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SUMMARY 

Vietnam’s Mekong Delta (MD) is known as the rice bowl of the country. Rapid 

development and population growth there have lead to an increasing demand for water 

use and wastewater treatment. Yet there are no central wastewater treatment plants in 

the region and water supply systems are generally lacking in rural areas. Only septic 

tanks (STs) have been introduced to treat human effluent. Small-scale biogas plants, 

mostly plastic bio-digesters (PBDs) have been promoted to treat animal slurries. 

However, the operation and maintenance of both systems are unregulated and their 

microbial treatment efficacy has not been a priority. Poor sanitary practices of local 

people add to this creating a potentially serious health hazard. This study aims to 

analyse the microbial risk associated with faecal management in MD as it impacts on 

public health.  

The topic is explored by three vehicles: pilot study, field study and quantitative 

microbial risk assessment (QMRA). The pilot study replicates tropical conditions to 

determine microbial reduction and related factors of anaerobic treatment. Reduction 

rates of phages and bacteria in river water and on terrestrial spinach were determined. 

The field study was conducted in MD to verify the microbial make-up of faecal 

substrates, surface water and aquatic spinach. Pathogen treatment efficacy of PBDs 

was considered. A survey was also conducted to find out human exposure to 

contaminated sources. All data were used for the QMRA study, which calculates the 

probability and annual risk of infection via @Risk 5.5 (Palisade Corporation). 

The pilot study showed there was a hygienic effect in the anaerobic treatment of excreta 

but microbe reduction rates were low. The reduction of phages (somatic coliphage, 

male-specific bacteriophage) and bacteria (Escherichia coli, Salmonella Senftenberg, 

Enterococus faecalis) in lab-scale PBDs increased with longer hydraulic retention time 

(HRT). Longer HRT played a vital role in yielding more gas. Besides HRT pathogen 

reduction also depended on initial concentration, species tested and substrate type. High 

levels of volatile fatty acids (VFAs) had no effect on microbial reduction at neutral pH. 

Moreover phage and bacteria reduction also depend on operation conditions – batch-
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wise or continuous digestion. Microbial reduction in STs was not significant even at 

maximum HRT (3 days).  

Anaerobic digestion in tropical PBDs had little effect on the inactivation of Ascaris 

suum ova. Yet helminth ova do settle in the sludge at the reactor’s base if HRT is long 

and the relationship between an ova’s viability rate and sludge retention time was 

established by exponential equation. A few Ascaris suum ova survived in sludge for up 

to one year. There was no difference between the viability of Ascaris suum ova in 

biogas or septage sludge. 

Faecal substrates sampled during the field study contained high levels of microbial 

indicators and pathogens. E. coli and Enterococcus spp. were detected in all pig slurry 

and septage samples. Salmonella spp. were detected in over 60% and coliphages in over 

50% of samples. Helminth ova were present in 80% of pig slurry samples, 95% of 

untreated septage samples, and in all septage sludge samples in high concentrations. 

Ten ova varieties were found in pig slurries and twelve in septage.  

Field study results suggest that the functionality of PBDs and STs is not optimal to 

inactivate microbial indicators and pathogens. Volume of PBD is not compatible to the 

amount of pig slurry. PBDs are rarely desludged and STs are emptied only when 

blockages occur. Thus reduction of bacteria was < 1 log10 and phages < 1.5 log10 while 

their influent concentrations were high (up to 6.2 log10 CFU ml-1). Salmonella spp. were 

detected more frequently in effluents than in influents. In most PBDs helminth ova did 

not settle but were released to surface water via effluents, the highest concentration 

being 175,000 no. l-1. Most PBD effluents and overflows from full STs flow directly 

and contaminate the surface water, which is used by many people every day.  

Surface water and aquatic spinach samples were contaminated. The average E. coli level 

in canal water was over the total coliform limit set by the Vietnamese Surface Water 

Quality Standard (TCVN 5942-1995). Salmonella spp. were routinely detected. 

Decimal reduction time (T90) of phages and bacteria in Mekong river water was over 2 

days. Aquatic spinach was contaminated much like its habitat. Enterococcus spp., E. 

coli, somatic coliphage and Salmonella spp. were all found in samples, though average 

E. coli concentrations on spinach grown in urban canals was twice that of those grown 
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in fishponds receiving PBD effluent. On terrestrial spinach microbial reduction was 0.2 

– 0.4 log10/day. 

By QMRA infection risk was high, ranging in descending order from helminth to 

rotavirus to Salmonella. The probability of salmonellosis and helminthiasis was higher 

per exposure to PBD effluent than with pig slurry. MD sewage workers were most at 

risk due to constant exposure to faecal matter. Incidental ingestion of pig slurries, 

bathing/swimming in canals, drinking untreated surface water and eating raw spinach 

constituted chronic exposure scenarios for MD people generally. All mentioned 

scenarios were found to exceed acceptable risk levels. 

Besides health programs and personal hygiene routines, barriers reducing risk of 

infection include wastewater treatment (e.g. PBDs), due time between last crop 

irrigation and harvest, treating water before consumption and food preparation. Risks 

were reduced when PBDs ran at HRTs of 15 and 30 days as effluent was assumed to be 

free of helminth ova. The high pathogen load of surface water means this is only 

potable when boiled. Aquatic spinach is not safe to eat unless cooked. Spinach irrigated 

with improved PBD effluent (HRT ≥ 15 days) can be eaten raw, but then only when the 

time between final irrigation and harvest is long enough. As a rule spinach should be 

washed prior to consumption.   

Current faecal management practices in MD equate to high infection risks for its 

population. The microbial treatment efficacy of anaerobic digestion there can be 

improved by relatively simple changes to operations and maintenance. To reduce 

infection rates a campaign that integrates faecal management, water supply and 

behavioural change is recommended. While QMRA data collation and modelling 

requires much effort communicating health risks to the government and public is 

challenging. Thereby lasting technical, legislative and cultural can be changed so as to 

improve the public health effectively. 
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ZUSAMMENFASSUNG (SUMMARY IN GERMAN) 

Das Mekong Delta (MD) ist die Reiskammer von Vietnam. Die rasche wirtschaftliche 

Entwicklung und das hohe Bevölkerungswachstum haben den Wasserbedarf und den 

Bedarf an Abwasserbehandlungssystemen stark erhöht. Allerdings fehlen im ländlichen 

Bereich noch immer Wasserversorgungsnetze und in ganzen MD zentrale 

Abwasserbehandlungsanlagen. Für häusliches Abwasser wurden biologishe Klärgraben 

(STs) eingeführt und für Abwässer aus der Tierhaltung werden kleine Kunststoff-

Biogasanlagen (PBDs) empfohlen. Für beide Systeme steht die Hygienisierung des 

Abwassers nicht im Vordergrund und sie unterliegen auch keiner geregelten Kontrolle 

und Wartung. Besonders im ländlichen Bereich, wo Abwässer auch ohne jegliche 

Behandlung in Gewässer eingeleitet werden, stellt der mikrobielle Eintrag durch 

Abwasser in die Vorfluter ein hohes Risikopotenzial dar. Diese Arbeit analysiert das 

mikrobielle Risiko der vorhandenen Reinigungssysteme für die öffentliche Gesundheit 

im Mekong Delta.   

Im ersten Teil der Arbeit wurde im Rahmen einer Laborstudie das  mikrobielle 

Abbauverhalten in den PBDs unter tropischen Bedingungen untersucht. 

Reduktionsraten von Phagen und Bakterien in Flusswasser und auf Spinat wurden 

untersucht. Eine Feldstudie im Mekongdelta stellte den zweiten Teil der Arbeit dar, in 

dem die mikrobielle Belastung von Fäkalsubstraten, Oberflächengewässer, und 

Wasserspinat analysiert wurden. Der Hygienisierungseffekt der Kunststoff-

Biogasanlagen wurde betrachtet. Darin enthalten war auch eine Untersuchung, in 

welchem Umfang Menschen mit mikrobiell verunreinigten Substraten exponiert sind. 

Im dritten Teil der Arbeit erfolgte anhand der erhobenen Daten eine quantitative 

mikrobielle Risikoabschätzung (QMRA) mit Hilfe der Software @Risk 5.5 (Palisade 

Corporation). 

Die Laborstudie zeigte einen Hygienisierungseffekt der Fäkalien im Rahmen der 

Anaerobbehandlung, allerdings waren die Abbauraten der Mikroben gering: Die 

Abbauraten der Phagen (somatischen Coliphagen, male-specific Bacteriophagen) und 

Bakterien (Escherichia coli, Salmonella Senftenberg, Enterococus faecalis) stiegen bei 

höherer hydraulischer Verweildauer (HRT) – parallel zum Biogasertrag – in den 

Biogasanlagen. Weitere Faktoren, die die mikrobiellen Abbauraten beeinflussten, waren  
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die ursprüngliche Höhe der mikrobiellen Verunreinigung, mikrobielle Spezies und der 

Substrattyp. Hohe Konzentrationen von organischen Säuren bei neutralem pH hatten 

keinen Einfluss auf den Abbau. Auch die Art der Behandlung – als Batch oder im 

kontinuierlichen Sytem – beeinflusste die Abbaurate. Selbst bei hohen HRT von 3 

Tagen war der mikrobielle Abbau in Abwasserfaulraumen nicht signifikant.  

Die Anaerobbehandlung in den untersuchten Biogasanlagen hatte nur einen sehr 

geringen Effekt auf die Inaktivierung von Ascaris suum Eiern. Allerdings sedimentieren 

Helmintheneier im Fermenter auf den Boden, so dass bei hohen HRT und 

entsprechender Schlammrückhaltung die Eier im Schlamm über die Zeit inaktiv werden. 

Ein exponentieller Zusammenhang wurde in der Arbeit beschrieben. Einige Eier von 

Ascaris suum waren noch nach einem Jahr Schlammrückhaltung aktiv. Zwischen 

Biogas- und Klärgrabenschlamm gab es keine Untersiede hinsichtlich der 

Überlebensfähigkeit der Ascaris suum Eier. 

Fäkalsubstrate, die während der Feldstudie untersucht wurden, wiesen hohe Gehalte an 

mikrobieller Verunreinigung und Pathogenen. E. coli und Enterococus spp. waren in 

allen Fäkalschlammproben tierischer (nur Schweine) und menschlicher Herkunft 

enthalten. Salmonella spp. konnte in mehr als 60%, Coliphagen in mehr als 50% der 

Proben nachgewiesen werden. Helmintheneier waren in 80% der Schweinegülleproben, 

in 95% der Proben von unbehandeltem häuslichem Abwasser und in allen Proben des 

Schlammes von ST in hohen Konzentrationen zu finden. Die Eier von 10 verschiedenen 

Helminthenarten wurden in Schweinegülle und von 12 Arten in häuslichem Abwasser 

gefunden.  

Die Ergebnisse der Feldstudie machten deutlich, dass weder PBDs noch STs geeignet 

sind, mikrobielle Fäkalindikatoren und Pathogene zu inaktivieren. Das kann daran 

liegen, dass die PBDs nicht an die anfallende Menge an Schweinegülle angepasst sind. 

Zudem werden sowohl PBDs als auch STs nur sehr selten entschlammt, z.B. wenn 

Blockaden vorliegen. Die Bakterien- (<1 log10) und Phagenreduktion (< 1,5 log10) 

waren entsprechend gering, wobei deren Anfangskonzentrationen hoch waren (bis zu 

6,2 log10 CFU ml-1). Salmonella spp. waren öfter im Abfluss als im Zufluss in den 

Anlagen zu finden. Helmintheneier sedimentierten in PBDs nicht, sondern wurden  aus 

den Anlagen ausgespült (Maximalkonzentration: 175.000 l-1). Der Abfluss der meisten 
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PBDs und STs wird direkt in Oberflächengewässer geleitet,  welches von der 

Bevölkerung täglich genutzt wird.  

Sowohl Oberflächenwasser als auch Wasserspinat waren kontaminiert. Die mittlere E. 

coli Konzentration überschritt die nationalen Vorschriften zur 

Oberflächenwasserqualität (TCVN 5942-1995). Regelmäßig konnte Salmonella spp. 

nachgewiesen werden. Die dezimale Reduktionszeit (T90) betrug im Fluss mehr als zwei 

Tage. Entsprechend waren alle Wasserspinatproben mit Enterococcus spp., E. coli, 

somatischen Coliphagen und Salmonella spp. belastet. In städtischen Kanälen war die 

E. coli-Konzentration auf Spinat etwa doppelt so hoch wie auf Spinat, der in 

Fischteichen wuchs, welche als Vorfluter für PBDs dienten. Auf terrestrischem Spinat 

betrug die mikrobielle Abbaurate 0,2 – 0,4 log10/Tag. 

Die QMRA bewertete das Infektionsrisiko durch Helmitheneier am höchsten, gefolgt 

von Rotavirus und Salmonella. Die Wahrscheinlichkeit einer Salmonellose und 

Helminthiasis durch Kontakt mit Biogasabfluss ist höher als die durch Kontakt mit 

unbehandelter Schweinegülle. MD Kanalarbeiter sind am höchsten durch den stetigen 

Kontakt mit Fäkalsubstraten gefährdet. Für die gesamte MD Bevölkerung gilt, dass sie 

durch die Modellszenarien (versehentliches Verschlucken von Schweinegülle, Baden 

und Schwimmen in Kanälen, Trinken von unbehandeltem Oberflächenwasser, Verzehr 

von rohem Spinat) chronisch einem Infektionsrisiko ausgesetzt sind. Alle erwähnten 

Szenarien überschreiten akzeptable Risikowerte.  

Neben Gesundheitsprogrammen und persönlichen Hygienemaßnahmen sind 

Abwasserbehandlung (wie die PBDs), das rechtzeitige Einstellen der Bewässerung vor 

der Ernte, Wasseraufbereitung vor dessen Verzehr bzw. Nutzung zum Zubereiten von 

Speisen  mögliche Barrieren, die das Infektionsrisiko reduzieren. Das Infektionsrisiko 

ist bei PBDs durch längere HRTs (15-30 Tage) reduzierbar, da dann der Abfluss als 

Helmintheneier frei angenommen werden kann. Die hohen Konzentrationen von 

Pathogenen im Oberflächenwasser  verlangen ein Abkochen vor dessen Nutzung. 

Darüber hinaus ist aquatischer Spinat erst dann risikofrei zu konsumieren, wenn er 

gekocht wurde. Spinat, welcher mit Abfluss einer PBD mit einer HRT > 15 Tage 

bewässert wurde, kann roh konsumiert werden, wenn die Zeit zwischen Bewässerung 
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und Ernte ausreichend lang ist. Generell sollte Spinat vor dem Verzehr gewaschen 

werden.  

Die gegenwärtigen Methoden zum Umgang mit Fäkalsubstraten belasten die 

Bevölkerung im MD durch hohe Infektionsrisiken. Die mikrobielle Abbaurate von 

Anaerobsystemen kann durch relativ einfache Änderungen im Betrieb und in der 

Wartung verbessert werden. Um das Infektionsrisiko zu senken, ist eine Kampagne 

notwendig, die den Umgang mit Fäkalsubstraten, die Wasserversorgung und die 

persönliche Hygiene integriert. Die Kommunikation der hier untersuchten 

Infektionsrisiken bei Entscheidungsträgern und Öffentlichkeit stellt eine besondere 

Herausforderung dar. Denn nur so können technische Vorschriften, rechtliche 

Grundlagen und kulturelle Gewohnheiten nachhaltig im Sinne einer besseren 

öffentlichen Gesundheit angepasst werden. 
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TÓM  TẮT (SUMMARY IN VIETNAMESE) 

Vùng đồng bằng sông Cửu Long của Việt Nam (ĐBSCL) nổi tiếng là vựa lúa của cả 

nước. Sự phát triển kinh tế và gia tăng dân số nhanh ở khu vực này làm gia tăng nhu cầu 

sử dụng nước và xử lý nước thải. Tuy nhiên, vùng này vẫn chưa có hệ thống xử lý nước 

thải tập trung và ở nông thôn thì thường thiếu nước cấp sinh hoạt. Chủ yếu có hầm tự 

hoại xử lý phân người và túi ủ biogas được sử dụng để xử lý phân chuồng.  Sự vận hành 

và bảo trì của hai hệ thống này không tốt và hiệu quả xử lý vi sinh không được ưu tiên. 

Thêm vào đó, hành vi vệ sinh cá nhân chưa tốt và lối sống truyền thống của dân cư 

ĐBSCL có thể là mối nguy hiểm cho sức khỏe chính họ. Mục tiêu của nghiên cứu này 

là phân tích rủi ro vi sinh có liên quan đến việc quản lý chất thải người và gia súc ở 

ĐBSCL bởi vì nó ảnh hưởng đến sức khỏe cộng đồng. 

Đề tài này được thực hiện thông qua 3 nghiên cứu: nghiên cứu thí điểm trong phòng thí 

nghiệm, nghiên cứu thực tiễn, và đánh giá định lượng rủi ro vi sinh (ĐĐRV). Nghiên 

cứu trong phòng thí nghiệm được tiến hành theo điều kiện vùng nhiệt đới nhằm xác 

định hiệu quả xử lý vi sinh và các nhân tố có liên quan của phương pháp xử lý kỵ khí. 

Mức sụt giảm số lượng của thể thực khuNn và vi khuNn trong nước sông và trên rau 

muống cũng được xác định. Nghiên cứu thực tiễn ở ĐBSCL tập trung vào đặc tính vi 

sinh của chất thải người và gia súc; của nước sông rạch và rau muống thủy sinh. Hiệu 

quả xử lý vi sinh của túi ủ biogas ở ngoài thực tế cũng được chú trọng. Ngoài ra, một 

khảo sát cũng được thực hiện nhằm tìm ra mức độ tiếp xúc của dân cư với các nguồn ô 

nhiễm phân. Tất cả các kết quả trên được dùng cho ĐĐRV bằng phần mềm @Risk 5.5 

(Palisade Corporation) với các tính toán cho ra xác suất nhiễm vi sinh gây bệnh cho 

từng tiếp xúc và cho cả năm. 

Nghiên cứu thí điểm trong phòng thí nghiệm cho thấy phương pháp xử lý kỵ khí nước 

thải người và gia súc có hiệu quả xử lý vi sinh nhưng ở mức độ thấp. Sự sút giảm nồng 

độ của thể thực khuNn (somatic coliphage, male-specific bacteriophage) và vi khuNn 

(Escherichia coli, Salmonella Senftenberg, Enterococus faecalis) trong mô hình thí 

nghiệm túi ủ biogas tăng cùng với sự gia tăng của thời gian lưu thủy lực. Thời gian lưu 

thủy lực dài cũng đóng vai trò quan trọng trong việc tăng sản lượng biogas. Ngoài thời 

gian lưu thủy lực, sự sút giảm vi sinh còn phụ thuộc vào nồng độ vi sinh ban đầu, loài vi 

sinh và loại nước thải. Ở pH trung tính, nồng độ cao của các axit béo bay hơi không gây 
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ảnh hưởng đến sự sút giảm nồng độ vi sinh. Hơn nữa, sự sút giảm nồng độ của thể thực 

khuNn và vi khuNn còn phụ thuộc vào chế độ hoạt động của hệ thống xử  lý kỵ khí: vận 

hành theo mẻ hay vận hành liên tục. Sự sút giảm vi sinh ở mô hình hầm tự hoại không 

đáng kể, ngay cả ở mức thời gian lưu thủy lực cao nhất của hầm tự hoại là 3 ngày. 

Xử lý kỵ khí trong túi ủ biogas có rất ít ảnh hưởng đến việc bất hoạt trứng Ascaris 

suum. Tuy nhiên, trứng giun sán lắng xuống lớp bùn ở đáy túi ủ nếu thời gian lưu thủy 

lực đủ dài. Mối quan hệ giữa tỉ lệ tồn tại của trứng Ascaris suum và thời gian lưu bùn 

được thiết lập bằng một phương trình số mũ. Chỉ một số rất ít trứng Ascaris suum tồn 

tại trong bùn đến một năm. Không có sự khác biệt của sự tồn tại của trứng Ascaris suum 

trong bùn biogas và bùn hầm tự hoại. 

Mẫu nước thải từ người và gia súc từ nghiên cứu thực tiễn chứa nồng độ cao vi sinh chỉ 

thị và vi sinh gây bệnh. E. coli and Enterococcus spp. hiện diện trong tất cả mẫu nước 

thải từ chuồng heo, từ nhà vệ sinh cũng như trong bùn hầm tự hoại. Salmonella spp. 

hiện diện trong hơn 60% và thể thực khuNn coliphage trong hơn 50% số mẫu. Trứng 

gian sán với nồng độ cao được tìm thấy trong 80% mẫu nước thải từ chuồng heo, 95% 

mẫu nước thải từ nhà vệ sinh (nước thải chưa qua xử lý trong hầm tự hoại) và trong tất 

cả mẫu bùn lấy từ hầm tự hoại. Mười loại trứng giun sán được xác định trong mẫu nước 

thải từ chuồng heo và 12 loại được tìm thấy trong mẫu bùn hầm tự hoại.  

Nghiên cứu thực tiễn cho thấy rằng hoạt động của túi ủ biogas và hầm tự hoại chưa phải 

là tối ưu để bất hoạt vi sinh gây bệnh. Thể tích của túi ủ không tương xứng với số lượng 

chất thải từ chuồng heo. Bùn trong túi ủ hiếm khi được lấy ra và hầm tự hoại chỉ được 

hút bùn khi bị nghẹt. Chính vì vậy mà sự sút giảm (đầu ra so với đầu vào) vi khuNn < 1 

log10 và thực khuNn thể < 1.5 log10, trong khi nồng độ đầu vào rất cao (lên đến 6.2 log10 

CFU/lít). Salmonella spp. được phát hiện trong mẫu đầu ra thường xuyên hơn trong 

mẫu đầu vào túi ủ. Trong hầu hết túi ủ biogas, trứng giun sán không lắng xuống mà 

được giải phóng thẳng ra nước sông, kênh rạch thông qua đầu ra của túi ủ. Nồng độ 

trứng giun sán ở mẫu đầu ra của túi ủ lên đến 175.000 trứng/ lít. Đa số chất lỏng đầu ra 

của túi ủ biogas và nước thải chảy tràn từ hầm tự hoại thải thẳng ra môi trường và làm ô 

nhiễm nguồn nước mặt. 

Mẫu nước mặt và rau muống thủy sinh bị nhiễm vi sinh. Nồng độ E. coli trung bình 

trong nước kênh rạch vượt mức Tổng coliform quy định trong Tiêu chuNn Việt Nam về 
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Chất lượng nước mặt (TCVN 5942-1995). Salmonella spp. thường xuyên được phát 

hiện trong mẫu. Thời gian giảm thiểu thập phân (T90) của thể thực khuNn và vi khuNn 

trong nước sông là hơn 2 ngày. Rau muống thủy sinh cũng bị nhiễm vi sinh như chính 

môi trường sống của nó. Enterococcus spp., E. coli, somatic coliphage và Salmonella 

spp. được tìm thấy trong mẫu. Nồng độ E. coli trong rau muống trồng ở các kênh rạch 

đô thị cao gấp 2 lần so với rau muống trồng ở ao cá nhận chất lỏng đầu ra của túi ủ 

biogas. Trên rau muống trồng trên cạn, sự sút giảm vi sinh đạt được từ 0.2 – 0.4 

log10/ngày. 

ĐĐRV cho thấy mức rủi ro bị nhiễm vi sinh gây bệnh của người tiếp xúc nguồn ô 

nhiễm phân rất cao, mức độ giảm dần từ trứng giun sán, rotavirus đến Salmonella. Xác 

xuất nhiễm Salmonella và trứng giun sán khi tiếp xúc với chất lỏng đầu ra của túi ủ 

biogas cao hơn so với chất thải từ chuồng heo. Công nhân vệ sinh hút hầm cầu chịu 

nhiều rủi ro nhiễm vi sinh nhất do thường xuyên tiếp xúc với chất thải. Tình cờ nuốt 

phải nước thải từ chuồng heo, tắm/bơi trong kênh rạch, uống trực tiếp nước kênh rạch 

và ăn rau muống sống là những tình huống tiếp xúc với nguồn ô nhiễm thường xuyên và 

bất lợi cho sức khỏe cư dân ĐBSCL. Các tình huống này tạo nên mức rủi ro bị nhiễm vi 

sinh cao hơn so với các tiêu chuNn giới hạn rủi ro.   

Bên cạnh các chương trình về sức khỏe và hành vi vệ sinh cá nhân, biện pháp giảm rủi 

ro bị nhiễm vi sinh bao gồm xử lý nước thải (vd như túi ủ biogas), thời gian đủ dài giữa 

lần tưới nước thải cuối cùng và thu hoạch, xử lý nước mặt trước khi uống và chuNn bị 

thức ăn (vd rửa sạch, nấu chín). Mức độ rủi ro giảm khi túi ủ biogas được vận hành ở 

thời gian lưu thủy lực 15 hoặc 30 ngày vì như thế chất lỏng đầu ra được xem như không 

còn trứng giun sán. Mức độ ô nhiễm cao của nước mặt cho thấy chỉ uống được an toàn 

sau khi đun sôi. Rau muống thủy sinh trồng trong môi trường này cũng không an toàn 

khi ăn sống. Rau muống trồng trên cạn được tưới với chất lỏng đầu ra của túi ủ biogas 

chỉ có thể ăn sống an toàn khi túi ủ biogas vận hành ở thời gian lưu thủy lực dài hơn 15 

ngày, thời gian giữa lần tưới cuối cùng đến khi thu hoạch đủ dài và rau muống phải 

được rửa sạch đúng cách trước khi ăn. 

Tình trạng quản lý nước thải hiện nay ở ĐBSCL mang lại nhiều rủi ro bị nhiễm vi sinh 

gây bệnh cho cư dân vùng này. Hiệu quả xử lý vi sinh của phương pháp kỵ khí có thể 

được cải thiện bằng các biện pháp vận hành và bảo dưỡng đơn giản. Nhằm giảm mức độ 
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nhiễm vi sinh cho dân cư, cần thiết phải có một chiến dịch kết hợp việc quản lý chất thải 

từ người và gia súc, cải thiện hệ thống nước cấp và thay đổi thói quen của người dân. 

Trong khi ĐĐVR cần rất nhiều thời gian và nỗ lực, việc tuyên truyền các rủi ro này đến 

các cấp chính quyền và mọi người dân là một thử thách lớn. Nhưng bằng cách này có 

thể tác động đến sự thay đổi về kỹ thuật, luật pháp và lối sống truyền thống nhằm cải 

thiện sức khỏe cộng đồng một cách hiệu quả. 
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THE STUDY ROAD MAP 

The thesis’ structure is conventional (introduction, methods, results, discussion and 

conclusion), and the topic is explored via three studies (a pilot study, field study, and 

quantitative microbial risk assessment), which this flowchart overviews:  

 
  

Field study in the Mekong Delta 

Microbiological characteristics of 

faecal sludge  

On-site treatment efficacy of plastic 

bio-digesters  

Microbial make-up of surface water 

and aquatic spinach 

Short structured questionnaire and 

discussion with people at sampling 

sites 

 

Pilot study 

Pathogen reduction via plastic bio-

digesters and septic tanks using batch-

wise and continuous reactors 

Survival of Ascaris suum in faecal 

sludge within one year 

Factors affecting the survival of 

pathogens in continuous reactors under 

tropical conditions  

Survival of phages and bacteria in 

Mekong river water and water spinach 

Quantitative Microbial Risk Assessment 

Working exposed to faecal substrates 

Bathing/swimming in canals 

Usage of surface water for drinking 

Consumption of agriculture product (spinach) 
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FOREWORD 

 

Cần Thơ gạo trắng nước trong 

Ai đi tới đó lòng không muốn về.  

 

Can Tho has white rice and clear water 

Once being there, your heart won't leave. 

 

This is a well-known saying about the “capital” of Vietnam’s Mekong Delta. Cần Thơ 

is the biggest city in the Mekong Delta, which possesses enormous potential in terms of 

its high productive land. Life here has long been dictated to by water. Agriculture and 

aquaculture, the main productive activities, are dominated by monsoon rains and tidal 

flows. With its vast network of canals these also influence transportation and 

infrastructure. In living memory it was easier to get around by boat than by road. There 

is seasonal variation though generally said the Mekong Delta has abundant water. 

Beyond its symbolic and productive uses water is essential for existence. People use it 

to eat, drink, clean, preserve and dispose – everyday. Water is a measure of public 

health and more than its abundance is the issue of its management. Nowadays with a 

dense population and without a centralised wastewater treatment plant in Can Tho City, 

the first part of the famous saying above seems to be not anymore appropriate. Can Tho 

has still white rice but not any more clear water! The Mekong Delta is overwhelmingly 

rural. There are no centralised water supply or treatment plants in the villages and 

systems are household based. Water is sourced directly from rain, ground and surface 

water, with wastes often returned directly to these environments. Disease risks from 

microbial contamination and mineral toxicity are high and chronic illnesses are 

common. Villagers have low education levels too and surveys show they poorly 

understand the health risks associated with their water use and wastes disposal practices 

let alone the vectors of and pathways to illness and wellbeing.  

To preserve the environment, especially surface water quality, solutions were 

introduced to the population. As fishpond toilets are considered unhygienic, septic tanks 
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have been introduced to households. In rural areas in the Mekong Delta thousands of 

small-scale biogas plants were built in recent years to utilize the manure for energy. 

Although these changes are to some extent positive this study quantifies risks associated 

with the faecal management in the Mekong Delta. The notion of quantitative risk was 

chosen as it yields values with which to compare sanitation systems and extant accepted 

risk values. 

