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Summary 
Cofilin1, an actin depolymerizing factor, is a member of the ADF/Cofilin family. The 

ADF/Cofilin family members carry a conserved nuclear translocation signal (NTS) 

comprising the core amino acid sequence KKRKK. In vitro studies showed wt-Cofilin1 

in the cytoplasm and the nucleus, whereas Cofilin1 NTS mutants were restricted to the 

cytoplasm. In this thesis the physiological consequences of a mutation of the NTS to 

KTRTK were studied with the help of a mouse line. Even though Cofilin2, ADF and 

Cofilin1 share similar biochemical properties, they differ in regulation and expression 

pattern and are not functionally identical.  

Cofilin1KTRTK/KTRTK mutants were not born but viable until the time of birth. Homozygous 

KTRTK-Cofilin1 mutants showed an exencephalic phenotype, a cranial neural tube 

closure defect, apparent at embryonic day 10 (E10). Massive malformations of brain 

structures, seemingly a defect in the midbrain and diencephalon development, 

resulting in characteristics of an everted brain were observed. In vitro neurons 

displayed increased branching activity and astrocytes indicated a delay in maturation. 

Analysis of mouse embryonic fibroblasts (Mefs) derived from Cofilin1KTRTK/KTRTK 

embryos revealed distinct disturbances in the progression of the G2/M phase of the 

cell cycle, significantly reduced proliferation rates and morphological differences in the 

form of multinucleate cells and increase in cell size as well. FACS analyses observed 

changes in G- and F-actin ratios in Cofilin1KTRTK/KTRTK mutant cells. This could be 

responsible for cytokinesis and growth defects in Mefs and aberrant brain 

development. Actin assays showed reduced depolymerizing activity of KTRTK-

Cofilin1, confirming that KTRTK-Cofilin1 was not fully functional. Protein level analysis 

revealed the decrease of KTRTK-Cofilin1 during embryonic development. Decrease 

did not result from transcriptional modifications, changed protein stability or altered 

solubility. Microarray data showed alterations in gene expression of extracellular matrix 

proteins and actin isoforms for instance. Acquired data indicates that the subcellular 

location of Cofilin1 is essential for maintenance of the cell homeostasis. Nucleo- 

cytoplasmic shuffling of actin, makes Cofilin1 a critical regulator of transcriptional 

activity.  

Multiple proof experiments lead to the solid conclusion that Cofilin1 is connected to 

disparate and highly complex events for embryonic development, morphogenesis and 

cellular functionality.   
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1.1 The cytoskeleton 

 

The cytoskeleton of eukaryotic cells comprises different protein polymers. They 

generate cell movement and provide mechanical support for the cell. Cells have three 

different types of cytoskeletal protein families: microtubules, intermediate filaments and 

actin filaments. Each of these polymers is made up of an indefinite number of subunits 

which form filaments that are dynamic. The cytoskeletal polymers share general 

features though each is suited for specific tasks in the cell because of the unique 

characteristics they carry (Lewin et al., 2007). Dynamic rearrangement of actin 

filaments is essential for their involvement in motility, vesicle trafficking, maintenance 

and change of cellular shape and structure, cytokinesis, endo- and exocytosis, 

synaptic plasticity, cell signaling and chromosome congression (Jordan and Wilson, 

1998; Lenart et al., 2005).  

 

1.2 Actin 

 

Actin is highly conserved and the most abundant protein in many eukaryotic cells. 

Multiple actin genes for varying isoforms were found in higher organisms that are 

differentially expressed in various tissues and also differ in function (e.g. mammalians 

have six actin genes, alpha actins are found in muscle cells, whereas beta and gamma 

isoforms are prominent in non-muscle cells like Mefs) (Pollard et al., 1994; Khaitlina, 

2001). Actin-like proteins could also be found in bacteria. These highly conserved 

structural homologs of actin indicate that the prokaryotic cytoskeleton is similar to the 

eukaryotic cytoskeleton (Campbell and Mullins, 2007; Orlova et al., 2007). In the cell 

globular (G-) actin and filamentous (F-) actin exist in a reversible equilibrium. G- actin, 

the actin monomer, is a 42 kDa protein that polymerizes into F-actin (Hofmann and de 

Lanerolle, 2006). G-actin carries an intrinsic ATPase activity, hydrolyzing ATP after 

polymerization. The monomer consists of four subdomains (1-4), two subdomains (1+2 

and 3+4) form a lobe (Figure 1). The lobes are connected by extensions between 

subdomain 1 and 3. Subdomain 2 comprises the DNase I binding loop. This 

characteristic allows the specific identification of G-actin. In the form of F-actin the 

subdomain 2 is blocked and DNase I is unable to bind. In the center of the actin 
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monomer molecule a nucleotide (ADP or ATP) and a divalent ion (Ca2+ or Mg2+) can 

be bound (Figure 1). The binding of nucleotide and ion to actin is reversible. 

  

  
 

Fig. 1: Ribbon structure of uncomplexed actin in the ADP state (A) and crystal structure of the 

actin monomer binding ATP (B) A: Ribbon representation of the structure of uncomplexed actin in 

the ADP state. The four subdomains of actin are represented in different colors: subdomains 1 

(purple), 2 (green), 3 (yellow), and 4 (red). The DNase I binding loop, which is folded as a helix in this 

structure, is located toward the upper part of subdomain 2. ADP is bound at the center of the molecule, 

where the four actin subdomains meet.  Four Ca2+ ions bound to the actin monomer in the crystals 

are represented as red dots. One of the Ca2+ ions, termed primary or catalytic, is bound in close 

association with the nucleotide. The other three Ca2+ ions are bound to subdomains 1, 2, and 4 on 

the surface of the molecule and may correspond to secondary cation-binding sites of actin (Otterbein 

et al., 2001). B: Crystal structure of the uncomplexed actin in the ATP state showing the polarized 

structure of the monomer. The ends are termed barbed end (+) (between subdomain 1 and 3) and 

pointed end (-) (between subdomains 2 and 4) (Kabsch et al., 1990). 

 

F-actin and G-actin reorganize in response to intracellular and extracellular signals. 

The formation of actin filaments, by polymerization of actin monomers, can be divided 

into four steps: 1. activation of the monomer (substitution of Ca2+ for Mg2+ and 

conformational changes); 2. nucleation (formation of a trimeric ATP-actin nucleus to 

increase the probability of filament growth); 3. elongation (extension of the polymers); 

and 4. annealing (joining of two filaments at the ends) (Pollard and Cooper, 1986). 

Actin filaments are double stranded, right handed helices with approximately 8 nm in 
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diameter. The filamentous structure is stabilized by extensive hydrophobic contact and 

hydrogen bonds between actin subunits (Pollard et al., 1994; Sheterline et al., 1998; 

Falck, 2004).  

Globular actin subunits align in a head-to-tail manner giving the filament a polarized 

structure in consequence of the polar structure of the monomers. In analogy of the 

filament the ends are termed barbed end (+) and pointed end (-). The ends differ in 

their elongation rate. Elongation of F-actin with ATP-actin is favored at the barbed end, 

while dissociation of ADP-actin at the pointed end is more rapid (Figure 2). The polarity 

of F-actin is crucial for directional transport of cargo (e.g. myosin motors transport 

organelles along the uniformly polarized actin filaments, which form bundles that form 

tracks that for the movement), establishing polarity and actin assembly (Evans and 

Bridgman, 1995; Tabb et al., 1998; Pollard and Borisy, 2003; Pollard and Cooper, 

2009).  

 

Within an actin filament each monomeric subunit is encased by four other monomers: 

one on each side on the same strand (longitudinal contacts) and two on the opposite 

strand (lateral contacts). This structure provides a big integral strength to the filament.  
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Fig. 2: Assembly of actin filaments. ATP-actin subunits preferentially bind to the fast growing 

barbed end (+) of an actin filament, they can also bind to the other, pointed end (-), though at a 

slower rate. After binding to the barbed end of a filament the actin subunit rapidly hydrolyzes its bound 

ATP into ADP and phosphate (Pi) and slowly releases the hydrolyzed phosphate. ADP-actin filaments 

disassemble from the pointed end. Released ADP-actin monomers undergo nucleotide exchange. 

ATP-actin monomers can be used for a new cycle of assembly. This flux is termed treadmilling (Kuhn 

and Pollard, 2005). 
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1.2.1 Actin cytoskeleton 

 

The state of polymerization of actin and organization of actin in the cytoplasm are 

tightly regulated processes that respond to extracellular signals (Jaffe and Hall, 

2005).In vivo the concentration of actin in the cytoplasm as well as in the nucleus, is 

above the critical concentration for polymerization. The polymerization process in the 

cytoplasm is regulated by a vast number of actin-binding proteins. Actin is regulated in 

by nucleating monomers, crosslinking, bundling as well as severing of filaments, 

including filament branching and sequestering, all processes regulating actin 

polymerization and depolymerization (Hofmann, 2009).   

 

1.2.1.1 Actin-binding proteins 
 

Acting-binding proteins (ABPs) are essential for the regulation of actin dynamics and 

their organization into functional higher order networks (Winder and Ayscough, 2005). 

ABPs are classified according to their functions, furthermore a distinction between 

monomer binding and filament binding proteins is made (Figure 3). 

 

1.2.1.1.1 Monomer binding proteins 

Monomer binding 

The availability of actin monomers is required to be tightly regulated, for their need in 

rapid growth and reorganization of actin filaments. Over 25 monomer binding proteins 

are identified in mammalian cells (Winder and Ayscough, 2005). In many higher 

eukaryotic cells, the two major actin monomer binding proteins are profilin and 

thymosin β4. They form 1:1 ratio complexes with actin monomers, while thymosin β4 

inhibits spontaneous polymerization of G-actin and prevents the elongation of existing 

filaments at both ends, profilin catalyzes the exchange of ADP for ATP and thus 

recycling ATP-actin subunits to the monomer pool which are then ready to be used for 

assembly (Pollard and Borisy, 2003). 
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Nucleation 

Nucleation is the first step in the polymerization of new actin filaments; new filaments 

can be formed on the side of existing filaments or by severing of preexisting filaments. 

Two primary regulators of nucleation are the Arp2/3 complex and members of the 

formin family.  

The Arp2/3 complex binds G-actin and effectively forms a stable trimer and nucleus for 

filament elongation. WASP activates the Arp2/3 complex by inducing conformational 

changes and delivering the first actin monomer of the daughter filament (Padrick et al., 

2011). The pointed end is capped by the Arp2/3 complex thus only allowing elongation 

of the filament at the barbed end. Profilin also binds to G-actin, in consequence 

preventing nucleation by occupying an actin-actin contact site. Thereby, profilin 

sequesters monomeric actin from the G-actin pool.  

 

 
 

Fig. 3: Overview of actin binding proteins regulating the actin cytoskeleton. Different classes of 

ABPs with various functions involved in the assembly, disassembly and the regulation of the  actin 

cytoskeleton are shown (Winder and Ayscough, 2005).  
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The mechanisms of elongation and nucleation for formins are unlike those of the 

Arp2/3 complex. Formins form a complex with two G-actin monomers and stay 

associated with the barbed end of the filament, while the addition of further monomers 

occurs at the barbed end. Formins nucleate non-branching, linear structures, whereas 

Arp2/3 complexes nucleate branching actin arrays (Lewin et al., 2007).  

 

1.2.1.1.2 Filament binding proteins 

Crosslinking and bundling 

Higher-order structures and actin networks are indispensable for the shape and 

function of cells. The higher-order structures of filamentous actin are formed by 

crosslinking proteins. Transgelin, an actin cross-linking/gelling protein, is found in 

fibroblasts and smooth muscle. In vitro assays showed that it binds directly to actin 

filaments and converts the loose, random distribution of filamentous actin into a 

tangled, cross-linked meshwork (Shapland et al., 1993). In filopodia fascin is the main 

actin filament bundling protein. In addition to two actin binding sites, it makes 

secondary contacts with other actin filaments in the bundle (Jansen et al., 2011). The 

parallel or antiparallel alignment of F-actin into linear arrays is called actin bundling as 

found in microvilli, whereas among others, the orthogonal linking of actin filaments is 

called crosslinking and forms actin meshes (Winder and Ayscough, 2005; Lewin et al., 

2007). 

Cytoskeletal linkers and membrane anchors 

These proteins are of great significance for the cell by interconnecting different 

cytoskeletal elements and connecting actin to the membrane or membrane proteins. 

This group of proteins is of great importance in the integration of structure and 

maintenance of cell integrity. Membrane binding proteins as dystrophin and vinculin 

connect the actin cytoskeleton to cell adhesion receptors (dystroglycan or integrin), 

whereas plectin, a protein for interconnecting different cytoskeletal elements, links 

actin to microtubules and intermediate filaments (Winder and Ayscough, 2005).   

 



1. Introduction 
___________________________________________________________________ 

 
9 

Capping 

Capping proteins determine the length of actin filaments. The length of an actin filament 

influences its mechanical properties, e.g. short actin filaments are less flexible. While 

gelsolin and tensin block the addition of monomers to the barbed end thus decreasing, 

the overall length of the filament, pointed end cappers reduce the dissociation of 

monomers from the pointed end, leading to rapid filament elongation (Winder and 

Ayscough, 2005; Lewin et al., 2007).   

Contracting 

Myosins are actin-dependent motors, using ATP hydrolysis to generate movement and 

force along actin filaments (Lewin et al., 2007). Actin filaments are used as tracks to 

move cargo. The majority of myosins moves from the pointed end to the barbed end 

of the actin filament (Winder and Ayscough, 2005).  

Stabilizing, depolymerizing and severing 

Severing and depolymerizing proteins regulate actin filament dynamics. Strictly 

regulated disassembly of actin filaments is necessary to maintain a dynamic turnover 

of the actin cytoskeleton. Severing increases the number of filament ends for assembly 

and disassembly while depolymerization is necessary to maintain a pool of actin 

monomers. Tropomyosins, a highly conserved and important family of ABPs, bind 

along the length of the filament and stabilize the filament against depolymerization, as 

well as gelsolin severing. Tropomyosins also regulate the interaction of myosin with 

the actin filament. Gelsolin, the most potent actin filament severing protein, binds to 

the side of an actin filament and changes the actin conformation. Upon severing, 

gelsolin remains attached to the barbed end of the filament as a cap. In consequence, 

short actin filaments that can not reanneal at their barbed ends are generated (Sun et 

al., 1999). The best characterized protein family responsible for actin depolymerization 

is the ADF (actin depolymerizing factor)/Cofilin family (Winder and Ayscough, 2005). 
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1.2.2 Actin in the nucleus 

 

Actin has been localized in the cytoplasm as well as in the nucleus. Along with actin, 

growing evidence for actin-related proteins (Arps) in the nucleus was found (Cairns et 

al., 1998; Harata et al., 1999; 2000; 2002) (Table 2).  

Ohnishi et al. were one of the first researchers to report the presence of actin in calf 

thymus cell nuclei as early as 1963 (Ohnishi et al., 1963; Ohnishi et al., 1964). 

While the cytoplasmic functions of actin are well established, the role of actin in the 

nucleus was not clear and controversial for years (Pederson and Aebi, 2002). In recent 

years more and more light has been shed on the function of nuclear actin, dismissing 

the idea of actin being an artefact in the nucleus.  

Actin lacks a nuclear translocation signal, but putative nuclear export sequences were 

identified (Rando et al., 2000), weakening the initially anticipated theory of nuclear 

actin being an artefact only. 

No actin-specific import receptor has been identified so far. With a size of 42 kDa, actin 

is unable to pass freely through the nuclear pores. Therefore it was suggested that 

proteins functioning as chaperones are needed to mediate the transport of actin into 

the nucleus under conditions promoting translocalization of actin from the cytoplasm. 

Cofilin1, a depolymerizing factor, contains a nuclear translocation sequence and enters 

the nucleus through the import receptor importin β. A number of other actin- binding 

proteins (ABPs) have been shown to enter the nucleus either through importin β or 

through yet unidentified import pathways. Bound to the chaperones, actin is also 

transported to the nucleus upon nuclear translocation via the import receptor importin 

β (Hofmann, 2009; Bamburg et al., 2010).   

A difference in the immunochemical signature of nuclear and cytoplasmic actin in 

mammalian cells has been reported (Pederson and Aebi, 2002). It has been 

established that the polymeric forms of actin in the nucleus are different from those in 

the cytoplasm (Hofmann and de Lanerolle, 2006).  

Phalloidin, a F-actin specific staining reagent, that binds to actin filaments of a 

minimum size of seven monomers (Visegrady et al., 2005), does not stain actin in the 

nucleus indicating that, either nuclear actin consist of less than seven monomers in 
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length or has a different structure that impairs the binding of phalloidin. However, using 

monoclonal antibodies specifically recognizing G-actin, monomeric actin in the nucleus 

could be identified (Gonsior et al., 1999). After the treatment of cells with miscellaneous 

reagents (e.g. DMSO) actin filaments could be detected in the nucleus by phalloidin 

staining (Sanger et al., 1980), suggesting that filaments longer than seven monomers 

in length can be formed or that structural changes allowing the binding of phalloidin 

take place. Nuclear actin has been assigned various functions.  

Over the years the existence of nuclear actin could be proven in a variety of species 

and cell types (Table 1). 

 

Species and/or cell type Reference 
Plants  
Allium cepa (Cruz et al., 2008) 
Insects  
Drosophila melanogaster (Sauman and Berry, 1994) 
Amphibians  
Xenopus laevis (Merriam and Hill, 1976) 
Birds  
Duck erythroblasts (Maundrell and Scherrer, 1979) 
Chicken liver (Crowley and Brasch, 1987) 
Mammalian cell types  
Thymus cells (Ohnishi et al., 1963; Ohnishi et al., 1964) 
Liver cells (Douvas et al., 1975) 
Epithelial cells (Lestourgeon et al., 1975) 
Myoblasts (Paulin et al., 1976) 
Kidney cells (Pagoulatos and Yaniv, 1978) 
Ovary cells (Brunel and Lelay, 1979) 
Lymphocytes (Nakayasu and Ueda, 1983) 
Neural cells (Milankov and De Boni, 1993; Sahlas et al., 1993; 

Amankwah and De Boni, 1994) 
Oocytes (Funaki et al., 1995) 
 
Table 1: Selected list of species and cell types in which nuclear actin has been identified 
(modified from Hofmann, 2009) 

 

 

The vast number of findings of nuclear actin in the mammalian species indicates that 

nuclear actin is also of importance and can also be found in murine cells. 
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In the last years actin has been shown to be involved in several nuclear processes 

such as RNA processing and export, intranuclear movement of euchromatin and 

nuclear structural maintenance (Figure 4) (Hofmann, 2009). Actin polymerization and 

translocation to the nucleus are strictly regulated processes involving a number of 

different proteins and signaling cascades. 

 

 
 

Fig. 4: Proposed nuclear functions of actin. (1) Assembly, stabilization, and connection of nuclear 

envelope through interactions of actin with emerin and lamin A. (2-4) Actin facilitated intranuclear 

chromosome movement. (2) Movement of chromosomes away from heterochromatin after activation 

of transcription. (3) Chromosomal reorganization during transcriptional activation. (4) Movement of 

chromosome regions towards Cajal bodies. (5) Assembly of transcription initiation complexes. (6-7) 

Regulation of transcription elongation through recruitment of chromatin modifying complexes and 

RNA packaging proteins. (8) Nuclear export of proteins and RNA. hnRNP: Heterogeneous nuclear 

ribonucleoproteins; INM: inner nuclear membrane; NMI: nuclear myosin I; NPC: nuclear pore 

complex; ONM: outer nuclear membrane; TATA: TATA-box; TBP: TATA-binding-protein; TFIIB: 

Transcription factor IIB; TFIIF: Transcription factor IIF (Hofmann, 2009). 

 

In addition actin it is fundamental for the nuclear transport of proteins and RNA (de 

Lanerolle et al., 2005). Actin plays essential roles in gene transcription on several 
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different levels. Nuclear myosin I (NMI) and actin were shown to be involved in the 

translocation of activated genes.  

Actin directly associates with the RNA- Polymerase II core complex and is necessary 

for the start of transcription by RNA polymerase II. In the absence of actin preinitiation 

complexes cannot assemble at the promoter. Furthermore, there is also conclusive 

evidence that actin plays a role in transcription elongation through a complex 

interaction with RNA-processing factors and chromatin remodeling factors (Hofmann 

et al., 2004; Visa, 2005; Chuang et al., 2006). Actin has also been shown to bind to 

transcription factors and can thus determine their subcellular function. Furthermore, 

actin is a component of the chromatin remodeling complex involved in the activation of 

transcription (Olave et al., 2002). It is also required for full transcriptional activity of 

RNA polymerases I, II and III (Hu et al., 2004; Philimonenko et al., 2004; Percipalle 

and Visa, 2006). In addition actin associates with nascent mRNPs and participates in 

the recruitment of histone modifiers to transcribed genes. To date it is unknown 

whether these functions are general or whether these functions are restricted to certain 

subtypes of genes (Miralles and Visa, 2006). 

So far actin has not only been shown to be involved in intra nuclear processes, but 

also in stabilizing and maintaining the structure of the nuclear envelope itself. The 

existence of an actin layer on the inside of the nuclear envelope, colocalizing with 

lamins, has been described (Clubb and Locke, 1998). Further, a nuclear protein 

complex consisting of emerin, actin and lamin at the nuclear envelope providing 

stabilization against mechanical stress has been suggested (Holaska et al., 2004; 

Holaska and Wilson, 2007).  
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Protein Function Reference 
Profilin I A monomer- binding protein that promotes 

nucleotide exchange 
(Skare et al., 2003; Stuven et 
al., 2003) 

CapG An abundant protein in macrophages, which 
binds pointed ends of F-actin  

(Onoda et al., 1993; Witke et 
al., 2001) 

Zyxin Zyxin organizes the actin-polymerization 
machinery and has actin-polymerization-
promoting activity 

(Nix and Beckerle, 1997; 
Fradelizi et al., 2001) 

Myopodin A filamentous (F)-actin-bundling protein (Weins et al., 2001) 
Nrf2 Upon oxidative stress, Nrf2 forms a complex 

with actin that translocates to the nucleus  
(Kang et al., 2002) 

NDHII A helicase that seems to bind F-actin in the 
nucleus 

(Zhang et al., 2002) 

hrp36,  
DBP40, 
hrp65 

Proteins that associate with pre-mRNA to form 
ribonucleoprotein complexes 

(Percipalle et al., 2001; 
Percipalle et al., 2002; 
Percipalle et al., 2003) 

Emerin A nuclear-envelope protein that interacts with 
lamin A and actin 

(Fairley et al., 1999; Lattanzi 
et al., 2003) 

Lamin A A major protein of the nuclear lamina, which 
binds nuclear actin 

(Sasseville and Langelier, 
1998; Shumaker et al., 2003) 

Exportin-6 A nuclear- export receptor that specifically 
exports profiling-bound actin  

(Stuven et al., 2003) 

Cofilin1 Upon physiological stress, Cfl1 forms nuclear 
rods with actin 

(Nebl et al., 1996; Arber et 
al., 1998) 

BRG1 Involved in chromatin remodeling, forms 
multisubunit complex including actin 

(Giansanti et al., 1999) 

Anillin Redistributes during cell cycle, is involved in 
F-actin bundling 

(Field and Alberts, 1995; 
Giansanti et al., 1999) 

 
Table 2: Identified nuclear actin- binding proteins  
Modified from Bettinger et al., 2004 and Rando et al., 2000 

 

 

1.3 The ADF/Cofilin family 

 

A precise spatially and timely regulated actin turnover by ADF/Cofilin appears to be 

crucial for cells. Since the discovery of the first actin depolymerizing factor  a number 

of various proteins from different species were added to the ADF/Cofilin family, 

including Cofilin (cosediments with filamentous actin), ADF (Actin Depolymerizing 

Factor) or destrin (destroys F-actin). Proteins like coactosin from Dictyostelium, 

Drosophila twinstar, AtADF1 from Arabidopsis thaliana and porcine ADF share a 
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considerable (30–40%) amino acid sequence identity (dos Remedios et al., 2003). 

Members of this protein family can be found in plants as well as through the entire 

animal kingdom. The number of genes coding for members of the ADF/Cofilin family 

differs from species to species, while up to three different Cofilin genes have been 

found in plants (Lopez et al., 1996; Hussey et al., 2002) only one gene coding for two 

functionally distinct isoforms of ADF/Cofilin has been found in the nematode 

Caenorhabditis elegans (McKim et al., 1994; Ono et al., 1999). 

 

1.3.1 ADF/Cofilin family in the mouse 

 

Three ADF/Cofilins exist in the mouse and presumably in all other mammalian species 

as well (Vartiainen et al., 2002). These proteins were termed ADF (actin 

depolymerizing factor,) n-Cofilin for non-muscle Cofilin (synonymous with Cofilin1) and 

m-Cofilin abbreviating muscle Cofilin (synonymous with Cofilin2).  

 

 

Phylogenetic analysis of all known mammalian and avian ADF/Cofilins divided these 

proteins into the three above mentioned distinct subclasses. On DNA level murine 

Cofilin1 and Cofilin2 are approximately 80% identical while both are about 70% 

identical to mouse ADF (Figure 5). In situ hybridization and Northern blot analyses 

concluded the change of expression patterns of the three ADF/Cofilins during 

embryonic development. Cofilin1 is expressed in most embryonic tissues and adult 

cells, Cofilin2 is expressed in muscle cells and brain while the expression of ADF is 

 

Fig. 5: Genetic structure of the ADF/Cofilin 

family members. All three ADF/Cofilin genes 

are composed of four exons with the first 

exon coding for the start codon ATG. Intron-

exon junctions are also conserved  among 

the family members. The genes of Cofilin1 on 

chromosome 19 and Cofilin2 on chromosome 

12 cover about 4 kbp, while ADF on 

chromosome 2 has an unusually long first 

intron of almost 23kbp (Gurniak et al., 2005).  
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restricted to epithelial and endothelial cells. Even though the three ADF/Cofilins are 

coexpressed in many tissues early in development and show high analogy in their 

coding sequences (homology on protein level) they differ in function and biochemical 

characteristics (Vartiainen et al., 2002). 

 

1.3.2 Functions and characteristics of the ADF/Cofilin family 

members 

 

The most important physiological function of ADF/Cofilins is their involvement in rapid 

actin turnover. ADF/Cofilins depolymerize F-actin from the pointed end and therefore 

increase actin dynamics. The total amount of ADF/Cofilins in the cell adds up to 20 µM, 

about 0,44% of the total amount of protein in the cell (dos Remedios et al., 2003). A 

number of studies showed species specific differences in the affinity of ADF and 

Cofilin1 for actin. Murine ADF and Cofilin1 have approximately 5-10 fold higher 

affinities for actin than previously reported for human and plant ADF/Cofilins 

(Vartiainen et al., 2002). An approximately two-fold higher affinity of ADF/Cofilins for 

ADP-actin compared to ATP-actin or ADP-Pi-actin could be assessed thus preventing 

the binding of ADF/Cofilins to newer filaments (Carlier et al., 1997). Furthermore 

murine Cofilin2 binds ATP-actin monomers with a 5-10 fold higher affinity than murine 

ADF and Cofilin1, suggesting differences in their physiological functions. Cofilin2 also 

shows a smaller difference between the affinity for ADP- and ATP-actin monomers 

(Vartiainen et al., 2002). The exchange of nucleotides is inhibited in consequence to 

the binding of ADF/Cofilins to ADP-actin monomers and thereby regulating the 

recycling of monomeric ADP-actin into ATP-actin (Nishida, 1985). Profilin competes 

with ADF/Cofilins for ADP-actin and promotes the dissociation of ADP (Pollard and 

Borisy, 2003). The regulation of the activity of the ADF/Cofilin family members will be 

discussed in detail in the following chapter (1.3.3).  
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At lower concentration activated ADF/Cofilins bind to F-actin changing the twist about 

5° per subunit (McGough and Chiu, 1999), weakening the actin to actin attachments 

within the filament and initiating severing into small segments increasing the number 

of ends available for further depolymerization or polymerization as well as increasing 

the loss of subunits from the pointed end of the filament (Figure 6). AIP1 (Actin-

Interacting Protein 1) enhances ADF/Cofilin induced actin dynamics by capping barbed 

ends and inhibiting annealing of actin monomers (Ono, 2003). ADF/Cofilins are able to 

nucleate the assembly of actin, a function likely to be important if the barbed end is 

blocked by proteins like CapZ (dos Remedios, Chhabra et al. 2003).        

 

 

 
 

Fig. 6: Model of the regulation of actin dynamics by ADF/Cofilin, CAP1, profilin, and AIP1. 

ADF/Cofilins preferentially binds to ADP-actin, enhance actin depolymerization from the pointed ends, 

and sever filaments. Although ADF/Cofilins inhibit the exchange of actin bound nucleotides, profilin 

and CAP1 enhance exchange of actin-bound ADP with ATP and promote barbed end elongation. 

AIP1 specifically caps ends of ADF/Cofilin-bound filaments and enhances fragmentation by inhibiting 

reannealing of monomeric actin of short filamentous actin. AIP1: actin-interacting protein 1; CAP1: 

cyclase-associated protein 1 (Moriyama and Yahara, 2002; Ono, 2003). 
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1.3.3 Regulation of the ADF/Cofilin family members 

 

The members of the ADF/Cofilin family can be regulated in multiple ways. The activity 

of ADF/Cofilins can be altered by the binding of the membrane lipids 

phophatidylinositol 4-phosphate (PIP) and phophatidylinositol 4,5-bisphosphate (PIP2) 

(Yonezawa et al., 1990) inhibiting the actin-binding (Kusano et al., 1999). Mammalian 

ADF/Cofilins are inactivated by the phosphorylation of Ser3, thereby also affecting 

actin binding (Figure 7) (Moriyama et al., 1996). It is suspected that the phosphorylation 

does not lead to conformational changes but generates charge repulsion inhibiting 

actin binding (Blanchoin et al., 2000). 

Lim kinases (LIMK1 and LIMK2) and TESK (testicular protein kinase) inactivate 

ADF/Cofilins by phosphorylation. Two phosphatases from unrelated families, involved 

in the activation of ADF/Cofilins, have been discovered: Slingshot (SSH) and 

chronophin (Huang et al., 2006). 

14-3-3, a family of proteins affecting signaling by modulating localization, causing 

changes in enzymatic activity, or altering protein-protein interactions (Fu et al., 2000), 

was also shown to be involved in the regulation of the ADF/Cofilins. The 

phosphorylated and unphosphorylated forms of ADF/Cofilins both interact with 14-3-3. 

The binding of 14-3-3 to inactivated ADF/Cofilins is presumably enhanced due to the 

lack of binding actin. 14-3-3 binding decreases the availability of phosphorylated 

ADF/Cofilins for activation (i.e. dephosporylation) and therefore has an impact on the 

rate of ADF/Cofilin phosphocycling. Apart from that a chaperone function to deliver 

ADF/Cofilins in close proximity to other regulatory molecules (i.e. SSH, LIMK) was 

suggested for 14-3-3. As mentioned before tropomyosins can protect F-actin from 

ADF/Cofilins by influencing the actin structure (Sarmiere and Bamburg, 2004). 
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Fig. 7: Regulation of ADF/Cofilins by balance of phosphorylation and dephosphorylation. 

ADF/Cofilins (purple ball) are inhibited in their activity and dynamics by Lim kinases such as Lin-11/Isl-

1/Mec-3 kinases or TESK (testicular protein kinases), which phosphorylate the proteins on their 

conserved serine 3 residue. Dephosphorylation by the phosphatases chronophin and slingshot 

activate actin binding of ADF/Cofilins. D: ADP-actin; T: ATP-actin; Pi: inorganic phosphate (Bamburg 

and Wiggan, 2002; Wiggan et al., 2005). 

 

The pH also has a regulatory effect on the activity of ADF/Cofilins. At acidic conditions 

(pH less than 6.8) the ability of ADF/Cofilins to stabilize F-actin is enhanced. The 

mechanism of F-actin stabilization has not been elucidated so far, but it was proposed 

that the stability is enhanced by a specific twist of the filamentous actin to 162°- 158° 

(Galkin et al., 2001). At more alkaline conditions (pH higher than 7.3) F-actin can be 

depolymerized more rapidly (dos Remedios et al., 2003). Whether this regulation by 

pH alters the structure of actin or ADF/Cofilins is not clear (Bowman et al., 2000). 

 

1.3.3.1 Nuclear translocation signal 
 

All three mammalian ADF/Cofilins contain an amino acid sequence, similar to the core 

consensus sequence of Simian virus 40 type nuclear translocation signal (NTS), in the 

form of KKRKK. In Cofilin1 localized at the 30th to 34th amino acid (Nishida et al., 1987). 

This sequence was proven to function as nuclear translocation signal by site directed 
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mutagenesis. Iida et al. altered the sequence of Cofilin1 to KTLKK. It was shown that 

rapid nuclear translocation of Cofilin1 and actin can be induced by various stress 

stimuli like exposure to heat shock and DMSO (Nishida et al., 1987; Ohta et al., 1989). 

Upon heat shock KTLKK-Cofilin1 did not translocate to the nucleus and no nuclear 

actin-Cofilin1 rods were formed (Iida et al., 1992). Cofilin1 is a protein with a molecular 

weight of approximately 20 kDa and therefore expected to freely pass through nuclear 

pores (Dingwall and Laskey, 1986) if it exists in a monomeric form, indicating the need 

of the nuclear translocation signal to chaperone other proteins to the nucleus, for 

example actin (Hofmann, 2009; Dopie et al., 2012). The NTS of Cofilin1 is also of such 

importance in consequence to the non-existing nuclear translocation signal of actin 

(Rando et al., 2000). Upon removal of the stress factor both Cofilin1 and actin 

translocate back to the cytoplasm. In this thesis the importance, impact and role for 

nuclear translocation of Cofilin1 was studied with the help of a mouse line carrying a 

mutated NTS sequence where the wildtype sequence KKRKK was changed to KTRTK. 

In analogy to mutations in the form of KTLKK for Cofilin1 generated by Iida et al. and 

the mutated sequence KTKTK in Simian virus 40 previous studies. KTKTK-Cofilin1 

was shown to be restricted to the cytoplasm. Both NTS mutants were solely studied in 

transfected cells (Nakanishi et al., 2002). The Cofilin1KTRTK/KRTK presents the first 

opportunity to study a Cofilin1-NTS mutant in vivo. 

 

1.3.4 Cofilin1 (Non-muscle Cofilin) 

 

Cofilin1 comprises 166 amino acids in an assortment of species like chicken, mouse, 

human and pig (Moriyama et al., 1990; Iida et al., 1992).Cofilin1 was shown to 

comprise two actin binding sides. Cofilin1 is best known for its function as actin 

depolymerizing factor. In recent studies Cofilin1 has also been linked to a number of 

cellular processes such as transcription and cytokinesis (Gohla et al., 2005; Kamal et 

al., 2007; Dopie et al., 2012). To date the in vivo function of Cofilin1 is not fully 

understood. So far several mutants for the members of the ADF/Cofilin have been 

studied. Disruption of ADF/Cofilin isoforms in Drosophila melanogaster, C. elegans 

and S. cerevisiae were lethal supporting the importance of the role of the members of 

the ADF/Cofilin family for cellular mechanisms and actin dynamics. As mentioned 
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before (1.3.1) the three mammalian ADF/Cofilins (Cofilin1, Cofilin2 and ADF) are 

similar but show different characteristics. While ADF deficient mice are not 

distinguishable from wildtype littermates (Bellenchi et al., 2007), the complete deletion 

of Cofilin1 leads to impaired neural crest cell migration, neural tube closure  and is 

embryonic lethal (Gurniak et al., 2005). Deletion of Cofilin1 in different murine cell 

types, e.g. podocytes, show phenotypical alterations of morphology or function (Garg 

et al., 2010). Similar results were shown in zebrafish upon loss of Cofilin1 (Ashworth 

et al., 2010). The study of the deletion of Cofilin1 under the megakaryocyte-specific 

PF4 promotor in mice indicates a crucial role for Cofilin1 for the formation of normally 

sized and discoid-shaped platelets. The deletion of ADF under the same promoter 

showed normal, fully functional platelets (Bender et al., 2010). Whereas the Cofilin1 

knockout is embryonic lethal, the ADF knockout is viable only showing a mild eye 

phenotype (Bellenchi et al., 2007). Another study on the role of Cofilin1 during early 

mouse development has shown that decreased Cofilin1 expression is important for 

compaction during early development. Compaction is the process of cell flattening and 

polarization by which cellular asymmetry is first established (Ma et al., 2009). The 

thymocyte specific deletion of Cofilin1 prevents maturation of B-cells. All these studies 

indicate a crucial role of Cofilin1 during specific stages of embryonic development as 

well as in adult animals in the function of certain tissues. These data also prove that 

Cofilin1 plays a fundamental role in development and in adult tissues and that the loss 

of Cofilin1 cannot always be compensated by ADF and Cofilin2 or other proteins. In 

this study the function of Cofilin1in the nucleus was the focus of interest. 

 

1.3.4.2 Cofilin1 and Actin 
 

Cofilin1 was shown to directly interact with actin in the nucleus using FRET. This study 

indicated that there might be more Cofilin1 in a complex with actin in the nucleus than 

in the cytoplasm in Vero African green monkey fibroblasts (Chhabra and dos 

Remedios, 2005; Vartiainen, 2008). Chabbrah et al., proposed that almost all G-Actin 

in the nucleus is bound to Cofilin1, whereas approximately 50% of the cytoplasmic G-

Actin is bound to Cofilin1. This would further indicate an importance for Cofilin1 in the 

nucleus. Another study, performed in yeast, deemed Cofilin1/G-actin complexes 

unpolymerizable (Du and Frieden, 1998). Further a possible interaction between 
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Cofilin1 and actin in apoptosis has been suggested. Chua et al. identified the 

translocation of Cofilin1 from cytosol into mitochondria upon apoptosis induction. 

Reduction of Cofilin1 protein levels with small-interfering RNA (siRNA) resulted in 

inhibition of apoptosis. Furthermore, phosphorylated Cofilin1 did not translocate to 

mitochondria and facilitate apoptosis. It was proposed that the apoptosis-inducing 

ability of Cofilin1, is dependent on the functional actin-binding domain. Chua et al. 

concluded that proteins involved in mitochondrial targeting and actin binding are 

essential for its pro-apoptotic function (Chua et al., 2003). Contrary data was presented 

by Rehklau et al. They also observed the mitochondrial translocation of Cofilin1 after 

induction of apoptosis. The study of Cofilin1 deficient mouse embryonic fibroblasts 

(Mefs) did not show any alterations in apoptosis progression compared to control cells. 

These data would indicate that Cofilin1 is not essential for apoptosis induction and 

progression in mammalian cells (Rehklau et al., 2012). Over the years several studies 

implicated interactions between Cofilin1 and actin beyond depolymerization and 

severing.     

 

1.3.4.3 Cofilin1 in the nucleus 
 

For years it has been suggested that Cofilin1 may be involved in other processes than 

the severing and depolymerization of actin filaments. Obrdlik and Percipalle showed 

that Cofilin1 is in the same complex with actin and phosphorylated RNA polymerase II 

during the elongation phase of transcription. Chromatin IP assay showed the selective 

association of Cofilin1 with transcribed regions of active genes. Active genes in Cofilin1 

silenced cells were devoid of actin. This indicated that Cofilin1 is indispensable for 

association of actin and phosphorylated pol II with active genes, presumably through 

a mechanism that controls and maintains polymerization of gene associated actin. It 

was suggested that the composition of actin complexes vary dynamically, in polymeric 

as well as in monomeric forms, along different exonic regions.  

Therefore it was hypothesized that Cofilin1 influences RNA-Polymerase II transcription 

by regulating polymerization of gene associated actin indirectly. By contributing to the 

local G-actin pool, providing monomeric actin for actin polymers along active genes 

(Obrdlik and Percipalle, 2011).  
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1.3.4.4 Cofilin1 in embryonic development 

 

The importance of Cofilin1 for embryonic development has been demonstrated in 

various studies involving a number of different species. 

Cofilin1 is expressed throughout different species often sharing high sequence 

homologies (Table 3). 

 UNC-
60 

dCfl1 xCfl1 bCfl1 rCfl1 mCfl1 hCfl1 fCfl1 meCfl1 zCfl1 

UNC-
60 

 50 44 46 47 47 47 46 46 50 

TSR   51 52 53 52 53 49 51 56 
xCfl1    83 83 83 83 81 82 82 
bCfl1     99 99 99 86 85 87 
rCfl1      100 99 87 86 88 
mCfl1       99 87 86 88 
hCfl1        87 86 88 
fCfl1         98 89 
meCfl1          90 
 
Table 3: Relative similarity of Cofilin1 amino acid sequences from different species. UNC-60: 
nematode cfll1; TSR: drosophila melanogaster cfl1; xCfl1: western clawed frog cfl1; bCfl1: bovine 
cfl1; rCfl1: rat cfl1; mCfl1: mouse cfl1; hCfl1: human Cfl1; fCfl1: fugu cfl1; meCfl1: medaka cfl1; zCfl1: 
zebrafish cfl1 
(Lin et al., 2010). 

 

Murine Cofilin1 (bold numbers) is highly similar to most of the examined Cofilin1 forms 

from rat, human, cow, western clawed frog for example (100%-83%). It is identical with 

Cofilin1 from rat and shows a 99% similarity with human Cofilin1. The lowest conformity 

for mouse Cofilin1 is found when compared to drosophila (52%) and nematode Cofilin1 

(47%). Zebrafish and mouse Cofilin1 show a similarity of 88%.    

In the phylogenetic tree (Figure 8), Cofilin1 genes were grouped as chordata and in 

vertebrae. The gene for Cofilin1 is located on different chromosomes in different 

species (zebrafish: chromosome 14; human: chromosome 11; mouse: chromosome 

19), but the same genes are found in the vicinity of the respective Cofilin1 locus, 

suggesting an evolutionary relationship of the cfl1 genes in the different species (Lin 

et al., 2010).  The loss of Cofilin1 in zebrafish resulted in severe edema, an abnormal 

accumulation of fluid around the yolk. Compared to wildtype embryos Cofilin1 deficient 
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zebrafish larvae also showed an 

absence of a swim bladder, smaller 

eyes, pericardial effusion, arched 

backs and altered jaw features 

(Ashworth et al., 2010). A second group 

also investigating the loss of Cofilin1 in 

zebrafish development reported 

arrested epiboly progression and 

malformed tail-buds (Lin et al., 2010). 

Studies in Xenopus showed that 

Cofilin1 is necessary on the surface of 

the early cleavage furrow of 

blastomeres (Tanaka et al., 2005). In 

C.elegans, the loss of Cofilin results in severe aggregation of actin in the developing 

body-wall muscle (Ono et al., 1999). 

The deletion of Cofilin1 in mice leads to embryonic lethality around gestational day 

10.5 due to impaired neural crest cell migration and neural tube closure (Gurniak et al., 

2005). Further, it has been shown that Cofilin1, but not ADF or Cofilin2, is essential for 

embryonic development (Bellenchi et al., 2007; Gurniak et al., 2014).    

All these data support the importance of Coflin1 in embryonic development of different 

species.  

 

1.3.4.5 Cofilin1 in neuronal development  

 
The broad expression of Cofilin1 in brain has been shown in a number of different 

studies (Meberg et al., 1998; Gurniak et al., 2005; Bellenchi et al., 2007; Flynn et al., 

2012; Wolf et al., 2014). Direct and indirect alterations of Cofilin1 activity lead to brain-

related phenotypes. Modification of LIMK1, a direct regulator of Cofilin1, entail 

impairment of visuo-spatial constructive cognition (Frangiskakis et al., 1996). The 

neuronal cell-specific deletion Cofilin1 in a number of different mouse lines, confirmed 

the importance of Cofilin1 for brain development further. The introduction of Cre-

 
 

Fig. 8: Phylogenic tree of Cofilin1 amino acid 

sequences.  UNC-60: nematode cfl1; TSR: 

drosophila cfl1; xCfl1: western clawed frog cfl1; 

bCfl1: bovine cfl1; rCfl1: rat cfl1; mCfl1: mouse cfl1; 

hCfl1: human Cfl1; fCfl1: fugu cfl1; meCfl1: medaka 

cfl1; zCfl1: zebrafish cfl1 (Lin et al., 2010). 
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recombinase driven by the Nestin-promotor into a conditional Cofilin1fl/fl, produced a 

lissencephaly-like phenotype. This brain-restricted Cre-recombinase is (Tronche et al., 

1999). Nestin, an intermediate filament protein, is expressed in proliferating cells in the 

early stages of development in the CNS. Nestin-Cre specific deletion is detectable at 

E10.5 and marks neuronal progenitor cells in the SVZ. Conditional Cofilin1 Nestin 

mutants were missing intermediate cortical layers and showed changes in cell shape. 

(Bellenchi et al., 2007). Emx1, a homeobox gene transcription factor, is specifically 

expressed in cerebral cortex and hippocampus. In this case the deletion is detectable 

at E9.5 in principle neurons (Iwasato et al., 2000). The Nex-Cre mouse line is under 

the control of a neuronal basic-helix-loop-helix transcription factor promotor. Deletion 

of Cofilin1 in mutants is detectable in postmitotic neurons after E11.5 (Goebbels et al., 

2006). The cell-type specific deletion of Cofilin1 using Emx-Cre and Nex-Cre lines, 

respectively, also rendered neural tissue specific phenotypes, including altered 

morphology and migration behavior (Schütz and Bläsius, unpublished Data). All these 

results strongly indicate that Cofilin1 is essential for cortical neuron migration. Bellenchi 

et al., also reported a significant increase of F-actin accumulation upon the loss of 

Cofilin1 in neurons.  

As mentioned before embryos suffering the complete lack of Cofilin1 enter 

developmental arrest around E10.5 due to neural crest cell migration impairment and 

consequently neural tube closure defects (Gurniak et al., 2005). Additional data 

implicates localization of Cofilin1 in distinct synaptosomal compartments in neuronal 

cells during development, indicating specific functions (Rust et al., 2010)   

The expression pattern of Cofilin1 changes during murine embryonic development. At 

E8.5 Cofilin1 expression is highest in the neural fold. At E9.5, expression is persistent 

in the developing nervous system and neural crest. Expression of Cofilin1 can be 

observed in the somites, the neural tube as well as limb buds after E10.5. In later 

stages of development localization of Cofilin1 expression becomes restricted to 

specific tissues. High levels of expression could be observed in the CNS, the trigeminal 

ganglion and the olfactory lobe among other non-neural tissues at E13.5 and E16.5. 

In the tissues the expression of Cofilin1 is maintained postnatally (Vartiainen et al., 

2002; Gurniak et al., 2005). Summarized it can be said that Cofilin1 plays an essential 

role in the migration of cortical neurons, since different spatial and temporal deletions 

of Cofilin1 were shown to be associated with neuronal migration disorders. In humans 
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a connection between single-nucleotide polymorphism (SNP) of Cofilin1 and an 

increased risk for spina bifida has been shown (Zhu et al., 2007), affirming the opinion 

that alteration of Cofilin1 can affect neural tube closure. 

 

1.4 Development of the mouse brain 

 

The development of the brain is one of the most complex processes in nature. The 

entity of the mechanisms involved in brain development have not been fully elucidated, 

yet. However, it is known that transcription factors and physiological influences play 

crucial roles in brain development.  

   

1.4.1 Neural crest cells and neural crest induction 

 

Neural crest cells are a population of transient, multipotent, migratory cells unique to 

vertebrate embryos giving rise to the neural crest. Originating at the lateral edge of the 

neural plate, they migrate throughout the embryo, developing a vast variety of cell 

types like enteric and peripheral neurons and glia, smooth muscle, connective tissue 

of the face, craniofacial cartilage and bone (Huang and Saint-Jeannet, 2004). 

The neural crest, arising at the end of gastrulation, flanks the neural plate and non-

neural ectoderm (Figure 9). This border, the neural fold, flanks the neural plate 

bilaterally.  

The neural plates closes during neurulation, bringing together the neural folds at the 

dorsal midline. Subsequently the cells of the neural crest undergo an epithelial-to-

mesenchymal-transition (ETM). Allowing delamination from the neuroepithelium and 

migration throughout the embryo. The ability to segregate and migrate away from the 

neuroepithelium is a feature unique to developing neural crest cells (Thiery, 2003). .  
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Fig. 9: Neural plate border: The place of neural crest induction. At the beginning of neurulation 

the neural crest is positioned at the boundary between the neural plate and the non-neural ectoderm. 

It is positioned at the dorsal aspect of the neural tube, as the neuroectoderm folds. Upon neural tube 

closure, neural crest delamination and migration start, in most vertebrates including the mouse 

(Huang and Saint-Jeannet, 2004).   

 

The deletion of Cofilin1 in the murine system causes impairment of neural crest cell 

migration and neural tube closure defects, resulting in early embryonic lethality 

(Gurniak et al., 2005).     

 

1.4.2 Neural tube formation 

 

The formation of the neural tube, called neurulation, is a crucial morphogenetic event 

in development. In mammalian embryos neurulation occurs in two phases named 

primary and secondary neurulation (Purves, 1985). Studies of mouse models showed 

that failure of primary neurulation results in exencephaly, craniorachischisis and open 

spina bifida (1.4.4). Defects in secondary neurulation can result in skin-covered spinal 

dysraphism (Copp et al., 2013).    

The closure of the neural tube is a complex process, taking place early in development 

(Detrait et al., 2005). One of the first systems to develop and to differentiate during 

embryonic development is the central nervous system and it is also the one that is last 

to be completed (Rugh, 1990).  

Formation of the brain and spinal cord starts with the neural tube development. In mice 

the neural tube starts to close around E 8.5 along the ventral line. This process of 
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neurulation is completed around E10 (Lomaga et al., 2000; Gurniak et al., 2005). The 

neural plate originates as a thickening from the dorsal surface ectoderm, folds up and 

fuses in the midline to form the neural tube. Closure of the mammalian neural tube 

initiates serially at different body axis levels along the spine (Figure 10). Basically, 

epithelial fusion takes place, creating the neural tube, as the tips of the neural folds are 

brought into apposition in the dorsal midline. A separate outer surface ectoderm, 

(forming the future epidermis), and inner neuroepithelial (nervous system) layers are 

created by epithelial remodeling of the tissues of the dorsal midline (Copp et al., 1990). 

Even though neural tube closure is not needed for the subsequent differentiation of 

specialized neuronal and glia cell types or the connection of nerves, it is an essential 

step for the development of the brain (Stiefel et al., 2003; Copp, 2005).  

Primary and secondary neurulation events are conserved between mammalian 

species, therefore making the mouse an advantageous model. The closure of the 

neural tube is a multifactorial process requiring transcription factors and proteins 

affecting the chromatin structure and protein function. Proteins functioning as part of 

complexes containing multiple enzymes to ubiquitinate and target proteins for 

degradation in the proteasome. Loss of these proteins increases neural tube closure 

defects (Rogner et al., 2000; Copp and Greene, 2010).  

Different groups of genes involved in neural tube closure have been identified. Two of 

the main players in neural tube closure are genes involved in planar cell polarity and 

folate metabolism.  

The closure of the neural tube includes critical cell biological and protein regulatory 

functions. Cytoskeletal proteins are crucial for cranial closure (Gurniak et al., 2005; 

Garvalov et al., 2007; Zhu et al., 2007) (Table 4), cell viability-related proteins control 

apoptosis necessary for neural tube closure, cell cycle/neurogenesis-related proteins 

ensure a sufficient amount of proliferating cells and avoid premature neuronal 

formation. The involvement of cell surface-extracellular matrix interactions in neural 

tube closure still needs to be clarified (Copp and Greene, 2010).  
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Fig. 10: Diagram representing the process of 

neural tube closure and the origin of neural 

tube defects (NTDs). Mouse embryo soon after 

the completion of cranial neurulation. Initiation 

events (Closures 1, 2, 3) and completion events 

(at ‘neuropores’) are joined by unidirectional or 

bidirectional neural tube zippering (blue arrows). 

Events leading to NTDs (red labels) are indicated 

by red arrows. Secondary neurulation proceeds 

from the level of the closed posterior neuropore, 

as a result of canalization within the tail bud 

(green) (Copp, 2005; Copp and Greene, 2010). 

  

In the mouse the neural folds lift and fuse at the hindbrain/cervical boundary (closure 

1), followed by the bidirectional fusion into the hindbrain and along the spinal region. 

Separate closure initiation sites occur at the midbrain-forebrain boundary (closure 2). 

In the next step fusion at the rostral extremity of the forebrain takes place (closure 3). 

For the complete closure of the neural tube fusion continues from these closure sites 

along the spine completing the process of primary neurulation. In the process of 

secondary neurulation the formation of the spinal cord at lower sacral and caudal levels 

is accomplished. The neuropores describe the opening at each end of the neural tube 

during early embryonic development, leading from the central canal of the neural tube 

to the exterior (anterior, posterior and hindbrain). A multipotential population of cells in 

the tail bud differentiates into cells of neural fate. These cells organize themselves in 

the dorsal part of the tail bud to create a neuroepithelium. The neuroepithelium gives 

rise to the nervous system (Bu et al., 2007; Copp and Greene, 2010). 
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1.4.3 Corticogenesis 

 

In the mammalian cortex, patterned structures are formed by neurons and glia cells 

across six layers. The cortex represents the exterior layer of the telencephalon and is 

abundant in neuronal cells (Gaspard et al., 2008). The exact mechanism of 

corticogenesis remains to be elucidated.   

Sequential radial migration of neurons, generated from in the subventricular zone, 

forms the six-layered neocortex. Early generated neurons form the deep cortical layers 

(V, VI), whereas later generated neurons are destined for upper cortical layers (II, III, 

IV) a characteristic feature of the inside-out layering of the cortex (Figure 11). 

Parnavales et al. showed that Cdk5 is involved in preplate splitting, an early step of 

importance in cortical lamination, setting the foundation for the characteristic inside-

out layering of the neocortex. Other studies showed that early preplate neurons 

preserve a radial relationship to the progenitor cells of the ventricular zone, where they 

arose from, indicating that a preplate protomap is provided by the ventricular zone 

(Kriegstein and Parnavelas, 2006). One key player in this process is the extracellular 

matrix protein, Reelin. It controls radial migration of cortical neurons and also facilitates 

phosphorylation of Cofilin1 (Chai et al., 2009). Kriegstein et al., also demonstrated that 

neuronal migration can be regulated by phosphorylation of intracellular substrates 

(Kriegstein and Parnavelas, 2006).   

