
Approximation Complexity of
Optimization Problems:
Structural Foundations and

Steiner Tree Problems

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Mathias Hauptmann

aus

Oldenburg

Bonn, April 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/304638275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Vorwort

Der Ausgangspunkt für die vorliegende Arbeit was das Steinerbaum-Problem, welches
mich schon in meiner Diplomarbeit beschäftigt hatte. Während ich mich dort auf
exakte Algorithmen für geometrische Probleminstanzen konzentriert hatte, war es
mein Promotionsbetreuer Prof. Dr. Marek Karpinski, der meine Aufmerksamkeit
auf das allgemeine Steiner Tree Problem in Graphen bzw. endlichen metrischen Räu-
men lenkte. Die Basis bildeten zum einen seine Resultate zusammen mit Alexander
Zelikovsky über neuartige Approximationsalgorithmen und die Arbeit von Robins und
Zelikovsky, die den derzeit besten bekannten Steiner Tree Approximationsalgorith-
mus entwickelten, zum anderen neue Härteresultaten von Karpinski und Berman über
gradbeschränkte Optimierungsprobleme.

Zu dieser Zeit kam Piotr Berman für ein Jahr als Gastprofessor nach Bonn, und so
konnten wir zahlreiche Ansätze insbesondere zur Verbesserung der Approximationsgüte
von Steiner Tree Algorithmen diskutieren. Nun begann ich, mich für das Steiner
Forest Problem und die zu seiner Approximation verwandte Primal-Dual-Methode zu
interessieren, insbesondere in dem Gewand der Local Ratio Technik von Reuven Bar-
Yehuda. Mit Hilfe dieser Technik konnte ich Primal-Dual-Algorithmen für verschiedene
Steiner Tree Probleme sehr kompakt darstellen.

Ein anderes, aber sehr eng mit dem bisherigen verzahntes Themengebiet griff
ich nun wieder auf, nämlich Fragen der Strukturellen Komplexitätstheorie von Opti-
mierungsproblemen, insbesondere im Bereich der Approximationsschemata. Ähnliche
Fragestellungen interessierten mich bereits in meiner Diplom-Phase, doch konnte ich
sie dort nur am Rande behandeln. Nun fand ich die Möglichkeit, mich mit Fragen der
Reduzierbarkeit innerhalb der Klasse PTAS zu befassen und zu untersuchen, wie kom-
plex die Laufzeit von Approximationsschemata von der Approximationsgüte abhängen
kann. Sozusagen als Beiprodukt erhielt ich hier die Separation EPTAS 6= PTAS unter
einer vernünftigen komplexitätstheoretischen Annahme. Cesati und Trevisan hatten
schon 1997 dasselbe Resultat erhalten, allerdings unter einer anderen Annahme.

In dieser Zeit widmete ich mich, angeregt durch meinen Betreuer Prof. Dr. Karpin-
ski und auch motiviert durch die intensive Befassung mit Approximationsschemata,
den dichten Steiner Tree Problemen. Ausgehend von dem Approximationsschema für
das dichte Steiner Tree Problem von Karpinski und Zelikovsky konnte ich nun die von
ihnen entwickelten Methoden auf verwandte Probleme anwenden.

In der Endphase des Promotionsprojektes griff ich dann nochmals strukturelle
Fragestellungen auf. Unbefriedigend an dem Resultat über effiziente Approximations-
schemata war, daß mir das Verhältnis der von mir zugrundegelegten komplexitätstheo-
retischen Annahme zu der von Cesati und Trevisan bisher nicht klar war. Schlecht-
estenfalls wäre meine Annahme einfach eine stärkere gewesen und hätte ihre impliziert.
Glücklicherweise konnte ich im März/April 2004 kurz vor Fertigstellung dieser Arbeit
durch eine Orakelkonstruktion mit einem Zählargument zeigen, daß letzteres nicht mit
relativierenden Beweistechniken gezeigt werden kann.

Ich möchte Dank sagen: Meinem Betreuer Professor Dr. Marek Karpinski für die

3

Anregung und stete Förderung dieser Arbeit, für zahlreiche Gespräche und sein weit-
reichendes Interesse an vielen verschiedenen Themen der Mathematik und Informatik.
Er war einerseits stets bemüht, mein Interesse in Richtung interessanter und vielver-
sprechender offener Fragen zu lenken, gab mir andererseits aber auch die Freiheit,
eigene Zielsetzungen zu verfolgen. Er war stets offen für Gespräche und interessiert
an den Themen, die mich beschäftigten, gab zahlreiche wertvolle Anregungen und
Hinweise auch weit über die jeweils spezifischen Fragestellungen hinaus.

Darüber hinaus ist maßgeblich er es, der den Kontakt seiner Arbeitsgruppe zu
Forschern aus aller Welt ermöglicht. So holte er Piotr Berman und später Wenceslas
Fernandez de la Vega im Rahmen von DFG-Professuren jeweils für ein Jahr nach Bonn
und lud zahlreiche weitere Gäste zu Aufenthalten in Bonn ein.

Er ermöglichte mir die Teilnahme an den RAND-APXWorkshops über Randomized
and Approximate Computation in Edinburgh im September 2000, über Design and
Analysis of Randomized and Approximation Algorithms in Schloß Dagstuhl im Juni
2001, über Randomized and Approximation Algorithms in Paris im April 2002 und
am Dagstuhl Seminar 03291 über Algorithmic Game Theory and the Internet im Juli
2003 sowie mehrere Aufenthalte in der Arbeitsgruppe von Miklosh Santa am LRI in
Paris-Orsay.

Sein breitgestreutes Interesse und sein Engagement belebt nicht nur die Forschungsat-
mosphäre innerhalb seiner Arbeitsgruppe, sondern ermöglicht unter anderem auch
einen engen Kontakt der Gruppe zur Bonner Mathematik, insbesondere auch im Rah-
men von BIGS, der Bonn International Graduate School in Mathematics, Physics and
Astronomy.

An dieser Stelle möchte ich ganz herzlich Herrn Professor Dr. Bödigheimer für sein
Engagement im Rahmen von BIGS und sein Interesse, mit dem er mein Promotion-
sprojekt begleitete, danken.

Dank gebührt auch Herrn Professor Dr. Piotr Berman, der mir während seines
Aufenthaltes in Bonn zahlreiche Gesprächsmöglichkeiten bot, Anregungen gab, meine
Intuition schärfte und mich so entscheidend mit an Forschungsthemen und Forschungs-
methoden heranführte. Danken möchte ich Wenceslas Fernandez de la Vega, mit dem
ich zahlreiche Gespräche führen konnte und der mich während meiner Aufenthalte am
LRI hervorragend betreute. Hier gebührt auch ein herzlicher Dank Miklosh Santha
und Claire Kenyon sowie Christina Bazgan, die reges Interesse an meinen Forschungs-
themen hat und mir zahlreiche wertvolle Anregungen gab.

Danken möchte ich Elias Dahlhaus, mit dem ich eine Vielzahl anregender und
hilfreicher Gespräche führen konnte und der während seiner Aufenthalte in Bonn stets
ein offenes Ohr hatte.

Dank gesagt sei Herrn Prof. Dr. Norbert Blum, mit dem ich zahlreiche Gespräche
führen konnte und der viele wertvolle Anregungen und Hinweise gab.

Danken möchte ich meinen Kollegen in Bonn: An erster Stelle Peter Wegner für
eine sehr intensive und vertrauensvolle Zusammenarbeit, aus der sich eine enge Freund-
schaft entwickelt hat. Weiterer Dank gilt Hans-Hermann Leinen und Martin Löhnertz
für zahlreiche anregende Diskussionen und ihre stete Hilfsbereitschaft. Dank gebührt
auch Leszek Paszkiet und Ignatios Souvatsis, die stets hilfsbereit waren und in tech-

4

nischen Fragen und darüber hinaus mit Rat und Tat beiseite standen. Besonders
danken möchte ich Christine Marikar. Sie trug über Jahre maßgeblich zu einer sehr
angenehmen Atmosphäre in der Arbeitsgruppe bei, nahm Anteil an dem, was einen
bewegt, war stets hilfsbereit und engagiert. Mit ihr verbindet mich eine Freundschaft,
die mit zum Gelingen dieser Arbeit beigetragen hat.

Danken möchte ich meinen Schwiegereltern Ulrike und Achim Wiese für stetes In-
teresse und Förderung. Sie geben Halt und Hilfe und nahmen stets Anteil auch am
Fortkommen dieser Arbeit. Dank gebührt ebenso meinem Schwager Martin Wiese und
meinen Schwiegergroßeltern Erich und Erika Wiese, die mich stets unterstützt haben.

Diese Arbeit ist meiner Frau Annette und meiner Tochter Nicola Anna in Dank
und Liebe gewidmet. Mit ihnen ist Leben so wunderbar.

Contents

1 Introduction 9

2 Decision and Optimization Problems 15

2.1 Decision Problems . 15

2.1.1 Reductions . 15

2.1.2 Complete Sets . 16

2.2 Function Problems . 16

2.3 Probabilistic and Randomized Classes 18

2.4 Optimization Problems . 19

3 Fixed Parameter Tractability 23

3.1 Basic Definitions . 25

3.2 Complete Problems . 27

3.3 Structural Properties . 28

3.3.1 Speedup . 30

3.4 Excurs: Levin’s Lower Bound Theorem 32

3.4.1 Ω-Lower Bound for Proper Measures 34

3.4.2 Lower Bound Theorem for Parameterized Classes 38

3.4.3 A Lower Bound Theorem for Randomized Space Complexity . . 41

4 On the Structure of NPO 47

4.1 PTAS-Preserving Reductions
and PTAS-Completeness . 49

4.1.1 Previous Work . 50

4.1.2 PAR-Reductions . 53

4.1.3 Complete Problems . 55

4.2 The Class PTAS: Uniformity versus Efficiency 61

4.3 PTAS versus EPTAS . 64

4.3.1 Separation under Assumption W [P] 6= FPT 65

4.3.2 Separation under Assumption (A) 65

4.3.3 Separation under some weaker assumption 70

4.4 Oracle Constructions . 73

4.4.1 Bounded Nondeterminism . 73

5

6 CONTENTS

4.4.2 The Kintala-Fischer Hierarchy 74

4.4.3 Complexity of the VC Dimension 75

4.4.4 Downward separation fails:
The Beigel - Goldsmith construction 75

4.4.5 Guess and Check:
The W -Hierarchy versus Bounded Nondeterminism 77

4.4.6 An Oracle relative to which Assumption (B) is true 78

4.4.7 An Oracle relative to which (A’) is true but (B) is false 81

4.5 Randomized Approximation Schemes: RPTAS versus REPTAS 85

5 The Steiner Tree Problem 91

5.1 Problem Formulation . 92

5.2 Lower Bounds . 93

5.3 Two Exact Algorithms . 98

5.3.1 The Dreyfus-Wagner Algorithm 98

5.3.2 The Spanning Tree Enumeration Algorithm 99

5.4 The k-Steiner Ratio . 99

5.5 Approximation Algorithms
for the Steiner Tree Problem . 100

6 The Steiner Forest Problem 107

6.1 Introduction . 107

6.2 The Primal-Dual Method . 108

6.3 The Local-Ratio Framework of Bar-Yehuda 109

6.4 The Steiner Forest Problem in k-bounded hypergraphs 110

6.5 The Prize Collecting Steiner Tree Problem 111

6.6 The Prize Collecting Steiner Pair Problem 113

6.7 The Prize Collecting Steiner Forest Problem 116

7 The Steiner Network Problem 119

7.1 Introduction . 119

7.2 Jain’s 2-Approximation Algorithm . 120

7.3 The Uniform Uncapacitated Case . 123

7.4 The Prize-Collecting Uniform Uncapacitated Case 125

8 Steiner Problems in Directed Graphs 129

8.1 Introduction . 129

8.1.1 Level-Restricted Trees . 130

8.2 The Directed Zero Skew Tree Problem 131

8.2.1 Stretched Arborescences, Skew and Delay 133

8.2.2 Level-Restricted Stretched Trees 134

8.2.3 An Approximation Algorithm . 135

8.3 The Directed Weighted Path Problem 138

CONTENTS 7

9 Dense Problems 141
9.1 Introduction . 141
9.2 Dense Optimization Problems . 142

9.2.1 Smooth Integer Programs . 142
9.2.2 Applications . 143

9.3 Dense Covering Problems . 143
9.4 The ε-Dense Steiner Tree Problem . 145

9.4.1 Everywhere-Density . 145
9.4.2 Towards Average-Density: Relaxing the Density Condition . . . 146

9.5 The Dense Steiner Forest Problem . 149
9.6 The Dense Prize Collecting Steiner Tree Problem 151
9.7 The Dense k-Steiner Tree Problem . 152
9.8 The Dense Class Steiner Tree Problem 153

9.8.1 Introduction . 153
9.8.2 A PTAS for the ε-Dense Case . 154

Summary 164

8 CONTENTS

Chapter 1

Introduction

Consider the following problem:

Given three points A,B,C in the Euclidean Plane, find another point D such
that the sum of distances to D

d(A,D) + d(B,D) + d(C,D)

is minimized.

This question is quite old. It has already been asked by Fermat (1601-1665), hence it
is usually called the Fermat Problem. A geometric solution was given by Toricelli
before 1640. Nevertheless, the natural generalization of this question yields one of the
most important and most extensively studied problems in Combinatorial Optimization,
namely the so called Steiner Tree Problem. Here is a slightly informal definition:

Steiner Tree Problem: Given a finite metric space (V, c), where V is the point
set and c:V ×V → IR+ is a metric on V , and additionally given a subset S of V ,
find the shortest tree consisting of vertices from V that connects S.

The set S of points which have to be connected is usually called the Terminal Set.
If T = (VT , ET) is a solution with vertex set VT ⊆ V and edge set ET ⊆ P2(V) (the
set of two-element subsets of V), then the cost of T (or its length) is just the sum of
endpoint distances of all edges from ET .

The Steiner Tree Problem was the starting point for this thesis. Much work was
already done before on this problem and its numerous variants, special cases and gen-
eralizations. The Steiner Tree Problem is well known to be NP-hard [Kar72], which
means its decision version (Given an instance of the Steiner Tree Problem and some
k > 0, is there a solution of cost at most k) is NP-complete. Hence polynomial-time
algorithms solving the problem to optimality are unlikely to exist. Furthermore the
problem is MAXSNP-hard even for very restricted cases [BP89], hence polynomial time
approximation schemes are unlikely to exist. One may therefore try to design constant
factor approximation algorithms, which still have polynomial running time and com-
pute a solution which is guaranteed to be only slightly more expensive. Currently,

9

10 CHAPTER 1. INTRODUCTION

most of the research concerning the Steiner Tree Problem concentrates on approxi-
mation algorithms. The state of the art is as follows: On the one hand, Robins and
Zelikovsky [RZ00a] have given a family of polynomial time algorithms Aε (for ε > 0)
(a so called approximation scheme) with approximation ratio of Aε being bounded
by 1+ln(3)/2+ ε. On the other hand Chlebik and Chlebikova [CC02] have shown that
unless P = NP no polynomial time approximation algorithm can achieve ratio better
than 1.01063.

It is then interesting to look at special cases of the problem. Let us mention two
important cases: The Geometric Case in fixed dimension and the Dense Case. In the
Geometric Case, the direct generalization of Fermat’s Problem, we are given a finite
point set S in some IRd, together with some Lp metric. The task is to find a tree T
consisting of points in IRd connectingt S such that the length of T is minimal. Length
here means the sum of Lp distances of endpoints of edges from T .

Although even the Geometric Steiner Tree Problems are known to be NP -hard for
exact solutions, the precise complexity status of the Geometric Case was a longstanding
open problem, and finally Sanjeev Arora [Aro98] gave the following answer: There is an
algorithm A which gets as input an instance I of the Geometric Steiner Tree Problem
(let us fix for a moment d to 2 and p to 2) together with some parameter ε > 0, and
returns a solution being at most by factor (1 + ε) longer than the optimal solution
(we say its approximation ratio is bounded by 1 + ε). The running time of

the algorithm is O(nf(
1
ε)) for some function f(1/ε), where n denotes the size of the

input I (basically the number of points given). Algorithms with this property are
called Polynomial Time Approximation Schemes (PTAS). Later on, Rao and
Smith [RS] could extend the Arora approach and replace the running time by O(f(1/
ε) · n logn).

In the ε-Dense Case, instead the instance consists of a graph G = (V,E) with
edge costs equal to 1, the Terminal Set S ⊆ V and the additional property that each
terminal s ∈ S has at least ε · |V \ S| neighbours in V \ S. For this case, Karpinski
and Zelikovsky [KZ97a] obtained the following result: For each fixed ε > 0, there is a
Polynomial Time Approximation Scheme for the ε-Dense Steiner Tree Problem,
i.e. an algorithm A which gets as input an instance I of the ε-Dense Steiner Tree
Problem and some δ > 0 and constructs a (1 + δ)-approximate solution in running
time O

(
|I|f(1/δ)

)
for some function f .

The two cases can be considered complementary to each other: In the geometric
case the underlying graph on which a solution is constructed is sparse, i.e. every node
has small degree and hence there are only few edges in the graph. Actually, for the
L1 case one can work with grid graphs [Aro98]. In the dense case, every terminal has
high degree and therefore the graph contains many edges. Both are special cases of
Degree-Bounded Optimization Problems.

An important generalization of the Steiner Tree Problem is the Steiner Forest
Problem considered in [AKR91]. Here we are given several pairwise disjoint terminal
sets S1, . . . , Sn. The task is to construct a minimum cost forest T such that each Si
becomes connected by T . One is allowed to connect more than one terminal set by

11

the same component, hence intuitively we have additionally to decide how to arrange
the terminal sets in connect components. When this is done, the remaining problem
is to compute Steiner Trees for the components. The best known approximation ra-
tio achievable by polynmial time algorithms for the Steiner Forest Problem is 2, see
[AKR91, GW92]. The algorithms are based on the Primal-Dual method. The Prize
Collecting Steiner Tree Problem is another important problem generalizing the
Steiner Tree Problem: Additionally to the terminal set S we are here given prizes to
the terminals. We are allowed to connect only a subset of S, but the resulting cost
is the connection cost plus the prizes for all terminals being left out. Goemans and
Williamson [GW92] gave a 2-approximation algorithm again based on the Primal Dual
Method. A different formulation of the Primal Dual approach was worked out by Bar-
Yehuda [BY98]. His Local Ratio Technique provides a very compact formulation
and analysis of primal-dual algorithms. In his paper [BY98] he already gave an appli-
cation to the Steiner Forest Problem, obtaining the same ratio 2. We will in chapter
6 apply the Local Ratio Framework to the Prize Collecting Steiner Tree Problem and
further generalizations in graphs and bounded hypergraphs.

Considering the problems mentioned so far, connection requirements are from the
range {0, 1}, either two terminals are in the same set and have to be connected or not.
The Steiner Network Problem captures the case when there are nonnegative integer
requirements (e.g. two terminals have to be connected by the amount of 3), and edges
are capacitated. While Ravi and Williamson obtained an approximation algorithm
with logarithmic ratio [RW95], attemts to obtain a constant factor approximation us-
ing primal-dual methods failed. It was Kamal Jain [Jai98] who finally could provide
a 2-approximation algorithm based on a linear programming and iterative rounding
approach. His approach is based on the Ellipsoid Method, which was originally de-
veloped by Nemirovskii and Shor [Sho77] in the context of nonlinear optimization.
Khachiyan [Kha79] modified the method to make it work for linear optimization as
well. Unfortunately the running time of the Ellipsoid Method is large, which makes
the method quite impractical. Hence it would be desirable to replace it by some purely
combinatorial approach for the Steiner Network Problem. We will consider the Steiner
Network Problem in chapter 7, providing combinatorial approximation algorithms for
a special case of the problem, the Uncapacitated Uniform Steiner Network problem.

In order to compare problems with respect to their computational difficulty, the
concept of reductions provides a poweful tool. While the notion of reduction and com-
pleteness was originally introduced in mathematical logic and recursion theory, it has
successfully been used in the context of computational complexity both for decision
and optimization problems. A reduction between two optimization problems A and
B basically consists of two ingredients: a mapping from instances of problem A to
instances of problem B and a mapping from solutions of B to solutions of problem
A. The precise reduction concept must be carefully chosen such that approximation
properties are preserved. Another closely related issue is to explore the structure of
the class NPO. NPO is the class of all optimization problems whose decision version is
in NP. The subclass PTAS contains all problems for which a polynomial time approxi-
mation scheme exists, and if additionally the running tiome bound is O(f(1/ε) ·nc) for

12 CHAPTER 1. INTRODUCTION

some constant c and a function f(1/ε), the approximation scheme is called efficient.
the according subclass of PTAS is denoted EPTAS [CT97a]. We will extensively dis-
cuss structural issues in chapter 4.

The thesis is organized as follows:
In chapter 2 we give the basic notions and definitions concerning decision problems,
function problems and optimization problems. The concept of reducibility and com-
pleteness as well as a brief introduction into probabilistic and randomized algorithms
are given as well.
Chapter 3 deals with Fixed Parameter Complexity. After giving a brief intrduc-

tion containing basic definitions and concepts as well as brief list of problems con-
cerning their parameterized complexity status, we investigate structural properties of
the various fixed parameter complexity classes. In section 3.3 we give parameterized
analogs of the well known Union and Speedup theorems from classical complexity the-
ory. Section 3.4 deals with Levin’s Lower Bound Theorem, which basically states that
for every recursive language there exists a tight recursive lower bound for the space
complexity of that language. Here we concern possible extensions of the Lower Bound
Theorem to a wide and naturally defined class of Blum Complexity Measures (3.4.1),
to Fixed Parameter Complexity where we ask for lower bounds on the dependence on
the parameter (3.4.2), and for Randomized Space Complexity (3.4.3).

In chapter 4 we consider structural aspects of the classNPO with special emphasis
on polynomial tiem approximation schemes. We discuss reducibility concepts in section
3.2, where we introduce a new kind of approximation scheme- preserving reductions
and prove existence of complete problems with respect to this reduction type. In
sections 4.2 and 4.2 we take a closer look at the class PTAS. Our interest here is to
investigate how running times of polynomial time approximation schemes depend on
the approximation ratio. In general, for fixed ε the running time of a polynomial time
approximation scheme A(x, ε) depends polynomially on the input length |x|, hence the
time bound is of the form O(|x|f(1/ε)) for some function f : IN→ IN. The ptas is called
efficient if the time bound does not exponentially depend on ε, hence is of the form
f(1/ε) · |x|O(1). Accordingly the class EPTAS (Efficient PTAS) is defined. Besides
considering exponential versus multiplicative dependence of the running time on ε on
may also ask for the computational complexity of the function f . A polynomial time
approximation scheme is called strongly uniform if the running time dependence
on ε can be bounded by some recursive function f(1/ε). In section 4.2 we prove
that unless P equals NP , there exist problems in PTAS for which a strongly uniform
approximation scheme does not exist. Somewhat curious, we are able to construct such
problems which nevertheless provide an efficient polytime approximation scheme (of
course non-uniform).

In section 4.3 we consider the problem of separation of EPTAS from PTAS. So far
it is unknown how to prove the strictness of the inclusion EPTAS ⊆ PTAS under as-
sumption P 6= NP . Cesati and Trevisan were able to give a proof under the stronger
assumption FPT 6= W [P] from fixed parameter complexity; here ”stronger” means
that it implies P 6= NP . We give an alternative proof for EPTAS 6= PTAS under

13

some different complexity theoretic assumption, namely (roughly spoken) existence of
problems in NP with exponential lower bound on the deterministic time complexity
(subsections 4.3.2 and 4.3.3). It is then natural to ask the question how these two
assumptions are related to each other. In subsection 4.3.4 we give at least a partial
answer: We construct an oracle relative to which our assumption is true and the as-
sumption FPT 6=W [P] not. This implies that using only relativizing proof techniques
(i.e. those that still work under oracles) one cannot show that our assumption implies
the other one.

In section 4.4 we consider efficiency of randomized approximation schemes.
Assuming existence of a language which has exponential upper and lower bounds on
the strongly randomized time complexity, we are able to separate REPTAS from
RPTAS. The methods used there are similar to those from section 4.3, but some
careful additional considerations are needed.

Then we turn from structural considerations to algorithmic questions centered
around the Steiner Tree Problem and its numerous variants and generalizations.

In chapter 5 we consider the Steiner Tree Problem, concentrating on its general
network version. We give a precise problem formulation, an introduction into the
basic terminology, consider lower bounds for approximability and give a survey on well
known approximation algorithms for the problem.

In chapter 6 we consider the Steiner Forest Problem. We give brief descriptions
of the Primal-Dual Method in section 6.2 and the Local Ratio Framework in section
6.3. Bar-Yehuda described how to apply the Local Ratiop Technique to the Steiner
Forest Problem. In sections 6.4 - 6.7 we extend this approach to bounded hypergraphs
and to generalizations of the Steiner Forest Problem, namely various Prize Collecting
variants. In the prize collecting setting one is given several connection requirements in a
network, together with a price for each requirement. One is now allowed to leave several
requirements unsatisfied, but then has to pay the price. Hence the objective is the cost
of the connection network one constructs plus the sum of prices for all unsatisfied
requirements. In the Price Collecting Steiner Tree Problem the requirements
are just terminals, i.e. we are given a terminal set S together with a price function
p:S → IR+. The task is to construct a tree T connecting a subset S ′ of the terminal
set such as to minimize the c(T) (the cost of the tree) plus p(S \ S ′) (sum of prices of
the remaining terminals).

Chapter 7 deals with the Steiner Network Problem. We describe Jain’s algorithm
[Jai98] in section 7.2 and provide purely combinatorial approximation algorithms for
the Uniform Uncapacitated Case in section 7.3 and to the Prize Collecting Unifor-
mUncapacitated Case in section 7.4.

Chapter 8 deals with directed Steiner problems. Giving an introduction with
precise problem formulations and references to previous work in section 8.1, we then
consider the Directed Zero Skew Tree problem in section 8.2 and the Directed Weighted
Path Tree Problem in section 8.3. Both problems are motivated by applications in
VLSI design, and the undirected Zero Skew Tree Problem has been considered in the
literature before [ZM01, CKK+99].

14 CHAPTER 1. INTRODUCTION

In chapter 9 we consider Dense Steiner Problems. Pointing to previous work
in sections 9.1-9.3, we will then consider the Dense Steiner Tree Problem in section
9.4. In subsection 9.4.2 we take a step towards an approximation scheme for the
average-dense case, showing that the Karpinski - Zelikovsky approach [KZ97a] can
be extended from the everywhere dense case to the log-dense case. In section 9.5 we
consider the dense Steiner Forest problem, obtaining an approximation algorithm that
has good performance in case the number of terminals is large compared to the number
of terminal sets. In sections 9.6-9.8 we provide polynomial time approximation schemes
for the dense versions of the k-Steiner Tree Problem, the Prize Collecting Steiner Tree
Problem and the Class Steiner Tree Problem.

Chapter 2

Decision and Optimization
Problems

In this chapter we will give the basic definitions and notations concerning resource-
bounded decision problems and optimization problems.

2.1 Decision Problems

Given a finite alphabet Σ, subsets L ⊆ Σ∗ are usually called decision problems or
languages. As usual P denotes the class of languages which can be decided in deter-
ministic polynomial time whileNP is the class of languages for which a nondeteministic
polynomial-time bounded Turing machine (TM) exists. In general we use the terms
DTIME(t(n)), NTIME(t(n)) for determainistic and nondeterministic time complex-
ity classes, accordingly DSPACE(s(n)) and NSPACE(s(n)) for space complexity
classes.

2.1.1 Reductions

Computable reductions are used for the purpose of comparing computational prob-
lems according to their computatioal difficulty. There is a huge number of different
computational reductions used for the setting of decision problems. At this point we
only mention two of them, namely the polynomial Karp reduction and the polyno-
mial Turing reduction. The former is the resource-bounded variant of the m-reduction
(many-one reduction) from recursion theory while the latter is the resource-bounded
variant of the oracle reduction. We assume the reader being familar with the notion
of Oracle Turing Machines.

Definition 1 Let Σ be a finite alphabet and A,B ⊆ Σ∗.

(a) A is polynomial-time Karp reducible (A ≤p B) iff there exists a polynomial-
time computable function f : Σ∗ → Σ∗ such that for all x ∈ Σ∗ x ∈ A if and only
if f(x) ∈ B.

15

16 CHAPTER 2. DECISION AND OPTIMIZATION PROBLEMS

(b) A is polynomial-time Turing reducible (A ≤T B) iff there exists a polynomial-
time bounded oracle TM M such that L(M,B) = A.

At this point we only mention that so far it is not known how to separate the NP -
completeness notions implied by these two kinds of reductions under the assumption
P 6= NP , i.e. how to prove existence of a problem A ∈ NP with is Turing-complete
for NP but not Karp-complete. In the next subsection we will give precise definitions
of the completeness notions.

2.1.2 Complete Sets

Given a class C ⊆ P (Σ∗) of languages, problem A ∈ P (Σ∗) is called C-hard with respect
to polynomial-time Karp reductions iff every L ∈ C is polynomial-time Karp reducible
to A, and C-complete if additionally A ∈ C. Hardness with respect to other types of
reducibilities (e.g. polynomial-time Turing reducibility) is defined accordingly.

In 1971 Steve Cook gave the first NP-completeness proof for a natural problem,
namely satisfiability of Boolean formulas in CNF (conjunctive normal form):

Theorem 1 (Cook’s Theorem) SAT is NP -complete with respect to polynomial-
time reductions.

Note that this was not the first proof of existence of complete problems for NP , since
it was already known how to construct generic NP -complete problems, e.g.

TM − COMP :=
{
(M,x, 0k)|M is the coding of a nondeterministic TM and exists
exist an accepting computation of M on input x of length at most k}

A good reference is the book of Garey and Johnson, containing a comprehensive list of
NP-complete problems from basically all areas of computer science, ranging from logic
and algebra to graph theory, number theory and VLSI-design.

2.2 Function Problems

The sceanario of decision problems is not sufficient to work with in case of functional
problems where, given some input x the task is to generate a solution y and not only a
yes/no answer. E.g. in the case of SAT , the satisfiability problem for Boolean formulas
in conjunctive normal form, one might be interested not only in the one-bit information
wether a given formula is satisfiable but (in case the answer is ”yes”) also in a witness
for that fact, namely a satisfying assignment. In general we have the following straight
forward characterization of the class NP :

Definition 2 Let : IN → IN be a function. A binary relation R ⊆ Σ∗ × Σ∗ is called
f(n)-balanced iff

for all x, y ∈ Σ∗: (x, y) ∈ R implies |y| ≤ f(|x|)

2.2. FUNCTION PROBLEMS 17

or equivalently

R ⊆
⋃

n≥0
Σn × Σ≤f(n).

R is called strongly f(n)-balanced iff

R ⊆
⋃

n≥0
Σn × Σf(n).

R is called polynomially balanced/ strongly polynomially balanced iff there
exists a polynomial p(n) such that R is p(n)-balanced/ strongly p(n)-balanced.

Lemma 2.2.1 (Characterization of NP)
For every L ⊆ Σ∗ the following are equivalent:

(1) L ∈ NP

(2) There exists a polynomially balanced relation R ∈ P such that

L = RL := {x ∈ Σ∗|∃ y ∈ Σ∗ such that (x, y) ∈ R}

Given such a polynomially balanced relation R ∈ P , the computational problem of
generating witnesses in case they exist is called a Function NP Problem:

Definition 3 Let R ⊆ Σ∗ × Σ∗ be a binary relation. The associated computational
problem ΠR is defined as follows:

Given x ∈ Σ∗, either compute some y ∈ Σ∗ such that (x, y) ∈ R
or return ”NO” in case such y does not exist.

The class of all problems ΠR with R being polynomially balanced and R ∈ P is denoted
FNP . The subclass of FNP all such problems ΠR that can be solved in deterministic
polynomial time is called FP .

Obviously P = NP if and only if FP = FNP . Besides that FNP provides an
interesting structure: There are functional problems in FNP which are not believed
to be in FP but have the property that solutions always exist.

Definition 4 (Total Relations)
A binary relation R ⊆ Σ∗ × Σ∗ is called total iff

for every x ∈ Σ∗ {y ∈ Σ∗|(x, y) ∈ R} 6= ∅.

TFNP denotes the class of function problems ΠR ∈ FNP such that R is total.

We will now generalize the notion of function problems to arbitrary time and space
bounds.

18 CHAPTER 2. DECISION AND OPTIMIZATION PROBLEMS

Definition 5

FTIME(t(n)) := {ΠR|ΠR solvable by a deterministic algorithm in time O(t(n))}
FNTIME(t(n)) := {ΠR|ΠR solvable by a nondeterministic alg. in time O(t(n))}

The classes FSPACE(s(n)), FNSPACE(s(n)) are defined accordingly.

Note that if ΠR can be solved in time O(t(n)), then for every x ∈ Σ∗, either the answe
is ”NO” or there exists at least one y with (x, y) ∈ R such that |y| = O(t(n)).

Definition 6 A relation R ⊆ Σ∗ × Σ∗ is called weakly f(n)-balanced iff for every
x ∈ Σ∗ one of the followingalternatives holds:

(i) {y| (x, y) ∈ R} = ∅.

(ii) There exists y ∈ Σ∗ with (x, y) ∈ R and |y| ≤ f(|x|).

2.3 Probabilistic and Randomized Classes

We assume the reader being familiar with the notion of probabilistic Turing machines
(which we abreviate ”PTM”). Given a PTM M, the induced function ΦM: Σ∗ ×
{0, 1}∗ → Σ∗ is defined by

ΦM(x, ρ) := the output ofM on input x with string ρ on the random tape

(assumed ρ is sufficiently long). The function computed byM is the partial function
ϕM: Σ∗ → Σ∗ defined by

ϕM(x) :=

{
y if Prρ{ΦM(x, ρ) = y} > 1

2
undefined if such y does not exist

We will use the following abreviation:

Pr{M(x) = y} := Prρ{ΦM(x, ρ) = y}.

Given a PTMM, the language L(M) accepted byM is precisely the set of strings on
whichM answers ”yes” with probability strictly greater than 1/2 (i.e. ϕM(x) = 1). A
PTM with bounded error probability is called aMonte Carlo TM or Randomized
TM (RTM):

Definition 7 Let M be a Probabilistic Turing Machine (PTM).

(a) The error probability eM is the partial function eM : Σ∗ → [0, 1/2) defined by

eM (x) :=

{
1− Pr{M(x) = φM (x)}, ϕM (x) is defined
undefined otherwise

2.4. OPTIMIZATION PROBLEMS 19

(b) M is called Randomized TM (RTM, Monte Carlo TM) iff there exists
ε > 0 such that

eM (x) ≤ 1

2
− ε

for all x ∈ D(ϕM).

(c) M is called Total RTM iff additionally φM is a total function.

RTMs accepting languages which have error probability 0 in case the input is not in
the language are called strong randomized TMs (RSTMs):

Definition 8 A PTM M accepting a language L is called strong randomized iff
there exists ε > 0 such that for all x ∈ Σ∗ the following holds:

x ∈ L =⇒ eM (x) ≤ 1
2 − ε,

x 6∈ L =⇒ eM (x) = 0

2.4 Optimization Problems

In this section we will give the basic definitions and notions concerning optimization
problems and approximation algorithms. For a more comprehensive treatment the
interested reader is referred to [...]. Recall that anNP optimization problem (NPO
problem) is a four-tuple F = (I, S, c, g) where I ⊆ Σ∗ is the set of instances, S ⊆
Σ∗ × Σ∗ is the solution relation (i.e. for given x ∈ I {y|S(x, y)} is the set of feasible
solutions for instance x of F), c: Σ∗×Σ∗ → Σ∗ is the cost function and g ∈ {min,max}
is the optimization goal, and furthermore the following conditions hold:

1. I and S are polynomial-time decidable.

2. There exists some polynomial p such that for all x ∈ I {y|S(x, y)} ⊆ Σ≤p(|x|).

3. The cost function c is polynomial time computable.

For F an NPO problem and p(n) some polynomial, we will call F p(n)-time bounded
iff the time complexity of I, S and c is bounded by p(n). We will furthermore use the
following notations: S(x) = {y|S(x, y)} is the set of feasibe solutions for instance x of
F , OPTF (x) denotes some optimum solution for x and optF (x) its cost. Furthermore
we assume (w.l.o.g.) that for all x ∈ I S(x) 6= ∅. For y ∈ S(x)

RF (x, y) := max

{
c(x, y)

optF (x)
,
optF (x)

c(x, y)

}

(2.1)

is the performance ratio of y with respect to x or simply the ratio of solution y for
x. An approximation algorithm A for NPO problem F = (I, S, c, g) is an algorithm
A such that for every instance x ∈ I of F A computes a feasible solution A(x) ∈ S(x).
For a function r(n) A has performance ratio r(n) if for all x ∈ I RF (x,A(x)) ≤ r(|x|).

We are now going to define some of the most important subclasses of NPO which
are well known in the literature.

20 CHAPTER 2. DECISION AND OPTIMIZATION PROBLEMS

Definition 9 (Subclasses of NPO)

1. PO is the class of NPO problems F that are solvable to optimality in polyno-
mial time, which means there exists a polynomial time algorithm which for each
instance x of problem F computes a feasible solution y such that RF (x, y) = 1.

2. PTAS is the class of NPO problems F that admit a polynomial time approx-
imation scheme (ptas), that means there exists an algorithm A such that for
every instance x of F and every ε > 0 A(x, ε) returns a feasible solution y to
instance x of problem F such that RF (x, y) ≤ 1+ ε, and furthermore the running
time of algorithm A is O

(
|x|f(1/ε)

)
for some function f .

3. APX is the class of NPO problems F that admit a polynomial time constant
factor approximation algorithm A (i.e. there is some c ≥ 1 such that A has ratio
c).

4. log−APX is the class of NPO problems F that admit a polynomial time approx-
imation algorithm with approximation ratio O(logn).

Remark: To be precise, in the definition of the class PTAS we have to replace ”for
every ε > 0” by the restriction to positive rational values of ε. We are now going to
further simplify the notation and only consider values of the form ε = 1

n . We get the
following redefinition of the class PTAS:

Definition 10 (The Class PTAS)
PTAS is the class of NPO problems F that admit a polynomial time approxima-
tion scheme (ptas), which means there exists an algorithm A such that for every
instance x of F and every n ∈ IN A(x, n) returns a feasible solution y to instance x of
problem F such that

RF(x,y) ≤ 1+
1

n

and the running time of algorithm A is O
(
|x|f(n)

)
for some function f : IN→ IN.

It is straight forward to check that both definitions are equivalent, i.e. define the same
class of optimization problems. The following subclasses of PTAS are well-established
in the literature:

Definition 11 (Subclasses of PTAS)

1. FPTAS is the class of NPO problems F that admit a fully polynomial time
approximation scheme, i.e. an algorithm A which for each instance x of F
and n ∈ IN computes a

(
1 + 1

n

)
-approximate solution y to instance x and such

that the running time of algorithm A on input x, n is bounded by O (p(|x|, n)) for
some polynomial p(m,n).

2. EPTAS is the class of NPO problems F that admit an efficient polynomial
time approximation scheme, i.e. a polynomial time approximation
scheme A with running time O

(
f(n) · |x|O(1)

)
for some function f(n).

2.4. OPTIMIZATION PROBLEMS 21

An important super-class of PTAS is the class of problems that admit an asymptotic
approximation scheme:

Definition 12 Given an NPO problem F , an asymptotic polynomial time ap-
proximation scheme A for F is an algorithm which for each instance x of F and
every n ∈ IN computes a feasible solution y in time O

(
|x|f(n)

)
for some function f(n)

such that

RF (x, y) ≤ 1 +
1

n
+

1

optF (x)
,

where optF (x) denotes the optimum value to instance x of F (we assume without loss
of generality that optF (x) 6= 0).

PTAS∞ is the class of NPO problems that admit an asymptotic polynomial time
approximation scheme.

Obviously the following chain of inclusion holds:

PO ⊆ FPTAS ⊆ EPTAS ⊆ PTAS ⊆ PTAS∞ ⊆ APX ⊆ log−APX ⊆ NPO.

It is natural to ask whether these inclusions are strict, under some natural complexity
theoretic assumption. Under assumption P 6= NP, one obtains

PO (FPTAS (PTAS (PTAS∞ (APX (log−APX (NPO

and furthermore

FPTAS (EPTAS.

Under assumption P 6= NP nothing is known about the strictness of inclusion

EPTAS ⊆ PTAS.

Nevertheless, Cesati and Trevisan were able to prove strictness under a somewhat
stronger assumption from fixed parameter complexity, which translates into a natural
assumption about the amount of nondeterminism needed to solve NP problems in
polynomial time. In chapter 4, section 4.4 we give an alternative separation proof under
some different assumption about lower bounds for deterministic time complexity of NP
problems. This assumption is as well stronger than P 6= NP (in the sense it implies
the latter), and we will in section 4.4 construct a recursive oracle under which our
assumption becomes true and that used by Cesati and Trevisan becomes false. This
implies that using relativizing proof techniqhes one can not show that our assumption
implies theirs.

Concerning polynomial time approximation schemes, another interesting question
arrises: What kind of functions may occur in the exponent of the running time bound
? It is worth mentioning that for all natural problems we are aware of which provide
a polynomial time approximation scheme, the dependence of the running time on 1/ε
is by a polynomial or some exponential function.

22 CHAPTER 2. DECISION AND OPTIMIZATION PROBLEMS

But are there problems F in PTAS such that any polytime approximation
scheme for F has a running time with nonrecursive dependence on ε ?

We will answer this question affirmative in chapter 4, section 4.2.
Let us point here that in some sense this is astonishing: On the one hand, for

an optimization problem to be in NPO means polytime computability of the cost
function, solution length being bounded polynomially in the input size and so on
(cf. the definition above), which implies the problem can be solved to optimality in

exponential time O
(

2n
O(1)
)

, on the other hand we have a non-recursiveness property.

In order to prepare our considerations in chapter 4, we will now define the according
subclasses of the class PTAS.

Definition 13

Uniform-PTAS is the class of NPO problems that admit a ptas with running time
bounded by |x|f(n) for some recursive function f .
Uniform-EPTAS is the class of NPO problems that admit an eptas with running
time bounded by g(n) · |x|α for some constant α and some recursive funtion g.

Chapter 3

Fixed Parameter Tractability

In this Chapter we give a brief introduction into Fixed Parameter Complexity Theory
and study some structural aspects of classes of the W-Hierarchy. Fixed Parameter
Complexity is motivated by the observation that for various algorithmic problems one
is able to identify some parameter of the problem such that fixing this parameter to
constant makes the problem algorithmically easier. The notion of fixed parameter
tractability was invented by Downey and Fellows [DF95a, DF95b]. It has close con-
nections to the NP completeness theory [CCDF95, BG94] and complexity theory of
optimization problems [CC97].

Our specific interest in Fixed Parameter Complexity is due to its close connection
with approximation complexity of NP-hard optimization problems [CC97, CT97a].
In chapter 4 we will study structural properties of the class NPO with some focus
on the existence of efficient polynomial time approximation schemes. Recall that a
Polynomial Time Approximation Scheme for some optimization problem X has
running time O

(
|I|f(1/ε)

)
for some function f (ptas), while Efficient Polynomial

Time Approximation Schemes (eptas) have running time O
(
f
(
1
ε

)
· |I|c

)
for some

constant c. hence the exponent of the running time bound does not depend on ε.
AccordinglyPTAS and EPTAS denote the classes ofNPO problems with polynomial
time approximation scheme and efficient polytime approximation scheme respectively.

While for some optimization problems which were previously known to fall into
class PTAS, the existence of an efficient polynomial time approximation scheme could
finally be established (e.g. the geometric versions of the Steiner Tree Problem,
Travelling Salesman Problem and similar routing problems, see the paper by San-
jeev Arora [Aro98]), for other problems like the dense versions of the Steiner Tree
Problem and its variants which we consider in chapter 9, existence of an efficient
polytime approximation scheme remains an open problem.

It is then natural to ask whether these classes are distinct, under some natural
complexity theoretic assumption like P 6= NP. Unfortunately, under this standard
assumption it is open how to prove EPTAS 6= PTAS. Cesati and Trevisan [CT97a]
were able to prove the following:

FPT 6=W[P] =⇒ EPTAS 6= PTAS =⇒ FPT 6= SP

23

24 CHAPTER 3. FIXED PARAMETER TRACTABILITY

Here

FPT ⊆W[1] ⊆W[2] ⊆ . . . ⊆W[t] ⊆ . . . ⊆W[P] ⊆ SP

denotes the W -hierarchy introduced by Downey and fellows.

In chapter 4, section 4.3 we separate EPTAS from PTAS under some different
complexity theoretic assumption, namely existence of problems in NP with a super-
polynomial lower bound for the deterministic time complexity. Now, having two proofs
of the same result under different assumptions, it is natural to ask how different they
are, e.g. whether one implies the other. Fortunately, in chapter 4, section 4.4 we give a
proof that using relativizing proof techniques one can not show that our assumtion
implies the above one from Cesati and Trevisan.

It is also interesting to investigate the fixed parameter complexity of Steiner Tree
Problems which we will consider in chapters 5-8 of this thesis. The Steiner Tree
Problem itself is known to be W [2]-complete if we take as a parameter the number
of Steiner points in the tree [BfHW00] On the other hand, if we parameterize the
number of terminals, the problem falls easily into class FPT , using the Dreyfus Wagner
algorithm. We are not aware of fixed-parameter results on the generalizations like
the Steiner Forest Problem and the other Steiner like problems we consider in
subsequent chapters. For the Steiner Forest problem, the besk known hardness result
is the same as for the Steiner Tree Problem while the best known upper bounds
differ drastically (factor 1.55 for the Steiner Tree Problem, cf. chapter 5 and factor
2 for the Steiner Forest Problem, cf. chapter 6). Hence a fixed parameter result
different from that for the Steiner Tree Problem would be very desirable.

This is motivation enough for us to take a closer look at the field of Fixed Pa-
rameter Complexity. In this chapter we will give a very brief introduction into the
basic notions and concepts. We will define the W-Hierarchy, the reducibility con-
cepts being in use and give a very selective list of complete problems for the various
levels of the W-Hierarchy.

