine your payoff in this

stage, two random draws may be necessary. For the second random draw one ball is

drawn from another ballot box with 10 balls. The balls are either yellow or white. Note

that the composition of yellow and white balls may change for different decisions in this

stage. But within one decision, i.e., for Option A and Option B, the composition of yellow

and white balls remains the same.

Decision Type 1

For 8 out of 16 decisions in stage I, you are asked the following: Given what situation of

the first random draw—either “Up” or “Down”—do you prefer a second random draw?

An example is provided by the following screen:
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In Option A, you lose 40 Taler if situation “Up” occurs in the first random draw. If

situation “Down” occurs, you receive 0 Taler and a second random draw succeeds. This

second random draw is as follows: With 20% chance you lose 48 Taler and with 80%

chance you receive 12 Taler. In Option B, you lose 40 Taler if in the first random draw

the situation “Up” occurs, and a second random draw succeeds (the second random draw

is the same as in Option A). When situation “Down” occurs, you receive 0 Taler. For this

decision, you are endowed with 160 Taler.

Now suppose the decision from the example above is randomly drawn to determine your

payoff. Suppose you have chosen Option A.

• If in the first random draw the ball “Up” is drawn, you lose 40 Taler. After allocating

your endowment of 160 Taler for this decision to the lottery outcome, your payoff is

120 Taler.

• If in the first random draw the ball “Down” is drawn, you receive 0 Taler, and a

second random draw succeeds.

– If in the second random draw a yellow ball is drawn, you lose 48 Taler, and

your payoff after allocating your endowment is 112 Taler.

– If in the second random draw a white ball is drawn, you receive 12 Taler, and

your payoff after allocating your endowment is 172 Taler.
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Suppose you have chosen Option B.

• If in the first random draw ball “Up” is drawn, you lose 40 Taler, and a second

random draw succeeds.

– If in the second random draw a yellow ball is drawn, you lose 48 Taler, and

your payoff after allocating your endowment is 72 Taler.

– If in the second random draw a white ball is drawn, you receive 12 Taler, and

your payoff after allocating your endowment is 132 Taler.

• If in the first random draw “Down” is drawn, you receive 0 Taler. After allocating

your endowment of 160 Taler for this decision to the lottery outcome, your payoff is

160 Taler.

Decision Type 2

For the remaining 8 out of 16 decisions in stage I, you are asked the following: To what

situation do you prefer to add a (fixed) amount—either to situation “Up” where a second

random draw succeeds or to situation “Down” where no second random draw succeeds.

Note that the fixed amount can either be positive or negative. An example is provided by

the following screen:

In Option A, if situation “Up” occurs in the first random draw, you receive 0 Taler, and
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a second random draw succeeds. The second random draw is as follows: With 30% chance

you lose 28 Taler and with 70% chance you receive 12 Taler. When situation “Down”

occurs in the first random draw, you lose 40 Taler, and no second random draw succeeds.

In Option B, if situation “Up” occurs in the first random draw, you lose 40 Taler, and

a second random draw succeeds (the second random draw is the same as in Option A).

When situation “Down” occurs, you receive 0 Taler, and no second random draw succeeds.

For this decision, you are endowed with 80 Taler.

Now suppose the decision from the example above is randomly drawn to determine your

payoff. Suppose you have chosen Option A.

• If in the first random draw the ball “Up” is drawn, you receive 0 Taler, and a second

random draw succeeds.

– If in the second random draw a yellow ball is drawn, you lose 28 Taler, and

your payoff after allocating your endowment is 52 Taler.

– If in the second random draw a white ball is drawn, you receive 12 Taler, and

your payoff after allocating your endowment is 92 Taler.

• If in the first random draw the ball “Down” is drawn, you lose 40 Taler. After

allocating your endowment of 80 Taler for this decision to the lottery outcome, your

payoff is 40 Taler.

Suppose you have chosen Option B.

• If in the first random draw the ball “Up” is drawn, you lose 40 Taler, and a second

random draw succeeds.

– If in the second random draw a yellow ball is drawn, you lose 28 Taler, and

your payoff after allocating your endowment is 12 Taler.

– If in the second random draw a white ball is drawn, you receive 12 Taler, and

your payoff after allocating your endowment is 52 Taler.

• If in the first random draw the ball “Down” is drawn, you receive 0 Taler. After

allocating your endowment of 80 Taler for this decision to the lottery outcome, your

payoff is 80 Taler.

