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Introduction

In this paper we will establish a close connection between the intersection multiplicity of three
arithmetic Hirzebruch-Zagier cycles and the Fourier coefficients of the derivative of a certain
Siegel-Eisenstein series at its center of symmetry. Our main result proves a conjecture of Kudla
and Rapoport.

Kudla has proposed a general program which relates intersection multiplicities of special
cycles on (arithmetic models of) Shimura varieties to Fourier coefficients (of derivatives) of
Eisenstein series, see his paper [Ku1], his ICM-talk [Ku2], his Bourbaki-talk [Ku3] and his
CDM-talk [Ku4]. Besides the paper [Ku1], which is based on the paper [GK] by Gross and
Keating, other examples of results in this direction may be found in the papers [KR1] - [KR4]
by Kudla and Rapoport, in the monograph [KRY] by Kudla, Rapoport and Yang, in [AR],
which is mainly an exposition of [GK], in the papers [H1], [H2] and [H3] by Howard and in
other papers. The present paper contributes to this program in a situation of degenerate inter-
sections.

We now describe our results in detail.
We fix a prime number p 6= 2. Arithmetic Hirzebruch-Zagier cycles are defined in the paper

[KR2] by Kudla and Rapoport as cycles over a certain moduli scheme M of abelian schemes
over Z(p).The generic fibre ofM is the canonical model over Q of a Hilbert-Blumenthal surface.

Let us make this more precise. Let V be a quadratic space over Q with signature (2, 2). Let
C(V ) be the corresponding Clifford algebra, and let C+(V ) be its even part. Then C+(V ) is
of the form B0 ⊗Q k, where B0 is an indefinite quaternion algebra over Q, and k, the center of
C+(V ), is a real quadratic extension of Q.

We suppose that there exists a self-dual Z(p)-lattice Λ ⊂ V (satisfying an additional technical
condition, see section 1), and we fix such a lattice. Then p is unramified in k. We assume that
p is inert in k, in particular, k is a field (see [KR2], section 11 for the case of a split prime).
Let OC be the Clifford algebra of Λ and let Ok be the ring of Z(p)-integers in k. Finally, we
consider the algebraic group G over Q with

G(R) = {g ∈ (C+(V )⊗Q R)×; ν(g) ∈ R×}

for any Q-algebra R. Here ν denotes the spinor norm. We denote by A the adeles of Q, by Af

the finite adeles of Q and by Ap
f the finite adeles of Q with trivial p-adic component. Further

(Schln /Z(p)) denotes the category of locally noetherian schemes over Spec Z(p).
If Kp ⊂ G(Ap

f ) is a sufficiently small compact open subgroup, there is a moduli schemeM
which represents the following functor on (Schln /Z(p)). It associates to a locally noetherian Z(p)-
scheme S the set of isomorphism classes of tuples (A, λ, ι, ηp), where A is an abelian scheme
over S up to prime to p isogeny, λ is a Z×(p)-class of p-principal polarizations on A, further
ι : OC ⊗Ok −→ End(A) ⊗ Z(p) is a homomorphism (satisfying a compatibility condition with
the Rosati involution induced by λ), and ηp is a Kp-level structure. See section 1 for the precise
conditions. ThenM is quasi-projective and smooth of relative dimension 2 over Spec Z(p).

To define arithmetic Hirzebruch-Zagier cycles, we recall that a special endomorphism of a
tuple (A, λ, ι) over S ∈ (Schln /Z(p)) (as above) is an element j ∈ End(A)⊗Z(p) such that j = j∗

for the Rosati involution and satisfying a compatibility condition with ι, see section 1. If S is
connected, then for any (A, λ, ι, ηp) over S as above the Z(p)-module of special endomorphisms
of (A, λ, ι) becomes a quadratic Z(p)-module via the quadratic form Q given by j2 = Q(j) · id.

Now let ω ⊂ V (Ap
f ) be compact, open and stable under the Kp-action, and let t ∈ Q×.

We consider the functor on (Schln /Z(p)) which associates to S ∈ (Schln /Z(p)) the set of iso-
morphism classes of 5-tuples (A, λ, ι, ηp, j), where (A, λ, ι, ηp) is as before, and where j is a
special endomorphism of (A, λ, ι) such that j2 = t and satisfying a compatibility condition
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with ηp and ω. Again, if Kp is sufficiently small, this functor is representable by a scheme
Z(t, ω) which maps by a finite and unramified morphism (forgetting j) to M. An arithmetic
Hirzebruch-Zagier cycle or special cycle is a scheme of the form Z(t, ω).

We now fix three special cycles Z1 = Z(t1, ω1), Z2 = Z(t2, ω2) and Z3 = Z(t3, ω3). Let

Z = Z1 ×M Z2 ×M Z3.

Locally, a special cycle is isomorphic to a (relative) divisor inM (or it is empty). This suggests
to intersect three special cycles. If S ∈ (Schln /Z(p)) is connected and ξ = (A, λ, ι, ηp, j1, j2, j3) ∈
Z(S), then following [KR2] we associate to ξ its fundamental matrix Tξ whose entry at (a, b) is
given by 1

2(Q(ja + jb)−Q(ja)−Q(jb)). It is a symmetric 3× 3 matrix with entries in Q. The
map ξ 7→ Tξ is locally constant, and hence we can write

Z =
∐
T

ZT ,

where ZT is the union of the connected components of Z which have fundamental matrix T .
We assume that Z is not empty, and we fix T such that ZT is not empty. Note that then all
entries of T lie in Z(p) and that the diagonal entries of T are t1, t2, t3.We define the intersection
multiplicity

χT (Z1, Z2, Z3) = χ(ZT ,OZ1 ⊗L OZ2 ⊗L OZ3).

Here, ⊗L is the derived tensor product of OM-modules and χ is the Euler-Poincaré character-
istic.

If T is singular, then the generic fibre of ZT might be nonempty. Hence we additionally
assume that T is nonsingular. Then ZT lies over the supersingular locus ofM and its support
is proper over Fp so that χT (Z1, Z2, Z3) is finite. One of the main results of [KR2] states that
ZT is a discrete set of points if and only if T (as matrix over Z(p)) is not divisible by p and
that it is otherwise of dimension 1. It is the aim of this paper to give an explicit expression
for χT (Z1, Z2, Z3) and to express it in terms of certain Eisenstein series. The case that ZT
is a discrete set of points was treated in [KR2], so we will focus on the case of a degenerate
intersection, i.e., the case that T is divisible by p.

To state the result, we first define the relevant Eisenstein series.
Let P ⊂ Sp6 be the Siegel parabolic subgroup. It is given as follows. P = MN, where

M =
{
m(a) =

(
a 0
0 ta−1

)
| a ∈ GL(3)

}
and

N =
{
n(b) =

(
1 b
0 1

)
| b ∈ Sym3

}
.

Let K̃ = K̃∞K̃f =
∏
v K̃v, where

K̃v =


Sp6(Zl), if v = l <∞;

{(
a b

−b a

)
| a+ ib ∈ U3(R))

}
, if v =∞.

Then we have the Iwasawa decomposition

Sp6(A) = P (A)K̃.
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To ω = ω1 × ω2 × ω3 we will associate in section 6 a section Φ of the induced representation
I3(s, χV ) of Sp6(A) (see [Ku1]). We consider the following Eisenstein series on Sp6(A) (as in
[KR2], see also [RW])

E(g, s,Φ) =
∑

γ∈P (Q)\Sp6(Q)

Φ(γg, s).

There is a Fourier decomposition (see [Ku1])

E(g, s,Φ) =
∑

U∈Sym3(Q)

EU (g, s,Φ).

This yields a Fourier decomposition of its derivative

E
′
(g, s,Φ) =

∑
U∈Sym3(Q)

E
′
U (g, s,Φ).

Recall our fixed nonsingular T such that ZT is not empty. The main theorem of this paper is
the following.

Theorem 0.1 Let h ∈ Sp6(R) and suppose that ω1 × ω2 × ω3 is locally centrally symmetric.
There is the following relation between the derivative in s = 0 of the T -th Fourier coefficient of
E(g, s,Φ) and the intersection multiplicity χT (Z1, Z2, Z3) :

E
′
T (h, 0,Φ) = −1

2
log(p) · κ · χT (Z1, Z2, Z3) ·W 2

T (h),

where κ is some volume constant given in section 6.

To explain this notation, we write h = m(a)n(b)k ∈M(R)N(R)K̃∞ = Sp6(R). Let τ = b+i·ata.
Then the Whittaker funktion W 2

T (h) (see [KR2], [Ku1]) is of the form

W 2
T (h) = c(a, k)e2πi·tr(Tτ),

where c(a, k) is a constant depending on a and k.
The theorem was proved in [KR2] in case that ZT is a discrete set of points or, equivalently,

that T is not divisible by p.

We now sketch the further content of this paper and some of the techniques used to prove
Theorem 0.1.

Since our fixed T is assumed to be nonsingular, ZT lies over the supersingular locus of the
special fibre of M ([KR2], Corollary 3.8). Let F = Fp be a fixed algebraic closure of Fp, and
let us fix ξ ∈ Z(F) such that T = Tξ. Let ξ = (A, λ, ι, ηp, j1, j2, j3) and let A(p∞) be the
corresponding p-divisible group. It is equipped with an action by OC ⊗ Ok ⊗ Zp ∼= M4(Zp2),
which allows us to write A(p∞) = A4. Then A is a principally polarized supersingular formal p-
divisible group over F of height 4 and dimension 2 which is equipped with a Zp2-action satisfying
some compatibility condition, see section 2.

Let W = W (F) be the ring of Witt vectors of F. For any W -scheme S we write S =
S ×SpecW Spec F. We consider the following functorMHB on the category Nilp of W -schemes
S such that p is locally nilpotent inOS . It associates to a scheme S ∈ Nilp the set of isomorphism
classes of pairs (X, %), consisting of a principally polarized p-divisible group X over S which is
equipped with an Zp2-action and a quasi-isogeny of height zero % : A×Spec F S → X ×S S, such
that certain compatibility conditions are satisfied, see section 2.

By Theorem 3.25 of [RZ], the functorMHB is representable by a formal scheme over Spf W
which we also denote byMHB. Let ̂MW /Mss

W be the completion ofMW =M×Spec Z(p)
SpecW
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along its supersingular locus Mss
W . Then ̂MW /Mss

W and MHB are closely connected via the
uniformization theorem (Theorem 6.23 of loc. cit.), see (2.1).

The underlying reduced subscheme ofMHB is a union of projective lines over F which are
in bijection with the vertices of the building B := B(PGL2(Qp2)). Two such projective lines
P[Λ] and P[Λ′ ] intersect in a point if and only if the vertices [Λ] and [Λ

′
] are neighbours in the

building.
As in [KR2], we define

V
′

= {j ∈ End(A)⊗Q; j = j∗ and ι(c⊗ a) ◦ j = j ◦ ι(c⊗ aσ)}.

It is a quadratic space over Q of dimension 4. As above, the quadratic form is given by j2 =
Q(j) · id . We may regard V ′ as a Q-subspace of End0(A) = End(A)⊗Q. We will also define a
quadratic Qp-space V

′
p of special endomorphisms of A which contains V ′ as a dense Q-subspace,

cf. section 2.
For any j ∈ V ′ (in fact also for j ∈ V ′p ) we define the formal special cycle Z(j) to be the

closed formal subscheme ofMHB consisting of all points (X, %) such that % ◦ j ◦ %−1 lifts to an
endomorphism of X.

Recall our fixed three special endomorphisms j1, j2, j3 associated to ξ. We define the inter-
section multiplicity (Z(j1), Z(j2), Z(j3)) of the associated formal special cycles again to be the
Euler-Poincaré characteristic of the derived tensor product of the structure sheaves of the Z(ji).
One shows (Proposition 2.2) that the global intersection multiplicity χT (Z1, Z2, Z3) is a multi-
ple of (Z(j1), Z(j2), Z(j3)) by an explicit integer. Thus in order to calculate χT (Z1, Z2, Z3), it
is enough to calculate (Z(j1), Z(j2), Z(j3)).

To this end we first investigate the structure of formal special cycles. Let us for the moment
fix j ∈ V ′ such that j2 6= 0 and a := νp(j2) ≥ 0, where νp is the p-adic valuation. First we
show that Z(j) is a relative divisor in MHB. We give a complete description of the special
fibre of Z(j). To state the result, we recall from [KR2] that j gives rise to a morphism β of the
building. Then νp(β2) = a− 1. For [Λ] ∈ B denote by d[Λ] the distance of [Λ] to Bβ , the fixed
point locus of β. Then Bβ is one single edge if a is even, and it is a subbuilding of the form
B(PGL2(Qp)) if a is odd.

Theorem 0.2 The special fibre Z(j)p of Z(j) is of the form

Z(j)p =
∑

[Λ]; d[Λ]≤a−1
2

(1 + p+ ... + p
a−1

2
−d[Λ])P[Λ] + pa/2 · s.

Here, s is a divisor in the special fibre of MHB which is 6= 0 if and only if a is even. In
this case s is reduced and irreducible, and it meets the supersingular locus only in the unique
supersingular point of Z(j/pa/2).

This theorem is proved using the theory of displays of Zink ([Z1], [Z2]).
We also associate to any formal special cycle Z(j) (such that j2 ∈ Zp \ {0}) a divisor D(j),

the "difference divisor", whose ideal is locally generated by the quotient of a generator of the
ideal of Z(j) and a generator of the ideal of Z(j/p). We show that D(j) is always a regular
formal scheme. The proof of this uses the fact that for j1 ∈ V

′
p such that νp(j2

1) = 1, the formal
special cycle Z(j1) is isomorphic to the formal model of the Drinfeld upper half plane (for Qp

and base changed with Spf W ), and the fact that for j ⊥ j1 the structure of Z(j) ∩ Z(j1) is
known from [T]. This "testing by the Drinfeld space" is one of the basic techniques in our paper.

The next step is to investigate the structure of intersections of formal special cycles. First
we show the statements of the following
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Theorem 0.3 1. Let j, j′ ∈ V ′ be linearly independent. Suppose further that for any x ∈
MHB(F) the equation in x (that is a generator of the ideal in OMHB ,x) of at least one of
the corresponding two formal special cycles is not divisible by p. Then OZ(j) ⊗L OZ(j′ ) is
represented in the derived category by OZ(j) ⊗OZ(j′ ).

2. The derived tensor product OZ(j1) ⊗L OZ(j2) ⊗L OZ(j3) depends only on the Z(p)-span j of
j1, j2, j3 in V ′.

3. If T (as matrix over Z(p)) is not divisible by p, then OZ(j1)⊗LOZ(j2)⊗LOZ(j3) is represented
in the derived category by OZ(j1) ⊗OZ(j2) ⊗OZ(j3).

4. Suppose that at least one of νp(j2
1), νp(j2

2), νp(j2
3) is odd. Then

(Z(j1), Z(j2), Z(j3)) =
∑
l,m,n

(D(j1/pl), D(j2/pm), D(j3/pn)),

where the sum is taken over all possible triples (l,m, n) (i.e. setting ai = νp(j2
i ), we have

l ≤ [a1/2], m ≤ [a2/2], n ≤ [a3/2], where [ ] denotes Gauss brackets).

Point 1 is the key observation for the proof of point 2. Since p 6= 2, point 2 allows us
to assume that j1, j2, j3 are pairwise perpendicular to each other, i.e., T is a diagonal matrix
T = diag(ε1p

a1 , ε2p
a2 , ε3p

a3), where εi ∈ Z×(p) for all i and a1 ≤ a2 ≤ a3. In this case the
assumption of point 4 is fulfilled, which allows us by induction to restrict ourselves to the
calculation of the intersection multiplicity (D(j1), D(j2), D(j3)). Point 3 shows that (if T is
not divisible by p,) the length (over Z(p)) of the local ring of a point in ZT resp. the length
of the artinian W -scheme Z(j1) ∩ Z(j2) ∩ Z(j3) is the same as the intersection multiplicity
(Z(j1), Z(j2), Z(j3)) in our sense (recall that in the situation of point 3, ZT is a discrete set of
points and the length of its local rings is calculated in [KR2]).

Given two perpendicular special endomorphisms y1, y2 ∈ V
′
, we investigate the multiplicities

of the several projective lines P[Λ] in the intersections D(j1)∩D(j2) as a divisor in (say) D(j1)
(Propositions 4.6, 4.7). Further we investigate (the existence of) horizontal components of
D(j1)∩D(j2), that is of components which do not have support in the special fibre (Propositions
4.10, 4.11). Using this we calculate the intersection multiplicity (D(j1), D(j2), D(j3)) (resp. in
some cases (D(j1), Z(j2), D(j3))). By induction, this leads to the following

Theorem 0.4 Suppose that T is GL3(Z(p))-equivalent to diag(ε1p
a1 , ε2p

a2 , ε3p
a3), where εi ∈

Z×(p) for all i and a1 ≤ a2 ≤ a3. Then there is the following explicit expression for the intersection
multiplicity (Z(j1), Z(j2), Z(j3)).

(Z(j1), Z(j2), Z(j3)) =−
a1∑
i=0

a1+a2−σ
2

−i∑
j=0

pi+j(−1)i(i+ 2j)

− η
a1∑
i=0

a1+a2−σ
2

−i∑
j=0

p
a1+a2−σ

2
−j(−1)a3+σ+i(a3 + σ + i+ 2j)

− ξ̃2p
a1+a2−σ

2
+1

a1∑
i=0

a3−a2+2σ−4∑
j=0

ξ̃j(−1)a2−σ+i+j(a2 − σ + 2 + i+ j).

See section 5 for the definition of the invariants η ∈ {±1}, σ ∈ {1, 2} and ξ̃ ∈ {±1, 0} of T . As
mentioned before, this theorem is proved by induction on a1 + a2 + a3. The induction start is
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given by the treatment of the cases a1 = 0 in [KR2] (together with point 3 of Theorem 0.3) and
a1 = 1 in [T].

We may express (Z(j1), Z(j2), Z(j3)) in terms of some representation densities. To state
the result, recall that for S ∈ Symm(Zp) and U ∈ Symn(Zp) with det(S) 6= 0 and det(U) 6= 0,
the representation density is defined as

αp(S,U) = lim
t→∞

p−tn(2m−n−1)/2 | {x ∈Mm,n(Z/ptZ); S[x]− U ∈ ptSymn(Zp)} | .

Theorem 0.5 Let S = diag(1,−1, 1,−∆), where ∆ ∈ Z×p is not a square. There is the following
relation between intersection multiplicities and representation densities:

(Z(j1), Z(j2), Z(j3)) = − p4

(p2 + 1)(p2 − 1)
α
′
p(S, T ).

(See section 6 for an explanation of the derivative α′p(S, T ).) This theorem was proved before
in case a1 = 0 in [KR2] and in case a1 = 1 in [T]. Using this theorem and the connection of
E
′
T (h, 0,Φ) and α′p(S, T ) (see the proof of Theorem 6.2), Theorem 0.1 follows.

Acknowledgements. I want to thank all people who helped me to write this paper. In
particular I thank M. Rapoport for the suggestion of the problem and for his interest and
advice. Thanks are also due to Prof. Kudla for helpful comments on Eisenstein series and to
U. Görtz for helpful discussions.
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1 Arithmetic Hirzebruch-Zagier cycles

In this section we review the notion of arithmetic Hirzebruch-Zagier cycles and introduce the
intersection problem we want to consider. We closely follow the paper [KR2] by Kudla and
Rapoport to which we refer for more details.

