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Universal Toda brackets of ring spectra

Steffen Sagave

Abstract

We construct and examine the universal Toda bracket of a highly structured ring
spectrum R. This invariant of R is a cohomology class in the Mac Lane cohomology
of the graded ring of homotopy groups of R which carries information about R and
the category of R-module spectra. It determines for example all triple Toda brackets
of R and the first obstruction to realizing a module over the homotopy groups of R
by an R-module spectrum.

For periodic ring spectra, we study the corresponding theory of higher universal
Toda brackets. The real and complex K-theory spectra serve as our main examples.
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1 Introduction

In this thesis in algebraic topology, we study a question about highly structured ring
spectra. More specifically, we construct a cohomological invariant γR of a ring spectrum
R, called its universal Toda bracket, and examine which information about R is encoded
in this class.

We use the term ring spectrum for what is called an S-algebra in [EKMM97], a sym-
metric ring spectrum in [HSS00], or an orthogonal ring spectrum in [MMSS01]. These
notions are equivalent in an appropriate way. In all three cases, a ring spectrum R is
a monoid object in a symmetric monoidal stable model category that has the sphere
spectrum as unit and the stable homotopy category as homotopy category. Therefore, R
represents a multiplicative (generalized) cohomology theory.

Many of the multiplicative cohomology theories studied by algebraic topologists are
known to be represented by such ring spectra. The notion of a ring spectrum is more
restrictive than that of a multiplicative cohomology theory, since it requires a spectrum
with a multiplication in a stricter sense. This means that the product is associative and
unital on the level of the model category, rather than being only associative and unital
in the homotopy category.

The crucial advantage of a ring spectrum in the stricter sense is that it behaves much
more like an algebraic object, making it possible to define categories of modules and
algebras over it in a meaningful way. Starting with algebraic K-theory of spaces and
topological Hochschild homology, which emphasized the need of the invention of strict
ring spectra, many concepts from algebra are now successfully applied to the study of ring
spectra, including André-Quillen cohomology, Morita theory, or Galois theory. Moreover,
building partly on the concept of ring spectra, the new areas of motivic homotopy theory
and homotopical algebraic geometry lead to an exchange of ideas between homotopy
theory and algebraic geometry.

One basic algebraic feature of a ring spectrum R is that there is an associated module
category Mod-R, which is a stable model category and has a triangulated homotopy
category Ho(Mod-R). The category Ho(Mod-R) is the analog to the derived category of
an ordinary ring. For an object M of Ho(Mod-R), its stable homotopy groups π∗(M)
form a graded π∗(R)-module. One of our aims is to achieve a better understanding of the
resulting functor π∗(−) : Ho(Mod-R) → Mod-π∗(R). Particularly, we want to examine
under which conditions a π∗(R)-module M is realizable, that is, arises as the homotopy
groups of an R-module spectrum.

There is an obstruction theory associated to this problem, with obstructions κi(M) ∈
Exti,2−i

π∗(R)(M,M) for i ≥ 3. The first obstruction κ3(M) is always defined and unique.

It vanishes if and only if M is a retract of a realizable module. For i ≥ 4, κi(M) is
only defined if κi−1(M) vanishes, and there are choices involved. We want to understand
these obstructions in a systematic way and show how they depend on the ring spectrum
structure of R.

The obstruction theory in fact works in the more general setup of a triangulated cat-
egory T , where it can be used to find out whether a module M over the graded ring of
endomorphisms T (N,N)∗ of a compact object N can be realized as T (N,X)∗ for some
object X of T . An algebraic instance of this problem is to realize a module over the
cohomology of a differential graded algebra A as the cohomology of a differential graded
A-module.
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This analogy between ring spectra and differential graded algebras is one reason why
the following result serves as an algebraic motivation for our work. For a differential
graded algebra A over a field k, Benson, Krause, and Schwede [BKS04] study a class
γA ∈ HH3,−1

k (H∗(A)) in the Hochschild cohomology of the cohomology ring of A. It de-
termines by evaluation all triple (matric) Massey products of H∗(A). Moreover, by a map
HH3,−1

k (H∗(A))→ Ext3,−1
H∗(A)(M,M) depending on M , it determines the first realizability

obstruction κ3(M) for every H∗(A)-module M .
We develop a similar theory for ring spectra. Though the obstruction theory for the

realizability problem takes completely place in triangulated categories, the definition of
a cohomology class with that property needs information from an underlying ‘model’. In
the case of the differential graded algebra A, the A∞-structure of H∗(A) can be used to
define γA. In the case of ring spectra, there is no such A∞-structure. The appropriate
replacement will be to use that choosing representatives in the model category of maps in
the homotopy category is in general not associative with respect to the composition. This
non associativity leads to obstructions which assemble to a cohomology class depending
only on the ring spectrum.

The formulation of our main results uses Mac Lane cohomology groups, denoted by
HML. We define this cohomology theory for graded rings using the normalized cohomol-
ogy of categories. Its ungraded version is equivalent to Mac Lane’s original definition.
This theory is, for various reasons, an appropriate replacement of the Hochschild coho-
mology group in the result of [BKS04]. One reason is that one can, similar to Hochschild
cohomology, evaluate a representing cocycle on a sequence of composable maps. If the
sequence of maps is a complex, it makes sense to ask the evaluation to be an element of
the Toda bracket of the complex.

One main result will be

Theorem 5.1.1. Let R be a ring spectrum. Then there exists a well defined cohomol-
ogy class γR ∈ HML3,−1(π∗(R)) which, by evaluation, determines all triple matric Toda
brackets of π∗(R). For a π∗(R)-module M which admits a resolution by finitely gener-
ated free π∗(R)-modules, the product idM ∪γR ∈ Ext3,−1

π∗(R)(M,M) is the first realizability

obstruction κ3(M).

The term universal Toda bracket for such a cohomology class, as well as the usage of
cohomology of categories, are motivated by Baues’ study of universal Toda brackets for
subcategories of the homotopy category of topological spaces [Bau97, BD89].

One interesting example for this theorem is the real K-theory spectrum KO. As this
spectrum has non vanishing triple Toda brackets, its universal Toda bracket is nontrivial.
Moreover, the obstructions determined by γKO detect non realizable π∗(KO)-modules.
As we will discuss in Remark 5.2.3, this contradicts a claim of Wolbert [Wol98, Theorems
20 and 21].

Many examples of ring spectra have the property that their ring of homotopy groups
is concentrated in degrees divisible by n for some n ≥ 2. In this case, all realizability
obstructions κ3 vanish for degree reasons. The first realizability obstruction not vanishing
for degree reasons will be determined by a higher universal Toda bracket, which we
construct in Theorem 5.1.2.

The higher universal Toda bracket of a ring spectrum R becomes particularly nice if
the homotopy groups of R form a graded Laurent polynomial ring, as the class then arises
as an element of an ungraded Mac Lane cohomology group.
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Corollary 5.1.4. Let R be a ring spectrum such that π∗(R) ∼= (π0(R))[u±1] with u a cen-
tral unit in degree n. Then there is a well defined cohomology class γn+2

R ∈HMLn+2(π0(R))
in the ungraded Mac Lane cohomology of π0(R). It determines, by evaluation, all (n+2)-
fold Toda brackets of complexes of (n + 2) composable maps between finitely generated
free π∗(R)-modules which are concentrated in degrees divisible by n. For a π∗(R)-module
M which admits a resolution by such modules, the class γn+2

R determines the unique
realizability obstruction κn+2(M) not vanishing for degree reasons.

The ungraded Mac Lane cohomology groups are equivalent to topological Hochschild
cohomology or Ext-groups in certain functor categories. Their computation is known in
relevant cases. As an example, we consider the universal Toda bracket of the complex
K-theory spectrum KU . Since π∗(KU) ∼= Z[u±1] with u of degree 2, its universal Toda
bracket is an element of HML4(Z) ∼= Z/2, and it turns out to be the non-zero element.

The calculation of γ4
KU will be a consequence of a different kind of information which

is detected by universal Toda brackets. Associated to a ring spectrum R and an integer
q ≥ 1, there is a path connected space BGLq R, which is an important building block for
the algebraic K-theory of R. If π∗(R) is concentrated in degrees divisible by n for some
n ≥ 1, we know that πk(BGLq R) = 0 for 1 < k < n+ 1.

Theorem 5.1.5. Let R be a ring spectrum such that π∗(R) is concentrated in degrees
divisible by n for some n ≥ 1. For q ≥ 1, the restriction map

HMLn+2,−n
n−sp (π∗(R))→ HMLn+2(π0(R), πn(R))→ Hn+2(π1(BGLq R), πn+1(BGLq R))

sends the universal Toda bracket γn+2
R of R to the first k-invariant of the space BGLq R.

This relation between the universal Toda bracket of R and the spaces BGLq R will be
used interpret the vanishing of γn+2

R in terms of the algebraic K-theory of R.

Organization The main results, as stated in the introduction, can be found in the fifth
and last section. There we also discuss the examples.

In the second section, we briefly review cohomology of categories and Mac Lane coho-
mology, including a version for graded rings. We also introduce a map relating the Mac
Lane cohomology of a graded ring to Ext-groups over it.

In the third section, we explain the general obstruction theory for the realizability prob-
lem described above. Furthermore, we review the definition of (higher) Toda brackets in
triangulated categories and explain how Toda brackets determine realizability obstruc-
tions. All results of this sections are formulated in terms of triangulated categories.

The fourth section is the technical backbone of this thesis. Using the framework of
stable topological model categories, we give a general construction of a universal Toda
bracket and show how it is related to k-invariants of certain classifying spaces. In the
course of the construction, we encounter different definitions of Toda brackets, which we
discuss in Paragraph 4.3.

Notation and conventions The letter T will always denote a triangulated category. We
write [1] for the shift in T , and [n] for the n-fold shift if n ∈ Z. By setting T (X,Y )i =
T (X[i], Y ), we obtain a graded abelian group T (X,Y )∗ of homomorphisms from X to Y
in T . The term T (X,Y ) without a decoration is its degree 0 part.
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When Λ is a graded ring, we also denote its shifts by [n], i.e., (Λ[n])i = Λi−n. This
is compatible with the shift in the triangulated category, as we have (T (X,X)∗)[n] ∼=
T (X,X[n])∗ ∼= T (X[−n], X)∗. Sometimes we write Λ(M,M ′) for HomΛ(M,M ′). The
Ext-groups of modules over a graded ring Λ are bigraded by setting Exts,t

Λ (M,M ′) =
Exts

Λ(M,M ′[t]).
For n ≥ 1, a graded abelian group or a graded ring is called n-sparse if it is concentrated

in degrees divisible by n. A full subcategory U of a triangulated category T is called n-
split if for each pair of objects X and Y in U , the graded abelian group T (X,Y )∗ is
n-sparse.
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2 Mac Lane cohomology

In the first paragraph of this section we recall some facts about Mac Lane cohomology,
including a definition and some results about computations. A good background for this
is [Lod98, Chapter 13]. The second paragraph is concerned with a map from Mac Lane
cohomology to Ext-groups which we will use for next section’s Theorem 3.4.5.

2.1 Cohomology of categories and Mac Lane cohomology

Let C be a small category. A C-bimodule is a functor D : Cop × C → Ab. For a map
f : X → Y in C, we denote the abelian group D(X,Y ) by Df . On these abelian groups,
the C-bimodule structure induces actions g∗ : Df → Dfg and h∗ : Df → Dhf for maps
g : X ′ → X, h : Y → Y ′, and f : X → Y . If A is a ring and C is the category of A-modules,
the bifunctor HomA(−,−) provides an example for a C-bimodule.

In order to define the cohomology of categories, we introduce the following cochain
complex C∗(C, D) associated to a category C and a C-bimodule D: we set

Cn(C, D) = {c : Nn(C)→
∐

g∈Mor(C)

Dg | c(g1, . . . , gn) ∈ Dg1···gn}

for n ≥ 1 and

C0(C, D) = {c : Ob(C)→
∐

X∈Ob(C)

DidX
| c(X) ∈ DidX

}

for n = 0. Here the simplicial set N(C) is the nerve of the category C, so an element
(g1, . . . , gn) ∈ Nn(C) is a sequence

Xn
gn
−→ Xn−1

gn−1
−−−→ . . .

g2
−→ X1

g1
−→ X0

of n composable maps in C.
The abelian group structure on Cn(C, D) is given by the pointwise addition in Dg. For

n > 1, the differential δ : Cn−1(C, D)→ Cn(C, D) is defined by

(δc)(g1, . . . , gn) =(g1)∗c(g2, . . . , gn) +
n∑

i=1

(−1)ic(g1, . . . , gigi+1, . . . , gn)

+ (−1)n+1(gn)∗c(g1, . . . , gn−1).

For n = 1, the differential of c ∈ C0(C, D) evaluated on g1 : X1 → X0 is (δc)(g1) =
(g1)∗c(X1)− (g1)

∗c(X0). It is easy to verify δ2 = 0.

Definition 2.1.1. [BW85, Definition 1.4] The cohomology H∗(C, D) of the category C
with coefficients in the C-bimodule D is defined to be the cohomology of the cochain
complex C∗(C, D).

There is a normalized version of the cohomology of categories. We call a category
pointed if it has a preferred zero object, i.e., an object ∗ which is both initial and terminal.
A zero morphism in a pointed category is a map which factors through the zero object.
If C is a pointed category, we call a C-bimodule D normalized if D(∗, X) = 0 = D(X, ∗)
holds for all objects X in C.
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For a pointed category C and a normalized C-bimodule D, we consider the subgroup

C
n
(C, D) = {c ∈ Cn(C, D)|c(g1, . . . , gn) = 0 if gi is zero for some i}

of normalized cochains in Cn(C, D). Using that D is normalized, it is easy to see that
the differential of C∗(C, D) restricts to C

∗
(C, D). Therefore, C

∗
(C, D) is a subcomplex of

C∗(C, D).

Proposition 2.1.2. [BD89, Theorem 1.1] Let C be a pointed category and let D be a
normalized C-bimodule. Then the inclusion C

∗
(C, D)→ C∗(C, D) induces an isomorphism

in cohomology.

When working with the cohomology of a pointed category with coefficients in a nor-
malized bimodule, we can therefore henceforth assume that it arises as the cohomology
of the normalized chain complex. That is, representing cocycles can be assumed to be
normalized.

Cohomology of categories has good naturality properties. For a functor F : C → D and
a D-bimodule D, there is an induced C-bimodule F ∗D, and F induces an obvious map
F ∗ : C∗(D, D)→ C∗(C, F ∗D).

Proposition 2.1.3. [BW85, Theorem 1.11] In the situation above, F induces a homo-
morphism H∗(D, D)→ H∗(C, F ∗D). If F is an equivalence of categories, this map is an
isomorphism.

For a ring A, we denote the category of finitely generated free right A-modules by
F (A). To avoid set theoretic problems, we assume F (A) to be small, i.e., we require it
to contain only one element from each isomorphism class of objects. The category F (A)
is pointed, and for an A-bimodule M , the functor HomA(−,− ⊗A M) is a normalized
F (A)-module.

Definition 2.1.4. Let A be a ring and let M be an A-bimodule. The Mac Lane coho-
mology of A with coefficients in M is defined by

HMLs(A,M) = Hs(F (A),HomA(−,−⊗A M)).

If M equals A, we adopt the convention HMLs(A) = HMLs(A,A).

Remark 2.1.5. In this definition of Mac Lane cohomology, we do not necessarily need
to take the category F (A). If we replace F (A) by any small full additive subcategory C
of Mod-A containing F (A), then the induced restriction map on the cohomology groups
is an isomorphism [JP91, §2 and Corollary 3.11].

For some fixed infinite ordinal, the full subcategory of Mod-A containing one A-module
from each isomorphism class of free A-modules which have rank smaller than the fixed
ordinal provides an example for such a C. The possibility of such an enlargement will
become relevant in our applications (see Remark 3.4.6 and Remark 5.1.3).

We will also need an equivalent characterization of this cohomology theory, which is
due to Jibladze and Pirashvili [JP91]. For a ring A, let F(A) be the category of functors
from F (A) to Mod-A. This is an abelian category with all structure defined object-wise.
Examples for objects in F(A) are the inclusion functor I : F (A)→ Mod-A or the functor
−⊗A M : F (A)→ Mod-A with M an A-bimodule.
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Proposition 2.1.6. [JP91, Corollary 3.11] Let U, T ∈ F(A) be functors such that U
takes values in projective A-modules. Then

H∗(F (A),HomA(U(−), T (−))) ∼= ExtF(A)(U, T ).

Corollary 2.1.7. For a ring A and an A-bimodule M , there is an isomorphism

HML∗(A,M) ∼= Ext∗F(A)(I,−⊗A M).

Remark 2.1.8. Mac Lane cohomology was originally defined by Mac Lane in 1956
[ML57]. The equivalence of his definition to the one in terms of cohomology of cate-
gories and with the Ext-groups in functor categories was established by Jibladze and
Pirashvili [JP91].

Mac Lane cohomology is also isomorphic to topological Hochschild cohomology. The
homological version of the latter was invented by Bökstedt [Bök85a]. It should be thought
of as Hochschild homology with the sphere spectrum serving as the ground ring. A good
account for the equivalence of different definitions of topological Hochschild homology
which make this slogan precise is [Shi00]. The equivalence of topological Hochschild
homology and Mac Lane homology was proved by Pirashvili and Waldhausen [PW92].

A reference for the equivalence between topological Hochschild cohomology and Mac
Lane cohomology is [Sch01, Theorem 6.7]. Here it is important to insist on the Mac
Lane cohomology having coefficients in a bimodule, as the more general case of Mac Lane
cohomology groups with coefficients in an object of F(A) is not necessarily isomorphic
to the corresponding topological Hochschild cohomology group. This will not become
relevant for us, as we only consider Mac Lane cohomology groups with coefficients in a
bimodule.

We call a functor U in F(A) reduced if it satisfies U(0) = 0. A functor U ∈ F(A) is
constant if it sends all objects of F (A) to the same A-module M and all morphisms to
idM . If M is an A-module, we denote the constant functor with value M also by M . The
following lemma will be needed later.

Lemma 2.1.9. Let A be a ring, let T be an object in F(A), let M be an A-module, and
let P be a projective A-module. For i ≥ 1, there is an isomorphism

H i(F (A),HomA((I ⊕ P )(−), (T ⊕M)(−))) ∼= H i(F (A),HomA(−, T (−))).

Proof. By Proposition 2.1.6, this translates to a statement about Ext-groups in F(A).
Since A = A[F (A)(0,−)] is projective in F(A) [JP91, Proposition 2.5], the constant
functor P is projective in F(A) as well. Together with the additivity of ExtF(A) in the
first variable, this yields

Exti
F(A)((I ⊕ P )(−), (T ⊕M)(−)) ∼= Exti

F(A)(I, (T ⊕M)(−))

for i ≥ 1.

There is only the zero morphism from a reduced functor in F(A) to a constant func-
tor. Since every reduced functor admits a projective resolution by reduced functors,
Ext∗F(A)(I,M) vanishes. This implies Ext∗F(A)(I, (T ⊕M)(−)) ∼= Ext∗F(A)(I, T ).
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We state some results about calculations of Mac Lane cohomology groups. The for-
mulation uses the product structure of the graded ring HML∗(A), which is the Yoneda
product on Ext∗F(A)(I, I).

Theorem 2.1.10. ([FLS94, FP98]) There are isomorphisms of graded rings

HML∗(Fp) ∼= (Z/pZ)[e0, . . . , ei, . . . ]/(e
p
i , i ≥ 0) with |ei| = 2pi and

HML∗(Z) ∼= Γ(x)/(x) with |x| = 2,

where Γ(x) is the free divided power algebra on one generator x in degree 2. Regarding
only the additive structure, this means

HMLk(Fp) ∼=

{
Z/pZ k even

0 k odd
and HMLk(Z) ∼=

{
Z/iZ k = 2i

0 k odd
.

Proof. See [FLS94] for the statement about Fp, and [FP98] for the statement about Z.
The cohomology groups without the multiplicative structure can also be deduced from
earlier results of Bökstedt [Bök85b] or Breen [Bre78].

We will also need a graded version of Mac Lane cohomology. In the sequel we will call
a graded ring, a graded abelian group, or a graded module n-sparse if it is concentrated
in degrees divisible by n. If Λ is a graded ring, the morphisms between graded Λ-modules
M and N form a graded abelian group by setting

Homi
Λ(M,N) = HomΛ(M,N)−i = HomΛ(M [−i], N).

We call a full subcategory C of Mod-Λ n-split if for each pair of objects M,N in C, the
graded abelian group HomΛ(M,N)∗ is n-sparse.

For a graded ring Λ, let F (Λ) be the category of finitely generated free graded right
Λ-modules. This means that the objects of F (Λ) are finite sums of shifted copies of the
free module of rank 1. If the ring Λ is n-sparse for some n ≥ 1, we will also consider
F (Λ, n), the full subcategory of F (Λ) given by the n-sparse Λ-modules. For n = 1, the
additional condition on objects in F (Λ, 1) is empty, hence F (Λ, 1) = F (Λ). The category
F (Λ, n) is an example for an n-split subcategory of Mod-Λ.

Definition 2.1.11. Let Λ be an n-sparse graded ring, and let M be a graded right Λ-
module. Then the graded n-split Mac Lane cohomology of Λ with coefficients in M is
defined by

HMLs
n−sp(Λ,M) = Hs(F (Λ, n),HomΛ(−,−⊗Λ M)).

If M equals Λ[t], a t-fold shift of Λ for some t ∈ Z, we adopt the convention

HMLs,t
n−sp(Λ) = HMLs

n−sp(Λ,Λ[t]).

For n = 1, we drop ‘1−sp’ from the notation and write just HMLs(Λ,M) or HMLs,t(Λ).

The graded Mac Lane cohomology is related to the ungraded theory.

Lemma 2.1.12. Let Λ be an n-sparse graded ring. Then there is a restriction map

HML∗,−n
n−sp(Λ)→ HML∗(Λ0,Λn).
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Proof. We apply Proposition 2.1.3 to the functor − ⊗Λ0 Λ: F (Λ0) → F (Λ, n). The
resulting restriction map on Mac Lane cohomology groups has values in the Mac Lane
cohomology of Λ0 with coefficients in Λn, as

(−⊗Λ0 Λ)∗ HomΛ(−,−⊗Λ Λ[−n]) ∼= HomΛ0(−,−⊗Λ0 Λn).

Lemma 2.1.13. Let Λ be a graded ring. Suppose that Λ has a central unit u of degree
n, that is, a homogeneous element u of degree n which is a unit and which is central in
the graded sense. Then the restriction map of the last lemma induces an isomorphism

HML∗,−n
n−sp(Λ)

∼=
−→ HML∗(Λ0).

Proof. In this case, − ⊗Λ0 Λ: F (Λ0) → F (Λ, n) is an equivalence of categories. Hence
it induces an isomorphism. Since u is central, Λ0 is isomorphic to Λn as a Λ0-bimodule,
and we have HML∗(Λ0,Λn) ∼= HML∗(Λ0).

Cohomology of categories, and therefore Mac Lane cohomology, is related to group
cohomology. For an object X in a category C, we denote its group of automorphisms by
Aut(X). The category with a single object X and Hom(X,X) = Aut(X) is denoted by
Aut(X). It comes with a canonical inclusion functor Aut(X)→ C.

If D is an Aut(X)-bimodule, the automorphism group Aut(X) acts via the conjugation
action gx = (g−1)∗(g∗(x)) from the left on the abelian group D(X,X).

Proposition 2.1.14. Let C be a category, let X be an object of C, and let D be a C-
bimodule. Then the inclusion functor F : Aut(X)→ C induces a restriction map

Φ: H∗(C, D)→ H∗(Aut(X), F ∗D)
∼=
−→ H∗(Aut(X), D(X,X))

from the cohomology of C with coefficients in D to the cohomology of the group Aut(X)
with coefficients in the Aut(X)-module D(X,X).

Proof. The first map is provided by Proposition 2.1.3. The second map is analogous to the
Mac Lane isomorphism between the Hochschild homology of a group ring and group ho-
mology [Lod98, Proposition 7.4.2]. It is induced by an isomorphism ϕ between the cochain
complex C∗(Aut(X), F ∗D) to the cochain complex computing H∗(Aut(X), D(X,X)) ob-
tained from the bar resolution. On a cochain c, the isomorphism is given by

(ϕ(c))(g1, . . . , gn) = (g−1
n · · · g

−1
1 )∗c(g1, . . . , gn).

When A is a ring and M is an A-bimodule, we write as usual GLq A for the group of
invertible (q×q)-matrices, which acts on the abelian group Matq M of all (q×q)-matrices
with entries in M by conjugation. The map of the last proposition specializes to Mac
Lane cohomology for graded and ungraded rings.

Corollary 2.1.15. Let Λ be an n-sparse graded ring, let A be a ring, and let M be an
A-bimodule. For q ≥ 1, there are restriction maps

HML∗,−n
n−sp(Λ)→ H∗(GLq Λ0,Matq Λn) and HML∗(A,M)→ H∗(GLq A,Matq M).

10



If A = Λ0 and M = Λn, the first map factors through the second map and the restriction
map of Lemma 2.1.12, i.e.,

HML∗,−n
n−sp(Λ)→ HML∗(Λ0,Λn)→ H∗(GLq Λ0,Matq Λn).

Proof. We have HomΛ(Λ,Λ) ∼= HomΛ0(Λ0,Λ0) as in both cases a morphism is deter-
mined by the image of 1 in Λ0. This implies that the automorphism group of Λq in the
category F (Λ, n) is GLq Λ0. The group Matq Λn arises in a similar way as the bifunctor
HomΛ0(−,−⊗Λ0 Λn) in Lemma 2.1.12.