It was shown in previous studies that in cortical precursor cells the regionalization of 

cell cycle kinetics appears to play a role in the determination of positioning cortical area 

borders (Kriegstein and Parnavelas, 2006). 

Progenitor cells undergo a distinct pattern of oscillation in the ventricular zone, the 

interkinetic nuclear migration. 
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Fig. 11: Formation of the cortical layers during embryonic development. a: Location of the 

neocortex in the central nervous system. A lateral view of an E16 mouse brain (left). The red dashed 

line indicates the section plane from which a coronal section (right) has been taken, showing the 

location of the neocortex. b: The organization of the adult neocortex into distinct neuronal layers. At 

E11 the preplate is established through the postmitotic migration of neurons from the VZ to the pial 

surface. A second postmitotic wave migrates through the intermediate zone and splits the preplate 

into the marginal zone and the more superficial subplate, which generates the cortical plate (E13). 

During E14- E18 a subsequent wave of neurons from the SVZ (not shown) reaches the cortical plate 

and expands it in an insight-out-fashion, which means that later born neurons migrate through the 

existing layers to the pial surface. In the adulthood the subplate degenerates and leaves behind a six-

layered cortex. PP: preplate; VZ: ventricular zone; IZ: intermediate zone; SP: subplate; CP: cortical 

plate; MZ: marginal zone; PS: pial surface; 1-6: referring to the cortical layers I- VI (Gupta et al., 2002). 

 

Cells undergo S-phase at the basal surface of the ventricular zone and then migrate to 

the apical zone, where mitosis takes place (Gotz and Huttner, 2005).   

At E11, first postmitotic cortical neurons migrate out of the ventricular zone and form a 

transient layer, the preplate. This preplate is split into the marginal zone and the 

subplate by subsequent waves of migrating neurons at E13. The marginal zone 

consists of Cajal-Retzius cells, reelin-producing cell types in the marginal zone, while 



1. Introduction 
___________________________________________________________________ 

 
32 

the subplate consists of remaining primordial cells. Both layers together build the 

cortical plate. Additional waves of migrating neurons arrive at the cortical plate, 

bypassing existing layers, migrating to the surface, forming cortical layers I the inside-

out fashion (Gupta et al., 2002; Nadarajah and Parnavelas, 2002).  

Cortical lamination is established in an inside-out patterning, with cortical neurons 

migrating from the ventricular zone (VZ) to the marginal Zone (MZ), where Reelin is 

located. It acts as positional signal for migrating neurons and is essential for correct 

formation of the six-layered cortex. Reelin deficient mice suffer from inverted cortical 

lamination, with many neurons located in the MZ  and others unable to migrate, 

accumulating beneath their predecessors (Chai et al., 2009). Reelin was shown to 

induce phosphorylation of Cofilin1 in migrating neurons as they locate toward the MZ. 

The inactivation of Cofilin1 affects the stability of the neuronal actin network, stopping 

migration and positioning cortical neurons in specific layers (Chai et al., 2009). 

Patterning results from a complex sequence of cell cycle progression in the VZ and 

migration of neuronal precursor cells from there toward the pial surface (Nadarajah 

and Parnavelas, 2002). The first post-mitotic neurons leave the germinal VZ to form 

the preplate early in development. In the next step it is split by infiltrating cortical plate 

(CP) neurons into the outer MZ and the inner subplate (SP). The MZ and SP present 

early structures, whereas the intermediate layers, are formed between E13 and E19 in 

the “inside-out” fashion. Further, interneurons, originated in the medial and lateral 

ganglionic eminence, migrate long distances into the cortex and hippocampus. Early 

tangential migration begins around E11 and peaks around E13.5 (Bellenchi et al., 

2007).  

Previous studies showed that alterations affecting actin cytoskeleton regulator Cofilin1, 

impact the pathology of cortex development by impaired formation of intermediate 

layers (1.3.4.5).   
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1.4.4 Neural tube closure defects (NTDs) 

 

To this date the cellular and molecular mechanisms causing human neural tube closure 

defects are poorly understood.  

Neural tube closure defects can result in a diverse set of birth defects (Figure 12). In 

humans not all of them are lethal if treated correctly.  

 

Fig. 12: Murine newborn (A) and E15.5 fetuses (B, C) 

showing the main cranial neural tube defects. (A) 

Anencephaly in a curly tail mutant. A lack of skull vault is 

obvious indicated between small arrows. The skull base is 

overlaid by the ‘area cerebrovasculosa’, the remnant of the 

degenerate brain tissue. Open spina bifida (strictly, myelocele) 

is present in the lumbosacral region (arrowhead). (B) 

Exencephaly of the midbrain in a curly tail mutant, showing the 

everted cranial neural folds (between small arrows). Open 

spina bifida is also present, affecting the lumbosacral region 

(arrowhead). (C) Craniorachischisis in a Celsr1 mutant, in 

which the neural tube is open from midbrain to low spine 

(indicated between small arrows). Presence of a curled tail can 

be noted in all cases (large arrows in A–C) (Copp, 2005). 

 

The most frequent NTDs observed are spina bifida and anencephaly, the human 

counterpart to exencephaly in mouse. Anencephaly presents the less common but 

most severe manifestation of neural tube closure defects in humans (Detrait et al., 

2005). The etiology of malformations of the neural tube are vast and complex. In 

humans they are thought to arise during the third and fourth week after conception. It 

is known that genetic along with environmental factors influence this developmental 

process. Maternal diabetes, maternal obesity and the exposure to hyperthermia in 

early phases of pregnancy can lead to NTDs (Soler et al., 1976; Webster and Edwards, 

1984; Moretti et al., 2005; Rasmussen et al., 2008). It is known that the intake of folic 

acid reduces the risk of NTD by 50 -70% (Milunsky et al., 1989), indicating that genes 

involved in the metabolism of folate also have a role in neural tube closure. Folate acts 

as a cofactor for an enzyme involved in DNA and RNA biosynthesis and also acts as 

a supplier of methyl groups to the methylation cycle (Scott et al., 1994). Due to the 
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historical link between NTDs and folic acid, genes involved in folate pathway have 

been studied most intensively. Another group of genes involved in neural tube closure 

defects are genes involved in planar cell polarity (Copp et al., 2013). 

The leading cause for lethality in human embryos and newborns are congenital 

anomalies. The most abundant form of birth defects are congenital heart defects 

followed by congenital malformations of the neural tube affecting 0,5 to 2 out of 1000 

established pregnancies in humans along with genitourinary defects (Detrait et al., 

2005; Mitchell, 2005; Dolk et al., 2010).  

There are approximately 250 known genetic alterations resulting in neural tube closure 

aberrations in mice offering a vast number of methods to analyze neurulation events 

at physiological, cellular and even molecular levels (Fairbridge et al., 2010; Harris and 

Juriloff, 2010). 

The wide range of functions of genes whose alterations result in exencephaly 

implicates that a wide range of cellular activities is crucial to cranial fold elevation 

(Harris and Juriloff, 1997). A number of different studies show a preponderant 

occurrence of exencephaly in female embryos, in both mice and humans. In 1986 Hall 

(Hall, 1986) hypothesized that a temporary functional aneuploidy caused by late X-

inactivation could interfere with development and increase the risks for NTDs.      

Factors regulating the cytoskeleton have been connected to the formation of neural 

tube closure defects (Table 4). 
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Gene 
symbol(s) 

Mouse genes 
producing NTDs 

NTD type Protein function Reference 

AbI1, AbI2 AbI/Arg  

double mutant 

Ex Non-receptor tyrosine 

kinases 

(Koleske et al., 

1998) 

Grlf1 RhoGAP P190 Ex Glucocorticoid 

receptor DNA binding 

factor 

(Brouns et al., 

2000) 

Mapk8; 

Mapk9 

Jnk 1/Jnk2  

double mutant 

Ex 

 

c-Jun-N-terminal 

kinases 

(Sabapathy et 

al., 1999) 

Marcks MARCKS 

(myristoylated 

alanine rich C-

kinase substrate)  

Ex Cytoskeleton-related 

protein with function 

in signal transduction 

(Stumpo et al., 

1995) 

Mena, 

Profilin 

Mena/profilin 1 

double mutant 

Ex Regulation of actin 

polymerization 

(Lanier et al., 

1999) 

Mena; Vasp Mena/Vasp double 

mutant 

Ex Member of 

Mena/Vasp/Evl family 

of cytoskeletal 

regulators 

(Menzies et al., 

2004) 

Mlp MARCKS-like 

protein 

Ex±Sb Cytoskeleton-related 

protein with function 

in signal transduction 

(Wu et al., 

1996) 

Cofilin1 Cofilin1 Sb Actin depolymerizing 

factor 

(Gurniak et al., 

2005) 

Palladin Palladin Ex Actin cytoskeleton-

associated protein 

(Luo et al., 

2005) 

Shrm Shroom Ex+Sb PDZ-containing 

cytoskeletal protein 

(Hildebrand and 

Soriano, 1999) 

Vcl Vinculin Ex Cytoskeletal protein (Xu et al., 1998) 

 
Table 4: Mouse genes causing NTD (neural tube closure defects) via mechanism involving 

disturbance of the cytoskeleton. Ex:  Exencephaly;  Sb: Spina bifida; NTD: Neural tube closure 

defect  (Copp and Greene, 2010). 
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Many of these mouse lines show autosomal recessive inheritance unlike the majority 

of human cases. Even though the mutant gene in these mouse lines are identified, the 

mechanism by which neural tube closure defects arise are generally not clear (Harris 

and Juriloff, 1997; Harris and Juriloff, 1999; Copp et al., 2003) 
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1.5 Aim of thesis 

 

In previous in vitro studies it was shown that the amino acid sequence KKRKK of 

Cofilin1 functions as the nuclear translocation signal (NTS), allowing the translocation 

of Cofilin1 into the nucleus upon certain stress stimuli like DMSO or heat shock. 

Cofilin1 deficient mice show a failure of neural tube closure and go into developmental 

arrest around embryonic day 10. In humans mutations and alterations of Cofilin1 have 

been associated with the neural tube closure defect termed spina bifida. 

A knock in mouse line with the mutated NTS of Cofilin1, which was mutated from the 

wildtype sequence KKRKK to KTRTK was created (2.1). Previous studies in vitro 

showed that GFP-KTRTK-Cofilin1 was unable to translocate to the nucleus upon 

induction. Homozygous mutants, Cofilin1KTRTK/KTRTK embryos, showed cranial tube 

closure defects (Gurniak, unpublished data).  

The aim of this thesis was to elucidate the biochemical properties and characteristics 

of KTRTK-Cofilin1. 

In the initial step the depolymerizing activity and actin binding capacity of the mutant 

protein were analyzed. 

The focus of this study was the closer analysis of the malformation of the brain, with 

the help of histology and immunohistochemistry, to gain more detailed information 

concerning structures to understand the origin of the deformity. To gain insight of the 

process that causes the observed malformations, early stages of development, as 

soon as the exencephalic phenotype was distinguishable, were prepared. To analyze 

whether also internal structures were affected by the mutation of the NTS of Cofilin1 

sagittal whole body sections and skeletal isolations were prepared and analyzed in 

detail.   

 

In vitro studies of mouse embryonic fibroblasts (Mefs) isolated from Cofilin1KTRTK/KTRTK 

embryos indicated the involvement of Cofilin1 in cytokinesis. To allow further analysis 

and characterization of KTRTK-Cofilin1, in vitro and in vivo studies, particularly with 

regard to morphological and biochemical characteristics were performed. Furthermore, 

gene expression profiles for embryonic brain and Mefs were analyzed.  
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2.1 Mouse line 
 

Name Description Reference 

KTRTK-Cofilin1 
Transgenic mouse line, in which wildtype 
Cofilin1 was substituted with KTRTK-Cofilin1 

Christine Gurniak 

 

The Cofilin1 locus spans 2.8 kbp and comprises 4 exons, the first exon solely encodes 

the start codon ATG. Previous studies have shown that Cofilin1 has a nuclear 

translocation signal, located in exon 2, crucial for the entrance of Cofilin1 in the 

nucleus. The role of nuclear translocation is unknown. To analyze the function of this 

sequence, it was targeted in the mouse line used in this study (Table 5), analogue to 

prior studies. In the targeting construct two loxP sites flanking a neomycin resistance 

cassette were introduced in the first intron. Neomycine resistance facilitates the 

selection of homologous recombination in ES cells. Previous gene targetings showed 

that the insertion of loxP sites in the first intron does not interfere with the expression 

of Cofilin1. The mutation of the nuclear translocation signal (Figure 13) was introduced 

in exon 2.  Wildtype Cofilin1 has a core nuclear translocation signal consisting of the 

five amino acids KKRKK, which is located in exon 2. The  adenines at position two in 

the codon triplets coding for lysines at position two and four of the wildtype KKRKK 

sequence were substituted for cytosines, causing the substitution of the lysines at the 

positions two and four by threonines on the amino acid level in the KTRTK allele for 

the KTRTK- Cofilin1 mice.  

Wt-Cfl1 
GAA GAA GTG AAG AAA CGC AAG AAG GCG GTG 

E       E      V       K      K       R      K      K       A      V 

KTRTK-Cfl1 
GAA GAA GTG AAG ACA CGC ACG AAG GCG GTG 

E       E      V       K      T       R      T      K       A      V 
 

Table 5: Wildtype and mutated nuclear translocation signal (bold letters) of Cofilin1. Panel 1 

(on top) shows the wildtype amino acid and nucleotide sequence of Cofilin1. The mutated sequence 

for KTRTK-Cofilin1 is shown in panel 2. Lysines at the position 2 and 4 of the wt NTS sequence were 

substituted for threonines. Exchange was attained by the replacement of adenines on nucleotide level 

with cytosines (red letters) at the second position of the triplet.  
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In a gene targeting experiment the wt Cofilin1 allele was replaced by the KTRTK/neo 

Cofilin1 allele by homologous recombination. Chimeras were produced transmitting 

the KTRTK/neo-Cfl1 allele through the germline. To induce the deletion of the 

neomycin resistance cassette heterozygous KTRTK/neo-cfl1 mice were crossed to 

Cre-deleter mice (Schwenk et al., 1995).   

 

 

Fig 13: Generation of KTRTK- Cofilin1 mice. The schematic drawing shows the gene targeting 

construct for the Cofilin1 gene (top) and  the genomic map of the Cofilin1  gene (wt cof 1) comprising 

four exons (black boxes, 1-4). LoxP-sites (black arrow heads) flanking the neomycin resistance gene 

(neo) were inserted between exon 1 and exon 2 (KTRTK/neo-cof 1). Exon 1 of Cofilin1 comprises 

exclusively the start codon of the coding region, methionine.The red asterisk indicates the position of 

the introduced mutation of the nuclear taregt sequence in exon 2. Upon Cre recombinase activity the 

neomycin resistance cassette is deleted.  

 

To obtain homozygous Cofilin1KTRTK/KTRTK mutants, heterozygous Cofilin1wt/KTRTK mice 

were crossed.  Embryos were analyzed using PCR or Southern blot. 
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2.2 Commercial solutions 
 

2.2.1 Commercial solutions for nucleic acid analysis 

 

Name Supplier 
dNTPs Promega 
MgCl2 Promega 
PCR-flexi-buffer (5x) Promega 
DNAse buffer (10x) Invitrogen 

 

2.2.2 Commercial enzymes for nucleic acid analysis and 

modification  

 

Name Supplier 
Taq-Polymerase Promega 
RQ1 DNase Invitrogen 

 

2.2.3 Commercial solutions and reagents for tissue culture  

 

Name Supplier 
DMEM Gibco 
Fetal calf serum (FCS) PAA 
HEPES pH 7.2 (100x) Gibco 
L-Glutamine (100x) Gibco 
Non- essential amino acids (100x) Gibco 
Penicillin/Streptomycin antibiotics (100x) Gibco 
Sodium pyruvate (100x) Gibco 
PBS- (tissue culture grade) Gibco 
Trypsin-EDTA (0.05%) Gibco 
Trypsin (2.5%) Gibco 
DMSO  Sigma 
Neurobasal medium Gibco 
B-27 supplement Gibco 
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MEM (10x) Gibco 
MEM essential amino acids (50x) Gibco 
MEM non- essential amino acids (100x) Gibco 
AraC Calbiochem 
DNAse grade II Roche 
HBSS Gibco 
Distilled water (tissue culture grade) Gibco 
G418 Sigma 
Doxorubicin Alfa Aesar 

 

 

2.2.4 Commercial solutions for protein analysis  

 

Name Supplier 
Bradford 5x solution BIO-RAD 
Broad Range Standard BIO-RAD 
SeeBlue Plus2 Prestained Standard Invitrogen 

 

 

2.2.5 Commercial solutions and dyes for histology  

 

Name Supplier 
4% Histofix Roth 
Eosin Y (0.5%) Sigma 
Mayer’s haemalaun solution Merck 
Gill’s Haemalaun solution Thermo scientific 
Alizarin Red BDH Laboratory Supplies England 
Alcian Blue 8GX BDH Laboratory Supplies England 
Cresyl violet acetate Sigma 
DAB peroxidase substrate tablet Sigma immuno chemicals 
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2.3 Commercial chemicals and reagents 

 

2.3.1 Liquids 

 

Name Supplier 
Acetic acid Merck 
Acetone Merck 
Acrylamide (30%) AppliChem 
Bovine serum albumin (BSA), (10mg/ml) New England Biolabs 
Chloroform Merck 
Dimethyl sulfoxide (DMSO) Merck 
Ethanol (analysis grade) Merck 
Ethanol (technical) Merck 
Ethidium bromide (1%) BIO-RAD 
Fish gelatin Sigma 
Formaldehyde (37%) Merck 
Glutaraldehyde (25%) Sigma 
Glycerol AppliChem 
Hydrochloric acid (HCl, 37%) Merck 
Hydrogen peroxide (30%) Merck 
Isopropanol Merck 
Methanol  VWR 
N,N- Dimethylformamide (DMF) Sigma 
Nitric acid (HNO3) AppliChem 
Nitrogen (liquid) German-Cryo 
NP-40 Sigma 
Phenol Merck 
SDS (20%) AppliChem 
Sodium hydrogen carbonate (NaHCaO3) Sigma 
TEMED Sigma 
Triton®X-100 Roche 
Trizol® Life Technologies 
Tween®20 Sigma 
Xylene VWR 
β-mercaptoethanol Sigma 
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2.3.2 Solids 

 

Name Supplier 
Agar AppliChem 
UltraPure agarose (gel electrophoresis) Invitrogen 
Ampicilin AppliChem 
APS Fischer Scientific 
Bovine serum albumin (BSA) Merck 
Bromphenol blue BIO-RAD 
Citrate acid BDH Laboratory Supplies England 
Coomassie Brilliant Blue BIO-RAD 
EDTA Sigma 
Gelatin Sigma 
Glucose Merck 
Glycine Grüssing 
HEPES Sigma 
Luminol Sigma 
Magnesium chloride (MgCl2) Merck 
Milk powder (non-fat) Roth 
MOPS Sigma 
Moviol Roth 
NaHCO3 Merck 
NPG Sigma 
PBS- Sigma 
p-hydroxy-coumarin Sigma 
PIPES Sigma 
Potassium ferricyanide (K3[Fe(CN)6]) Sigma 
Potassium ferrocyanide (K4[Fe(CN)6]) Sigma 
Potassium hydroxide (KOH) Merck 
Protease inhibitor cocktail tablets, 
complete mini, EGTA free 

Roche 

Proteinase K Sigma 
SDS Merck 
Sodium chloride (NaCl) Merck 
Sodium citrate Sigma 
Thrombin, bovine Calbiochem 
Tris Base Ultra Quality  Roth 
X-Gal Sigma 
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2.4 Commercial Kits 
 

Name Supplier  
Vybrant® CFDA SE Cell Tracer Kit Invitrogen 
BrdU Labeling and detection Kit II Roche 
VECTOR® M.O.M. Immunodetection Kit VECTOR Laboratories 
PureLink®  HiPure Plasmid Filter 
Purification Kits                            

Invitrogen 

SuperScriptTM III First-Strand Synthesis 
System for RT-PCR 

Invitrogen 

 

 

2.5 General stock solutions, buffers and media 

 

2.5.1 General solutions 

 

Solution Composition 
PBS- (no Ca2+, no Mg2+) (1x) 9.6 g Dubelcco’s PBS 

� add MilliQ to 1 liter 
� autoclave 
 

4% paraformaldehyde (PFA) 4% (w/v) PFA 
� heat 1x PBS- in microwave 

� add PFA and stir 
� cool down and sterile filtrate 
� store aliquots at -20°C 
 

TBS (10x) 1.47 M NaCl 
0.4M Tris/HCl (pH 8.0) 
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2.5.2 Solutions for the analysis of nucleic acids  

 

Solution Composition 
TENT buffer (stock) 20 mM Tris-HCl, pH 8.3 

0.1 mM EDTA 
1% Tween®20 
0.2% Triton®X-100 
� autoclave 
 

Proteinase K solution (stock) 10 µg/µl Proteinase K 
in MilliQ 
� store aliquots at -20°C 
 

Genomic DNA extraction buffer 10 ml TENT buffer (stock) 
160 µl Proteinase K solution (stock) 
� 200 µl aliquots 
� store at -20°C 
 

TE buffer 100 mM Tris-HCl, pH 8.0 
1 mM EDTA 
� autoclave 
 

TAE (50x) 242 g Tris base 
57.1 ml acidic acid 
100 ml 0.5 M EDTA, pH 8.0 
� add MilliQ to 1 liter 

DNA loading buffer (100ml) 40% (w/v) Saccharose 
0.5% (w/v) SDS 
0.25% (w/v) Bromphenol blue 
� add TE buffer to 100 ml 
 

DNA ladder PhiX 174 (HAEIII) 100 μl marker 
100 μl Fermentas loading buffer (1:6) 
400 μl MilliQ 
� store aliquots at 4°C 
 

DNA lambda phage ladder Eco911 
(BstEII) 

100 μl marker 
100 μl Fermentas loading buffer(1:6) 
400 μl MilliQ 
� heat for 5 minutes at 65°C 
� incubate 3 minutes on ice 
� store aliquots at 4°C 
 

RNA Isolation  
DEPC H2O 100 ml MilliQ 

0.1 ml DEPC 
� stir o.n. under fume hood 
� autoclave one hour 
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RNA sample buffer 50% (v/v) Formamide 
6% (v/v) Formaldehyde 
10 µg/ml EtBr  
in 1x RNA gel buffer 
 

RNA loading buffer 50% (w/v) Saccharose 
0.25% (w/v) Bromphenol blue 
� add DEPC H2O to 100 ml 
 

RNA gel buffer (pH8.0) 20 mM MOPS/NaOH 
5 mM Sodium-acetate 
1 mM EDTA 
in DEPC H2O 
 

RNA running buffer (pH 7.0) 20 mM MOPS/NaOH 
5 mM Sodium-acetate 
1 mM EDTA 
in DEPC H2O 
 

 

 

2.5.3 Solutions and media for the tissue culture 

 

2.5.3.1 General Media for tissue culture 

 

Solution Composition 
HeLa/Mef- medium 
 

425 ml Dulbecco’s modified Eagle’s 
medium (DMEM) 
50 ml fetal calf serum (FCS) 
5 ml L-Glutamine (100x) 
5 ml Penicillin/Streptomycin (100x) 
5 ml Non-essential amino acids (100x) 
5 ml Sodium pyruvate (100x) 
5 ml HEPES pH 7.2 (100x) 
� sterile filtrate 
 

Freezing medium HeLa/Mef- medium 
10% (v/v) DMSO (tissue culture grade) 
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20% Moviol + NPG 20 % (w/v) Moviol 
2.5 mg/ml  NPG 
� stir Moviol in MilliQ in the dark until 
completely dissolved  
� add NPG 
� stir 
� store aliquots at -20°C 
 

 

2.5.3.2 Solutions and media for cultivating and analyzing Mefs 

 

Solution Composition 
Concentrated Trypsin Trypsin-EDTA 

1:20 (v/v) 2.5% Trypsin 
 

Gelatin (0.2%) 0.2% (w/v) ‘porcine skin gelatin’ 
in MilliQ 
� autoclave 
 

PI wash 1x PBS-  
1 g/l Glucose 
0.1 mM EDTA 
� filter 

 
PI staining solution 8 ml 1x PBS- 

12.5 µl PI-slurry 
12.5 µl RNaseA 10mg/ml 
� store in the dark 
� prepare fresh 

 

 

2.5.3.3 Solutions and media for analyzing cultured cells 

 

Solution Composition 
MACS cell separation buffer  2 mM EDTA 

0.5% FCS 
in 1x PBS- 

� store at 4°C 
 

MACS blocking solution  1% (v/v) fish gelatin 
in MACS cell separation buffer 
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2.5.3.4 Solutions and media for cultivating and analyzing neural cells 

 

Solution Composition 
BSA stock solution (5%) 1x PBS-  (TC grade) 

5% (w/v) BSA 
� store at 4°C 
 

HEPES stock solution (1M, pH 7.25) 1 M HEPES powder 
�dissolve in distilled water (TC grade) 
�adjust pH 
� store at 4°C 
 

HBSS /HEPES solution ( 7mM) 
 

500 ml HBSS 
3.5 ml 1 M HEPES stock solution 
� store at 4°C 
 

Trypsin/ HEPES solution 
 

100 ml 0.05% Trypsin-EDTA 
700 µl 1M HEPES stock solution 
� store 10 ml aliquots at -20°C 
 
 

HBSS + Dnase 
 

100 ml HBSS /HEPES solution ( 7mM) 
1 ml Dnase 
� store aliquots at -20°C 
 

Neurobasal medium complete 
 

94 ml neurobasal medium 
2 ml B-27 
1 ml L-Glutamine 
1 ml Pen/Strep 
2 ml FCS 
� sterile filtrate 
 

Ara-C (stock) 12 mg Ara-C 
�dissolve in 50 ml distilled water (TC 
grade) 
 

Astrocyte inhibition medium Neurobasal medium complete 
� add 1:200 AraC (stock)  
 

2% PFA +2% sucrose 
 

2% (w/v) PFA 
2% (w/v) sucrose 
in PBS- 
� store 10 ml aliquots at -20°C 
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MEM–FCS medium  300 ml distilled water 
50 ml 10x MEM  
20 ml 5.5% NaHCaO3 

15 ml 20%(w/v) Glucose 
5 ml L-Glutamine (100x) 
10 ml  50x MEM essential amino           
acids 
10 ml 100x MEM non-essential amino 
acids 
50 ml FCS 
� adjust pH to 7.3 using 1M NaOH 
� fill up with distilled water ( TC grade)     
to 500 ml 
� filter sterile  
 

 

2.5.4 Solutions and media for bacterial culture 

 

Solution Composition 
Ampicillin (stock) 50 mg/ml Ampicillin in MilliQ 

� sterile filter 
� store aliquots at -20°C 
 

IPTG (stock) 1 M IPTG in MilliQ 
� store aliquots at -20°C 

 
LB0 medium 10 g Bacto-Tryptone 

5 g Bacto-yeast extract 
10 g NaCl 
� add MilliQ to 1 liter 
� autoclave 

LBAmp medium Dilute Ampicillin (stock) 1:1000 to LB0 
medium 
 

LB0-plates 15 g Agar 
� add LB0 medium to 1 liter 
� autoclave 
� cool to 55°C and pour plates 
� store plates at 4°C  

LBAmp-plates 15 g Agar 
� add LB0 medium to 1 liter 
� autoclave 
� cool to 55°C and add Ampicillin stock    
(1:1000) 
� pour plates 
� store plates in the dark at 4°C 
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GST lysis buffer 5 mM EDTA 
0.5% (v/v) Triton®X-100 
10% Sucrose 
� in PBS 
� add 1 tablet complete protease-
inhibitor in 50 ml directly before use 
 

GST washing buffer 0.5% (v/v) Triton®X-100 
� in PBS 
 

 

2.5.5 Solutions for protein analysis 

 

Solution Composition 
SDS running buffer (10x) 250 mM Tris 

1.9 M Glycine 
1% (w/v) SDS 
in MilliQ 
 

SDS-PAGE separation gel 
(15%; for 7gels) 

25 ml 30% Acrylamide 
9.4 ml 2 M Tris-HCl, pH 8.8 
0.5 ml 10% SDS 
15 ml MilliQ 
240 μl 10% APS 
45 μl TEMED 
 

SDS-PAGE stacking gel 
(15%; for 7gels) 

4.8 ml 30% Acrylamide 
0.3 ml 10% SDS 
17.4 ml MilliQ 
7.5 ml 0.5 M Tris-HCl, pH 6.8 
150 μl 10% APS 
30 μl TEMED 
 

Fractionation buffer A 5 mM MgCl 
100 mM NaCl 
50 mM HEPES, pH 7.0 
� sterile filter 
� store at 4°C 
 

Fractionation buffer B Fractionation buffer A 
1% NP-40 
� store at 4°C 
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PEB 20 mM Tris, pH 8.0 
100 mM NaCl 
5 mM EGTA 
2 mM EDTA 
0.5% (v/v)Triton®X-100 
1 tablet Protease-Inhibitor in 10 ml PEB 
� store at 4°C 
 

PHEM (10x, pH 7.0) 600 mM PIPES 
200 mM HEPES 
100 mM EGTA 
20 mM MgCl2 

� store at 4°C 
 

G/ F-actin separation buffer 1% (v/v) Triton®X-100 
in 1x PHEM  
 

SDS sample buffer (5x) 110 mM Tris, pH6.8 
20% (v/v) Glycerol 
3.8% (w/v) SDS 
8% (v/v)ß-Mercaptoethanol 
Bromphenol blue ad libidum 
in MilliQ 
 

Coomassie Brilliant Blue staining 
solution 

0.1% (w/v) Coomassie Brilliant Blue 
50% (v/v) Methanol 
10% (v/v) Acetic acid 
in MilliQ 
� stir o.n. 
� filter 
 

Rapid destain 30% (v/v) Isopropanol 
6% (v/v) Acetic acid 
in MilliQ 
 

Towbin transfer buffer (1x) 25 mM Tris/HCl, pH8.5 
190 mM Glycine 
20% (v/v)Methanol 
� add MilliQ to 1 liter 
 

NCP- azide, pH 8.0 (10x) 600 mM Tris/HCl 
1.5 M NaCl 
0.5% (v/v)Tween® 20 
� add MilliQ to 1 liter 
 

NCP + azide, pH 8.0 (10x) 600 mM Tris/HCl 
1.5 M NaCl 
0.5% (v/v) Tween® 20 
2 g Sodium azide 
� add MilliQ to 1 liter 
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Western Blot blocking solution 5% (w/v) Milk powder 
in 1x NCP + azide 
 

Primary antibody solution (Western Blot) 1:x antibody 
in Western blot blocking solution 
 

Secondary antibody solution (Western 
Blot) 

1:x antibody 
in 1x NCP- azide 
5% (w/v) Milk powder 
 

Luminol stock solution 0.44 g Luminol in 10 ml DMSO 
� store at -20°C 
 

p-hydroxy-coumarin stock 150 mg p-hydroxy-coumarin in 1 ml 
DMSO 
� store at -20°C 

ECL Solution A: 
200 ml 0.1 M Tris-HCl, pH 8.6 
4 ml luminol stock 
0.1ml p-hydroxy-coumarin stock 
� store solution in the dark at 4°C 
 
Solution B: 
200 ml 0.1 M Tris-HCL, pH 8.6 
0.2 ml H2O2 (from 30-35% stock 
solution) 
� store solution in the dark at 4°C 
 

BSA stock solution (5%) 1x PBS- 

5% (w/v) BSA 
� store aliquots at -20°C 
 

BSA solution (1%) 1x PBS- 

20% (v/v) BSA stock solution 
 

IF permeabilizing solution 0.1 % (v/v) Triton®X-100 
in PBS 
 

IF blocking solution BSA solution (1%) 
5% (v/v) goat serum 
 

IF antibody solution 
(primary and secondary antibody) 

1:x antibody 
0.5% (v/v) goat serum 
BSA solution (1%) 
 

G-buffer (10x) 20 mM Tris 
2 mM CaCl2 
0,1% sodium acide 
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G-buffer (1x) After dilution: 
� add 0,2 mM ATP  
� adjust pH to 8,0 with 1 M HCl 
� add 0,1 mM DTT 
 

Actin polymerization buffer (50x) 
 

2,5 M KCl 
0,1 M MgCl2 
1 mM ATP 
� adjust pH to 7, with 1 M NaOH 
 

 

 

2.6 Buffers for actin assays 

 

Solution Composition 
Pyrene assay  
G assay buffer 2 mM Tris-HCl, pH8.0 

0.5 mM DTT 
0.2 mM ATP 
0.1 mM CaCl2 
0.01% NaN3 
 

KMEI (10x) 500 mM KCl 
10 mM MgCl2 
10 mM EGTA 
100 mM imidazole, pH 7.0 
 

Falling ball assay  
G-Mg assay buffer 2 mM Tris-HCl, pH8.0 

0.5 mM DTT 
0.2 mM ATP 
0.1 mM MgCl2 
0.01% NaN3 
 

K50MEI (10x) 50 mM KCl 
10 mM MgCl2 
10 mM EGTA 
100 mM imidazole, pH 7.0 
 

Assay binding buffer 1.1ml K50MEI (10x) 
8.9 ml G-Mg assay buffer 
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2.7 Solutions for histology 
 

Solution Composition 
  
Dye stainings  
Eosin Y (0.05%) 1% (v/v) Eosin Y (5%) 

in 96% EtOH 
 

Mayer’s haemalaun solution (50%) 50% (v/v) Mayer’s haemalaun solution 
(stock) in 
50% (v/v) distilled water 
 

Acetic acid (3%, pH 2.5) 3%  (v/v) acetic acid in Elix H2O 
 

Alcian Blue staining solution  
(0.8 -1%, sections) 

0.8 -1% (w/v) Alcian Blue 
� fill up with 3% acetic acid 
� stir for at least 30 minutes 
� protect solution from light  
 

Alizarin Red staining solution (0.015%, 
whole mount) 

0.015% (w/v) Alizarin Red 
� fill up with 1% KOH solution  
� stir for at least 30 minutes 
� protect solution from light  
 

Alcian Blue staining solution (0.05%, 
whole mount) 

0.05% (w/v) Alcian Blue 
30% (v/v) glacial acetic acid 
70% (v/v) absolute ethanol (analysis 
grade) 
� stir for at least 30 minutes 
� protect solution from light  
  

KOH solution (2%, stock) 2% (w/v) KOH 
� fill up with MilliQ 
 

Nissl staining solution (100 ml) 0.1 g cresyl violet acetate  
100 ml Elix (pre-warmed to 37°C) 
� stir for approx. 90 min 
�protect from light 
� add 300µl glacial acetic acid 
� filtrate 
�warm up to 37°C before use 
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Senescence staining solutions  
Senescence fixing solutions 1% FA + 0.2% GA in PBS 

 
1% FA in PBS 
 
0.2% GA in PBS 
� always prepare freshly 
 

X-Gal solution (Dimri) 20 mg/ml X-Gal 
�dissolve in DMF 
� store at -20°C 
� protect from light 
 

Potassium ferricyanide solution 100 mM Potassium ferricyanide in MilliQ 
� protect solution from light 
� store at 4°C  
 

Potassium ferrocyanide solution 100 mM Potassium ferrocyanide in MilliQ 
� protect solution from light 
� store at 4°C 
 

Sodium phosphate buffer M Dibasic sodium phosphate in 
MilliQ 
 

Citric acid buffer 
(Dimri) 
 

0.1 M Citric acid in MilliQ 

Citric acid/ sodium phosphate buffer 
(200mM; pH4.0, 5.0, 5.5, 6.0, Dimri) 

36.85 ml 0.1 M citric acid  
63.15 ml 0.2 M dibasic sodium 
phosphate 
� use 1 M citric acid to adjust pH 
 

X-Gal staining solution (Dimri) 
(pH 6.0, 5.5, 5.0, 4.0) 

1 mg/ml X-Gal solution 
40 mM citric acid/sodium phosphate,  
(pH 6.0, 5.5, 5.0, 4.0) 
150 mM NaCl 
2 mM MgCl2 
5 mM Potassium ferricyanide solution 
5 mM Potassium ferrocyanide solution 
� fill up with MilliQ 
�protect from light 
� prepare directly before use 
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Antibody stainings  
Citrate buffer 
(10x, pH 6.0, epitope retriever) 

100 mM sodium citrate  
in MilliQ 
� adjust pH 1M using citric acid 
� store at 4°C 
 

Oldenburg buffer (1x, pH 7.4 ) 50 mM Tris  
1.5% NaCl 
� add 800ml MilliQ 
� adjust pH to 7.4 
� add 0.4% (v/v) Triton®-X-100 
� fill up to 1l 
 

Primary antibody solution for IHC  5% (v/v) NGS 
1% (v/v) BSA 
in Oldenburg buffer 
  

Secondary antibody solution for IHC 0.5% (v/v) NGS 
1% (v/v) BSA 
in Oldenburg buffer 
 

DAB 9 ml MilliQ 
�dissolve tablet in MilliQ 
� protect from light 
�add 1ml 10x TBS 
�store aliquots at -20°C 
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2.8 Antibodies 
 

2.8.1 Primary antibodies 

 

Name Antigen Clone Origin Dilution  Source 
7D10 ADF Monoclonal Mouse WB:  1:5 Witke lab 
AC74 Actin Monoclonal Mouse IF: 1:1000 Sigma 
β-III-tub β-III-tubulin Monoclonal Mouse IF: 1:500 

IHC: 1:200 
Promega 
 

BrdU BrdU Monoclonal Mouse IHC 1:10 Roche 
C4 Actin Monoclonal Mouse WB: 1:5000 MP 

Biomedicals 
Ctip2 Ctip2 Monoclonal Rat IF: 1:100 Abcam 
Cux1 Cux1 Monoclonal  Mouse IF: 1:100 Abcam 
FHU1 Cofilin 2 Polyclonal Rabbit WB: 1:500 Witke lab 
GAPDH GAPDH Monoclonal Mouse WB: 

1:10.000 
Calbiochem 

GFAP GFAP Monoclonal Mouse IF: 1:500 Millipore 
KG60 Cofilin1 Polyclonal Rabbit WB: 1:500 

IF: 1:100 
Witke lab 

NeuN NeuN Monoclonal  Mouse IHC: 1:100 Millipore 
PCNA PCNA Monoclonal Mouse  WB: 1:500 Biosource 
Reelin Reelin Monoclonal  Mouse IF: 1:100 Millipore 

 

 

2.8.2 Secondary antibodies 

 

Antigen Clone Species Labeling Dilution Source 
Mouse Polyclonal Goat FITC 

(green) 
IF: 1:400 Invitrogen 

Rabbit Polyclonal Goat FITC 
(green) 

IF: 1:400 Invitrogen 

Rat Polyclonal Goat (FITC 
(green) 

IF: 1:400 Invitrogen 

Mouse Polyclonal Goat Alkaline 
phosphatase 

IHC: 1:250 DAKO 

Mouse Polyclonal Goat Horseradish 
peroxidase 

WB:1:1000 Thermo Scientific 

Rabbit Polyclonal Goat Horseradish 
peroxidase 

WB: 
1:1000 

Thermo Scientific 
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2.8.3 Staining reagents 

 

Name Dilution Supplier 
Phalloidin Alexa – 488 IF: 1:200 Merck 
DAPI 1:1000 Sigma 
Draq5 1:1000 Abcam 

 

 

Name Excitation/ 
Emission 

Final 
concentration/ 
Dilution 

Supplier 

CFDA-SE Green (FL1) Flow-Cyt: 1µM Invitrogen 
DNase I Alexa- 488 (FL1) Flow-Cyt: 1:500 Merck 
Phalloidin Alexa – 680 (FL4) Flow- Cyt: 1:200 Merck 

 

 

2.9 General laboratory, tissue culture, bacterial 

culture and histology materials 

 

2.9.1 Plastic ware 

 

Name Supplier 
Safe seal tubes (1.5ml/ 2ml)  Sarstedt 
Tubes (15ml, 50 ml) Sarstedt 
Snapshot tubes (3ml, 12ml) BD Falcon 
PCR tubes Bioplastics 
Pipettes (5ml, 10ml, 25ml, 50ml) BD Falcon 
Pipette tips (20µl, 200µl, 1000µl) Sarstedt 
Pipette tips plugged Molecular Bio Products 
Pasteur pipettes Sarstedt 
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2.9.2 Glass ware 

 

Name Supplier 
Glass bottles (50ml, 100ml, 250ml, 
500ml, 1000ml) 

Schott 

Glass pipettes (5ml, 10ml, 50ml) Brandt 
Microscope slides VWR 
Glass pasteur pipettes  Volcan  
Glass pasteur pipettes (plugged) Volcan   

 

2.9.3 General tissue culture material 

 

Name Supplier 
Accu-jet (electronic pipette boy) Brandt 
Eppendorf tubes (1.5ml/ 2ml)  Eppendorf 
Filter (for medium filtration; 0.2 µm) Millipore 
Plastic pipettes (1ml, 2ml, 5ml, 10ml, 
25ml, 50ml) 

BD Falcon 

Plastic tubes (15ml, 50 ml, Mefs, HeLa) Sarstedt 
Cell culture flasks (25cm2, 75cm2, 
175cm2, Mefs, HeLa)  

Corning Life Sciences 

Petri dishes (Ø : 3cm; 10cm; Mefs , 
HeLa) 

BD Falcon 

Well plates (96- ; 48- ; 24-; 12- and 6-
well)   

Corning Life Sciences 

Plastic tubes (15ml, neural culture) Corning Life Sciences 
Cell culture flasks (25cm2, 75cm2; neural 
culture) 

Nunc 

Petri dishes (Ø : 6cm; neural culture)  Nunc 
Cryotubes Nunc 
Coverslips (Ø; 13 + 18mm) VWR 
Coverslip holder  
(porcelain, for neural culture) 

Thomas- scientific 

 

2.9.4 General bacterial culture material 

 

Name Supplier 
Petri dishes (10cm) VWR 
Erlenmeyer flask (100ml, 500ml) VWR 
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2.9.5 General histology material 

 

Name Supplier 
Embedding cassettes Leica  
Embedding molds VWR 
Entellan Merck 
Microscope slides VWR 
Microscope slides, Superfrost plus Thermo Scientific 
Paraffin Paraplus Sigma 
Razor blades Apollo 

2.10 Further material 
 

Name Supplier 
Transfer membrane Immobilon-P Millipore 
Parafilm Brandt 

 

2.11 Technical equipment 

 

Description Supplier 
Accu-jet® (electronic Pipette-Boy) Brandt 
Binocular MS 5  +  
camera ConProgRes C10 plus +  
light source  KL 1500 LCD  

Leica 
JENOPTIK Germany 
 

BioChem VacuuCenter BVC 21 + 
VacuuHandConrol VHC 

BioChem 
BioChem 

Centrifuge 5415 D  Eppendorf 
Centrifuge 5417 R  Eppendorf 
Centrifuge tissue culture  Beckmann 
CTR 5500 +  
camera DFC 420 C  

Leica 
 

Epitope retriever 2100 PrestigeTM Medical 
FACS C6 Flow Cytometer  Accuri 
Freezer (-80 °C)  Thermo Scientific 
Gel-electrophoresis running chamber  European Molecular Biology Laboratory  
Glass-Teflon tissue grinders Kontess Glass Co. Duall® 
Heating block  Grant/QBT 
Heating block  for histology  VWR 
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Heating plate for histology Leica 
Homogenizer apparatus Bosch 
Incubator for bacterial culture Heraeus 
Incubator for tissue culture Heraeus 
BZ-900 Biorevo microscope Keyence 
ImageQuant LAS4000 mini imager GE Healthcare 
LSM Zeiss 
Magnetic stir plate  Heidolph 
Microscope tissue culture Leitz 
Microtome Microm 
Oven for drying sections  Heraeus 
Oven in histology Heraeus 
PCR machine PTC-200 Peltier thermal 
cycler  

MJ Research 

pH-meter, pH Level 2 InoLab 
Pipettes  Gilson 
Power supply (for agarose gels) Pharmacia 
Power supply Power PAC 200 BIO-RAD 
Rocker Heidolph 
SDS gel apparatus SE250  Pharmacia Biotech 
Semi-dry blotting chamber  BIO-RAD 
Shaker  New Brunswick Scientific 
Spectrophotometer UV-DU 640 Beckmann 
Vortex-Genie 2   Scientific Industries 
Water purifier Millipore 

 

  



2. Materials 
___________________________________________________________________ 

 
63 

2.12 Nucleic acids  
 

2.12.1 Oligonucleotides for PCR  

 

Name Sequence (5’ to 3’) Binding site PCR 
Mut-Nuc 3’ 
(#669) 

CCA GAA GAA GTG AAG ACC 
CGC A 

Binds  to the 5’ 
region, ends in 
the KTRTK 
mutation  
 

KTRTK 
Mutation 

Cof1 1-250-5’ 
(#17) 

CTT GGT CTC ATA GGT TG Anneals  to the 
3’ region 
downstream of 
the KTRTK 
mutation 
sequence  
 

KTRTK 
Mutation 

Coin sma 3’ 
(#347) 

CGC TGG ACC AGA GCA CGC 
GGC ATC 

Binds upstream 
of the loxP site 
in the first intron  

Cof1-lox 

Coin1-5’ 
(#619) 

CGA GGT ACA GTG ACT ACA 
GAA TG 

Anneals 
downstream of 
the loxP site in 
the first  intron 

Cof1-lox 

 

 

2.12.2 TaqMan probes for qPCR 

 

Name Sequence (5’ to 3’) Label ID 
TaqMan 
Cofilin1 

AGA AGC TGA CAG GAA TCA AGC 
ATG A 
 

FAM 
 

Mm03057591_g1 
life technologies 

TaqMan 
GAPDH GGTGTGAACGGATTTGGCCGTATTG Vic 

Mm99999915_g1 
Life technologies 
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2.13 Recombinant plasmids 

 

Name (Plasmid number) Description Reference 

GST-wt-Cofilin1(101) Wt Cofilin1 cloned into pGex-2T 

at BamHI restriction site 

Christine Gurniak 

GST-KTRTK-Cofilin1 

(494) 

KTRTK-Cofilin1 cloned into 

pGex-2T at BamHI restriction site 

Melanie Jokwitz 

GFP-wt- Cofilin1 (99) 
Wt Cofilin1 cloned into pEFG-C3 

at SmaI restriction site 
Christine Gurniak 

GFP-KTRTK-cofilin1 

(483) 

KTRTK-Cofilin1 cloned into 

pEFG-C3 at SmaI restriction site 
Christine Gurniak 

 

 

2.14 Strains of bacteria 
 

Name Reference 
XL1-Blue (for plasmid 483) (Bullock et al., 1987) 
JM105  (for plasmid 99) (de Taxis du Poet et al., 1987) 
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2.15 Eukaryotic cell lines 
 

 

  

Name Description Reference 

HeLa wt Well established cell line 
originally derived from human 
cervix carcinoma 

(Hsu et al., 1976) 

HeLa A12  Lamin producing HeLa cells Witke Lab 

HeLa GFP- Cofilin1 wt Transfected HeLa wt cells, 
expressing GFP- Cofilin1 wt 
stably   

Witke Lab 

HeLa GFP-KTRTK- 
Cofilin1 

Transfected HeLa wt cells, 
expressing GFP-KTRTK- Cofilin1  
stably   

(Roy, 2011) 

Mef Cofilin1wt/wt 
Mouse embryonic fibro-blasts 
isolated from embryos of 
heterozygous mated KTRTK- 
Cofilin1 mice 

(Roy, 2011) Mef  Cofilin1wt/KTRTK 

Mef Cofilin1KTRTK/KTRTK 
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2.16 Marker 
 

DNA marker 
                    Lambda-BstEII 

Fermentas 
PhiX-174- HaeIII 

Fermentas 

  
 

Protein marker 
Broad Range Standard 

BIO-RAD 
SeeBlue Plus2 Prestained Standard 

Invitrogen 
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3.1 Molecular Biology 
 

3.1.1 Genotyping by PCR 

 

The polymerase chain reaction (PCR) provides a means of exponentially amplifying 

DNA (Mullis and Faloona, 1987). Using the enzyme Taq-Polymerase, originally 

isolated from Thermus aquaticus, a pre-existing DNA template and short single 

stranded oligonucleotides (Primer) allow the amplification of a chosen target sequence 

from the template DNA. The used oligonucleotides are complementary to the 

sequences at either end of the target DNA. Each synthesized DNA molecule becomes 

a template for the synthesis of a new DNA molecule therefore creating a chain reaction. 

Every PCR cycle consist of three steps: denaturation, annealing and elongation.  

The denaturation of the DNA at 94° C is the first step of the PCR cycle. In this phase 

the strands of the template DNA are separated. In the second phase, the annealing 

phase, the reaction temperature is lowered to 55 – 72°C allowing the hybridization of 

the complementary oligonucleotides (primers) to the DNA template. Oligonucleotides 

usually consist of 18-30 bases, containing a guanine and cytosine content of 40-60%. 

The sequence of oligonucleotides should be specific to ensure a specific hybridization 

to the target sequence and avoid unspecific DNA products. They are essential because 

Taq-Polymerase cannot start a de novo synthesis, a starting molecule is required to 

start elongation. In the following phase the temperature is maintained at 72°C, the 

optimal temperature for the Taq-Polymerase, to allow the elongation of the new 

synthesized DNA strands in 5’ -> 3’ from the oligonucleotides. At the end of the cycle 

the amount of DNA is multiplied by the factor of two. To initiate a new cycle the 

temperature is raised to 94°C again. This cycle of denaturation, annealing and 

elongation is repeated 35 times for the PCRs used in this work. 

In this thesis PCR was used to determine the genotypes of embryos and adult mice.      
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3.1.1.1 Genotyping of mice by PCR 
 

To determine the genotype of transgenic mice 2-4 mm tail biopsies were taken from 

pups at postnatal day 21-28 or from adult animals used in experiments in order to 

confirm the genotype. The tail biopsies were digested over night (o.n.) in 200 µl 

genomic DNA extraction (2.5.2) buffer at 55°C in a heating block.  The following day 

the tubes were vortexed vigorously before boiling at 95°C for 10 minutes. Afterwards 

the tubes were centrifuged at 13.200 rpm for 10 minutes. 1 µl of the supernatant was 

used for PCR. The tail biopsies were stored at 4°C or RT.  

 

3.1.1.2 Genotyping of embryos by PCR 
 

To analyze the development of the embryos more precisely the developmental stages 

had to be exactly determined. Therefore timed matings were set up, offering the 

opportunity to analyze the embryos at defined stages in their development. One to two 

females were placed in a cage with a male o.n. Mating was determined by the 

existence of a vaginal plug. The morning after the mating was defined as E (embryonic 

day) 0.5 of pregnancy. The stages E10.5 to E18.5 were further analyzed. To determine 

the genotype of embryos at various developmental stages a tissue sample of the 

amnion or the tail was used. The tissue was digested in genomic DNA extraction buffer 

and treated as mentioned above. 1 µl of the supernatant was used for PCR. 

 

3.1.1.3 Genotyping PCRs 
 

3.1.1.3.1 Cof1-lox- PCR 

 

This PCR was generally used for genotyping pups, adult mice and embryos of the 

KTRTK-Cofilin1 mouse line. The oligonucleotides (see 2.12.1) used in this PCR anneal 

in the first intron of the Cofilin1 gene. The upstream primer (Coin sma 3’) binds in front 

of the loxP site in the first intron, while the downstream primer (Coin1-5’) binds behind 
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the loxP site (Figure 14), resulting in a band of 391 bp. In the wildtype allele there is 

no loxP site therefore the expected band has a size of 347 bp.   

 

 
 

Fig.14: Schematic diagram of wildtype (Wt) and mutant (KTRTK) Cofilin1 alleles analyzed by 

PCR. The oligonucleotides are indicated as arrows. Coin sma 3’ (green arrow) anneals upstream of 

the loxP site (black arrow head), while Coin1-5’ (red arrow) binds downstream of the loxP site. For 

KTRTK-Cofilin1 the amplified fragment has a size of 391 bp, for wt Cofilin1 347 bp. Cofilin1 comprises 

4 exons (black boxes, 1-4), exon 1 encodes the start codon ATG exclusively, the pink asterisk 

indicates the position of the inserted mutation in exon 2 

 

Cof1-lox PCR mix 

 

PCR mix for one PCR sample 
1.0 µl DNA 
8.87 µl H2O 
4.0 µl PCR-Flexi-buffer (5x) 
1.5 µl MgCl2 (25 mM) 
1.5 µl dNTPs mix (2.5 mM) 
1.5 µl Primer 1 (5 pmol/µl) 
1.5 µl Primer 2  (5 pmol/µl) 
0.13 µl Taq- polymerase (5 U/ 

µl) 
 
20 µl per reaction 

 

PCR program for the Cof1-lox PCR 
94°C 2 min  
   
94°C 
55°C 
72°C 

30 sec 
40 sec 
40 sec 

 
35 

cycles 
 

   
72°C 5 min  
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3.1.1.3.2 KTRTK-Mutation PCR 

 

To ensure the mutation of the nuclear translocation signal of Cofilin1 was present this 

PCR was used to confirm the results of the Cof1-lox PCR. The upstream 

oligonucleotide (Mut-Nuc 3’) (2.12.1.) anneals to the template ending in the mutation 

and does not amplify the wildtype allele. The downstream oligonucleotide (Cof1 1-250-

5’) (2.12.1.) binds to the 3’ region downstream of the KTRTK mutation sequence 

(Figure 15). This PCR allowed the identification of one or two KTRTK-Cofilin1 mutant 

alleles. The PCR product was expected at a size of 200 bp. 

