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To My Family.






Diese Welt ist unergmdlich. Wir sind es auch, genau wie alle Wesen, die es
auf dieser Welt gibt.

Menschen sind wahrnehmende Wesen, aber die Welt, die siaehamen, ist
eine lllusion: eine lllusion geschaffen durch die Besdbuwen, die ihnen seit
ihrer Geburt erahlt wurde.

Im Grunde ist jene Welt, die sie mit ihrer Vernuft aufrechtdten nichten,

eine Welt, geschaffen durch eine Beschreibung und derematixche und
unumsbliliche Regeln, die ihre Vernuft zu akzeptieren und zuidegen gel-

ernt hat.

Don Juan Matus

Carlos Casterned®as Rad der Zeit
Fisher Taschenbuch Verlag, 1. Auflage (2007)
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Zusammenfassung

Im Rahmen eines relativistisch kovarianten Quarkmodeleyden die Auswirkungen von zwei neuen Quark-
wechselwirkungen auf die Massenspektren der leichtendd@ry sowie einer Vielzahl von Obsevablen, wie
elektroschwache Formfaktoren, Helizitatsamplitudesrfalsamplituden, magnetische Momente und Ladungs-
radien, untersucht. Das hierbei benutzte Quarkmodeleltasuf der sogenannten Bethe-Salpeter Gleichung,
mit der sich gebundene Zustande in der Quantenfeldthbesgehreiben lassen.

Nach einer kurzen Zusammenfassung der theoretischen l@gemides verwendeten Quarkmodells wer-
den die bisher veroffentlichten Ergebnisse diskutiegn&ch werden zwei verschiedene Ansatze fur alternative
Wechselwirkungen eingefuhrt. Dies entspricht dem Hailpdieser Arbeit: Zusatzlich zu dem sogenannten
Confinement-Potential und der instanton-induzierten 'ofti®Vechselwirkung wird eine neue Spin-Flavour-
abhangige Wechselwirkung eingefuhrt, die durch psekalasen Meson-Austausch motiviert ist. Hierbei
nehmen wir an, dass pseudoskalare Oktett- und Singletoidasmit den Quarks Uiber pseudoskalare Kopplung
wechselwirken. Hierfir nehmen wir ein kurzreichweitiggauss-Potential an. Dies bedingt drei zusatzliche
Modellparameter: Die Oktett- und Singlett-Kopplungen modie Reichweite dieses Potentials. Es zeigt sich,
dass diese zusatzliche Spin-Flavour-abhangige Wesinkehg, verglichen mit den bisherigen Ergebnissen,
eine bessere Beschreibung der baryonischen Massenspekimabt. Es verbessert ebenso die Beschreibung
der elektromagnetischen Formfaktoren und Helizitatddngen sowie der anderen oben genannten Obser-
vablen. Eine weitere Wechselwirkung ergibt sich aus einedifikation der Spin-Abhangigkeit des Confine-
ment-Potentials, das durch weitere Spin-Spin- und Tefsome erganzt wird. Dieses modifizierte Confine-
ment-Potential wird in Kombination mit der instanton-izikrten 't Hooft-Wechselwirkung wie auch mit
der neuen Spin-Flavour abhangigen Wechselwirkung vetletenObwohl den Ergebnissen der obigen neuen
Spin-Flavour abhangigen Wechselwirkung nicht Ubemegeeigte sich auch fur Modelle mit modifiziertem
Confinement-Potential, verglichen mit den bisherigen Mlgddanten, eine Verbesserung in der Beschreibung
der Massenspektren und elektroschwachen Observablen.

Der Inhalt dieser Dissertation ist grof3teils in den folgeméublikationen veroffentlicht worden:

e M. Ronniger und B. C. Metschiffects of a spin-flavour dependent interaction on the bargwmss
spectrum Eur. Phys. J. A7, 162 (2011), [arXiv:hep-ph/1111.3835].

e M. Ronniger und B. C. Metscliffects of a spin-flavour dependent interaction on lightdlared baryon
helicity amplitudesEur. Phys. J. A19, 8 (2013), [arXiv:hep-ph/1207.2640].
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Abstract

Within the framework of a relativistic covariant quark mbtlee effects of two novel quark interactions on the
light-flavoured baryon mass spectra as well as on a multisidéservables, such as electroweak form factors,
helicity amplitudes, decay amplitudes, magnetic momentscarge radii, are studied. This quark model is
based on the so-called Bethe-Salpeter equation, whiclidesdound-state systems in quantum field theory.

After a brief summary of the basic ingredients of the quarldetpwe discuss the results published so far.
Then we introduce two different forms for alternative iatetions. This is the major subject of this thesis:
In addition to the so-called confinement potential and atamsn-induced 't Hooft interaction a novel spin-
flavour dependent interaction motivated by pseudoscal@omexchange is introduced. Thereby we assume,
that pseudoscalar octet and singlet mesons interact witkgwia pseudoscalar coupling. Assuming a short-
range Gaussian potential in coordinate space, we introdnigethree additional model parameters: The octet
and singlet-coupling strength as well as the range of thiraction. It is found, that this additional spin-
flavour dependent interaction leads to a better descrigtidhe light-flavoured baryon mass spectra than has
been obtained so far. It also improves the description okthetroweak form factors and helicity amplitudes
as well as of the other observables mentioned above. A seiotmdction is studied, which corresponds
to a modification of the spin dependence of the confinemerngiat by introducing specific spin-spin and
tensor contributions. This modified confinement potentiaswsed in combination with the instanton-induced
't Hooft interaction and with the novel spin-flavour depentdsteraction as well. Although not superior to
the results found with the new spin-flavour dependent iotema as mentioned above, also for models with a
modified confinement potential a, compared to the previosslte improved description of both the spectra
and electroweak observables was found.

The major part of this thesis can also be found in the follgypablications:

e M. Ronniger and B. C. Metsclffects of a spin-flavour dependent interaction on the bargwmss
spectrum Eur. Phys. J. A7, 162 (2011) [arXiv:hep-ph/1111.3835].

e M. Ronniger and B. C. Metsclkffects of a spin-flavour dependent interaction on lightdlared baryon
helicity amplitudesEur. Phys. J. A419, 8 (2013) [arXiv:hep-ph/1207.2640].
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Chapter 1

Introduction

The description of the hadronic excitation spectrum remaimajor challenge in strong interaction theory. In
particular, the physics of baryons in the low- and interratgenergy regime @uantumChromoDynamics is

not well understood due to the non-perturbative nature obQA&xditionally, new data for baryon resonances
have been published in the last years. Besides new baryonaeses, new data for electromagnetic nucleon
form factors and helicity amplitudes are now available,alifiave been measured at the CB-ELSA experiment
in Bonn for instance and other experimental facilities like CEBAF at Jefferson Lab. From the theoretical
point of view two approaches exist to approximate QCD in dveénergy regimeChiral PerturbationT heory

and lattice QCD. Here, ChPT describes QCD in the framewordknoéffectiveQuantumField Theory, which
preserves all symmetries, in particular the chiral symynetithe original QCD-Lagrangian, but uses hadrons
as the relevant degrees of freedom instead of quarks andgjhmd a systematic expansion in terms of small
masses and the momenta. This has been discussed by Leufther instance. By construction, it is not
applicable to the physics of excited baryons. The secontbaph in principle is aab initio calculation: it nu-
merically simulates QCD on a discrete space-time latti¢es [Bads to a enormous numerical effort, because all
appearing correlation functions and path-integrals haetevaluated numerically in order to extract hadronic
properties. However, with increasing computing powetjdatQCD will be able to reproduce all hadronic
spectra in future, but presently, in spite of recent praginesinquenched lattice QCD, access to excited states is
still very limited [2, 3]. Therefore, alternative approaches manageable witmieseerical effort are presently
still relevant. In the past, theonstituentQuark M odel has been widely used to describe properties of excited
baryons. Such models should offer an efficient descriptiomasses (resonance positions), static properties
such as magnetic moments, charge radii, electroweak amesit(form factors and helicity amplitudes) with
only a few model parameters. Furthermore, they can servefrasn@work to judge, which resonances can
be considered exotic as well as a guideline in the searchvofeeited baryon states. Therefore, it presently
still seems worthwhile to improve upon constituent quarldedaescriptions, which in view of the light quark
masses (even taken as effective constituent masses) hbgddomulated in terms of relativistically covariant
equations of motion. About a decade ago such a quark modbkfyons has been formulated, sée7], on

the basis of an instantaneous formulation of the BetheeBal@quation. In this model the quark interactions
reflect a string-like description of quark confinement tlgiow confinement potential rising linearly with in-
terquark distances as well as a spin-flavour dependenaaiten based on instanton effects: The latter explains
the major spin-dependent splittings in the baryon spectiiining et al. [5-7] discussed two different models,
which differ by their confinement Dirac-structurigy( the spin dependence) and are simply called mgdahd

B, respectively. A satisfactory description of the majortfieas in the light-flavoured baryonic mass spectrum
could indeed be obtained. This also applies to the desonifif the electroweak nucleon form factors and
helicity amplitudes in case of the model version callédThe prominent features, that can be accounted for
include

¢ the linear Regge trajectories with an universal slope fbflatours including states up to total angular
momenta of/ = 12—5 and excitation energies up to 3 GeV, sbd];

¢ the low position of the so-called Roper-resonance in mgtahd three other positive parity excited nu-

1
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Fig. 1.1: Discrepancies in the baryonic mass spectra: Tihamel right side of each column represents the
results obtained from modedl and 53, respectively, of ] in comparison with experimental data from the
Particle Data Groupg] (middle of each column), where lines indicates the resoegosition (mass) with its
mass uncertainty represented by a shaded box. The ratirgcbfresonance is indicated by stars according
to [8]. J andn denotes the total angular momentum and parity, respegtilsficiencies are indicates with a
box and question marks.

cleon states; /o+ (1710), N9+ (1720), N5 o+ (1680)) well below all other states of this kind. These
can be largely accounted for by the instanton-induced fdheestrength of which was chosen to repro-
duce the groundstatd — N splitting [5, 6];

e a plethora of electroweak properties, which can be expiawi¢hin the framework of mode# without
introducing any additional parameters, s@€l];

e a satisfactory description of the transvefe(1535)-, D13(1520)-, S31(1620)- and D33(1700)-helicity
amplitudes for modeM.

Nevertheless, some specific discrepancies remain; masimpeat are:

e the newly discoveredV, s+ (1880)-resonance (see8[15-17]) cannot be accurately accounted for by
both models as well as the negative parity stsite,- (1535), which is predicted too low, see Fig. 1.1;

e the conspicuously low position as well as the decay progenif the negative parit; /o (1405)-
resonance. The calculated mass of this state exceeds thdameptal value by more than 100 MeV
in model.A and by more than 200 MeV in modst

e there is experimental evidencd][for excited negative parityA*-resonances well below 2 GeV
(Ay/2-(1900), Agz/o-(1940) and A;/5-(1930)), which cannot be accounted for by the quark model
mentioned above, see Fig. 1.1, nor by any other constituearkqnodel we are aware of;

e the mass of the positive parity Roper-like; »+ (1600)-resonance, see also Fig. 1.1, the low value of
which with respect to other excited states of this kind camedraced back to instanton-induced effects,
since these are absent for flavour symmetric states;

e the Roper-like resonancas /,+ (1600) and¥, /»+ (1660) are not satisfactorily reproduced by both mod-
els, see Fig. 1.1;
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e the position of the; - (1580)-resonance as well as thé€ = %*-statesz (2100), which cannot be
accounted for by both models, see Fig. 1.1;

o the description of the transver$®; (1440)-helicity amplitude within the framework of model, see 8],
does not account for the node found experimentally in noat fom Aznauryart al.[18-20] from the
CLAS-collaboration at CEBAF. Furthermore, thg; (1535)-amplitude does not describe the minimum
in the data from Burkenet al.[21]. See also Figs. 4.14 and 4.19 for further information.

Furthermore, there are more resonances than can be founertardt al.[9,10] for which helicity amplitudes
can be calculated. Also novel data on helicity amplitudesnfrAznauryanet al. [18-20], can be used to
compare to theoretical calculations. In particular, theve exists data for the longitudinal amplitudes of some
resonances, which have been measured in these experimdrtaraserve as a further test of the model.

Therefore, we want to explore whether the deficiencies roeatl above are inherent to the constituent
quark model itself or can be overcome by the introductionroédditional quark interaction, which improves
upon the issues mentioned above without deteriorating xbellent description of the majority of the other
states. In view of the fact, that the discrepancies mairfigcathe A-spectrum, this additional interaction is
likely to be flavour dependent. An obvious candidate in tkispect would be a single pseudoscalar meson-
exchange potential as has been used as a basis of an effgutivBavour dependent quark interaction very
successfully by the Graz-groupZ-30]. This model uses a so-called Goldstone-Boson exchandenvétrel-
ativised constituent quark model. Furthermore, the modstdbes baryon states with< % and electroweak
form factors quite well. In particular the electric neutfonm factor can be accurately accounted for.

In the present thesis we shall investigate two differentlémgntations of alternative interactions, which
are able to rectify at least partially the deficiencies nm@d above. The thesis is organised as follows: After
a detailed recapitulation of the ingredients and basic timpsmof our Bethe-Salpeter model in chapter 2 as pre-
sented by Loring, Merten, Kretzschmar and Hadp?[9, 10, 12-14], we summarise in chapter 3 the numerical
results obtained so far on the light-flavoured baryon spdotrmodel4 and3, respectively. Subsequently we
introduce the new alternative interactions in chapter 4eré&hy, section 4.2 contains the results and discus-
sion of the baryon mass spectra, electroweak form factatalicity amplitudes including a new spin-flavour
dependent interaction (see Ronnigeil. [31, 32]) in comparison to the older results obtained from Loretg
al. [5,6]. In the subsequent section 4.3 we present the results ofdifiesh confinement potential including
spin-spin and tensor interactions, before concluding wisoammary in chapter 5.

A part of this work has been published 1] 32] (section 4.2). A synopsis of the major chapters is given
as follows:

Chapter 2: After a brief introduction, chapter 2 starts with the intnation of the six-point Green’s function
defined as the vacuum expectation value of the time-ordelustmf three-fermion Heisenberg field operators
and their adjoint operators and its major contribution frva incoming and outgoing baryon-state in sec-
tion 2.2. Following the work of Loringt al. [4, 7], the Bethe-Salpeter equation and its normalisation cimnmdi
are derived from the six-point Green'’s function in sectioB. Here, we show the underlying method how to
extract the Bethe-Salpeter equation from the Green’s imdiy defining the corresponding Bethe-Salpeter
amplitudes using a Laurent- and Taylor-expansion arounal&ip the energy. Subsequent to this section, in
section 2.4, a reduction method of the Bethe-Salpeter mqutd the instantaneous Salpeter equation is dis-
cussed. In particular, the free quark-propagator appration enters within this reduction method together
with the instantaneous approximation itself. Here, algoShlpeter amplitudes are defined. Due to the projec-
tive structure of the Salpeter equation it is possible taritevthe Salpeter equation in terms of an Hamiltonian
as shown in subsection 2.4.5. Consequently, the Salpetatieq corresponds to an eigenvalue problem in
which the Salpeter amplitudes enter as eigenvectors, \heleigenvalues correspond to the baryon masses.
In the next section 2.5, the calculation of current-mattéoeents is discussed in order to calculate electroweak
nucleon form factors and helicity amplitudes. The caléatabf current-matrix elements starts from a seven-
point Green'’s function in the same manner as the Bethe-@alpgquation has been derived from the six-point
Green’s function. The underlying concept has been workédpMerten and Kretzschmagt al. [9, 10, 12]
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and allows the calculation of electroweak form factors ag@litty amplitudes. It is summarised in section 2.6
and 2.7.

Chapter 3: Chapter 3 summarises the results for madelnd 3, respectively. We start in section 3.2 with a
brief introduction to the different approaches for the cosfinent potential for these models before discussing
the major points for the implementation of the instantotidiced 't Hooft interaction in section 3.3. Since the
one-gluon exchange offers an alternative to the instaimdneed 't Hooft interaction, we have summarised
the basics of the one-gluon exchange in this section fordke sf completeness and without discussing the
results, which can be found in the thesis from U. Loridg Bubsequently, we begin the discussion of the light-
flavoured baryon spectra in section 3.5 with the deternonatif the optimal length scale for each resonance
and of the other parameters of the model. The chapter coexlwith a brief overview on electroweak form
factors and helicity amplitudes from Merten and Kretzschetaal. [9, 10, 12] in section 3.6, which will be
discussed in detail in the next chapter in comparison wighigw spin-flavour dependent interaction.

Chapter 4: After a short introduction, we present the novel spin-flavdependent interaction in section 4.2.
We start with the introduction of two interaction Lagrantggawhich couple pseudoscalar mesons to quarks
via pseudoscalar- or pseudovector coupling. Here, we pteéepseudoscalar quark-meson coupling, since
it has found to lead to the most favourable results. For tleeig@scalar coupled interaction, we substitute
the radial dependence of the corresponding Yukawa-pateinticoordinate space by a short-range Gaussian
potential. Based on this new interaction a new model, caftedelC, will be introduced. The effects of the
new interaction on the light-flavoured baryon spectra, teddeak form factors, helicity amplitudes, photon
couplings andA(1232) «» N transition form factors will be discussed in the subseqsebsections in detail.
Thereby, we compare additionally with the older predidi@i model.4, which however were recalculated
with higher numerical accuracy. The discussion of the tessthrts with the determination of the optimal
length scale for each resonance and the parameters of Giauslibsection 4.2.1. In the next three subsequent
subsections we discuss the, N- and hyperon-spectra. Here, we discuss also the naturentd sew.N -
resonances as presently available in the compilation byPih@ [8]. Subsequently, we show the results for
the electroweak form factors in subsection 4.2.5. Thedeadecthe electric- and magnetic proton and neutron
form factors as well as the axial form factor. For complessnave also present results for the ratio of the
electric- and magnetic proton form factor as well as for neignmoments and charge radii. Thereby, the
magnetic moments and charge radii of the octet and decupbetrbns were calculated with the method from
Hauptet al. [13, 14]. In the next subsection 4.2.6 we discuss in some detail ébalts for a multitude of
helicity amplitudes for model andC. Here, we extend the treatment of Mertetral. [9, 10] to more baryon
resonances and notably also to the longitudinal helicitplaodes. Finally, the discussion of the effects of the
new spin-flavour dependent interaction closes with a fistihall calculated photon decay amplitudes and the
discussion of thé\ (1232) «» N transition form factors in subsections 4.2.7 and 4.2.§eetvely.

In section 4.3 we propose an alternative form of a linear cenfient potential, which includes spin-spin and
tensor interactions. The corresponding constituent gometdtels with this form of the confinement potential are
called modelD and€. Thereby, modeD uses the new confinement potential in combination with te&irton-
induced 't Hooft interaction, whereas modglises additionally the new spin-flavour dependent intevaaif
modelC. In the following subsections we calculate again the basgpattra, electroweak form factors, helicity
amplitudes, photon couplings amil(1232) <+ N transition form factors for modeb and &, respectively.

All results are compared to the results of modelandC. In subsection 4.3.1 we discuss again the scale
dependencies of the baryon resonances and list all modahesers. Subsequently, we show all light-flavoured
baryon spectra before presenting the results of the eleetdo form factors in subsection 4.3.5. For a selection
of baryon resonances, we display helicity amplitudes irssation 4.3.6 for modeD and€&. Again, we close
the discussion for the new moddlsand £ with a listing of all calculated photon decay amplitudes dmel
A(1232) <> N transition form factors. The chapter ends with a short surgma

Chapter 5: Chapter 5 contains a summary and outlook.



Chapter 2

The Bethe-Salpeter model for three fermions

2.1 Introduction

In the following chapter the fundamental ideas and conagfiitse relativistic Bethe-Baryon quark model based
on the Bethe-Salpeter equation, which had been alreadyinseder to describe baryonic bound-states, will
be discussed and summarised. The model was mainly devedmypkichplemented by U. Loringt al. in 2001

and results were published id,p] and [6] (see also the PhD thesis of U. Loring for more informatia@i).[
The calculation of form factors, helicity amplitudes andheat strong-decay properties has been developed
by K. Kretzschmar, D. Merteet al. [9] and S. Miguraet al. [33] (see also the PhD of K. Kretzschmar, D.
Merten and S. Migura,12], [10] and [34]). In order to describe bound-state systems within the é&aork of
guantum field theory, the so-call&kthe-Salpeter equatida basic for the construction of a baryonic model,
which has the potential to describe excited spectra andrefegak properties of baryons in a unified manner.
We will start with introducing the six-point Green’s funati, which describes baryonic bound-states in the
framework of QFT and then derive the Bethe-Salpeter eqguatia its normalisation condition subsequently.
Here, theBethe-Salpeter amplitudésr three fermions will be introduced. This procedure cargeeeralised

in principle to more than three particles. The Bethe-Salpetuations are relativistically covariant integral
equations. Assuming, that all interactions are compldateiantaneous, which means that retardation effects
can be neglected, it is possible to reduce the Bethe-Salpetgation to the (instantaneouSalpeter equation

In doing so, the Bethe-Salpeter amplitudes are substitbyethe so-calledSalpeter amplitudes Also the
Salpeter equation is relativistically covariant. In thexsrelativistic limit the Salpeter equation gets equivélen
to the Pauli equation and the Salpeter amplitude then gmrels to the usual non-relativistic wave-function.
Finally, the Salpeter equation is reformulated as an e@aevequation, which then can be solved numerically.

2.2 The six-point Green’s function

The six-point Green’s function is the fundamental quarfiitythe description of systems consisting of three
interacting particles in the framework of QFT. Thereby, shepoint Green’s function is defined as the vacuum
expectation value of the time-ordered product of threexfen Heisenberg field operatorg and their adjoint

operatorg)’ := i~ as

o
Gal,ag,ag;a’l,aé,a’g (1’1, T2, X35T1, Lo, .Z'3)

= (01T L, (o 2, (), () Bl (4 )32, ()%, ()10) (2.1)

wherea; = (o, fi, ¢;) denotes a multi-index, which collects the Dirac-, Flavamd Colour-quantum num-
bersa;, fi, ¢;. The vacuum is denoted ) and7" defines the usual time-ordering operator as defined in many
textbooks. Following any standard textbook about quanteid theory €.9.[35]) the Green'’s function can be

5
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expanded in perturbation theory as

-1 ©° | k
Gy, w2, w3 0}, h, 75) = = [ty
(0|T exp (—I f+°° dt A (t ) kzz:l k!

X (01T (1) (w2) 8 (a3) 0 () )P ()™ (25) Ha () - - Hi (yr)0) (2.2)

Thereby,H; denotes the interaction Hamilton aft} the corresponding density, while the field operators are
given in the interaction picture. The sum within Eq. (2.2nege&ates a power series, which corresponds in
every order to a finite number of Feynman diagrams accordinditk’s theorem. In opposite to high energy
scattering processes, where in every interaction petiorbtheory can be applied, this is not applicable to low
energy states. Here, poles within the total energy can o8uah poles never arise from a finite set of Feynman
diagrams. Thus, the problem is to find a method which takesdaatount an infinite set of diagrams.

The problem can be solved by finding an integral equation waiitliterative structure, which circumvents
the explicit summation within the Green’s function and efifeely sums up an infinite set of Feynman dia-
grams. This leads to the so-called Bethe-Salpeter equatdmconsider two possibilities for interactions in
systems of three fermions, while distinguishing three- awalbody interactions. The first one is denoted as

Kég) (@1, xe, xs; 2, 2, %) and the second one s , (1, 29; 2, %) . The interactions
1,02,a3;07 ,049, a a1,a2; al a

are generated biyreducible diagrams only, where irreducible means, that they cannatdeemposed into
two smaller diagrams by cutting three or two fermion line®mate. With the definition of the full fermion-

propagator
S assar (@i 1) =0T 4, (2i)by, (7)[0) , (2.3)
Eqg. (2.2) can be rewritten with three- and two-body intéoanst as a Dyson-Schwinger equation

1 2 3
Gal,ag,ag;a’l,a’z,ag(wlvw27x3;x/17x/27xé) SFala (wlvwl)SFa sal (.%'2,.%'2) SFa3a (1‘3,1'3)

- I /d4y1 d4y2 d4y3 Sfl‘—'algbl (I’l,yl) SFCLQ;bQ(w27y2) SFag;bg(w37y3)

4 (3) A S A

/d bl b2,b3;b% bl b (ylay2>y3ay1>y23y3) Gb’l,b’Q,bg;a’l,a’Q,a’S(ylay2>y3a$1>$2>x3)
4 4
/d Y102 St oy, (T1,51) SF iy (T2, 92)
cycl. perm.

(123)

4
/d b1 b2 A (yl,yQ,yl,yz) Gb b5 ,a3; a17a27a3(y1,y2,$3,$1,$2,$3) (24)

Introducing the inverse fermion-propagaﬁ);l as

/d4yi S%'ai;bi (x% yl) S%;l;a’. (yi7 x;) = 5(11- a;5(4) (wl - x;) (25)
allows the redefinition of the sum of two-body kernels in araerewrite them as a three-body kernel

o (2) A 2) N A A /
Kal’az’a%a,lva,?aé(xl,mg,xg,xl,xQ,x3) = Kal,ag;a’pa;(xhxz’x17$2) SFag;a’S(w?”w?))' (2.6)

cycl. perm. ((12)3)
With that definition a total interaction kern&l can be defined as
K:=K® 4+ K® (2.7)

which includes the three- and two-body kernels as displayédg. 2.1 . In order to simplify the notation the
product of the three (free) fermion propagators will be sitited by thefree Green’s functiortzy , which is
defined by

1 2 3
Goal,az,ag;a’l,aé,ae’(wlax27x37x17x27x3) SFal sa) (1’1,.%'1) SF@g sah (1'2,1'2) SFa3 A (.%'3,.%'3) (28)
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A
— —— —— —— @)
— K (= =— KB =+ Z K
—_—— —— — —<— cycl. perm. ‘1
— — Sk

Fig. 2.1: Schematic representation of the total keddetomposed by three- and two-body kernels. The inter-
action kernels are displayed by the red rectangles. Frekgjaae displayed as black arrows, which denotes
the quark-propagation.

Furthermore, it is useful to introduce a compact notatiomgesmany integrals and summations occur within
the equations. Therefore, we define the symbolical compaaetion for the integrals

A AN A .
[AB]al,a27a3;a’l7a’2,a/3('rla'I2a'r3axl?‘IEQ?xB) _/dyl dy2 dy3 Aa1,a2,a3;b1,b2,b3(£17'I27'r37y17y2?y3)

X Bbl,bg,bg;a/l,a/g,ag (y17 Y2, Y3; 1_/17 1127 35%) ) (29)

Thus, Eq. (2.4) can be rewritten compactly as
G=Gy—iGyKG, (2.10a)
G=Gy—iGKGy, (2.10b)

where additionally all indices and spatial dependenciesappressed. Eg. (2.10b) corresponds to the adjoint
form of Eq. (2.4). It can be proven, thétis invariant under space-time translations, see thesigohg [7].
Exploiting this symmetry it allows to use the centre-of-mftame, where

the so-called Jacobi-coordinat&s ¢ andn can be introduced. A schematic 1

representation of the Jacobi-coordinates has been d&playrig. 2.2 .

X =1 (z1+ 2+ 13) x1 =X + 36+ 37, ¢
£:=x1 — T2, & z=X-—3E+1n, (2.11) X :
=1 (x1+ 22 — 223) z3 =X —21. s
Since the manipulations of the Bethe-Salpeter equatiorsierpler in mo-
mentum space it is useful to introduce Jacobi-coordinatesiomentum
spaceP , p¢ andp,, as well T2
P:=pi+ps+ps3, pr =3P +pe+ 5py, Fig. 2.2: The Jacobi coordinates
pe == %(m — ), S py= %p —pe + %an (2.12) for three particles.
Py =% (p1 +p2 — 2p3) p3 =3P —p,.

From the translation symmetry mentioned above it follovagt the total momentun® is conserved. After
performing a Fourier transformation, integrals of type

[FA](p1, p2, p3: P, Ph, D) :/d45'31 dhay dtag @ (Prom0)+2.ma) s ms))

i ;oo ;oo ;oo
X /d4x'1 o ot e (P m)H oo e+ 0528)) A () g g ), )y, )

= (2m)*6™W (P — P") A(pe, py; pi, 1)) (2.13)
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occur, where(-, -) denotes the Minkowski scalar product. All Fourier integrakhich occur in Eq. (2.10a)
or (2.10b) are of this type. Sind@ is conserved, all quantities will be labelled with an extwascript P and
the Green’s function from Eg. (2.4) now reads in momentuntspa

G p(pe; Py; P Py) =Go p(pe, Py Dl P)y) — i / d'py’ d'p) d*pf d*pl)
x Gop(pe, py; g 1y ) Kp (0 0 s 0% 0y) G (0% > Py D Py)
=Sp(3P +pe + 50y) St (3P — pe + 5py) St (3P — py)
x (2m)*6@ (pe — pf) (2m)*6 (py — p))
+Sp(5P +pe + 50y) SE(5P — pe + 50y) St (5P — py)
x (—i)/d“pé’d“p’é Kp(pe, py; P2, o) Gr (D¢, Py v, ) » (2.14)
with the definition of the free Green’s functid@r, p in momentum space

Go p(pe, Pni Pt Py) =SE(3P + pe + 5py) SE(3 P — pe + 5pn) SE(3P — py)
x (2m)*0W (pe — py) (2m)* 6™ (py — p),) - (2.15)

In doing so, the two-body part of the interaction kerhgl is given by

i (2) AN (2) /
Kpﬂlva2va3?a/1=a/2ﬂé (pg’pn’p@pn) - Z K2P+pn i 5a5307,0] (pgkjpgk)
(ijk)=(123), 3 T

(231),(312)
-1
X Stapsar, (5P = poy) (2m)* 6 (py = p7,). (2.16)

where the additional numbering in the kernel subscripteltadifferent sets of Jacobi coordinates, transformed
via Talmi-Moshinski transformations

(2)-()- 02 ))-()(z)
Py Dns L =3 P L =3 Dy

Analogous to the definition made within Eq. (2.9), a shor@ation in momentum space can be introduced,
which suppresses all integrals and summations. Thus, Elgl)(® written symbolically as

GPZGQP—iGQPKpGP, (2.18&)
Gp=Gop—iGpKpGop, (2.18b)

where the second equation again corresponds to the adjpiatien.