Some of the work in this thesis is already in print. Papers already in print were 

reproduced with permission of the publishers. 
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1 INTRODUCTION 

Rapid development and population growth lead to increasing demands for water as well 

as discharge of wastewater, which challenge sustainable development. The release of 

untreated wastewater and faecal sludge to the natural environment has major impacts on 

the health of communities and results in environmental degradation. In many cities of 

developed countries the wastewater is treated at the end of the sewer before being 

discharged into the water bodies. This tradition has been widely established as a 

standard way of managing wastewater worldwide and known as "end-of-the-pipe" 

approach or conventional wastewater management approach. In developing countries, 

however, up to 90% of wastewater is discharged into rivers and streams without any 

kind of treatment (UNDPI 2003). 

In many developing countries, industrial wastewater is less common, though they are 

severe near large urban centres. Instead, untreated domestic wastewater poses acute 

water pollution problems leading to low water availability and risks to human health. As 

a consequence, 80% of illnesses and deaths are attributed to water-borne diseases, 

taking a child’s life every eight seconds (UNEP 2003). Intestinal infections related to 

water increase malnutrition and it in turn predisposes to severe infections. The poor 

sanitation not only negatively affects the population’s health but also causes financial 

losses. World Bank (2008) estimated the economic losses of health impact from 

sanitation in Vietnam to be 262 million US dollar per annum, which is driven mostly by 

the costs of premature death and treatment of disease. In addition, poor sanitation has 

also impacts on water resources, environment, tourism and other welfare (Figure 1.1). 

Thus a large portion of misery, sickness and death in the developing world are due to 

water-related diseases or more accurately should be known as excreta-related disease as 

pathogens derive from faecal matter. 

 

 



2  1 INTRODUCTION 

 

 

 

Figure 1.1 | Annual losses by impact category due to poor sanitation in Vietnam. 

Source: World Bank (2008) 

1.1 Why is faecal treatment needed? 

Faeces are widely acknowledged as a major source of infectious pathogens like enteric 

bacteria, viruses, protozoa and helminths, which are released from the bodies of infected 

persons or animals. These agents cause a wide range of diseases (Table 1.1). More and 

more newly recognised pathogens have been detected. According to Sharma et al. 

(2003), this may be due to the development of efficient detection method, an increase of 

urbanization, the movement of humans from one part of the world to another, multidrug 

resistance, pathogen gene transfer, and the influence of climate change. Levels of 

pathogens in faeces or wastewater differ from area to area, depending on its general 

status of sanitation and hygiene. Thus microbial make-up of different faecal substrates 

of human and animal origin in the study area was determined.  
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Table 1.1 | Pathogens in human faeces and in animal manures. 

Pathogen Disease 

Virus  

Adenovirus (many types) Respiratory infections 

Astrovirus (many types) Gastroenteritis 

Calicivirus (several types) Gastroenteritis 

Coronavirus Gastroenteritis 

Coxsackie virus A 
Herpangina, aseptic meningitis, 
respiratory illness 

Coxsackie virus B 
Fever, paralysis, respiratory, heart and 
kidney disease 

Enterovirus (many types) Gastroenteritis 

Hepatitis A virus Viral hepatitis 

Hepatitis E virus Viral hepatitis 

Norovirus Gastroenteritis 

Parvovirus (several types) Gastroenteritis 

Polio virus Poliomyelitis 

Reovirus (several types) Not clearly established 

Rotavirus (several types) Gastroenteritis 

Bacteria  

Campylobacter jejuni Gastroenteritis, long-term sequelae 

Clostridium botulinum Botulism 

Clostridium perfringens Gastroenteritis, gangrene 

Escherichia coli Gastroenteritis 

E.  coli O157:H7 
Bloody diarrhea, haemolytic uraemic 
syndrome 

Leptospira spp. Leptospirosis 

Listeria monocytogenes Encephalitis 

Mycobacterium tuberculosis Tuberculosis 

Salmonella (1700 serotypes) Salmonellosis 

Shigellae Shigellosis 

Vibrio cholerae Cholera 

Yersinia enterocolica 
Yersiniosis, gastroenteritis, diarrhea, 
long-term sequelae 
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Table 1.1 (continued) 

Pathogen Disease 

Fungi  

Candida sp Mycoses (skin and systemic) 

Tricosporon cutaneum Skin mycosis 

Aspergillus fumigatus Lung mycosis 

Trichophyton sp. Skin mycosis 

Epidermophyton sp. Skin mycosis 

Microsporum sp. Skin mycosis 

Protozoa  

Acanthamoebe (rare) Meningoencephalitis 

Balantidium coli (rare) Dysentery 

Cyclospora cayetanensis Persistent diarrhea 

Cryprosporidium parvum Cryptosporidiosis, diarrhea, fever 

Entamoeba sp. Amoebic dysentery 

Giardia lamblia Giardiasis 

Helminths  

Ancylostoma duodenale and Necator 

americanus (hookworm) 
Hookworm infection 

Ascaris lumbricoides (roundworm) Ascariasis 

Clonorchis sinensis (liver fluke) Clonorchiasis 

Diphyllobothrium latum (fish tapeworm) Diphyllobothriasis 

Enterobius vermicularis Pinworm infection 

Fasciola hepatica and  Fasciola Gigantic  Fascioliasis 

Hymenolepsis nana Dwarf tapeworm 

Hymenolepsis nana Dwarf tapeworm 

Opisthorchis viverrini (liver fluke) Opisthorchiasis 

Paragonimus westermani (lung fluke) Paragonimiasis 

Schistosoma spp. (blood fluke) Schistosomiasis, bilharzia 

Strongyloides stercoralis Small roundworm infection 

Taenia saginata and Taenia solium (tapeworm) Taeniasis 

Trichuris trichiura Trichuriasis 

Source: Filip et al. (1988) and WHO (2006a) 
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Survival of pathogens in the environment is variable. Several of pathogens are very 

persistent and may even grow outside their hosts. Cysts and oocysts of protozoa and 

helminth ova remain viable for extended periods in the environment (Cooper and 

Olivieri 1998). Wang et al. (1996) reported that E. coli O157:H7 is able to multiply in 

bovine faeces. Salmonella may survive in slurry for more than 77 days and grow in 

temperature from 6 to 47oC (Mitscherlich and Marth 1984). It is also documented that 

several pathogenic and indicator bacteria survive long and multiply in biogas digesters 

(Sahlström 2003, Gerardi 2003). In order to obtain appropriate survival rates of 

organisms in the study context, survival of indicator organisms and pathogens in 

tropical anaerobic digestion as well in water environment, on spinach, in particular 

conditions were determined. 

Pathogens of animals and their potential to infect humans have only recently been 

acknowledged due to the recognition of zoonotic agents like parasites (Olson and 

Guselle 2000) and rotavirus (Cook et al. 2004). Of the bacteria identified as being a 

common cause of gastroenteritis, Campylobacter, Salmonella and E. coli O157:H7 are 

zoonoses, able to infect both humans and animals (EPA 2009). In Vietnam, rotavirus 

G5 was detected in Vietnamese children with diarrhea while this G5 strain was isolated 

mainly from pigs (Ahmed et al. 2007). Thus zoonotic transmission is taken into account 

in microbial risk analysis in this study. 

There are two-sided effects of faeces in faecal management process. On one hand, 

faeces contain pathogens and on the other they contain nutrients such as nitrogen, 

phosphorous, potassium (Vinnerås et al. 2006). This nutrient source can be recycled to 

minimise the utilisation of natural resources. However, pathogens should be eliminated 

before reuse in agriculture or discharge to the environment. In the early human 

settlements and in places where population is scattered and remote, the release of 

untreated faecal substrate into the environment can be adequate. However, today, in a 

crowded world, even in rural areas, lack of wastewater and waste management may lead 

to disasters in the near future. 
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1.2 Perspective of anaerobic treatment in tropical regions 

In most situations in developing countries, anaerobic digestion is the most appropriate 

option for wastewater treatment as it is a low-cost, low-maintenance and at the same 

time high-performance treatment system. Tropical temperatures permit the utilization of 

efficient anaerobic reactors without heating. This is the main factor that makes the use 

of anaerobic technology applicable and cost-effective (Foresti 2001). 

Anaerobic digestion occurs in three stages: hydrolysis, acid formation (acetogenesis) 

and methane production (methanogenesis). As the process usually occurs in one reactor 

(FEC Services 2003) stages run concurrently. In these combined-stage reactors 

operation conditions (stability, inhibition, toxicity,...) should be maintained so that the 

degradation rates of all stages are equal. Volatile fatty acid (VFA), total inorganic 

carbon (TIC) and pH are essential factors in this (Pind et al. 2003, FNR 2006). Low pH 

(<6.5) and a high level of VFA (>1,000 mg l-1) have a significantly toxic effect on 

methanogenic bacteria in the digester. Hence the production of methane may cease and 

only carbon dioxide is produced (FEC Services 2003). It indicates that the core of the 

process (biogas production) should be kept in mind when pathogen reduction trials are 

conducted in the combined-stage system. However, there are also two-phase anaerobic 

treatment systems, where hydrolysis and acid forming is encouraged in the first or acid 

phase while methane production occurs in the second phase in a separate reactor. 

Pathogens and indicator bacteria in animal slurries have been reported to reduce under 

mesophilic anaerobic condition (Kearney et al. 1993b, Kumar et al. 1999, Juris et al. 

1996). Yet those studies were conducted at 35-37°C, a higher temperature compared to 

that of tropical biodigesters (28-30°C). Literature on pathogen reduction efficacy during 

anaerobic treatment of animal slurries under tropical conditions is scarce. Using 

Hungate tubes Olsen and Larsen (1987) showed that increasing temperature from 30°C 

to 35°C significantly shortened average T90 values of Salmonella Typhimurium, 

Enterococcus faecalis and coliform bacteria. Results observed at 35°C or 37°C may not 

be applicable to conditions at 28-30°C. Thus one of the objectives of this study is to 

identify the elimination potential of pathogens in faecal sludge in tropical anaerobic 

treatment over pilot PBDs and STs. 
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As well as the temperature, factors such as hydraulic retention time (HRT), VFA, pH, 

total solids, operation type (batch or continuous digestion), and initial concentrations 

also affect pathogen survival (Kearney et al. 1993a, Kunte et al. 1998, Henry et al. 

1983). VFA has been cited as one of the important factors strongly affecting the 

survival of pathogens in mesophilic anaerobic digestion of organic waste. Many 

researchers have shown the influence of VFA on the reduction of pathogens. However 

those experiments were carried out in different conditions (Fay and Farias 1975, Henry 

et al. 1983, Abdul and Lloyd 1985), only few of them can be applied to the anaerobic 

digestion of organic waste (Kearney et al. 1993b, Kunte et al. 1998). To improve the 

microbial treatment efficacy via anaerobic treatment in the study area, many of factors 

cited above were considered in the pilot study. 

1.3 Study area  

The study was conducted in the Vietnam’s Mekong Delta (MD), so-called Cuu Long 

Delta (đồng bằng sông Cửu Long), the most downstream part of the Mekong river 

basin. The basin is one of the largest river deltas in Asia. It is a landscape shaped by the 

waters of the Mekong River that flows from the Tibetan Plateau (China) through 

Myanmar, Laos, Thailand, Cambodia before entering the South China Sea in the 

Southwest of Vietnam (Figure 1.2 and Figure 1.3).  
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Figure 1.2 | Mekong River basin and location of the Mekong Delta, Vietnam (in circle). 

Source: Hoanh et al. (2003). 
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Figure 1.3 | Dense network of rivers and canals in the Vietnam’s Mekong Delta  

Source: Evers and Benedikter (2009). 
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MD is known as the rice bowl of Vietnam, producing commodities for the domestic 

market and for export. The region has experienced rapid socio-economic changes in the 

past few years, with increases in agricultural and aquaculture production. However, 

important challenges remain. Despite economic growth and development, MD remains 

among the poorest regions of the country. The challenges with poverty reduction have 

been linked, among other things, to low educational level of MD population, and 

resulting lack of human capital (Taylor 2004). Although the MD high population 

density has in no serious way been a limiting factor for the development (Keskinen 

2008), an increasing release of untreated excrement to the environment may pose acute 

microbial pollution leading to low water availability and risks to human health in the 

area. In addition, traditional behaviours and routines of MD population (Section 1.3.6) 

make matters worse. 

1.3.1 A vital agriculture area of the country 

MD extends over 12 provinces and one city (Figure 1.3). It covers about 4 million 

hectares (about 12% of the national area) of which 72.5% (2.9 million ha) is currently used 

for agriculture and aquaculture, 15% (0.6 million ha) for settlements and infrastructures 

and 12.5% (0.5 million ha) being mangrove and melaleuca forests (Wassmann et al. 2004). 

Principally the delta’s ecosystem is composed of saline, brackish and freshwater habitats. 

The main freshwater habitats of the delta include the multitude of rivers and canals, 

floodplain grasslands, melaleuca forests and plantations, as well as wet rice fields and 

other crops (Duong et al. 2001). The saline and brackish habitats remain in the coastal and 

estuarine zones of the delta offering great resources for shrimp farming. Thus MD 

possesses enormous economic potential in terms of its high productive land. Comparing to 

the whole nation, agricultural output of MD accounts for 50%, exported food productions 

are about 90%, fruit trees and aquaculture products are about 70% (Van 2010).  

According to the dynamic development of cultivated areas and the simultaneous 

emphasis on applying intensive cultivation methods, the agriculture and aquaculture 

yields keep increasing. Among these, pig breeding was given high priority in MD due to 

the increasing domestic demand for meat based on the population as well as economic 

growth. About 26% of the rural households raised pigs (General Statistics Office 2006a) 

leading to another environmental problem in the rural areas. 
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The development of delta’s agricultural economy has experienced many ruptures. After 

the unification of the country (1975), the yields decreased as the private trade was banned 

and farmers faced problems in getting agricultural inputs. Moreover the collectivization 

decreased farmers’ incentives for higher production. The severe decline in agricultural 

productivity was one of the main reasons for the government to undertake remarkable 

changes in its policy. In 1986 Vietnam adapted so-called renovation policy (đổi mới) that 

was based on more market-oriented development strategy. The rapid growth in rice 

production in the late 1980s and 1990s has often been explained by the đổi mới. The 

reallocation of lands and liberalization of production provided more incentives to the 

farmers. Water-control and irrigation works with the expansion of modern farming 

techniques have also played a significant role in increasing agricultural production.  

1.3.2 Climate and flooding 

The delta has a tropical monsoonal climate with a dry season from December to April 

and a rainy season from May to November. Monsoon rains peak in September and 

October, and combine with floodwaters from the Mekong River causing annual flood 

and inundation in about 1.2 to 1.4 million ha for two to six months. The average annual 

rainfall ranges from less than 1,500 mm in the central region and northwest to over 

2,350 mm in the south, with some 70-80% of the precipitation concentrated into four 

months at the height of the rainy season. The mean annual temperature is about 28°C 

throughout the delta, the difference between the mean monthly minima and maxima 

being only about 5°C. The relative humidity remains high (80%) throughout the year. 

Apart from some hills like Mount Sam (270 m) and Mount Co To (258 m) in An Giang 

and Kien Giang Province next to the Cambodian border, the region has very low 

landforms with the range of 0-4 metre above sea level. The very flat area near the 

Cambodian border such as the provinces An Giang and Dong Thap is thus prone to deep 

flooding. To protect agricultural and residential areas, dyke systems have been 

constructed and gradually expanded in MD. There are more than 20,000 km of 

protection dykes to prevent early floods (MARD 2003). Full-dyke is designed based on 

the measured and calculated flood peaks to ensure the safety for the people's daily 

activities and cultivation in the whole flood duration. Semi-dyke is designed to ensure 

the second crop is harvested before floodwater exceeds the fields.  
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1.3.3 Population growth 

The total population of MD is 17.2 million (in 2009) with a population density of 423 

persons per square kilometre (more than 1.5 times the country’s average). It is the third 

most densely populated area in Vietnam with 77.2% of the population living in the rural 

areas. The MD population density is highest in the areas along the Mekong River and 

the Bassac River (Keskinen 2008).  

In general the MD population was increasing rapidly (Figure 1.4) despite of some tough 

periods in its history. When the French arrived in the 1860s to take control over the delta 

region, the Vietnamese control of the area was still to be established and consolidated. 

The delta was still a largely virgin area with an estimated population of 1.7 million 

inhabitants in 1880. French colonialism created a massive ecological as well as economic 

transformation (Brocheux 1995). Thousands of miles of canals were dug to drain the 

swamps and vast stretches of mangrove felled. Thus, the Mekong Delta was opened to 

large-scale human habitation and agricultural cultivation. Consequently, the population 

has been more than doubled in the last 50 years leading to an explosion of human waste 

discharged into the environment.  

 

Figure 1.4 | Rapid growth of the population in the Mekong Delta.  
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1.3.4 Faecal management  

Vietnam's rapid development and population growth over the last ten years have placed 

huge demands on its wastewater and waste treatment. However, at present, except for 

Ho Chi Minh, Can Tho and Da Nang City, which have projects underway to collect 

domestic wastewater for treatment, none of the other cities or provinces within the 

country has a centralized wastewater treatment plant.  

In MD simple anaerobic treatment has been promoted to treat faecal matter. Only septic 

tanks (Figure  1.5) are introduced for the treatment of human excreta to a larger extent 

with 23.7% of households having flush toilet connected to STs or sewage pipes 

(General Statistics Office 2006). The number of households having toilets directly over 

surface water, so-called fishpond toilets (Figure 1.6), is much higher (47%). To treat 

manure from the increased number of pigs, PBDs were introduced to the population.  

Thousands of PBDs have been installed and in operation (Lam et al. 2006). Their focus 

is to reduce organic matter and produce cooking gas; hygiene aspects may also be less 

prioritised. Both treatment systems have been reported to underperform. This situation 

is typical in the country as a whole. Little information is available about their microbial 

treatment efficacy as well as how to improve their performance.  

  

Figure  1.5 | Newly built septic tank. Figure 1.6 | Fishpond toilets. 

 

Plastic bio-digester 

PBDs are a cost-effective way to treat animal slurries and produce cooking gas, and 

have been promoted in many developing countries (An 2002, Yongabi et al. 2003, 
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Brown 2006). PBDs are made from cheap and ubiquitous materials such as 

polyethylene film (Figure 1.7). 

 

Figure 1.7 | Plastic bio-digester.  

 

To increase PBD lifespan they are not exposed to direct sunlight, they are usually 

fenced off from animals, and their internal temperature is kept at 28–30°C. Bio-digester 

effluent can be applied to crops (rice, cassava and other perennial crops), vegetables 

(lettuces, tomatoes, cabbage, and water spinach) and in ponds (fish or water plants) 

(Figure 1.8). 

 

Simple cooker using biogas 

from PBD. 

Use of effluent in fish 

pond. 

 

Use of effluent to apply on 

spinach. 

Figure 1.8 | Benefit of plastic bio-digester in the Mekong Delta’s rural areas. 
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PBD’s design, construction and operation is unregulated, and linked to environmental 

and health risks. In particular the pathogen reduction efficacy is not well documented, 

although a few studies in Vietnam’s Mekong Delta region have found high 

concentrations of the indicator bacteria Escherichia coli in bio-digester effluents 

(Kobayashi et al. 2003, Rechenburg et al. 2007). This study observes the microbial 

treatment efficacy of PBDs in MD so as to give an overview of their overall 

performance. 

Unlike biogas plants in Europe the output of tropical PBD is low in dry matter. Solids 

accumulate at the plant’s base, often for years. Hence, methane yields cannot be 

calculated onsite as gas production strongly correlates to the amount of solids present 

(Nuber and Tien 2008). Conversely, accumulated solids reduce the HRT of PBDs. Of 

PBDs investigated by Nuber and Tien (2008) 70% showed HRTs of less than six days 

and the shortest HRT was 1.83 days. Short HRTs may impact negatively on the 

treatment efficacy of the process as well as the hygienic status of the effluent.  

Septic tanks 

Most STs in Vietnam receive only black water (Viet-Anh et al. 2007, Harada et al. 

2008) and comprise 2 chambers (Bao 2006). In terms of nutrient recycling the septage 

sludge might be fit for agriculture. Traditionally human excreta such as sludge from 

bucket latrines were used as fertilizer in Northern Vietnam. Use of such sludge today is 

decreasing due to their replacement by STs, in both urban and rural areas (Klingel et al. 

2001). In some cases septage sludge is used as an alternative fertilizer in agriculture and 

aquaculture without any prior treatment. Moreover the manual de-sludging of septage 

may pose a high risk to workers’ health. Klingel et al. (2001) found that one-third of 

STs in Nam Dinh (Northern Vietnam) were only ever emptied manually, with workers 

not taking any health protection measures. Therefore, septage handling practices in 

Vietnam promote the spread of pathogens, especially helminths.  

Maintenance of STs requires septage sludge to be removed on a regular base. In 

general, STs in Vietnam are emptied only when blockages occur or odour become 

unbearable, which arises when the tank is full and untreated septage leaks. Harada et al. 

(2008) showed that 89.6% of STs in Ha Noi have never been desludged and when 

desludged, intervals ranged from 1 to 30 years with an average of 8.1 years. Orders to 
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empty STs, either by vacuum track or manually, are made by house owners and they 

have to pay for the service. Klingel et al. (2001) found that one-third of STs in Nam 

Dinh City were only ever emptied manually, with workers not taking any health 

protection measures. In most cases, the tanks are not constructed for regular 

maintenance and emptying is combined with reconstruction, e.g. opening the floor for 

access to the tank. Thus workers are exposed to untreated septage and septage sludge in 

most cases. However, there is little information about the danger of the substrate they 

are working with and the chance of contracting an infection. 

Disposal of septage sludge and operating and maintaining STs is an increasing problem 

in Vietnam. Septage is widely acknowledged as a major source of infectious pathogens 

like enteric bacteria, viruses, protozoa and helminths. It has been recently reported that 

75% of Ho Chi Minh City’s septage sludge is discharged directly into the environment 

(Cuong 2008). In Nam Dinh, septage sludge was discharged into fishponds and on 

fields or wherever the pump truck driver found a place to dump it (Klingel et al. 2001).  

Surveys of septage and strategies for improving faecal sludge management have been 

done in some provinces in Vietnam (Klingel et al. 2001, Bao 2006). Yet the 

microbiological make-up of septage in Vietnam is not well documented, especially the 

variety of helminths whose infection are considered a burden in Vietnam (Trang et al. 

2007). Survey of 615 people in Nam Dinh showed that 90% were positive for helminth 

parasites (Dung et al. 2007). In Ha Giang 92% of 84 stool samples were positive for at 

least one parasite (Huong 2006). In 2002 it was estimated that 33.9 million Vietnamese 

are infected with Ascaris (44.4% of population), 17.6 million with Trichuris (23.1% of 

population), and 21.8 million with hookworm (28.6% of population) (Van der Hoek et 

al. 2003). Thus the microbial characteristics of septage need to be quantified so as to 

give an overview of the nation’s health situation and the safe management and possible 

uses of sludge for agriculture and aquaculture.  

As the faecal treatment seems not to be efficient, handling their outputs is another 

challenge to protect population health. The outputs from the treatment systems as well 

as untreated faecal matter are often returned directly to the water, which is used by 

million people every day. There is minimal literature of pathogen survival in the surface 

water in MD. For most of the MD population, surface water is the basis of living, 
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serving agricultural production, aquaculture, transportation and daily domestic use, 

including drinking water in many cases. Figure 1.9 gives an overview of the faecal 

management system in MD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 | Faecal management in the Mekong Delta, Vietnam. 

PBDs = Plastic bio-digesters 

 

1.3.5 Health issues 

Water-related and water-borne diseases remain a major public health problem in MD. 

According to the statistics in the recent years from Department of Health and 

Environment (Centre of Preventive Health of Can Tho City), diarrhea has been the 

fourth most common diseases after throat infection, respiratory disease, and high blood 

pressure in Can Tho City. More than 18,000 diarrhea cases were reported in Can Tho 
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City in 2009 (PHC 2010). Diarrhea is an intestinal infection caused by virus, bacteria or 

parasites. In addition, typhoid fever – which is caused by Salmonella typhi – is endemic 

in the Mekong Delta (Kelly-Hope et al. 2008) and is one of the enteric diseases of 

significant public health concern in Vietnam (DeRoeck et al. 2005). Of 187,318 typhoid 

fever cases reported in VN between 1991 and 2001, 75.8% were in MD (Kelly-Hope et 

al. 2007). In 1993, a large epidemic of typhoid fever affecting 3,049 people causing two 

deaths was reported in An Minh district, Kiên Giang Province (Nguyen et al. 1993). 

Among 658 blood cultures in Dong Thap Province, 8.5% were positive for Salmonella 

typhi with an overall incidence of 198 per 100,000 population per year (Lin et al. 2000).  

Another health burden in MD as well as in the whole country is helminthiasis (Trang et 

al. 2007, Dung et al. 2007), which is very common in Vietnam’s rural areas. However, 

helminthiasis develops slowly and remain asymptomatic or mildly symptomatic (Hung 

et al. 2005). As a result, the detection and treatment are often neglected, giving away to 

a large burden of silent infection, especially in children. Helminthiasis can lead to 

severe anemia, bowel obstruction, bile duct infection, pancreatic duct infection and 

pancreatitis. 

The epidemic may be ascribed to different causes: lack of safe water supply in rural 

area; faecal pollution caused by inhabitants of this endemic area such as defecating 

directly in the waterways; ingestion of contaminated food, especially vegetables sprayed 

with polluted water; low level of public sanitation and individual hygiene. The diseases 

are almost exclusively transmitted by food and water contaminated by the faeces and 

urine of patients and carriers. Polluted water is the most common source of disease 

transmission. In Dong Thap, drinking river water was associated to 83% of typhoid fever 

cases (Luxemburger et al. 2001) and about 10% population never boil surface water 

beforehand (Lin et al. 2000). There was clear qualitative evidence that MD people, 

including children, routinely drink untreated river water and sometimes drink water 

directly from the environment (Few et al. 2010). 

1.3.6 Traditional behaviours and routines as health risk factors 

In addition to the microbial contamination of water, traditional behaviours and life 

routines of the population constitute a great health risk. Basic knowledge of preventive 

hygiene measures exists among the population in MD (Herbst et al. 2009, Few et al. 
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2010). However, hygiene measures are put into practice in an untimely manner or are 

applied in an incorrect way, most probably due to the misconception of risks and/or a 

lack of background knowledge of cause–effect relationships (Herbst et al. 2009).  

People in direct contact with faecal substrates pay little attention to their health 

consequences. Compared to conventional wastewater treatment systems, small-scale 

anaerobic digestion plants demand more personal involvement, which leads to more 

exposure to pathogens. The handling and reuse of different types of waste products with 

human or animal origins involve hygiene risks. However, the sewage workers using 

vacuum trucks and farmers handling pig slurry in MD do not use any health protection 

measures. They do not even wash their hands properly after work. The situation is even 

worse when the sludge is emptied manually and the workers have to stand for hours in 

sludge. For people dealing with PBD effluents risk of infection depends on the 

microbial quality of the effluent, which can hardly be free of pathogens. 

Reuse of faecal matter in agriculture/aquaculture is positive in terms of nutrient 

recycling but it can be a risk for human health. Different from the Northern Vietnam, 

people in MD do not have a habit of applying fresh human faeces directly on crops. 

Instead, fishpond toilet is a typical example of reusing human faeces in aquaculture. 

Application of PBD effluents on crops, e.g. spinach that can be eaten raw, can be a risk 

for consumers while little information is available on pathogen survival rates on crops 

in MD.  Similarly, use of septage sludge or accumulated sludge from PBDs on arable 

lands may place farmers, many of whom walk bare foot and have poor hygienic 

practices, at risk of helminthiasis. One of the indirect uses of excrements in agriculture 

is to cultivate aquatic spinach in canals contaminated with domestic wastewater.  

Usage of surface water contaminated with excrements may have a greater potential for 

health problems because the water user is unaware of the wastewater presence. MD 

inhabitants who concentrate mainly along rivers and canals tend to rely on river water 

for domestic uses, including provision of drinking water. Bathing/swimming in canals 

and rivers and use of untreated surface water for bathing are commonplace in the area. 

In rural areas, bathing takes place either in the home using stored water (with or without 

flocculation) or directly by swimming in canals. Few et al. (2010) found that at least 
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half of the population in neighbourhoods of Long Xuyen City (An Giang province) 

regularly bath by swimming. 

Surface water is the main source for drinking water of 24.3% households in MD, mainly 

in rural areas (General-Statistics-Office 2006b). A simple and most common treatment 

method applied to surface water is flocculation using aluminium sulphate 

(Al2(SO4)3.17H20). This process causes colloids and other suspended particles in liquids 

to aggregate, forming a floc. The slow stirring allows the flocs to grow and settle down 

quickly. Using surface water from MD, Wrigley (2007) showed that alum-flocculation 

reduced turbidity significantly and about 90% bacteria populations. In Can Tho 

Province, most people use aluminium sulphate daily, whilst in An Giang many people 

simply believe that treatment makes no difference (Abrahamsson and Svensson 2000). 

In MD flood prone areas, many people had no option but to use floodwater for drinking 

and cooking after hazards struck, often without any treatment (Few and Tran 2010). 

Another routine is using surface water to wash vegetables, dishes as well as other 

utensils. Washing tends to be in flocculated water or directly in untreated surface water. 

It is found that vegetables became more contaminated after washing in nearby canals 

after harvesting (Ha et al. 2008). As the surface water quality is in most cases unknown, 

eating raw vegetables is not recommended from Preventive Health Centres in MD 

though it is not easy to change a traditional eating habit.  