The factorization is a consequence of Aut(Λ)→ F (Λ, n) factoring through F (Λ0).

Remark 2.1.16. The map of the last corollary is hard to describe in examples, as the
source and especially the target are cohomology groups which are very difficult to compute
even for not too complicated rings.

Later we will encounter the case of the map HML4(Z)→ H4(GLq Z,Matq Z). Here we
know that for q = 1, both cohomology groups are isomorphic to Z/2. Nevertheless, it
turns out that the map is trivial. This can be verified by translating the map into the
definition of HML4(Z) in terms of Ext4F(Z)(I, I). In this description, one can represent
the generator by an explicit extension which becomes trivial when restricting it to an
extension of Z[Z/2]-modules.

Though we give only the trivial map as an example here, our application of this map
in Theorem 5.1.5 shows that it carries interesting information in general. As we will see
in Remark 5.2.6, the vanishing of the map in the case q = 1 and A = M = Z will have a
topological interpretation in terms of a certain k-invariant.

2.2 A cup product

In this section, Λ denotes a graded ring, and we work in the category of graded right
Λ-modules. Most of the time, Ext-groups are understood in the sense of Yoneda, i. e. ,
Ext-classes are represented by exact sequences of Λ-modules (see for example [ML67,
Chapter III] for details). Shifting of modules gives rise to a bigrading on Ext-groups,
that is, Exts,t(M,N) = Exts(M,N [t]).

If E is a graded k-algebra over a field k, the isomorphism

HHs,t
k (E) ∼= Exts,t

E−Mod−E(E,E)

provides an interpretation of Hochschild cohomology as bimodule Ext-groups. The left
derived functor of the tensor product of a right module with a bimodule therefore gives
a bilinear map

−⊗L − : HomE(P,Q)×HHs,t
k (E)→ Exts,t

E (P,Q).

Next we construct a similar map with Hochschild cohomology replaced by Mac Lane
cohomology. We think of it as an analogon to the left derived tensor product.

Construction 2.2.1. Let Λ be a graded ring which is concentrated in degrees divisible
by n for some n ≥ 1. Let M and N be graded Λ-modules such that M admits a resolution
by objects in F (Λ, n). Then there is a well defined map

HomΛ(M,N)×HMLs,t
n−sp(Λ)→ Exts,t

Λ (M,N), (f, γ) 7→ f ∪ γ

11



which we refer to as the cup product. It is bilinear and natural in the sense that (gf)∪γ =
g∗(f ∪ γ) holds for composable maps of Λ-modules f and g.

In order to define the cup product, we first choose a resolution

· · · →Mn
λn−→Mn−1

λn−1
−−−→ . . .

λ1−→M0
λ0−→M

of M by finitely generated free graded n-sparse Λ-modules Mi and a normalized cocycle

c ∈ C
s
(F (Λ, n),HomΛ(−,−⊗Λ Λ[t]))

representing the cohomology class γ ∈ HMLs,t
n−sp(Λ).

Since δ(c) = 0 and the λi form a resolution, we have

0 = (δc)(λ1, λ2, . . . , λs, λs+1)

= (λ1)∗c(λ2, . . . , λs, λs+1) + (−1)s+1(λs+1)
∗c(λ1, λ2, . . . , λs)

= λ1[t]c(λ2, . . . , λs, λs+1) + (−1)s+1c(λ1, λ2, . . . , λs)λs+1

and therefore

λ0[t]c(λ1, . . . , λs)λs+1 = (−1)sλ0[t]λ1[t]c(λ2, . . . , λs+1) = 0.

This implies that the dotted arrow τ in the following diagram exists

Ms+1
λs+1

((QQ
QQQ

QQQ

Ms

c(λ1,...,λs)

²²

))SS
SSS

SSS
SS

λs

,,XXXX
XXXXX

XXXXX
XXXXX

XXX

0 // Ms/Ms+1

τ

{{w
w
w
w
w
w
w

**UUU
UUUU

UUUU
UU

// Ms−1
λs−1

// . . . λ1 // M0
λ0 // M // 0.

M0[t]

λ0[t]
²²

0

M [t]

f [t]
²²

N [t]

Here we write Ms/Ms+1 for the Λ-module cokerλs+1
∼= kerλs−1.

If Θ ∈ Exts,0
Λ (M,Ms/Ms+1) denotes the Yoneda class of the extension

0→Ms/Ms+1 →Ms → · · · →M0 →M → 0,

we define f ∪ γ to be (−1)
(n+2)(n+1)

2
+1((f [t])τ)∗(Θ) ∈ Exts,t

Λ (M,N). The mysterious sign
is built in to cancel out with another sign which will arise in proof of Theorem 3.4.5.

The bilinearity and the naturality with respect to compositions of maps are obvious
from the definition and the usual bifunctor properties of the Yoneda Ext-groups [ML67,
Chapter III]. In Lemma 2.2.4 and Lemma 2.2.5 we will show that the Ext-class of f ∪ γ
does not depend on the choice of the cocycle representing γ and the chosen resolution of
M .
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Remark 2.2.2. The analogy between the cup product and the derived tensor product
in Hochschild cohomology becomes clearer in the definition of Mac Lane cohomology in
terms of Ext-groups in functor categories. We sketch the ungraded case.

Let A be a discrete ring, and let M be an A-module. By Remark 2.1.5, we can enlarge
the category F (A) to a small additive category C which contains the module M . If we
represent a cohomology class in HMLn(A) by an extension of functors from C to Mod-A,
we can evaluate it on the module M to get an element of Extn

A(M,M).

To prove that this coincides with the map we described above, one has to go into the
construction of the isomorphism between Ext-groups in F(A) and the cohomology of the
category F (A) [JP91, Theorem B]. It uses a bicomplex whose two associated spectral
sequences are both concentrated in one line on the E2-term. One E2-term is isomorphic
to HML∗(A), and the other to Ext∗F(A)(I, I). It is possible to define a map from this
bicomplex to another bicomplex which induces the cup product on the E2-term of the first
spectral sequence and the evaluation on the E2-term of the second. We do not go into the
details here as we will only use the description of the cup product given in Construction
2.2.1.

Lemma 2.2.3. Let

0 // M ′

f
²²

g
// Mn−1

hzzuu
uu
u

// . . . // M0
// M // 0

N

be a diagram in the category of Λ-modules s.t. the M0, . . . ,Mn−1 are free and the upper
line is exact and represents Θ ∈ Extn

Λ(M,M ′). Then we have (f + hg)∗(Θ) = f∗(Θ)

Proof. This statement becomes trivial when we define Ext using projective resolutions.

Lemma 2.2.4. The cup product of Construction 2.2.1 does not depend on the choice of
the cocycle representing γ.

Proof. By definition, the product map is linear with respect to addition of cocycles. Hence
it is enough to show that the extension associated to a coboundary represents the trivial
element in Exts,t

Λ (M,N).

Let b ∈ C
s−1

(F (Λ, n),HomΛ(−,−⊗Λ Λ[t])) be a normalized cochain. Then we have

δ(b)(λ1, . . . , λs) = λ1[t]b(λ2, . . . , λs) + (−1)sb(λ1, . . . , λs−1)λs,

hence

λ0[t]δ(b)(λ1, . . . , λs) = (−1)sλ0[t]b(λ1, . . . , λs−1)λs.

If we define τ associated to δ(b) and the chosen resolution of M as in Construction 2.2.1,
the last equation implies that this map τ extends to Ms−1. An application of Lemma
2.2.3 shows that ((f [t])τ)∗(Θ) is zero.

Lemma 2.2.5. The cup product of Construction 2.2.1 does not depend on the choice of
the resolution of M .
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Proof. Suppose we are given another resolution · · · → M ′
n

λ′
n−→ M ′

n−1 → . . .M ′
0

λ′
0−→ M

of M by objects of F (Λ, n). Then there exist maps αn such that the following diagram
commutes:

. . . // M ′
n

αn

²²

λ′
n // M ′

n−1

αn−1

²²

// . . . // M ′
0

α0

²²

λ′
0 // M

=
²²

. . . // Mn
λn // Mn−1

// . . . // M0
λ0 // M

The problem is that the diagram

M ′
s

c(λ′
1,...,λ′

s)
//

αs

²²

M ′
0[t]

λ′
0[t]

// M [t]

=
²²

Ms

c(λ1,...,λs)
// M0[t]

λ0[t]
// M [t]

will in general not be commutative. As we are are only interested in the induced maps
on Ext-groups, it suffices to show that

(f [t])(λ0[t])c(λ1, . . . , λs)αs and (f [t])(λ′0[t])c(λ
′
1, . . . , λ

′
s)

give rise to maps M ′
s/M

′
s+1 → N [t] which induce the same map

Exts,0
Λ (M,M ′

s/M
′
s+1)→ Exts,t

Λ (M,N).

To do so, we show that there is a map h : M ′
s−1 →M [t] such that

λ0[t]c(λ1, . . . , λs)αs = λ′0[t]c(λ
′
1, . . . , λ

′
s) + λ0[t]hλ

′
s

and apply Lemma 2.2.3 again. To find such a map h, we first calculate some coboundaries:

0 = (δc)(α0, λ
′
1, . . . , λ

′
s)

= α0[t]c(λ
′
1, . . . , λ

′
s)− c(α0λ

′
1, . . . , λ

′
s) + (−1)s+1c(α0, λ

′
1, . . . , λ

′
s−1)λ

′
s

0 = (δc)(λ1, . . . , λn, αn, λ
′
n+1, . . . λ

′
s)

= λ1[t]c(λ2, . . . , λn, αn, λ
′
n+1, . . . λ

′
s) + (−1)nc(λ1, . . . , λnαn, λ

′
n+1, . . . λ

′
s)

+ (−1)n+1c(λ1, . . . , λn, αnλ
′
n+1, . . . λ

′
s) + (−1)s+1c(λ1, . . . , λn, αn, λ

′
n+1, . . . λ

′
s−1)λ

′
s

0 = (δc)(λ1, . . . , λs, αs)

= λ1[t]c(λ2, . . . , λs, αs) + (−1)sc(λ1, . . . , λs−1, λsαs) + (−1)s+1c(λ1, . . . , λs)αs

Using λnαn = αn−1λ
′
n, we can form the alternating sum of all coboundaries calculated

above to end up with the following formula in which h : M ′
s−1 →M [t] and g : M ′

s →M0[t]
are maps which we don’t need to know explicitly:

0 = (δc)(α0, λ
′
1, . . . , λ

′
s) + (−1)s(δc)(λ1, . . . , λs, αs)

+
s−1∑

n=1

(−1)n(δc)(λ1, . . . , λn, αn, λ
′
n+1, . . . λ

′
s)

= α0[t]c(λ
′
1, . . . , λ

′
s)− c(λ1, . . . , λs)αs

+ λ1[t]g + hλ′s

Composing with λ0[t] yields the desired equation.
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3 Toda brackets and realizability

This section is concerned with Toda brackets in triangulated categories and their relation
to a realizability problem which we explain in the first paragraph. We assume familiarity
with the axioms and the basic properties of triangulated categories. Background for
this can for example be found in Weibel’s book [Wei94]. In particular, we assume our
triangulated categories to have infinite coproducts and call an object X in a triangulated
category T compact if the functor T (X,−) preserves arbitrary coproducts.

Throughout this section, T will always be a triangulated category, N will be a compact
object in T , and the graded endomorphism ring T (N,N)∗ of N will be denoted by Λ.

3.1 Realizability

The functor T (N,−) : T → Ab induces a functor T (N,−)∗ : T → Mod-Λ from T to
the category of right modules over Λ. The module structure on T (N,X)∗ is given by
composition. This functor preserves arbitrary coproducts since T (N,−) : T → Ab does.
Our grading conventions ensure that T (N,−) commutes with the shift functors in T
and Mod-Λ, i.e., we have T (N,X[k])∗ ∼= (T (N,X)∗)[k]. Furthermore, T (N,−)∗ maps
distinguished triangles X → Y → Y → X[1] in T to exact sequences

T (N,X)∗ → T (N,Y )∗ → T (N,Z)∗ → (T (N,X)∗)[1]

in Mod-Λ.
In this context, a Λ-module M is called realizable if there exists an object X in T such

that T (N,X)∗ ∼= M . In the next section we will introduce an obstruction theory which
helps to answer the question whether a Λ-module is realizable.

An object of T is called N -free if it is a sum of shifted copies of N . Since N is compact,
the functor T (N,−)∗ induces a map

T (X,Y )→ HomΛ(T (N,X)∗, T (N,Y )∗)

which is an isomorphism if X is N -free. This proves the basic but important

Lemma 3.1.1. Let T be a triangulated category, let N be a compact object of T , and let
Λ be the graded ring T (N,N)∗. Then the functor T (N,−)∗ : T → Mod-Λ restricts to an
equivalence between the full subcategory of T given by the N -free objects and the category
of free graded Λ-modules.

As we will explain in more detail in Section 5, ring spectra give rise to an interesting
class of examples for this situation: if R is a ring spectrum, the homotopy category of
R-module spectra is a triangulated category in which R, the free module of rank 1, is a
compact object with T (R,R)∗ ∼= π∗(R). In this case, the general realizability problem
introduced above amounts to the question whether a π∗(R)-module M arises as the
homotopy groups of an R-module spectrum.

A more algebraic instance of this is studied in [BKS04]. For a differential graded
algebra A over a field k, the authors consider the derived category D(A) of the category
of differential graded A-modules. This is a triangulated category in which A, the free
module of rank 1, is a compact object. When using cohomological grading convention,
the graded endomorphism object of A in D(A) is the cohomology algebra H∗(A) of A, and
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an H∗(A)-module is realizable if it is the cohomology of a differential graded A-module.
If G is a finite group and A is the endomorphism dga of a complete resolution of k as

a kG-module, the cohomology algebra of A is the Tate Ext-algebra Êxt
∗

kG(k, k). In this
case, the realizability obstructions of the next section can be used to answer the question

if a module over Êxt
∗

kG(k, k) arises as the Tate cohomology of G with coefficients in some
kG-module [BKS04, Theorem 6.9].

3.2 Obstruction Theory

In this paragraph, we recall from [BKS04, Appendix A] the obstruction theory for the
realizability problem introduced in the last paragraph and extend its study by addressing
uniqueness questions.

Remark 3.2.1. Before explaining the general approach, we give the easier definition
of the first realizability obstruction: an N -special T -presentation of a Λ-module M is
a distinguished triangle X1 → X0 → C → X1[1] in T together with an epimorphism
ε : T (N,X0)∗ →M such that X0 and X1 are N -free and the sequence

T (N,X1)∗ → T (N,X0)∗
ε
−→M → 0

is exact. Every Λ-module admits an N -special T -presentation: we can realize the first
two modules Mi in a free resolution of M by N -free objects Xi, and we can realize the
map M1 → M0 by a map X1 → X0 in T as X1 is N -free. Extending this map to a
distinguished triangle in T gives the required data.

Given an N -special T -presentation of M , there is a monomorphism η such that the
following diagram commutes:

T (N,X1)∗ // T (N,X0)∗

%%L
LL

LL
LL

L
// T (N,C)∗

M

η

99ssssssss

The first obstruction class κ3(M) ∈ Ext3,−1
Λ (M,M) of M is defined to be the Yoneda

class represented by the exact sequence

0→M [−1]
η[−1]
−−−→ T (N,C[−1])∗ → T (N,X1)∗ → T (N,X0)∗

ε
−→M → 0.

In [BKS04, Proposition 3.4, Theorem 3.7] it is shown that κ3(M) is well defined and that
κ3(M) = 0 holds if and only if M is a direct summand of a realizable module. Since the
T (N,Xi)∗ are free Λ-modules, the Yoneda class of the extension is trivial if and only if
η[−1] splits as a map of Λ-modules.

The construction of the higher obstructions uses the following

Definition 3.2.2. [BKS04, Definition A.6] Let T be a triangulated category and let N
be a compact object in T . For k ≥ 1, an N -exact k-Postnikov system for a Λ-module M
consists of an epimorphism T (N,X0)∗ →M and a diagram

Yk−1

πk−1
²²

Yk−2

πk−2
²²

Â_
αk−1

oo Yk−3
Â_

αk−2
oo Y2

π2
²²

Y1

π1
²²

Â_α2oo Y0 = X0
Â_α1oo

Xk

ιk

<<yyyyyyyy
Xk−1

ιk−1

;;vvvvvvvvv
Xk−2

ιk−2

;;wwwwwwwww

...

X2

ι2

>>||||||||
X1

ι1

::vvvvvvvvv
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such that all arrows of the form Â_oo denote morphisms of degree 1, all triangles are
distinguished triangles in T , each object Xi is N -free, and the maps dj = πj−1ιj induce
an exact sequence

T (N,Xk)∗
(dk)∗
−−−→ T (N,Xk−1)

(dk−1)∗
−−−−−→ . . .

(d2)∗
−−−→ T (N,X1)∗

(d1)∗
−−−→ T (N,X0)∗ →M → 0.

An N -exact Postnikov system is a collection of distinguished triangles as above which
extends infinitely to the left.

Given a Λ-module M , we can always find an N -exact 2-Postnikov system for M . Its
data is almost given by an N -special T -presentation X1 → X0 → C → X1[1] of M :
we can realize the third term in the free resolution of M chosen in the construction of
the T -presentation by an N -free object X2. Then the map X2 → X1 which realizes the
differential in the resolution lifts to a map X2 → C. With this we have specified the data
of an N -exact 2-Postnikov system.

The following Proposition shows why Postnikov systems are relevant for the realizability
problem.

Proposition 3.2.3. [BKS04, Proposition A.19] If there exists an N -exact Postnikov
system of a Λ-module M , then M is realizable.

Since an N -exact 2-Postnikov system for M always exists, the problem of finding a
realization of M can be approached by iteratively extending an N -exact k-Postnikov
system to an N -exact (k + 1)-Postnikov system. To understand this process, we need
the following fact which is verified in [BKS04, Lemma A.15(iii)]: an N -exact k-Postnikov
system of M induces an exact sequence

T (N,X1)∗[1− k]
(d1)∗
−−−→ T (N,X0)∗[1− k]

α∗−→ T (N,Yk−1)∗
(πk−1)∗
−−−−−→ T (N,Xk−1)∗

(dk−1)∗
−−−−−→ T (N,Xk−2)∗

of Λ-modules, where the map α : X0[1 − k] = Y0[1 − k] → Yk−1 is the composition
αk−1 · · ·α1.

Since coker(d1)∗ ∼= M , the exactness of this sequences enables us to state

Definition 3.2.4. [BKS04, Definition A.16] Associated to an N -exact k-Postnikov sys-
tem for M there is an exact sequence

0→M [1− k]
ηk−1
−−−→ T (N,Yk−1)∗

(πk−1)∗
−−−−−→ T (N,Xk−1)∗

(dk−1)∗
−−−−−→ . . .

. . .
(d2)∗
−−−→ T (N,X1)∗

(d1)∗
−−−→ T (N,X0)∗ →M → 0.

We denote the Yoneda class of this extension by κk+1(M) ∈ Extk+1,k−1
Λ (M,M).

The key point about the obstruction theory is

Lemma 3.2.5. [BKS04, Lemma A.18] If the obstruction class κk+1(M) of an N -exact
k-Postnikov system of M is trivial, then there exists an N -exact (k+1)-Postnikov system
for M whose underlying (k−1)-Postnikov system agrees with that of the given k-Postnikov
system.
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Recall that a graded ring is n-sparse if it is concentrated in degrees divisible by n.

Corollary 3.2.6. Let T be a triangulated category and let N be a compact object in T . If
the graded ring Λ = T (N,N)∗ is n-sparse, then there exists an N -exact (n+1)-Postnikov
system for every graded Λ-module M .

Proof. As Λ is n-sparse, the module M splits into a sum M (0)⊕M (1)⊕· · ·⊕M (n−1) with
M (i) concentrated in degrees ≡ i (mod n). The last lemma provides the existence of an
N -exact (n+ 1)-Postnikov system for each M (i) since the groups Extj+1,j−1

Λ (M (i),M (i))
vanish for 2 ≤ j ≤ n. The sum of the N -exact (n + 1)-Postnikov systems the M (i)

provides an N -exact (n+ 1)-Postnikov system of M .

To study the uniqueness of Postnikov systems and their associated obstruction classes,
we need

Definition 3.2.7. Let (Xj , Yj , αj , ιj , πj ,M) and (X ′
j , Y

′
j , α

′
j , ι

′
j , π

′
j ,M) be two N -exact

k-Postnikov systems for M . A morphism between them consists of maps fj : Xj → X ′
j

and gj : Yj → Y ′
j such that fk−1dk = d′kfk and the following commutativity relations hold

for 1 ≤ j ≤ k − 1:

gj−1ιj = ι′jfj (gj [1])αj = α′
jgj−1 fjπj = π′jgj

In other words, all the obvious squares built from this data commute except the square

Xk

fk ²²

ιk // Yk−1

gk−1²²

X ′
k ι′

k

// Y ′
k−1.

More generally, for 1 ≤ l ≤ k, an l-map of N -exact k-Postnikov systems for M is a map
of the underlying N -exact l-Postnikov systems.

Corollary 3.2.8. If there is a map between two N -exact k-Postnikov systems for M , then
the associated obstruction classes κk+1(M) and κ′k+1(M) in Extk+1,k−1

Λ (M,M) coincide.

Proof. The data of the map of Postnikov systems can be used to obtain a map between
the exact sequences representing the obstruction classes. Since this map is idM on the
outer terms, both exact sequences represent the same Yoneda class in the Ext-group.
This does not need the relation gk−1ιk = ι′kfk which was left out in the definition of a
map of Postnikov systems.

Given two N -exact 2-Postnikov systems of M , it is easy to see that there is always a
map between them. The next lemma gives a criterion which can be used to extend maps
of Postnikov systems.

Lemma 3.2.9. Suppose we are given an l-map between two N -exact k-Postnikov systems
with 1 ≤ l < k. Then there exists an element in Extl,1−l

Λ (M,M) which vanishes if and
only if there is an (l+1)-map between the Postnikov systems whose underlying (l−1)-map
coincides with that of the given map.
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Figure 1: Extending a map of Postnikov systems

Proof. In the proof we denote T (N,Xi)∗ by Mi. Together with the maps (di)∗, the Mi

form a free resolution of M . Similarly, the M ′
i and the (d′i)∗ form another resolution of

M . The maps fi induce maps between the free resolutions Mi and M ′
i up to stage l.

We can extend this to stage l + 1 and realize the resulting map Ml+1 →M ′
l+1 by a map

fl+1 : Xl+1 → X ′
l+1. This guarantees that fldl+1 = d′l+1fl+1 holds.

Let us for a moment assume our map of Postnikov systems satisfies gl−1ιl = ι′lfl. In
this case it is easy to extend the map one step further. By the axioms of a triangulated
category, we can find a map gl such that the diagram

Xl

fl

²²

ιl // Yl−1

gl−1

²²

// Yl

gl

²²

// Xl[1]

²²

X ′
l

ι′
l // Y ′

l−1
// Y ′

l
// X ′

l [1]

commutes. Therefore, the two commutativity relations for an (l + 1)-map involving gl

are automatically satisfied, and we have succeeded in extending the map.
In general, the additional commutativity relation does not hold, and there is a ϕ =

ι′lfl − gl−1ιl which may be non zero. For the diagram chase we are about to perform, it
is helpful to look at Figure 1. As we have

π′l−1ϕ = π′l−1ι
′
lfl − π

′
l−1gl−1ιl = d′lfl − fl−1dl = 0,

the exactness of

T (Xl, Xl−1[−1])
(ι′

l−1)∗
−−−−→ T (Xl, Y

′
l−2[−1])

(α′
l−1)∗

−−−−−→ T (Xl, Y
′
l−1)

(π′
l−1)∗
−−−−→ T (Xl, X

′
l−1)

tells us that there is an element ψ ∈ T (Xl, Y
′
l−2[−1]) with (α′

l−1)∗(ψ) = ϕ.
As Xl is an N -free object, we can apply the functor T (N,−)∗ to the last exact sequence

to obtain an isomorphic sequence

Λ(Ml,M
′
l−1[−1])→ Λ(Ml, T (N,Y ′

l−2[−1])∗)→ Λ(Ml, T (N,Y ′
l−1)∗)→ Λ(Ml,M

′
l−1).

Next let P be the Λ-module

ker(T (N,Y ′
l−1)∗ →M ′

l−1)
∼= coker(M ′

l−1[−1]→ T (N,Y ′
l−2[−1])∗).
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Since ϕ is in the kernel of (π′l−1)∗, it defines an element ϕ ∈ Λ(Ml, P ).

We show that this ϕ represents an element in Extl(M,P ). As the Mi form a free
resolution of M , it suffices to show that ϕ is in the kernel of Λ(Ml, P ) → Λ(Ml+1, P ).
For this is it enough to verify that ϕ is mapped to zero under

(dl+1)
∗ : T (Xl, Y

′
l−1[−1])∗ → T (Xl+1, Y

′
l−1[−1])∗.

Since both N -exact Postnikov systems have a length k > l, [BKS04, Lemma A.12(i)]
provides the equalities ker(ιl)∗ = ker(dl)∗ and ker(ι′l)∗ = ker(d′l)∗. This implies ιldl+1 = 0
and ι′ld

′
l+1 = 0. Therefore

(dl+1)
∗ϕ = ϕdl+1 = ι′ld

′
l+1fl+1 − gl−1ιldl+1 = 0

holds, where the map fl+1 can be constructed as in the introduction to the proof.