Let V be a vector space over Q of dimension 4 which is equipped with a quadratic form q
such that the signature of V with respect to q is (2, 2). Denote by C+(V ) the even part of the
Clifford algebra C(V ). Let β be the main involution of C(V ). Denote the center of C+(V ) by
k. It is a real quadratic extension of Q. We consider the algebraic group G over Q with

G(R) = {g ∈ (C+(V )⊗Q R)×; ν(g) = g · gβ ∈ R×}

for any Q-algebra R. Let K be a compact open subgroup of G(Af ). One associates to G and
K a Shimura variety Sh(G,D)K with C-valued points

Sh(G,D)K(C) = G(Q) \ [D ×G(Af )/K],

where D is the space of oriented negative 2-planes in V (R). If K is sufficiently small, then there
is a canonical model MK over Q of Sh(G,D)K which represents a moduli functor over Q whose
points consist of polarized abelian schemes with endomorphism structure and K-level structure.
See [KR2] for the precise statement and more details.

Now let p 6= 2 be a prime number. We are interested in a model of MK over Z(p).
Let v ∈ V such that q(v) > 0. Then C+(V ) can be written in the form B0 ⊗Q k, where B0

is the fixed algebra of Ad(v) in C+(V ). Further B0 is an indefinite quaternion algebra over Q.
We fix an element τ ∈ B×0 such that τβ = −τ and τ2 < 0. Then

x 7→ x∗ = τxβτ−1 (1.1)

is a positive involution of C(V ). We assume that there exists a self-dual Z(p)-lattice Λ ⊂ V (Q).
Then p is unramified in k. We further assume that Λ = τΛτ−1, and we fix such a lattice Λ.
Denote by OC the Clifford algebra of Λ, and denote by Ok the ring of Z(p)-integers in k. Then
OC is invariant under ∗. We assume that p is inert in k, in particular k is a field. We denote
by U the underlying Q-vector space of C(V ). It is equipped with a nondegenerate alternating
form given by 〈x, y〉 = tr0(yβτx), where tr0 denotes the reduced trace on C(V ). Further U
inherits an action i by C(V )⊗Q k via i(c⊗ a)x = cxa. Finally we fix a compact open subgroup
Kp ⊂ G(Ap

f ).
We consider the moduli problem over Z(p) which associates to a locally noetherian scheme

S over Z(p) the set of isomorphism classes of 4-tuples (A, λ, ι, ηp), where

(1) A is an abelian scheme over S, up to prime to p isogeny,

(2) λ : A−→Â is a Z×(p)-class of p-principal polarizations on A,

(3) ι : OC ⊗Ok −→ End(A)⊗ Z(p) is a homomorphism satisfying

ι(c⊗ a)∗ = ι(c∗ ⊗ a)

for the Rosati involution with respect to λ on End0(A) resp. the involution ∗ on C(V )
introduced above,

(4) ηp is a Kp-equivalence class of OC ⊗Ok-equivariant isomorphisms∏
l 6=p

Tl(A)

⊗Q ∼−→ U(Ap
f ).
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We require that the elements of ηp preserve the symplectic forms on
(∏

l 6=p Tl(A)
)
⊗ Q

(coming from λ), resp. on U(Ap
f ) up to a scalar in (Ap

f )×.

We further require that the action of ι(c⊗ a) on Lie(A) satisfies the determinant condition, see
[KR2] resp. [Ko]. This implies in particular that the relative dimension of A over S is 8.

If Kp is sufficiently small, this moduli problem is represented by a quasi-projective scheme
M over Spec Z(p) which is smooth of relative dimension 2 over Spec Z(p). If furtherK = Kp ·Kp,
where Kp ⊂ G(Qp) is the stabilizer of Λ⊗ Zp, then

MK
∼=M×Spec Z(p)

Spec Q.

From now on, we suppose that K has this form.

Definition 1.1 Let (A, λ, ι) (over a locally noetherian Z(p)-scheme S) as above. A special
endomorphism of (A, λ, ι) is an element j ∈ End(A) ⊗ Z(p) such that j = j∗ for the Rosati
involution and ι(c⊗ a) ◦ j = j ◦ ι(c⊗ aσ) for all c ∈ OC and a ∈ Ok. (Here < σ >= Gal(k/Q)).

Suppose S ∈ (Schln /Z(p)) (the category of locally noetherian schemes over Spec Z(p)) is con-
nected. Then for any (A, λ, ι, ηp) over S as above the Z(p)-module of special endomorphisms of
(A, λ, ι) becomes a quadratic Z(p)-module via the quadratic form Q given by j2 = Q(j) · id.

Now we come to the notion of special cycles or arithmetic Hirzebruch-Zagier cycles. Let
ω ⊂ V (Ap

f ) be compact, open and stable under the Kp-action, and let t ∈ Q×. We consider
the functor on (Schln /Z(p)) which associates to S ∈ (Schln /Z(p)) the set of isomorphism classes
of 5-tuples (A, λ, ι, ηp, j), where (A, λ, ι, ηp) is as before and j is a special endomorphism of
(A, λ, ι) such that

1. Q(j) = t

2. For η ∈ ηp we have ηjη−1 ∈ ω.

The second condition means that for any (equivalent: for one) η ∈ ηp the endomorphism ηjη−1

of U(Ap
f ) is given by right multiplication by an element of ω. Again, if Kp is small enough

(which we always assume), this functor is representable by a scheme Z(t, ω) which maps by a
finite and unramified morphism (forgetting j) toM.

Definition 1.2 A special cycle or arithmetic Hirzebruch-Zagier cycle over M is a scheme of
the form Z(t, ω) as described above.

We now fix three special cycles Z1 = Z(t1, ω1), Z2 = Z(t2, ω2) and Z3 = Z(t3, ω3). Let

Z = Z1 ×M Z2 ×M Z3.

If S ∈ (Schln /Z(p)) is connected and ξ = (A, λ, ι, ηp, j1, j2, j3) ∈ Z(S), then we associate to
ξ its fundamental matrix Tξ. By definition, its entry at (a, b) is given by 1

2(Q(ja + jb)−Q(ja)−
Q(jb)). Thus it is a symmetric 3× 3 matrix with entries in Q. Since the map ξ 7→ Tξ is locally
constant, we can write

Z =
∐
T

ZT ,

where ZT is the union of the connected components of Z which have fundamental matrix T .
We assume that Z is not empty, and we fix T such that ZT is not empty. Note that then all
entries of T lie in Z(p). We define the intersection multiplicity

χT (Z1, Z2, Z3) = χ(ZT ,OZ1 ⊗L OZ2 ⊗L OZ3)
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Here, ⊗L is the derived tensor product ofOM-modules and χ is the Euler-Poincaré characteristic
(defined analogous to [KR1], section 4: Recall that this means the following. Let π : M →
Spec Z(p). Then for a sheaf of modules F on M one defines χ(F) =

∑
i(−1)i lgZ(p)

(Riπ∗F).
This is finite if F is coherent and has support in the special fibre Mp of M and this support
is proper over Fp. Further, χ is additive in short exact sequences. For a (bounded) complex of
sheaves of modules F• onM one defines χ(F•) =

∑
i(−1)iχ(F i).) The first argument ZT of χ

indicates that we only consider the value of χ which comes from the part of OZ1⊗LOZ2⊗LOZ3

which has support in ZT .
If T is singular, then the generic fibre of ZT might be nonempty. Hence we additionally

assume that our fixed T is nonsingular. Then (as follows from [KR2], Propossition 3.8 and
sections 5 and 8), the support of ZT lies in the supersingular locus of M and is proper over
Fp. Using this one sees that then χT (Z1, Z2, Z3) is finite. It is the aim of this paper to give an
explicit expression for χT (Z1, Z2, Z3) in terms of certain Eisenstein series.

2 Formal special cycles and the local intersection problem

In this section the intersection problem is reformulated in terms of an intersection problem
of formal special cycles on a formal moduli space of p-divisible groups. We will solve our
intersection problem in the subsequent sections in this reformulation.

Since our fixed T is assumed to be nonsingular, ZT lies over the supersingular locus of the
special fibre ofM ([KR2], Corollary 3.8). Let F = Fp be a fixed algebraic closure of Fp, and let
us fix ξ ∈ Z(F) such that T = Tξ. We write ξ = (A, λ, ι, ηp, j1, j2, j3). As in [KR2], we define

V
′

= {j ∈ End0(A); j = j∗ and ι(c⊗ a) ◦ j = j ◦ ι(c⊗ aσ) ∀ c⊗ a ∈ OC ⊗Ok}.

Note that V ′ depends only on the isogeny class of (A, λ, ι). Further, as shown in [KR2], its
dimension as Q-vector space is 4, and it is equipped with the quadratic form Q given by
j2 = Q(j) · id.

Let A(p∞) be the p-divisible group corresponding to A. It is equipped with an action by
OC ⊗ Ok ⊗ Zp ∼= M4(Zp2) which allows us to write A(p∞) = A4. Then A is a supersingular
formal p-divisible group over F of height 4 and dimension 2 which is equipped with an action

ι : Zp2 → End(A),

such that A is special with respect to ι (see below for a definition of the term special). Further
A is equipped with a principal polarization

λ : A ∼−→ Â,

such that for the Rosati involution ι(a)∗ = ι(a) for all a ∈ Zp2 .
Let W = W (F) be the ring of Witt vectors of F and denote its Frobenius also by σ. For any

W -scheme S we write S = S ×SpecW Spec F. We consider the following functor MHB on the
category Nilp of W -schemes S such that p is locally nilpotent in OS . It associates to a scheme
S ∈ Nilp the set of isomorphism classes of the following data.

(1) A p-divisible group X over S, with an action

ι : Zp2 → End(X),

such that X is special with respect to this Zp2-action.
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(2) A quasi-isogeny of height zero

% : A×Spec F S → X ×S S,

which commutes with the action of Zp2 such that the following condition holds. Let λS :
AS → ÂS be the map induced by λ. Then we require the existence of an isomorphism
λ̃ : X → X̂ such that for the induced map λ̃S : XS → X̂S we have the relation λS = %̂◦λ̃S◦%.

Here, a p-divisible group X over S with Zp2-action is said to be special if the induced Zp2⊗OS-
module LieX is, locally on S, free of rank 1.

Let M• be the same functor on Nilp as MHB but without the condition on the height of
the quasi-isogeny, and such that the relation λS = %̂ ◦ λ̃S ◦ % is required to hold only up to a
constant in Q×p . Then by Theorem 3.25 of [RZ], the functor M• is representable by a formal
scheme which we also denote byM•. From this it follows thatMHB also also representable by
a formal scheme which we also denote byMHB, andM• =MHB×Z. The formal schemesM•
andMHB are formally locally of finite type over Spf W and are formally smooth over Spf W .

Denote by ̂MW /Mss
W the completion ofMW =M×Spec Z(p)

SpecW along its supersingular
locusMss

W . Then by Theorem 6.23 of loc. cit., we have (using that our Kp is sufficiently small)
an isomorphism of formal schemes over Spf W

̂MW /Mss
W
∼= G

′
(Q) \ (MHB × Z×G(Ap

f )/Kp), (2.1)

where G′ is the inner form of G described in [KR2], section 4, i.e., G′ is defined as G for
B = C+(V ) = B0 ⊗Q k, but for the quaternion algebra B′ over k which is ramified at the two
archimedean primes and is isomorphic to B at all finite primes. Then G′(Q) can be identified
with the group of quasi-isogenies of the abelian variety A, which respect ι and (up to scalar)
λ. Further g ∈ G′(Q) acts onM• (and therefore onMHB ×Z) by sending (X, %) to (X, %g−1).
See [RZ] for more details.
Denote the isocrystal of A by N . It is equipped with σ- resp. σ−1-linear operators F and V
such that FV = V F = p. From the polarization λ we get a perfect symplectic form 〈, 〉 on the
Dieudonné module of A and hence also on N . As in [KR2], section 5, we define in this context
the space of special endomorphisms of A

V
′
p = {j ∈ End(N,F ); jι(a) = ι(aσ)j ∀a ∈ Zp2 and j∗ = j},

where ∗ denotes the adjoint with respect to the alternating form 〈, 〉.We may and will regard V ′

as the Q-subspace of V ′p consisting of the special endomorphisms which come from the abelian
variety A. Then V ′ is dense in V ′p . As shown in loc. cit., V ′p is a 4-dimensional vector space
over Qp with a quadratic form, which we also denote by Q and which is again given by

j2 = Q(j) · id .

Instead of Q(j) we will also write j2. Note that V ′ is positive definite ([KR2], Proposition 3.5),
that V ′(Qp) ∼= V

′
p and that V ′(Ap

f ) ∼= V (Ap
f ) via some (fixed) η ∈ ηp (where ηp belongs to ξ).

We will always identify V ′(Ap
f ) and V (Ap

f ). In particular we may regard V ′ as being contained
in V (Ap

f ).
Given special endomorphisms y1, ..., yn ∈ V

′
p , we again define their fundamental matrix to

be the symmetric n×n-matrix whose entry at (a, b) is given by 1
2(Q(ya + yb)−Q(ya)−Q(yb)).

Definition 2.1 Let j ∈ V ′p and regard it as an element of End0(A). Then the formal special
cycle Z(j) associated to j is the closed formal subscheme ofMHB consisting of all points (X, %)
such that % ◦ j ◦ %−1 lifts to an endomorphism of X.
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The fact that Z(j) is a closed formal subscheme ofMHB follows from [RZ], Proposition 2.9.
Our next aim is a description of the underlying reduced schemeMHBred ofMHB. Let X

be the set ofW -lattices L in the isocrystal N such that for the dual lattice L⊥ we have L⊥ = cL
(with respect to 〈, 〉) for some constant c, and which are stable under F , under V and under
the Zp2-action. The latter gives a grading L = L0⊕L1 ⊂ N = N0⊕N1 (see also [KR2], section
4). We call the index i ∈ Z/2 critical for L if F 2Li = pLi. By [KR2], Lemma 4.2, for each
such lattice at least one index is critical. We call L superspecial if both indices are critical. We
may assume that ξ is superspecial, which is means that the corresponding Dieudonné module
M ⊂ N of A is superspecial. (It follows for example from [KR2], Lemma 8.12 or from the
beginning of the next section that there is always a superspecial point in ZT .)

The F-valued points ofMHB correspond to those lattices in X which have the same volume
as M (by the condition that the quasi-isogenies have height 0). We denote the set of such
lattices by XHB.

Let now η0
i = Mp−1F 2

i for i ∈ Z/2. If L ∈ XHB has critical index 0, then let ηL0 = Lp
−1F 2

0 .
It has the same volume as η0

0. We assign to L the point on the projective line P(L0/pL0) =
P(ηL0 ⊗Zp2 F) corresponding to the line FL1/pL0 ⊂ L0/pL0 = ηL0 ⊗Zp2 F.

If L ∈ XHB has critical index 1, then let ηL1 = Lp
−1F 2

1 . It has the same volume as η0
1.

We assign to L the point on P(L1/pL1) = P(ηL1 ⊗Zp2 F) corresponding to the line FL0/pL1 ⊂
L1/pL1 = ηL1 ⊗Zp2 F. If e1, e2 is a basis of η0

0, then FηL1 has the same volume as the Zp2-lattice
in η0

0 ⊗Zp Qp spanned by e1, pe2.
In both cases, any point on P(Li/pLi) is recovered by some lattice in XHB, see also [KR2],

Lemma 4.3. If we identify η0
0 ⊗Zp Qp with Q2

p2 , we see that the projective lines occuring in the
above construction for the lattices in XHB are in bijection with the vertices of the building
B := B(PGL2(Qp2)).

For each superspecial lattice we get two points, each lying on a different projective line.
If we glue for any superspecial lattice the corresponding two projective lines along these (Fp2-
rational) points, then we see that (at least on the level of F-valued points)MHBred is a union
of projective lines dual to B: For each vertex [Λ] ∈ B we have a projective line P[Λ] (of the
form P(ηL1 ⊗Zp2 F) or P(ηL0 ⊗Zp2 F) for a suitable L as above) over F and with a Fp2-rational
structure. Further for each edge, the projective lines corresponding to the vertices of the edge
intersect in a Fp2-rational point. All Fp2-rational points are such intersection points and these
correspond precisely to the superspecial points (comp. [KR2], Lemma 4.3).

To see that this description is also true on the level of schemes, we show that the F-valued
points on each projective line are in fact the F-valued points of a closed subscheme ofMHBred

which equals the projective line as a scheme. To this end one chooses three pairwise per-
pendicular special endomorphisms y1, y2, y3 ∈ V

′
p such that y2

1 = p and such that the scheme
(Z(y1) ∩ Z(y2) ∩ Z(y3))red is (at least on the level of points) precisely the projective line. (It
is easy to see that such y1, y2, y3 exist using the description of V ′ given in the beginning of the
next section and Lemma 5.2 or using [KR2], Lemma 8.12.) By the identification of Z(y1) and
the Drinfeld upper half plane (whose underlying reduced subscheme is known to be a union of
projective lines) given in [T], section 4, it follows that this equality also holds on the level of
schemes. (See also [KR2], (4.10).)

We now come back to our intersection problem. Let S1, S2, S3 be closed subschemes of
MHB. Then we define the (possibly infinite) intersection multiplicity

(S1, S2, S3) := χ(MHB,OS1 ⊗L OS2 ⊗L OS3),

Here, ⊗L is the derived tensor product of OMHB -modules and χ is the Euler-Poincaré char-
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acteristic. Again, this is finite if S1 ∩ S2 ∩ S3 has support in the supersingular locus and this
support is proper over F.

Recall our fixed ξ ∈ ZT (F). Writing again ξ = (A, λ, ι, η, j1, j2, j3), the special endomor-
phisms j1, j2, j3 induce special endomorphisms of A which we also call j1, j2, j3.

Our next aim is to express the intersection multiplicity χT (Z1, Z2, Z3) in terms of the inter-
section multiplicity (Z(j1), Z(j2), Z(j3)), the calculation of which we will call the local intersec-
tion problem. Denote by Z ′ the center of G′ and denote by Z ′(Q)0 the set of elements z ∈ Z ′(Q)
such that νp(det(z)) = 0 (where νp denotes the p-adic valuation). Let x = (j1, j2, j3) ∈ V ′3.
Further let

I(x, ω1 × ω2 × ω3) = {gKp ∈ G(Ap
f )/Kp ; g−1xg ∈ ω1 × ω2 × ω3}.

Proposition 2.2 The intersection multiplicity χT (Z1, Z2, Z3) can be expressed in the following
way,

χT (Z1, Z2, Z3) = 2 · (Z(j1), Z(j2), Z(j3))· | Z ′(Q)0 \ I(x, ω1 × ω2 × ω3) | .

The proof is analogous to the proof of the corresponding Theorem 8.5 in [KR1]. As in loc.
cit., it is based on the following incindence relations.

Let Z ′ = Z(t
′
, ω
′
) be a special cycle. For a special endomorphism j ∈ V ′p define the closed

subscheme Z•(j) of M• by the obvious analogon to Z(j). Further denote by V
′

t′
the set of

elements j in V ′ with j2 = t
′ . Denote by Ẑ ′W the module over ̂MW /Mss

W obtained from Z
′ by

completing Z ′ ×Spec Z(p)
SpecW along Mss

W . Then the uniformization morphism (2.1) induces
an inclusion

Ẑ
′
W ↪→ G

′
(Q) \ (V

′

t′
×M• ×G(Ap

f )/Kp),

and a point (j, (X, %), gKp) lies in the image if and only if g−1jg ∈ ω′ and (X, %) ∈ Z•(j). For
several special cycles Z ′i we get an analogous description for the fibre product of the Ẑ ′iW . See
the discussion in [KR1], section 8 for more details.

The proposition shows that it is enough to handle the local intersection problem and this
is what we will do in the subsequent sections.

