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Zusammenfassung

Die vorliegende Arbeit gliedert sich in zwei Teile, denen jeweils ein Kapitel
gewidmet ist. Im ersten Teil werden Stabilitätsbedingungen auf kompakten
komplexen Mannigfaltigkeiten, die keine nichttrivialen komplex-analytischen
Untervarietäten besitzen, konstruiert und klassifiziert.
Im zweiten Abschnitt des ersten Kapitels wird gezeigt, dass der Raum der Sta-
bilitätsbedingungen Stab(X) für K3-Flächen mit Pic(X) = 0 zusammenhängend
und einfach zusammenhängend ist, und dass die Abbildung π : Stab(X) −→
π(Stab(X)), die jeder Stabilitätsbedingung ihre zentrale Ladung zuordnet, eine
universelle Überlagerung ist. Mit Hilfe der Gruppenwirkungen von Aut(Db(X))
und G̃L+(2,R), der universellen Überlagerung von GL+(2,R), auf Stab(X)
gelingt es, eine vollständige (explizite) Beschreibung aller Stabilitätsbedingungen
auf X anzugeben. Die Kenntnis der Struktur von Stab(X) gestattet es, die
Gruppe Aut(Db(X)) der Autoäquivalenzen vom Fourier–Mukai Typ zu bes-
timmen. Diese Gruppe zerfällt in die direkte Summe von Aut(X) und einer
freien abelschen Gruppe vom Rank zwei, die durch den Shift-Funktor und den
sphärischen Twist(-Funktor) zur Strukturgarbe OX erzeugt wird. Der letzte
Teil des zweiten Abschnittes beschäftigt sich mit einer Erweiterung der Defi-
nition einer Stabilitätsbedingung, die den Raum der Stabilitätsbedingungen zu
dem komplexifizierten Kählerkegel in Bezug zu setzt.
Dem dritten Abschnitt des ersten Kapitels liegen generische komplexe Tori
der Dimension d mit der Eigenschaft chk(F ) = 0 für alle coherenten Gar-
ben F und alle 0 < k < d zu Grunde. Wir werden eine einfach zusam-
menhängende Zusammenhangskomponente des Raumes Stab(X) konstruieren,
die genau diejenigen Stabilitätsbedingungen enthält, für die alle Linienbündel
und alle Wolkenkratzergarben C(x) für x ∈ X stabil sind. All diese Sta-
bilitätsbedingungen werden bis auf die Wirkung von G̃L+(2,R) explizit kon-
struiert. Ein Repräsentantensystem wird durch eine diskrete Serie von d =
dim(X) Stabilitätsbedingungen σ(p), 0 ≤ p < d, und d−1 Einparameterfamilien
σγ

(p), 1 ≤ p < d, γ ∈ (0, 1/2) gegeben.
Im letzten Abschnitt des ersten Kapitels werden die Stabilitätsbedingungen σ(p)

aus dem vorherigen Beispiel auf den Fall einfacher kompakter komplexer Man-
nigfaltigkeiten verallgemeinert. Die Herzen Coh(p)(X) der Stabilitätsbedingungen
σ(p) werden mittels lokaler Kohomologie definiert. Die Existenz der Stabilitätsbe-
dingungen σ(p), 0 ≤ p < d, wird im Wesentlichen aus der Tatsache folgen, dass
die abelschen Kategorien Coh(p)(X) für 0 < p < d von endlicher Länge, d.h.
sowohl noethersch als auch artinsch sind.

Der zweite Teil dieser Arbeit entstand aus der Frage, wie groß die Menge
der Komplexe aus Db(X), die sich nicht längs einer Twistorgerade deformieren
lassen, for projektive K3-Flächen X eigentlich ist. Da sich Wolkenkratzergar-
ben C(x) und µ-stabile Vektorbündel vom Grad Null nach einem Resultat von
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M. Verbitsky deformieren lassen, liegt es nahe, nach der von diesen Objek-
ten erzeugten vollen triangulierten Unterkategorie von Db(X) auszuteilen. Im
zweiten Kapitel soll diese Quotientenkategorie Q sogar für beliebige glatte irre-
duzible projektive Varietäten der Dimension d beschreiben werden.
Der erste Schritt besteht darin, µ-Stabilität als Stabilitätsbedingung im Sinne
des ersten Kapitels zu interpretieren. Dazu muss man erst nach allen Kom-
plexen, deren Träger eine Kodimension größer gleich zwei hat, austeilen. Der
erste Abschnitt des zweiten Kapitels beschäftigt sich mit den Eigenschaften der
so entstehenden Quotientenkategorie Db

d,d−1(X). Zunächst wird gezeigt, dass
Db

d,d−1(X) zur beschränkten derivierten Kategorie der abelschen Kategorie
Cohd,d−1(X) äquivalent ist und somit eine kanonische t-Struktur besitzt. Die
Kategorie Cohd,d−1(X) entsteht aus Coh(X) durch Austeilen aller Garben,
deren Träger eine Kodimension größer gleich zwei hat. Es wird zumindest für
1 ≤ d ≤ 2 gezeigt, dass Db

d,d−1(X) bezüglich dieser t-Struktur die homologische
Dimension eins hat. Dies impliziert z.B., dass jedes Objekt aus Db

d,d−1(X) die
direkte Summe seiner (verschobenen) Kohomologien ist. Ein weiteres Resultat
besagt, dass Erweiterungen einer Torsionsgarbe durch eine torsionsfreie Garbe
in Cohd,d−1(X) trivial sind.
Mit Hilfe dieser beiden Aussagen wird im zweiten Abschnitt des zweiten Kapi-
tels der Quotient Q von Db(X) bzw. Db

d,d−1(X) nach der vollen triangulierten
Unterkategorie, die von allen µ-stabilen Objekten vom Grad Null erzeugt wird,
bestimmt. Das Hauptresultat dieses Abschnittes besagt, dass diese Quotien-
tenkategorie äquivalent zur beschränkten derivierten Kategorie der endlich di-
mensionalen Vektorräume über einer Divisionsalgebra ist, wenn die Untergruppe
{deg(E) | E ∈ Coh(X)} ⊂ Z durch den Grad eines effektiven Divisors D erzeugt
wird. Die Divisionsalgebra ist der Endomorphismenring von OD in Q.
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Introduction

The notion of stability in the geometric context goes back to D. Mumford’s
classical work on geometric invariant theory [31]. He applied his general results
to construct a moduli space of (semi)stable vector bundles of certain numer-
ical invariants on a smooth projective curve. Doing this, he discovered that
(semi)stable vector bundles can be characterized by the behaviour of the ratio
deg / rk on the set of its subbundles. This notion of stability was generalized by
Takemoto [39],[40] for sheaves on higher dimensional varieties and is known as
Mumford–Takemoto or µ-stability. Another approach to generalize Mumford’s
stability on curves to the case of higher dimensional projective varieties was pre-
sented by Gieseker. Gieseker-stability is related to the behaviour of the Hilbert
polynomial

Z 3 m 7−→ χ(X,E(mH)) ∈ Z,

where H is a fixed ample divisor, for large numbers m. The degree of this poly-
nomial is less or equal the dimension d of X. Mumford’s µ-stability is related to
the behaviour of the degree d and degree d− 1 term of this polynomial. Using
this notion of stability, one can construct moduli spaces of (semi)stable sheaves.
See [21] for more details. The notion of stability has a natural generalization
for Kähler manifolds if one replaces the ample divisor by a Kähler class [ω] on
X.
A couple of years ago physicists discovered the importance of stability in string
theory. M. Douglas introduced the notion of Π-stability of D-branes [11],[12]. In
order to understand Douglas’ work, T. Bridgeland gave a precise mathematical
definition of a stability condition [8],[4]. As suggested by physics, he proved
that the space Stab(X) of all stability conditions with certain conditions has
a natural structure of a complex manifold. Furthermore, the group of autoe-
quivalences Aut(Db(X)) of Db(X) and the universal cover G̃L+(2,R) of the
group GL+(2,R) act on Stab(X). From the view point of string theory, the
quotient (Aut(Db(X))\Stab(X))/C∗ should be a good candidate for the com-
plexified Kähler moduli space. Note that C∗ ⊂ GL+(2,R) acts on the quotient
Aut(Db(X))\Stab(X) because the fibre of G̃L+(2,R) over idR2 acts like the
subgroup Z[2] ⊂ Aut(Db(X)) on Stab(X). On the other hand, one can try to
understand the group Aut(Db(X)) by means of its action on Stab(X). Over
the last years the space Stab(X) has been investigated for several manifolds X.
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The aim of the first chapter is to construct stability conditions on Kähler man-
ifolds without nontrivial (analytic) subvarieties. The definition of a stability
condition and a list of examples including those of the next sections is con-
tained in section 1.1.
The second section 1.2 is devoted to K3 surfaces with Pic(X) = 0. It is easy to
see, that the set of isomorphism classes of these K3 surfaces is the complement
of countable infinite many hypersurfaces in the moduli space of K3 surfaces.
Thus, every generic K3 surface is of this type. We have a full description of the
space of stability conditions Stab(X) for these K3 surfaces.
In the third section 1.3 we construct stability conditions on the derived cate-
gory of complex tori without nontrivial subvarieties. Similar to the case of K3
surfaces, every generic complex torus has this specific property. In contrast to
the case of K3 surfaces, a complete understanding of Stab(X) is still missing.
Nevertheless, we are able to describe a single connected component of Stab(X)
characterized by a classifying property.
The aim of the last section 1.4 of the first chapter is the general construction
of stability conditions on Kähler manifolds without nontrivial subvarieties. For
this we need the techniques of local cohomology. Unfortunately, we do not know
any component of Stab(X) in general. It is even unknown whether or not the
constructed stability conditions belong to the same component. In the case of
generic K3 surfaces and generic tori, they do.

The motivation for the second chapter was the following question. Can we
use the results for generic K3 surfaces as presented in section 1.2 to complete
our knowledge about Stab(X) for projective K3 surfaces X (see [7])? In order
to do this, we have to connect the derived categories of both surfaces. Guided
by M. Verbitsky’s article [41] one might deform a complex of coherent sheaves
on a generic K3 surface along a twistor line to a complex on a projective K3
surface X in the twistor space. Although there is no complete understanding
of this procedure at the moment, we can true to figure out the expected sub-
category of Db(X) obtained in this way. First of all, every skyscraper sheaf
C(x) ∈ Db(X) for x ∈ X is a deformation of a skyscraper sheaf on the generic
K3 surface due the existence of horizontal twistor lines in the twistor space. On
the other hand, every stable vector bundle B on X of ω-degree zero admits a
deformation along the twistor line corresponding to the Kähler form ω on X.
This is a special case of Theorem 2.5 in [42]. Indeed, c2(B) is always of Hodge
type (2,2) on a surface, independent on the chosen complex structure of Kähler
type. Furthermore, c1(B) remains of type (1,1) along the twistor line if it is
orthogonal with respect to the intersection pairing to every holomorphic sym-
plectic 2-form σλ for λ in the twistor line P1. This is equivalent to the fact that
c1(B) is orthogonal to the ‘usual’ three Kähler forms ωI = ω, ωJ = Reσ and
ωK = Imσ, where σ is the holomorphic symplectic 2-form on X.
Every µ-stable torsionfree sheaf E of ω-degree zero fits into a short exact se-
quence

0 −→ E −→ E∨∨ −→ T −→ 0
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with dim supp(T ) = 0 and E∨∨ a stable vector bundle of degree zero. Thus, we
expect that the image of the bounded derived category of a generic K3 surface
under the deformation along the twistor line is a triangulated subcategory of
Db(X) containing all µ-stable sheaves of ω-degree zero. This leads to the fol-
lowing question.
Let X be an irreducible smooth projective variety of dimension d ≥ 1. How
‘big’ is the full subcategory of Db(X) consisting of complexes with µ-semistable
cohomology sheaves of degree zero? To answer this question, we try to compute
the quotient category. Since µ-stability is naturally defined on the quotient
category of Db(X) by the full triangulated subcategory of complexes whose
support has codimension greater or equal two, we will investigate this quotient
category in the first section 2.1 of chapter 2. Note that in the case of curves,
this quotient category is just Db(X). We will see, that the quotient category
possesses some properties of the derived category of curves. The main result
of this section is the fact that the quotient category has homological dimension
one, at least for d ≤ 2. Nevertheless, there are also differences. For example,
it is unknown whether the quotient category has a Serre functor. Furthermore,
the Hom-groups might be infinite-dimensional over the base field.
The main result of the last section 2.2 states that under some conditions on X
the category Db(X) modulo complexes with semistable cohomology sheaves of
degree zero is equivalent to the bounded derived category of finite-dimensional
vector spaces over a division algebra. We will give some examples to illustrate
this result.

Notation. To make the notation more convenient for the reader, we will de-
note the skyscraper sheaf in x ∈ X of length one on a complex manifold or on
a variety X over the algebraically closed field k with k(x), even if the field is
k = C. We will use the standard notation Coh(X) and Db(X) for the abelian
category of coherent sheaves and its bounded derived triangulated category.
Furthermore, GL+(2,R) denotes the group of all orientation preserving auto-
morphisms of R2, i.e. the group of all 2× 2-matrices of positive determinant.

Acknowledgements. I am particularly grateful to my advisor Prof. Daniel
Huybrechts for his permanent interest, a lot of stimulating discussions and the
pleasant atmosphere of his working group.
I would like to thank the Mathematical Institute at the University of Bonn and
the German National Academic Foundation for their support over the last years,
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I am also grateful for valuable discussions with Dr. Emanuele Macr̀ı, Holger
Partsch, Ulrich Schlickewei and Dr. Paolo Stellari.
Finally, I would like to thank my family for their warm support.
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Chapter 1

Stability conditions

1.1 Stability conditions and examples

Motivated by string theorists Tom Bridgeland introduced the notion of a sta-
bility condition on a triangulated category D. See [14] for the backround in
homological algebra. All triangles appearing in the text are assumed to be
distinguished triangles.

Definition 1.1.1 ([8], Definition 1.1). A stability condition (Z,P) on a trian-
gulated category D consists of a linear map Z : K(D) → C, called the central
charge, and a full additive subcategory P(φ) ⊆ D for each real number φ ∈ R.
Furthermore, the pair (Z,P) satisfies the following axioms:

(a) if 0 6= E ∈ P(φ) then Z(E) = m(E) exp(iπφ) for some m(E) ∈ R>0,

(b) for all φ ∈ R,P(φ+ 1) = P(φ)[1],

(c) if φ1 > φ2 and Aj ∈ P(φj) then HomD(A1, A2) = 0,

(d) for 0 6= E ∈ D there is a Harder–Narasimhan filtration, i.e. a finite se-
quence of real numbers φ1 > φ2 > . . . > φn and a collection of triangles

0 = E0
// E1

//

����
��
��

E2
//

����
��
��

. . . // En−1
// En = E

~~||
||

||
|

A1

__@
@

@

A2

[[7
7

7

An

^^=
=

=

with Aj ∈ P(φj) for all j.

A family (P(φ))φ∈R of full additive subcategories with the properties (b),(c)
and (d) is called a slicing. For any interval I ⊆ R, define P(I) to be the
extension-closed full subcategory of D generated by the subcategories P(φ) for
φ ∈ I. Bridgeland has shown that the categories P(I) are quasi-abelian for
every interval I ⊂ R of length < 1 ([8], Lemma 4.3). A quasi-abelian category
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2 CHAPTER 1. STABILITY CONDITIONS

is a category with kernels and cokernels such that every pullback of a strict
epimorphism is a strict epimorphism, and every pushout of a strict monomor-
phism is a strict monomorphism. In contrast to an abelian category, the image
of a morphism is not necessarily isomorphic to its coimage. Morphisms with
this additional property are called strict. Subobjects with a strict embedding
are called strict and similar for quotients. It can be shown that the additive
subcategories P(φ) and P((φ, φ+ 1]) as well as P([φ, φ+ 1)) are always abelian
for every φ ∈ R. Moreover, the pair (D≤0,D≥0) := (P((0,∞)),P((−∞, 1]) is
a bounded t-structure on D with heart A := P((0, 1]). Furthermore, the linear
map Z : K(A) = K(D) → C satisfies

(i) if 0 6= E ∈ A then Z(E) ∈ H = {r exp(iπφ) | r > 0, 0 < φ ≤ 1} ⊆ C,

(ii) for 0 6= E ∈ A there is a Harder–Narasimhan filtration, i.e. a finite chain
of subobjects 0 = E0 ⊂ E1 ⊂ . . . ⊂ En−1 ⊂ En = E whose factors Fj =
Ej/Ej−1 are semistable objects of A with φ(F1) > φ(F2) > . . . > φ(Fn).
An object F ∈ A is said to be semistable (with respect to Z) if φ(G) ≤ φ(F )
for every subobject 0 6= G ⊂ F .

Giving a stability condition on a triangulated category D is equivalent to giving
a bounded t-structure (D≤0,D≥0) on D with heart A := D≤0∩D≥0 and a linear
map Z : K(A) → C satisfying the two properties (i) and (ii) ([8], Proposition
5.3). There is a very useful criterion to check the Harder–Narasimhan property
(ii) (see [8], Proposition 2.4).

(ii.1) There are no infinite sequences . . . ⊂ Ej+1 ⊂ Ej ⊂ . . . ⊂ E0 of subobjects
in A with φ(Ej+1) > φ(Ej) for all j, and

(ii.2) there are no infinite sequences E0 � . . . � Ej � Ej+1 � . . . of quotients
in A with φ(Ej) > φ(Ej+1) for all j.

If it is clear from the context, we will write (Z,A) for the stability condition
(Z,P), where A is the heart P((0, 1]) of the associated t-structure.
The following technical property is very important in order to control deforma-
tions of stability conditions.

Definition 1.1.2. A stability condition (Z,P) is called locally-finite if there
exists a real number η > 0 such that for all t ∈ R the quasi-abelian category
P((t− η, t+ η)) ⊆ D is of finite length.

Note that a quasi-abelian category is called of finite length if it is artinian and
noetherian, i.e. every decreasing sequence and every increasing sequence of strict
subobjects becomes stationary. This is equivalent to the fact that every object
of the category has a finite filtration by strict subobjects, the so-called Jordan–
Hölder filtration, such that the successive quotients are simple, i.e. they have
no strict subobjects.
If the central charge Z takes values in R, the condition of locally-finiteness
implies that the heart P((0, 1]) of the associated t-structure is of finite length.
It is an easy exercise to check that for every stability condition with a central
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charge Z whose image is a discrete subgroup of C the quasi-abelian subcategory
P(I) is of finite length for every interval I ⊂ R of length < 1. In particular,
such a stability condition is locally-finite and the abelian subcategories P(φ) are
of finite length. Stable objects of phase φ are by definition the simple objects
of P(φ). Thus, every semistable object has a Jordan–Hölder filtration by stable
objects of the same phase if the image of the central charge is discrete.
There is a natural topology on the set of all locally-finite stability conditions
on D ([8], section 6). In order to get a finite-dimensional space of stability
conditions, one needs the notion of a numerical stability condition. For this we
assume that D is a k-linear category and∑

i∈Z
dimk HomD(E,F [i]) <∞

for all objects E,F ∈ D. We denote the orthogonal complement of K(D) with
respect to the Euler form

χ(E,F ) :=
∑
i∈Z

(−1)i dimk HomD(E,F [i])

by K(D)⊥ and the quotient K(D)/K(D)⊥ by N (D). The category D is called
numerically finite if the ‘numerical Grothendieck group’ N (D) has finite rank.

Definition 1.1.3. Suppose that the triangulated category D is numerically fi-
nite. A stability condition σ = (Z,P) is called numerical if the central charge Z
factorizes over the quotient map K(D) −→ N (D). Thus, Z(E) = −χ(π(σ), E)
for a unique vector π(σ) of N (D)⊗ C.

Using the Riemann–Roch theorem for a compact complex manifold X, we see
that Db(X) is numerically finite and a stability condition (Z,P) on Db(X)
is numerical if and only if Z(E) depends only on the Mukai vector v(E) =
ch(E)

√
td(X) of E ∈ Db(X). Note that v : K(X) −→ H∗(X,Q) identi-

fies the space (N (X) ⊗ C,−χ) with a subspace of (H∗(X,C), 〈·, ·〉), where
〈v, w〉 =

∫
X

exp(c1(X))v∨w is the Mukai pairing and v∨ =
∑√

−1
j
vj is the

dual of v =
∑
vj with vj ∈ Hj(X,C). The set of all numerical and locally-

finite stability conditions on Db(X) is denoted by Stab(X). In the following all
stability conditions on Db(X) are assumed to be numerical and locally-finite.

Theorem 1.1.4 ([8], Corollary 1.3). For each connected component Σ ⊆ Stab(X)
there is a complex linear subspace

V (Σ) ⊆ HomZ(N (X),C) = (N (X)⊗ C)∨
−χ∼= N (X)⊗ C ⊆ H∗(X,C)

and a local homeomorphism π : Σ → V (Σ) which maps a stability condition
to its central charge. In particular, Stab(X) is a finite-dimensional complex
manifold.
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A characterization of V (Σ) can be found at the beginning of subsection 1.3.3.
One would expect that the complex manifold Stab(X) contains some informa-
tion about X.
A very important tool to analyse Stab(X) is the continuous action of two groups
on Stab(X) ([8], Lemma 8.2). First of all, there is a natural action of the group
of autoequivalences Aut(Db(X)) of Db(X) on Stab(X). An autoequivalence Ψ
of Db(X) acts on Stab(X) from the left by Ψ·(Z,P) = (Z◦ψ,P ′), where ψ is the
induced action on the K-group K(Db(X)) and P ′(φ) = Ψ(P(φ)). Furthermore,
there is a natural action of the universal covering group G̃L+(2,R) of GL+(2,R)
from the right. The group G̃L+(2,R) can be thought of as the set of pairs (g, f),
where f : R → R is an increasing map with f(φ + 1) = f(φ) + 1, and g ∈
GL+(2,R) is an orientation-preserving linear isomorphism on R2 such that the
induced maps on S1 = R/2Z = R2\{0}/R>0 are the same. Then (Z,P)·(g, f) =
(Z ′,P ′), where Z ′ = g−1 ◦ Z and P ′(φ) = P(f(φ)). The group GL+(2,R) acts
in a similar way on HomZ(N (X),C) and π : Stab(X) → HomZ(N (X),C) in-
tertwines both actions. The action of Aut(Db(X)) on Stab(X) commutes with
the one of G̃L+(2,R).
In string theory the quotient Aut(Db(X))\Stab(X) should be a C∗-bundle over
the stringy Kähler moduli space. The action of C∗ on that quotient is induced
by the action of G̃L+(2,R) on Stab(X). Indeed, the group G̃L+(2,R) contains
the universal cover C of C∗ as a subgroup and 2πi ∈ C acts like the double shift
functor [2]. Thus, the C∗-action is well defined on the quotient.
From a mathematical point of view one would like to understand Aut(Db(X))
by means of its action on Stab(X). Due to this, the structure of Stab(X) has
been studied by many authors for various types of Kähler manifolds X. In the
following we will give a list of examples. Some of these will be studied in greater
detail in subsequent sections.

Curves
Let X be a smooth compact complex curve of genus g ≥ 1. We have got
the standard t-structure on Db(X) with heart Coh(X), the category of coher-
ent sheaves on X. Putting Z(E) = −deg(E) + i rk(E) = − ch1(E) + i rk(E)
one gets a stability condition σ(0) on Db(X). Then, G̃L+(2,R) acts freely on
Stab(X) and

Stab(X) = σ(0) · G̃L+(2,R)

is the orbit of σ(0). See [25] for a proof. The space of stability conditions
Stab(P1) is isomorphic to C2. For more details in the case of P1 see [34] and
[24].

µ-Stability
In contrast to the case of curves, the notion of µ-stability is not a stability
condition on a Kähler manifold of dimension d > 1 because there are tor-
sion sheaves whose support has codimension ≥ 2. For those sheaves E we get
Z(E) = −deg(E) + i rk(E) = 0 which contradicts the axioms of a stability
condition. The degree of the sheaf is defined with respect to a fixed Kähler
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class [ω] on X. In order to avoid this difficulty, one can take the derived cat-
egory Db(Cohd,d−1(X)) of the abelian quotient category of coherent sheaves
modulo those sheaves whose support has codimension ≥ 2. The standard t-
structure together with the central charge Z = −deg +i rk with respect to a
rational Kähler class [ω] is a numerical and locally-finite stability condition on
Db(Cohd,d−1(X)). The associated GL+(2,R)-orbit is a connected component
of the complex manifold Stab(Cohd,d−1(X)) of numerical and locally-finite sta-
bility conditions on Db(Cohd,d−1(X)) which depends only on the ray R>0[ω]
through [ω]. Thus, every rational ray in the Kähler cone of X defines a con-
nected component of Stab(Cohd,d−1(X)). See [35] for more details. We will go
back to µ-stability in this context in section 2.2.

Generic K3 surfaces
Let X be a K3 surface with Pic(X) = 0. Although the case of these generic K3
surfaces has already been studied by Huybrechts, Macr̀ı and Stellari in [22], we
will give a slightly different approach to StabX in the next section. Here is a
summary of the results.
In addition to the standard t-structure, there is another t-structure on Db(X).
Its heart Coh(1)(X) consists of complexes E of length 2, whereH0(E) is a torsion
sheaf and H−1(E) is a torsionfree sheaf. In contrast to Coh(X) =: Coh(0)(X),
this abelian category has finite length. The standard t-structure together with
the function Z(0)(E) = − ch2(E) + i rk(E) defines a stability condition σ(0) on
Db(X). For any real number γ ∈ (0, 1/2) the pair consisting of our new t-
structure together with the function Zγ

(1)(E) = − ch2(E) + cot(πγ) rk(E) gives
another stability condition σγ

(1) on Db(E). In order to get all stability conditions
on Db(X), one needs the spherical twist TOX

by OX . This is an autoequivalence
of Db(X) which maps E ∈ Db(X) to the cone of the triangle

Hom•(OX , E)⊗OX
ev−−→ E −→ TOX

(E) −→ Hom•(OX , E)⊗OX [1] .

The space of all stability conditions is simply connected and given by

Stab(X) =
⋃
k∈Z

T k
OX

(
σ(0) · G̃L+(2,R) ∪

⋃
γ∈(0,1/2)

σγ
(1) · G̃L+(2,R)

)
.

The orbits in this expression are disjoint. The isotropy group of σ(0) is trivial
whereas the isotropy groups of σγ

(1) are of real dimension 2. One can imagine
Stab(X) as an infinite helix similar to the picture in the case of generic tori
on page 26. The autoequivalence TOX

maps one ‘semicircle’ in that picture to
its neighbour. Note that a point in the helix represents a simply connected
2-dimensional subspace in the G̃L+(2,R)-orbit of some stability condition.

Projective K3 surfaces
Note that the K3 surfaces of the previous example are highly non-projective.
The case of projective K3 surfaces has been studied by Bridgeland in [7]. In
order to state his results, we need some notation. In the case of K3 surfaces the
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Mukai vector (map) v identifies the numerical Grothendieck lattice (N (X),−χ)
with the extended Néron–Severi lattice Z ⊕ NS(X) ⊕ Z ⊆ H∗(X,Z) together
with the Mukai pairing

〈(r1, D1, s1), (r2, D2, s2)〉 = D1 ·D2 − r1s2 − r2s1.

We introduce the root system of the lattice

∆(X) = {δ ∈ N (X) | 〈δ, δ〉 = −2}

and we denote by δ⊥ the orthogonal complement of δ in N (X) ⊗ C with re-
spect to the C-linear extended Mukai pairing. Furthermore, we write P±(X) ⊂
N (X) ⊗ C for the two connected components of the set of those vectors in
N (X)⊗C whose real and imagenary part span a positive definite two-plane in
N (X)⊗R. Using this notation, we can state the main theorem of Bridgeland’s
article [7].

Theorem 1.1.5 ([7], Theorem 1.1). There is a connected component Σ(X) ⊂
Stab(X) which is mapped by π onto the open subset

P+
0 (X) = P+(X) \

⋃
δ∈∆(X)

δ⊥ ⊂ N (X)⊗ C.

Moreover, the induced map π : Σ(X) −→ P+
0 (X) is a regular covering map and

the subgroup of Aut(Db(X)), which acts trivial on the cohomology H∗(X,Z) and
preserves the connected component Σ(X), acts freely on Σ(X) and is the group
of deck transformations of π.

The ideas of the proof apply also to the case of abelian surfaces. The results
are even better than in the case of K3 surfaces.

Theorem 1.1.6 ([7], Theorem 15.2). Let X be an abelian surface over C. There
is a connected component Stab†(X) ⊂ Stab(X) which is mapped by π onto the
open subset P+(X) ⊂ N (X)⊗ C. Moreover, the induced map

π : Stab†(X) −→ P+(X)

is the universal cover, and the group of deck transformations is generated by the
double shift functor [2]. In particular, Stab†(X) is simply connected.

Generic complex tori
Let X be a generic complex torus such that chk(F) = 0 for all 0 < k <
dim(X) =: d and all coherent sheaves F on X. Due to our first example,
we can assume d ≥ 2. A detailed investigation of Stab(X) will be given in
section 1.3. At this point we will give a short summary of the main results. See
also [28].
As in the K3 case there are two t-structures on Db(X) with hearts Coh(X) =
Coh(0)(X) and Coh(1)(X). For dim(X) = d > 2 one has to consider further
d− 2 bounded t-structures. Their hearts Coh(p)(X), 2 ≤ p ≤ d− 1, are the full
subcategories of direct sums F [p]⊕ T , where F is a locally free sheaf and T is
a torsion sheaf.
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Theorem 1.1.7. The abelian categories Coh(p)(X) are of finite length for 1 ≤
p ≤ d− 1.