Using that P is isomorphic to coker(M ′
l−1[−1] → T (N,Y ′

l−2[−1])∗), we can apply
[BKS04, Lemma A.12(ii)] which yields P ∼= M [1 − l]. Therefore, ϕ represents a class

in Extl
Λ(M,M [1− l]) ∼= Extl,1−l

Λ (M,M).

If the Ext-class represented by ϕ vanishes, there has to be a map ρ ∈ Λ(Ml−1, P )
such that ρ(dl)∗ = ϕ. This means that there is an element ρ ∈ T (Xl−1, Y

′
l−2[−1]) with

ρdl = ρπl−1ιl = ψ. Using this map ρ, we change our l-map of Postnikov systems by
replacing the map gl−1 by gl−1 = gl−1 + (α′

l−1[−1])ρπl−1.

This map satisfies the relations (gl−1[−1])αl−1 = α′
l−1gl−2 and π′l−1gl−1 = fl−1πl−1

since gl−1 does. In addition we have gained that

gl−1ιl = gl−1ιl + (α′
l−1[−1])ρπl−1ιl = gl−1ιl + (α′

l−1[−1])ρdl

= gl−1ιl + (α′
l−1[−1])ψ = gl−1ιl + ϕ = ι′lfl

Hence the resulting modified l-map can be extended by the argument given at the begin-
ning of the proof.

Corollary 3.2.10. Let T be a triangulated category and let N be a compact object
of T . Assume that the ring Λ = T (N,N)∗ is n-sparse and that M is an n-sparse
Λ-module. Then there exists an N -exact (n + 1)-Postnikov system of M , and all N -
exact (n+ 1)-Postnikov systems of M give rise to the same obstruction class κn+2(M) ∈
Extn+2,−n

Λ (M,M).

Proof. The existence of the N -exact (n + 1)-Postnikov system is provided by Corollary
3.2.6. Given two N -exact (n + 1)-Postnikov systems, Lemma 3.2.9 and the vanishing of

Extl,1−l
Λ (M,M) for 2 ≤ l ≤ n provide the existence of a map between them. Hence their

obstruction classes coincide by Corollary 3.2.8.

3.3 Toda brackets

Before starting to explain higher Toda brackets, we introduce the more basic concept of
a triple Toda bracket in a triangulated category T . For this we consider the following
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diagram in T :

X3
λ3 // X2

λ2 //

ι
²²

X1
λ1 // X0

C

π
²²

β

;;w
w

w
w

X3[1]

γ

<<y
y

y
y

y
y

y
y

Here (λ1, λ2, λ3) is a sequence of maps with λ1λ2 = 0 = λ2λ3, and (π, ι, λ3) is a distin-
guished triangle in T . If we apply the functor T (−, X1) to the triangle, we get an exact
sequence

T (X3[1], X1)
π∗

−→ T (C,X1)
ι∗
−→ T (X2, X1)

(λ3)∗

−−−→ T (X3, X1).

Hence the relation λ2λ3 = 0 implies the existence of a β : C → X1 with βι = λ2. Similarly,
the exact sequence

T (X2[1], X0)
(λ3)∗

−−−→ T (X3[1], X0)
π∗

−→ T (C,X0)
ι∗
−→ T (X2, X0)

and the relation (λ1β)ι = λ1λ2 = 0 imply the existence of γ : X3[1]→ X0 with γπ = λ1β.
There are choices involved in the construction of γ. As one can read off from the exact

sequences, we can alter β by an element of π∗(T (X3[1], X1)) and γ by an element of
(λ3)

∗(T (X2[1], X0)). Putting these choices together, we see that γ is only well defined
modulo (λ3)

∗(T (X2[1], X0)) + (λ1)∗(T (X3[1], X1)).

Definition 3.3.1. Let X3
λ3−→ X2

λ2−→ X1
λ1−→ X0 be a sequence in a triangulated category

T with λ1λ2 = 0 = λ2λ3. The Toda bracket of (λ1, λ2, λ3) is the set 〈λ1, λ2, λ3〉 ⊆
T (X3[1], X0) of all maps γ which can be constructed as above. It is a coset of the group
(λ1)∗(T (X3[1], X1)) + (λ3[1])

∗(T (X2[1], X0)), which we refer to as the indeterminacy of
the Toda bracket.

Remark 3.3.2. There are two other equivalent ways to define the triple Toda bracket
of (λ1, λ2, λ3). For this, we have a look at the commutative diagram

X3

τ3[−1]

²²
Â
Â
Â

λ3 // X2
ι3 // C3

ε3

²²
Â
Â
Â

π3 // X3[1]

τ3

²²
Â
Â
Â

−λ3[1]
// X2[1]

C2[−1]

ε2[−1]

²²
Â
Â
Â

−π2[−1]
// X2

τ2[−1]

²²
Â
Â
Â

λ2 // X1
ι2 // C2

ε2

²²
Â
Â
Â

π2 // X2[1]

τ2

²²
Â
Â
Â

X0[−1]
−ι1[−1]

// C1[−1]
−π1[−1]

// X1
λ1 // X0

ι1 // C1.

Here the horizontal lines are obtained by choosing distinguished triangles containing the
λi. The vertical maps are constructed by first choosing extensions ε3 : C3 → X1 and
ε2 : C2 → X0 and then completing them to maps between triangles.

The definition of a Toda bracket given above uses the first line of the diagram and
produces a map ε2τ3 : X3[1]→ X0. The second possible definition of a Toda bracket uses
the distinguished triangle in the middle line: the relations λ2λ3 = 0 and λ1λ2 = 0 can
be used to choose maps τ3[−1] : X3 → C2[−1] and ε2 : C2 → X0, which can, after a shift,
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be composed to give a map X3[1] → X0. The last definition is dual to the first one. It
uses the distinguished triangle in the third line and lifts to fibers instead of extensions
to cones to obtain a map X3 → X0[−1]. One can use the diagram to see that all three
definitions are equivalent.

The definition of higher Toda brackets will generalize the second definition which is,
as it uses extensions to cones as well as lifts to fibers, the most symmetric one. The next
definition will be a main ingredient.

Definition 3.3.3. [Shi02, Definition A.1] Let T be a triangulated category and let

Xn−1
λn−1
−−−→ Xn−2

λn−2
−−−→ . . .

λ1−→ X0

be a sequence of (n− 1) composable maps in T . An n-filtered object X ∈ {λ1, . . . , λn−1}

consists of a sequence of maps ∗ = F0X
i0−→ F1X

i1−→ . . .
in−→ FnX = X and choices of

distinguished triangles

FjX
ij
−→ Fj+1X

pj+1
−−−→ Xj [j]

dj
−→ (FjX)[1]

such that (pj [1])(dj) = λj [j]. The maps X0
∼= F1X → X and X = FnX

pn
−→ Xn−1[n− 1]

are denoted by σ′X and σX .

Remark 3.3.4. At the first glance, our definition seems to be more restrictive than the
one of Shipley [Shi02, Definition A.1], as we require the objects Xj [j] to be the cones of
the maps ij , rather than to be isomorphic to the cones. This does not make a difference
since triangles isomorphic to distinguished triangles are distinguished again.

For a map λ1 : X1 → X0 in T , the cone C of λ1 is part of a distinguished triangle
X1 → X0 → C → X1[1]. With the filtration ∗ → X0 → C, the cone C is a 2-filtered
object in {λ1}.

If there exists an n-filtered object X ∈ {λ1, . . . , λn}, each twofold composition λiλi+1

has to be zero since it is isomorphic to a composition of maps which contains two con-
secutive maps in a distinguished triangle.

Remark 3.3.5. The definition of a filtered object is closely related to that of a Postnikov
system. It is more general since a Postnikov system always has a resolution as part of its
data, while the corresponding maps λi of the filtered object only need to form a complex.
We will see in Lemma 3.4.1 how in special cases a filtered object gives rise to a Postnikov
system.

The next lemma will be our tool for the construction of filtered objects.

Lemma 3.3.6. [Shi02, Lemma A.4] Let λi : Xi → Xi−1 be a sequence of composable
maps in a triangulated category T . An n-filtered object X ∈ {λ2, . . . , λn} with a map
α : X → X0 gives rise to an (n + 1)-filtered object Cα ∈ {ασ

′
X , λ2, . . . , λn}, and an

n-filtered object X ∈ {λ1, . . . , λn−1} with a map α : Xn[n − 1] → X gives rise to an
(n+ 1)-filtered object Cα ∈ {λ1, . . . , λn−1, (σXα)[−n+ 1]}.

Proof. The first part is a consequence of the octahedral axiom. The relevant diagram
will appear in the proof of Proposition 3.3.11 as Figure 2 on page 26. The second part
follows immediately from the definition.
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Definition 3.3.7. [Shi02, Definition A.2] Let T be a triangulated category. A map
γ ∈ T (Xn[n− 2], X0) lies in the n-fold Toda bracket of the sequence

Xn
λn−→ Xn−1

λn−1
−−−→ . . .

λ1−→ X0

if there exist an (n− 1)-filtered object X ∈ {λ2, . . . , λn−1} and maps γn : Xn[n− 2]→ X
and γ0 : X → X0 such that γ = γ0γn holds and the two triangles in the following diagram
commute:

X1

σ′
X

²²

λ1

%%K
KK

KK
KK

KK
KK

Xn[n− 2]
γn

//

λn[n−2] ''OO
OOO

OOO
OOO

X

σX

²²

γ0

// X0

Xn−1[n− 2]

We denote the (possibly empty) set of all such maps by 〈λ1, . . . , λn〉 ⊆ T (Xn[n− 2], X0).

For n = 3, we can use the fact that the cone of a map is a 2-filtered object to see that
this definition specializes to the second definition of the triple Toda bracket mentioned
in Remark 3.3.2.

A sequence (λ1, . . . , λn) of composable maps has to satisfy restrictive conditions for its
Toda bracket to be non empty. For example, 0 ∈ 〈λ2, . . . , λn−1〉 is a necessary condition
for the existence of an (n−1)-filtered object X ∈ {λ2, . . . , λn−1} ( see [Shi02, Proposition
A.5]), and the additional requirement λ1λ2 = 0 = λn−1λn will in general not be sufficient
for 〈λ1, . . . , λn〉 to be non empty. We now introduce a condition which ensures that higher
Toda brackets are always non empty.

Definition 3.3.8. Let T be a triangulated category and let n ≥ 1 be a natural number.
An n-split subcategory U of T is a full subcategory such that for all objects X and Y
of U the graded abelian group T (X,Y )∗ is n-sparse, that is, is concentrated in degrees
divisible by n. Of course the condition on U is empty if n = 1.

The motivating example for an n-split subcategory of T is the following: assume that
T has a compact object N such that T (N,N)∗ is n-sparse. Then the category of sums
of copies of N which are shifted by integral multiples of n forms an n-split subcategory
of T .

Lemma 3.3.9. Let U be an n-split subcategory of a triangulated category T with n ≥ 2,
let

Xl−1
λl−1
−−−→ Xl−2

λl−2
−−−→ . . .

λ1−→ X0

be a sequence of maps in U with 2 ≤ l ≤ n− 1, and let X ∈ {λ1, . . . , λl−1} be an l-filtered
object. Then for every object Y in U , we have

T (Y [l], X) = 0 and T (X,Y [−1]) = 0.

Proof. To show the first part, we choose a map α : Y [l] → X. Since the composition

Y [l] → X = FlX
σX−−→ Xl−1[l − 1] is zero, α factors through Fl−1X → FlX. Using
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inductively that T (Y [l], Xj [j]) = 0 for j = l − 2, . . . , 0, we obtain that α factors through
F0X → FlX. Hence α = 0 since F0X = ∗.

For the second part, we first observe that T (F1X,Y [−1]) ∼= T (X0, Y [−1]) = 0. The
exact sequence

T (Xj [j], Y [−1])→ T (Fj+1X,Y [−1])→ T (FjX,Y [−1])

in which the first term is trivial for j ≤ l − 2 can be used to show the assertion by
induction.

Lemma 3.3.10. Let U be an n-split subcategory of a triangulated category T . Then a
sequence

Xl
λl−→ Xl−1

λl−1
−−−→ . . .

λ1−→ X0

in U with λiλi+1 = 0 admits an (l + 1)-filtered object X ∈ {λ1, . . . , λl} if l ≤ n + 1. If
l ≤ n, the (l + 1)-filtered object is unique up to isomorphism.

Proof. The map from X0 to the cone of λ1 : X1 → X0 gives the data of a 2-filtered object
in {λ1}. Inductively, we assume that X ∈ {λ1, . . . , λj−1} is a j-filtered object with j ≤ n
and consider the diagram

Fj−2X
ij−1

// Fj−1X

pj−1wwppp
ppp

pp

ij
// FjX

pjxxqq
qqq

qqq

Xj−2[j − 2]
±Ndj−2

ggNNNNNNNN

Xj−1[j − 1]
±Ndj−1

ggNNNNNNNN
Â_

λj−1[j−1]
oo Xj [j − 1].

λj [j−1]
oo

β
eeL
L
L
L

The map (pj−1dj−1)(λj [j−1]) is trivial since it is a shift of λj−1λj . Hence dj−1(λj [j−1])
lifts along ij−1 and factors through Fj−2X. Since we have T (Xj−1[j − 1], Fj−2X) = 0 by
the last lemma, we obtain dj−1(λj [j − 1]) = 0. This provides the existence of the dotted
arrow β. By Lemma 3.3.6, the cone of β is a (j + 1)-filtered object in {λ1, . . . , λj}.

Next we prove uniqueness. For 1-filtered objects, the existence of the isomorphism
F1X → F1X

′ follows from the fact that both objects come with isomorphisms to X0.
Now assume we have constructed an isomorphism of (j − 1)-filtered objects. In order to
extend it to an isomorphism of j-filtered objects, we need to construct an isomorphism
FjX → FjX

′ which fits into a commutative diagram

(Xj−1[j − 2]) //

=
²²

Fj−1X //

∼=
²²

FjX //

²²
Â

Â
Xj−1[j − 1]

=
²²

(Xj−1[j − 2]) // Fj−1X
′ // FjX

′ // Xj−1[j − 1].

The existence would follow immediately from the axioms of the triangulated category T
if we knew that the first square in the following diagram commutes:

Xj−1[j − 2] //

=
²²

Fj−1X

²²

// Xj−2[j − 2]

=
²²

Xj−1[j − 2] // Fj−1X
′ // Xj−2[j − 2]
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We know that the big square commutes. Hence the exact sequence

T (Xj−2[j − 2], Fj−2X
′)

(i′j−1)∗
−−−−→ T (Xj−2[j − 2], Fj−1X

′)→ T (Xj−2[j − 2], Xj−1[j − 2])

tells us that the possible deviation from commutativity in the first square is in the image
of the map (i′j−1)∗. Since T (Xj−2[j − 2], Fj−2X

′) is zero for j ≤ n+ 1 by Lemma 3.3.9,
the diagram does commute and we get an isomorphism of j-filtered objects.

Proposition 3.3.11. Let U be an n-split subcategory of a triangulated category T and
let

Xn+2
λn+2
−−−→ Xn+1

λn+1
−−−→ . . .

λ1−→ X0

be a sequence of maps in U with λiλi+1 = 0. Then the Toda bracket 〈λ1, . . . , λn+2〉 is
defined, is non-empty, and has the indeterminacy

(λ1)∗(T (Xn+2[n], X1)) + (λn+2[n])∗(T (Xn+1[n], X0)).

Proof. The (n+ 1)-filtered object X ∈ {λ2, . . . , λn+1} needed for the construction of the
Toda bracket exists and is unique by Lemma 3.3.10. To construct the map γn+2, we apply
T (Xn+2[n],−) to the distinguished triangle FnX → Fn+1X → Xn+1[n]. Since Fn+1X
equals X, we get an exact sequence

T (Xn+1[n], X)
(σX)∗
−−−−→ T (Xn+2[n], Xn+1[n])→ T (Xn+1[n], FnX[1]).

The last term is zero by Lemma 3.3.9. Hence there exists a γn+2 with σXγn+2 = λn+2[n].
To obtain γ0, we first use the isomorphism F1X → X1 to get a map F1X → X0. This

map can be extended to F2X since λ1λ2 = 0. Inductively, we can extend it to a map
γ0 : X = Fn+1X → X0: the obstruction for extending a map Fj−1X → X0 to FjX lies in
the group T (Xj−1[j − 2], X0), which is zero for 3 ≤ j ≤ n+ 1. The extension of λ1 to X
is the map γ0.

Next we compute the indeterminacy. Since we have an exact sequence

T (Xn+2[n], FnX)
(in)∗
−−−→ T (Xn+2[n], Fn+1X)

(σX)∗
−−−−→ T (Xn+2[n], Xn+1[n]),

we know that two different choices of γn+2 differ by an element in the image of (in)∗.
Using the same argument as in Lemma 3.3.9, we see that every map Xn+2[n] → FnX
factors through σ′X : X1

∼= F1X → FnX. Therefore, the possible difference is in the
image (σ′X)∗, and after composing with any choice for γ0 we obtain that this part of the
indeterminacy is (λ1)∗T (Xn+2[n], X1[n]).

To examine the other part of the indeterminacy, we first construct an n-filtered object
F ′

nX ∈ {λ3[1], . . . , λn+1[1]} in the following way. For 0 ≤ j ≤ n, we define F ′
jX to

be the cone in a distinguished triangle X1 → Fj+1X → F ′
jX. The maps idX1 and

ij+1 : Fj+1X → Fj+2X induce maps i′j : F ′
j → F ′

j+1X, and the octahedral axioms ensures
that F ′

nX is an n-filtered object in {λ3[1], . . . , λn+1[1]}. The last step of this construction
and the application of the octahedral axiom are displayed in Figure 2.

Next we use that the distinguished triangle X1 → Fn+1X → F ′
nX induces an exact

sequence

T (F ′
nX,X0)→ T (X,X0)→ T (X1, X0).
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X1
// FnX

δn−1
//

in

²²

F ′
n−1X

i′n
²²

// X1[1]

X1

σ′
X // Fn+1X

σX=pn+1

²²

δn // F ′
nX

p′n
²²

// X1[1]

²²

Xn+1[n]

²²

Xn+1[n]

²²

// FnX[1]

FnX[1] // F ′
n−1X[1]

Figure 2: Forming the quotient of a filtered object

Hence the difference γ of two possible choices for γ0 is in the image of T (F ′
nX,X0). Since

T (F ′
n−1X,X0) vanishes by Lemma 3.3.9, there is an ω : Xn+1[n] → X0 with ωσX = γ.

If we apply (γn+2)
∗ to ωσX , we see that this part of the indeterminacy is given by

(λn+2)
∗(T (Xn+1[n], X0)).

3.4 Toda brackets and obstructions

In this section we exhibit the link between Toda brackets and realizability obstructions.
More precisely, we use the cup product of Construction 2.2.1 to turn the slogan ‘the
Toda brackets of the resolution are realizability obstructions’ into a theorem. The first
step is the relation between filtered objects in the sense of Definition 3.3.3 and Postnikov
systems in the sense of Definition 3.2.2.

Lemma 3.4.1. Let Xn+1
λn+1
−−−→ Xn

λ
−→ . . .

λ1−→ X0 be a sequence of maps in T such that
each Xi is N -free and T (N,−) maps it to an exact sequence of Λ-modules, and let M be
the cokernel of the map (λ1)∗ : T (N,X1)∗ → T (N,X0).

Then an (n + 1)-filtered object X ∈ {λ1, . . . , λn} determines all data of an N -exact
(n + 1)-Postnikov system of M except the map Xn+1 → Yn. In particular, we have
Yn = (Fn+1X)[−n], and the map α : X0 → Yn[n] of the Postnikov system is, up to the

sign (−1)
(n+2)(n+1)

2
+1, given by the map σ′X : X0 → Fn+1X which is part of the data of the

filtered object. The underlying resolution of the Postnikov system is induced by the maps
(−1)(λi)∗.

Proof. This is just a rephrasing of the definitions. We set Yl = (Fl+1X)[−l] for 0 ≤ l ≤ n
and

π′l : Yl = Fl+1X[−l]
pl+1[−l]
−−−−−→ (Fl+1X/FlX)[−l]

∼=
−→ Xl,

ι′l : Xl

∼=
−→ (Fl+1X/FlX)[−l]

dl[−l]
−−−→ FlX[−l + 1] = Yl−1, and

α′
l : Yl−1 = FlX[−l + 1]

il[−l+1]
−−−−−→ Fl+1[−l + 1] = Yl[1]

for 1 ≤ l ≤ n. If we bring in signs by defining

πl = (−1)lπ′l, ιl = (−1)lι′l, and αl = (−1)l+1α′
l
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it follows that the triangles (αl, ιl, πl) are distinguished as we know that the triangles
(dl, pl+1, il) are. Hence we have specified all data of a Postnikov system but the map
ιn+1 : Xn+1 → Yn. The differentials of the underlying resolution of the Postnikov system
are given by

πj−1ιj = ((−1)j−1π′j−1)((−1)jι′j) = −(pj [−j + 1])(dj [−j]) = −λj .

Our definitions also imply that α = αn · · ·α1 differs from σ′X by the sign

n∏

i=1

(−1)i+1 = (−1)
(n+2)(n+1)

2
+1.

Before stating the main theorem of this section, we explain why the Mac Lane coho-
mology groups of Definition 2.1.11 provide an appropriate tool for the systematic study
of Toda brackets. Again, we let T be a triangulated category and N be a compact object
of T such that Λ = T (N,N)∗ is n-sparse, and we define U to be the full subcategory
of T consisting of finite sums of copies of N which are shifted by integral multiples of
n. Then U is n-split in the sense of Definition 3.3.8, and by Lemma 3.1.1 the functor
T (N,−)∗ : T → Mod-Λ restricts to an equivalence T (N,−) : U → F (Λ, n). This leads to

Definition 3.4.2. The (n+ 2)-fold Toda bracket of a complex

Mn+2
λn+2
−−−→Mn+1

λn+1
−−−→ . . .

λ1−→M0

of free Λ-modules is the subset 〈λ1, . . . , λn+2〉 ⊆ HomΛ(Mn+2[n],M0) defined as follows:
first realize the complex by a complex in U , then form the Toda bracket in T , and
let 〈λ1, . . . , λn+2〉 ⊆ HomΛ(Mn+2[n],M0) be the image of the Toda bracket in T under
T (N,−)∗.

It is clear that statements about a Toda bracket being non empty or its indeterminacy
translate from the definition for triangulated categories to the one for chain complexes in
F (Λ, n).

Remark 3.4.3. In fact, the last definition specializes to a more popular definition of Toda
brackets or Massey products in examples. The input is in this case given by elements
of homotopy groups (or cohomology groups) of appropriate objects. If T is for example
the derived category of a differential graded algebra A and n = 1, a complex of length
3 in which all 4 modules are isomorphic to the free module of rank 1 is the same data
as 3 elements λ1, λ2, λ3 ∈ H

∗(A) with λ1λ2 = 0 and λ2λ3 = 0. One can check that the
Toda bracket in this situation is the same as the classical Massey product of (λ1, λ2, λ3).
By allowing all finitely generated free H∗(A)-modules in the complex, our definition
specializes to the one of matric Massey products.

Remark 3.4.4. Coming back to the general setup with T triangulated and U a small
n-split subcategory of T , we observe the following simple but important fact. If

Xn+2
λn+2
−−−→ Xn+1

λn+1
−−−→ . . .

λ1−→ X0
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is a complex in U and c ∈ C
n+2

(U , T (−,−)n) is a normalized cocycle representing a
cohomology class γ ∈ Hn+2(U , T (−,−)n), the evaluation of c on the complex is an
element in T (Xn+2[n], X0). This element of course depends on the representing cocycle.
But since (λ1, . . . , λn+2) is a complex, we know that the evaluation of a coboundary of a
normalized (n+ 1)-cocycle is an element in

(λn+2)
∗T (Xn+1[n], X0) + (λ1)∗T (Xn+2[n], X1).

Therefore, the evaluation of a cohomology class (as opposed to a cocycle) is a well defined
object of the quotient of T (Xn+2[n], X0) by (λn+2)

∗T (Xn+1[n], X0)+ (λ1)∗T (Xn+2, X1).
By Proposition 3.3.11, the latter group coincides with the indeterminacy of the Toda
bracket 〈λ1, . . . , λn+2〉. Hence it makes sense to ask the evaluation of a cohomology
class γ ∈ Hn+2(U , T (−,−)n) to be the Toda bracket 〈λ1, . . . , λn+2〉. The fact that the
indeterminacies of a Toda bracket and the evaluation of a cohomology class coincide is one
reason why the normalized cohomology of categories is the suitable cohomology theory
for our purposes.

If T is a triangulated category with a compact object N such that Λ = T (N,N)∗ is
n-sparse, this can be reformulated in terms of Mac Lane cohomology groups and Def-
inition 3.4.2. We choose U to be the category of finite sums of copies of N which are
shifted by integral multiples of N again, and observe that the functor T (N,−) induces
an isomorphism

T (X,Y )n → HomΛ(T (N,X)∗, T (N,Y )∗ ⊗T (N,N)∗ (T (N,N)∗[−n])).

if X and Y are objects of U . Therefore, the equivalence T (N,−) between U and F (Λ, n)
induces an isomorphism Hn+2(U , T (−,−)n)→ HMLn+2,−n

n−sp (Λ). Hence it makes sense to

ask the evaluation of a cohomology class γ ∈ HMLn+2,−n
n−sp (Λ) on a complex of n-split Λ-

modules (λ1, . . . , λn+2) to be the Toda bracket 〈λ1, . . . , λn+2〉. For n = 3, this observation
was used for the study of (triple) universal Toda brackets in [BD89].