3 On the structure of formal special cycles

Our first object of study in this section is the underlying reduced subscheme of a formal special
cycle. Here the results follow from [KR2], sections 5 and 8. We denote by νp the p-adic
valuation.

Let j ∈ V
′
p such that j2 6= 0 and νp(j2) ≥ 0. Let Y = Np−1F 2

0 . Then β := F−1j | Y
is an σ-linear endomorphism and induces an endomorphism of B. If νp(j2) = 0, then the
underlying reduced subscheme of Z(j) is a single superspecial point. It is the superspecial point
corresponding the unique edge Bβ in B which is fixed by β. If νp(j2) ≥ 1, then the underlying
reduced subscheme of Z(j) is a connected union of projective lines. The corresponding locus in
the building is given by the set

T (β) = {x ∈ B ; dist(x,Bβ) ≤ 1
2
νp(detβ)}.

Here, Bβ is the fixed point set of β in B, and dist denotes the distance in the building. The
fixed point set Bβ is the midpoint of an edge if νp(j2) is even and it is a subbuilding of the
form B(PGL2(Qp)) if νp(j2) is odd. See [KR2], sections 5 and 8 for more details.
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Definition 3.1 For a special endomorphism j ∈ V ′p denote by Core(j) the set of superspecial
points in MHB such that the corresponding midpoints of edges in B belong to Bβ , where
β := F−1j | Y .

In the sequel, we say that a special endomorphism j ∈ V ′p is even, resp. odd, if νp(j2) is even
resp. odd. Thus, if j is even, then Core(j) consists of a single superspecial point. If j is odd,
then Core(j) is an infinite set.

Proposition 3.2 Let j ∈ V ′p such that j2 6= 0 and νp(j2) ≥ 0. Then Z(j) is a relative divisor
over Spf W .

Proof. The fact that Z(j) is a divisor is proved in [T], Proposition 4.5. The fact that the local
equation of Z(j) is nowhere divisible by p follows from [KR3] Lemma 3.6 and the fact that not
the whole supersingular locus ofMHB (which is connected) belongs to Z(j) (see above). �

Let L ∈ XHB be a superspecial lattice. The spaceNL ⊂ V
′
p of special endomorphisms, which

map L into itself is a quadratic Zp-modul. (It is the set of all special endomorphisms j ∈ V ′p
such that the p-divisible group corresponding to L belongs to Z(j).) We write L = L0 ⊕ L1,
and then (by the compatibility condition with ι) for y ∈ NL we can write

y =
(

y1

y0

)
; yi ∈ Hom(Li, Li+1)

A standard basis of L is a basis e1, e2, e3, e4 of L such that e1, e2 is a basis of L0 and such that
e3 = Fe1 and e4 = p−1Fe2 and such that for the symplectic form coming from the principal
polarization we have 〈e1, e2〉 = 1. After choosing a standard basis of L (see [KR2], Lemma 5.1
for the existence of a standard basis) we have by [KR2], Corollary 5.2

NL
∼= {x =

(
a b
c paσ

)
; a, b, c ∈ Zp2 , bσ = −b, cσ = −c},

and the quadratic form is given by

Q(x) = paaσ − bc.

In this isomorphism, x is the matrix of y0 in the standard basis. We write Zp2 = Zp[δ]/(δ2−∆),
where ∆ ∈ Z×p is not a square in Zp.

A Zp-basis of NL is given by

s1 =
(

−δ
δ−1

)
, s2 =

(
δ

δ−1

)
, s3 =

(
1

p

)
, s4 =

(
δ
−δp

)
.

The matrix of the bilinear form induced by Q with respect to this basis is:

S
′

= diag(1,−1, p,−∆p).

Lemma 3.3 Let y1, y2 ∈ V
′
p and let x ∈ (Z(y1) ∩ Z(y2))(F). Then there exists a special

endomorphism y ∈ V ′p such that y ⊥ y1, y2 and such that νp(y2) = 1 and x ∈ Z(y)(F).

Proof. We may assume that y1 and y2 are linearly independent.
Suppose that x ∈ P[Λ]. Let z ∈ P[Λ] be superspecial such that z /∈ Core(y1) ∩ Core(y2).

It is enough to find y as in the formulation of the lemma where x is replaced by z and such
that P[Λ] ⊂ Z(y). We consider the basis s1, ..., s4 described above for the quadratic Zp-module
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of special endomorphisms in V
′
p which are endomorphisms of the p-divisible group belonging

to z. Write y1 =
∑
aisi and y2 =

∑
bisi, where ai, bi ∈ Qp. If a4 = b4 = 0, then we can

choose y = s4. Hence we may assume that a4 6= 0 and that b4/a4 ∈ Zp. By replacing y2 by
y2− (b4/a4)y1, we may assume that b4 = 0 and a4 6= 0. We consider the special endomorphisms

r1 = b3a4 · s2 +
1
p
a4b2 · s3 +

−1
∆p

(a2b3 − a3b2) · s4

and
r2 = −b3a4 · s1 +

1
p
a4b1 · s3 +

−1
∆p

(a1b3 − a3b1) · s4.

One checks that r1 and r2 are both perpendicular to y1 and to y2.
Suppose that the coefficients of s3 and s4 in r1 and in r2 do simultaneously vanish. Since

a4 6= 0 it follows that b1 = b2 = 0. Hence b3 6= 0 and hence a1 = a2 = 0. Hence (p+ 1)s1 + s2

and (p− 1)s1 + s2 both fulfill the requirements of y for z, and P[Λ] belongs to the formal special
cycle of one of them.

Suppose now that we have chosen i such that the coefficients of s3 and s4 in ri do not
both vanish. We choose the integer m minimal such that y = pmri lies in the Zp-span of
s1, ..., s4. Then pmb3a4 ≡ 0 mod p since otherwise y2 ∈ Z×p , hence {z} = Core(y), hence
z ∈ Core(y1) ∩ Core(y2) which contradicts our assumption on z. Hence the coefficient of s3

or of s4 in y is a unit and hence ν(y2) = 1 and y fulfills all requirements above. (Note that
both projective lines passing through z belong to Z(y) (see also Lemma 5.2), in particular
P[Λ] ⊂ Z(y).) �

For j ∈ V
′
p as in Proposition 3.2 we define D(j) = Z(j) − Z(j/p). This is meant in the

following sense. If Z(j) is (locally) given by the equation f = 0 and Z(j/p) is (also locally)
given by g = 0, then D(j) is the relative effective divisor locally given by f · g−1 = 0. Further,
if νp(j2) = 0 or = 1, then D(j) = Z(j).

Lemma 3.4 Let y, y1 ∈ V
′
p such that y1 ⊥ y and y2 ∈ Zp \ {0} and νp(y2

1) = 1. Let y2 = εpa

and y2
1 = ε1p, where ε, ε1 ∈ Z×p .

1. If a ≥ 2, then D(y)∩Z(y1) is a reduced union of projective lines. The same holds if a = 1
and the image of −εε1 in Fp is not a square.

2. If a = 0, then Z(y) ∩ Z(y1) is a reduced, irreducible horizontal divisor in Z(y1) (i.e.
has no component with support in the special fibre of Z(y1)) which intersects the special
fibre of Z(y1) only in the point of Core(y). Further, the intersection multiplicity of this
horizontal component with each of the two projective lines in the special fibre of Z(y1)
passing through the point of Core(y) equals 1.

3. If a = 0 and y0 ∈ V
′
p satisfies y0 ⊥ y, y1 and νp(y2

0) = 1, then (Z(y0), Z(y1), Z(y)) = 2.

4. If a = 0 and y0 ∈ V
′
p satisfies y0 ⊥ y, y1 and νp(y2

0) = 0, then (Z(y0), Z(y1), Z(y)) = 1.

Proof. All claims follow from [T]. More precisely, in the situation of 1., by the equations for
antispecial cycles in given in [T], section 2, and the connection of antispecial cycles and formal
special cycles in our sense discussed in [T], section 4, D(y)∩Z(y1) is indeed the reduced union
of the projective lines P[Λ] which belong to the special fibres of Z(y) and Z(y1).

If a = 0, then the assertion of 2. follows by comparing the intersection Z(y)∩Z(y1) with the
intersection Z(py)∩Z(y1). More precisely, again by combining as above the results of sections
2 and 4 of [T], Z(py) ∩ Z(y1) consists of two (reduced) projective lines in the special fibre
and a horizontal component which has all the properties which are claimed for the horizontal
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component of Z(y) ∩ Z(y1) in the statement of the lemma. Since no projective lines in the
special fibre belong to Z(y), it follows that the horizontal components of Z(y) ∩ Z(y1) and of
Z(py) ∩ Z(y1) are equal.

Using this, in case νp(y2
0) = 1, the claim that

(Z(y0), Z(y1), Z(y)) = ((Z(y0) ∩ Z(y1)), (Z(y) ∩ Z(y1))) = 2

(intersection multiplicity in Z(y1), see [T], Proposition 4.7 for the first equality) follows from the
fact that (by the same reasoning as above) Z(y0)∩Z(y1) is the reduced union of the projective
lines P[Λ] which belong to the special fibres of Z(y0) and Z(y1).

In case νp(y2
0) = 0 one has to prove that (as intersection multiplicity in Z(y1)) on has

((Z(y0)∩Z(y1)), (Z(y)∩Z(y1))) = 1. In other words, this means that the horizontal components
of (Z(py0) ∩ Z(y1)) and of (Z(py) ∩ Z(y1)) intersect in Z(y1) with multiplicity 1. This in turn
follows from the comparison of intersections of (horizontal components of) special cycles in
the sense of [KR1] and antispecial cycles resp. formal special cycles in our sense given in [T],
sections 3, 4. �

Proposition 3.5 Let j ∈ V ′p be as in Proposition 6, i.e. j2 6= 0 and νp(j2) ≥ 0. Then D(j) is
a regular formal scheme.

Proof. If νp(j2) = 0, then we find j0, j1 ∈ V
′ such that Core(j) ⊂ (Z(j0) ∩ Z(j1))(F) and all

three endomorphisms are perpendicular to each other and such that νp(j2
0) = 0 and νp(j2

1) = 1.
Then by Lemma 3.4 the length (over W ) of the local ring (which is a local Artin ring) of
Z(j) ∩ Z(j0) ∩ Z(j1) is 1, hence this ring is regular. But then Z(j) is also regular in the point
of Core(j).

If νp(j2) = 1, then Z(j) is isomorphic to the Drinfeld upper half plane, see [T], section 4 for
the precise statement, which is regular.

Suppose now that νp(j2) ≥ 2. Let x ∈ Z(j)(F). We have to show that the local ring OD(j),x

is regular.
First case x /∈ Z(j/p)(F).
We choose j1 ∈ V

′
p such that j1 ⊥ j and νp(j2

1) = 1 and such that x ∈ Z(j1)(F), see Lemma
3.3. Then Z(j1) is isomorphic to the Drinfeld upper half plane (see [T], section 4). By Lemma
3.4 we know that locally around x, the intersection Z(j1) ∩D(j) is isomorphic to a projective
line over F, hence this intersection is regular in x. Hence D(j) is regular in x as well.

Second case x ∈ Z(j/p)(F).
If x is not superspecial, then we choose j1 as in case 1 and the reasoning is also the same

as above. Suppose now that x is superspecial, {x} = P[Λ0] ∩ P[Λ1], and P[Λ0] ⊂ Z(j/p). We
choose j1 linearly independent of j such that νp(j2

1) = 1 and P[Λ0] ⊂ Z(j1) but P[Λ1] 6⊂ Z(j1).
We consider the Zp-submodule j of V ′p spanned by j/p and j1. Then there is j2 ∈ j such that
j1 ⊥ j2 and {j1, j2} is a basis of j. (This can be seen as follows: Consider an arbitrary quadratic
Zp-module (M, q) which is free of finite rank. Then for any element m ∈M such that νp(q(m))
is minimal, there is an orthogonal basis of M which contains m as an element. Thus, if we
apply this to j, and argueing by contradiction, we see that if our claim were wrong there would
exist some j′ ∈ j such that νp(j

′2
) = 0. But this contradicts the fact that P[Λ0] ⊂ Z(j

′′
) for all

j
′′ ∈ j). We write j/p = aj1 + bj2. Then D(j) ∩ Z(j1) = D(pbj2) ∩ Z(j1) which is regular in x
by the same reasoning as above. Again it follows that D(j) is regular in x. �

Our next aim is a description of the special fibre of a formal special cycle Z(j), where j ∈ V ′ .
In the sequel we use the following notations. For a vertex [Λ] ∈ B denote by d[Λ] the

distance of [Λ] to Bβ , where β := F−1j | Y as above. For any formal scheme X over Spf W we
denote by Xp the special fibre of X.
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Theorem 3.6 Let j ∈ V ′ such that j2 6= 0 and a := νp(j2) ≥ 0. Then the divisor Z(j)p in
MHB

p is of the form

Z(j)p =
∑

[Λ]; d[Λ]≤a−1
2

(1 + p+ ... + p
a−1

2
−d[Λ])P[Λ] + pa/2 · s.

Here, s is a divisor in MHB
p which is 6= 0 if and only if j is even. In this case s meets the

supersingular locus only in the point of Core(j).

We will see later (Lemma 4.9) that (in case that j is even) the intersection multiplicity of s
with each of the two projective lines to which the point in Core(j) belongs is 1. In particular,
s is reduced and irreducible.

Proof. We know by Proposition 3.2 that Z(j)p is a divisor in MHB
p. It follows from the

description of the underlying reduced scheme of Z(j) given above that the part of Z(j)p having
support in the supersingular locus is of the form

Z(j)ssp =
∑

[Λ]; d[Λ]≤a−1
2

m[Λ]P[Λ]

(without knowing the values of the multiplicities m[Λ] of the irreducible components P[Λ]).
Further it follows from [KR2], section 10 that the rest of Z(j)p is of the form pa/2 · s where s is
as above. (In the corresponding statement Corollary 10.3 in loc. cit. it is erroneously asserted
that the multiplicity of s is pa instead of pa/2.).

Thus it remains to find the values of m[Λ]. It suffices to show that

(i) If d[Λ] = a−1
2 , then m[Λ] = 1.

(ii) If P[Λ] intersects P[Λ]′ and d[Λ] < d[Λ′ ] ≤
a−1

2 , then m[Λ] + m[Λ′ ] = 2 · (1 + p + ... +

p
a−1

2
−d[Λ′]) + p

a−1
2
−d[Λ] .

For any point x ∈ Z(j)p(F) we use the following notation. Let Ix be the ideal of Z(j)p in
the local ring OMHB

p ,x and let mx be the maximal ideal of OMHB
p ,x. Denote by nx the maximal

integer n with the property that Ix ⊂ mn
x. Denote by X (instead of Xx) the p-divisible group

over F belonging to the point x.
Suppose now we are in the situation of (i) and let x ∈ P[Λ] be a superspecial point which

does not belong to another P[Λ′ ] ⊂ Z(j)p. Let f = 0 be the equation of P[Λ] in the local ring
OMp,x. It follows that Ix = (fm[Λ]). Since f belongs to a regular parameter system of m, it
follows that nx = m[Λ].

Suppose now that we are in the situation of (ii) and let x be the intersection point of P[Λ]

and P[Λ′ ]. Then it follows as above that nx = m[Λ] + m[Λ′ ]. Further one sees easily that j as

an endomorphism of X is divisible by p
a−1

2
−d[Λ] but not by p

a−1
2
−d[Λ]+1. (Note that d[Λ] = a−1

2
means that P[Λ] belongs to Z(j) but not to Z(j/p).)

Using the notation just introduced it follows that it is enough to show the following:

(1) Suppose x is a superspecial point belonging to precisely one P[Λ] ⊂ Z(j)p. Then nx = 1.

(2) Suppose we are in the situation of (ii) and x is as above the intersection point of P[Λ] and
P[Λ

′
]. Suppose further that j is as an endomorphism of X divisible by pr but not by pr+1.

Then nx = 2 · (1 + p+ ... + pr−1) + pr.
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For this we are going to use the theory of displays (see [Z2]) in the manner of [KR3], section
8. Denote by (M,F, V ) the Dieudonné module to the p−divisible group X corresponding to
the point x in (1) or in (2). Then the display for X is given by the data (M,VM,F, V −1). We
find a basis f1, ..., f4 of M for which F and V have matrices

F =


p

1
1

p

σ, V =


p

1
1

p

σ−1,

and such that for the alternating form coming from the polarization we have 〈f1, f2〉 = 〈f3, f4〉 =
1, see [KR2], section 5. Let e1 = f1, e2 = f4, e3 = f2, e4 = f3. Denote by T the W -span of
e1, e2 and by L the W -span of e3, e4. Then

M = L⊕ T, V M = L⊕ pT.

Define the matrix (αij) by
Fej =

∑
i

αijei for j = 1, 2,

V −1ej =
∑
i

αijei for j = 3, 4.

Hence,

(αij) =


1

1
1

1

 .

It follows (see [Z1, p.48]) that the universal deformation of X over F[[t1, t2, t3, t4]] corresponds
to the display (L ⊕ T ) ⊗W (F[[t1, t2, t3, t4]]) with matrix (αij)univ (wrt. the basis e1, ..., e4 and
with entries in W (F[[t1, t2, t3, t4]])) given by

(αij)univ =


1 [t1] [t2]

1 [t3] [t4]
1

1

 ·


1
1

1
1

 =


[t2] [t1] 1
[t4] [t3] 1

1
1

 .

Here the [ti] denote the Teichmüller representatives of the ti.
Now let A′ = W [[t1, t2, t3, t4]], let R′ = F[[t1, t2, t3, t4]]. Denote by t resp. u the image of t1

resp. of t4 in A′/(t2, t3) so that A′/(t2, t3) = W [[t, u]] =: A. Let R = F[[t, u]]. We extend the
Frobenius σ on W to A′ resp. A putting σ(ti) = tpi resp. σ(t) = tp and σ(u) = up. Further for
any n ∈ N denote by an resp. rn the ideal in A resp. in R generated by the monomials tiun−i,
i = 0, ..., n, and let An = A/an and Rn = R/rn. Then A′ is a frame for R′ resp. A is a frame
for R resp. An is a frame for Rn.

For an A′ - R′-window (M
′
,M

′
1,Φ

′
,Φ
′
1) letM ′σ

1 = A
′⊗A′ ,σM

′
1 and denote by Ψ

′
: M

′σ
1 →M

′

the linearization of Φ
′
1. It is an isomorphism of A′-modules. Denote by α′ : M

′
1 → M

′σ
1 the

composition of the inclusion mapM ′
1 ↪→M

′ followed by Ψ
′−1 . In this way, the category of pairs

(M
′
1, α

′
) consisting of a free A′-module of finite rank and an A′-linear injective homomorphism

α
′

: M
′
1 → M

′σ
1 such that Coker α′ is a free R′-module becomes equivalent to the category

of formal p-divisible groups over R′ . (Note that the so called nilpotence condition is fulfilled
automatically here, comp. also [KR3], section 8.) A corresponding description holds for the
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category of formal p-divisible groups over R resp. over Rn. We consider the A′ - R′ window
(M

′
,M

′
1,Φ

′
,Φ
′
1) given by

M
′

= M ⊗A′ , M
′
1 = VM ⊗A′ , Φ

′
=


t2 t1 p
t4 t3 p

1
1

σ, Φ
′
1 =

1
p
· Φ′ ,

the matrix of Φ
′ being described in the basis e1, e2, e3, e4. The corresponding display is the

universal display described above (easy to see using the procedure dscribed on p.2 of [Z2]).
Hence (M

′
,M

′
1,Φ

′
,Φ
′
1) is the universal window. The corresponding matrix of α′ wrt. the basis

pe1, pe2, e3, e4 of M ′
1 resp. the basis p(1⊗ e1), p(1⊗ e2), 1⊗ e3, 1⊗ e4 of M ′σ

1 is given by

α
′

=


1

1
p −t3 −t4

p −t1 −t2

 .