2.3 The Bethe-Salpeter equation and its normalisation contion

So far, we did not choose a particular time-ordering for theg@’s function and it describes scattering processes
as well as bound-states. Here, we are interested in thraeie bound-states, that propagate forward in time.
In particular, we assume the existence of a bound-statethétfpositive) total masa/ defined as the invariant
massP? = M? with P = (wp,P) andwp = /P2 + M2, which is an eigenstate of the total momentum

operatorP:
P|P) = P|P) (2.19)
normalised as

(P|P") =(27)% 2wps®) (P — P'). (2.20)
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We thus consider the particular time-orderingn(z9, 29, 29) > max(z}", 2,°, 24°), which separates the

initial- and final three-fermions states and can be writteteims of the Heaviyside-functich

1 for min(2?, 29, 29) > max(z}?, 24°, 24°)

, (2.21)
0 otherwise

O (min(xy, 29, 29) — max(mllo, 9U/207 ﬂU%O)) = {

The crucial idea, in order to obtain the Bethe-Salpeter@&muand its normalisation condition from the Green’s
function formalism, is an expansion of Eq. (2.18a) in thenitg of P, while isolating the given time-ordering
from above. Then, the Green’s function can be written as

_ AN
GPCLl,CLQ,CLS;CLII,G/Q,aé('Il"1;2"1:3’xl’xQ’xE})

= — (O[T, (w0)e2, (w262, (wa) YT {0, (202, ()63, () }0)
x O(min(af, 2§, o) — max(2;", 24", 24"))

+ other terms arising from different time-orderings

aBpP o _ _
=- / s O (i (o102, (o), (o) HP) (PIT {0 ()5 ()03, 5)10)
x O(min(a, 23, 2) — max(a! ", 25", 4"))
+ other terms from diff. time-orderings and other interméslistates (2.22)

The amplitudes, containing the time-ordered product &fetiermion states and the state with total momentum
P then are thdethe-Salpeter amplitudand its adjoint, defined by

XP ayazas (€1, 02, €3) =(0|T{tg, (21)93, (w213, (x3)}| P), (2.23a)

XP af ayat, (€1, @, 5) :=(P|T{hy, (1) ()03 (+5)}0), (2.23b)
respectively. In Jacobi-coordinates, the centre-of-rragable X separates and the Bethe-Salpeter amplitudes
as introduced in Eq. (2.23a) and (2.23b) can be written irdira

Xp(@1, 32, 25) =7 P Xy p(¢ )

e dpe dp, . iy
—° I<P’X>/ (27r)£4 (2:)174e relet 0y p(pe, ) (2.243)

Xp(al, o) =€ PN yp(e )

LB oy d4p/d4p,-//-//
= / PR A (2.24b)

The equations for the Bethe-Salpeter amplitude indeedctetflenslational invariance and depend only on
internal coordinates andrn or p andp, in momentum space. For the Heaviyside-functioim Eq. (2.22) we
now write

dpo e POX,
0(Xp) =i | ————— 2.25
0 =i [ G- (2.25)
and insert Eq. (2.24a) and (2.24b) in Eq. (2.22). Then, afteaaurent-expansion around the pété = wp, we
obtain in lowest order for the Green'’s function

—i xp(pe, Py)Xp (D, Pry)
2wp PO —wp+ie

Gp(pe, pn; Der Py) = + regular terms foP® — wp . (2.26)

Eqg. (2.26) can also be reformulated in its covariant form

X p(pe, Pp)X p (D Py)

P M| + regular terms foP? — M?, (2.27)
— €

Gp(pe, py; Dgs D) = —
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Im — Gp =
P2 —» M2

Fig. 2.3: The Green’s function in the vicinity of a threefféon pole in lowest order of the Laurent-expansion.
The Bethe-Salpeter amplitudes are displayed by the gresitisis and the Green'’s function by the red rect-
angles. Quarks are presented by black arrows, which detimeagiark-propagation.

which has been displayed also schematically in Fig. 2.3thEumore, Eqgs. (2.18a) and (2.18b) can be rewritten
as

Gp ZGop—iGoprGp, = (GJ}_—,—FIKP)GP =1, (2.28&)
Gp=Gop —iGp KpGyp, =2 GP(GE};.—FIKP) =1, (2.28b)

where the identity and the inverse-operators are defined by
]lal,ag,ag;a/l,aé,ag (pﬁapn;plg’p%) ::6a1;a’1 5a2;a’2 5a2;a/2 (277)45(4) (p§ - plg) (277)46(4) (pn - p;;) > (2293.)
GopGyp =1, (2.29b)

still using the compact notation of Eq. (2.9). From the righhd side form of Egs. (2.28a) and (2.28b) the
definition of a pseudo-Hamiltoniaflp := Gg};. + i Kp is possible with the Green’s functiop as the
corresponding resolvent

HpGp=GpHp=1. (2.30)

In the vicinity of the bound-statéP), the Bethe-Salpeter equation and its normalisation ciemditan be
evaluated from a Laurent- and Taylor-expansion of the Gsdanction G p and the pseudo-Hamiltoniafi» ,
respectively. Thereby, only terms in lowest order will bketa into account and Eq. (2.26) can be written in
form

—i xpPe:p)XpWPepy) 0
G cphpl) = : P — G O (P°— 2.31
P(p£7p777p£7pn) QWP PO _ wp + e [‘)PO ( wP) P PO—wp + ( O.)P) ’ ( )

while for the pseudo Hamiltonian simply

0
Hp:Hp+—HP

550 (P’ —wp) + O (P° —wp)?) (2.32)

PO=wp

follows. Multiplying Gp and Hp with each other and using Eq. (2.30), the coefficients of éselting expan-
sion can be compared order by order. From this, the Betheetalequation and its normalisation condition
appear

Hpxpxp =0, (2.33a)

i d
pPY— G ——|—Hj5 svp =1. 2.33b
( wP) P] . 2wp [8130 P:| PozprPXP ( )

0
e\ gpo
From Eq. (2.33a) the Bethe-Salpeter equation and its adjoin

HP xp =0, (2.34&)
XpHp =0, (2.34b)
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follow. According to the definitions of the pseudo Hamiltami(2.28a) and (2.28b), Egs. (2.34a) and (2.34b)
can also be written as

Xp=—1GopKpxp, (2.35a)
Xp=—iXpKpGyp, (2.35b)

which are the so-calleBethe-Salpeter equationshe Bethe-Salpeter equation in the full notation then hilage
form of a relativistically covariant, homogeneous and eijmensional integral equation. The Bethe-Salpeter
equation is explicitly given by

XP ar as,as (Pe: Pn) ZS%ala (5P + Pe + 5P0) St aga, (5P — D + 5Pn) Sp e, (3P — D)

4
X(—i)/ pe 9 K(B) 0t o (D€ P Des D)X P ot att (P> )
(Qﬂ-) (27-‘-) Pal,ab,al;ay af,af m g Py ay,ay,a3 \F& Py

+S}’a1a( P+p§+§pn)sl%'a2a( P_p5+§p77)

- 'L, (2) /
X (=1 K D11
( ) / (27T)4 ( P+pn3) al,ah;all al (p&’ ’ pgS)XP ay 03,03 (p53’p773)

+5117a1a( P+p§+2pn)SFa3a( P—pn)

; p§2 (2) 1,7/ 3 / 1
< (= )/ (2m)4 K(3P+pn2> a},ab;al alf (p&’p&)xpalfva'z' as( 2Pe, + 1Pm2> ~Pgy — 3Pns)

+S%a2a( P — p§+2p77)SFa3a( P—pn)

d p
i &1 (2) 1./ 3 ! 1
X | K "o 5 - 7 — 5 . 2.36

( ) / (2” )4 (%ﬁﬂml) al,ah;al ,al (p£17p§1)xp‘11 ) 7‘13( 2Pe = 2Pm>Pey 2p771) ( )

We refer to Fig. 2.4 for a schematic representation of thb&&alpeter equation.

e N
—— ——
—< XpP = — iK% Xp
—— ——
. J
S
(2)
i Ky
+ >, — " Xp
cycl. perm. 123 ~———

Fig. 2.4: A schematic representation of the Bethe-Salmieation. The Bethe-Salpeter amplitudes are dis-
played by the green semidisks and the interaction kernetkdoyed rectangles. Quarks are presented by black
arrows.

Concerning the normalisation condition Eq. (2.33b) a rplittation with x 5 from the left with Eq. (2.34b)
leads to

_ 0
—iXp [ﬁﬂp] PO:prP = 2wp, (2.37)
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which can also be written in its full integral form as

Ny / d'p; d'p, / d'pe d'p,
(2m)* (2m)* ) (2m)* (2m)

_ 0 _ .
Xp (g, ) {m(%};(ﬂg,pg;pg,pn) +1i Kp(p’g,p;;pg,pn))] Xp (D¢, py) = 2wp (2.38)

Po=wp

while the covariant form of the normalisation condition igagn by

. o)
—ixp {PMGTHP] Xp =2M?, (2.39)
© P=P

which is displayed schematically in Fig. 2.5. Based on théh&&alpeter equation the so-called Salpeter

—— —
Xp teipo | —— + 2 Xp E=2M?
K cycl. perm.
e —
S;1®S;1®S;1

Fig. 2.5: A schematic representation of the normalisatmmdion of the Bethe-Salpeter equation. The Bethe-
Salpeter amplitudes are displayed by the green semidigkghaninteraction kernels by the red rectangles.
Quarks are represented by black arrows, which denotes tr&-guopagation.

equation can be derived by assuming instantaneous iriteraciT his is the topic of the subsequent section.

2.4 Reduction to the instantaneous Salpeter equation

In order to make the Bethe-Salpeter equation more tracfabferther studies we make some approximations,
which reduce the analytical (and numerical) effort. Thgggreximations are itemised in the next subsections
and leads finally to the Salpeter equation as it has been dankeby Loringet al. [4, 7] for baryons and by
Miunz and Resagt al. [36-45] for mesons. These approximations are partially motivétgdhe success of
non-relativistic constituent quark models.

2.4.1 The free quark propagator approximation

The first model assumption is, that the full quark propaga$ér can be replaced by free-form quark propaga-
tors:

, ! [

Sp(p) = ———. 2.40

F(pl) ﬁi_mi‘i‘le ( )
In doing so, we tacitly assume that some part of the quarkesadfgy can be subsumed in effective constituent
guark masses:;, which thus enters as free parameters in the model. ThissrthkeSalpeter approach more
phenomenological, but it reduces the numerical and acalygiffort drastically.

2.4.2 The instantaneous approximation

The second model assumption is, that all interaction kerast assumed to be represented by instantaneous
potentialsV', which thus excludes retardation effects in general. Tistaitaneous approximation can be
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formulated in the centre-of-mass fraffe= P = (M, 0) as

3 !
KD (pe, pyipe's py) ‘P:P:(M ) =V® (pe, pyipe’ py) (2.41a)

(2) : L@ )
Ksp,,, (Paipe) ‘ P10 =V® (pg;pe,) (2.41b)

where the sub-indek labels different sets of Jacobi coordinates in case of thebmdy interaction kernek (2).
Thereby, the instantaneous approximation preserves tlagiance of the Bethe-Salpeter equation as shown by
Wallace and Mandelzweigltp]. In order to elucidate that, we follow the idea of Wallacal atandelzweig by
decomposing the relative momentavithin the interactions into space- and time-like compaseiong and
perpendicular to the arbitrary space-time vedtorLet p be one of the relative momenta, then it decomposes
into orthogonal and parallel components andp with respect to the direction dP. The decomposition is
given by

P
p| = <pP2 >P, (2.42a)
P
pL=p— <pP2 )p. (2.42b)

The crucial point is, thap, is definitely three-dimensional and the instantaneousceqpation, which is
formulated in the centre-of-mass frame, can be reformdleteny other reference frame as

3

K (pe o vé’ vy’ \P ﬁ—V( (Pe Ly 5 PE' 00 ) S (2.43a)
2) "

Kipip, (pey pe, ‘P s (pgwpg,cJ. (2.43Db)

Indeed, setting® = P = (M, 0) returns the instantaneous potentials Egs. (2.41a) anti(pid the centre-of-
mass frame. This thus preserves the formal covariance @dtiee-Salpeter equation.

2.4.3 The Salpeter equation

In this subsection, the Salpeter equation will be derivethfthe Bethe-Salpeter equation by taking into account
the previously introduced approximations. To outline thecpdure we concentrate on the case without two-
body interactions. Starting point are the Bethe-Salpajaatons

Xp=—1Gyp K xp, (2.44a)
;zp:—iprg’) Gop- (2.44b)

Inserting the unretarded kernel of Eq. (2.41a) and integyadut all parallel componentg; of the relative
momenta in the centre-of-mass frame, all energy dependencieﬁg(andpg), of the complete Bethe-Salpeter
equation, we obtain the Salpeter equation. To this end weal#feSalpeter amplitudand its adjoint

dp? dp)

M(Pg, Pr) /2—52—" xp (g, Pe), (pg,pn))‘P:(MO), (2.45a)
dpg dp)

dr1(Pe, Py) - /—5—"x ((pg,pg),(pg,pn))‘ﬁ:(MO). (2.45b)

This leads to a reformulation of the Bethe-Salpeter eqnatidich can hence be rewritten as

xm=—iGou VP ¢y, (2.46a)
X =—idu VP Gour . (2.46b)
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Note, that these equations allows the reconstruction obtlginal Bethe-Salpeter amplitudes if the Salpeter
amplitudes are known and the interaction kernels includesetardation effects. Furthermore, a common
definition of the so-calledertex functioris useful, in the rest fram& = (M, 0)

Tar(pe,p) = [Ga s xp] (berpa) = =1 [V dr | (PePy) = Tar (P, Py) (2.47a)
o1 (pe, ) =L (Pe. pn) %0 @ %0 @70 = Tr(Pe, Py) (2.47b)

which does not depend on the relative energies. The adjeiéx function is likewise defined. In order to
reduce the Bethe-Salpeter equation by integrating outalbining energieﬁg andp97 itis also useful to define
a energy-integrated short-notation

dp? dp?  dp;” dpl,’
. [ 9 :
(A)(Pe, Py; PE P) .—/ o 27:/ 5 o Alpe Pive ) (2.48)

From the Bethe-Salpeter equation without two-body intémas according to Eq. (2.36) the Salpeter equation
can be written in the short-notation of Eq. (2.48) as

dp dpf)
¢M(P£>Pn) = /ﬁﬁ)@ Pg,Pg) (Pmpn))‘ —(M.0)
dp dp d4p/
- / 275 27: )§4 (27T)n4 M(pg,pn;p’g,p%) |:V(3)¢M] (p/g,p%)

(248 . [ @& d‘°”
Fa.(248 —|/(2:)5 or )3 (Go a)(Pe, Py; Pe, P)y) [V( ¢M} (pe; Py)

Ea. 2.9 —i [(GOM>V(3)¢M] (Pe, Py) - (2.49)

For the evaluation ofGor/) = (S} ® S% @ S3.) the residue theorem will be used, where the Feynman
propagators involved are decomposed into positive- andtivegenergy parts. We thus define projectars,
which projects on pure positive- or negative energies

+ . wz(pz)]l iH (pz)
A7 (pi) = 201(p7) : (2.50)

wherew;(p;) = 1/|pi|2 +m? and H;(p;) = ~o(v - pi + m;) denotes the free Dirac-Hamiltonian. With
these projectors it is possible to decompose the fermiopawatorss:.(p;) for each particle into positive- and
negative energy parts

i) — i i A;r(Pi) A (pi)
Sipi) = pi—m;+ie I (p? —wi(p;) +ie * pY +wi(p;) —1i e> - (2.51)

This procedure has the advantage, that the pole positid&'@f;) can be isolated in the energy variabé's
which will subsequently be integrated out with the resicheotem. Integrating out all energies withiy 5,
yields

(Goam)(Pe, Py Py P) =
A (p1) ® AT (P2) ® A7 (p3) | Ay (P1) ® A3 (P2) ® A (p3)
M —Q(p1,p2,P3) +i€ M + Q(p1,p2,p3) — i€
X 70 ® Y0 @70 (21)%6%) (pe — pg) (27)6P) (p, — p})) (2.52)

with the definitionQ(p1, p2, p3) := wi(p1) + wa(p2) + ws(ps3). It is remarkable, that only projections on
pure positive- or pure negative energies appears, whidmatibe the case if we include two-body interactions.
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This property follows directly from the usage of the residoeorem and the structure 6% ,;. Based on this,
the Salpeter equation (2.49) for three-fermions can bedtatad as

b2 (Derpr) = [Af(m) © Af (p2) ® Af (ps) | AL (P1) ® A; (P2) © A3 (ps)
& M —Q(p1,p2,p3) +ie M+ Q(p1,p2,P3) — i€
d3p/ d3p/
X 70 ® 70 ® Y0 / (%)53 (277)773 V(g)(pg,pn;p’g,p;) oM (Pg> Py) - (2.53)

In order to solve the integral equation, it is useful to refafate the equation in the form of an eigenvalue
problem, which allows a direct extraction of the madgsas an eigenvalue. However, before performing such
a reformulation some properties, regarding the projectivecture of the Salpeter equation, will be discussed
first.

2.4.4 The projective structure of the Salpeter equation

Since the action of a positive- or negative projector on thlp&er equation (2.53) will be absorbed within the
projector structure in front of the integral, the Salpetapéitudes are indeed eigenfunctions of the projectors

Ap:=ATTT A A=A, (2.54a)
AEE AT @ AT ® AT . (2.54b)

This defines the so-callgutojected Salpeter amplitudes
v =M =y = AT o + AT o =00 T duy (2.55a)
dn =puA = <ZE§\\4 = o AT 4 oy AT = (ZE}\L4++ + oy (2.55b)

with the definition of the adjoint projected Salpeter amylé ¢y, := Yo ® Yo @ Yo a1 Yo ® Yo @ Yo. The
important point is, that all amplitudes with mixed positivend negative energy components sucheag,
¢, do not occur in the dynamical equations in case of pure thogly interactions as already argued in the
previous subsection. Furthermore, it is important to nitat only the projected part of the potential defined

by
v = AVOIA, (2.56)

is relevant in the Salpeter equation, where the adjointeptoy is defined ad := 9 ® 70 ® YoAY0 ® Y0 @ Yo.
This leads to the definition of the so-callegbsidual part

v =v® _v®, (2.57)

containing all mixed energy parts, which here have no effdetn considering only three-body interactions.
With the inclusion of two-body interactions a more compigchresidual part occurs. This will be addressed
briefly in the next subsection.

2.4.5 The Hamiltonian formulation of the Salpeter equation

As already mentioned it is useful to reformulate the Salpetgiation as an eigenvalue problem in terms of a
Hamiltonian?{ with eigenvalueM, which than can be solved numerically

7‘[qu = quM with Agb]w = ng . (258)
Again with pure three-body interactions, the Salpeter Htamian can be defined as

[(Houm](pe, Py) =[Hodum](Pe, Py)

d3p/ d3p/
+ A(Pe, Py) Y0 @ 0 ®’Yo/ (%f?,ﬁ VO (pe,py;PLpy) S0 (PE D), (2.59)
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while Hq is defined as the free Hamiltonian in terms of single parflac-operators
Ho(Pe, ) = Hi(p1)®1®1 + 1® Ha(p2) @1 + 1®1® H3(ps) - (2.60)

Eq. (2.59) can be easily obtained from the Salpeter equé2i&i8) by projecting the complete equation with
A} and/orA;, i =1,2,3. This leads to

(M F DA dm(pe, py) = Ay @90 @7 [V(?’)(ZﬁM](P@ Py)

Eq. (2.50 .
S )(WiM — QH)om (pe, Py) = wilyo @7 @70 [V dur](pe, Pr) Vi=1,2,3. (2.61)

Furthermore, adding up the contributions for eamtturns the Hamiltonian formulation of the Salpeter equmati
as given by Eq. (2.59).

Considering two-particle interactions leads to mixed gyaurojectors within the Salpeter equation as
shown by Loringet al. [4, 7] and thus the residual part of the interaction does not taniBrojecting the
complete Salpeter equation on pure positive and negatiggggrcomponents witth*=* all mixed energy
projectors vanishes and the problem becomes solvable.effiner it is necessary to introduce the projected
Salpeter amplitude

oy = Ao (2.62)
before extracting Eq. (2.59) to include the two-body intéms
[Hé1](Pe, Py) =[Hodis] (Pe, Py)

d3p/ d3p/
+ AT (pe, Py) Y0 ® Y0 ® ’Yo/ (%)53 (%)"3 V® (pe, py; PE, P)y) dhr (e P))

dsp,
+ A (Pe, Py) 0 @0 ® 1 / (%)53 V@ (pe; ph) ® 1 ¢y (Pk, Pr)

+ corresponding quark interactions (23) and (31) (2.63)

The derivation of Eq. (2.63) can be found in the PhD thesimftd. Loring [7], which takes at least a longer
discussion and will be only briefly summarised here.

In course of the discussion it is useful to substitGtgy by G,s, which is defined as the resolvent of the
pseudo Hamiltoniad ¥, := G, + i Vg’) +i I_(](é) as defined before in Eq. (2.30) by only including residual
interactions. We start from the full Bethe-Salpeter equmticcording to Egs. (2.35a) and (2.35b)

xm =—1Goy [VA(?’) + VS) + K] yar, (2.64a)
X =—ixu [V + VY + K] Go, (2.64b)
and introduce a pseudo Hamiltonian, which fulfils
GuHY =HE Gy =1, (2.65a)
= G =Gowr — 1 Gowmr [V,Ef’ +i R}ﬂ?] Gar . (2.65b)
Using these definitions, the Bethe-Salpeter equation cavritten as
xar = =G V¥ xar = =i V¥ 6l (2.66)

In the last step, the energi@% and pg have been integrated out and the projected Salpeter equztio be
written as

¢ = —i (G V) #h, (2.67)
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while the Green'’s function is given by

(Grr)a(Pe, Pyi PE, Py) = A(pe, Pr) Gt (pe, po; > ) M(Pg, Pyy) - (2.68)

0
e o o
2 2w

Due to Eqg. (2.65b)(Gxs) A can be written as a Neumann series in power(si/éf’) + K](\?)

(Grar)a = (Goar) + MGoar(—i) [vg’) n f(ﬁ)} Gom)A+.... (2.69)

The expansion allows to classify reducible- and irred@cithihgrams with respect to the free Salpeter propagator
(Go a), which corresponds to the introduction of an effective poé Ve by rewriting (Gas)a as

(Gm)a < (Gonr) — i MGoar)VENGar)a (2.70)

where only the projected part df]\‘}ff appears, which thus acts only on pure positive- and negatieggy
components. With the conditions

Vil = AV = VEIA,  (Gowm) = A(Goan)A, (2.71)
the projected Salpeter equation can be regained as

O = =1 (Goar) [V + VEI] (2.72)
and the effective potentiaﬂ’fjf can be expanded into a power series in the arguﬂﬂé‘qﬁu K ](Z) given by
el = f: e (2.73)
=1
Cutting the series at ordér the k-th order Salpeter equation is given by
o B = i Gon) [v(3> + vﬁﬁ(’“)] A k) (2.74)
Only the Born-approximationk(= 1) has been taken into account in order to derive Eqg. (2.63).

2.4.6 The normalisation condition of the Salpeter amplitués

Based on the normalisation condition of the Bethe-Salmataslitudes from subsection 2.3 given in Eqg. (2.37)
=i XM [aiMHM} XM = 2M , (2.75)

which includes the pseudo Hamiltonidfy, := G5 L, +iV® +i K2 = HE iV the condition can be
rewritten as

i 62, VO NG {aiM Hﬁ} Gu AV gl = oM (2.76)

where the Salpeter amplitudes satisfy Eq. (2.66). Note,n’}f@%{ in Eq. (2.76) does not depend a .
With the definition of the resolvent according to Eq. (2.68a)an be shown, that the derivative of the
pseudo Hamiltonian fulfils

Ou [aiMHﬁ} Gm = —52:Gum (2.77)
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and the normalisation condition then reads
i g3 VEA [%MQM]AW% =2M, (2.78)

where the integration over the Salpeter amplitudes nowkiglishensional in contrast to the eight-dimensional
integration of the original normalisation condition foetBethe-Salpeter amplitudes. Consequently, all remain-
ing energies can be integrated out and Eq. (2.78) can bewas

—i oY VNG ) AVE ¢, =20 . (2.79)
The derivative can be transformed further via the relation
A<%QM> A= % [A(Gu)A] = % (Grm)p = —(Gum)p 3% [hon + inﬂ (Gm)p s (2.80)
wherehy ys is defined by the conditio{Gas)ho ar = ho ar(Gar) = A and can explicitly be written as

ho 1 (Pe, Py PE Pyy) 1= — i70 ® Y0 @ Y0[1M — Ho] (27)%6) (pe — pp)(27)0®) (p, — p),) . (2.81)
Inserting Eq. (2.80) in Eq. (2.79) then leads to

i 64V (Gar) s 22 [honr +TVET] (Gar) ) AV ph, =2
& —i @527 [hon +iVET] ¢4 =2M (2.82)

where in the last step the Salpeter equation (2.67) has sshini order to simplify the equation. The action
of the derivative reducels, s in Eq. (2.82) to thé-functions given in Eq. (2.81), which can be integrated out
and the normalisation condition finally results in

(Bh10%) — (DR 170 @70 @ 0 [22 VEN] |#4y) = 2M . (2.83)

Consequently, there occurs an additional contributioméatormalisation condition compared to the case with

pure three-body interactions, which however vanishes $e cd the Born <':1pproximatiobf]€"}°f ~ Vfwﬁ(l). For
further details on this extensive calculation we refer @RiD thesis from Loring7]. Thus, finally we find

(@hr|dhr) ~ 2M . (2.84)

Due to this simple relation, every Salpeter amplitude camadised to unity by a fact% , WhereM is the
mass of the corresponding baryon resonance.

2.5 Current-matrix elements

The study of electromagnetic form factors and helicity atages for (excited states of) baryons is an ongoing
important challenge in hadron physics. Within the framéwoirthe Bethe-Baryon model, discussed in the
previous sections, it is possible to calculate currentrbnaiements given by the expressié®|;/;(0)[P'),
which allow the extraction of electromagnetic propertidhe basic ideas on the relation between current-
matrix elements and the Bethe-Salpeter formalism can bedfou Merten and Kretzschmat al. [9, 10, 12].
Starting with the definition of the current

jéf)(w) = (2) 0P () :, (2.85)

for an arbitrary current-operatd@ it is possible to find a relation to the current-matrix eletsenBelow a
brief summary with the crucial steps in the derivation ofreat-matrix elements will be given according to the
derivation performed by Merten and Kretzschnearal. [9, 10, 12]. The derivation runs similar to that of the
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Bethe-Salpeter equation, as outlined in section 2.3. lahse, we start from a seven-point Green'’s function,
defined by

m
’or
a1,a2,a3;041,04,05

(01T {a, (x1)¥7, (w2)¥5, (23) 56 (@) ()17 (5)ibg, (25) }10) - (2.86)

/ / /
’ (1'171'271'3; xz; .%'1,1'27.%'3)

Here, we choose the time-orderimgin(z9, 29, 23) > 2° > max(z°, 25°,24°) and concentrate on pole

contributions as in Eq. (2.25). Introducing again a basisin momentum space the current-matrix element
can be written as

(Pli6(0)|P') === xp K} pXpr

_—/ d'pe d'py d4p£ d4
N (2m)4 (2m)4 (2m)% (27

)4 XpPe, ) K p (Pe, o 0, ) x P (0, 07y) , (2.87)

by defining the so-called current-kernel including conitibns up to first order contributiohss given by

0 1
KY o = KiO + K1, (2.88)

The contributions itself are defined as
K5, =Sk~ (3P +pe+ 3py) @ 53 (3P = pe + 3py) © 0"
x (2m)* (pe — p) (2m) '8 (3(P — P') + py — ) )
+ cycl. perm. (23) and (31), (2.89)
and

Kg(}))/ —j K(Q) . (pg,pé) Q OF (27)45(4) (% (15 _ ]5/) +py — p%)
n

+ cycI. perm. (23) and (31) (2.90)

In Fig. 2.6 the equation for the current-matrix element 0§ H8.87), (2.89) and (2.90) is shown schematically.
In order to calculate current-matrix elements accordingdo(2.87), it is necessary to reconstruct the Bethe-
Salpeter amplitude from the Salpeter amplitude. Withow-bedy interactions the relation is given by the

Bethe-Salpeter equation itself (see Eqg. (2.46a))

X =—1Gou V® . (2.91)

However, including two-body interaction the situation isne complicated. Knowing the effective potential
Vesr and the projected Salpeter amplituﬁl@ due to Egs. (2.73) and (2.74), the Bethe-Salpeter amplitade
also be reconstructed exactly according to Eq. (2.66)

xar = — G VE ¢, . (2.92)

A general problem appears at this point, since the projegtdoleter amplitude is computed upktah order
qﬁ (%) and the Bethe- -Salpeter amplitude, which is reconstruggatidoapproximated Salpeter amplitude, is no
longer an exact solution of the Bethe-Salpeter equatiomis;Tin order to stay consistent order by order, there
is need for an approximation within the reconstruction folan what is consistent with the above introduced
effective potential defined by Eqg. (2.73). Therefore, waiassthat the effective potential can be truncated at
the k-th order and can be written as

k .
=3 v (2.93)
=1

The orders of theurrent-kernel are labelled by their parenthesised nusalgrich are not the bracketed numbers of the interaction
kernel itself labelling three- and two-body interactions.
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Xp Xp XP!
I I I
- N
or o cycl
KH > — - o->—-4+ | i K?| ¢-->-- perm
N J
I I I
Xp Xp Xp

Fig. 2.6: The schematic current-kernel in lowest order eflddder-approximation. The Bethe-Salpeter ampli-
tudes are displayed by the green semidisks and the intemalotirnels by the red rectangles. Free quarks are
displayed as black arrows, which denotes the quark-prajgeigavhere the photon propagation is denoted by
the dashed lines.

Starting with the exact Bethe-Salpeter equation Eq. (Za@tl)writing the potential adapted to the problem by
decomposing the kernel into the projected- and residuaMmawrite

k A k ,
<VA(3) +3° Vf}“”) + <K YRR UEDY) V]\?Iff(l)>] S - (2.94)
i=1 =1

Then, following the PhD thesis of Mertef(), it is possible to rewrite Eq. (2.94) as

k .
xM:~4gﬁkOd$+§:Vﬁm>¢M, (2.95)
=1

xv =—1Gom

where the residual propagat@ﬁ;k truncated ak-th order has been defined by
k; .
GRF = Gons — iGont <K§§’ +vP -3 vff“’) gk, (2.96)
=1

After integrating out all energy componem%andpg , the Salpeter equation can be reformulated as

k .
¢ﬁ:—¢@ﬁ%AQd”+§jvﬁ@>¢ﬁ, (2.97)
=1
while the reduced and projectéeth order Green'’s function can be written as
(G179 = (Gonr) =1 (Gorr) D VEM (G (2.98)
i=k+1

After the first term(Gy 1), the corresponding Neumann series thus star{g at 1)-th order of the residual

partf{](\? + Vg’). Writing the propagatogﬁ’k similar to the effective kernell’]@ff in powers ofk and with the
definition

G =3 grE( (2.99)
=1
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it is obvious, that

<29Rk()> —A<29Rk()> = (Gowm) (2.100)

is fulfilled. Replacing the exact residual propagajﬁyk in the exact Bethe-Salpeter equation by the up-th
order approximated one, it is possible to obtain an appration, which remains consistent with the Salpeter
equation (2.72) . Thus, thieth order approximation of the Bethe-Salpeter amplitudgivien by

k .
A ng}’f(” (VA@ +Z eff(]) : (2.101)
=1

In the further discussion it is also convenient to introdthexk-th order truncated vertex function

[ (VA(?’) + f: fo(j)) ) (2.102)
j=1
Then, the reconstruction formulae for the Bethe-Salpetwlitude and its adjoint reduce to
XM Z gR ke M ) (2.103a)
=T} Z GEF, (2.103b)
=1

where the adjoint vertex function &fth order is analogously defined as in Eq. (2.47b)

— T
1‘5\]}) ::FE\’}) Y0 @ Y0 &0 - (2.104)

With Egs. (2.87), (2.103a) and (2.103b) it is also converieintroduce the effective current-kerriel; , b
Bl.; 5 _(k k k k
(PIi5O)P') == X% K oals) = T8 Kkt 1) (2.105)

with the definition

K pr = (Zng()> L e (ZQ ) (2.106)

The effective current-kernel can also be expanded in poofdtse residual-kernel

k
*;,P Z pp (2.107)

before truncating at-th order. This leads to the approximated current-matexnant

(Plip(0)|P) = (Z’%y) . (2.108)

Since the implementation of first order effects in the appnated current-matrix element (2.108) is very
complicated only lowest order contributions are taken @toount. Note, that the first order contributions
vanish in the static limit> = P’ = (M, 0) due to the normalisation condition of the charge

T P/C?D(Q,r 5 =0, (2.109)
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since the charge normalisation is completely absorbedmitie normalisation condition of the Salpeter am-
plitudes in lowest order for the time-component of the el@ognetic current.