MD faces many challenges in water issues. The major constraints of the natural 

conditions include flooding, salinity intrusion, acid sulphate soils and the spread of 

acidic water, shortage of fresh water in areas close to the coastline and the impacts of 

global climate change to sea level rise (Tuan and Wyseure 2007, Truong and Ketelsen 

2010). Water pollution from agricultural, industrial chemicals and untreated domestic 

wastewater just completes the whole picture of water issues in MD. Most studies on 

water pollution have focused on chemical aspects of the surface water (Minh et al. 

1997, Long 2001, Toan et al. 2010). Little available data is on hand for microbial 

contamination associated with excreta and its consequence in the area. Thus it is 

necessary to quantify microbial risks from specific activities which MD population 

faces. 
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1.4 Risk assessment and management 

1.4.1 Introduction of Risk Assessment 

Risk assessment is a part of risk analysis that includes risk management and risk 

communication. After Haas et al. (1999) and NAS (1983) term definitions are:  

Risk assessment – the qualitative or quantitative characterisation and estimation of 

potential adverse health effects associated with exposure of individuals to hazards 

(materials or situations, physical, chemical and/or microbial agents). 

Risk management – the process for controlling risks; weighing policy alternatives and 

selecting the most appropriate action taking into account risk assessment, values, 

engineering, economics and legal, social and political issues. 

Risk communication – the communication of risks to managers, stakeholders, public 

officials and the public; includes public perception and ability to exchange scientific 

information. 

Quantitative risk assessment was initially developed, largely, to assess human health 

risks associated with exposure to chemicals (NAS 1983). When QMRA was first 

undertaken the framework of chemical risk assessment was applied directly for 

evaluating microbial risk. However some important differences between microbial and 

chemical agents were identified (Craun et al. 1996): 1) pathogens in the environment 

can grow or decline; 2) microorganisms are not uniformly distributed due to clumping 

or aggregation; 3) infectious diseases differ from chemical agents as an infected person 

may proceed to infect additional people; and 4) there is variation in susceptibility to 

microbial agents because of a complex set of immune responses including short- and 

long-term immunity that may alter the dose-response relationship and the severity of 

outcomes. Therefore these authors developed the concept further for assessing risks of 

human disease associated with pathogenic microorganisms. 

1.4.2 Quantitative Mirobial Risk Assessment 

QMRA is a tool used to predict the consequences of potential or actual exposure to 

infectious microorganisms and consists of the following steps (Haas et al. 1999): 
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1) Hazard identification: describe range of pathogens as agents of potential significance 

that are to be considered in the risk investigation. 

2) Exposure assessment: determine the size and nature of the population exposed and 

the route, amount, and duration of exposure. 

3) Dose-response assessment: characterize the relationship between various doses 

administered and the incidence of the health effect. 

4) Risk characterization: integrate the information from exposure, dose-response to 

calculate the likelihood of infection and illness in the exposed population.  

Hazard identification for microorganisms is generally straightforward. The major tasks 

of QMRA are, therefore, focused on exposure assessment, dose–response analysis and 

risk characterisation. 

QMRA was first developed for drinking water (Regli et al. 1991) and has lately been 

applied to practices such as irrigation of crops with reclaimed water (Hamilton et al. 

2006, Mara and Sleigh 2010a, Mara and Sleigh 2010b), evaluation of health effects of 

interventions in the urban water system (Labite et al. 2010). According to Haas et al. 

(1999) direct measurement of pathogens in combination with QMRA can be used to 

develop guidelines for food, water and other vehicles. World Health Organization 

(WHO) guidelines for the reuse of wastewater are based partly on epidemiological 

investigations and partly on microbial risk assessments. An advantage of QMRA is that 

it allows prospective studies rather than retrospective ones that typically form the basis 

of epidemiological studies (Haas et al. 1999). The validity of epidemiological studies 

lies in their focus on actual health effects. Yet waterborne outbreaks and reported cases 

are often underestimated (Barwick et al. 2000) and QMRA may be a way to circumvent 

this (Haas et al. 1999). 

1.4.3 Acceptable risk 

The results of a risk characterisation are used in risk management. The appropriate level 

for decision-making with respect to micro-organisms is still a matter of controversy. In 

the case of waterborne protozoa it has been suggested (in the US) that an annual risk of 

infection of 10-4 (i.e. 1 in 10,000) is appropriate for drinking water (Regli et al. 1991). 

WHO guidelines on the safe use of wastewater in agriculture (2006a) and drinking-
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water quality (2008) use a default value of ≤10-6 DALY (disability adjusted life year) 

loss per person per year (pppy) for the tolerable additional burden of disease due to 

wastewater pathogens. The tolerable infection risks corresponding to tolerable DALY 

loss value are presented in Table 1.2. These values are in accord with the acceptable 

risk level of 10-4 infections per year suggested by Regli et al. (1991). Yet Mara and 

Sleigh (2010b) argue that a tolerable DALY loss of 10-4 pppy may be more realistic.  

 

Table 1.2 | Tolerable infection risks (per person per year) of reference pathogens. 

Pathogen 

DALY loss 

per case of 

disease 

Tolerable disease risk 

pppy equivalent to 10-6 

DALY loss pppya 

Disease/infection 

ratio 

Tolerable 

infection 

riskb 

RotavirusLC 2.6 × 10-2 3.8 × 10-5 0.05 7.7 × 10-4 

RotavirusHC
 1.4 × 10-2 7.1 × 10-5 0.05 1.4 × 10-3 

Salmonella 1.5 × 10-2 6.2 × 10-5
 0.1 6.2 × 10-4

 

Ascaris 8.3 × 10-3 1.2 × 10-4
 1 1.2 × 10-4

 

a Tolerable disease risk = 10-6 DALY pppy ÷ DALY loss per case of disease 

b Tolerable infection risk = tolerable disease risk ÷ disease/infection ratio 

LC applicable to low-income countries 

HC applicable to high-income countries 

Source: DALY loss per case of disease: rotavirusHC (Havelaar and Melse 2003), rotavirusLC (Havelaar and 

Melse 2003, Mara and Bos 2010), Salmonella (Haagsma et al. 2008), Ascaris (Chan 1997); 

Disease/infection ratio: rotavirus (Mara and Bos 2010), Salmonella (Glynn and Bradley 1992), Ascaris: a 

worst-case scenario was assumed, i.e. all those infected with Ascaris develop ascariasis. 
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1.5 Objectives and scope of the study 

The objective of this study is to analyse the microbial risk associated with faecal 

management in MD as it impacts on public health.  Specifically the study aims to: 

• determine the microbial characteristics of faecal substrates, surface water and 

spinach cultivated in surface water in MD  

• identify the elimination potential of pathogens in faecal sludge in anaerobic 

treatment over pilot PBDs and STs 

• observe the treatment efficacy of PBDs in MD 

• determine the survival of phages and bacteria in Mekong River water and on 

terrestrial spinach 

• quantify microbial health risks associated with faecal management in the 

Mekong Delta via QMRA. 
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2 MATERIALS AND METHODS 

2.1 Pilot study 

An overview of pilot trials is given in Table 2.1. 

Table 2.1 | Trials conducted within the pilot study 

Batch experiment: pathogen reduction in animal slurries 

Slurry type: swine and cattle slurries 

Low and high initial levels of phages and bacteria 

Survival of Ascaris suum 

Regular feeding experiments 

Pathogen reduction in plastic bio-digesters 

Different hydraulic retention time 

High volatile fatty acid level 

Pathogen reduction in septic tank 

Survival of Ascaris suum in biogas and septage sludge 

Survival of phages and bacteria in Mekong river water 

Survival of phages and bacteria on terrestrial spinach 

 

2.1.1 Batch experiment 

Behaviour of target organisms was identified firsthand in batch reactors as a pre-trial, 

which determined optimal techniques for experiment conditions (pathogens, substrates, 

inoculums, etc.).  
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500 ml bottles connected to a gas collection 

system (Figure 2.1) were used as batch 

digesters. Digesters were fed with 300 ml 

of slurry and seeded with 10% inoculum 

from a continuous reactor. Substrates then 

were spiked with low (103–104 CFU ml-1) 

and high (106–107 CFU ml-1) microbial 

concentrations.       Figure 2.1 | Batch experiment setting  

Organisms included somatic coliphages, Escherichia coli, Salmonella Senftenberg, 

Enterococcus faecalis. Ascaris suum eggs were placed in bags prior to incubation 

(10,000 eggs per bag). Substrates without inoculates were used as controls. The 

temperature of 30°C replicates an average tropical biogas, though the retention time of 

45 days is longer than average. The longer retention time was chosen to fully monitor 

microbial reduction. 

Two types of substrates (swine and cattle slurry) and two different concentrations of 

phage (PFU ml-1) and bacteria (CFU ml-1) at inoculation (low: 103 – 104; high 106 – 107) 

were tested with 4 replications. Digesters were sampled on days 0, 1, 2, 4, 8, 16, 32 and 

45 for analyses of phages and bacteria. Bags of Ascaris suum were removed every two 

weeks for analysis.  

 

2.1.2 Regular feeding experiments 

These trials using constructed reactors replicated tropical condition to determine 

pathogen reduction in PBDs and STs. Reactors were placed in incubators at 30oC. As 

the trials were conducted in anaerobic condition, biogas and some chemical parameters 

were measured to ensure that the setup functioned well. 
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 Polyethylene tubes were used to build 

reactors of 3 l volume that were filled 

with 2.5 l of substrate (Figure 2.2). 

They are comparable in dimensions to 

a domestic bio-digester, which has the 

length:diameter ratio of 5:1.  

Figure 2.21 | Constructed reactor.                                

 

Experiment set-up for pathogen reduction in pilot plastic bio-digesters 

• Trial with different hydraulic retention time 

The objective of this study was to evaluate the gas production and the hygienic quality 

of the effluent from PBDs in relation to the HRT. The in situ bio-digester conditions at 

three different HRTs were replicated at bench scale. A HRT of 15 days was chosen, 

because 13–17 days is considered the best anaerobic treatment time for pig slurry (FEC 

Services 2003). An HRT of 30 days was chosen because a literature review from Thy et 

al. (2005) showed that biogas production peaks at around day 30, and then declines. 

Finally, a HRT of 3 days was chosen to see the effect of short HRT on the reduction of 

pathogen and indicator microorganisms, and this HRT represents the present situation in 

most PBDs in the Mekong Delta, Vietnam. 

The triplicate experiment was carried out with three HRTs (3, 15 and 30 days). Reactors 

(Figure 2.2) were filled with pig slurry (2 g ODM per litre) and seeded with 10% 

inoculum sourced from a wastewater treatment plant. They were incubated for 8 days 

without feeding for microorganisms to adapt to the anaerobic conditions. The reactors 

were then fed once a day with a fixed daily input of 2.5 g ODM of fresh pig manure 

with different amounts of water for 50 days.  

 

                                                

1 Reprinted from Yen-Phi et al. (2009) with permission from IWA Publishing. 

Gas bag 

Input 

Output 
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Tested microorganisms included somatic coliphages (ϕX174), male-specific 

bacteriophage (MSB) and bacteria (E. coli, Salmonella Senftenberg, Enterococcus 

faecalis). Bacteria were spiked to the daily feeding material at a final concentration of 

105–106 CFU ml-1. Phages were spiked to the feeding material at 105–106 PFU ml-1.  

Reactor influents and effluents were sampled daily for pH, dry matter (DM) and organic 

dry matter (ODM). Chemical parameters (NH4
+-N, VFA and total inorganic carbon 

(TIC)), gas production and tested organisms were analysed weekly. Samples were 

stored at 4°C and analysed within 24 hours of sampling. The exception were VFA 

samples, which were stored in a freezer (–15 to –20°C) and analysed within 3 weeks. 

Accumulated sludge at the reactor’s base was determined at the end of the experiment. 

The sludge was removed from the reactors and analysed for DM, ODM and the 

microorganisms concerned.  

• Trial with volatile fatty acid  

This trial aimed to (1) determine the amount of VFA input that tropical PBDs can 

handle; and (2) evaluate the effect of VFA on the reduction of micro-organisms at 

optimal pH values in combined-stage anaerobic reactors. The pig slurry used in the trial 

contained low VFA. Hence acetic acid (the shortest chain of VFA found in animal 

slurries) was used to amend the total VFA concentration as acetic acid constituted 65 - 

70% of the total VFA (Patni & Jui 1985). Shorter-chain VFA was reported to have a 

stronger antibacterial effect (Chaveerach et al. 2002). Sodium bicarbonate was then 

used to neutralise the feeding substrate as it is routinely used to adjust pH in anaerobic 

digesters (Gerardi 2003).  

 HRT of 15 days was chosen for the trial with VFA. Preparation, operation, sampling 

and analyses were conducted as described in the trial with HRT. Feeding material was 

added with acid acetic (neutralised with sodium bicarbonate to pH 7) to a final 

concentration of 5 g l-1. Pure feeding material was used for control reactors. This 

experiment was performed in triplicate for 8 weeks. Phages (somatic coliphage and 

male-specific bacteriophge) and bacteria (E. coli, Salmonella Senftenberg, 

Enterococcus faecalis) were then spiked to the daily feeding material at a final 

concentration of 105–106 PFU ml-1 or CFU ml-1.   
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Experiment set-up for pathogen reduction in septic tanks 

This triplicate trial aimed to determine the reduction of phages and bacteria in STs. The 

biogas reactor (Figure 2.2) was connected to another chamber to form a 2-chamber ST 

model (Figure 2.3) with a volume of 4.5 litres. A HRT of 3 days was chosen to evaluate 

the maximum treatment efficacy. According to the requirements for new and upgraded 

STs, which are specified in 20 TCN-51-84 Vietnamese Standards, the HRT should be 

from 1 to 3 days. 

 

 

 

 

                      Figure 2.3 | Constructed 2-chamber septic tank model. 

Reactors were filled with fresh black water collected from flush toilets and seeded with 

10% inoculum sourced from a wastewater treatment plant. The reactors were incubated 

for 8 days without feeding for microorganisms to adapt to the anaerobic conditions. The 

reactors were then fed once a day with a fixed daily input of 1.5 litre of fresh black 

water for one month. Influent and effluent were sampled every two days. 

Tested microorganisms included somatic coliphages (ϕX174), male-specific 

bacteriophages and bacteria (E. coli, Salmonella Senftenberg, Enterococcus faecalis). 

Bacteria and phages were spiked to the daily feeding material at a final concentration of 

105–106 CFU ml-1 or PFU ml-1. Reactor influents and effluents were sampled daily for 

pH and tested organisms. Gas was collected and measured at the trial’s end. 
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Experiment set-up for survival of Ascaris suum in biogas and septage sludge 

• Trial with Ascaris suum ova survival in biogas sludge 

Reactors and sludge accumulated during the HRT trial presented in Section 2.1.2 were 

used for this experiment. The sludge, collected from 6 reactors with HRT of 15 days 

and 30 days, was mixed and distributed to 6 new reactors. Reactors were then fed once 

a day with a daily input of 170 ml of feeding material (15g ODM l-1 of fresh pig manure 

and water) for one week. Two bags of Ascaris suum ova were inserted in the sludge in 

each reactor. Then feeding was maintained once per week for one year with one litre of 

the feeding material. Samples were taken every two months. At sampling, one reactor 

was opened and two bags of Ascaris suum ova were removed. Biogas was collected and 

measured at the trial’s end. 

• Trial with Ascaris suum ova survival in septage sludge 

Reactors with substrates used in the trial of pathogen reduction in STs presented above 

were used in this experiment. Four bags of Ascaris suum ova were inserted in the sludge 

in every reactor. The reactors were then fed once a week with 1.5 litre of 2% ODM of 

human faeces and fresh brown water for one year. Samples were taken every two 

months. At sampling, one reactor was opened and two bags of Ascaris suum ova were 

removed. Biogas was collected and measured at the trial’s end. 

2.1.3 Survival of phages and bacteria in river water  

Water was sourced from Hau river, Can Tho City and measured for pH and turbidity. 

Nine-hundred ml of river water was distributed to one-litre beakers. This triplicate trial 

was conducted at local room temperature (28 to 30oC). Phages (somatic coliphage and 

male-specific bacteriophage) and bacteria (E. coli, Salmonella Senftenberg, 

Enterococcus faecalis) were spiked to the water at a final concentration of 105–106 PFU 

ml-1 or CFU ml-1. Ten ml of fresh river water was added daily to the beakers to 

compensate for the evaporation and to exchange water environment. Water was then 

stirred using a glass stick. Samples were taken on day 0, 1, 2, 3, 4, 5, 6, 7, 12 for 

analyses of concerned phages and bacteria. Analyses were done at the Environmental 

Biology and Engineering Laboratory, College of Environment and Natural Resources, 

Can Tho University.  
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2.1.4 Survival of phages and bacteria on terrestrial spinach  

Spinach was cultivated from seeds on ready-to-use compost, which was made of 

organic waste collected from a local market. Phages and bacteria were not detected in 

the compost. Three pots of water spinach were placed under a roof so that they got 

sunlight but were not exposed to rain. For the first three weeks, spinaches were irrigated 

one per week with tap water that contained no organisms. Spinaches were then irrigated 

once per week for 5 weeks with water spiked with phages (somatic coliphage) and 

bacteria (E. coli, Salmonella Senftenberg, Enterococcus faecalis) at a final 

concentration of 105–106 PFU ml-1 or CFU ml-1.  

About 5 g of spinach per sample were taken before the irrigation and 45 minutes after it 

to account for evaporation. Samples were then taken daily until the next irrigation. After 

the final irrigation samples were taken within two weeks. Samples collected were 

placed in sterile 500-ml Erlenmeyer-flasks. Fifty ml of distilled water was added and 

samples were shaken at 120 rpm for one hour before analysis. Samples were measured 

for dry matter and concerned phage and bacteria. Analyses were done at the 

Environmental Biology and Engineering Laboratory, College of Environment and 

Natural Resources, Can Tho University.  

2.2 Field study 

This study was conducted between September and November 2008 in Can Tho City, 

which is located in the centre of MD. Microbiological make-up of faecal sludge (pig 

slurry and septage), surface water were determined. Pathogen treatment efficacy of 

PBDs was also taken into account. In urban area, septage samples were taken from 

STs in the centre of Can Tho City. Microbial quality of aquatic spinaches cultivated in 

fishponds and urban canals were examined. Analyses were done at the Environmental 

Biology and Engineering Laboratory, College of Environment and Natural Resources, 

Can Tho University.  

2.2.1 Samples from plastic bio-digester 

Samples were taken from 18 PBDs in Phong Dien District (Figure 2.4) during the 

morning’s routine cleaning. Influent samples were collected directly at the biogas 
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digester inflow. Five-hundred ml of the inflow were collected every 20 seconds and 

transferred into a 40-litre bucket. The material was then stirred well and one-litre 

sample was taken for analysis. One-litre effluent samples were collected about 5 

minutes after effluence.  

 

Figure 2.4 | Sampling areas (coloured) within the field study in Can Tho City.         

Data source: Department of Agriculture and Rural Development of Can Tho City 2009. 

 

A questionnaire survey was conducted during sampling that included the volume and 

age of PBDs sampled, input sources, de-sludging conditions, and discharge/use of 

sludge and liquid output. The overall condition of the PBDs was also recorded during 

sampling. 

Samples were analysed for pH, dry matter (DM), somatic coliphages, male-specific 

bacteriophages, Escherichia coli, Salmonella spp., Enterococcus spp., and helminth 

ova.  
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2.2.2 Samples from septic tank

This part of the study examine

septage in Can Tho City to give an overview of the population’s health situation and 

possible uses of sludge 

untreated septage was also tested since it is the effluent 

effluent is often discharged directly to surface water without any treatment.

Samples were taken from 

Rang District (Figure 2.4) 

were taken from each tank: one at a depth of 10 cm (untreated septage), the other from 

the centre (septage sludge) when the tanker

were full at sampling. The emptying intervals ranged from 1 to 20 years. 

compartments and a storage volume of 1 

number of users of ST per household ranged 

No readymade inspection hatches existed in the surveyed tanks. Workers had to damage 

house floors as the STs were located in the basements

was transported to the neig

(Figure 2.6).  

 

Figure 2.5 | Septage desludge

 

AND METHODS  

 

Samples from septic tanks 

examined the pathogenic content and indicator organi

to give an overview of the population’s health situation and 

possible uses of sludge for agriculture and aquaculture. Besides septage sludge, 

untreated septage was also tested since it is the effluent of full STs. This untreated 

effluent is often discharged directly to surface water without any treatment.

Samples were taken from STs from 20 single-family dwellings in Ninh Kieu and Cai 

) as they were being emptied by a pump truck. Two samples 

were taken from each tank: one at a depth of 10 cm (untreated septage), the other from 

the centre (septage sludge) when the tanker had extracted half the contents. 

were full at sampling. The emptying intervals ranged from 1 to 20 years. 

compartments and a storage volume of 1 – 2 m3 predominated (16 out of 20 tanks)

per household ranged from two to ten with an average of five. 

No readymade inspection hatches existed in the surveyed tanks. Workers had to damage 

were located in the basements (Figure 2.5). Extracted septage 

was transported to the neighbourhood province (Hau Giang) and discharged to a dump 

Septage desludge. Figure 2.6 | Septage is discharged into a dump 

located in Hau Giang province. 
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the pathogenic content and indicator organisms in 

to give an overview of the population’s health situation and 

. Besides septage sludge, 

. This untreated 

effluent is often discharged directly to surface water without any treatment. 

in Ninh Kieu and Cai 

as they were being emptied by a pump truck. Two samples 

were taken from each tank: one at a depth of 10 cm (untreated septage), the other from 

had extracted half the contents. All STs 

were full at sampling. The emptying intervals ranged from 1 to 20 years. STs with two 

(16 out of 20 tanks). The 

from two to ten with an average of five. 

No readymade inspection hatches existed in the surveyed tanks. Workers had to damage 

Extracted septage 

hbourhood province (Hau Giang) and discharged to a dump 

o a dump 
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Samples arrived at the laboratory within one hour and were stored at 4o C before 

analysis. Samples were processed within 24 hours of sampling with the exception of 

helminth ova. Analyses included pH, dry matter (DM) and somatic coliphages, male-

specific bacteriophages, Escherichia coli, Salmonella spp., Enterococcus spp., and 

helminth ova. 

2.2.3 Surface water samples 

Microbial characteristics of surface water were determined in small canals in both rural 

and in urban areas. Surface water in rural areas receives faecal matter from animals and 

human beings while in urban areas the main source of faecal contamination is from 

humans. Moreover the usage of surface water is also different in those two areas. For 

instance, it is used for drinking in rural but not in urban areas, where tap water exists. 

Twenty samples were taken from canals in rural areas where people bath/swim and use 

the water for drinking and cooking (Phong Dien District, Figure 2.4). Another 15 

samples were taken from small canals in a downtown area of Can Tho City (Ninh Kieu 

District, Figure 2.4). Tham Tuong and Cai Khe canal were excluded because of its 

heavy pollution (PCCTC 2003). They are not representative of urban canals in MD. 

Moreover, there is almost no bathing or swimming here due to the offensive smell. As 

people usually use surface water at high tide, samples were taken also at high tide. A 

one-litre sample of surface water was taken at about 20-cm depth, some 1 to 2 meters 

from the bank. Samples were analysed for somatic coliphage, E. coli, Salmonella spp. 

and Enterococcus spp and helminth ova. 

2.2.4 Aquatic spinach samples 

In rural areas, aquatic spinach is usually planted in fishponds that receive PBD’s 

effluent. Spinach is commonly used for human as well as porcine consumption. Fifteen 

aquatic spinach samples (about 20 g per sample) were taken from 15 fishponds 

receiving PBD’s effluent in Phong Dien District (Figure 2.4). Samples were placed in 

sterile 500-ml Erlenmeyer-flasks. Fifty to one-hundred ml of distilled water was added 

and samples were shaken at 120 rpm for one hour before analysis. In addition, 15 

spinach samples were taken from urban canals in Ninh Kieu District (Figure 2.4). All 
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samples were measured for dry matter, somatic coliphage, E. coli, Salmonella spp., and 

Enterococcus spp.  

2.3 Physiochemical and microbiological analysis 

2.3.1 Physicochemical analysis 

COD was analysed by test kit (COD Cuvette test, Merck). The gas quality was analysed 

by an infrared analyser (VISIT 03). Gas amount in the gasbags was measured with a 

RITTER gas counter, and then converted to normal conditions (norm litre). VFA were 

measured by titration method. Other parameters were determined using Standard 

Methods for the Examination of Water and Wastewater (Eaton et al. 2005). 

2.3.2 Microbial strains used in the experiment 

All phages and most bacteria were obtained from the German Collection of 

Microorganisms and Cell Cultures (DSM) and the American Type Culture Collection 

(ATCC) (somatic coliphage DSM 4497, Male-specific bacteriophage ATTC 15597-B1, 

Salmonella Senftenberg DSM 10062, Enterococcus faecalis DSM 20478). At the 

beginning, a batch-wise trial was conducted with similar conditions as in the bio-

digesters to compare the reduction of indigenous versus collection strains at low initial 

concentration (102 to 103 CFU or PFU ml-1). No significant difference between the 

reductions of indigenous and collection strains was found, except for E. coli. Therefore, 

E. coli was isolated from fresh pig slurry then verified by biochemical tests (Api 20E; 

Biomerieux) and this indigenous E. coli strain was used for further study. 
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Ascaris suum ova bags (Figure 2.7) were 

sourced from Department of Microbiology, 

Swedish University of Agricultural Sciences

(Uppsala, Sweden). Approximately 104 ova 

were inserted into every permeable nylon bag

(mesh 35µm, Ø 6cm) which is held in 

physiological saline solution (0.9%) at 4oC until 

use within one week.  

     Figure 2.7 | Ascaris suum ova bag. 

2.3.3 Inoculum preparation 

The bacteria suspensions for spiking were made in 0.9% NaCl solution from fresh 

colonies grown on Columbia blood agar (5% sheep blood, Oxoid) using McFarland 

(BioMerieux) standards. Phages were cultivated according to ISO 10705. Bacteria and 

phages were then spiked to the substrate of the trials at a final expected concentration. 

2.3.4 Microbiological analysis 

Somatic coliphages and Male-specific bacteriophages were counted by the single-agar-

layer technique as described in ISO 10705-2 and ISO 10705-1, respectively. E. coli was 

counted on Chromocult®Coliform Agar (Merck) after 24 hours of incubation at 36 ± 1°C.  

Salmonella Senftenberg was enumerated on Rambach agar (Merck) after 24 to 48 hours 

of incubation at 36 ± 1°C. Enterococcus faecalis was counted on Enterococcus 

Selective Agar according to Slanetz and Bartley (Merck) after 48 hours of incubation at 

36 ± 1°C.  

Salmonella spp. in wastewater were counted via the most probable number (MPN) 

method in Rappaport-Vassiliadis broth (48-hour incubation at 36 ± 1°C) and Hektoen 

agar (24-hour incubation at 36 ± 1°C). Colonies from Salmonella choleraesuis (DSM 

4224) were used as control strain. To calculate the results MPN tables from WHO 

Laboratory Manual of Parasitological and Bacteriological Techniques (Ayres and Mara 

1996) were used. 
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Salmonella spp. in surface water and in aquatic spinach were determined by using 

presence/absence test since they are not often detected in those samples. One-hundred 

ml of surface water was used directly for analysis. For aquatic spinach, about 80 – 100 g 

samples collected were placed in sterile 500-ml Erlenmeyer-flasks. Then about 200 ml 

of distilled water was added and samples were shaken at 120 rpm for one hour before 

analysis. One-hundred ml of liquid samples were incubated with 100 ml Rappaport-

Vassiliadis broth (48-hour incubation at 36 ± 1°C) and transferred to Hektoen agar (24-

hour incubation at 36 ± 1°C). Colonies from Salmonella choleraesuis (DSM 4224) were 

used as the control strain.  

Results from presence/absence tests were transformed into most likelihood estimate 

based on an equation from Haas et al. (1999):  

�� =  − �
� �	 
��


                                       (Equation 12) 

Where  

��: most likelihood estimate (MPN/100 ml) 

n: number of samples 

p: number of positive (presence) samples 

v: volume of tested sample 

 

Helminth ova were determined by using WHO Laboratory Manual of Parasitological and 

Bacteriological Techniques (Ayres & Mara 1996). Ova with incomplete walls and empty 

ova were not counted. Only fertile specimens of Ascaris lumbricoides ova were counted.  

For Ascaris suum ova in pilot study, the ova bag were removed at sampling and 

incubated for 4 weeks at room temperature (20oC - 22oC) in 0.1 N sulphuric acid to 

allow larvae development of all viable ova. Two bags were incubated from the 

beginning of the trial for initial viability count. Viability counts were performed under 

microscope by withdrawing ova from the bag using a syringe. A viability count was 

                                                

2 Applicable only to samples with n > p, otherwise other methods are employed. 
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performed for approximately 500 ova per bag. When the viability rate was too low 

(<5%), at least 1,000 ova were counted. Ova developing into larval stage were 

considered viable.  

2.4 Quantitative Microbial Risk Assessment 

2.4.1 Exposure scenarios 

Four scenarios were evaluated for QMRA as presented in Table 2.2. Since it is not 

feasible to do the risk assessment for the whole population in every situation, few 

typical circumstances associated with faecal matter management in the study area were 

considered. Risks from secondary transmission, i.e. contact with infected people, are not 

taken into account. Only adults were taken up in the risk model as available dose-

response parameters used in risk calculation were obtained generally from feeding 

studies of healthy adults.  
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Table 2.2 | Exposure scenarios and exposed population. 