 

 
 

Fig.15: Schematic diagram of wildtype (Wt) and mutant (KTRTK) Cofilin1 alleles analyzed by 

KTRTK-Mut PCR. Wt and KTRTK-Cofilin1 each comprise 4 exons (black boxes, 1-4), the inserted 

loxP site (black arrow head) is located in the first intron. Exon 1 solely encodes the start codon ATG, 

the mutation of the nuclear translocation signal is localized within exon 2 (pink asterisk). Primer Nuc-

Mut 3’ (orange arrow) ends in the KTRTK mutation. Cof1 1-250-5’ (blue arrow) anneals downstream 

of the KTRTK mutation. There was no DNA fragment amplified for the wt Cofilin1 allele. The amplified 

product has a size of 200 bp. 
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KTRTK-Mutation PCR mix 

 

PCR mix for one PCR sample 
1.0 µl DNA 
8.87 µl H2O 
4.0 µl PCR-Flexi-buffer (5x) 
1.5 µl MgCl2 (25 mM) 
1.5 µl dNTPs mix (2.5 mM) 
1.5 µl Primer 1 (5 pmol/µl) 
1.5 µl Primer 2  (5 pmol/µl) 
0.13 µl Taq- polymerase (5 U/ µl) 
 
20 µl per reaction 

 

PCR program for the KTRTK-Mut PCR 
94°C 3 min  
   
94°C 
55°C 
72°C 

40 sec 
75 sec 
60 sec 

 
35 cycles 

 
   
72°C 5 min  

 
 

 

 

3.1.2 Gel electrophoresis 

 

The amplified DNA fragments can be visualized by agarose- gel electrophoresis. This 

method is based on the separation of molecules according to their intrinsic electrical 

charge (Clark, 2006).  It allows a qualitative and quantitative analysis of the products. 

In an electrophoresis DNA moves to the anode due to the negative charge of the DNA 

resulting from the phosphate groups in the backbone. Depending on the size of the 

respective DNA fragments 0.8- 1.5 % (w/v) agarose gels were prepared. 1.5 µl 

ethidium bromide were added per 100 ml of gel. Agarose was boiled in 1x TAE until 

the agarose was completely melted. The gel was poured into a running chamber, 

combs were inserted and later the gel was covered with 1x TAE (2.5.2) after 

polymerization. Gels were run at constant voltage of 50-70 Volts for 30-45 minutes. 

Afterwards the results were documented using an UV-light based imager system. 
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3.1.3 RNA isolation 

 

To investigate mRNA expression levels in mutant and control, RNA was isolated from 

E14.5 Mefs and embryos at the developmental stages E10.5 to E18 for qPCR and 

microarray analyses.  

 

3.1.3.1 Isolation of RNA from mouse tissues for qPCR 
 

Shock-frozen tissue was homogenized in appropriate volume of Trizol® using a 

Polytron at full speed. All purification steps were performed under a fume hood. Upon 

complete dissociation of the tissue 1/4 volume of chloroform/isoamyl alcohol (24:1) 

was added. Next, samples were vortexed at full speed. After ten minutes of incubation 

at room temperature, samples were centrifuged at 3000 rpm for 15 minutes at 4°C to 

achieve phase separation. The upper aqueous phase, containing the RNA, was 

carefully transferred to a fresh tube.  Proteins and DNA are mainly contained to the 

interphase and phenol phase, respectively. 

Following the addition of 1 volume of chloroform to the aqueous phase, samples were 

vortexed, incubated and spun down once more.  

Upon transfer of the aqueous phase to a fresh tube 1 volume of isopropanol was 

added. Samples were mixed and incubated on ice for 5 minutes in the next step. After 

centrifugation at 4000 rpm at 4°C for 20 minutes, supernatant was removed and pellet 

was washed with 70% EtOH/ DEPC H2O and left to dry at room temperature. Pellets 

were resuspended in appropriate volume of DEPC H2O/ 0.1% SDS.  

In order to remove any remaining DNA contamination, samples underwent DNAse 

digestion for 45 minutes at 37°C.  To achieve highest purity and quality of RNA, phenol/ 

chloroform (1:1, pH7.4) extraction was repeated. RNA was mixed with 1 volume of 

phenol/ chloroform, vortexed, incubated and spun down to achieve phase separation. 

Aqueous phase was transferred to a fresh tube and one volume of chloroform was 

added. After incubation, the samples were centrifuged. The aqueous phase was 

transferred to a fresh tube and another chloroform extraction step was performed. 
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Upon centrifugation, upper phase was transferred to a fresh tube, 1/10 volume of 2M 

NaOAc (pH 4.5) was added and mixed before adding 2.5 volume of absolute ethanol 

for precipitation at -20°C over night.  

On the following day, RNA samples were spun down at full speed at 4°C for 20 

minutes. Upon removal of supernatant, pellets were left to dry at room temperature. In 

the final step RNA pellets for resuspended in an appropriate volume of 10mM Tris/HCl 

(pH 7.4).  

In order to analyze integrity, quantity and quality of isolated RNA, NanoVue 

measurements were performed along with the run of a denaturing RNA gel.       

This extensive protocol for RNA isolation yields a high quality and purity outcome, 

allowing the use of this RNA for highly sensitive experiments such as qPCR. Shock-

frozen tissue E10 total embryos and E13.5, E16.5 and E18 brains were homogenized 

in an appropriate volume of Trizol® using a Polytron at full speed. Upon complete 

dissociation of the tissue 1/4 volume of chloroform/ isoamyl alcohol (24:1) was added, 

samples were vortexed and incubated at room temperature for 10 minutes and 

afterwards centrifuged at 3000 rpm for 15 minutes at 4°C to achieve phase separation. 

The upper aqueous phase, containing the RNA, was carefully transferred to a fresh 

tube.  

Following the addition of 1 volume of chloroform to the aqueous phase, samples were 

vortexed, incubated and spun down once more.  

The aqueous phase was mixed with 1 volume of, incubated on ice for 5 minutes and 

centrifuged at 4000 rpm at 4°C for 20 minutes. The pellet was washed with 70% EtOH/ 

DEPC H2O and left to dry at room temperature. Pellets were resuspended in an 

appropriate volume of DEPC H2O/ 0.1% SDS.  

In order to remove any remaining DNA contamination, samples underwent DNAse 

digestion for 45 minutes at 37°C. To achieve highest purity and quality of RNA, a 

phenol/ chloroform (1:1, pH7.4) extraction was performed followed by two extractions 

with chloroform. The aqueous phase was transferred to a fresh tube, 1/10 volume of 

2M NaOAc (pH 4.5) was added and mixed before adding 2.5 volume of absolute 

ethanol for precipitation at -20°C o.n.  
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On the following day, RNA samples were spun down at full speed at 4°C for 20 

minutes, pellets were left to dry at room temperature and resuspended in an 

appropriate volume of 10mM Tris/HCl (pH 7.4).  

In order to analyze the integrity, quantity and quality of isolated RNA, measurements 

using a NanoVue were performed along with a denaturing RNA gel.       

This extensive protocol for RNA isolation yields a high quality and purity outcome, 

allowing the use of this RNA for highly sensitive experiments such as qPCR and 

microarray.    

 

3.1.3.2 cDNA synthesis 
 

Before a qPCR could be performed, a cDNA had to be synthesized on the respective 

mRNA using the SuperScriptTM III First-Strand Synthesis System. Every sample was 

prepared in duplicate, to control for DNA contaminations reactions without reverse 

transcriptase (-RT) and reactions plus reverse transcriptase (+RT). In the denaturing 

step RNA, hexamer primers and dNTPs were incubated at 65°C for 5 minutes and then 

put on ice for 1-2 minutes before the cDNA synthesis mix was added, followed by an 

incubation at 50°C for 50 minutes. To terminate the synthesis reaction, samples were 

exposed to a heat shock at 85°C for 5 minutes and then kept on ice. To eliminate any 

remaining RNA contamination of the cDNA, RNase H was added. Digestion took place 

at 37°C for 20 minutes. Synthesized cDNA was stored at -20°C.  

 

3.1.3.3 qPCR RT-PCR from mouse tissue 
 

Quantitative PCR (qPCR) allows you the gathering of information regarding the levels 

of RNA expression of specific gene of interest. Along with the gene of interest, so called 

housekeeper genes, are always tested. They are used for normalization. Genes, which 

behave the same in control and mutation and are not influenced by mutations, are 

qualified as so called housekeeper genes and used for normalization. In this 

experiment GAPDH was used as reference. qPCRs are quite sensitive and react to a 
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diversity of factors such as contamination, deviations in pipetting and concentrations. 

In order to analyze the mRNA levels of wt-Cofilin1 compared to KTRTK-Cofilin1, 

TaqMan probes annealing independent of the NTS were used, Vic labeled Cofilin1 

(2.12.2) and FAM labeled GAPDH probes were used.  

The principle of TaqMan probes is based on the 5´- 3´ Taq-polymerase exonuclease 

activity.  In TaqMan probes a fluorophore is covalently attached to the 5´-end of the 

oligonucleotide probe while a quencher is attached to the 3´- end. During hybridization 

to the complementary target sequence, the Taq-polymerase cleaves the dually labeled 

probe, resulting in an emitting fluorescence signal. As long as the quencher and the 

fluorophore are in proximity, any fluorescence signal is inhibited by the quencher. This 

fluorescence signal allows quantitative measurements in regard to the accumulating 

product during the exponential phase of the PCR. A number of different fluorophores 

as available. In this case FAM (excitation: 492 nm; emission: 516 nm) and VIC 

(excitation: 535 nm; emission: 555 nm) were used (Aldrich, 2008).   

 

PCR mix for one PCR sample 

4.0 µl cDNA (1:10) 

0.5 µl GAPDH- TaqMan FAM 

0.5 µl Cfl1- TaqMan Vic 

5 µl TaqMan mastermix  

 

10 µl per reaction 
 

PCR program for the Cofilin1 qPCR 

1. 95°C 10 min  

2. 95°C 10 sec  

3. 60°C 30 sec  

4.  Acquisition  

5.  Go to 2. 39x 

 

Program: TAQMAN AB 

 
 

 

To analyze possible deviations all +RT samples were measured in triplicates for more 

detailed analysis. 
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3.1.3.4 qPCR RT-PCR from mouse tissue 
 

The acquired data was analyzed using the ∆CT-method, a form of relative 

quantification.  

Relative quantification can provide information regarding changes and differences in 

gene expression. For this form of quantification a reference gene (GAPDH) for 

normalization is needed, that should not be influenced by the introduced mutation, in 

this experiment (CT- reference).  

For each sample the ∆CT-method uses calculations for the difference between 

reference CT (GAPPDH) and target gene CT (Cofilin1) values. The first step in analysis 

required the normalization of Cofilin1 expression, determining the relative expression 

of both genes for each sample. 

1) ������	� ���������: 2���������)�������� �! ")# 
 

This value represents the expression of Cofilin1 relative to GAPDH in the respective 

sample. In the subsequent step the ratio of expression between wildtype and mutant 

is calculated.  

 

2)   $% &'�(% %)*+%,,��! �-')

$% &'�(% %)*+%,,��! �.')
 

 

 

3.1.4 Microarray 

 

Microarrays allow high-throughput molecular profiling, screening the expression of 

thousands of genes at the same time (Duggan et al., 1999). In this control and mutant 

embryonic mouse brains (E16.5) and Mefs (E14.5) were analyzed with the goal to 

identify critically altered genes. Microarray analyses were performed in collaboration 

with the laboratory of Prof. Schultz at the University of Bonn, using the Illumina® bead 

chip system.  
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3.1.4.1 Isolation of RNA from Mefs and embryonic brains for 

microarray analysis 

 

Mefs from one confluent T75 cell culture flask were washed with PBS-, trypsinized and 

pelleted. Upon removal of supernatant, pellets were carefully resuspended in 2ml 

Trizol®, and divided into two parts. Samples were vortexed at full speed for a minute. 

After an incubation of 15 to 20 minutes at RT, samples were frozen at -20°C until further 

processing.  

Embryos at developmental stage E16.5 were prepared on ice and washed several 

times in ice cold PBS-. Brains were removed from the skull vault, shock-frozen in liquid 

nitrogen and stored at -80°C until further processing. Samples were delivered to 

collaborator in this state.    

All the following steps in this section were conducted by the collaborator and are only 

mentioned shortly for precision.  

RNA extraction was achieved using the miRNeasy Mini Kit (Qiagen), followed by a 

concentration quantification and a test run on a denaturing gel to analyze integrity.   

This purification step was followed by c-RNA-synthesis utilizing the TargetAmpTM 

Nano-gTM Biotin-aRNA Labeling Kit for the Illumina® System (Epicentre). After a quality 

control in the form of a PCR, c-RNA (750 -1500 ng) was ready to be used for the 

Illumina® beadchip arrays.  

All the following steps were conducted by the collaborators and are briefly summarized 

below.  

RNA extraction was achieved using the miRNeasy Mini Kit (Qiagen), followed by a 

concentration quantification and a test run on a denaturing gel to analyze integrity.   

This purification step was followed by c-RNA-synthesis utilizing the TargetAmpTM 

Nano-gTM Biotin-aRNA Labeling Kit for the Illumina® System (Epicentre). After a quality 

control in the form of a PCR, c-RNA (750 -1500 ng) was ready to be used for the 

Illumina® beadchip arrays.  
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3.2 Cell biology  
  

3.2.1 Tissue culture 

 

In this thesis primary mouse embryonic fibroblasts (Mef) of the Cofilin1KTRTK/KTRTK 

mouse line showing late embryonic lethality were taken into culture. All procedures 

were performed under sterile conditions using sterile plastic and glass ware in a sterile 

hood. Cells were incubated in an incubator set at 37°C with 5% CO2. Before use, all 

media and solutions were pre-warmed in a water bath at 37°C (or at room 

temperature). Cells were seeded in tissue culture flasks, well plates or tissue culture 

plates for culturing. 

 

3.2.1.1 Culture of cells 
 

Cells attached to the surface of a tissue culture flask or a plate usually within 2 to 3 

hours. Close to confluence, Mef-medium (2.2.3) was removed for passaging. After 

washing with phosphate buffered saline (PBS-, (tissue culture grade)), cells were 

incubated for 5 minutes at 37°C with 5% CO2 in Trypsin-EDTA. Trypsinization was 

stopped by adding Mef-medium and the cells were resuspended. Next, the cell 

suspension was transferred to a 15 ml tube and centrifuged at 1000rpm for 5 minutes 

at RT. The pellet was resuspended in fresh medium to obtain a single cell suspension. 

The cell suspension was split adequately into a new flask and resuspended in an 

appropriate volume of Mef-medium. 

 

3.2.1.2 Freezing and thawing of cells 

 

To freeze cells, the cell suspension was pelleted after trypsinization (5 minutes at 1000 

rpm at RT). The pellet was resuspended in cold freezing medium (2.5.3.1) and 1 ml 

transferred to cryo vials. After leaving the vials on ice for 5 minutes they were moved 
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to the -80°C freezer. The following day the vials were transferred to the liquid nitrogen 

tank for storage.  

To thaw cells, cell aliquots vials were taken from the liquid nitrogen tank and 

immediately transferred to a water bath set at 37°C. Cells were resuspended in warm 

Mef-Medium directly after thawing and transferred to a 15 ml tube. After centrifugation 

for 5 minutes at 1000 rpm at RT the pellet was resuspended in warm Mef medium. In 

the next step the cell suspension was transferred to a prepared flask and incubated at 

37°C with 5% CO2. 

 

3.2.1.3 Treatment of coverslips for mouse embryonic fibroblasts 

(Mef) 

 

The coverslips were incubated in 4M HCl o.n. at room temperature. On the following 

day upon removal of HCl coverslips were boiled three times in autoclaved MilliQ water 

before being transferred to 70% EtOH. Before use coverslips were flame-scarfed and 

then placed into 12 well plates.  

 

Preparation of coverslips for Mefs 

 

Cells were plated on glass coverslips for stainings and subsequent microscopy. 

Coverslips were treated as described above. Afterwards coverslips were coated a 

0.2% gelatin solution for 15 minutes at room temperature. The gelatin solution was 

removed before plating cells. After trypsinization usually 2-3 drops of the cell 

suspension was diluted in 45 ml of medium. 1.5 ml of this dilution was transferred to 

each 12 well. Well plates were incubated at 37°C with 5% CO2. 
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3.2.1.4 Fixation of plated Mefs 
 

Depending on their growth rate the cells were fixed 2-4 days after plating. After 

removing the medium the cells were washed twice with generous amounts of pre-

warmed PBS-. The cells were fixed for 10-15 minutes with 500 µl 4% paraformaldehyde 

(PFA) at room temperature. Next, the cells were washed twice with PBS- and stored in 

fresh PBS- at 4°C.  

 

3.2.2 Primary cultures 

 

3.2.2.1 Isolation of primary mouse embryonic fibroblasts 
 

Animals which carry the mutation of the NTS of Cofilin1 on both alleles are not viable. 

In order to perform studies on live cells mouse embryonic fibroblasts (Mefs) were 

prepared.  

Embryos from timed matings at the stages E13.5 to E18.5 were used for the 

preparation of Mefs. Before starting the dissection all instruments were sterilized with 

70% EtOH. The uterus of the pregnant female was transferred to a tissue culture plate 

with PBS- and transferred to a sterile hood. After removing the uterus and the yolk sac 

a piece of the amnion was transferred to 200 µl genomic DNA extraction buffer for 

genotyping. Alternatively, a piece of the head could be used.  

After cutting the umbilical cord and removing the remaining amnion completely the 

embryos were transferred to separate dishes containing PBS-. The head and liver were 

removed. In the next step the remaining bodies were washed in fresh PBS- before 

being transferred to a 3 cm tissue culture plate with 4 ml of concentrated Trypsin (2.5% 

Trypsin 1:20 in Trypsin-EDTA). Using forceps and scissors the tissues were cut into 

small pieces and incubated at 37°C with 5% CO2 for 25 minutes. Afterwards 4 ml Mef 

medium was added to the tissue culture plate to stop the Trypsin reaction. The content 

of the tissue culture plate was transferred to a 15 ml tube and resuspended thoroughly. 

After tissue pieces sank to the bottom of the tube, the supernatant was transferred to 

a fresh 15 ml tube and resuspended again. After a short period of time in which 
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remaining pieces of tissue were allowed to sink to the bottom of the tube, the 

supernatant was then transferred to a 175 cm2 cell culture flask, which already 

contained 25 ml Mef-medium, and resuspended well. Cells were incubated at 37°C 

with 5% CO2. 

 

3.2.2.1.1 Culturing and splitting of Mefs 

In the early passages Mefs were split 1:20, in the progress of culturing the splitting ratio 

was adequately adjusted (usually to 1:5). After the second passage Mefs were 

transferred from 175 cm2 cell culture flask to 75cm2 flasks.   

 

3.2.2.1.1.1 Extracellular matrix 

After loss of the mutant Mefs in the early passages an extracellular matrix was provided 

after the first passage in future Mef preparations. Cell culture flasks (75cm2) were 

incubated with an adequate amount of 0.2% gelatin (2.2.3.1) for 15 minutes. After 

removing the gelatin Mefs were treated as mentioned above. 

 

3.2.2.1.2 IF staining of Mefs  

 

For further microscopic analysis the Mefs plated on coverslips were stained with a 

number of different primary antibodies and fluorophore labeled phalloidins.  

After fixation with 4% PFA (see 3.2.1.4) for 10 minutes, cells were washed with PBS- 

three times. In this state cells could be stored at 4°C.  

To continue staining, cells were incubated in permeabilizing solution (2.5.5) for 60 

seconds. Subsequently, they were washed three times with PBS- and transferred to a 

humid chamber cell side facing downwards in a 50 µl drop of blocking solution (2.5.5) 

which was placed on a layer of parafilm. Cells were incubated for 60 minutes at room 

temperature. Next 200 µl of PBS- were carefully pipetted under the coverslips from the 

side. The afloat coverslips were carefully placed on 50 µl drops of staining solution. 
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Primary antibodies (2.8.1) were diluted in IF antibody solution (2.5.5.) after removing 

excess fluid carefully. Antibody stainings were incubated o.n. at 4°C. Following this 

step of incubation 200 µl of PBS- were carefully pipetted under the coverslips from the 

side. Next, coverslips were washed three times by carefully dipping them into PBS-. 

Afterwards coverslips were carefully placed on staining drops containing secondary 

antibody and phalloidin diluted in IF antibody solution (2.5.5). Phalloidin and secondary 

antibody staining were incubated for 60 minutes at room temperature. Following 

another washing step with PBS-, cells were incubated with DAPI (1:1000 in PBS) for 

nuclear staining for 10 minutes. Afterwards coverslips were carefully washed two times 

with PBS- and once with H2O. After getting rid of excess liquid coverslips were mounted 

with pre-warmed Moviol (2.5.3.1) and left to dry at 4°C in the dark.    

 

3.2.2.1.3 Senescence-associated β-galactosidase in vitro assay  

 

This assay allows the differentiation between senescent and quiescent cells using a 

histochemical staining with the artificial substrate X-gal. Senescence-associated β-

galactosidase (SA-β-gal) is not induced in quiescence or terminal differentiation. SA-

β-gal is a biomarker only reacting to senescent cells. The exact function remains 

unclear. Depending on the cell type, enzyme activity is measured between pH 5.0- 6.0. 

Activity of the endogenous β-galactosidase activity is measured at pH 4.0 (Dimri et al., 

1995).  

For analysis of cellular senescence a protocol based on literature was slightly modified 

(Itahana et al., 2007). In order to determine whether the loss of mutant Mefs, after a 

definite number of passages, was caused by cellular senescence this assays was 

performed. Different passages of wildtype and KTRTK-mutant Mefs were stained on 

coverslips. 

As positive controls plated wt Mefs were treated with doxorubicin (Dox), at a final 

concentration of 100ng/ml, 300ng/ml and 600ng/ml for 20 hours.  Doxorubicin (Dox), 

an extremely toxic and light sensitive DNA-intercalating chemical substance, is known 

to induce senescence. Stock of doxorubicin was prepared at a concentration of 1mg/ml 

in DMSO. Aliquots were stored at -80°C. Different fixation solutions were used to 

optimize the protocol and preserve cell morphology (2.7).  
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Additionally different pH values of the X-Gal staining solution were tested to optimize 

staining conditions. Previous studies reported, that staining of SA-β-gal is dependent 

on pH and fixation method and can differ from cell type to cell type. In order not to lose 

any information three different fixation methods (senescence fixation solutions, 1% FA, 

0.2% GA, 1% FA+ 0.2% GA; 2.7) in combination with four different pH values in the 

staining solution (X-Gal staining solution, pH 6.0, 5.5, 5.0, 4.0; 2.7) were conducted.  

Cells were washed twice with PBS. Next, cells were fixed using the respective 

senescence fixing solution for 150 seconds at RT. After removal of fixation solution, 

cells were washed twice with PBS. Afterwards respective X-Gal staining solution was 

added to each well. Cells were incubated at 37°C without CO2 for 12-16 hours in the 

dark. To protect the X-Gal staining solution from light, well plates were wrapped in 

tinfoil during incubation. On the following day, coverslips were carefully washed with 

PBS twice, before final rinse with MilliQ water. Coverslips were mounted with pre-

warmed Moviol and left to dry o. n. at RT in the dark. For analysis phase contrast 

images were acquired. 

 

3.2.2.2 Preparations for primary neural cultures 
 

For the isolation of neural cells it is important to use tissue culture plastic from Nunc, 

2.9.3), a different extracellular matrix (laminin, 2.15) and specially treated coverslips 

(3.2.2.2.2). In this thesis neurons and astrocytes cultures from Cofilin1wt/wt and 

Cofilin1KTRTK/KTRTK embryos were prepared.  

 

3.2.2.2.1 Preparation of laminin from A12 cells  

 

Adhesion of neurons on glass coverslips is dependent on the extracellular matrix 

protein laminin which A12 cells secrete into the medium.  

A12 cells were cultivated in 75cm2 flasks with HeLa-medium upon thawing. After cells 

grew as a confluent layer, they were split in a 1:4 dilution into several 175cm2 flasks 

with HeLa-medium. 
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Cells were grown for several days, until the color of the medium changed from red to 

gold-yellow. This change of color indicated a high production of laminin. Cell 

supernatants were collected, pooled and filtered through a 0.2 µm pore filter. Aliquots 

were stored at -20°C.  

 

3.2.2.2.2 Preparation of coverslips for neurons and astrocytes 

 

For neural culture 13 mm diameter coverslips were loaded into a porcelain holder and 

incubated o.n. in nitric acid at room temperature. The next day nitric acid was removed, 

coverslips were washed three times with MilliQ water and incubated at 220°C for six 

hours. After coverslips were allowed to cool down, they were transferred into sterile 

tissue culture dishes under the TC hood and stored at room temperature.      

 

3.2.2.2.2.1 Coverslips coated with laminin for neuronal culture 

 

For neuron cultures 13 mm coverslips (3.2.2.2.2) were transferred to 24 well plates. 

Two days before neuron culture preparation glass coverslips were coated with 200 µl 

of lamin. Well plates were sealed with parafilm and incubated over night in a wet 

chamber at room temperature.     

On the next day the lamin was removed and well plate was directly filled with 500 µl 

Neurobasal medium complete (2.5.3.4). Well plate were placed in the incubator until 

neuron culture preparation.  
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3.2.2.3 Isolation of embryonic neurons 
 

Embryos from timed matings at the stages E14.5 to E18.5 were used for the 

preparation of neurons. Before starting the dissection all instruments involved were 

autoclaved. The uterus of the pregnant female was transferred to a tissue culture plate. 

After removing the uterus and the yolk sac a piece of the tail was transferred to 200 µl 

genomic DNA extraction buffer (2.5.2) for genotyping. After isolation of the cortex, 

tissue was transferred to a 3 cm tissue culture plate with 1.5 ml of HBSS/HEPES 

(2.5.3.4). The following steps were performed under the tissue culture hood. All used 

glass pasteur pipettes were coated with 5%BSA/PBS- to avoid cell adhesion. After 

transfer of neural tissue to 15 ml Falcon tubes (Corning), the tissue was sheared by 

pipetting up and down. After pieces of tissue sank to the bottom, excess buffer was 

carefully removed and discarded. 1ml Trypsin/DNase solution (2.5.3.4) was added. 

Tubes were incubated in a water bath set at 37°C for 30 minutes. After pieces of tissue 

sank to the bottom, supernatant was removed carefully. Tissue was washed twice with 

1 ml HBSS/HEPES solution. After removal of supernatant, 2 ml complete Neurobasal 

medium (2.5.3.4) was added. One untreated and one fire abolished plugged pasteur 

pipette was used to dissociate the tissue in the medium. 

Cell suspension was transferred to laminin coated 25cm2 flasks (Nunc) and laminin-

coated coverslips in different dilutions. 25µl to 50µl of cell suspension was used for 

each 24- well. Cells were incubated at 37°C with 5% CO2.  

 

3.2.2.3.1 Culturing of neurons 

 

Neurons can not be split like HeLa cells or astrocytes, so no passaging was possible. 

After 24 hours in culture half of the medium was replaced by fresh medium. In order to 

remove any astrocyte contamination after approx. 5-7 days the Neurobasal medium 

complete was replaced by astrocyte inhibition medium (2.5.3.4).  

To analyze development coverslips were fixed every 24 hours.  
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3.2.2.4 Isolation of embryonic astrocytes 
 

Embryos from timed matings at stages E16.5 to E18.5 were used for the preparation 

of astrocytes. Before starting the dissection all instruments involved were autoclaved. 

The uterus of the pregnant female was transferred to a tissue culture plate. After 

removing the uterus and the yolk sac a piece of the tail was transferred to 200 µl 

genomic DNA extraction buffer (2.5.2) for genotyping. After isolation of the cortex, 

tissue was transferred to a 3 cm tissue culture plate with 1.5 ml of HBSS/HEPES 

(2.5.3.4). The following steps were performed under the tissue culture hood.  

Using a coated (5%BSA/PBS-) plugged glass pasteur pipette, neural tissue was 

transferred to 15 ml Falcons (Corning). Tissue was sheared by pipetting up and down. 

After tissue pieces sank to the bottom, supernatant was removed. 1ml Trypsin/ HEPES 

solution (2.5.3.4) was added. Tubes were incubated in water bath set at 37°C for 10 

minutes. After pieces of tissue sank to the bottom, supernatant was removed carefully. 

Tissue was washed with 1 ml HBSS/DNase solution (2.5.3.4). After removal of 

supernatant, remaining tissue was washed once more with 1 ml HBSS/HEPES. Upon 

removal of the supernatant, 3 ml MEM-FCS medium was added. One untreated and 

one fire abolished plugged pasteur pipette was used to dissociate the tissue in the 

medium. Both glass pasteur pipettes were coated with 5%BSA/PBS- to avoid cell 

adhesion.  

Cell suspension was transferred to 25cm2 flasks (Nunc). Cells were incubated at 37°C 

with 5% CO2.  

 

3.2.2.4.1 Culturing and splitting of astrocytes 

 

Close to confluence, MEM-FCS medium (2.5.3.4) was removed for passaging. After 

washing with PBS cells were incubated for 5 minutes at 37°C with 5% CO2 in Trypsin-

EDTA. Trypsinization was stopped by adding MEM-FCS medium and cells were 

resuspended. Cells should not be centrifuged at any time. Cell suspension was split 

adequately into a new flask and resuspended in an appropriate volume of MEM-FCS 

medium.  
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3.2.2.4.2 Plating astrocytes on coverslips 

 

For astrocyte cultures 13 mm coverslips (3.2.2.2.2) were transferred to 24 well plates. 

No further coating was necessary. After trypsinization and resuspension of the pellet 

usually 2-3 drops of cell suspension were diluted in 25 ml of MEM-FCS medium. 1 ml 

of this dilution was transferred into each well. Well plates were incubated at 37°C with 

5% CO2. 

 

3.2.2.5 Fixation of plated neural cells 

 

After removal of medium, cells neurons and astrocytes were fixed with pre-warmed 2% 

PFA/2% sucrose fixing solution (2.5.3.4) for 20 minutes at room temperature. After 

fixation cells were washed twice with HBSS/HEPES (2.5.3.4). Cells were stored at 4°C 

in HBSS/HEPES until further use. 

 

3.2.2.6 Staining of neural cells 

 

The staining procedure for neural cells does not differ much from other cells. One main 

difference that should be noted though is the extremely weak staining efficiency for 

phalloidin in neurons. Phalloidin for neurons was used at a dilution of 1:100 in IF 

antibody solution (2.5.5) for up to 3 hours at room temperature. Though it should be 

noted that in this case the staining solution contained no antibody. Other than that, 

cells were incubated in permeabelizing solution (2.5.5) for 60 seconds. Subsequently, 

they were washed three times with PBS- and transferred to a humid chamber cell side 

facing downwards in a 30 µl drop of blocking solution (2.5.5) which was placed on a 

layer of parafilm. Cells were incubated for 60 minutes at room temperature. 

Next 150 µl of PBS- were carefully pipetted under the coverslips from the side. The 

afloat coverslips were carefully placed on 30 µl drops of staining solution. Primary 

antibodies were diluted in IF antibody solution (2.5.5) after removing excess fluid 

carefully. Antibody staining were incubated o.n. at 4°C. Following this step of 
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incubation 150 µl of PBS- were carefully pipetted under the coverslips from the side. 

Next, coverslips were washed three times by carefully dipping them into PBS-.  

Afterwards coverslips were carefully placed on staining drops containing secondary 

antibody (for astrocytes also Phalloidin) diluted in IF antibody solution (2.5.5). 

Secondary antibody staining were incubated for approx. 90 minutes at room 

temperature. Following another washing step, cells were incubated with DAPI (1:1000 

in PBS) for nuclear staining for 10 minutes. Afterwards, coverslips were carefully 

washed, two times with PBS- and once with H2O. After removing excess fluid carefully 

coverslips were mounted with pre-warmed Moviol (2.5.3.1) and left to dry at 4°C in the 

dark. 

 

3.2.3 FACS analyses 

 

3.2.3.1 Cell cycle analysis of Mefs  
 

Propidium iodide (PI) is a fluorescent dye that stains DNA, used for the analysis of cell 

cycle and cell death. The fluorescence emission is proportional to the nucleic acid 

content, because PI binds stoichiometrically to nucleic acids. This fluorogenic 

compound binds as well to RNA as to DNA. To distinguish between DNA and RNA and 

to avoid unwanted double signal of DNA and RNA samples have to be treated with 

RNaseA. PI can be detected at 562-588 nm band pass filter, after excitation at 488 nm.  

To characterize wildtype and mutant Mefs a cell cycle analysis using FACS was 

performed, 10.000 cells were measured for each sample. In each passaging a 

sufficient amount of cells was centrifuged at 1000 rpm for 5 minutes in a 15 ml tube 

after trypsinization. The pellet was resuspended twice in 2 ml of PI wash (2.5.3.2) and 

centrifuged at 1000 rpm for 5 minutes at RT. After the second wash approximately 300 

µl of PI wash were left behind. Next, the cells were vortexed very gently while 1 ml of 

cold 70% EtOH was added dropwise to fix the cells. The cells were stored at 4°C. 

To prepare the cells for the PI-staining, they were centrifuged at 1800 rpm for 5 minutes 

at 4°C. Cell pellets were washed in MASC + 0.2% (v/v) Tween® 20  (2.5.3.3), 
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centrifuged for 5 minutes at 1800 rpm at RT, resuspended in 500 µl to 1000 µl of PI 

staining solution (2.5.3.2) depending on the size of the cell pellet and incubated o.n. in 

the dark at room temperature.  

On the following day cells were centrifuged at 1800 rpm for 5 minutes washed with 

PBS- and resuspended in an adequate amount of PBS-. Cells were kept in the dark 

and on ice for the measurements with ACCURI flow cytometer. Cell cycle analysis was 

performed with ACCURI software. 

 

3.2.3.2 Proliferation analysis of Mefs 

 
CFDA-SE (carboxyfluorescein diacetate, succinimidyl ester) presents a versatile and 

simple way to study cell proliferation. The dye itself is colorless and non-fluorescent. 

CFDA-SE enters cells by diffusion. Green fluorescence is detected using flow 

cytometry. Each resulting peak in FL1 represents a round of cell division. The peak 

area represents cells in the respective division cycle (Robinson et al., 1998). For the 

proliferation assay cells were plated on non-coated 6-wells and harvested at different 

time points (0h, 8h, 24h, 48h and 72h). Cells were left to adhere over night. Three wells 

were prepared for each sample (2x stained cells, 1x unstained control).On the following 

day all samples (not the control samples) were labeled with pre-warmed CFDA-SE 

staining solution (final concentration: 1 µM CFDA-SE in Mef-medium). After an 

incubation of 15 minutes in the tissue culture incubator labeling medium was removed 

and replaced by fresh Mef-medium, then cells were incubated for another 30 minutes. 

Afterwards, the medium was replaced with fresh Mef-medium once more. At this point 

the time measurement started. Samples for 0h were processed immediately.  

Cells were washed, trypsinized and centrifuged (10 minutes, 1000 rpm, RT). Pellets 

were resuspended in MACS buffer (2.5.3.3) and centrifuged at 1000 rpm for 10 minutes 

at 4°C. Unstained and CFDA-SE samples were resuspended in MACS buffer. 13.000 

cells were measured for each sample.    
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3.2.3.3 G-Actin to F-actin ratio analysis of Mefs 

 
The G-Actin to F- actin ratio of Mefs was analyzed using flow cytometry performing a 

Phalloidin/DNase I staining. While Phalloidin specifically binds to F-actin, DNase I 

exclusively binds G-actin. Cells were fixed in 300 µl 4%PFA for 10 minutes on ice upon 

trypsinization and pelleting. Next 400 µl MACS-buffer (2.5.3.3) were added and 

subsequently cells were spun down in a swing-out centrifuge for 10 minutes at 1000 

rpm at 4°C. After removal of supernatant cells were resuspended in 300 µl MACS-

buffer + 0.5% Tween20 to avoid the stickiness of the cells. This washing step was 

repeated once more. After centrifugation, pellet was resuspended in 300µl MACS-

buffer + 0.1% TritonX-100. For permeabilization cells were incubated for 10 minutes 

on ice. Following centrifugation at 1000 rpm at 4°C for 10 minutes pellet was 

resuspended in 400 µl MACS-buffer + 0.5% Tween20 and spun down again. In the 

subsequent step the cell pellet was resuspended in MACS blocking solution (2.5.3.3) 

and incubated for 45 minutes on ice at 4°C. 

Phalloidin-680 (1:200) and DNaseI-488 (1: 500) were diluted in MACS- buffer. 

Following centrifugation cell pellets were resuspended in 100 µl of staining solution 

and incubated at 4°C on ice for 45 minutes in the dark.  

Upon incubation 400 µl MACS buffer were added to each sample. After centrifugation 

at 10000 rpm for 10 minutes at 4°C pellets were washed with 200 µl MACS buffer. In 

the final step pellets were resuspended in an appropriate volume of MACS-buffer and 

analyzed with the AccuriC6. 

Along with double stainings, single stainings for F-actin and G-actin were performed 

as well as un-stained controls. Each sample was prepared as triplicate.  
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3.3 Biochemical analysis 

 

3.3.3 Protein isolation 

 

3.3.3.1 Preparation of protein lysates from mouse tissues 

 

Embryos and mouse organs were dissected and shock frozen in liquid nitrogen. The 

tissues were stored at -80°C.  

Depending on the size of the tissue an appropriate amount of PEB lysis buffer (2.5.5) 

was added before homogenization on ice. The frozen tissue was placed in cold PEB 

in a glass-teflon douncer (e.g. 0.7 ml for a kidney) and several strokes were applied 

until the tissue was homogenized completely; samples were kept on ice. Next the 

homogenized tissue was transferred to an Eppendorf tube and centrifuged for 10 

minutes at 10000 rpm at 4°C. The supernatant soluble protein was transferred to a 

fresh tube and the protein concentration was determined using a Bradford assay 

(3.3.4). The pellet was frozen at –20°C. Lysates were stored at -80 °C. Lysates diluted 

with 5x SDS sample buffer was added (2.5.5) to an end concentration of 1x SDS 

sample buffer were boiled at 95°C for 10 minutes and stored at -20°C. After thawing 

and before loading samples were centrifuged at 4°C for 10 minutes at 10.000 rpm. 

 

3.3.3.2 Determination of G- actin to F-actin ratio in murine tissue 

according to McRobbie  

 

In order to survey whether changing levels of Cofilin1 were also reflected in altering 

actin ratios, a G- and F-actin separation from mouse tissues was performed. The 

separation protocol was adapted from McRobbie and Newell (1983) and Pilo Boyl et 

al. (2007). This simple method allows a fast separation of G-actin in the supernatant 

fraction from F-actin in the pellet fraction.      
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Frozen tissue was dounced in G-/F-actin separation buffer (2.5.5) on ice. Afterwards 

lysate was left on ice to incubate for 15 minutes. Next lysates were spun down in a 

swing-out centrifuge at 10.000 rpm for 10 minutes at 4°C. 80% of the supernatant, 

containing the G-actin, were transferred into a fresh tube and the appropriate amount 

of 5x SDS sample buffer was added. Samples were boiled for 10 minutes at 95°C.   

The remaining supernatant in the pellet fraction was discarded. Next was washed twice 

with G-/F-actin separation buffer to remove any G-actin contamination from the F-actin 

fraction. Subsequently the pellet was resuspended in the original volume of G-/F-actin 

separation buffer. Upon addition of 5x SDS sample buffer final 1x and boiling, samples 

were cooled down on ice and stored at -20°C. 

After a Bradford quantification assay equal volumes of paired supernatant and pellet 

fractions were loaded.   

     

3.3.3.3 Preparation of protein lysates from cultured cells 

 

Following trypsinization, the single cell suspension was centrifuged at 1000 rpm for 5 

min. 

The pellet was washed twice with PBS-. To be able to compare the total lysate with the 

lysates of the nuclear and cytoplasmic fraction it was necessary to start with the same 

amount of cells. In the second wash step the cell suspension was divided equally and 

transferred to 1.5 ml Eppendorf tubes and spun down at 3500 rpm for 5 minutes at 

4°C. For the following steps of the experiment one tube was used for the total lysate 

and the remaining one for the fractionation.  

 

3.3.3.3.1 Total lysates 

 

After removing the supernatant the cell pellet was resuspended with H2O and diluted 

with 5x SDS sample buffer until an end concentration of 1x SDS sample buffer was 

obtained.  
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3.3.3.3.2 Fractionation of cytoplasmic and nuclear lysates 

 

For the fractionation the pellet was resuspended in equal parts of fractionation buffer 

A and B (2.5.5), adding up to the same volume as the volume of H2O in, which the 

pellet for the total lysate was resuspended, and incubated on ice for 1 minute. 

Following centrifugation at 3500 rpm for 5 minutes at 4°C the nuclei were pelleted and 

the supernatant consisted of the cytoplasmic fraction. The supernatant was transferred 

to a fresh tube and diluted with 5x SDS sample buffer until a 1x SDS sample buffer 

end concentration was obtained. The nuclear pellet was washed with equal parts of 

fractionation buffer A and B. After centrifugation at 3500 rpm for 5 minutes at 4°C the 

nuclear pellet was resuspended in a mix of fractionation buffer A and B, in the same 

volume as the cytoplasm and the total lysate, and diluted with 5x SDS sample buffer.    

Subsequently all samples were boiled for 10 minutes at 95°C and the protein 

concentration was determined via a Bradford assay (3.3.4). The lysates were stored at 

-20°C. 

 

3.3.3.4 Purification of actin from acetone powder 

 

Purified actin is needed for functional analysis of Cofilin1 and KTRTK-Cofilin1 in vitro 

assays.   

Actin was purified from acetone powder (provided by Jan Faix, Hannover Medical 

School), which was prepared from rabbit muscle. The actin assays shown in this thesis 

were performed in a methods course, in which purified actin was provided. The 

following protocol describes the basics of actin purification according to Spudich and 

Watt 1971.   

6g Acetone powder was mixed with 100ml 1x G-buffer (2.5.5) and incubated for 30min 

at 4°C while stirring. First a piece of gauze (“cheese cloth”) was equilibrated with 1x G-

buffer. 

The following steps were conducted 10 times: The acetone powder/G-buffer mix was 

pushed through the cheesecloth. The flow-through was saved and a sample was taken 
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in every round. The remaining acetone powder was again mixed with 1x G-buffer and 

incubated for 30min at 4°C while stirring. Samples of the flow-through fractions were 

analyzed on SDS-PAGE.  

Flow-through fractions, showing adequate actin concentrations, were pooled and 

centrifuged at 8.000 rpm at 4°C for 30 minutes (rotor JA-14) to remove gross 

contaminations.   

Supernatant was mixed with 50x actin polymerization buffer (2.5.5) to a final 

concentration of 1x. Mixture was incubated 2 hours at 4°C while stirring. 

KCl was slowly added until a final concentration of 0.8 M KCl was reached. An 

incubation for 30min at 4°C while stirring followed. The mix was centrifuged for 3h at 

38.000rpm at 4°C (rotor TI-45).  

Supernatant was discarded. Pellet was carefully transferred to a douncer and 1x G-

buffer was added. After a homogenous liquid was attained, actin solution was filled into 

a dialysis membrane (pore size 6.000-8.000) and dialyzed against 1x G-buffer over 

night at 4°C while stirring. On the following day, 1x G-buffer was replaced every six 

hours. On the third day, the 1x G-buffer was once again refreshed and the actin 

solution was centrifuged for 2h at 35.000rpm at 4°C (rotor TI-45). 

Phase separation consisting of three different layers was achieved. A milky, fatty phase 

(lipids), the middle phase (actin) and the pellet.  

The middle phase was saved, quantified and dialyzed against 1x G-Buffer at 4°C while 

stirring. Buffer was replaced on a weekly basis. 

 

3.3.3.5 Purification of proteins from bacteria 
 

Isolated proteins allow versatile applications like a number of in vitro assays to test for 

functionality. These experiments also enable to analyze the repercussions of variability 

of parameters as protein concentration and pH.   
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3.3.3.5.1 Isolation of GST-fusion proteins from bacteria for functional in vitro 

assays  

 

To study the function in a number of different in vitro assays, GST-wt-Cofilin1 and GST-

KTRTK-Cofilin1 were isolated.   

 

3.3.3.5.2 Cultivation and lysis of transformed bacteria 

 

40ml LBAmp (2.5.4) pre-culture was inoculated and incubated o. n. at 37°C on the 

shaker (200rpm). On the following day 4 liters of pre-warmed LBAmp medium was 

inoculated with the pre-culture from the previous night. 5 ml pre-culture were used for 

inoculation of 8x 500 ml of main culture. Bacteria were grown at 37°C until OD of 0.7 

was obtained.   

IPTG (1M) was added to a final concentration of 0.5 µM to each main culture to induce 

protein expression. Culture were incubated over night at 22°C to avoid inclusion 

bodies. 

All following steps were performed on ice. To harvest the bacteria, cultures were 

centrifuged at 4500 rpm for 15 minutes at 4°C (rotor JA-14). Supernatant was 

discarded completely. 

Pellets were resuspended in 40 ml GST lysis buffer (2.5.4) and lysed by ultrasound in 

repeated steps for 1 min, with 30 second gaps in between. Afterwards cell suspension 

was dounced, approx. 40 times, followed by a 30 minute centrifugation at 35000 rpm 

at 4°C (rotor Tl-45). The cleared lysate was used for further purification. 

 

3.3.3.5.3 Purification of GST-wt-Cofilin1 and GST-KTRTK-Cofilin1 fusion proteins 

 

For purification columns filled with glutathione-linked agarose beads (approximately 

4ml) were used. Before use, columns were equilibrated with GST lysis buffer. The 40ml 
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cleared lysate (from 3.3.3.5.2) was loaded onto the column. The flow-through was 

saved and applied to the column a second time.   

In the subsequent step, the column was washed several times using GST wash buffer 

(2.5.4), the flow-through was discarded.  

Following a washing step with PBS, beads were extracted from the column using PBS 

and transferred to a fresh tube.  

 

3.3.3.5.4 Cleavage of GST-tag  

 

In order to work with the respective native protein in assays the GST-tags had to be 

removed from the fusion proteins. Beads were incubated with 400U of thrombin o. n. 

on a rotating wheel at 4°C.  

On the following day, the bead suspension was transferred back to the column, the 

flow-through was saved. Beads were washed with PBS, flow-through was saved.  

Flow-through fractions contained the cleaved proteins. Samples of proteins in the flow-

through were used for SDS-PAGE and Bradford quantification.  

Aliquots of proteins were frozen in liquid nitrogen and stored at –80°C until further use. 

 

3.3.4 Protein quantification 

To ascertain the protein content of lysates two different forms of the Bradford assay 

were performed. The Bradford assay is a colorimetric analytical procedure to 

determine the concentration of protein in solution. Upon binding to protein the 

absorption maximum of Coomassie Brilliant Blue G-250 shifts from 465 nm to 595 nm 

(Bradford, 1976). The increase in absorption at 595 nm is a measure for the protein 

concentration in a solution. The protein amount was calculated based on BSA based 

calibration curve, which was performed before each measurement.   
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3.3.4.1 Quantification of bacterial or tissue lysates 

 

2-3 µl of cleared bacterial and tissue lysates were diluted in a total volume of 100 µl 

H2O and mixed well. Before measuring the protein concentration at 595 nm, 900 µl of 

diluted Bradford reagent (1:5 with H2O) were added. 
 

3.3.4.2 Quantification of cultured cell lysates 

 

To determine the amount of protein in the lysates of the cell fractionation experiment, 

which were already boiled in SDS sample buffer, a different protocol was chosen. 5µl 

of the respective lysate was diluted in 45 µl H2O. 1000 µl diluted (1:5 in H2O) Bradford 

reagent were added to 12.5 µl of the diluted protein lysate and mixed well. 

Subsequently, the protein concentration was measured at 595 nm. The protein amount 

was calculated based on the calibration curve performed with BSA.  

 

 3.3.5 Discontinuous SDS-Polyacrylamide gel 

electrophoresis 
 

Based on their amino acid sequences proteins have varying electrical charges, which 

affect their running behavior. 

Sodium dodecyl sulphate (SDS) is an anionic detergent, which denatures proteins by 

breaking hydrogen bonds and reducing them to their primary structure. Negative 

charges are applied to the proteins according to their mass. Consequently the 

charge/mass ratio is the same in all the linearized protein-SDS-complexes. Therefore, 

their running behavior in the gel is only influenced by their molecular weight. The SDS 

sample buffer (Laemmli buffer) also contains bromphenol blue and β-mercaptoethanol. 

β-mercaptoethanol reduces inter- and intra-molecular disulfide bonds while 

bromphenol blue marks the running front. 
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A discontinuous sodium dodecyl sulfate polyacrylamide gel electrophoresis, short 

SDS-PAGE, consists of a separating gel and a stacking gel. They differ from each 

other in pH and the pore size of the gel. The stacking gel allows the focusing of the 

samples before entering the separating gel. The discontinuous SDS-PAGE allows a 

higher resolution of proteins according to their electrophoretic mobility (Laemmli, 

1970).  

The molecular weight of the protein of interest determines the percentage of the gel to 

use. For Cofilin1, with a molecular weight of 20 kDa, 15 % Tris-glycine acrylamide gels 

(2.5.5) were prepared and run in 1x SDS running buffer (2.5.5). After protein 

quantification 10 µg of the samples were loaded into the sample wells. To identify the 

sizes of the respective protein 5 µl Broad range Standard was loaded for Coomassie 

stained gels, while 5 µl Sea Blue Plus 2 Prestained Standard was separated for 

Western blotting. The electrophoretic separation was accomplished at 60 V through 

the stacking gel and regulated up to 100 V for the separation gel. The electrophoresis 

was stopped when the 4 kDa marker band of the Prestained marker reached the 

bottom of the gel. Coomassie gels were stopped, when the blue running front reached 

the bottom of the gel. 

 

3.3.5.1 Coomassie staining of protein gels 
 

After gel electrophoresis or even after transfer to membrane Coomassie staining of 

gels was used to visualize the protein bands. This method is commonly used in 

analytical biochemistry for optical quantification of protein concentrations. 

The gels were incubated rocking for 30 minutes in Coomassie Brilliant Blue staining 

solution (2.2.5) at room temperature. Afterwards the gels were incubated for 90 to 120 

minutes in ‘rapid destain’ solution (2.5.5) at room temperature on a rocker. The gels 

were stored in H2O and scanned for documentation.  
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3.3.6 Western Blot analysis 

 

Western Blot analysis allows the detection of specific proteins in a mixture of proteins 

in a sample. After separation of the proteins according to their electrophoretic mobility 

by gel electrophoresis the proteins are transferred to an “Immobilon” (polyvinylidene 

difluoride, PVDF), where specific antibodies can be used to detect proteins of interest 

(Towbin et al., 1979). 

 

3.3.6.1 Semi dry blotting procedure 
 

Electroblotting was used to transfer proteins to “Immobilon” membranes. In this method 

electric current is used to transfer the proteins from the gel to the membrane. The 

binding of the proteins to the membrane is based on charged and hydrophobic 

interactions. After electrophoresis the “Immobilon” membrane was activated in 

methanol first and together with the gel and Whatman paper sheets equilibrated in 

Towbin transfer buffer (2.5.5). For the set-up of the blotting the gel and membrane 

were positioned between two layers of Whatman paper sheets. The transfer takes 

place from cathode to anode. The transfer to the anode was performed at 20 Volts for 

60 minutes at room temperature. Following the transfer the membranes were 

incubated 1-2 hours at room temperature or o.n. at 4°C in Western blot blocking 

solution (2.5.5) to avoid unspecific binding. 

 

3.3.6.3 Western blot analysis using chemo luminescence  
 

To detect proteins by Western blot analysis antigen specific primary antibodies are 

used. The primary antibody carries species specific Fc-regions, which are recognized 

by the horseradish peroxidase (HRP) linked secondary antibody. Horseradish 

peroxidase catalyzes the oxidation of luminol. The product of this reaction causes 

chemiluminescence proportional to the amount of antibody bound which reflects the 

amount of protein present. This luminescence can be visualized after exposing x-ray 

films to the membrane or by detection of the chemiluminescence signal with the 

ImageQuant LAS 4000 mini.  
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After blocking the membrane the primary antibodies were diluted in Western blot 

blocking solution (2.5.5, for information about utilized primary and secondary 

antibodies see 2.8.). The blot was incubated either for 3 hours at room temperature or 

over night at 4°C. Afterwards the blot was washed 5 times for 10 minutes in 1xNCP 

without azide (2.5.5). In the next step the secondary antibody was diluted 1:1000 in the 

secondary antibody solution (2.5.5) and the blot was incubated for one hour. The 

membrane was washed 5 times for 10 minutes in 1xNCP without azide. After rinsing 

the membrane briefly in water it was incubated for 1 minute in a 1:1 mixture of the ECL 

solutions (2.5.5). The excess ECL was removed from the blot before it was wrapped 

in Saran-Wrap. The detection time with the ImageQuant LAS 4000 was adjusted 

according to signal. 

 

3.3.7 Actin assays 

 

There is a variety of actin assays, each one gaining information regarding a protein of 

interest. All of these assays need purified protein of interest along with purified actin. 

 

3.3.7.1 Falling ball assay 

 

In this assay actin depolymerization/ 

polymerization can be measured by a 

change in viscosity. The time it takes a 

ball to fall a specific distance at a specific 

angle in the capillary is noted (Figure 16). 

Actin alone without any additional 

proteins functions as negative control. 

One of the main advantages of this assay 

is the low amount of protein required.  

KTRTK-Cofilin1 (251.3 µM) and Cofilin1 wt (204.9 µM) (see 3.3.3.5.3) were each 

diluted to a final concentration of 3 µM in assay binding buffer (2.6). Polymerization 

reactions were set up by mixing 9 µM actin and the different final concentrations of wt-

 
 

Fig.16: Principle of falling ball assay 
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Cofilin1 and KTRTK-Cofilin1 (3 µM, 1.5 µM and 0.75µM), respectively. Mixtures were 

transferred to glass capillaries with capped end. Samples were left to polymerize for 

60 minutes at RT.  

Little metal balls were applied and the time of the falling ball at a 17° angle was 

measured.   

   

3.3.7.2 Pyrene assay 
 

This assay requires pyrene-labeled actin. Pyrene does not affect the binding kinetics 

of actin. This assay facilitates the measurement of F-actin quenching kinetics by 

monitoring changes in pyrene fluorescence. Labeled G-actin is only weakly 

fluorescent, but upon polymerization the fluorescence is enhanced about 20 times. The 

binding capacity of the protein of interest can correlated to the measured change in 

fluorescence using suitable wavelengths (for pyrene: excitation: 365 nm; emission: 410 

nm) in a microplate reader. The binding of the protein quenches the pyrene 

fluorescence signal. Pyrene assay also allow the analysis of depolymerization and 

polymerization activity. Set-up for both approaches is basically the same, but for 

analyses of depolymerization and polymerization activity measurements fluorescence 

signal data has to be acquired over a longer period of time. Also here only a low 

percentage of pyrene actin is required. 