Neglecting first and higher order contributions in the dffeccurrent-kernel, this yields to the current-
matrix element approximated by only lowest order contidng. If the incoming baryon is calculated in its
rest-frameP’ = (M’,0) = M’ the outgoing baryon is boosted py= P — P’ and the current-matrix element
is given by

(PliB(O)P) = ~ T ks T,

/C’,%f%),(pg,pn;p’g,p;) =Sp (%P + pe + %m) ®S% (%P —pe+ %pn) ®S%(
x (2m)*6™ (pe — pi) (2m) 1Y (3(P = P') +py — 1)
+ cycl. perm. (23) and (31) (2.111)

has been used. Furthermore, Eqg. (2.110) involves an additfactor 3 as a result of the corresponding three
cyclic permutations of quark pairs as indicated in Eq. (2)11

2.6 Electroweak form factors and charge radii of non-stran@ baryons

This section discusses the computation of electromagifietio factors and helicity amplitudes using the
current-matrix elements discussed in the previous sectRestricting to a final nucleon stat&V, Pr, Af)
with total momentumP; and helicity) ¢, the current-matrix element can be written as

(N, P Mgl i (0)[ B, Py M) (2.112)

while B denotes an arbitrary initial baryon state with total momenf?; and helicity ;. jf and j;‘a denote
the electromagnetic- and axial current-operators, rasehc These operators are defined by

G (@) =2 () v () - and Jna(@) = d(@) B0 () - (2.113)

whereg denotes the charge operator agdhe isospin Pauli matrices. The current-matrix elementlested to
the form factors forB = N via

B 'E7A D Pp—
(N, Pr Agli2 (0) N, P, Ai) 1=
152‘,“ + Pf,u

s U (@) ua(P),  (2114)

ety (P') |7 (FY(Q%) + F5' (@Q%) -
with the so-called Dirac and Pauli form factaF§¥ (Q?) and F¥(Q?), which are scalar functions @§? :=
—q?%. Thereby,q defines the momentum transfer= Py — P, and the Dirac-spino, (P) is normalised to
ay (P)ux(P) = 2wp 6y With wp := /M2 + P2, The so-called electric and magnetic Sachs form factors
G¥ andGY; are related to the above defined Dirac form factors via trealicombinations
Q N

GE(QY) =H(Q) - Gk @), (2.115a)

Y (Q%) + F3(Q%). (2.115b)

Q

==

<
[
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Furthermore, the electric and magnetic Sachs form factersedated to the static nucleon properties and the
charge in the static limit@? = 0) by

G%(0) =1, G%(0) =0, (2.116a)
G (0) =gy, G (0) = pun (2.116b)

wherep,, andy,, are the magnetic moments of the proton and neutron. Belowowgpute the current-matrix
element in the rest frame of the excited initial baryonest&t) with the mass\/; = Mp and

MB pr WPN_MB
_ 0 _ _ 0 0
P,=M,=Mpg= ,Pf:PN: and q= , (2117)
0 0 0
K| K|

where My = My denotes the nucleon mass ang := ,/MJ% + |k|? for the final statd V) andk := Py.
Then, from kinematics we find for the momentum of the finialoarstate, which is defined as the nucleon

(a2 = 33 - Q2

K = Q? 2.11
o AM? (2.118)
For B = N the elastic electromagnetic form factors are then given by
N, Py, 455 (0)|N, My, &
(@2 = D ool O, My, ) (2.119a)
/4M2+Q2
N, Py, 3|52 (0)|N, My, —3
G (@) =L gl O, M, =) (2.119D)
21/Q?2
Here
JE(0) =31’ (0) =142 (0), (2.120)

denotes the transverse electromagnetic current-opsriattineir spherical representatforiikewise, the axial
form factor is defined by

(p, Py, 315{, (0) +1 &', (0)|n, My, —3)
/4M2—{—Q2 ’

where the axial current-operator is defined;y. (0) := j', (0) £ i’ (0) . Here, the axial coupling is given
by

Ga(Q%) = (2.121)

ga :=GA(0). (2.122)
Finally, the mean-square radii for the nucleon are given by

<7°2> — _6LdG(Q2)

G(0) dQ2

(2.123)

Q=0

Since the neutron form factor vanishesGdt (0) ~ 0, the squared electric neutron charge radius is slightly
differently defined by

dG5(Q%)

(r*)p = ~6—4op (2.124)

Q=0

2Note, that in literature a pre-facter% is introduced in Eq. (2.120), seeg. Tiator et al. [47].
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2.7 Helicity amplitudes and A <« N transition form factors

Apart from the electromagnetic properties of the grourtdstaicleon such ag,,, iy, <r§>, (r2), g itis very
interesting to study helicity amplitudes and transitiomridactors, in order to obtain further information about
the internal structure of nucleon and other (excited) barstates. Following Warns, Tiator, Aznauryan and
Burkert et al. [47-49)] the transverse and longitudinal helicity amplitude%, AéV/Q and va/z are related to
current-matrix elements according to

AY (@) :%K<B,M3, %‘jf(O)‘N, Py, —§>, (2.1253)
AY (@) :%K<B, Mg, %‘jf(O)‘N, Py, %>, (2.125b)
sY (@) :CK<B, Mg, %‘j{?(O)‘N, Py, %>, (2.125¢)

whereK := \/(77 a)/(My (M3 — M%)) anda is the fine structure constant. Moreovatdenotes the ground-

state nucleon with four-momentufy (see Eq. (2.117)) and is related to the momentum tradgfday k2 (see
Eqg. (2.118)), wher& denotes a phase of the decay amplitude. Note, that the gi@-fd includes already the
normalisation factor of the Salpeter amplitudes accordngq. (2.84). The amplitudes > = 0 corre-
spond to the photon couplings also-called the photon dergjitdes. In the literature many publications use
other definitions of the longitudinal amplitude,g. related to the third component of the current, which are
then denoted b;Lf;Q or C{\/fZ. These redefined versions of the longitudinal amplituderelaged via current-
conservation to the definition given in Eq. (2.125c): Dué'tg) = wj’ — [k|j¥ = 0, the following relation
holds

k
Y@ =y, (2.126)
2 (,Uf 2
(MZ—M?-Q*) 2 2. N2 defi i
wherew; := ——37—— andk” = wi+Q defines the virtual-photon momentum as known from Eq. (2.118

The notation has been adopted from Tiadbal. [47] and is consistent with the notation of Wareisal. [48],
Aznauryanret al.[49] and the previous section. Note, that the pre-factor in E2j425a) and (2.125b) involves
a factor—%, which normally is absorbed in the definition of the sphératarent-operator’ in Eq. (2.120).
In this thesis we will uses?,, of Eq. (2.125c) in all further calculations. In most casesshall fix the common
phase( such as to reproc{uce the sign of the proton decay amplitystatesl in B]. Furthermore, note that
(p, Pn, 1155 (0)|p, My, 3) is normalised to +1 af? = 0.

According to Tiatoret al.[47], the transition form factors fod ,+ (1232) electro-production, called,
andG?; are defined as

Gi(QY) =F(QY) (V3AY(Q) + AY(@Y) | (2.127a)
* (N2\ _ o (L N2y AN(A2
63(Q%) =F(Q*) (J545(@) - 4Y(@) | 2.127b)

whereF(Q?) is a kinematical pre-factor defined as

_ [My M} — M}, My

F(Q%) =
(@) dra 2M3 k|’

(2.128)

in the notation of Astet al.[50], which reduces at the photon point to

oM3 1
F(Q?=0)=— N ) 2.129
@=9) \/ tra ME - 03 (2.129)
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Furthermore, for the sake of completeness the Coulomisitram form factor is given by

Go(@) = 2R PQIVESY Q). (2130)

which is proportional to the longitudinal helicity amplitel for the P33 (1232)-state.

2.8 Summary

In this chapter we discussed the fundamentals of the Be#tigeB model, which is based on the fully rela-
tivistic Bethe-Salpeter equation describing bound-ssgtems in the framework of quantum field theory. In
section 2.2, we have followed the major steps of the calicmatof Loringet al. [4, 7] by starting with the
derivation of the Bethe-Salpeter equation from the siap@reen’s function. The latter is given in terms of
the propagation of three free quarks and a three- and twg-bteraction kernel. We focused on the three-body
interactions for simplicity. A specific time-ordering fdrd field operators allows the introduction of the three-
fermion Bethe-Salpeter amplitudes associated with a ddledsreen’s function in the total energy of the three
guark system. The Bethe-Salpeter equation and its nomtialiscondition then follows from a Laurent- and
Taylor-expansion of the Green’s function in the vicinitytbé pole in the energy.

It is possible to reduce the Bethe-Salpeter equation to #hgefr equation if the propagators, which are
involved in the free Green’s function, are of free form anth# interaction kernels are assumed to be instanta-
neous. Accordingly, constituent effective quark masseésrexs free parameters in the model. By integration of
the energies, it is then possible to derive the Salpetertiequiiom the Bethe-Salpeter equation. The Salpeter
amplitude can be interpreted as an analogon of the usualfwagton in non-relativistic guantum-mechanics.

We also discussed the calculation of electroweak obsearsastarting with the electroweak form factors and
the helicity amplitudes. All these observables are basemliment-matrix elements. The details of this method,
published already by Merten and Kretzschreaal. [9, 10, 12], were briefly recapitulated in section 2.5. The
derivation of the current-matrix elements starts from tleéirition of a seven-point Green’s function for a
photon coupled to a three-quark system and runs analogtugte derivation of the Bethe-Salpeter equation.
The relations of the current-matrix elements to electrdwfeam factors, magnetic moments and charge radii
as well as to the helicity amplitudes afid<+ N transition form factors are given in section 2.6 and 2.7.
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Chapter 3

Results of previous calculations

3.1 Introduction

This chapter recapitulates the major results of the workdofirig et al. [5-7] as well as of Merten and Kret-
zschmaet al.[9,10,12]. Furthermore, the interaction potential$® andV (?), see Eq. (2.63), will be specified
more precisely. These phenomenologically introducedntiaie are the so-calledonfinement potentiadnd
theinstanton-induced 't Hooft interactior-or the confinement potential there exists many poss$dailib im-
plement its Dirac-structure. Two Dirac-structures haverb®und, which reproduce the spectra quite well:
These were called modgl andB. Since the confinement potential itself is flavour independe further po-
tential based on an instanton-induced interaction had meduced to account for the major spin-dependent
splittings of baryons. The instanton-induced force is flavdependent and has a definite Dirac-structure. An
other candidate for a spin-dependent interaction, thealeecone-gluon exchange, has been discussed in the
PhD thesis from Loringq] and will be briefly commented here.

3.2 The confinement potential

The confinement potential will be introduced phenomenalailyi by a linear rising potential, which leads to a
satisfactory description of the baryon spectra and thealleec Regge-trajectoried/?  J, where.J denotes
the total angular momentum of the baryon state. The interpoa of this empirical picture motivates a string-
like connection between quarks (flux-tubes) generated bynit interactions. There exists several types of
confinement potentials (see also Loriagal. [5, 7] or Carlsonet al. [51, 52] for more information), which
increase linearly with the inter-quark distance, whereadinement is thus implemented by subjecting quarks
to a potential, supplemented by an appropriate three f@Bicac-structurd’. Then, the potential contains two
parameters: the offsetand the slopé and is assumed to be of the following form in coordinate space
(x1,%2,%3) 02} — 23)d(x — 25)

3 ol 0oy _13)
V( )(x171'271'371'1,1'2,$3) _Vconf

x 8 (a1 — 21)0W (g — 2)0W (23 — ), (3.1)
with
VO (x1,%0,%3) =3aTo+03  |xi — x| T, (3.2)
i<j

whereTI’, andT’; are suitably chosen Dirac-structures. Accordingxer], two different Dirac-structures have
been found, which reproduce the light-quark baryon spegiie well. As mentioned in the introduction, the
different Dirac-structures label the corresponding medeblled modeld and 8. Tab. 3.1 summarises the
Dirac-structures used in these models. The predictioneo§fiectra is very sensitive to the choice of the Dirac-
structure. This choice depends additionally on other wealpotentials, such as the instanton-induced 't Hooft
interaction within modeM andB. For the one-gluon exchange alternative Dirac-structaresnore favourable
and can be found in the PhD thesis of Loring [

27
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Table 3.1: The confinement Dirac-structures as use8-f| for the so-called modelgl and3, which contains
the instanton-induced 't Hooft force.

Model T, (offset) I'; (slope)
A 1 (19101 + 1@y ®7 + cycl. perm) 1 (-1®1®1 + 1®7®7o + cycl. perm)
B 1 (1®1®1 + 1®7®7) + cycl. perm) 1 (1®1®1 + 1®7®7) + cycl. perm)

3.3 The instanton-induced interaction

The effect of instantons on quark-quark interactions hasenbfirstly pointed out by 't Hooftg3] for the
SU(2)-group. Accordingly, the instanton-induced interactiafi ae called 't Hooft force in the following text.
The extension to th&Ur(3)-group has been performed subsequently to 't Hooft by Shifetaal. [54] in
which an effective Lagrangian for single instanton- and-enstanton configurations was derived. Instantons
are solutions of the euclidean Yang-Mills equations withiveely topological quantum numbé}r, which is
also-called the topological charge. Thereby it turns dwtt @ can only take integer numbers. This important
condition characterises different vacua and thus instent@an be interpreted as tunnelling events between
these different vacua. Hence QCD sustains a complex vactruoiwge within an enumerable infinite number
of topological inequivalent vacua. Each of these vacua tsanke characterised by another topological number,
the so-calledvinding numbeior “Chern-Simons" numbeNcs. Instanton- and anti-instantons are the simplest
building blocks with non-trivial structure, which commuates between such vacua with a topological charge
Qr = 1andQr = —1. However, by fulfilingQr = Ncs — Nis, see T1.

The details of the implementation of the instanton-induttddooft force are given in%, 7] and will be
recapitulated here very briefly. Instanton effects leadmteffective quark-quark interaction, which acts only
on quark pairs antisymmetric in flavour and can be writteroiordinate space as

V(w1 @as 2, 7h) = Vi) (x1 — x2) 8(a) — 29) 6O (21 — 24) 6 (g — ) (3.3)
with
VAx) = —du(x) (1801 +7°®7%) PE,_o (gan Ph(n0) + gus Ph (ns)) (3.4)

wherePfg’m:0 is a projector on spin-singlet states aﬂﬁﬁ (f1f2) projects on flavour-antisymmetric quark pairs
with quark flavoursf; and f5 . The two couplingsy,,,, andg,s are in principle determined by integrals over
instanton densities, which can be calculaged. in an instanton gas approximation. Nevertheless, they are
treated as free parameters in the model. Furthermore, tasdss the 't Hooft force is a contact interaction and
v(x) is given as a delta-function in Eq. (3.4). In order to implatihe interaction within the framework of
the Bethe-Baryon model it is necessary to regulasise, e.g.as a Gaussian potential with a specific effective

range in coordinate space

S (-55). (3.5)
A3 73 A

The effective range parametaris assumed to be equal for each quark-flavour and enters additiomal

parameter in the model.

vA(%)

3.4 The one-gluon exchange

Apart from the instanton-induced 't Hooft force there exiahother possibility in order to split nucleon- and
A-states by the so-calledne-Gluon Exchange. The corresponding one-gluon propagator is giyen b

_ig v
D, (K?) = Fﬁe (3.6)
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Based on the OGE-propagator and the gluon-fermion vertegtste, the second-order matrix element of the
OGE can be extracted according ©35]

y ® @) — (v k)@ (v-k
VD (K2 = 4 (”Olk’j”h 7) kglie) o )>7 (3.7)

in Coulomb gauge witflk := |—§‘ The corresponding potential can be written in coordinptes as

2 2ag . .
Voge) = =32 (0 @0+ 5(v- ) — (v %) © (v %)) (38)
which defines the OGE-potential. The direction of the positiector is denoted by := *, r := [x|, while
ag is the strong running coupling constant, which igldt = 0 in momentum space usually given as a finite
value.

The OGE generates th® — N mass-splitting via its spin-dependent Dirac-structuvdsich are reflected
in Eq. (3.8) by the factors involving the Dirac-matrices Hence, the mass-splitting mechanism differs from
the instanton-induced interaction as it is obvious in trevimus section. The OGE has been investigated]in [
in order to give a moderately satisfactory description ef filll nucleon- andA-spectrum. But in particular,
especially excited resonances cannot be reprodecgdhe mass of thev, ,- (1535)-state, which is predicted
much to low, as shown irv].

3.5 Baryon spectra

Introducing the confinement potential and the instantalw@ed 't Hooft interactions within the Salpeter equa-
tion (2.62) leads to the prediction of mass spectra for mgtahd 3, which will be briefly discussed in this
section. We start with a discussion on the scale dependdrtbe mass spectra. The scale characterises the
finite basis in which the Salpeter equation is solved.

3.5.1 Scale dependence

Solving the Salpeter equation according to Egs. (2.62) ar&8j yields to Table 3.2: Optimal values of
an eigenvalue problem, which can be solved numerically.tiierpurpose, the length scale3 for various
the Salpeter amplitudes will be expanded within a large fibite basis of baryons in modeM.

harmon?c osc_illator stat_es_ with oscillqtor guantum n_u[elﬁ‘érg Nmax. The baryon 907 +1 A [fm]
harmonic oscillator basis is characterised by a specifitiater length scale
B, which has to be chosen such, that for the baryon rMssaé# ~ 0 A >2 0.60

holds. With an increasing number of oscillator shells thevature of Mg

. . 5 OMg _ 0.45
in the vicinity of 8 with W‘B:B = 0 becomes smaller and the range of - 0.50

values for the scale parameter with the prope@%‘i ~ 0 increases. This
is demonstrated in Fig. 3.1 fdVi,ax = 8 and 18 oscillator shells for model A X, =, >2 0.60
A. For the total angular momenturh a common value fog is chosen.
This guarantees the orthogonality of the amplitudes. Tabs@mmarises all (minimal) scale parametgrs
which are chosen for all light-flavoured baryon states asteeage of the ground- and first excited state. This
selection has been done by hand.

3.5.2 Model parameters

Still following the work of Loring et al. [5-7], the complete light-flavoured baryon mass spectra inolydi
the A-, N-, A-, -, =- andQ-spectra, can be calculated by taking into account the camiémt and instanton-
induced interactions from the previous sections 3.2 and8spectively. For the calculation of the mass spectra
it becomes necessary to determine the free parameters adifieement and of the instanton-induced 't Hooft
forces as well as of the non-strange and strange quark massesdm,. A compilation of the parameters is
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N1/2+ A3/2+
3000 ‘ ‘ ‘ 3000 ‘ ‘
Nmax = 8 Nmax = 8
Nmax = 20 Nmax = 18
2500 2500
—. 2000 . . 2000
%_, N/ (1440) % A7, (1600)
= 1500 | = 1500 [
= = Af ) ,(1232)
< = /
=~ 1000 | 1000 |
500 | g 500 |-
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
B [fm] B [fm]

Fig. 3.1: Scale dependence for tNe/, (939, 1440)-states (right side) and for thi; 5 (1232, 1600)-states (left
side) for modelA. Different model spaces are used withifhax = 8 and Nmax = 18 (Vmax = 20) oscillator
shells, respectively. It is obvious, that the minima of theund- and first excited states are not located exactly
at the sames. Nevertheless, suitable values forare at3 = 0.45fm for the N, 5(939, 1440)-states and at

B = 0.6fm for the A3 /,(1232,1600)-states. Furthermore, the curvature reduces with inergasimber of
oscillator shells.

Table 3.3: Model parameters for the current madeh compari- Table 3.4: List of baryon resonances of
son to those of modd4, cited from p-7]. which the masses were used to determine
the model parameters in a least-squares

parameter modefl modelB fit, where every resonance was attributed
masses non-strangen,, [MeV] 330.0 300.0 aweightreciprocal to its uncertainty in its
strange m. [MeV] 670.0  620.0 posmpn as given ing]. Nominal masses
are given in MeV.
confinement offset a [MeV] -744.0 -1086.0 A N A
slope b [MeV/fm] 440.0 1193.0

P33(1232)  P11(939) Poi(1116)
instanton  mn-coupling g, [MeV fm3]  136.0 89.6

i F7(1950)
induced  ns-coupling g,s [MeV fm?] %.0 617 4 (2420)
interaction .

eff. range )\ [fm] 0.4 0.4 K315(2950)

given in Tab. 3.3 as used by Lorireg al. [5, 6]. The parameters in Tab. 3.3 have been determined by fittieg t
confinement parameters on the Regge trajecfoyy;+ (1232), A7/5+(1950), Ay o+ (1232) andA 4,9+ (2950)

and the instanton-induced couplings at figy,+ (939)- and A j»+ (1116)-resonances. The resonances, used
in the fit, are again summarised in Tab. 3.4. The resultingtspare displayed in Figs. 3.2-3.6. Each column
corresponds to a spectrum characterised by the total anguaentum.J and paritywr. The predicted and
measured resonances are displayed by horizontal linetetbefithe value of the mass, while the uncertainties
of the experimental masses are represented as shadedbtheséntral part of each column. Furthermore, the
PDG-rating p6] is indicated by stars, where the left and right part of eamhron displays the results of model
A and B from Loring et al. [5]. The middle of each column shows the experimental data tfePDG b6

of 2010 for comparison. Resonances, that cannot be acebtorieare indicated by round boxes and labelled
with question marks.

3.5.3 A-and()-spectra

We start with the discussion of the-spectrum, displayed in Fig. 3.2, from which it is evidehgttmost of the

groundstate masses are reproduced quite well with the taney the J = %+- andJ = %*-groundstate’s for
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both models. Thé-spectrum is determined by the non-strange mass and th@eordnt potential parameters
only. For excited resonances, as already mentioned in thedurction, some discrepancies in both mod-
els exists. Especially excited resonances with negativiéyp@.g. the A5~ (1910)-, Az/p-(1940)- and
As/5-(1930)-resonance as well as the positive parity Roper—m¢2(1600)—resonance are not reproduced.
These resonances are indicated by boxes and question mdfig 8.2 and are the major motivation for the
introduction of a new interaction, which allows a satisfegtdescription in the framework of the Bethe-Baryon
model. Such a new interaction will be discussed in the neaptdr. As it is obvious from Fig. 3.2, moddl
generates a slightly better description of the mass-sg#tof theA-spectrum than modés.

The experimental2-spectrum consists only of tl§&; ,+ (1672)-resonance and depends only on the strange-
guark mass and the confinement potential. In fact the strgngek mass was adjusted to this state after fixing
the confinement parameters via the Regge trajectory. A patteo(2-spectrum withJ < % is displayed
on the right side of Fig. 3.6. It turns out, that all excitedaeances are predicted in the mass region above
2 2000 MeV, supported by measurements(pbaryons listed in the PDGQ].

Thus in modeld and B, which differ from each other only by their confinement Distouctures, most of
the resonances in this- and{2-spectra are reproduced quite well.

3.5.4 N-spectrum

The nucleon-spectrum depends additionally on the parametehe instanton-induced 't Hooft force. Note,
that the confinement parameters are already fixed byAtfRegge trajectory as mentioned in the previous sub-
section, this also holds for the non-strange and strangstia@ent quark mass. Fig. 3.3 displays the nucleon-
spectrum for modeld and B3, respectively. Comparing both models with each other, @¢osspicuous that
model A can account for most of the excited resonaneeg, even approximately for the Roper-resonance

N9+ (1440), which is labelled with the box, whereas modetioes not. Furthermore, modglcannot repro-

duce the mass-splittings of thE = {-states as well: In particular the mass of thig/,- (1650)-resonance
is overestimated. A further discrepancy in both models ésrttass of theV, /,- (1535)-resonance, which is
predicted too low. TheV, ;- (1535)-resonance offers a persistent problem in the Bethe-Bagyank model
as also shown in the subsequent chapter 4, where a new sofldependent interaction will be introduced.
In general, modeld reproduces the nucleon-spectrum better than m&deds it was also found from the

A-spectrum.

3.5.5 Hyperon-spectra

The hyperon-spectra are displayed in Figs. 3.4, 3.5 anckitethpart of Fig. 3.6 . Starting with the discussion
of the A-spectrum, modeH reproduces the mass-splitting much better then mBdesét as for the nucleon and
A-sector. ModeB does not reproduce the Roper-likg,,+ (1600)- and theA, ;- (1405)-resonance as marked
by boxes. Concerning the latter Jido, MeiRner, Oset and blgoal. [57-59] interpreted this resonance as a
meson-baryon bound-state close to fiéV-threshold, which thus cannot be described satisfactaslyag?-
bound-state in the Bethe-Baryon model.

Both models can account for most of the resonances ikthpectrum as displayed in Fig. 3.5, where again
some discrepancies occur in the description of excitedstathich are indicated partially by boxes. Apart from
the Roper-likeX /,+ (1660)-resonance two negative parity resonanégss - (1580) andX; ,- (2100), cannot
be accounted for in the models also the two star rated- (1580)-resonance poses a persistent problem in the
Bethe-Baryon model. Furthermore, modetannot account for any of the excitet] ,+-resonances nor for
theXlz o+ (1840)- and¥, /o (1620)-resonances. All other observedresonances can be reproduced very well
by modelB and in particular by modeH.

Finally, for the=-baryons there exist less data for a more detailed compavigh the experimental data.
Both models reproduce nicely all of the kno&rresonances, but differ in their predictions for exciteates
as displayed on the left side of Fig. 3.6. Similar to fkie A- andX-spectra, it can be concluded, that model
A accounts for the internal structure better than mdslelWithin the framework of modeld a Roper-like
E1/2+-resonance is predicted arourd 870 MeV, while the lower™ = %_-state should be located at around
~1770 MeV.
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Thus modelA was favoured, since it reproduces most of the resonances bein modeB. In particular
model.A accounts for most of the Roper-like resonances imthend>:-baryon sector with acceptable accuracy
(A1 /2+(1600) and3; /»+(1660)), whereas modeB does not reproduce any of the Roper-like resonances. In
the X-baryon sector for instance, the Roper-like resonanceedigied at 1869 MeV by moded and at 2102
MeV by model5. Here, we favour the prediction of moddl In the next chapter 4, a further extension of the
Bethe-Baryon model will be introduced and compared withcaleulated version of moded by increasing
its numerical accuracy in order to reduce numerical unceigs. This leads to a secondary and not directly
intended effect, since the increased numerical accuradycas a readjustment of some of the parameters,
which shifts the resonance positions slightly, see sestib@.2, 4.2.3 and 4.2.4 in the next chapter for more
information.

3.6 Electroweak form factors, helicity amplitudes, photondecay amplitudes
and other static observables

The work of Merten and Kretzschmat al. [9, 10, 12] studies electromagnetic form factors and helicity am-
plitudes as well as photon decay amplitudes in the framewbtke Bethe-Baryon model. These studies were
exclusively made for modell, since, as discussed above, it describes the nucleonAaspkctra better then
modelB. Furthermore, static observables, such as the magneticemtand the charge radius have been ex-
tracted by Merteret al. [9, 10] from extrapolations of the electromagnetic form factardhe photon point

at vanishing momentum transfer. An alternative methodHerdalculation of static observables has been de-
veloped from Haupét al. [13, 14], which calculates the magnetic moments and charge radictlly without
extrapolating the form factors to the photon point. In thetrmhapter, all studies of Mertezt al.[9, 10] will be
recalculated with a higher numerical accuracy and can badfguthe figures to sections 4.2.5 and 4.2.6, where
also the results of a new approach, called matekill be discussed. The next chapter 4 shows calculations
of model A for the baryon spectra, electroweak form factors, heliaityplitudes, photon decay amplitudes,
magnetic moments and charge radii. Such calculations sarbal found in Merteet al. [9, 10] and Hauptet

al. [13,14], but with less numerical accuracy.

3.7 Summary

This chapter summarises and assesses the results of the-Bstyon model on the light-flavoured baryon
spectra of Loringet al.[5-7]. It starts with the introduction of the two quark interaxts used: The confinement
potential, which has been introduced phenomenologicallya dinear rising potential with an offset- and a
slope parameter in order to confine quarks within a baryoa ¢setion 3.2). For the Dirac-structure of the
confinement potential, Loringt al. [5] studied two different forms, which lead to reasonable ltssumodel

A and B. The second interaction is based on instanton effects leetwearks in QCD and is called the
instanton-induced 't Hooft interaction. This force is ded as a two-body contact interaction and has been
regularised by a Gaussian potential in coordinate space.ifftlraction acts only on spin-singlet states and
flavour-antisymmetric quark pairs and thus is responsiide for the A — N mass-splitting in the baryon
spectra. In section 3.5 we discussed the light-flavouregdoaspectra. After a brief discussion on the scale
dependencies, we recapitulate the results for the baryertrsgfor modeld andB: The light-flavoured-spectra
are in general reproduced quite well by both models. Howeékiere are some discrepancies in these spectra,
which cannot be described by either of the moddisand 5. Most prominent are here the three positions
of the A*-resonances around 1900 MeX {,- (1900), Az~ (1940) and A; 5~ (1930)) and the Roper-like
As/5+(1600)-resonance in the\-spectrum as well as that of the Rop¥¥ 5+ (1440)-resonance and of the
Ny /o- (1535)-resonance in the nucleon-spectrum. Overall, modieiccounts better for the light-flavoured
baryon spectra than modBlas already concluded by Lorireg al. [5-7]. Accordingly, Merten, Kretzschmar
and Haupet al.[9,10,12-14] used modelA for the calculation of electroweak form factors, helicitypalitudes,
photon decay amplitudes, magnetic moments and chargeamdiiscussed in subsection 3.6. For these the
results, obtained with an increased numerical accuraeydiacussed in the next chapter 4.
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Chapter 4

Alternative interaction kernels in the
Bethe-Salpeter model

4.1 Introduction

As mentioned in the previous chapter, the Bethe-Baryon habaks not account for all resonances within the
light-flavoured baryon spectra. There are still missing soesonances within th&-baryon sector, which can-
not be reproduced by using a linear confinement potentiathBrmore, the well known Roper-like resonances
are not predicted very accurately by using an instantonded 't Hooft force for theA — N mass-splitting.
This suggests the issue if an additional interaction camestblese problems. There exists many options to
introduce new interactions between quarks inside a banyahe framework of the Bethe-Salpeter model. In
this chapter two possibilities will be discussed. The first ¢s based on the introduction of a new spin-flavour
dependent interaction motivated by pseudoscalar mesdrarge, which indeed will be found to rectify some
of the problems in the baryon spectra mentioned before iticse8.5 in the previous chapter. The second
candidate will be a phenomenological modified version oftiia&finement potential, which includes spin-spin
and tensor interactions. This leads to additional spin-gpid tensor contributions in the Dirac-structure of
the confinement potential. Finally, both interactions Wil combined, which leads to an additional model.
The discussion will start with the novel spin-flavour depamtdnteraction, which can be found in Ronniggr
al. [31,32.

4.2 The spin-flavour dependent interaction

Assuming, that a part of the effective interaction
between quarks in a baryon is mediated by ex-
change of pseudoscalar mesofiasatzedor the
two different types of couplings for the fermion- 5
a- 2@ k 5\b
meson vertex can be studied: the pseudoscalar- a7y P 97y
or pseudovector coupling. Here, we shall anal- 3=+°v*(ik,) } Meson { BnSy¥ (—iky)
yse both possibilities. The coupling of sp%n-
fermions to a pseudoscalar mesonic nonet in the
interaction Lagrange density is, in case of pseu-
doscalar coupling, given by

8
ggps) = —izgadj’y‘r’ A 2 (4.1) Fig._4.1: One-meson-ex.change between tvyo quarks_. The
a=0 vertices are labelled with the corresponding couplings,
while with pseudovector coupling it is given by Where the upper line shows the pseudoscalar- and the lower
line the pseudovector coupling.

8
(pv) _ Ja 7.5 a a
£y ——GZO%M VYD (4.2)
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Here, 1) represents a quark fields with mass ¢® the pseudoscalar meson fields with mags while the
flavour index runs over = 750 1, 70, K= K° K°. The flavour dependence is represented by the usual
Gell-Mann matrices\, a = 1,...,8 and\" is proportional to the identity operator in flavour spacennalised
to Tr(A°\Y) = 2. For details on the corresponding interaction HamiltositmEgs. (4.1) and (4.2), we refer to
appendix A and Caiat al.[60].