121



Stage II

In the second stage of the experiment, you are asked to make eight decisions. On each

of the 8 sequent decision screens you decide which of the two risky events—Option A or

Option B—you prefer. For your decisions, you receive an endowment in Taler, because

outcomes of risky events in this stage can comprise losses. Accordingly, your payoff in this

stage consists of two components:

Endowment and Outcome of the Chosen Risky Event

How is the outcome of the (chosen) risky event determined in Stage II? To this end, there

is another ballot box. This ballot box contains 100 balls with numbers from 1 to 100.

Each number occurs only once, thus the draw of a particular number is equally likely. An

example of a decision screen provides the following screen:

In Option A, you will lose 40 Taler with 75% chance (balls 1 to 75), or with 25% chance

you will receive 40 Taler (balls 76 to 100). In Option B, you receive 0 Taler with 75%

chance (balls 1 to 75), or you will lose 80 Taler with 25% chance (balls 76 to 100). Your

endowment is 160 Taler in this example.

Now suppose that this decision was randomly drawn to determine your payoff.

• Suppose you have chosen Option A and assume that a ball is drawn from the ballot

box with a number between 1 and 75. That means, you lose 40 Taler. Your resulting

payoff, after allocating the endowment of 160 Taler for this decision to the lottery
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outcome, is 120 Taler. If a ball with a number between 76 and 100 is drawn, you

receive 40 Taler. Under consideration of your endowment your payoff is 200 Taler.

• Suppose you have chosen Option B and assume that a ball is drawn from the ballot

box with a number between 1 and 75. That means, you receive 0 Taler. Your resulting

payoff after allocating the endowment of 160 Taler for this decision to the lottery

outcome is 160 Taler. If a ball with a number between 76 and 100 is drawn, you lose

80 Taler. Under consideration of your endowment, your payoff is 80 Taler.

Stage III

In stage III, you are asked to make 10 decisions on a single decision screen. The risky

events between which you have to decide in this stage are displayed in a table format. In

each row of the table, you make one decision. For an illustration see the following figure:

Each risky event comprises two possible outcomes and two corresponding probabilities.

You make your decision at the end of each row by indicating the risky event you prefer

(either Option A or Option B). When making your decisions you do not have to follow a

particular order, and you can change your decisions as often as desired within the time

permitted.

The outcomes of the risky events in this stage do not comprise losses. Thus, for the

decisions in this stage you do not receive an endowment. Accordingly, your payoff is as

follows:
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Outcome of the Risky Event

How is the outcome of the chosen risky event determined in Stage III? To determine

the outcome, there is a ballot box with 100 balls marked with numbers from 1 to 100

(analogously to stage II). Each number occurs exactly once in the ballot box, i.e., the

draw of a particular number is equally likely.

Before the experiment will start now, please note: You are asked comprehension

questions before each stage starts. These questions should familiarize you with the deci-

sion task in each stage.

After the experiment, you are asked to answer a questionnaire. For answering the ques-

tionnaire you receive, independently from your earnings during the experiment, e 4.

[This is the end of the experimental instructions.]
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Appendix B

Calibration of Binary Lotteries in

Experiments and a Result on their

Skewness

In this appendix, we present two results on binary lotteries. Firstly, we show how to

calibrate binary lotteries in terms of moments. This might be useful for economists or

psychologists, who frequently employ these items in experiments. Secondly, we present

a theorem on how skewness manifests in binary lotteries. Both Chapters 3 and 4 refer

several times to this appendix.

For convenience of the reader we first reintroduce some notations.

Definition 4. Let x1, x0 ∈ R, with x1 > x0. X is a Bernoulli-distributed random variable

with parameter p ∈ (0, 1). A binary lottery denoted by L = L(p, x1, x0) is defined as the

random variable

L = X · x1 + (1 −X) · x0.

To understand the results and their proofs presented in the following, it is important to

take notice of the delicacies of this representation we chose for a binary lottery. It excludes

degenerate lotteries because the cases p = 0, p = 1, and x1 = x0 are excluded. Further,

probability p is always associated with x1, i.e, with the larger of the two different outcomes.