Theorem 3.4.5. Let T be a triangulated category, and let N be a compact object such
that Λ = T (N,N)∗ is n-sparse. Let M be a Λ-module which admits a resolution

. . .
λ′

i+1
−−−→Mi

λ′
i−→ . . .

λ′
1−→M0

λ′
0−→M → 0

by finitely generated free n-sparse Λ-modules. Let γ ∈ HMLn+2,−n
n−sp (Λ) be a cohomology

class such that the evaluation γ(λ′1, . . . , λ
′
n+2) is the Toda bracket 〈λ′1, . . . , λ

′
n+2〉. Then the

product idM ∪γ ∈ Extn+2,−n
Λ (M,M) coincides with the unique obstruction class κn+2(M)

of Corollary 3.2.10.

Proof. We denote the realization of the resolution of M by N -free objects by

Xn+2
λn+2
−−−→ Xn+1

λn+1
−−−→ . . .

λ1−→ X0,

that is, (λi)∗ = λ′i. By Lemma 3.3.10, there is an unique n-filtered object Z ∈ {λ2, . . . , λn}.
Since the (n+1)-fold Toda bracket of (λ1, . . . , λn+1) contains only zero for degree reasons,
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we can find maps α and β such that the following diagram commutes

X1

σ′
Z

²²

λ1

$$J
JJ

JJ
JJ

JJ
J

Xn+1[n− 1]
β

//

λn+1[n−1] ''OO
OOO

OOO
OOO

Z

σZ

²²

α
// X0

Xn[n− 1]

and the composition αβ is zero. We use α and β to choose distinguished triangles

Z
α
−→ X0 → Y

ω
−→ Z[1] and Xn+1[n− 1]

β
−→ Z

ι
−→ X → Xn+1[n].

Lemma 3.3.6 tells us that X is an (n+ 1)-filtered object in {λ2, . . . , λn+1} and that Y is
an (n+ 1)-filtered object in {λ1, . . . , λn}.

The Toda bracket of (λ1, . . . , λn+2) is non empty by Proposition 3.3.11 and can be
defined using the n-filtered object X. Therefore, we have a diagram

X1

σ′
X

²²

λ1

$$I
II

II
II

II

Xn+2[n]
γn+2

//

λn+2[n] %%L
LL

LL
LL

LL
L

X

σX

²²

γ0

// X0.

Xn+1[n]

such that γ′ = γ0γn+2 is an element of 〈λ1, . . . , λn+2〉. Looking at the distinguished
triangle defining X, we see that the map γ0 can be constructed by extending α : Z → X0

to a map X → X0. The relation γ0ι = α enables us to construct the map ρ in the
following commutative diagram:

Xn+2[n]

λn+2[n]

²²

γn+2

{{vv
vv
vv
vv
v

Z

=

²²

ι // X

γ0

²²

// Xn+1[n]
β[1]

//

ρ

²²
Â
Â
Â

Z[1]

=

²²

Z
α // X0

σ′
Y // Y

ω // Z[1].

Here we use that the map X0 → Y from the distinguished triangle defining Y coincides
with the map σ′Y which is part of the data of the n-filtered object Y .

Applying T (N,−)∗ to the last diagram, we obtain the following commutative diagram
of Λ-modules:

T (N,Xn+2[n])∗

γ′
∗

²²

(λn+2)∗
// T (N,Xn+1[n])∗

ρ∗
²²

(λn+1)∗
// T (N,Xn[n])∗ // . . .

T (N,X0)∗
(σ′

Y )∗
//

λ′
0 ''OO

OOO
OOO

OO
T (N,Y )∗

((σZ [1])ω)∗
// T (N,Xn[n])∗ // . . .

M

77oooooooooo
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The lower sequence starting with M in this diagram represents idM ∪γ up to sign. In-
specting Definition 3.2.4 and Lemma 3.4.1, we observe that it, up to signs, represents as
well the exact sequence associated to the (n+1)-Postnikov system obtained from Y . This
uses that the map ((σZ [1])ω) equals the map pn+1 of the (n + 1)-filtered object Y , and
therefore the map (−1)nπn[n] of the associated Postnikov system. The sign of the latter
map cancels with the n factors (−1) by which the maps (λi)∗ differ from the differentials

of the resolution induced by the Postnikov system. The remaining sign (−1)
(n+2)(n+1)

2
+1

of the map σ′Y cancels with the sign built into the cup product.

Remark 3.4.6. In view of Remark 2.1.5, the restriction to modules with a resolution by
finitely generated free modules is unnecessary. For a given Λ-module M , we only need
to replace the category F (Λ, n) by a larger full small n-split additive subcategory C of
Mod-Λ which contains all modules of a given free resolution of M . This does not change
the cohomology group HMLn+2,−n

n−sp (Λ), and the proof of the theorem applies in the same
way.

Nevertheless, we need some finiteness condition on the objects of C to ensure smallness.
Since we do not want to obscure the exposition by taking an ordinal which restricts the
size of C into the statement of our theorems, we continue to use F (Λ, n) as in the last
theorem.

Applications of this theorem will be given in the last section. We point out that for
n = 1, the last theorem also leads to an interpretation of the product of a Λ-module
homomorphism f : M → M ′ with γ, provided that M satisfies the hypothesis of the
theorem: by [BKS04, Proposition 3.4(iv) and Theorem 3.7] and the naturality of the cup
product, f ∪ γ vanishes if and only if f factors through a realizable Λ-module.
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4 Universal Toda brackets for stable model categories

In this section, we construct the universal Toda bracket γU of an n-split subcategory U
of the homotopy category of a stable topological model category C. The class γU will be
an element in a certain cohomology group of the category U which determines the Toda
bracket of every complex of (n+2) composable maps in U . When we specialize to module
categories over ring spectra in the next section, γU can be defined as an element of a Mac
Lane cohomology group to which the theory of the last section, namely Theorem 3.4.5,
applies.

Though the definition of Toda brackets and their relation to realizability obstructions
takes completely place in triangulated categories, the construction of γU needs additional
information from an underlying ‘model’ of the triangulated category. The point is that
Toda brackets are only defined for complexes of maps, while a Mac Lane cohomology class
is represented by a cocycle which can be evaluated on arbitrary sequences of composable
maps. We explain in the last paragraph of this section how the evaluation of γU on
sequences of isomorphisms can be interpreted in terms of k-invariants of classifying spaces.

The characteristic Hochschild cohomology class γA of a differential graded algebra A
over a field k studied by Benson, Krause, and Schwede in [BKS04] should be considered
as the algebraic counterpart of our construction. In their theory, the derived category
D(A) of the differential graded algebra A plays the role of Ho(C) in our case. Similarly
to γU , the class γA determines all triple (matric) Massey products in the cohomology
ring of A. Since A is assumed to be a dga over a field k, this class can be defined as an
element of a Hochschild cohomology group rather than of a Mac Lane cohomology group.
A ‘model’ for the triangulated category D(A) is needed for the construction of γA as well,
since [BKS04, Example 5.15] shows that γA cannot be recovered from D(A). In fact, the
construction of γA uses the first piece of the A∞-structure of H∗(A). We will come back
to the relation between the Hochschild class and the universal Toda bracket in Remark
5.1.11, where we also outline how higher characteristic Hochschild classes can be defined.

Our construction will use information from the model category C which cannot be
recovered from its triangulated homotopy category. We will particularly exploit the
presence of mapping spaces, which exist since we require C to be topological. It would be
nice if we could skip the technical assumption of C being topological, as the topological
structure is typically not present in algebraic examples. This is likely be possible by
considering either simplicial model categories or, more generally, framings on stable model
categories [Hov99]. As this would make our construction considerably more difficult and
we do not need this extra generality for the examples we have in mind, we do not attempt
to do this.

Another motivation for our construction (and its name) is Baues’ work on universal
triple Toda brackets [Bau97, BD89]. He is working mainly in an unstable context, con-
sidering subcategories of H-group or H-cogroup objects in the homotopy category of
topological spaces, though he points out that these constructions generalize to ‘cofibra-
tion categories’ [Bau97, Remark on p. 271]. We will only work in a stable context, in
order to provide the link to triangulated categories. This also avoids certain difficulties
in the unstable case arising from maps which are not suspensions (see the correction of
[BD89] in [Bau97, Remark on p. 270]). We also do not use Baues language of ‘linear track
extensions’, as these seem to be only appropriate for the study of triple universal Toda
brackets. Nevertheless, the n = 1 case of the isomorphism we construct in Proposition
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4.1.4 below is basically what Baues encodes in a linear Track extension.
A motivation for the actual construction of the representing cocycle is the approach of

Blanc and Markl to higher homotopy operations [BM03]. For a directed category Γ, the
authors use the bar resolution WΓ in the sense of Boardman and Vogt [BV73, III, §1]
to define general higher homotopy operations. If Γ is the category generated by n + 2
composable morphisms, this specializes to the higher Toda brackets we would like to
construct. In this case, WΓ is just an (n+1)-dimensional cube. As we are not interested
in other indexing categories, we will just use the cubes and do not make use of the bar
resolution in our construction.

4.1 Coherent change of basepoints

In what follows, we assume familiarity with model categories. Hovey’s book [Hov99]
provides a good reference. Other than in Quillen’s original treatment of model categories
[Qui67], we will follow Hovey in assuming our model categories to have all small limits
and colimits as well as functorial factorizations.

Let T op∗be the category of pointed compactly generated weak Hausdorff spaces. This
category can be equipped with a model structure [Hov99, Theorem 2.4.25]. It is Quillen
equivalent to the category of usual topological spaces with the model structure in which
weak equivalences are the weak homotopy equivalences. The reason for working with
T op∗ is that it is a closed symmetric monoidal model category [Hov99, Corollary 4.2.12].

A pointed topological model category C is a pointed model category which is enriched,
tensored, and cotensored over T op∗ in a way that certain axioms, partly involving the
model structures on C and T op∗, are satisfied. The categorical data of C consists of
functors

− ∧− : T op∗ × C → T , (K,X) 7→ K ∧X

MapC(−,−) : Cop × C → T op∗, (X,Y ) 7→ MapC(X,Y )

(−)(−) : C × T opop
∗ → C, (X,K) 7→ XK ,

natural adjunction isomorphisms

C(X,Y K) ∼= C(K ∧X,Y ) ∼= T op∗(K,MapC(X,Y )),

and the enriched composition

MapC(Y,Z) ∧MapC(X,Y )→ MapC(X,Z).

The data is asked to satisfy the usual associativity and unit conditions with respect to the
monoidal structure of T op∗. The compatibility with the model structure can be encoded
in the pushout product axiom. Two maps f : K → L in T op∗ and g : X → Y in C induce
a map f¤g : K ∧ Y

∐
K∧X L ∧ X → L ∧ Y . The pushout product axiom asks f¤g to

be a cofibration if f and g are cofibrations, and in addition f¤g has to be an acyclic
cofibration if f or g is one. More details can be found in [Hov99, 4.2].

A stable topological model category C is a pointed topological model category in which
the suspension functor S1 ∧− : C → C and the loop functor (−)S1

: C → C form a Quillen
equivalence. The homotopy category of a stable model category is an additive category.
We denote the set of morphisms from X to Y in Ho(C) by [X,Y ]Ho(C) or just [X,Y ].
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One way to define the addition of maps is to replace X by an isomorphic object S1 ∧X ′,
which is possible as C is stable, and to use the H-cogroup structure of S1. Later we use
that Ho(C) is in fact a triangulated category [Hov99, Chapter 7].

If C is a model category and X an object in C, we denote by (X ↓ C) the category of
objects under X. This category inherits a model structure from C in which a map from
X → Y to X → Y ′ is a cofibration, fibration, or a weak equivalence if the underlying
map Y → Y ′ is one in C [Hir03, Theorem 7.6.5.(1)]. Since the initial object of (X ↓ C) is
idX : X → X, an object is cofibrant in (X ↓ C) if and only if the structure map X → Y
is a cofibration.

If K is an object in T op∗, we write K+ for the space obtained from K by first forgetting
the basepoint and then adding a new one. We either consider K+ as an object of T op∗,
which is pointed by the ‘new’ basepoint, or as an object of (S0 ↓ T op∗), where the
basepoint of S0 is mapped to the ‘new’ basepoint of K+ and the other point of S0 is
mapped to the ‘former’ basepoint of K.

Let K be an object of T op∗. If X is an object in a pointed topological model category

C, applying the functor − ∧X to S0 → K+ gives an object X
∼=
−→ S0 ∧X → K+ ∧X of

(X ↓ C) which we denote simply by K+∧X. This notation is compatible with considering
K+ both as an object of (S0 ↓ T op∗) and T op∗: the first notion is needed to turn K+∧X
into an object under X, and its underlying object in C is the product of K+ in T op∗ and
X in C. When we write (K,x, y) for an object of (S0 ↓ T op∗), y is understood as the
image of the basepoint of S0 and x as the image of the other point.

If X is cofibrant in C and K is cofibrant in T op∗, the map S0 → K+ is a cofibration,
and K+ ∧X is cofibrant in (X ↓ C) by the pushout product axiom. Given another object
f : X → Y in (X ↓ C), we will denote the set of morphisms from K+ ∧X to f : X → Y

in Ho(X ↓ C) by [K+ ∧X,Y ]fHo(X↓C). We are particularly interested in the case K = Sn,

where we study [Sn
+ ∧X,Y ]fHo(X↓C)

After setting up our notation, we can formulate the aim of this paragraph. Let C be
again a pointed topological model category. If f : X → Y is a zero map, we have a
canonical isomorphism

(X ↓ C)(Sn
+ ∧X, f : X → Y ) ∼= C(Sn ∧X,Y ).

It is obtained from the universal property of the right pushout square below, which itself
is obtained by applying − ∧X to the left one.

S0

p

²²

// Sn
+

²²

∗ // Sn

−∧X
−−−→ X

p

²²

// Sn
+ ∧X

²²

∗ // Sn ∧X

Our aim is to construct an analogous isomorphism for the homotopy category of a stable
topological model category for f being not necessarily a zero map. This will be done in
Proposition 4.1.4.

Lemma 4.1.1. Let C be a pointed topological model category and let X be a cofibrant
object of C. The functors − ∧ X and MapC(X,−) induce a Quillen adjunction between
(S0 ↓ T op∗) and (X ↓ C). For a cofibrant object K in T op∗ and a map f : X → Y in C
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with Y fibrant, the derived adjunction isomorphism has the form

[K+ ∧X,Y ]fHo(X↓C)
∼= [K+, (MapC(X,Y ), f, 0)]Ho(S0↓T op∗)

Proof. The adjunction extends to the undercategories by naturality. It is a Quillen ad-
junction since−∧X and MapC(X,−) form a Quillen adjunction and the weak equivalences
and fibrations in (X ↓ C) are defined via the underlying maps in C. With this, the derived
adjunction isomorphism is a consequence of our notation conventions.

Lemma 4.1.2. Let C be a pointed topological model category, let f : X → Y be a map in
C, and let K be an object of T op∗. Then a map g : X ′ → X in C induces a map

g∗ : (X ↓ C)(K+ ∧X, f)→ (X ′ ↓ C)(K+ ∧X
′, fg).

Given another map h : X ′′ → X ′, we have (gh)∗ = (h∗)(g∗). If K is cofibrant, Y fibrant
and g a weak equivalence of cofibrant objects, g∗ induces an isomorphism

[K ∧X,Y ]fHo(X↓C)

∼=
−→ [K ∧X ′, Y ]fg

Ho(X′↓C).

on the level of homotopy categories.

Proof. In view of the adjunction of Lemma 4.1.1, the induced map is the adjoint of

K+ → (MapC(X,Y ), f, 0)
g∗

−→ (MapC(X
′, Y ), fg, 0).

If Y is fibrant, MapC(−, Y ) is a left Quillen functor [Hov99, 4.2]. By [Hir03, Theorem
7.7.2.], it preserves weak equivalences between cofibrant objects. After adjunction, this
proves the statement about the induced map in the homotopy category. It is clear that
(gh)∗ = (h∗)(g∗) holds.

Lemma 4.1.3. Let C be a pointed topological model category, let f, f ′ : X → Y be two
maps from a cofibrant object X to a fibrant object Y in C, and let I+ ∧X be the cylinder
object for X obtained by the product of I+ in T op∗ with X, where I denotes the unit
interval. If H : I+ ∧X → Y is a left homotopy from f to f ′, it induces an isomorphism

(−)H : [Sn
+ ∧X,Y ]fHo(X↓C) → [Sn

+ ∧X,Y ]f
′

Ho(X↓C).

Proof. After taking the adjunction of Lemma 4.1.1 and forgetting the basepoint, we only
need to show that there is an isomorphism

[Sn, (MapC(X,Y ), f)] ∼= [Sn, (MapC(X,Y ), f ′)].

As the adjoint ofH is a path from f to f ′, we take the isomorphism between the homotopy
groups of MapC(X,Y ) with different basepoints which is induced by this path.

The set [Sn
+ ∧ X,Y ]fHo(X↓C) has a group structure, which can be defined using the

H-cogroup structure of Sn: since we have Sn
+

∐
(S0↓T op∗) S

n
+
∼= (Sn ∨ Sn)+, we get an

isomorphism

[(Sn ∨ Sn)+ ∧X,Y ]fHo(X↓C)
∼= [Sn

+ ∧X,Y ]fHo(X↓C) × [Sn
+ ∧X,Y ]fHo(X↓C),

and the comultiplication Sn → Sn ∨ Sn induces the addition. The group is abelian if
n > 1, or if C is stable as we will obtain as a byproduct of the next
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Proposition 4.1.4. Let C be a stable topological model category, and let f : X → Y be
a map in C from a cofibrant and fibrant object X to a fibrant object Y . Then there is an
isomorphism

σf : [Sn
+ ∧X,Y ]fHo(X↓C)

∼=
−→ [Sn ∧X,Y ]Ho(C)

of abelian groups. For a map g : X ′ → X of cofibrant fibrant objects and a map h : Y → Y ′

of fibrant object, we have

(h∗)(σf ) = (σhf )(h∗) and (σgf )(g∗) = (g∗)(σf ).

If H : I+ ∧ X → Y is a left homotopy from f to f ′, the isomorphisms satisfy σf =
(σf ′)(−)H . If f is the zero map, σf coincides with the canonical isomorphism.

Proof. Since C is a stable topological model category, the two endofunctors S1 ∧ − and
(−)S1

of C form a Quillen equivalence. We define a functorG : C → C byG(X) = (XS1
)cof,

where (−)cof is the functorial cofibrant replacement. Then the Quillen equivalence prop-
erty gives us a natural transformation τ : S1 ∧ G(X) → idC such that τX is a weak
equivalence if X is fibrant [Hov99, 1.3.13(b)]. By Lemma 4.1.2, we obtain an isomor-
phism

[Sn
+ ∧X,Y ]fHo(X↓C)

∼=
−→ [Sn

+ ∧ S
1 ∧G(X), Y ]fτX

Ho(S1∧G(X)↓C)
.

If we apply the functor −∧G(X) to the weak equivalence Sn
+ ∧S

1 ∼
−→ Sn+1 ∨S1 under

S1 to be constructed in Lemma 4.1.5, we get a weak equivalence of cofibrant objects in
(S1 ∧G(X) ↓ C) which induces the isomorphism

[Sn
+ ∧ S

1 ∧G(X), Y ]fτX

Ho(S1∧G(X)↓C)

∼=
−→ [(Sn+1 ∨ S1) ∧G(X), Y )]fτX

Ho(S1∧G(X)↓C)
.

The next step exploits the isomorphism (Sn+1∨S1)∧G(X) ∼= (Sn+1∧G(X))∨(S1∧G(X)).
Together with the derived adjunction isomorphism of the Quillen adjunction of

C → (X ↓ C), Z 7→ (Z → Z ∨X) and (X ↓ C)→ C, (X → Y ) 7→ Y,

we obtain an isomorphism

[(Sn+1 ∨ S1) ∧G(X), Y )]fτX

Ho(S1∧G(X)↓C)

∼=
−→ [Sn ∧ S1 ∧G(X), Y ]Ho(C).

Finally, the weak equivalence of cofibrant objects τX : S1 ∧G(X)→ X induces

[Sn ∧ S1 ∧G(X), Y ]Ho(C)

∼=
←− [Sn ∧X,Y ]Ho(C).

We define σf to be the composition of these four isomorphisms.
It is additive since the addition on the right hand side can as well be defined using the

H-cogroup structure of Sn. Naturality with respect to a map h : Y → Y ′ is clear. The
naturality with respect to g : X ′ → X is deduced from the naturality of the induced map
of Lemma 4.1.2 and the existence of a commutative square

S1 ∧G(X ′)
τX //

S1∧G(g)
²²

X ′

g

²²

S1 ∧G(X)
τX′

// X.
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Next we choose an k ∈ (X ↓ C)(Sn
+ ∧X,Y ) that represents an α ∈ [Sn

+ ∧X,Y ]fHo(X↓C).

Then the action of a left homotopy H : I+ ∧X → Y from f to f ′ is represented by the
composition of the maps in the first line of the diagram

Sn
+ ∧X

(β)+∧X
//

=

,,YYYYYYYYYYYYYYYYYY (Sn ∨ I)+ ∧X
∼= // Sn

+ ∧X ∪ I+ ∧X
k∪H // Y

Sn
+ ∧X

k

88pppppppppppp
ι

OO

Here β : Sn → Sn ∨ I is a homotopy equivalence which sends the basepoint of Sn to the
‘outer’ point of the interval I. It is the kind of map one usually employs to obtain an
isomorphism between homotopy groups with different basepoints that are connected by
a path.

In the diagram, the right triangle commutes, and the left triangle commutes up to
homotopy in C, but not in (X ↓ C). Composing with the maps which induce σf , we see
that this is enough obtain that σf (αH) and σf (α) coincide in [Sn ∧X,Y ]Ho(C).

Now suppose that f is the zero map in the pointed category C. To see that σf coincides
with the canonical isomorphism, we use Lemma 4.1.5 again to see that the following
diagram commutes.

(Sn ∧ S1 ∨ S1) ∧G(X)

∼

**TT
TTT

TTT
TTT

TTT
T

S1 ∧G(X)

²²

// X

²²

f

""E
EE

EE
EE

EE
E

Sn ∧ S1 ∧G(X)

=
**T

TTTTTTT

OO

∼

²²

Sn
+ ∧ S

1 ∧G(X)
∼ //

²²

Sn
+ ∧X

k //

²²

Y

Sn ∧X 22Z Z [ \ ] ^ _ ` a b c d eSn ∧ S1 ∧G(X) // Sn ∧X

<<yyyyyyyyyy

Passing over to the homotopy category and running from the lower left corner through
the upper left corner and the middle line to Y gives a representative of σf (α). Running
from the lower left corner using the lowest arrow to Y gives the image of k under the
canonical isomorphism which exists since f = 0.

The following lemma was used in the proof of the previous proposition:

Lemma 4.1.5. For n ≥ 1, there is a homotopy equivalence µ : (Sn∧S1)∨S1 ∼
−→ Sn

+∧S
1

of topological spaces under S1. Here the structure map S1 → Sn
+∧S

1 is given by smashing
the map S0 → Sn

+ with S1, and the structure map of Sn+1 ∨ S1 is the inclusion of the
second summand. If p : Sn

+ → Sn is the map which identifies the two basepoints of Sn
+

specified by S0 → Sn
+, the map

Sn ∧ S1 incl
−−→ (Sn ∧ S1) ∨ S1 µ

−→ Sn
+ ∧ S

1 p∧S1

−−−→ Sn ∧ S1

is the identity.

Proof. To construct the homotopy equivalence, we consider Sn as a CW-complex with
one 0-cell and one n-cell. The complex Sn × S1 has 4 cells, a 0-cell, a 1-cell, an n-cell
and an n+ 1-cell. Since Sn

+ ∧ S
1 ∼= Sn × S1/(Sn × {s0}), this space has a CW-structure
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which is obtained from the one of Sn× S1 by collapsing the n-cell to the 0-cell. Now the
attaching map of the n+1-cell of Sn

+ ∧S
1 is a map Sn → S1. This map is nullhomotopic

for n > 1 since πnS
1 = 0. For n = 1 it is nullhomotopic for a different reason: the

attaching map of the 2-cell of S1 × S1 is the attaching map of the 2-cell of a torus, and
if we collapse one 1-cell, this map becomes nullhomotopic.

Since we know that the attaching map of n+ 1-cell of Sn+1
+ ∧S1 is nullhomotopic, this

CW-complex is homotopy equivalent to the CW-complex which has also S1 as 1-skeleton
and a further n+1-cell attached using the constant map Sn → S1. This space is Sn∨S1.

Mapping from Sn
+ ∧ S

1 to Sn ∧ S1 with p ∧ S1 means that we also collapse the 1-cell
of Sn

+ ∧ S
1 to the point. Therefore we do not see the effect of the nullhomotopy of the

attaching map of the n+ 1-cell after mapping to Sn ∧ S1. This verifies the last assertion
of the lemma.

We will also need the adjoint version of Proposition 4.1.4:

Corollary 4.1.6. Let C be a stable topological model category and let f : X → Y be a
map in C with X cofibrant fibrant and Y fibrant. Then there is an isomorphism

σ̃f : [Sn, (MapC(X,Y ), f)]Ho(T op∗)

∼=
−→ [Sn, (MapC(X,Y ), 0)]Ho(T op∗)

of abelian groups.