To polymerize actin 4.4 ml G assay buffer (2.6), 500 µl KMEI (10x) (2.6), 98 µl 

unlabeled actin (102 µM) and 33 µl pyrene actin (34 µM) were mixed and left to 

incubate at RT for 2 hours.  

For the binding reactions the wt Cofilin1 and KTRTK-Cofilin1 were diluted in Assay 

binding buffer (2.6) to a final concentration of 8 µM and added to the polymerized actin 

respectively. Assays were performed in 96 well plates, polymerized actin was always 

added last. 

In this assay different condition were tested. The final measurements were performed 

with 2 µM polymerized actin and 4 µM of the respective Cofilin. Read-out was 

performed every 3 seconds for 30 minutes.  
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3.4 Histology 

 

3.4.1 Dissection of mouse embryos 

 

Females from timed matings were sacrificed at embryonic days E10 to E18. The uterus 

was placed in ice cold PBS. After removing the uterus and yolk sac including the 

placenta and umbilical cord, tissue samples of amnion were used for genotyping.   

After a subsequent wash in fresh PBS, embryos were treated according to their age 

and use in following experiments. 

 

3.4.2 Bone and cartilage staining and isolation (Alizarin Red- 

Alcian Blue staining) 

 

The basic concept of differential staining of cartilage and bone in mouse fetuses has 

been reported as early as 1980 (McLeod, 1980), allowing the detection of 

developmental malformations.  Alizarin Red in combination with Alcian Blue allows a 

staining of cartilage in blue and bone in red.   

For this staining animals older than E16.5 should be used for optimal results. 

Upon preparation embryos were placed in 95% EtOH for fixation o.n. at 4°C on a 

rocker. On the next day the skin of the embryos was removed carefully, paying special 

attention to the paws and the tail. After that the viscera were removed with extreme 

caution as not to injure the thoracic area. For the continuance of the staining the 

samples were protected from light. Embryos were transferred to 12 ml snapshot tubes 

containing 0.05% Alcian Blue staining solution for cartilage staining (2.7) and incubated 

for 48 hours at 4°C on a rocker. Subsequently embryos were rinsed twice with 

95%EtOH at RT for an hour each.  

To remove soft tissue and due to their increasing fragility the embryos were placed in 

6 cm plastic dishes for the following steps.  
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For removal of any soft tissue the embryos were incubated in 2% KOH at RT for 24- 

48 hours depending on the size of the embryos. After the first 6-8 hours the KOH 

solution was replaced. After the KOH treatment the skeletons should be treated with 

extreme caution due to their fragile state.  

In order to stain bones the skeletons were incubated in 0.015% Alizarin Red staining 

solution for 72 hours at RT (2.7). Upon removal of the staining solution, skeletons were 

cleared by subsequent incubations in the following KOH:Glycerol solutions at RT (80% 

1% KOH: 20% Glycerol; 60% 1% KOH: 40% Glycerol; 40% 1% KOH: 60% Glycerol; 

20% 1% KOH: 80% Glycerol). In each clearing steps skeletons were incubated for 60-

90 minutes.          

For the final step skeletons were transferred to 100% Glycerol and stored at 4°C. 

 

3.4.3 Fixation and dehydration for microtome sections of 

mouse embryos 

 

Depending on the age of the embryos the duration of the incubation steps had to be 

modified. The following steps were performed for all embryos older than E10.5. During 

fixation, washing and dehydration the volumes used were approximately 10 times that 

of the tissue, for incubations tubes were placed on a rocker. 

After preparation embryos were washed with PBS before being transferred to tubes 

with cold 4% Histofix and fixed at 4°C over night. Afterwards embryos were washed 

twice with PBS for 30 minutes each at 4°C and left in fresh PBS over night at 4°C. On 

the following day the embryos were washed two times for 30 minutes each with 50% 

EtOH at 4°C. Next they were washed twice with 70% EtOH 30 minutes each at 4°C. 

After exchanging the 70% EtOH once again the embryos were left over night at 4°C. 

At this point 70% EtOH can also be used for storage of the embryos at 4°C.On the 

following day the embryos were washed once in 96% EtOH and then twice in absolute 

Ethanol at room temperature for an hour each. The embryos were transferred into 

glass vessels and incubated with xylene for 30 minutes. This step was repeated two 

more times and performed under the fume hood. 
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3.4.3.1 Paraffin embedding of mouse embryos 
 

The day before use the paraffin was melted in an oven at 58.5°C. After replacing the 

xylene with paraffin the embryos were left in a heating block at 58°C. The paraffin was 

changed two more times after 30-45 minutes each before leaving the embryos in fresh 

paraffin o.n. in the heating block. On the following day the paraffin was exchanged 

once again using approximately 3 ml, an amount that fits into the embedding molds. 

After incubation for 15 minutes embryos were transferred to the embedding molds. Hot 

forceps were used to orient the embryos within the molds. Afterwards the paraffin 

blocks were left to solidify at room temperature. For storage the solidified paraffin 

blocks were kept at RT. 

 

3.4.4 Fixation and dehydration process for paraffin 

embedding of E10.5 mouse embryos 

 

Embryos younger than E10.5 were treated specially in order to attain best histological 

results. After preparation and washing with PBS embryos were fixed with 4% Histofix 

for 15 minutes at room temperature rotating on a wheel. Next, the embryos were 

washed in 70% EtOH which was replaced after five minutes. At this point embryos 

could also be stored in 70% EtOH at 4°C. For further dehydration the embryos were 

incubated in 80% EtOH for two minutes. To simplify the following steps and increase 

visibility, embryos were placed in 0.5% Eosin/90% EtOH for two minutes. Next, 

embryos were washed in 96% EtOH and absolute ethanol for two minutes each. Using 

cut plastic Pasteur pipettes embryos were placed in pre-warmed embedding molds. 

Any excess ethanol was removed. Embedding molds were filled up with liquid paraffin 

and put in the oven to incubate at 58.5 °C for 120 minutes to allow increased 

penetration of the tissue. Then embedding molds were placed at room temperature to 

solidify slowly.       
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3.4.5 Mounting and sectioning of paraffin embedded tissue 

 

Paraffin blocks were removed from the embedding molds and mounted onto plastic 

embedding cassettes using melted paraffin. The paraffin blocks were oriented 

according to the desired cutting plane. To trim the embedded tissues thin layers of 

paraffin were sliced off with razor blades (a narrow zone of paraffin was left around the 

tissue). 

The trimmed paraffin blocks were fixed at the embedding cassette holder of the 

microtome. The head on the microtome was orientated until the right position for the 

right cutting plane was acquired. Sections were cut with a thickness of 10 µm. The cut 

ribbons were placed on a layer of 10% EtOH onto superfrost slides and transferred to 

a heating plate set at 35°C. Slides were left on the heating plate until the sections had 

stretched and the paraffin had turned white. If necessary more ethanol was added 

carefully from the sides. After stretching excess ethanol was drained and the slides 

were moved back to the heating plate. Over night slides were left upright in an open 

box in an oven set at 37°C to remove any remaining moisture and to dry the sections 

completely. Slides were stored at room temperature. 

 

3.4.6 Staining protocols for paraffin sections 

 

In this thesis a number of different stainings on embryonic tissue sections were 

performed.  The following chapter describes a number of different staining procedures.  

 

3.4.6.1 Stainings of paraffin embedded sections  
 

One of the main advantages of paraffin sections is the well maintained morphology, 

but all paraffin section have to be de-paraffinated and rehydrated before any further 

staining is possible. The following de-paraffination protocols have been established to 

accommodate the subsequent stainings. All following steps were performed under the 

fume hood.  
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Deparaffination process preceding color stainings  
   
3 x 10 min xylene 
1 x   5 min absolute ethanol  
1 x   5 min 96 % EtOH 
1 x   5 min 70 % EtOH 
1 x   5 min 50 % EtOH 
1 x 10 min distilled H2O  

 

For antibody stainings the H2O in the final step was substituted with PBS. Following 

the deparaffination sections for antibody stainings are treated in the epitope retriever 

for 60 minutes in 1x citrate buffer.  

 

3.4.7 Color staining 

 

All the following stainings using color dyes were performed on paraffin sections. 

 

3.4.7.1 Haematoxylin and Eosin staining (H+E) 

 

Haematoxylin and eosin stainings provide an overview of tissue structure.   

Haematoxylin has a deep blue-purple color. The oxidation product of haematoxylin is 

haematin. In acidic conditions metal-haematin complexes bind to lysine residues of 

nuclear histones. Eosin is a derivative of fluorescein. It stains cytoplasm, collagen, 

keratin and erythrocytes. Eosin was used for counterstaining. It is pink and stains 

proteins un-specifically (Fischer et al., 2008). Since haematoxylin (Mayer’s 

haemalaun) is sensitive to light the glass cuvettes used for stainings were wrapped in 

tinfoil. All following table shows the staining protocol following up the deparaffination.   
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 20 sec Mayer’s haemalaun solution (50%) 
  Rinse cuvette with tap water 
 5 min Wash in running tap water 
 5 min Eosin Y (0.05%) 
  Rinse cuvette with tap water 
 30 sec Dehydrate with 96% EtOH 
 2 min Dehydrate absolute EtOH 
 2 min Dehydrate Xylene 
  Mount with Entellan 

 

3.4.7.2 Alcian Blue staining 
 

Here Alcian blue is used to identify cartilage on sections. The staining is pH dependent 

and only stains sulfated polysaccharides at pH1.0. At pH 2.5 it also stains carboxyl 

group containing sugars. Alcian blue stains acid mucosubstances and acetic mucins 

(Scott et al., 1964).  Sections have to be deparaffinized as shown above before staining 

(3.4.8.1).  

 

 30 min 
Alcian Blue staining solution 
 (1%, sections; 2.7) 

  Rinse cuvette with tap water 
2x 2 min Wash in running tap water 
  Rinse cuvette with distilled water 
1x 3 min Dehydrate with 96% EtOH 
2x 3 min Dehydrate absolute EtOH 
 5 min Clear in xylene 
  Mount with Entellan 

 

3.4.7.2.1 Alcian Blue + Eosin staining 

 

To optimize the staining an alternative version for cartilage staining including a 

counterstain was established. This staining allows a better overview of the tissue, but 

bears the risk of obscuring weak Alcian blue staining of the loose connective tissue. 

The staining follows up deparaffination (3.4.8.1).     
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 40 min 
Alcian Blue staining solution (0.8%, sections; 
2.7 ) 

2x 2min Rinse with running tap water 
1x 2min Rinse with Elix 
 2 min Eosin Y (0.05%; 2.7)  
 30 sec Rehydrate with 96% EtOH 
 2 min Rehydrate absolute EtOH 
 2-5 min Clear in xylene 
  Mount with Entellan 

 

3.4.7.3 Nissl cresyl violet staining  
 

The cresyl violet staining was performed to gain insight into the layering of the 

embryonic cortex and the overall distribution of neurons in the brain.  

The Nissl staining is most commonly used to identify basic neural structures in brain 

tissue. It is a classic nucleic acid staining that is most abundantly used on nervous 

tissue. The basic dye binds to the negatively charged RNA and DNA.  

Cresyl violet acetate stains Nissl substance, consisting of granular endoplasmic 

reticulum and ribosomes, occurring in nerve cell bodies and dendrites of neurons. 

Neuropil, any area in the nervous system composed of un-myelinated axons, dendrites 

and glial cell processes forming synaptically dense regions containing relatively low 

number of cell bodies, will be stained granularly purple blue (Purves, 2012). This 

method utilizes basic aniline dye.  

The following protocol was established for 10µm paraffin sections of embryonic brain. 

For this specific staining the de-paraffination process had to be adjusted. The staining 

solution was prepared 2 hours prior to use due to low solubility of the dye. After filtration 

cresyl violet solution was pre-warmed to 37°C to increase staining efficiency and 

penetration. This staining can be performed as early as E13.5 on murine brain. 
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3x 10 min Xylene 
2x 5 min  absolute ethanol  
1x  3 min 96% EtOH 
1x 3 min 70% EtOH 
  Rinse cuvette twice with tap water 
  Rinse cuvette 3x with Elix  

  
Transfer slides to pre-warmed cuvette with pre-
warmed 0.1% cresyl violet solution 

 6-8 min Cresyl violet solution at 40°C in the dark 
  Rinse cuvette at least twice with Elix 
 5-15 min Differentiate in 95% EtOH 
2x 5 min Rehydrate absolute EtOH 
2x 5 min Clear in xylene 
  Mount slides with Entellan 

 

3.4.7.4 Mounting of paraffin sections after color stainings  
 

The sections were mounted using Entellan, distributing 2-3 drops with a glass pipette 

on the slides. To avoid air bubbles the entire coverslips were dipped in xylene before 

being placed on the slides. Slides were left to dry at room temperature and stored at 

RT.  

 

3.4.8 BrdU staining 

 

BrdU (5-Bromo-2´-deoxy-uridine), a thymidine analog, is incorporates into DNA during 

replication in the S-Phase of the cell cycle. It serves as an exogenous cell tracer, 

allowing the tracking of cell proliferation. Incorporated BrdU features long-term 

retention and during cell division is passaged on to daughter cells diluting out with 

every division cycle. This naturally incorporated nucleoside analog can be detected 

with an anti-BrdU antibody (Wojtowicz and Kee, 2006).  

To study proliferation in embryonic E13.5 brain in vivo labeling was necessary. 

Pregnant females were injected with 100 µl BrdU labeling reagent (10µmol/l) 

intraperitoneally one to two hours prior to dissection. All used solutions were provided 

by the 5-Bromo-2´-deoxy-uridine Labeling and Detection Kit II and prepared according 
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to manual (Roche, 2.4). The staining protocol was modified from the original manual 

to obtain better results based on previous studies (Kee et al., 2002). After dissection 

embryos were treated according to the protocol for paraffin sections (3.4.5.1). 10 µm 

sections were prepared. After de-paraffination and equilibration in PBS (3.4.8), 

sections were treated in the antigen retriever for 1 hour in 1x citrate buffer. After a short 

cooling period (approx. 15 minutes), slides were washed twice in PBS for a total of 10 

minutes. Next slides were incubated in pre-warmed 4M HCl at 37°C for 1 hour. This 

step improved immunohistochemical detection of incorporated BrdU, by denaturing 

DNA and therefore exposing the antigen further. Following a 10 minute incubation in 

0.1M sodium borate at RT, sections were blocked with 5% NGS/ Oldenburg buffer at 

RT for an hour. Afterwards sections were incubated in a 1:10 dilution of the primary 

mouse anti-BrdU antibody in primary antibody solution for IHC (2.7). First incubation 

took place at 37°C for 60 minutes in a humid chamber, then was moved to 4°C for o.n. 

incubation. On the following day slides were washed in Oldenburg buffer for 15 minutes 

at RT. During this time buffer was refreshed twice. An incubation in a 1:250 dilution of 

anti-mouse-IgG-alkaline phosphatase-coupled secondary antibody in secondary 

antibody solution for IHC (2.7) followed. After incubation in a humid chamber for 30-60 

minutes at 37°C, slides were washed in Oldenburg buffer as described above. In the 

following step sections were incubated in a sufficient amount of fresh color-substrate 

solution at RT. This color-substrate solution contains NBT (nitroblue tetrazolium) along 

with X-phosphate/ BCIP (5-bromo-4-chloro-3-indolyl phosphate).  BCIP acts as an 

artificial chromogenic substrate. It is often used in combination with NBT. Alkaline 

phosphatase hydrolyses BCIP to 5-bromo-4-chloro-3-indolyl and inorganic phosphate. 

5-bromo-4-chloro-3-indolyl is oxidized by NBT to form an insoluble dark diformazan 

precipitate after reduction (Horwitz et al., 1966). After 30 minutes, solution was 

carefully removed, slides were rinsed in washing buffer and mounted with Entellan. 

Mounted sections were allowed to dry at RT over night. 
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3.4.9 Antibody stainings 

 

Immunohistochemistry (IHC) and immunofluorescence (IF) stainings both work with 

primary and secondary antibodies. Whereas immunofluorescence works with 

fluorophore-labeled secondary antibodies the IHC reaction is based on horseradish 

peroxidase reaction, the use of color substrates (DAB) and amplifier complexes (ABC-

complex; M.O.M Kit; 2.4). The ABC complex (Avidin/Bioton complex) comprises Avidin 

and Biotin. The specific primary antibody will bind an antigen. Then, a biotinylated 

secondary antibody will attach to the primary antibody. The Avidin/Biotin complex 

(ABC) with Horseradish Peroxidase (HRP) will affix to the biotinylated secondary 

antibody forming an enzyme complex, allowing the detection of DAB a substrate of the 

enzyme complex. 
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3.4.9.1 IF stainings of paraffin sections 

 

  Deparaffinize to PBS 

 60 min Antigen retriever in 1x citrate buffer, pH6.0 

3x 5 min Oldenburg buffer 

  Slides were transferred to humid chamber 

 1 h  IF blocking solution at RT(2.5.5) 

 o.n. IF antibody solution with primary antibody at 4°C 

(2.5.5) 

3x 10 min Oldenburg buffer 

 2 h IF antibody solution with secondary antibody at 

RT (2.5.5) 

3x 5 min Oldenburg buffer 

 30 min Draq5 in Oldenburg buffer (1:2000) at RT 

  Rinse in Oldenburg buffer 

 15 min DAPI in Oldenburg buffer (1:1000) at RT 

2x 5 min PBS- 

 2 min MilliQ 

  Mount with pre-warmed Moviol (2.5.3.1) 

 

Draq5 as well as DAPI serve as nuclear markers. After mounting slides were left to dry 

at RT and stored at 4°C protected from light.  

 

3.4.9.2 IHC stainings 
 

The procedure for IHC stainings differs slightly from the IF protocol. In order to avoid 

false positive stainings the endogenous peroxidase in the tissue has to be inactivated 

in one of the steps. The purchased M.O.M Kit (2.4) is to be used for mouse primary 

antibodies. In the first step the sections have to be deparaffinized to the final step in 

PBS. 

   



3. Methods 
___________________________________________________________________ 

 
114 

 60 min Antigen retriever in 1x citrate buffer, pH6.0 

3x 5 min Oldenburg buffer 

 30 min 3% H2O2 in tap water (peroxidase inactivation) 

  Slides were transferred to humid chamber 

 

3.4.9.2.2 IHC staining with M.O.M. Kit for mouse primary antibodies  

In the following procedure sections were treated according to kit manual. 

 

 1 h  M.O.M Ig blocking in Oldenburg buffer at RT 

2x 2 min PBS- 

 5 min M.O.M diluent without primary antibody 

 o.n. Primary antibody in M.O.M diluent at 4°C 

4x 10 min Oldenburg buffer 

 90 min 
Secondary antibody (Kit) in M.O.M diluent at 

RT 

4x 10 min Oldenburg buffer 

 60 min ABC-complex (Kit) at RT 

3x 5 min 0.05 M Tris-HCl, pH 7.4 

  DAB color reaction+ 

2x 5 min 0.05 M Tris-HCl, pH 7.4 

 5 min MilliQ 

  Mount with Entellan 

 

Next, slides were incubated with DAB reagent (2.7). To start the color reaction small 

volumes (20-50 µl) of different dilutions of 3% H2O2 in tap water (1:50, 1:100 and 1:200) 

can be added to the DAB reagent, starting with the highest dilution. Section are 

incubated in DAB solution until staining of desired intensity was obtained. Following 

the color reaction a number of washing steps were performed. DAB is highly toxic and 

needs to be treated with extreme care.  

Slides were left to dry o.n. and stored at room temperature.   
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In previous in vitro studies the amino acid sequence KKRKK of Cofilin1, positioned at 

the 30th to 34th amino acids, was proven to be functioning as the nuclear translocation 

signal (NTS), allowing the translocation of Cofilin1 into the nucleus upon certain stress 

stimuli. The role of Cofilin1 in the nucleus is not completely understood, yet. One 

function that has been observed is the formation of nuclear actin/Cofilin1 rods after the 

exposure of cells to various stress factors (e.g. DMSO) (Fukui and Katsumaru, 1979). 

Rods are composed of ADF/Cofilin and actin in a 1:1 ratio and vary in filament length 

from 22 to 1448 nm (Minamide et al., 2010). Experiments in which the NTS KKRKK of 

Cofilin1 was mutated to KTLKK, showed the inability of the mutated protein of active 

nuclear translocation (Iida et al., 1992). The mutation of the KKRKK sequence to 

KTKTK of capsid proteins in Simian virus 40 (SV40) showed, that the capsid proteins 

direct viral DNA nuclear entry. The mutation led to impaired delivery of the viral DNA 

to the nucleus in the host, resulting in reduced viability of the virus (Nakanishi et al., 

2002). In analogy to these studies Cofilin1 carrying the mutated sequence KTRTK was 

generated for analyses in vitro and in vivo. Prior experiments concluded that KTRTK-

Cofilin1, expressed as GFP fusion protein in HeLa cells, was unable to form 

actin/Cofilin1 rods in the nucleus (Gurniak, unpublished) whereas wildtype Cofilin1 

formed distinct actin/Cofilin1 rods upon stimulation. The mouse line in which Cofilin1 

was replaced by KTRTK-Cofilin1, as well as the constructs for expression of GFP 

fusion proteins in eukaryotic cell lines used in this thesis, were generated and provided 

by Christine Gurniak. 

 

4.1 GFP-KTRTK-Cofilin1 fusion protein did not form 

nuclear actin/KTRTK-Cofilin1 rods in vitro  

 

Previous data from the diploma thesis showed that the nuclear translocation sequence 

(NTS) of Cofilin1 serves as transport signal to the nucleus. For this study the mutant 

KTRTK-Cofilin1 was analyzed in comparison to wt-Cofillin1(Roy, 2011). HeLa cells 

were transfected with GFP-wt-Cofilin1 and GFP-KTRTK-Cofilin, respectively.  
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Stably transfected HeLa cells were exposed to a stress stimulus in the form of DMSO 

to induce nuclear translocation of actin and Cofilin1 and the subsequent formation of 

rods. In agreement to previous studies that showed the inability of nuclear translocation 

of NTS mutants along with failure of chaperoning other molecules (i.e. viral DNA) to 

the nucleus (Iida et al., 1992; Nakanishi et al., 2002), KTRTK-Cofilin1 should not locate 

to the nucleus. Upon DMSO treatment, transfected HeLa cells were fixed and stained 

for DAPI (Figure 17). 

After DMSO treatment 

nuclear actin/Cofilin1 

rods were clearly 

discernable in HeLa 

cells transfected with 

GFP-wt-Cofilin1, 

whereas no 

comparable structures 

could be detected in 

GFP-KTRTK-Cofilin1 

transfected HeLa cells 

(Figure 17). 

A clear co-localization 

of actin and GFP-wt-

Cofilin1 could also be 

observed (data not 

shown), verifying the 

association Cofilin1 

and actin in rods.  

These results confirmed the inability of KTRTK-Cofilin1 to form nuclear rods, due to 

the mutation of the NTS. 
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Fig. 17: Immunofluorescence of GFP-wt-Cofilin1 (wt) and GFP-

KTRTK-Cofilin1 (mt) transfected HeLa cells after DMSO 

treatment. Cells were stained with DAPI (blue). Nuclear 

actin/Cofilin1 rods were detected in GFP-wt-Cofilin1 HeLa cells after 

DMSO treatment (lower panel; wt). No nuclear actin/Cofilin1 rods 

were detectable in DMSO treated HeLa cells transfected with the 

mutant construct GFP-KTRTK-Cofilin1 (lower panel, mt). The overlay 

shows the GFP signal (green) and the DAPI signal (blue). Scale: 20 

µm. 
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4.1.1 Mutant protein KTRTK-Cofilin1 showed reduced 

depolymerization activity 

 

In order to conclude if the depolymerizing activity of the mutated protein was altered, 

a number of actin in vitro assays were performed to compare wt-Cofilin1 to KTRTK-

Cofilin1.  

 

4.1.1.1 Decreased F-actin depolymerizing activity of KTRTK-Cofillin1 

in falling ball assay 

 

A falling ball assay measures actin depolymerization activities by determining a change 

in viscosity (3.3.7.1) (Pollard and Cooper, 1982). The time it took the ball to cross a 

specific distance, here 4 cm, at a 

specific angle (17° angle) in the 

capillary was noted (Figure 18). 

Purified actin along with purified 

Cofilin1 (wt) and KTRTK-Cofilin1 (mt) 

was used. Polymerization reactions 

were set up by mixing 9 µM actin and 

the different final concentrations of 

wt-Cofilin1 and KTRTK-Cofilin1 (3 

µM, 1.5 µM and 0.75µM), 

respectively. Actin, without any 

additional proteins functioned as 

reference. With the highest viscosity, 

that did not change during the 

experimental set-up, it allowed 

conclusions regarding the 

depolymerization activity of wt-

Cofilin1 and KTRTK-Cofilin1, 

 

 

 

Fig. 18: Cofilin1 and KTRTK-Cofilin1 

depolymerizing activity in a falling ball assay. 

Different final concentrations (0.75 µM, 1.5 µM and 

3 µM) of wt-Cofilin1 and KTRTK-Cofilin1, 

respectively, were mixed to F-actin. Time of the 

falling ball in actin alone was used as reference. 

Depolymerizing activity of the mutant protein (light 

gray) was significantly lower at the studied 

concentrations. Wt: wt-Cofilin1; mt: KTRTK-

Cofilin1. Levels of significance: 0.05 >p≥ 0.01 (*); 

0.01>p≥0.001 (**); p>0.001 (***). 
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respectively, in comparison. The depolymerizing activity of the analyzed protein 

correlated with the viscosity of the sample. Therefore the faster the ball crossed the 

defined distance, the higher the depolymerizing capacity of the protein of interest.  

Polymerization reactions were set up by mixing KTRTK-Cofilin1 and Cofilin1, diluted 

to different final concentrations, with 9 µM actin. Mixtures were transferred to glass 

capillaries with capped end and left to polymerize before the metal ball was added. 

The sample containing only actin was used as reference (Figure 18, black). It took 

significantly longer for the ball to cross the predetermined distance in the samples 

containing KTRTK-Cofilin1 (light gray). At a final concentration of 0.75 and 1.5 µM of 

the respective protein, the ball crossed the distance in the samples containing the 

wildtype protein (dark gray) approximately 20 times faster than in the mutant 

counterparts. The biggest difference of depolymerizing activity was observed at a 

concentration of 3 µM of wt and mt protein. The ball in the mt sample took about 63 

times longer to cross the specified distance. The highest difference in depolymerizing 

activity was observed at a concentration of 3 µM of wt-Cofilin1. This suggests that 

depolymerizing activity of wt-Cofilin1 increases with rising concentration, whereas the 

depolymerizing activity of KTRTK-Coflin1 does not. Regarding, the crossing time of the 

actin reference in comparison to the mt samples, differences in migrating behavior 

could be noted. Therefore, these data indicated that KTRTK-Cofilin1 has a reduced F-

actin depolymerizing activity in comparison to wt-Cofilin1 but depolymerizing ability 

was not completely lost. 

 

4.1.1.2 Mutant protein KTRTK-Cofilin1 displayed reduced quenching 

capacity in pyrene actin assay 

 

This assay provides further information regarding F-actin binding kinetics by monitoring 

changes in pyrene actin fluorescence (Figure 19). Labeled G-actin is only weakly 

fluorescent, but upon polymerization the fluorescence is enhanced about 20 times. 

Binding of the analyzed protein basically blocks the fluorescence signal of pyrene actin 

(Mustonen et al., 1987). Therefore binding kinetics could be traced by the quenching 

of fluorescence intensity signal. (3.3.7.2).  



4. Results 
___________________________________________________________________ 

 
120 

For the final reaction, 4 µM Cofilin1 (wt and mt, respectively) was added to 2 µM 

polymerized actin. Actin, without any additional proteins represented the reference. 

Data acquisition was performed every 1.8 seconds for 90 seconds, approximately 60 

seconds after proteins of interest were added (Figure 19). 

The lower the remaining fluorescence, the higher the binding capacity of the protein of 

interest. The detected fluorescence in the samples containing KTRTK-Cofilin1 (light 

gray) remained significantly higher than in the samples containing wt-Cofilin1 (dark 

gray). While the fluorescence in the wildtype samples was reduced to one-fifth of the 

reference, the mutant samples showed only a slight decrease of approximately 9% in 

comparison to the actin reference. 

A 

 

B 

 
  

Fig. 19: Wt-Cofilin1 and KTRTK-Cofilin1 quenching activity of pyrene F-actin. A) Pyrene 

actin fluorescence signal in the course of 90 seconds. B) Relative fluorescence signal after 90 

seconds in comparison to the actin reference. Wt and mt Cofilin1, respectively, were added to F-

actin. Data acquisition was started approx. 60 s after proteins of interest were added fluorescence 

was measured every 1.8 seconds for 90 seconds. Actin alone was used as reference. Binding 

activity of the mutant protein (light gray) was significantly lower than in the wt (dark gray). Wt: 

Cofilin1; mt: KTRTK-Cofilin1. Levels of significance: 0.05 >p≥ 0.01 (*); 0.01>p≥0.001 (**); p>0.001 

(***). 

 

In this experiment the quenching capacity and thereby the binding activity of wt-Cofilin1 

was four times higher than of the mutant. These in vitro assay data indicate that 

KTRTK-Cofilin1 did preserve some of the depolymerizing function (4.1.1.1) but that the 

binding capacity of the mutant protein was affected compared to wt-Cofilin1. 
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4.2 Cofilin1KTRTK/KTRTK embryos showed exencephalic 

phenotype 

 

The role of Cofilin1 in the nucleus and the function of the nuclear translocation signal 

in vivo was studied in this thesis. It is known that Cofilin1 is essential for embryonic 

development. Deletion of Cofilin1 results in embryonic lethality around embryonic day 

10.5 (E10.5). Cofilin1-/- embryos bear a total lack of neural tube closure along with 

altered neural crest cell migration and cell proliferation (Gurniak et al., 2005; Bellenchi 

et al., 2007). To elucidate the role of Cofilin1 in vivo the KTRTK-Cofilin1 mouse line 

was created by Christine Gurniak (2.1).  

Heterozygous (Cofilin1wt/KTRTK) animals showed no phenotype and were not 

distinguishable from wildtype (Cofilin1wt/wt) animals. Homozygous mutants 

(Cofilin1KTRTK/KTRTK), however were not viable, therefore embryos at different 

gestational stages were analyzed. 

Timed matings were set up to obtain embryos at developmental stages from E10 to 

E19.5. Mating of heterozygous males and females allowed the generation and analysis 

of all possible genotypes (wt: Cofilin1wt/wt; het: Cofilin1wt/KTRTK, mt: Cofilin1KTRTK/KTRTK). 
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4.2.1 Exencephaly could be detected starting at E10 at all 

embryonic stages 

 

 wt mt 

A 

 

B 

C 

 

 

Fig. 20: Wildtype and KTRTK–Cofilin1 embryos at different developmental stages. A) 

Cofilin1wt/wt (wt) and Cofilin1KTRTK/KTRTK (mt) embryos at E10.; B) wt and mt embryos at E13.5 and C) 

wt and mt embryos at E16.5. Images were acquired at different magnifications (4.0x - 1x), the same 

magnification was used for littermates. wt: Cofilin1wt/wt; mt: Cofilin1KTRTK/KTRTK. 

 

Cofilin1KTRTK/KTRTK embryos showed distinct defects in cranial tube closure. The 

exencephalic phenotype could be detected as early as E10, the earliest developmental 

stage analyzed. All mutants showed a very conspicuous phenotype in the form of the 
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absence of skull structures featuring the extrusion of the brain (Figure 20). The severity 

of exencephaly varied, whereas some embryos showed a mild form of brain extrusion, 

others appeared more severe, in which the brain overlapped facial structures 

completely (Figure 20; Panel C mt). 

All mutant embryos were 

smaller than their wildtype or 

heterozygous littermates 

(Figure 20), but showed no 

other obvious defects.  

When isolated mutant brains, 

revealed massive 

malformations. Besides an 

apparent lack of defined 

structure of the cerebral 

hemisphere, mutant brains 

were significantly bigger than 

wildtype brains in comparison 

(Figure 21). The olfactory 

bulb, a prominent protrusion 

at E15.5 in wildtype brains, is 

poorly developed barely 

identifiable in the mutant. The 

mutant brain morphology will 

be analyzed in detail in a later chapter (4.5.2). 

Further, not all mutant embryos carried both eyes, especially in embryos displaying 

more severe forms of exencephaly the number of eyes was observed to vary.  

Collected embryos were used for the isolation of primary cultures (mouse embryonic 

fibroblasts (Mefs), neurons and astrocytes), the preparation of tissue lysates, RNA 

isolation, morphological analyses and gene expression analyses.  

 

 

 

  mt wt 

 

A 

 

B 

  

Fig. 21: KTRTK – Cofilin1 and wildtype embryos at E15.5. 

A) Cofilin1KTRTK/KTRTK (mt) and Cofilin1wt/wt (wt) embryos at 

E15.5; B) isolated brains of E15.5 mt and wt embryos. 

Images were acquired at different magnifications (1.6x – 

2.5x), same magnification was used for littermates. mt: 

Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt 
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4.2.2 KTRTK-Cofilin1 showed no dominant negative effect 

 

In order to conclude whether the KTRTK-Cofilin1 mutation might affect the distribution 

of the respective genotypes (wt, het and mt) among all embryos was determined. 

Genotype of the collected embryos was determined on embryonic tissue samples (see 

3.1.1). In the course of this study 654 embryos at various developmental stages were 

analyzed (Figure 22). 

 

 
 

Fig. 22: Distribution of embryonic genotypes and the relative percentage. In the course of this 

thesis 654 embryos were isolated. The respective percentages (blue axis, right) were calculated 

based on the total number of embryos (N=654, black). The distribution of genotypes among embryos 

(N=654) followed Mendelian law. Wildtype/ wt: Cofilin1wt/wt (dark gray); heterozygous/ het: Cofilin1 

wt/KTRTK (gray); mutant/ mt: Cofilin1KTRTK/KTRTK (light gray).   

 

Analysis of the embryonic genotypes (Figure 22) showed that the distribution of the 

genotypes occurred almost perfectly according to Mendelian inheritance law. A ratio of 

1: 2: 1 (wt: het: mt) for the different genotypes was expected among the progenies. 

The ratio that applies here was 24.8%: 51.4%: 23.9%, indicating that the resorption 

rate or the frequency of the respective genotypes were not affected by the mutation of 

the nuclear translocation signal of Cofilin1.  

Phenotypic analysis of embryos at different developmental stages concluded, that only 

the Cofilin1KTRTK/KTRTK embryos showed the exencephalic phenotype (4.2.1), 
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demonstrating a recessive phenotype. Furthermore, 100% penetrance of the 

phenotype was observed in Cofilin1KTRTK/KTRTK embryos. Cofilin1wt/KTRTK embryos 

showed no phenotype and were not distinguishable from wt littermates. Cofilin1wt/KTRTK 

animals were viable. No viable Cofilin1KTRTK/KTRTK animals were found.  

 

4.3 KTRTK-Cofilin1 protein expression level 

decreased during embryonic development 

 

4.3.1 ADF/Cofilin members in embryonic tissues 

 

To analyze the protein expression levels of KTRTK-Cofilin1 in mutant (mt: 

Cofilin1KTRTK/KTRTK) and heterozygous (het: Cofilin1wt/KTRTK) embryos in comparison to 

Cofilin1 in wt embryos (wt: Cofilin1wt/wt) lysates at different developmental stages were 

prepared. Furthermore, protein expression in brain and body tissue was of interest in 

consequence to the restriction of the phenotype to the brain. 

E10.5, E13.5, E16.5 and E18 embryo lysates for all three genotypes (wt, het and mt) 

were prepared and the respective Western blots were probed for all members of the 

ADF/Cofilin family: Cofilin1 (KG60), Cofilin2 (FHU1) and ADF (7D10). In the diploma 

thesis the expression levels of the ADF/Cofilin family members between genotypes 

were observed to vary in brain depending on developmental stage and genotype 

(Figure 23+24) (Roy, 2011).  

 

Cofilin1KTRTK/KTRTK embryos were alive at E18, the beating heart was observed. Other 

than an exencephalic phenotype, variations of the number of eyes and the slightly 

smaller overall size, the embryos showed no further obvious phenotype. Cofilin1wt/KTRTK 

embryos were not distinguishable from Cofilin1wt/wt embryos. 
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4.3.1.1 Levels of ADF/Cofilin family members during development 
 

At E10.5 total embryos were analyzed, since at this stage in development it was not 

possible to isolate a brain. E10.5 total embryos showed no differences in the levels of 

Cofilin2 and Cofilin1. The expression level of ADF appeared to be slightly decreased 

in the mutant (Figure 23, A). The antibody (KG60) used for Cofilin1 recognized KTRTK-

Cofilin1 as well as wildtype Cofilin1. Efficiency of the antibody was tested with GFP-

KTRTK-Cofilin1 and GFP-wt-Cofilin1 in comparison (data not shown). At E18, almost 

no Cofilin1 could be detected in the mutant brain, in Cofilin1wt/KTRTK Cofillin1 was also 

decreased compared to Cofilin1wt/wt brains at E18 Figure 23, B. The Cofilin1 pool in the 

heterozygous animal both wt-Cofilin1 and KTRTK-Cofilin1 are present. The decreasing 

level of KTRTK-Cofilin1 observed in the embryonic Western blot analysis could 

indicate that the ratio of Cofilin1 to KTRTK-Cofilin1 is not equimolar in heterozygous 

tissues. The expression of Cofilin2 was up-regulated both in the mutant and the 

heterozygous brain, compared to wildtype brain. Expression of Cofilin2 was also up-

regulated in the heterozygous brain.  

 

A E10.5 Total B E18.5 Brain 
 

 

 

 
  

Fig. 23: Expression of the ADF/Cofilin family members in E10.5 embryo (A) and E18 

brain lysates (B). A) The antibody KG60 recognizes Cofilin1 as well as KTRTK-Cofilin1. 

E10.5 total embryo lysates from wt, het and mt samples showed the same levels of Cofilin1 

(KG60) and Cofilin2 (FHU1) protein. The level of ADF (7D10) expression appeared to be 

slightly decreased in the mt. B) In E18 mutant brain lysate only a very weak signal for Cofilin1 

could be detected (mt). Cofilin2 showed increasing expression levels from wt to mt. The 

Western blots were probed with anti-actin (C4) as loading control. 10 µg of protein was loaded 

for each sample. wt: Cofilin1wt/wt; het: Cofilin1wt/KTRTK; mt: Cofilin1KTRTK/KTRTK.   
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These results indicated the decrease of KTRTK-Cofilin1 expression between 

gestational stages E10 and E18. This experiment repeatedly showed a massive 

decrease or even complete loss of KTRTK-Cofilin1 protein in E18 mutant brains. 

To determine the point of decrease of KTRTK-Cofilin1 level of protein expression more 

accurately, lysates of brain and body of E13.5 and E16.5 embryos were prepared 

respectively (Figure 24). Western blots were probed with antibodies for the members 

of the ADF/ Cofilin family. 

The Western blot analyses for the E13.5 and E16.5 brain and body tissues showed 

differences of the protein expression levels of the ADF/Cofilin family members between 

genotypes and developmental stages (Figure 24). GAPDH levels showed equal 

loading within one group 

(e.g. E13.5, brain). In 

E13.5 brain lysates the 

level of Cofilin1 decreased 

slightly from wt to het to mt. 

In exchange the ADF 

expression level increased 

from wt to het to mt. The 

expression of Cofilin2 did 

appear to be slightly higher 

in the wt than in het and mt 

(Figure 24, black).  

In E16.5 brain lysates 

distinctly weaker signals 

for Cofilin1 were detected 

in the heterozygous and 

mutant brain than in the wt brain lysate. The detected levels of ADF and Cofilin2 were 

decreased in the heterozygous and mutant brain compared to wildtype (Figure 24, 

blue). 

Next the corresponding bodies were analyzed to determine whether the altered 

expression levels could also be found in the respective bodies. The bodies of 

Cofilin1KTRTK/KTRTK embryos showed no obvious phenotype. The same tendencies of 

  

 

 

 

Fig. 24: Expression of the members of the ADF/Cofilin 

family in E13.5 and E16.5 body and brain. Lysates from brain 

and body of E13.5 (black) and E16.5 (blue) embryos showed 

differences in the levels of Cofilin1 (KG60), ADF (7D10) and 

Cofilin2 (FHU1) protein expression. GAPDH was used as 

loading control. 10 µg of protein was loaded for each sample. 

wt: Cofilin1wt/wt; het: Cofilin1wt/KTRTK; mt: Cofilin1KTRTK/KTRTK. 
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decreasing expression levels, as in the brain lysates for both E13.5 and E16.5, could 

be observed for Cofilin1. At both developmental stages an up-regulation of ADF in 

mutant bodies was detected. The level of Cofilin2 in wt of E13.5 body was noticeably 

higher than in the het and mt tissues, whereas the level of Cofilin2 in E16.5 bodies of 

all three genotypes seemed to be same. The expression levels of Cofilin1, ADF and 

Cofilin2 differed from brain to body lysates and from E13.5 to E16.5. The difference in 

expression was especially explicit for ADF in E16.5 brain compared to E16.5 body. 

Whereas ADF is down-regulated in the mutant brain to compared het and wt brain, 

ADF expression level is up-regulated in the mutant body compared to het and wt body.  

The members of the ADF/Cofilin family vary in their expression patterns. Cofilin2 is 

found in muscle, the CNS and brain (Gurniak et al., 2014). The expression level of 

Cofilin2 is up-regulated in later steps of development (Vartiainen et al., 2002), 

coinciding with the higher levels of Cofilin2 observed in E16.5 tissues. Analyses of the 

expression patterns of the ADF/Cofilin family members at different developmental 

stages was repeated three times confirming decreasing levels of KTRTK-Cofilin1 

during the course of embryonic development.  

The reason for the decrease of KTRTK-Cofilin1 protein level with increasing 

developmental age is not clear. Cofilin1 is expressed in all tissues but skeletal muscle 

during embryonic development (Vartiainen et al., 2002). The decrease in KTRTK-

Cofilin1 level could be the consequence of different factors. Three possible hypotheses 

for the decrease of the level of mutant protein regarded the decrease of KTRTK-

Cofilin1 at RNA level, proteasomal degradation due to altered stability and alterations 

of solubility characteristics.  
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4.3.1.2 KTRTK-Cofilin1 is not lost on transcriptional level 
 

To elucidate whether the observed decrease of KTRTK-Cofilin1 occurs on 

transcriptional level, total RNA from E10.5 total embryos and E13.5, E16.5 and E18 

brains, corresponding to the brain and body tissues analyzed by western blot, was 

isolated (4.3.1.1). RNA was prepared for quantitative PCR (qPCR) and analyzed for 

amounts of GAPDH (reference gene) and wt-Cofilin1 and KTRTK-Cofilin1 (target) 

transcripts (3.3.1.3).  

The chosen probe for Cofilin1 did not interfere with the NTS. The efficiencies of the 

used probes were tested in prior experiments. Probes bound to KTRTK-Cofilin1 with 

the same efficiency as to the wildtype Cofilin1. 

In conventional PCR the amplicon is detected by end-point analysis whereas in real-

time quantitative PCR (qPCR) the amplicon accumulation is detected and measured 

while the reaction progresses in real time. This method is based on the detection of 

fluorescence proportional to the amplified product. In qPCR the data that are generated 

are the CT-values (threshold cycle). The CT-value describes the cycle number at which 

a detectable signal is achieved, representing the threshold. The amount of template 

present at the start of the amplification reaction mainly determines the threshold cycle. 

The lower the amount of template in the sample, the higher the threshold cycle. This 

ratio forms the basis for the quantitative aspect of qPCR. 

For this experiment RNA was derived from E10 total embryo along with brains from 

E13.5, E16.5 and E18 (Cofilin1wt/wt and Cofilin1KTRTK/KTRTK). Cofilin1wt/KTRTK were not 

tested. The chosen Cofilin1 probe did not distinguish between wt-Cofilin1 RNA and 

KTRTK-Cofilin1 RNA. Therefore, heterozygous samples would not have allowed any 

conclusions regarding the KTRTK-Cofilin1 RNA portion of the detected Cofilin1 RNA. 

The acquired data was analyzed using the ∆CT-method, a form of relative 

quantification (3.3.1.4). 

Relative quantification can provide information regarding changes and differences in 

gene expression. 
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In the ∆CT-method the 

expression of the target gene 

(Cofilin1) in the wt sample is 

normalized to 1. The expression 

of the target gene in the mutant 

is calculated according to the 

respective normalized value of 

the wildtype counterpart. Data of 

quantitative PCR is presented in 

Figure 25. At every 

developmental stage analyzed 

(E10, E13.5. E16.5 and E18) a 

gene expression level close to 1 

could be detected for KTRTK-

Cofilin1 RNA in reference to the 

wildtype sample. At no age 

significant differences in gene 

expression were observed that would cause the observed decrease in KTRTK-Cofilin1 

protein level. After the decrease of KTRTK-Cofilin1 on RNA level could be excluded, 

the decrease could be originated from alterations in translation.  

A possible change of solubility of the mutant protein was analyzed next. 

 

4.3.1.3 The KTRTK mutation of Cofilin1 does not alter protein 

solubility 

 

Previous studies showed that a mutation in the form of an alanine to threonine 

substitution directly behind the KKRKK sequence (wt: KKRKKAVLFCLS; mt: 

KKRKKTVLFCLS) in Cofilin2 resulted in significantly lower protein levels in the mutant 

muscle tissue than in wildtype tissue, even though the mutant tissue contained 4-20 

fold more Cofilin2 mRNA, indicating a reduced stability or altered solubility of the 

mutant protein (Agrawal et al., 2007).   

  

 

 

 

Fig. 25: Gene expression levels of wt-Cofilin1 and 

KTRTK-Cofilin1 at different stages of embryonic 

development. RNA derived from E10 embryo along with 

brains of E13.5, E16.5 and E18 brain was analyzed for 

expression of GAPDH (reference gene) and Cofilin1 

(target). Acquired data was analyzed using the ∆CT-

method. No significant differences between the mRNA 

expression levels of KTRTK-Cofilin1 and Cofilin1 were 

detected in the respective samples. Wt: Cofilin1wt/wt; mt: 

Cofilin1KTRTK/KTRTK. 
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In the prior western blots (Figure 23+24) soluble protein fractions were analyzed, 

therefore in the case of altered solubility KTRTK-Cofilin1 could be in the pellet. 

Developmental day E12.5 embryos were chosen for analyses, a stage in development 

in which the KTRTK-Cofilin1 protein was still present in the mutant but less than in 

wildtype (Figure 26).  

 
 

Fig. 26: Analysis of KTRTK-Cofilin1 solubility properties in E12.5 

embryos. Supernatant (soluble) and pellet (insoluble) fractions of wt, het 

and mt brains (black) and bodies (blue) of E12.5 embryos were prepared. 

Actin (C4) was detected in all fractions at different levels. Mutant insoluble 

fractions showed considerably more actin. Western Blot was probed for 

anti-GAPDH as soluble contamination control. Cofilin1 (KG60) was 

detected in all soluble fractions, whereas Cofilin1 could not be detected in 

any pellet fraction. Soluble fractions of E12.5 brains and bodies showed 

differences in the levels of Cofilin1 (KG60) between genotypes and 

tissues. 10µg for the supernatant lysates were loaded with equivalent 

volumes of the insoluble fractions. Wt: Cofilin1wt/wt; het: Cofilin1wt/KTRTK; mt: 

Cofilin1KTRTK/KTRTK; 

 

To study possible alterations of the solubility of the KTRTK-mutant protein, supernatant 

(soluble) and pellet (insoluble) fractions of E12.5 bodies and brains were prepared of 

wildtype, heterozygous and mutant embryos. This way insoluble proteins would have 

been detected in the pellet fractions. GAPDH was used to exclude the possibility of 

soluble contamination of the insoluble fractions. This was of importance to verify that 

no possibly detected signal was a result of soluble contamination. Figure 26 shows 

that a clean fractionation of supernatant and pellet fractions was achieved. Cofilin1 was 

only detected in the soluble fractions of all three genotypes in both tissues. The 
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detected levels of Cofilin1 decreased from wildtype to heterozygous to mutant. An 

observation that had already been made in various other western blot analyses for 

embryos of different gestational stages (4.3.1.1).  Actin was detected in all samples. It 

should be noted that in the insoluble fractions the level of actin increases from wildtype 

to heterozygous to mutant. It is feasible that this detected level of insoluble actin 

reflects the reduced depolymerization of F-actin (4.1.1) and the increased amount of 

F-actin that have been observed in later experiments (4.4.6). The method used to 

prepare supernatant and pellet fractions is not designed to efficiently separate G-actin 

from F-actin. The data acquired in this experiment showed that KTRTK-Cofilin1 protein 

level did not decrease due to altered solubility. 

To verify whether solubility might be altered depending on developmental stage, 

embryonic stages E11.5 to E18 were analyzed. At no time point of development the 

mutant protein KTRTK-Cofilin1 was detected in insoluble fractions.   

Since the decrease of KTRTK-Cofilin1 protein due to a change of solubility could be 

eliminated, possible decrease of KTRTK-Cofilin1 in consequence to protein stability 

was analyzed.   

 

4.3.1.4 KTRTK-Cofilin1 protein is not lost to proteasome degradation 
 

If the stability of the mutant protein was changed by the introduction of the KTRTK 

sequence, KTRTK-Cofilin1 proteasomal degradation may be increased. In this 

experiment the possible loss of the mutant protein due to proteasomal degradation was 

studied.  

Proteasomes degrade unnecessary or damaged proteins by proteolysis. These protein 

complexes are part of major mechanisms by which the concentration of particular 

proteins in cells is regulated and misfolded proteins are degraded (Peters et al., 1994). 

In this experiment proteasomal degradation was blocked with the proteasome inhibitor 

MG132, to find out whether an accumulation of KTRTK-Cofilin1 could be detected. 

MG132, is a specific, reversible cell permeable proteasome inhibitor. It effectively 

blocks the proteolytic activity of the 26S proteasome complex. Previous studies 
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showed that successful proteasome inhibition via MG132 induces intracellular 

overexpression of heat shock protein 70 (Hsp70) (Grossin et al., 2004). 

For this in vitro experiment, mouse embryonic fibroblasts (Mefs) were derived from 

E18.5 embryos. Mefs provide an ideal model system to study functional genetics and 

cellular mechanisms. At this stage of mutant embryonic development the lowest 

KTRTK-Cofilin1 protein level had been observed. Should degradation take place this 

extremely low level would simplify the detection of a rise in protein level due to a block 

in proteasomal degradation.   

 
 

Fig. 27: Proteasome inhibition by MG132 treatment of E18.5 mouse embryonic fibroblasts 

(Mefs). Mefs derived from E18.5 embryos were treated with 20 µM MG132 for 6 hours. Western blots 

were probed for anti-heat shock protein 70 (Hsp70) to verify successful proteasome inhibition. Pass0 

cells were analyzed to determine starting expression level of Cofilin1 (KG60). No increased Cofilin1 

levels were detected after 6 hours proteasomal inhibition (6h +). Coomassie gels verified equal 

loading (data not shown). P0: Passage 0; 6h -: untreated Mefs after 6 hours; 6h +: Mefs treated with 

20µM MG132 for 6 hours; wt: Cofilin1wt/wt; het: Cofilin1wt/KTRTK; mt: Cofilin1KTRTK/KTRTK; 

 

Directly after isolation and before plating embryonic cells were defined as passage 

number 0 (Pass0). Lysates of passage 0 cells were prepared to determine the starting 

protein expression level, before cells were taken into culture, of Cofilin1 and KTRTK-

Cofilin1, respectively (Figure 27). At Pass0 the amount of Cofilin1 decreased from 

wildtype to heterozygous to mutant. The same phenomenon had been observed before 

in E13.5 and E16.5 brains (4.3.1.1). “6h+” represent Mefs that were treated with 20 µM 

MG132 for 6 hours, whereas the “6h –“ lane indicates Mefs that remained untreated 

during the same time period. As expected after 6 hours MG132 incubation a distinct 

up-regulation of heat shock protein 70 (Hsp70) in all MG132 treated samples was 

detected. The protein expression level of Cofilin1 was up-regulated in all “6h –“ 
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samples compared to the Pass0 expression level. This characteristic had been 

observed in Cofilin1KTRTK/KTRTK Mefs before. Mefs of certain developmental age 

(E15.5+E16.5) increase their level of Cofilin1 expression in culture after seeding 

(4.4.7). The up-regulation in mutant 1 (lanes 7-9) was noticeably higher than in mutant 

2 (lanes 10-12). Therefore it was of importance in this experiment to compare Mefs 

that were plated for the same amount of time. The Cofilin1 protein expression level in 

“6h +” was decreased in the wildtype, heterozygous and mutant 1 samples compared 

to the level in “6h –“. Mutant 2 showed approximately the same KTRTK-Cofilin1 protein 

expression level in treated and untreated cells, but no accumulation of KTRTK-Cofilin1 

in the MG132 treated sample was detected. GAPDH expression levels were affected 

by MG132 treatment of the Mefs, but Coomassie gels verified equal loading of all 

samples (data not shown). The detected level for Cofilin1 in the treated cells was 

distinctly lower than in the untreated cells. Considering the successful proteasomal 

inhibition and the decreasing and unchanged protein levels of KTRTK-Cofilin1 in the 

treated mutant, concluded that the mutated protein is not decreased due to instability 

and thereby increased proteasomal degradation.      

MG1332 treatment over night, including different concentrations showed the same 

results (data not shown). These data showed that KTRTK-Cofilin1 is not lost due to 

changes on transcriptional level (4.3.1.2), alterations of solubility (4.3.1.3) or altered 

stability (4.3.1.4.) 

The reasons for the decrease in KTRTK-Cofilin1 protein level remain to be elucidated.   
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4.4. Cofilin1KTRTK/KTRTK mouse embryonic fibroblasts 

show distinctly affected multinucleate morphology 

and cellular functional mechanisms 

 

In consequence to the embryonic lethality of Cofilin1KTRTK/KTRTK mutants at the point of 

birth, mouse embryonic fibroblasts (Mefs) were isolated to obtain living cells to facilitate 

analyses of cellular processes and morphology. 