 Scenarios Exposed population

1. Working exposure   

 1.1 Fresh pig slurry   Farmers 

 1.2 Liquid effluent of PBDs    Farmers 

 1.3 Liquid effluent from improved treatment (HRT = 15 days)   Farmers 

 1.4 Liquid effluent from improved treatment (HRT = 30 days)   Farmers 

 1.5 Untreated septage    Sewage workers 

 1.6 Septage sludge    Sewage workers 

2. Recreational activities   

 2.1 Bathing/swimming in rural canals  Rural inhabitants 

 2.2 Bathing/swimming in the urban canals  Urban inhabitants 

3. Drinking surface water   

 3.1 untreated   Rural inhabitants 

 3.2 after alum flocculation   Rural inhabitants 

 3.3 after alum flocculation plus boiling  Rural inhabitants 

4. Consumption of spinach    

 4.1 cultivated in fish ponds received PBD’s effluent  Rural inhabitants 

 4.2 cultivated in urban canals   Urban inhabitants 

 4.3 cultivated on fields fertilised by PBD’s effluent  Rural inhabitants 

 4.4 cultivated on fields fertilised by PBD’s effluent at HRT=15d  Rural inhabitants 

 4.5 cultivated on fields fertilised by PBD’s effluent at HRT=30d  Rural inhabitants 

 

PBD = plastic bio-digesters  

HRT = hydraulic retention time 
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2.4.2 Hazard identification 

Various groups of pathogenic microorganisms are excreted in faeces and transmitted to 

human via the faecal-oral route and cause many enteric diseases. These organisms may 

be zoonotic, i.e. can be transmitted from animal to humans. The organisms were chosen 

based on the following criteria: 

• cause endemic disease in the investigated population 

• have severe consequences  

• have great persistent  

• have low infectious doses  

Rotavirus was chosen due to prevalence and rapid spread. As representative for bacteria 

group, Salmonella was chosen because salmonellosis is endemic in the study area. 

Helminth and Ascaris ova were included as they are recognized as persistent, and able 

to survive in the environment for long periods. Viruses generally have lower infectious 

dose than bacteria but the lowest being attributable to helminth/Ascaris (parasite) 

where, in theory, one egg is enough to cause an infection. 

2.4.3 Exposure assessment 

The purpose of the exposure assessment is to determine the amount, or numbers of 

organisms that correspond to a single exposure (dose) or the total amount or number of 

organisms that constitute a set of exposures (Haas et al. 1999). Amongst three main 

routes of exposure (ingestion, inhalation, and dermal absorption), only the ingestion 

route was taken into consideration in this study as faecal-oral transmission is considered 

the main route of spreading of enteric diseases. Pathogens were modelled by probability 

density functions (PDFs) for their concentrations detected in substrates. 

Density of pathogens in wastewater and surface water as input for risk analysis 

Except for Salmonella levels in studied substrates, rotavirus and helminh/Ascaris 

concentrations were further calculated for their risk model inputs. Rotavirus levels in 

faecal substrates of human origin were calculated based on the average ratios of somatic 

coliphage: rotavirus in domestic raw sewage and surface water received (un)treated 

sewage reported by Lodder and Husman (2005). The ratios were 3.7 × 103 in faecal 
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substrates and 1.5 × 102 in surface water. To calculate the risk of human infection with 

rotavirus from pig origin based on Iturriza-Gomara et al. study (2000), 1% of animal 

rotaviruses in pig slurry and PBD’s effluent in MD were assumed zoonotic.  

The amount of viable helminth/Ascaris ova in fresh faecal sludge (fresh pig slurry or 

untreated septage) were calculated according to the viability rate of Ascaris suum 

incubated in 0.1 N sulphuric acid (rv, cf. Section 3.3). The viability of other helminth 

ova are assumed similar to that of Ascaris suum. Thus Equation 2 is used for both 

helminth and Ascaris ova. 

Nv = No × rv   (Equation 2) 

where: 

Nv: concentration of viable helminth/Ascaris ova in 1 l substrate 

No: concentration of counted helminth/Ascaris ova in 1 l substrate 

rv: viability rate of Ascaris suum  

 

Helminth ova collected from PBDs’ effluents are considered fresh because 1) ova in 

influents go through PBDs and are discharged in effluents; 2) The velocity of influent 

flow is so high that some accumulated sludge on top is washed out and contribute to the 

effluent. Since there is a one-month lag phase of helminth ova in digesters (Section 

3.3.1) those ova are considered viable. Thus viable helminth ova counted in PBD’s 

effluents were calculated based on Equation 2. In septage sludge, viable helminth ova 

were calculated based on the accumulated ova numbers from untreated septage and the 

exponential equation of Ascaris suum survival within one year in sludge (Equation 9, 

Section 3.3.2).  

Input data of microbial concentrations used in the QMRA modelling were presented in 

Table 2.3 and Table 2.4. Probability density functions (PDFs) presented in the 

following tables describes the relative likelihood for a continuous random variable to 

occur at a given point in the data range. The probability of a random variable falling 

within a given set is given by the integral of its density over the set. The probabilities 

are modelled using Distribution Fitting function (@Risk 5.5 - Palisade Corporation), 
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which provides values of the test statistics, and allows users to determine the best fitting 

distribution of measured/surveyed data. Definition of distribution functions can be 

found elsewhere (Palisade Corporation 2010). The functions used in this study are 

briefly described in Appendix 8.3. Figure 2.8 gives an example of a PDF of Salmonella 

spp. concentrations in pig slurry noted in Table 2.3. Loglogistic(-2.2363,12.795,1.8418) 

returns a log-logistic distribution generated using a location parameter gamma value of  

-2.2363, a scale parameter beta value of 12.795, and an shape parameter alpha value of 

1.8418. 

 

 

Figure 2.8 | Probability density function of Salmonella spp. levels in fresh pig slurries. 
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Table 2.3 | Input data of source pathogens in faecal substrates for the Quantiative 

Microbial Risk Assessment modelling. 

Organisms Unit Probability Density Functions 

Pig slurry (Scenarios 1.1, 1.3, 1.4) 

Rotavirus PFU l-1 BetaGeneral(0.12103,0.42032,0,50270) 

Salmonella spp. MPN/100 ml Loglogistic(-2.2363,12.795,1.8418) 

Helminth ova no. l-1 Extvalue(433.61,456.3) 

Ascaris ova no. l-1 Expon(164.09) 

PBD’s effluent (Scenario 1.2) 

Rotavirus PFU l-1 BetaGeneral(0.16279,0.46397,0,1081.1) 

Salmonella spp. MPN/100 ml Normal(14,13.306) 

Helminth ova no. l-1 BetaGeneral(0.10048,0.39679,0,120960) 

Ascaris ova no. l-1 Invgauss(16779,127.74) 

Untreated septage (Scenario 1.5) 

Rotavirus PFU l-1 BetaGeneral(0.12734,0.48419,0,32432) 

Salmonella spp. MPN/100 ml BetaGeneral(0.10498,0.2096,0,7000) 

Helminth ova no. l-1 Expon(449.02) 

Ascaris ova no. l-1 BetaGeneral(0.12424,0.20177,0,416.67) 

Septage sludge (Scenario 1.6) 

Rotavirus PFU l-1 Gamma(0.18971,18191) 

Salmonella spp. MPN/100 ml BetaGeneral(0.14969,0.23308,0,2800) 

Helminth ova no. l-1 Expon(9147.8) 

Ascaris ova no. l-1 Expon(9147.8) 
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Table 2.4 | Input data of pathogens in surface water and aquatic spinach for the 

Quantiative Microbial Risk Assessment modelling. 

Organisms Unit Probability Density Functions 

Surface water in rural areas (Scenarios 2.1, 3.1, 3.2, 3.3) 

Rotavirus PFU l-1 BetaGeneral(0.11706,0.28735,0,211.11) 

Salmonella spp. MPN/100 ml Mean = 0.36 

Surface water in urban areas (Scenario 2.2) 

Rotavirus PFU l-1 Extvalue(7.9723,8.1796) 

Salmonella spp. MPN/100 ml Mean = 0.51 

Aquatic spinach in fish ponds received PBD’s effluent (Scenario 4.1) 

Rotavirus PFU l-1 BetaGeneral(0.12741,0.29308,0,3.3444) 

Salmonella spp. MPN/100 ml Mean = 0.006 

Aquatic spinach in urban areas (Scenario 4.2) 

Rotavirus PFU l-1 Extvalue(0.079723,0.081796) 

Salmonella spp. MPN/100 ml Mean = 0.005 

 
 

Pathogen reduction via treatment 

Reduction of somatic coliphage, Salmonella, and Ascaris suum ova over anaerobic 

digestion and on terrestrial spinach were determined in the pilot study. Coliphage was 

used as an index organism for rotavirus reduction in water contaminated with faeces 

(Ottoson and Stenström 2003). Other reduction rates applied in the QMRA modelling 

were obtained from literature (Table 2.5). 
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Table 2.5 | Input data of reduction rate for the Quantiative Microbial Risk Assessment 

modelling. 

Scenario  Reduction via treatment Organisms Reduction rate 

1.3 Anaerobic treatment in 

PBDs at HRT of 15 days 

Rotavirus 

Salmonella 

logRT* ~ Normal(2.5,0.36) 

logRT* ~ Normal(1.74,0.84) 

1.4 Anaerobic treatment in 

PBDs at HRT of 30 days 

Rotavirus 

Salmonella 

logRT* ~ Normal(3.42,0.81) 

logRT* ~ Normal(2.47,0.9) 

3.2, 3.3 Flocculation of surface 

watera 

Rotavirus 

Salmonella 

1.9 log unit 

1.7 log unit 

3.3 Water boilingb Rotavirus 

Salmonella 

Helminth 

ova 

6.0 log units 

6.0 log units 

6.0 log units 

4.3, 4.4, 

4.5 

Reduction on terrestrial 

spinach one week after final 

irrigation with PBD’s 

effluent 

Rotavirus 

Salmonella 

2.4 log units 

4.1 log units 

4 Washing spinach with 

flocculated/tap waterc 

Pathogens 1 log unit 

4 Cooking spinachd Pathogens 6 log units 

a Westrell 2004, Bennett 2008, Hijnen 2009; b WHO 2008; c,d WHO 2006a.  

* RT = Reduction rate 

PBD = plastic bio-digesters 

HRT = hydraulic retention time 
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Volume ingested per exposure and exposure frequency 

The volume accidentally ingested was assumed 1 ml in one exposure at emission 

sources (Scenario 1). This volume has been used in risk assessment for the accidental 

ingestion of reclaimed wastewater (Asano et al. 1992) and source-separated urine used 

in agriculture (Höglund et al. 2002). In scenario 2, the average amount of water 

swallowed by adults during bathing/swimming in canals was used from Dufour et al. 

(2006). Duration of every bath/swim was estimated from small interviews during 

sampling combined with author’s experience in the Mekong Delta. For the daily water 

intake applied for drinking surface water (Scenario 3), only published data on tap water 

were considered. Data on total fluid intake or total water intake including water from 

beverage or food cannot be representative for the situation of usage surface water for 

drinking in MD. Thus lognormal distributions to data collected in a survey for tap water 

intake by adults by Roseberry and Burmaster (1992) were used for the risk model. To 

quantify the risk associated with spinach consumption the intake amount was arranged 

by Triang distribution with minimum, most likely and maximum amounts. Frequency of 

exposure was based on discussions with people at sampling sites. An overview of 

volumes and frequency ingested is given in Table 2.6. 
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Table 2.6 | Exposure scenarios with assumption on volume ingested and frequency. 

Scenario 
Volume ingested per 

exposure  
Exposure frequency 

Annual 

frequency 

1.1 1 ml Triang (1, 2, 3) per day 365 days 

1.2, 1.3, 1.4 1 ml Triang (1, 5, 10) per week 52 weeks 

1.5, 1.6 1 ml Triang (1, 2, 3) per week 50 weeks 

2.1 16 ml/45 minutea × 

Triang (30,45,60) minutes 

daily 365 days 

2.2 16 ml/45 minutea × 

Triang (30,45,60) minutes 

Triang (1, 2, 3) per week 52 weeks 

3 LnIR* ~ Lognormal 

(7.023, 0.489)b (ml) 

daily 365 days 

4 Triang (50,100,200)  

(g per meal) 

Triang (1, 2, 3)  

consumption times          

per week 

52 weeks 

a Dufour et al. 2006 

b Roseberry and Burmaster 1992 

* IR: Intake rate 
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2.4.4 Dose-response models 

The dose-response models used were the β-Poisson model for rotavirus and Salmonella 

and the exponential model for helminth ova (Haas et al. 1999) and are as follows: 

 (a) β-Poisson dose-response model 


�
� = 1 − �1 + �
����

� 2
�
� − 1��

��
                    (Equation 3) 

(b) Exponential dose-response model 


�
� = 1 − �� �                                           (Equation 4) 

or 


�
� = 1 − ���
!  

with  

k = 1/r (Equation 5) 

ID50 = ln(0.5)/(-r)   (Equation 6) 

(c) Annual risk of infection 


�
�(#) = 1 − %1 − 
�
�&

                              (Equation 7) 

where 

Pinf is the risk of infection of an individual exposed to a single pathogen dose d 

Pinf(A) is the annual risk infection of an individual from n exposure per year to the single 

pathogen dose d 

ID50 is the median infective dose 

α is a pathogen “infectivity constant” 

r is the probability of one organism initiating an infection  
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The dose-response relationship for Rotavirus and Salmonella is based on the β-Poisson 

dose-response model. For Salmonella ID50 = 23,600 and α = 0.3126; and for Rotavirus 

ID50 = 6.17 and α = 0.2531 (Haas et al. 1999). Dose-response relationship for helminth 

parasites is modelled on the exponential model. For a worse-case evaluation the exact 

single-hit model (r = 1), which represents the maximum risk curve (Teunis and 

Havelaar 2000) is used. This was applied for helminth parasites where no dose-response 

studies on human or animal are available; and in theory, one egg is enough to cause an 

infection. This model was used in previous studies (Schönning et al. 2007, Westrell 

2004). Recently, analysing epidemiological data, Navarro et al. (2009) developed 

parameters applied to β-Poisson dose-response model for helminth ova using Ascaris 

lumbricoides ova as indicators: 


�
� = 1 − �1 + �
'��

� 2
�
� − 1��

��
           (Equation 8) 

This equation is similar to Equation 3 but N50 value is not a measure of the actual 

median infective dose. Rather it is an empirical value arising from statistical analyses of 

epidemiological data. The values of N50 and α are 859 and 0.104, respectively. This 

model and its dose-response parameters were used to estimate Ascaris infection risks to 

farmers and children in developing countries (Mara and Sleigh 2010a, Mara and Sleigh 

2010b). In the risk calculation conducted in this study, the two models cited were used 

for Ascaris (and helminth ova). Results from both were evaluated and compared with 

actual disease rates reported in surveillance system in the study area.   

2.4.5 Statistical estimates of risk 

The risk of infection was calculated using @Risk 5.5 (Palisade Corporation), applying 

10,000 iterations in the Monto Carlo simulations. Results are presented as probability of 

infection (Pinf) per exposure or annual risk of infection (Pinf(A)).   
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3 RESULTS 

3.1 Reduction of pathogen and indicator micro-organisms via pilot plastic bio-

digesters 

3.1.1 Characteristics of the feeding materials 

In the fresh slurry target phages and bacteria were present in low concentrations before 

spiking. Seeding sourced from the wastewater treatment plant was free of E. coli and 

Salmonella spp. but contained 102 CFU ml-1 of Enterococcus spp. Owing to the different 

amounts of water added to the pig manure, the chemical and microbial characteristics of the 

feeding materials varied between HRTs, and an overview is given in Table 3.1.  

Table 3.13 | Average chemical and microbial concentrations of the feeding materials 

(standard deviations in parentheses). 

                                                

3 Reprinted from Yen-Phi et al. (2009) with permission from IWA Publishing. 

Parameters Unit n HRT = 3 days HRT = 15 days HRT = 30 days 

ODM g l-1  3 15 30 

pH  22 7.54 (0.18) 7.16 (0.22) 7.17 (0.22) 

EC µS cm-1 21 770 (64) 2280 (205) 3160 (543) 

TIC mg HCO3
- l-1 5 330 (122) 650 (138) 1190 (388) 

NH4
+-N g l-1 4 0.07 (0.04) 0.17 (0.08) 0.35 (0.1) 

COD gO2 l
-1 3 2.4 (0.16) 12.2 (0.53) 26.3 (0.4) 

VFA mg l-1 1 115 645 1290 

E. coli CFU ml -1 2 7 × 103 2.1 × 104 6.3 × 104 

Salmonella spp. MPN/100 ml 2 2 × 10o 1.2 × 101 2.0 × 101 

Enterococcus spp.  CFU ml -1 2 1.7 × 103 5.1 × 103 1.28 × 104 

Somatic coliphage PFU ml-1 2 3.3 × 102 5.97 × 102 2.97 × 103 

Male-specific 

bacteriophage 
PFU ml-1 2 8 × 101 3.2 × 102 6.32 × 102 
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3.1.2 Performance of reactors 

Physicochemical values differed between the different HRTs. Average pH varied from 

6.6 to 7.2. Gas yields increased from 12.8 to 40.3 litre per reactor; the average amount 

of gas produced was significantly higher at longer HRTs (Table 3.2). Yet CH4 

concentration increased with decreasing HRT and pH values.  

 

Table 3.24 | Average pH values and sum of biogas produced per reactor for 50 days 

(standard deviations in parentheses). 

 

The influent and effluent ammonium concentrations were below 0.5 g NH4
+-N l-1 over 

all HRTs. VFA concentrations in the effluents remained low over all HRTs but 

increased with higher HRT: 108, 235 and 360 mg l-1 for HRT of 3, 15 and 30 days, 

respectively. The COD treatment efficacy (values in the effluents compared with the 

influents) increased markedly from HRT of 3 days (25%) to 15 days (80%) and 30 days 

(91%). The accumulated sludge at the base of reactors differed substantially between 

HRTs: 17%, 35% and 42% of the total ODM fed for HRT of 3, 15 and 30 days, 

respectively. The TIC – an indicator of process stability – increased gradually for the 

15-day HRT to 2,900 mg l-1 and 30-day HRT to 4,800 mg l-1 for the duration of the trial 

while the 3-day HRT had a constantly low value of around 700 mg l-1. Therefore, a 

longer HRT is positive for reactor operation, in terms of reactor stability, effluent 

stability and thereby also gas production. 

                                                

4 Reprinted from Yen-Phi et al. (2009) with permission from IWA Publishing. 

Parameters Unit n HRT=3 days HRT=15 days HRT=30 days 

pH   49 6.6 (0.04) 7.0 (0.01) 7.2 (0.03) 

Biogas per reactor L 21 12.8 (1.2) 31.6 (2.1) 40.3 (1.9) 

CH4  % 21 74 (2.6) 69 (0.4) 65 (2.9) 

Biogas efficiency  l per kg ODM fed 21 97 (9) 240 (16) 310 (14) 
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3.1.3 Reduction of microorganisms tested: comparison of influents and effluents 

All examined phages and bacteria were reduced during the treatment. Generally, 

bacteria showed higher resistance to treatments than phages. Log10 reduction of bacteria 

ranged from 0.54 to 2.47. Phages reduction ranged from 1.60 to 3.42. The longer the 

HRT the more efficient the reduction of microorganisms. Reduction during 30-day HRT 

was about one log10 unit higher than that of 15-day HRT, and about two log10 units 

higher than that of 3-day HRT (Table 3.3).  

 

Table 3.35 | Log10 reductions of organisms tested comparing inflow and outflow 

(standard deviations in parentheses; n = 21) in pilot plastic bio-digesters. 

E. coli showed less reduction at a HRT of three days compared with Salmonella 

Senftenberg and Enterococcus faecalis (Table 3.3). In a batch experiment with similar 

conditions E. coli showed a lag phase of 1–2 days before their concentration decreased 

rapidly. It can be inferred that the E. coli population found in effluents from reactors 

with a HRT of 3 days resulted from this lag phase. With HRTs of 15 and 30 days the 

reduction of the three bacteria investigated was similar. Log10 reduction of somatic 

coliphage was slightly higher than that of male-specific bacteriophage. The relation of 

reduction rates between these two phages was comparable for all HRTs (Table 3.3). 

                                                

5 Reprinted from Yen-Phi et al. (2009) with permission from IWA Publishing. 

Tested organisms Unit HRT = 3 days HRT = 15 days HRT = 30 days 

Somatic coliphage PFU ml-1 1.60 (0.24) 2.50 (0.36) 3.42 (0.81) 

Male-specific 

bacteriophage 
PFU ml-1 1.17 (0.39) 2.23 (0.45) 3.00 (0.60) 

E. coli CFU ml-1 0.54 (0.43) 1.79 (0.63) 2.43 (0.71) 

Salmonella Senftenberg CFU ml-1 1.23 (0.83) 1.74 (0.84) 2.47 (0.90) 

Enterococcus faecalis CFU ml-1 1.01 (0.36) 1.77 (0.39) 2.30 (0.50) 
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3.1.4 Summary 

Physicochemical values of reactors differed between HRTs. Gas production efficiency 

was better for longer HRTs. The accumulated sludge at the reactor’s base increased 

with longer HRT. Phages and bacteria examined were reduced, but none was 

completely eliminated. Log10 reduction of bacteria ranged from 0.54 to 2.47. Phages 

ranged from 1.60 to 3.42. The reduction of organisms at HRT = 30 days was about one 

log10 unit higher than HRT = 15 days and about two log10 units higher than HRT = 3 

days. The results indicate that the reduction of tested organisms increases with HRT. 

However the hygienic quality of the liquid effluent does not meet required quality 

values for surface and irrigation water. Longer HRTs are recommended to increase gas 

yield and achieve higher pathogen reduction. More barriers should be applied while 

handling bio-digester outputs to minimise risks to environmental and human health.  

3.2 Reduction of pathogen and indicator microorganisms via pilot septic tanks 

3.2.1 Characteristics of feeding materials 

Fresh brown water used in the trial had an average organic dry matter of 0.2%. pH 

varied from 6.7  to 7.0. Target phages and bacteria were present in low concentrations 

before spiking (Salmonella spp. < 10 CFU ml-1; phages < 102 PFU ml-1, E. coli and 

Enterococcus spp. at 103 CFU ml-1). Seeding sourced from the wastewater treatment 

plant was free of E. coli and Salmonella spp. but contained 102 CFU ml-1 of 

Enterococcus spp. 

3.2.2 Performance of reactors 

pH values of the effluents varied from 6.6 to 6.9. Biogas was produced about 120 litre 

per kg ODM fed with an average CH4 percentage of 64%.  It shows that the reactors 

functioned well at a 3-day HRT. Biogas production efficiency was higher than that of 

anaerobic digestion of pig slurry at similar conditions such as temperature, ODM 

feeding rate, HRT (see Section 3.1.2).  
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3.2.3 Reduction of tested micro-organisms: comparison of influents and effluents 

The examined phages and bacteria were slightly reduced during the treatment (Table 

3.4). At the same HRT (3 days) in anaerobic digesters (cf. Section 3.1.3), phages and 

Salmonella Senftenberg showed greater resistant (log10 reduction >1), while E. coli and 

Enterococcus faecalis showed similar reduction rates. Generally, reduction of phages 

and bacteria was not significant in STs as the 3-day HRT is the maximum standard HRT 

in STs. When the HRT is shorter, lower reduction rates are expected.  If the tanks are 

full of sludge and scum, then the untreated wastewater (black water) flows directly to 

receiving waters. 

 

Table 3.4 | Log10 reductions of organisms tested comparing inflow and outflow (n = 15) 

in pilot septic tanks at hydraulic retention time of 3 days. 

Tested organisms Unit Log10 reduction SD 

Somatic coliphage PFU ml-1 0.19 0.09 

Male-specific bacteriophage PFU ml-1 0.67 0.05 

E. coli CFU ml-1 0.72 0.08 

Salmonella Senftenberg CFU ml-1 0.76 0.03 

Enterococcus faecalis CFU ml-1 1.15 0.24 

 

3.2.4 Summary 

Reduction of phages and bacteria in STs is not significant, although helminth ova are 

expected to settle into the sludge over time. In Vietnam STs are mostly emptied when 

full, implying that pathogens, including helminth ova, will contaminate surface waters. 
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3.3 Survival of helminth in batch digester and in faecal sludge 

3.3.1 Survival of Ascaris suum in batch digester 

The average viability rate of Acaris suum incubated in 0.1 N sulphuric acid was 0.82 

(82%). The viability of Ascaris suum eggs decreased from 82% to 25% after 45 days in 

both swine and cattle slurries and corresponded to a T90 of approximately 90 days 

(Figure 3.1). There was no difference realised in the inactivation rate of Ascaris suum 

in swine and cattle slurry. After 2 and 4 weeks the viability did not reduce significantly. 

It indicates a lag phase of 4 weeks before the inactivation occurs.  

 

 

Figure 3.1 | Viability (n = 4) of Ascaris suum eggs in batch-wise experiement. 
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3.3.2 Survival of Ascaris suum in biogas and septage sludge 

Performance of the reactors 

The pH values of the 2 treatments were optimal for the biogas process (Table 3.5) and 

the biogas production efficiency agreed with the previous trial (cf. Section 3.1.2), thus 

demonstrating that the reactors ran well during the experiment.  

 

Table 3.5 | pH values and biogas production of the trial reactors. 

Parameters Unit n Biogas reactor Septic tank 

pH   20 7.05 (0.02) 6.8 (0.01) 

Biogas per reactor l 3 46 (3.3) 370 (12) 

CH4  % 3 65 (2.3) 62 (1.9) 

Biogas efficiency  l per kg ODM fed  250 (6.1) 260 (9) 

 

Survival of Ascaris suum ova 

The average viability rate of Acaris suum ova incubated in 0.1 N sulphuric acid in this 

trial was 0.836 (83.6%). The viability of Ascaris suum ova decreased from 83.6% to 

0.3% after 1 year in biogas and septage sludge (Figure 3.2) and corresponded to a log10 

reduction of 2.5 and a T90 of approximately 5 months. No significant difference of the 

viability was found between the two substrates. The viability decreased rapidly in the 

first 4 months of the trial (from 83.6 to 5%). It took another 4 months to achieve 0.5% 

viability and a further 4 months to reach 0.3%, showing that just a few ova were 

resistant in the long term.  
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Figure 3.2 | Viability (n = 4) of Ascaris suum eggs in biogas and septage sludge. 

 

The reduction of Ascaris suum ova as described in Figure 3.2 is followed an 

exponential equation (R2=0.9451): 

y = 63.883 e-0.502x        (Equation 9) 

where 

y:% viability of Ascaris suum 

x: the retention time in sludge 

This equation can be used to estimate the viability of helminth ova accumulated in PBD 

or septage sludges in tropical conditions.  

 

3.3.3 Summary 

The everage viability of Ascaris suum ova (rv) was about 0.8. Anaerobic digestion in 

tropical PBDs has little effect on the inactivation of Ascaris suum. However helminth 
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established by an exponential equation. A small portion of Ascaris suum can survive in 

sludge for up to 1 year. There is no difference between the viability of Ascaris suum in 

biogas and septage sludges. 

3.4 Factors affecting survival of phages and bacteria in anaerobic digestion under 

tropical conditions 

3.4.1 Hydraulic retention time  

In anaerobic digestion the reduction of pathogens and indicator micro-organisms is 

limited and a reduction between 1 and 3 orders of magnitude can be expected in a 

mesophilic process. The reduction of pathogens common to domestic PBDs in tropical 

regions increases with HRT (cf. Section 3.1.3).  

3.4.2 Initial concentration and substrate type 

Characteristic of animal slurries using in the experiment 

The solid content in cattle slurries was higher than in swine slurries. Yet NH4
+-N values 

were higher in swine slurries (Table 3.6). The pH and COD values were not 

significantly different between slurries. 

 

The presence of concerned phage and bacteria in the fresh substrates were at low 

concentrations (103 – 104 PFU or CFU ml-1). Seeding used was free of E. coli and 

Salmonella spp. but contained 103 CFU/100ml of Enterococcus spp. The pH status of 

slurries changed little during the experiment. The NH4
+-N concentrations differed. 

Table 3.6 | Physio-chemical characteristic of the raw substrates. 
 

Substrates pH 
Solids (%) COD NH4

+-N 

Total Volatiles g l-1 g l-1 

Swine slurry 7.74 – 7.85 1.8 1.2 30.05 1.55 

Cattle slurry 7.78 – 7.92 2.6 1.7 30.45 0.85 
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Swine slurries ranged from 1.5 to 1.95 g l-1 and cattle slurries ranged from 0.8 to 1.15 g 

l-1 at day 45 of the treatment.  

Reduction of tested organisms  

Reduction occurred with all phages and bacteria. T90 counts varied from 1.44 to >45 

days (Table 3.7). Initial concentrations and slurry type affected the survival of tested 

organisms. E. coli and Salmonella Senftenberg showed a lag phase of 1 – 2 days before 

their concentrations decreased rapidly regardless of substrate and treatment, indicating a 

T90 of 1 – 2 days. In general the time needed for 90% reduction of E. coli and 

Salmonella Senftenberg is from 2 – 4 days. No organism was found after 8 days of 

treatment. T90 values of E. coli and Salmonella Senftenberg were significantly different 

(p ≤ 0.001) across slurries. They survived longer in swine slurry than in cattle slurry.  