We extract the mesonic potential within second-order frbendcattering-matrix element corresponding to
the diagram of Fig. 4.1. As shown in appendix A the correspunéhstantaneous potentials in momentum
space are given for pseudoscalar coupling by

a a 1
‘63&):§:ﬁﬂ\®A]mp1;gh“®f] (4.3)
and for pseudovector coupling as
V(Q)(k) _ ZQCQL [}\a®)\a] -1 [(5 -k)®(5 -k)]—1[50® 50]
(pv) 2 e glie’ 5 V@Y
:}:ﬁ[v®m-;ﬁiﬂfwg®h%iﬂ—%ﬁW®ﬁﬂ
— 4m? K2+ 422 2
2 2
9a [ya o yay| _ L K| 1
- Za: 3 N ® N {— SR+ 2 (- @v° )] = 5[v"" @]
1 |k? ~ N
S [0 91 =30y B 8 (%7 | (4.4)

respectively, wherg := % is the direction of the momentum transteand the first term in the second line of
Eq. (4.4) is the tensor interaction. The last step in Eq.)(d@etomposes the tensor-like Dirac-structure of the
pseudovector coupled potential into tensors of raak 0 and2. Furthermore, there appear two contact terms
(in coordinate space) in Eq. (4.4), coming from the congpant of the propagator

k? 112

B g Ha (4.5)
k|? + p2 k|* + p2

and from the constant term with Dirac-structysé~° ® v°1°]. Here, for further details we refer to Lévy and
Brueckneret al.[61, 62

As it stands, the expression for the potential in the insi@@us approximation for pseudoscalar coupling
leads, after Fourier transformation, to a local Yukawa piigé in coordinate space with the usual range de-
termined by the mass of the exchanged pseudoscalar mesomséuovector coupling the non-relativistic
approximation to the Fourier transform leads to the usualspin contact interaction together with the usual
tensor force. In the simplest form adopted by the Graz gr@2p24, 26-30] the latter was ignored, in addi-
tion the contact term was regularised by a Gaussian funetmahthe Yukawa terms were regularised to avoid
singularities at the origin. Also Eq. (4.3) can be rewritieicoordinate space

o)

2 <o(—
@60 = 3 82 [y 0] TRCH o g, “5)

47

a

with r := |x|, which describes a regular Yukawa potential. In view of ¢hescessary approximations, we de-
cided to parametrise the new spin-flavour dependent irtteragurely phenomenologically as a local potential
in coordinate space based on the pseudoscalar coupled 1mesmange as pointed out in the appendix A.1. In
its simple form it is given by

V) =Y g2 M@ A\ ux, (%) [+ @] 4.7)

where vy (x) is of the same Gaussian form as given in Eqg. (3.5). Other Bitactures, such as
[v°~ - X ® v~ - X] were tried, but were found to be less effective.
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4.2.1 Model parameters

With the new spin-flavour dependent interaction a new detextion of the length scale in the harmonic oscilla-
tor basis was used to fulfil the requiremgé%ﬁ = 0. Fig. 4.2 shows the length scale dependence ofthg -
and A+ -baryons for the ground- and first excited state. A summarhefresulting minimisings-values
for each sector is given in Tab. 4.1. Comparing the plots ofleh6 with those of modeld (see Tab. 3.2 for
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Fig. 4.2: Scale dependence of the ground- and first excigessin modef. On the left side we have displayed
the IV; /,-nucleon resonances and on the right sideAig,-resonances. The optimal length scéles chosen
close to the average of the positions of the minima of the mpleand first-excited state. Fo¥, /,-states we
choosesd = 0.45fm and for A3 ,-statess = 0.50 fm. All other baryon states have been investigated in the
same way. Their resulting values férare summarised in Tab. 4.1. The curves are calculatég,at = 20 for

the nucleon andVax = 18 for the A-baryons.

comparison), it is obvious that the curves are differentartipular forA- Taple 4.1: Optimal values of
baryons. Thereby, the optimatvalue is chosen close to the average of tige |ength scale3 for various
positions of the minima of the ground- and first excited statéch seems to paryons in modet.

be a good compromise, when insisting on the computationeottimplete
mass spectra for a givehwith a single value ofs.

The resulting baryon mass spectra were obtained by fittiagptiame- A 2,4 0.50
ters of the modelyiz. the offseta and slopé of the confinement potential, 6 0.55
the constituent quark masses, = m, = mg andmg, the strengths of
the instanton-induced forcg,,, andg,s as well as the strengths of the ad- >8 0.60
ditional spin-flavour dependent interaction, giveny= g,, a = 1,...,8 N 2 0.45
andy for flavour octet and flavour singlet exchange (thus assusiiig(3) -4 0.50
symmetry) to a selection of baryon resonances, see Tab.Th& range\ = )
given to the instanton-induced force was kept to the valee irs [5, 6] and ALY >2 0.50
is roughly in accordance with typical instanton sizes. Tpénoal value : —
for the range of the additional spin-flavour dependent étgon was found
to be g = )y = 0.25fm and thus turned out to be of rather short range.
A comparison of the parameters, obtained with the parasefemodel.A
of [5,6], is given in Tab. 4.3 (see also Ronnigral.[31,32] for calculations
with higher numerical accuracy for modd)). In further studies, after the publication by Ronnigeml. [31],
an improved description of the baryon spectra and their flactors was found,32]. Here, in particular the
scale parameters were found be different from that one used in Ronnigeal. [31]: These new values are
listed in Tab. 4.1. Accordingly, the parameters, as givefiah. 4.3, are slightly different from the values
from [31], which are listed in brackets. The parameters need somenemts: In the original paper of Lorirgt
al. [5, 6] the Dirac-structuresi.g. the spin dependence) of the confinement potential in mddekre taken to
bely = 1(1®1®1++°®+°®1+cycl. perm) andl’, = 1 (-1®1®1++°®+°® 1 +cycl. perm) for the

baryon 2J+1 g [fm]

>2 0.45

[11

>2  0.40
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offset and slope, respectively, and were considered to beea-body kernel. In the present model, including
the additional octet and singlet flavour exchange potentialobtained the best results with = 1 1 ® 1
andl', = 4° ® 7 and treating the interaction corresponding to the latten @&s a two-body interaction. This

Table 4.2: List of baryon resonances of which the masse$able 4.3: Model parameters for the current
were used to determine the model parameters in a leastodelC [31,32] in comparison to those of model
squares fit, where every resonance was attributed a weight of [5, 6]. Some of the parameters have been
reciprocal to its uncertainty in its position as given&.[  slightly changed with respect to the original val-
Nominal masses are given in MeV. ues (listed in brackets) ob[6], since the calcu-
A N A/ = 0 lation has been performed with higher numeri-
cal accuracy by taking more basis states in the
(1620) S11(1309) diagonalisation of the Salpeter Hamiltonian into
( ) account, see also text. Note, that in compari-
son with Ronnigeret al. [31] (values listed in
1(1750) P11(939) Po1(1116) Py3(1530) Po1(1672) brackets), a different set of parameters has been
(1289)
(1600)
(1660)

chosen, which improves the description of the
baryon spectra and their form factors.

Py1(1600 " C 1
arameter
3(1600 P»1(1660 P
350.0
3(1920 masses m,, [MeV] [325.0] 330.0
Da3(1700) D15(1820) m. [MeV] [6%%56(]) 670.0
D33(1940) .
confine- [MeV] -370.8 -734.6
D35(1930) ment © [-366.8] [-744.0]
208.4 453.6
Fi35(1905) b[MeVIim] 1515 8] [440.0]
F35(2000) instanton- 4 317.9  130.3
F37(1950) induced 9 IMEVIMT 1o/ 51 1136.0]
interac- 3 260.0 81.8
Gi7(2200) ion  9ns IMeVIMT 1o636]  [96.0]
Gi39(2400) A [fm] 0.4 0.4
octet 2 118.0
g 3
H39(2300) exchangeir [MEVIM] 11009
H311(2420) singlet 2 1715.5
exchangei_gr [MeVim®] 1897 4]
Kg 15(2950) )\8 = )\0 [fm] 0.25 -

of course impedes a direct comparison of the correspondangnpeters. Furthermore, it was found that the
strengths of the instanton-induced interaction are rougipled compared to the original values. Note, that
the additional flavour exchange interaction has the sammeflpiour dependence as parts of the instanton in-
teraction. The flavour singlet exchange could effectivédp de considered as an other spin-dependent part of
the confinement potential. Possibly this explains the exdiiaary large coupling in this case. In summary, it
thus must be conceded that the present treatment is pheotmgieal altogether and that here unfortunately
the relation to more fundamental QCD parameters, such &ies couplings and string tension is lost. Nev-
ertheless, with only 10 parameters we consider the pressattrient to be effective, especially in view of its
merits in the improved description of some resonances tadoeissed below.

4.2.2 A-and-spectrum

In Fig. 4.3 we compare the results from the present calangtinodelC) (right side of each column) with
experimental data from the Particle Data Gro8p(Eentral in each column) and with the results from model
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Table 4.4: Multiplet decomposition

A ) 4 ) of amplitudes of negative parityA-
neg.*10,(56] 210,[70] neg.10,[56] “10[70]  resonances. For each amplitude the

~1636 991 6.2 928371959 987 650 33.8 contrbution to the Salpeter norm,
2 see fi] and Eq. (2.84) is given in
0.9 0.6 0.3 13 0.7 0.5 %, in each row the upper line and

T1956 986 17.8 80.8| 3 2022 99.1 90.1 8.9 the lower line give the positive and
negative energy contribution, respec-
L4 0.9 0.5 0.9 0.5 0.4 tively. States are labelled by the
72050 99.0 79.3 19.7| 3 2132 99.3 145 84.8 calculated mass and™ denotes to-
tal angular momentum and parity,
1.0 0.5 0.5 0.7 0.2 0.4 . .
25+1F7,[D] label amplitudes with

J™ Mass pos?10;[56] 2107[70] | J™ Mass pos?10;[56] 210[70]

N[

N[

N[

371600 98.5 9.1 89.4|5 2161 99.2 88.8 10.4 spin S, flavour representation with
15 0.7 0.7 0.8 03 05 di_men;ion}‘,_ SU(6) represent_ation
with dimension D. The dominant
371896 97.9 28.2 69.7 contribution is underlined.
2.1 1.4 0.7

A of [5] (left side in each column). The parameters used are listd@b. 4.3. The spectrum of thk- (see
Fig. 4.3) andQ2- (see right panel of Fig. 4.7) resonances is determined &ydmfinement potential and the
new spin-flavour exchange interaction only, since the mistainduced 't Hooft interaction does not act on
flavour symmetric states. Concerning the positive parigpnances we see that in the present calculation we
can now indeed account for the low position of thg/,+(1600)-resonance. In addition the next excitations
in this channel now lie closer to 2000 MeV in better agreemtit experimental data, as is also the case for
the splitting of the twaA\, -+ -resonances. Note, however, that these states were idcindiee parameter fit.
Additionally there is support for a parity doublét; 1 (1920) andA; 5 (1940) as argued ing3].

Likewise, we can now account for the excited negative paégpnancesA ;- (1900), Ao~ (1940) and
As /o~ (1930) and even find two states in tis; , - -channel, which could correspond to the poorly established
Az /- (1940)-state. In view of the near degeneracy of thg,,- (1900), Ag/o- (1940) and A; /5 (1930)
states it is tempting to classify these in a non-relatiwistheme as a total spisi = % total quark angular
momentuml = 1 multiplet which, because of total isospin= % must then belong to &6, 1~) multiplet,
which is lowered with respect to the bulk of the other negaparity states that in an oscillator classification
would be attributed to thév = 3 band. Obviously this is not supported by the calculations: TAb. 4.4

shows, although the lowegt” = g_—resonance has a dominant component in this multiplet,abersl excited

J™ =17, 3" -resonances have dominant components in(Thel ~) multiplet; indeed the third excited states
in these channels can be attributed to thé, 1~ ) multiplet. Otherwise the description and in particular the
A-Regge-trajectory are of a similar quality as in the origgimadel A. In Tab. 4.5 we have summarised the
calculation ofA-resonances.

Concerning thé)-spectrum, see Fig. 4.7 (right panel), apart from the apear of an excitefs ,+-state
at 2014 MeV no spectacular changes in the predictions wiheret to the original moded were found. Note,
that the present model predicts, that this state is almagrzated with the first negative parity stafgs,-
at 2020 MeV and23,- at 1996 MeV.

4.2.3 N-spectrum

In Fig. 4.4 we present the results for the nucleon spectrusmwas the case for th&-spectrum, comparing
to the results from the former moddl, we indeed obtain an improved description of the positiotheffirst
excited state with the same quantum numbers as the grotmdsta so-called Roper-resonance, while at the

same time improving also on the position of the first excitedative parity resonance& = (3 )1, (3 ),

(%*)1, (%*)2 and (%*)1. With the exception of theg™ = %+-state, which compared to moddlis shifted
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Table 4.5: Comparison of experiment&] pnd cal- Table 4.6: Comparison of experiment&] pnd cal-
culated masses in MeV dk-resonances. The corre- culated masses in MeV df-resonances. The corre-

sponding spectra are shown in Fig. 4.3. sponding spectra are shown in Fig. 4.4.

exp. error  rating modet exp. error  rating modet

S31(1620) 1615-1675  *+** 1636 S11(1535) 1520-1555  *+** 1475

S31(1900) 1850-1950  *** 1956 S11(1650) 1640-1680  *+** 1681

S31(2150) 2020-2250 * 2049/2121 S11(1895) 1880-1910 ** 1839/1882

P31(1750) 1708-1780 * 1765 P11(939) 939-039  *wxx 950

P51(1910) 1870-1920  *** 1892 Py1(1440) 1430-1470  **** 1430

P33(1232) 1230-1234  *+** 1231 Py1(1710) 1680-1740  *** 1712

P33(1600) 1550-1700 ok 1596 P;1(1880) 1915-1845 ** 1872

P33(1920) 1900-1970  *** 1899/1932 P;11(2100) 1855-2200 *  many res.

Ds3(1700) 16701770 *+ 1600 Pi5(1720)  1650-1750 = 1690

_ **

D33(1940) 1840-2167 * 1895/1959 P13(1900)  1862-1900 1840

Dys5(1930) 1020-1970  *+* 2022 Py3(2040) 2031-2065 2029/2045

F35(1905) 1870-1920  *w 1896 Di3(1520) 1515-1530  ** 1520

Fys(2000) 1720-2325 N 1955 D13(1700) 1650-1750 1686

_ *kk

Fyr(1950) 1940-1960 *w 1934 D,3(1875) 1855-1895 1849/1921

F37(2390) 2250-2485 *  many res. Dy3(2120)  2080-2210 many res.

D15(1675) 1670-1685  **** 1678

G37(2200)  2120-2360 2123/2188 D15(2060) 2045-2075 = 1922/2017
G39(2400) 2100-2518 ok 2220

F15(1680) 1675-1690  **** 1734

Hs39(2300) 2137-2550 2313 Fi5(1860) 1820-1960 - 1933

_ *kkk

H311(2420)  2300-2500 2363 F15(2000) 1816-2175  ** 1978/2062

I313(2750) 2550-2874 ok 2573 F17(1990) 1855-2155 ok 1997

K315(2950) 2750-3090 **  2712/2876 G17(2190) 2100-2200  **** 1980

G19(2250) 2170-2310  **** 2169

H19(2220) 2180-2310  **** 2159

I111(2600) 2550-2750  *** 2342

K1.13(2700) 2567-3100 * 2510

upwards by approximately 50 MeV, the description of all knosxcited states is of a similar quality as that of
model A. In particular the position of the lowegf" = %*-resonance is still underestimated by more than 100
MeV.
In the following, we compare the predictions obtained in eid@bifor nucleon resonances with < % and
masses larger than 1.8 GeV with new results obtained in theEmatchina analyses as reported 16417]
and included in the new PD@], see also Tab. (4.6). The ratings of the new results arefaesothe PDG 8]:
1t_

In particular in B, 16,17] a fourth J™ = 5 " -state was found, calledy; ,,+ (1880) which could correspond
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to our calculated state at 1872 MeV. Furthermore the arslipsf15] contains twoJ™ = %+-states, called
N (1900) P13 and N3 o+ (1975)1, which might be identified with the modélstates calculated at 1840 MeV and

1947 MeV (or 1964 MeV), respectively. Concerning the negafiarity states, ing,16,17] a newJ™ = %_-
state was found/{; »- (1895)), which could be identified with the calculated state at 1BRY/ (or with that

at 1882 MeV). In addition, two/™ = 3~ states were foundV; ,- (1875) could correspond to the calculated
states at 1849 MeV (or at 1921 MeV) and ;- (2120) with one of the three states with calculated masses 2073

MeV, 2094 MeV and 2136 MeV. Furthermoreja= %J“—state has been foundl; /»+ (1860) in [8,17], which
could correspond to predicted state at 1933 MeV. The New- (2060)-state reported i, 16,17] is closest to

the states calculated at 1922 MeV and at 2017 MeV. Finalty/fo= ng the analysis is ambiguous: Although
a solution with a single pole around 2.1 GeV is not excludetlitions with 2 poles, either an ill-defined pole in
the 1800-1950 MeV mass region and one at nearly 2.2 GeV or lwvge poles at approximately 2.0 GeV were
found and could correspond to the modedtates calculated at 1933 MeV and 1978 MeV. Note, that these n
resonances were not included in the parameter fit (see T3b.Aln overview of the identification of nucleon

resonances is given in Tab. 4.6.

4.2.4 Hyperon-spectra

The resulting spectra for hyperon resonaneés the A-, - and=-states are depicted in Figs. 4.5, 4.6 and 4.7,
respectively. Again we indeed find an improved descriptibthe “Roper-like” resonances, -+ (1600) and
¥3/9+(1660). Note, however, that both were used to determine the modahyeters. Concerning the negative

parity resonances, although we do find an acceptable d#eaoripf the A-resonances with/™ = %_ , g_
and %_, also the new calculation cannot account for the low pasitbthe A, /,- (1405)-resonance, which
now is 200 MeV below the calculated position. In our opinidistunderlines the conclusion, that this state
cannot indeed be accounted for in terms gf @xcitation alone and that its position is determined by angfr
coupling of a “bare’¢>-state to meson-baryon decay channels due to the proxirhityeds N-threshold, see
also ref. p7-59] for a description of this state in a chiral unitary appraach

Concerning the&Z-resonances, with respect to modélof [6] mainly the prediction for the excited state
Ei/o+ at 1766 MeV is 100 MeV lower in modél. To a lesser extend this also holds for the excigg+,
which is now predicted at 1887 MeV. The PD§ lists many baryon resonances in the hyperon sector fortwhic
no quantum numbers are quoted. With the predictions of m@det are able to suggest a classification for
some of these resonances based on their masses. It is [@atisilb the=(1690) corresponds to the Roper-like
excitation at 1766 MeV of thd™ = {L e.g.within the framework of modef, mainly, because there is no other

low lying resonance within th&-spectrum of modef’, the =35+ (1530)-resonance being already assigned.

Here, also the interpretation ag/a = %7 groundstate could be possible, which lies slightly aboecRbper-

like resonance at 1806 MeV. In addition to tBé1690)-resonance, the PDG lists also a resonaiks20),

but with a low one-star rating, which could also be interpdeds the Roper-like excitation as mentioned above.
Another candidate is th@(2250)-resonance. In th2-spectrum model predicts a clearly separated band of
states. For positive parity this band lies aroun@250 MeV and for negative parity at approximatety 2330
MeV. Thus, believing in the predictions of mod&lthe2(2250)-resonance could have a positive parity.

4.2.5 Electroweak form factors of the nucleon

In Fig. 4.8 and 4.9 we display the electric proton and neugttastic form factor, respectively, up to a momentum
transfer ofQ? = 6.0 GeV2. The black solid curve is the result of the present ma@ijehe black dashed curve
is the result obtained with the parameters of madelas in P], albeit with a better numerical precision as
mentioned in section 3.5 in the previous chapter.

Although the electric form factor of the proton, see Fig.,4a8 calculated with modedl in [9] fell too
steeply in comparison to experimental data, with the pitesaaraction we find a much improved shape,
which yields a satisfactory description even up to momentransfers of6.0 GeV2. Indeed, in contrast

1TheN?,/2+(1975)-resonance is not shown in Fig. 4.4, displaying PDG-dgtarfly.
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Fig. 4.8: The electric form factor of the proton di- Fig. 4.9: The electric form factor of the neu-
vided by the dipole fornG'p(Q?), Eq. (4.7). MMD-  tron. MMD-Data are taken from the compilation of
Data are taken from Mergedt al.[66], supplemented Mergellet al.[66]. The solid black line represents the
by data from Christet al.[64] and Qattaret al.[65] . results from the present modé€| the dashed black
The solid black line represents the results from theline in the result from model of [9], albeit recal-
present model’; the dashed black line those from culated with higher numerical precision. Red data
model A of [9], albeit recalculated with higher nu- points are taken from polarisation experiments and
merical precision. Red data points are taken from poblack ones are obtained by Rosenbluth separation.
larisation experiments and black ones are obtained by

Rosenbluth separation.

to model.A, which mainly failed with respect toTable 4.7: Static properties of the nucleon. The values
the isovector part of the form factor, in the presefi parentheses are as reported 3 the values on top
modelC, this form factor shows an almost perfecf these are obtained within the same madebut with

dipole shape with the parametrisation higher numerical accuracy. The static values are extra-
polated from a dipole-shape-like fit.
() 1 4.8) | modelAmodelC exp. |  ref.
PR T @2m2y ' 2.76
tplpn] 27g 262 2793 (8]
taken from p6, 79 with M2 = 0.71 GeV>. fin | n] [:i';é] 163 -1.913 [8]
The resulting electric neutron form factor, see :
Fig. 4.9, has a maximum at approximately the ex- (r2)P [fm] 0.91 0.84 0.847 [66]
perimental value of9?> ~ 0.4 Ge\V? with an ex- [0.82]
cellent description of the experimental data. The< 2\ [fm]2 -0.20 .0.10 -0.123 [66]
earlier calculation overestimated the data. How-' ’E [-0.11] ' +0.004
ever, the prediction of model is very similar to 0.90
the predictions of the Graz group(] and [28] for (r2)}[fm] [0.91] 0.88 0.836| [66]
the Goldstone-Boson exchange quark models. The
corresponding charge radii are given in Tab. 4.7 and /(r2)n [fm] 832 0.75 0.85 [66]
can be extracted via [0-86]
1.22 1.267
5 4G 94 n.21] 13 400035 (879
(r2> = , (4.9a) _ _
G(0) dQ? g 2 Alfm] [8.221 065 o7 | (80
dGE(Q%)

: (4.9b)
Q=0

<T2>% :=—06 dQ2
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where the form factors were approximated with functionsheftiype

a

Q%) =T 000 (4.10a)
2
TR(Q?) = a ngQQ) +d, (4.10b)

by fitting their parameters, b, ¢, d to the calculated values in the vicinity of the photon po#ss. for the form
factor the resulting squared charge radius of the neutroalisilated close to the experiment value. The r.m.s.
proton radius is slightly smaller than the experimentaligal

Table 4.8: Octet hyperon magnetic momenptfor  Table 4.9: Decuplet hyperon magnetic momentsr
model A and(C calculated as in13,14]. The values model.A andC calculated as in1[3, 14]. The values

are given in units ofiy. are given in units ofiy.
hyp. modeld modelC PDG [g] hyp. modeld modelC PDG [8]
A -0.606 -0.578 -0.613-0.004 ATT 7.906 6.846 3.7t07.5
>+t 2499 2360  2.4580.010 At 3953 3423 277 10+15+3
¥ 0.743 0.712 - A" 0.0 0.0
3~ -1.013 -0.937 -1.166-0.025 A~ -3.953 -3.423
=0 -1.325 -1.240 -1.256-0.014 DDl 4.830 2431
=" -0.533 -0.532  -0.65%0.0025 »*0 0.702 0.215

¥ -3.426 -1.981

E*0 1.720 0.464

= -2.949 -1.823

Q- -1.698 -1.654 —2.02£0.05

In Figs. 4.10 and 4.11 we display the magnetic proton- anttoedorm factor up to a momentum transfer
of Q% = 6.0 GeV?, respectively. Again, the black solid curve is the resulthef present moded, the black
dashed curve is the result obtained with the parameters dehog, as in P], albeit with a better numerical
precision as mentioned in section 3.5 in the previous chapte

Whereas in the original calculation (moddl of [9]) the absolute value of these form factors dropped
slightly too fast as a function of the momentum transfer,hi@ present calculation we now find a very good
description even at the highest momentum transfers. Orgmamomentum transfer the values are too small
as is reflected by the rather small values for the various etagradii, see Tab. 4.7 and the too small values
of the calculated magnetic moments. Note, however, thaltaﬁmz% ~ 1.597 for modelC slightly changes
(prewously“” ~ 1.605 for model.4) and is slightly larger than the experimental valfé?eN 1.46; all values
are remarkably close to the non-relativistic constituardrg model value“— 3 . The magnetlc moments of
flavour octet and decuplet baryons has been calculateddiaegdo the method outllned inB,14]. The results
are compared to experimental values in Tab. 4.8 and 4.9ectgply. As a consequence of the better de-
scription of the momentum transfer dependencies in theihal form factors we now also find an improved
description of the momentum transfer dependence of the flactor ratlo“” E (Q?), which has been the focus
on the discussion whether two-photon amplitudes are neldea the dlscrwepancysp] found between recent
measurements based on polarisation data (red data poifig.ot.12) B5-87,89-95] versus the traditional
Rosenbluth separation (black data points of Fig. 4.12)espf06-100. Whereas in the original model this
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Fig. 4.10: The magnetic form factor of the pro- Fig. 4.11: The magnetic form factor of the neu-
ton divided by the dipole fornGp(Q?), Eqg. (4.7) tron divided by the dipole fornG p(Q?), Eq. (4.7)
and the magnetic moment of the proto, =  and the magnetic moment of the neutrpn =
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experiments are marked in red. The black markedsults from MAMI [81, 83]. Additionally, polarisation
data points are obtained by Rosenbluth separation. experiments are marked in red data points. The black
marked ones are obtained by Rosenbluth separation.

ratio fell much too steep, we now find in mod&h much better description of this quantity, see Fig. 4.1&for
comparison with various data. Up @ ~ 3 GeV? we indeed find the observed linear dependence.
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Fig. 4.12: The ratio“gTG% compared to recent JLAB Fig. 4.13: The axial form factor of the nucleon di-
data (see legend). In the insert the low momentunvided by the axial dipole form in Eq. (4.11) and the
transfer region is enlarged. The solid black line isaxial couplinggs = 1.267. The black solid line is
the result of modet, the dashed black line the result the result of model’, the blue dashed line the result
in model A. Red data points are taken from polar- in model A. Experimental data are taken from the
isation experiments and the black ones are obtaineg@ompilation by Bernaret al. [80].

from Rosenbluth separation.

Finally, the axial form factor, see Fig. 4.13, was alreadsyweell described in model of [9]. Although
falling slightly less steeply, the present calculatiofi gives a very satisfactory description of the data also at
higher momentum transfers in the same manner as in Gloznitwwagenbrunret al.[111-113] also the value
of the axial coupling constant is too small, but of course Imbetter than the non-relativistic constituent quark
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model resully4 = g The axial form factor, presented in Fig. 4.13, is dividedluy axial dipole form

GAQY) = — 94 4.11
with the parameterd/, = 1.014 + 0.014 GeV andg, = 1.267 taken from Bodelet al.[79].
In summary we find, that the new modglapart from some improvements in the description of thetaxci
tion spectra at the expense of additional parameters ofregphenologically introduced spin-flavour dependent
interaction does allow for a parameter-free descriptioelettromagnetic groundstate properties of a similar

overall quality as has been obtained before, with somendtsie improvements on the momentum transfer
dependence of various form factors.

4.2.6 Helicity amplitudes

In the last decade new experiments were performed at therdeff-Laboratory in order to study helicity am-
plitudes up t06.0 GeV2. These new experiments were designed to determine thethelioplitudes for the
electro-excitation of the?; (1440)-, S11(1535)- and D;3(1520)-resonances. The results can be found in Az-
nauryanet al. [18-20] and the MAID-analysis 114, 125. In addition novel data for the Iongitudinailfv/z—
amplitudes were obtained.

We calculated the corresponding helicity amplitudes o¢hand other states on the basis of the Salpeter
amplitudes obtained in the novel mod&[31, 32]. As mentioned in section 3.6, the eigenvalue problem is
solved with higher numerical accuracy by an expansion inerger basis, which presently includes all three-
particle harmonic oscillator states up to an excitationnguiaa numberVyax = 18, whereas previoushys| 6, 9]
the results for baryon masses and amplitudes in mddskre obtained withVimax = 12. For comparison and
to study the effects of the newly introduced phenomenoldgipin-flavour dependent interaction of model
we thus also recalculated the spectrum and the amplitudesddel A within the same larger model space.
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Fig. 4.14: Comparison of th&;;(1535) transverse Fig. 4.15: Comparison of th&;(1535) longitu-
helicity amplitudeA{V2 for the proton and the neu- dinal helicity amplitudeS{V2 of proton and neu-
tron calculated in the model (solid and dashed- tron calculated in modef (solid and dashed-dotted
dotted line) and modeM (dashed lines) to experi- line) and model4 (dashed lines) with experimental
mental data§, 18-20,114-123 125. The dotted line  data [L8-20,114, 125. Note, that for the data points
is the result obtained by Keister and CapstitRk4]. of the MAID-analysis by Tiatoet al.[125 no errors
Additionally recent fits obtained by Tiatet al. [47] are quoted. See also caption to Fig. 4.14.

and by Aznauryaret al. [49] are displayed as green

dotted and dashed-dotted lines, respectively. Note,

that the results for modell were recalculated with

higher numerical accuracy and thus deviate from the

results published previously i9]f
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model.A (dashed lines) to experimental data frodn [ model A (dashed lines). See also caption to Fig. 4.14.
19,21,114,125. See also caption to Fig. 4.14.
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Fig. 4.18: Comparison of th81;(1895) transverse Fig. 4.19: Comparison of thé;; (1440) transverse
helicity amplitudeAfl\j2 for proton and neutron cal- helicity amplitude A, for proton and neutron cal-
culated in modef’ (solid and dashed-dotted line) and culated in modelC (solid and dashed-dotted line)

model A (dashed lines) with the single photon point and model A (dashed lines). See also caption to
value from Anisovichet al.[15]. See also caption to Fig. 4.14.
Fig. 4.14.

Helicity amplitudes for nucleons

We now turn to the discussion of* «» N helicity amplitudes for each angular momentunand parityr.

The J = 1 resonances: A comparison of calculated transverse and longitudinaicitglamplitudes with
experimental data for the electro-excitation of $ig(1535)-resonance is given in Figs. 4.14 and 4.15, respec-
tively. Whereas the value of the transverse amplitudeseaptioton point Q> = 0), both for the proton and
the neutron, are accurately reproduced in particular byndve modelC, in general the calculated transverse
amplitudes are too small by a factor of two; in comparisortoresults from modell the amplitudes of model

C decrease more slowly with increasing momentum transfdoetter agreement with the experimental data.
But, in particular the near constancy of the proton datadfer Q2 < 1 GeV? is not reflected by any of the
calculated results. For comparison we also plotted thdtssfsam the quark model calculation of the transverse
Azl’ /Q-amplitude by Keister and Capstickd4] for Q> < 3 GeV? and the fit obtained by Aznauryaat al. [49]
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and Tiatoret al. [47]. Contrary to this, the momentum transfer dependence ofdlieulated longitudinal he-
licity amplitudes hardly bear any resemblance to what has lietermined experimentally, in particular the
minimum found for the proton ap? ~ 1.5 GeV? is not reproduced. Only the non-relativistic calculatidn o
Capstick and Keisterlp6€] shows a pronounced minimum for the longitudirtgl (1535)-amplitude, however
this minimum is predicted at the wrong position.
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Fig. 4.20: Comparison of thB; (1440) longitudinal  Fig. 4.21: Comparison of th&; (1710) transverse
helicity amplitudeS{j2 for proton and neutron calcu- helicity amplitudeAJIV2 for proton and neutron cal-
lated in modelC (solid and dashed-dotted line) and culated in modef (solid and dashed-dotted line) and
model.A (dashed lines). Note, that for the data pointsmodel.4 (dashed lines). See also caption to Fig. 4.14.
of the MAID-analysis by Tiatoet al.[125 no errors

are quoted. See also caption to Fig. 4.14.
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Fig. 4.22: Prediction of thé’;(1710) longitudinal  Fig. 4.23: Prediction of the”;; transverse helicity
helicity amplitudeS{j2 for proton and neutron cal- amplitudesA{\;2 for the third and fourth excitation of
culated in modef’ (solid and dashed-dotted line) and the proton and the neutron calculated within magiel
model A (dashed lines). See also caption to Fig. 4.14(solid and dashed-dotted line) and modeldashed
lines). The data at the photon point mark&d” and
02" were reported in15,17] as alternatives for the
N172(1880)-resonance. See also caption to Fig. 4.14.

Also the calculated transverse proton helicity amplituﬁ§2 for the nextS;;(1650)-resonance shows a
large disagreement with experimental data as shown in Fl§. 4This discrepancy was already found in the
previous calculation of Merteet al.[9] and obviously is not resolved within modél Note, however, that the
neutron amplitudeﬁl’f/2 calculated at the photon point does correspond to the dataPDG B], as illustrated

in Fig 4.16. The rather small Iongitudinéin(1650)-amplitude5{\;2 seems to agree with the scarce medium
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Q?-data from the MAID-analysis ofi[14, 125, however for lowerQ? the single data point of Aznauryast
al. [19] seems to indicate a zero crossing of this amplitude nobdpred by either of the model calculations
of the Sf/Q—ampIitude for theS;; (1650)-resonance (see Fig. 4.17).