The p-divisible group X is equipped with a principal polarization λ and with a Zp2-action
ι.

Lemma 3.7 The ideal in A
′ resp. R′ describing the universal deformation of (X,λ, ι) is (in

both rings) given by (t2, t3). The universal object (M1, α) over A (corresponding to the comple-
tion of OMHB

p ,x) is given by the image of (M
′
1, α

′
) over A (i.e. is obtained from (M

′
1, α

′
) by

tensoring over A′ with A). In the basis pf1, f2, f3, pf4 of M1 resp. the basis p(1⊗f1), 1⊗f2, 1⊗
f3, p(1⊗ f4) of Mσ

1 the map α is then given by the matrix

α =


1
−u p

p −t
1

 =
(

U
T

)
.

Here

U =
(

1
−u p

)
resp. T =

(
p −t

1

)
.

Proof. The principal polarization λ of X corresponds to the perfect symplectic pairing on M
given by 〈e1, e3〉 = 1, 〈e2, e4〉 = −1 and 〈ei, ej〉 = 0 for all other pairs i ≤ j (see above).
One checks easily that it lifts to a perfect symplectic bilinear form 〈, 〉 of the display over
W (R

′
/(t2, t3)) induced (by base change) by the universal one above, such that 〈, 〉 satisfies the

condition 〈V −1(x), V −1(y)〉V = 〈x, y〉 (where V is the Verschiebung of W (R
′
/(t2, t3))). Hence

λ lifts over R′/(t2, t3), comp [G], p. 231. Further the Zp2-operation ι also lifts over R′/(t2, t3),
since on M ′

1 ⊗A
′
/(t2, t3) we have a Z/2-grading lifting the Z/2-grading on VM and such that

the map induced by α′ is homogenous of degree 1. More precisely, the Z/2-grading is given
by (M

′
1 ⊗ A

′
/(t2, t3))0 = span of {pe1, e3} and (M

′
1 ⊗ A

′
/(t2, t3))1 = span of {e2, pe4}. Hence

(X,λ, ι) lifts over R′/(t2, t3). Since the completion of OMHB
p ,x is isomorphic to R′/(t2, t3), it

follows that the ideal (t2, t3) in R′ is the ideal describing the deformation of (X,λ, ι). Hence
the universal object (M1, α) over A corresponding to the completion of OMHB

p ,x is given by
the image of (M

′
1, α

′
) over A. It follows that in the basis pf1, f2, f3, pf4 of M1 resp. the basis

p(1⊗ f1), 1⊗ f2, 1⊗ f3, p(1⊗ f4) of Mσ
1 the map α is then given by the matrix

α =


1
−u p

p −t
1

 =
(

U
T

)
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as asserted. �

Next we want to determine the maximal n such that j lifts over Rn. The Z/2-grading of
the Dieudonné module M of X is given by M0 = span of {f1, f2} and M1 = span of {f3, f4}.
The matrix of j in the basis f1, ..., f4 is of the form

j =


paσ −b
−c a

a b
c paσ

 ; a, b, c ∈ Zp2 , bσ = −b, cσ = −c,

see [KR2], section 5. Write j = pr j̄, where

j̄ =


paσ0 −b0
−c0 a0

a0 b0
c0 paσ0

 ; a0, b0, c0 ∈ Zp2 are not all divisible by p.

Lemma 3.8 If b0 ≡ 0 mod p and c0 ≡ 0 mod p, then x is the intersection point of P[Λ] with
another projective line P[Λ′ ] ⊂ Z(j) and d[Λ′ ] = d[Λ] = 0.

Proof. Since in this case νp(j̄2) = 1 we can identify Z(j̄) with the Drinfeld upper half plane
(see [T], chapter 4) and therefore the statement just means that under this identification x is
a superspecial point in the Drinfeld upper half plane (in the sense of [KR1]). Denoting the
Dieudonné module of x with its Z/2-grading as above by M = M0⊕M1, we have to show that
j̄M0 = VM0 and j̄M1 = VM1. Now j̄M0 is the W -span of a0f3 +c0f4 and b0f3 +pa0f4. Since
a0 is a unit in W and b0 and c0 are divisible by p this is the same as the W -span of f3 and
b0f3 + pa0f4, and this is the same as the W -span of f3 and pf4 which is VM0. The equality
j̄M1 = VM1 is proved in the same way. �

It follows that neither in the situation of (1) nor in the situation of (2) the assumption made
in the lemma is fulfilled.

Write now (M1(n), α(n)) for M1 ⊗An and the map α(n) : M1(n)→M1(n)σ induced by α.
Write j(1) for the endomorphism of M1(1) induced by j. In the basis pf1, f2, f3, pf4 it is given
by the matrix

j(1) =


aσ −b
−c pa

pa b
c aσ

 =
(

j1(1)
j0(1)

)
.

Here

j0(1) =
(
pa b
c aσ

)
resp. j1(1) =

(
aσ −b
−c pa

)
.

In order to lift j over Rn we need an endomorphism j(n) of M1(n) lifting j(1) such that the
following diagram commutes:

M1(n)

j(n)

��

α(n) // M1(n)σ

σ(j(n))

��
M1(n)

α(n)
// M1(n)σ.

In other words we are looking for liftings j0(n) of j0(1) and j1(n) of j1(1) over An such that

Uj0(n) = σ(j1(n))T and Tj1(n) = σ(j0(n))U. (*)
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Suppose n = pl, where l ≥ 1, and suppose we have found liftings j0(pl−1) and j1(pl−1) satifying
(*). For any choice of liftings j0(pl) and j1(pl) of j0(pl−1) and j1(pl−1) the matrices σ(ji(pl))
are equal to σ(ji(pl−1) interpreted as matrix over Apl . Hence there are liftings j0(pl) and j1(pl)
satifying (*) if and only if

U−1σ(j1(pl−1))T and T−1σ(j0(pl−1))U

are integral and in this case

j0(pl) = U−1σ(j1(pl−1))T and j1(pl) = T−1σ(j0(pl−1))U.

Define now inductively matrices X(l) and Y (l) over Apl ⊗Z Q as follows: X(0) = j0(1) and
Y (0) = j1(1) and

X(l + 1) = U−1σ(Y (l))T and Y (l + 1) = T−1σ(X(l))U.

(Again σ(Y (l)) and σ(X(l)) are well defined over Apl+1 ⊗Z Q.)
The following lemma can easily be proved by induction.

Lemma 3.9 Let l ≥ 1. The matrix X(l) is of the form

X(l) =
1
pl

((
0 0
0 (tu)1+p+...+pl−2 · ((−1)lσl+1(a) · (tu)p

l−1
+ b · upl−1 − c · tpl−1

)

)
+ p ·A(l)

)
,

where A(l) has entries in Apl . Similarly, Y (l) is of the form

Y (l) =
1
pl

((
(tu)1+p+...+pl−2 · ((−1)lσl+1(a) · (tu)p

l−1
+ b · upl−1 − c · tpl−1

) 0
0 0

)
+ p ·B(l)

)
,

where B(l) has entries in Apl . �

Lemma 3.9 shows together with the discussion above that j lifts over Rpr but not over Rpr+1 .
More precisely, if we are in the situation of (1) or (2), then b and c are not both divisible by
pr+1 (Lemma 3.8) and hence we see from Lemma 3.9 (applied in case l = r+ 1) that j lifts over
R2·(1+p+...+pr−1)+pr but not over R2·(1+p+...+pr−1)+pr+1. Hence nx = 2 · (1 + p+ ...+ pr−1) + pr

as claimed in (1) resp. in (2). �

From Theorem 3.6 we immediately obtain the following corollary (using the same notations
and assumptions).

Corollary 3.10 If a = 0, then D(j)p is of the form D(j)p = s. If a > 0, then D(j)p is of the
form

D(j)p =
∑

[Λ]; d[Λ]≤a−1
2

p
a−1

2
−d[Λ]P[Λ] + pa/2−1(p− 1) · s.

�

Lemma 3.11 Let j ∈ V ′ such that j2 ∈ Z(p) \ {0}, let x ∈ Z(j)(F) and let D ⊂ MHB be a
divisor which is regular in x, such that locally around x we have Dp ⊂ Z(j)p. Let R = OD,x
and let (f) be the ideal of Z(j)∩D in R (i.e., OZ(j)∩D,x = R/(f)).Then the ideal of Z(pj)∩D
in R is of the form (h · p · f), where h is coprime to p in R.
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Proof. We may assume that f 6= 0.
The canonical map

%0 : Spf R/(f)→ D

factors through Z(j) ∩D.
Claim: The canonical map

%1 : Spf R/(pf)→ D

factors through Z(pj) ∩D.
By our assumption Dp ⊂ Z(j)p (locally around x) we know that f is divisible by p. We

have R/(f) = (R/(pf))/I, where I = (f)/(pf). Since f is divisible by p, the ideal I carries a
nilpotent pd-structure. Hence we may apply Grothendieck-Messing theory for the pair R/(pf),
R/(f). We denote by M the value of the crystal of the R/(pf)-valued point %1 in R/(pf), and
by M the value of the crystal of the R/(f)-valued point %0 in R/(f). Then M = M ⊗ R/(f).
Denote by F ↪→M the Hodge filtration of %1 and by F ↪→M the Hodge filtration of %0. Then
the Hodge filtration of %1 lifts the Hodge filtration of %0. We have jF ⊂ F , and we have to
show that pjF ⊂ F . As in the proof of Proposition 4.5 in [T] we find a basis e1, e2, e3, e4 of
M , such that, if ei denote the images of the ei in M , then a basis of F is given by e2, e3, and
such that, for suitable m1,m4 ∈ I, a basis of F is given by f0 = e2 +m1e1 and f1 = e3 +m4e4.
Since jF ⊂ F it follows that jfi ∈ 〈e2, e3〉+ IM for i = 1, 2. Hence pjfi ∈ 〈pe2, pe3〉+ pIM =
〈pe2, pe3〉 = 〈pf0, pf1〉 ⊂ F . This proves the claim.
Let OZ(pj)∩D,x = R/(g). Since D is regular in x we know that R is a UFD. We write g = h ·s ·f ,
where h is prime to p and V (s) has support in the special fibre of D.

We must show that s = p. We already know that s is divisible by p. Suppose that q is
prime divisor of p in R such that g divisible by qpf . Let C = R/(qpf), let C = R/(qf), and
let C = R/(f). This is a chain of nilpotent pd-extensions. We consider the canonical C-, resp.
C -, resp. C- valued points

%C : Spf C → D, %C : Spf C → D, %
C

: Spf C → D.

Claim: %C factors through Z(j).
We denote by M the value of the crystal of the %C-valued point in C, analogously we define

M andM . Further let F ↪→M by the Hodge filtration of %C and analogously we define F ↪→M

and F ↪→ M . As in the proof of Proposition 4.5 in [T] we find a basis e1, e2, e3, e4 of M , such
that, if ei denote the images of the ei in M , then a basis of F is given by e2, e3, and such that
for suitable m1,m4 ∈ (qf)/(qpf) a basis of F is given by f0 = e2 +m1e1 and f1 = e3 +m4e4.
The endomorphism j induces an endomorphism of the C-module M , and we have pjF ⊂ F .
To show the above claim we must show that jF ⊂ F . Since pjf0 ∈ F and by the explicit form
of f0 and f1 we can write jf0 = u+xe4 for a suitable u ∈ F and some x ∈ C with the property
that px = 0. Let x̂ ∈ R be a lift of x. Then px̂ ∈ (qpf), hence x̂ = yqf for a suitable y ∈ R.
hence x ∈ (qf)/(qpf), hence je2 ∈ F . In the same way one shows that je3 ∈ F . From this the
claim follows.

The claim implies the assertion, since it implies that f is divisible by qf , a contradiction.
�

We reformulate the lemma in a more geometrical manner in the following proposition.

Proposition 3.12 In the situation of Lemma 3.11 and under the assumption that f 6= 0, the
divisor D(pj) ∩D in D is locally around x of the form

D(pj) ∩D = Dp + h,

where h is an effective divisor which is horizontal, i.e. it has no component with support in Dp.

�
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4 On the structure of intersections of formal special cycles

By the proof of [T], Proposition 4.5, for any j ∈ V ′p , and any x ∈ MHB(F) the ideal of Z(j)
in OMHB ,x is generated by one element (we do not use the assumptions j2 6= 0 and νp(j2) ≥ 0
made in Proposition 3.2).

Lemma 4.1 Let j, j′ ∈ V ′ be linearly independent. Suppose further that for any x ∈MHB(F)
the equation in x (that is a generator of the ideal in OMHB ,x) of at least one of the corresponding
two formal special cycles is not divisible by p. Then

OZ(j) ⊗L OZ(j′ ) = OZ(j) ⊗OZ(j′ ).

More precisely, the object on the left hand side is represented in the derived category by the
object on the right hand side. The same formula holds if Z(j) or Z(j

′
) or both are replaced by

D(j) resp. D(j
′
).

Proof. Let x ∈ MHB(F) and let R = OMHB ,x. Let the ideals of Z(j) and Z(j
′
) in R be

generated by f and f ′ . Suppose that f is not divisible by p. We consider the exact sequence

0 −−−−→ R
f ·−−−−→ R −−−−→ R/(f) −−−−→ 0.

Tensoring this with R/(f ′) we see that

T OR1(OZ(j),OZ(j′ ))x = ker(R/(f
′
)

f ·−→ R/(f
′
)).

To show that this vanishes we have to show that f and f ′ have no common divisor in the regular
ring R. Let g = gcd(f, f

′
). We have to show that g is a unit. It follows from our assumption

in the lemma that g is coprime to p.
Let now Tx be the matrix of the bilinear form associated to Q for the basis j, j′ of j = Z(p)-

span of j, j′ in V ′ and let t = j2 and t′ = j
′2. Since j, j′ ∈ V ′ , we find special cycles Z(t, ω)

and Z(t
′
, ω
′
) and an F-valued point y of Z(t, ω) ×M Z(t

′
, ω
′
) such that the corresponding

p-divisible group resp. its corresponding special endomorphisms are the p-divisible group of
x resp. j, j

′ (see also the incidence relation under Proposition 2.2). It follows that for the
completions ÔZ(t,ω)×MZ(t′ ,ω′ ),y ⊗Zp W

∼= R̂/(f, f
′
) (we denote the images of f, f ′ and g in

R̂ by the same letters). Suppose that g is not a unit. Then R/(g) ⊗W Q has dimension 1.
Thus OZ(t,ω)×MZ(t′ ,ω′ ),y ⊗Z(p)

Q has dimension 1. It follows that there is some C-valued point
ξ of the generic fibre of Z(t, ω) ×M Z(t

′
, ω
′
) such that the corresponding 2 × 2 fundamental

matrix in ξ (defined as above) equals Tx. But then the proof of Proposition 1.4 of [KR2] shows
that Tx is positive definite. Then again by the same proposition, the generic fibre of the part
of Z(t, ω) ×M Z(t

′
, ω
′
) where the fundamental matrix equals Tx has dimension 0 which is a

contradiction to the fact that dim(OZ(t,ω)×MZ(t′ ,ω′ ),y ⊗Z(p)
Q) = 1. The proof in case that Z(j)

or Z(j
′
) or both are replaced by D(j) resp. D(j

′
) is the same. �

Proposition 4.2 Let y1, y2, y3 ∈ V
′ such that the corresponding fundamental matrix is non-

singular and has entries in Z(p). Then the derived tensor product OZ(y1) ⊗L OZ(y2) ⊗L OZ(y3)

depends only on the Z(p)-span y of y1, y2, y3 in V ′ .

Proof. First we observe that for any basis y′1, y
′
2, y

′
3 of y the derived tensor product O

Z(y
′
1)
⊗L

O
Z(y
′
2)
⊗L O

Z(y
′
3)

is invariant under any permutation of the y′i.
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Claim O
Z(y
′
1)
⊗L O

Z(y
′
2)
⊗L O

Z(y
′
3)

is invariant if one yi is replaced by εyi + zyl, where
ε ∈ Z×(p), z ∈ Z(p) and l 6= i.

We want to apply the lemma setting j = yi, j
′

= yl. We must show that in no F-valued
point of MHB the equation of Z(yi) and Z(yl) is divisible by p. Suppose that there is some
F-valued point ofMHB in which both equations are divisible by p. Then the same is true for
any linear combination of yi and yl. Further it follows from Proposition 3.2 that y2

i = 0 and
y2
l = 0 and hence again the same is true for any linear combination of yi and yl. Thus it follows
(by diagonalizing) that the fundamental matrix of yi and yl is the zero matrix. But then it
follows that the fundamental matrix of y1, y2, y3 is singular which contradicts our assumption.
Thus we may apply the lemma, by which O

Z(y
′
i)
⊗L O

Z(y
′
l )

= O
Z(y
′
i)
⊗ O

Z(y
′
l )

= O
Z(y
′
i)∩Z(y

′
l )

which only depends on the Z(p)-span of yi, yl in V
′ . From this the claim follows.

Since we can transform the basis y1, y2, y3 by a suitable sequence of permutations and op-
erations as in the claim into any other basis of y, the claim of the proposition follows. �

In particular, the proposition shows that for the calculation of (Z(j1), Z(j2), Z(j3)) we may
assume that our three fixed special endomorphisms j1, j2, j3 are perpendicular to each other,
i.e. we may assume that T is a diagonal matrix.
Suppose for the moment that our fixed T is not divisible by p. Then, as shown in [KR2], section
6, the intersection Z(j1)∩Z(j2)∩Z(j3) is the formal spectrum of a local Artin ring whose length
(over W ) is calculated in loc. cit. We want to show that this length equals the intersection
multiplicity in the sense defined above. To this end we show the following

Proposition 4.3 If T (as matrix over Z(p)) is not divisible by p, then

OZ(j1) ⊗L OZ(j2) ⊗L OZ(j3) = OZ(j1) ⊗OZ(j2) ⊗OZ(j3)

(meaning that the right hand side represents the left hand side in the derived category). In
particular,

(Z(j1), Z(j2), Z(j3)) = lgW (OZ(j1)∩Z(j2)∩Z(j3),x),

where x is the unique F-valued point of Z(j1) ∩ Z(j2) ∩ Z(j3).

Proof. By Proposition 4.2 we may assume that j1, j2, j3 are pairwise perpendicular to each
other. We further assume νp(j2

1) ≤ νp(j2
2) ≤ νp(j2

3). Then νp(j2
1) = 0. By Lemma 4.1 we have

OZ(j1) ⊗L OZ(j2) = OZ(j1) ⊗ OZ(j2) in the above sense. Let the ideal of Z(ji) in OMHB ,x be
generated by fi and let R = OMHB ,x/(f1). Denote the images of f2 resp. f3 in R by f2 resp.
f3. The same reasoning as in the proof of Lemma 4.1 shows that the claim follows if we know
that f2 and f3 are coprime in R (which is a UFD by Proposition 3.5). But this in turn follows
from the fact that dim(R/(f2, f3)) = 0. �

Our next aim is to prove the following multilinearity property of the intersection product
(Z(j1), Z(j2), Z(j3)).