On the other hand E. coli die-off differed significantly when the laboratory strain was 

used as an inoculate. The undetected level of this E. coli population was observed after 

only one day of anaerobic treatment. In the same experiment E. coli tended to die off 

after 1 – 2 days when the concentration of indigenous E. coli is low (103 CFU/100ml).  

 

Table 3.7 | T90 (decimal reduction time) values of tested phages and bacteria in different 

substrates and different initial concentrations (n = 4). 

 Substrate 
Initial 

concentration 

Somatic 

coliphage   E. coli   

Salmonella 

Senftenberg   

Enterococcus 

faecalis 

Mean SD   Mean SD   Mean SD   Mean SD  

Swine slurry 
Low > 45    3.13 0.7   1.66 0.1   23.8 3  

high  22.5 3.64   2.86 0   3.5 0.2   15.2 4.4  

                  

Cattle slurry 
low  20.6 3.47   2.03 0.1   1.85 0   23.2 5.7  

high  13.9 0.91   2.55 0.5   1.44 0.2   15.3 3.5  
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Enterococcus faecalis survived longer than E. coli and Salmonella Senftenberg (T90 

varied from 15.22 to 24.79 days) and it was still viable at 45 days (Figure 3.3). Low 

numbers of Enterococcus faecalis were present at day 45 (102 to 103 CFU/100 ml). 

Enterococcus faecalis showed no significant difference between slurries under identical 

treatments but the survival rate differed (p < 0.01) between low and high initial 

concentrations, this is probably due to the constant presence of Enterococcus spp. in the 

biogas slurry as it was already found in the initial seed.   

Somatic coliphages survived longer in swine than in cattle slurry (Figure 3.3) and high 

initial inoculation showed higher removal rates than with low initial concentration. The 

results indicate that the viability of tested organisms, with the exception of E. coli, 

relates to initial concentration.  Except for Enterococcus faecalis, somatic coliphage and 

bacteria behaved quite differently in swine and cattle slurries.  
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Figure 3.3 | Survival curves of tested phages and bacteria 

in swine slurry (a) and cattle slurry (b)
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Survival curves of tested phages and bacteria at high initial concentrations 

in swine slurry (a) and cattle slurry (b) 
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3.4.3 Volatile fatty acid  

Characteristics of the feeding materials 

In fresh slurry target phages and bacteria were present in low concentrations before 

spiking (Table 3.8). Seeding sourced from the wastewater treatment plant was free of E. 

coli and Salmonella spp. but contained 102 CFU ml-1 of Enterococcus spp. The 

chemical and microbial characteristics of the feeding materials varied between the VFA 

treatment and the control, and an overview is given in Table 3.8. 

 

Table 3.8 | Average chemical and microbial concentrations of the feeding materials 

(standard deviations in parentheses). 

Parameters Unit n VFA treatment Control 

ODM g l-1  15 15 

VFA mg l-1 14 5,000 420 

pH  14 7.28 (0.2) 7.01 (0.36) 

EC µS cm-1 14 49,300 (2,600) 2,400 (360) 

TIC mg HCO3
- l-1 1 10,000 1690 

NH4
+-N g l-1 8 0.059 (0.01) 0.058 (0.01) 

COD gO2 l
-1 7 12.7 (0.4) 7.9 (1.1) 

E. coli CFU ml-1 2 9.8 × 103 9.8 × 103 

Salmonella spp. MPN/100ml 2 2 × 101 2 × 101 

Enterococcus spp. CFU ml-1 2 1.9 × 103 1.9 × 103 

Somatic coliphage PFU ml-1 2 2.97 × 102 2.97 × 102 

Male-specific bacteriophage PFU ml-1 2 1.2 × 102 1.2 × 102 
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Performance of reactors 

Physicochemical values of daily effluent samples differed between the VFA treatment 

and the control (Figure 3.4). The pH of effluents from VFA treatment was higher than 

that of the control but both values were optimal for the biogas process.  EC values of 

VFA treatment increased steadily after adding VFA, from 3.4 to 50.4 mS/m while EC 

remained stable and low in the control. A similar trend for COD was observed: COD 

increased from 1.1 up to 12.2 g l-1 of VFA treatment while COD values of the control 

varied from 1.2 to 3.4 g l-1. VFA values of effluents from VFA treatment increased 

while those from the control decreased. At the end of the trial VFA concentration of the 

accumulated sludge was measured for all relevant parameters and the values were not 

significantly different from that of the effluent sampled at the same day. 

The average amount of biogas produced was significantly higher in control reactors 

(Table 3.9). Yet gas increased noticeably one week after VFA addition and then 

decreased until the trial’s end. VFA in reactors at optimal performance was calculated at 

a level of 2.5 g l-1, and EC at 2.5 – 3 mS/m. Mass balance based on information of 

biogas production and influence content shows that the whole VFA treatment process 

became unbalanced from the second week of VFA amendment.  

 

Table 3.9 | Sum of biogas produced per reactor for 8 weeks (standard deviations in

parentheses).  

Parameters Unit n VFA treatment Control 

Biogas per reactor L 3 21.8 (0.4) 31.9 (4.1) 

CH4  % 21 72.9 (6.7) 65.9 (1.5) 

Biogas efficiency  l per kg ODM fed 3 156 (2.8) 228 (29) 
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a) pH 

 

b) Electric conductivity 

 

 

 

c) Chemical Oxygen Demand 

 

 

 

 

d) Volatile Fatty Acid (VFA) 

 

 

Figure 3.4 | Physicochemical values of effluent samples from volatile fatty acid-

amendment treatment (●) and the control/no amendment (○).  
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Reduction of microorganisms tested: comparison of influents and effluents 

All examined phages and bacteria were more resistant in VFA treatment than in the 

control (Table 3.10). Log10 reduction of organisms tested concurs with earlier findings 

at a HRT of 15 days, indicating that high concentrations of VFA did not influence the 

reduction of tested organisms.  

 

Table 3.10 | Log10 reductions of organisms tested comparing inflow and outflow with 

standard deviations in parentheses (n = 18). 

Tested organisms Unit VFA treatment Control 

Somatic coliphage PFU ml-1 1.81 (0.34) 2.49 (0.15) 

Male-specific bacteriophage PFU ml-1 1.44 (1.02) 2.52 (1.26) 

E. coli CFU ml-1 1.65 (0.46) 1.90 (0.33) 

Salmonella Senftenberg CFU ml-1 1.37 (0.47) 1.91 (0.86) 

Enterococcus faecalis CFU ml-1 1.51 (0.31) 1.82 (0.28) 

 

In conclusion, the amount of VFA amendment and the composition of feeding materials 

depend on the stability of the particular anaerobic process. Tropical PBD running at low 

loading rates with manure as the only feeding source cannot handle a concentration of 

VFA > 2.5 g l-1. VFA has no effect on the reduction of indicator micro-organisms and 

pathogen tested in combined-stage mesophilic anaerobic reactors. Greater reduction 

rates are expected in two-stage anaerobic digestion systems. 

3.4.4 Batch vs regular feeding trials 

E. coli and Salmonella spp. were not found after 8 days of batch-wise treatment 

(Section 3.4.2), while they were always detected in the effluent as well as in the 

accumulated sludge of the continuous biogas reactors, even at HRT of 30 days (Section 

3.1.3). At the same HRT Enterococcus faecalis and Coliphages were more resistant in 

continuous reactors than in batch-wise ones (Table 3.11).  
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Table 3.11 | Log10 reduction of micro-organisms in batch-wise and continuous 

reactors at hydraulic retention time (HRT) of 15 days. 

  batch-wise reactor continuous reactor 

 
after 15 days of treatment HRT = 15 days 

Coliphages 1.07 2.5 

E. coli 7.25 1.79 

Salmonella Senftenberg 7.36 1.74 

Enterococcus faecalis 1.40 1.77 

 

3.4.5 Summary 

Biogas production is a preferable treatment method to utilize the energy content in the 

manure, especially in tropical region where most developing countries are located. 

Tropical temperatures permit the utilization of efficient anaerobic reactors without 

heating. Thus most of the anaerobic reactors are running at mesophilic condition (28 – 

30oC) without pasteurization step. HRT is directly proportional to the reduction rate of 

indicator organisms and pathogen, and biogas production. Pathogen reduction depends 

also on the initial concentration, bacteria type and substrate type. In combined-stage 

reactors such as PBDs, high levels of VFA have no effect on pathogen reduction at 

neutral pH. VFA levels of over 2.5 g l-1 cause inhibition for biogas production in PBDs 

with low loading rates. The reduction is more pronounced on acidic pH values in 

reactors. Moreover, the reduction of phages and bacteria is dependent on the operation 

condition – batch-wise or continuous digestion. Out of many factors affecting the 

survival of indicators and pathogen in tropical PBDs, HRT is recommended owing to 

(1) higher HRT can be achieved by using less water to clean the pig sties and regular 

desludging; (2) higher HRT leads to higher biogas yield.  
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3.5 Microbial characteristics of faecal sludge 

3.5.1 Pig slurry 

Pig slurry in the Mekong Delta is usually not stored but fed directly into domestic 

biogas digesters or discharged to surface waters. Thus fresh pig slurry can be found as 

influent for PBDs. Influence samples were low in dry matter, which ranged from 0.02 to 

0.77% with an average of 0.22%. The pH values ranged from 7.3 to 7.5. Occurrence and 

levels of indicator micro-organisms and pathogens in PBD influents are reported in 

Table 3.12. 

 

Table 3.12 | Occurrence and levels of phages and bacteria in plastic bio-digester’s 

influent samples (n = 18). 

Organism tested Unit Range Mean Median SD 
% 

positive 

Somatic coliphage PFU ml-1 ND - 1.9 × 105 17,700 150 5,000 78 

Male-specific 
bacteriophage 

PFU ml-1 ND - 3,000 80 10 130 56 

E. coli CFU ml-1   10,000 - 9 ×106 1.6 ×106 32,000 2.5 ×106 100 

Salmonella spp. MPN/100ml ND - 90 16 10 20 83 

Enterococcus spp. CFU ml-1 900 - 1.9 × 105 31,000 10,500 5,400 100 
 

 

Helminth ova in fresh pig slurries were detected in 80% samples. When detected, the 

concentration ranged from 250 to 8,000 no. l-1 with an average of 1,300 ova l-1. The ova 

varieties detected included Oesophagostomum spp. (44% of samples), Ascaris suum 

(39%), Metastrongylus elongates (33%), Taenia sp (28%), Trichuris suis (28%), 

Fasciolopsis buski (17%), Physocephalus sexalatus (6%), Schistosoma japonicum (6%), 

Strongyloides ransomi (6%), Clonorshis sinensis (6%). 
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3.5.2 Septage sludge 

Characteristics of untreated septage samples 

Untreated septage was low in dry matter (average DM = 0.24%). The pH values ranged 

from 7.3 to 7.5. Occurrence and levels of indicators and pathogens studied in untreated 

septage are reported in Table 3.13. Helminth ova detected were those of Ascaris 

lumbricoides, Enterobius vermicularis, Hymenolepis diminuta, Hymenolepis nana, 

Taenia spp., Capillaria philippinensis and hookworm. Their frequency varied from 20 – 

40% of samples. The average concentration for each species ranged from 6 – 190 no. l-1. 

 

Table 3.136 | Concentration of micro-organisms in untreated septage samples (n = 20; 

average dry matter = 0.24%). 

Organism tested Unit Range Mean Median SD 
% 

positive 

Somatic coliphage PFU ml-1 ND - 1.9 × 105 1800 150 25,000 80 

Male-specific 
bacteriophage 

PFU ml-1 ND - 1,000 520 600 380 80 

E. coli CFU ml-1 2,000 - 3.5 ×105 68,000 11,000 34,000 100 

Salmonella spp. MPN/100 ml ND - 7,000 1,300 310 270 70 

Enterococcus 
spp. 

CFU ml-1 640 - 24,000 8,500 5,300 4,900 100 

Helminth ova no. l-1 ND - 1,200 450 240 440 95 
 

ND = not detected 

 

 

 

 

 

                                                

6 Reprinted from Yen-Phi et al. (2010) with permission from Elsevier. 
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Characteristics of septage sludge samples 

Septage sludge had an average dry matter of 5.4%. The pH varied from 6.7 to 7.4. E. 

coli, Enterococcus spp., and helminth eggs were detected in all samples tested (Table 

3.14). There were many varieties of helminth ova in high concentrations (Figure 3.5), 

with the varieties frequency ranging from 10% to 50% and Ascaris lumbricoides 

predominated (Figure 3.5).  

 

Table 3.147 | Concentration of micro-organisms in septage sludge samples (n = 20; 

average dry matter = 5.4%). 

 

 

(010)  

                                                

7 Reprinted from Yen-Phi et al. (2010) with permission from Elsevier. 

Organism tested  Unit Range Mean Median SD 
% 

positive 

Somatic coliphage PFU/g d.w. ND - 9.7 × 106 1.3 × 106 25,000 3.0 × 106 80 

Male-specific 
bacteriophage 

PFU/g d.w. ND - 6,200 2,100 350 860 80 

E. coli CFU/g d.w. 7,200 - 6.2 × 106 1.1 × 106 2.3 × 105 4.5 × 105 100 

Salmonella spp. 
MPN/g 
d.w. 

ND - 1,900 570 460 270 60 

Enterococcus spp. CFU/g d.w. 1,500 - 4.0 × 105 78,000 11,000 1.6 × 105 100 

Helminth ova no. l-1 1,000 - 50,000 16,000 13,000 18,000 100 

d.w. = dry matter; ND = not detected 
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Figure 3.58 | Frequency and average concentrations of helminth ova (n = 20) in septage 

sludge samples.  

 
 

3.5.3 Summary  

E. coli and Enterococcus spp. were detected in all pig slurry and septage samples. 

Coliphages were detected in over 50% of samples. Salmonella spp. was detected in 

more than 60% of samples. Helminth ova were present in 80% of pig slurry samples, 

95% of untreated septage samples, and in all septage sludge samples with high 

concentrations. Ten varieties of helminth ova were found in pig slurries and twelve 

found in septage. More helminth ova varieties in higher concentrations were found in 

faecal sludge than those reported from stool samples. The results also show that 

indicator micro-organisms and pathogens, especially helminth ova, accumulate in 

sludge.  

                                                

8 Reprinted from Yen-Phi et al. (2010) with permission from Elsevier. 
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3.6 Plastic bio-digesters: effluent microbial characteristics and microbial 

treatment efficacy  

3.6.1 Plastic bio-digesters 

Description of PBDs surveyed 

PBD volume ranged from 7.2 to 15 m3 with an average of 10.8 m3. Their age varied from 

15 days to 12 years. Influents were sourced from pigsties with the number of pigs varying 

from 3 to 25 and not proportional to digester volume. Liquid effluents were discharged to 

fishpond (40%); these combined with gardens (20%); and nearest canals (40%). Only one 

PBD was desludged, after 1.5 year of operation. Most PBDs (90%) were covered by some 

kind of roofs and fenced off from animals (see Figure 1.7). Ninety per cent of PBDs 

provided biogas such that it met demands of household cooking.  

Characteristics of effluent samples 

PDBs’ effluents samples had an average DM of 0.65% and ranged from 0.002 to 4.9% 

while DM content of influent samples varied between 0.02 and 0.77% (Figure 3.6). 

Effluent DM was expected to be less than that of influents. Yet 40% of the former 

contained more DM than the latter, showing that the loading rate is too low and the 

sedimentation was not efficient. Effluent pH values varied from 6.7 to 7.4. 

 

Figure 3.6 | Distribution of dry matter in plastic bio-digester’s samples. 
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E. coli, Salmonella spp., and Enterococcus spp. were detected in all samples (Table 

3.15). The detection frequency of Salmonella spp. was higher in effluent than influent 

samples (Section 3.5.1).  

 

Table 3.15 | Occurrence and levels of phages and bacteria in plastic bio-digester’s 

effluent samples. 

Organism tested Unit Range Mean Median    SD 
% 

positive 

Somatic coliphage PFU ml-1 ND - 4,000 600 30 1,000 78 

Male-specific 
bacteriophage 

PFU ml-1 ND - 100 40 10 5 56 

E. coli CFU ml-1 900 - 1.4 ×106 2.7 ×105 1.2 ×105 3.6 ×105 100 

Salmonella spp. MPN/100 ml 4 - 60 14 9 14 100 

Enterococcus spp. CFU ml-1 90 - 2 × 104 5,500 4,800 5,100 100 

 

Many PBDs (56%) could not hold helminth ova. Ova and DM concentration in effluents 

were higher than influents. Two effluent samples (11%) were positive for helminth ova 

while the ova were not found in influents. Effluents with DM over 1% showed 

significantly high concentration of helminth ova (> 25,000 no. l-1).  

3.6.2 On-site treatment efficacy of pathogens and indictor micro-organisms 

Phages were more resistant to the treatment than bacteria tested (Table 3.16). The 

reduction of phages and bacteria via PBDs in MD was low. It concurs with the previous 

results (Section 3.1.3) and shows that the log10 reduction of PBDs at a HRT of 3 days 

was less than 1.6.  
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Table 3.16 | Log10 reduction of phages and bacteria tested via plastic bio-digesters. 

   
somatic 

coliphage 

male-specific 

bacteriophage 
E. coli 

Salmonella 

spp. 

Enterococcus 

spp. 

Influent 4.25 2.79 6.2 1.22 4.49 

Effluent 2.78 1.5 5.43 1.15 3.74 

log10 reduction  1.47 1.29 0.77 0.07 0.75 

      
An overview of helminth ova detected in PBD influents and effluents is given in Figure 

3.7. Helminth ova were not detected in either influent or effluent samples of one PBD 

(5.6%). The owner ran a helminth-control program in pigs and is widely acknowleged 

as the district’s “PBD master”. However, the influent DM value of this PBD was low 

(0.1%) like common situation of PBDs in Vietnam. 

Thirty-nine per cent of PBDs with effluent DM values of less than 0.5% showed a 

reduction of helminth ova. The reduction ranged from 0.2 to 3.0 log10. Significantly 

11.2% of effluent samples contained no ova while influent samples had a concentration 

of between 800 and 1,000 ova l-1. This shows that the operation of these PBDs was 

optimal for helminth ova settling at the digester base.  

 

Figure 3.7 | Distribution of helminth ova in plastic bio-digester’s samples. 
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The frequency of helminth ova detected varied between influent and effluent samples 

(Figure 3.8). Except for Oesophagostomum spp. other species were detected more 

frequently in effluents than influents. The reduction rate of helminth ova in sludge was 

examined in the one-year experiment (cf. Section 3.3.2). 

 

Figure 3.8 | Frequency of helminth ova varieties detected in plastic bio-digester’s 

samples. 

3.6.3 Summary 

PBDs are common in MD and considered to bring benefits to users. However their 

design and operation are not optimal. Thus reduction of bacteria was < 1 log10 and of 

phages < 1.5 log10 while the concentration of phages and bacteria in influents was high. 

In most PBDs helminth ova did not sediment but were released to surface water via 

effluents, the highest concentration being 175,000 no. l-1. As 40% of PBD effluents 

were discharged into nearby canals the situation was not significantly better than the 

direct discharge of pig slurry to surface water. 

3.7 Microbial make-up of surface water in the Mekong Delta 

In countries where centralised wastewater treatment plants are not yet established, like 

Vietnam, domestic sanitation systems like PBDs and STs are cost effective. Yet a key 

challenge is their proper management. In the Mekong Delta untreated septage and 
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highly contaminated PBD effluents, as well as animal manure and human faeces, are 

discharged directly to surface water that is used by millions of people for bathing and 

drinking purposes. Microbial contamination of surface water in rural areas results 

mainly from animal manure and human faeces. In urban areas the predominant source is 

human excreta. 

3.7.1 Microbial make-up of water in fishponds receiving plastic bio-digester’s 

effluents 

The reduction of phages and bacteria in MD PBDs is rather low (<1.5 log10). In many 

cases helminth ova concentrations in effluents are much higher than those in influents. 

Table 3.17 shows the occurrence and levels of organisms tested in fishponds receiving 

PBD effluents. Yet helminth ova were not detected in all samples, and explained by the 

accumulation of ova in pond sludge. 

 

Table 3.17 | Concentrations of micro-organisms in water from fishponds received 

plastic bio-digester’s effluents (n = 15). 

Organism tested Unit Range Mean Median SD 
% 

positive 

Somatic coliphage PFU/100 ml 0 – 2,030 960 170 1,200 60 

E. coli CFU ml-1 5 – 1,600 300 105 575 100 

Salmonella spp. MPN/100 ml  
0.69* 

  
50 

Enterococcus spp. CFU ml-1 2 - 200 45 30 48 100 

Helminth ova no. l-1 ND 
    

* The result based on negative/positive test on 100 ml sample. 

3.7.2 Microbial make-up of water in canals in rural areas 

E. coli were detected at high levels in all samples (Table 3.18). The average 

concentration was higher than that found in fishponds receiving PBD effluents (Table 

3.17) and higher than the total coliform limit set by the Vietnamese Surface Water 

Quality Standard (TCVN 5942-1995). That Salmonella spp. were detected in 30% of 

samples shows the high risk of contracting an infection if exposed to such waters.  
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Table 3.18 | Concentrations of micro-organisms in water from rural canals (n = 20). 

Organism tested Unit Range Mean Median SD 
% 

positive 

Somatic coliphage PFU/100 ml ND - 3,200 920 110 1,200 60 

E. coli CFU ml-1 70 - 4,500 744 309 1,070 100 

Salmonella spp. MPN/100 ml 
 

0.36* 
  

30 

Enterococcus spp. CFU ml-1 3 - 45 26 23 11 100 

Helminth ova no. l-1 ND 
    

* The result based on negative/positive test on 100 ml sample. 

3.7.3 Microbial make-up of water in canals in urban area 

Phages and bacteria were detected at high levels (Table 3.19). The number of positive 

samples containing somatic coliphage and Salmonella spp. was rather high (90% and 

40%), though no helminth ova were not detected. It is assumed that ova settle in canal’s 

sludge. 

 

Table 3.19 | Concentrations of micro-organisms in urban canal waters (n = 15). 

Organism tested Unit Range Mean Median SD % positive 

Somatic coliphage PFU/100 ml 0 - 600 190 165 160 90 

E. coli CFU ml-1 4 - 2,400 495 130 1,200 100 

Salmonella spp. MPN/100 ml 
 

0.51* 
  

40 

Enterococcus spp. CFU ml-1 3 - 160 40 27 40 100 

Helminth ova no. l-1 ND 
    

* The result based on negative/positive test on 100 ml sample.                                                                                                                                                                                      

3.8 Microbial contamination of cultivated aquatic spinach  

3.8.1 Aquatic spinach cultivated in fish ponds receiving plastic bio-digester’s effluent 

Fishpond spinaches had an average DM of ~10% and were contaminated with 

pathogens and indicator microorganisms (Table 3.20). The ratio of positive samples on 



3 RESULTS  77  

 

 

different microbial parameters was lower than that in fishpond water where spinaches 

were collected Table 3.17.  

 

Table 3.20 | Microbial concentration of spinaches cultivated in fish ponds received 

plastic bio-digester’s effluents (n = 15). 

Organism tested Unit Range Mean Median SD 
% 

positive 

Somatic coliphage PFU/ g d.w. 0 - 20 15 2.5 12 60 

E. coli CFU/ g d.w. 0 - 430 94 62 105 90 

Salmonella spp. MPN/ g d.w. 
 

0.006* 
  

10 

Enterococcus spp. CFU/ g d.w. 4 - 200 68 46 72 100 

d.w. = dry weight 

* The result based on negative/positive test on 80 – 100 g fresh sample.  
 

3.8.2 Aquatic spinach cultivated in urban canals 

Aquatic spinaches collected from urban canals also had an average DM ~10% and 

contaminated with micro-organisms (Table 3.21).  

 

Table 3.21 | Microbial levels of aquatic spinaches cultivated in urban areas (n = 15). 

Organism tested Unit Range Mean Median SD 
% 

positive 

Somatic coliphage PFU/ g d.w. 0 - 6 2 1.6 1.6 80 

E. coli CFU/ g d.w. 0 - 1,300 230 150 255 90 

Salmonella spp. MPN/ g d.w. 
 

0.005* 
  

10 

Enterococcus spp. CFU/ g d.w. 5 - 560 110 29 275 100 

d.w. = dry weight 

* The result based on negative/positive test on 80 – 100 g fresh sample.  
 
 

In summary, aquatic spinach is contaminated with faecal indicator micro-organisms. 

Enterococcus spp. were detected in all samples, E. coli in 90 %, somatic coliphage in 
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70%, and Salmonella spp. in 10% of samples. Average E. coli concentration in spinach 

cultivated in urban canals was more than two times higher than in fishpond receiving 

PBD effluent.   

3.9 Persistence of phages and bacteria in Mekong river water and on terrestrial 

spinach in the Mekong Delta 

3.9.1 Persistence of phages and bacteria in Mekong river water 

Water was sourced from the Hau River (the lower of 2 branches that constitute the 

Mekong River in the region) with a pH of 7.35 and turbidity of 144.6 NTU. Somatic 

coliphage and bacteria were reduced but none was eliminated after 12 days (Figure 

3.9). T90 of somatic coliphage was 3.5 days while that of bacteria ranged from 2.0 to 2.5 

days. 

 

Figure 3.9 | Survival curves of somatic coliphage (♦), E. coli (■), Salmonella 

Senftenberg (▲) and Enterococcus faecalis (●) in Mekong river water. 
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3.9.2 Persistence of phages and bacteria on terrestrial spinach 

Samples taken prior to and 45 minutes after spray irrigation (to allow for evaporation) 

show that ~2.5 ml of water attach to 100 g of spinach. This was determined by the 

phages and bacteria on spinach and their known microbial concentrations in irrigated 

waters. T90 of phages and bacteria between final irrigation and harvest ranged from 2.4 

to 5.4 days, and is equivalent to 0.2 – 0.4 log10 reduction/day. In contrast to the survival 

tendency in the river water environment, bacteria survived longer than phages on 

terrestrial spinaches (Figure 3.10). 

 

 

Figure 3.10 | Decimal Reduction Time (T90) of tested organisms on terrestrial spinach. 

Error bar indicates standard deviation (n = 9). 

 

3.10 Quantitative Microbial Risk Assessment 

Probability of infection (Pinf) with helminth and Ascaris in all scenarios presented were 

calculated according to risk models introduced by Navarro et al. (2009). Results, based 

on the exponential risk model for helminth and Ascaris are discussed in Section 4.6.3 

(Table 4.1 and Table 4.2). Annual risks were compared with accepted levels calculated 

based on WHO guidelines on safe use of wastewater in agriculture (2006) and drinking 

water quality (2008): 8 × 10-4 for rotavirus, 6 × 10-4 for Salmonella and 1 × 10-4 for 

Ascaris (cf. Section 1.4.3). 
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3.10.1 Risk of working with faecal substrates in the Mekong Delta 

Pinf for sewage workers and farmers exposed to faecal substrates is given in Figure 

3.11. Results show that MD PBDs effectively reduced the risk of rotavirus infection and 

Pinf was reduced proportional to their higher treatment efficacy. Median probability with 

salmonellosis from PBD effluent was slightly higher than for pig slurry. This 

contradicts the mean, median and range of concentrations of Salmonella in pig slurry 

and PBD effluents (cf. Section 3.5.1 and 3.6.1) as the risk model probability 

distributions were used as input for exposure model parameters. Thus all PBD effluent 

samples positive for Salmonella supported a higher probability of infection compared to 

83% of pig slurry samples positive for Salmonella with above average concentrations. 

Interestingly probability of helminthiasis and ascariasis were higher when exposed to 

PBD effluent than pig slurry, and concurs with helminth ova concentrations in pig 

slurry (PBD influent) and PBD effluent previously provided (Figure 3.7). 

Pinf with rotavirus was about 100 times higher in untreated septage than septage sludge. 

In contrast Pinf with Salmonella was higher in septage sludge, but in both substrates Pinf 

with Salmonella was >10-4. Probability of helminthiasis and ascariasis showed similar 

trends, with exposure to septage sludge being 0.2 and 0.15 and untreated septage 0.02 

and 0.004 respectively. This concurs with helminth and Ascaris concentrations detected 

in untreated septage and septage sludge (cf. Section 3.5.2). 
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a) Rotavirus b) Salmonella  

  

  

c) Helminth d) Ascaris 

 

Figure 3.11 | Probability of infections for work with faecal substrates following 

accidental ingestion of 1 ml of faecal substrates with median values (■) and 95% 

confidence interval (├───┤). 

Fresh pig slurry (1.1); Liquid plastic bio-digester’s effluent (1.2); Improved liquid 

plastic bio-digester’s effluent  at hydraulic retention time (HRT) of 15 days (1.3); 

Improved liquid plastic bio-digester’s effluent at HRT = 30 days (1.4); Untreated 

septage (1.5) and Septage sludge (1.6) 
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Annual infection rates (median values >0.003) for sewage workers and farmers 

handling slurry and septage in MD today is above WHO guidelines (Table 3.22). The 

chance of helminthiasis or rotavirus infection is nearly 1.0 but the risk of salmonellosis 

is much lower. Annual risk of salmonellosis and helminthiasis by incidental ingestion of 

pig slurry was higher than with PBD effluent (Table 3.22). While this seems to deny 

Pinf figures in Figure 3.11 it is explained by the higher exposure frequency of farmers to 

pig slurry in MD (Table 2.6, Section 2.4.3). Results from standardized questionnaire 

survey showed that just 20% of PBD users applied effluents to crops. For handling PBD 

effluents with HRTs >15 days the salmonellosis risk was tolerable, but rotavirus 

infection was inacceptable. Helminthiasis was negligible since lengthy HRTs lowered 

inflow velocity meaning ova settled in the sludge and infection was only likely during 

sludge handling. 
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Table 3.22 | Annual risk of infection for work with faecal substrates (median values and 

95% confidence interval in parentheses) following accidental ingestion of 1 ml of the

substrates per exposure. 