The third and fourth/™ = %_—nucleon resonances are predicted in modeilt 1872 MeV and 1886 MeV
and in modelC at 1839 MeV and 1882 MeV, respectively. Indeed within the Bonn-Gatchina Anaysf the
CB-ELSA collaboration datalp, 17] evidence for a/™ = %_—nucleon resonance a895 MeV was found. As
can be seen from Fig. 4.18 the predicted transverse amgiditioat the third resonance are rather large in both
models and the calculated value at the photon p6at< 0) is much larger than the experimental value quoted

in [15,17], but the value of the fourth resonance matches the PDG pldeoay amplitude.
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Fig. 4.24: Comparison of th& 3(1720) transverse Fig. 4.25: Comparison of th& 3(1720) transverse
helicity amplitudeAJlV2 of proton and neutron calcu- helicity amplitudeA{,’V2 of proton and neutron calcu-
lated in modelC (soﬁd and dashed-dotted line) and lated in modelC (solid and dashed-dotted line) and
model.4 (dashed lines). Note, that for the data pointsmodel.A (dashed lines). Note, that for the data points
of the MAID-analysis by Tiatoet al.[125 no errors  of the MAID-analysis by Tiatoet al.[125 no errors

are quoted. See also caption to Fig. 4.14. are quoted. See also caption to Fig. 4.14.
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Fig. 4.26: Comparison of thB3(1720) longitudinal  Fig. 4.27: Comparison of th®;3(1520) transverse
helicity amplitudeS{V2 of proton and neutron calcu- helicity amplitudeAJlV2 of proton and neutron calcu-
lated in modelC (so(id and dashed-dotted line) and lated in modelC (soﬁd and dashed-dotted line) and

model.A (dashed lines). Note, that for the data pointsmodel.A (dashed lines). See also caption to Fig. 4.14.
of the MAID-analysis by Tiatoet al.[125 no errors
are quoted. See also caption to Fig. 4.14.

The transverse and longitudinal helicity amplitudes of Rwper-resonancé’ ;(1440) are displayed in
Figs. 4.19 and 4.20, respectively. It is obvious, that the zeossing found in the data @ ~ 0.5 Ge\?, see
Fig. 4.19, is not reproduced in the calculated curves, alihaheQ?-dependence of the positive values at higher
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momentum transfers can be accounted for in both modelsdaftarging the sign of the old predictio8][ On
the other hand we do find a satisfactory description of thgitadinal Sf/Z-ampIitude displayed in Fig. 4.20 in
particular in the new modél.

250 T T T T T 80 T T T T T
PDG [8], p —@— Aznauryan [8-20], p —&—
— L PDG [g], n —o— 60 L % MAID[114125,p +—a— |
N 200 Burkert 21], p —v—1 | a %, Fit: Tiator [47], p
> ~
— y Ahrens [129,p —e— — 40 F model A, p =w=se=s |
S 150 1 Aznauryan [8-20], p —®— 7 5 model A, n v
() 5 MAID [114125,p +—a—i ) 20 modelC, p —— |
(O 100 i Fit: Aznauryan §9], p o modelC, N =mmmm:
E'ID Fit: Tiator [47], p ) 0
& model.A, p =wseesen | | "
S %0 model A, N« S 20+
—~ 0 g & oy
(] | 40 +
& modelC, p =— <}
= . p
<~ 50 modelC, N =mmm= b e 60 [
Z z=
T -100 |- 0 80 .o
150 . . . . . -100 . . . .
0 1 2 4 5 6 0 1 2 4 5 6

3 3
Q*[GeV?] Q* [GeV’]
Fig. 4.28: Comparison of th®,5(1520) transverse Fig. 4.29: Comparison of thé®,3(1520) longitu-
helicity amplitudeA{,,V/2 for proton and neutron cal- dinal helicity amplitudeS{V2 for proton and neutron
culated in modef’ (solid and dashed-dotted line) and calculated in modef (solid and dashed-dotted line)
model A (dashed lines). See also caption to Fig. 4.14and modelA (dashed lines). See also caption to

Fig. 4.14.
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Fig. 4.30: Comparison of th®,3(1700) transverse Fig. 4.31: Comparison of th®;35(1700) transverse
helicity amplitudeAfl\j2 for proton and neutron cal- helicity amplitudeA{,)V2 for proton and neutron cal-
culated in modef (solid and dashed-dotted line) and culated in model (solid and dashed-dotted line) and
model.A (dashed lines). See also caption to Fig. 4.14 model. A (dashed lines). See also caption to Fig. 4.14.

Helicity amplitudes of higher lying resonances in thg-channel are only poorly studied in experiments.
Nevertheless, we shall discuss briefly thg (1710)-helicity amplitude before treating the higher excitation
P11(1880) and P11(2100). For theP;;(1710)-resonance only the photon decay amplitude is repo8gdih
Figs. 4.21 and 4.22 we display our predictions for these éndggls. The transverseflV/Q—amplitude of model
matches the PDG-data at the photon point in contrast to mégehich overestimates the proton- and neutron
amplitudes by a factor of two. On the other hand this wouldb&ccordance with the larger value obtained by
A.nisoyich.et al.[17], Afl’/2 = (52 £ 15) x 1072 Ge\~2. The prediction of the Iongitudinaﬁlf\;z-amplitudes is
given in Fig. 4.22.

Finally we present the results for the fourth and fifth = %+-nucleon state in Fig. 4.23, where we show

the transverse helicity amplitudes only. The correspandiasses predicted by modélare1905 MeV for the
fourth and1953 MeV for the fifth state; for modef the predicted masses ar&r2 MeV and1968 MeV, respec-
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tively. The two data at the photon point mark&el” and”02” were obtained by the CB-ELSA collaboration
within the Bonn-Gatchina Analysis as reported 15,[17] for the N, 5+ (1880)-resonance. They correspond
to two different partial wave solutions in order to extrawe ttorresponding baryon mass and helicity ampli-
tudes. The prediction for the fourth state lies betweengtvatues, the values found for the fifth state are much
smaller. This also applies for highgf = %+—excitations not displayed here.

TheJ = % resonances: In Figs. 4.24 and 4.25 the transverse helicity amplitudebe; 5(1720)-resonance
are displayed. Although a reasonable agreement with treeafadznauryaret al. [19] and with the photon
decay amplitude is found for both models, the data from thdB4Analysis 114, 125 indicate a sign change
for the Aff/Q—ampIitude ai)? ~ 3GeV? not reproduced by either model. In spite of not being ablectmant

at all for the Iarge4§/2-amplitude found experimentally, the longitudinal hdljcamplitude as reported in the

MAID-analysis with exception of the value §* ~ 1Ge\? is reproduced by both models rather well, as
shown in Fig. 4.26.
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Fig. 4.32: Prediction of thé,5(1700) longitudinal  Fig. 4.33: Comparison of th®;5(1675) transverse
helicity amplitudeS{V2 for proton and neutron cal- helicity amplitudeAJlV2 for proton and neutron cal-
culated in modef’ (solid and dashed-dotted line) and culated in modef (solid and dashed-dotted line) and
model.A (dashed lines). See also caption to Fig. 4.14 model.A (dashed lines). See also caption to Fig. 4.14.
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Fig. 4.34: Comparison of th®;5(1675) transverse Fig. 4.35: Comparison of thé®;5(1675) longitu-
helicity amplitudeAé\;2 for proton and neutron cal- dinal helicity amplitudeS?,, for proton and neutron
culated in modef’ (solid and dashed-dotted line) and calculated in modef (solid and dashed-dotted line)
model.A (dashed lines). See also caption to Fig. 4.14.and modelA (dashed lines). See also caption to
Fig. 4.14.

For the transverse helicity amplituelﬁ/2 (see Fig. 4.27) of thé&;3(1520)-resonance we find a reasonable
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guantitative agreement with experimental data for low matme transfers, while apart from the fact, that
in modelC the amplitude is too small by about a factor of two, (h&-dependence is reproduced up@d ~

6 GeV2. The minimum at)? ~ 1 Ge\? is clearly visible for modeM, whereas this feature is not so pronounced
in modelC. TheAg’/Q-ampIitudes are displayed in Fig. 4.28; here both model&rgsiimate the data by more

than a factor of three. Likewise the calculated neutrdh,- and Ag‘/Q—amplitudes at the photon point are

too small. In particular for the4?/2—amplitude the predicted value close to zero is in conttamticto the

experimental value-59 + 9 x 10~3GeV /2 from PDG B]. Unfortunately, although th€)?-dependence

of the magnitude of the longitudinal amplitucﬁ’ 5, See Fig. 4.29, would describe the experimental data of
Aznauryaret al.[18-20] and MAID [114] very well, the amplitude has the wrong sign. Note, thatalth, as
mentioned in section 2.7, the common phase the definition of the helicity amplitudes is not deterndria

our framework, relative signs between the three helicitpltodes are fixed.
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Fig. 4.36: Comparison of thé'5(1680) transverse Fig. 4.37: Comparison of thé'5(1680) transverse
helicity amplitudeAfl\j2 for proton and neutron cal- helicity z;lmplitudeA{,Y2 for proton and neutron cal-
culated in modef’ (solid and dashed-dotted line) and culated in model (solid line) and modeM (dashed

model.A (dashed lines). See also caption to Fig. 4.14line). See also caption to Fig. 4.14.
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Fig. 4.38: Comparison of th&,5(1680) longitudinal  Fig. 4.39: Prediction of thé&/17(2190) transverse he-

helicity amplitudeS{V2 for proton and neutron calcu- licity amplitudesAflv2 and A{,’VZ for proton and neu-

lated in modelC (solid and dashed-dotted line) and tron calculated in modef (solid and dashed-dotted

model A (dashed lines). See also caption to Fig. 4.14line) and modeld (dashed lines). See also caption to
Fig. 4.14.

The transverse amplitudes for the neit = %*-nucleon resonance.e. D3(1700), are displayed in
Figs. 4.30 and 4.31. In contrast to the situation for g (1520)-resonance described above, here both
models are in accordance with the PDG-d&lags well as with the data from Aznaurya al. [19] for the
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Ay p-amplitude, whereas thd; ,-amplitude only reproduces the PDG-dagh ¢nd not the data point from
Aznauryanet al.[19] at finite momentum transfer. The prediction for the londital D;3(1700)-amplitudes
is given in Fig. 4.32. The calculated amplitudes turn outdadther small.

The J = g resonances: Although the transvers®;;(1675)-helicity amplitudes at the photon point repro-
duce the experimental data from MAIIL14, 125 and the PDG §] rather well, as displayed in Figs. 4.33

and 4.34, both calculations cannot account for the appasFotof the experimentaal’l’ /Z-amplitude a? ~

1.5GeV2. Furthermore, thelg’/Q—amplitude, displayed in Fig. 4.34 is severely underedtithin magnitude by
both models and modél even yields the wrong sign. The transverse amplitudes ton#utron are predicted
to be negative, here the calculated value at the photon fmimhodel A is closer to the experimental value
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Fig. 4.40: Prediction of thé&/17(2190) longitudinal  Fig. 4.41: Comparison of th€'19(2250) transverse
helicity amplitudeS{V2 for proton and neutron cal- helicity amplitudesA{V2 and AéVQ for proton and
culated in modef (solid and dashed-dotted line) and neutron calculated in mode! (solid and dashed-
model.A (dashed lines). See also caption to Fig. 4.14 dotted line) and modell (dashed lines). The bar at
the photon point corresponds to an estimate by Aniso-
vich et al. [17] for A{\;Q and A:% within |AP| <
10 x 1073GeV /2. See also caption to Fig. 4.14.
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Fig. 4.42: Prediction of thé19(2250) longitudinal  Fig. 4.43: Comparison of th&9(2220) transverse
helicity amplitudeS{\;2 for proton and neutron cal- helicity amplitudesA?), and Aé\/z for proton and
culated in modef’ (solid and dashed-dotted line) and neutron calculated in mode! (solid and dashed-
model.A (dashed lines). See also caption to Fig. 4.14 dotted line) and modell (dashed lines). The bar at
the photon point corresponds to an estimate by Aniso-
vich et al. [17] for A}), and AJ), within [A?| <
10 x 1073GeV /2. See also caption to Fig. 4.14.
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than for modelC. The longitudinal amplitudes are calculated to be very bfoalboth models. There exists

only experimental data from the MAID-analysit25], indicating that the experimental values are consistent
with zero (see Fig. 4.38).
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Fig. 4.44: Prediction of théf,9(2220) longitudinal ~ Fig. 4.45: Prediction of thd;11(2600) transverse
helicity amplitudeS{\;2 for proton and neutron cal- helicity amplitudesA?, and AéVQ for proton and
culated in modef’ (solid and dashed-dotted line) and neutron calculated in mode! (solid and dashed-
model.A (dashed lines). See also caption to Fig. 4.14 dotted line) and model (dashed lines). See also

caption to Fig. 4.14.

There also exist data for the helicity amplitudes of ffig(1680)-resonance. The comparison with the
calculated values is given in Figs. 4.36 and 4.37. In pdeicin modelC a reasonable description of the
A’l’/Q-ampIitudes is found for the newer data from Aznaurgaml. [18,19] and MAID [114, 125 both at the
photon point and for the values at higher momentum transféne calculated values in moddl are in better
accordance with the the older data from Burlatrdl.[21], which are larger in magnitude. In contrast to this, the
Aé’/Q-ampIitudes are again severely underestimated in magnisek Fig. 4.37. However, for the longitudinal

Sf/z—amplitude we observe a rather good agreement with the datsplayed in Fig. 4.38, the values obtained
in modelC being too small at lower momentum transfers.

10 ey — TheJ = % resonances: For positive parity PDG{]
o™ moseen | lists the F17(1990)-resonance rated with two stars.
6| modelC,n ===== | Both in model.A and in modelC we can relate this to

states with a calculated mass of 1954 MeV and 1997
| MeV, respectively. The corresponding photon ampli-
............................. tudes are very small, see Tab. 4.10. Otherwise, con-
R ] cemning theJ = I oresonances there exists only one
"""""" e negative parity resonance with more than at least a three
star rating, the=17(2190). The corresponding predic-
tions for transverse and longitudinal helicity amplitudes
p s s are shown in Figs. 4.39 and 4.40.

SN,(Q) [1073GeV /7]

9 . H
Fig. 4.46: Prediction of thé; ,(2600) longitudinal T'he = 2 fesonances. The tra;lsverzi and longitu-
helicity amplitudeS?,, for proton and neutron cal-dinal helicity amplitudes of the/™ = 7" -resonance
culated in modef’ (solid and dashed-dotted line) an€19(2250) are predicted to _be _very _small as shown In
model A (dashed lines). See also caption to Fig. 4_1Ii|_gs. 4_.41 and 4.42 and coincide with the_ estimate by
Anisovichet al.[17] for the transverse amplitudes. Ob-
viously, theA§/2-ampIitude of modeC and the longi-

tudinal amplitudes of modell are effectively zero. Although the resonance with = %*, Hq9(2220) has a
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four star rating by the PDG, only the proton photon decay @og# has been estimated it7]. The calculated
values are displayed in Fig. 4.43 and Fig. 4.44; the amm@iudrn out to be smaller in modglthan in model
A in better agreement with the estimate d7]

The J = % resonances: Figs. 4.45 and 4.46 shows predictions of the transverse @rgitlidinal helicity

amplitudes for theJ™ = %7 I 11(2600)-resonances. So far no data available.

A < N helicity amplitudes

We now turn to a discussion of the results fox= N electro-excitation.
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Fig. 4.47: Comparison of th8s;(1620) transverse Fig. 4.48: Comparison of th8s;(1900) transverse
and the longitudinal helicity amplitudeﬂf?2 and A{\;Q (black line) and longitudinal helicity amplitude
S{VQ calculated in modef (solid and dashed-dotted S{\;Q (red line) in modelC. See also caption to
line) and modelA (dashed lines) with experimental Fig. 4.14.

data from B,19,21,114,125. Note, that for the data

points of the MAID-analysis by Tiataet al.[125] no

errors are quoted. See also caption to Fig. 4.14.
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Fig. 4.49: Comparison of thés; (1750) transverse Fig. 4.50: Comparison of thés;(1910) transverse
helicity amplitudeAf;2 calculated in modef (solid A{\;Q and longitudinalSY,-helicity amplitude calcu-
line) and the data from Pennet al.[13(]. See also lated in modelC (solid and dashed-dotted line) and
caption to Fig. 4.14. model.A (dashed lines). See also caption to Fig. 4.14.
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The J =1 resonances: We start the discussion with the positive parfy; (1620)-resonance. For the
S31(1620) transverse and longitudinal helicity amplitudes, depidte Fig. 4.47, a wide variety of experi-
mental data at and near the photon point exists. The cadcliaiues lie well within the region of experimental
data obtained due to the spread in partially contradictapeemental data, but an assessment of the quality
is hardly possible. The positive longitudinal amplituﬁﬁ}2 in Fig. 4.47 as determined ir1]4, 125 together

with the single data point fromlp] suggest a sign change in the regiQA ~ 0.7 — 1.0 GeV? not reproduced
by both calculations, this clearly needs more experimaniaification.
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Fig. 4.51: Comparison of th&s3(1232) transverse Fig. 4.52: Comparison of thBs3(1232) longitudinal
helicity amplitudesAff2 and Aé\;z as calculated in helicity amplitudeS{V2 calculated in modef (solid
model C (solid and dashed-dotted line) and modelline) and modeld (dashed line) to experimental data
A (dashed lines). See also caption to Fig. 4.14 androm [8,114,125. See also caption to Fig. 4.14 and

the magnetic and electric transition form factor in the Coulomb transition form factor in Fig. 4.66.
Fig. 4.64.
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Fig. 4.53: Comparison of th&;3(1600) transverse Fig. 4.54: Comparison of thés3(1920) transverse
and longitudinal helicity amplitudeﬂfﬁz, Aé\;z and  helicity ampl_itudesA({?2 and A}, as calculated in
S{\;Q calculated in modeC with the PDG-dataq] model C (solid and dashed-dotted line) and model
and [L7]. See also caption to Fig. 4.14. A (dashed Iines) with the data frorﬁi{, 129 130].
Note, that the values ap?> = 0 of Anisovich et

al.[17), A}, = 13015 x 10-*GeV "/ and 4}, =

~150725 x 10-3GeV /2, are beyond the range dis-
played. See also caption to Fig. 4.14.

The next excitation in this channel is tl5g; (1900)-resonance; the corresponding transverse and longitudi-
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nal helicity amplitudes are displayed in Fig. 4.48. Here only give the results for modél, since the original
model .4 does not describe a resonance in this region. The valueg qihtbton point seems to be in better
agreement with the data from Crawfaetlal. [92] than with the data from Awajet al. [129 and Anisovichet

al. [17]. Note, that for bothSs;-resonances we judiciously fixed the phgse order to reproduce the sign of
the PDG value at the photon point, as has been mentioned.aReversing the sign af would in case of the
S31(1620)-resonance in fact better reproduce the data at larger mtomeransfers.

Also the lowest positive parity A-resonance
P31(1750) is only reproduced in modef as shown B
in [31]. The calculation does not account for the large
value found by Pennest al.[13( at the photon point, <
see Fig. 4.49. The longitudinal amplitude is predicte% 4t
to be negative for this resonance. o,

The helicity amplitudes for the next excited state,
P3(1910) are shown in Fig. 4.50. Note, that modef= °
A does produce two nearby resonances at the positif@ 2l
of the P3;(1910)-resonance, seé,[31]. The calculated <
amplitudes for both resonances as well as the calculat&d ™ [~
amplitude in modef are very small and in rough agree- -
ment with the experimental value found at the photon
point which has a large error. Again the assessment
cannot be conclusive. Also shown are the predictioRy. 4.55: Prediction of thé’3(1920) longitudinal
for the rather small longitudinal amplitudes. helicity amplitudeS?Y, calculated in modef (solid

and dashed-dotted (ine) and modéldashed lines).
The J = 3 resonances: We shall discuss the electroSee also caption to Fig. 4.14.
excitation of the ground-statA-resonancepPs3(1232)
in some more detail below; the transverse amplitudes asgrshioFig. 4.51, while Fig. 4.52 displays the results
for the longitudinal amplitude. With the exception of thevimomentum transfer regiof? < 0.5 GeV? we
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Fig. 4.56: Comparison of th®33(1700) transverse Fig. 4.57: Comparison of th®33(1700) longitudi-
helicity amplitudes4?), respectiverAéV2 calculated  nal helicity amplitudeS?, of the nucleon calculated
in modelC (solid and dashed-dotted line) and modelin modelC (solid line) and model4 (dashed line).
A (dashed lines). See also caption to Fig. 4.14. Note, that for the data points of the MAID-analysis
by Tiatoret al. [129 no errors are quoted. See also
caption to Fig. 4.14.

observe a fair agreement with experimental data for thestense amplitudeﬁl{\;2 for both models, which,
however, both show a minimum in the amplitudes @t < 0.5 Ge\? (which, in contradiction to data, also
persists in the magnetic transition form factor, see Fi§4}.whereas the data show a minimum of some

kinematical origin at much smaller momentum transf@fs< 0.1 Ge\~.
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Also the experimental data for tlﬁ%—helicity amplitude can be accounted for by the calculatase for
modelC at the highest momentum transfers only, while the amplitaleulated in4 is much smaller. Note,
that more data is available for the magnetic transition féaator, which is a linear combination of thzejv/z-

andAé\;Q—amplitudes, see section 4.2.8.

The Roper-like excitation of the groundstateresonance Ps3(1600), is only described adequately in
modelC. The corresponding helicity amplitude&vﬂ, AQ&Q and S{\;Q are displayed in Fig. 4.53. Théf;Q-
amplitude is calculated to be smaller than the decay andglitguoted by the PD&J and [17]. Contrary to
this we find a rather Iargﬁév/g—amplitude with a pronounced minimum arou@d ~ 0.75 GeV2. However, in

this case, the value at the photon point is overestimated.
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Fig. 4.58: Comparison of th®35(1940) transverse Fig. 4.59: Prediction of thés3(1940) longitudi-
helicity amplitudesAf?2 (solid and dashed-dotted nal helicity amplitudesﬁf\;2 (solid and dashed-dotted
line) and A%}, (dashed lines) calculated in model line) of the nucleon calculated in mod€l Due to
C with the data from Awajiet al. [129. Due to the fact that model offers two alternatives for the
the fact that model offers two alternatives for the Ds3(1940)-resonance, as shown i8], both am-
D33(1940)-resonance, as shown i8]], both am-  plitudes, labelled with "first” and "second” are dis-
plitudes, labelled with "second” and "third” are dis- Played. See also caption to Fig. 4.14.

played. Note, that the values @ = 0 of Horn et

al. [63], A7, = (160 + 40) x 10-°GeV~"/* and

Ay, = (130 £ 30) x 10-°GeV~"/?, are beyond the
range displayed. See also caption to Fig. 4.14.

For the P33(1920)-state with positive parity the helicity amplitudes areptiyed in Figs. 4.54 and 4.55.
In [31] it is shown, that there exist several states around 1920, M#&i¢ch correspond to the second and third
excited A+ -state and which are predicted at 1834 MeV and at 1912 MeV fadehA and at 1899 MeV
and at 1932 MeV for moddl, respectively. The transverse amplitudes are in generglsraall and match
the photon decay data o83, 129 130, whereas the data of Anisovidat al. [17] cannot be reproduced. The
predictions for the longitudinal amplitude as well as H%Q-amplitude for the third excitation are effectively
zero.

We now turn to negative parity excitel-resonances. For thes3(1700) transition amplitudes we find, that
the predictions of both models are rather close, as disglay&igs. 4.56 and 4.57. Note, that the calculated
masses of thés3(1700)-resonanceyiz. M = 1594 MeV for model.A and M = 1600 MeV for modelC, are
about100 MeV lower than the experimental mass at approximat&0 MeV. This of course affects the pre-
factors in Egs. (2.125a) and (2.125b) leading to the commiudhat the current-matrix elements are calculated
to be too small. For the transverse amplitutlg, only the single data point from Aznauryanal.[19] is close
to the calculated curves. Atthe photon point the calculatddes also agree with the PDG-dah [In contrast,
the data from MAID [L14, 125 and Burkertet al.[21] cannot be accounted for. Similar observations are made
for the A%-amplitude. The Iongitudinaﬁlf\;g-amplitude has a sign opposite to the rare data from Aznaurya
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et al. [19] and MAID [114, 125 as shown in Fig. 4.57. Note, however, that the MAID-analysi Tiator et
al. [129 yields a vanishings*%-amplitude in contrast to the appreciable amplitudes faande calculations.
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Fig. 4.60: Comparison of thés5(1930)-helicity  Fig. 4.61: Comparison of thés;(1905) transverse
amplitudesAflV/2 (black line), Aé\;z (red line) and and longitudinal helicity amplituded? Aé\;z and

1/21
S% (blue line) calculated in modél with the PDG- S{\;Q calculated in modef (solid and dashed-dotted
data B]. See also caption to Fig. 4.14. line) and modeld (dashed lines). See also caption to
Fig. 4.14
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Fig. 4.62: Comparison of thés;(1950) transverse Fig. 4.63: Prediction of théfs;(2420) transverse
and longitudinal helicity amplitudeﬂ%, AQ&Q and  and longitudinal helicity amplitudeﬁ%, AQ&Q and
S% calculated in modef’ (solid and dashed-dotted 57, calculated in modef’ (solid and dashed-dotted
line) and modelA (dashed lines). See also caption to line) and model4 (dashed lines). See also caption to
Fig. 4.14. Fig. 4.14.

Figs. 4.58 and 4.59 contain the prediction for the trangvargd longitudinal helicity amplitudes of the
D33(1940) resonance in modél. Note, that in this model two resonances with mageles- 1895 MeV and
M = 1959 MeV are predicted in this energy range, as shown3itj.[ Accordingly, we have displayed two
alternative predictions for the helicity amplitudes. Thesults for the transverse amplitudes, see Fig. 4.58, for
both resonances are rather similar; the photon decay ameditmeasured by Hoet al. [63] and Awaiji et
al. [129 are in conflict, the calculated values favour a small negatalue at the photon point, which agrees
with the data from Awajet al.[129]. In Fig. 4.59 we also show the corresponding longitudimaphtudes.

The J = § resonances: In Fig. 4.60, we show thel}),, A%/, and S}, helicity amplitudes calculated in

modelC [31] for the D35(1930)-resonance. Also displayed is the PDG-data at the photant f&i where
we find that the transverse amplitudes agree well with themdxgntal values. The longitudinal amplitude is
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found to be almost vanishing. Since modékannot account for a resonance in this energy region notsesul
are given in this case.

Both models are able to reproduce the lowEst= ng A-resonance with positive parity. The prediction of
the helicity amplitudes of thé’;(1905)-resonance can be found in Fig. 4.61. Both models can acceumt
well for the PDG-data at the photon point for tHe , transverse amplitudes, but thg ,-amplitude is found
with a sign opposite to that of the data. As for the previoatgussed resonance the results for the longitudinal
amplitudes turn out to be very small.

TheJ = % resonances: ForJ = %there exists only one four star resonance, g 1950). The predictions
of the corresponding transverse and longitudinal heliaityplitudes are shown in Fig. 4.62. Here, the predic-
tions of the transverse amplitudes are much too small inrdodexplain the experimental photon coupling.

TheldJ = 171 resonances: Fig. 4.63 shows the prediction of the transverse and loduia helicity amplitudes
of the A, o+ (2420)-resonance. The amplitudes found in modelre slightly smaller than those in modél
In both cases the longitudinal amplitude virtually vanishe

4.2.7 Photon couplings

In Tabs. 4.10 and 4.11 we have summarised the results forhbmp decay amplitudes as partially already
discussed in subsections 4.2.6 and 4.2.6 for the helicitglitudes. This tables also lists the available ex-
perimental data. Most of the decay amplitudes can be aceduot quite satisfactory. In general no large

differences between both models are found. For some armefitof resonances with higher angular momen-
tum no experimental data are available to our knowledge.

Table 4.10: Transverse photon couplings calculated\fors A transitions in modeld andC in comparison
to experimental data. All calculated photon couplings witermined by calculating the helicity amplitudes
atQ? = 10~* Ge\” close to the photon point. A hyphen indicates, that data dexist. All amplitudes are in
units of 10-3GeV~1/2, all masses are given in MeV. Referen@8(| does not quote errors.

State Mass Model A ModelC H Exp. Ref.

Rat. model A modelC Ampl.

S31(1620)  *eex 1620 1636 Ai)s 16.63 15.33 27+11 8]
S31(1900)  ** - 1956 A - -1.43 || 59+16/29+8/-4+16 [17)/[129/[92]
P31 (1750) * - 1765 Ao - 6.27 53 [130
P31(1910)  ** | 1829/1869 1892 | Ajjo 2.38/0.69 1.98 3+14 8]
P33(1232) o 1233 1231 Ai)s -93.23 -68.08 -135+6 8]
Asys -158.61 -122.08 -250+8 [8]

P33(1600)  *** - 1596 Aiys - -14.98 -23+20 [8]
Asyo - -35.24 -9+21 8]

x 1307 30/40+14/ A7) [129/

P33(1920) 1834/1912  1899/1937 A, ) 20.89/1.79 14.89/11.90) 2 el 7 63/ [130
-115"25/23+17/ @7/ [129/

Azjp  -18.56/-0.58 1.36/9.16 PLEYE] B3/ [130

D33(1700)  *+ 1594 1600 A 64.99 63.39 104+15 8]
Asjo 67.25 71.47 85422 [8]

Ds33(1940)  * - 1895/1959| A5 — -16.86/-14.98||  -36+58/16G+40 [129/[63]
Asys — -12.56/-27.19|| -31+12/11G:30 [129/[63]

D35(1930)  *** - 2022 Ao - -7.27 -9+28 8]
Asyo - -19.49 -18+28 8]

F35(1905)  *+** 1860 1896 Ai)o 18.46 12.42 26+11 8]
Asys 41.22 23.54 -45+20 [8]

F37(1950) v+ 1918 1934 Ao -24.80 -14.22 76112 8]
As)o -31.94 -18.62 -97+10 8]

Hgg(2420)  ** 2399 2363 | Ay 11.62 4.92 - -
Az 13.78 5.90 - -




4.2. THE SPIN-FLAVOUR DEPENDENT INTERACTION 69

Table 4.11: Transverse photon couplings calculatedVfars N* transitions in modeld andC in comparison
to experimental data. All calculated photon couplings witermined by calculating the helicity amplitudes
atQ? = 10~* Ge\” close to the photon point. A hyphen indicates, that data dexist. All amplitudes are in
units of 10-3GeV~1/2, all masses are given in MeV. The referenck30[131] do not quote errors.

State Mass Model A Model C Exp. Ref.
Rat. | modelA modelC | Ampl. P n P n P n
S11(1535)  we 1417 1475 | Ay, 11168 -74.75 8593 549 90430  -4GE27 8]
S11(1650)  *ex 1618 1681 | Ay, 255 -16.03 -4.56 -6.8 5316  -15:21 8]
1872 1839 4336 -23.93 52.71 -29.0
511(1895) = 1886 1882 | “1/2 3895 -18.44 17.18 -8.2 12+6 - (17
Pr(1440) o 1498 1430 | A,,, 3351 -18.68 33.10 -17.4 604 40+10 8]
Py (1710)  * 1700 1712 | Ay, 5836 -3059 30.95 -13.5 24410  -2+14 8]
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4.2.8 A(1232) <+ N transition form factors

TheA « N electric and magnetic transition form factors between tbemd-state nucleon and ttig;(1232)-
state are related to the helicity amplitudes according te. E2127a), (2.127b) and (2.130). In Fig. 4.64
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18 Bartel 97] —m— MAID [114125 —a—
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Fig. 4.64: Comparison of\(1232) magnetic transi- Fig. 4.65: Comparison of\(1232) electric transi-
tion form factorG’; calculated within modef (solid  tion form factorG’? calculated within modef (solid
line) and modeld (dashed line). See also caption to line) and modelA (dashed line). See also caption to
Fig. 4.14. Fig. 4.14.

the calculated magnetic transition form factor divided
by thrice the standard dipole form factor is compared

12 T T
MAID [ 114125 —a— . . .
Fit: Tiator [47 to experimental data and analyses. This representation
1+ model A sesssssss 4 . .
modeic enhances the discrepancies between the calculated and
08 | | experimental results: Although modd still gives a
: fair description at larger momentum transfers, albeit in

0.6 -

general too small, modélyields too large values in this
04l | regime. In both models the values at low momenta are
too small, a discrepancy which this calculation shares
with virtually all calculations within a constituent quark
model. Usually this is regarded to be an indication of
: . " : p effects due to the coupling _to pions.. In Fig._{1.65 we
Q? [GeV?| also present to corresponding electric transition form
factor. Only modelC agrees with the PDG-dat&][of
Fig. 4.66: Comparison oA\ (1232) Coulomb transi- the MAID-analysis 114,125, whereas model even
tion form factorG;? calculated within modef (solid has the wrong sign. In model we recalculated the
line) and model4 (dashed line). See also caption ttorm factor with a higher numerical accuracy than was
Fig. 4.14. done by Merteret al. in [9]. The Coulomb transition
form factor is displayed in Fig. 4.66. Although the cal-
culated result in modél is significantly larger than in model, both are too small to account for the data from
the MAID-analysis #7,114,125.
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4.3 A modified quark-quark confinement potential

A possible modification of the description of confinement t&nachieved by another choice of its Dirac-
structure. On the basis of the Dirac-structure of the omesylexchange as used by Lorieg al. [7] and
Murota [B5], see also Eqg. (3.8), we found the following confinement ptigé to yield satisfactory results.
Moreover, we introduce the confinement potential as a twdylateraction given by

VO (21, 9; 2, 2h) == ‘/'conf(x)é(:vo)6(4) (21 — 24)0W (29 — 2) | (4.12)
with z := z; — 29 and
Veons (x) = ar (1° ©1° = 5(v - @7) — 3512(%)) - (4.13)

Here,S12(%X) represents a tensor of rank 2 and is definefliaék) := 1[v-®v] —[(v %) ® (v-X)]. Moreover,
we have defined := |x| andx := %.