To each of these t-structures we associate a function Z(p)(E) = − chd(E) +
(−1)pi rk(E) and obtain d stability conditions σ(p), 0 ≤ p ≤ d − 1. The
G̃L+(2,R)-isotropy group of σ(p) is trivial and the G̃L+(2,R)-orbit is open in
Stab(X). The orbit of σ(p) is connected with the orbit of σ(p−1) by a wall
of real dimension 3 for 0 < p ≤ d − 1. Similar to the case of K3 surfaces,
this wall is a 1-parameter family of G̃L+(2,R)-orbits of some stability con-
ditions σγ

(p), γ ∈ (0, 1/2), with isotropy groups of real dimension 2. The t-
structure underlying σγ

(p) is the one with heart Coh(p) and the central charge is
Zγ

(p)(E) = − chd(E)− (−1)p cot(πγ) rk(E).

Theorem 1.1.8. The set

U(X) :=

( ⋃
0≤p<d

σ(p) · G̃L+(2,R) ∪
⋃

1≤p<d
γ∈(0,1/2)

σγ
(p) · G̃L+(2,R)

)

is a simply connected component of Stab(X) and U(X) = Stab(X) for dim(X) ≤
2. The orbits in this formula are disjoint. The map π : U(X) → π(U(X)) ⊂
H∗(X,C) is a covering only in dimension d ≤ 2. Furthermore, U(X) is the
set of all stability conditions on Db(X) such that k(y) ∈ P(φ) ∀ y ∈ X and
L ∈ P(ψ) ∀ L ∈ Pic0(X) = X̂ for two real numbers φ, ψ.

Note that the latter characterization of U(X) is invariant under Fourier–Mukai
transform with respect to the Poincaré bundle. Hence, U(X) and U(X̂) are
canonically isomorphic. It is unknown whether there are more stability con-
ditions on Db(X) for dim(X) ≥ 3. The picture on page 26 illustrates U(X)
and π(U(X)). Note that a point in the helix represents a simply connected 2-
dimensional subspace in the G̃L+(2,R)-orbit of some stability condition, whereas
a point in the annulus below represents a 2-dimensional subspace in the GL+(2,R)-
orbit with fundamental group Z.

Kähler manifolds without nontrivial subvarieties
We will generalize the bounded t-structures with heart Coh(p) to compact com-
plex Kähler manifolds without any nontrivial (analytic) subvarieties in section
1.4. Theorem 1.1.7 is still valid. Together with the central charges Z(p)(E) =
− chd(E) + (−1)pi rk(E) one obtains d stability conditions σ(p), 0 ≤ p ≤ d− 1,
on Db(X) as in the case of generic tori. Note that curves, generic K3 surfaces
and generic tori are Kähler manifolds of this type. More examples of Kähler
manifolds having this property are given by general deformations of the Hilbert
scheme of a K3 surface.

Pn and del Pezzo surfaces
Stability conditions on the projective spaces Pn and on del Pezzo surfaces have
been studied by E. Macr̀ı in [24].
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Stability and group actions
Let X be a smooth projective variety and G a finite group acting on X. The
group G acts also by autoequivalences on Db(X) and we obtain a G-action on
Stab(X). Using this, one can construct stability conditions on the equivariant
derived category Db

G(X) due to the following theorem proved by E. Macr̀ı, S.
Mehrotra and P. Stellari.

Theorem 1.1.9 ([26], Theorem 1.1). The subset of invariant stability condi-
tions in Stab(Db(X)) = Stab(X) is a closed submanifold with a closed embed-
ding into Stab(Db

G(X)) via the forgetful functor.

The authors apply this theorem to the case of some weighted projective lines,
Kummer surfaces and Enriques surfaces. See [26] for more details.

Non-compact examples
There are also examples of stability conditions for non-compact Kähler mani-
folds in [5] and [6].
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1.2 Stability conditions on generic K3 surfaces

In this section we give a full description of the space of stability conditions
on the derived category of a generic K3 surface X. A generic K3 surface is a
K3 surface with a vanishing Picard group. We will prove that the space of all
stability conditions is connected and simply connected and we will explain the
formula

Stab(X) =
⋃
k∈Z

T k
OX

(
σ(0) · G̃L+(2,R) ∪

⋃
γ∈(0,1/2)

σγ
(1) · G̃L+(2,R)

)
.

Furthermore, the map π is the universal cover of its image.

1.2.1 General results about stability conditions on generic
K3 surfaces

In this subsection we collect some general statements about stability conditions
on generic K3 surfaces. Let X be a K3 surface with Pic(X) = 0. A K3 surface
of this kind is called generic because the set of K3 surfaces with non-vanishing
Picard group is a countable union of hypersurfaces in the moduli space of K3
surfaces. The Mukai vector v(E) = ch(E)

√
td(X) of E ∈ Db(X) is given by

the pair v(E) = (rk(E), s(E)) ∈ H0(X,Z) ⊕ H4(X,Z) with s(E) = ch2(E) +
rk(E). As Pic(X) = H2(X,Z) ∩ H1,1(X) = 0, we can drop c1(E) = 0 in the
notation. Let 〈(r1, s1), (r2, s2)〉 = −r1s2−s1r2 be the Mukai pairing on N (X) ∼=
H0(X,Z) ⊕ H4(X,Z). Using the shorthands Homi(E,F ) := Hom(E,F [i]) ∼=
Hom(E[−i], F ) and homi(E,F ) := dimC Homi(E,F ) for E,F ∈ Db(X), the
Grothendieck–Riemann–Roch theorem yields

−χ(E,F ) = −
∑
i∈Z

(−1)i homi(E,F ) = 〈v(E), v(F )〉 (1.1)

for E,F ∈ Db(X). If E and F are contained in the heart A of some bounded
t-structure, e.g. A = P((0, 1]) for some stability condition σ = (Z,P) on X, we
get Homi(E,F ) = 0 for i < 0 and Homi(E,F ) = 0 for i > 2 by Serre duality

Homi(E,F ) ∼= Hom2−i(F,E)∨ ∀i ∈ Z.

In that case equation (1.1) simplifies to

−χ(E,F ) = hom1(E,F )− hom(E,F )− hom(F,E) = 〈v(E), v(F )〉. (1.2)

The following lemma is a simple consequence of the previous equation.

Lemma 1.2.1 ([7], Lemma 4.1). If E is stable in some stability condition σ =
(Z,P) on X, then 〈v(E), v(E)〉 = v(E)2 ≥ 0 or v(E)2 = −2, where the last
case occurs if and only if E is spherical, i.e. hom(E,E) = hom2(E,E) = 1 and
hom1(E,E) = 0.
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Proof. Since E is stable, it is simple in some of the abelian categories P(φ).
Hence, Hom(E,E) = C · idE . The square v(E)2 is always an even number, and
formula (1.2) gives the first statement of the lemma. The case v(E)2 = −2
occurs if and only if hom1(E,E) = 0. Since hom(E,E) = hom2(E,E) = 1
and homi(E,E) = hom2−i(E,E) = 0 for i < 0, this is exactly the case if E is
spherical.

The next two lemmas will provide us with stable objects.

Lemma 1.2.2 ([22], Lemma 3.1 and Proposition 1.11).
The sheaf OX is stable in every stability condition σ = (Z,P) on X.

Corollary 1.2.3 ([22], Lemma 2.3). If two skyscraper sheaves k(x) and k(y)
are stable in some stability condition σ = (Z,P) on X, they have the same
phase.

Proof. Let us denote by φx, φy and ψ the phases of the stable objects k(x), k(y)
and OX in σ, where we have already used the previous Lemma 1.2.2. Since
0 6= hom(OX , k(x)) = hom(k(x)[−2],OX), we obtain

φx − 2 ≤ ψ ≤ φx

due to condition (b) and (c) of Definition 1.1.1 and similar for φy. Equality
cannot occur. For example, φx = ψ would imply that k(x) and OX are simple
objects of the same abelian category P(ψ), and since hom(OX , k(x)) 6= 0, we
obtain the contradiction OX

∼= k(x). Hence,

φx − 2 < ψ < φx and φy − 2 < ψ < φx . (1.3)

Since Z(k(x)) = Z(k(y)), we get φx = φy+2kx,y with kx,y ∈ Z. Due to the upper
inequalities, this is only possible for kx,y = 0, and the assertion follows.

One might ask whether the skyscraper sheaves k(x) are stable with respect to all
stability condition on X. This is not the case as we will see in subsection 1.2.3,
but there is a weaker assertion. In order to state this, we need the spherical
twist T on the derived category Db(X) induced by the spherical object OX .
The spherical twist is an autoequivalence (see [37] or Prop. 8.6 in [20]), and for
every object E ∈ Db(X) there is a distinguished triangle⊕
i∈Z

OX [i]⊗Hom(OX [i], E) −→ E −→ T (E) −→
⊕
i∈Z

OX [i+1]⊗Hom(OX [i], E),

where the first map is the ‘evaluation map’.

Lemma 1.2.4 ([22], Corollary 3.7). For every stability condition on X there
exists an integer n ∈ Z such that for every point x ∈ X the complex Tn(k(x))
is stable of the same phase.
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1.2.2 Stability conditions with stable points

In this subsection we construct all stability conditions such that all skyscraper
sheaves k(x) are stable. We will identify the central charge Z ∈ HomZ(N (X),C)
with a real 2× 2 matrix

Z '
(
a b
c d

)
:
(
r
s

)
−→

(
ar + bs
cr + ds

)
' (ar + bs) + i(cr + ds) .

The stability conditions σ+ and σ(0)

We consider the abelian category Coh(X) together with its canonical t-structure
on Db(X). Define Z+(r, s) = −s+ ir on N (X) ∼= H0(X,Z)⊕ H4(X,Z). Using
the fact that every torsion sheaf F has zero-dimensional support and ch2(F ) =
H0(X,F ), we see Z+(E) ∈ H = {r exp(iπφ) | r > 0, 0 < φ ≤ 1} ⊆ C for all
0 6= E ∈ Coh(X). The pair σ+ = (Z+,Coh(X)) defines a stability condition if
Z+ has the Harder–Narasimhan property. In order to check this, it is enough
to show that for every sheaf E there are no infinite sequences

· · · ⊆ Ej+1 ⊆ Ej ⊆ · · · ⊆ E1 ⊆ E0 = E

with φ(Ej+1) > φ(Ej) for all j ≥ 0 and

E = E0 � E1 � · · · � Ej � Ej+1 � · · ·

with φ(Ej) > φ(Ej+1) for all j ≥ 0 due to [8] Proposition 2.4. Since Coh(X) is
noetherian, we only need to prove the first assertion. Let us assume the existence
of such a sequence. Since rk(Ej+1) ≤ rk(Ej), there must be an integer n ≥ 0
such that rk(Ej) = rk(En) for all j ≥ n. Thus, Ej/Ej+1 = T j is a torsion sheaf
for all j ≥ n and Z(Ej) − Z(Ej+1) = Z(T j) < 0 or φ(Ej+1) ≤ φ(Ej) which
contradicts the assumption.
Let us denote by P+ the slicing of the stability condition σ+. Obviously, P+

is locally-finite since Z+ has a discrete image. By construction P+(1) =: T is
the abelian category of torsion sheaves on X. Thus, every semistable sheaf E of
phase φ ∈ (0, 1) is torsionfree, and P+((0, 1)) =: F is the quasi-abelian category
of torsionfree sheaves. The abelian category Coh](X) := P+([1, 2)) consists of
those complexes E of length two with

H0(E) ∈ P+(1) = T and H−1(E) = H0(E[−1]) ∈ P+((0, 1)) = F .

Furthermore, (T ,F) is a torsion pair and Coh](X) = P+([1, 2)) is the tilt of
Coh(X) with respect to the pair (T ,F). For the definition of a torsion pair and
the corresponding tilt we refer to Definition 1.3.7 and Lemma 1.3.8 or to the
article [16].
Moreover, every ideal sheaf is stable in σ+ because every proper quotient sheaf
is a torsion sheaf. In particular, we have the following stable objects

k(x) ∈ P+(1) , OX ∈ P+(3/4) , T (k(x)) = Ix[1] ∈ P+(3/2).
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The last equation follows from the triangle OX → k(x) → Ix[1] → OX [1] and
the triangle at the end of subsection 1.2.1. Using Lemma 1.2.1 we obtain

v(E)2 = −2r(E)s(E) ≥ 0 or − 2

for every stable object E in σ+, and we see that for every semistable object E
the value Z+(E) = −s(E) + i · rk(E) is one of the dots in the following picture.

- ReZ+ = −s

6ImZ+ = r

rrr
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rrr
rrr
rrr

rrr
rrr
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rrr
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rrrrrrrrr

HHH
HH

H
H

HH

H
HHHHH

HHH
−s+ αr = 0

Thus, F = P+((0, 1)) = P+((0, 3/4]) and Coh](X) = P+(([1, 2)) = P+([1, 7/4]).
It is easy to prove that the stability condition σ(0) = (Z(0),Coh(X)) with
Z(0)(E) = − ch2(E) + i rk(E) = −s(E) + (1 + i) rk(E) is contained in the
GL+(2,R)-orbit of σ+. Moreover, det(Z+) > 0 and det(Z(0)) > 0.

The stability conditions σ− and σ(1)

The next example is the stability condition

σ− = (Z−,P−) := T−1 · σ+ ·
((

0 −1
1 0

)
, f(t) = t+ 1/2

)
.

The spherical twist T acts like
(

0 −1
−1 0

)
on the (r, s)-plane. By the definitions

of the actions, we get

Z− '
(

0 1
−1 0

)(
0 −1
1 0

)
︸ ︷︷ ︸

'Z+

(
0 −1
−1 0

)
=
(

0 −1
−1 0

)

and, therefore, Z−(r, s) = −s− ir. We obtain the following stable objects

OX [1] = T−1(OX) with phase φ+(OX)− 1/2 = 1/4,
k(x) = T−1T (k(x)) = T−1(Ix[1]) with phase φ+(Ix[1])− 1/2 = 1,

T−1(k(x)) with phase φ+(k(x))− 1/2 = 1/2.
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We will show shortly that the heart P−((0, 1]) of σ− is the abelian category
Coh](X) and if we apply the transformation s 7→ s, r 7→ −r to the picture
above, we get the possible values of Z−(E) for semistable objects E in σ−.
In particular, Coh](X) = P−([1/4, 1]). Furthermore, the stability condition
σ(1) = (Z(1),Coh](X)) with Z(1)(E) = − ch2(E) − i rk(E) = −s(E) + (1 −
i) rk(E) is contained in the GL+(2,R)-orbit of σ−. Moreover, det(Z−) < 0 and
det(Z(1)) < 0.

The stability conditions σα = σγ
(1)

Fix a real number α ∈ (1,∞). Let us consider the t-structure of the previous ex-
ample with heart Coh](X) and the function Zα(r, s) = −s+αr. Looking at the
previous picture we see that Zα(E) < 0 for all 0 6= E ∈ Coh](X) = P+([1, 7/4]).
Hence, Zα is a stability function on Coh](X), and the pair σα = (Zα,Coh](X))
defines a stability condition if Zα has the Harder–Narasimhan property. But the
latter is clear since every object E ∈ Coh](X) is semistable of phase one with
respect to Zα. Furthermore, the abelian category Coh](X) has finite length
because the image Zα(Coh](X)) ⊆ R<0 is a discrete subset. This is because
for m > 0 the inverse image Z−1

α ([−m, 0]) in the integral (−s, r)-plane of the
picture is the finite set bounded by the three lines

{r = 0} , {r = s} and {−s+ αr = −m}.

Therefore, σα is a locally-finite stability condition on X, and we will denote its
slicing by Pα. Hence, Pα(φ) = Coh](X)[φ − 1] for φ ∈ Z and Pα(φ) = 0 else.
Obviously, the slicing Pα does not depend on α. The objects k(x) and OX [1]
are stable in σα because their Mukai vectors are primitive and extremal in the
domain 1 ≤ φ ≤ 7/4 of the picture. In contrast to this, we have the following
exact sequence in Coh](X) = Pα(1)

0 −→ k(x) −→ T (k(x)) = Ix[1] −→ OX [1] −→ 0

which is the Jordan–Hölder filtration of the semistable but not stable object
T (k(x)). For every α > 1 there is a unique γ ∈ (0, 1/2) with α = 1 + cot(πγ),
i.e. Zα(E) = − ch2(E) + cot(πγ) rk(E). If we write the central charge like this,
we denote the stability condition by σγ

(1). The reason for this will become clear
in the next section. Moreover, det(Zα) = det(Zγ

(1)) = 0.

The rest of this subsection is dedicated to the proof of the following propo-
sition.

Proposition 1.2.5. The set U(X) ⊆ Stab(X) of all stability conditions on X
such that for every point x ∈ X the sheaf k(x) is stable is given by the following

disjoint union of G̃L
+
(2,R)-orbits

U(X) = σ+G̃L
+
(2,R)︸ ︷︷ ︸

=: U+(X)

∪ ∪α>1σαG̃L
+
(2,R)︸ ︷︷ ︸

=: U0(X)

∪ σ−G̃L
+
(2,R)︸ ︷︷ ︸

=: U−(X)

.
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Remark. The maximal real dimension of Stab(X) is less or equal dimR(N (X)⊗
C) = 4. Since the GL+(2,R)-orbits of Z+ and Z− are of real dimension 4, the
orbits U+(X) and U−(X) are open in Stab(X) and of real dimension 4. The

G̃L
+
(2,R)-orbit of σα is two-dimensional, and the family (σα)α>1 varies con-

tinuously since the slicing Pα is constant and the central charge Zα depends
continuously on α. Therefore, U0(X) is of real dimension 3. One should imag-
ine the real hyperplane U0(X) as the boundary between the open sets U+(X)
and U−(X) as we will see in the next subsection.

In order to prove this proposition, we need the following important lemma.

Lemma 1.2.6 ([7], Lemma 6.1). Suppose σ = (Z,P) ∈ Stab(X) is a stability
condition on X such that for each point x ∈ X the sheaf k(x) is stable in σ of
phase 1. Let E be an object of Db(X).

(a) if E ∈ P((0, 1]) then the cohomology sheaves Hi(E) vanish unless i ∈
{−1, 0}, and, moreover, the sheaf H−1(E) is torsionfree,

(b) if E ∈ P(1) is stable then either E = k(x) for some x ∈ X, or E[−1] is a
locally-free sheaf,

(c) if E ∈ Coh(X) is a sheaf on X then E ∈ P((−1, 1]).

Proof. The only crucial point in the proof of Lemma 6.1 in [7] is the requirement
of a finite locally-free resolution for every coherent sheaf on X. Such a resolution
exists in the projective case. Due to a result of [36], we can find a finite locally-
free resolution of a coherent sheaf even on a non-projective compact complex
surface.

Corollary 1.2.7 ([7], Proposition 6.2). Suppose σ = (Z,P) ∈ Stab(X) is a
stability condition on X such that for each point x ∈ X the sheaf k(x) is stable
in σ of phase one. Then, the categories

T ′ := Coh(X) ∩ P((0, 1]) and F ′ := Coh(X) ∩ P((−1, 0])

form a torsion pair in Coh(X), i.e.

1. Hom(T ′,F ′) = 0 and

2. for every E ∈ Coh(X) there is a short exact sequence
0 → T → E → F → 0 with T ∈ T ′ and F ∈ F ′.

Furthermore, P((0, 1]) is the corresponding tilt, i.e. P((0, 1]) is the full subcat-
egory of Db(X) with objects {E ∈ Db(X)|H0(E) ∈ T ′,H−1(E) ∈ F ′,Hi(E) =
0 otherwise }.

Proof. The first property of the pair (T ′,F ′) follows from the definition of a
slicing. Due to (c) of the previous lemma, there is a triangle T → E → F → T [1]
with T ∈ P((0, 1]) and F ∈ P((−1, 0]). We apply the cohomology functor to



1.2. STABILITY CONDITIONS ON GENERIC K3 SURFACES 15

this triangle. Using (a) of the lemma and E ∈ Coh(X), we obtain the exact
cohomology sequence

0 → H−1(T ) → 0 → 0 → H0(T ) → E → H0(F ) → 0 → 0 → H1(F ) → 0 .

Hence, T ∼= H0(T ) ∈ T ′, F ∼= H0(F ) ∈ F ′ and the triangle gives the required
short exact sequence in Coh(X).
In order to prove the last statement, we denote the heart {E ∈ Db(X)|H0(E) ∈
T ′,H−1(E) ∈ F ′,Hi(E) = 0 otherwise } of the tilted t-structure by P ′ and
mention that T ′ ⊆ P((0, 1]) and F ′[1] ⊆ P((0, 1]). Since every object E ∈ P ′ is
an extension of the object H0(E) ∈ T ′ by H−1(E)[1] ∈ F ′[1], and since P((0, 1])
is closed under extension, we get P ′ ⊆ P((0, 1]). It is a standard argument to
conclude P ′ = P((0, 1]) because both abelian subcategories are the hearts of
bounded t-structures.

Finally, we prove the Proposition 1.2.5.

Proof. Suppose σ = (Z,P) is a stability condition such that all the skyscraper
sheaves k(x) are stable. By Corollary 1.2.3 the phase does not depend on the
point x ∈ X. There are three cases.

1. det(Z) > 0 : After applying some element (g, f) ∈ G̃L
+
(2,R) to σ we can

assume Z(r, s) = −s + ir, and all sheaves k(x) are stable of phase one.
For E ∈ Coh(X) ∩ P((−1, 0]) we get rk(E) = 0. On the other hand, all
torsion sheaves are contained in P(1). Hence, E = 0. With the notation
of the last corollary we get F ′ = 0 and, therefore, T ′ = Coh(X). Thus,
P((0, 1]) = Coh(X), i.e. σ = σ+.

2. det(Z) < 0 : After applying some element (g, f) ∈ G̃L
+
(2,R) to σ we

can assume Z(r, s) = −s − ir, and all sheaves k(x) are stable of phase
one. For E ∈ Coh(X) ∩ P((0, 1]) we get rk(E) = 0 and E must be
a torsion sheaf. The latter are contained in the intersection. Therefore,
T ′ = { torsion sheaves } and we obtain F ′ = { torsionfree sheaves }. Thus,
P((0, 1]) = Coh](X), i.e. σ = σ−.

3. det(Z) = 0 : After applying some element (g, f) ∈ G̃L
+
(2,R) to σ we

can assume Z(r, s) = −s + αr, and all sheaves k(x) are stable of phase
one. Since k(x) ∈ P(1) ∀x ∈ X, the torsion sheaves are contained in
the intersection T ′ = Coh(X) ∩ P((0, 1]) = Coh(X) ∩ P(1). If E ∈ T ′
is not a torsion sheaf, there is an epimorphism E → k(x) in Coh(X)
with nontrivial kernel E′ for some point x ∈ X. This map is also an
epimorphism in P(1) since k(x) is stable. Therefore, the kernel E′ is
also in T ′ and, of course, not a torsion sheaf. But Z(E′) = Z(E) −
Z(k(x)) = Z(E) + 1. Repeating this argument with E′ if necessary, we
obtain some Ẽ ∈ T ′ with Z(Ẽ) > 0 which is a contradiction. Hence,
T ′ = { torsion sheaves }, and as in the second case we conclude P((0, 1]) =
Coh](X). Looking at the previous picture, we see Z(E) < 0 for all E ∈
Coh](X) if and only if α > 1. Thus, σ = σα.
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1.2.3 The space Stab(X)

This section contains the full classification of all stability conditions on Db(X).

Lemma 1.2.8. The subspace U(X) ⊆ Stab(X) is connected.

Proof. Version 1: Since G̃L+(2,R) acts continuously on Stab(X), U+(X) and
U−(X) are connected. We show that every neighbourhood of σα meets U+(U)
and U−(U), and the assertion follows. Since the central charge of a stability
condition depends only on the Mukai vector, the set {k(x) |x ∈ X} of sheaves
has bounded mass. See [7] Definition 9.1 for the definition of a set with bounded
mass. Hence, we can apply Corollary 9.4 of [7] because k(x) has primitive Mukai
vector. Since all the sheaves k(x) are stable in σα, they must be stable in some
neighbourhood of σα in Stab(X) (use Corollary 9.4 in [7]). The slicing underly-
ing σα is independent of α and the central charge Zα depends continuously on
α. Thus, (σα)α>1 is a continuous family of stability conditions, and since the
two-dimensional G̃L+(2,R)-orbits are connected, the set U0(X) is connected as
well and of dimension three. Since Stab(X) has an even real dimension, there
must be stability conditions σ1 = (Z1,P1) and σ2 = (Z2,P2) in this neighbour-
hood of σα with detZ1 > 0 and detZ2 < 0. Therefore, each neighbourhood
meets U+(X) and U−(X) by Proposition 1.2.5.

Version 2: For a fixed α > 1 we construct a continuous path in U(X) from

σ− over σα to σ+. Since all G̃L
+
(2,R)-orbits are connected, the assertion fol-

lows from Proposition 1.2.5. Let us consider

σ(t) =


(
Z(t)(r, s) = −s+ α(1− |t|)r + itr,Coh](X)

)
for t ∈ [−1, 0],(

Z(t)(r, s) = −s+ α(1− |t|)r + itr,Coh(X)
)

for t ∈ (0, 1]

=



(
− s− ir,Coh](X)

)( 1 −α(1− |t|)
0 −t

)−1

, f−t

 for t ∈ [−1, 0),(
− s+ αr,Coh](X)

)
for t = 0,(

− s+ ir,Coh(X)
)( 1 α(1− |t|)

0 t

)−1

, f+
t

 for t ∈ (0, 1].

for suitable continuous functions f− : R × [−1, 0) 3 (s, t) 7→ f−t (s) ∈ R and
f+ : R × (0, 1] 3 (s, t) 7→ f+

t (s) ∈ R, both increasing and 1-periodic with
respect to s. Using the second description, we see that σ(t) is in Stab(X) for all
t ∈ [−1, 1], and σ(·) is continuous at least on [−1, 0)∪(0, 1]. Let us now consider
the case t↗ 0. We have Pα(1) = Coh](X) = P−((0, 1]) = P−([1/4, 1]), and for
OX [1] ∈ P−(1/4) we get Z(t)(OX [1]) = 1− α(1− |t|)− it −→ 1− α for t↗ 0.
Hence, φ(t)(OX [1]) ↗ 1, and of course φ(t)(k(x)) = 1. Because of φ(t)(OX [1]) ≤
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φ(t)(E) ≤ φ(t)(k(x)) for every semistable E ∈ Coh](X) = P−([1/4, 1]), there
exists for all ε > 0 a real number δ > 0 such that for all t ∈ (−δ, 0]

Pα(1) = P−([1/4, 1]) ⊆ P(t)([1− ε, 1]) ⊆ P(t)([1− ε, 1 + ε])

which is equivalent to d(Pα,P(t)) ≤ ε, where d is the metric on the space of
slicings introduced by Bridgeland in Lemma 6.1 of [8]. Since limt→0 Z

(t) = Zα,
we obtain limt↗0 σ(t) = σα. Similar, Pα(1) = P+([1, 2)) = P+([1, 7/4]), and for
OX [1] ∈ P+(7/4) we get Z(t)(OX [1]) = 1− α(1− |t|)− it −→ 1− α for t↘ 0.
Hence, φ(t)(OX [1]) ↘ 1, and of course φ(t)(k(x)) = 1. Since φ(t)(k(x)) ≤
φ(t)(E) ≤ φ(t)(OX [1]) for every semistable E ∈ Coh](X) = P+([1, 7/4]), there
exists for all ε > 0 a real number δ > 0 such that for all t ∈ (−δ, 0]

Pα(1) = P+([1, 7/4]) ⊆ P(t)([1, 1 + ε]) ⊆ P(t)([1− ε, 1 + ε])

which is equivalent to d(Pα,P(t)) ≤ ε. Since limt→0 Z
(t) = Zα, we obtain

limt↘0 σ(t) = σα. Thus, σ(·) : [−1, 1] −→ U(X) is a continuous path and the
assertion follows.

Theorem 1.2.9. The topological space Stab(X) is connected and given by

Stab(X) =
⋃
k∈Z

T k U(X)

=
⋃
k∈Z

T k
(
σ+G̃L

+
(2,R) ∪ ∪α>1σαG̃L

+
(2,R)

)
,

and all G̃L
+
(2,R)-orbits in the last equation are disjoint.

Proof. The first equation follows from Lemma 1.2.4 and Proposition 1.2.5. Since
U−(X) = T−1U+(X), the second equation is a consequence of the first equa-
tion and the description of U+(X) and U0(X). Using the first equation and
T kU(X) ∩ T k−1U(X) = T k(U(X) ∩ T−1U(X)) ⊇ T kU−(X) 6= ∅ for all k ∈ Z,
we obtain that the space Stab(X) is connected because U(X) is connected by
the previous lemma. For the last statement of the theorem we consider the case

T pσα′G̃L
+
(2,R) ∩ T qσαG̃L

+
(2,R) 6= ∅

with α, α′ > 1. After applying T−p and some (g′, f ′) ∈ G̃L
+
(2,R) we may

assume σα′ = Tmσα(g, f). Since the orbits of the corresponding central charges
are parametrized by α > 1, and T maps the orbit of Zα onto the orbit of Z1/α,
we conclude m = 2k and α = α′. Hence, g−1Zα = Zα, i.e. g is contained in the
stabilizer of Zα. Using the covering map G̃L+(2,R) 3 (g, f) 7−→ g ∈ GL+(2,R),
the group G̃L+(2,R) acts on HomZ(N (X),C) as well, and the stabilizer of
every stability condition σ is a normal subgroup of the stabilizer of its central
charge Z. The quotient group of these stabilizers is freely generated by the
pair (id, f(t) = t + 2) which acts like the double shift functor [2] on Stab(X).
Therefore, we can substitute the action of (g, f), which is in the stabilizer of Zα,
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by the action of some shift functor [2l]. The case σα = T 2k ◦ [2l]σα can only
occur for k = l = 0. Indeed, due to σα = T 2k ◦ [2l]σα, the object T 2k(k(x))[2l] is
stable in σα of phase 1. But Pα(1) = Coh](X) contains only k(x) and T (k(x)),
as a direct calculation of Tm(k(x)) shows, and T (k(x)) is not stable in Pα(1).
Thus, the orbits of T kσα are disjoint for different k and different α. In the same
way one shows that the orbits of T kσ+ are disjoint for different k.