Scenario Rotavirus Salmonella Helminth Ascaris 

1.1 
0.96 

(2 × 10-8 – 1) 
0.008 

(3 × 10-4 – 0.05) 
1 

(0 – 1) 
1 

(0 – 1) 

1.2 
0.03 

 (2 × 10-8 – 0.49) 
0.002 

 (0 – 0.004) 
0.99 

(7 × 10-10 – 1) 
0.88 

(0.001 – 1) 

1.3 
0.001 

 (8 × 10-12 – 0.14) 
3 × 10-5 

(3 × 10-8 – 0.0004) 
0* 0* 

1.4 
0.0001 

(8 × 10-13 – 4 × 10-2) 
5 × 10-6 

(4 × 10-9 – 0.0001) 
0* 0* 

1.5 
1 

(2 × 10-6 – 1) 
0.08 

 (0 – 0.92) 
0.98 

(0 – 1) 
0.61 

(1 × 10-8 – 1) 

1.6 
1 

(0.0002  – 1) 
0.12 

(3 × 10-8  – 0.65) 
1 

(1 – 1) 
1 

(0 – 1) 

0 is equivalent to < 10-15 

*: No risk calculation was made. Plastic bio-digesters’ effluents at hydraulic retention time (HRT) ≥ 15 

days are assumed to be free of helminth ova. 

1.1: Fresh pig slurry; 1.2: Liquid PBD’s effluent; 1.3: Improved liquid PBD’s effluent at HRT = 15 days; 

1.4: Improved liquid PBD’s effluent at HRT = 30 days; 1.5: Untreated septage; 1.6: Septage sludge 
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3.10.2 Risk associated with bathing/swimming in canals 

The annual risk of rotavirus infection and salmonellosis when immersed in canals 

(bathing/swimming) in both rural and urban areas were over 10-4 (Table 3.23). 

Helminth ova were not found in surface water so risk of helminthiasis is minimal. Yet it 

becomes significant if bathers are near STs and PBD effluent. If just 1 ml of effluent is 

assumed to be ingested the median annual risk of helminthiasis is 1.0. 

 

Table 3.23 | Median values of infection probability of bathing/swimming in the canals in 

rural areas (2.1), in urban areas (2.2). Numbers in brackets represent 95% confidence 

interval. 

Scenario 
Rotavirus  Salmonella 

Risk per exposure Annual risk  Risk per exposure Annual risk 

2.1 
0.06 

(2 × 10-10 – 0.43) 
1 

 (7 × 10-8 – 1) 
 

6 × 10-6 
(5 × 10-6 – 8 × 10-6) 

0.002 
(0.002 – 0.003) 

2.2 
0.08 

(0  – 0.18) 
1 

(0 – 1) 
 

9 × 10-6 
(7 × 10-6 – 1 × 10-5) 

0.0009 
(0.0006 – 0.001) 

0 is equivalent to < 10-15 
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3.10.3 Risk of drinking canal water in rural areas 

Drinking canal water mainly occurs in rural areas where there are poor or no water 

supply systems, so data relate to this zone. Three treatments were assessed: untreated 

canal water, canal water + alum flocculation, and canal water + alum flocculation + 

boiling. Flocculation of canal water had a positive health effect (Figure 3.12) and has 

been well documented (Reller et al. 2003, Crump et al. 2005). Yet corresponding risks 

of salmonellosis and rotavirus infection are 1 and 0.003 so this treatment is not advised 

for MD. Boiling after flocculating is cheap and easy, reducing the microbial load of 

drinking water and so better protects people against gastroenteritis. Risks linked to 

drinking boiled water were negligible (<10-9). 

 

 

 

a) Rotavirus 

 

b) Salmonella 

 

Figure 3.12 | Infection probability of drinking untreated canal water (3.1), after alum 

flocculation (3.2), and after flocculation plus boiling (3.3); median values (■) and 95% 

confidence interval (├───┤). 
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3.10.4 Risk associated with eating spinach  

Most vegetables need washing or cooking before eating. In MD rural areas untreated or 

flocculated water is used. In urban areas it is tap water. ‘Without proper washing’ (cited 

in tables) means 1) washing with untreated water or 2) no washing at all. Spinach is 

eaten raw or cooked and both treatments were taken into risk analyses.  

Aquatic spinach: spinach cultivated in ponds and canals 

Probability of rotavirus infection and salmonellosis was not markedly different if 

spinach originated in fishponds receiving PBD effluents or urban canals (Figure 3.13). 

Washing spinach with alum-flocculated water or tap water reduced incidence by ~1 

log10 of Pinf compared to ‘without proper washing’ scenarios. Eating cooked spinach 

showed negligible Pinf (<10-11) per portion. 

 

 

a) Rotavirus b) Salmonella  

Figure 3.13 | Probability of infection per portion of aquatic spinach receiving plastic 

bio-digester effluent (4.1), in urban area canals (4.2) with median values (■) and 95% 

confidence interval (├───┤). 

a) Spinach is consumed raw without proper washing 

b) Spinach is consumed raw after washing with alum-flocculated water or tap water 

c) Spinach is consumed after cooking 
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Annual risk analyses show that eating raw aquatic spinach leads a high chance of 

contracting an infection. For consumption of spinach washed with flocculated or tap 

water, annual risk of infection with rotavirus was about 1,000 times higher than 

acceptable risk level while that with Salmonella was at acceptable values (Table 3.24). 

Generally aquatic spinaches cultivated in fishponds or in urban canals were not 

recommended for eating raw. Median annual risks from cooked spinach consumption 

for both rotavirus and Salmonella infections were low (≤ 10-6). 

Annual risk analyses show that eating raw aquatic spinach promotes infection. Washing 

spinach in flocculated or tap water reduced annual risks. However, risk of rotavirus 

infection was about 1,000 times over accepted norms while salmonellosis risk was 

tolerable (Table 3.24). Median annual risk of contracting rotavirus infection and 

salmonellosis from cooked spinach was low (≤ 10-6).  

 

Table 3.24 | Median annual risk of infection from consumption of aquatic spinach 

receiving plastic bio-digester effluents (4.1), in urban area canals (4.2). Numbers in 

brackets represent 95% confidence interval.  

Scenario Rotavirus  Salmonella 

4.1 a 
0.1 

 (2 × 10-9  – 0.93) 
 

0.0007 
(0.0004 – 0.0009) 

 
b 

0.01 
 (2 × 10-10 – 0.25) 

 
7 × 10-5 

(2 × 10-5 – 9 × 10-5) 

 
c 

1 × 10-8 
 (0 – 3 × 10-7) 

 
7 × 10-11 

(4 × 10-11 – 9 × 10-10) 

4.2 a 
0.07 

 (0 – 0.22) 
 

0.0006 
(0.0003 – 0.0009) 

 
b 

0.007 
 (0 – 0.02) 

 
6 × 10-5 

(4 × 10-6 – 0.0001) 

 
c 

7 × 10-9 
(0 – 3 × 10-8) 

 
6 × 10-11 

(8 × 10-11 – 2 × 10-10) 

a) Spinach is consumed raw without proper washing 

b) Spinach is consumed raw after washing with alum-flocculated water or tap water 

c) Spinach is consumed after cooking 
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Spinach cultivated on fields (terrestrial spinach) fertilised by plastic bio-digester’s 

effluent 

Pinf from consumption of spinach applied with PBD’s effluent at HRT of 30 days was 1 

log10 unit lower than that at HRT of 15 days and 2 log10 unit lower than eating spinach 

applied with PBD effluent in MD (Table 3.25). This shows that increased HRTs of 

PBDs decrease the risk of pathogenic infection. Pinf with Salmonella was much lower 

than other concerned pathogens while Pinf with helminth were high if spinach was eaten 

raw.  

Time between final irrigation and harvest also influences crop microbial quality. Results 

show if spinach was applied with PBD effluent at HRT ≥ 15 days and the time between 

final irrigation and harvest was ≥3 days and spinach was washed in clean water it could 

be eaten raw (Table 3.26). If elapsed time was 3 days the infection risk was about 1 

log10 higher than if 7 days had passed (Table 3.27).  

Infection was reduced if spinach was washed beforehand. Probability of helminthiasis 

and ascariasis per portion was reduced by 1 log10 (Table 3.25) and annual risk 

decreased by >0.4 log10 (Table 3.26). With high pathogen levels in irrigated water, a 

one-log10 reduction of pathogens on spinach by washing is not significant. Cooking also 

reduces infection risk. Risks associated with eating cooked spinach were negligible, 

even if harvested right after irrigation (data not shown) or the time between final 

irrigation and harvest was 3 day or 7 days (Table 3.26; Table 3.27). 
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Table 3.25 | Median risk of infection per one portion of terrestrial spinach fertilised 

with plastic bio-digester’s effluent (4.3), improved effluent at hydraulic retention time 

(HRT) of 15 days (4.4), and improved effluent at HRT of 30 days (4.5). Numbers in 

brackets represents 95% confidence interval. Time elapsed between final irrigation 

and harvest is 3 days. No reduction of helminth ova was assumed in the meantime. 

Scenario Rotavirus Salmonella Helminth Ascaris 

4.3 a 
5 × 10-5 

 (4 × 10-11 – 0.001) 
8 × 10-6 

(0 – 2 × 10-5) 
0.10 

(2 × 10-11 – 0.45) 
0.05 

(2 × 10-5 – 0.35) 

 b 
5 × 10-6 

(4 × 10-12 – 0.0001)   
8 × 10-7 

(0 – 2 × 10-6) 
0.02 

 (2 × 10-12 – 0.3) 
0.006 

(2 × 10-6 – 0.19) 

 c 
5 × 10-12 

 (0 – 1 × 10-10) 
8 × 10-13 

 (0 – 2 × 10-12) 
2 × 10-8 

(0 – 3 × 10-6) 
7 × 10-9 

(0 – 6 × 10-7) 

4.4 a 
2 × 10-6 

(1 × 10-14 – 0.0002) 
1 × 10-7 

(1 × 10-10 – 2 × 10-6) 
0* 

 
0* 

 

 b 
2 × 10-7 

 (0  – 2 × 10-5) 
1 × 10-8 

(1 × 10-11 – 2 × 10-7) 
0* 

 
0* 

 

 c 
2 × 10-13 

(0 – 2 × 10-11) 
1 × 10-12 

 (0 – 2 × 10-11) 
0* 

 
0* 

 

4.5 a 
2 × 10-7 

 (0 – 7 × 10-5) 
2 × 10-8 

(3 × 10-11 – 6 × 10-7) 
0* 

 
0* 

 

 b 
2 × 10-8 

 (0 – 7 × 10-6) 
2 × 10-9 

(2 × 10-12 – 6 × 10-8) 
0* 

 
0* 

 

 c 
2 × 10-14 

 (0 – 7 × 10-12) 
2 × 10-13  

(0 – 6 × 10-12) 
0* 

 
0* 

 

0 is equivalent to < 10-15 

*: No risk calculation was made. PBDs’ effluents at HRT ≥ 15 days are assumed to be free of helminth 

ova. 

a) Spinach is consumed raw without proper washing 

b) Spinach is consumed raw after washing with alum-flocculated water or tap water 

c) Spinach is consumed after cooking 
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Table 3.26 | Annual risk of infection (median values and 95% confidence interval in 

parentheses) from consumption of spinach fertilised with plastic bio-digester’s effluent 

(4.3), improved effluent at hydraulic retention time (HRT) of 15 days (4.4), and 

improved effluent at HRT of 30 days (4.5). Time elapsed between final irrigation and 

harvest is 3 days. No reduction of helminth ova was assumed in the meantime. 

Scenario Rotavirus Salmonella Helminth Ascaris 

4.3 a 
0.01 

(0 – 0.11) 
0.0008 

(0 – 0.002) 
1 

(0.002 – 1) 
0.99 

(2 × 10-9 – 1) 

 b 
0.0005 

(4 × 10-10 – 0.01)   
8 × 10-5 

(0 – 0.0003) 
0.82 

(0.0004 – 1) 
0.48 

(2 × 10-10 – 1) 

 c 
5 × 10-10 

 (0 – 1 × 10-8) 
8 × 10-11 

 (0 – 3 × 10-10) 
2 × 10-6 

(0 – 0.0003) 
7 × 10-7 

(0 – 7 × 10-5) 

4.4 a 
0.0002 

(1 × 10-12 – 0.02) 
1 × 10-5 

(1 × 10-8 – 0.0002) 
0* 

 
0* 

 

 b 
2 × 10-5 

 (1 × 10-13  – 0.003) 
1 × 10-6 

(1 × 10-9 – 2 × 10-5) 
0* 

 
0* 

 

 c 
2 × 10-11 

(0 – 3 × 10-9) 
1 × 10-12 

 (0 - 2 × 10-9) 
0* 

 
0* 

 

4.5 a 
2 × 10-5 

 (1 × 10-13 – 0.007) 
2 × 10-6 

(3 × 10-9 – 6 × 10-5) 
0* 

 
0* 

 

 b 
2 × 10-6 

 (1 × 10-14 – 0.0008) 
2 × 10-7 

(2 × 10-10 – 6 × 10-6) 
0* 

 
0* 

 

 c 
2 × 10-12 

 (0 – 7 × 10-10) 
2 × 10-13 

 (0 – 6 × 10-10) 
0* 

 
0* 

 

0 is equivalent to < 10-15 

*: No risk calculation was made. PBD effluents at HRT ≥ 15 days are assumed to be free of helminth ova. 

a) Spinach is consumed raw without proper washing 

b) Spinach is consumed raw after washing with flocculated water/tap water 

c) Spinach is consumed after cooking 
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Table 3.27 | Annual risk of infection (median values and 95% confidence interval in 

parentheses) from consumption of spinach fertilised with plastic bio-digester’s effluent 

(4.3), improved effluent at hydraulic retention time (HRT) of 15 days (4.4), and 

improved effluent at HRT of 30 days (4.5). Time elapsed between final irrigation and 

harvest is 7 days. No reduction of helminth ova was assumed in the meantime. 

Scenario Rotavirus Salmonella Helminth Ascaris 

4.3 a 
0.0001 

(9 × 10-11 – 0.002) 
8 × 10-5 

(0 – 0.0003) 
1 

(2 × 10-3 – 1) 
0.99 

(2 × 10-9 – 1) 

 b 
1 × 10-5 

(8 × 10-12 – 0.0002)   
8 × 10-6 

(0 – 3 × 10-5) 
0.82 

(4 × 10-4 – 1) 
0.48 

(2 × 10-10 – 1) 

 c 
1 × 10-11 

 (0 – 3 × 10-10) 
8 × 10-12 

 (0 – 3 × 10-11) 
2 × 10-6 

(0 – 3 × 10-4) 
7 × 10-7 

(0 – 7 × 10-5) 

4.4 a 
5 × 10-6 

(3 × 10-14 – 0.0005) 
1 × 10-6 

(4 × 10-9 – 3 × 10-5) 
0* 

 
0* 

 

 b 
5 × 10-7 

 (0  – 5 × 10-5) 
1 × 10-7 

(1 × 10-10 – 3 × 10-6) 
0* 

 
0* 

 

 c 
5 × 10-13 

(0 – 5 × 10-11) 
1 × 10-13 

 (0 - 3 × 10-10) 
0* 

 
0* 

 

4.5 a 
5 × 10-7 

 (0 – 0.0002) 
2 × 10-7 

(3 × 10-10 – 6 × 10-6) 
0* 

 
0* 

 

 b 
4 × 10-8 

 (0 – 2 × 10-5) 
3 × 10-8 

(10-11 – 6 × 10-7) 
0* 

 
0* 

 

 c 
5 × 10-14 

 (0 – 2 × 10-11) 
3 × 10-14 

 (0 – 6 × 10-11) 
0* 

 
0* 

 

0 is equivalent to < 10-15 

*: No risk calculation was made. PBDs’ effluents at HRT ≥ 15 days are assumed to be free of helminth 

ova. 

a) Spinach is consumed raw without proper washing 

b) Spinach is consumed raw after washing with flocculated water/tap water 

c) Spinach is consumed after cooking 
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3.10.5 Comparative risk assessment 

For an overview of infection risk in MD exposure scenarios can be ranked. Table 3.28 

presents annual risk rating of each exposure scenario. The scenarios ranked as being of 

highest concern were working with faecal substrate and eating raw terrestrial spinach 

fertilized by PBD’s effluent. Thus those who expose directly to faecal substrates such as 

sewage workers and farmers handling pig slurry are at most risk of infection. The risk 

rating also shows that heath protection measures (wastewater treatment over PBD, 

surface water treatment, washing/cooking spinach ...) reduced risks. Compared to the 

PBD’s effluent today in MD, improved effluent at HRT ≥ 15 days minimized 

helminthiasis and lowered significantly rotavirus infection and salmonellosis (Table 

3.28).  

Risk estimates for total MD population differ from exposure scenarios. Risk factors for 

gastroenteritis in MD were taken into account, with typhoid fever being the exemplar 

pathogen as it is the best documented. Annual risk of salmonellosis via accidental 

ingestion was high and ranged from septage sludge (0.12), untreated surface water 

(0.14) and untreated septage (0.08) scenarios (Table 3.29). Yet the potential for 

salmonellosis in total MD population differed: drinking untreated surface water, to 

eating raw or poorly washed spinach, and drinking alum-flocculated water due largely 

to different ratios of people exposed in different the scenarios (Table 3.29).  
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Table 3.28 | Rating of annual median risks following exposure scenarios.  

 Scenarios 
Rotavirus 

infection 
Salmonellosis Helminthiasis Ascariasis Sum 

1.  Working exposure      

 1.1 Fresh pig slurry 4 2 4 4 14 

 1.2 Liquid effluent of PBDs   3 2 4 4 13 

 1.3 Liquid effluent from PBD 

HRT = 15 days  

1 0 0a 0a 1 

 1.4 Liquid effluent from PBD 

HRT = 30 days  

1 0 0a 0a 1 

 1.5 Untreated septage   4 3 4 4 15 

 1.6 Septage sludge   4 4 4 4 16 

2.  Bathing/swimming      

 2.1 in rural canals  4 2 0b 0b 6 

 2.2 in urban canals  4 1 0b 0b 5 

3.    Drinking surface water      

 3.1 untreated  4 4 0 0 8 

 3.2 after flocculation  4 2 0 0 6 

 3.3 after flocculation + boiling 0 0 0 0 0 

4 . Consumption of spinach      

 4.1 cultivated in fish ponds 

receiving PBD’s effluent  

     

   a)  raw without proper washing 4 1 0 0 5 

   b) raw after washing with 

flocculated or tap water 

2 0 0 0 2 

   c) cooked 0 0 0 0 0 
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Table 3.28 (continued) 

 Scenarios 
Rotavirus 

infection 
Salmonellosis Helminthiasis Ascariasis Sum 

4. Consumption of spinach (continued)     

 4.2 cultivated in urban 

canals 

     

 a) raw without proper 

washing 

3 1 0 0 4 

   b) raw after washing with 

flocculated or tap 

water 

2 0 0 0 2 

   c) cooked 0 0 0 0 0 

 4.3* cultivated on fields 

fertilised by PBD’s 

effluent 

     

   a) raw without proper 

washing 

3 1 4 4 12 

   b) raw after washing with 

flocculated or tap water 

1 0 4 4 9 

   c) cooked 0 0 0 0 0 

 4.4* cultivated on fields 

fertilised by PBD’s 

effluent at HRT=15d 

     

   a) raw without proper 

washing 

1 0 0a 0a 1 

   b) raw after washing with 

flocculated or tap water 

0 0 0a 0a 0 

   c) cooked 0 0 0a 0a 0 
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Table 3.28 (continued) 

 Scenarios 
Rotavirus 

infection 
Salmonellosis Helminthiasis Ascariasis Sum 

4. Consumption of spinach (continued)     

 4.5* cultivated on fields 

fertilised by PBD’s 

effluent at HRT=30d 

     

   a)  raw without proper 

washing 

0 0 0a 0a 0 

   b) raw after washing with 

flocculated or tap water 

0 0 0a 0a 0 

   c) cooked 0 0 0a 0a 0 

*: time elapsed between final irrigation and harvest is 3 days 

a: No risk calculation was made. Plastic bio-digester’s effluent at hydraulic retention time ≥ 15 days are 

assumed free of helminth ova. 

b: No helminth ova were found in surface water samples. Yet risk of infection becomes significant if 

bathers are near septic tanks and plastic bio-digester’s effluent. 

 

The numerical value assigned to each category is used to determine the risk rating of reference pathogens 

in each exposure scenario as follow: 

 0: acceptable, <0.0001  3: high, 0.01 to <0.1  

1: low, 0.0001 to <0.001  4: very high, 0.1 to 1  

2: medium, 0.001 to <0.01  
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Table 3.29 | Estimated annual risk of Salmonella infection in the Vietnam’s Mekong 

Delta (MD). 

 

Exposure scenario 
Estimated ratios of MD 

population exposeda 

Risks for 

the exposed  

Annual risk for 

MD’s population  

Accidental ingestion of 

pig slurry 

5% 8 × 10-3 4 × 10-4 

Accidental ingestion of 

PBD’s effluents 

0.01% 2 × 10-3 2 × 10-7 

Accidental ingestion of 

untreated septage 

0.003% 8 × 10-2 2 × 10-6 

Accidental ingestion of 

septage sludge 

0.003% 1.2 × 10-1 4 × 10-6 

Bath/swim in urban canals 0.2% 2 × 10-3 4 × 10-6 

Bath/swim in rural  canals 2% 9 × 10-4 2 × 10-5 

Drinking untreated 

surface water 

2% 1.4 × 10-1 3 × 10-3 

Drinking flocculated 

surface water 

10% 3 × 10-3 3 × 10-4 

Eating raw aquatic spinach 

without proper washing 

40% 7 × 10-4 3 × 10-4 

Eating raw aquatic spinach 

with proper washing 

20% 7 × 10-5 1 × 10-5 

Total   4 × 10-3 

a Based on Lin et al. (2000), Figuié (2003), General Statistics Office (2006b), Danh (2008) and Few et al. 

(2010)  
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3.10.6 Summary 

In this study the risks of pathogen infection were recorded in descending order from 

helminth to rotavirus and Salmonella. In MD it is sewage workers who are most at risk 

of infection due to their constant exposure to human faecal matter. Yet other exposure 

scenarios and other people are involved. Incidental ingestion of slurries, eating raw 

spinach, drinking untreated surface water, and bathing/swimming in canals constitute 

chronic exposure scenarios for the population in MD. All above cited scenarios were 

found to be higher than WHO guidelines for the safe use of wastewater in agriculture 

(2006a) and drinking water quality (2008). 

Barriers can reduce the risk of infection and include wastewater treatment (eg. PBDs), 

due time between final crop irrigation and harvest, personal hygiene, treatment of water 

(alum flocculation, boiling) before consumption, and cooking food. Among these PBDs 

are considered a good for their user benefits (cooking gas, effluents that act as manure 

for pond and field), as well as for the environment. Yet probability of salmonellosis and 

helminthiasis is higher per exposure to PBD effluent than pig slurry, and much higher 

than the acceptable risk levels. Risks are reduced when PBDs run at a HRT of 15 and 30 

days as effluent is assumed to be free of helminth ova. Due to the high pathogen load of 

surface water this is only potable when boiled. Nor is aquatic spinach safe to eat unless 

cooked. Spinaches irrigated with improved PBD effluent (HRT ≥ 15 days) can be eaten 

raw, but only when the time between final irrigation and harvest is long enough or 

spinaches are washed properly before consumption.   
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4 DISCUSSION 

4.1 Treatment efficacy of pathogens and indicator microorganisms in plastic bio-
digesters and septic tanks 

4.1.1 Situation in the Mekong Delta, Vietnam 

The low reduction rates of phages and bacteria via PBDs in MD concur with previous 

results showing that the log10 reduction of PBDs at a HRT of 3 days was less than 1.6 

(Section 3.1.3). Of PBDs investigated by Nuber and Tien (2008) in MD 70% showed 

HRTs of less than six days and the shortest HRT was 1.83 days. The high levels of E. 

coli found in effluents of PBDs may be explained by 1) maintenance failure (e.g. short 

HRT, too much accumulated sludge in reactors); 2) operation conditions (e.g. the whirl 

flow of influent go directly to the effluent); and 3) growth within the reactor. In 

addition, the detection frequency of Salmonella spp. in PBD effluent samples was 

higher than that of influents. It may be due to the growth of this bacterium in anaerobic 

reactors (Ward et al. 1999, Gerardi 2003). 

Helminth ova as well as DM concentrations found in effluents were higher than those in 

influents in more than 50% of PBDs. However no correlation between DM and ova 

concentration was found in all effluent samples. This can be explained by the different 

operating conditions of PBDs leading to different solid content in effluents. Of course 

helminth ova in influents depend on the helminth load of the source pigs.  

Most helminth ova varieties were detected more frequently in effluents than in influents. 

This indicates that many ova were washed out due influent velocity and that the 

operation of only a small proportion of PBDs allowed helminth ova to settle at the base. 

Thus influent flow should be restricted so ova can settle in sludge and so be inactivated.  

4.1.2 Microbial treatment efficacy from pilot study  

Plastic bio-digesters  

That bacteria were more resistant to mesophilic anaerobic treatment of manure than 

phages is supported by Lund et al. (1996). In contrast Gessel et al. (2004) showed that 

somatic coliphages were more persistent than Salmonella anatum and faecal coliforms 

in surface soil treated with liquid pig manure. That may be due to the different 
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environmental conditions of the trial. It is documented that several pathogenic and 

indicator bacteria are very persistent and may even multiply in the biogas digester 

environment (Gerardi 2003).  

The reductions in the reactor do not correlate with total reduction efficacy of tested 

organisms because of the accumulated solids at the digester base. Some pathogens and 

indicator microorganisms (e.g. helminth eggs) can accumulate in the sludge. However, 

the concentration of the tested organisms in the sludge at the trial’s end was not 

significantly different from that observed in the liquid output. This concurs with 

Kearney et al. (1993b) who reported that the concentration of E. coli and Salmonella 

Typhimurium in separated solid effluents were slightly higher than in liquid effluents. 

The lag phase of Ascaris suum ova noticed in batch experiment is corroborated by 

Nordin (2007) and Pecson (2007). According to Fuchs (2006) HRT of the small-scale 

biogas plants in Vietnam was from 1.2 to 20.4 days, shorter than this lag phase. This 

shows that the HRT is not the significant factor affecting the survival of helminth ova in 

tropical PBDs. Hence the operation should be adjusted so that helminth ova can settle in 

the accumulated sludge at the digester base. In regular feeding experiment, a small 

portion of helminth ova survived much longer than the rest. This implies that it takes 

over one year to eliminate 100% of helminth ova in faecal sludge in tropical anaerobic 

conditions.  

Septic tanks 

Phages and bacteria were slightly reduced during treatment showing that STs function 

more like a storage tank than a treatment system. Biogas production efficiency was 

higher than that of anaerobic digestion of pig slurries under similar conditions. This 

may be due the make-up of two substrates; compared to human faeces pig slurries 

contain more cellulose, which is difficult to degrade in a short time.  
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4.2 Factors affecting performance and microbial reduction in tropical anaerobic 

digestion 

4.2.1 Effect of operational parameters on plastic bio-digester performance 

The pH of effluents from a HRT of 3 days was lower than that from HRTs of 15 and 30 

days, which were optimal for the biogas process (FNR 2006). The TIC was positively 

affected by a longer HRT. At high TIC values, the fermenter may buffer more organic 

acids produced in the acetogenic and acetic phase of digestion. High TIC values 

indicate high process stability inside the reactor and thereby also a potential to add other 

organic material to the digester: for example, if the pig manure source becomes 

deficient.  

COD treatment efficacy was markedly high at HRTs of 15 and 30 days. A HRT of 15 

days is acceptable for COD treatment in tropical PBDs. Yet these values do not 

correlate with real COD treatments owing to the accumulated solids at the digester base. 

Besides the PBD design, COD treatment efficacy depends on digester operation and 

maintenance. With the same HRT, effluent COD values may differ as a result of the 

velocity of influent flow, suggesting that the speed of input flow should be reduced 

when it enters the digester.  

With a fixed daily input of fresh manure, reactors with longer HRTs produced more 

biogas. A similar trend was described by Thy et al. (2005). The higher gas yields at 

longer HRT may be due to: (1) prolonged digestion time; and (2) a lower velocity 

leading to increased sedimentation. The fact that sediment can contribute to biogas 

production is a point supported by Nuber and Tien (2008). In addition, by the end of the 

trial the accumulated sludge was more homogeneous in the reactors at longer HRTs. 

The higher TIC of the digester’s substrate keeps the pH values stable during the 

anaerobic treatment. This is important for the methanogenesis phase since low pH 

(<6.5) and high level of VFA have a strongly toxic effect on methanogenic bacteria in 

the digester (FEC Services 2003). At HRT of 3 days pH and TIC were low while at 

HRT of 15 and 30 days reactors showed optimal pH for gas production. At low HRTs 

the methanogenic population is flushed out of the digester because of its long 

reproduction time, reported to be above 5 days (FNR 2006). As a consequence average 
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methane production per reactor per day increased significantly from HRT of 3 days (0.2 

l) to 15 days (0.4 l) and 30 days (0.5 l). 