4.3.1 Model parameters

The prescription of the modified confinement does not intcedobew model parameters, because the Dirac-
structure of the linear potential is fixed by Eq. (4.13) andstimeeds no further parameters. Additionally,
to the slope we have to choose the offset Dirac-structuretlma@omplete confinement involves finally two
parameters, where the offset Dirac-structure can be chos@iously as before in modell or C. The new
model will be called modeD and includes a confinement potential according to Eq. (4. Rirthermore,

it is possible to include additionally the new spin-flavow@gpédndent interaction from the previous section,
i.e. combining both approaches, this is called mafielFor the determination of the model parameters the
same compilation of resonances as for madednd C have been used, these are summarised in Tab. 4.2.
The parameter values are listed in Tab. 4.12, where the wdltlee slope parameter of the confinement have
the same magnitude for the modélsD and£. Here, the offset confinement Dirac-structure is chosen as
T'o =1 ®1®1 for both models.

Table 4.12: Model parameters for the new modelsnd€ within  Table 4.13: Optimal values of the length
the modified confinement potential. See also text and Tab. 3.3scale for various baryons in the models

parameter ‘ modelD model& D and¢.
baryon| 2J +1 B [fm]
masses my, [MeV] 300.0 450.0 modelD model&
mg [MeV] 680.0 675.0 A 2 0.60 0.45
. 4 0.80 0.45
confinement a [MeV] -536.2 -376.6 6.8 0.80 055
b [MeV/fm] 220.8 190.0 >10 0.80 0.60
nstanton-induced | ivevim3]| 2249 3514 N 2 | 060 045
Interaction >4 0.80 0.50
Gns [MeVim?] 148.1 284.2 = : :
A [fm] 0.4 0.4 A 2 0.55 0.45
- >4 0.60 0.50
octet exchange  ££ [MeVfm?] - 0.0 v = 5 4 0.50 0.40
singlet exchange % [MeVim?] — 2098.5 >6 0.50 0.45
Ao [fm] - 025 Q | =2 | 080 0.40

Note, that the optimal octet-coupling for modelurns out to be vanishing. Then, the singlet exchange con-
tribution can also be considered as a part of the confinenanpal. Accordingly, modeD and€ only differ
by an additional spin-dependent short-range contributiothe confinement potential. In this interpretation,
the confinement in model includes a repulsive short-range part (additionally tdiftear and constant part),
which has the Dirac-structurg’ ® ~°. For completeness, the scale dependence is shown in Figfat.the
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Fig. 4.67: Scale dependence of the ground- and its firstezksitates shown for mod@ and&, respectively.
On the left side we have displayed thg , nucleon resonances and on the right sideXhg -resonances. The
optimal 5 is chosen close to the average of the positions of the minintleecground- and first excited states.
For N, j»-states 3 has been chosen dt= 0.60 fm for modelD andg = 0.45 fm for model¢, respectively. On
the right side, for the 3 ,-states3 has been chosen in the same way as for the nuclggn All other baryon
states has been checked in the same way. Their results anessig®d in Tab. 4.13. The curves are calculated
at Nmax = 20 for the nucleonV, ;, and Nmax = 18 for all other baryons.

Ny o- andAg o-states. The plots are calculated withhax = 18 and Nmax = 20 oscillator shells, respectively.
Tab. 4.13 summarises the optimal length scales used in ihg@ai@ons ofA-, nucleon- and hyperon-spectra.

4.3.2 A-and Q-spectrum

As in the discussion of model andC, we start with the discussion of thie-spectra for modeD and€&. They
are displayed in Fig. 4.68. On the left side of each columatritloe verified, that, compared with thespectra
shown in Fig. 3.2, modeD describes the states in similar fashion as modidétom Loring et al. [5-7], also
compare Tabs. 4.5 and 4.14. This property is surprisingaumee modeld andD have different confinement
Dirac-structures and consequently have different valaeghie parameters as is evident from a comparison of
Tabs. 4.3 and 4.15. In mod&l, the A3 ,+ (1600)-state as well as the three excited negative palitystates,
Ay 5-(1900), Ag/o-(1940) andAj 5 (1930), are not reproduced and the predictions of mddelre close to
those of modeld. Furthermore, the mass-splitting of the ,+ -states close to 1900 MeV is slightly smaller
compared to that of moded. Additionally, both states are shifted slightly downwartiscomparison to model
A and D, model £ reproduces the spectra much better, as did the previoustysied modef. Most of
the A-states can be reproduced by modelAs in modelC and we can thus account for e, ,,- (1900)-,
Agz/o-(1940)-, A5 /5 (1930)- andAg o+ (1600)-states as well. Partially, mod€leven improves the prediction
of these states.g. the D33(1700)-groundstate, which was predicted too low in mo@ednd is now shifted
slightly upwards in the direction of the experimental mass.

In the Q2-spectrum, displayed on the right side in Fig. 4.72, we firsth & very good agreement with the
single 2-resonance for both models. In the next subsection we wéllyae theN-spectrum for modeD and
.

4.3.3 N-spectrum

The N-spectrum is indeed also well described by both models asrsio Fig. 4.69. The results for model
D are again very close to those of modél Some states are slightly shiftee,g. the mass of the Roper-

resonanceV ,,+(1440) is now calculated too low, whereas in modeit was calculated to high by nearly the
same amount. The next = {r—excitation, theN; o+ (1710), is predicted too low at638 MeV. However,
modelD predicts most of the negative parity states too lew, the N, /,- (1535), is predicted at375MeV.

This also holds for the™ = 3™ negative parity state®,g. N3 o (1520) and N3, (1700), which lie too low
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Table 4.14: Comparison of experimentd] &nd calcu-Table 4.15: Comparison of experimentd] §nd calcu-
lated masses in MeV ak-resonances for mod&! and lated masses in MeV a¥-resonances for modé&l and
£. The corresponding spectra are shown in Fig. 4.68. The corresponding spectra are shown in Fig. 4.69.

exp. error rating modeéd model& exp. error rating modeéd model&
531(1620) 1615-1675 **** 1568 1625  S11(1535) 1520-1555 ****1375/1531 1482
S31(1900) 1850-1950  *** - 1958 S11(1650) 1640-1680 **** 1751 1658
S31(2150) 2020-2250  * many res. 2036/2124 S;;(1895) 1880-1910  **1751/1831 1830/1897
P31(1750) 1708-1780 * - 1772 P11(939) 939-939 938 946
P31(1910) 1870-1920 ****1820/1851 1889  P1(1440) 1430-1470 **** 1397 1437
P33(1232) 1230-1234 **** 1234 1232 P1(1710) 1680-1740 *** 1638 1729
P33(1600) 1550-1700  *** - 1614 P11(1880) 1915-1845  ** 1822 1861
P33(1920) 1900-1970 ***1810/1859 1906/1938  P;;(2100) 1855-2200 * many res. many res.
D33(1700) 1670-1770 =+ 1556 161z  113(1720)1650-1750 ==~ 1649 1677
* / P;3(1900) 1862-1900  **1830/1842 1851/1919
Ds3(1940) 1840-2167 1985191971965 7, (2040) 2031-2065  * 2000 1999/2021
D35(1930) 1920-1970  *** - 2019 13
Fy5(1905) 1870-1920 **** 1858/1899 1912/1936 38%85 igégf;’gg - 11‘;2 11575’1
53588(5)85 gigigég ***** >g§g >212923(§)3 2(1875) 1855-1895 ***1818/1881 1823/1927
o * Dy3(2120) 2080-2210  ** many res. many res.
F37(2390) 2250-2485 many res. many res. D1s(1675) 1670-1685 ** 1615 1690
G37(2200) 2120-2360 *2134/2196 2125/2178 D\ 5(2060) 2045-2075 *** 1921/2033 1905/2009
G39(2400) 2100-2518 2258 220912462 — - (1650) 1675-1600 == 1701 1708
H39(2300) 2137-2550  **2367/2419 2322/2349  [5(1860) 1820-1960  ** 1870/1899 1930
Hj 11(2420) 2300-2500 **** 2453 2363 F15(2000) 1816-2175  ** 2036 1974/2036
I313(2750) 2550-2874  ** 2719 2564 _ 17(1990) 1855-2155 1954 1990
K315(2950) 2750-3090  ** 2879 2718/2849 G17(2190) 2100-2200 ::I: 1996/2137 1951/2135
G19(2250) 2170-2310 2210 2167/2270
H19(2220) 2180-2310 **** 2217 2131
I1.11(2600) 2550-2750  *** 2440 2317/2515
K113(2700) 2567-3100  ** 2633 2490/2705

in model D at 1440 MeV and at1562 MeV, respectively. For model most of the problems of modé» are
absent, as displayed in Fig. 4.69: The Roper- as well ad/the- (1535)-resonance are reproduced rather well
by model& at 1437 MeV and 1482 MeV. Likewise, theJ = %-excitations,Nl/er(1710) and NV, - (1650),
are well reproduced, which leads to the conclusion, thateh®e@ven calculated the prediction of modglsee
e.g. the N; ,+ (1680)-state, which is now predicted closer to experiment. Mas$ésgher resonances with
J > % are in general too low in modél, analogous to modél. Here, modelD underestimates the mass of

the negative parity/™ = %_ ) %_—States less than modé€l Additionally new states, which are reported in
the Bonn-Gatchina analyses from the CB-ELSA collaborafid®-17] and now already included in the new
PDG-data 8], are displayed in Fig. 4.69. Modél accounts for most of them quite well just as mo@ekee
e.g. the newN, ,,+ (1880)-resonance. In contrast, modelcannot account for most of the newer resonances.
One example is again th¥, /;+ (1880)-resonance, which mass is predicted at 1822 MeV by mbdeh the

next subsection we will briefly discuss the results on theehgp-spectra.

4.3.4 Hyperon-spectra

The results of modeD and& within the hyperon sector\-, >- and=-baryons) are displayed in Figs. 4.70, 4.71
and 4.72. Beginning with th&-spectrum, displayed in Fig. 4.70, modeland¢ reproduce the spectra as well
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see also caption to Fig. 3.2.
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as model4 andC. ESEecially, modet describes the mass-splittings excellently compared tsettod model
D, e.g.forthe J™ = % Roper-like resonances the first excitatiyy,+ (1600) is predicted at 1600 MeV.

" MMD [66] ——

[67-70,72] —x— |

[71,73-78)
modelD -weeeeeee |
modelf ——

MD [66] ———
Ghristy [64] ——
2 | attan p5] —— |
modelD e

model ——

GE(Q%)

B(Q%)/Gp(Q%)

Fig. 4.73: The electric form factor of the proton di- Fig. 4.74. The electric form factor of the neu-
vided by the dipole fornG p(Q?), Eq. (4.7). MMD-  tron. MMD-Data are taken from the compilation of
Data are taken from Mergedt al.[66], supplemented Mergell et al. [66]. The solid black line represents
by data from Christyet al.[64] and Qattaret al.[65].  the results from the model; the dashed black line
The solid black line represents the results from thein the result from modeD, albeit recalculated with
model&; the dashed black line those from mod&l  higher numerical precision. Red data points are taken
albeit recalculated with higher numerical precision. from polarisation experiments and black ones are ob-
Red data points are taken from polarisation expertained by Rosenbluth separation, see also caption to
iments and black ones are obtained by Rosenblutlig. 4.9.

separation, see also caption to Fig. 4.8.

But, both models cannot account for the low lying ,- (1405)-resonance, which again supports the
interpretation as a meson-baryon bound-state closdsthiethreshold as already discussed in the previous
subsection 4.2.4 for modefl and C. Further
discussions on the nature of tig /,- (1405)-

resonance can be found B7-59]. Table 4.16: Static properties of the nucleon for mddelnd

£ . The static values are extrapolated from a dipole-shape-

Concerning thex-spectrum, which is dis- like fit due to Egs. (4.8) and (4.11).
played in Fig. 4.71, again moddl allows a \ modelD model& exp. \ ref.
better description of the resonances in partic-

ular for excited states. For thg™ = 1%- polpn] ‘ 2856 2.632 2.793 ‘ (8]
(8]

2

states, modeD and& reproduces the first exci- #n[tN] | -1.756 -1.688 -1.913 |
tation, i.e. the one star ratedl, ,,+ (1660)-state " ‘ ‘
however, without reproducing the second excita-V (r?)lfml 1.204  0.857 0.847 [66]

tion, theX; o+ (1770)-state. In opposite to that, (r?)n[fm]? ‘ -0.367 -0.100 -0,1230_004‘ [66]
the older modelA predicts theX 5+ (1770)-
resonance, but not the first excitation. The thirdy/ <7”2>]fu[fm]‘ 1.253 0.861 0.836 ‘ [66]
excitation, 3 ;+ (1880), is also reproduced by -

both models rather well. Furthermore, there is {r >M[fm]‘ 1.195 0.836 0.850 ‘ [66]
no satisfactory description of the; ,- (1580)- 94 | 1283 1.287 1.26¥0.003§ [8,79]
resonance for both models. The scarce data O\f/m[fm] ‘ 1.042 0701 0.6F%0.01 ‘ [80]

the Z-spectrum are satisfactorily reproduced by
both models, as shown in Fig. 4.72 on the left side.




80 CHAPTER 4. ALTERNATIVE INTERACTION KERNELS

4.3.5 Electroweak form factors of the nucleon

The discussion of electroweak form factors for the modeland € starts again with the electric proton form
factor, which is displayed in Fig. 4.73. The electric profonm factor is divided by its dipole-shape, see
Eq. (4.7). Based on the fact that the baryon spectra, diedussthe previous subsections 4.3.2, 4.3.3, 4.3.4
for modelD and &, are very similar to that ones of moddl andC, respectively, one could expect that the
corresponding form factors of the modé&Psand& should also be similar. This is substantiated by comparing
Fig. 4.73 with Fig. 4.8 of model and(, respectively. For the electric proton form factor we findeaellent
description of modeE, whereas modeD does not describe the experimental data similar to mgteln
particular, the electric proton form factor of modelhas an unphysical node as does madeln contrast to
model D, model € is consistent with the data and gives a satisfactory ddgmmipf the electric proton form
factor up toQ? = 6.0 GeV2.

The electric neutron form factor, displayed in Fig. 4.74aliso reproduced quite well by modé€lalbeit
that the data are slightly underestimated. The maximumeagsdth the position of the maximum in the data,
but the curve shows a node arouf)d = 3.0 GeV? in contrast to the experiment. ModBl overestimates the
data by more than a factor 2 in the regi@l < 1Ge\? similar as model4; the position of the maximum
is also predicted too low. Figs. 4.75 and 4.76 show the ptiedis of the magnetic proton and neutron form

14 L " MMD [66] —e— | " MMD [66 ——
’ Bartel [07] —=— 1.8 Anklin [81] —a—
a Christy [64] —=— e Xu[82 ——s—
3 12| Qattan p5] ——=— = 16 Kubon B3 —— 1
= ~ Madey 9 —o—
A 1H i ﬁ ﬁ; ii i g mﬁ;mii =3t e i% N 14 Alarcon [7§] —a— ]
<5 P ! < el D |
Q o8 , Q ' e model&
° S — Sl  f
S 06 modelf —— | T 08 f
S S o6l
E 0.4 E
& g
G} 04
o I 02F e
ol e [rrrerttieeeeiegans 0 )
0 1 2 4 5 6 0 1 2 3 4 5 6
Q* [GeV’| Q? [GeV?]

Fig. 4.75: The magnetic form factor of the pro- Fig. 4.76: The magnetic form factor of the neu-
ton divided by the dipole fornG p(Q?), Eq. (4.7) tron divided by the dipole fornG p(Q?), Eq. (4.7)
and the magnetic moment of the protg, =  and the magnetic moment of the neutrpn =
2.793 un. MMD-Data are taken from the compila- —1.913 ux. MMD-Data are taken from the compi-
tion of Mergellet al.[66]. The solid black line repre- lation by Mergellet al.[66] and from more recent re-
sents the results from the mod&l the dashed black sults from MAMI [81,83]. The solid black line repre-
line in the result from modeD, albeit recalculated sents the results from the modgl the dashed black
with higher numerical precision. Additionally, po- line in the result from modeD, albeit recalculated
larisation experiments are marked by red. The blackwith higher numerical precision. Additionally, po-
marked data points are obtained by Rosenbluth sepdarisation experiments are marked by red data points.
ration, see also caption to Fig. 4.10. The black marked ones are obtained by Rosenbluth
separation, see also caption to Fig. 4.11.

factor divided by their dipole-shapes (see Eq. (4.7)),eetpely. For the proton, both models underestimate
the data. Only at the photon point, both models can reprothe&eagnetic moments, see also Tab. 4.16 for
numerical values. The curve for mod@ldrops very fast, similar as modél, which also decreases very fast
away from the photon point as displayed in Fig. 4.11. Furtitee, model£ cannot reproduce the magnetic
form factor as well as modél. In case of the corresponding magnetic neutron form faatodel £ matches
the data quite well in opposite to modB!, which drops to fast again. Note, that modetioes not yield an
improved description of the magnetic neutron form factdrew compared with the results of modglshown

in Fig. 4.11.
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Table 4.17: Octet hyperon magnetic momentior  Table 4.18: Decuplet hyperon magnetic moments
modelD and€ calculated as in13,14]. The values for modelD and€ calculated as in1[3,14]. The val-

are given in units ofy. ues are given in units of v .
hyp. modelD model& PDG [8] hyp. modelD model& PDG [8]
A -0.583 -0.618 -0.6130.004 ATt 4.368 4.239 3.7t07.5
¥t 2673 2.360  2.4580.010 At 2184 2119 2779 +15+3
0 0.774 0.711 - A 0.0 0.0
> -1.126 -0.875  -1.1668-0.025 A~ -2.184 -2.119
=0 -1.070 -0.914  -1.256-0.014 e 2.815 2411
- -0.371 -0.408 -0.65%0.0025 »*0 0.377 0.153

X -2.062 -1.936
z*0 0.802 0.262
= -1.730 -1.823
Q- -1.428 -1.294 —2.02+0.05

Considering the ratio of‘gﬁ, as displayed in Fig. 4.77, modél matches the data obtained from the
M

Rosenbluth separatio®¢-100] better than the data taken from polarisation experimefese, modek leads

to results intermediate between the Rosenbluth separatgtgalarisation data as shown in Fig. 4.12. This
results for modeE can be traced back to corresponding magnetic proton fortorfawhich underestimates
the data. As expected from the magnetic and electric fortofagdisplayed in Figs. 4.73 and 4.75), model
underestimates the ratio of electric and magnetic protam factors, again similar to the prediction of model
A. Thus, neither of the new models predicts the polarisatata B5-95] accurately.

2 m

w

12 " [96-100 e Amaldi [10]
b1l 1.1 [85-95] +—o—i Brauel L0 —x—
’ modelD e Bloom [103 —x— |
s o g & ﬁ % 1 modelfé ——— Del Guerral04 —=&—
St > 1 Joos 109 +—=—
3 0.9
$ i} I Baker [L0§ —e— |
£ . L.

Miller [107] +——e—
Kitagaki [108 109 +——=—
Allasia [110 ——— |

0 02 04 06 08 1

modelD -
modelf ——

Fig. 4.77: The ratio“’(’;TG% compared to recent JLAB Fig. 4.78: The axial form factor of the nucleon di-

data (see legend). In the insert the low momentunvided by the axial dipole form in Eq. (4.8) and the
transfer region is enlarged. The solid black line isaxial couplinggs = 1.267. The black solid line is
the result of modek, the dashed black line the re- the result of modet, the blue dashed line the result
sult in modelD. Red data points are taken from in modelD. Experimental data are taken from the
polarisation experiments and the black ones are obcompilation by Bernaret al. [80]. See also caption
tained from Rosenbluth separation, see also captiofP Fig. 4.13.

to Fig. 4.12.

The axial form factor divided by its dipole-shape is showirig. 4.78, where the dipole-shape is given by
Eqg. (4.11). As shown in Fig. 4.78, modBl cannot reproduce the data, whereas mdédeiatches the data in
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particular for higher momenta. In the vicinity f> = 0, both models reproduces the experiment value, but
model D drops again very fast now in contrast to the madelwhich does account for the axial form factor.
The curves of modef and€ runs very close to each other.

Tab. 4.16 summarises the static properties extracted frmretectroweak form factors by fitting them
according to Egs. (4.8) and (4.11). Itis obvious, that m@elerestimates most of the quantities in particular
the charge radii, which depend on the derivatives of the fiaictors, see Egs. (4.9a) and (4.9b). Nevertheless,
the magnetic moments and the axial coupling agree with tkee @asonably. Modefl reproduces all static
guantities quite well and the magnetic moments being d§igbb small in magnitude. The radii are reproduced
also close to the experiment and the results are similare®etshown in Tab. 4.7 for modé! The magnetic
moments of the octet and decuplet hyperons are summaridée ifabs. 4.17 and 4.18. Most of the values
are close to the experimerg][ but there are still some mismatchesy. the values for thé&-resonances in the
octet groundstate. Here, mod@lreproduces the data better than magleWhich is surprising in view of the

other results obtained so far.

4.3.6 Some helicity amplitudes

The conclusions from the discussion of helicity amplituftgsnodelD and€ are very similar to the discussion
for model A andC, respectively. We therefore restrict the discussion oy arfiew baryon resonances in the
N-andA-sector.

N* + N helicity amplitudes

We now turn to the discussion of* <+ N helicity amplitudes for each angular momenturand parityr.

TheJ = % resonances: In Figs. 4.79 and 4.80 we show the transverse and longitub&leity amplitudes
of modelD and& for the N, s, (1535) resonance. As expected, the helicity amplitudes of médehd &
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Fig. 4.79: Comparison of th&1;(1535) transverse Fig. 4.80: Comparison of th&;(1535) longitu-
helicity amplitudeAJlV2 for from the proton and the dinal helicity amplitudeS{V2 of proton and neu-
neutron calculated in the modél(solid and dashed- tron calculated in modef (solid and dashed-dotted
dotted line) and modeD (dashed lines) to experi- line) and modeld (dashed lines) with experimental
mental data§, 17-20,114-123 125. The dotted line  data [L8-20,114, 125. Note, that for the data points
is the result obtained by Keister and CapstitRk4]. of the MAID-analysis by Tiatoet al.[125 no errors
Additionally, recent fits obtained by Tiatet al. [47] are quoted. See also caption to Fig. 4.79.

and by Aznauryaret al. [49] are displayed as green

dotted and dashed-dotted lines, respectively. See also

caption to Fig. 4.14.

are very similar to those of model andC, respectively, which were shown in Figs. 4.14 and 4.15. Hbe
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Fig. 4.81: Comparison of th€;;(1650) transverse Fig. 4.82: Comparison of th&;; (1650) longitudinal
helicity amplitudeAJlV2 of proton and neutron calcu- helicity amplitudeS{V2 of proton and neutron calcu-
lated in model& (soﬁd and dashed-dotted line) and lated in model€ (solid and dashed-dotted line) and

modelD (dashed lines) to experimental data frodn [ modelD (dashed lines). See also caption to Fig. 4.79.
19,21,114,125. See also caption to Fig. 4.79.
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Fig. 4.83: Comparison of th&;;(1440) transverse Fig. 4.84: Comparison of thB; (1440) longitudinal

helicity amplitudeAfl\j2 for proton and neutron cal- helicity amplitudeS,, for proton and neutron calcu-

culated in modet (solid and dashed-dotted line) and lated in model€ (solid and dashed-dotted line) and

modelD (dashed lines). See also caption to Fig. 4.79 modelD (dashed lines). Note, that for the data points
of the MAID-analysis by Tiatoet al.[125 no errors
are quoted. See also caption to Fig. 4.79.

newer models yield curves, which are lower in magnitude foamodel. A andC. Additionally, both curves
have a node in the transverse proton and neutron amplitudasad? ~ 3.0 GeV?, while the longitudinal
amplitude only for modeD shows a node at roughi9? ~ 0.75GeV2. In particular, both models reproduce

the transverse amplitudes at the photon point quite wellataitoo low at higher transition momenta transfers,
where modelD drops even faster than model

For comparison, we also displayed the transverse amplmfgg calculated with the quark model from
Keister and Capsticklp6] and a fit obtained from Aznauryaet al.[49] and Tiatoret al.[47]. The longitudinal
amplitudes are again far away from the experimental datésptagted in Fig. 4.80 similar to those of modél

andC. The expected minimum in the data and the fit from Ti&toal. [47] are not reflected by the calculations
in both models.

For the N, /o~ (1650)-resonance, analogous to the moddlandC (see Figs. 4.81 and 4.82), the newer
modelsD and& shows a large disagreement for the transverse helicityiardg| while the neutron amplitude
matches the prediction of the PDG at the photon point. Thegitodinal amplitudes, as displayed in Fig. 4.82,
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agrees with some values of the MAID-datelf, 125, but cannot reproduce the node expected from experi-
mental data. Here, modélaccounts for the single data point from Aznaurgml.[19]. In opposite to model
A, modelD does not have a maximum anymore and decreases rapidly.

Analogous to the previous results of modélandC for the transversé?; (1440)-helicity amplitude the
newer model$ and& cannot account for the node in the amplitude, where mddehderestimates the data
more than model. Only model€ accounts for the data f@p? > 1.5 GeV2. For the longitudinal amplitude,
shown in Fig. 4.84, both models can account for the expefiahetata of Aznauryaret al. [18-20], where
model A underestimates the data slightly and mafldits quite well. Finally, the expected maximum in the
data is predicted too low in position by both models clos@tox 0.25 GeV?.
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Fig. 4.85: Comparison of th®;3(1520) transverse Fig. 4.86: Comparison of th®;3(1520) transverse
helicity amplitudeAJlV2 of proton and neutron calcu- helicity amplitudeA{,,V2 for proton and neutron cal-
lated in model& (soﬁd and dashed-dotted line) and culated in modef (solid and dashed-dotted line) and
modelD (dashed lines). See also caption to Fig. 4.79 modelD (dashed lines). See also caption to Fig. 4.79.
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Fig. 4.87: Comparison of thé;3(1520) longitu-  Fig. 4.88: Comparison of th®;35(1700) transverse
dinal helicity amplitudeS{\;2 for proton and neutron  helicity amplitudeA?,, of proton and neutron calcu-
calculated in modef (solid and dashed-dotted line) lated in model& (soﬁd and dashed-dotted line) and

and modelD (dashed lines). See also caption to modelD (dashed lines). See also caption to Fig. 4.79.
Fig. 4.79.

The J = 3 resonances: For the J = 3-resonances we restrict to a discussion of the well measured
N3 /9~ (1520)- and N3 o (1700)-resonances. The transverse and longitudinal amplitutie® Vs /- (1520)-
resonances are displayed in Figs. 4.85, 4.86 and 4.87 (fk#ependence of the transverd ,-amplitude

is not as well reproduced as in the previous modélandC (see Figs 4.27 and 4.28). The calculations of
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the Aff/Q—ampIitude are too low by roughly a factor of 2 in magnitudeboth models, when compared to the

experimental data. Also thé? /2—amplitude is underestimated for low momea < 1 GeV2. In contrast to

the modelsA, C andD, model€ yields the wrong sign and shows a smooth minimum closg’e= 0.2 GeV2.
Furthermore, modeP and& underestimate the experimental values by more than a faégtomagnitude. The
PDG value of the transverse neutron amplitudes at the phmion cannot be accounted for by both models.
The longitudinal amplitude is also not reproduced maingcause the predictions of both models show the

wrong sign. If the sign of the longitudinal amplitudes woublel inverted, then both models would account for
the data quite well, where modé&lwould matches the data best.

T T 15 T T
PDG 8, p —e— modelD, p =weeeeees
40 H PDG 8], n —O&— A . modelD, n
Q Aznauryan 18,19, p —=— N 10 F modelE, p =— |
= 30 H ) modelD, p ==sss=sn b = modelE, n ===
S modelD, n v 5
20 ., del —_

[0) 5 model&, p () 5

0] 10k ~,.,~’N e, . modelE, N ==mimm | )
7 7

o o 0

= =
- —~
N [\ 5|

S 20 e
= =

Al ™
Z>30 %}} 10 b
= -40 +

50 . . . .15 . . . . .
0 1 2 3 > 4 5 6 0 1 2 3 4 5 6
Q* [GeV’] Q*[GeV’]

Fig. 4.89: Comparison of th®,3(1700) transverse Fig. 4.90: Prediction of thé;3(1700) longitudinal
helicity amplitudeA{,,V/2 for proton and neutron cal- helicity amplitudeS{V2 for proton and neutron cal-
culated in modet (solid and dashed-dotted line) and culated in modef (solid and dashed-dotted line) and
modelD (dashed lines). See also caption to Fig. 4.79 modelD (dashed lines). See also caption to Fig. 4.79.
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Fig. 4.91: Comparison of th®,5(1675) transverse Fig. 4.92: Comparison of th®,5(1675) transverse
helicity amplitudeAfl\j2 for proton and neutron cal- helicity z;lmplitudeA{,Y2 for proton and neutron cal-
culated in modef (solid and dashed-dotted line) and culated in modef (solid and dashed-dotted line) and
modelD (dashed lines). See also caption to Fig. 4.79.modelD (dashed lines). See also caption to Fig. 4.79.

The helicity amplitudes of the next excitatiof;5(1700), are shown in Figs. 4.88, 4.89 and 4.90, respec-
tively. Here, the transverse amplitudes of both models imtite PDG-datad] at the photon point. The single
data point of Aznauryaet al. [18, 19] for the A, ,-amplitude is only approximately reproduced, whereas for

the A3 ,-amplitude both models cannot account for the value of Agyenet al.[18,19]. For the longitudinal
amplitude no data are available.
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Fig. 4.93: Comparison of thé®;5(1675) longitu-
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Fig. 4.95: Comparison of thé'5(1680) transverse
helicity amplitudeA{,}V2 for proton and neutron cal-
culated in modef (solid line) and modeD (dashed
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The J =2

Fig. 4.96: Comparison of the;;(1680) longitudinal
helicity amplitudeS?,, for proton and neutron calcu-
lated in model€ (solid and dashed-dotted line) and

modelD (dashed lines). See also caption to Fig. 4.79.

5 resonances: The transverse helicity amplitudes of tié; ,- (1675)-resonance are shown in

Figs. 4.91 and 4.92. As for model$§ andC, the modelsD and £ reproduce the data of thAf;z-ampIitude
(see Fig. 4.91) quite well, however, without describing ¢ixpected node at rought9? ~ 1.5 GeV?. Here,
the photon decay amplitude from the PD& is not reproduced satisfactorily by both models and is vesle
timated by nearly a factor of 2. This also applies to the PDGiguin decay amplitude as well as MAID-data
for the Aévg-amplitude. Additionally, modef has a different sign, compared with model Only model
D matches the PDG-value roughly. The neutron decay ampéitade also underestimated in magnitude by

roughly a factor 2 by both models as displayed in Figs. 4.9114a82.
The predictions of thé"5(1680) transverse helicity amplitudAJlV/2 are in fair agreement with the data,

shown in the Fig. 4.94, whereas th%‘b—amplitudes, see Fig. 4.95, are underestimated in both ismdxe

nearly a factor 3. Here, mod@& and& give very similar results. In case of thﬁvﬂ—amplitude, both models

match the proton and neutron PDG photon decay amplitudde wigy describe the remaining data €t > 0
excellently. Only the older data from Burkest al. [21] spreads around the curves with large errors. The
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longitudinal amplitude also shows a reasonable agreeméhttiae experimental data for both models, as
displayed in Fig. 4.96. Here, modglstays closer to the single experimental value of Aznaupgtaai.[18,19]
atQ? = 0.65 GeV?, while modelD prefers the older data from Burkest al.[21]. For Q% > 1.5 GeV?, both
models agree fairly with the experimental data of the MAI&kysis. Finally, the minimum in the fit of Tiator
et al.[47] is not reflected in the prediction of the models.