Let us denote the image of the map π : Stab(X) 3 σ = (Z,P) 7−→ Z ∈
HomZ(N ,C) by W. Since π is a local homeomorphism, W is open. We aim to
show that π : Stab(X) →W is the universal cover of W.

Proposition 1.2.10. The map π : Stab(X) →W is a covering.

Proof. Let σ = (Z,P) ∈ Stab(X) and W ⊆ W be a sufficiently small neigh-
bourhood of Z in W. Since π is a local homeomorphism, there is a small
neighbourhood V ⊆ Stab(X) of σ in Stab(X) such that π : V → W is an iso-
morphism. By the definition of the topology on Stab(X), we can choose V so
small that

|φ−σ1
(k(x))− φ−σ2

(k(x))| < 1/2 and |φ+
σ1

(k(x))− φ+
σ2

(k(x))| < 1/2

for all σ1, σ2 ∈ V , where φ+
σi

(k(x)) and φ−σi
(k(x)) denote the biggest and the

smallest phase of a semistable factor of k(x) with respect to the stability con-
dition σi. See section 6 in [8] for more details.
For every stability condition σ = (Z,P) we get

π−1(Z) ∩
(
σ G̃L+(2,R)

)
= σ ·

(
G̃L

+
(2,R)σ \ G̃L

+
(2,R)Z

)
= {[2l]σ | l ∈ Z}

as we have seen in the proof of the previous theorem. Using this and the same
theorem, we obtain

π−1W =
⋃

k,l∈Z
T 2k ◦ [2l]V π−−→W,

and π : T 2k◦[2l]V →W is an isomorphism. We have to show that the union over
k and l is a disjoint union. Let us take some σ′ = T 2k◦[2l](σ′′) ∈ V ∩(T 2k◦[2l]V ).
Since the intersection of the two open sets is open, we can assume detZσ′ 6= 0.
Replacing V by Tm · V · (g, f) for suitable m ∈ Z and (g, f) ∈ G̃L

+
(2,R) and

correspondingly for W , we can assume σ+ = σ′ = T 2k ◦ [2l](σ′′) by Theorem
1.2.9. Since σ′′ is contained in the neighbourhood V of σ+, we can assume
σ′′ ∈ σ+G̃L

+
(2,R) because the orbit is open. Therefore, k(x) is stable in σ′′

and because of φσ+(k(x)) = 1, the phase φσ′′(k(x)) is contained in the interval
(1/2, 3/2) due to the upper inequalities. The central charges of σ′′ and σ+

are the same and we conclude φσ′′(k(x)) = 1. Using σ+ = T 2k ◦ [2l](σ′′), we
conclude that T 2k ◦ [2l](k(x)) is stable in σ+ of phase one. This is only possible
for k = l = 0 because T 2k ◦ [2l](k(x)) is not a sheaf for (k, l) 6= (0, 0). Thus, the
upper union is a disjoint union.
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Lemma 1.2.11. The fundamental group π1(W) of W is Z⊕ Z.

We will prove this lemma in the next subsection by giving a nice model for W.

Corollary 1.2.12. The projection π : Stab(X) → W is the universal cover of
W and the group of deck transformations is ZT 2 ⊕ Z[2] ⊆ Aut(Db(X)).

Proof. As we have seen in the proof of Proposition 1.2.10, the group G :=
ZT 2 ⊕ Z[2] ⊆ Aut(Db(X)) is the group of deck transformations of the covering
π : Stab(X) →W. Furthermore, there is the short exact sequence

0 −→ π∗(π1(Stab(X))) −→ Nπ∗(π1(Stab(X))) −→ G −→ 0,

where Nπ∗(π1(Stab(X))) is the normalizer of π∗(π1(Stab(X))) in π1(W) (see
[18], Proposition 1.39). Since the group π1(W) = Z ⊕ Z is abelian, we get
Nπ∗(π1(Stab(X))) = Z ⊕ Z, and because of G ∼= Z ⊕ Z, we conclude that
π∗(π1(Stab(X))) = 0. The map π∗ : π1(Stab(X)) → π1(W) is injective and
π1(Stab(X)) = 0 follows.

1.2.4 Autoequivalences of a generic K3 surface

This subsection is devoted to the calculation of the group of autoequivalences
Aut(Db(X)) of Fourier–Mukai type. In contrast to the algebraic case, not every
autoequivalence of Db(X) is a Fourier–Mukai transformation. We denote by
O+(H∗(X,Z)) the group of Hodge isometries preserving the orientation of the
positive 4-plane

P = spanR(Re[σ], Im[σ], [ω], (1, 0, 1)) ⊆ H∗(X,Z),

where [ω] is a fixed Kähler class and σ is a fixed holomorphic symplectic 2-
form on X. Similarly, O+(H2(X,Z)) is the group of Hodge isometries fixing
H0(X,Z)⊕H4(X,Z) and preserving the orientation of the positive 3-plane

P ∩H2(X,Z) = spanR(Re[σ], Im[σ], [ω]),

and O(N (X)) is the orthogonal group of N (X) = H0(X,Z)⊕H4(X,Z).

Lemma 1.2.13. Using the notation ˆ[1] := −id ∈ O+(H∗(X,Z)) and T̂ = sδ ∈
O+(H∗(X,Z)), where sδ(x) = x + 〈x, δ〉δ is the reflection in the plane δ⊥ ⊇ P
with δ = v(OX) = (1, 0, 1), we obtain

O+(H∗(X,Z)) = O+(H2(X,Z)) ⊕ Z/2Z · T̂ ⊕ Z/2Z · ˆ[1]
∼= O+(H2(X,Z)) ⊕ O(N (X)).

Proof. Since every Hodge isometry preserves C · [σ], it also preserves the ex-
tended Neron–Severi group H∗(X,Z) ∩ [σ]⊥ = H0(X,Z) ⊕ H4(X,Z) = N (X).
Restriction to N (X) yields the following short exact sequence

0 −→ O+(H2(X,Z)) −→ O+(H∗(X,Z)) −→ O(N (X)) .

Since the orthogonal group O(N (X)) consists of the following four transforma-
tions
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1. id : (r, s) 7→ (r, s),

2. ρ1 : (r, s) 7→ (−r,−s),

3. ρ2 : (r, s) 7→ (−s,−r),

4. ρ1 ◦ ρ2 : (r, s) 7→ (s, r),

it is generated by the images of [1̂] and T̂ , Thus, the last map of the exact
sequence is surjective. A splitting of the sequence is given by ρ1 7−→ ˆ[1] and
ρ2 7−→ T̂ .

There is a natural map Aut(X) −→ O+(H2(X,Z)) for every K3 surface X
because for every f ∈ Aut(X) the induced map f∗ on H2(X,Z) is a Hodge
isometry preserving the orientation of the 3-plane. Due to the Strong Global
Torelli Theorem (see e.g. [10]), this map is injective. The following lemma shows
that the subgroup Aut(X) of Aut(Db(X)) is as big as possible. In contrast to
this, the subgroup Pic(X) of Aut(Db(X)) is as small as possible.

Lemma 1.2.14. The natural map Aut(X) −→ O+(H2(X,Z)) is an isomor-
phism, i.e. Aut(X) ∼= O+(H2(X,Z)).

Proof. It remains to show the surjectivity of the map. Take Ψ ∈ O+(H2(X,Z)).
Since for a generic K3 surface the Kähler cone coincides with one connected
component of the positive cone {c | c2 > 0, c · [σ] = 0} ⊆ H1,1(X,R), the
transformation Ψ maps a Kähler class [ω] onto a Kähler class or its negative.
The latter case cannot occur since Ψ preserves the orientation of the 3-plane
spanR(Re[σ], Im[σ], [ω]). Due to the Strong Global Torelli Theorem, a Hodge
isometry Ψ ∈ O+(H2(X,Z)) which maps a Kähler class onto a Kähler class is
of the form Ψ = f∗ for an unique isomorphism f : X ∼= X.

Proposition 1.2.15. Aut(Db(X)) = ZT ⊕ Z[1]⊕Aut(X).

Proof. Let Φ be an autoequivalence of Fourier–Mukai type and let us consider
Φ(σ+). By Lemma 1.2.4 there are integers m and n such that for every point
x ∈ X the sheaf k(x) is stable in σ′ := Tm ◦ [n] ◦ Φ (σ+) of the same phase
φ′(k(x)) ∈ (0, 1]. Using detZ ′ 6= 0 for the central charge Z ′ of σ′ and Proposition
1.2.5, we can assume detZ ′ > 0 for a suitable choice of m. The autoequivalence
Ψ := Tm ◦ [n] ◦ Φ is also of Fourier–Mukai type. Due to Mukai [30] adapted to
the non-projective case, every Fourier–Mukai autoequivalence induces a Hodge
isometry on H∗(X,Z) and, therefore, an isometry on the extended Neron–Severi
group H∗(X,Z)∩[σ]⊥ = H0(X,Z)⊕H4(X,Z) = N (X). The four group elements
of O(N (X)) are given in the proof of Lemma 1.2.13, and we conclude that
Z ′ := ZΨ(σ+) = Z+ ◦Ψ−1 is one of the following four expressions

Z ′(r, s) = −s+ ir , Z ′(r, s) = s− ir , Z ′(r, s) = r − is , Z ′(r, s) = −r + is.

Because of φ′(k(x)) ∈ (0, 1] and detZ ′ > 0, we can exclude the last three cases.
In the first case we get φ′(k(x)) = 1, and since Ψ(k(x)) is also stable in σ′ of
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phase one, we see that Ψ(k(x)) = k(f(x)) for a suitable bijective map f on the
set X. It can be shown (see e.g. [20], Corollary 5.22) that f : X −→ X is an
automorphism of the complex manifold X and Ψ is the composition of f∗ and
a line bundle twist. But OX is the only line bundle on X. Thus, Ψ = f∗.

It can be shown that the group Aut(X) is either trivial or isomorphic to Z (see
[27], Theorem 3.4 or [33], Theorem 1.5). Combining the previous two lemmas
with the proposition, we obtain the following corollary.

Corollary 1.2.16. On a generic K3 surface there is the short exact sequence
of groups

0 −→ ZT 2 ⊕ Z[2] −→ Aut(Db(X)) −→ O+(H∗(X,Z)) −→ 0.

1.2.5 A generalization of Stab(X)

In this subsection we follow a proposal of D. Huybrechts in order to general-
ize the notion of a stability condition. The reason for this is to connect the
space Stab(X) of stability conditions with the complexified Kähler cone as ex-
pected from physics. The notion of a generalized Calabi–Yau structure is very
important in that approach.

Definition 1.2.17 ([19], Definition 1.1). A generalized Calabi–Yau structure
on an oriented four-dimensional manifold M is a closed even form ϕ ∈ A2∗

C (M)
such that

〈ϕ,ϕ〉 = 0 and 〈ϕ, ϕ̄〉 > 0 .

In this definition we extended the Mukai pairing to the level of forms. So
〈ϕ, ϕ̄〉 > 0 means that 〈ϕ, ϕ̄〉 ∈ A4

R(M) defines the given orientation of M . If
X is a K3 surface, every holomorphic symplectic 2-form σ ∈ A2,0

C (X) defines a
generalized Calabi–Yau structure ϕ = σ.

Definition 1.2.18 ([19], Definition 2.1). Let ψ be a generalized Calabi–Yau
structure on a four-dimensional manifold M . A generalized Calabi–Yau struc-
ture ϕ on M is called a generalized Kähler structure for ψ if

〈ψ,ϕ〉 = 〈ψ̄, ϕ〉 = 0.

If such a generalized Kähler structure exists, we call ψ Kähler and (M,ψ) a
generalized Kähler manifold. The cohomology class [ϕ] ∈ H0(M,C)⊕H2(M,C)⊕
H4(M,C) associated to ϕ is called the generalized Kähler class of ϕ.

In the following (M,ψ) should be a K3 surface (X,σ). The form σ is only
determined up to scalars, but the notion of a generalized Kähler structure for σ
is independent of the choice. Due to this, we can speak about generalized Kähler
structures on a K3 surface X. Each generalized Kähler structure on X has the
form ϕ = λ exp(B + iω) with λ ∈ C∗ and closed real (1, 1)-forms B and ω with
ω2 = ω ∧ ω > 0. See [19], Example 2.2.i for details. We denote by Kg

X the set
of all generalized Kähler classes on X. Note that Kg

X is an open subset of the
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quadric [ϕ]2 = 0 in the complex vector subspace {[σ], [σ̄]}⊥ ∈ H2∗(X,C). The
quadric is non-singular because the Mukai pairing is non-degenerate. Hence,
Kg

X is a complex manifold. Following a proposal of D. Huybrechts we give a
new definition of a stability condition.

Definition 1.2.19. A generalized stability condition on X is a pair (ϕ,P),
where

1. ϕ ∈ H0(M,C)⊕H2(M,C)⊕H4(M,C) is a generalized Kähler class on X,
and

2. the pair (Z(ϕ),P) with Z(ϕ)(v(E)) = 〈ϕ, v(E)〉 ∀E ∈ Db(X) is an ordinary
stability condition on X.

The set of all generalized stability conditions is denoted by Stab(X)g and πg :
Stab(X)g 3 (ϕ,P) 7−→ ϕ ∈ Kg

X is the natural forgetful map.

Note that ϕ is from now on a cohomology class and not a closed form. We have
the following holomorphic map

Θ : Kg
X 3 ϕ 7−→ Z(ϕ) = 〈ϕ, · 〉|N (X) ∈ HomC(N (X)⊗ C,C) = (N (X)⊗ C)∨.

It is easy to see that Stab(X)g is the fibre product of π : Stab(X) → (N (X)⊗
C)∨ and Θ : Kg

X → (N (X) ⊗ C)∨. To be precise, there is the following fibre
product diagram.

Stab(X)g //

πg

��

Stab(X)

π

��
Kg

X
Θ // (N (X)⊗ C)∨

Since π is a local homeomorphism, πg is also a local homeomorphism. Hence,
Stab(X)g has a natural structure of a complex manifold such that all maps
are holomorphic. Since dimCKg

X = 1 + 20 = 21 is independent of the given
complex structure on X, the dimension of Stab(X)g might also be independent
and, perhaps, of the ‘right’ dimension 21. In general, it is not clear whether
each central charge of a stability condition is of the form Z(ϕ) for a suitable ϕ ∈
Kg

X . Therefore, one can loose some stability conditions by the step Stab(X) ;

Stab(X)g. On the other hand, it may happen that for ϕ ∈ Kg
X there is no

stability condition σ ∈ Stab(X) with central charge Θ(ϕ) = Z(ϕ). In the case
of a generic K3 the latter question will be answered by the next proposition.

Proposition 1.2.20. The map πg : Stab(X)g → Kg
X has the image Kg

X \ δ⊥,
where δ = v(OX) ∈ N (X) is one of the two root vectors in the lattice N (X).
In other words, for every ϕ ∈ Kg

X with 〈ϕ, δ〉 6= 0 there is a stability condition
in Stab(X) with central charge Z(ϕ).

The other root vector is −δ which gives no further restrictions.
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Proof. Due to a remark given earlier, a class ϕ ∈ Kg
X is of the form λ exp(B+iω)

with λ ∈ C∗ and B,ω ∈ H1,1(X,R) with ω2 > 0. If σ ∈ Stab(X) has the central
charge Θ(exp(B+iω)), then σ ·(λ−1, f(t) = t−arg(λ)/π) has the central charge
Θ(ϕ). Hence, we can assume λ = 1. In that case Z(ϕ) is given by the matrix

Z(ϕ) '
(

ω2−B2

2 −1

−〈B,ω〉 0

)
.

There are three cases:

1. 〈B,ω〉 < 0, i.e. detZ(ϕ) > 0. In that case Z(ϕ) is contained in the
GL+(2,R)-orbit of Z+ and Z(ϕ) is the central charge of a stability condi-
tion in U+(X).

2. 〈B,ω〉 > 0, i.e. detZ(ϕ) < 0. Similar to the previous case we can find a
stability condition in U−(X) with central charge Z(ϕ).

3. 〈B,ω〉 = 0, i.e. detZ(ϕ) = 0. Since there is only one positive direction in
H1,1(X,R) and ω2 > 0, we get B2 ≤ 0. Therefore, α := ω2−B2

2 > 0. If
α > 1, Z(ϕ) = Zα and σα has the central charge Z(ϕ). If α ∈ (0, 1), the
function Z(ϕ)(r, s) = −s+αr = α(− s

α + r) is contained in the GL+(2,R)-
orbit of T (Z1/α)(r, s) = −(−r) + (1/α)(−s) = −s/α+ r since α ∈ R>0

∼=
R>0 ·id ⊆ GL+(2,R). Thus, Z(ϕ) is a central charge of a stability condition

in the G̃L
+
(2,R)-orbit of Tσ1/α. The case α = 1 was excluded by the

assumption Z(ϕ)(OX) = 〈ϕ, v(OX)〉 6= 0. This assumption is necessary
because of Lemma 1.2.2, OX is stable in any stability condition σ = (Z,P)
and, therefore, Z(OX) 6= 0.

In the case of a generic K3 surface we do not loose any stability condition as
the following lemma shows.

Lemma 1.2.21. For every ω0 ∈ H1,1(X,R) with ω2
0 = 1 the map

ϑ : C∗ ×H∗ 3 (λ, z) 7−→ 〈λ exp(zω0), · 〉|N (X) ∈ (N (X)⊗ C)∨

is a biholomorphic map onto its image which is W = π(Stab(X)). Here H∗ :=
{z ∈ C| Im z > 0 } \ {

√
2i} is the upper half plane without

√
2i.

If we write zω0 = B + iω, we see that ϕ = λ exp(zω0) is indeed a generalized
Kähler class. The assumption z 6=

√
2i is necessary for ϕ 6⊥ δ and the restriction

Im z > 0 is important for injectivity as we will see in the proof.

Proof. The proof of the last proposition shows imϑ ⊆ W. Therefore, ϑ(λ, z) =
Z is the central charge of some stability condition σ = (Z,P) ∈ Stab(X).
An easy calculation shows λ = −Z(k(x)) and λz2/2 = Z(T (k(x))), and since
arg(z) ∈ (0, π), the pair (λ, z) is completely determined by its image Z. This
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proves the injectivity of ϑ. In order to show the surjectivity imϑ = W, we take
a stability condition σ = (Z,P) ∈ Stab(X) and consider the pair(

−Z(k(x)),

√
−2Z(T (k(x)))

Z(k(x))

)
,

where we use the root with nonnegative imaginary part. We claim that this pair
is in C∗ ×H∗. Indeed, Z(k(x)) 6= 0 since Tm(k(x)) is stable in σ for a suitable
m ∈ Z, and T acts as an isomorphism on N (X). First of all, the root is not real.
Otherwise, Z(T (k(x))) = αZ(k(x)) with α < 0. Because of v(k(x)) = (0, 1) and
v(T (k(x))) = (−1, 0), we get

Z(r, s) = Z
(
s v(k(x))− r v(T (k(x)))

)
= Z(k(x))(s− αr) .

After applying some (g, f) ∈ G̃L
+
(2,R), we can assume Z(k(x)) = −1 and

Z(r, s) = −s+ αr with α < 0. The only GL+(2,R)-orbits in W with detZ = 0
are those with α ∈ (0, 1) ∪ (1,∞) due to Theorem 1.2.9 and the calculation of
T (Z1/α) above. This is a contradiction, and the root must lie in the upper half
plane. The root is not

√
−2. Otherwise, Z(T (k(x))) = Z(k(x)) and the previous

calculation would give a stability condition with central charge Z(r, s) = −s+ r
which is also impossible since α 6= 1. Hence, the pair is indeed contained in the
set C∗ × H∗. Obviously, the map ϑ is holomorphic. Since every holomorphic
bijective map is biholomorphic, the assertion follows.

Corollary 1.2.22 (see Lemma 1.2.11). The fundamental group of W is Z⊕Z.

Since the set {ω ∈ H1,1(X,R)|ω2 > 0 } consists of two components, the space
Kg

X is not connected. One can fix an oriented positive two-plane P in H2∗(X,R)
perpendicular to the real positive oriented plane (Re[σ], Im[σ]) spanned by the
real and the imaginary part of the class [σ] ∈ H2,0(X,C) of a holomorphic
symplectic form. For any generalized Kähler class ϕ the orthogonal projection
of the oriented positive plane (Reϕ, Imϕ) onto P is an isomorphism since there
are only 4 positive directions in H2∗(X,R). Let us denote by Kg

X
+ the open

subset in Kg
X consisting of those ϕ for which the orthogonal projection onto

P preserves the orientation. The set Kg
X

+ is connected and the restriction
Θ : Kg

X
+\δ⊥ →W is still surjective. This follows from the previous lemma after

replacing ω0 by −ω0 if necessary. Finally, we obtain the following description
of the space Stab(X)g+ = (πg)−1(Kg

X
+) similar to Theorem 1.1.5.

Proposition 1.2.23. In the diagram

Stab(X)g+ //

πg

��

Stab(X)

π

��
Kg

X
+ \ δ⊥ Θ // W
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all maps are surjective and all spaces are connected. Furthermore, π and πg are
universal covering maps and dimC Stab(X)g+ = 21 as well as dimC Stab(X) =
2.

Proof. The universal lifting property of a universal cover is stable under base
change. Thus, if Stab(X)g+ is connected, πg is a universal covering map. To
see the connectivity of Stab(X)g+, we choose two points (ϕ,P) and (ϕ′,P ′)
in Stab(X)g+. Using the universal lifting property of πg and the connectiv-
ity of Kg

X
+ \ δ⊥, we can construct two paths in Stab(X)g+ starting in (ϕ,P)

respectively (ϕ′,P ′) with endpoint in the fibre over exp(iω0) ∈ Kg
X

+ \ δ⊥ for
a suitable ω0 ∈ H1,1(X,R) with ω2

0 = 1. Using Lemma 1.2.21, we see that
(πg)−1

(
{λ exp(zω0) | λ ∈ C∗, z ∈ H∗}

)
is isomorphic to the connected space

Stab(X). Since the endpoints of the two paths are contained in this connected
subspace, they can be connected by a third path. Thus, Stab(X)g+ is connected.
The other assertions follow from the remarks before.

Note that the dimension of the ‘stringy Kähler moduli space’(
Aut(Db(X))\Stab(X)g+)

/C∗

is 20 = dimC H1,1(X,C) which is the dimension of the complexified classical
Kähler cone.
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1.3 Stability conditions on generic complex tori

In this section we construct stability conditions on generic complex tori of any
dimension d. A complex torus is called generic if

Hp,p(X) ∩H2p(X,Z) = 0 ∀ 0 < p < dimX.

Let U(X) be the set of all numerical locally-finite stability conditions σ = (Z,P)
such that there exist certain real numbers φ and ψ such that k(y) ∈ P(φ) for
all y ∈ X and L ∈ P(ψ) for all L ∈ Pic0(X). We will show that U(X) is a
simply connected component of Stab(X). Furthermore, U(X) can be written
as a disjoint union of G̃L+(2,R)-orbits

U(X) =
⋃

0≤p<d

σ(p) · G̃L+(2,R) ∪
⋃

1≤p<d
γ∈(0,1/2)

σγ
(p) · G̃L+(2,R)

with explicitly given stability conditions σ(p) and σγ
(p). The picture below illus-

trates U(X) and π(U(X)) of a generic complex torus of dimension d = 5.

∼= G̃L+(2,R)

∼= GL+(2,R)

π
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Note that a point in the helix represents a simply connected 2-dimensional sub-
space in the G̃L+(2,R)-orbit of some stability condition, whereas a point in the
annulus below represents a 2-dimensional subspace in the GL+(2,R)-orbit with
the fundamental group Z.
Since the case dimX = 1 has already been studied by Macr̀ı in [25] and
the case dim(X) = 2 by D. Huybrechts, P. Stellari and E. Macr̀ı in [22],
we restrict ourselves to tori of dimension d ≥ 3. In contrast to the case
d ≤ 2 the space U(X) is no longer a covering of its image under the map
π : U(X) 3 σ = (Z,P) 7−→ Z ∈ π(U(X)) ⊆ HomZ(N (X),C). Moreover, in the
case d ≥ 3 it is still open whether or not Stab(X) is connected.
Note that the characterizing condition of U(X) is invariant under the Fourier–
Mukai transform with respect to the Poincaré bundle. Hence, there is a natural
isomorphism U(X) ∼= U(X̂), where X̂ = Pic0(X) is the dual torus.

1.3.1 Sheaves on generic tori

In this subsection we study sheaves on a generic torus X of dimension d ≥ 3.
The following facts and arguments are well known (see e.g. [43] or [44]). The
main result states that on such a torus every reflexive sheaf is locally free and
possesses a filtration whose quotients are line bundles in Pic0(X).

Definition 1.3.1. A compact complex torus X of dimension d is called generic,
if

Hp,p(X) ∩H2p(X,Z) = 0 ∀ 0 < p < d.

As an immediate consequence of the definition we get

• Pic(X) = Pic0(X),

• the support of any torsion sheaf is a finite set of points in X.

The last observation leads to the simple but frequently used formula

Exti(T, F ) = Extd−i(F, T )∨ = Hd−i(X,T ⊗ F∨)∨ = 0 ∀ i < d (1.4)

for a torsion sheaf T and a locally free sheaf F on X. We begin our investigation
of reflexive sheaves with the following lemma.

Lemma 1.3.2. On a generic complex torus X of dimension d ≥ 2 the following
conditions for a coherent sheaf G on X are equivalent.

(a) G is reflexive,

(b) Hom(T,G) = Ext1(T,G) = 0 for all torsion sheaves T .
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Proof. (a) =⇒ (b) For any extension 0 → G → F → T → 0 of a torsion sheaf
T by G we consider the commutative diagram

0 // G
i //

γ o

��

F //

α

��

T //

��

0

0 // G∨∨
i∨∨ // F∨∨ // T ′ // 0

with exact rows and a suitable torsion sheaf T ′. SinceG∨∨ and F∨∨ are reflexive,
the morphism i∨∨ is determined on a complement of a Zariski-closed subset Z
of codimension ≥ 2. If we take Z = supp(T ′), we see that i∨∨ : G∨∨ −→ F∨∨

is an isomorphism. The morphism π := γ−1 ◦ (i∨∨)−1 ◦ α splits our extension.
The vanishing Hom(T,G) = 0 is obvious because G is torsionfree.
(b) =⇒ (a) Like every coherent sheaf, G fits into a short exact sequence

0 −→ S −→ G −→ G∨∨ −→ T −→ 0

with torsion sheaves S and T . Due to our assumption, S = 0 and the result-
ing short exact sequence splits. But the reflexive sheaf G∨∨ has no torsion
subsheaves, hence T = 0 and G is reflexive.

Corollary 1.3.3. Assume X is a generic complex torus of dimension d ≥ 3. If
0 → F1 → F2 → F3 → 0 is a short exact sequence in Coh(X) with a locally free
sheaf F1 and a reflexive sheaf F2, then the sheaf F3 is also reflexive.

Proof. Apply Hom(T,−) to the short exact sequence and use (1.4) and Lemma
1.3.3.

Let ω be a Kähler class and denote as usual the slope∫
X

c1(E) ∧ ωd−1

rk(E)

of a torsionfree sheaf E with µω(E). There is the notion of µω-(semi)stability,
and on a generic torus X of dimension d ≥ 2 every torsionfree sheaf is semistable
with slope µω(E) = 0.
The following important proposition is a special case of a theorem by Bando
and Siu [2].

Proposition 1.3.4. Let X be a generic complex torus of dimension d ≥ 3 with
fixed Kähler metric ω. Then every µω-stable reflexive sheaf F is a line bundle
in Pic0(X).

Proof. (see [2] for more details) Bando and Siu construct a canonical Hermite–
Einstein connection on the restriction of F to an open set on which F is locally
free and whose complement consists of finitely many points. The curvature
is L2-integrable and satisfies the Bogomolov–Lübke inequality on X. Since
c1(F ) = ch2(F ) = 0, this connection is flat outside this finite set of points.
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As points have codimension ≥ 2, this flat connection has no local monodromy
and one can extend the flat bundle to a flat bundle on X. Since F is reflexive,
it coincides with this flat bundle up to isomorphism. The connection on the
stable bundle F corresponds to an irreducible representation of the abelian
fundamental group of X. Thus, F is a line bundle.

Proposition 1.3.5. On a generic complex torus X of dimension d ≥ 3 every
reflexive sheaf is locally free and admits a locally free filtration with quotients in
Pic0(X).

Proof. Since all sheaves have trivial first Chern class, every reflexive sheaf F is
µω-semistable and admits a Jordan–Hölder filtration

0 ⊂ F0 ⊂ F1 ⊂ . . . Fn = F

with stable quotients. We may assume that Fi is reflexive for all 0 ≤ i ≤ n. Due
to the previous proposition F0 ∈ Pic0(X). Furthermore, F1/F0 is reflexive by
Corollary 1.3.3. Hence, F1/F0 ∈ Pic0(X). Since F0 and F1/F0 are locally free,
F1 is also locally free. Now we proceed in this way and obtain the assertion.