4.2.2 Factors affecting microbial reduction in tropical anaerobic digestion 

Initial concentration and substrate type  

Initial populations affect reduction rates of most microorganisms tested, and most likely 

due to competition for nutrients. Thus competition is a factor in reducing the viability of 

enteric bacteria during mesophilic digestion (Smith et al. 2005). E. coli and Salmonella 

Senftenberg survived longer in swine slurry than in cattle slurry. This is supported by 

Olsen and Larsen (1987) who found a sizeable difference in T90 values for Salmonella 

Typhimurium and E. coli serovar O157 in these slurries, although later research has not 

cited this (Kumar et al. 1999, Côté et al. 2006). The reduction rate of Enterococcus 

faecalis was not influenced by slurry type, and supported by Olsen and Larsen (1987).  

T90 values of E. coli, Enterococcus faecalis and Salmonella Typhimurium in animal 

slurries with high initial concentrations at 35oC were similar in Olsen and Larsen 

(1987). That Enterococcus faecalis survived noticeably longer than E.coli and 

Salmonella typhi is supported by Kumar et al. (1999). Literature on the survival of 

somatic coliphages in slurries at mesophilic anaerobic conditions is scarce. 

The reduction of E. coli is influenced by the strain used. The E. coli population from 

laboratory strain died off after only one day of anaerobic treatment. A similar trend for 

coliforms was described at 35oC by Olsen and Larsen (1987); at 6-8oC and 20oC by 

Larsen and Munch (1986). In contrast Abdul and Lloyd (1985) observed a longer 

survival of antibiotic-resistant strain of E. coli compared to sensitive isolates during 

anaerobic digestion of pig slurry at 37oC. In this experiment indigenous E. coli in swine 

and cattle slurries showed the same survival rate as the strains isolated from fresh 

slurries. The results emphasised the importance of using E. coli strains, or suitably 

sensitive organisms, indigenous to experimental substrates to assess the efficacy of 

treatment conditions on pathogen removal rates. Other bacteria showed no significant 

difference in reduction rates between laboratory strains and isolated ones. 
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Hydraulic retention time 

A HRT of 3 days showed a very low reduction of organisms tested, especially for E. 

coli. Kobayashi et al. (2003) found no significant difference between the concentrations 

of E. coli at the input and output ends of PBDs. Rechenburg et al. (2007) also concluded 

that indicator bacteria are only slightly reduced in PBDs. The high populations of E. 

coli found in PBD effluents in the Mekong Delta are reflected in the results obtained 

from the reactors with a HRT of ≤ 3 days. When the HRT of the digester is 3 days or 

less, the log10 reduction of E. coli is less than 0.5, while biogas is still produced due to 

the accumulated sludge at the digester’s base. Hence the use of PBDs in such cases does 

not improve environmental hygiene and poses a health risk if the effluent is not further 

treated. 

Several factors can be related to the higher reduction of pathogen and indicator 

microorganisms with a longer HRT. One factor is the high level of TIC that, according 

to Park and Diez-Gonzales (2003) inactivates bacterial pathogens. Another factor is that 

the longer HRTs result in less easily biodegradable substrates, which affect the survival 

of facultative anaerobes. Even if the hygienic microbiological quality of PBDs’ 

effluents increases with longer HRTs, a HRT of 30 days was not enough for the effluent 

to meet WHO (2006a) guideline standards for restricted irrigation, which stipulates a 

reduction in E. coli by 4 log units. If effluent is to be used for food production, other 

safety barriers will be needed. It is not recommended that effluent is discharged directly 

to surface water, or applied to vegetables that are consumed raw. Therefore, additional 

health protection measures, such as allowing substantial time to lapse between final 

irrigation and harvest, and washing vegetables with clean water prior to consumption, 

should be applied. Thus the required hygiene levels can be reached, especially for the 

effluent from reactors with long HRTs.  

From this bench-scale study it can be inferred that the reduction of pathogens common 

to domestic PBDs in tropical regions increases with HRT. Long HRTs, or factors 

related to longer HRTs such as high TIC, play a vital role in pathogen reduction, while 

yielding more gas production as well as improving hygiene for PBD users and the 

general population more broadly. However effluent quality in terms of microbiological 

hygiene requirements is not good enough to be discharged directly into surface water or 
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applied to crops that are eaten raw, even with a HRT of 30 days. A HRT of at least 15 

days is recommended to increase gas yield and achieve a higher pathogen reduction. In 

sensitive areas, for example where surface water is used for domestic purposes, a HRT 

of at least 30 days should be applied.  

Volatile fatty acid 

The results show that the anaerobic process has its own optimal operation parameters. 

In this trial reactors could not handle high VFA concentrations (> 2.5 g l-1). Another 

parameter of interest is EC. The estimated Na+ concentration (originating from NaHCO3 

used for neutralising) in the VFA amendment reactor at the end of the second week was 

still below the level causing inhibition (Gerardi 2003). Yet EC values in effluents from 

VFA amendment reactors were much higher than the control from the second week of 

VFA addition (Figure 3.4). It shows that VFA > 2.5 g l-1 and EC > 3mS/m inhibits 

reactor processes. Thus augmenting VFA concentrations to over 2.5 g l-1 in a plastic 

bio-digester in the tropics is not feasible since: (1) high levels of VFA cause a dramatic 

drop in pH; (2) if pH adjustment is needed then the raised EC values cause inhibition. 

High level of VFA may influence the reduction of methanogenic bacteria more than that 

of the bacteria tested. All bacteria tested are of the Gram-negative group while methane-

forming bacteria belong to both Gram-negative and Gram-positive groups. The anti-

bacterial effect of VFA on bacteria was more pronounced in Gram-positive bacterium 

(Raftari et al. 2009, Skrivanova et al. 2006). The higher sensitivity of Gram-positive 

bacteria to VFA can be related to the structure of the cell wall in this group (Raftari et 

al. 2009). Gram-negative cell walls have a more complicated structure than do those of 

gram-positive organisms. The outer membrane serves as a permeability barrier to very 

large or hydrophobic molecules (Paustian and Roberts 2006). 

The effect of VFA on pathogen reduction depends on the stage-based design of 

anaerobic treatment system. In a well functioning combined-stage reactor, VFA 

concentrations can reach a high level while pH stays in the optimal range for biogas 

production (Boe and Angelidaki 2009, Hansen et al. 1998, Kearney et al. 1993b). In this 

trial the reduction of indicators and pathogen tested was not influenced by VFA. The 

reduction rate was higher in the slightly acidic pH in the control reactors. This finding is 

supported by Hill (2003) who found that the effect of VFA on pathogen inactivation 



104  4 DISCUSSION 

 

 

was more pronounced at acidic pH values. Kearney et al. (1993b) found no correlation 

between VFA concentration and pathogen reduction. However this finding is based on a 

multi-stage anaerobic digestion process. In the two-phase system, hydrolysis and acid 

forming is encouraged in the first or acid phase while methane production occurs in the 

second phase and in a separate reactor. Thus in the first phase VFAs are produced and 

accumulated causing a decrease in pH. High concentrations of VFA and low levels of 

pH cause a greater reduction of pathogens (Kunte et al. 1998). However acceptable 

enzymatic activity of acid-forming bacteria occurs above pH 5.0 (Gerardi 2003). In 

contrast pH value in the second phase (methanogenesis) should be neutral to favour the 

activity of methanogenic bacteria. Thus pathogen reduction is expected to be more 

efficient in two-stage reactors.  

Batch versus regular feeding trials 

The greater decline of E. coli and Salmonella spp. in batch versus continuous anaerobic 

digestion is supported by Kearney et al. (1993a). This may be due to the growth of these 

bacteria in the reactors. Growth of faecal coliforms and Salmonella spp. in mesophilic 

anaerobic digester sludge after pasteurization has been reported (Ward et al. 1999). The 

operational conditions of continuous reactors may favour survival of enterobacteriaceae 

as these are facultative anaerobes. The bacteria were provided with fresh nutrients and a 

small amount of oxygen. The greater inactivation rate of Coliphages in batch reactors 

can be explained by a lack of their bacteria host in the substrate. 

4.3 Microbiological characteristics of faecal substrates in the Mekong Delta 

4.3.1 Pig slurry 

Many helminth ova species were found in pig slurries. Pigs in MD were shown to be 

infected with helminth species at a high rate and six helminth ova species were 

previously reported (Hung et al. 2000, Yoshihara et al. 1999). Yet this may reflect the 

fact that PBD slurries are a combination of many animal’s manure. Ascaris suum and 

Taenia spp., both responsible for zoonotic diseases, were frequently detected in samples 

and present a health risk to people (Olson and Guselle 2000). Fasciolopsis buski was 

also found and its presence may be due to spinaches that often supplement a pig’s diet. 

Yoshihara et al. (1999) found that spinach is a habitat for the intermediate host of F. 
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buski. Since aquatic spinach is often eaten raw it is possible that people will contract 

this fluke infection.  

MD farmers do not handle pig slurries, except cleaning pigsties. Slurries go to PBDs or 

surface water. Yet this latter is used to bath, wash, cook and drink. Thus untreated pig 

slurries should not be discharged to surface water. That their use is encouraged in PBDs 

to produce cooking gas is a positive solution for a region with typical water-based life. 

However, PBD’s functionabiliy should be taken in account to achieve an optimal 

pathogen reduction and gas production. 

4.3.2 Untreated septage 

When the ST is full, untreated septage often flows directly to surface water bodies, and 

contaminates them. The average concentration of E. coli in the untreated septage does 

not meet Vietnamese Domestic Wastewater Discharge Standards (TCVN 6772:2000), 

as it only allows levels of total coliform in the range of 1,000 to 10,000 MPN/100ml. In 

our study we only measured E. coli and found levels above the limit in all samples.    

 As the studied tanks were filled with sludge, the HRT of waste water was short.  

Helminth ova in the overflow do not sediment fast enough to be captured in the sludge 

accumulated at the tank’s base, and the ova risk ending up in the surface water used by 

many people every day. Thus increasing the frequency of emptying means the risk for 

transmitting helminths to the surface water is reduced. While residents must obtain a 

construction permit for the design of a ST before houses are built, there are neither 

regulations nor legislation for their emptying. Thus STs should be built in such a way as 

to be easily accessed for maintenance, eg. removable access covers should be installed 

for easy inspection of sludge level and emptying. Beside raising awareness in the 

general population there must be changes to legal and policy frameworks if STs are to 

perform optimally and decrease the risk of contamination to surface water.                                                   

4.3.3 Septage sludge  

Phages and bacteria found in septage sludge were in accord with the concentration 

found in other regions, e.g Australia (Kellogg Brown and Root Pty Ltd 2006) and 

Europe (Lepeuple et al. 2004). Yet the percentage of phage-positive samples differed 
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spatially depending on the health situation of different human populations. Lucena et al. 

(2003) for instance reported that MSB were detected in all septage sludge samples in 

Buenos Aires (Argentina), while Calci et al. (1998) found only 58% of samples 

collected in Southern Rhode Island (USA) were MSB positive.  

That helminth ova were detected in 100% of septage sludges tested is supported by a 

study of Bao (2006) in northern Vietnam, although our concentration range is wider. 

There was no correlation found between helminth ova concentration and retention time 

of tank sludge (data not shown). It is more likely that the population of helminth ova 

correlated to the number of users and their helminth loads. From approximately 300 m3 

of septage sludge discharged daily into the environment in Ho Chi Minh city (Cuong 

2008) about 5 billion helminth ova were calculated to be released daily into the 

environment. No data is on hand for septage sludge discharges in Ha Noi, but a 

concentration of up to 5,730 helminth ova per litre found in the Kim Nguu River (Trang 

et al. 2007) may be due to discharge from the city’s sewerage system and direct 

discharge of untreated septage and septage sludge into the river. 

The average concentrations of helminth ova detected in septage sludge is corroborated 

by other studies. Concentrations were much higher than those found in Bangkok, 

Manila and Accra (Strauss et al. 2000). The incidence of helminth infections in Vietnam 

is generally higher than those of many other developing countries (Trang et al. 2007), 

but Ascaris concentrations were lower than the concentrations found in Bangladeshi 

slums, with over 100,000 ova l-1 (Lloyd and Frederick 2000). 

Many helminth ova varieties were found in septage sludge, and concurs with Le Hung 

et al. (2005) who reported multiple kinds of helminth ova found in stool samples in an 

ethnic minority community in the mountains of southern Vietnam. Most studies on 

helminth infections among people in Vietnam have focused on soil-transmitted 

helminths (STH) like Ascaris lumbricoides, Trichuris sp. and hookworm (Van der Hoek 

et al. 2003, Trang et al. 2007). Our results showed that Ascaris lumbricoides ova 

predominated in high concentrations and frequency. Yet ova concentrations of most 

other varieties found in septage sludge were much higher than those of Trichuris sp. and 

hookworm, which were present at an average of 8 ova per litre. Erdogrul and Sener 

(2005) also detected a high percentage of Enterobius vermicularis in various fruit and 
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vegetables irrigated by wastewater in Kahramanmaras, Turkey. Taenia spp. were 

detected in 30% of septage sludge samples although Taeniasis is the target of control 

programs in several countries (Gonzalez et al. 2006). This shows that beside STH other 

parasitic helminths should be also considered in managing a population’s health.  

4.4 Microbial contamination of surface water and aquatic spinach in the Mekong 

Delta 

4.4.1 Surface water 

That E. coli and Enterococcus spp. were detected in all water samples from fishponds 

receiving PBDs’ effluents is in accordance with the occurrence of these bacteria in the 

effluents. The E. coli concentration is consistent with Kobayashi et al. (2003) who 

showed the E. coli concentration ranged from 102 to 105 CFU ml-1.  

The E. coli levels found in rural canals concur with Kobayashi et al. (2003) who 

reported a range of 102 to 104 CFU ml-1. Enterococcus concentrations are supported by 

Abrahamsson and Svensson (2000), who worked with drinking water quality in An 

Giang, Can Tho9 and Soc Trang (MD provinces). Yet E. coli levels in Abrahamsson and 

Svensson (2000) were low, with an average of 51 CFU per 100 ml. This may be due to 

the large uncertainty in test results as stated by the authors. The mean concentrations of 

Enterococcus spp. and somatic coliphage are corroborated by studies in other countries 

on surface water contamination by human and non-human faecal waste (Hot et al. 2003, 

Lucena et al. 2003). Salmonella spp. were detected in 30% of samples and this shows a 

risk of contracting salmonellosis while exposed to canal water.  

The high percentage of positive samples taken from urban canals may reflect discharge 

of human faeces, untreated septage, domestic ST effluent and other wastes. E. coli 

concentration was in accord with concentrations found in Ho Chi Minh City canals (Ha 

et al. 2008).  

                                                

9 Can Tho (Cần Thơ) Province was split into two new administrative units: Cần Thơ City and Hậu Giang 

Province in the beginning of 2004. 
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Microbial concentrations in specific watercourses can vary by season. In the dry season 

canal and river water levels are low and microbial concentrations can be above average. 

In contrast wet season water levels are high and microbial loads can be below average, 

yet storm run-off can increase loads (Kistemann et al. 2002). Thus spatial variations 

may be more significant than seasonal variations. Seto (2002) measured total coliform 

levels at 2-month intervals from 37 sampling sites in 6 MD provinces from April 2000 

to January 2002, and with peaks and lows in various months in different sites found no 

seasonal pattern. A similar pattern (Figure 4.1) was observed in Rechenburg et al. 

(2005) while Enterococcus levels did not vary significantly over a year (1 × 103 - 8 × 

103 CFU per 100 ml). Thus microbial loads in MD surface waters may depend on 

watercourse size and local conditions, e.g pollution sources.                                                                                                                             

 

Figure 4.1 | Total coliform concentrations in rural canals in Can Tho. 

Data source:  Rechenburg et al. (2005). 

4.4.2 Cultivated aquatic spinach  

Compared to the microbial load on field vegetables (Ha et al. 2008) those on aquatic 

spinaches were much lower. The latter’s habitat only received PBD liquid effluents. No 

direct faecal sources were seen to discharge into ponds. In Vietnam field vegetables 
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may be contaminated from polluted irrigation waters or organic fertilizers like animal 

dung (Ha et al. 2008). 

Due to the different sources of microbes the average and range of E. coli concentrations 

found in aquatic spinach in urban areas were higher and wider than those in fishponds. 

Yet  E. coli levels here were still much lower than on vegetables in Ho Chi Minh City 

markets, which were reported to be up to 104 CFU g-1 (Ha et al. 2008). No data is on 

hand for microbial contamination of vegetables in MD markets but it is expected to be 

less than those in Ho Chi Minh City.  

4.5 Persistence of phages and bacteria in Mekong river water and on terrestrial 

spinach in the Mekong Delta 

Somatic coliphage and bacteria were reduced slowly in Mekong River samples, 

revealing the chance of pathogen transmission is great. That phages were more resistant 

than bacteria in water agrees with Allwood et al. (2003). Reduction rates were higher 

than in other studies conducted at lower temperatures (Wang and Doyle 1998, Santo 

Domingo et al. 2000). These microbes survive longer at lower temperatures (Guan and 

Holley 2003).  

Reduction rates of phages and bacteria on spinaches were lower than WHO guidelines 

(WHO 2006a), with levels of 0.5–2 log units/day. The volume of water attaching to 

spinaches after irrigation is much lower than the 10.8 ml of wastewater on 100 g of 

lettuce noted by Shuval et al. (1997). Yet the target vegetables and methods used in this 

study were different, although it replicates MD conditions used here for risk analysis.  

 

4.6 Quantitative Microbial Risk Assessment 

4.6.1 Risk associated with faecal management in the Mekong Delta 

Annual infection risks of working with faecal sludge were higher than acceptable risks. 

The results are consistent with Bao (2006) and Bo et al. (1993) regarding the impact of 

septage and sewage sludge on workers’ health. Risks of salmonellosis were 

significantly lower than other concerned pathogens. This trend is supported by 

Schönning et al. (2007) who assessed risks associated with handling and use of human 
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faeces. Can Tho City sewerage workers operating the pump trucks and farmers cleaning 

pigsties did not take any health protection measure during this study’s sampling. 

Sewage workers merely washed their hands with a small amount of tap water after 

work. The situation is even worse when desludging is done manually. In many cases 

workers have to stand inside the storage tank for hours while removing septage sludge. 

Thus infection risks for people handling with faecal sludge in MD are not reduced by 

health protection measures and remain high. 

Annual risk of rotavirus infection when immersed in canals in both rural and urban 

areas is supported by Few et al. (2010) who showed a strong association between 

swimming frequency in surface water and diarrhea diseases in MD. Risk of bathing 

directly by swimming in canals was above acceptable levels though bathing in canals is 

a commonplace habit of MD rural habitants. By using flocculated water for bathing in 

the home, it is estimated that annual risks can be reduced at least 10 times.  

Risk estimates show that MD canal water is unsuited to bathing/swimming. E. coli and 

Enterococcus spp. concentrations (Section 3.7) are higher than EPA standards (2003) 

for bathing freshwater with full body contact. According to WHO guidelines for 

microbial quality of recreational waters (2003), the 95th percentile values of 

Enterococcus spp. suggest an average probability of one case of gastroenteritis per 20 

exposures. This ratio (5 × 10-2) is similar to the calculated infection risk for rotavirus 

(Table 3.23). 

Drinking untreated or alum-flocculated surface water leads to high risks of infection. 

This is backed by Luxemburger et al. (2001) who showed that drinking surface water 

resulted in over 80% of typhoid fever cases in Dong Thap. This occurs mainly in rural 

areas where substandard water delivery and sanitation systems abound, promoting 

incidental ingestion of faecal matter. There are several alternative methods for ensuring 

water is safe to drink. These include boiling the water, chemically disinfecting it, 

filtering it, using various combinations of the previously stated methods, or buying 

bottled water. In addition, solar drinking water disinfection, so-called SODIS, is a low-

cost, point-of-use water purification method that has been disseminated globally 

(Mäusezahl et al. 2009).  
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Drinking safe water is possible in rural MD. About 7,500 households in Dong Thap 

were introduced to SODIS method within the first phase of Vietnam SODIS project 

(2005 – 2009). Preliminary observation from this project showed that the number of 

reported diarrhea cases was reduced (Helvetas 2010). SODIS requires sunlight, a clear 

water source and unscratched, transparent PolyEthylene Terephthalate (PET) bottles. 

Thus SODIS method may be difficult to apply in rainy season when sunlight is limited 

and the turbidity of surface water is high. Traditionally boiling water is the best method 

for making water safe to drink. Boiling water properly kills bacteria, parasites, and 

viruses causing gastroenteritis. However, Few et al. (2010) showed that boiled water 

had significant contamination. That may be due to the prior contamination of containers 

or recontamination from a long storage time. It implies that hygiene practices at home 

play a significant role in reducing infection risks (Herbst et al. 2008). 

MD locals appear to assume that there is no undue pathogen load when washing spinach 

in untreated canal water. Even when spinach is washed in flocculated or tap water 

annual risks reduced but spinach is still not safe for eating. No helminth ova were found 

in samples so aquatic spinach is assumed to be ova free, yet as spinach is a known snail 

habitat and snails are an ova’s intermediate host, helminthiasis may be contracted 

(Yoshihara et al. 1999, Shuval et al. 1986). Under current PBD functionality regimes, 

spinach applied with PBD effluent is not recommended for eating raw because of the 

helminth contamination. Thus in the MD it is advisable to cook spinach before eating. 

4.6.2 Fluctuation of risk estimates 

Risk of rotavirus infection linked to immersion in canals and drinking this water may 

overestimate the reality. Rotavirus populations used in models derive from animal and 

human faeces. This study did not establish faecal origin so rotavirus levels were taken to 

be human, and as animal-human transmission is low (Cook et al. 2004) infection can be 

considered a worst-case scenario. 

Infection risks may be seasonal. Where there is little seasonal difference like MD 

rotavirus infections vary little year-round (Nguyen et al. (2001). Few et al. (2010) also 

found no strong evidence of an association between seasonality and diarrheal diseases 

in MD. Yet typhoid fever peaks before the wet season when river levels are lowest (Lin 

et al. 2000, Luxemburger et al. 2001). Literature on seasonality of helminthiasis in MD 
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is scarce, though conditions are suitable for soil transmission of intestinal helminths 

throughout the year (Hung et al. 2005). It indicates that marginal seasonal variations in 

water quality are unlikely to generate a strong difference in health outcome at the 

population level. The variation in water source used for daily life and health protection 

measures applied may mostly influence the health situation of the population. 

Infection risks in flood prone areas will be higher than estimated risks due to increased 

exposure to contaminated water. Except for areas of prolonged flooding like Dong Thap 

and An Giang, floodwaters breach many houses in MD at high tides in September and 

October. Water quality will depend on proximity to latrines, animal manure, waste 

dumps etc. Most of Dong Thap and An Giang’s populations are deprived. They work in 

the fields and drink and cook with untreated surface water so are more exposed to 

waterborne hazards like diarrhoea in the wet season (Few and Tran 2010). 

Infection risk is influenced by pathogen, with risk ranking of exposure to human faeces 

in descending order being helminthisasis, rotavirus infection and salmonellosis. 

Helminthiasis is the peak risk as it is a health burden in the general population (Trang et 

al. 2007, Dung et al. 2007). However there is no data of helminth infection reported 

from Can Tho City in 2009. The risk ranking order of rotavirus and Salmonella is 

confirmed by epidemiological data in Can Tho City, where 18,178 diarrhoea cases and 

13 typhoid fever cases were reported in 2009 (PHC 2010). As rotavirus accounts for 

~50% of diarrhoea cases in Vietnam (Nishio et al. 2000, Nguyen et al. 2001, Nguyen et 

al. 2004) there were an estimated number of 9,000 rotavirus-related diarrhoea cases in 

the city.  

4.6.3 Use of appropriate data and risk models 

Rotavirus levels used in risk models were calculated on the average ratios of somatic 

coliphage: rotavirus in domestic raw sewage and surface water received (un)treated 

sewage (Lodder and Husman 2005). Compared to the rotavirus - E. coli ratio of 1:105 

(Mara et al. 2007, Howard et al. 2007) use of rotavirus concentrations based on somatic 

coliphage varied from 5 – 29%. Yet variation between the two calculations for surface 

water was greater (3 to 108 times), showing that a rotavirus-E. coli ratio of 1:105 may 

not be applicable for urban water systems as in a study of Labite et al. (2010). Thus the 

rotavirus - E. coli ratio mentioned may only be apt for domestic wastewater and raw 
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sewage systems. E. coli and rotavirus in surface water should have a different ratio as 

they may originate from different sources such as animal manure, garbage etc.  

Choice of model can also sway risk outputs. Probability of helminthiasis or ascariasis 

using an exponential model was generally 1 log10 higher than if the β-Poisson model 

designed by Navarro et al. (2009) was used (Table 4.1). The exponential model also 

gave higher annual risk values in all scenarios, and the difference between the models 

was greater at lower input doses (Table 4.2). Scenario 4.3c showed values below 10-4 

for ascariasis in both models but that the median result from the exponential model was 

about 2 log10 higher than the β-Poisson model. This shows that the dose-response 

relationship developed by Navarro et al. (2009) may be suited to calculate helminthiasis 

risks in developing countries due to endemic immunity there. In addition, current 

infection rate is likely to be lower than theory (one egg can cause infection (r = 1) and 

applied in the exponential model). 
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Table 4.1 | Probability of infection of helminth and Ascaris (median values and 95% 

confidence interval in parentheses) following two different risk models. 

Scenario 
Exponential model, r = 1 

β-Poisson model, N50 = 859 and           

α = 0.104  (Navarro et al. 2009) 

Helminth Ascaris Helminth Ascaris 

1.1 
0.38 

(0 – 0.76) 
8 × 10-2  

 (0 – 0.32) 
4 × 10-2 

 (0 – 8 × 10-2) 
8 × 10-3  

(0 – 3 × 10-2) 

1.2 
0.51 

(1 × 10-4 – 1) 
0.22 

(0 – 1) 
5 × 10-2 

 (7 × 10-12 – 0.4) 
2 × 10-2 

 (1 × 10-5 – 0.3) 

1.5 
0.18 

(0 – 0.64) 
4 × 10-2 

(4 × 10-10 – 0.28) 
2 × 10-2 

(0 – 7 × 10-2) 
4 × 10-3  

(4 × 10-11 – 3 × 10-2) 

1.6 
0.99 

(0.42 – 1) 
0.98 

(0 – 1) 
0.20 

(4 × 10-2 – 0.3) 
0.10 

(0 – 0.3) 

4.3 a 
0.50 

(4 × 10-4 – 1) 
0.86 

(2 × 10-10 – 1) 
0.10 

(2 × 10-11 – 0.45) 
5 × 10-2 

 (2 × 10-5 – 0.35) 

4.3 b 
7 × 10-2 

 (4 × 10-5 – 1) 
0.18 

(2 × 10-11 – 1) 
2 × 10-2 

 (2 × 10-12 – 0.30) 
6 × 10-3  

 (2 × 10-6 – 0.19) 

4.3 c 
7 × 10-8 

(3 × 10-11 – 7 × 10-6) 
2 × 10-7 

(0 – 4 × 10-5) 
2 × 10-8 

(0 – 3 × 10-6) 
7 × 10-9 

(0 – 6 × 10-7) 

Accidental ingestion of 1 ml of Fresh pig slurry (1.1); Liquid plastic bio-digester’s effluent (1.2); 

Untreated septage (1.5) and Septage sludge (1.6) 

Consumption of spinach fertilised with plastic bio-digester’s effluent in the Mekong Delta (4.3); time 

elapsed between final irrigation and harvest is 3 days. No reduction of helminth ova was assumed in the 

meantime. 

a) raw without proper washing 

b) raw after washing with flocculated water/tap water 

c) cooked  
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Table 4.2 | Annual risk of infection of helminth and Ascaris (median values and 95% 

confidence interval in parentheses) following two different risk models. 

Scenario 
Pinf from Exponential model, r = 1 

Pinf from β-Poisson model, N50 = 859 

and α = 0.104  (Navarro et al. 2009) 

Helminth Ascaris Helminth Ascaris 

1.1 
1 

(0 – 1) 
1 

(0 – 1) 
1 

(0 – 1) 
1 

(0 – 1) 

1.2 
1 

(1 – 1) 
1 

(1 × 10-2 – 1) 
0.99 

(7 × 10-10 – 1) 
0.88 

(1 × 10-3 – 1) 

1.5 
1 

(0 – 1) 
1 

(9 × 10-8 – 1) 
0.98 

(0 – 1) 
0.61 

(1 × 10-8 – 1) 

1.6 
1 

(1 – 1) 
1 

(0 – 1) 
1 

(1 – 1) 
1 

(0 – 1) 

4.3 a 
1 

(4 × 10-2 – 1) 
1 

(2 × 10-8 – 1) 
1 

(2 × 10-3 – 1) 
0.99 

(2 × 10-9 – 1) 

4.3 b 
1 

(4 × 10-3 – 1) 
1 

(2 × 10-9 – 1) 
0.82 

(4 × 10-4 – 1) 
0.48 

(2 × 10-10 – 1) 

4.3 c 
7 × 10-6 

(4 × 10-9 – 8 × 10-4) 
2 × 10-5 

(0 – 4 × 10-3) 
2 × 10-6 

(0 – 3 × 10-4) 
7 × 10-7 

(0 – 7 × 10-5) 

Accidental ingestion of 1 ml of Fresh pig slurry (1.1); Liquid plastic bio-digester’s effluent (1.2); 

Untreated septage (1.5) and Septage sludge (1.6) 

Consumption of spinach fertilised with plastic bio-digester’s effluent in the Mekong Delta (4.3); time 

elapsed between final irrigation and harvest is 3 days. No reduction of helminth ova was assumed in the 

meantime. 

a) raw without proper washing 

b) raw after washing with flocculated water/tap water 

c) cooked 
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4.6.4 Risk estimates versus epidemiological data in the study area 

Rotavirus is the most common cause of severe diarrhoea in children worldwide but it is 

just one infectious pathogen involved. Agents include other viruses, bacteria, protozoa 

and parasites. Thus it is difficult to meaningfully assess the risks of rotavirus infection 

for diarrhoea. In any case little data on rotavirus and helminth burdens exist for MD so 

typhoid fever – which is caused by Salmonella typhi – is the exemplar disease and is 

here compared with salmonellosis, an infection of Salmonella bacteria, estimated from 

the QMRA study. 