Note that the above definition guarantees uniqueness of representation. Let us also repeat

the definition of moments. For n ≥ 3, we denote the nth standardized central moment
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of lottery L by M
S
n(L) := E[(L− E[L])n]/ (V(L))n/2 . With ν(L) := M

S
3 (L) we denote the

third standardized central moment. Throughout this appendix, if not noted otherwise,

“moments” (of order three or higher) refer to standardized central moments.

B.1 Lottery calibration in experiments

Our first result is a theorem stating that a binary lottery with non-trivial variance

and otherwise arbitrary first three moments always exists, and the moments uniquely

determine the lottery. It implies that every non-degenerate probability distribution with

finite first three moments can be matched up to the third moment with a binary lottery,

and this lottery is unique.

Theorem 3. For constants E ∈ R, V ∈ R
∗
+, and S ∈ R, there exists exactly one binary

lottery L = L(p, x1, x0) such that E[L] = E, V[L] = V, and ν[L] = S. Its parameters are

given by

p =





4+S2+
√

S4+4S2

8+2S2 if S < 0

1
2 if S = 0

4+S2−
√

S4+4S2

8+2S2 if S > 0,

x1 = E +

√
V · (1 − p)

p
, and

x0 = E −
√
V · p
1 − p

.

Proof of Theorem 3. After calculating expectation, variance, and third moment1 of a

binary lottery as in Definition 4, we find that L = L(p, x1, x0) has to suffice the following

system of equations

E = px1 + (1 − p)x0 (B.1.1)

V = (x1 − x0)2p(1 − p) (B.1.2)

S =
1 − 2p√
p(1 − p)

(B.1.3)

1For the computation of the third moment the reader may consult the proof of Theorem 4.
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with x1 > x0 and 0 < p < 1. It is natural to start with solving equation (B.1.3) for p.

After squaring and some rearrangement one obtains

p2(−S2 − 4) + p(4 + S2) − 1 = 0.

Setting S̃ := 4 + S2, the solutions to this quadratic equation are given by

p1/2 =
S̃

+
−
√
S̃2 − 4S̃

2S̃
, (B.1.4)

where p1 is the solution associated with the addition. It is easy to see that the expression

under the square root is always positive. If S = 0, there is one solution, namely p =

1
2 . Otherwise, there are two solutions. Both these solutions are strictly positive since
√
S̃2 − 4S̃ + 4 − 4 =

√
(S̃ − 2)2 − 4 ≤ S̃ − 2, and thus

p1/2 ≥ p2 ≥ S̃ − (S̃ − 2)

2S̃
=

1

S̃
> 0.

All solutions are smaller than 1 since

p1 < 1 ⇐⇒
√
S̃2 − 4S̃ < S̃

which can be shown to be true for all S̃ (and thus for all S) by doing the quadratic

expansion as in the previous calculation. Note that equation (B.1.3) is a square root

equation and thus we have to verify the solutions. Obviously, if S = 0, then p = 0.5 is the

unique solution. Otherwise, from equation (B.1.4) it follows that p1 > p2 and p1 + p2 = 1,

i.e., p1 > 0.5 and p2 < 0.5. Thus, if S < 0, then p2 does not solve equation (B.1.3) because

1 − 2p2 > 0, but p1 does. Similarly, if S > 0, only p2 solves equation (B.1.3). Thus, in any

case, equation (B.1.3) has a unique solution in (0, 1) such that it is a probability. This

solution will be denoted by p in the following.

For any p obtained from equation (B.1.3), the system of equations (B.1.1) and (B.1.2) can

be shown to have two solutions in (x1, x0). However, exactly one of them satisfies x1 > x0,

and this solution is given by the expressions stated in the claim. �

To motivate the calibration issue, consider the following example with reference to the

experiment of Chapter 4. If decisions on Mao lotteries involved hundreds of dollars, while

those over ES lotteries only involved a few dollars, it could be reasonably argued that

results between stages MAO and ES are not comparable. Likewise, if lotteries in stage
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MAO throughout had higher variance than in stage ES, this could distort comparability

of results. While it is rather trivial to match the means of some lottery with the mean of

a binary lottery (like a Mao lottery), with the above theorem we can also match variances

and third moments. Indeed, with Theorem 3 such a calibration is quite easy to obtain.

The given equations conveniently allow to construct exactly the lottery an experimenter

is looking for. Further, Theorem 3 implies that, in general, more than three moments

cannot be matched.