Mefs provide an ideal model system to study functional genetics and cellular 

mechanisms in cases of embryonic lethality (Lengner et al., 2004).  

Embryonic fibroblasts were derived from Cofilin1wt/wt and Cofilin1KTRTK/KTRTK embryos 

at various developmental stages ranging from E13.5 to E18.5. All analyzed 

Cofilin1KTRTK/KTRTK Mefs, independent of gestational stage of isolation, displayed the 

same phenotype. The Mefs that are shown here were all isolated from E14.5 embryos. 

 

4.4.1 Members of the ADF/Cofilin family are expressed 

differently in Cofilin1KTRTK/KTRTK Mefs 

 

The expression of the mutant protein KTRTK-Cofilin1 is decreased in embryonic brain 

and body. To find out whether this differential expression level could also be observed 

in Mefs the expression levels of the members of the ADF/Cofilin family were 

determined in this chapter.   

Mefs derived from E14.5 Cofilin1wt/wt and Cofilin1KTRTK/KTRTK embryos were studied. 

Mefs were grown in uncoated flasks. Lysates of consecutive passages were prepared 

in order to analyze in vitro expression levels.  

Western blots were probed for all members of the ADF/Cofilin family, Cofilin1 (KG60), 

Cofilin2 (FHU1) and ADF (7D10). GAPDH (GAPDH) was used to control equal loading 

control (Figure 28).    

Passage 0 defined cells directly isolated from the embryos. Lysates of passage 0 

(Pass0) cells were prepared to determine the starting expression level of wt-Cofilin1 

and KTRTK-Cofilin1, respectively (Figure 28). At Pass0 mt Mefs showed decreased 
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protein level of Cofilin1 (KG60) compared to wt. The expression of ADF, Cofilin2 and 

Cofilin1 in wt and mt is very low in Pass0. In the course of the culture from passage 0 

(Pass0) to passage 3 (Pass3) a distinct up-regulation for ADF and Cofilin2 was 

detected in the mt starting in passage 1(Pass1). In the wt an up-regulation of ADF 

could only be observed in passage 3 (Pass3). In the wt an increase in expression of 

Cofilin2 was detected in Pass1 and Pass2. In Pass3 the level of Cofilin2 decreased 

again. In the mutant Cofilin2 rose in Pass1 and remained at a constant level afterwards. 

The reason for the high amount of ADF and Cofilin2 in the mutant is not clear, the 

possibility of a compensatory function of ADF and Cofilin2 for KTRTK-Cofilin1 in Mefs 

needs to be clarified. 

Additionally to the members of the ADF/ Cofilin family the blots were probed with anti-

PCNA (PCNA). Alterations of growth behavior and kinetics along with a striking 

multinuclearity have 

been observed in mt 

Mefs, giving rise to the 

question whether DNA 

replication might also be 

affected. The 

proliferating cell nuclear 

antigen (PCNA), a DNA 

clamp, is essential for 

replication and acts as 

processivity factor for 

DNA polymerase δ, 

therefore PCNA can be 

used as proliferation 

marker (Kelman, 1997). 

The impression was that 

the PCNA level at Pass2 

was lower than in Pass1 

in the mt. A considerable 

down-regulation of PCNA was detected in Pass3 for both genotypes. Which fits in vitro 

the observations of slowed down growth of wt and mt Mef cultures. 

 

 

 

Fig. 28: Detection of ADF/Cofilin family members in E14.5 

Mefs. Genotypes showed distinct differences for the expression 

pattern of the members of the ADF/Cofilin family, Cofilin1 (KG60), 

ADF (7D10), Cofilin2 (FHUI), respectively. Expression of PCNA 

(PCNA) was down- regulated in Pass3, indicating a decrease in 

proliferation.  Blot was probed for anti-GAPDH to verify equal 

loading. 10µg of protein for the total lysates were loaded. Wt: 

Cofilin1wt/wt; mt: Cofilin1KTRTK/KTRTK; Pass0: Passage 0; Pass: 

Passage 1; Pass2: Passage 2; Pass3: Passage 3 
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The differences of expression pattern of the ADF/ Cofilin family could be observed in 

Mefs isolated from different gestational stages as well (data not shown). Mutants 

showed up-regulation for Cofilin2 and ADF starting in passage 1, whereas the 

expression of the mutant protein KTRTK-Cofilin1 was less than in the wt. The up-

regulation of ADF could only be observed in passage 3 of the wt. Also, 

Cofilin1KTRTK/KTRTK Mefs showed a different morphology that Cofillin1wt/wt Mefs. Whether 

ADF and Cofilin2 assume a possible compensatory function to a certain extent due to 

loss of KTRTK-Cofilin1, needs to be elucidated. 

 

4.4.2 Cofilin1KTRTK/KTRTK Mefs were significantly enlarged in 

cell size compared to Cofilin1wt/wt in vitro  

 

From previous experiments it was known that Mefs derived from Cofilin1wt/wt (wt) and 

Cofilin1KTRTK/KTRTK (mt) embryos showed differences in culturing behavior, the growth 

rate of mutant Mefs was noticeably slower than the rate of wildtype Mefs after the 

second passage in culture. 

One passage was counted when confluent cells were trypsinized and diluted for 

subsequent seeding.  

Mefs of both wildtype and mutant went into crisis, usually after the second or third 

passage (depending on gelatin coating), characterized by slowed down division rate 

for approximately 10 to 14 days. Afterwards, wildtype Mefs recovered fully and 

permanent cultures could be established. Mutant Mefs could only be sustained in 

culture for one to two more passages after recovery. Afterwards mutant Mefs were lost.  

When plated on gelatin as extracellular matrix, mutant Mefs could be obtained in 

culture until after the fifth passage. Differences in the ability of wildtype and mutant 

Mefs to attach to glass coverslips were observed. It was problematic to plate a 

sufficient number of cells on glass coverslips after the first passage, especially in the 

case of the mutant. Therefore, glass coverslips coated with an extracellular matrix 

(gelatin) were provided. All morphological studies were performed on Mefs grown on 
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gelatin coated glass coverslips. Analyses was performed by microscope at different 

time points in culture. 

Morphological comparison of wildtype and mutant cells grown on uncoated with gelatin 

coated grown Mefs revealed no alteration of morphological characteristics. 

To further elucidate the morphological differences and the in culture behavior of mutant 

Mefs, cell cycle progression, cell proliferation and G-Actin- F-Actin ratio were analyzed 

among others.   

 

4.4.2.1 Mutant Mefs were multinuclear and increased in cell size 

 

Protein expression analyses of bodies from E16.5 and E13.5 embryos revealed the 

decreased expression of KTRTK-Cofilin1 in mutant bodies compared to the expression 

level of wt-Cofilin1 in 

wildtype bodies (Figure 

24). Mefs are fibroblast 

derived from body tissue. 

Therefore a closer look at 

the morphology of the 

isolated Mefs was taken. 

Cofilin1KTRTK/KTRTK 

displayed distinct 

morphological differences. 

In general, the cells and 

the nuclei of the mutant 

cells were bigger (Figure 

29).  

Cofilin1 depolymerizes F-

actin. Depolymerizing in 

vitro activity assays with 

purified protein showed decreased F-actin depolymerization capacity of KTRTK-

Cofilin1 (4.1.1). This would indicate increased F-actin levels in tissue and isolated cells. 

Phalloidin is a bicyclic peptide that binds selectively to F-actin. It was originally derived 

 Passage 1 Passage 3  

w
t 

 

m
t 

 

 

Fig. 29: F-actin staining of Cofilin1wt/wt and 

Cofilin1KTRTK/KTRTK E14.5 at passages 1 and 3. Mefs were 

plated on gelatin coated coverslips and stained for F-actin 

(Phalloidin Alexa-488, green) and DAPI (blue). Passage 1 (A+C) 

and passage 3 (B+D) revealed significant differences in cell size 

and the presence of multinuclearity. Images were acquired at 

63x magnification.  wt: Cofilin1wt/wt; mt: Cofilin1KTRTK/KTRTK 
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from the fungus Amanita phalloides. These labeled conjugates bind in a stoichiometric 

ratio of about one phallotoxin per actin subunit. It is a widely used staining reagent to 

visualize the actin cytoskeleton of cells.  

Phalloidin stainings were conducted to observe the general morphology of the cells 

more closely and look at F-actin. In order to gain further reliable information whether 

the mutation of the NTS also affected the ability to depolymerize F-actin in the cell (see 

4.1.1) further experiments were needed (see 4.4.3.3.1).   

 

In consideration of the decrease of the mutant protein with increasing age (see 4.3), 

E14.5, an embryonic stage at which the mutant protein was still present at a 

comparable level to wt-Cofilin1 was chosen, in order to ensure that the observed 

phenotype was dependent on the mutated protein and not the reduced protein levels 

(Figure 28). 

All following experiments were all carried out on Mefs derived from E14.5 embryos 

unless otherwise noted. 

To further characterize the increase in cell size and multinuclearity, wt and mutant Mefs 

derived from two different embryos (n=2), were examined for statistical analysis (Figure 

30). Emphasis was put on cell size, number and size of nuclei.  

300 Mefs for each genotype and passage were analyzed. The acquired data for each 

question (cell size, number of nuclei and nuclear size) was derived from the same 300 

Mefs for each time point of analyses. Due to the observed morphological changes of 

the cells during culture, Mefs from passage 1 and 3 were chosen for analysis. 

Closer analysis of cell size, by point to point measurement determining the diameter, 

showed significant differences for wildtype and mutant Mefs in passage 1(Figure 30, 

left) and passage 3 (Figure 30, right) (Figure 30; A+B). For examination Mefs were 

assigned to different groups according to diameter size range 0-60 µm; 61-100 µm; 

101- 200 µm; 201-450 µm and 450 µm<. 

In passage 1 the analysis revealed highly significant difference for the first 4 groups of 

size range. Four fold increased number of wt Mefs could be found in the group 0-60 

µm compared mt Mefs. In the group of 61-100 µm number of wt Mefs was increased 
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by 1.7-fold compared to mutant Mefs. In the size range groups 101- 200 µm (increased 

by 1.5-fold in the mt) and 201-450 µm (increased by 10-fold in the mt), the number of 

mutant Mefs exceed the number of wildtype Mefs in the respective group. The same 

size ranges were analyzed for passage 3 (Figure 30, B). 

A shift towards increasing cell sizes could be observed for both genotypes, though the 

differences in cell size became even more pronounced in passage 3. Only 0.82% of 

the mt Mefs were smaller than 101 µm at this point. In the wt 24-times more Mefs were 

met the criteria of this group. Whereas the majority of the wt Mefs could be found in 

the group of 101-200 µm (67.96%), the majority of the mt Mefs was found in the group 

of 201-450 µm (73.66%). Mutant Mefs bigger than 450µm could be observed (5.35%), 

while no wt Mefs fulfilling this criteria were found. In general in can be said, that mutant 

Mefs were significantly bigger.  

Next, multinuclearity (Figure 30, C+D) and nuclear size (Figure 30, E+F) were 

analyzed. In passage 1 a significantly higher number of mt Mefs comprising two nuclei 

(29.33%) could be found compared to wt Mefs (Figure 30, C). Whereas in P3 the 

number of mt cells with three nuclei was significantly increased compared to wt cells, 

(4.94% (mt) vs. 0.35% (wt)), an increase of 11-fold (Figure 30, D).  

Also significant differences in nuclear size could be observed for wt and mt Mefs in 

passage 1 and 3 (Figure 30, E+F). For analysis nuclei were sub-classified into groups 

according to size range 5-20 µm; 21-35 µm; 36- 50 µm; 51-65 µm and 66 µm<.  
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Passage 1 Passage 3 

 
 

Fig. 30: Statistical morphological analyses of passage 1 (left) and passage 3 (right) of E14.5 

Mefs. Relative percentages were calculated based on the total number of cells counted for each 

genotype and passage (n=300). (A+B) Cell size: significant differences could be observed for wt 

and mt Mefs in passage 1 and 3. (C+D) Multinuclearity: in passage 1 significantly more mt Mefs 

had two nuclei, whereas in passage 3 the number of mt Mefs with three nuclei was significantly 

increased compared to wt cells. (E+F) size of nuclei: nuclear size was examined (approx. n=400). 

Significant differences in nuclear size could be observed for wt and mt cells in P1 and P3. Generally, 

KTRTK-Cofilin1 Mefs had bigger nuclei. A difference that was even more pronounced in P3. Note: 

increased number of analyzed nuclei was a consequence to multinuclearity. Wt: Cofilin1wt/wt; mt: 

Cofilin1KTRTK/KTRTK; Levels of significance: 0.05 >p≥ 0.01 (*); 0.01>p≥0.001 (**); p>0.001 (***)  
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Measurement was performed by point to point measurement determining the diameter 

of the nuclei. Note, the total number of nuclei varied between wt and mt since a higher 

percentage of the mt Mefs (n=300) was multinuclear, consequently increasing the 

number of nuclei in the mutant. All nuclei of the 300 analyzed Mefs, for each point of 

time, were included in the analysis. Respective percentages were calculated, based 

on the total number of nuclei counted for each genotype and passage (approx. n=400). 

In passage 1, 68.06% of the nuclei in the wt could be assigned to the group of 5-20 

µm, whereas only 1.4-times less of the mutant nuclei were classified in this size range. 

Significantly more nuclei of mt Mefs were found in the range of 21-35µm (51.6%), 

compared to nuclei of wt Mefs (31.94%) (Figure 30, E). 

A shift towards increasing nuclear sizes could be observed for both genotypes, when 

the same groups were for analyzed for passage 3 (Figure 30, F). At this point only 5-

times less of the nuclei of mt Mefs could be classified in the group of 5-20 µm, in 

comparison to the wt nuclei. Significantly more nuclei of mutant cells met the criteria 

for a size range of 21-65 µm. 43% of the wt nuclei were bigger ≥35 µm, whereas 90% 

of the mt nuclei were bigger than 35 µm. 

Analysis showed the possible cell size did not correlate to nuclear number or nuclear 

size.  

The observed differences in nuclear size became even more pronounced in passage 

3. In summary, KTRTK-Cofilin1 Mefs had significantly bigger nuclei.  

The above described morphological differences of increased cell size and 

multinuclearity could be observed in all prepared Mefs, regardless of developmental 

stages of isolation.  
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4.4.2.2 Cofilin1KTRTK/KTRTK Mefs displayed a cytokinesis defects 
 

Several previous studies suggested a role for Cofilin1 in the cell cycle. Alteration of 

Cofilin1 activity resulted in the formation of multinuclear cells, probably resulting from 

defects in cytokinesis (Gohla et al., 2005).  

The differences in growth rate and the high frequency of multinuclear cells suggested 

cytokinesis disturbances in Cofilin1KTRTK/KTRTK Mefs. In order to quantify and analyze 

possible changes in growth kinetics, propidium iodide stainings were conducted and 

analyzed via flow cytometry.  

Propidium iodide (PI), a fluorescent dye, binds DNA and RNA stoichiometrically. To 

avoid a RNA signal, cells were additionally treated with RNaseA. PI stainings provide 

information regarding the cell cycle phases of the analyzed cells. The cell cycle leads 

to the duplication of the DNA content and division of a cell with the intent to produce a 

daughter cell, which is an identical copy of the original cell. The cell cycle consists of 

four phases: G1-phase, S-phase, G2-phase and the M-phase. In the G1-phase (first 

gap phase) the cell grows in mass. Following the S-phase (synthetic phase), in which 

the centrosome duplication starts and chromosome duplication takes place, comes the 

G2-phase (second gap phase). Here cells check for completion of DNA replication and 

damaged DNA. In the last phase of the cell cycle the chromosomes condense and the 

duplicated pairs are separated in preparation of the cytokinesis (Pollard and Earnshaw, 

2008). 

Along with cell cycle analysis, cell were also analyzed for size and granularity using 

forward scatter (FSC) and sideward scatter (SSC) in flow cytometry.   

PI was detected by FL2 channel, after excitation at 488 nm. The forward vs. sideward 

scatter plot, provided a graphical representation of the size and complexity distribution 

within the analyzed cell population. Smaller cells appear to the lower end of the axis 

and larger cells towards the upper end in the forward scatter (FSC). Conclusions 

concerning the granularity and complexity within a cell are provided by the sideward 

scatter (SSC). The higher the granularity of the cell the higher it appeared on the end 

of the axis it appears in the plot. Each cell is represented by a dot.   
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For this experiment four passages of wt and mt Mefs derived from E14.5 embryos were 

analyzed. Figure 31 shows reanalyzed data from the diploma thesis (Roy, 2011).  

A total number of 10.000 cells was acquired for each sample. First step, was the 

selection of the live cells based on distribution in forward vs. sideward scatter plot 

(Figure 31, A1 – A4, “live cells”; representative data for passage 1 and 3 shown). This 

process is also called “gating”. Gate was set to exclude debris (lower, left corner).  

For the next step the area of fluorescence channel 2 (FL2-A) was depicted versus the 

height of fluorescence channel 2 (FL2-H) and cells within the gate “live cells” were 

factored in (data not shown). These plots provide information on whether cells are 

present as single ones or aggregates of multiple cells.  

In consideration of the phenotype of the Cofilin1KTRTK/KTRTK Mefs and results from the 

diploma thesis it could be deduced that the cells localized towards the upper end of 

the axis represent the multinucleate cells (data not shown). Therefore, in this analysis 

this cell population of interest was included in the analysis (data not shown; gate: P). 

The number of cells that lie within the gates “live cells” and “P” are shown in the last 

plots (Figure 31; plots B1-B4). The first peak represents the G1-phase (G: gap) of the 

cell cycle, a phase in which RNA-synthesis and protein synthesis take place at a high 

level immediately after mitosis. In this phase no DNA synthesis occurs. The DNA 

content of diploid cells is 2n. The area between the first and second peaks represents 

the S-phase (S: synthesis of DNA). RNA and protein synthesis are very low during S-

phase. In this cell cycle phase DNA synthesis occurs, the DNA content of a cell is 

doubled to 4n indicative for an increasing fluorescence until it reaches the second 

G2/M (M: mitosis) peak which has twice the fluorescence level of the G1 peak. The 

G2-phase lasts until the cell enters mitosis. In the G2-phase protein- and RNA-

synthesis is up-regulated again, mainly for proteins required during mitosis. The 

amount of DNA remains at the level of the G2/M-phase (4n) until the cell finishes 

mitosis (Munk, 2000). Polyploidy is a state of multiple sets of chromosomes beyond 

the basic set, it occurs in consequence to abnormal cell division and would result in a 

fluorescence shift to the right. The peaks to the right of the G2/M-peak represent 

multinuclear cells with a DNA content of 8n and 16n, respectively (Figure 32, indicated 

by arrows).  
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In the course of the passages only slight differences in the cell cycle results could be 

observed for wt Mefs. A shift of 2.3% for the amount of cells in the G1-phase in 

comparison of passage 1 and passage 3 was seen. A more noticeable shift of the cells 

could be detected for the G2/M-phase where an increase of 5.8% was observed from 

the first to the third passage. A slight shift for the amount of multinuclear cells (Mn-

peak) could be detected. Cells in culture showed a change in growth rate following the 

crisis after the third passage. After recovery the growth rate was noticeably slower. 

Also cells increased in size and multinuclear cells (Figure 30) were found more often 

after the third passage of wildtype Mefs. The number of viable cells remained stable in 

the course of the passages from 89.0% and 92.7% (passage 1 and passage 3) (Figure 

31, A1+ A2). 

The same analyses were carried out for the mutant Mefs. Between the passages of 

the Mefs isolated from Cofilin1KTRTK/KTRTK embryos remarkable differences in the 

characteristics of the cells could be observed (Figure 31, mt). The number of viable 

cells slightly decreased from 86.0% in the first passage to 77.2% in the third passage 

(Figure 31, A3+A4). Further, a change in the distribution of the cells in the FSC/SSC 

(Figure 31, A3+A4) could be observed. In passage 3 mutant Mefs were increasingly 

scattered, varying more in size and granularity than wildtype Mefs, coinciding with 

microscopic observations (Figure29+30). 

The cell cycle results showed remarkable shifts of the percentages of mutant Mefs in 

the respective cell cycle phases (Figure 31, B1-B4). A decrease of 21.3% for the 

amount of cells in the G1-phase from of passage 1 to passage 3 could be detected, a 

shift approximately 9 times higher than the shift observed in the wildtype Mefs in this 

cell cycle phase. The second noticeable change occurred in the G2/M-phase. In the 

first passage the amount of Mefs in the G2/M-phase of the cell cycle in the mutant was 

(9.6%) and in wildtype (6.7%).  
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wt 

 

mt 

 
 

Fig. 31: Cell cycle analysis of E14.5 Cofilin1wt/wt (wt) and Cofilin1KTRTK/KTRTK (mt) Mefs. Mefs, 

grown on gelatin, were fixed and stained with PI for cell cycle analysis. Representative data for wt 

(black) and mt (green) for passage 1 and 3 is shown. A total number of 10.000 cells for each passage 

was measured, followed by the gating, adjusted individually according to sample, of live cells (column 

A). The percentage information next to the selected gates, indicates the amount of cells within the 

gate based on the total amount of cells measured (n=10.000). Cells were selected based on size and 

complexity. In the next step single and multinuclear cell were determined in gate “P” individually for 

each sample (data not shown) Cells chosen in gates “live cells” and “P” were further analyzed for their 

propidium iodide (PI) signal in FL2 (column B). The given percentage indicates the number of cells in 

the respective gate and the cell cycle phase, respectively.G1: G1 phase of cell cycle; G2/M: G2/M; 

Mn: Multinuclear cells; SSC-A: Sideward scatter- area; FSC-A: Forward scatter- area; FL2-H: 

Fluorescence2- height; FL2-A: Fluorescence2- area 
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In the third passage 30.6% of mutant Mefs were part of the G2/M-phase. A shift 

approximately 1.5 times higher than for wildtype Mefs. The number of cells in the G2/M 

phase in the mutant is increased in consequence to the reduction of the G1-phase 

cells. All cells together account for approximately 100%. The amount of Mn-cells 

increased from 2.6% in passage 1 to 12.0% in passage 3 (Figure 31, B3+B4).  

 

1 

 

2 

 

Fig. 32: DNA content analyses of E14.5 Cofilin1wt/wt (wt) and Cofilin1KTRTK/KTRTK (mt) Mefs. 

Shown are the alternative illustrations corresponding to column B in Figure 31, focusing on the 

Mn-peaks. Representation of Propidium iodide (x-axis) was changed to logarithmic presentation. 

Plots for passage 2 (A) and passage 3 (B) and passage 4 (C) are presented. Cofilin1wt/wt Mefs are 

presented in black while Cofilin1KTRTK/KTRTK Mefs are depicted in green. This optimized illustration 

allows closer analysis of the Mn-peaks from Figure 31; C1-C4. First two peaks represent G1- and 

G2/M peaks (2n and 4n). The adjacent peaks present cells with 8n and 16 DNA content, which lay 

within the Mn-peak in Figure 31. It could be noted that the amount of 8n and 16n positive cells, 

was higher in mt Mefs, especially in passage 2 and 3. 2n, 4n, 8n and 16n: DNA content of cells.  
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One of the morphological main characteristics of Cofilin1KTRTK/KTRTK Mefs lay within the 

multinuclearity. On account of these findings, multinuclear cells that could normally be 

mistaken for cell aggregates were included in the analysis.  

These multinuclear cells, with increased DNA contents, were illustrated in the Mn-

peaks (Figure 31, C, gate: “Mn”). For closer analysis and better illustration of the 

polyploidy, the representation of the PI staining (x-axis) was changed to logarithmic 

presentation (Figure 32). Data for passage 2 to 4 is shown. 

Four peaks could be detected, representing cells with DNA content of 2n (G1- peak), 

4n (G2/M- peak), 8n and 16n, respectively (Figure 32, indicated by black arrows). In 

this step of analysis, 8n and 16n peaks were of main interest, due to the observed 

multinucleate phenotype. 

The peaks for 8n and 16n cells were more distinct in passage 3 and 4 (Figure 32, B + 

C). Though the 16n- peak was already more pronounced in the mutant (Figure 32, A2) 

than in the wt in passage 2. In passage 3 the difference of the 8n and 16n peaks 

between wt and mt was most striking. Cofilin1KTRTK/KTRTK Mefs in passage 3 include 

definitely more polyploid cells. These results confirm microscopic observations.   

The cell cycle analysis experiment was repeated several times also using wt and mt 

Mefs which were cultivated in un-coated flasks. For those Mefs only three passages of 

cells were available for measurements due to loss of the lines after the third passage. 

The analyzed cells (data not shown) showed the same tendencies as the Mefs shown 

here. An accumulation of cells in the G2/M-phase peak and Mn-peak (multinuclear cell) 

with increasing number of passages which was more pronounced in mt Mefs. The 

same results could also be observed in Mefs derived from E16.5 embryos.  

 

These data indicate that KTRTK-Cofilin1, which carries a mutation in the NTS, does 

affect the cytokinesis of mouse embryonic fibroblasts (Mefs). In coincidence with our 

data, cytokinesis defects in the form of multinuclearity after alterations of Cofilin1 have 

been reported before (Gohla et al., 2005).  

The cytokinesis defect indicated proliferation problems. In the next chapter proliferation 

rates of Cofilin1wt/wt and Cofilin1KTRTK/KTRTK E14.5 Mefs were studied.  
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4.4.2.3 KTRTK-Cofilin1 Mefs displayed lower proliferation rates  
 

Cell proliferation is a complicated process, involving cell growth followed by cell division 

to produce daughter cells.  In culture the growth rate of mutant Mefs was noticed to be 

slower than the rate of wildtype Mefs after passage 2. In order to quantify and analyze 

this observation, CFDA-SE assays were performed (3.2.3.2.). 

CFDA-SE (carboxyfluorescein diacetate, succinimidyl ester) provides a fairly easy 

method to trace cell proliferation. CFDA-SE enters cell by diffusion. Acetate groups 

cleaved by intracellular esterase enzymes form an amine-reactive product, 

carboxyfluorescein succinimidyl ester (CFSE). This product yields detectable 

fluorescence and binds covalently to intracellular lysine residues and other amine 

sources. Labeled cells retain the dye throughout development, also passing it on to 

daughter cells after cell division but not to adjacent cells. An important key element in 

the principle of function of CFDA-SE. The concentration of the dye decreases from 

mother to daughter cell by approx. 50%, causing a decrease in fluorescence that can 

be detected via flow cytometry. CFDA-SE signal was detected in FL1 at 517 nm, after 

excitation at 492 nm. Each shifting peak represented a round of cell division. The area 

of the peak provided information regarding number of cells in the respective division 

cycle. Cells stained with CFDA-SE can be kept in culture for several days.  

For this experiment wt and mt Mefs were grown in non-coated 6-well plates. Each 

sample was prepared in triplicates including untreated controls. After settling of the 

cells over night, samples were labeled with 1µM CFDA-SE. Following a recovery 

period preparation for measurement was started beginning with the starting sample 

labeled “0h” representing the initial value. 

 

In this experiment Mefs, derived from four Cofilin1wt/wt and four Cofilin1KTRTK/KTRTK 

E14.5 embryos, were used. Proliferation rates for passages 0 to 3 were analyzed. 

Representative data for wt and mt Mefs for passage 0 and passage 3 are shown. Cells 

directly plated in 6-well plates immediately after isolation from the embryo were defined 

as passage 0. Purpose of this step was to analyze possible proliferation rate alterations 

immediately upon isolation. A total number of 13.000 cells was measured, followed by 

the exclusion of dead cells and cell debris (gate: “live cells” data not shown). 
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The further the peak is shifted to the left, the lower the detected CFDA signal was, 

because fluorescence decreased in dividing cells. Therefore, in the course of the time 

points the CFDA fluorescence intensity was expected to shift from the right to the left. 

In the progress of the experiment distinct shifts of the CFDA-peak from 0h to 24h to 

72h for both wt and mt could be detected (Figure 33, top panel). 

To point out the shift of the CFDA-peak during the course of time in the different 

passages for wt and mt Mefs, Figure 33 shows histograms illustrating the overlays of 

CFDA-signal at 0h, 24h and 72h, respectively. In passage 0, 1 and 2 noticeable shifts 

of the peaks in wt and mt could be detected (Figure 33, top panel). 

Following the crisis after the second passage, cells in culture showed a noticeably 

slower growth rate after recovery. Mefs also showed phenotypic changes regarding 

cell size and multinuclearity (Figure 30). In passage 3 the CFDA-peak from 0h to 24h 

to 72h for both wt and mt Mefs could also be detected, though shifts of CFDA signal 

intensity seemed less distinct than in passage 1 (Figure 33, top panel). Also CFDA 

peaks in the mutant were less defined in height but broader. At this point the detection 

of explicit peaks and shifts of CFDA signal in mt cells was difficult (Figure 33, D2). 

Therefore, in the next step proliferation rates of wt and mt cells from passage 0 to 3 

were mathematically analyzed (Figure 33, lower panel). 

It had to be taken into consideration that the starting intensity for time point 0h was not 

the same in each sample, due to different labeling efficiencies, therefore the shift of 

CFDA signal at the measured points of time had to be calculated for each sample 

individually, respective to the starting signal at 0h (Figure 33, lower panel).  
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Fig. 33: 1) Overlay of cell proliferation analyses of E14.5 Cofilin1wt/wt (wt) and 

Cofilin1KTRTK/KTRTK (mt) Mefs. Shown are the overlays of the passages 1 to 3 for the time points 

0h (black), 24h (yellow) and 72h (red). Cofilin1wt/wt Mefs are presented in black (top panel, A1-D1) 

while Cofilin1KTRTK/KTRTK Mefs are depicted in green (bottom panel, A2-D2). In passage 0 to 2 (A-

C), distinct shifts of CFDA peaks could be observed. Shifts in passage 3 for the mt (D2) were less 

pronounced, while shifts in the wt were more clearly detectable (D1). 2) Statistical analysis of 

cell proliferation rates of E14.5 Cofilin1wt/wt (wt) and Cofilin1KTRTK/KTRTK (mt) Mefs. Ratio of 

CFDA signal of 0h with 72h was calculated for each passage and triplicate samples. Medians of 

the CFDA peaks were used for calculations. The higher the ratio, the higher was the proliferation 

rate. Significant differences in proliferation rates in passage 0 to 2 could be detected. In passage 

3 the proliferation rate of the wt Mefs was still 1.6 times higher than the one of the mutant Mefs. 

CFDA-SE: CFDA signal, Pass0: Passage 0; Pass1: Passage 1; Pass2: Passage 2; Pass3: 

Passage 3; wt: Cofilin1wt/wt; mt: Cofilin1KTRTK/KTRTK. Levels of significance: 0.05 >p≥ 0.01 (*); 

0.01>p≥0.001 (**); p>0.001 (***) 
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It could be noted that the proliferation rate in wt cells was higher in all passages, but 

the difference of ratios between wt and mt changed. In passage 1 the difference was 

most pronounced. Wildtype Mefs divided twice as much as the mutant Mefs. In wt Mefs 

the proliferation rate was increased by a factor of 1.5 in passages 0, 2 and 3 compared 

to mutant Mefs.  

These results confirmed the observations regarding differences in cell growth and 

proliferation in Cofilin1wt/wt and Cofilin1KTRTK/KTRTK Mefs.  

The data indicates that the protein KTRTK-Cofilin1, does affect the cell proliferation 

rates of mouse embryonic fibroblasts. Proliferation depends on cell growth and cell 

division, two factors that were also shown to be altered in Cofilin1KTRTK/KTRTK Mefs 

(Figure 30 and Figure 31). 
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4.4.2.4 An earlier and increased occurrence of senescence was 

observed in Cofilin1KTRTK/KTRTK Mefs  

 
Senescent cells have a large, flat morphology accompanied by profound growth 

defects, a characteristic clearly featured in mutant Mefs (Figure 29 -31). To determine 

whether the loss of mutant Mefs, after a definite number of passages, was caused by 

cellular senescence this assays was performed. An irreversible growth arrest and 

certain altered functions are characteristic for cellular senescence. In vitro, senescent 

cells can be identified by their inability to undergo DNA synthesis, a feature also 

quiescent cells share. Senescent and quiescent cells share important characteristics, 

making it hard to 

distinguish them. Both are 

viable and metabolically 

active, but do not undergo 

mitosis and cytokinesis. 

Quiescence is defined as a 

state in which cells are 

dormant but can re-enter 

cell cycle. This assay 

could distinguished 

senescent from quiescent 

cells, relying on the activity 

of senescence-associated 

beta-galactosidase (SA-β-

gal), which can only be 

found in senescent cells. 

The presence of SA-β-gal 

is independent from DNA 

synthesis. To this day, 

origin and function of the 

enzyme in senescent cells 

remains unknown. Unlike 

average beta-

galactosidase, SA-β-gal can only be detected at a pH range between 6.0- 4.0 with a 
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Fig. 34: Senescence-associated beta-galactosidase (SA-β-

gal) staining of E14.5 wt and mt Mefs (passage 4). SA-β-gal 

positive cells stained blue. Wt (A+B) and KTRTK-Cofilin1 (C+D) 

Mefs were stained. An increased number of mutant cells were 

senescent in passage 4 compared to wildtype. As controls, wt 

cells from passage 1 were used. Doxorubicin treated cells 

presented the pos. control (F), whereas untreated cells served 

as neg. control (E). Wt: Cofilin1wt/wt; mt: Cofilin1KTRTK/KTRTK 
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X-Gal staining solution (3.2.2.1.4) (Dimri et al., 1995; Itahana et al., 2007). Different 

passages of Cofilin1wt/wt and Cofilin1KTRTK/KTRTK Mefs, grown in gelatin-coated flasks, 

were seeded on coverslips and stained. 

Cells positive for senescence-associated beta-galactosidase (SA-β-gal) were detected 

by a perinuclear blue stain after the crisis (Figure 34). In order to verify the specificity 

of the assay, passage 1 wt cells were used as controls. In order to attain a positive 

control, cells from passage 1 were treated with 300 ng/ml doxorubicin for 20h, a 

chemical compound that was shown to induce senescence in vitro. Only doxorubicin 

treated wt cells from passage 1 stained positive (Figure 34, F), confirming the 

specificity of the assay. Wt and mutant Mefs in passage 1 did not stain positive for SA-

β-gal (data not shown).  

Passage 4 was of main interest, since at this point KTRTK-Cofilin1 Mefs grown on 

gelatin-coated surfaces were usually lost. Wildtype as well as mutant cells were 

positive for SA-β-gal at this point (Figure 34, A-D), more mt than wt cells appeared to 

be senescent. In order to 

determine whether there was an 

actual difference in SA-β-gal 

positive cells, a total number of 

180 cells (n= 180) for wt and mt 

each were analyzed. In passage 4 

(Figure 35), 32.98% of Mefs 

derived from Cofilin1wt/wt embryos 

were senescent compared to 

53.44% of Cofilin1KTRTK/KTRTK 

Mefs. This highly significant 

difference also coincides with the 

observations made in vitro, the 

failure to recover after crisis and 

massive distinctions in cell size 

and multinuclearity. It was of 

interest if KTRTK-Cofilin1 also 

lead to senescence in vivo. Whole 

body cryo sections of E19.5 Cofilin1wt/wt and Cofilin1KTRTK/KTRTK embryos were prepared 

 

 

 

Fig. 35: Analysis of senescence positive E14.5 wt 

and mt Mefs in relative numbers (passage 4). A total 

number of 180 cells was analyzed for each genotype. 

Significantly more mt Mefs were SA-β-gal positive in 

passage 3 compared to wt Mefs at this stage.  The 

number of senescent cells was increased by 1.6- fold 

compared to wt. Wt: Cofilin1wt/wt; mt: Cofilin1KTRTK/KTRTK; 

Levels of significance: 0.05 >p≥ 0.01 (*); 0.01>p≥0.001 

(**); p>0.001 (***) 
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and stained for senescence-associated beta-galactosidase. No senescent tissue was 

detected in either wt or mt bodies or brains (data not shown).  

 

4.4.3 KTRTK-Cofilin1 affected G-and F-actin levels 

differently in vivo  and in vitro 

 

IF imaging did not allow quantification of F-actin in Mefs. Biochemical analysis of 

KTRTK-Cofilin1 showed reduced depolymerizing and F-actin binding capacity of 

mutant protein compared to wildtype (Figure 18+19). Therefore, the levels of G-Actin 

and F-actin in cultured Mefs and in brain tissue were of interest. 

 

4.4.3.1 KTRTK-Cofilin1 Mefs expressed increased levels of F-actin  
 

Stainings of Cofilin1KTRTK/KTRTK Mefs showed massively increased size of cells (Figure 

29). Based on the intensity of the fluorescence signal it was difficult to determine 

whether Cofilin1KTRTK/KTRTK cells comprised more F-actin than wt cells of the same size.  

Further, actin assays showed reduced depolymerizing activity for KTRTK-Cofilin1 in 

vitro (4.1.1), raising the question, whether the same characteristics would be observed 

in cells and in consequence increasing the F-actin levels.  

For further analysis, F-actin levels for cells of an equivalent cell size range were 

analyzed using flow cytometry. A simple method to analyze the levels of F-actin, since 

Phalloidin exclusively binds to F-actin (3.2.3.3). 

 

Furthermore, a G-actin/F-actin ratio was determined by G/F-actin fractionation. This 

simple method allows a separation of G-actin in a supernatant fraction from F-actin in 

a pellet fraction.For this experiment three Cofilin1wt/wt and Cofilin1KTRTK/KTRTK Mefs from 

passage 3 derived from E14.5 were used.  
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Fig. 36: Analysis of G-actin/F-actin expression levels in E14.5 Cofilin1KTRTK/KTRTK (mt) compared 

to Cofilin1wt/wt (wt) and Mefs (passage 3). Cells were stained with Phalloidin-680 (F-actin), allowing 

the determination of the F-actin levels. A total number of 13.000 live cells was acquired per sample, 

respectively. A+B) Cells were depicted in forward vs. sideward scatter for wt (A) and mt (B) Mefs, 

respectively. Gate “cells of equivalent size range” marks cells of the cell size. G-actin and F-actin 

levels were determined for cells within the gate. C1) Overlay of F-actin signal for wt and mt cells. 

Cofilin1wt/wt Mefs are presented in black while Cofilin1KTRTK/KTRTK Mefs are depicted in green. 

Unstained wt cells are illustrated in red, whereas the mt counterpart is presented in blue. Auto-

fluorescence signal intensity of unstained wt and mt Mefs were almost identical. A distinct shift of F-

actin signal in the mt Mefs (green), compared to wt Mefs could be detected, indicating a higher amount 

of F-actin in mt Mefs at the same size. C2) Normalized quantification of F-actin in cells of the 

equivalent size range. F-actin signals of wt Mefs was normalized to value 1. Values for mt Mefs were 

calculated according to wt values. It can be noted that analyzing the same size wt and mt Mefs, 

Cofilin1KTRTK/KTRTK Mefs comprised significantly more F-actin. The amount of F-actin was increased 

by 1.75-fold in the mt compared to wt. D1) G- (supernatant) and F-actin (pellet) fractions of wt and mt 

of E14.5 Mefs at passage 2+3 were prepared. Actin (C4) could be detected in all fractions. Western 

Blot was incubated with anti-GAPDH to verify equal loading and exclude soluble contamination of the 

F-actin fraction. 5µg for the supernatant lysates were loaded with equivalent volumes of the pellet 

lysates. D2) For densitometric analysis G-and F-actin the wt was normalized to 1. Mt values were 

calculated in reference to the wildtype for passage 3. Mt Mefs showed increased levels by 1.56-fold 

of F-actin compared wt. Levels of G-actin were only slightly increased by 1.14-fold in mt Mefs in 

reference to wt Mefs. G-Actin: G-actin signal; F-Actin: F-actin signal; FSC-A: forward scatter- area; 

Wt: Cofilin1wt/wt; mt: Cofilin1KTRTK/KTRTK; Levels of significance: 0.05 >p≥ 0.01 (*); 0.01>p≥0.001 (**); 

p>0.001 (***) 
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A total number of 13.000 live cells were acquired and analyzed for F-actin levels. 

In Figure 36, the F-actin (C1+2) content of the selected cells is illustrated (A+B). The 

further the peaks are shifted to the right, the higher the detected fluorescence signals 

for F-actin were, respectively. In both plots also unstained wt (red) and mt (blue) are 

depicted, to detect the auto-fluorescence of Cofilin1wt/wt and Cofilin1KTRTK/KTRTK Mefs 

which was almost identical for wildtype and mutant in F-actin analyses.  

Considering the decreased depolymerizing activity of KTRTK-Cofilin1 that was 

observed in actin in vitro assays (Figure 18), the question whether mutant Mefs of the 

same size also comprise more F-actin compared to the wildtype had to be considered. 

In order to study the amount of F-actin (Figure 36; C1+2) as parameters of cell size, 

cells were depicted in a forward vs. sideward scatter for wildtype (Figure 36, A) and 

mutant Mefs (Figure 36, B), respectively. The gate “cells of equivalent size range” in 

Figure 36, A and B marks cells of exactly the same size The gate was chosen in a size 

range, in which a high density and number of cells could be found in both wildtype 

(84.6%) and mutant (75.5%) Mefs. In ranges of higher size range the mutant was 

predominant but only few wildtype Mefs could be analyzed.  

In order to quantify the F-actin amount in relation to cell size, only the cells within gate 

“cell of equivalent size range” were taken into account in the following analysis. 

Therefore, F-actin fluorescence signals were determined for cells from gates “cell of 

equivalent size range”, respectively. Distinct shifts of the F-actin fluorescence signal 

(Figure 36; C1) for Cofilin1KTRTK/KTRTK Mefs (green) could be detected compared to wt 

Mefs. Medians of the respective fluorescence signal peaks were used for calculations. 

Values for F-actin in Cofilin1wt/wt Mefs was normalized (wt= 1).  

Values for the Cofilin1KTRTK/KTRTK Mefs were calculated according to the normalized wt 

values, respectively (Figure 36, C2). These data clearly showed that mutant Mefs of 

equivalent cell size as wt Mefs contained significantly more F-actin. The amount of F-

actin was increased by 1.75- old compared to wt. These results are in accordance to 

data acquired in actin assays, showing decreased KTRTK-Cofilin1 F-actin binding and 

depolymerizing activity (Figure 18+19). 
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In order to quantify the G-actin and F-actin levels in wt and mt Mefs, E14.5 Mefs from 

passages 2+3 were fractionated to determine the respective expression levels and 

analyzed by western blot (Figure 36, D1). This method allowed a separation of G-actin 

in a supernatant fraction from F-actin in a pellet fraction. For specific determination of 

G-/F-actin expression levels densitometric evaluation of the western blot was 

performed (data for passage 3 shown). Values for GAPDH in Cofilin1wt/wt Mefs was 

normalized (wt= 1). Values for the Cofilin1KTRTK/KTRTK Mefs were mathematically 

adapted to GAPDH expression level in the wildtype. G-actin and F-actin values were 

adapted according to GAPDH expression level and afterward normalized in reference 

to wildtype levels. The results illustrated a shift of G-Actin/F-actin ratio between the 

genotypes. Whereas the G-actin level in the wildtype and the mutant Mefs remained 

constant, the F-actin protein level in the mutant was increased by 56% compared to 

wildtype. Densitometric examination of the G-actin/F-actin ratio revealed an increased 

shift of the total amount of actin in mutant Mefs. Even though F-actin increased the 

amount of G-actin remained constant, reflecting the increase of total actin in Cofilin1 
KTRTK/KTRTK Mefs. Analysis of passage 2 G-actin/F-actin ratios showed the same 

tendencies (data not shown). F-actin was increased be 1.4-fold, whereas G-actin was 

increased by 1.18-fold in reference to the wildtype levels, also indicating an increase 

of total actin in mutant Mefs. It should be considered that in passage 3 mt Mefs are 

bigger than in passage 2, potentially elucidating the added increase of F-actin in 

passage 3.  

Comparable results could be observed for Mefs derived from E13.5 and E16.5 mouse 

embryos. 

Analysis of G-/F-actin levels indicated an increase of total actin in mutant Mefs. An up-

regulation of actin isoforms was also detected in microarray analysis of wt and mt Mefs 

(4.7).  
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4.4.3.2 The G-actin/F-actin ratio was reduced in KTRTK-Cofilin1 

embryos compared to wildtype embryos  

 

After an increase in F-actin and G-actin levels could be detected in vitro, in cells derived 

from Cofilin1wt/wt and Cofilin1KTRTK/KTRTK embryos, the question whether the same 

phenomenon occurred in vivo arose. The analysis of E12.5 pellet fractions showed an 

increase of actin in the mutant brain and body (Figure 26). This experiment determined 

the G-actin/F-actin ratio in E16.5 brain tissue of Cofilin1wt/wt, Cofilin1wt/KTRTK and 

Cofilin1KTRTK/KTRTK embryos. An adapted separation protocol was from McRobbie and 

Newell (1983) and Pilo Boyl et al. 

(2007) was used for G/F-actin 

separation. This simple method 

allows a separation of G-actin in a 

supernatant fraction from F-actin in a 

pellet fraction (3.3.3.2). 

The separation of G- and F-actin was 

performed for embryonic brain 

isolated from E16.5 embryos. The 

same stage of development was also 

used for in vivo microarray analysis 

(4.7). The Western blot for the G-

actin/F-actin separation of E16.5 

brains showed differences of the 

amounts G- and F-actin between 

genotypes (Figure 37). G-actin was 

up-regulated in the wildtype 

compared to the mt. Densitometric 

evaluation of the western blot 

illustrated a shift of G-Actin/F-actin 

ratio between the genotypes. 

Whereas the G-actin level in the 

wildtype and the heterozygous brain remained constant, the G-actin protein level in the 

 

 

Fig. 37: G-actin/ F-actin in vivo separation in 

E16.5 brain tissue (McRobbie). G- (supernatant) 

and F-actin (pellet) fractions of wt, het and mt brains 

of E16.5 embryos were prepared according to an 

adapted McRobbie protocol. Actin (C4) could be 

detected in all fractions. Densitometric analysis 

showed increasing levels of F-actin from wt to het to 

mt. Levels of G-actin were reduced from reduced 

form wt to het to mt. F-actin level was increased. 3.9-

fold in Cofilin1KTRTK/KTRTK brain compared to 

Cofilin1wt/wt. Western Blot was incubated with anti-

GAPDH to verify equal loading and exclude soluble 

contamination of the F-actin fraction. 10µg for the 

supernatant lysates were loaded with equivalent 

volumes of the pellet lysates. Wt: Cofilin1wt/wt; het: 

Cofilin1wt/KTRTK; mt: Cofilin1KTRTK/KTRTK; G: G-actin; F: 

F-actin; 
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mutant was decreased by 29% compared to wildtype. The F-actin on the other hand 

was the strongest in the mt. The weakest signal for F-actin was detected in the 

wildtype. This has been observed several times before (4.3). Densitometric 

examination of the G-actin/F-actin ratio revealed distinct shifts in the distribution of the 

total amount of actin. In Cofilin1wt/wt brain 90% of the total amount of actin consisted of 

G-actin, while the remaining 10% percent were presented by F-actin. The 

heterozygous brain displays a ratio of 77% G-actin/ 23% F-actin. The shift was even 

more explicit in the mutant with a ratio of 62% G-actin/ 38% F-actin. In 

Cofilin1KTRTK/KTRTK brain the portion of F-actin, in regard to the total amount of actin, 

was increased by 3.8 fold compared to wildtype, representing the smallest G-/F-actin 

ratio in comparison of Cofilin1wt/wt, Cofilin1wt/KTRTK and Cofilin1KTRTK/KTRTK brains. A 

decrease of the protein level of Cofilin1 (KG60) in the het and mt compared to wildtype 

could be noted. The expression of ADF (7D10) and Cofilin2 (FHUI) was up-regulated 

in the mutant (data not shown). In Mefs F-actin levels were up-regulated in the mutant. 

G-actin levels remained constant. In vivo G-actin levels were decreased in mutant brain 

compared to wildtype. This was not necessarily surprising though. Culture behavior 

and metabolic requirements for Mefs differ from neural tissue. Also Mefs present a 

uniform cell population whereas brains consist of a variety of cell types and 

extracellular matrix proteins. The increase of detected F-actin in the mt conforms to in 

vitro results for Mefs (4.4.3.1). In this experiment it appears that F-actin levels 

increased in response to decreasing Cofilin1 levels, regardless of ADF and Cofilin2 

expression. These data indicate that the influence of KTRTK-Cofilin1 may affect G-

actin/F- actin levels differently in vivo compared to in vitro and may also be dependent 

on cell type. 
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4.5 Morphological studies of the Cofilin1KTRTK/KTRTK 

embryos 
 

Cofilin1KTRTK/KTRTK embryos were clearly distinguishable from wildtype and 

heterozygous littermates due to the neural tube closure defect. Mutants were smaller 

than controls and showed no other obvious malformations. The expression of Cofilin1 

in embryonic development is not restricted to the brain but can also be detected in 

somites, limb buds, the neural tube, liver and heart (Vartiainen et al., 2002; Gurniak et 

al., 2005). 

To understand defects in brain development and to study the morphology of the 

exencephalic phenotype of Cofilin1KTRTK/KTRTK embryos, mutant and wildtype embryos 

at developmental stages E10 to E17.5 were prepared for histochemistry, 

immunohistochemistry and immunofluorescence stainings (3.4).  

 

4.5.1 Analysis of Cofilin1KTRTK/KTRTK anatomy 

 

One of the most striking features of Cofilin1KTRTK/KTRTK embryos is the absence of skull 

structures enclosing the brain. To determine whether the mutation also affected further 

organs, bones and cartilaginous structures, E17.5 and E16.5 embryos were isolated 

and studied (Figure 38-40).  
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4.5.1.1 The mutant protein KTRTK-Cofilin1 impacts cartilaginous 

tissue and bone formation 

 

Embryonic skeletons were isolated to analyze the skeletal state. The basic concept of 

differential staining of cartilage and bone in mouse fetuses allows the detection of 

developmental malformations. Alizarin Red is used to study bone and calcium 

deposits, in combination with Alcian blue, which stains cartilage, this staining allows 

the skeletal isolation and the differential staining of cartilage and bone (3.4.2). 

Skeletal isolation revealed malformation of the mutant skeleton (Figure 38). In the 

malformed skull (Figure 38, B), the entity of the parietal and frontal bones were missing. 

Examination of the side of the head (Figure 38, B+D) revealed cartilaginous tissue in 

the mutant, at the back of the head, that was not detected in the wildtype. Further, 

obvious malformations of craniofacial structures, primarily consisting of cartilage and 

bone, were observed in coronal sections (Figure 47). That may indicate disruptions of 

osteoblast differentiation, in consequence to the protein KTRTK-Cofilin1, causing 

malformations of the skeleton. The dorsal and ventral segments of the ribs (Figure 38, 

F) and the skeletal structure (ulna and radius) along with the cartilaginous segments 

of the front paws (Figure 38, E) showed no morphological differences. The faint 

cartilage staining of the mutant front paw and the control and mutant hind paws, was 

a consequence to the excess tissue still surrounding the paws (Figure 38, E+G). Closer 

examination of the hind paws revealed a missing phalanx in all claws (Figure 38, G) in 

the mutant combined with an upturned aberrant malformed morphology of the claws. 

It should be noted that the absence of a phalanx in the paw was not detected in all 

analyzed mutants. It has to be verified whether a missing phalanx is the result of the 

KTRTK-Cofilin1 mutation or a coincidence detected malformation independent of the 

introduced mutation. It could be speculated if the morphology of the top cervical 

vertebrae (C1) in the mutant was affected (Figure 38, C+D). In the mutant C1 appeared 

to be enlarged in comparison to the top cervical vertebrae in wildtype. Closer 

examination of the lumbar vertebrae (Figure 38, H), caudal vertebrae and thoracic 

vertebrae (data not shown) showed no morphological differences between mutant and 

control.  
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4.5.1.1.1 Skeletal differences are observed in KTRTK-Cofilin1 embryos  

 
 

Fig. 38: Skeletal isolation of Cofilin1wt/wt (wt) and Cofilin1KTRTK/KTRTK (mt) embryos at E17.5. 

Cartilage is stained in blue, bone is stained in purple. Figure shows comparisons of wt and mt skeletal 

structures. (A): whole body, (B): skull (top view), (C): neck and shoulder, (D): head (side view), (E): 

front paws, (F): rib cage, (G): hind paws, (H): lumbar vertebrae. Striking differences in the skull (B) 

were observed, the parietal and frontal bones were absent. Further, missing of phalanges in claws 

was observed in the hind paw in combination with a malformed morphology in the mutant (G). C1: 

cervical vertebrae 1; Cav: caudal vertebrae; Cv: cervical vertebrae; Ds: dorsal segment of rib; Fr: 

frontal bone; Lv: lumbar vertebrae; Par: parietal bone; Ph: phalanges; Ra: radius; Tv: thoracic 

vertebrae; Ul: ulna; Vs: ventral segment of rib; wt: Cofilin1wt/wt; mt: Cofilin1KTRTK/KTRTK. Images were 

acquired at different magnifications (0.7x- 4.0x). 



4. Results 
___________________________________________________________________ 

 
164 

4.5.1.1.2 Internal structures of bones and cartilaginous tissue were not affected 

by the mutant protein KTRTK-Cofilin1 

 

To study whether bone or cartilage structures were affected on an internal level, 

sagittal paraffin sections of E16.5 Cofilin1wt/wt and Cofilin1KTRTK/KTRTK embryos were 

stained with Alcian blue (cartilage) and Alizarin red (bone), respectively. The staining 

of bone and calcified structures of wt and mt showed no structural differences within 

the body (data not 

shown). Staining of 

cartilaginous tissue 

showed no altered 

accumulation within 

the body (Figure 39). 

Closer examination 

of the head revealed 

a positive staining 

for cartilaginous 

tissue in the mutant 

brain (Figure 39, B, 

black arrow). The 

loose tissue, which 

was also detected at several gestational stages, stained blue. It was also shown in 

E13.5 (Figure 45) that the loose, low density tissue featured cartilaginous 

characteristics. This loose tissue could also be detected in the wildtype and is known 

to be connective tissue. In the mutant embryo this tissue could be found throughout 

development, whereas it vanished in the wildtype embryo. The loose tissue in the 

mutant corresponds to the connective tissue in the control and will be analyzed in more 

detail in later chapters. The mutant protein KTRTK-Cofilin1 did not affect the internal 

structure of bones and cartilaginous tissues, but had an effect on the morphology and 

development of bones. 