Furthermore, we take a look at some structural aspects of Fixed Parameter
Complexity. There are some fundamental results on complexity measures well known
in the literature, including the famous Speedup Theorem by M. Blum [Blu67],
the Union Theorem of McCreight and Meyer [MM69] and Borodin,s Gap theorem
[Bor72].

The Speedup Theorem [Blu67] states that there are recursive languages without
asymtotically fastest algorithm, e.g. such that for each algorithm deciding the language
there is another algorithm which decides the language as well and has running time
bounded by the squareroot of the former running time. Instead of squareroot on can
place here any recursive function.

The Union Theorem [MM69] allows to ”give names to complexity classes”, in the
following sense: If fi(n), i ∈ IN is a recursive family of functions then the union
⋃

iDTIME(fi(n)) can be written as a single class DTIME(f(n)) for some recur-
sive function f(n). As a direct application, there is a recursive function f(n) such that
P = DTIME(f(n)). In the above formulation, DTIME can be replaced by some
arbitrary Blum complexity measure.

3.1. BASIC DEFINITIONS 25

Borodin’s Gap Theorem [Bor72] states that within the deterministic time hierar-
chy (and any hierarchy provided by a Blum complexity measure) there are arbitrary
recursive gaps.

Another fundamental result is Levin’s Lower Bound Theorem [Lev74] (in rus-
sian, see [Lev96] and [All99] for formulations and proofs in english). The theorem states
that for every recursive language L there is a recursive function g(n) such that for all
space complexity functions s(n), L ∈ DSPACE(s(n)) if and only if s(n) = Ω(g(n)).

Our structural results are the following: In section 3.3.1 we prove an analog of
Blum’s Speedup Theorem for the class SP of parameterized problems solvable in time
O(|x|f(n)) for some function f(n). Our result allows to speed up f(n), the running
time dependence on the parameter.

In section 3.4 we prove an analog of Levin’s Lower Bound Theorem for the classes
SP and FPT, again providing lower bounds for the dependence on the parameter.
Here our lower bound functions are in general not recursive anymore, but provide
some weaker computational property: They are guaranteed to be recursively ap-
proximable from below. Furthermore we consider the question whether the original
Lower Bound Theorem for the language case holds for all Blum complexity measures.
We leave this question open but are able to identify a reasonable subclass of Blum com-
plexity measures for which it holds. Finally we prove a version of the Lower Bound
Theorem for Randomized Space Complexity.

3.1 Basic Definitions

The definitions and notions which we list in this section are taken from [DF92, DF95a,
DF95b].

Definition 14 (Parameterized Languages, Parameterized Decision Problems)
A parameterized language or parameterized decision problem is a set L ⊆ Σ∗ × IN.
Here for (x, k) ∈ L the string k is interpreted as a parameter. For a given parameter-
ized language L and a number k ∈ IN, Lk = {x ∈ Σ∗ : (x, k) ∈ L} is called the k-th
slice of L.

Definition 15 (Fixed Parameter Tractability)
A parameterized problem L is called

(a) nonuniformly fixed-parameter tractable if there is a constant α and a family
Tk, k ∈ Σ∗ of algorithms (i.e. deterministic Turing machines) such that for each
k ∈ Σ∗ algorithm Tk recognizes the language Lk in time O(nα).

(b) uniformly fixed-parameter tractable if there is a constant α and an algorithm T
such that T decides if (x, k) ∈ L in time f(|k|) · |x|α for some function f : IN→ IN.

(c) strongly uniformly fixed-parameter tractable if there is a constant α and an
algorithm T such that T decides if (x, k) ∈ L in time f(|k|) · |x|α for some
recursive function f : IN→ IN.

26 CHAPTER 3. FIXED PARAMETER TRACTABILITY

Definition 16 (Complexity Classes of Parameterized Problems)
FPT is the class of parameterized languages L ⊆ Σ∗×IN for which there exixsts a deter-
ministic algorithm A that decides L and has running time bounded by f(n) · |x|O(1) for
some function f : IN→ IN. Problems in FPT are called fixed parameter tractable.
SP is the class parameterized languages L ⊆ Σ∗ × IN for which there exixsts a deter-
ministic algorithm A that decides L and has running time bounded by O

(
|x|f(n)

)
for

some function f : IN→ IN.

Definition 17 (Parameter-Reducibility, P-Reducibility)
Let A and B be two parameterized problems. For y ∈ Σ∗ we let

B(y) :=
⋃

k≤y
Bk = {(x, k) : k ≤ y and (x, k) ∈ L}.

(a) A is nonuniformly P-reducible to B (A ≤nP B) if there is a constant α, a function
f : IN → IN and a family of oracle algorithms Tk, k ∈ Σ∗ (oracle TM’s) such that
for each k ∈ Σ∗ L(Tk, B(f(|k|))) = Ak with running time f(k)|x|α.

(b) A is uniformly P-reducible to B (A ≤uP B) if there is a constant α, a function
f : IN→ IN and an oracle algorithm T such that T (B) (algorithm T with oracle B)
decides L, the running time of T (B)(x, k) is bounded by f(k)|x|α and on input
(x, k) T only asks oracle questions to B(f(k)).

(c) A is strongly uniformly P-reducible to B (A ≤sP B) if A ≤uP B with T, f and α
as in (b) and furthermore function f is recursive.

The W-Hierarchy
The W-Hierarchy was introduced by Downey and Fellows [DF92] in order to study
fixed-parameter intractability. It is defined in terms of Boolean circuits of mixed type:

Definition 18 A Boolean circuit of mixed type is a Boolean circuits having gates
the following kind:

(1) Small gates: not gates, and gates and or gates with bounded fan-in (fan-in 2
for and and or, fan-in 1 for not.

(2) Large gates: and gates and or gates with unbounded fan-in.

Furthermore the following notions are used in Fixed Parameter Complexity: The
depth of a Boolean circuit C of mixed type is the maximum number of gates on
a directed path in C. The weft of C is the maximum number of large gates on an
input-output path in C. A family {Cn, n ∈ IN} of circuits of mixed type has bounded
depth if there exists some constant h such that each Cn has depth at most h. Similarly
families of bounded weft are defined.

Definition 19 (The Classes W [t] and W [P])
(a) A parameterized problem L belongs to W [t] if there exists a constant h ∈ IN such

3.2. COMPLETE PROBLEMS 27

that L is P-reducible to the parameterized circuit problem LF (t,h) for the family F (t, h)
of mixed type decision circuits of weft at most t and weft at most h.
(b) A parameterized problem L belongs toW [P] if L is P-reducible to the parameterized
circuit problem LF for the family F of mixed-type circuits (with no restriction on weft
and depth).

3.2 Complete Problems

In this section we list some complete parameterized problems for some levels of the
W-Hierarchy. More comprehensive lists can be found in [DF95a, DF95b].

Generic Complete Problems for W [t]

Bounded Weight t-Normalized Satisfiability
Instance: t-normalized Boolean expression X (t ≥ 2), positive integer k

Question: Does X have a satisfying truth assignment of weight at most k ?

Parameter: k : W [t]-complete

Remark: X is called t-normalized if it is of the form

X =
∧

j1∈J1

∨

j2∈J2

. . .
∧

jt∈Jt
︸ ︷︷ ︸

t alternations

L(j1, . . . , jt)

in the case when t is odd, where for each sequence j1, . . . , jt of indices L(j1, . . . , jt) is
a literal, and

X =
∧

j1∈J1

∨

j2∈J2

. . .
∨

jt∈Jt
︸ ︷︷ ︸

t alternations

L(j1, . . . , jt)

in case t is even.

Complete Problems for W [2]

Dominating Set

Instance: Graph G = (V,E), positive integer k

Question: Is there a set of k vertices V ′ ⊆ V such that every vertex of V \ V ′ has a
neighbor in V ′ ?

Parameter : k
W [2]-complete (membership is obvious, hardness by a reduction from Weighted CNF

28 CHAPTER 3. FIXED PARAMETER TRACTABILITY

Satisfiability)

Steiner Tree Problem

Instance: Graph G = (V,E), subset S ⊆ V with |S| ≤ k, an integer m ∈ [0, |V |]

Question: Does there exist a set of vertices T ⊆ V \ S such that |T | ≤ m and the
induced subgraph G[S ∪ T] is connected ?

Parameter : m
W [2]-complete (reduction to Short Multi-Tape NTM Computation, reduction from
Dominating Set)

Parameter : k
In FPT (solvable in time O(3kn+ 2kn2 + n3) by the Dreyfus-Wagner algorithm)

Complete Problems for W [P]

Bounded Nondeterminism Turing Machine Computation
Instance: Single-tape single-head nondeterministic Turing machine T ,

an input x ∈ Σ∗, positive integers k,m

Question: Does there exist an accepting computation path of T (x) having
at most m steps and at most k nondeterministic steps ?

Parameter: k : W [P]-complete

3.3 Structural Properties

In this section we are concerned with various structural properties of theW -Hierarchy.
Previous work on structural aspects of Fixed Parameter Complexity includes the work
of Downey and Fellows [DF95a, DF95b] and especially [DF93], who studied several
reducibility concepts, separation and density aspects and uniformity questions.

In the classical complexity theory of decision problems the following three results
are well-known: The Speedup Theorem given by Manuel Blum [Blu67], Borodin’s
Gap Theorem [Bor69, Bor72] and the Union Theorem by McCreight and Meyer
[MM69].

The Speedup Theorem [Blu67] roughly tells us that there exist computable
problems without fastest algorithm: Given a recursive monotone increasing function
r: IN→ IN (the speedup), there exists a recursive language L such that the following
holds: When A is an algorithm deciding L with running time t(n), then there exists
an algorithm B deciding L as well such that for the running time t′(n) of algorithm B

3.3. STRUCTURAL PROPERTIES 29

the following holds:
r(t′(n)) ≤ t(n).

If we choose for example r(n) = n2, the result reads as follows: There exists a com-
putable problem L such that whenever we have an algorithm for L with running time
t(n), then there also exists an algorithm with running time

√

t(n), and then also some

with running time 4
√

t(n) =
√
√

t(n) and so on.

Borodin’s Gap theorem [Bor69, Bor72] states that the deterministic time hier-
archy (and indeed each hierarchy according to some Blum Complexity Measure)
provides gaps of arbitrary recursive width: Given a recursive function g(n) (assume it
to be strictly monotone increasing), there exists a recursive function S(n) such that

DTIME(g(S(n))) = DTIME(S(n)),

hence we have a gap with width g. This somehow seems to contradict the well known
Hierarchy Theorem, which guarantees some kind of density inside the Deteministic
Time Hierarchy. The Hierarchy Theorem imlies that - for example - for every ε > 0
we have

DTIME (nc) (DTIME
(
nc+ε

)
.

So how to solve this seemingly contradictory statements ? The answer is: there is no
contradiction at all. The Hierarchy Theorem establishes density for time com-
plexity functions, i.e. those functions t(n) which are computable in time t(n), while
the gap providing function S(n) is recursive but in general not a time complexity
function.

The Union Theorem of McCreight and Meyer [MM69] allows us ”to give names”
to complexity classes: If ti(n) is a recursive family of functions (assume each function
to be monotone increasing and ti(n) ≤ ti+1(n) for all i, n), then the union of the
according time complexity classes can be written as a single time complexity class:
There exists a recursive function such that

⋃

i∈IN
DTIME(ti(n)) = DTIME(t(n)).

As a direct application, there exists a recursive function t(n) such that

P = DTIME(t(n)).

Again, the Union Theorem holds for general Blum Complexity Measures as well.
Let us mention a fourth result, being as fundamental as the three described so far

but seemingly much less known: Levin’s Lower Bound Theorem [Lev74, Lev96].
It states that for every recursive function f there exists a recursive lower bound for the
deterministic space complexity of f , namely a recursive function g(n) such that for all
space complexity functions s(n) = Ω(log(n)) the foloowing holds:

f ∈ DSPACE(s(n)) if and only if s(n) = Ω(g(n)).

30 CHAPTER 3. FIXED PARAMETER TRACTABILITY

The theorem can be stated in terms of languages instead of functions as well, furthewr-
more the same result holds for deterministic time complexity.

Again, there is seemingly a contradiction: What about languages L that provide
some speedup ? Again the answer is given in terms of space complexity functions:
The lower bound is in general not a space complexity function which means it is never
reached.

In this section we consider variants of the Speedup Theorem and Levin’s Lower
Bound Theorem for the classes FPT and SP of Fixed Parameter Hierarchy, namely
speedup and lower bound phenomena for the dependence of the running time on the
parameter. Thus, we say a parameterized language L ∈ SP provides r-speedup,
for r(n) being some monotone increasing recursive function, if the following holds:
Whenever A is an algorithm deciding L with running time O

(
|x|t(n)

)
, then there also

exists an algorithm B with running time O
(

|x|t′(n)
)

deciding L such that

r(t′(n)) ≤ t(n).

We will prove this result in subsection 3.3.1 Similarly concerning lower bounds, we will
prove that for each problem in SP there is a function g(n) such that

L ∈ SP
(

|x|t(n)
)

⇐⇒ t(n) = Ω(g(n))

holds. Unfortunately the lower bound function g(n) which we construct is in gen-
eral not recursive, nevertheless we can guarantee some slightly weaker property: The
function g(n) can be choosen such that

the set {(n,L) | g(n) ≥ L} is recursively enumerable

(we call such g r.e. approximable from below).

3.3.1 Speedup

In this section we use Blum’s approach from [Blu67] to prove speedup theorems for
parameterized classes FPT and SP.

Let Mj , cj be some effective enumeration of pairs where Mj is some TM and cj > 0
some constant such that every pair (M, c) occurs infinitely often in that sequence. Let
tj(n) := min{t ∈ IN|timeMj (x, n) ≤ cj · |x|t for all x ∈ Σ∗} if this minimum exists and
tj(n) =∞ otherwise.

Theorem 2 (Speedup for SP)
Let r: IN → IN some monotone increasing recursive function such that r(n) ≥ n2 for
all n. Then there exists a parameterized language L ∈ FPT such that for any i,
if L = L(Mi) and ti(n) is defined for all n (i.e. Mj is some SP-algorithm for L),
there exists some j such that L = L(Mj) with tj(n) being defined for all n such that
r(tj(n)) ≥ ti(n) for almost all n.

3.3. STRUCTURAL PROPERTIES 31

Proof: Let h: IN→ IN be defined by h(1) = 2, h(n+1) = r(h(n)). Then h is a recursive
function. As in the case of decision problems (c.f. []), for parameterized language L in
order to provide r-speedup it is sufficient to have the following two properties:

(1) For all j ∈ IN, if L = L(Mj) then tj(n) ≥ h(n− j) for almost all n.

(2) For all k ∈ IN there exists i ∈ IN such that L = L(Mi) and ti(n) ≤ h(n − k) for
almost all n.

The difference between the language case and the parameterized language case is that
here for some given n ∈ IN and t ∈ IN we cannot decide (recursively) whether tj(n) ≥ t
but only enumerate those (n, t) by simulating Mj on instances < x, n > for increasing
x.

Let tj(x, n) := min{t ∈ IN : timeMj (x, n) ≤ |x|t} if this minimum exists, then
tj(n) = minx∈Σ∗ tj(x, n). We construct L in stages in terms of a lexicographically
increasing sequence of strings xn, n ∈ IN. We maintain an initially empty list L of pairs
(Mj ,m), where Mj is a Turing machine and m ∈ IN. In stage n of the construction
we scan the list in lexicographic order (first by m and then by j) and search for
violations of (1) on the interval [0, xn−2], i.e. for pairs (Mj ,m) in L such that tj(x,m) <
h(m − j) for all x ∈ [0, xn−2]. If we find such a pair (Mj ,m) we check for violation
at xn−1: if tj(xn−1,m) < h(m − j) we enforce L(Mj) 6= L by defining (xn−1,m) ∈ L
iff Mj(xn−1,m) = 0 and remove (Mj ,m) from L, otherwise we replace (Mj ,m) by
(Mj ,m+ 1) in L. Let us now give the construction in detail:

Construction of parameterized language L
Initialization: L := ∅, L := ∅, x0 = 0
Stage 1: Let x1 = 1 and add (M1, 1) to L.
Stage n > 1:

for (Mj ,m) ∈ L (in lex. increasing order)
if for all x ∈ [0, xn−2] tj(x,m) < h(m− j)
if tj(xn−1,m) < h(m− j)
/∗ Diagonalize against L = L(Mj) ∗/
Remove (Mj ,m) from L
Let (xn−1,m) ∈ L iff Mj(xn−1,m) = 0

else
Replace (Mj ,m) by (Mj ,m+ 1) in L

Break for-loop
Add (Mn, n) to L.
Let T :=

∑

(Mj ,m)∈L
|xn−1|h(m−j)+ time needed to simulate stages 1 to n

xn := 0T

End of Stage n
End of Construction

L satisfies (1): Assume L = L(Mj) and tj(n) < h(n− j) infinitely often. In stage j
of the construction it is added to L. Since there are only finite many Mi with i < j

32 CHAPTER 3. FIXED PARAMETER TRACTABILITY

and ti(n) < h(n − i) i.o., after finite many stages Mj is the first entry in L with that
property. Hence at some stage Mj is removed from L and L 6= L(Mj).
L satisfies (2): Let k ∈ IN be given, we will give an algorithm Ak for L with running
time bounded by |x|h(n−k) for almost all n. Let Jk ⊆ {1, . . . , k} be the set of indices
j such that at some stage of the construction some tuple (Mj ,m) is removed from
L. Let n(k) be the latest stage number at which some of those tuples is removed.
Algorithm Ak will decide {(x, n) ∈ L|x ≤ xn(k)} by finite control. For instances (x, n)
with x > xn(k) Ak computes m ∈ IN such that xm−1 ≤ x < xm and checks whether
in stage m of the construction of language L it is diagonalized against L = L(Mj) for
some j using (x, n). If this is not the case, Ak returns 0, otherwise j ≥ k + 1 and
simulation of Mj(x, n) can be done in |x|h(n−j) ≤ |x|h(n−k). Hence the running time of
Ak is bounded by |x|h(n−k) for almost all n, which completes the proof. 2

3.4 Excurs: Levin’s Lower Bound Theorem

In 1974 Leonid A. Levin [Lev74] proved a theorem which roughly states that for every
recursive language L there is a tight lower bound for the deterministic space complexity
of L. At the first glance this seems to contradict (the deterministic space complexity
version of) Blum’s Speedup Theorem which tells us that there are recursive languages
without best (in the sense of space-complexity) accepting programs. The solution is
as follows: Not every recursive function is a space function (i.e. space-computable; a
function f is space-computable iff there is a Turing machine M that on input x needs
precisely f(|x|) space. Especially the lower bound functions in Levin’s theorem are
usually not space-computable.

Although being of very similar falvour as Blum’s Speedup Theorem [Blu67], Borodin’s
Gap theorem [Bor72] and the Union Theorem of McCreight and Meyer [MM69] dis-
cussed at the beginning of this section, Levin’s Lower Bound Theorem seems to be much
less popular. The only english description of the Lower Bound Theorem we could find
is an unpublished, but online available three-page manuscript by Eric Allender [All99]
and as a short summary with appendix by Leonid A. Levin himself [Lev96].

In this subsection we will initially consider the question of how to generalize the
theorem to other Blum complexity measures. We show that there are Blum complexity
measures (Bcm’s) without such a Lower Bound result and identify a class of Bcm’s to
which the theorem generalizes. Furthermore we prove a variant of the theorem for Fixed
Parameter Classes, namely a Lower Bound result for the functional dependence of the
exponent on the parameter. We leave as an open problem the complete characterization
of the class of all Bcm’s providing a Lower Bound result in the sense of L. A. Levin.

The subsection is organized as follows: We will first state Levin’s original theorem
for deterministic space complexity. Afterwards we give a formulation and proof of the
theorem for a reasonable subclass of the class of Blum’s complexity measures, namely
those that provide efficient simulation of a constant number of Turing machines on
the same input. Finally we will prove a version of the Lower Bound Theorem for the

3.4. EXCURS: LEVIN’S LOWER BOUND THEOREM 33

parameterized classes FPT and W [P], namely for the functional dependence of the
running time on the parameter.

Theorem 3 (Levin’s Lower Bound Theorem [Lev74])
Let f be a total recursive function. Then there exists a total recursive function g such
that for any space function s such that s(n) = Ω(log(n))

f ∈ DSPACE(s) ⇔ s = Ω(g).

A rather similar result can be obtained for deterministic time complexity instead
of space complexity. In his draft [Lev96] L. A. Levin states:

”We formulate the theorems in terms of Turing Machine space. But it is clear
how to generalize them, since any complexity measure is bounded by a total
recursive function (t.r.f.) of any other one. Of course, the accurary of a constant
factor will turn in to the accuracy of some other t.r.f.” [Lev96]

We say a Blum complexity measure ϕ provides an Ω-Lower Bound iff for each
recursive language L there exists a recursive function g = gL such that for every ϕ-
complexity function h the following are equivalent: (1) There exists a TM Mi with
L(Mi) = L and ϕi(n) = h(n).
(2) h(n) = Ω(g(n)).

One may now ask which Blum complexity measures provide an Ω-Lower Bound.
The above statement is only a partial answer to that question. Let t be the deter-
ministic time complexity measure. Let f be some recursive function and tf := f ◦ t,
i.e. tf (i, n) := f(t(i, n)). Then tf is a Blum complexity measure. Now assume L is a
recursive language and g an Ω-lower bound function for L wrto time complexity t. We
may now ask whether there exists an Ω-lower bound function for L wrto tf . Assume
gf is such a function. Let L = L(Mi) for some Turing machine Mi. Then by the lower
bound properties we obtain t(i, n) = Ω(g(n)) and f(t(i, n)) = Ω(gf (n)), i.e. there exist
constants C,Cf > 0 such that for almost all n

t(i, n) ≥ C · g(n)
f(t(i, n)) ≥ Cf · gf (n) ⇐⇒ t(i, n) ≥ f−1(Cf · gf (n))

t-Complexity Functions vs. tf -Complexity Functions. If h is a t-complexity
function then there exists some TM Mj such that t(j, n) = h(n), hence tf (j, n) =
f(t(j, n)) = f(h(n)) and f ◦h is a tf -complexity function. Versa, ifH is a tf -complexity
function then f−1 ◦H is a t-complexity function.

Now assume H is such a function, then the following are equivalent:

(i) H(n) = Ω(gf (n)), i.e. H(n) ≥ C · gf (n) a.e. for some C > 0

(ii) There is a TM Mi with tf (i, n) = f(t(i, n)) ≤ H(n) and L(Mi) = L.

Furthermore for f−1 ◦H the following are equivalent:

34 CHAPTER 3. FIXED PARAMETER TRACTABILITY

(iii) f−1(H(n)) = Ω(g(n)), i.e. f−1(H(n)) ≥ c · g(n) a.e. for some c > 0
(which means H(n) ≥ f(c · g(n)) a.e.)

(iv) There is a TM Mi with t(i, n) ≤ f−1(H(n)) and L(Mi) = L
(which means f(t(i, n)) ≤ H(n)).

Now it is natural to ask the following

Question: Are there Blum Complexity Measures ϕ and recursive languages L such
that ϕ does not provide Ω-Lower Bound to L, which means are there ϕ and L such
that for every recursive function g at least one of the following is true:

(1) There is an M such that L(M) = L and ϕM (n) 6= Ω(g(n).

(2) There is a ϕ-complexity function t(n) such that t(n) = Ω(g(n)) and L 6∈ Cϕ(t(n)).

Unfortunately, so far we do not know the answer yet. Let us give a brief sketch of
an approach we had in mind in order to give a positve answer and then ppoint out
where the difficulties are. One could have the following approach in mind in order to
give a positive answer to that question: We take a recursive infinite language L and
let M = ML be a Turing machine deciding this language. Then we try to define a
Blum complexity measure (BCM) ϕ such that ϕ does not provide Ω-Lower Bound to
L. In order to do this we try to enforce L not having constant ϕ-complexity. Then
we diagonalize against every total recursive function g which is not constant.
But then one problem occurs: We cannot algorithmically enumerate all recursive func-
tions neither all non-constant recursive functions (this is an elementary and well known
result from computability theory).

However in the next subsection we will at least identify a class of Blum complexity
measures for which existence of Ω-Lower Bounds can be proved.

3.4.1 Ω-Lower Bound for Proper Measures

We will now present a generalized version of Levin’s Lower Bound Theorem for a quite
reasonable subclass of the Blum complexity measures, namely those for which doing
one-step simulation of a constant number of Turing machines on the same input x until
the first of these machines terminates is asymptotically of the same complexity as the
computation of this machine on input x (plus some small overhead for simulation). We
call such complexity measures proper.

Let us first recall some standard definitions and notations and then give a precise
definition of proper complexity measures. Let

Mi, i ∈ IN

be a fixed standard numbering (Gödel numbering) of the Turing machines, which means
there is a universal TM M such that M(i, x) =Mi(x) for all i, x, and the sms theorem
holds. A Blum’s complexity measure for Mi, i ∈ IN is a partial function ϕ: IN×Σ∗ → IN

such that Blum’s axioms hold:

3.4. EXCURS: LEVIN’S LOWER BOUND THEOREM 35

(B1) For all i ∈ IN and x ∈ Σ∗: ϕ(i, x) is defined iff Mi(x) is defined.

(B2) The set {(i, x, U) : ϕ(i, x) ≤ U} is recursive.

We are now going to introduce a notion for complexity classes of general Blum com-
plexity measures as well as complexity function, which are the analog of time
computable functions and space computable functions in the case of general
complexity measures.

Definition 20 (Complexity Classses, Complexity Functions)
Let ϕ a Blum complexity measure. For a given function t: IN → IN we define the
complexity class Cϕ(t(n)) by

Cϕ(t(n)) := {L ∈ IN|∃i ∈ IN (L(Mi) = L & ∀x ϕ(i,x) = O(t(|x|)))}.

Furthermore a function t: IN → IN is called ϕ-complexity function iff there exists
i ∈ IN such that for all n ∈ IN

max
|x|=n

ϕ(i,x) = t(n).

We are now ready to give the precise definition of proper complexity measures.

Definition 21 (Proper Complexity Measures)
A Blum’s complexity measure ϕ is called proper iff there exists a recursive function
f = fϕ: IN × IN → IN such that the following holds: For every k ∈ IN and Turing
machines Mi1 , . . . ,Mik there is a Turing machine Mi with the following two properties:

(1) For every input x,

Mi(x) =







undefined if for all 1 ≤ j ≤ k, ϕ(ij , x) =∞
Mij (x) if m := min{ϕ(ij , x)|j = 1, . . . , k} <∞

and j is minimum such that ϕ(ij , x) = m

(2) ϕ(i, x) ≤ f(k,< i1, . . . , ik >) ·min{ϕ(ij , x)|1 ≤ j ≤ k}.

Note that the standard measures DTIME and DSPACE are proper in this sense.

Theorem 4 (Lower Bound Theorem for Proper Complexity Measures)
Let Mi, i ∈ IN be a standard numbering of all Turing machines and ϕ be a proper
Blum’s complexity measure for that numbering. Let l(n) be some unbounded increasing
recursive function. Then the following holds:

For every recursive language L there exists a recursive function g: IN → IN such that
for all ϕ-complexity functions t: IN→ IN with t(n) = Ω(l(n)),

L ∈ Cϕ(t(n)) ⇐⇒ t(n) = Ω(g(n)).

36 CHAPTER 3. FIXED PARAMETER TRACTABILITY

Proof of Theorem 4: In the proof of this result we will follow the lines of Levin’s
original proof as it is described in [All99]. First we construct a family of functions
pi: IN→ IN, i ∈ IN with the following properties:

(1) The function p: IN× IN→ IN, < i, n >7→ pi(n) is recursive.

(2) For all i, n: pi(n) ≥ pi+1(n).

(3) For all i: L ∈ Cϕ(pi(n)).

(4) For all ϕ-complexity functions t: IN→ IN:
L ∈ Cϕ(t(n)) ⇐⇒ ∃i : t(n) = Ω(pi(n)).

The computation of the function p(i, n) := pi(n) works as follows:

Computation of function p:
Input: i, n
Output: pi(n)
For ϕ-complexity bounded by l(n) do

/? As usual, χL: Σ
∗ → {0, 1} denotes the characteristic function of L. /?

Search for some j ≤ i, y ∈ Σ∗ such that Mj(y) 6= χL(y).
Each such j found in this process is cancelled.

Let A := {j ≤ i : j not cancelled} ∪ {k}.
For c = 1 to ∞ do

Check if there is some j ∈ A such that
for all x ∈ Σn ϕ(j, x) ≤ c.

If so, return c.

Obviously the function p is recursive and satisfies pi(n) ≥ pi+1(n) for all i, n. In order
to show that property (3) holds, for given i ∈ IN we let

Af (i) := the set of indices in {1, . . . , i} ∪ {k} that will never be
cancelled in any computation of a value pi(n).

Note that by the definition of Af (i), pi(n) = min{ϕ(j, n)|j ∈ Af (i)} for almost all n.
Furthermore for each j ∈ Af (i) we have L(Mj) = L. Consider the following algorithm
for L:

Algorithm Ai:
Input: x
Do step-by-step simulation of Mj(x), j ∈ Af (i)
until one of them terminates, say Mj0 .
Return the result Mj0(x).

3.4. EXCURS: LEVIN’S LOWER BOUND THEOREM 37

By the definition of Af (i), this algorithm decides L. Now let ai := |Af (i)| and Af (i) =
{j1, . . . , jai}. Since ϕ is proper, there is a function fϕ: IN × IN → IN such that there
exists a Turing machine Mh implementing algorithm Ai such that

ϕ(h, x) ≤ fϕ(ai, (j1, . . . , jai)) ·min{ϕ(j, x)|j ∈ Af (i)}
= fϕ(ai, (j1, . . . , jai)) · pi(|x|) = O(pi(|x|))

since i and hence Af (i) are fixed. Hence property (3) holds. In order to prove (4) we
first observe that ”⇐=” directly follows from (2) and the definition of the complexity
class Cϕ(pi(n)). Now suppose L ∈ Cϕ(t(n)) for a function t: IN → IN. Then there
exists a Turing maschine Mi such that L = L(Mi) and ϕ(i, n) = O(t(n)). Hence by
the definition of pi we have pi(n) = O(t(n)) which implies t(n) = Ω(pi(n)).

Let ti: IN→ IN be the (partial) ϕ-complexity function defined by ti(n) := max
|x|=n

ϕ(i, x).

Assume that our enumeration of Turing machines is such that each machine occurs
infinitely often (a standard property of such enumerations which is easily to achieve).
Now we construct a function g: IN→ IN with the following properties:

(5) For all i pi ≥ g a.e.

(6) For all ϕ-complexity functions ti: IN→ IN with ti(n) = Ω(l(n)) and all i ∈ IN:
∃∞n t(n) < pi(n) −→ ∃n > i t(n) < g(n).

Let us first show that (5) and (6) are sufficient in order to prove the theorem. Indeed,
let L and pi, i ∈ IN be as above and assume (5) and (6) hold. Let L ∈ Cϕ(t(n))
for some function t: IN → IN. Then there is some i ∈ IN such that t(n) = Ω(pi(n)).
Then t(n) = Ω(g(n)) by (5). This proves ”=⇒” in Theorem 4. It remains to show
”⇐=”. Assume ti(n) = Ω(g(n)) and let Mi = Mi2 = Mi3 = . . . according to the above
assumption. Assume that for all j ∈ IN ti(n) 6= Ω(pj(n)). This means for each l and
each constant c > 0 there are infinitely many n ∈ IN such that ti(n) = til(n) < c ·pil(n).
Hence using (6) we conclude that for each c > 0 there exist infinitely many n such that
ti(n) < c · g(n), contradicting our assumption ti(n) = Ω(g(n)).

We will now describe how to compute a function g with properties (5) and (6)
recursively:

Computation of function g:
For l(n) steps do

Check if ∃ i < m < n with ti(m) < g(m)
If so, cancel i.

Pick the least uncanceled i < n with ti(n) < pi(n)
Cancel i, set g(n) := pi(n).
If no uncanceled i < n exists, set g(n) := pl(n)(n).

It remains to show that g computed as above satisfies (5) and (6). Here property
(5) directly follows from the computation of g(n). Now let ti(n) be a ϕ-complexity
function such that ti(n) = Ω(l(n)), and assume ∃∞n ti(n) < pi(n). Choose n > i such

38 CHAPTER 3. FIXED PARAMETER TRACTABILITY

that ti(n) < pi(n) and within l(n) steps all indices j < i that will ever be canceled in
the computation of g are already canceled. Then either i is cancelled as well because
there was some m > i with g(m) > ti(m) or it is not cancelled so far and some j < i
will be cancelled implying g(n) = pj(n) ≥ pi(n) > ti(n). 2(Theorem 4)

3.4.2 Lower Bound Theorem for Parameterized Classes

We will now consider versions of the Lower Bound Theorem for the parameterized
classes FPT and SP . Here we are interested in obtaining lower bounds on the de-
pendence of the running time on the parameter, e.g. in the case of L ∈ SP with an
algorithm of running time O(|x|f(n)) we ask for lower bounds on f(n).

Let us start with introducing some notations.

Definition 22 For a function f : IN → IN let SP
(
|x|f(n)

)
be the class of all parame-

terized languages L ⊆ Σ∗ × IN0 which can be decided in time O
(
|x|f(n)

)
.

Recall that a function g: IN → IN is called r.e. approximable from below iff the
set {(n,L) : f(n) ≥ L} is recursively enumerable (r.e.). The definition of being r.e.
approximable from above is similar.

Theorem 5 (Lower Bound Theorem for SP)
Let l(n) be some monotone unbounded recursive function. Let L be in SP

(
|x|f(n)

)
for

some function f : IN→ IN. Then there exists a function g: IN→ IN such that

(1) g is r.e. approximable from below.

(2) For all h: IN→ IN such that h(n) = Ω(l(n)):
L ∈ SP

(
|x|h(n)

)
⇔ h(n) = Ω(p(n)).

Proof: Let L be decided by TM Mk in time O
(
|x|f(n)

)
. First we construct a family

of functions pi: IN→ IN, i ∈ IN with the following properties:

(1) {pi(n)} is r.e. approximable from above, i.e. {(i, n, U) : pi(n) ≤ U} is recursively
enumerable. Furthermore L ∈ SP (|x|pi(n)) for all i ∈ IN.

(2) For all h: IN→ IN such that h(n) = Ω(l(n)):
L ∈ SP

(
|x|h(n)

)
⇔ ∃i : h(n) = Ω(pi(n)).

(3) pi(n) ≥ pi+1(n) for all i, n.

We will define pi(n) := sup{pi(x, n)|x ∈ Σ∗} for recursive functions pi(x, n) for which
the supremum will be guaranteed to be finite. As in the preceeding subsection in
the case of proper measures, we will as well perform bounded search for machines
not deciding L and afterwards simulate the remaining machines on input (x, n) with
increasing budget on the exponent of running time:

3.4. EXCURS: LEVIN’S LOWER BOUND THEOREM 39

Computation of pi(x, n):
Input: i, n, x
For l(n) steps do:

For each j ≤ i search for y,m such that
Mj(x,m) proves that Mj does not decide L.
Cancel all indices j for which the search succeeds.

A := {j ≤ i : j was not cancelled} ∪ {k}
for c = 1 to ∞

Simulate the computations Mj(x, n), j ∈ A
each for at most j · |x|c steps.
If one of them terminates, return max{c, l(n)}.

Let us first show that for all i and n the supremum

pi(n) := sup{pi(x, n)|x ∈ Σ∗}

is finite,which directly implies pi(n) being r.e. approximable from below (first part of
property (1)). Therefore note that for index k we have L(Mk) = L (by definition of
k) and k ∈ A (by the above construction). Hence pi(x, n) ≤ fk(n) for all x, n, and the
supremum is finite.

We show now that the second part holds as well, i.e. for all i ∈ IN L ∈ SP (|x|pi(n)).
Note that we can decide L in time O

(
|x|pi(x,n)

)
by simulating the comutation of pi(x, n)

and instead of returning c return the result of the first terminating machine (note that
for i being fixed, only a constant number of machines whose index was not cancelled
have to be simulated). Let Ai

f (n) be the set of indices from {j ≤ i} ∪ {k} that will

never be cancelled in any computation of a value pi(x, n), x ∈ Σ∗. Note that k ∈ Ai
f (n).

Furthermore, directly from the definition we obtain

pi(n) = sup{pi(x, n)|x ∈ Σ∗} = inf{t ∈ IN|∃ j ∈ Ai
f (n) (∀x timeMj (x, n) ≤ i · |x|t)}

and from the first equality the second part of property (1) follows. Furthermore

m ≤ n =⇒ Ai
f (n) ⊆ Ai

f (m)

since with n growing the search range for violations increases. Let

Ai
f :=

⋂

n∈IN
Ai
f (n), note that k ∈ Ai

f .

In order to prove (2), assume h(n) = Ω(l(n)) and L ∈ SP (|x|h(n)) via machine
Mj with running time bounded by |x|h(n). Then j will not be cancelled and hence
pj(n) ≤ h(n). Versa, if h(n) = Ω(l(n)) and h(n) = Ω(pi(n)), we observe that L ∈
SP (|x|pi(n)) ⊆ SP (|x|h(n)).

Property (3) follows directly from the definition of pi(n).
Still following the lines of the preceeding proof for the language case, we will now

define function g(n) being r.e. approximable from below such that the following con-
ditions are satisfied:

40 CHAPTER 3. FIXED PARAMETER TRACTABILITY

(4) For all i ∈ IN pi(n) ≥ g(n) a.e.

(5) For all indices i such that ti(n) := inf{t ∈ IN|for all x timeMi(x, n) ≤ i · |x|t} is
finite for all n and ti(n) = Ω(l(n)),

∃∞ n ti(n) < pi(n) −→ ∃n > i ti(n) < g(n)

(4) and (5) suffice: If L ∈ SP (|x|h(n)) for some h(n) r.e. approx. from below, then there
exists some TM Mi with according function ti(n) ≤ h(n) such that L ∈ SP (|x|ti(n)),
hence h(n) ≥ ti(n) ≥ pj(n) for some j and we use property (4)to obtain ti(n) =
Ω(g(n)). Versa, if ti(n) = Ω(g(n)) then if L 6∈ SP (|x|ti(n)) we use property (2) for
functions pi(n) combined with property (5) for g(n) in order to obtain a contradiction
(again assuming that each machine Mi occurs infinitely often in our enumeration).
It now remains to define g(n) and to establish (4) and (5). Again in the definition
of g(n), while being structurally completely adapted from the language case, there is
some central difference: The functions ti(n) are not recursive anymore, hence when
checking conditions ti(m) < B for some bound B, the result depends on the size of the
input (we have to perform bounded search !), and we cannot even be sure that ti(n) is
well-defined. Hence instead of obtaining recursive g as before, we will define recursive
function g(x, n) and let

g(n) := sup{g(x, n) | x ∈ Σ∗}

guaranteeing that the supremum is finite. This then directly implies g(n) being r.e.
approximable from below. Hence let us now define g(x, n).

Computation of g(x, n)
Input x, n. For l(n) steps do

Search for some i < m < n such that ti(m) < g(x,m) so far
(considering values for y from a bounded range |y| ≤ |x|)

/? Formally: max|y|≤|x| ti(y,m) < g(x,m) ?/

/? where ti(y,m) = inf{t ∈ IN|timeMi(y,m) ≤ i · |y|t} ?/

Cancel each such i.
endfor
Let i be the least uncancelled index such that ti(n) < pi(n) so far.

/? Formally: max|y|≤|x| ti(y, n) < pi(y, n) ?/

Cancel i and set g(x, n) := pi(x, n).
If no such i exists: Set g(x, n) := pl(n)(x, n).

Again property (4) follows directly from the definition of g(n) = supx g(x, n). As-
sume ti(n) = Ω(l(n)) is finite for all n and ∃∞n ti(n) < pi(n). Recall that pi(n) =

3.4. EXCURS: LEVIN’S LOWER BOUND THEOREM 41

supx pi(x, n), ti(n) = supx(ti(x, n) and g(n) = supx g(x, n). Since the suprema are
finite, let xn ∈ Σ∗ be chosen such that for all n

ti(n) = ti(xn, n), pi(n) = pi(xn, n).

Furthermore we define according sets of uncancelled indices Gi
f (x, n) and G

i
f (n) by

Gi
f (x, n) := {j ≤ i|j is not cancelled in the comp. of g(x, n)}

Gi
f (n) := {j ≤ i|j is never cancelled in any comp. of some g(x, n)}

Hence we have Gi
f (n) =

⋂

xG
i
f (x, n) and x < y → Gi

f (x, n) ⊇ Gi
f (y, n) since the search

range increases. If index i is in Gi
f (n) then for no x it will be cancelled in a computation

of g(x, n), and for x > xn such that all indices j ≤ i with j 6∈ Gi
f (n) are cancelled and

ti(x, n) = ti(n) < pi(n) = pi(x, n) we have g(n) ≥ g(x, n) = pi(x, n) = pi(n) > ti(n).
If index i is not in Gi

f (n) then it will be cancelled in computations of g(x, n) for
all x > x0(n) for some x0(n), and hence for n such that ti(n) < pi(n) and i < l(n) we
will have ti(n) < g(n) by definition. 2

In a similar manner one obtains the following result, we omit the details here.

Theorem 6 (Lower Bound Theorem for FPT)
For every monotone unbounded recursive function l(n) the following holds: For each
L ∈ FPT there exists a function g(n) r.e. approximable from below such that for all
functions h(n) ≥ l(n) which are r.e. approximable from below,

L ∈ FPT
(

h(n) · |x|O(1)
)

⇐⇒ h(n) = Ω(g(n)).

3.4.3 A Lower Bound Theorem for Randomized Space Complexity

We consider now a version of the lower bound theorem for randomized space complex-
ity. Let us start by recalling some definitions. A probabilistic Turing machine (PTM)
is an offline deterministic TM with separate read-only input tape and an additional
one-direction read-only ”random tape”, hence for given input x and string ρ on the
random tape M computes an output ΦM (x, ρ). Now the function computed by M is
the partial function ϕM : Σ∗ → Σ∗ defined by

ϕ(x) :=

{
y, Pr{ΦM (x, ρ) = y} > 1/2
undefined if no such y exists

The error probability eM of M is the partial function with the same domain as ϕ
and defined by eM (x) = Pr{ΦM (x, ρ) 6= ϕM (x)}. The probabilistic time and space
complexity of M are given by

ptimeM (x) :=

{
min{t ∈ IN0|Pr{M(x) = ϕM (x) in ≤ t steps} > 1/2}, x ∈ D(ϕM)
∞ otherwise

pspaceM (x) :=

{
min{s ∈ IN0|Pr{M(x) = ϕM (x) in ≤ s space} > 1/2}, x ∈ D(ϕM)
∞ otherwise

42 CHAPTER 3. FIXED PARAMETER TRACTABILITY

where we let

Pr{M(x) = ϕM (x) in ≤ t steps} := |{ρ ∈ {0, 1}
t|M(x, ρ) stops in at most t steps}|

2t

and Pr{M(x) = ϕM (x) in ≤ s space} is defined accordingly. Then we have the prob-
abilistic time and space complexity classes

PTIME(t(n)) := {L ⊆ {0, 1}∗|∃ PTM M such that ϕM = χL and ptimeM = O(t(n))}
PSPACE(s(n)) := {L ⊆ {0, 1}∗|∃ PTM M such that ϕM = χL and pspaceM = O(s))}

M is called a (total) Randomized Turing Machine (RTM, also called Monte Carlo
TM) if ϕM is a total function (i.e. a majority always exists) and furthermore the error
probability is bounded (away from 1/2), i.e. there exists a constant c > 0 such that
eM (x) ≤ 1/2 − c for every x. It is a well known fact that for randomized machines
we can decrease error probability to arbitrary small constant while staying within the
same time complexity class. In order to define randomized complexity classes, instead
of PTMs M we will now consider tuplesM = (M, c) where M is a PTM and c > 0 is
a constant. We will call the tuple an ”RTM” if M is an RTM in the usual sense with
error probability bouded by 1/2− c. Now for an RTMM = (M, c) we let

rtimeM(x) := min{t ∈ IN0|Pr{M(x) = ϕM (x) in ≤ t steps} ≥ 1/2 + c},
rspaceM(x) := min{s ∈ IN0|Pr{M(x) = ϕM (x) in ≤ s space} ≥ 1/2 + c}

and define the randomized time and space complexity classes

RTIME(t(n)) := {L ⊆ {0, 1}∗|∃ RTMM = (M, c) [ϕM = χL and rtimeM = O(t(n))]}
RSPACE(s(n)) := {L ⊆ {0, 1}∗|∃ RTMM = (M, c) [ϕM = χL and rspaceM = O(s(n))]}

Definition 23 A function s: IN→ IN is called randomized space complexity func-
tion iff there exists a RTMM such that

s(n) = rspaceM(n) for all n ∈ IN.

Theorem 7 (Lower Bound Theorem for Randomized Space Complexity)
For every recursive language L there exists a recursive function g: IN → IN such that
for every randomized space complexity function s(n) ≥ log(n)

L ∈ RSPACE(s(n)) ⇔ s(n) = Ω(g(n)).

Proof. We give a modified version of the proof for the deterministic case. The main
difference is that for a given PTM M we do not know how to decide if it is randomized
or not. Hence instead of PTMs we will work with pairs

Mi = (Mi, c(i))

where Mi is a PTM and 1/2 > c(i) > 0 is a guess for Mi being randomized. The guess
is called correct if

eM (n) ≤ c(i) for all n.

3.4. EXCURS: LEVIN’S LOWER BOUND THEOREM 43

We are not aware of any procedure how to decide the correctness of the guess, but if
a guess is incorrect, we will recognize after finite amount of time. We will now argue
that this is still enough in order to prove lower bound theorem.

In the first step we construct a family of functions pi: IN → IN, i ∈ IN with the
following properties:

(1) For every i ∈ IN L ∈ RSPACE(pi(n)).

(2) For every space complexity function s(n), L ∈ RSPACE(s(n)) iff there exists
an i ∈ IN such that

s(n) = Ω(pi(n)).

(3) The total function p: IN× IN→ IN defined by (i, n) 7→ p(i, n) := pi(n) is recursive.

(4) pi(n) ≥ pi+1(n) for for every i, n ∈ IN.

Computation of pi(x)
Using at most log(|x|) space
for l = 1 to i

Search for some y such that eMl
(y) > c(j).