We now detail the calibration of Mao and ES lotteries in Chapter 4. In fact, things are

slightly more complicated than just indicated. This is because we not only have to match

two lotteries, but two pairs of lotteries. Further, while the two lotteries of each given pair

(MAO or ES) do not differ in their variances, they naturally differ in their third moments;

see Propositions 8 and 9. The Mao pair in Figure 4.1 and the ES pair in Figure 4.2 are

an example of the calibration we employed in the experiment. All four lotteries depicted

have equal mean and variance, and the differences in the third moments between the ES

pair and the Mao pair, respectively, are also equal. In this sense, every ES pair is matched

with one Mao pair as can be seen from Tables 4.1 and 4.2. The following proposition

gives an existence and uniqueness result for such a calibration. In Ebert and Wiesen

(2009), we show that this calibration indeed has an effect on subjects’ decisions in the

experiment. That is, roughly speaking, responses to matched lottery pairs correlate more

than responses to non-matched pairs.

Proposition 10 (Calibration). Consider a prudence lottery pair (A3, B3) with finite first

three moments. For every S > 0, there exists exactly one Mao lottery pair (MA,MB) such

that

E[MA] = E[A3] and E[MB ] = E[B3],

V[MA] = V[A3] and V[MB ] = V[B3], as well as

ν[MA] = −S and ν[MB ] = S.

For S = 0.5(ν[B3] − ν[A3]), the difference in third moments of the prudence pair equals

the difference in third moments of the Mao pair, and the quadratic error ∆ := (ν[B3] −
ν[MB ])2 + (ν[A3] − ν[MA])2 is minimized.

Proof of Proposition 10. By Theorem 3, there exists exactly one binary lottery LA ≡ MA
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with E[MA] = E[A3], V[MA] = V[A3], and ν[MA] = −S. By Theorem 3, there also exists

exactly one lottery LB ≡ MB whose expectation and variance equal that of B3 (i.e., they

also equal that of A3 and thus that of MA), and further ν[MB ] = +S. From equation

(B.1.3), one immediately obtains that for the probabilities pA and pB of LA = L(pA, x1, x0)

and LB = (pB , x1, x0), respectively, we have pA = 1 − pB. Therefore, by Definition 2,

(MA,MB) constitutes a Mao lottery pair that fulfills the requested moment conditions.

For the second part, note that by taking derivatives,

∆ = (ν[B3] − S)2 + (ν[A3] − (−S))2

indeed achieves its minimum at S = 0.5(ν[B3]−ν[A3]). The difference in third moments of

the Mao pair is 2S and, for the specification of S as above, this indeed equals the skewness

difference ν[B3] − ν[A3] of the ES pair. �

B.2 Skewness in binary lotteries

Now we present the second result of this appendix, which is on the skewness of binary

lotteries. The following theorem contains five statements, each of which indicates that

a binary lottery is left-skewed. The theorem then says that each of these statements is

necessary and sufficient for the others. Therefore, the theorem illustrates in a compact

way how skewness manifests in binary lotteries. It is straightforward to formulate analo-

gous versions for right-skewed or symmetric binary lotteries. For convenient access to the

theorem, it might be insightful to exemplarily validate the statements with reference to

a particular left-skewed binary lottery. Therefore, Figure B.1 plots the probability mass

function of the left-skewed lottery L = L(0.75, 2, 0).

Theorem 4 (Skewness in binary lotteries). For any binary lottery L = L(p, x1, x0), the

following statements are equivalent.

(i) The right tail of L is shorter than its left tail, i.e., |x1 − E[L]| < |x0 − E[L]|.

(ii) The right tail of L is heavier than its left tail, i.e., P (L ∈ [E[L], x1]) >

P (L ∈ [x0,E[L]]) .

(iii) L has its high probability associated with the high outcome, whereas its low probability
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is associated with the low outcome, i.e., p > 0.5.

(iv) There exists at least one odd moment of order three or higher which is strictly neg-

ative, i.e., ∃ n ≥ 3 odd: MS
n(L) < 0.

(v) All odd moments of order three and higher are strictly negative, i.e., M
S
n(L) <

0 ∀ n ≥ 3 odd.

Figure B.1: Probability mass function of a left-skewed binary lottery
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This graph shows the probability mass function of lottery L = L(0.75, 2, 0), whose expectation is 1.5.

The high outcome 2 occurs with the high probability 0.75, whereas the low outcome 0 occurs with the

low probability 0.25. The right tail of L is both shorter (length 0.5) and heavier (mass 0.75) than its

left tail, which has length 1.5 and mass 0.25. Note that lottery L has been previously illustrated in tree

form as lottery AS
3 in Figure 3.1.