Remark 1.3.6. Note that Proposition 1.3.5 implies that for a reflexive sheaf
F there are nontrivial morphisms L1 → F and F → L2 with L1, L2 ∈ Pic0(X).

In order to use these results, we will assume dimX ≥ 3 in the following.

1.3.2 Some stability conditions on generic tori

In this subsection we construct and characterize certain stability conditions on
Db(X). Recall, a stability condition on X consists of a bounded t-structure on
Db(X) and an additive function on the K-group of its heart satisfying certain
properties.
On Db(X) there is the standard t-structure with heart Coh(X) =: Coh(0)(X).
For the construction of other t-structures we follow the method of Happel, Re-
iten, and Smalø using torsion pairs.

Definition 1.3.7. A torsion pair in an abelian category A is a pair of full
subcategories (T ,F) of A with the property HomA(T, F ) = 0 for T ∈ T and
F ∈ F . Furthermore, every object E ∈ A fits into a short exact sequence

0 −→ T −→ E −→ F −→ 0

for some objects T ∈ T and F ∈ F .

For the abelian category Coh(X) the two subcategories T := {torsion sheaves}
and F := {torsionfree sheaves} form a torsion pair. The following lemma illus-
trates the importance of this notion.
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Lemma 1.3.8 ([16], Proposition 2.1). Suppose A is the heart of a bounded
t-structure on a triangulated category D and let us denote by H : D → A the
cohomology functor with respect to this t-structure. For every torsion pair (T ,F)
in A the full subcategory

A] = {E ∈ D | Hi(E) = 0 for i /∈ {−1, 0},H−1(E) ∈ F and H0(E) ∈ T }

is the heart of a bounded t-structure on D.

Using our torsion pair on Coh(X), we obtain a new t-structure on Db(X) whose
heart Coh(X)] =: Coh(1)(X) consists of complexes E of length two with a tor-
sion sheaf H0(E) and a torsionfree sheaf H−1(E).
We claim that on a generic torus X of dimension d ≥ 3 the pair T(1) =
T = {torsion sheaves} and F(1) = {locally free sheaves}[1] is a torsion pair in
Coh(1)(X). For a torsion sheaf T and a locally free sheaf F we have Ext1(T, F ) =
0 due to (1.4). Hence it remains to show the existence of a short exact sequence
as in the definition of a torsion pair. For any E ∈ Coh(1)(X) there is a triangle

T −→ H−1(E)[1] −→ F [1] −→ T [1]

with locally free F := H−1(E)∨∨ (use Proposition 1.3.5) and T := F/H−1(E) ∈
T(1). We denote by C the cone of the composition T → H−1(E)[1] → E. From
the octahedron axiom we get the triangle

F [1] −→ C −→ H0(E) −→ F [2]

and conclude C = H0(E)⊕ F [1] since Ext1(H0(E), F [1]) = Ext2(H0(E), F ) =
0. If we define K as the cone of the composition E → C → F [1], we get the
triangle

K[−1] −→ E −→ F [1] −→ K.

Using the associated long exact cohomology sequence in Coh(X) and the def-
inition of F we see K[−1] ∈ T(1) and we are done. By definition the heart
Coh(1)(X)] =: Coh(2)(X) of the new t-structure consists of objects E which fit
into a triangle

(F [1])[1] = F [2] −→ E −→ T

with some torsion sheaf T and some locally free sheaf F . For dim(X) = d > 3
any such triangle splits and we get E = T ⊕F [2]. It is easy to check that T(2) =
T = {torsion sheaves} and F(2) = {locally free sheaves}[2] define a torsion pair
on Coh(2)(X). For every object E of the new abelian category Coh(2)(X)] =:
Coh(3)(X) one has a triangle

(F [2])[1] = F [3] −→ E −→ T

with a torsion sheaf T and some locally free sheaf F . For d > 4 we proceed in
this way. Eventually one has d bounded t-structures with hearts Coh(p)(X), 0 ≤
p < d. In the case 0 < p every object E ∈ Coh(p)(X) fits into a unique triangle

F [p] −→ E −→ T
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with some torsion sheaf T = H0(E). The sheaf F = H−p(E) is torsionfree and,
moreover, locally free for p ≥ 2. In the case 2 ≤ p < d − 1 the extension is
trivial.

Lemma 1.3.9. For every 0 ≤ p < d the category T of torsion sheaves is an
abelian subcategory of Coh(p)(X), i.e. if f : S → T is a morphism in T and if
we denote the kernel of f in T and in Coh(p)(X) by ker f resp. ker(p) f , then
ker f = ker(p) f and similar for the cokernels.

Proof. Let us denote by Hi
(p) the i-th cohomology functor of the t-structure

corresponding to Coh(p)(X). We assume p ≥ 1 and form the triangle S
f−→ T →

M → S[1]. Then we have H0(M) = coker f and H−1(M) = ker f as well as
H0

(p)(M) = coker(p) f =: C and H−1
(p) (M) = ker(p) f =: K. We form the long

exact cohomology sequence in Coh(X) of the triangle K[1] → M → C → K[2]
and use K,C ∈ Coh(p)(X).

0 −→ H−p(K) −→ H−p−1(M)︸ ︷︷ ︸
=0

−→ 0 −→ H1−p(K) −→ H−p(M)︸ ︷︷ ︸
torsion

−→

H−p(C)︸ ︷︷ ︸
torsionfree

−→ H2−p(K)︸ ︷︷ ︸
torsion

−→ . . . −→ H−2(M)︸ ︷︷ ︸
=0

−→ H−2(C) −→ H0(K)︸ ︷︷ ︸
torsion

−→ H−1(M)︸ ︷︷ ︸
=ker f,torsion

−→ H−1(C) −→ 0 −→ H0(M)︸ ︷︷ ︸
=coker f

−→ H0(C) −→ 0

From this sequence we deduce H−p(K) = 0 and H−p(C) = 0. Hence K ∼=
H0(K) and C ∼= H0(C) and, therefore, K = ker f as well as C = coker f .

Lemma 1.3.10. Any morphism f ∈ Hom(F,G) between torsionfree sheaves
F and G defines a morphism f [1] : F [1] −→ G[1] in Coh(1)(X) and if we
denote by Γ(E) the torsion subsheaf of a sheaf E, we get H−1(ker(1)(f [1])) =
ker f, H0(ker(1)(f [1])) = Γ(coker f), H−1(coker(1)(f [1])) = coker f/Γ(coker f)
as well as H0(coker(1)(f [1])) = 0.

Proof. We imitate the proof of the previous lemma. Let M be defined by the
triangle F [1]

f−→ G[1] → M → F [2]. Thus, H−1(M) = coker f and H−2(M) =
ker f are the only nontrivial cohomology sheaves. The rest of the proof is straight
forward.

Proposition 1.3.11. For 1 ≤ p < d the abelian category Coh(p)(X) is of finite
length, i.e. noetherian and artinian.

Proof. We show that Coh(p)(X) is noetherian. The proof for Coh(p)(X) being
artinian is similar.
Take an infinite sequence E = E0 � E1 � E2 � . . . of quotients. We obtain
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the commutative diagram

En

����

// // En+1

����
H0(En) // H0(En+1)

which shows that H0(En) → H0(En+1) is an epimorphism in Coh(p)(X) for all
n ≥ 0. Since there are only finitely many quotients of the torsion sheaf H0(E)
in Coh(X) and by Lemma 1.3.9 also in Coh(p)(X), we get H0(En) ∼= H0(En+1)
for all n� 0. Then we apply the snake lemma to

0 // H−p(En)[p]

��

// En

����

// H0(En)

o

��

// 0

0 // H−p(En+1)[p] // En+1
// H0(En+1) // 0

(1.5)

which yields that H−p(En)[p] � H−p(En+1)[p] is an epimorphism. Since the
rank function rk is additive, the sequence (rkH−p(En))n∈N = ((−1)p rk(En))n∈N
of natural numbers decreases. Thus, without loss of generality we can assume
rkH−p(En) = rkH−p(En+1) for all n� 0. Hence the kernel Kn ∈ Coh(p)(X) of
the epimorphism H−p(En)[p] � H−p(En+1)[p] has rank zero and is, therefore,
a torsion sheaf. In the case 2 ≤ p < d there is no triangle

H−p(En+1)[p− 1] −→ Kn −→ H−p(En)[p]

withKn 6= 0. HenceH−p(En)[p] ∼= H−p(En+1)[p] and (1.5) yields En
∼−−→ En+1

for all n� 0.
In the case p = 1 set Tn = H−1(En)∨∨/H−1(En) and consider the commutative
diagram

0 // Tn

α

��

// H−1(En)[1]

����

// H−1(En)∨∨[1]

β[1]

��

// 0

0 // Tn+1
// H−1(En+1)[1] // H−1(En+1)∨∨[1] // 0

(1.6)

of exact sequences in Coh(1)(X). Hence β[1] is an epimorphism in Coh(1)(X)
and due to Lemma 1.3.10 we get cokerβ ∈ T . Together with rkH−1(En) =
rkH−1(En+1) this shows kerβ = 0. Since the sheaves are locally free and all
divisors are trivial, cokerβ = 0. Using Lemma 1.3.10 we conclude ker(1)(β[1]) =
coker(1)(β[1]) = 0 and β[1] is an isomorphism. Hence α is an epimorphism in
Coh(1)(X) and due to Lemma 1.3.9 also in Coh(X). Since Tn has only finitely
many quotients, Tn

∼−−→ Tn+1 for all n� 0. If we first apply the snake lemma to
(1.6) and then to (1.5), we obtain isomorphisms En

∼−−→ En+1 for all n� 0.
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Corollary 1.3.12. For 0 ≤ p < d the additive function Z(p)(E) = − chd(E) +
(−1)p rk(E) · i is a stability function on Coh(p)(X), where chd(E) is (the in-
tegral over) the d-th Chern character of E. Furthermore, the pair σ(p) :=
(Z(p),Coh(p)(X)) is a numerical locally-finite stability condition on Db(X).

Proof. For the first part we remark that any 0 6= E ∈ Coh(p)(X) with rk(E) = 0
is a torsion sheaf supported on a finite set. For those sheaves chd(E) > 0. The
second assertion is clear for 0 < p < d due to the fact that Coh(p)(X) is of finite
length. For p = 0 we only have to consider the case of an infinite decreasing
sequence of subsheaves

. . . ⊆ Gn+1 ⊆ Gn ⊆ . . . ⊆ G0 = G,

because Coh(X) is noetherian. For n � 0 we have rk(Gn+1) = rk(Gn) and,
therefore, Z(0)(Gn+1) = Z(0)(Gn)− Z(0)(Gn/Gn+1) = Z(0)(Gn) + chd(Tn) with
the torsion sheaf Tn := Gn/Gn+1. Hence, the sequence of phases does not
increase for n � 0. This shows that Z(0) satisfies the Harder–Narasimhan
property on Coh(X).
The condition of local finiteness is automatically fulfilled since the values of Z(p)

form a discrete set.

Remark. After suitable modifications of the definition of Coh(p)(X) all the
previous statements of this subsection remain true for compact complex Kähler
manifolds without nontrivial subvarieties like generic complex tori or general
deformations of Hilbert schemes of K3 surfaces. See section 1.4 for the details.

The next proposition gives a rough classification of the objects E in Coh(p)(X)
which are stable with respect to σ(p).

Proposition 1.3.13. In Coh(p)(X) the sheaf k(y) is stable of phase 1 for any
y ∈ X and L[p] is stable of phase 1/2 for any L ∈ Pic0(X). For 0 < p < d− 1
these are the only stable objects in Coh(p)(X). The phases of all stable objects
in Coh(X) are contained in (0, 1/2]∪ {1} and the phases of all stable objects in
Coh(d−1)(X) are contained in [1/2, 1].

Proof. The case p = 0: It is an easy calculation to check the stability of L for
any L ∈ Pic0(X) and of k(y) for any y ∈ X. If E ∈ Coh(X) is stable but not tor-
sion, it must be torsionfree. Otherwise there is a nontrivial morphism k(y) → E
which cannot exist. Furthermore, there is a nontrivial morphism E → E∨∨ → L
for some L ∈ Pic0(X) (see Remark 1.3.6). Hence φ(E) ≤ φ(L) = 1/2.

The case 0 < p < d − 1: For 1 < p < d we know that H−p(E) is lo-
cally free for any E ∈ Coh(p)(X). This also holds for every stable object
E ∈ Coh(1)(E) which is not a torsion sheaf. Indeed, if H−1(E) is not lo-
cally free, there is a nonzero morphism T → H−1(E)[1] → E coming from
the extension 0 → H−1(E) → H−1(E)∨∨ → T → 0 with T ∈ T . This
contradicts the stability of E. Hence H−p(E) is locally free for any stable
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E ∈ Coh(p)(X), 0 < p < d,E /∈ T . Due to formula (1.4)

Ext1(H0(E),H−p(E)[p]) = Ext1+p(H0(E),H−p(E)) = 0

and, therefore, E ∼= H0(E) ⊕H−p(E)[p]. Hence E ∼= H−p(E)[p] and the only
stable objects are of the form k(y) with phase 1 or F [p] with F being locally
free of phase 1/2. For any L ∈ Pic0(X) the complex L[p] has phase 1/2. Thus,
the stable factors of L[p] are of the form F [p] with F being locally free. Since
rk(L[p]) = (−1)p, the complex L[p] is already stable. Conversely, due to the
existence of nontrivial morphisms L[p] → F [p] for any locally free F and some
line bundle L, any stable object has rank (−1)p and the assertion follows.

The case p = d − 1: One has Z(d−1)(E) = − chd(H0(E)) + rk(H1−d(E)) · i
for any E ∈ Coh(d−1)(X). Hence φ(E) ∈ [1/2, 1] for all E ∈ Coh(d−1)(X).
Since the phases of k(y) and of L[d − 1] are in the boundary of the interval
[1/2, 1] for any y ∈ X and L ∈ Pic0(X), these objects have to be semistable.
They are also stable, because their Chern character is primitive.

Note that any ideal sheaf I{p1,...,pn} is also stable in Coh(X). Hence there is
no positive lower bound for the phases of stable objects in Coh(X). Similarly,
there is a sequence of stable objects in Coh(d−1)(X) whose phases form a strictly
increasing sequence converging to 1.

Corollary 1.3.14. For any 0 < p ≤ d− 1 and any γ ∈ (0, 1/2) the pair

σγ
(p) :=

(
Zγ

(p)(·) = − chd(·)− (−1)p cot(πγ) rk(·),Coh(p)(X)
)

is a numerical locally-finite stability condition.

Proof. Since Coh(p)(X) is of finite type, we only have to show Zγ
(p)(E) < 0 for

all E ∈ Coh(p)(X). It is enough to check this for those objects in Coh(p)(X)
which are stable with respect to σ(p). Using Proposition 1.3.13 this is an easy
calculation.

Next, consider the G̃L+(2,R)-orbits through the stability conditions σ(p) =
(Z(p),Coh(p)(X)) and σγ

(p) = (Zγ
(p),Coh(p)(X)) in Stab(X). It is an easy exercise

to check that they are disjoint.
At the end of this subsection we will characterize the set

U(X) :=
⋃

0≤p<d

σ(p) · G̃L+(2,R) ∪
⋃

1≤p<d
γ∈(0,1/2)

σγ
(p) · G̃L+(2,R)

of our stability conditions.

Proposition 1.3.15. Assume X is a generic complex torus of dimension d ≥ 3.
If P is a slicing on Db(X) such that k(y) ∈ P(1) for all y ∈ X and L ∈ P(ψ)
for all L ∈ Pic0(X) for a fixed ψ ∈ R, then A := P((0, 1]) = Coh(p)(X), where
p ∈ N is the unique number with ψ + p ∈ (0, 1].
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Proof. Since Hom(OX , k(y)) 6= 0 and Hom(k(y),OX [d]) 6= 0, we conclude

ψ ∈ (1− d, 1) and, therefore, 0 ≤ p < d.

The case p = 0: In this case k(y) ∈ A for all y ∈ X and L ∈ A for all L ∈
Pic0(X). Furthermore, E ∈ P([0, 1)) for all σ(0)-stable torsionfree E ∈ Coh(X).
Indeed, for such E there is a triangle

(E∨∨/E)[−1] −→ E −→ E∨∨ −→ E∨∨/E

with the locally free sheaf E∨∨ ∈ P(ψ) and the torsion sheaf E∨∨/E ∈ P(1).
This shows E ∈ P([0, 1)) If E /∈ P((0, 1)), we find a nontrivial morphism
E → T [−1] with stable T ∈ P(1). We show T ∼= k(y) for some y ∈ X which
contradicts Hom(E, k(y)[−1]) = 0.
In order to show T ∼= k(y), assume Hm(T ) 6= 0 and Hn(T ) 6= 0 but Hk(T ) = 0
∀ k /∈ [m,n] for two integers m ≤ n. If Hm(T ) is not torsionfree, there are
nontrivial compositions

k(y)[−m] −→ Hm(T )[−m] −→ T and T −→ Hn(T )[−n] −→ k(z)[−n]

for suitable y, z ∈ X. If Hm(T ) is torsionfree but not reflexive, we replace the
first composition by

k(y)[−1−m] −→ Hm(T )[−m] −→ T

and if Hm(T ) is reflexive, we take

L[−m] −→ Hm(T )[−m] −→ T

for a suitable L ∈ Pic0(X). If T ∈ P(1) is not isomorphic to k(y), we get in all
cases −m ≤ ψ −m < 1 < 1 − n and, therefore, n < 0 ≤ m, a contradiction to
m ≤ n.
Thus, any σ(0)-stable sheaf is contained in A = P((0, 1]) and we get Coh(X) ⊆
A. By standard arguments Coh(X) = A.

The case 0 < p < d: From the proof of Proposition 1.3.13 we know that any
σ(p)-stable object E ∈ Coh(p)(X) fits into a triangle

H−p(E)[p] −→ E −→ H0(E)

with locally free H−p(E) ∈ P(ψ) and the torsion sheaf H0(E) ∈ P(1). Since
P(ψ + p) ⊆ A and P(1) ⊆ A, we see E ∈ A and, therefore, Coh(p)(X) ⊆ A.
Again we can conclude Coh(p)(X) = A.

Proposition 1.3.16. Assume (Z ′,Coh(p)(X)) is a locally-finite numerical sta-
bility condition on X with 0 ≤ p ≤ d− 1 and φ′(k(y)) = 1 for all y ∈ X. Then
there is a matrix G ∈ GL+(2,R) with G ·Z(p) = Z ′ or G ·Zγ

(p) = Z ′ for a unique
γ ∈ (0, 1/2).
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Proof. Since Z ′ is numerical, we get Z ′(E) = −e chd(E) − (−1)pf rk(E) +
(g chd(E) + (−1)ph rk(E)) · i for a suitable matrix(

e f
g h

)
∈ Mat(2,R) .

Since φ′(k(y)) = 1, we obtain g = 0 and e > 0. If Z ′ takes values in (−∞, 0),
then h = 0, f > 0 and(

ReZ ′

ImZ ′

)
=
(
e 0
0 1

)
·
(
− chd−(−1)p cot(πγ) rk

0

)
with cot(πγ) = f/e.

This can only occur for 0 < p ≤ d− 1 since Coh(X) is not of finite type. If the
image of Z ′ is not contained in (−∞, 0),then h > 0 and(

ReZ ′

ImZ ′

)
=
(
e −f
0 h

)
·
(

− chd

(−1)p rk

)
.

Using these two propositions we get the main result of this subsection which
characterizes the set U(X) of stability conditions.

Theorem 1.3.17. Assume X is a generic complex torus of dimension d. The
set

U(X) =
⋃

0≤p<d

σ(p) · G̃L+(2,R) ∪
⋃

1≤p<d
γ∈(0,1/2)

σγ
(p) · G̃L+(2,R)

is the set of all numerical locally-finite stability conditions σ = (Z,P) such that
there exist certain real numbers φ and ψ such that k(y) ∈ P(φ) for all y ∈ X
and L ∈ P(ψ) for all L ∈ Pic0(X).

Proof. Choose some stability condition σ = (Z,P) with the property described
in the theorem. After applying some G ∈ G̃L+(2,R) we can assume k(y) ∈ P(1)
∀ y ∈ X. Using Proposition 1.3.15 and Proposition 1.3.16 we get σ ∈ U(X). Of
course, every stability condition in U(X) has the characterizing property.

1.3.3 The topology of U(X)

In this subsection we study the topology of U(X). As we will see, U(X) is a
simply connected component of Stab(X).
The first part of this subsection is a more general consideration of G̃L+(2,R)-
orbits in the space Stab(D) of locally-finite stability conditions on a C-linear tri-
angulated category D. In the second part we come back to the case D = Db(X).

Let Σ ⊆ Stab(D) be a connected component and let us denote by V (Σ) the
linear subspace in Hom(K(D),C) such that the forgetful map

π : Stab(D) ⊇ Σ 3 σ = (Z,P) 7−→ Z ∈ V (Σ) ⊆ Hom(K(D),C)
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is a local homeomorphism. Given a stability condition σ = (Z,P) ∈ Σ the space
V (Σ) is characterized by

V (Σ) = {U ∈ Hom(K(D),C) | ‖U‖σ <∞},

where

‖U‖σ := sup
{
|U(E)|
|Z(E)|

∣∣∣∣E semistable in σ
}

and ‖ · ‖σ can be used to define the topology on V (Σ) [8]. It follows that the
evaluation map V (Σ) 3 U 7→ U(E) ∈ C is continuous for a fixed E ∈ D.
The universal cover G̃L+(2,R) of GL+(2,R) acts on Stab(D) from the left by
g ·σ := σ · g−1, where the latter action is the one considered in section 1.1. Fur-
thermore, there is an action from the left of the ring Mat(2,R) on Hom(K(D),C)
and the map π commutes with these actions. Let us consider a stability condi-
tion σ = (Z,P) ∈ Σ such that the image of the central charge is not contained
in a real line in C and P(1) 6= {0}. We are interested in the boundary points of
the orbit

σ · G̃L+(2,R) = (G̃L+(2,R))−1 · σ = G̃L+(2,R) ·σ ⊆ Σ.

The orbit is a real submanifold of Σ of real dimension four. It follows from the
definition that the central charges of all stability conditions of this orbit factorize
over the quotient by the linear subspace K(D)⊥R,σ := {e ∈ K(D)R | Z(e) = 0} of
real codimension two, i.e. they are contained in the closed real four-dimensional
subspace V (Σ)σ := HomR(K(D)R/K(D)⊥R,σ,C). The map Mat(2,R) 3 M 7→
M ◦ Z ∈ V (Σ) is an R-linear isomorphism onto V (Σ)σ. This isomorphism
identifies GL+(2,R) with π(G̃L+(2,R) ·σ). We write Z(E) = <(E) + i · =(E)
with linear independent < and = ∈ Hom(K(D),R).
Let us denote by σ′ = (Z ′,P ′) a boundary point of the orbit σ · G̃L+(2,R).
Since the evaluation map is continuous, Z ′ still factorizes over K(D)⊥R,σ. After
applying some element of G̃L+(2,R) to σ′, we can, therefore, assume Z ′ =
<−cot(πγ)= with a suitable γ ∈ (0, 1), because semistability is a closed property
and, therefore, Z ′(E) 6= 0 ∀E ∈ P(1). The line Z ′ = 0 in C ∼= R<⊕R= is given
by the equation < = cot(πγ)= and since Z ′(E) 6= 0 ∀ E semistable in σ, we
have

γ 6= φ(E) ∀ E stable in σ. (1.7)

The following result was already known to the experts (see for example [7] and
[4]).

Proposition 1.3.18. The heart P ′((0, 1]) = P ′(1) of σ′ is the tilt Aσ
γ of A :=

P((0, 1]) with respect to the torsion theory (P((γ, 1]),P((0, γ))), i.e.

P ′(1) = {E ∈ D | H0(E) ∈ P((γ, 1]),H−1(E) ∈ P((0, γ)),Hk(E) = 0 else },

where H denotes the cohomology functor associated to the bounded t-structure
with heart A.
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Proof. Due to (1.7), the pair (P((γ, 1]),P((0, γ))) is indeed a torsion theory in
A = P((0, 1]) and since Z ′(E) 6= 0 ∀E semistable in σ, we obtain E ∈ P ′(0) ∀ E
semistable in σ with φ(E) ∈ (0, γ). Therefore, P((0, γ)) ⊆ P ′(0) and, similar,
P((γ, 1]) ⊆ P ′(1). Hence P ′(1) contains the tilt of P((0, 1]) with respect to the
upper torsion theory. By standard arguments one concludes equality.

In order to show the nonexistence of boundary points σ′, we introduce the
following two phases for our stability condition σ = (Z,P) and the real number
γ ∈ (0, 1).

γ+ := inf{φ(E) | E ∈ D stable in σ, φ(E) > γ},
γ− := sup{φ(E) | E ∈ D stable in σ, φ(E) < γ}.

Clearly γ− ≤ γ ≤ γ+ and there is no E ∈ D, stable in σ, with φ(E) ∈ (γ−, γ+).
Hence for all γ′ ∈ [γ−, γ+] satisfying (1.7) we obtain γ+ = γ′+ and γ− = γ′−.
Note that for γ ∈ (γ−, γ+) the condition (1.7) is always fulfilled.

Proposition 1.3.19. If P(γ+) = {0} or P(γ−) = {0} and γ′ ∈ [γ−, γ+]
satisfying (1.7), there is no boundary point of σ · G̃L+(2,R) with central charge
Z ′ := Zσ

γ′ := <− cot(πγ′)=.

Proof. We consider the case P(γ+) = {0}. The second case is similar. If
there is a boundary point σ′ = (Z ′ = Zσ

γ′ ,P ′), we can replace Zσ
γ′ and assume

γ′ = γ′+ = γ+. Indeed, since P ′(1) is of finite length and γ+ satisfies (1.7), the
pair σ+ := (Zσ

γ+ ,P ′) is a locally-finite stability condition. It is easy to see that

σ+ is still in the boundary of σ · G̃L+(2,R). Since π is a local homeomorphism,
there is an open neighbourhood of σ+ in Σ which is isomorphic to an open ball
in V (Σ). The intersection of this ball with V (Σ)σ can be identified with an
open ball in Mat(2,R) with center

Zσ
γ+
∼=
(

1 − cot(πγ+)
0 0

)
.

Such a ball contains the central charge Zσ
γ′′ = <−cot(πγ′′)= with γ′′ ∈ (γ+, γ++

ε) and ε > 0 sufficiently small. By definition of γ+ we can assume without
loss of generality Zσ

γ′′(E) = 0 for some σ-stable 0 6= E ∈ D . As Zσ
γ′′ is a

boundary point of the orbit GL+(2,R) ·Z = (GL+(2,R))−1·Z = π(σ·G̃L+(2,R))
and semistability is a closed property, this E is still semistable in the stability
condition lying in the neighbourhood of σ+ and mapped by π onto Zσ

γ′′ . This
contradicts Zσ

γ′′(E) = 0.

Due to Proposition 1.3.19, we have to assume P(γ+) 6= {0} and P(γ−) 6= {0}
in order to obtain stability conditions with central charges Zσ

γ in the boundary
of the orbit σ · G̃L+(2,R).
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πσ
γ′ < 0

πσ
γ+ = 0

πσ
γ− = 0

πσ
γ = 0

πσ
γ′ > 0

The dots are the central charges of the σ-semistable objects in A.

As in the end we want to avoid boundary points, we need a criterion that
excludes the cases P(γ+) 6= {0} and P(γ−) 6= {0}. This is only possible in
special situations and the following will be enough in the geometric context we
are interested in.

Lemma 1.3.20. Suppose there exists a sequence En ∈ P(γ+), n ∈ N, of
non isomorphic simple objects. Then there is no object I ∈ P((0, γ−]) with
Ext1(En, I) 6= 0 for all n ∈ N.

Proof. If such an object I exists, we construct by induction a sequence of non-
trivial extensions

0 −→ In −→ In+1 −→ En −→ 0

inA = P((0, 1]) with In ∈ P((0, γ−]) and the additional property Ext1(Ek, In) 6=
0 for all k ≥ n and n ∈ N. Since Z(In+1) = Z(In) + Z(En), we get φ(In) > γ−

for n� 0 which contradicts In ∈ P((0, γ−]).
The construction of In starts with I0 = I. Due to our assumption this is
possible. Assume we have constructed In ∈ P((0, γ−]). Choose an element
0 6= e ∈ Ext1(En, In) and consider the corresponding nontrivial extension in A

0 −→ In −→ In+1 −→ En −→ 0.

For any 0 6= F ∈ P(γ−, 1] = P[γ+, 1] stable in σ we get the following long exact
sequence

0 −→ Hom(F, In+1) −→ Hom(F,En) −→ Ext1(F, In) −→ Ext1(F, In+1).

Now, Hom(F,En) = 0 unless F = En and in the latter case Hom(En, En) = C ·
IdEn . But IdEn is mapped to 0 6= e ∈ Ext1(En, In). Therefore, Hom(F, In+1) =
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0 for all F ∈ P((γ−, 1]) and we conclude In+1 ∈ P((0, γ−]). Furthermore, the
map Ext1(Ek, In) −→ Ext1(Ek, In+1) is an injection for k ≥ n + 1. Hence
Ext1(Ek, In+1) 6= 0 for all k ≥ n + 1 by the induction hypothesis and we are
done.

Using this we get our main result of this subsection.

Theorem 1.3.21. Assume X is a generic complex torus of dimension d ≥ 3.
Then

U(X) :=
⋃

0≤p<d

σ(p) · G̃L+(2,R) ∪
⋃

1≤p<d
γ∈(0,1/2)

σγ
(p) · G̃L+(2,R)

is a simply connected component of Stab(X), but π : U(X) −→ π(U(X)) is not
a covering.