If such y is found, cancel (Ml, c(l)).
Let A = {l ≤ i|(Ml, c(l)) not canceled} ∪ {k}.
For S = 0 to ∞
if there is some l ∈ A such that Ml(x) terminates

within space S then return S.

For functions pi(x) properties (2)-(4) obviously hold. It remains to show (1). Let Af (i)
be the set of indices l such that (l ≤ i and l will never be cancelled) or l = k. Without
loss of generality we can assume Af (i) = {1, . . . , k}. Furthermore we assume that k is
odd (if not, add some index l > k such that Ml has precisely the same behaviour as
M1, for any reasonable numbering of TMs such l can be easily constructed). We will
now construct an RTM Ti such that L(Ti) = L and spaceTi(n) = O(pi(n)).

Computation of Ti(x):
Independently perform step by step simulation of the computations
Mj(x), j ∈ Af (i) starting with space amount c = 1.
Whenever one of the machines wants to use a new tape cell, first
simulate all other computations until every of them wants to use another cell,
then increase c by 1 and proceed.
If one of the simulations has terminated,

let’s say Mj(x), then return Mj(x)
else let c := c+ 1 and proceed.

In order to analyze the algorithm’s behaviour we first give a precise definition of the
underlying probability space and especially of the probability of events concerning

44 CHAPTER 3. FIXED PARAMETER TRACTABILITY

the behaviour of a single machine Mj on input x. For given input x, for each fi-
nite sequence ρ ∈ {0, 1}m for some m ∈ IN let s(ρ, j), 1 ≤ j ≤ k be the num-
ber of steps up to which machine Mj on input x is simulated. The underlying
space is the set Ω of all mappings ρ: IN0 → {0, 1} with σ-algebra generated by the
events Sρ := {ρ′ ∈ Ω|ρ is initial segment of ρ′} with probabilities Pr(ρ) := Pr(Sρ) :=
2−|ρ|, ρ ∈ ⋃n∈IN0

{0, 1}n.

We will now estimate the error probability of Ti as follows: Let input x be given and

c := min{rspaceMi(x)|1 ≤ i ≤ k}

the minimum randomized space amout of machines M1, . . .Mk on input x. Without
loss of generality let

rspaceM1(x) = c.

We obtain

Pr {one of the machines M1, . . . ,Mk terminates in space c

and returns the correct answer to input x}
≥ Pr {M1 terminates in space c

and returns the correct answer to input x}
= (1− eM1(x)) · Pr{no other machine disturbs this}
≥ (1− emax(x)) · (1− emax(x))

k−1

= (1− emax(x))
k

where
emax(x) := max{eM1(x), . . . , eMk

(x)}
is the maximum of error probabilities of machines Mi, 1 ≤ i ≤ k on input x. Now ob-
serve that due to the fact that we have a logarithmic lower bound on the randomized
space complexity of L, we can decrease error probabilities of machines Mi to arbi-
trary small positive constant without spending extra space amount (just repeat the
simulations Mi sufficiently often and take majority decision), hence we may assume

emax(x) ≤ 1− k

√

3

4

which implies

(1− emax(x))
k ≥ 3

4
,

hence Ti is an RTM with error probability bounded by 1
4 such that

L(Ti) = L and rspaceTi(x) ≤ min{rspaceMl
(x)|1 ≤ l ≤ k}.

In the second step we construct function g: IN→ IN with the following properties:

3.4. EXCURS: LEVIN’S LOWER BOUND THEOREM 45

(4) ∀ i ∈ IN pi(n) ≥ g(n) a.e.

(5) For every i ∈ IN: IfMi is randomized with eM (n) ≤ c(i) (which means the guess
Mi = (Mi, c(i)) is correct) and randomized space complexity si(n), then

∃∞n si(n) < pi(n) =⇒ ∃ n > i with si(n) < g(n)

Similar to the case of deterministic space complexity, (4) and (5) are sufficient in order
to prove the theorem: If L ∈ RSPACE(s(n)) for some randomized space complexity
function s(n) then by property (2) there exists i ∈ IN such that s(n) = Ω(pi(n)), and
from pi(n) ≥ g(n) a.e. we conclude s(n) = Ω(g(n)). On the other hand, assume s(n)
is a randomized space complexity function such that L 6∈ RSPACE(s(n)). It suffices
to show that for all k ∈ IN k · s(n) < g(n) infinitely often (i.o.). In analog to the
deterministic case, randomized space complexity provides linear speedup:

Lemma 3.4.1 Let L ∈ RSPACE(s(n)) for a randomized space complexity function
s(n) ≥ log(n), and let c > 0. Then it follows

L ∈ RSPACE(c · s(n)).

Proof of Lemma 3.4.1: Let L = L(M) for some randomized TM such that

Pr{M(x) returns the correct answer in space bounded by s(|x|)} ≥ 3

4
.

Encode k tape symbols into one and simulate the comutation of M on blocks each
consisting of k tape positions without using extra space. This reduces space amount
to ds(n)/ke ≤ s(n)/k + 1. Choosing k ≥ 2/c, this term gets bounded by c · s(n) for
almost all n. 2(Proof of Lemma 3.4.1)

Hence we obtain L 6∈ RSPACE(k · s(n)). Using (2) we obtain:

For all i there exist infinitely many x such that k · s(x) < pi(x).

In order to construct g, it suffices to mention that we take the approach from the
language case (see subsection 3.4.1) and add in the cancelling procedure the check
whetherMi looks as being randomized so far (i.e. on inputs m < n in the computation
of g(n)). Properties (4),(5) are then verified in analog to the deterministic case.

2(Theorem 7)

46 CHAPTER 3. FIXED PARAMETER TRACTABILITY

Chapter 4

On the Structure of NPO

In this chapter we will consider various structural aspects of complexity classes of
optimization problems. Our focus will be on the class PTAS of NP optimization
problems providing polynomial time approximation schemes. Recall that a polynomial
time approximation scheme A for an NP optimization problem X has running time
bounded by O

(
|x|f(n)

)
for some function f(n), where we use the notation ε = 1/n, n ∈

IN. A is called efficient polynomial time approximation scheme if instead the
running time bound does not exponentially depend on ε but is o the formO (f(n) · |x|α)
for some fixed α and some function f(n). The according subclass of PTAS is called
EPTAS. Now given a problem in PTAS and having established some running time
bound O(|x|f(n)), we might ask for running time improvements, by decreasing f(n), i.e.
replacing it by some more slowly growing function f ′(n), or even obtaining an efficient
approximation scheme for the problem, replacing exponential dependence of running
time on ε by multiplicative dependence. For various natural optimization problems
this goal has been successfully achieved:

Concerning the Travelling Salesman Problem it was a longstanding open ques-
tion wether the geometric version of the problem in the plane provides a polyno-
mial time approximation scheme. It was Sanjeev Arora [Aro98] who could answer
the question affirmatively, giving a polynomial time approximation scheme with run-
ning time O

(
n · (logn)f(n)

)
(called quasi-linear running time), see the paper of

Mitchell [Mit99] for an independently obtained result. Nevertheless the dependence
on ε = 1/n was so drastic that initial attempts to use the approach in practice were
hardly promising. But then Rao and Smith [RS] were able to replace running time
by O (f(n) · |x| · log(|x|)), obtaining an efficient polytime approximation scheme for
geometric TSP (and various related geometric problems). Their approach relies on the
concept of sparse spanner graphs, see their paper for additional information.

In chapter 9 we will consider Dense Optimization Problems, especially dense
versions of various Steiner Tree Problems. For the dense Steiner Tree Problem,
which is roughly spoken the Steiner Tree Problem restricted to graphs in which termi-
nals have high degree, Karpinski and Zelikovsky [KZ97a] obtained a polynomial time
approximation scheme with running time O(|V |1/ε), where V is the vertes set of the

47

48 CHAPTER 4. ON THE STRUCTURE OF NPO

input graph. To our knowledge it is open whether an efficient approximation scheme
for this problem exists.

In the first section we consider PTAS-preserving reductions, i.e. those for which
problem A being reducible to problem B and B being in PTAS implies A being
in PTAS as well. Our motivation here is two-fold: First, in chapter 9 we will be
concerned with Dense Optimization Problems, many of whose provide polyno-
mial time approximation schemes and for some it is unknown wether efficient poly-
time approximation schemes exist. Hence it would be very interesting to obtain
some completeness results for those problems, explaining why efficient approximation
schemes are unlikely to exist. Our second motivation is a structural one. Observe
that in the case of decision problems one has the notion of polynomial time many-one
reductions ≤pm (also called Karp reductions), on which the NP -completeness theory
is based. There we have the following situation: On the one hand the polynomial
time Karp reduction provides a rich structure of complete and intermediate sets (as-
suming P 6= NP), on the hand ≤pm does not only preserve membership in P but
also in NP . In the case of optimization problems and concerning the class PTAS,
there is already a huge literature on PTAS-preserving reductions and completeness
results [PY91, CP91, KST96, KMSV94, KM96], see subsection 4.1.1 for a survey. All
of the reductions being defined before have one of the following properties: Either
they are PTAS-preserving but do not provide any structure inside class PTAS (namely
all PTAS problems are pairwise reducible to each other) or they provide complete
and intermediate problems inside class PTAS but are not PTAS-preserving. In sec-
tion 4.1 we will define a new type of reduction which we call parameter-reductions
(notion:≤PAR). This reduction turns out to be PTAS-preserving and provides com-
plete and incomplete problems inside class PTAS. This is achieved to the following
effect: parameter-reducibility is not transitive, and there exist problems in PO which
are ≤PAR-complete for the class PTAS.

In section 4.2 we discuss questions concerning the uniformity (recursiveness) of
the running time dependence of approximation schemes on ε. We show that there
exist problems in NPO that provide a ptas but no ptas with running time depending
recursively on ε. We also obtain the following combined result: There is a problem in
EPTAS that does not have an approximation scheme (efficient or not) with running
time recursive in ε.

In section 4.3 we will discuss the EPTAS versus PTAS question. Cesati and Tre-
visan [CT97b] proved EPTAS 6= PTAS under the assumtion FPT 6= W [P] from
fixed parameter complexity. We will obtain the same separation under a different as-
sumption, namely existence of problem in NP with superpolynomial lower bound on
deterministic time complexity. We make use of this assumtion in a diagonal construc-
tion of a problem U ∈ PTAS \ EPTAS, such that for each n ∈ IN approximability
within 1+1/n remains hard for increasing input size. Let us give some explanation: A
very simple diagonal construction of a problem in PTAS is as follows: Take a problem
L ∈ NP \ P . Define optimization problem Un to have polynomial proofs for mem-
bership x ∈ L as solutions of cost 1 + 1/n, all other strings (of pol. length in the
input) cost 1. Use U1 to diagonalize against machine M1, using the fact L 6∈ P . Then

4.1. PTAS-PRESERVING REDUCTIONS AND PTAS-COMPLETENESS 49

take U2 to diagonalize against M2 and so on. Hence the resluting problem U becomes
easier and easier to approximate within some given 1+ε with input size increasing. An
approximation scheme for U works as follows: For input x, n and the task to construct
an 1+1/n approximate solution, first compute m such that U on input x is defined as
Um. if m ≥ n return some arbitrary string of pol. length, otherwise solve the problem
by brute force. Hence for fixed ε = 1/n, only on an initial interval we have to perform
brute force, later on the problem becomes trivial. This approach is not successful in
order to prove EPTAS 6= PTAS by showing U 6∈ EPTAS, and the reason is pre-
cisely that for each fixed ε = 1/n, there is some xn such that for inputs x > xn 1 + ε
approximation becomes easy. Making use of our assumtion we can perform a more
sophisticated diagonal construction avoiding this effect described above.

It is then natural to ask how the different assumptions under which EPTAS 6=
PTAS was proved are related to each other. Does one of them easily imply the other
? Fortunately, we are able in section 4.4 to show that in some sense this is not the
case: We construct a recursive oracle X relative to which our assumption holds but
that of Cesati and Trevisan does not. Hence using relativizing proof techniques, one
can not show that our assumtion implies theirs.

Section 4.4 starts with an introduction into Bounded Nondeterminism (sub-
section 4.4.1). The reason is that Cai and Chen [CCDF95] proved the assumtion
FPT 6= W [P] being equivalent to a natural assumption on bounded nondeterminism,
namely that whenever we take amount of nondeterminism asymptotically faster than
logarithmic the according class is not contained in P anymore. See subsection 4.4.5 for
the details. We will briefly describe the result of Beigel and Goldsmith [BG94] which
proves that using relativized proof techniques one can not obtain separation results
for the Kintala-Fischer hierarchy. The Beigel Goldsmith results provide (besides oth-
ers) a recursive oracle X such that relative to X the Kintala-Fischer hierarchy [KF84]
becomes strict:

PX = NPX[logn] 6= NPX[log2 n] 6= . . . 6= PSPACEX

In some sense, we obtain a refinement of their result concerning the first and second
level: In subsection 4.4.6 we construct a recursive oracle X such that for all unbounded
polynomial time computable functions s(n)

PX = NPX[log(n)] 6= NPX[s(n) · log(n)].

Furthermore at the end of subsection 4.4.4 we indicate how this result might be further
extended, towards a refinement of the Beigel Goldsmith results along the whole Kintala
Fischer hierarchy.

4.1 PTAS-Preserving Reductions
and PTAS-Completeness

In order to compare problems with respect to their computational difficulty, the concept
of reductions builds a poweful tool. While the notion of reduction and completeness

50 CHAPTER 4. ON THE STRUCTURE OF NPO

was originally introduced in mathematical logic and recursion theory, we will here focus
on reduction concepts for NP Optimization Problems.

A reduction between two optimization problems A and B basically consists of
two ingredients: 1. a mapping from instances of problem A to instances of problem
B, 2. a mapping from solutions of B to solutions of problem A. In order to make
computational properties of one problem imply computational properties of the other,
the mappings have to be resoure-bounded computable (e.g. computable in polynomial
time). Furthermore the precise reduction concept must be carefully chosen such that
approximation properties are preserved. Accordingly, reductions that preserve the
existence of constant-factor approximation algorithms are called APX-preserving,
reductions that preserve the existence of polynomial time approximation schemes are
called PTAS-preserving and so on.

In this section we will consider reductions which preserve existence of polynomial
time approximation schemes, i.e. when problem A is reducible to problem B and
problem B is already known to fall into class PTAS, then problem a falls into class
PTAS as well.

There does already exist a huge literature on reductions between NP Optimiza-
tion problems. Let us mention some of the work which was already done before:

4.1.1 Previous Work

In this subsection we give a list of previously defined approximation preserving re-
ducibilities and their main properties. A good survey on some of the various reducibil-
ities and their structural properties can be found in [CKST96]. The first reduction
we will consider wa sdefined by Crescenzi and Panconesi [CP91] in order to provide
structure inside PTAS.

Definition 24 (F -Reductions [CP91])
Let A,B ∈ NPO. A is F -reducible to B, in symbols A ≤F B, if there exist functions
f, g, r such that for all x ∈ IA f(x) ∈ IB and f is polynomial-time computable, for
every x ∈ IA and y ∈ SB(f(x)) g(x, y) ∈ SA(x) and g is polynomial-time computable,
r: IN × IA → IN and r(n, x)is computable in time p(n, |x|) for some polynomial p,
r(n, x) ≤ q(n, |x|) for some polynomial q and furthermore for any x ∈ IA, y ∈ SB(f(x))

EB(f(x), y) ≤
1

r(n, x)
=⇒ EA(x, g(x, y)) ≤

1

n
. (4.1)

F-reductions are FPTAS-preserving, and in [CP91] existence of complete and interme-
diate problems in PTAS are shown. Note that F-reductions do not preserve existence
of polynomial time approximation schemes, see the original paper for a discussion.

L-Reductions were defined by Papadimitriou and Yannakakis:

Definition 25 (L-Reductions [PY91])
Let A,B ∈ NPO. A is L-reducible to B, in symbols A ≤L B, if there exist functions
f, g and constants α, β > 0 such that for any x ∈ IA f(x) ∈ IB and f is polynomial-time

4.1. PTAS-PRESERVING REDUCTIONS AND PTAS-COMPLETENESS 51

computable, for any x ∈ IA and y ∈ SB(f(x)) g(x, y) ∈ SA(x) and g is polynomial-time
computable and furthermore the following conditions hold:

(a) For any x ∈ IA optB(f(x)) ≤ α · optA(x).

(b) For any x ∈ IA and y ∈ SB(f(x))

|optA(x)− cA(x, g(x, y))| ≤ β · |optB(f(x))− cB(f(x), y)|.

L-Reductions are PTAS-preserving, but all problems inside PTAS are pairwise L-
reducible to each other. Papadimitriou and Yannakakis proved MAXSNP-hardness
with respect to L-reductions for many natural problems, including Bounded Degree
Vertex Cover, Bounded Degree Dominating Set, Bounded Degree Maximum Indepen-
dent Set and Maximum Cut.

Khanna, Motwani, Sudan and Vazirani [KMSV94] introduced E-reductions in order
to study structural properties of syntactic classes like MAXSNP and computationally
defined classes as APX.

Definition 26 (E-Reductions [KMSV94])
Let A,B ∈ NPO. A is E-reducible to B, in symbols A ≤E B, if there exist functions
f, g and a constant α > 0 such that for any x ∈ IA f(x) ∈ IB and f is polynomial-time
computable, for any x ∈ IA and y ∈ SB(f(x)) g(x, y) ∈ SA(x) and g is polynomial-
time computable and furthermore the following condition holds: For any x ∈ IA and
y ∈ SB(f(x))

RA(x, g(x, y)) ≤ 1 + α · (RB(f(x), y)− 1). (4.2)

E-reductions are FPTAS-preserving, but not PTAS-preserving.

Crescenzi and Trevisan [CT00] introduced PTAS-reductions which turn out to be
PTAS-preserving, but PTAS problems are pairwise reducible to each other.

Definition 27 (PTAS-Reductions [CT00])
Let A,B ∈ NPO. A is PTAS-reducible to B, in symbols A ≤PTAS B, if there exist
computable functions f, g and r such that the following conditions hold:

(a) For every x ∈ IA and n ∈ IN f(x, n) ∈ IB and for any fixed n f(x, n) is com-
putable in time polynomial in |x|.

(b) For every x ∈ IA, n ∈ IN and y ∈ SB(f(x, n)) g(x, y, n) ∈ SA(x) and for any
fixed n g(x, y, n) is computable in time polynomial in |x| and |y|.

(c) r: IN→ IN and for any x ∈ IA, n ∈ IN and y ∈ SB(f(x, n))

RB(f(x, n), y) ≤ 1 +
1

r(n)
=⇒ RA(x, g(x, y, n)) ≤ 1 +

1

n
.

52 CHAPTER 4. ON THE STRUCTURE OF NPO

AP-reductions were defined by Crescenzi et al. [CKST96]. They preserve existence of
polynomial time approximation schemes but again do not provide any structure inside
PTAS.

Definition 28 (AP -Reductions [CKST96])
Let A,B ∈ NPO. A is AP -reducible to B, in symbols A ≤AP B, if there exist
computable functions f and g and a constant α > 0 such that the following conditions
hold:

(a) For every x ∈ IA and n ∈ IN f(x, n) ∈ IB and for any fixed n f(x, n) is com-
putable in time polynomial in |x|.

(b) For every x ∈ IA, n ∈ IN and y ∈ SB(f(x, n)) g(x, y, n) ∈ SA(x) and for any
fixed n g(x, y, n) is computable in time polynomial in |x| and |y|.

(c) For any x ∈ IA, n ∈ IN and y ∈ SB(f(x, n))

RB(f(x, n), y) ≤ 1 +
1

n
=⇒ RA(x, g(x, y, n)) ≤ 1 +

α

n
.

Figure 4.1: Previously defined Reducibilities

L-Reducibility[PY91]

P-Reducibility[CP91]

E-Reducibility[KMSV94]Continuous Reducibility

A-Reducibility[CP91]

Strict Reducibility

AP-Reducibility[CKST96]

PTAS-Reducibility[CT00]

In the next section we will define a new reducibility concept, the so called PAR-
Reductions, and we deal with completeness and intermediateness questions with re-
spect to this type of reductions. PAR-Reductions differ from PTAS-reduction in
that the backward solution to solution mapping g is not allowed anymore to depend
on ε = 1/n. Note that n general, if we have a backward mapping of the form

x, y, n 7→ g(x, y, n)

such that g is polytime computable for fixed n, then dealing with problems A,B ∈
PTAS we can always use the backward mapping to simply apply a ptas to x, n, ob-
taining problems in PTAS being pairwise equivalent.

4.1. PTAS-PRESERVING REDUCTIONS AND PTAS-COMPLETENESS 53

4.1.2 PAR-Reductions

Recall that all the reducibility concepts we listed in that last subsection have one lack
in common: Either they are PTAS-preserving or they are and the whole class PTAS
falls inside a single equivalence class with respect to the reduction. Let us now define
a new type of reduction which will on the one hand turn out to preserve existence of
polynomial time approximation schemes and on the other hand provide some nontrivial
structure inside the class PTAS.

Definition 29 (PAR-Reductions, Parameter-Reductions)
Let A and B be two NPO problems. A is PAR-reducible (parameter-reducible) to
B, in signs A≤PARB, if there exists a tuple (f, g, r) where f and g are recursive
functions f : Σ∗ × Σ∗ → Σ∗, g: Σ∗ × Σ∗ → Σ∗ and r: IN → IN is a recursive function
with limn→∞ r(n) =∞ such that

(a) For all x ∈ IA and n ∈ IN f(x, n) ∈ IB and for every fixed n the function f(·, n)
is polynomial time computable.

(b) For all x ∈ IA: if y ∈ SB(f(x, n)) then g(x, y) ∈ SA(x), g(x, y) is computable in
time polynomial in |x| and |y|.

(c) r(n) is polynomial-time computable and for every n ∈ IN, x ∈ IA and y ∈
SB(f(x, n))

RB(f(x, n), y) ≤ 1 +
1

r(n)
=⇒ RA(x, g(x, y)) ≤ 1 +

1

n
.

The last part of property (a) is equivalent to the following: There exists an algorithm
Af computing f whose running time is bounded by |x|tf (n) for some function tf : IN→
IN.

Lemma 4.1.1 Let A and B be NPO problems. If A≤PARB and B ∈ PTAS then
A ∈ PTAS.

Proof: Let TB be a polynomial time approximation scheme for B and A≤PARB via
(f, g, r). Let |x|tB(n) and |x|tf (n) denote the time bounds for TB and an algorithm
computing f respectively. Consider the following algorithm TA for A:

Algorithm TA:
Input: instance x of A, n ∈ IN

Output: (1 + 1/n)-approximate solution y for x
(1) Compute m ∈ IN such that r(m) ≥ 2n. Let l := 2n+ 1.
(2) Let y be a

(
1 + 1

l

)
-approximate solution to f(x,m).

(3) Return g(x, y).

54 CHAPTER 4. ON THE STRUCTURE OF NPO

We compute a bound on the performance ratio of TA as follows:

RA(x, TA(x, n)) ≤
(

1 +
1

r(m)

)

·RB(f(x,m), y) (Def. of ≤PAR)

≤
(

1 +
1

r(m)

)

·
(

1 +
1

l

)

(Def. of y)

≤
(

1 +
1

2n

)

·
(

1 +
1

2n+ 1

)

=
2n+ 1

2n
· 2n+ 2

2n+ 1
= 1 +

1

n
. (4.3)

Step (1) needs at most h(n) for some recursive function h, since r is recursive and
unbounded. Step (2) can be performed in time |f(x,m)|tB(l) = |f(x, r1(n))|tB(r2(n)) for
recursive functions r1, r2. Step (3) needs at most (|x| · pB(|f(x,m)|))tg(n) steps (where
pB is a polynomial bound for the length of solutions to problem B) and hence can also
be bounded by |x|r3(n) for some function r3. Hence TA is a ptas for A. 2

In order to study closure properties of the subclasses EPTAS, UPTAS and UEPTAS
we need the following refinements of definition 29.

Definition 30 Let A and B be NPO problems.

A is uniformly PAR-reducible to B (A≤uPARB) iff A≤PARB by some (f, g, r) such that
f and g are computable in time bounded by |x|tf (n) and (|x| · |y|)tg(n) for some recursive
functions tf , tg: IN→ IN.

A is efficiently PAR-reducible to B (A≤ePARB) iff A≤PARB by some (f, g, r) such that
f is computable in time bounded by tf (n) · |x|α for some constant α and some function
tf : IN → IN and g is computable in time tg(n) · pg(|x|, |y|) for some function tg and
some polynomial pg.

A is uniformly efficiently PAR-reducible to B (A≤uePARB) iff A≤ePARB by some (f, g, r)
with time bounds tf (n) · |x|α and tg(n) · pg(|x|, |y|) for f and g and furthermore tf and
tg are recursive.

Lemma 4.1.2 Let A and B be NPO problems.

(a) If A≤uPARB and B ∈ UPTAS then A ∈ UPTAS.

(b) If A≤ePARB and B ∈ EPTAS then A ∈ EPTAS.

(c) If A≤uePARB and B ∈ UEPTAS then A ∈ UEPTAS.

Proof of (a): Let A≤PARuB via some tuple (f, g, r). Consider the algorithm TA from
the proof of lemma 4.1.1. If tB, tf and tg are recursive, then obviously tB(r2(n)) and
r3(n) are recursive, hence the running time of TA can be bounded by |x|r′(n) for some
recursive function r′ and A is in UPTAS.
Proof of (b) and (c): If the running time for computing TB, f and g can be bounded

4.1. PTAS-PRESERVING REDUCTIONS AND PTAS-COMPLETENESS 55

by tB(n) · |x|α, tf (n) · |x|β and tg(n) · pg(|x|, |y|) respectively, then in step (2) of al-
gorithm TA the computation of f(x,m) can be performed in tf (h(n)) · |x|β, tB ◦ h
is recursive, TB(f(x,m), l) can be computed in tB(h(n)) · |f(x,m)|α = tB(h(n)) ·(
tf (h(n)) · |x|β

)α
and g(x, y, n) in step (3) can be computed in tg(n) · pg(|x|, |y|) =

tg(n) · pg(|x|, pB(f(x,m))), hence the total running time of algorithm TA can be
bounded by H(n) · |x|γ for some function H: IN → IN and some constant γ. If fur-
thermore tB, tf and tg are recursive then H is recursive as well. 2

4.1.3 Complete Problems

We will now consider structural properties of (PTAS,≤PAR). First we will show that
problems in PO are pairwise reducible to each other:

Lemma 4.1.3 Let A,B be two problems in PO. Then A≤PARB.

Proof: Let x0 be some fixed instance of B and T be some polynomial time algorithm
solving A to optimality. Let f(x, n) := x0 and g(x, y) := T (x), then for r(n) := n the
triple (f, g, r) is a PAR-reduction from A to B. 2

The next lemma shows existence of PTAS-complete problems in PO with respect to
PAR-reductions.

Lemma 4.1.4 There exists X ∈ PO such that X is PTAS-complete with respect to
≤PAR.

Proof: Define X as follows: Instances are tuples χ = (x, n, T, F, 0k) as in the proof
of . . . with SX(χ) = {T (x, n)} and cX(χ, T (x, n)) = cF (x, T (x, n)). Let A ∈ PTAS,
consider f(x, n) := (x, n, T,A, 0k) with T a polynomial time approximation scheme
for A and k sufficiently large to compute T (x, n). Let g(x, T (x, n)) = T (x, n) and
r(n) = n, then A≤PARX via (f, g, r). 2

Lemma 4.1.5 Assume P 6= NP . Then there exists a problem X ∈ PO such that X
is not ≤PAR-complete for PTAS.

Proof: We let problem X be very simple, namely having solutions of constant size
only. We define X = (I, S, c,max) with instance set I = Σ∗, where Σ is the underlying
alphabet, for each x ∈ I the set of feasible solutions S(x) = {0} and cost function
c defined by c(x, 0) = 1. Now assume X is ≤PAR-complete for PTAS, and let Y
be a problem in PTAS \ PO (whose existence is guaranteed under assumption P 6=
NP). Then there exists a PAR-reduction (f, g, r) from Y to X, where g is polytime
computable. But this would imply that the following polynomial time algorithm

x, n 7→ g(x, 0)

approximates Y to arbitrary precision (and would hence solve it to optimality), a
contradiction. 2

56 CHAPTER 4. ON THE STRUCTURE OF NPO

The preceeding results seem somehow curious: On the one hand, problems in PO
are pairwise reducible to each other, and there exists a problem in PO being ≤PAR-
complete for class PTAS, on the other hand there exists another problem in PO which
is not PTAS-complete.

The reason for this seemingly strange situation is that, unfortunately, PAR-reductions
do not compose in general, hence ≤PAR is not transitive. Formally this already fol-
lows from the preceeding lemmata (under asssumption P 6= NP). Intuitively, one can
observe this directly, recognizing the following difficulty:

Assume A≤PARB via (f, g, r) and B≤PARC via (F,G,R). Then how would one
try to compose the two reductions in order to get A≤PARC ? Well, one would try the
following most natural approach:

x, n 7−→ f(x, n) 7−→ F (f(x, n), r(n))
⇓

g(x,G(f(x, n), y)) ←− G(f(x, n), y) ←− solution y

But then it is obvious that the backward solution-to-solution mapping

g(x,G(f(x, n), y)) ←− (x, y)

is not polynomial-time computable and not even well-defined since by the definition of
PAR-reductions it is not allowed to be dependent on n.

Recall that our motivation for choosing PAR-reductions as they are defined is that
with respect to previously defined PTAS-preserving reductions where the backward-
mapping is allowed to depend (non-polynomially) on n, the whole class PTAS falls
into one equivalence class, i.e. PTAS-problems are pairwise reducible to each other.

We will now define a generic problem UP which will turn out to be PTAS-complete
with respect to PAR-reductions. In the construction we follow the lines of the approach
of Crescenzi and Panconesi [CP91], but we have to modify their construction to make
it work for PAR-reductions and such that problem UP becomes complete for both
minimization and maximization problems.

Definition of maximization problem UP :

Instance: X =
(
x, n, T,NF , 0

k
)
, where x ∈ Σ∗, n is a natural number, T is a Turing

machine, F = (IF , SF , cF , gF) is an NPO problem and 0k = 0 . . . 0 (k times) serves as
a padding string.

Solutions: Consider the following algorithm ATr.

Algorithm ATr:
For k steps simulate the following:
If IF (x) and SF (x, T (x, n) then t := cF (x, T (x, n)).

4.1. PTAS-PRESERVING REDUCTIONS AND PTAS-COMPLETENESS 57

If k is too small to run ATr, instance X of UP has only one solution: SU (X) := {X}.
Otherwise we set

SU (X) :=

{
{y ∈ SF (x) : cF (x, y) ≥ t} , gF = max
{y ∈ SF (x) : cF (x, y) ≤ t} , gF = min

(4.4)

Costs: If k is too small to run ATr, cU (X,X) := 1, otherwise for y ∈ SU (X) the cost
is defined as

cU (X, y) :=

{
A(X) + min {(1 + 1/n)t, cF (x, y)} , gF = max

A(X) + min
{
1+1/n

t , 1
cF (x,y)

}

, gF = min
(4.5)

Here A(X) is a function of X which will be specified later.
End of definition.

Remark: The subscribt Tr in ATr refers to the original construction of Crescenzi and
Panconesi ([CP91], p. 249) where they used to describe NP optimization problems in
terms of a trunk and branches, the branches in their notation correspond to different
feasible solutions for a given instance.

Lemma 4.1.6 Function A(X) can be defined such that UP is in PTAS.

Proof: By simulating ATr and checking wether it terminates within k steps one can
check in polynomial time wether SU (X) = {X} or SU (X) = SF (x). It suffices to
deal with the latter case. Hence in the sequel assume k is large enough. We will then
compute an upper bound E = E(A(X)) for the performance ratio of solution T (x, δ)
to instance X of UP in terms of A(X) and then define A(X) such that the following
algorithm A is a polynomial time approximation scheme for UP :

Algorithm A
(0) Input: X = (x, n, T, F, 0k), n′

(1) If k is large enough to run ATr

(2) If E ≤ 1 + 1/n′ return T (x, n)
(3) otherwise

(4) Compute by brute force an optimum solution y∗ to
(5) instance x of problem F and return y∗.

End.

In order to define A(X) we distinguish two cases.
Case 1: gF = max. We obtain

RU (X,T (x, n)) =
optU (X)

cU (X,T (x, n))
=

A(X) + min {(1 + 1/n)t, optF (x)}
A(X) + t

≤ A(X) + (1 + 1/n)t

A(X) + t
=: E (4.6)

Case 1.1: E ≤ 1 + 1/n′. In this case algorithm A returns T (x, n) in line (2).
Case 1.2: E > 1 + 1/n′. We will define A(X) such that n′ ≥ |X| and therefore in

58 CHAPTER 4. ON THE STRUCTURE OF NPO

line (4)-(5) algorithm A needs at most 2|X| · |X| ≤ 2n
′ |X| steps to compute y∗ by

brute-force. Therefore we set

E ≤ 1 + 1/|X| ⇐⇒ t/n

A(X) + t
≤ 1

|X| ⇐⇒ A(X) ≥ t · (|X|/n− 1) (4.7)

We set A(X) = t · |X|/n in case 1.
Case 2: gF = min. We obtain

RU (X,T (x, n)) =
optU (X)

cU (X,T (x, n))
=

A(X) + min{(1 + 1/n)/t, 1/optF (x)}
A(X) + 1/t

≤ A(X) + (1 + 1/n)/t

A(X) + 1/t
=: E (4.8)

Case 2.1: E ≤ 1 + 1/n′. Then T (x, n) is a (1 + 1/n′)-approximation for instance X
of U , and algorithm A returns T (x, n) in line (2).

Case 2.2: E > 1 + 1/n′. Again, in order to solve instance x of F to optimality in
polynomial time, we choose A(X) such that n′ > |X|, i.e.

1/n′ < 1/|X| ⇐= A(X) + (1 + 1/n)/t

A(X) + 1/t
< 1 +

1

|X| ⇐⇒ A(X) >
|X|/n− 1

t
(4.9)

We set A(X) = |X|/(t · n) in case 2. 2(Lemma 4.1.6)

Lemma 4.1.7 For A(X) defined as in the proof of lemma 4.1.6, problem UP is PTAS-
complete with respect to PAR-reductions.

Proof: Let F = (IF , SF , cF , gF) be in PTAS and T a polynomial time approximation
scheme for F such that for n ∈ IN T (x, n) computes a

(
1 + 1

n

)
-approximate solution

to instance x of F and has running time |x|h(n) for some function h. Let p(n) be a
polynomial time bound for F , that means IF , SF and cF are decidable resp. computable
in time bounded by p(n). In order to construct a PAR-reduction (f, g, r) from F to
UP a first approach would be f(x, n) :=

(
x, n, T, F, 0k

)
with k := max

{
p(|x|), |x|h(n)

}
,

in order to be able to simulate algorithm ATr. Unfortunately, f would not necessarily
be recursive (since h might be non-recursive). The following choice of k and f avoids
this difficulty and is still sufficient to obtain an PAR-reduction:

Computation of f(x, n):
Let tx be the running time of T (x, n).
Let k := max {p(|x|), t}.
f(x, n) := (x, n, T, F, 0k).

Obviously f is recursive and for fixed n the running time of the algorithm computing f
is bounded by some polynomial in |x|. Furthermore, since k is large enough to simulate

4.1. PTAS-PRESERVING REDUCTIONS AND PTAS-COMPLETENESS 59

the trunk,

SU (f(x, n)) =

{
{y ∈ SF (x) : cF (x, y) ≤ t}, gF = min
{y ∈ SF (x) : cF (x, y) ≥ t}, gF = max

For y ∈ SU (f(x, n)) we define g(x, y) := y, hence g is polynomial-time computable. As
above, we let t = cF (x, T (x, δ)). We consider two cases:

Case 1: gF = max. Since T is a ptas for F and gF = max,

optF (x)/(1 + 1/n) ≤ t ≤ optF (x).

Let X := f(x, n), then y ∈ SU (X) and

RU (X, y) =
A(X) + min{(1 + 1/n)t, optF (x)}
A(X) + min{(1 + 1/n)t, cF (x, y)}

=
A(X) + optF (x)

A(X) + cF (x, y)

= RF (x, y) ·
cF (x, y)

optF (x)
· A(X) + optF (x)

A(X) + cF (x, y)

= RF (x, y) ·
(t · |X|/n)/optF (x) + 1

(t · |X|/n)/cF (x, y) + cF (x, y)/cF (x, y)

≥ RF (x, y) ·
1/n
1+1/n · |X|+ 1

|X|/n+ 1
= RF (x, y) ·

1
n+1 + 1/|X|
1/n+ 1/|X| (4.10)

from which we obtain

RF (x, y) ≤
(1/n) · |X|+ 1

(1/n) · |X|/(1 + 1/n) + 1
·RU (X, y) ≤

(

1 +
1

n

)

·RU (X, y)(4.11)

Case 2: gF = min. Then

RU (X, y) =
A(X) + min {(1 + 1/n)/t, 1/optF (x)}
A(X) + min {(1 + 1/n)/t, 1/cF (x, y)}

= RF (x, y) ·
optF (x)

cF (x, y)
· (1/n) · |X|/t+ 1/optF (x)

(1/n) · |X|/t+ 1/t

= RF (x, y) ·
1 + (1/n) · |X| · optF (x)/t
(|X|/n+ 1) · cF (x, y)/t

≥ RF (x, y) ·
1 + (1/n) · |X|/(1 + 1/n)

(|X|/n+ 1)

= RF (x, y) ·
1/|X|+ (1/n)/(1 + 1/n)

1/n+ 1/|X| (4.12)

which is equivalent to

RF (x, y) ≤
1/n+ 1/|X|

(1/n)/(1 + 1/n) + 1/|X| · RU (X, y) ≤
(

1 +
1

n

)

·RU (X, y)(4.13)

as in case 1. Hence we set r(n) := n and obtain F≤PARUP via (f, g, r). 2(Lemma
4.1.7)

Hence we obtain:

60 CHAPTER 4. ON THE STRUCTURE OF NPO

Theorem 8 The problem UP as defined above is PTAS-complete with respect to PAR-
reductions.

We can now argue that the problem UP is not polynomial-time solvable to optimality.
The reason is that UP is defined in a very generic way and hence is also PTAS-complete
with respect to PO-preserving reductions. In the proof of the following theorem we
make only imlicitly use of this fact.

Theorem 9 If P 6= NP, then UP 6∈ PO.

Proof: Assume UP ∈ PO, and let B be some optiomization problem in APX \ PO
such that T is a polynomial-time

(
1 + 1

2

)
-approximation algorithm for B. Without

loss of generality let B be a maximization problem. Consider the following mapping
of instances from B to instances of UP :

x 7→ Xx :=
(

x, 2, T,B, 0p(|x|
)

,

where by B we also denote a code for problem B (cf. the above considerations), by T
also a code for T and p(n) is a polynomial bound both for the running time of T and
the instance and solution checking and cost computation of problem B.

Now, for a solution y to this instance of problem UP , the cost is defined as

A(Xx) + min

{(

1 +
1

2

)

· cB(x, T (x)), cA(x, y)
}

= A(Xx) + cB(x, y),

hence solving UP to optimality in polynomial time yields a polynomial time algorithm
computiong the optimum for problem B, a contradiction. 2

As an example of a natural ≤PAR-complete problem for the class PTAS we like to
mention the following variant of the satisfiability problem for cnf formulas, which was
already considered and proved to be F -complete for PTAS in [CP91].

Linear Bounded SAT (LBSAT)
Instance: A boolean formula ϕ with variables x1, . . . , xn, weights w1, . . . , wn

and a weight W such that W ≤∑n
i=1wi ≤ (1 + 1/(n− 1))W .

Solution: assignment α: {x1, . . . , xn} → {0, 1}.

Maximize the function

fLBSAT (ϕ, α) =

{
W if ϕ(α(x1), . . . , α(xn)) = 0
∑n

i=1wiα(xi) otherwise

We state the following lemma without proof, which is a variation of the F -completeness
proof in [CP91].

Lemma 4.1.8 LBSAT is PAR-complete for PTAS.

4.2. THE CLASS PTAS: UNIFORMITY VERSUS EFFICIENCY 61

4.2 The Class PTAS: Uniformity versus Efficiency

Concerning structural aspects of the class PTAS, two aspects might be of special
interest: The first one is that of PTAS versus EPTAS: Given a problem in PTAS
and having established some running time bound O(|x|f(n)), we might ask for running
time improvements, by decreasing f(n), i.e. replacing it by some more slowly growing
function f ′(n), or even obtaining an efficient approximation scheme for the problem,
replacing exponential dependence of running time on ε by multiplicative dependence.
For various natural optimization problems this goal has been successfully achieved, for
others this is still an open problem (see the introduction of the chapter for further
information). Concerning structural aspects, it is still open whether these two classes
can be separated under assumption P 6= NP .

The second question is how difficult in the sense of computaional complexity the
dependence of the running time on ε = 1/n can be at all. Recall that for an optimiza-
tion problem X, to be in NPO means solutions being polynomially bounded in the
length of the instance, polynomial time computability of the cost function and poly-
time checkability whether some string x is a legal instance of the problem and whether
string y is a feasible solution to instance x of problem X. Hence in exponentiall time
2n

O(1)
one can solve the problem X to optimality. The structural question now is: Are

there problems in PTAS for which there does not exist an approximation scheme with
recursive dependence of the running time on ε = 1/n ?

In this section we will give some first results concerning uniformity and efficiency
of polynomial time approximation schemes, answering the question affirmatively.

Theorem 10 Unless P=NP, for every recursive function f : IN→ IN there is a problem
U ∈ PTAS such that:

1. There exists no polynomial time approximation scheme for U with running time
|x|O(f(n)).

2. There exists a polynomial time approximation scheme for U with running time
g(n) · |x| for some recursive function g.

Proof: Let Ti, i = 1, 2, . . . be an effecive enumeration of Turing machines. Let Un, n ∈
IN be the family of APX-complete problems from last section, p(n) the polynomial
and T the Turing machine such that T has time complexity bounded by p(n) and
for each n ∈ IN Un is p(x)-bounded and T is a (1 + 1/n)-approximation algorithm
for Un. We will construct an NPO problem U with the properties 1 and 2 from the
theorem in stages in terms of a lexicographically increasing infinite sequence of strings
x0, x1, . . . , xn, . . . such that the following holds:

(a) We call In := [xn−1, xn) the n-th interval. The problem: Given x ∈ Σ∗, compute
the number n with x ∈ In is polynomial time solvable.

(b) U restricted to In is equal to Un.

62 CHAPTER 4. ON THE STRUCTURE OF NPO

(c) For each n there exist pairs (yn,i,mn,i), 1 ≤ i ≤ n such that for all i ∈ {1, . . . , n}
yn,i ∈ In and Ti(yn,i,mn,i) is not a (1 + 1/mn,i)-approximation to Un in time
|yn,i|f(mn,i).

Stage 0: Let x0 := 0.
Stage n (for n > 0): Consider the following recursive algorithm for the construction
of xn:

Algorithm Construct
Input: n ∈ IN Output: xn ∈ Σ∗

(1) If n = 0 return x0 = 0 else
Let xn−1 := Construct(n− 1). Find pairs
(yn,i,mn,i), 1 ≤ i ≤ n by brute force.

(2) Let tn be the time used for step (1).
xn := 0tn+1. Return xn.

Here ”brute force”in step (1) means the following: we check pairs (y,m) in lexicographic
order starting with (xn−1, 2). For each pair (y,m) the computations Ti(y,m).i =
1, . . . , n are simulated for at most |y|f(m) steps. If a computation stops within that
time, the result is compared to the optimum solution OPTUn(y) of instance y for
problem Un, which is computed by brute force, i.e. by trying all strings up to length
p(|y|). Note that since Un is APX-complete, it does not permit a ptas and therefore
pairs (yn,i,mn,i), 1 ≤ i ≤ n exist. In order to show that U is an NPO problem it suffices
to prove (a). Given x, we can easily compute n with x ∈ In by simulating for at most
|x| steps the construction of x0, x1, Let xm the last string that was constructed by
this process, then n = m+ 1.
By the diagonal construction U does not have a ptas with running time |x|f(n). We will
now argue that the following algorithm is an efficient ptas for U with time complexity
g(n) · |x| for some recursive function g.

Algorithm Approximate
Input: x ∈ Σ∗, n ∈ IN Output: (1 + 1/n)-approximate solution y
(1) Compute m ∈ IN with x ∈ Im.
(2) If m ≥ n return T (x) otherwise

Compute an optimum solution yx to instance x of Un
by brute force, return yx

Obviously Approximate(x, n) computes a (1 + 1/n)-approximate solution yx to in-
stance x of U . For given n ∈ IN, for x ≥ xn−1 the running time is p(|x|), for x < xn−1
it is at most |xn−1 · 2|xn−1| =: g(n). Hence we obtain a time bound of g(n) · |x|, and
obviously g is a recursive function, which completes the proof. 2

Theorem 11 If P6= NP then there exists a problem U ∈NPO such that
1. There is a polynomial time approximation scheme for U with time complexity

g(n) · p(|x|) for some polynomial p and some function g: IN → IN. (Hence U
belongs to the class EPTAS.)

4.2. THE CLASS PTAS: UNIFORMITY VERSUS EFFICIENCY 63

2. For every recursive function f : IN → IN, U does not have a ptas with time com-
plexity |x|f(n) (hence U does not belong to Uniform-PTAS).

Proof: We will first describe the main ideas and afterwards give the precise proof:
Again we will construct U in stages in terms of an infinite sequence x0, x1, . . . , xn, ..
of strings. As in the proof of the previous theorem, assume Un, n ∈ IN to be a family
of APX-complete problems with uniform bound p(x) and T a Turing machine with
running time bounded by the same polynomial p(x) such that for every n ∈ IN T is a
(1+1/n)-approximation algorithm for Un. Assume further that for each n the existence
of a polynomial time (1 + 1/hn)-approximation algorithm would imply P=NP, such
that the function n 7→ hn is recursive. Let (Ai, Ti, αi)i∈IN be an effective enumerations
of the set of triples (A, T, α) where A and T are Turing machines and α ∈ IN.
The idea of our construction is as follows: In stage n assume we have already con-
structed the sequence up to xm−1 for some m ≤ n. We start simulating the compu-
tation Ai(hn) for i = 1, . . . , n. In every stage we maintain a list L = {(Ai, nj , Ci)} of
actually simulated computations Ai(hnj), where Ci denotes the current configuration
up to which the computation is already simulated. In stage n, after adding the pairs
(Ai, n, C

0
i), 1 ≤ i ≤ n with initial configurations C0i of computations Ai(hn) to list L,

for all entries of the list we simulate one step. If none of the computations stop, we
go to step n+1. If, say, (Ai, nj , Ci) stops (or has already stopped before stage n) and
(i, j) is the lexicographically first pair with that property then U restricted to interval
Im = [xm−1, xm) will be defined as Uj in order to satisfy the following constraint

Cn,i: If Ai(hn) stops then Ti(, hn) is not a
(

1 + 1
hn

)

-approximation algorithm for U

in time αi · |x|Ai(hn).