Proof. This follows from Lemma 4.1.1, Proposition 4.1.4 and the isomorphism

[Sn, (MapC(X,Y ), f)]Ho(T op∗)
∼= [Sn

+, (MapC(X,Y ), f, 0)]Ho(S0↓T op∗)

4.2 The construction of the class

We set up some notation. For n ≥ 1, we will denote the n-fold cartesian product of the
interval [0, 1] by Wn, and W0 will denote the one point space.

We will use the set T n = {0, 1,−1}n to index the subcubes of the cube Wn. The
subcube of Wn associated to t = (ti)1≤i≤n ∈ T

n is

{(a1, . . . , an) ∈Wn|ai = ti if ti 6= −1}.

Consequently, |t| = |(ti)1≤i≤n| = |{ti|ti = −1}| is the dimension of the subcube indexed
by t, and there is a canonical embedding ιt : W|t| →Wn. The vertex (1, . . . , 1) of Wn will
serve as the basepoint of Wn, turning it into an object of T op∗. For δ ∈ {0, 1} and k with
1 ≤ k ≤ n, the sequence t(n, k, δ) ∈ T n with t(n, k, δ)i = δ for i = k and t(n, k, δ)i = −1
otherwise denotes a codimension 1 subcube of Wn.

We will also use projections pi,j : Wn →Wj−i+1 which are defined by pi,j(a1, . . . , an) =
(ai, . . . , aj) for i ≤ j . If i = j + 1, we write pi,j : Wn → W0 for the unique map to the
one point space.

Each n-dimensional cube has an obvious CW-structure with cells given by the subcubes
described above. By skk Wn we will denote the k-skeleton of the CW-complex Wn. In
particular, skn−1Wn is the boundary of the n-cube, which we sometimes denote by ∂Wn.
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Definition 4.2.1. Let U be a small full subcategory of the homotopy category of a
stable topological model category. For n ≥ 1, an n-cube system for U consists of the
following data. For every object X of U , there is a chosen cofibrant and fibrant object
of C representing it. The isomorphism between X and the representing object is part of
the data. However, by abuse of notation, we denote the representing object by X as well.
The zero object of Ho(C) is required to be represented by the zero object in C.

Furthermore, for every j with 1 ≤ j ≤ n and every sequence

Xj+1
fj+1
−−−→ Xj

fj
−→ . . .

f1
−→ X0

of (j + 1) composable maps in U , there is a map bj(f1, . . . , fj+1) : (Wj)+ ∧Xj+1 → X0 in
C such that the following conditions are satisfied.

(i) For j = 0, the map (W0)+∧X1
b0(f1)
−−−−→ X0 in C represents f1 in U . The implicitly used

natural isomorphism (W0)+ ∧ X1
∼= X1 which is part of the topological structure

of C and the chosen isomorphisms to the representing objects are suppressed in the
notation and will be suppressed in the sequel.

(ii) If one of the maps f1, . . . , fj+1 is a zero map in Ho(C), the map bj(f1, . . . , fj+1) is
the zero map in C. In particular, the trivial map f1 in Ho(C) is represented by the
zero map b0(f1) in C.

(iii) For j ≥ 1 and an i with 1 ≤ i ≤ j, the following diagram commutes:

(Wj−1)+ ∧Xj+1

(ιt(j,i,1))+∧Xj+1

²²
))RR

RRR
RRR

RRR
RRR

RR
bj−1(f1,...,fifi+1,...,fj+1)

(Wj)+ ∧Xj+1
bj(f1,...,fj+1)

// X0

(iv) For j ≥ 1 and an i with 1 ≤ i ≤ j, the following diagram commutes:

(Wj−1)+ ∧Xj+1

(ιt(j,i,0))+∧Xj+1

²²
))RR

RRR
RRR

RRR
RRR

RR
b
j−1
i (f1,...,fj+1)

(Wj)+ ∧Xj+1
bj(f1,...,fj+1)

// X0

Here bj−1
i (f1, . . . , fj+1) denotes the map

(Wj−1)+ ∧Xj+1
p1,i−1∧pi,j−1∧Xj+1

// (Wi−1)+ ∧ (Wj−i)+ ∧Xj+1

(Wi−1)+∧bj−i(fi+1,...,fj+1)
fffff

fff

rrfffff
fff

(Wi−1)+ ∧Xi
bi−1(f1,...,fi)

// X0.

From the definition of an n-cube system it is easy to see that we have

bn(f1, . . . , fn+1)((ι(1,...,1))+ ∧Xn+1) = b0(f1 · · · fn+1).
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(f1)(f2)

(f1)◦(f2)

(f1f2)(f3)
(f1)◦(f2)(f3)

(f1)(f2)◦(f3)

(f1)(f2)(f3)

(f1)(f2)◦(f3)

(f1f2) (f1f2f3)
(f1)◦(f2f3)

(f1)(f2f3)

Figure 3: A 1-cube . . . . . . and a 2-cube.

As we have chosen the basepoint of Wn to be (1, . . . , 1), this means that bn(f1, . . . , fn+1)
is a map from Xn+1 → (Wn)+ ∧Xn+1 to b0(f1 · · · fn+1) : Xn+1 → X0 in (Xn+1 ↓ C).

An n-cube system for U contains choices of maps in C (on the model category level)
which represent maps in U (on the homotopy category level). In general, it is not possible
to choose representing maps such that b0(f1)b

0(f2) = b0(f1f2) holds. If they exist, the
maps bj(f1, . . . , fj+1) for j ≥ 1 encode coherence homotopies between different choices
for representatives for sequences of composable maps. Figures 3 and 4 (compare [BM03,
Figures 2.10 and 2.12]) illustrate the cases n = 1, n = 2, and n = 3. In the pictures, we
write (fj · · · fk) for b0(fj · · · fk) and (fj · · · fk−1) ◦ (fk · · · fl) for b1(fj · · · fk−1, fk · · · fl).

Definition 4.2.2. Let U be a small full subcategory of the homotopy category of a
stable topological model category C. A pre n-cube system for U consists of the same
data as an n-cube system for sequences of composable maps of length ≤ n. For a se-
quence (f1, . . . , fn+1) of (n + 1) composable maps in U , we only require to have maps
b̂n(f1, . . . , fn+1) : (skn−1Wn)+ ∧Xn+1 → X0. The data is asked to satisfy the same com-
patibility conditions as that of an n-cube system. This makes sense since the conditions
only involve skn−1Wn in the top dimension.
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ww
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w

(f1)(f2f3f4)

(f1)◦(f2f3f4)

y
y
y
y
y
y
y
y
y
y
y
y
y
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y
y (f1)(f2)◦(f3f4)

_________ (f1)(f2)(f3f4)

(f1◦f2)(f3f4)
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ww
ww
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ww
ww
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w

(f1f2f3)(f4)
(f1f2)◦(f3)(f4)

(f1f2)(f3)(f4)

(f1f2f3f4)
(f1f2)◦(f3f4)

(f1f2)(f3f4)

Figure 4: A 3-cube.
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Similarly to the map bn(f1, . . . , fn+1) of an n-cube system, b̂n(f1, . . . , fn+1) can be inter-
preted as a map in (Xn+1 ↓ C) fromXn+1 → (Wn)+∧Xn+1 to b0(f1 · · · fn+1) : Xn+1 → X0.

Lemma 4.2.3. An (n − 1)-cube system for U can be extended to a pre n-cube system.
The restriction of the maps b̂n(f1, . . . , fn+1) : (skn−1Wn)+ ∧Xn+1 → X0 to the (n − 1)-
dimensional subcubes of skn−1Wn that are indexed by t(n, i, 0) with 1 < i < n is already
determined by the underlying (n− 2)-cube system.

Proof. For a sequence of (n+1) composable maps (f1, . . . , fn+1) we have to define a map
(skn−1Wn)+∧Xn+1 → X0. Since skn−1Wn is the union of the codimension 1 subcubes of
Wn, we define the map on each of these and check that the choices coincide on subcubes
of codimension 2.

On the subcube of Wn of codimension 1 indexed by t(n, i, 1) with 1 ≤ i ≤ n, we choose
the map

bn−1(f1, . . . , fifi+1, . . . , fn+1) : (Wn−1)+ ∧Xn+1 → X0.

On the subcube of Wn of codimension 1 indexed by t(n, i, 0) with 1 ≤ i ≤ n, we choose
the map

bn−1
i (f1, . . . , fn+1) : (Wn−1)+ ∧Xn+1 → X0

which was introduced in Definition 4.2.1. Inspecting the definition of bni , it is easy to see
that the additional assumption on the restriction to the cubes t(n, i, 0) with 1 < i < n is
satisfied. Though it may be obvious that they assemble to a well defined map, we give
the details.

We have to check that these maps coincide on the intersection of the (n − 1)-cubes,
which are (n − 2)-dimensional subcubes of (skn−1Wn). In a similar fashion as known
from the simplicial identities, we have a commutative diagram

Wn−2

ιt(n−1,k−1,ε)

²²

ιt(n−1,j,δ)
// Wn−1

ιt(n,k,ε)

²²

Wn−1 ιt(n,j,δ)

// Wn

for 1 ≤ j < k ≤ n and ε, δ ∈ {0, 1}.

First let us consider the case of an (n − 2)-cube specified by t ∈ T n with tj = 1 = tk
and ti = −1 for i /∈ {j, k}. Here we have to check the commutativity of the following
diagram:

(Wn−2)+ ∧Xn+1

(ιt(n−1,k−1,1))+∧Xn+1

²²

(ιt(n−1,j,0))+∧Xn+1
// (Wn−1)+ ∧Xn+1

bn−1(f1,...,fkfk+1,...,fn+1)

²²

(Wn−1)+ ∧Xn+1
bn−1(f1,...,fjfj+1,...,fn+1)

// X0

It is easy to see that both twofold compositions in the diagram equal

bn−2(f1, . . . , fjfj+1, . . . , fkfk+1, . . . fn+1).
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Next we check the case of an (n− 2) cube specified by a t ∈ T n with tj = 0 and tk = 1
for 1 ≤ j < k ≤ n. This time we have to verify the commutativity of

(Wn−2)+ ∧Xn+1

(ιt(n−1,k−1,0))+∧Xn+1

²²

(ιt(n−1,j,0))+∧Xn+1
// (Wn−1)+ ∧Xn+1

bn−1(f1,...,fkfk+1,...,fn+1)

²²

(Wn−1)+ ∧Xn+1

bn−1
j (f1,...,fn+1)

// X0.

In this case, both twofold compositions equal bn−2
j (f1, . . . , fkfk+1, . . . , fn+1). The case of

a t ∈ Tn with tj = 1, tk = 0, and ti = −1 for i /∈ {j, k} is similar.
For t ∈ T n with tj = tk = 0 and ti = −1 for i /∈ {j, k} we have to check the

commutativity of an obvious diagram in which both twofold compositions turn out to
be

(Wn−2)+ ∧Xn+1 (Wj−1)+ ∧ (Wk−j−1)+ ∧ (Wn−k)+ ∧Xn+1

(Wj−1)+∧(Wk−j−1)+∧bn−k(fk+1,...,fn+1)
ccccccc

qqccccccc

//
(p1,j−1×pj,k−1×pk,n−2)∧Xn+1

(Wj−1)+ ∧ (Wk−j−1)+ ∧Xk
(Wj−1)+∧bk−j−1(fj+1,...,fk)

// (Wj−1)+ ∧Xj
bj−1(f1,...,fj)

// X0.

Lemma 4.2.4. Let f : X → Y be a map from a cofibrant object X to a fibrant object
Y in C. A map b : (skn−1Wn)+ ∧ X → Y under X which represents the trivial map in

[(skn−1Wn)+ ∧X,Y ]fHo(X↓C) can be extended to a map (Wn)+ ∧X → Y in (X ↓ C).

Proof. This is an easy consequence of Lemma 4.1.1.

Proposition 4.2.5. Let U be a small n-split subcategory of the homotopy category of a
stable topological model category C. Then there exists an n-cube system for U .

Proof. First we choose for every object of U a cofibrant and fibrant object in C which
represents it. In the next step, we choose for every map f1 : X1 → X0 in U a map
b0(f1) : (W0)+ ∧X1 → X0 which represents f1. We choose the zero map b0(f1) in C if f1

is a trivial map in Ho(C). Extending these data to a 1-cube system amounts to choosing a
homotopy b1(f1, f2) : (W1)+ ∧X2 → X1 between the two maps b0(f1f2) and b0(f1)b

0(f2),
which is always possible. Again, we choose b1(f1, f2) to be the trivial map if either f1 or
f2 is trivial.

Now suppose we have constructed a j-cube system for some j < n. We want to extend
it to a (j + 1)-cube system. By Lemma 4.2.3, we can extend it to a pre (j + 1)-cube
system. Hence for each sequence (f1, . . . , fj+2) of j + 2 composable maps in U , we have

to extend the map b̂j+1(f1, . . . , fj+2) : (skj Wj+1)+ ∧Xj+2 → X0 of the pre (j + 1)-cube
system to a map (Wj+1)+ ∧ Xj+2 → X0. If one of the maps (f1, . . . , fj+2) is trivial,

b̂j+1(f1, . . . , fj+2) is the trivial map in C, and we extend it to (Wj+1)+ ∧Xj+2 by taking
the zero map. If no fi happens to be zero, we know by Lemma 4.2.4 that it is enough to
show that the homotopy class of b̂j+1(f1, . . . , fj+2) in

[(skj Wj+1)+ ∧Xj+2, X0]
b0(f1···fj+2)

Ho(Xj+2↓C)

vanishes. By Proposition 4.1.4, this follows from U being n-split.
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Now we are ready to introduce our main object of study.

Construction 4.2.6. Let C be a stable topological model category and let U be a
small n-split subcategory of Ho(C). Then there is a well defined cohomology class

γU ∈ H
n+2(U , [−,−]

Ho(C)
n ) which determines by evaluation all (n+ 2)-fold Toda brackets

of complexes of n+ 2 composable maps in U .

We choose an n-cube system for U which is possible by Proposition 4.2.5, and extend
it to a pre (n + 1)-cube system by Lemma 4.2.3. Then we define a normalized cochain

c ∈ C
n+2

(U , [−,−]
Ho(C)
n ) as follows. Its evaluation on a sequence of (n + 2) composable

maps

Xn+2
fn+2
−−−→ Xn+1

fn+1
−−−→ . . .

f1
−→ X0

in U is the image of the homotopy class of the map b̂n+1(f1, . . . , fn+2) under the isomor-
phism

[(sknWn+1)+ ∧Xn+2, X0]
b0(f1···fn+2)
Ho(Xn+2↓C)

σ
b0(f1···fn+2)

²²

[sknWn+1 ∧Xn+2, X0]
Ho(C) ∼= [Xn+2[n], X0]

Ho C

In Lemma 4.2.7, we will show that this cochain is a cocycle, and in Lemma 4.2.8 we will
verify that the cohomology class of this cocycle does not depend on the choice of the cube
system. We observed in Remark 3.4.4 that the Toda bracket of a complex has the same
indeterminacy as the evaluation of a cohomology class in the (normalized) cohomology of
categories. Hence it is enough to show that the evaluation of our cocycle on a complex is
an element of the Toda bracket of the complex. This will be proved in Proposition 4.3.8.

We will use the Homotopy Addition Theorem [Bre97, VII.9.6] to prove that the cochain
constructed in the last theorem is a cocycle. For this we need to choose orientations of
the attaching maps of the (n + 1)-cells of the CW-complex skn+1Wn+2. This space is
homeomorphic to an (n+1)-sphere, and we will choose an orientation on the (n+1)-cells
such that they are oriented coherently with skn+1Wn+2.

We start with fixing the vertex e = (0, 1, 0, 1, . . . ) of Wn+2 and the opposite vertex
e′ = (1, 0, 1, 0, . . . ). Each (n + 1)-dimensional subcube of Wn+2 contains either e or e′.
We write Te ⊂ Tn+2 for the indexing set of those containing e, and Te′ for the indexing
set of those containing e′.

The union of all n-dimensional subcubes of skn+1Wn+2 containing neither e nor e′ is
homeomorphic to an n-sphere. Changing the CW-structure for a moment, skn+1Wn+2

can be obtained from this space by attaching two (n + 1)-cells. For skn+1Wn+2 to
be oriented, the attaching maps of these two cells have to have opposite orientations.
Subdividing to the CW-structure of skn+1Wn+2 given by the subcubes, this means that
we can choose all (n + 1)-cells containing e to have the same, say positive, orientation,
and all (n+ 1)-cell containing e′ to have negative orientation.

Let K be a pointed space. The Homotopy Addition Theorem [Bre97, VII.9.6] now says
that for every based map f : sknWn+2 → K, we have

∑

t∈Te

[f |ιt ]−
∑

t∈Te′

[f |ιt ] = 0 in π̃n(K).
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Here f |ιt denotes the restriction of f to the copy of sknWn+1 in sknWn+2 indexed by
t, and π̃n(K) is πn(K) if n > 1 and the abelianized π1(K) for n = 1. The use of π̃n is
necessary for the following reason: if the cube indexed by t does not contain the basepoint
(1, . . . , 1) of sknWn+2, we do have to use the action of a path to the basepoint on f |ιt
to get an element of πn(K), and this may depend on the homotopy class of the path for
n = 1 (compare [Bre97]).

Lemma 4.2.7. The cochain of Construction 4.2.6 is a cocycle.

Proof. In a similar way as in the construction of a pre cube system from a cube system,
we can use the data of the chosen n-cube system to construct a map

d = d(f1, . . . , fn+3) : (sknWn+2)+ ∧Xn+3 → X0

with the following properties: for each k with 1 ≤ k ≤ n + 2, the restriction of d along
ιt(n+2,k,δ) satisfies

(ιt(n+2,k,1))
∗d = b̂n(f1, . . . , fkfk+1, . . . , fn+3)

and

(ιt(n+2,k,0))
∗d =





(b0(fn+3))
∗(̂bn(f1, . . . , fn+2)) if k = n+ 2

bn+1
k (f1, . . . , fn+3)|skn Wn+1 if 1 < k < n+ 2

(b0(f1))∗(̂b
n(f2, . . . , fn+3)) if k = 0

Here the map bn+1
k (f1, . . . , fn+3) : (Wn+1)+ ∧Xn+3 → X0 is the one introduced in Defi-

nition 4.2.1. It is, in a similar way as pointed out in Lemma 4.2.3, already determined
by the n-cube system. As it is implicit in the conditions listed above, d is a map under
b0(f1 · · · fn+3).

After adjoining and forgetting the additional basepoint, we get a map

d̂ : sknWn+2 → (MapC(Xn+3, X0), b
0(f1, . . . , fn+3)).

As explained before the lemma, the Homotopy Addition Theorem yields

0 =
∑

t∈Te

[d̂|ιt(skn Wn+1)]−
∑

t∈Te′

[d̂|ιt(skn Wn+1)]

in π̃n(MapC(Xn+3, X0)). The homotopy classes of those maps indexed by a t(n+ 2, k, 0)
with 1 < k < n+ 2 vanish since these maps can be extended to Wn+1.

To interpret this equation in πn(MapC(Xn+3, X0), b
0(f1 · · · fn+3)), we only have to

change the homotopy classes of the maps of the terms corresponding to t(n+ 2, n+ 2, 0)
and t(n + 2, 1, )) with paths from b0(f1)b

0(f2 · · · fn+3) and b0(f1 · · · fn+2)b
0(fn+3) to

b0(f1 . . . fn+3) in order to have the right basepoints. We do not loose information when
passing to the abelianized fundamental group in the case n = 1, as it is a consequence of
Proposition 4.1.4, Lemma 4.1.1, and C being stable that MapC(Xn+3, X0) has an abelian
fundamental group.

After adjoining, we get a sum of homotopy classes of maps (sknWn+1)+ ∧X3 → X1.
Under the adjunction, the action of the paths correspond to actions of homotopies.

43



Now we can apply the isomorphism σb0(f1···fn+3) of Proposition 4.1.4 to this formula.
Exploiting that it is natural, additive, and invariant under the action of homotopies, we
obtain the formula

0 = (f1)∗c(f1, . . . , fn+3) +

n+2∑

i=1

(−1)ic(f1, . . . , fifi+1, . . . , fn+3)

+ (−1)n+3(fn+3)
∗c(f1, . . . , fn+3).

The signs in this formula are a consequence of our orientation conventions. For example,
the sign of c(f1, . . . , fifi+1, . . . , fn+3) is positive if and only if e = (0, 1, 0, . . . ) lies in the
(n + 1)-dimensional cube indexed by t(n + 2, i, 1), and this is the case if and only if the
ith entry of e is 1.

For the n = 1 case of the last lemma, it is again helpful to have a look at Figure 4. The
first and the last term of the sum correspond to the back face and the upper face of the
cube. The three middle terms correspond to the 3 faces containing (f1f2f3f4), and the
term belonging to the right face vanishes as the ‘product homotopy’ b1(f1, f2)b

1(f3, f4)
needed to fill the 2-cube is already given by the data of the 1-cube system.

Lemma 4.2.8. The cohomology class of Construction 4.2.6 does not depend on the choice
of a cube system.

Proof. We have to show that the cocycle associated to another n-cube system for U gives
a cocycle representing the same cohomology class as the one associated to our original
choice.

First assume that we are only given a different (n − 1)-cube system associated to U .
Then we will show that we can extend it to an n-cube system which yields the same
cohomology class as our first choice.

For this we fix an n-cube system (Xj , b
j) and an (n−1)-cube system (Xj , b

j). For every
object of U , the data of the cube system gives an isomorphism between the representing
objects X and X which we can realize by a weak equivalence g : X → X since both
objects are fibrant and cofibrant. For a map f1 in U , the diagram

X1
b0(f1)

//

g1

²²

X0

g0

²²

X1

b0(f1)
// X0

will in general not be commutative in C, but it commutes in Ho(C). The homotopy can
be considered as a map h0(f1) : I+ ∧ (W0)+ ∧X1 → X0 with (ι0)

∗h0(f1) = g0b
0(f1) and

(ι1)
∗h0(f1) = b0(f1)g1. Here ι0, ι1 denote the two inclusions of the endpoints in the unit

interval I.

Using the same arguments as in the construction of a cube system in Proposition 4.2.5,
we can inductively find maps hj(f1, . . . , fj+1) : I+∧ (Wj)+∧Xj → X0 for j < n such that

(ι0)
∗hj(f1, . . . , fj+1) = g0b

j(f1, . . . , fj+1) and

(ι1)
∗hj(f1, . . . , fj+1) = bj(f1, . . . , fj+1)gj+1.
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For j = n, we construct a map hn(f1, . . . , fn+1) as follows: the cube system (Xj , b
j)

specifies its values on {0} ×Wn. We can extend it to ∂(I ×Wn) \ {1} ×Wn since U is
n-split. Using the homotopy extension property of

∂(I ×Wn) \ ({1} ×Wn)→ I ×Wn,

we get a map hn(f1, . . . , fn+1) : I+ ∧ (Wn)+ ∧ Xn+1 → X0. The restriction of hn to
{1}×Wn is an extension of the (n− 1)-cube system (X j , b

j) to an n-cube system. When
we pass over to the associated pre n-cube systems, we obtain a homotopy

h : I+ ∧ (sknWn+1)+ ∧Xn+2 → X0

between the maps g0b̂
n+1(f1, . . . , fn+2) and b̂n+1(f1, . . . , fn+2)gn+2. Therefore, the latter

map represents [g0b̂
n+1(f1, . . . , fn+2)]

h0(f1···fn+2) in

[(sknWn+1)+ ∧Xn+2, X0]
b0(f1···fn+2)gn+2

Ho(Xn+2↓C) .

Hence the isomorphism σ sends both maps to the same homotopy class in [Xn+2, X0]
Ho(C)
n .

The second step is similar to the proof of the last lemma and will use the Homotopy
Addition Theorem again. We can now assume that we are given two n-cube systems
(Xj , b

j), (Xj , b
j) with the same underlying (n− 1)-cube system. As observed in Lemma

4.2.3, the maps b̂n+1 and b̂n+1 associated to their pre (n + 1)-cube systems coincide on
all n-dimensional subcubes of sknWn+1 indexed by t(n+ 1, k, 0) with 1 < k < n+ 1.

We denote the set of all n-dimensional subcubes of sknWn+1 on which the two pre
(n+ 1)-cube systems possibly deviate by Td ⊂ T

n+1, i.e.,

Td = {t(n+ 1, k, 1)|1 ≤ k ≤ n+ 1} ∪ {t(n+ 1, k, 0)|k ∈ {1, n+ 1}}.

Now let A be the space obtained by gluing for each t ∈ Td one copy of Wn ∪∂Wn
Wn

to sknWn+1, using the right copy of Wn in the first term and the copy of Wn associated
to t in the second. Then A has two inclusion i, i : sknWn+1 → A, the first being the
canonical inclusion and the second being the inclusion using the left ‘new’ copy of Wn on
all subcubes indexed by a t ∈ Td.