Proof of Theorem 4. We prove the two equivalences (i) ⇐⇒ (iii), (ii) ⇐⇒ (iii), and the

circle (iii) =⇒ (iv) =⇒ (v) =⇒ (iii).

(i) ⇐⇒ (iii) According to Theorem 3, we can write the outcomes of a binary lottery as

a function of its mean, variance, and the probability p associated with the high outcome.

From these expressions, it immediately follows that

|x1 − E[L]| < |x0 − E[L]| ⇐⇒
√

V[L](1 − p)

p
<

√
V[L]p

1 − p
.

By use of elementary algebra, it can be shown that the latter equation is equivalent to

p > 0.5.

(ii) ⇐⇒ (iii) This is straightforward because a binary lottery has probability mass only at

its two outcomes. Formally, from Definition 4 it is easily seen that x0 < E < x1. Therefore,

P (L ∈ [E[L], x1]) = P (L ∈ {x1}) = p and P (L ∈ [x0,E[L]]) = P (L ∈ {x0}) = 1 − p.
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(iii) =⇒ (iv) It is easily inferred from equation (B.1.3) in the proof of Theorem 3 that the

third moment is strictly negative if p > 0.5.

(iv) =⇒ (v) We prove the evidently equivalent claim for non-standardized central moments

Mn(L) := E[(L − E[L])n]. Using translation invariance, we can write the nth central

moment of L as

Mn(L) = Mn(L− x0) = Mn (X(x1 − x0)) = E [(X(x1 − x0) − p(x1 − x0))n] .

Because X is Bernoulli-distributed with parameter p, this can be explicitly computed as

Mn(L) = p · (1 · (x1 − x0) − p(x1 − x0))n + (1 − p) · (0 · (x1 − x0) − p(x1 − x0))n .

Using that n is odd, this simplifies to

Mn(L) = (x1 − x0)n · (p (1 − p)n − (1 − p)pn) .

It is easily seen that (p(1 − p)n − (1 − p)pn) < 0 ⇐⇒ p > 0.5, and since by definition

(x1 − x0)n > 0 we have

Mn(L) < 0 ⇐⇒ p > 0.5. (B.2.1)

Therefore, if some odd moment Mn(L) of L is strictly negative, then p > 0.5 by the

sufficiency of equation (B.2.1). Then, the claim follows by the necessity of equation (B.2.1).

(v) =⇒ (iii) The claim follows from equation (B.2.1). �

B.3 Concluding remarks to Appendix B

In this appendix, we present a characterization of binary lotteries in terms of its first three

moments. Theorem 3 further shows how to construct binary lotteries with arbitrary first

three moments. We argue that this might be useful for economists and psychologists, who

frequently employ these items in experiments on decision making under uncertainty. As

an example, we detailed the calibration procedure for the experiment of Chapter 4 of this

thesis. The second result of this appendix, Theorem 4, shows how skewness manifests in

binary lottery distributions. Specifically, it presents five interpretations for skewness in

binary lotteries, and shows that each of them is necessary and sufficient for the others.
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Some closing remarks might be interesting. Firstly, the result on how skewness manifests in

a binary lottery provides additional intuition to the recent result of Chiu (2010). He shows

that all binary lotteries are generalized skewness comparable implying that third-order

moment preferences over such risks are consistent with EUT. Theorem 4 shows that the

sign of the third moment is a sufficient indicator of skewness in the case of binary lotteries.

Secondly, note that the result on odd moments in Proposition 8 immediately follows from

Theorems 3 and 4. Thirdly, equation (A.3.1) from the proof of Proposition 8 gives some

more insight into how Mao lotteries differ in their skewness. All higher odd moments of the

lottery of a Mao pair are equal in absolute terms, but differ in their sign. This is not true

for ES lotteries, where it could be, for example, that both lotteries are right-skewed, but

the prudent choice is more right-skewed. This is the reason why concerning calibration in

the experiment, only differences in third moments (rather than third moments themselves)

can be matched. Fourthly, Lemma 3 is a corollary to Theorems 3 and 4 that is used to

show that certain results in Roger (2011) are limited to symmetric zero-mean risks within

Eeckhoudt and Schlesinger’s proper risk apportionment model.
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