Constraint Cn,i can be satisfied by instances x ≥ xm−1 using the properties of Un.
The crucial fact that will enable us to give a ptas for U is that for every n ∈ IN,
U |Im will be set to Un only finitely many times (namely when one of the computations
Ai(hn), i = 1, . . . n stops. Therefore for every n ∈ IN after at most finitely many steps
U will be defined as Um for m ≥ n and hence (1 + 1/n)-approximation is possible.
Let us now give the details. First we describe the construction of problem U in stages.

Initialization: x0 := 0,m := 1, L := ∅ (the empty list).
Stage 0: Do nothing.
Stage n > 0: Add (Ai, n, C

0
i), i = 1, . . . , n to list L, where C0i is the initial con-

figuration of the computation Ai(hn). For every triple (A,n′, C) such that C is not
a stopping configuration simulate one further step. If there is no triple in L whose
computation has already terminated, stage n is done. Otherwise let (Ai, nj , Ci) be the
lexicographically first such triple, ordered first by the value nj and then by Ai. Remove
(Ai, hj , Ci) from L. Let x ≥ xm be the first instance such that either Ti(x, hnj) does

not terminate within time αi · |x|Ai(hnj) or Ti(x, hnj) is not an (1+1/hnj)-approximate
solution to instance x of Unj . Such x exists since (1 + 1/hnj)-approximation to Unj in
polynomial time is assumed to be NP-hard. Let tn be the time needed to recursively

64 CHAPTER 4. ON THE STRUCTURE OF NPO

compute xm−1 by performing stages 0 to n − 1 and to find x by brute force. Let
xm := 0tn+1.
End of Construction

As before, there is a linear time algorithm which, for given x, computes numbers m,n
with xm−1 ≤ x < xm and U |[xm−1, xm) = Un. Hence U is an NPO problem. Consider
the following algorithm:

Algorithm Approximate
Input: instance x ∈ Σ∗ of U , n ∈ IN

Output: (1 + 1/n)-approximate solution y for x
(1) Compute m ∈ IN with xm−1 ≤ x < xm.

Compute n′ ∈ IN with U |[xm−1, xm) = Un′ .
(2) If n′ ≤ n return T (x) else

Compute an optimum solution y∗ to instance x of Un′ .
Return y∗.

End.

ObviouslyApproximate(x, n) is a (1+1/n)-approximate solution for instance x of U .
Since for every n′ < n only tuples (Ai, n

′, C) with i ≤ n′ are added to list L and only
those tuples can cause U |[xm−1, xm) = Un′ , it follows that for all but finitely many m,
U |[xm−1, xm) = Un′′ for n

′′ ≥ n. Hence the running time of Approximate can be
bounded by g(n) · p(|x|) for some function g.
Now assume that f : IN → IN is some recursive function and there exists a ptas for U
with running time bounded by c · |x|f(n)for some constant c. Let i ∈ IN be such that
this ptas be given by Turing machine Ti, f is computed by Turing machine Ai and
c = αi. Then in stages n ≥ i computations Ai(hn) are started. Since Ai is total and
by the priority rule in the construction of U , for every n ∈ IN there exists an interval
I = [xm−1, xm) such that U |I = Un and I contains an x such that Ti(x, hn) is not a
(1+1/hn)-approximate solution to Un in time bounded by αi ·|x|Ai(hn), a contradiction.

2

4.3 PTAS versus EPTAS

In this section we deal with the problem of separating EPTAS from PTAS. In [CT97b]
this problem was solved using some natural assumption from Fixed Parameter Com-
plexity. Indeed, they showed the following chain of implications:

W [P] 6= FPT =⇒ EPTAS 6= PTAS =⇒ FPT 6= SP.

Note that also the following inclusion is well-known (cf. [DF92]):

FPT 6= W [P] =⇒ P 6= NP.

In this section we will separate PTAS from EPTAS using only assumptions from clas-
sical complexity theory. For any given recursive function f(n) we will construct an

4.3. PTAS VERSUS EPTAS 65

NPO problem that has a polynomial time approximation scheme with time bound
|x|f(n) but not an efficient ptas (even not with time bound g(n) · |x|α for non-recursive
g). Our first separation is based on an assumption which is as well slightly stronger
than P 6= NP but still reasonable, namely existence of function problems in FNP
with a tight superpolynomial polynomial time computable bound on the deterministic
time complexity (assumption (A)). In a second step we relax this assumtion slightly
and separate PTAS from EPTAS under the assumption of existence of a problem in
FNP with an exponential lower bound on the deterministic time complexity (assump-
tion (A’)). The reason for this relaxation is two-fold: First it would be preferable to
separate PTAS from EPTAS under assumption P 6= NP , and this is a step in this
direction. Secondly, having a separation result under two different complexity theo-
retic assumptions, it is natural to ask how different they are. At the end of the section
we will discuss this question and compare our assumption (A’) with the assumption
W [P] 6= FPT used by Cesati and Trevisan. We will construct an oracle X relative to
which our assumption (A’) is true but that of Cesati and Trevisan not, showing that
using methods which still hold in relativized worlds one cannot prove that our assump-
tion implies theirs. Currently we do not know how to do the same with assumption
(A) instead of (A’).

The section is organized as follows: In subsection 4.3.1 we give a brief sketch of the
results and methods of Cesati and Trevisan, in subsection 4.3.2 we separate EPTAS
from PTAS using our alternative complexity theoretic assumption (A). In section 4.3.3
we give the separation under relaxed assumption (A’). Finally subsection 4.4 contains
a discussion of our assumptions, their relation to the standard assumption P 6= NP
as well as the following oracle constructions:

• Oracles X0, Y0 such that relative to X0 our assumption (A’) is true and relative
to Y0 it is not true.

• Oracles X1, Y1 such that relative to X0 the assumption W [P] 6= FPT is true
and relative to Y1 it is not true.

• An oracle X such that relative to X our assumption (A’) is true but the assump-
tion W [P] 6= FPT is not true.

4.3.1 Separation under Assumption W [P] 6= FPT

Let us review the second part of the Cesati Trevisan result [CT97b]: Assume FPT =
SP . Then EPTAS = PTAS follows: IfX ∈ PTAS via approximation scheme T (x, n),
then LT = {(x, y, k)|∃z (yz = T (x, k)) is in SP , hence in FPT which can be used
to obtainn X ∈ EPTAS. For the first part and detailed information we refer to the
original paper [CT97b].

4.3.2 Separation under Assumption (A)

Recall that the classNP of problems which can be decided by polynomial-time bounded
nondeterministic TMs can be characterized in terms of polynomially bounded binary

66 CHAPTER 4. ON THE STRUCTURE OF NPO

relations in P and is closely related to the class FNP of function problems solvable
in nondeterministic polynomial time. For each language L ∈ NP and every polytime
nondeterministic TM M with L(M) = L the relation

R = RL,M = {(x, y)|y encodes an accepting computation of M on input x}

is in P and has associated computational problem ΠR ∈ FNP , and versa for each
polynomially balanced relation R ∈ P the associated language

L = LR = {x ∈ Σ∗| there exists y ∈ Σ∗ with (x, y) ∈ R}

is in NP . Also recall that ΠR is the following computational problem:

ΠR :: Given x ∈ Σ∗, either compute some string π such that (x, π) ∈ R (a proof or
witness for x, in case x ∈ L) or return ”NO” (in case x 6∈ L).

Our separation between PTAS and EPTAS is based on the assumption that for at least
one problem L ∈ NP there exists a polynomially bounded relation R ∈ P with L = LR
and a tight superpolynomial polynomial-time computable bound for the deterministic
complexity of ΠR:

Assumption (A): There is a language L ∈ NP \P and a polynomially bounded
binary relation R ⊆ Σ∗ × Σ∗ with L = RL such that

ΠR ∈ DTIME(t(n)) \DTIME(o(t(n)))

for some polynomial time computable superpolynomial function t(n).

Theorem 12 Under assumption (A), for every strictly monotone recursive function
f : IN→ IN with f(1) = 1 there is an NPO problem Uf such that

1. Uf has a ptas with running time |x|f(n)+1.

2. For every monotone increasing function g: IN→ IN and every α > 0, Uf does not
have a ptas with running time g(n) · |x|α.

In particular, this implies UPTAS 6= UEPTAS and PTAS 6= EPTAS.

In order to prove Theorem 12 we will first define a family (Un : n ∈ IN) of NPO
problems and then construct Uf in stages in terms of problems Un. The crucial point
will be that although problems Un will be approximable with better and better ratio
(with n increasing), for every fixed ε > 0 the time complexity of approximation within
1 + ε will stay the same.
Let f : IN → IN be some monotone increasing recursive function as above such that
f(1) = 1. Let A ⊆ Σ∗ be some problem in NP with proofchecker TA and pA some
polynomial such that

1. For all x ∈ Σ∗, x ∈ L iff there is some string π of length |π| ≤ pA(|x|) such that
TA(x, π) accepts in time pA(|x|).

4.3. PTAS VERSUS EPTAS 67

2. WP (L, T) is solvable in time t(n) but not in time o(t(n)), where t(n) is some
polynomial time computable superpolynomial function.

We define a family (Un) of optimization problems as follows:

Definition of Un:
Instances of Un: X = (x1, . . . , xn, 0

k) such that k ≥ 1, x1, . . . , xn ∈ Σ∗ and

t(|xj |) ≤ |X|f(2
j), j = 1, . . . , n− 1. (4.14)

Solutions: π = (π1, . . . , πn) with |πj | ≤ pA(|xj |), j = 1, . . . , n

Costs: cn(X,π) = 2n +
n∑

i=1
TA(xi, πi) · 2n−i ∈

[
2n, 2n + 2n+1 − 1

]
.

End of definition.

Here 0k serves as a padding string and furthermore TA(xi, πi) ∈ {0, 1} denotes the
result of computation of machine TA on input xi, πi (1 for accept, 0 for reject).

Lemma 4.3.1 For all n ∈ IN Un is an NPO problem. There exists a two-variate
polynomial q(x, y) such that for all n ∈ IN Un is q(x, tf (n))- time bounded, where tf (n)
denotes the time complexity of f .

Proof: Function f(n) can be computed in time tf (n). Then conditions (4.14) are
equivalent to log(t(|xj |)) ≤ f(2j) · log(|X|), j = 1, . . . , n − 1 and therefore can be
checked in time tf (n) · n · poly(|X|). In time O(n · pA(|X|)) one can check whether a
given string π = (π1, . . . , πn) is a solution to X. The cost cn(X,π) can be computed
in time O(n · pA(|X|)). 2

Lemma 4.3.2 Assume A, TA and f are as above and the assumption from theorem
12 holds. Then for all n ∈ IN problem Un has the following properties:

1. For j = 1, . . . n − 1 there is a
(
1 + 2−j

)
-approximation algorithm for Un with

running time |x1| + |x2|f(2
2) + . . . + |xj |f(2

j) ≤ n · |X|f(2j) = O
(

|X|f(2j)
)

(n

being fixed).

2. For j = 1, . . . , n− 1, every approximation algorithm B for Un with running time

o
(

|X|f(2j)
)

has approximation ratio at least 1 + 2−(j+2).

3. There is no polynomial time approximation algorithm for Un with ratio better
than 1 + 2−(n+2).

Proof: Assume A is some algorithm which for each instance X = (x1, . . . , xn, 0
k) of

Un computes a feasible solution πX = (π1, . . . , πn). For i ∈ {1, . . . , n} we say A answers
xi correct iff for every instance X = (x1, . . . , xn, 0

k) of Un, if xi ∈ A then TA(xi, πi)
accepts (i.e. A constructs a proof πi for the fact xi ∈ A). We will show:

68 CHAPTER 4. ON THE STRUCTURE OF NPO

(a) In time t(|x1|) + t(|x2|) + . . . + t(|xj |) ≤ n · |X|f(2j) one can answer x1, . . . , xj
correct, and every algorithm answering x1, . . . xj correct has approximation ratio
at most 1 + 2−j .

(b) For j ∈ {1, . . . , n} every approximation algorithm that does not answer xj correct
has approximation ratio at least 1 + 1

2j+2 .

(c) For j = 1, . . . , n− 1 : In running time o
(

|X|f(2j)
)

an algorithm cannot answer

xj correct.

(d) An algorithm with polynomial running time cannot answer xn correct.

Obviously, from (a)-(d) the lemma follows.
Proof of (a): The time bound for answering x1, . . . , xj correct follows directly from the
definition of Un and the assumption about the time complexity of W (A, TA). Assume
now that π = (π1, . . . , πn) is a feasible solution for instance X such that x1, . . . , xj are
answered correct. Let

C(j) := 2n +

j
∑

i=1

[TA(xi, πi)] · 2n−i ∈
[

2n, 2n + 2(n−j) · (2j+1 − 1)
]

(4.15)

be the contribution of π1, . . . , πj to the solution cost. Then

RUn(X,π) =
optUn

(X)

cn(X,π)
≤ C(j) + 2n−j−1 + . . .+ 2 + 1

C(j)
(4.16)

= 1 +
2n−j−1 + . . .+ 2 + 1

C(j)
≤ 1 +

2n−j − 1

2n
≤ 1 + 2−j (4.17)

Proof of (b): Assume B is some approximation algorithm for Un answering xj in-
correct. We compute a lower bound on the approximation ratio of B: Let X be
an instance such that xj is answered incorrect, i.e. xj ∈ A and TA(xj , πj) = 0 for
B(X) = π = (π1, . . . , πn). Let π∗ = (π∗1, . . . , π

∗
n) be an optimum solution to instance

X of Un of cost cn(X,π
∗) = 2n+2n−j+R∗. Let R :=

∑

i6=j TA(xi, πi) ·2n−i. Obviously

cn(X,π) = 2n +R and R ≤ R∗ ≤ 2n+1 − 2n−j − 1. Then

RUn(X,B(X)) =
2n + 2n−j +R∗

2n +R
≥ 1 +

2n−j

2n +R

≥ 1 +
2n−j

2n + 2n+1 − 2n−j − 1
≥ 1 +

1

2j+2
(4.18)

Proof of (c): Assume there is some algorithm A with running time o
(

|X|f(2j)
)

such that for each input X = (x1, . . . , xn, 0
k) of Un A computes a feasible solution

(π1, . . . , πn) where xj is answered correct. Using the padding property of Un, for each
string x ∈ Σ∗ we can construct in polynomial time an instance X of Un such that

4.3. PTAS VERSUS EPTAS 69

x = xj and |X| ∈
[

f(2j)
√
t(|xj |), f(2j)

√
t(|xj |) + 1

]

. Then using algorithm A we would

solve the problem W (A, TA) in time

o
(

|X|f(2j)
)

= o
(
f
(
2j
)
· t(|x|)

)
= o(t(|x|)),

a contradiction.
Proof of (d): Such an algorithm could be used to solve W (A, T) in polynomial
time (note that |xn| = Θ(|X|) is possible), in contradiction to the assumption. This
completes the proof of the lemma. 2

Proof of Theorem 12: Again we will construct Uf in stages, using a monotone
increasing sequence of strings x0, x1, . . . , xn, Uf restricted to the n-th interval In :=
[xn−1, xn) will be equal to Un. Let (Ti, ci, αi), i ∈ IN be some effective enumeration of
triples (Ti, ci, αi) where Ti is a Turing machine, ci > 0 some constant and αi ∈ IN such
that every such triple (T, c, α) occurs infinitely often. We will construct x1, . . . , xn, . . .
such that for every n ∈ IN the following condition Cn is satisfied:

Cn: For j = 1, . . . , n both (a) and (b) hold.

(a) For m = 1, . . . , n− 1: If f(2m) ≥ αj + 1/n then there exists some yj,m ∈ In
such that Tj(yj,m, 2

m+3) is not a (1 + 2−(m+3))-approximate solution to
instance yj,m of Uf in time bounded by cj · |yj.m|αj .

(b) There is some zj ∈ In such that Tj(zj , 2
n+3) is not a (1+2−(n+3))-approximate

solution to instance zj of Uf in time cj · |zj |αj .

Construction of Uf :
Stage 0: x0 := 0.

Stage n > 0: Compute f(21), . . . , f(2n), f(2n+1). By Brute Force find the lexico-
graphically first strings yj,m, j = 1, . . . , n,m ∈ {1, . . . , n− 1} with f(2m) ≥ αj + 1 and
zj with yj,m, zj ≥ xn−1 such that Cn becomes true. Such pairs exist because of proper-
ties 2 and 3 from Lemma 4.3.2. Let tn be the time needed to compute f(j), 1 ≤ j ≤ n
and to find strings yj,m and zj . Let xn := 0tn+1 and Uf |In := Un.
End of construction.

Claim: Uf is an NPO problem.
Proof: Again there is a linear time algorithm to compute for given x ∈ Σ∗ the number
n ∈ IN with x ∈ In, by computing the number n−1 in at most |x| steps. Since in stage
n−1 we compute f(n), |x| ≥ tf (n), and therefore using Lemma 4.3.1 we conclude that
Uf is bounded by some polynomial p(|x|) and hence an NPO problem.
Claim: Uf admits a polynomial time approximation scheme.
Proof: For given x and n, in order to compute a (1 + 1/n)-approximate solution to
instance x of Uf we first compute the numberm ∈ IN with x ∈ Im. If 2m−1 ≥ n we com-

pute a (1+2−j)-approximate solution for j = dlog(n)e in time |x|f(2j) ·m ≤ |x|f(2j)+1.

70 CHAPTER 4. ON THE STRUCTURE OF NPO

Otherwise we compute an optimum solution y∗ to instance x by brute force. Since
2m−1 < n for only finite many m (and therefore finite many x) and 2dlog(n)e < 2n, the
running time is bounded by O

(
|x|f(2n)+1)

)
and hence by O

(
|x|f(2n)+1

)
.

Claim: For every function g: IN→ IN and every α ∈ IN, Uf does not admit a ptas with
running time bounded by g(n) · |x|α (for 1 + 1/n)-approximation).
Proof: Assume Uf admits a ptas T with running time g(n) · |x|α for some function
g and some constant α. Then for every n ∈ IN there exists some i ∈ IN such that
Ti = T, αi = α and ci = g(n). But for m ≥ n + 3, in Im there exist y ∈ Im such
that either Ti (y, 2

m) is not a (1 + 2−m)-approximate solution for instance y of Uf or
Ti (y, 2

m) does not stop after at most ci · |y|αi steps, a contradiction ! This proves the
claim and hence Theorem 12. 2

4.3.3 Separation under some weaker assumption

In the previous subsection we have presented a separation of PTAS from EPTAS,
i.e. a proof that EPTAS 6= PTAS, under the assumption that for at least one
problem in NP and a polynomially balanced relation R defining it, we have a tight
superpolynomial polytime computable lower bound for the deterministic time
complexity, namely

ΠR ∈ DTIME(t(n)) \ DTIME(o(t(n)))

for such a function. The natural question which now occurs is how this assumtion
is related to that which was used by Cesati and Trevisan in their separation proof.
In order to do this, we will compare the two assumptions using oracles. It will turn
out that under some oracle X our assumption becomes true but theirs becomes false.
This shows that using relativizing techniques one cannot prove that our assumption
implies theirs.

Unfortunately we do not know how to apply oracle techniques to make assump-
tion (A) become true. It turns out that the requirement of a sharp threshold for
deterministic time complexity is difficult to handle.

Therefore in this subsection we will slightly relax the assumption, namely replace
the sharp threshold by existence of superpolynomial upper and lower bound T (n) and
t(n), where ”a certain gap” between t(n) and T (n) is allowed. This relaxed version
allows us to apply oracle techniques and to obtain the above result.

We show that in order to separate PTAS from EPTAS the following weaker
assumption is sufficient:

Assumption (A’): There exists a polynomially bounded binary relation R ∈ P
such that for the associated function problem ΠR the following is true:

ΠR ∈ DTIME(T (n)) \DTIME(t(n))

for some pair t(n), T (n) of super-polynomial polynomial-time computable func-
tions with t(n)2 = O(T (n)).

4.3. PTAS VERSUS EPTAS 71

Theorem 13 Under assumption (A’) there exists an optimization problem U such
that

U ∈ PTAS \ EPTAS.

Proof: The proof follows the same line as that of our first separation (cf. the previous
subsection). Let T (n) := t(n)2, then T (n) is polynomial-time computable as well.
Furthermore, according to assumption (A’) let R be some p(n)-balanced binary relation
such that

ΠR ∈ DTIME(T (n)) \DTIME(t(n)).

Now problems Un are defined as follows:

Definition of Un:
Instance: X = (x1, . . . , xn, 0

k) such that T (|xj |) ≤ |X|2j , j = 1, . . . , n− 1

Solutions: π = (π1, . . . , πn) such that |πi| ≤ p(|xi|), 1 ≤ i ≤ n

Costs: cn(X,π) = 2n +
n∑

i=1
R(xi, πi) · 2n−i

As in the previous section we use the terms answering x1, . . . , xj correct and answering
xj incorrect. Problem Un has the following properties the proof of which is completely
analoguous to that of lemma 4.3.1 in subsection 4.3:

(1) Each approximation algorithm A for Un answering x1, . . . , xj correct has an ap-
proximation ratio

A.R.Un(X,A(X)) ≤ 1 + 2−j .

(2) Each approximation algorithm A for Un answering xj incorrect has an approxi-
mation ratio

A.R.Un(X,A(X)) ≥ 1 + 2−(j+2).

(3) There is an approximation algorithm for Un answering x1, . . . , xj correct with
running time

O

(
j
∑

i=1

T (|xi|)
)

= O

(
j
∑

i=1

|X|2i
)

= O
(

|X|2j
)

.

Lemma 4.3.3 Under assumption (A’) the following holds:

(a) In polynomial time an approximation algorithm for Un cannot answer xn correct.

(b) In time O
(

|X|2j−1
)

an approximation algorithm for Un cannot answer xj correct.

Proof: (a) is clear from the definition of Un.
(b): Similar to the proof of ... in section ... we give a reduction from ΠR to Un: Given

72 CHAPTER 4. ON THE STRUCTURE OF NPO

some instance x of ΠR we construct an instance X = F (x) of Un with xj = x, hence

T (|xj |) ≤ |X|2j . Using the padding one easily constructs such X with

|X| ∈
[

2j
√

T (|x|) , 2j
√

T (|x|) + 1
]

.

Assume A is some approximation algorithm for Un answering xj correct such that
timeA(|X|) = O(h(|X|)). Then due to assumption (A’) it must hold

h(|X|) = ω(t(|xj |)).

Since we can assume h to be at most exponential, we conclude h(m + 1) = O(h(m)),
hence

h

(

2j−1
√

T (|xj |)
)

= ω(t(|xj |))

hence h(m) = ω
(

m2j−1
)

. 2

Proof of Theorem 13: Let (Ti, ci, αi) be an enumeration of triples consisting of
Turing machine Ti, constant ci > 0 and exponent αi ∈ IN such that each triple occurs
infinitely often. We construct U in stages, in stage n of the construction strings xn−1, xn
are defined and U restricted to [xn−1, xn) will be defined as Un. We will satisfy the
following requirements Cn, n ∈ IN:

(Cn) : For j = 1, . . . , n, for machine Tj both (a) and (b) hold:

(a) For m = 1, . . . , n− 1: If 2m ≥ αj then there exists a string

y = yj,m ∈ In := [xn−1, xn)

such that Tj(y, 2
j+3) is not a (1+2−(m+3))-approximate solution to instance

y of U in time cj · |yj,m|αj .

(b) There exists x = xj ∈ In such that

timeTj (x, 2
n+3) > cj · |x|αj

or
A.R.(x, Tj(x, 2

n+3)) > 1 + 2−(n+3).

By choosing the intervals In sufficiently large we guarantee that U ∈ NPO and hence
U ∈ PTAS, cf. the proof of theorem 12 in the previous section. Then from (Cn), n ∈ IN

the theorem follows:
Assume T is an efficient PTAS for U with running time bounded by f(n) · |x|α for

some α > 0 and f : IN→ IN being recursively approximable from below. Then for every
n ∈ IN the tuple (T, f(n), α) occurs infinitely often in the list. But for m > n+3 there
exists y ∈ Im such that at least one of (i) and (ii) holds:

(i) T (y, 2m) doest not terminate within f(n) · |y|α steps.

4.4. ORACLE CONSTRUCTIONS 73

(ii) A.R.(y, T (y, 2m)) > 1 + 2−m,

a contradiction.
We construct problem U in stages:

Stage 0: x0 := 0.

Stage n > 0:

Find strings xj , yj,m, j = 1, . . . , n, m ∈ {1, . . . , n− 1} such that
(cn) becomes true. These strings exist due to Lemma 4.3.3.
Choose xn sufficiently large, namely
xn := 0T

where T is the time needed for the construction of stages 1, . . . , n− 1
and finding yj,m, xj in stage n by Brute Force.

Due to the choice of xn in stage n, for given string x we can in linear time compute
the interval number n such that x ∈ In = [xn−1, xn). Hence U is in NPO and hence
in PTAS. This proves the theorem. 2

4.4 Oracle Constructions

In the previous sections we gave constructions of optimization problems yielding the
separation of EPTAS from PTAS under certain complexity theoretic assumptions
(A) and (A’). As mentioned before, Cesati and Trevisan [CT97b] obtained the same
separation result under a different assumption (B) and using a different construction
method. In this section we ask how different the assumptions are. They have in
common the property of implying P 6= NP (in our words: they are stronger than
assumption P 6= NP , or to be precise: at least as strong as).

Our aim here is to show that at least using certain standard proof techniques one
can not show that our assumption (A’) implies (B), namely those proof techniques
which relativize, i.e. still hold under oracles.

4.4.1 Bounded Nondeterminism

Dealing with problems in NP , two computational resources are of special interest: de-
terministic running time and the amount of nondeterminism needed to solve
the problem in polynomial time. Here amount of nondeterminism simply means num-
ber of nondeterministic computation steps an algorithm solving the problem makes.
Trivial observations are that problems in NP can be solved in exponential time 2n

O(1)

and nondeterministically in polynomial time with polynomial number of nondetermin-
istic steps (guessing steps). The precise interaction of the two resources time and
nondeterminism is far from being well-understood.

Interestingly there are natural problems in NP neither known to be in P nor NP -
complete for which a bounded amount of nondeterminism is sufficient in order to solve

74 CHAPTER 4. ON THE STRUCTURE OF NPO

the problem. One of the most interesting examles was considered by Papadimitriou
and Yannakakis, namely Computing the Vapnik-Chervonenkis dimension of a 0 − 1
matrix. Below we will give a very brief introduction into the problem and their results.

In this and the following subsections we give a survey on previous results on
bounded nondeterminism as well as an introduction into the basic notions and def-
initions. Let us start by defining subclasses of NP bounding nondeterminism.

Definition 31 (a) Let f(n) and t(n) be polynomially bounded functions with f(n) ≤
t(n) for almost all n. Then

NTIME[f(n)](t(n)) := {L ∈ NP |there exists a t(n) time bounded NTMM making
at most O(f(n)) nondet. computation steps s.t. L(M) = L}

(b) Let f(n) be a polynomially bounded function. Then

NP [f(n)] := {L ∈ NP |there exists a polytime bounded NTMM making at most
O(f(n)) nondeterministic computation steps such that L(M) = L}

The following observations are straight forward.

Lemma 4.4.1
NP = NP

[
nO(1)

]
,

P = NP [log(n)] = NP [1],

NP [f(n)] ⊆ DTIME
(
2O(f(n))

)
.

Of special interest are the classes defined by polylogarithmically bounded nondeter-
minism, known as the Kintala-Fischer hierarchy. We will consider them in the next
subsection.

4.4.2 The Kintala-Fischer Hierarchy

In 1977 Kintala and Fischer [KF84] defined a hierarchy of subclasses of NP according
to increasing amount of nondeterminism:

Definition 32 (The Kintala- Fischer β-Hierarchy [KF84])
The β-Hierarchy is defined as follows:

βk := NP [logk(n)] = {L ∈ NP |L = L(M) for some polytime bounded Oracle NTM that

makes only O(logk(n)) nondeterministic computation steps

β :=
⋃

k∈IN0

βk

Besides others, Papadimitriou and Yannakais [PY93] studied the complexity of natural
problems which require only subpolynomial nondeterminism, with special emphasis on
complexity of computing the VC Dimension.

4.4. ORACLE CONSTRUCTIONS 75

4.4.3 Complexity of the VC Dimension

Let U be a set, the so called universe, let C be a subset of the power set P (U) of
U , i.e. a family of subsets of U . The Vapnik- Chervonenkis dimension (VC
dimension) of C, denoted as d(C), is the largest cardinality of a subset S of U such
that the following holds: For every subset T ⊆ S there exists a set CT ∈ C such that
S ∩ CT = T . The V-C dimension can be considered as a measure of the variability or
expressive power of C. The most important application is in Learning Theory.

Papadimitriou and Yannakakis [PY93] investigate the computational complexity
of computing the VC dimension. They consider the following algorithmic decision
problem:

VC DIMENSION

Instance: Finite set U , a family of subsets C ⊆ P (U), integer k ≥ 0

Question: Is d(C) ≥ k ?

Obviously, VC DIMENSION is in NP :

Just guess a set S ⊆ U of size k and check by Brute-Force whether

{C ∩ S|C ∈ C} = P(S).

Note that due to the fact that C is given in explicit form (e.g. as a list of incidence
vectors of the sets C ∈ C, i.e. a |C|×|U | 0−1 matrixM =M(U, C), for k > log(|C|) the
answer will be no and hence the above is indeed a polytime nondeterministic algorithm.
This also implies that the problem can be solved in time O

(
nlog(n)

)
.

Papadimitriou and Yannakakis [PY93] defined the class LOGSNP in analogue to
the well known Fagin’s class SNP. They proved V C DIMENSION being complete
for LOGSNP under polynomial-time reductions. Furthermore they give the same
result for several other problems in NP for which bounded nondeterminism suffices,
see their paper for the details and proofs.

4.4.4 Downward separation fails:
The Beigel - Goldsmith construction

Concerning hierarchies of classes of sets in general, one may ask what the relation of
single levels of the hierarchy to each other implies for the whole hierarchy. The Poly-
nomial Hierarchy PH and the Boolean Hierarchy BH both have the property
of Downward Separation. Recall the definition of PH and BH: The Polynomial

76 CHAPTER 4. ON THE STRUCTURE OF NPO

Hierarchy is defined by

PH :=
⋃

k∈IN0
ΣP
k , where

ΣP
0 = ΠP

0 = ∆P
0 = P,

ΣP
k+1 := NPΣ

P
k

ΠP
k+1 := co−NPΣP

k = co− ΣP
k+1 = {L|L ∈ ΣP

k+1

∆P
k+1 := PΣ

P
k = PΠ

P
k .

The Boolean Hierarchy BH is the closure of NP under Boolean operations (intersec-
tion, complement, union). The levels of BH corespond to the depth of the formula
defining the set:

BH :=
⋃

k∈INBH(k), where

BH(1) := NP
BH(k + 1) := {L1 \ L1 | L1 ∈ NP, L2 ∈ BH(k)}
co−BH(k) := {L| L ∈ BH(k)}.

The following lemma is well-known, the first part can be found in standard text-books
about complexity theory.

Lemma 4.4.2 (Downward Separation of PH and BH)

(a) If for some k ≥ 1, ΣP
k = ΠP

k , then ΣP
k+j = ΠP

k+j = ΣP
k for all j ≥ 0.

(b) If for some k ≥ 1, BH(k) = co−BH(k) then BH = BH(k).

For further information see e.g. [Kad88] and [CGH+88].

The question that arises in our current context is whether such phenomenon as
downward separation aslo exists for hierarchies of bounded nondeterminism. For the
Kintala-Fischer Hierarchy, Beigel and Goldsmith [BG94] gave a partial negative
answer. They were able to prove that using relativizable proof techniques, namely
those that also hold in every oracle setting, one cannot obtain downward separation
for β =

⋃
βk.

Before citing (a rough version of) the main result of Beigel and Goldsmith, let us
first indicate the difficulty in showing downward separation. A very natural approach
one might have in mind is padding. Assume βn 6= βn+1 for some n ∈ IN, and we now
ask for implication of this equality to lower levels of the Kintala-Fischer hierarchy. Let
us assume we try to prove βm 6= βm+1, for some m < n. Padding here would mean
the following: We take a language L ∈ βn+1 \ βn and use it to construct a language
L′ ∈ βm+1 \ βm. Let L = LR for some c · logn+1-balanced binary relation in P . We set

R′ := {(x10k, y) | (x, y) ∈ R}

and choose k sufficiently large such that proof length is reduced from O(logn+1(x)) to
O(logm+1(x)) and such that x 7→ x10k is a polynomial reduction from L to L′ = LR′ .

4.4. ORACLE CONSTRUCTIONS 77

But that way we do not succeed: in order to obtain sufficient decrease of proof length,
we must choose

k = 2(log(x))
(n+1)/(m+1)

= nlog
δ(x)

for some δ > 0, i.e. we get a superpolynomial construction and therefore not a poly-
nomial time reduction.

Let us now formulate the main result of Beigel and Goldsmith, explaining why the
above approach was not successful.

Theorem 14 (Main Result of Beigel and Goldsmith [BG94])
For any consistent set of collapses and separations of levels of the Kintala-Fischer
Hierarchy that respects P = β1 ⊆ β2 ⊆ . . . ⊆ NP , there exists an oracle X such that
relative to X those collapses and separations hold.

For a precise formulation of the result and proof techniques we refer to [BG94].

Let us mention that in subsection 4.4.6 we take a much closer look at the bottom
of the β-Hierarchy. There, we construct an oracle X such that

NPX [s(n) · log(n)] 6= PX

for every unbounded polytime computable function s(n). The difficulty arising in such
a construction is that although we can give a list of polytime bounded TMs, but by
no means we know in advance which of these machines computes a bounded function
and which not.

Future Work: Obtain the following further generalisation: An oracle X such that

s(n) = o(S(n)) ⇒ GCX(s(n) log(n)) 6= GCX(S(n) log(n))

for all pairs of polytime comutable unbounded functions. The construction we have in
mind implies that already

Not s(n) = Ω(S(n)) ⇒ GCX(s(n) log(n)) 6= GCX(S(n) log(n))

4.4.5 Guess and Check:
The W -Hierarchy versus Bounded Nondeterminism

In [CT97b] PTAS 6= EPTAS was proved under assumption FPT 6= W [P]. In
[CCDF95] this was proved being equivalent to the assumption that classes of decision
problems with superlogarithmic proof length are not contained in P . In this subsection
we will give a precise formulation of this characterization as well as definitions of the
terms and notations being used.

The term guess and check was introduced by Cai and Chen [CCDF95] in order to
define classes of bounded proof length:

78 CHAPTER 4. ON THE STRUCTURE OF NPO

Definition 33 (Guess and Check Classes)
Let f : IN→ IN be some function. The guess and check class GC(f(n) is defined by

GC(f(n)) := {L ⊆ Σ∗|there exists a O(f(n))-bounded relation
R ⊆ Σ∗ × Σ∗ such that R ∈ P and LR = L}

Obviously the following holds:

GC(log(n)) = P, GC
(

nO(1)
)

= NP.

Cai and Chen proved that FPT 6=W [P] is equivalent to the assumption that increasing
proof length slightly beyond logarightmic already leads us out of class P :

Theorem 15 (Characterization of assumption FPT 6=W [P] [CCDF95])
The following are eqivalent:

(1) FPT 6=W [P]

(2) Assumption (B): For every unbounded polynomial-time computable function
s: IN→ IN,

GC(s(n) log(n)) 6⊆ P.

We will now consider relativized versions of (B). Let us begin by defining appropriate
oracle classes.

Definition 34 Let X be some subset of Σ∗ and f : IN→ IN some function. Then

GCX(f(n)) := {L ⊆ Σ∗|there exists an O(f(n))-balanced binary relation R ⊆ Σ∗ × Σ∗

such that L = LR and R ∈ PX
}

4.4.6 An Oracle relative to which Assumption (B) is true

It is easy to construct an oracle making assumption (B) false, namely by taking a
sufficiently powerful oracle.

Theorem 16 (An Oracle relative to which Assumption (B) is false)
For every polynomial-time computable unbounded function s(n) there exists some re-
cursive set X ⊆ Σ∗ such that

GCX(s(n) log(n)) ⊆ PX .

Proof: Let X be some DTIME
(
nO(s(n))

)
-complete set, then the inclusion obviously

holds. For a precise argument (yielding a slightly more general result) see the proof of
Lemma 4.4.3 below. 2

In order to construct an oracle making (B) become true, one needs to diagonalize
against polynomially bounded oracle machines accepting inputs (x, y) with |y| bounded

4.4. ORACLE CONSTRUCTIONS 79

by s(|x|) log(|x|) for some nonconstant polytime computable function s(n). We can
enumerate polynomially bounded TMsMi computing functions si(n), but by no means
we know in advance which of these functions is bounded. The only thing we can do is
guessing si(n) being bounded by some constant C, and if this guess was incorrect, then
we will observe the incorrectness after finite amount of time, namely find some n such
that si(n) > C. Our strategy will be to perform such a guessing process, and each time
a violation occurs, we will increase the constant C and perform one diagonalization
step against GCX(si(n) log(n)) being equal to PX .

Let us now formulate the result and then give a precise proof.

Theorem 17 (An Oracle relative to which Assumption (B) is true)
There existst some recursive set X ⊆ Σ∗ such that for every unbounded polynomial-time
computable function s(n)

GCX(s(n) log(n)) 6⊆ PX .

Proof: It is sufficient to consider monotone increasing functions, hence we take a list
L of all polytime bounded TMs Mi, then

{si := hMi |Mi ∈ L} = {s(n)|s(n) is polytime computable monotone function},

where we take
hMi(n) := max{Mi(0), . . . ,Mi(n)}.

But then we do not know in advance which of these functions is bounded and which
not. Therefore we will alternatively work with guesses of the form

(Mi, c) standing for ”∀ n si(n) ≤ c”.

If a guess is incorrect, we will recognize after finite amount of time and then do the
following:

(1) The guess will be updated from (Mi, c) to (Mi, si(n)), where n is the actual value
where we observe si(n) > c.

(2) We perform one step in the construction of oracle X towards guaranteeing

GCX(si(n) log(n)) 6⊆ PX ,

namely towards

Li := {x = 0n| ∃y such that |y| = si(|x|) log(|x|) and y ∈ X} 6∈ PX .

Here performing one step towards Li 6∈ PX means the following: The oracle X will be
constructed in stages. In stage n we define X restricted to strings of length l(n). For
each i we maintain a number j(i) of the index of the polytime TM Nj(i) to be taken
care of next. The guesses (Mi, c) are maintained in a priority queue Q. Whenever in
some stage n of the construction the guess (Mi, c) is the first being violated, we define

80 CHAPTER 4. ON THE STRUCTURE OF NPO

X ∩ Σl(n) such that machine Nj(i) with oracle X does not recognize Li. This is made
possible by an appropriate choice of guesses, namely such that if the guess is violated
then Ni on input of length l(n) might ask at most a polynomial in l(n) number of
questions to X while there are more strings of length l(n) available.

Let pj(i)(n) denote a polynomial bound on the running time of polytime machine
Nj(i), let dj(i) and a(j(i)) denote the degree and maximum coefficient of polynomial

pj(i)(n), hence pj(i)(n) ≤ a(j(i)) · (dj(i) + 1) · ndj(i) =: Cj(i) · ndj(i) for all n ∈ IN.
In order to guarantee that if we identify a guess (Mi, ci) being incorrect we are able

to diagonalize, we need to assure that

Cj(i) · l(n)dj(i) < 2si(l(n))·log(l(n)) = l(n)si(l(n))

hence machine Mi will enter the queue Q with guess (Mi, ci := d1 + 1), and we will
choose

l(n+ 1) := max{l(n) + 1,max{Cj(i)| there is some guess (Mi, ci) in Q}}.

(This implies pj(i)(l(n)) ≤ Cj(i) · l(n)dj(i) < 2ci·log(l(n)) for all i, n, and hence there are

more strings of length l(n) than machine Nj(i) might ask on input 0l(n)).
We are now ready to describe the construction of X in detail.

Construction of oracle X in stages

Stage 0:
Q := {(M1, d1)} (initialization of the priority queue of guesses)
j(1) := 1
l(1) := C1

Stage n > 0:
Set X ∩ Σl := ∅ for all l(n− 1) < l < l(n).
If for each entry (Mi, ci) of Q si(l(n)) ≤ ci
then X ∩ Σl(n) := ∅ else

Remove the first violation (Mi, c) from Q.
/∗ X ∩ Σ<l(n) is already defined ∗/
Let oracle Y be defined as X on strings of length ≤ l(n) and Y ∩ Σ≥l(n) := ∅.
If 0l(n) ∈ L(Nj(i), Y) then let X ∩ Σl(n) := ∅
otherwise

Let x ∈ Σl(n) not being asked by the computation Nj(i)(0
l(n), Y)

/∗ Such string exists due to the choice of l(n) ! ∗/
Let X ∩ Σl(n) := {x}.

endif
/∗ Update the violated guess and the index j(i) ∗/
Replace (Mi, c) by (Mi, si(l(n)) + 1). Insert (Mi, c) into Q.
j(i) := j(i) + 1.

endif

4.4. ORACLE CONSTRUCTIONS 81

Expand queue of guesses:
Insert (Mn, n) into Q and set j(n) := 1.

Compute l(n+ 1):
l(n+ 1) := max{ l(n) + 1, max{Cj(i)|some guess (Mi, ci) is in Q} }

End of Stage n

It follows directly from the construction that

GCX(si(n) log(n) 6⊆ PX

for all i ∈ IN, furthermore X is recursive. 2

4.4.7 An Oracle relative to which (A’) is true but (B) is false

In this section we separate assumptions (A’) and (B) by oracle construction, showing
that using relativizing techniques one can not prove that our assumption (A’) implies
assumtion (B). Let us first formulate our result, then give an outline of our proof as
well as some difficulties that may arise, finally we give the precise proof.

Theorem 18 (An Oracle relative to which (A’) is true but (B) is false)
There exists a recursive set X ⊆ Σ∗ such that (1) and (2) hold.

(1) GCX(log2(x)) ⊆ PX (hence relative to oracle X assumption (B) is false).

(2) For the relation RX := {(x, y)|x = 0n, n ∈ IN, |y| = 2n, y ∈ X},

ΠRX
∈ FTIMEX

(

2n
3
)

\ FTIMEX (2n) .

(Hence relative to oracle X assumption (A’) is true.)

Proof Idea: Let X̃ be some DTIME
(
nO(logn)

)
-complete problem with respect to

polynomial-time Karp reductions. Then X ′ := {1xx|x ∈ X̃} is DTIME
(
nO(logn)

)
-

complete as well. We let

X = X ′ ∪X ′′

where X ′′ consists of strings of even length only. We use X ′′ for a diagonalization
process in order to assure (2).

The following two lemmas indicate how powerful the set may be in order to make
(1) become true.

Lemma 4.4.3 For every DTIME
(
nO(logn)

)
-complete problem Y ,

GCY (log2(n)) ⊆ P Y .

82 CHAPTER 4. ON THE STRUCTURE OF NPO

Proof of Lemma 4.4.3: Let R be c · log2(n) - balanced for some c > 0 with R ∈ P Y .
Let R = L(M,Y) for some polytime bounded oracle machine M . We have to show

that ΠR ∈ FTIMEY
(
nO(1)

)
. For input x of length n there are less than n ·2c·log2(n) =

n ·nc·log(n) = nO(log(n)) strings of length bounded by c · log2(n), hence a straight forward
algorithm will enumerate all such strings and for each of them ask the question to oracle
machine M with oracle Y . The running time of this oracle algorithm is bounded by

p(n+ c · log2(n))
︸ ︷︷ ︸

running time of M

· nO(log(n))
︸ ︷︷ ︸

]strings of that length

= nO(log(n)),

If we replace the oracle questions by calls of a nO(log(n))-time bounded algorithm MY

for Y , the total running time can be bounded by

nO(log(n)) · q(n)O(log(q(n)))
︸ ︷︷ ︸

time for one call of MY

= nO(log(n))

where q(n) := p(n+c · log2(n)) is a polynomial. Hence we can reduce this problem to Y
(due to the DTIME(nO(log(n)))- completeness of Y) and therefore L ∈ P Y .2(Lemma
4.4.3)

Lemma 4.4.4 For every DTIME
(
nO(logn)

)
-hard problem Y which is complete for a

class C of languages such that DTIME(t(n)) ⊆ C implies DTIME
(
nO(log(n)) · t

(
nO(1)

))
⊆

C,
GCY (log2(n)) ⊆ P Y .

Proof of Lemma 4.4.4: Let L ∈ GCY (log2(n)) and Y ∈ DTIME(t(n)). We perform
the complete-enumeration oracle algorithm as in the proof of claim 1 and obtain a
running time bounded by

nO(log(n))
︸ ︷︷ ︸

] strings to be enum.

· p(n+ c · log2(n))
︸ ︷︷ ︸

single call of the Oracle TM for L

· t(p(n+ c · log2(n)))
︸ ︷︷ ︸

solving one instance of Y

= nO(log(n))·t(nO(1))

Hence L ∈ C, and L is polynomial-time reducible to Y , therefore L ∈ P Y . 2(Lemma
4.4.4)

Now if we take an arbitrary set X ′′ ⊆ ⋃n∈IN Σ2n which is complete for class C, the
disjoint union X := X ′ ∪X ′′ still satisfies the conditions in claim 2, hence (1) will still
hold.

Proof of Theorem 18: Let X = X ′ ∪ X ′′ where X ′ consists of odd-length strings
only and X ′′ consists of even-length strings only. We choose

CX := {(i, x, 0s)|Mi on input x with oracle X accepts within s steps
and O(log2(n)) nondeterministic steps

}
.