Proof. On a generic complex torus of dimension d any stability function of a
numerical stability condition is a complex linear combination of ch0 = rk and
chd. Since the orbits σ(p) · G̃L+(2,R) are of real dimension four, they are open
in Stab(X). We describe the closure of these open orbits beginning with that
of σ(0) = (Z(0),Coh(X)).
We want to exclude boundary points with γ ∈ (0, 1/2]. In order to apply
Proposition 1.3.19, we show P(γ+) = {0}. Indeed, if 0 6= E ∈ P(γ+) is a
stable sheaf, then it is torsionfree, because γ+ ≤ 1/2. Now, choose a sequence
of numerically trivial line bundles Ln ∈ Pic0(X) with L

rk(E)
m 6= L

rk(E)
n for all

m 6= n. Hence E ⊗ Lm 6= E ⊗ Ln for m 6= n, because of det(E∨∨ ⊗ L) =
det(E∨∨)⊗Lrk(E) for every L ∈ Pic(X). Furthermore, the sheaves En := E⊗Ln

are also σ(0)-stable of phase γ+. We introduce the sheaf P := k(y) for some
y ∈ X. Choose an epimorphism f : E0 � P and denote the kernel by I.
We prove I ∈ P((0, γ−]) and Ext1(En, I) 6= 0 for all n ∈ N which contradicts
Lemma 1.3.20. Thus, P(γ+) = {0}.
In order to show I ∈ P((0, γ−]), we take a σ(0)-stable sheaf F ∈ P((γ−, 1]) =
P([γ+, 1]) and consider the long exact sequence

0 −→ Hom(F, I) −→ Hom(F,E0) −→ Hom(F, P ) −→ Ext1(F, I).

Now, Hom(F,E0) = 0 unless F = E0 and in the latter case Hom(E0, E0) =
C ·IdE0 . But IdE0 is mapped to 0 6= f ∈ Hom(E0, P ). Therefore, Hom(F, I) = 0
for all F ∈ P((γ−, 1]) and I ∈ P((0, γ−]) follows.
For the second property of I we consider the inclusion Hom(En, P ) ↪→ Ext1(En, I)
and note that the former set contains f ⊗ idLn 6= 0 for all n ∈ N.
On the other hand, for every γ ∈ (1/2, 1) we obtain σ1−γ

(1) as a boundary point.
In the case 0 < p < d − 1 the situation is very easy. There are two regions of
boundary points of the orbit σ(p) · G̃L+(2,R). For γ ∈ (0, 1/2) the boundary
points are given by σγ

(p) and for γ ∈ (1/2, 1) the boundary points are σ1−γ
(p+1).

The case p = d−1 is similar to the case p = 0. First of all E⊗L ∈ Coh(d−1)(X)
for all E ∈ Coh(d−1)(X) and L ∈ Pic0(X). Indeed, this is true for E ∼= k(y) and
E ∼= H1−d(E)[d − 1] locally free. But any E ∈ Coh(d−1)(X) is an extension of
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such special objects and tensoring with L maps extensions to extensions. Fur-
thermore, E ⊗ L 6∼= E for all E ∈ Coh(d−1)(X) \ T and all L ∈ Pic0(X) with
Lrk(E) 6∼= OX , because H1−d(E ⊗ L) = H1−d(E)⊗ L 6∼= H1−d(E).
Now, we can exclude boundary points with γ ∈ (1, 1/2) in the same way as for
σ(0). Note that γ+ < 1, because there are σ(d−1)-stable objects with phases
sufficiently close to 1. The definitions of P, f and I are given by the short exact
sequence

0 −→ H1−d(E0)[d− 1]︸ ︷︷ ︸
:=I

−→ E0
=:f−−→ H0(E0)︸ ︷︷ ︸

:=P

−→ 0.

Since H1−d(E0)[d − 1] has phase 1/2 (see Proposition 1.3.13) and γ− ≥ 1/2,
the property I ∈ P((0, γ−]) is obvious in this case.
On the other hand, for every γ ∈ (0, 1/2) we obtain σγ

(d−1) as a boundary point.

Hence the open four-dimensional orbits σ(p) · G̃L+(2,R) are successive con-
nected by the three dimensional ‘walls’ ∪γ∈(0,1/2)σ

γ
(p) · G̃L+(2,R). Further-

more, the connected set U(X) is closed in Stab(X). The image of U(X) under
π : Stab(X) −→ (H0(X,C)⊕Hd(X,C))∨ ∼= Mat(2,R) is an open subset. Since
π is a local homeomorphism, U(X) is also open and hence a connected compo-
nent of Stab(X).
It is easy to see that ({σ(p−1), σ(p)} ∪ {σγ

(p) | γ ∈ (0, 1/2)}) · G̃L+(2,R) is the
universal cover of its image for all 0 < p ≤ d − 1. This image has fundamen-
tal group Z which is ‘resolved’ by the shift functor [2]. Using the Seifert–van
Kampen Theorem (see [18], Theorem 1.20) one concludes π1(U(X)) = 0. Since
the number of preimages of a stability function is not constant, U(X) is not the
universal cover of its image.
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1.4 Stability conditions for simple manifolds

The aim of this section is to generalize the stability conditions σ(0), . . . , σ(d−1) of
the previous section to the case of compact complex manifolds without nontrivial
subvarieties. In addition to curves, generic K3 surfaces and generic tori, the
general deformations of a Hilbert scheme of a K3 surface form another class of
examples.
Remember that a stability condition on a complex manifold X is a bounded t-
structure on the bounded derived category Db(X) of coherent sheaves together
with a central charge on the heart of the t-structure. In order to produce
interesting stability conditions on a complex manifold X we have to look for
interesting bounded t-structures on Db(X). We follow the method of Kashiwara
[23] to construct t-structures.

Definition 1.4.1 (family of supports). Let X be a complex manifold. A set
Φ of Zariski-closed subsets of X is called a family of supports if the following
conditions hold:

1. Z ∈ Φ, Z ′ ⊆ Z Zariski-closed =⇒ Z ′ ∈ Φ,

2. Z,Z ′ ∈ Φ =⇒ Z ∪ Z ′ ∈ Φ,

3. ∅ ∈ Φ.

For a family of supports Φ we define the functor ΓΦ on the abelian category
Mod(X) of OX -modules G by

ΓΦ(G) = lim−→
supp(OZ)∈Φ

Hom(OZ , G),

where the inductive limit is taken over all (possibly non-reduced) structure
sheaves OZ of complex analytic subspaces with support Z ∈ Φ. The OX -module
ΓΦ(G) is the sheaf associated to the presheaf

U 7−→ {s ∈ Γ(U,G) | supp(s)
Zar

∈ Φ}.

It is obvious that ΓΦ is leftexact and we denote by RΓΦ its right derived func-
tor defined on D+(Mod(X)). For E ∈ D≥n(Mod(X)) one has HnRΓΦ(E) =
ΓΦH

n(E). Furthermore, there is a natural transformation RΓΦ −→ Id induced
by the surjection OX � OZ and Hom(OX , G) ∼= G.

Definition 1.4.2 (support datum). A support datum is a decreasing sequence
Φ := (Φn)n∈Z of families of supports such that

1. Φn is the set of all closed subsets of X for n� 0 and

2. Φn = {∅} for n� 0.

For a support datum Φ = (Φn)n∈Z we define

D≤n
Φ (Mod(X)) := {E ∈ Db(Mod(X)) | supp(Hk(E)) ⊆ Φk−n ∀ k ∈ Z},

D≥n
Φ (Mod(X)) := {E ∈ Db(Mod(X)) | RΓΦk(E) ∈ D≥k+n(Mod(X)) ∀ k ∈ Z}.
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Theorem 1.4.3 ([23], Theorem 3.5.). Let Φ = (Φn)n∈Z be a support datum
on a compact complex manifold. The pair (D≤0

Φ (Mod(X)),D≥0
Φ (Mod(X))) is a

bounded t-structure on Db(Mod(X)).

In this section we are interested in compact complex manifolds such that the
points are the only irreducible proper Zariski-closed subsets. If we are looking
for a support datum Φ such that all points belong to the same family, we obtain
the following list of possibilities for Φ indexed by two integers p, q ∈ Z with
−p ≤ q

Φn
(p,q) :=


{all Zariski-closed subsets} for n ≤ −p,
{finite subsets} for − p < n ≤ q,

{∅} for n > q.

Note that the t-structure associated to the support datum Φ(p,q) is the t-
structure associated to Φ(p+1,q−1) shifted by [1]. Hence, it suffices to con-
sider the pairs (p, 0) for p ∈ N. We denote the corresponding t-structures by
(D≤0

(p)(Mod(X)),D≥0
(p)(Mod(X))).

Actually, we are interested in t-structures on the full subcategory Db(X) ⊆
Db(Mod(X)) of bounded complexes with coherent cohomology sheaves. The
restriction

(D≤0
Φ (X),D≥0

Φ (X)) := (D≤0
Φ (Mod(X)) ∩Db(X),D≥0

Φ (Mod(X)) ∩Db(X))

of our t-structures gives a t-structure on Db(X) if and only if a technical con-
dition is fulfilled.

Theorem 1.4.4 ([23], Theorem 5.9.). Let Φ = (Φn)n∈Z be a support datum
on a compact complex manifold. The pair (D≤0

Φ (X),D≥0
Φ (X)) is a bounded t-

structure on Db(X) if and only if for any irreducible Zariski-closed subsets Z
and S such that S ⊆ Z and S ∈ Φn, one has Z ∈ Φn+codim(Z)−codim(S).

For our t-structures (D≤0
(p)(Mod(X)),D≥0

(p)(Mod(X))) this condition leads to the
inequality p ≤ dim(X). Finally, we obtain d+1 bounded t-structures on Db(X)
indexed by 0 ≤ p ≤ d, where d is the dimension of X. We denote the heart of
these t-structures by Coh(p)(X). Moreover, Coh(p)(X) is the abelian category of
perverse sheaves with the constant perversity function−p. Bounded t-structures
of perverse sheaves on schemes has been investigated by M. Kashiwara [23] and
R. Bezrukavnikov [3]. Note that for p = 0 we obtain the standard t-structure
on Db(X) and we write Coh(X) instead of Coh0(X).
We aim to show that the heart Coh(p)(X) of these t-structures carries a central
charge for 0 ≤ p < d. If we denote the set of coherent torsion sheaves by T , we
can rewrite the upper definition of our t-structures.

D≤0
(p)(X) = {E ∈ Db(X) | Hk(E) ∈ T ∀ − p < k ≤ 0 , Hk(E) = 0 ∀k > 0},

D≥0
(p)(X) = {E ∈ Db(X) | Hk(E) = 0 ∀ k < −p , RΓ(E) ∈ D≥0(Mod(X))},
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where we denote by Γ the functor which associates to each coherent sheaf its
torsion subsheaf. Due to our assumptions on X, the structure sheaf of a proper
closed subspace is the direct sum of its stalks, and we get

RkΓ(E) =
⊕
x∈X

Hk
x(X,E)

for every sheaf or complex E on X, where Hk
x(X,E) is the local cohomology

of E in x ∈ X. In this formula we regard Hk
x(X,E) as a skyscraper sheaf con-

centrated in x. See [15] or [9] for more information about local cohomology.
If we use the classical Godement resolution in order to calculate the local co-
homology of a coherent sheaf, we obtain Hk

x(X,T ) = 0 for all k > 0 for every
coherent sheaf T of zero-dimensional support, i.e. an isomorphism RΓ(T ) ∼−→ T .
Using the exactness of RΓ, we can generalize this result to RΓ(E) ∼−→ E for any
complex with coherent cohomology sheaves of zero-dimensional support. On
the other hand, if the sheaf E is locally free in x, we get Hk

x(X,E) = 0 for all
k < dim(X) because depthx(Ex) = dim(X) due to the Auslander–Buchsbaum
formula (see Prop. 18.4 in [13] or Ex. 3.4 in Chap. III of [17]). Since every coher-
ent sheaf E is locally free outside a proper closed subset, we see that RkΓ(E)
is a torsion sheaf with zero-dimensional support for k < dim(X). Using the
fact dim supp(Extk(E,OX)) = dim supp(Extk(E,ωX)) = 0 (use Prop. 1.1.6.ii)
in [21] and the assumptions on X) and the following criterion for a coherent
sheaf E (see [38] or [23])

Hk
x(X,E) is coherent for any k < n

⇐⇒ codim
(
{x} ∩ supp(Extk(E,OX)) ∩ (X \ {x})

)
≥ k + n for all k,

we obtain that RkΓ(E) is a coherent sheaf for all k < dim(X).

Let E be a complex in the heart Coh(p)(X) of our new t-structures. Using
the definition of Coh(p)(X), we get a triangle

H−p(E)[p] −→ E −→ τ>−p(E) α−−→ H−p(E)[p+ 1]

with a complex τ>−p(E) ∈ D[1−p,0](X) of zero-dimensional support. If we
apply RΓ to the previous triangle and use RΓτ>−p(E) ∼= τ>−p(E), we obtain
the following triangle

RΓ(E)︸ ︷︷ ︸
∈D≥0(Mod(X))

−→ τ>−p(E) −→ RΓH−p(E)[p+ 1] −→ RΓ(E)[1]︸ ︷︷ ︸
∈D≥−1(Mod(X))

.

This induces a natural isomorphism

τ [1−p,−2](E)
τ≤−2RΓ(α)

∼
// τ≤−2(RΓH−p(E)[p+ 1]) (1.8)

as well as the following exact sequence for p ≥ 2

0 −→ H−1(E)
R−1Γ(α)−−−−−−→ RpΓH−p(E) −→ R0Γ(E) −→ H0(E). (1.9)
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Conversely, any complex E ∈ D[−p,0](X) such that τ>−p(E) has zero-dimensional
support and such that α : τ−p(E) −→ H−p(E)[p + 1] satisfies (1.8) and (1.9),
the latter for p ≥ 2, is contained in Coh(p)(X).
For p = 1 equation (1.8) reduces to R0ΓH−1(E) = ΓH−1(E) = 0, i.e. H−1(E)
needs to be torsionfree. Thus,

Coh(1)(X) = {E ∈ Db(X) | H−1(E) is torsionfree,H0(E) ∈ T ,Hk(E) = 0 else}.

For p ≥ 2 we get in addition to ΓH−p(E) = 0 the condition R1ΓH−p(E) = 0.
This is equivalent to the fact thatH−p(E) is a reflexive sheaf due to the following
lemma which generalizes Lemma 1.3.2.

Lemma 1.4.5. Assume d = dim(X) ≥ 2 and that all proper nonempty Zariski-
closed subsets of X are of dimension zero. In that case the following conditions
for a coherent sheaf G on X are equivalent.

(a) G is reflexive,

(b) Hom(T,G) = Ext1(T,G) = 0 ∀ T ∈ T ,

(c) Hom(T,G) = Ext1(T,G) = 0 ∀ T ∈ T ,

(d) Γ(G) = R1Γ(G) = 0.

Proof. (a) =⇒ (b) See the proof of Lemma 1.3.2.
(b) =⇒ (c) For T ∈ T we have

Ext1(T,G)x = Ext1OX,x
(Tx, Gx) = 0 ∀ x /∈ supp(T ).

Thus, the support of Ext1(T,G) is a finite set of points and similar forHom(T,G).
From the spectral sequence Hm(X, Extn(T,G)) =⇒ Extm+n(T,G) we conclude
H0(X,Hom(T,G)) = Hom(T,G) = 0 and H0(X, Ext1(T,G)) = Ext1(T,G) = 0
and the assertion follows.
(c) =⇒ (d) This is an easy consequence of

Γ(G) = lim−→
OZ∈T

Hom(OZ , G) and

R1Γ(G) = lim−→
OZ∈T

Ext1(OZ , G).

(d) =⇒ (a) G is torsionfree because of Γ(G) = 0. Consider the short exact
sequence 0 → G → G∨∨ → T → 0 with T ∈ T . By looking at the associated
long exact RΓ-sequence we conclude from Γ(G∨∨) = R1Γ(G) = 0 the equality
T = Γ(T ) = 0 and G is reflexive.

Remember that a central charge on an abelian category A is an additive function
Z on A with values Z(E) in the strict upper half-plane H = {r exp(iπφ) | r >
0 and 0 < φ ≤ 1} ⊂ C for every object 0 6= E ∈ A such that every nonzero
object of A has a Harder–Narasimhan filtration. Using the sequences (1.8) and
(1.9), we obtain immediately the following Corollary.
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Corollary 1.4.6. For 0 ≤ p ≤ d we have

(a) E ∈ Coh(p)(X) , H−p(E) = 0 =⇒ E ∼= H0(E) ∈ T ,

(b) Z(p)(E) = − chd(E) + (−1)p rk(E) · i ∈ H for all 0 6= E ∈ Coh(p)(X),
where chd(E) is (the integral over) the d-th Cherncharacter of E.

In order to show that (Z(p),Coh(p)(X)) is a stability condition on X, we have to
check the Harder–Narasimhan property. This will follow for 0 ≤ p < d from the
fact that Coh(p)(X) is noetherian for 0 ≤ p < d and artinian for 0 < p ≤ d. The
idea of the proof of these two properties is to consider two full subcategories in
Coh(p)(X) which span Coh(p)(X) in a very nice way. The first subcategory is
the category of torsion sheaves, while the second subcategory is equivalent to
the category of reflexive sheaves.

Let us illustrate in the case p = 0, i.e. Coh(p)(X) = Coh(X), how these two
categories span Coh(X). As before we denote by T the full abelian subcategory
of torsion sheaves, and in addition to this we introduce the full subcategory
Refl(X) of Coh(X) consisting of reflexive sheaves. For f : F −→ G in Refl(X)
we define a kernel via kerr f := ker f −→ F and a cokernel via the composition
G −→ coker f −→ (coker f)∨∨ =: cokerr f . With these definitions Refl(X)
becomes an abelian category, but in contrast to T the inclusion functor to
Coh(X) is not exact. Note that the image and the coimage of f in Refl(X) are
isomorphic to (im f)∨∨ ↪→ G. For every sheaf F there is a functorial 4-term
exact sequence in Coh(X)

0 −→ Γ(F ) −→ F −→ F∨∨ −→ F∨∨/F −→ 0

with F∨∨ ∈ Refl(X) and Γ(F ) ∈ T as well as F∨∨/F ∈ T . If dim(X) ≥ 2, we
can write this sequence as follows

0 −→ R0Γ(F ) −→ F −→ F∨∨ −→ R1Γ(F ) −→ 0. (1.10)

Indeed, applying RΓ to 0 −→ Γ(F ) −→ F −→ F/Γ(F ) −→ 0 yields R1Γ(F ) ∼=
R1Γ(F/Γ(F )), and the same argument applied to the short exact sequence
0 −→ F/Γ(F ) −→ F∨∨ −→ F∨∨/F −→ 0 proves the assertion.

Surprisingly there is a similar sequence for any object E ∈ Coh(p)(X) for p ≥ 2.
But in contrast to the upper sequence, the arrows have the reverse direction.
Furthermore, we have to find the appropriate two subcategories. For the first
category we can choose the abelian category T again and the inclusion functor is
exact due to the following lemma which generalizes Lemma 1.3.9 and is proved
in the same way.

Lemma 1.4.7. For every 0 ≤ p ≤ d the category T of torsion sheaves is an
abelian subcategory of Coh(p)(X), i.e. if f : S → T is a morphism in T and if
we denote the kernel of f in T and in Coh(p)(X) by ker f resp. ker(p) f , then
ker f = ker(p) f and similar for the cokernels.
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For the second subcategory we choose the full subcategory Refl(p)(X) of those
complexes E ∈ Coh(p)(X) with H0(E) = H−1(E) = 0. For f : F −→ G in
Refl(p)(X) we introduce the notation kerr

(p) f := τ≤−2(ker(p) f) −→ ker(p) f −→
F and G −→ coker(p) f =: cokerr

(p) f . Using Hom(F, T ) = Hom(F, T [1]) = 0
for any F ∈ Refl(p)(X) and T ∈ T and the proof of the next proposition, it is
easy to see that kerr

(p) f and cokerr
(p) f belong to Refl(p)(X) and that Refl(p)(X)

becomes an exact category with these kernels and cokernels. The suggestive
notation is motivated by the following proposition.

Proposition 1.4.8. The functor H−p : Refl(p)(X) −→ Refl(X) is exact and
induces an equivalence of categories. Hence, Refl(p)(X) is also abelian.

Proof. In order to show the exactness of H−p we consider a morphism f : F −→
G in Refl(p)(X) and the corresponding triangle F

f−−→ G −→ M −→ F [1]. We
form the associated long exact cohomology sequence

0 −→ H−p−1(M) −→ H−p(F )
H−p(f)−−−−−→ H−p(G) −→ H−p(M)

−→ H1−p(F )
H1−p(f)−−−−−→ H1−p(G) −→ H1−p(M) −→ . . .

and get H−p−1(M) = kerH−p(f) and M ∈ D≤−2(X) as well as the short exact
sequence

0 −→ cokerH−p(f) −→ H−p(M) −→ kerH1−p(f)︸ ︷︷ ︸
torsion

−→ 0. (1.11)

As in the proof of Lemma 1.3.9, we look at the long exact cohomology se-
quence of the triangle K[1] := (H−1

(p)M)[1] −→ M −→ H0
(p)M =: C −→ K[2],

where Hi
(p) denotes the i-th cohomology functor of the t-structure with heart

Coh(p)(X). Note that K = ker(p) f, τ
≤−2(K) = kerr

(p) f and C = coker(p) f =
cokerr

(p) f .

0 −→ H−p(K) −→ H−p−1(M)︸ ︷︷ ︸
=ker H−p(f)

−→ 0 −→ H1−p(K)︸ ︷︷ ︸
torsion

(1.12)

−→ H−p(M) α−−→ H−p(C)︸ ︷︷ ︸
reflexive

−→ H2−p(K)︸ ︷︷ ︸
torsion

−→ . . . −→ H−2(C) −→

H0(K) −→ H−1(M)︸ ︷︷ ︸
=0

−→ H−1(C) −→ 0 −→ H0(M)︸ ︷︷ ︸
=0

−→ H0(C) −→ 0

This sequence shows C ∈ Refl(p)(X) and

H−p(kerr
(p) f) = H−p(τ≤−2(K)) = H−p(K) = kerH−p(f) = kerr H−p(f)

as well as H−p(M)∨∨ ∼= (imα)∨∨ = H−p(C) = H−p(cokerr
(p) f). But from

(1.11) we obtain

H−p(cokerr
(p) f) ∼= H−p(M)∨∨ ∼= (cokerH−p(f))∨∨ = cokerr H−p(f).
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Thus, we have proved the exactness ofH−p. The fact thatH−p is an equivalence
is not used in the sequel and we will postpone the proof to appendix A. We only
need the fact that H−p(E) = 0 implies E = 0 for any E ∈ Refl(p)(X). This
follows directly from the isomorphism (1.8).

Having these two categories at hand, we try to produce an exact sequence similar
to (1.10). To do this, we start with the the triangle

τ≤−1(E) −→ E −→ H0(E) −→ τ≤−1(E)[1]

for E ∈ Coh(p)(X). The triangle

RΓH0(E)[−1]︸ ︷︷ ︸
∈D≥1(Mod(X))

−→ RΓτ≤−1(E) −→ RΓ(E)︸ ︷︷ ︸
∈D≥0(Mod(X))

−→ RΓH0(E)

shows RΓτ≤−1(E) ∈ D≥0(Mod(X)). Furthermore, Hkτ≤−1(E) = Hk(E) ∈ T
for all −p < k ≤ −1 and Hkτ≤−1(E) = 0 otherwise. Thus, τ≤−1(E) is an object
of Coh(p)(X). Hence, we get the following short exact sequence in Coh(p)(X)

0 −→ τ≤−1(E) −→ E −→ H0(E) −→ 0. (1.13)

There is another triangle

H−1(E) −→ τ≤−2(E) −→ τ≤−1(E) −→ H−1(E)[1] ,

and because of

RΓH−1(E)︸ ︷︷ ︸
∈D≥0(Mod(X))

−→ RΓτ≤−2(E) −→ RΓτ≤−1(E)︸ ︷︷ ︸
∈D≥0(Mod(X))

−→ RΓH−1(E)[1]

and Hkτ≤−2(E) = Hk(E) ∈ T for all −p < k ≤ −2 as well as Hkτ≤−2(E) = 0
otherwise, τ≤−2(E) is also contained in Coh(p)(X). Thus, we get a second short
exact sequence

0 −→ H−1(E) −→ τ≤−2(E) −→ τ≤−1(E) −→ 0

in Coh(p)(X) for p ≥ 2. Using the definition of Refl(p)(X) and combining both
short exact sequences we obtain a 4-term exact sequence in Coh(p)(X) for p ≥ 2

0 −→ H−1(E) −→ τ≤−2(E) −→ E −→ H0(E) −→ 0

with τ≤−2(E) ∈ Refl(p)(X) and H0(E),H−1(E) ∈ T similar to the 4-term se-
quence (1.10) in Coh(X).

In the case p = 1 we have only the short exact sequence (1.13) and instead of
Proposition 1.4.8 we will use the following lemma generalizing Lemma 1.3.10
and which is proved in the same way.
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Lemma 1.4.9. Any morphism f ∈ Hom(F,G) between torsionfree sheaves F
and G defines a morphism f [1] : F [1] −→ G[1] in Coh(1)(X), and we get
H−1(ker(1) f [1]) = ker f, H0(ker(1) f [1]) = Γ(coker f), H−1(coker(1) f [1]) =
coker f/Γ(coker f) as well as H0(coker(1) f [1]) = 0.

Using the two subcategories T and Refl(p)(X) as well as the corresponding
Propositions 1.4.7 and 1.4.8, we can prove now the crucial results of this section.

Proposition 1.4.10. The category Coh(p)(X) is noetherian for all 0 ≤ p < d.

Proof. For p = 0 this is a well-known fact. Assume 2 ≤ p < d and take an
infinite sequence E = E0 � E1 � E2 � . . . of quotients. The commutative
diagram

En

����

// // En+1

����
H0(En) // H0(En+1)

shows that H0(En) −→ H0(En+1) is an epimorphism in Coh(p)(X) for all n ≥ 0.
Since there are only finitely many quotients of the torsion sheaf H0(E0) in
Coh(X) and by Lemma 1.4.7 also in Coh(p)(X), we get H0(En) ∼= H0(En+1)
for all n� 0. Then, we apply the snake lemma to

0 // τ≤−1(En)

��

// En

����

// H0(En)

o

��

// 0

0 // τ≤−1(En+1) // En+1
// H0(En+1) // 0

(1.14)

which yields that τ≤−1(En) � τ≤−1(En+1) is an epimorphism in Coh(p)(X).
Since the rank function rk is additive on Db(X), the sequence (rkH−p(En))n∈N =
((−1)p rk(En))n∈N of natural numbers decreases. Without loss of generality we
can assume rkH−p(En) = rkH−p(En+1) for all n � 0. Applying the snake
lemma to

0 // H−1(En)

α

��

// τ≤−2(En)

β

��

// τ≤−1(En)

����

// 0

0 // H−1(En+1) // τ≤−2(En+1) // τ≤−1(En+1) // 0
(1.15)

yields the following short exact sequence with an appropriate complex Kn ∈
Coh(p)(X)

0 −→ Kn −→ cokerα = coker(p) α −→ coker(p) β = cokerr
(p) β −→ 0 .

From the corresponding cohomology sequence

H−p(cokerα)︸ ︷︷ ︸
=0

−→ H−p(cokerr
(p) β)︸ ︷︷ ︸

cokerr H−p(β)

−→ H−p(Kn[1]) = H1−p(Kn)︸ ︷︷ ︸
torsion
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we conclude cokerr H−p(β) = 0 and by Proposition 1.4.8 cokerr
(p) β = coker(p) β =

0. Since rkH−p(En) = rkH−p(En+1), we get rk kerH−p(β) = rk cokerH−p(β) =
rk cokerr H−p(β) = 0 and, therefore, kerH−p(β) = kerr H−p(β) = 0. Due to
Proposition 1.4.8, we obtain kerr

(p) β = 0, hence ker(p) β = H0(ker(p) β). From
the sequence (1.12) we deduce ker(p) β = H0(ker(p) β) = H0(K) = 0 because
C = coker(p) β = 0. Hence, β is an isomorphism and α must be a monomor-
phism. The commutative diagram (see (1.9))

H−1(En)� _

��

� � // RpΓH−p(En)

o RpΓH−p(β)

��
H−1(En+1)

� � // RpΓH−p(En+1)

leads to an infinite increasing sequence of torsion subsheaves for n ≥ N � 0

H−1(EN ) ↪→ . . . ↪→ H−1(En) ↪→ H−1(En+1) ↪→ . . . ↪→ RpΓH−p(EN ).

For p < d the sheaf RpΓH−p(EN ) is coherent and the sequence becomes sta-
tionary. Thus, α : H−1(En) −→ H−1(En+1) is an isomorphism for all n� 0. If
we apply the snake lemma to (1.15) and then to (1.14), we obtain isomorphisms
En

∼−−→ En+1 for all n� 0.
In the case p = 1 we start with the same arguments but replace the dia-
gram (1.15) by the following diagram. Note that τ≤−1(E) = H−1(E)[1] for
E ∈ Coh(1)(X).