  

 

 

Fig. 39: Cartilaginous tissue in E16.5 Cofilin1wt/wt (A) and 

Cofilin1KTRTK/KTRTK (B) embryos. 10 µm sagittal whole body paraffin 

sections were stained with Alcian blue (cartilage, blue) and eosin 

(cytoplasm, pink).  Staining of cartilaginous tissue showed no altered 

accumulation within the mutant body (B). Loose, low density tissue in the 

mutant featured cartilaginous characteristics (B, black arrow). Images were 

acquired at 1x magnification. Wt: Cofilin1wt/wt; mt: Cofilin1KTRTK/KTRTK. 
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4.5.1.1.3 Organs in Cofilin1 KTRTK/KTRTK embryos were not affected  

 

To see whether the mutation of Cofilin1 had any impact on internal structures (organs, 

e.g.), sagittal whole body sections of Cofilin1wt/wt and Cofilin1KTRTK/KTRTK littermates at 

embryonic day E16.5 were stained for haematoxylin and eosin (Figure 40).  

Based on peritoneal organs and jaw structures, comparable planes for wt and mt were 

stained. In the wt the eye (E) was easy to detect, the eye in the mt (E) was shifted in 

position. The morphological variation could be a result of different angles during 

sectioning. No further anatomical malformation could be detected in the H+E staining. 

No structural differences were detected in the dorsal area (1). Lung (Ln), heart (H), 

liver (Lv) and intestines (In) were correctly positioned and showed to conspicuous 

traits. In this plane the kidney was not visible in the mutant due to the angle during 

sectioning (B). Examination of whole body sections at different gestational stages 

confirmed the presence of kidneys in the Cofilin1KTRTK/KTRTK embryos (data not shown). 

 

 
 

Fig. 40: Sagittal whole body sections of E16.5 Cofilin1wt/wt (A) and Cofilin1KTRTK/KTRTK (B). Paraffin 

sections were stained with haematoxylin and eosin. The mutant brain (B) showed significant structural 

differences compared to Cofilin1wt/wt brain. Structure of the eye (E), appeared to be different. Based 

on morphology and localization the remaining body was unaffected by the introduction of the KTRTK-

Cofilin1 mutation. No malformations in the dorsal area (1) or other organs could be detected. E: eye; 

H: heart; In: intestine; Ln: lung; Lv: liver; K: kidney; W: whisker pad; wt: Cofilin1wt/wt; mt: 

Cofilin1KTRTK/KTRTK. 

 

Staining of whole body sagittal sections revealed the restriction of morphological 

malformations in Cofilin1KTRTK/KTRTK embryos to the head.  
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4.5.2 Histological analysis of Cofilin1KTRTK/KTRTK embryonic 

brain 

 

After analyzing whole mount embryos, coronal and sagittal 10 µm paraffin sections of 

brains were prepared and stained with a number of color dyes and antibodies to extend 

morphological studies and gain further information regarding the function of KTRTK-

Cofilin1 during embryonic development. 

 

4.5.2.1 Brain morphology of Cofilin1KTRTK/KTRTK embryos from E10.5 to 

E13.5 

 

In the course of isolation of the embryos, the exencephalic phenotype could be 

detected as early as E10.5 (Figure 20). For more detailed analysis, coronal and sagittal 

paraffin sections of wt and mt at various developmental from E10.5 to E16.5 were 

analyzed with the help of different color stainings.  

To analyze the severity of the malformations at the early stage in development, in 

which cranial neural tube closure in the wildtype embryo is completed, sagittal sections 

of eosin stained E10.5 along with E13.5 wt and mt embryos were prepared (Figure 41). 

At E10.5, massive structural differences were detected in Cofilin1 KTRTK/KTRTK brain. No 

distinct structures could be identified at this stage (Figure 41, B), whereas the midbrain 

and hindbrain were clearly distinguishable in Cofilin1 wt/wt brain (Figure 41, A). The 

entity of the mutant brain was filled with a loose, low density tissue that was identified 

as connective tissue (Figure 45). Connective tissue was also detected in the wildtype, 

with a higher density, restricted to the cavity between the midbrain and the future 

prosencephalon. The entire head of the mutant was surrounded by a thick outer cell 

layer. Examination of E13.5 sagittal section showed similar morphological 

characteristics (Figure 41, C+D). In the mt the brain area was also filled up with 

connective tissue. The morphology of the low density tissue at E13.5 differed from the 

detected tissue at E10.5. The tissue stained differently and appeared to have 

decreased in density.  
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Fig. 41: Sagittal sections of E10.5 (A+B) E13.5 (C+D) Cofilin1wt/wt and Cofilin1KTRTK/KTRTK 

heads. 10 µm sections were cut from paraffin embedded eosin stained embryos. The mutant 

brain (B+D) showed severe morphological malformations. No defined structure could be 

detected within the brain at E10. Cofilin1KTRTK/KTRTK, entire cavity was filled with connective 

tissue. At E10.5 distinct structures of the hindbrain, the midbrain and the eye could be identified 

in the wt. At E13.5 the mutant brain showed severe malformation of the prosencephalon 

(D).The hindbrain was not detectable in the mt. The prosencephalon showed severe 

malformations. Images were acquired at 2.5 x magnification. Dc: diencephalon; Hb: hindbrain; 

Mb: Midbrain; P: prosencephalon; wt: Cofilin1wt/wt; mt: Cofilin1KTRTK/KTRTK ;  

 

In the mutant the prosencephalon appeared to have suffered from severe 

malformation, whereas the hindbrain was not even detectable. The malformation of the 

prosencephalon may be caused in consequence to alterations of the diencephalon, 

which was also not clearly detectable. It appeared as if though in the mutant brain the 

midbrain fused to the prosencephalon and the diencephalon, the hypothalamus and 

part of the prosencephalon merged into one not distinguishable structure. It was 

mentioned before, that the severity of the phenotype differs (Figure 36), but the 
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morphological alterations could be observed in other embryos as well in different 

stages of severity and appeared to be conserved (also see Figure 42 and 45).  

To extend the morphological studies of the mutant exencephalic phenotype further 

Cofilin1wt/wt and Cofilin1KTRTK/KTRTK littermates at E13.5 were prepared for paraffin 

sections and haematoxylin and eosin staining next (Figure 42).  

 

 
 

Fig.: 42: Coronal (A-D) and sagittal (E-H) sections of E13.5 Cofilin1wt/wt and 

Cofilin1KTRTK/KTRTK brains. 10 µm paraffin sections were stained with haematoxylin and eosin 

(H+E). Coronal sections showed severe malformation of the cortex and thalamus in 

Cofilin1KTRTK/KTRTK E13.5 brain (C). Distinct malformation of the prosencephalon in the mutant 

brain was shown in sagittal sections (G+H). I*-III*: presumptive cranial structures in the mutant 

brain (see text); Cx: cortex; Dc: diencephalon; Ey: eye; Hb: hindbrain; Ht: hypothalamus; Mb: 

midbrain; P: prosencephalon; Sp: spinal cord; Th: thalamus; wt: Cofilin1 wt/wt; mt: 

Cofilin1KTRTK/KTRTK. 

 

Coronal and sagittal sections of chosen planes of wt brain to mutant brain were 

compared for morphology. Comparable sections were chosen based topographic array 

of oral cavities and craniofacial features. Development and morphology of E13.5 

Cofilin1wt/wt brain took place according to literature (Schambra, 2008).  

Figure 42, A-D show coronal sections of wildtype (A+B) and mutant brain (C+D). The 

chosen sections shift from ventral to dorsal. Here, well defined structures could be 

observed in the mutant brain (compare to Figure 41). Chosen structures (cortex, 
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thalamus and midbrain) were labeled in the wildtype for orientation and to facilitate 

comparison. Structures in the mutant brain were not labeled, since it was not possible 

to determine brain areas specifically based on the haematoxylin and eosin staining. 

Image C shows two spheres (indicated by I*), that fused at the top in the course of the 

movement towards the dorsal side. No comparable structure was detected in the 

wildtype, structures were fused at all times (A+C). In the mutant (Figure 42, C), folded 

finger-like structures (indicated by II*) on either side of the brain above the eyes were 

observed. These folded structures could correspond to the cortex in the wildtype 

regarding the layering. This structure was not detected in more dorsal sections. Inside 

the mutant brain the loose tissue, with a low density of nuclei, was detected (indicated 

by III*), filling up the internal cavity, that was identified as connective tissue.  

The outer layer on top in the Cofilin1KTRTK/KTRTK brain, could be assumed to be thalamic 

tissue or a cortical structure. 

Figure 42, E-H show sagittal sections of wildtype (E+F) and mutant brain (G+H) of 

E13.5 embryos. Well defined, distinct structures could be observed in the mutant brain 

(Figure 42, G+H). Structures in the mutant brain were not labeled, since it was not 

possible to determine brain areas specifically based on the haematoxylin and eosin 

staining. The connective tissue, in the mutant brain was also detected in the sagittal 

sections. Sagittal sections allowed easier identification of structures inside the mutant 

brain based on morphology. Supposed spinal cord and hindbrain (V*) could be 

identified in the mutant. The morphology of the spinal cord and the hindbrain appeared 

to have been unaffected by KTRTK-Cofilin1. Identification of midbrain (*VI) could be 

assumed based on localization.  

Regarding the observed morphology in sagittal sections, it could be speculated that in 

Cofilin1KTRTK/KTRTK embryos, brain structures shift to the anterior. Figure 43 presents a 

hypothetical sagittal schematic model of area specification in the mutant brain. In this 

scheme the midbrain in the mutant brain is morphologically altered and repositioned 

(Figure 43, Mb, green). The repositioned midbrain is connected to the structure, 

corresponding to the diencephalon (Figure 43, Dc, orange). In the mutant, the fusion 

of midbrain and diencephalon, takes place without the curved manner, subsequently 

enlarging the ventricle, filled with connective tissue (Figure 43, pink dots). Adjacent to 

the diencephalon the prosencephalon would be positioned (Figure 43, P, red). The 
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presumed prosencephalon in the mutant appeared to be enlarged and less 

compartmentalized. 

 

 wt  mt 

A 

 

B 

 

C 

 

D 

 
  

Fig. 43: Hypothetical sagittal schematic model of brain areas in Cofilin1KTRTK/KTRTK brain. Sagittal, 

haematoxylin and eosin stained sections of E13.5 Cofilin1wt/wt (A) and Cofilin1KTRTK/KTRTK (B) brains. C 

shows corresponding schematic sagittal model of brain areas in wildtype brain. D shows a hypothetical 

sagittal schematic model of brain areas in the mutant brain. In the mutant all brain areas are conserved 

but the prosencephalon is shifted to the anterior and less compartmentalized. Connective tissue: pink 

dots Dc: diencephalon; Hb: hindbrain; Mb: midbrain; P: prosencephalon; Sp: spinal cord; wt: Cofilin1 

wt/wt; mt: Cofilin1KTRTK/KTRTK. 

 

Morphology in sagittal section indicated a preservation of the brain areas but a 

repositioning in consequence to a shift to the anterior of brain areas.   
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4.5.2.1.1 Amount of connective tissue was increased in the mutant brain  

 

The loose tissue inside the mutant brain had been observed at several stages of 

development, taking a predominant role within the KTRTK-Cofilin1 brain. The next step 

was the identification of the tissue.  

Embryos of different gestational stages were stained to identify the loose, low density 

tissue (Figure 44). In order to identify the tissue of interest and to gain additional 

information regarding its composition, a number of different color stainings were 

performed. 

Figure 44 shows a close-up of the low density tissue in E12.5 brain. This loose 

appearance was 

characteristic for this 

tissue at all analyzed 

developmental stages. 

It shared morphological 

features of 

mesenchymal 

connective tissue, a 

part of embryonic 

connective tissue, from 

which bone, cartilage 

and muscle originate 

during development.  

 

This lead to the assumption, that the tissue in question originated from the same 

source, but due to alterations in regulation and brain morphology the occurrence in the 

mt was prolonged and increased. One of the next steps was the identification of this 

tissue.  

Alcian blue can used be stain connective tissue that contains collagen. The staining of 

connective tissue is based on a different pH-dependent chemical reaction that is also 

independent of developmental stage. In the next step paraffin sections of Cofilin1wt/wt 

and Cofilin1KTRTK/KTRTK brains were stained to characterize the loose tissue (Figure 45). 

wt  mt 

 

 

 
 

Fig. 44: Close-up of loose, low density tissue in E12.5 brains in mt 

and wt embryos. Coronal paraffin sections were stained for H+E. At 

this point in development the low density tissue was detected in both 

genotypes and shared same morphological features. Picture were 

taken at 11.5x magnification. Wt:  Cofilin1wt/wt ; mt:  Cofilin1KTRTK/KTRTK; 
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Distinct blue staining could be detected in the loose, low density tissue in the wildtype 

as well as in the mutant (Figure 45), verifying a connective tissue character. Staining 

was easier to detect in areas, where the tissue showed higher density. Repeated 

stainings with Alcian blue of different animals at different developmental stages always 

revealed a positive staining of the low density tissue, which is maintained in the mutant 

throughout development. 

 

 
 

Fig. 45: Collagen staining of E13.5 Cofilin1wt/wt (A+B) and Cofilin1KTRTK/KTRTK (C+D) 

brains. 10 µm coronal paraffin sections were stained with Alcian blue (blue).The loose, low 

density tissue in mutant stained blue, indicating the connective tissue character of the 

tissue. Image A and C show overview images of the heads (1.25x). Images B and D show 

a higher magnification of the area of interest (6.3x). The connective tissue is maintained 

throughout the entire development in the mt but vanished in the wt. White rectangles 

present area of magnification. wt: Cofilin1 wt/wt; mt: Cofilin1KTRTK/KTRTK   

 

The loose, low density tissue, predominant in Cofilin1KTRTK/KTRTK brain, could be 

identified as connective tissue.  
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4.5.2.2 Cofilin1KTRTK/KTRTK brains showed cortical-like layering  
 

Nissl staining allows the visualization of cortical layering. One aim was to identify 

structures, such as the cortex and understanding more regarding the morphology, 

within Cofilin1KTRTK/KTRTK brains. 

The laminated structure of the cerebral cortex could clearly be detected in Cofilin1wt/wt 

brains at the E16.5. Figure 46 compares coronal (A-D) and sagittal (E-H) sections of 

Cofilin1wt/wt (wt) and Cofilin1KTRTK/KTRTK (mt) with Cresyl violet Nissl staining at the 

embryonic age E16.5. In the wildtype the layers of the marginal zone (MZ), cortical 

plate (CP), subplate (SP), intermediate zone (IZ), subventricular zone (SVZ) and 

ventricular zone (VZ) were distinctly developed from outer layers toward the inside 

(Figure 46, B+F, indicated in red). The thick outer layer in the Cofilin1KTRTK/KTRTK brain 

(Figure 46, C), showed no explicit lamination. Close-up showed a layering within the 

cell accumulation in the brain (Figure 46, D). Layers within those cell knobs showed 

classical characteristics of cortical layering from high density to low density back to 

high density. This would indicate an upward and outward shift of brain structures. This 

would coincide with the proposed hypothetical scheme shown in Figure 49.  

Layers in the mutant were not labeled, since it was not possible to determine specific 

layers in the structures based on morphology and localization.  

Examination of sagittal sections (Figure 46, E-H), implicated a layering in the frontal 

folded structures of the mutant brain (Figure 46, G+H). The layering did not allow 

distinguishing of specific cortical layers in the mutant. The detected layers showed 

classical characteristics of cortical layering from high density to low density back to 

high density. This would indicate an anterior shift of brain structures. This would 

coincide with the proposed hypothetical scheme shown in Figure 43. Also, apparently 

layered structures were observed within the brain toward the dorsal side (Figure 46, 

H). 
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Fig. 46: Cortical layering of E16.5 Cofilin1wt/wt and Cofilin1KTRTK/KTRTK brains. 10 µm coronal (A-

D) and sagittal (E-H) paraffin sections were stained with Cresyl violet Nissl dye. Wildtype brains 

showed distinct cortical lamination (A+E), The thick outer layer of the mutant brain (C), showed no 

explicit layering. Layers could be specified in structures within the mutant brain. Red rectangles 

present area of magnification. MZ: marginal zone CP; cortical plate SP: subplate IZ:; intermediate 

zone SVZ: subventricular zone VZ: ventricular zone; wt: Cofilin1 wt/wt; mt: Cofilin1KTRTK/KTRTK  
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After cortical layering could be detected in the mutant brain, it was attempted to 

determine where neurons were located in the KTRTK-Cofilin1 brain.  

 

4.5.2.3 Localization of neurons in the Cofilin1KTRTK/KTRTK brain  
 

NeuN (Neuronal Nuclei), a neuron-specific nuclear protein, reacts in most neuronal cell 

types in mice including cerebellum, cerebral cortex and thalamus. NeuN can be 

detected at E16.5 or later stages in embryonic development and adulthood.  

To obtain more specific results, regarding localization of neurons in the brain, NeuN 

immunohistochemistry staining on paraffin sections of E16.5 wt and mt brains was 

conducted (Figure 47, bottom panel). NeuN staining in the wildtype showed distinct 

cortical lamination and NeuN- positive cells. Even with the NeuN staining no cortical 

layering was detected in the outer layer in mutant, but NeuN- positive cells were 

observed in the outer layer. This indicated that neurons are located in the outer layer 

of the mutant brain but form no distinct cortical layering (data now shown). Closer 

examination of folded “finger-like” structures (Figure 47, D) showed NeuN positive cell 

and indicated layering. 
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Fig 47: Neuron staining of embryonic Cofilin1wt/wt and Cofilin1KTRTK/KTRTK E16.5 brains. (B) IHC 

with NeuN (NeuN) on paraffin sections of E16.5 wt and mutant brains. Distinct cortical lamination was 

observed in the wildtype brain. No explicit cortical lamination comparable to wildtype lamination was 

observed in the mt. Folded “finger-like” structure suggested rudimental layering. NeuN positive cells 

were also detected in the outer layer of the mt brain. Red rectangles present area of magnification. 

wt: Cofilin1 wt/wt; mt: Cofilin1KTRTK/KTRTK.   

 

These results clearly implicate that the introduction of the KTRTK- mutation massively 

disrupts the topographic array of the brain in Cofilin1KTRTK/KTRTK mutants.          

 

4.5.2.4 Temporal and spatial expression patterns of cortical layer 

marker in Cofilin1KTRTK/KTRTK brain were affected 

 

After an alteration of cortical layering in the Cofilin1KTRTK/KTRTK brain was detected, 

expression patterns of transcriptional regulation factors, involved in cortical layering, 

along with Reelin were analyzed. Cortical paraffin sections of E16.5 Cofilin1wt/wt and 

Cofilin1KTRTK/KTRTK brains were stained with specific antibodies for Ctip2, Cux1 and 
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Reelin (3.4.12.3) Panel 4 indicates the area of interest for the antibodies, respectively 

(Figure 48). Reelin, an extracellular matrix protein, located in the marginal zone (MZ), 

is involved in the regulation of neuronal migration. Mice lacking Reelin, show a 

disruption of cortical layering due to lack of specific positioning of neurons within 

cortical layers (Rice and Curran, 2001). Staining of the mutant brain revealed no Reelin 

layer adjacent to the outer layer of the mutant brain (Figure 48, panel 1, C+D). Further, 

no Reelin could be detected in the folded “finger-like” structures (data not shown). At 

the same age Reelin (green) was clearly detectable in the marginal zone of the cortex 

in the wildtype littermate (Figure 48, panel 1, A+B). In past studies, reelin was also 

shown to regulate migration of neurons by controlling the activity of Cofilin1 and acting 

as a “stop signal” (Chai et al., 2009). Cux1, drosophila cut like homeobox 1 gene, is 

associated with regulation of gene expression, morphogenesis and migration, and 

localized in the cortical plate (CP) of the developing murine cortex (Nieto et al., 2004). 

Cux1, was not observed in the cortical plate of the wildtype brain (Figure 48, panel 2, 

A+B). In the mutant brain, Cux1, was clearly detected in the top layer of the outer layer 

(Figure 48, panel 2, C+D). Cux1 could also be weakly detected in the folded “finger-

like” structures (data not shown). This would indicate that the on-set of Cux1 

expression took occurred earlier in development in Cofilin1 KTRTK/KTRTK brain. 

Literature regarding the on-set of Cux1 expression differs from E14.5 to E18.5. Ctip2 

(Chicken ovalbumin upstream promoter transcription factor-interacting proteins 2), is 

expressed in the subventricular zone (SVZ) and is expressed as early as E14.5 (Arnold 

et al., 2008). Ctip2 positive cells could be detected in SVZ of wildtype (Figure 48, panel 

3, A+B). Whereas the layering of positive cells in the wildtype was more defined (Figure 

48, panel 3, A+B), the localization in the mutant was more diffuse and less cells 

appeared to be Ctip2- positive in the outer layer (data not shown). Ctip2 positive cells 

were also detected in the folded “finger-like” structures (Figure 48, panel 3, C+D). Ctip2 

positive cell were arranged in a circular motive, coinciding with the circular cortical 

layering detected in the Nissl staining (Figure 46). 

The results indicated alternated expression patterns of cortical layer markers in 

consequence to the introduction of KTRTK-Cofilin1. 
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Fig. 48: Expression patterns of cortical layer marker in E16.5 Cofilin1wt/wt and Cofilin1KTRTK/KTRTK 

brains. 10 µm coronal paraffin sections were stained with Reelin (panel 1), Cux1 (panel 2), Ctip2 

(panel 3) and Draq5 for nuclear labeling (blue). Cortical layer marker were labeled with secondary 

Alexa-488 antibody, respectively (green). Conspicuous changes of expression patterns of cortical 

layer marker were observed in the mutant brain. Panel 4: red rectangles present area of magnification 

in panel 1-3. MZ: marginal zone CP; cortical plate SP: subplate IZ: intermediate zone SVZ: 

subventricular zone; wt: Cofilin1 wt/wt; mt: Cofilin1KTRTK/KTRTK. 
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4.5.2.5 Is the Cofilin1KTRTK/KTRTK brain everted? 
 

Beta-III- tubulin presents a neuron specific marker, allowing visualization of the 

distribution of neurons. It is known that beta-III-tubulin plays a critical role in proper 

axon guidance and maintenance (Roskams et al., 1998).  

The expression pattern of beta-III- tubulin (bIIItub) was severely altered in the 

Cofilin1KTRTK/KTRTK (mt) brain in comparison to the wt brain (Figure 49, top panel). The 

mutant brain appeared to have suffered an inside-out shift. Whereas beta-III- tubulin is 

localized in the outer layers of the wt brain, beta-III-tubulin positive cells are mainly 

localized in the inner part of the mutant brain, in an everted manner. 

 

4.5.2.5.1 Proliferative zone is increased in Cofilin1KTRTK/KTRTK brain  

 

In vitro analysis of Mefs showed an alteration in proliferation caused by the introduction 

of KTRTK-Cofilin1. The thickened outer layer in mutant brains and increased 

connective tissue (Figure 42, D, III*) may also indicate an alteration in proliferation in 

vivo.  

BrdU labelling allowed the in vivo tracking of proliferating cells after a short- impulse 

labeling of one hour prior to sacrificing the pregnant female (3.4.12). Proliferating cells 

were detected in wt and mutant (Figure. 49, middle panel).Localization of proliferating 

cells was slightly altered, due to structural malformations in the mutant. The area 

around the assumed third ventricle (Tv) is shown. Number of detected proliferative 

cells was higher in the mutant in this area, also proliferating cells appeared denser and 

less spread in the adjacent tissue. This proliferative zone, starting at the supposed 

ventricle, expanded over the complete outer layer.  

The area of the cortex (Cx) in wildtype (Figure 49, C) and the assumed counterpart in 

the mutant were studied next. Morphology of the analyzed structure was completely 

different. This structure had been observed before (Figure 42) and was described as 

folded “finger-like” structures. Density of proliferating cells was high and localization 

appeared to be very distinct. The cortex in the wt (Figure 49, C) was also abundant of 

distinctly localized cells. 
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Fig. 49: IHC of coronal sections of E13.5 Cofilin1wt/wt and Cofilin1KTRTK/KTRTK brains. 10 µm 

paraffin sections were stained with beta-III-tubulin (bIIItub, A+B). Everted expression pattern could 

be observed in the mutant brain (mt) compared to Cofilin1wt/wt E13.5 brain (wt). For proliferation 

analysis, pregnant females were injected with BrdU one hour prior to sacrifice. Coronal paraffin brain 

sections were prepared and stained with BrdU, allowing visualization of proliferating cells (C+D). 

Number of proliferating cells was increased and localized differently in the mutant due to shift of 

structures. Based on the BrdU staining a hypothetical schematic coronal model, showing proliferative 

zone and presumed brain areas, was created (F). Compared to wildtype (E), proliferative zone and 

brain areas in the mutant seem to shift upward and laterally. An: amygdaloid nucleus Cx: cortex; Ey: 

eye; Hp: hippocampus; LGE: lateral ganglionic eminence; Lv: lateral ventricle; MGE: medial 

ganglionic eminence; PZ: proliferative zone; Th: thalamus; Tv: third ventricle; wt: Cofilin1 wt/wt; mt: 

Cofilin1KTRTK/KTRTK. 
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Under the consideration of morphology and localization of proliferative zones in coronal 

sections, an upward and lateral shift of brain structures in Cofilin1KTRTK/KTRTK embryos 

could be assumed. Figure 49, F presents a hypothetical coronal schematic model of 

supposed brain areas and proliferative zone in the mutant. In this scheme the 

hypothetical cortex in the mutant brain is morphologically altered and repositioned 

(Figure 49, Cx, green), thereby also affecting the suggested lateral ventricle (Figure 

49, Lv). The assumed thalamic area (Figure 49, Th, yellow) and the proliferative zone 

surrounding it (Figure 49, Pz, red) are enlarged and shifted upwards and laterally in 

the mutant compared to the wildtype.  

Beta-III-tubulin staining showed an altered, everted patterning of Cofilin1KTRTK/KTRTK 

brain. The number of proliferative cell in the mutant was increased. Proliferative zones 

in the mutant were enlarged and showed an upward and lateral shift. 

 

4.6 Cofilin1KTRTK/KTRTK neurons showed increased 

neurite growth in vitro 

 

The exencephalic phenotype induced by the introduction of the mutation of the NTS in 

Cofilin1 has been analyzed histologically and was complemented by neural in vitro 

studies to determine the type of neuronal cells in the Cofilin1KTRTK/KTRTK brain. Neural 

cell culture studies allowed the analyses of morphological features of neurons and 

astrocytes. The morphology in vitro differs from in vivo, but in vitro studies provide the 

main advantage that cell behavior can be compared, independent of hormonal 

influences.  

Neurons were derived from Cofilin1wt/wt and Cofilin1KTRTK/KTRTK total brains at the 

embryonic stage E18.5. Stainings with neuronal markers (NeuN and bIIItub; Golgi 

staining, data not shown) verified the presence neurons in Cofilin1KTRTK/KTRTK brain. But 

it should be noted that the properties of the starting tissue were not identical. 

Morphology of the mutant brain did not allow definite identification of brain areas. 

Therefore neurons were isolated from the entity of the brain. The morphology of cells 

was analyzed via beta-III-tubulin staining at different points of time after seeding. This 
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also allowed comparisons between wildtype and mutant (Figure 50), regarding the 

development behavior in vitro.  

 

 wt mt 

24
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48
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Fig. 50: Morphological development of Cofilin1wt/wt (wt) and 

Cofilin1KTRTK/KTRTK (mt) neurons (E18.5) in the course of 72 hours. Neurons 

were fixed after 24h, 48h and 72h in culture and stained with beta-III tubulin 

(bIIItub, green), which is specific for neurons, staining soma, axons and 

dendrites. For nuclear staining DAPI (blue) was used. Mutant neurons were 

bigger and were characterized by multiple processes. Images were obtained at 

40x magnification. wt: Cofilin1wt/wt; mt: Cofilin1KTRTK/KTRTK 

 

 

 



4. Results 
___________________________________________________________________ 

 
183 

Isolated neurons adhered to the provided laminin coated coverslips within two to three 

hours. The impression was given, that Cofilin1KTRTK/KTRTK neurons displayed an 

increased branching activity compared to wt neurons in the same time window. 

Neurons seeded on glass coverslips were fixed after 24, 48 and 72 hours to track 

development and spreading in culture (3.2.2.2). Observing the spreading behavior of 

wt and mt neurons over 72 hours at three different points of time, every 24 hours, the 

impression of increased branching in mt neurons was noted (Figure 50). The majority 

of the neurons, derived from wildtype embryos demonstrated less branching at the 

examined time points (Figure 50). It should also be mentioned that Cofilin1KTRTK/KTRTK 

neurons displayed a high tendency to clump.  

Cofilin1KTRTK/KTRTK neurons displayed increased branching and wider spreading areas. 

Neurons derives from Cofilin1wt/wt embryos, remained uni-or bipolar (Figure 50). 

The second group of neural cells, that were analyzed, were astrocytes. Astrocytes, 

specialized glia cells, excess neurons by five-fold in the brain. It is known that Cofilin1 

is expressed in astrocyte and involved in their migration (Nagai et al., 2011). Therefore 

this groups of neural cells was also of interest.  

 

4.6.1 KTRTK-Cofilin1 astrocytes showed a multinucleate 

morphology 

 

Astrocytes, were isolated from neural tissue of Cofilin1wt/wt and Cofilin1KTRTK/KTRTK 

embryos at the gestational stage E17.5. Glial fibrillary acidic protein (GFAP), Vimentin 

and Nestin are intermediate filaments (IFs) and constitute a family of cytoskeletal 

components in astrocytes. Their expression level change in the progress of astrocyte 

maturation from Nestin to Vimentin to GFAP. Nestin is only present in immature cells, 

Vimentin is present in all immature astrocytes and some mature subtypes. In mature 

differentiated astrocytes Vimentin is replaced by GFAP during maturation. The 

expression of GFAP is tightly regulated during astrocyte maturation. GFAP has been 

associated with cell communication and mitosis (Galou et al., 1996; Colucci-Guyon et 

al., 1999; Menet et al., 2000). 
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Isolated astrocytes adhered to the provided coverslips within one to two hours. Within 

two to three days after seeding, cells were fixed and stained for GFAP (3.2.2.6). 

In the next step ratio of GFAP- positive cells was analyzed (Figure 51+52). 
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Fig 51: GFAP positive astrocytes derived from Cofilin1wt/wt and Cofilin1KTRTK/KTRTK brains 

(E17.5). Astrocytes were fixed and stained with GFAP (GFAP, green). More wt astrocytes were 

GFAP- positive. Images were obtained at 40x magnification. Scale bar: 25µm; wt: Cofilin1 wt/wt; mt: 

Cofilin1KTRTK/KTRTK 

 

Interestingly, astrocytes isolated from Cofilin1KTRTK/KTRTK embryos (Figure 86), 

appeared to show the same morphological characteristics of increased cell size and 

multinuclearity as the mutant Mefs (Figure 29). This should be studied further in the 

future.  

Previous studies showed that approximately 20% neural culture astrocytes are GFAP- 

positive. A total number of approximately 180 cells for each genotype derived from 

three wt and three mt embryos at E17.5 were counted and used for analysis of GFAP-

positive cells.  
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Fig. 52: Statistical analysis of GFAP-positive 

E17.5 wt and mt astrocytes. A total number of 

180 cells was analyzed for each genotype. 

Significantly less mt astrocytes were GFAP- 

positive The number of GFAP- positive cells was 

decreased by 11% compared to wt. Wt: 

Cofilin1wt/wt; mt: Cofilin1KTRTK/KTRTK; Levels of 

significance: 0.05 >p≥ 0.01 (*); 0.01>p≥0.001 (**); 

p>0.001 (***). 

 

The number of astrocytes positive for GFAP was decreased by a factor of 1.8-times in 

the mutant compared to wildtype (Figure 52)  

Significantly less GFAP- positive KTRTK-Cofilin1 astrocytes were detected. The 

importance of this characteristic of KTRTK-Cofilin1 astrocytes for the morphology of 

the mutant brain needs to be investigated further (5.9).   

 

4.7 The NTS mutation of Cofilin1 affected gene 

expression profiles of extracellular matrix proteins 

and actin isoforms in brain and Mefs 

 
Microarrays provide the possibility to monitor of gene expression on a transcriptional 

base. They allow the quantification of expression levels of a large number of genes 

simultaneously. The acquired expression profiles allow the identification of genes, 

whose expression is changed as a direct or indirect consequence of the mutation.  

In this thesis in vivo and ex vivo samples in the form of brains and Mefs were analyzed 

with the goal to identify significantly altered genes. 

 

In order to identify, due to the mutation, critically altered genes in in vivo settings, three 

Cofilin1wt/wt and three Cofilin1KTRTK/KTRTK samples were compared individually. 

According to histology the Cofilin1KTRTK/KTRTK brain is differently organized and 

connective tissue is predominant (Figure 42), which could indicate differential 
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expression of genes involved in brain pattering for example in the mutant. Gestational 

stage E16.5 was chosen, a point in development, in which decreased mutant protein 

level were observed (4.3.1.1). 

 

Whereas the analysis of brain samples allowed an in vivo approach the study of Mefs 

provided the opportunity to observe a homologous cell population in vitro. A factor that 

was not given in the analysis of brain samples. Further the analysis of Mefs at this 

developmental stage also represented a state in development, in which KTRTK-

Cofilin1 was still present. Morphological analyses of astrocytes showed the same 

multinuclear and enlarged phenotype as in Mefs. Indicating a disruption of cellular 

activities in different Cofilin1KTRTK/KTRTK cell types. Mefs were isolated from E14.5 

embryos. Three Cofillin1wt/wt (wt) and three Cofilin1KTRTK/KTRTK (mt) Mef lines were 

prepared. Cells of passages 1 and 3 were analyzed. One passage is defined as the 

trypsinization of confluent cells and the subsequent seeding of a portion of the acquired 

single cell suspension. The analysis of different passages allowed to track possible 

changes in gene expression in the progress of the culture. For further analyses, main 

focus was put on the combination of mt Pass1 vs. wt Pass1 to avoid the detection of 

possible expression alterations as cultural artefacts. 

 

The Illumina® bead chip system was used for the microarray analyses. The 

mathematical calculation were performed with Partek® Genomic suite software. 

The wildtype always acted as reference, meaning up- and down regulation were 

calculated according to the Cofilin1wt/wt sample. 

 

In order to understand more regarding the function of the protein of interest, it was 

important to know in which cellular processes Cofilin1 is involved.  

Table 6 presents the Go-Terms involving Cofilin1 in mus musculus that have been 

identified so far. Go-Terms are a group of genes which either have a similar function 

or are involved in the same cellular mechanisms.  
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Actin binding GO:0003779 
Actin cytoskeleton GO:0015629 
Actin filament depolymerization GO:0030042 
Actin filament organization GO:0007015 
Cell leading edge GO:0031252 
Cell projection GO:0042995 
Cell projection organization GO:0030030 
Cellular component movement GO:0006928 
Cortical actin cytoskeleton GO:0030864 
Cytokinesis GO:0000910 
Cytoplasm GO:0005737 
Cytoskeleton GO:0005856 
Cytoskeleton organization GO:0007010 
Establishment of cell polarity GO:0030010 
Intracellular GO:0005622 
Lamellipodium GO:0030027 
Membrane GO:0016020 
Negative regulation of cell size GO:0045792 
Neural cell crest migration GO:0001755 
Neural fold formation GO:0001842 
Nucleus GO:0005634 
Plasma membrane GO:0005886 
Positive regulation of actin filament depolymerization GO:0030836 
Protein import into nucleus GO:0006606 
Protein phosphorylation GO:0006468 
Regulation of cell morphogenesis GO:0022604 
Response to amino acid stimulus GO:0043200 

 

 

Table 6: Go-Terms involving Cofilin1 in mus musculus. A Go-Term describes a group of genes 

with similar function or a group of genes involved in the same cellular process. Each Go-Term can be 

accessed with the respective identification number via the Amigo: Gene ontology database. 

 

In total approximately 24.000 genes were tested, which were segmented into 45.282 

gene fragments, for both brain and Mefs. This increased the likelihood to also detect a 

number of alternative splice forms. Expression alterations in the form of fold- changes 

(up- or down- regulation) were mathematically calculated.   
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4.7.1 Gene expression profiling in vivo (brain) and in vitro 

(Mefs) tissue 

 

Initially, principle component analysis (PCA, Figure 53) was used to visualize the 

distribution of all data of each sample. Principle component analysis is a statistical tool 

to convert a number of correlated variables to a smaller or equal number of 

uncorrelated variables that are called principle components. This method is used to 

reduce and discover the dimensionality of the data set as well as identify novel 

underlying variables (Ulas, unpublished). 

PCA mapping showed that the two group of genotypes were clearly distinguishable in 

brain and in Mefs (Figure 53). It also provided information regarding the relationship 

between individual samples.  

For the brain the wildtype (wt/wt: Cofilin1wt/wt) samples were depicted in blue, the 

mutant samples (Nuc/Nuc: Cofilin1KTRTK/KTRTK) in red (Figure 53, A). Two of the wildtype 

samples and two of mutant samples lay within closer vicinity of each other than the 

third sample. This reflected that the overall gene expression differed from the other two 

gene samples.  

For the Mefs the wildtype passage 3 (wildtype: Cofilin1wt/wt) samples (depicted in violet) 

and the mutant passage 3 (Nuc/Nuc: Cofilin1KTRTK/KTRTK) samples (illustrated in blue), 

showed the same distance from sample to sample within the same genotype (Figure 

53, B). The formation representing samples of passage 1 for wildtype (green) and 

mutant (red) showed two samples in closer vicinity of each other and the third sample 

more distant, the same pattern that was observed in the brain.  

Retracing of the data to the analyzed samples determined, that the two samples which 

lay in closer proximity to each other originated from littermates. Regardless of same 

gestational age and genotype, samples were still clearly distinguishable based on 

parental origin. In the Mefs the effect was lost during culture.  
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 Brain  Mefs 
A 

 

B 

 
  

Fig. 53: PCA mapping of Cofilin1wt/wt (wt) and Cofilin1KTRTK/KTRTK (mt) samples. Graph shows 

relationship between individual samples. (A) PCA mapping of wt and mt E16.5 brains. The groups 

of genotypes (Cofilin1wt/wt is depicted in blue, while Cofilin1KTRTK/KTRTK is depicted in red) could be 

clearly distinguished. Wt/wt: Cofilin1wt/wt (blue); Nuc/Nuc: Cofilin1KTRTK/KTRTK (red). (B) PCA 

mapping of E14.5 wt and mt Mefs (P1+P3). The groups of passages and genotypes could be 

clearly identified. The several groups can be divided into separate groups. P1: Passage 1; P3: 

Passage 3; Wildtype: Cofilin1wt/wt; Nuc/Nuc: Cofilin1KTRTK/KTRTK; wt/ wt-P1 (green); wt/ wt-P3 (violet); 

Nuc/ Nuc-P1 (red); Nuc/ Nuc-P3 (blue). 

 

This should be kept in mind for future experiments. For the following steps of analysis 

it was possible to mathematically add a biological error variable for the parentage. 

 

The ANOVA (analysis of variance) test is used to analyze the difference between group 

means. Simplified, it provides a statistical test whether or not means of different groups 

are equal along with statistical significance (Anderson et al., 1996). For all further steps 

of analyses only genes, which fluorescence signal was altered with a significance lower 

than p<0.05 were included. The data acquired in the microarray is based on the 

mathematical processing and conversion of fluorescent signals. In total approximately 

24.000 genes were tested, which were segmented in 45.282 gene fragments. This 

increases the likelihood to also detect a number of alternative splice forms. In the 

ANOVA calculations samples were grouped by genotype and compared, the wildtype 

was used as reference. Negative fold-changes indicate a down-regulation (blue) in the 
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mutant, whereas positive fold-changes represent an up-regulation (red) in the mutant 

tissue (Table 7 and S8-S24). 

 

4.7.1.1 Cofilin1KTRTK/KTRTK brains show massive up-regulation of 

extracellular matrix genes 

 

In the brain 4566 gene fragments of significant value could be determined in the 

microarray analysis, which represents 10.08 % of all gene fragments tested. For 

analysis purposes a cut off for up-regulation at +2.5 fold and for down-regulation at -

1.7 fold was set. Furthermore only genes, whose function have been annotated so far, 

are listed. Tables S8-S14 (supplementary data) depict the significant genes with 

highest fold changes. The last lane in the tables specifies in which GO-Terms the 

particular gene is plays a role.  

Interestingly only two down-regulated genes, which fulfilled the given criteria, could be 

identified. Nkx2-1 (-1.82), a neural transcription factor, is important for pattern 

specification and cerebral cortex cell migration. It is one of the neural transcription 

factors expressed early in embryonic development and can be detected as early as 

E10.5.  

Considering the phenotype of the analyzed tissue and its neural character, genes 

encoding GFAP, Nestin and Reelin were analyzed. Immunofluorescence stainings 

(Figure 48+Figure 52) showed the absence of Reelin in the mutant, whereas it could 

be detected in the wt. Astrocytes taken in culture showed a significant difference in the 

number of GFAP positive cells in the mutant. Neither Nestin nor Reelin and GFAP 

analyzed genes in the microarray were significantly changed and therefore not 

included in the analyses.  

The members of the ADF/Cofilin family were also studied. A decrease on protein level 

of KTRTK-Cofilin1 at E16.5 and the subsequent up-regulation of Cofilin2 and ADF 

have been observed s in the mutant brain samples in western blot analysis. The fold-

changes ranged from -1.04 to +1.20 for cfl1 (Cofilin1), cfl2 (Cofilin2) and Dstn (ADF) 

but were not significant. That aside for cfl1 this result would correlate with the 

observations made in qPCR (Figure 25).  
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The genes presented in Figure 54 showed the most striking differences in expression 

levels in Cofilin1KTRTK/KTRTK brain compared to Cofillin1wt/wt brain. The expression of 

matrilin 1 was increased 

by a factor of 19. Matrilin 1 

is a cartilage matrix 

protein, involved in 

chondrocyte differentiation 

and formation of 

extracellular matrix in 

various tissues. Aggrecan, 

up-regulated by a factor of 

3, is involved in 

chondrocyte development, 

cell adhesion and collagen 

organization. Previous 

studies showed that an up-

regulation of aggrecan 

results in the development 

of hypertrophic chondrocytes. Chondrocytes are found in cartilage and maintain and 

produce cartilaginous matrix, which consists of collagen and proteoglycans. This type 

of cells originate from mesenchymal stem cells, which can also differentiate into 

osteoblasts. Hypertrophic chondrocytes are large in size, produce collagen and are 

often associated with a shift in cartilage to bone ratio. Collagen 2, an isoform typical 

for osteoblasts and mesenchyme, was increased by 13.5-fold. The large number of 

genes associated with collagen, extracellular matrix and cartilage supports that the 

observed loose tissue is mesenchymal connective tissue. It should also be noted that 

the expression level of all of the genes depicted in Figure 54 was up-regulated.  

Alpha actin 2 (smooth muscle) was also up-regulated by a factor of 4. This isoform of 

actin is associated with muscle rather than brain. Myosins, (up-regulated by factor 15.7 

and 7.9), were also detected. These myosins on the other hand are associated with 

skeletal contractions.    

It has been shown in previous studies that the spatially and timely restricted expression 

pattern of transcription factors during development is crucial for the anatomical 

 

 

 

Fig. 54: Selection of Gene expression ratios in 

Cofillin1KTRTK/KTRTK compared to Cofilin1wt/wt brain. 

Expression of wt was normalized to 1. Expression ratio of mt 

was calculated in reference to wt. Extracellular matrix proteins 

are significantly up-regulated. Matn1: matrilin 1; Myl1: myosin 

light polypeptide 1; Col2a1: collage 2; Ibsp: integrin binding 

sialoprotein; Acta2: α-actin 2, smooth muscle; lum: lumican; 

Acan: aggrecan. 
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organization of the brain. At E13.5 approximately 349 transcriptions factors are 

expressed in a spatially restricted manner (Gray et al., 2004). Considering the specific 

expression patterning of transcription factors for embryonic brain arealization, 

disruptions of expression patterns could form massive disorganization of the brain. 

Therefore the microarray data were screened for neural transcription factors (Table 7). 

10 neural transcription factors that were significantly altered could be detected. Though 

all of them can be found in the brain they are expressed at different levels with different 

functions. Egr1, for example, is mainly expressed in the pallium at this age. Nkx2-1 

and Six1, which was increased by a factor of 2, is mainly expressed in the rostral 

secondary prosencephalon. Histological analyses, showed that the Cofilin1KTRTK/KTRTK 

brains show severe malformations in the secondary prosencephalon. Though the 

change in expression level was not very high, it remains to be elucidated whether the 

sum of differently regulated TFs impacts on the morphological alterations observed in 

the Cofilin1KTRTK/KTRTK brain (Figure41).   
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Gene Fold change 
(mt vs wt) 

Function Localization 

Six1  2.09862 embryonic cranial skeleton morphogenesis, 
generation of neurons, negative regulation of 
neuron apoptotic process 

Rostral 
secondary 
prosencephalon 

Rbbp7  1.63971 chromatin modification, chromatin 
remodeling , DNA replication, negative 
regulation of cell growth 

Pallium, 
midbrain, 
hindbrain 

Egr1  1.62081 positive regulation of neuron apoptotic 
process, regulation of long-term neuronal 
synaptic plasticity,  

Pallium 

Sp7  1.57856 osteoblast differentiation, positive regulation 
of transcription from RNA polymerase II 
promoter 

Olfactory bulb 

Esrrb  1.56853 in utero embryonic development, 
trophectodermal cell proliferation , regulation 
of transcription 

Diencephalon 

Twist1  1.51499 cranial suture morphogenesis, embryonic 
skeletal system morphogenesis, neural tube 
closure, neuron migration 

Midbrain 

Nfatc4  1.50105 cell differentiation, patterning of blood 
vessels, 

Telencephalic 
vesicle 

Neurod2  -1.52616 nervous system development, cerebellar 
cortex development, positive regulation of 
synaptic plasticity, positive regulation of 
neuron differentiation, neuron development, 
regulation of synapse maturation 

Pallium 

Pbx1  -1.61873 embryonic skeletal system development, 
negative regulation of neuron differentiation,  

Diencephalon 

Nkx2-1  -1.82799 axon guidance, brain development, cerebral 
cortex cell migration, forebrain patterning, 
hippocampus development, globus pallidus 
development, neuron fate commitment, 
neuron migration, oligodendrocyte 
differentiation 

Rostral 
secondary 
prosencephalon 

 

 

Table 7: Expression levels of neural transcription factors in Cofilin1wt/wt brain versus 

Cofilin1KTRTK/KTRTK brain (E16.5). Cofilin1wt/wt was used as reference, red color indicates up-

regulation in Cofilin1KTRTK/KTRTK, down-regulation is shown in blue. Expression profiles were acquired 

from the Allen brain atlas, based on E15.5 embryos. Wt: Cofilin1wt/wt; mt: Cofillin1KTRTK/KTRTK  

 

In order to simplify the analysis, in the next step affected genes were illustrated in Go-

Term enrichment maps (4.7.1.3). 
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4.7.1.2 Gene expression profiling in vitro (Mef) 
 

The data acquired in the microarray of the Mefs, derived from three Cofilin1wt/wt and 

three Cofilin1KTRTK/KTRTK, was mathematically processed in the same way as the 

samples of the brain (4.7.1.1). The tested samples were abbreviated by: wildtype 

passage 1: wt Pass1; mutant passage 1: mt Pass1  

ANOVA tables were calculated for mt Pass1 versus wt Pass1. Up- and down-

regulations of gene expression levels were calculated in reference to wildtype.  

In total 4472 gene fragments of significant value could be determined in the microarray, 

which equates 9.88 % of all gene fragments tested. Only genes with a calculated 

significance of p<0.05 were considered for analysis. Tables S15 to S24 

(supplementary data) represent the significant genes with highest fold changes, 

detected in Mefs (mt Pass1 vs wt Pass1). In the last lane in the tables the GO-Terms 

are specified in which the particular gene is involved. For analysis purposes a cut off 

at +2.5 for up- regulation (red) and for down regulation (blue) at -2.5 was set. Only 

genes, whose function have been annotated so far, have been listed.   

Via western blot analysis up-regulation of ADF and Cofilin2 was detected. In the 

microarray the expression levels for cfl1 (Cofilin1) was detected at +1.42 but with no 

significance, cfl2 (Cofilin2) and dstn (ADF) were featured p-values below 0.05. Clf2 

was detected at an increased expression level of +1.16, dstn was detected at +1.48. It 

has to be considered at all times that the change of expression on RNA level allows 

no direct conclusion regarding protein expression level. Therefore, it was not 

uncommon that the RNA expression level, did not coincide with detected protein levels 

(Figure 28).  

In vitro several down-regulated and up-regulated genes, which fulfilled the set criteria, 

could be identified. Most of the identified genes can be classified into the distinct 

groups: cell growth, skeletal morphogenesis, ossification and cartilage formation 

(collagen) and regulation of metabolic/ cellular processes.  
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In this experiment a fibroblast cultures after one splitting event were analyzed, 

therefore the identified processes ossification and skeletal morphogenesis were not 

expected. Discussing every gene, fulfilling the cut-off criteria would be too extensive. 

Therefore a selection of genes will be analyzed in this chapter. For completion all 

genes fulfilling the cut-off criteria are listed in the tables 16 to 25.  

A number of detected genes, such as Pdgfra (platelet derived growth factor receptor, 

alpha polypeptide, for growth factors of mesenchymal origin) and Actb (beta actin) are 

involved in gene expression. Pdgfra were down- regulated by fold-change of -2.73. 

Actb was up-regulated by +2.6-fold (Figure 55).  

Along with Actb other actin 

isoforms were detected to 

be expressed at an 

increased level. Actg2 

(gamma actin, smooth 

muscle, enteric) was 

expressed at a level of +2.7. 

The third isoform that was 

detected was Acta1 (alpha 

actin, skeletal muscle), 

whose expression was 

increased to +4.9. 

Interestingly, the 

predominant isoforms of 

actin in Mefs, Acta2 and 

Actg1, did not fulfil the cut-

off criteria. Increases of F-

actin but constant levels of 

G-actin in mutant Mefs compared to wt Mefs had been observed (Figure 36), coinciding 

with increased actin mRNA levels.  

Considering the significantly enlarged phenotype of the analyzed cells, genes involved 

in induction of EMT (epithelial- mesenchymal- transition) along with EMT markers were 

analyzed. Just one the known involved genes (Tgfbr3) were significant or regulated 

 

 

 

Fig. 55: Selection of Gene expression ratios in 

Cofillin1KTRTK/KTRTK compared to Cofilin1wt/wt Mefs.  Gene 

expression levels of wt were normalized to 1. Expression ratio 

of mt was calculated in reference to wt. Actin isoform were 

significantly up-regulated in mutant. The other groups of genes 

affected were collagen- related. Acta1:α-actin, skeletal 

muscle; Col2a1: collage 2; Actg2: γ-actin, smooth muscle; 

Actb: β-actin; Pdgfra: platelet derived growth factor receptor ; 

Igfbp3: insulin-like growth factor binding protein 3 gene ; lum: 

lumican  
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above a level of ±1.3. Tgfbr3 was down-regulated by -2.59-fold. For further information 

see Table S20. The list of involved genes was derived from literature and Go-Terms. 

Regarding the embryonic origin of the cells, developmental factors were checked next. 

All detected developmental factors (Olfml1, Osr2 and Pdgfra) were down- regulated by 

-3.0, -2.82 and -2.1-times, respectively. Two of the most striking morphological 

characteristics of Cofilin1KTRTK/KTRTK Mefs are the cell size and multinuclearity. It was 

shown that mutant Mefs display a cytokinesis defect (4.4.2.2).To further analyze 

possible reasons for multinuclearity, genes involved in chromosome segregation and 

chromatin remodeling were observed closer. Of 216 identified genes involved in the 

above mentioned processes, 18 genes were significant, but not a single one was 

detected at a level higher than +1.5. This did not allow any conclusions regarding 

involved genes in the multinuclear phenotype. Interestingly multinuclearity was 

proposed as marker for osteoclasts (Hattersley and Chambers, 1989). A number of 

genes involved in skeletal morphogenesis and ossification were identified with altered 

expression levels in the mutant compared to wildtype (see supplementary data).   

For cells size analysis, genes involved in cell growth were examined. Regulation in cell 

growth could either be positive or negative. Inhba (inhibin beta A) was detected at an 

up-regulated RNA level of +4.59-fold, Igfbp3 (insulin-like growth factor binding protein 

3) was detected at an expression level reduced to 0.35 compared to the wt (Figure 55). 

This disruption of at least two genes involved in cell growth control, may be part of the 

explanation of the phenotype of the mutant Mefs. 

Lum and Col2a were identified in both Mefs and brain as differently regulated genes. 

Col2a was up-regulated by +3.9-fold (brain: +13.5-fold). In mutant Mefs Lum was 

reduced by -4.24-fold (brain: +3.0-fold). Lum is also involved in transcriptional 

regulation. Col2a is one of the factors involved in skeletal development.   

 

To simplify the analysis and better visualization, affected genes were illustrated in Go-

Term enrichment maps, in the next step. 
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4.7.1.3 In vivo KTRTK-Cofilin1 impacts on specific groups of function  
 

A Go-Term is defined as a group of genes which either have a similar function or are 

involved in the same cellular processes. Go-Term enrichment visualizes the 

connectivity (intersection of genes) of different Go-Terms. Further it allows the 

grouping of different Go-Terms of similar functions (Figure 56). 

For the process of Go-Term enrichment the all genes analyzed of the ANOVA are 

used. The link of the data to AmiGo-gene ontology database facilitates the 

identification of altered Go-Term on single gene level.    