4.4. ORACLE CONSTRUCTIONS 83

Then CX is ≤pm-complete for GCX(log2(n)). Let p(n) be a polynomial such that

CX ∈ NTIME[log2(n)](p(n)).

We will encode CX into X ′ in a polynomial manner and use X ′′ for diagonalisation in
order to assure (2). The encoding will be as follows: For all strings x ∈ Σ∗,

x ∈ CX ⇐⇒ 1p(|x|)
2
0 x ∈ X.

We are now ready to constructX. LetM1, . . . ,Mn, . . . denote an enumeration ofO(2n)-
time bounded Oracle machines such that without loss of generalityMi is i · 2n - time bounded.

Construction of X in stages

/? At the end of stage s X is defined up to ?/
/? strings of length ns. During stage s diagonalization ?/
/? against L(Mi) = LX is performed by choosing ?/
/? n > ns−1 and assuring 0n ∈ L(M − i)∆LX ?/

Stage 0: n0 := 0, X := ∅

Stage s > 0:
/? X is defined up to length ns−1 ?/
Choose n > ns to be a power of 2 and sufficiently large.
Define X up to length l := n3 − 1.
Define CX up to strings y with p(|y|)2 + 1 + |y| ≤ n3 − 1.

/? LX(1n) depends on strings of length n3. ?/

Compute Ms(1
n, X).

If Ms(1
n, X) accepts then

Let y be a legal string of length n3.
X := X ∪ {y}.

ns := max{l, s · 2n}
Freeze X up to length ns.
Freeze CX up to strings of length m with p(m)2 + 1 +m ≤ ns.

End of Stage s.

It remains to define which strings y of length n3 are legal and what it means to choose
n sufficiently large. The initial idea is simply to pick a string y which was not asked
by the computation Ms(x,X). Such string of length n3 exists since Mi has running
time bounded by s · 2n and there are 2n

3
strings of length n3 available (we choose n

such that s · 2n < 2n
3
). The problem is that the encoding of CX into X may depend

84 CHAPTER 4. ON THE STRUCTURE OF NPO

on this choice, and the result of Ms(x,X) may in turn depend on this coding and so
on.

We accomplish this difficulty by using an approach from Beigel and Goldberg: We
show that due to the way the coding of CX into X is arranged, there are more strings
of length n3 available than are influencing the coding of CX into X in the range up to
length s · 2n:

Ms(x,X) has running time bounded by s · 2n and therefore may ask at most s · 2n
oracle questions about strings of length bounded by s · 2n.

Due to the encoding, these strings may encode strings from CX of length bounded
by √

s · 2n =
√
s · 2n/2.

Each of these encoding strings w in turn may depend on at most

p(|w|) · 2log2(|w|) = p
(

s2
−1 · 2n/21

)

· 2log
2
(

s2
−1 ·2n/21

)

strings of this smaller length and so on.

Since X is already fixed up to length l − 1, the recursion can be cut off at strings
of length ≤ l − 1. Therefore the number of such terms is bounded by

log log(s · 2n) − log log(l − 1) ≤ log(log s + n)− log log(n) ≤ c · log(n) = Θ(log(n))

for some constant c > 0. Hence the total number of strings being influenced by the
choice of y is bounded by

s · 2n ·
∏

i≤c·log(n)
p
(

s2
−i · 2n/2i

)

· 2log
2
(

s2
−i ·2n/2i

)

= s · 2n ·
∏

i≤c·log(n)

(

s2
−i · 2n/2i

)O(1)
· 2log

2
(

s2
−i ·2n/2i

)

.

We compute

log2
(

s2
−i · 2n/2i

)

=
(

2−i · log(s) +
n

2i

)2
= O(n2)

Hence the total number of strings is bounded by

s · 2n · O(log(n)) · 2O(n) · 2O(n2) = 2O(n
2)

supposed we choose s sufficiently small compared to n, i.e. choose n large, namely

s = 2log s, log(s) = O(n2).

Hence we find a string y of length n3 such that adding y to X does not change the
result of computationMs(x,X), therefore the diagonalization step is well-defined. The
whole construction is shown in figure 4.2. 2(Theorem 18)

4.5. RANDOMIZED APPROXIMATION SCHEMES: RPTAS VERSUS REPTAS85

Figure 4.2: The Construction of Oracle X: Stage s

︸ ︷︷ ︸

length l = n + 1 + log2(n)

︸ ︷︷ ︸

length s · 2n

can define CX

up to here
can define X
up to here

0n = xX defined up to
here in prev. stage

up to here Ms(x, X)

may ask oracle X

4.5 Randomized Approximation Schemes: RPTAS ver-
sus REPTAS

In this section we consider the question of efficiency for randomized approximation
schemes. Recall that a randomized approximation scheme A for an optimization
problem X is a probabilistic approximation algorithm A for X such that

Pr{A.R. of A(x, ε) is at most 1 + ε} ≥ 3

4

and the randomized time complexity of algorithm A is

O
(

|x|f(1/ε)
)

for some function f : IN → IN. A is called an efficient randomized approximation
scheme if instead the randomized running time is bounded by

O

(

f

(
1

ε

)

· |x|O(1)
)

for some function f : IN → IN. Accordingly the subclasses RPTAS and REPTAS of
NPO are defined.

In the following lemma, the case of efficient probabilistic approximation schemes
where the error probability is bounded for each fixed ε is considered.

Lemma 4.5.1 Assume A is a probabilistic approximation scheme for NPO prob-
lem X, which means

Pr{A.R. of A(x, ε) is at most 1 + ε} > 1

2

86 CHAPTER 4. ON THE STRUCTURE OF NPO

Assume further that there are functions f : IN→ IN and e: IN→ [0, 1/2) and α > 0 such
that e is recursive and

Pr{A.R. of A(x, n) is at most 1 + 1
n in time bounded by f(n) · |x|α} ≥ 1− e(n)

for every x and n. Then X ∈ REPTAS.
Proof: We can decrease the error probability to at most 1/4 by applying the δ-
Lemma for Monte Carlo machines to each n: Compute e(n), then the δ-Lemma gives
a computable bound k = k(n) such that repeating A(·, n) k times and making ma-
jority decision decreases error probability to 1/4. The running time is bounded by
k(n) · f(n) · |x|α, which proves the lemma. 2

We are now going to separate the classes REPTAS and RPTAS assuming the ex-
istence of polynomially balanced relations in P for which the associated functional
problems provides a superpolynomial lower bound on the randomized time complexity
(assumption (A”) in theorem 19 below). This is basically the variant of assumption
(A’) where deterministic time complexity is replaced by randomized time complexity.

Theorem 19 Assume there exists a polynomially balanced binary relation R ⊆ Σ∗×Σ∗
such that R ∈ P and

ΠR ∈ RFTIME
(
t2(n)

)
\ RFTIME (t(n))

for some superpolynomial polynomial-time computable function t(n) (Assumption
A”).
Then there exists an optimization problem UR ∈ NPO such that

UR ∈ RPTAS \ REPTAS.
Proof: Assume R to be as in assumption (A”), and let R be p(n)-balanced for some
polynomial p(n). Let T (n) := t2(n). We define problem UR,n as follows:

Instance: X = (x1, . . . , xn, 0
k) such that

T (|xj |) ≤ |X|2
j
, 1 ≤ j ≤ n− 1.

Solution: π = (π1, . . . , πn) such that

|πj | ≤ p(|xj |), 1 ≤ j ≤ n− 1

Cost: costn(X,π) = 2n +
∑n

j=1R(xj , πj) · 2n−j

Problems UR,n have the following properties:

(1) There exists a two-variate polynomial q(n,m) such that UR,n is a q(n,m)-bounded
NP optimization problem (recall that this means for given x, y in time
q(n, |x|) we can check whether x is a valid instance of problem UR,n, y is a
feasible solution for instance x of Un and compute the cost function costn(x, y),
c.f. section ..., definition ...).

4.5. RANDOMIZED APPROXIMATION SCHEMES: RPTAS VERSUS REPTAS87

(2) Every approximation algorithm A for problem UR,n answering x1, . . . , xj cor-
rect has approximation ratio

A.R.(A) ≤ 1 + 2−j .

Every approximation algorithm A for problem UR,n answering xj incorrect
has approximation ratio

A.R.(A) ≥ 1 + 2−(j+2).

(3) For j = 1, . . . , n− 1, there exists a randomized approximation algorithm A with
running time

O

(
j
∑

i=1

|X|2i
)

= O
(

j · |X|2j
)

such that

Pr{A on input x answers x1, . . . , xj correct} ≥
3

4

(4) For j = 1, . . . , n − 1: There is no randomized approximation algorithm with

running time O
(

|X|2j−1
)

for UR,n answering xj correct.

(5) There is no randomized approximation algorithm with polynomial running time
for UR,n answering xn correct.

The proof of (1) and (2) is identical to that of lemma 4.3.1. Let A be a T (n)-time
bounded randomized algorithm for the functional problem ΠR such that

Pr{(x,A(x)) ∈ R} ≥ 3

4

for every x ∈ LR. By the δ-Lemma for Monte-Carlo algorithms, there is a randomized
algorithm A′ such that

Pr{x ∈ LR ⇒ (x,A′(x)) ∈ R in time bounded by f(j) · T (|x|)} ≥
(
3

4

)1/j

=: aj

(for some function f(j) of j). Let B be the approximation algorithm for Un which for
each component xj independently sets

πj := A′(xj).

We obtain

Pr{B on input X answers x1, . . . , xj correct}

=

j
∏

i=1

Pr{xi ∈ LR ⇒ (xi,A′(xi)) ∈ R}

≥ (aj)
j =

(
3

4

)j/j

=
3

4

88 CHAPTER 4. ON THE STRUCTURE OF NPO

which completes the proof of (3).

In order to prove (4) we make use of the same kind of reduction from ΠR to UR,n
as before: Given an instance x of ΠR we construct an instance X of UR,n such that

X = (x1, . . . , xn, 0
k), x = xj

and

|X| ∈
[

2j
√

T (|x|), 2j
√

T (|x|) + 1
]

Now assume B is a randomized approximation algorithm for UR,n such that

Pr
{

B answers xj correct in time c ·
(

|X|2j−1
)}

≥ 3

4

for some c > 0. Since

c · |X|2j−1 ≤ c ·
(

2j
√

T (|x|) + 1
)2j−1

= O

(

2j−1 · T (|x|)
2j−1

2j

)

= O
(
2j−1 · t(|x|)

)

this contradicts assumption (A”), hence (4) holds as well.

Let (Mi, ci), i ∈ IN be a listing of all pairs consisting of PTMs Mi and constants
ci > 0, where we initially guess Mi being an approximation scheme for problem UR
with error probability bounded by 1/4. Assume that each pair occurs infinitely often
in this list. For each such Mi, either the guess is incorrect and we will recognize this
after finite amount of time, or we diagonalize against Mi being an efficient randomized
approximation scheme for UR with error probability bounded by 1

4 .

We construct problem UR in stages. In stage n the n-th interval In = [xn−1, xn) is
defined (recall that this refers to lexicographic order on Σ∗), UR restricted to In will
be defined as UR,n. During the construction the following requirements are satisfied:

(Cn) For j = 1, . . . , n, i = 1, . . . , n:
There are strings y = yi,j and x = xi in In = [xn−1, xn) such that

Pr
{

A.R. of Mi(y, 2
j+3) is ≤ 1 + 1

2j+3 within time ci · |y|2j−1
}

< 3
4

Pr
{
A.R. of Mi(x, 2

n+3) ≤ 1 + 2−(n+3) within time ci · |x|2n
}
< 3
4

Let us argue that (assuming we guarantee problem UR being in RPTAS) constraints
(Cn) are sufficient in order to prove the theorem: Hence assume UR ∈ REPTAS
but (Cn) are satisfied. Then due to the fact that we can decrease error probability
to 1

4 increasing running time by at most a constant factor, there exists an efficient
randomized polytime approximation scheme M for problem UR with error probability
bounded by 1

4 and randomized running time bounded by

f(n) · |x|α for some α > 0 and some function f(n).

4.5. RANDOMIZED APPROXIMATION SCHEMES: RPTAS VERSUS REPTAS89

Now choose j such that α < 2j−1, and let i be choosen such that (Mi, ci) = (M,f(2j+3)).
From some stage n on (namely n ≥ max{i, log(α)}) there exist strings y in interval In
such that

Pr
{
A.R. of Mi(y, 2

j+3) is ≤ 1 + 1
2j+3 within time f(2j+3) · |x|α

}
<

3

4
,

hence we obtain a contradiction and thus M is not an efficient randomized polytime
approximation scheme for problem UR.

Construction of Problem UR in Stages.

Stage 0: Set x0 := 0.

Stage n > 0: Let xn−1 and UR restricted to the interval [x0, xn−1) already be defined.
We will construct xn and define

UR restricted to interval In be equal to UR,n.

Now by brute force find strings yi,j , xi, 1 ≤ i, j ≤ n satisfying constraint (Cn). Such
strings are guaranteed to exist due to properties (1)-(5) of problem UR,n. Let Tn be
the total time needed to (deterministically) construct problem UR up to stage n − 1
and to find strings yi,j , xi, 1 ≤ i, j ≤ n Let xn := 0Tn .
End of Stage n

By the very same reason as in the construction in the proof of theorem 12 in section
4.3, problem UR has polynomial time decidable sets of instances and solutions and
polynomial cost functions, furthermore we obtain a randomized approximation scheme
for UR by first computing the interval number of string x, if it is too small solve
the instance to optimality by brute force and otherwise answering sufficiently many
components of instance x corrcectly by the randomized algorithm for ΠR. Hence
UR ∈ RPTAS \REPTAS, which completes the proof. 2

90 CHAPTER 4. ON THE STRUCTURE OF NPO

Chapter 5

The Steiner Tree Problem

In this chapter we deal with the Steiner Tree Problem, which asks for a shortest network
connecting a given finite set of points. This problem is one of the most intensively
studied problems in combinatorial optimization and comutational complexity, due to
its relevance in various applications ranging from Traffic Routing and Transportation
Network Problems to VLSI design. It is closely connected to another famous and
intensively studied optimization problem, the Travelling Salesman Problem (TSP, also
known as the Travelling Salesperson Problem), which asks for a minimum length tour
visiting each of n given points precisely once.

The history of the Steiner Tree Problem goes back to Fermat (1601-1665), who
considered the following question:

Fermat’s Problem: Given three points a, b, c in the plane, find a point d in the
plane minimizing the sum of distances to the given points.

A geometric solution was given by Toricelli before 1640.

This is already a special case of the Euclidean Steiner Tree Problem in the plane
which was proposed by Jarnik and Kössler in 1934: Given a finite set of points S
in the Euclidean plane, construct a minimum length network T consisting of a finite
set of points in the plane such that S is connected by that network. Formally T is
a connected graph T = (VT , ET) with S ⊆ V , and the length (or cost) of the tree is
defined as the sum of lengths of its edges, where the length of an edge is the Euclidean
distance of its endpoints.

In 1965 Hanan formulated the rectilinear version of the problem (i.e. we take the
L1 distance instead of the Euclidean or L2 distance.

In 1971 Hakimi [Hak71] and Levin [Lev71] independently proposed the graph or
network version of the problem, usually known as the Network Steiner Tree Prob-
lem. The L1-version can be directly seen to be a special case of the network version.

In this chapter we give an introduction into the Network Steiner Tree Prob-
lem. Throughout this chapter and the rest of the thesis, if nothing different is es-
plicitly mentioned, we deal with the Network Steiner Tree Problem and simply call
it the Steiner Tree Problem. While it is easy to see that minimum spanning trees

91

92 CHAPTER 5. THE STEINER TREE PROBLEM

provide 2-approximations to the Steiner Tree problem (see [TM80] for implementa-
tional issues), the first nontrivial polynomial time approximation algorithm for the
Steiner Tree Problem was given by Zelikovsky [Zel93] in 1993, achieving an approx-
imation ratio of 11/6, based on a greedy strategy. Since then, several improvements
were obtained. Let us only mention some of the most important of them: Berman and
Ramaiyer [BR94] gave a polynomial time 1.78 approximation algorithm based on a two
phase approach. In 1995 Zelikovsky [Zel95] provided a 1.69 approximation algorithm,
the so called Relative greedy Heuristic (RGH). Based on this result, Karpinski
and Zelikovsky [KZ97b] gave a 1.644 approximation algorithm which consists of one
call of the RGH algorithm preprocessed by another call with a modified gain function.
Hougardy and Prömel [HP99] iterated the Karpinski Zelikovsky algorithm, obtaining
an approximation ratio of 1.59. Robins and Zelikovsky [RZ00b] obtained a 1.55 ap-
proximation algorithm, which is based on amodified relative greedy approach using
concepts from [KZ97b].

The chapter is organized as follows: In section 5.1 we give precise definitions of
the different versions of the Steiner Tree Problem mentioned above. We will also
list some very basic facts about Minimum Steiner Trees, e.g. the equivalence of the
weighted graph case and the metric case. Section 5.2 deals with known lower bounds
for the approximability of the Steiner Tree Problem. In section 5.3 we will briefly
describe two well-known exact algorithms for the Steiner Tree Problem, i.e. exponential
time algorithms always computing optimum solutions. These algorithms will play an
essential role in applications to Dense Steiner Tree Problems in chapter 9 of this
thesis. Finally in section 5.5 we will give a brief survey on approximation algorithms
for the Steiner Tree Problem, indicating the underlying ideas and methods.

We will not discuss here the numerous results on special cases of the Steiner Tree
Problem, but only mention one of the most important ones: It was a longstanding
open problem whether there is a polynomial time approximation scheme for the Eu-
clidean Steiner Tree Problem (and in general for the Geometric Steiner Tree Problem in
fixed dimension). This question was answered affirmatively by Sanjeev Arora [Aro98]
(Mitchell [Mit99] independently obtained similar results).

5.1 Problem Formulation

Let us now give the precise problem formulation for the graph and metric Steiner tree
problems and then argue why they are equivalent.

Steiner Tree Problem
Instance: graphG = (V,E), a subset S ⊆ V of terminals and a cost function c:E → IR+

Solution: a tree T = (V (T), E(T)) ⊆ G such that S ⊆ V (T)

Cost: c(T) =
∑

e∈E(T) c(e)

5.2. LOWER BOUNDS 93

Metric Steiner Tree Problem
Instance: A finite metric space (V, d) (i.e. V is a finite set and d:V × V → IR+ is
symmetric and satisfies the triangle inequality) and a terminal set S ⊆ V .

Solution: tree T = (V (T), E(T)) with S ⊆ V (T) ⊆ V and E(T) ⊆ P2(V (T).

Cost: d(T) :=
∑

e={u,v}∈E(T) d(u, v)

Lemma 5.1.1 The Steiner Tree Problem and the Metric Steiner Tree Problem are
equivalent with respect to L-reductions with parameters α = β = 1 in both directions.

Proof: On the one hand, the metric case is a special case of the Steiner Tree Problem
in graphs with G being the complete graph on V and edge weights equal to metric
distances. On the other hand, given an instance of the Steiner Tree Problem in edge-
weighted graphs consisting of graph G = (V,E) with edge costs c:E → IR+ and
terminal set S ⊆ V , one can in polynomial time construct the distance graph on V ,
i.e. the complete graph on V with costs equaling shortest path distances in G, c, and
solving the problem in this metric space directly yields a solution for the graph problem
with no cost increase. 2

Hence from now on, let the Steiner Tree Problem (SMT) denote the problem in
edge weighted graphs (networks) or equivalently the metric Steiner Tree Problem. If
not esplicitly stated, we will no longer distinguish between the two cases.

5.2 Lower Bounds

The decision version of the Steiner Tree problem was already proved being NP -
complete by Karp [Kar72], using the following reduction from SAT: Given an instance

ϕ = C1 ∧ . . . ∧ Cm

of Max SAT with clauses C1, . . . , Cm and variables x1, . . . , xn, we construct graph
G = Gϕ = (V,E) as follows: For each clause Cj we take a terminal tj , for each variable
xi we take a three-vertex path Pi = vi,0 − vi − vi,1 and let vi be a terminal as well,
furthermore we take one more vertex u. We connect all vertices vi,0, vi,1 to u by one
edge, furthermore we take all edges {vi,α, tj} such that literal xαi (α ∈ {0, 1}) occurs in
clause Cj . The construction is shown in figure 5.1.

If we start from the problem Max-3-OCC-MAX-3SAT, the construction yields
an L-reduction. Max-3-OCC-MAX-3SAT is the special case of Max SAT where
clauses have length bounded by 3 and each variable occurs at most three times in the
formula.

Theorem 20 The construction of Karp as described above yields an L-reduction

Max-3-OCC-MAX-3SAT ≤L Steiner Tree Problem

94 CHAPTER 5. THE STEINER TREE PROBLEM

Figure 5.1:
Clauses

C_1 C_2 C_m

Variables

extra node

x_1 x_n
0 1 0 1 0 1

with parameters α = 15 and β = 1.

Proof: The proof consists in following the proof of Papadimitriou and Yannakakis and then
analysing what happens if we use Max-3-OCC-MAX-3SAT as a starting point of the reduc-
tion: Given an assignment β: {x1, .., xn} → {0, 1}, let the tree Tβ in Gϕ consist of all edges
{u, vi,β(xi)}, {vi,β(xi), vi}, for each satisfied clause Cj an edge connecting it to the vertex corre-
sponding to a satisfying true literal and for each unsatisfied clause a path of length 2 connecting
it to u. Then obviously Tβ is a Steiner Tree for the terminal set

Sϕ = {t1, . . . , tm, v1, . . . , vn}

in graph Gϕ of cost

c(Tβ) = 2n+ 2m− |{j ∈ {1, . . . ,m} : β(Cj) = 1}|.

On the other hand, let T be a Steiner Tree for terminal set Sϕ in graph Gf . We call such tree
a normal form tree if it satisfies the following conditions:

1. Each clause vertex tj has degree 1.

2. Each variable vertex vi is connected to exactly one of the vertices vi,0, vi,1.

3. If {vi, vi,j} is an edge of T , then {vi,j , u} is an edge of T as well.

In polynomial time each tree T can be transformed into a no longer normal form tree T ′. Hence
we now assume T to be in normal form. We will now construct an assignment βT as follows:

βT (xi) =







0 if only {vi, vi,0} is an edge of T
1 if only {vi, vi,1} is an edge of T
α if both {vi, vi,0}, {vi, vi,1} are edges of T

where α ∈ {0, 1} is such that xαi occures more often than x1−α
i in formula ϕ. For MAX-SAT

we have m
2 ≤ opt ≤ m. For Max-3-OCC-MAX-3SAT we obtain

n/3 ≤ m ≤ n, therefore smt = 2n+ 2m− opt(f) ≤ 8m− opt(f) ≤ 16opt− opt = 15opt,

which establishes α = 15. Furthermore we have

opt(f)− |{C clause:β(C) = 1}| ≤ m−
(
2(n+m)− c(T)

)

= c(T)− (2n+m) ≤ c(T)− opt(Gf , Sf)

5.2. LOWER BOUNDS 95

which directly implies β = 1, completing the proof. 2

One can now use well known results on the approximation hardness of Max-3OCC-
MAX-3SAT in order to obtain hardness results for the Steiner Tree Problem. One
starts from the following fundamental result from Hastad on hardness of the problem
Max-E3-Lin-2, which is maximum satisfiability of linear equations modulo 2 with
exactly 3 variables per equation.

Theorem 21 (Hastad 1997 [Has97]) For every ε ∈ (0, 1/4) and sufficiently large
integer k ≥ k(ε) the following problem is NP-hard: Given an instance of Max-E3-
Lin-2 consisting of n equations with exactly 2k occurrences of each variable, decide if
at least (1 − ε)n or at most (1/2 + ε)n equations are satisfied by the optimum assign-
ment. Equivalently: For E3-Lin-2 with 2n equations and n variables it is hard whether
MaxLin(f) ≤ (1 + ε)n or MaxLin(f) ≥ (2− ε)n.

Berman and Karpinski obtained improved hardness results for the problem 3OCC-
E2-Lin-2:

Theorem 22 (Berman, Karpinski 1998 [BK98b]) It is NP-hard for 3OCC-E2-
Lin2 instances with 336n equations to decide whether opt ≤ (331 + ε)n or opt ≥
(332 + ε)n.

Recently they were able to further improve on this, obtaining the following result.

Theorem 23 (Berman, Karpinski 2003 [BK03]) It is NP-hard to approximate
E3-OCC-E2-Lin-2 within 112

111 − ε.

Now one can use a reduction from 3OCC-E2-Lin-2 to 12OCC-E2-SAT by replacing
each linear equation x + y = 0/1 by a set of 4 clauses. Starting from the first result
of Berman and Karpinski [BK98b], it is NP-hard for 3OCC-E2-Lin2 instances with
336n equations and n variables to decide whether opt ≤ (331+ε)n or opt ≥ (332+ε)n.
This yields 672n clauses and n variables in the according 12OCC-E2-SAT instance, and
using the above reduction one obtains a Steiner Tree instance with 4n+672n∗2 = 1348n
edges, (672 + 3)n+ 1 = 675n+ 1 nodes and 673n+ 1 terminals, where the cost of an
optimum Steiner Tree is smt = 2n + (21 + 1)m − MaxLin(f) = 2n + 3 ∗ 336n −
MaxLin(f) = 1010n − MaxLin(f), f being the 3OCC-E2-Lin2 instance we start
from.

Therefore is NP-hard for SMT instances with 1348n edges, 675n + 1 nodes and
673n + 1 terminals to decide whether smt ≤ 1010n − (332 − ε)n = (678 + ε)n or
smt ≥ 1010n − (331 + ε)n = (679 − ε)n. Hence one obtains the following hardness
result for the Steiner Tree Problem.

Corollary 5.2.1 It is NP-hard to approximate the Steiner Tree Problem within
A.R.679678 − ε ≈ 1.0014− ε.

In 1989, Bern and Plassmann [BP89] considered the following special case of the Steiner
Tree Problem where edge lengths are restricted to 1 and 2:

96 CHAPTER 5. THE STEINER TREE PROBLEM

(1,2)−Steiner Tree Problem ((1,2)-STP)
Instance: finite vertex set V , cost function c : P2(V)→ {1, 2},

Terminal set S ⊆ V

Solution: Steiner Tree T for S in (V, c)

Cost: c(T), the length of the tree

This problem is well known to be a special case of theMetric Steiner Tree Problem,
as is formulated in the following lemma:

Lemma 5.2.1 If V is a finite set and c is a function c:P2(V)→ {1, 2}, then (V, c) is
a finite metric space.

Proof: It suffices to prove that the triangle inequality holds, but this is obvious: Let
a, b, c ∈ V , then c(a, c) ≤ 2 but c(a, b) + c(b, c) ≥ 1 + 1 = 2. 2

Bern and Plassmann [BP89] were able to give an L-reduction from the Bounded De-
gree vertex Cover Problem to the 1− 2−Steiner Tree Problem, implying MAX
SNP-hardness of the latter. We will first define the Bounded Degree Vertex Cover
Problem and then state the Bern-Plassmann result.

B−Vertex Cover Problem (B-VC)
Instance: Graph G = (V,E) such that for all

vertices v ∈ V , dG(v) ≤ B
Solution: a vetex cover C for G, i.e. a set of vertices

C ⊆ V such that ∀e ∈ E e ∩ C 6= ∅

Cost: |C|, the cardinality of the vertex cover

Theorem 24 [BP89] There is an L-Reduction from B−Vertex Cover Problem to
the (1,2)−Steiner Tree Problem with parameters α = B/2, β = 1.

Proof: Given a graph G = (V,E) with vertex degree bounded by B, construct an instance
of the Steiner Tree Problem consisting of graph H = (VH , EH) and terminal set S ⊆ VH as
follows: For each edge e of G we introduce a vertex ve, furthermore for each vertex u of G a
vertex vu, hence VH = {ve|e ∈ E}∪{vu|u ∈ V }. For each u ∈ e ∈ E we let {vu, ve} be an edge
of H, furthermore we add all the edges {vu, vw} for u,w ∈ V . The terminal set is defined as
S := {ve|e ∈ E}.

Let us analyse the construction: For a vertex cover U ⊆ V in graph G we can construct a
Steiner Tree TU by taking {vu|u ∈ U} as set of Steiner Points, connecting each edge vertex ve
to a node vu such that u ∈ U covers edge e and adding the edges of a spanning tree of length
|U | − 1 for the set {vu|u ∈ U}. We get

smt(G′, E) = |E|+ |V C| − 1.

5.2. LOWER BOUNDS 97

Furthermore, if T is a Steiner Tree with |T | − 1 edges, we can assume that each edge of G has
degree 1 in T (if the degree is 2, neighbours are u, v and e = {u, v} then replace one of the
edges {e, u}, {e, v} by {u, v}). Then the Steiner nodes of T define a cover UT in G, we get

|UT | = smt(G′, E)− |E| − 1.

If G has ∆G = B then |E| ≤ B/2 |V |, and |V C| ≤ |E| ≤ (B/2) |V | shows opt(G′, E) ≤ (B/
2)|V | + |V C| − 1 ≤ (B/2)|V | + (B/2)|V | − 1 = B|V | − 1 ≤ Bopt(G). Furthermore if T is a
Steiner tree then

∣
∣|UT | − opt(G)

∣
∣ =

∣
∣c(T)− |E| − 1− (smt− |E| − 1) = c(T)− smt. Therefore

we have
B−VC ≤L STP with parameters α = B/2, β = 1.

2

Berman and Karpinski [BK98a, BK98b] also obtained hardness results for bounded-
degree versions of the Minimum Vertex Cover Problem:

Theorem 25 (Berman, Karpinski 1998 [BK98a, BK98b])
Minimum Vertex Cover is NP-hard to approximate within 79

78 − ε in graphs G with
maximum degree ∆G = 4 and within 145

144 − ε in graphs G with ∆G = 3.

More precisely, they proved the following: For ε ∈ (0, 1/2) it is NP-hard to decide
whether an instance of the problem 3MIS (Maximum Independent Set in graphs with
maximum degree 3) with 284n nodes has maximum independent set of size below
(139 + ε)n or above (140 − ε)n. Since independent sets are complements of vertex
covers, one obtains the following equivalent formulation for the Vertex Cover Problem:
It is NP-hard to decide whether an instance of the problem 3VC with 284n nodes has
a Minimum Vertex Cover of size below (144 + ε)n or above (145− ε)n ?

Their result for graphs with ∆G = 4 is the following: For ε ∈ (0, 1/2) it is hard
to decide whether an instance of 4MIS with 152n nodes has max independent set of
size below (73 + ε)n or above (74− ε)n. Equivalently it is hard to decide whether the
minimum VC is of size below (78 + ε)n or above (79− ε)n ?

Combining these results with the Bern-Plassmann reduction, one obtains: The
Berman-Karpinski graph for 3MIS has at most 3 ∗ 284n/2 = 432n edges, therefore it is
hard whether smt ≤ 432n+ (144 + ε)n− 1 = (576 + ε)n− 1 or smt ≥ 432n+ (145−
ε)n − 1 = (577 − ε)n − 1. Therefore the resulting A.R being NP-hard for SMT is at
least
577/576− ε ≈ 1.0013− ε.

The graph for 4MIS has at most 4 ∗ 152n/2 = 304n edges, therefore it is hard
whether smt ≤ 304n + (78 + ε)n − 1 = (382 + ε)n − 1 or smt ≥ 304n + (79 − ε)n −
1 = (383 − ε)n − 1. Therefore the resulting A.R being NP-hard for SMT is at least
383
382 − ε ≈ 1.0026− ε.

Corollary 5.2.2 It is NP-hard to approximate the (1, 2)-Steiner Tree Problem within
A.R. 383382 − ε ≈ 1.0026− ε.
In 2001 Thimm [Thi01] was able to obtain the following hardness result for the Steiner
Tree Problem which is based on starting directly from the Hastad result and using
special expander constructions:

98 CHAPTER 5. THE STEINER TREE PROBLEM

Theorem 26 (Thimm 2001 [Thi01])
The Steiner Tree Problem is NP-hard to approximate within 1.00617.

In 2003 Chlebik and Chlebikova [CC02] obtained the following improved hardness
result which is based upon ideas from Thimm and improved expander constructions.

Theorem 27 (Chlebik, Chlebikova 2003 [CC02])
The Steiner Tree Problem is NP-hard to approximate within 1.01063.

5.3 Two Exact Algorithms

For the sake of completeness and for later purpose (see chapter 9 on Dense Steiner
Problems) we will now describe two well-known exact algorithms for the Steiner Tree
Problems, namely the Dreyfus-Wagner algorithm and the Spanning Tree Enumeration
Algorithm due to Hakimi. The first one has running time polynomial in the number of
non-terminals and exponentialin the number of terminals, while the second runs in time
polynomial in the number of terminals but exponential in the number of non-terminals
in the graph.

5.3.1 The Dreyfus-Wagner Algorithm

The Dreyfus-Wagner Algorithm uses a dynamic-programming strategy to solve the
Steiner Tree Problem. In this subsection we give a description of this algorithm based
on (Steiner Tree book). The idea is as follows: Let T be some optimum Steiner tree for
a terminal set S in a given graph G = (V,E) with edge weights c:E → IR+. Let v be a
vertex in T of degree at least two. Partition the set of neighbors NT (v) of v in T into
two subsets N1, N2. This splits T into two subtrees T1, T2 which have the vertex v in
common. For i = 1, 2 let Si ⊂ S be the subset of terminals which belong to Ti. Then
T1 is an optimum Steiner tree for the set Si (i = 1, 2). The Dreyfus-Wagner Algorithm
is based on this optimal deecomposition property. For ∅ 6= S ′ ⊂ S and v ∈ V \ S ′ let
TG({v} ∪ S′) denote an optimum Steiner Tree for the terminal set {v} ∪ S ′ in G and
T 2G({v} ∪ S′) denote a minimum length union of two Steiner trees, one for a terminal
set {v} ∪ S ′′ for some ∅ 6= S ′′ ⊂ S′ and one for the terminal set {v} ∪ (S ′ \ S′′). Hence
the following recurrences hold:

• cost(T 2G({v} ∪ S) = min
∅6=S′′⊂S′

{cost(TG({v} ∪ S′′)) + cost(TG({v} ∪ (S′ \ S′′)))}.

•
cost(TG({v} ∪ S′) = min { cost(TG({v} ∪ S),

minw 6∈S′{distG(v, w) + cost(T 2G({w} ∪ S′))},
minw∈S′{distG(v, w) + TG(S

′)} }
It is now straightforward to use these recurrences in order to build a dynamic pro-
gramming algorithm.

Theorem 28 The Dreyfus-Wagner algorithm has running time bounded by
O(3n|S|+ 2n|S|2 + n3).

5.4. THE K-STEINER RATIO 99

Note that the running time is polynomial in the number of terminals but exponential
in the number of non-terminals in G. Then deleting v from T splits T into dT (v) many
disjoint subtrees.

5.3.2 The Spanning Tree Enumeration Algorithm

In this subsection we describe an exact algorithm for the Steiner tree Problem which has
running time exponential in the number of terminals but polynomial in the number of
non-terminals in G. Since the edge-weighted graph version of the Steiner Tree Problem
is equivalent to the metric case we can restrict ourselves to the latter. Hence assume
G is a complete graph and c satisfies triangle inequality. Then it is obvious that a
Minimum Steiner Tree for S in G can be assumed to have at most |S| − 2 Steiner
points (since we can assume each Steiner point to have degree at least 3 in T). Note
that a Minimum Steiner Tree is a minimum spanning tree for its vertex set (i.e. the
union of the terminal set and the set of Steiner points). Enumerating all supersets of
S in G of size at most 2|S| − 2 and computing a minimum spanning tree for each of
them obviously yiels an exact algorithm for the Steiner Tree Problem. The running
time is determined by the number of supersets of S being considered, which is given
by

|S|−2
∑

i=0

(
n− |S|

i

)

≤ 2n−|S|.

Theorem 29 The time complexity of the Spanning Tree Enumeration Algorithm is
O(|S|22|S|−n + n3).

5.4 The k-Steiner Ratio

Let V, c, S be an instance of the Metric Steiner Tree Problem, let T be some Steiner
Tree for S in (V, c). Then T naturally splits into full components, where a full
component is a subtree K of T such that all leaves of K are terminals and all internal
nodes of T are non-terminals. The size of a full componentK defined as the number
of terminals of K.

Definition 35 (Full Steiner Trees, k-Restricted Steiner Trees)

(a) A full Steiner Tree for S in (V, c) is a Steiner tree for S in (V, c) such that S
is the set of leaves of T (and hence every internal node of T is not a terminal).

(b) A Steiner Tree T for terminal set S is k-restricted iff the size of each full
component of T is bounded by k.

Restricting the size of full components has two interesting features: On the one hand,
if we bound the full-component size by a constant k, then for a given subset S ′ of S
of size at most k we can compute a minimum-length k-restricted full Steiner Tree KS′

for S′ in polynomial time, using the ... algorithm described above.

100 CHAPTER 5. THE STEINER TREE PROBLEM

On the other hand, size-restricted Steiner Trees have very nice approximation prop-
erties uniform in k. Namely, one can give a tight bound for the ratio length of an
optimum k-restricted Steiner tree to length of an optimum Steiner Tree which only
depends on k and not on the size of the input. This ratio is called the k-Steiner
Ratio.

Definition 36 The k-Steiner Ratio is defined as

ρk := sup

{
smtk(M,S)

smt(M,S)
:M = (V, c) a finite metric space, S ⊆ V

}

.

For a fixed instance M = (V, c), S of the Metric Steiner Tree Problem, we denote

ρk(M,S) :=
smtk(M,S)

smt(M,S)
,

hence

ρk := sup {ρk(M,S)|M = (V, c) a finite metric space, S ⊆ V } .

In 1997, A.Borchers and D.-Z. Du [BD97] were able to finally give the precise values for
ρk. We cite their result and refer to their paper for the proof and further information
on the history of research concerning the k-Steiner Ratio.

Theorem 30 (A.Borchers, D.-Z.Du 1997 [BD97])
For k = 2r + s, 0 ≤ s < 2r the k-Steiner Ratio is

ρk =
(r + 1)2r + s

r2r + s
.

Especially, for k −→∞, ρk −→ 1.

5.5 Approximation Algorithms
for the Steiner Tree Problem

The lower bound results for the Steiner Tree Problem surveyed in section 5.2 indicate
that for the Steiner Tree Problems polynomial time approximation schemes are unlikely
to exist. Hence one is interested in polynomial time algorithms which approximate the
problem to a constant factor. We will in this section survey the most important results
that have been obtained, starting from a very simple 2-approximation algorithm due to
Takahashi and Matsuyama [TM80], based on a Minimum Spanning Tree approach. We
will then describe the 1.78 approximation algorithm of Berman and Ramaiyer [BR94],
the Greedy Contraction Framework of Zelikovsky [Zel95] using which he achieved an
approximation ratio of 1.69, the 1.644 approximation ratio of Karpinski and Zelikovsky
[KZ97c], the 1.59 algorithm of Hougardy and Pr”omel [HP99] and finally the 1.55
approximation algorithm due to Robins and Zelikovsky [RZ00a] which is up to our

5.5. APPROXIMATION ALGORITHMSFOR THE STEINER TREE PROBLEM101

knowledge currently the best known approximation algorithm for the Steiner Tree
Problem.

In spite of the fact that the k-Steiner Tree Ratio tends to 1 when k goes to in-
finity, in order to approximate the Steiner Tree Problem it suffices to approximate
the optimum k-restricted Steiner Tree. Indeed all the polynomial time approximation
algorithms for the general (metric) Steiner Tree Problem we are aware of are based on
this fact.

A Simple 2-Approximation Algorithm
Consider an instance of the Steiner Tree Problem consiting of finite metric space (V, c)
and terminal set S ⊆ V . Let M be a minimum spanning tree for S with respect to c.
Then M is a 2-approximative Steiner Tree for S. The reason is the following: Con-
sider an optimum Steiner tree T , and do the following for each full component K of
T separately: Draw K in the plane, then we have a clockwise sorting of the terminals
s1, . . . , sk where k = |K| is the size of the component. Now replace K by the path
s1, s − 2, . . . sk, it is clear that we have to take each edge of K at most twice. This
approach was already suggested by Takahashi and Matsuyama [TM80].

Minimum Spanning Tree based approaches, gain of components [Zel93,
KZ97b, BR94]
Let G = (V, d) be a finite metric space and S ⊆ V a nonempty set of terminals. Let
M = (S,E, c) be an edge weighted tree with vertex set S, called terminal spanning tree.
Let K be a full Steiner tree for a subset S ′ ⊆ S of the terminal set. Let R(M,K) ⊆ E
be a set of edges such that M − R(M,K) ∪ K is a tree again. R(M,K) is called a
removal set of K w.r.to M . The gain of K is defined as

gainM (K) = c(R(M,K))− d(K).

The following theorem assures that under certain conditions a full component of not
too small gain does exist.

Theorem 31
Let M = (S,E, c) be a terminal spanning tree of cost c(M) = (1 + x) · smtk(S).
Then there is a k-restricted full Steiner tree K for a subset of S with gainM (K) ≥
(1 + x) · d(K).

Theorem 32
LetM = (S,E, c) be a terminal spanning tree such that no k-restricted full component
has positive gain w.r.to M . Then c(M) ≤ smtk(S).

The Algorithm of Berman and Ramaiyer [BR94]
The approach of Berman and Ramaiyer is a 2-phase algorithm which we call BR in
the sequel, achieving an approximation ratio of 1.78. In a first phase all possible full
components from size 3 to k are considered, their gain with respect to the current
tree (starting with a minimum spanning tree) is estimated. In the second phase the

102 CHAPTER 5. THE STEINER TREE PROBLEM

decision is made which of these components to take into the Steiner tree. Let us give
some details.

In a first phase all full components from size 3 to k are considered. At each step
BR holds a spanning tree M for S, initially M = Mst(S). If a component K has
positive gain compared toM , then roughly said the cost of edges inM which would be
deleted when inserting K is decreased by the gain of K. The effect is that for further
components it gets more difficult to also throw out these edges. Thus in the first
phase BR constructs a sequence of trees M0, ..,Mk, each of them being a spanning
tree for S. The positive gain components are stored in stacks σ3, .., σk. In the second
phase components are popped from the stacks in reverse order and the tree Mk = Nk

is modified in steps Nk, .., N3. N3 is the output tree. Directly from the definition
of the algorithm one obtains mj−1 − mj = (j − 1)

∑

K∈σj gK (3 ≤ j ≤ k). Let
ni denote the cost of tree Ni, then the cost decrease per step can be bounded as
nj−1 − nj ≤ (j − 2)

∑

K∈σj gK for 3 ≤ j ≤ k. Therefore one gets the following upper
bound for the length of the output tree N2 in terms of lengths of the trees Mi from
the first phase:

c(BR(S)) = n2 = nk +
k∑

j=3

(j − 2)
∑

K∈σj
gain(K)

≤ mk +
k∑

j=3

j − 2

j − 1
(mj−1 −mj) = m2 −

k∑

j=3

mj−1 −mj

j − 1

The crucial step is then to show that mj ≤ optj for j = 3, .., k. In order to do this,
the above result bounding the length of tree for which no k-restricted component has
positive gain is used.

Sketch of the Proof of mj ≤ optj , j = 3, .., k
(1) Let T be a Steiner Tree with full components K1, ..,Kp, M a spanning tree such
that no Ki has positive gain, then cost(M) ≤ cost(T).
(2) For the tree Mj after considering all j-size components, no j-component has posi-
tive gain, i.e. For all K ∈ Pj(S): gainT (K) ≤ 0 This combined with result (1) directly
implies mj ≤ optj , j = 3, .., k.
(3) To prove (2) the following subresults are used:

(3a) For every s-element subset K of S (3 ≤ s ≤ k) it happens somewhere during
the evaluation phase step s that gainM (K) ≤ 0.

(3b) For all K ⊂ S : No modification of M during the evaluation phase increases
gainM (K).

(2) follows from (3a) and (3b): Since M is a min spanning tree, no 2-component
(=edge) has positive gain w.r.to M2. The rest follows immediately.
Proof of (3a): Consider the moment at the first phase when K is considered. If
gainM (K) ≤ 0 then (3a) holds for K. Otherwise M is modified to M − R ∪ A. We

5.5. APPROXIMATION ALGORITHMSFOR THE STEINER TREE PROBLEM103

show gainM ′:=M−R∪A(K) ≤ 0. The reason is: A is a spanning tree for the terminals of
K. So it is the only removal set for K inM ′. The cost of A is (2−s)gainM (K) because
we have gainM (K) = cost(R)− cost(K), cost(R)− cost(A) = (j − 1)gainM (K).
Proof of (3b): Therefore two results are shown.

(3b1) If K ⊆ S, K = B ∪ {v} (v /∈ B,B 6= ∅), then we can compute the cost of a
removal set for K inM as rcost(M,K) = rcost(M,B)+min

u∈B
lcost(M,u, v), where

lcost(M,u, v) is the largest cost of an edge in the M -path between u and v. This
yields an algorithm for the construction of a removal set by using bottleneck
edges.

(3b2) A basic exchange for M is defined to be the insertion of an edge f and removal
of the maximum cost edge in the cycle in M ∪f created by f . (3b1) yields a way
to construct removal sets by basic exchanges. The following is crucial: A basic
exchange never increases the gains. In detail: Let M ′ = M − e ∪ f be a basic
exchange. Then for any K ⊆ S gainM ′(K) ≤ gainM (K).

For the remaining details of the proof we refer to the original paper [BR94].

The Greedy Contraction Framework [Zel95]
There is a quite general paradigm used in many approximation algorithms for the
Steiner Tree Problem, first formulated by Alexander Zelikovsky [Zel95]. The idea is
as follows: Let C be a class of full Steiner trees for subsets of S such that a minimum
length Steiner tree for S exists whose components are in C. Start with a minimum
spanning tree M = MST(S) for the terminals. Then iteratively choose a component
K from C maximizing a certain criterion function f(M,K), add this component to an
initially empty list L and modifyM by performing certain contractions. Iteration stops
if for all components K ∈ C f(M,K) < 0. Then a Steiner tree for S is constructed
from the elements of L.