0 // R1ΓH−1(En)

α

��

// H−1(En)[1]

����

// H−1(En)∨∨[1]

β[1]

��

// 0

0 // R1ΓH−1(En+1) // H−1(En+1)[1] // H−1(En+1)∨∨[1] // 0

Thus, β[1] is an epimorphism and due to Lemma 1.4.9 we get cokerβ ∈ T .
Using rkH−1(En) = rkH−1(En+1), this proves kerβ = 0 and we obtain the
short exact sequence

0 −→ H−1(En)∨∨ −→ H−1(En+1)∨∨ −→ cokerβ −→ 0

with cokerβ ∈ T . The long exact RΓ-sequence shows cokerβ = 0 because of
Lemma 1.4.5. Using Lemma 1.4.9, we conclude ker(1)(β[1]) = coker(1)(β[1]) = 0
and β[1] is an isomorphism. Hence, α is an epimorphism in Coh(1)(X) and
due to Lemma 1.4.7 also in Coh(X). But R1ΓH−1(En) has only finitely many
quotients and, therefore, R1ΓH−1(En) ∼−−→ R1ΓH−1(En+1) for all n � 0. As
in the case p ≥ 2 we apply the snake lemma twice and get the desired result.

Proposition 1.4.11. The category Coh(p)(X) is artinian for all 0 < p ≤ d.
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Proof. Assume 2 ≤ p ≤ d and take an infinite sequence . . . ↪→ En+1 ↪→ En ↪→
. . . ↪→ E0 = E of subobjects in Coh(p)(X). Without loss of generality we can
assume rkH−p(En+1) = rkH−p(En) for all n ∈ N. The application of the snake
lemma to

0 // τ≤−1(En+1)

γ

��

// En+1� _

��

// H0(En+1)

��

// 0

0 // τ≤−1(En) // En
// H0(En) // 0

(1.16)

shows that γ is a monomorphism. Applying the snake lemma to

0 // H−1(En+1)

α

��

// τ≤−2(En+1)

β

��

// τ≤−1(En+1)� _

γ

��

// 0

0 // H−1(En) // τ≤−2(En) // τ≤−1(En) // 0
(1.17)

yields ker(p) α = ker(p) β. Due to Lemma 1.4.7 and Proposition 1.4.8, we get
kerH−p(β) = H−p(kerr

(p) β) = H−p(ker(p) β) = H−p(ker(p) α) = 0 and, there-
fore, ker(p) β = H0(ker(p) β). Because of rkH−p(En+1) = rkH−p(En), we con-
clude rk cokerH−p(β) = 0, i.e. cokerr H−p(β) = 0 and, therefore, coker(p) β = 0
due to Proposition 1.4.8. Using (1.12) withK = ker(p) β and C = coker(p) β = 0,
this shows ker(p) β = H0(ker(p) β) = 0 and β is an isomorphism. Applying the
snake lemma to (1.17), we get isomorphisms γ : τ≤−1(En+1)

∼−−→ τ≤−1(En).
From this observation together with (1.16) we obtain an infinite increasing se-
quence of torsion sheaves.

. . . ↪→ H0(En+1) ↪→ H0(En) ↪→ . . . ↪→ H0(EN ) for n ≥ N � 0.

Hence H0(En+1)
∼−−→ H0(En) and by (1.16) En+1

∼−−→ En for all n� 0.
In the case p = 1 we start with the same arguments to show that γ = δ[1] is
a monomorphism and we assume rkH−1(En) = rkH−1(En+1) for all n ∈ N.
Using Lemma 1.4.9, we see ker δ = 0 and Γ(coker δ) = 0. From the first equation
we conclude rk(coker δ) = 0 and we obtain coker δ = Γ(coker δ) = 0. Due to
Lemma 1.4.9, coker(1) γ = 0 and γ is an isomorphism. Now we proceed as in
the case p ≥ 2 to get the desired result.

The following corollary is a generalization of Corollary 1.3.11 and is proved in
the same way.

Corollary 1.4.12. For 0 ≤ p < d the pair (Coh(p)(X), Z(p)) is a locally-finite
stability condition on Db(X).
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Remarks.

1. Coh(X) is not artinian since there is an infinite decreasing sequence of
ideal sheaves

. . . ⊂ Ip1,...,pn+1 ⊂ Ip1,...,pn
⊂ . . . ⊂ OX .

2. Coh(d)(X) is not noetherian since [d] ◦ RHom(·,OX) : Coh(X)op ∼−−→
Coh(d)(X) is an equivalence of abelian categories due to [23], Theorem
5.9. Furthermore, Z(d) = − chd +(−1)d rk ·i does not satisfy the Harder–
Narasimhan property. For example, the phases of the infinite sequence of
quotients

RHom(OX ,OX)[d] = OX [d] � . . . � RHom(Ip1,...,pn ,OX)[d] �

RHom(Ip1,...,pn+1 ,OX)[d] � . . .

form a strictly decreasing sequence.

In the last part of this section we aim to show that Coh(p+1)(X) is the tilt of
Coh(p)(X) with respect to the torsion theory T ⊆ Coh(p)(X) and

F(p) := {E ∈ Coh(p)(X) | RΓ(E) ∈ D≥1(Mod(X))}

as the full category of ‘free’ objects.

Lemma 1.4.13. (T ,F(p)) is a torsion theory in Coh(p)(X) for all 0 ≤ p ≤ d−1.

Proof. For T ∈ T and F ∈ F(p) we have the following commutative diagram

RΓ(T )

0

��

∼ // T

f

��
RΓ(F ) // F

and, therefore, Hom(T, F ) = 0 for all T ∈ T and F ∈ Coh(p)(X).
Using RΓ(E) ∈ D≥0(Mod(X)), we have for any E ∈ Coh(p)(X) the composition
R0Γ(E) −→ RΓ(E) −→ E and the associated triangle

R0Γ(E) −→ E −→ F −→ R0Γ(E)[1]. (1.18)

We aim to show F ∈ F(p). The cohomology sequence of (1.18) yields Hk(F ) ∈
T ∀ k ∈ {1 − p, . . . , 0} and Hk(F ) = 0 ∀ k 6∈ {−p, . . . , 0}. We still have to
show RΓ(F ) ∈ D≥1(Mod(X)). Using the exact sequence (1.9) and the fact
that RpΓH−p(E) is a coherent sheaf for 0 ≤ p ≤ d− 1, we obtain R0Γ(E) ∈ T .
Applying RΓ to (1.18) yields the exact sequence

R−1Γ(E)︸ ︷︷ ︸
=0

−→ R−1Γ(F ) −→ R0Γ(R0Γ(E))︸ ︷︷ ︸
=R0Γ(E)

∼−−→ R0Γ(E) −→ R0Γ(F ) −→

−→ R1Γ(R0Γ(E))︸ ︷︷ ︸
=0
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and R−1Γ(F ) = R0Γ(F ) = 0 follows. Using the triangle (1.18), we see RΓ(F ) ∈
D≥−1(Mod(X)) and, therefore, RΓ(F ) ∈ D≥1(Mod(X)). From (1.18) we get
the desired short exact sequence

0 −→ R0Γ(E) −→ E −→ F −→ 0

with R0Γ(E) ∈ T and F ∈ F(p).

Proposition 1.4.14. The tilt of the the torsion theory (T ,F(p)) is the category
Coh(p+1)(X) for 0 ≤ p ≤ d− 1.

Proof. We introduce

D]≤0 := {E ∈ D≤0
(p)(X) | H0

(p)(E) ∈ T }

D]≥0 := {E ∈ D≥−1
(p) (X) | H−1

(p) (E) ∈ F(p)}

and have to show D]≤0 = D≤0
(p+1)(X) and D]≥0 = D≥0

(p+1)(X). Remember the
definitions

D≤0
(p+1) = {E ∈ Db(X) | Hk(E) = 0 ∀ k > 0, Hk(E) ∈ T ∀ k ∈ {−p, . . . , 0}},

D≤0
(p) = {E ∈ Db(X) | Hk(E) = 0 ∀ k > 0, Hk(E) ∈ T ∀ k ∈ {1− p, . . . , 0}}.

For E ∈ D≤0
(p+1)(X) there is a triangle

τ≤−1(E)︸ ︷︷ ︸
∈D

≤−1
(p) (X)

−→ E −→ H0(E) −→ τ≤−1(E)[1]︸ ︷︷ ︸
∈D

≤−2
(p) (X)

.

Hence, H0
(p)(E) = H0

(p)(H
0(E)) = H0(E) ∈ T . Since E ∈ D≤0

(p), this proves

E ∈ D]≤0 for all E ∈ D≤0
(p+1)(X). For the reverse inclusion we take an element

E ∈ D]≤0, and in order to show E ∈ D≤0
(p+1)(X) we still have to prove H−p(E) ∈

T . The cohomology sequence of the triangle

τ≤−1
(p) (E)︸ ︷︷ ︸
∈D

≤−1
(p) (X)

−→ E −→ H0
(p)(E) −→ τ≤−1

(p) (E)[1]︸ ︷︷ ︸
∈D

≤−2
(p) (X)

gives
H−p(τ≤−1

(p) (E))︸ ︷︷ ︸
∈T

−→ H−p(E) −→ H−p(H0
(p)(E))︸ ︷︷ ︸

∈T

and the assertion H−p(E) ∈ T follows. The equation D]≤0 = D≤0
(p+1)(X) implies

D]≥0 = D≥0
(p+1)(X) because of

D]≥0 = {E ∈ Db(X) | Hom(F,E) = 0 ∀F ∈ D]≤0}[1],

D≥0
(p+1)(X) = {E ∈ Db(X) | Hom(F,E) = 0 ∀F ∈ D≥0

(p+1)(X)}[1].
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Note that F(p) is determined by T due to

F(p) = {E ∈ Coh(p)(X) | Hom(F,E) = 0 ∀F ∈ T }.

This shows that our torsion theories coincide with the torsion theories of section
1.2 and 1.3 in the case of generic K3 surfaces and generic complex tori. Thus,
our abelian categories Coh(p)(X) and our stability conditions σ(p) generalize
those of section 1.2 and 1.3.



Chapter 2

Quotient categories and
stability

2.1 The derived category modulo codimension
≥ 2

It is known that the quotient of the derived category of coherent sheaves on
an irreducible projective variety X of dimension d by the full subcategory of
complexes whose support has codimension ≥ 1, is the derived category of K(X)-
vector spaces, where K(X) is the function field of X (see Corollary 2.1.10).
In particular, this quotient category has homological dimension zero. In this
section we consider the quotient of the derived category of coherent sheaves on
the variety X by the full subcategory of complexes of codimension ≥ 2. We aim
to show that this quotient category has homological dimension at most one.
Although, one might expect this result for every dimension d, we prove this
only for d ≤ 2. Furthermore, we compute the K-group of this category.

2.1.1 The equivalence of the different approaches

Let X be an irreducible smooth projective variety of dimension d. We introduce
several full subcategories of Db(X) and Coh(X).

Definition 2.1.1. For any natural number 0 ≤ d′ ≤ d we define Db
d′(X) to be

the full subcategory of Db(X) consisting of complexes whose support has dimen-
sion ≤ d′. Note that the support of a complex is the union of the supports of
its cohomology sheaves. Similar, we denote by Cohd′(X) the full subcategory of
Coh(X) consisting of sheaves whose support has dimension ≤ d′.

The following lemma is an easy consequence of the fact that for every short
exact sequence of coherent sheaves on X

0 −→ E′ −→ E −→ E′′ −→ 0

55
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the supports satisfy supp(E) = supp(E′) ∪ supp(E′′).

Lemma 2.1.2. The categories Db
d′(X) are thick triangulated subcategories of

Db(X). Similar, the categories Cohd′(X) are Serre subcategories of Coh(X).

Recall that a full subcategory D′ of a triangulated category D is called thick if
E′⊕E′′ ∈ D′ implies E′, E′′ ∈ D′. A full subcategory A′ of an abelian category
A is a Serre subcategory if for every short exact sequence

0 −→ E′ −→ E −→ E′′ −→ 0

in A the object E is in A′ if and only if E′ and E′′ are in A′. In particular, A′
is an abelian subcategory.
The next propositions are special cases of results of Serre respectively Verdier.

Proposition 2.1.3 ([32], Lemma A.2.3). For any 0 < d′ ≤ d there is an abelian
category Cohd,d′(X) and an exact functor P : Coh(X) −→ Cohd,d′(X) which is
zero on the subcategory Cohd′−1(X) and which is universal among all exact func-
tors P̃ : Coh(X) −→ A between abelian categories vanishing on Cohd′−1(X).
Furthermore, the kernel of P is exactly the category Cohd′−1(X). The category
Cohd,d′(X) is called the quotient category of Coh(X) by Cohd′−1(X). The ob-
jects of Cohd,d′(X) are those of Coh(X), and a morphism between two objects
E and F is described by a roof

E′
s

~~~~
~~

~ f

!!C
CC

CC

E F ,

where s and f are morphisms in Coh(X) with ker(s), coker(s) ∈ Cohd′−1(X).

Proposition 2.1.4 ([32], Theorem 2.1.8). For any 0 < d′ ≤ d there is a tri-
angulated category Db

d,d′(X) and an exact functor Q : Db(X) −→ Db
d,d′(X)

which is zero on the subcategory Db
d′−1(X) and which is universal among all

exact functors Q̃ : Db(X) −→ T between triangulated categories vanishing on
Db

d′−1(X). Furthermore, the kernel of Q is exactly the category Db
d′−1(X). The

category Db
d,d′(X) is called the quotient category of Db(X) by Db

d′−1(X). The
objects of Db

d,d′(X) are those of Db(X), and a morphism between two objects E
and F is described by a roof

E′
s

~~~~
~~

~ f

!!C
CC

CC

E F ,

where s and f are morphisms in Db(X) with C(s) ∈ Db
d′−1(X).

For the quotient Db
d,d′(X) as well as for Cohd,d′(X) two roofs

E′
s

~~}}
}}

} f

  A
AA

AA

E F

and E′′
t

}}||
||

| g

!!B
BB

BB

E F
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describe the same morphism if there is commutative diagram

E′′′
u

||zz
zz

z v

""E
EE

EE

E′
s

~~}}
}}

}
f ++VVVVVVVVVVVVVVVVVV E′′

ttthhhhhhhhhhhhhhhhh
g

!!B
BB

BB

E F

with C(su) ∈ Db
d′−1(X) respectively ker(su), coker(su) ∈ Cohd′−1(X).

There is a similar description of the morphisms using right roof

F ′

E

f >>}}}}}
F

s
``AAAAA

with C(s) ∈ Db
d′−1(X) resp. ker(s), coker(s) ∈ Cohd′−1(X), instead of the upper

left roofs.
The definition of Db

d,d′(X) and Q also shows that Q : Db(X) −→ Db
d,d′(X) is the

localization functor with respect to the set of morphisms f : E −→ F in Db(X)
with the property C(f) ∈ Db

d′−1(X) which is equivalent to kerHi(f), cokerHi(f)
∈ Cohd′−1(X) for all i ∈ Z. Let us denote by Sd′−1 the set of complex homo-
morphisms g : E −→ F in Komb(X) with kerHi(g), cokerHi(g) ∈ Cohd′−1(X)
for all i ∈ Z. This set contains the set of quasi-isomorphisms. If we represent
f ∈ HomDb(X)(E,F ) by the roof