A «+ N helicity amplitudes

We now turn to the discussion & <+ N helicity amplitudes for each angular momentunand parityr.

The J = % resonances: The discussion ofA < N

helicity amplitudes starts again with th#;; (1620)- 80 p ‘ ‘ PBeEL ]
amplitudes for modeD and £. Here, the transverse< Burken 21, Ay )5 v
and longitudinal amplitudes are shown in Fig. 4.97: the. [ onauman1g, 512
transverse amplitude is predicted too low compared § ol n’;'.%&i‘:ﬁgg; — |
the MAID-data [L14,125 and the data from Aznauryan L i‘f;}i‘g}ﬂgig

et al.[19]. Similar to the models4 andC, modelsD = x| modelD A1z e
and& exhibit a node at roughlg)? = 0.3 GeV?, which & v

is not seen in the data, if one excludes the data frogr/g 0 S —
Burkertet al.[21]. The longitudinal amplitude of model & models, 5.7 e |
& matches the single data point of Aznaurg@al.[19]. ==

The data of the longitudinal amplitude then suggests a -4 0 - . " : A

node around)? = 0.9 GeV?, which is not reproduced
by the models. ModeD underestimates this data point
of Aznauryanet al. [19] by more than a factor of 4Fig. 4.97: Comparison of th&3;(1620) transverse
in magnitude. Note, that the sign of th#8,(1620)- and the longitudinal helicity amplitudeﬂflv/2 and
amplitudes has to be clarified experimentally as alreasl}w2 calculated in modef (solid and dashed-dotted
mentioned within the discussion of the previous modqﬂﬁe) and modelD (dashed lines) with experimental
A andC in section 4.2.6. data from B, 19,21, 114, 125. Note, that for the data
points of the MAID-analysis by Tiatast al. [125 no
The J = % resonances: Fig. 4.98 shows the predic-errors are quoted. See also caption to Fig. 4.79.
tion of the P33(1232) transverse amplitudes calculated
in modelD and€. TheAflV/Z—amplitude of modef runs close to that of modél(see Fig. 4.51) and fits the data
quite well, while the minimum is predicted close to the pmapoint at the expected position@t ~ 0.4 GeV>.
Here, the magnitude of th&flV/Z—amplitude is predicted too low be nearly a factor 2, whiledel@® underesti-
mates the data by more than a factor 3. The position of thenmaimi for modelD is found roughly at)? = 0.
The situation for theél?])\;z-amplitude is similar to that of thﬂf}z-amplitude, whereas the position of the min-
ima of the transverse amplitudes coincides within both rfsode subsection 4.3.8, thB;;(1232) transverse
helicity amplitudes will again be used for the calculatidritee electric and magnetid <> N transition form
factor. In Fig. 4.99, we show this3(1232) longitudinal amplitude in which only modél gives an acceptable
prediction, while modeD yields almost vanishing results. Analogous to the previmaslels.A andC, both
models shows a maximum, which is not supported by the data.

Concerning the negative pariff’ = %_—states, we only discuss ttig;3(1700) transverse and longitudinal
helicity amplitudes, which are displayed in Figs. 4.100 4riD1. The transverse amplitudes describe the data
quite well. Both models can also account for the amplituddbeaphoton point satisfactorily. Since the data
of Burkertet al.[21] and the MAID-analysis 114, 125 spreads forQ? < 1.0 GeV?, the newer models only
match with the single data point of Aznauryanal.[19]. Nevertheless, the PDG photon decay amplitudes can
be accounted for by both models. At the photon point the datavs big fluctuations, which partially match
the calculated values. In Fig. 4.101 we show ihg(1700) longitudinal helicity amplitude for modéb and€.

The values of the MAID-datalpP5 are close to zero and include a non-vanishing valugZat 1.0 GeV2. It

is obvious, that both models then produce the wrong sigrhfotdngitudinal amplitude. Modép accounts for
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Fig. 4.98: Comparison of th€s3(1232) transverse  Fig. 4.99: Comparison of thBs3(1232) longitudinal
helicity amplitudesAy,, and AY, as calculated in helicity amplitudeS?), calculated in modef (solid
model& (solid and dashed-dotted line) and mo@el line) and modelD (dashed line) to experimental data
(dashed lines). See also caption to Fig. 4.79 and thérom [8,114,125. See also caption to Fig. 4.79.
magnetic transition form factor in Fig. 4.102.
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Fig. 4.100: Comparison of th@s3(1700) trans-  Fig. 4.101: Comparison of thBs3(1700) longitudi-

verse helicity amplitudesty,, and A}, calculated nal helicity amplitudeSy,, of the nucleon calculated

in model& (solid and dashed-dotted line) and modelin model £ (solid line) and modelD (dashed line).

D (dashed lines). See also caption to Fig. 4.79. Note, that for the data points of the MAID-analysis
by Tiator et al. [125 no errors are quoted. See also
caption to Fig. 4.79.

the MAID values close to zero. Note, that if the predicted ktugles have opposite sign, they can reproduce
the single data point of Aznauryaat al.[19] as well the value af)> = 1.0 GeV? in the MAID-data at least in
magnitude.
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4.3.7 Photon couplings

Tables 4.19 and 4.20 summarise the calculations of thevieeses photon decay amplitudes for mo@dehnd

£. The calculated values were determined)dt= 10~* GeV?, which gives a satisfactory approximation to

the photon point. Similar to the tables for modélandC (see 4.10 and 4.11), the tables list the available
experimental data, which have already been displayed idifoeission on helicity amplitudes in the previous
subsection 4.3.6. In general no large difference betweemitdelsA, C, D and€ has been found.

Table 4.19: Transverse photon couplings calculated\ars N transitions in modeD and& in comparison
to experimental data. All calculated photon couplings witermined by calculating the helicity amplitudes
atQ? = 10~* Ge\? close to the photon point. A hyphen indicates that experiaietata does not exist. All
amplitudes are in units df0—3GeV /2, all masses are given in MeV.

State Mass Model D Model £ Exp. Ref.
Rat. modelD model& Ampl.

S31(1620)  *eex 1568 1625 Ai s -8.52 -7.57 27411 8]
S31(1900) o - 1932 Ao - 3.52 || 59+16/29+8/-4+16 [17)/[129/[92]
P31(1750) * - 1764 Ay - 9.38 53 130
P31(1910)  *** | 1820/1851 1879 | Ay 7.09/11.49 0.56| 3+14 8]
P33(1232) % 1234 1232 Ai s -63.74 -72.27 -135+6 8
Az -110.09 -130.69 -25048 [8]
P33(1600)  *** - 1609 A - -14.69 -23420 8
Az - -34.20 9421 8]
x i 5 1307 30/40+14/ A7) [129/
P33(1920) 1810/1859  1896/192§ A, o 0.23/-0.68 2.96/3.31 20 el 63/ [130]
-115+25/23+17/ @7/ [129/

g —50
Az 2.32/1.36 7.23/7.25 PLEYE] B3/ [130
D33(1700)  * 1556 1611 A 62.19 57.58 104+15 8l
Az 59.74 57.64 85+22 8l
Ds33(1940)  ** - 1895/1947 | Ay 5 29.00 -15.81/-15.74| -36+58/160+40 [129/[63]
Az 20.12 -4.77/-26.07| -31+12/116+30 [129/[63]
D35(1930)  ** - 2009 Ao - -8.13 -9+28 8l
Ao - -16.89 -18+28 8]
F35(1905)  *** | 1858/1899  1915/1939 A,,,  -13.45/472  -9.95/4.64 26+11 8]
Azsp  -30.06/-8.52 -20.23/-5.94 -454+20 8
F37(1950) v+ 1925 1947 Ay -17.20 -13.07 -76+12 8]
Ao 22.13 -17.29 -97+10 8]
H3g(2420) o+ 2453 2361 Ai s 7.43 4.19 - -
Az 8.79 4.80 - -
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Table 4.20: Transverse photon couplings calculatedViork— N transitions in modeD and€& in comparison
to experimental data. All calculated photon couplings waerermined by calculating the helicity amplitudes
atQ? = 10~* Ge\? close to the photon point. A hyphen indicates that experiaiatata does not exist. All

amplitudes are in units df0—3GeV /2, all masses are given in MeV.
State Mass Model D Model £ Exp. Ref.
Rat. | modelD model€ | Ampl. p n p n P n
S11(1535) ™ | 1375 1487 | A,,, 8371 5564 73.26 -443l  90£30  -46£27 6]
S11(1650) = | 1531 1658 | A, -2.85 1090 -4.66 -7.19 53t16  -15:21 8]
o 1751 1825 070 1.86 002 -0.02
511(1895) 1831 1806 | A1/2 4835 2557 696 -3.9 12+6 - (7
Pr1(1440) == | 1397 1439 | A, 2305 -1253 4457 248§ 6044  40E10 6]
Pii(1710)  * 1638 1729 | A, 1987 -1291 11.96 -8.0]  24+10  -2:14 8]
Pii(1880)  ** 1822 1859 | A, 393 285 654 -4.07 14+3 - [17]
Pi5(1720) ™ | 1649 1682 | A, 6184 2753 49.38 -23.3]  18+30 1+15 8]
Agjy 1391 562 -1405 123  -19420  -29:61 8]
1830 085 6.19
Pi3(1900)  ** 1842 1845 | Ay, 415 -190 469 -8.89| 26+15-17 /16 17/ 1130
1859 216 070
A 392 0.02
3/2 006 -027 -5.71 -12.92|| -65+30/31 /-2 L7/ 130
112 022
D13(1520) = | 1440 1520 | A, -49.30 581 -4337 38)  -24£9  -59£9 8]
Asjp 2848 -32.85 2583 -221{ 150515  -139K11 6]
Di3(1700)  *= 1562 1658 | A, -7.84 991 -914 945  -18£13 050 6]
Asjp 713 3418 -403 2171 2424 -3raa 8]
i} 1818 1820 159 012 161 -0.33 18+10/-20+8 (171 [129/ [8)/
Dis(1875) > 1881 1930 | 4172 112 028 -044 01§ 12/26+52  (F13 [130/ [132
N 082 -125 034 058 -9L5M7£11 . o, [17/[129) [8)
3/2 049 -094 032 003 -10/128:57 [130/ 132
D15(1675) **= | 1615 1690 | A, 339 -19.29 6.04 -19.4 1048 4312 6]
Agjy 505 27.36 -1.69 -22.6 1549 -58+13 8]
N 1921 1909 35.36 -19.07 22.12 -13.0
D15(2060) 2033 2002 | 41/2 246 128 140 -0.6 67+15 - 7]
855 526 -622 13
As;z 024 018 -027 02 55+20 - 7
F15(1680)  ** | 1701 1715 | A, -4254 2861 -31.56 225§  -1546  29t10 8]
Asp 2127 -589 1977 -55¢ 13312 -33L9 8]
* 1870 4254 2861
F15(1860) - | qade 1930 | Ay, Moot 200 554 1386 20412 - 17
042 -13.81
Agpy 352 138l 530 64 50420 - 17
* 1977 016 -0.42
F15(2000) ~ | 2036 0t0 | Ay, 274 183 0p5 D92 32415 - 17
018 -0.68
Asjs 045 -066 0,5 OO 50+14 - 17
Fi7(1990)  ** 1954 1992 | Ay, 240 -543 -3.80 -2.04 4&11’03%29 fé'gl a7y [igq
Agjy -330 692 039 -4.4] 58i12£86t60 ‘{'71278 b7y [[g%
G17(2190)  *=* | 1996 1955 | A, 2080 -605 1053 -242  -65i8 - [17]
Ayjy  -863 686 -6.06 429 3517 - 17
Gro(2250) = | 2210 2163 | A, 118 -7.35 195 -539] [A%|<10 - _
Asp 157 007 022 520 [Af|<i0 - -
3
Hi9(2220) ** | 2217 2132 | A, 1881 -11.70 899 -582 [A%|<10 - [17]
Asp 870 323 -495 193 [Af|<i0 - [17]
3
I1.11(2600)  ** 2440 2315 | A, 1084 -389 370 -1.14 - - -
Agp 466 305 223 131 - - -
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4.3.8 A(1232) <+ N transition form factors

Since theA <+ N electric and magnetic transition form factor of thg1232) groundstate are related to
the helicity amplitudes via Egs. (2.127a, 2.127b) and @) 13ey can be extracted from ttig;(1232)-helicity
amplitudes, which are displayed in Figs. 4.98 and 4.99 falehD and€. In Fig. 4.102, we show the magnetic
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Fig. 4.102: Comparison ak(1232) magnetic transi- Fig. 4.103: Comparison oA (1232) electric transi-
tion form factorGy; calculated within modef (solid  tion form factorG7¥ calculated within modef (solid
line) and modelD (dashed line). See also caption to line) and modelD (dashed line). See also caption to
Fig. 4.79. Fig. 4.79.

transition form factor divided by thrice the standard
dipole form factor in order to emphasise discrepancies .

MAID[114125 ——

between experimental and calculated values. The mag- Fit: Tiator [47]
netic transition form factor of both models cannot ac- tr moderD T ]

count for the data as displayed in Fig. 4.102; the re- 5!
sult of model £ is similar to these of model, see <
also Fig. 4.64. ModeD underestimates the data com-g;
pletely, here in contrast to the related mode(see also *UD
Fig. 4.64 for comparison). In Fig. 4.103 we display the
electric transition form factor. For the electric traniti
form factor we find a similar situation, where model
reproduces the MAID-datdl[L4, 125 quite well, if ex- :
cluding the region in the vicinity of the photon point Q2

Q? < 0.5GeV?. Model D gives a small negative pre-

diction for the electric transition form factor similar tdrig. 4.104: Comparison ak(1232) Coulomb transi-
the result of modeld. Here, the MAID-data have beertion form factorG calculated within modef (solid
calculated according to the Egs. (2.127a) and (2.12Tihg) and modelD (dashed line). See also caption to
from the transversé’s(1232)-helicity amplitude data. Fig. 4.79.

Fig. 4.104 shows the Coulomb transition form factor

calculated from the longitudindPs3(1232)-amplitude. Only modef can roughly account for the momentum
dependence of the Coulomb transition form factor, whereadetD is effectively zero.

4.4 Summary

The major objective was the study of alternative interackiernels additional to the linear confinement poten-
tial and the instanton-induced 't Hooft interaction withhre framework of the Bethe-Baryon model. In this
chapter we have discussed two different approaches for m@sactions: A spin-flavour dependent interac-
tion and a modified version of the linear confinement poténfifius, this chapter contains the major results
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of this thesis and summarises the publications of Ronnégex. [31, 32] in its first part. Section 4.2 starts
with the introduction of the novel spin-flavour dependenéiiaction by introducing interaction Lagrangians
for pseudoscalar meson-exchange with pseudoscalar- and@gector coupling to fermions. From these La-
grangians we have extracted the second-order scatteritiixralements, which contains the corresponding
meson-exchange potentials. In both cases expressionsefpotentials have been given in momentum space.
Subsequently, we have focused on the pseudoscalar coupkmhrexchange mainly, because it led to the best
results. In coordinate space, the Yukawa potential has bekstituted by a Gaussian short-range potential
to improve the results. The model with this novel spin-flavdependent interaction in combination with the
confinement potential and the instanton-induced 't Hod#rizction is called modef. In subsection 4.2.1
we discussed the model parameters for m@dahd an improved version of moddl, whereas the latter has
been recalculated with increased numerical accuracy. fiére the model parameters of modeére slightly
different compared to those of the previous chapter 3. Eumbre, the new modél uses a different con-
finement Dirac-structure than modét it is given by a two-body interaction for the linear part kv simpler
Dirac-structure;yy ® 9. Note, that model introduces only three additional parameters compared wemo
A: the octet- and singlet-coupling as well as the range of thasGian potential, which was chosen equal
for the meson octet- and singlet interaction. The octepling was found to be consistently smaller than the
singlet-coupling; the latter can be interpreted as a staorge part of the confinement potential itself.

The first subsection of section 4.2 contains the discusditirea\-, N- and hyperon-spectra, where we have
compared the results from the recalculated version of tlerohodelA with the novel modeC. Concerning
the A-spectrum, we indeed found in general a much better desxripty the novel modeC. In particular,
modelC can account for thé\, .+ (1750)-, the Roper-likeA; 5+ (1600)- and the three excited negative parity
A*-resonances around 1900 MeX {5 (1900), Asz/5-(1940) and A5 /o~ (1930)), whereas modeM cannot
describe these states, as already mentioned in the intioduc and chapter 3. Note, that modebredicts
even two resonances for the; ,- (1940)-state close to the resonance position.

Also for the nucleon-spectrum we have found a satisfactescdption by model’, which improves again
on the results by moded. The novel model reproduces the mass of the Roper-resonance in very goog-agre
ment with the data, whereas modélpredicts the resonance too high by roughly 60 MeV. Furtheemmodel
C improves the predictions of the masses for #e,- (1535)- and N, /o~ (1650)-resonances as well as for the
N3/9-(1520)- and N3 5 (1700)-resonances. Here, modédl predicts all of these resonances too low. Only
for the V5 /»+ (1680)-resonance, the description in the new mades slightly worse then in modeHl. With
this exception we conclude, that the novel modehdeed yields to an improved description of the nucleon-
spectrum compared to the older model Moreover, since 2012 there are more nucleon resonancéshdea
in the compilation of the PDG] to which we can compare. These resonances are in partiojag+ (1880),
Ni/o-(1895), N3/9+(2040), N3 /o- (1875), N5 9+ (1860) and N5 o (2060). Here, both models can account for
the newNV, /,+ (1880)-state as well as for the new negative panty;,- (1895)- and N3, (1875)-resonances.

Also the hyperon sectore. the A-, 3- and=-baryons, is better described by modeln particular, model
can account for the Roper-like resonancks;,+ (1600) andX:; 5+ (1660), whereas model cannot describe
the latter. However, both models cannot account for the kingl A, ,- (1405)-resonance. The prediction
of model A is roughly 100 MeV too high, whereas for modglthe prediction is about approximately 200
MeV to high and lies in the vicinity of the next™ = {-excitationAl/Qf(1670). As already mentioned in
subsection 3.5.5 of the previous chapter, this fortifiesinkerpretation of this state not asja-state, but as a
meson-baryon molecule close th&V-threshold as claimed by Jido, Oset, MeiRRner and Hyetdal. [57-59)],
which is supposed to be made out of at least five quarks anatémmot be described in the three quark baryon
model as used here. The rest of theesonances can be reproduced by both models. IRthgectrum, model
C cannot account for the one-star rateg,+ (1770)-resonance and the four-star ratég,- (1580)-resonance
only. However, the latter resonance can also not be repeatlog modeld. Moreover, we were able to suggest
a classification for some resonances based on their massa®laté the=(1690)-resonance to the Roper-like
excitation of theJ™ = %+-resonance39.g.within the framework of modef mainly, which is not classified in
the PDG B] so far. Furthermore, th€(2250)-resonance should have positive parity based on the pieusct

of modelC.
In subsection 4.2.5, we have discussed the calculationeadldttroweak form factors, magnetic moments
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and charge radii for modefl andC. Here, the electroweak quantities are calculated in thedveork of the
Bethe-Baryon model from the Salpeter amplitudes via théagetrom Merten and Kretzschmaral.[9,10,12]
without introducing additional parameters. We have fouhdt the electric proton- and neutron form factors are
reproduced in excellent agreement with the data by m@debr the electric neutron form factor, both models
predicts the correct position of the maximum in the data. agnetic proton and neutron form factors are also
better reproduced by mod€| than by modelA, which predicts them too low in magnitude. This also effects
the ratio of the electric and magnetic proton form factor. the axial form factor both models are in agreement
with the data. The extrapolation of the electroweak formdescto the photon point allows the extraction of the
magnetic moments, charge radii and the axial coupling asas¢he axial charge radius. According to Tab. 4.7,
the magnetic moments and charge radii of the nucleon arenigrgkein good agreement with experimental data.
It was found, that modell overestimates the electric charge radius in magnituderesisenodel’ reproduces

it quite well. Also the magnetic moments of the hyperon oated decuplet, calculated via the static method
from Hauptet al.[13, 14], agree quite well with the experimental data.

The discussion on the helicity amplitudes can be found irsectiion 4.2.6. It shows the transverse and
longitudinal helicity amplitudes for most of the (at ledstde star-rated) resonances within thend nucleon
sector as well as for some other resonances. Note, that newodahelicity amplitudes is available since
recent years from the CLAS-collaboratioh8[20] and the MAID-analysis 114, 125. We found reasonable
descriptions for the transverse and longitudinal heliaityplitudes for the resonanceS;; (1535), P;1(1440),
D13(1520), F15(1680), P33(1232) and theD33(1700). Our concluded values partially agree with the scarce ex-
perimental data of the remaining- and A-helicity amplitudes. Also photon decay amplitudes werteasted
from the calculated helicity amplitudes. The discussionthanresults from the novel modélconcludes with a
discussion of the\(1232) «» N transition form factors. Here, we obtained reasonableltsear the electric-
and Coulomb transitions form factors, whereas the magtratisition form factor cannot be accounted for in
both models satisfactorily.

We also studied a modified version of the confinement potewith a spin-spin and tensor interaction,
which can of course be combined with the novel spin-flavoyreddent interaction as it has been done in
section 4.3. This is supplemented by the confinement Diractsire for the offset chosen simply as the identity.
Combined with the instanton-induced 't Hooft interactioa ave called this modé&?. It turns out, that model
D produces results similar to the previous modetor the light-flavoured baryon spectra, which is amazing
since both models have completely different Dirac-stnegufor the slope and offset. Additionally to the
interactions of modeD, we have also introduced the new spin-flavour dependentairtien as discussed in
the previous section 4.2 of this chapter. The correspondisy model has been called modeland was
found to yield results similar to modél Thereby, the octet-coupling in modglvanishes and the remaining
eta-singlet exchange could be interpreted as a short-angef the confinement potential.

The discussion of the results for modelnd€ starts with subsection 4.3.1 in which we have discussed the
model parameters in the same way as it has been done prevoushodel A andC. Subsequent subsections
then contain the discussion of the baryon spectra. ThetsesiimodelD and& turned out to be very similar
to these of modeld andC, respectively. Small differences are found mainly in theleon-spectrum and
partially in theA- andX-spectra. Concerning the electroweak form factors dismligs subsection 4.3.5, we
could not find a similar good description of the electric meatform factor in modek, in contrast to the
excellent result found in modél. This also applies to the axial form factor. In the discussid helicity
amplitudes in subsection 4.3.6, we compared results foteztgm of resonances to these of moddisand
C. In particular modek could not account for thel’, ,-helicity amplitude of theD;3(1520)-resonance, the
calculated amplitude has a wrong overall sign. FurtherpmapglelD and€ cannot account for the minimum in
the Aff/z—helicity amplitude in contrast to model andC. In subsection 4.3.7 we have summarised the photon
decay amplitudes for mod&! and& and concluded with the discussion of th¢1232) <+ N transition form
factors in subsection 4.3.8.
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CHAPTER 4. ALTERNATIVE INTERACTION KERNELS



Chapter 5

Summary and Outlook

The major objective of this thesis was the search for andystiihdditional quark-quark interactions within
the framework of a fully relativistic constituent quark nebdwhich is based on the Bethe-Salpeter equation
in order to reproduce some experimentally observed resasanvhich cannot be accounted for so far. The
guark model was originally formulated for mesons (see Ména Resagt al. [36-45]) and then extended by
Loring et al.[4—7] to describe baryons. In both approaches a phenomenoliggicativated linear confinement
potential and an instanton-induced 't Hooft interactiorswaed to describe the complete light-flavoured meson-
and baryon mass spectra up to masses of 3 GeV (see BIRAr this work, we focus on baryons and their
properties. Although the quark model produced a very satisfy overall description of the light-flavoured
baryons, but it could not account for all of the light-flavedrbaryon masses. In Lorirgf al. [4-7], two
different models, calledd and 3, were introduced, which differ only in their confinement &rstructure.

It was found, that especially some specific excited statéisimvthe mass spectrum of the nucleon- akd
sector are not reproduced by these models. Within the hgpgemoyon sector also some disagreement with
the experimental data was observed. This motivated thelséar additional interactions to be introduced in
the quark model of Loringt al. [4—7] in order to account for the above mentioned disagreemarttsei light-
flavoured baryon spectra. Indeed, two new interactions veened, which are able to improve the description.
The firstansatzis motivated by pseudoscalar flavour exchange between gjudihis leads to a spin-flavour
dependent two-body interaction as discussed in chapteredalso in Ronnigeet al. [31]. The secondinsatz
uses a modified confinement potential in which a differentdkafi Dirac-structure has been introduced by
including spin-spin and tensor interactions. This was fbtmlead to additional terms for the Dirac-structure
in the linear part of the confinement potential. For both apphes, many electroweak observables such as
electromagnetic- and axial form factors as well as heliaityplitudes have been calculated (see Medtn
al. [9, 10] and Ronnigeret al. [32]). We want to emphasise that, no further parameters wereduated for
the calculation of electroweak observables: These werelleabd directly from the Salpeter amplitudes of the
involved resonances, where the model parameters were figgtbpsly by the light-flavoured baryon spectra
as shown by Loring and Ronniget al. [4-7, 31].

Chapter 2 contains a brief recapitulation of the basics@Bbthe-Baryon model; it summarises the proper-
ties and extensions of the quark modelkby. Loring, Merten, Kretzschmar and Haugttal.[4-7,9,10,12-14].
Here, on the basis of the relativistically covariant BeBapeter equation a constituent quark model is formu-
lated, which is numerically tractable. The discussiontstaith the formulation of a six-point Greens-function
from which the Bethe-Salpeter equation can be deduced hvimally allows the calculation of bound-states
within the framework of a quantum field theoretical approadh instantaneouse(g. unretarded) approxi-
mation, the Bethe-Salpeter equation reduces to the sedc8klpeter equation under the additional assump-
tion, that the full quark-propagator can be approximatedlfsee form propagator with a constituent quark
mass assumed to absorb some self-energy effects. Fina#lySalpeter equation can be formulated via a
Hamilton-operator, which then allows the calculation ofyima bound-states and their Salpeter amplitudes
by solving an eigenvalue problem. For completeness, we algeerecapitulated some properties on the pro-
jective structure of the Salpeter equation in this chaptbich are of course important for the understanding
of the baryon model. Based on this, it is possible to caleutdéctroweak properties in the model such as
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the electromagnetic- and axial form factors, helicity atades, photon decay amplitudes, magnetic moments
and charge radii. The methods for the extraction of suchestms within the framework of the Bethe-Baryon
model have been summarised in the last sections of chaptet low the work of Merten, Kretzschmar and
Hauptet al. [9, 10, 12-14]. Thereby, all electroweak properties are based on theilegion of current-matrix
elements.

The existing results of the Bethe-Baryon modehnd3 as originally introduced by Loeringt al.[4—7], on
the baryon spectra are summarised in the subsequent cBapteth models use a linear confinement potential,
but differ in their Dirac-structures. Furthermore, bothdals use the instanton-induced 't Hooft interaction for
the A — N mass-splitting. The models reproduce the light-flavourad/én spectra satisfactorily, but some
states could not be accounted for: Modegives a better description of the spectra than m@idéoth models
cannot reproduce all of the excited baryon states as medtiatready in the introduction. In particular the
RoperN 5+ (1440)-resonance and Roper-lik®; o+ (1600)-, A 2+ (1600)-, X5 9+ (1660)-resonances as well
as the three excited negative parity statgs,- (1900), Az o~ (1940) and Aj,-(1930) cannot be accounted
for in both models. This motivated the introduction of netenactions within the Bethe-Baryon model in order
to find a satisfactory description of these states.

In the first part of chapter 4 (section 4.2), we have introduaenovel spin-flavour dependent interaction
motivated by pseudoscalar meson-exchange with pseudoseald/or pseudovector coupling for the meson-
octet and singlet and discussed the implementation of #wsinteraction within the framework of the Bethe-
Baryon model. Subsequently, we focus on the pseudoscalptezbmeson-exchange only and substituted the
radial dependence of the Yukawa-potential by a Gaussiam-gagye interaction, which eventually was found
to lead to the best results. In combination with the linearfic@ment potential and the instanton-induced 't
Hooft interaction thus a new model has been constructelddcaiodelC. It uses a different confinement Dirac-
structure than that one of moddl The major difference between these Dirac-structurefidd,modelC uses
a simpler two-body interaction instead of a three-bodyrattdon as used in model. Moreover, model’
introduces three additional parameters: the range of thes€tan potential and the octet- and singlet-coupling
for the spin-flavour exchange interaction. Here it is imaottto mention, that the singlet-coupling dominates
the octet-coupling by nearly a factor 18. This suggests riterpretation, of the flavour-independent singlet
exchange as a part of the confinement potential. Furthernvagehave demonstrated, that by introducing
this additional spin-flavour dependent interaction, patived with a Gaussian radial dependence with an
universal range and two couplings for flavour-octet and fiaginglet exchange, it is possible to improve the
baryonic excitation spectra, electroweak form factors laglitity amplitudes simultaneously (see Ronniger
al.[31,32]Y). The results for model are very similar to the predictions of the Graz groRp{30]. Although the
overall agreement of calculated and experimental heldztya in both versiongl andC of the relativistic quark
models are of similar quality, the new modehpart from accounting better for the baryon mass spectram al
does improve on specific other observables, in particulahergroundstate form factors. The improvements
can also be found in Ronniget al.[31, 32] and include:

e A better description of the position of the excited negafragity states slightly belov2 GeV in the
A-spectrum: The, /o (1900)-, Ag /o~ (1940)- andA; /,- (1930)-resonances;

e A better description of the position of the first scalar, cadar excitation of the groundstate in all light-
flavour sectors: The\, /5+(1750)-, Asz/+(1600)-, Ny o+(1440)-, Nyj9-(1535)-, Ay 9+ (1600)- and
Y1 /9+(1660)-resonances;

e Animproved description of the momentum dependence of releagnetic form factors of groundstates
without the introduction of any additional parameters. é{én particular the description of the electric
neutron form factor has been improved in ma@eT he result are in agreement with the predictions from
Plessat al.[30] for the Goldstone-Boson exchange model (GBE);

In case of the helicity amplitudes the calculated resulieeHzeen compared to experimental data as far as
available for resonances with a three or four star ratingmalicg to the PDG §]. The experimental data

!Note, that the results withirs[l] are slightly different to the results discussed in chagtesince an improved parameter set has
been found for mode?, as already mentioned i8%).
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include the couplings at the photon point from PC8bdnd [17] as well as recent determinations of transverse
and longitudinal amplitudes as reported by Aznaurys®-20, 49] and in the MAID-analysis 114, 125, see
also |7]. The results for the helicity amplitudes of nucleon resaes (see also Ronniget al.[32]) can be
summarised as follows:

o A satisfactory description of data for ti$g; (1535)-, P11(1440)-, D;13(1520)- andF5(1680)-resonances
was found. Exceptions are: A node in the transvePsg1440)-amplitude as found experimentally
was not reproduced by the calculations; we also do not findbbserved minimum in the longitudi-
nal S11(1535)-amplitude and the calculations underestimate the trasev8;(1650) as well as the
longitudinal F5(1680)-amplitude for low momentum transfers. Also the amplitudéthe D;3(1520)-
resonances are slightly too small in modelFurthermore, predictions of helicity amplitudes are give
for higher excited resonances for both models. Some of tivese recently found bylb-17], e.qg. for
the Ny /o+ (1880)- and Ny /o (1895)-resonance;

e There exists agreement with the scarce data fo6n€l620)-helicity amplitude if we disregard two data
points for the longitudinal amplitude. There is an indioatfor a sign disagreement between the data of
Aznauryaret al.[19] and that for the MAID-analysisl[14, 125 or alternatively a node in the amplitude
exists, which is not reproduced by both models in this case;

e The P33(1232)-helicity amplitudes are generally too small in magnitudéoth models, slightly more
so in modelC. For the longitudinal amplitude in particular we find a maxmmin the theoretical curves
for which there exists no experimental evidence;

e Predictions of the negative parity excitesl(1900, 1940, 1930)-helicity amplitudes can be made in
modelC. The position of these states could not be reproduced in figgnal model 4 and was the
main motivation to supplement the dynamics of the model bywdditional short-ranged spin-flavour
dependent interaction. It is rewarding, that the calcdlgieoton decay amplitudes agree reasonably well
with the PDG-data§] for these three resonances.