 
 

Fig. 56: Go-Term enrichment of Cofilin1wt/wt brain vs. Cofilin1KTRTK/KTRTK brain (E16.5). Cofilin1wt/wt 

was used as reference, red color indicates up-regulation in Cofilin1KTRTK/KTRTK. Single Go-Terms are 

presented as dots, connections between terms signify intersection of genes. Thickness of connection 

correlates with number of common genes. Size and color intensity of Go-Term correlates with fold-

change. Circles indicate grouping of Go-Terms of similar function.   
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A dot represents a Go-Term. The bigger and darker the circle the bigger the fold-

change compared to the wildtype. The thickness of the connection between two Go-

Terms correlates with the amount of genes, involved in both Go-Terms. The circles 

illustrate the grouping of Go-Terms of similar function. Fold-changes were calculated 

in reference to Cofilin1wt/wt. Up-regulation of genes in Cofilin1KTRTK/KTRTK is depicted in 

red.   

A large number of Go-Terms in brain involved developmental processes (e.g. 

chondrocyte development; central nervous system development) were affected by the 

mutation of the nuclear translocation sequence of Cofilin1. Further a number of Go-

Terms responsible for cartilage development were also influenced (see 4.5). The 

mutant protein KTRTK-Cofilin1 also had an impact on a number of Go-terms involved 

in morphogenesis. Considering the phenotype of the brain, disturbances in 

morphological processes (e.g. growth plate cartilage chondrocyte morphogenesis, see 

supplementary).  

Though brain tissue was analyzed, a number of Go-Terms associated with regulation 

of muscle contraction were affected, partly due to striking increases of expression 

levels of myosins and muscle associated actin (see supplementary).    

Also a group of Go-Terms responsible for regulation of actin as a cellular component 

was affected. Since it was observed, that KTRTK-Cofilin1 does not depolymerize F-

actin with the same capacity as wt-Cofilin1, it would make sense that other proteins 

had to be up-regulated to compensate this. Analysis of gene expression levels showed 

that ADF (Dstn) and Cofilin2 (Cfl2) were not up-regulated, though. . 

After the Go-Term enrichment visualized, which Go-Terms were affected the strongest 

by the mutation, pathways on a single gene level were analyzed in the following step.  
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4.7.1.4 In vitro KTRTK-Cofilin1 impacts other specific groups of 

function than in vivo  
 

 
 

Fig. 57: Go-Term enrichment of Cofilin1wt/wt (Pass1) vs. Cofilin1KTRTK/KTRTK (Pass1) Mefs (E14.5). 

Cofilin1wt/wt Pass1 was used as reference, red color indicates up-regulation in Cofilin1KTRTK/KTRTK, blue 

color indicates down-regulation in mutant Mefs. Single Go-Terms are presented as dots, connections 

between terms signify shared of genes. Thickness of connection correlates with number of collective 

genes between two Go-terms. Size and color intensity of Go-Term correlates with fold-change (grey; 

size correlates with number and fold-change of up-regulated genes; red dots with blue circle: Go-

Term contains up- and down-regulated genes). Blank circles indicate grouping of Go-Terms of similar 

function. Pass1: passage 1; wt: Cofilin1wt/wt; mt: Cofilin1KTRTK/KTRTK   

 

Every dot represents a Go-Term. Cofilin1wt/wt represents the reference. The bigger and 

darker the circle the bigger the fold-change compared to the wildtype. Amount of genes 

involved in two adjacent Go-Terms is represented by the connection between two Go-
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Terms. The circle illustrates the grouping of Go- Terms of similar function. Up-

regulation of genes in Cofilin1KTRTK/KTRTK is depicted in red, down-regulation is 

illustrated in blue.   

Two other groups that are affected are metabolic processes in general, where up- and 

down-regulation could be detected (Figure 57). This group comprises a vast number 

of metabolic processes, the regulation of glucose metabolic process, for example. In 

passage 1 mutant Mefs still show a rather high proliferation rate, in order for cells to 

proliferate the metabolism of the cell needs to be active. Therefore it was not surprising 

that up- regulated as well as down- regulated genes were detected in this group. In 

senescent and quiescent cells metabolic processes are down-regulated in general. 

Also at this stage where proliferation takes place at rather high rate nucleotides are of 

importance for synthesis of nucleic acids (metabolic processes (nucleotides)). Genes 

involved in negative regulation cell proliferation were down-regulated (e.g. Igfbp3: -

2.61; Tgfbr3: -2.59). The majority of the GO-Terms in the group metabolic processes 

(nucleotides) are up-regulated in the mutant compared to the wt. Whether this 

somehow correlates to the multinuclearity of the mutant Mefs needs to be investigated 

further. Groups of GO-Terms involved in morphogenesis and regulation of cell growth 

are also affected, since the altered morphology is one of the most striking features of 

mutant Mefs. The mutant protein KTRTK-Cofilin1 also had an impact on a number of 

Go-Term involved in collagen biosynthesis, this could already be observed in the brains 

analyzed in microarrays. Another group of Go-Terms affected by KTRTK-Cofilin1, is 

the group of “cell migration”. Most Go-Terms within this group are down-regulated. 

Changes of Cofilin1 level was shown to impair migration in several different cell types 

(Ghosh et al., 2004; Sidani et al., 2007; Popow-Wozniak et al., 2012). Further, a 

number of Go-Terms responsible for actin cytoskeleton organization were also up-

regulated. This up-regulation was also observed in the brains (4.7.2.3). Since it was 

observed, that KTRTK-Cofilin1 does not depolymerize F-actin with the same capacity 

as wt-Cofilin1. Cofilin1KTRTK/KTRTK Mefs are bigger and comprise more F-actin 

compared to wildtype, therefore it would make sense that other proteins had to be up-

regulated organize the cytoskeleton like profilin (4.7.1.6) to compensate this, but Mefs 

did not display significant up-regulation of ADF (Dstn) and Cofilin2 (Cfl2). A large 

number of Go-Terms involved in immune responses were down- regulated in Mefs 
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carrying the mutation. In how far KTRTK-Cofilin1 affects immune responses needs to 

be elucidated in the future.   

After the visualization, of the by the mutation strongest Go-Terms, pathways on a 

single gene level were analyzed in the following step. 

 

4.7.1.5 KTRTK-Cofilin1 affects a number of genes in different 

pathways in vivo  

 

For the identification of altered pathways based on single cells all analyzed gene 

fragments of the ANOVA were used. A link of the ANOVA to the KEGG (KEGG: Kyoto 

Encyclopedia of Genes and Genomes) database allows the detection of affected 

pathways on single gene level. A significance value is assigned to the respective 

pathway, depending on the percentage of genes altered within the pathway. This 

process is called pathway enrichment. The wildtype was used as reference. Down-

regulation in the mutant brain was depicted in blue, whereas up- regulation in the 

mutant brain tissue was presented in red. Degree of up-/down-regulation correlates to 

the intensity of the color.   

Two of the strongest affected pathways were “Regulation of actin cytoskeleton” (Figure 

58) and “ECM receptor interaction” (data not shown).  

Figure 58, shows a number of differently regulated genes. The strongest affected gene 

in this pathway based on fold-change was FN1, fibronectin 1, an extracellular matrix 

glycoprotein, that binds collagen and is involved in cell adhesion, cell growth, 

differentiation and migration (Pankov and Yamada, 2002). It is known that fibronectin 

is crucial for embryonic and neural development (George et al., 1993; Tate et al., 

2007). Another gene that was up-regulated in expression was moesin (ERM). Moesin 

is part of the ERM protein family, involved in cross linking of actin filaments (Jankovics 

et al., 2002).  

It should be noted that most of the genes presented in this pathway were not listed in 

the tables of genes with highest fold change. Pathway enrichment is based on the 
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number of altered genes and not on the fold-change. Therefor most of the genes 

depicted in this pathway showed a fold-change of less the ±1.6. 

 

 
 

Fig. 58: Regulation of actin cytoskeleton in Cofilin1wt/wt vs. Cofilin1KTRTK/KTRTK brains (E16.5). 

Cofilin1wt/wt was used as reference, red color indicates up-regulation in Cofilin1KTRTK/KTRTK, brain, 

down-regulation is shown in blue. Color intensity correlates with fold-change. 

 

F-actin in this pathway codes beta actin (Actb), which is expressed brain, was up-

regulated in the mutant by a factor of approximately +1.3.  

From this pathway analysis it could be concluded that a large number of genes directly 

or indirectly involved in actin cytoskeleton regulation is altered concerning their 

expression level.  

 

The pathway “ECM receptor interactions” presented a large number of strongly 

affected genes (data not shown). Extracellular matrix (ECM), consisting of a mixture 

structural and functional macromolecules, serves an important role in tissue and organ 

morphogenesis, amongst others in the brain (Bonneh-Barkay and Wiley, 2009). 
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Further, it is crucial for the maintenance of cell and tissue structure and function. 

Specific interactions between cells and the ECM, mediated by transmembrane 

molecules, lead to direct or indirect control of cellular activities such as adhesion, 

migration, differentiation, proliferation, and apoptosis. 

The genes mainly affected in this pathway are fibronectin (see above), OPN (secreted 

phosphoprotein 1), Perlecan, BSP (integrin binding sialoprotein) and VWF (Von 

Willebrand factor homolog). 

VWF encodes for a glycoprotein involved in platelet activation, cell adhesion and 

collagen binding. The integrin binding sialoprotein (BSP), a significant component of 

the bone extracellular matrix, is involved in cell adhesion, extracellular matrix 

organization and ossification. Perlecan can bind to and crosslink extracellular matrix 

components. It is also involved in brain development and chondrocyte differentiation 

(Giros et al., 2007). The protein encoded by OPN is primarily associated with bone and 

bone mineralization. In addition the protein has been linked to cell adhesion.     

All these up-regulated extracellular matrix proteins interact with a number of integrins, 

transmembrane molecules, which mediate specific interactions between ECM and 

cells. Integrins also provide a link between the extracellular matrix and the 

cytoskeleton. So in consequence if the interaction of the ECM with integrins is 

disrupted, the interaction between the extracellular matrix and the cytoskeleton will be 

disrupted. 

 

4.7.1.6 Mutant protein affects genes in pathways differently in vitro  

 

In pathway enrichment, the wildtype was used as reference. Down-regulation in the 

mutant is depicted in blue, whereas up- regulation in the mutant tissue is presented in 

red. Degree of up- /down-regulation correlates to the intensity of the color.   

In the analysis of Mefs one of the strongest affected pathways was “Regulation of actin 

cytoskeleton” (Figure 59). 

Figure 59, shows a number of differently regulated genes. The strongest affected gene 

in this pathway is beta actin (Actb; F-actin), which was detected at an expression level 

of +2.62. PFN, profilin1, an actin monomer binding protein, that catalyzes the exchange 
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of ADP for ATP and thus replenishing ATP-actin subunits to the monomer pool ready 

to be used for assembly. Profilin1 expression was increased by a factor of +2.38. 

Levels of increased G- and F-actin were detected in the Mefs, this may also indicate 

the need for more profilin1 in the cells. 

 

 

 

 

 

 

 

 

 

 

Other than beta actin none of the affected genes presented in this pathway were listed 

in the table of genes with highest fold change. Pathway enrichment is based on the 

number of altered genes and not on the fold-change. Therefore most of the genes color 

depicted in this pathway showed a fold-change of less the ±1.3. 

This concluded that a large number of genes directly or indirectly involved in actin 

cytoskeleton regulation is altered concerning their expression level. It should also be 

kept in mind, that other isoforms of actin are expressed at increased levels in 

Cofilin1KTRTK/KTRTK Mefs.  

 

 
 

Fig. 59: Regulation of actin cytoskeleton in Cofilin1wt/wt vs Cofilin1KTRTK/KTRTK 

Mefs (E14.5, passage 1). Cofilin1wt/wt was used as reference, red color indicates 

up-regulation in Cofilin1KTRTK/KTRTK, down- regulation is shown in blue. Color 

intensity correlates with fold-change. 
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The gene expression analyses in microarrays concluded that a large number of genes 

are affected by the introduction of the mutation of the NTS of Cofilin1. The mutation 

affected genes involved in morphogenesis, extracellular matrix and actin regulation in 

vivo as well as in vitro.    
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Cofilin1 plays a crucial role in the organism. It is essential for the regulation of actin 

dynamics, affecting locomotion, cytokinesis, migration and cell viability. Cofilin1 has an 

indispensable role in different physiological and developmental processes such as 

neural tube closure and cortical lamination (Bamburg, 1999; Dawe, 2003; Dawe et al., 

2003; Gohla et al., 2005; Gurniak et al., 2005; Bellenchi et al., 2007). The members of 

the ADF/Cofilin family carry a conserved nuclear translocation signal (NTS), 

comprising the core amino acid sequence KKRKK. In analogy to the KTKTK mutation 

of the NTS introduced in Simian virus 40, which was shown to impair nuclear delivery 

of viral DNA (Nakanishi et al., 2002), the function of Cofilin1 (non-muscle Cofilin) 

carrying a mutated NTS with the sequence of KTRTK, named KTRTK-Cofilin1, has 

been analyzed in this study.  

No other animal models presenting a mutation of the NTS of Cofilin1 have been 

published so far. The KTRTK-Cofilin1 mouse model represents the first in vivo model 

to study the repercussions of a mutated NTS. The impact of KTRTK-Cofilin1 on 

embryonic development and cellular processes have been focus of interest.  

 

5.1 The KTRTK-Cofilin1 protein featured altered 

characteristics 

 

Cofilin1 is primarily associated with the turnover of F-actin. For years studies strongly 

implied that Cofilin1 may be involved in other processes than the severing and 

depolymerisation of actin filaments.  

Previous studies analyzed nuclear translocation and actin binding capacities of 

Cofilin1-NTS mutants in vitro. Cofilin1 and actin form bundles, so called rods, upon 

certain stress stimuli. Exposure to salt buffers induce cytoplasmic rods in mammalian 

cells, whereas DMSO and heat shock induce formation of nuclear rods (Iida and 

Yahara, 1986; Nishida et al., 1987). Rods are composed of ADF/Cofilin and actin in a 

1:1 ratio, vary in filament length and are reversible structures. The function of rods is 

not clear but their frequent appearance in various tissues, suggest a physiological 

function (Minamide et al., 2010). Nuclear actin rods are formed from actin monomers 

obtained from disassembled cytoplasmic F-actin (Sanger et al., 1980). 
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Iida et al. analyzed KTLKK-Cofilin1 and showed the inability of the mutated to 

translocate to the nucleus and form nuclear rods (Iida et al., 1992). Munsie et al 

reported a bipartite NLS in the form of “21-RKSSTPEEVKKRKK-34” in Cofilin1. Both 

parts (underlined amino acids) of the bipartite NLS are evolutionary conserved 

between different species for both Cofilin1 and Cofilin2. Munsie and team 

demonstrated the inability of Cofilin1 NTS mutants, in which the sequence was mutated 

to AASSTPEEVKAAKK, to form nuclear and cytoplasmic rods. Additional 

sedimentation assays revealed a reduced F-actin binding capacity, but in vitro assays 

verified retained ability of analyzed mutants to interact with actin (Munsie et al., 2012).  

It was shown that HeLa cells transfected with GFP-KTRTK-Cofilin1 were unable to 

form nuclear actin/KTRTK-Cofilin1 rods upon DMSO treatment (Figure 17) (Roy, 

2011). Upon salt buffer treatment of HeLa cells transfected with GFP-KTRTK-Cofilin1 

no induction of cytoplasmic rods could be detected (Marx, 2011). These data may also 

indicate that the mutation of the NTS, even though it is not located near the actin 

binding site, may have altered the affinity of the mutant protein for actin.  

Further contributing to this suggestion are actin assays that showed massively 

decreased severing activity and F-actin binding of KTRTK-Cofilin1 (Figurer 18+19). 

Altered actin binding characteristics might also affect the ability of KTRTK-Cofilin1 to 

shuffle actin to the nucleus. The Cofilin1 knockout is embryonic lethal around E10 

(Gurniak et al., 2005), whereas homozygous Cofilin1KTRTK/KTRTK embryos can be found 

until the point of birth concluding that KTRTK-Cofilin1 maintained a level of activity. 

Cofilin1KTRTK/KTRTK embryos displayed a cranial tube closure defect in the form of 

exencephaly (Figure 20). Mouse embryonic fibroblasts (Mefs) derived from 

homozygous mutants displayed a conspicuous enlarged morphology and a significant 

increase in multinucleate cells. Furthermore, Cofilin1KTRTK/KTRTK Mefs showed a 

cytokinesis defect and decreased proliferation rates (4.4). 

The data of Munsie coincide with our observed inability of KTRTK-Cofilin1 to form 

nuclear rods (Figure 17), but maintaining part of the original depolymerization activity 

and reduced F-actin binding capacity (Figure 18+19). In the future the binding capacity 

of KTRTK-Cofilin1 regarding F-actin should be analyzed in detail. It should also be 

studied, if the mutation caused structural changes, potentially affecting functionality 

and actin binding capacities of KTRTK-Cofilin1. To further understand the role of 

Cofilin1 it would be of interest to analyze cytoplasmic and nuclear binding partners of 

wildtype Cofilin1 in comparison to KTRTK-Cofilin1. Previous studies examined binding 
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partners for the members of the ADF/ Cofilin family in adult brain utilizing Streptag 

fusion proteins via Malditof (Meier, 2014). A Strep-KTRTK-Cofilin1 fusion protein 

should be generated and lysates from embryonic as well as adult brain should be 

analyzed along with Mef lysates to conclude which binding partners might be affected 

in the cell in general and additionally in specific cell types. 

 

5.2 The role of Cofilin1 in the nucleus 
 

Previous studies showed that upon stress stimuli, like heat shock or DMSO, the nuclear 

translocation of Cofilin1 can be induced (Iida et al., 1986; Nishida et al., 1987; Iida et 

al., 1992) (5.1). Cofilin1 is also present in the nucleus of normally growing cultured 

cells, therefore it was suggested that Cofilin1, besides its role as actin depolymerizing 

factor in the cytoplasm, also has a function in the nucleus (Iida et al., 1992). This 

assumption has been confirmed by various studies linking nuclear Cofilin1 to 

transcription (Obrdlik and Percipalle, 2011; Dopie et al., 2012). Tissue from 

Cofilin1KTRTK/KTRTK displayed severely changed gene expression profiles in brains and 

Mefs. The involvement of nuclear Cofilin1 in transcriptional regulation will be discussed 

in chapter 5.9  

Additionally to the importance for embryonic brain development, cell cycle and 

proliferation, processes that were affected by the mutation of the nuclear translocation 

sequence of Cofilin1 (see chapter 4), nuclear Cofilin1 has been linked to DNA damage. 

The interaction between Cofilin1 and DNA may influence various biological responses, 

including DNA damage repair, a biological process essential in cancer development 

(Chang et al., 2015). Nuclear Cofilin1 has also been linked to neurodegenerative 

diseases. The accumulation of nuclear rods has been observed in Huntington’s 

disease (HD) patients, but their role in HD still needs to be clarified. Therefore rod 

formation, as an early on event in the neurodegenerative cascade, is considered a 

target for therapeutic access (Bamburg et al., 2010). If alterations of nuclear 

translocation always affect depolymerizing and F-actin binding capacity, adverse 

defects could be profound. Further, if nuclear Cofilin1 is crucial for transcriptional 

regulation, targeting nuclear Cofilin1 for therapy would not be an option. Therefore, 

elucidating the role of Cofilin1 in the nucleus is of utter importance   
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5.3 Protein expression level of KTRTK-Cofilin1 

decreased during embryonic development can not be 

compensated by the other members of the 

ADF/Cofilin family 
 

An essential role of Cofilin1 has been presented in various species. The deletion of 

Cofilin1 results in lethality in mouse, yeast, fruit fly and the blastomere of xenopus 

(Bamburg, 1999; Bamburg et al., 1999; Gurniak et al., 2005). These species have 

different numbers of isoforms to compensate the loss of Cofilin1. In the mouse two 

other isoforms are known, ADF and Cofilin2. Even though ADF and Cofilin1 share a 

sequence identity of 73% and functional characteristics (Bamburg, 1999; Vartiainen et 

al., 2002), respective mouse mutants show extremely different phenotypes, indicating 

non-redundant roles of Cofilin1 and ADF. Further, the relative expression levels of the 

members of the ADF/Cofilin family are restricted in a spatial and temporal- specific 

manner (Gurniak et al., 2005; Van Troys et al., 2008).  

The decrease of KTRTK-Cofilin1 protein level was observed during embryonic 

development in brain and body from heterozygous to mutant. The bodies of 

Cofilin1KTRTK/KTRTK embryos showed to phenotype, indicating that Cofilin1 is not 

essential for the development of the body.  

The decrease of KTRTK-Cofilin1 protein level during development could not be 

elucidated (4.3). It was shown that the mutant protein was not lost due to change in 

solubility, altered stability or changed levels of total RNA. In the future the loss of 

KTRTK-Cofilin1 during development needs to be studied further. Two microRNAs 

(miRNAs), noncoding RNAs binding the 3’ untranslated region (UTR) of mRNAs and 

mainly repressing translation were identified, specifically repressing Cofilin1 

translation. Yao and team observed a comparable phenomenon. Cofilin1 mRNAs 

levels remained unchanged even though a distinct up-regulation of Cofilin1 on protein 

level could be detected in the mouse model (Yao et al., 2010). The loss of KTRTK-

Cofilin1 might be caused by an increased affinity of other repressive miRNAs, usually 

specific to other RNA sequences, for the mutant RNA and therefore reducing the 

translation of the mutant protein. EWS, a proto-oncogene, represses nuclear export or 

translation, of its target mRNAs. EWS is known to target Cofilin1 mRNA, repressing 
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expression by nuclear retention of Cofilin1 mRNA (Huang et al., 2014). An increased 

nuclear retention of KTRTK-Cofilin1 mRNA would also lead to a repression of KTRTK-

Cofilin1 translation. The bipartite NLS is connected by a unique intervening sequence, 

a conserved serine, serine, threonine (SST) motif, is part of this intervening sequence. 

The SST motif was proposed to be a target for post-translational modification and is 

currently the subject of further investigation (Munsie et al., 2012). It needs to be 

elucidated whether post-translational modification in the form of ubiquitination is 

altered in KTRTK-Cofilin1 for any reason.  

The loss of Cofilin2 and ADF can be compensated to a certain extent. Cofilin2-/- mice 

are viable past birth and die on postnatal day 10, due to respiratory problems and 

diaphragm abnormity (Gurniak et al., 2014). The brain shows no obvious 

malformations (Gurniak and Bläsius, unpublished). ADF deficient mice display a mild 

hyperplasia of the cornea but show no further obvious malformations (Bellenchi et al., 

2007). Protein level analyses showed no up-regulation of Cofilin1 in the ADF-/-mutant 

brain, the expression level of Cofilin2 was not analyzed. In Cofilin1-/- E10 embryos ADF 

was up-regulated, whereas Cofilin2 remained unchanged (Gurniak et al., 2005; 

Bellenchi et al., 2007). The loss of Cofilin1 can not be compensated by ADF or Cofilin2. 

This assumption was also strongly implied by the data acquired in this thesis. ADF and 

Cofilin2 are not only unable to rescue the phenotypes in consequence to the complete 

loss of Cofilin1 but also the altered functions of KTRTK-Cofilin1. The mutant protein 

showed a reduced actin binding ability, a decreased depolymerization activity and was 

no longer able to translocate to the nucleus, even though all the features were 

unaffected in ADF and Cofilin2 the exencephalic phenotype could not be rescued. The 

up-regulation of ADF as well as Cofilin2, observed in vivo and in vitro (Figure 24+28), 

could not rescue the observed phenotype. It is not surprising that the phenotype in vivo 

was not compensated by the increased expression of ADF and Cofilin2, observed at 

later stages in development (Figure 23+24). At E10.5, a time point at which the 

exencephaly was already pronounced, no up-regulation of ADF and Cofilin2 was 

detected but both proteins were expressed along with KTRTK-Cofilin1 (Figure 23). The 

critical time point of neural tube closure occurs at E8.5–E9.5 (see 5.5), a 

developmental stage at which KTRTK-Cofilin1 is still present but affects cranial 

development and brain morphology. Even though Cofilin1KTRTK/KTRTK bodies also 

displayed decreasing KTRTK-Cofilin1 levels they had no phenotype. Mefs derived from 

mutants were phenotypically clearly distinguishable from wildtype control (4.4). In 
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passage 1 when KTRTK-Cofilin1 was still expressed Mefs already showed significant 

morphological and proliferation rate differences (Figure 30+33). In passages 2+3 when 

KTRTK-Cofilin1 was down-regulated and ADF and Cofilin2 up-regulated the 

phenotype of mutant Mefs remained consistent (Figure 28+30). The members of the 

ADF/Cofilin family are involved in cell polarization and migration, fundamental features 

of embryonic development. This study further showed that ADF and Cofilin2 could not 

countervail the reduced KTRTK-Cofilin1 with its altered biochemical properties was not 

sufficient for normal development, whereas heterozygous Cofilin1wt/KTRTK and Cofilin1+/- 

animals are completely healthy, showing that one wt-Cofilin1 is sufficient for normal 

development. This circumstantiates the absolute necessity of Cofilin1 in embryonic 

development and the inability of ADF and Cofilin2 to compensate even the mere 

mutant protein.   

To what degree the phenotype would alter or gain in severity without the up-regulation 

of ADF and Cofilin2 can not be predicted at this stage. Analyzing compensatory 

functions of both proteins simultaneously would proof to be extremely difficult in the 

embryo, considering that depletion of both, ADF and Cofilin2, is most likely to be lethal. 

To analyze the compensatory functions in vitro, it would be helpful to generate 

Cofilin1KTRTK/KTRTK; ADF-/-; Cofilin2-/- compound Mefs with the help of a tamoxifen 

inducible Cre/loxP site specific recombination system, based on a chimeric Cre protein 

carrying a ligand binding domain of a mutated estrogen receptor (Mer), called CreMer 

(Littlewood et al., 1995). The generation of Cofilin1wt/KTRTK; ADFfl/fl; Cofilin2fl/fl should 

not be lethal. By mating these animals, embryos homozygous for KTRTK-Cofilin1 

could be created. After isolation of Mefs the CreMer system could be activated 

facilitating the excision of the floxed ADF and Cofilin2 genes. For analyses regarding 

compensatory function during embryonic development, the generation of compound 

mutants in the form of ADF-/-, Cofilin1KTRTK/KTRTK and Cofilin2-/-, Cofilin1KTRTK/KTRTK 

would ensure a more efficient deletion of the respective protein.  

These data lead to the solid conclusion that a normal activity spectrum of Cofilin1 is 

essential for normal brain development and in cellular processes and can not be 

compensated by ADF and Cofilin2. Aspects of protein structure in general and altering 

protein structure during development regarding KTRTK-Cofilin1 were not approached 

so far. Structural analysis will also provide further conclusion regarding the functionality 

spectrum of the mutant protein. In future it will have to be approached whether the 
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phenotype in Mefs and embryos results from reduced F-actin depolymerization activity, 

reduced actin binding, diminished protein levels or nuclear translocation or a 

combination of these factors. Cofilin1 is crucial for embryonic development since a 

knockout of Cofilin1 results in embryonic lethality around day E10 (Gurniak et al, 2005). 

Analysis of homozygous KTRTK-Cofilin1 embryos at different stages of embryonic 

development showed decreases of KTRTK-Cofilin1 protein levels with increasing age. 

Possibly indicating, that at some point in embryonic development Cofilin1 loses its 

essential status for development and potentially also altering its range of binding 

partners during development. The fact that Cofilin1KTRTK/KTRTK embryos are alive until 

birth leads to the conclusion that the KTRTK-Cofilin1 protein still retains at least parts 

of the original functional capability of Cofilin1. In addition the decrease of KTRTK-

Cofilin1 protein level will have to be analyzed further. Two possible targets of future 

investigations could be a change in nuclear retention of KTRTK-Cofilin1 RNA and 

different translational regulation by miRNAs.  

  

5.4 Cellular mechanisms are affected in 

Cofilin1KTRTK/KTRTK Mefs 
 

In eukaryotic cells significant functions for cell viability are confined to the nucleus. 

Processes like proliferation, cytokinesis and gene expression are dependent on actin 

and Cofilin1. Cofilin1KTRTK/KTRTK Mefs were characterized by an enlarged cell size, 

multinuclearity and reduced proliferation rates. In vitro assays showed a reduced 

depolymerizing activity for the mutant protein (Figure 18). The decreased capacity of 

KTRTK-Cofilin1 may alter the statics of the actin filaments. The structural change may 

influence cell attachment. In the progress of the study the suspicion arose that cell 

attachment and spreading might be influenced by the mutation. Therefore in the future 

cell adhesion assays, comparing Cofilin1wt/wt and Coflin1KTRTK/KTRK Mefs, should be 

performed. Actin filaments are important for cell attachment and spreading on the 

substratum, a process required for cell proliferation. Further, defects in cell cycle 

progression were observed (Figure 31). KTRTK-Cofilin1 Mefs were observed to 

comprise up-regulated levels of F- and G-actin by 1.75- and 1.65-fold, respectively 

(Figure 36). Actin is required for cell division. The altered features of KTRTK-Cofilin1 
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may also explain the incorrect G1 to G2/M– phase transition (4.4.3). Several previous 

studies indicated a role for Cofilin1 in the cell cycle. Alteration of Cofilin1 activity 

resulted in the formation of multinuclear cells in different model organisms (e.g. HeLa), 

probably resulting from defects in cytokinesis (Gohla et al., 2005). A significantly 

increased incidence of multinucleated Mefs derived from Coflin1KTRTK/KTRK embryos 

was detected (Figure 30). Wt-Cofilin1 was observed to concentrate at the contractile 

ring in the telophase of the cell cycle, accumulating rapidly at the cleavage furrow as 

cleavage proceeded. Therefore it was suggested that wt-Cofilin1 disassembles F-actin 

in the contractile ring at the late stages of cytokinesis (Nagaoka et al., 1995), something 

that KTRTK-Cofilin1 can not do. Cell cycle analysis of Cofilin1 deficient embryonic cells 

proved the importance of Cofilin1 for G2/M-phase transition, based on the increased 

number of 4n cells observed (Bellenchi et al., 2007). The acquired data implicated that 

not only the deletion of Cofilin1 but also the mutated KTRTK-Cofilin1, with reduced 

activity leads to a disturbance in the transgression from the G2/M-phase (4n) to the 

G1-phase (2n).  

Osteoclast-like cells, featuring enlarged morphology and multinuclearity have been 

identified it the past (Ibbotson et al., 1984). In consideration of the enlarged and 

multinucleate phenotype along with the altered expression of genes involved in 

ossification and skeletal morphogenesis that have been identified in gene expression 

level analysis in microarrays of Mefs, it might be of interest whether Cofilin1KTRTK/KTRTK 

Mefs adapt an osteoclast-like character. 

Taking the reduced depolymerizing capacity of KTRTK-Cofilin1, the increased levels 

of F-actin and the possible alterations of F-actin statics into consideration, this would 

be an explanation for the problems in cell cycle transgression and the resulting 

polyploidy, acquiescing to the role of Cofilin1 in the cell cycle.  

Cofilin1KTRTK/KTRTK Mefs displayed significantly slower proliferation rates than 

Cofilin1wt/wt Mefs in passages 0-2. In passage 1 the proliferation rate in wt Mefs was 

increased by 2.3-fold compared to mutant Mefs (Figure 33). Previous studies 

connected proliferation defects to reduced embryonic body size (Yao et al., 1998; Bi et 

al., 1999; Ruland et al., 2001; Tominaga et al., 2005). P300 acts as a transcriptional 

activator, P300 knockout embryos, exhibited pleiotropic defects in morphogenesis in 

the form of exencephaly, transcriptional defects along with severe deficiencies in 

proliferation (Yao et al., 1998). Deletion of Mrg15, a chromodomain protein, in mice 
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also results in proliferation defects and smaller body sizes compared to wildtype 

embryos. Mgr15-/- Mefs showed a significantly lower growth rate and were 

characterized by an enlarged and flattened morphology along with earlier occurrence 

of senescence. An earlier and increased occurrence of senescence was also observed 

in Cofilin1KTRTK/KTRTK Mefs in passage 4 (4.4.2.4). Mrg15 is potentially involved in global 

transcription control and essential for mitotic proliferation and regulation of growth 

during embryogenesis (Tominaga et al., 2005). The same characteristic features could 

be observed in Cofilin1KTRTK/KTRTK embryos and Mefs (Figure 20+30). The body size of 

Cofilin1KTRTK/KTRTK embryos was reduced compared to wildtype and heterozygous 

littermates (Figure 20). Proliferation assays for cells derived from Cofilin1KTRTK/KTRTK 

bodies showed decelerated proliferation rates compared to wildtype samples (Figure 

33). Nuclear actin is also associated with proliferation. Early studies reported increases 

of nuclear actin concentration in mouse fibroblasts depending on the proliferative state 

of the cell, while the cytoplasmic level remained unchanged (Bertram et al., 1977). 

Disruption of nuclear actin levels in Cofilin1KTRTK/KTRTK Mefs might also affect 

proliferation. Dysregulation of proliferation and cell growth may cause small- sized 

phenotype. The phenotypically increased cell size of Cofilin1KTRTK/KTRTK Mefs and 

smaller body size Cofilin1KTRTK/KTRTK embryos might indicate that Cofilin1 directly or 

indirectly regulates negative as well as positive cell growth. Analysis of proliferative 

zones in Cofilin1wt/wt and Cofilin1KTRTK/KTRTK E13.5 brains showed an increase of 

number of proliferating cells but did not allow any conclusions regarding the 

proliferation rate (Figure 49).  

In the past a relationship between nuclear actin and ECM has been suggested, 

enacting changes in transcriptional profiles (Spencer, 2011). The analyses of 

transcription profiles revealed significant up-regulation of extracellular matrix protein 

genes in Cofilin1KTRTK/KTRTK E16.5 brains and E14.5 Mefs (Figure 56+57).Therefore, 

KTRTK-Cofilin1 may affect transcription profiles indirectly by impacting nuclear actin. 

Cofilin1 was also linked to transcription by facilitating association of elongating Pol II 

and actin with active genes (Obrdlik and Percipalle, 2011). The mutation of the Cofilin1 

gene in mice demonstrated its essential role in embryogenesis by cell morphology, 

proliferation and cytokinesis.  

Morphological analysis of Cofilin1KTRTK/KTRTK astrocytes also revealed increased 

occurrence of multinucleate cells (4.6.1). In the next step proliferation and cytokinesis 
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of astrocytes should be studied in detail, analyzing whether the observed alterations in 

Mefs also extend to astrocytes. The determination of G-actin/F-actin levels of 

astrocytes and neurons will also be of great interest, concluding whether the reduced 

activity of KTRTK-Cofilin1 could impact on neural cells in vitro. 

 

5.5 Cofilin1 is essential for cranial neurulation 

 

The expression pattern of Cofilin1 changes during development. At E8.5 expression of 

Cofilin1 is highest in the neural fold and at E9.5 its expression continues during the 

development of the nervous system and the neural crest. At E10.5 Cofilin1 expression 

was detected in somites, neural tube and limb buds. Afterward the expression of 

Cofilin1 becomes more localized (Gurniak et al., 2005). The expression pattern of 

Cofilin1 suggests an essential role in neural tube formation. Studies showed that 

Cofilin1 is a genetic modifier of neural tube closure. In humans single-nucleotide 

polymorphisms of Cofilin1 increase the risk for spina bifida (Zhu et al., 2007). As 

mentioned above deletion of Cofilin1 in the mouse resulted in a complete lack of neural 

tube closure and misaligned somites (Gurniak et al., 2005). 

Examination of the body showed no obvious malformations. Skeletal isolation showed 

no vertebrae misalignment (Figure 38), verifying the presence and a functionality of 

KTRTK- Coflin1 at that the critical stage for somite alignment. Further, the top cervical 

vertebrae (C1) in the mutant seemed to be affected (Figure 38, C+D). In the mutant 

C1 appeared to be enlarged in comparison to the top cervical vertebrae in wildtype. 

Cofilin1is a key player in neurulation, preceding cranial neurulation, which is affected 

Cofilin1KTRTK/KTRTK embryos.  

Examining the skeletal isolation of the embryos, the most striking feature is the failure 

of the formation of the calvarial dermatocranium in Cofilin1KTRTK/KTRTK embryos (Figure 

38, B). Up to this point, not a lot is known regarding the role of Cofilin1 and bone 

morphogenesis. Defective skull development is a primary failure of skeletal tissue 

formation and does not result from a secondary degenerative process. In was shown 

that both neural and skeletal development are contingent upon normal cranial tube 

closure (Copp, 2005). 
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Intramembranous ossification, a process in which mesenchymal cells condense 

without forming a cartilage intermediate, forms a part of the craniofacial bones. Cranial 

neural tube closure is crucial for the initial formation of the major part of the skull. 

Cranial mesenchyme and cranial neural crest also contribute to the formation of the  

 

skull vault (Jiang et al., 2002). In this 

process the embryonic brain is used as a 

physical “mold” around which the skull 

vault is formed (Thorogood, 1994). Cranial 

mesenchyme is over-presented in 

Cofilin1KTRTK/KTRTK brain (Figure 42).Neural 

crest cells require Cofilin1 for migration, 

therefore KTRTK-Cofilin1 might impact 

migratory behavior of neural crest cells.  

In exencephalic embryos, the absence of 

dorsal neural tissue causes the failure of 

the formation of dorsal skull elements 

(Copp, 2005) and can be observed in 

Cofilin1KTRTK/KTRTK embryos. 

Mesenchymal condensations on the lateral 

side of the head start at E12.5, in murine 

development, to eventually yield the frontal 

bones. Primordia of these bones, a cellular 

mass bearing osteogenic activity, lie 

basolaterally of the brain, extending to the 

vertex of the skull, starting at E13.5. At 

E14.5, the osteoblasts in these osteogenic 

fronts differentiate to produce a bone 

matrix. Extensions of the cellular masses meet at the midline, where a suture is formed, 

at E15.5 (Figure 60) (Rossant and Tam, 2002; Yoshida et al., 2008). However, a 

different study showed a significant up-regulation of Cofilin1 in sheep in the process of 

bone fracture healing (Guo et al., 2015), linking the protein to bone morphogenesis for 

the first time. Also the elevated expression of genes (Tables S8 - S24; Brain), 

 

 

 

Fig. 60: Murine skull bone development. 

At the suture site, cells in mesenchymal 

condensations differentiate to form 

osteoprogenitor cells, which later 

differentiate into bone-matrix molecules-

producing osteoblasts. These osteoblasts 

later differentiate into osteocytes, which 

become embedded within the bone matrix. 

(COMPENDIUM, 2014) 
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expressed in many different cell types, including osteoclast, chondrocytes and 

mesenchymal cells are a direct reflection of the upset tissue homeostasis in the mutant 

tissue, confirming the importance of Cofilin1 in the patterning and homeostasis 

process. At this point it should be taken into consideration, that both performed 

microarrays (4.7) in individual tissues, demonstrated changes in a vast number of 

genes involved in bone morphogenesis and cartilage formation.  

 

5.6 Is the Cofilin1KTRTK/KTRTK brain everted? 

 

Disturbances of several rather different cellular mechanisms, including actin 

cytoskeleton regulation, neural crest migration and cell cycle progression can cause 

exencephaly (Wilson and Center, 1974; Wilson, 1980; Copp et al., 2003; Copp, 2005). 

Cofilin1 was proven to be associated with these mechanisms (Gohla et al., 2005; 

Gurniak et al., 2005; Bellenchi et al., 2007). Cranial neurulation, a complex 

morphogenetic process, is fundamental for the development of brain and head. Failure 

of one or more events of cranial neurulation results in exencephaly, the most abundant 

type of neural tube closure defect. Morphologically, exencephaly results from everted, 

unfused cranial neural folds, creating the appearance of excessive neural tissue, as 

observed in Cofilin1KTRTK/KTRTK brains. A congenital malformation following failed neural 

tube closure. Previous studies identified a functional actin cytoskeleton, emigration of 

neural crest cells, spatio-temporally regulated apoptosis and a balance between cell 

proliferation and the onset of neuronal differentiation as requirements normal 

dorsolateral bending (Chua et al., 2003; Copp, 2005; Rehklau et al., 2012). Altered 

neuronal differentiation within the neuroepithelium could render the neural plate 

inflexible, thus preventing dorsolateral bending. The increase of F-actin was observed 

in KTRTK-Cofilin1 brain, which might contribute to an inflexible neural plate. Also the 

release of neural crest cells could be altered or the adhesion process essential for 

neural fold fusion could suffer interference (Copp et al., 2005).   

Taking the β-III-tubulin staining (Figure 49) and the Nissl staining (Figure 46) into 

consideration, the folded finger-like structures may coincide with the cortex (Figure 42). 

The Nissl staining showed cortical layering in coronal and sagittal sections of 

embryonic wt brain (Figure 46). Examining the coronal sections stained with 
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haematoxilin and eosin along with the Nissl staining, brain structures appear to be 

shifted laterally. The Nissl staining of the coronal section of the Cofilin1KTRTK/KTRTK brain 

showed layered structures, reminiscent of cortical layering, above eyes (Figure 46, D). 

The cortical layering in this structure within the Cofilin1KTRTK/KTRTK brain corresponds to 

a sagittal section layering of the cortex. Based on BrdU and H+E stainings hypothetical 

schematic models were created for the mutant brain in comparison to the wildtype 

(Figure 61).  

 wt  mt 

A 
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Th

Cx

An

Lv

 

B 

 

C 

 

D 

 

  

Fig. 61 Hypothetical coronal (A+B) and sagittal (C+D) schematic model of brain areas in 

Cofilin1KTRTK/KTRTK brain. Based on the BrdU staining a hypothetical schematic coronal model, 

showing the proliferative zone and presumed brain areas, was created. Everted expression 

pattern could be observed in the mutant brain (mt) (B) compared to Cofilin1wt/wt E13.5 brain (wt) 

(A). Compared to wildtype, proliferative zone and brain areas in the mutant seem to shift upward 

and laterally. Based on H+E staining a hypothetical sagittal schematic model of brain areas in 

the mutant brain, was created (D). In the mutant all brain areas appeared to be conserved but 

the prosencephalon was shifted to the anterior and less compartmentalized compared to the wt 

brain (C). Schematic models were previously shown in chapter 4.5. An: amygdaloid nucleus Cx: 

cortex; Ey: eye; Hp: hippocampus; LGE: lateral ganglionic eminence; Lv: lateral ventricle; MGE: 

medial ganglionic eminence; PZ: proliferative zone; Th: thalamus; Tv: third ventricle; Connective 

tissue: pink dots Dc: diencephalon; Hb: hindbrain; Mb: midbrain; P: prosencephalon; Sp: spinal 

cord; wt: Cofilin1 wt/wt; mt: Cofilin1KTRTK/KTRTK. 
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The BrdU proliferation staining of coronal section also indicate an upward and lateral 

shift of the brain structures in the Cofilin1KTRTK/KTRTK brain. In the wildtype a proliferative 

active zone was clearly detectable, surrounding the third ventricle (Figure 61, B). In 

Cofilin1KTRTK/KTRTK brain proliferating cells were detected on the margin of the “T-

shaped ventricle” (Figure 42. Indicated by *I) and along the complete outer layer of the 

brain (Figure 61, B). Morphology in sagittal section indicated a preservation of the 

Cofilin1KTRTK/KTRTK brain areas but a spatial rearrangement (Figure 61, D).  

Closer observation of the sagittal sections of Cofilin1KTRTK/KTRTK brains indicated that 

the morphology of the spinal cord and the hindbrain were conserved and not affected 

by KTRTK-Cofilin1 (Figure 61). It could be speculated that in Cofilin1KTRTK/KTRTK 

embryos brain structures shift to the anterior. Examining the brain structures it could 

be hypothesized that the midbrain in the mutant is morphologically altered and 

repositioned (Figure 61, Mb, green). The repositioned midbrain was connected to the 

structure, corresponding to the diencephalon (Figure 61, Dc, orange). In the mutant, 

the fusion of midbrain and diencephalon, takes place without the curved manner, which 

can be observed in the wildtype. Subsequently, this lead to the enlarged ventricle, filled 

with connective tissue (Figure 61, pink dots). Adjacent to the diencephalon the 

prosencephalon could be hypothesized (Figure 43, P, red). The presumed 

prosencephalon in the mutant appears to be enlarged and less compartmentalized. In 

the future the presumed identity of midbrain and diencephalon will have to be 

confirmed with specific markers.         

Differently, irregulatory folded structures of the defectively developing telencephalon 

might be caused by a lateral and anterior shift of brain structures.  

Across vertebrate phylogeny, morphology of different brain regions is variable. Even 

though the mechanisms generating brain patterning during development are much 

conserved (Hauptmann and Gerster, 2000; Medina et al., 2005), mechanism 

underlying the formation of these distinct morphologies are not understood to this day. 

Two major variations of the telencephalon formation have been observed across 

vertebrates. All vertebrates, but ray- finned fish, are characterized by an evaginated 

telencephalon (Folgueira et al., 2012).  

 



5. Discussion 
___________________________________________________________________ 

 
221 

  



5. Discussion 
___________________________________________________________________ 

 
222 

 

Fig. 62: Development of the telencephalon in teleosts and mammals. (A) Coronal view of the 

vertebrate anterior neural tube giving rise to the telencephalon. (B) The teleostean telencephalic 

outward folding (eversion) leads to a dorsal telencephalon (pallium). (C) The mammalian (mouse) 

telencephalon develops through evagination. Proliferative zones are inwardly oriented towards the 

ventricle. Pallial divisions in mouse simplified (Mueller et al., 2011). 

 

The mechanisms of eversion has not been elucidated so far. There are two proposed 

models. First model describes the outward bending of the lateral wall of the 

telencephalon, resulting in a lateral out-folding of the pallium over the subpallium 

(Figure 62) (Nieuwenhuys, 2011). The recently proposed second model describes two 

key steps in telencephalon eversion. Step 1 is characterized by the generation of a 

ventricular sulcus at the telencephalic-diencephalic interphase, a step depending on 

precise cytoskeletal control. Step 2 involves the expansion of the pallial territory 

(Folgueira et al., 2012). Figure 40 indicates severe diencephalon malformation, 

concluding disturbances in early telencephalon morphogenesis. Comparing the NTS 

of murine Cofilin1 to ray-finned fish Cofilin1, revealed common characteristics of 

KTRTK-Cofilin1 and ray-finned fish Cofilin1.  

The forebrain of Cofilin1KTRTK/KTRTK embryos, two lobes separated by a T-shaped 

ventricle, features morphological characteristics typical for the everted telencephalon 

(Figure 42, C). Cofilin1wt/wt brains display the expected traits of an evaginated 

telencephalon, two hemispheres surrounding the ventricle (Figure 61, B). Considering 
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the phenotype of the mutant brain this could implicate a key role for Cofilin1 in 

evaginated brain development. To further pursue this prospect a zebrafish Cofilin1 

comprising the murine wildtype NTS mutant is currently being generated as control. 

Cofilin1 is crucial for zebrafish development (Ashworth et al., 2010). Following the 

introduction of KKRKK- Cofilin1 into the zebrafish, effects on embryonic development, 

particularly in regard to possible evaginated telencephalon development, will be of 

interest.  

No literature describing an everted mouse brain phenotype could be found. Region-

specific proliferation was proposed to be crucial for accurate regionalization (Zaki et 

al., 2003). Analysis of proliferating cells detected an increase of the proliferative zone 

in the mutant brain, in vitro analyses revealed significant decreases in proliferation rate 

and disturbances in G2/M cell cycle progression in KTRTK-Cofilin1 Mefs (Figure 

33+31). Previous studies showed that also changes in cell cycle progression are 

involved in subregional patterning of the brain (Estivill-Torrus et al., 2002). Mutations 

leading to hypoplasia of the telencephalic tissue correlating with mitosis disturbances 

have been observed (Rossant and Tam, 2002). This would coincide with the 

observations made in Cofilin1KTRTK/KTRTK mutants. An inability of KTRTK-Cofilin1 to 

properly regulate proliferation and cell cycle progression of neuroepithelial cells could 

contribute to the phenotype. 

A significant number of cells undergo programmed cell death at E10.5 in the forebrain 

(Rossant and Tam, 2002). Over the last years contrary data regarding the role of 

Cofilin1 in apoptosis were published. Chua et al., suggested that Cofilin1 has an 

essential role during the initiation phase of apoptosis (Chua et al., 2003). Whereas a 

more recent study indicated that Cofilin1 is generally not required for induction or 

progression of apoptosis (Rehklau et al., 2012). It should be taken into consideration 

though, that it has been postulated, that alterations of levels of Cofilin1 affects 

apoptosis progression in specific cell types, indicating the existence of cell-type-

specific function for Cofilin1 in apoptosis signaling. Furthermore, It has been proposed 

that the apoptosis-inducing ability of Cofilin1, is dependent on the functional actin-

binding domain (Chua et al., 2003; Klamt et al., 2009). KTRTK-Cofilin1 showed 

characteristics of reduced F-actin binding in quenching assays (Figure 19). Though no 

implication regarding altered apoptosis levels could be found in Caspase3 stainings or 
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on gene expression levels in E14.5 Mefs and E16.5 mutant brains (data not shown), 

apoptosis should be studied in vivo in early embryonic development.  

 

Comparative analyses of Cofilin1wt/wt and Cofilin1KTRTK/KTRTK brains revealed distinct 

differences in morphological structures (Figure 42). Coronal sections revealed defined 

and symmetric structures in the mutant brain (Figure 42, D-F). Loose, low density 

tissue was detected in in coronal and sagittal sections, filling up cavities in the mutant 

(Figure 42). Further experiments identified, the tissue in question as connective tissue 

of expanded mesenchymal origin (Figure 45). During development of the brain, neural 

folds elevate in a process involving the bending of the midline neuroepethilium and the 

expansion of the underlying cranial mesenchyme (Copp, 2005). Microarrays showed 

a vast increase of collagen gene expression in the mutant brain, one of the main 

components of mesenchymal tissue, and other genes crucial for cartilage and 

extracellular matrix processes (see 5.9). This mesenchyme is morphologically 

characterized by loosely associated cells that lack polarity and are surrounded by large 

extracellular matrix containing a loose aggregate of reticular fibrils. Collagen II is one 

of the predominant forms of collagen in mesenchyme (Lengner et al., 2004). The 

detected up-regulation by a factor of 13.5-times combined with the expansion of the 

tissue detected histological sections showed a misregulation of a developmental 

process.   

Mesenchymal cells are unspecialized cells, being able to develop into other cell and 

tissue types (e.g. connective tissues throughout the body, such as bone and cartilage). 

Mesenchymal cells can migrate easily. The mesenchyme forms the undifferentiated fill 

of the early embryo. Cells are connected by slender cell processes, which could be 

observed in this thesis (4.5). Connective tissue between and within the developing 

tissues and organs, in fetal development, is formed by mesenchyme. (Gartner et al., 

2011). Mesenchymal connective tissue can be found in wildtype embryos until a certain 

point in development, implicating regulatory changes in the mutant prolonging and 

increasing the existence of the tissue throughout development. Taking a closer look at 

the structures in the coronal sections, identity of the labeled structures can only be 

speculated.  

Histological data indicated nuclear Cofilin1 as a major key player in embryonic 

telencephalic regionalization. 
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Considering the role of Cofilin1 in a number of cellular mechanisms and the importance 

and highly delicate nature of the interaction of the different key regulators for 

telencephalic development, KTRTK-Cofilin1 may cause a “domino effect” by affecting 

different mechanisms like transcription (4.7), cytokinesis (4.4), and proliferation (4.4). 

The observed phenotype of Cofilin1KTRTK/KTRTK brains is most likely a pleiotropic effect 

only affecting the brain but different mechanisms. The event of brain patterning is so 

complex, that it is highly unlikely, that the phenotype results from one altered process. 

In regard to the altered brain development observed in Cofilin1KTRTK/KTRTK mutants it 

would also be of interest if the localization and cell type specific expression of Cofilin1 

and KTRTK-Cofilin1 differ from one another. Structural specification using antibodies 

and in situ probes in Cofilin1KTRTK/KTRTK brains will be of importance to verify hypothesis 

of lateral and anterior shift of brain structures. The introduction of Thy1-GFP in the 

KTRTK-Cofilin1 might also be of interest and provide further information neuronal 

localization in the mutant brain.       

 

5.7 Cortical-like layering in Cofilin1KTRTK/KTRTK brain 

 

Surprisingly, in various exencephalic mouse lines, the malformed brain, shows signs 

of neuronal differentiation as well as formation of nerve connections, despite being 

anatomically abnormally positioned, exteriorized neural tissue (Matsumoto et al., 

2002). Indicating that brain development still follows certain processes in the early 

stages even though cranial neurulation failed in these animals. Cofilin1fl/fl, Emx1 and 

Cofilin1fl/fl, Nex mice both display cortical malformations but produce postnatal viable 

progenies. The Nex-Cre is under the control of a neuronal basic-helix-loop-helix 

transcription factor. Deletion of Cofilin1 is detectable in postmitotic neurons after E11.5 

(Goebbels et al., 2006), Emx1, a homeobox gene transcription factor, is specifically 

expressed in cerebral cortex and hippocampus. In this case the deletion is detectable 

at E9.5 in principle neurons (Iwasato et al., 2000). Cofilin1 fl/fl, Emx1 mice show severe 

disorganization of all cortical layers. In Cofilin1 fl/fl, Nex mice the cortical layers II+III are 

missing (Schütz, unpublished). The intermediate cortical layers (II – V) are formed 

between E13 and E19, showing that the absence of Cofilin1 affects cortical layering. 

Cortical-like lamination in Cofilin1KTRTK/KTRTK embryos implicated that reduced protein 
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levels of KTRTK-Cofilin1 (4.3.1) and reduced functionality (F-actin binding and 

depolymerization) were sufficient for cortical lamination (Figure 46).  

The analyses of Reelin, Ctip2 and Cux1 (Figure 48), factors important for cortical 

patterning, revealed changes in expression patterns. It was recently proposed, that 

cytoplasmic Cofilin1 may influence gene expression via a nuclear actin independent 

pathway by ADF/Cofilin-mediated actin turnover that promotes the release of actin-

bound transcription cofactors (e.g. serum response factor (SRF)) (Chang et al., 2015). 

IF analysis showed an expression of Cux1 in the mutant, whereas no signal could be 

detected in the wildtype (Figure 48). Furthermore, no Reelin expression was detected 

in Cofilin1KTRTK/KTRTK brain. This might indicate an altered temporal expression pattern 

of transcription factors. The differential expression of Reelin and Cux1 might explain 

by altered actin turnover in KTRTK-Cofilin1 mutants.   