Proposition 4.4 Suppose that at least one of j1, j2, j3 is odd. Then

(Z(j1), Z(j2), Z(j3)) =
∑
l,m,n

(D(j1/pl), D(j2/pm), D(j3/pn)),

where the sum is taken over all possible triples (l,m, n) (i.e. setting ai = νp(j2
i ), we have

l ≤ [a1/2], m ≤ [a2/2], n ≤ [a3/2], where [ ] denotes Gauss brackets).
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Note that in case that j1, j2, j3 are pairwise perpendicular to each other, the hypothesis of
the proposition is fulfilled as we see from [Ku1], 1.16, see also (5.1). Note also that using the
fact that Z(j1) ∩ Z(j2) ∩ Z(j3) has support in the supersingular locus (follows from [KR2],
Proposition 3.8) and the fact that this support ist proper over F (follows for example from
the beginning of section 3 and Lemma 5.2 or from [KR2], section 8) one sees that all of these
intersection multiplicities are finite. The same holds for the other intersection multiplicities in
the subsequent proof.)

Proof. Suppose j1 is odd and νp(j2
1) = 2r + 1. Denote by I the ideal sheaf of D :=

D(j1/pr)(= Z(j1/pr)) in OMHB . Denote by J the ideal sheaf of ∆ := Z(j1) − D(j1/pr)
(the notation in the latter expression is meant in the same sense as the notation D(j) =
Z(j)− Z(j/p)). Our first aim is to show that

(Z(j1), Z(j2), Z(j3)) = (∆, Z(j2), Z(j3)) + (D,Z(j2), Z(j3)).

We consider the canonical short exact sequences

0 −−−−→ J /(J · I) −−−−→ OMHB/(J · I) −−−−→ OMHB/J −−−−→ 0

and
0 −−−−→ (J + I)/I −−−−→ OMHB/I −−−−→ OMHB/(J + I) −−−−→ 0.

Lemma 4.5 The inclusion J · I ↪→ J ∩ I is an equality.

Proof. We can check this locally. Let x ∈MHB(F) and let R = OMHB ,x. For any l ≤ r let (fl)
be the ideal of D(j/pl) in R. By Proposition 3.5, each fl is a prime element in R. It follows
from Corollary 3.10 that the fl are pairwise distinct (more precisely, Corollary 3.10 shows that
even the special fibres of the several Spf R/(fl) are pairwise distinct). Since Ix equals (fr) and
Jx equals

∏
l 6=r(fl), the claim of the lemma follows. �

By the first exact sequence have

(Z(j1), Z(j2), Z(j3)) = (∆, Z(j2), Z(j3)) + χ(J /(J · I)⊗L OZ(j2) ⊗L OZ(j3)).

Now using the lemma we see that (J +I)/I = J /(J ∩I) = J /(J ·I). This shows together
with the second exact sequence that

χ(J /(J · I)⊗L OZ(j2) ⊗L OZ(j3)) = (D,Z(j2), Z(j3))− (D ∩∆, Z(j2), Z(j3)).

Thus in order to show that

(Z(j1), Z(j2), Z(j3)) = (∆, Z(j2), Z(j3)) + (D,Z(j2), Z(j3))

it remains to show the
Claim (D ∩∆, Z(j2), Z(j3)) = 0.
Using Lemma 4.1 we see that

χ(OD∩∆ ⊗L OZ(j2) ⊗L OZ(j3)) = χ(OD∩∆ ⊗L OZ(j2)∩Z(j3)).

First we observe that by the proof of the above lemma, ∆ ∩D is as a divisor in D. The same
reasoning as in the proof of Proposition 4.6 below (second case in the proof) shows that ∆∩D
is as a divisor in D of the form rDp + h, where h is a divisor of the form

∑
x hx where the

sum runs over a discrete set of F-valued points of D and hx is a horizontal divisor (meaning
that its equation is coprime to p) meeting the underlying reduced subscheme of D only in x.
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(More precisely, D plays the role of D(y1) in the situation of the proof of Proposition 4.6 and
(for any l < r), D(y1/p

l) plays the role of D(y2) in that proof. Note that ∆ =
∑

l<rD(y1/p
l).)

Now we regard rDp and h as (formal) closed subschemes ofMHB. Suppose that h = 0. Then
(D ∩ ∆, Z(j2), Z(j3)) = (rDp, Z(j2) ∩ Z(j3)). This in turn equals 0 as follows from the exact
sequence

0 −−−−→ OD
pr·−−−−→ OD −−−−→ OD/(pr) −−−−→ 0.

Thus the claim is proved if we can show that h = 0. Suppose that there is x ∈ (D ∩ ∆)(F)
such that hx 6= 0. Using Lemma 3.3 we choose a special endomorphism j such that νp(j2) = 1
and x ∈ Z(j)(F) and j ⊥ j1. We write j2

1 = ε1p
2r+1 and j2 = εp. It is easy to see that

we can choose j such that the image of −εε1 in Fp is a square. Then it follows from the
results of [T] (in the same way as the proof of Lemma 3.4) that Z(j) ∩∆ has support in the
special fibre, that this support is proper over F and that Z(j) ∩D has precisely two horizontal
components which meet the special fibre in the same projective line. Further their intersection
points with this projective line are both neither intersection points of two projective lines which
belong to Z(j) nor intersection points of two projective lines which belong to D. Further the
intersection multiplicity of each of these horizontal components with the projective line which
they meet is 1. We consider the intersection multiplicity (D,∆, Z(j)). It can be written as
((Z(j) ∩ D), (Z(j) ∩ ∆)) (intersection multiplicity in Z(j), compare also [T], section 4). Let
(Z(j) ∩ D)v resp. (Z(j) ∩ D)h denote the vertical resp. horizontal part of (Z(j) ∩ D). Now
Lemma 5.3 below shows that ((Z(j)∩D)v, (Z(j)∩∆)) = 0 (compare the technique of calculating
intersection multiplicities used in the propositions of section 5). Further ((Z(j) ∩D)h, (Z(j) ∩
∆)) = 2r and thus ((Z(j) ∩D), (Z(j) ∩∆)) = 0 + 2r = 2r (see also below for the additivity of
intersection multiplicities in Z(j) used here). On the other hand, (D,∆, Z(j)) can be written
as ((D∩∆), (D∩Z(j))) (intersection multiplicity in D, again defined to be the Euler-Poincaré
characteristic of the derived tensor product of the corresponding structure sheaves). Repeating
the reasoning before the claim with Z(j1) replaced by ∆ ∩ D and D replaced by rDp and ∆
replaced by h, we see the following identity of intersection multiplicities in D

2r = χ(OD∩∆ ⊗L OZ(j)∩D) = (h, Z(j) ∩D) + (rDp, Z(j) ∩D)− (h ∩ rDp, Z(j) ∩D)

Now (h∩ rDp, Z(j)∩D) = 0, since the structure sheaf of h∩ rDp is a skyscraper sheaf (see also
[KR1], Lemma 4.1). (Analogously one sees the additivity of intersection multiplicities in Z(j)
used above.) As above we see that (rDp, (Z(j)∩D)v) = 0 (applying the above exact sequence,
we use that the support of D∩ (Z(j)∩D)v = (Z(j)∩D)v lies in the special fibre and is proper
over F.) Thus (rDp, (Z(j)∩D)) = 2r. It follows that (h, Z(j)∩D) = 0 and hence hx = 0. Since
x was arbitrary, it follows that h = 0. This confirms the claim.

Now repeating this reasoning we see that

(Z(j1), Z(j2), Z(j3)) =
∑
l

(D(j1/pl), Z(j2), Z(j3))

(note that in the remaining steps the reasoning in the last part of the proof becomes simpler
since (in contrast to to above case l = r) for l < r there are no horizontal components in
D(j/pl) ∩ Z(j) if j is as above.) The remaining multilinearity in the other variables follows
from the multilinearity of intersections of divisors (such that the the support of their intersec-
tion lies in the special fibre and is proper over F) in D(j1/pl), see the beginning of section 5. �

The proposition and its proof show that (if at least one of j1, j2, j3 is odd) it is enough to
calculate the intersection multiplicity (D(ji), D(jl), D(jk)) or (if at least one of ji, jl is odd)
(D(ji), Z(jk), D(jl)), where {i, k, l} = {1, 2, 3}. To calculate such intersections, we use the
following observation (already made and used in the proof of the last proposition).
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By Lemma 4.1, we have OD(ji) ⊗L OD(jl) = OD(ji) ⊗ OD(jl) = OD(ji)∩D(jl). (Here, each
D(jl) or D(ji) or both may be replaced by Z(jl) resp. Z(ji).) Thus

χ(OD(ji)⊗
LOD(jl)⊗

LOD(jl)) = χ(OD(ji)∩D(jl)⊗
LOD(jk)) = χ(OD(ji)∩D(jl)⊗

L
OD(ji)

OD(ji)∩D(jk))).

The same is true if D(jl) or D(jk) is replaced by Z(jl) resp. Z(jk). If the three special en-
domorphisms are pairwise perpendicular to each other (which we may assume), then by 1.16
of [Ku1] (see also (5.1)), at least one of the three special endomorphisms is odd, so we may
also assume that ji is odd. This suggests to investigate intersections of the form D(y1)∩D(y2)
where we assume that y1, y2 ∈ V

′ such that y2
1, y

2
2 ∈ Z(p) \ {0} and y1 ⊥ y2 (and we also may

assume that y1 is odd). Note that by the proof of Lemma 4.1 (which shows that D(y1) and
D(y2) have no common component), D(y1) ∩D(y2) is a divisor in D(y1).

Let [Λ] ∈ B. Let y1, y2 ∈ V
′ such that y2

1, y
2
2 ∈ Z(p) \ {0} and y1 ⊥ y2 and P[Λ] ⊂

D(y1) ∩D(y2). The divisor D(yi)p inMHB
p contains P[Λ] with multiplicity pri for a suitable

integer ri given by Corollary 3.10. Now P[Λ] is a closed irreducible reduced subscheme of
codimension 1 in (the regular) D(yi), hence a prime divisor. The subsequent two propositions
will tell us the multiplicity of P[Λ] in the divisor D(y1) ∩D(y2) in D(y1).

Proposition 4.6 In the situation just described, suppose further that r1 6= r2. Then the divisor
D(y1) ∩D(y2) in D(y1) contains P[Λ] with multiplicity pmin{r1,r2}.

Proof. We choose x ∈ P[Λ](F) not superspecial. We choose y ∈ V ′p such that y ⊥ y1, y2 and
such that x ∈ Z(y)(F) and νp(y2) = 1 (Lemma 3.3). Let R = OMHB ,x and let (f1), (f2), (d)
be the ideals of D(y1), D(y2), Z(y) in R. It follows from Lemma 3.4 and from [T], chapter 2
that the ideal of P[Λ] in x is given by (p, d) = (f1, d) = (f2, d).

Claim 1 We have the following identity of ideals in R: (dp
r1 , f1) = (dp

r1 , p) = (f1, p).
For any z ∈ R we denote by z the image of z in R := R/(p) which is a UFD. First we

observe that (dp
r1 , p) = (f1, p), since the equation of P[Λ] in R is given by d = 0. After perhaps

multiplying f1 by a unit we can therefore write

f1 = dp
r1 + p%,

for some % ∈ R. By the above descripion of the ideal of P[Λ] in R we can also write

f1 = εp+ σd

for some ε ∈ R× and some σ ∈ R. From these equations we get f1 = d
pr1 = σd, hence

σ = d
pr1−1, hence σ = dp

r1−1 + pσ
′ for some σ′ ∈ R. Hence we have f1 = εp + dp

r1 + pdσ
′

=
p(ε + dσ

′
) + dp

r1 . Since ε + dσ
′ is a unit it follows that p ∈ (f1, d

pr1 ). Hence (f1, d
pr1 ) =

(f1, d
pr1 , p) = (f1, p). This confirms the claim.

Now we distinguish the cases r2 < r1 and r1 < r2.
First case r2 < r1. Since the ideal of P[Λ] in the local ring of D(y1) in x equals (d), it is

enough is enough to show that (f1, f2) ⊂ (dp
r2 , f1) and that (f1, f2) 6⊂ (dp

r2+1, f1). This is the
content of claims 2 and 3.

Claim 2 (f1, f2) ⊂ (dp
r2 , f1).

We have (f2) ⊂ (dp
r2 , p), hence (f1, f2) ⊂ (dp

r2 , f1, p). The latter ideal equals by claim 1
the ideal (dp

r2 , dp
r1 , f1) = (dp

r2 , f1) since r2 < r1. Hence (f1, f2) ⊂ (dp
r2 , f1) as claimed.

Claim 3 (f1, f2) 6⊂ (dp
r2+1, f1).

Suppose (f1, f2) ⊂ (dp
r2+1, f1). Then (f1, f2, p) ⊂ (dp

r2+1, f1, p). Since r2 < r1 we have
(f1, f2, p) = (dp

r2 , p) and (dp
r2+1, f1, p) = (dp

r2+1, p). Thus we get (dp
r2 , p) ⊂ (dp

r2+1, p), a
contradiction which confirms the claim.
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Combining claims 2 and 3 ends the proof in case r2 < r1.
Second case r2 > r1. By the first case, the vertical part (the part with support in the special

fibre) of D(y1) ∩ D(y2) is in R given by the ideal (f2, d
pr1 ). Now (f2, d

pr1 ) = (f2, d
pr1 , f1) =

(dp
r1 , f1). (The latter equality results from the fact that by claim 1 both ideals describe the

ideal of the special fibre of D(y1) in R.) �

Proposition 4.7 Suppose we are in the situation described before Proposition 4.6. Suppose
further that r1 = r2 =: r. Let ai = νp(y2

i ) and write y2
i = εip

ai und suppose that a1 and a2 are
not both even and that a1 ≤ a2. Suppose further that in case a1 = a2 we have χ(−ε1ε2) = −1
(here, χ is the quadratic residue character of Z×p ). Then a1 is odd and the divisor D(y1)∩D(y2)
in D(y1) contains P[Λ] with multiplicity (a1+1

2 − r) · pr. If a2 is also odd, then the divisor
D(y1) ∩D(y2) in D(y2) also contains P[Λ] with multiplicity (a1+1

2 − r) · pr.

Before we prove this, we show the following lemma.

Lemma 4.8 Suppose that y1, y2 ∈ V
′ are both odd and that y1 ⊥ y2. Let ai = νp(y2

i ) and write
y2
i = εip

ai with a1 ≤ a2 and suppose χ(−ε1ε2) = −1. (Here, χ denotes the quadratic residue
character of Z×p ). Then the generic fibre of Z(y1) ∩ Z(y2) is empty (i.e., Z(y1) ∩ Z(y2) has
support in the special fibre).

Proof of Lemma 4.8. Since y1, y2 ∈ V
′
, it is enough to show that there are no special cycles

Z = Z(ε1p
a1 , ω) and Z

′
= Z(ε2p

a2 , ω
′
) such that there is some point in the generic fibre of

Z ×M Z
′ with fundamental matrix diag(ε1p

a1 , ε2p
a2). (See also the incidence relation below

Proposition 2.2.) Recall our fixed lattice Λ ⊂ V in section 1. By the description of the generic
fibre of special cycles given in [KR2], section 2, it is enough to show the following

Claim 1 There are no elements λ1, λ2 ∈ ωp := Λ⊗Zp such that λ1 ⊥ λ2 and q(λi) = εip
ai .

Here, q denotes the extension to ωp of the quadratic form q on Λ. We will write 〈, 〉 for the
induced bilinear form on ωp. We also write λ2 for q(λ), and we write 〈, 〉 for the corresponding
bilinear form, i.e. 〈x, y〉 = 1

2((x+ y)2 − x2 − y2).
Suppose there are λ1, λ2 as in the claim. We may suppose that both of λ1, λ2 are not

divisible by p.
If x1, ..., x4 is a orthogonal basis of ωp and if qi = x2

i , then, since Λ is self-dual, we have
qi ∈ Z×p for all i. Further we have χ(q1q2q3q4) = −1 (comp. [KR2], 7.14).

We choose z1 ∈ ωp such that z2
1 ∈ Z×p and 〈z1, λ1〉 ∈ Z×p (such z1 exists, since λ1 is not

divisible by p). Let σ1 = z2
1 and let z2 = λ1 − 〈z1,λ1〉

σ1
z1. Then 0 6= z2 ⊥ z1 and z2

2 =: σ2 ∈ Z×p .
Let b1 = 〈z1,λ1〉

σ1
. Then b21σ1 + σ2 ≡ 0 mod p, hence χ(−σ1σ2) = 1. We extend z1, z2 to an

orthogonal basis z1, ..., z4 of ωp. Let σi = z2
i . Then we conclude that χ(−σ3σ4) = −1. We write

λ2 = c1z1 + c2z2 + c3z3 + c4z4. We already know that λ1 = b1z1 + z2. Since λ1 ⊥ λ2 we have
b1c1σ1 + c2σ2 = 0.

Claim 2 c2 ∈ Z×p .
Suppose c2 ≡ 0 mod p. Since b1 and σ1 are units it follows that c1 ≡ 0 mod p. Hence

c2
3σ3 + c2

4σ4 ≡ 0 mod p. If c3 or c4 is divisible by p, it follows that both are divisible by
p. But then λ2 is also divisible by p, a contradiction. Hence c3 and c4 are units. Hence
χ(σ3) = χ(c2

3σ3) = χ(−c2
4σ4) = χ(−σ4), and hence χ(−σ3σ4) = 1. This contradiction confirms

the claim that c2 is a unit.
By claim 2 we may assume that c2 = 1. From this we get c1 = − σ2

b1σ1
. Next we observe

that νp((c1z1 + z2)2) = νp(
σ2

2

b21σ
2
1
σ1 + σ2) = νp(b21σ1 + σ2) = νp(λ2

1) = a1. Since a1 ≤ a2 it follows
that c2

3σ3 + c2
4σ4 ≡ 0 mod pa1 . Since χ(−σ3σ4) = −1 and a1 is odd it follows that c3, c4 ≡ 0

mod p
a1+1

2 . Hence c2
3σ3 + c2

4σ4 ≡ 0 mod pa1+1.
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We introduce the following notation. For x = ηph ∈ Zp with η ∈ Z×p we write χ(x) = χ(η).
It follows that χ(ε2) = χ(λ2

2) = χ(c2
1σ1 + σ2). Hence

χ(−ε1ε2) = χ(−(b21σ1 + σ2)(c2
1σ1 + σ2)) = χ(−(b21σ1 + σ2)(

σ2
2

b21σ
2
1

σ1 + σ2))

= χ(−(b21σ1 + σ2)(σ2
2σ1 + σ2b

2
1σ

2
1)) = χ(−σ1σ2(b21σ1 + σ2)(σ2 + b21σ1)) = χ(−σ1σ2) = 1.

This contradicts the assumption of the lemma. �

Proof of Proposition 4.7. Since y1 ⊥ y2, the intersection Core(y1)∩Core(y2) is not empty. If
y1 was even, then Core(y1) would consist of a single point and y2 would be odd, hence a2 > a1.
Now using the Description of the special fibres of D(y1) and D(y2) given by Corollary 3.10, it
is easy to see that then the case r1 = r2 cannot occur. Hence a1 is odd.

To prove the claim on the multiplicity of P[Λ] in D(y1) ∩ D(y2) we use induction on r,
starting with the case r = 0.

We write 〈, 〉 for the bilinear form corresponding to Q on V ′ , i.e. 〈x, y〉 = 1
2(Q(x+y)−Q(x)−

Q(y)). We choose an F-valued point x ∈ P[Λ] which is superspecial and such that if x is the
intersection point P[Λ] and P[Λ′ ], then P[Λ′ ] 6⊂ Z(yi), i = 1, 2. Next we choose y0 ∈ V

′ such that
νp(y2

0) = 0 and x ∈ Z(y0)(F) and 〈y0, y1〉 6= 0. (Such y0 exists since otherwise P[Λ′ ] ⊂ Z(y1).)
We may suppose that y2 is linearly independent of y0 and y1. (Otherwise one chooses y3 ∈ V

′

such that y3 ⊥ y0, y1, y2 and x ∈ Z(y3)(F) and replaces y0 by y0 + py3.) Let z1 = y0 and
z2 = y1 − 〈y0,y1〉

〈y0,y0〉y0, let b1 = 〈y0,y1〉
〈y0,y0〉 . We extend z1, z2 to an orthogonal basis z1, ..., z4 of the

quadratic Z(p)-module Nx of special endomorphisms y ∈ V ′ such that x ∈ Z(y)(F). Let σi = z2
i .