E′
s

~~~~
~~

~ g

!!C
CC

CC

E F ,

we see that C(f) ∈ Db
d′−1(X) if and only if g ∈ Sd′−1. Using this and the

definition of Db(X) as the localization of Komb(X) with respect to the set of
quasi-isomorphisms, we obtain that Db

d,d′(X) is (isomorphic to) the localization
of Komb(X) by Sd′−1. In particular, a morphism in Db

d,d′(X) can be represented
by a roof

E′
t

~~}}
}}

} h

  A
AA

AA

E F

with t and h complex homomorphisms and t ∈ Sd′−1. We will use this equivalent
description of Db

d,d′(X) to verify the following proposition.

Proposition 2.1.5. For any 0 < d′ ≤ d the naturally induced exact func-
tor Db(P ) : Db(X) = Db(Coh(X)) −→ Db(Cohd,d′(X)) factorizes over Q :
Db(X) −→ Db

d,d′(X) and the resulting functor T : Db
d,d′(X) −→ Db(Cohd,d′(X))

is an equivalence of triangulated categories.
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Db(X) = Db(Coh(X))

Db(P )

&&LLLLLLLLLLLLLLLL

Q

zzuuuuuuuuuuuuuu

Db
d,d′(X) ∼

T
// Db(Cohd,d′(X))

Proof. We prove the proposition in several steps. First of all we show that T
is well defined. This is an easy consequence of the fact that Db(P ) commutes
with the cohomology functors.

Db(X)
Db(P ) //

Hi

��

Db(Cohd,d′(X))

Hi

��
Coh(X) P // Cohd,d′(X)

For E ∈ Db
d′−1(X) we have Hi(Db(P )(E)) = P (Hi(E)) = 0 for all i ∈ Z and,

therefore, Db(P )(E) = 0. The existence of T follows now by the universal prop-
erty of Q : Db(X) −→ Db

d,d′(X). We need to show that T is fully faithful and
that every object of Db(Cohd,d′(X)) is isomorphic to some object in the image of
T . We formulate these assertions as three lemmas following the definition.

Definition 2.1.6. We fix 0 < d′ ≤ d. For every coherent sheaf F let t(F ) be the
biggest subsheaf of F whose support has dimension ≤ d′− 1. For every complex
E of coherent sheaves we define t(E) to be the subcomplex of E with components
t(En), where the En are the components of E. It is the biggest subcomplex of E
which is a complex in Cohd′−1(X).

Lemma 2.1.7. For every bounded complex E in Cohd,d′(X) there is a bounded
complex E′ in Coh(X) with t(E′) = 0 and an isomorphism s : T (E′) −→ E of
complexes, where T (E′) is the complex E′ regarded as a complex in Cohd,d′(X).
In particular, every object of Db(Cohd,d′(X)) is isomorphic to some object in
the image of T .

Proof. Let us write the complex E as E1
d1−→ . . . −→ En−1

dn−1−−−→ En
dn−→ En+1.

We represent dn by a roof in Coh(X)

E′n
d̃n

""F
FFFF

sn

}}||
||

|

En En+1

with ker(sn), coker(s) ∈ Cohd′−1(X) and obtain an isomorphism of complexes
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in Cohd,d′(X)

E(1)

s(1)

��

: E1
d1 // . . .

dn−2 // En−1

s−1
n dn−1 // E′n

sn

��

d̃n // En+1

E : E1
d1 // . . .

dn−2 // En−1
dn−1 // En

dn // En+1 .

The advantage of E(1) is that d̃n is a morphism in Coh(X) instead of Cohd,d′(X).
We repeat this procedure with the differential s−1

n dn−1 and obtain an isomor-
phism s(2) : E(2) −→ E(1) and the last two differentials of E(2) are morphisms
of sheaves. Progressing in this way, we get an isomorphism s(1) ◦ . . . ◦ s(n) :
E(n) −→ E of complexes in Cohd,d′(X) and all differentials of E(n) are mor-
phisms of sheaves. However, E(n) does not need to be a complex in Coh(X). It
is a complex in Cohd,d′(X), i.e. the image of the composition of two successive
differentials is contained in Cohd′−1(X). We obtain another isomorphism of
complexes

E(n)

s′

��

: E
(n)
1

����

d
(n)
1 // . . .

d(n)
n // E(n)

n+1

����
E′ = E(n)/ t(E(n)) : E

(n)
1 / t(E(n)

1 )
d′1 // . . .

d′n// E(n)
n+1/ t(E(n)

n+1)

in Cohd,d′(X). The composition of two successive differentials in the complex
below is zero by the construction of E′. Thus, E′ can be regarded as a com-
plex in Coh(X) with t(E′) = 0 which is mapped by T onto itself as an object
of Komb(Cohd,d′(X)). The requested isomorphism is s(1) ◦ . . . ◦ s(n) ◦ s′−1 :
T (E′) −→ E.

Remark. Note that the isomorphism in the lemma is an isomorphism of com-
plexes in Cohd,d′(X) and not just a quasi-isomorphism which would be enough
for the second statement of the lemma. Furthermore, for any complex E in
Coh(X) the complex homomorphism E � E/ t(E) is contained in Sd′−1 and,
thus, an isomorphism in Db

d,d′(X). In other words, we can replace any ob-
ject in Db

d,d′(X) by an isomorphic complex without nontrivial subcomplexes in
Cohd′−1(X).

Lemma 2.1.8. The functor T is full, i.e. for two arbitrary objects E,F ∈
Db

d,d′(X) the map

HomDb
d,d′ (X)(E,F ) T−−−→ HomDb(Cohd,d′ (X))(T (E), T (F ))

is surjective.
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Proof. Due to the upper remark, we can assume t(E) = t(F ) = 0. We represent
a morphism f : T (E) −→ T (F ) by a roof

G
f̃

""E
EE

EEs

||yy
yy

y

T (E) T (F )

with complex homomorphisms f̃ and s in Cohd,d′(X) and s is a quasi-isomor-
phism. Due to the previous lemma, we have an isomorphism s′ : T (G′) −→ G
of complexes and we can replace the roof by the equivalent roof

T (G′)
f̃s′

$$II
III

I
ss′

zzuuu
uuu

T (E) T (F )

with t(E) = t(F ) = t(G′) = 0.

Thus, it is enough to show that we can ‘lift’ every morphism represented by
a complex homomorphism f : T (E) −→ T (F ) in Cohd,d′(X) to a morphism
f̂ : E −→ F in Db

d,d′(X) under the assumption t(E) = t(F ) = 0. Furthermore,
f̂ needs to be an isomorphism if f is a quasi-isomorphism.
If we represent every component of f by a roof in Coh(X), we get the following
diagram

E1
d1 // . . .

dn−1 // En
dn // En+1

E′1

s1

OO

f1

��

. . . E′n

sn

OO

fn

��

E′n+1

sn+1

OO

fn+1

��
F1

h1 // . . .
hn−1 // Fn

hn // Fn+1

with ker(s1), . . . , ker(sn+1), coker(s1), . . . , coker(sn+1) ∈ Cohd′−1(X). Since
t(Ek) = t(Fk) = 0, the morphisms sk and fk factorize over the quotient map
E′k � E′k/ t(E′k). The commutativity of the upper diagram in Cohd,d′(X) is
still valid if we replace E′k by the quotient E′k/ t(E′k). Thus, we can assume
t(E′k) = 0. In this case, sk is injective and we can regard E′k as a subsheaf of Ek

with the inclusions sk. We consider now the subsheaves E′′k := E′k ∩ d
−1
k (E′k+1)

of Ek. Since dk+1 ◦ dk = 0, we get dk(E′′k ) ⊆ E′′k+1 and obtain a subcomplex E′′

of E with components E′′k . Using Ek/E
′
k, Ek+1/E

′
k+1 ∈ Cohd′−1(X), it is an

easy exercise to show that Ek/E
′′
k is contained in Cohd′−1(X). Thus, the inclu-

sion s′′ : E′′ −→ E is in Sd′−1 and, therefore, an isomorphism in Db
d,d′(X). The

restrictions f ′′k of the fk to E′′k form a complex homomorphism in Cohd,d′(X),
i.e. the image of hkf

′′
k − f ′′k+1dk is contained in Cohd′−1(X). Due to our as-

sumption on F , there are no nontrivial subsheaves of Fk+1 of this kind. This
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shows that the f ′′k form a complex homomorphism f ′′ : E′′ −→ F in Coh(X).
The composition f̂ := f ′′ ◦ s′′−1 : E −→ F which is well defined in Db

d,d′(X) is
the desired lift of f : T (E) −→ T (F ).
Finally, we have to show that for a quasi-isomorphism f the lift f̂ is an iso-
morphism. If f is a quasi-isomorphism in Komb(Cohd,d′(X)), its cone C(f)
must be zero in Db(Cohd,d′(X)). On the other hand, we have Db(P )(C(f ′′)) ∼=
T (C(f̂)) ∼= C(f) = 0. Since Db(P ) commutes with cohomology, the cohomol-
ogy sheaves of C(f ′′) are contained in the kernel of P which is Cohd′−1(X).
Therefore, f ′′ ∈ Sd′−1 and f̂ = f ′′ ◦ s′′−1 is an isomorphism in Db

d,d′(X).

Lemma 2.1.9. The functor T is faithful, i.e. for two arbitrary objects E,F ∈
Db

d,d′(X) the map

HomDb
d,d′ (X)(E,F ) T−−−→ HomDb(Cohd,d′ (X))(T (E), T (F ))

is injective.

Proof. Let f̃ : E −→ F be a morphism with T (f̃) = 0. We represent f̃ by a
roof

E′
f

  A
AA

AAs

~~}}
}}

}

E F

of complex homomorphisms in Coh(X) with s ∈ Sd′−1. Replacing E and F
if necessary, we can assume t(E) = t(F ) = 0. In this case f and s factorize
over the quotient map E′ � E′/ t(E′). Thus, we can assume t(E′) = 0 as well.
It is enough to find a complex homomorphism t′′ : G′′ −→ E′ in Sd′−1 with
f ◦ t′′ = 0.
Since T (s) is an isomorphism, we have T (f) = 0 in Db(Cohd,d′(X)). The
latter is equivalent to the existence of a quasi-isomorphism u : G −→ T (E′) in
Komb(Cohd,d′(X)) with f ◦ u = 0 as a complex homomorphism. The Lemma
2.1.7 provides us with a complex isomorphism u′ : T (G′) −→ G with t(G′) = 0.
We denote the composition u ◦ u′ by t : T (G′) −→ T (E′). Due to the proof of
the previous lemma, we can lift t to an isomorphism t̂ : G′ −→ E′ in Db

d,d′(X)
represented by the roof

G′′
t′′

!!C
CC

CCs′′

}}{{
{{

{

G′ E′

with s′′, t′′ ∈ Sd′−1 and, moreover, s′′ is an isomorphism regarded as a complex
homomorphism in Cohd,d′(X). Since f ◦ t′′ ◦ s′′−1 = 0 in Komb(Cohd,d′(X)),
we get f ◦ t′′ = 0 in Komb(Cohd,d′(X)). This means that the image of f ◦ t′′ :
G′′ −→ F is a subcomplex of F in Cohd′−1(X). Due to our assumption on F ,
we get f ◦ t′′ = 0 in Komb(Coh(X)) and we are done.

As an application of the Proposition 2.1.5 we give a proof the following well
known statement.
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Corollary 2.1.10. The quotient category Db
d,d(X) is equivalent to the bounded

derived category of finite-dimensional vector spaces over the function field K(X)
of the irreducible smooth projective variety X.

Proof. Using Proposition 2.1.5, it suffices to prove that Cohd,d(X) is equivalent
to the abelian category of finite-dimensional vector spaces over the function field
K(X). By Serre’s theorem, there is for every coherent sheaf E a short exact
sequence

0 −→ OX(−D)⊕ rk(E) −→ E −→ T −→ 0

for some very ample divisorD and a torsion sheaf T . Using this and the sequence

0 −→ OX(−D) −→ OX −→ OD −→ 0 ,

we get E ∼= O⊕ rk(E)
X in Cohd,d(X). If a morphism f̃ ∈ HomCohd,d(X)(OX ,OX)

is represented by the roof

E
f

!!C
CC

CCs

}}{{
{{

{

OX OX

with ker(s), coker(s) ∈ Db
d−1(X), we can assume E = OX(−D) for some (ample)

divisor D by Serre’s theorem. Otherwise, we replace E by OX(−D) ↪→ E which
leads to an equivalent roof. Since s 6= 0, we can form the rational function
f∨/s∨ ∈ K(X) by taking the quotient of the sections f∨, s∨ ∈ H0(X,OX(D)). If
the morphism f̃ is represented by another roof, we get the following commutative
diagram

E′′
t

yyssssss t′

%%LLLLLL

OX(−D)
f

yyssssss
s

,,YYYYYYYYYYYYYYYYYYYYYYY OX(−D′)

f ′rrffffffffffffffffffffff
s′

&&MMMMMM

OX OX .

We can apply the same simplifications to E′′ as before. Doing this, we can
assume E′′ = OX(−D′′) and we obtain the following equations of rational func-
tions f∨/s∨ = t∨f∨/t∨s∨ = t′∨f ′∨/t′∨s′∨ = f ′∨/s′∨ which proves the indepen-
dence of the rational function from the chosen representation of the morphism
f̃ .
Conversely, every nontrivial rational function g : X −→ P1 is the quotient of
the two sections s∨ := g∗x and f∨ := g∗y in E := g∗OP1(1), where x and y are
the canonical sections of OP1(1) vanishing in ∞ respectively in 0 ∈ P1. Thus, g
comes from a roof. This proves HomCohd,d(X)(OX ,OX) ∼= K(X) and since every
object of Cohd,d(X) is a direct sum of copies of OX , the category Cohd,d(X) is
equivalent as an abelian category to the category of vector spaces. Indeed, using
arguments from linear algebra one can show, that every short exact sequence in
Cohd,d(X) splits. See the proof of Theorem 2.2.6 for similar arguments.
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2.1.2 Properties of the quotient category

We know from the previous section that the triangulated quotient category
Db

d,d−1(X) is equivalent to the bounded derived category of the abelian quo-
tient category Cohd,d−1(X). As before, X is an irreducible smooth projective
variety of dimension d. Note that in the case of curves these quotient cate-
gories coincide with the usual categories Db(X) and Coh(X). In the case of
arbitrary dimensions the quotient categories still possess some properties of the
corresponding categories for curves. Nevertheless, there are also significant dif-
ferences between the case of curves and the general case. For example, it is
not known whether Db

d,d−1(X) has a Serre functor for d ≥ 2. Furthermore, the
Hom-groups may have infinite dimensions over the base field k.
The first two propositions of this subsection have already been proved by Holger
Partsch in his diploma thesis [35].

Proposition 2.1.11 ([35], Proposition 2.1). The K-group of Db
d,d−1(X) ∼=

Db(Cohd,d−1(X)) is

K(Db
d,d−1(X)) ∼= K(Cohd,d−1(X)) ∼= PicX ⊕ Z.

Proof. If we associate to any Weil divisor D =
∑p

i=1 niDi with irreducible
divisors Di the class

∑p
i=1 ni clODi in the K-group K(Cohd,d−1(X)), we obtain

a group homomorphism from the Weil group of X into this K-group. The short
exact sequence

0 −→ OX −→ OX(D) −→ OX(D)|D ∼= OD −→ 0

in Cohd,d−1(X) shows clOD = clOX(D) − clOX for every effective divisor
D. Using this and the fact that every divisor is the difference of two effective
divisors, we conclude cl(OX(D1) ⊗ OX(D2)) − clOX = clOX(D1) − clOX +
clOX(D2) − clOX for arbitrary divisors D1 and D2. Thus, we obtain a group
homomorphism Ψ : Pic(X) −→ K(Cohd,d−1(X)) mapping a line bundle L
onto clL − clOX . The morphism Ψ maps Pic(X) onto a direct summand of
K(Cohd,d−1(X)) because det : K(Cohd,d−1(X)) −→ Pic(X) is a left inverse
of Ψ. The image of Ψ is contained in the kernel of the rank homomorphism
rk : K(Cohd,d−1(X)) −→ Z.
Due to Serre’s theorem, every coherent sheaf G on X fits into a short exact
sequence

0 −→ OX(mH)⊕ rk(G) −→ G −→ T −→ 0, (2.1)

where H is some fixed ample divisor, m some sufficiently small integer and T
is a torsion sheaf. If we regard T as an object in Cohd,d−1(X), we can assume
that T is a successive extension of torsionfree sheaves Ti on irreducible divisors
Di. Repeating the argument with the short exact sequence (2.1) with H|Di ,
we see that Ti is a direct sum of line bundles ODi(miH|Di) in Cohd,d−1(X).
The latter are isomorphic to ODi in Cohd,d−1(X) and we see that clT is a sum
of classes clODi in K(Cohd,d−1(X)), i.e. contained in the image of Ψ. If some
object clE − clF of K(Cohd,d−1(X)) has rank zero, we get

clE−clF =
(
clOX(mH)r+clTE

)
−
(
clOX(mH)r+clTF

)
= clTE−clTF ∈ im Ψ.
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Thus, the following short sequence is exact and splits

0 −→ Pic(X) Ψ−−→ K(Cohd,d−1(X)) rk−−→ Z −→ 0.

Proposition 2.1.12 ([35], Proposition 2.2). The abelian category Cohd,d−1(X)
is noetherian.

Proof. Consider a chain of epimorphisms

E1 � E2 � . . . � Ej � Ej+1 � . . .

We have to show Ej
∼= Ej+1 for sufficiently large j. Let us denote by Tj the

torsion subsheaf of Ej and by Fj the torsionfree quotient Ej/Tj . Consider the
following diagram with exact rows and columns.

ker fj

��

ker gj

��
0 // Tj //

fj

��

Ej

��

// Fj

gj

��

// 0

0 // Tj+1

��

// Ej+1

��

// Fj+1

��

// 0

coker fj
// 0 // coker gj

// 0

We conclude coker gj = 0, i.e. gj is an epimorphism. Furthermore, the sequence
rk(Fk), k ∈ N, decreases and rk(Fj) = rk(Fj+1) for j � 0. Thus, rk(ker gj) = 0
for j � 0 and ker gj = 0, i.e. Fj

∼= Fj+1 follows. Due to the snake lemma, fj

must be an epimorphism for j � 0. Thus, the sequence of degrees deg Tj with
respect to some fixed ample divisor H decreases. Hence, deg Tj = deg Tj+1,
i.e. deg ker fj = 0 for all j � 0. If the torsion sheaf ker fj has degree zero, it
vanishes in Cohd,d−1(X) and we conclude Tj

∼= Tj+1 for all j � 0. Due to the
five lemma, Ej

∼= Ej+1 for all j � 0.

The following statement is the main result of this section. Although the proof
of the theorem works only for dimX ≤ 2, one might expect that the statement
is true for arbitrary dimensions.

Theorem 2.1.13. Let X be an irreducible smooth projective variety of dimen-
sion d ≤ 2. Then the abelian category Cohd,d−1(X) has at most homological
dimension one, i.e. for all coherent sheaves on X we have

Exti
Cohd,d−1(X)(E,F ) = 0 for all i ≥ 2.
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Proof. The theorem is well known for d ≤ 1 and we restrict ourselves to the case
of surfaces. In the proof of Proposition 2.1.11 we saw that every coherent sheaf
on X as an object in Coh2,1(X) is a successive extension of sheaves OX(mH)
with m sufficiently small and OCi for some integral curves Ci ⊂ X. Using this
and the long exact ExtCoh2,1(X)-sequence, we can assume that E and F are
either OX(mH) or OC . Furthermore, it is enough to show

Exti
Cohd,d−1(X)(OX(mH),OX(nH)) = 0 for all i ≥ 2

in the case m� n, because we can choose m arbitrary small. The proof of the
remaining equations

Exti
Coh2,1(X)(OC′ ,OC) = 0,

Exti
Coh2,1(X)(OX(mH),OC) = 0,

Exti
Coh2,1(X)(OC′ ,OX(nH)) = 0,

Exti
Coh2,1(X)(OX(mH),OX(nH)) = 0

for i ≥ 2 is very technical and we postpone it to the next subsection.

We will obtain the following assertion as a corollary of the proof of the previous
four equations in the next subsection. It generalizes the corresponding state-
ments for curves. On the other hand, the last part shows that Coh2,1(X) is not
of finite type over the base field k.

Proposition 2.1.14. Let X be an irreducible smooth projective surface, E a
torsionfree sheaf and T, T ′ two torsion sheaves on X whose supports have no
common curves. Then,

1. Ext1Coh2,1(X)(E, T ) = 0,

2. HomCoh2,1(X)(T ′, T ) = 0 and

3. EndCoh2,1(X)(OC) = K(C), where C ⊂ X is an integral curve of X with
function field K(C).

2.1.3 The proof of the Theorem

In this subsection we prove the equations

Exti
Coh2,1(X)(OC′ ,OC) = 0, (2.2)

Exti
Coh2,1(X)(OX(mH),OC) = 0, (2.3)

Exti
Coh2,1(X)(OC′ ,OX(nH)) = 0, (2.4)

Exti
Coh2,1(X)(OX(mH),OX(nH)) = 0 (2.5)

for all i ≥ 2, all integral curves C,C ′ ⊆ X and all integers m,n ∈ Z with m� n.
In order to prove the last two equations, we need some techniques from the proof
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of the first two equations for a more general curve C in X. Hence, we allow C
and C ′ to be any closed curve in X not necessarily reduced or irreducible. Due
to this, all divisors on the curves C and C ′ have to be Cartier divisors. In this
subsection we use right roofs (see below) instead of the left roofs of subsection
2.1.1. All triangles appearing in the text are assumed to be distinguished tri-
angles.

We start with the proof of the first two equations. Let G be a coherent sheaf on
X. We aim at computing Exti

Coh2,1(X)(G,OC) = HomDb
2,1(X)(G[−i],OC). For

i < 0 these Exti-groups vanish due to the existence of a t-structure on Db
2,1(X)

with heart Coh2,1(X). Therefore, we will restrict ourselves to the case i ≥ 0.
Let us fix an element f̃ ∈ HomDb

2,1(X)(G[−i],OC) and represent it by some roof

E

G[−i]

f
<<xxxxx

OC

s
``BBBBB

(2.6)

such that the cone C(s) belongs to Db
0(X). Looking at the long exact coho-

mology sequence associated to the triangle OC −→ E −→ C(s) −→ OC [1], we
obtain

H l(E) ∈ Coh0(X) for all l 6= 0 and there is a short exact sequence

0 −→ OC
H0(s)−−−−→ H0(E) −→ T −→ 0

for some torsion sheaf T with zero-dimensional support. Conversely, every mor-
phism OC

s−→ E having these properties satisfies C(s) ∈ Db
0(X), i.e. becomes

an isomorphism in the quotient category Db
2,1(X). Using this, we see that we

can replace the upper roof by the roof

τ≥0(E)

G[−i]

tf 99ssssss
OC ,

ts
ddJJJJJJ

where t : E −→ τ≥0(E) is the usual morphism. Due to this, we will assume
E ∈ D≥0(X). On the other hand, f and s lift over the morphism τ≤i(E) −→ E
and we can replace the upper roof by the lower roof in the following diagram.

E

τ≤i(E)

OO

G[−i]
f̂

99ssssss

f

BB������������
OC

ŝ

ddHHHHHH

s

[[666666666666
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Due to this observation, we may assume E ∈ D[0,i](X). Furthermore, we will
assume that H0(E) contains no torsion subsheaf with zero-dimensional support.
Otherwise, we replace our roof by the equivalent roof

E/T ′

G[−i]

uf ::uuuuuu
OC ,

us
ccHHHHHH

where T ′ is the biggest subsheaf of H0(E) with zero-dimensional support and
E/T ′ as well as u are defined by the triangle T ′ −→ E

u−−→ E/T ′ −→ T ′[1]. In
general, the ideal sheaf IC of C does not annihilate H0(E) because the torsion
sheaf T = H0(E)/OC might have ‘directions transverse to C’. If we take the
tensor product of the short exact sequence

0 −→ IC/Ann(H0(E)) −→ OX/Ann(H0(E)) −→ OC −→ 0

with H0(E), we obtain the exact sequence

IC ⊗H0(E) −→ H0(E) −→ H0(E)|C −→ 0.

SinceH0(E) ∼= OC outside the finite set of points supp(T ), we concludeH0(E) ∼=
H0(E)|C because H0(E) has no subsheaves of zero-dimensional support. Thus,
H0(E) can be regarded as a torsionfree sheaf on C. If the curve is not reduced
and smooth, it might happen that H0(E) is not locally free. In this case, we
embed H0(E) into some locally free sheaf OC(D) of rank one. Indeed, due to
Serre’s theorem and H0(E) ∼= OC outside supp(T ), there is a monomorphism
OC(−D) i−→ H0(E)∨ for some ample divisor D on C such that the cokernel of i

has zero-dimensional support. The compositionH0(E) ↪→ H0(E)∨∨ i∨−→ OC(D)
is the desired embedding.
There is a morphism v from E to the cone E′ of the composition τ≥1(E)[−1] −→
H0(E) ↪→ OC(D) which makes the following diagram commutative

τ≥1(E)[−1] // H0(E) //
� _
v
��

E //

��

τ≥1(E)

τ≥1(E)[−1] // OC(D) // E′ // τ≥1(E) .

Using v and E′ we can replace our previous roof by the equivalent roof

E′

G[−i]

vf
;;wwwww

OC

vs
aaCCCCC

with H0(E′) = OC(D) for some effective divisor D defined by the nontrivial
‘section’ H0(vs).

As an immediate consequence of these simplifications we obtain the following
corollary.
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Corollary 2.1.15. For two torsion sheaves T, T ′ whose supports have no com-
mon curves we get

HomCoh2,1(X)(T ′, T ) = 0.

Furthermore, for an integral curve C the endomorphism ring
HomCoh2,1(X)(OC ,OC) is the function field K(C) of the curve.

Proof. In Coh2,1(X) every torsion sheaf is a successive extension of structure
sheaves OCi of integral curves Ci. Using the exact HomCoh2,1(X)-sequences and
induction with respect to the number of necessary extensions, we can restrict
ourselves to the case T = OC and T ′ = OC′ for two distinct integral curves C
and C ′. We choose a morphism f̃ and represent it by some roof as in (2.6).
Due to our simplifications, we can assume that E is a locally free sheaf OC(D)
of rank one. The divisor D is defined by the ‘section’ s : OC −→ E. The first
statement follows from the simple fact that there is no nonzero morphism f
between torsionfree sheaves which are supported on two curves without common
components. For the second assertion we regard the morphisms f and s of the
roof as sections of E = OC(D). We associate to our roof the rational function
f/s ∈ K(C). If the morphism f̃ is represented by another roof, we get the
following commutative diagram

E′′

OC(D)

t
::uuuuuu

OC(D′)

t′
ddJJJJJJ

OC

f ::uuuuuu f ′

33fffffffffffffffffffff OC .
s

kkXXXXXXXXXXXXXXXXXXXXX

s′
eeKKKKKK

We can apply the same simplifications to E′′ as before. Doing this, we can as-
sume E′′ = OC(D′′) and we obtain the following equations of rational functions
f/s = tf/ts = t′f ′/t′s′ = f ′/s′ which proves the independence of the rational
function from the chosen representation of the morphism f̃ .
Conversely, every nontrivial rational function g : C −→ P1 is the quotient of the
two sections s := g∗x and f := g∗y in E := g∗OP1(1), where x and y are the
canonical sections of OP1(1) vanishing in ∞ respectively in 0 ∈ P1.

We come back to the roof (2.6) and we may assume i ≥ 0, E ∈ D[0,i](X) and
H0(E) = OC(D) for some effective divisor D on C. Assume, there is some
morphism t : E −→ E′ with C(t) ∈ Db

0(X) and H1(E′) = 0. Then, we can
replace the roof (2.6) by

E′

G[−i]

tf
;;wwwww

OC .

ts
bbEEEEE

If we simplify this as before, we may assume E′ ∈ D[0,i](X) and H0(E′) =
OC(D′) for some effective divisor D′ on C. These simplifications do not effect
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the equation H1(E′) = 0 which implies E′ ∼= H0(E′) ⊕ τ≥2(E′). Thus, we get
a ‘projection’ p : E′ −→ H0(E′) = OC(D′) and we can replace our original roof

E

G[−i]

f
<<xxxxx

OC

s
``BBBBB

by OC(D′)

G[−i]

ptf 99ssssss
OC .

ptseeKKKKKK

If such a morphism t : E −→ E′ always exists, we can conclude the equations
(2.2) and (2.3) from the following lemma.

Lemma 2.1.16. If every morphism f̃ ∈ Exti
Coh2,1(X)(OC′ ,OC) is representable

by a roof of the following shape

OC(D)

OC′ [−i]

f 88qqqqqq
OC ,

s
ddJJJJJJ

then Exti
Coh2,1(X)(OC′ ,OC) = 0 for i ≥ 2.. The same is true if we replace OC′

by OX(mH) for any m.

Proof. Since dimX = 2, the only nontrivial case is i = 2. After embed-
ding OC(D) into OC(D′) for D′ � D and replacing the roof, we can assume
degOC(D) > degKX |C . Using this, the assertion follows from Serre duality

Ext2(OC′ ,OC(D)) = Hom(OC(D),KX |C′)∨ = 0

and
Ext2(OX(mH),OC(D)) = Hom(OC(D),KX(mH))∨ = 0.

What remains to show is the existence of t : E −→ E′ with C(t) ∈ Db
0(X) and

H1(E′) = 0. We prove this by induction on the length `(H1(E)) of H1(E). For
`(H1(E)) = 0 there is nothing to do. For `(H1(E)) ≥ 1 we choose a subsheaf
k(x) of H1(E) and consider the composition

σ : k(x)[−1] ↪→ H1(E)[−1] −→ τ≥1(E) −→ H0(E)[1] = OC(D)[1].

If σ = 0, there is a morphism σ̃ : k(x)[−1] −→ E inducing the inclusion on the
first cohomology. Define u : E −→ E(1) by the triangle

k(x)[−1] σ̃−−→ E
u−−→ E(1) −→ k(x).

The cone of u is k(x) and `(H1(E(1))) = `(H1(E)) − 1. Thus, we can apply
the induction hypothesis to E(1) and obtain a morphism t(1) : E(1) −→ E′ with
C(t(1)) ∈ Db

0(X) and H1(E′) = 0. The composition t := t(1)u : E −→ E′ is the
desired morphism.
If σ 6= 0, we choose a very ample divisor A on C with x ∈ supp(A) and embed
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OC(D) into OC(D +A) with quotient sheaf OA(D +A).
Define Ê and v : E −→ Ê by the requirement that the following diagram is
commutative and that the rows are distinguished triangles

τ≥1(E)[−1] // OC(D) //
� _

��

E //

v
��

τ≥1(E)

τ≥1(E)[−1] // OC(D +A) // Ê // τ≥1(E) .

By the 3×3-lemma, we can choose v in such a way that the cone of v is iso-
morphic to OC(D + A)/OC(D) = OA(D + A) and, therefore, in Db

0(X). Since
H1(E) = H1(Ê), k(x) is also a subsheaf of H1(Ê) and the composition

σ̂ : k(x)[−1] ↪→ H1(Ê)[−1] −→ τ≥1(Ê) −→ H0(Ê)[1] = OC(D +A)[1],

which is the composition k(x)[−1] σ−→ OC(D)[1] ↪→ OC(D+A)[1], vanishes. To
see this, we look at the long exact Ext-sequence

Ext2(k(x),OC(D)) α−−→ Ext2(k(x),OC(D+A)) −→ Ext2(k(x),OA(D+A)) −→ 0.

Due to Serre duality, all the Ext2-groups have dimension one and, therefore,
α = 0. The left Ext2-group contains σ which is mapped by α onto σ̂ and
the assertion σ̂ = 0 follows. Due to this, we can lift σ̂ to some morphism
σ̃ : k(x)[−1] −→ Ê and define u : Ê −→ E(1) to be the cone of σ̃ as be-
fore. By induction hypothesis, there is a morphism t(1) : E(1) −→ E′ with
C(t(1)) ∈ Db

0(X) and H1(E′) = 0. Finally, t := t(1)uv : E −→ E′ is the desired
morphism.

The existence of t : E −→ E′ as above implies also the following corollary.

Corollary 2.1.17. For a torsionfree sheaf G and a torsion sheaf T on X we
have

Ext1Coh2,1(X)(G,T ) = 0.

Proof. Every torsionfree sheaf G is isomorphic in Coh2,1(X) to its reflexive hull
G∨∨. The latter is locally free on a smooth surface and we can assume that
G is locally free. Furthermore, every torsion sheaf is a successive extension of
structure sheaves OCi in Coh2,1(X), where the Ci are integral curves. Using
the long exact ExtCoh2,1(X)-sequence and induction with respect to the number
of necessary extensions, we can restrict ourselves to the case T = OC . We
represent f̃ ∈ Ext1Coh2,1(X)(G,OC) by a roof of the following shape

OC(D)

G[−1]

f 99ssssss
OC .

s
ddJJJJJJ

Then replace D by D + mH|C with m � 0 and embed OC(D) into OC(D +
mH|C). Since H is ample, we use Serre’s theorem to conclude

Ext1(G,OC(D+mH|C)) = H1(X,OC(D)⊗G∨⊗OX(mH)) = 0 for m� 0.
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Thus, f = 0 and the assertion follows.

Remark. The preceding arguments of this subsection are also valid if we replace
the sheaf OC by the sheaf OC(D) for some divisor D on C. In particular, every
morphism f̃ ∈ HomDb

2,1(X)(G[−i],OC(D)) can be represented by a roof

OC(D′)

G[−i]

f 99ssssss
OC(D)

s
ffMMMMMM

with an effective divisor D′ ≥ D and some section s ∈ H0(C,OC(D′ −D)).

The remaining part of this subsection is devoted to the proof of the equations
(2.4) and (2.5). As before, we denote by G the coherent sheaf OC′ or OX(mH)
with m� n and we represent a morphism f̃ ∈ Exti(G,OX(nH)) by a roof

E

G[−i]

f
<<xxxxx

OX(nH)

s
ddJJJJJJ

with C(s) ∈ Db
0(X). The property C(s) ∈ Db

0(X) is equivalent to H l(E) ∈
Coh0(X) for all l 6= 0 and H0(E) = OX(nH) ⊕ T with T ∈ Coh0(X). Indeed,
the short exact sequence 0 −→ OX(nH) −→ H0(E) −→ T −→ 0 splits by Serre
duality. The only interesting case is i ≥ 0 and we can assume E ∈ D[0,i](X) as
before. After dividing out T −→ E, we can assume H0(E) = OX(nH).
If there is a morphism t : E −→ E′ with C(t) ∈ Db

0(X) and H1(E′) = 0, we can
replace our roof by the equivalent roof

OX(nH)

G[−i]

f ′ 88rrrrrr
OX(nH)

id
ggOOOOOOO

similar to the case of OC .

Lemma 2.1.18. If a morphism f̃ ∈ Exti
Coh2,1(X)(OC′ ,OX(nH)) is representable

by a roof of the following shape

OX(nH)

OC′ [−i]

f 88ppppppp
OX(nH) ,

id
ggOOOOOOO

then f̃ = 0 for i ≥ 2. The same is true if we replace OC′ by OX(mH) with
m� n.
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Proof. As dimX = 2, the only nontrivial case is i = 2. The second assertion
for i = 2 follows from Serre duality

Ext2(OX(mH),OX(nH)) = Hom(OX(nH),KX(mH))∨ = 0 and m� n.

For the first assertion we consider an inclusion ι : OC′(−D) ↪→ OC′ with some
effective divisor D on C ′ of degree deg(D) > deg(KX(−nH)|C′). Since OC′

∼=
OC′(−D) in Coh2,1(X), this induces an isomorphism

Ext2Coh2,1(X)(OC′ ,OX(nH)) ∼−→ Ext2Coh2,1(X)(OC′(−D),OX(nH)).

The image of f̃ under this isomorphism is represented by the following roof.

OX(nH)

OC′(−D)[−2]

fι 66mmmmmmmm
OX(nH)

id
ggOOOOOOO

Due to our assumptions on D, we get

Ext2(OC′(−D),OX(nH)) = Hom(OX(nH),KX |C′(−D))∨

= H0(C ′,KX(−nH)|C′(−D))∨ = 0

and f̃ = 0 follows.

In contrast to the case OC , such a morphism t : E −→ E′ with C(t) ∈ Db
0(X)

and H1(E′) = 0 does not need to exist. Instead of that, we will construct a

morphism OX(nH)
β−→ OX(pH) below with p > n such that β ◦ f̃ satisfies the

assumptions of the previous lemma. Thus, β ◦ f̃ = 0 for i ≥ 2 and there is some
morphism g̃ ∈ Exti−1

Coh2,1(X)(G,OX(pH)|C) with C ∈ |(p−n)H| which is mapped

onto f̃ ∈ Exti
Coh2,1(X)(G,OX(nH)) in the following long exact Exti

Coh2,1(X)-
sequence

Exti−1
Coh2,1(X)(G,OX(pH)) −→ Exti−1

Coh2,1(X)(G,OX(pH)|C)

−→ Exti
Coh2,1(X)(G,OX(nH)).

If i > 2 we get g̃ = 0 and, therefore, f̃ = 0 because of

0 = Exti−1
Coh2,1(X)(G,OC) ∼−→ Exti−1

Coh2,1(X)(G,OX(pH)|C)

and the results of the first part of this subsection. Using Corollary 2.1.17, we
deduce in the same way f̃ = 0 in the case G = OX(mH) and i = 2. The
remaining case is G = OC′ and i = 2. By the results of the first part of this
subsection, we can represent g̃ by the following roof

OC(D)

OC′ [−1]

g 88qqqqqq
OX(pH)|C

t
ggOOOOOOO
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for some effective divisor D ≥ pH|C . After increasing D, we can assume
OC(D) = OC((p+ l)H|C) = OX((p+ l)H)|C for some sufficiently large number
l ∈ N because H|C is ample. By the same reason, t ∈ H0(C,OC(lH|C)) is the
restriction of some section t̄ ∈ H0(X,OX(lH)) if we choose l large enough. Due
to the isomorphism

Ext1(OC′ ,OC((p+ l)H|C)) ∼= Ext1(OC′(−lH|C′),OC(pH|C)),

there is some ĝ ∈ Ext1(OC′(−lH|C′),OC(pH|C)) making the following diagram
commutative.

OC′ [−1]
g // OC(D)

OC′(−lH|C′)[−1]

t̂[−1]

OO

ĝ // OC(pH|C)

t

OO

The morphism t̂ ∈ H0(C ′,OC′(lH|C′)) is the restriction of t̄ to C ′. If l is
sufficiently large, the composition

OC′(−lH|C′)[−2]
t̂[−2]−−−→ OC′ [−2]

g̃[−1]−−−→ OX(pH)|C [−1] −→ OX(nH) ,

which is OC′(−lH|C′)[−2]
ĝ[−1]−−−→ OX(pH)|C [−1] −→ OX(nH) and, therefore,

in Ext2(OC′(−lH|C′),OX(nH)), vanishes by Serre duality. On the other hand,

this composition is OC′(−lH|C′)[−2]
t̂[−2]−−−→ OC′ [−2]

f̃−−→ OX(nH), and we con-

clude f̃ = 0 because OC′(−lH|C′)[−2]
t̂[−2]−−−→ OC′ [−2] is an isomorphism in

Db
2,1(X).

Finally, we have to construct the morphism β : OX(nH) −→ OX(pH) de-
pending on f̃ represented by the roof

E

G[−i]

f
<<xxxxx

OX(nH) .

s
eeKKKKKKK

In order to do this, we choose some curve C ∈ |(p−n)H| for a sufficiently large
p > n such that H1(E) is a torsion subsheaf on C. Note that C might be non-
reduced and reducible. This curve defines a morphism β : OX(nH) ↪→ OX(pH)
and it remains to show that β ◦ f̃ is representable by a roof of the following
form.

OX(pH)

G[−i]

h
88rrrrrr

OX(pH)

id
ggNNNNNNN
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First of all, the composition β ◦ f̃ is representable by the roof

E′

G[−i]

tf
;;wwwww

OX(pH) ,

s′
eeKKKKKKK

where t : E −→ E′ and s′ are defined by the following commutative diagram
with distinguished rows

τ≥1(E)[−1] // OX(nH) //
� _
β
��

E //

t
��

τ≥1(E)

τ≥1(E)[−1] // OX(pH) s′ // E′ // τ≥1(E) .

The nontriviality of σ : H1(E)[−1] −→ τ≥1(E) −→ OX(nH)[1] is the ob-
struction to lift H1(E)[−1] −→ τ≥1(E) over E −→ τ≥1(E) to some morphism
H1(E)[−1] −→ E which induces the identity on the first cohomology. The
obstruction for E′ is the composition

σ′ : H1(E′)[−1] = H1(E)[−1] σ−−→ OX(nH)[1]
β[1]−−→ OX(pH)[1]

which vanishes due to the following short exact sequence

Ext2(H1(E),OX(nH))︸ ︷︷ ︸
3σ

−→ Ext2(H1(E),OX(pH))︸ ︷︷ ︸
dim(...)=`(H1(E))

� Ext2(H1(E),OX(pH)|C)︸ ︷︷ ︸
dim(...)=`(H1(E))

.

For the last dimension we use that H1(E) is a sheaf on C. Thus, there is
a morphism H1(E′)[−1] −→ E′ which induces the identity on the first coho-
mology. Using this, we see that the first cohomology of E′/H1(E′)[−1] :=
C(H1(E′)[−1] −→ E′) is zero, while the zeroth cohomology is still OX(pH).
Thus, we can project onto the zeroth cohomology. If we denote the composi-
tion E′ −→ E′/H1(E′)[−1]

pr−−→ OX(pH) by p, we can represent β ◦ f̃ by the
equivalent roof

OX(pH)

G[−i]

h:=ptf 88rrrrrr
OX(pH)

id
ggNNNNNNN

and we are done.
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2.2 Quotients modulo stable objects of degree
zero

In this section we compute the quotient of the bounded derived category Db(X)
by the full subcategory generated by µ-stable sheaves of degree zero. It turns
out that under suitable conditions on the geometry of X this quotient category
is equivalent to the bounded derived category of vector spaces of finite dimen-
sion over a division algebra. We will give some examples in the last subsection.
As explained in the introduction (see page vi) this quotient category was moti-
vated by the attempt to compare the bounded derived category of a generic K3
surface with the corresponding category of a projective K3 surface. As before,
all triangles appearing in the text are distinguished triangles.

2.2.1 General results

Let X be an irreducible smooth projective variety of dimension d ≥ 1. As
before, we denote by Db

d,d−1(X) the triangulated quotient category of Db(X) by
the subcategory of all complexes whose support has dimension ≤ d−2. We saw
that this category is equivalent to the bounded derived category of the abelian
quotient category Cohd,d−1(X). Assume that the following two assumptions are
true.

1. The quotient category Cohd,d−1(X) has homological dimension one.

2. For every torsionfree sheaf E and every torsion sheaf T on X we have

Ext1Cohd,d−1(X)(E, T ) = 0.

Due to the preceding section, these assumptions are valid for d ≤ 2. If we fix
an ample divisor, we have the notion of µ-stability on Db

d,d−1(X). This defines
a stability condition in the sense of Bridgeland [8],[35]. The stability function
is Z = −deg +i rk. We denote by P(I) the full subcategory of all complexes
whose semistable factors have phases in the set I. Let us denote by D the full
triangulated subcategory of Db

d,d−1(X) generated by the stable sheaves of phase
1/2, i.e. of degree zero.

Lemma 2.2.1. The category D ⊂ Db
d,d−1(X) is the full subcategory P(1/2+Z)

of all complexes whose cohomology sheaves are semistable of phase 1/2.

Proof. Since every semistable sheaf of phase 1/2 has a filtration with stable
quotients of phase 1/2 and due to the existence of the cohomology filtration for
every complex, the subcategory P(1/2 + Z) is contained in D. It remains to
show that for every exact triangle

E′
f−−→ E′′ −→ E −→ E′[1]
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with E′ and E′′ in P(1/2 + Z), the object E belongs to P(1/2 + Z). Consider
the associated long exact cohomology sequence in Cohd,d−1(X)

Hi(E′)
Hi(f)−−−−→ Hi(E′′) −−−→ Hi(E) −−−→ Hi+1(E′)

Hi+1(f)−−−−−→ Hi+1(E′′)

and assume E′, E′′ ∈ P(1/2 + Z). Since the category P(1/2) of all semistable
sheaves of phase 1/2 is abelian and closed under extension, the object Hi(E)
is semistable of phase 1/2 because it is an extension of the semistable sheaves
cokerHi(f) and kerHi+1(f) of phase 1/2. This shows E ∈ P(1/2 + Z), and
with the definition of D we get D = P(1/2 + Z).

The lemma shows that D is a thick triangulated subcategory and we denote by
Q the triangulated quotient category Db

d,d−1(X)/D. The aim of this section is
to describe this category Q. It is a standard result that Q is the localization
of Db

d,d−1(X) with respect to the class S of morphisms with cone in D, and the
class S is localizing (see [32], Chapter 2). Due to this, every morphism in Q can
be represented by a roof

E
f

  @
@@

@@s

~~~~~
~~

F G

with s ∈ S, i.e. C(s) ∈ D.