 

F-actin levels in neurons are crucial for cortical formation. Elevated F-actin levels were 

hypothesized to inhibit actin- based motor molecules (e.g. myosinIIB). So far 

establishment of cell migration being affected by myosin II activity in fibroblast cells 

was reported (Vicente-Manzanares et al., 2007). In the microarray analysis no changes 

in myosin II on RNA level were detected in Cofilin1KTRTK/KTRTK brains compared to 

Cofilin1wt/wt brains. G-actin/F-actin analysis of Cofilin1wt/wt, Cofilin1wt/KTRTK and 

Cofilin1KTRTK/KTRTK brains revealed increases of F-actin levels in the heterozygous and 

the mutant tissue (Figure 37). Whereas the G-actin level in the wildtype and the 

heterozygous brain remained constant, the G-actin protein level in the mutant was 

decreased to approximately 71% compared to wildtype. Densitometric examination of 

the G-actin/ F-actin ratio revealed distinct shifts in the distribution of the total amount 

of actin. In the wildtype 90% of the total amount of actin consist of G-actin while the 

remaining 10% percent are presented by F-actin. The heterozygous brain displays a 

ratio of 77% G-actin/ 23% F-actin. The shift is even more explicit in the mutant with a 

ratio of 62% G-actin/ 38% F-actin. The total amounts of actin did change. Interestingly, 

even though the actin levels in the heterozygous brains are affected, Cofilin1wt/KTRTK 

mice show no phenotype, are viable and indistinguishable from wildtype littermates. 

Histological analysis of Cofilin1wt/KTRTK embryonic brain showed that the observed shift 

of G-actin/ F-actin ratio in heterozygous mice does not affect brain morphology (data 

not shown). Increases in F-actin levels were observed in Mefs isolated from 
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Cofilin1KTRTK/KTRTK embryos in vitro, whereas G-actin levels remained constant 

compared to wildtype Mefs, thereby increasing the total amount of actin (Figure 36). 

These data indicate that the influence of KTRTK-Cofilin1 may affect G-actin/F-actin 

levels differently in vivo compared to in vitro and may also be dependent on cell type. 

Mefs are uniform cell population whereas the brain consists of a variety of different cell 

types. Also, the composition of the mutant brain differs from the wildtype brain (Figure 

70). Therefore, in the future F-actin and G-actin levels of Cofilin1KTRTK/KTRTK neurons 

and astrocytes compared to Cofilin1wt/wt should be examined, to allow conclusion 

regarding these specific cell types.     

 

5.8 KTRTK-Cofilin1 alters the phenotype of neural 

cells 

 

After the exencephalic phenotype in Cofilin1KTRTK/KTRTK embryonic brains was 

observed, the isolation of neural cells was of interest. Beta-III-tubulin stainings, NeuN 

and Golgi stainings, all specific for neurons, confirmed the presence of neurons but 

showed different patterning (Figure 49). Cofilin1KTRTK/KTRTK neurons displayed an 

increased branching activity and neurite growth in vitro.  

The involvement of the members of the ADF/Cofilin family in neural cells has been 

demonstrated before. Members of the ADF/Cofilin family were associated with neurite 

growth and polarization (Sarmiere and Bamburg, 2004; Rust et al., 2010; Bläsius, 

2012; Flynn et al., 2012).  

During neurulation the entire neural plate is proliferative, cells only begin to exit the cell 

cycle upon completion of neurulation. Cells embark the cellular pathway towards 

neuronal differentiation, once they have achieved the post-mitotic state. Knockout 

lines, suffering from premature onset of neuronal differentiation, in the neural plate, 

displayed cranial neurulation failures (Copp, 2005).   

Neural stem cells and their progenitor cells generate neurons and microglial cells 

(astrocytes and oligodendrocytes). Neurons are generated by asymmetric and 

symmetric cell division (Figure 63). Symmetric cell division creates two daughter cells 

with the same fate, whereas in asymmetric cell division two different daughter cells 

arise. While one cell will be identical to the mother cell, the second one will be a 



5. Discussion 
___________________________________________________________________ 

 
228 

different cell type. Proliferative, symmetric divisions are followed by asymmetric, 

generating daughter stem cells (self renewing) and a more differentiated cell such as 

neurons (Gotz and Huttner, 2005).  

 

 

Fig. 63: Lineage trees of neurogenesis. The lineage trees shown provide a simplified view of the 

relationship between neuroepithelial cells (NE), radial glial cells (RG) and neurons (N), without (a) 

and with (b) basal progenitors (BP) as cellular intermediates in the generation of neurons. Types of 

cell divisions involved are shown (Gotz and Huttner, 2005). 

 

A switch to an asymmetric cell division is induced by an elongation of the cell cycle, 

consequently, diminishing the progenitor pool. The mutation of Cofilin1 may impair the 

segregation of cell fate determinants, causing the elongation of the cell cycle inducing 

a switch to asymmetric cell division. Bellenchi proposed disturbances in setting of the 

cleavage plane in Cofilin1fl/fl, Nes cells, a critical step determination of symmetric vs. 

asymmetric cell division (Chenn and McConnell, 1995; Bellenchi et al., 2007) leading 

to a reduced number of radial glia cells, guiding postmitotic neurons from the SVZ to 

the plial surface during the process of radial migration (Bellenchi et al., 2007).   

An increased number of 4n cells in embryonic cells lacking Cofilin1 were found, 

implicating an important role in the G2/M-phase transition for Cofilin1. The balance of 
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symmetric and asymmetric cell divisions is of utmost importance in neurons to control 

cell fate and neuronal development (Bellenchi et al., 2007; Flynn et al., 2012).   

The analyses of neural cells derived from Cofillin1KTRTK/KTRTK brains is still in the early 

phases. It can be stated clearly, that the mutation also impacts neurons and astrocytes 

in culture phenotypically.  

Morphological analysis of astrocytes revealed increased occurrence of multinucleate 

cells and a reduced number of GFAP- positive cells (Figure 51+52). Expression of 

GFAP is tightly regulated during astrocyte maturation. The reduced number of GFAP- 

positive cells in Cofilin1KTRTK/KTRTK astrocytes may implicate a delay in maturation. So 

far, the correlation of Cofilin1 and astrocyte maturation has not been studied. To this 

date no specific role for Cofilin1 in astrocytes other than regulation of cell membrane 

protrusions essential for migration has been studied (Nagai et al., 2011). The full role 

has not been elucidated fully so far. Absence of GFAP was associated with increased 

expression of extracellular matrix molecules. This would corroborate to the massively 

increased expression of ECM proteins found in microarray analysis in addition to the 

expanded connective tissue in Cofilin1KTRTK/KTRTK brains. Furthermore, the deletion of 

GFAP correlates with increased neurite growth and altered neuronal physiology 

(McCall et al., 1996; Menet et al., 2001). Reduced GFAP level could also contribute to 

the increased neurite length observed in Cofilin1KTRTK/KTRTK neurons (Figure 50). In 

future experiments the localization and expression level of GFAP in vivo will have to 

be analyzed. 

Cortical neurons derived from BMP (bone morphogenetic protein) knockout animals 

show the same phenotype as neurons derived from Cofilin1KTRTK/KTRTK embryos. BMP 

is known to regulate Cofilin1 by affecting the activation state of Limk1, which 

phosphorylates Cofilin1 and thereby inactivates it (Phan et al., 2010).  

In the case of BMP-/- neurons the phenotype of increased commissural axon outgrowth 

in chicken was a consequence of the misregulation of Cofilin1 activity state due to the 

lack of BMP regulating Limk1 (Yamauchi et al., 2013).In this study the phenotype of 

the neurons results from the dysfunction of KTRTK-Cofilin1. In both cases the altered 

phenotype is a consequence of Cofilin1 alteration.   

Cells, expressing constitutively active LIM kinase, thereby inhibiting Cofilin1, abolish 

cell polarity.  
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Cofilin1fl/fl, Nes neurons show phenotypically alterations in the form of multiple cell 

protrusions, control neurons are characterized by bipolar shape. The elongated and 

multiple protrusions of Cofilin1KTRTK/KTRTK neurons is more likely to be affected by the 

mutation instead of decreased protein levels, since ADF-/-, Cofilin1wt/fl, Nes mice yield a 

normal phenotype, even though the Cofilin1 level is reduced (Bellenchi et al., 2007). 

Polarization and activity state of Cofilin1 are important during migration. Actin filament 

length has been linked to cortical neuron migration as a critical factor in past studies 

(Rivas and Hatten, 1995). Migration disturbance can be caused by two key factors: the 

decrease of Cofilin1 protein level or an altered activity of Cofilin1. Further, the members 

of the ADF/Cofilin family members are known regulators of cell polarity, to sustain 

already established polarity and to induce cell polarization in neuronal and non-

neuronal cells (Dawe, 2003; Dawe et al., 2003; Garvalov et al., 2007; Witte and Bradke, 

2008).    

If the protein activity of the members of the ADF/ Cofilin family is blocked during cell 

polarization, proper formation of cell rear and front is inhibited. It was concluded that 

the members of the ADF/Cofilin family are required for the formation of oriented actin 

filament bundles in the cell (Mseka et al., 2007). Morphological cell polarity as well as 

the driving force to move the cell, necessitate correctly organized actin networks 

(Wittmann and Waterman-Storer, 2001; Ridley et al., 2003; Small and Resch, 2005).  

Polarity can also be modulated by cell adhesion molecules and extracellular matrix 

proteins (Suter and Forscher, 1998). Analysis of brain tissue disclosed considerable 

increased RNA expression of a number of extracellular matrix proteins (e.g. Matn1, 

Col2a1, Col1a1, Matn4) in embryonic Cofilin1KTRTK/KTRTK brain along with the increase 

of connective tissue (4.7).    

Signaling cascades that result in neurite extension lead to alterations of the 

phosphorylation levels of Cofilin1 and ADF. Activation of signaling pathways are often 

followed by elevated Ca2+ or the presence of cAMP. Phosphatases, involved in the 

dephosphorylation of ADF and Cofilin1, are activated by these second messengers. 

Further, growth factors (e.g. NGF) induce rapid dephosphorylation, subsequently 

activating ADF and Cofilin1. This strongly implicates that increases in process 

extension is associated with decreased phosphorylation of ADF and Cofilin1      

(Meberg et al., 1998). The phosphorylation status of KTRTK-Cofilin1 might differ from 

the status of wt-Cofilin1.  



5. Discussion 
___________________________________________________________________ 

 
231 

It was shown that mammalian neurons contain about 5–10 fold more Cofilin1 than ADF 

(Bamburg and Bloom, 2009), overexpression of ADF causes increase in neurite length 

in rat cortical neurons (Meberg and Bamburg, 2000). Western Blot analyses of 

Cofilin1KTRTK/KTRTK samples showed up-regulation of ADF in Mefs at E14.5 (Figure 66) 

in vitro. In the future ADF and Cofilin1 levels in Cofilin1wt/wt and Cofilin1KTRTK/KTRTK 

neurons will be determined. Increased ADF levels in Cofilin1KRTK/KTRTK neurons might 

partake in observed neurite elongation. In vitro behavior and metabolic requirements 

for cells in culture differ from in vivo requirements. Also in vitro cultures represent a 

uniform cell population whereas brains consist of a variety of cell types and 

extracellular matrix proteins. 

Considering this the ADF expression levels along with the phosphorylation status of 

KTRTK-Cofilin1 might be essential to regulate actin dynamics, neuronal outgrowth, 

morphology and migration in KTRTK-Cofilin1 neurons.    

In Listeria tails grow very long and motility is reduced in the absence of ADF/ Cofilin, 

due to impaired actin recycling (Rosenblatt et al., 1997). Reduced elongation of 

neurites in Cofilin1fl/fl, Nex and Cofilin1fl/fl, Emx1 mutant neurons was attributed to reduced 

recycling of the G-actin pool (Bläsius, 2012). ADF-/-; Cofilin1-/- neurons exhibited shifts 

in G-actin/F-actin ratios, with increased F-actin levels, phenotypically resulting in the 

failure of neuritogenesis (Flynn et al., 2012). In future experiments the G-actin/F-actin 

ratios in Cofilin1KTRTK/KTRTK neurons compared to wildtype neurons will have to be 

established. G-actin/F-actin separation of brain tissue of Cofilin1KTRTK/KTRTK embryos 

also revealed increases of F-actin levels but a decrease in G-actin levels (Figure 37). 

These would suggest that though the depolymerization activity of KTRTK-Cofilin1 is 

reduced, the decreased activity was sufficient for neuritogenesis. And in combination 

with the presence and possible up-regulation of ADF that might explain why KTRTK-

Cofilin1 neurons are characterized by elongated processes in contrast to other studied 

Cofilin1 mutant neurons.  

Analyses of neural cells will have to be extended. The acquired data clearly indicates 

that the KTRTK-Cofilin1 mutation affects astrocyte and neuron morphology. 

To analyze Cofilin1 KTRTK/KTRTK neurons in more detail polarization studies and Scholl 

analyses will be of great interest. Neuronal polarization is a key factor and cortical 

lamination and might also contribute to information to the developmental process of 

Cofilin1KTRTK/KTRTK neurons.  
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5.9 KTRTK-Cofilin1 affects gene expression 

massively  

 

The nuclear translocation of the mutant protein KTRTK-Cofilin1 was impaired and 

thereby the ability to shuffle actin to the nucleus, possibly affecting transcription. Gene 

profiling analyses in this thesis (4.7) strongly indicated a regulatory function for Cofilin1 

in transcriptional control correlating with previous studies. It was shown that Cofilin1 is 

in the same complex with actin and phosphorylated RNA polymerase II during the 

elongation phase of transcription. Active genes in Cofilin1 silenced cells were devoid 

of actin. This indicated the crucial role of Cofilin1 for associating actin and 

phosphorylated pol II with active genes. (1.3.4.3) (Obrdlik and Percipalle, 2011; Dopie 

et al., 2012). Many factors are involved in embryogenesis and their expression is tightly 

controlled in a spatio- temporal manner. Therefore, transcriptional dysregulation can 

impact development massively. The chosen up- and down-regulated genes should be 

confirmed by qPCR and in the following step by protein level analysis. 

It could be noted that KTRTK-Cofilin1 affects different genes in vivo (brain) and in vitro 

(Mefs). Considering the different characteristics of the analyzed samples, this was not 

surprising. Analyzed E14.5 mouse embryonic fibroblasts represented a uniform cell 

population und controlled culture parameters (4.7). Transcriptional analysis revealed 

up- and down regulated genes. A large number of the affected genes could be 

assigned to distinct GO-Term groups. The next paragraph presents a small selection 

of genes, that should be analyzed further, in the future. Nppa was down- regulated in 

Cofilin1KTRTK/KTRTK Mef (-7.68), it is known to be involved in negative regulation of cell 

growth and biosynthesis processes. Considering the massive reduction on Nppa RNA 

in the mutant the accuracy of this value should be confirmed in qPCR. Lum was down-

regulated by a factor of -6.37 in the mutant, should also be analyzed. It is involved 

collagen fibril organization and regulation of transcription. Considering alterations in a 

number of extracellular matrix proteins including Col2a1, up-regulated + 3.86 times in 

the mutant, proteins involved in extracellular matrix organization should be studied. 

Col2a1 is also involved in regulation of gene expression and collagen fibril 

organization. The misregulation of a number of genes involved in the same processes 

might augment the phenotype of increased cell size and cytokinesis and proliferative 

defects. Inhba and Tagln are both up-regulated by a factor of approximately 3-fold in 
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Cofilin1KTRTK/KTRTK Mefs. Both proteins participate in cellular mechanisms, including 

proliferation, cell cycle progression and cytoskeletal organization. All these cellular 

processes were disturbed in Cofilin1KTRTK/KTRTK Mefs, therefore these genes might be 

of interest.      

Analyzed E16.5 brains represented the in vivo situation, at a developmental stage at 

which the protein level of KTRK- Cofilin1in Cofilin1KTRTK/KTRTK was already decreased.    

Brains comprise a variety of different cellular subtypes, it should also be noted, that 

the composition of wildtype and mutant brain is not comparable (4.7.1). Transcriptional 

analysis mainly revealed up-regulated genes. A large number of the affected genes 

could be assigned to distinct GO-Term groups. A selection of significantly altered 

genes in shown Tables 8 - 15. One of the few down-regulated genes was Nkx2-1. In 

the mutant it was down-regulated by -1.82-times. This transcription factor, is of extreme 

interest, since it is one of the earliest transcription factors, essential for brain 

development and patterning. If the protein expression pattern of this transcription factor 

was already disrupted, it could corroborate with the early failure of proper 

prosencephalon development, observed in Cofilin1KTRTK/KTRTK embryos. In brain the 

values of up-regulation in the mutant compared to wildtype were striking. In order to 

verify these, further experiments in the future will be necessary.    

Coronal sections of Cofilin1KTRTK/KTRTK embryos illustrated craniofacial malformations. 

Acan (up-regulated by 2.8 times) and Col2a1 (up-regulated by 13.55 times) were 

shown to be involved in brain and craniofacial structure development (Rossant and 

Tam, 2002). The direction of migration can be influenced by ECM molecules, they also 

provide levels of cell adhesion necessary to propel cell motility (Thelen et al., 2002; 

Larsen et al., 2006). Analysis of brain tissue disclosed considerable increased RNA 

expression of a number of extracellular matrix proteins (e.g. Matn1 (+19.1), Col1a1 

(+5.36), Matn4 (+4.47)) in embryonic Cofilin1KTRTK/KTRTK samples (4.7.1). Histological 

analysis showed expanded connective tissue throughout development in the mutant 

brain. The extreme increase in a vast number of ECM proteins has to be studied 

further. This also leads to the question in which way Cofilin1 may directly be involved 

transcriptional regulation of ECM protein? 

The neural crest cells have the ability to generate multiple cell lineages. Upon arrival 

of the cells of the neural crest at their final location they contribute to facial components 

such as cartilage, the cranial skeleton and connective tissue. In Cofilin1-/- neural crest 
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cells migration towards the head region was impaired and cells were randomly 

distributed (Gurniak et al., 2005). Microarrays of Mefs and brain showed an altered 

regulation of genes involved in skeletal and osteoclast development. 

Neurons and glial cells of the peripheral nervous system along with mesenchyme and 

smooth muscle cells origin from neural crest cells. A large number of genes, which 

represent specific markers for the above mentioned tissues, displayed significant and 

distinct shifts compared to the wt. Neural crest cells are essential for skull development. 

KTRTK-Cofilin1 neural crest cells might also be unable to migrate to the head region, 

in consequence disruption the formation of the skull. Differential activation of genes 

contribute to the establishment of neural crest diversity (Huang and Saint-Jeannet, 

2004; Kulesa et al., 2004). Four distinct signaling pathways, including the signaling 

molecules bone morphogenetic proteins (Bmp), Wnt proteins, fibroblast growth factor 

(Fgf) and Notch/Delta, have been suggested to be involved in the process of neural 

crest induction. In neural crest induction the role of Bmp signaling is tightly linked to 

the induction of the neural plate and Bmp was shown to regulate the activity state of 

Cofilin1 by regulating Limk1 (Huang and Saint-Jeannet, 2004; Phan et al., 2010). A 

conditional Wnt1-Cre mediated inactivation of the β-catenin gene, a downstream 

component of the WNT signaling pathway, in the mouse, displayed severe defects of 

craniofacial skeletal elements of neural crest origin (Brault et al., 2001). Genes in two 

main pathways have yielded positive findings with regard to the causation of NTDs: 

folate one-carbon metabolism, and non-canonical Wnt signaling (the planar cell 

polarity pathway) (Copp et al., 2013). In our microarray analysis of brain no significant 

changes in the above mentioned pathways could be detected on RNA level at this 

developmental stage. The induction of neural crest cells is of especially in early stages 

of development of importance, therefore it would be more conclusive to analyze the 

expression levels around E8.5-E10. 

Spatially restricted expression patterns of transcription factors (TFs) are crucial for 

embryonic, anatomical organization. Recently, more than 2300 different TF proteins 

have been predicted in the murine genome (Waterston et al., 2002; Thomas et al., 

2003), making up approximately more than 7% of the total genes. 27% of the TF genes 

are expressed in a spatially restricted pattern.  
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Over 100 TF genes were identified that are expressed in a spatially restricted pattern 

within non-neuronal tissue, such as nose, oral cavity, teeth and facial muscles (Gray 

et al., 2004). RNA expression analysis identified twelve differently expressed neural 

specific TFs at E16.5 in Cofilin1KTRTK/KTRTK brain. Taking the importance of correct TF 

expression into account, a possible disruption of the levels and patterning, may explain 

the malformations of the brain and the cranial facial features in the homozygous 

mutants.  

Another crucial role is played by the specific timely and spatially coordinated 

expression pattern of cis-regulating enhancer elements. Corroborating the importance 

of enhancers is the correlating expression pattern with transcription factors important 

for telencephalic development (Visel et al., 2013). Cofilin1 and actin have been linked 

to transcription in several studies (see 5.6), it is possible that the mutant protein 

KTRTK-Cofilin1 regulates transcription differently than its wildtype counterpart since 

nuclear translocation is impaired. 

Telencephalic structures can be detected as early as E8.5. Regionalization takes place 

during the early stages of embryonic development, mainly from E8.5 to E12.5.  

The anterior ridge (ANR), lies where the most anterior neural tissue meets the non-

neural ectoderm forming a junction, was suggested to mediate the earliest step of 

cortical VZ induction, producing Fgf8, a fibroblast growth factor. Foxg1, transcription 

factor selectively marks future cortical VZ progenitors, before the telencephalon is 

morphologically distinguishable. Foxg1 is required for cortical morphogenesis and 

normal telencephalic development. After telencephalic induction specification of the 

telencephalic dorsal (pallial) and ventral (subpallial) regions take place, regulated by 

transcription factors Gli3, Ngn1 and Ngn2, which are selectively expressed in dorsal 

telencephalic progenitors. In the following step the dorsal telencephalon must be 

further subdivided into dorsal midline epithelial fates and the cortical VZ. Lhx2 has a 

specific role in this process. Lhx2 is selectively expressed in the cortical VZ, but not in 

dorsal midline epithelia. After cortical VZ fate is selected, regional specification of the 

cortical VZ must occur. 
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Fig. 64. Events in cortical patterning of the mouse brain. Regulatory transcription events that 

pattern the cortical ventricular zone (VZ) and cortical areas. Brown, extrinsic influences (organizers, 

signals, afferent inputs and cortical neurons generated outside the cortical VZ); blue, intrinsic events 

and factors in the cortical VZ. Dashed curved lines, hypothetical connections between parts of this 

hierarchy (Monuki and Walsh, 2001).  

 

This critical step in cortical VZ patterning remains to be elucidated. EMX2 and Pax6, 

two transcriptional regulators expressed in the cortical VZ, regulate the relative sizes 

of cortical areas. Emx2 and Pax6 are expressed in graded and opposing fashions 

within the cortical VZ: the Emx2 gradient is high posterior– low anterior, whereas the 

Pax6 gradient is low posterior–high anterior. 

Therefore it would be conclusive to screen early stages of Cofilin1wt/wt and 

Cofilin1KTRTK/KTRTK brain development in a microarray analysis to detect possibly 

altered expression levels of TFs (Nkx2.1, Emx1, Emx2, Gli3, Foxg1) during the most 

active part of telencephalic development. Functional studies also showed potent 

effects of TFs on cell proliferation in the developing telencephalon (Zaki et al., 2003). 

Microarray analysis would allow simultaneous screening for a vast number of 

transcription factors. At the same time, spatial expression was shown to be of utter 

importance (Figure 64) (Monuki and Walsh, 2001). Therefore, brain sections should 
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also be stained for transcription factors (Emx2, Pax2, Lhx2, Foxg1, and Fgf8) to verify 

correct spatial expression.  

 

For several years the translocation of actin with Cofilin1 acting as a chaperone was 

exclusively linked to stress responses (Pendleton et al., 2003). At this point, Cofilin1 

has been incriminated as an essential regulator of the continuous steady-state nuclear 

actin import. It was shown that accumulation of actin in the nucleus was affected upon 

silencing of Cofilin1, due to impaired import and not lack of monomeric actin (Dopie et 

al., 2012), confirming an essential role for Cofilin1 in nuclear translocation of actin. 

Beta-actin was shown to be essential for regulation of gene expression through control 

of the cellular G-actin pool (Bunnell et al., 2011). Up-regulation of different actin 

isoforms (Actb, Actg2 and Acta2) in brains and in Mefs was detected in microarrays 

(4.7). Cofilin1 depolymerization can enhance actin polymerization for cell motility and 

other physiological processes by replenishing the cellular actin monomer pool. In order 

to maintain functionality and allow cellular mechanisms to continue, the depletion of 

the G-actin pool would need to be compensated. This possibly implies that the in FACS 

analyses observed increase of in total actin in Mefs (Figure 36) and the shift of G-actin/ 

F-actin ratio in brain (Figure 37), could not just be a result of decreased depolymerizing 

activity of the mutant protein but also a consequence to the increased expression levels 

of actin isoforms. 

In Mefs β-actin levels were increased by a factor 4 in Cofilin1KTRTK/KTRTK cells (4.7).  

Bunnell et al., discovered that changes of β- actin levels affects the G-actin/F-actin 

ratio, shifting it toward F-actin in Mefs. The same shift of F-actin has been observed in 

Cofilin1KTRTK/KTRTK Mefs. Up-regulation of actin might facilitate replenishment of the 

monomeric actin pool, which could allow the cells to maintain a degree of functionality. 

It has been discovered that actin isoforms are not fully interchangeable and possess 

distinct functions. β- actin is essential for embryonic development whereas the loss of 

γ- actin is not lethal. β- actin was also implicated to be required for cell division. Mefs, 

depleted of β- actin, revealed a multinucleate phenotype (Bunnell et al., 2011). This 

might also indicate that the Cofilin1KTRTK/KTRTK Mefs attempt to rescue functionality by 

up-regulation of β- actin. At this point the repercussion of the differential expression of 

the actin isoforms remains elusive and should be examined further in the future.   
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The analysis of genes affected by the introduction of the mutation of the NTS of Cofilin1 

revealed several altered genes in vivo and in vitro involved in the regulation of the actin 

cytoskeleton (e.g. Pfn1 ;Myh3) (4.7; S8-S24). This coincides with results of previous 

studies. Bravo- Cordero and team showed that the subcellular localization of Cofilin1 

in combination with regulatory functions of other proteins such as Profilin 1 directly or 

indirectly affect the activity of Cofilin1 (Bravo-Cordero et al., 2013). The mutation of the 

NTS supposedly rendered KTRTK-Cofilin1 unable to enter the nucleus actively, 

therefore altering its subcellular localization. Further an increase of Profilin 1 

expression on RNA level was detected in microarray analysis. Profilin catalyzes the 

exchange of ADP for ATP and thus recycling ATP-actin subunits to the monomer pool 

which are then ready to be used for assembly. This may further explain the increase 

of F-actin in Mefs. Apart from reduced depolymerizing activity of KTRTK-Cofilin1, the 

altered genes involved in the regulation of the actin cytoskeleton along with the altered 

subcellular localization, may further decrease the depolymerizing activity of KTRTK-

Cofilin1, in consequence increasing the F-actin level.  

Additionally, actin dynamics play a key role in the regulation of gene expression 

through the serum response factor (SRF) gene regulatory pathway, targeting genes 

including actin and actin regulators (Posern et al., 2002; Posern et al., 2004). SRF, a 

transcription factor, sensitive to G-actin levels interacts with the cofactor MAL. Further 

Fos and JunB are targeted, genes required for differentiation. MAL gets activated upon 

depletion of the monomeric actin pool (Pawlowski et al., 2010). G-actin binds to MAL, 

therefore preventing an activation of SRF, consequently, transcription is not activated. 

SRF also affects migration and proliferation. Analysis of the SRF regulatory pathway 

members in the microarray data for either brain or Mefs revealed no significant 

changes, even though G-actin levels in Cofilin1KTRTK/KTRTK brains were decreased. 

Actin, tagged with a NTS, failed to rescue the transcriptional alterations in Cofilin1 

depleted in NIH 3T3 cells (Dopie et al., 2012) indicating that nuclear actin alone is not 

sufficient for normal transcriptional profiles but that nuclear Cofilin1 is also 

indispensable. This confirms the hypothesis that Cofilin1 comprises functions 

independent of actin depolymerization, indicating changed features of KTRTK-Cofilin1 

that are not understood, yet. 
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6.1 Gene expression profiling in vivo and in vitro 
 

The Illumina® bead chip system was used for the microarray analyses. The 

mathematical calculation were performed with Partek® Genomic suite software. 

For all further steps of analyses only genes, which fluorescence signal was altered with 

a significance lower than p<0.05 were included. The data acquired in the microarray is 

based on the mathematical processing and conversion of fluorescent signals. In the 

ANOVA calculations samples were grouped by genotype and compared, the wildtype 

was used as reference. Negative fold-changes indicate a down-regulation (blue) in the 

mutant, whereas positive fold-changes represent an up-regulation (red) in the mutant 

tissue (Table S8-S24). 

Go-Terms are a group of genes which either have a similar function or are involved in 

the same cellular mechanisms. 

Each Go-Term can be accessed with the respective identification number via the 

Amigo: Gene ontology database. 
 

6.1.1 Gene profiling in E16.5 embryonic brain 

 

In order to identify, due to the mutation, critically altered genes in in vivo settings, three 

Cofilin1wt/wt and three Cofilin1KTRTK/KTRTK samples were compared individually. 

Gestational stage E16.5 was chosen, a point in development, in which decreased 

mutant protein level were observed 
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Function 

• RNA polymerase II regulatory region sequence-specific DNA binding (GO:0000977) 
• actor activity (GO:0003700)  
• RNA polymerase II distal enhancer sequence-specific DNA binding transcription  
• factor activity (GO:0003705) 
• neuron migration (GO:0001764) 
• pattern specification process (GO:0007389)  
• brain development (GO:0007420) 
• positive regulation of gene expression (GO:0010628)  
• negative regulation of epithelial to mesenchymal transition (GO:0010719) 
• cerebral cortex cell migration (GO:0021795) 

 
 

• transport (GO:0006810)  
• microtubule-based movement (GO:0007018) 

Fold- 
Change 

(mt vs. 
wt) 

-1.82 
 

-1.74 
 

p-value 

0.0102 
 

0.0005 
 

Name 

NK2 homeo 
-box 1 

dynein 
cytoplasmic 1 
intermediate 
chain 1 

 

Symbol 

Nkx2-1 
 

Dync1i1 
 

 

Table S8: Highest changing genes in brain Part I. Wt samples acted as reference. 
Blue numbers: down- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt 
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Function 

• metal ion binding (GO:0046872) 
• platelet aggregation (GO:0070527) 
• stress fiber (GO:0001725) 

• cell adhesion (GO:0007155)  
• cellular response to amino acid stimulus (GO:0071230)  
• proteinaceous extracellular matrix (GO:0005578) 

• cell-cell signaling (GO:0007267) 

• cell adhesion (GO:0007155)  
• central nervous system development (GO:0007417)  
• extracellular matrix structural constituent (GO:0005201) 
• skeletal system development (GO:0001501)  

 

• cell adhesion (GO:0007155)  
• cell migration (GO:0016477)  
• collagen fibril organization (GO:0030199) 
• collagen biosynthetic process (GO:0032964) 
• regulation of cellular component organization (GO:0051128)  
• negative regulation of endodermal cell differentiation (GO:1903225) 
• extracellular matrix structural constituent (GO:0005201) 

 

Fold- 
Change 
(mt vs. wt) 

2.51 
 

2.51 
 

2.57 
 

2.61 

2.63 
 

p-value 

0.0001 
 

0.0030 
 

0.0197 
 

0.0026 
 

<0.0001 
 

Name 

myosin, light 
polypeptide 9, 
regulatory 

 

collagen, 
type XVI, 
alpha 1 

Pannexin 3 

 

hyaluronan 
and 
proteoglycan 
link protein 1 

collagen, 
type V, alpha 
1 

  

Symbol 

Myl9 
 

Col16a1 
 

Panx3 
 

Hapln1 
 

Col5a1 
 

 

Table S9: Highest changing genes in brain Part II. Wt samples acted as reference. 
Red numbers: up- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt 
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Function 

• cartilage condensation (GO:0001502)  
• chondrocyte development (GO:0002063)  
• cell adhesion (GO:0007155)  
• central nervous system development (GO:0007417)  
• proteoglycan biosynthetic process (GO:0030166)  
• collagen fibril organization (GO:0030199)  
• negative regulation of cell migration (GO:0030336)  
• extracellular matrix structural constituent (GO:0005201) 

• cell adhesion (GO:0007155) 
• extracellular matrix (GO:0031012) 

• ossification (GO:0001503)  
• osteoblast differentiation (GO:0001649)  
• cell adhesion (GO:0007155) 
• biomineral tissue development (GO:0031214)  
• negative regulation of apoptotic process (GO:0043066)  
• positive regulation of bone resorption (GO:0045780) 

• nucleotide binding (GO:0000166)  
• catalytic activity (GO:0003824) 

Fold- 
Change 
(mt vs. wt) 

2.80 
 

2.86 
 

2.87 
 

2.88 
 

p-value 

0.0001 
 

0.0005 
 

0.0063 
 

0.0023 
 

Name 

aggrecan 

collagen, 
type XII, 
alpha 1 

secreted 
phosphoprot
ein 1 

3'phosphoad
enosine 5'-
phosphosulf
ate synthase 
2 

Symbol 

Acan 
 

Col12a1 
 

Spp1 
 

Papss2 
 

 

Table S10: Highest changing genes in brain Part III. Wt samples acted as reference. 
Red numbers: up- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt 
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Function 

• collagen binding (GO:0005518) 
• collagen fibril organization (GO:0030199)  
• positive regulation of transcription from RNA polymerase II promoter 

(GO:0045944),  
• proteinaceous extracellular matrix (GO:0005578) 

• proteinaceous extracellular matrix (GO:0005578)  
• collagen trimer (GO:0005581) 

• RNA polymerase II promoter (GO:0000122)  
• transport (GO:0006810) 
• metal ion binding (GO:0046872) 

• microtubule bundle formation (GO:0001578)  
• proteolysis (GO:0006508)  
• regulation of cytoskeleton organization (GO:0051493)  

Fold- 
Change 
(mt vs. wt) 

2.95 
 

3.26 
 

3.28 
 

3.30 
 

p-value 

0.0011 
 

0.0012 
 

0.0068 
 

0.0031 
 

Name 

lumican 

collagen, 
type IX, 
alpha 2 

hemoglobin 
Y, beta-like 
embryonic 
chain 

calpain 6 

Symbol 

Lum 
 

Col9a2 
 

Hbb-y 
 

 

Capn6 
 

 

 

Table S11: Highest changing genes in brain Part IV. Wt samples acted as reference. 
Red numbers: up- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt 
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Function 

• cell adhesion (GO:0007155) 
• positive regulation of synapse assembly (GO:0051965) 
• extracellular matrix (GO:0031012) 

• ossification (GO:0001503)  
• protein complex assembly (GO:0006461)  
• multicellular organismal development (GO:0007275)  
• cell differentiation (GO:0030154)  
• regulation of bone mineralization (GO:0030500)  
• branching morphogenesis of an epithelial tube (GO:0048754)  
• cartilage development (GO:0051216)  

• structural molecule activity (GO:0005198)  
• calcium ion binding (GO:0005509) 
• phospholipid metabolic process (GO:0006644) 

• muscle contraction (GO:0006936) 
• nucleotide binding (GO:0000166) 
• actin cytoskeleton (GO:0015629) 

Fold- 
Change 
(mt vs. wt) 

3.41 
 

3.44 

3.55 
 

4.12 
 

p-value 

<0.0001 
 

0.0037 
 

0.0059 
 

<0.0001 
 

Name 

Thrombos-
pondin 2 

matrix Gla 
protein 

otoconin 90 

actin, alpha 
2, smooth 
muscle, 

Symbol 

Thbs2 
 

 

Mgp 
 

Oc90 
 

 

Acta2 
 

 

 

Table S12: Highest changing genes in brain Part V. Wt samples acted as reference. 
Red numbers: up- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt 
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Function 

• tissue homeostasis (GO:0001894)  
• growth plate cartilage development (GO:0003417) 
• cartilage development (GO:0051216) 

• response to axon injury (GO:0048678) 

• positive regulation of epithelial to mesenchymal transition (GO:0010718)  
• negative regulation of cell-substrate adhesion (GO:0010812)  
• protein transport (GO:0015031)  
• collagen fibril organization (GO:0030199)  
• positive regulation of cell migration (GO:0030335)  
• collagen biosynthetic process (GO:0032964) 
• positive regulation of transcription, DNA-templated (GO:0045893) 
• face morphogenesis (GO:0060325) 

• ossification (GO:0001503)  
• osteoblast differentiation (GO:0001649)  
• cell adhesion (GO:0007155)  
• extracellular matrix organization (GO:0030198)  
• biomineral tissue development (GO:0031214)  
• cellular response to growth factor stimulus (GO:0071363)  

 

Fold- 
Change 
(mt vs. wt) 

4.45 
 

4.74 
 

5.36 
 

6.62 
 

p-value 

<0.0001 
 

0.0017 
 

<0.0001 
 

0.0018 
 

Name 

collagen, 
type IX, 
alpha 1 

matrilin 4 

collagen, 
type I, alpha 
1 

integrin 
binding 
sialoprotein 

Symbol 

Col9a1 
 

 

Matn4 
 

Col1a1 
 

 

Ibsp 
 

 

 

Table S13: Highest changing genes in brain Part VI. Wt samples acted as reference. 
 Red numbers: up- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt 
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Function 

• actin binding (GO:0003779) 
• microfilament motor activity (GO:0000146)   
• nucleotide binding (GO:0000166) 
• actin filament binding (GO:0051015) 
• skeletal muscle contraction (GO:0003009) 

 

• skeletal system development (GO:0001501)  
• cartilage condensation (GO:0001502)  
• tissue homeostasis (GO:0001894) 
• chondrocyte differentiation (GO:0002062) 
• regulation of gene expression (GO:0010468)  
• collagen fibril organization (GO:0030199) 

• muscle contraction (GO:0006936) 
• contractile fiber (GO:0043292) 
• calcium ion binding (GO:0005509) 

• chondrocyte differentiation (GO:0002062)  
• growth plate cartilage chondrocyte morphogenesis (GO:0003429)  
• regulation of bone mineralization (GO:0030500)  
• proteinaceous extracellular matrix (GO:0005578) 

Fold- 
Change 
(mt vs. wt) 

7.59 
 

13.55 
 

15.71 
 

19.10 
 

p-value 

0.0450 
 

0.0003 
 

0.0363 
 

0.0001 
 

Name 

myosin, 
heavy 
polypeptide 
3, skeletal 
muscle, 
embryonic 

collagen, 
type II, alpha 
1 

myosin, light 
polypeptide 
1 

matrilin 1, 
cartilage 
matrix 
protein 

Symbol 

Myh3 
 

Col2a1 
 

 

Myl1 
 

Matn1 
 

 

 

Table S14: Highest changing genes in brain Part VII. Wt samples acted as reference. 
 Red numbers: up- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt 
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6.1.2. Gene profiling in E14.5 mouse embryonic fibroblasts 

 

Mefs were isolated from E14.5 embryos. Three Cofillin1wt/wt (wt) and three 

Cofilin1KTRTK/KTRTK (mt) Mef lines were prepared. Cells of passages 1 were analyzed. 

One passage is defined as the trypsinization of confluent cells and the subsequent 

seeding of a portion of the acquired single cell suspension. For further analyses, main 

focus was put on the combination of mt Pass1 vs. wt Pass1. 
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Function 

• chemoattractant activity (GO:0042056) 
• cell chemotaxis (GO:0060326) 

• negative regulation of cell growth (GO:0030308) 
• receptor binding (GO:0005102) 
• cGMP biosynthetic process (GO:0006182)  
• female pregnancy (GO:0007565)  
• cardiac muscle hypertrophy in response to stress (GO:0014898)  

 

• negative regulation of peptidase activity (GO:0010466)  
• negative regulation of endopeptidase activity (GO:0010951)  
• response to cytokine (GO:0034097)  
•   response to peptide hormone (GO:0043434) 

• collagen binding (GO:0005518) 
• collagen fibril organization (GO:0030199)  
• positive regulation of transcription from RNA polymerase II promoter 

(GO:0045944),  
• proteinaceous extracellular matrix (GO:0005578) 

• serine-type endopeptidase inhibitor activity (GO:0004867) 
• negative regulation of complement activation (GO:0045916) 

Fold- 
Change 
(mt vs. wt) 

-7.99 
 

-7.68 
 

-6.37 
 

-4.23 
 

-4.11 
 

p-value 

0.0410 
 

0.0508 
 

0.0149 
 

0.0305 
 

0.0140 
 

Name 

serum amyloid A 3 

natriuretic peptide 
type A, 

Serine peptidase 
inhibitor, clade A, 
member 3N 

lumican 

Serine peptidase 
inhibitor 

Symbol 

Saa3 

Nppa 
 

Serpina3n 
 

Lum 
 

Serping1 
 

 

Table S15: Highest changing genes in Mefs Passage 1 Part I. 
 WT was used as reference. Blue numbers: down- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt. 
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Function 

• positive regulation of developmental growth (GO:0048639) 
• positive regulation of protein phosphorylation (GO:0001934) 
• positive regulation of apoptotic cell clearance (GO:2000427) 
• complement activation (GO:0006956) 

• positive regulation of cell death (GO:0010942) 
• catalytic activity (GO:0003824) 
• proteolysis (GO:0006508) 

• regulation of gene expression (GO:0010468) 
• protein binding (GO:0005515) 
• transport (GO:0006810) 
• cellular iron ion homeostasis (GO:0006879) 

• lipopolysaccharide binding (GO:0001530) 
• toll-like receptor 4 signaling pathway (GO:0034142) 
• immune system process (GO:0002376) 

• growth factor activity (GO:0008083) 
• carbohydrate binding (GO:0030246) 

Fold- 
Change 
(mt vs. wt) 

-4.09 
 

-3.65 
 

-3.44 
 

-3.20 
 

-3.14 
 

p-value 

0.0366 
 

0.0133 
 

0.0031 
 

0.0024 
 

0.0007 
 

Name 

complement 
component 3 

haptoglobin 

scavenger 
receptor class A, 
member 5 

Component of the 
TLR4 signaling 
complex 

  

regenerating islet-
derived 1 Gene 

Symbol 

C3 
 

Hp 
 

Scara5 
 

120000 
9O22Rik 
 

Reg1 
 

 

Table S16: Highest changing genes in Mefs Passage 1 Part II. 
WT was used as reference. Blue numbers: down- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt. 
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Function 

• cell adhesion (GO:0007155) 
• regulation of collagen metabolic process (GO:0010712)  
• extracellular fibril organization (GO:0043206)  
• elastic fiber assembly (GO:0048251) 
• extracellular matrix (GO:0031012) 

• heme binding (GO:0020037) 
• protein catabolic process (GO:0030163)  
• protein maturation (GO:0051604) 

• cell adhesion (GO:0007155)  
• negative regulation of cell proliferation (GO:0008285)  
• collagen fibril organization (GO:0030199)  
• extracellular matrix (GO:0031012) 

 

• ossification (GO:0001503)  
• somitogenesis (GO:0001756) 
• anterior/posterior pattern specification (GO:0009952) 
• immune system process (GO:0002376) 

 

• glutathione peroxidase activity (GO:0004602) 
• protein homotetramerization (GO:0051289)  
• oxidation-reduction process (GO:0055114) 
• glutathione metabolic process (GO:0006749) 

Fold- 
Change 
(mt vs. wt) 

-3.06 
 

-3.05 
 

-2.99 
 

-2.93 
 

-2.92 
 

p-value 

0.0160 
 

0.0265 
 

0.0072 
 

0.0062 
 

0.0473 
 

Name 

microfibrillar-
associated protein 
4 

alpha 1 
microglobulin/ 
bikunin 

dermatopontin 

interferon induced 
transmembrane 
protein 1 

glutathione 
peroxidase 3 

Symbol 

Mfap4 
 

Ambp 
 

Dpt 
 

Ifitm1 
 

Gpx3 
 

 

Table S17: Highest changing genes in Mefs Passage 1 Part III.  
WT was used as reference. Blue numbers: down- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt. 
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Function 

• regulation of cell growth (GO:0001558) 
• negative regulation of cell proliferation (GO:0008285) 
• regulation of growth (GO:0040008)  
• positive regulation of apoptotic process (GO:0043065) 
• protein phosphorylation (GO:0006468) 
• positive regulation of insulin-like growth factor receptor signaling pathway 

(GO:0043568) 

• brain development (GO:0007420)  
• locomotory behavior (GO:0007626)  
• post-embryonic development (GO:0009791) 
• growth (GO:0040007) 

• receptor binding (GO:0005102)  
• protein binding (GO:0005515) 
• lipoprotein lipase activity (GO:0004465) 

• alcohol dehydrogenase (NAD) activity (GO:0004022) 
• protein homodimerization activity (GO:0042803) 
• ethanol catabolic process (GO:0006068) 

• protein heterodimerization activity (GO:0046982) 
• transport (GO:0006810) 

Fold- 
Change 
(mt vs. wt) 

-2.89 
 

-2.85 
 

-2.84 
 

-2.80 
 

-2.77 
 

p-value 

0.0019 
 

0.0069 
 

0.0032 
 

0.0042 
 

0.0421 
 

Name 

insulin-like growth 
factor binding 
protein 3 Gene 

selenoprotein P, 
plasma, 1 

lipoprotein lipase 

alcohol 
dehydrogenase 1 

transthyretin 

Symbol 

Igfbp3 
 

Sepp1 
 

Lpl 
 

Adh1 
 

Ttr 
 

 

Table S18: Highest changing genes in Mefs Passage 1 Part IV. 
WT was used as reference. Blue numbers: down- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt. 
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Function 

• in utero embryonic development (GO:0001701) 
• multicellular organismal development (GO:0007275) 
• positive regulation of cell proliferation (GO:0008284) 
• anatomical structure morphogenesis (GO:0009653)  
• organ morphogenesis (GO:0009887) 
• cell migration (GO:0016477) 
• signal transduction involved in regulation of gene expression (GO:0023019)  
• extracellular matrix organization (GO:0030198) 
• positive regulation of fibroblast proliferation (GO:0048146) 
• embryonic cranial skeleton morphogenesis (GO:0048701) 

• negative regulation of cell proliferation (GO:0008285)  
• negative regulation of cell migration (GO:0030336) 

• transforming growth factor beta receptor binding (GO:0005160)  
• growth factor activity (GO:0008083) 
• regulation of apoptotic process (GO:0042981) 
• positive regulation of osteoblast differentiation (GO:0045669)  
• cell development (GO:0048468) 
• regulation of MAPK cascade (GO:0043408) 

Fold- 
Change 
(mt vs. wt) 

-2.73 
 

-2.69 
 

-2.68 
 

p-value 

0.0140 
 

0.0102 
 

0.0421 
 

Name 

platelet derived 
growth factor 
receptor 

erythroid 
differentiation 
regulator 1 

growth 
differentiation 
factor 10 

Symbol 

Pdgfra 
 

Erdr1 
 

Gdf10 
 

 

Table S19: Highest changing genes in Mefs Passage 1 Part V. 
WT was used as reference. Blue numbers: down- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt. 
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Function 

• positive regulation of epithelial cell proliferation (GO:0050679) 
• lipid metabolic process (GO:0006629)  
• bile acid biosynthetic process (GO:0006699 

• growth factor activity (GO:0008083) 
• multicellular organismal development (GO:0007275)  
• positive regulation of cell proliferation (GO:0008284) 
• positive regulation of cell division (GO:0051781) 

• fibronectin binding (GO:0001968) 
• regulation of cell growth (GO:0001558) 
• protein phosphorylation (GO:0006468)  
• negative regulation of cell proliferation (GO:0008285) 
• regulation of growth (GO:0040008)  
• positive regulation of apoptotic process (GO:0043065) 
• positive regulation of insulin-like growth factor receptor signaling pathway 

(GO:0043568) 

• fibroblast growth factor binding (GO:0017134) 
• epithelial to mesenchymal transition (GO:0001837) 
• embryo development (GO:0009790)  
• negative regulation of epithelial cell migration (GO:0010633) 
• negative regulation of epithelial cell proliferation (GO:0050680) 
• proteinaceous extracellular matrix (GO:0005578) 
• intracellular signal transduction (GO:0035556) 

Fold- 
Change 
(mt vs. wt) 

-2.65 
 

-2.63 
 

-2.61 
 

-2.59 
 

p-value 

0.0351 
 

0.0260 
 

0.0013 
 

0.0174 
 

Name 

cytochrome P450, 
family 7, subfamily 
b, polypeptide 1 

c-fos induced 
growth factor 

insulin-like growth 
factor binding 
protein 3 Gene 

transforming 
growth factor, beta 
receptor III 

Symbol 

Cyp7b1 
 

Figf 
 

Igfbp3 
 

Tgfbr3 
 

 

Table S20: Highest changing genes in Mefs Passage 1 Part VI. 
WT was used as reference. Blue numbers: down- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt. 
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Function 

• positive regulation of transcription from RNA polymerase II promoter 
(GO:0045944) 

• lipid binding (GO:0008289) 

• magnesium ion binding (GO:0000287)  
• phosphopyruvate hydratase activity (GO:0004634) 

• RNA polymerase II core promoter proximal region sequence-specific DNA binding 
(GO:0000978)  

• RNA polymerase II distal enhancer sequence-specific DNA binding 
(GO:0000980) 

• cytoskeleton (GO:0005856)  
• focal adhesion (GO:0005925) 
• cortical cytoskeleton (GO:0030863) 

 

• nucleotide binding (GO:0000166)  
• ATP binding (GO:0005524)  
• cytoskeleton (GO:0005856) 

Fold- 
Change 
(mt vs. wt) 

2.51 
 

2.57 
 

2.62 
 

2.70 
 

p-value 

0.0066 
 

0.0374 
 

0.0020 
 

0.0458 
 

Name 

serum deprivation 
response 

enolase 3, beta 
muscle 

beta actin 

actin, gamma 2, 
smooth muscle 

Symbol 

Sdpr 
 

Eno3 
 

Actb 
 

Actg2 
 

 

Table S21: Highest changing genes in Mefs Passage 1 Part VII. 
WT was used as reference. Red numbers: up- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt. 
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Function 

• actin binding (GO:0003779) 
• actin filament binding (GO:0051015) 
• cell projection (GO:0042995)  
• protein complex (GO:0043234) 

• phosphoprotein binding (GO:0051219) 
• regulation of apoptotic process (GO:0042981) 

• negative regulation of cell proliferation (GO:0008285) 
• positive regulation of macrophage activation (GO:0043032) 
• interleukin-33 receptor activity (GO:0002114) 

• transcription regulatory region DNA binding (GO:0044212) 
• RNA binding (GO:0003723) 
• nucleotide binding (GO:0000166) 
• mRNA processing (GO:0006397) 

 

Fold- 
Change 
(mt vs. wt) 

2.87 
 

2.93 
 

3.00 
 

3.05 
 

p-value 

0.0253 
 

0.0387 
 

0.0017 
 

0.0220 
 

Name 

allograft 
inflammatory factor 
1-like 

insulin-like growth 
factor 2 receptor 

interleukin 1 
receptor-like 1 
Gene 

heterogeneous 
nuclear 
ribonucleoprotein L 

Symbol 

2810003C1
7Rik 

 

Igf2r 
 

Il1rl1 
 

Hnrpl 
 

 

Table S22: Highest changing genes in Mefs Passage 1 Part VIII. 
WT was used as reference. Red numbers: up- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt. 
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Function 

• cell death (GO:0008219) 
• proteolysis (GO:0006508) 
• negative regulation of myelination (GO:0031642) 
• negative regulation of axon regeneration (GO:0048681)  
• neuron projection morphogenesis (GO:0048812)  
• regulation of synapse organization (GO:0050807) 

• cytoskeleton organization (GO:0007010)  
• epithelial cell differentiation (GO:0030855)  

 

• growth factor activity (GO:0008083) 
• regulation of transcription from RNA polymerase II promoter (GO:0006357)  
• cell cycle arrest (GO:0007050)  
• negative regulation of cell proliferation (GO:0008285) 
• G1/S transition of mitotic cell cycle (GO:0000082) 
• negative regulation of cell growth (GO:0030308) 
• DNA-templated (GO:0045893)  
• positive regulation of transcription from RNA polymerase II promoter 

(GO:0045944) 
• cell development (GO:0048468) 

 
 

Fold- 
Change 
(mt vs. wt) 

3.06 
 

3.06 
 

3.08 
 

p-value 

0.0015 
 

0.0133 
 

0.0260 
 

Name 

kallikrein related-
peptidase 8 

transgelin 

inhibin beta-A 

Symbol 

Klk8 
 

Tagln 
 

Inhba 
 

 

Table S23: Highest changing genes in Mefs Passage 1 Part IX. 
WT was used as reference. Red numbers: up- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt. 
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Function 

• RNA polymerase II transcription factor binding (GO:0001085) 
• regulation of transcription from RNA polymerase II promoter (GO:0006357) 
• positive regulation of apoptotic process (GO:0043065) 
• skeletal muscle cell differentiation (GO:0035914) 
• negative regulation of DNA biosynthetic process (GO:2000279) 

• extracellular matrix structural constituent (GO:0005201) 
• skeletal system development (GO:0001501)  
• cartilage condensation (GO:0001502)  
• tissue homeostasis (GO:0001894)  
• endochondral ossification (GO:0001958)  
• chondrocyte differentiation (GO:0002062) 
• regulation of gene expression (GO:0010468)  
• collagen fibril organization (GO:0030199) 

 

• skeletal muscle fiber development (GO:0048741) 
• nucleotide binding (GO:0000166) 
• actin cytoskeleton (GO:0015629) 

Fold- 
Change 
(mt vs. wt) 

3.67 
 

3.86 
 

4.91 
 

p-value 

0.0121 
 

0.0029 
 

0.0158 
 

Name 

ankyrin repeat 
domain 1 

collagen type II, 
alpha 1 

alpha actin, skeleton 
muscle f 

Symbol 

Ankrd1 
 

Col2a1 
 

Acta1 
 

 

Table S24: Highest changing genes in Mefs Passage 1 Part X. 
WT was used as reference. Red numbers: up- regulation; mt: Cofilin1KTRTK/KTRTK; wt: Cofilin1wt/wt. 
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