Then σ1 and σ2 are units and (using the notation introduced in the proof of Lemma 4.8) we
have χ(−σ3σ4) = −1 (see also section 3).

We write y1 = b1z1 + z2 and y2 = c1z1 + c2z2 + c3z3 + c4z4. Then c1 and c2 are units
since otherwise both would be divisible by p (since a2 is divisible by p) and then we would have
P[Λ′ ] ⊂ Z(y2). Hence we may assume that c2 = 1. Hence b1c1σ1 +σ2 = 0. Arguing as in Lemma
4.8 we see that νp(c2

1σ1+σ2) = a1 and that c2
3σ3+c2

4σ4 is divisible by pa1 . Using χ(−σ3σ4) = −1

we see that c3 and c4 are divisible by p
a1−1

2 . Then c3z3 + c4z4 = p
a1−1

2 y4, where y4 ∈ Nx is
an odd special endomorphism. If a1 < a2, then it follows immediately that νp(y2

4) = 1. Again
reasoning as in Lemma 4.8 we see that χ(−(b21σ1 + σ2)(c2

1σ1 + σ2)) = 1. Thus also in case
a1 = a2 (in which case by assumption χ(−ε1ε2) = −1 and therefore χ(ε2) 6= χ(c2

1σ1 + σ2)) it
follows that νp(y2

4) = 1. It follows that the fundamental matrix of y0, y1, y2 can be diagonalized
to the matrix η0

η1

η2p
a1

 ,

where ηi ∈ Z×(p). Thus by [KR2], Proposition 6.2, it follows that (Z(y0), Z(y1), Z(y2)) = a1+1
2 .

Next we choose y ∈ V ′p such that x ∈ Z(y)(F) and y ⊥ y0, y1 and νp(y2) = 1 (Lemma 3.3).
Then the fundamental matrix of y, y0, y1 can be diagonalized to the matrixη0

η1

y2

 .

Thus the intersection multiplicity (Z(y0), Z(y1), Z(y)) equals 1 (Lemma 3.4). Since P[Λ] ⊂ Z(y)
it follows that (Z(y1) ∩ Z(y0),P[Λ]) = (D(y1) ∩ Z(y0),P[Λ]) = 1 (intersection multiplicity in
D(y1)). Hence it follows (writing (Z(y0), Z(y1), Z(y2)) = ((Z(y1) ∩ Z(y0), (Z(y1) ∩ Z(y2)) =
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((D(y1) ∩ Z(y0), (D(y1) ∩D(y2)) as intersection multiplicity in D(y1)) that the multiplicity of
P[Λ] in D(y1) ∩D(y2) as divisor in D(y1) is ≤ a1+1

2 and that it is < a1+1
2 if and only if there is

a horizontal component of D(y1) ∩ D(y2) passing through x. The same reasoning shows that
for a2 odd the multiplicity of P[Λ] in D(y1) ∩D(y2) as divisor in D(y2) is ≤ a1+1

2 and that it is
< a1+1

2 if and only if there is a horizontal component of D(y1)∩D(y2) passing through x. Thus
in case a1 = a2 this ends the induction start by Lemma 4.8, which guarantees that there is no
such horizontal component, and we also see that it suffices to show the claim in case a1 6= a2

for the multiplicity of P[Λ] in D(y1) ∩D(y2) as divisor in D(y1).
Next it is easy to see that there is a special endomorphism y3 of the form c1z1 + z2 + ρ,

where ρ is in the Z(p)-span of z3 and z4 in V
′
, such that y2

3 = ε3p
a1 (where ε3 ∈ Z×(p)) and

χ(−ε1ε3) = −1. We fix such a y3.
Thus y2 − y3 = p

a1−1
2 y4, where y4 is some element in the Z(p)-span of z3 and z4 in V ′ .

As just shown, we already know that the multiplicity of P[Λ] in D(y1) ∩D(y3) (or D(y1) ∩
Z(y3)) as divisor in D(y1) is a1+1

2 . Further, D(y1) ∩ Z(y4) (as divisor in D(y1)) contains P[Λ]

with multiplicity at least 1. Now Proposition 3.12 shows that D(y1) ∩ Z(p
a1−1

2 y4) (as divi-
sor in D(y1)) contains P[Λ] with multiplicity at least 1 + a1−1

2 = a1+1
2 . Hence we see that

D(y1) ∩ Z(y2) = D(y1) ∩ Z(y3 + p
a1−1

2 y4) also contains P[Λ] with multiplicity at least a1+1
2 .

Since locally around x we D(y2) = Z(y2) and since we already know that this multiplicity is at
most a1+1

2 , this ends the start of the induction.

Now we come to the induction step from r − 1 to r.
If y1 and y2 would be replaced by y1/p

r and y2/p
r, then we would be in the situation of the

induction start. Now we choose an F-valued point x of P[Λ] for y1/p
r and y2/p

r as we did in the
induction start, and also, as before, x is the intersection point of P[Λ] and P[Λ′ ]. We also choose
y0 for y1/p

r and y2/p
r as before. Then the fundamental matrix of y0, y1, y2 can be diagonalized

to the matrix η0

η1p
2r

η2p
a1

 ,

where ηi ∈ Z×(p). Further it follows that the fundamental matrix of y0, y1/p, y2 can be diagonal-
ized to the matrix diag(η0, η1p

2r−2, η2p
a1) and that the fundamental matrix of y0, y1/p, y2/p can

be diagonalized to the matrix diag(η0, η1p
2r−2, η2p

a1−2). Analogously one sees that the funda-
mental matrix of y0, y1, y2/p can be diagonalized to a matrix of the form diag(η0, η̃1p

2r−2, η̃2p
a1),

where η̃i ∈ Z×(p). Using D(y1) = Z(y1) − Z(y1/p) and D(y2) = Z(y2) − Z(y2/p) and [KR2],
Proposition 6.2, one checks that

(Z(y0), D(y1), D(y2)) = (
a1 + 1

2
− r + 1)pr−1 + (

a1 + 1
2
− r)pr. (4.1)

Using the induction hypothesis (applied to y1, y2 and the projective line P[Λ′ ], note that P[Λ′ ] has
multiplicity pr−1 in D(y1)p and in D(y2)p) we see that the multiplicity of P[Λ′ ] in D(y1)∩D(y2)
as divisor in D(y1) (and also as divisor in D(y2) if a2 is odd) is (a1+1

2 − (r− 1))pr−1. As before,
we choose y ∈ V ′p such that y ⊥ y0, y1 and such that νp(y2) = 1 and x ∈ Z(y)(F). Then the
fundamental matrix of y, y0, y1 can be diagonalized to the matrixη0

y2

p2rη1

 .

Thus the intersection multiplicity (Z(y0), D(y1), Z(y)) equals 2 (use Lemma 3.4).
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Since P[Λ],P[Λ]′ ⊂ Z(y)∩D(y1) it follows that (Z(y0)∩D(y1),P[Λ]) = (Z(y0)∩D(y1),P[Λ′ ]) =
1 (intersection multiplicities inD(y1) ). Using (4.1) and the above expression for the multiplicity
of P[Λ′ ] in D(y1)∩D(y2), we see that the multiplicity of P[Λ] in D(y1)∩D(y2) as divisor in D(y1)
is ≤ (a1+1

2 −r)pr, with equality if and only if there is no horizontal component of D(y1)∩D(y2)
passing through x. Thus, again by Lemma 4.8, we are done in case a1 = a2. The same reasonig
shows in case that a2 is odd the corresponding statement in D(y2). Thus for the rest we may
restrict ourselves to the case that we consider D(y1) ∩D(y2) as divisor in D(y1).

The remaining reasoning (for the case a1 6= a2 ) is analogous to the reasoning in the in-
duction start: One chooses y3 ∈ V

′ such that y2 − y3 is a linear combination of z3 and z4

(in particular y3 ⊥ y1) and such that x ∈ Z(y3)(F) and νp(y2
3) = a1 and writing y2

3 = ε3p
a1

we have χ(−ε1ε3) = −1. Then y2 − y3 = p
a1−1

2 y4 for some y4 such that x ∈ Z(y4)(F). Then
as just shown, D(y1) ∩D(y3) as divisor in D(y1) contains P[Λ] with multiplicity (a1+1

2 − r)pr.
Thus (using Proposition 4.6) we see that D(y1) ∩ Z(y3) as divisor in D(y1) contains P[Λ] with
multiplicity 1 + ... + pr−1 + (a1+1

2 − r)pr. Now Proposition 4.6 and claim 1 in its proof show
that Z(pry4) ∩ D(y1) as divisor in D(y1) contains P[Λ] with multiplicity at least 1 + ... + pr.

Now using Proposition 3.12 we see that Z(p
a1−1

2 y4) ∩ D(y1) as divisor in D(y1) contains
P[Λ] with multiplicity at least 1 + ... + pr + (a1−1

2 − r)pr = 1 + ... + pr−1 + (a1+1
2 − r)pr.

Thus D(y1) ∩ Z(y2) = D(y1) ∩ Z(y3 + p
a1−1

2 y4) also contains P[Λ] with multiplicity at least
1 + ...+ pr−1 + (a1+1

2 − r)pr. Thus we see (again using Proposition 4.6) that the multiplicity of
P[Λ] in D(y1)∩D(y2) (as divisor in D(y1)) is at least (a1+1

2 − r)pr. Since we already know that
this multiplicity is at most (a1+1

2 − r)pr, this is the precise multiplicity. �

Propositions 4.6 and 4.7 give us the necessary informations about the vertical part (i.e.
the part having support in the special fibre) of the divisors D(ji) ∩ D(jl) in say D(ji). Next
we investigate the horizontal components (the components which do not have support in the
special fibre). We consider two special endomorphisms y1, y2 ∈ V

′ such that y1 ⊥ y2, and we
suppose that y1 is odd. By the results of of [KR2] and [T] we may assume that νp(yi) ≥ 2.
(In case that the three special endomorphisms ji are pairwise perpendicular to each other and
at least one of the exponents νp(j2

i ) is ≤ 1, the intersection multiplicity (Z(j1), Z(j2), Z(j3))
is known by [KR2], resp. [T].)We start with the following lemma, which is given a geometric
interpretation in the subsequent proposition.

Lemma 4.9 Let y1, y2 ∈ V
′ such that y1 ⊥ y2 and suppose that y1 is odd and that y2 is even.

Write ai = νp(y2
i ). Suppose that a1 > a2 ≥ 2. Let x be the unique F-valued point in Core(y2).

Let R = OMHB ,x and let f1 resp. f2 be generators of the ideals of D(y1) resp. D(y2) in R. Let
d ∈ R such that the image of d in R/(f1) is a generator of the ideal of the underlying reduced
subscheme of D(y1). By Proposition 4.6, we can write f2 = dαh+ ρf1, for some h, ρ ∈ R such
that the image of h in R/(f1) is coprime to p, and where α = pa2/2−1. Further let t ∈ R such
that the image of t in R/(p) is a generator of the ideal of the divisor s in Corollary 3.10 (applied
in case j = y2). Let β = pa2/2−1(p− 1). Then the ideals I1 := (f1, h, d) and I2 := (tβ, d, p) are
equal and the length (over W ) of R/I1 is 2β.

Proof. We choose a special endomorphism y such that y ⊥ y1, y2 such that νp(y) = 1 and
x ∈ Z(y)(F) (Lemma 3.3). By Lemma 3.4 (and using Lemma 5.2), we may assume that the
ideal of Z(y) in R is (d). Further by Lemma 3.4 we know that p ∈ (f1, d) and f1 ∈ (d, p). Thus
I1 = (f1, h, d, p) and I2 = (f1, t

β, d, p). For any r ∈ R we denote by r its image in R/(p) (which
is a UFD). Further let Ii be the image of Ii in R/(p). Then, since p ∈ I1 ∩ I2, it is enough to
show that I1 = I2. We write

f2 = dαtβ + σp
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for some σ ∈ R. Then
f2 = d

α
h+ ρf1 = d

α
t
β

and
f1 = d

γ
,

where γ = p(a1−1)/2. Combining both equations we get

t
β = h+ ρd

γ−α
.

Note that γ − α > 0. Thus we see that tβ ∈ I1 and h ∈ I2. This confirms that I1 = I2 and
hence I1 = I2.

Further lgW (R/I1) = lgW (R/I2) = β · lgW (R/(p, d, t)). By Lemma 3.4,1 (together with
Lemma 5.2 below), the equation for Z(y1/p

(a1−1)/2) in R/(d) is given by p = 0, hence we see
that lg(R/(p, d, t)) = (Z(y1/p

(a1−1)/2), Z(y2/p
a2/2), Z(y)). The latter equals 2, as follows again

from Lemma 3.4. Thus lgW (R/I1) = 2β as claimed. �

Proposition 4.10 In the situation of Lemma 4.9 there is a horizontal part h of the divisor
D(y1) ∩ D(y2) in D(y1) which passes through the unique point in Core(y2). Its intersection
multiplicity (in D(y1)) with each of the two projective lines which contain the point in Core(y2)
is equal to β = pa2/2−1(p− 1).

Proof. This follows immediately from Lemma 4.9. �

Proposition 4.11 Let y1, y2 ∈ V
′ such that y1 ⊥ y2 and suppose that y1 is odd. Let ai = νp(y2

i )
and write y2

i = εip
ai . Suppose that a1, a2 ≥ 2 and that in case a1 = a2 we have χ(−ε1ε2) = −1.

Then in case that a1 > a2 and that a2 is even, the horizontal component of D(y1) ∩ D(y2)
passing through the point in Core(y2) (see Proposition 4.10) is the only horizontal component of
D(y1)∩D(y2). In all other cases there does not exist any horizontal component of D(y1)∩D(y2).

The proof will be given in the next section.

5 Calculation of intersection multiplicities

In view of Proposition 4.4 (and its proof) it is enough to calculate (if at least one of j1, j2, j3
is odd) (D(ji), D(jl), D(jk)) or (if at least one of ji, jk is odd) (D(ji), D(jk), Z(jl)), where
{i, k, l} = {1, 2, 3}. Using Lemma 4.1 we see (as before) that

(D(ji), D(jl), D(jk)) = χ(OD(ji)∩D(jl) ⊗
L
OD(ji)

OD(ji)∩D(jk)),

which we write as ((D(ji) ∩ D(jl)), (D(ji) ∩ D(jk))) (intersection multiplicity in D(ji)). The
corresponding analogous formula holds if one replaces D(jl) by Z(jl). We may and will assume
that ji is odd (see below). For any odd j ∈ V ′ with νp(j2) ≥ 1 by Corollary 3.10 the special
fibre of the regular formal scheme D(j) is a scheme and its underlying reduced subscheme is a
union of copies of P1

F. The same reasoning as in [D] now shows that the intersection number of
two divisors E = E1 +E2 and F in D(j) (defined as usual as the Euler-Poincaré characteristic
of their structure sheaves) is bilinear i.e. satisfies (E,F ) = (E1, F ) + (E2, F ) provided that the
support of E ∩ F is contained in D(j)p and is proper over F.

Next we compute the intersection multiplicity of two of the projective lines in D(j)p.
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Lemma 5.1 Let j ∈ V ′ be odd with νp(j2) ≥ 1 and let P[Λ],P[Λ′ ] ⊂ D(j)p. Then their inter-
section multiplicity in D(j) has the value:

(P[Λ],P[Λ′ ]) =



0, if P[Λ] and P[Λ′ ] do not intersect
1, if P[Λ] and P[Λ

′
] intersect in precisely one point

−(p+ 1), if [Λ] = [Λ
′
] and νp(j2) = 1

−2p, if [Λ] = [Λ
′
] and νp(j2) > 1 and P[Λ] ⊂ Z(j/p)

−p, if [Λ] = [Λ
′
] and νp(j2) > 1 and P[Λ] 6⊂ Z(j/p).

Proof. The first case is obvious. In the second case we have to compute the length of the
local ring of the intersection point of P[Λ] and P[Λ′ ]. We find a special endomorphism y ∈ V ′p
with νp(y2) = 1 and such that Z(y) contains P[Λ] and P[Λ′ ]. But then the claim follows from
[KR1], Lemma 4.7. The same lemma also shows the third case. To compute the intersection
multiplicity in the fourth and in the fifth case, we use the fact that (P[Λ], D(j)p) = 0. This
follows as in the proof of Proposition 4.4 from the exact sequence

0 −−−−→ OD(j)
p·−−−−→ OD(j) −−−−→ OD(j)/(p) −−−−→ 0.

Let pa be the multiplicity of P[Λ] in D(j)p (see Corollary 3.10). We write j2 = pbj0, where
νp(j2

0) = 1. Suppose first that P[Λ] does not belong to Z(j0). Then using the second case and
Corollary 3.10 we therefore get in the fourth case

0 = (P[Λ], D(j)p) = pa · (P[Λ],P[Λ]) + p2 · pa−1 + pa+1.

Thus (P[Λ],P[Λ]) = −2p.
If P[Λ] ⊂ Z(j0), then we calculate (still in the fourth case)

0 = pa · (P[Λ],P[Λ]) + (p2 − p) · pa−1 + (p+ 1) · pa.

(Note that there are p + 1 projective lines intersecting P[Λ] which also belong to Z(j0) and
there are p2 − p projective lines intersecting P[Λ] which do not belong to Z(j0).) Thus again
(P[Λ],P[Λ]) = −2p.

In the fifth case we calculate (using a = 0):

0 = (P[Λ],P[Λ]) + p.

Thus (P[Λ],P[Λ]) = −p. �

In the sequel we will use the following terminology. If j is an odd special endomorphism
and j = pbj0, where νp(j2

0) = 1, then the center of Z(j), denoted by Cent(j), is the set of all
P[Λ] which are contained in Z(j0).

If j is an arbitrary special endomorphism, then the boundary of Z(j) is the set of all P[Λ]

which belong to Z(j) but not to Z(j/p) and which do not contain any points of Core(j). It
will be denoted by B(j).

If E is a divisor in D(j), then we denote by Ev the vertical part of E, i.e. the part having
support in the special fibre.

For any P[Λ] and any r ∈ {1, 2, 3} we denote by multr(P[Λ]) the multiplicity of P[Λ] in D(jr)p
given by Corollary 3.10.

Further we denote again by χ the quadratic residue character of Z×p resp. Z×(p).

Lemma 5.2 Let y1, y2 ∈ V
′
p such that y1 ⊥ y2. Suppose that ai = νp(y2

i ) ≥ 0 and write
y2
i = εip

ai.
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(i) If y1 and y2 are both odd and χ(−ε1ε2) = 1, then Cent(y1)∩Cent(y2) consists of precisely
one projective line.

(ii) If y1 and y2 are both odd and χ(−ε1ε2) = −1, then Cent(y1) ∩ Cent(y2) consists of an
appartment of projective lines, i.e. each P[Λ] ∈ Cent(y1) ∩ Cent(y2) is intersected by
precisely two others.

(iii) If y1 is odd and y2 is even, then the point in Core(y2) is the intersection point of two
projective lines belonging to Cent(y1).