For a given sequence of composable maps (f1, . . . , fn+2), the two pre cube systems
together yield a map a = a(f1, . . . , fn+2) : A+ ∧ Xn+2 → X0 with a(i+ ∧ Xn+2) = b̂n+1

and a(i+ ∧Xn+2) = b̂n+1. The Homotopy Addition Theorem yields the formula

b̂n+1 = b̂n+1 +
∑

t∈Td∩Te

(i∗t (a))−
∑

t∈Td∩Te

(i∗t (a)),

where it : Wn ∪∂Wn
Wn → A is the inclusion which belongs to t ∈ Td. The signs arise in

the same way as in the last lemma.
Next let â = â(f1, . . . , fn+1) : (Wn ∪∂Wn

Wn)+ ∧ Xn+1 → X0 be the map which is
bn(f1, . . . , fn+1) on the right copy of Wn and bn(f1, . . . , fn+1) on the left copy. Then

we can define an (n + 1)-cochain a ∈ C
n+1

(U , [−,−]
Ho(C)
n ) whose value on a sequence of

(n+ 1) composable maps (f1, . . . , fn+1) is

a(f1, . . . , fn+1) = σb0(f1···fn+1)[â(f1, . . . , fn+1)].
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If we now apply the isomorphism σb0(f1···fn+2) to the formula obtained above from the
Homotopy Addition Theorem and exploit its additivity and naturality again, we obtain

c(f1, . . . , fn+2) = c(f1, . . . , fn+2) + (δa)(f1, . . . , fn+2),

where c and c are the two cocycles belonging to the two cube systems and δa is the
boundary of a. Hence the cohomology class of these two cocycles coincide.

The last lemma completes the construction of the class γU . For later use, we prove two
more lemmas closely related to this construction.

Lemma 4.2.9. Let C be a stable topological model category and let U be a small n-split

subcategory of Ho(C). Suppose that γU ∈ Hn+2(U , [−,−]
Ho(C)
n ) is zero. Then we can

change the maps bn of any n-cube system for U such that the resulting modified n-cube

system has the zero cochain in C
n+2

(U , [−,−]
Ho(C)
n ) as the associated cocycle representing

γU . In particular, the modified n-cube system can be extended to an (n+ 1)-cube system.

Proof. Let (Xj , b
j) be any n-cube system for U , and let c ∈ C

n+2
(U , [−,−]

Ho(C)
n ) be the

associated cocycle representing γU . Our assumption γU = 0 implies the existence of a

cochain e ∈ C
n+1

(U , [−,−]
Ho(C)
n ) with δ(e) = c.

We use e to change the n-cube system. This should be interpreted as the inverse to
our construction in the proof of Lemma 4.2.8.

Let

Xn+1
fn+1
−−−→ Xn

fn
−→ . . .

f1
−→ X0

be a sequence of composable maps in U . As in the last lemma, we model the n-sphere
by gluing two copies of the n-cube Wn together along their boundaries. Using the iso-
morphism of Corollary 4.1.6 and the homotopy extension property, we can represent
e(f1, . . . , fn+1) by a map

ê(f1, . . . , fn+1) : (Wn ∪∂Wn
Wn)→ MapC(Xn+1, X0)

which coincides with the adjoint of bn(f1, . . . , fn+1) on the first copy of Wn. If one of
the maps fi is the zero map, we can choose ê(f1, . . . , fn+1) to be the trivial map to the
basepoint. Now we define bn(f1, . . . , fn+1) to be the restriction of ê(f1, . . . , fn+1) to the
second copy of Wn.

The maps bn, together with the maps bj for j < n, specify the data of an n-cube

system, as bn coincides with bn on skn−1Wn. Let c ∈ C
n+2

(C, [−,−]
Ho(C)
n ) be the cochain

associated to the new cube system. With the same arguments as in Lemma 4.2.8, we see
that the cochains c and c differ by δa. Hence c is zero.

Lemma 4.2.10. Let G : C → D be a left Quillen functor between stable topological model
categories C and D which commutes up to natural isomorphism with the action of T op∗
on C and D. If U and W are small n-split subcategories of Ho(C) and Ho(D) such that
G induces an equivalence U → W, then the induced isomorphism

Hn+2(W, [−,−]Ho(D)
n )→ Hn+2(U , [−,−]Ho(C)

n )

sends γW to γU .

46



Proof. Since G is a left Quillen functor, it induces a functor on the homotopy categories.
In particular, it preserves colimits. When we apply G to the data of an n-cube system
(Xj , b

j) for U , we almost get an n-cube system for W. The only missing part is that the
objects G(Xj) are not fibrant. If pj : G(Xj)→ Y j denotes a map to a fibrant replacement
for every j, we can extend these maps to a map of cube systems in a similar fashion as in
the last lemma, using the homotopy extension property to obtain a cube system for W
with the Y j as the chosen objects in D. It is clear that the cocycle defined in terms of
the cube system for U is mapped to the cocycle defined in terms of this cube system for
W. Since the associated cohomology classes do not depend the choices, we are done.

4.3 Comparing definitions of Toda brackets

Triple Toda bracket where introduced by Toda [Tod52, Tod62] to study the stable ho-
motopy groups of spheres. Higher Toda brackets where introduced in the 60’s, and there
are different approaches in the literature. One of them is Cohen’s definition using filtered
objects [Coh68, §2]. It was originally introduced in the context of the homotopy category
of spaces or the stable homotopy category and generalizes easily to triangulated cate-
gories [Shi02, App A]. We used this definition in the last section in order to show how
Toda brackets determine realizability obstructions. As pointed out in Remark 3.4.3, this
definition also specializes to the definition of higher Massey products when applied to the
derived category of a differential graded algebra.

Another approach is Spanier’s definition of higher Toda brackets [Spa63] using the
concept of a carrier, which is a functor from a simplex to the category of spaces (see for
example [Spa63, 4.8] for his definition of a 4-fold Toda bracket). A related concept is
Klaus’ definition of a pyramid [Kla01, 3.4], which is as well a system of higher coherence
homotopies. This is linked to Spanier’s definition by [Kla01, Proposition 3.6].

The perhaps most general approach to Toda brackets and other higher homotopy op-
erations is that of Blanc and Markl [BM03], who define them as obstructions to realizing
a homotopy commutative diagram by a strictly commutative one. The case of Toda
brackets is linked to Spanier’s definition by [BM03, Example 3.12].

In Lemma 4.3.1 below we will see that the evaluation of the universal Toda bracket
can be interpreted as something similar to a pyramid in the sense of Klaus. Proposition
4.3.8 will then show that this is in fact equivalent to the Toda bracket in the context of
triangulated categories defined in terms of filtered objects. Therefore, our comparison
can be interpreted as a link between these different approaches, which does not seem to
be covered by the literature. Nevertheless, we point out that we do not claim that all
these approaches are equivalent in general, and that it is not our aim to prove this here.

Let C be a stable topological model category and let U be an n-split subcategory of
Ho(C). Throughout this section, we fix an n-cube system for U which exists by Proposition
4.2.5. We also fix a sequence of maps

Xn+2
fn+2
−−−→ Xn+1

fn+1
−−−→ . . .

f1
−→ X0

in U which satisfies fifi+1 = 0 for 1 ≤ i ≤ n+ 1. Our aim is to prove that the evaluation
of the cocycle defined in Construction 4.2.6 on this sequence is an element of the Toda

bracket 〈f1, . . . , fn+2〉 ⊆ [Xn+2, X0]
Ho(C)
n in the sense of Definition 3.3.7.

We denote by ∂̃Wn+1 the space obtained from sknWn+1 by collapsing all those n-
dimensional subcubes of sknWn+1 to the basepoint (1, 1, . . . , 1) which are indexed by
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t(n+ 1, i, 1) with 1 ≤ i ≤ n+ 1. This space is pointed again, and it is homeomorphic to
an n-sphere.

Lemma 4.3.1. The map b̂n+1(f1, . . . , fn+2) of the pre cube system associated to our

chosen cube system induces a map b̃n+1(f1, . . . , fn+2) : ∂̃Wn+1∧Xn+2 → X0 in a canonical
way. This map represents the evaluation of the cocycle of Construction 4.2.6 on the
complex (f1, . . . fn+2) in U .

Proof. As defined in 4.2.6, the evaluation of c on (f1, . . . fn+2) is the image of the homo-
topy class of the map b̂n+1(f1, . . . , fn+1) : (sknWn+1)+ ∧Xn+2 → X0 under the isomor-
phism σb0(f1···fn+2) of Proposition 4.1.4. Since the composition (f1 · · · fn+2) is a zero map
in Ho(C), the representing map b0(f1, . . . , fn+2) in C is also the zero map. Proposition
4.1.4 tells us that in this case the evaluation of the cocycle is given by the homotopy
class of the induced map (sknWn+1) ∧ Xn+2 → X0, where (1, 1, . . . , 1) is taken as the
basepoint of sknWn+1.

The restriction of this map to the cubes indexed by t(n+ 1, i, 1) with 1 ≤ i ≤ n+ 1 is
trivial: it is given by bn(f1, . . . , fifi+1, . . . , fn+2) : Wn∧Xn+2 → X0, and this map is trivial

since fifi+1 = 0. So we get an induced map b̃n+1(f1, . . . , fn+1) : ∂̃Wn+1 ∧ Xn+2 → X0

which represents the evaluation of the cocycle.

Depending on our chosen n-cube system and the sequence of maps (f1, . . . , fn+2), we
now construct an object Fj = Fj(f2, . . . , fj+1) in C for j ≤ n+ 1. Set

Aj = A′
j =

∐

1≤r<s≤j+1

(Wj−1)+ ∧Xs and Bj =
∐

1≤i≤j+1

(Wj)+ ∧Xi.

The object Fj is the coequalizer of two maps h, k : Aj

∐
A′

j → Bj we describe next.
We think of the copies of Wj in Bj as the j + 1 subcubes of dimension j of Wj+1

which contain the vertex (0, . . . , 0). The copies of Wj−1 in Aj are thought of as those
(j − 1)-dimensional subcubes of Wj+1 which are indexed by a t ∈ T j+1 with tr = 0 = ts,
and the copies of Wj−1 in A′

j are thought of as those (j− 1)-dimensional subcubes which

are indexed by a t ∈ T j+1 with tr = 1, ts = 0.
The map h is given as follows: on the copy of (Wj−1)+ ∧Xs in Aj indexed by (r, s),

it is the inclusion (ιt(j,r,0))+ ∧Xs : (Wj−1)+ ∧Xs → (Wj)+ ∧Xs into the summand of Bj

indexed by s. On the copy of (Wj−1)+ ∧Xs in A′
j , the map h is

(ιt(j,r,1))+ ∧Xs : (Wj−1)+ ∧Xs → (Wj)+ ∧Xs.

The map k is the trivial map to the basepoint on A′
j . On the copy of (Wj−1)+ ∧Xs in

Aj indexed by (r, s), it is given by the composition

(Wj−1)+ ∧Xs
diag∧Xs

// (Wj−1)+ ∧ (Wj−1)+ ∧Xs

ιt(j,s−1,0)∧pj−s+r+1,j−1∧Xs
fffff

ff

ssfffff
ff

(Wj)+ ∧ (Ws−r−1)+ ∧Xs
bs−r−1(fr+1,...,fs)

// (Wj)+ ∧Xr

In other words, it is the map bs−r−1(fr+1, . . . , fs) on Xs and the last s−r−1 coordinates
of the cube Wj−1.
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(1, 1, 0)
(W1)+∧X3

/o/o/o/o/o/o (1, 0, 0)

(W1)+∧X2

²O
²O
²O

²O
²O
²O

(W2)+ ∧X3

55

(W2)+ ∧X2

nn

(1, 0, 1)

Figure 5: The object F2(f2, f3).

Example 4.3.2. The case j = 2 is displayed in Figure 5. In the diagram, the lines of
the shape /o/o/o mark the part which is collapsed to the basepoint. Thinking of all
cubes as subcubes of W3, we glue the 3 objects (W2)+ ∧X3, (W2)+ ∧X2, and (W2)+ ∧
X1 (indexed by (−1,−1, 0), (−1, 0,−1) and (0,−1,−1)) together along two copies of
(W1)+ ∧X3 (indexed by (−1, 0, 0) and (0,−1, 0)) and one copy of (W1)+ ∧X2 (indexed
by (0, 0,−1)). Furthermore, we collapse two copies of (W1)+ ∧X3) (indexed by (−1, 1, 0)
and (1,−1, 0)) and one copy of (W1)+ ∧X2 (indexed by (1, 0,−1)) to the basepoint.

Lemma 4.3.3. The data of the cube system induces maps

ξj : ∂̃Wj+1 ∧Xj+2 → Fj(f2, . . . , fj+1) and ζj : Fj(f2, . . . , fj+1)→ X0,

If j = n, the composition ζnξn coincides with the map b̃n+1(f1, . . . , fn+2) of Lemma 4.3.1.

Proof. On the j-dimensional subcube (Wj)+ ∧Xj+2 of skj Wj+1 indexed by t(j + 1, i, 0),
we consider the map

(Wj)+ ∧Xj+2
p1,j∧pi,j∧Xj+2

// (Wj)+ ∧ (Wj+1−i)+ ∧Xj+2

(Wj)+∧bj+1−i(fi+1,...,fj+2)
ggggg

gg

ssggggg
gg

(Wj)+ ∧Xi
// Bj

// Fj(f2, . . . , fj+1)

The restriction of this map along (ιt(j,k−1,1))+∧Xj+2 is trivial for k > i, as we can replace
bj+1−i(fi+1, . . . , fj+2) by the trivial map bj−i(fi+1, . . . , fkfk+1, . . . , fj+2) there. It is also
trivial on the subcubes indexed by t(j, k, 1) for k < i, since these subcubes are mapped
to the part of Fj(f2, . . . , fj+1) which gets collapsed.
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The same arguments as in Lemma 4.2.3 show that the maps for different i coincide on
the (j − 1)-dimensional subcubes of skj Wj+1 indexed by a t with tr = 0 = ts. Therefore,

we get an induced map ξj : ∂̃Wj+1 ∧Xj+2 → Fj(f2, . . . , fj+1).
We now come to the map ζj . On the copy (Wj)+ ∧ Xi of Bj indexed by i with

1 ≤ i ≤ j + 1, we consider the map

(Wj)+ ∧Xi
p1,i−1∧Xi
−−−−−−→ (Wi−1)+ ∧Xi

bi−1(f1,...,fi)
−−−−−−−−→ X0.

The restriction of this map along the ιt(j,k,1) for k < i is trivial as it can be expressed
using bi−1(f1, . . . , fkfk+1, . . . , fi). This ensures the compatibility with the part of the
coequalizer coming from A′

j . The compatibility with the other part follows from the
axioms of a cube system.

To see ζnξn = b̃n+1(f1, . . . , fn+2), we check its behavior on the n-dimensional subcubes
(Wn)+∧Xn+2 indexed by t(j+1, i, 0). Here ζnξn is the map bn+1−i(fi+1, . . . , fn+2) using
the last (n + 1 − i) coordinates of the cube, composed with bi−1(f1, . . . , fi) using the
first (i − 1)-coordinates. This coincides with bni (f1, . . . , fn+2), which was used for the

construction of the maps of the pre cube system and hence of b̃n+1(f1, . . . , fn+2).

Lemma 4.3.4. The object Fj+1(f2, . . . , fj+2) can be constructed from Fj(f2, . . . , fj+1)
as the mapping cylinder of the map from Fj(f2, . . . , fj+1) to the cone C of the map

ξj : ∂̃Wj+1 ∧Xj+2 → Fj(f2, . . . , fj+1). The inclusion of Fj(f2, . . . fj+1) into the mapping
cylinder therefore gives a map ιj : Fj(f2, . . . fj+1)→ Fj+1(f2, . . . fj+2).

Proof. Let W̃j+1 denote the quotient of Wj+1 by the equivalence relation which identifies
all j-dimensional subcubes indexed by t(j + 1, i, 1) ∈ T j+1 with 1 ≤ i ≤ j + 1. Then

there is a canonical map ∂̃Wj+1 → W̃j+1, and we can interpret W̃j+1 as a cone on ∂̃Wj+1.
Hence we can model the mapping cone of ξj by the pushout of

W̃j+1 ∧Xj+2 ← ∂̃Wj+1 ∧Xj+2
ξj
−→ Fj(f2, . . . , fj+1).

In order to replace the map from Fj to the cone by a cofibration, we need a cylinder
object for Fj . A possible choice for this is (W1)+ ∧ Fj , which amounts to adding one
additional coordinate to each (Wi)+ ∧ Xk that occurred in the construction of Fj . We
choose it to be the last coordinate. Hence the mapping cylinder of Fj → C is weakly
equivalent to the pushout of

W̃j+1 ∧Xj+2 ← ∂̃Wj+1 ∧Xj+2
((ι0)+∧Fj)(ξj)
−−−−−−−−−→ (W1)+ ∧ Fj

The pushout of this diagram is isomorphic to Fj+1 as defined above. The case j = 1 can
again easily be deduced from Figure 5.

Corollary 4.3.5. For j ≤ n, there is a distinguished triangle

Xj+2[j]
ξj
−→ Fj(f2, . . . , fj+1)

ιj
−→ Fj+1(f2, . . . , fj+2)

πj+1
−−−→ Xj+2[j + 1]

in Ho(C).

Proof. This follows from the last lemma and the definition of the distinguished triangles
in the homotopy category of a stable model category [Hov99, Chapter 7].
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Lemma 4.3.6. For 0 ≤ j ≤ n, the following diagram commutes in Ho(C):

Fj(f2, . . . , fj+1)
πj

wwooo
ooo

ooo
ooo

Xj+1[j] Xj+2[j]

ξj

ggOOOOOOOOOOOO
fj+2[j]

oo

Proof. The last lemma says that we have a cofibration sequence

Fj−1(f2, . . . , fj)
ιj−1
−−→ Fj(f2, . . . , fj+1)

πj
−→ Xj+1[j].

Hence πj is up to homotopy the map from Fj to its quotient obtained by collapsing every
subcube (Wj)+∧Xi of Bj indexed by 2 ≤ i ≤ j to the (j− 1)-dimensional subcube along
which it is glued to (Wj)+∧Xj+1. To examine the homotopy class of πjξj , we hence only
need to know what ξj does on the subcube (Wj)∧Xj+2 indexed by j+1. As it is defined
to be the map fj+2 on this one, we are done.

Lemma 4.3.7. If we consider the Fj(f2, . . . , fj+1) as objects of Ho(C), the sequence

∗ → X1
ι0−→ F1(f2)

ι1−→ . . .
ιn−1
−−−→ Fn(f2, . . . , fn+1)

gives Fn(f2, . . . , fn+1) the structure of an (n+ 1)-filtered object in {f2, . . . , fn+1}.

Proof. We prove that Fj(f2, . . . , fj+1) is a (j + 1)-filtered object in {f2, . . . , fj+1} by
induction. This is clear for j = 1. Using that πj : Fj(f2, . . . , fj+1) → Xj+1[j] plays the
role of the map σX for X being the (j + 1)-filtered object Fj(f2, . . . , fj+1), we can use
Lemma 3.3.6 and Corollary 4.3.5 to see that Fj+1(f2, . . . , fj+2) is a (j+2)-filtered object
in {f2, . . . , fj+1, πjξj [−j]}. The last lemma provides the remaining fact (πjξj)[−j] =
fj+2.

Proposition 4.3.8. Let C be a stable topological model category, let U be an n-split
subcategory of Ho(C), and let

Xn+2
fn+2
−−−→ Xn+1

fn+1
−−−→ . . .

f1
−→ X0

be a sequence of maps in U with fifi+1 = 0 for 1 ≤ i ≤ n+1. If c is a representing cocycle
of the cohomology class γU of Construction 4.2.6, the evaluation of c on (f1, . . . , fn+2) is
an element of the Toda bracket 〈f1, . . . , fn+2〉.

Proof. As we have seen in Lemma 4.3.3, the composition ζnξn is the map b̃n(f1, . . . , fn+2).
Hence it represents by the evaluation of the cocycle c associated to our chosen cube
system by Lemma 4.3.1. On the other hand, we have the following commutative diagram
in Ho(C):

X1

σ′
X

²²

f1

%%K
KK

KK
KK

KK
KK

Xn[n− 2]
ξn

//

fn[n−2] ''OO
OOO

OOO
OOO

X

σX

²²

ζn

// X0

Xn−1[n− 2]
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The left triangle commutes up to isomorphism by Lemma 4.3.6. The commutativity of
the right triangle is an immediate consequence of the definition of the map ζn and the
fact that σ′X is the composition

X1
∼= (W0)+ ∧X0

ι(1,1,...,1)
−−−−−→ (Wn+1)+ ∧X1 → Bn+1 → Fn(f2, . . . , fn+1).

As Fn(f2, . . . , fn+2) is an (n + 1)-filtered object, this shows that ζnξn is an element of
〈f1, . . . , fn+2〉.

4.4 The relation to k-invariants of classifying spaces

In the last paragraph, we saw that the evaluation of the universal Toda bracket on a
complex is the Toda bracket of the complex. Since it may as well be evaluated on arbitrary
sequences of maps, it will carry more information than just that about the Toda bracket
in general. We will now exhibit how its evaluation on a sequences of automorphisms can
be expressed. When we apply our theory to ring spectra in the next section, this will
give us information about the units of ring spectra (and the units of their matrix rings),
rather than only about their zero divisors (and the zero divisors of their matrix rings).

A motivation for this comes from Igusa’s results [Igu82] about the first k-invariant of
the space BGL∞(QΩX+), which is related to Waldhausen’s algebraic K-theory of spaces
[Wal78]: Igusa shows that the first k-invariant of a connected space X is determined by
a cohomology class kH

1 (ΩX) in the cohomology of the monoid π0(ΩX) with coefficients
in H1(X), where the class kH

1 (ΩX) is constructed from the A4-part of the A∞-structure
of ΩX [Igu82, B, Property 1.1.]. This observation is also used in [BD89, Example 4.9,
Theorem 3.10].

The first k-invariant of a path connected pointed topological space K with πi(K) = 0
for 1 < i < m is a class km+1(K) ∈ Hm+1(π1(K), πm(K)) in the cohomology of the
group π1(K) with coefficients in πm(K). If K satisfies πi(K) = 0 for i > m in addition,
km+1(K) is the obstruction to K having an Eilenberg-Mac Lane space K(π1(K), 1) as a
retract up to homotopy.

We sketch the definition of the k-invariant we are going to work with, as it does not seem
to be the most common one. It uses the explicit construction of a representing cocycle
and was introduced by Eilenberg and Mac Lane in [EML49, §19], who were probably the
first to study this k-invariant.

The group π1(K) has an associated simplicial set Bπ1(K), defined by the bar con-
struction, whose geometric realization is an K(π1(K), 1). We denote by skiBπ1(K) the
sub simplicial set generated by the non degenerated simplices of degree ≤ i, and by
| skiBπ1(K)| its geometric realization. Now we can define a map | sk1Bπ1(K)| → K by
sending the 1-simplex associated to g ∈ π1(K) to a path representing g. Inductively,
this map can be extended to a map | skiBπ1(K)| → K as long as i ≤ m. In degree i,
we have for every (i + 1)-tuple (g1, . . . , gi+1) of elements gi 6= 1 in π1(K) to extend a
map ∂∆i+1 → K to ∆i+1. Since πi(K) = 0 for 1 < i < m, this is possible for i < m
and leads to obstructions c(g1, . . . , gm+1) ∈ πm(K) when we try to extend the map to
| skm+1Bπ1(K)|

It turns out that this c represents a cohomology class in Hm+1(π1(K), πm(K)) which
defines km+1(K). The fact that c is a cocycle can be proved by applying the Homotopy
Addition Theorem in a similar fashion as in Lemma 4.2.7. Changing the cochain by a
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boundary amounts to changing the chosen map | skmBπ1(K)| → K on the m-skeleton.
This is relevant and may be necessary as two different maps | skmBπ1(K)| → K need
not to be homotopic: the problem to extend a homotopy on the (m − 1)-skeleton to an
m-simplex leads to an obstruction in πm(K). More details and an equivalence of this
definition to a more common one in terms of universal covering spaces can also be found
in [EML49, §19].

Coming back to the setup of Paragraph 4.2, we fix a stable topological model category
C, an n-split subcategory U of Ho(C) for some n ≥ 1, and an n-cube system which we
use to define the class γU . We also fix an object of U , or more specifically a cofibrant and
fibrant objectX of C representing it. Without loss of generality, it is the same representing
object as our cube system chooses. For this X, we consider the pointed topological space
MapC(X,X). Its basepoint is given by the zero map in C, and its homotopy groups can
be expressed as

πi(MapC(X,X), 0) ∼= [Si,MapC(X,X)]Ho(T op∗) ∼= [Si ∧X,X]Ho(C) ∼= [X,X]
Ho(C)
i .

As X is an object of an n-split subcategory of Ho(C), we know that πi(MapC(X,X), 0)
is concentrated in degrees divisible by n.

The enriched composition in the category C equips MapC(X,X) with the structure of a
topological monoid, and we refer to the composition as the multiplication. Under the ad-
junction given above, the composition of maps in Ho(C) corresponds to the multiplication
of MapC(X,X).

The set π0(MapC(X,X)) of path components of MapC(X,X) inherits a monoid struc-
ture from MapC(X,X), and we will denote by MapC(X,X)× the union of all path
components of MapC(X,X) which are invertible with respect to the multiplication on
π0(MapC(X,X)). Therefore, MapC(X,X)× is a group-like topological monoid.

When considering MapC(X,X)× as a pointed space, we take the unit idX of the mul-
tiplication as its basepoint. This is relevant as the zero map, serving as the basepoint of
MapC(X,X), is not an element of MapC(X,X)×. Nevertheless, we have isomorphisms

πi(MapC(X,X), 0) ∼= πi(MapC(X,X), idX) ∼= πi(MapC(X,X)×, idX)

for i ≥ 1. The second isomorphism is the restriction to the path component. For the
first one, one could appeal to the additive structure on Ho(C) and take the isomorphism
induced by idX ⊕(−). Instead of this, we will just use the isomorphism σ̃idX

of Corollary
4.1.6, which we already constructed and which has good properties we will use later.