Greedy Contraction Framework (GCF)
(0) Start with M = MST(S)
(1) repeat until c(M) = 0

(a) find a full Steiner Tree K∗ in a class C
minimizing a criterion function f

(b) insert K∗ in LIST
(c) contract a subgraph K ′ ⊆ K∗

(i.e. update M)
(2) reconstruct an output Steiner Tree from M and LIST

To design a specific algorithm, the class C, the criterion function f and the operation
of ”contraction” have to be defined. A general analysis technique for algorithms of
GCF type was told to us by P. Berman [Ber01], working as follows: Let M0 be the
initial terminal spanning tree and Mi denote the terminal spanning tree after i steps
of the algorithms (i.e. i executions of the loop). Let Ki be the full component chosen

104 CHAPTER 5. THE STEINER TREE PROBLEM

in the ith iteration of the loop. Let us consider ”contractions” of the following form:
Find a component Ki ∈ C of minimum value f(Mi−1,Ki). Let Ri := R(Mi−1,Ki)
be a maximum cost set of edges from Mi−1 such that the graph Mi−1 \ Ri ∪ Ki is
a tree. Let Mi be a terminal spanning tree constructed from Mi−1 \ Ri ∪ Ki by
contracting some subgraph Ci of Ki. Assume that if after t steps the algorithm stops,
then c(Mt) ≤ Z. Using M0 = MST(S) as an initial tree, it always holds c(M0) ≤
2 · smt(S) ≤ 2 · smtk(S). Assume further that if M is a terminal spanning tree of
cost c(M) ≥ (1 + x) · Z, then we can always find a component K ∈ C such that
gainM (K) ≥ (1 + x)c(K) and c(C) ≤ α · c(K), where C is the subgraph of K to be
contracted and α is some fixed number from [0, 1]. From the definition of gain it follows
gainM (Ki) = c(Ri) − c(K). Further, the cost of M is reduced by gainM (Ki) + c(Ci).
Then the cost of the Steiner tree T constructed by GCF can be bounded as

c(T) ≤ c(Mt) +
t∑

i=1

c(Ci) ≤ Z +
t∑

i=1

contracti
gaini + contracti

· reducei

≤ Z +

1∫

0

contract

gain + contract
≤ Z +

1∫

0

α

1 + x+ α

In the sequel we will discuss some examples of the GCF method and application of the
analysis method described above. The first example is an approximation algorithm of
Zelikovsky [Zel95] for the graph Steiner tree problem with ratio ≈ 1.69.

Zelikovsky’s Relative Greedy Heuristic [Zel95]
The algorithm of Zelikovsky, called Relative Greedy Heuristic (RGH) is best described
in a very compact way in terms of the Greedy Contraction Framework. This description
is taken from Zelikovsky’s paper: Define C to be the class of all k-restricted full Steiner
trees for subsets of S. The criterion function is defined as

f(M,K) =
c(K)

gainM (K).

Further, in each choice step, the whole component is contracted. We give an explicit
description of the algorithm:

Relative Greedy Heuristic (k-RGH)
Input: Weighted Graph G = (V,E, c), Terminal Set S ⊆ V
M := MST(S)
H := S
while ∃ k-restricted K with gainM (K) > 0

Choose K of maximum value gainM (K)/c(K)
H := H ∪ {Steiner points of K}
M :=M/K

Output the tree MST(S ∪H).

5.5. APPROXIMATION ALGORITHMSFOR THE STEINER TREE PROBLEM105

For the analysis, first note that contracti = c(Ki) and reducei = c(Ki)+gainMi−1
(Ki).

Normalizing optk = 1, the approximation ratio then is

A.R.(RGH) ≤ 1 +

1∫

0

1

1 + x
dx = 1 +

2∫

1

1

x
dx = 1 + ln(2) ≈ 1.69

The 1.644 Approximation Algorithm of Karpinski, Zelikovsky [KZ97b]
Karpinski and Zelikovsky [KZ97b] obtained a polynomial time approximaion algorithm
with ratio ≈ 1.644 for the Steiner Tree Problem, based on adding preprocessing phases
to the relative greedy heuristic k-RGH which we have described above. The novel
approach of Karpinski and Zelikovsky was to better estimate the use of full components
and the extra cost they produce, in terms of the so called loss of full components. The
loss, to be described in detail in the next part of this section, estimates the extra cost
a full component K which it will produce if badly being chosen. Roughly spoken, if
we pick a component K but will later make no real use of it, we have to connect the
Steiner points of component K to the rest of our solution. The loss of K, denoted as
l(K), precisely estimates this extra connection cost. Now the algorithm of Karpinski
and Zelikovsky, based on (a variant of) k-RGH combined with a preprocessing phase
works as follows:

Algorithm Preproc-RGH

Input: instance of the metric Steiner Tree problem consisting
of finite metric space (V, c), and terminal set S ⊆ V

Preprocessing Phase:
Run k-RGK(α) which is k-RGH with the modified gain function
p(K) := (c(K) + α · l(K))/m(K), where
m(K) := mst(S)− mst(S ∪ E(K)) and E(K) is a set of
zero-cost edges between the terminals of K.

Add all the Steiner points of the constructed tree to S to obtain set S ′.
Final Phase:

Run k-RGH with the enlarged terminal set S ′

and return the resulting tree.

Theorem 33 [KZ97b] Choosing α ≈ 0.5, the algorithm Preproc-RGH has a perfor-
mance ratio ≈ 1.644.

The 1.59-Approximation Algorithm of Hougardy and Pr”omel [HP99]
Hougardy and Pr”omel improved upon the preceedingly described result by simply
iterating the Karpinski-Zelikovsky algorithm several times and giving a (quite technical
and nontrivial) estimate of the total improvement that can be obtained. We cite their
result and refer to the original paper for details and further information.

106 CHAPTER 5. THE STEINER TREE PROBLEM

Theorem 34 [HP99] There is a polynomial tiem approximation algorithm for the
Steiner Tree Problem with approximation ratio ≈ 1.59.

The Loss Contracting Algorithm of Robins, Zelikovsky [RZ00a]
The algorithm of Robins,Zelikovsky, called Loss Contracting Algorithm (k-LCA), is
based on the following idea: Instead of contracting the whole component, only contract
a subgraph of minimum cost such that even if none of the Steiner points of the compo-
nent would be of any use, the contracted subgraph would collect them all. Formally,
for a given full component K the Loss of K, denoted as Loss(K) is definded to be a
minimum cost subgraph of K that contains all Steiner points of K and such that each
connected component contains at least one terminal. The cost of Loss(K) is denoted
as loss(K). It is not difficult to see that loss(K) ≤ 1

2c(K). In each step the algorithm

chooses a k-restricted full component K of maximum value gainM (K)

loss(K)
- equivalently:

of maximum value gainM (K)+loss(K)
loss(K)

- and contracts the subgraph Loss(K). Therefore

k-LCA can be described in terms of the GCF in the following way: C is the class of
all k-restricted full Steiner trees for subsets of S, the criterion function is

f(M,K) =
loss(K)

gainM (K) + loss(K)
,

and the subgraph to be contracted is C = CK = Loss(K). Here is an explicit descrip-
tion of the algorithm:

Loss Contracting Algorithm (k-LCA)
Input: Weighted Graph G = (V,E, c), Terminal Set S ⊆ V
M := MST(S)
H := S
while ∃ k-restricted K with gainM (K) > 0

Choose K of maximum value gainM (K)/loss(K).
H := H ∪ {Steiner points of K}
M := C[MST(M ∪K)]

Output the tree MST(S ∪H).

Analysis of k-LCA in terms of the GCF described above:

A.R.(k-LCA) ≤ 1 +

1∫

0

1/2

1/2 + x
dx = 1 +

1∫

0

1

1 + 2x
dx

= 1 +
1

2

3∫

1

1

x
dx = 1 +

ln(3)

2
≈ 1.55

Chapter 6

The Steiner Forest Problem

6.1 Introduction

In this chapter we consider two important generalizations of the Steiner Tree Problem:
In the Steiner Forest Problem we are given a family of pairwise disjoint terminal sets
S1, . . . , Sn and ask for a minimum-cost subnetwork F of the underlying graph or metric
space such that each set Si is connected by F . Since we only consider the case of non-
negative costs, F will always be a forest.

In the Prize Collecting Steiner Tree Problem we are given a single terminal set S as
in the Steiner Tree Problem, but additionally each terminal s ∈ S has a prize p(s) ≥ 0.
The task is to find a tree T connecting a subset S ′ ⊆ S of the terminal set such as
to minimize the cost of T plus the prizes for all terminals not connected by T (i.e.
minimize c(T) +

∑

s∈S\S′ p(s)).
The Steiner Forest was already considered by Agrawal, Klein and Ravi in [AKR91],

where they provided an approximation algorithm obtaining constant approximation
ratio. Implicitly the approach contains already the whole machinery which builds the
state-of-the-art for Steiner Forest Problems today, namely making use of the Primal
Dual Method.

In the paper of Goemans andWilliamson [GW92], this approach is made completely
esplicit. They obtain 2-approximation algorithms for the Steiner Forest Problem and
its generalization to propewr constraint functions as well as for the Prize Col-
lecting Steiner Tree Problem and the Prize Collecting TSP.

Another formulation of the primal-dual approach was given by Bar-Yehuda [BY98]
in terms of the Local Ratio Framework. This method allows for very compact
formulations of algorithms and analysis. We will in this chapter give application of
the Local Ratio Technique to a bunch of related problems in graphs and bounded
hypergraphs, including a prize-collecting variant where prizes are given for connection
requirements instead of terminals, yielding a 3-approxiamtion algorithm. This is due
to the fact that for a given terminal, speaking in terms of local-ratio analysis, we pay
cost 1 in order to connect it to the outside but we might be forced to pay the prize
O(n) when not doing so.

107

108 CHAPTER 6. THE STEINER FOREST PROBLEM

Further work on the topic and related problems was already done, including [Rav94,
RW95, HRS00].

The chapter is organized as follows: In the next section we describe the approxima-
tion algorithms for the Steiner Forest Problem and the Prize Collecting Steiner Tree
Problem due to Goemans and Williamson [GW92], based on the Primal-Dual Method.
In section 6.3 we give a brief review of Bar-Yehuda’s Local Ratio Framework. In section
4 we consider the Steiner Forest Problem in k-bounded hypergraphs. In section 5 we
deal with the Prize Collecting Steiner Tree Problem in graphs and k-bounded hyper-
graphs. For the graph case Goemans and Williamson [GW92] gave a 2-approximation
based on a primal-dual approach. We will give a short and simple description of a
variant of this algorithm, based on the Local Ratio Framework [BY98]. Our algo-
rithm will be rootless, therefore improving running time. In section 6 we generalize
this approach to obtain a k-approximation algorithm for the Prize Collecting Steiner
Pair Problem in k-bounded hypergraphs, a natural variant where prizes are given for
connection requirements (pairs of vertices) instead of vertices. Although the pairs do
not have to be disjoint and hence the number of pairs can be quadratic in the number
of edges needed to connect them all we are able, using a carefull prepaying scheme,
to get a 3-approximation algorithm for this problem. In section 6 we generalize this
result to obtain a 3-approximation algorithm for the Prize Collecting Steiner Forest
Problem in graphs.

6.2 The Primal-Dual Method

We give a very informal description of the Primal Dual approach as it was used for the
Steiner Forest Problem by Goemans and Williamson [GW92], in terms of growing
balls. Suppose we start with terminal sets S1, . . . Sn. Consider each terminal as a
single component. Call a component C active if it has to be connected to the outside,
which means there exists some set Si such that Si∩C 6= ∅ and Si \C 6= ∅. Initially, all
terminals are active (assuming |Si| ≥ 2 for all i. Now we start growing balls around
the active components, each at the same rate. Whenever two balls meet, we take
an according edge connecting them and shrink the components into one, eventually
updating whether it still remains active. At the end we prune the set of collected edges
in order to obtain a forest F , which we return.

What do we get ? Well, consider the execution of the algorithms between two
events of components meeting. When component C is grown by amount ∆, we know
that we have to spend at least amount ∆ in order to connect it to the outside. When
two components meet, say two active components, we are therefore willing to spend
cost ∆ for each of them,and due to the fact that we end up with a forest, on average
we will spend 2∆ for each of them (the average degree in a tree is bounded by 2. This
establishes approximation ratio 2.

In the case of Prize Collecting Problems, think of growing components in the
plane and blowing up also in the third dimension which stands for the prizes, then the
same argument works.

6.3. THE LOCAL-RATIO FRAMEWORK OF BAR-YEHUDA 109

6.3 The Local-Ratio Framework of Bar-Yehuda

In this section we will briefly review the notations and results of Bar-Yehuda’s Local
Ratio framework [BY98]. An instance (X, f, ω) of the Minimum Cover Problem con-
sists of a finite set X, a monotone increasing polynomial time computable function
f :P (X) → {0, 1} (i.e. A ⊆ B ⊆ X implies f(A) ≤ f(B)) and a weight function
ω:X → IR+. The subsets Y of X with f(Y) = 1 are called (feasible) covers. The
problem is to compute a minimum weight cover Y :

• Minimum Cover Problem:
Given (X, f, ω), find a cover C ⊆ X of minimum weight ω(C) =

∑

e∈C ω(e).

A function δ:X → IR+ is called weight reduction for ω if for all e ∈ X 0 ≤ δ(e) ≤ ω(e).
The weight reduction δ is called r-effective if furthermore δ(X) ≤ r ·OPT(δ). Consider
the following recursive algorithm for theMinimum Cover Problem: based on weight
reductions:

Algorithm A1(X, f, ω) :
(1) if C := {e ∈ X : ω(e) = 0} is a cover
(2) then return C else
(3) Choose weight reduction δ.
(4) C := A1(X, f, ω − δ).
(5) return C.

Lemma 6.3.1 [BY98] If δ in line (3) of the algorithm A1 is allways r-effective with
respect to the actual weigth function ω then A1 has approximatin ratio bounded by r.
Sometimes it is not known how to find r-effective weight reductions since the require-
ment δ(X) ≤ r · OPT(δ) turns out to be quite restrictive. One way to come up with
such situations was first applied to the Weighted Feedback Vertex Set Problem by
Bafna, Berman and Fujito [BBF95] (see also [BY98]): Instead of requireing that every
feasible cover has good approximation properties it suffices to consider only minimal
covers. A cover C ⊆ X is ω-minimal if for all e ∈ C with ω(e) 6= 0 f(C \ {e}) = 0. A
weight reduction δ:X → IR+ is called called r-minimal effective iff for every δ-minimal
cover C δ(C) ≤ r ·OPT(δ). This yields the following extension of algorithm A1:
Algorithm A2(X, f, ω) :
(1) if C := {e ∈ X : ω(e) = 0} is a cover
(2) then return C else
(3) Choose weight reduction δ.
(4) C := A2(X, f, ω − δ).
(5) for all e ∈ C with δ(e) > 0
(6) if f(C \ {e}) = 1 then C := C \ {e}.
(7) return C.

Lemma 6.3.2 [BY98] If in each recursive call of algorithm A2 the weight reduction δ
is r-minimal effecive with respect to the current weight function ω then algorithm A2
has approximation ratio bounded by r.

110 CHAPTER 6. THE STEINER FOREST PROBLEM

6.4 The Steiner Forest Problem in k-bounded hypergraphs

In the Steiner Forest Problem one is given a graph G = (V,E) with edge weights c:E →
IR+ and pairwise disjoint terminal sets S1, . . . , Sn, and one has to find a minimum cost
set of edges F ⊆ E such that for each 1 ≤ i ≤ n the set Si is connected by F .
This problem generalizes the well known Steiner Tree Problem and has applications
in VLSI design, electrical network design and many other areas. Agrawal, Klein and
Ravi [AKR91] obtained a 2-approximation algorithm for the Steiner Forest problem in
graphs. Ravi [Rav94] gave a primal-dual algorithm with the same ratio. Goemans and
Williamson [GW92] generalized this approach to a wider class of forest construction
problems described by proper functions. Bar-Yehuda [BY98] gave a description of
the Steiner Forest algorithm in terms of the Local Ratio Framework. We generalize
the method of Bar-Yehuda and obtain a k-approximation algorithm for the Steiner
Forest Problem in k-bounded hypergraphs. Our result was independently obtained by
Takeshita, Fujito and Watanabe ([TFW99], in Japanese) A hypergraph G = (V,E) is
called k-bounded iff for all e ∈ E |e| ≤ k. We start with the problem formulation.

• Steiner Forest Problem in k-bounded hypergraphs:
Given a k-bounded hypergraph G = (V,E), edge costs c:E → IR+ and pairwise
disjoint nonempty sets S1, . . . , Sn, find a set of edges F ⊆ E such that for each
1 ≤ i ≤ n Si is connected by F .

We can reformulate this problem in terms of Bar-Yehuda’s framework: Let X = E,
ω(x) = c(x) for x ∈ E and f(C) = 1 iff for every 1 ≤ i ≤ n Si is connected by C.
Using Bar-Yehudas generic framework we get the following algorithm.

Algorithm A3:
(1) if F := {e ∈ F : ω(e) = 0} satisfies f(F) = 1
(2) then return F else
(3) Choose weight reduction δ.
(4) F ′ := {e ∈ E : (ω − δ)(e) = 0}
(5) for all e ∈ F ′ contract e.
(6) Recursively apply A3 to the contracted instance

to obtain a solution F ′′. Let F := F ′ ∪ F ′′.
(7) while there is e ∈ F with (ω − δ)(e) = 0, f(F \ {e}) = 1

Let F := F \ {e}.
(8) return F .

It remains to specify the weight reduction δ: Let d:E → IR+ be defined by d(e) =
|e ∩ (

⋃n
i=1 Si)| and δ(e) := d(e) ·min {w(f)/d(f)|f ∈ E, d(f) 6= 0}. We note that if d is

r-minimal effective for some r > 0 then δ is also r-minimal effective. The next lemma
shows that d is minimal k-effective.

Lemma 6.4.1 Let C ⊆ E be a d-minimal solution. Let CS denote the set of hyperedges

e ∈ C with e ∩ S 6= ∅. Then d(C) ∈
[

n∑

i=1
|Si|, k ·

n∑

i=1
|Si|
]

.

6.5. THE PRIZE COLLECTING STEINER TREE PROBLEM 111

Proof: Let C be a d-minimal solution. It suffices to show that for every connected
component C ′ of C d(C ′) ∈ [|S′|, k · |S′|], where S′ is the set of terminals of component
C ′. Let H(C ′) denote the subhypergraph induced by edge set C ′. For s ∈ S′ let deg(s)
denote the number of edges from C ′ which contain s. By the choice of d we have
d(C ′) =

∑

e∈C′ |e∩ S′| =
∑

s∈S′ deg(s). Since each terminal has to be connected by at
least one edge, the lower bound follows. For the upper bound we build a rooted tree
TC′ whose vertices are the edges of C ′ as follows: Pick an edge e ∈ C ′ as the root of
TC′ . Since C ′ is a minimal solution, the hypergraph H(C ′ \ {e}) consists of connected
components C1, . . . , Cj for some j ≥ 2. Iteratively build subtrees Ti with roots ei for
the sets Ci and connect each ei to the root e. We show by induction on the depth of
TC′ :

∑

e∈C′

|e ∩ S′| ≤ k · (|S′| − 1). (6.1)

If the depth of TC′ is 0 then either C ′ = ∅ and |S′| = 1 or C ′ = {e} and |e ∩ S ′| =
|S′| ≤ k · (|S′| − 1) (since |S ′| ≥ 2 and k ≥ 2). For the induction step let C1, . . . , Cj

be the connected components of C ′ \ {e} with terminal sets S1, . . . , Sj . By inductive
assumption, for 1 ≤ i ≤ j we have

∑

e∈Ci
|e ∩ Si| ≤ k · (|Si| − 1). Hence

∑

e∈C′

|e ∩ S′| ≤ k ·
(

j
∑

i=1

(|Si| − 1)

)

+ k (6.2)

= k ·
(∑

|Sj | − (j − 1)
)

(6.3)

≤ k ·
(∑

|Sj | − 1
)

= k ·
(
|S′| − 1

)
. (6.4)

2

6.5 The Prize Collecting Steiner Tree Problem

In this section we consider the prize collecting variant of the Steiner Tree Problem:

• The Prize Collecting Steiner Tree Problem (PCStP)
Given a graph G = (V,E) with edge weights c:E → IR+, a set of terminals S ⊆ V
and a prize function p:S → IR+, find a tree T ⊆ G connecting a subset S ′ ⊆ S
of minimum value c(T) + p(S \ S ′).

This problem has application in the design of local access networks. Goemans and
Williamson gave a 2-approximation algorithm based on the primal-dual method. The
approach is based on fixing a root r as part of the tree, considering an LP formulation
of this rooted version and running the algorithm for all possible choices of r. In
this section we give a simplified presentation of this algorithm using the Local Ratio
Framework. It is worth mentioning that this yields a rootless version of the algorithmic
approach, thus improving running time. For an instance G, c, S, p of the PCStP we
get the following formulation as a cover problem: Let X = E ∪ S, ω:X → IR+ with
ω(e) = c(e) for e ∈ E and ω(s) = p(s) for s ∈ S

112 CHAPTER 6. THE STEINER FOREST PROBLEM

Algorithm A4:
(1) if C := {x ∈ X : ω(e) = 0} satisfies f(C) = 1
(2) then return C else
(3) Choose weight reduction δ.
(4) C ′ := {x ∈ X : (ω − δ)(x) = 0}
(5) Combinatorial Reduction:

for all e ∈ C ′ ∩ E contract e.
for all s ∈ C ′ ∩ S remove s from S.

(6) Recursively apply A3 to the reduced instance
to obtain a solution C ′′. Let C := C ′ ∪ C ′′.

(7) while there is x ∈ C with (ω − δ)(x) = 0, f(C \ {x}) = 1
remove x from C

(8) return F .

We choose δ(x) := d(x) · min
{
ω(y)
d(y) : d(y) 6= 0

}

with d(e) = |e ∩ S| for e ∈ E and

d(s) = 1 for s ∈ S. If for some r > 0 d is r-minimal effective then δ is minimal
r-effective as well. The following lemma shows that d is minimal 2-effective.

Lemma 6.5.1 For every d-minimal cover C d(C) ∈ [|S|, 2(|S| − 1)].

Proof: Let C be a d-minimal cover. For s ∈ S we call con(s, C) = |{e ∈ C|s ∈
e}| + |C ∩ {s}| the contribution of s to d(C). Note that d(C) =

∑

s∈S con(s, C). For
every terminal s at least one of the following must be true: 1. s ∈ C. 2. There is
some edge e ∈ C with s ∈ e. Hence con(s, C) ≥ 1 for every terminal s ∈ S and hence
d(C) ≥ |S|. On the other hand let S ′ = C ∩ S. Since C is d-minimal, S ′ is the set of
terminals not being connected by C ∩E. Since d(C ∩E) ∈ [|S \ S ′|, 2(|S \ S′| − 1)] as
in the Steiner Forest case, we conclude that d(C) ∈ [|S|, 2(|S| − 1)]. 2

Corollary 6.5.1 Algorithm A4 is a 2 ·
(
1− 1

n

)
-approximation algorithm for the PC-

StP.

We consider now the extension of the PCStP to k-bounded hypergraphs. For an
instance G = (V,E), c:E → IR+, S ⊆ V, p:S → IR+ where G is a k-bounded hypergraph
we define d essentially as above: d(s) = 1 for s ∈ S and d(e) = |e ∩ S| for e ∈ E.
Consider a d-minimal solution C = EC ∪ SC where EC ⊆ E and SC ⊆ S. Then EC

connects S \ SC . Applying lemma ... from section ... to EC and the set S \ SC we
conclude that d(EC) ∈ [|S \ SC |, k · |S \ SC |] and therefore

d(C) ∈
[
|S|, |S′|+ k · |S \ SC |

]
⊆ [|S|, k · |S|] . (6.5)

Hence d is minimal k-effective and algorithm A4 applied to k-bounded hypergraphs
has approximation ratio k.

6.6. THE PRIZE COLLECTING STEINER PAIR PROBLEM 113

6.6 The Prize Collecting Steiner Pair Problem

In this section we consider another quite natural variant of the Prize Collecting Problem
where prizes are given for (undirected) pairs instead of vertices:

• The Prize Collecting Steiner Pair Problem
Given a graph G = (V,E) with edge costs c:E → IR+, a set of undirected pairs
P = {{u1, v1}, . . . , {un, vn}} and a prize function p:P → IR+, find a set of edges
F ⊆ E and a subset P ′ ⊆ P of minimum value c(F) + p(P ′) such that for every
pair {ui, vi} ∈ P \ P ′ there is a path of F -edges connecting ui and vi..

If the pairs are pairwise disjoint, this is a special case of the Prize Collecting Steiner
Forest Problem discussed in the previous section. The main difficulty in the general
case is that in a graph with n vertices there might exist Θ(n2) pairs while O(n) edges
suffice to connect the whole vertex set. We illustrate this fact by giving a straight
forward formulation in terms of the Local Ratio Technique and arguing that such a
formulation only gives a linear approximation ratio.
Let X = E ∪ P with weight function ω given by ω(e) = c(e), e ∈ E and ω(π) = p(π)
for π ∈ P . For E ′ ⊆ E and P ′ ⊆ P let f(E′ ∪ P ′) = 1 iff E′ connects every pair from
P \ P ′. Using a weight reduction defined by d(e) = |e ∩ S|, S = {u1, v1, . . . , un, vn}
and d(π) = Ω(1) for π ∈ P , we can only prove a linear approximation ratio: A set E ′

of edges connecting S forms a d-minimal solution with d(E ′) = O(|S|) while the set P
of all pairs is d-minimal and d(P) = Ω

(
|S|2

)
might be the case.

In order to avoid such problems we replace each undirected pair π = {u, v} from P by
the two directed pairs (u, v) and (v, u), each of prize equal to half the prize of π and
require that u and v are connected by egdes of the solution or the prize for both (u, v)
and (v, u) is paid.

More formally: Let P̃ :=
{
(x, y) ∈ V 2 : {u, v} ∈ P

}
and p̃((u, v)) = p̃((v, u)) =

p({u, v})/2 for {u, v} ∈ P . Let X̃ := E ∪ P̃ with weight function ω defined by
ω(e) = c(e) for e ∈ E and ω(π) = p̃(π) for π ∈ P̃ . For a set C = E ′ ∪ P ′ ⊆ X̃ with
E′ ⊆ E and P ′ ⊆ P̃ we let f(C) = 1 iff for every pair π = {u, v} ∈ P , at least one of
the following two conditions holds:

1. E′ contains a path connecting u and v.

2. (u, v) ∈ P ′ and (v, u) ∈ P ′.

Thus we have defined a reduction from the PCStPP to the following somewhat more
artificial covering problem:

• Prize Collecting Directed Pair Problem (PCDPP):
Given an undirected graph G = (V,E) with edge weights c:E → IR+ and a set
P = {(u1, v1), . . . , (un, vn)} ⊆ V 2 of directed pairs of vertices with prize function
p:P → IR+, find a set of edges F ⊆ E and a set of pairs P ′ ⊆ P of minimum
value c(F) + p(P ′) such that for every pair (ui, vi) ∈ P \ P ′ there is a path of
edges from F connecting u and v.

114 CHAPTER 6. THE STEINER FOREST PROBLEM

Lemma 6.6.1 The PCStPP and the PCDPP are equivalent with respect to L-
reductions with parameters α = β = 1 in both directions.

Proof: 1. PCStPP≤L PCDPP: For an instance I = (G, c, P, p) of the PCStPP let
f(I) = (G, c, P̃ , P̃) where P̃ and p̃ are as described above. For a solution F ⊆ E, P̃ ′ ⊆
P̃ to f(I) let C := F ∪ P ′ with P ′ :=

{

{u, v} ∈ P : (u, v), (v, u) ∈ P̃ ′
}

.

2. PCDPP≤L PCStPP: If at least one of the pairs (u, v), (v, u) is in P , introduce
an undirected pair {u, v} with prize equal to p(u, v) + p(v, u) if both (u, v), (v, u) exist
and p(u, v) if only (u, v) exists. Given a solution F ∪ P̃ ′ to the PCStPP-instance
obtained in this way, for each pair {u, v} ∈ P̃ ′ take all directed pairs with vertices u, v
that exists in P to obtain a solution to the PCDPP-instance. 2

Theorem 35 There is a polynomial time approximation algorithm for the PCDPP
with approximation ratio 3.

In order to prove theorem 35 we consider the straight forward formulation of the
PCDPP as a cover problem: For an instance I = (G, c, P, p) of the former let X :=
E ∪ P with weights ω(e) = c(e), e ∈ E and ω(π) = p(π), π ∈ P . For C ⊆ X let
f(C) = 1 iff C forms a solution to instance I. Applying the generic framework of
Bar-Yehuda we obtain the following recursive algorithm:

Algorithm A4:
Input: instance (X,ω, f) of the cover problem formulation of PCDPP

with X = E ∪ P
Output: E′ ∪ P ′ with E′ ⊆ E,P ′ ⊆ P and f(E′ ∪ P ′) = 1
(1) if C = {x ∈ X|ω(x) = 0} forms a cover then return C.
(2) Choose weight reduction δ.

Combinatorial Reduction:
(3) For every edge e ∈ E such that (ω − δ)(e) = 0

Contract (e) into a single point ve.
(4) For every π ∈ P such that (ω − δ)(π) = 0

Remove (π) from P .
(5) Let

(
X̄, ω̄, f̄

)
be the reduced instance.

C := A4
(
X̄, ω̄, f̄

)

(6) Add to C all contracted edges and all removed pairs.
(7) While there is some x ∈ C with δ(x) > 0 and f(C \ {x}) = 1

Choose such x and remove it from C.
(8) return C.

It remains to specify the weight reduction δ. As before we choose δ(x) = ε · d(x)
for a function d:X → IR+ and ε = min {ω(x)/d(x)|d(x) 6= 0}. We call Va := {v ∈
V |v appears in at least one pair} the set of active vertices. For an active vertex v we
define the outdegree of v as deg(v) := |{π ∈ P : π = (v, u) for some u ∈ V }|. We
choose

d(e) := |e ∩ Va| for e ∈ E
d((u, v)) := 1

deg(u)
for (u, v) ∈ P

6.6. THE PRIZE COLLECTING STEINER PAIR PROBLEM 115

Lemma 6.6.2 Every d-minimal cover C ⊆ X satisfies d(C) ≤ 3 ·OPT(d).
Proof: Consider a d-minimal cover C = E ′ ∪P ′ with E′ ⊆ E and P ′ ⊆ P . For v ∈ Va
the amount v adds to the total cost d(C) is given by

add(C, v) =
∑

v∈e∈C
1

︸ ︷︷ ︸

=:addE(C,v)

+
∑

u:(u,v)∈C
d((u, v))

︸ ︷︷ ︸

=:addP (C,v)

(6.6)

Since C is a cover, add(C, v) ≥ 1 for every v ∈ Va. Furthermore
∑

v∈Va
addE(C, v) ≤ 2 · (|Va| − 1) (6.7)

where the maximum appears when E ′ forms a spanning tree for Va and
∑

v∈Va
addP (C, v) ≤ |Va| (6.8)

since by the choice of d addP (C, v) ≤ 1 for every v ∈ Va. Since
d(C) =

∑

v∈Va
add(C, v) =

∑

v∈Va
(addE(C, v) + addP (C, v)

≤ 2 · (|Va| − 1) + |Va| = 3 · |Va| ·
(

1− 2

3 · |Va|

)

≤ 3 · |Va| ·
(

1− 2

3n

)

. (6.9)

We conclude that for every d-minimal cover C

d(C) ∈ [|Va|, 3 · |Va|] (6.10)

and therefore d is 3-minimal effective. 2

Proof of Theorem 35: Directly from Lemma 6.3.2 and Lemma 6.6.2. 2

Remark: We give an example that shows the tightness of (6.10) in the following
sense: For every ε > 0 there are instances (X,ω, f) with d-minimal covers C1, C2 such
that d(C1) = |Va| and d(C2) ≥ (1 − ε) · 3 · |Va|. Let instance I(n,m) consist of n
vertex-disjoint paths P1, . . . , Pn each consisting of m vertices vi,1, . . . , vi,m and edges
{vi,j , vi,j+1}, j = 1, . . . ,m − 1. The set of pairs P contains pair πi = (vi,1, vi,m) for
each path Pi, furthermore all pairs (vi,j , vk,l) for i 6= k. Hence I(n,m) has |Va| = n ·m
active vertices and n+ n(n−1)

2 ·m2 pairs. The set C1 of all pairs is d-minimal and has
cost d(C1) = |Va| while the edges of the n paths together with all the pairs between
vertices of different paths form a d-minimal set C2 of cost

d(C2) = n · 2 · (m− 1)
︸ ︷︷ ︸

edge costs

+ n(m− 2)
︸ ︷︷ ︸

pairs starting from inner points

+ 2n · (n− 1)m

(n− 1)m+ 1
︸ ︷︷ ︸

pairs starting from endpoints

≥ 3 · n ·m ·
(
1− 4

3m

)
,

116 CHAPTER 6. THE STEINER FOREST PROBLEM

hence choosing m ≥ 4/(3ε) is sufficient.

6.7 The Prize Collecting Steiner Forest Problem

In this section we consider a natural generalization of the Prize Collecting Steiner Tree
Problem to the case of possibly several pairwise disjoint terminal sets with prizes. This
problem also generalizes the Steiner Forest Problem in graphs.

• Prize Collecting Steiner Forest Problem (PCStF)
Given a graph G = (V,E) with edge weights c:E → IR+ and pairwise disjoint
nonempty terminal sets S1, . . . , Sn ⊆ V with prizes p:

⋃n
i=1 Si → IR+, construct

a set of edges F ⊆ E and a set of terminals S ′ ⊆ S :=
⋃n
i=1 Si of minimum value

c(F) + p(S′) such that for every i ∈ {1, . . . , n} F connects Si \ S′.

If we apply Bar-Yehuda’s covering algorithm to this problem the following might hap-
pen: Although initially the terminal sets were pairwise disjoint, terminals of different
sets Si, Sj might be contracted into the same supernode. Hence in order to apply
the recursive algorithm A . . . we have to consider the following generalization of the
PCStF:

• Multi-Prize Problem (MPP):
Given a graph G = (V,E) with edge weights c:E → IR+ and prize functions
p1, . . . , pn:V → IR+. Let Si := {v ∈ V |pi(v) 6= 0}, 1 ≤ i ≤ n. Find a set of edges
F and for each 1 ≤ i ≤ n a subset S ′i ⊆ Si of minimum c(F) +

∑n
i=1 pi(S

′
i) such

that for every i either S ′i = Si or |Si \ S′i| ≥ 2 and Si \ S′i is connected by F .

The Multi-Prize Problem is also a generalization of the Prize Collecting Directed Pair
Problem (PCDPP): For an instance of the latter with pairs (xi, yi) of prizes pi (1 ≤
i ≤ n) let p′i(xi) = pi(yi) = pi/2 and p′i(z) = 0 for z ∈ V \ {xi, yi}.

Theorem 36 There is a polynomial time approximation algorithm for theMPP with
approximation ratio 3.

Proof: We let X = E ∪ {(v, i)|1 ≤ i ≤ n, v ∈ Si} with costs ω(e) = c(e) for e ∈ E
and ω((v, i)) = pi(v). The definition of f is obvious. For v ∈ V let deg(v) denote the
number of sets Si containing vertex v. We choose a function d:X → IR+ by

d(e) = |e ∩ S|, e ∈ E
d((v, i)) = 1/deg(v), 1 ≤ i ≤ n, v ∈ Si

Again each terminal pays at least one (at least one edge or prizes for all terminal sets
it belongs to), and taking a spanning tree for S plus paying all prizes yields d-cost
2 (|S| − 1) + |S|, hence d is 3-minimal effective. Let δ:X → IR+ be defined by

δ(x) := d(x) ·min

{
c(e)

d(e)
, d(e) 6= 0, ω((v, i)), (v, i) ∈ X

}

.

6.7. THE PRIZE COLLECTING STEINER FOREST PROBLEM 117

The problem (X, f, ω − δ) is then combinatorially reduced as follows: First all pairs
(v, i) with (ω − δ)((v, i)) = 0 are removed from X. Then every edge e ∈ X with
(ω− δ)(e) = 0 is contracted as follows: e = {u, v} is contracted into a new vertex ve in
the underlying graph, and e and all existing pairs (u, i), (v, i) are removed from X. For
each i with Si∩e 6= ∅ a pair (ve, i) of cost

∑

x∈Si∩e(ω−δ)(x) is added to X. Obviously
if C ′ is a solution to the reduced problem then the union of C, the set of pairs (v, i)
with (ω − δ)((v, i)) = 0 and the set of edges e with (ω − δ)(e) = 0 form a solution for
(X, f, ω).
Hence using Bar-Yehuda’s framework with weight reduction δ and the combinatorial
reduction as defined above, the theorem follows. 2

Theorem 37 There is a polynomial time approximation algorithm for the MPP in
k-bounded hypergraphs with approximation ratio k + 1

Proof: Define d(e) = |e ∩ S|, e ∈ E and d((v, i)) = 1/deg(v) as before, then d(C) ∈
[|S|, k|S|+ |S|]. 2

118 CHAPTER 6. THE STEINER FOREST PROBLEM

Chapter 7

The Steiner Network Problem

7.1 Introduction

In this section we consider an important generalization of the Steiner Forest Problem,
the Steiner Network Problem. Recall that the Steiner Forest Problem can be for-
mulated using a 0 − 1−valued requirement function r, where r(u, v) = 1 iff u and v
belong to the same terminal set Si. Let us now assume that connection requirements
are non-negative integer values, where a connection requirement r(u, v) ∈ ZZ+ means
that in the solution network each u − v−cut is supposed to contain at least r(u, v)
edges, and additionally we are allowed to pick multiple edges, i.e. each edge e has a
capacity u(e) ∈ ZZ+ and we are allowed to pick e up to u(e) times (paying its cost c(e)
as many times as we pick it). Hence a solution now is a function x:E → ZZ+, and its
cost is

∑

e c(e) · x(e). Here is a formal definition of the Steiner Network Problem:

Steiner Network Problem

Given: Graph G = (V,E) with edge costs c:E → IR+, capacities u:E → ZZ+, require-
ment function r:V × V → ZZ+

Solution: mapping x:E → ZZ+ with 0 ≤ x(e) ≤ u(e) for all e ∈ E such that for all
u, v ∈ V : for each u− v−cut U, V \ U it holds

∑

e∈E(U,V \U) x(e) ≥ r(u, v)

Cost:
∑

e∈E c(e) · x(e)

It was for some time an open question to obtain a constant factor approximation
algorithm for this problem. Goemans et al. [GGP+94] obtained a logarithmic approx-
imation ratio based on a direct primal dual approach adapted from the Steiner Forest
Case. It was finally Kamal Jain [Jai98] who gave a 2-approximation algorithm. His
approach is based on iterative rounding based on an LP relaxation of the problem. See
[JMVW99] for further work on the topic.

Unfortunately, the LP formulation of the bf Steiner Network Problem turns out

119

120 CHAPTER 7. THE STEINER NETWORK PROBLEM

to be exponential in the size of the input, hence Jain’s algorithm relys on using the
Ellipsoid Method for solving linear programs, resulting in very large running times
even in practice. Hence it would be desirable to obtain a combinatorial algorithm for
the problem which is not based on the Ellipsoid Method, hopefully yielding better
running times.

We are so far not successful in this attempt. Nevertheless we give combinatorial
algorithms for two special cases: 1. for the uncapacitated version (each edge might be
used to arbitrary capacity) with uniform requirements (section 7.3) and for the Prize
Collecting version of this problem in section 7.4 In both cases, although the optimum
solution is in general not a tree, the primal dual approach works fine.

7.2 Jain’s 2-Approximation Algorithm

In this section we describe Jain’s 2-Approximation Algorithm [Jai98] for the Steiner
Network Problem. The algorithm uses the method of iterated rounding based on a Lin-
ear Programming Relaxation of the problem. Although the size of this LP-relaxation
is exponential in the input size, the LP can be solved in polynomial time using the
equivalence of separation and optimization, a well-known and central paradigm in the
theory of Linear Programming. The crucial property of the LP-Relaxation is that for
each extreme-point solution x there exists at least one edge e in G such that xe ≥ 1/2.
Jain’s algorithm iteratively generates such an extreme point solution x, takes all edges
e with xe ≥ 1/2 as part of the solution and reduces the problem.

The rest of the section is organized as follows: First we give a reformulation of
the problems in terms of a set requirement function f = frand state the important
properties of this function. Next we give the LP-Relaxation of the Steiner Network
Problem based on this reformulation, then in Theorem 38 we formulate the crucial
property of this LP, then we give a pseudo-code description of Jain’s algorithm, finally
we describe the main steps in the proof of Theorem 38.

Reformulation. Consider an arbitrary subset S ⊆ V of the vertex set of G. If
∅ 6= S 6= V , then each feasible solution must cross the cut defined by S at least
max{r(u, v) : u ∈ S, v ∈ V \ S} times, i.e. contain such many edges from δ(S) := {e ∈
E : e∩S 6= ∅ 6= e\S}. Hence we define the set requirement function f = fr:P (V)→ ZZ+
BY

f(S) := max{r(u, v) : u ∈ S, v ∈ V \ S}.
Obviously a function x:E → ZZ+ is a solution to the Steiner Network problem iff it
satisfies all the inequalities

x(δ(S)) ≥ f(S), ∅ 6= S ⊂ V.

The most important property of the function f is its weak super-modularity.

7.2. JAIN’S 2-APPROXIMATION ALGORITHM 121

Definition 37 (Sub-, Super- and Weak Super-Modularity) Let g:P (V) → IR

be a set function.

(a) g is called submodular iff for all subsets A,B of V the following inequalities hold:

f(A) + f(B)≤ f(A ∩B) + f(A ∪B),
f(A) + f(B)≤ f(A \B) + f(B \A).

(b) g is called supermodular iff −g is submodular, i.e. if for all subsets A,B of V
the following inequalities hold:

f(A) + f(B)≥ f(A ∩B) + f(A ∪B),
f(A) + f(B)≥ f(A \B) + f(B \A).

(c) g is called weakly supermodular if for all subsets A,B of V at least one of the
inequalities

f(A) + f(B)≥ f(A ∩B) + f(A ∪B),
f(A) + f(B)≥ f(A \B) + f(B \A)

holds.

Lemma 7.2.1 The set requirement function f as defined above is weakly supermodu-
lar.

LP-Formulation of the Steiner Network Problem:

LP (G, c, u, f) : min
∑

e∈E c(e) · xe subject to
∑

e∈δ(S) xe ≥ f(S), S ⊆ V

0 ≤ xe ≤ u(e), e ∈ E

Definition 38 (Extreme Point Solution)
Given a linear program min{cx|Ax ≤ b}, a feasible solution x is called extreme point
solution iff it is not a convex combination of two other feasible solutions.

A well-known result from the Linear Programming theor states that a solution x ∈ IRn

is an extreme point solution for min{cx|Ax ≤ b} iff there are n linear independent
inequalities aix ≤ bi from Ax ≤ b such that each of them is tight (i.e. satisfied with
equality).

Theorem 38 (Crucial Fact)
Let x be an extreme point solution to the above LP. Then there exists an edge e such
that x(e) ≥ 1/2.

For Jain’s algorithm it is important to be able to generate extreme point solutions in
polynomial time. This can be done for the special case of set requirement functions
f :P (V)→ ZZ+ comming from requirement functions r:V ×V → ZZ. The paradigm used
here is one of the most important results from Linear Programming Theory, known as

122 CHAPTER 7. THE STEINER NETWORK PROBLEM

the equivalence of optimization and separation.

Optimization versus Separation. Consider a linear program min{cx|Ax ≤ b} with
n variables and m linear inequalities, where m might be exponential in n (as in the
above LP formulation of the Steiner Network Problem). In order to make use of the
Linear Programming Framework, one is interested in solving the LP. But here the
input size is roughly spoken the size of the network, hence in polynomial time we even
cannot write down the complete LP.

Jain’s Algorithm. We are now ready to describe Jain’s algorithm. Given an instance
G = (V,E), c:E → IR+, f :P (V)→ ZZ+ of the Steiner Network Problem it constructs a
solution X:E → ZZ+.

Jain’s Algorithm AJain:
Input: G = (V,E), c:E → IR+, f :P (V)→ ZZ+
Output: X:E → ZZ+
Initialization:

Let X(e) := 0 for all e ∈ E. (set of picked edges)
Let f ′ := f . (residual requirement function)

While there exists S ⊆ V with f ′(S) 6= 0 do
Find an extreme point solution x for LP (G, c, f ′).
For each e ∈ E
If x(e) ≥ 1/2 then

Add dx(e)e copies of e to F .
Let u(e) := u(e)− dx(e)e.

Update f ′.

Lemma 7.2.2 Jain’s algorithm can be implemented to run in polynomial time (in the
size of graph G).

Proof: It is sufficient to give a separation procedure for the linear program LP (G, c, f).
This can be done using standard max-flow techniques: For a given vector x, violated
inequalities exist iff in the graph G with edge capacities xe, e ∈ E there exists a pair
of vertices u, v such that the maximum u− v−flow has value less than r(u, v). In such
a case a min-cut corresponds to a violated inequality. 2

7.3. THE UNIFORM UNCAPACITATED CASE 123

7.3 The Uniform Uncapacitated Case

In this section we consider the following special case of the Generalized Steiner Network
Problem where we have unbounded capacities on the edges and uniform requirements:

Uniform Uncapacitated Steiner Network Problem

Instance: finite metric space (V, c), requirement function
r:P2(V)→ {0, r1} for some r1 > 0

Solution: x:P2(V)→ ZZ+ satisfying the requirements

Cost: c(x) :=
∑

{u,v}∈P2(V)
x({u, v}) · c(u, v)

In general the optimum solution to the Uniform Uncapacitated Steiner Network Prob-
lem is not a tree. Consider the following example: V = {s0, . . . , s3} with c(si, s(i+1)mod 4) =

c > 0 and requirement r(s0, s2) = r(s1, s3) = r1 = 2. Then the optimum cost equals
4 · c while the optimum tree solution has cost 3 · 2 · c = 6 · c.

Figure 7.1: The Optimum is not a tree in general

(a) The Instance (b) Optimum Solution of Cost 4c (c) Best Tree Solution of cost 6c

s1 s2

s3s4

each edge by amount 1
2

shown edges

each by amount 1

Nevertheless in this special case the Primal-Dual approach provides a combinatorial
polytime 2-approximation algorithm. The reason is that due to infinite capacitis of the
edges we can always produce a solution that is basically a tree, where each edge of the
tree is taken r1 times, r1 being the uniform non-zero requirement. Hence the averaging
argument in the standard analysis method for growing-ball algorithms works. Let us
now give the algorithm and analysis.