(iv) If y3 ∈ V
′
p is a third special endomorphism with y2

3 = ε3p
a3 (where a3 := νp(y2

3) ≥ 0) and
y3 ⊥ y1, y2, then Z(y1)∩Z(y2)∩Z(y3) is not empty, and if y1 and y2 are odd and y3 is even,
then χ(−ε1ε2) = −1. Further, if y1, y2, y3 are all odd, then Cent(y1)∩Cent(y2)∩Cent(y3)
consists of precisely one projective line.

Proof. The first three points follow by combining [T], Proposition 4.2, together with loc.cit
Proposition 2.4 and [KR1], Corollary 2.6, or can be proved directly like [KR1], Corollary 2.6.
The first assertion of point (iv) is clear, the second follows from the first three points. The last
assertion follows from [KR2], Proposition 8.13 or alternatively from [KR1], Proposition 2.12. �

Lemma 5.3 Suppose that y1, y2 ∈ V
′ such that y1 ⊥ y2 and that a1 := νp(y2

1) ≥ 1 is odd
and that a2 := νp(y2

2) ≥ 2. Write y2
i = εip

ai . Suppose that in case that a1 = a2 we have
χ(−ε1ε2) = −1. Let P[Λ] ⊂ D(y1) ∩ D(y2) and suppose that P[Λ] /∈ B(y2). In case that a2

is even and that a2 < a1 or a1 = 1 suppose further that P[Λ] does not contain the point in
Core(y2). Then (P[Λ], (D(y2) ∩D(y1))v) = 0 (intersection multiplicity in D(y1)).

Proof. Suppose first that a1 ≥ 3. We distinguish (a priori) 4 times 3 cases. The four cases are
given by the distiguishing whether P[Λ] ∈ Cent(y1) or not and whether P[Λ] ∈ Cent(y2) or not.
Let pmi be the multiplicity of P[Λ] in D(yi)p given by Corollary 3.10. For each of the four cases
one distuishes whether m1 < m2 or m1 = m2 or m1 > m2.

For example, if P[Λ] ∈ Cent(y1) and m1 < m2, then (using Propositions 4.6, 4.7 and Lemma
5.1)

(P[Λ], (D(y2) ∩D(y1))v) = (−2p)pm1 + (p+ 1)pm1 + (p2 − p)pm1−1 = 0.

Let us consider the case P[Λ] /∈ Cent(y1) ∪ Cent(y2) and m1 = m2. Then there are p2 pro-
jective lines intersecting P[Λ] such that each is contained in D(y1)p and D(y2)p with multiplicity
pm1−1. There is one projective line intersecting P[Λ] which is contained in D(y1)p and D(y2)p
with multiplicity pm1+1. Let a = min{a1, a2}. Now using Lemma 5.1 and Proposition 4.7 we
compute

(P[Λ], (D(y2) ∩D(y1))v) =

(
a+ 1

2
−m1)(−2p)pm1 + (

a+ 1
2
−m1 − 1)pm1+1 + p2(

a+ 1
2
−m1 + 1)pm1−1 = 0.

The other cases are proved analogously, as well as the case a1 = 1 which is even simpler
(use lemma 3.4). �

In the sequel we will say that two projective lines have distance d, if the corresponding
vertices in the building have distance d.

Proof of Proposition 4.11. Denote by (D(y1)∩D(y2))vh the divisor in D(y1) which is given
by the part of (D(y1)∩D(y2)) having support in the special fibre and, in case that a1 > a2 and
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that a2 is even, includes additionally the horizontal part of D(y1) ∩D(y2) passing through the
point in Core(y2) (see Proposition 4.10).

Suppose that x ∈ (D(y1) ∩ D(y2))(F) such that in case that a1 > a2 and that a2 is even
{x} is not equal to Core(y2). Then we must show that there is no horizontal component of
D(y1) ∩ D(y2) passing through x. We choose y ∈ V

′
p such that νp(y2) = 1 and y ⊥ y1, y2

and x ∈ Z(y)(F). By the results of [T] we know the value of (D(y1), D(y2), Z(y)). We also
know by loc. cit. the structure of D(y1) ∩ Z(y) (Lemma 3.4). Using this we calculate (below)
((D(y1) ∩ D(y2))vh, (D(y1) ∩ Z(y))) (intersection multiplicity in D(y1)) and observe that it
equals (D(y1), D(y2), Z(y)). If there was a horizontal component of D(y1) ∩ D(y2) passing
though x, then it would cause a strictly positive contribution to the intersection multiplicity
which could not be compensated by any other contributions of horizontal components. Hence
(D(y1) ∩D(y2))vh = (D(y1) ∩D(y2)).

Now we come to the calculation of ((D(y1)∩D(y2))vh, (D(y1)∩Z(y))). We distinguish cases
according as a2 is even or odd and if a1 < a2 or a1 = a2 or a1 > a2. First we handle the case
that a2 even and a2 < a1.

For each P[Λ] ⊂ D(y1) ∩ Z(y) we compute the contribution to ((D(y1) ∩D(y2))v, (D(y1) ∩
Z(y))v) coming from the part of (D(y1) ∩ Z(y))v which has support in P[Λ]. Then we add
all these contributions. (More precisely, this means the following. If P[Λ] is contained in the
divisor D(y1)∩Z(y) in D(y1) (then automatically with multiplicity is m = 1, see Lemma 3.4),
then we compute ((D(y1) ∩ D(y2))v,P[Λ]) as intersection multiplicity in D(y1).) By Lemma
5.3 the contribution of P[Λ] is 0 if P[Λ] ⊂ D(y2) and P[Λ] /∈ B(y2) and Core(y2) 6⊂ P[Λ]. If
P[Λ] ⊂ D(y1)∩Z(y) and P[Λ] ∈ B(y2), then the contribution to ((D(y1)∩D(y2))v, (D(y1)∩Z(y)))
coming from the part of (D(y1)∩D(y)) which has support in P[Λ] is −2p+p = −p. (where −2p
comes from the self-intersection and p comes from the intersection with the unique projective
line P[Λ′ ] in D(y1) ∩ D(y2) which intersects P[Λ]. By Proposition 4.6 it has multiplicity p in
D(y2) ∩ D(y1).) Now any such P[Λ] is intersected in D(y1) by p additional projective lines
(6= P[Λ′ ]) which belong to Z(y) but not to D(y2). Each of these p projective lines contributes
with the value 1 to the intersection multiplicity. Therefore together with P[Λ] they contribute
with the value 0 to the intersection multiplicity. Next we come to the contribution of the two
projective lines passing through the point in Core(y2). If a2 ≥ 4 each contributes with the
value

(−2p) · pa2/2−1 + p2 · pa2/2−2 + pa2/2−1 = −pa2/2 + pa2/2−1.

In case a2 = 2 the contribution is −2p+ 1. In this case we have to add the contributions of the
p projective lines which do not belong to D(y2) but to Z(y) and intersect P[Λ]. Thus we have
in both cases

((D(y1) ∩D(y2))v, (D(y1) ∩ Z(y))v) = −2pa2/2 + 2pa2/2−1.

By Lemma 3.4 we have (D(y1) ∩ Z(y))v = (D(y1) ∩ Z(y)). Using Proposition 4.10 we finally
get

((D(y1) ∩D(y2))vh, (D(y1) ∩ Z(y))) = 0.

By [T], Theorem 5.1 (and its proof) we see that this is already the value of ((D(y1)∩D(y2)), (D(y1)∩
Z(y))). Thus ((D(y1) ∩D(y2))vh = ((D(y1) ∩D(y2)).

Next we treat the case that a2 is odd. Then by Lemma 4.8 and our assumption we only
need to treat the case a2 > a1 and χ(−ε1ε2) = 1. Then again (D(y1)∩Z(y))v = (D(y1)∩Z(y))
(Lemma 3.4) and we only have to calculate ((D(y1) ∩ D(y2))v, (D(y1) ∩ Z(y)v)). We write
y2 = εp.

Claim ((D(y1) ∩D(y2))v, (D(y1) ∩ Z(y)v)) equals 0 if χ(−εε1) = 1, and it equals −2(p −
1)p

a1−1
2 if χ(−εε1) = −1.

The first claim follows from Lemma 5.3.
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In the second case we compute for each projective line in (D(y1) ∩ Z(y))v the contribution
to the intersection multiplicity coming from the part of (D(y1)∩Z(y))v having support in this
projective line. By Lemma 5.3 we only have to consider such projective lines which are in B(y2)
or which intersect a projective line in B(y2) and are not in D(y2). If such a projective line lies in
B(y1)∩B(y2) (and lies in Z(y)), then its contribution is (−p)(a1+1

2 )+p(a1+1
2 −1) = −p. There

are precisely 2(p− 1)p
a1−1

2
−1 such projective lines. (There are precisely two projective lines in

the apartment of projective lines belonging to Cent(y1) ∩ Cent(y2) for which the distance to
B(y1) (defined as the corresponding distance in the building) is a1−1

2 . For each of these two,

there are (p−1)p
a1−1

2
−1 projective lines with the described properties which have distance a1−1

2
to the projective line in the apartment.)

For all other projective lines in B(y2), their respective contributions add to zero with the
contributions of the p projective lines in Z(y) which intersect it but are not contained in D(y2)
(as explained in the case that a2 is even and a2 < a1). This yields the claim.

Again, in both cases of the claim, this is also equal to the intersection multiplicity ((D(y1)∩
D(y2)), (D(y1) ∩ Z(y))) given by [T], Theorem 5.1.

Finally, the case that a1 < a2 and a2 is even is treated in the same way as the second case
of the above claim (the intersection multiplicity is also again −2(p− 1)p

a1−1
2 ). �

Now we are ready to start the intersection calculus. We fix the notation ar = νp(j2
r ) and

write j2
r = εrp

ar . By Proposition 4.2 we may assume that j1, j2, j3 are pairwise perpendicular
to each other. From now on we make this assumption (unless otherwise mentioned). Further we
assume that 2 ≤ a1 ≤ a2 ≤ a3. To calculate (D(ji), D(jl), D(jk)) = ((D(jl) ∩D(ji)), (D(jk) ∩
D(ji))) (intersection multiplicity in D(ji)) we want to use Propositions 4.6 - 4.11 and Lemmas
5.1 - 5.3. Note that we always find i ∈ {1, 2, 3} such that ji is odd. This follows from [Ku1],
1.16, see also (5.1) below.

Proposition 5.4 We have the following identities of intersection multiplicities.

(i) If a1 is even and a2 is odd, then (D(j1), D(j2), D(j3)) = 2p(a1+a2−3)/2(p− 1).

(ii) If a1 and a3 are odd and a2 is even, then (D(j1), D(j2), D(j3)) = 0.

(iii) If a1 and a2 are odd and a3 is even, then

(D(j1), D(j2), D(j3)) = −2p(a1+a2−4)/2(a1+1
2 p− a1−1

2 )(p− 1).

(iv) If a1 is odd and a2 and a3 are even and a2 < a3, then (D(j1), D(j2), D(j3)) = 0.

(v) If a1 is odd and a2 and a3 are even and a2 = a3, then

(D(j1), D(j2), D(j3)) = −2p(a1+a2−3)/2(a1+1
2 p− a1−1

2 ).

The case that a1 and a2 are even and the case that a1 and a2 and a3 are odd will be treated
later.

Proof. Let us consider the first case. In view of Propositions 4.10 and 4.11 we have to show
that (D(j1)∩D(j2)v, D(j3)∩D(j2)v) = 0 (intersection multiplicity in D(j2)). But this follows
from Lemma 5.3. The same reasoning shows the second and the fourth case.

Let us consider the third case. For each P[Λ] blonging to D(j3) and to D(j1) we compute
the contribution to the intersection multiplicity which comes from the part of D(j3) ∩ D(j1)
which has support in P[Λ] and we add the contributions for the several projective lines. (More
precisely, if D(j3)∩D(j1) contains P[Λ] with multiplicity m (Propositions 4.6, 4.7), we compute
the intersection (m ·P[Λ], D(j2)∩D(j1)) in D(j1) and add the contributions of the several P[Λ].)
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By Lemma 5.3 we only need to consider such P[Λ] which belong to B(j2) or which do not belong
to D(j2). First we assume that a1 < a2.

First we consider the contributions of such P[Λ], which belong to B(j2) ∩ B(j3). This
contribution is −2p + p = −p if P[Λ] does not belong to B(j1) and it is (−p) · (a1+1

2 )2 +
(a1+1

2 − 1) · a1+1
2 · p if it belongs to B(j1). Next it is easy to see that there are precisely

2(p − 1)p
a2−a1

2
−1 · p · (p2)

a1−1
2
−1 projective lines belonging to B(j2) ∩ B(j3) but not to B(j1):

We start with one of the two projective lines in the apartment of projective lines belonging to
Cent(j1) and to Cent(j2) such thatD(j2)p andD(j3)p contain this projective line with the same
multplicity (given by Corollary 3.10). There are p − 1 neighboring projective lines belonging
to Cent(j1) but not to Cent(j2). For each such choice there are p new neighboring projective
lines belonging to Cent(j1). We continue walking in Cent(j1) and enlarging our distance to
the mentioned apartement. After a2−a1

2 − 1 such steps, the distances to B(j1) and to B(j2)

are equal. Now there are p · (p2)
a1−1

2
−1 possible ways to go on until B(j2) but not to B(j1)

(in each step enlarging the distance to the apartment by one). Similarly there are precisely

2(p− 1)p
a2−a1

2
−1 · (p2 − p) · (p2)

a1−1
2
−1 projective lines belonging to B(j1) ∩B(j2) ∩B(j3).

Next is easy to see that the contribution of all P[Λ] which do not belong to B(j3) sum up to
zero. (More precisely, one checks the following fact for any projective line P[Λ′ ] which lies in the
apartment of projective lines belonging to Cent(j1)∩Cent(j2) and for which the multiplicities
of P[Λ′ ] in D(j2)p and in D(j3)p are different: The contributions coming from all projective
lines P[Λ] in B(j2) (or intersecting it) with the property that P[Λ′ ] is the projective line in the
apartment such that its distance to P[Λ] is minimal, sum up to 0.)

Thus

(D(j1), D(j2), D(j3)) = 2(p− 1)p
a2−a1

2
−1 · p · (p2)

a1−1
2
−1 · (−p)

+2(p− 1)p
a2−a1

2
−1 · (p2 − p) · (p2)

a1−1
2
−1

×((−p) · (a1 + 1
2

)2 + (
a1 + 1

2
− 1) · a1 + 1

2
· p)

= −2p(a1+a2−4)/2(
a1 + 1

2
p− a1 − 1

2
)(p− 1).

In case a1 = a2 the calculation is almost the same, we have only to replace the above formulas
for the number of projective lines which belong to B(j2) ∩B(j3) but not to B(j1) resp. which

belong to B(j1)∩B(j2)∩B(j3) by the expressions 2(p−1)·(p2)
a1−1

2
−1 resp. 2(p−1)2 ·(p2)

a1−1
2
−1.

The resulting expression for (D(j1), D(j2), D(j3)) does not change.
The fifth case is done analogously. �

Next we come to the case that a1 and a2 are even and (hence) a3 is odd. We intersect
in D(j3). Now there is a horizontal component in D(j1) ∩ D(j3) passing through the unique
point in Core(j1) = Core(j2) and also one of D(j2) ∩ D(j3) passing through the point in
Core(j1) = Core(j2). If we proceed as before, then we are faced with the problem that we
have to compute the intersection multiplicity of these two horizontal components in D(j3). To
avoid this problem, we proceed as follows. First we choose γ ∈ Z(p) such that νp(j2

2 + γ2j2
1) =

a2 + 2 (which is possible, as follows from the fact that χ(ε1ε2) = χ(−1), which in turn follows
from the form of the matrix S′ given in section 3). Now let j′2 = j2 + γj1. By Proposition
4.2, we get (Z(j1), Z(j2), Z(j3)) = (Z(j1), Z(j

′
2), Z(j3)). Using also Proposition 4.4 we also

see (D(j1), Z(j2), D(j3)) = (D(j1), Z(j
′
2), D(j3)). It follows from the construction of j′2 that

Core(j1) 6= Core(j
′
2) and that Core(j′2) consists of a supersingular point lying on one of the

projective lines passing through the point in Core(j1).
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Proposition 5.5 Suppose that a1 and a2 are even. Then

(D(j1), Z(j2), D(j3)) = p
a1+a2

2 + p
a1+a2

2
−1 − 2pa1−1.

Proof. We compute the value of (D(j1), Z(j
′
2), D(j3)). We write (D(j1), Z(j

′
2), D(j3)) =

((D(j1) ∩ D(j3)), (Z(j
′
2) ∩ D(j3))) as intersection multiplicity in D(j3). Assume first that

a2 > 2 and a2 < a3 − 1. We write (D(j1) ∩ D(j3)) = v1 + h1, where v1 denotes the ver-
tical part (i.e. the part with support in the special fibre) of D(j1) ∩ D(j3) as divisor in
D(j3) and h1 denotes the horizontal part. Similarly we write Z(j

′
2) ∩D(j3) = v2 + h2. Then

(D(j1), Z(j
′
2), D(j3)) = (v1, h2) + (h1, v2) + (v1, v2). (Note that by the above construction of j′2,

the horizontal part h1 and h2 do not intersect.) Using Propositions 4.10 and 4.6 we compute

(v1, h2) = (p
a1
2
−1 + p

a1
2
−2)(1 + (p− 1) + ...+ (p− 1)p

a2
2 ) = (p

a1
2
−1 + p

a1
2
−2)p

a2
2

+1.

(Here the first summand 1 in the second parenthesis claims that the horizontal component
of Z(j

′
2/p

a2/2+1) ∩D(j3) intersects the two projective lines which contain Cent(j′2) each with
multiplicity 1. This follows by combining Lemma 3.3 and point 3 of Lemma 3.4.)

Similarly, we compute

(h1, v2) = (p− 1)p
a1
2
−1(1 + (1 + p) + ...+ (p

a2
2
−1 + p

a2
2 )).

Next one checks that the the contribution to (v1, v2) coming from the part of (Z(j
′
2) ∩D(j3))v

which has support in the two projective lines passing through the point of Core(j1) is exactly
−(h1, v2).

To calculate the rest of (v1, v2) we write v2 = (Z(j
′
2)∩D(j3))v =

∑
r(D(j

′
2/p

r)∩D(j3))v and
see (using Lemma 5.3) that for each r we only have to consider the contributions coming from
the projective lines in (D(j

′
2/p

r) ∩ D(j3))v which are in B(j1) or which intersect a projective
line in B(j1). Further these contributions add to zero if r 6= a2−a1

2 , a2−a1
2 − 1. In each of these

two cases these contributions add to (−p)(p2)
a1
2
−1. Adding everything we get the desired result.

The cases that a1 = 2 and/or a2 = a3 − 1 are computed analogously. �

Next we treat the case that a1a2a3 is odd. Here we are faced with the problem that in
case ai = ak and χ(−εiεk) = 1 we cannot apply Propositions 4.7 and 4.11 to get informa-
tion about the structure of D(ji) ∩ D(jk). But if in this case al 6= ai, ak we can compute
((D(ji) ∩ D(jl)), (D(jk) ∩ D(jl))) as intersection multiplicity in D(jl). Thus the only case
where a problem arises, is the case that a1 = a2 = a3 =: a and at least two of the three
expressions χrs := χ(−εrεs) are equal to 1. Suppose χij = χik = 1. But then the matrix T =
diag(ε1p

a, ε2p
a, ε3p

a) is GL3(Z(p))-equivalent to a matrix of the form diag(εipa, ηkεkpa, ηlεlpa),
where ηl, ηk ∈ Z×(p) such that χ(ηl) = χ(ηk) = −1. Then χ(−εiηkεk) = χ(−εiηlεl) = −1. Since
we are finally interested in the value of (Z(j1), Z(j2), Z(j3)) and since for this we may replace T
by diag(εipa, ηkεkpa, ηlεlpa) (Proposition 4.2), we are reduced to the case that χij = χik = −1.