A topological monoid G has a classifying space BG, defined via the bar construction.
It comes with a map ω : G → ΩBG. If the topological monoid G is group-like, that is,
the monoid π0(G) is a group, then ω is a weak equivalence. The space ΩBG is called the
group completion of G in general. In our example we get a space BMapC(X,X)× with

πi(BMapC(X,X)×) ∼=





([X,X]Ho(C))× i = 1

0 1 < i ≤ n

[X,X]
Ho(C)
n i = n+ 1.

Under this isomorphism, the left action of the fundamental group π1(BMapC(X,X)×)
on πn+1(BMapC(X,X)×) group corresponds to the conjugation action of [X,X]× on
[X[n], X], which is given by g · λ = (g−1)∗(g)∗λ.
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Theorem 4.4.1. Let C be a stable topological model category, let U be a small n-split
subcategory of Ho(C), and let X be a cofibrant and fibrant object of C representing an
object in U . Then the restriction map

Hn+2(U , [−,−]Ho(C)
n )

Φ
−→ Hn+2(π1(BMapC(X,X)×), πn+1(BMapC(X,X)×))

of Proposition 2.1.14 sends the universal Toda bracket of U to the first k-invariant of the
space BMapC(X,X)×.

Before we give the proof of the theorem, we need to observe a fact about the relation
between the homotopy groups of a group-like topological monoid G and those of its
classifying space BG. Let ω : G→ ΩBG be the weak equivalence to the group completion
of G, and let ϕ : Sn → G be a map sending the basepoint s0 of Sn to a point g in G.
Then there are two ways to associate an element of πn+1(BG) to ϕ.

The first way works as follows: we choose an element h of G such that the product
gh is in the component of the unit of G, and we also choose a path v from gh to 1G

in G. Then we have a map rhϕ, given by ϕ followed by right multiplication with h.
It represents an element of πn(G, gh). Letting the path v act on [rhϕ] gives an element
[rhϕ]v ∈ πn(G, 1G). Note that this is well defined as G being a topological monoid implies
that the π1(G, 1G)-action on πn(G, 1G) is trivial. Applying ω∗ to [rhϕ]v gives an element
in πn(ΩBG, constpt), which we can adjoin to get an element of πn+1(BG, pt).

For the second way, we consider the space (Sn × I)/ ∼. Here I is the unit interval,
and ∼ is the equivalence relation which collapses Sn × {1} to one point and Sn × {0}
to another point, with the latter serving as the basepoint of (Sn × I)/ ∼. This space
is homeomorphic to Sn+1, and we can adjoin the map ωϕ : Sn → ΩBG to get a map
(Sn × I)/ ∼ → BG. For this we do not need the basepoint of Sn to be sent to the
constant path in ΩBG.

Lemma 4.4.2. These two ways to associate an element of πn+1(BG) to ϕ : Sn → G are
equivalent.

Proof. We set

P = {∗0} ∪Sn×{0} S
n × I ∪Sn×{1} {∗1} = (Sn × I)/∼,

Q = {∗0} ∪(Sn×{0})∪{0} (Sn × I) ∪ I ∪(Sn×{1})∪{1} {∗1}, and

R = {∗0} ∪({s0}×{0})∪{0} ({s0} × I) ∪ I ∪({s0}×{1})∪{1} {∗1}.

Then both P and R come with injections into Q. We can define a map Q → BG by
taking the adjoint of ωϕ on Sn × I and the path ω(h) on I. The restriction of this map
to P = (Sn× I)/∼ is the map of our second construction. The restriction of Q→ BG to
R is the concatenation of the paths ω(g) and ω(h). Since ω(g)ω(h) ' ω(gh) is homotopic
to the constant path, there is a homotopy R×I → R from this restriction to the constant
map.

The homotopy extension property yields the dotted arrow in

Q ∪R R× I //

²²

BG

Q× I.

88q
q

q
q
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We restrict it to a map P × I → BG. On P × {0}, it is still the map of our second
construction. On P × {1} ∼= (Sn × I)/∼ it is a map which is constant on {s0} × I and,
by construction, a possible representative for our first way to associate an element of
πn+1(BG) to ϕ.

Proof of Theorem 4.4.1. The universal Toda bracket of U is represented by a cocycle c
which is built from a cube system. To prove the theorem, we will examine the image of the
cocycle under the restriction map. For this, we fix a sequence of (n+ 2) automorphisms
(f1, . . . , fn+2) of X in U . Let f = f1 · · · fn+2 be their composition.

Without loss of generality, we can assume our cocycle c to be constructed from a cube
system which uses our chosen X to represent the corresponding object of U on the model
category level. By the definitions of the cocycle c in Construction 4.2.6 and the restriction
map Φ in Proposition 2.1.14, the evaluation of Φ on (f1, . . . , fn+2) is given by

(f−1)∗σb0(f)(̂b(f1, . . . , fn+2)) = σb0(f)b0(f−1)(̂b(f1, . . . , fn+2)b
0(f−1)) ∈ [X,X]Ho(C)

n .

We have to understand where the homotopy class of this map goes to under the chain
of isomorphisms

[X,X]Ho(C)
n

∼= [Sn, (MapC(X,X), 0)] ∼= [Sn, (MapC(X,X)×, idX)]

∼= [Sn+1, BMapC(X,X)×].

For this, we let b̃ : sknWn+1 → (MapC(X,X), b0(f)) be the adjoint of b̂n+1(f1, . . . , fn+2).
If we choose a path v from b0(f)b0(f−1) to idX in MapC(X,X) and recall that the
isomorphism σ̃ of Corollary 4.1.6 was constructed as an adjoint of σ, the naturality of σ
gives us a commutative diagram

[Sn, (MapC(X,X), b0(f)b0(f−1))]

eσ
b0(f)b0(f−1)

²²

(−)v

// [Sn, (MapC(X,X), idX)]

eσ−1
idX

ssgggg
gggg

gggg
gggg

gggg
g

id

wwooo
ooo

ooo
ooo

ooo
ooo

ooo
ooo

ooo
ooo

[Sn, (MapC(X,X), 0)]

²²

[Sn, (MapC(X,X), idX)].

Therefore, the image of Φ(c(f1, . . . , fn+2)) in πn(MapC(X,X)×, idx) can be represented
by [̃bb0(f−1)]v.

For the next step we use Lemma 4.4.2. It tells us that the associated element of
πn+1(BMapC(X,X)×) can be represented by the map

(sknWn+1 × I)/ ∼ → BMapC(X,X)×

which we get from adjoining ωb̃. Here ∼ is the equivalence relation which collapses
sknWn+1 × {1} to one point and sknWn+1 × {0} to another one.

The space (sknWn+1 × I)/ ∼ is homotopy equivalent to ∂∆n+2, the boundary of an
(n+ 2)-simplex, and we will now explain the resulting map

a = a(f1, . . . , fn+2) : ∂∆n+2 → BMapC(X,X)×.
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Figure 6: The square . . . . . . and the associated simplex.

If we denote the set of vertices of ∂∆n+2 by {1, . . . , n + 2}, then a maps every vertex
i of ∂∆n+2 to the basepoint. The 1-simplex of ∂∆n+2 containing the two vertices i < j
is mapped to BMapC(X,X)× using the path associated to b0(fi · · · fj−1) via the map
ω : MapC(X,X)× → ΩBMapC(X,X)×. Accordingly, every 0-dimensional subcube of
sknWn+1 specifies a path from the initial to the terminal vertex of ∂∆n+2. This path
runs through the vertex containing i < j if the map b0(fi · · · fj−1) occurs in the restriction
of the cube system to that particular vertex given by the 0-dimensional cube.

The 2-simplices of ∂∆n+2 containing i < j < k are mapped to BMapC(X,X)× by the
coherence homotopy between the paths associated to b0(fi · · · fj−1), b

0(fj · · · fk−1) and
b0(fi · · · fk−1) which we get from b1(fi · · · fj−1, fj · · · fk−1). This time, the 1-dimensional
subcubes of sknWn+1 correspond to the 2-simplices of ∂∆n+2.

The case n = 1 is displayed in Figure 6, whose right part also appears in [Igu82,
B.2.2]. The situation gets a little bit more involved if n > 1, since an (n + 1)-cube
has 2(n + 1) subcubes of dimension n, but the (n + 2)-simplex has only (n + 3) sub
(n + 1)-simplices. In this case, the 2(n + 1) − (n + 3) = n − 1 codimension 1 subcubes
of sknWn+1 which are indexed by t(n + 1, k, 0) with 2 ≤ k ≤ n do not contribute new
information to the map defined on the boundary of the (n+ 2)-simplex. The reason for
this is that the restriction of the pre (n + 1)-cube system to these subcubes is already
determined by the underlying (n− 1)-cube system. We recall that the restriction to the
subcube indexed by t(n + 1, k, 0) with 2 ≤ k ≤ n is given by the map bnk(f1, . . . , fn+2)
built from bk−1(f1, . . . , fk) and bn+1−k(fk+1, . . . , fn+2). Accordingly, it corresponds to
the restriction of the map a : ∂∆n+2 → BMapC(X,X)× to the two simplices with the
vertices {1, . . . , k} and {k+1, . . . , n+2}. The maps on all other n-dimensional subcubes
induce maps on one of the (n+ 1)-simplices of ∂∆n+2.

As described above, this is a representing cocycle for the k-invariant used in [EML49,
§19].

The last theorem tells us that the vanishing of the class γU implies the vanishing of the
first k-invariant of the space BMapC(X,X)× for every cofibrant and fibrant object X of
C representing an object of U . For our applications, we need a slightly stronger statement
in a special case.

We assume for the rest of this section that C is a stable topological model category in
which all objects are fibrant. Furthermore, we assume U to be a small n-split subcategory
of Ho(C) with a fixed object X1 such that all other objects of U are finite sums of copies
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of X1. Such a q-fold sum will be denoted by Xq.
We choose a cofibrant (and automatically fibrant) object of C representing X1 and

denote it also by X1. Then the object Xq in U is represented by the q-fold coproduct
X1 ∨ . . . ∨ X1 of copies of X1 in C. We denote the resulting object of C, which is
still cofibrant and fibrant, also by Xq. The difference between objects in the homotopy
category and the model category will be emphasized by writing ∨ for the coproduct in C
and ⊕ for the coproduct in Ho(C).

By adding the identity idX1 on the last summand, we get maps

MapC(X
q, Xq)→ MapC(X

q+1, Xq+1).

The restriction of these maps to the set of invertible path components is multiplicative
with respect to the monoid structure induced by composition. Therefore, we get for every
q an induced map

tq : BMapC(X
q, Xq)× → BMapC(X

q+1, Xq+1)×.

The reason for working in a setup with all objects fibrant is that otherwise there are
difficulties in the construction of these maps: we would have to replace the sum X q ∨X1

fibrantly in this case, and this would mean that we only get a homotopy class of maps
MapC(X

q, Xq)→ MapC(X
q+1, Xq+1), rather than an actual map.

We denote the homotopy colimit, i.e., the mapping telescope, of

BMapC(X
1, X1)× → BMapC(X

2, X2)× → . . .

by BMap∞
C (X,X)×. The vanishing of the first k-invariant of this space does not follow

from the vanishing of the first k-invariant of all spaces BMapC(X
q, Xq)× in general, since

this vanishing does not have to be compatible with the maps tq. The next lemma provides
a sufficient condition for this.

Lemma 4.4.3. Let C be a stable topological model category in which all objects are fibrant.
Let U be a small n-split subcategory of Ho(C) such that

(i) there is a fixed object X1 in U such that all objects are finite sums of copies of X1,

(ii) γU ∈ H
n+2(U , [−,−]

Ho(C)
n ) vanishes,

(iii) [X,X]
Ho(C)
i = 0 for all objects X of U and all i > n, and

(iv) Hn+1(U , [(−)⊕Xq, (−)⊕Xq]
Ho(C)
n ) = 0 for all q ≥ 1.

Then the space BMap∞
C (X,X)× has a vanishing first k-invariant, i.e., it has the Eilen-

berg-Mac Lane space |Bπ1(BMap∞
C (X,X)×)| as a retract up to homotopy.

Proof. Inductively, we construct a family of homotopy commutative diagrams

BMapC(X
q, Xq)×

tq
// BMapC(X

q+1, Xq+1)×

| skn+2Bπ1(BMapC(X
q, Xq)×)|

(tq)∗
//

sq

OO

| skn+2Bπ1(BMapC(X
q+1, Xq+1)×)|

sq+1

OO
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in which the maps sq are isomorphisms on π1. Since the groups πi(BMapC(X
q, Xq)×)

vanish for i ≥ n + 2, these maps extend to |Bπ1(BMapC(X
q, Xq)×)| and induce the

desired splitting on the mapping telescope.
As in the proof of the last theorem, we see that the map bj(f1, . . . , fj+1) of the n-

cube system for U induces a map from a (j + 1)-simplex of |Bπ1(BMapC(X
q, Xq)×)| to

BMapC(X
q, Xq)×. By the compatibility axioms of the cube system, the maps on the

simplices assemble to a map

| skn+1Bπ1(BMapC(X
q, Xq)×)| → BMapC(X

q, Xq)×

with the desired behavior on the fundamental group.
In general, these maps will not be compatible with the maps induced by

tq : BMapC(X
q, Xq)× → BMapC(X

q+1, Xq+1)×.

We ensure the compatibility by building it into our cube system. Its chosen objects are
requested to be the same as explained before the lemma. For a map f1 : Xk1 → Xk0 in
U , we require b1(f1 ⊕X

1) to be b1(f1) ∨ idX1 : Xk1 ∨X1 → Xk0 ∨X1 in C. Inductively,
we require

bj(f1 ⊕X
1, . . . , fj+1 ⊕X

1) : (skj Wj+1)+ ∧ (Xkj+1 ∨X1)→ Xk0 ∨X1

to be the coproduct of bj(f1, . . . , fj+1) and the projection to X1.
An n-cube system with this property always exists, as these conditions can be forced in

every step of its inductive construction. If (f1, . . . , fj+1) is a sequence of automorphisms
of Xq in U , the adjoints of the bj fit into the commutative diagram

Wj

ebj(f1⊕X1,...,fj+1⊕X1)

,,XXXX
XXXXX

XXXXX
XXXXX

XXXXX
XXXXX

XX

ebj(f1,...,fj+1)
²²

(MapC(X
q, Xq), b0(f1 · · · fj+1))

−∨X1
// MapC(X

q+1, Xq+1), b0(f1 · · · fj+1) ∨X
1).

This ensures that we get maps | skn+1Bπ1(BMapC(X
q, Xq)×)| → BMapC(X

q, Xq)×

compatible with tq.
We could directly extend these maps to | skn+2Bπ1(BMapC(X

q, Xq)×)| if we knew that
our n-cube system extends to an (n + 1)-cube system. By Lemma 4.2.9, the vanishing
of γU does almost imply this. Here ‘almost’ means that we have to change the last
stage of our n-cube system. So we have to ensure that this change does not destroy the
compatibility with tq.

In Lemma 4.2.9 we changed the n-cube system with a cochain e ∈ C
n+1

(U , [−,−]
Ho(C)
n )

to obtain an n-cube system for which the associated cocycle c ∈ C
n+2

(U , [−,−]
Ho(C)
n ) is

trivial. The manipulation of the cube system performed with the cocycle e will in general
change the maps

bn(f1, . . . , fn+1) ∨ prX1 and bn(f1 ⊕X
1, . . . , fn+1 ⊕X

1)

in a different way. We were done if we knew that these maps are homotopic relative
(skn−1Wn)+∧(Xk1∨X1), since this homotopy would induce a homotopy of the associated
maps from the (n+ 1)-simplices into the classifying space.
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To measure the difference between these two maps, we introduce two cochains e1, e
′
1 ∈

C
n+1

(U , [(−)⊕X1, (−)⊕X1]
Ho(C)
n ) defined by

e1(f1, . . . , fn+1) = e(f1 ⊕X
1, . . . , fn+1 ⊕X

1) and

e′1(f1, . . . , fn+1) = e(f1, . . . , fn+1) ∨ prX1 .

The evaluation of the difference e1 − e
′
1 on (f1, . . . , fn+1) is the obstruction to our two

maps being homotopic. Though it is non zero in general, e1 − e′1 is a cocycle in the

complex C
n+1

(U , [(−) ⊕ X1, (−) ⊕ X1]
Ho(C)
n ): if c ∈ C

n+2
(U , [−,−]

Ho(C)
n ) is the cocycle

associated to the cube system which we are about to change with e, we know

0 = δ(ei)(f1, . . . , fn+2) + c(f1 ⊕X
1, . . . , fn+1 ⊕X

1)

for i = 1, 2, as both e1 and e′1 belong to a way to change b̂n+1(f1 ⊕X
1, . . . , fn+2 ⊕X

1)
such that it represents the trivial homotopy class. Hence δ(e1 − e

′
1) = 0.

As we have assumed that Hn+1(U , [(−)⊕X1, (−)⊕X1]
Ho(C)
n ) vanishes, it follows that

e1 − e′1 is a coboundary. So there is an a1 ∈ C
n
(U , [(−) ⊕ X1, (−) ⊕ X1]

Ho(C)
n ) with

δa1 = e1 − e
′
1. We can now use a1 to change our modified cube system once more. For a

sequence (f1, . . . , fn+1), we change bn(f1 ⊕X
1, . . . , fn+1 ⊕X

n+1) by δ(a1)(f1, . . . , fn+1).
Then the resulting n-cube system still extends to an (n+ 1)-cube system as δ2(a1) = 0.

To analyze the resulting cube system, we say that a sequence of (n + 1) composable
maps (f1, . . . , fn+1) has filtration k if k is the smallest integer such that there exist
maps (f ′1, . . . , f

′
n+1) with fi = f ′i ⊕ Xk. The cube system we constructed in the last

step is compatible on all sequences of filtration 0, as we changed the cube system on all
sequences of filtration at least 1 in order to achieve this.

The cube system may not be compatible with adding X1 to a sequence of filtration 1,
since we possibly changed it on sequences of filtration ≥ 1 in a non compatible way. In a

next step, we define cochains e2, e
′
2 ∈ C

n+1
(U , [(−)⊕X2, (−)⊕X2]

Ho(C)
n ) such that e2−e

′
2

measures the difference of the maps that the cube system associates to (f1, . . . , fn+1) and

(f1 ⊕ X
2, . . . , fn+1 ⊕ X

2). As above, we get an a2 ∈ C
n
(U , [(−) ⊕ X2, (−) ⊕ X2]

Ho(C)
n )

which can be used to change the maps bn(f1⊕X
2, . . . , fn+1⊕X

2). This does not change
the value of the maps bn on the sequences of filtration ≤ 1, and it makes it compatible
on those of filtration 2.

Inductively, we use this procedure to get an n-cube system which extends to an (n+1)-
cube system and is compatible on all sequences of maps of filtration ≤ k. This is enough
to define the desired maps on all spaces | skn+2Bπ1(BMapC(X

q, Xq)×)| with q ≤ k in
the homotopy colimit system. As the step to filtration k+ 1 does not change the map on
sequences of lower filtration, we obtain an induced map on the telescope.

Though the last lemma is a little bit involved, its conditions to ensure the coherent
vanishing of the first k-invariants of the spaces BMapC(X

q, Xq)× are relatively easy to
check in examples, as we will see in Propositions 5.1.10 and 5.2.5.

59



5 Applications to ring spectra

For us, a ring spectrum will be a monoid in one of the categories of spectra with a sym-
metric monoidal smash product, as S-modules [EKMM97], symmetric spectra [HSS00],
or orthogonal spectra [MMSS01]. In order to apply the results of the last section, it will
be important that these spectra are built on topological spaces rather than on simplicial
sets. In the case of symmetric spectra, this means that we have to use the version defined
in [MMSS01] instead of the original version of [HSS00]. When we write π∗(R) for the
homotopy groups of R this is always understood in the derived sense, i.e., we replace R
fibrantly if necessary.

A ring spectrum R has a category of modules Mod-R. This category inherits a model
structure from the underlying category of spectra, and the resulting stable model category
Mod-R is topological again [MMSS01, Proposition 5.13]. If C denotes the underlying
category of spectra, the free R-module spectrum functor R ∧ − : C → Mod-R and the
forgetful functor U : Mod-R→ C form a Quillen adjunction. This yields an isomorphism

πn(R) = [S[n], R]Ho(C) ∼= [R,R]Ho(Mod-R)
n .

Hence the graded ring of homotopy groups of R is isomorphic to the graded endomorphism
ring of the free module of rank 1 in Ho(Mod-R). As the left adjoint R ∧ − : C → Mod-R
maps the sphere spectrum to R, the object R is compact in Ho(Mod-R).

With this identification and Definition 3.4.2, the (matric) Toda brackets in π∗(R) can
be expressed in terms of Toda brackets in the triangulated category Ho(Mod-R).

5.1 The universal Toda bracket of a ring spectrum

In order to obtain our main results, we will now apply Construction 4.2.6 to different
subcategories of Ho(Mod-R), the homotopy category of the modules over a ring spectrum
R. In all the different cases, we call the resulting cohomology class a universal Toda
bracket.

Theorem 5.1.1. Let R be a ring spectrum. Then there exists a well defined cohomol-
ogy class γR ∈ HML3,−1(π∗(R)) which, by evaluation, determines all triple matric Toda
brackets of π∗(R). For a π∗(R)-module M which admits a resolution by finitely gener-
ated free π∗(R)-modules, the product idM ∪γR ∈ Ext3,−1

π∗(R)(M,M) is the first realizability

obstruction κ3(M).

Proof. Let U be the full subcategory of Ho(Mod-R) given by finite sums of shifted copies
of the free module of rank 1. An application of Construction 4.2.6 to U provides a
cohomology class γU ∈ H3(U , [−,−]1)

Ho(Mod-R). Lemma 3.1.1 yields an equivalence

U → F (π∗(R)), which induces an isomorphism H3(U , [−,−]
Ho(C)
1 ) ∼= HML3,−1(π∗(R))

by Proposition 2.1.3. The image of γU in the latter group is defined to be the class
γR. By Construction 4.2.6 and Definition 3.4.2, it determines all Toda brackets. Finally,
Theorem 3.4.5 shows that γR determines the realizability obstructions.

The corresponding theorem for higher Toda brackets is

Theorem 5.1.2. Let R be a ring spectrum such that π∗(R) is n-sparse for some n ≥ 1.
Then there exists a well defined cohomology class γn+2

R ∈ HMLn+2,−n
n−sp (π∗(R)) which, by
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evaluation, determines the (n+ 2)-fold Toda bracket of every complex of (n+ 2) compos-
able maps between finitely generated free n-sparse π∗(R)-modules. For a π∗(R)-module
M which admits a resolution by such modules, the product idM ∪γ

n+2
R is the unique real-

izability obstruction κn+2(M) ∈ Extn+2,−n

π∗(R) (M,M).

Proof. The proof is almost the same as for the last theorem. The only change is that this
time we apply Construction 4.2.6 to the full subcategory of Ho(Mod-R) given by finite
sums of copies of the free module of rank 1 which are shifted by integral multiples of
n.

Remark 5.1.3. The restriction to modules with a resolution by finitely generated free
π∗(R)-modules in the last two theorems can be avoided. As discussed in Remarks 3.4.6
and 2.1.5, this can be achieved by enlarging the category category U which serves as an
input for Construction 4.2.6. We keep the restriction to finitely generated free modules
in the formulation, as some restriction of the cardinality is needed and this seems to be
the most natural choice.

Corollary 5.1.4. Let R be a ring spectrum such that π∗(R) ∼= (π0(R))[u±1] with u a cen-
tral unit in degree n. Then there is a well defined cohomology class γn+2

R ∈HMLn+2(π0(R))
in the ungraded Mac Lane cohomology of π0(R). It determines, by evaluation, all (n+2)-
fold Toda brackets of complexes of (n + 2) composable maps between finitely generated
free π∗(R)-modules which are concentrated in degrees divisible by n. For a π∗(R)-module
M which admits a resolution by such modules, the class γn+2

R determines the unique
realizability obstruction κn+2(M) not vanishing for degree reasons.

Proof. This follows from the isomorphism HMLn+2(π0(R)) ∼= HMLn+2,−n
n−sp (π∗(R)) of

Lemma 2.1.13 and the last theorem.

Let Rq denote a cofibrant and fibrant object of Mod-R representing the free R-module
spectrum of rank q. We write GLq R for the space MapMod-R(Rq, Rq)× considered in
Paragraph 4.4. This definition of the ‘general linear group’ of a ring spectrum R is
an important ingredient for construction of the algebraic K-theory of R in the sense of
Waldhausen [Wal78], if his definition is interpreted in the modern language of ring spectra
[EKMM97, VI.7]. We will come back to the algebraicK-theory of R in Proposition 5.1.10.

Theorem 5.1.5. Let R be a ring spectrum such that π∗(R) is concentrated in degrees
divisible by n for some n ≥ 1. For q ≥ 1, the restriction map

HMLn+2,−n
n−sp (π∗(R))→ HMLn+2(π0(R), πn(R))→ Hn+2(π1(BGLq R), πn+1(BGLq R))

sends the universal Toda bracket γn+2
R of R to the first k-invariant of the space BGLq R.

Proof. Since BGLq R = BMapMod-R(Rq, Rq)×, this follows from Theorem 4.4.1 and the
construction of the restriction map in Corollary 2.1.15.

If we were only interested in the k-invariants of the spaces BGLq, we could have con-
structed the image of γn+2

R under the restriction map to HMLn+2(π0(R), πn(R)) directly
by applying Construction 4.2.6 to a smaller subcategory of free R-modules in Ho(Mod-R),
as will become clear with the next theorem. The resulting class in the ungraded Mac Lane
cohomology group would have the disadvantage that it only determines Toda brackets
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of complexes of maps of degree 0 in Mod-π∗(R), that is, Toda brackets of (matrices) of
elements of π0(R). This would be not enough to determine the realizability obstructions.