124 CHAPTER 7. THE STEINER NETWORK PROBLEM

Algorithm AU
Input: finite metric space (V, c), requirement function r:V × V → {0, r1}

for some r1 ∈ ZZ+
Output: x:V × V → ZZ+ satisfying all requirements
Initialization:
C := {{v}|v ∈ V } set of components
Ca := {{v}|v ∈ V,maxu∈V r(v, u) 6= 0} set of active components
E := P2(V) (consider the complete graph induced by (V, c))
x(e) := 0 for all e ∈ E (finally building the solution)

While Ca 6= ∅ do
d(e) := |e ∩ Ca| for all e ∈ Eact

∆ := min
{
c(e)
d(e) : d(e) > 0

}

For all e ∈ E do
c(e) := c(e)−∆ · d(e)

For all e ∈ E with c(e) = 0 do
x(e) := r1.
Contract e.

Cleaning Step:
For all e ∈ E with x(e) 6= 0 do

If x′ defined by

x′(f) :=

{
0, f = e,
x(f) otherwise

is still feasible then x := x′.
Return x.

Theorem 39
Algorithm AU provides Approximation Ratio 2 for the Uncapacitated Uniform Steiner
Network Problem.

Proof: In order to argue by local-ratio analysis, we need to show that

OPT (I) ≥
∑

j

OPT (Ij),

where I denotes an instance of the problem, j runs through iterations of the while-loop
of the algorithm and Ij denotes the current local-cost instance in the j-th execution of
the while-loop.

In order to do so, it suffices to show that in each single iteration with initial costs
c on the edges,

OPT (c) ≥ OPT (c−∆ · d) + OPT (∆ · d).

Assume x is an optimum solution to instance I, hence x:E → ZZ+. Let

Ex := {e ∈ E|x(e) > 0}

7.4. THE PRIZE-COLLECTING UNIFORM UNCAPACITATED CASE 125

be the set of edges that contribute to solution x. We partition Ex into

E1 := {e ∈ Ex|c(e) = ∆ · d(e)},
E2 := {e ∈ Ex|c(e) > ∆ · d(e) > 0},
E3 := {e ∈ Ex|d(e) = 0}.

Then

cost(x) =
∑

e∈E1

∆ · d(e) · x(e)

+
∑

e∈E2

(∆ · d(e) + (c(e)−∆ · d(e))) · x(e)

+
∑

e∈E3

c(e) · x(e)

=
∑

e∈E1∪E2

∆ · d(e) · x(e)

+
∑

e∈E2∪E3

(c(e)−∆ · d(e)) · x(e)

=
∑

e∈E
∆ · d(e) · x(e) +

∑

e∈E
(c(e)−∆ · d(e)) · x(e)

≥ OPT (V,∆ · d, r) + OPT (V, c−∆ · d, r)

since x is feasible with respect to both cost functions. Now we observe that in the j-th
run through the while-loop we have a lower bound of

r1 ·∆j times number of active components

(the value of ∆ in that loop), and due to the fact that our solution will be a forest, we
pay on average 2 ·∆j · r1 per active component (namely 2 · r1 ·∆j · (|Ca| − 1) in total).
This completes the proof. 2

7.4 The Prize-Collecting Uniform Uncapacitated Case

In this section we extend the results from the last section to the Prize-Collecting
Uniform Uncapacitated Steiner Network Problem, where additionally to the
requirement function we have a prize function for the requirements. Here is the precise
definition:

126 CHAPTER 7. THE STEINER NETWORK PROBLEM

Prize-Collecting Uniform Uncapacitated Steiner Network Problem

Instance: finite metric space (V, c),
requirement function r:P2(V)→ {0, r1} for some integer r1 > 0,
prize function p:P2(V)→ Q((≥0 with p(a, b) > 0 implying r(a, b) > 0
(i.e. we have prizes only for non-zero requirements)

Solution: x:P2(V)→ ZZ+

Cost:
∑

{u,v}∈P2(V)

x({u, v}) · c(u, v) +
∑

{u,v}∈P2(V)

max{(r − rx)(u, v), 0} · p(u, v),

where rx is defined by

rx(u, v) := min

{

x(U, V \ U) =
∑

a∈U,b6∈U
x(a, b)|u ∈ U, v 6∈ U

}

Let us now formulate our algorithm, which again is an application of the primal dual
approach.

Algorithm AUP
Input: finite metric space (V, c), requirement function r:V × V → {0, r1} with r1 > 0,

prize function p:P2(V)→ Q((≥0 being nonzero only on pairs with
non-vanishing requirement (i.e. r(u, v) = 0 ⇒ p(u, v) = 0)

Output: x:V × V → ZZ+
Initialization:
C := {{v}|v ∈ V } set of components
Ca := {{v}|v ∈ V,maxu∈V r(v, u) 6= 0} set of active components
E := P2(V) (consider the complete graph induced by (V, c))
x(e) := 0 for all e ∈ E (finally building the solution)

While Ca 6= ∅ do
/? Find minimal weight reduction. ?/
d(e) := |e ∩ Ca| for all e ∈ Eact

∆ := min
{ {

c(e)
d(e) : d(e) > 0

}

, min{p(C)|C ∈ Ca}
}

/? Reduce Edge Costs and Prizes of Active Components. ?/
For all e ∈ E do c(e) := c(e)−∆ · d(e)
For all C ∈ Ca do p(C) := p(C)−∆.
/? Collect Zero-Cost Edges and Components.. ?/
For all e ∈ E with c(e) = 0 do { x(e) := r1. Contract e. }
For all C ∈ Ca with p(C) = 0 do Ca := Ca \ {C}.

Cleaning Step:
For all e ∈ E with x(e) 6= 0 do

If x′ defined by

x′(f) :=

{
0, f = e,
x(f) otherwise

is still feasible then x := x′.
Return x.

7.4. THE PRIZE-COLLECTING UNIFORM UNCAPACITATED CASE 127

Theorem 40 The algorithm described above has approximation ratio 3 for the Prize
Collecting Uncapacitated Steiner Network Problem.

Sketch of Proof: Analog to the previous section, but here in each local step the fol-
lowing might happen: We have edges being fully paid and take them, but they reduce
the prize only by a very small amount, hence the lower bound is 1 and the upper bound
is -pessimistically - 3: For each component, on average we have connection cost 2 per
round but still have to pay prize amount of 1. 2

We leave as an open problem the question for a completely combinatorial approxima-
tion algorithm for the Steiner Network Problem, as well as obtaining approximation
ratios better than 2.

128 CHAPTER 7. THE STEINER NETWORK PROBLEM

Chapter 8

Steiner Problems in Directed
Graphs

8.1 Introduction

In this section we consider the directed version of the Steiner Tree Problem, known
as the Steiner Arborescence Problem (StAP). In this problem we are given a
directed graph G with edge weigts, a root r and a set of sinks (terminals) S in G. The
task is to construct a minimum cost arborescence T rooted at r in G such that S is
contained in T . As usual the cost of a subgraph of G here means the sum of the costs
of edges.

Although the formulation of the Steiner Arborescence Problem is quite similar to
that of the Steiner Tree Problem, its complexity status is quite different. The Set
Cover Problem can be basically seen as a special case of the Steiner Arborescence
Problem, hence Feige’s hardness result for Set Cover [Fei98] implies a logarithmic lower
bound on approximability of the StAP. On the other hand Zelikovsky [Zel97] gives
an approximation scheme Ai, i ∈ IN for the StAP, where for each i Ai is a polynomial
time approximation algorithm with ratio O(|S|1/i) for the StAP. The approach is
based on the idea of level-restricted trees. While Zelikovsky’s approach only works for
the case of acyclic direted graphs, Charikar et al. citecharikar98approximation were
able to generalize it to the general directed case, obtaining the same approximation
ratio. Furthermore they considered a directed variant of the Steiner Forest Problem
and gave a polynomial time approximation algorithm for this problem with polynomial
approximation ratio.

In this chapter we consider directed variants of the following two problems: The
Directed Zero Skew Tree Problem and the Direchted Weighted Path Tree
Problem. Both problems are strongly motivated by applications in VLSI design,
where trees have to be constructed in order to satisfy specific physical constraints.
Assume a signal has to be sent from a source to a given set of sinks in an electrical
network, e.g. a computer hardware. Since computers are synchronized by a clock,
signals ought arrive at the sinks within a certain time window or at a specific time

129

130 CHAPTER 8. STEINER PROBLEMS IN DIRECTED GRAPHS

point. In a very rough first approximation, signal running times can be seen as being
linear in the length of the path in the network they are taking. Hence we are now
concerned with path-length constraints in a network layout problem. Both problems
mentioned above take a step in order to deal with this task. We will now give informal
problem descriptions for the undirected versions of both of these problems, which have
already been considered to some extend in the literature.

In the Zero Skew Tree Problem we are give an undirected edge weighted graph
or equivalently a finite metric space (V, c). (it will turn out in subsequent section that
both versions are equivalent). Furthermore we are given a vertex r in V , called the
root, as well as a set S ⊆ V of sinks. The task is to construct a tree T in (V, c)
connecting the root to the sinks such that T has zero delay, i.e. for each sink s ∈ S
the length of the path from r to s in T is the same. Since in this form a solution does
not necessarily exist, we are allowed to make use of delay segments, which we can
place on the vertices in V . The cot of a segment yielding delay d is precisely d, and
the total cost is the length of the tree plus the cost of all delay segments being used.
We will give a formal problem formulation below.

There is a huge literature on heuristic approaches and computational experiences
concerning the Zero Skew Tree Problem and its variants. We are only aware of two
papers in which approximation issues of the problem are concerned: Charikar et al.
[CKK+99] give a polynomial time approximation algorithm with ratio 2e ≈ 5.44 for
the Zero Skew Tree Problem. Zelikovsky and Mandoiu [ZM01] improve om this
result, obtaining a 4-approximation algorithm for the Zero Skew Tree Problem and
a 14-approximation algorithm for the Bounded Skew Tree Problem, where instead
of zero skew the signal arrival times are allowed to differ by a prespecified bound.
Both algorithms are conceptually much easier than the approach of Charikar et al.
[CKK+99].

8.1.1 Level-Restricted Trees

The notions and results in this subsection are taken from [Zel97]. We have already
discussed the use of restricted trees for approximating the Steiner Tree Problem.
There the restriction was on the maximum size of full components, a concept all
Steiner Tree approcximation algorithms we are aware of are based on. The analog tool
in the setting of directed Steiner Tree Problems are level-restricted trees. Let T be
a directed tree (also called arborescence) with root r. Hence T = (V T,ET) where VT
is the vertex set of T , ET ⊆ VT × VT is the set of (directed) edges of T , and r ∈ VT
is the only vertex in T with indegree 0 in T . All other vertices in T have indegree 1.
The vertices with outdegree 0 are the leaves of T . The root r is the only vertex in t
at level 0. The level-1 vertices of T are precisely the children of r, i.e. those vertices v
such that there is an edge (r, v) ∈ ET . The level-2 vertices are the children of level-1
vertices and so on. A directed tree is called l-level restricted iff it has at most l + 1
levels 0, . . . , l.

Accordingly, for a given instance of the Steiner Arborescence Problem with root
r and terminal set S, let SMT (r, S) denote a shortest directed tree rooted at r that

8.2. THE DIRECTED ZERO SKEW TREE PROBLEM 131

contains S, let smt(r, S) denote its cost. Let SMTk(r, S) denote a shortest directedk-
level-restricted tree rooted at r that contains S, let smtk(r, S) denote its cost. Hence
we are interested in the ratio

smtk
smt

:= sup

{
smtk(r, S)

smt(r, S)
: G,S, r instance of the Steiner Arborescence Problem

}

Theorem 41 (Zelikovsky [Zel97])
For any instance G,S, r of the Steiner Arborescence Problem and any k ∈ IN,

smtk(r, S)

smt(r, S)
≤ |S|1/k

and this bound is tight.

All the algorithms we will consider in this chapter are based on this ratio, i.e. they
attemt to approximate the optimum k-level restricted tree and run in time exponential
in k which -roughly spoken- implies at least a polynomial approximation ratio. We are
not aware of algorithmic approaches that avoid this lack.

8.2 The Directed Zero Skew Tree Problem

Before considering the directed version of the Zero Skew Tree Problem and giving a
precise problem formulation, let us first take a look at the undirected version which
was already extensively considered in the literature and builds the starting point and
main motivation for our investigations in this section. The following definition as well
as the problem formulation of the Zero and Bounded Skew Tree Problems are
taken from the Zelikovsky-Mandoiou paper [ZM01]:

Definition 39 Let (V, c) be a metric space. A stretched tree for a set of sinks S ⊆ V
is a quadruple T = (VT , ET , π, cost) such that (VT , ET) is a rooted tree, π is a mapping
π:VT → V and cost:E → IR+ such that π is a 1-1 mapping from the leaves of T to S
and for every edge e = (u, v) ∈ ET , cost(e) ≥ c(π(u), π(v)).

The underlying intuition is to put additional delay on the edges in order to obtain
equal signal running times. The skew of T is the maximum cost difference of any two
root-to-leaf paths in T .

Zero Skew Tree Problem
Instance: finite metric space (V, c), set of sinks S ⊆ V

Solution: stretched zero skew tree T = (VT , ET , π, cost) for S

Cost: cost(T)

If instead one allows skew bounded by some prespecified value b, one obtains the

132 CHAPTER 8. STEINER PROBLEMS IN DIRECTED GRAPHS

b-Bounded Skew Tree Problem
Instance: finite metric space (V, c), set of sinks S ⊆ V

skew bound b ∈ IR≥0

Solution: stretched tree T = (VT , ET , π, cost) for S
with skew(T) ≤ b

Cost: cost(T)

Charikar, Kleinberg et al. [CKK+99] obtained a constant factor algorithm for the more
general problem with prespecified root, which we call the Rooted Zero Skew Tree
Problem in order to distinguish between the two variants:

Rooted Zero Skew Tree Problem
Instance: finite metric space (V, c), root r ∈ V , set of sinks S ⊆ V
Solution: stretched zero skew tree T = (VT , ET , π, cost) for S

rooted at r

Cost: cost(T)

Theorem 42 (Charikar, Kleinberg et al. [CKK+99])
There is a polynomial time approximation algorithm with ratio 2e ≈ 5.44 for the
Rooted Zero Skew Tree Problem.

Mandoiu and Zelikovsky [ZM01] improved on this, but their result only works for the
Zero Skew Tree Problem without prespecified root. Their algorithms are heavily based
on the freedom to choose the root.

Theorem 43 (Mandoiu, Zelikovsky [ZM01])
There are polynomial time approximation algorithms with ratio 4 for the Zero Skew
Tree problem and 14 for the Bounded Skew Tree Problem.

We refer to the original paper [ZM01] for more detailed information, algorithms and
proofs. In this section we will now consider the following directed variant of the
problem:

Directed B-Bounded Skew Tree Problem
Instance: directed graph G = (V,E), edge costs c:E → IR+

a root r ∈ V and a set of sinks (terminals) S ⊆ V \ {r}
and a number B ∈ IR≥0 bounding the skew

Solution: stretched directed tree T = (VT , ET , π, cost) rooted at r for S
such that the skew of T with respect to S is bounded by B

Cost: cost(T)

8.2. THE DIRECTED ZERO SKEW TREE PROBLEM 133

The Directed Zero Skew Tree Problem is the special case with B = 0. Let us
start by proving the analog hardness result as is already known for the Directed Steiner
Tree Problem.

Theorem 44 Unless NP ⊆ DTIME
(
nlog logn

)
, there is no polynomial-time approx-

imation algorithm for the Directed B-Bounded Skew Tree Problem with ratio

(1− ε) · log(n).

Proof: For B = max{dist(r, s)|s ∈ S} the reduction from the Set Cover Problem to
the Directed Steiner Tree Problem already given in [CCC+98, Zel97] is also a reduction
to the Directed B-Bounded Skew Tree Problem. 2

8.2.1 Stretched Arborescences, Skew and Delay

Stretched arborescences are the directed analog of stretched trees, i.e. formally a tuple
T = (V,E, π, cost). Given a stretched arborescence T rooted at r spanning the set of
sinks X which is not necessarily a zero-skew arborescence, we can obtain a stretched
zero-skew arborescence by -informally spoken- inserting delay edges at certain vertices
of T (this was called tree stretching in [Zelikovsky, Mandoiu]). The cost increase by
this operation can be bounded in terms of the delay and skew of vertices of T :

Definition 40 Let T be a stretched arborescence rooted at r spanning the set of sinks
X. For a vertex v of T let Tv denote the subtree of T rooted at v.

The skew of v in T is defined as skewT(v) := the maximum difference of costs of
any two v-to-leaf paths in Tv.

The delay of v in T is defined as delayT(v) := the maximum cost of a v-to-leaf
path in Tv.

The skew of T with respect to X is defined as skewX(T) :=
∑

v∈T\X skewT (v).

The delay of T with respect to X is defined as delayX(T) :=
∑

v∈T∩X delayT (v).

Lemma 8.2.1 There is a polynomial time algorithm that, given a stretched arbores-
cence T rooted at r spanning a set of sinks X in G, constructs a stretched zero-skew
arborescence T̃ rooted at r spanning X such that

cost(T̃) ≤ c(T) + delayX(T) + skewX(T).

Definition 41 For a stretched arborescence T in G rooted at r spanning the set of
sinks X let

cdsX(T) := c(T) + delayX(T) + skewX(T).

134 CHAPTER 8. STEINER PROBLEMS IN DIRECTED GRAPHS

Hence the Directed Zero Skew Tree Problem is equivalent to the problem of finding
minimum-cds stretched arborescences for a given root and set of sink:

Minimum cds Arborescence Problem Given a root r and a set of sinks X
in a transitive directed graph G = (V,E) with edge weights c:E → IR+, find a
minimum-cds stretched arborescence with root r for X.

Based on Feige’s result and using the standard reduction to the Directed Steiner Tree
Problem as above we obtain the following hardness result for the Minimum cds
Arborescence Problem and hence as well for the Directed Zero Skew Tree Problem:

Theorem 45 Unless NP ⊆ DTIME
(
nlog logn

)
, for every ε > 0 there is no polynomial

time approximation algorithm for the Minimum cds Arborescence Problem with ratio
(1− ε) · ln(n).

Proof: Consider an instance (U,S) be an instance of the Set Cover Problem with
U = {1, . . . , n} and S = {S1, . . . , Sm} ⊆ P (U). Let the tree T (U,S) be defined as
follows: The vertex set consists of vertices vu for each u ∈ U (element nodes), vS for
each S ∈ S (set nodes) and an additional vertex r. There are edges (r, vS) of cost 1
from r to the set nodes vS and edges of cost 0 from each set node vS to all element
nodes vu with u ∈ S. Consider now the instance for the Minimum cds Arborescence
Problem with directed graph T (U,S), root r and set of sinks {vu|u ∈ U}. An optimum
solution T corresponds to an optimum cover S ′ ⊆ S of cost cds(T)− 1. 2

8.2.2 Level-Restricted Stretched Trees

Recall that for the Steiner Arborescence Problem Zelikovsky obtained a tight bound
on the k-level ratio. We show that the same ratio holds for the Directed Zero Skew
Problem. Let zmt(G, r,X) denote the minimum cds of an arborescence rooted at r
spanning X, let zmti(G, r,X) denote the minimum cds of an i-level-restricted arbores-
cence rooted at r spanning X.

Lemma 8.2.2 For all directed transitive graphs G = (V,E) with edge costs c:E → IR+,
root r and set of sinks X

zmti(G, r,X)/zmt(G, r,X) ≤ |X|1/i.

Proof: Let T be an arborescence for r,X in G of optimum value cdsX(T). Then there
is an i-level-restricted arborescence T̃ for r,X of cost c(T̃) ≤ |X|1/i ·c(T). Furthermore
from the proof of the k-level ratio in ... it directly follows that T̃ can be constructed
such that for any vertex v of T̃ the skew and delay of v in T̃ is not larger than the
skew and delay of v in T . Thus by the definition of cds it follows

cdsX(T̃) ≤ |X|1/i · c(T) + skewX(T) + delayX(T) ≤ |X|1/i · cdsX(T).

8.2. THE DIRECTED ZERO SKEW TREE PROBLEM 135

8.2.3 An Approximation Algorithm

We will now give a recursive approximation scheme for the Minimum cds Arborescence
Problem that approximates the optimum solution by an i-level-restricted solution and
has running time O(f(i) ·ki) for some function f , thus polynomial in k if i is fixed. As
in the Charikar et al. approach [CCC+98] we will work with a slightly more general
problem:

D-Skew(k, r,X,a,b): Given k ∈ IN, a root r and a set of sinks X ⊆ N , positive
integer numbers a ≤ b, find a tree T of minimum value cdsX(T) rooted at r
spanning k terminals from X such that for all u ∈ T a ≤ distT (r, u) ≤ b.

For technical reasons we will assume that all terminals fromX are leaves in the directed
graph G (if not then add vertices s′ and 0-cost edges (s, s′) for each s ∈ X and consider
the D-Skew problem for set {s′ : s ∈ X} in the transitive closure of this extended
graph).

The density of a stretched tree T rooted at r with respect to X is the ratio

dX(T) := cdsX(T)/|T ∩X|.

Following the lines of the Charikar et al. paper [CCC+98], we say algorithm A is
an f(k)-partial approximation algorithm for D-Skew(k, r,X,a,b) if it constructs
a stretched tree T ′ rooted at r spanning a set of 1 ≤ k′ ≤ k terminals from X such
that

dX(T ′) ≤ f(k) · cdsX(T∗)
k

Lemma 8.2.3 If A is an f(k)-partial approximation algorithm for D-Skew(k, r,X,a,b)
and f(x)/x is decreasing, then the algorithm B obtained by repeated application of
algorithm A and removal of the terminals already collected from X yields a g(k)-

approximation algorithm for D-Skew(k, r,X,a,b) with g(k) =
∫ k
0

f(x)
x dx.

Proof: Induction on k. For k = 1 we observe f(1) ≤
∫ k
0

f(x)
x dx. For k > 1: Let

A(k, r,X, a, b) return T1, then we have dX(T1) = cdsX(T1)/k1 ≤ f(k) · cdsX(T∗)/k,
hence

cdsX(T1) ≤ k1 ·
f(k)

k
· cdsX(T∗) ≤

(∫ k

k−k1

f(x)

x
dx

)

· cdsX(T∗).

If k = k1 then T1 is returned. Otherwise k1 < k. Let B(k − k1, r,X \X1, a, b) return
tree T2. By induction hypothesis

cdsX\X1
(T2) ≤

(∫ k−k1

0

f(x)

x
dx

)

· cdsX\X1
(T∗).

Now using the result of lemma 8.2.4 below we can replace X \X1 by X in this chain
of inequalities, and we obtain cdsX(T1) + cdsX(T2) ≤ g(k) · cdsX(T∗). 2

Now we will describe our algorithm. The basic idea is to proceed as in the Charikar

136 CHAPTER 8. STEINER PROBLEMS IN DIRECTED GRAPHS

et al. paper [CCC+98], solving the problem D-Skew(k, r,X, a, b) by iterated picks of
good-density partial solutions as long as we still have to collect terminals from X.
In our setting, density of a tree T with respect to a terminal set X is defined as
dX(T) := cdsX(T)/|T ∩X| i.e. cds value per terminal being collected from X. Hence
our algorithm looks as follows:

Algorithm Ai(k, r,X,a,b)
Output: i-level-restricted feasible solution to D-Skew(k, r,X, a, b)
Check whether a solution exists.
If i = 1: Take the k nearest terminals v1, . . . , vk with distances

a ≤ dist(r, v1) ≤ . . . ≤ dist(r, vk) ≤ b from the root,
let T consist of edges (r, vi), 1 ≤ i ≤ k.

If i ≥ 2: initially T := ∅.
While k > 0

/? Search for a good-density partial solution. ?/
Tb := ∅
For v ∈ V, 1 ≤ k′ ≤ k, a− dist(r, v) ≤ a′ ≤ b′ ≤ b− dist(r, v)

Tact := Ai−1(k′, v,X, a′, b′) ∪ {(r, v)}.
If cdsX(Tact)

k′ <
cdsX(Tb)
k(Tb)

then Tb := Tact;

/? Add the best tree Tb to T , update. ?/
T := T ∪ Tb; X := X \X(Tb); k := k − k(Tb);

Return T ;

Lemma 8.2.4 Let T be a stretched arborescence rooted at r and X ⊆ Y ⊆ V such
that all leaves of T are in X. Then cdsX(T) ≤ cdsY (T).

Proof: For all v ∈ T we have delayT (v) ≥ skewT (v). Now

cdsX(T) = c(T) +
∑

v∈X∩T
delayT (v) +

∑

v∈T\X
skewT (v)

≤ c(T) +
∑

v∈Y ∩T
delayT (v) +

∑

v∈T\Y
skewT (v) = cdsY (T).

2

We consider now one call of Ai(k, r,X, a, b). LetX(j) and k(j) denote the actual values
of X and k at the beginning of the j-th iteration of the while-loop in the execution
of Ai(k, r,X, a, b), and let Tb(j) denote the tree Tb found in the j-th iteration and

kb(j) := |X∩Tb(j)| the number of terminals it covers. Let T
(i)
opt(j) denote an optimum

i-level-restricted solution to D-Skew(k(j), r,X(j), a, b) and T
(i)
opt = T

(i)
opt(0) an optimum

i-level-restricted solution to D-Skew(k, r,X, a, b). We claim that for the best tree found

8.2. THE DIRECTED ZERO SKEW TREE PROBLEM 137

in iteration j we have

dXj (Tb(j)) =
cdsXj (Tb(j))

k(j)
≤ (i− 1) ·

cdsXj (T
(i)
opt(j))

k(T
(i)
opt(j))

= (i− 1) · dXj (T
(i)
opt(j))

First we compute a lower bound for the density of the optimum solution:

dX(T
(i)
opt) =

1

k
· cdsX(T

(i)
opt)

=
1

k
·
(

ds
T
(i)
opt

(r) +
∑

(r,v)∈E(T(i)opt)
(αv + cdsX(Tv))

)

≥ min
(r,v)∈E(T(i)opt)

αv + cdsX(Tv)

kv
(8.1)

where αv is the cost of edge (r, v) and kv is the number of leaves in the subtree
rooted at v. Let us fix a vertex v at which the minimum in (8.1) is achieved. Let
a− αv ≤ ã ≤ b̃ ≤ b− αv denote the precise values for the tree Tv, i.e.

ã = min
w∈Tv

distTv(v, w), (8.2)

b̃ = max
w∈Tv

distTv(v, w). (8.3)

Consider the execution of Ai−1(kv, v,Xj , ã, b̃): Let X̃j′ and k̃j′ denote the values of
X and k at the beginning of the j ′-th iteration of the while-loop in the execution
of Ai−1(kv, v,Xj , ã, b̃). Let T̃b(j

′) denote the tree constructed in the j ′-th itera-
tion of the while-loop. Let L be the number of while-loop iterations performed by
Ai−1(kv, v,Xj , ã, b̃). Let s0 = 0 and sl = the number of terminals from Xj covered by
the tree T(l) := T̃b(1) ∪ . . . ∪ T̃b(l) for l ∈ {1, . . . , L}. There is an l ∈ {0, . . . , L − 1}
such that sl < kv/(i− 1) ≤ sl+1. Since k̃l+1 > kv − kv

i−1 = i−2
i−1 · kv and

|Tv ∩ X̃l+1| ≥ kv − |Tv ∩X(T (l))| ≥ kv − sl = k̃l+1 ≤
i− 2

i− 1
· kv

we conclude that

1. Tv is a solution for D-Skew(k̃l+1, v, X̃l+1, ã.b̃) and

2. Tv has density dX̃l+1
(Tv) ≤

cdsX̃l+1
(Tv)

kv
· i−1i−2 .

Thus by inductive assumption the tree T̃b(l+1) constructed in the (l+1)rst execution
of the while loop has density with respect to the remaining terminal set X̃l+1 bounded
as

dX̃l+1
(T̃b(l + 1)) ≤ (i− 2) · i− 1

i− 2
·
cdsX̃l+1

(Tv)

kv
≤ (i− 1) · ·

cdsX(j)(Tv)

kv
.

Furthermore for iterations 1, . . . , l of the while-loop we obtain the same bound. Hence

T (l + 1) has density bounded by (i − 1) · dXj (T
(i)
opt). Now applying lemma 8.2.3 we

obtain our main result:

138 CHAPTER 8. STEINER PROBLEMS IN DIRECTED GRAPHS

Theorem 46 Algorithm Ai provides an i(i − 1)k1/i approximation algorithm to the
problem D-Skew(k, r,X, a, b).

Proof: The cds cost of the tree Ti constructed by algorithm Ai can be bounded as

cdsX(Ti) ≤ (i− 1) · cds(T∗) ·
∫ k

0

x1/idx

x
= i(i− 1)cdsX(T∗).

2

8.3 The Directed Weighted Path Problem

In the Weighted Path Problem (WPP) we are given a graph G = (V,E) with
edge costs c:E → IR+, a root r ∈ V , a set of terminals S ⊆ V and a weight function
ω:S → IR+. The task is to construct a Steiner tree T for the set {r} ∪ S such as
to minimize the total cost of the tree plus the sum of weighted distances from the
terminals to the root. This problem is motivated by critical sink problems in VLSI
design where one has to connect a set of sinks to a given root and some of the sinks are
time-critical. In order to minimize signal running times and therefore achieve speedup
of processor cycle running times, the critical sinks must obtain short connections to
the root, and this can be modelled by giving them large weight. In the undirected case
theWPP is a natural extension of the Steiner Tree Problem in graphs (STP): For an
instance G = (V,E), c:E → IR+, S ⊆ V of the STP define weights ω(s) := 0. In this
section we consider the directed variant of the problem, the so called

Directed Weighted Path Tree Problem
Instance: directed graph G = (V.E) with edge costs c:E → IR+,

a root r ∈ V and a set of sinks S ⊆ V with weights
ω:S → IR+

Solution: arborescence T in G rooted at r spanning S

Cost: wpc(T) := c(T) +
∑

s∈S ω(s) · distT (r, s).
This problem is a generalization of the Directed Steiner Tree Problem (introduce zero
weight for every terminal), hence we have the same hardness result as for the latter,
obtained by reduction from Set Cover. By adapting the methods already used for the
Directed Zero Zkew Tree Problem, we obtain the following result.

Theorem 47 For each ε > 0 there is a polynomial time approximation algorithm for
the Directed Weighted Path Tree Problem with ratio O (nε), where n = |V | is
the size of the input graph.

Sketch of Proof: We work with level-restricted trees as before and again follow
the lines of the Charikar et al. paper [CCC+98]. It basically remains to say which
generalized problem we work with:

8.3. THE DIRECTED WEIGHTED PATH PROBLEM 139

D-Weight(k, r,X): Given a root r, a set of terminalsX with weights ω:X → IR+
and a natural number 1 ≤ k ≤ |X|, choose a subset X ′ ⊆ X of size k and an
arborescence T rooted at r spanning X ′ such as to minimize c(T) + ω(X ′).

We ommit the details, which will appear in a forthcomming paper on the topic.
Let us remark that two directions of future work on directed Steiner problems

seem most interesting to us: On the one hand one should try to obtain progress
in order to decrease the gap between upper and lower bound for approximability of
directed Steiner Tree problems. An approximation algorithm with polynomial running
time and sub-polynomial approximation ratio (e.g. some polylog ratio) would mean a
breakthrough.

On the other hand one can look at directed versions of the Steiner Network Problem
discussed in chapter ... of this thesis. One could try to work with level-restricted
trees as well, but then for the general case where connection requirements might be
super-polynomial, one would need an extension of the ratio level-restricted trees to
unrestricted trees.

A third promising direction is to consider routing games in directed graphs, where
one has to construct or approximate equilibria for a scenario with several agents having
connection requirements in a directed graph. For the undirected case there is already
a huge literature available, see e.g. [TR02].

140 CHAPTER 8. STEINER PROBLEMS IN DIRECTED GRAPHS

Chapter 9

Dense Problems

9.1 Introduction

When dealing with NP-hard optimization problems we are interested in approxima-
tion algorithms with polynomial running time and approximation ratio as good as
possible. As we have already discussed in previous chapters, polynomial time approxi-
mation schemes are of special interest. In case one has established hardness results like
MAXSNP-hardness which makes it seem unlike that a polynomial time approximation
scheme exists, a way to accomplish is to look for interesting subclasses of the problem
and ask for polynomial time approximation schemes for such subclasses.

For various optimization problems, an important and interesting subclass are the
so called dense instances. Typically there are two distinct notions: average density
and everywhere-density. Roughly spoken, a graph is average dense if it contains many
edges (which means the average degree of vertices is large), and everywhere-dense if
every node has high degree. A boolean formula in conjunctive normal form is called
dense if it contains many clauses, and everywhere-dense if every variable is contained
in many clauses.

There are several algorithmic problems in combinatorial optimization which are eas-
ier to solve in dense graphs. Posa proves existence of Hamilton cycles in graphs with
degree at least n/2, and such cycles can be efficiently constructed. Arora, Frieze and
Kaplan [AFK96] give an approximation scheme for evaluating the Tutte polynomial
in everywhere-dense graphs, which includes estimation of the reliability of a network
as a special case. Arora, Karger and Karpinski [AKK95] constructed polytime ap-
proximation schemes for dense instances of a huge number of optimization problems,
including Dense Maximum Cut, Dense Graph Bisection and Dense Max-3SAT. Their
results are based on reformulation of the problems in terms of smooth polynomial in-
teger programs and the ability to approximately solve such programs using exhaustive
sampling techniques.

Since then, several further results were obtained in this area. There are several
algorithmic problems for which the techniques of [AKK95] are not known to apply,
including dense versions of the Set Cover Problem, the Steiner Tree Problem and

141

142 CHAPTER 9. DENSE PROBLEMS

the Vertex Cover Problem. Nevertheless Karpinski and Zelikovsky [KZ97a] were able
to give combinatorial algorithmic approaches for these problems based on a Greedy
approach and obtained a PTAS for the dense Steiner Tree Problem and improved
approximation algorithms for the dense Set Cover and Vertex Cover Problem.

This chapter deals with dense versions of the Steiner Tree Problem and some of the
various Steiner problems we have considered so far, namely the Steiner Forest Problem
and the Prize Collecting Steiner Tree Problem. Additionally we consider dense versions
of the k-Steiner Tree problem and the Group Steiner Tree Problem. The chapter is
organized as follows: In section 9.2 we give an introduction into Dense Optimization
Problems and some of the main results known in this area. In section 9.3 we define the
ε-Dense Steiner Tree Problem and describe the PTAS for this problem due to Karpinski
and Zelikovsky [KZ97a]. In section 9.5 we consider the ε-Dense Steiner Forest Problem.
We apply ideas of [KZ97a] to this problem and obtain a polynomial time approximation

algorithm for this problem with ratio 1+O
(∑

i log(|Si|)∑

i |Si|

)

, where Si denote the terminal

sets. This provides good approximation in cases where sufficiently many terminal sets
are large. In sections 9.6 and 9.7 we give polynomial time approximation schemes for
the ε-Dense Prize Collecting Steiner Tree Problem and the ε-Dense k−Steiner Tree
Problem. In section 9.8 we give an introduction to the Class Steiner Tree Problem
and a PTAS for the ε-dense version of this problem. Interestingly, for the general
Class Steiner Tree Problem there is a logarithmic lower bound for approximability,
by a simple reduction from the Set Cover Problem due to Ihler and the well-known
logarithmic lower bound for the latter problem by Feige [Fei98].

9.2 Dense Optimization Problems

9.2.1 Smooth Integer Programs

An Integer Polynomial Program (IPP) is an optimization problem of the form

maximize p0(x1, . . . , xn)
subject to li ≤ pi(x1, . . . , xn) ≤ ui (1 ≤ i ≤ m)

xi ∈ {0, 1} (1 ≤ i ≤ n)

where po, . . . , pm are polynomials over ZZ (minimization instead of maximization is
possible). The IPP is called a degree d IPP if all pi have degree at most d. An n-
variate degree-d polynomial is called c-smooth if the absolute value of each coefficient
of each degree i monomial is at most c · nd−i. An IPP is called a c-smooth degree-d
IPP if the objective function p0 and constraints pi (1 ≤ i ≤ m) are c-smooth degree-d
polynomials.

Theorem 48 [AKK95] There is a randomized polynomial-time algorithm that approx-
imately solves smooth IPPs in the following sense: Given a feasible c-smooth degree d
IPP with n variables, objective function p0 and constraints li ≤ pi(x1, . . . , xn) ≤ ui(1 ≤
i ≤ m), the algorithm constructs a vector z ∈ {0, 1}n such that p0(z) ≥ OPT − ε · nd
and each degree d′ constraint is satisfied with an additive error of O(ε · √n logn).

9.3. DENSE COVERING PROBLEMS 143

9.2.2 Applications

Arora, Karger and Karpinski [AKK95] applied their result on Smooth Integer Programs
to dense versions of various well-known optimization problems, including

• Max-Cut, Max-Dicut and Max-Hypercut in δ-dense graphs resp. hyper-
graphs, where a graph on vertices is called δ-dense iff it has at least δ · n2 edges,

• Dense Max-k-SAT, where an instance ϕ of Max-k-SAT with n variables is
called δ-dense iff the number of clauses is at least δ · nk.

For many other results and proofs we refer to the original paper [AKK95].

9.3 Dense Covering Problems

The methods described in the last section are currently not known to apply directly to
dense versions of covering problems like Set Cover, Vertex Cover Problem and Steiner
Tree Problem. However Karpinski and Zelikovsky [KZ97a] were able to apply combi-
natorial algorithmic methods based on a Greedy approach to these problems and to
obtain the following results:

The ε-Dense Set Cover Problem
Recall that in the Set Cover Problem we are given a finite set U (called universe)
together with a family S = {S1, . . . , Sm} of subsets of U , the task is to find a
minimum cardinality covering of U , i.e. a minimum cardinality subfamily S ′ of S
such that

⋃

Si∈S ′ Si = U . The well known result of Feige [Fei98] states that unless

NP ⊆ P log(n) log log(n) there is no polynomial time approximation algorithm for the
Set Cover Problem with ratio (1 − ε) · ln(n). Note that the Greedy algorithm ob-
tains ratio ln(n). It is shown in [KZ97a] that the ε-Dense Set Cover Problem admits
a c · log(n)-approximation algorithm for each c > 0. Here an instance (U,S) with
universe U = {u1, . . . , un} and S = {S1, . . . , Sm} is called ε-dense if every element
u of the universe U is contained in at least a ε-fraction of the sets of S (formally:
∀u ∈ U : |{Si ∈ S : u ∈ Si}| ≥ ε · |S|).

The ε-Dense Vertex Cover Problem
An instance G = (V,E) of the vertex cover problem is called strongly ε-dense (every-
where ε-dense) if every vertex has degree at least ε×n, where n is the size of the vertex
set V of graph G. It is called weakly ε-dense (average ε-dense) if

∑

v∈V degG(v) = ε·n2.
The following results were obtained in [KZ97a]:

• The Strongly ε-Dense Vertex Cover Problem is MAX SNP-hard,
but approximable within ratio 2

1−ε .

• The Weakly ε-Dense Vertex Cover Problem is approximable within ratio 2
2−
√
1−ε .

144 CHAPTER 9. DENSE PROBLEMS

The ε-Dense Steiner Tree Problem
An instance of the Steiner Tree Problem in Graphs consisting of graph G = (V,E)
and terminal set S ⊆ V is called ε-dense if each terminal s ∈ S has at least ε · |V \ S|
neighbours in V \S. This is a variant of everywhere density considered above (indeed,
it is implied by everywhere density). Karpinski and Zelikovsky showed: For every
ε > 0 there is a polynomial time approximation scheme for the ε-Dense Steiner Tree
Problem.

In the subsequent sections of this chapter we will apply ideas from [KZ97a] and consider
dense versions of the following generalizations of the Steiner Tree Problem:

Steiner Forest Problem (SFP): Given a graph G = (V,E) with edge costs c:E →
IR+ and pairwise disjoint nonempty terminal sets S1, . . . , Sn ⊆ V , find a forest F =
(V (F), E(F)) ⊆ G of minimum cost such that for all 1 ≤ i ≤ n Si is contained in a
connected component of F . Again, this is equivalent to the SFP in finite metric spaces.
In the graph version (Graph-SFP), the instance consist of an unweighted graph G (i.e.
every edge has cost 1 together with terminal sets S1, . . . , Sn as above. An instance of
the Graph-SFP is called ε-dense if for every 1 ≤ i ≤ n and every s ∈ Si the number of
neighbours of s in V \ Si is at least ε · |V \ Si|

Prize Collecting Steiner Tree Problem (PSTP): Given a graph G = (V,E) with
edge costs c:E → IR+ and a terminal set S ⊆ V with prize function p:S → IR+, find a
tree T ⊆ G connecting a subset S ′ of S such as to minimize c(T) + p(S \ S ′). Here we
take the same density condition as for the Steiner Tree Problem: An instance is called
ε-denes if every terminal has at least ε · |V \ S| neighbours in V \ S. We will give a
polynomial time approximation scheme for the ε-Dense PSTP.

k-Steiner Tree Problem (k-STP): Given a graph G = (V,E) with edge costs
c:E → IR+, a terminal set S ⊆ V and a number k ∈ [1, |S|], find a tree T in G of
minimum cost c(T) which connects at least k terminals from S. We will consider the
same density condition as for the Steiner Tree Problem and for the Prize Collecting
Steiner Tree Problem. We will give a PTAS for the ε-Dense k-Steiner Tree Problem.

Class Steiner Tree Problem: Given a graph G = (V,E) with edge costs c:E → IR+
and a system of pairwise disjoint subsets C1, . . . , Cn of the vertex set V , find a minimum
cost tree T in G such that for each 1 ≤ i ≤ n T contains at least one vertex of Ci. The
sets Ci are also called classes, hence T has to contain at least one representative for
each class. This problem turns out to be at least as hard as the Set Cover Problem,
hence for the general case there is a logarithmic lower bound. Nevertheless for the
ε-dense version of the problem we are able to give a polynomial time approximation
scheme. Here an instance is called ε-dense if it consists of a graph G = (V,E) (i.e. all
edge weights are 1) and classes C1, . . . , Cn such that

In this section we consider the SFP restricted to dense instances. Consider an in-
stance G = (V,E), S1, . . . , Sn of the Graph-SFP. Let S :=

⋃n
i=1 Si the set of terminals.

9.4. THE ε-DENSE STEINER TREE PROBLEM 145

For a vertex v ∈ V let N(v) = {u ∈ V |{u, v} ∈ E} be the set of neighbours of v in G.
The instance is called ε-dense iff for every 1 ≤ i ≤ n and s ∈ Si |N(s)\Si| ≤ ε · |V \Si|.
The ε-Dense SFP is the SFP restricted to ε-dense instances.

For the rest of the paper we will use the following notation: Let G = (V,E) be a graph
and v ∈ V . Then N(v) = NG(v) = {u ∈ V : {v, u} ∈ E} is the set of neighbours of v
in G. Furthermore, for a set X P (X) denotes the power set of X and Pk(X), k ∈ IN

the set of all subsets of X of size k.

9.4 The ε-Dense Steiner Tree Problem

In this section we will first give a brief outline of the polynomial time approximation
scheme of Karpinski and Zelikovsky for the ε-Dense Steiner Tree Problem (recall that
ε-density here means a version of everywhere-density). A natural question in this
context is whether a polynomial time approximation scheme exist for some average-
dense version of the Steiner Tree Problem. Currently we don’t know the answer,
nevertheless in subsection 9.4.2 we will slightly relax the density condition and give a
PTAS for this generalization of the dense Steiner Tree Problem.

9.4.1 Everywhere-Density

Recall the density condition as it was defined in [KZ97a]: An instance G = (V,E), S of
the Graph Steiner Tree Problem is called ε-dense iff for every terminal s ∈ S |N(s) ∩
(V \ S)| ≥ ε · |V \ S|. The idea of the Karpinski-Zelikovsky algorithm is as follows:
Obviously |S| − 1 is a lower bound for the cost of an optimum solution (which is
achieved iff there exists a spanning tree for S in G. In general the cost of a Steiner
tree T for S in G equals |S| − 1 plus the number of Steiner points used by T (since T
is a spanning tree for its vertices). Hence the task is to construct a Steiner Tree using
only few Steiner points. The algorithm collects edges connecting two terminals as long
as such edges exist. Each pick of such an edge is ”save” in the sense that the number
of Steiner points is not increased. Hence assume E(S) = ∅. Now the density condition
implies that there exists a non-teminal v ∈ V \ S with at least ε · |S| neighbours in
S. The algorithm picks such a star consisting of a center vertex v ∈ V \ S and all its
neighbours in S, takes it as part of the tree to be constructed and contracts the star,
reducing the problem size. Then the whole procedure is iterated. Note that since each
such pick reduces the number of terminals by at least a constant fraction, after at most
a logarithmic number of picks the size of the terminal set is reduced to constant. The
remaining problem is now solved to optimality by an exhaustive search.

Let us now give the description of the algorithm, taken from [KZ97a].

Algorithm DSTP[KZ97a]
(0) Sfinal := S
(1) while |C[Sfinal]| > 1

ε do
find v ∈ V \ Sfinal minimizing |C[Sfinal ∪ {v}]|.

146 CHAPTER 9. DENSE PROBLEMS

Sfinal := Sfinal ∪ {v}
(2) find an optimum Steiner tree T ?(C[Sfinal]) for the contracted

components C ∈ C[Sfinal] using the Tree Enumeration Algorithm
(3) Return T ? ∪ ⋃C∈C[Sfinal]

T (C).

9.4.2 Towards Average-Density: Relaxing the Density Condition

We may now ask for a polynomial approximation scheme for some average-dense ver-
sions of the Steiner Tree Problem. A quite natural definition of average density is as
follows: We call an instance G = (V,E), S ⊆ V of the Graph Steiner Tree Problem
average ε-dense if

|E(S, V \ S)| ≥ ε · |S| · |V \ S|. (9.1)

Note that ε-Density as defined in [KZ97a] implies Average-ε-Density. Furthermore
average ε-density implies existence of a vertex v ∈ V \S with at least ε · |S| neighbours
in S, i.e. a good pick. Unfortunately by no means average ε-density is preserved under
good picks. Here is an easy example: If there exists a subset S ′ of S of size ε · |S| such
that every vertex v ∈ V \ S is connected to all terminals from S ′ and to none of the
terminals from S \ S ′, this instance is average ε-dense. However after one good pick
the density condition is not valid anymore.