Proposition 5.6 Suppose that a1a2a3 is odd. Then we have the following identities of inter-
section multiplicities.

(i) If a1 = a2 = a3 =: a and χ12 = χ13 = −1 and χ23 = 1, then

(D(j1), D(j2), D(j3)) = −a+ 1
2

pa + 3
a+ 1

2
pa−1 − (a− 1)pa−2.

(ii) If a1 = a2 = a3 =: a and χ12 = χ13 = χ23 = −1, then

(D(j1), D(j2), D(j3)) = −a+ 1
2

pa + 3
a+ 1

2
pa−1 − 2(a− 1)pa−2.
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(iii) If a1 ≤ a2 < a3 and χ12 = −1, then

(D(j1), D(j2), D(j3)) = −2p
a1+a2−4

2 (p− 1)(
a1 + 1

2
p− a1 − 1

2
).

(iv) If a1 = a2 < a3 and χ12 = 1, then

(D(j1), D(j2), D(j3)) = 2pa1−1.

(v) If a1 < a2 = a3 and χ12 = χ13 = 1, then

(D(j1), D(j2), D(j3)) = −p
a1+a2−4

2 (p+ 1)(
a1 + 1

2
p− a1 − 1

2
).

(vi) If a1 < a2 = a3 and χ12 = −1 and χ13 = 1, then

(D(j1), D(j2), D(j3)) = −p
a1+a2−4

2 (p− 1)(
a1 + 1

2
p− a1 − 1

2
).

(vii) If a1 < a2 < a3 and χ12 = 1, then

(D(j1), D(j2), D(j3)) = 0.

Note that the calculation of the intersection multiplicity (Z(j1), Z(j2), Z(j3)) in case a1 < a2 =
a3 and χ13 = −1 can be reduced to the case case a1 < a2 = a3 and χ13 = 1 by the same
reasoning as the one before the proposition.

Proof. In case (i) we write (D(j1), D(j2), D(j3)) = ((D(j1) ∩ D(j2)), (D(j1) ∩ D(j3))),
and we compute for each projective line in D(j1) ∩D(j3) the contribution to the intersection
multiplicity ((D(j1)∩D(j2)), (D(j1)∩D(j3))) which comes from the part of D(j1)∩D(j3) which
has support in that projective line. By Lemma 5.3 we only have to consider such projective
lines, which are in B(j2), or which are not in D(j2) but intersect an element in B(j2).

First we consider projective lines in B(j1) ∩B(j2) ∩B(j3). Then each contributes with the
value −p · a+1

2 (Proposition 4.7) and there are precisely (p2 − 3p + 2)(p2)
a−1

2
−1 such. Next,

there are (p − 3)(p2)
a−1

2
−1 projective lines which are in B(j2) ∩ B(j3) but not in B(j1). Each

contributes the value −p. Further, there are (p − 1)(p2)
a−1

2
−1 projective lines which are in

B(j1) ∩B(j2) and D(j3) but not in B(j3). Each contributes with value −p.
Next we count the contributions coming from the projective lines in B(j2) which are not

in B(j1) ∪ B(j3). For each such we also add the contributions coming from the projective
lines in D(j1) ∩ D(j3) which intersect it but are not in D(j2). Now, if P[Λ] ∈ B(j2) but not
in B(j1) ∪ B(j3) and if mult1(P[Λ]) 6= mult3(P[Λ]), then the contribution coming from P[Λ]

(including the contributions coming from the projective lines in D(j1) ∩D(j3) which intersect
P[Λ] but are not in D(j2)) is easily seen to be 0. Next for eachm between 1 and a−1

2 we count the
contributions coming from such P[Λ] ∈ B(j2) but not in B(j1) ∪B(j3) for which mult1(P[Λ]) =
mult3(P[Λ]) = pm. In case m = a−1

2 there are precisely two such (lying in the apartment of
projective lines lying in Cent(j1) ∩ Cent(j3)). The contribution for each of the two is then
(−2p)p

a−1
2 + p · p

a−1
2 + p

a−1
2 + (2p− 2)p

a−1
2
−1 + 2(p2− 2p+ 1)p

a−1
2
−1. (The first two summands

come from the projective line itself, the rest comes from the projective lines in D(j1) ∩D(j3)
which intersect it but do not belong to D(j2).) Thus the contribution coming from the case
m = a−1

2 is 2((−2p)p
a−1

2 +p·p
a−1

2 +p
a−1

2 +(2p−2)p
a−1

2
−1+2(p2−2p+1)p

a−1
2
−1) = 2p

a−1
2 (p−1).

Similarly, for m < a−1
2 , the contribution becomes 2(p2 − 2p + 1)(p2)

a−1
2
−m−1((−2p)pm(a−1

2 −
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m)+p ·pm(a−1
2 −m)+p2pm−1(a−1

2 −m+1)) = 2(p2−2p+1)pa−m−2. Now summing everything
up, we get the desired result.

Case (ii) is done analogously.

In case (iv) we write (D(j1), D(j2), D(j3)) = ((D(j1)∩D(j3)), (D(j2)∩D(j3))) (intersection
multiplicity in D(j3)). As usual, for each projective line in (D(j1) ∩ D(j3)) we compute the
contribution to intersection multiplicity coming from the part of (D(j1) ∩ D(j3)) which has
support in that projective line. We only have to consider projective lines in B(j2) or intersecting
a projective line in B(j2). There are no projective lines in B(j2)∩B(j3) which belong to D(j1).
We count the contribution coming from the projective lines in B(j1) ∩ B(j2). Since χ12 = 1
there precisely (p2 − 2p − 1)(p2)

a1−1
2
−1 such and each contributes with the value −p to the

intersection multiplicity. Similarly one checks that the projective lines in B(j2) which are not
in B(j1) together with the projective lines which intersect such altogether contribute with the
value (p2 − 1)pa1−2. Summing everything up gives the claimed result.

In case (v) we write (D(j1), D(j2), D(j3)) = ((D(j1)∩D(j2)), (D(j1)∩D(j3))) (intersection
multiplicity in D(j1)). Again we have to compute the contribution coming from the part of
(D(j1)∩D(j3)) which has support in a projective line in B(j2) or a projective line intersecting
one in B(j2). Since χ13 = 1 it follows that, if P[Λ] ∈ B(j2) and P[Λ] ⊂ D(j1) ∩ D(j3), then
P[Λ] ∈ B(j3). Now it is easy to see that if in this situation P[Λ] /∈ B(j1), then the contribution

coming from P[Λ] is −p and that there are precisely (p + 1) · p
a2−a1

2
−1 · p · (p2)

a1−1
2
−1 such

projective lines. Similarly, if P[Λ] ∈ B(j1), then the contribution coming from P[Λ] is a1+1
2 (−p)

and there are precisely (p+ 1) · p
a2−a1

2
−1 · (p2 − p) · (p2)

a1−1
2
−1 such projective lines. Summing

up all contributions, we obtain the claim.

In case (iii) we proceed similarly. Writing (D(j1), D(j2), D(j3)) = ((D(j1)∩D(j2)), (D(j1)∩
D(j3))) (intersection multiplicity in D(j1)), we have to compute the contribution coming from
the part of (D(j1) ∩D(j3)) which has support in a projective line in B(j2) or a projective line
intersecting one in B(j2). Now we consider the apartment of projective lines corresponding to
the intersection Cent(j1) ∩Cent(j2). For any projective line in B(j2) (or intersecting it) there
is a unique projective line in the apartment, such that the distance of the two projective lines
(i.e. the distance of the corresponding vertices in the building) is minimal. Now we consider
the two projective lines P[Λ0],P[Λ1] in the apartment such that mult3(P[Λ0]) = mult2(P[Λ0]) and
mult3(P[Λ1]) = mult2(P[Λ1]). Then by the same reasoning as in case (v) the contribution coming
from all projective lines in B(j2) whose distance to the apartment is the distance to P[Λ0] or
P[Λ1] gives the claimed intersection multiplicity. One easily checks that for any other projective
line P[Λ] in the apartment the contributions coming from all projective lines P[Λ′ ] in B(j2) (or
intersecting it) with the property that P[Λ] is the projective line in the apartment such that its
distance to P[Λ′ ] is minimal, sum up to 0.

Case (vi) is proved analogously to case (v).

Case (vii) follows from Lemma 5.3. �

We now drop the assumption that T is diagonal. We want to obtain an expression for
(Z(j1), Z(j2), Z(j3)). Suppose that T is GL3(Z(p))-equivalent to diag(ε1p

a1 , ε2p
a2 , ε3p

a3), where
εi ∈ Z×(p) for all i and a1 ≤ a2 ≤ a3. (Now the restriction that 2 ≤ a1, a2, a3 is dropped.) To
state the result, we introduce the following invariants of T , comp. [W]. Let

ξ̃ =

{
χ(−ε1ε2) if a1 ≡ a2 mod 2,
0 if a1 6≡ a2 mod 2,
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and let

σ =

{
2 if a1 ≡ a2 mod 2,
1 if a1 6≡ a2 mod 2.

Further, let

η =

{
+1 if T is isotropic over Qp,
−1 if T is anisotropic over Qp.

To distinguish whether T is isotropic or anisotropic over Qp, we recall the following fact (see
[W], p. 189). Let i, j ∈ {1, 2, 3} with i 6= j and ai ≡ aj mod 2, and define k ∈ {1, 2, 3} by
{i, j, k} = {1, 2, 3}. Then T is isotropic over Qp if and only if χ(−εiεj) = 1 or ak ≡ aj mod 2.
On the other hand, since T is represented by V ′ we have

−1 = (−1)a1+a2+a3χ(−1)a1+a2+a3+a1a2+a2a3+a1a3χ(ε1)a2+a3χ(ε2)a1+a3χ(ε3)a1+a2 , (5.1)

see [KR2], section 7 or [Ku1], (1.16). Using this we can decide, whether T is isotropic or
anisotropic over Qp, and we can also determine ξ̃ from a1, a2, a3, except in case that a1a2a3 is
odd (then ξ̃ = −1 and ξ̃ = 1 is possible).

Theorem 5.7 Suppose that T is GL3(Z(p))-equivalent to diag(ε1p
a1 , ε2p

a2 , ε3p
a3), where εi ∈

Z×(p) for all i and a1 ≤ a2 ≤ a3. Then there is the following explicit expression for the intersection
multiplicity (Z(j1), Z(j2), Z(j3)).

(Z(j1), Z(j2), Z(j3)) = −
a1∑
i=0

a1+a2−σ
2

−i∑
j=0

pi+j(−1)i(i+ 2j)

− η
a1∑
i=0

a1+a2−σ
2

−i∑
j=0

p
a1+a2−σ

2
−j(−1)a3+σ+i(a3 + σ + i+ 2j)

− ξ̃2p
a1+a2−σ

2
+1

a1∑
i=0

a3−a2+2σ−4∑
j=0

ξ̃j(−1)a2−σ+i+j(a2 − σ + 2 + i+ j).

Proof. We already know by Proposition 4.2 that (Z(j1), Z(j2), Z(j3)) only depends on the
GL3(Z(p))-equivalence class of T . Thus we may assume that T = diag(ε1p

a1 , ε2p
a2 , ε3p

a3).
Next by comparing with [KR2], Proposition 6.2 resp. [T], Theorem 5.1 we get the claim in case
a1 = 0 resp. a1 = 1. Now by induction on a1 + a2 + a3 we see (using Proposition 4.4) that
it is enough to show that the above formula predicts the same values of (D(j1), D(j2), D(j3))
resp. (D(j1), Z(j2), D(j3)) as the propositions of this section. This is in all cases checked by a
straightforward calculation. �

6 The connection to representation densities and Eisenstein se-
ries

In this section we want to express the local intersection multiplicity (Z(j1), Z(j2), Z(j3)) in
terms of certain representation densities and the global intersection multiplicity χT (Z1, Z2, Z3)
in terms of the derivative of the T -th Fourier coefficient a certain Eisenstein series.

First we recall that, for S ∈ Symm(Zp) and U ∈ Symn(Zp) with det(S) 6= 0 and det(U) 6= 0,
the representation density is defined as

αp(S,U) = lim
t→∞

p−tn(2m−n−1)/2 | {x ∈Mm,n(Z/ptZ); S[x]− U ∈ ptSymn(Zp)} | .
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Given S as above, let

Sr =

S 1r
−1r

 .

Then there is a rational function AS,U (X) ∈ Q(X) of X such that

αp(Sr, U) = AS,U (p−r).

One defines
α
′
p(S,U) =

∂

∂X
(AS,U (X))|X=1.

(Comp. [KR1].) Let S = diag(1,−1, 1,−∆). (Since T is represented by the space V ′(Qp), it is
not represented by V (Qp) resp. S, see [Ku1], Proposition 1.3. )

Theorem 6.1 There is the following relation between intersection multiplicities and represen-
tation densities:

(Z(j1), Z(j2), Z(j3)) = − p4

(p2 + 1)(p2 − 1)
α
′
p(S, T ).

Proof. Since both sides only depend on the GL3(Z(p))-equivalence class of T , we may assume
that T is diagonal and equals diag(ε1p

a1 , ε2p
a2 , ε3p

a3), where εi ∈ Z×(p) for all i and a1 ≤ a2 ≤ a3.
We compute the expression on the right hand side and compare with Theorem 5.7. The right
hand side can be expressed explicitly, combining a result of Katsurada and a result of Shimura.
This was already done in [T] in case a1 = 1, but the reasoning carries over. More precisely,
by the same reasoning as in the proof of [T], Theorem 5.1, the function AS,T (X) is given as
follows.

AS,T (X) = (1 + p−2X)(1− p−2X2)F̃p(T ;−X),

where F̃p(T ;X) is given by the following expression.

F̃p(T ;X) =
a1∑
i=0

(a1+a2−σ)/2−i∑
j=0

pi+jXi+2j

+ η

a1∑
i=0

(a1+a2−σ)/2−i∑
j=0

p(a1+a2−σ)/2−jXa3+σ+i+2j

+ ξ̃2p(a1+a2−σ+2)/2
a1∑
i=0

a3−a2+2σ−4∑
j=0

ξ̃jXa2−σ+2+i+j .

Here, the invariants η, σ, ξ̃ are defined as in the last section. This yields an explicit expression
for the right hand side of the formula in the statement of the theorem which is straighforward
to calculate, and one checks that it is the same expression as the one given in Theorem 5.7. �

Next we come to the comparison of the global intersection multiplicity χT (Z1, Z2, Z3) and
the derivative of the T -th Fourier coefficient of a certain Eisenstein series.

First we shortly recall some notations and facts introduced in [KR2]. See [Ku1] and [KR2],
section 7 for details.

Let K ′p be the stabilizer in G
′
(Qp) of a superspecial lattice L in XHB (see section 2).

Define V ′(Zp) = End(L,F ) ∩ V ′p and V (Zp) = Λ ⊗ Zp, where Λ is the fixed self-dual lattice
of section 1. Let K ′ = K

′
pK

p ⊂ G
′
(Af ). Let ϕpf = char(ω1 × ω2 × ω3) ∈ S(V (Ap

f )3) and
ϕp = char(V (Zp)3) ∈ S(V (Qp)3) and ϕ′p = char(V ′(Zp)3) ∈ S(V

′
(Qp)3).
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Let χ = χV be the quadratic character of A×/Q× associated to V , i.e., χ(x) = (x,det(V ))A,
where ( , )A denotes the global Hilbert symbol. To ϕp one associates Φp ∈ I3(0, χVp) (see [Ku1]
for an explanation of the induced representation I3(0, χVp) of Sp6(Qp), and more generally of
the induced representation I3(s, χ) of Sp6(A)). Analogously to ϕpf one associates Φp

f and to ϕ′p
one associates Φ

′
p.

Then Φp is completed to an incoherent standard section Φ(s) = Φ2
∞(s) · Φp

f (s) · Φp(s) ∈
I3(s, χ) (see [Ku1]), where Φ2

∞(s) is associated to the Gaussian in S(V
′
(R)3).

Denote by pr(K ′) the image of K ′ under the projection pr : G
′
(Af )→ SO(V

′
)(Af ). Anal-

ogously one defines pr(K). Let x = (j1, j2, j3) ∈ V
′3 be the triple of our fixed three special

endomorphisms (section 2) so that the matrix of the quadratic form with respect to x is our
fixed T. Finally let (having chosen Haar measures on G′(Af ) and Z ′(Af ))

OT (ϕ
′
f ) =

∫
Z′ (Af )\G′ (Af )

ϕ
′
f (g−1xg)dg.

Analogously one defines OT (ϕpf ) and OT (ϕ
′
p). Let P ⊂ Sp6 be the Siegel parabolic subgroup

(see introduction). We consider the following Eisenstein series on Sp6(A),

E(g, s,Φ) =
∑

γ∈P (Q)\Sp6(Q)

Φ(γg, s).

Suppose that ω1 × ω2 × ω3 is locally centrally symmetric (i.e. invariant under the action of
µ2(Ap

f )). Then for h ∈ Sp6(R) the derivative in s = 0 of ET (h, s,Φ) (see also introduction) can
be expressed as

E
′
T (h, 0,Φ) = vol(SO(V

′
)(R)) · pr(K ′)) ·W 2

T (h)

×
W
′
T,p(e, 0,Φp)

WT,p(e, 0,Φ
′
p)
· vol(K

′
)−1 vol(Z(Q) \ Z(Af )) ·OT (ϕ

′
f ).

See [KR2] and [Ku1] for an explanation of the Whittaker functions W 2
T and WT,p. With these

preparations we are ready to state the final result.

Theorem 6.2 Let h ∈ Sp6(R) and suppose that ω1 × ω2 × ω3 is locally centrally symmetric.
Then there is the following relation between Eisenstein series and intersection multiplicities.

E
′
T (h, 0,Φ) = −1

2
log(p) · κ · χT (Z1, Z2, Z3) ·W 2

T (h),

where κ is the volume constant with value κ = vol(SO(V
′
)(R)) vol(pr(K)).

Proof. By the above formula for E′T (h, 0,Φ) we can write

E
′
T (h, 0,Φ) = c1 ·W 2

T (h)
OT (ϕ

′
p)

WT,p(e, 0,Φ
′
p)
W
′
T,p(e, 0,Φp)OT (ϕpf )

for some constant c1 (meaning that it is independent of T and h and ω1×ω2×ω3). Further we
can writeW ′

T,p(e, 0,Φp) = c2 ·α
′
p(S, T ) for some constant c2 (see the proof of [KR2], Proposition

7.2). Using Theorem 6.1 we see thatW ′
T,p(e, 0,Φp) = c3 ·(Z(j1), Z(j2), Z(j3)) for some constant

c3. Combining this with Proposition 2.2, we obtain

W
′
T,p(e, 0,Φp)OT (ϕpf ) = c4 · χT (Z1, Z2, Z3)



Intersections of arithmetic Hirzebruch-Zagier cycles 43

for some constant c4. Next we claim that the quotient OT (ϕ
′
p)

WT,p(e,0,Φ′p)
is a constant. The proof

for this is the same as the proof of formula (5.3.33) in the proof of Proposition 5.3.3 in [KRY].
Thus we obtain

E
′
T (h, 0,Φ) = c · χT (Z1, Z2, Z3) ·W 2

T (h)

for some constant c. It remains to prove that c = −1
2 vol(SO(V

′
)(R)) vol(pr(K)) log(p). But

by [KR2], Theorem 7.3, this is true provided that T is not divisible by p. Since this claim is
independent of T , it is always true. This ends the proof. �
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