Some discrepancies remain, both in madels well as in modeM.:

e The description of theV; ,+ (1680)- and A3/, (1520)-resonance, which is predicted slightly too high
by modelC and thus cannot accounted for with the same accuracy as ielmodFurthermore, both
models cannot account for the position of tg,- (1580)-resonance;

e The description of the\, ,- (1405)-resonance, where the mass value of the groundstate of rdodel
agrees approximately with the, - (1670)-resonance, which supports the statement, that the
A, /2~ (1405)-state cannot be described as a three-quark system. Thecharaeteristics are less distinc-
tive within model.A, which calculates the resonance approximately 100 MeV igl. Hn our opinion,
this underlines the conclusion, that the/,- (1405)-resonance, which is close to t#eN-threshold, is
largely dominated by meson-baryon molecule componentimgated bye.g. Jido, Oset, Meil3ner and
Hyodoet al.[57-59] in a chiral unitary approach;

e The low rated; /»+(1770)-resonance cannot be reproduced within madfjéh contrast to modeA;

e Static properties are slightly better reproduced in motleThis also applies to electroweak form factors
in the vicinity of the photon point.

It must be conceded, that the additional spin-flavour depeithteraction was introduced in mod&purely
phenomenologically and required a drastic modificationhef parametrisation of confinement and the other
flavour dependent interaction of the original modglwhich had a form as inferred from instanton effects. In
spite of this, with only 10 parameters in total we still catesithe new modef to be an effective description of
the multitude of resonances found for baryons made out lof figvoured quarks. Moreover, we have classified
some resonance in the PD@ pased on their masses in modgle.g. the =(1690)-resonance as & = 1+

2
Roper-like excitation. In case of the helicity amplitudes presented predictions for helicity amplitudes of
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some lower rated resonances, suchPag1750)- and Ds3(1940)-resonance as well as predictions to some
photon decay amplitudes analysed by the CB-ELSA collalmrat al.[17]. The corresponding photon decay
amplitude data from the CB-ELSA collaboration are presemtostly included in the new PDG-datg][and
generally well described by model andC. For the magnetic form factor of th&(1232) «<» N transition
we have found that both models cannot accurately accouthdodata. Furthermore, for the electric transition
form factor modelA even produces a wrong sign compared to the MAID-data. Theentum dependence
of the Coulomb transition form factor is well described bydakC, but not by modeld, which yields almost
vanishing values in this case.

In the second part of chapter 4 (section 4.3) a new versiothéobDirac-structure of the linear confinement
potential with additional spin-spin and tensor contribo§ was introduced and discussed. This procedure in-
troduces no additional parameters. The modified confinesterdture enters as a two-body interaction and can
be combined with the previous introduced spin-flavour ddpahshort-range interaction. The corresponding
models are called modé&! and€&, where modef includes additionally the spin-flavour dependent shangea
interaction. Here, in modef the strength of the octet-coupling practically vanishekjclv means, that the
flavour independent eta-singlet part can be interpretedpast@f the confinement potential. Thus, in moéel
there is no additional flavour dependent part. The predistf modelD, which includes the confinement and
the instanton-induced 't Hooft force, are very similar togh of modeld, although the latter uses a completely
different confinement Dirac-structure. This feature is aimg because the choice of the Dirac-structure in
general has a very strong influence on the baryon spectraoniivioation with the (spin-)flavour dependent
short-range interaction, the description of the lightdlared baryon spectra is slightly improved in moéel
if compared to model. It can be observed, that the modélsand & are very similar in their predictions to
modelsA andC, respectively. Thus, most of the conclusions for madelndC also hold for modeD andé&,
respectively. Nevertheless, there are some exceptions:

e Model &, compared with modef, accounts slightly better for th&, ,,- (1535)- and N5 5+ (1680)-
resonances;

e Model D cannot account for thév, ,- (1535)-resonance, which is predicted too low by roughly 160

MeV. Otherwise this induces a likewise very low lyid§ = {-resonance in tha-baryon sector close
to Ay /o~ (1405)-resonance in opposite to the other modé|s3, C and&, which cannot reproduced the

A, /5 (1405)-resonance;

e The electric neutron form factor is underestimated in madey nearly a factor two, whereas model
can account for it accurately;

e The axial form factor of the nucleon for modelis much too small, in contrast to the prediction of model
A, which reproduces the axial form factor satisfactorily;

e In case of modef, the A? ,_-helicity amplitude of theD;3(1520)-resonance has a wrong overall sign.

3/2
For theAIf/Q—ampIitude, modeD and& cannot account for the minima within the data.

Model D in general does not improve the predictions of madel Although, model€ improves the baryon
spectra slightly compared with the corresponding madddiut it cannot reproduce the electroweak properties
and helicity amplitudes with the same quality. In conclasiwe prefer modef, which leads to the best results
for the baryon spectra and electroweak observables. Thkges the mass spectrum of modatould also be
used to make some assignments of hyperon-resonances asmadiin chapter 4. Here,g.we have classified
=(1690)-resonance as d" = %Jr Roper-like excitation based on its mass in modehot assigned in the
PDG [8] so far. Moreover, thé)(2250)-resonance should have a positive parity.

Previous extensions of the Bethe-Baryon model (vergipnwhich have not been mentioned in this thesis
so far, were calculations of charmed-flavoured baryonsijleptanic- and strong two-body decays. The results
have been published by Miguet al. [33, 34, 137] and Metsch 13§. With respect to the novel modely
D and &, the calculation of these observables still remain to beeddaut should in principle be feasible.
Moreover, an extension to bottom-flavoured baryons shoaldlso possible for the model, C, D and&



99

and it seems rewarding to repeat the calculation of heavpidled baryons with these versions of the model.
Since the dynamics of modé&? is very similar to that of modeM, the calculations for modeD should be
straightforward. However, in the case of modehlnd &, it could be necessary to extend the spin-flavour
dependent interaction to the heavy-flavoured baryon settis ansatzcan be indeed motivated by a heavy-
flavoured meson-exchange similar to thesatzmade for modelC and £ within the light-flavoured baryon
sector. Possibly, this extension introduces additionehmaters in the spin-flavour dependent interaction on
the heavy-baryon sector. Without introducing any addélgrarameters and other interactions, it is possible to
recalculate most of the semileptonic- and strong-two-badegays in the framework of the novel modélsD
and&. These calculations still remain to be done.

Constituent quark models played a major role in the clasgifin of the hadronic excitation spectrum. It
is expected, that in the future lattice QCD will play a moregportant role in this respect. Compared with
the underlying Bethe-Baryon model, which (although basedhe relativistically covariant Bethe-Salpeter
equation in view of its simplifying assumptions) still is adel, lattice QCD is a humerical simulation of QCD
itself. In praxis lattice QCD is extremely expensive in caripg power compared to quark models like the
Bethe-Baryon model, which are very economical in their Ussomputational resources. The recent program
of lattice QCD includes in particular a description of matstas in the hadron spectrum, which are extracted
from the numerical calculation of two-point correlatiométions. The present model calculations give hints
to states, which cannot be describedgdsstates. Such resonances are for instanceAthe- (1405)- and
¥3/2- (1580)-resonances, which are not accounted for by the Bethe-Bangulel. Therefore, it could be very
interesting to investigate, whether such states can beuatax for in lattice QCD. Noteg.g. that the nature
of the A, /- (1405)-resonance is an open field of research within lattice QCBesg Takahashi, Huey-Wen
and Edward®t al.[2,3,139. As it stands, the Bethe-Baryon model gives a very satigfgadescription for
light-flavoured baryon excitations and allows the idersifien of exotic states. As such it could support future
investigations in lattice QCD.
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Appendix A

The one-meson-exchange contribution to the
interaction between two spini-fermions

The one-meson-exchange can be derived by a standard dipplioh the Feynman rules from the underly-
ing Lagrangians given in section 4.2 by Egs. (4.1) and (4R)llowing Caiaet al. [60], the corresponding
interaction Hamiltonians are given by

fH(PS) E(PS) (Al)

and

1P = o) (7P Y%) (977 0) (A.2)

via Legendre transformation for pseudoscalar- and pseaatorvcoupling, respectively. According to Fig. 4.1,
the second-order scattering-matrix elemart?) can be written in the CM-system for pseudoscalar and pseu-
dovector coupled mesons as

M2 (ko k) = Zgz[w<p’><—w5ww<p>D“bufo,k>w<—p'><—iw5>w<—p>
— _ZgQDabk k )\a 5] [)\b'}’5]
= [w( p') @ (') Vips) (ko, k) [ (—p) @ (p)] (A.3)
and
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= X [Dab(ko’k) kuk [N 1H] @ [X9°97] = 51w [X9°1°] @ [A"w%oﬂ

= 1[(=p') @ Y()]Vipw) (ko. k) [(~P) ® ¥(p)]. (A.4)

respectively. Here, calculating the corresponding imtitsa Hamiltonian (see Eq. (A.2) and Eqg. (A6) in ap-
pendix A of Caiaet al.[60], for further information), a contact term within the psewudctor coupled scattering-
matrix element in Eq. (A.4) appears by applying the Leget@dmsformation. This is not the case for the pseu-
doscalar coupled interaction. The potentials are definethe second-order matrix elemewt(2) by isolating
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the quark fields) and+). Here, the meson propagator is given by

i6ab

D®(ko, k) =
kg — k|2 —

(A.5)

wherek,, := pL — py indicates the momentum transfer. Since the Salpeter equdéals only with instanta-
neous interactions, the meson propagator must be indepeod&,. This is achieved by putting, = 0.

A.1 The instantaneous approximation

In instantaneous approximation the 0-th componerit igfset to zeroky, = 0. From Egs. (A.3) and (A.4) the
corresponding potentials in momentum space can be exdraste

1
V(;Qs))(k) =Y g\ e KE+ 2 [V’ ©4°] (A.6)

for pseudoscalar coupling and as

2

(2) _ Ya ya a —1 5 5 L 5.0 5.0
Vipw (k) = ;4m2[A ®M[w[(7’7-k)®hv-k)]—§vv ®vv}

2 —-k2 N R 1
- Z 4?722 A" ® A\ {_’kPUM? (Vv k) ® (v"v k)] - 57570 2 7570} (A7)

a

for pseudovector coupling, respectively, whére= ‘—; is the direction ofk. In principle, both potentials
can be Fourier transformed into coordinate space. Thististniotly necessary, since they can be calculated
directly in momentum space in the Bethe-Baryon model. Madeased on Eqgs. (A.6) or (A.7) have been
tested, but were shown to be inadequate to explain the bayectra. We therefore pursued the following
phenomenological approach: A Fourier transformation effiseudoscalar coupled model leads to a Yukawa

potential in coordinate space

o)

D)= T2 ex] il [Pey]. (A.8)

4r|r

We ad hocreplace the radial dependence of the Yukawa potential byus$an function and thus obtain for
the spin-flavour dependent interaction the form

|r|?

()~ VEE) =, @ eer]—Lre ¥ [P97]. (A9)

3
3 3
A w2

(2)
V(m)

The model, with the additional interaction according to E£g9), will be called modelC and is discussed in
section 4.2. Furthermore, this spin-flavour dependentanti®mn has been also used in combination with a
modified confinement potential (modg) as discussed in section 4.3.

In case of pseudovector-coupling, potential (A.7) can benfdated in coordinate space as found in the
publications of Lévy and Bruecknet al. [61, 62]. Moreover, the Graz grou2pP-30] uses a similar pseu-
dovector potential in the Goldstone-Boson exchange mbdéeheglect the spin-spin and tensor contributions.
As already mentioned: In Bethe-Baryon model, we do not foarghtisfactory description on the basis of
potential (A.7) for the light-flavoured baryon spectra.

A.2 Flavour-matrix elements

The meson-exchange is a two-body interaction and the quneng meson-exchange flavour-operators are
ST A1) @ A%(2), A3(1) ® A3(2) and 27 _, A%(1) ® A%(2) representing a pion-, eta-octet- and kaon-like
exchange. Here)*, a = 1,..,8 denote the generators of ti##/x(3) flavour-group. The flavour-matrix
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elements to the operators can be evaluated witlCtmmiroperators and the generators of @artan algebra

According to de Swartl4Q they are defined by

and

and

which leads to corresponding flavour-operators of the meschange

Pion: i)\“(l) ®A\4(2) =2 (I*(12) — I*(1) — I*(2)) ,
Eta-octet: ;;(11) 2 A¥(2) (M2(12) — M?(1) - M*(2)) ,
Kaon: iv( ® A2 Z)\“ ) @ A%(2
Eta-singlet: ;;(41) ®X(2) =211

with

and the definitions

I(12) :==1(1) ® 1(2) + 1(1) ® I(2),
M(12) =M (1) ® 1(2) + 1(1) ® M(2),
C(12) :=C(1) @ 1(2) + 1(1) ® C(2).

Note, that\, for the eta-singlet exchange is normalised fai,) = 2.

3
=1 A

a=1

»hl»—t

,_1
M :=1)g,

(A.10)

(A.11)

(A.12a)
(A.12b)
(A.12c)

(A.12d)

(A.13)

(A.14a)
(A.14b)
(A.14c)

Fig. A.2: Summary of the flavour-matrix elements
Eq. (A.15) for states in Fig. A.1 and .

exchange 6 3
Is: 1 % 0 0 %
T 1 0 o0 |3 O
1 2 4 1 2
octet | ms |5 -5 5 |3 3
K 0 2 0 0o -2
i 2 2 2 2 1
Fig. A.1: The schematic representation of the decom- singlet n 3 3 3 3 6

position 0of3 ® 3 according to Eq. (A.16).

Let A(12) be a two-particle operator acting on the (12)-quark-paithefthree-quark state, which stands
for one of the three meson-exchange flavour-operatorsndiyeEgs. (A.12a), (A.12b), (A.12c) and (A.12d).

Then, the corresponding flavour-matrix elements are giyen b

<[f{fﬂ”2’sf2

AG2)| [R5

Here, f;, f/ andi = 1,
andsSy,.

(A.15)

2,3 label the flavour contentu, d, s) of the coupled states with quantum numbgrs
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The product of two fundamental triplet representationodgmoses into a sextet and anti-triplet
33=603, (A.16)

see Fig. A.1. In140, the SUr(3) irreducible representations are denoted/ly, ¢). For the simplest irreps
we have3 £ D(1,0), 3 L D(0,1) and6 L D(2,0). The eigenvalue for the Casimir operatof’ on a state of
the representatio®(p, ¢) is then given by

c=(5(+pa+d*)+p+aq). (A.17)
If ¢, is the highest-weight state, the generators of the Cartggbed have eigenvalues
Isén =3(p + @)én and Moy =75 (P —0) bn.- (A.182)

The flavour-matrix elements can be calculated for the sextétanti-triplet representations separately starting
from the highest-weight state of the corresponding reptatien via ladder-operators, which are defined in de
Swart [L40]. This leads to the flavour-matrix elements summarised m Aa2.



Bibliography

[1] H. Leutwyler, Ann. Phys235 165 (1994).
[2] R. G. Edwards, J. J. Dudek, D. G. Richards, S.J. Walldc&BITHY-1370, (2011) [arXiv:1104.5152v1].
[3] Huey-Wen Lin, NT@UW-11-09, (2011) [arXiv:1106.160gv1

[4] U. Loring, K. Kretzschmar, B. C. Metsch, H. R. Petry, Efhys. J.A10, 309 (2001) [arXiv:hep-
ph/0103287].

[5] U. Loring, B. C. Metsch, H. R. Petry, Eur. Phys AlLO, 395 (2001) [arXiv:hep-ph/0103289].
[6] U. Loring, B. C. Metsch, H. R. Petry, Eur. PhysAlLQ, 447 (2001) [arXiv:hep-ph/0103290].

[7] U. Loring, 'A Covariant Quark Model Baryons with Instanton-Inducedcés’, PhD thesis TK 01-02,
(2001).

[8] J. Beringeret al. (Particle Data Group), Phys. Rev.88, 010001 (2012).

[9] D. Merten, U. Loring, K. Kretzschmar, B. C. Metsch, H. Retry, Eur. Phys. JA14, 477 (2002)
[arXiv:hep-ph/0204024].

[10] D. Merten,’'Hadron Form factors and Decay#hD thesis TK 02-03, (2002).

[11] T. van Cauteren, D. Merten, T. Corthals, S. Janssen,.BA€isch, H. R. Petry, Eur. Phys. J.20, 283
(2004) [arXiv:nucl-th/0310058].

[12] K. Kretzschmar, Electroweak Form Factors in a Covariant Quark Model of Bang’ PhD thesis TK
01-01, (2001).

[13] C. Haupt, B. C. Metsch, H. R. Petry, Eur. Phys. 2& 213 (2006) [arXiv:hep-ph/0602151].

[14] C. Haupt, Electromagnetic Properties of Baryon$?hD thesis, (2006).

[15] A. V. Anisovich, E. Klempt, V. A. Nikonov, A. V. Sarantgseand U. Thoma, Eur. Phys. J.4v, 27 (2011).
[16] A. V. Anisovich, V. A. Nikonov, A. V. Sarantsev, U. Thonaad E. Klempt, Eur. Phys. J. &7, 27 (2011).

[17] A. V. Anisovich, R. Beck, E. Klempt, V. A. Nikonov, A. V. &antsev and U. Thoma, Eur. Phys. J4&
15 (2012).

[18] I. G. Aznauryan, V. D. Burkert, H. Egiyan, K. Joo, R. Mheat, and L. C. Smith, Phys. Rev.1d, 015201
(2005).

[19] I. G. Aznauryan, V. D. Burkert, G. V. Fedotov, B. S. Islakiov, and V. |. Mokeev, Phys. Rev. /2, 045201
(2005).

[20] I. G. Aznauryan and V. D. Burkert, Phys. Rev8GQ, 055203 (2009).
[21] V. Burkert,Reserach Program at CEBAF, kkdited by V. Burkert et al., CEBAF (USA), 161 (1986).

105



106 BIBLIOGRAPHY

[22] L. Y. Glozman, D. O. Riska, Phys. Rep68 263 (1996).

[23] L. Ya. Glozman, Z. Papp, W. Plessas, K. Varga and R. F.aiWagunn, Nucl. Phys. 23 90 (1997).
[24] L. Ya. Glozman, Z. Papp, W. Plessas, K. Varga and R. F.aibgunn, Phys. Rev. &7, 3406 (1998).
[25] L. Ya. Glozman, W. Plessas, K. Varga and R. F. Wagenhrbthys. Rev. (58, 094030 (1998).

[26] L. Theufl, R. F. Wagenbrunn, B. Desplanques and W. Béegur. Phys. J. A2, 91 (2001).

[27] K. Glantschnig, R. Kainhofer, W. Plessas , B. Sengl anB.RVagenbrunn, Eur. Phys. J28, 507 (2005).
[28] T. Melde, K. Berger, L. Canton, W. Plessas and R. F. Wagem Phys. Rev. 06, 074020 (2007).
[29] T. Melde, W. Plessas, and B. Sengl, Phys. Re¥.7D114002 (2008).

[30] W. Plessas and T. Melde, AIP Conf. Pra©56 15 (2008).

[31] M. Ronniger, B. C. Metsch, Eur. Phys. J4&, 162 (2011).

[32] M. Ronniger, B. C. Metsch, Eur. Phys. J4A8, 8 (2013).

[33] S. Migura, D. Merten, B. Metsch and H. R. Petry, Eur. RRysA 28, 55 (2006).

[34] S. Migura, 'Weak and Strong Baryon Decays in a Constituent Quark ModiD thesis TH 06-17,
(2006).

[35] D. Lurie, Particles and Fields, Interscenic Publishers, New York (1968).

[36] C. R. Minz, J. Resag, B. C. Metsch, H. R. Petry, Nucl. 2A/578 418 (1994).

[37] J. Resag, C. R. Minz, B. C. Metsch, H. R. Petry, Nucl. 24578 397 (1994).

[38] E. Klempt, B. C. Metsch, C. R. Miinz and H. R. Petry, PHyett. B 361, 160 (1995).
[39] C. R. Minz, J. Resag, B. C. Metsch and H. R. Petry, Phgs. 52, 2110 (1995).
[40] C. R. Munz, Nucl. Phys. A09, 364 (1996).

[41] Ch. Ritter, B. C. Metsch, C. R. Miinz and H. R. Petry, Phyett. B 380, 431 (1996).
[42] V. Keiner, Phys. Rev. G4, 3232 (1996).

[43] V. Keiner, Z. Phys. A354, 87 (1996).

[44] M. Koll, R. Ricken, D. Merten, B. C. Metsch, H. R. PetryyEPhys. J. 29, 73 (2000).
[45] R. Ricken, M. Koll, D. Merten, B. C. Metsch, H. R. PetryyEPhys. J. 29, 221 (2000).
[46] S.J. Wallace, V. B. Mandelzweig, Nucl. Phys583 673 (1989).

[47] L. Tiator, D. Drechsel, S. S. Kamalov and M. VanderhasghEur. Phys. J. Special Topié98 141
(2011).

[48] M. Warnset al,, Z. Phys. C45, 627 (1990).
[49] I. G. Aznauryana and V. D. Burkert, Prog. Part. Nucl. Hy7, 1 (2012).

[50] W. W. Ash, K. Berkelman, C. A. Lichtenstein, A. Ramanasland R. H. Siemann Phys. Lett2B, 165
(1967).

[51] J. Carlson, J. B. Kogut, V. R. Pandhariapande, Phys. B&7, 233 (1983).



BIBLIOGRAPHY

[52] J. Carlson, J. B. Kogut, V. R. Pandhariapande, Phys. B@8, 2807 (1983).
[53] G. 't Hooft, Phys. Rev. 14, 3432 (1976), Erratum: ibid. D18, 2199 (1978).
[54] M. A. .Shifman, A. I. Vainshtein, V. |. Zakharov, Nuclhys. B163 46 (1980).

[55] T. Murota, Progr. Theor. Phy&9, 181 (1994).

[56] K. Nakamureet al. (Particle Data Group), J. Phys.33, 075021 (2010).

[57] D. Jido, J. A. Oller, E. Oset, A. Ramos, U. G. Meil3ner, N&ahys. A725 181 (2003).
[58] T. Hyodo, D. Jido and L. Roca, Phys. Rev7p, 056010 (2008).

[59] T. Hyodo, D. Jido and A. Hosaka, Phys. Rev7& 025203 (2008).

107

[60] G. Caia,J. W. Durso, C. Elster, J. Haidenbauer, A. &birand J. Speth, Phys. Rev66; 044006 (2002).

[61] M. M. Lévy, Phys. Rev88, 725 (1952).

[62] K. A. Brueckner and K. M. Watson, Phys. R&2, 1023 (1953).

[63] I. Hornet al, Eur. Phys. J. /38, 173 (2008).
[64] M. E. Christyet al, Phys. Rev. 70, 015206 (2004).

[65] I. A. Qattanet al,, Phys. Rev. Lett94, 142301 (2005).
[66] P. Mergell, U. G. Mei3ner and D. Drechsel, Nucl. PhyS%6 367 (1996).

[67] T. Edenet al, Phys. Rev. G0, 1749 (1994).

[68] C. Herberget al, Eur. Phys. J. 4, 131 (1999).

[69] M. Ostricket al, Phys. Rev. Lett83, 276 (1999).
[70] I. Passchieet al., Phys. Rev. Lett82, 4988 (1999).
[71] D. Roheet al,, Phys. Rev. Lett83, 21 (1999).

[72] R. Schiavillaet al., Phys. Rev. (&4, 041002 (2001).
[73] J. Golaket al, Phys. Rev. B3, 034006 (2001).
[74] H. Zhuet al, Phys. Rev. Lett87, 081801 (2001).
[75] R. Madeyet al,, Phys. Rev. Lett91, 122002 (2003).
[76] G. Warrenet al, Phys. Rev. Lett92, 042301 (2004).
[77] D.I. Glazieret al, Eur. Phys. J. 24, 101 (2005).
[78] R. Alarconet al, Eur. Phys. J. A1, 588 (2007).

[79] A. Bodek, S. Avvakumov, R. Bradford, and H. Budd, J. Pigsnf. Ser110, 082004 (2008).
[80] V. Bernard, L. Elouadrhiri, and U. G. Meil3ner, J. Phy2& 1 (2002).

[81] H. Anklin et al,, Phys. Lett. B428 248 (1998).
[82] W. Xu et al, Phys. Rev. Lett85, 2900 (2000).
[83] G. Kubonet al, Phys. Lett. B524, 26 (2002).



108 BIBLIOGRAPHY

[84] M. Vanderhaeghen, Nucl. Phys. 755 269 (2005).
[85] B. D. Milbrathet al,, Phys. Rev. Lett30, 452 (1998).
[86] M. K. Joneset al,, Phys. Rev. Leti84, 1398 (2000).
[87] O. Gayouet al, Phys. Rev. B4, 038202 (2001).

[88] T. Pospischikt al, Eur. Phys. J. A2, 125 (2001).
[89] O. Gayouet al,, Phys. Rev. Lett88, 092301 (2002).
[90] V. Punjabiet al,, Phys. Rev. (71, 055202 (2005).

[91] B. Huet al, Phys. Rev. 3, 064004 (2006).

[92] C. B. Crawfordet al., Phys. Rev. Lett98, 052301 (2007).
[93] D. W. Higinbotham, AIP Conf. Prod257, 637 (2010).
[94] G. Ronetal, arXiv:1103.5784v1 [nucl-ex] (2011).
[95] X. Zhanetal, JLAB-PHY-11-1311, 5 (2011).

[96] L. E. Priceet al,, Phys. Rev. D4, (1971).

[97] T. Bartelet al,, Nucl. Phys. B58, 469 (1973).

[98] C. Berger, V. Burkert , G. Knop , B. Langenbeck and K. RRys. Lett. B35, 1 (1971).
[99] R. C. Walkeret al.,, Phys. Rev. 19, (1994).

[100] L. Andivahiset al, Phys. Rev. 50, (1994).

[101] E. Amaldiet al, Phys. Lett. B41, 216 (1972).

[102] P. Brauekt al, Phys. Lett. B45, 389 (1973).

[103] E. D. Bloomet al.,, Phys. Rev. Lett30, 1186 (1973).
[104] A. Del Guerreaet al,, Nucl. Phys. B99, 253 (1975).
[105] P. Joost al, Phys. Lett. B62, 230 (1976).

[106] N.J. Bakert al, Phys. Rev. 23, 2499 (1981).
[107] K. L. Miller et al, Phys. Rev. 26, 537 (1982).

[108] T. Kitagakiet al, Phys. Rev. [28, 436 (1983).

[109] T. Kitagakiet al,, Phys. Rev. D42, 1331 (1990).
[110] D. Allasiaet al.,, Nucl. Phys. B343 285 (1990).

[111] L. Y. Glozman, M. Radici, R. F. Wagenbrunn, S. Boffi, Wirkk, W. Plessas, Phys. Lett. B16 183
(2001).

[112] R. F. Wagenbrunn, S. Boffi, L. Y. Glozman, W. Klink, W.eBkas and M. Radici, AIP Conf. Pr&03
319 (2001).

[113] R.F. Wagenbrunn, S. Boffi, L. Y. Glozman, W. Klink, WeBkas, and M. Radici, Eur. Phys. J18 155
(2003).



BIBLIOGRAPHY 109

[114] D. Drechsel, S. S. Kamalov, and L. Tiator, Eur. Phy# 34, 69 (2007).
[115] P. Kummett al, Phys. Rev. Lett30, 873 (1973).

[116] U. Becket al, Phys. Lett. B51, 103 (1974).

[117] J. Alderet al., Nucl. Phys. B91, 386 (1975).

[118] H. Breukeret al, Phys. Lett. B74, 409 (1978).

[119] F. W. Brassest al,, Nucl. Phys. B139 37 (1978).

[120] M. Benmerrouchet al, Phys. Rev. Lett67, 1070 (1991).

[121] B. Kruscheet al,, Phys. Rev. Lett74,3736 (1995) .

[122] C. S. Armstronget al,, Phys. Rev. D60, 052004 (1999).

[123] R. Thompsoret al,, Phys. Rev. Lett86, 1702 (2001).

[124] B. D. Keister and S. Capstick, N* PHYSICS, edited byST.H. Lee and W. Roberts, 341 World Scien-
tific, Singapore (1997).

[125] L. Tiator, D. Drechsel, S. S. Kamalov, M. Vanderhaegh€hinese Phys. G3, 1069 (2009).
[126] S. Capstick and B. D. Keister, Phys. RevoD) 3598 (1995).

[127] C. Gerhardt, Z. Phys. @ 311 (1980).

[128] J. Ahrenset al,, Phys. Rev. Lett88, 232002 (2002).

[129] N. Awaji et al. DPNU-29-81, 11 (1981).

[130] G. Penner and U. Mosel, Phys. Rew6€; 055212 (2002).

[131] I. M. Barbour, R. L. Crawford and N. H. Parsons, NuclyBhB 141, 253 (1978).
[132] R. C. E. Devenish D. H. Lyth and W. A. Rankin, Phys. LBt62, 227 (1974).
[133] S. Steiret al, Phys. Rev. DL2, 1884 (1975).

[134] F. Foster and G. Hughes, Rep. Prog. PHgs1445 (1983).

[135] V. V. Frolovet al, Phys. Rev. Lett82, 45 (1999).

[136] A. N. Villano et al,, Phys. Rev. B0, 035203 (2009).

[137] S. Migura, D. Merten, B. Metsch and H. R. Petry, Eur. £hly A28, 41 (2006).
[138] B. C. Metsch, Eur. Phys. J. 35, 275 (2008).

[139] T.T. Takahashi and M. Oka, Prog. Theor. Phys. Sulf, 172 (2010).

[140] J. J. de Swart, Rev. Mod. Phyab, 916 (1963).






Danksagung

An erster Stelle mochte ich Herrn Priv. Doz. Dr. Bernard.Qdetsch meinen Dank fur die sehr
intensive und freundliche Betreung wahrend meiner gesarbktorarbeit aussprechen. Ohne die
vielen und tiefgehenden Diskussionen mit Herrn Metschevetiese Arbeit nicht wie vorliegend zu-
stande gekommen. Desweiteren mochte ich mich bei Inmd8riatensive Korrekturlesen und die
zahllosen Verbesserungsvorschlage meines Manuskepiantken. Fur di€lbernahme des Korefer-
ats danke ich sehr herzlich Carsten Urbach. Desweiterekedeln auch den anderen Mitgliedern der
Prufungskommision fur lhre Zeit und Engagement.

Besonderen Dank gilt hier ebenfalls Simon Tolle fur dasnsive Korrekturlesen meiner Arbeit sowie
fur seine Hilfe bei der Optmierung des benutzten Bether@arProgramms, durch die sich letz-
tendlich die Arbeit erheblich vereinfachte und beschlgtemiDesweiteren danke ich auch Christoph
Ditsche sowie Philipp Hagen fur die vielen anregenden sslonen.

Ebenso mochte ich mich bei meinen Kolleginnen und KollegienHelmholtz-Institut fur Strahlen-
und Kernphysik fur die freundschaftliche und familiarevsphare bedanken, die zu einer Vielzahl
von wissenschatftlichen Diskussionen beitrug.

Schlie3lich mochte ich meiner ganzen Familie fur Ihre iemwihrende Unterstiitzung danken, die
Sie mir gerade im Rahmen meiner Dissertation zukommennieBaruber hinaus mochte ich Julia
Snoei sehr herzlich danken, die mir als Freund immer zueSésind.

111



	Introduction
	The Bethe-Salpeter model for three fermions
	Introduction
	The six-point Green's function
	The Bethe-Salpeter equation and its normalisation condition
	Reduction to the instantaneous Salpeter equation
	The free quark propagator approximation
	The instantaneous approximation
	The Salpeter equation
	The projective structure of the Salpeter equation
	The Hamiltonian formulation of the Salpeter equation
	The normalisation condition of the Salpeter amplitudes

	Current-matrix elements
	Electroweak form factors and charge radii of non-strange baryons 
	Helicity amplitudes and N transition form factors
	Summary

	Results of previous calculations 
	Introduction
	The confinement potential
	The instanton-induced interaction
	The one-gluon exchange
	Baryon spectra
	Scale dependence
	Model parameters
	- and -spectra
	N-spectrum
	Hyperon-spectra

	Electroweak observables
	Summary

	Alternative interaction kernels
	Introduction
	The spin-flavour dependent interaction
	Model parameters
	- and -spectrum
	N-spectrum
	Hyperon-spectra
	Electroweak form factors of the nucleon
	Helicity amplitudes
	Photon couplings
	(1232)N transition form factors

	A modified confinement potential
	Model parameters
	- and -spectrum
	N-spectrum
	Hyperon-spectra
	Electroweak form factors of the nucleon
	Some helicity amplitudes
	Photon couplings
	(1232)N transition form factors

	Summary

	Summary and Outlook
	One-meson-exchange
	The instantaneous approximation
	Flavour-matrix elements

	Danksagung