Nevertheless we will now at least relax the density condition ”towards average-
density”and give a PTAS for this relaxed version. Let us first give some motivation. We
observe that ε-density not only implies (9.1) but the following more general property:

|E(S′, V \ S)| ≥ ε · |S ′| · |V \ S| for all S ′ ⊆ S (9.2)

Indeed (9.2) is equivalent to ε-density. We may now ask how far we can relax (9.2).
Relaxing here means to consider instances where (9.2) does not necessarily hold for
all subsets S′ of S but for all subsets with cardinality at least some prespecified lower
bound. In (9.2) the lower bound is 1 (or 0) while in the average-density condition (9.1)
it is |S|. The question now is: How much can we increase the lower bound (starting
from 1) and still get a PTAS ? Actually we do not know the answer but at least we
can relax up to logarithmic size:

Definition 42 (log-Density)
An instance G = (V,E), S of the Graph Steiner Tree Prolem is called (ε, c)− log-dense
iff for all subsets S ′ ⊆ S of the terminal set with |S ′| ≥ c · log(|S|)

|E(S′, V \ S)| ≥ ε · |S ′| · |V \ S|. (9.3)

Theorem 49 For each ε > 0, c > 0 there is a PTAS for the (ε, c)− log-Dense Steiner
Tree Problem.

Let us first give some ideas and then give the precise proof of Theorem 49. Our
approach is quite similar to that of Karpinski and Zelikovsky [KZ97a]. The most

9.4. THE ε-DENSE STEINER TREE PROBLEM 147

important difference is that when performing greedy steps and picking Steiner points,
after contracting a star consisting of a vertex from V \ S and all its neighbours in S
the resulting supernode will be removed from S and hence not be considered in further
greedy steps anymore. This alternative method has basically two effects: First the
density condition for the actual terminal set is preserved and second afterwards we are
left with a ”residual”terminal set of logarithmic instead of constant size. Hence in order
to solve the remaining problem we will take the Dreyfus Wagner algorithm instead of
the Tree Enumeration algorithm since its running time is polynomial in the number of
non-terminals (and exponential in the number of terminals, hence polynomial in the
initial input size). We are now ready to describe our algorithm.

Algorithm LDSTP
Input: an instance of the (c, ε)-log-dense Steiner Tree Problem

consisting of graph G = (V,E), terminal set S ⊆ V
Output: Steiner tree T for S in G
(0) C := {{s} : s ∈ S} set of terminal components

Ca := C set of active terminal components
(1) while E(Ca) 6= ∅ do

Pick e ∈ E(Ca) connecting two terminal components C1, C2 ∈ Ca.
Let Ca := (Ca \ {C1, C2}) ∪ {C1 ∪ C2}, update C accordingly.

(2) while |Ca| ≥ c · log(|S|) ·K do
Find v ∈ V \ S with the maximum number of neighbours in Ca.
Contract the star T (v) consisting of v and its neighbours N(v, Ca) in Ca.
Update C and Ca accordingly:
Ca := Ca \N(v, Ca), C := (C \N(v, Ca)) ∪ {

⋃

C∈N(v,Ca)C}.
(3) Find an optimum Steiner tree T ? for C.
(4) Return TLD := T ? ∪ ⋃v picked in (1) T (v) ∪ {e| e picked in (1)}.

Analysis. The log-density condition (9.3) directly implies that initially

|E(C′, V \ Ca)| ≥ ε · |C′| · |V \ Ca| (9.4)

for all subsets C ′ of Ca of size at least c · log(|S|). We will now prove that (9.4)
is preserved by the picks of edges in phase (1) and stars in phase (2) of algorithm
LDSTP. Indeed, if an edge connecting two active components is picked, then subsets
C′ of Ca of size at least c · log(|S|) after the pick correspond to subsets of Ca of size
∈ [|C′|, |C′|+1] before the pick with the same neighbourhood in V \C, and since |V \C|
does not change, (9.4) still holds. On the other hand, if a vertex v ∈ V \ C is picked
and the star consisting of v and N(v, Ca) is contracted, then the resulting supernode
is removed from Ca and the cardinality of V \ Ca remains the same, hence also in this
case (9.4) is preserved.

Let k be the number of picks of stars T (v,N(v, Ca)) in phase (2), let T1 = T (v1, N1),
. . . , Tk = T (vk, Nk) denote these stars and let e1, . . . , el denote the single edges con-
necting active components picked in phase (1) of algorithm LDSTP.

Now construct graph G′ from G by adding edges connecting the set N(v, Ca) by a
spanning tree for each pick v in phase (1) of algorithm LDSTP. Note thatOPT (G′, S) ≤

148 CHAPTER 9. DENSE PROBLEMS

OPT (G,S). There exists an optimum tree T ?? in G′ consisting of spanning trees T ′i
for the sets Ni = N(vi, Ca) of picks in phase (2), the set E1 of all edges connecting
two active components in phase (1) and a tree T ′ connecting the set of components
C at the end of phase (2). Hence we can bound the approximation ratio of algorithm
LDSTP as follows:

cost(TLD)

cost(T ??)
≤ cost(T ?) +

∑k
i=1 cost(Ti) + |E1|

cost(T ′) +
∑k

i=1 cost(T
′
i) + |E1|

≤
∑k

i=1 |Ni|
∑k

i=1(|Ni| − 1)
≤ 1 +

k

(
∑k

i=1 |Ni|)− k

Hence let us assume we start with a (c, ε)-dense instance with no edges between temi-
nals. Each pick of a star reduces the cardinality of Ca by a factor ε. Let Ca(i) denote the
set Ca after i picks of a star, then |Ca(i)| ≤ (1−ε)i|S|. We obtain |Ca(k)| < c·log(|S|)·K
for k ≥ |S|

c·log(|S|)·K · 1
log(1/(1−ε)) , hence we assume k ≤ |S|

c·log(|S|)·K · 1
log(1/(1−ε)) + 1. Since

k∑

i=1

|Ni| ≥
k∑

i=1

(1− ε)i · ε · |S| = ε · |S| ·
k∑

i=1

(1− ε)i = ε · |S| · 1− (1− ε)k
ε

(9.5)

we obtain the following bound for the approximation ratio of algorithm LDSTP:

cost(TLD)

cost(T ??)
≤ 1 +

2k
∑k

i=1 |Ni|
≤ 1 +

2k

|S| · (1− (1− ε)k)

≤ 1 +
2 · (|S|

c·log(|S|)·K · 1
log(1/(1−ε)) + 1)

|S| · (1− (1− ε)k)

≤ 1 +
2 · (|S|

c·log(|S|)·K · 1
log(1/(1−ε)) + 1)

|S| · ε (9.6)

since we may assume k ≥ 1 (in case k = 0 algorithm LDSTP computes an optimum
solution, namely a spanning tree for S). Using 1

|S| ≤ 1
log(|S|) we obtain

cost(TLD)

cost(T ??)
≤ 1 +

1

ε
·
(

1

c ·K · log(1
1−ε)

+ 1

)

· 1

log(|S|) (9.7)

For given δ > 0 we will now choose K such that the approximation ratio is bounded
by 1 + δ, i.e.

K ≥
(

c · log
(

1

1− ε

)

· (ε · δ · log(|S|)− 1)

)−1
(9.8)

Hence choosing K =
(

c · log
(

1
1−ε

))−1
, solving the Steiner Tree instance exactly by

brute force for |S| ≤ 22/(ε·δ) and applying LDSTP for all other instances yields a PTAS
for the (c, ε)-log-dense Steiner Tree Problem. 2

9.5. THE DENSE STEINER FOREST PROBLEM 149

9.5 The Dense Steiner Forest Problem

In this section we will consider the ε-Dense Steiner Forest Problem. Currently we are
not able to provide a PTAS for this problem, for the following reason: All the variants
of the methods of [KZ97a] we have discussed so far (and will discuss in subsequent
sections) are based on the approach of performing greedy steps until the problem size
is sufficiently small and then applying some exact algorithm for the remaining instance.
In the Steiner Forest Case the kind of greedy steps we have in mind reduce each single
terminal set to constant size, but the number of terminal sets might not be reduced at
all. On the other hand we do not know how to justify contraction steps that reduce
the number of terminal sets, since melting j of them into a single terminal set might
produce an additive cost of j. However we will now give an approximation algorithm
for the Dense Steiner Forest Problem with approximation ratio 1+O((

∑n
i=1 log(|Si|))/

(
∑n

i=1 |Si|)), where S1, . . . Sn are the given terminal sets. Intuitively this provides good
approximation in case sufficiently many terminal sets are large, and we will make this
precise in this section.

Definition 43 An instance G = (V,E), S1, . . . , Sn of the SFP is called ε-dense’ iff for
all 1 ≤ i ≤ n and S ′ ⊆ Si there exists a vertex v ∈ V \Si such that |N(v)∩S ′| ≥ ε · |S′|.

Lemma 9.5.1 For every ε > 0, every ε-dense instance of the SFP is ε-dense’.

Proof: Let G = (V,E), S1, . . . , Sn be ε-dense, let i ∈ {1, . . . , n} and S ′ ⊆ Si. Then for
all s ∈ S′ it holds |N(s) ∩ (V \ Si)| ≥ ε · |V \ Si|.
From

∑

v∈V \Si
|N(v) ∩ S′| = ∑

s∈S′ |N(s) ∩ (V \ Si)| ≥ |S′| · ε · |V \ Si| we conclude
that there exists at least on v ∈ V \ Si such that |N(v) ∩ S ′| ≥ ε · |S′|. 2

Algorithm Ak:
Input: G = (V,E),S := {S1, . . . , Sn} ⊆ P (V) instance of the ε-Dense SFP
Output: Set of edges F ⊆ E defining a Steiner Forest for S1, . . . , Sn

(0) Let F := ∅ and Si,act := Si, 1 ≤ i ≤ n.
(1) while max1≤i≤n |Si,act| ≥ k do

Pick i ∈ {1, . . . , n} and v ∈ V \ Si,act such as to maximize |N(v) ∩ Si,act|.
Let S̃ := N(v) ∩ Si,act and F := F ∪ {{v, s} : s ∈ S̃}.
Si,act := Si,act \ S̃. Contract S̃ ∪ {v}.

(2) Solve the remaining instance using the Primal-Dual algorithm.

Lemma 9.5.2 At the beginning of every call of the while-loop the sets Si,act are ε-
dense’.

Proof: The initial sets Si,act = Si are ε-dense and therefore ε-dense’. Since in every
iteration the removed set S̃ does not contain elements from

⋃

s∈Si,act\S̃ N(s) \ Si,act,
for every subset S ′ of Si,act \ S̃ existence of a vertex v in V \ Si,act and hence in V \ S ′

150 CHAPTER 9. DENSE PROBLEMS

with many neighbours in S ′ is not disturbed. 2

Analysis of Ak. We will use the following well known lower bound for the cost of
an optimum solution:

opt(G,S) ≥ L :=
n∑

i=1

(|Si| − 1).

Let us now give an estimate for the cost of the solution produced by algorithm Ak. For
1 ≤ i ≤ n let j(i) denote the number of contractions of subsets of Si,act in phase (1)

of the algorithm, and let S1i , . . . , S
j(i)
i be the subsets being contracted. Let Si,rem :=

Si \ (S1i ∪ . . .∪S
j(i)
i) the remaining set of Si. Then the number of edges added to F in

phase (1) is given by

cost1 =
n∑

i=1

j(i)
∑

l=1

|Sli| =
n∑

i=1

(|Si| − |Si,rem|). (9.9)

At the end of phase (1), for 1 ≤ i ≤ n the size of Si is given by

s(i) := j(i) + |Si| −
j(i)
∑

l=1

|Sli| = j(i) + |Si,rem|. (9.10)

Furthermore the size of Si,act after l contractions is bounded by |Si|(1− ε)l, hence

s(i) ≤ j(i) + |Si|(1− ε)j(i). (9.11)

Hence cost2 := the number of edges picked by the 2-Approximation Algorithm in phase
(2) of Ak is bounded as follows:

cost2 ≤ 2 ·
n∑

i=1

(

j(i) + |Si|(1− ε)j(i)
)

.

Let xi,l := |Sli|, 1 ≤ i ≤ n, 1 ≤ l ≤ j(i). An upper bound for the cost of solution
generated by algorithm Ak is then given by the following optimization problem:

max
n∑

i=1

j(i)∑

l=1

xi,j + 2 ·
(

|Si| −
j(i)∑

l=1

xi,l + j(i)

)

s.t.
j(i)∑

l=1

xi,l ≥ |Si| ·
(
1− (1− ε)j(i)

)
, 1 ≤ i ≤ n

= max
n∑

i=1

(

2|Si| −
j(i)∑

l=1

xi,l + 2j(i)

)

s.t.
j(i)∑

l=1

xi,l ≥ |Si| ·
(
1− (1− ε)j(i)

)
, 1 ≤ i ≤ n

9.6. THE DENSE PRIZE COLLECTING STEINER TREE PROBLEM 151

Let savei :=
j(i)∑

l=1

xi,l − 2j(i).1 ≤ i ≤ n. We give a lower bound for savei as a function of

|Si|: Let X =
∑j(i)

l=1 xi,l the total number of terminals removed from Si in phase (1) of
algorithm Ak, then X > (ε|Si| − k)/ε = |Si| − k/ε. Furthermore k > ε · |Si| · (1− ε)j(i)
from which we conclude

j(i) <
log
(

k
ε|Si|

)

log(1− ε) . (9.12)

Hence we get the following bound for the total cost of the solution generated by algo-
rithm Ak:

total cost ≤
n∑

i=1



|Si|+
k

ε
+ 2 ·

log
(

k
ε|Si|

)

log(1− ε)



 =

n∑

i=1



|Si|+
k

ε
+ 2 ·

log
(
ε|Si|
k

)

log
(

1
1−ε

)





=: tc(ε, k) (9.13)

Since d
dk tc(ε, k) = n ·

(

1
ε − 2

log(1
1−ε)
· 1k
)

= 0 for k∗ = 2ε
log(1

1−ε)
and d2

dk2 tc(ε, k
∗) > 0, we

choose k = k∗ and finally obtain

Theorem 50 For each ε > 0 there is a polynomial time approximation algorithm for

the ε-Dense Steiner Forest Problem with approximation ratio 1 +O
(∑n

i=1 log(|Si|)
∑n

i=1 |Si|

)

.

9.6 The Dense Prize Collecting Steiner Tree Problem

In this section we describe a simple polynomial time approximation scheme for the
ε-Dense Prize Collecing Stiener Tree Problem which uses the polynomial time approxi-
mation scheme AKZ for the ε-Dense STP by Karpinski and Zelikovsky as a subroutine,
based on the following fact from [KZ97a].

Theorem 51 [KZ97a] Given an ε-dense instance G = (V,E), S ⊆ V of the Steiner
Tree Problem and some δ > 0, AKZ constructs a Steiner tree T for S in G such that
c(T) ≤ (1 + δ) · (|S| − 1).

We use this fact by sorting terminals in decreasing order with respect to prizes and
then calling algorithm AKZ for initial segments of the sorted sequence:

Algorithm APrize
Input: G = (V,E), S ⊆ V, p:S → Q((+, δ > 0
Output: tree T connecting a subset ST of S in G
Let S = {s1, . . . , sn} such that p(s1) ≥ . . . ≥ p(sn)
For i = 0, . . . , n do

Construct a (1 + δ)- approximative Steiner Tree Ti for Si := {si+1, . . . , sn} in G
using the Karpinski-Zelikovsky algorithm.

Return the solution Tj with best value c(Tj) +
∑j

l=1 p(sl).

152 CHAPTER 9. DENSE PROBLEMS

Lemma 9.6.1 The algorithm APrize is a ptas for the ε-Dense Prize Collecting Steiner
Tree Problem.

Proof: Let T ? denote the optimum prize collecting solution and let S? ⊆ S be the set
it connects, then the cost of this solution is given by

c? := c(T ?) +
∑

s∈S\S?

p(s) ≥ |S?| − 1 +
∑

s∈S\S?

p(s) ≥ |S?| − 1 +

|S\S?|
∑

l=1

p(sl).

Note that each subset Si = {si+1, . . . , sn} of S is ε-dense, hence c(Ti) ≤ (1+ δ) · (|Si|−
1) = (1 + δ) · (n− i− 1) due to theorem 51. For i = |S \ S?| the prize collecting cost
of Ti is

c(Ti) +
i∑

l=1

p(sl) ≤ (1 + δ)(|S?| − 1) +

|S\S?|
∑

l=1

p(sl) ≤ (1 + δ) · c?.

2

9.7 The Dense k-Steiner Tree Problem

Another well known generalization of the Steiner Tree Problem is the k-Steiner Tree
Problem where we are given an instance of the Steiner Tree Problem and a number k
and are asked to construct a minimum cost tree connecting at least k elements from the
terminal set. Note that k does not have to be constant or logarithmic in the number
of terminals. Here we consider the ε-dense version of this problem:

ε-Dense k-Steiner Tree Problem

Instance: Graph G = (V,E) with terminal set S ⊆ V such that each terminal has at
least ε · |V \ S| neighbours in V \ S, a number k ∈ {1, . . . , |S|}.

Solution: Tree T in G connecting at least k terminals from S

Cost: Minimize the number of edges in T .

Lemma 9.7.1 There is a polynomial time approximation scheme for the ε-Dense k-
Steiner Tree Problem.

Proof: Let G be the graph and S the terminal set. Pick an arbitrary subset S ′ of
S of size k. Then S ′ is ε-dense in G, hence the Karpinski-Zelikovsky algorithm AKZ

applied to G,S′, δ returns a Steiner Tree for S ′ in G of cost at most (1+δ) · (|S ′|−1) =
(1 + δ)(k − 1). Since k − 1 is a lower bound for the optimum cost, this method yields
a ptas for the ε-Dense k-STP. 2

9.8. THE DENSE CLASS STEINER TREE PROBLEM 153

9.8 The Dense Class Steiner Tree Problem

The Class Steiner Tree Problem is an important generalization of the Steiner Tree
Problem: Given a graph or finite metric space and a system of pairwise disjoint subsets
S1, . . . , Sn of the vertex set V (called classes), the task is to construct a min-cost tree
containing at least one node from every class. Interestingly, although being defined on
undirected graphs or metric spaces, this problem is at least as hard to approximate
as the well-known Set Cover Problem, by a straight-forward reduction due to Ihler.
Nevertheless, for an ε-dense version of the problem we are able to give a polynomial-
time approximation scheme. Note that for other important special cases of the problem
the complexity status is open. For example it is not known whether a PTAS exists for
the Geometric Class Steiner Tree Problem (i.e. point sets in some IRd for constant d
and some Lp-norm). This section is organized as follows: In subsection 9.8.1 we give
a formal definition of the problem and briefly describe well-known upper and lower
bounds for the general case. In subsection 9.8.2 we describe a PTAS for the ε-Dense
Class Steiner Tree Problem.

9.8.1 Introduction

Let us start with a formal definition of the problem:

Class Steiner Tree Problem

Instance: A graph G = (V,E) with edge weights c:E → IR+ and pairwise disjoint
classes S1, . . . , Sn ⊆ V .

Solution: A connected subgraph T of G containing at least one vertex from every class.

Cost: the cost c(T) =
∑

e∈E(T) c(e) of T .

The following straight-forward hardness result was first observed by Ihler and can be
found as well in [GKR98].

Lemma 9.8.1 There is an L-reduction from the Set Cover Problem to the Class
Steiner Tree Problem with parameters α = β = 1.

Corollary 9.8.1 Unless NP 6= P [log n log logn] there is no polynomial time approxima-
tion algorithm with ratio (1− ε) · log(n) for the Class Steiner Tree Problem.

Proof of Lemma 9.8.1: For a given instance (U,S) of the Set Cover Problem with
universe U = {u1, . . . , un} and set system S = {S1, . . . , Sm} we define an instance of
the Class Steiner Tree Problem as follows: For each set Si we introduce a vertex si
and for each element uj of Si a vertex ui,j being connected to si by an edge of cost 0
(note that for occurrences of an element uj ∈ U in different sets Si and Sl the vertices
ui,j and ul,j are distinct). Furthermore there is an extra vertex r and each set vertex

154 CHAPTER 9. DENSE PROBLEMS

si is connected to r by an edge of cost 1. For each element uj of U there is a class
{ui,j : uj ∈ Si} and furthermore the vertex r builds a single-element class {r}. Each
solution Si, i ∈ J for some J ⊆ {1, . . . ,m} of cost |J | directly gives us a solution of
the same cost for the Class Steiner Tree instance (connect each chosen set to all its
element vertices and to the root), hence α = 1. Indeed here we have equality of the
optimum values. Furthermore, let T be an abritrary solution to the Class Steiner Tree
instance, then T contains r and a subset {si : i ∈ J} of the set vertices. Then the sets
Si, i ∈ J form a set cover of cost |J | = cost of T , hence β = 1. 2

Fortunately, Garg and Konjevod [GKR98] were able to obtain a randomized approxi-
mation algorithm with polylogarithmic performance ratio.

9.8.2 A PTAS for the ε-Dense Case

In this subsection we consider an ε-dense version of the Class Steiner Tree Problem
which is a direct generalization of the ε-Dense Steiner Tree Problem considered by
Karpinski and Zelikovsky in [KZ97a] (cf. section 9.3).

ε-Dense Class Steiner Tree Problem

Instance: Graph G = (V,E), pairwise disjoint classes S1, . . . , Sn ⊆ V such that for
every s ∈ S :=

⋃n
i=1 Si

|N(s) \ S| ≥ ε · |V \ S|.
Solution: Subtree T of G containing at least one node from every class Si.

Cost: c(T) := number of edges of T .

Let us call a class Si neighbour of a vertex v if Si ∩ N(v) is not empty. The idea
of our algorithm is as follows: The density condition directly implies existence of a
vertex v ∈ V \ S which has many classes in its neighbourhood. Now in the first phase
of our algorithm we perform the same kind of picks as in our Dense Steiner Forest
algorithm (cf. section 9.5): We maintain a set of active classes, starting with every
class Si being active. We pick a vertex v with many classes as neighbours and for
each such class Si which is a neighbour of v an element si ∈ Si ∩ N(v). We contract
these vertices, declare the according classes inactive and iterate. This guarantees that
in every iteration we find a vertex v with many active classes in its neighbourhood.
At the end of the first phase of the algorithm we are left with a constant number
of active classes Si (i.e. classes not being involved in any contraction so far) and a
logarithmic number of supervertices ∫ i resulting from contractions. The task is to
choose representatives si of the active classes Si and to construct a Steiner Tree for the
terminal set consisting of the choosen representatives si and the supervertices ∫ j . Note

that there are only
∏

i:Si active |Si| = |V |
O(1) many different choices of representatives,

and for each choice we are left with an instance of the Steiner Tree Problem with
logarithmic number of terminals, which can be solved optimally using the primal-dual

9.8. THE DENSE CLASS STEINER TREE PROBLEM 155

approach (cf. the remark in section 9.5). Since we have picked only logarithmic (in the
number of classes) many Steiner points and the trivial lower bound is number of classes
minus 1, this algorithm yields a PTAS for the ε-Dense Class Steiner Tree Problem. We
are now ready to give a detailed description and analysis of our algorithm.

Algorithm ADCL (DENSE CLASS STEINER)
Input: Graph G = (V,E), classes S1, . . . , Sn, δ > 0
Output: (1 + δ)-approximate Class Steiner Tree T
Initialization:
Ca := {S1, . . . , Sn} (set of active classes)
Choose k := 2

ε
Choose k0 := k0(δ) (will be described in the analysis)

If n ≤ k0 then
For each system of representatives si ∈ Si, 1 ≤ i ≤ n

Compute an optimum Steiner Tree for the instance
consisting of graph G and terminal set {s1, . . . , sn}.

Return the best upon those Steiner Trees.
Phase 1:
while |Ca| ≥ k do

Pick v ∈ V \ S maximizing the cardinality of
N(v, Ca) = {Si ∈ Ca : Si is neighbour of v}.

(Store and contract.)
Let S be the set of all supervertices constructed in phase 1.

Phase 2:
For each choice of representatives si ∈ Si (Si ∈ Ca)

Compute an optimum Steiner Tree T for the terminal set
{si : Si ∈ Ca} ∪ S.

To := a min-cost tree upon those constructed in the for-loop.
Return To.

Analysis. The density condition implies that every contraction in phase 1 of the
algorithm reduces the set of active classes by an ε-fraction. Let Ca(i) be the set of
active classes after i contractions and t be the total number of contractions in phase 1.
Then |Ca(i)| ≤ (1− ε)i · n, hence we have |Ca(i)| ≤ k for i ≥ log(n/k)/ log(1/(1− ε)),
hence

t ≤ 2 · log
(n

k

)

/ log

(
1

1− ε

)

=: tu (upper bound for t) (9.14)

(we assume n ≥ k0 ≥ 2k · 1
1−ε , this implies

2 log(n/k)/ log(1/(1− ε)) ≥ log(n/k)/ log(1/(1− ε))− 1).

Since |S| = t = O(log(n)) and |Ca| ≤ k = O(1) at the end of phase 1, there are
only

∏

Si∈Ca |Si| = O
(
|V |k

)
many choices of systems of representatives for the classes

Si ∈ Ca. Hence each terminal set considered in the for-loop in phase 2 has size bounded
by k + t = O(log(n)), and the according Steiner Tree can be computed in polynomial

156 CHAPTER 9. DENSE PROBLEMS

time using the Dreyfus-Wagner algorithm. This establishes polynomial running time
of the algorithm for fixed k.

We will now compute a bound on the approximation ratio of the tree To computed
by algorithm ADCL. Let T ? denote an optimum Class Steiner Tree for S1 . . . , Sn in G.
Note that To consist of a set of stars ST1, . . . , STt generated by contractions in phase
1 and a set of edges T0 connecting these stars and certain representatives so(j) for the
remaining classes Sj . Now construct graph G′ as follows: Start with graph G and add
the following edges:

(1) for each star STi edges forming a spanning tree for the terminals of STi,

(2) for each inactive class Sl (i.e. class being involved in a contraction in phase 1)
edges from the terminal sl ∈ Sl which was picked to all neighbours of elements
of class Sl in G.

Note that OPT(G′) ≤ OPT(G). An optimum class Steiner tree T ?
G′ for classes Si, 1 ≤

i ≤ n in graph G′ can be obtained as a set of spanning trees T ′i for the sets of terminals
Ri of stars STi, a set of representatives ∫ j for the still active classes Sj and a Steiner
tree T ′ connecting these. Note that the cost of T0 is bounded by the cost of T ′. Hence
we obtain

cost(To)

cost(T ?)
≤ cost(To)

cost(T ?
G′)

=
cost(T0) +

∑t
i=1 cost(STi)

cost(T ′) +
∑t

i=1 cost(T
′
i)
≤
∑t

i=1 cost(STi)
∑t

i=1 cost(T
′
i)

=

∑t
i=1 |Ri|

∑t
i=1(|Ri| − 1)

=

∑t
i=1 |Ri|

(∑t
i=1 |Ri|

)
− t

=
n− |Ca|

n− |Ca| − t
≤ n− k
n− k − t

We know that for t ≥ tu |Ca| ≤ k at the end of phase 1 of the algorithm. Hence we can
upperbound n−k

n−k−t by n−k
n−k−tu . We want to choose k and k0 such that (a) the upper

bound estimate tu in (9.14) is valid and (b) the approximation ratio is at most 1 + δ:

n− k
n− k − tu

≤ 1 + δ ⇐⇒ 0 ≤ δ(n− k)− (1 + δ) · 2 · log(n/k)
log(1/(1− ε))

⇐⇒ δk − 2 · (1 + δ)

log(1/(1− ε)) · log(k) ≤ δn− 2 · (1 + δ)

log(1/(1− ε)) · log(n)

for n > k0. Since the function

f(x) := δ · x − 2 · (1 + δ)

log(1/(1− ε)) · log(x)

is unbounded and monotone increasing for x > 2·(1+δ)
δ·log(1/(1−ε)) , we also have to assure

that k ≥ (2 · (1 + δ))/(δ · log(1/(1− ε))). Hence we choose

k = max

{
2

ε
,

2 · (1 + δ)

δ · log(1/(1− ε))

}

, k0 = 2k · 1

1− ε (9.15)

and finally obtain

Theorem 52 Algorithm ADCL with the choices (9.15) for k and k0 is a PTAS for the
ε-Dense Class Steiner Tree Problem.

Bibliography

[AFK96] Sanjeev Arora, Alan Frieze, and Haim Kaplan. A new rounding procedure
for the assignment problem with applications to dense graph arrangement
problems. In 37th Annual Symposium on Foundations of Computer Sci-
ence, pages 21–30, 1996.

[AKK95] Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time
approximation schemes for dense instances of NP -hard problems. In ACM
Symposium on Theory of Computing, pages 284–293, 1995.

[AKR91] Ajit Agrawal, Philip N. Klein, and R. Ravi. When trees collide: An ap-
proximation algorithm for the generalized steiner problem on networks. In
ACM Symposium on Theory of Computing, pages 134–144, 1991.

[All99] Eric Allender. Levin’s lower bound theorem. Technical report, (unpub-
lished, online available on E. Allender’s homepage), 1999.

[Aro97] Arora. Nearly linear time approximation schemes for euclidean TSP and
other geometric problems (one page only). In RANDOM: International
Workshop on Randomization and Approximation Techniques in Computer
Science. LNCS, 1997.

[Aro98] Sanjeev Arora. Polynomial time approximation schemes for Euclidean
traveling salesman and other geometric problems. Journal of the ACM,
45(5):753–782, 1998.

[BBF95] V. Bafna, P. Berman, and T. Fujito. Constant ratio approximations of
the weighted feedback vertex set problem for undirect graphs. In J. Sta-
ples, P. Eades, N. Katoh, and A. Moffat, editors, ISAAC Algorithms and
Computation, pages 142–151, Berlin

”
1995. Springer.

[BD97] A. Borchers and D.-Z. Du. The k-steiner ratio in graphs. SIAM J. Com-
puting 26, pages 857–869, 1997.

[Ber01] P. Berman. Personal communication, 2001.

[BF99] C. Bazgan andW. Fernandez de la Vega. A polynomial time approximation
scheme for dense Min2SAT. In Proc. 12th Int. Symp. on Fundamentals of

157

158 BIBLIOGRAPHY

Computation Theory, number 1684 in Lecture Notes in Comput. Sci., pages
91–99. Springer-Verlag, 1999.

[BfHW00] H.L. Bodlaender, M.R. fellows, M.T. Hallet, and H.T. Wareham. The
hardness of perfect phylogeny, feasible register assignment and other prob-
lems on thin colored graphs. Theoretical Computer Science, 244:167–188,
2000.

[BG94] Richard Beigel and Judy Goldsmith. Downward separation fails catas-
trophically for limited nondeterminism classes. In Structure in Complexity
Theory Conference, pages 134–138, 1994.

[BK98a] P. Berman and M. Karpinski. On some tighter inapproximability results.
In Electronic Colloquium on Computational Complexity (ECCC) 5(29),
1998.

[BK98b] P. Berman and M. Karpinski. On some tighter inapproximability results,
further improvements. In Electronic Colloquium on Computational Com-
plexity (ECCC) 5(65), 1998.

[BK03] P. Berman and M. Karpinski. Improved approximation lower bounds on
small occurrence optimization. In Electronic Colloquium on Computational
Complexity (ECCC) 10(008), 2003.

[Blu67] M. Blum. A machine-independent theory of the complexity of recursive
functions. Journal of the ACM, 14(2):322–336, 1967.

[Bor69] A. Borodin. Complexity classes of recursive functions and the existence of
complexity gaps. In STOC, 1969.

[Bor72] A. Borodin. Computational complexity and the existence of complexity
gaps. Journal of the ACM, 19(1):158–174, 1972.

[BP89] M. Bern and P. Plassman. The steiner tree problem with edge lengths 1
and 2. Information Processing Letters 32, pages 171–176, 1989.

[BR94] Piotr Berman and V. Ramaiyer. Improved approximations for the steiner
tree problem. Journal of Algorithms, pages 381–408, 1994.

[BY98] R. Bar-Yehuda. One for the price of two: A unified approach for approxi-
mating covering problems. To appear in Algorithmica, 1998.

[CC97] L. Cai and J. Chen. On fixed-parameter tractability and approximability
of np optimization problems. Journal of Computer and System Sciences,
54(3):465–474, 1997.

[CC02] M. Chlebikov and J. Chlebikova. Approximation hardness of the steiner
tree problem on graphs. In Proceedings of 8th Scandinavian Workshop on
Algorithm Theory (SWAT), pages 170–179. LNCS 2368, 2002.

BIBLIOGRAPHY 159

[CCC+98] Moses Charikar, Chandra Chekuri, Toyat Cheung, Zuo Dai, Ashish Goel,
Sudipto Guha, , and Ming Li. Approximation algorithms for directed
steiner problems. In Proceedings of the Ninth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 192–200, January 1998.

[CCDF95] L. Cai, J. Chen, R.G. Downey, and M.R. Fellows. On the structure of
parameterized problems in np. Inf. Computing, 123(1):38–49, 1995.

[CGH+88] J. Cai, T. Gundermann, J. Hartmanis, L.A. Hemachandra, V. Sewelson,
K. Wagner, and G. Wechsung. The boolean hierarchy i: Structural prop-
erties. SIAM Journal on Computing, 17(6):1232–1252, 1988.

[CKK+99] M. Charikar, J. Kleinberg, R. Kumar, S. Rajagopalan, A. Sahai, and
A. Tomkins. Minimizing wirelength in zero and bounded skew clock trees.
In Proc. 10th Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 177–
184, 1999.

[CKST96] Pierluigi Crescenzi, Viggo Kann, Riccardo Silvestri, and Luca Trevisan.
Structure in approximation classes. Electronic Colloquium on Computa-
tional Complexity (ECCC), 3(066), 1996.

[CP91] P. Crescenzi and A. Panconesi. Completeness in approximation classes.
Inform. and Comput., 93:241–262, 1991.

[CT97a] M. Cesati and L. Trevisan. On the efficiency of polynomial time approxi-
mation schemes. Information Processing Letters, 64(4):165–171, 1997.

[CT97b] Marco Cesati and Luca Trevisan. On the efficiency of polynomial time
approximation schemes. Electronic Colloquium on Computational Com-
plexity (ECCC), 4(1), 1997.

[CT00] Pierluigi Crescenzi and Luca Trevisan. On approximation scheme pre-
serving reducibility and its applications. Theory of Computing Systems,
33(1):1–16, 2000.

[DF92] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-
pleteness. In Congr. Num. 87, pages 161–187, 1992.

[DF93] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-
pleteness iii: Some structural aspects of the w-hierarchy. In Complexity
Theory: Current Research, pages 166–191, 1993.

[DF95a] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-
pleteness i: Basic theory. SIAM Journal on Computing, 24:873–921, 1995.

[DF95b] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-
pleteness ii: On completeness for w[1]. Theoretical Computer Science,
141:109–131, 1995.

160 BIBLIOGRAPHY

[dlVK00] W. Fernanadez de la Vega and Marek Karpinski. Polynomial time ap-
proximation of dense weighted instances of MAX-CUT (revised version).
Technical Report 85214-CS, 2000.

[FBL96] Fernández-Baca and Lagergren. On the approximability of the steiner tree
problem in phylogeny. In ISAAC, pages 65–74, 1996.

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. Journal of
the ACM, 45(4):634–652, 1998.

[FK99] W. Fernandez de la Vega and M. Karpinski. On the approximation hard-
ness of dense TSP and other path problems. Information Processing Let-
ters, 70(2):53–55, 1999.

[GGP+94] M.X. Goemans, A.V. Goldberg, S.A. Plotkin, D.B. Shmoys, E. Tardos, and
D.P. Williamson. Improved approximation algorithms for network design
problems. In Symposium on Discrete Algorithms, pages 223–232, 1994.

[GKR98] Garg, Konjevod, and Ravi. A polylogarithmic approximation algorithm
for the group steiner tree problem. In SODA: ACM-SIAM Symposium on
Discrete Algorithms, 1998.

[GW92] Goemans and Williamson. A general approximation technique for con-
strained forest problems. In SODA: ACM-SIAM Symposium on Discrete
Algorithms, 1992.

[Hak71] S.L. Hakimi. Steiner’s problem in graphs and its implications. Networks,
1:113–133, 1971.

[Has97] J. Hastad. Some optimal inapproximability results, 1997.

[HP99] S. Hougardy and H.-J. Prömel. A 1.598 approximation algorithm for the
steiner problem in graphs. In SODA: ACM-SIAM Symposium on Discrete
Algorithms, 1999.

[HRS00] Refael Hassin, R. Ravi, and F. S. Salman. Approximation algorithms for
a capacitated network design problem. In APPROX, pages 167–176, 2000.

[Jai98] Kamal Jain. Factor 2 approximation algorithm for the generalized steiner
network problem. In IEEE Symposium on Foundations of Computer Sci-
ence, pages 448–457, 1998.

[JMVW99] Jain, Mandoiu, Vazirani, and Williamson. A primal-dual schema based
approximation algorithm for the element connectivity problem. In Sympo-
sium on Discrete Algorithms, 1999.

[Kad88] J. Kadin. The polynomial time hierarchy collapses if the booelan hierarchy
collapses. SIAM Journal on Computing, 17(6):1263–1282, 1988.

BIBLIOGRAPHY 161

[Kar72] R. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103, 1972.

[Kar00] Marek Karpinski. Polynomial time approximation schemes for some dense
instances of NP-hard optimization problems (extended version). Technical
Report 85213-CS, 2000.

[KF84] C.M.R. Kintala and P. Fischer. Refining nondeterminism in relativized
complexity classes. SIAM Journal on Computing, 13:329–337, 1984.

[Kha79] L.G. Khachiyan. A polynomial algorithm in linear programming (in rus-
sian). Doklady Akademii Nauk SSSR, 244:1093–1096, 1979.

[KM96] Sanjeev Khanna and Rajeev Motwani. Towards a syntactic characteriza-
tion of PTAS. pages 329–337, 1996.

[KMSV94] Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh V. Vazirani.
On syntactic versus computational views of approximability. In IEEE
Symposium on Foundations of Computer Science, pages 819–830, 1994.

[KST96] Sanjeev Khanna, Madhu Sudan, and Luca Trevisan. Constraint satisfac-
tion: The approximability of minimization problems. Electronic Collo-
quium on Computational Complexity (ECCC), 3(064), 1996.

[KZ97a] Marek Karpinski and Alexander Zelikovsky. Approximating dense cases of
covering problems. Electronic Colloquium on Computational Complexity
(ECCC), 4(004), 1997.

[KZ97b] Marek Karpinski and Alexander Zelikovsky. New approximation algo-
rithms for the steiner tree problems. Journal of Combinatorial Optimiza-
tion, 1:47–65, 1997.

[KZ97c] Marek Karpinski and Alexander Zelikovsky. New approximation algo-
rithms for the steiner tree problems. Journal of Combinatorial Optimiza-
tion, 1:47–65, 1997.

[Lev71] A. Y. Levin. Algorithm for the shortest connection of a group of graph
vertices. Sov. Math. Dokl., 12:1477–1481, 1971.

[Lev74] L.A. Levin. Computational complexity of functions. Complexity of Algo-
rithms and Computations, Mir (Moscow), pages 174–185, 1974.

[Lev96] L.A. Levin. Computational complexity of functions. Theoretical Computer
Science, 157(2):267–271, 1996.

[Mit99] Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal sub-
divisions: A simple polynomial-time approximation scheme for geomet-
ric TSP, k-MST, and related problems. SIAM Journal on Computing,
28(4):1298–1309, 1999.

162 BIBLIOGRAPHY

[MM69] E.M. McCreight and A.R. Meyer. Classes of computable functions defined
by bounds on computation. In STOC, 1969.

[PY91] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43:425–440,
1991.

[PY93] C.H. Papadimitriou and M. Yannakakis. On limited nondeterminsm and
the complexity of the v-c dimension. In Proceedings 8th Structure in Com-
plexity Theory Conference, pages 12–18, 1993.

[Rav94] R. Ravi. A primal-dual approximation algorithm for the steiner forest
problem. Information Processing Letters, 50(4):185–190, 1994.

[RMR+01] R. Ravi, Madhav V. Marathe, S. S. Ravi, Daniel J. Rosenkrantz, and Harry
B. Hunt III. Approximation algorithms for degree-constrained minimum-
cost network-design problems. Algorithmica, 31(1):58–78, 2001.

[RS] S. Rao and W. Smith. Improved approximation schemes for geometrical
graphs via.

[RW95] Ravi and Williamson. An approximation algorithm for minimum-cost
vertex-connectivity problems. In SODA: ACM-SIAM Symposium on Dis-
crete Algorithms, 1995.

[RZ00a] G. Robins and A. Zelikovsky. Improved steiner tree approximation in
graphs. In Proc. 11th Ann. ACM-SIAM Symp. on Discrete Algorithms,
pages 770–779. ACM-SIAM, 2000.

[RZ00b] Gabriel Robins and Alexander Zelikovsky. Improved steiner tree approxi-
mation in graphs. In Symposium on Discrete Algorithms, pages 770–779,
2000.

[Sho77] N.Z. Shor. Cut-off method with space extension in convex programming
problems. Cybernetics, 13:94–96, 1977.

[TFW99] Takeshita, Fujito, and Watanabe. On primal-dual approximation algo-
rithms for several hypergraph problems. IPSJ Math. Modeling and Prob-
lem Solving (23-3), 1999.

[Thi01] M. Thimm. On the approximability of the steiner tree problem. In Proc.
of the 26th Int. Symp., MFCS 2001, LNCS 2136, pages 678–689, 2001.

[TM80] H. Takahashi and A. Matsuyama. An approximate solution for the steiner
problem in graphs. Math. Jap., 24:573–577, 1980.

[TR02] Eva Tardos and Tim Roughgarden. How bad is selfish routing ? Journal
of the ACM, 49(2):236–259, 2002.

BIBLIOGRAPHY 163

[Zel93] Alexander Zelikovsky. An 11/6-approximation algorithm for the network
Steiner problem. Algorithmica, 9:463–470, 1993.

[Zel95] Alexander Zelikovsky. Better approximation bounds for the network and
euclidean steiner tree problems. Manuscript, 1995.

[Zel97] Alexander Zelikovsky. A series of approximation algorithms for the acyclic
directed steiner tree problem. Algorithmica, 18(1):99–110, May 1997.

[ZM01] A. Zelikovsky and I. Mandoiu. Practical approximation algorithms for
zero- and bounded-skew trees. In Proc. 12th Ann. ACM-SIAM Symp. on
Discrete Algorithms, pages 407–416, 2001.

164 BIBLIOGRAPHY

Summary

In this thesis we study the approximation complexity of the Steiner Tree Prob-
lem and related problems as well as foundations in structural complexity theory. We
give a survey on the Steiner tree Problem in chapter 5, obtaining lower bounds for
approximability of the (1, 2)-Steiner Tree Problem by combining hardness results of
[BK98a, BK98b] with reduction methods by [BP89].

We present approximation algorithms for the Steiner Forest Problem in graphs
and bounded hypergraphs (section 6.4), for the Prize Collecting Steiner Tree Problem
and related problems where prizes are given for pairs of terminals in sections 6.5-6.7.
These results are based on the Primal-Dual method and the Local Ratio framework of
Bar-Yehuda [BY98].

We study the Steiner Network Problem in chapter 7 and obtain combinatorial ap-
proximation algorithms with reasonable running time for two special cases, namely the
Uniform Uncapacitated Case and the Prize Collecting Uniform Uncapacitated Case.
For the general case, Jain [Jai98] gave an approximation algorithm based on the Ellip-
soid Method due to [Kha79], resulting in very high running times.

We consider Directed Steiner Tree Problems in chapter 8, obtaining approximation
schemes with ratio O(nε) and running time O(n1/ε) for the Directed Zero Skew Tree
Problem and the DirectedWeighted Path Problem. These results are based on methods
developed for the Directed Steiner Tree Problem by Zelikovsky [Zel97] and Charikar
et al. [CCC+98].

We consider Dense Steiner problems in chapter 8, obtaining polynomial time ap-
proximation schemes for the Dense Prize Collecting Steiner Tree Problem, Dense k-
Steiner Problem and the Dense Class Steiner Tree Problem based on the methods of
Karpinski and Zelikovsky for approximatong the Dense Steiner Tree Problem [KZ97b].
We also apply the methods to the log-dense Steiner Tree Problem, which can be seen
as a step towards a PTAS for the Everywhere-Dense Steiner Tree Problem. For the
Dense Steiner Forest Problem we obtain improved approximation ratio for the case
when the number of terminals is sufficiently large compared to the number of terminal
sets.

We consider Fixed Parameter Complexity in chapter 3. After giving an introduction
into this field we consider structural aspects of the W-Hierarchy. We prove a Speedup
Theorem for the classes FPT and SP. In section 3.4 we deal with Levin’s Lower Bound
Theorem [Lev96, Lev74]. We prove a version of the lower bound theorem for the class
SP in section 3.4.2 and for Randomized Space Complexity in section 3.4.3.

We consider structural issues in chapter 4. We obtain a new type of PTAS-
preserving reductions that provide some structure inside the class PTAS (section 4.1).
We study the dependence of the running time of approximation schemes on the ap-
proximation ratio in section 4.2. We show existence of problems in PTAS for which
no approximation scheme has running time recursive in ε. We separate PTAS from

BIBLIOGRAPHY 165

EPTAS (section 4.3), assuming the existence of problems in NP with superpolynomial
lower bound for deterministic time complexity. Separation under the weaker assump-
tion P 6= NP is unknown. Cesati and Trevisan [CT97a] obtained the same separation
result under assumtion FPT 6= W [P]. In section 4.4 we construct a recursive oracle
under which our assumption becomes true and theirs becomes false. This implies that
using relativizing proof techniques one can not show that our assumption implies theirs.
The oracle construction involves a counting argument in order to assure that when per-
forming the next step of the oracle construction previously satisfied requirements do
not get injured.