Annual rates of typhoid fever in MD in the period from 1991 to 2001 ranged from 1 × 

10-5 to 2 × 10-3 (Kelly-Hope et al. 2007). Based on infection ÷ disease rate of 0.1 

(Glynn and Bradley 1992), calculated Salmonella typhi infection rates varied from 1 × 

10-4 to 2 × 10-2 in MD. The median annual risk of salmonellosis from studied scenarios 

in MD was estimated at 4 × 10-3 (Table 3.29), and is in-range despite not all risk factors 

being account for and risk of salmonellosis is higher than Salmonella typhi infection. 

While this finding may not capture the situation in Kelly-Hope et al. (2007) it does 

show that risk estimates fit rather well in with general epidemiological trends. 

4.6.5 Sensitive sub-populations 

Certain sections of the population are not well represented in the study. Dose-response 

parameters used in risk assessments were largely gained from feeding studies of healthy 

adults (Soller 2006). Children, the elderly, pregnant women and immuno-compromised 

individuals are excluded. These cohorts are disease-sensitive and more likely to contract 

infections that become chronic (Gerba et al. 1996). Hence cohort-specific research and 

policies aimed at reducing risk of waterborne infection among a population’s vulnerable 

must be realised (Leclerc et al. 2002). 

Among the sensitive sub-populations, children should be considered a special case 

because their neurological, immunological, and digestive systems are still in developing 

stages (Nwachuku and Gerba 2004). Moreover, children are more exposed to pathogens 

in the environment because of poor or lack of sanitary habits. U.S Environmental 

Protection Agency (2006) suggested age-dependent adjustment factors applied for 

assessing health risks of environmental exposures to children: 10-fold for exposure 
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occurring before 2 years of age; 3-fold for exposure occurring between the ages of 2 and 

16; and no adjustment after 16 years of age. Then risks for children increase 

proportional to the adjustment factors. In our study, children are assumed not to involve 

in working with faecal substrates but they can be exposed to septage while playing close 

to dumpsites. Children’s ingestion dose during one bath/swim in canals and frequency 

of events should be higher compared to that of adults.  

4.7 General discussion 

4.7.1 Possibilities to reduce pathogens discharged into the watercourse 

Decimal reduction time of phage and bacteria in Mekong River water was longer than 2 

days. Yet contaminates are emitted into the river daily, causing pathogen spread through 

the delta’s network of waterways. There are no plans for central wastewater treatment 

plants servicing some 80% of the rural population, so pathogen loads should be reduced 

via small-scale systems before discharge. Direct discharge of human faeces, especially 

from infected people, should be forbidden. Low-cost anaerobic digestion system like 

PBDs is a viable alternative for tropical regions. Health control programs must be seen 

as the best solution – reduce pathogens at source.   

Anaerobic treatment of animal slurries has an effect on the reduction of pathogens and 

indicator micro-organisms. Most organisms tested were reduced but not eliminated. 

Besides the known benefits of PBDs, gas yield and hygiene status of sludge and liquid 

outputs should be taken into account. The microbial contamination of PBD sludge is 

assumed to be similar to that in septage sludge. STs function more like storage tanks 

than anaerobic treatment systems, as do PBDs. Pathogens and microbial indicators were 

slightly reduced compared to PBDs. Yet a ST can act as a trap to keep helminth ova in 

the sludge. When the tank is full untreated septage overflows and contaminates nearby 

surface water. Hence the design, construction and operation of these plants should be 

improved for optimal performance.  

Besides dealing with faecal management, health control programmes should be 

introduced. For instance, mass treatment is very important for a rapid elimination of 

helminth infections while health education and sanitation play a role in preventing re-

infection (Hung et al. 2005). Yet no control program was cited in the Ministry of 
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Health’s Orientation on Strategies for Preventive Health Activities to 2010 (Thuong 

2000), and helminthiasis is considered a relevant health burden in Vietnam (Trang et al. 

2007, Dung et al. 2007), which this study confirms. Other infectious diseases like 

shigellosis (bacillary dysentery), typhoid fever, cholera, hepatitis, etc have been 

incorporated in preventive health activities in Vietnam. 

4.7.2 Safe use of nutrients from faecal sludge 

Phages and bacteria were found in sludge even after many years in STs. This shows that 

pathogens and indicator organisms, and especially helminth ova, accumulate in the 

sludge, and concurs with Yen-Phi et al. (2009) and Kearney et al. (1993b) on the 

mesophilic anaerobic treatment of animal waste. After application to land sludge-borne 

bacteria and helminth ova can persist for months or even years (Jimenez 2007, Gerba 

and Smith 2004), placing Vietnamese farmers, many of whom go about barefoot and 

have poor personal sanitation and hygienic practices, at risk of helminthiasis. Thus, and 

in accord with WHO guidelines (2006b), septage sludge and PBD digestate in Vietnam 

should not be applied directly to farmland regardless of tank or digester retention time.  

Use of faecal sludge for aquaculture is another possibility for the recycling of nutrients. 

However, care should be taken to avoid microbial contamination. Yajima and Kurokura 

(2008) found that applying animal manures directly to fishponds in Vietnam resulted in 

faecal contamination of water and the skin of fishes, with the estimated risk of enteric 

infection being 100 – 1,000 times higher than the US Environmental Protection Agency 

standard. Use of septage sludge for aquaculture is not significantly different from using 

manure in fishpond. Moreover helminth ova that accumulate in the pond sludge may 

survive until the pond is desludged, usually every year or two, and this sludge is then 

applied directly to arable land. According to Sanguinetti et al. (2005) Ascaris suum ova 

remain viable for up to 20 months of in-pond septage storage. In China, up to 10,000 

parasite eggs per 100 ml of pond sludge were found where fish ponds had been 

fertilized with septage sludge collected from public toilets (Bo et al. 1993). Thus the 

direct application of septage sludge to fish ponds is not recommended in Vietnam. 

By treating and sanitising the faecal sludge it should be possible to reuse this resource in 

agriculture. Where centralised wastewater treatment plants are yet to be established, like 

in Vietnam, small sanitation systems should be considered. Proposed treatments 



4 DISCUSSION  119  

 

 

effective against helminth ova include ammonia (Ottoson et al. 2008, Nordin et al. 

2009) and lime (Cappizzi-Banas et al. 2004). An alternative treatment is anaerobic 

digestion with a high HRT (Yen-Phi et al. 2009). Treatments combining faecal sludge 

dewatering and subsequent co-composting with organic solid waste were also shown to 

produce hygienic biosolids safe for agricultural reuse (Koné et al. 2007). For 

aquaculture it has been found that the liquid effluent produced via the combined 

anaerobic and facultative processes to rear fish in bio-stabilization ponds can also be 

effective (Bo et al. 1993).  

Waste stabilization ponds are likely to be the most appropriate option for wastewater 

treatment in most developing countries as they are low cost, low maintenance with high 

performance systems. In warm climates a series of ponds comprising an anaerobic 

pond, a secondary facultative pond and 1-2 maturation ponds can achieve a 3-4-log unit 

pathogen reduction and produce an effluent with 1 helminth egg per litre (Mara 2008). 

Additionally the anaerobic ponds can be covered to collect the biogas generated within 

the ponds. Ayres et al. (1992) recommended a design equation based on HRT of 

treatment ponds to meet the WHO guideline of ≤ 1 helminth egg per litre for restricted 

irrigation.  

4.7.3 Use of Quantitative Microbial Risk Assessment  

The QMRA models presented in this study provide a starting point for managing risks 

associated with faecal management situation in MD. It can be built upon, refined and 

adjusted for different scenarios at different sites. For example if alum-flocculated water 

is further treated by a sand filter system the microbial reduction due to this filter could 

be added to the model or the total reduction rate can be adjusted. Risk of drinking 

treated water from the SODIS method can also be assessed by replacing input microbial 

data of Scenario 3 (see above). Thus there is an opportunity for future reassessment of 

the risks in this study, including for regional populations and sensitive sub-populations.  

Risk estimates give an overview of a population’s health when epidemiological data is 

hard to obtain. The number of gastroenteritis cases, especially diarrhoea, reported to 

health centres is bound to be lower than actual cases, especially in rural areas. The 

percentage of outpatient treatment in state health facilities in MD in 2006 was just 52% 

(General Statistics Office 2006b). The rest visited private clinics, traditional 
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practitioners or they self-treated. Thus epidemiological data is never complete. In 

addition QMRA can provide data on which cohorts are at most risk, and the ideal basis 

from which to create preventive health initiatives in MD. 

QMRA is a tool to support the prioritization of preventive health initiatives. The United 

States Department of Agriculture was the first government agency required by law to 

include risk and economic analyses in all major regulations dealing with human health, 

safety and the environment (McElvaine 2001). Ranking of infection risk potential by 

exposure scenarios enables the identification of control points for better management. 

Figure 4.2 gives an overview of factors leading to salmonellosis in MD. It shows that 

drinking untreated and alum-flocculated surface water leads to an 80% annual risk of 

salmonellosis. Accidental ingestion of pig slurry, eating raw aquatic spinach constitute 

to about 10% and 8%, respectively. That Can Tho Preventive Health Centre 

recommended inhabitants to drink boiled water and eat well-cooked food to prevent 

salmonellosis (PHC 2010) is in line with the study’s results but it seems to be not 

adequate. Sewage workers face most risk of infection but this cohort is small.  

QMRA based on exposure assessments aids in selecting appropriate interventions for 

better health outcomes. To protect human health it is not enough to just check the total 

coliforms in water, as is set out in the Vietnamese Standard TCVN 5942-1995. This is a 

bacterial indicator and overlooks enteric viruses and protozoa (Rose and Gerba 1991). 

Moreover people are infected through multiple pathways, that include but go beyond 

water (Briscoe 1984).  
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Figure 4.2 | Main factors constituting annual salmonellosis for the Mekong Deta’s 

population. The percentages presented were based on calculations in Table 3.29. All 

other exposure scenarios contribute to 0.2% of the annual salmonellosis. 
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Risk communication is a tool to exchange information between government officials, 

technicians, health researchers, private practitioners and the public. While QMRA data 

collation and modelling requires much effort communicating health risks to the public is 

challenging. The question is how experts and the public should communicate when each 

use a different language and has different levels of comprehension. The conflict 

between experts and public risk perception is at the basis of the social dilemmas of risk 

management (Slovic 1999). This author suggested that the public participation into both 

risk assessment and risk decision making is necessary to increase the legitimacy and 

public acceptance. 

Society seems to accept risks to the extent that risks are associated with benefits, and 

the individual participates on a "voluntary" basis (Starr 1969). For instance, many 

people go swimming to improve their physical and mental health though there is a risk 

of drowning. Results show that most of MD canal water is unsuited to swimming and 

risk of swimming in canals constituted 0.5% of annual salmonellosis for MD 

population. As water quality differs from area to area, the population can decide 

whether they take risks or not. But they should perceive risk including evaluations of 

the probability as well as the consequences of a negative outcome. And so it is likely 

that this study’s findings, in seeking to improve the health, wellbeing and productivity 

of the Mekong Delta via hygienic and sustainable faecal management solutions will best 

be directed at preventive heath initiates. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

From the pilot study it can be inferred that there is a hygiene effect of domestic PBDs 

and STs in tropical regions although the maximum reduction rate of phages (somatic 

coliphage) and bacteria (E. coli, Salmonella spp., Enterococcus spp.) is about 3 log10 

unit. Long HRTs, or factors related to longer HRTs such as high TIC, play a vital role in 

microbial reduction, while yielding more gas production in PBDs. The reduction rates 

over STs are generally lower than PBDs and not significant. Ascaris suum ova need 

about 5 months to reduce 90% viability in both biogas and septage sludge. The ova 

viability in sludge can be estimated based on sludge retention time from the exponential 

equation established within the study. 

Field study results suggest that the functionality of PBDs and STs is not optimal to 

inactivate pathogens. Volume of PBD is not compatible to the amount of pig slurry. 

PBDs are rarely desludged and STs are emptied only when blockages occur. There is a 

slight reduction of phages, E. coli and Enterococcus spp. over PBDs. Salmonella spp. 

are detected more frequently in effluents than in influents. In addition, helminth ova do 

not settle efficiently in the sludge. More ova varieties with higher average concentration 

are found in effluents than in influents. Most PBD effluents and overflows from full STs 

flow directly and contaminate the surface water, which is used by many people every 

day.  

While microbial treatment of the main treatment systems in MD is not efficient, the 

pathogen loads in faecal substrates are noticeably high, especially helminth ova. The 

ova are detected in 95% untreated septage and in all septage sludge samples. More ova 

varieties in higher concentrations in septage are found than those reported from stool 

samples. Thus, the burden of helminth parasites still exists in the MD population. Since 

human disease can be caused by zoonotic transmission, high pathogen levels found in 

pig slurry can be taken account to gastroenteritis cases in the population.  

The management of (un)treated faecal substrates in MD leads to microbial 

contamination of the watercourse and some aqua-, agriculture products. Surface water 

with high concentrations of phage and bacteria leads to microbial contamination of 
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spinach in this habitat. Helminth ova are not found in surface water as well as on 

aquatic spinach. However, spinach cultivated on fields fertilised by PBD’s effluent is 

also contaminated with helminth ova. The low inactivation rate of phage and bacteria in 

MD surface water and on terrestrial spinach plays little role in preventing infection for 

the exposed population. 

The QMRA study shows that the risks of pathogen infection were recorded high and in 

descending order from helminth to rotavirus and Salmonella. In MD it is sewage 

workers who are most at risk of infection due to their constant exposure to human faecal 

matter which contains high levels of pathogens regardless of its retention time in STs. 

Yet other exposure scenarios and other people are involved. Incidental ingestion of 

slurries, bathing/swimming in canals, drinking untreated surface water, and eating raw 

spinach constitute chronic exposure scenarios for the population in MD.  

Faecal management in MD leads to high risks of infection for the population. Both 

existing treatment systems (PBDs and STs) are not efficient in terms of pathogen 

removal. Technological barriers reduce the risk of infection and include wastewater 

treatment (e.g. PBDs), due time between final crop irrigation and harvest, treatment of 

water (alum flocculation, boiling) before consumption, and food preparation. Due to the 

high pathogen load of surface water this is only potable when boiled. Aquatic spinach is 

not safe to eat unless cooked.  

The current microbial treatment efficacy of anaerobic digestion in MD can be improved 

provisionally by simple practices of operation and maintenance. Health care program 

and personal hygiene play an important role in reducing risks of infection. To reduce 

infections in the population, an integrated plan for faecal management, water supply and 

behaviour change campaigns including education program for children is needed. MD 

might serve as good example for many densely populated areas in tropical regions with 

“abundant water” but low clean water availability.  
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5.2 Recommendations 

5.2.1 Faecal matter management 

Where there are no plans for wastewater treatment plants for nearly 80% of the 

population living in the rural areas and not yet centralised plants in cities, faecal 

management remains a big issue in the whole country. Legislative reforms, public 

awareness campaigns, and strong law enforcement are needed to conserve the 

environment and to improve the population’s health. Direct discharge of fresh faecal 

matter (e.g. open defecation in canals, rivers) as well as faecal sludge collection (e.g. 

septage sludge) into the environment should be strictly forbidden. Instead, on-site 

anaerobic treatment such as STs and PBDs should be promoted. PBD users should be 

encouraged to build simple toilets and connect them to PBDs. In addition, regulated use 

of treatment systems should be taken into account. 

While these are largely out of sight and out of mind, STs will remain the main sanitation 

system for developing country households into the foreseeable future. Their sustainable 

use relies on knowledge of septage pathogens in specific areas and appropriate 

protection measures for people who handle septage. Sludge expelled from the STs, 

despite of retention time, must be sanitized properly prior to reuse in agriculture and 

aquaculture. STs must be emptied regularly to avoid untreated septage leaking into and 

polluting the environment. In addition an integrated management plan for septage 

sludge is needed to minimize infections in the population. 

Domestic PBDs are a low-cost and relatively effective local technology. For their risk-

free and sustainable use their pathogen reduction efficacy should be taken into 

consideration. Out of many factors affecting the survival of indicators and pathogen in 

tropical PBDs, HRT is recommended to implement owing to (1) higher HRT can be 

achieved in existing PBDs by using less water to clean the pigsties; and regular 

desludging; (2) higher HRT leads to higher biogas yield. A HRT of at least 15 days is 

recommended to increase gas yield and achieve a higher pathogen reduction. In 

sensitive areas, e.g. where surface water is used for domestic purposes, a HRT of at 

least 30 days should be followed. For a newly built PBD, its volume should be 

compatible with its manure input. A PBD model with two connected plastic tubes as 

shown in Figure 2.3 can be a solution for a better microbial treatment efficacy. In 
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adition, whirl influent flows should be avoided so that helminth ova can settle 

efficiently at the digester’s base. 

PBD effluent quality in MD today regarding microbiological hygiene requirements is 

not good enough to be discharged directly into surface water or applied to crops that are 

eaten raw. However the effluent can be applied to non-food crop (timber), food crops 

that are processed or cooked before consumption (e.g coconut, rice) and food crops that 

the irrigation cannot reach the eaten parts (e.g banana, orange, grapefruit, etc.). More 

barriers (further treatment, proper practice) should be applied while handling bio-

digester effluent to minimise risks to human health and the environment.  

5.2.2 Human health improvement 

People who deal with faecal substrates must be aware of the health risks and 

consequences. They should minimize their contact to faecal substrates such as using 

protective clothing. Hand disinfection should be done right after working. More 

knowledge of the quality of faecal substrates as well as health protection measures 

should be distributed among exposed and the general population. Manual desludging 

should be phased out and pump trucks that are able to traverse narrow lanes should be 

phased in. A simple solution such as using pumps instead of manual extraction of 

sludge is proposed as an urgent measure to improve sanitary worker’s health. QMRA 

study suggests that farmers and sewage workers in MD should be dewormed regularly. 

Household interventions may be as effective at preventing gastroenteritis as other 

environmental approaches, such as improved sanitation, hygiene (e.g. hand washing 

with soap, bathing in home with flocculated water), and drinking boiled water. The 

population should be informed about the infection risk of bathing by swimming in 

canals, rivers. Household interventions should be strongly encouraged, particularly 

because of evidence that they are cost-effective and that the target population may in 

fact be willing to pay for all or a portion of their cost.  
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5.2.3 Further research 

A number of issues can be identified as subjects that need to be investigated further. 

• More pathogens should be taken into account for QMRA: Campylobacter, 

Giardia and Crytosporodium. 

• QMRA of direct usage of septage and PBD sludge in agriculture and 

aquaculture. 

• Possibilities to eliminate helminth ova at high concentration in septage. 

• Contamination of fish raised in fishponds and in rivers. 

• Development of guidelines for the safe use of faecal sludge as fertilizing agents. 
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6 GLOSSARY 

Ascariasis An infection of the small intestine caused by Ascaris 

lumbricoides, a large roundworm. 

DALYs (Disability-

Adjusted Life Years) 

DALYs are a measure of the health of a population or 

burden of disease due to a specific disease or risk factor. 

DALYs attempt to measure the time lost because of 

disability or death from a disease compared with a long life 

free of disability in the absence of the disease. 

Decimal reduction time The time required to kill 90% of the organisms being studied 

Disinfection The process of killing infectious agents, microorganisms that 

can cause infectious diseases, involving disinfecting agents 

or physical processes. 

Disease Symptoms of illness in a host, e.g. diarrhea, fever, ect. 

Effluent  Liquid (e.g. treated wastewater) that flows out of a process 

or confined space. 

Enteric diseases Diseases classified as enteric enter through the mouth and 

intestinal tract and are usually spread by contaminated food, 

water, or contact with contaminated vomit or faeces. 

Excreta Faeces and urine. 

Exposure Contact of a chemical, physical or biological agent with the 

outer boundary of organisms (through inhalation, ingestion 

or dermal absorption). 

Hazard  A biological, chemical, physical or radiological agent that 

has the potential to cause harm. 

Helminthiasis Infection with one or more intestinal parasitic worms (e.g. 

roundworms Ascaris lumbricoides, whipworms Trichuris 

trichiura, hookworms (Necator americanus and 

Ancylostoma duodenale), etc).  
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Hydraulic retention 

time 

Time the wastewater takes to pass through the system. 

Immuno-compromised 

 

having an impaired immune system and therefore incapable 

of an effective immune response, usually as a result of 

disease, such as AIDS, that damages the immune system. 

Log10 reduction Organism removal efficiencies: 1 log10 unit = 90%; 2 log10 

unit = 99%; 3 log10 unit = 99.9% and so on. 

Median The middle value of a sample series (50% of the values in 

the sample are lower and 50% are greater than the median). 

Methanogenesis The formation of methane by microbes known as 

methanogens or methane producing bacteria. 

Pathogen A disease-causing organism (e.g. viruses, bacteria, protozoa, 

helminths). 

Plastic bio-digester A low-cost, small-scale biogas plant made of polyethylene 

tube. 

Risk The likelihood of a hazard causing harm in exposed 

populations in a specific time frame, including the 

magnitude of that harm. 

Salmonellosis An infection with Salmonella bacteria 

Septage Combined untreated human waste, liquid (supernatant) and 

solid or semi-solid materials, removed from septic tanks or 

any other container which holds untreated human waste. 

Sludge An organic solid or semi-solid residual material accumulated 

in the septic tank’s base or digester’s base. 

Septic tank An underground tank for receiving wastewater consisting of 

one or more compartments, in which the sanitary flow is 

detained to permit concurrent sedimentation and sludge 

digestion. 
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8 APPENDICES 

8.1 Structured questionnaire used during plastic bio-digester sampling 

Date of sampling: ………………………………………….……………… 

Code of samples: 

………………………………………………………………………………… 

 

I. General Information of Household 

1. Name of household owner: .................................................................................... 

2. Address, telephone number 

........................................................................................................................................

............................................................................................……………………………

…………........................................................................................................................ 

 

II. PBD condition 

1. Volume: ..................... m3 

Length (m): ........................ 

Diameter (m): .................... 

2. PBD age: ............year(s) .................month(s) 

3. Times of emptying since PBD to be in use? 

 Not yet                1 time 

 2 times                 3 times 

 > 3 times 
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4. Mode of emptying? 

 Mechanical          Manual 

If manual, how many people involved, for how long? 

........................................................................................................................................

……………....................................................................................................................

.................................................................................................................................… 

5. Source of input 

- Pig manure, from ............ sows, ........... piglets, ........... pigs for meat 

- Other sources: ............................................................................................................. 

 

6. Discharge/use of effluent 

 fish ponds                      gardens 

 nearest canals                Other uses: ...................................................................... 

 

Other observations: 

........................................................................................................................................

........................................................................................................................................

........................................................................................................................................

........................................................................................................................................

........................................................................................................................................

........................................................................................................................................ 
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8.2 Structured questionnaire used during septage sampling 

 

Date of sampling/septic tank emptying: 

………………………………………….……………… 

Code of samples: 

………………………………………………………………………………… 

 

I. General Information of Household 

1. Name of household owner: .................................................................................... 

2.Address:.......................................................................................................................

.............................................................................……………………………...………

…................................................................................................................................... 

 

II. Water Supply 

1. What is your water source? 

  Private house-connection 

  Public tap 

 

III. Situation of Environment Sanitation and Septic Tank Emptying 

1. Toilet connected to the municipal sewerage system? 

 Yes                  No 

2. Duration of septic tank since built ? 

 < 1 year           1 – 3 years                       > 3 years 

3. Volume of septic tank?.................m3 

Number of chambers/compartments? ................... 
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4. Times of emptying since septic tank to be in use? 

 Not yet                1 time 

 2 times                3 times 

 > 3 times 

5. Duration between emptying times? 

……………………………………………………………. 

6. Service Providers?...................................................................................... 

 Private                  Public 

7. Mode of septic tank’s emptying before? 

 Mechanical           Manual 

If manual, how many people involved, for how long? 

.......................................................................................................................................

.……………..................................................................................................................

...................................................................................................................................… 

Other observations: 

.......................................................................................................................................

.......................................................................................................................................

.......................................................................................................................................

.......................................................................................................................................

.......................................................................................................................................

....................................................................................................................................... 
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8.3 Distribution functions used in the risk models 

Table 8.1 | Description of the distribution functions used in the risk models. 

Distribution 

function 
Description 

BetaGeneral BetaGeneral(alpha1,alpha2,minimum,maximum) specifies a beta 

distribution with the defined minimum and maximum using the shape 

parameters alpha1 and alpha2. 

The BetaGeneral is directly derived from the Beta distribution by 

scaling the [0,1] range of the Beta distribution with the use of a 

minimum and maximum value to define the range. The PERT 

distribution can be derived as a special case of the BetaGeneral 

distribution. 

Expon Expon(beta) specifies an exponential distribution with the entered 

beta value. The mean of the distribution equals beta. 

This distribution is the continuous time equivalent to the Geometric 

distribution. It represents the waiting time for the first occurrence of a 

process which is continuous in time and of constant intensity. It could 

be used in similar applications to the Geometric distribution (e.g. 

queuing, maintenance and breakdown modelling), although suffers in 

some practical applications from the assumption of constant intensity. 

ExtValue ExtValue(alpha, beta) specifies an extreme value distribution with 

location parameter alpha and shape parameter beta. 

Gamma Gamma(alpha,beta) specifies a gamma distribution using the shape 

parameter alpha and the scale parameter beta. 

The Gamma distribution is the continuous time equivalent of the 

Negative Binomial i.e. it represents the distribution of inter-arrival 

times for several events from a Poisson process. It can also be used to 

represent the distribution of possible values for the intensity of a 

Poisson process, when observations of the process have been made. 
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Table 8.1 (continued) 

Distribution 

function 
Description 

Invgauss Invgauss(mu,lambda) specifies an inverse Gaussian distribution with 

mean mu and shape parameter lambda. 

Loglogistic Loglogistic(gamma,beta,alpha) specifies a log-logistic distribution 

with location parameter gamma and shape parameter alpha and scale 

parameter beta. 

Lognorm Lognorm(mean,standard deviation) specifies a lognormal distribution 

with the entered mean and standard deviation. 

Normal Normal(mean,standard deviation) specifies a normal distribution with 

the entered mean and standard deviation. This is the traditional “bell 

shaped” curve applicable to distributions of outcomes in many data 

sets. 

Triang Triang(minimum,most likely,maximum) specifies a triangular 

distribution with three points — a minimum, most likely, and 

maximum. The direction of the "skew" of the triangular distribution is 

set by the size of the most likely value relative to the minimum and the 

maximum. 
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8.4 Vietnamese Standard of Surface Water Quality (TCVN 5942-1995) 

Table 8.2 | Parameter limits and maximum allowable concentrations of pollutants in 

surface water in Vietnam (TCVN 5942-1995). 

No. Parameter and Substance Unit 
Limitation Value 

A* B** 

1 pH value  6 – 8.5 5.5 - 9 

2 BOD5 (20ºC)  mg l-1 4 25 

3 COD  mg l-1 10 35 

4 Dissolved oxygen  mg l-1 ≥6 ≥2 

5 Suspended solids  mg l-1 20 80 

6 Arsenic  mg l-1 0.05 0.1 

7 Barium  mg l-1 1 4 

8 Cadmium  mg l-1 0.01 0.02 

9 Lead  mg l-1 0.05 0.1 

10 Chromium, Hexavalent  mg l-1 0.05 0.05 

11 Chromium, Trivalent  mg l-1 0.1 1 

12 Copper  mg l-1 0.1 1 

13 Zinc  mg l-1 1 2 

14 Manganese  mg l-1 0.1 0.8 

15 Nickel  mg l-1 0.1 1 

16 Iron  mg l-1 1 2 

17 Mercury  mg l-1 0.001 0.002 

18 Tin  mg l-1 1 2 

19 Ammonia (as N)  mg l-1 0.05 1 
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Table 8.2 (continued) 

No. Parameter and Substance Unit 
Limitation Value 

A* B** 

20 Fluoride  mg l-1 1 1.5 

21 Nitrate (as N)  mg l-1 10 15 

22 Nitrite (as N)  mg l-1 0.01 0.05 

23 Cyanide  mg l-1 0.01 0.05 

24 Phenol compounds  mg l-1 0.001 0.02 

25 Oil and grease  mg l-1 ND 0.3 

26 Detergent  mg l-1 0.5 0.5 

27 Coliform  MPN/100ml 5,000 10,000 

28 Total pesticides (except DDT)  mg l-1 0.15 0.15 

29 DDT  mg l-1 0.01 0.01 

30 Gross alpha activity  Bq l-1 0.1 0.1 

31 Gross beta activity  Bq l-1 1.0 1.0 

* applied to the surface water using for source of domestic water supply with appropriate treatments. 

** applied to the surface water using for the purposes other than domestic water supply. Quality criteria 

of water for aquatic life are specified in a separate standard. 

ND = not detectable 
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