Let F be a stable sheaf of phase φ(F ) > 1/2 and consider a morphism s :
E −→ F with cone C(s) in D, i.e. s ∈ S. Because of our first assumption on
Cohd,d−1(X), the complex E is isomorphic to ⊕i∈ZH

i(E)[−i] ([20]). In order
to compute the cohomology sheaves, we look at the long exact cohomology
sequence in Cohd,d−1(X) corresponding to the exact triangle of s

0 −→ H−1(C(s)) −→ H0(E) −→ F
α−−→ H0(C(s)) −→ H1(E) −→ 0 , (2.7)

0 −→ Hk(C(s)) −→ Hk+1(E) −→ 0 for all k ∈ Z with k 6= −1, 0 . (2.8)

Since the phase of F is greater than the phase of the semistable sheaf H0(C(s)),
we get α = 0 and we see that Hi(E) is a semistable sheaf of phase 1/2 for i 6= 0.
The zeroth cohomology of E is an extension of F by some semistable sheaf
of phase 1/2. Conversely, any complex E with these cohomology sheaves and
any morphism s : E −→ F in Db

d,d−1(X), whose restriction to H0(E) is the
epimorphism from the extension, has a cone in D. Since E is the direct sum of
its cohomology sheaves, we can replace the original roof by the equivalent roof

H0(E)
fı

##HH
HHH

H
sı

{{xxx
xx

x

F G ,

where ı : H0(E) −→ E is the natural ‘inclusion’. Thus, we can assume that E
is a sheaf.
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Corollary 2.2.2. For any sheaf F ∈ P((1/2, 1]) and any torsion sheaf T on X
we have

HomQ(F, T [n]) = 0 for all n 6= 0.

In particular, HomQ(OD′ ,OD[n]) = 0 for all n 6= 0 and all effective divisors
D,D′ on X.

Proof. It is enough to prove the assertion for a stable sheaf F of phase 1/2 <
φ(F ) ≤ 1. We represent a morphism f̃ ∈ HomQ(F, T [n]) by a roof

E
f

!!D
DD

DDs

����
��

�

F T [n]

with a coherent sheaf E as before. If F is torsionfree, E is also torsionfree
because the kernel of s is semistable of phase 1/2 and, therefore, torsionfree. In
this case the assertion follows easily from the two assumptions on Cohd,d−1(X).
If F is not torsionfree, it must be a torsion sheaf. Since F is stable, we have
F ∼= OD′ in Cohd,d−1(X) for some effective divisor D′ on X. Due to the short
exact sequence

0 −→ OX −→ OX(D′) −→ OD′ −→ 0

in Cohd,d−1(X), we get F ∼= OX(D′) in Q and we can use the result for tor-
sionfree sheaves.

In a similar way one proves the following statement.

Corollary 2.2.3. For any sheaf F and any torsion sheaf T on X we have

HomQ(F, T [n]) = 0 for all n > 0.

Proof. Due to the previous corollary, we can restrict ourselves to stable tor-
sionfree sheaves F of phase 0 < φ(F ) ≤ 1/2. Let us represent a morphism
f̃ ∈ HomQ(F, T [n]) by a roof

E
f

!!D
DD

DDs

����
��

�

F T [n]

with a complex E. We can replace E by the length two subcomplex τ [0,1](E) ∼=
H0(E) ⊕ H1(E)[−1]. Looking at the short exact sequence (2.7), we see that
H0(E) is torsionfree because kerα is torsionfree. Using n > 0, the assertion
follows easily from our two assumptions on Cohd,d−1(X).

Remark. The statement of the last corollary is wrong if we relax the assump-
tion n > 0 to n 6= 0 as in the previous corollary. Indeed, due to the short exact
sequence

0 −→ OX(−D) −→ OX −→ OD −→ 0,
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we obtain OD[−1] ∼= OX(−D) in Q and, therefore, HomQ(OX(−D),OD[−1]) 6=
0 for every effective divisor D on X.

We will assume now that F is stable sheaf of positive degree and deg(F ) gener-
ates the subgroup {deg(E) | E ∈ Cohd,d−1(X)} of Z. Due to this assumption,
the degree of every sheaf E of phase φ(E) > 1/2 is a positive multiple of deg(F ).
We will investigate the endomorphism ring of F in Q.

Lemma 2.2.4. Any roof
E

f

  @
@@

@@s

~~~~~
~~

F G

with E,G ∈ Db
d,d−1(X) is equivalent to a roof

E′
f ′

  A
AA

AAs′

~~}}}
}}

F G

with a stable sheaf E′ of degree deg(E′) = deg(F ).

Proof. Due to our previous remarks, we can assume that E is a sheaf of phase
φ(E) > 1/2. Using the Harder–Narasimhan filtration of E, we find a maximal
semistable subsheaf 0 6= E′ ⊆ E of phase φ(E′) > 1/2 with maximal phase
among all subsheaves. Let us denote by s′ and f ′ the restrictions of s resp.
f to E′ and let us write C and C ′ for the kernel of s resp. s′. Then s′ 6= 0.
Otherwise, E′ is a subsheaf of the semistable sheaf C of phase 1/2 which is
impossible. Thus, we have an extension 0 −→ C ′ −→ E′ −→ F ′ −→ 0 with
subsheaves C ′ of C and F ′ of F . Because of rk(F ′) ≤ rk(F ) and the stability of
F , we get deg(F ′) < deg(F ) if F ′ 6= F . Due to the assumptions on deg(F ), we
conclude deg(F ′) ≤ 0 in this case and we obtain deg(C ′) ≥ deg(E′) > 0 which
contradicts C ′ ⊆ C. Thus, F ′ = F and deg(C ′) = deg(E′) − deg(F ) ≥ 0. If
C ′ is not semistable of degree zero, C ′ and, therefore, C contain a semistable
subsheaf of degree greater than zero, which is impossible. Hence, C ′ is semistable
of degree zero and

E′
f ′

  A
AA

AAs′

~~}}}
}}

F G

is a roof which is equivalent to the previous one due to the following diagram.

E′nN

~~}}
}}

}
BB

BB
B

BB
BB

B

E
s

��~~
~~

~
f **UUUUUUUUUUUUUUUU E′

s′ttiiiiiiiiiiiiiiii
f ′

  A
AA

AA

F G
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Furthermore, E′ has degree deg(E′) = deg(F ) and is, therefore, stable due to
the choice of deg(F ).

Corollary 2.2.5. Any endomorphism of F is either zero or invertible, i.e.
HomQ(F, F ) is a division algebra.

Proof. Using the previous lemma, we represent this endomorphism by a roof

E
f

  @
@@

@@s

~~~~~
~~

F F

with a stable sheaf E of degree deg(E) = deg(F ). If f is not zero, we have
to show f ∈ S, i.e. that f is an epimorphism and that the kernel C of the
epimorphism f : E � F is semistable. If the image of f 6= 0 is a proper subsheaf
F ′ of F , we get deg(C) ≥ deg(E) as in the proof of the previous lemma. Using
rk(C) ≤ rk(E), this contradicts the stability of E. Thus, F ′ = F and f is an
epimorphism. If C is not semistable, there must be a proper semistable subsheaf
E′ of C and, therefore, of E of degree deg(E′) > 0 because C has degree zero.
Due to the assumption on deg(F ) = deg(E), we obtain deg(E′) ≥ deg(E) which
contradicts the stability of E as before.

If we combine the Corollaries 2.2.2 and 2.2.5, we obtain the following theorem.

Theorem 2.2.6. Assume there is an effective divisor D such that deg(D) > 0
generates the subgroup {deg(E) | E ∈ Coh(X)} of Z. In this case the category Q
is equivalent to the bounded derived category of vector spaces of finite dimension
over the division algebra K := HomQ(OD,OD).

Proof. First of all, we show that OD generates Q as a triangulated category.
For this let us denote by Q′ the full triangulated subcategory generated by OD.
Due to our first assumption on Cohd,d−1(X), every complex is isomorphic to the
direct sum of its cohomology sheaves and it suffices to show E ∈ Q′ for every
coherent sheaf. We start with the case E = OX(D′) for some effective divisor
D′ on X. Due to our assumption on D, there is a positive integer m such that
deg(D′) = mdeg(D). The short exact sequence

0 −→ OX(D′ −mD) −→ OX(D′) −→ OX(D′)|mD −→ 0

and deg(OX(D′ −mD)) = 0 imply OX(D′) ∼= OX(D′)|mD
∼= OmD in Q. The

sheaf OmD is a successive extension of OD and, therefore, in Q′. Using this
and the relation OX(D′) ∼= OD′ as well as OX(−D′) ∼= OD′ [1] in Q, we get
OD′ ,OX(D′),OX(−D′) ∈ Q′. Since every torsion sheaf is a successive extension
of structure sheaves OD′ in Cohd,d−1(X), we obtain immediately T ∈ Q′ for
every torsion sheaf T on X. Furthermore, every sheaf E is an extension of a
torsion sheaf by a vector bundle OX(−H)⊕ rk(E) for some ample divisor H and
we finally conclude E ∈ Q′. Thus, Q′ = Q.
The second part of the proof is more or less linear algebra. Using the definition of
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K and Corollary 2.2.2, we obtain a fully faithful functor Φ : Db(Spec(K)) −→ Q
mapping

⊕
i∈Z K

ni [i] to
⊕

i∈ZO
⊕ni

D [i]. If Φ is an exact functor, the image is
a full triangulated subcategory of Q containing OD. Due to the first part, it
coincides with Q up to equivalence and we are done. What remains to show is
the exactness of Φ. For this, let⊕

i

Mi[i] :
⊕

i

Kmi [i] −→
⊕

i

Kni [i]

be a morphism in Db(Spec(K)) represented by (ni,mi)-matrices Mi. Denote by
Ci the cone of Mi in Db(Spec(K)). Since the cone of direct sum of morphisms
is the direct sum of their cones, we have the exact triangle in Db(Spec(K))⊕

i

Kmi [i] −→
⊕

i

Kni [i] −→
⊕

i

Ci[i] −→
⊕

i

Kmi [i+ 1].

We have to show that this triangle remains exact after applying Φ. Since Φ is
additive and commutes with the shift functor, we can assume mi = ni = 0 for
all i ∈ Z, i 6= 0 and we will suppress the index 0 from the notion. Then, there
are isomorphisms α : Km −→ Km and β : Kn −→ Kn, such that

β ◦M ◦ α−1 =
(
id 0
0 0

)
: Kr ⊕Km−r −→ Kr ⊕Kn−r,

where r is the rank of M . For such a morphism the cone is just the sum of the
cone of id, which is zero, and the trivial extension of Km−r[1] by Kn−r

Kr ⊕Kn−r

0@ 0 id
0 0

1A
−−−−−−−−→ Kn−r ⊕Km−r[1]

0@ 0 0
0 id

1A
−−−−−−−−→ (Kr ⊕Km−r)[1].

Since Φ maps trivial extensions to trivial extensions and isomorphisms to iso-
morphisms, the image Φ(C) of the cone of M is the cone of Φ(M) and we are
done.

Remark. There is a natural factorization of the degree map deg : Db
d,d−1(X) −→

Z over the quotient functor Db
d,d−1(X) −→ Q because all sheaves of D have de-

gree zero. We see immediately that the composition of this degree map d : Q −→
Z with Φ : Db(Spec(K)) −→ Q is the dimension map dim : Db(Spec(K)) −→ Z.

2.2.2 Examples

In the last part of this section we consider examples to illustrate the Theorem
2.2.6. Note that the assumptions on Cohd,d−1(X) of the previous section are
satisfied in the case of irreducible smooth projective curves and surfaces.
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The projective space P1

In the case of curves, every point x is a good choice for the divisor in the theorem.
We write k(x) instead of Ox. Let us consider a morphism f̃ : k(x) −→ k(x) in
Q. We represent this morphism by a roof

E
f

!!D
DD

DDs

}}zz
zz

z

k(x) k(x)

with E a stable sheaf of degree one. In the case of P1, the only stable sheaves
of degree one are OP1(1) and k(y) for y ∈ P1. Therefore, f = r · s for some
scalar r ∈ k and we conclude f̃ = r · idk(x). Thus, the division algebra K is just
the base field k and Q is equivalent to the bounded derived category of k-vector
spaces of finite dimension

Q ∼= Db(Spec(k)).

The elliptic curve X
As before we can chooseD = x and conclude thatQ is equivalent to the bounded
derived category of K-vector spaces of finite dimension, where K is the endo-
morphism ring of k(x) in Q.

Proposition 2.2.7. The division algebra is naturally isomorphic to the quotient
field K(X̂) of the dual curve X̂ = Pic0(X). The latter is isomorphic to X, but
this isomorphism depends on the choice of a polarisation.

Proof. We consider the usual Fourier–Mukai equivalence F : Db(X) ∼−→ Db(X̂)
with respect to the Poincaré-bundle (see [29]). Due to a classical result of
Atiyah [1], every stable sheaf of degree zero is a line bundle L in Pic0(X) = X̂
and F maps this line bundle onto the shifted structure sheaf k(L)[1] of the point
L ∈ X̂. Thus, F maps every complex with semistable cohomology sheaves of
degree zero onto a complex with zero-dimensional support. Conversely, F−1

maps every complex with zero-dimensional support onto some complex which
is a successive extension of shifted line bundles of degree zero. Because of this,
F identifies the subcategory D with the subcategory Db

0(X̂) of complexes in
Db(X̂) with zero-dimensional support. Using Corollary 2.1.10, we see that F
induces an equivalence

Q ∼= Db(Spec(K(X̂))).

Note that the quotient category Q still determines the isomorphism class of X.

The curve X of genus g(X) ≥ 2
If we choose D = x, we can apply the theorem and conclude that Q is equivalent
to the bounded derived category of K-vector spaces, where K is the endomor-
phism ring of k(x) in Q. We will show in appendix B that the k-dimension of
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K is infinite as in the case of the elliptic curve. This is related to the existence
of positive dimensional moduli spaces of stable sheaves of degree zero. But in
contrast to the elliptic case, there are stable sheaves of degree zero and rank
greater than one. This may cause the noncommutativity of K.

The projective space P2

We choose the standard polarisation OP2(H) = OP2(1) and see that any hyper-
plane D = H satisfies the assumption of the theorem. Thus, Q is equivalent
to the bounded derived category of K-vector spaces. Note that there is a ring
homomorphism

EndCoh2,1(P2)(OH) −→ EndQ(OH) = K

and since the first endomorphism ring is the function field of H (see Prop.
2.1.13), which is the function field k(Z) of one variable Z, we see that k(Z) is
a subfield of K.

Ruled surfaces
An ample divisor on a ruled surface over a curve C is given by H := C0 +mF
with m� 0, where C0 is some section of π : P(E) −→ C and F ∼= P1 is a fibre
of π. Using the intersection products C0 · F = 1 and F · F = 0, we see that the
degree of D := F with respect to H is one and we can apply the Theorem 2.2.6.
The same holds for elliptic surfaces with a section.



Appendix A

H−p : Refl(p)(X) −→ Refl(X) is
an equivalence

We prove the following statement to complete the proof of Proposition 1.4.8.
See section 1.4 for the notation.

Proposition A.1. For any p ≥ 2 the functor H−p : Refl(p)(X) −→ Refl(X) is
an equivalence of categories.

Proof. For any complex E ∈ Coh(p)(X) we consider the triangle

H−p(E)[p] −→ E −→ τ>−p(E) α−−→ H−p(E)[p+ 1]

and we already know that the natural transformation τ≤−2RΓ(α) : τ [1−p,−2](E) −→
τ≤−2(RΓH−p(E)[p+ 1]) is an isomorphism making the following diagram com-
mutative.

τ [1−p,−2](E)[−1]

δ[−1]

��

τ≤−2(RΓ(α))[−1]

∼
// τ≤−1(RΓH−p(E)[p])

ε

��
τ>−p(E)[−1]

α[−1] // H−p(E)[p]

For E ∈ Refl(p)(X) we have H0(E) = H−1(E) = 0 and the morphism δ is an
isomorphism. Looking at the following diagram

τ≤−1(RΓH−p(E)[p])

o

��

ε // H−p(E)[p] // C

��

// τ≤−1(RΓH−p(E)[p])[1]

o

��
τ>−p(E)[−1]

α[−1] // H−p(E)[p] // E // τ>−p(E) ,

83
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we see that E is isomorphic to the cone of ε : τ≤−1(RΓH−p(E)[p]) −→ H−p(E)[p].
Using this construction, we conclude that every reflexive sheaf is up to isomor-
phism of the form H−p(E) for some complex E ∈ Refl(p)(X).

We still need to show that H−p is fully faithful. Since ε is a natural trans-
formation, we can always ‘extend’ a morphism f : H−p(E) −→ H−p(E′) to a
morphism g : E −→ E′ making the following diagram commutative.

τ≤−1(RΓH−p(E)[p])

τ≤−1(RΓ(f)[p])

��

ε // H−p(E)[p]

f [p]

��

// E

g

��

// τ≤−1(RΓH−p(E)[p])[1]

τ≤−1(RΓ(f)[p])[1]

��
τ≤−1(RΓH−p(E′)[p]) ε′ // H−p(E′)[p] // E′ // τ≤−1(RΓH−p(E′)[p])[1]

Therefore, H−p is a full functor.

For the faithfulness let us consider a morphism g : E −→ E′ with H−p(g) = 0.
Using the fact that τ≤−2RΓ(α) ◦ δ−1 : τ>−p(E) −→ τ≤−2(RΓH−p(E)[p + 1])
is a natural isomorphism, we conclude τ>−p(g) = 0 and obtain the following
commutative diagram with distinguished rows.

τ>−p(E)[−1]

0

��

α[−1] // H−p(E)[p]

0

��

i // E

g

��

π // τ>−p(E)

0

��
τ>−p(E′)[−1]

α′[−1] // H−p(E′)[p] i′ // E′
π′ // τ>−p(E′)

Because of π′g = 0, there is a morphism g′ : E −→ H−p(E′)[p] with i′g′ = g.
From the equation i′g′i = gi = 0 we conclude the existence of a morphism
h : H−p(E)[p] −→ τ>−p(E′)[−1] such that (α′[−1])h = g′i : H−p(E)[p] −→
H−p(E′)[p]. Since τ>−p(E′)[−1] ∈ D>−p(X) and H−p(E)[p] ∈ D≤−p(X), such
a morphism h must be zero. Thus, g′i = 0 and there exists a morphism f :
τ>−p(E) −→ H−p(E′)[p] with fπ = g′. Applying τ≤−1RΓ to f and using
τ>−p(E) ∼= τ≤−1RΓτ>−p(E), we obtain another morphism f ′ : τ>−p(E) −→
τ≤−1(RΓH−p(E′)[p]) with ε′f ′ = f .

τ≤−1RΓτ>−p(E)

o

��

τ≤−1RΓ(f) // τ≤−1(RΓH−p(E′)[p])

ε′

��

∼ // τ>−p(E′)[−1]
α′[−1]

ttjjjjjjjjjjjjjjjjjj

τ>−p(E)

f ′
44iiiiiiiiiiiiiiiiiiii f // H−p(E′)[p]

Using the isomorphism τ≤−1(RΓH−p(E′)[p]) ∼= τ>−p(E′)[−1], we can regard f ′

as a morphism from τ>−p(E) to τ>−p(E′)[−1] with the property (α′[−1])f ′ = f .
Finally, we conclude g = i′g′ = i′fπ = i′(α′[−1])f ′π = 0 because of i′(α′[−1]) =
0. Thus, H−p is a faithful functor.
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On the dimension of the
division algebra

Let X be a smooth projective curve of genus g ≥ 1. We show that the division
algebra HomQ(k(x), k(x)) is infinite-dimensional over the base field k. For the
notation see subsection 2.2.1. Due to Lemma 2.2.4, every roof representing a
morphism f̃ ∈ HomQ(k(x), k(x)) is equivalent to a roof

E
f

!!D
DD

DDs

}}zz
zz

z

k(x) k(x)

with a stable sheaf E of degree one. If E = k(x), we can replace E by OX(x)
and compose s and f with the surjection OX(x) � k(x). Thus, we can assume
without loss of generality that E is a stable locally free sheaf of degree one and
we call these roofs stable.

Lemma B.1. Assume we have two stable roofs

E
f

!!D
DD

DDs

}}zz
zz

z

k(x) k(x)

and E′
f ′

""E
EE

EEs′

||yy
yy

y

k(x) k(x)

with locally free sheaves E and E′, and let us denote the kernels of s and s′ by
C resp. C ′. If f = r · s and f ′ = r · s′ for a scalar r ∈ k, the two roofs are
equivalent. If the semistable sheaves C and C ′ of degree zero have no common
stable factor, this is the only possibility for the roofs to become equivalent.

Proof. The direct sum of the two short exact sequences corresponding to s and
s′ defines an extension of k(x)⊕k(x) by C⊕C ′. The pull back of this extension
by the map

(
1
1

)
: k(x) −→ k(x) ⊕ k(x) defines an extension of k(x) by C ⊕ C ′

85
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and we have the following commutative diagram with exact rows and columns.

0 // C ⊕ C ′ // Ẽ� _0@ p

p′

1A
��

σ // k(x) //
� _0@ 1

1

1A
��

0

0 // C ⊕ C ′ // E ⊕ E′

0@ s 0

0 s′

1A
//

(s −s′)

����

k(x)⊕ k(x)

(1 −1)

����

// 0

k(x) k(x)

Using the assumption f = r · s and f ′ = r · s′, we obtain the following commu-
tative diagram

Ẽ
p

����
��

� p′

��@
@@

@@

E
s

}}{{
{{

{
r·s **UUUUUUUUUUUUUUUU E′

s′ttiiiiiiiiiiiiiii
r·s′

""E
EE

EE

k(x) k(x)

which shows the equivalence of our roofs.
Let us assume now that the roofs are equivalent and the set of stable factors of
C is disjoint from the one of C ′. Thus, we have a commutative diagram

E′′
q

}}||
||

| q′

!!C
CC

CC

E
s

}}{{
{{

{

f **VVVVVVVVVVVVVVVVV E′

s′ttiiiiiiiiiiiiiiii
f ′

""E
EE

EE

k(x) k(x)

and we denote the semistable kernel of the map sq = s′q′ : E′′ −→ k(x) by C ′′.
Since sq − s′q′ = 0, there is a map π : E′′ −→ Ẽ with pπ = q and p′π = q′ and
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we can extend the upper diagram to

0 // C ′′ //

θ

��

E′′

π

��

// k(x) // 0

0 // C ⊕ C ′ // Ẽ� _0@ p

p′

1A
��

σ // k(x) //
� _0@ 1

1

1A
��

0

0 // C ⊕ C ′ // E ⊕ E′

0@ s 0

0 s′

1A
//

(s −s′)

����

k(x)⊕ k(x)

(1 −1)

����

// 0

k(x) k(x) .

We claim that θ is an epimorphism. If this is not the case, there is an epimor-
phism η : C ⊕C ′ −→ C] onto some stable factor of C ⊕C ′ with ηθ = 0 because
C,C ′ and C ′′ are contained in the abelian category of semistable sheaves of
degree zero. The stable factor C] is either a stable factor of C or a stable factor
of C ′ due to our assumption. Let us assume for simplicity that C] is a stable
factor of C. As η|C′ = 0, we can write η as a composition C ⊕ C ′

pr1−−→ C
δ−→ C]

with some epimorphism δ. The image of the extension 0 −→ C ′′ −→ E′′ −→
k(x) −→ 0 under the map pr1 ◦ θ : Ext1(k(x), C ′′) −→ Ext1(k(x), C) is just
the extension 0 −→ C −→ E −→ k(x) −→ 0 and the image of the latter ex-
tension under δ : Ext1(k(x), C) −→ Ext1(k(x), C]) has to be zero because of
δpr1θ = 0. Thus, we find an epimorphism E −→ k(x) ⊕ C] and the projec-
tion onto C] leads to a contradiction because E is stable of degree one and
C] is stable of degree zero. This proves that θ is an epimorphism and using
the snake lemma, we conclude that π is an epimorphism. Due to this and
0 = fq − f ′q′ = fpπ − f ′q′π = (fp − f ′p′)π we conclude fp − f ′p′ = 0. Since(

p
p′

)
: Ẽ −→ E ⊕ E′ is the kernel of (s − s) : E ⊕ E′ −→ k(x), the map

(f − f ′) : E ⊕ E′ −→ k(x) factorizes over (s − s′) and we obtain a scalar
r ∈ k with (f − f ′) = r · (s − s′). Restriction to E and E′ leads to the desired
formulas.

Remark B.2. The proof shows that the sheaf Ẽ in the sum

0 −→ C ⊕ C ′ −→ Ẽ
σ−−→ k(x) −→ 0

of the two extensions

0 −→ C −→ E −→ k(x) −→ 0 and 0 −→ C ′ −→ E′ −→ k(x) −→ 0

under the natural map Ext1(k(x), C)×Ext1(k(x), C ′) +−→ Ext1(k(x), C ⊕C ′) is
stable of degree one if E and E′ are stable of degree one and C and C ′ have no
common stable factors. To see this, we define E′′ to be the stable subobject of
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Ẽ of degree one and denote by C ′′ the kernel of the map σ|E′′ : E′′ −→ k(x).
The morphisms π and θ in the upper diagram are just the inclusions. As θ and
π has been shown to be surjective, they are isomorphism.
This result can be used to constract stable sheaves of degree one and arbitrary
rank r on any curve X of genus greater than zero. To do this, we choose r
line bundles Ci of degree zero which are pairwise non-isomorphic. Then we add
the extensions 0 −→ Ci −→ Ci(x) −→ k(x) −→ 0 successively to obtain the
sequence of extensions

0 −→
l⊕

i=1

Ci −→ Ẽl −→ k(x) −→ 0

with stable vector bundles Ẽl of degree one and rank l.

Proposition B.3. If the genus of the curve X is greater than zero, the k-
dimension of K is uncountable.

Proof. Let us assume for simplicity that the dimension of HomQ(k(x), k(x)) is
countable infinite. Thus, there is a sequence of stable roofs

Ei
fi

""D
DD

DDsi

||zz
zz

z

k(x) k(x)

with i ∈ N

which form a basis of HomQ(k(x), k(x)). Then, every stable roof must be equiv-
alent to the sum of finitely many stable roofs

Ei1
r1·fi1

""E
EE

EEsi1

||yy
yy

y

k(x) k(x)

+ . . . + Ein
rn·fin

""F
FF

FFsin

||xx
xx

x

k(x) k(x)

with n ∈ N and some scalars r1, . . . , rn ∈ k. In order to compute such a sum,
one introduces the equalizer of si1 , . . . , sin which is a locally free sheaf Ẽ defined
by the commutative diagram⊕n

l=1 Cil

� � // Ẽ� _0BBBB@
p1

...
pn

1CCCCA
��

σ // // k(x)� _0BBBB@
1

...
1

1CCCCA
��⊕n

l=1 Cil

� � //⊕n
l=1Eil

0BBBB@
si1 ... 0

...
. . .

...
0 ... sin

1CCCCA
// //⊕n

l=1 k(x)

together with some maps pl : Ẽ −→ Eil
, such that sil

◦ pl = sim ◦ pm for all
1 ≤ l,m ≤ n. The sum of the roofs is then given by the following roof.

Ẽ Pn
l=1 rlfil

pl

!!B
BB

BBσ

}}||
||

|

k(x) k(x)

(B.1)
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Note that the morphism σ : Ẽ −→ k(x) depends only on the finite set of
morphisms si1 , . . . , sin . The number of all such finite sets is countable and we
obtain only countable many morphisms σ : Ẽ −→ k(x) in all possible ‘linear
combinations’ (B.1) of our basis.
In order to compare the roof (B.1) of the sum with any stable roof, we restrict
σ and

∑n
l=1 rlfil

pl to the stable locally free subsheaf Ẽ′ of Ẽ of degree one as
described in the proof of Lemma 2.2.4. This subsheaf is uniquely determined
by the sheaf Ẽ and the finite set of stable factors of the semistable kernel
ker(Ẽ′ σ−→ k(x)) is, therefore, also uniquely determined by σ. We see that the
set of all stable vector bundles of degree zero occurring as factors of this kernel
for all possible σ in (B.1) is a countable set.
On the other hand, for a curve of genus g(X) ≥ 1 there is a moduli space of
stable vector bundles of degree zero whose connected components have positive
dimension. Using the construction of Remark B.2, we obtain uncountable many
stable roofs

E
f

!!D
DD

DDs

}}zz
zz

z

k(x) k(x)

such that f 6∈ k · s and the sets of stable factors of ker(s) are disjoint. By
Lemma B.1, these roofs are not equivalent to each other. Therefore, not all
stable roofs are equivalent to a ‘linear combination’ of our countable basis, and
we obtain a contradiction. Thus, the k-dimension of K = HomQ(k(x), k(x)) is
uncountable.
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