Beside the periodic ring spectra appearing in Corollary 5.1.4, there is another class
of examples in which the universal Toda brackets are elements of ungraded Mac Lane
cohomology groups in a canonical way:

Theorem 5.1.6. Let R be a ring spectrum with π∗(R) concentrated in degrees 0 and n for
some n ≥ 1. Then there exists a universal Toda bracket γn+2

R ∈ HMLn+2(π0(R), πn(R))
which determines all (n + 2)-fold Toda brackets in π∗(R), the realizability obstruction
κn+2(M) of a π∗(R)-module M which admits a resolution by finitely generated free n-
sparse π∗(R)-modules, and the first k-invariant

kn+2(BGLq R) ∈ Hn+2(π1(BGLq R), πn+1(BGLq R))

of the space BGLq R.

Proof. This time we take the subcategory U of Ho(Mod-R) given by the finitely generated
free R-modules (without any shifts) as an input for Construction 4.2.6. By Lemma 3.1.1,
the category U is equivalent to the category F0(π∗(R)) of finite sums of (unshifted) copies
of π∗(R). Next we use that the functor

−⊗π0(R) π∗(R) : F (π0(R))→ F0(π∗(R))

is an equivalence of categories. This holds since we have an isomorphism

Homπ0(R)(π0(R), π0(R))→ Homπ∗(R)(π∗(R), π∗(R)),

as in both cases a map is determined by the image of 1 in π0(R).

After verifying the easy fact that the pullback of [−,−]
Ho(C)
n along this equivalence is

Homπ0(R)(−,−⊗π0(R)πn(R)), we end up with an equivalence of categories F (π0(R))→ U ,
which induces an isomorphism

Hn+2(U , [−,−]Ho(C)
n ) ∼= HMLn+2(π0(R), πn(R)).

Hence Construction 4.2.6 provides the desired class γn+2
R and the fact that it determines

all Toda brackets. The link to realizability obstructions and k-invariants is provided by
Theorem 3.4.5 and Theorem 4.4.1 again.

The next Proposition shows how the universal Toda bracket of a ring spectrum R is
related to the one of the first Postnikov section of its connective cover. In the proof we
will also encounter the universal Toda bracket of a connective ring spectrum. A general
theorem about universal Toda bracket for connective ring spectra can be stated and
proved in the same way as the last Theorem.

Proposition 5.1.7. Let R be a ring spectrum such that π∗(R) is n-sparse. Let R≥0 be its
connective cover and let Pn(R≥0) be the first nontrivial Postnikov section of R≥0. Then
the restriction map

HMLn+2,−n
n−sp (π∗(R))→ HMLn+2(π0(R), πn(R))

sends the universal Toda bracket of R to the one of Pn(R≥0).
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Proof. Let U be the subcategory of Ho(Mod-R) given by the finite sums of copies of R
which are shifted by integral multiples of n. The class γn+2

R was defined by applying
Construction 4.2.6 to U . If U0 is the subcategory of U of finite unshifted copies of R, the
map from the graded to the ungraded Mac Lane cohomology is induced by the restriction
along the inclusion U0 → U .

Let U≥0 be the subcategory of Ho(Mod-R≥0) which is given by the finite sums of
unshifted copies of R≥0. Then the left Quillen functor

− ∧R≥0
R : Mod-R≥0 → Mod-R

induces an equivalence between U≥0 and U0. The reason for this is that the induced map
on homotopy groups

Mod-π∗(R≥0)→ Mod-π∗(R), M 7→M ⊗π∗(R≥0) π∗(R)

restricts to an equivalence between between the subcategories of unshifted copies of the
free module of rank 1. Lemma 4.2.10 shows that this equivalence maps the universal
Toda bracket of U0 to the one of U≥0.

A similar argument applied to the left Quillen functor

− ∧R≥0
Pn(R≥0) : Mod-R≥0 → Mod-PnR≥0

shows that γU0 equals the universal Toda bracket of the subcategory of Ho(PnR≥0) given
by the finite sums of unshifted copies of PnR≥0. By Theorem 5.1.6, this is γn+2

PnR≥0
.

The last proposition explains also why the map sending γn+2
R to the first k-invariant of

BGLq R factors through HMLn+2(π0(R), πn(R)): as Pn+1BGLq R is homotopy equiva-
lent to BGLq PnR≥0, the first k-invariant of BGLq R is already determined by γn+2

PnR≥0
,

and the latter class is the image of γn+2
R in the intermediate step.

We can use the last proposition also to compare the universal Toda brackets of Corollary
5.1.4 and Theorem 5.1.6, which both arise in ungraded Mac Lane cohomology groups.

Corollary 5.1.8. Let R be a ring spectrum with π∗(R) ∼= (π0(R))[u±1] for a central unit
u in degree n. Then the universal Toda bracket γn+2

R ∈ HMLn+2(π0(R)) coincides with
the one of the first nontrivial Postnikov section of its connective cover.

Proof. In Corollary 5.1.4, we defined γn+2
R as an element in an ungraded Mac Lane coho-

mology group using the isomorphism HMLn+2,−n
n−sp (π∗(R)) → HMLn+2(π0(R)) of Lemma

2.1.13. The last proposition shows that this isomorphism maps it as well to γn+2
PnR≥0

in

the sense of Theorem 5.1.6.

Remark 5.1.9. A ring spectrum R with only two homotopy groups π0(R) and πn(R) has
a first k-invariant in the group Dern+1(π0R, πnR) ∼= THHn+2(π0R, πnR) [Laz01]. Since
THHn+2(π0R, πnR) ∼= HMLn+2(π0R, πnR) (see Remark 2.1.8), we expect the universal
Toda bracket of such a ring spectrum to coincide with this k-invariant. The difficult point
is that these two groups are only related by a chain of isomorphisms, and we do not know
how to identify the k-invariant or the universal Toda bracket in the intermediate steps of
the chain of isomorphisms.

A proof of such an equivalence would not only be interesting for the computation of
universal Toda brackets. It would also give a relation between the first k-invariants of a
ring spectrum and its Toda brackets, which does not seem to be known.

63



For a connective ring spectrum R, there is a map R → H(π0(R)) from R to the
Eilenberg-Mac Lane spectrum of π0(R) which is the identity on π0. In view of the last
remark, we expect the map R → H(π0(R)) to split in the homotopy category of ring
spectra if R has only two nontrivial homotopy groups and a vanishing universal Toda
bracket. Though we are not able prove this statement, the following proposition will
provide a weaker result.

We briefly recall the definition of the algebraicK-theory of a ring spectrum R, following
[EKMM97, VI]. To avoid technical difficulties, we assume our ring spectrum R to be an
S-algebra in the sense of [EKMM97]. Since all objects in the category of R-modules are
fibrant in this case, we obtain maps BGLq R → BGLq+1R as described before Lemma
4.4.3.

Let BGLR be the (homotopy) colimit of the spaces BGLq R with respect to these
maps. We apply Quillen’s plus construction to the space BGLR to obtain (BGLR)+.
For i ≥ 1, algebraic K-groups of R can be defined as Ki(R) = πi((BGLR)+). We will
not need K0(R), which has to be defined separately. If R is an Eilenberg-Mac Lane
spectrum of a discrete ring A, this definition recovers the algebraic K-groups K∗(A) of
A in the sense of Quillen [EKMM97, VI, Theorem 4.3].

We will later need that the algebraic K-theory construction increases connectivity by 1.
Recall that map R→ R′ of ring spectra is n-connected if the induced map πi(R)→ πi(R

′)
is an isomorphism for i < n and an epimorphism for i = n. If R → R′ is n-connected,
the induced map Ki(R) → Ki(R

′) is an isomorphism for i ≤ n and an epimorphism for
i = n+ 1. This fact is due to the appearance of the bar construction in the definition of
the algebraic K-theory and can be proved in a similar way as the corresponding statement
about simplicial rings in [Wal78, Proposition 1.1].

Proposition 5.1.10. Let R be a ring spectrum with homotopy groups concentrated in
degrees 0 and n. Suppose that the universal Toda bracket γn+2

R of R is trivial and that
HMLn+1(π0(R), πn(R)) vanishes. Then the map Ki(R)→ Ki(π0(R)) induced by the ring
spectra map R→ H(π0(R)) splits for all i.

Proof. It is enough to show that BGLR → BGL(H(π0(R)) splits up to homotopy, as
this property is preserved by the plus construction in this case (see for example [Ber82]
for details on the plus construction). This is equivalent to the splitting of the map
BGLq R → |Bπ1(BGLq R)|, since both maps are isomorphisms on the fundamental
group and map into an Eilenberg-Mac Lane space.

We prove this using Lemma 4.4.3. The first three conditions are obviously satisfied, so
it remains to show that Hn+1(U , [(−)⊕Rq, (−)⊕Rq]n) vanishes.

As we have seen in the proof of Theorem 5.1.6, U is equivalent to F (π0(R)). If we set
A = π0(R) and M = πn(R), this equivalence induces an isomorphism

Hn+1(F (A),HomA((−)⊕Aq, (−)⊕M q)) ∼= Hn+1(U , [(−)⊕Rq, (−)⊕Rq]Ho(Mod-R)
n ).

Lemma 2.1.9 provides an isomorphism between the first group and

HMLn+1(A,M) = HMLn+1(π0(R), πn(R)),

which vanishes by assumption.
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Remark 5.1.11. As mentioned before, Benson, Krause, and Schwede studied a charac-
teristic cohomology class γA ∈ HH3,−1

k (H∗(A)) for a differential graded algebra A over
a field k, which is a motivation for our universal Toda brackets. Though they are only
concerned with the case of a class which determines all triple Massey products, their
theory easily generalizes to higher classes when we assume H∗(A) to be n-sparse.

In this case, the Hochschild cochain mn+2, which is part of the A∞-structure of H∗(A)
[Kad80], happens to be a Hochschild cocycle, as one can easily deduce from the A∞-
relations. Similarly to the class γA ∈ HH3,−1

k (H∗(A)), the cohomology class [mn+2] ∈

HHn+2,−n
k (H∗(A)) is well defined and determines all (n + 2)-fold Massey products in

H∗(A).

One may ask whether it is possible to define the higher classes under weaker assump-
tions, that is, without H∗(A) or π∗(R) being n-sparse. To some extend, this is possible
if the lower universal classes vanish. We begin by sketching the first step in the case of
a dga A. Suppose that γA = [m3] ∈ HH3,−1

k (H∗(A)) vanishes. Then it is possible to
find an equivalent A∞-structure (m′

i) on H∗(A) such that the cocycle m3 is zero. This
uses the same kind of argument needed to show that every A∞-structure on H∗(A) is
trivial if HHn+2,−n

k (H∗(A)) = 0 for n ≥ 1 [Kad88]. As a consequence, m′
4 is a Hochschild

cocycle which can be used to define a cohomology class in HH4,−2
k (H∗(A)). This class

is the candidate for the higher Hochschild class. However, we point out that it is not
unique.

In the case of ring spectra, Lemma 4.2.9 is the tool for a similar kind of argument.
If for example γR ∈ HML3,−1(π∗(R)) vanishes, the lemma says that we can find a 1-
cube system which extends to a 2-cube system. This cube system can be used to define
γ4

R ∈ HML4,−2(π∗(R)) without requiring π∗(R) to be 2-sparse. As in the algebraic case,
there may me different choices for this class γ4

R. Moreover, the relation to the Toda
brackets becomes more involved since the indeterminacy is not as easy to control as in the
2-sparse case. This also affects the obstruction theory, as there is no unique obstruction
class. We reserve the study of the classes arising in this way for later work.

5.2 Computations in examples

Real K-theory

By [EKMM97, VIII, Theorem 4.2] or [Joa01], the real K-theory spectrum KO is a ring
spectrum. Its graded ring of homotopy groups is given by

π∗(KO) = Z[η, ω, β±1]/(2η, η3, ηω, ω2 − 4β) with |η| = 1, |ω| = 4, and |β| = 8.

There are several non vanishing Toda brackets in π∗(KO). One well known example is

Lemma 5.2.1. The Toda bracket 〈2, η, 2〉 in π∗(KO) is defined, has trivial indeterminacy,
and contains η2.

Proof. As 2η = 0 = η2 and π2(KO) is 2-torsion, the first two statements hold. The
ring spectra map S → KO is a πi-isomorphism for 0 ≤ i ≤ 2, so it suffices to calculate
the corresponding Toda bracket for the sphere spectrum. This can be either taken from
[Tod62] or computed directly, following an argument of [Tod71, Theorem 6.1]: Suppose
0 ∈ 〈2, η, 2〉. This would imply the existence of a 4-cell complex X with 2, η and 2 as
attaching maps. We consider H∗(X,Z/2). Since Sq1 detects 2 and Sq2 detects η, the
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existence of X implies that Sq1 Sq2 Sq1 acts nontrivial on the bottom dimensional class
in H∗(X,Z/2). But Sq1 Sq2 Sq1 = Sq2 Sq2 = 0.

It follows that the universal Toda bracket γKO of KO is nontrivial. There is little hope
to identify this element in HML3,−1(π∗(KO)), as this group seems to be rather difficult
to compute. Nevertheless, the following lemma shows that γKO detects a nontrivial
realizability obstruction.

Lemma 5.2.2. The first realizability obstruction κ3 of the π∗(KO)-module π∗(KO)⊗Z/2
does not vanish. Hence π∗(KO)⊗Z/2 cannot be the homotopy of a KO-module spectrum.

Proof. After extending the map ·2: KO → KO to a distinguished triangle

KO
·2
−→ KO → C(2)→ KO[1],

we obtain a diagram

π∗(KO)
·2 // π∗(KO)

))RR
RRR

RR
// π∗(C(2))

π∗(KO)⊗ Z/2
ι

55lllllll

with a monomorphism ι. In view of the description of κ3 in Remark 3.2.1, we have to show
that ι does not split. For this it is enough to verify π2(C(2)) ∼= Z/4, as this means that ι
does not split in degree 2 as a map of abelian groups Z/2 ∼= π2(KO)→ π2(C(2)) ∼= Z/4.

Since multiplication with 2 is trivial both on π1(KO) and π2(KO), long exact sequence
associated to the distinguished triangle gives rise to a short exact sequence

0→ π2(KO)→ π2(C(2))→ π1(KO)→ 0.

So we know that π2(C(2)) is either Z/4 or Z/2 ⊕ Z/2. Let ρ ∈ π2(C(2)) be a lift of
η ∈ π1(KO) along the epimorphism in the short exact sequence. Then we can consider ρ
as a map KO[1]→ C(2)[−1] which fits into the commutative solid arrow diagram

KO[−1]

''NN
NNN

NN

C(2)[−1]

%%K
KK

KK
KK

KO[1]

τ

OOÂ
Â
Â
Â
Â

·2
// KO[1]

ρ
OO

η
// KO

·2
// KO.

By the definition of the triple Toda bracket (see Remark 3.3.2), a map τ such that the left
square commutes is an element of 〈2, η, 2〉. Hence 2ρ = 0 would imply the contradiction
0 = τ ∈ 〈2, η, 2〉. Therefore, ρ cannot be 2-torsion, and π2(C(2)) ∼= Z/4.

Remark 5.2.3. The same argument as in the last lemma shows the corresponding state-
ment about the connective real K-theory spectrum. This contradicts [Wol98, Theorem
20]. The reason is an error in [Wol98, 14.1]. In this construction, the author assumes ku∗
to be flat as a ko∗-module, which does not hold. Accordingly, the generalization [Wol98,
Theorem 21] is false as well.
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The first Postnikov section of the sphere spectrum

Let S be the sphere spectrum. As π0(S) ∼= Z and π1(S) ∼= Z/2, the universal Toda
bracket of P1S is an element of HML3(Z,Z/2). This group is isomorphic to Z/2 [Lod98,
Proposition 13.4.23]. From computations of Igusa [Igu82], we deduce the following

Proposition 5.2.4. The universal Toda bracket γP1S of the first Postnikov system of the
sphere spectrum is the non zero element in HML3(Z,Z/2).

Proof. Let Hm
q be the topological monoid of self homotopy equivalences of q copies of the

m-sphere. Suspension induces a map Hm
q → H

m+1
q , which is (m − 1)-connected by the

Freudenthal suspension theorem.
Let BHm

q be the classifying space of Hm
q . The map colimmBHm

q → BGLq S is a
homotopy equivalence by [EKMM97, Proposition VI.8.3].

From a result of Igusa [Igu82] (compare also [BD89, (7.6)]), we know that the first
k-invariant of BHm

q is nontrivial for q ≥ 4 and m ≥ 3. The increasing connectivity of the
maps in the colimit system therefore implies that the first k-invariant of BGLq S does
not vanish for q ≥ 4. Hence the first k-invariant of BGLq P1S is non trivial as well. By
Theorem 5.1.5, γP1S has to be nontrivial since the map

HML3(Z,Z/2)→ H3(π1(BGLq P1(S)), π2(BGLq P1(S)))

sends it to this k-invariant.

This recovers in some sense the non vanishing of the universal Toda bracket of the
full homotopy category of finite one point unions of n-spheres proved by Baues and
Dreckmann [BD89, (3.7)]. Since the first Postnikov section of S is the same as that of ko,
the proposition also shows that the image of the universal Toda bracket of KO under the
homomorphism HML3,−1(π∗(KO)→ HML3(π0(KO), π1(KO)) is the non zero element.

Complex K-theory

By [EKMM97, VIII, Theorem 4.2], the complex K-theory spectrum KU can be repre-
sented by a ring spectrum. Since π∗(KU) ∼= Z[u±1] with u of degree 2, the universal Toda
bracket of KU is an element γ4

KU ∈ HML4(Z), which is Z/2 by the result of Franjou and
Pirashvili [FP98] stated in Theorem 2.1.10.

Proposition 5.2.5. The universal Toda bracket of KU is the non zero element of
HML4(Z) ∼= Z/2.

Proof. In view of Proposition 5.1.8 it is enough to show that γ4
P2ku, the universal Toda

bracket of the first Postnikov section of the connective complex K-theory spectrum, is
nontrivial. We assume γ4

P2ku = 0 and show that this leads to a contradiction.

As HML3(Z) = 0, Proposition 5.1.10 would imply that K3(P2ku) → K3(Z) is split.
This map is onto since P2ku → HZ is 2-connected. Since ku → P2ku is 4-connected,
K3(ku) ∼= K3(P2ku), and our assumption implies that K3(ku) → K3(Z) is split. As the
author learned from Ch. Ausoni and J. Rognes, there is a commutative diagram

K3(ku) // //

²²

THH3(ku) ∼= Z

²²²²

Z/48 ∼= K3(Z) // THH3(Z) ∼= Z/2
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in which the upper and the right arrow are epimorphisms [Aus06]. Here the horizontal
maps are the Bökstedt trace maps from algebraic K-theory to topological Hochschild
homology, and the vertical maps are induced by ku → H(π0(ku)) = H(Z). It follows
that the lower map is an epimorphism as well. If the left map was split, this would mean
that Z/48 // //Z/2 factors through Z. This is the contradiction implying γ4

P2ku 6= 0.

Remark 5.2.6. At a first glance, one may think that the last proposition shows that
the first k-invariant of BGLq KU is non trivial for q large enough. But this is not
a consequence, since we made a stronger assumption than the vanishing of these k-
invariants. To obtain information about the k-invariants, one would need to know that
the restriction map HML4(Z)→ H4(GLq Z,Matq Z) is nontrivial for q large enough.

However, as outlined in Remark 2.1.16, this map is trivial for q = 1, so the vanishing
of the first k-invariant of BGL1KU is a consequence of Theorem 5.1.5. Of course, there
are more direct proofs for this fact.

Morava K-theory

The n-th Morava K-theory spectrum at a prime p can be represented by a ring spectrum
K(n) [Laz01, §11]. Here ‘can be represented’ means that there are different choices for
this structure, i.e., there are different ring spectra which are not equivalent as ring spectra
but which represent the same multiplicative cohomology theory.

Since π∗(K(n)) ∼= Fp[v
±1
n ] with |vn| = 2(pn − 1), we obtain a universal Toda bracket

γ2pn

K(n) ∈ HML2pn

(Fp) ∼= Z/p. Hence for fixed p and varying n, the universal Toda brackets

of the K(n) are elements of HML∗(Fp) lying in the same degrees as the multiplicative
generators (see the result of Franjou, Lannes, and Schwartz quoted in Theorem 2.1.10).

The ring π∗(K(n)) is a graded field, that is, all π∗(K(n))-modules are free. Hence it
follows that all π∗(K(n))-modules are realizable. Therefore, we cannot detect γ2pn

K(n) by
finding a non vanishing realizability obstruction.

We do not know if the universal Toda bracket γ2pn

K(n) depends on the choice of a model

for K(n), and we do also not know whether it is nontrivial or not. However, in view of
Corollary 5.1.8 and Remark 5.1.9, we expect γ2pn

K(n) to be nontrivial, as the connective

Morava K-theory spectrum k(n) has a non vanishing first k-invariant.

68



References

[Aus06] C. Ausoni. On the algebraic K-theory of the complex K-theory spectrum.
Preprint, 2006.

[Bau97] H.-J. Baues. On the cohomology of categories, universal Toda brackets and
homotopy pairs. K-Theory, 11(3):259–285, 1997.

[BD89] H.-J. Baues and W. Dreckmann. The cohomology of homotopy categories
and the general linear group. K-Theory, 3(4):307–338, 1989.

[Ber82] A. J. Berrick. An approach to algebraic K-theory, volume 56 of Research
Notes in Mathematics. Pitman (Advanced Publishing Program), Boston,
Mass., 1982.

[BKS04] D. Benson, H. Krause, and S. Schwede. Realizability of modules over Tate
cohomology. Trans. Amer. Math. Soc., 356(9):3621–3668 (electronic), 2004.

[BM03] D. Blanc and M. Markl. Higher homotopy operations. Math. Z., 245(1):1–29,
2003.

[Bök85a] M. Bökstedt. Topological Hochschild homology. Preprint, Bielefeld, 1985.

[Bök85b] M. Bökstedt. The topological Hochschild homology of Z and Fp. Preprint,
Bielefeld, 1985.

[Bre78] L. Breen. Extensions du groupe additif. Inst. Hautes Études Sci. Publ. Math.,
48:39–125, 1978.

[Bre97] G. E. Bredon. Topology and geometry, volume 139 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1997.

[BV73] J. M. Boardman and R. M. Vogt. Homotopy invariant algebraic structures
on topological spaces. Springer-Verlag, Berlin, 1973. Lecture Notes in Math-
ematics, Vol. 347.

[BW85] H.-J. Baues and G. Wirsching. Cohomology of small categories. J. Pure
Appl. Algebra, 38(2-3):187–211, 1985.

[Coh68] J. M. Cohen. The decomposition of stable homotopy. Ann. of Math. (2),
87:305–320, 1968.

[EKMM97] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules,
and algebras in stable homotopy theory, volume 47 of Mathematical Surveys
and Monographs. American Mathematical Society, Providence, RI, 1997.

[EML49] S. Eilenberg and S. Mac Lane. Homology of spaces with operators. II. Trans.
Amer. Math. Soc., 65:49–99, 1949.

[FLS94] V. Franjou, J. Lannes, and L. Schwartz. Autour de la cohomologie de Mac
Lane des corps finis. Invent. Math., 115(3):513–538, 1994.

69



[FP98] V. Franjou and T. Pirashvili. On the Mac Lane cohomology for the ring of
integers. Topology, 37(1):109–114, 1998.

[Hir03] P. S. Hirschhorn. Model categories and their localizations, volume 99 of Math-
ematical Surveys and Monographs. American Mathematical Society, Provi-
dence, RI, 2003.

[Hov99] M. Hovey. Model categories, volume 63 of Mathematical Surveys and Mono-
graphs. American Mathematical Society, Providence, RI, 1999.

[HSS00] M. Hovey, B. Shipley, and J. Smith. Symmetric spectra. J. Amer. Math.
Soc., 13(1):149–208, 2000.

[Igu82] K. Igusa. On the algebraic K-theory of A∞-ring spaces. In Algebraic K-
theory, Part II (Oberwolfach, 1980), volume 967 of Lecture Notes in Math.,
pages 146–194. Springer, Berlin, 1982.

[Joa01] M. Joachim. A symmetric ring spectrum representing KO-theory. Topology,
40(2):299–308, 2001.

[JP91] M. Jibladze and T. Pirashvili. Cohomology of algebraic theories. J. Algebra,
137(2):253–296, 1991.

[Kad80] T. V. Kadeishvili. On the theory of homology of fiber spaces. Uspekhi Mat.
Nauk, 35(3(213)):183–188, 1980. Translated in Russ. Math. Surv., 35(3):231–
238, 1980.

[Kad88] T. V. Kadeishvili. The structure of the A(∞)-algebra, and the Hochschild
and Harrison cohomologies. Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk
Gruzin. SSR, 91:19–27, 1988.

[Kla01] S. Klaus. Towers and pyramids. I. Forum Math., 13(5):663–683, 2001.

[Laz01] A. Lazarev. Homotopy theory of A∞ ring spectra and applications to MU -
modules. K-Theory, 24(3):243–281, 2001.

[Lod98] J.-L. Loday. Cyclic homology, volume 301 of Grundlehren der mathemati-
schen Wissenschaften. Springer-Verlag, Berlin, second edition, 1998.

[ML57] S. Mac Lane. Homologie des anneaux et des modules. In Colloque de topologie
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